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STRINGS AND SOLITONS IN GAUGE THEORIES 

N.G. Turok 

ABSTRACT 

This thesis covers two topics in nonabelian gauge theories. 

The first is the existence, in some spontaneously broken gauge 

theories of topologically stable 'string' solutions. A comprehensive 

classification of those grand unified theories yielding these solutions 

is given. The cosmological consequences of strings produced at the grand 

unification phase transition are investigated and it is shown how 

spinning loops of' string may lead to the formation of galaxies. 

The second topic is the connection between gauge theories and 

integrable systems, notably the Toda systems. These are known to possess 

soliton solutions, both topological and non-toplogical, and this fact 

is related in an essential way to their integrability. It is shown 

how self-dual gauge field configurations give rise to the Toda equations, 

and a complete classification of Toda systems is given. A new simple 

algebraic proof of the integrability of Toda systems is given which 

clarifies the role of an underlying 'Kac-Moody' algebra for the Toda 

lattice equations. This also gives a clue as to the quantisation of 

these systems, and a link with the 'Quantum Inverse Scattering'method. 
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INTRODUCTION 

This thesis is written as one of the principal predictions of 

the non-abelian gauge theory of the electroweak interactions, the 

existence of a massive charged vector boson at 80 GeV, has just been 

reported confirmed. However, the theory has been believed by most 

theoretical physicsts for some time and the result caused little real 

surprise. The reason for this lies in the remarkable and unique 

mathematical and physical properties of non abelian gauge theories 

(or Yang-Mills theories) invented by C.N. Yang and R.L. Mills in 1954 

[i] 

Indeed the impact at the present time of gauge theories on both 

mathematics and physics can hardly be overestimated., Some of their 

special properties for physics are: 

i) They are the only known consistent, renormalisable local 

quantum field theories of the strong and electroweak inter-

actions . 

ii) They are asymptotically free - a property conjectured to be 
r2i 

necessary L J for any nontrivial quantum field theory (which 

Quantum Electrodynamics and <t>̂  theory fail). More concretely 

the property is essential for a theory of the strong inter-

actions which at least explains the success of the parton 

model. 

iii) They predict a natural unification at very high energies of the 

strong and electroweak gauge interactions into a single 'Grand 

Unified Theory' (GUT). This would describe in a simple, 

aesthetic way the physics of the very early universe, the high 

degree of symmetry being spontaneously broken as the universe 

cooled. 



Many problems remain with gauge theories, however, mainly 

because their complex nonlinear structure frustrates attempts to 

understand the quantum theory properly i.e. what the particle states 

are, at least partly by allowing localised non-dissipative solutions 

which are topologically stable and persist in the quantum theory. In 

the Euclidean theory, one may attempt build the quantum theory in a 

semiclassical way upon classical instanton solutions. Indeed current 

theories of quark confinement give a key role to these solutions and 

others, 'monopoles' and 'flux lines', which are sometimes generically 

referred to as 'solitons'. The quotation marks indicate the as yet 

poorly understood nature and role of these topological objects in an 

unbroken gauge theory like Quantum Chromodynamics. The classi-

fication of all instantons by Atiyah, Drinfeld, Hitchin and 
r3l 

ManinL Jhas also led to far-reaching new developments in 

mathematics. 

Similar solutions, though rather better defined, result when a 
[4 

grand unified theory is spontaneously broken by the Higgs mechanism1 

These are grand unified monopoles, strings and domain walls. These 

may have drastic consequences for cosmology - the 'monopole problem' 

for instance which occurs in most GUTs, is that the theories predict 

more monopole matter than any other, in flagrant disagreement with 

observation. Similarly, domain walls, although not predicted by most 

GUTs, are cosmologically unacceptable^-3̂ . 

This thesis is directed towards both these problems - towards 

understanding the quantum field theory of gauge theories and their 

cosmological predictions. 

Chapter I is devoted to the occurence in some GUTs of 

topologically stable solutions with string-like form, 'strings'. 

Their spherical analogues, magnetic monopoles, have been extensively 
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investigated in the literature and occur as something of a problem 

for GUTs, as explained above. As I hope to show, 'strings' in grand 

unified theories could play a rather more positive, .cosmological role 

- that is, they may seed the process of galaxy formation. 

Section 1.1 describes what strings are and gives criteria for 

their existence in a GUT. Section 1.2 describes what seems the most 

physical examples, using techniques of Lie group representation 

theory, providing a fairly complete analysis of realistic GUTS. 

Section 1.3 describes the behaviour of strings in the very early 

universe - how they yield the correct density fluctuations for galaxy 

formation under certain assumptions. Section 1.4 describes the 

production of non-self-intersecting loops in the very early universe, 

substantiating the previous analysis. Section 1.5 outlines in more 

detail how galaxies would form, and how large scale filamentary 

structures could also be caused by strings. Section 1.6 shows how 

collapsing strings could yield the universe's baryon number. 

Chapter II is devoted to understanding the connection between 

gauge theories and integrable systems, notably the Toda systems 

These are known to possess soliton solutions, both topological and 

non-topological, and this fact is due in an essential way to their 

integrability. The Toda molecule equations have already arisen in 

the study of spherically symmetric monopoles and instantons - it is 

shown in Section 2.1 how the Toda lattice equations also arise in 

self-dual Yang-Mills configurations. The Toda equations and their 

symmetries are discussed in Sections 2.2-2.6 using Dynkin diagrams -

in particular a procedure for obtaining all Toda equations from the 

simplest ones is given, which promises to be useful in the analysis 

of self-dual monopoles and other Toda systems• Chapter III 
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is devoted to an understanding of the algebraic structure underlying 

the classical integrability of all Toda systems. A purely Lie algebraic 

operator, called [P is found from which the Lax Pair for the one-

dimensional Toda systems may be constructed, and which guarantees the 

complete integrability of the systems. It is shown how this operator 

depends in a uniform way on the root system of the underlying algebras -

the simple Lie algebras for the Toda molecule systems, and the affine 

Kac-Moody algebras for the Toda lattice systems. It includes a new 

simple proof of the integrability of all Toda systems. Interestingly, 

it also gives a strong'hint of how to quantise the theories, providing 

a link with the 'Quantum Inverse Scattering Method'. 



CHAPTER I 

GRAND UNIFIED STRINGS AND GALAXY FORMATION 
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1.1 WHAT STRINGS ARE AND CRITERIA FOR THEIR EXISTENCE 

A string is a localised topologically stable solution to the 

coupled field equations of a Yang-Mills-Higgs system with cylindrical 

form and finite energy per unit length. The simplest examples of 

strings are the flux lines observed in superconductors. Their 

occurrence, in spontaneously broken gauge theories was first pointed 

out by Nielsen and Olesen [l]« 

The system of fields for a Yang-Mills-Higgs system is defined 

by the Lagrangian density 

z = - ^ v r r - vcs) 
(l.i.D 

W H E R E - V C - A V V O ; - * S ^ W X 

is the gauge field strength, wjthe gauge potential, e the coupling 

constant andf^the structure constants of the algebra of generators 

T^of the gauge group G, defined by [Tb, Tc] = ijbc* T«u. iE. 

is the higgs field - the index a runs over the dimension of the 

representation in which it lies. is a fourth order polynomial • 

(higher orders are non-renormalisable) invariant under gauge 

transformations 

(1.1.2) 
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the gauge group, in the representation^ is in. The covariant 

derivative of J is given by 

( ^ I Y - + ^ O C T . Y ^ V J ; ^ ' 

We are interested in cylinder-like solutions. Imagine we are 

in the rest-frame of a 'string' which is locally straight. Let us 

look for criteria for the existence of static solutions with 

cylindrical symmetry. For static configurations the Hamiltonian is 

proportional to the Lagrangian, so any solution must be a stationary 

point of the Hamiltonian, in this case the energy per unit length, 

v . - j d v t c m * (err - sat) 
* » y. —" 

T w * T 5 v V 

where i runs over spatial indices, 

and the length L comes from integration along the axis of cylindrical 

symmetry. This expression should be stationary under simple scale 

transformations of the fields 

= X x * , £ ' 0 0 - - S w ; vj/t*') - x w / - ( x ) 

Under these transformations, the three terms in (1.1.3) scale as 

T w ' T * V 

1 0 

and it is clear there exists no stationary point if any of the three 

terms is absent. The"T^ term is necessary because it is only through 

this term that the gauge potential and higgs field are coupled. 

t-
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One may compare this analysis with ball-like spherically symmetric 

solutions, 'monopoles1, and wall-like solutions symmetric in two 

directions, 'domain walls'; 

I v . V 

domain walls x 3 x X ' 

monopoles X X^3 

It is immediately clear that strings are actually the most complex 

configurations - for in the case of monopoles, one can still have 

static solutions with V ® put equal to zero (this is called the 

Bogomolny-Prasad-Sommerfeld or self-dual limit) and in the case of 

domain walls one does not need theTw term, nor actually gauge fields 

at all. 

However, in Grand Unified Theories one does have all three 

terms, and the higgs potential cannot be zero (this would give 

unobserved massless scalar particles.) There is only one quantity 

with the dimensions of a mass in the expression (1.1.3) - it is the 

vacuum expectation value <f> of the higgs field which is non zero 

when the gauge symmetry is broken. In fact|(5^| is also 

approximately :the temperature at which the symmetry breaking phase 
r2l 

transition occurs1! JBy scaling all dimensional quantities out of the 

action, 

Oy.KSX, * = e\C5>ft> ̂ H ^ ^ % we find (1.1.3) reduces to 

where a and p are arbitrary dimensionless constants in the higgs 

potential and x is a dimensionless topological integral. 

We obtain \i = E/L - (1.1.4) 
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as our estimate of the mass per unit length. If ~ 1015 GeV as 

in Grand Unified theories, this yields \l - 1019Kg m"1! 

Of course, dimensional analysis is hardly enough - we need a 

more powerful criterion for the existence of strings. A very simple 

one exists and is related to the topology of the group considered. 

Consider a stringlike configuration of fields: 

w y 

At large distance from the string, for a finite energy per unit 

length^jjmust minimise the potential. In fact as we wind around the 

string ̂ a s a function of 9 (see diagram) provides a map from the 

circle Sx into ft, = \ £ 1 = V C 5 ) -

being the set of minima of the higgs potential, which is chosen 

positive semi-definite. It is well known that if there is no 

accidental degeneracy in the potential, 

f\ 0 ft G / ^ (1.1.5) 

where H is the subgroup of G leaving ĵ? invariant. In mathematical 
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language, at large distance from the string we have 

J C E ) E T T X 

where n^ is the first homotopy group of G/H . If 5.(9) is not 

deformable continuously to a trivial map i.e. there does not exist a 

f(9,t) such that f(9,0)) = 5(9) and f(9,l) =» constant, independent 

of 9, then the string solution cannot decay away continuously to the 

vacuum. It is then topologically stable. An example is provided by 

the occurrence of flux lines in superconductors. Here the U(l) of 

ordinary electromagnetism is broken completely by the complex scalar 

field? describing Cooper pairs. Thus G = U(l) and H = so 

t e ^ G /H ) being the group of maps from circles to circles, 

labelled by a winding number 

In grand unified theories, in the simplest case we are 

interested in the spontaneous breaking of a simple group G (i.e. the 

symmetry group of a gauge theory with a single coupling constant) to 

some subgroup H sG. Now an arbitrary simple (or even semi-simple) 

group G is of the form G/g(G) where g(G) is a subgroup of the centre 

of the universal covering group of G which is simply connected. 

If has a subgroup II leaving 5 invariant, then G has a subgroup H 

obtained by identifying those elements of g(G) contained in H . In 

fact since the gauge group is G not G, we know that g(G) leaves 5 

invariant, so*H contains all of g(G). Thus H = H /g(G). Clearly 

then r^ 
G / H 9 6

 ( 1 < 1 . 6 ) 

since both involve taking CJ, identifying g(G) and H , and these 

operations clearly commute. 
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We may thus restrict ourselves to the case where G 3 G is 

simply connected, so that (G) 3 HqCG) 3 0 and homotopy 

theorems yield 

(1.1.7) 

which is nontrivial if H has several disconnected components 

following picture illustrates how this works if H has two 

disconnected pieces 5 

The 

Then the path shown in red is clearly nontrivial in G/H i.e. cannot 

be deformed to the identity. However, repeating the path twice in 

G/H , we find 

A and B differ by an element of H , but can be deformed by 'elements 

inG as shown to obtain the second configuration. The loops can then 

be shrunk to zero. Thus TT (G/H ) - "Z.̂ . 



1.2 Z2 STRINGS IN GRAND UNIFIED THEORIES 

The purpose of this:sec.tion is to point out that Z^ strings arise 

very naturally in grand unified theories as a consequence of the sort of 

symmetry breaking which seems to he needed to give masses to fermions. 

This generalises to any semisimple group, for example, Eg, E^ and. Eg, a 
r3l 

result recently obtained for SO(lO) . -In such theories the chiral fermions 

are placed in a fundamental representation of the semisimple gauge group G 

(in fact the 2^8, 56, 27 and 16 respectively for the groups mentioned). 

This representation has as highest weight a "fundamental weight" associated 

with a point of the Dynkin diagram of G. It seems that typically G is 

broken to the subgroup whose Dynkin diagram is obtained by deleting this 

same point from the original Dynkin diagram. Thus in the examples Eg is 

broken to E^, E^ to Eg, Eg to SO(lO) and S0(10) to SU(5). 

We shall show that Z^ strings result from a natural choice of 

Higgs mechanism which achieves these two goals of giving some of the 

fermions masses and of yielding the desired breaking. For Eg this Higgs 

is a complexified 27,000, for E^ a complexified 1L63, for Eg a 351, and 

for S0(10) a 126. 

Our result is very general, being valid for any semisimple Lie grou 

and any fundamental representation of that group. In fact we shall also 

show how to obtain Z^ strings. The proof uses Lie algebraic techniques 
[41 recently developed in connection with monopole theory 
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Let the gauge symmetry G of the Lagrangian "be broken to a subgroup 

H j "by the Higgs field 5 . Its vacuum manifold consists of the coset 

space G/H*so that a loop in space may "capture" a string if Tt\(G/H-) 
as shown abov? 

nontrivial. If G is connected, as we shall assume, then/without loss of 

generality it can be taken to be simply connected and homotopy theorems 

assure us that 

T T F G / H , ) - T T O C H J ) = H * / H C 
( 1 . 2 . 1 ) 

where \-\c is the component of H ^ connected to the identity. By 

continuity He is an invariant subgroup of so that the topological 

quantum numbers (l) actually from a finite group. Topologically distinct 

strings thus correspond to the disconnected components of Hj. 

In the original examples of Nielsen and Olesen^ H ^ was a 

finite group but this is impossible in a physical GUT theory since 

must contain U(3), the exact gauge symmetry of nature. 

The structure of the strings resulting depends critically on the 

choice of the Higgs field. For the reasons explained above we shall 

concentrate on choices of 5E yielding an H 5 containing as a subgroup 

the group K obtained by exponentiating the generators of G corresponding 

to the Dynkin diagram D(K) obtained by deleting one point (and its 

links) from the Dynkin diagram of G, D(G). By definition K is connected 
[4] and it can be shown to be simply connected . The points of D(G) correspon 

[5,6] 
to simple roots of G and the simple root corresponding to the 
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deleted point is denoted . if are the simple roots of G its 

fundamental weights Ki are defined "by 

( 1 . 2 . 2 ) 

X * then denotes the highest weight of the fundamental representation, D, 

carrying the chiral fermions. The fermion mass term transforms as (D x D) 
sym 

so that any Higgs yielding fermion masses must lie in the symmetric part 

of the Clebsch-Gordon series DxD. (By the same token so must any Higgs 

which is a difermion condensate- ). The highest dimensional such representatio 

automatically has highest weight i X ^ We shall now show that the correspondis* 

state m the representation space of that representation is annihilate 

by precisely those generators of G which are generators of K. 

That \ f^y has weight ĴL -means simply that 

for each Cartan subalgebra generator H . That 

is the highest weight 

of the representation means that there is no state with weight 

for a positive root of G. So must then vanish. Now the oC 

string through has length • / ( s e e Humphreys ^ ̂  p.llL) 

and this vanishes for all roots d of G in which does not occur, i.e. 

roots of K. Hence the compact generators 
and annihilate 

if and only if is a root of K, as does o(.H. This 

is also true if we consider the state |n\^(n an integer) which is the highest 

weight state obtained by symmetrizing the Kronecker product of n representatio 

D. Thus a Higgs field whose vacuum expectation value is parallel to 

automatically yields an which we shall denote H W whose 
generators are those of K. 



ly. 

