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ABSTRACT 

Rapid advances in computer technology throughout the last decade have 
brought small, powerful, and above all, cheap computers within the 
reach of all but the smallest business. As a result of this 
revolution the computer is no longer confined to its more traditional 
role of centralised data processing and is being exploited in many 
hitherto unforseen or uneconomic applications. One such area of rapid 
growth is that of computer aided drafting. 

The thesis outlines the history of computer aided drafting from the 
early days of batch processing on mainframe computers, where data was 
normally prepared off line and submitted for subsequent analysis, to 
the modern interactive systems based on a minicomputer, where the 
operator communicates directly with the computer in a question and 
answer manner. A survey of both the current equipment and techniques 
employed and the implications of the introduction of this technology 
for business and employees alike is included. 

Details are given of a fully 3 dimensional interactive graphics system 
developed for use in mechanical engineering design. This system, 
known as 'TIGER', whilst owing some features to early 3 dimensional 
animation or 2 dimensional engineering systems developed at Imperial 
College, combines these with many new features presenting a unique 
approach to the problems of entering, viewing and manipulating 3 
dimensional information- in a way consistent with modern engineering 
drafting requirements. 
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1.0 INTRODUCTION 

Imperial College has been well known for its works in the various 
aspects of computer aided design and draughting for a number of years, 

and pioneered the use of PDP 8 and PDP 11 computers in the early 
1970's. A number of projects have been completed in association with 
varying branches of industry; site layout, shipbuilding and animation 
being typical examples. In several cases the work has been taken up 
by the associated company and further developed into a workable 
commercial format• 

Almost without exception the above projects were of a two dimensional 
nature, although some success was achieved with 12j' dimensions, where 
the third space co-ordinate is constrained to lie on a number of fixed 
planes. The first fully three dimensional system was developed by 

for use in animation, enabling much of the tedious drawing work 
associated with complex cartoon movements to be performed by the 
computer. It was recognised that a three dimensional capability would 
have applications in general mechanical engineering draughting, the 
automatic production of isometrics being a typical example. Although 
a number of commercially developed graphics systems were becoming 
available their three dimensional capabilities were generally minimal 
or limited to one particular application, such as pipe routing, and 
their price rendered them beyond the reach of most small businesses. 
This project was undertaken with the specific aim of developing a 
small but powerful three dimensional computer aided draughting system 
of general applicability that required only a minicomputer to run, and 
was sufficiently flexible to enable it to be tailored to a number of 
different applications with the minimum of effort. It was further 
intended that a number of parallel projects should 

investigate the use 
of this system for finite element stress analysis, automatic 
production of tapes for numerically controlled machine tools etc. The 
three dimensional animation system developed by Yi was used as a 
basis, but required substantial modifications, amounting to almost a 
complete rewrite, to build in the facilities needed for engineering 
use. 
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Some two years into the project Imperial College was approached by 
Balfour Beatty Engineering Ltd. with a view to installing computer 
aided draughting facilities in their drawing office for the production 
of a variety of different types of engineering drawing. Development 
work subsequently continued at both Imperial College, and at Balfour 
Beatty when the necessary equipment had been obtained. 

As a consequence of this, and the recent advances in computer 
technology, it was recognised that the exisiting graphics software, 
being of a single user format running under the DOS operating system, 
would be limiting in the commercial environment. To obviate this, 
conversion to multiuser format under the RSX-11M operating system was 
undertaken as part of the development process. 

The following chapters outline the work carried out and the principles 
and conventions adopted, concluding with a number of practical 
examples from the drawing office. Also included is a survey of the 
hardware currently available, the reasons behind its introduction and 
some of the problems that may be encountered. 

Throughout this thesis the graphics system is referred to as 'TIGER1, 
being an acronym for Three-dimensional _Interactive ^Graphics ^Routines. 
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2.0 THE ROLE OF COMPUTER AIDED DRAFTING IN THE DRAWING OFFICE 

Computer aided drafting has been described as "The use of a computer 
based system for translating concepts or sketches into drawings 
suitable for use in manufacture, or for storing drawings or parts of 
drawings in a data bank to be available on call for modification, 
incorporation into a revised drawing, or as input to subsequent 
manufacturing processes". As such, a destinction exists between 
computer aided drafting and computer aided design, which is often not 
fully appreciated. A computer aided drafting system is structured to 
enable a designer or draftsman to produce a drawing more quickly and 
efficiently than is possible using conventional techniques, but has no 
built in design logical and is dependent in the skill of the designer 
to ensure that correct information is entered. A computer aided 
design system will typically have a level of design logic built in, 
and be able to choose between various options automatically, dependent 
on a number of pieces of key information provided by the operator. A 
typical example is the inclusion of a valve in a pipeline. The 
computer aided drafting system relies on the draftsman selecting the 
appropriate valve by some external process and telling the computer 
which to use. A computer aided design system will be able to select a 
standard valve automatically if provided with the necessary 
information, such as pressure, temperature, fluid etc. 

The following chapter outlines the historical processes through which 
computer adided drafting has passed to reach its current level of 
development, and concentrates on a number of the benefits, problems 
and pitfalls that may be associated with the introduction of this 
technology in the modern drawing office. No attempt has been made to 
describe the ever increasing range of hardware and software that are 
available, a discussion of the former being the basis of chapter 3. 
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2.1 The History of Computer Aided Drafting 

The last two decades have heralded a revolution in computer 
technology, in many respects equal in importance to the industry 
revolution of the nineteenth century. The computer benefits man in 
two distinct areas, the ability to perform complex calculations at 
great speed and the capacity to store large quantities of information 
for almost instantaneous recall. The exploitation of these different 
qualities is largely responsible for the distinction between 
commercial and scientific computing. 

Computing techniques have become well established in the commercial 
world, and are frequently fully integrated into normal office 
procedures. For example, it is no longer a surprise, or a novelty, to 
receive a computer printed bank statement. In this application the 
storage, retrieval and modification of enormous quantities of customer 
records is of paramount importance, the requirement for calculating 
ability being very minimal. The computer enables the bank to 
streamline its operating procedures and provide a better service to 
its customers. 

The use of computers in the scientific environment tends to be less 
well known, but this is partly a consequence of the lack of personal 
contact between the general public and such computers. Their 
principal function tends to be performing complex calculations on 
relatively small amounts of data, which often vary so much as to make 
the establishment of a data bank an impractical proposition. A 
typical example is the prediction of the performance of an internal 
combustion engine for a range of different design parameters, based on 
a number of well established laws and formula. It has long been 
recognised that such applications may place special demands on a 
computer system, not least being the method of data input and output. 
Whereas in most commercial applications printed output is normally all 

that is necessary, scientists and engineers traditionally represent 
results by means of graphs or drawings. This requirement led to the 

13 



development of graphical display devices and subsequently graphical 
input devices, or digitisers. Computer graphics was born. 

It is generally accepted that the first important advance in computer 
graphics took place at the Massachusetts Institute of Technology in 
1963 with the development of a system known as "Sketchpad" ̂ ^ ̂ . The 
system consisted essentially of a cathode-ray oscilloscope driven by a 
Lincoln TX2 computer, enabling graphical information to be displayed 
on the screen and then manipulated by a light pen. The system was 
interactive in nature, in that there was a continuous exchange of 
information between the computer and the operator, and this technique 
has become known by the name "Interactive Graphics". This is in sharp 
contrast to the "batch" mode of operation where all the information 
needed by a program is pre-prepared, then the program run and the 
output produced with no intervention from the operator. Early 
interactive graphics systems tended to be very expensive, as does most 
new technology at its outset, and necessitated considerable computing 
power. They were therefore only adopted in major industries, such as 
aviation, with high design costs. 

Few major advances were made in these areas until the early 1970's 
when rapid technological changes brought about a swift advance in 
computer aided drafting techniques, many being based on the new breed 
of minicomputer that was both powerful and inexpensive. Whereas most 
work had previously been based on research projects, a number of 
companies emerged that both developed and marketed "turnkey" graphics 
system to meet specific user requirements. The number of such 
companies has continued to grow, although a few market leaders have 
envolved whose names have become synonymous with computer aided 
drafting and design. Today, new systems appear almost weekly in the 
journals, as does new hardware. A subjective appraisal of the 
software is almost impossible since it tends to be diverse and 
frequently tailored to particular applications or hardware. 

Furthermore, for obvious reasons, companies tend to be unwilling to 
divulge the details of their own systems, and information contained in 
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typical advertising leaflets is generally scanty and unspecific. An 
appraisal of hardware is somewhat easier, and the following chapter is 
devoted to such a survey. 
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2.2 The Need for Computer Aided Drafting 

There is a considerable conceptual jump from the early graphics system 
capable of little more than displaying results pictorially to the 
modern interactive drafting system with sophisticated input and output 
techniques. This transistion has come about to fulfill demands made 
by industry, who see computer aided drafting benefiting them in a 
number of areas and for a number of different reasons. 

By combining man and machine in this manner the better qualities of 
each may be exploited. The computer is logical and can be relied upon 
to make consistent choices, hold large quanties of data for long 
periods without degredation, and make calculations without error. Man 
is essentially illogical in that a choice is often made intuitively, 
past experience may lead him to choose what would otherwise appear the 
wrong course of action. Furthermore, mans capacity for holding large 
quantities of information is poor and likelyhood of error is high. An 
ideal computer aided drafing system would therefore be programmed to 
perform all the logical functions based on a series of instructions 
given by the user. This should result in a problem solving "team" 
capable of performing more efficiently than either the man or computer 
alone. 

The demand for CAD is naturally financially motivated and stems from a 
need to use resources in the most efficient way possible. This is 
particularly true of recent years when labour costs have escallated 
rapidly, whereas computer costs have reduced, so making a computer 
aided drafing system a more attractive proposition. Many companies 
are taking on such systems in the* hope of reducing their drawing 
office staff, or simply enabling the current staff to handle more 
work. The latter is particularly important in an expanding company 
because there is currently a real shortage of skilled drawing office 
staff, and computer aided drafting may be the only solution. 
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Productivity increases are difficult to quantify since they depend 
very much on the type of work being undertaken. Claims vary from 2:1 
to about 30:1, but it is generally accepted that between 2 and 5:1 is 
about average. Higher values are achieved when drawings are very 
repetitious, or use large quantities of standard components. The 
design of a multi-storey building is a typical example, where the 
basic floor plan need only be drawn once, then duplicated for each 
floor before any minor variations are added. 

The ability of a computer aided drafting system to use a central store 
of data is frequently important, and has a number of benefits. It is 
very easy to impose uniform design standards, and drawing quality will 
be consistent irrespective of the draftsman who produces it. A 
typical drawing will contain large quantities of text, and the way in 
which this is added can alter the overall appearance of the drawing. 
With computer aided drafting a uniform quality is guaranteed since the 
character set is generated internally by the computer. This concept 
extends further to the use of standard parts since the draftsman will 
call them back from a library and they are certain to appear in the 
same form on any drawing. Furthermore, updates may be performed 
automatically on a whole series of drawings if a particular component 
is changed, and in any case modifications to a single drawing may be 
quickly and simply applied, sometimes taking only minutes as compared 
with days for the manual equivalent. Whenever a drawing is updated a 
new 'master' copy may be run off on a plotter, so resulting in a 
perfect copy which shows no sign of correction and, unlike drawings 
that have been on a drawing board for some weeks, is perfectly clean. 
This can be important in that it impresses present and potential 
customers and may lead to the company gaining further work. 

As well as extracting information from a data bank with which to build 
up a drawing, a computer aided drafting system is capable of creating 
a second data bank in parallel with the drawing, which normally takes 
the form of a parts list, material schedule etc. A simple 
illustration of this concept is the layout of an electronic circuit. 
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Symbols for resistors, capacitors etc. are taken from a library, and 
the number and values used stored as the drawing is built up. When 
complete the computer can quickly and simple output a list of all 
components used for that particular circuit, which may be used as a 
basis for ordering, assembly etc. This can be very important at the 
tender stage of a contract to enable the company to produce its tender 
in a very short time and at minimum cost. 

The above may give the impression that computer aided drafting is the 
answer to all drawing office problems, but regrettably this is still 
very far from the truth. The following section outlines some of the 
considerations that must be made when installing such equipment, and a 
few of the problems that may be encountered. 
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2.3 Choosing a Suitable System 

The use of computer aided drafting and design equipment in the U.K. is 
still somewhat patchy, and by no means as widespread as in other 
industrial nations such as the USA, Japan and West Germany. This can 
be partly attributed to their much higher labour costs, and 
concentration on high technology industries, but is also due to a lack 
of awareness in the UK, and the traditional British reserve hampering 
the introduction of this new technology. At the current stage of 
development the problems of choosing a suitable system are 
considerable, even for those experienced in the field, and for a new 
company entering the market for the first time can be extremely 
daunting. 

A great deal of mythology exists about the capabilities of drafting 
systems in general, partly as a result of well rehearsed 
demonstrations and televisions "tricks" which make it all look very 
easy and gloss over the hours of preparation that have gone into a 
demonstration lasting a few minutes, and frequently the phenomenal 
cost of the equipment involved. Problems will generally be 
experienced if these are used as the basis on which a system is 
chosen, since demonstrations only outline what the system can do, not 
what it can't, and the requirements of the average drawing office will 
soon make the latter only too obvious. Detailed specifications of 
commercially available systems are difficult to obtain, and frequently 
the only way of getting past "sales talk" is to speak directly to 
other companies who already have the system in operation, which again 
may prove difficult if they are in direct competition. 

When choosing a computer aided drafting system for a particular 
application it is extremely important that the potential user 
identifies clearly in his own mind exactly what the system will be 
required to do before attempting to match this to a particular system. 
Frequently insufficient forethought is given and users find themselves 
with a system incapable of performing the function they require, but 
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very good at performing functions that are not needed. There is a 
strong temptation to buy a very sophisticated system, but frequently 
this will have capabilities beyond those required, add unnecessary 
complication to its operation, and eventually be difficult to justify 
economically. The best approach is to buy just what is needed and use 
it to maximimum efficiency. Since the requirements of a company are 
generally very personal it must be accepted from the outset that no 
system is likely to be absolutely ideal, and a certain amount of 
tailoring will be required to meet specific requirements. With large 
commercially supplied systems this may be difficult to achieve and 
become very expensive, since the user will normally be obliged to ask 
the supplier to perform the necessary modificiations due to the 
unavailability of source code. An alternative approach is to develop 
an entire system "in-house", perhaps in co-operation with a research 
organisation. This guarantees that it will meet the companys exact 
requirements, providing an adequate specification is initially drawn 
up, but obviously results in a significant development time between 
initial conception and productive use. Assuming this delay is 
tolerable the resultant system should more closely match the company's 
needs, and be far simpler to modify in the future to incorporate any 
new features that may be required. In some fields this will be the 
only course of action. Currently a large number of 2 and " 2 \ n 

dimensional systems exist, but little work has been done in full 3 
dimensions. Claims have been made for the capabilities of a number of 
American systems, but to a large extent these are still 
unsubstantiated. It is to fill this gap that this project was 
undertaken. 

Suitable software must be matched by compatible hardware, and the 
choice of such equipment can be bewildering. Technology is advancing 
so rapidly that a large range of very similar equipment is avilable, 
and whatever choice is made it is likely to be obsolete almost before 
it is installed. An effective system must be based on an adequately 
powerful computer. A number of the processes performed, such as three 
dimensional rotations, require considerable computing power if they 
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are to be completed within a reasonable time. An important 
requirement of any interactive graphics system is that it must have a 
rapid response. Although a slow response may be tolerated by the 
novice user, it will prove a source of annoyance to the experienced 
operator and will cause frustration and a loss of enthusiasm in using 
the equipment. The design of a "user friendly" workstation is very 
important to the smooth running of the system. The layout should be 
such that each item of equipment is easily visible and any keyboards 
or digitisers accessible without undue movement of the operator. An 
ideal arrangement appears to be to mount the graphics screen above the 
digitiser, directly in front of the operator. However, problems 
result from this arrangement if a large digitiser is employed and it 
is to be used at a steep angle. 

In order to justify the capital cost of such a system some 
productivity increases or manpower saving are obviously necessary. As 
previously stated, it is generally accepted that productivity factors 
of between 2 and 5:1 can be expected on average, depending on the type 
of drawing being produced. It is therefore a relatively simple matter 
to calculate break even points depending on the usage and original 
cost. Estimates vary, but it has been suggested that up to 5 years 
may be required, and in drawing offices of less than about 20 staff 
this situation may never be reached. A possible solution is the use 
of a system on a bureau basis, although this is seldom satisfactory 
due to speed of response and the limited transmission rates along post 
office lines. 

Whatever system is finally chosen it must integrate easily within the 
existing drawing office procedures. It is foolish to imagine that 
this can be done without any changes, but these should be minimal in 

order to avoid upsetting the smooth running of existing company 
practises. The following section is devoted to a number of the 
problems that may be encountered in these circumstances• 
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2.4 The Effects oil the Workforce 

The success of any new technology is dependent on not only its 
capabilities but also its acceptance by those who will be involved in 
its use. Computerisation tends to be an emotive issue and many people 
feel it will ultimately lead to loss of jobs and the disappearance of 
traditional trades. A number of union/management disputes have 
already arisen over this, notable computerised type setting in the 
printing trade, and if these are to be avoided careful planning and 
forethough is necessary. Needless to say, union and management views 
on this subject tend to differ and a workable compromise must be 
achieved if maximum benefits are to be reaped by both sides. 

Unions see a number of potential dangers to their members, most of 
which apply equally to any new technology as to computer aided 
drafting. They fear a continuation of the fragmentation of skills 
that began in the 1930's, such as the job of a designer being broken 
down into that of stress man, metallurgist, draftsman etc. This, it 
is felt, leads to lower job satisfaction since no one man can see the 
job through from start to finish. It is feared that as workers became 
more specialised they become akin to a part in a machine, and will 
eventually be scrapped when that machine becomes obsolete. 
Furthermore, the useful working life of staff is likely to be short, 
with a high burn up rate which the use of computer techniques will 
bring. This can be attributed to the reduction in the amount of 
mundane reference type work performed by a draftsman, and hence the 
higher proportion of his time spent on the decision making process. 
It is feared that only a small age bracket will be suitable, and once 
beyond that bracket staff will suffer a career de-escalation with a 
resultant lowering of status, and that traditional skills such as tool 
setting will disappear in the wake of numerically controlled machine 
tools. To their advantage, it is recognised that computers represent 
high capital investments and are extremely vulnerable to strike action 
by a small number of people. A number of trade unionists are aware 
that other nations, such as Japan and the USA, are using computer 
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technology to great effect, the Japanese motor industry being one 
example, and if UK industry, and hence jobs, is to survive we must 
maintain competitiveness by superseding older labour intensive 
processes. 

Employers look upon new technology in the broader spectrum of its 
benefits to the company rather than the effect on individual 
employees, although all but a few take the latter into consideration. 
Recent price trends in computer technology have allowed companies to 
move away from equipment with a high cost to user ratio, so reducing 
the pressure to utilise the equipment to the maximum to recover the 
initial investment. It is now recognised that staff must have time to 
think since excessive pressure will only result in unnecessary errors. 
It has been suggested that staff often welcome the introduction of new 
technology because much of the tedious work is eliminated, leaving 
greater time for more satisfying work. By sharing one workstation 
between several operators, maximum use may be made of the equipment 
without undue stress on staff, who can spend short periods on the 
equipment and longer periods preparing further work elsewhere. 
Frequently operators may make helpful comments about how the use of 
the equipment may be improved. Some employers have suggested that, 
far from leading to undue specialisation, quite the reserve is true. 
By using the special capabilities of the machine, such as finite 
element stress analysis, engineers or draftsmen with an all round 
knowledge can perform very specialised functions which they would 
otherwise find impossible. This leads to a broadening of knowledge 
and a greater overall understanding of the processes involved. With 
this in mind universities and other training establishments are 
tending towards less specialised engineering courses including theory, 
practical experience and a knowledge of the humanities, with the 
specific aim of training engineers to have a broader outlook on 
engineering and life in general. 
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3. COMPUTER AIDED DRAFTING HARDWARE 

Throughout this thesis frequent mention is made of a number of pieces 
of computer aided drafting equipment on the assumption that their 
function is understood. This chapter describes the principal items of 
equipment and the current state-of-the-art in their development, 
starting with the basic computer which is an essential item in any 
system. Naturally, the combination of equipment employed for a 
particular system will depend on the users requirements, machine 
compatibility etc, and no attempt has been made to suggest a 'best' 
combination. 
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3.1 The Basic Computer 

The word computer is often misapplied to refer to a complete computer 
system, which can be broken down further and considered as a number of 
discrete, and frequently interchangeable, units. 

a) The Central Processor 

The heart of any computer is the 'central processor unit', or CPU as 
it is generally known. This is responsible for performing not only 
the basic computation processes of addition, subtraction etc., but 
acts as a controller for all the other pieces of equipment, or 
peripherals • An important part of the CPU is the core storage which 
is used to hold all programs and data while they are executing, and 
has until recently been a very expensive item. Recent advances have-
enabled computers to be fitted with large quantities of core for very 
modest prices. The amount of core available is generally described in 
terms of 'k', which in this context refers to 1024 words or bytes. 
For example 96kW is 96 x 1024 words. The definition of a word varies 
from computer to computer but is normally a fixed number of bits, or 
binary digits, these being the smallest unit of storage available, 
capable of taking only two values each, either 0 or 1. A word will 
typically be composed of 8, 12, 16, 32 or more bits, so enabling a 
word to assume 2n different values, where n is the number of bits per 
word. 

b) Bulk Storage Devices 

An essential quality of any computer is the ability to store large 
quantities of data, comprising not only the programs to control the 
computer, or 'software' as they are generally known, but also any 
databases that may be set up, such as the drawings produced by an 
interactive graphics system. The quantities involved preclude 
permanent storage in core and necessitate the use of some form of bulk 
storage device. 
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The most common bulk storage device in use today is the magnetic disk. 
The principle of operation is a cross between the gramophone record 
and the tape recorder, being a flat rotating disk covered in magnetic 
material that is accessed by either a moving head that traverses its 
surface radially or by a number of such heads at fixed locations. The 
variety of disks available is considerable, but the principles of most 
are similar. More conventional designs employ stiff disks that are 
manufactured to very close tolerances, recent designs employ 'floppy1 

disks, which rely on aerodynamic effects to keep them correctly placed 
in relation to the heads. The great advantage of disk storage is that 
it provides random access to data, enabling information on any part of 
the disk to be accessed about instantaneouly by moving the head to the 
appropriate location, and very fast data transfer rates, typical 
access times being of the order of 50ms and transfer rates approaching 
1MB/second (1MB = 1024 x 1KB). 

An alternative form of storage is magnetic tape, which behaves very 
much in the same way as a domestic tape recorder. The capacity of 
tapes for storing data is large, comparable to medium sized disks, but 
the access times and transfer rates do not compare with disks. A 
magnetic tape is a sequential device, so in order to access 
information at any point on the tape it is first necessary to read 
past all preceding information, which on a large tape can take several 
minutes. When the information is found data transfer rates can be of 
the order of 120KB/second. Offset against the disadvantages of 
sequential access is the comparitive cost of magnetic tape, sometimes 
as much as one twentieth of the cost of a similar capacity disk, and 
its size, which is considerably smaller than such a disk. Their 
comparitive merits and drawbacks mean that disks are generally used 
for current information to which frequent and rapid access is 
essential, whereas tapes are used for archive or backup storage to 
which access is rarely required. 
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Recent years have seen the introduction of cassette tapes in the 
computer industry. In general their capacity is very limited and data 
reliability less certain then the above devices. They play an 
important role at a personal level, enabling programmers to store and 
carry their programs with them, but have made little impact as mass 
storage devices, despite their very low cost. 

Other storage devices include paper tape and cards, but these tend to 
be very bulky and unsuitable for storing either large quantities of 
data or that to which frequent or rapid access is desired. These 
media are frequently used for off-line, i.e. remote from the computer, 
preparation of programs or data due to the ease with which they may be 
modified by hand. Their use in interactive graphics is very limited, 
and are increasingly losing popularity in favour of on line data 
preparation and editing directly from a terminal connected to the 
computer. 

c) Terminals 

Modern computer systems enable large numbers of terminals to be 
connected to the same computer and give the appearance to each user 
that the computer is dedicated to him alone. This is made possible by 
the speed of modern computers and operating systems using principles 
known as time or resource sharing, allowing users access to all the 
necessary resources on a rotation basis. Terminals are generally of 
two basic types, hard copy or VDU. The former are similar in 
operation to a modern electric typewriter and produce hard copy output' 
on computer paper. VDU's, or 'Visual Display Units' produce no hard 
copy output but display all their information on a screen similar to a 
conventional television. This form of terminal has the advantage that 
running costs are low and very high display rates possible, up to 960 
characters per second being typical. This will often be more 
important than the hard copy output, although frequently modern VDU's 
have an output that may be connected to a fast printer if a copy is 
needed. 
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d) Printers 

The conventional hard copy output device is the line printer, normally 
capable of printing lines of up to 137 columns at rates up to 1000 
lines/minute or more. This is achieved by having a print head for 
every character position on a line and printing the whole line is one 
operation. The type of printer employed will depend on the volume of 
output that may be handled. Interactive graphics systems invariably 
require small quantities of hard copy output and a character printer 
may be adequate, which behaves like a fast terminal and prints each 
character individually. This is normally achieved by either a dot 
matrix head which constructs letters from discrete dots, a golf ball 
head as found on many modern typewriters, or a daisywheel head, where 
the letters are mounted on a rotating head formed into a pattern 
similar to a daisy flower and are pressed on the paper individually by 
some form of hammer mechanism. 
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3.2 Special Equipment for Interactive Graphics 

The above outlines a number of peripheral devices that may be found in 
any computer installation, and indeed play an important role in a 
computer graphics system. In this application, as in any specialist 
field, a number of additional peripheral devices have evolved to 
provide the specialist functions required for graphical input and 
display. 

a) Graphical Displays 

Perhaps the most common specialist device is the graphics display, 
being essentially a terminal type device with the capability of 
displaying not only alphanumerics but graphical information such as 
lines, circles etc. These devices may or may not have a keyboard 
attached to enable feedback from the user to the computer. Graphics 
displays can be broadly categorised into two different classes, 
refresh and storage display. 

i) Refresh Displays 

A refresh display is similar in operation to a domestic television in 
that the screen is composed of a low persistance phosphor which must 
be refreshed repeatedly in order to maintain a visible image. This 
must be carried out sufficiently frequently to avoid flicker becoming 
obvious to the observer, a process which should be carried out locally 
to avoid excess load on the host computer. A typical device of this 
type will contain a microprocessor and enough storage to buffer a 
entire picture locally. Once the picture is transmitted to the 
display by the computer and placed in local storage the microprocessor 
is responsible for monitoring the necessary display procedure. The 
principle of storage and display may be either the conventional 
television type raster scan format, where the picture is composed 

entirely of dots scanned in horizontal lines, or a discrete line type 
format where each line on display is stored and then displayed from 
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start to end in one operation by a beam capable of drawing in any 
direction rather than just horizontally as in the former method. This 
has the advantage that less processing of a line is needed than that 
required to break it down into a raster type format, but suffers from 
the disadvantage that the database stored varies in size according to 
the amount of data displayed and the speed of display is proportional 
to the amount of data, neither of which is true for raster scan 
format. In either case modern refresh displays still tend to be 
'black and white' devices, being capable of generating either darkness 
or one level of light, although colour displays are rapidly gaining 
popularity with reducing prices. Exhaustive test have been carried 
out by many terminal manufactures, which apply equally to graphics and 
alphanumeric displays, to determine the best colour for the screen for 
maximum visibility and minimum operator fatigue. Most have come down 
in favour of green, particuarly for graphics displays, although white 
is still popular. Feedback from the user via such a device is 
normally through either a conventional keyboard, a light pen used to 
point at specific items on the screen, or a joystick to control 
movement and rotation of an internally stored picture. 

ii) Storage Displays 

A second category of graphics screen is the direct view storage tube, 
which as its name suggests 'bums in' the image on the screen, which 
then remains on display without the need for it to be constantly 
refreshed. The principle of the device is similar to a standard 
electrostatic cathode ray tube except than an addition grid electrode 
and flood gun are incorporated. The grid electrode may form a part of 
the screen surface, so resulting in a bistable phosphor. The image is 
created by secondary emission due to election bombardment. The grid 
electrode is negatively charged before display commences, but when the 
beam of electrons trace out the picture this becomes positively 
charged at any point traversed by the beam. This has the effect of 
accelerating electrons from the flood gun through onto the screen, 
causing the phosphor to glow and the picture to become visible. The 
picture will remain held until erased, which is achieved by recharging 
the grid electrode to its all negative state. 
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Storage displays have the advantage that no processing is necessary to 
maintain the image, and their operation is considerably simpler than 
an equivalent refresh display. Greater resolution can normally be 
achieved with storage devices, but selective erasive of a part of a 
drawing is difficult, a process which can be readily achieved with a 
refresh type display. Until recently the market has been dominated by 
storage devices, due to their price and functional advantages over 
refresh displays, but modern advances have made refresh displays both 
more economically viable and capable of giving the resolution and 
picture quality required. Colour screens are becoming more readily 
available that will undoubtedly add a new dimension to future graphics 
systems. 

b) Digitisers and Tablets 

A second group of peripherals intended specifically for graphics 
comprises digitisers and tablets, of which the latter is normally a 
small, low resolution version of the former. The digitiser is the 
equivalent of the draughtmans drawing board and is used by him to 
communicate positional information to the computer. Drawing is 
performed, not with a pen or pencil, but with a device known as either 
a puck, cursor, stylus, or a number of other names. The name 'stylus' 
has been adopted throughout this thesis to avoid confusion with the 
cursor displayed on the graphics screen, of which a full description 
is included in chapter 5. The position of the stylus on the digitiser 
is registered extremely accurately, normally by means of some 
mechanism in the digitiser surface detecting an electric field emitted 
by a coil in the stylus. Early digitisers were mechanical devices 
employing a moving carriage driven by servo motors that followed the 
stylus as it was moved. The position could be determined by means of 
optical encoders fitted on each of the two axes. These devices were 
frequently capable of receiving data from the computer and functioning 
in a plotting mode as an output device. Modern digitisers tend to be 
of solid state construction with a grid of wires embedded in the 
surface. Suitable electronics enable the position to be determined to 
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great accuracy by interpolation, even though the spacing between wires 
may be as much as 25mm. A typical resolution is + 0.005mm. The 
stylus will normally be fitted with a number of push buttons to enable 
the user to register points. The digitiser will output both the 
button pressed and the location. In an interactive system this will 
normally be fed straight to the computer, but where the situation 
demands data can be recorded off line by connecting the digitiser 
directly to a mag-tape unit, card punch, or any other such device. 

