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ABSTRACT

The ESCIMO (Engulfment, Stretching, Inter-diffusion and
Moving Observer) theory of turbulent combustion is further
developed and applied to turbulent diffusion flames. The
present theory contains both the demographic (Eulerian) and
biographic (Lagrangian) aspects. Major attention is paid in
the present work to the development of mathematical formulation
and solution procdedures for the fold demographic studies.

' The distribution of "fold-populations" at each spatial
point is described by a set of transport equations which are
linked together through the source terms. The source terms
in each equation include the effects of fold-ageing, fold-
formation and fold re-engulfment, respectively.

Simplifications are made in the biographic analysis in
order to reduce the computational task, such as the
assumpticn of a fast, simple chemical reaction system and
unity Lewis number. The governing partial differential
equation is then solved by the approximate methods, termed
the "profile method®,.

In order to asses the validity of the "ESCIMO" theory,
three different sets of experimental data are selected for
comparison between the predictions and the measurements.
These test cases are:

(1) the diffusion-limited chemical reaction in a turbulent
mixing layer;
(2) the hydrogen-air diffusion flame in co-flowing air; and
(3) the natural gas-air free jet diffusion flame.
The quantities calculated by the present theory are

classified into various categories presented below:



. the hydrodynamic results which include the mean velocity
and the turbulent kinetic energy (obtained from the k-¢
model of turbulence);

. the population distribution function of various folds;

. the variation of mean temperature and species concentration
across the mixing layer or jet;

. the root-mean-square fluctuation of temperature and
specles concentration; and

. the probability density funetion of temperature and

species concentration.

Comparisons with the experimental data show that the
agreement is fairly good, provided that a suitable choice
of input parameters is made. The sensitivity analysis has
been performed for both the physical parameters and numerical
parameters in order to evaluate their influences on the -
results. However, there is a need for enlargement of the
conceptual content of the "ESCIMO" theory to allow for the
role of "Turbulence intermittency".

The direction of this future development is discussed,

and suggestions provided.
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CHAPTER 1

INTRODUCTION

1.1. The problem considered

There have been extensive theoretical studies in
turbulent reacting flows during the last decade. These
continuing research activities are inspired by the increasingly
urgent requirements of higher combustion efficiency and
lower pollutant emissions. A better understanding of the
processes involved and a more powerful predictive capability
are essential to achieve thg purpocse.

According to the nature of the combustion problems in
many practical devices, the reacting flows can be classified
into two limits, namely, the nonpremixed and premixed systems.
For the nonpremixed systems, fuel and oxidizer enter the
field of interest in two streams, for instance, the primary
jet is fuel and the secondary flow is oxidizer. For the
premixed systems, the cold, premixed reactantsare fed into
a single stream and the other stream is composed of hot
compustion products. Intermediate cases do exist in
reality, e.g., the primary jet is fuel aﬁd the secondary
stream is a fuel-oxidizer mixture. Up to date, most of the
developed theories and methods are confined to the
nonpremixed and premixed 1imits due to the relative simplicity.

Different models have been developed and applied to
either the nonpremixed flames (also called as diffusion
flames) or the premixed flames, such as those mentioned in

the literature by Spalding (1976a), Bilger (1976,.1980)
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and Bray (1979,1980). The imﬁortant phenomena in each type of
flames can be fairly predicted with the aid of some
agsumptions, closures and semi-empirical formulae. However,
the majority of theoretical models have been constructed and
found successful for one type of flame only.

It is desirable to set up a theoretical framework which
is capable of tackling both the turbulent diffus;on and
premixed flames. The advantage of this kind of theory is that
it can be further developed to predict some practical flames,
like that in the gasr~turbine combustor, which has both
diffusion and premixed features.

A general theory of turbulent combustion with the
acronym of ESCINO (Engulfment, Stretching, Coherence, Inter-
diffusion and Moving Qbserver), was proposed by Spalding
(1976b,1978b)to meet the need. The theory combined the
Eulerian épproach (termed the demographic part here) and the
Lagrangian approach (termed the biographic part) into one
framework. The application of ESCIMO theory to the confined,
premixed, baffle~stabilized flame appeared in tﬁe work of
Noseir (1980), while the other application to the well-stirred
reactor (alsoc premixed flames) with complex chemical-kinetics
scheme was demonstrated by Tam (1981).

The reacting flows considered in this thesis are of
the open, turbulent diffusion types and it ie the first test
of ESCIMC theory to this kind of flows. The chemical reaction
considered herein is fast compared with the rate of turbulent
mixing, which is usually classified as diffusion-limited or

hydrodynamics-controlled reaction.
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1.2 O0Objectives of the study

The concepts of ESCIMO theory are based on the existence
of coherent lumps of fluids, termed the "folds" or
"layer-pairs" in the present work and related publications,
which travel from one place to the other according to the
fluid-dynamies motion. The properties of the flow are
determined from the characteristies of different folds coming
from various places. |

The whereabouts of all folds and the history of each
fold are treated in the demographic and biographic parts
respectively. The demographic part is more closely related
to the hydrodynamic condition than the biographie part. In
the previous work of Noseir (1980) and Tam (1981), major
attention has been paid to the developﬁent of biographic
analysis, while the demographic analysis was rather primitive.
The results of demographic analysis in the well-stirred
reactor can be expressed by the simple exponential function
(Tam, 1981), since the properties are uniform in - space. On
the other hand, Noseir assumed that the time-average profiles
of gas properties across the duct are of the top-hat fornm.
This simplification reduces the demographic analysis to- a
one-dimensional problem, i.e., the population distribution
of folds is a function of longitudinal distance only.

The two main objectives of the present study are,
consequently:

(1) to set up the mathematical formulation of demographic
analysis in actual itwo-dimensional, turbulent, réactingnflows

together with the numerical solution procedure; and
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(2) to apply the ESCIMO theory to the turbulent free
jet-diffusion flames as one further step toward the combustion
problems of practical importance,

The results obtained from the present work can be
classified into three categories, namely, the turbulent mean
properties, the turbulent fluctuation intensities and the
probability density functions (pdf) of various scalars.

The presumptions made in ESCIMO theory are mainly based
on physical reality, with some simplifications in order to
economize the computational task, The influence of various
hypothesis and empirical constants on the results have been

investigated and demonstrated.

1.3 Practical relevance

The turbulent diffusion flames exist in many industrial
processes and natural firés, which can be divided into the
following groups:

(1) Gas turbine combustors: the fuel is injected into the
primary combustion zone through the injector and the air
enters from the front of the combustor or from large holes

in the combustor liner. The fuel and air are injected
separately, mix and, subsequently, react. However, in the
secondary combustion zone and dilution zone of the combustor,
more ‘air is added through the film cooling slots,

indicating that the combustion changes from the diffusion

type to the premixed one.

(2) Industrial furnaces: the fuel jet and air flow are supplied

separately to the confined combustion chamber.
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(3) Compression-ignition (diesel) engine: much of the combustion
occurs at a rate controlled by the mixing of fuel spray and
air,

(4) Rocket exhaust plumes: the exhaust gases from the rocket
nozzle usually contain some amount of oxidisable material and
secondary flame may occur when the gases mix with the
surrounding air. The secondary combustion is responsible for
the emission of light, intensified heat radiation, ete. in

the trail of the rockets and missiles,

(5) Fires: the large scale forest fires, building fires, and
the flaring waste gases are mostly mixing-controlled diffusion
flames.

Usually, the higher combustion efficiency in the
engineering equipments is accompanied by lower emission of
soot agglomerates (sﬁoke) and pollutants sucﬁ as carbon
monoxide and nitric axide, sinee less amount of fuel is
wasted. The detailed chemistry of soot and poliutant formation
is very complex and depends on the detail thermal and
hydrodynamic conditions of the flows considered. Therefore,

a reliable and powerful model in the prediction of flame
properties is the prerequisite for the solution of our energy

and environmental problems.

1.4 Previous work

It happens in many practical cases that the kinetics of
the overall chemical reaction are relatively fast compared
with the rate of turbulent mixing. The equilibrium
concentrations of final products is then assumed to prevail

everywhere in a diffusion flame {Spalding,1970a; Bilger,1976;
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Libby and Williams, 1981). The additional assumption of equal
mass diffusivity are also often made and justified, so that
the concentration of fuel, oxidant and product are uniquely
related to the mixture fraction which is a conserved scalar.
The value of enthalpy can also be determined by the mixture
fraction if the enthalpies of fuel and oxidant streams are
uniform. Therefore, all the thermodynamic properties of the
mixture are functions of mixture fracetion only. This
conserved scalar approach substantially simplifies the
analysis of the problem, since the difficulties in modelling
the turbulent mean reaction rate are largely obviated.

The turbulence fluctuation in the flames is taken into
account by presuming a probability density function (pdf)
for the fluctuating mixture fraction so that the mean
concentrations and temperature can be evaluated. The work
of Kent and Bilger (1973), Lockwood and Naguib (1975),

Jones and Whitelaw (1978) and Kolbe and Kollman (1980) all
follow this line. The shape of pdf is assumed as a "clipped
Gaussian'" or of beta function distribution. The common
practice in these approaches is to obtain the mean mixture
fraction and its variance (the fluctuation) from the
modelled transport equation. The variance was obtained by
solving the "g-equation" proposed by Spalding (1971a) or
other equation with some modification.

The predictions cobtained from the presumed pdf approach
compared favourably with the experimental data on time mean
quantities, although some discrepancies do exist, It has been
demonstrated by Kent and Bilger (1976) that the predictions

on mean composition and temperature do not seem very sensitive
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to the variations in the pdf profiles. The limifation of
this approach is that a sufficiently realistic pdf has to
be specified in advance and the task becomes more difficult
when the combustion process can not be properly-described
by a single-step reaction (Spalding, 1979a).

Another approach, proposed by O'Brien (1971), Dopazo
(1975), Pope (1976) and Janicka et al (1978}, is to construct
the transport equation of pdf from the conservation laws.

But the Molecular diffusion and turbulent transport terms

are unclosed and have to be modelled in all such pdf equations
'for reactive flow systems. The major advantage of the pdf
method for reactive flows is the closed~form treatment of

the species production rate, which makes it attractive
especially for combustion problems. But the number of
independent variables increases substantially and the
numerical methods become more SOphisticated and time consuming,
especially when the chemistry is complex.

Following the line of using a deterministic approach
to the specification of a scalar pdf in a single reaction
progress variable, proposed by Bray and Moss (1977), Libby
et al (1979), Roberts and Moss (1981) has demonstrated a
"wrinkled flame" interpretation of the open turbulent
diffusion flame. It is argued in the wrinkled flame model
that a laminar flamelet profile is the microscopic element
in a turbulent ensemble. The pdf of any conserved scalar is
related to the instantaneous flame profile through the flame
sheet model, where the two parameters in the instantaneocus
flame profile are determined from the measured mean temperature

and temperature fluctuation. The measured probability density
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function of temperature, in the open turbulent methane
diffusion flame, has been reproduced from this wrinkled
flame model. Roberts and Moss (1981) claimed that this model
is simpler and more economical in the descriptions of

scalar pdfs than the multi-dimensional joint pdfs.

When the finite-rate chemistry is present in the flow,
or the flame is a partially premixed one, the transport
equation of one reacting species (usually is the fuel) has
t0 be solved in addition to the mixture fraction. The
production rate (or consumption rate) of the species appears
in the source term of the balance equation and must be
modelled. This approach is often termed the two-variable
approach or two-variable formalism (Lockwood and Naguib,
19753 Lockwood, 1977; Janicka and Kollman, 1979; Bilger,
1980). The éecond variable is a kind of progfess variable*
such as reactedness or other combined vazriables.

The closure of the production term for the second
variable has been treated in various ways. Some authors
gimply use a mean kinetic rate based on the mean concentrations
and mean temperature only. This is ungatisfactory because
the effects of fluctuations and mixing are disregarded in
the calculation of the reaction rates. Borghi (1974) and
Hutchinson et al, (1978) employed an expansion procedure
to include the effects of temperature and concentr;tion
fluctuations on the reaction rates, but the correlation terms
have to be obtained by second-order closure of their
balance equations. The closure problem seems to overshadow
the advantage gaining from the use of conserved scalar (i.e.

the first variable).
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Spalding (1971b) proposed the "eddy break up" model
to combine the effects of turbulent mixing and chemical
kinetics. Hence, the reaction rate is a function of the local
turbulence Reynolds number, the turbulent kinetic:energy
and its dissipation rate, the concentration fluectuation
and the kinetic rate of reaction. Many similar expressions
have appeared in the literature (Lockwood, 1977; Bray and
Moss, 1977) and some degree of success was achieved, such
as the work of Mason and Spalding (1973); Stephenson (1972)
and Serag;Eldin (1977). However, this appreoach is
semi-empirical and some uncertainties do exist.

Alternatively, Janicka and Kollmann (1979) employed
the joint pdf of two wvariables to tackle the chemical
reaction term. Several constraints imposed by the moments
and the bounds of the variables can be placed on the pdf.
The second-order moments are obtainable from the modelled
balance equations and the chemical production terms from
the joint pdf. Plausible results have been obtained for
the concentrations of major species and nitric oxide.

Bilger (1979) proposed the "perturbation approach" to
handle the source term of the second variable. The term
"perturbation" here means the deparfure from the equilibrium
or fast chemistry solutieon. A new term which represents
the production rate of out-of-equilibrium material (by the
fine scale turbulent mixing) arose in the equation. The
treatment of this microscale mixing source term has been
demonstrated by the author. In the mean time, the mean

production rate was found to be better conditioned, in terms
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of the departure from equilibrium, than the usual approach
so that a lower-order closure is sufficient.

All the approaches described in the preceding paragraphs
include the concept of conserved scalar. There exist some
problems in which it is impossible or inappropriate to
define and utilize the conserved scalar. These problems
usually fall into one of the classes presented below;

(1) when the turbulence Reynolds number is low and differential
diffusion (in the molecular diffusion level) effects are
important; or

(2) the composition and enthalpy in the fuel stream and

oxidant stream are not uniform and constant; or

(3) the complex chemical reactions are far from the

equilibrium conditions so that little advantage can be

gained from the two-variable approach.

Some authors has already suggested that it is necessary
to attempt direct closure of the chemical production term )
by either the moment closure or the pdf closure methods.

The typical examples appeared in the work of Borghi (1974),
Donaldson and Hilst (1972), Bonniot et al. {(1978), Donaldson
(1974). However, these methods have been developed fof
problems of relatively simple chemistry and equal molecular‘
diffusivity so far. The demonstration of this approach to
the more difficult problems remains to be done.

Another approach based on the detailed computations of
each hypothetical element in the turbulent reaction zone
has been illustrated by the earlier work of Mao and Toor

(1970). They treated the flows as composed of multi-layered
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sandwich, which contains either oxidant-rich layer or
fuel~rich layer. The phenomena occurring in the sandwich is
supposed to be unsteady and laminar, so that the full
multicomponent diffusion effects and complex free radical
chemical mechanism can be incorporated in the model. The
effect of shear or stretching strain was, however, not
considered in the early version given by Mao and Toor (1970},
i.e., the model is purely diffusional. They were able %o
prediet the experimental data of Vassilatos and Toor (1965)
in the plug flow reactor over a wide range of Damkohler
nunber and stoichiometry parameter, if the thickness of
layer is properly prescribed.This model bears some
resemblance in the conceptual framework to the ESCIMO theory

to be presented in the present thesis.

1.5 Layout of the thesis

The remainder of the thesis is presented in eight
chapters. The physical model of the ESCIMO theory will be
provided in the next chapter.

The mathematical analysis of the theory is presented
in Chapters 3, 4 and 5, Chapter 3 contains the mathematical
formulation of the hydrodynamic computations and demographie
part. The pa;tial differential equations are two-dimensional
steady and parabolic which can be solved by the marching
method (in the space direction). Chapter 4 provides the
mathematical framwork of the biographic part in ESCIMO
theory. The equations which describe the behaviour of each
fold are one-dimensional, unsteady with the laminar diffusion

coefficients. An approximate method, called as "profile

method" is adopted to obtain a closed form solution. Chapter 5
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deseribes how the results obtained from the demographic
and biographic parts can be linked together to yield the
various turbulence properties in the flow systems of
interest.

The first test case in the present work, namely, the
diffusion-limited chemical reaction in the turbulent mixing
layer, is demonstrated in Chgpter 6. The influence of various
assumptions and parameters is also discussed.

Chapter 7 is devoted to the application of ESCIMO
theory to the turbulent jet diffusion flames, inecluding the
hydrogen-air diffusion flame and methane~air diffusion flame.
The results are compared with the measurements from Kent
and Bilger (1973), Lenze and Gunther (1975), Lenz and
Gunther (1980).

Chapter 8 presents the sensitivity analysis for the
turbulent diffusion flames, It includes the influence of
fold formation rate, the fold composition at birth, the
initial fold size and stretching rate on the prediction of
flame properties. The influence of different grid sizes is
also investigated and demonstrated in this chapter.

Finally, the main achievements of the present work
and some proposals for further development of the theory

are stated in Chapter 9.
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CHAPTER 2

THE PHYSICAL MODEL OF THE ESCIMO THEORY

2.1 Introduction

In this chapter the various components of the ESCIMO
theory from both the demographic (Eulerian)} and the biographic
(Lagrangian) aspects will be described; the presentation
will be based on the physical phenomena first and then
followed by simple mathematical formulation only. The
detailed partial differential equations are depicted in the
next two chapters.

The turbulence model for the time-average flow field is
first presented as the starting base, followed by the description
of the creation of the folds (or eddies) and the coalescence
of the old folds into the new ones. The stfetching effect of the
folds due Lo the shear strain and the transport of different
folds by the mean turbulent flow will be explained afterwards.

The definition of the age in the fold-history and the
relevant quantities are then provided in the subsequent
sections of this chapter. Finally, the molecular diffusion
which occurs inside each fold and its interaction with the main

flow field will be discussed.

2.2 The time average flow

Two types of similar flow field are considered in the
present work, namely the turbulent plane mixing layer and the
turbulent axisyumetric round jet. Both of them belong to the

two-dimensional parabolic flows, thus simplifying the flow
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field solution so that more efforts can be spent on the
development of the ESCIMO model itself. The physical laws
which govern these flows include the conservation of mass,
momentum and scalar properties and the universal gas law.
These laws have been written in mathematical forms and
simplified according to the toundary layer assumptions, such
as by Schlichting (1979), Kays (1969) and Spalding (197la)

Héweéer, there is 4 need in modelling the turbulence
quantities for ithe determination of turbulent fluxes which
appear in the momentum conservation equation. In order to
obtain reasonable accuracy on one-hand and the computational
practicability on the other, the widely used two-equation
model of turbulence given by Harlow and Nakayama (1968)
and Launder and Spalding (1973) is eﬁployed here in this
work.

In two-equation k-e& model, .it is supposed that the
turbulence is characterised by two quantities, namely:

k - kinetic energy of turbulence; and

€ - dissipation rate of turbulent kinetic energy.

The "eddy viscogity" or "turbulent viscosity" used in
the momentum equation is then calculated from the éalueé
of k and € with the aid of an empirical constant. The
turbulence length scale is also related to k and ¢
instead of being assigned a specific value such as in the
Prandtl's mixing length theory. The full mathematical
presentation of the hydrodynamics calculation will appear

in the next chapter.
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2.3 Fold formation and re-engul fment

The earlier experimental work of Brown and Roshko
(1974) on non-reacting plane turbulent mixing layer with
free streams of different densities has provided
congiderable evidence on the existence of "large scale
coherent gtructure". The rolling up -of the interface
(vortex shéet) between two streams to form "layer pairs"
or "folds" was revealed by the high speed photography.

The recent work of Ganji and Sawyer (1980) in the
turbulent premixed step~-combustor also reported the similar
coherent structure. There are a number of "layer-pairs"
or "sandwiches" in the mixing region and they are randomly
distributed at any instantaneous moment. The fresh reactants
are continuously entrained or enfolded with the products
to form new eddies. From the high-speed Schlieren film
record of the flame presented by Ganji and Sawyer (1980},
it can be observed that the eddy ahead is being pushed
downstream, and the following eddy moves up. At the same
time; they rotate around each other and finally become a
single entity (at least optically). This phenoﬁenon can
.be termed the "re-engulfment process”,

In the framework of the ESCIMC theory, the formation
rate of "folds" or "eddies"™ is determined by the
entrainment rate which is obtained from the hydrcdynamics
calculation. However, the distribution of the formation
rate across the shear layer or the jet at fixed downstreanm
location has to be postulated. There is ne experimental
evidence reported up to date concerning this problem,
hence different hypothesis will be employed and tested

in the present work to demonstrate its influence.
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The distribution can be assumed to be proportional to
the local mean veloclty gradient; to the local mean
velocity; or to the normaligzed stream function.

After the fold is created inside the mixing region, it
is carried downstream by the mean flow field and will
finally be swallowed by another fold to form a new and
larger fold. Ganji and Sawyer reported a relationship,
which obeys the experimental law apprcximately, between
the percentage of gurvived eddies and the surviving
distance. Therefore, a distribution of the percentage (or
population) of various folds formed at different upstream
locations is expected at any downstream position. The
folds can be identified according to their birthplaces
and hence be classified int¢ different groups.

Re-engulfment and formation rates are directly
linked, conditional upon their difference being equal
to the entrainment rate from the mass conservation law.
Should a new fold contain equal amounts of fresh and old
material, the quotient of re-engulfment to formation
rates would be 0.5. Generally speaking, this quotient
is a function of position across a.shear layer or jet.
Thus, the funection can be expressed as:

Ry = (1-Mo)Ry , (2.3-1)

where RR and R}:.1 represent the re-engulfment rate and
formation rate respectively, Mo is the mass fraction

of the fresh fluid in the newly formed fold (O<Mo<l).
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The re-engulfment rate of each group of folds is
therefore calculated from the total re-engulfment rate
(Eqn.2.3-1) multiplied by the population distribution

obtained from the demographic analysis.

2.4 FYold Stretching

Winant and Browand (1974) observed the deformation
of vortices during their pairing process in turbulent
boundary layers. The vorticés become elongated in the
flow direction while they roll around each other which
indicates strains imposed by the stream velocities.

Spaldiné(l976b)has attributed two factors to the
rate of distortion of layers, namely the mean motion
of the fluid and the random turbulence eddying movements.
The random éurbulence motion is very complex and not yet
well understood. Hence, only the rate of distertion
brought about by the mean turbulent flow is considered
in the present work and it is hoped that the main effects
of stretching are adequately included, at least for the
present.

If the average thickness of the fold is defined as Z,
the stretéhing rate (or the reduction rate of a certain
scaie) is related to the rate of strain through the

following expression:

az _ | 2u, 2v
dt - T} 3y T 3% ‘ Z » (2.4-1)

where t is time, u and v represent the mean velocity in
the x and y direction respectively. Bqn.(2.4-1) is

further reduced according to the boundary laver assumption
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as:
dz _ du :
L. |- » (2:4-2)

in the present computation.

2.5 Fold Pransport

The basic transport mechanism of the folds is the
mean convective flow motion, although the local vorticity
can induce the turn-over of the folds. The trajectories
of the eddies in the free shear layer has been first
studied by Brown and Roshko (1974) and followed by Ganji
and Sawyer (1980). It has been reported in their later
work that the trajectories are nearly parellel to each
other, indicating that the vortices nearly move with the
same convective welocity in space.

In the case of a free jet where the maximum vélocity
decays in the downstream direction, the trajectories of
the eddies are supposed'to be somewhat different from those
of free shear layer where the boundary velocities are
constant. It is assumed in the present work that the folds
move with the local mean velocity a2long the path of

constant mixture fraction, the mixture fraction being defined

ass .
d - 0
f = » (205-1)
by = O
where
cb = S‘mfu - mox » (2,5-2)

and Tey and m,, are the mass fractions of fuel and oxidant
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and s 1s the stoichiometric oxydant required to burn lkg
of fuel. ¢e and ¢ are the values of ¢ at the fuel pipe
exit and the surrounding air.

The present assumption on the fold trajectories
implies that the elemental composition of each fold remains
constant during its life time (before it is re-engulfed by
other fold - toc form a new one). This hypothesis is
consistent with the coherent assumption that each individual
fold does not communicate with the others within its life

span (Spalding. 1979b).

2.6 Fold age and the quantities correlated with it.

The fold which is formed at a particular point in the
flow field will take & finite time to travel to another
place (before it is re-engulfed). Spalding (1976b suggested
the use of an "age" dimension to describe the fold-history.
The definition of "age" employed in the ESCIMO theory is
the time elapsed since fold formation. Thus, it is related
to the convective velocity and the distance from the
birth place along the fold path.

The mathematical relation between the age and the
relevant quantities is now written as:

= osX & , (2.6-1)

¢b
where A is the age of the fold and Xy 1s the x-value at
the birth place. ¢ is the trajectory of the fold.

Folds which have survived through various periods

of time can be characterised by their ages. Samples taken
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at a particular point'in a flow field over s significant
time interval should be able to exhibit folds having
various ages owing to the turbulent fluctuation,
Consequently a population distribution curve based on age
can be constructed.

The task in the demographic part of the ESCIMO
theory is te obtain the population distribution of folds
iA the flow domain. The mathematical framework and
computational technique share some similar feature with
the computation of particle-sigze distribution in coal
combustion (Gibson and Morgan, 1970; Richter and Quack,
1975) and in droplet combustion (Elgobashi, Pratt, Spalding
and Srivatsa, 1976). The detail analysis is to be

described in the next chapter.

2.7 Phenomena occuring within the fold

While the creation and transport of the large scale
coherent structures, such as folds, are dominated by
the turbulent mixing processes, the interaction between
the interface of fresh reactant and the product inside
each” fold is a molecular one. The molecular diffusion,
heat conduction and chemical reaction which take place
in direction normal to the interface are subject to
the laminar law and hence the laminar exchange coefficient
can be employed in the computation.

The properties of the fresh component (reactant)
of the fold are those which belong to the undisturbed
irrotational fluid outside the shear layers or jets.

On the other hand, the properties of the re-engulfed
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component of the fold are determined by the mean
turbulent values and the fluctuation values inside
the mixing region.

The inter-diffusional and chemical-reaction processes
within the fluid element are influenced by the stretching
effect from the mean turbulent motion such that the
distances over which the reactants must travel becone
steadily smaller. The interaction between turbulence
and combustion is embodied in this aspect of the ESCIMO
theory.

Since the moving observer concept is adopted in the
biographic analysis, the equations describing the heat
and mass transfer inside the fold can be reduced to
more tractable partial differential equations without
the non-linear convection terms. Extensive reports on
this formulation can be found in the related work by

Noseir (1980) and Tam (1981).

2.8 C(Closure

A summary of the main points in the physical model
of the ESCIMO theory are listed below.

(1) The turbulent flow field has to be solved by
considering the time-averaged equation of motion.
The turbulence quantities are determined by the two-
equation medel, namely the kinetic energy of turbulence
and its dissipation rate.

(2) The eddies, or folds, are created inside the
mixing region and they are composed of the fresh

irrotational fliud and the fluid element already
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existing in the mixing region. The rate of formation
is determined by the entrainment process.

(3) The folds are being continuously subject to
the shear strain caused by the turbulence motion, Only
the effect of mean turbulent motion is considered in
the current work.

(4) The main mechanism of the fold transport is the
mean convective motion.

(5) There exists a distribution of folds which have
survived through various periods of time since formation
at any point in the flow domain due to the turbulent
mixing.

(6) The process which takes place at the interface
between the fresh and the re-engulfed part of each fold
is dominated by the molecular diffusion.

(7} The mean turbulent propertieé at any location
can be obtained from the corresponding quantities of
each fold multiplied by the population distribution
function there.

The mathematical formulation and the solution
procedure will be set up and described in the next

chapters.
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CHAPTER 3

THE MATHEMATICAL ANALYSTS: DEMOGRAPHIC ASPECTS

3.1 Introduction

The governing equations of the mean velocity, fturbulence
quantities and the mixture fraction will be supplied in this
chapter firstly, because all the resﬁlts obtained herein
serve as the necessary input to the ESCIMO theory.

Secondly, the transport equations which describe the
population distribution of various folds will be provided.
The squations will then be transformed into a non-dimensional
form in order to promote the convenience of solution
procedure. The boundary conditions of these equations are
alsoc discussed.

The transformed partial differential equations of folds
population distribution are then written in the finite
difference form which lead to a set of algebraic equations.
These algebraic equations are solved by tridiogonal matrix
algorithm (TDMA, see Smith (1974)). The age space is
discretised into a finite number of intervals for the sake
of practical calculation.

Finally, the solution procedure of the finite difference
equations will be presented in detail and the upwind
difference scheme is employed in both the space coordinate
and the age coordinate to procure physically realistic

results.

3.2 The Hydrodynamic Calculation
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3.2.1 The Basic Eguations in Polar Coordinate

The conservation laws of mass and momentum are
applied to axisymmetrical, isobaric free boundary
layers. The transport equations for the axially-
directed momemtum and for the mixture fraction, given

by Spalding (1971a) are listed below.

au du _ 1 9_ du
pu 3= + pv = = T ax (ru, 537) + (o,-plg ,(3.2-1)
and
3 af _ 13 He aF
pu 3% + DVg; = 37 (I'—-f-‘—-;) , (3.2-2)

where u and v are, respectively, the time-averaged
axially and radially-directed velocities of the jet flow;
x and r are the axial and radial coordinates; f is the
time-averaged mixture fraction (defined in Eqn2.5-l), o}
is the density of the mixture and p, is its value in the
surroundings; g is the gravitational acceleration assumed
to be aligned with the axis of symmetry, My is the _
"turbulent viscésity", and g, is the turbulent Prandtl/
Sehmidt number.

The pressure gradient term does not exist in Eqn.
(3.2~1) because the flow considered is free jet (or free
shear layer). The turbulent Lewis numbers for all species
have been assumed to be unity so that Eqn(3.2-2) contains
no source term on the right hand side. It implies that
the turbulent diffusion coefficients of all species
are equal %o each other.

The equations for the turbulent kinetic energy and
the dissipation rate of turbulent kinetic energy given

by Launder and Spalding (1973) are presented below:
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where G, and C; are empirical constants.
Gy is the rate of generation of turbulence energy which

is given by the following expression:

Gy = ny(53) ., (3.2-5)

The turbulent viscosity is calculated in the k-£ model

by the relation

l-lt - cupe ’
Wwhere Cu is an empirical constant.
The combination of the laminar viscosity and the

turbulent viscosity is termed the "effective viscosity":

+ u-b - (3-2-7)

The values of Ci, Ca, Cu and Ops Og used here are the

same as those given by Launder and Spalding (1973), namely:

Ci =1.43, C2 =1.92, C = 0,09
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3.2.2 The Transformation of the Equations to the xvy coordinates

In the actual solution procedure, the numeriéal scheme

of Patankar-Spalding (1967) embodied in the GENMIX computer
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y
W = {y roudy / { E roudy (3.2-11)

and

{yrdy= (b - ¥1) % (pu) tdw . (3.2-12)

The standard mathematical technique is now employed to
transform Eqn.(3.2-8) into the x“w coordinate system.
The task is to express (gg) in terms of (gg and
ax’y ax’ W
(gg) ; and (gg) in terms of (gg) and (gg) respectively.
dw’ X 9 x ax’ w W' x
From the differentiation rule, the following results

are obtained:

32, = G+ . G, , (3.2-13)
and
R , (3.2:20)
since d¥y = 0 at fixed ¥.
Hence _
3, = @, - kv ok o TG,
. (3.2-15)

Equation (3.2-13) is now rewritten in the compact form

as:

= (32) + (a+bw) (32)
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" program is employed. The partial differential equations
for u, f, k, € etec are first derived in the "Von Misges"
coordinate system, xV¢. They are expressed in the general

form given below (Spalding (1978a)).

38 _ 2 (n2 30y . L1 }
x -39 (ToPuly e 500 T3 S » (3.2-8)

where ¢ stands for any of the quantifies u, £, k, € etec
and S¢ stands for the corresponding source tern, F¢,e£fis
the "effective exchange coefficient" for the variable ¢

and ¢ is the stream function given by:
= Vs
¥ = [“rpudy . (3.2-9)

For the sake of economy of computer storage in the
numerical calculation, Eqn.(3.2-8) is then transformed into
the xVvw coordinate system; here the coordinate w is defined

by:
wE (-bp)/ (W= ¥p) , (3.2-10)

where Yg and Yy stand for respectively, the value of ¥ at
the external and internal boundary of the calculation domain.
The values of g and ¥ are chosen in such a way that the
whole of the interesting region is covered within the I
and E boundaries and therefore w takes values between 0 and
1. Note that Yp and by are functions of x and are calculated
during the course of computation.

From the definition of V¥ and w, given by Eqns.(3.2-9)

and (3.2-10), the following relations can be achieved:
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Here a and b are defined by:

-1 dyt :
(bg-vr) 9% , (3.2-16)

pz—=t 4

Similarly, for the definition of w3

Ju’x , (3.2-18)

Since (V¥g-¥y) is a constant at fixed x, the following

relation is readily established:

3 3 ~[ad .80y 17
[ﬁ {rzpur¢,eff(-5$)xﬂx E [:-a—w {C(m)x}] iy

, (3.2-19)
in which ¢ is defined by:
= rlpuly, of £ . (3.2-20)

B (b -v)?

Thus the resulting transformed form of Eqn.(3.2-8) in the

XVvw coordinate system is:

2+ (arpw)3d - 2 (B2)r a (3.2-21)
(i) (11) (1ii)  (iv)

Term (i) in Eqn.(3.2-21) represents the longitudinal

convection of variable ¢, term (ii) stands for the lateral
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convection. Term (1ii) stands for the cross-stream
diffusion and term (iv) is the "source" of the entity.
It should be mentioned here that the quantities a and
b are respectively, the rate of inflow to the boundary layer
through the I boundary and the sums of the rates of outflow

from the boundary layer through both the I and E boundaries,

Hence:
a = ryhy /{vg-v) » (3.2-22)
b = (I‘EI'I]E':'-I‘II.Df)/(wE“DI) ’ (3-2-23)

where the mass fluxes ﬁﬁ'and my ~are mass flow rates per unit
area across grid boundaries, as shown in Fig.3.2-l.

The values of a and b are calculated as those in the
standard GENMIX program, hence only the brief description
will be given below:

* When there is a symmetry axis or symmetry plane in the
flow, this will be used as one boundary of the domain of
integration and the relevant & must be equal to zero.

* When the boundary of calculation domain expands to
cover the boundary layer, the mass transfer rate is chosen
so that material flows into the boundary layer at such a
rate that conditions just withdn the layer differ from those
in the undisturbed stream by a small specified amount. This
device is applicable to the boundary of shear layers, jets,
ete.

¢ When the integration domain is bounded by the

impermeable wall, the mass transfer rate is equal to zero;
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(a) Mixing Layer

(b) Round Jet

} —
ol I boundory(eo=0)
Yihy=0

Fig.3.2-1 Boundaries of the computation domain
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otherwise it should be equal to the mass transfer rate
prevailing in the actual problem..

The source terms, d, for the equation of u, £, k
and € have been established in the previous work of
Launder and Spalding (1974), Spalding (1978a). They are
now listed in Table 3-2:

Variable Source term, d
1
u EE (Dw-p)g
£ 0
1
k T (Gy-pe)
€ -pl“ﬁ% (C1Gy = C2pe)

Table 3-2 Source terms for the relevant equation in

the general form.

3.3 The Basic Differential Equations for the Fold

Population.

At a certain location in a flow region, the
population of folds there has different ages and is
defined in the present theory as the propability of
finding particular folds per unit age. Thus, the
population P is a conserved propefty and has the

dimension of (za.ge)_1 and obeys the following relation:

I?PdA = l 0(303'1)
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The task in the demographic analysis is to =olve
the conservation equation for P of the kind described

in the preceding section, viz:

wja
»jHd

+ (aro)E = Z(e2R) 4 gp ,(3.3-2)

The source term dp includes the "simple-aging",
fold formation and fold re-engulfment rates. It is
presumed here that the simple aging part is =3P/34;
this signifies that the folds can only become older
and that the value of P at one value of A is influenced
by the shape of the population-distribution function
itself. The relation between the formation rate and re-
engulfment rate has already been described in Seec.2.3.

The creation of a new fold is alﬁays accompanied .
by the death of an existing f0ld 'as a kind of
"peincarnation™ under present conceptual framework,
8ince all the fluid in the mixing region is fold

material. The source term in Eqn.(3.3~2) is therefore

given by
BP o - .
= [ a—i- é (A) - R P] /1.1 ’(3-3-4)

where S(A) is the Dirac delta function defined as :
1.
0" for A>AA ,(3.3-5)
with the property of fo6(A)dA = 1 (the portion of A<0

is not considered here because of the non-negativity of

age).
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The second term on the right hand side of Eqn.(3.3-3)
represents the generation of new folds at A=0 only (it
needs to be approximeted by a small interval in the finite
difference formulation). The third and fourth terms
denote, respectively, the consumption c¢f fold material
required for the re-~engulfed and fresh part of newly
formed folds. Note that the value of Mo does not

appear explicitly in the final expression of Eqn{3.3-4).