Before explaining the global structure of we shall 

consider a situation of interest in monopole theory when the Higgs field 

lies in the adjoint representation rather than the representations discussed 

above. If it assumes a direction along X ^ in vacuo then 

H * - VY = U ( \ ) x K / i (1.2.3) 

where K is as before and the U(l) is generated by . Division by 

the cyclic group Zĵ  indicates that points of the centre of K actually 

lie in the U(l). Let us denote as Vo the generator of this precise 

formula appears later). 

Our main result is that H w , the little group of is 

H T ^ = Z ^ * V C / Z * C I . 2 . 4 ) 

Thus the U(l) occurring in (3) is broken to a cyclic group of order 
R A 

whose generator will be an nth root of V o . The topological quantum 

numbers for the strings are therefore given by (l) as 

. v w / i . i n . ! / ( 1 . 2 . 5 ) 

In particular, if the fermions are to acquire masses, n=2 and Z^ strings 

result. 

Notice that since H(n) is a subgroup of HT given by (3) the result 

(5) concerning strings holds even when there is an adjoint Higgs as described 

though the monopoles associated with the U(l) disappear. In grand unified 

models both sorts of Higgs mechanism are often thought to hold simultaneously. 
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Now let us prove (b). Consider the component of H(n) 

connected to the identity 6. and a point 3 0 in it. Then evaluated 

along the path joining to annihilates \<%X^at each point and hence is a 

linear combination of the generators of K. Hence K is this component of 

H(n). 

Consider any w in H(n) not necessarily in K: then by continuity 

W K V S T - K 
- ' (1.2.6) 

Let C(K) denote the Cartan subalgebra of K. 

Then is an equally good Cartan subalgebra which, by a general 
rgj 

theorem , can be conjugated within K back to C(K). Thus we can choose 

K in K so that if V I = V V L then-

(1.2.7) 
v j ' c w t w r k C M 

W and W lie in the same disconnected component (l) of H(n). 

Now let us choose as Cartan subalgebra of G that spanned by C(K) 

and X^.H. Consider 

W \ H ( W f - A . . H 
It annihilates the state and so belongs to the Lie algebra of K 

but, by (7) it commutes with each Cartan subalgebra generator of K and hence 

is a linear combination of them. Thus 

V I ' C C Q C W ' F = C ( G ) D . 2 . 8 , 

U . W ' C C . H ( V T = 
. [8] -

where it was proven m . that O is an element of the Weyl group of G, W(G). 

It follows from (8) and the one dimensionality of the vector space correspond' 
[6] to the highest weight of an irreducible representation that 
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W = Const 
But since VI' lies in H(n However the subgroup of W(G) 

with this property is precisely W(K). For, suppose that when 6 is written 

as a minimal length product of reflections in 'simple roots of G (see 
[6] -

Humphreys p.51), ^ ^ , the reflection in , appears: 

6 - = 

with 6 free of . Then . B y 

the theory of the Weyl group 6 is a negative root since S ^ C ^ - — C ^ 

and no more sign changes can occur if 6 is written in minimal length. 

Since the Weyl group respects scalar products this furnishes a contradiction 

since it implies that 

is negative when by (2) it equals 

unity. Thus S^ cannot occur in S and the result is established. 
[8] 

Since W(K) can be realised by gauge tramsformations in K we can 

choose an element k1 of K so that if 
W " = K W . 

W V v U V i T = 

Hence W 
lies in the maximal torus of K obtained by exponentiating 

its Cartan subalgebra. We can choose am element k" of this torus so that 
Wilt . Uv ,»« 2 / 

= k W = e 

Then by (2) 
V I X > = \ K > 

for amy fundamental weight X of G distinct 
from X ^ , while, 

\ I"' 

But vH is an element of H(n) and so ny* must be an integer multiple 

of 2ir . When n=l, must equal unity as it assumes this value on all 

states of all irreducible representations of G. Thus H(l) equals K and 
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the result (U) is established for n=l. Indeed (2) implies 

P = 1 (1.2.10 

rg-j 
This is a special case of the hamomorphism J 

_ A - T T U ^ - H 

KL — ^ V F 

from the coweight lattice of G onto the centre of its universal covering 

group. The kernel is the coroot lattice. It is instructive to expand 

^ terms of coweights of U(l) x K (eqn (3): 

= + fit (1.2.1 

where z is the order of the centre of G divided by the order of the centre 

of K and jSf is a ccweight of K and so perpendicular to X^4-' . It 

follows from (10) and (11) that 

v o = e = e
 ( l

-
2 a 

This is the element V© mentioned earlier which generates the subgroup 

common to U(l) and the centre of K in (3) as is clear from (12). JL is the 

smallest integer such that 
W equals unity. 

The preceding analysis showed that any element of H(n) could be 

written as an element of K times an integer power of ( V o T where 

( V o T = e 

This generates the 2-.1ULsubgroup commuting with K in (4). Integer powers of 

V o , eqn. (12) lie in K and this is why the Z^ subgroup generated by V o 

must be divided out in the result (b) which is thereby established. 
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Notice that the component J H ^ ^ ^ is necessarily a complex 

component of the representation whose highest weight is n 
V • Sometimes 

this representation may be a real representation and so possess no complex 

components. Then it is understood that we are talking about the complex 

representations formed by a pair of these real representations. This is 

why we specified the complexified 27,000 and 1,U63 of Eg and E^ 

respectively. 

There is some reason to think that there is a sequence of grand unified 

groups Eg, E^, Eg, E^ s S0(l0), E^ "S SU(5) broken by successive adjoint 
[ 9 ] 

Higgs producing U(l) factors . Each of these U(l)fs can be broken 

by the ^ A Higgs discussed above (possibly a difermion condensate) to 

an effective Z^ subgroup. Then instead of monopoles associated with each 

such U(l) factor Z^ strings can arise which survive the subsequent symmetry 

breaking of this type. For these strings to seed galaxy formation they 

must be superheavy as must therefore be the fermions acquiring mass from 

the same Higgs. This seems to favour the breaking of Eg and S0(10) by 

this mechanism since it is only then that just the unwanted components 

acquire masses. 
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1.3 STRINGS IN THE EARLY UNIVERSE 

There is as yet no fully satisfactory theory of galaxy 

formation [lO]. Zeldovich [ll] first suggested that strings could 

provide the density fluctuations needed to give rise to galaxies. 

His argument was as follows. Strings move at typical velocities of 

the order of the speed of light (as will be seen in subsequent 

sections) so if strings move freely, by crossing and exchange of 

partners and subsequent annihilation one might expect of the order 

of one length of string to cross each particle horizon - that is 

(letting c = 1) 

(1.3.1) 
- H f e - He 

In a radiation dominated universe, p ~ p , ~ 1/30 Gt2. 
' K ^radiation 

So the density fluctuation due to strings is 

Sp A + r i ^ ^ 3 0 & A - - M o "
3

 (1-3.2) 

P P 
if 10-4. Recalling p ~ ~ Tc2, where Tc is the temperature 

at which the phase transition occurs, and G = Mp~2 where Mp is the 

planck mass (letting U = 1), we see Gp ~ (Tc/Mp)2 so (1.3.2) holds 

for Tc ~ 10"2 Mp =10 17 GeV, higher than in Grand Unified 

theories. 

Why do we require (1.3.2)? Density perturbations only start to 

grow after the decoupling of matter and radiation, at t ~ 1012s. At 

this time the Jeans length, the minimum scale on which fluctuations 

can start to grow, falls to a value much less than the horizon 

distance and galaxies can begin to form [10]. After 10i2s, 

fy/p grows like t*̂  , so at recent epochs, t ~ 1016s, when it is 

thought galaxies were formed, 

V 
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§ 2 . - - 1 (1.3.3) 
f M o ' V 

Vilenkin [12,13] improved the idea by suggesting that closed loops of 

string would give ^f/p^^A0 for Tc ^ 1015 GeV, close to the 

value in most Grand Unified Theories. He made the following key 

assumptions: 

(i) that there exist long-lived spinning loop solutions, 

Cii) that loops are formed at a rate 

corresponding to 

one loop of radius /v t produced per unit time per horizon 

(itself of radius a, t) 

(iii) that the loops lose energy primarily by gravitational 

radiation. 

By assumption (iii) the loops lifetime can be estimated ; 

a loop of radius r oscillates with frequency U> 
W (we use c = 1 everywhere) and loses gravitational energy at a constant rate 

M ^ - ~ — ( 1 . 3 . 4 ) 

Its lifetime ^ is thus of the order of 

t A. (£/*YV 0 - \o*c 0 (1.3.5) 

where ^ is its initial radius. The smallest loops surviving till a 

time t were thus formed at Gŷ Otl . 

Estimating the density of loops requires knowledge of the 

exact behaviour of their mass energy (which is not conserved) after 

they are formed. A simple estimate is that it is simply equal to 

their mass at formation, of order juA- where t' is the time of formation, 
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Then (ii) yields 

where the factors of R account for the universes expansion, and 

in a radiation dominated universe. This gives 

G O - M G ^ 
(1.3.7) 

so 

(1.3.8) 

as desired. So under all these assumptions, loops could provide the 

right density perturbation amplitude to account for galaxy formation. 

Similarly the number of loops per particle horizon (whose radius is 

of order t) is given by 

Nloops 

compared to the number of galaxies observed today, estimated at 

ion. 

We shall examine assumptions (i)-(iii)in subsequent sections, 

and find some interesting results along the way. 

F 4 * D T ' 
oVxN J . (oft 

r k 
\ o 

V3- (1.3.9) 
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1.4 THE PRODUCTION OF STRING LOOPS IN AN EXPANDING UNIVERSE 

In this section we deal with the main assumptions underlying the 

string theory of galaxy formation. In particular, we ask 'do there 

exist long-lived loop solutions?' and 'can these be produced at a 
dtvs 

r a t e 

First we search for long-lived closed loops. A possible criticism 

of the lifetime estimate (1.3.5) based on assumption (iii) is that 

other types of radiation may in fact be more important. However, 

strings do not carry any net electric or magnetic charges so any such 

process must be rather indirect. For the large scale strings we 

shall consider the proper acceleration of the string, equal to 1/r 

where r is the radius of curvature of the string in its rest frame, 

is vastly less than the mass of any particle coupling to it, so 

(1.3.5) and assumption (iii) are probably correct. 

There is, however, another problem. A closed loop may from 

time to time intersect itself and break into two smaller loops, whose 

lifetime would be shorter. At first sight it seems plausible to 

suppose that for any random initial configuration there is some 

probability p per oscillation cycle of self-intersection, and that p 

should be independent of the actual size of the loop. If that were 

true, one should expect that a loop of length Ji would break into two 

loops of length in a typical time-fyp . These in turn would break 

into yet smaLler loops of length ^4. in a further time , and so 

on. Obviously this yields a geometric series, giving a total lifetime 

of order Unless p were astonishingly small, this would reduce 

the number of loops to a level much less than required by Vilenkin. 

This is the argument we propose to test. It is by no means 

conclusive, for it is not clear that it is reasonable to approximate 



the behaviour of a large number of loops by that of an "average" loop. 

It may happen that there are some initial configurations that lead to 

rapid self-intersection, but others that never intersect at all. Indeed, 

this is precisely what we shall show does happen. The remaining 

unanswered questions is what proportion of strings fall into this 

category. 

Let us first recall the dynamical equations of strings (which 

may bederived from an action integral proportional to the invariant 

area of the world sheet swept out by the string). As shown by Goddard 

et. al. fl̂ Tj , it is possible to choose the parameterization of the 

string so that the equation of motion takes a particularly simple form. 

If t is the time and s the length parameter along the string proportion 

to the total mass of the string from a fixed point, the equation for the 

position r(s,t) reduces to 

r ~ £ = 9 (1.4.1) 

where r = dr/dt and rf = 3r/ 3s. These quantities also satisfy the 

constraint equations 

2 ' 2 
r - r' = 0, x + r = 1. 

Of course the general solution of (l) is 

r = \ a(s-t) + 1 b (s+t) 

where §. and b are subject to the constraints 
to »p 

a = b = 1. 

For a closed loop of invariant length L both r anci (in the centre of mass 
frame) r must be periodic with period L and therefore we must have 
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a(s+L) = a-(s) , 

b(s+L) = b(s) . 

In fact the period of the motion is really L/2 rather than L, since it 

is easily seen that 

r(s+L/2, t+L/2) = r(s,t). 

It remains only to examine these solutions for self-intersection 

One may suppose that loops are often formed in an initially almost static 

configuration. First, therefore, let us consider the case of an initially 

static string, r(s,0) = 0. Then a'(s) = b'(s), and by suitable choice 

of an arbitrary constant vector we may take a(s) = b(s). A half-period 

later we have 

r(s , L A ) = i a(s - L/U) + I a(S+LA)-
However, 

r(s+L/2,LA) = I a( s+L A ) + I a (s+3LA). 

By the periodicity of a these are equal. Thus we have the remarkable 

result that any initially static string not merely self-intersects but 

actually collapses to a doubled loop after a half period. Presumably 

strings would then annihilate into particles. For other strings 

more complex process might occur. 

At first sight this result might suggest that it is difficult 

to find non-self-intersecting strings, but in fact this is not the case. 

Indded there exists initial configurations that differ infinitesimally 

from a static one but which do not lead to self-intersection. Here 

we merely exhibit some simple examples. 
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For simplicity let us take the length L of the string to be 2*n . 

The simplest type of solution for a (or b) is given by 

af(s) = e^ cos s + e^ sin s (1.4.2) 

where e^ and e^ are orthogonal unit vectors. If both a' and b' 

have this form, we can choose the axis e^ in the direction of the 

intersection of the circles traced out by and b1 and by suitable choice 

of the zero of s write af as in (2), and b1 as 

bf(s) = e^ cos s + (e^ cos<j> + e^ sin<j>) sin s. 

The corresponding solution is no longer initially static, but it is easy 

to check that 

r(ir-s,ir/2) = r(s,7r/2). 

Hence- the string collapses to a line after a half period. 

It is easy to check that adding to (l.If 2.) terms in cos2s and sin2s 

does not yield any extra solutions. The next simplest solutions involve 

cos3s and sin3s. (The only other possible single, frequency addition is 

one containing cos5s and sin5s terms). By suitable choice of the zero 

point they may be written 

aT(s.) = c o s s + a c o s 3s"3 

+ ^t^" 0^ sin s + asin 3s"] 

+ • e±2fcx(l-a)]5 sin s , 

where a is an arbitrary parameter between 0 and 1. Taking af of this form 
t . . . 

and b as m • (2) we find ia perturbation of the initially-static string 
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s c lut i-on, n ame ly 

r(s,t) = 5 e^J^Cl-a) sin s_ + ^ asin 3s_ + sin 

- 2 gp £(l-a) cos s_ + ia cos 3 s_ . + cos s+3 

" e3 [a(l-a)]2cos s_ (1.4.3) 

with s+ = s + t. It is then straightforward to check that this string 

does not intersect itself for 0 <a<l, i.e. there is no non-trivial 

solution of the equation r(s,t) = r(s',t). 

What is particularly noteworthy about this solution is that only a 

small perturbation away from one of the collapsing solutions is sufficient 

to make it non-self-intersecting. This suggests that there is in fact a 

large class of stably-oscillating solutions, so that the loops required 

by Vilenkin's scenario may indeed have long lifetimes. 

There are of course several questions still unanswered. It has 

to be shown that other modes of radiation of strings do not lead to rapid 

decay of loops. Also it is not clear how special are the solutions we have 

found. It will be necessary to examine other perturbations of initially-

static strings to determine whether the avoidance of self-intersection is 

a general feature or a fortuitous result of our special choice. Ideally 

one would wish to estimate what proportion of loops formed by self-inter-

sections of long strings would be in a self-avoiding configuration. This 

is at present hard to do, but we have at least shown that the class is non-

empty. 
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A STABLY SPINNING LOOP 

Next we shall deal with the second major assumption, that the number 

of loops per unit volume, n, produced by the self-intersection and 

exchange of partners of lengths of string stretched by the expansion of 

the universe obeys 

Obviously this equation is crucial to the whole scenario. Previously 
[4] 

only a consistency argument (which will be discussed below) was given. 

Here we shall show that an analysis of the behavior of exact solutions for 

waves on lengths of string yields precisely this result. 
The consistency argument may be stated as follows. Strings would 

[21 
initially be formed in a tangled Brownian configuration of persistence 
length of the order of the correlation length There would be 

4 

around 10 lengths of string formed across each horizon. These would be 

conformally stretched by the expansion of the universe on scales larger 

than the horizon. If there were no mechanism for energy loss, the string 

density pg would (ignoring subtleties which will be discussed below) scale 

as , where R is the scale factor, compared to the radiation density 
R' 
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scaling as , and soon come to dominate the total energy density of the 
R 

universe. In order for this not to happen, there must be some mechanism for 

decreasing the string density so that pg <= instead. In the radiation 
1/2 R 

dominated very early universe, R^t so, since no mechanism can operate 

on scales larger than the horizon, we assume one acts very efficiently 

inside the horizon, yielding p corresponding to one length"of string 
S tZ 

stretched across each horizon, where y is the mass per unit length of the 
2 F 21 

string and y^T c .L J 

This will indeed be the case if there are ̂  loops formed per unit 

volume per unit time of radius of order the horizon distance, and if these 

loops can then collapse and annihilate, gravitationally couple to the 

surrounding fluid and create turbulence or radiate away via gravitational 

radiation. 