c) Plotters 

The ultimate aim of any graphics system is to produce a hard copy 
drawing that may then be used in much the same way as its hand drawn 
counterpart. Excluding a photographic copy of the graphics screen, 
which is normally too small and of too poor a resolution for anything 
but proof checking, the normal method of producing such a drawing is 
on some form of mechanical plotter. The types currently available may 
be broardly categorised into 3 different groups, each with its own 
merits and shortcomings. 

i) Drum Plotters 

The drum plotter is the oldest of the three types, and is still the 
most common in general use. This consists of a drum driven by a 
stepper motor over which is fed a continuous roll of paper. The paper 
is normally perforated along the edges in a similar fashion to 
conventional computer listing paper, engaging in sprockets at each end 
of the drum, enabling it to be moved precisely in either a forward or 
backward direction. A pen holder carrying up to four pens is mounted 
on a gantry above, and parallel to the axis of, the drum. A second 
motor drives the pen holder along the gantry, which when combined with 
the movement of the paper allows the pens to be placed over any point 
on the resultant drawing. The pens are moved into, and out of, 
contact with the paper by D.C. solenoids. 
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This type of plotter is popular for several reasons, not least that it 
is the cheapest of the currently available units. A high degree of 
unattended operation is possible since a large roll of paper is 
employed, allowing every drawing to be plotted consequitively with 
little or no operator intervention, with the exception of periodic 
cleaning and replacing or refilling of pens. Modern drum plotters 
will accept a number of different pen types allowing not only 
different colours or line thicknesses to be used, but also different 
paper finishes which have particular pen requirements i The great 
disadvantage with a drum plotter is that it cannot accept pre-printed 
sheets, and hence all title blocks etc. must be drawn on every drawing 
by the plotter. This is not only time consuming, but in many 
applications, such as consultancy, the range of different formats may 
be very large, and clients may demand that drawings be done on their 
own paper. A lesser disadvantage of the drum plotter is that where 
many small drawings are to be produced paper wasteage may be 
considerable, since no matter what size the drawing the user is 
compelled to use the full width of the roll. ' A solution to these 
problems may be found in the following design. 

ii) Flat Bed Plotters 

This type of plotter takes its name from the design, incorporating a 
large horizontal bed onto which paper is placed and over which the pen 
moves. Like the drum plotter a pen holder moves along a gantry to 
provide movement on one axis, but in the flat bed plotter the paper 
remains stationary and the gantry moves over it to achieve movement in 
the opposite axis. Paper is loaded onto the plotter in individual 
sheets, which may be of any size up to the maximum area of the bed, 
which is normally A0, and held firmly in place by either electrostatic 
charge or suction through small holes in the bed. This has the 
advantage that it allows the user to load preprinted sheets, but 
requires more operator attention since a new sheet must be loaded 
manually for every drawing, as opposed to the automatic wind forward 
achieved with drum type plotters. Typical flat bed plotters are 
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normally more expensive than their drum counterparts due to the 
greater complexity of operation, perhaps the biggest problem being the 
need to overcome the considerable inertia of the moving gantry to 
achieve satisfactory results at the beginning and end of lines. 

iii) Electrostatic Plotters 

The electrostatic plotter is based on a completely different principal 
from the aforementioned designs. Both the drum and flat bed plotters 
are based on a moving pen principle, but electrostatic plotters are of 
a raster design, producing images on sensitised paper in a similar 
fashion to a television picture. Every line is broken down into a 
series of dots at the appropriate locations on the paper by software, 
which are printed by moving the paper under a light bar. This 
principle has a number of advantages and disadvantages compared with 
the conventional plotters• 

The most obvious advantages is the speed at which the plot is 
produced. The time taken for a pen plotter to produce a drawing is 
directly proportional to the complexity of the drawing, whereas the 
electrostatic plotter will produce a drawing of any complexity at the 
same speed, this being governed by the rate at which the paper passes 
under the print bar. Since plotting can often be a bottleneck in a 
busy drawing office this may be an important consideration, 
outweighing the small software overhead necessary to preprocess a 
drawing into raster type format. Regretably, electrostatic plotters 
do suffer from a number of drawbacks. Special sensitive paper must be 
used, so precluding the use of preprinted sheets and limiting the 
number of different surface finishes available. On top of this the 
special paper can be very expensive, as is the plotter itself, the 
disadvantages of which are fairly obvious. A good electrostatic 
plotter will have a resolution of approximately 200 dots/inch, which 
although acceptable for less demanding work can be inadequate for 

engineering applications and results in very obvious 'stepping' of 
lines, particularly those very nearly parallel to one of the axes. 
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Furthermore, although different line thicknesses can be achieved, the 
technology to produce colour plots is still being developed, which for 
applications such as mapping can be an overwhelming disadvantage. 

All three types of plotter are normally available with two different 
modes of operation, referred to as 'on line' and 'off line'. For on 
line operation the plotter is connected directly to the computer and 
receives the information to the plotted under the control of software 
running on that computer. For off line operation the plotter is 
independant of the computer and reads the data that is to be plotted 
from a bulk storage device, normally a magtape unit, connected 
directly to it. The tape that is read must obviously have been 
produced by the appropriate software on the computer at some earlier 
time. The choice of which system is used is governed by a particular 
companys requirements, but in general the on line mode is gaining 
popularity, due chiefly to the increasing power of computers to handle 
plotting in a background mode, and the extra capital expenditure 
required with off line operation to provide an addition tape unit. 
Furthermore, off line plotting requires a higher level of supervision 
to ensure that the correct tapes are loaded and unloaded from both the 
computer and the plotter. 
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3.3 The Equipment Used For TIGER 

Much of the early development work was carried out under the single 
user operating system at Imperial College, and then under the RSX-11M 
multi-user operating system both at the college and at Balfour Beatty 
Engineering Ltd. in Sidcup, Kent. Where possible compatible 
equipment was used at both sites in order to keep machine dependancy 
problems to a minimum. The principal differences were due both to 
advancing technology; the Balfour Beatty PDP11/60 was a more recent 
machine than the PDP11/45 at the College, and the need for increased 
power and storage capacity in the commercial environment. In 
addition to a number of standard peripherals, such as magnetic tape 
and a line printer, both machines were equipped with a flat bed 
plotter and graphics workstations. 

Much research into plotter design was carried out at Imperial College, 
and hence during this project three different flat bed plotters, 
designed and built at the College, were available at differing times. 
Appendix A contains a description of the interfacing of the second of 
these plotters, which was subsequently replaced by one built as a 
separate project. The design of the plotter described was 
subsequently sold to Computer Instrumentation Ltd. and developed into 
the commercially available 4/74 with on-board microprocessor control. 
It is this plotter that is currently in use at Balfour Beatty. 

The style of workstation has changed considerably throughout the 
duration of the project, and again reflects changes in technology. 
Early work at Imperial College was carried out on a mechanical DMAC 
digitiser and Tektronix 611 storage screen, both of which were 
subsequently replaced with a Talos solid state digitiser and Tektronix 
4014 graphics screen respectively. This configuration necessitated 
using the same screen for both messages and the drawing, and as part 
of the multi-user conversion a simple alphanumeric terminal was added 
to the workstation to receive typed input and issue system messages 
and prompts. Two workstations of this style were initially installed 
at Balfour Beatty, and later two more advanced stations employing 
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raster graphics screens with dual graphics/alphanumeric capability. 
Originally each device of a user station was connected to the host 
computer by a separate line, which resulted in a number of operational 
problems. To overcome these local microprocessors were developed to 
run at each workstation. A full description of these devices and the 
software to control them is included in chapter 4. 
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4.0 THE TIGER SYSTEM CONCEPTS AND STRUCTURE 

The following chapter is intended to give an insight into the basic 
structure of the graphics system including data handling, task 
swapping, and 3-D input and display. Each function is described in 
general terms and in most cases specific programming details have been 
deemed to be beyond the scope of this document. Whilst describing 
individual concepts this chapter does not attempt to explain how they 
are combined together to form complete graphics modules. This aspect 
is covered in some detail in the succeeding chapter. 
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4.1 The Operating System 

Much of the development work for TIGER was under the DOS/BATCH 
operating system, this being a single user executive supporting up to 
32K words of core. This imposed severe limitations, not least that 
only one operator could use the machine at any time, and in a 
production environment it precluded simultaneous production and 
development work. In the later stages of the project the graphics 
system was converted from its largely obsolete single user form to 
allow multi-user operation under the RSX-11M operating system, which 
it was hoped would obviate the above problems and in general result in 
much greater flexibility. 

Graphics systems of this type are well suited to multi-user operation, 
since a large part of the time is spent waiting for operator action, 
and so imposing practically no load on the computer. It had been 
found necessary to enhance the DOS operating system substantially to 
provide the facilities needed, but RSX-11M, being a more sophisticated 
executive, has so far proved sufficiently comprehensive to be used 
with very little modification, and none that result in any noticeable 
change for other users, who may be performing normal program 
development work. This thesis is in general written on the basis of 
the multi-user operating system, although . where significant 
differences in concept exist between it and the single user system the 
latter is described to illustrate these differences. 
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4.2 The Overlay System 

The software for a large graphics system is obviously very extensive, 
but generally is modular in structure and can easily be subdivided 
into individual sections of code performing specific functions. This 
property is used to advantage in the TIGER system since core 
restrictions limit the amount of code that may be in memory at any one 
time. The solution to the problem is significantly different under 
the two operating systems used during the project, and both will be 
described to illustrate this difference. 

4.2.1 The Single User Overlay System 

Under the DOS executive the user is limited to 32K words of core, and 
a true overlaying system is necessary where only the currently active 
module is in core, the others residing on a bulk storage device, such 
as a disk, until they are needed. The overlay system simply provides 
a means of loading the appropriate module into core and starting its 
execution. 

By definition, when a new overlay is loaded from disk the overlay 
currently in core is overwritten and thus completely lost. In order 
to communicate information between overlays it is therefore necessary 
to have some reserved area of core which is not affected by this 
overlaying procedure, and that can be accessed by any overlay if 
necessary. This area typically contains relevant system information 
such as scale factors, grid sizes etc. This facility was provided by 
the standard DOS overlay system, but regrettably this had already been 
proved to be too slow and limited for graphics applications, operating 
on a tree type structure where the next overlay to be executed must 
always be prespecified when the task is build and it is not possible 
to jump from one overlay to another further down the tree, or one on a 
different, branch. Since the sequence of operation of the graphics 
system is controlled at random from a menu area it is important to be 
able to jump between overlays in any order or direction and with 
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sufficient speed so as not to produce irritating delays for the user. 
A faster and more versatile overlaying system was written by 
Hamlyn v ' to operate with version 7 DOS, but even this had 
shortcomings in that core useage was inefficient and overlay building 
needed a certain amount of care. This was rewritten during the course 
of this project to improve these shortcomings and to make the overlay 
librarian behave more like a standard DOS utility program. For 
example, the command format was rationalised to conform with DOS 
conventions, additional commands incorporated to expand the directory 
management capabilities to include deletion and more comprehensive 
listing options, and I/O modified in order to allow its use from any 
UIC. A comprehensive error reporting system was incorporated, which 
was absent in earlier versions, and by use of larger areas of core 
packing times, to remove wasted space between overlays in the library, 
were reduced by the order of 95%. The system provides for a resident 
area at the top of core which is unaffected by the overlaying process, 
and an overlay area occupying the rest of available core. Overlays 
may be written in Fortran IV, Macro II or any other language for which 
a compiler is available. The overlay librarian (OVAL) then turns the 
load module produced by the DOS linker into a core image and stores it 
on disk in a large contiguous file known as the overlay library, 
recording its position and length in a directory to enable fast and 
efficient recall. When the graphics system calls for a different 
overlay, which it references by number, the location of the overlay in 
this file is determined from the index, the overlay copied into core 
and execution commenced. Overlay swapping is controlled by a set of 
Fortran callable subroutines, where the overlay number is passed as a 
simple numeric arguement, and so can have any value at execution time, 
i.e. any overlay can call any other overlay, or even itself if so 
desired. The system maintains an overlay execution stack on a 'last 
in - first out' principle on which overlays can be queued for 
execution, a return from an overlay causing the top entry on the stack 
to be removed and executed. The stack contains not only the overlay 
number but also a second variable, the entry point, which can be used 
by the overlay to divide itself into logical dependant or independant 
segments• 
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A core map for the single user TIGER system is shown overleaf. In 
some instances the overlays use the "free core" area as additional 
buffer space outside of their own limits, but this operation is 
transparent to the user and is generally to speed up disk transfers by 
reading large blocks of data at one time rather than many smaller 
blocks. Furthermore, this is a function of individual overlays rather 
then the overlay system, and therefore does not merit description at 
this stage. 

The directory structure for the overlay file is shown in figure 4.2 
and a typical overlay library directory as produced by the librarian 
'OVAL' in figure 4.3. Under the latest system the overlay library 
directory was of fixed length, allowing a maximum of 128 overlays to 
be defined. 

4.2.2 The Multi-user Overlay System 

The philosophy behind the multi-user overlay system was that, from a 
programmers point of view, it must behave much as its DOS predecessor 
in order to avoid extra complications in making the change from single 
to multiuser operation. To this end the concept of an overlay 
execution stack containing a first-in-last-out queue of tasks awaiting 
execution was maintained, with control over the flow of execution 
being by means of Fortran callable routines as before. Indeed, from 
an applications programmers point of view the differences between the 
two overlay systems are almost non-existant. The operation of the 
multi-user system is, however, radically different from its 
predecessor. 

The RSX-11M executive is not limited to 32K words of core, since by 
address mapping, using the memory management hardware, it is possible 
to address up to 128K words of core in the PDP 11/45 and as much as 
1960K on the larger machines. The RSX-11M executive is generally in 
control of the placing of a specific section of code, or 'task', in 
core at a location that is currently unoccupied, since it is possible 
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OVERLAY LIBRARY DIRECTORY 02-MAR-B1 lSIOSriS 

OVERLAY OVERLAY START OVERLAY LENGTH TRANSFER LAST 
NUMBER NAME BLOCK WORDS/BLOCKS ADDRESS MODIFICATION 

1 SETUP 8G8 ' 5021 20 105008 05-JUN-80 
2 DIGOV 578 8834 34 SG714 05-JUN—80 
3 ERROV 51 435 2 128732 17-JUL-80 
4 DEBUG S70 5010 20 105034 17-JUL—80 
5 OVFIL 1120 13449 53 44058 05—JUN—80 
6 DISALL S29 10482 41 57534 05—JUN—80 
7 LINED 300 4984 20 105170 05-JUN—80 
B WINDOV 293 1800 7 121504 17—JUL—80 
9 RECOVR 24 275 o 127452 09—MAY—80 

10 JSTICK 991 2899 12 115252 09-MAY-80 
11 REVDAT 201 860 4 43000 09—MAY—80 
12 TTDY 22 283 2 127412 17—JUN—80 
13 CURFIT 383 7849 30 72816 09-MAY-80 
14 DOUBLE 413 2420 10 117150 09-MAY—80 
15 DVIEW 297 1348 6 123310 08—MAY—80 
IS LINTRA S90 3338 14 113304 09—MAY-80 
17 REVOLV 44B 3129 13 11.4338 11—MAY—80 
18 CONDIG 459 4310 17 107844 11-MAY-80 
19 SYMED 476 10644 42 57030 05-JUN-80 
21 BUFRES 518 1999 8 120682 09—MAY-80 
22 GRDSUR 100 2518 10 118728 25-APR-80 
23 PRPFIL 110 5454 22 103348 25—APR-80 
24 MAC3D 1175 8290 25 100054 • 1l-MAY-80 
25 PLTQV1 362 5313 21 103718 09—MAY-80 
26 PLT0V2 537 10302 41 60324 OS—MAY—80 
27 TRANSF 132 3202 13 114178 25—APR—80 
2B PEXWIN 322 -2544 10 118560 1l-MAY-80 
29 DISCON 97 582 3 128304 09—MAY—80 
30 MANEDT 332 4074 16 110574 1l-MAY-80 
31 MOVPT 205 3207 13 114102 1 l-MAY-80 
32 CIWRAP 78 1641 7 122280 25—APR—80 
33 MACSET 85 1433 6 123036 1l-MAY-80 
34 MACFIL 914 4918 20 105344 11-MAY-80 

101 RMODE 270 4305 17 107658 OS-MAY—80 
102 POLY 1058 8406 26 77504 OS—MAY-80 
103 ALPNUM 888 6449 26 77358 09—MAY—80 
104 x CIRC3D 218 7152 28 74580 09—MAY—80 
105 ARC3D 1200 7524 30 73210 1 l-MAY-80 
106 SPHERE 423 5785 23 102038 1l-MAY-80 
107 ANOTAT 612 4181 17 110248 1l-MAY-80 
108 DIMEN1 704 7330 23 74014 1l-MAY-80 
109 DIMEN2 1230 8585 34 87148 1l-MAY-80 
110 ELIPSE 934 6519' 28 77142 1 l-MAY-80 
111 LINEM 320 321 2 127316 09-MAY-80 

FREE BLOCKS: 314 
FREE FILES: 61 

Figure 4.3 Section of a typical overlay directory listing 
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for a number of users to have tasks executing simultaneously. By 
considering each of the overlays, as they were called under DOS, as a 
separate task, it is possible to instruct the RSX executive to load 
and begin executing them, so eliminating much of the work that had to 
be done locally by the DOS overlay system. In order to communicate 
data between tasks the resident common area described in the previous 
section must also be catered for. Furthermore, unlike the DOS system, 
there may be more than one user working simultaneously, so 
necessitating a resident area to be allocated for each user. This is 
achieved as follows. When a user logs on to the graphics system a 
dynamic common region is automatically created for him in core and 
filled with the default resident parameters. In order to access this 
throughout the drawing session each task automatically includes it in 
its address space by mapping to it when it is run. These regions are 
given the name COMnnn, where nnn is the number of the user station to 
which it applies. The executive knows this region simply by an 
identification code, and this code is passed between tasks to enable 
each to map to the correct region. All tasks in the multi-user system 
must run with a unique name, and since it is possible that two or more 
user stations may be executing the same task simultaneously it is 
necessary to identify the tasks with a name unique to the user station 
to which they apply. This problem exists not only for the graphics 
system, but also for normal RSX utility functions such as the Fortran 
compiler. The executive normally overcomes this by a process known as 
"spawning". The parent task is installed, that is made known to the 
executive, with a task name such as . ..F4P (the Fortran compiler), but 
when run an offspring task is produced identical to the parent but 
with a task name of F4PTnn, where the last 3 characters reflect the 
terminal number from which it is run, e.g. F4PT13 is a copy of the 
compiler run from terminal number 13. A similar concept is used for 
the graphics system where each individual graphics task is identified 
by a name of four characters, such as MONT, but run under the spawned 
name of MONTnn where nn reflects the user station number. 
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The overlay librarian described in the previous section in its DOS 
format now has a completely different function. In general, it is 
necessary for a task to be installed for the RSX executive to spawn a 
copy for different user stations. However, it was realised that the 
number of graphics tasks would be very large and to have each of these 
installed at all times would be wasteful on core, since each installed 
task occupies a small area of core with an allocation known as a 'Task 
Control Block', giving essential information such as the task name, 
priority, location on disk etc. When a task is to be included in the 
graphics system the task librarian (TSL) now installs the task, copies 
its Task Control Block into a library created on disk, and then 
removes the task again. When a request is made for the task to be run 
this directory entry is quickly and simply copied into the system task 
directory, (an executive list of currently known tasks) effectively 
installing the task, the name modified to reflect the user station 
requesting it, and execution commenced. By setting the appropriate 
flag in the task control block the executive can be instructed to 
remove the task automatically on its exit so avoiding the need for 
further action by the graphics software. The task library still 
contains a correlation between each task control block and a user 
specified task number to allow tasks to be called by number as in the 
single user graphics system, but no longer contains the actual task 
images, which reside in the individual files created by the task 
builder. The structure of the library file is illustrated in figure 
4.4. 

Every task is responsible for the loading and execution of the next 
task as in the DOS system, although under DOS the code to achieve this 
was included in every task, since it was simple and small. However, 
under RSX the code is neither small nor simple and requires access to 
executive functions not normally available to standard tasks, and so 
the process is achieved by an entirely separate task, the 'loader' 
task, which is permanently resident in core and is shared by every 
user station. The loader task, when first run, makes a copy of the 
task library in a condensed format for its own use. At Imperial 

47 



Task Number 
Date and time 
saved 

Task Control 
Block 

h 1ST TASK 

2ND TASK 

Zero word 

FINAL TASK 

U- LOGICAL END OF FILE 

SPARE SPACE 

Fig. 4.4 The Multiuser task library format 
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College this is a disk file, but at Balfour Beatty it is kept within, 
bulk core for very much faster access. When a task is required to be 
run the following sequence of operations is performed. 

a) The initiating task ensures the loader is active and sends 
it the following information 

1) The number of the task to be executed. 
2) The user station which requires it. 
3) The identification of that user stations resident area, 

as assigned by the executive. 

b) The loader task then:-

1) Completes any operation it may already be performing 
for another user. 

2) Receives the above information. 
3) Locates the appropriate Task Control Block from its 

library and enters it in the system task directory, 
modifying the name to suit the requesting user station. 

4) Sets the new task running. 
5) Sends the new task the identification of its resident 

area. 

c) The new task then:-

1) Receives the resident identification and maps to the 
correct region in order to achieve access to the common 
parameters. 

2) Identifies the appropriate terminal numbers 
corresponding to this user station and assigns them for 
communicating with the operator. 

3) Continues to perform the required function. 
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A number of significant improvements have been achieved by this new 
concept which may be used to advantage by the applications programmer. 

Since tasks no longer share core space with one another, it is quite 
possible for more than one task to be active for a given user station 
at any one time. This enables, for example, a routine designed to 
analyse data input from the digitiser to run concurrently with further 
input, resulting in improved performance for the user and more 
efficient use of machine time. The programmer must take care that 
this is not taken to excess to avoid overloading the system, although 
it is unlikely that more than two tasks will ever run concurrently, 
and if a task is requested that is already running the loader will 
automatically wait for it to exit before continuing. 

The limitation of 128 tasks in the library imposed by the directory 
structure of the DOS system has now been extended to 32767, the 
maximum positive integer available, by use of an infinitely expandable 
directory, which is considered adequate for all foreseeable 
applications. Since the task library no longer contains task images 
its size has been radically reduced, and the problems previously 
encountered with one large contiguous file eliminated. The extension 
of allowable task numbers makes it possible to allocate blocks of 
numbers for different applications, so keeping a tighter check on 
tasks, the numbers being allocated to indicate the general function of 
each task. 

Since each section of code is a task in its own right it may have all 
the attributes of any stand alone task, e.g. different tasks may run 
at different priorities, have different access rights etc. 

Perhaps the greatest benefit is that this system, unlike the DOS 
system, contains very few non standard functions while providing 
considerably better facilities. 
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4.3 Graphics Databases 

The selection of a suitable database for a graphics system is 
fundamental to the general performance and flexibility of that system, 
and a bad decision at this point will have far reaching consequences 
at a later date. Much research has been done into this subject, not 
only at Imperial College but also for many other graphics systems in 
both academic and commercial environments. The selection of a 
database for this project was largely governed by existing software 
available at the college which it was hoped to incorporate, and expand 
on, to produce a new and powerful three dimensional graphics system. 
Much of the preliminary research into suitable database structure was 
conducted by Hamlyn ^ ^ and McLintock who chiefly considered 
consequtive point storage and separate point/interconnecting line 
storage, and finally decided on the former. This approach was 
followed by Yi ^ ^ ^ in the early 3-D graphics system, and since this 
project was intended to follow on from his work it was thought best to 
continue with this approach. There is no doubt that different areas 
of CAD would benefit from different data structures, e.g. the ideal 
structure for a finite-element system would differ considerably from 
that for a pipe routing system. However, since this was intended as a 
general system it was felt that the data structure to be adopted was 
adequately efficient and versatile to have applications, with only 
minor modifications, in many different fields of CAD, and furthermore 
was simple enough for the applications programmer to understand 
readily. There is no doubt that a more complex data structure may 
enable more efficient and faster manipulation, but offset against this 
must be the inherent greater complexity of applications programs, 
which results in longer program development periods and greater 
possibility of errors. It is probable that in commercial applications 
the additional development costs would outweigh any small gains in 
productivity from a slightly faster system. It is argueable that a 
slight delay in response may be tolerable in that it allows the 
operator 'thinking time' to plan his next action, or simply to have a 
short break of concentration. Under the chosen system the data is 
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defined essentially as a sequence of fixed length records, which may 
be considered to have four components, X, Y, Z and I. In the simplest 
application X, Y, Z defines a 3-D space coordinate and I indicates the 
significance of that coordinate; in more complicated applications 
these may contain information identifying a particular symbol, 
possibly its size and type, and groups of such records may be used to 
identify more complex graphics items such as macros. The concept of 
symbols and macros is discussed in chapter 5. 

The selection of a list type data structure in no way governs the way 
the structure is used in the resulting graphics system, it simply 
provides the capability of storing data records consecutively within a 
file. The handling and implementation of this structure are two 
important areas of further consideration and are discussed in Section 
4.5 and Chapter 5 respectively. 
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4.4 Graphics Work Files 

The ability to handle large quantities of data quickly and efficiently 
are essential qualities of any CAD system irrespective of the data 
structure adopted. It has been estimated by one engineering company 
that an average drawing consists of approximately 40,000 vectors, and 
it is obvious that if this data is to be handled interactively a very 
efficient file handling capability must be included in order to avoid 
excess use of CPU time or irritatingly long delays for the operator. 
The requirements of a CAD filing system fall into two basic 
categories, namely workfiles, for short term storage," and permanent 
files for long term storage of complete drawings. The latter category 
may be handled by conventional filing facilities, although additional 
routines may be added to compliment these. A description of their use 
is included in Chapter 5. The former workfiles, however, are best 
handled independently. 

Workfiles may be defined as those files with which the user interacts 
directly during the construction of a drawing. This will include his 
workspace, the area in which the complete drawing is being built up, 
and any associated 'buffer' files, typically used for very brief 
storage of data for manipulation prior to adding to the drawing. It 
is an unfortunate, but well known, fact that the file handling 
capabilities of the Fortran language, particularly under the PDP11 DOS 
system, are poor, being confined chiefly to sequential access of 
records at a rate which is completely inacceptable for an interactive 
graphics system. This is largely a consequence of the Fortran ability 
to handle variable length records, and a file system where each block 
of a file does not necessary physically follow the previous one, which 
contains a pointer to it. It is therefore impossible to locate a 
particular record without reading through every preceeding record. 
True random access is therefore impossible, and records close to the 
end of a large file may take a considerable time to access. The 
concept of random access, the ability to address records out of 
sequence, is very important for graphics applications since it is 
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often necessary to modify sections of the data without the need to 
read the entire database, as would be true with a sequential access 
file. True random access is generally only possible with contiguous 
files, ie. those where successive blocks are physically and 
numerically adjacent on the disk, enabling the location of any block 
to be deduced from the location of the first, or any other, block. A 
measure of random access was available with this type of file using 
standard PDP 11 DOS and RSX Fortran routines, although this was not 
considered adequate for the current requirements. No matter what 
data structure is adopted for the 3-D drawing information this must 
ultimately be grouped into disk units known as blocks, of 256 words 
each, and transferred to a file for storage. The filing process can 
therefore be considered to comprise two stages, the compacting of 
drawing records into blocks and the transfer of these blocks to disk 
storage. For convenience these processes have been kept separate 
since under some circumstances it may prove more efficient to use the 
latter process independently, such as when copying from one file to 
another. The routines described on the following pages are general 
enough to handle all block I/O for the graphics workfiles, but are 
also employed by the specific graphical data handling routines 
described in section 4.5 for the transfer of blocked records to or 
from disk. 

4.4.1 The Single User System 

The method employed in the single user TIGER system was similar to 
that described by Hamlyn where up to 14 preallocated contiguous 
files were available for direct access by specially written assembler 
routines. A number of significant improvements were made on the 
aforementioned system, perhaps the most important being that the user 
could specify, at run time, the disk and UIC under which the files 
reside, thus enabling more than one user to maintain completedly 
independant files on the same disk pack, or the pack to be placed in 
any drive in the case of a large multi-drive installation. By setting 
up, within the resident area, an index of the physical location of 
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each file at log on time it was possible to compute very quickly the 
location of any particular block of data, and so greatly enhancing 
speed of operation. A severe limitation of contiguous files is that 
they must be preallocated before use, and unlike linked files are very 
difficult to expand should they prove too small. This limitation was 
accepted, but necessitated the user making a reasonable guess as to 
the final size of drawing in order that a sufficiently large file 
could be preallocated. An 'automatic' solution to this problem was 
never developed for the DOS system. 

4.4.2 The multi-user System 

As with the overlay system, it was essential to devise a file handling 
system that appears to the applications programmer to behave very 
similarly to the DOS predecessor, in order to avoid excessive problems 
when converting from one system to the other. The file handling 
characteristics of the RSX executive are completely different from 
DOS, and in particular the method of direct access to blocks within a 
file employed under DOS is not allowed by RSX. Under the latter 
system it is necessary to open the file by name, access the required 
blocks by their block number within the file rather than their 
position on disk, and ultimately to close the file when all data 
transfers are complete. This process is inevitably somewhat slower, 
but cannot be avoided without major changes to RSX itself, which would 
be contrary to the basic phylosophy of keeping the executive as 
standard as possible. 