3.4 Transformed Differential Equation of Fold Population

From the definition of age in Eqn.{(2.6-1) it can
be observed that the maximum age in question increases
with the longitudinal distance x. Hence, it will be
necessary to employ a large number of sub-intervals in
the age~coordinate in order %o obtain reasonably accurate
results in the downstream region of the flame jet.

A non-dimensional age X, is now introduced to
economize the computational procedure and to cover the
age-interval of important interest, visz:

X = AFéx) 2 (3.4-1)
where F%x) indicates that F is a function of x only.

— The characteristies of non-dipensional age, X, are
similar to those of non-dimensional strean function, w,
in the Patankar-Spalding procedure. The function F is
chosen in such a’' way that the whole of the interesting
region in the age-dimensgion is inecluded and X takes the
value between 0 and 1. This device is justified because
the population of the very old folds (in the boundary layer
type flow at least) must be negligibly small. Thus, a
moderate numbér.of sub-division in the X-coordinate is

sufficient to yield acceptable accuracy.
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The standard mathematical technique is now employed to
transform Eqn.(3.3-2) from the x, w, & coordinate system

into the X, W, X onme with the following definition:

X =x i (3.4~2)
W=uw 3 (3.4-3)
I = AFéx) . (3.4-4)

It can be shown from the chain rule of differentiation that

3P _ 3P 3X , 3P AW . 3P 3k , (3.4-5)
ax 3X 9x oW o9x 3k 9ox
3P _ 3P 3X , 3P 3W , 3P 34 . (3.4-6)
dw ~ 3X Jw W Jw 3% 3w
3P _ 9P 3X , 3P AW , 9P 34 . (3.4-7)
34 - 3X 34 T 3W 34 ' 3% 9A

From the definitions in Egns.(3.4-2) to (3.4-4), the

following relations are valid:

%% =1, %g =1, %% =P » (3.4-8)
TRV R y (3.4-9)
Y R » (3.4-10)
3k _2 g v (3.4-11)
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afa
g%
Il
o
2%
il
o

, (3.4-12)
3X _3x _ . (3.4-13)
34 - 94

Hence:

3P _ 3P , 3P A 3F , (3.4-14)
ax X 33 F 3K
3P _ 9P
3w oW , (3.4-15)
32 _ 3P g . (3.4-16)
A 94

Equation (3.3-2) written in X, W, A coordinate system

is now given by:

ap 3P _ 3, 3P AQJF _F, 3P
3%t (a+bW) il gw(cgw) - (F 3% T u) Y
+[RFF5(K) ] ﬁFP] /u (3.4-17)

since A = O when A = O.
The second transformation to the dependent variable, P,

is now introduced to satisfy the requirement of:
/ PaA = J Pdk } , (3.4-18)

i.e., the area under the PvA curve will be equal to that of

the PVvA curve. Noted that § and Iy are both dimensionless.
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~

because F and u are not functions of A. From now on the
variables X and W can be restored to the original forms

of x and w, since they are identical to each other.

3.5 Discretigation of Age-Interval

-~

The new feature of the P-equation is that an
additional coordinate (or dimension), R, has been introdﬁced.
It is essential to divide the age-coordinate into a number
of sub-intervals in the numerical solution procedure,
as for x and w coordinates., The problem is analogous to
the particle-sige distribution in coal combustion and
droplet size distribution in droplet combustion and hence
similar technique of discretisation is empleyed here.

The g-equation is now represented by a set of equations,
each one represents the probkability, Ej, of finding the
folds which belong to a finite age-interval, Aﬁj(zﬁj+l-ﬂj).
Each equation is then coupled with the other through the

source terms, viz:

~ ~

3P 3P 3P ~ “ R .~
91 1.3 1.3 |(E . A dF i
PRl e il e ISR b B vl Sl
1
’(3-5"'1)
24 (a4b) 022 (o0r2) 3 [(E 4 A L +Ll e p
3% dw 3 Sh| U F dx u F 2 *
23
_ »(3.5-2)
ap, 3P, 3P ioar - . -
il o (o) 2 | E v 2 4E 11 .
ax +(a+bm)§—l am(cﬁal BE (u F dx)? 1 ¥ u RFPJ ’
jadt
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Thus, P is now expressed as:

_ 5 di
P =P 3
= §F(x.) . (304—'19)
Hence:
3P _ AP , = aF
ﬁ = Fa—X" + P ﬁ ’ (3-4“'20)
3P 3P aF
2L - pEl + paL
2%~ a1 3%
= F%% (since F does not depend on 4) , (3.4~21)
9P _ 3P | 3E
W - Taw T Paw
_ FEE . (3.4-22)
W

Equation (3.4-17) is now transformed into the following

form with the aid of Eqns.(3.4-20) to (3.4-22):

3P ~3F 3B - ] 3P i ap F\ 0P
— 4 — + + . T v i - - = bl
(FBX PBX) (a bW)FBW aw(cFaw) (F 3% u)F

+[ﬁFF6(E) - fiFﬁF]/u .+ (3.4-23)

Equation (3.4-23) is rearranged after algebraic

manipulation to yield the following form:

3P 3 _ 3, 9P 3 [,F ., & oF\a
SLot (atpW)iE = 2 - L 448 2F
5x (et = gElegy) EY |:(u F )P]

+|:ftF6(K) - EFP‘] /u , (3.4-24)
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R
where the —3—- term in Eqn.(3.5-1) is the finite. difference

AAl

approximation of R,8(A) for the generation of folds; the
quantity ——-[(F 2 F)

-~

. . i P, .
3,5+ includes the -1, PJ and
Pj+l terms which will be discussed in Sec.3.7.

3.6 Boundary Conditions and Initial Conditions

The zero gradient boundary conditions have been
employed at the jet (and mixing layer as well) edge and the
jet axis for ; for all age sizes. This is easy to understand
if one regards the folds as being formed by "injection™
into the inside of the jet (or mixing layer) of material

"shot" from outside; they do not arrive by molecular

diffusion. Thus,

%%.: 0 at w = 0 and w =1 .(3.6-1)

It is assumed in the present work that only the
newly formed folds exist at the nozzle exit plane (or

the initial eross section of the mixing layer). Hence,

-~ -~

P =20 for A>A2 at x=0
-~ o ~ .., 9(3-6'2)
P = —i- for 0<A<A, gt x=0

A"Al

"~

where M, = A5-A = & (Al=0).
The influence of the initial conditions will gradually
die out as the marching procedure in x-direction

proceeds.

3.7 Finite Difference Approximation of the Differential

Equation

The finite difference equations for u, f, k, € are the

same as those employed by the GENMIX computer program, while
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the finite difference form for E-equations are new only in
the expression of source terms. The full contents of the
equations will be provided below for the sake of completeness.
The general Eqn.(3.3-2) is first integrated over the
control volume defined between Wypgr Wi_4o X, and Xy, as

Shom in Figl 3- 7-1.

N =——AX—

m11r_-“ I:i L_—Elnnhy
7
i+11 '%_#

I:4+

' 1

w|l © Li'Tl
|

S

L r-—J boundary

Fig.3.7-1 ¥~w grid and control volumes used for
the derivation of the finite-difference

equations

The values of Wi4d and W _y ere defined by:

2 oy qhey)
for i + 2 or NM1 s (3.7-1)

b (wyt054)
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and

Il
N

wi-é =0 .for i

Il
H

for i

Wi+d
The integrated form of Egn.(3.3-2) combined with the
fully implicit scheme is given by:

itd i+
(1/8x) T (ép=-6y)dw - bl:f d)dm:l
i-3 i-3 D

+ {(a+b'm)d>}i+% - {(a+bm)¢}i_é:|D

E

_{ (o20 2 i
=| (oradies - (%)i- ]D ! I::{_% a d“’:ID . (3.7-2)

, (3.7-2)

NM1 . (3.7-3)

It can be seen that the only upstream value of ¢ appeared

in the first term of Eqn.(3.7-4), while all other ¢-values

are taken from the downstream station. The finite difference

expression of Eqn.(3.7-4) takes the following form:

1 { (YE-¥I)D _
E?c‘[ ®5,0 ~ d’i,u] (wjppmwg_3)

(bg-¥1),

-+

. l ., ',
§T$E:$ET; {mi+%(¢i+¢i+l)D - mi-ﬁ(¢i+¢i-l)D}

1
(wE-wI)u

Q54300549705 )p0; 3 (45705 1 )p)

+ di’D(‘”i*-é"”i-%) \ , (3-7-5)
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wherein ml = (L1-w,)(ra Y+, (ra”)g (3.7-6)
Qi F Ty crpdsad/ (yavi)w » (3.7-7)

and Q= (7T op)y 3/ (yy-¥5 30y » (3.7-8)
d; pluwgyy-ws_3) = 834876, o . (3.7-9)

Eqn.{3.7-4) can be written in the more compact form given by:

395,00 % %3%541,0™P5% 1 p 4y, » (3.7-10)
where |

0y = max] 0,(48")y 4y, By | - , (3.7-11)

B; = maxI:O,(Q+£1ﬁ')i_é’ m:.:_é ] , (3.7-12)

Yy 2 0y (bg=by) (wg gm0 2)/ax + 84 ., (3.7-13)

gy = oy t8+(g-vr) (g y-ws _y)/ax - 8] . (3.7-14)

The upwind difference scheme is adopted in Egqns.(3.7-11)
and (3.7-12) to ensure physically realistic results for the
case of high lateral convection. A similar technique has to
be employed in the finite difference form of the source terms
for ﬁj-equations, so that negative values of ﬁj will be
prevented. The reason is given below.

The folds can only become older in the real age-space
and will not be influenced by folds having larger age, but

this statement is not always true when the non-dimensional

age is uded due to the moving grid effect. Un the present
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transformed coordinates, it is the sign of the term

A qs B . .
(% + % %%), multiplying 3% in Eqn.{3.5-1), which determines
whether the high-K or low-A value is to be regarded as crossing

o

the A-interval boundaries. A better understanding can be

achieved with the aid of the figure presented below:

ot
e

|
——

— ———t——
M A(1 A; ACZ A3 Aj_1 Aj ch qu

Fig.3:7-2 Grid nodes and intervals of A used

in the finite difference fornm

>

The values of ﬁj are stored in the centres of the

intervals and the simple ageing term appropriate to the age

interval Azj is:

"~ - I. .
-2 ELEEF ) s (B AL 3
ax Jsd AAj 1 F Ix j

F  Ai 3F.~
- (= + 2l Z5yp, L7-1
(Ul - Bx) J_] , (3.7-15)

where §j+ and §j_ are determined by the upwind difference as:



o~
o~

~ ~ A.-
_ F i+l 3F _
Pj"‘ = Pj when (E + r‘%— —‘-ax) >0 y (3.7-16)
~ -~ A
- F o, i+l 9F -
Pj+ = Pj+l when (u =5 at) <0 » (3.7-17)
and -
LY - A-
. F 3F
Pj- = Pj—l when (E + 7% Bx) >0 y (3.7-18)
- ~ A
_ F i aF
P, = Py when (& + =gk £=) <0 ,» (3.7-19)
where
ARg = Asyq-Ay and ch = 0.5(AJ.+Aj+1) . (3.7-20)

Finally, the expression for the total (positive and .

v~

negative) source term of P, - equation is:

J
s =--’=—-|:(E+i3‘ﬁ)§ ]+l[EF—-ﬁ§] (3.7-2%)
1 AKT u Foax’ "1+ u AEl Flijr *
and - -
s =___1_[(z+imaz)g _r£+fha_F);.:]
j AR u F x'" it u  F 9x’j-

3.8 Solution Procedure

The order of variables solved in the demographic

~ ~

part of the current work are u, f, k, €, Pis P2,Pascese,

-~ -~

Pj""’ PNA’ where NA is the number of subdivisions in
the R-coordiﬁate. The tridiagonal matrix algorithm (TDMA)
has been employed in solving Eqn.(3.7-10) and the

marching procedure in lengitudinal direction is also the

same as that embodied in GENMIX program. The enthalpy,

temperature and species concentration are calculated
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from the combined biographic and demographic aralysis
in a different manner to be described in the next
chapters.

What remains to be emphasised here is that the
iteration procedure has been introduced in the calculation

~ -

of Pj’ because the values of Pj+l are unknown when we
are solving for Pj‘ Hence, the value of Pj+l in the
corresponding upsiream position is tazken as the initial

guess and the iteration loop is given by:

?

~

(Plv PZ:-ooer_l’Pj j+l!*'°9PNA)

~

> (PIvPZ:o--st_l' j,Pj+l’-.-’PNA)'

b+ I

?

r

Lo I

> (PlpPZpso-’ etc

Pio1PyoPgags e esPyy)
where the single dash and double dash stand for the .
values obtained after the first and second iteration
respectively.

According to the experience obtained during the
computation, only four or five iterations are sufficient

to achieve the convergent solution because the Pj values

do not change drastically in one marching step.

3.9 Closure

The partial differential equations, finite difference
equations and the solution procedure of the demographic
analysis have been presented in this chapter. The
formulation is partly new and partly old; the new part
refers to those related to the population distribution
function and the old part stands for the integration
domain and solution algorithm for other hydrodynamics

variables.
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In the next chapter, the mathematical analysis
of the biographic aspects will be provided and the

accuracy of the results assessed.



69

CHAPTER 4

THE MATHEMATICAL ANALYSIS: BIOGRAPHIC ASPECTS

4.1 Introduction

The Lagrangian (moving observer) approach 6§ the
biographie part of the ESCIMO theory has been reported by
the earlier work of Noseir (1980) and Tam (1981) for the
premixed flames in simple hydrodynamic flows. The purpose of
the present chapter is to describe how the biographiec
calculation can be performed for the turbulent jet diffusion
flames with a rather moderate computing cost.

The basic partial differential equation for the fast
chemistry diffusion-controlled reaction will be presented
first and followed by the description aboup the fold
characteristics at the birth place, because these properties
will serve as the initial conditions to. the equation,

An approximate method, termed the "profile method", is
then introduced to obtain the closed form solution of
biographic equation. The computer time is considerably
reduced when compared with the corresponding one used in
the "time marching method”,

The presentation of the profile method is followed by
the description of solution procedure to demonstrate where
and how the biographic analysis is performed during the
course of complete computation. Finally, the accuracy of the
profile method will be discussed and attempt has been made
to compare the results with those obtained from the more

accurate time marching method.
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4.2 The Basic Partial Differential Eguation

The general transport equation for any conserved property,
¢, such as mass, momentum and enthalpy, in the fixed coordinate
system takes the following form in Spalding (1978b):

3 >

22+ div(PU0)= div(B,graas) + 8,  (4.2-1)
where U is the velocity vector,‘9¢ is the diffusion coefficient
for the quantity ¢, p is the density.

The second term in the left-hand side of Eqn.(4.2-1}
disappears when the moving observer approach is adopted, i.e.,

the coordinate system is moving at the same velocity with the

fluid element. Hence, Eqn.(4.2-1) is simplified to:

9
§%$‘= div69¢grad¢) + S¢ . (4.2-2)

Therefore the nonlinear convection term has been dropped out
and the mathematical task becomes easier; this is one of the
major advantage in the Lagrangian approach.

The diffusion coefficient, f)¢, is a laminar one in the
biographic analysis (the "small scale mixing" is treated as
the laminar process) and hence no modelling is required
in its evaluation.

It has been shown by many authors, guch as Hawthorne et al.
(1949) and Bilger (1980), that the mixture fraction f for
a fast chemical reaction process (when the diffusion
coefficients are equal) is an important and useful Zeldovich
function. The enthalpy and mass fraction of species are

uniquely determined by f and hence the other thermodynamics
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variables can also be related to f.

Another advantage in using f as the-main dependent
variable is that Eqn.{(4.2-2) contains no source term
in the present case, this means that no chemical-kinetic
knowledge is needed for the solution of this problem.

If the average density is employed in the calculation,

the governing equation for f is now expressed as:

P 3% = divGﬁfgrad-f) . (4.2-3)

The chemical reaction and diffusion processes inside
the fold are assumed to take place in the direction normal
to the interface between the fresh and old layer. Thus, Eqn.
(4.2-3) reduces to a one-dimensional, unsteady type

differential equation given by:

22 _ 3 (g Af
p a_{.: I— az (ﬁfaz) ] (402"4)

where z is the distance normal to the interface inside the
fold, In reality, the processes should be described by two
(or even three)-dimensional equations, but the computing
cost will be significantly enlarged without gaining a clear
advantage as mentioned by Spalding (1979b).

If the further assﬁmpﬁion of uniform diffusion
coefficient in the fold is made, Eqn.(4.2-4) takes the

simpler form:

af Br 52¢ , (4.2=5)

where Z is the thickness of the fold and n is z/Z.
From now on the independent variable,t, will be

replaced by the "age" of the fold, A. However, the fold
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thickness, Z, varies Wwith age as a consequence of the

stretching effect and the relation between them is supposed

to be:

2% - p | v (4.2-6)
so that:

Z = Z,exp(-RA) »  (4.2-7)

where Z, is the fold thickness at birth (at A=0). Eqn.(4.2-7)
implies that the fold size diminishes and the "average"
stretching rate, R, is taken.

When Eqn.{(4.2~5) is combined with Eqn.(4.2<7), a compact

form is achieved after some mathematical manipulation:

9f _ ,32f > (4.2-8)
—_C_z
JA¥ an
where A¥* ig a kind of non-dimensional age and § is a
non-dimensional constant; they are defined by:
A* = exp(2RA)-1 » (4.2-9)
¢ =8,/(2082 *) - (4.2-10)

The value of 1 in Eqn.(4.2-9) has been chosen in such a way

that A¥ = 0 when A = 0,

4.3 The FoldVCharactQ;istics at Birth

The initial conditions of Eqn.(4.2-8) are the values of
f in the fresh and old part of the fold at birth place.

In the mean time, the fold size at birth and the local
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stretching rate are needed in the evaluation of the constant

C. Therefore, the necessary information will be provided below.

4.3.1 The Fold Size at Birth

It is assumed in the present work that the fold size
at the birth place is proportional to the local length scale

of turbulence, viz:

Vi
Zo = Cgk’%e , (4.3-1)

whgrelcz is the proportionality constant. Various values of
C, have been investigated and it has been recognized that the
value of 0+328 yields reasonable agreement with experimental
data of Batt (1977), Kent and Bilger (1973), Lenz and
Gunther (1980). The value of 0.328 is actually obtained from
the k-€ model.

The present assumption implies that the fold size is
proportional to local jet width (about 1/20 in the round jet)
or local'shear layer width (about 1/1é6 in the shear layer).
Hence, the size of folds created in the downstream region
of the flpw is larger than the counter part in upstreanm

points.

4e3.2 Pold Composition at Birth

The fresh part of the fold is always supposed here to
be the irrotational fluid, while the old (re-engulfed) part
of the fold has the properties derived from thdse of the
local mean values. The situation in the mixing layer and jet are

slightly different and hence will be discussed separately:

The Mixing Layer Case

In the case of the mixing layer, both of the free streams
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are irrctational fluid and capable of forming the new fold.

Two kinds of new folds are represented in the graphs:

(=0)

fo fr
(=1) | (=F-f)

Fig.4.3-1 Composition of folds at birth in
the mixing layer

The value of f£f° is ealculated in accordance with:

f"‘GF”%

» (4.3-2)

where CF is the proportionally constant, @ is the local

length scale of turbulence. The symbol fo and fR stand for

the mixture fraction of the fresh part and re-engulfed part
repectively. The value of w¥* is given by:

i
Trhr - TElg

w¥ =

» (4.3-3)
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so that:
fo = 1
when 0 <w < w¥ » (4.3=4)
fR =f - f
and
fo =0
. when w¥< wxgl . (4.3-5)
fo=f + £°

The Round Jet Case

In the case of the round jet, the irrotational fluid
is the surrounding air only (fo= 0) and hence only one kind

of fold exists,viz:

w=1

W=

& fu
=0) | G&F+f)

Fig.4.3-2 Composition of folds at birth in the
round jet

The composition is now given by:

£, =0
when 0<w<l . {4.3-6)

f £+

R
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The Mass Fraction of Fresh Mass in the Fold

The mass fraction of the fresh part, characterised by

£ in the newly formed fold is determined in such a way that

0’
the average f-value in the fold is equal to the local mean

value, f. Hencs,

£ My + £p(1-M) = f , (4.3-7)
or
g -t © (4.3-8)
P ogp - £,

The M, values may vary between 0 an 1 at different
places in the calculation domain, It will be shown in the later
chapters that the M, value is larger near the outer region
of the flow, this implies that more irrotational fluid exists

in the fold.

4.3.3. The Stretching Rate of the Fold

The stretching rate varies with the path of the fold and
hence it is not constant during the lifetime of the fold.
However, the "average" stretching rate is employed in Eqn.
(4.2-10) to simplify the computational task.

The arithmetic mean between the stretching rate at the..
birth place and that at the point of combined computation
(demographic and biographic analysis) is taken in the present

work. The expression takes the form as:

R - 03[0.5( |+ ay|E>] , (4.3-9)



77

where Cg is the stretching rate constant, The subseripts b and
f refer to the birth place and the point where the combined
analysis is performed. Various values of Cg (from 0:1 to 2.0)

have been investigated in the present work.

Led The Relation Between Mixture Fraction and Other Variables

The chemical reaction is represented by the single-step,
irreversible, global reaction scheme. The intermediate species
and radicals are being neglected to allow more attention to be
paid on the development of demographic analysis. The
previous work of Tam (1981) has already demonstrated that the.
complex chemical kinetics scheme can be handled in the
biographic part of ESCIMO theory.

The chemical reaction rate is assumed to be fast and the
laminar exchange coefficients of a2ll species and heat transfer
are also assumed to be equal. therefore the relation between
the mixture fraction and other variables can be represented

by the graph below:

Te

Min,e

Fig.4.4-1 Sketch of dependencies of various

flow properties on mixture fraction
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The mathematical formulae are listed below:

fst'f .

m,, = 0, m,, = mox’m(—?;;—) when Oﬁfifst » (4ed=1)
me, = fu,e(l 7. ), m,, = 0 when f_,<f<1 » (4o4=2)

= - 3 . -
%in = Bin,e’ (Bin,e = Bin,w) when 02l (4.4-3)

= - - - ( -
mpr 1 mgu By L. s (4ob=4)
h =hf +h, (1-f) » (4.4-5)
T = (h-mqufu)/cP ,mix y (hoh-6)
P = wmle/P-uT » (4~4'7)

wherein:

fst stands for the mixture fraction of the

stoichiometric mixture,
min‘represents the mass fraction of inert species,

mpr is the mass fraction of product,
is the enthalpy of the mixture,
ie the temperature of the mixture,

fu is the heat of combustion of fuel,

is the universal gas constant,

is the molecular weight of the mixture,

h

T

H

P is the pressure of the mixture,
R

W,

mix

C

P is the specific heat of the mixture,

The subseript e and = denote, respectively, the values

at the jet exit and the surrounding air strean.
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The specific heat of mixture, C is calculated in

p,mix
accordance with:

C = I m,C__4T)

p.mix j J pg » ([6»0[4-"8)

where mj is the mass fraction of the j-th species and ij is
the corresponding specific heat. The temperature dependent
function of Gpj is taken from the third order polynomial

of Perry and Chilton (1973):

C = K1 + KoT + Ko7 2 v (4.4=-9)
Pj '

where K;, K, and K3 are constants given in Table 4.4-1,,

Species Ky K, K3
H2 13849.62 1.6945 0 .
02 1081.3 0,0337 -0.2454x 10°
N2 1021.3 0.1346 -0,0179x 10°
€O2 1005.83 0.1998 -0,196 x 10°
H20 1698,06 0.572 0
CHy4 1478.53 2;994 -0,12 x 10°®

Table 4.4=1 The spécific congstants for various species

(the SI unit of J/°K Kg is adopted)

be b The Pro;;lé Method

Equation (4.2-8) belongs to the category of second order,
linear, parabolic partial differential equation. This type
of equation often appears in the unsteady heat conduction
problem and has been solved in various ways, such as Fourier

series expansion, the time marching method and the profile
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method., The profile method has enjoyed its simplieity and
rather satisfactory accuracy in the boundary-layer theory
recorded by Von Karman (1921) and Pohlhausen (1921). It has
algso been applied to flame problems by Marble and Adamson
(1954).

The major feature of the profile method is that the
solution of the governing equation is assumed to obey a
certain type of function, while thg paranmeters are determined
by the integral form of the governing equation together with
the initial and boundary conditions. Usually, the linear
.profile, sinusoidal profile and other polynomial profiles
are the popular choice. The sinusoidal profile has been
employed in the current work for the sake of simplicity.

Thus, the solution of Egn.(4.2-8) has the form given by:

£ =g 4a%) sin| £ 4a%) + & fakin] , (45e1)

where & 1{4%)3, EzéA*) and £ _(A¥} are functions of A¥* which
represent the amplitude and wavelength of the profile.
The variation of the amplitude and wavelength are

governed by the integral form of Eqn.(4.2-8), namely:

1 A 1 2
- S P -k PN  (4.5-2)
b} aA* Q anz

and
Ny n 2
° aaAx ° an?
where np is the n-value which separates the fresh part and

re~engulfed part at fold-formation time.

The boundaries of the fold are assumed to be plane
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symmetric and hence the zero-gradient boundary conditicns

are employed:

%% =0 atn =0 and n =1 . (4.5=4)
Generally speaking, the value of np is not equal to 0.5

(because the Mo-value is not equal to 0.5) and the evolution

of the sinusoidal profile with age is divided into three

stages (as shown in Fig. 4.5-1), namely:

(1) In the first stage, the curve spreads from the initial

position toward the boundaries of the fold until one of them

is reached. The amplifude is constant and equal to

Blfp-fol.

(2) During the second stage, the curve further spreads until it

covers the whole distance across the fold. The amplitude also

diminishes during the course,

(3) In the ‘third stage, only the amplitude of the curve

decreases as age inereases.

The resulting formulae representing the f-distribution
in each stage are obtained by inserting Egn.(4.5-1) into
Eqns(4.5-2) and (4.5-3) with the aid of Eqn.(4.5~4j and the
auxiliary informaﬁion listed above. Subsequently, a set of
coupled ordinary differential equations which describe the
variation of amplitude and wavelength of the profile are
constructed. These equations can be solved by the standard
mathematical technique and the results are given below:

(I) In the first stage (A*gﬁﬁ"l )
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M -—
Fig.4.5-1 Evolution of the f-profile inside

a fold at various stages
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(II) In

f1

£, + f“sin[

if

2

1

1}
——
H

éIfR + f

0

iy

max(fR,fo)

min(fp,f,)

é'fR - fol

L
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for 03nsn_-§

T]D-n

D

for nD+5<T]$J.

[an*f,,/(f3 - 2 fq)] :

- £,)8F0E,m

min(nD. 1'nD)

the second stage (A?<A*$A§ )

If np<0+5 the following relation holds:

£, + £, sinl:-g- (1+3n2-)]

f

f

wherein

f

5

fs

for 0 < nx 262

for 26, <n <1

(4.5-5Y

(4.5-6)

(4.5-7)

(4.5-8)
(4.5-9)
(4.5-10)
(4.5-11)

(4.5-12)

(4-0 5‘13)

(4.5-14)

(4.5-15)
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X
(Cma* + 63"

5y = , (4.5-16)
A¥ = A% + (£-8 2 /Crw , (4.5-17)
If nDz_O-S, the relation is:
f = f1 for 0 < n £ 1-28,
,(4.5"18)
£f =1, + fssin[j% (1+§%)] for 1-26,< n <1
where
£,= £, - £, . (4.5-19)
(III) In the third stage (A¥>A¥ ):
=, + £ysin] n(d - n)] for 0<n< 1, (4.5-20)
where
£= £yn, + £,(1-np) , (4.5-21)
£q= flﬁlexp[-Cﬂz(A*-A;“)] . (4.5-22)

4.6. The Solution Procedure

——

The biographic analysis described in this .chapter is

performed after the demographic analysis at each grid node

in the computational domain. The folds are supposed to be’
formed in each grid-cell and the characteristies at birth

are stored in the computer storage from the first step of
calculation (i.e. the marching in the longitudinal direction
is adopted). This information has been stored outside the
central core memory of the computer system, i.e., in the disc

or the tape, so that the computer program can be accomodated



85

even in the smaller machine such as Perkin-Elmer 3220.

The values of A* of different folds are calculated fronm
Eqns. (3.4-1) and (4.2-9) as:

A%, = exp(2RAg /F)-1 » (4.6-1)

J d '
where Agj is the A%*-value of folds which belong to the jfth
group at the mid-point of the age. interval.

The f~n distribution of each group of folds are then
determined with the aid of the profile method, followed by
the calculation of temperature and species concentration
through Eqns.{(4.4-1) to (4.4-6). The sinusoidal profile has
been divided into 20 intervals and hence all the required
quantities are obtained at those discrete points. The
fold-average properties, $, are computed numerically in

accordance with:

L] 1
dLA*) = fo b £A¥,n3dn
S L o £A¥%,n 3An, . (4.6-2)
j I

4.7 The Accuracy of the Profile Method

The accuracy of the profile method, compared with the
knoﬁn exact solutions, has been investigated in the work of
Spalding (1958) on the constant-enthalpy flames. The
governing equation of the temperature acrosgs the flame is
similar to that of Eqn.(4.2-8), except that a non-linear
source term exists.

The temperature gradient and the speed of steady flame

propagation obtained from linear profile, .sinusoidal profile
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and parabolic profile have been compared with the exact
solutions., It has been pointed out that the accuracy is
normally better than 20% and can achieve excellent agreement
(2%) with the exact solutions in some cases. Of course, the
accuracy of profile\method varies from problem to problem and
can not be predicted in advance.

The more accurate time marching method has been
employed to solve Eqn.(4.2-8) in the hydrogen-air.jet diffusion
flame, by Fan (1982), to assess the reliability of profile
wethod. The difference in the results obtained from the two
methods is of the order of 1% only. Therefore, the errors
caused by the profile assumption are negligible in the present
problemn,

Since the computer time i1s increased by a factor of three
when the profile method is replaced by the marching method,
it is probable that the former method will still be usgeful

in the future work to reduce the computational task.

4.8 Closure

The mathematical analysis of biographic aspects has been
presented in this chapter for the simple chemical reaction
system. The more realistic, multi-step chemical reaction
scheme can be incdrporated in the future develobment of
ESCIMO theory without formidable difficulties. Of course,
an efficient computer program which combines the numerical
solution procedure of the present work and that of Tam (1981)
is needed.

Some presumptions about the size and the composition of

folds at birth have been made to initiate the computation.
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The influence of variols parazmeters has been investigated
for the reacting mixing layer and jet diffusion flames and
will be presented in Chapters 6 and 8.

The profile method is able to produce satisfactory
results in the present problem, according to the comparison
with the more accurate time marching method.

The more interesting results of turbulent reacting flows
are obtained from the coupling of the demographic and
biographic analysig, such ag the mean turbulent quantities
and the fluctuation quantities; the coupling procedure will

be described in the next chapter.
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CHAPTER 5

THE COMBINED MATHEMATICAL ANALYSIS

5.1 Introduction

The purpose of this chapter is to demonstrate how the
demographic analysis and the biographic analysis are 1inked
together to yield the useful information in turbulent
combustion.

The average birth places of all kinds of folds arriving
at a particular point have to be located first, this will be
described in Sec.5.2. Then, the fold~average properties will
be multiplied by the population distribution function, ﬁ, to
obtain the population-average quantities (i.e., the turbulent
time average quantitiés); the description is provided in Sec.
5.3.

The root mean square fluctuation of temperature and
species concen£ration are of great importance in the
turbulent reacting flows; the calculation of these quantities
will be presented in Sec.5.4.

The detail information of turbulence can be seen only
from the probability density funections of various Quantities
and they can be predicted by the ESCIMO theory; the
computational process is to be demonstrated in Sec.5.5.

Finally, a short summary will be provided in Sec.5.6.

5.2 The Tracing of the Folds

It has been mentioned in Sec.2.5 that the fold trajectories
are supposed to follow the constant mixture fraction 1line,

and that gll folds move downstream with the mean convective
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veloeity. The birth place of the folds which arrive at a
particular point &an therefore always be located at the
upsiream position, since the flow considered here is a
parabolic one.

A simple function of F{x3}, which appears in Egn.(3.4-1),
is chosen in the calculation of the mixing layer and jet

diffusion flame, namely:

Féxy = f}n for reacting mixing layer, (5.2-1)
Uref
Féx3} = = for jet diffusion flame , (5.2-2)

where Upin is the velocity ¢f lower-speed stream and Urpef is

a chosen reference velocity. U is a constant, but Uref

min
can be a constant or a function of distance x (see Chapter 7).
The physical meaning of Féx? can be regarded as a kind
of scaling factor, or the reciprocal of the maximum reference
age. Thus, the maximum reference age defined in Eqns.(5.2-1)
and (5.2-2) ere x/Upy, and x/Up.¢ respéctively and the maximum
distance from the birth place of any fold to the point in
question is smaller than or equal to x. i
The following procedure has been adopted in this work
to locate.the birth place of each kind of folds, viz:
(1) calculate the longitudinal distance which the folds of

age, Ecj. heve travelled through, in accordance with:
:_’CFJ- = XD(l - ch) 'Y (5-2-3)

where xp. is the average journey length of folds belongin
Fj g ging

to the j-th age-interval. The effect of the curvature of



90
constant mixture fraction line on.xFj is neglected here.

(2) Usually the value of x lies between two consecutive

Fs
mateching steps at whiceh thedinformation about fold
characteristies at birth are stored in the computer
memory. The larger of the two (in the x-value), say x,,
is chosen as the reprecentative atep to be searched in
the cross-stream direction. The birth place of the folds

which survive at x = x, with 4 = ch and £ = F is

supposed to stand at x = xp.

(3) The w value of the birth place, w,, is determined by:
i+1-wi) » (5-2-4)
where fiififi+l and f,, f,,, represent the stored f-values
at w = ws and w = W41 respectively. Egn.(5.2-4) implies

a linear interpolation procedure to obtain the required
fold characteristics at wy from information stored at

Wy and Wsgqge The figure provided below serves as the

supplementary explanation to the searching process of the

birth place:

__...-—-OJ=1
T
PO ---"""-1 f:?
X
S . F-_ ] w=0

XeXy X=Xg X=X

) X
Fig.5.2-1 Tracing of folds in the jet
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5.3 The Population Average Properties

Once the birth places of various folds have been spotted
and all relevant infcrmation cbtained from the interpolation
procedure described in the preceding section, the biographic
caléulation can be performed via the profile method and the
fold-average values computed with the aid of Egn.(4.6-2),

The local time average value of any prcperty, 5. is
deduced from the fold-average values of all folds multiplied
by the population distribution funection in ESCIMO theory and
termed the "population-average property". The expression

is given below:

5 = 1% §EyPak
1-»6-'\;“- -
= Io o£{AIPAA , (5.3-1)
N Si 3.k (5.3-2)
z I . 2 . - e 3=
j=l¢4Aca}PJAAJ

It can be observed that the population distribution
function, P, in Eqn.(5.3-1) serves as a kind of weighting
funetion during the course of computation. Therefore the
variation of properties in each group of folds will make a
certain contribution to the loeal p0pulatioﬁ-average values.
The shape of the P~A curve is the most important factor which
determines the 5-value, while the quantitative difference in
E's values {under the same shape) has less critical influence.

The local average density, 5, is also calculated from

Eqn.(5.3-2) in whick the fold-average density is obtained by
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the biographic analysis. The hydrcdynamics results are
affected by the chemical reaction mainly through the density

variation.

5.4 The Root Mean Square Fluctuation Quantities

The turbulence intensity of each variable in the turbulent
flow is usually represented by the "root mean square

fluctuation quantity and defined by:

1/(¢')? /(o502 . (5.4e1)

where the over bar stands for the local time-average value.

In the framework of ESCIMO theory, the root mean square
fluctuation is calculated from the difference between the ¢-
profile inside each fold and its population-average quantity,
viz:

(67)2

1 1 ~ 2 ~
§o00 [¢4A,n) - §] dnl}raa

11 ~ 11 ~ o~
Io{fo¢2dn}PdA - ZID{IO¢~$dn}PdA+¢2

1~me o~

lm o~ o~ -
I°¢2PdA - 20 f°¢PdA + ¢

1

=57 - (3)? . (5.4-2)

The younger folds have a larger contribution in the
fluctuation level, since the degree of non-uniformity is
more pronounced in those folds. Lower stretching rate can
glso result in higher fluctuation value, since the layer

thickness, hence theé distance for diffusive material to
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travel, will not be reduced rapidly and a larger differencs
in properties remains in the fold. Therefore it is expected
that the influence of population distribution function and
stretching can be examined more thoroughly by the

distribution of root mean square fluctuation quantities.

5.5 The Probability Density Functions

The value of any property, ¢, fluctuates within a
particular range in the turbulent flows, say between ¢max
and ¢min' If someone is taking %he instantaneous sampling
at a fixed point, he will recognise that the time portion
occupied by various ¢=-values are normally different and
hence there exists a probability in finding the signal
(which represents the magnitude of ¢) prevailing at the
interval between ¢ and ¢ + &6¢., The shape of the probability
density functions is of great interest to the researchers
in turbulent reacting flows, since it reveals the detail
structure of turbulence.