Let us see how this can happen. We consider a Friedmann-Robertson-Walker 

universe, with metric 
2 2 2 2 ds = dt - R (t)dx 

Just as the action for a particle is proportional to the length of 

its world line, that for a string is proportional to the area of the world 
- [14] sheet it sweeps out: 

- u/dA = u/dad.V(|f-|f) 2-(f) 2(|f: 
2 

) 

where x̂ O?,"!) are the space-time coordinates and a ,T the parameters describing 

the sheet surface. We simplify the equations of motion by choosing a new tim-

coordinate r\ such that dt = Rdri and the metric becomes 

2 2 2 2 

ds = R (dn -dx ) (1.4.4) 

Then we choose T = x° = R) and define a so that 
x ' xT = 0 (1.4.5) 
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3X 3* 
for all r|, where x = -ĝ- and x' = t̂ j . In this way we obtain the equation of 

motion 
a / \ R/ x t 2j \ a / (i-i2) 
Vx,Z(l-xZ)/ RVx'2(l-x2)/ " 3 a V x ' 2 ( l - x V 

(1.4.6) 

If the second (damping) term is small we can (by rescaling a) apply the 

extra constraint 

x2 + x'2 = 1 (1.4.7) 

upon which Eq(l.,4.7) becomes simply the wave equation 

x = x" (1.4.8) 

and Eq(1.4.7) is easily checked to be preserved under Eq.(1.4.8) 

When is this possible? A general wave of coordinate amplitude a and 
2tt 2 

wavelength X yields |x"| ̂ a(—) . Using EqCL.4. 7) we find that damping is 

small in Eq(lA.6) if (since |xj must be less than 1) 
2 i ( _ L )

2 i « 1 

R 2ir a x 

or, if R'vri (k = 1 in a radiation-dominated universe), 

A2 

tj- < h (1.4.9) 
where h is the horizon distance, h ̂ t and A, A are the proper amplitude and 

wavelength of the wave respectively. 

For Brownian strings we expect A^A on scales larger than the persisten 

length and see that when A is larger than the horizon, the motion is heavily 

'damped' i.e. |x| « 1 and the strings are conformally stretched, A^A«R(t) 

and move slowly with respect to the surrounding matter. The horizon distanc 

h ̂  RU ̂  t grows faster - when it catches up with A damping becomes small. 

Thereafter Eq.(1-4.9) applies and (as we shall see) large amplitude waves of 

constant comoving amplitude a (i.e. increasing proper amplitude A = Ra) 

can propagate inside the horizon. 

j 
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Notice that small amplitude waves behave differently. They never obey 
2 

Eq .(1 ,49) and damping is always important. Neglecting terms in a we can 

write Eq .(L4.6!) f or a small amplitude wave as 

x + "Y X = x" (1.4.10) 

If R ̂  r) this becomes 

(nx)-= (nx)" ( 1 - 4 - u ) 

which has oscillating waves with a 'V absolutions J-

We see that waves of different structure show very different behaviour -

for A^A there are constant comoving amplitude solutions for which the 

energy per wavelength increases like R: 

E = y / —=== = yR / da (1.4.12) 
J J -1 

where d£ is the-length element along the string, the perpendicular velocity 

and the last equality holds only if Eqs.(lA.5) and(L4.7)do. As Vilenkin 

showed, for small amplitude waves, with A « A , the energy per wavelength increas 

like R for A>h and decreases - like ̂  after they fall inside the horizon. 
K, 

However he assumed that this result applied for Brownian strings, which it 

clearly does not, and used it to argue that the equation of state for 

these should be p even without any loop formation. Our analysis shows 
R 

the different behaviour of small and large-amplitude waves. If the latter 

occur (as they do in Brownian configurations), we are led inescapably back 

to the view that the formation of closed loops is crucial to the consistency 

of the string picture. 

Let us see how these loops might be formed from Brownian waves (A^A). 

When a wave of given amplitude falls inside the horizon it starts moving 

freely. In general its motion will not be correlated over larger scales and 

we expect moving waves (in so far as they can be defined) to meet inside the 

horizon. A typical simple wave solution is 
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^ ( G J U ) = [6G_,ycosG_ + sinG+, ysina_ - cosa+] ^ r + V - 1 (1.4.13) 

where a+ = (a ± n) and a is the amplitude (and A = 27ra). We have chosen 
— CL 

for simplicity a wave with phase velocity v the speed of light - in genera 

a wave can have -<»<v<co. Consider a situation where such a wave travellin 

along the x axis meets a similar one travelling in the opposite direction 

at ri = 0. We shall add a frequency three component (frequency two is not 

allowed by the constraints (Eq.1.4.5,7) to this latter wave, which thus 

takes the form 

x2(a,ri) = j [$a+ - 2/a(l-a) cos o. , 

/ 2 ~ a 1-3 cosG+ + (l-a)sina_ + -j sin3cr_ 

/l-B2 sina a 1-3 sina+ - (l-a)cosa_ - -j cos3a_] (1.4.14) 

We set 

x,x(a,0) = x^x^QjO) a > 0 

= x2
 +£,i2(a»0) a < 0 (1.4.15) 

where 

c - f[2/a(l-a) , y - / l A , -

is chosen to satisfy continuity. Then for u>0 the solution is easily found 

to be 

x(a,n) = x^Gjri) a > n 

j[2Ml=Z) , Y. 1 - f ] ( 1. 4. 1 6 ) 

+ •|[-2/a(l-a)cosG-, sino+ + (l-a)sinG__ +^sin3G_ , 

ct -COSG, - (l-a)cosG COS3G ] T — 3 — 

= X2(g,TI)+C^ . G<-n 
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As r| increases from 0 the solution winds out a loop. At ri = air we 

find x(air,-aiT) = x(-a7T,a7r) = x(0,0) so the string meets itself at the origina 

meeting point. There are now two possibilities. The string could continue 

to wind out another loop exactly alongside the original one (since 

2ĉ (air+a, a7T+ri) = x^(a,n) and x^(-air + O, air+r]) = ^ ( ^ j D ) we are exactly, 

modulo the loop, in the original configuration). With a small perturbation 

however, the string will not merely touch but cross itself at right angles, 

and an exchange of partners (see below) might occur. This would result in 

a closed loop being formed, incidentally precisely the one shown in 

Ref. 5, never to intersect itself. Subsequent waves meeting on the string 

are likely to have larger amplitude (having been stretched longer) and so 

would produce a loop of larger size. We see that this process produces one 

loop of (coordinate) dimension a in coordinate time air, or one loop of 

proper dimension t in a time 'Vt, contributing 

dn _1_ 
dt 4 

if there is one such process going on per horizon. 

The above analysis is very approximate. Waves may move apart as well 

as collide, and we have only examined a special class. However by varying 

the parameters (e.g. v) it is easy to convince oneself that the production 

of loops is a general feature of colliding waves. Indeed there is really 

little else that can occur as the string piles up at the center of mass. 

It is also clear that the simplest frequency contributions to the 

fourier spectrum of the solutions should be most important: as we have 

explained, in an expanding universe there is a cut-off as far as propagating 

waves are concerned at A^t, as longer wavelengths are damped. On scales 
larger than t, the initially Brownian strings have been conformally stretched 

so A(A) ̂ A. As A falls inside the horizon waves begin to move freely and 

thereafter energy loss processes - annihilation, collision or gravitational 



radiation occur. Since the energy in a wave (like Eq. 1.4.13) is proportional 

to A/A, this means A(A) is less than A is A<t falling to zero at A = 0. 

Thus our simple examples are likely to be the most important contributors to 

the overall processes. 

A major uncertainty remains - do strings really exchange partners when 

they cross,.or do they simply pass through one another? 

The magnetic flux component along the string is repulsive, and the 

repulsion is proportional to cos9, where 0 is the angle between the strings. 

However the higgs component is attractive, and independent of angle. Thus 

perpendicular strings can interpenetrate one anothers- cores. Their attrac-

tion may then hold them together .'and allow them to exchange partners. 

Almost parallel strings would find it more difficult. There is some experi-

mental evidence that such an exchange of partners does occur in flux lines 
[15] 

in Type IX superconductors, where it is called "flux-cutting". If one 

takes estimates of the higgs mass in GUTS seriously, then it is less than 

the gauge field mass, and yields a Type I vacuum structure. That is, strings 

are attractive over a longer range — , and have a repulsive core of radius 
mH 

— , where m and m are the higgs and gauge field masses respectively. 

One might imagine flux cutting occuring more easily in these circumstances. 
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1.5 THE EVOLUTION OF COSMIC DENSITY PERTURBATIONS AROUND STRINGS 

Here we shall follow a more direct approach than in Section 1.3 

to the problem of galaxy formation by seeing whether each galaxy could 

have been the result of a single spinning loop of string. We shall 

calculate the gravitational field of a spinning loop or periodic wave 

in the weak field approximation in Minkowski spacetime, average it over 

time, and then use the result to calculate the growth of density 

fluctuations around moving string. This is valid provided the period of 

the loop (or its radius) or wave is much less than the expansion time 

(or horizon distance). The result is strikingly simple and shows that 

galaxies might well be formed today in the correct numbers by gravi-

tational accretion around loops. We shall also see how linear structure 

may develop around lengths of string. 

First we need the energy momentum tensor of the string. 

In its rest frame a segment JUL located at £ contributes 

dlTooO^ - / mJJLS'C*-^ 
X (1.5.1) 

with all other components zero where 10 k̂ rv̂  for 
T C - L O FEEV 

This may be boosted to an observers frame in which the element has 

a velocity ^ to obtain 

wehre c^YdJL, - and 

describes the 

trajectory of the string, its length being parametrised 

by . Its energy is thus given by 

(1.5.2) 

(1.5.3) 
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In the weak field approximation, we write ^ v
 + 

T^y = diag (1, -1, -1, -1) and (Vyvl & 1 . In the harmonic gauge 

Einstein's equations become 

B a V \ r * (1.5.4) 

and we obtain the retarded solution to (1.5.2) and (1.5.4) 

- - ^ J w (,5.5) 

where 

- -i - \ * -

* - z 
G - 21 ^ : (1.5.6) 

and we have used the & function to do the three dimensional integrals 

Notice that a static string produces no field (in this case, i^oo 

is the Newtonian potential), a result first obtained by Vilenkin^16^. 

The force on nonrelativistic particles around the string is 

given by 

We shall time average (1.5.7) and so drop the time derivative term. 

For time averaging we use 

At = *t*«*CV-S.Sl (1.5.8) 

and calculate from (1.5.5) and (1.5.8) 

- - ~ (1.5.9) 

where T is the period of the strings motion. The result is simple -

the time-averaged field of a string is equal to that of the surface 

traced out by its motion with surface density proportional to 
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In fact the total mass of this shell may be calculated. Using the 

equations for string 

1 (1.5.10) 

where ̂  ~ , T - , we find the gravitationally effective mass in 
ot ' OQ 

(1.5.9) to be, using (1.5.10) and integration by parts 

SlAo -

= Z ^ A * + (1.5.11) 

» a ^ l&e - S K o 
So* 

(1.5.12) 

which is simply the total mass of the string. 

This resolves certain paradoxes - if a static loop with no 

field collapses and passes through its Schwarzschild radius, it must 

form a black hole, with a definite field. The above analysis shows that 

the long range time-averaged field of an oscillating loop will be 

exactly that of a black hole the loop may form at some stage if it 

happens to pass through its Schwarzschild radius. 

Some interesting features of the field calculated from (1.5.5) 

are the following; there is intense beaming of the gravitational field 

The boundary terms in (11) obviously vanish for a closed loop. 
They also cancel exactly for a periodic wave with unit pnase 
velocity as in (1.4-13) . In general nowever they must be 
included - for periodic waves we find ZpS^? 0 being 
the result in the static limit. 
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produced by several powers of in the direction of motion of the 

string. Parts of the string may approach the velocity of light (for 

the solution (1.4.3), at "t and —this seems to 

favour the growth of two-armed structures about such strings, such as 

spiral galaxies. For near circular solutions, with very low angular 

momentum, which collapse to a small loop moving almost at the speed 

of light but expand outwards again, the string produces a disc-shaped 

field. This would give rise to oblate spheroidal structures of high 

density such as elliptical galaxies. 

Here we confine ourselves to an overall estimate of the 

growth in mass of a density fluctuation around a loop after the 

decoupling time. Before this time the pressure is too high for 

galactic-scale fluctuations to grow. After this time, however, the 
M 

effects of pressure may be neglected. Obviously near the string the 

weak field, Newtonian approximation is invalid so we work on a comoving 

spherical surface surrounding the loop on which the velocity and 

density fluctuations about the mean values of the surrounding matter 

are small. 

We work in an expanding Einstein-de Sitter Universe with 

metric 

(1.5.13) 

and describe the matter around the string as a collisionless 

Newtonian fluid. We may neglect spatial curvature effects for times 

less that 

orL J. On the surface of our comoving shell, the 

relevant equations of motion of the fluid are 
r V - > iTC T (1.5.14) 
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where M is the total mass in the shell, the fluid velocity,^ its 

density and the gravitational potential. We set M-Mo-vStA , p - p ^ ^ f 

^ s and <f> = 4 with the suffix zero labelling 

the unperturbed values Xi s where D is the position of 

the shell, and * in a matter dominated universe. Then 

(1.5.14) give to first order in small quantities 

_ _ p 0 
t - t " I * J s ~ 

b-t ° "" 

We integrate the second equation over S, on which ~ O , and 

differentiate the first to get 

using = Finally, AS-^-^jiA- and we find 

v ~ - O (1.5.16) 
b t 1 "Jt1, 

with solutions 

The growing solution yields 

S^Gfe) » S ^ C ^ / t ^ 3 (1.5.17) 
where ̂ Ho is the initial value, equal to the mass of the string loop. 

lb Setting , the decoupling time, and M O * S the time 

galaxies are thought to have formed, we find 

- H l L ^ (1.5.18) 

where ^ o ' ^ T ^ pC^o)'^ ^(T^L©) is the mass of a comoving 

sphere containing the loop, its radius at decoupling and S^V^^TT^© 

its mass, if 

(1.5.19) 
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i.e. the loops radius is around one hundredth of the horizon distance 

at decoupling. This means it was formed at around 10 ̂ seconds. The 

mass within a horizon was around lO^M^at decoupling so each of these 

loops would contain a mass of around 1011 M^which is of course the size 

of a typical galaxy. 

There would also be many smaller loops around at decoupling. 

These would contain smaller masses and would produce faster growing 

density inhomogeneities on smaller scales. The smaller number of 

loops larger than 10 -to could presumably give rise to clusters of 

galaxies. 

Above we assumed the mass of the loop to be constant. 

In reality however the loop slowly loses energy via graviational 

radiation. This gives it a lifetime of around where 

r is its original radius. Loops formed at \0 might still be 

around, and would have radii of a hundred parsecs or so. Their 

effects would presumably still be visible in galactic cores. Indeed 

it is tempting to speculate that the very large internal sources of 

energy »c "3"} required to account for the intense 

radio emission from elliptical and Seyfert galaxies and quasars, could 

be provided by string loops. A loop of radius \OS , for example has 

an energy of 3 . 

The behaviour of string after decoupling would be different -

growing density perturbations could themselves bind gravitationally to 

lengths of string. Recall that whilst static lengths of string produce 

no field, periodic waves produce a mass per unit length of exactly yW. 

and thus couple to the masses around the string. It is therefore 

unlikely that many loops would be formed after decoupling - the strings 

motion would be heavily weighed down by surrounding proto-galaxies. 
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An estimate of the extent of this effect is obtained by comparing 

the gravitational potential produced by the string to that produced 

by surrounding galaxies - the strings gravitational field would 

be strong enough to drag galaxies along with it out to a radius as 

given by 

using = - -fU. • These long lengths of 

strings would move very slowly, the linear density of proto-galaxies 

in the universe exceeding that of string by a factor of or so 

just after decoupling. Long wavelengths would thus tend to straighten 

out and would not move freely. This would lead to the occurence of 

filamentary structures on very large scales, with radius given by 
r17l 

(1.5.20). Such structures have recently been observed although 

their statistical significance seems at present difficult to assess. 

According to the above picture, the motion of string on very 

large scales would be small, and would cause very little inhomogeneity 

of the microwave background on large scales (at present observational 

limits are 

In this it compares favourably with the 'pancake1 model of 

Zel'dovich and collaborators'-̂ "8-' which seems to require 
[ 1 9 ] for galaxies to be formed at allL J. 