The multiuser system brings with it the further problem that a set of 
workfiles must be made available for every user currently logged onto 
the system, and these must have unique names. Furthermore, it is 
advantageous to have both private workfiles, containing information 
relevant only to a particular user, and public workfiles, generally of 
a read-only nature, containing information relevant to all users, such 
as character set specifications or menu layout data. The method 
devised caters for up to 10 private files and any number of public 
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files, the former being identified by numbers from 1 to 10 and the 
latter by larger numbers. The limit of 10 files will adequately cover 
expansion in the immediate future, but should it prove a limitation it 
can be increased with a simple software modification. Based on the 
user station and file numbers a file name is devised as follows:-

a) Private files: 

TIGuuunnn .DAT 

where uuu - user station number in decimal 

nnn = file number in decimal (1 to 10) inclusive) 

e.g TIG003002.DAT is private file number 2 for user station 3. 

b) Public files: 

TIGCOMnnn.DAT 

where nnn = the file number in decimal (11 or more) 

e.g TIGCOM014.DAT is public file number 14. 

In a multi-user environment where several disk, drives and work 
stations are available it is often necessary to allow different users 
access to different disks, particularly if they are working on 
different projects, which may be stored on seperate packs. A facility 
exists whereby the operator can assign drives to workstations. 
Private files will be assumed to be on this assigned device, whereas 
public files are always assumed to reside on the system disk. 

When a user logs on the system automatically sets up the number of 
private files that will be required. An initial check is made to see 
if any private files are left from a previous session and if so these 
are deleted. This will not normally be the case since the logging off 
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procedure automatically deletes private files, but will result if the 
previous session was terminated prematurely. This procedure ensures 
that the disk, does not become filled with redundant files. Under 
normal circumstances a set of files will be allocated with an initial 
default length that has previously been decided by the system manager. 
If this allocation is insufficient the RSX executive automatically 
extends them when they become full, a feature that was unavailable 
under the DOS system. The system records information about these, and 
any public files found, in an area of the resident common, enabling 
the various graphics tasks to access the files quickly by a method 
known as "opening by file identification". This essentially enables 
the executive to open the file immediately without the need to search 
the directory for its name and is therefore a more speedy and 
efficient process, very important since it is anticipated that the 
files will be opened and closed frequently during the average 
digitising session. In order for the graphics tasks to read and write 
these files a number of Fortran callable subroutines are available, 
with identical names and arguements to those under the DOS system. An 
additional feature, implemented by an optional argument, allows 
asynchronous data transfers to be requested, whereby the calling 
program will continue to execute while the data transfer is taking 
place. Execution can be blocked at any time by calling a special 
subroutine which will force a wait until data transfer is complete. 
By omitting the optional argument from the subroutine call control 
will not be returned to the caller until the transfer is complete, so 
emulating precisely the operation of the routines in the single user 
system. Since files must be logically opened under RSX a check is 
always made to ensure that the file needed is open before data 
transfer is attempted. It is impractical, from space considerations, 
to keep all possible files open at all times, so a limit of 4 
concurrently opened files has been set, this number being decided on 
from previous experience. If 4 files are already open when a read or 
write request is made necessitating the opening of a fifth file the 
least recently used of the 4 is closed to enable the new file to be 
opened in its place. This process is handled internally within the 
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subroutines and is transparent to the calling routine. Programmers 
should, however, be aware of this mechanism if more than 4 files are 
in use to ensure that maximum efficiency is achieved with the minimum 
of file opening/closing overhead. It is also essential to ensure that 
a task, closes all open files before it exits to avoid leaving them in 
a 'locked' state, a problem that did not exist under the DOS system. 
A special subroutine is available for this, since a file will not 
normally be closed once open unless space is needed as explained 
above. This subroutine is called automatically as part of the task 
exit procedure. 
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4.5 The 3-D Database Handler 

The database handler, as outlined in the previous section, is designed 
to provide a means of blocking and deblocking 3-D data records into 
convenient units for storage on disk, and to enable the programmer to 
have a standard method of accessing these records, via subroutine 
calls, that can be employed in all routines. This frees the casual 
programmer from the necessity to understand in any great depth the 
complexities of the data structure. 

Early graphics systems did not employ a database handler as such, and 
it was necessary for the programmer to block and deblock records for 
himself, which, together with a number of pointers, were stored in 
Fortran type common blocks within the resident area. This procedure 
had a number of disadvantages, not least that it was clumsy to program 
and necessitated the programmer understanding every feature of the 
database. An early attempt to overcome this was made by Yi^^^ with a 
crude, but effective, database handler for the early 3-D systems that 
allowed the programmer access to the records via subroutine calls. 
This handler was written in assembly language and had the . further 
advantages that it was considerably more efficient than the manual 
Fortran method, and that the bit and word handling capibilities of 
assembly language made it possible to introduce more complex and 
efficient data structures. From this early routine was evolved the 
full 3-D database handler currently employed by the graphics system. 

It has already been shown that the basic 3-D record consists of 4 
items, an fIT code indicating the significance of the record and 3 
values, X, Y, Z, which are normally a space coordinate. This 
logically leads to a record length of 7 words, 2 for each of X, Y, and 
Z, these being floating point values, and 1 for the I code. This 
represented an immediate saving in the DOS system over the manual 
handling of records since the Fortran compiler normally allocated 2 
words to an integer value such as I but only used one of them! By 
handling records in assembler this problem is eliminated and much 
wasted space saved. 
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The basic phylosophy of the database handler was that it should, by 
subroutine call alone, allow the programmer to enter or extract 
records from the database and set or retrieve pointers at which input 
or output is to take place in order that true random access would be 
possible. The advantage of this approach can be seen below where (a) 
indicates the existing manual code required, and (b) the calls 
necessary to the database handling routines 

a) Existing method without database handler:-

C0MM0N/BUFFER/IB(32), XB(32), YB(32), ZB(32) 
COMMON/FILHND/NRl, IDP 

NR1 = NREC/32 
IDP = NREC-NR1*32 
CALL RAREAD (1,NR1,IB) 
I = IB (IDP) 
X = XB (IDP) 
Y = YB (IDP) 
Z = ZB (IDP) 
IDP = IDP + 1 
IF (IDP.LE.32) GOTO 100 
IDP = 1 
CALL RAREAD (l,NRl,IB) 

get block number 
get record within block 
read the block 
extract correct record 

advance to next 
continue if same block 
reset pointer 
read new block 

100 ... 

b) The same process with the database handler 

CALL SETOP (1, NREC) ! set output pointer 
CALL GETR (1,I,X,Y,Z) ! get the record 

In the latter case the database handler takes care of deducing block 
and record number and ensuring that the correct block of data is 
always available in core. Furthermore, by elimination of the wasted 
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integer word imposed by the former DOS process packing of the records 
has been improved from 32 per block to 36, this resulting in more 
efficient use of file space. The above calls to the database handling 
routines represent only two of a large number allowing the programmer 
full control over the storage and retrieval of records. A 'hidden' 
benefit of the database handler is that all I/O requests are double 
buffered and handled asynchronously. In the former example the 
subroutine call to read a block of data must wait while the actual 
transfer from disk takes place. This can introduce a significant 
delay on slow disks or a heavily loaded system. The database handler 
overcomes this to some extent by using two buffers in rotation. While 
information is being extracted from one buffer the other buffer is 
being read asynchronously from the file and vice-versa. A similar 
process also exists for input of records to a file. This implies that 
every input or output operation required two buffers in core of 256 
words each. Obviously a limit must be imposed on the number of such 
operations that may be carried out concurrently to keep task size to a 
minimum. A practical limit, determined by experience, has been set at 
4 pairs, although this is not to say that 4 pairs of buffers are 
always available. Buffer space is allocated at task build time within 
a specially named program section, the size of which must be 
determined by the programmer dependant upon the particular code 
employed. If too small a run time error message will advise the 
programmer of the mistake, if too large the task will simply be 
extended beyond the size required with no detrimental effects on its 
operation. The upper limit of 4 pairs is imposed by the need to 
preallocate pointers and flags within the body of the database 
handler, which cannot easily be modified at task build., The number of 
such pointers is small and it is not considered that the amount of 
space wasted when less than 4 buffer pairs are used is of any great 
significance. More than 4 concurrent I/O requests may be handled by 
coding that 'endfiles' i.e. deallocates buffer pairs so that they may 
be reused, but this must be done by the programmer and can result in 
considerable degredation in performance. 
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In addition to the I, X, Y, Z values it has been found necessary to 
associate further parameters with each record. For example, if a 
record indicates a line joining two points it must also indicate with 
which pen that line must be drawn on the plotter and whether it is a 
solid, dotted or other type of line. 

These additional parameters are stored in Fortran type common blocks, 
one for the codes that are currently being used for input, and a 
second for the latest parameters that have been decoded on output. 
This approach has been used because it is more efficient that 
incorporating them as subroutine arguments, and frequently the 
programmer need not be concerned with them, or may require to transfer 
them between tasks, which the resident common block approach 
facilitates. The graphics system employes five such parameters which 
are manipulated by the database handler using two different methods, 
masking and indexing. The principal of each is as follows 

a) Masked Parameters 

A number of parameters change frequently throughout the database and 
it is convenient for their values to be included in every record. At 
first sight this may seem impossible without changing the record 
length, but by limiting the range of the parameters and the I code it 
is possible to encode them all within the I code word. Half of the 
word is reserved for I codes, giving a range from 0 to 255, which was 
judged adequate for all applications. The remaining parameters are 
encoded in the other 8 bits of the word as in figure 4.5. The use to 
which these parameters are put is explained in chapter 5. With the 
exception of the I code the database handler stores the parameter with 
a base of 0 but returns to the caller a parameter with base 1. For 
example, pen number is stored as a value from 0 to 3, but is seen by 
the programmer as a value from 1 to 4. The three additional 
parameters are encoded into a 'mask' which is added into the I word of 
every record before it is placed in the database. When records are 
subsequently extracted from the database the masked information is 
stripped from the I code and decoded into its separate components. 
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This is a feature that was only made possible by the advent of the 
database handler since it involves bit manipulations that were more or 
less impossible with Fortran routines. Indexed parameters were, 
however, tried with old systems with some level of success, but the 
following section describes the first full implementation of this 
principle. 

b) Indexed Parameters 

The above approach works well for parameters such as pen number that 
have limited values or change frequently. However, for parameters 
that must have larger ranges or that change more infrequently an 
indexing approach is more flexible. This method does not associate 
the value of a parameter with every record in the database, but 
identifies at which record the parameter changes and its new value. 
In the current implementation a whole word is allocated to the 
parameter, allowing a range of some 65,000 different values. By 
consulting the index, which is maintained in strict record number 
order, it is very easy to determine the value of a parameter for a 
particular record. Indexed parameters have one further great 
advantage over the masked parameters. Since the index indicates every 
change of parameter it is a simple matter to jump through the 
workspace picking up, for example, only records that have a particular 
value associated with them, as opposed to the masked parameters where 
there is no choice but to decode every record to find its value. For 
this reason the parameters that have been indexed in this application" 
are those that are generally used for search type operations, namely 
the overlay and select status of the record, which are explained fully 
within chapter 5. In a process where the database is large but only a 
small number of records are of interest this technique can result in 
greatly increase speed of operation over the masked approach and 
reduces computing required dramatically. 
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The database handler manipulates the indexes in a way completely 
transparent to the calling task. The indexes are maintained in 
separate storage areas from the main body of the database, at Balfour 
Beatty these are within the bulk core for speed of access, but at 
Imperial College they reside in a disk file emulating the bulk core. 
This approach adds extra complication to operations such as saving and 
recalling drawings, but the benefits were considered to outweigh the 
disadvantages• 

In general the database handler has been found to cater for all 
requirements and functions very satisfactorily, without being too 
complicated for the novice programmer to understand. Sufficient 
flexibility has been incorporated to enable minor specification 
changes to be made with little or no impact on applications programs. 
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4.6 Communication between Users and the Computer 

An essential quality of an interactive graphics system is the ability 
for the user to communicate with the computer, and vice-versa, in a 
clear and coherent manner. To this end a number of standard 
interfaces and rules have been developed to ensure that every function 
issues prompts in a standard format and requests information from the 
user in a way familiar to him. 

A number of lines of communication exit between the computer and the 
user. The computer can communicate with the user either graphically, 
on the graphics screen, or verbally by means of prompts issued to the 
alphanumeric terminal. In this application is has been considered 
essential to keep the graphics screen clear of all but purely 
graphically data, and as such it does no more than display the results 
of functions rather than assisting in the input of their raw data from 
the user. Prompt messages to the alphanumeric terminal are, however, 
very important in assisting the user in the operation of the system, 
and the following standard has been adopted in an attempt to 
rationalise them. 

4.6.1 Prompt Messages 

A prompt in this context is defined as any message that imparts 
information to the user without necessarily expecting further input 
from him, although in the majority of instances this will be the case. 
In order to differentiate betwen prompts they are always output with a 
single blank line between them and the previous prompt, and an 
appropriate number of tabs, equivalent to 8 columns, precede them, 
depending on their significance. A function, when initially 
requested, will normally identify itself with a message in capital 
letters starting in column 1, i.e. with no preceeding tabs, and then 
output further information in both upper and lower case letters 
starting at the first tab stop. In some instances during the 
servicing of the function information messages may be output by the 
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basic graphics system which will normally start at the second tab stop 
to differentiate them from the messages output by the function itself. 
All such messages, or groups of messages if more than one is output 
consequentively, are optionally preceeded by a single bell character, 
causing a buzz or bleep tone from terminals suitably equipped, to draw 
the users attention to the message. For the benefit of the more 
experienced user, or where the workstation is situated such that the 
tones may be a nuisance, this feature can optionally be disabled and 
enabled by the user at any time during a drawing session. In order to 
distinguish between messages that simply impart information and those 
that ask specifically for some action from the user the latter are 
preceeded by a single asterisk character in the first column. The 
applications programmer need never be concerned with inserting the 
correct number of tabs within messages since this function is handled 
automatically by the system depending on a value set by him within the 
resident area. He must, of course, decide which messages should be 
preceeded by the '*' character since the system is unable to decide 
automatically which message are purely information and which asks 
specific questions. 

4.6.2 User input on Alphanumeric Terminal 

In response to a prompt the user will normally perform some operation, 
either on the digitiser or the alphanumeric terminal. The former case 
will be dealt with in a later section. Input from the terminal can be 
categorised into 4 classes, numeric, textual, confirmation or choice 
from a list. Each form of input will issue a further prompt, in 
addition to any specific information output as described above, to 
indicate to the user what type of input is required. These further 
prompts are output automatically and reflect the constraints and 
defaults that apply to the current request. These 'automatic' prompts 
obey the same laws of tab stops described above, so enabling the user 
to determine simply at what level his input is being made. The 
following standard forms of input have been adopted. 
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a) Numeric Input 

A large number of functions require the input of numeric data, e.g. to 
specify the default radius for a circle or set a scale factor. The 
format of the default prompt, in this case with one tab stop, is 
illustrated below: 

* Enter the required scale factor 
Range 1.0 to 100.0, default = 2 . 0 
<NUM>: 

The initial line is output as a specific prompt in the manner 
described in the previous section. The second and last line are 
generated by the system depending on the constraints or defaults 
applied by the programmer. Other options include ranges up to or down 
to a certain value with no limit at the opposite end of the range, and 
no default reply, which is normally selected simply by answering with 
a carriage return alone to the prompt on the 3rd line, which in this 
case indicates that a number is required by means of the string 'NUM' . 
The system is so designed that should the user be unsure of what is 
required he may enter "?" on its own, which results in a small amount 
of information being output and the prompt repeated. This is normally 
a condensed version of the information that is available in the user 
manual. Should the user enter a number that is out of the allowed 
range an error is reported and the prompt repeated until a legal 
response is received. The operation of this form of input, as with 
the other 3, is asynchronous, and it is possible for the system to be 
performing some other function while the user is entering his or her 
response. This can result in what appears to the user to be a faster 
response to commands and results in more efficient use of computer 
resources. 
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b) Textual Input 

Textual input is in many ways the simplest format since it involves no 
processing and there are no limitations, other than maximum string 
length, that have to be obeyed. The format of the default prompt is 
as shown below. 

* Please enter the drawing title 
<TEXT>: 

As in the previous example the initial line is output as an explicit 
prompt whereas the second line is generated automatically by the text 
input routine. The routine will accept up to a programmer specified 
maximum number of characters in much the same way as in example (a). 
The user may enter '?' to obtain help, and again the input is handled 
asynchronously. There are no error conditions possible within this 
routine, the only constraint being the maximum character count, and 
input will normally be truncated automatically to that length. 

c) Confirmation 

In many cases the user is asked whether or not some action is to be 
taken, or whether some assumption is correct. In this case he or she 
must respond 'Yes' or 'No' on the alphanumeric keyboard, both of which 
may be abbreviated to their first letter. An example of confirmation 
is as below: 

* Do you want to continue? [Y/N]: 

The programmer must supply the basic question, but the "? [Y/N]" 
string is appended automatically by the system. The users response 
appears immediately to the right of the question. As with the 
previous input modes the user may enter a question mark for 
information, and the facility exists for the program to continue on 
another function while the user is entering his decision. Any 
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response other than 'Yes' or 'No' is considered illegal and the prompt 
repeated until the correct input is received. 

d) Choice from a List 

The user will frequently be required to choose one option from a list 
of options. The final type of input provides this facility. A 
typical example may be: 

* What type of valve to you require? 
1 - Gate 
2 - Ball 
3 - Butterfly 
7 

The number of choices is dependent on the particular application and 
has no practical upper limit. The user is expected to enter the 
number corresponding to the required choice, e.g. to select a ball 
valve in the above example he would enter the number 2 on the 
alphanumeric terminal. The number entered is checked for legality and 
the prompt repeated if it is found to be out of range. As with the 
previous options the choice is made asynchronously, and the user may 
enter a question mark for help with this particular question. 

- XXX -

The users second method of inputing information to the computer is via 
the digitiser, usually as a result of a prompt issued on the 
alphanumeric terminal. The use of the digitiser for issuing commands 
differs significantly from the terminal and is described below. 

4.6.3 User Input from the Digitiser 

The data that is output by the digitiser to the computer is somewhat 
more limited than that from the terminal. Upon pressing a button on 
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the digitiser the computer receives that button number and the current 
position of the stylus on the digitiser. The way in which that 
information is interpreted will depend greatly upon the current 
function being performed and the position on the digitiser. In the 
TIGER graphics system the digitiser is logically divided into 3 areas 
as shown in figure 4.6, of which the largest is the drawing area. The 
exact definition of these areas is purely a software function and may 
be varied to suit a particular application or digitiser. 

The drawing area corresponds approximately to the draughtsmans drawing 
board. Over this the draughtsman may place drawings or rough sketches 
to be digitised. A detailed description of the use to which this area 
is put is contained in section 4.7, since in the 3-D system it may be 
further notionally divided into different views or projections. 

The menu area serves an important function in that it constitutes the 
users principal means of issueing commands from the digitiser. The 
concept of menu operation has been known for some time and is now 
exploited almost universally in systems incorporating a digitiser or 
tablet, the latter generally being a term applied to a very small 
digitiser. The menu is divided into a large number of squares, each 
of which is assigned a function within the system that is activated 
simply by digitising over that square. A typical menu may consist of 
several hundred squares, the current layout in the TIGER system 
incorporating 250, although this may be varied to suit operational 
requirements with very little effort. Early graphics systems at 
Imperial College employed a menu of 2cm squares in 30 rows of 10 
columns situated along the left hand edge of the digitiser. This 
arrangement had originally been selected because the graphics screen 
stood to the left of the digitiser and it was advantageous for the 
user to be as close to this as possible, particularly in view of the 
very small screen available. However, in practice this arrangement 
revealed some operational difficulties, not least that to work on a 
large drawing the user must stand to the right of the menu which 
places him on impractical distance from the screen. It was felt that 
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for physically small users the top menu squares could prove difficult 
to reach, and since the majority of users would be right handed it was 
illogical to have the menu to the left of the user. After a 
considerable amount of trial and error the layout shown in figure 4.6 
was selected. In this arrangement the menu squares lie horizontally 
along the bottom of the digitiser in 5 rows of 50 squares each. To 
save space the squares have been reduced to 1.5cm, which proved 
adequately large to contain a short verbal description of the function 
assigned to them. Within these 250 squares commands are typically 
grouped according to function, for example editors, or symbol 
generators. This grouping is purely for operator convenience since 
the software assigns no particular significance to any square. A 
section of a typical menu is shown in figure 4.7 to illustrate the 
grouping. It is evident that in a large graphics system there will be 
many more than' 250 commands, and in order to accomodate this 
requirement a system of menu pages has been developed. Each page, 
numbered upwards from 1, consists of 250 squares, of which page 1 is 
the default. If a command is needed that is on another page the user 
simply replaces the menu on the digitiser with the appropriate page 
and tells the computer by means of a menu command which page has been 
selected. From that point onwards the commands on the new page will 
be available. This is achieved by storing a file describing each page 
in detail. For convenience the programmer sees this as a text file 
where each line describes one menu command in the form of square 
number, servicing task number with its entry point, priority, and the 
text that appears in the square, all separated by commas. This is 
processed by the system into a machine readable binary file which can 
be accessed quicker and saves space, the current page being copied by 
the graphics software into bulk core for very fast access. The text 
file is also used as input to a special system program that plots the 
menus on the flat bed plotter. The top left hand square on each menu 
is dedicated to the function enabling the current menu to be changed 
so that it may be located rapidly and ensures that the user cannot 
become 'stuck' on one menu without the ability to change to another. 
The menu priority system was developed because it was found that a 
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number of commands could be mutually destructive. A large number of 
functions require the user to input information, such as the location 
of a symbol, from the digitiser. In early systems it was easy for the 
user to either accidentally or deliberately call up a further menu 
command that interfered destructively with that currently being 
executed. To obviate this problem a system of priorities was 
developed. When a function is being performed the menu is locked to 
prohibit the user of any function of a lower priority. By judicious 
assignment of priorities it is possible to arrange that only non 
destructive functions may be performed until the current function is 
complete. 

The digitising stylus has on it some 12 buttons at Imperial College 
and 16 at Balfour Beatty which can normally be considered an extension 
of the basic menu. These buttons perform functions that are very 
commonly used and which it is convenient to have available 'at the 
users fingertips'. The normal assignment of buttons is described in 
some detail in chapter 5. Under some circumstances this assignment 
may vary to suit particular operational requirements. In early 
Imperial College systems the buttons were frequently used in obscure 
combinations to input data such as numeric valves. The introduction 
of the alphanumeric terminal has rendered this function obsolete. 

The third and final area of the digitiser consists of the macro menu, 
which is located along the left hand edge of the digitiser. The 
theory and operation of the macro facility is very important to the 
efficient use of a computer aided draughting system and as a result 
the important role it plays is necessarily complicated in operation. 
A full description of the macro functions implemented in the TIGER 
graphics system is included in chapter 5. 
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4.7 3-Dimensional Input Techniques 

In order to achieve the input of true 3-D data from a 2-D digitiser 
some special technique must be devised. At present a workable 3-D 
digitiser is still a thing of the future, although experiments have 
been done with an acoustic digitiser capable of sensing not only the 
position of the pen in X, Y coordinates but also its height above the 
digitising surface. A number of techniques have been devised to allow 
full 3-D information to be constructed from one or more 2-D 
representations of an object, most of which have been tested at some 
time at Imperial College. The following methods have proved to be 
workable. 

4.7.1 Photogrammetry 

This technique was originally devised for use in the shipbuilding 
industry, and was developed at Imperial College by Dodd for a similar 
application. The process consists of constructing 3-D data from a 
pair of stereo photographs of an object, and although high accuracy is 
possible it requires complex and expensive equipment and in many cases 
is not practical. It is not entirely suitable for the design process 
since either the actual subject or an accurate model is needed to 
obtain the photographs in the first place, and implementing amendments 
can be both a difficult and time consuming process. Since it is 
generally accepted that the greatest advantages of CAD over manual 
methods lie in the area of design and the ability to include 
modification quickly this input method was not considered to be worthy 
of further investigation within the bounds of this project. 

4.7.2 Contouring 

The representation of a 3rd dimension on a flat surface by the use of 
contours is a principle well known to most people, perhaps the most 
obvious example being that of Ordnance Survey and similar maps. It is 
a fairly simple process to input 3-D data from a contour map since, by 
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definition, along the line of a contour one dimension remains 
constant, thus if this has been predefined by the operator it is a 
straightforward process for the system to generate true 3-D 
coordinates by following the contour lines with a digitiser. However, 
if the data so produced is to be used for engineering it must first be 
processed into a more useable form, generally by interpolation and 
curve fitting to produce surfaces. Unfortunately, in many branches of 
engineering this representation is unsuitable, for example digitising 
a 3-dimensional pipe run with all its ancilliary equipment is almost 
impossible. 

This, and many other applications, requires the ability to locate 
accurately discrete 3 dimensional points in space, a process for which 
contouring is far from suited. 

Since the engineer is familiar with orthographic representations of 
solids the following method, which fulfills the above criterion, has 
been developed as the principal method of input to the TIGER system. 

4.7.3 Orthographic Representation 

The conventional representation of a 3-D object is by means of 2 or 
more orthogonal projections or an isometric projection where each 
projection contains sufficient information such that when they are 
considered together the object is fully defined. It is obviously 
advantageous if this method can be used for 3-D input via a digitiser 
since it relies on principles already known to the draughtsman and 
should therefore be readily understandable. 

The method devised for the TIGER system allows the user to notionally 
divide the drawing area into up to 16 different projections, although 
in practice it is rare that more than 4 will be needed. Each of these 
areas may be defined as either an isometric, perspective or orthogonal 
projection. Of these it is normally only practical to allow 
digitising over orthogonal views, although a number of functions, such 
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as finding an existing point, may be performed with pictorial type 
projections. Each view is entirely separate from all others and may 
take different origins, axes and scale factors. The default 
assignment made available at log on is as shown overleaf. It is 
recognised that this corresponds directly with neither 1st nor 3rd 
angle projection but is a compromise that has proved to be convenient 
to use since the X-Y elevation, which is generally the most 
significant view, is located at the bottom left within easy reach of 
the operator from a sitting position. The user must generally reset 
the views to suit his current drawing. An obvious requirement of this 
is that the selected views are sufficient to provide a full 3-D 
definition of the object. Once the necessary views have been 
established the method of 3-D input is straightforward and is based on 
picking up the same point in two different orthogonal views. When 
digitising over any one view it is only possible to define, by the 
position of the stylus relative to the origin of the view, and the 
appropriate scale factors appertaining to that view, two of the 3 
space coordinates. The 3rd coordinate is therefore defaulted to the 
last valve it was given. In order to change this value the user must 
digitise in another view which defines it explicited, whereafter 
reverting to the original view enables digitising to continue with the 
new 3rd, or 'trailing', value. A special button on the stylus allows 
this dummy point in the second view to be digitised without entering 
it into the database, since it is merely intended to indicate a change 
of the trailing value. The operation of this button is discussed in 
chapter 5. 

At any time during the drawing process the user may disable a view so 
that it does not appear on the graphics screen or the final plot. 
This process can be reversed simply by re-enabling the view. 
Alternatively, the view may be deleted entirely, and cannot be 
recalled without fully redefining it. New views may be defined over 
any area of the digitiser that is not currently assigned to another 
view, and normally occupy a rectangular area of any shape that suits 
the application. View boundaries are indicated on the graphics screen 
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by dashed lines, but under normal circumstances these will not appear 
on the final drawing. 

A special mode of operation is possible where only one orthogonal type 
view is used. This may be optionally selected by the user and is 
known as 2-D mode, since it is impossible to input 3-D data with only 
one view. This is a pseudo mode since the full 3-D database is still 
used, but by implementing this mode a number of functions can be 
simplified. A full description of the differences between the modes 
is included in the following chapter. 

Early graphics systems often relied on the manual input of coordinates 
from devices such as card readers or terminals. Although this method 
is slow and not strictly interactive in nature it was felt that there 
may be a case for including such a facility within the TIGER system, 
perhaps to establish exact datum points within a drawing, or to input 
points that may be beyond the range of the digitiser. This function 
is implement via a button on the stylus and is described in detail in 
chapter 5. 

The above methods have been used with considerable success throughout 
the duration of the project and are now proving very satisfactory in a 
production environment. 
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.4,8 3-Dimensional Viewing Techniques 

In many ways the techniques available for displaying three dimensional 
information are simply the opposite of those discussed in the previous 
section with regard to the input of such data. The arguments applied 
for and against each technique apply equally for the display process 
and the input process. For example, contouring was dismissed as a 
feasible method for the input of engineering data, and similarly the 
display of such data, which may comprise pipelines, valves etc, is not 
suited to a contour type representation. 

It has previously been stated that the drawing area of the digitiser 
may be divided into a number of views of an object, and that the 
position of the digitising stylus is monitored on the graphics screen 
by means of a cross hair cursor. In this way the screen acts as a 
'window' to display what appears to the user to lie over a particular 
area of the digitiser. If the display of the drawing on the screen, 
the cursor monitoring the position, and the users rough sketches on 
the digitiser are to relate to each other in any meaningful manner it 
follows that the views generated on the screen must be identical to 
those current in use for inputting the drawing from the digitiser. 
This principal has the further advantage that earlier and well tried 
2-D display techniques may be adopted since the display process may be 
considered in two stages, initially the mapping of a 3-D point into 
its projections on the digitiser and then the display of this 2-D 
representation on the graphics screen. This latter process is 
dependant on the current display window in use, and is discussed at 
some length in chapter 5. 

