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ABSTRACT 

The ESCIMO (Engulfment, Stretching, Inter-diffusion and 

Moving Observer) theory of turbulent combustion is further 

developed and applied to turbulent diffusion flames. The 

present theory contains both the demographic (Eulerian) and 

biographic (Lagrangian) aspects. Major attention is paid in 

the present work to the development of mathematical formulation 

and solution procedures for the fold demographic studies. 

The distribution of "fold-populations" at each spatial 

point is described by a set of transport equations which are 

linked together through the source terms. The source terms 

in each equation include the effects of fold-ageing, fold-

formation and fold re-engulfment, respectively. 

Simplifications are made in the biographic analysis in 

order to reduce the computational task, such as the 

assumption of a fast, simple chemical reaction system and 

unity Lewis number. The governing partial differential 

equation is then solved by the approximate methods, termed 

the "profile method". 

In order to asses the validity of the "ESCIMO" theory, 

three different sets of experimental data are selected for 

comparison between the predictions and the measurements. 

These test cases are: 

(1) the diffusion-limited chemical reaction in a turbulent 

mixing layer; 

(2) the hydrogen-air diffusion flame in co-flowing air; and 

(3) the natural gas-air free jet diffusion flame. 
The quantities calculated by the present theory are 

classified into various categories presented below: 
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• the hydrodynamic results which include the mean velocity 

and the turbulent kinetic energy (obtained from the k-e 

model of turbulence); 

• the population distribution function of various folds; 

the variation of mean temperature and species concentration 

across the mixing layer or jet; 

• the root-mean-square fluctuation of temperature and 

species concentration; and 

the probability density function of temperature and 

species concentration. 

Comparisons with the experimental data show that the 

agreement is fairly good, provided that a suitable choice 

of input parameters is made. The sensitivity analysis has 

been performed for both the physical parameters and numerical 

parameters in order to evaluate their influences on the 

results. However, there is a need for enlargement of the 

conceptual content of the "ESCIMO" theory to allow for the 

role of "Turbulence intermittency". 

The direction of this future development is discussed, 

and suggestions provided. 
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PREFACE 

I joined the Heat Transfer Section of the Mechanical 

Engineering Department (now the Computational 

Fluid Dynamics Unit) of the Imperial College of Science 

and Technology, as a research student, in October 1978. 

During these past four years, my research activities 

have been centred on the development of theoretical model 

for the prediction of two-dimensional turbulent reacting 

flows. The primary objective of my work has been to 

establish a more realistic and practical physical model 

which can be further developed to solve practical 

combustion problems. 

During the first six months of my studies, I followed 

the M.Sc.courses given by the Heat Transfer Section and 

worked on the numerical modelling of flows with moving 

interfaces. The experience obtained during that period 

was valuable for my later research work. In the next six 

months, I was working on the application of ESCIMO theory 

of turbulent combustion to the well-stirred reactor. I 

was fascinated with the contents' and philosophy of the 

ESCIMO theory and I also realised that a lot of work has 

to be done in the future. From the second year, I 

devoted myself to the development of the demographic part 

of ESCIMO theory in two-dimensional parabolic flows. The 

first application of this work was the prediction of 

concentration and its fluctuations in a plane turbulent 

reacting mixing layer, where the experimental data are 

available. 
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The last part of my work was concerned with the 

calculation of temperature and concentrations in the 

turbulent jet diffusion flames. It was an exciting and 

challanging task, especially when the positive results 

emerged. I have gained more hand-earned knowledge and 

tasted the academic research life in my final years of 

study. 
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CHAPTER 1 

INTRODUCTION 

1.1- The problem considered 

There have been extensive theoretical studies in 

turbulent reacting flows during the last decade. These 

continuing research activities are inspired by the increasingly 

urgent requirements of higher combustion efficiency and 

lower pollutant emissions. A better understanding of the 

processes involved and a more powerful predictive capability 

are essential to achieve the purpose. 

According to the nature of the combustion problems in 

many practical devices, the reacting flows can be classified 

into two limits, namely, the nonpremixed and premixed systems. 

For the nonpremixed systems, fuel and oxidizer enter the 

field of interest in two streams, for instance, the primary 

jet is fuel and the secondary- flow is oxidizer. For the 

premixed systems, the cold, premixed reactants are fed into 

a single stream and the other stream is composed of hot 

combustion products.Intermediate cases do exist in 

reality, e.g., the primary jet is fuel and the secondary, 

stream is a fuel-oxidizer mixture. Up to date, most of the 

developed theories and methods are confined to the 

nonpremixed and premixed limits due to the relative simplicity. 

Different models have been developed and applied to 

either the nonpremixed flames (also called as diffusion 

flames) or the premixed flames, such as those mentioned in 

the literature by Spalding (1976a), Bilger (1976,. 1980) 



25 

and Bray (1979,1980). The important phenomena in each type of 

flames can be fairly predicted with the aid of some 

assumptions, closures and semi-empirical formulae. However, 

the majority of theoretical models have been constructed and 

found successful for one type of flame only. 

It is desirable to set up a theoretical framework which 

is capable of tackling both the turbulent diffusion and 

premixed flames. The advantage of this kind of theory is that 

it can be further developed to predict some practical flames, 

like that in the gasrturbine combustor, which has both 

diffusion and premixed features. 

A general theory of turbulent combustion with the 

acronym of ESCIMO (Engulfment, Stretching, Coherence, _Inter-

diffusion and Moving Observer), was proposed by Spalding 

(1976b,1978b)to meet the need. The theory combined the 

Eulerian approach (termed the demographic part here) and the 

Lagrangian approach (termed the biographic part) into one 

framework. The application of ESCIMO theory to the confined, 

premixed, baffle-stabilized flame appeared in the work of 

Noseir (1980), while the other application to the well-stirred 

reactor (also premixed flames) with complex chemical-kinetics 

scheme was demonstrated by Tarn (1981). 

The reacting flows considered in this thesis are of 

the open, turbulent diffusion types and it is the first test 

of ESCIMO theory to this kind o.f flows. The chemical reaction 

considered herein is fast compared with the rate of turbulent 

mixing, which is usually classified as diffusion-limited or 

hydrodynamics-controlled reaction. 
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1.2 Objectives of the study 

The concepts of ESGIMO theory are based on the existence 

of coherent lumps of fluids, termed the "folds" or 

"layer-pairs" in the present work and related publications, 

which travel from one place to the other according to the 

fluid-dynamics motion. The properties of the flow are 

determined from the characteristi cs of different folds coming 

from various places. 

The whereabouts of all folds and the history of each 

fold are treated in the demographic and biographic parts 

respectively. The demographic part is more closely related 

to the hydrodynamic condition than the biographic part. In 

the previous work of Noseir (1980) and Tarn (1981), major 

attention has been paid to the development of biographic 

analysis, while the demographic analysis was rather primitive. 

The results of demographic analysis in the well-stirred 

reactor can be expressed by the simple exponential function 

'(Tarn, 1981), since the properties are uniform in space. On 

the other hand, Noseir assumed that the time-average profiles 

of gas properties across the duct are of the top-hat form. 

This simplification reduces the demographic analysis to- a 

one-dimensional problem, i.e., the population distribution 

of folds is a function of longitudinal distance only. 

The two main objectives of the present study are, 

consequently: 

(l) to set up the mathematical formulation of demographic 

analysis in actual two-dimensional, turbulent, reacting-flows 

together with the numerical solution procedure; and 
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(2) to apply the ESCIMO theory to the turbulent free 

jet-diffusion flames as one further step toward the combustion 

problems of practical importance. 

The results obtained from the present work can be 

classified into three categories, namely, the turbulent mean 

properties, the turbulent fluctuation intensities and the 

probability density functions (pdf) of various scalars. 

The presumptions made in ESCIMO theory are mainly based 

on physical reality, with some simplifications in order to 

economize the computational task, The influence of various 

hypothesis and empirical constants on the results have been 

investigated and demonstrated. 

1.3 Practical relevance1 

The turbulent diffusion flames exist in many industrial 

processes and natural fires, which can be divided into the 

following groups: 

(1) Gas turbine combustors: the fuel is injected into the 

primary combustion zone through the injector and the air 

enters from the front of the combustor or from large holes 

in the combustor liner. The fuel and air are injected 

separately, mix and, subsequently, react.. However, in the 

secondary combustion zone and dilution zone of the combustor, 

more air is added through -the film cooling slots, 

indicating that the combustion changes from the diffusion 

type to the premixed one. 

(2) Industrial furnaces: the fuel jet and air flow are supplied 

separately to the confined combustion chamber. 
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(3) Compression-ignition (diesel) engine: much of the combustion 

occurs at a rate controlled by the mixing of fuel spray and 

air. 

(4) Rocket exhaust plumes: the exhaust gases from the rocket 

nozzle usually contain some amount of oxidisable material and 

secondary flame may occur when the gases mix with the 

surrounding air. The secondary combustion is responsible for 

the emission of light, intensified heat radiation, etc. in 

the trail of the rockets and missiles. 

(5) Fires: the large scale forest fires, building fires, and 

the flaring waste gases are mostly mixing-controlled diffusion 

flames. 

Usually, the higher combustion efficiency in the 

engineering equipments is accompanied by lower emission of 

soot agglomerates (smoke) and pollutants such as carbon 

monoxide and nitric aside, since less amount of fuel is 

wasted. The detailed chemistry of soot and pollutant formation 

is very complex and depends on the detail thermal and 

hydrodynamic conditions of the flows considered. Therefore, 

a reliable and powerful model in the prediction of flame 

properties is the prerequisite for the solution of our energy 

and environmental problems. 

1•4 Previous work 

It happens in many practical cases that the kinetics of 

the overall chemical reaction are relatively fast compared 

with the rate of turbulent mixing. The equilibrium 

concentrations of final products is then assumed to prevail 

everywhere in a diffusion flame ( Spalding,1970a; Bilger,1976; 
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Libby and Williams, 1981). The additional assumption of equal 

mass diffusivity are also often made and justified, so that 

the concentration of fuel, oxidant and product are uniquely 

related to the mixture fraction which is a conserved scalar. 

The value of enthalpy can also be determined by the mixture 

fraction if the enthalpies of fuel and oxidant streams are 

uniform. Therefore, all the thermodynamic properties of the 

mixture are functions of mixture fraction only. This 

conserved scalar approach substantially simplifies the 

analysis of the problem, since the difficulties in modelling 

the turbulent mean reaction rate are largely obviated. 

The turbulence fluctuation in the flames is taken Into 

account by presuming a probability density function (pdf) 

for the fluctuating mixture fraction so that the mean 

concentrations and temperature can be evaluated. The work 

of Kent and Bilger (1973), Lockwood and Naguib (1975), 

Jones and Whitelaw (1978) and Kolbe and Kollman (1980) all 

follow this line. The shape of pdf is assumed as a "clipped 

Gaussian" or of beta function distribution. The common 

practice in these approaches is to obtain the mean mixture 

fraction and its variance (the fluctuation) from the 

modelled transport equation. The variance was obtained by 

solving the "g-equation" proposed by Spalding (1971a) or 

other equation with some modification. 

The predictions obtained from the presumed pdf approach 

compared favourably with the experimental data on time mean 

quantities, although some discrepancies do exist, It has been 

demonstrated by Kent and Bilger (1976) that the predictions 

on mean composition and temperature do not seem very sensitive 
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to the variations in the pdf profiles. The limitation of 

this approach is that a sufficiently realistic pdf has to 

be specified in advance and the task becomes more difficult 

when the combustion process can not be properly.;described 

by a single-step reaction (Spalding, 1979a). 

Another approach, proposed by O'Brien (1971), Dopazo 

(1975), Pope (1976) and Janicka et al (1978), is to construct 

the transport equation of pdf from the conservation laws. 

But the molecular diffusion and turbulent transport terms 

are unclosed and have to be modelled in all such pdf equations 

for reactive flow systems. The major advantage of the pdf 

method for reactive flows is the closedrforra treatment of 

the species production rate, which makes it attractive 

especially for combustion problems. But the number of 

independent variables increases substantially and the 

numerical methods become more sophisticated and time consuming, 

especially when the chemistry is complex. 

Following the line of using a deterministic approach 

to the specification of a scalar pdf in a single reaction 

progress variable, proposed by Bray and Moss (1977), Libby 

et al (1979), Roberts and Moss (1981) has demonstrated a 

"wrinkled flame" interpretation of the open turbulent 

diffusion flame. It is argued in the wrinkled flame model 

that a laminar flamelet profile is the microscopic element 

in a turbulent ensemble. The pdf of any conserved scalar is 

related to the instantaneous flame profile through the flame 

sheet model, where the two parameters in the instantaneous 

flame profile are determined from the measured mean temperature 

and temperature fluctuation. The measured probability density 
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function of temperature, in the open turbulent methane 

diffusion flame, has been reproduced from this wrinkled 

flame model. Roberts and Moss (1981) claimed that this model 

is simpler and more economical in the descriptions of 

scalar pdfs than the multi-dimensional joint pdfs. 

When the finite-rate chemistry is present in the flow, 

or the flame is a partially premixed one, the transport 

equation of one reacting species (usually is the fuel) has 

to be solved in addition to the mixture fraction. The 

production rate (or consumption rate) of the species appears 

in the source term of the balance equation and must be 

modelled. This approach is often termed the two-variable 

approach or two-variable formalism (Lockwood and Naguib, 

1975; Lockwood, 1977; Janicka and Kollman, 1979; Bilger, 

1980). The second variable is a kind of progress variable* 

such as reactedness or other combined variables. 

The closure of the production term for the second 

variable has been treated in various ways. Some authors 

simply use a mean kinetic rate based on the mean concentrations 

and mean temperature only. This is unsatisfactory because 

the effects of fluctuations and mixing are. disregarded in 

the calculation of the reaction rates. Borghi (1974) and 

Hutchinson et al. (1978) employed an expansion procedure 

to include the effects of temperature and concentration 

fluctuations on the reaction rates, but the correlation terms 

have to be obtained by second-order closure of their 

balance equations. The closure problem seems to overshadow 

the advantage gaining from the use of conserved scalar (i.e. 

the first variable). 
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Spalding (1971b) proposed the "eddy break up" model 

to combine the effects of turbulent mixing and chemical 

kinetics. Hence, the reaction rate is a function of the local 

turbulence Reynolds number, the turbulent kinetic -energy 

and its dissipation rate, the concentration fluctuation 

and the kinetic rate of reaction. Many similar expressions 

have appeared in the literature (Lockwood, 1977? Bray and 

Moss, 1977) and some degree of success was achieved, such 

as the work of Mason and Spalding (1973)* Stephenson (1972) 

and Serag-Eldin (1977). However, this approach is 

semi-empirical and some uncertainties do exist. 

Alternatively, Janicka and Kollmann (1979) employed 

the joint pdf of two variables to tackle the chemical 

reaction term. Several constraints imposed by the moments 

and the bounds of the variables can be placed on the pdf. 

The second-order moments are obtainable from the modelled 

balance equations and the chemical production terms from 

the joint pdf. Plausible results have been obtained for 

the concentrations of major species and nitric oxide. 

Bilger (1979) proposed the "perturbation approach" to 

handle the source term of the second variable. The term 

"perturbation" here means the departure from the equilibrium 

or fast chemistry solution. A new term which represents 

the production rate of out-of-equilibrium material (by the 

fine scale turbulent mixing) arose in the equation. The 

treatment of this micro scale mixing source term has been 

demonstrated by the author. In the mean time, the mean 

production rate was found to be better conditioned, in terms 
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of the departure from equilibrium, than the usual approach 

so that a lower-order closure is sufficient. 

All the approaches described in the preceding paragraphs 

include the concept of conserved scalar. There exist some 

problems in which it is impossible or inappropriate to 

define and utilize the conserved scalar. These problems 

usually fall into one of the classes presented below; 

(1) when the turbulence Reynolds number is low and differential 

diffusion (in the molecular diffusion level) effects are 

important; or 

(2) the composition and enthalpy in the fuel stream and 

oxidant stream are not uniform and constant; or 

(3) the complex chemical reactions are far from the 

equilibrium conditions so that little advantage can be 

gained from the two-variable approach. 

Some authors has already suggested that it is necessary 

to attempt direct closure of the chemical production term 

by either the moment closure or the pdf closure methods. 

The typical examples appeared in the work of Borghi (1974), 

Donaldson and Hilst (1972), Bonniot et al. (1978), Donaldson 

(1974). However, these methods have been developed for 

problems of relatively simple chemistry and equal molecular 

diffusivity so far. The demonstration of this approach to 

the more difficult problems remains to be done. , 

Another approach based on the detailed computations of 

each hypothetical element in the turbulent reaction zone 

has been illustrated by the earlier work of Mao and Toor 

(1970). They treated the flows as composed of multi-layered 
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sandwich, which contains either oxidant-rich layer or 

fuel-rich layer. The phenomena occurring in the sandwich is 

supposed to be unsteady and laminar, so that the full 

multicomponent diffusion effects and complex free radical 

chemical mechanism can be incorporated in the model. The 

effect of shear or stretching strain was, however, not 

considered in the early version given by Mao and Toor (1970) , 

i.e., the model is purely diffusional. They were able to 

predict the experimental data of Vassilatos and Toor (1965) 

in the plug flow reactor over a wide range of Damkohler 

number and stoichiometry parameter, if the thickness of 

layer is properly prescribed.This model bears some 

resemblance in the conceptual framework to the ESGIMO theory 

to be presented in the present thesis. 

1.5 Layout of the thesis 

The remainder of the thesis is presented in eight 

chapters. The physical model of the ESCIMO theory will be 

provided in the next chapter. 

The mathematical analysis of the theory is presented 

in Chapters 3> 4 and 5. Chapter 3 contains the mathematical 

formulation of the hydrodynamic computations and demographic 

part. The partial differential equations are two-dimensional 

steady and parabolic which can be solved by the marching 

method (in the space direction). Chapter 4 provides the 

mathematical framwork of the biographic part in ESCIMO 

theory. The equations which describe the behaviour of each 

fold are one-dimensional, unsteady with the laminar diffusion 

coefficients. An approximate method, called as "profile 

method" is adopted to obtain a closed form solution. Chapter 5 
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describes how the results obtained from the demographic 

and biographic parts can be linked together to yield the 

various turbulence properties in the flow systems of 

interest. 

The first test case in the present work, namely, the 

diffusion-limited chemical reaction in the turbulent mixing 

layer, is demonstrated in Chapter 6. The influence of various 

assumptions and parameters is also discussed. 

Chapter 7 is devoted to the application of ESCIMO 

theory to the turbulent jet diffusion flames, including the 

hydrogen-air diffusion flame and methane-air diffusion flame. 

The results are compared with the measurements from Kent 

and Bilger (1973), Lenze and Gunther (1975), Lenz and 

Gunther (1980). 

Chapter 8 presents the sensitivity analysis for the 

turbulent diffusion flames, It includes the influence of 

fold formation rate, the fold composition at birth, the 

initial fold size and stretching rate on the prediction of 

flame properties. The influence of different grid sizes is 

also investigated and demonstrated in this chapter. 

Finally, the main achievements of the present work 

and some proposals for further development of the theory 

are stated in Chapter 9. 
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CHAPTER 2 

THE PHYSICAL MODEL OF THE ESCIMO THEORY 

2.1 Introduction 

In this chapter the various components of the ESCIMO 

theory from both the demographic (Eulerian) and the biographic 

(Lagrangian) aspects will be described; the presentation 

will be based on the physical phenomena first and then 

followed by simple mathematical formulation only. The 

detailed partial differential equations are depicted in the 

next two chapters. 

The turbulence model for the time-average flow field is 

first presented as the starting base, followed by the description 

of the creation of the folds (or eddies) and the coalescence 

of the old folds into the new ones. The stretching effect of the 

folds due to the shear strain and the transport of different 

folds by the mean turbulent flow will be explained afterwards. 

The definition of the age in the fold-history and the 

relevant quantities are then provided in the subsequent 

sections of this chapter. Finally, the molecular diffusion 

which occurs inside each fold and its interaction with the main 

flow field will be discussed. 

2.2 The time average flow 

Two types of similar flow field are considered in the 

present work, namely the turbulent plane mixing layer and the 

turbulent axisymmetric round jet. Both of them belong to the 

two-dimensional parabolic flows, thus simplifying the flow 
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field solution so that more efforts can be spent on'the 

development of the ESCIMO model itself. The physical laws 

which govern these flows include the conservation of mass, 

momentum and scalar properties and the universal gas law. 

These laws have been written in mathematical forms and 

simplified according to the boundary layer assumptions, such 

as by Schlichting (1979)» Kays (1969) and Spalding (1971a) 

However, there is a need in modelling the turbulence 

quantities for the determination of turbulent fluxes which 

appear in the momentum conservation equation. In order to 

obtain reasonable accuracy on one-hand and the computational 

practicability on the other, the widely used two-equation 

model of turbulence given by Harlow and Nakayama (1968) , 

and Launder and Spalding (1973) is employed here in this 

work. 

In two-equation k-e model, -it is supposed that the 

turbulence is characterised by two quantities, namely: 

k - kinetic energy of turbulence; and 

e - dissipation rate of turbulent kinetic energy. 

The "eddy viscosity" or "turbulent viscosity" used in 

the momentum equation is then calculated from the values 

of k and e with the aid of an empirical constant. The 

turbulence length scale is also related to k and e 

instead of being assigned a specific, value such as in the 

Prandtl*s mixing length theory. The full mathematical 

presentation of the hydrodynamics calculation will appear 

in the next chapter. 
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2.3 Fold formation and re-engulfment 

The earlier experimental work of Brown and Roshko 

(1974-) on non-reacting plane turbulent mixing layer with 

free streams of different densities has provided 

considerable evidence on the existence of "large scale 

coherent structure". The rolling up of the interface 

(vortex sheet) between two streams to form "layer pairs" 

or "folds" was revealed by the high speed photography. 

The recent work of Ganji and Sawyer (1980) in the 

turbulent premixed step-combustor also reported the similar 

coherent structure. There are a number of "layer-pairs" 

or "sandwiches" in the mixing region and they are randomly 

distributed at any instantaneous moment. The fresh reactants 

are continuously entrained or enfolded with the products 

to form new eddies. From the high-speed Schlieren. film 

record of the flame presented, by Ganji and Sawyer (1980), 

it can be observed that the eddy ahead is being pushed 

downstream, and the following eddy moves up. At the same 

time, they rotate around each other and finally become a 

single entity (at least optically). This phenomenon can 

be termed the "re-engulfment process". 

In the framework of the ESCIMO theory, the formation 

rate of "folds" or "eddies" is determined by the 

entrainment rate which is obtained from the hydrodynamics 

calculation. However, the distribution of the formation 

rate across the shear layer or the jet at fixed downstream 

location has to be postulated. There is no experimental 

evidence reported up to date concerning this problem, 

hence different hypothesis will be employed and tested 

in the present work to demonstrate its influence. 
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The distribution can be assumed to be proportional to 

the local mean velocity gradient; to the local mean 

velocity: or to the normalized stream function.. 

After the fold is created inside the mixing region, it 

is carried downstream by the mean flow field and will 

finally be swallowed by another fold to form a new and 

larger fold. Ganji and Sawyer reported a relationship, 

which obeys the experimental law approximately, between 

the percentage of survived eddies and the surviving 

distance. Therefore, a distribution of the percentage (or 

population) of various folds formed at different upstream 

locations is expected at any downstream position. The 

folds can be identified according to their birthplaces 

and hence be classified into different groups. 

Re-engulfment and formation rates are directly 

linked, conditional upon their difference being equal 

to the entrainment rate from the mass conservation law. 

Should a new fold contain equal amounts of fresh and old 

material, the quotient of re-engulfment to formation 

rates would be 0.5. Generally speaking, this quotient 

is a function of position across a shear layer or jet. 

Thus, the function can be expressed as: 

R r = (l-Mo)R F , (2.3-1) . . 
where R R and R R represent the re-engulfment rate and 

formation rate respectively* Mo is the mass fraction 

of the fresh fluid in the newly formed fold (0<Mo<l) . 
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The re-engulfmerit rate of each group of folds is 

therefore calculated from the total re-engulfment rate 

(Eqn.2.3-l) multiplied by the population distribution 

obtained from the demographic analysis. 

2.4 Fold Stretching 

Winant and Browand (1974) observed the deformation 

of vortices during their pairing process in turbulent 

boundary layers. The vortices become elongated in the 

flow direction while they roll around each other which 

indicates strains imposed by the stream velocities. 

Spalding (1976b) has attributed two factors to the 

rate of distortion of layers, namely the mean motion 

of the fluid and the random turbulence eddying movements. 

The random turbulence motion is very complex and not yet 

well understood. Hence, only the rate of distortion 

brought about by the mean turbulent flow is considered 

in the present work and it is hoped that the main effects 

of stretching are adequately included, at least for the 

present. 

If the average thickness of the fold is defined as Z, 

the stretching rate (or the reduction rate of a certain 

scale) is related to the rate of strain through the 

following expression: 

Z , (2.4-1) dZ 
dt 

9u + 9 v 
9y 9x 

where t is time, u and v represent the mean velocity in 

the x and y direction respectively. Eqn.(2.4-1) is 

further reduced according to the boundary layer assumption 
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as: 

§ = -1- I f I z ; ' <2^-2> 

in the present computation. 

2.5 Fold Transport 

The basic transport mechanism of the folds is the 

mean convective flow motion, although the local vorticity 

can induce the turn-over of the folds. The trajectories 

of the eddies in the free shear layer has been first 

studied by Brown and Roshko (1974) and followed by Ganji 

and Sawyer (1980). It has been reported in their later 

work that the trajectories are nearly parellel to each 

other, indicating that the vortices nearly move with the 

same convective velocity in space. 

In the case of a free jet where the maximum velocity 

decays in the downstream direction, the trajectories of 

the eddies are supposed to be somewhat different from those 

of free shear layer where the< boundary velocities are 

constant. It is assumed in the present work that the folds 

move with the local mean velocity along the path of 

constant mixture fraction, the mixture fraction being defined 

as: 
<j> - A 

f = — , (2.5-1) 
<j> - (j) 

where 

* s s' mfu - mox » (2.5-2) 

and m- and in are the mass fractions of fuel and oxidant 
IU ox 
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and s is the stoichiometric oxydant required to burn 1kg 

of fuel. <j> and cj) are the values of 4> at the fuel pipe 
e oo c c 

exit and the surrounding air. 

The present assumption on the fold trajectories 

implies that the elemental composition of each fold remains 

constant during its life time (before it is re-engulfed by 

other fold • to form a. new one ). This hypothesis is 

consistent with the coherent assumption that each individual 

fold does not communicate with the others within its life 

span (Spalding? 1979b). 

2.6 Fold age and the quantities correlated with it. 

The fold which is formed at a particular point in the 

flow field will take a finite time to travel to another 

place (before it is re-engulfed). Spalding (1976b) suggested 

the use of an "age" dimension to describe the fold-history. 

The definition of "age" employed in the ESCIMO theory is 

the time elapsed since fold formation. Thus, it is related 

to the convective velocity and the distance from the 

birth place along the fold path. 

The mathematical relation between the age and the 

relevant quantities is now written as: 

where A is the age of the fold and x^ is the x-value at 

the birth place, c is the trajectory of the fold. 

Folds which have survived through various periods 

of time can be characterised by their ages. Samples taken 

dx (2.6-1) u 
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at a particular point in a flow field over a significant 

time interval should be able to exhibit folds having 

various ages owing to the turbulent fluctuation. 

Consequently a population distribution curve based on age 

can be constructed. 

The task in the demographic part of the ESCIMO 

theory is to obtain the population distribution of folds 

in the flow domain. The mathematical framework and 

computational technique share some similar feature with 

the computation of particle-size distribution in coal 

combustion (Gibson and Morgan,' 1970; Richter and Quack, 

1975) and in droplet combustion (Elgobashi, Pratt, Spalding 

and Srivatsa, 1976). The detail analysis is to be 

described in the next chapter. 

2.7 Phenomena occuring within the fold 

While the creation and transport of the large scale 

coherent structures, such as folds, are dominated by 

the turbulent mixing processes, the interaction between 

the interface of fresh reactant and the product inside 

each" fold is a molecular one. The molecular diffusion, 

heat conduction and chemical reaction which take place 

in direction normal to the interface are subject to 

the laminar law and hence the laminar exchange coefficient 

can be employed in the computation. 

The properties of the fresh component (reactant) 

of the fold are those which belong to the undisturbed 

irrotational fluid outside the shear layers or jets. 

On the other hand, the properties of the re-engulfed 
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component of the fold are determined by the mean 

turbulent values and the fluctuation values inside 

the mixing region. 

The inter-diffusional and chemical-reaction processes 

within the fluid element are influenced by the stretching 

effect- from the mean turbulent motion such that the 

distances over which the reactants must travel become 

steadily smaller. The interaction between turbulence 

and combustion is embodied in this aspect of the ESCIMO 

theory. 

Since the moving observer concept is adopted in the 

biographic analysis, the equations describing the heat 

and mass transfer inside the fold can be reduced to 

more tractable partial differential equations without 

the non-linear convection terms. Extensive reports on 

this formulation can be found in the related work by 

Noseir (1980) and Tarn (1981). 

2.8 Closure 

A summary of the main points in the physical model 

of the ESCIMO theory are listed below. 

(1) The turbulent flow field has to be solved by 

considering the time-averaged equation of motion. 

The turbulence quantities are determined by the two-

equation model, namely the kinetic energy of turbulence 

and its dissipation rate. 

(2) The eddies, or folds, are created inside the 

mixing region and they are composed of the fresh 

irrotational fliud and the fluid element already 
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existing in the mixing region. The rate of formation 
is determined by the entrainment process. 

(3) The folds are being continuously subject to 

the shear strain caused by the turbulence motion. Only 

the effect of mean turbulent motion is considered in 

the current work. 

(4.) The main mechanism of the fold transport is the 

mean convective motion. 

(5) There exists a distribution of folds which have 

survived through various periods of time since formation 

at any point in the flow domain due to the turbulent 

mixing. 

(6) The process which takes place at the interface 

between the fresh and the re-engulfed part of each fold 

is dominated by the molecular diffusion. 

(7) The mean turbulent properties at any location 

can be obtained from the corresponding quantities of 

each fold multiplied by the population distribution 

function there. 

The mathematical formulation and the solution 

procedure will be set up and described in* the next 

chapters. 
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CHAPTER 3 

THE MATHEMATICAL ANALYSIS: DEMOGRAPHIC ASPECTS 

3.1 Introduction 

The governing equations of the mean velocity, turbulence 

quantities and the mixture fraction will be supplied in this 

chapter firstly, because all the results obtained herein 

serve as the necessary input to the ESCIMO theory. 

Secondly, the transport equations which describe the 

population distribution of various folds will be provided. 

The equations will then be transformed into a non-dimensional 

form in order to promote the convenience of solution 

procedure. The boundary conditions of these equations are 

also discussed. 

The transformed partial differential equations of folds 

population distribution are then written in the finite 

difference form which lead to a set of algebraic equations. 

These algebraic equations are solved by tridiogonal matrix 

algorithm (TDMA, see Smith (1974)). The age space is 

discretised into a finite number of intervals for the sake 

of practical calculation. 

Finally, the solution procedure of the finite difference 

equations will be presented in detail and the upwind 

difference scheme is employed in both the space coordinate 

and the age coordinate to procure physically realistic 

results. 

3.2 The Hydrodynamic Calculation 
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3.2.1 The Basic Equations in Polar Coordinate 

The conservation laws of mass and momentum are 

applied to axisymmetrical, isobaric free boundary 

layers. The transport equations for the axially-

directed momemtum and for the mixture fraction, given 

by Spalding (1971a)are listed below. 

I f + ^ U = 7 3 7 ( r u t 37> + >(3.2-i) 

and 
3 ? . 3 ? 1 3 / W t 3?\ 0 0x pu + pv w— = — r— (r — ) ,(3.2-2) 3x 3r r 3r a f 

where u and v are, respectively, the time-averaged 

axially and radially-directed velocities of the jet flow; 

x and r are the axial and radial coordinates; f is the 

time-averaged mixture fraction (defined in Eqn2.5-l), P 

is the density of the mixture and p^ is its value in the 

surroundings; g is the gravitational acceleration assumed 

to be aligned with the axis of symmetry, \î  is the 

"turbulent viscosity", and a^ is the turbulent Prandtl/ 

Schmidt number. 

The pressure gradient term does not exist in Eqn. 

(3.2-1) because the flow considered is free jet (or free 

shear layer). The turbulent Lewis numbers for all species 

have been assumed to be unity so that Eqn(3.2-2) contains 

no source term on the right hand side. It implies that 

the turbulent diffusion coefficients of all species 

are equal to each other. 

The equations for the turbulent kinetic energy and 

the dissipation rate of turbulent kinetic energy given 

by Launder and Spalding (1973) are presented below: 
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_ 3k , ^ 3k 1 3 / ut 3k\ _ « 
p u 3^ + p v 37 = r 3? ( r o7 fcF* + G k " ' (3.2-3) 

x 

and 

P u I f + I f = 7 - h 7 T I f ) + f < c ' G k - C i p e ) . ( 3 . 2 - 4 ) 
£ 

where Ci and C2 are empirical constants. 

is the rate of generation of turbulence energy which 

is given by the following expression: 

G k = u t ( | ^ ) 2 . ( 3 . 2 - 5 ) 

The turbulent viscosity is calculated in the k-£ model 

by the relation 

k 2 , (3.2-6) 
u t = V r 

where C^ is an empirical constant. 

The combination of the laminar viscosity and the 

turbulent viscosity is termed the "effective viscosity": 

ue = + u t • (3.2-7) 

The values of Ci, C 2, C^ and o^, a £ used here are the 

same as those given by Launder and Spalding (1973), namely: 

Ci = 1.4-3, C 2 = 1.92, C u = 0.09 

ak = 1-°> a£ = 1 ' 3 

3.2.2 The Transformation of the- Equations to the x^ai coordinates 

In the actual solution procedure, the numerical scheme 

of Patankar-Spalding (1967) embodied in the GENMIX computer 
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y yE 

GO = £ rpudy / f rpudy , (3.2-11) 

and 

X y r d y = (ipE - Tpj) ( p u ) " 1 ^ . (3.2-12) 
The standard mathematical technique is now employed to 

transform Eqn.(3.2-8) into the x^w coordinate system. 

The task is to express in terms of and 
9x ip { d x J u 

/9(p\ ; and /9(|)\ in terms of /JHn and (9jP\ respectively. 
9 a) x 9ip x Kdx'u 9 u) x 

From the differentiation rule, the following results 

are obtained: 

( f f ^ = ^ I f ^ J ^ x ^ i P ' (3.2-13) 

and 

9x ip dx dx ' ' (3.2-14) 

since dip = 0 at fixed ip. 

Hence 

v9x;oj (ipg-ipj) 1 dx dx 9ur x 

. (3.2-15) 

Equation (3.2-13) is now rewritten in the compact form 

as: 

(|2) = (|2) + ( a + b w ) ( # ) 9x ip 9x (D 9urx 
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program is employed. The partial differential equations 

for u, f, k, e etc are first derived in the "Von Mises" 

coordinate system, x^tp. They are expressed in the general 

form given below (Spalding (1978a)). 

where (J) stands for any of the quantities u, f, k, e etc 

and S^ stands for the corresponding source term, is 

the "effective exchange coefficient" for the variable 4> 

and ip is the stream function given by: 

i|> = /yrpudy • (3.2-9) 

For the sake of economy of computer storage in the 

numerical calculation, Eqn.(3.2-8) is then transformed into 

the x^u) coordinate system; here the coordinate co is defined 

by: 

oj= (lp-TpjJ/Cipjj-'ipj) , (3.2-10) 

where ipg and ipj stand for respectively, the value of at 

the external and internal boundary of the calculation domain. 

The values of ipg an<i a r e c* 1 0 s e n i n such a w a Y that the 

whole of the interesting region is covered within the I 

and E boundaries and therefore <u takes values between 0 and 

1. Note that and ipj are functions of x and are calculated 

during the course of computation. 

From the definition of ip and u), given by Eqns. (3.2-9) 
and (3.2-10), the following relations can be achieved: 
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Here a and b are defined by 

-1 diJjT a = 
( ^ E - ^ I ) d x > ( 3 . 2 - 1 6 ) 

b 1 7 ^ f e £ • ( 3 - 2 ' 1 7 ) 

Similarly, for the definition of oj ; 

/ _ /jL&v 
9i|r x 9ur x v9\l);x 

(iUE-ii)I) v90)yx # (3.2-18) 

Since (^e- iP j) i s a constant at fixed x, the following 

relation is readily established: 

, (3.2-19) 

in which c is defined by: 

c = g2pur<p.eff . (3.2-20) 

" W 2 

Thus the resulting transformed form of Eqn.(3.2-8) in the 

x'Ucd coordinate system is: 

I * + ( a+b« )|4 = X (c|4)+ d .(3.2-21) 
9x 9 a) o-o) 3tu 

(i) (ii) (iii) (iv) 

Term (i)j in Eqn. (3.2-21) represents the longitudinal 

convection of variable <j), term (ii) stands for the lateral 
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convection. Term (iii) stands for the cross-stream 

diffusion and term (iv) is the "source" of the entity. 

It should be mentioned here that the quantities a and 

b are respectively, the rate of inflow to the boundary layer 

through the I boundary and the sums of the rates of outflow 

from the boundary layer through both the I and E boundaries, 

Hence: 

a = rjmf/(ipE-ipp) , (3.2-22) 

b = ( i - E m E - r j m ^ O / » (3.2-23) 

where the mass fluxes and are mass flow rates per unit 

area across grid boundaries, as shown in Fig.3.2-1. 

The values of a and b are calculated as those in the 

standard GENMIX program, hence only the brief description 

will be given below: 

• When there is a symmetry axis or symmetry plane in the 

flow, this will be used as one boundary of the domain of 

integration and the relevant m " m u s t be equal to zero. 

• When the boundary of calculation domain expands to 

cover the boundary layer, the mass transfer rate is chosen 

so that material flows into the boundary layer at such a 

rate that conditions just within the layer differ from those 

in the undisturbed stream by a small specified amount. This 

device is applicable to the boundary of shear layers, jets, 

etc. 

• When the integration domain is bounded by the 

impermeable wall, the mass transfer rate is equal to zero; 
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(a) Mixing Layer 

E bcmfcry(cjL>=1) 

(b) Round Jet" 
E boundary (co=1) 

Fig.3.2-1 Boundaries of the computation domain 
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otherwise it should be equal to the mass transfer rate 

prevailing in the actual problem. 

The source terms, d, for the equation of u, f, k 

and e have been established in the previous work of 

Launder and Spalding (1974)» Spalding (1978a). They are 

now listed in Table 3-2: 

Variable Source term, d 

u ^ r (p»-p)g 

f 0 

k 
ik 

£ . ^ i < C i G k - °*<>e> 

Table 3-2 .Source terms for the relevant equation in 

the general form. 

3.3 The Basic Differential Equations for the Fold 

Population. 

At a certain location in a flow region, the 

population of folds there has different ages and is 

defined in the present theory as the propability of 

finding particular folds per unit age. Thus, the 

population P is a conserved property and has the 

dimension of (age)"^ and obeys the following relation: 

/oPdA = 1 .(3.3-1) 
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The task in the demographic analysis is to solve 

the conservation equation for P of the kind described 

in the preceding section, viz: 

H + <a + b">>E = + d p ' ( 3 - 3 - 2 ) 

The source term dp includes the "simple-aging", 

fold formation and fold re-engulfment rates. It is 

presumed here that the simple aging part is -3P/3A; 

this signifies that the folds can only become older 

and that the value of P at one value of A is influenced 

by the shape of the population-distribution function 

itself. The relation between the formation rate and re-

engulfment rate has already been described in Sec.2.3. 

The creation of a new fold is always accompanied . 

by the death of an existing fdld'as a kind of 

"reincarnation" under present conceptual framework, 

since all the fluid in the mixing region is fold 

material* The source term in Eqn.(3.3-2) is therefore 

given by 

d p = [ - P f f + P R p < 5 ( A ) - P R r P - P M o R p P J / P * , ( 3 . 3 - 3 ) 

= [ - H + R f S ( A ) - R f P ] / U , ( 3 . 3 - 4 ) 

where 6(A) is the Dirac delta function defined as : 

1 • _ t t for 0<A<AA 
6 ( A ) = a a I O { 

u for A>AA ,(3.3-5) 

with the property of /<o6(A)dA = 1 (the portion of A<0 

is not considered here because of the non-negativity of 

age). 
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The second term on the right hand side of Eqn.(3.3-3) 

represents the generation of new folds at A=0 only (it 

needs to be approximated by a small interval in the finite 

difference formulation)» The third and fourth terms 

denote, respectively, the consumption of fold material 

required for the re-engulfed and fresh part of newly 

formed folds. Note that the value of Mo does not 

appear explicitly in the final expression of Eqn(3.3-4). 

3.4 Transformed Differential Equation of Fold Population 

From the definition of age in Eqn.(2.6-1) it can 

be observed that the maximum age in question increases 

with the longitudinal distance x. Hence, it will be 

necessary to employ a large number of sub-intervals in 

the age-coordinate in order to obtain reasonably accurate 

results in the downstream region of the flame jet. 

A non-dimensional age A, is now introduced to 

economize the computational procedure and to cover the 

age-interval of important interest, viz: 

A = A T M ,(3.4-1) 

where F4 x} indicates that F is a function of x only. 

The characteristics of non-dimensional age, A, are 

similar to those of non-dimensional strean function, a), 

in the Patankar-Spalding procedure. The function F is 

chosen in such a' way that the whole of the interesting 

region in the age-dimension is included and A takes the 

value between 0 and 1. This device is justified because 

the population of the very old folds (in the boundary layer 

type flow at least) must be negligibly small. Thus, a 

moderate number of sub-division in the A-coordinate is 

sufficient to yield acceptable accuracy. 
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The standard mathematical technique is now employed to 

transform Eqn.(3.3-2) from the x, w, A coordinate system 

into the X, W, K one with the following definition: 

X = x ; (3.4-2) 

W = u ; (3.4-3) 

A = AF(x} . (3.4-4) 

It can be shown from the chain rule of differentiation that 

+ » (3.4-5) 
3x ax 9x 3W 3x 3S 3x 

^ = 3 P 3 X , 3 P 3 W 3P<3A , (3.4-6) 
3oj 3X 30) 3W 3u) 3j 3u) 

3 P _ 3 P 2 I + 1 Z M + 8 p M • (3.4-7) 
3A " 3X 3A 3W 3A al 9A 

From the definitions in Eqns.(3.4-2) to (3.4-4), the 

following relations are valid: 

3X _ 3W , 3A _ _ / , 

3^ " 1 ' " 1 ' 3 A ~ F ' (3.4-8) 

M = M = = A 3F f 3 , q ) 
3x 3X 3X F 3X ' 

i = | | = o , (3a-io) 

§ k = m = ° , (3.1-iD 
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ax _ ax _ n 
3u) ~ 3W ~ , (3.4-12] 

ix: _ 3x _ n . (3.4-13) 
3A ~ 3A ~ 

Hence: 

3P 3P , 3P A 3F , (3.4-14) 
3x " 3X g j F 3X 

I s = Iw ' (3.4-15) 

9P = 3P F . (3.4-16) 
3 A ~ 3 A 

Equation (3.3-2) written in X, W, A coordinate system 

is now given by: 

9 P 4- 8 P 9 (JZ-s /A 3F . Fn 3P 
ax + ( a + b W ) aw = 3w(c3w} - ( f 3X + U ) 7s 

+ £ r F F 5 ( A ) - R f p J /u , (3.4-17) 

since A = 0 when A = 0, 

The second transformation to the dependent variable, P, 

is now introduced to satisfy the requirement of: 

/ PdA = / PdA , (3.4-18) 

i.e., the area under the P^A curve will be equal to that of 

the P^A curve. Noted that P and A are both dimensionless. 
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because F and u are not functions of A. From now on the 

variables X and W can be restored to the original forms 

of x and to, since they are identical to each other. 

3.5 Discretisation of Age-Interval 

The new feature of the P-equation is that an 

additional coordinate (or dimension), A, has been introduced, 

It is essential to divide the age-coordinate into a number 

of sub-intervals in the numerical solution procedure, 

as for x and to coordinates. The problem is analogous to 

the particle-size distribution in coal combustion and 

droplet size distribution in droplet combustion and hence 

similar technique of discretisation is employed here. 

The P-equation is now represented by a set of equations, 

each one represents the probability, P., of finding the 
J 

folds which belong to a finite age-interval, AA . (=A . ... -A .) . 
J O 4 TJ 

Each equation is then coupled with the other through the 

source terms, viz: 

3PT 3P-, % 3P-I <\ 
i + ( a + b w ) 1 3 ( c l ) . ! 

'3u) 3o) 3a) ' 3x 
(I + A dF. 
Ku -F d x ; p 

J 12 
+ 1 

u 
Ri 

_ AA. - V i 

,(3.5-1) 

ap, 3P 3P. 

3A 
(i + A a , ; u F dx-'P + i u 

23 
- R F P 2 

»(3.5-2) 

3P . 3P a aF.i 
>3cô  c3o) ) - 4 

3A 
rl + A T F dx + i u 

j.j+1 
- RF PJ 

,(3.5-3) 
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Thus, P is now expressed as 

p = p dA 
r r dA 

= PF{x} . (3.4-19) 

Hence: 

ax = Fax + p ax » (3.4-20) 

= F 1 E + piZ as as 3a 

3P — 
= F-rb (since F does not depend on A) , (3.4-21) 

3A 

- viz + p2£ 
aw ~ *aw raw 

_ ^ap . (3.4-22) 

Equation (3.4-17) is now transformed into the following 

form with the aid of Eqns.(3.4-20) to (3.4-22): 

(p2E + ? S I ) + (a+bw)F— = - ^ ( c f 2 £ ) - (A I E + I ) F 4 
v ax ax v D ;j?aw awvc avr ^f ax u 3a 

+ ̂ R F F 6 ( A ) - RFPFJ /U . (3.4-23) 

Equation (3.4-23) is rearranged after algebraic 

manipulation to yield the following form: 

+ ( A + B W ) I P = J _ ( C 2 P , . F ( F + A 3 F ) ? " | 
ax aw awv aw' 3A L u F ax ' J 

+ [ftF5(A) - R f P ] /U , (3.4-24) 
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AA. 
L 

where the —r— term in Eqn.(3.5-1) is the finite, difference 

approximation of F„5(A) for the generation of folds; the 

quantity — p - ) F • -xi includes the P. ^ P. and 
3A L u' F 9 x _ N » J + 1 J" 1' J 

P., t terms which will be discussed in Sec.3.7. 

3.6 Boundary Conditions and Initial Conditions 

The zero gradient boundary conditions have been 

employed at the jet (and mixing layer as well) edge and the 

jet axis for P for all age sizes. This is easy to understand 

if one regards the folds as being formed by "injection" 

into the inside of the jet (or mixing layer) of material 

"shot" from outside; they do not arrive by molecular 

diffusion. Thus, 

= 0 at a) = 0 and co = 1 .(3.6-1) 

0 0) 

It is assumed in the present work that only the 

newly formed folds exist at the nozzle exit plane (or 

the initial cross section of the mixing layer). Hence, 

P = 0 for A>A^ at x=0 
P = - i - for 0<A<Ao .at x=0 

. " ~ 2 

, (3 .6-2) 

where AA' = A^-A^ = A 2 (A'1=0) . 

The influence of the initial conditions will gradually 

die out as the marching procedure in x-direction 

proceeds. 

3.7 Finite Difference Approximation of the Differential 

Equation 

The finite difference equations for u, f, k, e are the 

same as those employed by the GENMIX computer program, while 
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the finite difference form for P-equations are new only in 

the expression of source terms. The full contents of the 

equations will be provided below for the sake of completeness. 

The general Eqn.(3.3-2) is first integrated over the 

control volume defined between u^+^f ^u ^ ^ ^D' a s 

shown in Fig.3.7-1. 

N H — A X -

1 

boirdcry 

x 

Fig.3.7-1 x - w g r i d and control volumes used for 
the derivation of the finite-difference 
equations 

The values of u). and w. i are defined by: 

0) . i = 1-2 

0) . , i = 1+2 

& (wi-1+o)i) 

i (w±+<»>i+1) 
for i f 2 or NM1 , (3.7-1) 
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and 

= 0 

= 1 

for i = 2 

for i = NM1 

, (3.7-2) 

. (3.7-3) 

The integrated form of Eqn.(3.3-2) combined with the 

fully implicit scheme is given by: 

i+4 
(1/Ax) J" (d>D-<i>u)daj - b 

i-4 

i+4 
/ <t>dui 
i-i D 

[ + | {(a+buj)(t)}i+i - {(a+boj)<J)} 

_ I ( ( -̂ GcP > 

D 

i+4 
+ I f d*dcu 

D I i-4 D . (3.7-4) 

It can be seen that the only upstream value of (J) appeared 

in the first term of Eqn. (3.7-4), while all other <J)-values 

are taken from the downstream station. The finite difference 

expression of Eqn.(3.7-4) takes the following form: 

Ax K + r ^ - F 

+ 2 ( " W h + h + i L - " W V ^ i - i V 
Hj 1 U 

< W < W » i V Q i - 4 ( V * i - i V 

, (3.7-5) 



6/1 

• -

wherein mZ = (l-a>i)(rm Jj+co^rm ) E ^ 1-b) 
9 

5 ( ^ • . e f P i + i / ^ i + l - y i L . • ( 3 - 7 - 7 ) 

a n d 5 ' ^ W W ^ i - A ' ( 3 - 7 " 8 ) 

Eqn.(3.7-4) can be written in the more compact form given by: 

«i*i,D = ai <»i +l,D + 6ih-l,D*Y i ' ( 3 - 7 " 1 0 ) 

where 

a ± = m a x ^ 0 , ( Q - i i ' ) i + i > ' (3.7-11) 

S ± = maxj^O, ( Q + J f t ' ) ^ ft^j J , (3.7-12) 

- • i , u ( V * I ) u ( u i + i - w i - i ) / A X + S i ' (3.7-13) 

5 - S^ . (3.7-14) 

The upwind difference scheme is adopted in Eqns.(3.7-11) 

and (3.7-12) to ensure physically realistic results for the 

case of high lateral convection. A similar technique has to 

be employed in the finite difference form of the source terms 

for P.*-equations, so that negative values of P. will be J j 
prevented. The reason is given below. 

The folds can only become older in the real age-space 

and will not be influenced by folds having larger age, but 

this statement is not always true when the non-dimensional 

age is used due to the moving grid effect. On- the present 
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transformed coordinates, it is the sign of the term 
F A 3F 3p 

(— + |t multiplying in Eqn.(3.5-l), which determines 

whether the high-A or low-A value is to be regarded as crossing 
a* 

the A-interval boundaries. A better understanding can be 

achieved with the aid of the figure presented below: 

AAi 

I 

2 
Ai Aq A 2 Ac2 A 3 Aj-1 AJ Aq a M 

Fig.3.7-2 Grid nodes and intervals of A used 
in the finite difference form 

The values of Pj are stored in the centres of the 

intervals and the simple ageing term appropriate to the age 
A* 

interval AAj is: 

. J . |"(F + i 3 I ) 5 1 = . 4 _ r ( F + h*k M ) ? 
3A L u F 3 X AA. L u f j 

j 

. ( Z + 1 (3.7-15) 

u F 3x J " J ' 

where P., and P. are determined by the upwind difference as: 
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A. 

and 

V 

p. j-

V 

p. J 

V i 

V i 

pj 

when (P + J+i 3F} > 0 vu F 3x — 
A. 

when (I + |I) <0 

when (I + tf ||) u 
A. 

>0 

<0 

where 

AA. = A..,-A. and A„ = 0.5(A.+A.,,) J J +1 J cj J 3+1 

, (3.7-16) 

r (3.7-17) 

, (3.7-18) 

, (3.7-19) 

. (3.7-20) 

Finally, the expression for the total (positive and . 

negative) source term of P. - equation is: J 

s i = - ^ [ < ! + t l f ) p ~ i + ] + i \ j j r - V x ] . ( 3 - 7 - 2 i > 

and 

s - - - i - T f E + ii+i 2I)p . (I + i l ajop 1 
3 AA U F 3+ ^ F ^ V ] 

j u -

+ f 0 r 3 * 1 - - (3.7-22) 

3.8 Solution Procedure 

The order of variables solved in the demographic 

part of the current work are u, f, k, e. Pi, P 2,P 3,...., 

Pj,..., F-̂ p , where NA is the number of subdivisions in 

the A-coordinate. The tridiagonal matrix algorithm (TDMA) 

has been employed in solving Eqn.(3.7-10) and the 

marching procedure in longitudinal direction is also the 

same as that embodied in GENMIX program. The enthalpy, 

temperature and species concentration are calculated 
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from the combined biographic and demographic analysis 

in a different manner to be described in the next 

chapters. 

What remains to be emphasised here is that the 

iteration procedure has been introduced in the calculation 

of P., because the values of P.,-, are unknown when we 
J ~ 

are solving for P.. Hence, the value of in the 
J J +1 

corresponding upstream position is taken as the initial 

guess and the iteration loop is given by: 

(Pi 9 P2» • • •» Pj ̂  j+1* * 

(Pi ,Pa »pj.i»pj »pj+l» •••' PNA ) " e t c 

where the single dash and double dash stand for the 

values obtained after the first and second iteration 

respectively. 

According to the experience obtained during the 

computation, only four or five iterations are sufficient 

to achieve the convergent solution because the P. values 
I 

do not change drastically in one marching step. 

3.9 Closure 

The partial differential equations, finite difference 

equations and the solution procedure of the demographic 

analysis have been presented in this chapter. The 

formulation is partly new and partly old; the new part 

refers to those related to the population distribution 

function and the old- part stands for the integration 

domain and solution algorithm for other hydrodynamics 

variables. 
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In the next chapter, the mathematical analys 

of the biographic aspects will be provided and the 

accuracy of the results assessed. 
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CHAPTER L 

THE MATHEMATICAL ANALYSIS: BIOGRAPHIC ASPECTS 

4-.1 Introduction 

The Lagrangian (moving observer) approach 68 the 

biographic part of the ESCIMO theory has been reported by 

the earlier work of Noseir (1980) and Tam (1981) for the 

premixed flames in simple hydrodynamic flows. The purpose of 

the present chapter is to describe how the biographic 

calculation can be performed for the turbulent jet diffusion 

flames with a rather moderate computing cost. 

The basic partial differential equation for the fast 

chemistry diffusion-controlled reaction will be presented 

first and followed by the description about the fold 

characteristics at the birth place, because these properties 

will serve as the initial conditions to., the .equation, 

An approximate method, termed the "profile Method", is 

then introduced to obtain the closed form solution of 

biographic equation. The computer time is considerably 

reduced when compared with the corresponding one used in 

the "time marching method". 

The presentation of the profile method is followed by 

the description of solution procedure to demonstrate where 

and how the biographic analysis is performed during the 

course of complete computation. Finally, the accuracy of the 

profile method will be discussed and attempt has been made 

to compare the results with those obtained from the more 

accurate time marching method. 
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4.2 The Basic Partial Differential Equation 

The general transport equation for any conserved property, 

4>, such as mass, momentum and enthalpy, in the fixed coordinate 

system takes the following form in Spalding (1978b): 

ffi + div(pS<t>)= div(^gradd)) + S^ f (4.2-1) 

where u is the velocity vector, B ^ is the diffusion coefficient 

for the quantity (J), P is the density. 

The second term in the left-hand side of Eqn.(4.2-1) 

disappears when the moving observer approach is adopted, i.e., 

the coordinate system is moving at the same velocity with the 

fluid element. Hence, Eqn.(4.2-1) is simplified to: 

f ^ = divO^grad*) + S^ . (4.2-2) 

Therefore the nonlinear convection term has been dropped out 

and the mathematical task becomes easier; this is one of the 

major advantage in the Lagrangian approach. 

The diffusion coefficient, is a laminar one in the 

biographic analysis (the "small scale mixing" is treated as 

the laminar process) arid hence no modelling is required 

in its evaluation. 

It has been shown by many authors, such as Hawthorne et al. 

(1949) and Bilger (1980), that the mixture fraction f for 

a fast chemical reaction process (when the diffusion 

coefficients are equal) is an important and useful Zeldovich 

function. The enthalpy and mass fraction of species are 

uniquely determined by f and hence the other thermodynamics 
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variables can also be related to f. 

Another advantage in using f as the-main dependent 

variable is that Eqn.(4.2-2) contains no source term 

in the present case, this means tha-t no chemical-kinetic 

knowledge is needed for the solution of this problem. 

If the average density is employed in the calculation, 

the governing equation for f is now expressed as: 

P | | = div(£ fgrad f) . (4-2-3) 

The chemical reaction and diffusion processes inside 

the fold are assumed to take place in the direction normal 

to the interface between the fresh and old layer. Thus, Eqn. 

(4.2-3) reduces to a one-dimensional, unsteady type 

differential equation given by: 

where z is the distance normal to the interface inside the 

fold, In reality, the processes should be described by two 

(or even three)-dimensional equations, but the computing 

cost will be significantly enlarged without gaining a clear 

advantage as mentioned by Spalding (1979b). 

If the further assumption of uniform diffusion 

coefficient in the fold is made, Eqn.(4.2-4) takes the 

simpler form: 

af = ill f (4.2-5) 
3 t " PZ2 8f|2 

where Z is the thickness of the fold and n is z/Z. 