If no more loops are produced after decoupling, then the 

string density scales as & , more slowly than the matter density. 

It eventually comes to dominate att*l° S - the onset of the string 

dominated era. 

In conclus ion, the string theory of galaxy formation has much 
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to offer. N-body simulations of stars or galaxies moving around lengths 

or loops of string would give more concrete predictions as to the types 

of structures produced. 
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1.6 BARYON NUMBER FROM COLLAPSING COSMIC STRINGS 

In section 1.4 we showed that any initially static loop 

collapses to a point or, more generally, a doubled loop (a 

configuration in which the string winds twice around the same loop) 

after a time L/4, where L is its initial length (and c=l). Z2 

strings would then presumably annihilate into particles. Z3 strings 

might 'add1 to form a string in the opposite direction with some 

release of particles. For other strings yet more complex processes 

could occur. We also showed that the lowest frequency mode non-

static loop collapsed to a line at < L/4. Presumably such loops would 

simply annihilate into particles. 

The purpose of this section is to show that these collapsing 

loops may also be a positive feature. The superheavy bosons released 

as the string annihilates would decay with some CP and baryon-number 

violation, as in the standard mechanism for generating baryon number 

in GUTs. This would occur well after the grand unification phase 

transition at Tc ~10i5 GeV. It is obviously an irreversible process, 

so that the requirement that the system be out of thermal equilibrium 

is automatically satisfied. 

Strings formed at this transition are initially heavily damped 

by the surrounding matter [ 2 ] . A segment of radius of curvature r 

experiences an accelerating force p/r per unit length, where p ~ T^2 

is the string tension. This is opposed by the damping force 6/50", 

where p is the matter density, v the velocity of the string and a the 

cross-sectional width for string-particle scattering which as Everett 

[20] has shown is very roughly (neglecting a logarithmic factor) of 

order 1/T. Thus the string reaches a terminal velocity ~ 

Any kinks in a loop of string will tend to straighten out as it 
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collapses (since < Vx- ) and it will become roughly 

circular before disappearing, giving rise to very few superheavy 

bosons. 

However this period of strong damping is quite brief. The 

largest relevant loops at time t are those of radius r ~ t. For these 

to acquire relaivistic speeds, we require > which occurs 

at 

corresponding to a temperature of around 10 H GeV. 

A more careful relativistic analysis defining t to be time at 

which energy loss through damping becomes small compared to the 

initial mass energy yields essentially the same result [20 ]. 

After this time, damping is negligible and strings move more or 

less freely. Collapsing loops may be formed in two ways - either 

when already existing loops enter the horizon, or by the self-

intersection of longer strings. It is not at all clear what fraction 

of these may be formed in initially static or near-static 

configurations or in other collapsing configurations, but here we 

shall make what seems to be a not unreasonable assumption that the 

fraction is significant. These loops will then collapse to a doubled 

loop, a line or in special cases a point. These last will form black 

holes, while the others (at least in the case of Z 2 strings) 

annihilate and release their constitutuent boson quanta, both gauge 

bosons and Higgs particles. A rough estimate of the number of 

superheavy bosons released per unit invariant length of string is 

simply 
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As argued above, the rate of creation of loops per unit volume 

is 

A typical loop created at time t has a radius of order t and 

therefore collapses, as explained above, at or before a time t(l+y/4) 

where yt is its length (ŷ 2it). If it collapses to a doubled loop it 

gives rise to a net baryon number of order eytp/m , where e is the 

mean net baryon number produced in the decay of a superheavy 

boson. 

We can now estimate the total baryon asymmetry produced by all 
loops collapsing after the damping period. The entropy density is 

During the expansion the ratio n /s is constant except for the B 
contribution from collapsing loops (or other baryon number-generating 

the number of particles already present, their contribution to the 
entropy is negligible. Hence 

— M "t3 cs- STbX 
4-S-

processes). Since the number of bosons decaying is small compared to 

Integrating from t = t onwards (effectively to ® we find 
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where f is the fraction of loops produced that collapse in this way. 
g 

If f is of order 101 and m ^ 5 x 10li+ GeV, we get typically nfi/s~10~ e 

If following Nanopoulos and Weinberg [24], we assume that e 

lies in the range between 10~2 and 1, we obtain a value in good 
—9 8+1 7 

agreement with the present observational bound a^/s ~ 10 " [22]* 

This is of course in addition to any baryon asymmetry created 

ealier. One interesting feature of the mechanism is that baryon 

number is not generated uniformly throughout space but in clumps 

around the collapsing strings. However, the scale of these clumps is 

too small to be of any relevance to galaxy formation. 

Great uncertainties remain in this theoretical prediction. 

First, the number of superheavy bosons released per unit length of 

collapsing string is uncertain. It should be possible to calculate 

it, but a deeper understanding of the quantum or at least semi-

classical theory of strings is needed. Second, the estimate of the 

time t^ at which the process of baryon-number generation by 

collapsing strings effectively begins is rather crude. In reality 

there is no sharp beginning. The process is a continuous one. 

Numerical calculations are presently under way to improve this 
- 1 / 2 estimate. But since n /s « t , we do not expect the result to B e 

change very significantly. Lastly, the parameter e is highly model-

dependent and cannot at present be calculated from first 

principles. 

What we have shown however is that this process of collapsing 

V 
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cosmic strings may be a significant contributor to the total net 

baryon number of the universe. Certainly in those GUTs that predict 

the appearance of stable strings it cannot be ignored. 



CHAPTER II 

GAUGE THEORIES AND INTEGRABLE SYSTEMS 
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2.1 SELF DUALITY AND TODA SYSTEMS 

Work on finding exact solutions for sourceless Yang-Mills or 

Yang-Mills-Higgs systems has focussed to a large extent on 'self 

dual' configurations, for several good reasons. First, they are 

governed by first order equations which are easier to solve. Second, 

they describe in the Euclidean theory configurations of finite and 

stationary action, and are thus good candidate ground states for a 

semiclassical quantum theory to be built on>'instantons'. In the 

case of magnetic monopoles, the self duality equations are equivalent 

to the Bogoniolny equations, describing magnetic monopole 

configurations of minimum energy. As we shall see, under certain 

symmetry conditions the self duality equations describe completely 

integrable systems. This, one hopes, will give a clue as to how to 

quantise them. 

In this section I will motivate the following two sections by 

showing how Toda systems arise in the context of self-dual gauge 

show, explains and clarifies the seemingly ad-hoc approach of Leznov 

and Saveliev which has proved so useful in monopole studies. 

Yang pointed out that the three equations 

D1 

fields. I will do this via the approach of Yang Czz] which as I will 

(2.1.1) 

where - By, ^ 

spacetime could be rewritten as 

in Euclidean 

(2.1.2) 
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upon choosing 

VlaS-feC,*^ * = 
, / \ (2.1.3) 

If through the use of some symmetry imposed on the solution one 

can eliminate the by and by derivatives, one can then define new 

potentials 

- a - : 

(2.1.4) 

Then equations(2.1.2) guarantee that 

~ ° (2.1.5) 

and we have an integrable system. 

The simplest conceivable symmetry is to set by = by = 0; this 

guarantees (2.1.5) and as we shall see in (2.3.11) and (2.3.24) 

reading A^for CL^and A y for C\-jshows that all Toda systems 

correspond to self-dual Yang-Mills configurations. 

Up till now this was only known for the Toda molecule systems. 

This observation probably explains previous results suggesting a 

'hidden Kac-Moody Symmetry' in self dual gauge field configurations 
02,1 

obtained by Dolan and others. It also raises the possibility of some 

interesting new solutions based 

on the Toda lattice equations, but 

that is a topic for future research. 
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I want to show next that the imposition of spherical symmetry 

on a Yang-Mills-adjoint Higgs system, described by the 'Bogomolny' 

equat ions' 

leads, through Yangs approach, to the Leznov-Saveliev method of 

solution. 

We consider (2.1.6) as a self duality equation (2.1.1) with the 

four euclidean dimensions consisting of the three spatial dimensions 

and a fictitious X^, with 5 = • Then spherical symmetry is defined 

as 

C X J. * n IV (2.1.7) 

where Ls-iC/C^ are the generators of angular momentum, and the t; 

form an SU(2) subalgebra of the gauge group algebra involved, we 

choose a noncoordinate basis in which the metric is diag (1,1,1,1), 

A * * - Ac- - (2.1.8) 

We want to work only on the Z axis, and allow all angular dependence 

to be determined solely by (2.1.7). So we choose the axis 9 3 0 



5 6 . 

for our spherical polar coordinates to be the x axis. Further we 

choose a gauge in which Ar = 0. Then the transverse parts of (2.1.7) 

lead to 

~ rv r (2.1.8) 

with Ap = A-u, i = 1,2,4, t+ - t + it2 and the radial part (using 

_r._L = 0) leads to 

a a 

which are a statement of grading i.e. Ay is gradel, Ay grade-1, and 

ft^grade 0. 

Yangs equations in this noncoordinatebase (where l̂ uv - Av"" B/A 

+ being thestructure constants of the algebra of the 

basis i.e. t ^ z ^ O and in this case 

^ " ̂ r ^ upon using (2.1.8) to eliminate terras, in ^vj 

and read 

C U , . , K ^ A R L - V ^ = O 

C O S , * - V 

^ + £ I V * 3 " + £ T ^ K L = O 

(2.1.10) 

using Then it is easy to see that defining 
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V - V ^ - r A ' * T r ^ A leads to 

C K - + 1 L ^ M = O 

(2.1,11) 

Now as in (2.1.4) we define new potentials Clxand Oj^satisfing 

~ O . It is easily checked that (note that 
- „ 

provides the Lax pair of Leznov ana Saveliev, It is hoped that this 

more systematic understanding of the construction of integrability 

conditions for selfdual configurations will lead to new solutions 

with other symmetries - cylindrical symmetry for example. 
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5 8 . 

The Toda field equations in two dimensions (one space, one time), 

/ St>-\ 

have been the focus of much current research in mathematical physics. The 

equations are specified by the 'Cartan' matrix CoJb with integer entries which 

provides the connection with Lie algebras. There are three' classes of Toda 

field equations - what we shall call the Toda Molecule (TM) equations, the Toda 

Lattice (TL) equations, and the generalised Toda Lattice (GTL) equations. 

The simplest class, the TM equations have for Cabthe ^ ^ ^ ordinary Cartan 

matrix 
uniquely specifying a simple Lie algebra of rank r. Todas original 

equations, where the ^o. were functions of time only and represented the 

relative displacement of points on an infinite linear lattice, correspond to 

the case where is the Cartan matrix for SU(r+l), and r is taken to infinity 

The Lie algebraic structure of the TM equations has only recently been 

appreciated, and used to find their general solution in terms of 2r arbitrary 

functions 

.The simplest case is when r=l. Here, the Cartan matrix is simply 

the number 2, specifying the algebra SU(2). Then equation fc/U) reads as the 

Minkowski space version of the Liouville equation, p — . The TM 

equations can thus be regarded as the relativistic multicomponent equations 

generalising the Liouville equation . As in the latter equation, there is 

no ground state for finite ^cv since is a nonsingular matrix and so has 

no null vectors. However the TM equations do arise naturally in the study of 

spherically symmetric self-dual magnetic monopoles 
and axially symmetric mstantons 

The second class of Toda equations, the TL equations, have as 
the 
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(r+l)X(r+l) extended Cartan matrix (s.a\> associated with any simple Lie 

algebra of rank r. It is obtained from the Cartan matrix for the algebra 

by adding a row and a column in a way to be explained subsequently. Unlike 

that a certain linear combination of the yPZ satisfies the wave equation 

and can be consistently set zero, and that the equations then have a unique 

constant solution defining a ground state. The TL equations are therefore 

more interesting as a field theory than the TM equations. 

The Lie algebraic structure of the TL equations ensures that they, 

like the TM equations, may be expressed as zero curvature conditions i.e. 

integrability conditions for linear equations. This allows their integration 

via the inverse scattering method. 

The simplest case of the TL equations is when r=l and so the algebra 

is SU(2), whose extended Cartan matrix is 

thus has a null vector. This means 

•ft.a.2) 

The corresponding one variable equation (taking ^Apa-

is 

U.a.3) 

This equation is related to the more familiar Sine-Gordon equation 

by the suhstitution which introduces the 

periodic function and leads to degenerate vacua and topological soliton 

solutions. 
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The final class of Toda equations, the GTL equations have for CLoAa 

an (nXn) 'generalised' Cartan matrix 

Ko!b as defined by Berman et. al. 

not corresponding to any particular Lie algebra but obeying similar restrictions, 

and in particular possessing a null vector. The simplest case here is where n=2 

and the matrix is 
a - A 

(2.2: k) 

- i 2 . / 

For the vacuum we set and to obtain 

= + (i.i. 5) 

which is the Bullough-Dodd equation • 

In this paper we develop a systematic procedure for dealing with Toda 

equations. Firstly, we classify all of them, including those which seem to have 

been previously ignored. But secondly, we develop the procedure of reduction, 

which enables one to obtain from a given Toda equation, its integrability 

condition and general solution, by identifying variables in a systematic way, 

those for another Toda equation in fewer variables. Our procedure for reduction 

is based on the use of symmetries of Dynkin diagrams. 

A Dynkin diagram D(G) corresponding to the Lie algebra G uniquely encodes 

the structure of the Cartan matrix The extended Dynkin diagram "^(G) 

obtained by adding one point and its links to D(k)similarly specifies 

Finally, the Generalised Cartan matrices also have associated Generalised 

Dynkin diagrams (GD's). 

. The symmetries of D(G) , and D(G) are denoted 
and 

and constitute 

the automorphisms of the TM and TL equation as explained in section 2. T O ) 

is simply the group of outer automorphisms of G according to a standard 
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mathematical result. is much richer. It possesses an invariant subgroup 

V W G ) which corresponds to the subgroup of the Weyl group whose precise 

significance is explained in Section 5. We show there that 

and V U G ) = 

where 2 ( 5 ) is the centre of the universal covering group G o f G . These 

group theoretic results are interesting in their own right, being important 

in connection with vortex strings in Grand Unified Theories. 

The reduction procedure explained in Section 6 is very simple and yields 

the following useful results. First, one obtains all TM equations, their 

integrability conditions and general solutions from only those corresponding 

to simply laced Dynkin diagrams (diagrams with only single lines), which 

specify symmetric Cartan matrices. Second, one obtains all TL equations 

and all GTL equations, their integrability conditions and general solutions 

from only those TL equations corresponding to simply laced extended Dynkin 

diagrams, again specifying symmetric extended matrices. This simplifies the 

task of the solution and analysis of the Toda equations considerably. 

The reduction procedure is also a simple method for obtaining many special 

subalgebras of Lie algebras and thus extends the use of Dynkin diagrams 

which have as far as we know hitherto only been used for obtaining regular 

subalgebras. 
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2.3 CAKTM MATRICES, DYNKIN DIAGRAMS AND THEIR SYMMETRIES. 

The TM and TL equations involving the matrices Ka^ and Korean, as we 

shall see in Section 4> ^>e understood as the compatibility conditions for 

certain first order linear equations whenever or constitute the 

ordinary or extended Cartan matrices of a simple Lie algebra . The GTL 

equations involve a Generalised Cartan Matrix 

not corresponding to any 

particular Lie algebra and are.as we shall show in Section obtained naturally 

by a 'reduction' of the TL equations. 

All these Cartan matrices are square nxn matrices C-oJo with integer 

entries having in common the properties 

a) All diagonal elements take the value 2 

b) All off-diagonal elements are zero or negative 

c) If CoA> vanishes then so does 0©*. 

Any such matrix can .be conveniently represented by a Dynkin diagram obtained 

as follows. The diagram consists of n points with points a and b joined by 

CosJoC-^lines• When OoOoQacL exceeds one, and 
I c J i equals one an arrow drawn 

on the lines pointing from a to b indicates that 
equals that number of 

lines. If both and exceed one, then an arrow is drawn on 

lines pointing from a to b, and one on lines pointing from b to a. 

Thus CaS® and its Dynkin diagram can- be reconstructed from each other. A 

Cartan matrix Cob is called indecomposable if its Dynkin-;diagram is connected. 
We shall consider two classes of such matrices. The ordinary Cartan Matric 

tCi. were discovered by Cartan and correspond to the simple Lie algebras. 

These are nonsingular and positive definite. Their Dynkin diagrams are tabulated 

in Table I. The Cartan matrices with left null vectors were calculated and 

listed by Berman, Moody and Wonenburger and comprise the extended and 
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generalised Cartan matrices tabulated in Tables IT and III respectively.' These 

tables presumably list all positive semidefinite Cartan matrices with properties 

and c above. 