In the present approach of ESCIMO theory, there are
two kinds of probability density functions which have to
be distingushed, namely:

(1) The probability density function in a fold {fold-pdf) and
(2) The population-average probability density function at

a point in the fluid region.

The latter is equivalenf to those employed in other

models of turbulent combustion, The methods of computation

for them are to be presented below.

5.5.1 Egerdéfinitions of pfd in ESCIMO approach

(a) The fold probability density function P

¢
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It has been explained in the bicgraphic analysis that
the properties across each fold are non-uniform and can be
represented by a certain profile. The probability density
function of the fold, §¢6¢, is defined as the mass fraction
of material having the property which lies between ¢ and
$ + d¢. Hence, at any particular age, the §¢ distribution

is computed in accordance with:

o+s0 9N _
Z Z
5 piye 0 T0 . (5.5-1)
i &b

The summation in Eqn.(5.5-1) refers to all possible
portion of fold, dn, which have the property between ¢ and
¢ + §¢.

(b) The population-average probability density function

Once the fold pdf has been obtained for all folds belong
to different age-group, the population-average pdf, P¢, is

computed from the following expression:

-~ A e

- 1~
Pokod = [ Pyéo,A3PdA . (5.5-2)
0

The argument thhtrthe §¢ in Eqn.(5.5-2) has the same
physical meaning as those used by Borghi (1979), Kennedy
and Kent (1981), Ballantyne and Bray (1976) can be proved
from the derivation provided below: i

~

The fold-average value of ¢, ¢,is given by
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~ o~ 1
bkAY = S, ean
dmax ~ -~
= I‘bmin ¢’ P¢'('¢’A}d¢ » (50 5"3)

and the time-average value of ¢,%, by

~ e e

1
Ib d€AIPAA

¢

1 b ~ ~ ~ ~
I [J’ max ¢P¢;¢,A;d¢] PdA
0 bmin

¢ 1 o~ - P
g max ¢[J‘o P¢£¢,A;Pcm]d¢

d’min

d’ma

fonr 4B gkordo , (5.5-4)
min

]

where Egn.(5.5-4) is the conventional form adopted bf the

other approaches in turbulent reacting flows,

5.5.2 The Computational Procedure

The detail numericai computation of fold pdf and population
average pdf is now described ags follows:
(i) Search for the maximum and minimum é-values from the
biogrephic analysis in a kind cf fold. Then divide tie
whole domain (from épin to ép,,) into a number of uniform

intervals, each of which takes the value of:
Gd) = (¢max-¢min)/N¢ > (5- 5-5)

where Ny is the total number of fraction intervals (N¢ = 10
is the typical value chosen in the computation).
(ii) The Vvalues of ¢-profile across the fold are calculated

at each discrete point (20 points in the present work).
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Identify all these ¢~-values with their appropriate &¢-
intervals defined in step (i): - If a pair of consecutive
b-values, say ¢j-1 and ¢j' lie within the i-th ¢-interval,
6¢i, cgsign the mass fraction in Anj. occupied bz the

A@i (E¢j-¢j_1), to the "old-pdf domain® of 6¢i, Pys with~
the aid of Eqn.(5.5-1). The process is illustrated in
Fig.5.5=-1. Linear interpolation is employed if A¢j ranges
across the 6¢i and 6¢i+l interval.

(iii) Repeat steps (i) and (ii) for all kinde of fnlds

and determine a suitable set of maximum and minimum values
, and 9

of ¢, say & for the whole population of

max min

folds. Of course, the following relation should be

satisfied:
O oy 2 max(¢max’1, ¢max,z}""¢max,NA) , (5.5-6)
min 01000030 10 Sngn oo e e s Opin, s’ » (5.5-7)
where
¢max,i is thé value of ¢ . for the folds belonging
to the (Eii) interval,
¢min,i is the value of ¢ ., for the folds belonging

to (AAi) interval.

The domain defined by &,  and § ., here is called the
"population domain of ¢", in contrast to the "fold domain
of ¢" mentioned in step (ii). The reason fcr using two
different domains is to increase the accuracy of foldSpdf.
The population domain of ¢, is again divided into a number

of uniform intervals, given by:

5% = (3, - 8, )/¥p , (5.5-8)

max
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Fig.5.5-1 Calculation of fold-pdf
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Fig.5.5-2 Redistribution of fold-pdf to the
population domain of ¢
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where Np is the total number of fraction intervals (Np=10
is the typical value used in the computation).

(iv) Redistribute the fold-pdf, §¢, obtained in step (ii)
to the population domain given by Egn.(5.5-8), as follows:
Identify all the ¢-values with their appropriate §3-
intervals defined in Eqn.{(5.5-8): - If a pair of consecutive
¢-values, say ¢; , and ¢, (5¢i = ¢i-¢i_1), lie within the
j=th $=-interval, 6$j. assign the corresponding P, ¢
value to the "population-averaged pdf" of P¢6$.,Linear
interpolation is also adopted if the values inside~6¢i
ranges across 653 and 65j+l' The process is further |
illustrated in Fig.5.5-2.

(v) Multiply the redistributed values of §¢6¢ by the
population“disﬁribution function 5 for all folds to.give
the population average pdf:

I (Py60)PaA

P = . (5.5-9)
8%

Another reason for redistribution of fold pdf to the
population domain in step (iv) is that a common domain is

essential for the relation in Eqn.(5.5-9) to be valid.
5.6 Closure

The coupling procedure of the demographic and
biographic analysis has been developed and described in
the present chapter. Some presumptions about the
trajectories of the folds have been made in order to
simplify the calculations, but the essential features of
fold motion have been considered.

The détail structure of turbulence, such as the
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probability density functions of various properites, can be
predicted by the ESCIMO theory as well as the turbulent
mean quantities and the root mean square fluctuation level.
The theory has been applied to the two-dimensional
turbulent reacting mixing layer and turbulent jet diffusion
flames and the results will be presented in the next two

chapters,
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CHAPTER 6

THE TURBULENT REACTING MIXTING LAYER

6.1 Introduction

In the earlier works of Noseir (1980) and Tam (1981),
the simplified demographic analysis was incorporated with
the more advanced biographic analysis. The results of the
demographic computation is either presumed to be of the
"top-hat" profile (uniform in the cross-stream direction)
or expressed in an analytical form. Therefore, the complete
set of transport equations for the population distribution
has neither been fermulated nor solved in their work.

The purpose of the present work is to set up the
mathematical framework for the calculation of population
distribution function in two-dimensional boundary layer flow
problems, to allow for the variation in the cross-stream
direction as well as the longitudinal one.

The plane mixing layer is the first flow process to be
investigated, because of the simple fixed boundary conditicns
and entrainment rate involved therein. Also, the self-
similarity prevails in the fully developed region of the
mixing layer. Very few experimental results on the turbulent
reacting mixing layers are available in the present
literature and those obtained by Batt (1977) have been
regarded as reliable and typical. Thus, the flow
configuration of Batt's experiment has been chosen in the
prediction and will be described in Sec.6.2.

The numerical input of the computation will be listed



101

in Sec.6.3, followed by the results obtained from the
demographic analysis in Sec.6.4. The results obtained
from the combined analysis will be presented in Sec.6.5
and the influence of various physical parameters
demonstrated in Sec.6.6. The effects of numerical grid
size have also been investigated and will be illustrated
in Sec.6.7. The discussion of the results is to appear in

Sec.6.8, followed by a closure in Sec.6.9.

6.2 Description of the flow conf;guratioh

The test case considered is a two-dimensional turbulent
shear layer in which the mixing of both a passive and a
chemically reacting streams occurrsd. The velocities of
twe streams are 23ft/s and 2ft/e respectively. The high
speed stream is composed of low temperature air (252°K)
seeded with dilute concentrations of N204, while the low
speed stream consists of hot and clear air (310°K).

A schematic diagram of the shear layer and a list of

test conditions are shown in Fig.6.2-1:

(D Primary flow ‘ @ Secondary flow
{old and seeded) l ‘ (hot and clear)
U1=23 ftls @ U2=2 ftis
T1=252 °K T2=310°K

NOgy oo N:0dly,
IN,] [N,]

Fig.6.2-1 Test configuration of reacting shear layer
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Bétt (1977) has mentioned that the flow is directed
vertically downwards through the 5ft long test section in
order to minimize the buoyancy effects accompanying the
imposed thermal gradients.

The chemical process is a kind of first order

dissociation~-recombination reaction denoted by:
Nz + N20s === 2NO, + N, . (6.2-1)

The recombination-rate constants have been measured
extensively and successfully by Wegener (1959) in a
supersonic nozzle flow.

It should also be noted that a unique feature of the
tetroxide dissociation is that if the temperature is varied
from -20%C to room temperature the degree of dissociation
changes from 0+3 to 0-96.

The heat released from the chemical reaction is
negligible in the present flow process since the concentration

of N20s is lower than 0+¢5% (by volume).

6.3 Computational Notes

6.3.1 The Grid Systems

The expanding grid of GENMIX code is employed in the
‘present prediction with 20 cross-stream grid nodes (N = 20).
The intervals of w (from 0 to 1) are distributed in accordance
with the expression given below:

i - 0- .

wy = (07 121,2,3,...,N . (6.3-1).
Therefore, the grids are more densely distributed near the
external boundary where the veloecity is lower.

The total number of marching steps to reach the
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downstream distance of x = 1-52m (5ft) is equal to 300 in
the typiecal computation. The initial width of the mixing
layer is 0+00lm, The forward marching step size is controlled

by the following formulae as in GENMIX program:

AxX = min[Axl,sz,AX3,Axu,Axs:] , (6.3=2)
where
Axy = A ¥y_g _ , (6.3-3)
bxys (Y -0,)
Ax, = E_'I , (6.3-4)
0'5(r1+1‘N)M1
Axy = Xz Axlast , (6.3-5)
xy = Nyt (bgety) , (6.3-6)
(rymi-rgmg
AXs = AX , (6.3-7)
and
Xl =1
Az = 5
As = 0-<01

YN.p 1s the value of y at the N<Zth grid nocde
Bp1 is the viscosity at the 1st grid node
r1 is the radius of lst grid node (=1 for plane flow)
ry 1s the radius of Nth grid node (=1 for plane flow)

Axiast is the value of Ax in the previous step

max
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The total number of age~intervals, NA, is equal to 10
and they are uniformly distributed, viz:

E :—j;J_"—

j NA j = 192939--09NA- + 1 . (6.3-8)

The total number of sub-divisions inside the profile of
fold-biography ecalculation, NP, is equal to 10 in the current

calculation,

6.3.2 The chemical reaction rate constants

The local chemical equilibrium condition has been
assumed to prevail in the test conditions considered herein,
based on the equilibrium conclusion which has been reached
in the work of Batt (1977). It has been observed that the
magnitude of the measured eddy decay time of turbulence (30ms)
is large compared with the typical chemistry times (<1lms).

The chemical equilibrium constant is taken from the

measured data of Wegener (1959):

kp [Nzo..][uz] = kg [ MO, [*] .| , (6.3-9)

and
KG = kD/kR = 257 exp(20-72 - T ) . (6.3-10)
where

kp 1s the forward dissociation rate constant ,

kR is the recombination rate constant ,

KC is the equilibrium constant ,

[N20;1 is the mole fraction of N,04 species ,
[NOZJ is the mole fraction cof NO, species ,

[Né] is the mole fraction of N, species ,
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The production rate for the total oxide mass fraction

is zero, under the present reaction scheme, i.e.

m =y, T 2yo,

1l
(@]

» (6,3-11)

where m stands for the production rate (mass fraction per
unit - time). The relation between the total mass fraction of

oxide and the mole fractions of oxide is given by:

+ m

o= 0y.0. N0,

[NZOQJWNzou ¥ [Noz]Whoz , (6.3-12)

where wNzOu and Wﬁoz are the molecular weight of N,0, and
NO2 species respectively. Thus, the value of m obeys the

species conservation equation of the boundary layer form:

am om _ d , am
5z * (atbw)zs = 55(cqy) : » (6.3-13)

with the boundary conditions:

m = m at w

0 » (6.3-14)
1 . (6.3-15)

m =20 at w

The next expression can be established by dividing the

both sides of Egn.(6.3-12) by WNzouf

[Nzou]a = [Nzou] +3 [NO:] » (6.3-16)

where [:Nzou]a = m/W’N204 and called as the "avadlable™ mole
fraction of N20s for the reaction. Obviously, the relation

between [Nzoq a and m is:
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[0y o (6.3-17)

[M04],, o

or

[NZOL.]E-—-[NZO;.]al — , (6.3-18)

where the [Nzo{[&l is the value of [Nzo.,]a in the primary flow.
The local equilibrium mole fraction of NO, is obtained

by inserting Edn.(6.3-16) into Eqn.(6.3-10)}, viz:

[N0£] Ke | m 1 5
Wi T {(1+16[ﬁ204]a15?_ﬁz) -1} . (6.3-19)

The quantity, m/mi, varies from 0 to 1 across the mixing
layer {according to Eqns.(6.3-13) to (6.3-15)) and can be
treated as the mixture fraction in the present case. The
value of m/m: will be solved at every w-node in tke prediction
with the turbulent diffusion coefficient obtained from the
turbulent viscocity and uniform Schmidt number
(the turbulent Schmidt number measured by Batt is equal to
0+5). The value of mfm; will be given the symbol f in this
chapter and all argument about £ in Chapter 4 applies to

n/m; from now on, i.e.:

f = -E% , {6.3-20)

for the present chemical reaction process.

6.3,3 The computations performed

Several computations have been performed, with different
combinationg of input empirical constants, in order to

investigate the influence of each presumption on the results.
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All computations are characterised as indicated in Table 6.3
and the entry under "Mode" indicates the presumption used
about the distribution of fold-formation rate. The number

of "Mode" refers to:

Mode (i) - proportional to the local mean velocity gradient,
Mode (ii) - proportional to the local mean velocity,

Mode (iii) - proportional to the normalized stream function.
Same notation applies to the calculation in‘the‘next two

chapters.

Table 6.3: Characterisations of computer runs

Run No. Cz' Cp Cg Mode NA
1 0.164 2 1 (i) 10
2 0.164 2 1 (ii) 10
3 0.164 2 1 (111) 10
4 0.328 2 1 (i) 10 .
5 0.164 3 1 (1) 10
6 0.164 2 0.3 (1) 10
7 0.328 2 0.5 (1) 10

6.4 Results of demographic analysis

6.4.1. The population distribution versus age at a fixed

position
The population distribution with respect to age will be
presented in this subsection, for three different runs,

i.e., Run No.l1 to Run No.3. A1l 3 runs have some conditions
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except the assumption on fold-formation rate. Firstly,
results obtained from Run No.l are shown in Fig.6.4-1,

at three different positions across the mixing layer.

The abscissa is the non-dimensional age, E, while the
ordinate represents the non-dimensional population of
folds having a particular age. The three curves in the
figure refer to the population distribution prevailing at
position near the high speed edge (nT = -1.5), the centre
(nT = -0,4) and the low speed edge (ng = 1.5) of the
mixing layer respectively. The mixing-layer similarity

. parametef Ny stands for the width of the mixing layer

and is defined by the following realtion:

) l2(y—y0'5)
lp = X=X9 !

(6.4-1)

where yo.é is the value of y in which E is equal to 0.5
(Ti+ T2), Xo is the effective origin of the mixing layer.
The value of xo is taken from Batt's measurements (=3in)
in the present computation.

It can be observed from Fig.6.4-1 that the §~K curve
has the steepest slope in the ceﬁtre of the mixing layer,
where the fold formation rate reaches its maximum value
according to the presumpticns made here. The curve has a
similar shape of exponential decay near the low speed
edge, but with a less steep gradient. The distribution
near the high speed boundary is however somewhat different,
the curve being almost flat for 0§E§O.15 and followed by

a sudden drop to the range of 0.2<A<0.35,
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Fig.6.4-1 Population distribution funection
with respect to age

Run no. 2

Fig.6.4-2 Population distribution function
with respect to age
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The overall feature of the population distribution is
that the youngest folds are the most popular ones in
the present case. The population of very old folds
(say, K>O.6) is negligible, signifying that most folds
are born in near up-stream locations.

Secondly, the results from Run No.2 are demonstrated
in Fig.6.4-2 in which the distribution of fold formation
rate is assumed to be proportional to local mean velocity.
The three curves correspond to the same positions as in
Fig.6.4-1. Inspection of the figure reveals that all
curves belong to the type of exponential decay and the
curve near the high speed edge has the largest slope
where the fold formation rate is the highest. The
population distribution near the low speed stream is more
uniform here, with significant amount of old folds
(e.g. E>0.6) in existence.

Finally, the results from Run No.3 are provided in
Fig.6.4-3. The distribution of fold formation rate is
supposed to be proportional to the "local entrainment

rate", (rm")z, defined by

(rﬁ")i = (l-w)rIﬁi' + mrEﬁé' . (6.4-2)

It can be seen that the fastest diminution of population
with respect to age again happens near the high speed
edge of the mixing layer where the entrainment rate is
at its peak. The population distribution at the low

speed side is now even more uniform than that obtained

-
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Rn no3

Fig.6.4~3 Population distribution function
with respect to age

6 -

o

Fig.6.4-4 Radial variation of population

of folds belonging to a particular
age interval
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from Run No.2, and there remains a2 finite amount of the
oldest folds which are born in the far upstream region
of the mixing layer and have undergone lower re—engulfmént

rate,

6.4.2 The population distribution across the mixingglayer

at fixed age

Further illustration for the spatial variation of
the population distribution is supplied by the diagram
of Ej (at fixed Ej) versus Ng through Figs.6.4-4 to
6.4=-6. The results presented in these figures are obtained
in the self-similar region (at x = 0.47m).

In Fig.6.4~4, the results obtained from Run No.l
are presented and each curve stands for the population
of folds belongiﬁg to a particular age-interval. Only four
lines are shown here, since the magnitude of other groups
outside the range are much smaller. The population of the
youngest folds, 51 has the peak value at Npx=0.4 where
the veloeity gradient and the fold formation rate attain
the maxima. The ;g distribution behaves as a monotonic
decreasing function with respect to Neyps while the
population of older folds 53 and ;q reflect the oppocite
tendency. -

The corresponding results from Run No.2 are plotted
in Fig.6.4-5. The curve representing El now has its
highest value at the high speed edge of the mixing layer
where the fold formation is large under the present

~

presumption. The P, distribution is fairly uniform in
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Fig.6.4-5 Radial variation of population

of folds belonging to a particular

age-interval

Run no.3

Fig.6.4-6 Radial variation of population of .

-1 0 T 1 2

folds belonging to a particular.

age-interval
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the region between -2inT5—O.A and then decreases smoothly
towards the low speed boundary. The shapes of 53 and 54
distribution are similar to those in Fig.b.4-4.

Finally, the results produced by Run No.3 are again
provided in Fig.b.4-6. A1l curves have actually the same
qualitative characteristics as their counterparts in the
previous diagram, except that the difference between
each curve diminishes quickly as Ny approaches the value

in low speed strean.

6.4.3 The average age of the folds versus position

Another interesting quantity in the demographic
analysis is the average age of the folds defined by:

.

Boye = 1 APdA . (6.4=3)

The variation of the average age across the mixing
layer are plotted in Fig.6.4-7 for Run Nos.l to 3. In
the case of Run No.,l, the minimum value occurs at
np~-0.8, while it happens at np<-2.0 for other cases.
The average age in the centre of the layer (-0.2<np<0.2)
is not larger than 0.2 for all cases, signifying that A
nost of the folds are created within the distance of
0.2Xp from the point in question. However, the
difference between the average age calculated from three
cases is remarkably large in the region near the low

~

gspeed stream. For instance, the Aave at ng = 1.6,
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Runm,

34 " Rin m,

2 m1

0 1 ) ] ]
-2 ~ 0
TIT 1 2

Fig.6.4-7 Average age across the mixing layer
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varies from 0.25 to 0.4 under different hypothesis

regarding the distribution of fold formation rate.

6.5 Results of the combined analysis

6.5.1 The mean temperature profile

The normalized mean temperature profile across the
mixing layer for Run No.l (at x = 0,47m) is plotted
in Fig.6.5-1 together with the measurements from Batt
(1977). It should be noted that the mean temperature
is calculated from the solution of enthalpy equation
which did not contain the heat release effect in the
present chemiéal reaction scheme. Therefore, the
contribution of ESCIMO theory does not appear in the
mean temperature.

The quaﬁtitative agreement between the predictive
results and the measured data is satisfactory as revealed
by the graph, this implies that the turbulent diffusion
coefficient is adequately determined by the turbulent
model employed. The mean temperature is important in the
calculation of NO; concentration since the chemical

equilibrium constant is temperature dependent.
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Fig.6.5-1 Radial profile of mean normalized
temperature at x=0.47; Run no.l
[NO,]
[mZ]«‘

Fig.6.5-2 Radial profile of mean normalized
concentration of NO, at x=0.47; Run no.l
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6.5.2 The mean concentration profile of nitrogen dioxide

The normalized mean NO, concentration profile across
the mixing layer for Run No. 1 is plotted in Fig.6.5-2. The
experimental results from Batt (1977) are also shown in the
figure (by the s0lid symbols). Now that the mean concentration
is calculated from the full ESCIMO approach described earlier.

The prédiction exhibits a hump near Np=-1, .where the
normalized concentration of NO, is equal to 1-°2., However,
there appears a slight double hump when the measured data
points are connected with a smooth curve. No explanation
about the existance of this double hump has been provided
in Batt's paper, but the author did mention that the
concentration measurement accuracy in this case is roughly
t10% of the &ore-flow concentration levels. The maximum
measured value of NO: 1is equal to 1-1, while the NO2
concentration calculated from the mean temperature and local
equilibrium condition (excluding the concentration fluctuation
effect) could reach 1.3. Thus, the non-uniformity of properties
(in each fold) accounted by ESCIMO theory has reduced the
peak level of NO; by 10 per cent.

The level of NO, concentration decays slightly faster
according to Batt's data than the present prediction, in

the region where ng>0+5.

6.5.3 Ehg root-mean-square fluctuation of temperature

The variation of root mean square fluctuation on
temperature for Run No.l, across the mixing layer is presented

in FPig.6.5-3, The predictions show a maximum fluctuation of
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Fig.6.5-4 Radial profile of NO, concentration
fluctuation intensities: Run no.l



120

0+23 at nT:0°5, followed by a shafp decrease until the
magnitude is smaller than 0+1. The experimental data, however,
reveal a slight double hump with a rather flat plateazu in
the central part of the mixing layer. The maximum measured
value is around 0-14 and is lower than the present prediction.
Brown and Roshko (1974) have performed the experiments
on turbulent shear layers with density gradients and Fiedler
€1974,1975) has studied the temperature field within a plane
mixing layer. They have found out that instantaneocus density
(temperature) fluctuations were often equivalent to the
density (temperature) difference between the two external
streams. Fiedler (1975) has also measured the maximum
fluctuating temperature intensities which are as large as 0,20,
considerably Jarger than the corr95ponding results for

the Batt (1977) study.

6.5.4 The root mean square fluctuation of species concentration

The fluctuation intensities of NO, across the mixing
layer, obtained from Run No.l, are plotted in Fig.b6.5-4.
The predicted results exhibit a small hump (=0¢ll) near
Ny = -1+0, with the maximum fluctuation intensity equal
to 0+36 and located at Ap = 0°7.

The experimental data share the similar characteristies
with the predictions, though some quantitative discrepancy
still exist. The maximum measured fluctuation intensity is
equal to 0+4 which is about 10% higher than the calculated
one, while the results in the region of‘-l‘SsnT£-0-5 are

slightly overpredicted.
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The prediction of concentration fluctuation is one of
the main contributions made by ESCIMO theory, since the
effect of local unmixedness has been taken inteo account for

the eddies (or folds) coming from various places.

6.5.5 The probability density function of temperature

The temperature probability distributions at different
locations across the shear layer, under the conditions of Run
No.l, are now shown in Fig.6.5-5. The distributions have been
represented by the step functions profile in order to indicate
the intervals without causing any confusion.

The predictions reveal a one-sided pdf near the mixing
layer boundaries (at 8 = 082 and 8 = 0.22 ) where the mean
temperatures are close to the free stream conditions. The
distributions broaden as the locations are further from the
boundaries, e.g. at 6 = 074, 064, 0+56 and 0+32. In the
central part of the layer, e.g., at 8 = 0+56 and 0+44, the
pdf mainly consists of three portions, namely those correspond
to the free stream value, the mean value and the value of
re-engulfed part in the newly formed folds.

The measured probability distributions from Batt {(1977)
are also indicated in the figure (by broken lines). It -
can be observed that the pdf are nearly Gaussian over a
broad domain (approximately the mid-50% of the shear layer),
which has not been fully portrayed by the present

computations.

6.6 The influence of various assumptions

6.6.1 The influence of fold formation rate
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Various hypothetical distributions about the fold
formation rate have been adopted in the current study and
hence it is important to assess their influences on the
results, Firstly, the influence of different distributions
on the mean NO:2 concentration profile are presented in a
tabulated form listed below, since the difference between

each set is too small to be distinguished on the graph.

Location acrosé the Normalised mean NO. concentration
mixing layer, N obtained from each mode no.
Mode (i) | Mode (ii) | Mode (iii)

-2.00 L.00 1.00 1.00
-1.50 1.10 1.10 1.10
-1.07 1.21 1.20 1.20
-0.674 1.21 1.22 1.21
-0.300 1.13 1.15 1.15
0.104 0.947 0.989 0.988
0.508 0.712 0.756 0.764
0.889 0.575 0.582 0.586
1.17 0.398 0. 400 0.403

1.57 | 0.178 0.179 0,179

Table 6.6-1: The influence of digtribution of fold formation

rate on NO2 concentration
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The maximum difference between each set of results
occurs around Np = 0-508, where the relative difference
reaches 7%. However, the relative difference is very small
in most part of the mixing layer and lower than 2%.

Cn the other hand, the influence of fold formation rate
on the concentration fluctuation intensities of NO: 1is
more significant and can be presented in graphic form as
Fig.6.6-1, The results obtained from three runs are almost
identical in the region of -2<n<0, especially those correspond
to Run No.2 and Run No.3 (hence the results of Run No.3 are
not shown in this part). The discrepancies become more
apparent when nT>0'3 and the maximum fluctuation intensity
varies from 0+36 in the Run No.l to 0°29 in Run No.3. The
predicted locations of the peak wvalue are slightly shifted
towards the lbw speed side of the mixing layer when compared
with the data of Batt (1977).

6.6.2 The influence of fold size

The results produced by Run No.l and Run No.4 are
compared in the table 6,6-2.

It should be noted that the fold size at birth is
taken as the length scale of turbulence in Run no.l, while
it is equal to twice as the léngth scale in Run no. 4. The
influence of fold size on the mean NO, concentration is
significant only in the central part of the mixing layer.
Thus, the assumption about the fold size within present
range is not cruciasl to the mean concentrations.

The influence is more visable for the fluctuation

intensities of NO, as shown in Fig.6.6-2. The maximunm
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Location across the Mean ©NO: concentration
mixing layer, ng Run No.l Run No.4
GZ=O.164 CZ=0.328
-2.00 1.00 1.00
-1.50 1.10 1.09
=1.07 1.21 1.20
-0.674 1.21 ©1.18
-0.300 | 1.13 1.10
0.104 0.947 0.907
0.508 0.712 0.669
0.889 0.575 0.565
1.17 0.398 0.397
1.57 0.178 0.180

Table 6.6-2 Influence of fold size on NO, concentration
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predicted value is equal to 0.42 in Run No.4, compared with
the value of 0.36 in Run No.l. The results obtained from
Run No.4 are generally larger than the measured data,
indicating that larger fold size will yield higher

- fluctuation intensities.

6.6.3 The influence of fold composition

The results of mean NO; concentration from Run No.l

and Run No.5 are given in the following table:

Location across the Mean NO, conecentration
mixing layer, ny Run No.l Run No.5
'GF=2.O CF=3.O
-2.00 1.00 1.00
-1.50 1.10 1.10
-1.07 1.21 1.21
-0.674 1.21 1.20
-0.300 1.13 1.07
0.104 0.947 0.884
0.508 0.712 0.663
0.889 0.575 0:574
1.17 g 0.398 0.398
1.57 0.178 0.179

Table 6.6-3 Influence of fold composition on NO, concentration

Again, the discrepancies are apparent only in the
mid-region of the mixing layer, where the relative difference

between each set is around 7% (e.g. at nT=O.104). The peak
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value 1is almost identical under both cages.

The fluctuation intensities calculated from Run No.l and
Run No.5 are now plotted in Fig.6.6-3. Considerable increase
in the fluctuation intensities are observed for -0.5<nT<O.6
and the peak value computed from Run No.5 is equal to 0.43
(the measured value is 0.40). The percentage difference in
two runs can reach 40% (atnT=0) gnd hence the parameter GF
is an important factor in determining the fluctuation level.
The location of the peak was also shifted from nT=O.8 to
nT=0.40 when CF changes from 2,0 to 3,0.

6.6.4 The influence of the stretching rate

The mean NO, concentration computed from Run No.l and

Run No.6 are provided in the following table:

Location across the Mean ¢NO, concentraticn

mixing layer, ng Run No.l Run No.6
Cg=1..0 Cq=0.3
-2.00 1.00 1.00
-1.50 1.10 . 1.09
-1.07 1.21 1.19
-0.674 1.21 1.14
-0.300 1.13 1.03
0.104 0.947 0.840
0.508 0.712 0.621
0.889 0+575 0.558
1.17 0.398 0.391
1.57 0.178 0.177

Table 6.6~4 Influence of stretching rate on NO:

concentration
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Fig.6.6-3 Influence of fold composition on
the concentration fluctuation

intensities

2

Fig.6.6-4 Influence of stretching rate on the

concentration fluctuation intensity
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Inspection of Table 6.6-4 reveals that the maximum
difference between the results computed from two runs
is now around 11%. The peak value is lower in Run No.b6
and equal to 1.19.

More evident influence has been realised in the
concentration fluctuation intensities as in the other
cases, this is now presented in Fig.6.6-4. The secondary
hump (at'ngp~-1.1) is magnified in the case of low
stretching rate and the maximum fluetuation increases up
to 0.46 now. The predictions are in good quantitative
agreement with the measuremenits over the range of
-0.5§HT50.6 in Run No.6. However, the fluctuation level
is overpredicted in the near high speed area
(-1.4§HT§-0.8) for both runs.

Purther investigation about the influence of
stretching effect have been carried out in the
comparison between Run No.4{ and Run No.7, where the
fold size at birth is twice as large as those in the
other runs. The results are presented in Figs.é.6-5 and
6.6-6,

It can be observed , in Fig.6.6-5, that the mean
NO2 concentration is lower as the stretching rate
decreases. The results obtained from Run No.7 show better
aggrement with the experimental data in the outer regions
of the mixing layer (i.e. for ~1.5%np<-0.5 and
0.5$nT51.5). but larger deviation occurs in the central
part of the layer (-0.5%np<0.5).

On the other hand, inspection of Fig.b6.6-6 reveals
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Fig.6.6-5 Influence of stretching rate on-
the mean concentration

54 ¢ Bait's daln

Fig.6.6-6 Influence of stretching rate on

the concentration fluctuation
intensity
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that the fluctuation level calculated from Run No.7
is generally higher and the peak level attains the
value of 0.47. The secondary hump is also more

significant when the stretching is moderate.

6.7 The influence of grid gige

6.7.1 The influence of forward marching step size

It has been observed that the step size of forward
marching is controlled by the factor, A , in Eqn.(6.3-6)
under present computational conditions. Hence, three
different values of jl\'a have been employed to investigate
the influence of step size, Ax, on the results and the
comparison is presented in Table 6.7-1. The RMS values
of NO2 concentration are chosen for the comparison,
since they are more sensitive to step size than the
mean NO2 concentration. All physical constanfs are the
same as those employed in Run Ne.l.

The results from three different Aa values are close
to each qﬁher, signifying that the influence of
marching step size is a minor one for the problenm
considered, The value of A3é0.02'actually yields the

grid independent results.
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Location across the RMS of NO: concentration fluctuation
mixing layer, fgp A3=0.04 A3=0.02 X;=0.01
-2,00 0 0 0
-1.50 0.0686 0.0700 0.0706
-1.07 0.117 0.120 0:121
-0.674 0:123 - 0,124 0:124
-0 300 0.181 0.182 0.182
0.104 0.262 0.261 0.260
0. 508 0.315 0.313 0.313
0. 889 0.333 0.337 0.340
1.17 0.244 0,249 0.252
1.57 0:113 0.115 0:.116

Table 6.7-1 Influence of forward marching step size on

NO, céncentration fluctuationA

Location across the RMS of NO: concentration fluctuation
mixing layer, ng N =20 N =40 N = 60
-2.00 040 0.0 0.0
-1.50 0:0414 0.0700 0.0792
-1.07 0:126 0.120 0:118
-0.674 0.121 0.124 0:126
-0,300 04213 0.182 0.185
0,104 0,317 0.261 0,260
0.508 0.388 0.313 0.312
0.889 0.364 0.337 0.330
1.17 0.264 0.249 0.245
1.57 0.102 0.115 0:121

Table 6.7-2 Influence of cross stream grid no. on

NO, concentration fluctuation
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6.7-2 The influence of numbers of grid

The RMS fluctuations of NO, concentration computed
from three different cross-stream grid numbers, N, are listed
in Table 6.7-2. The discrepancies between the results from
N=20 and N=40 are significant, i.e., the maximum relative
difference at nT=0-508 is of the order of 20%. However, the
calculated values from N=60 are only slightly different
from those of N=40. Thus, 40 grids across the mixing layer

can actually achieve the grid-independent results.

6.7-3 The influence of subdivisiong in agg;cobrdinate

The age-coordinate and its subdivisions are the newly
introduced grid system in the current work and hence it is
important to assess their influences on the results. Three
values of NA have been employed in the computations and the
RMS values of N0z fluctuation are provided in Table 6.7-3.

The difference between the results from NA=5 and NA=10
are small over most part of the mixing layer, while they are
more negligible in the cases of NA=10 and NA=15, Therefore
it can be concluded that 10 age intervals are sufficient to
produce the grid independeﬂt results. It should be noted
here that all other numerical and physical constants are
the same as those appear in Run No.l.

6.8 Digcuggion of the results

The population distribution of folds

The major significance of the results obtained from the
demographic analysis (in Sec.6.4) is that the cross-strean

variation has been calculated from the transport equations.
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Location across the RMS of NO2 concentration fluctuation
mixing layer, Ny NA = 5% NA =10 NA =15
-2.00 0.0 0.0 0.0
-1.50 0.0595 0.0700 0.0705
-1.07 0.113 0.120 0.120
-0.674 0.124 0.124 0.124
-0.300 0.182 0:182 0.182
0.104 0.261 0.261 0.261
0.508 0.313 0.313 0.313
0.889 0.329 0.337 0.337
1.17 0.231 0.249 0.249
1:57 0.103 0.115 0.115

Table 6.7-3 Influence of age-intervals on NO: concentration

¥ The distribution of age-interval in this case is:

fluectuation

O., O-l’ 0-3’ 0-53

0-7, l
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The location-dependence of the population distribution, as
indicated in Figs.6.4-1 to 6.4=3, is significant in the
mixing layer. The basic factors which contribute to the
crogs=-stream variation are the turbulent diffusion effect
and the distribution of fold formation rate.

The turbulent diffusion effect is determined by the
turbulent viscosity and turbulent Schmidt number which are
taken from the existing turbulence model as the necessary
input to ESCIMO theory. No special attention has been paid
to the development of the turbulence model itself, since
it does not belong to the scope of current study.

On the other hand, the hypothesis about the distribution
of fold formation rate is a new and unique feature of present
approach,., According to the knowledge of the author, there
are no direct experimental measurements to verify the
hypothesis. Therefore, only the influence on the mean
properties and RMS quantities can be tested.

Nevertheless, there is a common trend from tﬁe average

age described in Fig.6.4-7 where the Eav is always larger

e
on the slower-moving side of the layer for all three rums.
The explanation of this variation lies on the veloecity
distribution across the mixing layer, since higher velédcity
results in the shorter time {and hence smaller ﬁge) for a
fold born in the upstream position to travel to.downstream
region.

The mean NO. -<concentration profile

I+t has been pointed out that the quantitative agreement
between the present predicetions and the measurements are

reasonably good in Fig.6.5-2. However, some degree of
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discrepancies do exist near the hump of the concentration
profile and the probable explanations will be given below.

Apart from the uncertainties in experimental measurements
declared by Batt (1977), the effects of non-equilibrium
chemistry and turbulence intermittency factor may cause the
diviation of predictioﬁs from measured values.