From now on the independent variable,t, will be 

replaced by the "age" of the fold, A. Hoxyever, the fold 
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thickness, Z, varies with age as a consequence of the 

stretching effect and the relation between them is supposed 

to be: 

I f l = " R ' (4.2-6) 

so that: 

Z = Z 0exp(-RA) , (4.2-7) 

where Z Q is the fold thickness at birth (at A=0). Eqn.(4.2-7) 

implies that the fold size diminishes and the '.'average" 

stretching rate, R, is taken. 

When Eqn.(4.2-5) is combined with Eqn.(4.2-7), a compact 

form is achieved after some mathematical manipulation: 

3f = , (4.2-8) 
3A* 3n 2 

where A* is a kind of non-dimensional age and C is a 

non-dimensional constant; they are defined by: 

A* = exp(2RA)-l , (4.2-9) 

C =£./(2pRZ 2 ) . (4.2-10) 
-L 0 

The value of 1 in Eqn.(4-2-9) has been chosen in such a way 

that A* = 0 when A = 0. 

4.3 The Fold Characteristics at Birth 

The initial conditions of Eqn.(4.2-8) are the values of 

f in the fresh and old part of the fold at birth place. 

In the mean time, the fold size at birth and the local 



73 

stretching rate are needed in the evaluation of the constant 

C. Therefore, the necessary information will be provided below. 

4.3.1 The Fold Size at Birth 

It is assumed in the present work that the fold size 

at the birth place is proportional to the local length scale 

of turbulence, viz: 

Zo = Czk3/2/e (4.3-1) 

where C^ is the proportionality constant. Various values of 

C^ have been investigated and it has been recognized that the 

value of 0*328 yields reasonable agreement with experimental 

data of Batt (1977), Kent and Bilger (1973), Lenz and 

Gunther (1980). The value of 0.328 is actually obtained from 

the k-e model. 

The present assumption implies that the fold size is 

proportional to local jet width (about 1/20 in the round jet) 

or local shear layer width (about 1/16 in the shear layer). 

Hence, the size of folds created in the downstream region 

of the flpw is larger, than the counter part in upstream 

points. 

4.3.2 Fold Composition at Birth 

The fresh part of the fold is always supposed here to 

be the irrotational fluid, while the old (re-engulfed) part 

of the fold has the properties derived from those of the 

local mean values, The situation in the mixing layer and jet are 

slightly different and hence will be discussed separately: 

The Mixing Layer Case 

In the case of the mixing layer, both of the free streams 
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are irrotational fluid and capable of forming the new fold. 

Two kinds of new folds are represented in the graphs: 

fo 

(.0) (=f+f'> 

J L - t 

~ ^ f: 

Cd"=1 

UJ=Q) 

CO=0 

fo 

(=1) W ? - f ) 

Fig.4.3-1 Composition of folds at birth in 
the mixing layer 

The value of f' is calculated in accordance with: 

, (4.3-2) - m I H 

where C^ is the proportionally constant, JI is the local 

length scale of turbulence. The symbol fo and f„ stand for 
it 

the mixture fraction of the fresh part and re-engulfed part 

repectively. The value of oj* is given by: 

0) * = 
Tl hl 

r-pm-r - rri4. 
, (4.3-3) 

I111! E E 
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so that: 

when 0 < w < to* (4.3-4) 
f. R f - f 

and 

when o)*< call . (4.3-5) 
f R = f + f ' 

The Round Jet Case 

In the case of the round jet, the irrotational fluid 

is the surrounding air only (fo= 0) and hence only one kind 

of fold exists,viz: 

GJ=1 

t> fh 
(=0) (.F.f) 

Fig.4.3-2 Composition of folds at birth in the 
round jet 

The composition is now given by: 

^o = 0 

f n = f + f' 
when 0<io< 1 (4.3-6) 
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The Mass Fraction of Fresh Mass in the Fold 

The mass fraction of the fresh part, characterised by 

f Q, in the newly formed fold is determined in such a way that 

the average f-value in the fold is equal to the local mean 

value, f. Hence, 

f 0 M 0 + f R(l-M„) = f , U . 3 - 7 ) 

or 
M _ f R ' ? • (4.3-8) 
0 ~~ 

fR " fo 

The M 0 values may vary between 0 an 1 at different 

places in the calculation domain. It will be shown in the later 

chapters that the M 0 value is larger near the outer region 

of the flow, this implies that more irrotational fluid exists 

in the fold. 

4.3.3- The Stretching Rate of the Fold 

The stretching rate varies with the path of the fold and 

hence it is not constant during the lifetime of the fold. 

However, the "average" stretching rate is employed in Eqn. 

(4.2-10) to simplify the computational task. 

The arithmetic mean between the stretching rate at the. • 

birth place and that at the point of combined computation 

(demographic and biographic analysis) is taken in the present 

work. The expression takes the form as: 

R = C s [ ° ' 5 ( t e l b
+ M ^ ] ' U . 3 - 9 ) 
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where Cg is the stretching rate constant. The subscripts b and 

% refer to the birth place and the point where the combined 

analysis is performed. Various values of Cg (from 0;1 to 2.0) 

have been investigated in the present work. 

4.4 The Relation Between Mixture Fraction and Other Variables 

The chemical reaction is represented by the single-step, 

irreversible, global reaction scheme. The intermediate species 

and radicals are being neglected to allow more attention to be 

paid on the development of demographic analysis* The 

previous work of Tam (1981)'has already demonstrated that the. 

complex chemical kinetics scheme can be handled in the 

biographic part of ESCIMO theory. 

The chemical reaction rate is assumed to be fast and the 

laminar exchange coefficients of all species and heat transfer 

are also assumed to be equal, therefore the relation between 

the mixture fraction and other variables can be represented 

by the graph below: 

mjJ.h 

Te 

m f u , e 

0 frf 
f 

Fig.4.4-1 Sketch of dependencies of various 
flow properties on mixture fraction 
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The mathematical formulae are listed below: 

mfu = mox = m o x , - ( % 7 - ) w h e n °< f< fst ' 
S u 

f-f 
mfu = m f u , e ( T ^ mox = 0 w h e n f s t < f ^ ' 

min = min,e + (lI1in,e " w h e n ' 

npr = 1 " fflfu " mox " min » 

h = h ef + h„ (1-f) , (4.-4.-5) 

T = (h-m f uH f u)/ CP,mix , (4-4-6) 

p = W m i x P / R u T • 

wherein: 

f . stands for the mixture fraction of the st 
stoichiometric mixture , 

m^ n represents the mass fraction of inert species, 

m is the mass fraction of product, 

h is the enthalpy of the mixture, 

T is the temperature of the mixture 

H f u is the heat of combustion of fuel, 

p is the -pressure of the mixture, 

R u is the universal gas constant, 
W . v is the molecular weight of the mixture , mix ° ' 
Cp is the specific heat of the mixture. 

The subscript e and 00 denote, respectively, the values 

at the jet exit and the surrounding air stream. 



79 

The specific heat of mixture, C! . is calculated in e p,mix 
accordance with: 

C . = Z m.C (T) (4.4-8) p,mix . J Pj > 

where m. is the mass fraction of the j-th species and C is 
J Pj 

the corresponding specific heat. The temperature dependent 

function of C is taken from the third order polynomial Pj 
of Perry and Chilton (1973): 

C = Ki + K 2T + K 3T" 2 > (4.4-9) 
Pj 

where Ki, K 2 and K 3 are constants given in Table 4.4-1*. 

Species k i • k 2 k 3 

h 2 13849-62 1.6945 0 

o 2 1081.3 0.0337 -0.2454 x 10 8 

n 2 1021.3 0.1346 -0.0179x 10 8 

c 0 2 1005.83 0.1998 -0.196 x 10 8 

h 2 o 1698.06 0.572 0 

C H i » 1478.53 2; 994 -0.12 x 10 8 

Table 4.4-1 The specific constants for various species 

(the SI unit of J/°K Kg is adopted) 

4.5 The Profile Method 

Equation (4.2-8) belongs to the category of second order, 

linear, parabolic partial differential equation. This type 

of equation often appears in the unsteady heat conduction 

problem and has been solved in various ways, such as Fourier 

series expansion, tho time marching method and the profile 
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method. The profile method has enjoyed its simplicity and 

rather satisfactory accuracy in the boundary-layer theory 

recorded by Von Karman (1921) and Pohlhausen (1921). It has 

also been applied to flame problems by Marble and Adamson 

The major feature of the profile method is that the 

solution of the governing equation is assumed to obey a 

certain type of function, while the parameters are determined 

by the integral form of the governing equation together with 

the initial and boundary conditions. Usually, the linear 

.profile, sinusoidal profile and other polynomial profiles 

are the popular choice. The sinusoidal profile has been 

employed in the current work for the sake of simplicity. 

. Thus, the solution of Eqn.(4.2-8) .has the form given by: 

where E, and £ are functions of A* which 
2 3 

represent the amplitude and wavelength of the profile. 

The variation of the amplitude and wavelength are 

governed by the integral form of Eqn.(4.2-8), namely: 

(1954) 

(4.5-2) 

and 

0 dn (4.5-3) 

where n^ is the n-value which separates the fresh part and 

re-engulfed part at fold-formation time. 

The boundaries of the fold are assumed to be plane 
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symmetric and hence the zero-gradient boundary conditions 

are employed: 

= 0 at n = 0 and n = 1 . (4.5-4) 

Generally speaking, the value of n i s not equal to 0.5 

(because the Mo-value is not equal to 0.5) and the evolution 

of the sinusoidal profile with age is divided into three 

stages (as shown in Fig. 4*5-1), namely: 

(1) In the first stage, the curve spreads from the initial 

position toward the boundaries of the fold until one of them 

is reached. The amplitude is constant and equal to 

i|f R-f 0|. 

(2) During the second stage, the curve, further spreads until it 

covers the whole distance across the fold. The amplitude also 

diminishes during the course. 

(3) In the 'third stage, only the amplitude of the curve 

decreases as age increases. 

The resulting formulae representing the f-distribution 

in each stage are obtained by inserting Eqn.(4.5-1) into 

Eqns(4.5-2) and (4.5-3) with the aid of Eqn.(4.5-4) and the 

auxiliary information listed above. Subsequently, a set of 

coupled ordinary differential equations which describe the 

variation of amplitude and wavelength of the profile are 

constructed. These equations can be solved by the standard 

mathematical technique and the results are given below: 

(I) In the first stage ( A * < A * ): 
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Fig.4.5-1 Evolution of the f-profile inside 
a fold at various stages 
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f = fi 

f = f, + f, sin 3 I* 

for Oln-UD-<$ 

f = f. 

for nD-6<n<.nD+6 

for nD+«s<n<i 

(4.5-5) 

wherein: 

tl = max(f R,f 0) 

f 2 = min(f R,f 0) 

f 3 = i|fR + f, 

= 4lfR " fol 

5 -[cirA*f,/(f3 - | f j ] 4 

A ? = ( f3 " I " 

6 i = min(nD, l-n D) 

(II) In the second stage (A*<A*<.A* ) 
1 2 

If n D<0*5 the following relation holds: 

f = f s + f 6 sin[^| ( l ^ j J for 0 < n < 26 

(4.5-6) 

(4.5-7) 

(4.5-8) 

(4.5-9) 

(4.5-10) 

(4.5-11) 

(4.5-12) 

, (4.5-13) 
f = f, for 26 < n < 1 

wherein: 

f = f - f x 5 x i -1- 6 

fs = f. • 57 

(4.5-14) 

(4.5-15) 
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52 = (CttA* + <5 j2) 

A * = A * + ( i - 6 2 ) / C t t 2 1 1 

IT Hp >.0*5, the relation is 

f = f 

f = f 7 + f 6sin| 5 (1+^-) 

, (4.5-16) 

, (4.5-17) 

2 J 

for 0 £ n <. 1-26 

for 1-26,< T) < 1 
,(4.5-18) 

where 

f = f - f x7 x 1 x 6 . (4.5-19) 

(III) In the third stage (A*>A* ): 

f = f B + f 9 s i n [ tt(4 - n)] for 0 < n < 1 , (4.5-20) 

where 

f a = + 

f 9= f ^ e x p [-CTT2(A*-A*)J 

4.6. The Solution Procedure 

, (4.5-21) 

. (4.5-22) 

The biographic analysis described in this .chapter is 

performed after the demographic analysis at each grid node 

in the computational domain. The folds are supposed to be 

formed in each grid-cell and the characteristics at birth 

are stored in the computer storage from the first step of 

calculation (i.e. the marching in the longitudinal direction 

is adopted). This information has been stored outside the 

central core memory of the computer system, i.e., in the disc 

or the tape, so that the computer program can be accomodated 
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even in the smaller machine such as Perkin-Elmer 3220. 

The values of A* of different folds are calculated from 

Eqns.(3.4-1) and (4.2-9) as: 

A* = exp(2RA c /F)-l , (4.6-1) 
j j 

where A£ is the A*-value of folds which belong to the j-th 

group at the mid-point of the age. interval. 

The f~n distribution of each group of folds are then 

determined with the aid of the profile method, followed by 

the calculation of temperature and species concentration 

through Eqns.(4*4-1) to (4.4-6). The sinusoidal profile has 

been divided into 20 intervals and hence all the required 

quantities are obtained at those discrete points. The 

fold-average properties, (J), are computed numerically in 

accordance with: 
l 

<i>4A*9 = / <f> 4A*,n)dn 0 

~ z 4> 4A*,n.)An . (4.6-2) 
j J j 

4.7 The Accuracy of the- Profile Method 

The accuracy of the profile method, compared with the 

known exact solutions, has been investigated in the work of 

Spalding (1958) on the constant-enthalpy flames. The 

governing equation of the temperature across the flame is 

similar to that of Eqn.(4.2-8), except that a non-linear 

source'term exists. 

The temperature gradient and the speed of steady flame 

propagation obtained from linear profile,,sinusoidal profile 
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and parabolic profile have been compared with the exact 

solutions. It has been pointed out that the accuracy is 

normally better than 20% and can achieve excellent agreement 

(2%) with the exact solutions in some cases. Of course, the 

accuracy of profile method varies from problem to problem and 

can not be predicted in advance. 

The more accurate time marching method has been 

employed to solve Eqn.(4.2-8) in the hydrogen-air jet diffusion 

flame, by Fan (1982), to assess the reliability of profile 

method. The difference in the results obtained from the two 

methods is of the order of 1% only. Therefore, the errors 

caused by the profile assumption are negligible in the present 

problem. 

Since the computer time is increased by a factor of three 

when the profile method is replaced by the marching method, 

it is probable that the former method will still be useful 

in the future work to reduce the computational task. 

4.8 Closure 

The mathematical analysis of biographic aspects has been 

presented in this chapter for the simple chemical reaction 

system. The more realistic, multi-step chemical reaction 

scheme can be incorporated in the future development of 

ESCIMO theory without formidable difficulties. Of course, 

an efficient computer program which combines the numerical 

solution procedure of the present work and that of Tarn (1981) 

is needed. 

Some presumptions about the size and the composition of 

folds at birth have been made to initiate the computation. 
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The influence of various parameters has been investigated 

for the reacting mixing layer and jet diffusion flames and 

will be presented in Chapters 6 and 8. 

The profile method is able to produce satisfactory 

results in the present problem, according to the comparison 

with the more accurate time marching method. 

The more interesting results of turbulent reacting flows 

are obtained from the coupling of the demographic and 

biographic analysis, such as the mean turbulent quantities 

and the fluctuation quantities; the coupling procedure will 

be described in the next chapter. 
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CHAPTER 5 

THE COMBINED MATHEMATICAL ANALYSIS 

5.1 Introduction 
The purpose of this chapter is to demonstrate how the 

demographic analysis and the biographic analysis are linked 

together to yield the useful information in turbulent 

combustion. 

The average birth places of all kinds of folds arriving 

at a particular point have to be located first, this will be 

described in Sec.5.2. Then, the fold-average properties will 

be multiplied by the population distribution function, P, to 

obtain the population-average quantities (i.e., the turbulent 

time average quantities); the description is provided in Sec. 

5.3. 

The root mean square fluctuation of temperature and 

species concentration are of great importance in the 

turbulent reacting flows; the calculation of these quantities 

will be presented in Sec.5.4. 

The detail information of turbulence can be seen only 

from the probability density functions of various quantities 

and they can be predicted by the ESCIMO theory; the 

computational process is to be demonstrated in Sec.5.5. 

Finally, a short summary will be provided in Sec.5.6. 

5.2 The Tracing of the Folds 

It has been mentioned in Sec.2.5 that the fold trajectories 

are supposed to follow the constant mixture fraction line, 

and that all folds move downstream with the mean convective 
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velocity. The birth place of the folds which arrive at a 

particular point can therefore always be located at the 

upstream position, since the flow considered here is a 

parabolic one. 

A simple function of F4x)>, which appears in Eqn.(3.4-1)> 

is chosen in the calculation of the mixing layer and jet 

diffusion flame, namely: 

U • 
F M = ~ ~ for reacting mixing layer, (5.2-1) 

= for jet diffusion flame , (5.2-2) 

where U m i n is the velocity of lower-speed stream and U r e f is 

a chosen reference velocity. Nm:j_n is a constant, but N r e F 

can be a constant or a function of distance x (see' Chapter 7). 

The physical meaning of F(x} can be regarded as a kind 

of scaling factor, or the reciprocal of the maximum reference 

age. Thus, the maximum reference age defined in Eqns.(5.2-1) 

and (5.2-2) are x/Um;j_n and x / U r e £ respectively arid the maximum 

distance from the birth place of any fold to the point in 

question is smaller than or equal to x. 

The following procedure has been adopted in this work 

to locate the birth place of each kind of folds, viz: 

(l) calculate the longitudinal distance which the folds of 

age* Acj, have travelled through, in accordance with: 

x F j = x D(l - A Cj) , (5.2-3) 

where x F. is the average journey length of folds belonging 
J to the j-th age-interval. The effect of the curvature of 
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constant mixture fraction line on x̂ ,̂ . is neglected here. 

(2) Usually the value of x - , . lies between two consecutive 
£ 0 

mafching steps at which the information about fold 

characteristics at birth are stored in the computer 

memory. The larger of the two (in the x-value), say x^, 

is chosen as the representative step to be searched in 

the cross-stream direction. The birth place of the folds 

which survive at x = x^ with A = A c^ and f = f is 

supposed to stand at x = x^. 

(3) The a) value of the birth place, u)b, is determined by: 

f, -f 
u), = to. + b i 

"" i i+1 
, (5.2-4) 

where f J L ^ ^ + i and f^, represent the stored f-values 

at w = o)̂  and u) = respectively. Eqn. (5.2-4) implies 

a linear interpolation procedure to obtain the required 

fold characteristics at uî  from information stored at 

uk and • ^he figure provided below serves as the 

supplementary explanation to the searching process of the 

birth place: 

W = 1 

•co=0 

Fig.5.2-1 Tracing of folds in the jet 
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5.3 The Population Average Properties 

Once the birth places of various folds have been spotted 

and all relevant information obtained from the* interpolation 

procedure described in the preceding section, the biographic 

calculation can be performed via the profile method and the 

fold-average values computed with the aid of Eqn.(4.6-2). 

The local time average value of any property, <t>, is 

deduced from the fold-average values of all folds multiplied 

by the population distribution function in ESCIMO theory and 

termed the "population-average property". The expression 

is given below: 

i = $(A)PdA o 

= f 1 J U ^ P d A (5.3-1) o » 

NA ^ 
2: Z <p4Ac . A A . . (5.3-2) 

3=1 J J 3 

It can be observed that the population distribution 

function, P, in Eqn.(5.3-1) serves as a kind of weighting 

function during the course of computation. Therefore the 

variation of properties in each group of folds will make a 

certain contribution to the local population-average values. 

The shape of the P~A curve is the most important factor which 

determines the $-value, while the quantitative difference in 

P's values (under the same shape) has less critical influence. 

The local average density, p, is also calculated from 

Eqn.(5.3-2) in which the fold-average density is obtained by 
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the biographic analysis. The hydrodynamics results are 

affected by the chemical reaction mainly through the density 

variation. 

5.4 The Root Mean Square Fluctuation Quantities 

The turbulence intensity of each variable in the turbulent 

flow is usually represented by the "root mean square" 

fluctuation quantity and defined by: 

- / U ' ) 2 V ( f - $ ) 2 ' (5.4-1) 

where the over bar stands for the local time-average value. 

In the framework of ESCIMO theory, the root mean square 

fluctuation is calculated from the difference between the <j>-

profile inside each fold and its population-average quantity, 

viz: 

TJTyi = ( [d>4A,n) - $]2 dn>PdA 

i i ~ ~ i i ~ ~ _ 
= / {/ d>2dn}PdA - 21 {/ <J>-Tdn}PdA+d)2 

0 0 0 0 

u ~ ~ l — ~ 
= I <J>2PdA - 2$ / <J)PdA + d)2 o o 

= T 2 " • (5.4-2) 

The younger folds have a larger contribution in the 

fluctuation level, since the degree of non-uniformity is 

more pronounced in those folds. Lower stretching rate can 

also result in higher fluctuation value, since the Layer 

thickness, hence the distance for diffusive material to 
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travel, will not be reduced rapidly and a larger difference 

in properties remains in the fold. Therefore it is expected 

that the influence of population distribution function and 

stretching can be examined more thoroughly by the 

distribution of root mean square fluctuation quantities. 

5.5 The Probability Density Functions 

The value of any property, <J>, fluctuates within a 

particular range in the turbulent flows, say between <J) 
max 

and <b . . If someone is taking the instantaneous sampling m m • ° 
at a fixed point, he will recognise that the time portion 

occupied by various <t>-values are normally different and 

hence there exists a probability in finding the signal 

(which represents the magnitude of <1>) prevailing at the 

interval between <j> and <t> + 5<t>. The shape of the probability 

density functions is of great interest to the researchers 

in turbulent reacting flows, since it reveals the detail 

structure of turbulence. 

In the present approach of ESCIMO theory, there are 

two kinds of probability density functions which have to 

be distingushed, namely: 

(1) The probability density function in a fold (fold-pdf) and 

(2) The population-average probability density function at 

a point in the fluid region. 

The latter is equivalent to those employed in other 

models of turbulent combustion. The methods of computation 

for them are to be presented below. 

5.5.1 The definitions of pfd in ESCIMO approach 

(a) The fold probability density function P 
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It has been explained in the biographic analysis that 

the properties across each fold are non-uniform and can be 

represented by a certain profile. The probability density 

function of the fold, P<{)64>, is defined as the mass fraction 

of material having the property which lies between 4) and 

4) + 64). Hence, at any particular age, the P^ distribution 

is computed in accordance with: 

4>+64> d n 

v 64) 

The summation in Eqn.(5.5-1) refers to all possible 

portion of fold, dp, which have the property between 4> and 

4> + 64). 

(b) The population-average probability density function 

U 
Once the fold pdf has been obtained for all folds belong 

to different age-group, the population-average pdf, is 

computed from the following expression: 

P ^ U } = / P ^ . A ^ P d A . (5.5-2) 

The argument that the P^ in Eqn.(5.5-2) has the same 

physical meaning as those used by Borghi (1979), Kennedy 

and Kent (1981), Ballantyne and Bray (1976) can be proved 

from the derivation provided below: > 

The fold-average value of 4>» 4>,is given by 
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i 
<i>4A} = X d)dn o 

X 
(J)max 
4>min <j> P.U,A)d<J> (5.5-3) 

and the time-average value of <t>,$, by 

<j> = X 4>-{A}PdA 

m m 

(5.5-4) 

where Eqn.(5.5-4) is the conventional form adopted by the 

other approaches in turbulent reacting flows. 

5.512 The Computational Procedure 

The detail numerical computation of fold pdf and population 

average pdf is now described as follows: 

(i) Search for the maximum and minimum <|>-values from the 

biographic analysis in a kind of fold. Then divide the 

whole domain (from <t>min ^max^ a number of uniform 

intervals, each of which takes the value of: 

where N^ is the total number of fraction intervals (N^ = 10 

is the typical value chosen in the computation), 

(ii) The values of d>-profile across the fold are calculated 

at each discrete point (20 points in the present work). 

6<t> = (^max-^min)/1^ (5.5-5) 
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Identify all these <t>-values with their appropriate <5c|)-

intervals defined in step (i): - If a pair of consecutive 

^-values, say <t>. , and <J>. , lie within the i-th ^-interval 
J "-L J 

6<Jk, assign the mass fraction in Ar^, occupied by the 

A<j>. (=<t>.-4>. -,), to the Tfold-pdf domain" of 6<K, P., with-
J J J ^ 

the aid of Eqn.(5.5-1). The process is illustrated in 

Fig. 5.5-1. Linear interpolation is employed if A<1>. ranges 
J 

across the 5<1k and interval. 

(iii) Repeat, steps (i) and (ii) for all kinds of folds 

and determine a suitable set of maximum and minimum values 

of (J>, say $ m a x » an(I f° T "kk® whole population of 

folds. Of course, the following relation should be 

satisfied: 

<5 > max((t> , d> • • •. • <J> ,T«) • (5.5-6) 

$ . <min(d> . , d> . »...,<i> . • (5.5-7) 

where 
a is the value of <J) for the folds belonging max,l max & & 

to the (AA^) interval, 

^min i va-*-ue ^min belonging 
to (AA ±) interval. 

The domain defined by $ and $ . here is called the max m m 
"population domain of <J>", in contrast to the "fold domain 

of <J>" mentioned in step (ii). The reason for using two 

different domains is to increase the accuracy of fold-pdf. 

The population domain of <J), is again divided into a number 

of uniform intervals, given by: 

5$ = ($ - 5 . )/Np , (5.5-8) max m m ' * > w . v w 
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<tw-i 

CtWi J 

Hi ̂ lj.1 

Fig.5.5-1 Calculation of fold-pdf 

P . 6<J> 

0 4 . 1 0 <JL 0 T C X 

0nox 

Fig.5.5-2 Redistribution of fold-pdf to the 
population domain of <t> 
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where N • is the total number of fraction intervals (N =10 
P P 

is the typical value used in the computation). 

(iv) Redistribute the fold-pdf, P^, obtained in step (ii) 

to the population domain given by Eqn.(5.5-8), as follows: 

Identify all the d>-values with their appropriate <5$-

intervals defined in Eqn.(5.5-8): - If a pair of consecutive 

d>-values, say d ^ ^ ^ ^ (<$d>̂  = » within the 

j-th ^-interval, assign the corresponding P̂ S<t> 

value to the "population-averaged pdf" of .Linear 

interpolation is also adopted if the values inside-SdK 

ranges across 6d>̂ . and The process is further 

illustrated in Fig.5.5-2. 

(v) Multiply the redistributed values of P^Sd) by the 

population distribution function P for all folds to. give 

the population average pdf: 
l ~ ~ ~ 

/ (P. 6d>)PdA 
P = -J $ . (5.5-9) 

Another reason for redistribution of fold pdf to the 

population domain in step (iv) is that a common domain is 

essential for the relation in Eqn.(5.5-9) to be valid. 

5.6 Closure 

The coupling procedure of the demographic and 

biographic analysis has been developed and described in 

the present chapter. Some presumptions about the 

trajectories of the folds have been made in order to 

simplify the calculations, but the essential features of 

fold motion have been considered. 

The detail structure of turbulence, such as the 
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probability density functions of various prop'erites, can be 

predicted by the ESCIMO theory as well as the turbulent 

mean quantities and the root mean square fluctuation level. 

The theory has been applied to the two-dimensional 

turbulent reacting mixing layer and turbulent jet diffusion 

flames and the results will be presented in the next two 

chapters. 
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CHAPTER 6 

THE TURBULENT REACTING MIXING LAYER 

6.1 Introduction 

In the earlier works of Noseir (1980) and Tam (1981), 

the simplified demographic analysis was incorporated with 

the more advanced biographic analysis. The results of the 

demographic computation is either presumed to be of the 

"top-hat" profile (uniform in the cross-stream direction) 

or expressed in an analytical form. Therefore, the complete 

set of transport equations for the population distribution 

has neither been formulated nor solved in their work. 

The purpose of the present work is to set up the 

mathematical framework for the calculation of population 

distribution function in two-dimensional boundary layer flow 

problems, to allow for the variation in the cross-stream 

direction as well as the longitudinal one. 

The plane mixing layer is the first flow process to be 

investigated, because of the simple fixed boundary conditions 

and entrainment rate involved therein. Also, the self-

similarity prevails in the fully developed region of the 

mixing layer. Very few experimental results on the turbulent 

reacting mixing layers are available in the present 

literature and those obtained by Batt (1977) have been 

regarded as reliable and typical. Thus, the flow 

configuration of. Batt's experiment has been chosen in the 

prediction and will be described in Sec.6.2. 

The numerical input of the computation will be listed 
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in Sec.6.3, followed by the results obtained from the 

demographic analysis in Sec.6.4. The results obtained 

from the combined analysis will be presented in Sec.6.5 

and the influence of various physical parameters 

demonstrated in Sec.6.6. The effects of numerical grid 

size have also been investigated and" will be illustrated 

in Sec.6.7. The discussion of the results is to appear in 

Sec.6.8, followed by a closure in Sec.6.9. 

6.2 Description of the flow configuration 

The test case considered is a two-dimensional turbulent 

shear layer in which the mixing of both a passive and a 

chemically reacting streams occurred. The velocities of 

two streams are 23ft/s and 2ft/s respectively. The high 

speed stream is composed of low temperature air (252°K) 

seeded with dilute concentrations of N20i», while the low 

speed stream consists of hot and clear air (310°K). 

A schematic diagram of the shear layer and a list of 

test conditions are shown in Fig.6.2-1: 

Primary flow 
(odd and seeded) 

UI=ZBff/s 
T i = 2 5 2 ° K 

© Secondary flow 
(hot and clear) 

U2=2 ft/s 
T 2 = 3 1 0 o K 

[N20Ja,_Q 

[N2 ] 

Fig.6.2-1 Test configuration of reacting shear layer 
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Batt (1977) has mentioned that the flow is directed 

vertically downwards through the 5ft long test section in 

order to minimize the buoyancy effects accompanying the 

imposed thermal gradients. 

The chemical process is a kind of first order 

dissociation-recombination reaction denoted by: 

N 2 + 2N0 2 + N 2 . (6.2-1) 

The recombination-rate constants have been measured 

extensively and successfully by Wegener (1959) in a 

supersonic nozzle flow. 

It should also be noted that a unique feature of the 

tetroxide dissociation is that if the temperature is varied 

from -20°C to room temperature the degree of dissociation 

changes from 0*3 to 0*96. 

The heat released from the chemical reaction is 

negligible in the present flow process since the concentration 

of N20t» is lower than 0*5$ (by volume). 

6.3 Computational Notes 

6.3.1 The Grid Systems 

The expanding grid of GENMIX code is employed in the 

present prediction with 20 cross-stream grid nodes (N = 20). 

The intervals of co (from 0 to l) are distributed in accordance 

with the expression given below: 

w i = H r r " ) 0 * 5 1=1,2,3,....N . (6.3-1). 

Therefore, the grids are more densely distributed near the 

external boundary where the velocity is lower. 

The total number of marching steps to reach the 
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downstream distance of x = l*52m (5ft) is equal to 300 in 

the typical computation. The initial width of the mixing 

layer is 0*001m. The forward marching step size is controlled 

by the following formulae as in GENMIX program: 

Ax = min ̂  Axi ,Ax2, Ajc3 »Axs^J , (6.3-2) 

where 

Axi = \ y N _ 2 » (6.3-3) 

, (6.3-4) AX 2 = 
0* 5(ri+rN)ui 

AX3 = X A x l a s t , (6.3-5) 

A.xt» = V ^ B , (6.3-6) 
/ • ** • ** \ 

I m l " r E m E ' 

A* s = ^ m a x , (6.3-7) 

and 

\ = i 

\ = 5 

X3 = 0-01 

i-s ^h© value of y at the N^&th grid nod's 

Pi is the viscosity at the 1st grid node 

n is the radius of 1st grid node (=1 for plane flow) 

Tjy is the radius of Nth grid node (=1 for plane flow) 

is the value of Ax in the previous step 

Ax = 5 max 
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The total number of age-intervals, NA, is equal to 10 

and they are uniformly distributed, viz: 

= HffF" = T,2, 3, ... ,NA + 1 . (6.3-8) 

The total number of sub-divisions inside the profile of 

fold-biography calculation, NP, is equal to 10 in the current 

calculation. 

6.3.2 The chemical reaction rate constants 

The local chemical equilibrium condition has been 

assumed to prevail in the test conditions considered herein, 

based on the equilibrium conclusion which has been reached 

in the work of Batt (1977). It has been observed that the 

magnitude of the measured eddy decay"time of turbulence (30ms) 

is large compared with the typical chemistry times (<.lms). 

The chemical equilibrium constant is taken from the 

measured data of Wegener (1959)J 

k D [ N 2 O * ] [ N 2 ] = k R [ N O 2 ] 2 ; [ N 2 ] , ( 6 . 3 - 9 ) 

and 

K c = k D / k R = exp (20* 72 - , (6.3-10) 

where 

kp is the forward dissociation rate constant , 

k R is the recombination rate constant , 

K q is the equilibrium constant , 

[^N20fQ is the mole fraction of N20if species , 

£ n 0 2 ^ is the mole fraction of N0 2 species , 

[ n J is the mole fraction of N 2 species , 
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The production rate for the total oxide mass fraction 

is zero, under the present reaction scheme, i.e. 

" = "1120, + £ N O 2
 = 0 ' ^ - s - 1 1 ) 

where m stands for the production rate (mass fraction per 

unit* time)• The relation between the total mass fraction of 

oxide and the mole fractions of oxide is given by: 

m = m N 2 < K + m N 0 2 

= [ N 2 0 , ] W N 2 ^ + [ N 0 2 ] W n Q 2 , (6.3-12) 

where W ^ q ^ and W^q^ are the molecular weight of N20 i, and 

NO species respectively. Thus, the value of m obeys the 2 
species conservation equation of the boundary layer form: 

H + (»+*>>|S = TO^) ' (6.3-13) 

with the boundary conditions: 

m = mi at w = 0 , (6.3-14) 

m = 0 at a) = 1 . (6.3-15) 

The next expression can be established by dividing the 

both sides of Eqn. (6.3-12) by 

[N 20*3 a = [ N 2 0 , ] + 4 [ N 0 2 ] , (6.3-16) 

where £ N 2 o J a = m / ^ 2 g l f
 an(* called as the "available" mole 

fraction of N20«» for the reaction. Obviously, the relation 

between ([^OiT^ and m is: 
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[ > 2 C u ] a 

C N 2 0 , ] a i 

m 
mi , (6.3-17) 

or 

[ N 2 0 , ] a = [ N 2 0 t f ] a i i , (6.3-18) 

where the the \ X 2 o l is the is the value of I 0 a in the primary flow. 

The local equilibrium mole fraction of N0 2 is obtained 

by inserting Eqn.(6.3-16) into Eqn.(6.3-10), viz: 

The quantity, m/mi, varies from 0 to 1 across the mixing 

layer (according to Eqns.(6.3-13) to (6.3-15)) and can be 

treated as the mixture fraction in the present case. The 

value of m/mi will be solved at every w-node in the prediction 

with the turbulent diffusion coefficient obtained from the 

turbulent viscocity and uniform Schmidt number 

(the turbulent Schmidt number measured by Batt is equal to 

0*5). The value of m/mi will be given the symbol f in this 

chapter and all argument about f in Chapter 4 applies to 

m/mi from now on, i.e.: 

for the present chemical reaction process. 

6.3.3 The computations performed 

Several computations have been performed, with different 

combination's of input empirical constants, 'in order to 

investigate the influence of each presumption on the results. 

. (6.3-19) 

, (6.3-20) 
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All computations are characterised as indicated in Table 6.3 

and the entry under "Mode" indicates the presumption used 

about the distribution of fold-formation rate. The number 

of "Mode" refers to: 

Mode (i) - proportional to the local mean velocity gradient, 

Mode (ii) - proportional to the local mean velocity, 

Mode (iii) - proportional to the normalized stream function. 

Same notation applies to the calculation in the next two 

chapters. 

Table 6.3: Characterisations of computer runs 

Run No. C Z C F C S Mode NA 

1 0.164 2 1 (i) 10 

2 O.164 2 1 (ii) 10 

3 0.164 2 1 (iii) 10 

4 0.328 2 1 (i) 10 . 

5 0.164 3 1 (i) 10 

6 0.164 2 0.3 (i) 10 

7 0.328 2 0.5 (i) 10 

6.4 Results of demographic analysis 

6.4.1- The population distribution versus age at a fixed 

position 

The population distribution with respect to age will be 

presented in this subsection, for three different runs, 

i.e., Run No.l to Run No.3. All 3 runs have some conditions 
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except the assumption on fold-formation rate. Firstly, 

results obtained from Run No.l are shown in Fig.6.4-1, 

at three different positions across the mixing layer. 

The abscissa is the non-dimensional age, A, while the 

ordinate represents the non-dimensional population of 

folds having a particular age. The three curves in the 

figure refer to the population distribution prevailing at 

position near the high speed edge (rî , = -1.5), the centre 

(rirj. = -0.4) and the low speed edge (rirj. = 1.5) of the 

mixing layer respectively. The mixing-layer similarity 

parameter r j s t a n d s for the width of the mixing layer 

and is defined by the following realtion: 

12(y-y p 5) 
^T = x-xo • 

where yq ^ is the value of y in which T is equal to 0.5 

(Ti+ T2), xo is the effective origin of the mixing layer. 

The value of xo is taken from Batt ?s measurements (=3in) 

in the present computation. 

It can be observed from Fig.6.4-1 that the P-A curve 

has the steepest slope in the centre of the mixing layer, 

where the fold formation rate reaches its maximum value 

according to the presumptions made here. The curve has a 

similar shape of exponential decay near the low speed 

edge, but with a less steep gradient. The distribution 

near"the high speed boundary is however somewhat different, 

the curve being almost flat for 0 ^ ^ 0 . 1 5 and followed by 

a sudden drop to the range of 0. 2£A^O. 3 5 . 
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Fig.6.4-1 Population distribution function 
with respect to age 

with respect to age 
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The overall feature of the population distribution is 

that the youngest folds are the most popular ones in 

the present case. The population of very old folds 

(say, A>0.6) is negligible, signifying that most folds 

are born in near up-stream locations. 

Secondly, the results from Run No.2 are demonstrated 

in Fig.6.4-2 in which the distribution of fold formation 

rate is assumed to be proportional to local mean velocity. 

The three curves correspond to the same positions as in 

Fig.6.4-1. Inspection of the figure reveals that all 

curves belong to the type of exponential decay and the 

curve near the high speed edge has the largest slope 

where the fold formation rate is the highest. The 

population distribution near the low speed stream is more 

uniform here, with significant amount of old folds 

(e.g. A>0.6) in existence. 

Finally, the results from Run No.3 are provided in 

Fig.6.4-3. The distribution of fold formation rate is 

supposed to be proportional to the "local entrainment 

rate", (riii")^, defined by 

= (l-aj)rjfij' + uirEmE' . (6.4-2) 

It can be seen that the fastest diminution of population 

with respect to age again happens near the high speed 

edge of the mixing layer where the entrainment rate is 

at its peak. The population distribution at the low 

speed side is now even more uniform than that obtained 
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Fig.6.4-3 Population distribution function 
with respect to age 

Fig.6.4-4 Radial variation of population 
of folds belonging to a particular 
age interval 
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from Run No.2, and there remains a finite amount of the 

oldest folds which are born in the far upstream region 

of the mixing layer and have undergone lower re-engulfment 

rate. 

6.4.2 The population distribution across the mixing layer 

at fixed age 

Further illustration for the spatial variation of 

the population distribution is supplied by the diagram 

of P. (at fixed A.) versus pm through Figs.6.4-4 to 
J J 

6.4-6. The results presented in these figures are obtained 

in the self-similar region (at x = 0.47m). 

In Fig.6.4-4, the results obtained from Run No.l 

are presented and each curve stands for the population 

of folds belonging to a particular age-interval. Only four 

lines are shown here, since the magnitude of other groups 

outside the range are much smaller. The population of the 

youngest folds, Pi has the peak value at ^ - - 0 . 4 where 

the velocity gradient and the fold formation rate attain 

the maxima. The P 2 distribution behaves as a monotonic 

decreasing function with respect to rj, while the 

population of older folds P3 and P^ reflect the opposite 

tendency. 

The corresponding results from Run No.2 are plotted 

in Fig.6.4-5. The curve representing Pi now has its 

highest value at the high speed edge of the mixing layer 

where the fold formation is large under the present 

presumption. The P 2 distribution is fairly uniform in 
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Fig.6.4-5 Radial variation of population 
of folds belonging to a particular 
age-interval 

Fig.6.4-6 Radial variation of population of 
folds belonging to a particular. 
age-interval 
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the region between -2<r|,£_<-0.4 and then decreases smoothly 

towards the low speed boundary. The shapes of P 3 and Pi, 

distribution are similar to those in Fig.6.4-4. 

Finally, the results produced by Run No.3 are again 

provided in Fig.6.4-6. All curves have actually the same 

qualitative characteristics as their counterparts in the 

previous diagram, except that the difference between 

each curve diminishes quickly as approaches the value 

in low speed stream. 

6.4.3 The average age of the folds versus position 

Another interesting quantity in the demographic 

analysis is the average age of the folds defined by: 

. ( 6 . 4 - 3 ) 

The variation of the average age across the mixing 

layer are plotted in Fig.6.4-7 for Run Nos.l to 3. In 

the case of Run No.l, the minimum value occurs at 

n T--0.8, while it happens at for other cases. 

The average age in the centre of the layer (-0.2<n T<0.2) 

is not larger than 0.2 for all cases, signifying that 

most of the folds are created within the distance of 

0.2Xp from the point in question. However, the 

difference between the average age calculated from three 

cases is remarkably large in the region near the low 

speed stream. For instance, the A at rim = 1.6, 
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varies from 0.25 to 0.4 under different hypothesis 

regarding the distribution of fold formation rate. 

6.5 Results of the combined analysis 

6.5.1 The mean temperature profile 

The normalized mean temperature profile across the 

mixing layer for Run No.l (at x = 0.47m) is plotted 

in Fig.6.5-1 together with the measurements from Batt 

(1977). It should be noted that the mean temperature 

is calculated from the solution of enthalpy equation 

which did not contain the heat release effect in the 

present chemical reaction scheme. Therefore, the 

contribution of ESCIMO theory does not appear in the 

mean temperature. 

The quantitative agreement between the predictive 

results and the measured data is satisfactory as revealed 

by the graph, this implies that the turbulent diffusion 

coefficient is adequately determined by the turbulent 

model employed. The mean temperature is important in the 

calculation of N0 2 concentration since the chemical 

equilibrium constant is temperature dependent. 
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T2-T 
T2-T1 

Fig.6.5-1 Radial profile of mean normalized 
temperature at x=0.47; Run no.l 

INOJ 

- Rnedkrtion 
Baft's data 

% 1 

Fig.6.5-2 Radial profile of mean normalized 
concentration of N02 at x=0.47; Run no.l 
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6.5.2 The mean concentration profile of nitrogen dioxide 

The normalized mean N0 2 concentration profile across 

the mixing layer for Run No. 1 is plotted in Fig.6.5-2. The 

experimental results from Batt (1977) are also shown in the 

figure ("by the solid symbols). Now that the mean concentration 

is calculated from the full ESCIMO approach described,earlier. 

The prediction exhibits a hump near .where the 

normalized concentration of N0 2 is equal to 1*2. However, 

there appears a slight double hump when the measured data 

points are connected with a smooth curve. No explanation 

about the existance of this double hump has been provided 

in Batt's paper, but the author did mention that the 

concentration measurement accuracy in this case is roughly 

±10$ of the eore-flow concentration levels. The maximum 

measured value of N0 2 is equal to 1*1, while the N0 2 

concentration calculated from the mean temperature and local 

equilibrium condition (excluding the concentration fluctuation 

effect) could reach 1.3. Thus, the non-uniformity of properties 

(in each fold) accounted by ESCIMO theory has reduced the 

peak level of N0 2 by 10 per cent. 

The level of N0 2 concentration decays slightly faster 

according to Batt's data than the present prediction, in 

the region where prji>0-5. 

6.5.3 The root-mean-square fluctuation of temperature 

The variation of root mean square fluctuation on 

temperature for Run No.l, across the mixing layer is presented 

in Fig.6.5-3. The predictions show a maximum fluctuation of 
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(T2-T1) 

30 

Prediction 
Bott̂ s data 

Fig.6.5-3 Radial profile of temperature 
fluctuation intensities; Run no.l 

04-

03-

02 

0.1 -I 

Predcton 
• Batfs data • 

mf ' 9 

-2 -1 0 % 1 
Fig.6.5-4 Radial profile of N0 2 concentration 

fluctuation intensities; Run no.l 
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0*23 at rjrp̂ O• 5, followed by a sharp decrease until the 

magnitude is smaller than 0*1. The experimental data, however, 

reveal a slight double hump with a rather flat plateau in 

the central part of the mixing layer. The maximum measured 

value is around 0*14 and is lower than the present prediction. 

Brown and Roshko (1974) have performed the experiments 

on turbulent shear layers with density gradients and Fiedler 

(1974*1975) has studied the temperature field within a plane 

mixing layer. They have found out that instantaneous density 

(temperature) fluctuations were often equivalent to the 

density (temperature) difference between the two external 

streams. Fiedler (1975) has also measured the maximum 

fluctuating temperature intensities which are as large as 0.20, 

considerably larger than the corresponding results for 

the Batt (1977) study." 

6.5.4 The root mean square fluctuation of species concentration 

The fluctuation intensities of N0 2 across the mixing 

layer, obtained from Run No.l, are plotted in Fig.6.5-4. 

The predicted results exhibit a small hump (~0*ll) near 

nrp = -1*0, with the maximum fluctuation intensity equal 

to 0*36 and located at n^ = 0*7. 

The experimental data share the similar characteristics 

with the predictions, though some quantitative discrepancy 

still exist. The maximum measured fluctuation intensity is 

equal to 0*4 which is about 10$ higher than the calculated 

one, while the results in the region of -1* 5<J|fjL<-0.5 are 

slightly overpredicted. 
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The prediction of concentration fluctuation is one of 

the main contributions made by ESCIMO theory, since the 

effect of local unmixedness has been taken into account for 

the eddies (or folds) coming from various places. 

6.5.5 The probability density function of temperature 

The temperature probability distributions at different 

locations across the shear layer, under the conditions of Run 

No.l, are now shown in Fig.6.5-5. The distributions have been 

represented by the step functions profile in order to indicate 

the intervals without causing any confusion. 

The predictions reveal a one-sided pdf near the mixing 

layer boundaries (at 0 = 0*82 and 9 = 0-22 ) where the mean 

temperatures are close to the free stream conditions. The 

distributions broaden as the locations are further from the 

boundaries, e.g. at 9 = 0-74, 0*64, 0v56 and 0*32. In the 

central part of the layer, e.g., at 0 = 0*56 and 0*44, the 

pdf mainly consists of three portions, namely those correspond 

to the free stream value, the mean value and the value of 

re-engulfed part in the newly formed folds. 

The measured probability distributions from Batt (1977) 

are also indicated in the figure (by broken lines). It 

can be observed that the pdf are nearly Gaussian over a 

broad domain (approximately the mid-50$ of the shear layer), 

which has not been fully portrayed by the present 

computations. 

6.6 The influence of various assumptions 

6.6.1 The influence of fold formation rate 



122 

4"i 0=0.02 

3 -

2 -

1 -

0 

4-

3 -

2 -

1 -

0 

4 -

3 -

2 -

1 -

0 

4-

3 -

2 -

1 -

0 

II 

J I 

0=0.74 
r\ i \ 

/ 

0=0.64 

> 

T 
0=056 

0 2 .4 '.6 5 I 9 

4 1 

3-

2 -

1 -

0 

4-

3-

2 -

1 -

0 " 

4-

3-

2 -

1 -

0-f 

/ 
0=Q44 

\ 

FTT 
0=0.32 

\ 
\ 

JY 
7L 

0=0.22 

,2f .4 .6 

0=(T2-T) I (T2-T1) 

.e 1. e 

Predictions 
Baft's measurements 

Mean value 

'ig.6.5-5 Temperature Probability Distributions at 
Different Locations Across the Shear Layer 



123 

Various hypothetical distributions about the fold 

formation rate have been adopted in the current study and 

hence it is important to assess their influences on the 

results. Firstly, the influence of different distributions 

on the mean NO2 concentration profile are presented in a 

tabulated form listed below, since the difference between 

each set is too small to be distinguished on the graph. 

Location across the 

mixing layer, n T 

Normalised mean N0 2 concentration 

obtained from each mode no. 

Location across the 

mixing layer, n T 

Mode (i) Mode (ii) Mode (iii) 

-2.00 L.00 .1.00 1-.00 

-1.50 1.10 1.10 1.10 

-1.07 1.21 1'. 20 1.20 

-0.674 1.21 1.22 1.21 

-0.300 1.13 1.15 1.15 

0.104 0.947 0.989 0.988 

0*508 0.712 0.756 0.764 

0.889 0.575 0.582 0.586 

1.17 0.398 0.400 0*403 

1.57 0.178 0.179 0*179 

Table 6.6-1: The influence of distribution of fold formation 

rate on N0 2 concentration 
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The maximum difference between each set of results 

occurs around = 0* 508, where the relative difference 

reaches 1%. However, the relative difference is very small 

in most part of the mixing layer and lower than 2%, 

On the other hand, the influence of fold formation rate 

on the concentration fluctuation intensities of N0 2 is 

more significant and can be presented in graphic form as 

Fig.6.6-1. The results obtained from three runs are almost 

identical in the region of -2<JI<.0, especially those correspond 

to Run No.2 and Run No.3 (hence the results of Run No.3 are 

not shown in this part). The discrepancies become more 

apparent when ri^,>0*3 and the maximum fluctuation intensity 

varies from 0*36 in the Run No.l to 0-29 in Run No.3. The 

predicted locations of the peak value are slightly shifted 

towards the low speed side of the mixing layer when compared 

with the data of Batt (1977). 

6.6.2 The influence of fold size 

The results produced by Run No.l and Run No.4 are 

compared in the table 6.6-2. 

It should be noted that the fold size at birth is 

taken as the length scale of turbulence in Run no.l, while 

it is equal to twice as the length scale in Run no. i*.. The 

influence of fold size on the mean N0 2 concentration is 

significant only in the central part of the mixing layer. 

Thus, the assumption about the fold size within present 

range is not crucial to the mean concentrations. 

The influence is more visable for the fluctuation 

intensities of N0 2 as shown in Fig.6.6-2. The maximum 
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Fig.6.6-1 Influence of distribution of fold 
formation rate on the concentration 
fluctuation intensity 

Fig.6.6-2 Influence of fold size on the 
concentration fluctuation intensity 
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Location across the Mean N0 2 concentration 

mixing layer, n T Run No.l Run No.4 

a =0.164 
Z 

C =0.328 
Z 

-2.00 1.00 1.00 

-1.50 1.10 1.09 

-1.07 1.21 1.20 

-0.674 1.21 1.18 

-0.300 1.13 1.10 

0.104 0.947 0-907 

0. 508 0.712 0.669 

0.889 0.575 0.565 

1.17 0.398 0.397 

1.57 0^178 0.180 

Table 6.6-2 Influence of fold size on NO2 concentration 
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predicted value is equal to 0*4-2 in Run No. 4-, compared with 

the value of 0.36 in Run No.l. The results obtained from 

Run No.4- are generally larger than the measured data, 

indicating that larger fold size will yield higher 

fluctuation intensities. 

6.6.3 The influence of fold corn-position 

The results of mean N0 2 concentration from Run No.l 

and Run No.5 are given in the following table: 

Location across the Mean N0 2 concentration 

mixing layer, n T Run No.l Run No.5 

C F=2.0 C F=3.0 

-2. 00 1.00 1.00 

-1.50 1*10 1.10 

-1.07 1.21 1.21 

-0.674 1.21 1.20 

-0.300 1.13 1.07 

0.104 0.947 0.884 

0.508 0.712 0.663 

0.889 0.575 0; 574 

1.17 0.398 0.398 

1.57 0.178 0.179 

Table 6.6-3 Influence of fold composition on N0 2 concentration 

Again, the discrepancies are apparent only in the 

mid-region of the mixing layer, where the relative difference 

between each set is around 1% (e.g. at nm=0.104). The peak 
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value is almost identical under both cases. 

The fluctuation intensities calculated from Run No.l and 

Run No.5 are now plotted in Fig.6.6-3. Considerable increase 

in the fluctuation intensities are observed for -0.5<n T<0.6 

and the peak value computed from Run No.5 is equal to 0.43 

(the measured value is 0.40). The percentage difference in 

two runs can reach 40$ (atq^=0) and hence the parameter 

is an important factor in determining the fluctuation level. 

The location of the peak was also shifted from n T~0.8 to 

r),j,»0.40 when C-p changes from 2.0 to 3.0. 

6.6.4 The influence of the stretching rate 

The mean N0 2 concentration computed from Run No.l and 

Run No.6 are provided in the following table: 

Location across the Mean i N0 2 concentration 

mixing layer, n T Run No.l Run No.6 

C s<L.O C s=0.3 

-2.JOO 1.00 1.00 

-1.50 1.10 1.09 

-1.07 1.21 1-.19 

-0.674 1.21 1.14 

-0.300 1.13 1.03 

0.104 0.947 0.840 

0.508 0.712 0.621 

0.889 0*575 0.558 

1.17 0.398 0.391 

1.57 0.178 0.177 

Table 6.6-4 Influence of stretching rate on N0 2 

concentration 
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Fig.6.6-3 Influence of fold composition on 
the concentration fluctuation 
intensities 

Fig.6.6-4 Influence of stretching rate on the 
concentration fluctuation intensity 
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Inspection of Table 6.6-4 reveals that the maximum 

difference between the results computed from two runs 

is now around 11%. The peak value is lower in Run No.6 

and equal to 1.19. 

More evident influence has been realised in the 

concentration fluctuation intensities as in the other 

cases, this is now presented in Fig.6.6-4. The secondary-

hump (at* 1.1) is magnified in the case of low 

stretching rate and the maximum fluctuation increases up 

to 0.46 now. The predictions are in good quantitative 

agreement with the measurements over the range of 

-0.5j<rirj,.<0.6 in Run No.6. However, the fluctuation level 

is overpredicted in the near high speed area 

(-1.4<n T£-0.8) for both runs. 

Further investigation about the influence of 

stretching effect have been carried put in the 

comparison between Run No.4 and Run No.7, where the 

fold "size at birth is twice as large as those in the 

other runs. The results are presented in Figs.6.6-5 and 

6 . 6 - 6 . 
It can be observed , in Fig.6.6-5, that the mean 

NO2 concentration is lower as the stretching rate 

decreases. The results obtained from Run No.7 show better 

aggrement with the experimental data in the outer regions 

of the mixing layer (i.e.,. for - 1 . 5 < f \ 0 . 5 and 

0.5<n T<1.5), but larger deviation occurs in the central 

part of the layer (-0.5<n T£0.5). 

On the other hand, inspection of Fig.6.6-6 reveals 
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Run no. 4 

Fig.6.6-5 Influence of stretching rate on 
the mean concentration 

/ W 5 

INO 2 ] , 

Fig.6.6-6 Influence of stretching rate on 
the concentration fluctuation 
intensity 
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that the fluctuation level calculated from Run No.7 

is generally higher and the peak level attains the 

value of 0.47. The secondary hump is also more 

significant when the stretching is moderate. 

6.7 The influence of grid size 

6.7.1 The influence of forward marching step size 

It has been observed that the step size of forward 

marching is controlled by the factor, in Eqn.(6.3-6) 

under present computational conditions. Hence, three 

different values of have been employed to investigate 

the influence of step size, Ax, on the results and the 

comparison is presented in Table 6.7-1. The RMS values, 

of NO2 concentration are chosen for the comparison, 

since they are more sensitive to step size than the 

mean N0 2 concentration. All physical constants are the 

same as those employed in Run No.l. 

The results from three different values are close 

to each other, signifying that the influence of 

marching step size is a minor one for the problem 

considered. The value of ^ 3=0.02 actually yields the 

grid independent results* 
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Location across the 

mixing layer, iiT 

RMS of N0 2 concentration fluctuation Location across the 

mixing layer, iiT A3=0.04 X3 =0;02 X3=0.01 

-2.00 0 0 0 

-1.50 0.0686 0.0700 0.0706 

-1.07 0-.117 0.120 0;121 

-0.674 0; 123 0*124 0; 124 

-0;300 0.181 0.182 0.182 

0.104 0.262 0.261 0.260 

0k 508 0.315 0.313 0.313 

0; 889 0.333 0.337 0.340 

1.17 0;244 0.249 0.252 

1.57 0*113 0.115 0.116 

Table 6.7-1 Influence of forward marching step size on 

N0 2 concentration fluctuation 

Location across the 

mixing layer, n»ji 

RMS of N0 2 concentration fluctuation Location across the 

mixing layer, n»ji N = 20 N = 40 N = 60 

-2.00 0c 0 0.0 0.0 

-1.50 0; 0414 0.0700 0.0792 

-1*07 0; 126 0.120 0-118 

-0.674 0.121 0.124 0.126 

-0.300 0*213 0.182 0.185 

0*104 0*317 0.261 0*260 

0.508 0.388 0.313 0.312 

0.889 0.364 0.337 0.330 

1.17 0*264 0.249 0.245 

1.57 0.102 0.115 0.121 

Table 6.7-2 Influence of cross stream grid no. on 

N0 2 concentration fluctuation 
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6.7-2 The influence of numbers of grid 

The RMS fluctuations of N0 2 concentration computed 

from three different cross-stream grid numbers, N, are listed 

in Table 6.7-2. The discrepancies between the results from 

N=20 and N=40 are significant, i.e., the maximum relative 

difference at n T=0*508 is of the order of 20$. However, the 

calculated values from N=60 are only slightly different 

from those of N=40. Thus, 40 grids across the mixing layer 

can actually achieve the grid-independent results. 