In searching for symmetries of the Toda equations, we look for permutatio 

P of the variables in equations (l.l): 

a.= v . — ^ (2.3.1) 

which leave the equations invariant in the sense that if the set a 

solution then so is • This is guaranteed if 

= C f c * ^ V o l ^ ^ V - - - - ^ (1.3.2) 

which is true if and onJyif the permutation respects the structure of the Dynkin 

diagram corresponding to C. 

Let us consider first the ordinary Dynkin diagrams D(G), shown in Table I. 

We have denoted certain points by a cross rather than a circle. These correspond 

to the 'minimal coweights' as explained in and are relevant to studies of 

stable magnetic monopoles, and of symmetry breaking in Grand Unified Theories. 

What is important to us here is that a permutation of the points of D(G) respecti 

the structure of D(G) can be specified by its action on the crossed points and 

this fact will provide a convenient notation for the symmetry operations. 

The symmetry groups formed hy the permutations respecting the structure of 

D(G) are denoted^*®)and are tabulated in the last column of Table I. We denote 

as zEw the cyclic group of order n andS^as the permutation group on n objects 

The elements of 

carry solutions of the corresponding TM equations onto 

other solutions of the same equations. 

Next we examine the extended Dynkin diagrams 
corresponding to the TL 
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equations. The extended diagram is obtained from the ordinary diagram D(G) 

by adding one point, labelled 0 and its links. This corresponds to adding 

one extra row and column to the ordinary Cartan matrix as was noted above. 

The extended Dynkin diagrams 

for each simple Lie algebra G are tabulated 

in Table II. The extra point, labelled 0, is denoted by a cross. Note that 

the removal of any one of the crossed points yields 
rom m 

The symmetries of the TL equations are again given by the permutations 

of the points of btG) 

which respect the structure of the diagram0(G) and 

form the group tabulated in the last column of Table II. These groups 

are somewhat richer in structure than m . For example, 

is given by j bhe dihedral group with elements. This arises 

because ^o+v is the symmetry group of a regular sided plane figure, 

being generated by the permutation (o/\/1..-C^C)) ,in cycle notation,and the 

nontrivial element of (if r is even) 

or C^S-1) ... (p^) d? r is odd), which of course 

in both cases leaves the point 0 fixed. 
Again the symmetries in m 

can be conveniently be specified by their 

action on the crossed points. For example P^SoCZv)^ e q u a l s f o r m e d 

"by the permutations of the crossed points, in cycle notation: 

^ = [t ) • cc-i,r)j ( o , i ) • (o,\)(r-v,r)- c y ^ o . T - u ^ - a ; (2.3 

P & ) consi-sts of the six permutations of the points 0, 1 and 6 of 

and n(So(Cj) of the 24 permutations of the points 0,1,3 and 4 of 

and so on. 

Notice in particular the nontrivial element of "^^interchanging 

yOj and p.^ , and hence reversing the difference jD in equation (Z.2..3) 
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This is the automorphism allowing p to he replaced by L<p , to obtain 

a real equation in a circular function, sin<p? namely the Sine-Gordon equation. 

Finally, we turn to the generalised Dynkin diagrams in. Table III, correspond 

ing to the GTL equations. The first four of these are seen to be related to four of 

the extended Dynkin diagrams by the reversal of arrows. We call the diagram 

obtained from by simply reversing the arrows since it is 

easily seen from the rules for obtaining the Cartan matrix above, that reversal 

of the arrows corresponds to taking the transpose of the Cartan matrix. The 

last two diagrams 
GDCHr) and cannot be obtained in this way. 

The GTL equations seem to have been hitherto ignored (apart from the BD eqi 

(£.2.5)). They are.not in particular related to any root system - this is immediate 
clear from 

Ht. 
whose points would correspond to 'roots' of three different 

lengths whereas simple Lie algebras can have roots of at most two distinct 

lengths. 
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2 LIE ALGEBRAS AND THE INTEGRABILITY OF THE TODA EQUATIONS. 

Let us consider a Cartan-Weyl "basis for the simple Lie algebra G involving 

Cartan subalgebra generators H;, i=l,2 r = rank G and step operators . 

These satisfy 

The r component vectors ^ are the roots of the algebra. We have further 

that 

if is a root (2-4.2) 

if ^-Vp) is not a root and 
does not vanish 

The coefficients can be specified precisely but will not be 

necessary in this paper. We shall assume that the reader is familiar with the 

classic paper "by Racah 

M or with one of the recent excellent books on 

Lie algebra theory • 

A fundamental geometrical property of the root system of any simple Lie 

algebra G is that there exists a basis of simple roots 

= o 

U-4--3) 
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such'that either the positive or the negative of any root can he 

expressed as a sum of simple roots. Knowledge of the simple roots determines 

the Lie algebra up to an isomorphism, and the knowledge is embodied in the 

Cartan matrix (the "ordinary" Cartan matrix of the previous section), 

This is the matrix that occurs in the TM equation and we see immediately 

that kc&Kbc^ lies between 0 and U, equalling 4 if and only if and 
oC 

are parallel. It is a property of roots systems that two roots are parallel 

only if 

. Also Kafa can only take integer values, two on the 

diagonal and negative or zero off the diagonal. As we explained,these features 

enable the Cartan matrix to be encoded in the Dynkin diagram which therefore 

represents the structure of the corresponding Lie algebra in a succinct and 

surprisingly useful way. 

The Cartan-Weyl basis is useful because if its orthonormality properties 

with respect to the trace of a pair of generators. For algebraic purposes 

it is more convenient to introduce a slightly modified basis called the 

Chevalley basis: 

(Jl.hr-5) 

Then 

U A - 6 ) 

In particular if we concentrate on the simple roots (2LL.3)and denote 

E+loC^ _ E ± C U J V \ 
(3.4-7) 
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we find 

In the last equation we have used the fact that by the definition of 

simple roots, cO—G^0 cannot be a root. The significance of the Chevalley basis 

is that the structure constants are all integers. In practice in this paper 

we shall only use the commutators 8) and not the other unspecified 

commutators. 

We are now in a position to formulate the TM equations 

— - Kcxb € L U-Af .9) 

as a zero curvature condition thereby establishing why the matrices K occurring 

in them have a Lie algebraic significance if the equations are to be integrable. 

The results we are about to explain are due to the contributions of several 

authors \7 , i ^ 

Let us define the light cone variables 

V J L - X (X4-10) 

so that _ ^ -Y2- __ 

A, and the two dimensional gauge potentials Hyu. whose light cone components 

are 
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Then using the commutators(2..8) we find the curvature 

The are linearly independent and K is nonsingular. Hence we can 
define 

I K A F C 

and conclude that the curvature 2Jyl2) vanishes if and only if the TM equation 

Ck̂ .,9) satisfied hy p ^ . So the TM equations can be regarded as the 

compatibility or integrability conditions for the linear problems 

where is a nonsmgular matrix. 

we need to assemble some more Lie algebraic concepts 

Before discussing the TL equations -̂O-b in a similar way 

Let us denote ^ the highest root of G, namely that root which exceeds 

each of the other roots by a sum of simple roots. 

Let us also denote A 5 Q ^ ^ ^ } a s the fundamental coweights of G 

where 

2 XY = S ^ 
^ (2A-13) 

CLY \ Then we say that the fundamental coweight /\ is minimal if 
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l A . f ~ 1 (2. 

Now let us denote 

and consider the "extended system of simple roots". 

(2.4.15) 

A ( G ) = ( < O C ( 2^ L 6 ) 

We see that A possesses the same property as A that the difference 

of any two members cannot be a root. Hence 

OoJo n ^ ql^ e ft.fc.17) 

having extended the definitions of H^and to include a=0. Associated 

with ^ is the extended Cartan matrix, 

Y * = 1 c C A / ^ f (2 .4 -18 ) 

and with this the extended Dynkin diagram 
tabulated in Table II. The 

extra point labelled 0, when compared to 5 ( G ) corresponds to the root «* . 

The highest root ^ can be expanded as integer linear combinations in two 

ways; first in terms of simple roots: 

f = 5 1 N L o C 

By definition (j/ exceeds any simple root so that the integer coefficients N^ 

each satisfy 
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^ ^ 1 (2.4.20) 

If we define we can rewriteu*if.19) using (2-4-15) as 

1 N X = O 

It follows from the definitions^.18) that K has a left null vector N C L, 

Z ^ N J C s . = O flu-*) 
CLGA 

Since K is nonsingular Y has rank r and this is the unique null vector. 

Note that N^equals 1 only if a=0 or else if and the coweight 

is minimal. This is because byQ.1^13) and(2.4.19) 

V 

and the result follows by(2.4.l4). In Table II the points of U(p/ for which 

N o J ^ ^ are denoted by crosses rather than circles. 

Alternatively ^ , being a weight, can be expanded as an integer linear 

combination of fundamental weights 

= - T L K o c X " e.t - 2 3 ) 
' OLE A 

with the coefficients 1\ocl as indicated. This follows from (24--13) and(jL{.»l8). 

Unless and are parallel VLoouVLo^o = 0,1,2,3 and so it follows that 

oL° is a long root 

Kcuo = "" 1 

except for SU(2) which by(2.4-20) is the only algebra for which and ^ can 
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"be parallel. These two results provide the easiest way in practice of 

calculating ^OCL and K-CLO and hence as appearing in Table II. 

Notice that the arrows are now seen, for both D(&) and to point from long 

roots to short roots i.e. 'downhill'. 

Now we return to the integrability condition for the TL equations. 

Consider gauge potentials Ayu- formally the same as the gauge potentials (2.^.11) 

used for the TM equations but with & and K. replacing ^ and K 

respectively, 

\ f e E 
Then using the commutators [l-V. 17) and(22f..8) extended to include a=o we find 

L (2.4.25) 

as before, equation &4.12). Now, however, the (X.= ° - a r e not linearly 

independent, because of 21) and their coefficients cannot be equated .to zero 

when^Y 25) vanishes. 

Instead we have ^(ft^u ( 5 ^ ^ 

or equivalently, . \ v 

V C i O k + e c ) = O 

Now let us define 

so that as a consequence of (24-22) 
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c ' 

Then the-zero curvature condition stating that (2»4J?5) vanishes reduces to 

'Spa. + • E P V = ° 

which is the TL equation. 

There appears to be one more variable ̂ .occurring in (JX.lt-.2b) than the 

resultant number of variables ^ , namely r because of (X̂ , 26). This is illusory 

- in fact the potentials do not depend on the variable ̂  defined by 

cb = M o . W ^ 
\a rt CK OjEfc 

Before closing this section we want to discuss two features of the TL 

equations (2.4.27) which distinguish them from the TM equations. 

The first is that the TL equations (2-4.. 27) possess a finite constant 

solution p^ . This is only possible because is singular and has a right 

hull vector / to which 

must be proportional, with condition(2-4-26) 

determining the constant of proportionality. We find 

* 1 £ M ^ W I H A ^ / N ^ T ] (2^.26) 

us where V\ — /L^cl is "the Coxeter number of G. Reference to Table II tells 

that for SU-tNY^T'^)'2", Nartl so for all a. In fact pa. minimise 

the Hamiltonian and so constitutes a ground state. 

Finally it is possible to replace 

V 
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in the gauge potentials2U) and, providing z is an arbitrary constant, one 

finds that the condition (2.4.25) is independent of it. The significance of 

this is that the potentials(2,4.2k) so obtained for different values of z are 

gauge inequivalent. So there is an infinite set of linear problems depending 

on the special parameter z which have the same TL equation(2-4* 27) as their 

integrability condition. 

The calculation leading from the potentials to the curvature hinged 

upon the fact that differences of roots in Li or are not roots. Root 

systems with this property have been called admissible systems[iir),There are 

other admissible root systems which correspond to the generalised Dynkin 

diagrams listed in Table III, and these allow similar integrability conditions 

to be derived for the GTL equations. However, as we shall show,, these are most 

economically obtained as the 'reductions' of TL equations, and so will not be 

considered further in this section. 
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2 .S SYMMETRIES OF THE GAUGE POTENTIALS. 

In Section2.3 we derived certain symmetries of the Toda equations. 

Now that these equations have been formulated as the compatibility conditions 

for a linear problem involving Lie algebras we shall analyse the symmetries 

of these linear problems and relate them to the previously found symmetries, 

thereby obtaining a deeper Lie algebraic understanding of them. 

Note that the terms occurring in the gauge potentials can be said to 

belong to three subspaces of the Lie algebra; the Cartan subalgebra 

H = 1 (2$\l) 

and ~ 

or 
V-V-7\ \ 

The derivation of the Toda equations as compatibility conditions(24.12) 

or (24.25) made use of the Lie algebra commutation relations. We shall seek 

the symmetries of the Lie algebra preserving the commutators (and linear 

structure) and the subspaces as appropriate). The symmetries 

of the Lie algebra (without reference to the subspaces) are called automorphisms 

and form a group which we denote aut G. Conjugation of the generators X with 

respect to any element of the Lie group G, g say 

X 

always provides an automorphism, said to be 'inner'. Thus G itself provides 

a group of inner automorphisms which is a self conjugate subgroup in aut G. 

In fact it is a well known theorem that[]\l p.^ll 
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O U U L t G / g = P ( G ) (2.S.3) 

where the quotient group , the group of 'outer1 automorphisms, is that 

finite symmetry group of the Dynkin diagram D(G) tabulated in Table I. 

Let us consider the subgroup aut(G;H) of aut G which preserves the 

space HQ.S.l). It is not difficult to prove that its action on H is 

A 
H Y A ^ P Q (2.S..4) 

i=» si=v 

where is a real orthonormal V X r matrix with the property that if o( is 

a root then so is 

PHX . Such matrices form a group which we call OUUCtlL where 

denotes the root system of the Lie algebra with rfespect to the chosen 

Cartan subalgebra. Further the action on the step operators is 

* coexsk tlvfcot (21.5) 

If T denotes the maximal torus of G, the maximal abelian subgroup of G, 

obtained by exponentiating the Cartan subalgebra.,it is not difficult to prove 

that 

a u . - t ( k H ) / T = a x c t i . 

An important subgroup of aut furnished by the Weyl group W, that 

finite group generated by the reflections in roots i.e. 

= DC— <L us.7) 

V 
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In fact 

ft Sol A = ^ (2.S.8) 

so that W is a self conjugate subgroup of aut$ , actually the subgroup of 

aut<§ provided by inner automorphisms (2S.2), that is gauge transformations. 

Let us define autA and autA to be the groups of real rXr orthogonal 

matrices preserving respectively A and , the simple root system and the 

extended simple root system ( A s AOC~"</0 ) 

It follows from the properties of root systems that 

OOJCt A C - O ^ c Z S O CLU_-t~§L (2.S.9) 

i.e. the groups are subgroups as indicated. Using the fact that autA 

and autA preserve scalar products and thus Cartan matrices, it is not 

difficult to prove that aut A and autA are respectively isomorphic to 

the groups P andP defined in Section 2 and tabulated in Tables I and II: 

(2.S .10) o j j L ^ s r o j x t A s r 

Consider an element ^ & aut"5". Then 

& = 

is another possible system of simple roots. It is a fundamental property of the 

Weyl group W that there exists' a unique element 10 €.VJ such that \ \ p.sYJ 

u j h! = k 

( a . s .11) 
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Thus f defines a map from aut? onto its subgroup aut ̂  . 

Further, 

as W is a self conjugate subgroup (by(2-S.8)) of aut "J. and so 

Thus f is a homomorphism and its kernel is W. Hence the quotient group 

c x u ¥ ^ / w ^ c u d A O S R 

by a remark(2S. 10) above. This is a well known result[ I \ 

All these statements are preliminaries to set the scene for our discussion 

of the Toda equations. Consider first the TM equations(2.2..2) with their 

associated potentials'-L-ll) involving terms in 
and (equation (IS. l)). 

We seek automorphisms of the Lie algebra preserving these subspaces. These form 

a subgroup of aut (G;H) which we denote aut (G;H,VA ). Then analo.gously to 

This means that once we have fixed a gauge in the maximal torus T (which 

we have) we can only apply the outer automorphisms 

This corresponds to our previous result that the symmetries 
of (24-9) were the symmetries of D, namely . 

A more interesting situation results in the case of the TL equations 

(24-27) with their associated potentials(24-2U) involving terms in H, andVj^ 

(equation(l-5.l)). We seek automorphisms of the Lie algebra preserving these 

subspaces. These form a subgroup of aut (G;H) which we denote aut (G;H,V^) 
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Then analagously to (4.6), 

OUUCt O; U,VS)/_ ̂  = P (21.15) 

Because of (25.9) this is a richer structure than (2-5.13). We can use the 

same homomorphism(2? .11) that we used to map aut ̂  onto aut A to map aut A 

onto autA . Its kernel is now 

(2.S .16) 

and so 

o a t i / ^ ^ t A ^ 

This means that aut A , on the right hand side of (2.5.15) is a semidirect 
product of VJo and P . Thus the TL equations exhibit extra symmetries V i e 

compared to the TM equations which are related to inner automorphisms (gauge 

transformations) permuting elements of ^ 

' We have evaluated V J o for each Lie group and found by computation that VJo 

is isomorphic to the centre of the universal covering group of G. 