Alber and Batt (1975) has estimated six time scales
regarding the chemical reaction and fluid mechanical

processes, namely; -the time scale associated with:

(1) chemical dissociation (Tchem: 0+0001bsec) ,
(2) chemical recombination (Tchemz 0+0001lésec) ,
(3) turbulent dissipation (Tt = 0°0007s8ec) ,
(4) turbulent convection (t = 0-018ec) ,
(5) turbulent diffusion (T & 0+05sec) ,

+ (6) laminar diffusion (t = 400sec) ,

The chemical reaction rate is so rapid that only the
turbulent dissipation time scale associated with the

smallest scale eddies is of the same order as T ahon® Hence,

em
the non-equilibrium phenomena (i.e. finite rate chemistry)
may only appear in the finest scale of turbulence structure.
Batt (1977) has studied the effect of finite rate
chemistry and the interaction between chemical kinetics and
turbulence intensities by including the second-order
correction to the effective rate expression. It was recognised
that the result changed by -5% approximately.
The turbulence intermittency factor, defined as the time

portion when the flow exhibits the turbulent charactersities,

has not been accounted in the present model. According to
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the experimental data of Sunyach and Mathieu (1969), Batt
(1977), the intermittency factor varies from zero near both
edges of the mixing layer to unity in the mid-region. Strictly
speaking, the results calculated from ESCIMO theory refer

to the fully tu;bulent part only and hence should be weighted
by the intermittency factor. Consequently, the contribution

of the irrotational potential flow will be more dominant near
the boundaries of the mixing layer and the results will be

given by:

[vo.] = (1-1) [Noszﬂ . [¥0,] , (6.8-1)

where [N02] is the mean concentration of NO: including the
intermittency factor, I is the intermittency factor,.[Nozj

b
is the concentration of NO, in the potential flow.and

[N02] is the mean concentration obtained from the ESCIMO
theory excluding the intermittency effect. Therefore, it is
expected that the results calculated from Eqn.(6.8-1) will

be somewhat different from the present ones.

The fluctuation intensities of NO; concentration

There are more influential factors in the determination
of fluctuation intensities of NO2 concentration than the
mean quantities described above. The various parameters
employed in ESCIMO theory play the significant-role on the
guantitative comparison with experimental data.

The following remarks can be made from the sensitivity

analysis performed in Sec.6.6:
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The fluctuation intensities at a fixed position increase
when the population of youngest folds become more prominent.
This is reflected in the results of Fig.6.6-1 where the
population of youngest folds is highest for Run No.l near
nT=O-8. The reason is that the profile in each fold is

evened out by molecular diffusion and fold stretching as the
fold gets aging.

* The fluctuation intensities magnify as the fold size
at birth increases, because the distance which the diffusion
process must travel is longer.

* The fluctuation level heightens as the properties of
the re-engulfed part in the newly formed fold are further
different from the local mean values (in the case of larger
GF value), since the initial profile in the fold is steeper
and it remains so if other parameters are the same.

* Slower stretching rate yields larger fluctuations over
most part of the mixing layer, except in the region between
-O-SSnTgo where the mean concentration is high. The reason
is that the thickness of the fold does not reduce so rapidly
and the non-uniformity of the properties within each fold
can last longer. Since the relation between the temperature
and NO» c;ncentration is non-linear and not a monotonic one,
it is possible that the fluctuation intensity of concentration
is lower even when the temperature fluctuation is high
under the low stretching condition.

Therefore, satisfactory agreement with the experimental
data can be realised if a set of optimised parameters is

employed in the computation.
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The temperature fluctuation intensities

The maximum fluctuation intensities have been
overpredicted by the order of 60%, as shown in Fig.6.5-3.

This is in remarkable contrast with the fluctuation intensities
of NO, concentration (from Run No.l) which are underpredicted
by 10% only.

Batt (1977) suggested that the relative low fluctuation
level was caused by random motion or three-dimensionality
effects in the experiment and less influenced by large-scale
two-dimensional coherent structures which has been observed
in other shear-layer investigations.

The probability density function of temperature

The predicted pdf near both sides of the mixing layer
show similar trend with the measured ones, i.e., they all
behave as skewed one-sided pdf. But in the fully turbulent
zone of the mixing layer where the intermittency factor
is of the order of unity, the experimental results are
almost Gaussiarn and cover the whole temperature domain.
Unfortunately, the calculated pdf do not fulfill this
requirement.

The careful review of the presumption regarding the fold
composition at birth provide§ the answer to the discrepancy
between measured and predicted pdf. The newly formed folds
are composed of two parts having different properties’

(the fresh part and the re-engulfed part) and hence the
pdf of these folds mainly consist of two blocks. The

population average.pdf is significantly influenced by the _
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pdf of younger folds because of their high proportion.
Therefore, the shape of population average pdf contains
three amjor portions which correspond to the fresh
stream value, the population-average value and the value

associated with the re-engulfed part in new born folds.

6.9 Closure

The application of ESCIMO theory to the turbulent
reacting plane mixing layer has been described in this
chapter. The population distribution of folds have been
presented in two-dimensional flows for the first time and
the influence of various hypotheses about the distribution
of fold formation rate tested.

The mean turbulent properties, the RMS fluctuation
intensities and the probability density functions have
been calculated and compared with the experimental data of
Alber & Batt (1975) and Batt (1977). The sensitivity analysis
about various presumptions made in the present theory
have been carried out. The grid irdependence test was also
performed to assess the influence of all grid sizes.

The quantitative agreement between measured and
predicted results is acceptable on the overall basis,
although some discrepancies happen in the fluctuation
intensities of temperature and the pdf related to it.

In order to further evaluate the applicability and
the credibility of ESCIMO theory, it is essential to
perform more test cases and compared with other experimental
work. Therefore, the application of ESCIMO theory to the

turbulent hydrcgen-air diffusion flame and the turbulent
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methane-air diffusion flame will be presented in the

next chapter.
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CHAPTER 7

THE TURBULENT JET DIFFUSION FLAMES

7.1 Introduction

The application of the ESCIMO theory to the turbulent
round jet diffusion flames which have more practical importance
is presented in this chapter. The chapter is mainly divided
into two parts, the first part is associated with the
hydrogen-air diffusion flame (Sections 7.1-7.5) and the second
part with the methane-air diffusion flame (Sections 7.6-7.9).

In each part of the presentation, the results of the
hydrodynamic caleulations (from the k-c¢ model of turbulence),
the population distribution of folds, the turbulent mean
quantities, the RMS fluctuation intensities and the probability
density functions of scalar and species concentration will be
provided and compared with the experimental data available.
The measurements obtained from Kent and Bilger (1973) in
Hz-air flame and Lenz and Gunther (1980) in methane-air
flame have been chosen for the comparison, since the results
are more comprehensive and regarded as reliable ones.

All the numerical fact?rs and physical presumptions have
been kept unchanged for both cases in order to assess the
generality of those constants in the current work. The
influence of different parameters on the predictions will be
discussed separately in the next chapter. Therefore, all
results produced in this chapter are based on a single set

of constants.

7.2 The turbulent hydrogen-air diffusion flame
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The experimental work of Kent and Bilger (1973) was
carried out for turbulent diffusion flames of a horizontal
round jet of hydrogen issued in a co-flowing stream of air.
The jet diameter at the exit plane was 7.62mm and the cross-
section of wind tunnel was 305 by 305mm. The tunnel cross-
section is large enough so that the wall effects can be
neglected and the pressure gradient is almost equal to zero.
It was also mentioned by Kent and Bilger (1973) that the
buoyancy effects were negligible.

The measurements were made at jet to external stream-
velocity ratios of 2, 5, 8 and 10 to 1. The particular set
of data from velocity ratio of 10 to 1 has been selected
here for the comparison, because they are more extensively
presented in the literature. The jet velocity at jet exit-
plane is equal to 151m/s and the free-stream velocity is
15.1m/s.

The temperature measurements were m;de with a Pt-Rh
(5% and 20%) thermocouple, coated with a special noncatalyic
coating developed by Kent (1970). The samples of-different
species were withdrawn from the flow iso-kinetically with
the aid of a hot-water-cooled probe. The samples were
analyzed on-line using a lithium chloride hygrometer for
water vapour, a katharometer for hydrogen, and a paramagnetic
analyzer for oxjygen. The radiation corrections have also

been performed.

7.3 The computatiohai agpects

The grid system

Twenty-grid nodes across the jet are employed in the
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X~w coordinate system, i.e.,N=20. The distribution of

w-intervals is given by the following expression:

] 2
w; = (F=F) i=1,2,...,N . (7.3-1)

The w grid-nodes are more densely distributed near the jet
axis where the temperature is high and hence the density
is lower. The actual distance (y-interval) between each grid

node is then nearly uniform.

w=1
/§//
—r 1
ot
S/ = e xieo=0)
r———

Fig.7.3-1 Grid system

The size of forward marching (in x-direction) step,

AX, is calculated according to Eqns.(6.3-2) to (6.3-7) with
the same numerical factors.

The number of intervals in the.age—coordinate, KA, is
again equal to 10. The distribution of these intervals is
given by:

o, 0.05, 0.1, 0.15, 0.2, 0.3,.0,4, 0.5, 0.65, 0.8, 1.
The transformation function F&(X3} in Eqn.(5.2-2) is

chosen as:

U,
FéX3) = %gr , (7.3-=2)
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where Uair is the velocity of co-flowing air and does not

vary with x.

The computer time and storage reguired

The central processor unit time (CPU time) required for
the calculation in this case is 360 seconds in the CDC 6600
machine. Hence, the computation time for each grid point in
each marching step is approximately equal to 0.033sec.

The central core memory required is equal to 30 X words,
while the additional information of the fold characteristics

are stored in the magnetic tape.

The thermodynamics properties

The specific heat of each species and mixture are
calculated according to the Eqns.(4.4-7) and (4.4-8). The
heat of combustion of hydrogen is taken as 1.208x10%J/Kg
from the standard thermodynamics handbook.

Both turbulent Prandtl and Schmidt number is assumed to
be equal to 0.9 in the computations and hence the turbulent
Lewis number is taken as unity.

The laminar diffusion coefficients of all specieé and
heat transfer have been assumed to be equal in the fold
biography analysis. It has been recognised that the molecular
diffusivity of hydrogen is two or three times faster than
the other species because of its small molecular weight.
Therefore a definite amount of error will be introduced from
the assumption of unity laminar Lewis number.

The error in the above mentioned assumption was tolerated,

because the uncertainties in the fold size at birth and the
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streﬁching rate are of the same order of the error introduced
by the hypothesis of equal diffusivities. In the mean time,
the simple chemical reaction scheme, described in Sec.i.4,
will not be valid if the differential diffusion effect is
considered and hence additional transport equations will

have to be soclved for each fold. The congiderable expansion
of computing time was not favoured at the present stage of
development, since the influence of other presumptions will

have to be tested firsst.

7.4 Presentation of results

7.4.1 The hydrodynamic results

The results of hydrodynamic-calculation form the basis
for the further combustion computation and hence it is
degirable to check the turbulence model at the first place.

The axial distribution of jet centre-line velocity
is plotted in Fig.7.4-1 together with the experimental data
from Kent and Bilger (1973). The quantitative agreement
between the predicted and measured values are satisfactory,
signifying that the k~e model of turbulence is capable of
producing correct resulis about the global turbulent
diffusion effects for this flow case.

The turbulence levels on the centre line of the jet
are plotted in Fig.?.i-Z. The predictions are obtained from
the turbulent kinetic energy based on the assumption of
isotropic turbulence, while the data points stand for the
measurements of radial velocity turbulence intensityrjzf?,
on the centre-line of the flame. Therefore, only a2 qualitative

comparison can be expected for this case,
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7.4.2 The population distribution of folds

The results to be presented in this chapter are obtained
from the agsumption that the fold formation rate across the
jet is proportional to the gradient of local mean axial
veloeity. Firstly, the population distribution with respect
to age, at three different downstream locations, will be
presented in Figs.7.4-3 to 7.4-5 respectively.

In Fig.7.4~3, the three curves represent the B~i
distribution at three radial positions for X/D=40. The folds
having age between 0,1 and 0.1l5 are the most popular near
the jet axis (i.e., r/D=0.27), in which.the fold formation
rate is minimum. On the other hand, the youngest folds are
more dominant in the mid-region (r/D=2,10) and the outer
region (r/D=4.04) of the jet. It should be noted that the
highest population of the newly formed folds appear at
r/D=2.10 where the fold formation rate reaches its climax
(the velocity gradient is large there).

' Similar results at X/D=80 are shown in Fig.7.4-4,
where the slope of each curve is now more moderate. Eventually,
inspection of Fig.7.4-5 reveals that the population
digstributions become rather uniform at the further downstreanm
region of X/D=120, where the velocity gradient diminishes
and the fold formation rate also follows suit.

Secondly, the radial variation of the population of
folds belonging to a particular age-interval are demonstrated
through Figs.7.4-6 to 7.4-8. In Fig.7.4-6, the population
of four kinds of folds, at X/D=40, are plotted against the

radial distance. The population of the youngest folds, 51’
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Fig.7.4-4 Population distribution function
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attains the maximum value round r/D=2.12 as described above.
For the popuiation of folds having age between 0.10 and
0.15, 53, the curve decays monotonically from the axis
@/D=0) towards the outer edge of the jet. The value of

55 (for 0.20<A<0.25) first decreases as the value of r/D
increases and then rises slightly in the outer part of

the jet. However, the population of oldér folds (for 0.40<
A<0.45), 59, inereases steadily with the radial distance.

The variation of folds population, obtained at X/D=80,
are presented in Fig.7.4-7. The patterns of ;1, ;g and 55
are similar to their counterparts in the previous figure,
while the trend of ;9'18 somewhat different. The results in
Fig.7.4-8, for X/D=120, bear much resemblence to those in
Fig.7.4-7, apart from the gentler change in the magnitude
of each curve.

Thirdly, the radial distribution of average age at
X/D=40, 80 and 120 are provided in Fig.7.4-9. The noticeable
point is that the folds in the mid-region of the jet have
the lowest average age, since the fold formation rate is
highest there gnd the newly born folds are more prominent.
Also it can be observed that the level of average age
increases in the further downstream region of the jet, where
the mean velocity of the flow approaches the veloeity of
co-flowing air stream.

7.4.3 The mean temperature and species concentration

The general features of the diffusion flame considered
are described by the turbulent mean temperature and species

concentration, namely the concentration of Ha, 02 and H,0O.
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The concentration of minor species, radicals and nitric oxides
have not been considered in the present reaction scheme.

The axial distribution of mean temperature and mean
species concentration (in molar fraction) are plotted in
Fig.7.4-10 with the experimental results of Kent and Bilger
(1973). It can be observed that the concentration of fuel
and oxygen are under-predicted for X/D larger than 40, and
the temperature is also slightly underpredicted. Nevertheless,
the agreement between the predictions and measurements is
believed to be reasonably good.

The radial distribution of mean temperature and species
concentration, at X/D=40, 80, 120 and 160 respectively, will
be provided in Figs.7.4-11 to 7.4-14.

The results obtained at X/D=40 are demonstrated in
Fig.7.4-11. The calculated peak temperature is lower than the
measured. value byzoopK,and the predicted peak location has
been shifted towards the outer region of the jet by the
distance of one jet radius approximately. The hydrogen
concentration and water vapour concenfration have been well
predicted from the jet axis until r/D=3. For the region of
r/D greater than 3, Phe concentration of water vapbur
is overpredicted, while the amount of oxygen is underpredicted.
The overlapping of fuel and oxygen, which is the
characteristies of turbulent diffusion flames, has been
shown in the present calculation. However, the calculated
value at the over-lapping point (%0.05) is lower than the
measured one (®0.08).

The results in Fig.7.4-12 are obtained at X/D=80. The
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Fig.7.4-10 Axial distribution of mean temperature

and mean composition
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temperature at the axis is now higher (=IBOOQK)-and-thé
computed peak temperature reaches 1880°K at r/D=3.5. The
measured maximum temperature is located at r/D=3.0 and has
the magnitude of 2040°K approximately. The amount of water
vapour is overprediected for r/D greater than 3, while the
oxygen concentration is lower than the experimental
counterpart. The fuel concentration is underpredicted in
whole part of the jet.The degree of overlapping in the
prediction (20.045) is again lower than the measurement.

Similarly, the same set of quantities are provided in
Fig.7.4-13 for X/D=120. The axial temperature has now
achieved the highest value in both prediction and measurement,
signifying that the flame zone is around the jet axis. The
concentration of hydrogen and oxygen have been under-
predicted, while the amount of water vapour was overpredicted
from the jet axis until r/D=6. The measured degree of mixing
(or overlapping) is still higher than the calculated value,
as in other positions.

The hydrogen content is nearly exhausted at X/D=160,
as indicated in Fig.7.4-14. The oxygen has already penetrated
into the central zone of the jet and the temperature is
highest in the axial position, all these phenomena suggest
that the flame tip is located near X/D=160. The amount of
oxygen is still underpredicted across the jet, while the
water vapour.is overpredicted for 0<r/D<5 and underpredicted
for r/D>5.

Finally, the flame and temperature contours from the

predictions and measurements are presented in Fig.7.4-15.



159

1 1 )
0 2 b yp 6 8 0
Fig.7.4-14 Radial distribution of mean temperature

and mean compesitions

-~ Kent & Biger's datu.

10-{ — Prediction. -
- = -
D =2X—
75~ =
§ -
STOICHIOMETRIC

25—

04 . 1 | )

0 40 4] X/0 0 %0 20

Fig.7.4-15 Flame contours. H; limit is for mole
fraction of 1 per cent and Og limit
for 0.5 per cent



160

The smooth variation in all predicted curves indicates the
correct tendency obtained from the present theory. However,
the major discrepancies between the computation and Kent and
Bilger's data appear in the O0; limit, where under-prediction

persists.

7.4.4 The root mean sguare fluctuation of temperature

The RMS fluctuation of temperature will be presented
here ag a further demonstration of the applicability and
power of ESCIMO theory. The axial distribution of temperature
fluctuation is now plotted in Fig.7.4-16 together with
the prediction made by Kent and Bilger (1976). The
measuréments are not available for this flame as mentioned
by Kent and Bilger (1976).

Kent and Bilger (1976) has assumed a Gaussian turbulent
pdf in the mixture fraction with a preseribed fluctuation
intensity to calculate the temperature fluetuation. Inspection
of Fig.7.4-16 reveals that fhe results obtained with both
approaches follow the similar trend although higher fluctuation
level has been detected from the current study. The decay of
the fluctuating intensities between X/D=50 and X/D=80 are
observed from both curves and the shape is in qualitative
agreement with the measurements of Lockwood and 0didi (1975)
in the methane-air free jet diffusion flame.

The radial variation of temperature fluctuations,
obtained at X/D=40, 80, and 120 respectively, are now shown
in Fig.7.4~17. The locations of the peak in each curve shift
toward the central part. of the jet in the further downstreanm

region in a similar way to the mean temperature profile. The



— ESCIMO Model
600- Kent & Bilger’s prediction
AL
l.w...
200
0 1 1 ) 1
0 & 80 yp 20 %0 20

Fig.7.4-16 Axial distribution of temperature
fluctuations

800
XID=40
—XD=80
600 X/ID=120
/72 o
&00-
200+
0 | | T 1 1
0 2 & rp 6 8 0

Fig.7.4-17 Radial distribution of temperature

fluctuations at various locations



162

maximum fluctuation intensity decreases and the profile
broadens as the value of X/D further increases, indicating
the diffusive spreading of the flame zone. The experimental

data have not been reported by Kent and Bilger.

7.4.5 The root mean square fluctuation of species concentration

The concentration fluctuation intensities of hydrogen
and oxygen, at X/b=40, 80 and 120, are presented through
Figs.7.4-18 to 7.4-20 respectively. The mean concentration
profiles are also shown in the graphs so that the relative
magnitude of fluctuation can be recognized.

In Fig.7.4-18, the RMS value of hydrogen concentration
fluctuation is equal to 0.175 at the jet axis and reaches
the maximum value of 0.235 at r/D=1.75. It can be observed
that the RMS fluctuation value of Hz molar fraction is
higher than the mean value when the latter quantity is low,
e.g., in the region where r/D>3.25. On the other hand, the
fluctuation level of 0 concentration is greater than the mean
value in the range 0.55r/D<3.75, i.e.,when the mean -oxygen
concentration is lower than 0.06. The fluctuation intensities
approach gero as the mean value of 0 concentration reaches
the free-stream value.

Similarly, the results obtained at X/D=80 are plotted in
Fig.7.4-19. The RMS value of Hg concentration fluctuation
is now lower than the counterpart in the preceding graph,
but the variation is similar in each case. The profile of
02 fluctuation also exhibits a peak value of 0.06 near the
intersection point of mean H, and mean 0> concentration

curves.
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In Fig.7.4-20 the RMS values of H, concentration
fluctuation, at X/D=120, further decrease below the level of
0.1, but the relative fluctuation intensities (the ratio of
RMS value to the mean value) are higher now. The location
of the maximum RMS value, for H, fluctuation, is now
situeted at the jet axis where the temperature is highest
(as shown in Fig.7.4-13).

Finally, the RMS wvalues of H,0 concentration fluctuation,
at X/D=40, 80, 120 and 160, are demonstrated in Figs.7.4-21-
7.4-22. The profiles of concentration fluctuation spread
outwards as the value of X/D increases, which is the result
of the diffusion process. It can also be observed that the
peak of fluctuation is located iq the inner region of the

jet (r/D=2.5) at X/D=160.

7.4.6 The probability density functibn of temperature

The temperature pdf is one of the most interesting
quantities agsociated with the detail structure of turbulent
flamés, since it depends on the composition of the mixture
and the enthalpy as well.

The temperature pdfs at the centre line of the jet,
for four X/D values, will first be demonstrated in Fig.7.4-23.
Then, the radial evolution of temperature pdfs at the
corresponding X/D positions will be presented from Figs.7.4-24
to 7.4-27 respectively.

In Fig.7.4-23, the axial temperature pdfs calculated at
X/D=40, 55, 80, 120 were shown by four diagrams. The
location of the maximum value shifts towards the high

temperature direction as the value of %/D inereases and
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this is consistent with the variation of mean axial
temperature represented in Fig.7.4-10. It should be noted
that no contribution of free stream fluid (at T=300°K)

is present in any of these diagrams and the pdf profiles
are unimodal.

The radial evolution of pdfs at X/D=40 are plotted in
Fig.7.4=-24 where the four curves gtand for the distribution
at r/D=0.69, 1.86, 3.21 and 4.20 respectively. The
temperature corresponding to the maximum distribution in
each curve is approximately equal to the mean value. A
small but finite contribution of free stream property
appears in the profile of r/D=3.21, i.e. near the outer
edge of the jet.

The pdf profiles at X/D=55 are drawn in Fig.7.4-25 with
the-results from Kennedy and Kent (1981) who have measured
the pdfs of the mixture fraction with the aid of optical
devices and converted to température pdfs. There.is a
larger intermittent spike (T=300°K) in the outer edge of
the flow (e.g., at r/D=4.16) in Kennedy and Kent's data.
The present predictions produce a narrower distribution
(hence smaller fluctuation) in the outer region of the jet
where the influence of free stream conditions are stronger.

The pdf profiles at X/D=80 are shown in Fig.7.4-26 and
it can be seen again that the mean temperature coincides
with the corresponding value where the distribution is
maximum. The corntribution of free stream properties, at
r/D=2.95, is still small.

In Fig.7.4-27, where X/D=120, the probability of finding
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the temperature near the ambient condition is greater at
the outer edge of the jet, at r/D=5.65. Furthermore, the
pdf at r/D=6.90 is composed of lower temperature intervals
(from 300°K~1300°K), indicating that the mean temperature

is well below the flame temperature there.

7.4.7 The probability density function of species

concentration

The radial variation of pdf of the mass fraction of
hydrogen, for X/D=40, and 80 respectively, are presented
in Figs.7.4-28 and 7.4-29. In Fig.7.4-28, the pdf profile
is broader in the inner region of the jet (e.g., at
r/D=0.69 and 1.86) and narrows as the mean value of hydrogen
diminishes in the outer region (e.g., at r/D=4.20). The
similar trend can also be detected in Fig.7.4-29, where
the quantitative contribution of fuel is smaller.

The same variation regarding the pdf of mass fraction
of oxygen are demonstrated in Figs.7.4-30 and 7.4-31. It
can be observed that the profile is mainly concentrated
around the lower limit of oxygen content for r/D value up
to 3.11, where the mean value is small compafed with the
free stream value. The profile shifts towards the higher
limit only in the outer region of the jef, e.g., at
r/D=4.20. The evolution pattern at X/D=80 is also similar
as shown in Fig.7.4-31.

The pdf of mags fraction of H,0, at X/D=40, 80 and 120,
are presented through Figs.7.4-32 to 7.4-34. It is
evident that the shape of the pdf is neither Gaussian nor
symmetric. The profile moves towards the lower bound in

the outer region of the jet, for all X/D-values, indicating
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that the mass fraction of‘HZO diminishes gradually there.

7.5 Discussion of results

The population distribution of folds

It has been observed that the radial variation of
§~£ distribution diminishes in the further downstream
region of the jet, as revealed from Figs.7.4-3 to
7.4=-5., The reason is that the velocity difference across
the jet becomes smaller as X increases, which results in
more uniform ageing rate (c.f. Eqn.3.7-15). Therefore, one
can expect that the §~E curve will be a function of
longitudinal distance x only, if the velocity (and also
density) is uniform in the cross-stream direction as in
the case of plug flow reactor.

However, the shape of the §~E curve 1s dependent on
the hypothesis about the distribution of fold formation
rate. The results obtained from the present chapter show
a similar trend as those from the mixing layer
calculation in chapter 6, since it is supposed that
the fold formation rate is proportional to the gradient
of local mean velocity. Actually, the population of-the
youngest folds will not be the most dominant one, at
least in some points, when the fold formation rate is low
in the central region of the jet. The influence of the

formation rate on the P~A profiles will be presented

and discussed separately in the next chapter.

The turbulent mean guantities

From the results presented in the previous section,
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several remarks can be made about the comparison
between the predictions and measurements.

Firstly, the general trend in the variation of"
mean temperature and species concentration have been
satisfectorily predicted based on the simple chemical
reaction scheme. The discrepancy between the present
computations and experimental data is almost the same as
in the work of Janicka and Kollman (1979) where a
.multistep non-equilibrium reaction scheme was employed.

Secondly, the degree of coexistence of reactants
(i.e., Hz and 0,) is an important featiure of turbulent
diffusion flames and it is one of the purposes and .
coniributions of the ESCIMO theory to predict this guantity.
However, the amount of overlapping was found to be under-
predicted here and hence attention has been paid to seek
further improveﬁents. Therefore, various values of the
parameters, GZ’ CF’ GS have been tested and larger over-
lapping obtained. The results produced from the parametric
studies will appear in the next chapter.

Thirdly, the oxygen content was underestimated in the
results df Sec.7.4 and it also happened .to the theoretical
calculations of Janicka and Kollman (1979.). Since the
Shvab-Zeldovich assumptions (in particular the assumption
of equal molecular diffiusivities for mass and energy)
are adopted in both calculations, one may speculate that
the preferential diffusion effect of hydrogen (high
mobility of hydrogen molecules) is the cause of this

disagreement.
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The root mean square fluctuation quantities

The maximum temperature fluctuation in the jet centre
line is around 450°K, as indicated by Fig.7.4-16. The
fluctuation level is believed to be reasonable, although
experimental data for this case are not available. The
indirect supporting evidence of the statement is the
measurements of Lenz and Gunther (1980) in methane-air
free jet diffusion flame where the maximum axial temperature
fluctuation is about 400°K. It is well understood that the
peak temperature in H-air flame is higher than the
counterpart in CHu-air flame (by 300°K-400°K) and hence
the fluctuation temperature is expected to be lérger for
the former flame (under the same turbulence level).

The decay of temperature fluctuation between X/D of
40 and 80 has not yet been confirmed by experimental data,
although.the same feature ocurred in the theoretical
results of Lockwood and Naguib (1975) for the town-gas
flame and those of Kent and Bilger (1976) for the present
case.

In the radizl profiles of temperature fluctuation -
indicated by Fig.7.4-17, the peak value has reached
600°K~7009K . The value is also thought to be realistic,
because the maximum value of 600°K in RMS fluctuation
has been observed in the turbulent methane-air diffusion
flames (c.f. Lenz and Giinther (1980)).

The relative fluctuation intensities of hydrogen and
oxygen concentration are greater than unity in the region

where the mean values are small, as shown in Figs.7.4-18
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to 7.4-20. The same phenomena were detected in the
calculations of Becker (1975) for turbulent propane-

air diffusion flames. In the concentration fluctuations
obtained by Becker (1975), a finite amount of RMS value
exists in the region where the mean quantity is equal to

ZEeT0.

The probability density funciions

It can be seen from the comparison between present
predictions and the pdf deduced from Kennedy and Kent (1981),
shown in Fig.7.4-25, that there is a stronger intermittency
effect near the edge of the jet from the experimental
observation. The influence of the free stream appears in
the ESCIMO theory through the fold-composition at birth
only, and it becomes less significant in the older folds
because of molecular diffusion and fold stretching.

The shape of the pdf profiles is directly related to
the fold size, stretching rate and population distribution
of folds. Since all the results obtained in this chapter
are based on a single set of parameters only, more
parametric studies are necessary before drawing any final
conclusion about the model. The presentation of parametriec

studies is to appear in chapter 8.



185

7.6 The turbulent methane-air diffusion flame

L

The systematic experimental investigation on the
turbulent methane-air free jet diffusion flames have been
performed during the last decade by Lenze and Gunther (1975),
Lenz and Gunther (1980). The experimental burner was of a
nozzle type with a diameter of 8mm. The velocity of fuel jet
at the jet exit plane is equal to 70m/sec, corresponding to
a Reynolds number of 3.7x10%., The flame was stabilised with
an annular oxygen supply of a few litres per hour. Lenz and
Gunther (1980) claimed that the oxygen from the annular
supply can be neglected compared to the oxygen content of
the entrained air, especially in the downstream region
where most measurements were made, They believed that the
oxygen affects only the flame root.

The experimental data include the axial and radial
distribution of species concentration, the mean temperature
distribution, the temperature fluctuation and the pdf of
temper;ture at flame axis.

The measuring system of fluctuating temperature consisted
of a thermocouple whose frequency response was determined
at each measurement point and compensated ﬁith an electrical
network. The signal from the RMS voltmeter was passed
through a spectrum analyser and a pdf analyser to reveal
any marked peaks in the spectrum and to determine the

skewness and flatness of the pdf.

7.7 The computational sasspects

The grid system

The grid distribution in the x, w and A coordinate are
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the same as those described in Sec.7.3, except the definition
of the transforiation function Fé¢x}. It is inadequate to
assign the velocity of surrounding air, for the present

case, Uair(so)’ as the reference velocity. Alternatively,

the reference velocity is given by:

U

e
Urer = 37170.01x/D) ;. (7.7-1)

where U; is the velocity of the “jet at the nozzle exit.
The value of U.,p is now a function of x and it decays
approximately at the same rate as the velocity at the centre

line of the jet, U., viz:

U
Urer ® ?; . (7.7-2)

Therefore, Féx3} is now defined as:

- e:
Féxd = 537370, 01707 . (7.7-3)
and 9L is obtained by its first derivative as:
oF = -T,.(1+40.02x/D) C(7.7-4)

5% 3[x(1+0.01x/D)] 2

The input data

The fuel jet in the experimental conditions of Lenze
and Glinther's (1975) work is mainly composed of methane and
nitrogen, with small amount of other hydrocarbon fuels. The
volumetric composition of the fuel jet is reproduced here

for the sake of clarification:
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“Species Volumetric fraction %
CHs 81.3
CoHg 2.85
CiHs 0.60
(HoPY 0.90
N, 14.35
O 0.01

Table 7.7-1 Composition of the natural gas

Some simplifications have however been made in the
numerical predictions, i.e., the fuel jet is treated as
composed of CH4 and N; only. Since the species conservation
equation is based on the mass fraction instead of the volume
(or molar) fraction, the following mass fraction of methane
and nitrogen have been used as the initial conditions at the

jet exit:

Bog,,e = 0-713 . . (7.7-5)

oy,,e = 0.287 . (7.7-6)

The errors introduced by this approximation is believed
to be of the same order as those of the simple chemical

reaction schene.

The thermodynamics properties

The specific heat, Cp, of each species is again
calculated according to Eqn.{(4.4-8) and the coefficients

given by Table 4.4-1. The species considered in this case
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include CH4, O, N2, H20 and CO,, the intermediate species

of the chemical reaction (e.g., H2 and CO) being neglected.
The products of the chemical reaction are assumed to

consist of water vapour and carbon dioxide only and the

amount of each species is determined by:

Oy,0 = 045 Bpp ,» (7.7=-7)
I:!CO2 = 0055 mpr ’ (7-7-8)

since the following one-step reaction scheme is assumed:

CHy + 20 + 7.52N, + CO, + 2H,0 + 7.52N, y (7.7-9)

where By, 0 and mco, represent the mass fraction of H»0 and
€02 respectively.

The heat of combustion for methane is taken as equal
to 5x107J/Kg in the computation, according to the data from
Perry and Chilton (1973).

7.8 Presentation of results

7.8.1 The hydrodynamic results

The axial distribution of mean veloecity, U is presented -

a?
in Fig.7.8-1 together with the measurements obtained by
Wittmer (1980) with the Laser-anemometry. It can be seen
that the mean velocity is well predicted until X/D=40, while
the rate of decay is overpredicted afterwards.

Fig.7.8-2 shows the turbulent kinetic energy and:the
veloecity fluctuations for the same flame. It is not possible

to calculate the axial velocity fluctuation and radial

velocity fluctuation separately from the present k-e model,
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therefore it is assumed that the turbulence is isotropic
and the "equivalent velocity fluctuation", v273k, is now
compared with the measured values of /a’ 2 and /v’ 2.

The main discrepancies between the predictions and the
experimental data exist in the region of 0 < X/D < 60,
where the predicted location of peak fluctuation is
situated further downstream (X/D230) to the position found
by Wittmer (at X/D316). Nevertheless, the maximum fluctuation
level is only slightly underpredicted by the turbulence model
The value of v2/3k is lying between the Yu’? and v/v’% for
X/D ratios greater than 80, i.e., in the fully developed
region of the jet.

7.8.2 The population distribution of folds

Figures 7.8-3, 4 and 5 present the population
distribution with respect to age, at three different X/D
values, for the methane-air diffusion flame. In Fig.7.8-3,
the P~A distributions obtained at three radial loeations,
for X/D=40, are denoted by spparate curves. It can be
obgerved that the population distributions at r/D=2,. and
5.3 are close to the exponential decay function, while the
result at r/D=0.2 (near the jet axis) behaves in a different
way. This feature is the consequence of the distribution of
fold formation rate and the local mean velocity. The fold
formation rate is assumed to vary with the gradient of mean

velocity (U) and hence it reaches the maximum value near the

mid-point between the jet axis and outer boundary. The larger
is the fold formation rate, the more popular are the youngest

folds. The influence of the mean velocity itself mainly
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appears in the aging term (see Eqn.3.4-24) and the latter
quantity is larger when the mean velocity diminishes.
Therefore, the steepest curve at r/D=2.4 is caused by the
large formation rate and moderate aging effect, while the
distinctive curve at r/D=0.2 is the result of relatively
small formation rate and aging effect.

The results demonstrated in Fig.7.8-~4 are obtained at
X/D=80, again at three different radial locations. Now the
peak value of P~A distribution is located at Az0.12, for
r/D=0.6. Similar features are also detected in the results
from X/D=120 which are shown in Fig.7.8-5.

The radial variation of folds-population is shown in
Figs.7.8-6, 7 and 8 for X/D values of 40, 80 and 120
respectively. It is evident in Fig.7.8-6, that the highest
population of youngest folds (Py) appears around r/D=2,
where the fold formation rate is large. On the other hand,
the value of Ea (for folds having A value between 0.1 and
0.15) has its maximum at the jet-axis and decreases
monotonically towards the outer edge. The variation of Ps
(for A value varying between 0.2 and 0.25) is very small
across the jet and Pe (for A value lying between 0.4 and 0.45)
increases with the radial distance from the axis. The results
obtained at X/D=80 and 120 are similar to those in Pig.7.8-6,
apart from the fact that the profiles have spreaded in
radial direction.

The radial distribution of "average age", for three X/D
values, are plotted in Fig.7.8-9. The average age is larger

in the outer region of the jet where the mean velocity is
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slower. The difference in the average age diminishes as the
value of X/D increases, since the velocity gradient is

smaller in the further downstream region of the jet.

7.8.3 The mean temperature and species concentration

The distribution of mean axial temperature along the
jet centre-line is plotted in Fig.7.8-10 together with the
experimental data of Lenz and Gﬁnther (1980). It can be
noticed that the axial temperature is slightly over-predicted
from X/D=40 until X/D=120 and underpredicted afterwards. The
calculated maximum temperature is equal to 1840°K, which is
close to the measured value of 1800°K., The computed location
of the peak value is equal to 112 diameters from the nozzle
exit, while the measurements show that it is situated at
X/D=120.