6.7-3 The influence of subdivisions in age-coordinate 

The age-coordinate and its subdivisions are the newly 

introduced grid system in the current work and hence it is 

important to assess their influences on the results. Three 

values of NA have been employed in the computations and the 

RMS values of ~N02 fluctuation are provided in Table 6.7-3. 

The difference between the results from NA=5 and NA=10 

are small over most part of the mixing layer, while they are 

more negligible in the cases of NA=10 and NA=15. Therefore 

it can be concluded that 10 age intervals are sufficient to 

produce the grid independent results. It should be noted 

here that all other numerical and physical constants are 

the same as those appear in Run No.l. 

6.8 Discussion of the results-

The population distribution of folds 

The major significance of the results obtained from the 

demographic analysis (in Sec.6.4) is that the cross-stream 

variation has been calculated from the transport equations. 
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Location across the 

mixing layer, n T 

RMS of N0 2 concentration fluctuation Location across the 

mixing layer, n T NA = 5* NA = 10 NA = 15 

-2-00 0.0 0.0 0.0 

-1.50 0.0595 0.(3700 0.0705 

-1*07 0.113 0.120 0.120 

-0.674 0.124 0.124 0.124 

-0.300 0.182 0*182 0.182 

0.104 0.261 0.261 0.261 

0.508 0.313 0.313 0.313 

0*889 0.329 0.337 0.337 

1.17 0.231 0.249 0.249 

1^57 0.103 0.115 0.115 

Table 6.7-3 Influence of age-intervals on NQ 2 concentration 
fluctuation 

* The distribution of age-interval in this case is: 

0., 0.1, 0.3, 0.5, 0.7, 1 
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The location-dependence of the population distribution, as 

indicated in Figs.6.4-1 to 6.4-3, is significant in the 

mixing layer. The basic factors which contribute to the 

cross-stream variation are the turbulent diffusion effect 

and the distribution of fold formation rate. 

The turbulent diffusion effect is determined by the 

turbulent viscosity and turbulent Schmidt number which are 

taken from the existing turbulence model as the necessary 

input'to ESCIMO theory. No special attention has been paid 

to the development of the turbulence model itself, since 

it does not belong to the scope of current study. 

On the other hand, the hypothesis about the distribution 

of fold formation rate is a new and unique feature of present 

approach. According to the knowledge of the author, there 

are no direct experimental measurements to verify the 

hypothesis. Therefore, only the influence on the mean 

properties and RMS quantities can be tested. 

Nevertheless, there is a common trend from the average 

age described in Fig.6.4-7 where the A is always larger 
ave 

on the slower-moving side of the layer for all three runs. 

The explanation of this variation lies on the velocity 

distribution across the mixing layer, since higher velocity 

results in the shorter time (and hence smaller age) for a 

fold born in the upstream position to travel to downstream 

region. 

The mean N0 2 concentration profile 

It has been pointed out that the quantitative agreement 

between the present predictions and the measurements are 

reasonably good in Fig.6.5-2. However, some degree of 
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discrepancies do exist near the hump of the concentration 

profile and the probable explanations will be given below. 

Apart from the uncertainties in experimental measurements 

declared by Batt (1977), the effects of non-equilibrium 

chemistry and turbulence intermittency factor may cause the 

diviation of predictions from measured values. 

Alber and Batt (1975) has estimated six time scales 

regarding the chemical reaction and fluid mechanical 

processes, namely; -the time scale associated with: 

(1) chemical dissociation ^ Tchem~ 0*000l6sec) » 

(2) chemical recombination ^Tchem~ 0*000l6sec) * 

(3) turbulent dissipation (T = 0*0007sec) , 

( 4 ) turbulent convection (T » 0*01sec) , 

(5) turbulent diffusion (x s 0-05sec) , 

• (6) laminar diffusion (x - 400sec) , 

The chemical reaction rate is so rapid that only the 

turbulent dissipation time scale associated with the 

smallest scale eddies is of the same order as T
cj i e m• Hence, 

the non-equilibrium phenomena (i.e. finite rate chemistry) 

may only appear in the finest scale of turbulence structure. 

Batt (1977) has studied the effect of finite rate 

chemistry and the interaction between chemical kinetics and 

turbulence intensities by including the second-order 

correction to the effective rate expression. It was recognised 

that the result changed by -5% approximately. 

The turbulence intermittency factor, defined as the time 

portion when the flow exhibits the turbulent charactersitics, 

has not been accounted in the present model. According to 
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the experimental data of Sunyach and Mathieu (1969), Batt 

(1977), the intermittency factor varies from zero near both 

edges of the mixing layer to unity in the mid-region. Strictly 

speaking, the results calculated from ESCIMO theory refer 

to the fully turbulent part only and hence should be weighted 

by the intermittency factor. Consequently, the contribution 

of the irrotational potential flow will be more dominant near 

the boundaries of the mixing layer and the results will be 

given by: 

[ N 0 2 ] = (1-1) [N0 21 +1 • £ N 0 2 ] , (6.8-1) 

where 

[ N 0 2 ] is the mean concentration of N 0 2 including the 

intermittency factor, I is the intermittency factor, £N 0 2 ] 
P 

is the concentration of N 0 2 in the potential flowoand 

£ N 0 2 ] is 

the mean concentration obtained from the ESCIMO 

theory excluding the intermittency effect. Therefore, it is 

expected that the results calculated from Eqn.(6.8-1) will 

be somewhat different from the present ones. 
The fluctuation intensities of NQ 2 concentration 
There are more influential factors in the determination 

of fluctuation intensities of N0 2 concentration than the 

mean quantities described above. The various parameters 

employed in ESCIMO theory play the significant'role on the 

quantitative comparison with experimental data. 

The following remarks can be made from the sensitivity 

analysis performed in Sec.6.6: 
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* The fluctuation intensities at a fixed position increase 

when the population of youngest folds become more prominent. 

This is reflected in the results of Fig.6.6-1 where the 

population of youngest folds is highest for Run No.l near 

riijî O*8. The reason is that the profile in each fold is 

evened out by molecular diffusion and fold stretching as the 

fold gets aging. 

• The fluctuation intensities magnify as the fold size 

at birth increases, because the distance which the diffusion 

process must travel is longer. 

* The fluctuation level heightens as the properties of 

the re-engulfed part in the newly formed fold are further 

different from the local mean values (in the case of larger 

value), since the initial profile in the fold is steeper 

and it remains so if other parameters are the same. 

• Slower stretching rate yields larger fluctuations over 

most part of the mixing layer, except in the region between 

- O S . l n ^ O where the mean concentration is high. The reason 

is that the thickness of the fold does not reduce so rapidly 

and the non-uniformity of the properties within each fold 

can last longer. Since the relation between the temperature 

and N0 2 concentration is non-linear and not a monotonic one, 

it is possible that the fluctuation intensity of concentration 

is lower even whbn the temperature fluctuation is high 

under the low stretching condition. 

Therefore, satisfactory agreement with the experimental 

data can be realised if a set of optimised parameters is 

employed in the computation. 
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The temperature fluctuation intensities 

The maximum fluctuation intensities have been 

overpredicted by the order of 60%, as shown in Fig.6.5-3. 

This is in remarkable contrast with the fluctuation intensities 

of N0 2 concentration (from Run No.l) which are underpredicted 

by 10% only. 

Batt (1977) suggested-that the relative low fluctuation 

level was caused by random motion or three-dimensionality 

effects in the experiment and less influenced by large-scale 

two-dimensional coherent structures which has been observed 

in other shear-layer investigations. 

The probability density function of temperature 

The predicted pdf near both sides of the mixing layer 

show similar trend with the measured ones, i.e., they all 

behave as skewed one-sided pdf. But in the fully turbulent 

zone of the mixing layer where the intermittency factor 

is of the order of unity, the experimental results are 

almost Gaussian and cover the whole temperature domain. 

Unfortunately, the calculated pdf do not fulfill this 

requirement. 

The careful review of the presumption regarding the fold 

composition at birth provides the answer to the discrepancy 

between measured and predicted pdf. The newly formed folds 

are composed of two parts having different properties' 

(the fresh part and the re-engulfed part) and hence the . 

pdf of these folds mainly consist of two blocks. The 

population average.pdf is significantly influenced by the 
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pdf of younger folds because of their high proportion. 

Therefore, the shape of population average pdf contains 

three amjor portions which correspond to the fresh 

stream value, the population-average value and the value 

associated with the re-engulfed part in new born folds• 

6.9 Closure 

The application of ESCIMO theory to the turbulent 

reacting plane mixing layer has been described in this 

chapter. The population distribution of folds have been 

presented in two-dimensional flows for the first time and 

the influence of various hypotheses about the distribution 

of fold formation rate tested. 

The mean turbulent properties, the RMS fluctuation 

intensities and the probability density functions have 

been calculated and compared with the experimental data of 

Alber & Batt (1975) and Batt (1977). The sensitivity analysis 

about various presumptions made in the present theory 

have been carried out. The grid independence test was also 

performed to assess the influence of all grid sizes. 

The quantitative agreement between measured and 

predicted results is acceptable on the overall basis, 

although some discrepancies happen in the fluctuation 

intensities of temperature and the pdf related to it. 

In order to further evaluate the applicability and 

the credibility of ESCIMO theory, it is essential to 

perform more test cases and compared with other experimental 

work. Therefore, the application of ESCIMO theory to the 

turbulent hydrcgen-air diffusion flame and the turbulent 
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methane-air diffusion flame will be presented in the 

next chapter. 
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CHAPTER 7 

THE TURBULENT JET DIFFUSION FLAMES 

7.1 Introduction 

The application of the ESCIMO theory to the turbulent 

round jet diffusion flames which have more practical importance 

is presented in this chapter. The chapter is mainly divided 

into two parts, the first part is associated with the 

hydrogen-air diffusion flame(Sections 7.1-7.5) and the second 

part with the methane-air. diffusion flame (Sections 7.6-7.9). 

In each part of the presentation, the results of the 

hydrodynamic calculations (from the k-e model of turbulence), 

the population distribution of folds, the turbulent mean 

quantities, the RMS fluctuation intensities and the probability 

density functions of scalar and species concentration will be 

provided and compared with the experimental data available. 

The measurements obtained from Kent and Bilger (1973) in 

H 2-air flame and Lenz and Gunther (1980) in methane-air 

flame have been chosen for the comparison, since the results 

are more comprehensive and regarded as reliable ones. 

All the numerical factors and physical presumptions have 

been kept unchanged for both cases in order to assess the 

generality of those constants in the current work. The 

influence of different parameters on the predictions will be 

discussed separately in the next chapter. Therefore, all 

results produced in this chapter are based on a single set 

of constants. 

7.2 The turbulent hydrogen-air diffusion flame 
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The experimental'work of Kent and Bilger (1973) was 

carried out for turbulent diffusion flames of a horizontal 

round jet of hydrogen issued in a co-flowing stream of air. 

The jet diameter at the exit plane was 7.62mm and the cross-

section of wind tunnel was 305 by 305mm. The tunnel cross-

section is large enough so that the wall effects can be 

neglected and the pressure gradient is almost equal to zero. 

It was also mentioned by Kent and Bilger (1973) that the 

buoyancy effects were negligible. 

The measurements were made at jet to external stream-

velocity ratios of 2, 5 , 8 and 10 to 1. The particular set 

of data from velocity ratio of 10 to 1 has been selected 

here for the comparison, because they are more extensively 

presented in the literature. The jet velocity at jet exit-

plane is equal to 151m/s and the free-stream velocity is 

15.1m/s. 

The temperature measurements were made with a Pt-Rh 

( 5 % and 20$) thermocouple, coated with a special noncatalyic 

coating developed by Kent (1970). The samples of different 

species were withdrawn from the flow iso-kinetically with 

the aid of a hot-water-cooled probe. The samples were 

analyzed on-line using a lithium cljloride hygrometer for 

water vapour, a katharometer for hydrogen, and a paramagnetic 

analyzed for oxygen. The radiation corrections have also 

been performed. 

7.3 The computational aspects 

The grid system 

Twenty-grid nodes across the jet are employed in the 
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X~OJ coordinate system, i.e.,N=20. The distribution of 

oj-intervals is given by the following expression: 

w i = i=l,2,...,N # (7.3-1) 

The GO grid-nodes are more densely distributed near the jet 

axis where the temperature is high and hence the density 

is lower. The actual distance (y-interval) between each grid 

node is then nearly uniform. 

00=1 

x(co=0) 

Fig.7.3-1 Grid system 

The size of forward marching (in x-direction) step, 

AX, is calculated according to Eqns.(6.3-2) to (6.3-7) with 

the same numerical factors. 

The number of intervals in the age-coordinate, NA, is 

again equal to 10. The distribution of these intervals is 

given by: 

0, 0.05, 0,1, 0.15, 0.2.'0.3, 0,4, 0.5, 0.65, 0.8; 1. 

The transformation function F(X). in Eqn. (5.2-2) is 

chosen as: 

h , (7.3-2) 
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where U . is the velocity of co-flowing air and does not air 
vary with x. 

The computer time and storage required 

The central processor unit time (CPU time) required for 

the calculation in this case is 360 seconds in the CDC 6600 

machine. Hence, the computation time for each grid point in 

each marching step is approximately equal to 0.033sec. 

The central core memory required is equal to 30 K words, 

while the additional information of the fold characteristics 

are stored in the magnetic tape. 

The thermodynamics properties 

The specific heat of each species and mixture are 

calculated according to the Eqns.(4.4-7) and (4.4-8). The 

heat of combustion of hydrogen is taken as 1.208x10®J/Kg 

from the standard thermodynamics handbook. 

Both turbulent Prandtl and Schmidt number .is,assumed to 

be equal to 0.9 in the computations and hence the turbulent 

Lewis number is taken as unity. 

The laminar diffusion coefficients of all species and 

heat transfer have been assumed to be equal in the fold 

biography analysis. It has been recognised that the molecular 

diffusivity of hydrogen is two or three times faster than 

the other species because of its small molecular weight. 

Therefore a definite amount of error will be introduced from 

the assumption of unity laminar Lewis number. 

The error in the above mentioned assumption was tolerated, 

because the uncertainties in the fold size at birth and the 
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stretching rate are of the same order of the error introduced 

by the hypothesis of equal diffusivities. In the mean time, 

the simple chemical reaction scheme, described in Sec. 4.4* 

will not be valid if the differential diffusion effect is 

considered and hence additional transport equations will 

have to be solved for each fold. The considerable expansion 

of computing time was not favoured at the present stage of 

development, since the influence of other presumptions will 

have to be tested first. 

7.4 Presentation of results 

7.4.1 The hydrodynamic results 

The results of hydrodynamic calculation form the basis 

for the further combustion computation and hence it is 

desirable to check the turbulence model at the first place. 

The axial distribution of jet centre-line velocity 

is plotted in Fig.7.4-1 together with the experimental data 

from Kent and Bilger (1973). The quantitative agreement 

between the predicted and measured values are satisfactory, 

signifying that the k-e model of turbulence is capable of 

producing correct results about the global turbulent 

diffusion effects for this flow case. 

The turbulence levels on the centre line of the jet 

are plotted in Fig.7.4-2. The predictions are obtained from 

the turbulent kinetic energy based on the assumption of 

isotropic turbulence, while the data points stand for the 

measurements of radial velocity turbulence intensity,^yA2, 

on the centre-line of the flame. Therefore, only a qualitative 

comparison can be expected for this case. 
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Fig.7.4-1 Variation of axial-velocity in 
hydrogen-air flame 
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Fig.7.4-2 Variation of axial turbulence-
intensities in hydrogen-air flame 
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7.4.2 The population distribution of folds 

The results to be presented in this chapter are obtained 

from the assumption that the fold formation rate across the 

jet is proportional to the gradient of local mean axial 

velocity. Firstly, the population distribution with respect 

to age, at three different downstream locations, will be 

presented in Figs.7.4-3 to 7.4-5 respectively. 

In Fig.7.4-3, the three curves represent the P~A 

distribution at three radial positions for X/D=40. The folds 

having age between 0.1 and 0.15 are the most popular near 

the jet axis (i.e., r/D=0.27), in which,the fold formation 

rate is minimum. On the other hand, the youngest folds are 

more dominant in the mid-region (r/D=2.10) and the outer 

region (r/D=4.04) of tbe jet. It should be noted that the 

highest population of the newly formed folds appear at 

r/D=2.10 where the fold formation rate reaches its climax 

(the velocity gradient is large there). 

Similar results at X/D=80 are shown in Fig.7.4-4, 

where the slope of each curve is now more moderate. Eventually, 

inspection of Fig.7.4-5 reveals that the population 

distributions become rather uniform at the further downstream 

region of X/D=120, where the velocity gradient diminishes 

and the fold formation rate also follows suit. 

Secondly, the radial variation of the population of 

folds belonging to a particular age-interval are demonstrated 

through Figs.7.4-6 to 7.4-8. In Fig.7.4-6, the population 

of four kinds of folds, at X/D=40, are plotted against the 

radial distance. The population of the youngest folds, Pi» 
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Fig.7.4-3 Population distribution function 
with respect to age 

Fig.7.4-4 Population distribution function 
with respect to age 
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Fig.7.4-5 Population distribution function 
with respect to age 

Fig.7.4-6 Radial variation of population of 
folds belonging to a particular age-
interval 
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attains the maximum value round r/D=2.12 as described above. 

For the population of folds having age between 0.10 and 

0.15, P3, the curve decays monotonically from the axis 

(r/D=0) towards the outer edge of the jet. The value of 

P 5 (for 0.2CKA<0.25) first decreases as the value of r/D 

increases and then rises slightly in the outer part of 

the jet. However, the population of older folds (for 0.40<: 

A£0.45), P 9 , increases steadily with the radial distance. 

The variation of folds population, obtained at X/D=80, 

are presented in Fig.7.4-7. The patterns of Pi, P 3 and P 5 

are similar to their counterparts in the previous figure, 

while the trend of P9 is somewhat different. The results in 

Fig.7.4-8, for X/D=120, bear much resemblence to those in 

Fig.7.4-7, apart from the gentler change in the magnitude 

of each curve. 

Thirdly, the radial distribution of average age at 

X/D=40, 80 and 120 are provided in Fig.7.4-9. The noticeable 

point is that the folds in the mid-region of the jet have 

the lowest average age, since the fold formation rate is 

highest there and the newly born folds are more prominent. 

Also it can be observed that the level of average age 

increases in the further downstream region of the jet, where 

the mean velocity of the flow approaches the velocity of 

co-flowing air stream. 

7.4.3 The mean temperature and species concentration 

The general features of the diffusion flame considered 

are described by the turbulent'mean temperature and species 

concentration, namely the concentration of H 2 , 0 2 and H 2 0 . 
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Fig.7.4-7 Radial variation of population of 
folds belonging to a particular 
age-interval 

Fig.7.4-8 Radial variation of population of 
folds belonging to a particular 
age-interval 
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Fig.7.4-9 Radial profiles of average age 
across the jet 
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The concentration of minor species, radicals and nitric oxides 

have not been considered in the present reaction scheme. 

The axial distribution of mean temperature and mean 

species concentration (in molar fraction) are plotted in 

Fig.7.4-10 with the experimental results of Kent and Bilger 

(1973). It can be observed that the concentration of fuel 

and oxygen are under-predicted for X/D larger than 40, and 

the temperature is also slightly underpredicted. Nevertheless, 

the agreement between the predictions and measurements is 

believed to be reasonably good. 

The radial, distribution of mean temperature and species 

concentration, at X/D=40, 80, 120 and 160 respectively, will 

be provided in Figs.7.4-H to 7.4-14. 

The results obtained at X/D=40 are demonstrated in 

Fig.7.4-11. The calculated peak temperature is lower than the 

measured, value by 200,°K, and the predicted peak location has 

been shifted towards the outer region of. the jet by the 

distance of one jet radius approximately. The hydrogen 

concentration and water vapour concentration have been well 

predicted from the jet axis until r/D=3. For the region of 

r/D greater than 3, the concentration of water vapour 

is overpredicted, while the amount of oxygen is underpredicted. 

The overlapping of fuel and oxygen, which is the 

characteristics of turbulent diffusion flames, has been 

shown in the present calculation. However, the calculated 

value at the over-lapping point (-0.05) is lower than the 

measured one (*0.08). 

The results in Fig.7.4-12 are obtained at X/D=80. The 
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Fig.7.4-12 Radial distribution of mean temperature 
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temperature at the axis is now higher (=1800°K). and the 

computed peak temperature reaches 1880°K at r/D=3.5. The 

measured maximum temperature is located at r/D=3.0 and has 

the magnitude of 204P K approximately. The amount ojf water 

vapour is overpredicted for r/D greater than 3, while the 

oxygen concentration is lower than the experimental 

counterpart. The fuel concentration is underpredicted in 

Whole part of the jet.The degree of overlapping in the 

prediction (^0.045) is again lower than the measurement. 

Similarly, the same set of quantities are provided in 

Fig.7.4-13 for X/D=120. The axial tempprature has now 

achieved the highest value in both prediction and measurement,; 

signifying that the flame zone is around the jet axis. The 

concentration of hydrogen and oxygen have been under-

predicted, while the amount of water vapour was overpredicted 

from the jet axis until r/D=6. The measured degree of mixing 

(or overlapping) is still higher than the calculated value r 

as in other positions. 

The hydrogen content is nearly exhausted at X/D=l60, 

as indicated in Fig.7.4-14. The oxygen has already penetrated 

into the central zone of the jet and the temperature is 

highest in the axial position, all these phenomena suggest 

that the flame tip is located near X/D=l60. The amount of 

oxygen is still underpredicted across the jet, while the 

water vapour, is overpredicted for 0<r/D<5 and underpredicted 

for r/D>5. 

Finally, the flame and temperature contours from the 

predictions and measurements are presented in Fig.7.4-15. 
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The smooth variation in all predicted curves indicates the 

correct tendency obtained from the present theory. However, 

the major discrepancies between the computation and Kent and 

Bilger !s data appear in the O2 limit, where under-prediction 

persists. 

7.4.4 The root mean square fluctuation of temperature 

The RMS fluctuation of temperature will be presented 

here as a further demonstration of the applicability and 

power of ESCIMO theory. The axial distribution of temperature 

fluctuation is now plotted in Fig.7.4-16 together with 

the prediction made by Kent and Bilger (1976). The 

measurements are not available for this flame as mentioned 

by Kent and Bilger (1976). 

Kent and Bilger (1976) has assumed a Gaussian turbulent 

pdf in the mixture fraction with a prescribed fluctuation 

intensity to calculate the temperature fluctuation. Inspection 

of Fig.7.4-16 reveals that the results obtained with both 

approaches follow the similar trend although higher fluctuation 

level has been detected from the current study. The decay of 

the fluctuating intensities between X/D=50 and X/D=80 are 

observed from both curves and the shape is in qualitative 

agreement with the measurements of Lockwood and Odidi (1975) 

in the methane-air free jet diffusion flame. 

The radial variation of temperature fluctuations, 

obtained at X/D=40» 80, and 120 respectively, are now shown 

in Fig.7.4-17. The locations of the peak in each curve shift 

toward the central part, of the jet in the further downstream 

region in a similar way to the mean temperature profile. The 
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Fig.7.4-16 Axial distribution of temperature 
fluctuations 

Fig.7.4-17 Radial distribution of temperature 
fluctuations at various locations 
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maximum fluctuation intensity decreases and the profile 

broadens as the value of X/D further increases, indicating 

the diffusive spreading of the flame zone. The experimental 

data have not been reported by Kent and Bilger. 

7.4*5 The root mean square fluctuation of species concentration 

The concentration fluctuation intensities of hydrogen 

and oxygen, at X/D=40, 80 and 120, are presented through 

Figs.7.4-18 to 7.4-20 respectively. The mean concentration 

profiles are also shown in the graphs so that the relative 

magnitude of fluctuation can be recognized. 

In Fig.7.4-18, the RMS value of hydrogen concentration 

fluctuation is equal to 0.175 at the jet axis and reaches 

the maximum value of 0.235 at r/D=1.75. It can be observed 

that the RMS fluctuation value of H2 molar fraction is 

higher than the mean value when the latter quantity is low, 

e.g., in the region where r/D>3.25. On the other hand, the 

fluctuation level of 0 2 concentration is greater than the mean 

value in the range 0.5<r/D<3.75, i.e.,when the mean oxygen 

concentration is lower than 0.06. The fluctuation intensities 

approach zero as the mean value of 0 2 concentration reaches 

the free-stream value. 

Similarly, the results obtained at X/D=80 are plotted in 

Fig.7.4-19. The RMS value of H 2 concentration fluctuation 

is now lower than the counterpart in the preceding graph, 

but the variation is similar in each case. The profile of 

0 2 fluctuation also exhibits a peak value of 0.06 near the 

intersection point of mean H 2 and mean 0 2 concentration 

curves. 
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Fig.7.4-18 Concentration fluctuation of 
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Fig.7.4-20 Concentration fluctuation of 
hydrogen and oxygen 
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In Fig.7.4-20 the RMS values of H 2 concentration 

fluctuation, at X/D=120, further decrease below the level of 

0.1, but the relative fluctuation intensities (the ratio of 

RMS value to the mean value) are higher now. The location 

of the maximum RMS value, for H 2 fluctuation, is now 

situated at the jet axis where the temperature is highest 

(as shown in Fig.7.4-13). 

Finally, the RMS values of H 2 0 concentration fluctuation, 

at X/D=40, 80, 120 and 160, are demonstrated in Figs.7.4-21-

7.4-22. The profiles of concentration fluctuation spread 

outwards as the value of X/D increases, which is the result 

of the diffusion process. It can also be observed that the 

peak of fluctuation is located in the inner region of the 

jet (r/D=2.5) at X/D=l60. 

7.4.6 The probability density function of temperature 

The temperature pdf is one of the most interesting 

quantities associated with the detail structure of turbulent 

flames, since it depends on the composition of the mixture 

and the enthalpy as well. 

The temperature pdfs at the centre line of the jet, 

for four X/D values, will first be demonstrated in Fig.7.4-23. 

Then, the radial evolution of temperature pdfs at the 

corresponding X/D positions will be presented from Figs.7.4-24 

to 7.4-27 respectively. 

In Fig.7.4-23, the axial temperature pdfs calculated at 

X/D=40, 55, 80, 120 were shown by four diagrams. The 

location of the maximum value shifts towards the high 

temperature direction as the value of X/D increases and 
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Fig.7.4-21 Radial distribution of water vapour 
concentration and its fluctuation 

Fig.7.4-22 Radial distribution of water vapour 
concentration and its fluctuation 
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Fig.7.4-23 Probability density function of 
temperature at flame axis 
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this is consistent with the variation of mean axial 

temperature represented in Fig.7.4-10- It should be noted 

that no contribution of free stream fluid (at T=300°K) 

is present in any of these diagrams and the pdf profiles 

are unimodal. 

The radial evolution of pdfs at X/D=40 are plotted in 

Fig.7.4-24 where the four curves stand for the distribution 

at r/D=0.69» 1.86, 3.21 and 4.20 respectively. The 

temperature corresponding to the maximum distribution in 

each curve is approximately equal to the mean value. A 

small but finite contribution of free stream property 

appears in the profile of r/D=3.21, i.e. near the outer 

edge of the jet. 

The pdf profiles at X/D=55 are drawn in Fig.7.4-25 with 

the results from Kennedy and Kent (1981) who have measured 

the pdfs of the mixture fraction with the aid of optical 

devices and converted to temperature pdfs. There is a 

larger intermittent spike (T=300°K) in the outer edge of 

the flow ( e . g . , at r/D=4.l6) in Kennedy and Kent's data. 

The present predictions produce a narrower distribution 

(hence smaller fluctuation) in the outer region of the jet 

where the influence of free stream conditions are stronger. 

The pdf profiles at X/D=80 are shown in Fig.7.4-26 and 

it can be seen again that the mean temperature coincides 

with the corresponding value where the distribution is 

maximum. The contribution of free stream properties, at 

r/D=2.95, is still small. 

In Fig.7.4-27, where X/D=120, the probability of finding 
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Fig.7.4-26 Probability density function of 
temperature at X/D=80 
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the temperature near the ambient condition is greater at 

the outer edge of the jet, at r/D=5.65. Furthermore, the 

pdf at r/D=6.90 is composed of lower temperature intervals 

(from 300 K~1300 K), indicating that the mean temperature 

is well below the flame temperature there. 

7.4.7 The probability density function of species 

concentration 

The radial variation of pdf of the mass fraction of 

hydrogen, for X/D=40, and 80 respectively, are presented 

in Figs.7.4-28 and 7.4-29. In Fig.7.4-28, the pdf profile 

is broader in the inner region of the jet (e.g. , at 

r/D=0.69 and 1.86) and narrows as the mean value of hydrogen 

diminishes in the outer region (e.g., at r/D=4.20). The 

similar trend can also be detected in Fig.7.4-29, where 

the quantitative contribution of fuel is smaller. 

The same variation regarding the pdf of mass fraction 

of oxygen are. demonstrated in Figs.7.4-30 and 7.4-31. It 

can be observed that the profile is mainly concentrated 

around the lower limit of oxygen content for r/D value up 

to 3ill, where the mean value is small compared with the 

free stream value. The profile shifts towards the higher 

limit only in the outer region of the jet, e.g., at 

r/D=4.20. The evolution pattern at X/D=80 is also similar 

as shown in Fig.7.4-31. 

The pdf of mass fraction of H 20, at X/D=40, 80 and 120, 

are presented through Figs.7.4-32 to 7.4-34. It is 

evident that the shape of the pdf is neither Gaussian nor 

symmetric. The profile moves towards the lower bound in 

the outer region of the jet, for all X/D-values, indicating 
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that the mass fraction of H 2 0 diminishes gradually there. 

7•5 Discussion of results 

The population distribution of folds 

It has been observed that the radial variation of 

P~A distribution diminishes in the further downstream 

region of the jet, as revealed from Figs.7.4-3 to 

7.4-5. The reason is that the velocity difference across 

the jet becomes smaller as X increases, which results in 

more uniform ageing rate (c.f. Eqn.3.7-15). Therefore, one 

can expect that the P~A curve will be a function of 

longitudinal distance x only, if the velocity (and also 

density) is uniform in the cross-stream direction as in 

the case of plug flow reactor. 

However, the shape of the P-A curve is dependent on 

the hypothesis about the distribution of fold formation 

rate. The results obtained from the present chapter show 

a similar trend as those from the mixing layer 

calculation in chapter 6, since it is supposed that 

the fold formation rate is proportional to the gradient 

of local mean velocity. Actually, the population of the 

youngest folds will not be the most dominant one, at 

least in some points, when the fold formation rate is low 

in the central region of the jet. -The influence of the 

formation rate on the P~A profiles will be presented 

and discussed separately in the next chapter. 

The turbulent mean quantities 

From the results presented in the previous section, 
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several remarks can be made about the comparison 

between the predictions and measurements. 

Firstly, the general trend in the variation of' 

mean temperature and species concentration have been 

satisfactorily predicted based on the simple chemical 

reaction scheme. The discrepancy between the present 

computations and experimental data is almost the same as 

in the work of Janicka and Kollman (1979) where a 

multistep non-equilibrium reaction scheme was employed. 

Secondly, the degree of coexistence of reactants 

(i.e., H 2 and 0 2 ) is an important feature of turbulent 

diffusion flames and it is one of the purposes arid 

contributions of the ESCIMO theory to predict this quantity. 

However, the amount of overlapping was found to be under-

predicted here and hence attention has been paid to seek 

further improvements. Therefore, various values of the 

parameters, C^, C^, Cg have been tested and larger over-

lapping obtained. The results produced from the parametric 

studies will appear in the next chapter. 

Thirdly, the oxygen content was underestimated in the 

results of Sec.7.4 and it also happened .to the theoretical 

calculations of Janicka and Kollman (1979-). Since the 

Shvab-Zeldovich assumptions (in particular the assumption 

of equal molecular diffusivities for mass and energy) 

are adopted in both calculations, one may speculate that 

the preferential diffusion effect of hydrogen (high 

mobility of hydrogen molecules) is the cause of this 

disagreement. 
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The root mean square fluctuation quantities 

The maximum temperature fluctuation in the jet centre 
line is around. 450°K, as indicated, by Fig.7.4-16. The 
fluctuation level is believed to be reasonable, although 
experimental data for this case are not available. The 
indirect supporting evidence of the statement is the 
measurements of Lenz and Gunther (1980) in methane-air 
free jet diffusion flame where the maximum axial temperature 
fluctuation rs about 400°K. It is well understood that the 
peak temperature in H2-air flame is higher than the 
counterpart in CHi,-air flame (by 300°K~400°K) and hence 
the fluctuation temperature is expected to be larger for 
the former flame (under the same turbulence level) . 

The decay of temperature fluctuation between X/D of 
40 and 80 has not yet been confirmed by experimental data, 
although the same feature ocurred in the theoretical 
results of Lockwood and Naguib (1975) for the town-gas 
flame and those of Kent and Bilger (1976) for the present 
case • 

In the radial profiles of temperature fluctuation 
indicated by Fig.7.4-17, the peak value has reached 
600°K~700°K . The value is also thought to be realistic, 
because the maximum value of 600°K in RMS fluctuation 
has been observed in the turbulent methane-air diffusion 
flames (c.f. Lenz and Gunther (1980)). 

The relative fluctuation intensities of hydrogen and 
oxygen concentration are greater than unity in the region 
where the mean values are small, as shown in Figs.7.4-18 
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to 7.4-20. The same phenomena were detected in. the 
calculations of Becker (1975) for turbulent propane-
air diffusion flames. In the concentration fluctuations 
obtained by Becker (1975), a finite amount of RMS value 
exists in the region where the mean quantity is equal to 
zero. 

The probability density functions 
It can be seen from the comparison between present 

predictions and the pdf deduced from Kennedy and Kent (1981), 
shown in Fig.7.4-25, that there is a stronger intermittency 
effect near the edge of the jet from the experimental 
observation. The influence of the free stream appears in 
the ESCIMO theory through the fold-composition at birth 
only, and it becomes less significant in the older folds 
because of molecular diffusion and fold stretching. 

The shape of the pdf profiles is directly related to 
the fold size, stretching rate and population distribution 
of folds* Since all the results obtained in this chapter 
are based on a single set of parameters only, more 
parametric studies are necessary before drawing any final 
conclusion about the model. The presentation of parametric 
studies is to appear in chapter 8. 
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7.6 The turbulent methane-air diffusion flame 
% 

The systematic experimental investigation on the 
turbulent methane-air free jet diffusion flames have been 
performed during the last decade by Lenze and Gunther ( 1 9 7 5 ) , 

Lenz and Gunther ( 1 9 8 0 ) . The experimental burner was of a 
nozzle type with a diameter of 8mm. The velocity of fuel jet 
at the jet exit plane is equal to 70m/sec, corresponding to 
a Reynolds number of 3 . 7 X 1 0 1 * . The flame was stabilised with 
an annular oxygen supply of a few litres per hour. Lenz and 
Gunther ( 1 9 8 0 ) claimed that the oxygen from the annular 
supply can be neglected compared to the oxygen content of 
the entrained air, especially in the downstream region 
where most measurements were made. They believed that the 
oxygen affects only the flame root. 

The experimental data include the axial and radial 
distribution of species concentration, the mean temperature 
distribution, the temperature fluctuation and the pdf of 
temperature at flame axis. 

The measuring system of fluctuating temperature consisted 
of a thermocouple whose frequency response was determined 
at each measurement point and compensated with an electrical 
network. The signal from the RMS voltmeter was passed 
through a spectrum analyser and a pdf analyser to reveal 
any marked peaks in the spectrum and to determine the 
skewness and flatness of the pdf*. 

7.7 The computational aspects 
The grid system 

The grid distribution in the x, u) and A coordinate are 
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the same as those described in Sec.7.3, except the definition 
of the transformation function F(x)-. It is inadequate to 
assign the velocity of surrounding air, for the present 
case, Ua^r(»0), as the reference velocity. Alternatively, 
the reference velocity is given by: 

ue 
^ref = 3(1+0.01x/D) ' (7.7-1) 

where Ue is the velocity of the 'jet at the nozzle exit. 
The value of B r ef is now a function of x and it decays 

approximately at the same rate as the velocity at the centre 
line of the jet, Uc, viz: 

U r e f » -f . (7.7-2) 

Therefore, F{x)> is now defined as: 

5 3x(l+0?0WD) • ( 7- 7" 3 ) 

3F and is obtained by its first derivative as: 

9F = . (7.7-4) 
3 x 3[x(l+0.01x/D)] 2 

The input data 

The fuel jet in the experimental conditions of Lenze 
and Giinther !s (1975) work is mainly composed of methane and 
nitrogen, with small amount of other hydrocarbon fuels. The 
volumetric composition of the fuel jet is reproduced here 
for the sake of clarification: 
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"Species Volumetric fraction % 

CHt* 81.3 
C2H6 2.85 
C 3H 8 0.60 
co2 0.90 
N2 14.35 
0 2 0.01 

Table 7.7-1 Composition of the natural gas 

Some simplifications have however been made in the 
numerical predictions, i.e., the fuel jet is treated as 
composed of CHif and N2 only. Since the species conservation 
equation is based on the mass fraction instead of the volume 
(or molar) fraction, the following mass fraction of methane 
and nitrogen have been used as the initial conditions at the 
jet exit: 

Mr.iT . = 0.713 (7.7-5) 

mN2,e
 = 0.287 . (7.7-6) 

The errors introduced by this approximation is believed 
to be of the same order as those of the simple chemical 
reaction scheme. 

The thermodynamics properties 

The specific heat, Cp, of each species is again 
calculated according to Eqn.(4.4-8) and the coefficients 
given by Table 4.4-1. The species considered in this case 
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include CH«f, 02, N2, H20 and C02, the intermediate species 
of the chemical reaction (e.g., H2 and CO) being neglected. 

The products of the chemical reaction are assumed to 
consist of water vapour and carbon dioxide only and the 
amount of each species is determined by: 

mH 20 = V • ( 7 ' 7 - 7 > 

®C02
 = °'55 mpr ' (7.7-8) 

since the following one-step reaction scheme is assumed: 

CHt» + 202 + 7. 52N2 •»• C02 + 2H20 + 7.52N2 , (7.7-9) 

where E^O an(* ®C02 r e P r e s e n ^ m a s s fraction of H20 and 
C02 respectively. 

The heat of combustion for methane is taken as equal 
to 5xl07J/Kg in the computation, according to the data from 
Perry and Chilton (1973). 

7.8 Presentation of results 

7.8.1 The hydrodynamic results 

The axial distribution of mean velocity, Uc, is presented 
in Fig.7.8-1 together with the measurements obtained by 
Wittmer (1980) with the Laser-anemometry. It can be seen 
that the mean velocity is well predicted until X/D=40, while 
the rate of decay is overpredicted afterwards. 

Fig.7.8-2 shows the turbulent kinetic energy anduthe 
velocity fluctuations for the same flame. It is not possible 
to calculate the axial velocity fluctuation and radial 
velocity fluctuation separately from the present k-e model, 



189 

X/D 

Fig.7.8-1 Variation of axial-velocity in 
the methane-air flame 

Fig.7.8-2 Variation of axial turbulence-
intensities in methane-air flame 
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therefore it is assumed that the" turbulence is isotropic 
and the "equivalent velocity fluctuation", /2/3k, is now-
compared with the measured values of and 

The main discrepancies between the predictions and the 
experimental data exist in the region of 0 < X/D < 60, 
where the predicted location of peak fluctuation is 
situated further downstream (X/D-30) to the position found 
by Wittmer (at X/D-16). Nevertheless, the maximum fluctuation 
level is only slightly undeppredicted by the turbulence model 
The value of /2/3k is lying between the 

and /v for 
X/D ratios greater than 80, i.e., in the fully developed 
region of the jet. 
7.8.2 The population distribution of folds 

Figures 7.8-3, 4 and 5 present the population 
distribution with respect to age, at three different X/D 
values, for the methane-air diffusion flame. In Fig.7.8-3, 
the P~A distributions obtained at three radial locations, 
for X/D=40, are denoted by separate curves. It can be 
observed that the population distributions at r/D=2.4 and 
5.3 are close to the exponential decay function, while the 
result at r/D=0.2 (near the jet axis) behaves in a different 
way. This feature is the consequence of the distribution of 
fold formation rate and the local mean velocity. The fold 
formation rate is assumed to vary with, the gradient of mean 
velocity (U) and hence it reaches the maximum value near the 
mid-point between the jet axis and outer- boundary. The larger 
is the fold formation rate, the more popular are the youngest 
folds. The influence of the mean velocity itself mainly 
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Fig.7.8-3 Population distribution function 
at various positions in the jet 
region 

Fig.7.8-4 Population distribution function 
at various positions in the jet 
region 
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appears in the aging term (see Eqn.3.4-24) and the latter 
quantity is larger when the mean velocity diminishes. 
Therefore, the steepest curve at r/D=2.4 is caused by the 
large formation rate and moderate aging effect, while the 
distinctive curve at r/D=0.2 is the result of relatively 
small formation rate and aging effect. 

The results demonstrated in Fig.7.8-4 are obtained at 
X/D=80, again at three different radial locations. Now the 
peak value of P~A distribution is located at A~0.12, for 
r/D=0.6. Similar features are also detected in the results 
from X/D=12Q which are shown in Fig.7.8*5. 

The radial variation of folds-population is shown in 
Figs.7.8-6, 7 and 8 for X/D values of 40, 30 and 120 
respectively. It is evident in Fig.7.8-6, that the highest 
population of youngest folds (Pi) appears around r/D=2, 
where the fold formation rate is large. On the other hand, 
the value of P 3 (for folds having A value between 0.1 and 
0.15) has its maximum at the jet-axis and decreases 
monotonically towards the outer edge. The variation of Ps 
(for A value varying between 0.2 and 0.25) is very small 
across the jet and P9 (for A value lying between 0.4 and 0.45) 
increases with the radial distance from the axis. The results 
obtained at X/D=80 and 120 are similar to those in Fig.7.8-6, 
apart from the fact that the profiles have spreaded in 
radial direction. 

The radial distribution of "average age", for three X/D 
values, are plotted in Fig.7.8-9. The average age is larger 
in the outer region of the jet where the mean velocity is 
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Fig.7.8-5 Population distribution function 
at various positions in the jet 
region 

Fig.7.8-6 Radial variation of population of 
folds belonging to a particular 
age interval 
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Fig.7.8-7 Radial variation of population of 
folds belonging to a particular 
age-interval 

Fig.7.8-6 Radial variation of population of 
folds belonging to a particular 
age interval 



195 

Fig.7.8-9 Radial profiles of average age 

Fig.7.8-10 Axial distribution of mean 
temperature 
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slower. The difference in the average age diminishes as the 
value of X/D increases, since the velocity gradient is 
smaller in the further downstream region of the jet. 

7.8.3 The mean temperature and species concentration 

The distribution of mean axial temperature along the 
jet centre-line is plotted in Fig.7.8-10 together with the 
experimental data of Lenz and Gunther (1980). It can be 
noticed that the axial temperature is slightly over-predicted 
from X/D=40 until X/D=120 and underpredicted afterwards. The 
calculated maximum temperature is equal to 1840°K, which is 
close to the measured value of 1800°K. The computed location 
of the peak value is equal to 112 diameters from the nozzle 
exit, while the measurements show that it is situated at 
X/D=120• 

The axial variation of species concentration is shown 
in Fig.7.8-11 with the experimental results from Lenz and 
Gunther (1975). The concentration of CH«» is overpredicted 
in the region of 10£X/D£40» while the agreement is 
satisfactory from X/D=60 to X/D=120. The concentration of H20 
has been well predicted from X/D=20 to X/D=100, but some 
discrepancies occur between X/D=120 and X/D=l60. The amount 
of C02 is generally overestimated in the present calculation, 
since the existence of CO and H2 have been ignored. The 
experimental data revealed that the mole fraction of CO and 
H2 along the flame axis vary between 0.02 and 0.065, 
indicating that the influence of these species is juat 
enough to cause the discrepancies between the predictions 
and measurements. 
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The radial profiles of mean temperature, H2O and C02 
concentration, at X/D=60, are demonstrated in Fig.7.8-12. 
The quantitative agreement between the calculated and measured " 
temperature is satisfactory. The flame front (denoted by the 
position of the highest temperature) appeared at r/D=5.5 in 
the predictions, but the measurements show the corresponding 
value is equal to 4-5 only. The concentration of H20 is 
overpredicted in the regions of 0<r/D<j2 and 5<.r/D.<6.5, while 
the content of C02 is everywhere overpredicted. Lenz and 
Gunther's measurements have confirmed that the volume fraction 
of CO gas can reach the value of 0.045 at this station.. 

Similarly, the correspondent results at X/D=90 are 
presented in Fig.7.8-13. The mean temperature is well 
predicted "according to the measurements available (the data 
for r/D greater than 6.5 have not been provided). The 
calculated H20 concentration is now lower than the experimental 
values, but the amount of C02 is still overpredicted by 2-3$ 
in volume fraction across the flame zone. It should be noted 
that the CO concentration is equal to 0.0 5 near the axis 
and gradually diminishes towards the outer edge of the flame, 
according to Lenz and Gunther's results. 

Also, the predictions made at X/D=120 are demonstrated 
in Fig.7.8-14. No experimental data has been found for this 
cross-section and hence only qualitative assessment can be 
done. The temperature and concentration of main products 
achieve the maximum values at the jet centre-line, signifying 
that the flame tip is now located at the axis. 

The radial profiles of methane and oxygen concentration, 
at X/D=60, are plotted separately in Fig.7.8-15, since the 
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Fig.7.8-13 Radial variation of mean temperature 
and products 

Fig.7.8-14 Radial variation of mean temperature 
and products 
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Fig.7.8-15 Radial profile of methane and 
oxygen concentration 

Fig.7.8-16 Radial profile of methane and 
oxygen concentration 
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overlapping feature of fuel and oxygen deserves more attention. 
It can be observed that the amount of reactants at the 
intersection points of two curves is equal to 0.025. 

Finally, the radial variation of reactants concentration 
obtained at X/D=90 are provided in Fig.7.8-16. The degree 
of the ci;oss-over:'i of two curves is almost the same as that 
in the previous figure. 

7.8.4 The root mean square fluctuation of temperature 

The axial distribution of temperature fluctuation (the 
rms values) is shown in Fig.7.8-17 with the data of Lenz and 
Gunther (1980). The predicted curve reveals a peak value of 
400°K at X/D=l60, which is consistent with the measurements. 
The predictions follow the same trend of the experimental 
observations for X/D values larger than 80. The decay of 
fluctuation level between X/D=20 and X/D=40 in the measurements 
has not been demonstrated by present calculations. On the 
other hand, there is a slight double hump between x/D=50 
and X/D=80 in the computed curve. 

The radial distribution of temperature fluctuation, at 
X/D=60, is provided in Fig.7.8-18 with the measured data. 
The maximum fluctuation intensity occurs at the outer region 
of the jet (outside the main reaction zone) and achieves 
the value of 600°K which is slightly higher than the predicted 
one (~560°K). However, the present predictions overestimate 
the fluctuation intensities, for r/D smaller than 5, while 
the rate of decay becomes faster in the region of r/D 
greater than 7. 

The calculated "temperature fluctuations at X/D=90 and 
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Fig.7.8-17 Axial distribution of rms 
temperature fluctuation 

Fig.7.8-18 Radial distribution of rms 
temperature fluctuation 
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X/D=120 are shown in Fig.7.8-19. Inspection of the graph 
reveals that the highest fluctuation quantities nearly 
remain constant in the downstream region of the flow. However, 
the radial profile becomes more uniform and broadens as the 
value of x increases. 

7.8.5 The root mean square fluctuation of species concentration 

The RMS fluctuations of methane and oxygen concentration, 
at X/D=60, 90 and 120 respectively, are presented in 
Figs.7.8-20 to 7.8-22. The concentration fluctuation of 
methane reaches the maximum value of 0.047 at r/D=1.5» in 
Fig.7.8-20, while the highest fluctuation of oxygen occurs 
at r/D=5.6, which is inside the main reaction zone. It can 
be seen that the relative fluctuation intensities of oxygen 
are greater than unity from the axis up to r/D=6.3. 

The location of highest concentration fluctuation in 
methane is situated at the flame axis, in Fig.7.8-21, 
indicating that the axial fluctuation intensities become 
larger now. However, the maximum fluctuation of oxygen still 
takes place around r/D=7.0. 

In Fig.7.8-22, the fluctuation level of methane 
concentration is lower as a consequence of smaller mean value. 
Larger fluctuation value is observed on the axis for the 
oxygen species and the ppak value (at r/D~5) is now around 
0.0425. 

7.8.6 The probability density functions of temperature 

The probability density functions of temperature at 
flame axis, for X/D values of 40, 110, 120 and 130, are 
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Fig.7.8-19 Radial distribution of rms 
temperature fluctuation 
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Fig.7.8-20 Concentration fluctuation of 
methane and oxygen 

Fig.7.8-21 Concentration fluctuation of 
methane and oxygen 
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Fig.7.8-22 Concentration fluctuation of 
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shown in Fig.7.8-23. The experimental results of Lenz and 
Gunther (1980) are also presented (by the broken lines) for 
comparison. The predictions show that the pdf profiles shift 
with the value of mean temperature at different positions. 
There is no contribution of the low temperature gases 
(300°K<T<800°K) being observed in the present calculation. . 

The radial evolution of pdf profiles at X/D=40 is plotted 
in Fig.7.8-24. Obviously, the pdfs are not Gaussian and there 
is a finite amount of cold air existing in the outer edge 
of the jet, e.g., at r/D=2.38 and 4.66. The peak value of 
the distribution curve corresponds to the mean temperature 
at the point in question. 

The similar results for X/D=110 are presented in Fig. 
7.8-25 where the amount of cold air becomes more significant 
near the outer boundary of the jet, i.e., at r/D=14.0. 
Further results obtained- at X/D=120 and 130 are demonstrated 
by Figs.7.8-26 and 7.8-27 respectively. 

7.8.7 The probability density functions of species concentration 

The radial evolution of pdf profiles for the mass 
fraction of fuel, at X/D=40 and 60, are presented in 
Figs.7.8-28 and 7.8-29 respectively. It can be seen in the 
diagrams of Fig.7.8-28 that the mass fraction of fuel 
decreases'as the value of r/D increases. The pdf profile; is 
broad in the centre of the jet and becomes narrow near the 
edge where the amount of fuel is almost exhausted. Similar 
phenomena are observed in Fig.7.8-29, apart from the fact 
that smaller fuel contents are present. 
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Fig.7.8-25 Probability density functions of 
temperature at X/D=110 
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Figs.7.8-30 and 7.8-31 show the pdf curves for the mass 
fraction of oxygen at X/D=40 and 60 respectively. The pdf 
profiles at X/D=40 are mainly located near the lower bound 
of the domain until r/D=3.51, where a small but finite 
contribution from the free stream exists. At r/D=5.0 5» the 
peak value of the pdf moves towards the central part of the 
domain, while the proportion of free-stream property also 
increases. The evolution pattern in Fig.7.8-31 bears the 
resemblance to the previous graph, where higher mass fraction 
of oxygen is situated in the outer edge of the jet, e.g., at 
r/D=8.50. 

7.9 Discussion of results 

The turbulent mean quantities 

The axial distribution of mean temperature in Fig.7.8-10, 
and the radial variation in Figs.7.8-12 and 7.8-13 have been 
found to agree fairly with the experimental measurements. 
It can be inferred that the gross nature of the flame was 
correctly predicted, although the primitive chemical scheme 
is incorporated with the ESCIMO model. 

There exists some discrepancies between the predictions 
and the measurements on the species concentration, especially 
the amount of C02 is overpredicted. The main reason is that 
only water vapor and carbon dioxide are included in the 
calculation of products, while a finite contents of hydrogen 
and carbon monoxide do present in actuality during the 
reaction process. The calculated value of C02 will be 
smaller if GO is included as a product in the reaction 
scheme and hence "better agreement with the experimental 
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Fig.7.8-28 Probability density functions of 
mass fraction of methane at X/D=40 
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data can be achieved. 
Dryer and Westbrook (1979) have mentioned that typical 

hydrocarbons (such as methane, propane etc.) burn in a 
sequential manner. That is, the fuel is partially oxidised 
to CO and H2,which are not appreciably consumed until all 
of the hydrocarbon species have disappeared. The two-step 
reaction scheme has been used by Dryer and Glassman (1972) 
for methane oxidation in a turbulent flow reactor and is 
given by: 

where the chemical reaction rates were derived empirically. 
However, the author has decided to adopt the global 

reaction mechanism at the present stage of development of 
ESCIMO theory, because additional transport equations with 
non-linear source terms (for the production rate) will have 
to be solved in the biographic analysis and the computer 
time will be enlarged considerably. On the other hand, the 
earlier work of Tarn (1981) has demonstrated the capability 
of handling detail multistep reaction machanism in a 
well-stirred reactor. 
The root mean square fluctuation quantities 

The successful predictions on temperature fluctuations 
as indicated by Figs.7.8-17 and 7.8-18 further substantiates 
the potential power of the present model. Lenz and Gunther 
(1980) have discussed the cause of larger temperature 
fluctuation at X/D=20 than that of X/D=40 and they supposed 
that the influence of flame stabilization by the annular 

CHi» + 3/2 02 -*c0 + 2H20 
CO + 1/2 02 -»C0 2 

, (7.9-1) 
, (7.9-2) 
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oxygen supply can still be felt there. 
The fluctuating temperatures of an open methane 

diffusion flame at a Reynolds number of 9200 have been 
measured in the work of Ballantyne and Moss (1977) with 
the aid of fine wire thermocouple. The peak RMS 
temperature fluctuation is of the order of 450°K which is 
lower than the results obtained by Lenz and Gunther, 
probably because the Reynolds number is lower and so is 
the turbulence intensity. 

The quantitative validation of predicted fluctuations 
level on the species concentration can not be made, since 
the relevant experimental data are not reported in the 
literature. But one can be sure that the present theory is 
capable of calculating the important and interesting 
quantities in turbulent flames. 
The probability density functions 

From the comparison between the calculated pdf and 
measured pdf in Fig.7.8-23, it can be observed that the 
experimental curves are broader. Since the shape of pdf 
is more closely related to the various parameters such as 
Cj,, C^ and Cg than the mean quantities, it will be 
necessary to investigate the influence of each constant 
before making the concrete remarks. 

The intermittent effect is observed from the pdf 
profiles near the free stream boundary, e.g.,in Fig.7.8-24, 
at r/D=4.66 and X/D=40. This feature is included in the 
fold composition at birth, as described in Sec.7.5, and 
hence it is expected that the fold formation rate and 
stretching rate will have considerable influence on it. 
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7.10 Closure 
The application of ESCIMO theory to turbulent 

hydrogen-air diffusion flame and methane-air diffusion 
flame have been made. A single set of parameters is 
employed for both cases and the results have been compared 
with the experimental data available in the literature. 

Generally speaking, the quantitative agreement 
between the predictions and the measurements is reasonably 
good, including the fluctuating quantities as well as the 
turbulent mean values. However, some discrepancies do exist 
in the comparison between calculated and measured probability 
density functions of temperature. 

Therefore, it is important to investigate the influence 
of different presumptions and parameters on the results, 
especially the fluctuation levels and the shape of pdf 
profiles. The systematic presentation of the sensitivity 
analaysis and grid independence tests will appear in the 
next chapter. 
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CHAPTER 8 

THE PARAMETRIC STUDIES 

8.1 Introduction 

In the previous chapter, the predictions on the 
turbulent diffusion flames have been made with the aid of 
some simplified assumptions to compromise between the realism 
and economy. Several empirical constants related to the fold 
composition, fold size at birth and, the stretching rate have 
been chosen during the computations. 

The purpose of the present chapter is to check whether 
the final results are sensitive to those presumptions and 
empirical constants. Hence, the description of all test 
cases performed in this chapter will be provided in Sec.8.2, 
followed by the report on the influence of various hypothesis 
about the distribution of fold formation rate in Sec.8.3. 
Subsequently, the influence of fold composition at formation 
time, fold size at birth and the stretching rate will be 
discussed in Sees.8.4, 8.5 and 8.6 respectively. 

The effects of grid-size in x, cu and A coordinate will 
also be investigated and depicted in Sec.8.7 to ensure that 
all results are practically grid independent. Finally, a 
short closure will appear at the end. 