V ) O = W F \ O L U A A = ( 2 . S . 1 8 ) 

It follows from (1$ 10), (21.17) and(XS.l8) that 

= m 

which can easily be checked from Table I and II, at least once it is known 

how 2-C^ Tibs into Y(jo) . For example when G - p _ ^ ^ ^ 

"^Z—T2^ and so — Yl-^- P indeed as it should. 
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These are the main results of this section, namely that the extra 

symmetries of the TL over the TM equations constitute a discrete group of 

gauge transformations isomorphic to the centre of G. 

The complete verification of(2£.l8) we shall relegate to an appendix 

presenting now the SU(N)_case as a specimen of the argument. 

The simple roots A of SU(N) can conveniently be expressed in terms 

of N orthogonal unit vectors ^ - v — ^ ^ 
[ I Q I ] 

whilst the highest root Hence 

We see that the reflection in interchanges and ^-z. and 

it follows that the Weyl group of SU(N) permutes the - - . 

Consider ^ V / . Then S'&vY^VwV for some k. Now = 

=• ^ A. if and only if - . Proceeding thus we find 

that =. VJ r\ cxoZA i f o n l y i f 6XS-A - ^ Y ^ + O 

where it is understood that — . Clearly such & form the 

group which is indeed the centre of SU(N). Thus we have chebked 
(IS.18) 

andCtS.19) for SU(N). All the other simple Lie algebras are treated in the 

appendix. 

Finally let us discuss some gauge transformations in the maximal torus T. 

Consider the inner automorphism or gauge transformation 
2) with 

O-S.20) 
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y -
where f\ is a fundamental coweight as defined in(24.13) (actually this g 

lies in the complexification of the original Lie group G). Using the 

conmiutatorsO-lt.l) it is easy to check 

E - t L ^ C 2 , S 2 1 ) 

•where defined byQlf. 19) as the coefficient of in the expansion of the 

highest root. 

This is the basis of our assertion at the end of the preceding section 

that there is no spectral parameter in the TM case but that there is one for the 

TL case. Now we show that the spectral parameter is invariant with respect to 

the.discrete gauge transformation associated with 
V I f \ O - u J c k = 

Suppose 

pot^ - Ok. e"5 J ? ^ VI f\ouoJc£k 

Then (W.22) 

Now apply the maximal torus gauge transformation (2.5)2) ,(2.5.20) choosing — 

so 

But if — V^aj^V as we observed following equation (2.L.22). Hence 

overall \E-^rY®^ ^ , i.e. z remains 

in conjunction with Eq. 

We have seen that the TL equations 27) possess a ground state solution 

(equation^. 28)). Further compared to the TM equation(£.4.9) they possess 
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extra symmetries corresponding to the subgroup of the Weyl group preserving 

the extended root system A 

yj. = r\ a_uJc ̂  = 

For SU(2)̂ , V l © ^ ^ is precisely this extra symmetry of the Sinh-

Gordon equation compared to the Liouville equation which enables us to construct 

the Sine Gordon equation with periodic ground state structure. 

We shall not pursue here this method of obtaining periodic 

(with degenerate vacua, and thus topological soliton solutions), 

directly to the reduction procedure. 

equations 

but move on 
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In this section we show how the symmetries of the ordinary and 

extended Dynkin diagrams discussed above can be used to obtain new integrable 

non-linear equations from any given TM or TL equation. In the case of the 

TM equations, we can obtain all the TM equations, together with their 

general solution and associated linear problem starting from those corres-

ponding to simply laced Dynkin diagrams (Ie. those with only single links). 

Using the same procedure, which we call reduction, following the nomenclature 

of Zakharov and Mikhailov in a more general context {A^I , we also obtain 

all the TL equations from those corresponding to simply laced extended 

Dynkin diagrams. In this case, however, we also obtain a whole new class 

of integrable equations which we call the generalised Toda lattice (GTL) 

equations. The simplest example of these is the Bullough- Dodd equation 

mentioned before, eqn.(2.7.5). In fact one obtains all GTL equations (as 

well as all the TL equations) by reduction of those TL equations corresponding 

to simply laced extended Dynkin diagrams. 

The reduction procedure is perfectly simple. We noted earlier that 

if a permutation p(a) of the points of the Dynkin diagram yielded a symmetry 

of that diagram then the variables ^ /^(fO^ satisfied the corres-

ponding Toda equations if the variables ^ p ^ did. It follows that if we 

equate yO^ to ^ ^ C O many of the equations become identical so that 

the original set is still consistently satisfied.Thus we have a set of 

equations in fewer independent variables which can he recast in the Toda 

formfZl.l), and therefore corresponds to a new matrix Ccub with fewer 

rows and columns. 

As an example consider the SU(4)TM equation. The only non-trivial 

symmetry of SUL̂ A-") ) is the generator of the Z^ symmetry that 
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is P(SU(4)), (.1,3) in cycle notation using the labelling in Table I. 

Correspondingly we set ^ )̂̂  } saŷ  in the SU(4) TM equations and 

obtain 

= - E A 

= 2 e ^ - 2 e A 3 

together with the vanishing of • reduced equations 

are the S0(5) 3M equations. 

The reduced equations always inherit the integrability property since 

we need only substitute ^ctrt ^PCa) "ttie SauEe potentials(%Jt. 11) 

(or (2.4.2*0) in order to obtain the gauge potentials for the reduced 

equations. 

Note that the Nfc part of f\a(see equations (24.11) and(25.1)) is simply 

(2t.l) 

Hence in our example, the coefficient of exp ( / 2) is E^^ = E^ + E^. 

If we define ^ 3 — H ^35 = H^ + H^ we find that indeed » ' 

H^ and H ^ satisfy equations (2«4« 8) with the S0(5) Cartan matrix. Thus 

the reduced gauge potentials do indeed correspond to the gauge potentials 

for the reduced equations. This has worked because in the course of the 

reduction we have constructed an S0(5) sub-algebra of SU(U) which is not 

regular, i.e. its roots are not all roots of SU(4). 

Notice too how the Dynkin diagram D(S0(5)) is obtained from D(SU(*0) 

by folding the points 1 and 3 onto each other and drawing an arrow towards 

them. 

The general procedure is well illustrated by the above example 

providing we avoid reductions arising from a symmetry which transposes two 
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distinct points which are directly linked in the original Dynkin 

diagram. Such reductions we call non-direct reductions and defer their 

discussion until later. The direct reductions (of which the illustration 

is an example) are sufficiant to yield all the TL and GTL equations from 

the TL equations for simply laced Dynkin diagrams in one and only one 

way. 

In a direct reduction a point of the original Dynkin diagram D is 

identified either with itself or another point to which it is not directly 

linked. The diagram D* for the reduced equations is obtained by folding D 

in such a way that distinct identified points are.superposed while a point 

identified with itself is left alone. If a pair of adjacent points of D 

are superposed with another pair we retain only one set of links between 

them in D*, deleting the others. All other links of D remain in D*, and 

arrows are drawn (if not already there) towards the points which are 

superposed and away from the points identified with themselves. 

First we discuss the direct reduction of the TM equations, 

associated with ordinary Dynkin diagrams, Table I. The symmetries form 

the group P (G) listed in the fourth column of Table I. When P (G) 1 

only the trivial reduction is possible and is not listed. When P (G) ̂  Z 

one non-trivial reduction is possible and the result is listed in Tahle IV 

as obtained by the rules above. P (SO(8)) Q: and the result of the 

symmetry of order 2 is included in the S0(2r) series while the result of 

the symmetry of order 3, D* = D(G^) is listed separately. Notice that our 

claim is substantiated - in the result column each non-simply laced D(G) 

is obtained once and only once. The simply laced D(G) can be regarded as 

the result of the trivial reduction corresponding to the identity. 

We have not listed any non-direct reductions such as the Z 

symmetry applied to SU(2r + l) as these will be discussed later. 
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Now we consider direct reductions of the TL equations. Here "D(G) has 

symmetries forming a group P(G) which in general is non-abelian and 

consists of both inner and outer automorphisms in the sense explained in 

the preceding section. Conjugate elements ofP(G) yield the same reduction 

so that we need only consider one representative element from each 

conjugacy class. This can he seen as follows. If we consider a permutation 

a—=>p(a) the reduction consists in setting • 

reduction corresponding to a conjugate permutation c^pcCa) will set 

But C(a) labels all indices just as a does so the two reductions are identical. 

Table IV indicates how each non-simply laced ordinary Dynkin diagram 

D(G') can he obtained by a unique direct reduction of a simply laced Dynkin 

diagram D(G) say based on a non-trivial element of P (G), the symmetry 

group of D(G). P (G) is a sub group of P (G) as it corresponds to those 

symmetries of D(G) leaving the point 0 fixed, so the same element can he 

used for a reduction of the extended diagram D(G). It can be checked that 

this always yields D(G*). Hence Table IV can be immediately extended to 

extended diagrams and we shall not list these direct reductions separately. 

As we explained in section 4 the symmetries of D(G), namely P (G ) , are 

richer than those of D(G) and direct reductions based on the extra elements 

may also he considered. These are listed in Table V and it is seen that 

each of the generalised Dynkin diagrams of Table III is obtained in 

precisely one way. This is our main.result since it established that the 

Toda equationsfiJZ.l) based on the generalised diagrams are also integrable, 

inheriting their integrability in the reduction procedure. 

Direct reductions of the non-simply laced diagrams yield no new 

diagrams and are not listed (Note that D(SU(2)) should he counted as 

V 
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simply laqed as the two roots are of equal length). A direct reduction of 

*D (SU (N)) "based on an element of the cyclic sub group Z^pof (SU(N)) of 

order a yields D(SU(N/a)). 

Note that the Bui 1 ough-Dodd equation(21.5) corresponding to the 

diagram GD(BD) is obtained as a simple reduction of S0(8). It appears as 

the lowest member of the H series in Table III. 
r 

To see more clearly how integrability is inherited denote the sets 

of points identified by the symmetry considered as Z, ,....etc. 

Hence if = p^ , , the coefficient of exrplp^ in 

expression (2.6.1) is 

We see that 

E-s. = (7.C.. 2) 

(>.3) 

V - W = W where y-w — L r\ a. 

Then using the fact that m a direct reduction vk<xb = 0 for a,b , 

a b, we have 

which means that and are correctly noimalised. Then for 

distinct from , 

defines the Cartan matrix associated with the reduced Dynkin diagram. 

The campatability condition can be evaluated just as in section!^ but using 

instead of VAcv and the VA^ and defined by equations 

(2.(> 2) and(26. 3) since we now have the appropriate generalisations of 

equations(l./f-.8). We see that the reduced gauge potentials are the gauge 

potentials for the reduced Toda equations. 
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This completes our discussion of what we have called the direct 

reductions. 

Less clear cut is the discussion of the non-direct reductions 

stsmiling from symmetries of the original Dynkin diagram in which linked 

points are transposed. The classic example, due to Fordy and Gibbons 

and Mikhailov is the reduction of the SU(3)TL equations based on 

*I)(SU(3)). This has a symmetry (12), using the labelling of Table II 

which leads us to set s px. = Pvx SO ecllia",::i-ons reduce 

3 0 

3 0 = - + ^ 

This is not in the form'.2.l) as the coefficient of exp( ) 

in the second equation does not equal minus 2, because of the non-direct 

nature of the reduction. Therefore we must set instead. ̂  = p^ - + ln2 

so that we now have 

ft 
K 3%. = - 2 _ < 0 + of" 

which are the equations corresponding to the Cartan matrix(7.1.b). 

However the original variables satisfied the constraint(24.26). 

I . i i 

which yields for the new variables the constraint 

instead of zero which is the canonical value used above. Setting prs. ^ ^ 

we obtain -

which is not the Bullough-Dodd equation(2-2.5). This equation can be obtained 

after a further translation of ^ and a rescaling of the space-time variables, 
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We conclude that the Bullough-Dodd equation in the foxm()«?.. 5) is 

obtained far more naturally as a direct reduction of the TL equation for 

S0(8) as mentioned above rather than as a non-direct reduction of the TL 

equation for SU(3), which is how it was obtained previously 

as the first example of the reduction procedure. 

Notice that the coefficient of exp (J' ) in(}.k.l) is 

Evs. = 
and that 

It can be checked that V\o wi\2. an<^ 

generate the algebra 

(2-k. 8) with the Cartan matric(2.2 .4). This illustrates the fact that non-

-direct reductions serve equally well in obtaining special sub algebras., 

hut with extra normalisation factors arising compared with(2-L.2) and(2.(?.3). 

The above example typifies what happens in other non-direct 

reductions. The reduced equations correspond to Dynkin diagrams already 

discussed and can he put in the canonical foim only after a rescaling of 

the space-time variables. Since no new diagrams result we shall not list 

the possibilities here hut merely state the extra rule that must he added 

to the previous ones in order to obtain the reduced Dynkin diagram: if two 

linked points are superposed then leave the link (which has to be single) 

as a loop attached to the point. This loop then signifies that the number 

of lines pointing towards the point with the attached loop should he 

doubled. Finally the loop is deleted. 

If the original Toda equation reads aslJtZ.l) with ^ vanishing 

where is the left null vector of C then the reduced Toda equations 
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will read _ ̂  — p^ 

with 

where C*, the Cartan matrix corresponding to the reduced diagram explained 

above, has left null vector N^v with positive integer components. R 

will be a constant depending on the reduction and will vanish only for 

direct reductions. The suhstitution 

P*-* Pi + 

will effectively reduce R to zero while maintaining(2-^.U). 
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We saw that 

= (A.D 

and we now wish to show that the group VJ o consisting of those elements 

of the Weyl group which permute the extended system of simple roots, 

is isomorphic to the centre of the universal covering group. We regard 

this as a somewhat surprising result and can prove it only considering 

each simple Lie group in turn. 

Since aut A and aut^ are isomorphic to P and P respectively, 

they can be read off the last column of Tables I and II. We see that 

for S a w , S o C X ^ ^ , ^ and Ga. 

It follows from (A.l) that in these cases and from Tables I and 

II one sees that and the desired result is established. 

This leaves SU(r+l), r>2; S0(2r), r>,4 and Eg '. The result for 

SU(r+l) was established in the text while Eg has P S3 and P^s^i. SO 
that by 

(a.I) W e 
has order B and hence must equal 7-3 as that is the 

unique group of order 3. Since the covering group of Eg has centre the result 

is established leaving only the series S0(2r),r^4. This is particularly 

interesting because for r=4 P ^ S ^ , P = S^ while for r^. 5 , 

PsZ^ so that equation (A.l) tells us that VOo is of order 4. There are two 

groups of order 4, 321(1 l n facrt SO(2r)).alternates between'them 
. \ I 

/ even and odd respectively. We now show by computation that Wc alternates 

similarly, thereby completing the proof of the desired result. 
If e „ e denote r orthogonal unit vectors the roots of S0(2r) can he 1 2r r 
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while, using the numbering of simple roots adopted in Tables I and II 

A reflection in the root interchanges S-C and while a 

reflection in + reverses the signs of ^c and . It follows that 

the Weyl group of S0(2r) consists of all permutations of the €.5. combined 

with all possible even reflections. 

The reflection ,say, in the root reverses -̂i and S-r 

thereby interchanging with and cLr with ^ whilst leaving 

the other simple roots fixed. It therefore constitutes an element of Vio of 

order 2 which can be written using the notation of section 2 (whereby an 

element of P is denoted as a permutation of the crossed points in cycle 

notation) 

6 , = ( o , (A. 2) 

Now we must distinguish the cases r even and odd. In the former case 

— is a permutation of the ^C combined with an even reflectio 

and hence an element of VJ (SoC.2.0) , 6 

, say . We see that 

a. = 0,1 r so that 6 is an element of V)0 of order 2 which, in the 
notation of section 2, is 

6 = 
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Thus when r is evenVJo consists of the group generated by 

and (eqn. A.2) and so 

and is indeed isomorphic to the centre as claimed. 