The axial variation of species concentration is shown
in Fig.7.8-11 with the experimental results from Lenz and
Gunther (1975). The concentration of CHs is overpredicted
in the region of 10<X/D<40, while the agreement is
satisfactory from X/D=60 to X/D=120. The concentration of H,0
has been well predicted from X/D=20 to X/D=100, but some
discrepancies occur between X/D=120 and X/D=160. The amount
of CO2 is generally overestimated in the present calculation,
since the existence of CO and Hz have been ignored. The
experimental data revealed that the mole fraction of €O and
H2 along the flame axis vary between 0.02 and 0.065,
indicating that the influence of these species is just
enough to cause the discrepancies between the predictions

and measurements.
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The radial profiles of mean temperature, H20 and CO
concentration, at X/D=60, are demonstrated in Fig.7.8-12.
The quantitative agreement between the calculated and measured
temperature is satisfactory. The flame front (denoted by the
position of the highest temperature) appeared at r/D=5.5 in
the predictions, but the measurements show the corresponding
value is equal to 4.5 only. The concentration of H,0 is
overpredicted in the regions of 0<r/D<2 and 5<r/D<6.5, while
the content of CO2 is everywhere overpredicted. Lenz and
Gunther's meﬁsurements have confirmed that the volume fraction
of GO gas can reach the wvalue of 0.045 at this station.-

Similarly, the correspondent results at X/D=90 are
presented in Fig.7.8-13, The mean temperature is well
predicted according to the measurements available (the data
for r/D greater than 6.5 have not been provided). The
calculated H20 concentration is now lower than the experimental
values, but the amount of CO. is still overpredicted by 2~3%
in volure fraction across the flame zone. It should be noted
that the CO concentration is equal to 0,05 near the axis
and gradually diminishes towards the outer edge of the flame,
according to Lenz and Guntherf!s results,

Also, the predictions made at X/D=120 are demonstrated
in Fig.7.8-14. No experimental data has been found for this
cross-section and hence only qualitative assessment can be
done. The temperature and concentration of main products
achieve the maximum values at the jet centre-line, signifying
that the flame tip is now located at the axis.

The radial profiles of methane and oxygen concentration,

at X/D=60, are plotted separately in Fig.7.8-15, since the
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overlapping feature of fuel and oxygen deéerves more attention.
It can be observed that the amount of reactants at the
intersection points of two curves is equal to 0.025,

Finally, the radial variation of reactants concentration
obtained at X/D=90 are provided in Fig.7.8-16. The degree
of the cross-overiof two curves is almost the same as that

in the previous figure.

7.8.4 The root mean square fluctuation of temperature

The axial distribution of temperature fluctuation (the
rms values) is shown in Fig.7.8-17 with the data of Lenz and
Gﬁnther (1980). The predicted curve reveals a peak value of
4L00%K at X/D=160, which is consistent with the measurements.
The predictions follow the same trend of the experimental
observations for X/D values larger than 80. The decay of
fluctuation level between X/D=20 and X/D=40 in the measurements
has not been demonstrated by present calculations. On the
other hand, there is a slight double hump between x/D=50
and X/D=80 in the computed curve. )

The radial distribution of temperature fluctuation, at
X/D=60, is provided in Fig.7.8-18 with the measured data.

The maximum fluctuation intensity occurs at the outer region
of the jet (outside the main reaction zone) and achieves

the value of 600°K which is slightly higher than the predicted
one (%560°K). However, the present predictions overestimate
the fluctuation intensities for r/D smaller than 5, while

the rate of decay becomes faster in the region of r/D

greater than 7.

The calculated temperature fluctuations at X/D=90 and
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X/D=120 are shown in Fig.7.8-19. Inspection of the graph
reveals that the highest fluctuation quantities nearly

remain constant in the downstream region of the flow. However,
the radial profile becomes more uniform and broadens as the

value of x increases.

7.8.5 The root mean sguare fluctuation of species concentration

The RMS fluctuations of methane and oxygen concentration,
at X/D=60, 90 and 120 respectively, are presented in
Figs.7.8-20 to 7.8-22, The concentration fluctuation of
methane reaches the maximum value of 0.047 at r/D=1.5, in
FPig.7.8-20, while the highest fluctuation of oxygen occurs
at r/D=5.6, which is inside the main reaction zone. It can
be seen that the relative fluctuation intensities of oxygen
are greater than unity from the axis up to r/D=6.3,

The location of highest conceniration fluctuation in
methane is situated at the flame axis, in Fig.7.8-21,
indicating that the axial fluctuation intensities become’
larger now. However, the maximum fluctuation of oxygen still
takes place around r/D=7.0.

In Fig.7.8-22, the fluctuation level of methane
concentration is lower as a consequence of smaller mean value.
Larger fluctuation value is observed on the axis for the
oxygen species and the peak value (at r/Dx5) is now around

0.0425.

7.8.6 The probability density funetions of temperature

The probability density functions of temperature at

flame axis, for X/D values of 40, 110, 120 and 130, are
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shown in Fig.7.8-23., The experimental results of Lenz and
Gunther (1980) are also presented (by the broken lines) for
comparison. The predictions show that the pdf profiles shift
with the value of mean temperature at different positions.
There is no contribution of the low temperature gases
(300°K<T<800°K) being observed in the present calculation. .

~ The radial evolution of pdf profiles at X/D=40 is plotted
in Fig.7.8-24. Obviously, the pdfs are not Gaussian and there
is a finite amount of cold air existing in the outer edge
of the jet, e.g., at r/D=2.38 and L.66. The peak value 6f
the distribution curve corresponds to the mean temperature
at the point in question.

The similar results for X/D=110 are presented in Fig.
7.8-25 where the amount of cold air becomes more significant
near the outer boundary of the jet, i.e., at r/D=14.0.
Further results obtained at X/D=120 and 130 are demonstrated

by Figs.7.8-26 and 7.8-27 respectively.

7.8.7 The probability density functions of species concentration

The radial evolution of pdf profiles for the mass
fraction of fuel, at X/D=40 and 60, are presented in
Figs.7.8-28 and 7.8-29 respectively. It can be seen in the
diagrams of Fig.7.8-28 that the mass fraction of fuel
decreases as the value of r/D increases. The pdf profile-is
broad in the centre of the jet and becomes narrow near the
edge where the amount of fuel is almost exhausted. Similar
phenomena are observed in Fig.7.8-29, apart from the fact

that smaller fuel contents are present.
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Figs.7.8~30 and 7.8-31 show the pdf curves for the mass
fraction of oxygen at X/D=40 and 60 respectively. The pdf
profiles at X/D=40 are mainly located near the lower bound
of the domain until r/D=3.51, where a small but finite
contribution from the free stream exists. At r/D=5.05, the
peak value of the pdf moves towards the central part of the
domain, while the proportion of free-stream property also
increases. The evolution pattern in Fig.7.8-31 bears the
resemblance to the previous graph, where higher mass fraction
of oxygen is situated in the outer edge of the jet, e.g., at

r/D=8.50.

7.9 Discussion of results

The turbulent mean guantities

The axial distribution of mean temperature in Fig.7.8-10,
and the radial variation in Figs.7.8-12 and 7.8-13 have been
found toragree fairly with the experimental measurements,

It can be inferred that the gross nature of the flame was
correctly predicted, although the primitive chemical scheme
is incorporated with the ESCIMO model.

There exists some discrepancies between the predictions
and the measurements on the species concentration, especially
the amount of €O, is overpredicted. The main reason is that
only water vapor and carbon dioxide are included in the
calculation of products, while a finite contents of hydrogen
and carbon momoxide do present in actuality during the
reaction process. The calculated value of CO0, will be
smaller if CO is included as a product in the reaction

scheme and hence better agreement with the experimental
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data can be achieved.

Dryer and Weétbrook {1979) have mentioned that typical
hydrocarbons (such as methane, propane etc.) burn in a
sequential manner. That is, the fuel is partially oxidised
to CO and H,,which are not appreciably consumed until all
of the hydrocarbon species have disappeared. The two-step
reaction scheme has been used by Dryer and Glassman (1972)

for methane oxidation in a turbulent flow reactor and is

given by:
CHy + 3/2 02— CO + 2H,0 , (7.9-1)
CO + 1/2 0, —>C0, , (7.9-2)

where the chemical reaction rates were derived empiriecally.

However, the author has decided to adopt the global
reaction mechanism at the present stage of development of
ESCIMO theory, because additional transport equations with
non-linear source terms {(for the production rate) will have
to be solved in the biographic analysis and the computer
time will be enlarged considerably. On the other hand, the
earlier *ork of Tam (1981) has demonstrated the capability
of handling detail multistep reaction machanism in a
well-stirred reactor.

The root mean square fluctuation guantities

The successful predictions on temperature fluctuations
as indicated by Figs.7.8-17 and 7.8-18 further substantiates
the potential power of the present model. Lenz and Gﬁnther
(1980) have discussed the cause of larger temperature
fluctuation at X/D=20 than that of X/D=40 and they supposed

that the influence of flame stabilization by the annular
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oxygen supply can still be felt there.

The fluctuating temperatures of an open methane
diffusion flame at a Reynolds number of 9200 have been
measured in the work of Ballantyne and Moss (1977) with
the aid of fine wire thermocouple. The peak RMS
temperature fluctuation is of the order of 450°K which is
lower than the results obtained by Lenz and Gﬁnther,
probably because the Reynolds number is lower and so is
the turbulence intensity.

The quantitative validation of predicted fluctuations
level on the species concentration can not be made, since
the felevant experimental data are not reported in the
literature. But one can be sure that the present theory is
capable of calculating the important and interesting
quantities ind turbulent flames.

The probability density functions

From the comparison between the calculated pdf and

measured pdf in Fig.7.8-23, it can be observed that the
experimental curves are broader. Since the shape of pdf
is more closely related to the various parameters such as
CF’ CZ and CS than the mean quantities, it will be
necessary to investigate the influence of each constant
before making the concrete remarks.

The intermittent effect is observed from the pdf
profiles near the free stream boundary, e.g.,in Fig.7.8-24,
at r/D=4.66 and X/D=40. This feature is ineluded in the
fold composition at birth, as described in Sec.7.5, and
hence it is expected that the fold formation rate and

stretching rate will have considerable influence -on it.
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7.10 GClosure

The application of ESGIMO theory to turbulent
hydrogen-air diffusion flame and methane-air diffusion
flame have been made. A single set of parameters is
employed for both cases and the results have been compared
with the experimental data available in the literature.

Generally speaking, the quantitative agreement
between the predictions and the measurements 1s reasonably
good, including the fluctuating quantities as well as the
turbulent mean values. However, some discrepancies do exist
in the comparison between calculated and measured probability
density functions of temperature.

Therefore, it is important to investigate the influence
of different presumptions and parameters on the results,
especially the fluctuation levels and the shape of pdf
profiles. The systematic presentation of the sensitivity
analaysis and grid independence tests will appear in the

next chapter.
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CHAPTER 8

THE PARAMETRIC STUDIES

8.1 Introduction

In the previous chapter, the predictions on the
turbulent diffugion flames have been made with the aid of
some simplified assumptions to compromise between the realism
and econcmy. Several empirical constants related to the fold
composition, fold size at birth and, the stretching rate have
been chosen during the computations.

The purpose of the present chapter is to check whether
the final results are semnsitive to those presumptions and
empirical constants. Hence, the description of all test
cases performed in this chapter will be provided in Sec.8.2,
followed by the report on the influence of various hypothesis
about the distribution of fold formation rate in Sec.8.3.
Subsequently, the influence of fold composition at formation
time, fold size at birth and the stretching rate will be
discussed in Secs.8.4, 8.5 and 8.6 respectively.

The effects of grid-size in x, w and A coordinate will
also be investigated and depicted in Sec.8.7 to ensure that
all results are practically grid independent. Finally, a

short closure will appear at the end.

8.2 The test cases performed

A systematic study has been performed in such a way that
each test case is different from the "standard rua'" by one

parameter only. The standard run stands for the case
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described in the previous chapter. The 1list of all test runs

is given by the following table:

Run No Mode GF CZ CS NA N Aa
1 (1) 2. 0.328 | 0.5 20 | 20 0.01
2 (ii) 2. 0.328 | 0.5 20 | 20 0.01
3 (1ii) 2. 0.328 | 0.5 20 | 20 0.01
4 (i) 1. 0.328 0.5 20 20 0.01
5 (i) 3. 0.328 0.5 20 20 0.01
6 (i) 2. 0.164 | 0.5 20 | 20 0.01
7 (1) 2, 0.082 | 0.5 20 | 20 0.01
8 (i) 2, 0.328 | 2.0 | 20 | 20 0,01
9 (1) 2. 0.328 0.1 20 20 0.01

10 (i) 2. 0.328 | 0.5 10 | 20 0.01
11 (1) 2. 0.328 |° 0.5 6 20 0.01
12 (1) 2. 0.328 0.5 20 30 0.01
13 (1) 2. 0.328 | 0.5 20 | 40 0.01
14 (1) 2. 0.328 | 0.5 20 | 20 0.02
15 (1) 2. 0.328 | 0.5 20 | 20 0.03
16 (1) 2. 0.328 | 0.5 20 | 20 | 0.005

Table 8.2-1 The test cases of parametric studies
(Run No.l is the standard run) for methane-

air diffusion flame.

In contrast to the full scale parametric studies of
methane-air diffusion flame, only a selective number of runs

will be presented for the hydrogen-air diffusion flame. The
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game definition of "Run No" will be used for hydrogen-air

flame and the cases are Run nos 1, 2, 3, 5, 6 and 8.

8.3 The influence of fold formation rate

The population distribution functions

The population distributions with respeect to age, for
methane-air diffusion flame, obtained from wvarious
presumptions on the fold formation rate are now presented
through Figs.8.3-1 to 8.3-4.

In Fig.8.3-1, the P~A distribution exhibits a gtronger
characteristic of exponential decay at r/D=3.8, where the
fold formation rate reaches its climax. In Run No.2, the
fold formation rate is assumed to be proportional to the
mean velocity and hence the peak value is always located
at the jet axis. Therefore, the steepest curve in Fig.8.3-2
is the one which corresponds to the distribution near the
axis, i.e.,at r/D=0.42. Both the fold formation rate and
the ageing effect are small at r/D=8.3, which result in a
rather flat distribution. Similarly, the maximum fold
formation appears at r/D=8.3, for Run ¥No.3 (Fig.8.3-3),
and the curve again shows the exponential behaviour.

The influence of fold formation rate on the radial
variation of average age is demonstrated in Fig.8.3-4, It
can be observed that the average age increases as the
distance from the jet axis enlarges, for all three runs.
The average age calculated from Run No.3 does not increase
rapidly in the outer edge of the jet, since the fold

formation rate there is higher than that of the other runs.
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The turbulent mean quantities

The mean temperature of methane-air diffusion flame,
at X/D=60, calculated from Runs Nos.l, 2 and 3 are presented
in the following table for comparison. The longitudinal
station of X/D=60 has been chosen here because more
comprehensive experimental data are available (Lenz and

Gﬁnther, 1980).

Radial Location " Turbulent Mean Temperature °K
r/D Run No.l |Run No.2 | Run No.3
0.40 1520 1520 1520
1.46 1540 1540 1550
2.87 1590 1570 1630
4edb 1680 1670 17L0
5.55 1740 1760 1770
6.80 1430 1430 1410
8.50 k;87 786 783

Table 8,.3=1 Influence of fold formation rate on mean

temperature

Table 8.3-1 shows that the effect of various

distributions about fold formation rate on the mean ] ThTe

temperature is ratheér small. The maximum discrepancy betﬁeen-
each run is only around 70°K (e.g.,at r/D=4.45), which is
less than 4% of the flame temperature )

The mean molar fraction of methane, at X/D=éQ; is
selected as a representative to demonstrate the influence of

different formation rates on the species concentration. The

results are provided in the following table:
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Radial Locaticn Mean CHy Molar Fraction

r/D Run No.1l | Run No.2 Run No.3
0.40 0.138 0.137 0.139
1.46 0.126 0.126 0.126
2.87 0.0962 0.0970 0.0938
bed5 0.052 0.05%0 0.0470
5.55 0.0165 -0.0161 0.0135
6.80 0.0015 0.0013 0.0013
8.50 ¢.0 0.0 0.0

Table 8.3-2 Influence of fold formation rate on mean

CHy molar fraction

Again it can be noticed that the results obtained from
each case are very close to each other. Hence the attention
is now turned to the fluctuation quantities.

Similar to the case for methane-air flame, the influence
of various fold formation rates on the mean temperature for

hydrogen-air flame, at X/D=80, is demonstrated in Table 8.3-3.

Radial Location Turbulent Mean Temperature °x
r/D Run No.l | Run No,2 Run No.3
0.42 1830 1860 1810
1.68 1840 1900 1830
3.36 1860 1980 1860
4.56 1580 1580 1580
5.25 1210 1200 1210
5.75 édb_ 900 900
6.20 680 690 680

Table 8.3-3 Influence of fold formation rate on mean

temperature
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It can be observed that the mean temperature are not
very sensitive to the distribution of fold formation rate,
except in the peak value (at r/D=3.36). The peak temperature
obtained in Run No.2 is egual to 1980°K, which is 120°K
higher than the counterpart from the other two rums.

The mean molaf fraction of hydrogen, at X/D=80,
calculated from three different fold formation rates are
presented in Table 8.3-4. The main discrepancies again
happen at r/D=3.36, where the value in Run No.2 is

substantially lower (around 27% difference).

The root mean square flucfuation guantitiss

Fig.8.3-5 shows the fluctuating temperatures
calculated from three different fold formation rates, at
X/D=60, The measurements of Lenz and Gﬁnther are also
presented for the sake of comparison. It can be observed
that the difference between each case is now more
significant and the predictions from Run No.3 fit the
experimental data very well. In the case of Run No.3, the
fold formation rate is assumed to vary linearly with the
w-value, i.e., the fold formaﬁion rate is minimum in the
jet axis and reaches the maxinum value near the outer edge

of the jet.

The rms fluctuation of methane (in molar fraction)
calculated from Run Nos.l, 2 and 3, at X/D, are shown in

Table 8.3-5 given below:
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Radial Location

Mean H; Molar Fraction

r/D Run Yo.1 Run No 2 Run ¥o. 3
0.42 0.250 0.253 0.250
1.68 0.209 0.204 0.213
3.36 0.0815 0.0592 0.0819
4. 56 0.007 ¢.005 0.007
5.25 0.0 ¢.0 0.0
5.75 0.0 0.0 0.0
6.20 0.0 0.0 0.0

Table 8.3-4 Influence of fold formation rate on mean

H, molar fraction

Radial Location

RMS fluctuation Of'CHq

r/D Run No.l| Run No.2 | Run No.3
0.40 0.0464 0.0451 0.0412
1.46 0.0468 0.0511 0.0357
2.87 0.0455 0.0485 0.0311
beldb 0.0360 0.0365 0.0311
5.55 0.0256 0.0254 0.0238
6.80 0.0037 0.0035 0.0032
8.50 0.0 C.0 0.0

Table.8.3-5 Influence of fold formation rate on rms

fluctuation of CHy4 concentration

Considerable difference between each run was found,

especially at r/D=1.46 and 2.87 where the maximum relative
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discrepancy reaches the order of 30%. In Run no.2 the
concentration fluctuations at r/D=1.46 and.2.87 are greater
than the value at r/D=0.40, while the peak of concentration
fluctuation is situated at r/D=0.40 in the case of Run no.3.
It is worth mentioning here that the fold formation rate

is large in the central region of the jet and small near the
outer edge for Run no.2, exactly oppposite to Run no.3. In
the case of Run no.l, the fold formation rate has its peak
value situated between the jet axis and the outer boundary,
since it is proportional toc the mean velocity gradient.
Thus, the population of youngest folds is the most prominent
one in the near axis region for Run no.2 and results in
higher fluctuation level (the non-uniformity of properties
inside the fold has not yet svened out).

The probability density functions

The pdf profiles of temperature obtained from Run no.l
and Run no.2, at X/D=60, are illustrated in Fig.8.3-6. The
difference is not visible in the near-axis region (e.g.,r/D
=0,40) and the results actually collapse on the same profile.
However, some discrepancies do exist in other positions,
especially in the higher values of P(T). h

The pdf profiles are composed of two parts for the
newly formed folds, namely the values which stand for the
properties of fresh layer and re-engulfed layer respectively.
For the very old folds, a single spike representing the
fold-average value is dominant. A broad distribution exists

for those medium age folds in which the molecular diffusion

effect is still taking place. Hence, the population average
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pdf 1s dependent on the population distribution of various

folds.

8.4 The influence of fold composition

The turbulent mean quantities

The radial distribution of mean temperature, at X/D=60,
obtained by three different empirical constants for the fold
composition are compared and listed in Table 8.4-1.

The peak temperature{at r/D=5.55) varies from 1660°K
(for CF=3.O) to 1850°K (for CF=1.O) when the‘composition of
fold at birth is altered. In other words, the flame
temperature is far below the adiabatic temperature (22150°K

for methane-air flame) when the re-engulfed layer has the

Radial Location Mean Temperature °k
r/D Run No.l | Run No.4 | Run No. 5
0.40 1520 1520 1510
1.46 1540 1550 1520
2,87 1590 1630 1550
Lo b5 1680 1760 1610
5.55 1740 1850 1660
6.80 1430 | 1450 1360
8.50 787 792 775

Table 8.4-1 Influence of fold composition on the

mean temperature
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properties far different from the local mean values. The
flame temperature becomes higher if the properties in the
re-engulfed layer are closer to the mean values. The
experimental flame temperature from Lenz and Gﬁnther is
around 1740°K which is close to the value from Run No.l.
The influence of CF values on the mean concentration

of methane, at X/D=60, is now presented in Table:8.4-2.

Radial Location Mean CHy4 Molar Fraction
r/D Run No 1 | Run No 4 | Run No 5
0.40 0.138 0.141 0.135
1.46 ‘0.126 0.129 0.124
2.87 0.0962 0.0965 0.0947
Lok5 0.0502 0.0475 0.0511
5.55 0.0165 0.0111 0.0189
6.80 0.0015 0.0 0.0042
8. 50 8.0 0.0 0.0

Table 8,4-2 Influence of fold compositiorn on mean CHs

molar fraction

Inspection of Table 8.4-2 reveals that higher CF value
yields larger concentration of methane across the jet and
hence it is expected that the overlapping of methane and
oxygen also increases as a conseqguence.

The influence of initial fold composition on the mean
temperature and coampositions, for hydrogen-air flame, is
now demonstrated in Fig.8.4-1. When larger Cy value (Cp=3.0

in Run no.5) is employed, the mean concentration of hydrogen
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and oxygen increase. The degree of overlapping for fuel and
oxidant is slightly enhanced, but it is still lower than the
measured value. On the other hand, the temperature profile
has been reduced by about 80°K~100°K in the case of higher

CF value.

The root mean square fluctuation guantities

The rms values of temperature fluctuations. for three
runs are plotted in Fig.8.4-2 to demonstrate the influence
of different fold compositions. It is evident that the
fluctuation intensities are sensitive to the wvalue of CF’ i1.8.,
larger CF will result in higher fluctuation. The present
comparison with the experimental data suggests that the value
of CF=2.O produces. reasonable agreement.

The influence of fold composition on the concentration

fluctuation of CHy is demonstrated in Table 8.4-3.

Radial Location RMS fluctuation of CHs

r/D Run no 1 | Run no 4 | Run no 5
0.40 0.0464 0.0257 0.0612

1.46 0.0468 0.0282 0.0597

2.87 0.0455 0.0297 0.0578

bbb 0.0360 0.0229 0.0458

5.55 0.0256 0.0142 0.0340

6.80 4 0.0037 0.0 0.0105

8.50 0.0 0.0 0.0

Table 8.4-3 Influence of fold composition on rms

fluectuation of CH, concentration
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The probability density functions

Fig.8.4=3 shows the pdf of temperature obtained from
two different values of Cp (GF=2.O and 3.0), at X/D=60. The
pdf profiles calculated from larger CF value: exhibit a
broader characteristici:in the inner part of the jet, i.e.,
at r/D=0.40 and 2.87. This is consistent with the structure
inside the fold, since larger GF value means greater variation
of properties are present for each fold.

" The results obtained from run no.4 (CF=1.O) are plotted
separately with those of run no.l in Fig.8.4-4 for the sake
of elarity. The pdf prbfiles now become narrower as expected,
indicating that the non-uniformity of properties has

diminished.

8.5 The influence of fold size

The turbulence mean quantities

The mean temperature of methane-air flame obtained from
three different values of fold size at birth, for X/D values
of 60, are listed and compared in Table 8.5-1

The peak temperature of the flame (at r/Dx5.55) varies
from 1740°K (Cz=0.328) to 1910°%K (CZ=O.082) when the initial
fold size changes by a factor of four. It can be seen that
the results from run no.l are closer to the experimental
data, since the measured flame temperature is around 1740°K.

The smaller the fold is at birth, the faster the evening
out of the fluctuation level is under the conditions that
other parameters remain fixed. Hence, the peak temperature

will be closer to the equilibrium adiabatic temperature when
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Radial Location

Mean temperature %X

r/D Run no 1 | Run no 6 | Run no 7
0.0 1520 1520 1520
1.46 1540 1560 1550
2.87 1590 1630 1640
bel5 1680 1750 1800
5.55 1740 1830 1910
6.80 1430 1440 1390
8.50 787 792 776

Table 8.5-1 The influence of fold size on the mean

temperature

the fold is rather small.

The influence of initial fold size on the mean

concentration of CHy i3 now demonstrated in Tabie 8.5=-2.

Radial Location

Mean CH4 molar fracticon

r/D Run No.l { Run No.6 | Run No.7
0.40 0.138 0.140 0.140
1.46 0.126 0.128 0.127
2.87 0.0962 | 0.0960 0.104
bodB 0.0502 | 0.0477 0.0439
5.55 0.0165 0.0117 0.0054

6.80 0.0015 | 0.0005 0.0
8.50 0.0 0.0 0.0

Table 8.5-2 The influence of fold size on mean CH,

molar fraction
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It can be observed that the major discrepancies
between each run occur in the flame zone (e.g., at r/D=5,55)
where the concentration of CH4 decreases significantly as
the value of C, becomes smaller.

The mean temperature and compositions claculated from
two different fold sizes, for the hydrogen-air flame, are
shown in Fig.8.5-1. The mean temperature is higher in the
case of the smaller fold size (C,;=0.164 in Run No.6) and
closer to the experimental data. However, the concentration
" of hydrogen and oxygen are lower around the flame zone

(3<r/D<4.5) and less amount of cross-over is observed.

The root mean sguare fluctuation quantities

The radial distribution of temperature fluctuations
calculated from three different values of CZ' at X/D=60,
are plotted in Fig.8.5-2. It is evident that the fluctuation
intensities are sensitive to the initial fold size, i.e.,
larger fold size will result in higher fluctuaticn levsl.
The CZ value of 0.328 in Run No.l yields better quantitative
agreement between the predictions and measurements.

The root mean square fluctuation of methane
concentration obtained by Run Nos.l, 6 and 7, at X/D=40,

are given in Table 8.5-3.
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Radial Location EMS fluctuation of CHy
r/D Run No.,1l | Run No.6 | Run No.7
0.40 0.0464 0.0274 0.0097
1.46 0.0468 0.0323 0.0150
2.87 ' 0.0455 0.0361 0.0235
b.45 0.0360 0.0300 0.0217
5.55 0.0256 0.0210 0.0152
6.80 0.0037 0.0021 0.0059
8.50 Q.0 0.0 0.0

Table 8,5-3 Influence of fold size on rms fluctuation

of CHs concentration

Table 8.5-3 reveals that the concentration fluctuation
diminishes when the initial fold size is small. In the mean
time, the location of maximum fluctuation shifts from the
jet axis towards the outér region as the value of CZ

decreasges.

The probability density functions

.The influence of fold size on the pdf of temperature,
at X/D=60, is demonstrated in Figs.8.5-3 and-8.5-4. The
shape of the pdf profile becomes narrower and concentrated
around the mean value when the fold size ié smaller. For
example, at r/D=2.87, the maximum value of P(T) varies from
2.65x107° in Run ¥o.l (C,=0.328) to 4.08x107% in Run No.7
(GZ=0.082), while the corresponding value in Run No.b6
(GZ=O.164) lies between the two extremes and is equal to
3.28x%x107%, In theﬁmeantime, the contribution of the cold

ambient air diminishes (e.g., at r/D=5.55and 8.50) as the
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value of CZ decreases, On the other hand, the distribution
in the high temperature domain (between 1900°% and 2100°K)
is stronger for lower CZ values, e.g., the P(T) values

at r/D=5.55 for Run nos.6 and .7.

8.6 The influence of fold stretching rate

The turbulent mean gquantities

The mean temperature calculated from three different

values of fold stretching rate, at X/D=60, are compared and
listed in Table 8.6-1.

It is obvious that the flame temperature (at r/D=z5.55) .
is significantly lower (T=1600°K) in the case of rather
moderate stretching effect (e.g.,Run No.9, CS=0.1). The
difference between the peak temperature is about 17% when
the value of CS changes from 2.0 to 0.1, i.e., by a factor
of 20. The value of Cg=0.5 in Run No.l gives the best

agreement with experimental data for the present test case.

Radial Location Mean Temperature °K
r/D Run No.l| Run No.8 | Run No.9
0.40 1520 1520 1520
1.46 1540 1540 1530
2.87 1590 1610 1550
hed5 1680 | 1740 1590
5.55 1740 1870 1600
6.80 1430 1440 1410
8.50 787 794 777

Table 8.6-1 Influence of fold stretching rate on the

mean temperature
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The influence of the stretching rate on the flame
temperature is expected, since slower stretching results
in greater proportion of cold fresh air inside the fold
(the diffusion is slower) and hence reduces the average
temperature.

The effects of the stretching rate on the mean
concentration of methane, at X/D=60, are demonstrated in

Table 8,6=2.

Radial Location Mean CH4 molar fraction

r/D Run no 1 | Run no 8 | Run no 9
0.40 0.138 0.141 0.135

1.46 0,126 0.129 0.123

2,87 0.0962 0.0974 0.0940

bod5 0.0502 0.0490 0.0517
5.55 0.0165 0,0104 0.0225
6. 80 0.0015 0.0007 0.0022
8.50 0.0 0.0 0.0

Table 8.6-2 Influence of fold stretching rate on mean

CHy molar fraction

There is a considerable influence of stretching rate on
the amount of methane near the flame zone {i.e., at r/D=5.55)
where the wvalue of molar fraction varies from 0.0104 to 0.0225,
i.e., by a factor of 2.2. Thus, the degree of overlapping of
fuel and oxygen in the flame zone is considerably enlarged
when a low stretching rate is applied.

- The influence of stretching rate on the mean temperature
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and compositions, for the hydrogen-air flame, is illustrated
in Fig.8.6-1. The temperature obtained from larger stretching
rate (Cg=2.0 in Run no 8) exhibit a better agreement with

the experimental data. However, the overlapping of hydrogen
and oxygen again becomes smaller and the results are similar

to those obtained from Run no 6 (c.f. Fig.8.5-1).

The root mean square fluctuation guantities

The temperature fluctuations obtained from three
different values of stretching rate, at X/D=60, are plotted
in Fig.8.6-2 with the experimental data. It can be observed
that the highest fluctuation level rises from 440°K to 710°K
as Cg changes from. 2.0 to 0.1. It is evident from the graph
that the results from Run no.l yield a better agreement with
the measurements on the overall comparison.

Next, the effects of stretching rate on the concentration
fluctuation of methane, at X/D=60, are presented in Table

8.6=-3.

Radial location RMS fluctuation of CHs

r/D Run no 1 | Run no 8 Run no 9
0.40 0.0464 0.0225 0.0624
1.46 0.0468 0.0272 0.0630
2.87 ©0.0455 0.0308 0.0579
bo k5. 0.0360 0.0256 0.0425
5.55 0.0256 0,0201 0.0277
6.80 0.0037 0.0025 0.0045
8.50 0.0 0.0 0.0

Table 8.6-3 Influence of fold stretching rate on rms

fluctuation of CH4 concentration
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The table reveals that the concentration flucituation
level enhances when the stretching rate diminishes. The most
distinguished difference occurs around r/D=0.40, where the
value from run no.9 is approximately equal to 2.8 times its

counterpart in run no.8.

The probability densgity functions

The influence of fold stretching rate on the pdf of
temperature are shown in Figs.8.6-3 and 8.6-4 respectively.
In Figs.8.6-3 the higher stretching rate results in narrower
pdf and higher peak, indicating that the fluctuation level
is lower. On the other hand, the slower stretching rate
significantlj broadens the pdf profiles as shown in Fig.
8.6-4.

8.7 The influence of grid size

8.7.1 The number of age-interval

The newly introduced coordinate in the present work is
the age-coordinate and hence the number of sub-division, NA,
should be chosen carefully to yield the grid independent
results without overspending the computing resocurces.

Three different numbers of age-interval have been
employed as mentioned in Sec.8.2, where the grid-distribution

for each run is given by:

Run no 1 (NA=20): uniform distribution

Run no 10 (NA=10): 0., '0.05,.0.1,.0.15, 0.2,.0.3, 0,4,
0.5, 0.6, 0.8, 1.

Run no 11 (NA=6): 0., 0.1, 0.2, 0.3, 0.4, 0.7, 1.
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The influence of NA on variocus quantities will be

described below.

The turbulent mean quantities

The mean temperature calculated from various distributions

of age-interval, at X/D=60, is now presented in Table 8.7-1.

Radial location Mean temperature °K
r/D | Run no 1 Run no 10 Run no 11
0.40 1520 1520 1530
1.46 1540 1540 1560
2.87 1590 1590 1600
be b5 1680 1680 1690
5.55 1740 1740 1760
6.80 1430 1430 1430
8.50 787 787 789

Table 8.7-1 Influence of age-interval on mean temperature

Table 8.7-1 reveals that the mean temperatures calculated
from NA=20 and NA=10 are actually the same. However, further
comparison for other quantities is needed befpre making any
conclusion.

Next, the influence of age-interval on the mean
concentration of CHs, at X/D=60, is demonstrated in Table
8.7-2.

It is again evident that the mean concentration of
methane calculated from NA=20 and NA=10 are actuélly the
same, while those obtained from NA=6 only differ very slightly

from the former ones. Thus, the attention is now turned to
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Radial location Mean CHs molar fraction

r/D Run no 1 | Run no 10 | Run no 11
0.40 0.138 0.138 0.138
1.46 0.126 0.126 0.126
2.87 0.0962 0.0962 0.0962
he b5 0.0502 0.0502 0.0499
5.55 0.0165 0.0165 0.0156
6.80 0.0015 0.0015 0.0012
8.50 0.0 0.0 0.0

Table 8.7-2 Influence of age-interval on mean CHy

molar fraction

the rms fluectuation quantities.

The root. mean square fluctuation guantities

The temperature fluctuations computed from Run Nos.1,

10 and 11 are now compared and listed in Table 8.7-3.

Radial Location Temperature fluctuations °g
r/D Run No.l |Run No.10 | Run No.ll
0.40 181 181 147
1.46 200 200 188
2.87 255 255 211
hed5 375 375 370
5.55 475 475 455
6.80 550 545 516
8.50 510 509 504

Table 8.7-3 Influence of age-interval on temperature

fluctuations
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The discrepancies between the results from Run No.1l0
and Run No.1ll are still significant, but further comparison
between Run No.l and Run No.l0 shows that grid independent
results have been achieved.

The effects of age-interval on the concentration
fluctuation of methane,at X/D=60, are provided in Table 8.7-~4.

Table 8.7-4 reveals that the concentrationrfluctuations
calculated from NA=10 (Run No,10) are actually grid-
independent. Therefore, ten intervals for the age-space are

sufficient to yield grid-independent results.

Radial Location RMS fluctuations of CH,
r/D Run No.l| Run No.l0 | Run No.1l1l
0.40 0.0464 0.0462 0.0366
1.46 0.0468 0.0468 0.0417
2,87 0.0455 0.0455 0.0417
bLedb 0.0360 0.0360 0.0341
5.55 0.0256 0.0256 0.0245
6.80 0.0037 00,0037 0.0034%
8.50 0.0 0.0 0.0

Table 8,7~4 Influence of age-interval on rms fluctuation

of CHy concentration
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The probability density fumctions

Finally, the influence of the number of age-interval is
shown in Fig.8.7-1. The difference between the pdf profiles
from Run no 1 and Run no 10 is not visible and hence both
of them collapse on the same distribution {(indicated by the
solid line). The results from Run no 11 are different from
the other two runs only in some part of the domain where the
dash line appears (the_dash line does not appear when it

is coincident with the full line).

8.7.2 The number of crogs-stream grids

The influence of the number of cross-stream grids, N,
will now be presented in a similar way to the preceding
subsection. It should be mentioned here that the tabulated
form is employed instead of the graphic form, because the
values from each run are so close to each other that they are

almost undistinguishable graphically.

The turbulent mean guantities

The mean temperature of methane-air flame calculated
from N=20 (Run no 1), 30 (Run no 12) and 40 (Run no.l3) are
presented in Table 8.7-5. The temperatures are obtained from
the linear interpolation procedure if the positions of grid
nodes (for the case of Run no 12 and Run no 13) do not fall
exactly on the selected radial locations, which are taken
for Run no 1.