8.2 The test cases performed 

A systematic study has been performed in such a way that 
each test case is different from the "standard run" by one 
parameter only. The standard run stands for the case 
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described in the previous chapter. The list of all test runs 
is given by the following table: 

Run No Mode CF c z CS NA N x3 

1 (i) 2. 0.328 0.5 20 20 0.01 
2 (ii) 2. 0.328 0.5 20 20 0.01 
3 (iii) 2. 0.328 0.5 20 20 0.01 
4 (i) 1. 0.328 0.5 20 20 0.01 

5 (i) 3. 0.328 0.5 20 20 0.01 
6 (i) 2. 0.164 0.5 20 20 0.01 
7 (i) 2. 0.082 0.5 20 20 0.01 
8 (i) 2. 0.328 2.0 20 20 0.01 
9 (i) 2. 0.328 0.1 20 20 0.01 

10 (i) 2. 0.328 0.5 10 20 0.01 
11 (i) 2. 0.328 ' 0.5 6 20 0.01 
12 (i) 2. 0.328 0.5 20 30 0.01 
13 (i) 2. 0.328 0.5 20 40 0.01 
14 (i) 2. 0.328 0.5 20 20 0.02 
15 ( i ) 2. 0.328 0.5 20 20 0.03 
16 ( i ) 2. 0.328 0.5 20 20 0.005 

Table 8.2-1 The test cases of parametric studies 
(Run No.l is the standard run) for methane-
air diffusion flame. 

In contrast to the full scale parametric studies of 
methane-air diffusion flame, only a selective number of runs 
will be presented for the hydrogen-air diffusion flame. The 
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same definition of "Run No" will be used for hydrogen-air 
flame and the cases are Run nos 1, 2, 3, 5, 6 and 8. 

8.3 The influence of fold formation rate 
The population distribution functions 
The population distributions with respect to age, for 

methane-air diffusion flame, obtained from various 
presumptions on the fold formation rate are now presented 
through Figs.8.3-1 to 8.3-4. 

In Fig.8.3-1, the P~A distribution exhibits a stronger 
characteristic of exponential decay at r/D=3.8, where the 
fold formation rate reaches its climax. In Run No.2, the 
fold formation rate is assumed to be proportional to the 
mean velocity and hence the peak value is always located 
at the jet axis. Therefore, the steepest curve in Fig.8.3-2 
is the one which corresponds to the distribution near the 
axis, i.e.,at r/D=0.42. Both the fold formation rate and 
the ageing effect are small at r/D=8.3, which result in a 
rather flat distribution. Similarly, the maximum fold 
formation appears at r/D=8.3, for Run No.3 (Fig.8.3-3), 
and the curve again shows the exponential behaviour. 

The influence of fold formation rate on the radial 
variation of average age is demonstrated in Fig.8.3-4. It 
can be observed that the average age increases as the 
distance from the jet axis enlarges, for all three runs. 
The average age calculated from Run No.3 does not increase 
rapidly in the outer edge of the jet, since the fold 
formation rate there is higher than that of the other runs. 
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Fig.8.3-1 Population distribution functions 
of methane-air diffusion flame 

Fig.8.3-2 Population distribution functions 
of methane-air diffusion flame 
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Figure 8.3-4 The radial variation of 
average age for methane-air 
diffusion flame 
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The turbulent mean quantities 
The mean temperature of methane-air diffusion flame, 

at X/D=60, calculated from Runs Nos.l, 2 and 3 are presented 
in the following table for comparison. The longitudinal 
station of X/D=60 has been chosen here because more 
comprehensive experimental data are available (Lenz and 
Giinther, 1980). 

Radial Location 
r/D 

Turbulent Mean Temperature °K Radial Location 
r/D Run No.l Run No.2 Run No.3 

0.40 1520 1520 1520 
1.46 1540 1540 1550 
2.87 1590 1570 1630 
4.45 1680 1670 1740' 
5.55 1740 1760 1770 
6.80 1430 1430 1410 
8.50 787 786 783 

Table 8.3-1 Influence of fold formation rate on mean 
temperature 

Table 8.3-1 shows that the effect of various 
distributions about fold formation rate on the mean " 
temperature is rather small. The maximum discrepancy between 
each run is only around 70°K (e.g.,at r/D=4.45), which is 
less than 4% of the flame temperature 

The mean molar fraction of methane, at X/D = 60, is 
selected as a representative to demonstrate the influence of 
different formation rates on the species concentration. The 
results are provided in the following table: 
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Radial Location 
r/D 

Mean CHi* Molar Fraction Radial Location 
r/D Run No.1 Run No.2 Run No.3 
0.40 0.138 0.137 0.139 
1.46 0.126 0.126 0.126 
2.87 0.0962 0.0970 0.0938 
4.45 0.052 0.0510 0.0470 
5.55 0.0165 0.0161 0.0135 
6.80 0.0015 0.0013 0.0013 
8.50 0.0 0.0 0.0 

Table 8.3-2 Influence of fold formation rate on mean 
CHi» molar fraction 

Again it can be noticed that the results obtained from 
each case are very close to each other. Hence the attention 
is now turned to the fluctuation quantities. 

Similar to the case for methane-air flame, the influence 
of various fold formation rates on the mean temperature for 
hydrogen-air flame, at X/D=80, is demonstrated in Table 8.3-3. 

Radial Location 
r/D 

Turbulent Mean Temperature °K Radial Location 
r/D Run No.l Run No,2 Run No.3 
0.42 1830 1860 1810 
1.68 1840 1900 1830 
3.36 1860 1980 1860 
4.56 1580 1580 1580 
5.25 1210 1200 1210 
5..75 900 900 900 
6.20 680 690 680 

Tabl e 8.3—3 Influence of fold formation rate on mean 
temperature 
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It can be observed that the mean temperature are not 
very sensitive to the distribution of fold formation rate, 
except in the peak value (at r/D=3.36). The peak temperature 
obtained in Run No.2 is equal to 1980°K, which is 120°K 
higher than the' counterpart from the other two runs. 

The mean molar fraction of hydrogen, at X/D=80, 
calculated from three different fold formation rates are 
presented in Table 8.3-4. The main discrepancies again 
happen at r/D=3.36, where the value in Run No.2 is 
substantially lower (around 27$ difference). 

The root mean square fluctuation quantities 
Fig.8.3-5 shows the fluctuating temperatures 

calculated from three different fold formation rates, at 
X/D=60. The measurements of Lenz and Gunther are also 
presented for the sake of comparison. It can be observed 
that the difference between each case is now more 
significant and the predictions from Run No.3 fit the 
experimental data very well. In the case of Run No.3, the 
fold formation rate is assumed to vary linearly with the 
co-value, i.e., the fold formation rate is minimum in the 
jet axis and reaches the maximum value near the outer edge 
of the jet. 

The rms fluctuation of methane (in molar fraction) 
calculated from Run Nos.l, 2 and 3, at X/D, are shown in 
Table 8.3-5 given below: 
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Fig.8.3-5 Influence of fold formation rate 
on temperature fluctuation 
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Radial Location 
r/D 

Mean H2 Molar Fraction Radial Location 
r/D Run No. 1 Run No 2 Run No. 3 

0.42 0.250 0.253 0.250 
1.68 0.209 0.204 0.213 
3.36 0.0815 0.0592 0.0819 
4.56 0.007 0.005 0.007 
5.25 0.0 0.0 0.0 
5.75 0.0 0.0 0.0 
6.20 0.0 0.0 0.0 

Table 8.3-4 Influence of fold formation rate on mean 
H2 molar fraction 

Radial Location 
r/D 

RMS fluctuation of CHi» Radial Location 
r/D Run No.l Run No.2 Run No.3 
0.40 0.0464 0.0451 0.0412 
1.46 0.0468 0.0511 0.0357 
2.87 0.0455 0.0485 0.0311 
4.45 0.0360 0.0365 0.03U 
5.55 0.0256 0.0254 0.0238 
6.80 0.0037 0.0035 0.0032 
8.50 0-.0 0.0 0.0 

Table.8.3-5 Influence of fold formation rate on rms 
fluctuation of CfU concentration 

Considerable difference between each run was found, 
especially at r/D=1.46 and 2.87 where the maximum relative 



231 

discrepancy reaches the order of 30$. In Run no.2 the 
concentration fluctuations at r/D=1.4-6 and 2.87 are greater 
than the value at r/D=0.4-0, while the peak of concentration 
fluctuation is situated at r/D=0.4-0 in the case of Run no.3. 
It is worth mentioning here that the fold formation rate 
is large in the central region of the jet and small near the 
outer edge for Run no.2, exactly oppposite to Run no.3 . In 
the case of Run no.l, the fold formation rate has its peak 
value situated between the jet axis and the outer boundary, 
since it is proportional to the mean velocity gradient. 
Thus, the population of youngest folds is the most prominent 
one in the near axis region for Run no.2 and results in 
higher fluctuation level (the non-uniformity of properties 
inside the fold has not yet evened out). 
The probability density functions 

The pdf profiles of temperature obtained from Run no.l 
and Run no.2, at X/D=60, are illustrated in Fig.8.3-6. The 
difference is not visible in the near-axis region (e.g.,r/D 
=0.40) and the results actually collapse on the same profile. 
However, some discrepancies do exist in other positions, 
especially in the higher values of P(T). 

The pdf profiles are composed of two parts for the 
newly formed folds, namely the values which stand for the 
properties of fresh layer and re-engulfed layer respectively. 
For the very old folds, a single spike representing the 
fold-average value is dominant. A broad distribution exists 
for those medium age folds in which the molecular diffusion 
effect is still taking place. Hence, the population average 
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pdf is dependent on the population distribution of various 
folds. 

8.4 The influence of fold composition 
The turbulent mean quantities 
The radial distribution of mean temperature, at X/D=60, 

obtained by three different empirical constants for the fold 
composition are compared and listed in Table 8.4-1. 

The peak temperature (at r/D = 5.55) varies from l660°K 
(for Cp=3.0) to 1850°K (for CF=1.0) when the composition of 
fold at birth is altered. In other words, the flame 
temperature is far below the adiabatic temperature (-2150°K 
for methane-air flame) when the re-engulfed layer has the 

Radial Location 

r/D 

Mean Temperature °K Radial Location 

r/D Run No.l Run No.4 Run No.5 

0.40 1520 1520 1510 
1.46 1540 1550 1520 
2.87 1590 1630 1550 
4.45 1680 1760 1610 
5.55 1740 1850 1660 
6.80 1430 1450 1360 
8.50 787 792 775 

Table 8.4-1 Influence of fold composition on the 
mean temperature 
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properties far different from the local mean values. The 
flame temperature becomes higher if the properties in the 
re-engulfed layer are closer to the mean values. The 
experimental flame temperature from Lenz and Giinther is 
around 1740°K which is close to the value from Run No.l. 

The influence of Cp values on the mean concentration 
of methane, at X/D=60, is now presented in Table.8.4-2. 

Radial Location 
r/D 

Mean CHi» Molar Fraction Radial Location 
r/D Run No 1 Run No 4 Run No 5 

0.40 0.138 0.141 0.135 
1.46 •0.126 0.129 0.124 
2.87 0.0962 0.0965 0.0947 
4.45 0.0502 0.0475 0.0511 
5.55 0.0165 0.0111 0.0189 
6.80 0.001$ 0.0 0.0042 
8.50 0.0 0.0 0.0 

Table 8.4-2 Influence of fold composition on mean CH* 
molar fraction 

Inspection of Table 8.4-2 reveals that higher C^ value 
yields larger concentration of methane across the jet and 
hence it is expected that the overlapping of methane and 
oxygen also increases as a consequence. 

The influence of initial fold composition on the mean 
temperature and compositions, for hydrogen-air flame, is 
now demonstrated in Fig.8.4-1. When larger C^ value (Cp=3.0 
in Run no.5) is employed, the mean concentration of hydrogen 
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and oxygen increase. The degree of overlapping for fuel and 
oxidant is slightly enhanced, but it is still lower than the 
measured value. On the other hand, the temperature profile 
has been reduced by about 80°K~100°K in the case of higher 
C-p value. 

The root mean square fluctuation quantities 

The rms values of temperature fluctuations; for three 
runs are plotted in Fig.8.4-2 to demonstrate the influence 
of different fold compositions. It is evident that the 
fluctuation intensities are sensitive to the value of Cp, i.e., 
larger CR will result in higher fluctuation. The present 
comparison with the experimental data suggests that the value 
of CR=2.0 produces, reasonable agreement. 

The influence of fold composition on the concentration 
fluctuation of CHt* is demonstrated in Table 8.4-3. 

Radial Location 
r/D 

RMS fluctuation of CiU Radial Location 
r/D Run no 1 Run no 4 Run no 5 

0.40 0.0464 0.0257 0.0612 
1.46 0.0468 0.0282 0.0597 
2.87 0.0455 0.0297 0.0578 
4.45 0.0360 0.0229 0.0458 
5.55 0.0256 0.0142 0.0340 
6.80 0.0037 0.0 0.0105 
8.50 0.0 0.0 0.0 

Table 8.4-3 Influence of fold composition on rms 
fluctuation of CHi, concentration 
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The probability density functions 

Fig.8.4-3 shows the pdf of temperature obtained from 
two different values of Cp (Cp=2.0 and 3.0), at X/D=60. The 
pdf profiles calculated from larger Cp value; exhibit a 
broader characteristic;;in the inner part of the jet, i.e., 
at r/D=0.40 and 2.87. This is consistent with the structure 
inside the fold, since larger Cp value means greater variation 
of properties are present for each fold. 

The results obtained from run no.4 (Cp=1.0) are plotted 
separately with those of run no.l in Fig.8.4-4 for the sake 
of clarity. The pdf profiles now become narrower as expected, 
indicating that the non-uniformity of properties has 
diminished. 

8.5 The influence of fold size 

The turbulence mean quantities 

The mean temperature of methane-air flame obtained from 
three different values of fold size at birth, for X/D values 
of 60, are listed and compared in Table 8.5-1 

The peak temperature of the flame (at r/D-5.55) varies 
from 1740°K (02=0.328) to 1910°K (02=0.082) when the initial 
fold size changes by a factor of four. It can be seen that 
the results from run no.l are closer to the experimental 
data, since the measured flame temperature is around 1740°K. 

The smaller the fold is at birth, the faster the evening 
out of the fluctuation level is under the conditions that 
other parameters remain fixed. Hence, the peak temperature 
will be closer to the equilibrium adiabatic temperature when 
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Radial Location 
r/D 

Mean temperature °K Radial Location 
r/D Run no 1 Run no 6 Run no 7 

0.40 1520 1520 1520 
1.46 1540 1560 1550 
2.87 1590 1630 1640 
4.45 1680 1750 1800 
5. 55 1740 1830 1910 
6.80 1430 1440 1390 
8.50 787 792 776 

Table 8.5-1 The influence of fold size on the mean 
temperature 

the fold is rather small. 
The influence of initial fold size on the mean 

concentration of CHi, is now demonstrated in Table 8.5-2. 

Radial Location 
r/D 

Mean CHi, molar fraction Radial Location 
r/D Run No.l Run No.6 Run No.7 
0.40 0.138 0.140 0.140 
1.46 0.126 0.128 0.127 ' 
2.87 0.0962 0.0960 0.104 
4.45 0.0502 0.0477 0.0439 
5.55 0.0165 0.0117 0.0054 
6.80 0.0015 0.0005 0.0 
8.50 0.0 0.0 0.0 

Table 8.5-2 The influence of fold size on mean CH«, 
molar fraction 
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It can be observed that the major discrepancies 
between each run occur in the flame zone (e.g., at r/D^5.55) 
where the concentration of CHi» decreases significantly as 
the value of C^ becomes smaller. 

The mean temperature and compositions claculated from 
two different fold sizes, for the hydrogen-air flame, are 
shown in Fig.8.5-1. The mean temperature is higher in the 
case of the sjnaller fold size (C2=0.l64 in Run No.6) and 
closer to the experimental data. However, the concentration 
of hydrogen and oxygen are lower around the flame zone 
(3<r/D<4.5) and less amount of cross-over is observed. 

The root mean square fluctuation quantities 
The radial distribution of temperature fluctuations 

calculated from three different values of C^, at X/D=60, 
are plotted in Fig.8.5-2. It is evident that the fluctuation 
intensities are sensitive to the initial fold size, i.e., 
larger fold size will result in higher fluctuation level. 
The C^ value of 0.328 in Run No.l yields better quantitative 
agreement between the predictions and measurements. 

The root mean square fluctuation of methane 
concentration obtained by Run Nos.l, 6 and 7, at X/D=60, 
are given in Table 8.5-3. 
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Radial Location 
r/D 

RMS fluctuation of CHi» Radial Location 
r/D Run No.l Run No.6 Run No.7 
0.40 0.0464 0.0274 0.0097 
1.46 0.0468 0.0323 0.0150 
2.87 0.0455 0.0361 0.0235 
4.45 0.0360 0.0300 0.0217 
5.55 0.0256 0.0210 0.0152 
6.80 0.0037 0.0021 0.0059 
8.50 0.0 0.0 0.0 

Table 8.5-3 Influence of fold size on rms fluctuation 
of CHi* concentration 

Table 8.5-3 reveals that the concentration fluctuation 
diminishes when the initial fold size is small. In the mean 
time, the location of maximum fluctuation shifts from the 
jet axis towards the outer region as the value of C^ 
decreases. 

The probability density functions 
The influence of fold size on the pdf of temperature, 

at X/D=60, is demonstrated in Figs.8.5-3 and-8.5-4. The 
shape of the pdf profile becomes narrower and concentrated 
around the mean value when the fold size is smaller. For 
example, at r/D=2„87, the maximum value of P(T) varies from 
2.65x10"3 in Run No.l (Cz=0.328) to 4.08xl0"3 in Run No.7 
(Cz=0.082), while the corresponding value in Run No.6 
(Cz=0.l64) lies between the two extremes and is equal to 
3.28x10"3. In the meantime, the contribution of the cold 
ambient air diminishes (e.g., at r/D=5. 5'5 and 8.50 ) as the 
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value of C^ decreases. On the other hand, the distribution 

in the high temperature domain (between 1900°K and 2100°K) 

is stronger for lower C^ values, e.g., the P(T) values 

at r/D=5.55 for Run nos.6 and 7. 

8.6 The influence of fold stretching rate 

The turbulent mean quantities 

The mean temperature calculated from three different 

values of fold stretching rate, at X/D=60, are compared and 

listed in Table 8.6-1. 

It is obviouB that the flame temperature (at r/D-5.55) 

is significantly lower (T=l600°K) in the case of rather 

moderate stretching effect (e.g.,Run No.9, Cg=0.l). The 

difference between the peak temperature is about 17$ when 

the value of Cg changes from 2.0 to 0.1, i.e., by a factor 

of 20. The value of Cg=0.5 in Run No.l gives the best 

agreement with experimental data for the present test case. 

Radial Location 

r/D 

Mean Temperature °K Radial Location 

r/D Run No.l Run No.8 Run No.9 

0.40 1520 1520 1520 

1.46 1540 1540 1530 

2.87 1590 1610 1550 

4.45 1680 1740 1590 

5.55 1740 1870 1600 

6.80 1430 1440 1410 

8.50 787 794 777 

Table 8.6-1 Influence of fold stretching rate on the 

mean temperature 
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The influence of the stretching rate on the flame 

temperature is expected, since slower stretching results 

in greater proportion of cold fresh air inside the fold 

(the diffusion is slower) and hence reduces the average 

temperature• 

The effects of the stretching rate on the mean 

concentration of methane, at X/D=60, are demonstrated in 

Table 8.6-2. 

Radial Location 

r/D 

Mean CH<* molar fraction Radial Location 

r/D Run no 1 Run no 8 Run no 9 

0.40 0.138 0.141 0.135 

1.46 0.126 0.129 0.123 

2.87 0.0962 0.0974 0.0940 

4.45 0.0502 0.0490 0.0517 

5.55 0.0165 0.0104 0.0225 

6.80 0.0015 0.0007 0.0022 

8.50 0.0 0.0 0.0 

Table 8.6-2 Influence of fold stretching rate on mean 

CHu molar fraction 

There is a considerable influence of stretching rate on 

the amount of methane near the flame zone (i.e., at r/D=5.55) 

where the value of molar fraction varies from 0.0104 to 0.0225, 

i.e., by a factor of 2.2. Thus, the degree of overlapping of 

fuel and oxygen in the flame zone is considerably enlarged 

when a low stretching rate is applied. 

The influence of stretching rate on the mean temperature 
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and compositions, for the hydrogen-air flame, is illustrated 

in Fig.8.6-1. The temperature obtained from larger stretching 

rate (Cg=2.0 in Run no 8) exhibit a better agreement with 

the experimental data. However, the overlapping of hydrogen 

and oxygen again becomes smaller and the results are similar 

to those obtained from Run no 6 (c.f. Fig.8.5-1). 

The root mean square fluctuation quantities 

The temperature fluctuations obtained from three 

different values of stretching rate, at X/D=60, are plotted 

in Fig.8.6-2 with the experimental data. It can be observed 

that the highest fluctuation level rises from 44-0°K to 710°K 

as Cg changes from. 2.0 to 0.1. It is evident from the graph 

that the results from Run no.l yield a better agreement with 

the measurements on the overall comparison. 

Next, the effects of stretching rate on the concentration 

fluctuation of methane, at X/D=60, are presented in Table 

8.6-3. 

Radial location 

r/D 

RMS fluctuation of CHu Radial location 

r/D Run no 1 Run no 8 Run no 9 

0.40 0.0464 0.0225 0.0624 

1.46 0.0468 0.0272 0.0630 

2.87 0.0455 0.0308 0.0579 

4.45' 0.0360 0.0256 0.0425 

5.55 0.0256 0.0201 0.0277 

6.80 0.0037 0.0025 0.0045 

8.50 0.0 0.0 0.0 

Table 8.6-3 Influence of fold stretching rate on rms 

fluctuation of CHj, concentration 
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Fig.8.6-1 Influence of fold stretching rate 
on the mean temperature and 
compositions for hydrogen-air flame 

Fig.8.6-2 Influence of fold stretching rate 
on temperature fluctuation for 
methane-air flame 
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The table reveals that the concentration fluctuation 

level enhances when the stretching rate diminishes. The most 

distinguished difference occurs around r/D=0.40, where the 

value from run no.9 is approximately equal to 2.8 times its 

counterpart in run no.8. 

The probability density functions 

The influence of fold stretching rate on the pdf of 

temperature are shown in Figs.8.6-3 and 8.6-4 respectively. 

In Figs.8.6-3 the higher stretching rate results in narrower 

pdf and higher peak, indicating that the fluctuation level 

is lower. On the other hand, the slower stretching rate 

significantly broadens the pdf profiles as shown in Fig. 

8.6-4= 

8.7 The influence of grid size 

8.7.1 The number of age-interval 

The newly introduced coordinate in the present work is 

the age-coordinate and hence the number of sub-division, NA, 

should be chosen carefully to yield the grid independent 

results without overspending the computing resources. 

Three different numbers of age-interval have been 

employed as mentioned in Sec.8.2, where the grid-distribution 

for each run is given by: 

Run no 1 (NA=20): uniform distribution 

Run no 10 (NA=10): 0., 0.05, .0,1,. 0.15, 0.2, 0.3,- P,4, 

0.5, 0.6, 0.8, 1. 
Run no 11 (NA=6): 0., 0.1, 0.2, 0.3, 0.4, 0.7, 1. 
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The influence of NA on various quantities will be 

described below. 

The turbulent mean quantities 

The mean temperature calculated from various distributions 

of age-interval, at X/D=60, is now presented in Table 8.7-1. 

Radial location 

r/D 

Mean temperature °K Radial location 

r/D Run no 1 Run no 10 Run no 11 

0.40 1520 1520 1530 

1.46 1540 1540 1560 

2.87 1590 1590 1600 

4.45 1680 1680 1690 

5.55 1740 1740 1760 

6.80 1430 1430 1430 

8.50 787 787 789 

Table 8.7-1 Influence of age-interval on mean temperature 

Table 8.7-1 reveals that the mean temperatures calculated 

from NA=20 and NA=10 are actually the same. However, further 

comparison for other quantities is needed befpre making any 

conclusion. 

Next, the influence of age-interval on the mean 

concentration of CHi», at X/D=60, is demonstrated in Table 

8.7-2. 
It is again evident that the mean concentration of 

methane calculated from NA=20 and NA=10 are actually the 

same, while those obtained from NA=6 only differ very slightly 

from the former ones. Thus, the attention is now turned to 
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Radial location 

r/D 

Mean CHi* molar fraction Radial location 

r/D Run no 1 Run no 10 Run no 11 

0.40 0.138 0.138 0.138 

1.46 0.126 0.126 0.126 

2.87 0.0962 0.0962 0.0962 

4.45 0.0502 0.0502 0.0499 

5.55 0.0165 0.0165 0.0156 

6.80 0.0015 0.0015 0.0012 

8.50 0.0 0.0 0.0 

Table 8.7-2 Influence of age-interval on mean CH«t 

molar fraction 

the rms fluctuation quantities.. 

The root, mean square fluctuation quantities 

The temperature fluctuations computed from Run Nos.l, 

10 and 11 are now compared and listed in Table 8.7-3. 

Radial Location 

r/D 

Temperature fluctuations Radial Location 

r/D Run No.l Run No.10 Run No.11 

0.40 181 181 147 

1.46 200 200 188 

2.87 255 255 211 

4.45 375 375 370 

5.55 475 475 455 

6.80 550 545 516 

8.50 510 509 504 

Table 8.7-3 Influence of age-interval on temperature 

fluctuations 
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The discrepancies between the results from Run No.10 

and Run No.11 are still significant, but further comparison 

between Run No.l and Run No.10 shows that grid independent 

results have been achieved. 

The effects of age-interval on the concentration 

fluctuation of methaneat X/D=60,are provided in Table 8.7-4. 

Table 8.7-4 reveals that the concentration fluctuations 

calculated from NA=10 (Run No.10) are actually grid-

independent. Therefore, ten intervals for the age-space are 

sufficient to yield grid-independent results. 

Radial Location 

r/D 

RMS fluctuations of OH* Radial Location 

r/D Run No.l Run No.10 Run No.11 

0.40 0.0464 0.0462 0.0366 

1.46 0.0468 0.0468 0.0417 

2.87 0.0455 0.0455 0.0417 

4.45 0.0360 0.0360 0.0341 

5.55 0.0256 0.0256 0.0245 

6.80 0.0037 0.0037 0.0034 

8.50 0.0 0.0 0.0 

Table 8.7-4 Influence of age-interval on rms fluctuation 

of CH«* concentration 
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The probability density functions 

Finally, the influence of the number of age-interval is 

shown in Fig.8.7-1. The difference between the pdf profiles 

from Run no 1 and Run no 10 is not visible and hence both 

of them collapse on the same distribution (indicated by the 

solid line). The results from Run no 11 are dif f erenrb' from 

the other two runs only in some part of the domain where the 

dash line appears (the dash line does not appear when it 

is coincident with the full line). 

8.7.2 The.number of cross-stream grids 

The influence of the number of cross-stream grids, N, 

will now be presented in a similar way to the preceding 

subsection. It should be mentioned here that the tabulated 

form is employed instead of the graphic form, because the 

values from each run are so close to each other that they are 

almost undistinguishable graphically. 

The turbulent mean quantities 

The mean temperature of methane-air flame calculated 

from N=20 (Run no l), 30 (Run no 12) and 40 (Run no.13) are 

presented in Table 8.7-5. The temperatures are obtained from 

the linear interpolation procedure if the positions of grid 

nodes (for the case of Run no 12 and Run no 13) do not fall 

exactly on the selected radial locations, which are taken 

for Run no 1. 

The discrepancies between the results from each run are 

small, except in the outer region of the jet (e.g. at r/D= 

8.50) where the temperature gradient is rather steep. 
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Radial location 

r/D 

Mean temperature °K Radial location 

r/D Run no 1 Run no 12 Run no 13 

0.40 1520 1540 1550 

1.46 1540 1560 1570 

2.87 1590 1600 1610 

4.45 1680 1680 1680 

5.55 1740 1730 1730 

6.80 1430 1460 1480 

8.50 787 870 880 

Table 8.7-5 Influence of cross-stream grids on the 

mean temperature 
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The influence of the cross-stream grids on the mean 

concentration of methane, at X/D=60, are presented in Table 

8.7-6. 

Radial location 

r/D 

Mean CIU molar fraction Radial location 

r/D Run no 1 Run no 12 Run no 13 

0.40 0.138 0.130 0.128 

1.46 0.126 0.119 0.117 

2.87 0.0962 0.0920 0.0904 

4.45 0.0502 0.0505 0.0492 

5.55 0.0165 0.0195 0.0201 

6.80 0.0015 0.0025 0.0030 

8.50 0.0 0.0 0.0 

Table 8.7-6 Influence of the cross-stream grids on the 

mean CHi» molar fraction 

It can be seen that the results obtained from the first 

run only differ slightly from the fine-grid computations. 

Therefore, twenty grid nodes in the cross-stream direction 

are practically sufficient to yield the grid independent 

results• 

The root mean square fluctuation quantities 

The temperature fluctuations computed by three different 

numbers of cross stream grids, for methane-air flame at 

x/D =60, are provided* in Table 8.7-7. The difference between 

each set of results is small, except in the outer region 

of the jet (e.g., at r/D=8.50) where some degree of 
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discrepancy exists. 

Radial location 

r/D 

Temperature fluctuation °K Radial location 

r/D Run no 1 Run no 12 Run no 13 

0.40 181 182 183 

1.46 200 199 200 

2.87 255 256 255 

4.45 375 375 374 

5. 55 475 461 471 

6.80 550 538 539 

8.50 510 515 520 

Table 8.7-7 Influence of cross-stream grids on temperature 

fluctuation 

Radial location 

r/D 

RMS fluctuation of OH* Radial location 

r/D Run no 1 Run no 12 Run no 13 

0.40 0.0464 0.0466 0.0466 

1.46 0.0468 0.0455 ' 0.0449 

2.87 0.0455 0.0441 0.0436 

4.45 0.0360 0.0357 0.0355 

5.55 . 0.0256 0.0263 0.0268 

6.80 0.0037 0.0072 0.0076 

8.50 0.0 0.0 0.0 

Table 8.7-8 Influence of cross-stream grids on rms 

fluctuation of CHi* concentration 
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The influence of cross-stream grids on the concentration 

fluctuation of methane is demonstrated by Table 8.7-8. It is 

noticeable that the results have not been significantly 

altered when more cross-stream grids are employed. 

The probability density functions 

Figure 8.7-2 shows the effect of cross-stream grids on 

the pdf of temperature. The difference between the pdfs from 

Run no 1 and those from Run no 12 is still visible in some 

parts of the domain (marked by the broken line), but no. 

further variation can be observed when the number of grids 

increased from 30 to 40. 

8.7.3 The size of forward marching step 

It is usually essential to employ small marching step 

in the present solution algorithm to produce accurate results, 

since no iteration procedure has been employed for the 

solution of hydrodynamic variables and mixture fraction. The 

number of marching steps in Run nos 1, 14,-15 and 16 to reach 

200 diameters downstream of the jet nozzle are equal to 500, 

240, 160 and 1000 respectively. The influence of marching step 

on various quantities are presented in the following 

paragraphs• 

The turbulent mean quantities 

The radial profiles of mean temperature from three runs 

are plotted in Fig.8.7-3 with the experimental data. 

Considerable discrepancies can be observed between each curve, 

indicating that the results calculated from larger marching 

steps, such as in Run nos 14 and 15, are not yet grid 
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independent. However, it has been recognized that the results 

remain unchanged if an even smaller marching step th'an that 

of Run no 1 (say, '43=0.005) is adopted in the computation. 

Fig. 8.7-4 presents the radial distribution of methane 

concentration calculated by different'marching steps. The 

profiles corresponding to the larger marching steps exhibit 

a steeper characteristic. 

The root mean square fluctuation quantities 

The influence of the number of marching steps on the 

temperature fluctuations, at X/D=60, is demonstrated in 

Fig.8.7-5. The spreading of the fluctuation profile is larger 

and closer to the measurements in the case of Run no 1, in 

which a small marching step is employed. 

The concentration fluctuations of methane calculated from 

each run are provided in Fig.8.7-6. The difference between 

each curve is visible for Run nos 1, 14 and 15, but it is 

again negligible for Run nos 1 and 16. 

The probability density functions 

Finally,.the influence of marching step on the pdf of 

temperature is plotted in Fig.8.7-7. The results obtained 

from Run no 14 are not presented here for the sake of clarity. 

It is evident that the pdfs computed from Run nos 1 and 16 

are coincident, indicating that the value of numerical factor 

A 3=0.01 is sufficient to produce grid independent results. 

8.8 Closure 

The parametric studies performed in the present chapter 

reveals that the fluctuation quantities and probability density 
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Fig.8.7-5 Influence of marching step on 
temperature fluctuation at X/D=60 

Fig.8.7-6 Influence of marching step on 
concentration fluctuation at X/D=60 
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functions are generally more sensitive to the presumptions 

made in the ESCIMO theory than the turbulent mean properties. 

It has been demonstrated that satisfactory agreement 

between the predictions and measurements can be achieved 

when proper values of various parameters are chosen, for 

both hydrogen-air flame and methane-air flame. The encouraging 

fact is that same set of parameters is capable of predicting 

the important phenomena for the turbulent combustion in the 

two different fuel-air reaction systems investigated. 

Nevertheless, the discrepancies between the theoretical 

calculations and the experimental data on the overlapping 

of reactants and the probability density functions of 

temperature do imply that the well known intermittency 

effects of turbulence have to be included more explicitly. 

Otherwise, more extreme values of some parameters (say, the 

stretching rate) need to be employed during the computation. 
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CHAPTER 9 

CONCLUSIONS 

9.1 Achievements of the present study 

The main achievements of the present study and the 

conclusions are summarized below. 

The Demographic Aspects of the "ESCIMO" Theory 

(a) The mathematical formulation for the governing partial 

differential equations of folds-population has been set 

up for the two-dimensional boundary layer flows. In 

addition to the turbulent convection and diffusion 

terms included in the equations, the source terms 

contain the simple-aging, birth rate and re-engulfment 

rate respectively. The age-coordinate is discretized into 

a number of intervals in the finite difference schemes 

which result in a set of equations, each one describing 

the population of folds belong to a particular age;rinterval. 

(b) The non-dimensional age and non-dimensional population 

distribution have been introduced and the finite 

difference equations have been transformed and expressed 

in terms of these variables. The upwind differencing in 

the non-dimensional age-coordinate is adopted to ensure 

the physical plausibility of the results. 

(c) The major hypothesis employed in the calculation of 

folds-population is the distribution of fold formation 

rate in the cross-stream direction. The total amount of 
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fold formation rate is however related to the entrainment 

rate through the proportion of fresh layer in newly 

formed folds. Various distributions have been made and 

their influence on the population distribution extensively 

investigated. The validity of each distribution can only 

be assessed indirectly (through the combined demographic 

and biographic analysis) in the present stage, since the 

direct experimental evidence is not available. 

The Combined Demographic and Biographic Analyses 

(a) The only variable needs to be solved in the biographic 

part is the mixture fraction, since the chemical reaction 

is relatively fast and the molecular diffusivities of 

all species are assumed to be equal. The resultant 

equation has been solved by the "profile method", because 

the computer time is only 25$ compared with that of 

"time-marching method". The accuracy of the profile 

method is satisfactory, -since the results calculated 

from the "time-marching method" virtually reproduced the 

same quantitative pictures. 

(b) The trajectories of the folds are supposed, in the present 

work, to be coincident with the constant-mixture fraction 

contours. The birth place of different folds is located 

with the aid of the age, which is related to the distance 

through the definition. The folds are subject to the 

stretching effect (caused by the turbulent flow) while 

they are moving downstream. The link between the demographic 

and biographic part of the theory has now been established 

in a self-consistent way. 
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(c) The turbulent reacting plane mixing layer is chosen as 

the first case to verify the credibility of the theory. 

Both the flow configuration and the chemical kinetics 

are simple enough to avoid the distraction. The predictions 

include the turbulent mean properties, the fluctuation 

intensities and the probability density functions. The 

quantitative agreement between the present computations 

and the measurements of Batt (1977) is generally fair. 

(d) The other two test cases are the turbulent hydrogen-air 

jet diffusion flame and methane-air jet diffusion flame. 

It has been shown from the comparison between the 

theoretical calculations and experimental data that most 

of the important features can be predicted. However, some 

quantitative discrepancies do appear in the mean 

compositions (say, fuel and oxygen) and temperature, pdf 

pf temperature, indicating that some improvements on the 

turbulence mo-del itself are still required. 

(e) The sensitivity analyses performed in this work have 

shown the influence of various presumptions, such as the 

distribution of fold formation rate, initial fold 

composition, fold size at birth and stretching rate, on 

the predictions. It is worth mentioning here that the 

same set of parameters and constants can produce 

reasonably good results for all cases considered. The 

successful performance in the computation of fluctuation 

quantities is of more importance to the development of 

present model, since the mean quantities can be fairly 

calculated from less sophisticated method as well. 
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(f) The main aim of this work is to use a new and more 

fundamental approach to tackle the conventional combustion 

problems. The increase of computations is the price to 

be paid off and it can be perceived that even larger 

computer time is required if the complex chemical-kinetics 

seheme is to be employed. But the number of equations to 

be solved in the biographic part only increases linearly 

with the number of species considered, which is still 

moderate in comparison with the moment closure method 

and pdf method. The fact that the computational amount 

in demographic part is not influenced by the chemistry 

•' scheme reveals another important feature of the "ESCIMO" 

theory. 

9.2 Suggestions for future work 

In order to make the present model more complete and 

applicable to complex-flow situations, the following steps 

need to be realised: 

(a) To include the intermittency effects in the turbulence 

model, so that the "ESCIMO" theory can be incorporated 

with a more realistic description of turbulence 

phenomena. It has been shown by the experimental 

evidence that, in the outer part of any turbulent mixing 

layer and jet, the fluid found by a fixed sampling probe 

is turbulent only for a proportion of time which 

diminishes -from 100 to 0% as the distance from the 

mid-region increases. 

A possible approach is to treat the "turbulent" and 
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"non-turbulent" portion as two separate phases. The 

mathematical treatments can then follow closely those 

of the real two-phase flows (Spalding, 1982). The 

interphase friction laws, interphase mass-transfer and 

interphase heat-transfer laws will need to be modified 

for this problem, based on the experimentally observed 

effective Prandtl number and the "form drag" associated 

with the movement of fluid parcels. 

An extra pressure term will be needed in the momentum 

equation of turbulent fluid (say, the first phase in the 

two-phase approach) to express the effect of turbulent 

separation. 

Another major outcome of this intermittency model is that 

the engulfment rate (related to entrainment rate) can be 

calculated now and hence the presumption concerning the 

distribution of fold formation rate is no more required. 

This consequence will further promote the physical reality 

of ESCIMO model and result in better quantitative 

agreement with the experimental data. 

The GENMIX2P computer code (Spalding,1981a) and PHOENICS 

code (Spalding,1981b) are both capable of performing the 

computational-task, since the mechanism of solving 

two-phase flows are already built in. 

(b) To apply the present theory to the flows of elliptic 

type, where the recirculation zone exists inside the flow 

domain. The tracing of the folds will become the major 

issue- in the development work, since the folds may come 

from all directions around the point being considered. 
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The first possible approach is to treat the recirculation 

zone separately, and to take into account of the folds 

which are created within a small distance only (e.g., the 

average radius of the recirculation zone). 

(c) To extend the present theory in three-dimensional 

combustion problems, such as the gas turbine combustors 

and internal combustion engines. It is necessary to devise 

an efficient solution procedure for these flow cases. The 

full biographic analysis needs to be employed (e.g., using 

the time-marching method), when the chemical reaction 

rate is moderate or slower than the turbulent mixing 

process. In order to economise the computational cast, 

some sacrifice will have to be made on the demographic 

side. For instance, the number of folds-group has to be 

reduced to the minimum allowable level (say, three or 

four groups). 

(d) To incorporate the pollutant formation schemes, such as 

those of nitrogen oxides, into the present theory. The 

chemical reaction mechanism of nitrogen oxides has been 

investigated and established by many researchers, the 

review paper of Bowman (1975) provided a good collection 

of information. The process of pollutant formation is 

kinetically controlled and the assumption of chemical 

equilibrium is not valid. 

(e) To perform the experimental work in simple turbulent 

shear flows, such as mixing layers and jets, in order 

to measure (or deduce) the fold formation rate and the 
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fold composition. A possible way is to measure the 

electrical conductivity (and hence the concentration 

ions) in the salt-water solution, in which the salt 

solution is injected into the water jet at various 

positions. 
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NOMENCLATURE 

SYMBOL MEANING LOCATION OF FIRST 
APPEARANCE 

a,b,c Coefficients of the Eqns.(3.2-16), 
general partial- (3.2-17) and 
differential equation (3.2-19) 

A Age of the fold (=time Eqn.(2.6-1) 
since formation) 

A,A* Non-dimensional age of Eqns.(3.4-1) and 
the fold (4.2-8) 

A* Non-dimensional age at Eqn.(4.6-1) 
the centre of the j-th 
age interval 

C Coefficients in the Eqn.(4.2-8) 
partial differential 
equation of the biographic 
analysis 

Ci,C 2 Empirical constants Eqn.(3.2-4) 
appearing in the transport 
equation for e 

Cp Empirical constant Eqn.(4.3-2) 
related to the fold 
composition at birth 

C Specific heat Eqn.(4.4-6) F 
C-o • (k m» Specific heat of species Eqns. (4.4-6) and P»j» p,mix j and the mixture (4.4-8) 

Cg Empirical constant Eqn.(4.3-9) 
related to the stretching 
rate 

C^ Empirical constant Eqn.(4.3-1) 
related to the fold size 
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Empirical constant in 
equation for the 
turbulent viscosity-

Source term of the 
general partial • 
differential equation 

Diameter of the jet 

Diffusion coefficient 

Mixture fraction 

Transformation function 
in equation for the non-
dimensional age 

Gravitational acceleration 

Rate of generation of 
the turbulent kinetic 
energy per unit volume 

Enthalpy 

Heat of combustion 
in fuel 

Index of the control 
volume in the cross-
stream direction 

Turbulence intermittency 
factor 

Index of the age-interval 
and variable domain 

Turbulent kinetic energy 
per unit volume 

Rate constants in 
forward and reverse 
chemical reaction 

Eqn.(3.2-6) 

Eqn.(3.2-21) 

Sec.7.4-2 

Eqn.(4.2-1) 

Eqn.(2.5-1) 

Eqn.(3.4-1) 

Eqn.(3.2-1) 

Eqn.(3.2-3) 

Eqn.(4.4-5) 

Eqn.(4.4-6) 

Sec.3.7 

Eqn.(6.8-1) 

Sec.3.5 

Sec.2.1 

Eqn.(6.3-9) 
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Ki,K2,K3 Constants in the Eqn.(4-4-9) 
equation of specific 
heat 

Equilibrium constant in Eqn.(6.3-10) 
chemical reaction 

1 Turbulence length scale Eqn.(4-3-2) 

m. Mass fraction of species j Eqn.(4-4-8) 

mgfin'j Mass flow rate per unit Eqn. (3.2-23) 
area 

M. Molar fraction of species j Sec.7.4-3 

N Number of grids in the Sec.3.7 
cross-stream direction 

NA Number of age-intervals Eqn.(6.3-8) 

N Number of grids in the Sec.6.3-1 
P 

fold biography analysis 

N^ Number of intervals in Eqn.(5-5-5) 
the equation of pdf 

NM1 Number of control volumes Fig.3.7-1 
in the cross-stream 
direction (=N-l) 

[ n o 2 ] , [ n 2 0 i » J Concentration of N0 2 and Eqn. (6.3-9) 
N 20* gas 

p Pressure Eqn.(4-4-7) 

P Population distribution Eqn.(3.3-1) 
function w.r.t. age 

P Non-dimensional population Eqn.(3.4-18) 
distribution function w.r.t. 
non-dimensional age 

~ ~ ** r* . . 

Pi,P 2 >P3, Values of P prevailing Eqns.(3.5-1) to 
at each age-interval (3.5-3) 
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Probability density 
function w.r.t. variable 
$ in a fold 

Population-average value 

<P 
Quantities related to the 
diffusion coefficient 

Radius 

Stretching rate 

Universal gas constant 

Stoichiometric ratio 

Linearised source terms 
of the general partial 
differential equation 

Time 

Temperature 

Mean axial velocity 

Axial velocity at the 
jet exit 

Root mean square value of 
of the fluctuation of U 

'Mean radial velocity 

Root mean square value 
of the fluctuation of v 

Molecular weight of 
species j 

Longitudinal distance 

Radial distance 

Distance across fold 

Fold thickness 

Z at the instant of 
fold formation 

Eqn.(5.5-1) 

Eqn.(5.5-2) 

Eqns.(3.7-7) 
(3.7-8) 

Eqn.(3.2-1) 

Eqn.(4.3-9) 

Eqn.(4.4-7) 

Eqn.(2.5-2) 

Eqn.(3.7-9) 

Eqn.(4.2-1) 

Eqn.(4.4-6) 

Eqn.(3.2-1) 

Eqn.(7.7-1) 

Sec.7.8.1 

Eqn.(3.2-1) 

Sec.7.4*1 

Eqn.(6.3*12) 

Eqn.(3.2-1) 

Eqn.(3.2-9) 

Eqn.(4.2-4) 

Eqn.(4.2-6) 

Eqn.(4.2-7) 



289 

GREEK SYMBOL MEANING 

a.,3.,T.,£. Coefficients in the 
calculation of TDMA 
procedure for the i-th 
grid node 

r^ Effective exchange 
coefficient for <J> 

A and 6 Indicate a finite-
difference 

e Dissipation rate of 
turbulent kinetic energy 
per unit volume 

r| Normalized distance 
across the fold 

rirj. Normalized distance 
across the mixing layer 
calculated from the 
temperature profile 

Ai»A2»A.3 Numerical factors in the 
calculation of forward 
marching step in x-
direction 

9 Normalized temperature 
across the mixing layer 

U Viscosity; subscript JL,t, 
e indicates laminar, 
turbulent or effective 
viscosity 

p Density 

I Summation 

LOCATION OF FIRST 
APPEARANCE 

Eqn.(3.7-10) 

Eqn.(3.2-8) 

Sees.3.5 and 3.7 

Sec.2.2 

Eqn.(4.2-5) 

Eqn.(6.4-1) 

Sec.6.3.1 

Sec.6.5 

Sec.3.2 

Eqn.(3.2-1) 

Eqn.(4.4-8) 
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x Time scale Sec.6.8 

<t> General variable Eqn. (3.2-8) 

ip Stream function Eqn. (3.2-9) 
(=/^rpudy) 

2»?3 Arguments in the Eqn. (4. 5-1) 
sinusoidal profile 
of mixture fraction 

a) Normalized stream function Eqn. (3.2-10) 

SUBSCRIPTS MEANING 

b Birth place of the fold 

c Centre of the finite 
difference cell 

D Downstream neighbouring 
cell 

e At the nozzle exit of jet 

eff Effective quantity 

E External, boundary of the 
computational, domain 

fu Fuel 

I Internal boundary of the 
computational domain 

i,j Indicates location on the 
finite-difference cell 

in Inert species 

X Laminar quantity 

max Maximum 

min Minimum 

o Reference value 
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ox Oxygen 

P Potential flow 

pr Products 

00 

u 

t 

St Stoichiometric point 

Turbulent quantity 

Upstream neighbouring cell 

Value in the free stream 

1,2 Reference values 

SUPERSCRIPTS MEANING 

Fluctuating component of 
a property 

Per unit area 

Per unit time 

Population-average value, or 
time average value 

Fold average value 

Time average value including 
the intermittency factor 
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APPENDIX A 

Flow chart of the computer program 
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Problem Main Computation Physics 

START 

Block Data 

Output 

1 MAIN 

2 Grid 

3 Variables 

4 Properties 
5 Starting 

6 S t e p . control 
7 Boundary 

8 Advance 

9 Complete 

LO Adjust 

LI Print 
L2 Decide 

Comp -init 

Comp -grid 
Comp-solve 

Comp-
distan 

Demo- democ 

Demo- demos 

Biog-bioc 

Biog -bios 

pdf 

Phys 

Wall 

STOP 

Flow chart of the computer program 
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APPENDIX B 

Computer Listing for the calculation 

of H 2-Air Flame 
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COMMON/COMA/ 

1 A D P E I ( 6 0 ) , B I G , B O M ( 6 0 ) , C S A L F A , D I F ( 6 0 ) , D I F U ( 6 0 ) , D P , D X , D X L A S T , 
2 E M U ( 6 0 ) R F ( 6 0 , 2 9 ) F I B E X ( 2 9 ) F I B I N ( 2 9 ) , I D I M F , I F I N , I S T E P , I T E S T , J , 
3 J U S T E X , J U S T I N , K E X , K I N , K R A D , K S O U R C , M O M S O U , N , N E W P R , N F , N M 1 , N M 2 , 
4 N M 3 , N O V E L , O M ( 6 0 ) , O M I N T ( 6 0 ) , P E I , P S I E , P S I I , R ( 6 0 ) , R E C R U ( 6 0 ) , 
5 R E C Y D F ( 6 0 ) , R H O ( 6 0 ) , R J T O T E ( 2 9 ) , R J T O T I ( 2 9 ) , R M E , R M I , S I ( 6 0 ) , S I P ( 6 0 ) , 
6 T A U E , T A U I , T I N Y , U ( 6 0 ) , X D , X U , Y ( 6 0 ) , Y E , Y I , A I ( 6 0 ) , B 1 ( 6 0 ) , 
7 P E E , F P ( 6 0 , 2 9 ) 

COMMON/COMA/ 

1 A D P E I ( 6 0 ) , B I G , B O M ( 6 0 ) , C S A L F A , D I F ( 6 0 ) , D I F U ( 6 0 ) , D P , D X , D X L A S T , 
2 E M U ( 6 0 ) , F ( 1 7 4 0 ) , I B E X ( 2 9 ) , I B I N ( 2 9 ) , I D I M F , I F I N , I S T E P , I T E S T , J , 
3 J U S T E X , J U S T I N , K E X , K I N , K R A D , K S O U R C , M O M S O U , N , N E W P R , N F , N M 1 , N M 2 , 
4 N M 3 , N O V E L , O M ( 6 0 ) , O M I N T ( 6 0 ) , P E I , P S I E , P S I I , R ( 6 0 ) , R E C R U ( 6 0 ) , 
5 R E C Y D F ( 6 0 ) , R H O ( 6 0 ) , R J T O T E ( 2 9 ) , R J T O T I ( 2 9 ) , R M E , R M I , S I ( 6 0 ) , S I P ( 6 0 ) , 
6 T A U E , T A U I , T I N Y , U ( 6 0 ) , X D , X U , Y ( 6 0 ) , Y E , Y I , A 1 ( 6 0 ) , B 1 ( 6 0 ) , 
7 P E E , F P ( 1 7 4 0 ) 
C O M M O N / C O M B / 

1 A K , A G R A V , A H E X , A H I N , A R R C O N , A U E X , B H E X , B H I N , B U E X , 
2 C D , C E B U , C H E X , C H I N , C M U , C M U C D , C U E X , C L M O D 4 , 
2 C F U ( 6 0 ) , C M I X ( 6 0 ) , C O X ( 6 0 ) , C P R ( 6 0 ) , C N 2 ( 6 0 ) , C H 2 O ( 6 0 ) , 
2 A F U 1 , A F U 2 , A F U 3 , A O X L , A O X 2 , A O X 3 , A N 2 1 , A N 2 2 , A N 2 3 , A H 2 0 1 , A H 2 0 2 , 
3 C 1 M O D 5 , C 2 M 0 D 4 , C 2 M 0 D 5 , D A 1 , D A 2 , D I S S K ( 6 0 ) , D P D X , D X I N C , D X M A X , 
4 D X P S I , D X R A T , D X R E , D X Y , E L E X P , E N T H A , E N T H B , E N T H C , E N T H D , 
4 E L C O N , E L C O N 0 ( 4 ) , E L C O N K ( 8 ) , 
5 E W A L L , F A C E , F A C E X P , F A C I , F J K A , F J K D , F J 2 A , F J 2 D , F L O B , F L O C , F R , 
6 F R A , F U A , F U B , F U C , F U D , G A M M A , G A S C O N , G E N K ( 6 0 ) , H , H D I V , H E X 0 , H F U , 
7 H I N 0 , I L P L O T , I N E R T , I R U N , I T P L O T , J E L , J F , J H , J K , J O X , J P , J P R , J T E , 
8 J 2 , K A S E , K I N D , K U D I F , L A S T E P , L E N G T H , M O D E L , M O D 4 C 1 , N P L O T , 
9 N P R O F , N S T A T , O M P O W , O X A , O X B , O X C , O X D , P E I L I M , P H I A , P H I B , P H I C , 
1 P H I D , P R E E X P , P R E S S , P R L ( 2 9 ) , P R L A M , P R T U R B , R A T E , R A T I , R E C P R L ( 2 9 ) , 
2 R E C P R T ( 2 9 ) , R E Y , S I G K , S I G 2 , S T O I C H , T A , T A U D K , T B , T C , T D , T W A L L , U A , 
3 U B , U B A R , U C , U D , U D I F , U E X 0 , U F A C , U F L U X , U L I M , V I S F U , V I S M I X , V I S O X , 
4 V I S P R , W A L C O N , W F U , W M I X , W O X , W P R , X E N D , X H E X 0 , X H I N 0 , X O U T , X U E X 0 , 
5 X U L A S T , Y R E F 1 , Y R E F 2 , U R E F , 
6 J A 1 , J A 2 , J A 3 , J A 4 , J A 5 , J A 6 , J A 7 , J A 8 , J A 9 , J A 1 0 , J A L , U M I N , U M A X , 
7 J A 1 1 , J A 1 2 , J A 1 3 , J A 1 4 , J A 1 5 , J A 1 6 , J A 1 7 , J A 1 8 , J A 1 9 , J A 2 0 
C O M M O N / D E M I / 

1 A G E ( 2 1 ) , A G E C ( 2 0 ) , D A G E ( 2 0 ) , R E C D A ( 2 0 ) , N A G E , N A G E P 1 , M O D F O R , 
2 F O L M 0 , P E I N E W , R E C X D , U M X X D , X D U M X , D U D Y B ( 6 0 ) , P A 0 ( 6 0 ) , P A ( 6 0 , 2 0 ) , 
3 J A 1 M 1 , J A 1 P 1 , E N T R ( 6 0 ) , A R R A Y (20,8), 
4 A V T E M ( 6 0 ) , D T S T , X M 0 ( 6 0 ) , I B I O , F S T O I C , S I W ( 6 0 ) , S I P W ( 6 0 ) , A V O X ( 6 0 ) , 
5 I N D E X ( 3 0 1 0 ) , X P ( 3 0 1 0 ) , R A T E A 1 ( 6 0 ) , R A T E A 2 ( 6 0 ) , T E M A V ( 6 0 ) , 
6 A V R A T 1 ( 6 0 ) , A V R A T 2 ( 6 0 ) , R B U R N ( 6 0 ) , F U A V ( 6 0 ) , A V F U ( 6 0 ) , O X A V ( 6 0 ) , 
7 F N 2 ( 6 0 ) , F H 2 0 ( 6 0 ) , F M F U ( 6 0 ) , F M O X ( 6 0 ) , F M N 2 ( 6 0 ) , F M H 2 O ( 6 0 ) , W N 2 , 
8 W H 2 0 , F S R ( 6 0 ) , F U M ( 6 0 ) , O X M ( 6 0 ) , E N T H F O ( 6 0 ) , T E M M ( 6 0 ) , T F L U ( 6 0 ) , 
9 O X F L U ( 6 0 ) , F U F L U ( 6 0 ) , T E M A V S ( 6 0 ) , A V T E M S ( 6 0 ) , 
1 F U A V S ( 6 0 ) , A V F U S ( 6 0 ) , O X A V S ( 6 0 ) , A V O X S ( 6 0 ) , 
2 P H I ( 6 0 ) , P H I B V ( 6 0 ) , P D F 1 ( 6 0 ) , P D F I T ( 6 0 ) , P D F I T A ( 6 0 ) , 
3 P H I B V A ( 6 0 ) , A V P F A ( 6 0 , 6 0 ) , A V P D F ( 6 0 , 6 0 ) , S U M P D F ( 6 0 ) , 
4 I P D F , I S T A G E , O M A ( 6 0 ) , T E M L , T E M R , F U L , F U R , O X L , O X R , 
5 F 1 , F 2 , F A M P , P H I L , P H I R , N D I F O M , N P D F , N P D F M 1 , P H I D I F , 
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6 OMLEFT,OMRIGT,DDE LAJ , P H I M A X , P H I M I N , E M I X , 

7 F F I A V S ( 6 0 ) , A V F F I S ( 6 0 ) , F R F L U ( 6 0 ) , F M A X ( 6 0 ) , 

8 E M P C 1 , E M P C 2 , E M P C 3 , F V A L ( 6 0 ) f P O P A G E ( 6 0 ) 

COMMON/DEM2/ 

1 C C 0 2 ( 6 0 ) , A C 0 2 1 , A C 0 2 2 , A C 0 2 3 , F C 0 2 ( 6 0 ) , F M C O 2 ( 6 0 ) , W C 0 2 , 

2 P R O L , P R O R , P R O M ( 2 0 ) , P R A V ( 6 0 ) , A V P R ( 6 0 ) , P R A V S ( 6 0 ) , 

3 A V P R S ( 6 0 ) f P R F L U ( 6 0 ) , P R F L U M ( 6 0 ) 

INTEGER SEARCH 

BLOCK DATA 

C / F E B . 1 9 7 7 G E N M I X COPYRIGHT, D . B . S P A L D I N G 

C "GENMIX , A GENERAL COMPUTER PROGRAM FOR TWO-DIMENSIONAL 

C PARABOLIC PHENOMENA" r BY D . B . SPALDING 

C REPORT NO. H T S / 7 7 / 9 , FEBRUARY 1 9 7 7 , 

C IMPER IAL COLLEGE, MECHANICAL ENGINEERING DEPARTMENT, LONDON,SW72BX 

C 

C APPENDIX A (BAS IC PROGRAM) - COMBUSTION OF METHANE AND A I R IN 

C A DIVERGENT DUCT EXHAUSTING INTO THE ATMOSPHERE. 