The principals involved in the above mapping process depend on the 
type of view to be generated. The system currently handles three 
principal types, orthogonal, perspective and isometric, although it is 
hoped to expand this in the future to include features such as cross 
sections. The principles involved in the 3 methods are as follows. 
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4.8.1 Orthogonal Projections 

The orthogonal projection is the simplest to generate since by 
definition it is a view obtained by looking parallel to one of the 
three orthogonal major axes. In this way, one of the three space 
coordinates, depending on which projection is being generated, may be 
effectively ignored and a simple 2-D process used on the remaining 
values. In many ways this makes an orthogonal view a 'pseudo' view 
since an object is never seen this way with no perspective type 
effects to give an indication of depth, but it is of course an 
accepted drawing standard and must therefore be included. 

4.8.2 Isometric Projection 

The isometric projection is a pictorial type of projection giving, in 
one view, an indication of distances along all three major axes. The 
view obtained is slightly distorted compared to the perspective view 
we are used to in everyday life since distant objects appear no 
smaller than those much closer to the apparent position of the 
observer. The isometric projection plays an important role in 
engineering and may be used in applications where a clearer 
representation of an object is achieved, particularly if those 
interpreting the drawing are not skilled draughtsmen. For this reason 
isometrics are often used 'on site' or in other applications where 
they must be read and interpreted by construction staff who are making 
or assembling the indicated items. 

The graphics system is capable of generating isometric projections 
automatically within a number of constraints for previously entered 
3-D information. Figure 4.9 shows diagramatically the default 
isometric scale used to give a sense of realistic depth to the 
projection. The user may have up to 2 concurrent isometric projects 
specified and is free to define in which direction each axis is to 
appear and the location of the origin, i.e. the projection of the 
point (0, 0, 0), to show the desired portion of the drawing. 
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In manual draughting an isometric scale such as that shown in figure 
4.9 would normally be adopted if special isometric paper already 
marked with a scaled grid were not available. The draughtsman would 
draw up a small scale and obtain lengths with a pair of dividers. The 
process can be represented mathematically as follows:-

Assuming (X,Y,Z) is the 3-D point to be projected 
(Xo Yo) is the isometric origin outlined above 
(Xp Yp) is the projection of point (X,Y,Z) 
S is the isometric scale 

In the diagram overleaf it can be shown that:-

S = 72/73 

and then by conventional triangle geometry that:-

Xp = Xo + (X x S x CO5 (30°) ) - (Y x S x COS (30°) ) 

but S x COS.(30°) = 72/73 x 73/2 

- 1/72 

therefore Xp = Xo + (X-Y) 

similarly Yp = Yo + Z + (X + Y) 

The above equations enable the projection of any point to be 
determined since for a given view the isometric origin is fixed. 

4.8.3 Perspective Projection 

The perspective projection of an object is somewhat more complex than 
the isometric projection since it is based on the laws of optics, 
generating a visually pleasing but non scale view of the subject. The 
mathematics governing this particular projection are complex, a full 
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description of which are given by Indeed, the method of 
perspective projection used by the TIGER system is based on that 
described by Yi, chief differences being in the specification and 
display of a particular view, the transformation algorithms being 
essentially identical. Different views of an object are generated by 
moving the viewing position around the object in 3-D space and varying 
the distance from the object. This is achieved by two different 
methods, either specifying the various parameters manually to generate 
an exact view, or by using the joystick function to pan quickly around 
the object and generate rapid but less exact views. The function of 
the joystick mode is controlled from a small area of the menu and is 
designed to emulate the hardware joystick found in some large, and 
generally very expensive, refresh displays. By moving the digitising 
stylus up and down on the joystick area the user may increase or 
decrease the tilt angle of the view, by moving sideways the pan angle 
is similarly modified. On a refresh display unit the object would 
appear to rotate on the screen using this method, but this is 
obviously not possible with a storage unit. In order to be able to 
keep track of the current view the system displays a small set of axes 
in the bottom left hand corner of the view which may be redisplayed 
rapidly enough in non store mode to appear to move as the direction of 
view is changed. When the axes show the desired angle of view the 
user presses the appropriate button to instruct the system to generate 
the projection. 

The display is arranged so that the line of sight passes through the 
centre of the view at what appears to be right angles to the surface 
of the screen. 

It is recognised that in engineering applications perspective projects 
have little value except to give an overall impression of the 
appearance of some object or objects to the observer. By their very 
nature they obey no simple laws of scale and have no place where an 
accurate scaled drawing is required. 
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4.8 .'4 The Display File 

It is not strictly necessary for a graphics system to support a 
display file, since all information is contained in its basic form as 
part of the 3-D database. Most early systems at Imperial College had 
no display file processor at all, the exception being Y i ^ ^ who 
introduced a crude processor, for perspective projections only, into 
the original 3-D graphics system, although it was not implemented for 
more than simple redisplay of the workspace. However, a fully 
operational display file can have many uses which include:-

a) Finding existing data 

All graphics systems should include the ability to return to an 
existing point or line by instructing the computer to search the 
current database for it. In order to locate the required point the 
user is normally expected to digitise a point that appears to be close 
to it on the display. The relationship between a point and its 
projection in a 2-D system is simple and a display file is of little 
advantage. However, with more complex mapping processes, such as 
those used in 3-D display, the relationship between a point and its 
projection may be somewhat less obvious. Although it is still 
possible to search the 3-D database and compute the projection of each 
point for comparison with the user supplied reference point, the 
process is considerably faster if the projection is already know, as 
it would be in a display file. On the assumption that the display 
file has some correlation with the 3-D data file it is then possible 
to refer back to the main database and retrieve the appropriate 3-D 
information. Furthermore, the use of a display file greatly reduces 
the amount of data that has to be searched since it only contains 
references to data that is currently visible on the screen. On a 
large drawing only a small part will typically be on display at any 
given time, and this is the only section of the database that need be 
searched, whereas without a display file it is necessary to check the 
entire 3-D database since there is no way of predicting which data may 
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be relevant. The time penalty for such a process can be very 
considerable. 

b) Redisplay of modified data 

Many graphics processes, such as editing, result in small changes 
being made to the database which must subsequently be reflected in the 
display. It is extremely time consuming to have to recalculate the 
display of the whole database for one or two minor changes and it is 
convenient to modify both 3-D data and the display file in parallel, 
thus enabling redisplay to be handled more efficiently and 
considerably faster. This problem is naturally only relevant when 
using storage display units, since as on a refresh type display lines 
can be physically deleted from the screen, so obviating the need for 
complete redisplay. 

The structure of a display file is in many ways dependant on the 
hardware for which it must function. The modern breed of 
'intelligent1 terminals incorporating a microprocessor capable of 
performing many display processes locally benefits from a different 
structure from that employed for a terminal entirely dependant on the 
host computer for its processing power. The former may even be 
capable of storing and modifying locally the display file, as a 
response to some user operation or a prompt from the CPU, and 
redisplaying the modified file without intervention from the computer. 
In the latter case the terminal will have no storage capability 
locally and the manipulation and redisplay of the display file must be 
handled by the computer. In a time sharing environment the former 
'decentralised' approach is obviously advantageous since the load on 
the computer is significantly reduced. 

For the majority of this project the display available at Imperial 
College was the Tektronic 611 storage unit, which is of the latter 
type, indeed it is one of the simplest devices available, being a 
purely analogue device dependant on external signals for both 
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character and vector generation. At Imperial College this was 
achieved by use of suitable CAMAC interface modules. The display file 
developed consisted essentially of instructions for these modules with 
an indication of their origin with respect to the 3-D data file. 

The later implementation of this for the Tektronix 4014 graphics 
displays was modifed to suit the different data requirements, this 
unit being on a standard terminal interface and expecting to receive 
data encoded as ASCII character strings. The modifications make the 
display file database somewhat larger and the display process somewhat 
slower due to the necessity to store data at a higher level, requiring 
decoding into the appropriate character strings before being 
despatched to the screen. In either case the method allows cross 
referencing between the display and data files in either direction, 
although this must naturally be handled entirely by the computer. In 
order to reduce processing time a method was devised whereby it is not 
necessary for the computer to scan and rewrite the display file every 
time a modification is made to the database. A 'modification table' 
of up to 10 changes is maintained and referenced by the display 
processor when constructing the final drawing. A change to the 
database simply necessitates making an entry in this table. In the 
unlikely event of this table becoming full the system automatically 
regenerates the display file to incorporate all the modifications and 
clears the table for new entries to be made. Any graphic operation 
which results in the drawing being redisplayed from its 3-D database, 
such as a rotation or shift, automatically regenerates the display 
file and clears the modification table. It has been found that this 
generally occurs quite frequently and the modification table rarely 
becomes full. However, if this does occur the latest display file 
processor is capable of regenerating the file in parallel with the 
users continued work, making use of the multi-tasking ability of the 
RSX-11M executive. In the single user system this was not possible 
and such an eventuality necessitated the user waiting while the new 
file was generated. All standard system routines that modify or add 
to the 3-D database generate the appropriate display file entries in 
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parallel, a process that is completely transparent to the user. 
Applications programs should include this feature although failure to 
do so is not serious since the system regularly tests the status of 
the display file and will automatically update it if necessary, in 
parallel with the users current operation. In general this should not 
be necessary because the display file, although complicated in 
structure, is accessed by a suite of Fortran callable subroutines that 
may be readily incorporated in any program. 

The TIGER system uses this file for many of its editing features and 
search algorithms, resulting in considerable time savings. Redisplay 
time after operations such as editing has been considerably reduced, 
and recomputation required cut dramatically. 
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4.9 The Workstation Microprocessors 

The design of the workstations, consisting of an alphanumeric 
terminal, graphics terminal and digitiser, presented a number of 
problems in the multi-user system for which a solution was needed 
before effective operation was possible. 

The principle by which the software functioned in the single user 
system was that the digitiser continuously transmitted its position to 
the computer, which then reprocessed, this and sent it to the graphics 
screen in the form of a cross hair cursor, so enabling the user to 
monitor his position with respect to the drawing. It soon became 
evident that this arrangement was not satisfactory under the multi-
user system. Not only did a number of digitisers sending information 
continuously to the computer cause a heavy I/O overhead, but also the 
reprocessing of this information and retransmittal, in parallel with 
any other tasks that were running, resulted in a very poor flickery 
cursor and a slow response when a button was pressed. Perhaps most 
annoying was not that response was slow but that it was unpredictable, 
depending heavily on the loading of the computer from second to 
second. 

The three workstation devices were separately connected to the 
computer on individual lines, thus multiple workstations required a 
considerable number of ports in the computer. The software simply 
treated each line as a separate terminal and addressed each 
individually, the terminal number of the digitiser and graphics screen 
being deduced from the number of the alphanumeric terminal. This of 
course meant that each user station must obey a certain numbering 
convention, which could prove awkward for future expansion. Problems 
were experienced with user stations located some distance from the 
computer, since the cost and inconvenience of routing three cables to 
each is considerable. Furthermore, it effectively precluded any 
possibility of installing remote user stations connected to the 
computer via dial-up lines through the telephone network, since this 
would require three lines and three modems at each end, which would 
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scarcely be a workable arrangement. 

When a system is subject to development over a number of years it is 
obvious that, with advances in technology, any new user stations 
purchased should use the latest equipment to obtain optimum 
performance. This presents the host computer with an enormous 
problem when faced with a number of different types of workstation, 
and would necessitate considerable software effort to enable it to 
handle these in parallel, and could result in a considerable rewriting 
effort whenever a new piece of equipment is purchased. It is 
therefore extremely desireable that every workstation presents a 
common interface to the computer, with any differences being handled 
at the workstation. This feature enables, for example, fully 
equipped workstations with large digitisers and screens to be run in 
parallel with 'desktop' workstations consisting of a small tablet and 
display, costing considerably less and being ideal for simple editing 
functions• 

The time taken to display a complex drawing on the screen is 
considerable and constitutes one of the major bottlenecks in the 
drafting process. Although the problem is alleviated by display 
files and selectively erasible screens it can still result in a 
considerable amount of non-productive time. This is due almost 
entirely to the speed at which data can be transmitted to the 
workstation, normal serial terminal interfaces run to an effective 
maximum of 960 characters per second, and rather less over dial-up 
telephone lines. Very much higher rates can be achieved with 
parallel interfaces, but these limit the distance between the user 
station and the computer and cannot be used over a dial-up line. To 
minimise display times it is therefore desireable to reduce to a 
minimum the number of characters transmitted. Early systems were 
heavy on data transmission since operations such as drawing a circle 
were performed in the host, which transmitted it as a series of short 
straight lines. It is obviously desireable if this can be condensed 
to the minimum, ie. a centre point and radius in this case for 
transmission, and expanded locally at the workstation. This has the 
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dual effect of substantially reducing the amount of data transmitted 
and relieving the host computer of the processing necessary to 
construct the circle. This principle can then be applied to other 
regular and geometric shapes, such as conic sections in general, text, 
grid nodes etc.. 

The obvious solution to all these problems is to incorperate a local 
microprocessor at each workstation dedicated to the task of running 
that workstation and performing all the necessary local functions. 
The search for a suitable microprocessor must be based on a number of 
considerations, principally the cost and capability. On the cost 
side it must be remembered that one complete microprocessor is 
required for each workstation and in order to keep the cost to a 
realistic level in comparison with the rest of the equipment and its 
expected life, it should cost no more than a few thousand pounds. 
Functionally, the microprocessor must be fast enough to cope with data 
at the maximum rate the host can transmit, with some spare capacity to 
enable local computations to be performed, such as the drawing of 
arcs, without having to block further transmissions and so neutralise 
the performance increase. The processor selected for this function 
was the now well eastablished Zilog Z80A, a 4MHz 8 bit chip. The 
configurations used at Balfour Beatty and Imperial College differ 
considerably, the former being a commercially available package based 
on the S100 bus system, and the latter being built entirely in the 
workshops. However, they are sufficiently compatible that the same 
program runs on both with only minor modifications to the I/O 
functions to cater for different interrupt handling. Each system 
consists of the following essential components: 

1) Z80A CPU based processor 
2) 4Kb RAM 
3) Up to 32Kb EPROM 
4) 4 x serial interfaces 

Program development was carried out on a similar but larger system 
with floppy disk drives for program storage, larger RAM for testing 
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and other programming functions, and an EPROM programming card to 
store the final program in EPROM for use in the workstations, which 
start automatically on power up. The four serial ports are used for 
communication with the host computer and each of the workstation 
devices. 

4.9.1 The Microprocessor Software 

The microprocessor had two distinct modes of operation, non-graphics 
and graphics. In the former mode, which is entered on power up and 
whenever the workstation is not in use for drafting, any characters 
received from the host are sent directly to the alphanumeric terminal 
and vice-versa. The graphics screen and digitiser are ignored. 
This gives the user the impression that the alphanumeric terminal is 
connected directly to the host and allows logging on, program 
development etc., to be carried out as at any normal terminal. 
Graphics mode is entered as a result of a special character sequence 
received from the host. 

Graphics mode is active when drafting is in progress. In this mode 
the microprocessor expects to receive one of three types of data from 
the host: 

a) Characters for the alphanumeric terminal 
b) Characters for the graphics screen 
c) Requests for a function and associated data 

In order that the microprocessor can discriminate between valid 
characters and unsolicited information, such as system messages, each 
block of text is started and terminated by ASCII STX and ETX 
characters respectively. In this way characters received between ETX 
and STX are known to be unexpected and are sent directly to the 
alphanumeric terminal, except when the microprocessor has been told by 
the host to block such information, when they are discarded. Any 
expected characters are routed directly to the appropriate device, the 
routing being controlled by functions requested by the host. A 
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function is identified by a 'function request character', currently 
set to ENQ since this is not otherwise used by the RSX-11M operating 
system, and a second character defining the exact function. This may 
be followed by further data characters depending on the function. 
Typical functions are:-

1) Redirect subsequent output to graphics screen 
2) Draw a circular arc 
3) Erase graphics screen 
4) Start monitoring digitiser 

etc... 

There are currently some 40 of the available 96 functions implemented. 

In addition to sending characters from the input stream to the correct 
device the program optionally receives characters from the alpha-
numeric terminal and transmits them to the host, when requested to do 
so. At other times the terminal is blocked to avoid the user typing 
unexpected characters that could be misinterpretted. Furthermore, 
when input has been requested the characters typed are buffered 
locally within the microprocessor, until a line terminator is entered, 
and processed locally to remove backspaces etc. so that the idio-
syncracies of a particular operating system, for example whether it 
expects DEL or BS to rub out the last character typed, are transparent 
to the user. 

A major function of the microprocessor is to monitor the digitiser and 
display a cross hair cursor on the screen, according to the current 
window parameters sent to it by the host. This function greatly 
reduces the load on the host since it is no longer showered with data 
and simply waits to receive a reply from the microprocessor. This 
reply is either in the form of a coordinate or a menu or macro square 
and area number, together with the button that has been pressed, 
enabling the host to take the desired action. The rate at which the 
microprocessor can receive information from the digitiser and draw a 
cursor is far greater than was possible when this was handled by the 
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host, resulting in a very much smoother cursor and a faster response 
when a button is pressed. 

All I/O processing in the microprocessor is handled asynchronously by 
interrupts, thus giving the maximum possible throughput by eliminating 
polling loops. Characters are taken from, or put into, buffers by 
the interrupt service- routines, and moved about by the basic 
background loop which executed continuously except when a function is 
being performed. Most I/O requires very small buffers due to the 
relative speeds of transmission and processing, but a large input 
buffer is maintained for characters received from the host to avoid 
delays when the microprocessor is not in a position to process 
received characters, such as when a lengthy function is being 
executed. Buffer overflow is avoided by the use of standard X-ON/X-
OFF protocol. 

By use of microprocessors the workstation configuration can be made 
almost transparent to the host computer. A large part of this is 
achieved by using the functions. For example, the host may issue an 
'erase graphics screen' command which is universal to every user 
station. Within the microprocessor, however, the function will be 
handled differently depending on the terminal type. Under some 
circumstances it is necessary for the host to know the basic user 
station configuration. For example, after an item has been deleted 
from the drawing database by an editor it is necessary to remove it 
from the screen. This is easily achieved on terminals with selective 
erasure capability, but on storage screens it is necessary to erase 
the entire screen and redisplay what remains of the drawing. This 
fundamentally different approach must be handled by the host computer. 
To achieve this the microprocessor sends out, on receipt of the 'enter 
graphics mode' command, a string of identification characters which 
are read and stored by the host. These can be referenced by any 
program and contain all the information necessary for making decisions 
such as the above. 
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5.0 THE DRAFTING PROCESS 

Whilst the previous chapter was intended to outline some of the basic 
principals and concepts underlying the graphics system, this chapter 
is designed to give an insight into how they are combined together to 
form program units capable of performing the many and varied functions 
required of a comprehensive graphics system. Although programming 
examples may be included it is not intended to give a detailed 
description of the programs, but merely to outline the facilities that 
are available. 
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5.1 The Log On Procedure 

Before the user can have access to the graphics system it is first 
necessary to log into the RSX-11M operating system in the normal 
manner from the alphanumeric terminal at the desired user station, 
necessitating all users to be familiar with the standard RSX login 
procedure. The possibility of modifying RSX to allow access to 
graphics without the need to log on in the conventional manner was 
considered. Eventually it was decided not to implement such a change 
because it would make the RSX-11M executive non standard, which was 
both against the basic philosophy of avoiding such changes that could 
lead to future problems, and furthermore with the rapid growth of 
computing in industry it was felt that the draughtsmen may have need 
of the computer for other functions and would therefore be familiar 
with the necessary procedure. 

The graphics is initiated by issueing the command 'LOG' on the 
alphanumeric terminal. A number of set up procedures are then 
performed, as described in chapter 4, the principal function being to 
determine the current user station number, set up the users random 
access files and initialize the Tektronix display. A number of 
parameters must then be supplied by the user to identify himself and 
the job he is about to perform. The majority of this information is 
necessary for the accounting system employed at Balfour Beatty and is 
of no relevance to the correct functioning of the graphics. It has 
been included in both the Balfour Beatty and Imperial College systems 
for compatibility only. The information that is required is as 
follows 

1. Users Name - up to 14 characters 
2. Contract number - the job to which the session is to be 

4 . 
3. 

charged 
The drawing number - up to 22 characters 
Users time sheet number ) 
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5. Cost code section number ) Balfour Beatty Accounting 
) information 

6. Cost code activity number ) 

In the early multiuser system a prompt was issued requesting the user 
to enter manually each of the above pieces of information every time a 
new session was started. This is a lengthy process, particularly 
since draughtsmen are not normally experienced typists, and generally 
involves them in entering non variant information, such as their name. 
An automatic method of entering such information is therefore 
desirable. The following method was devised to overcome this problem. 

When the LOG command is issued the users directory is searched for a 
file called GRAPHICS.LOG, which if found should contain the default 
information required. If not found a prompt is issued for each piece 
of information individually. The basic structure of this file is 6 
separate lines containing the default information in the above order. 
If there is no default the line must be replaced with a single ' ?' 
character, indicating that the user is to be prompted for that piece 
of information. Comments may be inserted in the file either on a line 
of their own or following a piece of information providing they are 
preceded by an exclamation mark. In the following example the user 
would be prompted for the contract number and the drawing number. 

! An example log on file showing 
! How defaults are established 

THOMPSON ! users name 
? ! prompt for contract number 
? ! prompt for drawing number 
123 ! timesheet number 
10 ! section number 
15 ! and activity number 
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It is important that this file contains nothing but true defaults 
because the user does not have the option of overriding any parameters 
that are explicitly defined. 

In most circumstances there will be some information that is always 
non variant, and some that is non variant for each particular job. 
The user may create any number of additional log on files with names 
of his own choice to include this second class of information. If, 
for example, the user were to create a file called POWER.LOG he can 
ask. for the information in this file to be considered simply by 
issuing the logon command 'LOG POWER'. For each piece of information 
the logon routine first searches file POWER.LOG. If it is undefined, 
i.e. replaced by a '?', the default file GRAPHICS.LOG is tried, and if 
this fails to yield the information a prompt is issued for the user to 
enter it manually from the terminal. 

The drawing on which the user is to work is identified uniquely by the 
drawing number, which is actually a character string of up to 22 
characters and not simply a number; the name merely reflecting a 
convention used by Balfour Beatty. When the log on information is 
complete the system checks to see if the drawing number matches one 
that has already been saved (See section 5.10) and if so automatically 
recalls that drawing. If not the user is informed that a new drawing 
has been assumed and the full default parameters established. In 
either case when this operation is completed the log on procedure is 
finished and the system enters a neutral state known as 'Background 
Mode' . 
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5.2 Background Mode 

The idle state of the graphics system is normally referred to as 
'background mode1, and is the state entered whenever a function has 
been completed and further instructions are required from the user. 
The handling of background mode in the multi user system is 
significantly different from the earlier single user system, due 
principally to the need to conserve core in the former case, but from 
the user's point of view there appears little difference in operation. 
The principal function of background mode is to monitor the digitiser 
and check to see if a button has been pressed. For the benefit of the 
user a non store cursor is displayed on the graphics screen, when over 
the drawing area of the digitiser, indicating the current position of 
the stylus in relation to the drawing. In the single user system a 
number of messages were also displayed, but in order to remain 
consistent with the policy outlined in chapter 4 of keeping the 
graphics screen free of all but graphical information this feature was 
dropped from the multi user system in favour of prompts output to the 
alphanumeric terminal, which was not previously available. 

Two different modes of cursor display are available, standard mode 
where the positional relationship between the cursor and the drawing 
are maintained irrespective of the display window, i.e. the part of 
the drawing that is currently being displayed, and non scale mode 
where the cursor always traverses the width of the screen when moved 
the width of the digitiser irrespective of the size of display window. 
The latter function is very useful when working freehand with very 
small items since the accuracy can be greatly improved. In standard 
mode very small movements of the stylus result in large movements of 
the cursor and accurate positioning is difficult. The cursor is held 
on the screen by the local microprocessor, as described in chapter 4, 
so relieving the host computer of much of the work performed by 
background mode in the single user system. 
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Background mode will normally remain in control until the user presses 
one of the buttons on the stylus. In the single user system the logic 
to process the request was included within the background overlay, the 
size of which was unimportant, but in order to ensure that the minimum 
of core is occupied by the multi-user system when idle control is 
immediately passed to a second task to check the button and 
coordinates that have been output. 

Due to the multi-tasking capability of RSX-11M it has been possible to 
introduce a very useful feature to background mode. When a coordinate 
has been digitised and control passed to another task to process the 
information, background mode does not exit, but passes into a semi 
dominant state, monitoring the current activity every few seconds. 
This function is intended to provide a number of features, not least 
the ability to detect errors that cause tasks to exit prematurely and 
would otherwise terminate the graphics entirely. By monitoring which 
tasks are running, background mode can quickly detect such a failure 
and take remedial action. It is anticipated that this feature may be 
expanded to include regular backup of drawing and other sensitive data 
to guard again loss of work caused by any type of failure. It was 
felt that the benefits of this facility far outweigh the small penalty 
on core usage introduced by keeping background mode running at all 
times. A small change to the task loader was necessary to incorporate 
this function, which is transparent to the general programmer who 
still queues background mode as any other task. When a failure is 
detected background mode automatically starts up a special error 
recovery task, which resets sensitive system parameters, checks and 
unlocks files that have not be properly closed, and returns control to 
the user in the best possible state. A full description of error 
processing is contained in section 5.11. 

If the digitised coordinate is found to be over the menu or symbol 
areas of the digitiser all buttons, except buttons A and B, are 
treated similarly and envoke the appropriate menu command. Over the 
drawing area each button has a specific function, and the user must be 
careful to press the correct one. These functions are as follows. 

1 0 1 



5.2.1 Button Assignments 

a) Button 0 - Verify current position 

This button is used simply to mark the users current position on the 
graphics screen, and the projection of a 3-D point that would be 
defined if one were entered at this position. The use of this button 
may not appear immediately obvious but it becomes important where 
corrections such as control mode or grid roundoff are in operation 
since it reflects the point after correction and not as the user sees 
the cursor on the screen. The function of these facilities is 
explained fully in a subsequent section of this chapter. The user may 
check, for example, that the point will be rounded to the correct grid 
node before entering it, which is particularly important if the 
density of nodes dictates that only the boundary nodes are displayed. 

b) Button 1 ~ Input 3-D coordinate 

By pressing button 1 the user instructs the system to read the current 
digitiser position and convert this to a true 3-D coordinate using the 
principles described in chapter 4. This coordinate is normally stored 
in the workspace as the next sequential entry, and the line joining it 
to the last entered point is displayed on the graphics screen. In 
some cases this coordinate will be passed to another routine for 
further processing, typically as input data for symbol generation. 
This straightforward method of digitising single coordinates is the 
simplest method of data input to the TIGER system. 

c) Button 2 - Break Line 

Button 2 functions in exactly the same way as button 1 except that it 
records the point with the 'pen up* attribute rather than 'pen down'. 
This implies that the point is the start of a new line rather than a 
continuation of the previous, and no vector is drawn to it from the 
last point. 
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d) Button 3 - Define Trailing Coordinate 

The method of 3-D input from 2 or more orthogonal views has already 
been explained. This consists essentially of picking up the same 
point in two views in order to define it fully in 3 dimensions, since 
each view is only capable of specifying 2 of the 3 space coordinates 
directly. The coordinate that is not directly specified depends on 
the view over which the digitiser stylus lies, e.g. Z in an X-Y 
projection, and is known as the trailing coordinate. In order to 
modify its value the user presses button 3, whereupon the system 
outputs the prompt message 'Set Trailing Point' and reverts to 
background mode. The next point input from the digitiser, normally 
with button 1, is used to update the stored trailing position, i.e. if 
the point is over an X-Z view a trailing X and Z value will be defined 
for subsequent 3-D points that may digitised. Further input over an 
X-Y view will define X and Y explicitly, and the new trailing Z will 
be used to complete the coordinate. 

e) Button 4 - Window Selection 

Button 4 differs from the majority of buttons in that it implements a 
function more akin to the menu type of command and causes control to 
pass from background mode to a second service task. This is because 
the function of the button is too complex to be handled locally, but 
being a very common feature is located at the user's finger tips for 
convenience. 

The principle of display windows has already been outlined in chapter 
4. In essence they provide the user with the means to 'zoom in' on 
certain areas of drawing to examine them in more detail. Typically a 
large drawing will have a number of areas of interest and it is 
convenient for the user to have the ability to store different display 
windows covering each of these areas, with the option of changing from 
one to the other without the need to redefine each every time it is 
required. The existing system did not allow for the storage of more 
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than one window definition, and was very inconvenient to use, 
particularly when working from freehand sketches where the new window 
to be displayed does not necessarily overlay the current one, i.e. 
where the user cannot see the information that he or she is trying to 
zoom in onto. The method developed for the TIGER system allows up to 
15 windows to be defined and stored under one of the stylus buttons. 
Having initiated the window function with button 4 the user is asked 
to press one of the 16 buttons corresponding to the desired window. 
Only 15 windows are allowed because button C functions in its standard 
'cancel' mode, as explained later. The window assigned to the chosen 
button is then recalled and the drawing redisplayed. 