The discrepancies between the results from each run are

small, except in the outer region of the jet (e.g. at r/D=

8.50) where the temperature gradient is rather steep.
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Radial location Mean temperature °K
r/D Run no 1 | Run no 12 | Run no 13
0.40 1520 1540 1550
1.46 1540 1560 1570
2.87 1590 1600 1610
heb5 1680 1680 1680
5.55 1740 1730 1730
6.80 1430 1460 1480
8.50 787 870 880

Table 8.7-5 Influence of cross-stream grids on the

mean temperature
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The influence of the cross-stream grids on the mean

¢oncentration ¢f methane, at X/D=60, are presentéd in Table

8.7-6.

Radial location Mean CH4 molar fraction
r/D Run no 1 | Run no 12 | Run no 13
0.40 0.138 0.130 0.128
1.46 0.126 0.119 0.117
2.87 0.0962 0.0920 0.0904
Ledb 0.0502 0.0505 0.0492
5.55 0.0165 0.0195 0.0201
6.80 0.0015 0.0025 0.003¢
8.50 0.0 0.0 0.0

Table 8.7-6 Influence of the cross-stream grids on the

nean CH, molar fraction

It can be seen that the results obtained from the first
run only differ slightly from the fine-grid computations.,
Therefore, twenty grid nodes in the cross-stream direction
are practically sufficient to yield the grid independent

results.

The root mean square fluctuation guantities

The temperature fluctuations computed by three different
numbers of cross stream grids, for methane-air flame at
x/D =60, are provided in Table 8.7-7. The difference between
each set of results is small, except in the outer region

cf the jet (e.g., at r/D=8.50) where some degree of
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discrepancy exists.

Radial location Temperature fluctuation °K
r/D Run no 1 |Run no 12 | Run no 13
0.40 181 182 183
1.46 200 199 200
2.87 255 256 255
4ed5 375 375 374
5.55 475 461 471
6.80 550 538 539
8.50 510 515 520

Table 8.7-7 Influence of cross-sitream grids on temperature

fluctuation
Radisl location RMS fluctuation of CHa

r/D Run no 1 Run no 12 Run no 13
0.40 0.0464 0.0466 0.0466
1.46 0.0468 0.0455" 0.0449
2.87 0.0455 0.0441 0.0436
4o k5 0.0360 0.0357 0.0355
5.55 . 0.0256 0.0263 0.0268
6.80 © 0.0037 0.0072 0.0076
8.50 0.0 0.0 0.0

Table 8.7-8 Influence of cross-stream grids on rms

fluetuation of CHs concentration
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The influence of cross-stream grids on the concentration
fluctuation of methane is demonstrated by Table 8.7-8. It is
noticeable that the results have not been significantly

altered when more cross-stream grids are employed.

The probability density functions

Pigure 8.,7-2 shows the effect of cross-stream grids on
the pdf of temperature. The difference between the pdfs from
Run no 1 and those from Run no 12 is still visible in some
parts of the domain (marked by the broken line)}, but no.
further variation can be observed when the number of grids

increased from 30 to 40.

8.7.3 The size of forward marching step

It is usually essential to employ small marching step
in the present solution algorithm to produce accurate results,
since no iteration procedure has been employed for the
solution of hydrodynamic variables and mixture fraction. The
number of marching steps in Run nos 1, 14,.15 and 16 to reach
200 diameters downstream of the jet nozzle are equal to 500,
240, 160 ané 1060 respectively. The infloence of marching step
on various quantities are presented in the following

paragraphs.

The turbulent mean gquantities

The radial préfiles of mean temperature from three runs
are plotted in Fig.8.7~3 with the exﬁerimental data.
Considerable discrepancies can be observed between each curve,
indicating that the results calculated from larger marching

steps, such as in Run nos 14 and 15, are not yet grid
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independent. However, it has been recognized that the results
remain unchanged if an even smaller marching step thhn that
of Run no 1 (say, 23=0.005) is adopted in the computation.
Fig. 8.7-4 presents the radial distribution of methane
concentration calculated by different marching steps. The
profiles corresponding to the larger marching steps exhibit

a steeper characteristic.

The root mean square fluctuation quantities

The influence of the number of marching steps on the
temperature fluctuations, at X/D=60, is demonstrated‘in
Fig.8.7-5. The spreading of the fluctuatién profile is larger
and closer to the measurements in the case of Run no 1, in
which a small marching step is employed.

The concentration fluctuations of méthane calculated from
each run are provided in Fig.8.7-6. The difference between

each curve is visible for Run nos 1, 14 and 15, but it is

again negligible for Run nos 1 and 16.

The probability density funections

Finally,.the influence of marching step on the pdf of
temperaturé is plotted in Fig.8.7-7. The results obtained
from Run no 14 are not presented here for the sake of clarity.
It is evident that the pdfs computed from Run nos 1 and 16
are coincident, indicating that the value of numerical factor

A3=0,0T is sufficient to produce grid independent results.

8.8 Clbsure

.

The parametric studies performed in the present chapter

reveals that the fluctuation quantities and probability density
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functions are generally more sensitive to the presﬁmptions
made in the ESCIMO theory than the turbulént mean properties.
It has been demonstrated that satisfactory agreement
between the predictions and measurements can be achieved
when proper values of various parameters are chosen, for
both hydrogen-air flame and methane-air flame. The encouraging
fact is that same set of parameters is capable of predicting
the impertant phenomena for the turbulent combustion in the
two different fuel-air reaction systems investigated.
Nevertheless, the discrepancies between the theoretical
calculatione and the experimental data on the overlapping
of reactants and the probability density funetions of
temperature do imply that the well known intermittency
effects of turbulence have to be included more explicitly.
Otherwise, more extreme values of some parameters {say, the

stretching rate) need to be employed during the computation.
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CHAPTER 9

CONCLUSIONS

9.1 Achievements of the present study

The main achievements of the present study and the

conclusions are summarized below.

The Demographic Aspects of the "ESCIMO" Theory

. (a)

(b)

(c)

The mathematical formulation for the governing partial
differential equations of folds-population has been set
up for the two-dimensional boundary layer flows. In
addition to the turbulent coqvection and diffusion

terms included in the equations, the source terms

contain the simple-aging, birth rate and re-engulfment
rate respectively. The age-coordinate is discretized into
a numbef of intervals in the finite difference schemes
which result in a set of equations, each one describing

the population of folds belong to a particular agempinterval.

The non~-dimensional age and non-dimensional population
distribution have been introduced and the finite
difference equations have been transformed and expressed
in terms of these variables. The upwind differencing in
the non-dimensional age-coordinate is adopted to ensure

the physical plausibility of the results.

The major hypothesis employed in the calculation of
folds-population is the distribution of fold formation

rate in the crosg-stream direction. The total amount of
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" fold formation rate is however related to the entrainment

rate through the proportion of fresh layer in newly

formed folds. Various distributions have been made and
their influence on the population distribution extensively
investigated. The validity of each distribution can only
be assessed indireetly (through the combined demographic
and biographic analysis) in the present stage, since the

direct experimental evidence is not available.

Combined Demographic and Biographie Analyses

(a)

(b)

The only variable needs to be solved in the biographic
part is the mixture fraction, since the chemical reaction
is relatively fast and the molecular diffusivities of

all species are assumed to be equal, The resultant
equation has been solved by the "profile method", because
the computer time is only 25% compared with that of
"time-marching method", The accuracy of the profile
method is satisfactory, -since the results Ealculated‘
from the "time-marching method" virtually feproduced the

same quantitative pictures.

The trajectories of the folds are supposed, in the present
work, to be coincident with the constant-mixture fraction
contours. The birth place of different folds is located
with the aid of the age, which is related to the distance
through the definition. The folds are subject to the

stretching effect (caused by the turbulent flow) while

they are moving downstream. The link between the demographic

and biographic part of the theory has now been established

in a self-consistent way.
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(e)
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The turbulent reaéting plane mixing layer is chosen asg

the first case to verify the credibility of the theory.

Both the flow configuration and the chemical kinetics

are simple enough to avoid the distractién. The predictions
include the turbulent mean properties, the fluctuation
intensities and the protability density functions. The
quantitative agreement between the present computations

and the measurements of Batt (1977) is generally fair,

The other two test cases are the turbulent hydrogen-air
jet diffusion flame and methane-air jet diffusion flame.
It has been shown from the comparison between the
theoretical calculations and experimental data that most
of the important features can be predicted. However, somne
gquantitative discrepancies do appear in the mean
compositions (say, fuel and oxygen) and temperature, pdf
pf temperature, indicating that some improvements on the

turbulence model itself are still required.

The sensitivity analyses performed in this work have
shown the influence of various presumptions, such as the
distribution of fold formation rate, initial fold
composition, fold size at birth and stretching rate, on
the predictions. It is worth mentioning here that the
same set of parameters and constants can produce
reasonably good results for all cases considered. The
successful performance in the computation of fluctuation
quantities is of more importance to the development of
present model, since the mean quantities can be faifly

calculated from less sophisticated method as well.
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(f) The main aim of this work is to use a new and more
fundamental apprcach to tackle the conventional combustion
problems. The increase of computations is the price to
be paid off and it can be perceilived that even larger
computer time is required if the complex chemical-kinetics
seheme is to be employed. But the number of equations to
be solved in the bilographic part only increases linearly
with the number of species considered, which is still
moderate in comparison with the moment closure method
and pdf method, The fact that the computational amount
in demographic part is not influenced by the chemistry

:scheme reveals another important feature of the "ESCIMO"

theory.

9.2 Supggestions for future work

In order to make the present model more complete and
applicable to complex~flow situations, the following steps

need to be realised:

(a) To include the intermittency effects in the turbulence
model, so that the "ESCIMO" theory can be incorporated
with a more realistic description of turbulence
phenomena, It has been shown by the experimental
evidence that, in the outer part of any turbulent mixing
layer and jet, the fluid found by a fixed sampling probe
is turbulent only for a proportion of time which
diminishes -from 100 to 0% as the distance from the
mid-region increases.

A possible approach is to treat the "turbulent" and
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"non-turbulent" portion as two separate phases. The
mathematical treatments can then follow closely those

of the real two-phase flows (Spalding, 1982). The
interphase friction laws, interphase mass-transfer and
interphase heat-transfer laws will neéd to be modified
for this problem, based on the experimentally observed
effective Prandtl number and the "form drag" associated
with the movement of fluid parcels. |

An extra pressure term will be needed in the momentum
equation of turbulent fluid (say, the first phase in the
two-phase approach) to express the effect of turbulent
separation.

Another major outcome of this intermittency model is that
the engulfment rate (related to entrainment rate) can be
calculated now and hence the presumption concerning the
distributio£ of fold formation rate is no more required.
This consequence will further promote the physical reality
of ESCIMO model and result in better quantitative
agreement with the experimental data.

The GENMIX2P computer code (Spalding,198la) and PHOENICS
code (Spalding,1981b) are both capable of performing the

computational .task, since the mechanism of solving

two-phase flows are already built in.

To apply the present theory to the flows of elliptiec
type, where the recirculation zone exists inside the flow
domain. The tracing of the folds will become the major
issue in the development work, since the folds may come

from all directions around the point being considered.
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The first possible approach is to treat the recirculation
zone separately, and to take into account of the folds
which are created within a small distance only (e.g., the

average radius of the recirculation zone).

(¢c) To extend the present theory in three-dimensional
combustion problems, such as the gas turbine combustors
and internal combustion engines. It 1s necessary to devise
an efficient solution procedure for these flow cases. The
full biogrpphic analysis needs to be employed (e.g., using
the time-marching method), when the chemical reaction
rate is moderate or slower than the turbulent mixing
process. In order to economise the computational cast,
gsome sacrifice will have to be made on the demographic
side. For instance, the number of folds-group has to be
reduced to the minimum allowable level (say, three or

four groups).

{d) To incorporate the pollutant formation schemes, such as
those of nitrogen oxides, into the present theory. The
chemical reaction mechanism of nitrogen oxides has been
investigated and established by many researchers, the
review pﬁper of Bowman (1975) provided a good collection
of information. The process of pollutant formation is
kinetically controlled and the assumption of chemical'

equilibrium is not valid.

(e) To perform the experimental work in simple turbulent
shear flows, such as mixing layers and jets, in order

to measure (or deduce) the fold formation rate and the
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fold composition. A possible way is to measure the
electrical conductivity (and hence the concentration of
ions) in the salt-water solution, in which the salt

solution is injected into the water jet at various

positions.
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NOMENCLATURE

MEANING

Coefficients of the
general partial-
differential equation

Age of the fold (Ztime
since formation)

Non-dimensional age of
the fold

Non-dimensional age at
the centre of the j-th
age interval

Coefficients in the
partial differential
equation of the biographic
analysisg

Empirical constants
appearing in the transport
equation for ¢

Empirical constant
related to the fold
composition at birth

Specific heat

Specific heat of species
j and the mixture

Empirical constant
related to the stretching
rate

Empirical congstant
related to the fold size

LOCATION OF FIRST

APPEARANCE

Eqns.(3.2-16),
(3.2-17) and
(3.2-19)

Eqn.{2,.6-1)
Eqns-(BolP"l) an.d

(4.2-8)
Eqn.(4.6-1)

Eqn. (4.2-8)

Eqn- (302-4)

Eqnu (403-2)

Eqn. (4.4-6)

Eqns. (4.4-6) and
(4.4-8)

Eqn.{4.3-9)

Eqn.(4.3-1)
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Empirieal constant in
equation for the
turbulent viscosity

Source term of the
general partial .
differential equation

Diameter of the jet
Diffusion coefficient
Mixture fraction

Transformation function
in equation for the non-
dimensional age

Gravitational acceleration

Rate of generation of

-the turbulent kinetic

energy per unit volume
Enthalpy

Heat of combustion

in fuel

Index of the control
volume in the cross-
stream directicn

Turbulence intermittency
factor

Index of the age-interval
and variable domain

Turbulent kinetic energy
per unit volume

Rate constants in
forward and reverse
chemical reaction

Eqn.(3.2-6)

Eqn.(3.2-21)

Sec.7.4=-2

Eqn.{(4.2-1)
Eqn.(2.5-1)
Eqn.(3.4-1)

Eqn.(B-z—l)
Eqn.(3.2-3)

Eqn-(L-A‘S)

Eqn- (404-6)

Sec.3.7

Eqn- (6.8-1)

Sec.3.5

Sec.2.1

Eqn.(6.3-9)
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Ki1,K2,K3 Constants in the Eqn.(4.4=9)
equation of specific
heat

K, Equilibrium constant in Egqn.(6.3-10)
chemical reaction

J Turbulence length scale Eqn.(4.3-2)

m, Mass fraction of species j Eqn.(4.4-8)

ﬁg,ﬁ; Mass flow rate per unit Eqn.{(3.2-23)
area

Mj Molar fraction of species ] Sec.7.4-3

N Number of grids in the Sec.3.7
eross-stream direction

Na Number of age-intervals Eqn.(6.3-8)

Np Number of grids in the Sec.6.3-1

fold biography analysis

N¢ Number of intervals in Eqn.(5.5-5)
the equation of pdf .

NM1 Number of control volumes Fig.3.7-1
in the cross-strean
direction (=N-1)

[wo0.].[5:0.] Goncentration of N0, and  Eqn.(6.3-9)

NzOu gas

p Pressure Eqn.{(4.4=7)
Population distribution Eqn.(3.3-1)
function w.r.t. age

P Non-dimensional population Eqn.(3.4-18)
distribution function w.r.t.
non-dimensional age

P1,P2,Pa, Values of P prevailing Egns.(3.5-1) to

A at each age-interval (3.5-3)
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Probability density
function w.r.t. variable
¢ in a fold

Population-~-average value
of P¢

Quantities related to the
diffusion coefficient

Radius

Stretching rate
Universal gas constant
Stoichiometrie ratio

Linearised source terms
of the general partial
differential equation

Time
Temperature
Hean axial velocity

Axial veloeity at the
jet exit

Rcot mean square value of
of the fluetuation of U

‘Mean. radial velocity

Root mean square value
of the fluctuation of v

Molecular weight of
species j

Longitudinal distance
Radial distance
Distance across fold
Fold thickness

yA at.the instant of
fold formation

Eqn.(5.5-1)

Eqno(505-2)

Eqns.(3.7-7) and

(3.7-8)

Eqn.(3.2-1)
Eqn.(4.3-9)
Eqn.{(4.4-7)
Eqn.(2.5-2)
Egn.{3.7-9)

Eqn.{(4.2-1)
Eqn.(4.4-6)
Eqn.(3.2-1)
Eqn.{7.7-1)

Sec.7.8.1

Eqn.(3.2-1)
880-7-4‘11

Eqn.(6.3-12)

Eqn.(3.2-~1)
Eqn.(3.2-9)
Eqn.(4.2-4)
Eqn.(4.2-6)
Eqn.(4.2-7)
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GREEK SYMBOL MEANING LOCATION OF FIRST
APPEARANCE
0 ,B,Tos0y Coefficients in the Eqn.(3.7-10)

calculation cf TDMA
procedure for the i-th

grid ncde

r¢,eff Effective exchange Eqn.(3.2-8)
coefficient for ¢

A and § Indicate a finite- Secs.3.5 and 3.7
difference

E Dissipation rate of Sec,2.2

turbulent kinetic energy
per unit vclume

n Normalized distance Eqn.{4.2-5)
acroas the fold

Normalized distance Eqn.(6.4-1)
across the mixing layer
calculated from the

temperature profile

A1,A2,5 A3 Numerical factors in the Sec.6.3.1
calculation of forward
marching step in x-
direction

8 Normalized temperature Sec.b6.5
across the mixing layer

u Viscosity; subscript £,t, Sec.3.2
e indicates laminar,
turbulent or effective
viscosity

0 Density Eqn.(3.2-1)
T Summation Eqn. (4.4-8)
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SUBSCGRIPTS

eff

max

min
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Time scale
General variable

Stream function
(Efgrpudy)

Arguments in the
sinusoidal profile
of mixture fraction

Normalized stream function

MEANING

Birth place of the fold

Centre of the finite

difference cell

Downstream neighbouring
cell

At the nozzle exit of jet
Effective quantity

External boundary of the
computational domain

Fuel

Internal boundary of the
computational domain

Indicates location on the
finite-difference cell

Inert species
Laminar quantity
Maximum

Minimum

Reference value

Sec.6.8
Eqn.(3.2-8)
Eqn.(3.2-9)

Eqn.(4.5-1)

Eqn.(3.2-10)
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oX Oxygen

P Potential flow

pr Products

st Stoichiometric point

Turbulent quantity

U Upstream neighbouring cell
= A Value in the free stream
1,2 Reference values
SUPERSCRIPTS MEANING

Fluctuating component of
a property

Per unit area
o Per unit time

Population-average value, or
time average value

~ Fold average value

= Time average value including
the intermittency factor
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APPENDIX A

Flow chart of the computer program
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Problem Main Computation Physics
START
Block Data 1 MAIN
2 Grid
3 Variables Comp-init
4 Properties Comp=grid
5 Starting fe— Comp~solwe Phys
r 6 ggigrol 1] ((- Wall
7 Boundary T 9°§E;tan .
8 Advance
3>Demo-democ
:i;:\d' Demo-demo
¥~ Biog=-biloc
Biog-bios| |
9 Complete [
10 Adjust ‘
Output 11 Print pdf
12 Decide
STOP

Flow chart of the computer progranm
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APPENDIX B

Computer Listing for the calculation

of Hy-Adr Flane
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COMMON /COMA/

ADPEI (60) ,BIG,BOM(68) ,CSALFA,DIF (60) ,DIFU(60) ,DP,DX,DXLAST,
EMU (68) ,F (60,29),IBEX(29),IBIN(29),IDIMF,IFIN,ISTEP, ITEST,Jd,
JUSTEX, JUSTIN, KEX,KIN, KRAD, KSOURC,MOMSQU, N,NEWPR, NF ,NM1,NM2,
NM3,NOVEL,OM (68) ,OMINT (68) ,PEI,PSIE,PSII,R(60) ,RECRU(60),
RECYDF (68) ,RHO (68) ,RITOTE (29) ,RITOTI (29) ,RME,RMI,SI (68) ,SIP(68),
TAUE,TAUI,TINY,U(68),XD,XU,Y(66),YE,YI,Al(60),Bl(68),

PEE,FP (64, 29)
COMMON /COMA/

ADPEI (69),BIG,BOM(606) ,CSALFA,DIF (6@),DIFU(60),DP,DX,DXLAST,
EMU(60) ,F( 1744), IBEX(29) ,IBIN (29),IDIMF, IFIN,ISTEP, ITEST,J,
JUSTEX, JUSTIN, KEX, KIN, KRAD, KSOURC , MOMSOU, N, NEWER, NF ,NML, NM2.,
NM3,NOVEL, OM(60) , OMINT (68) ,PEI, PSIE,PSII R (68) ,RECRU(67),
RECYDF (64) ,RHO (60) ,RITOTE (29) ,RITOTI (29) ,RME, RMI,SI (68) ,SIP (60),
TAUE, TAUI,TINY,U(60) ,XD,XU,Y(68),YE,¥YI,Al(60),B1(68),
PEE,FP( 1749)
COMMON /COMB/

AK,AGRAV, AHEX,AHIN,ARRCON,AUEX, BHEX,BHIN, BUEX,
cD,CEBU,CHEX,CHIN,CMU,CMUCD, CUEX, C1IMOD4,

CFU(A8) ,CMIX(6¢),COX(68),CPR(68),CN2(608),CH20(68),
AFUl,AFU2,AFU3,A0X1,AO0X2,A0X3,AN21,AN22,AN23,AH201,AH202,
C1MODS5,; C2MOD4,C2MODS, DAL, DA2, DISSK (68 ) ,DPDX, DXINC, DXMAX,
DXPSI,DXRAT,DXRE,DXY, ELEXP, ENTHA , ENTHB , ENTHC, ENTHD,
ELCON,ELCONG (4) ,ELCONK (8},

EWALL, FACE, FACEXP, FACT ,FJKA, FJKD,FJ2A,FJ2D,FLOB, FLOC, FR,
FRA,FUA,FUB, FUC, FUD, GAMMA , GASCON, GENK (64 ) ,H,HDIV,HEXd, HFU,
HING, ILPLOT, INERT, IRUN, ITPLOT,JEL, JF,JH, JK,JOX,JP,JPR,JTE,
J2,KASE,KIND,KUDIF,LASTEP, LENGTH, MODEL,MODAC1,NPLOT,
NPROF,NSTAT, OMPOW, OXA , OXB , 0XC,OXD, PEILIM, PHIA,PHIB,PHIC,
PHID, PREEXP, PRESS, PRL(29) ,PRLAM, PRTURB ,RATE,RATI, RECPRL (29),
RECPRT (29) ,REY,SIGK,SIG2,STOICH,TA, TAUDK, TB, TC, TD, TWALL, UA,
UB,UBAR, UC,UD,UDIF,UEXd,UFAC, UFLUX, ULIM, VISFU, VISMIX, VISOX,
VISPR,WALCON,WFU,WMIX,WOX,WPR, XEND, XHEX@, XHIN@, XOUT, XUEXJ,
XULAST, YREF1,YREF2, UREF,
Jal,Jaz,Ja3,JA4,JA5,JA6,JA7,JA8,JA9,JA16,JAL, UMIN, UMAX,
Jall,Jal2,JA13,JA14,J415,3Ja16,JA17,JA18,JA19,JA28
COMMON /DEM1/

AGE (21) ,AGEC (20) ,DAGE (20) ,RECDA (28) ,NAGE , NAGEP1, MODFOR,
FOLM@, PE INEW , RECXD, UMXXD, XDUMX , DUDYB (6@) ,PAB (66) ,PA (64,28) ,
JAL1M1,JA1P1,ENTR (68) ,ARRAY (24, 8),

AVTEM(68) ,DTST, XM@ (64) , IBIO, FSTOIC,SIN(6&) ,SIPW(6d) ,AVOX (60) ,
INDEX (3610) , XP (3018) ,RATEAL (67) , RATEA2 (6@ ) , TEMAV (62) ,

AVRATI (66) ,AVRAT2(50) ,RBURN (A@) ,FUAV(60) ,AVFU (60) ,0XAV(683),
FN2 (60) ,FH20 (69) ,FMFU (68) ,FMOX (60) ,FMN2 (68) ,FMH20 (68) ,WN2,
WH20,FSR (68) ,FUM (68) ,0XM (68) ,ENTHFO (60) , TEMM (6@} ,TFLU (68),
OXFLU (64) ,FUFLY (68) , TEMAVS (68) ,AVTEMS (68) ,

FUAVS (68 ) ,AVFUS (68) ,0XAVS (68 ) ,AVOXS (69) ,

PHI (604) ,PHIBV(60) ,PDF1 (62) ,PDFIT (68) ,PDFITA (60),

PHIBVA (60) ,AVPFA(6d,68) ,AVPDF (58, 60) ,SUMPDF (60),

1PDF, ISTAGE,OMA (60 ), TEML, TEMR, FUL, FUR, OXL, OXR,
Fl,F2,FAMP,PHIL,PHIR,NDIFOM,NBDF,NPDFM1, PHIDIF,

~S AN W= ~I U WN =

NN

WO O -JA N WM = SR W N A0SO UT b ke W
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6 OMLEFT,OMRIGT,DDELAJ,PHIMAX,PHIMIN,EMIX,

7 FFIAVS (648) ,AVFFIS(66),FRFLU(68) ,FMAX(60),

8 EMPC1l,EMPC2,EMPC3,FVAL(60) ,POPAGE (59)

COMMON/DEM2/

1 CCco2(66),AC021,AC022,AC023,FCO2(60) ,FMCO2(608) ,WCO2,

2 PROL,PROR,PROM(26),PRAV(60) ,AVPR (60) ,PRAVS (68),

3 AVPRS (68) ,PRFLU(68) ,PRFLUM (60)

INTEGER SEARCH

BLOCK DATA
C/FEB.1977 ——===————- GENMIZX =-—=—m—=——- COPYRIGHT, D.B.SPALDING ---
"GENMIX, A GENERAL COMPUTER PROGRAM FOR TWO-DIMENSIONAL

PARABOLIC PHENOMENA"™, BY D. B. SPALDING

REPORT NO. HTS/77/9, FEBRUARY 1977,
IMPERIAL COLLEGE, MECHANICAL ENGINEERING DEPARTMENT, LONDON,SW72BX

APPENDIX A (BASIC PROGRAM) - COMBUSTION OF METHANE AND AIR IN
A DIVERGENT DUCT EXHAUSTING INTO THE ATMOSPHERE.

CHAPTER 1 1 1 1 1 1 1 1 PRELIMINARIES 1 1 1 l 1 1 1 1

SINCLUDE 9,COMAl.FTN

SINCLUDE 9,COMB.FTN

C

C/I=TAl1411 RECFJK ADDED, F(I,JK) MADE ABS IN PHYS DO 151 LOOP.

C/I=TA8211/P=0PL779A/UN=UMEMHB2,

Oaoaononnan

c §2,11.78 REPLACE ALMG BY ELCON@, REPLACE ELCOND BY ELCONK
c 24.10.78 GENERAL CORRECTIONS
c 29.8.78 NEW VERSION INTRODUCING LENGTH AND DELETING KONFIG
C/ SEPT.1977 —-- GENMIX-T, HTS/77/9, APPXA -- COPYRIGHT, D.B.SPALDING ~--
cC GENMIX-T, TURBULENCE MODELS TEACHING PROGRAM,
c WITH CHEMICAL REACTION.
c BASED ON APPENDIX A OF THE HTS REPORT NO,., HTS/77/9.
c
C/ SEPT.1981 -- THE ESCIMO MODEL OF TURBULENT COMBUSTION
c IS INCORPORATED INTC THE GENMIX-T PROGRAM.
Cc THE NEW SUBROUTINES ARE CALLED DEMO,BIOG AND PDF.
C | —e—m———aee CONFIGURATION INDEX
C KASE = STANDARD GENMIX, APPENDIX A.
C 1 PIPE OR CHANNEL
C 2 MIXING LAYER
C 3 PLANE JET
C 4 AXI-SYMMETRICAL (ROUND} JET
C 5 RADIAL (FAN} JET
c 6 PLANE PLUME
C 7 AXI-SYMMETRICAL (ROUND) PLUME
c
C e INITIALISE DATA
DATA KUDIF/-1/
| —emma———m—m e m————— e e e e e e e e e e e e e o et e - —— - -

DATA KASE,IRUN/4,0/
DATA ITEST/1/
DATA BIG,TINY/l1.£20,1.E-16/
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C
c - - —— T —— D Y S T S D T T = R S A S W S S S S T S T A —— A — — T v -
CHAPTER 2 2 2 2 2 2 2 GRID AND GEOMETRY 2 2 2 2 2 2 2 2
C  ————— - - --- GRID
DATA N,OMPOW/20,2.90/
C - SET IDIMF= DIMENSION FOR I, ENSURE THAT IDIMF.GE.N
DATA IDIMF/66/
C ————— SET KRAD=1 FOR PLANE, 2 FOR AXIAL, 3 FOR POINT SYMMETRY
DATA KRAD,CSALFA/2,1./
c - - - - GEOMETRY
DATA HIN@,XHIN@,AHIN,BHIN,CHIN/G.0,4*0./
DATA HEXQ,XHEX?,AHEX,BHEX,CHEX/0.088381,4*3,/
DATA HDIV/0.082/
DATA XU, XEND,XOUT/3*3.6/
DATA LASTEP,XULAST/1006,0.6096/
C  ———— FOR KIND=3, XU, XHEX@ AND XHIN@ =.25 (MAIN CH.2)
c
C..... . S - — e e kS AP ol S S . S S S
CHAPTER 3 3 3 3 3 3 3 DEPENDENT VARIABLES 3 3 3 3 3 3 3
C ~—-——— SET NF= NUMBER OF DEPENDENT VARIABLES, EXCLUDING VELOCITY
DATA NF/15/,JP,JK,J2,JA1,JA2,JA3,JA4,JA5,JA6,JA7,JA8,
2 Jas,Jale¢,JH,JF,JEL,JOX,JTE,JPR/1,2,3,4,5,6,7,8,9,16,11,12,13,
3 14,15,16,17,18,19/
----- SET NOVEL=1 FOR NO VELOCITY, NOVEL=2 OTHERWISE
DATA NOVEL/2/ -
c
c — - R ——— . A - — —— ——— v S S — ——— —— ————— ————— . . o S
CHAPTER 4 4 ¢ 4 4 4 4 4 PROPERTY DATA 4 4 4 4 4 4 2 4
c - ———= S5.I. UNITS
DATA AGRAV,GASCON/9.8,8314./
C  ———— SET MODEL=1 FOR LAMINAR FLOW,
C  ———— SET MODEL=2 FOR "MIXING-LENGTH"™ MODEL OF TURBULENCE
C  ———— SET TURBULENCE MODEL
o MODEL=1 LAMINAR
c 2 MIXING LENGTH,
c LENGTH=1 STANDARD GENMIX
C =2 WNIKURADSE"S LENGTH SCALE
o =3 UNIFORM LENGTH SCALE
c 3 PRANDTL (ENERGY)
c 4 KOLMOGOROV (ENERGY-FREQUENCY),
C MOD4C1=1 Cl FROM MIXING~-LAYER RULE
c 2 Cl FROM NO-DIFFUSION RULE
c 3 Cl AND C2 ARE SAIY™S VALUES
c 5 HARLOW (ENERGY-DISSIPATION)

DATA MODEL,LENGTH/5,1/

DATA MODACl/l/

DATA AK,FR,CEBU,EWALL/.435,.833,.4,9./

DATA TAUDK,SIGK,ELEXP,SIG2/.3,1.,2.38,1.314/

————— SIG2 MAY BE RECOMPUTED IN CH.4 OF MAIN F 4 AND 5

Qa0

-— MIXING-LENGTH CONSTANT FOR KASE=0, STANDARD GENMIX
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o S INITIAL VALUE WITHIN DUCT
DATA ELCON/.@9/
c —--~-- VALUES FOR FREE BOUNDARY OUTSIDE DUCT, SET IN MAIN, CH.7
o J—— THESE VALUES DEPEND ON CONFIGURATION, INDEX IS KIND
DATA ELCONG/.875,.1,.14,.075/
c
c —— MIXING-LENGTH CONSTANT FOR OTHER KASES, INDEX IS KASE
c —— SET IN MAIN, CH.4
DATA ELCONK/.14,.11,.251,.1985,.3514,..1985,.251, .89/
c
c -~— SET INERT=1 FOR INERT FLUID, INERT=2 FOR CHEMICALLY REACTIVE
DATA INERT/2/
c e MATERIALS
o J . THERMODYNAMIC
DATA AFUl,AFU2/13849.,1.69452/
DATA AOXl,AO0X2,A0X3/1081.3,8.83373,-2.4542E7/
DATA AN21,AN22,AN23/1821.3,6.1346,-1.79E6/
DATA AH201,AH202/1698.06,0.572/
DATA WFU,WOX,WPR,WMIX/2.,32.,28.,29./
DATA WN2,WH20/28.,18./
DATA HFU/1,206E8/
C  memm————— CHEMICAL
DATA STOICH,ARRCON,PREEXP/8.,8.E3,1./
o - TRANSPORT
DATA VISFU,VISOX,VISPR,VISMIX/4*1.E~6/
DATA PRLAM,PRTURB/@.7,8.9/
DATA H,UFAC/.9,.081/
o
C - —— P A ——

CHAPTER 5 S5 5 5 5 5 S5 ©STARTING VALUES 5 5 5 5 5 5 5 5
DATA PRESS/1.E5/

C ~~——= STREAM B IS5 PURE FUEL
DATA UB,TB,FUB,0XB/151.,3040.,1.,08./
cC  —e—— STREAM C IS AIR

DATA UC,TC,FUC,0XC/151.,300.,1.,0./

C  ——=—— SET- KEX AND KIN FOR INITIAL BOUNDARY TYPE,

C - 1 FOR WALL, 2 FOR FREE BOUNDARY, 3 FOR SYMMETRY AXIS
DATA KEX,KIN/2,3/

c

Cme——— —— — . — - - S — —————— ———— T A ———— .l S . M it il D ol S S S T o S . =

CHAPTER 6 6 6 6 6 6 6 6 STEPCONTROL 6 6 6 6 6 6 6 6 6
DATA FRA,DXMAX,DXRAT/l.,l.,5./

c ==—=—= ENTRAINMENT CONTROL
DATA ULIM,PEILIM,FACEXP/.85,.61,.5/
C === STARTING VALUES
DATA FACE,FACI,RATE,RATI/4*1./
c
Cmmmc e e —_— - ———————— e e

CHAPTER 7 7 7 7 7 7 7 7 BOUNDARY CONDITIONS 7 7 7 7 7 7
C e STREAM A, THROUGH CENTRAL PIPE
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DATA UA,TA,FUA,0XA/151.,386.,1.,0./

---------- STREAM D, SURROUNDING ATMOSPHERE
DATA TD,FUD,0XD/308.,0.,08.232/

----- UD IS SUPPLIED BY WAY OF THE UEX FUNCTION
---------- VELOCITY ALONG OUTER BOUNDARY

DATA UEX®,XUEX@,AUEX,BUEX,CUEX/15.1,4%3./
---------- WALL TEMPERATURE OF OUTER TUBE

DATA TWALL/299./ -

—— e -—— - —— —— - - - - — -— —

CHAPTER 11 11 11 11 11 11 11 11 11 11 PRINT 11 11 11 11 11 11

-—— SET ILPLOT=2 FOR DOWN-STREAM PLOT, =1 FOR NO PLOT

-=- SET ITPLOT=2 FOR CROSS-STREAM PLOT, =1 FOR NO PLOT

DATA ILPLOT,ITPLOT/2,2/

-=-—- SET NSTAT, NPROF, NPLOT TO NUMBER OF STEPS BETWEEN QUTPUT OF
-—— STATION VALUES, PROFILES AND CROSS-STREAM PLOTS RESPECTIVELY
DATA NSTAT,NPROF,NPLOT/12,12,10800/

----- AFTER XU=XOUT, NSTAT AND NPROF ARE SET =24 AT MAIN, CH.1ll
---------- INPUT RELATED TO ESCIMO MODEL

DATA NAGE,NAGEPl,JAl,JAL,FOLM@/18,11,4,13,08.5/

DATA UMAX,UMIN/1S51.,15.1/

DATA XM@/680*3.5/

DATA F/1740%*3./,PAQ,PA/12A0*@,/,DUDYB/6@*1.E-6/

DATA MODFOR/3/

DATA AGE/%.,.05,.1,.15,.2,.3,.4,.5,.65,.8,1./

DATA IBIO,FSTOIC/1,0.8282/

DATA EMPCl,EMPC2,EMPC3/2.,2.,8.5/

DATA IPDF/1/

DATA NEDF/1l/
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PROGRAM MAIN
C/ SEPT.1977 -- GENMIX-T, HTS/77/9, APPXA -- COPYRIGHT, D.B.SPALDING --
CHAPTER 1 1 1 1 1 1 1 1 PRELIMINARIES 1 1 1 1 1 1 1 1
$INCLUDE 9,COMALl.FTN
SINCLUDE 9,COMB.FTN

C -
o —————————————— - - —_—
C =——— FUNCTIONS FOR BOUNDARY CONDITIONS
HEX (X)=HEX@+X* (AHEX+X* (BHEX+X*CHEX) )
HIN (X)=HIN@G+X* (AHIN+X* (BHIN+X*CHIN) )
UEX (X)=UEXZ+X* (AUEX+X* (BUEX+X*CUEX))
C
(o i e e i i e e e e e i .