C 

CHAPTER 1 1 1 1 1 1 1 1 P R E L I M I N A R I E S 1 1 1 1 1 1 1 1 

$INCLUDE 9 , C O M A l . F T N 

$INCLUDE 9 ,COMB.FTN 

C 

C / I = T A 1 4 1 1 RECFJK ADDED, F ( I , J K ) MADE ABS I N PHYS DO 151 LOOP. 

C / I = T A 0 2 1 1 / P = O P L 77 9A/UN=UMEMH 0 2 . 

C 0 2 . 1 1 . 7 8 REPLACE ALMG BY ELCON0, REPLACE ELCOND BY ELCONK 

C 2 4 . 1 0 . 7 8 GENERAL CORRECTIONS 

C 2 9 . 8 . 7 8 NEW VERSION INTRODUCING LENGTH AND DELETING KONFIG 

C / S E P T . 1 9 7 7 — GENMIX-T, H T S / 7 7 / 9 , APPXA — COPYRIGHT, D . B . S P A L D I N G 

C GENMIX-T, TURBULENCE MODELS TEACHING PROGRAM, 

C WITH CHEMICAL REACTION . 

C BASED ON APPENDIX A OF THE HTS REPORT NO. H T S / 7 7 / 9 . 

C 

C / S E P T . 1 9 8 1 — THE ESCIMO MODEL OF TURBULENT COMBUSTION 

C I S INCORPORATED INTO THE GENMIX-T PROGRAM. 

C THE NEW SUBROUTINES ARE CALLED DEMO,BIOG AND PDF . 

C CONFIGURATION INDEX 

C KASE =0 STANDARD GENMIX , APPENDIX A . 

C 1 P I P E OR CHANNEL 

C 2 M IX ING LAYER 

C 3 PLANE JET 

C 4 AXI-SYMMETRICAL (ROUND) J E T 

C 5 RADIAL (FAN) J E T 

C 6 PLANE PLUME 

C 7 AXI-SYMMETRICAL (ROUND) PLUME 

C 

C I N I T I A L I S E DATA 

DATA K U D I F / - 1 / 

C 

DATA K A S E , I R U N / 4 , 0 / 

DATA I T E S T / 1 / 

DATA B I G , T I N Y / 1 . E 2 0 , 1 . E - 1 0 / 
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C 

C 

CHAPTER 2 2 2 2 2 2 2 G R I D AND GEOMETRY 2 2 2 2 2 2 2 2 

C G R I D 

DATA N,OMPOW/2 0 , 2 . 0 / 

C SET I D I M F = DIMENSION FOR I , ENSURE THAT I D I M F . G E . N 

DATA I D I M F / 6 0 / 

C SET KRAD=1 FOR PLANE, 2 FOR A X I A L , 3 FOR POINT SYMMETRY 

DATA K R A D , C S A L F A / 2 , 1 . / 

C GEOMETRY 

DATA H I N 0 , X H I N 0 , A H I N , B H I N , C H I N / 0 . 0 , 4 * 0 . / 

DATA H E X 0 , X H E X 0 , A H E X , B H E X , C H E X / 0 . 0 0 3 8 1 , 4 * 0 . / 

DATA H D I V / 0 . 0 0 2 / 

DATA X U , X E N D , X O U T / 3 * 0 . 0 / 

DATA L A S T E P , X U L A S T / 1 0 0 0 , 0 . 6 0 9 6 / 

C FOR K I N D = 3 , XU, XHEX0 AND XHIN0 = . 2 5 (MAIN C H . 2 ) 

C 

C 

CHAPTER 3 3 3 3 3 3 3 DEPENDENT VARIABLES 3 3 3 3 3 3 3 

C SET NF= NUMBER OF DEPENDENT VAR IABLES , EXCLUDING VELOCITY 

DATA N F / 1 5 / , J P , J K , J 2 , J A 1 , J A 2 , J A 3 , J A 4 , J A 5 , J A 6 , J A 7 , J A 8 , 

2 J A 9 , J A 1 0 , J H , J F , J E L , J O X , J T E , J P R / 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 , 1 1 , 1 2 , 1 3 , 

3 1 4 , 1 5 , 1 6 , 1 7 , 1 8 , 1 9 / 

C SET NOVEL= l FOR NO VELOC ITY , NOVEL=2 OTHERWISE 

DATA N O V E L / 2 / 

C 

C 

CHAPTER 4 4 4 4 4 4 4 4 PROPERTY DATA 4 4 4 4 4 4 4 4 

C S . I . UNITS 

DATA A G R A V , G A S C O N / 9 . 8 , 8 3 1 4 . / 

C SET MODEL=l FOR LAMINAR FLOW, 

C SET MODEL=2 FOR "MIX ING-LENGTH" MODEL OF TURBULENCE 

C SET TURBULENCE MODEL 

C MODEL=l LAMINAR 

C 2 M IX ING LENGTH, 

C LENGTH=1 STANDARD GENMIX 

C =2 N IKURADSE"S LENGTH SCALE 

C =3 UNIFORM LENGTH SCALE 

C 3 PRANDTL(ENERGY) 

C 4 KOLMOGOROV (ENERGY-FREQUENCY) , 

C M O D 4 C l = l C I FROM MIX ING-LAYER RULE 

C 2 C I FROM NO-DIFFUS ION RULE 

C 3 C I AND C2 ARE S A I Y " S VALUES 

C 5 HARLOW (ENERGY-D ISS IPAT ION) 

DATA M O D E L , L E N G T H / 5 , 1 / 

DATA M O D 4 C 1 / 1 / 

DATA A K , F R , C E B U , E W A L L / . 4 3 5 , . 0 3 3 , . 4 , 9 . / 

DATA T A U D K , S I G K , E L E X P , S I G 2 / . 3 , 1 . , 2 . 3 8 , 1 . 3 1 4 / 

C S I G 2 MAY BE RECOMPUTED IN C H . 4 OF MAIN F 4 AND 5 

C 

C — MIXING-LENGTH CONSTANT FOR KASE=0 , STANDARD GENMIX 
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C I N I T I A L VALUE WITHIN DUCT 

DATA E L C O N / . 0 9 / 

C VALUES FOR FREE BOUNDARY OUTSIDE DUCT, SET IN MAIN , C H . 7 

C THESE VALUES DEPEND ON CONFIGURATION, INDEX I S KIND 

DATA E L C O N 0 / . 0 7 5 , . 1 , . 1 4 , . 0 7 5 / 

C 

C — MIXING-LENGTH CONSTANT FOR OTHER KASES, INDEX I S KASE 

C — SET IN MAIN , C H . 4 

DATA E L C O N K / . 1 4 , . 1 1 , . 2 5 1 , . 1 9 8 5 , . 3 5 1 4 , . 1 9 8 5 , . 2 5 1 , . 0 9 / 

C 

C SET INERT=1 FOR INERT F L U I D , INERT=2 FOR CHEMICALLY REACTIVE 

DATA I N E R T / 2 / 

C MATERIALS 

C THERMODYNAMIC 

DATA A F U 1 , A F U 2 / 1 3 8 4 9 . , 1 . 6 9 4 5 2 / 

DATA A O X 1 , A O X 2 , A O X 3 / 1 0 8 1 . 3 , 0 . 0 3 3 7 3 , - 2 . 4 5 4 2 E 7 / 

DATA A N 2 1 , A N 2 2 , A N 2 3 / 1 0 2 1 . 3 , 0 . 1 3 4 6 , - 1 . 7 9 E 6 / 

DATA A H 2 0 1 , A H 2 0 2 / 1 6 9 8 . 0 6 , 0 . 5 7 2 / 

DATA W F U , W O X , W P R , W M I X / 2 . , 3 2 . , 2 8 . , 2 9 . / 

DATA W N 2 , W H 2 0 / 2 8 . , 1 8 . / 

DATA H F U / 1 • 2 0 6 E 8 / 

C CHEMICAL 

DATA STOICH ,ARRC ON,PRE E X P / 8 . , 8 . E 3 , 1 . / 

C TRANSPORT 

DATA V I S F U , V I S O X , V I S P R , V I S M I X / 4 * 1 • E - 6 / 

DATA P R L A M , P R T U R B / 0 . 7 , 0 . 9 / 

DATA H , U F A C / . 9 , . 0 1 / 

C 

C 

CHAPTER 5 5 5 5 5 5 5 STARTING VALUES 5 5 5 5 5 5 5 5 

DATA P R E S S / 1 . E 5 / 

C STREAM B I S PURE FUEL 

DATA U B , T B , F U B , O X B / 1 5 1 . , 3 0 0 . , 1 . , 0 . / 

C STREAM C I S A I R 

DATA U C , T C , F U C , O X C / 1 5 1 . , 3 0 0 . , 1 . , 0 . / 

C SET-KEX AND KIN FOR I N I T I A L BOUNDARY TYPE , 

C 1 FOR WALL, 2 FOR FREE BOUNDARY, 3 FOR SYMMETRY A X I S 

DATA K E X , K I N / 2 , 3 / 
C 

C 

CHAPTER 6 6 6 6 6 6 6 6 STEP CONTROL 6 6 6 6 6 6 6 6 6 

DATA F R A , D X M A X , D X R A T / 1 . , 1 . , 5 . / 

C ENTRAINMENT CONTROL 

DATA U L I M , P E I L I M , F A C E X P / . 0 5 , . 0 1 , . 5 / 

C STARTING VALUES 

DATA F A C E , F A C I , R A T E , R A T I / 4 * 1 . / 

C 

C 

CHAPTER 7 7 7 7 7 7 7 7 BOUNDARY CONDITIONS 7 7 7 7 7 7 

C STREAM A , THROUGH CENTRAL P IPE 
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DATA U A , T A , F U A , O X A / 1 5 1 . , 3 0 0 . , 1 . , 0 . / 

C STREAM D , SURROUNDING ATMOSPHERE 

DATA T D , F U D , O X D / 3 0 0 . , 0 . , 0 . 2 3 2 / 

C UD I S SUPPL IED BY WAY OF THE UEX FUNCTION 

C VELOCITY ALONG OUTER BOUNDARY 

DATA U E X 0 , X U E X 0 , A U E X , B U E X , C U E X / 1 5 . 1 , 4 * 0 . / 

C WALL TEMPERATURE OF OUTER TUBE 

DATA TWALL/299 . / 

C 

C 

CHAPTER 11 11 11 11 11 11 11 11 11 11 PRINT 11 11 11 11 11 11 

C SET ILPLOT=2 FOR DOWN-STREAM PLOT, =1 FOR NO PLOT 

C SET ITPLOT=2 FOR CROSS-STREAM PLOT, =1 FOR NO PLOT 

DATA I L P L O T , I T P L O T / 2 , 2 / 

C SET NSTAT, NPROF, NPLOT TO NUMBER OF STEPS BETWEEN OUTPUT OF 

C STATION VALUES, PROF ILES AND CROSS-STREAM PLOTS RESPECTIVELY 

DATA N S T A T , N P R O F , N P L O T / 1 2 , 1 2 , 1 0 0 0 0 / 

C AFTER XU=XOUT, NSTAT AND NPROF ARE SET =24 AT MAIN , C H . l l 

C INPUT RELATED TO ESCIMO MODEL 

DATA N A G E , N A G E P I , J A 1 , J A L , F O L M 0 / 1 0 , 1 1 , 4 , 1 3 , 0 . 5 / 

DATA U M A X , U M I N / 1 5 1 . , 1 5 . 1 / 

DATA X M 0 / 6 0 * 0 • 5 / 

DATA F / 1 7 4 0 * 0 . / , P A 0 , P A / 1 2 6 0 * 0 . / , D U D Y B / 6 0 * l . E - 6 / 

DATA MODFOR/3 / 

DATA A G E / 0 . , . 0 5 , . 1 , . 1 5 , . 2 , . 3 , . 4 , . 5 , . 6 5 , . 8 , 1 . / 

DATA I B I O , F S T O I C / l , 0 . 0 2 8 2 / 

DATA E M P C 1 , E M P C 2 , E M P C 3 / 2 . , 2 . , 0 . 5 / 

DATA I P D F / 1 / 

DATA N P D F / 1 1 / 

END 
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PROGRAM MAIN 

C / S E P T . 1 9 7 7 — GENMIX-T, H T S / 7 7 / 9 , APPXA — COPYRIGHT, D . B . S P A L D I N G — 

CHAPTER 1 1 1 1 1 1 1 1 P R E L I M I N A R I E S 1 1 1 1 1 1 1 1 

$ INCLUDE 9 ,C0MA1 .FTN 

$INCLUDE 9 ,COMB.FTN 

C 

C 

C FUNCTIONS FOR BOUNDARY CONDITIONS 

HEX(X )=HEX0+X* (AHEX+X* (BHEX+X*CHEX) ) 

H I N ( X ) = H I N 0 + X * ( A H I N + X * ( B H I N + X * C H I N ) ) 

UEX(X )=UEX0+X* (AUEX+X* (BUEX+X*CUEX) ) 

C 

C 

CHAPTER 2 2 2 2 2 2 2 G R I D AND GEOMETRY 2 2 2 2 2 2 2 2 

C SEE DATA 

C K IND I S AN INDEX WHICH DENOTES A PARTICULAR GEOMETRY TYPE 

KIND=4 

I F ( K R A D . E Q . l ) K IND=2 

I F ( K R A D . E Q . 2 . A N D . C S A L F A . E Q . 1 . ) K IND=1 

I F ( K R A D . E Q . 2 . A N D . C S A L F A . E Q . 0 . ) K IND=3 

C MODIF ICAT IONS TO DATA 

I F ( K I N D . N E . 3 ) GO TO 21 

X U = . 2 5 

X H E X 0 = . 2 5 

X H I N 0 = . 2 5 

21 CONTINUE 

C 

S N A L F A = S Q R T ( 1 . - C S A L F A * * 2 ) 

C STARTING VALUES 

I E N D = I F I X ( X E N D * 1 . E 6 ) 

I O U T = I F I X ( X O U T * l . E 6 ) 

C SUBROUTINE COMPUTE, ENTRY I N I T 

CALL I N I T 

C . G R I D 

DO 20 1 = 1 , N 

20 OM ( I ) = (FLOAT ( 1 - 1 ) / F L O A T (NM1) ) **OMPOW 

C 

C SUBROUTINE COMPUTE, ENTRY G R I D 

CALL G R I D 

C 

C 
CHAPTER 3 3 3 3 3 3 3 DEPENDENT VARIABLES 3 3 3 3 3 3 3 
C SEE DATA 

C U ( I ) = VELOCITY 

C F ( I , J H ) = STAGNATION ENTHALPY 

C F ( I , J P ) = P H I = OXIDANT CONCENTRATION - F ( I , J F ) * S T O I C H 

C F ( I , J A 1 ) F ( I , J A L ) = FOLD POPULATIONS 

C F ( I , J F ) = FUEL CONCENTRATION 

C F ( I , J O X ) = OXIDANT CONCENTRATION 

C F ( I , J T E ) = TEMPERATURE 

C F ( I , J P R ) = PRODUCT CONCENTRATION 
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C F ( I , J K ) = K I N E T I C ENERGY OF TURBULENCE 

C F ( I , J 2 ) = FREQUENCY= D I S S I P A T I O N RATE/ (DENS ITY*ENERGY) FOR MODEL 4 

C OR = EPS ILON= D I S S I P A T I O N RATE/DENSITY FOR MODEL 5 

C F ( I f J E L ) = TURBULENCE LENGTH SCALE 

C 

C 

CHAPTER 4 4 4 4 4 4 4 4 PROPERTY DATA 4 4 4 4 4 4 4 4 

C SEE DATA 

C I F ( M O D E L . L E . 2 ) NF=JAL+1 

C I F ( M O D E L . E Q . 3 ) NF=JAL+2 

C I F ( M O D E L . G T . 3 ) NF=JAL+3 

RECWFU=1. /WFU 

RECWOX= l . /WOX 

RECWPR=1 . /WPR 

RECWMX=1. /WMIX 

DO 40 J = 1 , N F 

P R L ( J ) = P R L A M 

R E C P R L ( J ) = 1 . / P R L A M 

40 R E C P R T ( J ) = 1 • / P R T U R B 

DO 401 1 = 1 , N 

CFU( I )=AFU1+AFU2*TA 

C O X ( I ) = A 0 X 1 + A 0 X 2 * T B + A 0 X 3 / ( T B * * 2 ) 

CN2 ( I ) =AN21+AN22*TC 

CPR ( I ) =CN2 ( I ) 

401 C H 2 0 ( I ) = A H 2 0 1 + A H 2 0 2 * T C 

GAMMA=CFU(1 ) / (CFU(1 )-GASCON*RECWMX) 

C 

CMU=SQRT(TAUDK) 

CD=TAUDK*CMU 

CMUCD=CMU*CD 

C LATER MODIFY CMU AND CMUCD FOR KASE 4 TO F I T ROUND JET DATA 

WALCON=CD/AK 

R E C P R T ( J K ) = 1 . / S I G K 

I F ( M O D E L . L T . 3 ) GO TO 44 

C MODELS 4 AND 5 

C 2 M O D 5 = l . 5 + 1 . / E L E X P 

C1M0D5=C2M0D5-AK**2*TAUDK/ (CMUCD*S IG2) 

I F ( M O D E L . E Q . 5 ) GO TO 42 

C MODEL 4 (3 VERS IONS ) 

C2MOD4=C2MOD5—1• 

C C I FROM MIX ING-LAYER RULE 

I F ( M O D 4 C 1 . E Q . 1 ) C lMOD4=ClMOD5*C2MOD4/C2MOD5 

C C I FROM THE NO-DIFFUS ION RULE 

I F ( M O D 4 C 1 • E Q . 2 ) C1M0D4=C1M0D5-1. 

C C I AND C2 ARE S A I Y " S VALUES 

I F ( M O D 4 C 1 • N E • 3 ) GO TO 41 

C1MOD4=0 •47 

C 2 M O D 4 = l • 0 0 

C MODELS 4 AND 5 , S I G 2 FROM THE NEAR-WALL RULE 

41 S IG2=AK* *2 / (TAUDK* (C2MOD4-C1MOD4 ) ) 

GO TO 43 
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42 S IG2=AK**2 / (TAUDK* (C2MOD5-C1MOD5 ) ) 

43 R E C P R T ( J 2 ) = 1 . / S I G 2 

44 CONTINUE 

C 

C 

CHAPTER 5 5 5 5 5 5 5 STARTING VALUES 5 5 5 5 5 5 5 5 

C SEE DATA 

WB=1 . / (FUB*RECWFU+OXB*RECWOX+(1 .-FUB-OXB)*RECWPR) 

RHOB=PRESS*WB/(TB*GASCON) 

WC=1. / (FUC*RECWFU+OXC *RECWOX+(1 .-FUC-OXC)*RECWPR) 

RHOC=PRESS*WC/(TC*GASCON) 

FLOB=RHOB*UB* (HD IV-H IN0 ) 

FLOC=RHOC*UC*(HEX0-HDIV) 

I F ( K R A D . E Q . l ) GO TO 55 

XSIN=XU*SNALFA 

HCOS= .5*CSALFA 

F L O B = F L O B * ( X S I N + H C O S * ( H D I V + H I N 0 ) ) 

FLOC=FLOC* (XS IN+HCOS* (HEX0+HDIV ) ) 

55 CONTINUE 

OMDIV=FLOB/ (FLOB+FLOC+TINY) 

T M I N = . 5 * A M I N 1 ( T A , T B , T C , T D , T W A L L ) 

C SEQUENCE-TO PUT CELL BOUNDARY AT OMDIV. 

I F ( O M D I V . L E . 1 . E — 1 0 • O R . O M D I V . G E • ( 1 . — 1 . E — 1 0 ) ) GO TO 53 

DO 52 I = 3 , N M 1 

I F ( O M I N T ( I ) — O M D I V ) 5 2 , 5 3 , 5 7 

57 I D I V = I + 1 

GO TO 58 

52 CONTINUE 

58 FAC=OMDIV /OMINT( ID IV—1) 

DO 59 1 = 2 , I D I V 

59 O M ( I ) = O M ( I ) * F A C 

C SUBROUTINE COMPUTE, ENTRY G R I D 

CALL G R I D 

53 CONTINUE 

C — INSERTION INTO ARRAYS 

E N T H B = T B * ( C F U ( 1 ) * F U B + C O X ( 1 ) * O X B + C P R ( 1 ) * ( 1 . - F U B - O X B ) ) + 

1 •5*UB**2+HFU*FUB 

E N T H C = T C * ( C F U ( 1 ) * F U C + C O X ( 1 ) * O X C + C P R ( 1 ) * ( 1 . - F U C - O X C ) ) + 

1 «5*UC**2+HFU*FUC 

PHIB=OXB-FUB*STOICH 

PHIC=OXC-FUC*STOICH 

DO 501 1 = 1 , N 

I F ( O M ( I ) . G T . O M D I V ) GO TO 503 

U ( I ) = U B 

F ( I , J H ) = E N T H B 

F ( I , J P ) = P H I B 

F ( I , J F ) = F U B 

GO TO 501 

503 U ( I ) = U C 

F ( I , J H ) = E N T H C 

F ( I , J P ) = P H I C : 
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F ( I F J F ) = F U C 
501 F ( I , J A 1 ) = 1 . / ( A G E ( 2 ) - A G E ( 1 ) ) 

DO 5 0 2 1 = 1 , N M 1 
F ( I , J K ) = 0 • 0 3 * U B * * 2 

5 0 2 F ( I , J 2 ) = C D * F ( I , J K ) * S Q R T ( F ( I , J K ) ) / ( . 0 3 * H E X 0 ) 
F ( N , J K ) = 0 . 1 
F ( N , J 2 ) = C D * F ( N , J K ) * S Q R T ( F ( N , J K ) ) / ( . 0 3 * H E X 0 ) 
D O 5 0 4 1 = 1 , N 
D I S S K ( I ) = 0 . 

504 G E N K ( I ) = 0 . 
C — I N I T I A L V A L U E S F O R T H E F ( I , J K ) A N D F ( I , J 2 ) A R R A Y S A R E IN P H Y S U . 
C 

I F ( K A S E . N E . 0 ) E L C O N = E L C O N K ( K A S E ) q********************************** ******* 
C A L L F O R S T A R T I N G P R E P A R A T I O N S IN S U B R O U T I N E D E M O F O R C O N S T A N T A G E S I Z E S 
C 

C A L L D E M O C 
C A L L B I O C 

( 2 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C 
C E N T E R M A I N L O O P A T C H A P T E R 7 

G O T O 7 0 0 
C 
C 
C H A P T E R 6 6 6 6 6 6 6 6 S T E P C O N T R O L 6 6 6 6 6 6 6 6 
C S E E D A T A 

600 D X Y = F R A * Y ( N M 2 ) 
D X R E = D X Y * P E I / ( . 5 * ( R ( 1 ) + R ( N ) ) * E M U ( 1 ) + T I N Y ) 
D X I N C = D X L A S T * D X R A T 

C 
C D E T E R M I N A T I O N O F B O U N D A R Y T Y P E 
C I B O U N D A R Y 

I F ( I S T E P . G E . I E N D ) G O T O 6 1 0 
K I N = 1 
G O T O 611 

6 1 0 I F ( P S I I • L E • T I N Y ) G O T O 6 1 2 
K I N = 2 
G O T O 6 1 1 

6 1 2 K I N = 3 
C E B O U N D A R Y 

611 I F ( I S T E P . G E . 1 0 U T ) G O T O 613 
K E X = 1 
G O T O 6 1 4 

613 K E X = 2 
6 1 4 C O N T I N U E 

C 
C E N T R A I N M E N T R A T E S 

I F ( K I N . N E • 2 . A N D . K E X . N E . 2 ) G O T O 6 0 2 
K U D I F = I S T E P 
U M A X = U ( 1 ) 
U M I N = U ( 1 ) 
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DO 615 1 = 2 , N 

UMAX=AMAX1(UMAX,U( I ) ) 

615 U M I N = A M I N 1 ( U M I N , U ( I ) ) 

UDIF=UMAX—UMIN 

C X BOUNDARY 

I F ( K I N . N E • 2 ) GO TO 601 

R A T I = A B S ( ( U ( 2 ) - U ( 1 ) ) / ( U D I F * U L I M + T I N Y ) ) 

R M I = ( R ( 2 ) + R ( 3 ) ) * ( E M U ( 2 ) + E M U ( 3 ) ) * R E C Y D F ( 2 ) * R A T I / ( 1 . + R A T I ) 

F A C I = F A C I * R A T I * * FAC EXP 

F A C r = A M A X l ( 0 . 1 , A M I N 1 ( F A C I , 1 0 . ) ) 

R M I = R M I * F A C I 

I F ( M O D E L . E Q . 2 ) R M I = A M I N 1 ( R M I , 0 . 4 * U D I F * R H O ( 1 ) * R (1 ) ) 

C E BOUNDARY 

601 I F ( K E X . N E . 2 ) GO TO 602 

R A T E = A B S ( ( U ( N M l ) - U ( N ) ) / ( U D I F * U L I M + T I N Y ) ) 

RME=- (R (NM2) +R (NM1) ) * (EMU (NM2) +EMU (NM1) ) *RECYDF (NM2) *RATE/ 

1 ( l . + R A T E ) 

FAC E =FAC E *RATE* * FAC EXP 

F A C E = A M A X 1 ( . 0 1 , A M I N 1 ( F A C E , 1 0 . ) ) 

RME=RME*FACE 

I F ( M O D E L . E Q . 2 ) R M E = A M A X 1 ( R M E , - 0 . 4 * U D I F * R H O ( N ) * R (N ) ) 

C 

602 D X P S I = P E I * P E I L I M / ( R M I - R M E + T I N Y ) 

C 

C SET VALUE OF DX 

D X = A M I N 1 ( D X Y , D X R E , D X I N C , D X P S I , D X M A X ) 

C 

I F ( I S T E P . G E . I E N D ) GO TO 605 

I F ( D X . L T . ( X E N D - X U ) ) GO TO 605 

C RESET DX SO THAT XU WILL EXACTLY EQUAL XEND AT NEXT STEP 

DX=XEND—XU 

IEND= ISTEP+1 

J U S T I N = I S T E P + 1 

C 

605 I F ( I S T E P . G E . I O U T ) GO TO 606 

I F ( D X . L T . ( X O U T — X U ) ) GO TO 606 

C RESET DX SO THAT XU WILL EXACTLY EQUAL XOUT AT NEXT STEP 

DX=XOUT—XU 

I O U T = I S T E P + l 

JUSTEX= ISTEP+1 

C 

606 I F ( P S I I . G T . R M I * D X ) GO TO 607 
I F ( P S I I . L E . T I N Y ) GO TO 607 

C RESET DX SO THAT A X I S I S REACHED AT NEXT STEP 

D X = P S I I / R M I 

J U S T I N = I S T E P + 1 

C 

C RESET DX SO THAT XU WILL NOT EXCEED XULAST 

607 DX=AMIN1(DX,XULAST—XU) 
C 

C TRAP ZERO OR NEGATIVE DX 
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I F ( D X . G T . 0 . ) GO TO 608 

I F I N = 2 

GO TO 1100 

C 

C DETERMINE XD 

608 XD=XU+DX 

DXLAST=DX 

C 

C I F CSALFA VARIES -

C RECALCULATE I T , AND SNALFA AND HCOS, HERE, FOR X=XD 

GO TO 70 

C 

C 

CHAPTER 7 7 7 7 7 7 7 7 BOUNDARY CONDITIONS 7 7 7 7 7 7 

700 ASS IGN 751 TO ISTART 

C GENERAL BOUNDARY CONDITION INFORMATION 

C STREAM A , THROUGH CENTRAL P I P E 

C SEE DATA 

E N T H A = T A * ( C F U ( 1 ) * F U A + C O X ( 1 ) * O X A + C P R ( ! ) * ( ! . - F U A - O X A ) ) + 

1 . 5 *UA**2+HFU*FUA 

PHIA=OXA—FUA*STOICH 

RHOA=PRESS*WFU/(TA*GASCON+TINY) 

FLOA=RHOA*UA*HIN(XEND) 

F J K A = 0 . 0 3 * U B * * 2 

I F ( K R A D . E Q . 2 ) FLOA=FLOA*(XEND*SNALFA+HCOS * H I N ( X E N D ) ) 

P S I I = F L O A 

PEI=FLOB+FLOC 

P S I E = P S I I + P E I 

C STREAM D , SURROUNDING ATMOSPHERE 

C SEE DATA 

XUEX0=XOUT 

UD=UEX0 

XD=XU 

ENTHD=TD*(CFU ( 1 ) * F U D + C O X ( 1 ) * O X D + C P R ( 1 ) * ( 1 . - F U D - O X D ) ) + 

1 •5*UD**2+HFU*FUD 

PHID=OXD-FUD*STOICH 

C OTHER RELATED INFORMATION 

HDUCID=HIN0 

ADUC TD=H E X0-H DUCID 

I F ( K R A D . E Q . 2 ) ADUCTD=ADUCTD*(XSIN+HCOS*(HEX0+HDUCID) ) 

AF LOWD=A DUC TD 

70 CONTINUE 
C BOUNDARY CONDIT IONS FOR FORWARD STEP 

C I BOUNDARY 

I F ( K I N — 2 ) 7 3 1 , 7 3 2 , 7 3 3 

C WALL 

731 I F ( I S T E P . G T . J U S T I N ) GO TO 7 3 4 

U ( 1 ) = 0 . 

T A U I = 0 . 

R M I = 0 . 

DO 735 J = 1 , N F 
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I B I N ( J ) - 2 
735 R J T O T I ( J ) = 0 • 

C ADJUST INNER HEIGHT 

734 H IND=HIN (XD-XHIN0) 

GO TO 740 

C FREE BOUNDARY 

732 I F ( I S T E P . G T . J U S T I N ) GO TO 736 

T A U I = 0 . 

U (1 ) =UA 

VIMIX=FUA*RECWFU+OXA*RECWOX+ ( 1 . -FUA-OXA) *RECWPR 

F ( 1 , J T E ) = T A 

R H O ( 1 ) = P R E S S / ( V I M I X * F ( 1 f J T E ) * G A S C O N ) 

RECRU ( 1 ) = 1 . / ( R H O ( 1 ) * U ( 1 ) + T I N Y ) 

F ( 1 , J H ) = E N T H A 

F ( 1 , J P ) = P H I A 

F ( 1 , J F ) = F U A 

AREA=HDUCID 

I F ( K R A D . E Q . 2 ) AREA=AREA*(XU*SNALFA+HCOS*HDUCID) 

AFLOWD=AFLOWD+AREA 

I F ( I S T E P . E Q . 0 ) GO TO 740 

7 3 6 U ( 1 ) = U ( 1 ) + D X * A G R A V * ( R H O (N)-RHO ( 1 ) ) * R E C R U ( 1 ) 

F ( 1 , J K ) = F J K A 

I F ( M O D E L . L T . 4 ) GO TO 740 

FJ2A=CD*SQRT ( F J K A ) / ( E L C O N * ( Y ( N M 2 ) - Y ( 3 ) ) ) 

I F ( M O D E L . E Q . 5 ) F J 2 A = F J 2 A * F J K A 

F ( 1 , J 2 ) = F J 2 A 

GO TO 740 

C SYMMETRY A X I S 

733 I F ( I S T E P . G T . J U S T I N ) GO TO 740 

T A U I = 0 . 

R M I = 0 . 

P S I I = 0 . 

H I N D = 0 . 

U ( 1 ) = U ( 2 ) 

DO 737 J = l r N F 

737 F ( l , J ) = F ( 2 r J ) 

C NO SUBSEQUENT CHANGE NEEDED 

740 CONTINUE 

C 

C E BOUNDARY 

IF (KEX—2) 7 4 1 , 7 4 2 , 7 4 3 

C WALL 

741 I F ( I S T E P . G T . J U S T E X ) GO TO 744 

C F I R S T STEP ONLY 

U (N) = 0 . 

RME=0. 

TAUE=0. 

IBEX ( JH ) =1 

F ( N , J O X ) = O X C 

F ( N , J P R ) = 1 . - O X C - F U C 

DO 745 J = 2 , N F 
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I B E X ( J ) = 2 

745 R J T O T E ( J ) = 0 . 

C ADJUST ENTHALPY TO F I T COMPOSITION 

744 CMIX (N) =CFU (N) *F ( N , J F ) +COX (N) *F (N , J O X ) +CPR ( N ) * F ( N , J P R ) 

F (N , J T E ) =TWALL 

F ( N , J H ) =CMIX (N) *F (N , J T E ) +F (N , J F ) *HFU 

C ADJUST EXTERNAL HEIGHT 

HEXD=HEX(XD—XHEX0) 

F ( N , J K ) = 0 . 

F ( N , J 2 ) = 0 . 

GO TO 750 

C FREE BOUNDARY 

742 I F ( I S T E P . G T . J U S T E X ) GO TO 746 

F ( N , J H ) = E N T H D 

F ( N , J P ) = P H I D 

F ( N , J F ) = F U D 

F ( N , J O X ) = O X D 

F J K D = 0 . 1 

F ( N , J P R ) = 1 . - F ( N , J F ) - F ( N , J O X ) 

V M I X = F ( N , J F ) * R E C W F U + F ( N f J O X ) * R E C W O X + F ( N f J P R ) * R E C W P R 

F ( N , J T E ) = T D 

R H O ( N ) = P R E S S / ( V M I X * F ( N r JTE ) *GASCON) 

U (N)=UD 

R E C R U ( N ) = 1 . / ( R H O ( N ) * U ( N ) + T I N Y ) 

C ADJUSTMENT OF M IX ING LENGTH CONSTANT 

I F ( K A S E . E Q . 0 ) ELCON=ELCON0 (K IND) 

C ADJUSTMENT OF DOWNSTREAM.VELOCITY 

746 UD=UEX(XD—XUEX0) 

F ( N , J K ) = F J K D 

I F ( M O D E L . L T . 4 ) GO TO 750 

F J 2 D = C D * S Q R T ( F J K D ) / ( E L C O N * ( H E X 0 - H I N 0 ) ) 

I F ( M O D E L . E Q . 5 ) F J 2 D = F J 2 D * F J K D 

F ( N , J 2 ) = F J 2 D 

GO TO 750 

C NO SYMMETRY A X I S 

743 CONTINUE 

750 GO TO I START , ( 7 5 1 , 8 0 0 ) 

751 ASS IGN 800 TO ISTART 

GO TO 900 

C 

C 
CHAPTER 8 8 8 8 8 8 8 8 ADVANCE 8 8 8 8 8 8 8 8 8 8 
C MOMENTUM SOURCES 

C PRESSURE GRADIENT 

800 I F ( K E X . N E . 2 ) GO TO 821 

DP= (U (N) -UD) /RECRU (N) 

GO TO 823 

C CONFINED FLOW 

C CALCULATION OF AREA INCREASE 

821 AFLOWU=AFLOWD 

HDUCID=0 . 
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I F ( K I N . E Q . 1 ) H D U C I D = H I N D 
A D U C T D = H E X D - H D U C I D 
I F ( K R A D . E Q . 2 ) A D U C T D = A D U C T D * ( X D * S N A L F A + H C O S * ( H E X D + H D U C I D ) ) 
D A = A D U C T D - A F L O W U 
D P = D A / D A D P 

C W A L L S H E A R A N D M A S S A D D I T I O N 
U B A R = 0 . 
D O 824 1 = 2 , N M 1 

8 2 4 U B A R = U B A R + ( B O M ( I ) * U ( I ) ) 
I F ( K I N . E Q . 2 ) U B A R = ( U B A R — U ( 1 ) ) * P E I / P S I E + U ( 1 ) 
U B A R = ( U B A R — U ( 1 ) ) * P E I / P S I E + U ( 1 ) 
D P = D P + D X * ( - T A U I * R ( 1 ) - T A U E * R ( N ) + 2 . * R M E * U B A R ) / A D U C T D 
D P = A M I N 1 ( D P , . 5 * D P M A X ) 

C 
823 C O N T I N U E 

C C O M P 
C A L L D E M O S 
C A L L S O L V E 

C 
C 
C H A P T E R 9 9 9 9 9 9 9 9 C O M P L E T E 9 9 9 9 9 9 9 9 9 9 

9 0 0 C O N T I N U E 
C 
C I G N I T I O N S E Q U E N C E 

• I F ( I S T E P . G T . 5 ) G O T O 931 
I F ( I N E R T . E Q . 1 ) G O T O 931 
T 2 = . 5 / S T O I C H 
DO 932 1 = 2 , N M 1 
F ( I , J F ) = T 2 * ( A B S ( F ( I , J P ) ) - F ( I , J P ) ) 

9 3 2 F ( I , J O X ) = F ( I , J P ) + S T O I C H * F ( I , J F ) 
931 C O N T I N U E 

C 
C THERMODYNAMIC P R O P E R T I E S 

P R E S S = P R E S S + D P 
P D G S C N = P R E S S / G A S C O N 
DO 9 0 7 1 = 1 , N 
F ( I , J O X ) = A M A X 1 ( 0 . , F ( I , J P ) + S T O I C H * F ( I , J F ) ) 
F ( I , J P R ) = 1 . - F ( I , J F ) - F ( I , J O X ) 
E N T H = F ( I , J H ) - . 5 * U ( I ) * * 2 - H F U * F ( I , J F ) 
I F ( I S T E P . E Q . 0 ) G O T O 940 
C F U ( I ) = A F U 1 + A F U 2 * A V T E M ( I ) 
C O X ( I ) = A O X L + A 0 X 2 * A V T E M ( I ) + A O X 3 / ( A V T E M ( I ) * * 2 + T I N Y ) 
C N 2 ( I ) = A N 2 1 + A N 2 2 * A V T E M ( I ) + A N 2 3 / ( A V T E M ( I ) * * 2 + T I N Y ) 
C H 2 0 ( I ) = A H 2 0 1 + A H 2 0 2 * A V T E M ( I ) 
C M I X ( I ) = C F U ( I ) * A V F U ( I ) + C O X ( I ) * A V O X ( I ) + C N 2 ( I ) * F N 2 ( I ) + 

1 C H 2 0 ( I ) * F H 2 0 ( I ) 
G O T O 943 

9 4 0 C M I X ( I ) = C F U ( I ) * F ( I , J F ) + C O X ( I ) * F ( I , J O X ) + C P R ( I ) * F ( I , J P R ) 
943 F ( I , J T E ) = E N T H / C M I X ( I ) 

I F ( F ( I , J T E ) . G T . T M I N ) G O T O 941 
I F ( I . E Q . L . O R . I . E Q . N ) G O T O 941 
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W R I T E ( 6 , 9 4 2 ) F ( I , J T E ) , I , I S T E P , T M I N 

942 FORMAT(27H * * * TEMPERATURE, F ( I , J T E ) = , 1 P E 1 0 . 3 , 6 H AT I = , I 4 , 7 H I STEP 

1 = , 1 5 / 1 7 H * * * RESET = T M I N = , E 1 0 . 3 , 2 3 H * * * MAIN C H . 9 COMPLETE) 

F ( I , J T E ) = T M I N 

941 I F ( I S T E P . L T . l ) GO TO 944 

V M I X = A V F U ( I ) * R E C W F U + A V O X ( I ) * R E C W O X + F N 2 ( I ) / W N 2 + F H 2 0 ( I ) / W H 2 0 

R H O ( I ) = P D G S C N / ( A V T E M ( I ) * V M I X ) 

GO TO 907 

944 V M I X = F ( I , J F ) * R E C W F U + F ( I , J O X ) * R E C W O X + F ( I , J P R ) * R E C W P R 

R H O ( I ) = P D G S C N / ( F ( I , J T E ) * V M I X ) 

9 0 7 CONTINUE 

I F ( K E X . E Q . 1 ) F ( N , J T E ) = T W A L L 
DPDX=DP/DX 

C 

C R A D I I AND Y " S 

I F ( K R A D - 2 ) 9 0 1 , 9 0 2 , 9 0 3 

C KRAD=1 , PLANE 

901 I F ( K I N . E Q . 2 ) H I N D = A B S ( P S I I * R E C R U ( 1 ) ) 

GO TO 909 

C KRAD=2 , AX IAL 

9 0 2 I F ( K I N . N E . 2 ) GO TO 908 

H I N D = A B S ( P S I I * R E C R U ( 1 ) ) 

H I N D = 2 . * H I N D / 

1 (XD*SNALFA+SQRT( ( X D * S N A L F A ) * * 2 + 2 . * H I N D * C S A L F A ) + T I N Y ) 

GO TO 908 

C KRAD=3 , POINT SYMMETRY 

903 R ( 1 ) = 0 . 

C CHANGE ABOVE STATEMENT I F NECESSARY FOR KRAD=3 

GO TO 909 

908 R (1 )=XU*SNALFA+HIND*CSALFA 

C COMP 

909 CALL DISTAN 

C 

C 

CHAPTER 10 10 10 10 10 10 10 ADJUST 10 10 10 10 10 10 10 

C 

I F ( K E X . E Q . 2 ) GO TO 1022 

AFLOWD=Y(N)+HIND-HDUCID 

I F ( K R A D . E Q . 2 ) AFLOWD=AFLOWD*(XU*SNALFA+HCOS*(Y(N)+HIND+HDUCID) ) 

DA1=ADUCTD/AFL0WD-1. 

C DEPENDENCE OF AREA ON PRESSURE 

RECGMP=1 . / (GAMMA*PRESS) 

DADP=0 . 

I F ( K I N . E Q . 2 ) DADP=PS11*RECRU ( 1 ) * ( R E C R U ( 1 ) * R E C R U ( 1 ) * R H O ( 1 ) - R E C G M P ) 

SUM=0. 

DPMAX=BIG 

DO 1025 1=2 ,NM1 

DPMAX=AMIN1(DPMAX,RHO ( I ) * U ( I ) * * 2 ) 

1 025 S U M = S U M + B O M ( I ) * R E C R U ( I ) * ( R E C R U ( I ) * R E C R U ( I ) * R H O ( I ) - R E C G M P ) 

DADP=DADP+PEI*S UM 

C ADJUSTMENT OF P " S , U "S ETC. 
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I F ( A B S ( D A I ) . L T . 1 . E — 3 ) GO TO 1022 

DP=DA1*AF LOWD/DADP 

D P = A M I N 1 ( D P , . 5 * D P M A X ) 

PRESS=PRESS+DP 

DPDX=DPDX+DP/DX 

RHOFAC=l .+DP*RECGMP 

DO 1027 1=2 ,NM1 

U ( I ) =U ( I ) -DP*RECRU ( I ) 

1 0 2 7 R H O ( I ) = R H O ( I ) * R H O F A C 

I F ( K I N . N E . 2 ) GO TO 1029 

U (1 ) =U (1 ) —DP*RECRU (1 ) 

1 029 R H O ( 1 ) = R H O ( 1 ) * R H O F A C 

RHO (N) =RHO (N) *RHOFAC 

R E C R U ( 1 ) = 1 • / ( R H O ( 1 ) * U ( 1 J+T INY ) 

I F ( K I N . N E • 2 ) GO TO 1026 

H I N D = A B S ( P S I I * R E C R U ( 1 ) ) 

I F ( K R A D . E Q . 1 ) GO TO 1026 

H I N D = 2 . * H I N D / 

1 (XD *S NA LFA+S Q R T ( ( X D * S N A L F A ) * * 2 + 2 . * H I N D * C S A L F A ) + T I N Y ) 

R (1 )=XU*SNALFA+HIND*CSALFA 

1 0 2 6 CALL DISTAN 

AFLOWD=Y(N)+HIND—HDUCID 

I F ( K R A D . E Q . 2 ) AFLOWD=AFLOWD*(XU*SNALFA+HCOS*(Y(N)+HIND+HDUCID) ) 

DA2=ADUCTD/AFLOWD-l . 

1022 CONTINUE 

C 

CHAPTER 11 11 11 11 11 11 11 11 11 11 PRINT 11 11 11 11 11 11 

C SEE DATA 

1100 CONTINUE 

I F ( X U . L E . X O U T ) GO TO 1101 

NSTAT=24 

NPROF=24 

1 1 0 1 CONTINUE 

CALL DEM02 

CALL OUTPUT 

C 

C 

CHAPTER 12 12 12 12 12 12 12 DECIDE 12 12 12 12 12 12 12 

I F ( I S T E P . E Q . L A S T E P ) GO TO 1203 

I F ( X U . L T . X U L A S T ) GO TO 1202 

1203 I F I N = 2 

CALL DEM02 

CALL OUTPUT 

1 2 0 2 I F ( I F I N . E Q . 1 ) GO TO 600 

STOP 

END 
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SUBROUTINE OUTPUT 

C / S E P T . 1 9 7 7 — GENMIX-T, H T S / 7 7 / 9 , APPXA — COPYRIGHT, D . B . S P A L D I N G — 

$INCLUDE 9 ,COMA1•FTN 

$ INCLUDE 9 ,COMB.FTN 

C 

DIMENSION L A B ( 2 5 ) , O U T ( 2 5 ) , T I T L E ( 3 , 4 ) , 

1 X L P L O T ( 1 5 0 ) , Y L A X I S ( 1 7 ) , Y L P L O T ( 1 5 0 , 1 7 ) , 

2 X T P L O T ( 6 0 ) , Y T A X I S ( 9 ) , Y T P L O T ( 6 0 , 9 ) , 

3 D F E ( 2 0 ) , D F I ( 2 0 ) , F L U X ( 2 0 ) , S T A N E ( 2 0 ) , S T A N I ( 2 0 ) 

C 

CHAPTER A I N I T I A L DATA FOR PRINTOUT 

C CROSS-STREAM OUTPUT ( P R O F I L E ) DATA 

C ASS IGN KOUT= NO . OF VAR IABLES , AND OUTPUT LABELS LAB(K) 

DATA K O U T / 1 2 / 

DATA L A B / " R / R 0 " , " U V E L n , " T E M P " , " F U E L " , " O X Y G " , " H 2 M " , 

1 " 0 2 M " , " H 2 0 M " , " N 2 M " , " T E M F " , " F U F L " , " O X F L " / 

C TRANSVERSE (CROSS-STREAM) PLOT DATA 

C ASS IGN NYT= NO. OF VARIABLES TO BE PLOTTED 

C INSERT D IMENS IONS , ENSURE THAT I T D I M . G E . N . A N D . J T D I M • G E • N Y T . 

DATA N Y T / 9 / , I T D I M , J T D I M / 6 0 , 9 / 

C ASS IGN LABELS FOR PLOT AXES 

DATA X T A X I S / " Y ( I ) " / 

DATA ( Y T A X I S ( K ) , K = 1 , 9 ) / " U V E L " , " T E M P " , " F U E L " , " O X Y G " , " 1 F A G " , " 2 F A G " 

1 , " 3 F A G " , " 4 F A G " , " 5 F A G " / 

C 

C LONGITUDINAL (DOWN-STREAM) PLOT DATA 

C ASS IGN NYL= NO . OF VARIABLES TO BE PLOTTED 

C — INSERT D I M E N S I O N S , ENSURE THAT I L D I M . G E . L A S T E P . A N D • J L D I M . G E • N Y L 

DATA N Y L / 1 7 / , I L D I M , J L D I M / 1 5 0 , 1 7 / 

C ASS IGN LABELS FOR PLOT AXES 

DATA X L A X I S / " X U " / 

DATA ( Y L A X I S ( K ) , K = 1 , 1 7 ) / " U ( 1 ) " , " T ( 1 ) " , " F U ( 1 ) " , " O X ( 1 ) " , " N , R OR Y " , 

1 " 1 , R ( 1 ) " , " 2 , P E I " , " 3 , R M E " , " 4 , F L U X F U " , " 5 , D P D X " , " 6 , R A T E " , " 7 , F A C E " , 

2 " A , F A G " , " B , F A G " , " C , F A G " , " D , F A G " , " E , F A G " / 

C 

C T ITLE DATA 

DATA T I T L E / " A X I — " , " S Y M M " , " E T R I " , " C A L " , " F L O W " , 

1 "PLAN" , " E FL " , "OW " , " " , 

2 " R A D I " , " A L L Y " , " - T " , " W A R D " , " F L O " , " W " , 

3 " V A R I " , " A B L E " , " C S A " , " L F A " , " " / 

CHAPTER B HEADINGS 

I F ( I S T E P . G T . 0 ) GO TO 1102 

C MODIF IED DATA 

I F ( M O D E L . G T . 2 ) GO TO 100 

KOUT=12 

100 CONTINUE 

W R I T E ( 6 , 1 1 0 3 ) ( T I T L E ( I , K I N D ) , 1 = 1 , 5 ) 

1103 FORMAT(1H1 , "GENMIX-T , S E P T . 1 9 7 7 , TURBULENCE MODELS TEACHING PROGRA 

1 M , " / " BASED ON APPENDIX A OF HTS REPORT NO. H T S / 7 7 / 9 , F E B . 1 9 7 7 . " / 
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2 " COMBUSTION OF HYDROGEN AND A I R IN A J E T , " , 5 A 4 ) 

C 

PRESS1=PRESS 

TEM=. 5 * (R ( 1 ) +R (N) ) 

E M U 1 = ( V I S F U * F ( 1 , J F ) + V I S 0 X * F ( 1 , J 0 X ) + V I S P R * F ( 1 , J P R ) ) * 

1 S Q R T ( F ( l , J T E ) ) 

REY=PE I / (EMU1*TEM) 

EQRAT=0•0 

I F ( I N E R T . N E • 1 ) EQRAT=FLOB*STO ICH / (FLOC+TINY ) / (OXC+TINY ) 

AMACH=SQRT(PEI*UB/ (GAMMA*PRESS*TEM) ) 

C 

W R I T E ( 6 , 1 0 1 3 ) KASE , I RUN ,K IND ,KRAD ,CSALFA ,MODEL ,LENGTH ,MOD4C1 , 

1 INERT,NOVEL 

1013 FORMAT(1H0 ,5H KASE ,5H I R U N , 5 H K I N D , 5 H KRAD,7H CSALFA ,6H MODEL, 

1 7H LENGTH,7H M0D4C1 ,6H INERT ,6H N O V E L / 1 X , 1 4 , 3 1 5 , F 7 . 3 , 1 6 , 2 1 7 , 2 1 6 ) 

C 

W R I T E ( 6 , 1 0 1 5 ) N A G E , J A 1 , J A L , F O L M 0 , U M A X , M O D F O R , ( A G E ( L ) , L = 1 , N A G E P 1 , 2 ) 

1 015 F O R M A T ( / 5 ( 1 H * ) , 4 0 H T H E ESCIMO MODEL OF TURBULENT COMBUSTION, 

+ 5 ( 1 H * ) / 5 ( 1 H * ) , 3 8 H I S INCORPORATED IN THE PRESENT PROGRAM, 

+ 2 X , 5 ( 1 H * ) / 5 ( 1 H * ) ,21HDEMOGRAPHIC C O N S T A N T S , 5 ( 1 H * ) / I X , 

+37HNAGE J A 1 J A L FOLM0 UMAX MODFOR / I X , 2 1 4 , 1 6 , 2 X , 2 F 6 . 2 , 1 4 / 

+47H AGE1 AGE3 AGE5 AGE7 AGE9 A G E 1 1 , / 6 F 8 . 5 ) 

W R I T E ( 6 , 1 0 1 8 ) EMPC1,EMPC 2,EMPC 3 

1018 F O R M A T ( / 5 ( 1 H * ) , 2 0 H B I O G R A P H I C C O N S T A N T S , 5 ( 1 H * ) / I X , 

1 25HEMPC1 EMPC2 E M P C 3 / 1 X , 3 E 1 0 . 3 ) 

WRITE ( 6 , 1 0 1 4 ) O M P O W , ( O M ( I ) , I = 1 , N ) 

1014 FORMAT(1H0 ,18H O M ( I ) , FOR O M P O W = , F 6 . 3 / ( I X , 1 P 6 E 1 1 . 3 ) ) 

C 

W R I T E ( 6 , 1 0 1 0 ) 

1 H E X 0 , X H E X 0 , A H E X , B H E X , C H E X , 

2 H I N 0 , X H I N 0 , A H I N , B H I N , C H I N , 

3 U E X 0 , X U E X 0 , A U E X , B U E X , C U E X , 

4 XEND ,XOUT,XULAST ,HD IV ,AGRAV 

1010 FORMAT(1H0 , 

1 4 X , 4 H H E X 0 , 6 X , 5 H X H E X 0 , 7 X , 4 H A H E X , 7 X , 4 H B H E X , 7 X , 4 H C H E X / 1 X , 1 P 5 E 1 1 . 3 / 

2 5 X , 4 H H I N 0 , 6 X , 5 H X H I N 0 , 7 X , 4 H A H I N , 7 X , 4 H B H I N , 7 X , 4 H C H I N / 1 X , 1 P 5 E 1 1 . 3 / 

3 5 X , 4 H U E X 0 , 6 X , 5 H X U E X 0 , 7 X , 4 H A U E X , 7 X , 4 H B U E X , 7 X , 4 H C U E X / 1 X , 1 P 5 E 1 1 . 3 / 

4 5 X , 4 H X E N D , 7 X , 4 H X O U T , 5 X , 6 H X U L A S T , 7 X , 4 H H D I V , 6 X , 5 H A G R A V / 1 X , 1 P 5 E 1 1 . 3 ) 

C 

W R I T E ( 6 , 1 0 1 1 ) U A , U B , U C , U D , T A , T B , T C , T D , 

2 P R E S S , P R E E X P , R E Y , E Q R A T , A M A C H , U L I M , P E I L I M 

1011 F O R M A T ( 1 H 0 , 4 X , 2 H U A , 7 X , 2 H U B , 7 X , 2 H U C , 7 X , 2 H U D , 

1 7 X , 2 H T A , I X , 2 H T B , I X , 2 H T C , I X , 2 H T D / 1 X , 8 F 9 . 3 / 

2 4 X , 5 H P R E S S , 3 X , 6 H P R E E X P , 6 X , 3 H R E Y , 4 X , 5 H E Q R A T , 4 X , 5 H A M A C H , 5 X , 4 H U L I M , 

2 3 X , 6 H P E I L I M / 1 X , 1 P 7 E 9 . 2 ) 

I F ( M O D E L . L E . 2 ) GO TO 1102 

W R I T E ( 6 , 1 0 1 2 ) A K , E L C O N , T A U D K , E L E X P , S I G K , S I G 2 , 

2 C M U , C D , F J K A , F J 2 A , F J K D , F J 2 D 

1012 FORMAT ( 1 H 0 , 3 X , 2 H A K , 9 X , 5 H E L C O N , 6 X , 5 H T A U D K , 6 X , 5 H E L E X P , 6 X , 4 H S I G K , 7 X , 

1 4 H S I G 2 / 1 P 6 E 1 1 . 3 / 

2 4 X , 3 H C M U , 8 X , 2 H C D , 9 X , 4 H F J K A , 7 X , 4 H F J 2 A , 7 X , 4 H F J K D , 7 X , 4 H F J 2 D / 6 E 1 1 . 3 ) 
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c 
I F ( M O D E L . E Q . 4 ) W R I T E ( 6 , 1 0 1 7 ) C1M0D4 /C2M0D4 

1 0 1 7 FORMAT(1H r 3 X , 6 H C 1 M O D 4 , 5 X , 6 H C 2 M O D 4 / 2 E 1 1 . 3 ) 

I F ( M O D E L . E Q . 5 ) W R I T E ( 6 , 1 0 1 6 ) C1M0D5,C2M0D5 

1016 FORMAT(1H , 3 X , 6 H C 1 M O D 5 , 5 X , 6 H C 2 M O D 5 / 2 E 1 1 . 3 ) 

C 

C 

CHAPTER C COMPUTE OUTPUT REQUIRED AT EACH STEP 

1102 CONTINUE 

UBAR=0. 

DO 110 1=2 ,NM1 

110 U B A R = U B A R + B O M ( I ) * U ( I ) 

UFLUX=PEI*UBAR 

C 

NFLAST=JAL+3 

DO 115 J = 1 , N F L A S T 

F L U X ( J ) = 0 . 

DO 116 1 = 2 , N M 1 

116 F L U X ( J ) = F L U X ( J ) + B O M ( I ) * F ( I , J ) 

115 F L U X ( J ) = P E I * F L U X ( J ) 

C 

DO 117 J = 1 , N F 

D F I ( J ) = F L U X ( J ) / P E I - F ( 1 , J ) 

117 D F E ( J ) = D F I ( J ) + F ( 1 , J ) - F ( N , J ) 

U F L U X = U F L U X - P S I E * U ( N ) + U ( 1 ) * P S I I 

F L U X ( J H ) = F L U X ( J H ) - P S I E *ENTHD+PS11*ENTHA 

F L U X ( J P ) = F L U X ( J P ) - P S I E * P H I D + P S 1 1 * P H I A 

F L U X ( J F ) = F L U X ( J F ) - P S I E * F U D + P S I I * F U A 

PRESSD=PRESS /PRESS l—1 . 