The use of button 4 implies that the desired windows have previously 
been set up. At log on each window defaults to a standard area of the 
digitiser, but these definitions may be changed by menu command. The 
use of standard windows is encouraged because it enables draftsmen who 
may be unfamiliar with a drawing to find their way around it, and has 
functional advantages in connection with the display file. A window 
is essentially an imaginary rectangle over an area of the drawing 
indicating which part is to appear on the screen. This rectangle has 
a fixed horizontal to vertical ratio of 4:3, corresponding with the 
shape of the standard display screens, and is defined by digitising 
each of the bottom corners, although since the rectangle must lie 
horizontally only the x value of the second corner is significant. 

f) Button 5 - Enable or Disable Grids 

A grid facility exists whereby the user may set up a pattern of grid 
nodes covering all or part of the drawing to constrain the input of 
points to coordinates that lie at grid nodes only. The facility is 
extremely useful when, for example, laying out pipe supports at equal 
and known intervals along a pipe run. The graphics system allows 
grids to be defined independently along each of the 3 orthogonal axes; 
a complete description of the definition and use of grids may be found 
in section 5.2.2. It is convenient to reserve button 5 to enable or 
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disable grid round off depending on the current state. If button 5 is 
pressed when grids are disabled they become enabled on the axes for 
which they have been defined, and conversely if they are currently 
enabled the action of button 5 is to disable all grids. In either 
case a message is output to inform the user of the current state of 
grids and indicate on which axes, if any, they are currently enabled. 
Whenever a drawing is completely redisplayed on the screen the grid 
nodes are only drawn if grids are currently enabled. This provides a 
means of keeping the screen free of nodes if not desired, such as when 
taking a hard copy. Whenever grids are enabled, either on mass with 
button 5 or individually from the menu, a check is made to see if grid 
nodes are currently on display, and if not they are displayed 
automatically. This obviates the need for the user to redisplay the 
drawing again in order to bring up the nodes. 

g) Button 6 - Enable or disable control mode 

Control mode provides the means for constraining points to lie in 
predetermined directions from the last point that was digitised, and 
is explained fully in section 5.2.2. Button 6 is a flip-flop type 
switch that either enables or disables control mode, depending on its 
current state. A message is output to the alphanumeric terminal to 
inform the user of. the new state and the control angle that is 
currently in force. 

h) Button 7 - Find Point Mode 

It is obviously of great importance for the user to be able to place a 
point exactly coincident with a previously entered point in order 
that, for example, a boundary made be closed precisely. With normal 
freehand digitising it is extremely difficult to achieve the required 
accuracy, due chiefly to the poor resolution of the graphics screen, 
and a small error in the position that may be undetectable at this 
stage will result in an unsightly and intolerable error on the final 
plot. The problem is further compounded if the graphics database is 
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to be processed to yield, for example, a control tape for an NC mill, 
where the error will be reproduced on the final object. It is 
therefore essential that the graphics system includes a means of 
locating previously entered points or lines and returning exactly to 
them. The former facility is provided by this button. 

Button 7 functions in the same way as button 1 except that, having 
decoded the position, it passes control to a separate task to perform 
the find operation. The find facility is based on the display file, 
and it is therefore not possible to find a point that is currently not 
displayed on the screen in any projection. The search will locate the 
point that appears to lie closest to the digitised point. This is 
done without reference to the database and is purely two dimensional 
in nature, thus two points that may in effect be widely spaced in 3 
dimensions will be considered close together for the search procedure 
if they appear close together on the screen. The user must make 
judicious use of the various views currently available to enable a 
point to be found quickly and accurately, since a point may be located 
from any view in which it is displayed, although some may be 
unsuitable if it appears close to, or coincident with, another point. 
This method of searching has a number of advantages over existing 
routines that were based on searching the entire database. The latter 
process is wasteful in that it is impossible to discriminate between 
data that is on display and that which is not, thus lengthening the 
search procedure considerably. This shortcoming was tolerable in 2-D 
systems since there was a simple relationship between the database and 
the information on display, but the addition of the 3rd space co-
ordinate has introduced more complex display techniques necessary to 
display the same data in different views, and would add considerably 
to the computation necessary for a find type facility. By considering 
projections of a point it is, as previously indicated, not necessary 
for the actual point and the search point to be close in 3-D space, so 
obviating the need for the user to manually change the trailing point, 
using button 3, to bring the points close together again if the 
trailing value has changed. Furthermore, the find facility can be 
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very useful for returning to a previously defined trailing value 
quickly and simply without the need to use button 3. Find point mode 
locates the closest point in the display file and by a cross reference 
process can immediately access the correct point in the drawings 
database and return its true 3-D value. Thereafter the coordinate is 
treated as if had been entered manually with button 1. 

i) Button 8 - Find Line 

Button 8 is similar in operation to button 7 except that instead of 
locating an exact point the system computes the line that appears 
closest to the user specified search point and places the new point 
exactly on that line at the closest position to the search point. The 
principles involved are similar to the previous form of find except 
that the-point returned will not normally be one that already exists, 
but rather one that is computed from the end coordinates of the 
appropriate line. 

j) Button 9 - Insert Fillet 

This button allows the user to insert a fillet between two straight 
lines, providing either buttons 1 or 2 are used on either side of the 
9 to define the lines. Two modes of operation are currently possible, 
default or computed radius, depending on the number of times button 9 
is pressed. In the former case when button 9 is used once its 
location is taken as the intersection point of the two lines and a 
fillet of default radius constructed, the lines being truncated 
appropriately. The default radius may be reset by menu command. If 
the button is used twice in succession the lines ending and starting 
at the two points respectively are calculated, and the smaller radius 
fillet inserted that is tangential to the lines at one of the points 
digitised. 

Button 9 is different from most buttons in that its function is not 
executed until after the next button has been pressed, defining the 
end of the second line. 
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k) Button A ~ Floating Assignment 

Certain sequences of operations may result in the need to envoke a 
particular menu command a number of times, and for the users 
convenience button A has been reserved so that it may be 'programmed' 
to emulate any of the menu or macro commands. In order to assign a 
particular function to the button it is merely necessary for the user 
to place the stylus over the required square and press button A. 
Thereafter, pressing the button over the drawing area will envoke that 
command. The assignment remains in force until the user reassigns the 
button by specifically digitising over a different command with button 
A. This is true for both menu commands and macro commands, thus 
enabling a frequently used macro to be recalled quickly, even if it is 
on a different page from the current menu or macro page. For a fuller 
description of macro handling refer to section 5.4. 

1) Button B ~ Floating Assignment 

This button behaves in exactly the same way as button A except that it 
has an initial default setting of 'Break Line'. This function differs 
from button 2 in that it indicates that the line is to be broken at 
the next point without actually entering that point. This is 
important if, for example, it is desired to 'Find' the next point, as 
button 2 will not allow this. The definition of the button may be 
changed to any command if the user so desires. 
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m) Button C - Cancel Operation 

This button provides the ability to prematurely terminate any 
operation, normally as the result of the user accidentally envoking 
the wrong command or entering bad information. A general tidy up of 
the system is performed and background mode reenvoked. Unlike the 
other button assignments, which as described normally only apply in 
background mode, button C is universably applicable and can be used to 
cancel most operations. The user must become aware that some 
operations are irreversible and once started cannot be prematurely 
terminated. In this case button C will not be effective and some 
later remedial action will normally be necessary, such as the use of 
one of the editors described in section 5.5. 

n) Button D ~ Unassigned 

Button D has yet to be assigned a function. 

o) Button E - Numeric Entry 

The input of accurate lengths from the digitiser is reliant on the 
user working from an accurate drawing or envoking one of the round off 
facilities, such as grids, described herein. In many cases it may be 
more convenient for the user to enter the coordinate numerically if an 
exact space coordinate is known or does not readily suit one of the 
correction methods. Button E provides this facility. On pressing the 
button the user is prompted on the alphanumeric terminal to enter the 
X, Y and Z values of the required coordinate, and define whether this 
is to be an absolute position or an offset from the previously entered 
point, the latter being particularly useful for entering lines of 
known length. The point so defined is then displayed as if it had 
been digitised normally. This method of entry is very useful in 
conjunction with button 3 for defining a precise trailing coordinate, 
particularly in T2i-D' type applications where the 3rd coordinate is 
constrained to lie on a number of fixed planes. Furthermore, 
coordinates may be entered that lie outside the current drawing area. 
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p) Button F ~ Finish Input 

This button is used to indicate the end of input to 'open ended' 
functions, such as duplication, that accept a variable number of 
points. The action of this button will normally be established by 
such a task, and is otherwise ignored. 

5.2.2 Coordinate Corrections 

Whenever a coordinate is entered it is subjected to a number of tests 
and corrections before it is finally despatched to the requesting task 
or placed in the database. These are normally constraints specified 
by the user to ensure that accurate data results from a fairly roughly 
digitised drawing. The system currently provides the following 
corrections. 

a) Drawing Skew 

Skew correction is particularly important when digitising from an 
existing drawing. It is obviously necessary to ensure that the axes 
on the drawing coincide with the axes as the digitiser, particularly 
on a 3-D drawing where positional relationship between projections is 
important, and to do this manually would involve very careful 
positioning of the existing drawing to ensure that it lies absolutely 
horizontal. The skew function obviates the need for this by allowing 
the user to digitise a line on the drawing which is to be considered 
horizontal, a function which must be initiated manually from the menu. 
Thereafter each point that is entered is modified according to this 
specification so that it will coincide correctly with the existing 
drawing. This is essentially a 2 dimensional correction, being 
applied to the coordinate output from the workstation rather than the 
computed 3 dimensional coordinate. The remaining corrections are 
applied during or after this computation process. 
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b) Control Mode 

In many drafting applications objects will consist of lines either 
exactly horizontal or vertical, or at known angles to one of the axes. 
For example, a pipe run will typically consist of horizontal and 
vertical pipes jointed by 90 degree elbows. In order to facilitate 
the quick and accurate drawing of such lines a control mode is 
provided that constrains points to lie on a line at a multiple of a 
previously specified angle from the last point that was entered. In 
the above example the angle would be 90°, which constrains the point 
to lie in only one of 6 mutually perpendicular directions in 3-D 
space. Whenever a point is digitised control mode, if active, 
determines to which of the allowable directions it best approximates, 
and rotates the new point about the previous to bring it exactly onto 
this direction. This means that the point as displayed on the 
graphics screen will no longer necessarily coincide with the position 
of the cursor, and the user should use button 0 to verify the 
corrected position before entering the point if in any doubt. In the 
single user system control correction was also applied to the cursor, 
but this has been dropped from the multiuser system because of the 
difficulty of implementing it in the microprocessors. The user may 
change the control angle at any time during the drawing process, even 
when control mode is active, whereupon the new specification becomes 
applicable immediately. 

c) Grid Roundoff 

The grid facility enables the user to define a pattern of 'nodes1 in 
3-D space to which any coordinate entered will be rounded. Unlike 
earlier systems, where the grid was of a two dimensional nature 
relating to the position on the digitiser rather than the final 
coordinate, the advent of the. three dimensional system necessitated 
the introduction of a truely 3-D grid facility, since the 2-D function 
cannot correctly take account of the relative position and scale 
factors applying to different views. Early systems would only handle 
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uniform grids, i.e. one where the distance between every node is 
identical, and covering the whole of the drawing area. The current 
implementation will handle uniform or notional grids, the latter 
consisting of non equispaced nodes with separations specified by the 
user, covering only the required part of the drawing. Furthermore, 
different grid spacing, types and limits may be specified for each of 
the three major axes, and roundoff enabled independently on each axis. 
A number of menu commands exist to define a suitable grid pattern and 
are of an interogative nature requiring user input on the alphanumeric 
terminal and the digitiser. Grids may be enabled on specific axes by 
menu command, or globally enabled and disabled by use of button 5. 
Whenever any grids are enabled and the drawing redisplayed on the 
graphics screen the projection of the nodes is marked with a small '+' 
symbol for the benefit of the user. This does not constitute part of 
the display file and is not used for the roundoff procedure, which is 
based on the 3-D coordinate. 

Experience showed that with small grid spacing and large windows the 
density of nodes displayed was often so great that the drawing was 
practically obscured, and a significant delay was introduced while 
these nodes were displayed. To overcome this, two different modes of 
grid display were developed, standard display and boundary display, 
which may be optionally selected by menu command. Standard mode 
provides the more familiar display of every node, except when the 
density exceeds a predefined value, when boundary modes is implemented 
automatically. In boundary mode only the outer nodes of the grid on 
each of the edges are displayed, or the last nodes to fall within the 
window, depending on the current display window setting. This 
effectively overcomes the two disadvantages of standard mode outlined 
above while maintaining the advantages of grids, since non-displayed 
nodes can easily be located by lining up the arms of the cross hair 
cursor on the screen with the edge nodes. 
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As with control mode, grid roundoff is not reflected in the cursor 
displayed on the graphics screen, but its effect may be checked using 
button 0. Control correction and grid roundoff are mutally exclusive 
functions since each is destructive to the effect of the other. Only 
one may therefore be enabled at any time, and an attempt to enable 
both is reported as an error and ignored. 

5.2.3 Processing the Coordinate 

Whatever combination of corrections are active or buttons are pressed 
the ultimate aim of background mode is to generate a three dimensional 
coordinate that is needed as data for some process. In the simplest 
case where the user is joining points together with straight lines the 
processing of the point will be handled locally. In more complex 
applications, such as generating a circle based on digitised 
coordinates, the point will be passed to the circle generating task to 
use as basic data for computing the required orientation and radius. 

In either of the above cases one or more points will eventually be 
entered in the database, the new information displayed on the graphics 
screen, and the display file updated to suit. In chapter 4 the basic 
structure of the database records was outlined. The normal record 
consists principally of a three dimensional coordinate, X, Y, Z, and 
an I code to indicate the meaning of that record. Table 5.1 indicates 
the principal I codes used by the current graphics system. In general 
all tasks that examine the workspace only take account of records with 
I codes they are programmed to recognise, and ignore any others. In 
this way the specification of further values, which may be in the 
range 0 to 255, will not affect the performance of existing routines. 
The full record also contains the additional indexed and masked 
parameters described in chapter 4. In the current implementation 
these are as follows. 
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I CODE DESCRIPTION OF ASSOCIATED RECORD 

1 The start of a line in either 2 or 3 dimensions. Plotter/ 
display moves to this point. 

or 
A positional reference point if within a symbol block. 

2 The end point of a line in either 2 or 3 dimensions. 
Plotter/display moves to this point with pen lowered. 

3 The first record and low limits of a symbol block. May be 
2 or 3 dimensional depending on the symbol. 

4 The last record and high limits of a symbol block. 

5 An identification record within a symbol block bearing 
numerical data only. 

6 A text record containing 12 encoded ASCII characters. 

7 A general record of unspecified format. 

13 The first record and low limits of a macro block. May be 
2 or 3 dimensional depending on the macro. 

14 The last record and high limits of a macro block. 

15 An identification record within a macro block. 

16 A text node within a macro - for future development. 

255 A null record, to be ignored by all functions. 

Figure 5.1. The I codes currently used by TIGER 
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a) Pen number 

Most modern plotters have 4 pens available which may be assigned 
different colours or line thicknesses depending on the particular 
application. The former assignment is useful for mapwork, but for 
engineering applications different thicknesses are more useful since 
engineering drawings are rarely coloured and if so would be difficult 
to duplicate by the means currently available. Whenever a record is 
entered in the database the current pen number is associated with it, 
which may have a value of 1 to 4. At log on the default pen is number 
1, but the user may readily change the current pen by use of the 
appropriate menu command. The new assignment remains in force until 
it is physically changed again by the user. The effect of different 
pen numbers cannot be observed on the graphics screen since this is 
incapable of generating different colours or a full range of line 
thicknesses. The result will not therefore be observed until a final 
plot is obtained on the flat bed plotter. A number of graphics 
functions automatically employ a fixed pen number irrespective of the 
pen currently being used for input. For example, blockfilling is 
always done with per 4, by convention the thickest, for efficiency. 
This operation is transparent to the user, and does not affect the pen 
number that has been specified by him for input. The current 
convention for pen thickness is as follows, all pens being black 
unless otherwise specified. 

Pen Number Thickness 

1 0.3mm 
2 0.5mm 
3 
4 

0.7mm 
1.0mm 
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b) Line type 

A drawing may be composed of up to 16 different types of line, tbe 
simplest of which is a solid line, the other 15 being different 
combinations of marks and spaces to form line types such as dotted, 
dashed or chain dotted. Indeed the above 4 types comprise the 
defaults available at log on time, of which solid lines are used 
unless otherwise specified. Each line type is a repeated pattern of 
two marks and two spaces of varying lengths. The user may assign any 
of the remaining unspecified line types to form special patterns 
applicable to a particular drawing. Figure 5.2 shows tbe method of 
defining this pattern. By menu command the user may alter tbe line 
type used for further input until altered again. Unlike the above 
example with pen number the effect of different line types may be 
immediately observed on the graphics screen. A line type is 
continuous from the start of a line to the last point, irrespective of 
tbe number or spacing of intermediate points. In this way a pleasing 
effect is obtained and constructions such as dotted circles are 
possible when circular arcs are treated as a large number of short 
straight lines. 

c) Display control 

Tbe display control parameter is unique in that it can not be set by 
the user, who need never know of its existance. Tbe function of the 
parameter is to indicate to tbe system whether, boardly, the record is 
true three dimensional data or two dimensional information such as 
annotation. Tbe distinction is important for operations such as 
display since 3-D data will be projected into all available views 
whereas 2-D data is assumed to obey no view characteristics and is 
displayed directly. This is also necessary for operations such as 
scaling or rotation to ensure that the correct transformation is 
applied. In general a three dimensional record will have X, Y and Z 
significant whereas a two dimensional record will only have X and Y 
significant, and in tbe latter case these will be apparent digitiser 
coordinates rather than a space coordinate. 
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Pattern length 

LINE TYPE 
NUMBER 

A% B% C% D % OVERALL LENGTH 
(MILLIMETRES) 

DESCRIPTION 

1 100 0 0 0 undefined Continuous 
2 25 50 75 100 7.0 Dotted 
3 25 50 75 100 15.0 Dashed 
4 70 80 90 100 30.0 Chain dotted 

Figure 5.2. Line Type Structure and Convention 
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d) Input Overlay 

The overlaying process provides the user with the ability to logically 
divide a drawing into up to 128 different sections or overlays. The 
name of the process is derived from its most frequent use, namely 
overlaying a common section of a drawing with a number of additional 
but independent pieces of information. A typical example may be site 
layout in the building industry. The common overlay would be the 
basic site plan, over which could be overlayed the various services 
such as electricity, drinking water etc. By including different 
combination of overlays a number of different drawings may be produced 
from one basic master. In the TIGER system the user may specify any 
of the 128 different overlays for current input, and any combination 
of overlays as 'active' or 'passive'. Active overlays are those that 
are currently of interest to the user and are available for display, 
manipulation etc. Passive overlays are those deemed not to be of 
relevance, and although part of the drawing database are not eligible 
for modifications etc. unless changed by the user to an active state. 
The setting of active and passive overlays is by menu command, the 
default at log on being all active with input on overlay number 1. 
Whenever a record is entered into the database its overlay is also 
considered. This is the first of the 'indexed' parameters referred to 
in section 4.5, and as such the database handler only makes note of 
its changes, from which can be deduced its value at any particular 
record. The indexing process means that in theory the overlay number 
could have any of some 65,000 different values, but it was decided 
that, for programming and user convenience, 128 would be adequate. 
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e) Select Status 

The select status of a record indicates to a large number of processes 
whether or not that record has been marked for some sort of operation, 
for example rotation or scaling. The select status can only have 
three values, either 0 for not selected or 1 or 2 if selected, the 
distinction being between temporary and retained selected status, 
which are described fully in section 5.6. It has been stored as an 
indexed parameter for speed of operation to enable functions to jump 
through the drawing acting on selected data only, which can be 
achieved more efficiently with indexed parameters. The select status 
of a record differs from the other associated parameters since it is 
always entered with a value of 0 and generally modified at a later 
time as this becomes necessary. The remaining parameters are stored 
with values that are rarely changed. 

In most cases the point digitised will not be entered in the database 
directly by background mode but passed to a second task to use as 
input data, the most common being one of the symbol generators. 
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5.3 Symbol Modes 

With the facilities provided by background mode alone tbe user is 
limited to the production of drawings consisting solely of straight 
lines between specified points. It is obvious that this is inadequate 
for most engineering drawings which require more complex constructions 
such as circles or polygons. To this end the graphics system 
incorporates a number of 'symbol' modes which allow the user to input 
these items based on a number of pieces of key information, such as 
the centre point and radius of a circle. In general symbol modes 
handle geometric constructions that are of a known mathematical 
definition, each of which always conforms to certain rules. For 
example, a circle in 2-D space is completely defined by its centre 
point and radius. A typical symbol will be constructed from points 
digitised by tbe user and additional information, such as the number 
of sides on a polygon, obtained via the alphanumeric terminal. The 
symbol task may freely communicate with the alphanumeric terminal to 
issue the appropriate prompts and input the user responses, but access 
to the digitiser must be achieved via background mode. This ensures 
that the full facilities of background mode, such as grid roundoff, 
are available to the user even when entering points to construct a 
symbol, and further ensures that core utilisation is efficient. A 
simple process exists to allow a symbol, or any other task that needs 
digitiser input, to receive the data entered on the digitiser. The 
initial entry to the symbol task is by menu command, when the task 
will normally identify its function on the alphanumeric terminal. 
Before exiting the task places itself in the task execution queue with 
a different entry point from its menu entry, sets a flag within the 
resident area, and reactivates background mode. When the user enters 
a point this is placed in a common block within the resident area, 
irrespective of whether it is to be processed locally or not. 
Background mode then tests the state of the above flag and if set 
activates the top task in the execution queue. This will be the 
requesting symbol task, which can find the coordinate entered and the 
button number from the resident area where it was placed by background 
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mode. The process may be repeated any number of times to input the 
required number of coordinates. When enough data is gathered the 
symbol task can construct the required symbol, reverting finally to 
background mode when it has been stored and displayed on the graphics 
screen. The data that is entered in the workspace is the minimum 
necessary to fully define the symbol so that it may be redisplayed, 
plotted etc. at some later time. This data is formed into a 'symbol 
block', being a string of records of predefined format of which the 
first and last, carrying I codes of 3 and 4 respectively, define the 
upper and lower limits in space of the symbol, and the second is an 
identification record indicating the length of the symbol block and 
the number of the task responsible for creating it. These pieces of 
information are essential for other tasks within the system to 
correctly identify and process symbols and so must obey a fixed 
format. Other records within the symbol block may be unique to a 
particular symbol and will normally be skipped by other tasks, which 
can use the length of the block stored in the second record to jump to 
or past the last record as necessary. 

It was considered essential that general graphics routines should not 
need to know the formats of each symbol block for correct processing 
of data, and to this end each symbol task must include the capability 
to perform a number of operations on its own symbol block where 
necessary. This condition ensures that the addition of further 
symbols to the system does not necessitate modifications to large 
numbers of tasks to handle the new symbol. Of the functions to be 
handled by the s y m b o l task the most common, after the initial entry in 
the database, are redisplay on the graphics screen or output to the 
plotter. Each special function is identified by a unique entry point 
to the task, which must be the same for all symbol tasks. The number 
of functions to be performed on a symbol block is large but in general 
they are not related and it has been found easy and efficient on core 
usage to overlay the various functions within the symbol task in the 
way shown in figure 5.5. Each overlay is essentially a subroutine 
that is called by the root segment to perform the desired function. 
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Fig 5.3 Symbol task overlay structure 



In some ways this is a retrograde step from the latest single user 
system where graphics tasks, for example the redisplay routine, 
contained the logic to process all symbols locally, although the 
number of different symbols was rather less than is envisaged in the 
final multiuser system. Its predecessor functioned on a similar 
principal to that described above, but suffered, as does the current 
system, from slow operation due to the necessity to swap between tasks 
to process each symbol as it is encountered in the workspace. For the 
reasons outlined above it was found necessary to revert to the older 
principal, but a compromise has been reached in that graphics tasks 
may be built to process 'known' and 'unknown' symbols. A known symbol 
is handled within the body of a task simply by including the 
appropriate overlay segment from the symbol task within that task, 
whereas unknown symbols still cause a swap to the symbol task for 
processing. This allows the advantages of local processing to be 
combined with the advantages of symbol task processing and allows 
further symbols to be added to the system with no changes to graphics 
tasks, although for efficiency further symbols can be fairly readily 
made known to the relevant tasks at some later date with no change to 
the code of the symbol tasks and minimal change to the processing 
task. Perhaps the greatest improvement over the separate task 
operation has been achieved in plotting, since the plot data is 
written to a file which is later spooled to the plotter as described 
in section 5.9. This necessitated each task opening and closing the 
plot file on entry and exit and resulted in considerable processing 
times to generate a plot file of a drawing containing many symbols. 
Tests have shown that the local processing method reduces the time 
required by up to 75% on a typical drawing. 
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5.4 Macro Handling 

In practice, engineering drawings normally contain features that are 
neither simple lines nor pure symbols, but a combination of these 
items which are generally referred to as macros. A typical example of 
this is the pump shown in figure 5.4 which is a combination of 
rectangles, straight lines and arcs. Furthermore these may appear 
frequently on one, or a number of different, drawings and it is 
convenient to enter the item once only and then repeat it at will 
elsewhere. The macro facility enables the user to do this, and is the 
heart of an efficient graphics system. The user may build up 
libraries of standard macros that are in common use and quickly and 
simply recall them onto the current drawing. The creation and use of 
a macro may be considered as two separate processes, as outlined 
below. 

5.4.1 Creating a Macro 

The standard method of creating and using macros is to enter those 
needed and store than in the macro library before commencing the 
drawing. At the initial implementation of the graphics system this is 
obviously a large task since all macros that are needed will have to 
be entered, but very soon a comprehensive library of macros will build 
up and the user will frequently find that all but a few of the macros 
required for a particular drawing are already in a library. 

When creating macros in this manner a special menu square places the 
system in 'macro-creation' mode. This command initially checks to 
ensure that the workspace is empty, since all data in the workspace 
will be overwritten by the macro, and if not the user is given the 
option of continuing or aborting the process. If all is well a number 
of macro parameters and pointers are stored and the system reverts to 
background mode to allow the user to digitise the new macro. The full 
range of graphics facilities are available for this process and the 
macro may contain any combination of graphical items, including other 
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Figure 5~4 A typical macro 



existing macros. When digitising is completed the user indicates this 
to the system by issuing a second menu command which initiates the 
macro saving procedure. This requests the user to input three more 
points, which are passed to the macro task by the method outlined in 
the previous section. These three points are known as 'positional 
reference points' and are used when the macro is recalled onto a 
drawing to rotate and scale it to the correct position and size. The 
user should endeavour to choose 3 points on the macro that are of 
particular significance, such as points at which connections are made 
to other items. For example, if the macro is a valve symbol it would 
be convenient to choose the centre of the flanges as two of the 
reference points which enable it to be conveniently placed in a pipe 
run when recalled. Three reference points are required, as opposed to 
the more familiar two used with existing 2 dimensional systems, since 
the macro must be placed in 3 dimensional space, for which 3 points 
are needed to define a unique plane. In addition to the reference 
points the user must supply a code name by which the macro is to be 
known. This may be any alphanumeric string of up to 6 characters, 
which serves as an identifier allowing the macro to be recalled by 
this name, and will ultimately have significance when a full material 
take-off facility is incorporated. The macro library is logically 
divided into 'pages' of 50 macros. This is necessary since a square 
on the macro area of the digitiser is allocated to each macro, and in 
a large system it is necessary to incorporate a pageing system of the 
type used for the menu to allow access to every macro. This feature 
is discussed more fully in the following section. When creating a 
macro the user must decide on which page and in which square the macro 
is to reside, and enter the two numbers as part of the macro 
termination procedure. This square must be currently unoccupied, and 
if not the user must physically delete the existing macro before the 
new macro is stored. This procedure ensures some measure of safety 
against accidentally overwritting an existing macro, although since it 
was found inconvenient to bar users from deleting macros altogether 
the procedure entrusts the user not to delete any but the correct 
macros. 
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Each macro is stored in a separate file on the pseudo device GD:, 
where the file name is derived from the 6 character identification 
code specified by the user. In addition an index file is maintained 
which records all the macros currently available on the system and a 
number of pieces of information about them, such as when they were 
stored, last accessed etc. The macro file is essentially a direct 
copy of the workspace, plus the reference points specified during the 
saving procedure. In the current implementation the index file serves 
very little useful purpose other than relating macros to their 
corresponding menu square, but has been included both for 
compatibility with the drawing saving procedure outlined in section 
5.10 and for future expansion, particularly in the field of material 
take off, where it is anticipated that a number of parameters may have 
to be stored for each macro, which will most conveniently be located 
in the index file. 

However carefully the drawing is preplanned the user will occasionally 
discover that an essential macro is not available when needed, or that 
it is convenient to make a part of the drawing into a macro for later 
use. To cater for this situation the macro storing routines 
incorporate a retrospective creation procedure based on selected data, 
as described in section 5.6. At any time during drawing creation the 
user may select an area of the drawing and convert it into a macro, 
the saving procedure being similar to that previously described, 
except that it is initiated with a different menu command, and 
requires data to have been previously selected. This procedure does 
not affect the drawing as it exists in the workspace and can be safely 
used at any time, and as often as required, during the input of a 
drawing. 

5.4.2 Recalling a Macro 

The storage of a macro is, largely through necessity, a lengthy and 
somewhat tedious process, but may be excused since this a once and for 
all operation that is carried out only during the initial definition 
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of a macro. In contrast, the recalling process may be carried out 
many hundreds or thousands of times and it was considered essential 
that this should be kept as simple as possible. 

In order to identify which macro is required the user has two options. 
Figure 4.6 shows the layout of the digitiser, and the position of the 
two macro menus along the left hand edge. Each of these represents 
one of the macro pages previously described, two areas being available 
in order to give a greater freedom as to which macros are currently 
available. A common situation would be to have one of the pages 
allocated to standard company macros for a particular type of drawing, 
and the other allocated to the uses specific macros for the current 
drawing. For a macro to be available from the menu the page to which 
is has been allocated must occupy one of these two positions, page 
changes being accomplished by menu command. The first, and most 
common, method of recalling a macro is simply to digitise over the 
square on the menu to which it has been assigned. The system uses the 
square and page numbers as pointers in the macro index file to obtain 
the macro code word, and hence the name of the file in which it is 
stored. The process is simple for the user to appreciate and has the 
added advantage that the code word need not be known, the illustration 
drawn within the box being the means by which the correct macro is 
chosen. Furthermore, if the macro is required repeatedly, button A 
may be assigned to that square and so enable it to be recalled without 
further reference to the menu. 