CHAPTER 2 2 2 2 2 2 2 GRID AND GEOMETRY 2 2 2 2 2 2 2 2
C SEE DATA
c e KIND IS AN INDEX WHICH DENOTES A PARTICULAR GEOMETRY TYPE
KIND=4
IF(KRAD.EQ.1l) KIND=2
IF (KRAD.EQ.2.AND.CSALFA.EQ.1.) KIND=1
IF (KRAD.EQ.2.AND.CSALFA.EQ.f.) KIND=3

C  =e=— MODIFICATIONS TO DATA
IF(KIND.NE.3) GO TO 21
XU=.25
XHEX@=,25
XHIN@=.25

21 CONTINUE

SNALFA=SQRT (1.~CSALFA**2)
C  ———— STARTING VALUES

IEND=IFIX (XEND*1.E6)

IOUT=IFIX (XOUT*1.E6)

c - - —— SUBROUTINE COMPUTE, ENTRY INIT

CALL INIT
c - e ————————— GRID

DO 28 I=1,N '

2@ OM(I)=(FLOAT(I-1)/FLOAT (NM1)) **OMPOW

C
C —_—— - SUBROUTINE COMPUTE, ENTRY GRID

CALL GRID
C
Crmmm e e e ——— - —— o . i i ke R o D it e 2 e

CHAPTER 3 3 3 3 3 3 3 DEPENDENT VARIABLES 3 3 3 3 3 3 3
SEE DATA

U{I)= VELOCITY

F(I,JH)= STAGNATION ENTHALPY

F(I,JP)= PHI= OXIDANT CONCENTRATION - F(I,JF)*STOICH
F(I,Jal).....F(1,JaAL) = FOLD POPULATIONS

F(I,JF)= FUEL CONCENTRATION

F(I,JOX)= OXIDANT CONCENTRATION

F(I,JTE)= TEMPERATURE

F(I,JPR})= PRODUCT CONCENTRATION

oo nn
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F(I,JK)= KINETIC ENERGY OF TURBULENCE

F(I,J2)= FREQUENCY= DISSIPATION RATE/(DENSITY*ENERGY) FOR MODEL 4
OR = EPSILON= DISSIPATION RATE/DENSITY FOR MODEL 5

F(I,JEL)= TURBULENCE LENGTH SCALE

- - — - —— —— — —— —— —mnp ———

49

491

41

HAPTER 4 4 4 4 4 4 4 4 PROPERTY DATA 4 4 4 4 4 4 4 4

SEE DATA
IF (MODEL.LE.2) NF=JAL+1

IF (MODEL.EQ.3) NF=JAL+2

IF (MODEL.GT.3) NF=JAL+3

RECWFU=1., /WFU

RECWOX=1./WOX

RECWPR=1./WPR

RECWMX=1./WMIX

DO 4@ J=1,NF

PRL (J)=PRLAM

RECPRL (J)=1./PRLAM
RECPRT(J)=1./PRTURB

DO 481 I=1,N

CFU (I)=AFUL+AFU2*TA

COX (I)=AOX1+AOX2*TB+AOX3/(TB**2)
CN2 (I)=AN21+AN22*TC

CPR (I)=CN2(I)

CH20 (I)=AH201+AH202*TC

GAMMA=CFU (1) / (CFU (1) -GASCON*RECWMX)

CMU=SQRT (TAUDK)

CD=TAUDK*CMU

CMUCD=CMU*CD

————— LATER MODIFY CMU AND CMUCD FOR KASE 4 TO FIT ROUND JET DATA
WALCON=CD/AK

RECPRT (JK)=1./SIGK

IF(MODEL.LT.3) GO TO 44

—————————— MODELS 4 AND 5
Cc2M0OD5=1.5+1./ELEXP
C1MODS5=C2MODS-AK**2*TAUDK/ (CMUCD*SIG2)

IF (MODEL.EQ.S) GO TO 42

—————————— MODEL 4 (3 VERSIONS)
C2M0OD4=C2M0OD5-1.

----- Cl FROM MIXING~-LAYER RULE
IF(MOD4C1.EQ.1l) CIMOD4=ClMODS5*C2MOD4/C2MOD5
----- Cl FROM THE NO-DIFFUSION RULE
IF(MOD4Cl.EQ.2) C1MOD4=C1MOD5-1.

----- Cl AND C2 ARE SAIY"S VALUES
IF{MOD4C1.NE.3) GO TO 41

C1MOD4=0,47

C2M0OD4=1.40

----- MODELS 4 AND 5, SIG2 FROM THE NEAR-WALL RULE
SIG2=AK**2 /(TAUDK* (C2MOD4-C1MOD4))

GO TO 43
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42 SIG2=AK**2/(TAUDK* (C2MOD5-CIMOD5) )
43 RECPRT(J2)=1./S8IG2
44 CONTINUE
c
(o e o et e e g st e e ettt e S S S e . e S T D PR D . e e e o e s e e O AR ok el e
CHAPTER 5 5 5 5 5 5 5 STARTING VALUES 5 5 5 5 5 5 5 5
o SEE DATA
WB=1./ (FUB*RECWFU+OXB*RECWOX+ (1.-FUB-OXB) *RECWPR)
RHOB=PRESS*WB/ (TB*GASCON)
WC=1./(FUC*RECWFU+OXC*RECWOX+(1.=-FUC~0XC) *RECWPR)
RHOC=PRESS *WC/ (TC*GASCON)
FLOB=RHOB*UB* (HDIV~-HING®)
FLOC=RHOC*UC* (HEX@~HDIV)
IF (KRAD.EQ.1) GO TO 55
XSIN=XU*SNALFA
HCOS=.S5*CSALFA .
FLOB=FLOB* (XSIN+HCOS* (HDIV+HING))
FLOC=FLOC* (XSIN+HCOS* (HEX@+HDIV) )
55 CONTINUE
OMDIV=FLOB/ (FLOB+FLOC+TINY)
TMIN=.5*AMINI (TA,TB,TC,TD, TWALL)
C - - SEQUENCE-TO PUT CELL BOUNDARY AT OMDIV.
IF (OMDIV.LE.1.E-18.0R.OMDIV.GE. (1.~1.E=-18)) GO TO 53
DO 52 I=3,NM1
IF (OMINT (I)-OMDIV) 52,53,57
57 IDIV=I+1
GO TO S8
52 CONTINUE
58 FAC=OMDIV/OMINT (IDIV-1)
DO 59 I=2,IDIV
59 OM(I)=OM(I)*FAC
c SUBROUT INE COMPUTE, ENTRY GRID
CALL GRID
53 CONTINUE
o ————————— INSERTION INTO ARRAYS
ENTHB=TB* (CFU (1) *FUB+COX (1) *OXB+CPR (1} * (1.-FUB~0XB) ) +
1 .5*UB**24HFU*FUB
ENTHC=TC* (CFU (1) *FUC+COX (1) *OXC+CPR (1) * (1.-FUC-0XC) )+
1 .S*UC**2+HFU*FUC
PHIB=0XB-FUB*STOICH
PHIC=0XC-FUC*STOICH
DO 591 I=1,N
IF(OM(I).GT.OMDIV) GO TO 583
U(I)=UB
F(I,JH)=ENTHB
F(I,JP)=PHIB
F(I,JF)=FUB
GO TO 561
5@3 U(I)=UC
F(I,JH)=ENTHC
F(I,JP)=PHIC
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F(I,JF)=FUC
S@1 F(I,JAl)=1./(AGE(2)-AGE (1))
DO 562 I=1,NM1
F(I,JK)=0.03%UB**2
582 F(I,J2)=CD*F(I,JK)*SORT (F(I,JK))/(.83*HEXD)
F(N,JK)=0.1
F{N,J2)=CD*F (N, JK) *SQRT (F(N,JK)) /(. #3*HEX®)
DO 584 I=1,N
DISSK(I)=4.
504 GENK(I)=@.
c -- INITIAL VALUES FOR THE F(I,JK) AND F(I,J2) ARRAYS ARE IN PHYSU.
c

IF (KASE.NE.0) ELCON=ELCONK (KASE)
2 I T2 T2 R T R R e T R R R R R A R R A R LR A LY

CALL FOR STARTING PREPARATIONS IN SUBROUTINE DEMO FOR CONSTANT AGE SIZES
Cc

CALL DEMOC

CALL BIOC
CrRRII IR TRIIRTRI R AR R AT A A RA R AR AR Ak hhhhh kA hhhRhkhhhhhhkhdhhhthhkhdkhhhk
C
C _————— e —_—————— ENTER MAIN LOOP AT CHAPTER 7

GO TO 709

c

Cmmmm S

CHAPTER 6 6 6 6 6 6 6 6 STEPCONTROL 6 6 6 6 6 6 6 6
c SEE DATA
689 DXY=FRA*Y (NM2)
DXRE=DXY*PEI/{. 5*(R(1)+R(N))*EMU(1)+TINY)
DXINC=DXLAST*DXRAT

o ———— —— " — —— — — — — —— e - " w—

C
c ~~mmw=~—~—== DETERMINATION OF BOUNDARY TYPE
C e I BOUNDARY
IF(ISTEP GE.IEND) GO TO 618
KIN=1
GO TO 611
61¢ IF(PSII.LE.TINY) GO TO 612
KIN=2
GO TO 611
612 KIN=3
o E BOUNDARY
611 IF (ISTEP.GE.IOUT) GO TO 613
KEX=1
GO TO 614
613 KEX=2
614 CONTINUE
c
€ e ENTRAINMENT RATES

IF (KIN.NE.2.AND.KEX.NE.2) GO TO 682
KUDIF=ISTEP

UMAX=U-(1)

UMIN=U (1)



O a0

615

501

662

685

606

587
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DO 615 I=2,N

UMAX=AMAX1 (UMAX,U(I))

UMIN=AMINL (UMIN,U(I))

UDIF=UMAX-UMIN

_— ——————————— I BOUNDARY

IF (KIN.NE.2) GO TO 601

RATI=ABS ((U(2)}-U(l))/(UDIF*ULIM+TINY))

RMI=(R(2)+R(3))* (EMU(2)+EMU (3)) *RECYDF (2} *RATI/(1l.+RATI)

FACI=FACI*RATI**FACEXP

FACT=AMAX1 (8. 1,AMINL (FACI,14.)})

RMI=RMI*FACI

IF (MODEL.EQ.2) RMI=AMINLI (RMI,@.4*UDIF*RHO(1)*R(1))
e E BOUNDARY

IF (KEX.NE.2) GO TO 682

RATE=ABS { (U (NM1)}-U(N))/(UDIF*ULIM+TINY))

RME== (R (NM2) +R (NM1) ) * (EMU (NM2) +EMU (NM1) ) *RECYDF (NM2) *RATE /

(1.+RATE)

FACE=FACE*RATE**FACEXP

FACE=AMAX1 (.01,AMIN1 (FACE,1d.))

RME=RME*FACE

IF(MODEL.EQ.2) RME=AMAX] (RME,~@.4*UDIF*RHO (N) *R (N))

DXPSI=PEI*PEILIM/ (RMI-RME+TINY)

SET VALUE OF DX
DX=AMIN]1 (DXY,DXRE,DXINC,DXPSI,DXMAX)

IF(ISTEP.GE.IEND) GO TO 665

IF(DX.LT. (XEND-XU}} GO TO 685

***** RESET DX S0 THAT XU WILL EXACTLY EQUAL XEND AT NEXT STEP
DX=XEND-XU

IEND=ISTEP+1

JUSTIN=ISTEP+1

IF(ISTEP.GE.IOUT) GO TO 686

IF (DX.LT. (XOUT-XU)) GO TO 646

————— RESET DX SO THAT XU WILL EXACTLY EQUAL XOUT AT NEXT STEP
DX=X0UT-XU .

IOUT=ISTEP+l

JUSTEX=ISTEP+1l

IF(PSII.GT.RMI*DX) GO TO 647

IF({PSII.LER.TINY) GO TO 647

-———— RESET DX SO THAT AXIS IS REACHED AT NEXT STEP
DX=PSII/RMI

JUSTIN=ISTEP+1

----- RESET DX S0 THAT XU WILL NOT EXCEED XULAST
DX=AMIN1 (DX, XULAST-XU)

—————————— TRAP ZERQO OR NEGATIVE DX
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IF({DX.GT.B.) GO TO 608
IFIN=2
GO TO 1l1¢@d

———————————————————— DETERMINE XD
6808 XD=XU+DX
DXLAST=DX

an

————— IF CSALFA VARIES -
RECALCULATE IT, AND SNALFA AND HCOS, HERE, FOR X=XD
GO TO 70

———— ———————————— — v —— o -—— — D iy s — A S

CHAPTER 7 7 7 7 7 7 7 7 BOUNDARY CONDITIONS 7 7 7 7 7 7
7809 ASSIGN 751 TO ISTART

QN ann

. mm——————— GENERAL BOUNDARY CONDITION INFORMATION
C | e———m———— STREAM A, THROUGH CENTRAL PIPE
c SEE DATA

ENTHA=TA* {CFU (1) *FUA+COX (1) *OXA+CPR (1) *(1.-FUA-OXA))+
1l .5*UA**2+HFU*FUA

PHIA=0XA-FUA*STOICH

RHOA=PRESS *WFU/ (TA*GASCON+TINY)
'FLOA=RHOA*UA*HIN (XEND)

FIKA=0,@3*UB**2

IF (KRAD.EQ.2) FLOA=FLOA*(XEND*SNALFA+HCOS*HIN (XEND))
PSII=FLOA

PEI=FLOB+FLOC

PSIE=PSII+PEI

C | =—reeae—- STREAM D, SURROUNDING ATMOSPHERE
Cc SEE DATA

XUEX@#=X0UT

UD=UEX®

XD=XU

ENTHD=TD* (CFU (1) *FUD+COX (1 ) *OXD+CPR (1) * (1. -FUD-0OXD) )+
1 .5*UD**2+HFU*FUD -
PHID=0XD-FUD*STOICH
€ mmmemmeme OTHER RELATED INFORMATION
HDUCID=HIN@
ADUCTD=HEX#-HDUCID
IF (KRAD.EQ.2) ADUCTD=ADUCTD* (XSIN+HCOS* (HEX@+HDUCID))
AFLOWD=ADUCTD
78 CONTINUE

o BOUNDARY CONDITIONS FOR FORWARD STEP

C e e I BOUNDARY
IF (KIN-2) 731,732,733

C e WALL

731 IF(ISTEP.GT.JUSTIN) GO TO 734 .

U(l)=d.
TAUI=0.
RMI=0.

DO 735 J=1,NF
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735
734

732

736

733

737
740

741
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IBIN(J)=2
RJTOTI (J)=@.
-------------------- ADJUST INNER HEIGHT
HIND=HIN (XD-XHING)
GO TO 740

- -— --- FREE BOUNDARY
IF(ISTEP GT. JUSTIN) GO TO 736
TAUI=0.
u(l)=ua
VIMIx-FUA*RBCWFU+OXA*REcw0x+(1.—FUA-oxA)*REchR
F{1,JTE)=TA
RHO(1)= PRESS/(VIMIX*F(I JTE) *GASCON)
RECRU(1)=1./(RHO(1)*U{(1)+TINY)
F(1,JH)=ENTHA
F(l1,JP)=PHIA
F(l,JF)=FUA
AREA=HDUCID
IF (KRAD.EQ.2) AREA=AREA* (XU*SNALFA+HCOS*HDUCID)
AFLOWD=AF LOWD+AREA
IF(ISTEP.EQ.B) GO TO 748
U{l) U(1)+DX*AGRAV*(RHO(N)-RHO(I))*RECRU(l)
F(1,JK)=FJKA
IF (MODEL.LT.4) GO TO 7448
FJ2A=CD*SQRT (FJKA) /(ELCON* (Y (NM2)=-Y{(3)}])
IF (MODEL.EQ.5) FJ2A=FJ2A*FJKA
F(l1,J2)=FJ2A
GO TO 74¢@

e SYMMETRY AXIS
IF (ISTEP.GT.JUSTIN) GO TO 749
TAUI=g.
RMI=3.
PSII=0.
HIND=@.
u(l)=u(2)
DO 737 J=1,NF
F(i,J)=F(2,d)
---------- NO SUBSEQUENT CHANGE NEEDED
CONTINUE

-- -— -— —-—— - E BOUNDARY
IF(KEX—2) 741,742,743

IF(ISTEP.GT. JUSTEX) GO TO 744
—-======~-- FIRST STEP ONLY
U(N)=a.
RME=#.
TAUE=@.
IBEX(JH)=1
F(N JOX)=0XC
F(N,JPR)=1.-0XC~- FUC
DO 745 J=2,NF
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IBEX (J)=2
745 RJTOTE (J)=0.
cC  ———— ADJUST ENTHALPY TO FIT COMPOSITION
744 CMIX(N)=CFU (N)*F(N,JF)+COX (N)*F (N,JOX)+CPER (N) *F (N, JPR)
F(N,JTE)=TWALL
F(N, JH)-CMIX(N)*F(N JTE)+F (N, JF) *HFU

c - - ADJUST EXTERNAL HEIGHT
HEXD—HEX(XD—XHEXG)
F(N,JK)=0.
F(N,J2)=0.
GO TO 759
c -—— - ———— - —————————— FREE BOUNDARY

742 IF (ISTEP.GT.JUSTEX) GO TO 746
F(N,JH)=ENTHD
F(N,JP)=PHID
F (N,JF)=FUD
F(N,JOX)=0XD
FJKD=@.1
F(N,JPR)=1.-F (N, JF)~F(N,JOX)
VMIX=F (N,JF) *RECWFU+F (N, JOX) ¥RECWOX+F (N, JPR) *RECWPR
F(N,JTE)=TD
RHO (N)=PRESS/ (VMIX*F (N,JTE) *GASCON)

U (N)=UD
RECRU (N)}=1./ (RHO (N) *U (N) +TINY)

o ADJUSTMENT OF MIXING LENGTH CONSTANT
IF (KASE.EQ.d) ELCON=ELCON® (KIND)

oS ADJUSTMENT OF DOWNSTREAM VELOCITY
746 UD=UEX (XD-XUEX®) ,
P (N,JK)=FJKD
IF (MODEL.LT.4) GO TO 758
FJ2D=CD*SQRT (FJKD) / (ELCON* (HEX@-HIN@) )
IF (MODEL.EQ.5) FJ2D=FJ2D*FJKD
F(N,J2)=FJ2D
GO TO 750
o NO SYMMETRY AXIS
743 CONTINUE
756 GO TO ISTART, (751,868)
751 ASSIGN 88@ TO ISTART

‘GO TO 998
C
o - e e e e
CHAPTER 8 8 8 8 8 8 8 8 ADVANCE 8 8 8 8 8 8 8 8 8 8
C em—— ———————————— MOMENTUM SOQURCES
C et e e e PRESSURE GRADIENT
889 IF(KEX.NE.2) GO TO 821
DP=(U (N)-UD) /RECRU (N)
GO TO 823
C e CONFINED FLOW
c === CALCULATION OF AREA INCREASE

821 AFLOWU=AFLOWD
HDUCID=4.
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IF(KIN.EQ.1) HDUCID=HIND

ADUCTD=HEXD-HDUCID

IF (KRAD.EQ.2) ADUCTD=ADUCTD* (XD*SNALFA+HCOS* (HEXD+HDUCID))
DA=ADUCTD-AFLOWU

DP=DA/DADP
c _——— ---- WALL SHEAR AND MASS ADDITION
UBAR=0.
DO 824 I=2,NM1
824 UBAR=UBAR+(BOM(I)*U(I))
IF (KIN.EQ. 2) UBAR=(UBAR-U(1))*PEI/PSIE+U (1)
UBAR= (UBAR~U (1)) *PEI/PSIE+U (1)
DP=DP+DX* (~TAUI*R (1)~-TAUE*R (N) +2.*RME*UBAR) /ADUCTD
DP=AMIN1 (DP, . 5*DPMAX)
o
823 CONTINUE
o - ————— -— COMP
CALL DEMOS
CALL SOLVE
C
C - — = T i D P A A S Y A . it —
CHAPTER 9 9 9 9 9 9 9 9 COMPLETE 9 9 9 9 9 9 9 9
9¢% CONTINUE
o
o -— ---- IGNITION SEQUENCE
IF (ISTEP.GT.5) GO TO 931
IF (INERT.EQ.1) GO TO 931
T2=.5/STOICH
DO 932 I=2,NM1
F(I,JF)=T2#*(ABS (F(I,JP))-F(I,JP))
932 F(I,JOX)=F(I,JP)+STOICH*F(I,JF)
931 CONTINUE
o
C - e THERMODYNAMIC PROPERTIES

PRESS=PRESS+DP
PDGSCN=PRESS/GASCON

DO 967 I=1,N

F(I,JOX)=AMAXl (@.,F(I,JP)+STOICH*F(IL,JF))
F(I,JPR)=1,-F(I,JF)-F(I,JOX)
ENTH=F(I,JH)~.5*%U (1) **2-HFU*F(I,JF)
IF(ISTEP.EQ.8) GO TO 940
CFU(I)=AFUl+AFU2*AVTEM(I) _

COX (I)=A0X1+A0X2*AVTEM(I)+A0X3/(AVTEM(I) **2+TINY)
CN2(I)=AN21+AN22*AVTEM (I )+AN23/(AVTEM (L) **2+TINY)
CH20 (I)=AH201+AH202*AVTEM(I)
CMIX(I)=CFU(IL)*AVFU(1)+COX(I)*AVOX(I)+CN2(I)*FN2(I)+
1 CH20(I)*FH20(I)

GO TO 943

949 CMIX(I)=CFU(I)*F(I,JF)+COX(I)*F(I,JOX)+CPR(I)*F(I,JPR)

943

F(I,JTE)=ENTR/CMIX(I)
IF(F(I,JTE).GT.TMIN) GO TO 941
IF(I.EQ.1.0R.I.EQ.N) GO TO 941
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WRITE(6,942) F(I,JTE),I,ISTEP,TMIN
942 FORMAT(27H *** TEMPERATURE, F(I,JTE)=,l1PE1@.3,6H AT I=,I4,7H ISTEP
1=,I5/17H *** RESET =TMIN=,E1@.3,23H *** MAIN CH.9 COMPLETE)
F(I,JTE)=TMIN
941 IF(ISTEP.LT.1) GO TO 944
VMIX—AVFU(I)*RECWFU+AVOX(I)*RECWOX+FN2(I)/WN2+FH20(I)/WH20
RHO (I)=PDGSCN/ (AVTEM (I1)*VMIX)
GO TO 947
944 VMIX=F(I,JF)*RECWFU+F (I,JOX)*RECWOX+F (I ,JPR)*RECWPR
RHO (I )}=PDGSCN/ (F{I,JTE)*VMIX)
997 CONTINUE
IF (KEX.EQ.1) F(N,JTE)=TWALL

DPDX=DP /DX

C

€ e RADII AND Y"S
IF (KRAD-2) 901,902,983

c -~—~— KRAD=1, PLANE

991 IF(KIN.EQ.2) HIND=ABS(PSII*RECRU(1))

GO TO 949

c  ——— KRAD=2, AXIAL

9¢2 IF(KIN.NE.2) GO TO 948
HIND=ABS (PSII*RECRU (1))
HIND=2.*HIND/

1 (XD*SNALFA+SQORT ( (XD*SNALFA) **2+2 , *HIND*CSALFA)+TINY)
GO TO 9a8
L KRAD=3, POINT SYMMETRY
993 R(1l)=4d.
cC  ———- CHANGE ABOVE STATEMENT IF NECESSARY FOR KRAD=3
GO TO 999
908 R (1)=XU*SNALFA+HIND*CSALFA
C ——————— ———— - COoMP
999 CALL DISTAN
c
Cormerm e o o o o et s 3 o 1m0 2w o i o 0 e i sy e et - - — e e e e e S S o S R

CHAPTER 10 1¢ 1¢ 1¢ 1¢g 19 14 ADJUST 1¢ 19 19 1d 19 19 1@
c
IF(KEX.EQ.2) GO TO 1422
AFLOWD=Y (N)+HIND-HDUCID
IF(KRAD.EQ.2) AFLOWD=AFLOWD?* (XU*SNALFA+HCOS* (Y (N)+HIND+HDUCID))
DA1=ADUCTD/AFLOWD-1.~

c —_—— ——— DEPENDENCE OF AREA ON PRESSURE
RECGMP 1./ (GAMMA*PRESS)
DADP=4.
IF (KIN.EQ.2) DADP=PSIT*RECRU(1)* (RECRU({1)*RECRU(1)*RHO(1)-RECGMP)
SUM=0,
DPMAX=BIG

DO 1025 I=2,NM1
DPMAX=AMIN] (DPMAX,RHO (I ) *U (I) **2)
1925 SUM=SUM+BOM (I)*RECRU (I)* (RECRU (I)*RECRU (I ) *RHO (I)-RECGMP)
DADP=DADP+PEI*SUM
C e ADJUSTMENT OF P"S, U"S ETC.
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IF(ABS (DAl) .LT.1.E-3) GO TO 1@22
DP=DA1*AFLOWD/DADP
DP=AMIN1 (DP, . 5*DPMAX)
PRESS=PRESS+DP
DPDX=DPDX+DP /DX
RHOFAC=1.+DP*RECGMP
DO 1827 I=2,NM1
U(I)=U(I)-DP*RECRU (I)
1227 RHO(I)=RHO (I)*RHOFAC
IF (KIN.NE.2) GO TO 1829
U{(1)=U(1l)-DP*RECRU (1)
1329 RHO (1)=RHO (1) *RHOFAC
RHO (N) =RHO (N} *RHOFAC
RECRU{1)=1./(RHO (1) *U(1)+TINY)
IF(KIN.NE.2) GO TO 1026
HIND=ABS (PSII*RECRU (1))
IF(KRAD.EQ.1) GO TO 1826
HIND=2,*HIND/
1 (XD*SNALFA+SQORT ( (XD*SNALFA) **2+2, *HIND*CSALFA) +TINY)
R(1)=XU*SNALFA+HIND*CSALFA
1826 CALL DISTAN
AFLOWD=Y (N)+HIND-HDUCID
IF (KRAD.EQ. 2) AFLOWD=AFLOWD* (XU*SNALFA+HCOS* (Y (N)+HIND+HDUCID))
DA2=ADUCTD /AFLOWD-1.
1822 CONTINUE

Cmmmmm ———e— e —————— - — - -
CHAPTER 11 11 11 11 11 11 11 11 11 11 PRINT 11 11 11 11 11 11
c SEE DATA

1128 CONTINUE
IF(XU.LE.XOUT) GO TO 1141

NSTAT=24
NPROF=24
1191 CONTINUE
CALL DEMO2
CALL OUTPUT
c
C=— ——————— e e e g

CHAPTER 12 12 12 12 12 12 12 DECID 12 12 12 12 12 12 12

IF(ISTEP.EQ.LASTEP) GO TO 1283
IF(XU.LT.XULAST) GO TO 1282

1293 IFPIN=2
CALL DEMO2
CALL OUTPRUT

12¢2 IF(IFIN.EQ.1l) GO TO 690
STOP
END
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SUBROUTINE OUTPUT
Cc/ SEPT.1977 -- GENMIX-T, HTS/77/9, APPXA -- COPYRIGHT, D.B.SPALDING --
$INCLUDE 9,COMAl.FTN
SINCLUDE 9,COMB.FTN
C

DIMENSION LAB(25),0UT(25),TITLE (3,4),

1XLPLOT (158) ,YLAXIS(17),YLPLOT (158,17),

2XTPLOT (68) ,YTAXIS(9) ,YTPLOT (64, 9),

3DFE (20) ,DFI {(29) ,FLUX (26) ,STANE (20) ,STANI (249)
C
CHAPTER A ———=e————e - - INITIAL DATA FOR PRINTOUT —=—=——m————m
c -—— - -- CROSS-STREAM OUTPUT (PROFILE) DATA =-==————==—
C  m——— ASSIGN KOUT= NO, OF VARIABLES, AND OUTPUT LABELS LAR (K)

DATA KouUuT/12/

DATA LAB/"R/R@Q","UVEL","TEMP","FUEL","OXYG","H2M",

1 "02M","H20M","N2M" ,"TEMF","FUFL","OXFL"/

——— ~~———=-- TRANSVERSE (CROSS—-STREAM) PLOT DATA ———===——=
————- ASSIGN NYT= NO. OF VARIABLES TO BE PLOTTED

~-- INSERT DIMENSIONS, ENSURE THAT ITDIM.GE.N.AND.JTDIM.GE.NYT.
DATA NYT/9/,ITDIM,JTDIM/66,9/

----- ASSIGN LABELS FOR PLOT AXES

DATA XTAXIS/"Y(I)"/

DATA (YTAXIS(K),K=1,9)/"U VEL","TEMP","FUEL","OXYG","1FAG","2FAG"
1,"3FAG","4FAG","SFAG"/

a aQaona

- - - LONGITUDINAL (DOWN—STREAM) PLOT DATA «—==w====
————— ASSIGN NYL= NO. OF VARIABLES TO BE PLOTTED

-= INSERT DIMENSIONS, ENSURE THAT ILDIM.GE.LASTEP.AND.JLDIM.GE.NYL
DATA NYL/17/,ILDIM,JLDIM/150,17/

————— ASSIGN LABELS FOR PLOT AXES

DATA XLAXIS/"Xu"“/

DATA (YLAXIS(K),K=1,17)/"u(1)","T(1)","FU(1)","OX(1)","N,R OR YY",

l1 "*1,RrR(1)","2,PEI","3,RME","4,FLUXFU","5,DPDX","6,RATE", "7 FACE '

2 "A,FAG","B,FAG","C,FAG","D, FAG" "E, FAG"/

a anaan

an

———————————————————— TITLE DATA
DATA TITLE/"AXI-","SYMM","ETRI","CAL ","FLOW",
1 "PLAN","E FL","OW "," ",
2 "RADI","ALLY","-~ T","WARD"," FLO","W",
3 "VARI","ABLE"," CSA","LFA "," "/
c
CHAPTER B e —w e ——————————— HEADINGS ~—=—=m ———————
IF (ISTEP.GT.9) GO TO 1142
c e MODIFIED DATA
IF (MODEL.GT.2) GO TO 108
KOUT=12
198 CONTINUE
WRITE (6,1183) (TITLE(I,KIND),I=1,5)
1193 FORMAT(1H1,"GENMIX~T, SEPT.1977, TURBULENCE MODELS TEACHING PROGRA
1M,"/™ BASED ON APPENDIX A OF HTS REPORT NO. HTS/77/9, FEB.1977."/
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2 " COMBUSTION OF HYDROGEN AND AIR IN A JET, ",5A4)

PRESS1=PRESS
TEM=.5*(R(1)+R(N})
EMUl=(VISFU*F(1,JF)+VISOX*F(1,JOX)+VISPR*F(1,JPR))*
1 SQRT(F(1,JTE))
REY=PEI/(EMUl*TEM)
EQRAT=06.8
IF (INERT.NE.1l) EQRAT=FLOB*STOICH/(FLOC+TINY)/(OXC+TINY)
AMACH=SQRT (PEI*UB/ (GAMMA*PRESS*TEM) )

WRITE (5,1813) KASE,IRUN,KIND,KRAD,CSALFA,MODEL,LENGTH,MODAC1,
1 INERT,NOVEL ‘
1613 FORMAT (1H@,5H KASE,S5H IRUN,S5H KIND,S5H KRAD,7H CSALFA,6H MODEL,
1 7H LENGTH,7H MOD4Cl,6H INERT,6H NOVEL/1X,I4,315,F7.3,16,2I7,2I6)
C
WRITE (6,1815)NAGE,JAl,JAL, FOLM@, UMAX,MODFOR, (AGE (L) ,L=1, NAGEP1, 2)
1815 FORMAT (/5 (1H*) ,40HTHE ESCIMO MODEL OF TURBULENT COMBUSTION,
+ 5(1H*) /5 (1H*) ,38HIS INCORPORATED IN THE PRESENT PROGRAM,
+ 2X,5(1lH*) /5 (1H*) ,21EDEMOGRAPHIC CONSTANTS,5 (1H*) /1X,
+37HNAGE JAl JAL FOLM@ UMAX MODFOR /1X,2I4,16,2X,2F6.2,I4/
+47H AGEl1  AGE3 AGES AGE7 AGE9 AGEll,/6F8.5)
WRITE (6,1#18) EMPC1,EMPC2,EMPC3
1618 FORMAT (/5 (1H*) ,20HBIOGRAPHIC CONSTANTS,5(1H*) /1X,
1 25HEMPC1 EMPC2 EMPC3/1X,3E10.3)
WRITE (6,1814) OMPOW, (OM(I),I=1,N)
1614 FORMAT (1H4,18H OM(I), FOR OMPOW=,F6.3/(1X,1P6E11.3))
c
WRITE (6,1019)
1 HEX®,XHEX@,AHEX, BHEX, CHEX,
2 HINA,XHIN@,AHIN,BHIN,CHIN,
3 UEX#,XUEX@,AUEX,BUEX, CUEX,
4 XEND, XOUT,XULAST,HDIV,AGRAV
1919 FORMAT (1Hg@,
1 4X,4HHEX®,6X, SHXHEX@, 7X, AHAHEX, 7X, 4HBHEX, 7X, 4HCHEX/1X, 1P5E11.3/
2 5X,4HHING, 6X, SHXHING@, 7X, 4HAHIN, 7X, 4HBHIN, 7X, 4HCHIN/1X,1P5E11l. 3/
3 5X, 4HUEX@, 6X, SHXUEX@, 7X, 4HAUEX, 7X, 4HBUEX, 7X, 4HCUEX/1X,1P5E11.3/
4 5X,4HXEND, 7X, 4HXOUT, 5X, 6HXULAST, 7X, 4HHDIV, 6X, SHAGRAV/1X,1P5E11. 3)

WRITE (6,1P11) ua,uUB,UC,UD,TA,TB,TC,TD,
2 PRESS,PREEXP,REY,EQRAT,AMACH,ULIM,PEILIM
1911 FORMAT (1H®, 4X,2HUA,7X,2HUB, 7X, 2HUC, 7X, 2HUD,
1 7X,2HTA,7X,2HTB, 7X, 2HTC,7X, 2HTD/1X,8F9.3/
2 4X,5HPRESS, 3X, 6HPREEXP, 6X, 3HREY, 4X, SHEQRAT, 4X, SHAMACH, 5X, 4HULIM,
2 3X,6HPEILIM/1X,1P7E%.2)
IF(MODEL.LE.2)} GO TO 1102
WRITE(6,1012) AK,ELCON,TAUDK,ELEXP,SIGK,SIG2,
2 CMU,CD,FJRA,FJ2A,FJKD,FJ2D
1412 FORMAT (1Hd,3X, 2HAK, 9X, 5SHELCON, 6X, SHTAUDK, 6X, SHELEXP, 6X, 4HSIGK, 7X,
1l 4HSIG2/ 1P6El1ll.3/
2 4X,3HCMU,8X,2HCD,9X,4HFJKA,7X,4HFJ2A, 7X, 4HFJKD, 7X, 4HFJ2D/6E11.3)
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c
IF(MODEL,EQ.4) WRITE(6,1817) C1MOD4,C2MOD4
1617 FORMAT(1H ,3X,6HCIMOD4,5X, 6HC2MOD4/2E11.3)
IF (MODEL.EQ.5) WRITE(6,1816) C1MOD5,C2MODS
1816 FORMAT(1H ,3X,6HC1MOD5,5X, 6HC2MODS/2E11. 3)
C
c
CHAPTER C _— -- COMPUTE OUTPUT REQUIRED AT EACH STEP ~=——=—==—-
1102 CONTINUE
UBAR=,
DO 118 I=2,NM1
11¢ UBAR=UBAR+BOM (I)*U(I)
UFLUX=PEI*UBAR

NFLAST=JAL+3

DO 115 J=1,NFLAST

FLUX (J)=8.

DO 116 I=2,NMl
116 FLUX(J)=FLUX(J)+BOM(I)*F(I,J)
115 FLUX(J)=PEI*FLUX (J) .

DO 117 J=1,NF
DFI (J)=FLUX(J)/PEI-F(1,J)

117 DFE(J)=DFI (J)+F(1,J)-F(N,J)
UFLUX=UFLUX-PSIE*U (N)+U (1) *PSII
FLUX (JH)=FLUX (JH)-PSIE*ENTHD+PSII *ENTHA
FLUX (JP) =FLUX (JP)-PSIE*PHID+PSII*PHIA
FLUX (JF) =FLUX (JF) -PSIE*FUD+PSII *FUA
PRESSD=PRESS/PRESS1-1.