On the other hand if r is odd consider instead 

This is again a permutation of the followed by an even reflection 

and hence an element of 
W . s , say. Then 

so that ^ is an element of VO© which in cycle notation is CP.)̂ """̂  ̂  

Comparing with (A.2) we see 

"is'*- - <S\o 

so that has order k and hence generates which must be VJb . Thus 

VJC is again isomorphic to the centre of S0(2r) for r odd and 

The above analysis includes S0(8). 
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Table I: Ordinary Dynkin Diagrams 

D(G) Z(G) R G ) 

SU(r+l), r^l * - * -

r-Z c-\ ^ 
Jr+1 

/ f= .1; .1 
\ r > 2 ; Z 2 

SO (2r+l), r>2 
l 

-O- 0 Q ^ Q 
c-z 

Sp(2r), r>3 

S0(2r), r>4 

E, 

r even; Z2x Z2 

r odd; Z)( 

" r = s. 
< 

Z, 

O-
\ 

- O r > - o 
Z ^ 

•o 
4-

0 > Q 
\ z 
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Table II; Extended Dynkin Diagrams 

SU(2) 

SU(r+l), r>2 

S0(2r+1), r^2 

P (G) 

r+1 

Sp(2r), 

S0(2r), r>4 

o \ 
o 

X Cr 

X o-
o i 

o-
I 

-o o n / y 
r-i r-\ c 

-0 O-3 C-T, r-x 
xo 

QX 
4 

9 X 

Ar 
9 2 

c 
r= 4; S, 

r>5; D 

o 

-o. y o-
X 3 

x — C F ) = O 
o \ z 
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Table III: Generalised Dynkin Diagrams 

Name GD Symmetry Group 

DT(S0(2r+l)), r>3 ^ ^ 0 0 0 0=4=0 Z2 

DT(Sp(2r)), 0=4=0 0 0 0 ) <•> Z£ 

Dt(F4) o o CL-4JO O 1 

DT(G2) 0 1 

GD(Hr) o o n \ l 

GD(BD) 1 
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Table IV: Direct Reduction of TM Equations - for Simply Laced D(G) 

D(G) D*(G) 

SU(2r+2),r>l O 0—-O----0 O 0 0 -0=£=D = D(Sp(2r+2)) 

SO(2r),r}4 O 0 O - — G C ^ 0 0 0 ^ = 0 

E 6 

= D(S0(2r-l)) 

S0(8) 0 C C Z ^ = D(G2} 

o — c r j - y o = d(F4) 
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Table V: Direct Reductions of TL Equations for Simply Laced D(G) Omitting 
Tbose Based on T(G) 

D(G) 

S0(2r), r>4 

, r>/3 S0(4r) 

S0(8) 

Symmetry used 
(cycle notation) 

(r-1 ,r) (0,1) 

| (0,2r-l) (1, 
L (0,2r-l,l,r 

(0,1,3,4) 

(0,1,6) 

(0,7) 

2r) 
) 

D* (G) 

D (Sp(2r-4)) 

D (S0(2r+1)) 
GD(HL) 

GD(BD) 

DT(G2) 

dt(F4) 



CHAPTER III 

THE ALGEBRAIC STRUCTURE OF TODA SYSTEMS 



1 0 0 . 

3.1 Introduction 

For a variety of reasons, both mathematical and physical, there is 

much current interest in dynamical systems which are integrable classically, 
1 2) 

or even better, quantum mechanically. ' The systems usually considered 

have a number of degrees of freedom which is either finite (so that the 

system is called one-dimensional, with time the dimension) or infinite 

with extra degrees of freedom counted by a.single space parameter (so that 

the system is called two dimensional with time and space the dimensions). 

A particle physicist is interested in relativistically invariant two dimen-

sional systems and even more in four dimensional systems. There already 
3 4) 

exist many interesting relationships ' between self-dual gauge field con-

figurations describing instantons or monopoles and integrable systems in 

one or two dimensions. 

Integrable systems exhibit much interesting structure, for example, 

unexpected conservation laws (or symmetries) which restrict the phase space 

through which the classical system may evolve. In the two dimensional 

systems there occur other objects with a simple time dependence which 

relate to the Bethe Ansatz valid in some quantum statistical systems. 

It is of great importance to evaluate the Poisson or quantum commutator 

bracket between these objects. 

Underlying the integrability is a Lax pair3^ or zero curvature6^ 

condition involving a second type of commutator structure involving what we 

shall call Lie brackets in order to distinguish them from the Poisson or 

quantum brackets previously mentioned. It seems that the proper under-

standing of the theory involves the interrelationship between these two 

sets of brackets, the Poisson or quantum bracket and the Lie bracket. 
1 2 7) 

Maj or progress in this direction has been made by the Leningrad school * ' 

in the course of developing the "quantum inverse scattering method' using 
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ideas from models in statistical physics. In specific two dimensional 

integrable systems a crucial role is played by an operator IP which 

relates the two bracket structures. 

Our aim in this chapter is to construct and understand IP for two 

(infinite) families of theory of interest for both physical and mathematical 

reasons. The best understood Lie bracket structures correspond to the 
8) simple Lie algebras (classified by Cartan) and the affine Euclidean 
9) 

Kac-Moody algebras and these are the ones relevant to the two 

families of theory. 

The corresponding equations are known as the Toda equations19^ and couple 

coordinates pa in a nonlinear way. 
A2 R Pk 
X P a = - 2 c e b (3.1.1) 
dt2 a b=l a b 

The RxR matrix C is a special sort of matrix with integer entries, called a 
8) 

Cartan matrix. These matrices give the clue to the Lie algebraic structure 

mentioned above since they encode the structure of that algebra in a way to be 

explained. 

When C is a Cartan matrix associated with simple Lie algebra equations 

(3,1.1) are called "Toda molecule" equations11^ whereas when C is a Cartan 
9) 

matrix associated with an affine Euclidean Kac-Moody algebra, the equations 

are known as "Toda lattice" equations. The possible matrices C are 

known from the classification theory of these algebras and can be denoted by 

Dynkin diagrams which are listed and explained above . Toda' 

original equation corresponded to the large N limit of the SU(N) algebra.18^ 

We shall just consider the classical one dimensional systems (3.1.1) . 

The form of IP we find leads us to think it will also play a role in the 

quantum and two dimensional versions of(3,l.l). The two dimensional versions 
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of(3.1-1) are relativistically invariant and therefore of interest to particle 

physicists. The simplest (single component) member of these two families 

are respectively the Liouville equation and the Sinh-Gordon equation. 

The algebraic structures mentioned are respectively finite and infinite 

dimensional but nevertheless both possess a finite dimensional space of 

mutually commuting generators IL (called a "Cartan subalgebra"). The 

remaining generators can be arranged as step operators for roots, a 

[ H I > E A ] = A I E A 

The roots a span an R dimensional space and can be split into two subsets, 

the positive roots, and their negatives. The positive roots can always be 

expressed as sums of R "simple roots" whose scalar product specifies the 
8 9) Cartan matrix occurring in the Toda equations(3.1.1) ' 

2 C , = 2a*b/b , a,b simple roots (.3,1.2) ab 

The general theory guarantees that the complete algebra can be reconstructed 

(up to an isomorphism) from the Cartan matrix (or Dynkin diagram), which 

therefore contains all relevant information. 

The Lie bracket structure enters in the formulation of the Lax pair 

equations (see (33.1) in section 2). This equation ensures that the matrix 
N 

A of the Lax pair develops in time in such a way that the quantities Tr(A ) 

remain constant. The interplay between the two types of bracket enters when 

the Poisson bracket between different matrix elements of A is evaluated. When 

this can be expressed as a Lie bracket involving the operator U? (see 
N 

equation (3.13)) it follows that the conserved quantities Tr(A ) have vanishing 

mutual Poisson brackets. Any of these quantities may be considered as a new 

Hamiltonian without disturbing these properties since an appropriate Lax 

pair can be formed from A and iP as explained in section 2. 

V 
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In section 3, IP is constructed for the Toda molecule equations in the 

form 

IP = - i Z (signa) E a E _ a (3.1.3) 
roots a 

where E is the suitably normalized step operator for the root a and (sign a) 
3L 

is ±1 according as the root a is positive or negative. The sum extends over 

all the roots of the Lie algebra defined by the Cartan matrix occurring in 
(3.I.D. 

In section 4, IP is constructed for the Toda lattice equations and 

shown to have precisely the same form(3A.3) providing the sum extends over 

the infinite system of roots of the affine Euclidean Kac-Moody algebra 

associated with the Cartan matrix in(3A*l) and the step operators are those 

appropriate to the centre-free version of the algebra, called the loop 

algebra, and written as generators of the associated finite dimensional 

Lie algebra times powers of the spectral, parameter as explained in section 4. 

Equation (3A.3) stating that IP has a transparent uniform structure for 

the two families of equation considered constitutes our main result. The 

form(3.t.3) applies equally to the equations besides (3.1.1) based on Hamiltonians 
N 2 Tr(A ), N > 2 instead of Tr(A ). We think it striking that P depends just 

on the relevant root system. In deriving(3A.3) we used in an essential way 

the general feature of root systems that a positive root minus a simple root 

cannot be a negative root. We therefore expect our construction to generalize 

to possible more general infinite algebraic structures of this kind which 

may underlie other dynamical systems. Simple examples are the Toda equations 

involving generalized Cartan matrices and corresponding to the remaining 
12 13) 

Euclidean Kac-Moody algebras, ' i.e. the twisted ones. 

Section 5 discusses the result mentioning that(3A«3) should apply 

equally to the quantum case. Comparison is made with another sort of 

integrable dynamical system with a Lie group theoretical basis, namely 

that of a "free particle on a Lie group". These systems possess a 

structure like IP but are not completely integrable. 
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3.2. Lax Pairs and the IP Operator 

Consider a classical dynamical system with a finite number of degrees 

of freedom (such as the Toda systems (3.\. 1)) with a Lax Pair A, B depending 

on the canonical variables (qa>Pa) such that 

= i[B,A] (3.2.1) 

whenever the Hamiltonian equations of motion hold. Then the quantities 
N 

Tr(A ) are conserved in time. If A and B are generators of a simple Lie 

algebra we expect the number of independent constants of the motion of the 

form Tr(AN) to equal the rank of the algebra. The important question is to 

evaluate the Poisson bracket, (PB), of the different constants. If the PB of 

two quantities vanish they are said to be in involution. This allows a 
N 

canonical transformation to coordinates where the Tr(A ) are canonical momenta 

and the system is then (formally) integrated providing the number of 

independent Tr(AN) equals the number of degrees of freedom.14^ 

The first stage is evidently to evaluate the PB of two distinct matrix 

elements of A, A^ and A ^ say. Then the defining property of |P is that it 

obeys 

5A.. 6A, n <5A.. 6A. 
{A44,A,.0} = I lj k£ _ ij k& 
ij' u pB a <5qa <5pa Spa 6qa 

= IPik;i'iL Ai'j +1Pik;jkT \'SL (3.2.2) 

" Aij' ̂ j'kjj^ " Akr 

. 2) 
or in a more compact notation 

(A© A}pB= [IP , A ® 1 + ] © A] (3.2.3) 

where products between matrices in the tensor product space (of the Lie 
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algebra with itself) are defined so that 

( A ® B ) (C<gD) = AC<g> BD . ("3.2.4) 

We shall talk of left and right entries in an obvious way. Because of the 

antisymmetry of the PB we expect that IP will be antisymmetric with respect 

to interchange of the left and right entries and will write, corresponding 

to this, 

CPT = -IP . (3.2.5) 

Further, since A is hermitian (so the conserved quantities are real), 

we expect 

"1P+ = - CP (3.2.6) 

when left and right entries are conjugated separately without changing 

positions. Our aim is to construct IP satisfying(3.2. 3) , (3H2. 5) and(3.2. 6) but 

before doing so we wish to discuss the consequences of the existence of such 

a IP . From(3e2. 3) , 

N-l (Tr(AN) , A}pB = N TrL(AN_1 ® 1 {A ® A}pB) 

= N Tr^A1*"1® 1 [IP , A ® 1 + 1 ® A]) 

where Tr indicates trace on the indices of the left entry. The first term 
Li 

vanishes while the second yields 

= N[TrL(AN_1 DP), A] (3.2.7) 

From this it immediately follows that 

(Tr(AN), Tr(AM)}pB = 0 (3.2.8) 
M i.e., the constants of the motion Tr(A ) are all in involution. The Hamiltom 

2 for the system is usually taken as Tr(A ), as is the case for the Toda systems 
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Then(3.2.7) tells us, putting N = 2, that 

- H - ^h»a>pb = 2[TrL(A IP),A] 

from which we deduce that B, the second element of the Lax pair in(3,2.1) 

is just 2iTrL(A'IP). The validity of('3i2.3) and hence(3.2.7) does not depend 

on any particular choice of Hamiltonian once A is expressed in canonical 
2 N variables. Instead of Tr(A ) we should choose Tr(A ) as Hamiltonian (or even 

any linear combination of these quantities) and equation(3.2.7) would then 

imp ly 

- f • {H,A}PB= {lr(AN),A}pB 

= N [TrL(AN_1ff),A] 

N Hence for the system with H = Tr(A ) we have the Lax pair A and 

B = i N Tr (AN_1 .TP) (3.2.9) N L 

N 
The same quantities Tr(A ) would be constants of the motion in involution. 

We see that IP is more fundamental than B ih the sense that it is independent 

of the dynamical coordinates and universal in the sense that it applies 

equally to all the dynamical systems based on linear combinations of the 

Tr(AN). The goal of this paper is to construct TP for the Toda systems(3,l'1) 

mentioned above and show it has a remarkably simple and transparent structure. 

We shall proceed in two steps dealing first with the TM equations and then 

using the result to obtain TP for the TL equations. 

3.3 Poisson brackets and the CP operator for the Toda molecule equations 

In this section we consider the Toda molecule equations. Thus C in 

(3J1.1) is the Cartan matrix Kab for a simple Lie algebra. We start with the 

zero curvature condition for the two dimensional version of equation(3.1.l)'^ 
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in the form presented by Leznov and Saveliev. We then proceed in 3 steps: 

(i) construction of A (see eq. 2.1) in terms of canonical coordinates and 

momenta for the one dimensional case, (ii) evaluation of the Poisson 

bracket between the different matrix elements of A, and (iii) construction 

of JP satisfying(3.2.3). 

We refer the reader to the previous for definitions of potential 

AJJ and other notation. . According to that we take 

1 „ 1 ' 1 ^ab^b A = Ax = i ( ^ + A v ) = Z ± *a Ha + - eZ + (3.3.1) 
acA 

i 1 ^ab^b , 
-iB=At = |(Au-Av) = Z

A 1 e (Ea-E_a) (3.3.2) 

where Ha are the Cartan subalgebra generators, Ea the step operators for the 

simple roots aa in the Chevalley basis and we have assumed (j) is independent 

of x in order to obtain the one dimensional equations(3,1.1). The sums 

extend over the set of simple roots A. Then 

£ -i[B,A] = | Z Ha($a + eK^b) 
aeA 

2 Z Ha K + (pc + Kcb ePb) 
a£A 

using the commutators in the Chevalley basis: 

(3.3.3) 

[Ha,Eb] = E^ba (no sum over b) 

[Ea,E_b] = Ha6ab aa, abeA ($,3.4) 

and letting pa = Kab<f>b- We have used the fact that the matrix Kab is non-

singular for any simple Lie algebra. 

Thus A and B given by(3,3.1) and(3.3.2) constitute a Lax pair for the Toda 

molecule equations(3,l.1)• Normalizing the Killing form by 

26 . , a b 
TrEaE ! Tr(HaHb) • w (3.3.5) 

(aa) (aa)"(ab) 
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2 we find that the energy integral Tr(A ) has the kinetic term 

. . a b v v 1 1 a *a K = L, <P„ <p, t o 
a'b a b (a ) (ab) 

so that the canonical momentum conjugate to (j) is 
cL 

^a = TT - K . i (3.3.6) 
6cj)a (aa) a b b 

2a
a* H a b Since H = and a can be expanded in terms of fundamental weights X as 

3 (aa) 

aa = K KXb 
ab 

which follows fTom the definition of Xb; 

2X 'a ~ab 
7 V = 6 
(a ) 

we f ind 

1 ^ab^b 
A ( < M ) = Z [Xa-Hira + ± e Z (Ea + E )] . (3.3.7) 

aeA z " a 

This is the desired expression for A in terms of canonical variables and 

completes step (i). It is straightforward to evaluate the Poisson bracket (3.2.2 

{A ? A)PB = I aeA ^ ^ ^ ^ C ( E a + E-a> ® Ha " Ha <S> <Ea + E_a)] (3 3'8> 

Comparing with the defining equation for IP, 2.3) we see it is sufficient for 

IP to satisfy 

[IP, H a ® 1 + l ® H a ] = 0 (3.3.9) 

, 2 
[IP, E a ® 1 + 1 ® Ea] = ^(aa) (£a - Ha ® Ea); aaeA (3.3.10) 
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since if IP is antihermitian in the sense of (3.2.6) it follows from(3.3.10) 

that 

1 a 2 [TP, E_a + l © E _ a ] = ±(aa) (E_ a@H a - H a © E _ a ) (3.3.11) 

The final stage, (iii) is therefore to construct 'IP satisfying(3,3.9), 

(3.3.10) 2.5) and(3,2.6). The first step is to consider the Casimir like 

operator (£ defined by 

dim g 
CC = Z ~ T ± ® T ± (3.3.12) 

i=l 

where the T^ constitute an orthonormal basis (with respect to the Killing 

form) for the generators of the compact Lie algebra g; 

[T^,Tj] = i f.^ » totally antisymmetric (3-3.13) 

. (0 has the fundamental property that it commutes with any generator T in the 

sense that 

[C, 1 ® T + T ® 1] = 0 (3.3.14) 

as is easily seen using(^3.13). It is useful to split (C into three parts 

C = C + + (C_ + (C0 (3 v 3.15) 

where 

<C, = Z (a2/2)E„ © E „ 0.3.16)' + a>o a " a 

£ = Z (a /2)E © E = Z (a /2)E (© E ' (3.3.17) 
a<o a " a a>o "a a 

CC0 = J ^ i ® 1 ^ (3.3.18) 

Here the Ea are the Chevalley step operators for all the roots a of the 

algebra , and H^ the Cartan subalgebra in the Cartan-Weyl basis. Together 
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they obey 

[E±9E.] =0 i,j = 1 r = rank g 

[H.,E ] = a.Ea L i a i u 

^ a ' V = Na6Ea+B if a + 6 a r o o t 

2a. H 
ft 3.19) 

a2 if a + 8 = 0 

= 0 if neither true. 