An alternative method of recall is to request the macro by its code 
name. The process is initiated by a standard menu command which 
requests the user to enter the code on the alphanumeric terminal. 
After an initial check in the directory to ensure that the codeword is 
valid, access can be made directly by the system to the correct macro 
storage file. From this point on the process is identical 
irrespective of the method used to initally identify the macro. 
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In order to specify the location and size of the macro when it is 
added to the current drawing the user will be expected to enter one or 
more points from the digitiser, in a similar way to those required for 
the positioning of a symbol. In the default mode three points will be 
requested that specify the position of the reference points stored 
within the macro file. The macro is scaled -and rotated so that the 
first two reference points coincide directly with the two points 
entered by the user, and the third point lies in the correct plane to 
the correct side of the line between the first two points. It is 
fairly obvious that all three points cannot necessarily be directly 
matched up, unless the triangles defined by the users points and the 
stored reference points are similar, which would normally be no more 
than a happy coincidence. The process of aligning the first two 
points and using the 3rd for space orientation will always function 
correctly no matter what points are entered unless they are colinear, 
in which case the user is asked to re-enter them. 

When using the full procedure above the macro is automatically scaled 
and rotated before being added to the workspace. In many cases, 
particularly where the same macro appears repeatedly on a drawing, the 
scale factor with respect to the stored macro, or the orientation, are 
always the same, and it is convenient to previously define these 
parameters and hence save time and effort when the macro is to be 
recalled. For example, if the orientation is known, only two points 
need be entered to specify the scale of the macro, or if both 
orientation and scale are known the macro may be placed with a single 
point. The process is convenient but, particularly in the case of 
default scale factor, requires the user to have a fuller knowledge of 
the size at which the macros were originally entered. The necessary 
parameters may be entered or changed at any time during the drawing 
process, and the use of either default being enabled or disabled at 
will and independent from one another. Depending on the current 
defaults the user will be prompted for the required number of points 
when recalling all future macros. 
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When the macro is added to the workspace a number of the parameters 
associated with it are modified. For example, the overlay on which it 
was digitised is no longer relevant, and is indeed not stored in the 
macro file, the macro always being placed on the current input 
overlay. Certain parameters, such as the display control, are 
preserved, but the current display control is always left set to the 
same value after the macro as it was before. The handling of line 
type and pen number is more complex, and merits further discussion. 
The line type specified in a macro is normally preserved when it is 
recalled, but at creation time the user may specify a macro default 
line type for which the current line type is always substituted on 
recall. This feature is important and allows a macro that has been 
defined in, for example, solid lines, to be reproduced in dotted lines 
if the system is in dotted line mode when recalled, but preserve 
features of the macro that must be of a fixed line type. A similar 
procedure applies for pen number. 

The macro is stored in the drawing in a macro block similar to the 
symbol blocks discussed in the previous section, where the first and 
last records indicate the limits of the macro, and the second record 
contains identification information. Since the macro may contain 
other macros or symbols the software must scan the entire macro after 
it is recalled and revaluate the limits on these 'nested' items in 
order that normal graphics functions will handle them correctly. In 
general a macro is considered a single entity and may only be 
processed in its entirety. 

To complete the macro facility a number of 'maintenance' type 
functions are available that allow the user to perform operations such 
as deleting old macros, or producing a directory of the available 
macros on the alphanumeric terminal or line printer, each of these 
functions being made available by self explanatory menu commands. 
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5.5 Editors 

A comprehensive editing facility is essential to an effective graphics 
system, enabling the user to both correct errors as they occur and to 
make modifications to drawings as design specifications are changed. 

The TIGER system incorporates a number of editors, each of which is 
designed to handle specific data types. The previous sections of this 
chapter have outlined three distinct classes of data, simple lines, 
symbols and macros. A separate editor is included for each of these 
types. Although an all encompassing editing facility is quite 
possible it has been found convenient to segregate the separate 
functions, since each editor can perform its function much faster and 
more efficiently by ignoring all but a particular data type. These 
editors are designed to behave in .a similar manner to each other, in 
order that the user may learn one sequence of operations that is 
applicable to each mode, once having chosen the correct editor from 
the menu. The three editors each have two different modes of 
operations, last entry and random search mode. 

Last entry mode is specifically designed to be used as part of the 
drafting operation to correct errors as they occur. The user will 
normally be aware immediately if an error has occurred, perhaps the 
wrong choice of a macro, and this mode of operation provides a quick 
and efficient method of removing the error without the user needing to 
identify specifically the problem area. The editor simply searches 
the drawing backwards from the end of information until the correct 
data type is encountered, which is then removed. The operation is 
very fast if requested immediately because only a small part of the 
database need be searched, but is obviously unsuitable for deleting 
data from anywhere but the end of the drawing. 

Random search mode enables the appropriate data type to be located 
from anywhere within the database and be deleted. The user is 
requested to digitise a point which lies close to the data of interest 
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as it is projected in any of the views that are currently available. 
The editor uses this search pointer and locates the data that appears 
closest to that point, offering it up for deletion. On completion of 
the search the located data is displayed on the graphics screen for 
verification, and the user asked to press a button to indicate whether 
this is the correct data and that it is to be deleted, whether it is 
incorrect and the search procedure is to be repeated, or simply to 
verify again. Random search modes loop internally until specifically 
exited by the user issuing the appropriate button command. 

The above procedures may not be appropriate to some editing processes, 
particularly where a change of specification has rendered a large part 
of a drawing obsolete. It is obviously convenient to be able to 
delete this section on mass without considering how it is composed. A 
general editing function is available, based on selected data as 
described in section 5.6. The editor simply deletes from the drawing 
any data that is currently marked as selected, irrespective of its 
type and composition. Not only is this a very powerful editing 
facility, but it is extremely quick due to the way in which data is 
removed from the drawing when it is deleted. 

In earlier graphics systems the editors physically removed the deleted 
data from the workspace, which normally resulted in the complete 
database being rewritten, a lengthy and time consuming process if a 
big drawing is being created. The current editors do not remove the 
data, but simply mark it as deleted for removal at a later time, which 
will normally be done automatically by any other function that has 
need to rewrite the database, with no extra time penalty. To achieve 
this the data is transferred to drawing overlay zero, which is not 
normally available to the user and is always considered passive by the 
system. The overlay, being an indexed parameter, may be changed 
without reference to the main drawing file, since it is kept in a 
separate bulk core file, for which access times are almost negligable. 
This method has the added advantage that the editing process is not 
irreversible and under some circumstances deleted data may be 
recovered before it is lost entirely. 
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The above editors are designed principally to remove data from a 
drawing. A further set of editors exist to modify certain parameters 
associated with the data and do not result in any deletion. As has 
previously been stated, the data is stored with a number of additional 
associated parameters, principally the drawing overlay, pen number and 
line type. The values that are associated with a particular data type 
are those that are currently in force when the item is originally 
added to the database, and it is quite possible to accidentally enter 
an item with the wrong associated value. An obvious solution is to 
delete the item and redraw it, but under some circumstances, 
particularly where the item is complex and the error is not realised 
quickly, it is better to modify the incorrect parameter in the 
existing data. The facility exists to modify any of the above 3 
parameters independently, and is based on the user selecting data with 
the data selector described in section 5.6. As a typical example, 
changing the pen with which the drawing is to be produced, the user 
has the option of changing every pen number to one specific pen, or 
selectively changing one pen number to another, all within data that 
has previously been selected. This form of editing is slower than the 
deletion process described above since it involves rewriting sections 
of the database, and furthermore is irreversible, except by a 
complementary edit, since the original contents of the modified 
parameter are lost. 

One further editor exists, enabling any values within the database to 
be modified, using a fairly conventional interactive type process from 
the alphanumeric terminal. The use of this facility involves in depth 
understanding of the data structures used, and is therefore limited to 
programmers use, since by its very nature the user is not intended to 
know, or need to know, such details. The facility is useful for 
examining suspect areas, or patching problems that have arisen, but 
generally is rather slow in operation, requiring a command to change 
every parameter of every record, and is therefore of limited use. 
Furthermore, in the wrong hands it is very easy to corrupt the entire 
database beyond recovery. 
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The editing process will normally result in a change to the drawing, 
which can only be seen by the user when the drawing is redisplayed on 
the graphics screen. It has been found from experience that it is not 
always necessary for the drawing to be redisplayed immediately, since 
the user should be aware of the changes that have to be made. 
Furthermore, the redisplay process is very time consuming on a large 
drawing and progress can be very slow if this is performed frequently. 
To overcome this the system supports either automatic or manual 
redisplay modes, which may be selected by menu command. In automatic 
mode, which is active by default, the drawing is always redisplayed 
when a change is made. In manual mode no redisplay every occurs 
unless the user physically requests one, either explicitly or by 
implication, such as when changing the display window. The user is 
free to swap between modes at any time during the drawing process. 
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5.6 The Data Selector 

All early development systems at Imperial College suffered from, the 
inability to apply any graphical functions to anything but the whole 
database, or at best a predefined set of overlays that were currently 
marked as active. This meant that drawings needed very considerable 
forethought in order to split them into workable sections before they 
were input, and any unexpected changes could lead to difficulties. It 
was soon realised that in the commercial environment this would prove 
a disasterous burden and severely limit one of the systems most useful 
capabilities, that to apply modifications very efficiently to existing 
drawings. To overcome this the data selector described herein was 
developed. 

The data selector allows the user to identify specific parts of a 
drawing that are to be made available for consideration, irrespective 
of any other designations such as overlay, line type etc. In this way 
the user has complete flexibility over which parts of a drawing are 
affected by any of the graphical functions, since almost without 
exception these will operate only on data that has been previously 
selected. This is very fast since the select status of the drawing is 
the second of the indexed parameters described in section 4.5, and 
hence the time taken for any operation is roughly proportional to the 
amount of data that is selected and not to the overall size of the 
drawing. Graphical functions relying on selected data will normally 
expect the user to have previously selected any data of interest and 
will exit with an error message if this is not the case. 

Data that has been selected remains so until it is physically 
deselected by the user or by one of the graphical functions. A 
convention has been adopted whereby any function that operates on 
selected data will, by default, automatically deselect it after the 
operation is complete. This is important due to the cumulative 
operation of the selector, and if not the case could lead to the user 
applying subsequent functions on data which is no longer of interest. 
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For the experienced user this default may be overridden, whereby any 
selected data will remain so until specifically deselected from the 
menu. This can be very important where more than one function is 
necessary on the same data. For example, if a section of the drawing 
is to be duplicated at a different angle this is best performed as two 
operations, duplication at the same angle as the original followed by 
a rotation to required angle. It is obviously advantageous for the 
select status to be retained for the second operation, which would not 
be the case in the default mode of operation. 

For maximum flexibility the selector provides a number of different 
methods for the user to identify the required data, and functions in 
either select or de-select mode. The latter has been found by 
experience to be important since it enables the selection of awkward 
shaped or overlapping sections, allowing initial selection of a large 
area, then deselection of smaller sections within it. In addition the 
operation of the data selector is cumulative, as previously mentioned, 
allowing a number of different operations to be performed to build up 
the required selected data if this is not possible using one method 
alone. The methods currently provided for identifying data are as 
follows. Each description assumes that select mode, as opposed to de-
select mode, is currently in operation. 

a) Select Within a Digitised Boundary 

This option allows the user most flexibility and is by far the most 
powerful method for selecting data at random. The user simply 
digitises a boundary composed of up to 30 straight lines to surround 
the data of interest in any of the views that are currently defined. 
The selector then checks which data appears to fall within this 
boundary and marks it as selected. A certain amount of care must be 
exercised by the user when defining a boundary that intersects data 
items. The operation is fairly predictable when the boundary 
intersects simple lines, but may be less obvious when considering 
macros and symbols. In both cases these items form a complete entity 
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and so must be either selected in their entirety or not selected at 
all. The current implementation of the data selector will select the 
entire macro or symbol if it lies principally within the boundary and 
vice-versa. If in doubt the user can subsequently use the 'displayed 
selected data' command to verify the action that has been performed. 

b) Select Specific Overlays 

If effective use if made of the overlaying capability it will often be 
found that the information of interest is located on one or more known 
overlays. This option allows the user to specify that certain 
overlays are to be selected. The overlays of interest are specified 
numerically via the alphanumeric terminal. Overlays are selected 
irrespective of whether they are currently marked as active or 
passive, although in the latter case a warning message is issued to 
the user, since it is not normal for passive overlays to be affected 
by graphics functions. This is particularly important since select 
status takes precedence over overlay, either active or passive, and 
routines that manipulate selected data do not check on the overlay 
status, and so could produce unseen effects on passive overlays which 
will not be displayed on the graphics screen and hence may go 
unnoticed. This function, in conjunction with the general editor, is 
particularly useful for deleting whole overlays from a drawing. 

c) Select All Active Overlays 

A user is normally only aware of active overlays, so in the majority 
of cases this will appear as if it comprises the whole drawing, when 
in fact passive overlays may exist that are not affected. This option 
should normally be employed when it is necessary to select the whole 
drawing in order to avoid affecting passive overlays, and so producing 
the aforementioned spurious effects. 
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d) Select All' Passive Overlays 

This option is included for completeness and is complementary to the 
above option. In general it is very dangerous and should be used with 
great care, normally only for editing purposes. 

e) Select Entire Drawing 

This operation will select the entire drawing irrespective of any 
other designations and should be used with great care since passive 
overlays will be selected and may be affected by future graphics 
functions. This function is included for completeness and has limited 
use. A typical example may be to move the entire drawing to fit a 
different size or shape of paper from that for which it was originally 
intended• 

f) Select Particular Line, Symbol or Macro 

This section comprises three separate options which may be requested 
individually by the user but which are grouped together in this 
explanation since their functions are alike. Their mode of operation 
is similar to the random search editor functions described in section 
5.5, expecting the user to digitise near any projection of the items 
of interest. Unlike the editors the user may enter up to 50 different 
search points before any processing is attempted, using button F to 
terminate point input in the standard manner. A search is then made 
for the closest item, either line, symbol or macro depending on the 
mode, to each digitised points and that item marked as selected. The 
operation is very fast since only one pass is made through the 
database, and in conjunction with the general editor may provide a 
faster method of deleting a number of items from the drawing than 
repeated use of the standard editors. 
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8) Select Last Line, Symbol or Macro 

As under item f) this section describes three separate options since 
their functions are similar. Frequently the last item entered will be 
the one of interest for further processing, and these options allow 
the user a quick and simple method of selecting that item. For 
example, if the same macro appears a number of times on a drawing it , 
is faster to recall the macro once, select it as the last item, then 
duplicate it in the other positions, since this requires less input 
from the user and less processing than recalling the macro separately 
for each new location. 
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5.7 Data Transformations -

Discussion so far has centred around the problems of entering and 
deleting data from a drawing. Another class of operation altogether 
is data transformation, the modification of existing drawing data 
without entering or deleting any information. A typical example of 
this process would be the moving of one item of equipment to a 
different location. The data describing that item is modified in the 
workspace to reflect the new location. 

All data transformations are applied to selected data only, enabling 
the user to discriminate between those items that are of interest and 
the remainder of the drawing that is to remain unaffected. Data 
transformation routines always check to ensure that data has been 
preselected before attempting their operation to avoid needless 
computation, and issue an error message to the user if no selected 
data is found. These operations can normally be carried out very 
quickly by jumping through the drawing picking out items that have 
been selected without considering the remainder of the drawing. 

The TIGER system incorporates a large number of transformations, and 
no attempt will be made to describe each in detail. However, almost 
without exception every transformation is based on either a rotation, 
scaling, shifting, or a combination of the three. An understanding of 
the mechanism behind each of these transformations is adequate to 
enable the principles of more complex transformations to be deduced. 

5.7.1 Rotation 

The principles of rotation on a 2 dimensional surface are simple to 
deduce because there is effectively only one axis about which this 
rotation can take place, that is the axis perpendicular to the 
surface. From simple geometry it can be shown that, in matrix 
notation 
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Cos (e) 

-Sin (e) 

or alternatively TXR - X T 

Where 6 = angle of rotation 

X R or (X-pY-^) = the original point 

or ( ^ = t*le n e w l°cat:J-on of the point 
T = transformation matrix 

Furthermore it can be shown that compound transformations may be 
condensed into one transformation by multiplying together the 
transformation matrices, and the order in which this is done is not 
significant. 

In a similar way rotations in 3-D space may be described in matrix 
notation, although with inherent complications since there are now 
three axes about which rotation can take place. It is fairly evident 
that a rotation cannot simply be defined by specifying a rotation 
about individual axes, since the order in which those rotations are 
applied affect the final result. It is therefore necessary to define 
a convention for the order and direction of rotation before any three 
dimensional transformation can be considered. The system adopted is 
the conventional right handed set of othogonal axes as shown in figure 
5.5. If the X-Y plane is considered to lie flat in front of the 
observer with the Y axis vertical, the Z axis is always positive in 
the direction towards the observer. Angles of rotation are in the 
'right handed corkscrew' convention, i.e. when looking along any axis 
in a positive direction from the origin clockwise rotations are 
defined by positive angles. In order to avoid confusions, compound 
rotations are always applied about the X, Y and Z axes in that order, 
each of which may be defined separately by the simple two dimensional 
transformation described above. 

Sin (9) 

Cos (9) 
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Figure 5.5 Conventional right handed orthogonal axis representation 
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When applying any transformation to the drawing data a number of 
problems may be encountered. Little problem exists with simple 
straight line data that has been input from the digitiser, but a 
number of problems may be encountered with symbols and macros. As 
described in Chapter 4, the first and last record of both of these 
items contain their low and high limits in space, i.e., they define 
the bounding cuboid. It is fairly evident that if the object is 
rotated it is not adequate to rotate these limits, since they will not 
result in the corners of the new bounding cuboid. It is therefore 
necessary to reevaluate the limits based on the new orientation of 
this object. This function was described under section 5.3, and may 
be achieved either by calling the appropriate symbol task, or by 
including the symbol tasks re-evaluation overlay within the body of 
the transformation routine. The latter process is normally adopted 
due to its greater speed and efficiency. Furthermore a symbol block 
may contain both positional data and numeric data. For example, a 
block defining a polygon contains co-ordinates defining its position, 
and a numeric value defining the number of sides. It is important 
that the transformation is applied only to the positional information, 
and not to any other types. This is achieved by allocating standard I 
codes that are recognised by all graphics routines. For example, a 
positional record must bear an I code of 1 or 2, and a data record one 
of 5. In general, transformation routines ignore codes of greater 
than 3 and so do not corrupt data records. Furthermore, in order that 
symbol blocks can be manipulated by routines that do not know their 
exact structure they must define both their location and orientation 
by means of 3-D co-ordinates alone, so that when a rotation is 
performed any angles that may apply to that symbol block will be 
correctly updated. 

The TIGER system supplies a number of standard Fortran callable 
subroutines to perform rotations in 3 dimensions, so freeing the 
casual programmer to a large extent from the need to worry about the 
conventions outlined above. 
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5.7.2 Translation 

Translation is the simplest transformation and carries with it very 
few of the problems outlined under the above section. Since the 
orientation of data is not changed the limits on symbols and macros 
may be updated in exactly the same way as normal positional records, 
i.e. by adding the appropriate shifts on each axis. There is 
therefore no need to include the logic to reevaluate them completely 
or request the symbol task to do so. Similar arguments apply to the 
records within a symbol block and the I codes associated with them. 

5.7.3 Scaling 

The last of the three basic transformations is scaling, which, 
although slightly more complex than translation, is still simple in 
concept. Scaling, or the changing of an objects size, can be defined 
by a scale factor and a reference point about which the object is to 
be scaled. The need for this point may not be immediately apparent, 
but is necessary if the location of the object is to be determined 
correctly after the transformation has been applied. If, for example, 
the coordinates of an object are multiplied by 2, the scale factor, 
the object will not only finish up twice its original size, but also 
twice the distance from the origin of co-ordinates. The final 
location of the object can be controlled exactly by specifying a 
reference point which will lie at the same position both before and 
after the transformation. This point is sometimes referred to as a 
relative origin. Providing the conventions outlined in section 5.7.1 
are obeyed the operation can normally be carried out correctly without 
recourse to the symbol task itself since the limits will remain valid 
if scaled, and correctly assigned I codes should allow the scaling 
routine to apply the correct changes to the data records. 
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5.8 Two Dimensional Operations 

Although a fully three dimensional capability was the principal aim of 
the project it is recognised that a large number of drawings produced 
by most companies are of a purely two dimensional nature, such as flow 
diagrams, and even fully 3-D drawings contain large quantities of 
essentially two dimensional information in the form of annotation. A 
number of special facilities exist to provide the necessary functions. 

5.8.1 2-D Mode 

In effect, there is no reason why a two dimensional drawing cannot be 
produced using the full three dimensional system with only one view 
enabled and the third coordinate being ignored. In practice, this can 
lead to confusion and burden the user with unnecessary complications 
and requests to perform redundant operations. For example, to input a 
polygon the user must digitise the centre and one vertex point. In 
two dimensions this is adequate information to fully define the 
location, but in three dimensions a third point is necessary to obtain 
an orientation in space, since two points will only define an infinite 
family of planes containing their interconnecting line. To overcome 
this a pseudo mode, known as 2-D mode, may be selected at the users 
discretion. This is not a true mode since the full 3-D database is 
still used, the complications involved in using a condensed form of 
the database being considered prohibitive. In effect, implementing 
2-D mode merely modifies the views defined, to cover the entire 
digitiser with one X-Y view, and sets a flag within the resident area 
to indicate that 2-D mode is in operation. This flag is tested by a 
large number of the tasks, and slightly different messages output or 
operations performed depending on its setting. Additionally, some 
functions, such as the use of button 3 in background mode (to set the 
trailing coordinate), are prohibited. With 2-D mode in operation the 
user is completely unaware of the 3-D capability of the system. 
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5.8.2 Annotation 

As indicated above annotation is a two dimensioned function common to 
both three and two dimensional drawings. Most annotation consists of 
special symbols such as arrows, dimensions and text, but may in 
general consist of most graphical items, these being distinguished 
from normal drawing data by the setting of the display control flag 
described in section 5.2.3. The system currently provides a number of 
special annotation methods as outlined below. 

a) Arrows and Pointers 

Arrow heads and pointers figure prominently on most engineering 
drawings and a quick and simple method of entering them is essential. 
At first glance it may appear that this can be achieved using the 
macro facility, but this is impractical since they must vary in shape, 
having differently proportioned heads, different length tails, etc. 
This is therefore achieved by treating arrows as symbols and entering 
them according to preset parameters and points digitised by the user. 
Figure 5.6 shows the parameters that may be varied and a selection of 
typical arrows that result• 

b) Dimensions 

Many types of engineering drawings carry dimensions and it is 
essential that they can be added without the need to draw them from 
their constituent parts each time. Due to their variations in shape 
and form they are constructed in a similar manner to the above arrows 
from a number of predefined parameters and user digitised points • On 
orthogonal views dimensions are constructed between two digitised 
points with the double headed arrow running through a third digitised 
point, either vertically, horizontally, or parallel to the line 
between the first two points. In isometric projections the dimensions 
run parallel to one of the orthogonal axes, and appear to be in a 
major plane specified by the user. By using the find facility the 
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first two points may be made coincident with any existing points on 
the drawing to give accurate dimensions. The user may optionally 
allow the system to compute the correct dimension from the co-
ordinates, or enter the value to be used manually, which is important 
if the drawing is not to an accurate scale, which is often the case. 
Figure 5.7 shows some typical examples of dimensioning. 

c) Text 

Text is probably the most common type of annotation and appears in 
some form on every drawing produced, but differs from other forms of 
annotation in that it has no graphical content. A number of different 
parameters exist to define the format of text, namely the character 
height and aspect ratio, character set or font, and the direction in 
which it is written. The conventional method of entering text was to 
define the above parameters manually, which were stored in the common 
area and remained until changed again, then request either right, left 
or centre justified text from the menu. This prompted the user to 
digitise a reference point to indicate the required position on the 
drawing, then type the text on the alphanumeric terminal. The above 
process suffers from a number of drawbacks, and a more efficient 
method was sought• Firstly, the user is obliged to turn repeatedly 
from the digitiser to the terminal and back when entering multiple 
blocks of text, and secondly the speed of operation is entirely 
dependant on the draftsman's skill on the typewriter keyboard. 
Obviously it is unreasonable to expect all users to be proficient 
typists, and the time required to enter large quantities of text can 
be quite considerable. An obvious solution to both these problems is 
to have all the necessary text and commands in a file that the user 
can call up from the graphics workstation. It is then merely 
necessary to digitise the location of each text block as it is offered 
up. Furthermore, this file may be entered from any standard computer 
terminal and by anybody, so the process does not monopolise a 
workstation, and can easily be done by someone of secretarial grade 
who is a proficient typist. To this end the following specification 
was devised. 
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The instruction file consists of blocks of text interspersed with 
commands to set the various parameters, text blocks being logically 
seperated by one or more commands. Any line that starts with an 
character is assumed to be a command, any other line part of a text 
block (except lines starting '**' which are taken as a text block 
starting with a single character). The character following the 

indicates the exact command, and any characters following the next 
space are taken as a qualifier, either a text string or numeric values 
depending on the command. Any characters between the command 
identifying character and the space are ignored. For example the 
command: 

*HEIGHT 3.5 or *H 3.5 

resets the default character height to 3.5mm. In this implementation 
the following commands are recognised, the examples showing typical 
values where applicable: 

*A 1.2 set aspect ratio 
*C switch to centre justification 
*D 90.0 set text angle, degrees 
*F set character font 
*H 3.5 set text height, millimetres 
*L switch to left justification 
*P 2 change to specified pen 
*R switch to right justification 

Although text blocks may be logically separated by any of the above 
commands it has been made a convention that either C, L or R is used 
since this bears greatest similarity to the manual method and is least 
likely to cause confusion. In addition, these commands may be 
suffixed with a repeat count "following a / character which is applied 
to the next text block encountered. Furthermore, any character 
encountered in the text block is replaced with the current value of 
the repeat index. Legal forms for repeat commands are:-
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*c/5 
*c/2,9 repeat 8 times with index 

values from 2 to 9 inclusive 

repeat next block 5 times 

* c / 3 , 1 5 , 2 repeat with index values from 
3 to 1 5 increasing by 2 each 
block 

*c/b,q repeat block and substitute 
characters B, C, D up to Q in 
successive blocks 

In character string substitution each '#' is replaced by the 
character. For numeric substitution a single is substituted for 
the decimal value of the number and the string expanded accordingly. 
A block of consecutive '#'s is substituted for one number with leading 
spaces if necessary and leftmost digits omitted if the space is 
inadequate. The following examples illustrate this process. 

Command file Resultant text blocks 

*c/3 
mc # 
mm m 

mci 
mm 1 

mc2 
mm 2 

mc3 
mm 3 

*C/9,11 
TYPE # VALVE : TYPE 9 VALVE 

TYPE 10 VALVE 

TYPE 11 VALVE 
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*C/A,C 
SIZE # PAPER SIZE A PAPER 

SIZE B PAPER 

SIZE C PAPER 

Figure 5.8 illustrates a simple drawing and an example of the command 
file used to insert the text. 

When the user calls for a text file from the workstation the system 
first processes this file into a direct access scratch file. While 
reading the file this preprocessor recognises a line starting with an 
'(§' character as a request to start reading another file, the name of 
which follows the f@' symbol. Output continues from this file until 
logical end of file is detected, when it resumes after the ' line in 
the previous file. It is the scratch file that is used and modified 
by the graphics system during the entry of text from the digitiser. 
Throughout this process the buttons on the stylus obey their normal 
background mode assignments, except button 2 which skips the current 
block on offer and does not enter it on the drawing, and button C 
which terminates the process entirely in an orderly manner. After the 
last block the system checks whether any blocks have been skipped and 
optionally returns to them. 

The format in which the text is stored in the database is identical to 
the blocks created by the manual method, which is still available if 
required, and so may be edited, shifted, etc., in exactly the same 
way. 

5.8.3 Transformations Involving Annotation 

On a fully three dimensional drawing where true three dimensional 
information and annotation exist together a certain amount of care has 
to be exercised to ensure that both are handled logically when certain 
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graphics functions are used. The process of shifting an item on a 
drawing from one location to another is a good example of this. The 
user identifies the items to be shifted by using one of the select 
functions, enters the three dimensional shifts required, and the item 
is subsequently shifted in 3-D space. This will result in it assuming 
different projections in any views that are currently being displayed. 
It is possible that the user will have already annotated one view 
with, perhaps, dimensions and a title, and it is obviously desireable 
that this information is shifted on equivalent amount to match up with 
the new projection. This is achieved automatically providing the user 
ensures that this annotation has been selected along with the 3-D 
item. In this example, wherever selected annotation is encountered 
the software determines over which view it lies, and computes, for 
that view, an apparent 2-D shift equivalent to the 3-D shift that is 
being applied to the main drawing data. By applying this shift to the 
annotation its positional relationship to the main drawing is 
maintained. Obviously, if annotation has been added to more than one 
projection of the item this will have to be selected in every 
appropriate view in order that it is all shifted correctly. This may 
be achieved by multiple use of the select function, taking advantage 
of its cumulative mode of operation. 

1 5 4 



5.9 The Plotting Process 

At both Balfour Beatty and Imperial College flat bed type plotters, as 
described in Chapter 3, have been employed, in the former case the CIL 
4/74, and at the latter models that were developed at the college. 
Indeed a small part of this project was to develop the software to 
drive a flat bed plotter on line to a PDP 11, and is described in 
Appendix A. This plotter suffered from the disadvantage that 
continuous monitoring by the computer was necessary, which would only 
be practical under the single user operating sysem. For multi-user 
operation a different approach is necessary, and to this end a 
microprocessor controlled plotter was developed as a separate project. 
Work is currently in progress to integrate this with the TIGER system 
to enable its use on line under the RSX-11M operating system. 

For reasons explained later the plotting process is best split into 
two distinct stages. 

5.9.1 Requesting a Plot 

A plot of the current drawing may be requested at any time during the 
drawing process, although users should be aware that plotting is a 
time consuming and hence expensive operation that should only be 
carried out when absolutely necessary, normally when a drawing, or 
modifications to a drawing, are complete and a new 'master' copy is 
required. 