C 

I F ( I S T E P . E Q . 0 . O R . I L P L O T . E Q . 1 ) GO TO 1105 

C ASS IGN VALUES FOR DOWNSTREAM PLOT 

I P R I P L = 1 0 

X L P L O T ( I S T E P ) = X U 

YLPLOT( I STE P , 1 ) = U ( I P R I P L ) 

YLPLOT ( I S T E P , 2 ) = F ( I P R I P L , J T E ) 

Y L P L O T ( I S T E P , 3 ) = F ( I P R I P L , J F ) 

Y L P L O T ( I S T E P , 4 ) = F ( I P R I P L , J O X ) 

I F ( K I N D — 1 ) 1 1 1 , 1 1 1 , 1 1 4 

111 Y L P L O T ( I S T E P , 5 ) = R ( N ) 

GO TO 113 

114 Y L P L O T ( I S T E P , 5 ) = Y ( N ) 

113 CONTINUE 

Y L P L O T ( I S T E P , 6 ) = R ( 1 ) 

Y L P L O T ( I S T E P , 7 ) = P E I 

Y L P L O T ( I S T E P , 8 ) = R M E 

Y L P L O T ( I S T E P , 9 ) = F L U X ( J F ) 

Y L P L O T ( I S T E P , 1 0 ) = D P D X 

Y L P L O T ( I S T E P , 1 1 ) = R A T E 

Y L P L O T ( I S T E P , 1 2 ) = F A C E 

Y L P L O T ( I S T E P , 1 3 ) = F ( I P R I P L , J A 1 ) 
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Y L P L O T ( I S T E P , 1 4 ) = F ( I P R I P L , J A 2 ) 

Y L P L O T ( I S T E P , 1 5 ) = F ( I P R I P L , J A 3 ) 

Y L P L O T ( I S T E P , 1 6 ) = F ( I P R I P L , J A 4 ) 

Y L P L O T ( I S T E P , 1 7 ) = F ( I P R I P L , J A 5 ) 

1 1 0 5 CONTINUE 

C 

C TESTS FOR PRINTOUT 

C I P R I N T = 1 G IVES S INGLE (STATION) VAR IABLES , 

C I P R I N T = 2 ADDS THE ARRAY (PROF ILE ) VAR IABLES , 

C I P R I N T = 3 ADDS THE CROSS-STREAM PLOTS. 

I P R I N T = 0 

I F ( M O D ( I S T E P , N S T A T ) . E Q . 0 ) I P R I N T = 1 

I F ( M O D ( I S T E P , N P R O F ) . E Q . 0 ) I P R I N T = 2 

I F ( I S T E P . E Q . 0 ) GO TO 1 0 2 0 

I F ( M O D ( I S T E P , N P L O T ) . E Q . 0 

1 . O R . I S T E P . E Q . J U S T E X . O R . I S T E P . E Q . J U S T I N 

2 . O R . I T E S T . N E . l . O R . I F I N . N E . 1 ) I P R I N T = 3 

1020 I F ( I P R I N T . E Q . 0 ) RETURN 

C 

CHAPTER D STATION VARIABLES 

W R I T E ( 6 , 1 0 3 0 ) X U , I S T E P , 

1 J U S T I N , J U S T E X , D X , P R E S S D , 

2 K I N , K E X , D X Y , D P D X , 

3 P S I I , P S I E , D X R E , P E I , 

4 R M I , R M E , D X I N C , Y R E F 1 , 

5 R ( l ) , R ( N ) , D X P S I , Y R E F 2 , 

6 ELCON, 

7 UFLUX, 

8 ( F L U X ( J ) , J = 1 , N F ) 

1030 F O R M A T ( 1 H 0 , 5 H * * * , 3 H X U = , 1 P E 1 0 . 3 , 2 X , 6 H I S T E P = , 1 5 / 

1 2 X , 7 H J U S T I N = , 1 1 0 , I X , 7 H J U S T E X = , 1 1 0 , 5 X , 3 H D X = , 1 P E 1 0 . 3 , 

1 8H P R E S S D = , E 1 0 . 3 / 

2 5 X , 4 H K I N = , I 1 0 , 4 X , 4 H K E X = , I 1 0 , 4 X , 4 H D X Y = , E 1 0 . 3 , 3 X , 5 H D P D X = , E 1 0 . 3 / 

3 4 X , 5 H P S I I = , E 1 0 . 3 , 3 X , 5 H P S I E = , E 1 0 . 3 , 3 X , 5 H D X R E = , E 1 0 . 3 , 

3 4 X , 4 H P E I = , E 1 0 . 3 / 

4 5 X , 4 H R M I = , E 1 0 . 3 , 4 X , 4 H R M E = , E 1 0 . 3 , 2 X , 6 H D X I N C = , E 1 0 . 3 , 2 X , 6 H Y R E F 1 = , 

4 E 1 0 . 3 / 

5 4 X , 5 H R ( 1 ) = , E 1 0 . 3 , 3 X , 5 H R ( N ) = , E 1 0 . 3 , 2 X , 6 H D X P S I = , E 1 0 . 3 , 2 X , 6 H Y R E F 2 = , 

5 E 1 0 . 3 / 

6 3 X , 6 H E L C O N = , E 1 0 . 3 / 

7 3 X , 6 H U F L U X = , E 1 0 . 3 / 

8 I X , 8 H F L U X ( J ) = , ( 5 E 1 1 . 3 ) ) 

C 

I F ( I S T E P . E Q . 0 ) GO TO 1042 

UREF=UBAR 

R U R E F = P E I / ( ( R ( 1 ) + R ( N ) ) * . 5 * Y ( N ) ) 

U R U R E F = 1 . / ( U R E F * R U R E F ) 
C 

I F ( K I N — 2 ) 1 0 6 1 , 1 0 6 2 , 1 0 6 3 

1061 TAUID=TAUI*URUREF 

DO 1025 J = 1 , N F 
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1025 S T A N I ( J ) = ( R J T O T I ( J ) - F ( 1 , J ) * R M I ) / ( R ( 1 ) * D F I ( J ) * R U R E F + T I N Y ) 

W R I T E ( 6 , 1 0 2 9 ) T A U I D , ( S T A N I ( J ) , J = 1 , N F ) 

1029 FORMAT(1H , 6 H T A U I D = , 1 P E 1 0 . 3 , 1 0 H STANI ( J ) = , ( 4 E 1 1 . 3 ) ) 

GO TO 1063 

1062 W R I T E ( 6 , 1 0 6 9 ) F A C I , R A T I 

1069 FORMAT (1H , 6H F A C I = , 1 P E 1 0 . 3 , 6 H R A T I = , E 1 0 . 3 ) 

C 

1063 I F (KEX—2) 1 0 8 1 , 1 0 8 2 , 1 0 4 4 

1081 TAUED=TAUE*URUREF 

DO 1 0 2 7 J = 1 , N F 

1027 S T A N E ( J ) = ( R J T O T E ( J ) - F ( N , J ) * R M E ) / ( R ( N ) * D F E ( J ) * R U R E F + T I N Y ) 

WRITE ( 6 , 1 0 2 8 ) T A U E D , ( S T A N E ( J ) , J = 1 , N F ) 

1028 FORMAT (1H , 6 H T A U E D = , 1 P E 1 0 . 3 , 1 0 H STANE ( J ) = , ( 4 E 1 1 . 3 ) ) 

GO TO 1044 

1082 W R I T E ( 6 , 1 0 8 9 ) FACE,RATE 

1089 FORMAT(1H , 6H F A C E = , 1 P E 1 0 . 3 , 6 H R A T E = , E 1 0 . 3 ) 

GO TO 1 0 4 2 

1044 W R I T E ( 6 , 1 0 4 7 ) DA1 ,DA2 

1047 FORMAT(5H D A 1 = , 1 P E 1 0 . 3 , 5 H D A 2 = , E 1 0 . 3 ) 

C 

CHAPTER E CROSS-STREAM PROF ILES 

1042 I F ( I P R I N T . E Q . 1 ) GO TO 1050 

YN=Y (N) 

WRITE ( 6 , 1 1 9 9 ) YN 

1199 FORMAT(6H Y ( N ) = , 1 P E 1 0 . 2 ) 

C 

W R I T E ( 6 , 1 0 9 9 ) ( L A B ( K ) , K = 1 , 6 ) 

DO 1091 1 = 1 , N 

O U T ( 1 ) = Y ( I ) / H E X 0 

OUT (2 ) =U (T) 

O U T ( 3 ) = A V T E M ( I ) 

OUT ( 4 ) =AVFU ( I ) 

O U T ( 5 ) = A V O X ( I ) 

O U T ( 6 ) = F M F U ( I ) 

C WRITE PROF ILES 

1091 W R I T E ( 6 , 1 0 9 8 ) I , ( O U T ( K ) , K = 1 , 6 ) 

I F ( K O U T . L E . 6 ) GO TO 1093 

W R I T E ( 6 , 1 0 9 9 ) ( L A B ( K ) , K = 7 , K O U T ) 

DO 1092 1 = 1 , N 

OUT (7 ) =FMOX ( I ) 

OUT (8 ) =FMH20 ( I ) 

OUT(9 )=FMN2 ( I ) 

OUT(10 )=TFLU ( I ) 

O U T ( 1 1 ) = F U F L U ( I ) 

O U T ( 1 2 ) = O X F L U ( I ) 

1092 W R I T E ( 6 , 1 0 9 8 ) I , ( O U T ( K ) , K = 7 , K O U T ) 

1093 CONTINUE 

I F ( I S T E P . L T . 5 ) GO TO 2003 

W R I T E ( 6 , 2 0 0 1 ) ( J , J = 1 , N A G E ) 

2001 F O R M A T ( / 5 X , 5 H * * * * * , 3 2 H P O P U L A T I O N D ISTR IBUT ION OF FOLDS , 

1 5 H * * * * * / 2 X , 3 H I , 7H F R A T , 3 X , 5 ( 7 H PA ( , 1 2 , 2 H ) ) / 
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1 1 5 X , 5 ( 7H PA ( , 1 2 , 2 H ) ) ) 

DO 2000 1=2 ,NM1 

2000 WRITE ( 6 , 2 0 0 2 ) I , P A 0 ( I ) / R H O ( I ) , ( P A ( I , J ) , J = 1 , N A G E ) 

2002 F O R M A T ( I X , 1 3 , 1 P 6 E 1 1 . 3 / 1 5 X , 1 P 5 E 1 1 . 3 ) 

I F ( I P D F . N E . l ) GO TO 2003 

W R I T E ( 6 , 2 0 0 7 ) 

2007 F O R M A T ( 1 H 1 , 5 X , 5 H * * * * * , 3 0 H P D F VALUES OF TEMPERATURE , 

1 5 H * * * * * ) 

W R I T E ( 6 , 2 0 0 4 ) (K ,K=1 ,NPDFM1) 

2004 FORMAT( / 2X , 3H I , 5 ( 7 H PDF( , 1 2 , 2 H ) ) / 

1 5 X , 5 (7H PDF( , 1 2 , 2 H ) ) ) 

DO 2005 1=2 ,NM1 

2005 W R I T E ( 6 , 2 0 0 6 ) I , ( A V P D F ( I , K ) , K = 1 , N P D F M 1 ) 

2006 F O R M A T ( I X , 1 3 , 1 P 5 E 1 1 . 3 / 4 X , 1 P 5 E 1 1 . 3 ) 

2003 CONTINUE 

C 

I F ( I PR INT• LT. 3 . O R • I T P L O T • E Q . 1 ) GO TO 1050 

C ASS IGN CROSS-STREAM PLOTS 

DO 1073 1 = 1 , N 

XTPLOT ( I ) = Y ( I ) 

Y T P L O T ( 1 , 1 ) = U ( I ) 

YTPLOT ( I , 2 ) = F ( I , J T E ) 

YTPLOT ( 1 , 3 ) = F ( I , J F ) 

Y T P L O T ( I , 4 ) = F ( I , J O X ) 

I F ( M O D E L . L E . 2 ) GO TO 1073 

YTPLOT(1 , 5 ) =EMU ( I ) 

Y T P L O T ( 1 , 6 ) = F ( I , J E L ) 

Y T P L O T ( I , 7 ) = F ( I , J 2 ) 

Y T P L O T ( 1 , 8 ) = F ( I , J K ) 

C Y T P L O T ( 1 , 9 ) = O U T ( 11 ) ABOVE 

1098 FORMAT(1H , 1 3 , 1 P 1 2 E 1 0 . 2 ) 

1099 FORMAT(1H0 ,3H I , 1 2 ( 2 X , A 8 ) ) 

1073 CONTINUE 

C CROSS-STREAM PLOT OUTPUT 

W R I T E ( 6 , 1 0 9 6 ) X U , I S T E P 

1096 FORMAT(19H1CROSS-STREAM P L O T , , 4 H X U = , 1 P E 1 0 . 3 , 7 H I S T E P = , I 4 ) 

C 

CHAPTER F . RETURN OR TERMINATE 

1050 I F ( I F I N . E Q . 1 ) RETURN 

W R I T E ( 6 , 1 1 2 ) I S T E P , L A S T E P , X U , X U L A S T , I F I N 

112 FORMAT(14H0TERMINATED A T / / 7 H I S T E P = , I 5 , 8 H L A S T E P = , I 5 , 

1 4H X U = , 1 P E 1 1 . 3 , 8 H X U L A S T = , E l l . 3 , 6 H I F I N = , I 3 ) 

I F ( I L P L O T . E Q . 1 ) RETURN 

C 

C DOWNSTREAM PLOT OUTPUT 

W R I T E ( 6 , 1 0 5 4 ) X U , I S T E P 

1054 FORMAT(18H1DOWN-STREAM P L O T , , 4 H X U = , 1 P E 1 0 . 3 , 7 H I S T E P = , I 4 ) 

RETURN 

C 

END 
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SUBROUTINE DEMO 

$INCLUDE 9 , C O M A l . F T N 

$INCLUDE 9 ,COMB.FTN 

C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

ENTRY DEMOC 
Q******** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

DO 3 L=1 ,NAGE 

DAGE(L )=AGE ( L + 1 ) - A G E ( L ) 

AGEC (L ) =AGE (L ) + 0 . 5 *DAGE (L ) 

3 R E C D A ( L ) = l . / D A G E ( L ) 

AGE2=AGE (2 ) 

J A 1 P 1 = J A 1 + 1 

JA1M1=JA1—1 

RETURN 
Q********** ********t******************************************* ******** 

ENTRY DEMOS 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ********************************* 

c CALCULATION OF ME/MO 

C CALCULATION OF FOLD FORMATION RATE BASED 

C ON DIFFERENT ASSUMPTIONS ABOUT THE D ISTR IBUT ION 

C ACROSS THE BOUNDARY LAYER 

C MODFOR=l EXPONENTIAL D ISTR IBUT ION 

C MODFOR=2 L INEAR D ISTR IBUT ION 

C MODFOR=3 VELOCITY GRADIENT PROFILE D ISTR IBUT ION 

C MODFOR=4 VELOCITY PROF ILE D ISTR IBUT ION 

C MODFOR=5 THETA D ISTR IBUT ION 

C OTHER D ISTR IBUT ION CAN BE INSERTED HERE 

SUM1=0. 

SUM2=0. 

FOLM0=0 •5 

C ARRAY PA0 I S USED HERE AS TEMPORAY STORAGE FOR THE 

C AREA OF EACH CELL . 

PA0 (2 ) = 0 . 5 * (Y (2 )+Y (3 ) ) *R (2 ) 

PA0 (NM1) = (Y (N) -0 . 5 * (Y (NM1) +Y (NM2) ) ) *R (NM1) 

DO 40 1=3 ,NM2 

40 PA0 ( I ) = 0 . 5 * (Y (1+1) -Y ( 1-1 ) ) * R ( I ) 

G O T O ( 4 1 , 4 2 , 4 3 , 4 4 , 4 5 ) , M O D F O R 

C EXPONENTIAL D I STR IBUT ION OF INJECTED MASS 

41 DO 410 1=2 ,NM1 

O M I = O M ( I ) 

SUM1 =SUM1+RHO ( I ) * ( 1 . -OMI ) *EXP (-OMI ) *PA0 ( I ) *XM0 ( I ) 

410 S U M 2 = S U M 2 + R H O ( I ) * O M I * E X P ( O M I - 1 . ) * P A 0 ( I ) * X M 0 ( I ) 

ALFA1=RMI /SUM1 

ALFA2=-RME/SUM2 

DO 411 1=2 ,NM1 

OMI=OM(I) 
411 PA0 ( I ) =RHO ( I ) * (ALFA1* ( 1 . -OMI ) *EXP ( -OMI ) +ALFA2*OMI *EXP ( O M I - 1 . ) ) 

GO TO 49 

C L INEAR D I S T R I B U T I O N OF FOLD FORMATION 

42 DO 420 1=2 ,NM1 

S U M 1 = S U M 1 + R H 0 ( I ) * ( 1 . - O M ( I ) ) * P A 0 ( I ) * X M 0 ( I ) 
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420 SUM2=SUM2+RH0(I)*0M(Ij *PA0 (I)*XM0(I) 
ALFA1=RMI/SUM1 
ALFA2=-RME/SUM2 
DO 421 1 = 2 , N M 1 

421 P A 0 ( I ) = R H O ( I ) * ( A L F A 1 * ( 1 . - O M ( I ) ) + A L F A 2 * O M ( I ) ) 
G O T O 49 

C V E L O C I T Y G R A D I E N T R A T E 
43 D O 4 3 0 1 = 2 , N M 1 

D U D Y B (I) = A B S (U (1+1) - U (1-1) ) /(Y (1+1) - Y (1-1) ) 
430 S U M 1 = S U M 1 + R H 0 ( I ) * D U D Y B ( I ) * P A 0 ( I ) * X M 0 (I) 

A L F A 1 = ( R M I - R M E ) / S U M 1 
DO 431 1 = 2 , N M 1 

431 P A 0 ( I ) = R H O ( I ) * A L F A 1 * D U D Y B ( I ) 
G O T O 49 

C VELOCITY PROFILE DISTRIBUTION 
44 D O 4 4 0 1 = 2 , N M 1 

440 S U M 1 = S U M 1 + R H O ( I ) * U ( I ) * P A 0 ( I ) * X M 0 (I) 
A L F A 1 = ( R M I - R M E ) / S U M 1 
D O 4 4 1 1 = 2 , N M 1 

441 P A 0 ( I ) = R H O ( I ) * A L F A 1 * U ( I ) 
G O T O 49 

C T H E T A D I S T R I B U T I O N R A T E 
45 O M S T A R = 0 • 5 

I F ( I S T E P . G T . 1 ) O M S T A R = R M I / ( R M I - R M E + T I N Y ) 
TEMI=(F(1,JH)-.5*U(1)**2)/CPR(1) 
TEMIP1=(F(2,JH)-.5*U(2)**2)/CPR(1) 
T T I = ( T D - T E M I ) / ( T D - T A ) 
T T I P 1 = ( T D - T E M I P 1 ) / ( T D - T A ) 
SUMM0=0. 
DO 4 5 0 1 = 2 , N M 1 
TTIM1=TTI 
T T I = T T I P 1 
T E M I M 1 = T E M I 
T E M I = T E M I P 1 
TEMIP1=(F(1+1,JH)—.5*U(1+1)**2)/CPR(1) 
TTIP1=(TD-TEMIP1)/(TD-TA) 
T P R I M E = 0 • 7 3 5 * F ( I , J E L ) * A B S ( T T I P 1 - T T I M 1 ) / ( Y ( I + 1 ) - Y ( I - 1 ) ) 
T P R I M E = A M I N 1 ( T P R I M E , 1 . - T T I , T T I ) + T I N Y 

C I F ( O M ( I ) . L T . O M S T A R ) G O T O 1 0 
Y S T A R = Y ( I ) / Y (N) 
I F ( Y S T A R . L T . O M S T A R ) G O T O 10 
TR E E N G = T T I + T PR IM E 
T F R E S H = 0 • 
G O T O 11 

10 T R E E N G = A B S ( T T I - T P R I M E ) 
T F R E S H = 1 . 

11 X M 0 ( I ) = ( T R E E N G - T T I ) / ( T R E E N G - T F R E S H ) 
450 S U M L = S U M L + R H O ( I ) * X M 0 ( I ) * P A 0 ( I ) 

A L F A 1 = ( R M I - R M E ) / ( F O L M 0 * S U M 1 ) 
DO 451 1 = 2 , N M 1 

451 P A 0 ( I ) = R H O ( I ) * A L F A 1 * X M 0 ( I ) 
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49 CONTINUE 

RETURN 
(2********************************************************************* 

ENTRY DEMO2 
g * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

I F ( I F I N . E Q . 2 ) GO TO 50 

I F ( I S T E P . L E . 1 . O R . M O D ( I S T E P , N S T A T ) . N E . 0 ) GO TO 70 

50 DO 51 J = 1 , N A G E 

DO 51 1=2 ,NM1 

P A ( I , J ) = F ( I , J + J A 1 — 1 ) 

51 CONTINUE 

70 CONTINUE 

RETURN 

END 



320 

S U B R O U T I N E B I O G 
$ I N C L U D E 9 , C O M A L . F T N 
$ I N C L U D E 9 F C O M B . F T N 
Q********************************** ******* 

E N T R Y B I O C 
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

C T H E B I O G R A P H I C A N A L Y S I S IS P E R F O R M E D 
C IN T H I S S U B R O U T I N E 
C T H E F O L L O W I N G " O P E N " S T A T E M E N T IS V A L I D F O R 
C P E R K I N - E L M E R 3 2 2 0 C O M P U T E R O N L Y . IT S H O U L D 
C B E M O D I F I E D IF O T H E R M A C H I N E IS U S E D . 
C T H E R E C O R D L E N G T H ( R E C L ) S H O U L D B E E Q U A L T O 
C O R G R E A T E R T H A N T H E N U M B E R OF E L E M E N T S IN 
C T H E A R R A Y (TO B E S T O R E D ) M U L T I P L I E D BY F O U R . 

O P E N ( 7 , F I L E = " F O L D " , A C C E S S = " D I R E C T " , S T A T U S = " U N K N O W N " , 
1 R E C L = 6 4 0 , C O U N T B Y = " R E C O R D " , F O R M = " U N F O R M A T T E D " ) 
P I = 3 . 1 4 1 5 9 6 
N D I F O M = 2 0 
F S T O I C = 0 . 0 2 8 2 
D T S T = 2 2 7 6 . 
T S T = D T S T 
P D G S C N = P R E S S / G A S C O N 
R H O A I R = P D G S C N * W P R / T D 
R H O F U L = P D G S C N * W F U / T A 
W O X P R = ( W O X - W P R ) * 0 . 2 3 2 
W F U P R = W F U — W P R 
F S 1 = 1 • - F S T O I C 
V I S D P R = V I S M I X / P R L A M 
T W O D P I = 2 . / P I 
P H I D = O X D - F U D * S T O I C H 
T 2 = 0 . 5 / S T O I C H 
T 3 = L . / ( P H I B — P H I D + T I N Y ) 
T 4 = - P H I D * T 3 
0 X D 1 = 1 . - O X D 
R E T U R N 

C**************************************************************** 
E N T R Y B I O S 

C**************************************************************** 
O M S T A R = 0 . 
I F ( I S T E P . G T . 1 ) O M S T A R = R M I / ( R M I - R M E + T I N Y ) 

C O M E G A - S T A R D E V I D E S T H E S H E A R L A Y E R I N T O T W O P A R T S 
C OF D I F F R E N T E N T R A I N E D F R E S H M A S S . IT H A S T O B E C A L C U L A T E D 
C IN C O N S I S T E N T M A N N E R W I T H F O L D F O R M A T I O N R A T E . 

F F I = — ( F ( 1 F J P ) — . 2 3 2 ) / ( P H I D — P H I B ) 
F F I P L = — ( F ( 2 , J P ) - 0 . 2 3 2 ) / ( P H I D - P H I B ) 

C L O O P FOR A L L L A Y E R G R I D P O I N T S 
Y 2 = Y ( 2 ) 
I S T E P 1 = I S T E P + 1 
DO 1 1 0 1 = 1 , N 
DO 1 1 0 K = 1 , N P D F 
A V P F A ( I , K ) = 0 . 
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A V P D F ( I , K ) = 0 . 
1 1 0 C O N T I N U E 

DO 1 0 0 1 = 2 , N M 1 
C C A L C U L A T I O N O F F - P R I M E 

E L I = A M A X 1 ( Y 2 , F ( I , J E L ) ) 
F F I M 1 = F F I 
F F I = F F I P 1 
F F I P 1 = - ( F ( 1 + 1 , J P ) - 0 • 2 3 2 ) / ( P H I D - P H I B ) 
F P R I M E = E M P C 1 * E L I * A B S ( F F I P 1 — F F I M 1 ) / ( Y ( I + L ) - Y ( 1 - 1 ) ) 
I F ( F P R I M E . G T . 0 . 0 0 1 . A N D . F F I . E Q . 1 . ) F F I = 0 . 5 * ( F F I P L + F F I M L ) 
I F ( F P R I M E . G T . 0 . 0 0 1 . A N D . F F I . E Q . 0 . ) F F I = 0 . 5 * ( F F I P L + F F I M L ) 
F P R I M E = A M I N 1 ( F P R I M E , L . - F F I ) + T I N Y 
I F ( O M ( I ) . L T . O M S T A R ) G O T O 10 

C D E T E R M I N A T I O N OF F R E S H F A N D R E E N G U L F E D F 
F F R E S H = 0 . 
F R E E N G = F F I + F P R I M E 
R H O F S H = R H O A I R 
G O T O 11 

10 F R E E N G = A B S ( F F I - F P R I M E ) 
F F R E S H = 1 . 
R H O F S H = R H O F U L 

C D E T E R M I N A T I O N O F M 0 V A L U E 
11 F O L M 0 = ( F R E E N G - F F I ) / ( F R E E N G - F F R E S H + T I N Y ) 

X M 0 ( I ) = F O L M 0 
A V R A T 1 ( I ) = 0 . 
A V R A T 2 ( I ) = 0 . 
A V F U (I) = 0 . 
A V O X (I) = 0 . 
A V P R (I) = 0 . 
A V T E M (I) = 0 • 
A V T E M S ( I ) = 0 . 
A V F U S ( I ) = 0 . 
A V O X S ( I ) = 0 . 
A V P R S ( I ) = 0 . 
R B U R N (I) = 0 . 
S U M P D F ( I ) = 0 . 
A V F F I S ( I ) = 0 . 
P O P A G E (I)=0. 
C X F O R = 0 . 5 * ( U M A X + U M I N ) / U M A X 
D U D Y B ( I ) = A B S ( U ( I + L ) - U ( 1 - 1 ) ) / ( Y ( I + L ) - Y ( 1 - 1 ) ) 

C D E T E R M I N A T I O N OF F O L D D I V I S I O N 
C D E N S I T Y O F R E E N G U L F E D M A S S 

I F ( F R E E N G . G E • F S T O I C ) G O T O 17 
C A I R S I D E 

R H O R E = P D G S C N * ( W O X P R * ( F S T O I C - F R E E N G ) / F S T O I C + W P R ) / ( T D + F R E E N G / F S T O I C * 
1 ( T S T - T D ) ) 
G O T O 19 

C F U E L S I D E 
17 R H O R E = P D G S C N * ( W F U P R * ( F R E E N G - F S T O I C ) / F S 1 + W P R ) / ( T A + ( 1 . - F R E E N G ) / F S 1 * 

1 ( T S T - T A ) ) 
19 C O N T I N U E 
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C F O L D D I S T A N C E S M E A S U R E D F R O M T H E F R E S H S I D E 
H F 0 L = E M P C 2 * E L I 
H D I V F = R H O R E * F O L M 0 * H F O L / ( R H O F S H + R H O R E * F O L M 0 - R H O F S H * F O L M 0 ) 
H F R E S H = H D I V F 
R H O D I V = R H O F S H 
H R E E N G = H F O L - H F R E S H 
O M D I V F = F O L M 0 

C L E F T P A R T OF T H E F O L D H A S T H E H I G H E R F - V A L U E 
I F ( F F R E S H . E Q . 1 . ) G O T O 24 
R H O D I V = R H O R E 
H D I V F = H F O L - H D I V F 
H F R E S H = H F O L - H D I V F 
H R E E N G = H F O L - H F R E S H 
O M D I V F = L • — F O L M 0 

24 R H O A V = ( R H O F S H * H F R E S H + R H O R E * H R E E N G ) / H F O L 
I F ( F R E E N G • L E . F S T O I C ) G O T O 25 
T R E E N G = T A + ( 1 . - F R E E N G ) / F S 1 * ( T S T - T A ) 
T A V = ( R H O F S H * T A * H F R E S H + R H O R E * T R E E N G * H R E E N G ) / ( R H O A V * H F O L ) 
G O T O 26 

25 T R E E N G = T D + F R E E N G / F S T O I C * ( T S T - T D ) 
T A V = ( R H O F S H * T D * H F R E S H + R H O R E * T R E E N G * H R E E N G ) / ( R H O A V * H F O L ) 

26 D I F C O F = V I S D P R * S Q R T ( T A V ) / R H O A V 
R S T R = E M P C 3 * D U D Y B ( I ) + T I N Y 
O M D I V F = H D I V F * R H O D I V / ( H F O L * R H O A V ) 
A D I F = D I F C O F / ( 2 . * H F O L * H F O L ) ' 

C S T O R E T H E F O L D C H A R A C T E R I S T I C S A T B I R T H P L A C E 
C F O R E A C H P O I N T A C R O S S T H E J E T 

A R R A Y (1,1) = H F O L 
A R R A Y ( 1 , 2 ) = O M D I V F 
A R R A Y ( I , 3 ) = F F R E S H 
A R R A Y ( 1 , 4 ) = F R E E N G 
A R R A Y ( I R 5 ) = R S T R 
A R R A Y ( 1 , 6 ) = F F I 
A R R A Y ( I , 7 ) = A D I F 
A R R A Y ( 1 , 8 ) = U ( I ) 

1 0 0 C O N T I N U E 
X M 0 (1) = X M 0 (2) 
X M 0 (N) = X M 0 (NML) 
I F ( K I N . N E . 3 ) G O T O 1 0 1 0 
D O 101 J J = 1 , 8 
A R R A Y ( 1 , J J ) = A R R A Y ( 2 , J J ) 

101 C O N T I N U E 
G O T O 1 0 2 0 

1 0 1 0 A R R A Y ( 1 , 1 ) = A R R A Y ( 2 , 1 ) 
A R R A Y ( 1 , 2 ) = A R R A Y ( 2 , 2 ) 
A R R A Y ( 1 , 3 ) = 1 . 
A R R A Y ( 1 , 4 ) = 1 . 
A R R A Y ( 1 , 5 ) = A R R A Y ( 2 , 5 ) 
A R R A Y ( 1 , 6 ) = 1 . 
A R R A Y ( 1 , 7 ) = A R R A Y ( 2 , 7 ) 



323 

A R R A Y ( 1 , 8 ) = A R R A Y ( 2 , 8 ) 

1 020 A R R A Y ( N , 1 ) = A R R A Y ( N M 1 , 1 ) 

ARRAY (N , 2 ) = A R R A Y ( N M 1 , 2 ) 

A R R A Y ( N , 3 ) = 0 . 

A R R A Y ( N , 4 ) = 0 . 

ARRAY (N , 5 ) =ARRAY (NM1, 5) 

ARRAY (N , 6) = 0 . 

A R R A Y ( N , 7 ) = A R R A Y ( N M 1 , 7 ) 

A R R A Y ( N , 8 ) = U D 

DO 1030 1=2 ,NM1 

F V A L ( I ) = — ( F ( I , J P ) - 0 . 2 3 2 ) / ( P H I D - P H I B ) 

1030 F N 2 ( I ) = O X D l * ( 1 . - F V A L ( I ) ) 

C STORE THE FOLD INFORMATION INTO THE TAPE 

C THE MASS STORAGE F A C I L I T I E S I S EMPLOYED 

C HERE TO REDUCE THE IN-CORE STORAGE 

W R I T E ( 7 , R E C = I S T E P 1 ) ARRAY 

X P ( I S T E P 1 ) = X D 

KBORN= ISTEP l 

C LOOP ON AGES STARTS NOW 

DO 1000 IA=1 ,NAGE 

I F ( I A . G T . l ) GO TO 800 

I B O R N l = l 

GO TO 805 

800 I B O R N l = l 

X F O R = X D * ( l . - A G E C ( I A ) ) 

KSUM=ISTEP1+1 

C SEARCH FOR THE BIRTH PLACE OF FOLDS AT 

C PARTICULAR AGE IN THE POPULATION 

DO 8 0 1 K K = 1 , I S T E P 1 

K=KSUM-KK 

I F ( X F O R . G T . X P ( K ) ) GO TO 802 

801 CONTINUE 

802 KBORN=K+l 

C READ THE REQUIRED INFORMATION FROM THE TAPE 

I F ( K B O R N . L T . K B O R N P ) READ(7 ,REC=KBORN) ARRAY 

8 0 5 KBORNP=KBORN 

DO 900 1=2 ,NM1 

R A T E A 1 ( I ) = 0 . 

RATEA2 ( I ) = 0 . 

F U A V ( I ) = 0 • 

OXAV ( I ) =0 . 

PRAV ( I ) =0 . 

T E M A V ( I ) = 0 . 

T E M A V S ( I ) = 0 . 

F U A V S ( I ) = 0 . 

O X A V S ( I ) = 0 . 

PRAVS ( I ) = 0 . 

F F I A V S ( I ) = 0 . 

DO 903 L = 2 , N 

I F ( F V A L ( I ) . G T . A R R A Y ( L , 6 ) ) GO TO 904 

903 CONTINUE 
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904 I B O R N = L — I B 0 R N 1 
C T H E L I N E A R I N T E R P O L A T I O N P R O C E D U R E IS U S E D H E R E 
C T O D E T E R M I N E T H E F O L D C H A R A C T E R I S T I C S A T B I R T H P L A C E 

F A C T O R = ( A R R A Y ( I B O R N , 6 ) - F V A L ( I ) ) / ( A R R A Y ( I B O R N , 6 ) 
1 - A R R A Y ( I B O R N + 1 , 6 ) + T I N Y ) 
H F O L = ( 1 . - F A C T O R ) * A R R A Y ( I B O R N , 1 ) + F A C T O R * 

1 A R R A Y ( I B O R N + 1 , 1 ) 
O M D I V F = ( 1 . - F A C T O R ) * A R R A Y ( I B O R N , 2 ) + F A C T O R * 

1 A R R A Y ( I B O R N + 1 , 2 ) 
F F R E S H = ( 1 . - F A C T O R ) * A R R A Y ( I B O R N , 3 ) + F A C T O R * 

1 A R R A Y ( I B O R N + 1 , 3 ) 
F R E E N G = ( 1 . - F A C T O R ) * A R R A Y ( I B O R N , 4 ) + F A C T O R * 

1 A R R A Y ( I B O R N + 1 , 4 ) 
R S T R = ( A R R A Y ( I B O R N , 5 ) + E M P C 3 * D U D Y B ( I ) ) / 2 . 
A D I F = ( 1 . - F A C T O R ) * A R R A Y ( I B O R N , 7 ) + F A C T O R * 

1 A R R A Y ( I B O R N + 1 , 7 ) 
A D I F = A D I F / R S T R 
F F I = F V A L (I) 
U 8 0 R N = ( 1 . - F A C T O R ) * A R R A Y ( I B O R N , 8 ) + F A C T O R * A R R A Y ( I B O R N + 1 , 8 ) 

C T H E " P R O F I L E " M E T H O D IS E M P L O Y E D H E R E T O C A L C U L A T E 
C T H E D I F F U S I O N P R O C E S S I N S I D E E A C H F O L D . 
C T H E E V O L U T I O N O F T H E S I N U S O I D A L P R O F I L E IS 
C D E V I D E D I N T O T H R E E S E P A R A T E S T A G E S . 
C C A L C U L A T I O N OF T I M E S E P A R A T I N G T H R E E S T A G E S 

F B A R 1 = 0 . 5 * ( F F R E S H + F R E E N G ) 
F A M P = 0 • 5 * A B S ( F F R E S H - F R E E N G ) 
F 1 = A M A X 1 ( F F R E S H , F R E E N G ) 
F 2 = A M I N 1 ( F F R E S H , F R E E N G ) 
T E R M = A M I N 1 ( O M D I V F , 1 . - O M D I V F ) * * 2 
R E C A P = 1 . / ( A D I F * P I + 1 . E - 3 0 ) 
T I M E 1 = ( F B A R 1 - T W 0 D P I * F A M P - F 2 ) * T E R M * R E C A P / ( F A M P + 1 . E - 3 0 ) 
T I M E 2 = ( . 2 5 - T E R M ) * R E C A P + T I M E 1 
U F O L D = 0 . 5 * ( U B O R N + U ( I ) ) 
A G E D I M = A G E C ( I A ) * X D / U M I N 
A R G U M = A M I N 1 ( 2 • * R S T R * A G E D I M , 1 5 0 . ) 
A G E N D = E X P ( A R G U M ) - 1 . 
I F ( T I M E 1 . L T . A G E N D ) G O T O 2 0 

C T H E D I F U S I O N IN F O L D S T O P S D U R I N G T H E F I R S T S T A G E 
I S T A G E = 1 
D E L A J 2 = A D I F * F A M P * P I * A G E N D / ( F B A R L - T W O D P I * F A M P — F 2 + 1 • E — 3 0 ) 
D E L A J = S Q R T ( D E L A J 2 ) 
O M L E F T = O M D I V F - D E L A J 
O M R I G T = O M D I V F + D E L A J 
D D E L A J = D E L A J * 2 . / F L O A T ( N D I F O M ) 
I F ( F L . G T . F S T O I C ) G O T O 1 0 2 
F U L = 0 . 
O X L = O X D * ( F S T O I C - F 1 ) / F S T O I C 
P R O L = L . - F U L - O X L - ( 1 . - F L ) * O X D L 
E N T H L = E N T H A * F 1 + E N T H D * ( 1 . - F L ) 
C P B O R N = F U L * C F U ( I ) + O X L * C O X ( I ) + ( 1 . - F L ) * O X D L * C N 2 ( I ) + 

1 ( 1 . - F U L - O X L - ( 1 . - F L ) * O X D L ) * C H 2 0 ( I ) 
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TEML=(ENTHL-FUL*HFU)/CPBORN 

GO TO 103 

102 F U L = F U A * ( F l - F S T O I C ) / F S l 

OXL=0• 

P R 0 L = 1 . - F U L - O X L - ( 1 . - F l ) * O X D l 

ENTHL=ENTHA*F1+ENTHD*(1 .-F1) 

C P B O R N = F U L * C F U ( I ) + O X L * C O X ( I ) + ( 1 . - F l ) * O X D l * C N 2 ( I ) + 

1 ( 1 . - F U L - O X L - ( 1 . - F l ) * O X D l ) * C H 2 0 ( I ) 

TEML=(ENTHL-FUL*HFU)/CPBORN 

103 CONTINUE 

F U A V ( I ) = F U A V ( I )+FUL*OMLEFT 

O X A V ( I ) = O X A V ( I )+OXL*OMLEFT 

P R A V ( I ) = P R A V ( I ) + P R O L * O M L E F T 

TEMAV( I )=TEMAV( I )+TEML *OMLEFT 

TEMAVS( I )=TEMAVS( I )+TEML*TEML*OMLEFT 

F U A V S ( I ) = F U A V S ( I ) + F U L * F U L * O M L E F T 

O X A V S ( I ) = O X A V S ( I ) + O X L * O X L * O M L E F T 

P R A V S ( I ) = P R A V S ( I ) + P R O L * P R O L * O M L E F T 

F F I A V S ( I ) = F F I A V S ( I ) + F 1 * F 1 * 0 M L E F T 

I F ( F 2 . G T • F S T O I C ) GO TO 106 

FUR=0 . 

O X R = O X D * ( F S T O I C - F 2 ) / F S T O I C 

P R O R = l . — F U R — O X R — ( 1 . - F 2 ) * O X D l 

ENTHR=ENTHA*F2+ENTHD*(1 .-F2) 

C P B O R N = F U R * C F U ( I ) + O X R * C O X ( I ) + ( 1 . - F 2 ) * O X D l * C N 2 ( I ) + 

1 ( 1 , - F U R - O X R - ( 1 . - F 2 ) * O X D l ) * C H 2 0 ( I ) 

TEMR=(ENTHR-FUR*HFU)/CPBORN 

GO TO 107 

106 F U R = F U A * ( F 2 - F S T O I C ) / F S 1 

OXR=0 . 

P R O R = l . - F U R - O X R - ( 1 . - F 2 ) * O X D l 
ENTHR=ENTHA*F2+ENTHD*(1 .-F2) 

C P B O R N = F U R * C F U ( I ) + O X R * C O X ( I ) + ( 1 . - F 2 ) * O X D l * C N 2 ( I ) + 

1 ( 1 . - F U R - O X R - ( 1 . - F 2 ) * O X D l ) * C H 2 0 ( I ) 

TEMR=(ENTHR-FUR*HFU)/CPBORN 

107 CONTINUE 

O M R l = l • - O M R I G T 

F U A V ( I ) = F U A V ( I ) + F U R * O M R l 

O X A V ( I ) = O X A V ( I ) + O X R * O M R l 

P R A V ( I ) = P R A V ( I ) + P R O R * O M R l 

TEMAV( I )=TEMAV( I )+TEMR*OMR l 

TEMAVS( I )-TEMAVS ( I )+TEMR*TEMR*OMRl 

F U A V S ( I ) = F U A V S ( I ) + F U R * F U R * O M R l 

O X A V S ( I ) = O X A V S ( I ) + Q X R * O X R * O M R l 

P R A V S ( I ) = P R A V S ( I ) + P R O R * P R O R * O M R l 

F F I A V S ( I ) = F F I A V S ( I ) + F 2 * F 2 * O M R l 

D E N O M l = 2 . * D E L A J / P I 

DO 108 1 0 = 1 t N D I F O M 

OMA ( 1 0 ) = D D E L A J * 0 . 5 * ( F L O A T ( 1 0 - 1 ) + F L O A T ( 1 0 ) ) 

F S R ( 1 0 ) = F B A R 1 + F A M P * S I N ( ( D E L A J - O M A ( 1 0 ) ) / ( D E N 0 M 1 + 1 . E - 3 0 ) ) 

I F ( F S R ( I O ) . G T . F S T O I C ) GO TO 104 
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F U M ( 1 0 ) = 0 . 
O X M ( 1 0 ) = O X D * ( F S T O I C - F S R ( 1 0 ) ) / F S T O I C 
P R O M ( 1 0 ) = 1 . — F U M ( 1 0 ) — O X M ( 1 0 ) — ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 
E N T H F O ( 1 0 ) = E N T H A * F S R ( 1 0 ) + E N T H D * ( 1 . - F S R ( 1 0 ) ) 
C P B O R N = F U M ( 1 0 ) * C F U ( I ) + O X M ( 1 0 ) * C O X ( I ) + ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 * C N 2 ( I ) + 

1 ( 1 . — F U M ( 1 0 ) — O X M ( 1 0 ) — ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 ) * C H 2 0 ( I ) 
T E M M ( 1 0 ) = ( E N T H F O ( 1 0 ) — F U M ( 1 0 ) * H F U ) / C P B O R N 
G O T O 1 0 5 

1 0 4 F U M ( 1 0 ) = F U A * ( F S R ( 1 0 ) - F S T O I C ) / F S 1 
O X M ( 1 0 ) = 0 . 
P R O M (10) = 1 . - F U M ( 1 0 ) - O X M ( 1 0 ) - ( 1 . - F S R (10)) * 0 X D 1 
E N T H F O (10) = E N T H A * F S R ( I O J + E N T H D * (1. - F S R (10) ) 
C P B O R N = F U M ( 1 0 ) * C F U ( I ) + O X M ( 1 0 ) * C O X ( I ) + ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 * C N 2 ( I ) + 

1 ( 1 . - F U M ( 1 0 ) - O X M ( 1 0 ) — ( 1 • — F S R ( 1 0 ) ) * 0 X D 1 ) * C H 2 0 ( I ) 
T E M M ( 1 0 ) = ( E N T H F O ( 1 0 ) - F U M ( 1 0 ) * H F U ) / C P B O R N 

105 C O N T I N U E 
F U A V ( I ) = F U A V ( I ) + F U M ( 1 0 ) * D D E L A J 
O X A V ( I ) = O X A V ( I ) + 0 X M ( 1 0 ) * D D E L A J 
P R A V ( I ) = P R A V ( I ) + P R O M ( 1 0 ) * D D E L A J 
T E M A V ( I ) = T E M A V ( I ) + T E M M ( 1 0 ) * D D E L A J 
T E M A V S ( I ) = T E M A V S ( I ) + T E M M ( I O ) * T E M M ( 1 0 ) * D D E L A J 
F U A V S ( I ) = F U A V S ( I ) + F U M ( 1 0 ) * F U M ( 1 0 ) * D D E L A J 
O X A V S ( I ) = O X A V S ( I ) + O X M ( 1 0 ) * O X M ( 1 0 ) * D D E L A J 
P R A V S ( I ) = P R A V S ( I ) + P R 0 M ( 1 0 ) * P R O M ( 1 0 ) * D D E L A J 
F F I A V S ( I ) = F F I A V S ( I ) + F S R ( 1 0 ) * F S R ( 1 0 ) * D D E L A J 

1 0 8 C O N T I N U E 
G O T O 50 

20 I F ( O M D I V F . E Q . 0 . 5 ) G O T O 3 0 
I F ( T I M E 2 . L T . A G E N D ) G O T O 3 0 

C T H E D I F F U S I O N IN F O L D S T O P S D U R I N G T H E S E C O N D S T A G E 
D E L A J 2 = T E R M + A D I F * P I * ( A G E N D - T I M E 1 ) 
D E L A J = S Q R T ( D E L A J 2 ) 
F A M P = A B S ( F F R E S H - F R E E N G ) * S Q R T ( T E R M ) / ( 2 . * D E L A J + 1 . E - 3 0 ) 
D D E L A J = 2 . * D E L A J / F L O A T ( N D I F O M ) 
D E N 0 M 2 = 2 . * D E L A J / P I 
I F ( O M D I V F . L T . 0 . 5 ) G O T O 2 2 
I S T A G E = 2 
0 M L E F T = 1 • - 2 . * D E L A J 
I F ( F L . G T . F S T O I C ) G O T O 2 0 2 
F U L = 0 . 
O X L = O X D * ( F S T 0 I C - F 1 ) / F S T O I C 
P R 0 L = 1 . - F U L - O X L - ( 1 . - F 1 ) * 0 X D 1 
E N T H L = E N T H A * F 1 + E N T H D * ( 1 . - F 1 ) 
C P B O R N = F U L * C F U ( I ) + O X L * C O X ( I ) + ( 1 . - F 1 ) * 0 X D 1 * C N 2 ( I ) + 

1 (1. — F U L — O X L — (1 • — F 1 ) * 0 X D 1 ) * C H 2 0 (I) 
T E M L = ( E N T H L - F U L * H F U ) / C P B O R N 
G O T O 203 

202 F U L = F U A * ( F 1 - F S T O I C ) / F S 1 
O X L = 0 . 
P R 0 L = 1 . - F U L - O X L - ( 1 . - F 1 ) * 0 X D 1 
E N T H L = E N T H A * F 1 + E N T H D * ( 1 . - F 1 ) 
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C P B O R N = F U L * C F U ( I ) + O X L * C O X ( I ) + ( 1 . - F 1 ) * 0 X D 1 * C N 2 ( I ) + 

1 ( 1 . - F U L - O X L - ( 1 . - F 1 ) * O X D l ) * C H 2 0 ( I ) 

TEML=(ENTHL-FUL*HFU) /CPBORN 

203 CONTINUE 

F U A V ( I ) = F U A V ( I )+FUL*OMLEFT 

OXAV ( I ) =OXAV ( I ) +OXL*OMLEFT 

P R A V ( I ) = P R A V ( I ) + P R O L * O M L E F T 

TEMAV( I ) =TEMAV( I )+TEML*OMLEFT 

TEMAVS( I ) =TEMAVS( I )+TEML*TEML*OMLEFT 

F U A V S ( I ) = F U A V S ( I ) + F U L * F U L * O M L E F T 

O X A V S ( I ) = O X A V S ( I ) + O X L * O X L * O M L E F T 

P R A V S ( I ) = P R A V S ( I ) + P R O L * P R O L * O M L E F T 

F F I A V S ( I ) = F F I A V S ( I ) + F 1 * F 1 * 0 M L E F T 

F B A R 1 = F 1 - F A M P 
DO 21 1 0 = 1 , N D I F O M 

OMA(10 )=DDE LA J * 0 . 5 * ( FLOAT ( 1 0 - 1 ) + F L O A T ( 1 0 ) ) 

F S R ( 1 0 ) = F B A R 1 + F A M P * S I N ( ( D E L A J - O M A ( 1 0 ) ) / ( D E N 0 M 2 + 1 . E - 3 0 ) ) 

I F ( F S R ( I O ) . G T . F S T O I C ) GO TO 204 

F U M ( 1 0 ) = 0 . 

O X M ( 1 0 ) = O X D * ( F S T O I C - F S R ( 1 0 ) ) / F S T O I C 

P R O M ( 1 0 ) = 1 • — F U M ( 1 0 ) — O X M ( 1 0 ) — ( 1 . — F S R ( 1 0 ) ) * 0 X D 1 

E N T H F O ( 1 0 ) = E N T H A * F S R ( 1 0 ) + E N T H D * ( 1 . - F S R ( 1 0 ) ) 

C P B O R N = F U M ( 1 0 ) * C F U ( I ) + O X M ( 1 0 ) * C O X ( I ) + ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 * C N 2 ( I ) + 

1 ( 1 . — F U M ( 1 0 ) - O X M ( 1 0 ) — ( 1 . — F S R ( 1 0 ) ) * 0 X D 1 ) * C H 2 0 ( I ) 

T E M M ( 1 0 ) = ( E N T H F O ( 1 0 ) — F U M ( 1 0 ) * H F U ) / C P B O R N 

GO TO 205 

204 F U M ( 1 0 ) = F U A * ( F S R ( 1 0 ) - F S T O I C ) / F S 1 

O X M ( I O ) = 0 . 

P R O M ( 1 0 ) = 1 . - F U M ( 1 0 ) - O X M ( 1 0 ) - ( l . - F S R ( 1 0 ) ) * 0 X D 1 

ENTHFO ( 1 0 ) =ENTHA*FSR (IO)*+ENTHD* ( 1 . -FSR ( 1 0 ) ) 

CPB0RN=FUM ( 1 0 ) *CFU ( I ) +OXM ( 1 0 ) *COX ( I ) + ( 1 . -FSR ( 1 0 ) ) * 0XD1*CN2 ( I ) + 

1 ( 1 . -FUM ( 1 0 ) -OXM ( 1 0 ) - ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 ) *CH20 ( I ) 

T E M M ( 1 0 ) = ( E N T H F O ( 1 0 ) - F U M ( 1 0 ) * H F U ) / C P B O R N 

2 0 5 CONTINUE 

F U A V ( I ) = F U A V ( I ) + F U M ( 1 0 ) * D D E L A J 

OXAV ( I ) =OXAV ( I ) +OXM ( 1 0 ) *DDELAJ 

P R A V ( I ) = P R A V ( I ) + P R O M ( 1 0 ) * D D E L A J 

T E M A V ( I ) = T E M A V ( I ) + T E M M ( 1 0 ) * D D E L A J 

T E M A V S ( I ) = T E M A V S ( I ) + T E M M ( 1 0 ) * T E M M ( 1 0 ) * D D E L A J 

F U A V S ( I ) = F U A V S ( I ) + F U M ( 1 0 ) * F U M ( 1 0 ) * D D E L A J 

O X A V S ( I ) = O X A V S ( I ) + 0 X M ( 1 0 ) * O X M ( 1 0 ) * D D E L A J 

P R A V S ( I ) = P R A V S ( I J + P R O M ( 1 0 ) * P R O M ( 1 0 ) * D D E L A J 

F F I A V S ( I ) = F F I A V S ( I ) + F S R ( 1 0 ) * F S R ( 1 0 ) * D D E L A J 

21 CONTINUE 

GO TO 50 

22 0 M R I G T = 2 . * D E L A J 

I STAGE=3 

I F ( F 2 . G T . F S T O I C ) GO TO 206 

FUR=0 . 

0 X R = 0 X D * ( F S T 0 I C - F 2 ) / F S T O I C 

P R 0 R = 1 . - F U R - O X R - ( 1 . - F 2 ) * 0 X D 1 
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ENTHR=ENTHA*F2+ENTHD*(1 .-F2) 

C P B O R N = F U R * C F U ( I ) + O X R * C O X ( I ) + ( 1 . - F 2 ) * 0 X D 1 * C N 2 ( I ) + 

1 ( 1 . —FUR—OXR— ( 1 . - F 2 ) * O X D l ) *CH20 ( I ) 

TEMR=(ENTHR-FUR*HFU)/CPBORN 

GO TO 207 

206 F U R = F U A * ( F 2 - F S T O I C ) / F S 1 

OXR=0 . 

P R O R = l . - F U R - O X R - ( 1 . - F 2 ) * O X D l 

ENTHR=ENTHA*F2+ENTHD*(1 .-F2) 

C P B O R N = F U R * C F U ( I ) + O X R * C O X ( I ) + ( 1 . - F 2 ) * O X D l * C N 2 ( I ) + 

1 ( 1 . - F U R - O X R - ( 1 . - F 2 ) * O X D l ) * C H 2 0 ( I ) 

TEMR=(ENTHR-FUR*HFU)/CPBORN 

207 CONTINUE 

O M R l = l • - O M R I G T 

F U A V ( I ) = F U A V ( I ) + F U R * 0 M R 1 

OXAV ( I ) =OXAV ( I ) +OXR*OMRl 

P R A V ( I ) = P R A V ( I ) + P R O R * O M R l 

TEMAV( I ) =TEMAV( I )+TEMR*OMR l 

TEMAVS( I )=TEMAVS( I )+TEMR*TEMR*OMRl 

F U A V S ( I ) = F U A V S ( I ) + F U R * F U R * 0 M R 1 

O X A V S ( I ) = O X A V S ( I ) + O X R * O X R * O M R l 

P R A V S ( I ) = P R A V S ( I ) + P R O R * P R O R * O M R l 

FF IAVS ( I ) = F F I A V S ( I ) + F 2 * F 2 * 0 M R 1 

FBAR2=F2+FAMP 

DO 23 1 0 = 1 , N D I F O M 

O M A ( I O ) = D D E L A J * 0 . 5 * ( F L O A T ( I 0 - 1 ) + F L 0 A T ( 1 0 ) ) 

F S R ( 1 0 ) = F B A R 2 + F A M P * S I N ( ( D E L A J - O M A ( 1 0 ) ) / ( D E N 0 M 2 + 1 . E - 3 0 ) ) 

I F ( F S R ( 1 0 ) . G T . F S T O I C ) GO TO 231 

F U M ( 1 0 ) = 0 . 

O X M ( 1 0 ) = O X D * ( F S T O I C - F S R ( 1 0 ) ) / F S T O I C 

P R O M ( 1 0 ) = 1 . - F U M ( 1 0 ) - O X M ( 1 0 ) - ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 

E N T H F O ( 1 0 ) = E N T H A * F S R ( 1 0 ) + E N T H D * ( 1 . - F S R ( 1 0 ) ) 

C P B O R N = F U M ( 1 0 ) * C F U ( I ) + O X M ( 1 0 ) * C O X ( I ) + ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 * C N 2 ( I ) + 

1 ( 1 . - F U M ( 1 0 ) - O X M ( 1 0 ) - ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 ) * C H 2 0 ( I ) 

T E M M ( 1 0 ) = ( E N T H F O ( 1 0 ) - F U M ( 1 0 ) * H F U ) / C P B O R N 

GO TO 232 

231 F U M ( 1 0 ) = F U A * ( F S R ( 1 0 ) - F S T O I C ) / F S 1 

O X M ( 1 0 ) = 0 . 