Note that H = 2 a and E = E ~ above. 
(aa) a ° 

The decomposition(3.3«15) is useful because as we shall show 

P = - \ (C+ - (C_) (3.3.20) 

This evidently satisfies the transposition and hermiticity properties 

ft;2.5) and(3.2. 6). Since(3.3.9) is trivial to check it only remains to 

establish(3.3.10). 

First note that 
2 

[<Co,Ea© 1 + 1 © Ea] = - (Ea«© Ha + H a ® Ea) (3-3.21) 

while 
2 

[<C+,Ea(g> 1 + 1 © Ea] = - - ^ p - (E a© Ha) + X (3.3.22) 

where X is a sum of terms proportional to E ,<x) with a and af both 

positive roots. This follows from(3.3.19) and the simple fact that a positive 

root minus a simple root can never be a negative root. Likewise 
2 

[CC_,Ea^ 1 + I ® Ea] = - H a © Ea + XT (33.23) 

where X1 is a sum of terms proportional to © E , with a and a' both 

positive roots. But(3-3.14) tells us that (CQ + (C + U3 commutes with 
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Ea<g) 1 + 1 ® Ea. Thus by (3.3.21), fe 3.22), 6.3.23), X + X' vanishes. Since X 

and X* cannot cancel as their components are linearly independent they must 

vanish individually. Subtracting(3.3. 23) from(3.3. 22) we then get 
2 

[C+ -<C_, Ea<g)l + 1 ® Ea] = - (E a^H a - H a & E a ) 

It follows that IP given by(3,3.20) has the desired properties(i,3.9), (33.1 

This IP is unique because if not, we would have an operator commuting with 

all the 1 + T.^® 1. The only such operator is <r(l3.12) which is symmetric 

and hermitian in the sense of(3.2.5) and(3.2.6) and so cannot be added to IP 

without destroying the properties(3.2.5) and(3.2.6). 
/""a7 

If we rescale the step operators y — E+a + E+a so they become part of 

an orthonormal Cartan Weyl basis instead of a Chevalley basis, IP takes the 

formal. 3) given in the introduction. 
Once IP is constructed it follows from the previous section that the 

N 
integrals Tr(A ) are all in involution. Since the number of independent such 
integrals equals r = rank g, the number of dynamical coordinates, we see the 

14) 
Toda molecule system is completely integrable in the sense of Arnold. 

This was known for g = SU(N)17^ but as far as we know this is the first 

explicit proof which works uniformly for all simple Lie algebras. 

3.4 Poisson brackets and the tP operator for the Toda Lattice equations 

Here the matrix C in(3.1.1) is an extended Cartan matrix Ka^ associated 

with any simple Lie algebra g by adjoining a0 = -ip (the negative of the highes 

root ip) to the set of simple roots A to obtain A = {a0,A} and defining K-^ as 

in(3.1.2) where a and b run over 0, 1 r. By the properties of roots and 

coroots of g, 

ip = ? N aa ip/;p2 = 5 Maaa/(aa)2 (3.4.1) 
a=l a a=l 
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with Na, Ma integers. Hence K-^ is a singular matrix of rank r with null 

vectors N~ , M- , a. a 

Na ^ b = % *b = 0 ^.4.2) 

where we have defined N0 = M = 1 and let barred indices run over A rather o o 
than A. 

From(3,l.l) and(^4.2) , we see that 

A2 

(I N p ) = o 
dt2 a a 

r 121 

and in fact we choose, following 

Z N-p- = 0 (3.4.3) 

as an extra constraint. 
The variables p relate best to the points of the Dynkin diagram which 

[121 displays the 

symmetry of the equations but in order to evaluate Poisson 

brackets we need an independent set of r variables. A convenient choice is 

^a = O l ^o = defined by 

Then(l 1.1) reads, using(3.4.2) 

= -e + Ma e (3.4-5) 

[121 
If, following , we define 

1 I ' l l A = AX = 2 (AU+AV) = 2 Z 6 A H A + I Z. EZ 
atii 

-IB = AT - |(AU - AV) = I E (E_ _ E__} ( L^ _ 6 ) 

and using the commutators(£3. 4) , (3!3.19) and (8A. 1) we find 

V 
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T K , K <f> 

§ - i[B,A] -1 Z Ha($a + e
 a b b - Ma e °C C) (3.4.7) 

thereby establishing that A, B in(314.6) constitute a Lax pair for the Toda 
2 

lattice equations. The energy integral TrA has the same kinetic term as 

before. Hence the canonical momentum conjugate to <{>a is again given by 

.6) and A in terms of canonical variables is 
1 ^abh 

A(<M) = Z Xa r H7Ta + ^ Z_ e2 aD °(E_ + E -) ft4.8) 
aeA z aeA a "a 

Now the commutators used in(3.4. 7), 

[E ,E ] = H = -Z MaH_;[H ,E. ] = K L o -o o a a»L a' ±0J ±o oa 

can be satisfied by taking 

=o " • k 0 " J % Ca.4.9) 

where X is a parameter which we shall take as real. Since 

the Lax pairs defined by(3.4.6) for different values of X are gauge 
[12] 

inequivalent we now have an infinite family of Lax pairs for the Toda 

lattice equations labelled by X . This phenomenon does not occur for the Toda 

molecule equations. Thus, a "spectral parameter" X enters the Toda lattice 

theories. 

The quantities are all generators of the Lie algebra g. The 

quantities XnTi , n = 0, ±1, ±2, ..., T^ as in(3.3.13) can be regarded as 

generators of an affine Kac-Moody algebra g{x)£(X,X if different powers of 
[9] 

X are linearly independent. The step operators corresponding to the simple 

roots are EQ, E^ .... E^ and the Cartan matrix defined by the simple roots 

is K~b as stated in section 1. This important observation is due to Leznov 

and Saveliev'"16̂  , Drinfeld and Sokolov^13^, and G. Wilson'"18̂ , and will be 

important in what follows. Thus the Lax operator A for the Toda molecule and 
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lattice systems both involve step operators for the simple roots, in the former 

case for a simple Lie algebra g and in the latter case for a Kac-Moody algebra 

g g^tt,*'1). 

When we evaluate the Poisson brackets between different matrix elements 

of A we shall want to use X as an extra matrix element label, and so will take 

X as the spectral parameter in the left entry and y as the distinct spectral 

parameter in the right entry. 

Then the IP operator will be denoted IP(X,y) and will satisfy 

(A(X) A(y)} = [ IP (X,y) , A(X) ® 1 + 1 @ A(u) ] » 

Using (4.8) we easily evaluate the left hand side 

= |( Z (a*)2 e ^ a b S ( E a + E_a) # H a-H a<© (Ea + E_a)] 
acA 

^K 4> 
-«0 2 e2 a b b [ ( 0 + i E^)® - y j j (PE.^ i E^)]) 

Thus we require IP(X,y) to satisfy the previous equations^3.9,(3,3-10) and in 

addition 

[ EP(X,y), X 1 + 1®- yE_^] 

- " \
 EUj® ( 3< 4' 1 0 ) 

We also expect the transposition and hermiticity properties(3.2.5) ,(3.2.6) 

P(X,y)T = - p(y,X) (3.4.11) 

f(X,y)+ = - IP(ii) (3.4.12) 
A y 

Because of the uniqueness of Tp(2.3.20) satisfying(3)3.9) and the comments 

at the end of the last section, IP must have the form 

TP(X,y) = IP + F(X,y) (£ (¥4.13) 
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where F(X,vO is some function and CE is defined in (23.12). It remains to 

construct F(X,y) so that .10) is satisfied and then check(3.4.11) and(34.12) 

Now 

.2 
E ^ ® 1] - \ E ^ + Y x (34.14) 

where the 
first term is the contribution of ot — \}j in (E, (3,3.16) and Y^ is a 

sum of terms proportional to E x with a and aT both positive roots 

(using the fact that if \JJ - a is a root it must be positive) . Further 

[C+, 1 © = 0 (3,4.15) 

since ijj+a cannot be a root. Likewise 

[(£_> 1] = 0 (3.4.16) 

[(£_, 1 © E^] =(i|/2/2)E^ ©H^ + Y2 (3.4.17) 

where Y„, like Y., is a sum of terms proportional to E , x E with a and a' 2 1 -a -a 
both positive roots. Hence by(l4-14) to (3.4.17) and(3.3.21), 

[C, 1 + 1 © = Y1 + Y2 

But by(3.3.14) this vanishes, so Y^ and Y2 cancel each other rather than 

individually vanishing. Using these facts we find for(3.4.13) 

[ 0Fa,u), XE^ © 1 + 1 ® ME ] 

- ( X
2
+ U ) + (X - y)F (X,y)) Y 1 

X I2 
+ ( - 5 + (X - y)F(X,y) Y H ^ © 

2 
- (- H + (X - y)F(X,y) ̂  E ^ 
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and comparing with(3.4.10) we see that the coefficient of Y^ should vanish, 

so 

F(X,y) = \ = " F(y,X) = - F(i,i) 

With this choice(3.4.10) ,(3,4.11) and(34.12) are all satisfied and 

y - X S y-X 2 y - X o 

This form is indeed reminiscent of that found in studies of other dynamics 

systems, but seems to us to be simpler. Now comes the main point of this 

cl\ap~ter in terms of interpreting IP(X,y); since X and y are formal parameters 

we may write 

y + X y X 1 1 
y - X y - X X - y 1 - X/y 1-y/X 

= ? (X/y)n - (y/X)n 
n=l 

Hence 

_ 2 2 
-2 IP = Z + ? Z ^ XnE © y " n E 

a>o 2 n=l all a a ^ 

+ Z Z Xn H. ® y~n H. , . , i l n=l 1=1 

2 
-( Z + Z Z X"n E *) ynE 

a>o 2 a a 11-1 all a a 

+ nll J l ^ n H . i © y n H . ) 

Now the step operators for the positive roots of the affine Kac-Moody 

algebra g <3 <6(X,X are precisely ^ 
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E , a > o; XnE n > 1, a any root (positive or negative); 
CL u — 

X1̂ !., n > 1 i = 1 r . 

l 

if the step operators for the simple roots are XE E^ .... E^. Thus if 

we rescale the Ea as before,^— E^ + E^ we find that £P(X,y) is in the 

formal. 3) precisely. Thus just as for the Toda molecule case A involved 

step operators for the simple roots and IP step operators for all the roots 

of a simple Lie algebra g, so for the Toda lattice case A involves the step 

operators for simple roo.ts and TP the step operators for all the roots of an 

affine Kac-Moody algebra g ®£(X,X . This is our main result. 

3.5 Discussion 

We want to discuss the sense in which the IP operator we have constructed 

for two families of Toda systems is simple and universal. This simplicity and 

universality suggests that IP may have an analogue in other dynamical systems 

based on bigger algebraic structures. 

As explained the two families of Toda systems were based on the systems 

of simple roots for the simple Lie algebra g and the affine Kac-Moody algebras 

g ® £ (X,X . IP was constructed in terms of the step operators for the 

complete root systems in a uniform way. Unlike the second element of the Lax 

pair, B, it applied equally to the many different dynamical systems based on 

the given algebra. 

Our argument in constructing IP was based on the fundamental geometric 

fact that the root system concerned could be split into positive and negative 

parts and possessed a basis of simple roots. Since this is true also of the 

remaining Euclidean Kac-Moody algebras based on the generalized Dynkin diagrau 

(or "twisted loop algebras") we expect our own result to apply equally to the 
[131 integrable systems associated with them (which are subsystems of those 
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[121 discussed here based on extended diagrams ) but will not check it here. 

Our expectation is that there are yet more general systems of this nature 

associated with bigger algebraic structures. The two dimensional Toda 

equations may furnish an example. 

Unlike the Lax operators A and B, CP is independent of the dynamical 

coordinates and also of the choice of independent dynamical variables. Thus 

it is very likely that it will pass over into the quantum theory unchanged. 

Indeed the fundamental equation(3,'2.3) holds for the quantum Toda systems when 

the Poisson bracket is replaced by a quantum commutator bracket and should 

presumably provide the basis for an integrable quantum theory. We hope to 

investigate this possibility in the future. 

The statement that the Lax operators form a linear combination of Cartan 

subalgebra generators and step operators for A or A is invariant with respect 

to gauge transformat ions generated by the Cartan subalgebra of g. TP is also 

invariant to such transformations applied equally to its left and right entries 

Since the spectral parameter takes distinct values in the left and right entrie 

these gauge transformations must not depend on the spectral parameter. 
[16] 

This means that for other choices of A related to the Leznov Saveliev 

choice adopted above by a spectral parameter-dependent gauge transformation, 

IP will assume a different and in fact more complicated form. This seems to 

be the reason our simple form has not previously been discovered. The point 

of the Leznov Saveliev definition is that it associates the spectral parameter 
[9] 

with the natural grading of the Kac-Moody algebra. 

We suspect that the crucial feature of ]p is that it plays the role of 

structure constants when the fundamental Poisson bracket equation(3.2.3) is 

regarded as imposing a second Lie algebraic structure on A. Thus A is a sum 

of products of two generators taken from the Lie algebra of Poisson brackets 

(3.2.3) and the Lie algebra<3.3. 13). 
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We have claimed that P is more fundamental than B. To illustrate 
2 

let us construct B from A and [P when H = Tr(A ). For the Toda molecule 

case, it is easy to verify using (3.3.5) thatfe.2.9) and(3,3.1) yield 6,3.2). 

In the Toda lattice case equation(3.2.9) must be modified on account of the 

spectral parameter dependence. Since TrA(X) is X independent(3,2.9) becomes 

" ^ f ^ - (H,A(X)} = {TrA(X)2© A(y)} 
> 

= 2[TrL(IP(X,y)A(X)),A(y)] 

1P(X,y) is singular when y = X yet the left hand side is regular and in fact 

completely independent of X. This apparent paradox is resolved by calculating 

-2TrL( P(X,y)A(X)) = A(y) + iB(y) 

which indeed yields the correct Lax equations as the X dependent term cancels 

out of the commutator. 

It should be noted that we never had to mention a specific representation 

of the simple Lie algebra concerned. In fact our expressionftl.3) for t? is 

valid in any representation. Throughout we made implicit use of the fact 

that the trace of a quadratic expression of generators is independent of the 

representation except for a common scale factor which can be absorbed in the 

normalization of the trace. This is not true for traces of higher powers of 

generators. This means that when, as in section 2, a higher order Hamiltonian 
N 

is expressed as a linear combination of Tr(A ), then the coefficients will 

depend on the representation considered. That is why it is important to 

have the freedom of taking their coefficients arbitrary as we mentioned. 
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It is instructive to consider another favorite dynamical system 

associated with Lie groups; that of a free particle moving on a simple Lie 
T191 group. From the work of Pohlmeyer and others J the Lax pair is simply 

A = -ig"1 = AiT± , B = 0 

Clearly there are dim g coordinates and the same number of conserved 

quantities Ai. The canonical formalism implies that 

{Ai(A.}pB = i f.jkAk , &3.1) 

so the number of conserved quantities in involution only equals rank g and 

the theory is not completely integrable in the sense of Arnold^^ even 

though it is formally integrable. In the notation of the present paper(3.5.1) 

can be written 

(A© A^B«ifiC, A © 1 - 1 © A] 

N 
from which it follows again that the Tr(A ) are in involution but only rank g 

are independent from the theory of Casimir invariants. 

More generally one might expect 

{Atf> A}pB = [ vP, A © 1] - [ IPT, 1 © A] 

Our two examples seem to constitute two extremes in the sense that for the 

Toda systems TP is antisymmetric while for the particle on a group it is 

symmetric. 
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