The plotting process is initiated by menu command allows the drawing 
that is currently in the workspace to be plotted. If it is necessary 
to plot a drawing that is currently on file that drawing must first be 
recalled to the workspace. This may be seen as a limitation, and is 
indeed the subject of further thought, but is currently necessary if 
the user is to be able to provide the information that is needed. 
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In a large drawing office the draughtsman is unlikely to be able to 
supervise the plotting of his drawing, so at this stage he must 
provide all the information that is necessary for the operator to load 
the correct paper type and size, pens etc. The initial stage of 
requesting a plot is a short question and answer session on the 
alphanumeric terminal, during which the draughtsman is able to specify 
these parameters. He will then be expected to digitise a point on the 
drawing that will correspond to the bottom left hand corner of the 
paper on the final plot. By specifying this point during the plotting 
process rather than at the start of the drawing the maximum 
flexibility is achieved to cope with changes of specification or 
layout that have occurred. This feature may be used in conjunction 
with variations in the plotting scale factor to adapt drawings to fit 
different sizes of paper. When the user has supplied all the 
necessary information and confirmed that all questions have been 
answered to his satisfaction the system processes the drawing and 
produces a file of the commands necessary for the plotter. The user 
may then continue drawing since this file is handled independently by 
the second stage of the plotting process. An attempt has been made in 
the graphics software to use what has become known as 'Calcomp 
Compatible' subroutine calls to generate the plot commands. Most 
plotter manufacturers distribute a library of such subroutines 
tailored to their particular machine, and the system can therefore be 
made to generate plot files for different machines merely by building 
the plotting tasks to access the required set of subroutines with 
little or no changes to the main code. 

5.9.2 The Plot File Despooler 

The on-line operation of the plotter under the single user operating 
system meant that no further work could be done while the plotter was 
operating. This is obviously a grossly inefficient method which had 
to be avoided for the multi-user system. The multi-tasking capability 
of RSX-11M enables the plotter to run on-line in parallel with any 
other tasks, which overcomes the above problem but introduces a number 
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of others not previously encountered. There is no way of predicting 
if and when a user will request a plot, and it is possible for this to 
happen while the plotter is still outputting a previous drawing. It 
is therefore necessary to introduce a queuing system where plot 
requests are honoured only when the plotter becomes free. This 
principle is well known in most computer applications as applied to 
line printer output, and is generally known as 'spooling' (Shared 
peripheral ^Operation C[ii _Line). The system developed for plotting is 
of necessity slightly more complex than that for a printer because a 
certain amount of operator intervention is necessary, and information 
is not only passed to the plotter but also back from the plotter to 
the computer. The system that has been developed is as follows. 

When the user requests a plot the information that would normally be 
sent to the plotter is instead placed in a file and a reference to 
that file placed in a master plot queue index file. Each entry in the 
index file contains not only this reference to the associated plot 
file, but information about the size and type of paper requested, and 
all other parameters specified by the user when the plot was 
requested. An independant despooling task is run by the operator to 
examine this index file and plot any drawings that have been queued, 
when the plotter next becomes free. The despooler task normally takes 
entries from the queue on a 'first-in-first-out' basis, but the 
operator may override this if need be, perhaps when an important 
drawing some way down the queue is required urgently. Similarly, 
entries may be deleted from the queue, information about entries in 
the queue obtained etc. At the end of each plot the operator must 
confirm whether the drawing is satisfactory before the entry is 
deleted from the queue. This is necessary because it is possible for 
one of the pens to have run out of ink unexpectedly, or some other 
problem to have arisen which necessitates the plot being repeated. In 
the normal mode of operation the despooler will automatically inform 
the operator of the pens and paper to be used for the next plot and 
then wait until told the plotter is ready before starting the plot. 
The process is repeated until the plot queue becomes empty, or the 
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operator specifically asks for it to be terminated. Since the queue 
is held on disk it is possible for drawings to be waiting overnight 
when the machine is powered down, and the queue does not get lost in 
the event of a sudden failure of any description. Different types of 
plotter can be accomodated with very little change to the despooler, 
since the actual plot data is generated as part of the graphics 
systems, and the despooler merely reads the commands and sends them to 
the plotter without attempting any interpretation. 
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5.10 Long Term Drawing Storage 

In designing a filing system by which drawings may be stored in either 
a complete or semi complete form a number of factors must be taken 
into consideration. Not least, the file must contain sufficient 
information to fully describe the drawing, which in a system such as 
this includes not only the basic 3-D database, but also the relevant 
views, scale factors etc. that are in operation. Furthermore, in a 
system that is undergoing constant development it is important that 
the structure adopted should be able to handle future expansion or 
changes without existing drawings becoming incompatible and so 
unretrievable. 

It was recognised that in the production system it would be necessary 
to have two levels of filing, a fast access but essentially temporary 
system for drawings that are undergoing modification, and a slower 
access 'archive1 type system for drawings that have been finished but 
must be stored for future reference. In theory there is no need to 
make any distinction between the two requirements, but for economic 
and space considerations it is convenient to use two different 
approaches. 

5.10.1 Fast Access Semi-Permanent Files 

High speed access to files at random necessitates the use of disk 
storage, since the only other convenient bulk storage medium, magtape, 
functions on a sequential access principle and can be very slow at 
retrieving information close to the end of the tape. 

In the current system a drawing is identified by its Drawing Number 
which, contary to its title, may consist of any character string of up 
22 characters in length, this being two more than the maximum 
anticipated. It is this number that the draughtsman will use to 
recall the required drawing from storage. In order to locate the 
drawing quickly an index file separate from the main drawing files is 
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maintained which contains general information about the drawing such 
as when it was saved and by whom, how many times it has been accessed 
etc. In addition the index file contains a correlation between the 
drawing number and an internal sequence number used to identify the 
main drawing file, the name of which is derived from this number. 
During the recall process the system can quickly find the correct file 
from the index and read it without reference to any other drawing 
files. 

The drawing file itself contains a number of pieces of information 
about the drawing which are decoded on its recall. Starting from the 
first block all the relevant system information about scale factors 
etc. is stored, with pointers to indicate appropriate locations. This 
is followed by a copy of the indexed parameters and finally the basic 
3-D database. The overall size of the file is obviously dependant on 
the complexity of the drawing. 

A number of facilities are available to the user in addition to the 
basic saving and retrieval of drawings. These include the output of a 
directory listing showing all the files currently in store and the 
ability to delete selected drawings. The latter process has a built 
in protection feature in that a drawing may only be deleted if the 
current users name matches the name recorded when the drawing was 
saved. For obvious reasons this may be overridden by users with 
appropriate privilege status. An index file is stored on a data pack 
and will only indicate which drawings are available on that particular 
pack. In this way different packs may be used for different projects 
and users only have access to the drawings appertaining to their 
particular project. An operator function allows differing disk drives 
to be assigned to each user station depending on the packs available 
or required. 

This approach differs considerably from earlier solutions to the 
problem in a number of ways. The indexing capability has been 
expanded to allow identification by drawing number as opposed to a 
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simple serial number from 1 upwards and further information about 
ownership and access has been included. In the early systems all 
drawings and the index were kept in the same file, the index occupying 
the first few blocks and indicating at which block within the file 
each drawing started and ended. This method is limited in that the 
index is of a fixed length and can only contain a predefined number of 
entries, and it was necessary to preallocate the file to a given size, 
this limiting the number and size of drawings that could be saved. 
These limitations were considered unacceptable within the commercial 
environment, therefore necessitating the development of the current 
approach whereby any number of drawings of any size may be handled, 
the only limit being the space available on the pack. Furthermore, 
the new system has distinct advantages over the old when archiving 
becomes necessary, as outlined below. 

5.10.2 Archive Storage 

The archiving procedure is intended for drawings which have been 
completed and may not require access for a considerable length of 
time. To keep such drawings on disk would obviously be advantageous 
since they could be accessed quickly, but there are a number of 
reasons why this is not the best solution. A disk pack may be 
physically very large, and storage becomes a problem when considerable 
numbers are involved. Furthermore, disk packs are very expensive and 
it does not make economic sense to tie up large numbers of packs in 
this way. A far better solution is to use magnetic tapes since these 
are very much cheaper than disk packs, a cost per byte ratio may be as 
much as 20:1, and they are considerably smaller than the average disk 
pack. They do however suffer from a number of limitations. Unlike a 
disk a magnetic tape is a sequential device and it is necessary to 
read right through a tape to access files some way from the start. 
The time penalty for this is obvious. Furthermore, it is very easy to 
delete or add files on disk, but on tape deletion is impossible and 
files must always be added to the end of the information currently on 
the tape. It is therefore obvious that when a drawing is to be 
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archived the user should be certain that it will not be updated again 
shortly. 

The archiving routine functions in much the same way as the operation 
previously explained for short term shortage, with the exception of 
the index file handling. It is not possible to keep the index file on 
the tape in the same way it is kept on disk because it is subject to 
continuous updates and extension, which cannot be accommodated on 
tape. Instead, the index files for all tapes are kept on the system 
disk and additionally contain the label of the tape on which the 
drawing is kept. Using this principle the system can very quickly 
determine which tape must be loaded to retrieve a particular drawing, 
the file format for which is identical to that used on disk. An 
alternative approach would have been to add futher information to each 
drawing file and scrap the index file. This would result in an 
inherently slower system where it would undoubtedly be quickest to 
maintain a manual indexing system. Most companies maintain a register 
of all drawings currently in their possession, the conventional 
approach being a card index system. There is ample scope for 
computerising this procedure and the archiving system represents the 
first stage of such an operation. The computer has on file a list of 
all drawing currently stored, and it is a fairly straightforward 
matter to expand this to include all the information and features 
necessary for a fully computerised drawing registry. This development 
is discussed in greater detail in Chapter 7. 

Unlike the disk filing system, the archiving procedure is purely an 
operator function and cannot be initiated from a user station. This 
is considered essential since a considerable amount of operator 
intervention in loading the correct tape is required and the process 
may take some time to complete, particularly if a tape drive is not 
currently free. Furthermore, a decision as to whether a drawing is 
complete and to be archived will probably not be made by the 
draughtsman but by an engineer who will generally not be familiar with 
the operation of the graphics system. 
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5.10.3 Other Filing Systems 

Magnetic filing systems such as those previously described are 
renowned for compatability problems when transferring information from 
one computer to another, particularly one from a different 
manufacturer. They are, however, very efficient in that packing 
density is high and large quantities of information can be 
accommodated, and it is not feasible to consider storing drawings as a 
matter of course on any other medium. The graphics system will allow 
a drawing database to both input and output in card image format, 
albeit very large and inefficient, on any device the user choses, 
making it possible to transfer data on, say, paper tape, with a better 
likelyhood of compatability. The use of this facility is to be 
discouraged at all costs I 
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5.11 Error Processing and Recovery 

A function that was all too frequently overlooked in early development 
systems was the detection and correction of errors of all types. 
Error recovery was of little consequence in experimental situations 
which could normally be restarted by an operator experienced with the 
software and able to correct manually any unexpected situations, such 
as locked files, that may result, and in any case it was rare that 
valuable data would be lost. It was recognised that in the commercial 
environment the users would be draughtsmen with little or no computer 
knowledge who would be unable to attempt such corrections and 
furthermore would be handling valuable data, so a comprehensive and 
automatic recovery system must be incorporated. Problems normally 
result from two eventualities, operator errors or system failures. 
The way in which such situations are handled differ considerably from 
one another. 

5.11.1 Operator Errors 

These error conditions normally result from the user doing the wrong 
thing at the wrong time, and are normally detected by the appropriate 
graphics tasks and remedial action taken locally. As such they may be 
categorised as 'soft' errors; ones that have no harmful effect on the 
system and that can be easily overcome. A complex graphics system has 
hundreds of such situations, and for the convenience of the programmer 
a special error message issuing task is available, allowing common 
messages to be shared by different tasks and obviating the need for 
each task to contain error messages locally. The error task is 
normally run in parallel with the task requesting the message since it 
is small and speed of response is important. Each error message is 
originally entered by the user, along with the number by which it is 
to be known, in a text file containing all the error messages and 
grouped purely for the programmer convenience. This file may contain 
comment lines starting with a ';' character which are ignored by the 
system. Before this file can be used by the error message task it is 
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preprocessed by a special utility routine into a direct access binary 
file with each message occupying one record, the record number 
corresponding exactly to the message number. In this way the error 
message processor can quickly obtain the correct message and output it 
on the alphanumeric terminal, appending a bell character to attract 
the user attention. Four special characters are currently recognised 
as part of each message that cause the processor to substitute values 
into the message before it is output. If values are to be substituted 
they must be passed to the task as part of the mapping process 
described in section 4.2.2. Each time a substitution character is 
encountered the next of the values passed is used for substitution. 
The characters currently recognised are:-

# - Convert the next value to a signed decimal number and 
substitute in the message it this point. 

$ - Convert the next value to an unsigned octal number and 
substitute in the message at this point. 

% - Take the next value, treat it as a RADIX-50 character string 
and substitute the 3 characters in the message at this 
point. (RADIX-50 is a DEC subset of the ASCII character set 
allowing 3 characters to be stored in one word rather than 
the normal 2). 

In addition, a message may be terminated with an '@n' string, where 
'n' is another legal message number, causing that message to be 
automatically output after the current message. A common use of this 
facility is to append a message such as 'DO NOT PROCEED FURTHER 
WITHOUT ADVICE' to a number of the more serious error condition 
messages. For example, an error message is stored as:-

OPTION NO. # NOT AVAILABLE, USE #050 
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If the values passed are 7 and 3 respectively, the following messages 
will result on the users terminal 

OPTION NO. 7 NOT AVAILABLE, USE 3 - original message 
THIS OPTION WILL BE ADDED SHORTLY - message No. 50. 

The error message task makes no attempt to effect error recovery, 
which is left up to the task which initially detected it. 

5.11.2 System Failures 

A system failure will normally result from a program error that causes 
an unexpected crash, or some form of hardware failure. It is 
obviously hoped that these will be minimal, but the former must be 
expected all the time new functions are being developed, and in both 
cases the best recovery possible must be attempted in order to 
preserve valuable work. The structure of the graphics system dictates 
that every task must request that the next task in the excution queue 
be run before it exits in order that control may be passed between 
tasks. Obviously if a task exits unexpectedly for some reason this 
process will not occur and the graphics system will effectively cease 
to function. In early systems the user had no option but to log back 
on and try again, but this situation is now recoverable due to the 
action of background mode. Under section 5.2 it was explained that 
background mode does not exit, even when control is passed to another 
task, but instead passes into a state where every 5 seconds it checks 
that the graphics is still functioning correctly. Basically this 
involves checking that some task, other than itself, is still running 
for this user station. If no other tasks are found, to be running a 
crash of some sort has obviously occurred and the system crash 
recovery task is started by background mode. This task performs a 
number of functions such as ensuring that none of the random access 
files has been left in a locked state, which results from a task 
opening the file to write into it and exiting or crashing without 
closing the file properly. A large number of system parameters and 
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flags, such as the symbol mode flag, are reset to their correct state, 
the task execution queue is cleared and the workspace checked for 
integrity to ensure that the indices have not been lost and the input 
pointer is left set at the correct position, i.e. the current logical 
end of file. In the majority if cases a recovery is possible and 
control is returned to the user in normal background mode. If not, 
the system is shut down and the user invited to log on again. It is 
anticipated that in a future version where periodic automatic backup 
of the workspace is implemented the user will be given the option of 
returning to the state that existed at the last backup if a full 
recovery is not possible. 

In order to assist program development every failure of this type 
generates a crash dump containing a full octal dump of the resident 
common area and a number of pieces of information about other aspects 
of the state of the system when the crash occurred. This dump is 
written into a special file which may be listed later if required. In 
addition a message is sent to the console terminal, normally assigned 
to the terminal in the computer room, reporting the crash in order 
that computer staff are aware of the occurrance. 
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5.12 Help"Mode 

Although a comprehensive user manual is currently in preparation which 
expains every function in detail it is often useful to have 'on line' 
help which is available immediately and without the need to search 
through the manual, particularly in instances where the basics of a 
command are known, but the user has forgotten one or two details. 
This function is fulfilled by help mode, which like most other modes 
is initiated by menu command. When in help mode the user is expected 
to digitise over a menu command for which assistance is required. A 
short explanation of that command is then displayed on the 
alphanumeric terminal. This will not be as comprehensive as that in 
the manual, but contains all the main points. Help mode remains 
active until the user explicitly cancels it by pressing button C. 
Until this is done all buttons are passed directly to 'help' and no 
other commands can be issued. 

The data for lielp mode must have previously been entered by the 
programmer into an appropriately named file, based on the task number. 
These files are current called 'Tnnnnn.TXT', where nnnnn is the task 
number without leading zeros. The text in the file is subdivided into 
sections by lines starting with an *, where each section corresponds 
to an entry point of the task. The appropriate section is read from 
the file and displayed on the graphics screen for each help request. 
Any data preceeding the first * is assumed to be title information and 
is output for every entry point. This is illustrated in the following 
example 

This is a title which is always output 
*1 
This is the information about entry point 1 
*2 
This is the information about entry point 2 
*3 
This is about entry point 3 
etc. 
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5.13 Logging Off 

In order to terminate a graphics session the user must log off, so 
releasing the workstation and the resources used for the next person. 
The log off procedure performs a number of internal functions, such as 
deleting any temporary files that have been allocated during the 
drawing process. This effectively destroys the drawing that is 
currently held in the workspace, and to avoid any accidental loss of 
data the log off procedure reminds the user of this fact and asks for 
confirmation. If the user indicates that drawing is to continue 
background mode is restored, otherwise the system is shut down. The 
graphics system maintains an accounts file containing information 
about every drawing session, the information being added to this file 
at log off time, since one entry is the duration of the session which 
obviously cannot be entered at log on time, when the other information 
is established. 

When log off is complete the shut down task exits without starting any 
further tasks. In order that this is not interpreted as a system 
crash by background mode a special flag in the resident area is set to 
indicate that the user has actually logged off. This flag is detected 
by background mode, and any other task which may be running in 
parallel, in order that they too may exit correctly. 
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6.0 TYPICAL EXAMPLES OF PRODUCTION DRAWINGS 

The following sections illustrate examples of typical drawings that 
have been produced using the TIGER graphics system. In all but one 
case, section 6.6, these are genuine production drawings, although all 
have had their titles altered or removed to protect the anonimity of 
the respective clients. 

It is regretted that the detail is difficult to discern on some 
examples, but this is as a consequence of reducing them from either Al 
or AO size to fit A4 pages, and is not a shortcoming on the original 
drawings. 

A number of examples are of a purely 2 dimensional nature, or not of a 
truely mechanical engineering discipline. No apology is made for 
their inclusion since they represent an important part of the 
development and use of TIGER, and are based on many of the concepts 
evolved for the 3 dimensional mechanical engineering work. 
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6.1 Power Station Switchgear 

This example is included partly for historical reasons in that it was 
the first production drawing to be completed. As such it is not one 
of the neatest drawings available and the hours spent drawing it are 
best forgotten! It does however show a good degree of repetition, 
and brought to light the need for a 'text input from a file' facility, 
which was subsequently incorperated. 
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6.2 A Town Plan 

Figure 6.2(i) shows a map of a town in the middle east and was used as 
the basis of a suite of drawings, each depicting one of a number of 
different services, such as raw water supply and sewage. This 
illustrates well the use of the overlay system. The basic map was 
drawn on one overlay, and each individual service on a separate 
overlay, of which figure 6.2(ii) is an example. By activating 
specific combinations of overlays a number of composite drawings were 
produced. 

Had it not been for the need to produce such a suite of drawings this 
particular drawing would not have lent itself well to CAD. The 
drawing is very irregular and totally non-repetitive, so denying the 
draftsman the opportunity to capitalise on the facilities to duplicate 
common sections, work to a grid etc.. It is estimated that the time 
taken to produce the master map was very little different from the 
manual method, but the need to produce a number of variations made the 
use of CAD a worthwhile proposition. 
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Figure 6.2(ii) A Typical Service Overlay 



6.3 Isolator Schematic 

This electrical diagram shows the isolator switchgear and indicators 
for the 275KV Bus in a power substation. This drawing is extremely 
well suited to CAD in that there is a large amount of repetition and 
use of standard macros, and furthermore it is one of a suite of 
similar drawings containing many common features. Use has been made 
of the grid facility to aid a neat and regular layout 
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6.4 Fuel Gas Flow Diagram 

This example is a true mechanical engineering drawing, albeit of a 2 
dimensional nature, and is an EFD (Engineering Flow Diagram) 
illustrating distribution of high pressure fuel gas in a power 
station. It is fairly repetitive, notice the centre section showing 
two tanks in an almost identical configuration, and the bottom right 
showing five similar continuations on other sheets. This drawing 
also contains a high proportion of dotted lines, which are very much 
quicker and neater when drawn by the computer than any draftsman could 
hope to achieve. Differing line thicknesses have been incorperated, 
making use of all four pens, although when reduced from the original 
Al drawing this becomes difficult to discern. 
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6.5 Piping Isometric 

This drawing is typical of thousands of its type and illustrates in 
isometric projection a short section of a pipe network. This type of 
drawing is frequently used on site during the construction process. 

Although this drawing is truely 3 dimensional each element of it is 
shown in 2 dimensions; the pipe is shown by centre line only and 
valves are drawn flat. This is not a shortcoming of the system, 
which is capable of solid type illustrations, but merely a convention 
adopted by this, and many other, companies. Furthermore, it is not 
•to an exact scale, some of the longer piperuns having been truncated 
to make a more convenient shape drawing. This is common practice, 
but does mean that any form of automatic dimensioning or material take 
off are difficult to implement. This example shows three essentially 
similar branches, enabling the draftsman to use duplication to good 
effect. 

Drawings such as this are essentially the only type of 3 dimensional 
drawing currently in everyday use within Balfour Beatty, and are 
therefore an important consideration when configuring a graphics 
system. It is anticipated that experience will lead to greater use 
of 3-D in visualising piperuns, checking for clashes etc., and for 
obtaining overall views of an installation for nothing more than 
aesthetic reasons. 
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6.6 Pedestal Bearing 

This example does not show a production drawing from Balfour Beatty 
since it illustrates a subject outside their line of work. 

This is a drawing of the components of a bearing in an exploded form, 
and differs from the previous example in that it shows a solid object, 
albeit in transparent form with no hidden line elimination. This 
drawing illustrates well how a number of different views of an object 
can be generated from the same 3 dimensional data, and how the 
addition of 2. dimensional information, such as text and dimensions, 
turns these projections into a complete engineering drawing. 
Furthermore, it shows how different views may be allocated to give the 
desired layout. The elevation is built up of four different views, 
each showing part of the assembly, to enable their relative positions 
to be different from the isometric projection, the latter also being 
shown at three quarters scale. 

1 8 2 



PLRN 

00 
CO 

ELEVATION 

BEARING CAP 
RETAINING 
BOLTS 

BEARING 
CAP 

BEARING 
STCLL 

BASEPLATE 

2 > ) — 

arn arnzi 

ISOMETRIC 
PROJECTION 
(3/4 SIZE) 

Figure 6.6 Pedestal Bearing 

1 c t * 
h 

T̂TfT-ru1? T I T L E 

NO.. ISSUA AND nr.VISION DAIt 



7.0 CONCLUSIONS 

The preceeding chapters describe in overall terms the work that has 
been carried out in developing the TIGER graphics system for use at 
Balfour Beatty Engineering, and outline some examples of its use in 
the drawing office. This chapter examines some of the experience 
gained during this process and makes suggestions for further 
development. 
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7.1 Implementing TIGER in the Drawing Office 

A great deal is seen and heard nowadays about the problems of 
introducing new technology into traditional industries. This falls 
into two broard categories; the unsuitability of existing techniques 
necessitating adaptation to the new system, and resistance to change 
by the workforce and unions concerned. It may therefore be 
surprising that implementing CAD in the drawing office at Balfour 
Beatty was a remarkably smooth, if not always straightforward, 
process. It is felt that there were a number of factors that brought 
this about. 

When the decision was made to develop a system 'in house' rather than 
buy in a complete package it was recognised that a long lead in time 
would be required between the initial installation of the equipment 
and its full productive use. In fact this amounted to a period of 
over a year, during which the conversion from single user operation 
and the necessary enhancements were made. As a result the equipment 
was familiar to the draftsmen and had become an accepted part of the 
drawing office long before they were required to use it. Many had 
expressed interest, and some scepticism, during the development, and 
when it came to the time for them to start using it most were keen to 
try out this new 'toy' for themselves. In the early days they were 
encouraged to play with it, find its strengths and weaknesses, and 
make suggestions as to how it could be improved, bearing in mind that 
it was still in the early stage of development and many of the more 
advanced features were as yet unavailable. It was interesting to 
note the different reactions of the draftsmen. 

In general, the older draftsmen were more sceptical and inclined to 
criticise things that could not, or so appeared at first sight, be 
done. Inevitably there were a number of problems with the software 
that sometimes led to drawing corruptions, and it was these same 
draftsmen who were the first to give up and go back to the manual 
drawing board under such circumstances. Perhaps through a lack of 
understanding of computers it did not seem obvious to them that if an 
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operation failed once due to a software problem, the same thing would 
happen again if they repeated that operation. Frequently the 
complaints began "I've tried it five times and ...". At the other 
extreme it was very frustrating to be asked about a problem which it 
transpired had been present for some long time and nobody had bothered 
to report. Perhaps naturally, younger draftsmen tended to be more 
enthusiastic and adaptive, and it was from these that the majority of 
the feedback was achieved. This proved very useful in providing a 
function tailored to the way in which draftsmen work, rather than the 
was engineers and programmers think they work! Training of new users 
was always a problem due to the limited staffing level of the computer 
department, but it was generally found that there was a good level of 
communication between draftsmen, and after a basic introductory course 
most could become familiar with the facilities by word of mouth and 
from the users manual. 

Whilst there are advantages in developing a system in the above manner 
there are also a number of operational disadvantages. Perhaps the 
most serious is that programs tend to be used long before they can be 
fully tested because testing time for new, and often incompatible, 
programs is limited to the hours when no productive work is in 
progress, which contrary to this requirement it is desireable to 
minimise. Further, when the specification of a function has changed, 
probably resulting in different prompts and input, it is alarming to 
the draftsmen if this is suddenly introduced without sufficient 
warning, and doubly so if it proves to be less than 100% reliable. 
The way in which these problems are normally overcome is to 'fix' the 
software at some date and release this for production, then perform 
development on a separate system, introducing new changes all 
together, with appropriate documentation, as a completely new release, 
and repeat the process. The way in which TIGER is structured does 
not lend itself well to multiple versions on the same processor, but 
since it is anticipated that as a future development a second computer 
may become available it is not intended to undertake the substantial 
effort needed to change this. 
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There are a number of peripheral operations associated with the CAD 
system that do not fall directly into the drafting category, such as 
looking after the plotter, keeping pens clean etc.. There is a good 
case for employing an operator specifically for these types of jobs, 
but in general the work load has not justified this. A system that 
has been shown to work well is if the individual draftsmen are each 
provided with a set of pens, and supervise the plotting of their own 
drawings. Initially there is a strong temptation to stand and watch 
the plotter, but once the novelty has worn off the normal drafting 
process is not unduely affected, since the plotter needs very little 
supervision. Most drawings are produced in ink, and pens must be 
carefully looked after to ensure that they run smoothly and do not 
become blocked. Using communal pens it was found that they were 
often left for long periods in the plotter, during which time they 
dried out, presenting the next user with the task of washing them 
through. Since no draftsmen like washing pens the problem was simply 
solved by allocating private pens, which they make every effort to 
keep running smoothly. 

The working environment has been found to be very important to the 
users acceptance of the system. The early workstations, based on 
storage graphics screens, needed to be kept in fairly subdued 
lighting, with the screens facing away from any direct sources of 
light, particularly windows. In a modern office block this can be 
difficult to achieve, and purpose designed internal rooms were 
constructed with dark walls and switchable low lighting. However, 
they have not proved particularly successful because of the level of 
lighting, which makes it difficult to see anything other than the 
screens, and a general feeling of claustrophobia. Furthermore, no 
special ventilation was installed and they tend to become hot and 
stuffy. With this in mind the later workstations were specifically 
chosen so that they can be used in the normal office environment. 
This necessitated brighter screens, which come automatically with the 
raster technology, and the elimination of bells and buzzes that 
earlier stations produces to attract the operators attention, this 
change being for the benefit of other staff in the office. This 
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design of workstation has been well accepted and is generally used in 
preference to the older type. They have proved easier and faster to 
use and perhaps most importantly in this context do not take the 
draftsman out of his natural environment. 

To conclude, although CAD can not yet be seen as a panacea for all 
drafting problems it certainly can, in specific areas, greatly improve 
flexibility and productivity. The path followed throughout this 
project has led to a system that is both flexible and powerful, having 
applications in many areas of engineering. It is anticipated that 
development will continue over the coming years, taking advantage of 
new equipment and techniques as they become available, towards a 
system tailored for every aspect of drafting within Balfour Beatty. 
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7.2 Suggestions for further work 

The scope for further work on a project such as this is almost 
limitless, since modifications and enhancements can always be found to 
adapt existing facilities to meet new requirements and develop new 
functions as the need arises. This is particularly true in an 
environment such as that at Balfour Beatty, where consultancy work 
demands that the company obeys numerous different standards as imposed 
by their differing clients. Under these circumstances it is very 
difficult to predict what will be required in the future, but the 
following paragraphs outline some features that it is hoped may soon 
be incorperated. 

7.2.1 Continuous backup of drawing 

When making extensive and lengthy modifications to a drawing it is 
essential that time is not wasted by having to repeat the operation in 
the event of either the loss of the drawing through some sort of 
software or hardware failure, or a serious mistake on the part of the 
operator. Although a comprehensive error recovery procedure has been 
incorperated there are still a number of circumstances, normally 
through hardware failure, when the drawing can be lost or 
irrecoverably corrupted, and of course operator mistakes are totally 
unpredicatable. 