P R O M ( 1 0 ) = 1 . - F U M ( 1 0 ) - O X M ( 1 0 ) - ( l . - F S R ( 1 0 ) ) * 0 X D 1 

E N T H F O ( 1 0 ) = E N T H A * F S R ( 1 0 ) + E N T H D * ( 1 . - F S R ( 1 0 ) ) 

C P B O R N = F U M ( 1 0 ) * C F U ( I ) + 0 X M ( 1 0 ) * C 0 X ( I ) + ( 1 . — F S R ( 1 0 ) ) * 0 X D 1 * C N 2 ( I ) + 

1 ( 1 . - F U M ( 1 0 ) - O X M ( 1 0 ) — ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 ) * C H 2 0 ( I ) 

TEMM(10 )= (ENTHFO ( 1 0 ) - F U M ( 1 0 ) * H F U ) / C P B O R N 

232 CONTINUE 

F U A V ( I ) = F U A V ( I ) + F U M ( 1 0 ) * D D E L A J 

OXAV ( I ) =OXAV ( I )+OXM ( 1 0 ) *DDELAJ 

PRAV ( I ) =PRAV ( I ) +PROM ( 1 0 ) *DDELAJ 

T E M A V ( I ) = T E M A V ( I ) + T E M M ( 1 0 ) * D D E L A J 

T E M A V S ( I ) = T E M A V S ( I ) + T E M M ( 1 0 ) * T E M M ( 1 0 ) * D D E L A J 

F U A V S ( I ) = F U A V S ( I ) + F U M ( 1 0 ) * F U M ( 1 0 ) * D D E L A J 

O X A V S ( I ) = O X A V S ( I ) + 0 X M ( 1 0 ) * 0 X M ( 1 0 ) * D D E L A J 
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P R A V S ( I ) = P R A V S ( I ) + P R O M ( 1 0 ) * P R 0 M ( 1 0 ) * D D E L A J 
F F I A V S ( I ) = F F I A V S ( I ) + F S R ( 1 0 ) * F S R ( 1 0 ) * D D E L A J 

23 C O N T I N U E 
G O T O 50 

C T H E D I F F U S I O N IN F O L D S T O P S D U R I N G T H E T H I R D S T A G E 
30 D D E L A J = 1 . / F L O A T ( N D I F O M ) 

I S T A G E = 4 
D E N 0 M 3 = 1 • 
A G E N D = A G E N D - T I M E 2 
A R G UM 3 = A M A X 1 ( - A D I F * P I * P I * A G E N D , - 6 0 . ) 
F A M P = A B S ( F F R E S H - F R F E N G ) * S Q R T ( T E R M ) * E X P ( A R G U M 3 ) / D E N 0 M 3 -

D O 31 1 0 = 1 , N D I F O M 
O M A ( 1 0 ) = D D E LAJ * 0 . 5 * ( F L O A T ( I 0 - 1 ) + F L 0 A T ( 1 0 ) ) 
F S R ( 1 0 ) = F F I + F A M P * S I N ( P I * ( 0 . 5 — O M A ( I O ) ) ) 
I F ( F S R ( I O ) . G T . F S T O I C ) G O T O 311 

F U M ( 1 0 ) = 0 • 
O X M ( I O ) = O X D * ( F S T O I C - F S R ( 1 0 ) ) / F S T O I C 
P R O M ( 1 0 ) = 1 . - F U M ( 1 0 ) - O X M ( 1 0 ) - ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 
E N T H F O ( 1 0 ) = E N T H A * F S R ( 1 0 ) + E N T H D * ( 1 . - F S R ( 1 0 ) ) 
C P B O R N = F U M ( 1 0 ) * C F U ( I ) + O X M ( 1 0 ) * C O X ( I ) + ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 * C N 2 ( I ) + 

1 ( 1 . - F U M ( 1 0 ) - O X M ( 1 0 ) - ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 ) * C H 2 0 ( I ) 
T E M M ( 1 0 ) = ( E N T H F O ( 1 0 ) — F U M ( 1 0 ) * H F U ) / C P B O R N 
G O T O 3 1 2 

3 1 1 F U M ( 1 0 ) = F U A * ( F S R ( 1 0 ) - F S T O I C ) / F S 1 
O X M ( I O ) = 0 . 
P R O M ( 1 0 ) = 1 . - F U M ( 1 0 ) - O X M ( 1 0 ) - ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 
E N T H F O ( 1 0 ) = E N T H A * F S R ( 1 0 ) + E N T H D * ( 1 . - F S R ( 1 0 ) ) • 
C P B O R N = F U M ( 1 0 ) * C F U ( I ) + O X M ( 1 0 ) * C O X ( I ) + ( 1 . - F S R ( 1 0 ) ) * 0 X D 1 * C N 2 ( I ) + 

1 (1 • — F U M ( 1 0 ) - O X M ( 1 0 ) — ( 1 . — F S R ( 1 0 ) ) * 0 X D 1 ) * C H 2 0 ( I ) 
T E M M ( 1 0 ) = ( E N T H F O ( 1 0 ) - F U M ( 1 0 ) * H F U ) / C P B O R N 

3 1 2 C O N T I N U E 
F U A V ( I ) = F U A V ( I ) + F U M ( 1 0 ) * D D E L A J 
O X A V (I) = O X A V (I) + O X M (10) * D D E L A J 
P R A V (I ) = P R A V (I) + P R O M (10) * D D E L A J 
T E M A V ( I ) = T E M A V ( I ) + T E M M ( 1 0 ) * D D E L A J 
T E M A V S ( I ) = T E M A V S ( I ) + T E M M ( 1 0 ) * T E M M ( 1 0 ) * D D E L A J 
F U A V S ( I ) = F U A V S ( I ) + F U M ( 1 0 ) * F U M ( 1 0 ) * D D E L A J 
O X A V S ( I ) = O X A V S ( I ) + O X M ( 1 0 ) * O X M ( 1 0 ) * D D E L A J 
P R A V S ( I ) = P R A V S ( I ) + P R O M ( 1 0 ) * P R O M ( 1 0 ) * D D E L A J 
F F I A V S ( I ) = F F I A V S ( I ) + F S R ( 1 0 ) * F S R ( 1 0 ) * D D E L A J 

31 C O N T I N U E 
50 C O N T I N U E 

C C A L C U L A T I O N O F F O L D - A V E R A G E Q U A N T I T I E S E N D S H E R E 
I F ( I S T E P . G T . 1 ) G O T O 53 
CM IX (I) =F (I, J F ) * C F U (1) +F (I , J O X ) * C O X ( 1 ) + ( 1 . - F ( I , J F ) - F ( I , J O X ) ) 

1 * C P R (1) 
F U U N B T = T 3 * F ( I , J P ) + T 4 
I F ( F U A V ( I ) . G T . F U U N B T ) F U A V ( I ) = F U U N B T 

53 C O N T I N U E 
E X P O = E X P ( - A R R C O N / T E M A V ( I ) ) 
P H I I = ( — F F I * ( P H I D — P H I B ) ) + 0 . 2 3 2 
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F U B R N T = 0 . 5 / S T O I C H * ( A B S ( P H I I ) - P H I I ) 

TERM=-EXPO*OXAV( I ) 

R A T E A 1 ( I ) = T E R M * F U A V ( I ) / ( F U A V ( I ) - F U B R N T + T I N Y ) 

R A T E A 2 ( I ) = - R A T E A l ( I ) * F U B R N T 

C C A L C U L A T I O N OF P O P U L A T I O N A V E R A G E Q U A N T I T I E S 
F D A G E = F ( I , I A + J A 1 - 1 ) * D A G E ( I A ) 

A V R A T 1 ( I ) = A V R A T 1 ( I ) + R A T E A 1 ( I ) * F D A G E 

A V R A T 2 ( I ) = A V R A T 2 ( I ) + R A T E A 2 ( I ) * F D A G E 

AVFU ( I ) =AVFU ( I ) +FUAV ( I ) *FDAGE 

AVOX ( I ) =AVOX ( I ) +OXAV ( I ) *FDAGE 

A V P R ( I ) = A V P R ( I ) + P R A V ( I ) * F D A G E 

A V T E M ( I ) = A V T E M ( I ) + T E M A V ( I ) * F D A G E 

AVTEMS( I ) =AVTEMS ( I ) + T E M A V S ( I ) * F D A G E 

A V F U S ( I ) = A V F U S ( I ) + F U A V S ( I ) * F D A G E 

A V O X S ( I ) = A V O X S ( I ) + O X A V S ( I ) * F D A G E 

A V P R S ( I ) = A V P R S ( I ) + P R A V S ( I ) * F D A G E 

A V F F I S ( I ) = A V F F I S ( I ) + F F I A V S ( I ) * F D A G E 

P O P A G E ( I ) = P O P A G E ( I ) + A G E C ( I A ) * F D A G E 

C CALCULATION OF POPULATION-AVERAGE PDF QUANTIT IES 

C STARTS HERE . 

I F ( I P D F . N E . 1 ) GO TO 411 

I F ( M O D ( I S T E P 1 , N S T A T ) . N E • 0 . A N D . X D . N E . X U L A S T ) GO TO 411 

DO 390 I I = l , N D I F O M 

390 P H I ( I I ) = T E M M ( I I ) 

PHIL=TEML 

PHIR=TEMR 

CALL PDF 

I F ( E M I X . L T . 0 . 9 9 9 ) GO TO 381 

DO 382 K=1 ,NPDFM1 

382 P D F I T ( K ) = 1 . / F L O A T ( N P D F M l ) 

GO TO 383 

3 8 1 DO 380 K = l , N P D F M l 

380 P D F I T ( K ) = P D F 1 ( K ) * P H I D I F 

TOPDF=0 . 

DO 385 K = l , N P D F M l 

385 TOPDF=TOPDF+PDF IT (K ) 

I F ( T O P D F . G T . 0 . 9 5 ) GO TO 383 

DO 386 K = l , N P D F M l 

386 P D F I T ( K ) = l . / F L O A T ( N P D F M l ) 

383 P H I M A A = 2 7 0 0 . 

P H I M I A = 3 0 0 . 

F M A X ( I ) = P H I M A A 

P H I B V A ( 1 ) = P H I M I A 

PHIBVA (NPDF )=PH IMAA 

D P H I = ( P H I M A A - P H I M I A ) / F L O A T ( N P D F M l ) 

DO 330 K = 2 , N P D F M l 

330 P H I B V A ( K ) = D P H I * F L O A T ( K - 1 ) + P H I M I A 

DO 320 K = l r N P D F M l 

320 P D F I T A ( K ) = 0 • 

NPDFM2=NPDF-2 

DO 360 K=1 ,NPDFM2 
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I F ( ( P H I B V ( 1 ) - P H I B V A ( K ) ) * ( P H I B V ( 1 ) - P H I B V A ( K + l ) ) . G T . 0 . ) 

1 GO TO 340 

I F ( ( P H I B V ( 2 ) - P H I B V A ( K ) ) * ( P H I B V ( 2 ) - P H I B V A ( K + l ) ) . L E . 0 . ) 

1 GO TO 280 

F A C 1 = P H I B V ( 2 ) - P H I B V ( 1 ) 

F A C 2 = P H I B V A ( K + l ) - P H I B V ( 1 ) 

P D F I T A ( K ) = P D F I T A ( K ) + P D F I T ( 1 ) * A B S ( F A C 2 / F A C 1 ) 

I F ( A B S ( F A C 2 ) . G T . 0 . ) P D F I T A ( K + l ) = P D F I T A ( K + l ) + P D F I T ( 1 ) * 

1 ( l . - A B S ( F A C 2 / F A C 1 ) ) 

GO TO 340 

280 P D F I T A ( K ) = P D F I T A ( K ) + P D F I T (1 ) 

340 DO 360 11=2 fNPDFM1 

I F ( ( P H I B V ( I I ) - P H I B V A ( K ) ) * ( P H I B V ( I I ) - P H I B V A ( K + l ) ) . G T . 0 . ) 

1 GO TO 360 

I F ( ( P H I B V ( I 1 + 1 ) - P H I B V A ( K ) ) * ( P H I B V ( I I + l ) - P H I B V A ( K + l ) ) . L E . 0 . ) 

1 GO TO 290 

F A C 1 = P H I B V ( I I + l ) - P H I B V ( I I ) 

F A C 2 = P H I B V A ( K + l ) - P H I B V ( I I ) 

PDF ITA (K) =PDF ITA (K) +PDF IT ( 1 1 ) *AB S (FAC 2 / F A C 1 ) 

I F ( A B S ( F A C 2 ) . G T . 0 . ) P D F I T A ( K + l ) = P D F I T A ( K + l ) + P D F I T ( I I ) * 

1 ( l . - A B S ( F A C 2 / F A C 1 ) ) 

GO TO 360 

290 P D F I T A ( K ) = P D F I T A ( K ) + P D F I T ( I I ) 

360 CONTINUE 

DO 370 11=1 f NPDFM1 

I F ( ( P H I B V ( I I ) - P H I B V A ( N P D F M 1 ) ) * ( P H I B V ( I I ) - P H I B V A ( N P D F ) ) . L E . 

1 0 . ) P D F I T A ( N P D F M 1 ) = P D F I T A ( N P D F M 1 ) + P D F I T ( I I ) 

I F ( P H I B V ( I I ) . L T . P H I B V A ( 1 ) ) P D F I T A ( 1 ) = P D F I T A ( 1 ) + 

1 PDF IT ( I I ) 

370 CONTINUE 

DO 410 K = 1 , N P D F M l 

A V P F A ( I , K ) = A V P F A ( I , K ) + P D F I T A ( K ) * F ( I , I A + J A 1 - 1 ) * D A G E ( I A ) 

S U M P D F ( I ) = S U M P D F ( I ) + P D F I T A ( K ) * F ( I , I A + J A 1 - 1 ) * D A G E ( I A ) 

410 A V P D F ( I , K ) = A V P F A ( I , K ) / D P H I 

411 CONTINUE 

900 CONTINUE 

1000 CONTINUE 

C -CALCULATION OF RMS QUANTITIES HERE 

DO 1500 1=2 fNM1 

T F L U ( I ) = A V T E M S ( I ) - A V T E M ( I ) * * 2 

TFLU ( I ) =SQRT (ABS (TFLU ( I ) ) ) 

FUFLU ( I ) =AVFUS ( I ) -AVFU ( I ) * * 2 

F U F L U ( I ) = S Q R T ( A B S ( F U F L U ( I ) ) ) 

O X F L U ( I ) = A V O X S ( I ) - A V O X ( I ) * * 2 

P R F L U ( I ) = A V P R S ( I ) — A V P R ( I ) * * 2 

P R F L U ( I ) = S Q R T ( A B S ( P R F L U ( I ) ) ) 

O X F L U ( I ) = S Q R T ( A B S ( O X F L U ( I ) ) ) 

F R F L U ( I ) = A V F F I S ( I ) - F V A L ( I ) * * 2 

F R F L U ( I ) = S Q R T ( A B S ( F R F L U ( I ) ) ) 

F R F L U ( I ) = F R F L U ( I ) / F V A L ( I ) 

1 500 CONTINUE 
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C C A L C U L A T I O N OF R E A C T I O N R A T E 
DO 2 0 0 0 1 = 2 , N M 1 
F U B R N T = T 2 * ( A B S ( F ( I , J P ) ) - F ( I , J P ) ) 
F U U N B T = T 3 * F ( I , J P ) + T 4 

C M O D I F Y F O R A C C O U N T T H E F U . L T . F U U N B T A S IT IS D O N E IN G E N M I X 
C A P H Y S . 1 7 7 

I F ( F ( I , J F ) . L T . F U U N B T ) G O T O 9 1 0 
S I P ( I ) = - B I G 
S I ( I ) = — S I P ( I ) * F U B R N T 
G O T O 9 3 0 

9 1 0 S I P ( I ) = A V R A T 1 ( I ) * D X * A D P E I ( I ) * P R E E X P * P R E S S * * 2 
SI ( I ) = A V R A T 2 ( I ) * D X * A D P E I ( I ) * P R E E X P * P R E S S * * 2 

9 3 0 I F ( M O D ( I S T E P , N S T A T ) . N E . 0 ) G O T O 2 0 0 0 
2 0 0 0 C O N T I N U E 

C C A L C U L A T I O N O F M O L A R F R A C T I O N O F 
C V A R I O U S S P E C I E S H E R E 

DO 3 0 0 0 1 = 2 , N M 1 
F H 2 0 (I) = 1 . — A V F U (I) - A V O X (I) - F N 2 (I) 
F H 2 0 ( I ) = A M A X 1 ( 0 . , F H 2 0 ( I ) ) 
T M I X = A V F U ( I ) / W F U + A V O X ( I ) / W O X + F N 2 ( I ) / W N 2 + F H 2 0 ( I ) / W H 2 0 
F M F U ( I ) = ( A V F U ( I ) / W F U ) / T M I X 
F M O X ( I ) = ( A V O X ( I ) / W O X ) / T M I X 
F M N 2 ( I ) = ( F N 2 ( I ) / W N 2 ) / T M I X 
F M H 2 0 (I) = ( F H 2 0 ( I ) / W H 2 0 ) / T M I X 
P R F L U M ( I ) = ( P R F L U ( I ) / W H 2 0 ) / T M I X 

3 0 0 0 C O N T I N U E 
C T H E F O L L O W I N G B O U N D A R Y C O N D I T I O N S A R E 
C V A L I D F O R A X I S Y M M E T R I C F R E E J E T O N L Y 

A V F U (1) = A V F U (2) 
A V F U ( N ) = F ( N , J F ) 
A V O X ( 1 ) = A V O X ( 2 ) 
A V O X ( N ) = F ( N , J O X ) 
A V T E M ( 1 ) = A V T E M ( 2 ) 
A V T E M ( N ) = T D 
S U M P D F ( 1 ) = S U M P D F ( 2 ) 
S U M P D F ( N ) = S U M P D F ( N M L ) 
T F L U ( 1 ) = T F L U ( 2 ) 
T F L U ( N ) = 0 • 
P R F L U ( 1 ) = P R F L U ( 2 ) 
P R F L U (N) = 0 • 
P R F L U M ( 1 ) = P R F L U M ( 2 ) 
P R F L U M ( N ) = 0 . 
F R F L U ( 1 ) = F R F L U ( 2 ) 
F R F L U ( N ) = 0 • 
F M A X ( 1 ) = F M A X ( 2 ) 
F M A X ( N ) = F M A X ( N M L ) 
P O P A G E ( 1 ) = P O P A G E ( 2 ) 
P O P A G E (N) = P O P A G E (NML) 
F N 2 ( 1 ) = F N 2 ( 2 ) 
FN 2 (N) = 1 . - O X D 
F H 2 0 ( 1 ) = F H 2 0 ( 2 ) 



F H 2 0 ( N ) = F U D 
F M F U ( 1 ) = F M F U (2) 
F M F U ( N ) = F U D 
F M O X ( 1 ) = F M O X ( 2 ) 
F M O X ( N ) = 0 . 2 0 9 7 
F M N 2 ( 1 ) = F M N 2 ( 2 ) 
F M N 2 ( N ) = 0 . 7 9 3 4 
F M H 2 0 ( 1 ) = F M H 2 0 ( 2 ) 
F M H 2 0 ( N ) = F U D 
F U F L U ( 1 ) = F U F L U (2) 
F U F L U ( N ) = 0 . 
O X F L U ( 1 ) = O X F L U ( 2 ) 
O X F L U ( N ) = 0 • 
R E T U R N 
E N D 
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SUBROUTINE PDF 

$INCLUDE 9 , C O M A l . F T N 

$INCLUDE 9 ,COMB.FTN 

C 

C TH IS SUBROUTINE I S CALLED FROM SUBROUTINE B I O G , 

C AFTER ENTRY B I O S . IT CALCULATES THE PROBABIL ITY 

C DENSITY FUNCTION OF PROPERTY PH I IN A FOLD. 

C F I N D MAXIMUM AND MINIMUM OF PH I 

GO TO ( 1 , 2 , 3 , 4 ) , ISTAGE 

1 P H I M I N = A M I N 1 ( P H I L , P H I R ) 

P H I M A X = A M A X 1 ( P H I L , P H I R ) 

GO TO 5 

2 P H I M I N = P H I L 

PHIMAX=PHIL 

GO TO 5 

3 P H I M I N = P H I R 

PHIMAX=PHIR 

GO TO 5 

4 P H I M I N = P H I ( 1 ) 

P H I M A X = P H I ( 1 ) 

5 DO 10 1=1 ,ND IFOM 

P H I M I N = A M I N 1 ( P H I M I N , P H I ( I ) ) 

10 P H I M A X = A M A X 1 ( P H I M A X , P H I ( I ) ) 

C DETERMINE BOUNDARY VALUES OF PH I INTERVALS 

P H I D I F = ( P H I M A X - P H I M I N ) / F L O A T ( N P D F - 1 ) 

NPDFM1=NPDF-1 

DO 20 K=1 ,NPDFM1 

20 P H I B V ( K ) = P H I D I F * F L O A T ( K - l ) + P H I M I N 

PH IBV (NPDF )=PH IMAX 

C 

C DETERMINE MASS PROPORTION IN INTERVAL 

C JUST ABOVE PHIBV (K) AND INSERT IN PDF1 (K ) 

DO 25 K=1 ,NPDFM1 

25 P D F 1 ( K ) = 0 . 

C 

E M I X = P H I M I N / ( P H I M A X + T I N Y ) 

I F ( E M I X . L T . 0 . 9 9 9 ) GO TO 26 

DO 27 K=1 ,NPDFMl 

27 PDF1 ( K ) = P D F 1 ( K ) + 1 . / F L O A T ( N P D F M l ) 

GO TO 80 

26 DO 40 1=1 ,NDIFOM—1 

L1=0 

P H I 1 = P H I ( I ) 

P H I 2 = P H I ( 1 + 1 ) 

I F ( ( P H I ( I + D - P H I ( I ) ) • LT . 0 • ) P H I 1 = P H I ( 1 + 1 ) 

I F ( ( P H I ( I + D - P H I ( I ) ) . L T . 0 . ) P H I 2 = P H I ( I ) 

DO 30 K = l , N P D F M l 

I F ( ( P H I B V ( K ) - P H I 1 ) * ( P H I B V ( K + l ) - P H I 1 ) . L E . 0 . ) L1=K 

I F ( L l . N E . 0 ) GO TO 31 

30 CONTINUE 

31 DO 32 K=L1 ,NPDFM l 
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32 I F ( ( P H I B V ( K ) - P H I 2 ) * ( P H I B V ( K + L ) - P H I 2 ) . L E . 0 . ) L 2 = K + 1 
L 2 M 1 = L 2 - 1 
DO 35 K = L 1 , L 2 M 1 

3 5 P D F 1 ( K ) = P D F 1 ( K ) + D D E L A J / F L O A T ( L 2 - L 1 ) 
40 C O N T I N U E 

G O T O ( 5 0 , 6 0 , 7 0 , 8 0 ) , I S T A G E 
50 D O 51 K = 1 , N P D F M 1 

I F ( ( P H I B V ( K ) - P H I L ) * ( P H I B V ( K + L ) - P H I L ) . L E . 0 . ) 
1 P D F 1 ( K ) = P D F 1 ( K ) + O M L E F T 
I F ( ( P H I B V ( K ) - P H I R ) * ( P H I B V ( K + L ) - P H I R ) . L E . 0 . ) 

1 P D F 1 ( K ) = P D F 1 ( K ) + ( 1 . - O M R I G T ) 
51 C O N T I N U E 

G O T O 80 
60 D O 61 K = 1 , N P D F M 1 

I F ( ( P H I B V ( K ) - P H I L ) * ( P H I B V ( K + L ) - P H I L ) . L E . 0 . ) 
1 P D F 1 ( K ) = P D F 1 ( K ) + O M L E F T 

61 C O N T I N U E 
G O T O 80 

70 D O 71 K = 1 , N P D F M 1 
I F ( ( P H I B V ( K ) - P H I R ) * ( P H I B V ( K + L ) - P H I R ) . L E . 0 . ) 

1 P D F 1 ( K ) = P D F 1 ( K ) + ( 1 . - O M R I G T ) 
71 C O N T I N U E 
80 D O 81 K = 1 , N P D F M 1 
81 P D F 1 ( K ) = P D F 1 ( K ) / ( P H I D I F + 1 . E - 3 0 ) 

R E T U R N 
E N D 
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S U B R O U T I N E P H Y S 
C G E N M I X - T ( T U R B U L E N C E M O D E L S ) , H T S / 7 7 / 4 , 
C B A S E D O N G E N M I X , H T S / 7 7 / 9 , F E B . 1 9 7 7 , A P P E N D I X A . 
C / F E B . 1 9 7 8 G E N M I X C O P Y R I G H T , D . B . S P A L D I N G 
C 
$ I N C L U D E 9 , C O M A 1 . F T N 
S I N C L U D E 9 , C O M B . F T N 
C 

D I M E N S I O N D U D Y ( 6 0 ) , Y E D G E ( 6 ) 
D I M E N S I O N A D P E D X ( 6 0 ) 

C 
C 
C H A P T E R A P H Y S U P H Y S U P H Y S U 
C 

E N T R Y P H Y S U 
K U D I F = - 1 

C L A M I N A R V I S C O S I T Y 
C — S Q U A R E - R O O T F O R M U L A , W I T H W E I G H T I N G A C C O R D I N G T O M A S S F R A C T I O N 

D O 1 1 0 1 = 1 , N 
1 1 0 E M U ( I ) = ( V I S F U * F ( I , J F ) + V I S O X * F ( I , J O X ) + V I S P R * F ( I , J P R ) ) * 

1 S Q R T ( F ( I , J T E ) ) 
I F ( M O D E L . E Q . L ) G O T O 209 

C 
C 
C T U R B U L E N T F L O W 
C V E L O C I T Y G R A D I E N T S 

DO 1 1 4 1 = 2 , N M 1 
1 1 4 D U D Y (I) = A B S ( U ( I + 1 ) - U (1-1) ) / ( Y ( I + 1 ) - Y ( I - 1 ) ) 
666 C O N T I N U E 

C 
C C A L C U L A T E L E N G T H S A C C O R D I N G T O C H O S E N T U R B U L E N C E M O D E L . 

I F ( M O D E L — 4 ) 1 6 2 , 1 6 3 , 1 6 4 
C 
C 
C M O D E L S 2 A N D 3 

1 6 2 G O T O (11.2, 1 1 7 , 1 2 0 0 ) , L E N G T H 
C 
C L E N G T H = 1 , M I X I N G - L E N G T H M O D E L , 
C S T A N D A R D G E N M I X F O R M U L A T I O N OF H T S / 7 7 / 9 , F E B . 1 9 7 7 . 
C 

1 1 2 I F ( K U D I F . E Q . I S T E P ) G O T O 1 0 2 
C C A L C U L A T E U D I F , IF N O T A L R E A D Y D O N E IN M A I N , C H . 6 . 

U M A X = U ( 1 ) 
U M I N = U ( 1 ) 
DO 101 1 = 2 , N 
U M A X = A M A X 1 ( U M A X , U ( I ) ) 

101 U M I N = A M I N 1 ( U M I N , U ( I ) ) 
U D I F = U M A X — U M I N 

C 
1 0 2 H U D I F = . 5 * U D I F 

D U D Y M N = F R * U D I F / Y ( N ) 



337 

K = 1 
E X = D U D Y ( 2 ) - D U D Y M N 
I F ( E X . L T . 0 . ) G O TO 103 
Y E D G E ( K ) = 0 . 
K = 2 

103 D O 104 1 = 3 , N M 1 
E X L = E X 
E X = D U D Y ( I ) - D U D Y M N 
I F ( E X * E X L . G E . 0 . ) G O T O 1 0 4 
Y E D G E ( K ) = . 5 * ( Y ( I ) + Y ( 1 - 1 ) ) 
I F ( K . E Q . 6 ) G O T O 1 0 7 
K = K + 1 

104 C O N T I N U E 
I F ( E X . L T . 0 . ) G O TO 1 0 8 
Y E D G E ( K ) = Y ( N ) 
I F ( K • E Q . 6 ) G O T O 1 0 7 
K = K + 1 

1 0 8 D O 1 0 6 K A Y = K , 6 
106 Y E D G E (KAY) = Y ( N ) 
1 0 7 E L 1 2 = ( Y E D G E ( 2 ) - Y E D G E ( 1 ) ) * E L C O N 

E L 3 4 = ( Y E D G E ( 4 ) - Y E D G E ( 3 ) ) * E L C O N 
E L 5 6 = ( Y E D G E ( 6 ) - Y E D G E ( 5 ) ) * E L C O N 
E L 2 3 = . 5 * ( E L 1 2 + E L 3 4 ) 
E L 4 5 = . 5 * ( E L 3 4 + E L 5 6 ) 
A S S I G N 1 1 9 T O K 

C 
DO 1 3 0 1 = 2 , N M 1 
Y V A L U E = Y ( I ) 
G O T O K, ( 1 1 9 , 1 2 1 , 1 2 3 , 1 2 5 , 1 2 7 , 1 2 9 ) 

1 1 9 I F ( Y V A L U E . L T . Y E D G E ( 1 ) ) G O T O 1 2 0 
A S S I G N 1 2 1 T O K 

1 2 1 I F ( Y V A L U E . L T . Y E D G E ( 2 ) ) G O T O 1 2 2 
A S S I G N 1 2 3 T O K 

1 2 3 I F ( Y V A L U E . L T . Y E D G E ( 3 ) ) G O T O 1 2 4 
A S S I G N 1 2 5 T O K 

1 2 5 I F ( Y V A L U E . L T . Y E D G E ( 4 ) ) G O T O 1 2 6 
A S S I G N 1 2 7 T O K 

1 2 7 I F ( Y V A L U E . L T . Y E D G E ( 5 ) ) G O T O 1 2 8 
A S S I G N 1 2 9 T O K 
G O T O 129 

1 2 0 E L = 0 • 
G O T O 1 3 0 

1 2 2 E L = E L 1 2 
G O T O 1 3 0 

1 2 4 E L = E L 2 3 
G O T O 1 3 0 

1 2 6 E L = E L 3 4 
G O T O 130 

128 E L = E L 4 5 
G O T O 1 3 0 

129 E L = E L 5 6 
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C UPPER L IM ITS TO M IX ING LENGTH 

130 F ( I , J E L ) = A M I N 1 ( E L , H U D I F / ( D U D Y ( I ) + T I N Y ) ) 

C 

I F ( K I N . N E . 1 ) GO TO 141 

DO 142 1 = 2 , N M l 

142 F ( I , J E L ) = A M I N 1 ( F ( I , J E L ) , A K * Y ( I ) ) 

141 I F ( K E X . N E . 1 ) GO TO 173 

DO 144 1 = 2 , N M l 

144 F ( I , J E L ) = A M I N l ( F ( I , J E L ) , A K * ( Y ( N ) - Y ( I ) ) ) 

GO TO 138 

C 

C 

C LENGTH=2, N IKURADSE n S LENGTH SCALE , WALL AT E . 

117 FACTOR=E L C O N / ( . 1 4 * Y ( N ) ) 

DO 115 1 = 2 , N M l 

Y T I L D E = 1 . - Y ( I ) * F A C T O R 

115 F ( I , J E L ) = Y ( N ) * Y T I L D E * ( . 4 - Y T I L D E * ( . 4 4 - Y T I L D E * ( . 2 4 - . 0 6 * Y T I L D E ) ) ) 

GO TO 138 

C 

C 

C LENGTH=3, UNIFORM LENGTH SCALE . 

1200 U D I F = U ( N ) - U ( 1 ) 

R E U D I F = 1 . / ( U D I F + T I N Y ) 

C F I N D REFERENCE LENGTHS, ACCORDING TO BOUNDARY C O N D I T I O N S . 

I F ( K I N . E Q . K I N L . A N D . K E X . E Q . K E X L ) GO TO SEARCH, ( 1 2 0 1 , 1 2 0 2 , 1 2 0 5 ) 

K INL=K IN 

KEXL=KEX 

C DEFAULT VALUES APPLY FOR A WALL OR A SYMMETRY A X I S . 

Y R E F 1 = 0 . 

YREF2=Y (N ) 

C P R I N T , Y R E F 1 , Y R E F 2 

I F ( K I N . EQ. 2 . AND. KEX. EQ. 2 ) GO TO 92 
I F ( K I N . EQ. 3 . AND. KEX. EQ. 2 ) GO TO 93 
I F ( K I N . EQ . 2 . AND. KEX. EQ. 3 ) GO TO 94 
I F ( K I N . EQ. 1. AND. KEX. EQ. 2 ) GO TO 95 

I F ( K I N . EQ . 2 . AND. KEX. EQ. 1 ) GO TO 96 

ASSIGN 1205 TO SEARCH 

GO TO 1205 
C INNER BOUNDARY I S FREE AND OUTER BOUNDARY I S FREE 

92 U R E F 1 = 0 . 1 

U R E F 2 = 0 . 9 

C P R I N T , U R E F 1 , U R E F 2 

ASS IGN 1202 TO NEXT 

ASSIGN 1201 TO SEARCH 

GO TO 1201 

C INNER I S A SYMMETRY A X I S AND OUTER I S FREE 

93 U R E F 2 = 0 • 5 

ASS IGN 1202 TO SEARCH 

C PR INT ,UREF2 

GO TO 1202 

C INNER I S FREE AND OUTER I S A SYMMETRY A X I S 
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94 U R E F 1 = 0 • 5 
C P R I N T , U R E F 1 

A S S I G N 1 2 0 5 T O N E X T 
A S S I G N 1 2 0 1 T O S E A R C H 
G O T O 1 2 0 1 

C I N N E R IS A W A L L A N D O U T E R IS F R E E 
95 U R E F 2 = 0 • 9 9 

A S S I G N 1 2 0 2 T O S E A R C H 
C P R I N T , U R E F 2 

G O T O 1 2 0 2 
C I N N E R IS F R E E A N D O U T E R IS A W A L L 

96 U R E F 1 = 0 • 0 1 
C P R I N T , U R E F 1 

A S S I G N 1 2 0 5 T O N E X T 
A S S I G N 1 2 0 1 T O S E A R C H 

C S E A R C H F O R Y R E F 1 
1 2 0 1 U T I L D L = 0 . 

DO 1 2 0 3 1 = 2 , N 
U T I L D = ( U ( I ) - U (1) ) * R E U D I F 
IF ( U T I L D . L E . U R E F 1 ) G O T O 1 2 0 3 
Y R E F 1 = Y ( 1 - 1 ) + (Y (I) - Y (1-1)) * ( U R E F 1 - U T I L D L ) / ( U T I L D - U T I L D L ) 
G O T O N E X T , ( 1 2 0 2 , 1 2 0 5 ) 

1 2 0 3 U T I L D L = U T I L D 
C S E A R C H F O R Y R E F 2 
1 2 0 2 U T I L D L = 1 • 

DO 1 2 0 6 I D A S H = 2 , N 
I = N + 1 — 1 D A S H 
U T I L D = ( U ( I ) - U ( 1 ) ) * R E U D I F 
I F ( U T I L D . G E . U R E F 2 ) G O T O 1 2 0 6 
Y R E F 2 = Y ( 1 + 1 ) + (Y (I) - Y (1+1) ) * ( U R E F 2 - U T I L D L ) / ( U T I L D - U T I L D L ) 
G O T O 1 2 0 5 

1 2 0 6 U T I L D L = U T I L D 
C C A L C U L A T I O N O F L E N G T H S 
1 2 0 5 E L = E L C O N * ( Y R E F 2 - Y R E F 1 ) 

DO 1 2 0 7 1 = 2 , N M 1 
1 2 0 7 F ( I , J E L ) = E L 

G O T O 1 3 8 
C 
C 
C M O D E L S 4 A N D 5, C A L C U L A T E L E N G T H S . 
C T H E S E A R E U S E D O N L Y IN O U T P U T A N D M A Y B E S K I P P E D F O R E C O N O M Y . 
C N O T E T H A T W E U S E M O D E L 2 I N S T E A D OF M O D E L S 4 O R 5 A T T H E S T A R T . 
C M O D E L 4 

163 I F ( I S T E P . L T . 3 ) G O T O 1 6 2 
DO 1 6 5 1 = 2 , N M 1 

1 6 5 F ( I , J E L ) = C D * S Q R T ( F ( I , J K ) ) / ( F ( I , J 2 ) + T I N Y ) 
G O T O 1 3 8 

C M O D E L 5 
164 I F ( I S T E P . L T . 3 ) G O T O 162 

DO 1 6 6 1 = 2 , N M 1 
166 F ( I , J E L ) = C D * F ( I , J K ) * S Q R T ( F ( I , J K ) ) / ( F ( I , J 2 ) + T I N Y ) 
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c 
c 
c 

c 
c 
c 
c 

c 
c 
c 

138 F ( l f J E L ) = F ( 2 , J E L ) 

F ( N , J E L ) = F ( N M 1 , J E L ) 

I F ( I S T E P . G T . 2 ) GO TO 173 

E L M I N = . 0 0 0 1 * Y ( N ) 

DO 172 1 = 1 , N 

172 F ( I f J E L ) = A M A X 1 ( F ( I r J E L ) , E L M I N ) 

I F ( M O D E L . E Q . 2 ) GO TO 181 

COMPUTE 

LENGTH ADJUSTMENTS NEAR EDGES 

- COMPUTE SOME STARTING VALUES. 

I N I T I A L MINIMUM LENGTH VALUE. 

, 5 
OF ENERGY 

I N I T I A L PROF ILES FOR MODELS 3 , 4 

I N I T I A L PROF ILE 

FAC1=CMU/CD 

DO 145 1=2 ,NM1 

F I J K = F A C 1 * ( D U D Y ( I ) * F ( I , J E L ) ) * * 2 
145 F ( I , J K ) = A M A X 1 ( F I J K , . 0 0 0 1 * U ( I ) * * 2 ) 

F(1,JK)=F(2,JK) 
F ( N , J K ) = F ( N M l , J K ) 

I F ( M O D E L . E Q . 3 ) GO TO 181 

I N I T I A L PROF ILE OF FREQUENCY 

FAC2=SQRT(CMUCD) 

DO 146 1 = 2 , N M l 

146 F ( I , J 2 ) = F A C 2 * A M A X 1 ( D U D Y ( I ) , T I N Y ) 

F ( 1 , J 2 ) = F ( 2 , J 2 ) 

F ( N , J 2 ) = F (NM l , J 2 ) 

I F ( M O D E L . E Q . 4 ) GO TO 181 

I N I T I A L PROF ILE OF D I S S I P A T I O N RATE 

DO 147 1 = 1 , N 

147 F ( I , J 2 ) = F ( I , J 2 ) * F ( I , J K ) 

GO TO 181 

EFFECTIVE V I S C O S I T I E S 

S IMPLE ADDIT ION OF TURBULENT AND LAMINAR CONTRIBUTIONS. 

173 GO TO ( 2 0 9 , 1 8 1 , 1 8 2 , 1 8 3 , 1 8 4 ) , MODEL 

M IX ING LENGTH, HIGH R E , MODEL=2 

181 DO 201 1 = 2 , N M l 

D U D Y L = D U D Y ( I ) * F ( I , J E L ) 

UDMIN=UFAC*U( I ) 

DUDYL=AMAX1(DUDYL,UDMIN) 

E M U T = R H O ( I ) * F ( I , J E L ) * D U D Y L 

EMU( I ) =EMU( I )+EMUT 

201 CONTINUE 

GO TO 209 

PRANDTL ENERGY, HIGH R E , MODEL=3 
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1 8 2 D O 151 1 = 2 , N M 1 
E M U T = C M U * R H O ( I ) * S Q R T ( A B S ( F ( I , J K ) ) ) * F ( I , J E L ) 

151 E M U ( I ) = E M U ( I ) + E M U T 
G O T O 209 

C 
C K O L M O G O R O V , H I G H R E , M O D E L = 4 

183 D O 1 5 2 1 = 2 , N M 1 
E M U T = C M U C D * R H O ( I ) * F ( I , J K ) / ( F ( I , J 2 ) + T I N Y ) 

1 5 2 E M U ( I ) = E M U ( I ) + E M U T 
G O T O 2 0 9 

C 
C H A R L O W , H I G H R E , M O D E L = 5 

184 D O 153 1 = 2 , N M 1 
E M U T = C M U C D * R H O ( I ) * F ( I , J K ) * * 2 / ( F ( I , J 2 ) + T I N Y ) ' 

153 E M U ( I ) = E M U ( I ) + E M U T 
C 
C 
C M O M E N T U M S O U R C E 

209 A G R V D X = A G R A V * D X 
R P R L S T = 1 • 
I F ( A B S ( D P ) . G T . T I N Y ) G O T O 204 
I F ( A B S ( A G R A V ) . G T . T I N Y ) G O T O 204 
M O M S O U = 0 
R E T U R N 

2 0 4 D O 2 1 0 1 = 2 , N M 1 
2 1 0 S I ( I ) = A D P E I ( I ) * ( A G R V D X * ( R H O ( N ) - R H O ( I ) ) - D P ) 

M O M S O U = L 
C 
C W R I T E T E S T O U T P U T IF R E Q U I R E D , T H E N R E T U R N 

I F ( I T E S T . E Q . 1 ) R E T U R N 
W R I T E ( 6 , 9 0 1 1 ) J , ( F ( I , J E L ) , I = 1 , N ) 
I F ( M O D E L . G T . 2 ) W R I T E ( 6 , 9 0 1 2 ) ( F ( I , J K ) , 1 = 1 , N ) 
I F ( M O D E L . G T . 3 ) W R I T E ( 6 , 9 0 1 3 ) ( F ( I , J 2 ) , 1 = 1 , N ) 
G O T O 9 0 0 1 

C 
C 

C H A P T E R B . P H Y S F P H Y S F P H Y S F 
E N T R Y P H Y S F 
I F ( M O D E L . N E . L ) G O T O 3 1 2 
R E C P R = R E C P R L (J) 
G O T O 3 1 0 

3 1 2 R E C P R = R E C P R T ( J ) 
3 1 0 N E W P R = 1 

I F ( A B S ( R E C P R - R P R L S T ) . L T . L . E - 1 0 ) G O T O 314 
N E W P R = 2 
DO 313 1 = 2 , N M 2 

313 D I F ( I ) = D I F U ( I ) * R E C P R 
R P R L S T = R E C P R 

C K I N E T I C H E A T I N G S O U R C E 
3 1 4 I F ( J . N E . J H ) G O T O 3 0 0 0 
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I F ( A B S ( R E C P R - 1 . ) . L T . 1 . E - 1 0 ) G O T O 320 
I F ( N O V E L . N E . L ) G O T O 321 

3 2 0 K S O U R C = 3 
R E T U R N 

321 D U S Q P = 0 . 
U S Q P = U ( 2 ) * * 2 
DO 3 2 2 1 = 2 , N M 2 
U S Q = U ( 1 + 1 ) * * 2 
D U S Q = ( D I F U ( I ) - D I F ( I ) ) * ( U S Q - U S Q P ) 
S I ( I ) = . 5 * ( D U S Q - D U S Q P ) 
D U S Q P = D U S Q 

3 2 2 U S Q P = U S Q 
K S O U R C = 2 
SI ( N M 1 ) = — . 5 * D U S Q P 
G O T O 9 0 0 0 

C 
C F U E L S O U R C E 
3 0 0 0 I F ( J . N E . J F ) G O TO 4 0 0 0 

I F ( I N E R T . E Q . 2 ) G O T O 3 4 2 
K S O U R C = 3 
R E T U R N 

3 4 2 K S O U R C = L 
I F ( M O D E L . N E . L ) G O T O 3 5 2 
T 1 = D X * P R E E X P * P R E S S * * 2 
T 2 = . 5 / S T O I C H 
DO 3 4 4 1 = 2 , N M 1 
F U B R N T = T 2 * ( A B S ( F ( I , J P ) ) — F ( I , J P ) ) 
I F ( F ( I , J F ) . G T . F U B R N T ) G O T O 346 
S I P ( I ) = 0 . 
G O T O 3 4 4 

346 E X P O = E X P ( — A R R C O N / F ( I , J T E ) ) 
F ( I , J O X ) = A M A X 1 ( 0 . , F ( I , J P ) + F ( I , J F ) * S T O I C H ) 
T E R M = — T 1 * E X P O * A D P E I ( I ) * F ( I , J O X ) 
S I P ( I ) = T E R M / ( 1 . - F U B R N T / F ( I , J F ) ) 

3 4 4 S I ( I ) = - S I P ( I ) * F U B R N T 
G O T O 9 0 0 0 

3 5 2 T 2 = . 5 / S T O I C H 
I F ( I B I O . E O . 1 ) G O T O 354 
T 3 = L . / ( P H I B - P H I D + T I N Y ) 
T 4 = - P H I D * T 3 

C R A T E C O N T R O L L E D B Y E D D Y B R E A K - U P 
C E B U D X = C E B U * D X 
DO 353 I = 2 , N M 1 
F U B R N T = T 2 * ( A B S ( F ( I , J P ) ) - F ( I , J P ) ) 
F U U N B T = T 3 * F ( I , J P ) + T 4 
I F ( F ( I , J F ) . L T . F U U N B T ) G O TO 356 
S I P ( I ) = 0 . 
G O T O 353 

356 S I P ( I ) = - A D P E I ( I ) * C E B U D X * D U D Y ( I ) * R H O ( I ) * ( F U U N B T - F ( I , J F ) ) / 
1 ( F U U N B T - F U B R N T + T I N Y ) 

353 S I ( I ) = — S I P ( I ) * F U B R N T 
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GO TO 358 

C THE ENTRY B I O S IN SUBROUTINE 

C B IOG I S CALLED HERE 

354 CALL B I O S 

358 CONTINUE 

GO TO 9000 

C 
C jp (PHI) 

4000 I F ( J . N E . J P ) GO TO 5000 

KSOURC=3 

RETURN 

C 

C ENERGY SOURCE 

5000 I F ( J . N E . J K ) GO TO 6000 

C GENERATION OF TURBULENCE ENERGY 

DO 3 0 0 1 1 = 2 , N M 1 

3 0 0 1 G E N K ( I ) = D X * A D P E I ( I ) * E M U ( I ) * D U D Y ( I ) * * 2 

C D I S S I P A T I O N OF TURBULENCE ENERGY 

I F ( M O D E L - 4 ) 3 0 0 3 , 3 0 0 4 , 3 0 0 5 

C MODEL 3 

3 0 0 3 CDDX=CD*DX 

DO 3 0 0 6 1 = 2 , N M 1 

3 0 0 6 D I S S K ( I ) = C D D X * A D P E I ( I ) * A B S ( F ( I , J K ) ) * * 1 . 5 / ( F ( I , J E L ) + T I N Y ) 

GO TO 3 0 0 7 

C MODEL 4 

3 0 0 4 DO 3 0 0 8 1 = 2 , N M 1 

3 0 0 8 D I S S K ( I ) = D X * R H O ( I ) * A D P E I ( I ) * F ( I , J 2 ) * F ( I , J K ) 

GO TO 3 0 0 7 

C MODEL 5 

3 0 0 5 DO 3 0 0 9 1 = 2 , N M 1 

3 0 0 9 D I S S K ( I ) = D X * R H O ( I ) * A D P E I ( I ) * F ( I , J 2 ) 

3 0 0 7 CONTINUE 

C S I AND S I P 
KSOURC= l 

C O N S T l = l . 5 

CONST2=C2MOD5-1 • 

C O N S T 3 = . 5 

CONST4=C2MOD5 

DO 3 0 1 0 1 = 2 , N M 1 

R E C F J K = 1 . / ( F ( I , J K ) + T I N Y ) 

S I ( I ) = C O N S T l * G E N K ( I ) + C O N S T 2 * D I S S K ( I ) 

3 0 1 0 S I P ( I ) = — R E C F J K * ( C O N S T 3 * G E N K ( I ) + C O N S T 4 * D I S S K ( I ) ) 

C N E A R - W A L L C E L L S 
I F ( K I N . N E • 1 ) GO TO 3 0 1 1 

T A U = T A U I + Y ( 2 ) * D P D X + R M I * U ( 2 ) / R ( 2 ) 

F 2 J K = T A U / ( R H O ( 2 ) * T A U D K ) 

S I ( 2 ) = F 2 J K * B I G 

S I P ( 2 ) = - B I G 

3 0 1 1 I F f K E X . N E . l ) GO TO 9 0 0 0 

TAU=TAUE+(Y (N )-Y (NM1) ) *DPDX-RME*U (NM1) / R (NM1) 

FNM1JK=TAU/ (RHO(NM1) *TAUDK) 
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SI ( N M 1 ) = F N M L J K * B I G 
S I P (NM1) = - B I G 
G O T O 9 0 0 0 

C 
C S O U R C E OF 2 N D T U R B U L E N C E Q U A N T I T Y 
6 0 0 0 I F ( J . N E . J 2 ) G O T O 7 0 0 0 

K S O U R C = L 
C 
C 

S O U R C E OF F R E Q U E N C Y ( M O D E L = 4 ) 
OR D I S S I P A T I O N ( M O D E L = 5 ) 

I F ( M O D E L . E Q . 4 ) G O T O 4 0 0 1 
C O N S T 1 C 1 M O D 5 
C O N S T 2 = C 2 M O D 5 - 1 • 
C O N S T 3 = 0 . 
C O N S T 4 = 2 . * C 2 M O D 5 - L . 
G O T O 4 0 0 2 

4 0 0 1 C 0 N S T 1 = 3 . * C 1 M 0 D 4 
C O N S T 2 = C 2 M O D 4 - 1 • 
C 0 N S T 3 = 2 . * C 1 M 0 D 4 
C O N S T 4 = 2 . * C 2 M O D 4 - L . 

4 0 0 2 DO 4 0 0 3 1 = 2 , N M 1 
R E C F J K = 1 . / ( F ( I , J K ) + T I N Y ) 
F J 2 D J K = F ( I , J 2 ) * R E C F J K 
SI ( I ) = F J 2 D J K * ( C O N S T L * G E N K ( I ) + C O N S T 2 * D I S S K ( I ) ) 

4 0 0 3 S I P ( I ) = - R E C F J K * ( C O N S T 3 * G E N K ( I ) + C O N S T 4 * D I S S K ( I ) ) 
C N E A R - W A L L C E L L S 

I F ( K I N . N E . 1 ) G O T O 4 0 0 4 
F 2J 2 = W A L C ON * S Q R T ( F 2 J K ) * R E C Y D F ( 1 ) 
I F ( M O D E L . E Q . 5 ) F 2 J 2 = F 2 J 2 * F 2 J K 
SI ( 2 ) = F 2 J 2 * B I G 
S I P (2)=-BIG 

4 0 0 4 I F ( K E X . N E . L ) G O T O 9 0 0 0 
F N M 1 J 2 = W A L C ON *S Q R T ( F N M 1 J K ) * R E C Y D F ( N M 1 ) 
I F ( M O D E L . E Q . 5 ) F N M 1 J 2 = F N M 1 J 2 * F N M 1 J K 
S I ( N M 1 ) = F N M 1 J 2 * B I G 
S I P (NM1) = — B I G 

C * * * * * * * * * * S O U R C E T E R M S F O R F O L D P O P U L A T I O N D I S T R I B U T I O N * * * * * 
C S O U R C E T E R M ? O R A G E (1) 
7 0 0 0 I F ( J . N E . J A L ) G O T O 8 0 0 0 

K S O U R C = L 
T R A N F = U M I N / X D 
D T R A N F = — 1 • / X D 
DO 540 1 = 2 , N M 1 
A D P E D X ( I ) = A D P E I ( I ) * D X 
A V E L P = T R A N F / U ( I ) + D T R A N F * A G E ( 2 ) 
S I A P = A M I N 1 ( 0 . , A V E L P ) * F ( I , J A 2 ) 
S I P A P = A M A X L ( 0 . , A V E L P ) 
SI (I) = ( P A 0 ( I ) * R E C D A ( 1 ) — S I A P ) * A D P E D X ( I ) 
S I P ( I ) = ( - R H O (I)*U ( I ) * S I P A P * R E C D A ( 1 ) - P A 0 ( I ) ) * A D P E D X ( I ) 

540 C O N T I N U E 
G O T O 9 0 0 0 

C 
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C SOURCE TERMS FOR A G E ( 2 ) . . . A G E ( N A G E ) 

8000 KSOURC=l 

J M 2 = J - J A 1 M 1 

DO 620 I - 2 ,N M l 

C PFLUX THROUGH THE WEST FACE 

AVELM=TRANF/U( I )+DTRANF*AGE( JM2) 

S IAM=AMAX1(0 . ,AVE L M ) * F ( I , J - 1 ) 

S I P A M = A M I N l ( 0 . f A V E L M ) 

C PFLUX THROUGH THE EAST FACE 

AVELP=TRANF/U( I )+DTRANF*AGE( JM2+1) 

F I J P 1 = F ( I , J + 1 ) 

I F ( J . E Q . J A L ) F I J P l = F ( I , J ) 

S I A P = A M I N 1 ( 0 . , A V E L P ) * F I J P 1 

S I P A P = A M A X 1 ( 0 . f A V E L P ) 

S I ( I ) = R H O ( I ) * U ( I ) * ( - S I A P + S I A M ) * R E C D A ( J M 2 ) * A D P E D X ( I ) 

S I P ( I ) = (RHO ( I ) * U ( I ) * ( - S I P A P + S I P A M ) * R E C D A ( J M 2 ) - P A 0 ( I ) ) 

1 * A D P E D X ( I ) 

620 CONTINUE 

C WRITE TEST OUTPUT, IF REQUIRED , THEN RETURN 

9000 I F ( I T E S T . E Q . 1 ) RETURN 

W R I T E ( 6 , 9 0 2 1 ) J , ( S I P ( I ) , 1 = 2 , N M l ) 

9001 W R I T E ( 6 , 9 0 2 2 ) ( S I ( I ) , 1 = 2 , N M l ) 

RETURN 

C 

9011 FORMAT(18H PHYS TESTS FOR J = , I 3 / 1 0 H F ( I , J E L ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

9 012 FORMAT (9H F ( I , J K ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

9 0 1 3 FORMAT(9H F ( I , J 2 ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

9 021 FORMAT(18H PHYS TESTS FOR J = , I 3 / 8 H S I P ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

9022 FORMAT(7H S I ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

END 
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S U B R O U T I N E C O M P 
C / F E B . 1 9 7 7 G E N M I X C O P Y R I G H T , D . B . S P A L D I N G 

D I M E N S I O N A ( 6 0 ) , B ( 6 0 ) , C ( 6 0 ) , C O N ( 6 0 ) , D ( 6 0 ) , H C O N ( 6 0 ) , O M D I F ( 6 0 ) 
$ I N C L U D E 9 , C O M A 2 . F T N 
$ I N C L U D E 9 , C O M B . F T N 
C 

E Q U I V A L E N C E ( A ( L ) , D I F ( 1 ) ) , ( C ( 1 ) , S I ( 1 ) ) , ( D ( 1 ) , S I P ( 1 ) ) 
C 
C H A P T E R A 
C I N I T I N I T I N I T I N I T 

E N T R Y I N I T 
C I N I T I A L V A L U E S A N D D E F A U L T V A L U E S 

N M 1 = N - 1 
N M 2 = N - 2 
N M 3 = N - 3 
I S T E P = 0 
I F ( K R A D . E Q . 3 ) N O V E L = L 
J U S T I N = I S T E P 
J U S T E X = I S T E P 
I F I N = 1 
D X L A S T = B I G 
D X = B I G 
P S I I = 0 . 
B P E = 1 . 
B P I = 1 . 
Y ( 1 ) = 0 . 
D P = 0 . 

DO 13 1 = 1 , N 
E M U ( I ) = 0 . 
C O N (I) = 0 . 

13 R ( I ) = 1 . 
I F ( N O V E L . N E . 1 ) R E T U R N 
DO 16 1 = 1 , N 

16 U ( I ) = 1 . 
R E T U R N 

C H A P T E R B 
C G R I D G R I D G R I D G R I D 

E N T R Y G R I D 
O M I = O M ( 2 ) 
O M E = L • — O M ( N M 1 ) 
B O M ( 2 ) = . 5 * ( O M ( 2 ) + O M ( 3 ) ) 
O M I N T ( 1 ) = 0 . 
O M I N T (2)=BOM (2) 
DO 202 1 = 3 , N M 2 
O M I N T (I) = .5* ( O M ( I ) + O M ( I + 1 ) ) 
B O M ( I ) = O M I N T ( I ) - O M I N T (1-1) 

202 O M D I F ( I ) = O M ( I ) — O M ( I — 1 ) 
H O M D F I = . 5 * O M D I F ( 3 ) 
B O M ( N M L ) = 1 . - O M I N T ( N M 2 ) 
O M I N T ( N M L ) = 1 . 
O M D I F ( N M L ) = O M ( N M L ) - O M ( N M 2 ) 
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H O M D F E = . 5 * 0 M D I F ( N M 1 ) 

RETURN 

CHAPTER C 

C D ISTAN D ISTAN D ISTAN D ISTAN 

ENTRY D ISTAN 

I F ( N O V E L . N E . l ) GO TO 220 

DO 224 1 = 1 , N 

224 R E C R U ( I ) = 1 . / ( R H O ( I ) + T I N Y ) 

GO TO 222 

220 DO 221 1 = 1 , N 

R E C R U ( I ) = 1 . / ( R H O ( I ) * U ( I ) + T I N Y ) 

I F ( R E C R U ( I ) . G T . 0 . ) GO TO 2 2 1 

I F I N = 2 

W R I T E ( 5 , 2 2 3 ) R E C R U ( I ) , I , I S T E P 

223 FORMAT(14H * * * RECRU ( I ) = , 1 P E 1 0 . 3 , 6 H AT I = , I 4 , 1 1 H AND I S T E P = , I 5 , 

1 16H * * * COMP D ISTAN) 

221 CONTINUE 

C C A L C U L A T I O N OF Y " S A N D R n S 

2 2 2 I F ( K I N . E Q . 1 ) GO TO 308 

R A T = R E C R U ( 2 ) * R H O ( 1 ) * U ( 1 ) 

I F ( K R A D . E Q . 2 ) GO TO 3 0 7 

B P I = . 3 3 3 3 3 + . 6 6 6 6 7 * R A T 

GO TO 308 

3 0 7 B P I = ( R ( 1 ) * ( . 8 3 3 3 3 * R A T + . 1 6 6 6 7 ) + . 5 * R ( 2 ) * ( R A T + 1 . ) ) / ( R ( l ) + R ( 2 ) ) 

308 I F ( K E X . E Q . l ) GO TO 230 

R A T = R E C R U ( N M 1 ) * R H O ( N ) * U ( N ) 

I F ( K R A D . E Q . 2 ) GO TO 3 2 7 

B P E = . 3 3 3 3 3 + . 6 6 6 6 7 * R A T 

GO TO 230 

327 B P E = ( R ( N ) * ( . 8 3 3 3 3 3 * R A T + . 1 6 6 6 7 ) + . 5 * R ( N M 1 ) * ( R A T + 1 . ) ) / ( R ( N ) + R ( N M 1 ) ) 

C Y " S FOR PLANE FLOW 

230 S T O R E = O M ( 2 ) / B P I 

A D P E I ( 2 ) = ( H O M D F I + S T O R E ) * R E C R U ( 2 ) 

Y ( 2 ) = P E I * R E C R U ( 2 ) * S T O R E 

H P E I = . 5 * P E I 

DO 231 1 = 3 , N M 1 

A D P E I ( I ) = B O M ( I ) * R E C R U ( I ) 

231 Y ( I ) = Y ( 1 - 1 ) + H P E I * O M D I F ( I ) * ( R E C R U ( I ) + R E C R U ( 1 - 1 ) ) 

STORE=OME/BPE 

ADPE I (NM1 )= (HOMDFE+STORE ) *RECRU (NM1 ) 

Y ( N ) = Y ( N M l ) + P E I * R E C R U ( N M l ) * S T O R E 

C 

I F ( K R A D - 2 ) 2 7 0 , 2 4 0 , 2 8 0 

C Y " S AND R n S FOR A X I A L SYMMETRY 

240 I F ( C S A L F A . L T . T I N Y ) GO TO 260 

C CSALFA NE 0 . 

C O S D 2 = . 5 * C S A L F A 

TWDCOS=2 . /CSALFA 

I F ( R ( 1 ) . G T . T I N Y ) GO TO 250 
C R ( 1 ) = 0 . 

DO 242 1 = 2 , N 
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Y ( I ) = S Q R T ( A B S ( Y ( I ) * T W D C O S ) ) 
242 R (I)=Y ( I ) * C S A L F A 

G O T O 270 
C R (1) N E 0. 

2 5 0 R 1 D 2 = . 5 * R ( 1 ) 
R 1 D 2 S Q = R 1 D 2 * R 1 D 2 
DO 251 1 = 2 , N 
Y ( I ) = Y ( I ) / ( R 1 D 2 + S Q R T ( A B S ( R 1 D 2 S Q + C 0 S D 2 * Y ( I ) ) ) ) 

251 R ( I ) = R ( 1 ) + Y ( I ) * C S A L F A 
G O T O 270 

C C S A L F A = 0 • 
260 R E C R 1 = 1 . / R ( 1 ) 

DO 261 1 = 2 , N 
R (I )=R (1) 

261 Y ( I ) = Y ( I ) * R E C R 1 
G O T O 270 

C P O I N T S Y M M E T R Y , K R A D = 3 
280 R 1 C U B = R (1)**3 

DO 281 1 = 2 , N 
R ( I ) = ( R 1 C U B + Y ( I ) ) * * . 3 3 3 3 3 3 3 

281 Y (I) =R (I) - R (1) 
C GENERAL 

270 Y I = Y ( 2 ) 
Y E = Y ( N ) - Y ( N M 1 ) 
D O 273 1 = 1 , N M 1 

273 R E C Y D F ( I ) = 1 . / ( Y ( 1 + 1 ) - Y ( I ) ) 
I F ( I T E S T . E Q . 1 ) R E T U R N 
W R I T E ( 6 , 2 7 4 ) ( R H O ( I ) , I = 1 , N ) 
W R I T E ( 6 , 2 7 5 ) ( R E C R U ( I ) , I = 1 , N ) 
W R I T E ( 6 , 2 7 6 ) ( A D P E I ( I ) , I = 1 , N ) 
W R I T E ( 6 , 2 7 7 ) ( Y ( I ) , I = 1 , N ) 
W R I T E ( 6 , 2 7 8 ) ( R ( I ) , I = 1 , N ) 
W R I T E ( 6 , 2 7 9 ) ( R E C Y D F ( I ) , I = 1 , N ) 
R E T U R N 

274 F O R M A T ( 1 8 H 0 C O M P D I S T A N T E S T S / 8 H R H O ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 
275 F O R M A T ( 1 0 H R E C R U ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 
2 7 6 - F O R M A T ( 1 0 H A D P E I ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 
277 F O R M A T ( 6 H Y ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 
278 F O R M A T ( 6 H R ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 
279 F O R M A T ( 1 1 H R E C Y D F ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

C H A P T E R D 
C S O L V E S O L V E S O L V E S O L V E 

E N T R Y S O L V E 
C P R E L I M I N A R I E S 

D X D P E I = D X / P E I 
C O N S T 1 = . 5 * O X D P E I 
E N T = A B S ( R M I ) + A B S ( R M E ) 
I F ( E N T • L E . T I N Y ) G O T O 310 
HC ON I =RM I * C O N S T 1 
H C O N D F = ( R M E - R M I ) * C O N S T L 
DO 412 1 = 2 , N M 1 
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HCON(I )=HCONI+HCONDF*OMINT ( I ) 

412 CON ( I ) =HCON ( I ) +HCON ( I ) 

COEFF IC IENTS FOR U 

310 I F ( N O V E L . E Q . 1 ) GO TO 442 

J = 0 

CALL SUBROUTINE PHYS AT ENTRY PHYSU 

CALL PHYSU 

I F ( K R A D - 2 ) 4 1 0 , 4 1 5 , 4 1 1 

410 DO 413 1=2 ,NM2 

413 D I F U ( I ) = C O N S T l * ( E M U ( I ) + E M U ( 1 + 1 ) ) * R E C Y D F ( I ) 

GO TO 414 

415 CONST2= . 5 *CONST l 

DO 416 1=2 ,NM2 

416 D IFU ( I ) =CONST2* (R (1+1) +R ( I ) ) * (EMU ( I ) +EMU (1+1) ) *RECYDF ( I ) 

GO TO 414 

411 CONST3= .25*C0NST1 

DO 419 1=2 ,NM2 

419 D I F U ( I ) = C O N S T 3 * ( R ( 1 + 1 ) + R ( I ) ) * * 2 * ( E M U ( I ) + E M U ( I + 1 ) ) * R E C Y D F ( I ) 

A " S AND B " S 

414 I F ( E N T . L E . T I N Y ) GO TO 312 

DO 417 1=2 ,NM2 

A ( I ) = A M A X 1 ( 0 . , D I F U ( I ) - H C O N ( I ) , - C O N ( I ) ) 

417 B ( I + 1 ) = A ( I ) + C ON ( I ) 

GO TO 314 

312 DO 315 1=2 ,NM2 

A ( I ) = D I F U ( I ) 

3 1 5 B ( I + 1 ) = A ( I ) 

314 T I = 0 • 

TE=0 . 

I F ( K I N . E Q . 1 ) CALL W A L L ( 1 , B P I , T I ) 

I F ( K E X . E Q . 1 ) CALL WALL ( N , B P E , T E ) 

B ( 2 ) = A M A X 1 ( ( T I + R M I ) * D X D P E I , 0 . ) 

A ( N M l ) = A M A X 1 ( ( T E - R M E ) * D X D P E I , 0 . ) 

C " S AND D "S 

I F ( M O M S O U . E Q . 0 ) GO TO 431 

DO 418 1 = 2 , N M l 

C ( I ) = U ( I ) * B O M ( I ) + S I ( I ) 

418 D ( I ) = A ( I ) + B ( I ) + B O M ( I ) 

GO TO 432 

431 DO 433 1 = 2 , N M l 

C ( I ) = U ( I ) * B O M ( I ) 

433 D ( I ) = A ( I ) + B ( I ) + B O M ( I ) 

432 CONTINUE 

I F ( I T E S T . E Q . 1 ) GO TO 404 

W R I T E ( 6 , 3 4 1 ) ( D I F U ( I ) , 1 = 2 , N M l ) 

W R I T E ( 6 , 3 4 2 ) ( C O N ( I ) , 1 = 2 , N M 1 ) 

W R I T E ( 6 , 4 0 5) ( A ( I ) , 1 = 2 , N M l ) 

W R I T E ( 6 , 4 0 6 ) ( B ( I ) , 1 = 2 , N M l ) 

W R I T E ( 6 , 4 0 7 ) ( C ( I ) , 1 = 2 , N M l ) 

W R I T E ( 6 , 4 0 8 ) (D ( I ) , 1 = 2 , N M l ) 

341 FORMAT(23H0COMP SOLVE TESTS FOR U/9H D I F U ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 
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342 FORMAT(8H CON ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

405 FORMAT(6H A ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

406 FORMAT (6H B ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

407 FORMAT(6H C ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

408 FORMAT (6H D ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

404 CONTINUE 

C ADJUST FREE-BOUNDARY VALUES 

I F ( K I N . E Q . 2 ) U ( 1 ) = U ( 1 ) - D P * R E C R U ( 1 ) 

I F ( K E X . E Q . 2 ) U ( N ) = U ( N ) - D P * R E C R U ( N ) 

C SOLVE FOR DOWNSTREAM U " S 

C ( 2 ) = (B ( 2 ) *U (1 ) +C ( 2 ) ) / D ( 2 ) 

D ( 2 ) = A ( 2 ) / D ( 2 ) 

DO 421 1 = 3 , N M l 

T=1 . / (D ( I ) -B ( I ) *D ( I—1) ) 

D ( I ) =A ( I ) *T 

421 C ( I ) = ( B ( I ) * C ( I - 1 ) +C ( I ) ) *T 

DO 422 IDASH=1 ,NM2 

I=N—IDASH 

422 U ( I ) =D ( I ) *U (1+1) +C ( I ) 

I F (KIN—2) 4 4 4 , 4 4 5 , 4 4 6 

444 T A U I = T I * U ( 2 ) / R ( 1 ) 

GO TO 445 

446 U (1 ) =U (2 ) 

445 IF (KEX—2) 4 4 7 , 4 4 0 , 4 4 8 

447 T A U E = T E * U ( N M l ) / R ( N ) 

GO TO 440 

448 U (N)=U (NMl ) 

440 I F ( I T E S T . N E . 1 ) W R I T E ( 6 , 4 4 3 ) ( U ( I ) , I = 1 , N ) 

443 FORMAT(6H U ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

C F-SECTION 

442 I F ( N F . L T . l ) GO TO 481 

C RESTORAGE OF UPSTREAM VALUES 

DO 4802 J = 1 , N F 

I D J = I D I M F * ( J — 1 ) 

DO 4802 1 = 1 , N 

I J = I + I D J 

F P ( I J ) = F ( I J ) 

4802 CONTINUE 

C ITERATION LOOP STARTS HERE 

DO 4801 I T E R = 1 , 4 

DO 480 J =1 ,NF 

C ITERATION FOR P-A EQUATIONS ONLY 

I F ( J . L T . J A 1 . A N D . I T E R . G T . l ) GO TO 480 

I F ( J . G T . J A L . A N D . I T E R . G T . l ) GO TO 480 

I D J = I D I M F * ( J - l ) 

I 1 J = 1 + I D J 

I 2 J = 2 + I D J 

INM1J=NM1+IDJ 

I N J = N + I D J 

C CALL SUBROUTINE PHYS AT ENTRY PHYSF 
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CALL PHYSF 

T I F = 0 • 

F D I F I = 0 . 

TEF=0 • 

F D I F E = 0 . 

I F ( K I N . E Q . 1 ) CALL W A L L ( 1 , F D I F I r T I F ) 

I F ( K E X . E Q . l ) CALL WALL ( N , F D I F E , T E F ) 

I F ( I T E S T . E Q . 1 ) GO TO 450 

W R I T E ( 6 , 4 5 1 ) J , ( D I F ( I ) , 1 = 2 , N M l ) 

451 FORMAT(24H COMP SOLVE TESTS FOR J = , I 3 / 8 H D I F ( I ) = / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 

C COEFF IC IENTS FOR F " S 

C A " S AND B " S 

450 I F ( N E W P R . E Q . 1 ) GO TO 337 

I F ( E N T . L E . T I N Y ) GO TO 335 

DO 484 1=2 ,NM2 

A ( I ) =AMAX1 (0 . , D I F ( I ) —HCON ( I ) , -CON ( I ) ) 

484 B ( 1 + 1 ) = A ( I ) + C O N ( I ) 

GO TO 337 

335 DO 338 1=2 ,NM2 

A ( I ) = D I F ( I ) 

338 B ( 1 + 1 ) = A ( I ) 

337 CONTINUE 

B ( 2 ) = A M A X 1 ( ( T I F + R M I ) * D X D P E I , 0 . ) 

A ( N M 1 ) = A M A X 1 ( ( T E F - R M E ) * D X D P E I , 0 . ) 

C C " S AND D "S 

GO TO ( 5 0 1 , 5 0 2 , 5 0 3 ) , KSOURC 

C K S O U R C = l , GENERAL 

501 S I 2 = S I ( 2 ) 

S I N M 1 = S I ( N M l ) 

DO 485 1 = 2 , N M l 

I J = I + I D J 

D ( I ) = A ( I ) + B ( I ) + B O M ( I ) - S I P ( I ) 

485 C ( I ) = F P ( I J ) * B O M ( I ) + S I ( I ) 

GO TO 504 

C KSOURC=2, NO S I P 

502 S I 2 = S I ( 2 ) 

S I N M 1 = S I ( N M l ) 

DO 505 1 = 2 , N M l 

I J = I + I D J 

D ( I ) = A ( I ) +B ( I ) +B OM ( I ) 

505 C ( I ) = F ( I J ) * B O M ( I ) + S I ( I ) 

GO TO 504 

C KSOURC = 3 , NO S I P OR S I 

503 S I 2 = 0 • 

S I N M 1 = 0 . 

DO 506 1 = 2 , N M l 

I J = I + I D J 

D ( I ) =A ( I ) +B ( I ) +B OM ( I ) 

506 C ( I ) = F ( I J ) * B O M ( I ) 

C 
504 C ( 2 ) = C ( 2 ) - T I F * F D I F I * D X D P E I 
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C ( N M l ) = C ( N M l ) - T E F * F D I F E * D X D P E I 

I F ( K I N . G T . 1 ) GO TO 486 

I F ( I B I N ( J ) . E Q . l ) GO TO 486 

B ( 2 ) = 0 . 

C ( 2 ) = F ( 1 2 J ) * B O M ( 2 ) + S 1 2 + R J T O T I ( J ) * D X D P E I 

D ( 2 ) = D ( 2 ) — T I F * D X D P E I 

486 I F ( K E X . G T . 1 ) GO TO 491 

I F ( I B E X ( J ) . E Q . l ) GO TO 491 

A (NMl ) =0 . 

C ( N M 1 ) = F ( I N M 1 J ) * B O M ( N M 1 ) + S I N M l - R J T O T E ( J ) * D X D P E I 

D ( N M l ) = D ( N M l ) - T E F * D X D P E I 

491 CONTINUE 

DO 492 1 = 2 , N M l 

A 1 ( I ) = A ( I ) 

492 B1 ( I ) =B ( I ) 

I F ( I T E S T . E Q . 1 ) GO TO 464 

WRITE ( 6 , 4 0 5 ) ( A ( I ) , 1 = 2 , N M l ) 

W R I T E ( 6 , 4 0 6 ) ( B ( I ) , 1 = 2 , N M l ) 

W R I T E ( 6 , 4 0 7 ) ( C ( I ) , 1 = 2 , N M l ) 

W R I T E ( 6 , 4 0 8 ) ( D ( I ) , 1 = 2 , N M l ) 

C SOLVE FOR DOWNSTREAM F 

464 C ( 2 ) = ( B ( 2 ) * F ( I 1 J ) + C ( 2 ) ) / D (2 ) 

D ( 2 ) = A ( 2 ) / D ( 2 ) 

DO 465 1 = 3 , N M l 

T=1 • / (D ( I ) —B ( I ) *D ( I—1) ) 

D ( I ) =A ( I ) *T 

465 C ( I ) = ( B ( I ) * C ( I — 1 ) +C ( I ) ) *T 

DO 466 IDASH=1 ,NM2 

I=N—IDASH 

I J = I + I D J 

466 F ( I J ) =D ( I ) * F ( I J + l ) +C ( I ) 

C ADJUST F ( 1 , J ) AND F ( N , J ) 

I F ( J . G E . J A 1 . A N D . J . L E . J A L ) GO TO 469 

I F ( K I N — 2 ) 4 6 7 , 4 6 0 , 4 6 9 

467 I F ( I B I N ( J ) . E Q . l ) GO TO 468 

F ( 1 1 J ) = F D I F I + F ( 1 2 J ) + (R JTOTI ( J ) -F ( 1 1 J ) *RM I ) / T I F 

GO TO 460 

469 F ( I 1 J ) = F ( I 2 J ) 

I F ( J . G E . J A 1 . A N D . J . L E . J A L ) GO TO 473 

GO TO 460 

468 R J T O T I ( J ) = T I F * ( F ( I 1 J ) - F ( I 2 J ) - F D I F I ) + R M I * F ( I l J ) 

450 I F ( K E X - 2 ) 4 7 1 , 4 7 0 , 4 7 3 

471 I F ( I B E X ( J ) . E Q . l ) GO TO 472 

F ( I N J ) = F D I F E + F ( I N M 1 J ) - ( R J T O T E ( J ) - F ( I N J ) * R M E ) / T E F 

GO TO 470 

473 F ( I N J ) = F ( I N M 1 J ) 

GO TO 470 

472 R J T O T E ( J ) = T E F * ( F ( I N M 1 J ) + F D I F E - F ( I N J ) ) + R M E * F ( I N J ) 

470 I F ( I T E S T . E Q . 1 ) GO TO 480 

WRITE ( 6 , 4 7 6 ) J , ( F ( I + I D J ) , 1 = 1 , N ) 

476 FORMAT(6H F ( I , , 1 2 , 1 H ) / ( 3 X , 1 P 6 E 1 1 . 3 ) ) 
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480 C O N T I N U E 
T H E E R R O R C A N B E C H E C K E D H E R E 

4 8 0 1 C O N T I N U E 

481 X U = X D 
P S I I = P S I I - R M I * D X 
P S I E = P S I E - R M E * D X 
P E I = P S I E - P S I I 
I S T E P = I S T E P + 1 
R E T U R N 
E N D 
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S U B R O U T I N E W A L L 
C / F E B . 1 9 7 7 G E N M I X C O P Y R I G H T , D . B . S P A L D I N G 

D I M E N S I O N S I ( 2 ) , S 2 ( 2 ) , S 3 ( 2 ) , S 4 ( 2 ) , S 5 ( 2 ) , S 6 ( 2 ) 
$ I N C L U D E 9 , C O M A 1 • F T N 
$ I N C L U D E 9 , C O M B . F T N 
C 
C E F F E C T S OF P R E S S U R E G R A D I E N T A N D M A S S T R A N S F E R A R E I N C L U D E D 
C E F F E C T S OF R A D I U S V A R I A T I O N A R E N E G L E C T E D 
C F O R V E L O C I T Y , O U T L = B P , O U T 2 = T 
C F O R F "S, O U T L = F I D I F , O U T 2 = T 
C 
C H A P T E R A P R E L I M I N A R I E S 

D A T A S H A L F / . 0 4 / , B P L A S T / 1 . / 
K W A L L = 2 - 1 / I 1 
I 2 = I L + 3 - 2 * K W A L L 
1 3 = 1 1 + 6 - 4 * K W A L L 
I F ( J . G T . 0 ) G O T O 200 

C H A P T E R B V E L O C I T Y 
U R E F = U (12) 
R H O R E F = R H O ( 1 2 ) 
R U R E F = R H O R E F * U R E F 
R R E F = R (12) 
V R E F = E M U ( I I ) 
Y R E F = Y I + ( Y E - Y I ) * O M ( I I ) 
R E = R U R E F * Y R E F / V R E F 
R R U R E F = R R E F * R U R E F 
A M = ( R M I - ( R M E + R M I ) * O M ( I I ) ) / R R U R E F 
E F = Y R E F * D P / ( D X * R U R E F * U R E F ) 
I F ( M O D E L . E Q . 1 ) G O T O 110 
I F ( R E . L T . 1 3 2 . 2 5 ) G O T O 1 1 0 

C T U R B U L E N T F L O W 
C E X T E N D E D LOG L A W 

E R = R E * E W A L L 
A R G M I N = 1 1 . 5 * E W A L L 
N I T = 0 

101 S H A L F 1 = S H A L F 
S = S H A L F * * 2 
S L O C =S + A M +E F 
I F ( S L O C . G T . 0 . ) G O T O 104 
S L O C = T I N Y 
S H A L F = S Q R T ( A B S ( A M + E F ) ) 

1 0 4 B E E = S O R T ( S L O C ) / A K 
A R G = E R * ( S H A L F + ( A M / ( 1 . + B E E ) + . 5 * E F ) / S H A L F ) 
I F ( A R G . L T . A R G M I N ) G O T O 1 1 0 
S H A L F = A K / A L O G ( A R G ) 
I F ( A B S ( S H A L F - S H A L F 1 ) . L T . . 0 0 0 1 ) G O T O 102 
N I T = N I T + 1 
I F ( N I T . L T . 1 1 ) G O T O 101 

102 S = S H A L F * * 2 
S A V = . 5 * ( S + S L O C ) 
B P = 1 . / ( 1 . + B E E ) 
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GO T O 103 
C LAMINAR FLOW 

1 1 0 A M R E = A M * R E 
F R E = E F * R E 
I F ( A B S ( A M R E ) . L T . . 0 1 ) G O T O 111 
A M R E = A M A X 1 ( - 6 0 . , A M I N L ( 6 0 . , A M R E ) ) 
E X P M R E = E X P ( A M R E ) 
S T O R E = E X P M R E — 1 . - A M R E 
A M R E S Q = A M R E * A M R E 
S R E = A M R E * ( 1 . - S T O R E * F R E / A M R E S Q ) / ( E X P M R E - 1 . ) 
B P = S R E * S T O R E / A M R E S Q + F R E * ( S T O R E - . 5 * A M R E S Q ) / ( A M R E S Q * A M R E ) 
G O T O 1 1 2 

1 1 1 S R E = ( 2 . - F R E * ( 1 . + A M R E * . 3 3 3 3 3 ) ) / ( 2 . + A M R E ) 
B P = S R E * ( . 5 + A M R E * . 1 6 6 6 7 ) + F R E * ( . 1 6 6 6 7 + A M R E * . 0 4 1 6 6 7 ) 

1 1 2 I F ( S R E . G T . T I N Y ) G O T O 113 
S R E = T I N Y 
B P = . 3 3 3 3 3 

113 S = S R E / R E 
S A V = S 

103 T = S * R R U R E F 
C U N D E R - R E L A X B P 

B P = B P L A S T + . 5 * ( B P - B P L A S T ) 
B P L A S T = B P 
O U T L = B P 
O U T 2 = T 
SI ( K W A L L ) = S A V 
S 2 ( K W A L L ) = R R U R E F 
53 ( K W A L L ) = U R E F 
5 4 ( K W A L L ) = A M 
S 5 ( K W A L L ) = A M R E 
S6 ( K W A L L ) = R E 
G O T O 900 

C 
C H A P T E R C O T H E R D E P E N D E N T V A R I A B L E S 

2 0 0 S A V = S 1 ( K W A L L ) 
R R U R E F = S 2 ( K W A L L ) 
U R E F = S 3 ( K W A L L ) 
A M = S 4 ( K W A L L ) 
A M R E = S 5 ( K W A L L ) 
R E = S 6 ( K W A L L ) 
I F ( M O D E L . E Q . 1 ) G O T O 210 

C T U R B U L E N T F L O W 
P R R A T = P R L ( J ) * R E C P R T ( J ) 

C T H E F O L L O W I N G P - F U N C T I O N IS N O T T O B E U S E D FOR P R R A T . L T . 0 . 5 
P J A Y = 9 . * ( P R R A T - 1 . ) / P R R A T * * • 2 5 
S = S A V * R E C P R T ( J ) / ( 1 . + A M A X 1 ( - . 9 9 9 9 9 F P J A Y * S Q R T ( A B S ( S A V ) ) ) ) 
O U T 2 = S * R R U R E F 
I F ( J . N E . J H ) G O T O 221 
O U T L = ( H - L . ) * . 5 * U R E F * * 2 
G O T O 900 

221 O U T 1 = 0 . 
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G O T O 900 
C LAMINAR FLOW 

210 I F ( A B S ( A M R E ) . L T . . 0 1 ) G O T O 211 
S = A M / ( E X P ( P R L ( J ) * A M R E ) - 1 . ) 
G O T O 212 

211 S = R E C P R L ( J ) / ( R E + . 5 * R E * P R L ( J ) * A M R E ) 
212 O U T 2 = S * R R U R E F 

I F ( J . N E . J H ) G O T O 214 
O U T L = ( P R L ( J H ) - 1 . ) * . 5 * U R E F * * 2 
G O T O 9 0 0 

214 O U T 1 = 0 . 
C 
C N U L L O U T P U T FOR JK OR J 2 

300 O U T L = T I N Y 
O U T 2 = T I N Y 

9 0 0 I F ( I T E S T . E Q . L ) G O T O 901 
W R I T E ( 6 , 9 0 0 0 ) J , 1 1 , O U T 1 , O U T 2 

9 0 0 0 F O R M A T ( 1 2 H W A L L T E S T S , , 3 H J = , I 3 , 4 H I 1 = , I 3 , 6 H O U T L = , 1 P E 1 0 . 3 , 
1 6H O U T 2 = , E 1 0 . 3 ) 

901 R E T U R N 
E N D 
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APPENDIX C 

Sample Output of the Computer 

Program (H2-Air Flame) 
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GENMIX-T, SEPT.1977, TURBULENCE MODELS TEACHING PROGRAM, 
BASED ON APPENDIX A OF HTS REPORT NO. HTS/77/9, FEB.1977-
COMBUSTION OF HYDROGEN AND AIR IN A JET, AXI-SYMMETRICAL FLOW 
KASE IRUN KIND KRAD CSALFA MODEL LENGTH MOD4C1 INERT NOVEL 

1 2 1.000 1 1 

*****THE ESCIMO MODEL OF TURBULENT COMBUSTION***** 
****»IS INCORPORATED IN THE PRESENT PROGRAM ***** 
*****DEMOGRAPHIC CONSTANTS***** 
NAGE JA1 JAL FOLMO UMAX MODFOR 
10 4 13 0.50151 .00 3 

AGE1 AGE3 AGE5 AGE7 AGE9 AGE11 
0.00000 0.10000 0.20000 0.40000 0.65000 1.00000 

1.596E-01 
5-429E-01 

*****BIOGRAPHIC CONSTANTS***** 
EMPC1 EMPC2 EMPC3 
0.200E+01 0.200E+01 0.500E+00 
OM(I), FOR OMPOW= 2.000 
O.OOOE+OO 2.494E-03 9.975E-03 

1.222E-01 
4.681E-01 
1.OOOE+OO 
XHEXO 
O.OOOE+OO 
XHINO 
O.OOOE+OO 
XUEXO 
O.OOOE+OO 
XOUT 

O.OOOE+OO 
UB UC 

2.244E-02 
2.020E-01 
6.233E-01 

8.977E-02 
3.989E-01 
8.975E-01 
HEXO XHEXO AHEX ' BHEX 

3.810E-03 O.OOOE+OO O.OOOE+OO O.OOOE+OO 
HINO XHINO AHIN BHIN 

O.OOOE+OO O.OOOE+OO O.OOOE+OO O.OOOE+OO 
UEXO XUEXO AUEX BUEX 

1.510E+01 O.OOOE+OO O.OOOE+OO O.OOOE+OO 
XEND XOUT XULAST HDIV 

O.OOOE+OO O.OOOE+OO 6.096E-01 2.000E-03 
UA UB UC UD TA 

151.000 151.000 151.000 15.100 300.000 
PRESS 'PREEXP REY EQRAT AMACH 

1.00E+05 1.00E+00 2.70E+03 3.04E+10 8.31E-03 
AK ELCON TAUDK ELEXP 

4.350E-01 1.985E-01 3.000E-01 2.380E+00 1 
FJKA FJ2A 

6.840E+02 O.OOOE+OO 1 

3.990E-02 6.234E-02 
2.494E-01 3.017E-01 
7.091E-01 8.006E-01 

CHEX 
O.OOOE+OO 
CHIN 

O.OOOE+OO 
CUEX 

O.OOOE+OO 
AGRAV 
9.800E+00 

TB TC TD 
300.000 300.000 300.000 
ULIM 

TC 
300.000 
PEILIM 

5.00E-02 1.00E-02 

CMU 
5-477E-01 
C1M0D5 

0.144E+01 

CD 
1.643E-01 
C2M0D5 

0.192E+01 

SIGK 
.OOOE+OO 
FJKD 
.000E-01 

SIG2 
1.314E+00 
FJ2D 

6.871E+00 
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*** XU= 3.035E-01 ISTEP= 312 
JUSTIN= 0 JUSTEX= 0 PX= 1.918E-03 PRESSD= O.OOOE+OO 

KIN= 3 

PSII= O.OOOE+OO 
RMI= O.OOOE+OO 

R(L)= O.OOOE+OO 
ELCON= 1.985E-01 
UFLUX= 1.254E-02 

FLUX( j )= -7.234E-04 4.731E-02 1.228E+01 8.288E-03 7.1 
6.041E-03 4-956E-03 3.172E-03 1.763E-03 8.257E-04 
2.407E-04 4.168E-05 2.066E-06 1.095E+04 4.682E-05 
FACE= 2.052E-01 RATE= 9.956E-01 

Y(N)= 3.25E-02 
I R/RO UVEL TEMP FUEL OXYG H2M 
1 0.OOE+OO 3 •47E+01 1 • 31E+03 1.04E-01 0 .OOE+OO 5. 89E-01 
2 4-31E-01 3 •47E+01 1 •31E+03 1.04E-01 0 .OOE+OO 5. 89E-01 
3 8.65E-01 3 .43E+01 1 •33E+03 1.02E-01 9 .44E-05 5. 82E-01 
4 1.30E+00 3 •36E+01 1 .34E+03 9.83E-02 2 .08E-03 5. 72E-01 
5 1.74E+00 3 .28E+01 1 .35E+03 9.34E-02 4 .44E-03 5. 59E-01 
6 2.18E+00 3 .18E+01 1 .37E+03 8.74E-02 6 .99E-03 5. 41 E-01 
7 2.62E+00 3 .07E+01 1 •40E+03 8.05E-02 9.79E-03 5. 20E-01 
8 3.07E+00 2 .95E+01 1 •43E+03 7•28E-02 1 •27E-02 4-93E-01 
9 3.53E+00 2 .81E+01 1 •46E+03 6.46E-02 1 .58E-02 4. 61E-01 

10 3•99E+00 2 •68E+01 1 •50E+03 5.60E-02 1 .89E-02 4. 24E-01 
11 4.45E+00 2 •54E+01 1 .55E+03 4.70E-02 2 .18E-02 3. 81E-01 
12 4.93E+00 2 .40E+01 1 .61E+03 3.80E-02 2 .55E-02 3. 30E-01 
13 5•72E+00 2 . 17E+01 1 .69E+03 2.35E-02 3 .35E-02 2. 32E-01 
14 6.23E+00 2 .03E+01 1 .76E+03 1.48E-02 3 .94E-02 1 . 59E-01 
15 6.75E+00 1 .90E+01 1 .80E+03 6.94E-03 4 .85E-02 8. 14E-02 
16 7.24E+00 1 .79E+01 1 .66E+03 2.90E-03 7.87E-02 3-62E-02 
17 7.69E+00 1 .71 E+01 1 .48E+03 6.03E-04 1 .10E-01 7.90E-03 
18 8.09E+00 1 .65E+01 1 .24E+03 1.58E-04 1 .40E-01 2. 13E-03 
19 8.42E+00 1 .61E+01 9 .99E+02 2.43E-04 1 •68E-0T 3. 33E-03 
20 8.54E+00 1 .51E+01 3.00E+02 0.OOE+OO 2 •32E-01 0. OOE+OO 
I 02M H20M N2M TEMF FUFL OXFL 
1 0.OOE+OO 1 •42E-01 2 .69E-01 2.43E+02 3 .12E-02 0. OOE+OO 
2. 0.OOE+OO 1 •42E-01 2 .69E-01 2.43E+02 3 .12E-02 0. OOE+OO 
3 3.37E-05 1 •44E-01 2 •73E-01 2.75E+02 3 •26E-02 1. 39E-03 
4 7.56E-04 1 •47E-01 2 .80E-01 2.76E+02 3 .39E-02 1 . 75E-02 
5 1.66E-03 1 .50E-01 2 •90E-01 3.03E+02 3 .48E-02 2. 86E-02 
6 2.71 E-03 1 •54E-01 3 .02E-01 3.16E+02 3 .53E-02 3-57E-02 
7 3.95E-03 1 .60E-01 3 .17E-01 3.26E+02 3 .51E-02 4. 19E-02 
8 5.39E-03 1 .66E-01 3 •35E-01 3.40E+02 3 .42E-02 4. 77E-02 
9 7.05E-03 1 .75E-01 3 •57E-01 3.61E+02 3 .26E-02 5. 32E-02 

10 8.94E-03 1 .84E-01 3 .82E-01 3.94E+02 3 .05E-02 5. 85E-02 
11 1.10E-02 1 •96E-01 4 .12E-01 4.38E+02 2 .79E-02 6. 33E-02 
12 1.38E-02 2 .09E-01 4 •47E-01 4.74E+02 2 .48E-02 6. 74E-02 
13 2.06E-02 2 •31E-01 5 .16E-01 5-42E+02 1 .90E-02 7. 42E-02 
14 2.65E-02 2 .47E-01 5 .67E-01 6.04E+02 1 .48E-02 7.84E-02 
15 3.55E-02 2 •59E-01 6 .24E-01 6.84E+02 1 .07E-02 8. 32E-02 
16 6.15E-02 2 •32E-01 6 .71E-01 6.69E+02 5 .71E-03 7. 80E-02 
17 8.98E-02 1 •94E-01 7 .08E-01 6.66E+02 1 .62E-03 7. 21E-02 
18 1 .18E-01 1 .49E-01 7 •30E-01 7.15E+02 7 .45E-04 7. 17E-02 

KEX= 2 
PSIE= 1.940E-03 
RME=-1.002E-02 

R(N)= 3-252E-02 

DXY= 3-066E-02 
DXRE= 1.024E+02 

DXINC= 9.533E-03 
DXPSI= 1.918E-03 

DPDX= O.OOOE+OO 
PEI= 1.940E-03 

YREF1• O.OOOE+OO 
YREF2= O.OOOE+OO 
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19 1.44E-01 1.07E-01 7-46E-01 6.17E+02 1.35E-03 5-95E-02 
20 2.10E-01 0.00E+00 7-93E-01 0.00E+00 0.00E+00 0.00E+00 

*****P0PULATI0N DISTRIBUTION OP FOLDS***** 
PRAT 

2 4-693E+01 

3 1.179E+02 

4 1.641E+02 

5 2.053E+02 

6 2.395E+02 

7 2.660E+02 

8 2.845E+02 

9 2.958E+02 

10 3•005E+02 

11 2.997E+02 

12 2.911E+02 

13 2.789E+02 

14 2.569E+02 

15 2.350E+02 

16 2.055E+02 

17 1.728E+02 

18 1.402E+02 

19 3.049E+02 

PA ( 1) 
PA ( 6) 
3.600E+00 
6.303E-01 
3.836E+00 
6.272E-01 
4.097E+00 
6.267E-01 
4.353E+00 
6.302E-01 
4.578E+00 
6.390E-01 
4.755E+00 
6.536E-01 
4.873E+00 
6.744E-01 
4-932E+00 
7.014E-01 
4-931E+00 
7.346E-01 
4.875E+00 
7-735E-01 
4.768E+00 
8.179E-01 
4.511E+00 
8.990E-01 
4.275E+00 
9.548E-01 
4.017E+00 
1.008E+00 
3.776E+00 
1.050E+00 
3•643E+00 
1.069E+00 
3•742E+00 
1.058E+00 
4.204E+00 
1.016E+00 

PA ( 2) 
PA ( 7) 
4.231E+00 
1.357E-01 
4.215E+00 
1.410E-Q1 
4•204E+00 
1.499E-01 
4 .193E+00 
1.627E-01 
4•178E+00 
1.795E-01 
4.156E+00 
2.000E-01 
4.125E+00 
2.241E-01 
4.083E+00 
2.515E-01 
4.027E+00 
2.823E-01 
3•957E+00 
3.165E-01 
3.873E+00 
3.538E-01 
3•707E+00 
4.204E-01 
3.595E+00 
4.647E-01 
3.490E+00 
5.070E-01 
3.418E+00 
5.405E-01 
3.402E+00 
5.577E-01 
3.429E+00 
5-545E-01 
3.421E+00 
5.317E-01 

*****PDP VALUES OF TEMPERATURE 

PDF( 1) 
PDF( 6) 

0.OOOE+OO 
3.007E-04 
0.OOOE+OO 
2.226E-04 
0.OOOE+OO 

PDP( 2) 
PDF( 7) 

0.OOOE+OO 
2.022E-04 
0.OOOE+OO 
1 .940E-04 
0.OOOE+OO 

PDP( 3) 
PDP( 8) 

0.OOOE+OO 
4.423E-05 
0.OOOE+OO 
6.289E-05 
1.905E-05 

PA ( 3) 
PA ( 8) 
3.958E+00 
1.909E-02 
3-879E+00 
2.001E-02 
3.783E+00 
2.166E-02 
3.680E+00 
2.418E-02 
3.579E+00 
2.781E-02 
3.484E+00 
3.282E-02 
3.398E+00 
3-961E-02 
3.321E+00 
4.844E-02 
3.252E+00 
5.940E-02 
3•192E+00 
7.256E-02 
3.137E+00 
8.782E-02 
3-057E+00 
1.164E-01 
3.023E+00 
1.362E-01 
3.OOOE+OO 
1.555E-01 
2.995E+00 
1.715E-01 
2.996E+00 
1.807E-01 
2.974E+00 
1.812E-01 
2.892E+00 
1.736E-01 inrTTT 
PDF( 4) 
PDF( 9) 
1.565E-03 
5.276E-05 
1.546E-03 
1.053E-04 
1.586E-03 

PA ( 
PA ( 

4) 
9) 

3.207E+00 
1.553E-03 
3.129E+00 
1.649E-03 
3.034E+00 
1.819E-03 
2.931E+00 
2.081E-03 
2.832E+00 
2.458E-03 
2.741E+00 
2.985E-03 
2.663E+00 
3.709E-03 
2.600E+00 
4.692E-03 
2.552E+00 
6.024E-03 
2.518E+00 
7.832E-03 
2.498E+00 
1.029E-02 
2.486E+00 
1.617E-02 
2.498E+00 
2.127E-02 
2.519E+00 
2.693E-02 
2.542E+00 
3.204E-02 
2.548E+00 
3•542E-02 
2.516E+00 
3•642E-02 
2.430E+00 
3.506E-02 

PDF( 5) 
PDF( 10) 

1.942E-03 
0.OOOE+OO 
1.932E-03 
5•728E-06 
1.891E-03 

PA ( 5) 
PA ( 10) 
1.705E+00 
7.906E-05 
1•670E+00 
8.165E-05 
1 .'630E+00 
8.654E-05 
1.589E+00 
9-442E-05 
1.553E+00 
1.062E-04 
1.525E+00 
1.230E-04 
1.507E+00 
1 .465E-04 
1.499E+00 
1.787E-04 
1.503E+00 
2.228E-04 
1.518E+00 
2.831E-04 
1.543E+00 
3.662E-04 
1.600E+00 
5.692E-04 
1.647E+00 
7.818E-04 
1.696E+OO 
1.086E-03 
1.736E+00 
1.502E-03 
1.751E+00 
1.887E-03 
1.727E+00 
2.096E-03 
1.662E+00 
2.071E-03 
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2 .109E-04 2.196E-04 7 .268E-05 9 .608E-05 8. 135E-07 
5 4 .120E-05 8.057E-06 8.094E-06 1 .441E-03 1. 977E-03 

2 .047E-04 2.024E-04 7 •545E-05 1 •349E-04 0. OOOE+OO 
6 7 .484E-05 8.430E-06 8.473E-06 1 .229E-03 2. 049E-03 

2 . 640E-04 2.438E-04 1 .122E-04 1 .013E-04 0. OOOE+OO 
7 1 .074E-04 8.633E-06 8.787E-06 1 .051E-03 2. 044E-03 

3.683E-04 2.923E-04 1 .106E-04 9 .719E-05 0. OOOE+OO 
8 1 •381E-04 8.654E-06 9 .012E-06 8 .241E-04 2. 057E-03 

5 .496E-04 2.548E-04 1 •535E-04 9 .181E-05 0. OOOE+OO 
9 1 .666E-04 8.499E-06 1 .149E-05 7.427E-04 8. 129E-04 

1 .767E-03 2.875E-04 2 .249E-04 7 .221E-05 0. OOOE+OO 
10 1 .982E-04 3.895E-05 3 •333E-05 5 .444E-04 7. 202E-04 

1 .883E-03 3.299E-04 2 .578E-04 1 .145E-04 0. OOOE+OO 
11 2 .626E-04 4.311E-05 2 .466E-05 1 . 378E-04 9. 494E-04 

1 .756E-03 5.303E-04 2 •436E-04 1 .726E-04 0. OOOE+OO 
12 3 .158E-04 3.117E-05 2 •939E-05 2 •926E-05 8.700E-04 

4 .777E-04 1.853E-03 3 .309E-04 1 .847E-04 0. OOOE+OO 
13 3 •880E-04 4-563E-05 2 •522E-05 3 .216E-05 2. 039E-04 

8 .922E-04 5.010E-04 1 .859E-03 1 .769E-04 0. OOOE+OO 
14 4 .235E-04 4.782E-05 8 .003E-05 1 .312E-04 1. 511E-04 

3 •981E-04 7.333E-04 1 .940E-03 2 .211E-04 0. OOOE+OO 
15 4.704E-04 1.199E-04 1 .196E-04 1 •331E-04 1. 267E-04 

4.307E-04 6.977E-04 4 •443E-04 1 .586E-03 0. OOOE+OO 
16 5 .777E-04 8.804E-05 8.080E-05 1 .754E-04 1. 415E-04 

1 .285E-04 1 .506E-03 9 .080E-04 4.657E-04 0. OOOE+OO 
17 6 .427E-04 1.032E-04 1 .384E-04 1 •965E-04 3. 773E-04 

1 .418E-03 3-376E-04 2 .118E-04 6 .716E-04 0. OOOE+OO 
18 1 .012E-03 1.464E-04 1 .097E-04 1 .014E-04 1. 669E-03 

1 .098E-04 1.180E-04 3 .086E-04 4 .201E-04 8.777E-05 
19 1 .176E-03 9.642E-05 3 .046E-04 1 .781E-03 1. 539E-04 

1 .125E-04 1.537E-04 3 .762E-05 1 .049E-04 1. 862E-04 

420 ISTEP= 
JUSTEX= 0 

KEX= 2 
PSIE= 5.655E-03 
RME=-1.367E-02 

H(N)= 4.931E-02 

DX= 
DXY= 

DXRE= 
DXINC= 
DXPSI= 

*** XU= 6.096E-01 
JUSTIN= 0 

KIN= 3 
PSII= 0.000E+00 
RMI= 0.000E+00 

R(1)= 0.000E+00 
ELC0N= 1.985E-01 
UFLUX= 1.503E-02 

FLUX(J)= -7•234E-04 2.754E-02 2.155E+00 1 
1.457E-02 1.287E-02 9-851E-03 7.046E-03 
2.066E-03 6.252E-04 7-268E-05 
FACE= 1.712E-01 RATE= 9-996E-01 

Y(N)= 4.93E-02 
I R/RO UVEL TEMP FUEL 
1 O.OOE+OO 2.43E+01 1.84E+03 2.65E-02 
2 8.05E-01 2.43E+01 1.84E+03 2.65E-02 
3 1.61E+00 2.40E+01 1.84E+03 2.54E-02 

2.115E-03 PRESSD= 0, 
4.704E-02 
.2.489E+02 
2.042E-02 
4.117E-03 

DPDX= 0 
PEI= 5 

YREF1= 0 
YREF2= 0. 

OOOE+OO 
OOOE+OO 
655E-03 
OOOE+OO 
OOOE+OO 

.809E-02 1.632E-02 
4.559E-03 

1.095E+04 1.349E-05 

OXYG H2M 
5.65E-03 2.51E-01 
5.65E-03 2.51E-01 
7.93E-03 2.43E-01 
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4 2 .41E+00 2 .37E+01 1 .84E+03 2.37E-02 1 .11E-02 2 •31E-01 
5 3 .21E+00 2 .32E+01 1 .84E+03 2.14E-02 1 •46E-02 2 .14E-01 
6 4 .01E+00 2 .27E+01 1 .84E+03 1.87E-02 1 .90E-02 1 .92E-01 
7 4 .81E+00 2 .21E+01 1 .85E+03 1.56E-02 2.36E-02 1 .65E-01 
8 5 .61E+00 2 .14E+01 1 .86E+03 1.21E-02 2 .87E-02 1 •33E-01 
9 6 •40E+00 2 .07E+01 1 .87E+03 8.50E-03 3 .46E-02 9 .72E-02 

10 7 .20E+00 1 •99E+01 1 .86E+03 5.01E-03 4 .32E-02 5 .97E-02 
11 7 .97E+00 1 •91E+01 1 .77E+03 2.89E-03 6 .26E-02 3 .58E-02 
12 8.71E+00 1 .84E+01 1 .66E+03 1.29E-03 8.38E-02 1 .65E-02 
13 9.83E+00 1 •74E+01 1 .41E+03 0.OOE+OO 1 .22E-01 0 .OOE+OO 
14 1 .05E+01 1 .69E+01 1 •22E+03 0.OOE+OO 1 .46E-01 0 .OOE+OO 
15 1 .10E+01 1 .65E+01 1 .05E+03 0.OOE+OO 1 .65E-01 0 .OOE+OO 
16 1 .15E+01 1 .62E+01 9 .02E+02 0.OOE+OO 1 .80E-01 0 .OOE+OO 
17 1 .20E+01 1 •59E+01 7 .87E+02 0.OOE+OO 1 .91E-01 0 .OOE+OO 
18 1 .24E+01 1 •57E+01 6 .84E+02 0.OOE+OO 2 .00E-01 0 .OOE+OO 
19 1 .27E+01 1 •56E+01 5 •92E+02 0.OOE+OO 2 .08E-01 0 .OOE+OO 
20 1 .29E+01 1 • 51E+01 3 •00E+02 0.OOE+OO 2 •32E-01 0 .OOE+OO 

1 02M H20M N2M TEMF FUFL OXFL 
1 3 •35E-03 2 .54E-01 4 •92E-01 1.79E+02 1 .29E-02 2 •33E-02 
2 3 •35E-03 2 •54E-01 4 .92E-01 1.79E+02 1 .29E-02 2 .33E-02 
3 4 .75E-03 2 •54E-01 4 •98E-01 2.13E+02 1 .27E-02 3.05E-02 
4 6 .74E-03 2 •55E-01 5 .08E-01 2.68E+02 1 .26E-02 3.89E-02 
5 9 .10E-03 2 •57E-01 5 .20E-01 3.24E+02 1 .22E-02 4.64E-02 
6 1 .21E-02 2 •59E-01 5 •37E-01 3.82E+02 1 .18E-02 5 .38E-02 
7 1 .56E-02 2 .63E-01 5 •57E-01 4.38E+02 1 .11E-02 6 .01E-02 
8 1 .97E-02 2 .67E-01 5 •80E-01 4-99E+02 1 .01E-02 6 .61E-02 
9 2 •47E-02 2 .71E-01 6 .07E-01 5.63E+02 8.94E-03 7 • 18E-02 

10 3 .22E-02 2 .72E-01 6 •36E-01 6.20E+02 7 •37E-03 7 .58E-02 
11 4 .84E-02 2 •53E-01 6 •62E-01 6.28E+02 4.95E-03 7 .47E-02 
12 6 .69E-02 2 .29E-01 6 .87E-01 6.43E+02 2 .53E-03 7 •33E-02 
13 1 .01E-01 1 .78E-01 7 .20E-01 6.34E+02 0 .OOE+OO 6 .52E-02 
14 1 .23E-01 1 .42E-01 7.35E-01 5•66E+02 0 .OOE+OO 5 •40E-02 
15 1 .41E-01 1 .12E-01 7 .47E-01 4•99E+02 ' 0 .OOE+OO 4 •47E-02 
16 1 .56E-01 8 .81 E-02 7.56E-01 4.32E+02 0 .OOE+OO 3 .68E-02 
17 1 .67E-01 7 .00E-02 7.63E-01 3.82E+02 0 .OOE+OO 3 • 13E-02 
18 1 .76E-01 5 .45E-02 7.69E-01 3•49E+02 0 .OOE+OO 2 .80E-02 
19 1 .84E-01 4 .11E-02 7 •75E-01 3.23E+02 0 .OOE+OO 2 •56E-02 
20 2 .10E-01 0 .OOE+OO 7 •93E-01 0.OOE+OO 0 .OOE+OO 0 .OOE+OO 

•••••population distribution of folds***** 
I FRAT PA ( 1) PA ( 2) PA ( 3) PA ( 4) PA ( 5) 

PA ( 6) PA ( 7) PA ( 8) PA ( 9) PA ( 10) 
2 1 .580E+01 1.995E+00 2.593E+00 2.797E+00 2.749E+00 2.234E+00 

1.522E+00 8.166E-01 2.231E-01 1.708E-02 1.191E-03 
3 3 .964E+01 2.288E+00 2.671E+00 2.780E+00 2.687E+00 2.160E+00 

1.470E+00 7.940E-01 2.230E-01 1 .843E-02 1.266E-03 
4 5 •507E+01 2.597E+00 2.774E+00 2.769E+00 2.618E+00 2.074E+00 

1.408E+00 7.687E-01 2.248E-01 2.079E-02 1.399E-03 
5 6 .894E+01 2.896E+00 2.885E+00 2.763E+00 2.548E+00 1.984E+00 

1-345E+00 7.442E-01 2.288E-01 2.444E-02 1.605E-03 
6 8 .072E+01 3.161E+00 2.987E+00 2.757E+00 2.483E+00 1 .898E+00 
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1.285E+00 
3•380E+00 
1.234E+00 
3.547E+00 
1.195E+00 
3.659E+00 
1.168E+00 
3.708E+00 
1.156E+00 
3.683E+00 
1.160E+00 
3.588E+00 
1.178E+00 
3-335E+00 
1.226E+00 
3.104E+00 
1.261E+00 
2.910E+00 
1.288E+00 
2.791E+00 
1.299E+00 
2.788E+00 
1.293E+00 
2.962E+00 
1.266E+00 
3.404E+00 
1.220E+00 

*****PDF VALUES OF TEMPERATURE 

7 9.034E+01 

8 9.800E+01 

9 1.039E+02 

10 1.076E+02 

11 1.080E+02 

12 1.044E+02 

13 9.818E+01 

14 8.597E+01 

15 7.618E+01 

16 6.717E+01 

17 5-912E+01 

18 5•176E+01 

19 1.189E+02 

7.235E-01 2. 353E-01 2.972E-02 1 .904E-03 
3.070E+00 2. 749E+00 2.423E+00 1 .822E+00 
7.086E-01 2. 444E-01 3.668E-02 2 •326E-03 
3•128E+00 2. 734E+00 2.369E+00 1 .758E+00 
7.009E-01 2.565E-01 4.535E-02 2 .911 E-03 
3.155E+00 2. 712E+00 2.321E+00 1 .709E+00 
7.013E-01 2. 71 9E-01 5.581E-02 3.723E-03 
3.150E+00 2. 680E+00 2.281E+00 1 .677E+00 
7.108E-01 2. 909E-01 6.809E-02 4.850E-03 
3.111E+00 2. 643E+00 2.251E+00 1 .663E+00 
7.296E-01 3. 132E-01 8.174E-02 6.381E-03 
3•044E+00 2. 603E+00 2.233E+00 1 .667E+00 
7.562E-01 3. 377E-01 9.584E-02 8.388E-03 
2.892E+00 2. 540E+00 2.227E+00 1 .701E+00 
8.083E-01 3. 786E-01 1.182E-01 1 .242E-02 
2.802E+00 2. 523E+00 2.245E+00 1 .735E+00 
8.410E-01 4.016E-01 1.302E-01 1 .489E-02 
2.741E+00 2. 521E+00 2.264E+00 1 .762E+00 
8.647E-01 4. 182E-01 1.391E-01 1 •692E-02 
2.723E+00 2. 529E+00 2.276E+00 1 .773E+00 
8.761E-01 4. 271 E-01 1.445E-01 1 .835E-02 
2.751E+00 2. 536E+00 2.270E+00 1 .764E+00 
8.735E-01 4. 278E-01 1.462E-01 1 .911E-02 
2.808E+00 2. 525E+00 2.236E+00 1 .729E+00 
8.561E-01 4. 200E-01 1.442E-01 1 .918E-02 
2.834E+00 2. 469E+00 2.166E+00 1 .668E+00 
8.246E-01 
rPRT? A TTrR-RT 

4.043E-01 
If MII X X 

1.389E-01 1 .857E-02 

10 

11 

PDF( 1) 
PDF( 6) 

O.OOQE+OO 
1O138E-03 
3.898E-06 
6.673E-04 
3.232E-05 
7.670E-04 
8.006E-05 
5»685E-04 
1.284E-04 
4.883E-04 
1.798E-04 
4.634E-04 
2.525E-04 
3.344E-04 
3.017E-04 
1.841E-04 
3•710E-04 
1.494E-04 
4.375E-04 
1.051E-04 

PDF( 2) 
PDF( 7) 

0.000E+00 
2.136E-03 
1.350E-05 
2.564E-03 
3.186E-05 
2.386E-03 
3.086E-05 
2.452E-03 
3.039E-05 
1.300E-03 
3.273E-05 
1.099E-03 
4.137E-05 
1.042E-03 
9•472E-05 
8.083E-04 
8.670E-05 
5-402E-04 
6.649E-05 
4-433E-04 

PDF( 3) 
PDF( 8) 

8.270E-06 
6.223E-04 
2.980E-05 
6.406E-04 
2.886E-05 
6.806E-04 
2.940E-05 
7.444E-O4 
3.200E-05 
1.884E-03 
6.121E-05 
2.048E-03 
7.748E-05 
1.971E-03 
6.093E-05 
1.058E-03 
6.590E-05 
1.273E-03 
9.574E-05 
2.202E-03 

PDF( 4) 
PDF( 9) 

2.425E-05 
9.420E-05 
2.743E-05 
1.153E-04 
2.624E-05 
8.902E-05 
4.812E-05 
8.909E-05 
7.730E-05 
9.831E-05 
6.848E-05 
9.066E-05 
4.190E-05 
2.701E-04 
3.032E-05 
1.426E-03 
1.153E-04. 
1.362E-03 
1.212E-04 
5.135E-04 

PDF( 5) 
PDF( 10) 

4.427E-05 
O.OOOE+OO 
4.728E-05 
O.OOOE+OO 
6.313E-05 
O.OOOE+OO 
5.867E-05 
O.OOOE+OO 
5.887E-05 
O.OOOE+OO 
5.239E-05 
O.OOOE+OO 
6.181E-05 
O.OOOE+OO 
1.506E-04 
O.OOOE+OO 
1.508E-04 
O.OOOE+OO 
1.051E-04 
O.OOOE+OO 
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12 4.964E-04 1 .029E-04 1 .416E-04 1 .064E-04 9 .658E-05 
3.321E-04 1 •538E-03 4 •939E-04 7.817E-04 0 .OOOE+OO 

13 5.968E-04 1 .468E-04 1 .491E-04 2 •318E-04 1 .650E-03 
4.139E-04 1 .288E-04 3 .372E-04 4 .622E-04 0 .OOOE+OO 

14 6.873E-04 1 .610E-04 3 .014E-04 1 .581E-03 3 .669E-04 
2.897E-04 3 .698E-04 3 .658E-04 0 .OOOE+OO 0 .OOOE+OO 

15 8.266E-04 2 .699E-04 3.354E-04 1 •550E-03 3.366E-04 
4.172E-04 3 .687E-04 0 .OOOE+OO 0 .OOOE+OO 0 .OOOE+OO 

16 9-949E-04 3 .048E-04 1 •533E-03 3 .929E-04 4 .536E-04 
4.294E-04 0 .OOOE+OO 0 .OOOE+OO 0 .OOOE+OO 0 .OOOE+OO 

17 1.210E-03 2 .402E-04 1 •512E-03 3 .666E-04 7•483E-04 
0.OOOE+OO 0 .OOOE+OO 0 .OOOE+OO 0 .OOOE+OO 0 .OOOE+OO 

18 1.358E-03 1 .705E-03 3 .675E-04 3 .779E-04 2 .449E-04 
6.329E-05 0 .OOOE+OO 0 .OOOE+OO 0 .OOOE+OO 0 .OOOE+OO 

19 1.553E-03 1 .946E-03 2 .421E-04 1 .258E-04 1 .046E-04 
1.406E-04 0 .OOOE+OO 0 .OOOE+OO 0 .OOOE+OO 0 .OOOE+OO 

CROSS-STREAM PLOT, XU= 6.096E-01 ISTEP= 420 
TERMINATED AT 

ISTEP® 420 LASTEP® 1000 XU® 6.096E-01 XULAST® 
DOWN-STREAM PLOT, XU® 6.096E-01 ISTEP® 420 

6.096E-01 IFIN® 2 