Under the present system it is the users responsibility to save his 
work whenever he considers it necessary, in order that as much as 
possible can be recovered if the drawing does become lost. It is 
felt that some form of automatic saving and eventual recovery, if 
necessary, would be of advantage and relieve the user of the need to 
perform this operation. This could easily be incorperated as part of 
the background mode semi-dormant state, which would initiate automatic 
backup at predetermined intervals, perhaps every five minutes or after 
a certain number of operator actions. The log on procedure could 
then check for the presence of an automatic backup file, indicating 
that the previous session was terminated prematurely, and offer the 
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user the option of recovery from that file. The logging off 
procedure would delete any backup files so that the next log on would 
be executed normally. This could be accomplished fairly simply as an 
extension of the manual procedure described in section 5.10. 

7.2.2 Command chaining 

Under some circumstances the user will be required to perform the same 
sequence of operations a number of times and it would be useful if 
some form of command string could be constructed to do this auto-
matically. A typical example might be the recall of a macro, 
addition of some text, and the duplication of the result the required 
number of times. This type of operation would be performed when 
adding resistors of different values to circuit diagrams or valves 
with different pressures or flow ratings to a pipework diagram. To 
achieve this a number of menu and keyboard operations must be 
performed, and if it were possible to specify these, and a repeat 
count, in some form of command language, the operation would become 
much simpler and quicker. An early attempt was made to provide such 
a function in the original single user system, but it was cumbersome 
and relied on the user performing a dummy run almost blind to program 
the sequence. It was considered too difficult to use and so was 
omitted from the later multi-user version. 

7.2.3 Re-ordering plot data 

The operation of the plot despooler, as outlined in section 5.9.2, 
leads to a number of problems when multi-pen drawings are being 
produced, particularly with liquid ink type pens. 

The drawing is currently reproduced in exactly the order in which the 
data is stored, which corresponds approximately to the order in which 
it was originally digitised. This often involves frequent changes of 
pen, which in itself presents no problem to a multi-pen plotter, but 
suffers from the less obvious problem that the a pen tends to dry out 
when not in use and often fails to write for the first few 
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millimetres, or at all, when called back into use. With the current 
arrangement it is almost impossible for an operator to predict when a 
pen will be required, which frequently leads to complex plots being 
ruined. 

It is proposed to introduce a plot despooler which sorts the drawing 
and plots all occurrances of each pen together, starting with pen 1 
and working through. Before each pen is used the spooler will either 
test the pen automatically, probably in the margin of the sheet, or 
pause to allow an operator to test the pen manually. In either case 
the plot will not be restarted until the operator has said that the 
pen is ready. Even with this system it will still be possible for a 
plot not to be perfect; the pen may run out of ink, or a mark on the 
paper may stop it from writing. To obviate this the despooler will 
ask if any pens are to be replotted before the plot is finally 
terminated. It is hoped that this will lead to a much lower 
rejection rate, and perhaps surprisingly require less supervision than 
the current system. At present the plotter is supervised 
continuously so that it may be stopped manually if a pen fails, the 
problem corrected, and the plot restarted. It is hoped that the new 
system will be able to run unsupervised for the duration of each pen, 
and hence free the operator for other tasks. Experience has shown 
that most drawings use one pen almost exculsively, and hence the 
operator will be required for short concentrated periods rather than 
every few minutes, which further helps avoid continuous supervision. 
For drawings with pens that do not require attention, such as 
ballpoints, it will be possible to instruct the despooler to run 
through the whole plot without stopping. 

7.2.4 Integrated drawing registry 

A large engineering company will hold many thousands of drawings and 
maintain an index, still generally on individual cards, to record all 
the pertinant details about these drawings. Not only does this take 
up a large amount of space and require considerable maintenance, but 
is also a process that can be computerised fairly easily. In its 

1 9 1 



simplest form this could consist of almost a direct conversion from 
the manual method where updates are made, and information extracted, 
by operators at conventional terminals. When integrated with a 
computer graphics system the possibilities become far greater. 

The graphics system currently maintains an index on every disk of the 
drawings that are being held on that particular disk. This could be 
expanded, as an initial step, into a master index on one disk, 
containing entries for every drawing in a similar form but with an 
indication of the disk or tape on which they are held. It is then a 
small step up to a fully computerised drawing registry, the difference 
between this and the standard registry being that the drawings are 
also held by the computer instead of the more conventional microfilm. 
This would enable drawings to be vetted on a terminal before a print 
is requested, and enable engineers to skim through drawings with far 
greater ease than is allowed by the current methods. Only when the 
correct drawing has been identified would a copy be requested. This 
would normally be produced on a plotter, and instead of the somewhat 
poor quality often achieved by normal printing techniques would be a 
new master of the highest quality possible. Furthermore, an 
integrated system would give project leaders, and similar staff, the 
ability to obtain up to the minute information on the state of any 
drawings, whether they are complete, what revisions have been made 
etc.. 

A fundamental requirement for this system to function efficiently is a 
fully computerised drawing office, since all the time manual and 
computer produced drawing are handled side by side the full advantages 
of the system would be difficult to realise. A graphics system 
capable of handling every type of drawing produced is therefore a 
mandatory requirement. Even so, a long lead in time is likely since 
the registry will still be holding large numbers of drawings produced 
before the computer became available. It would undoubtedly prove too 
time consuming and expensive to convert all these existing drawings to 
computer format, unless an automatic digitiser of the form outlined in 
Appendix B becomes available in a very sophisticated form. It is 
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therefore anticipated that a fully integrated drawing registry will 
not be developed as part of the TIGER graphics system in the very near 
future. 

7.2.5 Material take-off capability 

A large percentage of engineering drawings describe equipment, 
buildings etc., and are used as the basis of a 'shopping list' of 
items that must be purchased in order that they may be constructed. 
The process of extracting this information from the relevant drawings 
is known as 'material take off', or MTO for short. 

MTO is a lengthy and tedious process that is well suited to computer-
isation. Since every item of equipment that has been placed on the 
drawing is' already known to the computer it is quite possible to 
expand the information stored to include relevant MTO details such as 
material type, supplier etc.. The major problem with MTO is the very 
comprehensive database that is necessary to hold all the information 
about every item. For example, a typical ball valve will have a 
different specification depending on a number of parameters such as 
pipeline diameter, pressure rating, temperature, fluid carried etc.. 
A system must be devised that is both efficient and comprehensive, 
able to locate correct information for every item of equipment. MTO 
is largely an I/O bound process, with much searching through databases 
and relatively little computation. Until recently the cost of the 
storage needed to hold these large databases could be prohibitive. 
Recent advances, particularly Winchester drives, have dramatically 
reduced these costs and made MTO a much more feasible proposition on 
minicomputers. 

The integration of a material take off facility into the TIGER 
graphics system is currently being investigated as a separate project. 
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7.2.6 Colour Displays 

A problem that has been encountered regularly by draftsmen using the 
TIGER system is that the monochrome display cannot satisfactorily 
indicate a number of the differences between pieces of a drawing, such 
as the pen number with which they are to be drawn, the current select 
status, overlay etc.. This problem is particularly acute when the 
drawing has been ammended by different draftsmen, and frequently the 
easiest method of identifying pen requirements is to produce a rough 
plot, or to go through a series of displays, which is both time 
consuming and still leaves no adequate record. These, and a number 
of similar problems, could be resolved by the use of colour, which 
until recently has been both technically undeveloped and expensive, 
particular^ for a small system. Recent advances, mainly in terms of 
resolution, have made them a more practical proposition, and they are 
becoming more widely available at prices that compare favourably with 
monochrome displays. It is very unlikely that Balfour Beatty will 
buy any further workstations based solely on monochrome displays. 

The way in which colour is- used will probably vary considerably 
depending on the application. It is anticipated that, for example, 
civil drawings may be required to highlight different service overlays 
over a basic map, whereas piping drawings may require to highlight 
different component types in different colours, irrespective of the 
overlay. It is obvious that, whilst adding vast new scope to the 
system, a new series of problems, clashes of interest etc. will be 
encountered. Only by formal proposals and discussions between the 
various interested parties will a satisfactory compromise be achieved. 
The structure of the sofware is sufficiently flexible to allow a 
colour facility to be added with very little effort, and still remain 
compatible with existing drawings, although depending on the 
conventions chosen they may require small patches to bring up to full 
colour standard. It is anticipated that, through suitable 
programming of the workstation microprocessors, colour and monochrome 
workstations could be run simultaneously. 
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APPPENDIX A - THE FLATBED PLOTTER 

A.1 Introduction 

The excellent workshop facilities at Imperial College have enabled the 
CAD section to construct several pieces of equipment in prototype 
form, two of which have been flatbed plotters. The original model, 
built some years ago, gave valuable service for many years on 
equipment used by Video Animation Ltd., and has only recently been 
replaced by them with a commercial plotter, ironically the production 
version of the college's second model completed in late 1975 and 
installed on the department's CAD equipment. The second plotter was 
basically an improved version of the original, as described by 
H a m l y n W , position sensing being by means of Moire fringe optical 
encoders and drive by printed armature motors similar to those used in 
electric cooling fans for cars. The original method of driving the 
plotter was adapted for the new model. This relied on an error 
control module in the systems 'CAMAC'^7) interface rack sending pulses 
to the motors to generate the correct pen movements. This system was 
found in practise to be somewhat limited, ramping of the drives at the 
start and end of a line had to be software controlled, and 
insufficient speed was available. To overcome these problems a 
totally new control system was developed where the computer had much 
more control over all the drive parameters. A servo system on each 
axis controlled the movement of the pen holder and the carriage, the 
speed of the motors being controlled simply by varying the voltages 
applied, the drivers required to generate the correct direction being 
calculated by the computer in digital form. These were passed to the 
plotter via the CAMAC interface and interpreted with D/A converters to 
give the required voltages. In addition the computer could read 
directly the current position of the pen, enabling instant 
modifications to the drive to be applied in order to correct any 
errors in position as they occur. This method involved considerably 
more software control than before, although results were encouraging 
and definite improvements in speed and line quality achieved. A block 
diagram of the control system is shown in Figure A-l. 

1 9 7 



Figure A.l Block Diagram of Plotter Control System 
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A.2 Theory and Operation of Software 

The movement of the pen in any direction can be resolved into two 
axial components, which for the sake of convenience can be considered 
to have a magnitude and a sign. The magnitude is directly 
proportional to the required voltage across the motor and the sign 
indicates the direction in which to apply that voltage. Any given 
vector will have a dominant direction of movement, e.g. if the 
magnitude of dy/dx is greater than unity, y is dominant. It is 
convenient to normalise the drives sent to the motors in order that 
the dominant axis always receives maximum drive, the subordinate axis 
being sent a proportion of this drive to achieve the desired 
direction. Up to 1024 magnitudes of subordinate drive are program 
selectable, the maximum value (1023 on a 0 - 1023 scale) corresponding 
to the dominant drive. By suitable manipulation of signs and 
dominance a typical line may be represented as in Figure A-2 overleaf 
where 0 < 9 < 45 degrees. 

In this example the x axis is dominant and so will receive full drive, 
of 1023 units. By similar triangles it can be seen that the 
subordinate, y axis, drive must be:-

Y drive = (y2 - yL)/(x2 - x L) x 1023 units (1) 

Using this technique it is fairly obvious that the actual speed of the 
pen is dependent on the value of 9, being the vector sum of the axial 
velocities and hence dependent on the magnitude of the subordinate 
drive. In order to achieve a constant pen speed and thus maintain 
consistant line quality on all lines the software computes an overall 
speed factor to be applied to both axes. This is expressed as:-

f = 1023 / (Dsub2 + 10232) (2) 

where:- Dsub = subordinate drive from equation (1) 
f = factor in range 0 to 72. 
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Unfortunately, due to non-linearities in the circuits and the finite 
number of drive magnitudes available it is not possible to simply send 
the initial angle and expect the plotter to follow the line accurately 
for its whole length, so the computer constantly monitored the 
position of the plotter and, at predetermined intervals, applied 
modifications to the drives in order to keep the pen on the required 
line. Varying intervals between position checks were tried, but 256 
encoder counts (about 1.4mm) on the dominant axis appeared to give the 
best results. The error in the subordinate axis is a direct 
indication of the change required in the subordinate drive. Consider 
the case depicted by Figure A-3. 

The plotter should follow the straight line from A to B, but at the 
first check is found to be at position C, with a subordinate error of 
Eg. It is evident that the computer must calculate two subordinate 
drives, namely the drive to bring the pen back onto the correct line 
at position D and the drive actually required to keep the pen on the 
line once the error has been corrected. 

Suppose:-

D r = 'correct' subordinate drive. 
Dg = subordinate drive to correct error in position. 
Eg = subordinate error. 

= dominant distance between checks. 

By applying the relationships:-

D R = D R + ( E f x f i ) 
D g = D r + ( E f x f 2 ) 

where f^ and f 2 are constants determined by experiment, the system 
effectively converges to the required subordinate drive as E^ 0. It 
was found that for ld = 256 counts, f^ and f 2 should have values of 
approximately 1.0 each, larger values lead to overagressive correction 
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and fishtailing, lower values to a gentle curve rather than a straight 
line. 

The acceleration and deceleration of the plotter are important factors 
in obtaining good line quality. In this system acceleration was 
controlled by hardware ramping of the drive voltages and not directly 
by the software. A similar system existed for deceleration towards 
the end of a line, although the decision at what point to remove the 
drive in order to stop the pen correctly at the end of the line was 
made by software. It was found that this distance depended on the 
speed, the length and the direction of the line and was difficult to 
compute accurately. A special, very slow, drive was introduced and 
the main drive regulated to stop the pen just before the end of the 
line, thus enabling the slow drive to guide the pen to the final 
correct position. This drive was so slow that any deceleration could 
be ignored, and the period for which it was applied so short that it 
was hardly apparent to the observer. 

In early systems much trouble was experienced in decelerating 
correctly at the end of short lines where maximum velocity was never 
achieved. A set of tests on the plotter revealed the ideal 
deceleration characteristics shown in Figures A.4 and A.5. 

For lines longer than 1mm the deceleration length remained constant, 
since the plotter always reaches maximum speed. The early problem was 
immediately apparent since a linear relationship bad been assumed 
between A and C, thus resulting in too little deceleration and the pen 
being brought to a violent halt at the end of the line. A new system 
was introduced where section BC was considered linear and values for 
section AB were tabulated and interpolated by the software. Different 
values were necessary for the two axes since differences in inertias 
resulted in different ideal conditions depending on the dominant 
direction. 
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TEST CALIBRATION ROUTINEr LENGTHS IN PLOTTER INCREMENTS 

AXIAL TEST IN X 

LINE START END START END 
LENGTH SLOW SLOW ERROR ' ERRl 

400.0 207 255 0.0 1.0 
800.0 528 545 -2.0 -1.0 

1200.0 827 835 -1.0 -3.0 
1600.0 1128 1142 -1.0 0.0 
2000.0 1448 144 S -2.0 -2.0 
2400.0 1762 1750 s.o 2.0 
2800.0 2073 2083 1.0 0.0 
3200.0 2378 2385 -2.0 2.0 
3S00.0 2675 2S70 1.0 -1.0 
4000.0 2972 2980 2.0- 1.0 
4400.0 3238 3235 0.0 0.0 
4S00.0 3523 3496 -2.0 -1.0 
5200.0 3797 3753 0.0 0.0 
5600.0 4028 4008 -2.0 -1.0 
8000.Q 4287 4253 0.0 1.0 
S400.0 4506 4483 -1.0 -1.0 
6800.0 4S88 4S72 0.0 -1.0 
7200.0 4852 4837 0.0 1.0 
7600.0 4971 4988 0.0 0.0 
8000.0 5115 5098 -1.0 -2.0 
8400.0 5209 5204 -2.0 0.0 
8800.0 5275 5314 -2.0 -3.0 
9200.0 5327 5375 -2.0 0.0 
9S00.0 5388 5427 -1.0 -2.0 
10000.0 5458 5480 -3.0 -2.0 
10400.0 5487 5518 -1.0 -2.0 
10800.0 5503 5558 -1.0 -2.0 
U 2 0 0 . 0 5551 5583 -1.0 -1.0 
11B00.0 5536 5601 -1.0 -1.0 
12000.0 5579 5611 0.0 -1.0 
12400.0 55S0 5620 -1.0 0.0 
12800.0 5562 5824 -1.0 -1.0 
13200.0 5546 > 5837 1.0 -2.0 
13600.0 5564 * 5852 -1.0 -2.0 
14000.0 5588 5880 -2.0 -1.0 

Figure A-4(i) Optimum deceIteration lengths - gantry movement only 
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TEST CALIBRATION ROUTINEr LENGTHS IN PLOTTER INCREMENTS 

AXIAL TEST IN Y 

LINE 
LENGTH 

START 
SLOW 

END 
SLOW 

START 
ERROR 

END 
ERROR 

400.0 
800.0 

1200.0 
1800.0 
2000.0 
2400.0 
2800.0 
3200.0 
3800.0 
4000.0 
4400.0 
4800.0 
5200.0 
5800.0 
6000.0 
B400.0 
6800.0 
7200.0 
•7800.0 
8000.0 
8400.0 
8800.0 
9200.0 
9800.0 

10000.0 
10400.0 
10800.0 
11200.0 
11800.0 
12000.0 
12400.0 
12800.0 
13200.0 
13600.0 
14000.0 

214 
473 
793 

1066 
1374 
1842 
1919 
2232 
2504 
2821 
3074 
3361 
3570 
3821 
4047 
4230 
4442 
4591 
4784 
4859 
4988 
5117 
5250 
5300 
5375 
5425 
5475 
5501 
5510 
5513 
5595 
5519 
5547 
5518 
5579 

415 
824 
917 
1213 
1487 
1723 
2083 
2328 
2564 
2840 
3102 
3353 
3594 
3813 
4019 
4209 
4380 
4531 
4870 
4789 
6328 
6170 
6098 
6034 
5974 
5856 
5788 
5853 
5853 
5807 
5584 
5552 
5532 
5512 
5487 

- 1 . 0 
0.0 
0.0 
0.0 
0.0 
0.0 
-2.0 

0.0 
-1 
-1 
1 
1 1.0 
0 . 0 - 1 . 0 
0.0 
0.0 
1.0 
0.0 

-1 
1 

-1 
1 
1 —? 

0 
0 
0 
0 
0 
0 

2 . 0 
- 2 . 0 
0.0 
0.0 
1.0 

- 1 . 0 
0.0 
0.0 
2.0 
0.0 

2 .0 2.0 
2.0 
3.0 
3.0 
2 .0 
2 .0 
2.0 
2.0 
3.0 
0.0 
-4.0 
0.0 
0.0 
-1.0 
0.0 
0.0 
0.0 
•1.0 
•1.0 
4.0 
4.0 
4.0 
4.0 
3.0 
4.0 
4.0 
3.0 
3.0 
3.0 
2.0 
2 . 0 
2.0 
2.0 
2.0 

Figure A-4(ii) Optimum decelleration lengths - per carriage movement only 
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At the start of every line the pen condition for the line was compared 
with the current condition. If different the new condition was sent 
and a short pause generated to give time for pen movement. It was 
found that without this delay the plotter could move several 
millimetres in the time taken for the pen to move up or down, thus 
result in incorrect starting conditions on some lines. 

For ease of use several keyboard interrupts were incorporated as 
follows: 

(a) Control C - Abort Plot 

Enables the user to terminate a plot prematurely. The plot stops 
immediately the interrupt is issued, even in the middle of a line. 

(b) Control W - Wait At End of Line 

It is often necessary to stop the plotter temporarily during a plot to 
make small adjustments such as changing the pen. This interrupt 
instructs the plotter to wait at the end of the line currently being 
drawn. 

(c) Control R - Recommence Plotting 

Cancels the above effect. 

An overall manual speed control was included since different types of 
pen and drawing surfaces require different plotting speeds. For 
example, Pentel ball pens will plot much faster than liquid ink pens. 
The user informs the software of the speed selected by appropriate 
settings of the switch register on the computer's front console. 
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A.3 The Interface - Bit Allocation 

The plotter is interfaced to the computer through the CAMAC rack using 
the following SEN modules. 

(a) 7061 

Controls stop/start and pen commands. See Figure A-6 for bit 
allocation. 

(b) 7054 

Controls remaining drive functions. See Figure A-6 for bit 
allocations. 

(c) 21PE2019 

Dual incremental position encoder module. The plotter position is 
read from sub-addresses 0 and 1 for x and y respectively as 24 bit 
integers and converted into floating point numbers using the PDP 11/45 
floating point hardware. 

209 



A.D.R.* 7016 Control Reg i s t e r 

Fast if set 

Slow if set. 

J ' 

Fen down 
if set 

A.D.R. * 

i 1 

Speed factor 
Y sign (1=+VC). 

X sign (1=+VC) 

Dominant (X=l) 

Subordinate 
drive 

* Auxiliary data register 

Figure A.6 Interface Control Bit Allocations 

7054 Control Register 
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A.4 Suggestions for Further Development 

The plotter has been seen to work well for general draughting 
purposes, although there are several areas where improvements may be 
possible. 

(a) Arc Generation 

The system demands that any arcs be considered as a series of very 
short straight lines, which the software does not distinguish from any 
other line. This results in rather jerky and slow movement around 
arcs since the plotter stops at the end of every line. It should be 
possible to regulate the drives to guide the pen around a smooth curve 
without stopping. An algorithm for this was tested by Ghassemiv J 

with the original hardware and seen to work well, although through 
lack of time this was not implemented on the later system. 

(b) Multiple Pen Capability 

Although the software has the capability of handling up to 4 different 
pens the hardware currently offers only one pen. The original 
prototype unit which offered 2 pens was found to be unsatisfactory and 
was replaced by a single unit provided by CIL, who developed the 
plotter commercially. This appears to function somewhat better and it 
is hoped to obtain a multiple pen unit in the near future. 

(c) Microprocessor Control 

The recent rapid growth in the power of microprocessors accompanied by 
falling prices makes their use in peripheral devices such as the 
plotter more and more feasible both technically and economically. 

The software developed for the plotter places a very heavy load on the 
computer since it is necessary to monitor the position of the pen 
carriage continually. This did not prove a serious problem on the 
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single user DOS operating system but will be a severe burden if the 
plotter is to function on the RSX-llm multiuser system. It is 
anticipated that a new version of the plotter will be developed with 
an onboard microprocessor to perform this function and communicate 
with the PDP11 only to receive coordinates and return status. This 
task was considered too large to undertake as part of the current 
project and is being investigated by other students. 
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APPPENDIX B - AN AUTOMATIC DIGITISER 

B.1 Introduction 

With the advent of interactive computer aided design the digitising of 
large numbers of drawings by a manual tracing process has proved a 
considerable problem, being both time consuming and tedious. In many 
cases the process is performed purely for setting up data banks of 
parts already drawn manually, or the copying of existing drawings onto 
CAD equipment for archiving or analysis (as the result of this new 
technology being introduced into the drawing office). The present 
method of manual digitising using a pen or stylus to trace over the 
drawing effectively necessitates completely redrawing every detail, 
and a more efficient method has long been sought. An optical 
digitiser incorporating television technology may prove the solution, 
to this problem. The system to be described was developed at 
Imperial College in association with Lloyds Register of shipping, and 
is a refinement of a prototype system also developed at the college. 
It is not intended to describe the earlier system in detail, but 
significant differences are noted as they occur. 

The television camera processes the image as a dot matrix of 1024 x 
575 points, and at each point records the darkness on a grey scale 
from 0 to 15. The hardware encodes this into 4 binary digits with 4 
such samples being stored in one PDP 11 word and a complete picture in 
147456 words. This data is presented to the computer through a 
CAMAC^7^ interface and stored on disk by a suitable program for 
subsequent analysis. 
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B.2 The Hardware 

The basic principle of standard 625 line interlaced television format 
is shown in Figure B-l. A frame is constructed from two interlaced 
fields of 3121 lines each. The scan starts at an even field in the 
top left hand corner, which the system uses as its origin for x,y 
coordinates. Each line is scanned from left to right under the 
control of the line timebase, the return to the next line being a 
rapid flyback. The first 221 lines are blank, video data actually 
starting at the centre of line 23, and finishing at the end of line 
310. At the end of a complete field of 3121 lines flyback to the top 
left hand corner occurs and the odd scan starts. In this pass video 
data starts at line 336 and ends at. the centre of line 623. At the 
end of line 625 frame flyback again occurs to scan the next even 
field. In addition to the 25 blank lines inserted between video data 
in successive frames the first 1.5jis and last 1.5ps of each line are 
also blanked, these being included to allow for flyback and settling 
time of the horizontal and vertical time base amplifiers. 

It was necessary to use a relatively low data transfer rate into the 
computer in order to make use of inexpensive components. The system 
operates by checking the amplitude of the video signal once per scan 
line, converting this to a 4 bit number and storing it in a shift 
register. The process starts from the left hand edge of the image 
(x=0) and during two field passes each video line is sampled to 
produce levels for that particular x. The sample point is then 
incremented to the next x position and the process repeated across the 
complete picture • 

The current system is capable of 1024 horizontal locations, thus 
giving a resolution somewhat better than that obtainable from a good 
television camera (about 800). Each scan line takes 64us, of which 
52us contain useful video data, and an integrated circuit from 
Ferranti designed for closed circuit television systems provides all 
the synchronisation and blanking pulses necessary. A block diagram of 
the equipment is shown in Figure B-2. 
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Figure B.l Principle of Interlaced Television 
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Figure B.2 The Automatic Digitiser Hardware 
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To commence digitising the computer sends a 'clear* signal which 
resets the even field pulse counter and a clock pulse counter to 
correspond to the upper left hand corner of the picture. 

The computer then sends a 'continue' signal and sampling commences, 
the data being stored in a shift register. At the end of the even 
field this contains 288 values corresponding to the 288 useful lines 
of video in that field. On the odd field data is passed directly to 
the output circuits, interleaved with data being moved from the shift 
register, and presented to the computer as a series of 144 16 bit 
words, a read signal being sent to the computer each time a new word 
is available. This procedure is repeated for 128 x values, when the 
cycle stops to allow the computer to transfer the data to disk. When 
this is done another 'continue' signal is generated and a further 128 
x values samples, this process being carried out 8 times to complete 
the picture. The entire process takes approximately 45 seconds, after 
which time the system halts • The software is responsible for 
detecting the breaks in data transmittal and the final area of data. 
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B.3 The Software 

The development work carried out as part of this project was under the 
single user DOS operating system only. Due to hardware limitations 
outlined later it was impossible to function correctly under the RSX-
11M multi-user system. It is understood that further development work 
by Lloyds Register will shortly enable the system to function 
correctly under the latter operating system. 

The very large amounts of data presented by the hardware for each 
frame are impossible to buffer entirely in core on a computer the size 
of the PDP using the DOS operating system where addressing is limited 
to 32K words of core. It is therefore necessary to maintain a smaller 
but reuseable core buffer and write its contents to disk whenever it 
becomes full. This introduces a small time penalty since the video 
scan must be made to wait while data is being transferred, eight such 
operations being necessary to form a complete frame. To minimise the 
delay it was decided to ignore conventional file structures on the 
data disk and simply dump data in consecutive blocks. Using this 
method each drawing occupies 576 blocks (of 256 words each), thus 
enabling 8 'files' to be stored on one RK05 disk pack. Data consists 
of an (x,y) location and its associated grey level. In the prototype 
model it was necessary to decode the x,y position which were each 
returned in 10 bits, deinterlace the data and retrieve the grey level 
from the data using software. The required location in the buffer, 
which takes the form of a bitmap, was then calculated and the data 
stored. This was a time consuming process and some problems were 
encountered in keeping up with the rate of data output from the 
hardware. It was soon realised that, since the information is always 
presented in a specific order, it is possible to calculate the x,y 
coordinate from the previous position, providing no data has been 
missed. In the later model this was taken one stage further; the 
hardware decodes the position and grey level, packs four values into 
one word and presents the whole word to the computer, which has 
nothing more to do other than to place it in the next space in its 
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core buffer and transfer to disk when the buffer is full. The order 
of storage in the bitmap is as shown overleaf. 

In order to retrieve data from disk a subroutine was written which, 
given a file number and an x,y location, would return the grey level 
in the range 0 to 15. 

The Tektronix 611 storage tube on the system can be used to view the 
data directly since it is basically a raster type device itself and it 
is therefore possible to send dots to correspond with locations in the 
database. It is not, however, possible to view the data in all grey 
levels simultaneously since the Tektronix is simply a black or white 
device. The most useful method of viewing was found to be to set a 
threshold above which all data is displayed. 

In raster form the data is of little use for anything except direct 
viewing as above, and to be of value to the engineer it must be 
converted into a more familiar form, i.e. into lines and points. This 
task is currently being undertaken by Lloyds Register on their own CAD 
equipment with considerable success. 
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B.4 Future Development 

An imminent development is to be the installation of a DMA (direct 
memory access) interface to replace the current CAMAC interface. With 
this arrangement the hardware will be responsible for placing the data 
in the core buffer, the only responsibility taken by the program being 
to allocate the buffer and copy from it to disk. This is of 
particular importance if the system is to function satisfactorily 
under the RSX-11M operating system since the rate of data transmission 
means there is serious danger of some being missed, unless the 
processor is dedicated to this task, which cannot be practically 
guaranteed with a multi-user executive. 

Tests have shown the system to work well if the artwork is of very 
high contrast, i.e. dense black lines on a uniform white background. 
Unfortunately, most drawings do not come up to this standard, lines 
being poorly defined and backgrounds being varying shades of grey or 
even blue depending on the printing or reproduction technique • In 
this case it was found difficult to process the data using software, 
and some attempts at processing the video signal in hardware were 
made. To this end the simple circuit of Figure B-4 was tried. This 
consists of 3 operational amplifiers, the first of which acts as a low 
pass filter and removes all rapid transitions from the signal. This 
is then subtracted from the original signal in. the second, summing, 
amplifier, resulting in a signal in which the rapid transitions are 
enhanced and the background variations cancelled out• The final 
amplifier acts simply as a buffer and allows gain control. This 
effect is shown diagramatically in Figure B-4. The system obviously 
performs better on narrow lines and has proved reasonably effective in 
improving the quality of data digitised from many engineering drawings 
which basically consist of such lines. Further work is in progress to 
optimise this circuit and it is hoped to develop a system to digitise 
drawings in which 'thick' lines play a significant part. 
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Figure B.4 Enhancing the Video Signal 
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