. IF (ISTEP.EQ.#.0R.ILPLOT.EQ.1) GO TO 1145
C ——--- ASSIGN VALUES FOR DOWNSTREAM PLOT

IPRIPL=18
XLPLOT (ISTEP)=XU
YLPLOT (ISTEP, 1)=U (IPRIPL)
YLPLOT (ISTEP, 2)=F (IPRIPL, JTE)
YLPLOT (ISTEP, 3)=F (IPRIPL,JF)
YLPLOT (ISTEP, 4) =F (IPRIPL, JOX)
IF (KIND-1) 111,111,114

111 YLPLOT (ISTEP,5)=R (N)
GO TO 113

114 YLPLOT (ISTEP,5)=Y (N)

113 CONTINUE
YLPLOT (ISTEP, 6)=R (1)
YLPLOT (ISTEP, 7)=PEI
YLPLOT (ISTEP, 8) =RME
YLPLOT (ISTEP, 9)=FLUX (JF)
YLPLOT (ISTEP, 10)=DPDX
YLPLOT (ISTEP, 11)=RATE
YLPLOT (ISTEP, 12) =FACE
YLPLOT (ISTEP, 13)=F (IPRIPL,JAL)
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YLPLOT (ISTEP, 14)=F (IPRIPL,JA2)

YLPLOT (ISTEP,15)=F (IPRIPL,JA3}

YLPLOT (ISTEP,16)=F (IPRIPL,JA4)

YLPLOT (ISTEP,17)=F (IPRIPL, JAS)
1185 CONTINUE

----- TESTS FOR PRINTOUT
----- IPRINT=1 GIVES SINGLE (STATION) VARIABLES,

IPRINT=2 ADDS THE ARRAY (PROFILE) VARIABLES,
IPRINT=3 ADDS THE CROSS-STREAM PLOTS.
IPRINT=0 .

IF (MOD (ISTEP,NSTAT) .EQ.#) IPRINT=1

IF (MOD (ISTEP,NPROF) ,EQ.#) IPRINT=2

IF (ISTEP.EQ.@) GO TO 1620

IF (MOD (ISTEP,NPLOT) .EQ. 0
1 .OR.ISTEP,EQ.JUSTEX.OR.ISTEP.EQ.JUSTIN
2 .OR.ITEST.NE.1l,0R.IFIN.,NE.1) IPRINT=3
128 IF(IPRINT.EQ.#) RETURN

c
CHAPTER D - ———— e STATION VARIABLES —~——=————--

WRITE (6,1830) XU,ISTEP,

1 JUSTIN,JUSTEX,DX,PRESSD,

2 KIN,KEX,DXY,DPDX,
3 PSII,PSIE,DXRE,PEI,
4 RMI,RME,DXINC,YREF1,
5
6
7
8

OQaGaOa

R(1),R(N),DXPSI,YREF2,
ELCON, :
UFLUX,
(FLUX (J) ,J=1,NF)
193¢ FORMAT(1H@,S5H***  3HXU=,1PElg¢.3,2X,6HISTEP=,1I5/
2X, 7HJUSTIN=,I14,1X,7HJUSTEX=,116,5X, 3HDX=,1PE142, 3,
8H PRESSD=,El1@.3/
5X,4HKIN=,110,4X,4HKEX=,119,4X, 4HDXY=,E10.3,3X,5HDPDX=,E10.3/
4X,5HPSII=,El@,3,3X,5HPSIE=,E1d.3, 3X, 5SHDXRE=, El@, 3,
4X,4HPEI=,El10.3/ _
5X,4HRMI=,Eld, 3, 4X, 4HRME=,E14. 3, 2X, 6HDXINC=,E14d. 3, 2X, 6HYREF1=,
E10.3/ : ’
4X,5HR (1)=,El1d4.3,3X,5HR (N)=,El1d.3, 2X, 6HDXPSI=,E10.3, 2X, 6HYREF2=,
El0.3/
3X, 6HELCON=,E18.3/
3X,6HUFLUX=,Eld. 3/
1X,8HFLUX(J)=, (5E11.3))

O~ W=

IF (ISTEP.EQ.8) GO TO 1442
UREF=UBAR
RUREF=PEI/((R(1)+R(N))*.5*Y (N))
URUREF=1./ (UREF*RUREF)

IF(KIN-2) 1961,1062,1063
1761 TAUID=TAUI*URUREF
DO 1425 J=1,NF
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STANI (J)=(RJTOTI(J)-F(1,J)*RMI)/(R(1)*DFI(J) *RUREF+TINY)
WRITE (6,1929) TAUID, (STANI(J),J=1,NF)

FORMAT (1H ,6HTAUID=,1PEl@.3,10H STANI(J)=,(4Ell.3))

GO TO 1863

1662 WRITE(6,1869) FACI,RATI
169 FORMAT(1H ,6H FACI=,1PEl18.3,6H RATI=,El8.3)
o
1963 IF(KEX-2) 1481,1882,1544
1981 TAUED=TAUE*URUREF
DO 1827 J=1,NF
1927 STANE (J)=(RJTOTE (J)~F (N,J) *RME) /(R (N) *DFE (J ) *RUREF+T INY)
WRITE (6,1828) TAUED, (STANE (J) ,J=1,NF)
1328 FORMAT (14 ,AHTAUED=,1PE1@.3,18H STANE (J)=,(4E11.3))
GO TO 1944
1882 WRITE(6,1689) FACE,RATE
1989 FORMAT (1H ,6H FACE=,l1PEld@.3,6H RATE=,E10.3)
GO TO 1942
1944 WRITE (6,1847) DAl,DA2
1847 FORMAT (5H DAl=,1PE1@.3,5H DA2=,E10.3)
c
CHAPTER E - - —————————— CROSS-STREAM PROFILES
1942 IF(IPRINT.EQ.1) GO TO 1858
YN=Y (N)
WRITE (6,1199) YN
1199 FORMAT (6H Y (N)=,1PE18.2)
c
WRITE(6,1099) (LAB(K),K=1,6)
DO 1491 I=1,N
OUT (1)=Y (I)/HEX®
OUT (2)=U (I)
OUT (3) =AVTEM (I)
OUT (4)=AVFU (I)
OUT (5)=AVOX (I )
OUT(S)—FMFU(I)
c —————— -—— WRITE PROFILES
1991 WRITE (6,1898) I (OUT (K) ,K=1,6)
IF (KOUT.LE.6) GO TO 1893
WRITE (6,1899) (LAB(K),K=7,KOUT)
DO 1892 I=1,N
OUT (7) =FMOX (I )
OUT (8)=FMH20 (I)
OUT (9)=FMN2 (I)
OUT (18)=TFLU (I)
OUT (11)=FUFLU(I)
OUT (12)=0XFLU(I)
1492 WRITE(6,1698) I, (OUT(K),K=7,KOUT)
1693 CONTINUE
IF (ISTEP.LT.5) GO TO 2863
WRITE (6,2801) (J,J=1,NAGE)
2001 FORMAT (/5X,5H***** 32HPOPULATION DISTRIBUTION QOF FOLDS,

1 SH*****/2X,3H I ,7H FRAT,3X,5(74 PA ( ,I2,2Hd) )/
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1 15%X,5(7H PA ( ,I2,2H) ))
DO 2000 I=2,NM1
2080 WRITE(6,2802) I,PA®(I)/RHO(I), (PA(I,J),J=1,NAGE)
2682 FORMAT (1X,I3,1P6E11.3/15X,1P5E11. 3)
IF(IPDF.NE.1) GO TO 2883
WRITE (6,2087)
2007 FORMAT (1H1,5X,SH***** 3gHPDF VALUES OF TEMPERATURE ,
1 SH*%x*k*)
WRITE (6,2004) (K,K=1,NPDFM1)
2804 FORMAT(/2X,34 I ,5(78 PDF{ ,I2,2H) )/
1 5X,5(7H PDF( ,I2,2H) ))
DO 2005 I=2,NM1
2065 WRITE (6,2086) I, (AVPDF(I,K),K=1,NPDFM1)
2096 FORMAT(1X,13,1P5E1l.3/4X,1P5E11.3)
2093 CONTINUE
c
IF(IPRINT.LT.3.0R.ITPLOT.EQ.1) GO TO 1658
C  me—— ASSIGN CROSS-STREAM PLOTS
Do 1873 I=1,N
XTPLOT (I)=Y(I)
YTPLOT (I,1)=U(I)
YTPLOT (I,2)=F(I,JTE)
YTPLOT (I, 3)=F(I,JF)
YTPLOT (I,4)=F(I,JOX)
IF (MODEL.LE.2) GO TG 1873
YTPLOT (I, 5)=EMU (I)
YTPLOT (I,6)=F(I,JEL)
YTPLOT(I,7)=F(I,J2)
YTPLOT (I,8)=F(I,JK)
c YTPLOT (I,9)=0UT(11) ABOVE
1098 FORMAT(1H ,I3,1P12E1@.2)
1499 FORMAT(1H9,38 1I,12(2X,A8))
1873 CONTINUE
c —m e - —— CROSS-STREAM PLOT OUTPUT
WRITE (6,1096) XU,ISTEP
1096 FORMAT (19H1CROSS-STREAM PLOT,,4H XU=,1PE18.3,7H ISTEP=,I4)
c
CHAPTER F ==—=-=——~<ame——e——a———————— RETURN OR TERMINATE -

1850 IF(IFIN.EQ.1l) RETURN
WRITE (6,112) ISTEP,LASTEP,XU,XULAST,IFIN

112 FORMAT (14H@TERMINATED AT//7H ISTEP=,15,8H LASTEP=,I5,
1 48 XU=,1PE1ll.3,8H XULAST=,El11.3,6H IFIN=,13)
IF(ILPLOT.EQ.l1) RETURN

C —_— —— —— DOWNSTREAM PLOT OQUTPUT
WRITE (6,1854) XU,ISTEP
1P54 FORMAT (18H1DOWN-STREAM PLOT,,4H XU=,1PE10.3,7H ISTEP=,I4)
RETURN

o) - ——————————— - - - _—

END
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SUBROUTINE DEMO
SINCLUDE 9,COMAl.FTN
SINCLUDE ¢,COMB.FTN
i T e T R L R g R s e s S T I LS

ENTRY DEMOC
C*************************#*********************************************

DO 3 L=1,NAGE

DAGE (L) =AGE (L+1)-AGE (L)

AGEC (L)=AGE (L)+#.5*DAGE (L)

3 RECDA(L)=1./DAGE (L)

AGE 2=AGE (2)

JA1P1=JA1+1

JAIM1=JAl-1

RETURN
C*********************************************************************

ENTRY DEMOS
c*********************************************************************
------------- CALCULATION OF ME/MO———- _—— -

CALCULATION OF FOLD FORMATION RATE BASED
ON DIFFERENT ASSUMPTIONS ABQUT THE DISTRIBUTION
ACROSS THE BOUNDARY LAYER
MODFOR=1 EXPONENTIAL DISTRIBUTION
MODFOR=2 LINEAR DISTRIBUTION
MODFOR=3 VELOCITY GRADIENT PROFILE DISTRIBUTION
MODFOR=4 VELOCITY PROFILE DISTRIBUTION
MODFOR=5 THETA DISTRIBUTION '
OTHER DISTRIBUTION CAN BE INSERTED HERE
SUM1=§4.
SUM2=¢.
FOLM@=0.5
Cm— e ARRAY PAG IS USED HERE AS TEMPORAY STORAGE FOR THE
Cmmmmmm e AREA OF EACH CELL.

PAB (2)=0.5%(Y (2)+Y (3) ) *R(2)

PAG (NM1)= (Y (N)—-0.5% (¥ (NM1)+Y (NM2))) *R (NM1)

DO 48 I=3,NM2 -

40 PAG(I)=B.5% (Y (I+1)~Y(I-1))*R(I)

GO TO (41,42,43,44,45) ,MODFOR

Cmmmmmmm e EXPONENTIAL DISTRIBUTION OF INJECTED MASS
41 DO 418 I=2,NM1

OMI=0M (I)

SUM1=SUM1+RHO (I ) *(1.-OMI)*EXP (~OMI)*PAG (I) *XMJ (I )

419 SUM2=SUM2+RHO (I)*OMI*EXP (OMI-1.)*PAG (L) *XM3 (I)

ALFA1=RMI/SUM1

ALFA2=-RME/SUM2

DO 411 I=2,NM1

OMI=0M (1)

411 PAG(I)=RHO(I)* (ALFALl*(1l.-OMI)*EXP (~OMI)+ALFA2*OMI*EXP (OMI-1.))

GO TO 49
Cmmm e LINEAR DISTRIBUTION OF FOLD FORMATION

42 DO 428 I=2,NM1

SUM1=SUML1+RHO (I)* (1.-OM (I))*PAG (I') *XM@ (I)

sNsNeNoNe N Ne N NS Ne!
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420 SUM2=SUM2+RHO (I)*OM (I)*PAG (I)*XM0 (I)
ALFAl=RMI/SUM1
ALFA2=-RME/SUM2
DO 421 I=2,NM1
421 PAG (I)=RHO(I)*(ALFALl*(1.-0OM(I))+ALFA2*0OM(I))
GO TO 49
Cmmmmm e s VELOCITY GRADIENT RATE
43 DO 439 I=2,NMl
DUDYB (I)=ABS (U(I+1)=U(I-1))/(Y (I+1)=-¥Y(I-1))
430 SUM1=SUM1+RHO (I)*DUDYB (I)*PAD (I)*XM0&(I)
ALFAl=(RMI-RME) /SUM1
DO 431 I=2,NM1
431 PAG(I)=RHO(I)*ALFAL*DUDYB (I)
GO TO 49
Cmmmm e VELOCITY PROFILE DISTRIBUTION
44 DO 440 I=2,NMl
440 SUM1=SUM1+RHO (I)*U (I)*PAD (I)*XM@ (I)
ALFAl=(RMI-RME) /SUM1
DO 441 I=2,NM1
441 PA®(I)=RHO (I)*ALFAL*U(I)
GO TO 49
Cmmmm e THETA DISTRIBUTION RATE
45 OMSTAR=0.5
IF(ISTEP.GT.1) OMSTAR=RMI/(RMI-RME+TINY)
TEMI=(F(l,JH)~.5%U (1) **2) /CPR (1)
TEMIP1l=(F(2,JH)=.5*%U(2)**2) /CPR (1)
TTI=(TD-TEMI)/(TD-TA)
TTIPl=(TD-TEMIP1)/(TD~TA)
SUMM@=4.,
DO 458 I=2,NM1
TTIM1=TTI
TTI=TTIP1
TEMIM1=TEMI
TEMI=TEMIP1
TEMIPl=(F(I+1,JH)~.5%U (I+1)**2)/CPR(1)
TTIPl=(TD-TEMIP1)/(TD-TA)
TPRIME=@.735*F (I,JEL) *ABS (TTIPL-TTIM1) /(Y (I+1)=Y (I-1))
TPRIME=AMIN] (TPRIME,1.-TTI,TTI)+TINY
c IF(OM(I).LT.OMSTAR) GO TO 18
YSTAR=Y (I) /¥ (N)
IF (YSTAR.LT.OMSTAR) GO TO 10
TREENG=TT I+TPRIME
TFRESH=0,
GO TO 11
18 TREENG=ABS (TTI-TPRIME)
TFRESH=1.
11 XM@ (I)=(TREENG-TTI)/(TREENG-TFRESH)
450 SUM1=SUM1+RHO (I)*XM@ (1) *PAG (I)
ALFAl=(RMI-RME) / (FOLM@*SUM1)
DO 451 I=2,NM1
451 PA@ (I )=RHO (I)*ALFALl*XM@ (I)
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49 CONTINUE
RETURN
CrrrhhkhrhhrrrdREkRAAXARRAANRARRR AR FAARLAR bbb bbbbhbbbbrarhhhhhkkrdhs

ENTRY DEMO2
c*********************************************************************
IF(IFIN.EQ.2) GO TO 58
IF (ISTEP.LE.1.OR.MOD (ISTEP,NSTAT).NE.8) GO TO 7@
5¢ DO 51 J=1,NAGE
DO 51 I=2,NM1
PA(I,J)=F({I,J+JAl-1)
51 CONTINUE
78 CONTINUE
RETURN
END
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SUBROUTINE BICG
$INCLUDE 9,CCMAl.FTN

SINCLUDE 9,COMB,.FTN
c************i*******ii*******i*********i******************** o &k k

ENTRY BIOC
Chhkkhkhhhhhhhhhhhhhhhhrhhhhhhhhrhhhhkhhhhhhhhrhhhhhhhhhhhhhhhhhddd
C——————— THE BIOGRAPHIC ANALYSIS IS PERFORMED
Commmmmm—— IN THIS SUBROUTINE
C—r—————— THE FOLLOWING "OPEN" STATEMENT IS VALID FOR
Cmmmmmmenme PERKIN-ELMER 3229 COMPUTER ONLY.,IT SHOULD
Commrmmmmm— BE MODIFIED IF OTHER MACHINE IS USED.

Commommmms THE RECORD LENGTH (RECL) SHOULD BE EQUAL TO
Commmm———— OR GREATER THAN THE NUMBER OF ELEMENTS IN
Cmm—mm THE ARRAY(TQ BE STORED)MULTIPLIED BY FOUR.

OPEN(7,FILE="FOLD" ,ACCESS="DIRECT" ,STATUS="UNKNOWN",
1 RECL=648,COUNTBY="RECORD",FORM="UNFORMATTED")
PI=3.141596

NDIFOM=24

FSTQIC=0.08282

DTST=2276.

TST=DTST

PDGSCN=PRESS/GASCON

RHOAIR=PDGSCN*WPR/TD

RHOFUL=PDGSCN*WFU/TA

WOXPR= (WOX-WPR) *3,.232

WEFUPR=WFU-WPR

FS1=1.-FSTOIC

VISDPR=VISMIX/PRLAM

TWODPI=2./PI

PHID=0XD-FUD*STOICH

T2=0.5/STOICH

T3=1./(PHIB~-PHID+TINY)

T4=~PHID*T3

0XD1=1.-0XD
RETURN
LR R R T T Yy T PP
ENTRY BIOS
Chihkhkdkhhkhhhhrkhkkkhkrhhhhrhhhhkhhkkhrhhdhhhhhrdkhhhhhkhhhkkkkhhhhk
OMSTAR=0,
IF(ISTEP.GT.1)OMSTAR=RMI/ (RMI~-RME+TINY)
Commmm e OMEGA-STAR DEVIDES THE SHEAR LAYER INTO TWO PARTS
o - OF DIFFRENT ENTRAINED FRESH MASS , IT HAS TO BE CALCULATED
c -— IN CONSISTENT MANNER WITH FOLD FORMATION RATE.

FFI=-(F(l1,JP)-.232)/(PHID-PHIB)

FFIPl=-~(F(2,JP)-A.232)/(PHID-PHIB)
Cmmmmam LOOP FOR ALL LAYER GRID POINTS

¥2=Y (2)

ISTEPL=ISTEP+1

DO 114 1=1,N

DO 119 K=1,NPDF

AVPFA(I,K)=0.
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321

AVPDF (I,K)=0.
CONTINUE

DO 188 I=2,NM1

-— CALCULATION OF F~- PRIME

ELI=AMAX1 (Y2,F(I,JEL))

FFIM1=FFI

FFI=FFIP1
FFIP1=-(F(I+1,JP)-8.232)/(PHID-PHIB)
FPRIME=EMPC1*ELI*ABS (FFIP1-FFIM1) /(Y (I+1)~Y (I-1))
IF (FPRIME.GT. 8. 001.AND.FFI.EQ.1.) FFI=8.5%(FFIP1+FFIMl)
IF (FPRIME.GT..691.AND,.FFI.EQ.08.) FFI=8.5* (FFIP1+FFIM])
FPRIME=AMIN] (FPRIME,1,~FFI)+TINY
IF(OM(I).LT.OMSTAR) GO TO 18
—-- DETERMINATION OF FRESH F AND REENGULFED F
FFRESH=0.

FREENG=FFI+FPRIME

RHOFSH=RHOAIR

GO TO 11

FREENG=ABS (FFI~-FPRIME)

FFRESH=1,

RHOFSH=RHOFUL
—- DETERMINATION OF M@ VALUE

FOLM@= (FREENG-FFI)/(FREENG-FFRESH+TINY)

XM@ (I)=FOLM®

AVRATL(I)=0.

AVRAT2(I)=0.

AVFU(I)=0.

AVOX (I)=0.

AVPR (I)=0.

AVTEM (I)=0,

AVTEMS (I)=0.

AVFUS (I )=9.

AVOXS (I)=9.

AVPRS (I)=0.

RBURN (I)=0.

SUMPDF (I)=4.

AVFFIS (I)=0.

POPAGE (I)=8.

CXFOR=0,5* (UMAX+UMIN) /UMAX

DUDYB (I)=ABS (U {I+1)-U(I-1)) /(Y (I+1)-¥(T-1))
—— DETERMINATION OF FOLD DIVISION
--DENSITY OF REENGULFED MASS

IF (FREENG.GE.FSTOIC) GO TO 17

--AIR SIDE .

RHORE=PDGSCN* (WOXPR* (FSTOIC-FREENG) /FSTOIC+WPR) / (TD+FREENG/FSTOIC*
1 (TST-TD))

GO TO 19

--FUEL SIDE

RHORE=PDGSCN* (WFUPR * (FREENG-FSTOIC) /FS1+WPR) /{TA+ (1. ~FREENG) /FS1*
1 (TST-TA))
CONTINUE
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------ FOLD DISTANCES MEASURED FROM THE FRESH SIDE

HFOL=EMPC2*ELI

HDIVF=RHORE*FOLM@*HFOL/ (RHOFSH+RHORE*FOLMZ-RHOFSH*FOLM®3)
HFRESH=HDIVF

RHODIV=RHOFSH —

HREENG=HFOL-HFRESH

OMDIVF=FOLM#

---------- LEFT PART OF THE FOLD HAS THE HIGHER F-VALUE

24

25

IF(FFRESH.EQ.1.) GO TO 24

RHODIV=RHORE

HDIVF=HFOL-HDIVF

HFRESH=HFOQL-HDIVF

HREENG=HFOL~HFRESH

OMDIVF=1.-FOLM®?
RHOAV={RHOFSH*HFRESH+RHORE*HREENG) /HFOL

IF (FREENG.LE,FSTOIC) GO TQ 25

TREENG=TA+ (1.-FREENG) /FS1* (TST-TA)
TAV=(RHOFSH*TA*HFRESH+RHORE*TREENG*HREENG) / (RHOAV*HFOL)}
GO TO 26

TREENG=TD+FREENG/FSTOIC* (TST-TD)
TAV=(RHOFSH*TD*HFRESH+RHORE*TREENG*HREENG) / (RHOAV*HFOL)
DIFCOF=VISDPR*SQRT (TAV) /RHOAV

RSTR=EMPC3*DUDYB (I)+TINY
OMDIVF=HDIVF*RHODIV/(HFOL*RHOAV)
ADIF=DIFCOF/(2.*HFOL*HFOL)

---------- STORE THE FOLD CHARACTERISTICS AT BIRTH PLACE
---------- FOR EACH POINT ACROSS THE JET- -

190

181

lgla

ARRAY (I,1)=HFOL
ARRAY (I, 2) =OMDIVF
ARRAY (I, 3)=FFRESH
ARRAY (I, 4)=FREENG
ARRAY (I, 5)=RSTR
ARRAY (I,6)=FFI
ARRAY (I, 7)=ADIF

ARRAY (I,8)=U(I)
CONTINUE

XM (1) =XM3 (2)

XM (N)=XM@ (NM1)

IF (KIN.NE.3) GO TO 1914
DO 191 JJ=1,8

ARRAY (1,JJ)=ARRAY (2,JJ)
CONTINUE

GO TO 1928

ARRAY (1,1)=ARRAY(2,1)
ARRAY (1, 2)=ARRAY (2, 2)
ARRAY(1,3)=1.

ARRAY (1,4)=1.

ARRAY (1, 5)=ARRAY (2,5)
ARRAY(1,6)=1.

ARRAY (1, 7)=ARRAY (2,7)
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ARRAY (1,8)=ARRAY (2, 8)
1820 ARRAY (N,1)=ARRAY (NM1,1)

ARRAY (N, 2)=ARRAY (NM1, 2)

ARRAY (N, 3)=0.

ARRAY (N, 4) =4,

ARRAY (N, 5)=ARRAY (NM1,5)

ARRAY (N, 6)=0.

ARRAY (N, 7)=ARRAY (NM1, 7)

ARRAY (N, 8)=UD

DO 1838 I=2,NM1

FVAL (I)=-(F(1,JP)-9.232)/(PHID-PHIB)
1839 FN2(I)=0XD1*(1l.-FVAL(I))
---------- STORE THE FOLD INFORMATION INTO THE TAPE
---------- THE MASS STORAGE FACILITIES IS EMPLOYED-—=~————-
---------- HERE TO REDUCE THE IN-CORE STORAGE-——~———=——e—-

WRITE (7,REC=ISTEP1) ARRAY

XP (ISTEP1)=XD

KBORN=ISTEP]

DO 1886¢ IA=1,NAGE
IF (IA.GT.1) GO TO 880
IBORN1=1
GO TO 885
8@ IBORN1=1
XFOR=XD* (1.~AGEC (IA))
KSUM=ISTEP1+l
—————————— SEARCH FOR THE BIRTH PLACE OF FOLDS AT
---------- PARTICULAR AGE IN THE POPULATION ——-—==m——--
DO 801 KK=1,ISTEP1
K=KSUM-KK
IF (XFOR.GT.XP (K)) GO TO 882
881 CONTINUE
882 KBORN=K+1
---------- READ THE REQUIRED INFORMATION FROM THE TAPE~————=-
' IF (KBORN.LT,KBORNP) READ(7,REC=KBORN) ARRAY
865 KBORNP=KBORN
DO 98¢ I=2,NMl
RATEAL (I)=0.
RATEA2(I)=4.
FUAV (I)=4.
OXAV (1)=6.
PRAV (I)=0.
TEMAV (I)=0
TEMAVS (I)=
FUAVS (I)=0
OXAVS (I)=0.
PRAVS (I)=0.
FFIAVS (I)=8.
DO 983 L=2,N
IF(FVAL(I).GT.ARRAY (L,6)) GO TO 984
963 CONTINUE

|~ |

a.
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994 IBORN=L-IBORN1
Commmm e THE LINEAR INTERPOLATION PROCEDURE IS USED HERE
Commm e TO DETERMINE THE FOLD CHARACTERISTICS AT BIRTH PLACE-——--
FACTOR= (ARRAY (IBORN, 6)~FVAL(I))/(ARRAY (IBORN, 6)
1 -ARRAY (IBORN+1,6)+TINY)
BFOL=(1.-FACTOR) *ARRAY (IBORN, 1) +FACTOR*
1 ARRAY (IBORN+1,1)
OMDIVF=(l.-FACTOR) *ARRAY (IBORN, 2)+FACTOR*
1 ARRAY (IBORN+1,2)
FFRESH=(1.-FACTOR) *ARRAY (IBORN, 3) +FACTOR*
1 ARRAY(IBORN+1,3)
FREENG= (1.-FACTOR) *ARRAY (IBORN, 4) +FACTOR *
1 ARRAY (IBORN+1,4)
RSTR= (ARRAY (IBORN, 5)+EMPC3*DUDYB(I)) /2.
ADIF=(1.~-FACTOR)*ARRAY (IBORN, 7)+FACTOR*
1 ARRAY (IBORN+1,7)
ADIF=ADIF/RSTR

FFI=FVAL(I)
UBORN={1.-FACTOR) *ARRAY (IBORN, 8) +FACTOR*ARRAY (IBORN+1, 8)
o[ THE "PROFILE" METHOD IS EMPLOYED HERE TO CALCULATE
Cmwmmmmmmem THE DIFFUSION PROCESS INSIDE EACH FOLD.
Cmwmmmmmmem THE EVOLUTION OF THE SINUSOIDAL PROFILE IS
Commmmmem o= DEVIDED INTO THREE SEPARATE STAGES.
o S CALCULATION OF TIME SEPARATING THREE STAGES

FBAR1=@,5* (FFRESH+FREENG)

FAMP=0, 5*ABS (FFRESH~-FREENG)

F1=AMAX1 (FFRESH, FREENG)

F2=AMIN1 (FFRESH, FREENG)

TERM=AMINL (OMDIVF,1,~OMDIVF) **2

RECAP=1./ (ADIF*PI+1.E-30)
TIME1l=(FBAR1~-TWODPI*FAMP~F2) *TERM*RECAP/ (FAMP+1.E-30)
TIME2=(.25-TERM) *RECAP+TIMEL

UFOLD=#. 5% (UBORN+U (I))

AGEDIM=AGEC (IA) *XD/UMIN
ARGUM=AMIN1 (2. *RSTR*AGEDIM, 158. )

AGEND=EXP (ARGUM) -1.

IF (TIME1l,LT.AGEND) GO TO 28

Cmmmmmmmmm THE DIFUSION IN FOLD STOPS DURING THE FIRST STAGE

ISTAGE=1
DELAJ2=ADIF*FAMP*PI *AGEND/ (FBAR1-TWODPI *FAMP-F2+1,E-30)
DELAJ=SQRT (DELAJ2)

OMLEFT=0MDIVF-DELAJ

OMRIGT=0MDIVF+DELAJ

DDELAJ=DELAJ*2./FLOAT (NDIFOM)

IF (F1.GT.FSTOIC) GO TO 182

FUL=0.

OXL=0XD* (FSTOIC~F1) /FSTOIC

PROL=1, -FUL-OXL-(1.-F1) *0XD1
ENTHL=ENTHA*F1+ENTHD*(1.—-F1)

CPBORN=FUL*CFU (I)+0XL*COX(I)+(1.~F1)*OXD1*CN2(I)+
1 (l1.-FUL-OXL-(1.-F1)*0XD1)*CH20 (I)
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TEML= (ENTHL-FUL*HFU) /CPBORN
GO TO 103
182 FUL=FUA* (F1-FSTOIC)/FS1
OXL=90.
PROL=1.-FUL-0XL-(l.-F1)*0XD1
ENTHL=ENTHA*F1+ENTHD* (1.-F1)
CPBORN=FUL*CFU (I)+0XL*COX(I)+(1.-F1)*0OXD1*CN2(I)+
1 (1.-FUL-OXL-(1.-F1)*0XD1)*CH20(I)
TEML= (ENTHL-FUL*HFU) /CPBORN
133 CONTINUE
FUAV (I )=FUAV(I)+FUL*OMLEFT
OXAV (I)=0XAV(I)+0OXL*OMLEFT
PRAV (I )=PRAV(I)+PROL*OMLEFT
TEMAV (I )=TEMAV (I)+TEML*OMLEFT
TEMAVS (I )=TEMAVS (1) +TEML*TEML*OMLEFT
FUAVS (I)=FUAVS (I )+FUL*FUL*OMLEFT
OXAVS (I)=0XAVS (I)+0XL*OXL*OMLEFT
PRAVS (I)=PRAVS (I)+PROL*PROL*OMLEFT
FFIAVS (I)=FFIAVS (I)+F1*F1*OMLEFT
IF(F2.GT.FSTOIC) GO TO 186
FUR=4.
OXR=0XD* (FSTOIC-F2) /FSTOIC
PROR=1.-FUR-0XR-(l.-F2)*0XDl
ENTHR=ENTHA*F2+ENTHD* (1.~F2)
CPBORN=FUR*CFU (1) +0XR*COX (I)+(1.-F2)*0XD1*CN2(I)+
1 (1.-PUR-0XR-(1.-F2)*0XD1l)*CH20(I1)
TEMR= (ENTHR-FUR*HFU) /CPBORN
GO TO 147
136 FUR=FUA* (F2-FSTOIC)/FS1
OXR=0.
PROR=1.-FUR-0XR-(l.-F2)*0XD1
ENTHR=ENTHA*F2+ENTHD* (1.~-F2)
CPBORN=FUR*CFU (I )+OXR*COX(I)+(1.-F2)*OXD1*CN2(I)+
1 (1.-FUR-0XR-(1.-F2)*0XD1)*CH20 (I)
TEMR= (ENTHR-FUR*HFU) /CPBORN
187 CONTINUE
OMR1=1.-OMRIGT
FUAV (I)=FUAV (I)+FUR*OMR1
OXAV (I)=0XAV (I)+0XR*OMR1
PRAV (I)=PRAV(I)+PROR*0OMR1
TEMAV (I )=TEMAV (I )+TEMR*OMRL
TEMAVS (I)=TEMAVS (I)+TEMR*TEMR*0OMR1
FUAVS (I)=FUAVS (I)+FUR*FUR*OMR1
OXAVS (I)=0XAVS (I)+0XR*QOXR*OMR1 "
PRAVS (I)=PRAVS (I )+PROR*PROR*0OMR1
FFIAVS (I)=FFIAVS (I)+F2*F2*0MR1
DENOM1=2,*DELAJ/PI
. DO 1@8 IO=1,NDIFOM
OMA (I0)=DDELAJ*@.5* (FLOAT (I0-1)+FLOAT (10))
FSR (I0)=FBAR1+FAMP*SIN( (DELAJ-OMA (I0))/(DENOM1+1.E-34))
IF(FSR({I0).GT.FSTOIC) GO TO 194



164

185

198

20

282

326

FUM(I0)=4.
OXM (I0)=0XD* (FSTOIC~FSR (I0))/FSTOIC

PROM (I0)=1.~FUM(I0)-0XM(IO)-(1.~FSR(I0))*0XD1
ENTHFO (I0)=ENTHA*FSR (I0)+ENTHD* (1.-FSR (I0))
CPBORN=FUM{IO)} *CFU (I)+0XM (I0)*COX(I)+(1.-FSR(I0))*0XD1*CN2(I)+
1 (1.-FUM(IO)~0XM(I0)~(1.=FSR(IO))*OXD1)*CH20 (I)
TEMM (I0)= (ENTHFO (I0)-FUM(I0) *HFU) /CPBORN

GO TO 185

FUM (I0)=FUA* (FSR (I0)-FSTOIC) /FS1

OXM (10)=8.
PROM(IO0)=1.~FUM(I0)-OXM(IO)~-(l.-FSR(IO))*0OXD1
ENTHFO (I10)=ENTHA*FSR (I0)+ENTHD* (1. ~FSR (I0))
CPBORN=FUM (I0) *CFU (I)+0XM (I0)*COX(I)+(1.-FSR(IO))*0XD1*CN2(I)+
1 (1.-FUM(IO)-OXM(IO)~-(l.-FSR(I0))*0XD1)*CH20 (I)
TEMM (I0)= (ENTHFO (10)-FUM(I0)*HFU)/CPBORN

CONTINUE

FUAV (I)=FUAV (I)+FUM(IO)*DDELAJ

OXAV (I)=0XAV (I)+OXM(IO)*DDELAJ

PRAV(I)=PRAV (I)+PROM(IO)*DDELAJ

TEMAV (I ) =TEMAV (I )+TEMM (10) *DDELAJ

TEMAVS (I)=TEMAVS (I)+TEMM (I0)*TEMM (I0)*DDELAJ
FUAVS (I)=FUAVS (I)+FUM(IO)*FUM (I0)*DDELAJ

OXAVS (I)=OXAVS (I)+0XM(I0)*OXM (I0) *DDELAJ

PRAVS (I )=PRAVS (I )+PROM(10) *PROM (10) *DDELAJ

FFIAVS (I)=FFIAVS (I)+FSR (I0)*FSR (I0)*DDELAJ
CONTINUE

GO TO 56

IF (OMDIVF.EQ.#.5) GO TO 3@

IF (TIME2.LT.AGEND) GO TO 38
—————— THE DIFFUSION IN FOLD STOPS DURING THE SECOND STAGE
DELAJ2=TERM+ADIF*PI* (AGEND-TIMEL)

DELAJ=SQRT (DELAJ?2)

FAMP=ABS (FFRESH-FREENG) *SQRT (TERM) /(2. *DELAJ+1.E~38)
DDELAJ=2.*DELAJ/FLOAT (NDIFOM)

DENOM2=2,*DELAJ/P1

IF (OMDIVF.LT.d.5) GO TO 22

ISTAGE=2

OMLEFT=1.-2.*DELAJ

IF(F1.GT.FSTOIC) GO TO 202

FUL=0.

OXL=0XD* (FSTOIC-F1) /FSTOIC
PROL=1.-FUL-OXL~(1.~-F1)*0XD1l
ENTHL=ENTHA*F1+ENTHD* (1. -F1)

CPBORN=FUL*CFU (I)+OXL*COX(I)+(l.-F1)*0XD1*CN2(I)+
1 (1.~FUL-OXL~(1.-F1)*0XD1)*CH20 (I)

TEML= (ENTHL-FUL*HFU) /CPBORN

GO TO 203

FUL=FUA*(F1-FSTOIC) /FS1

OXL=8.

PROL=1.-FUL-OXL~(1.-F1)*0XD1
ENTHL=ENTHA*F1+ENTHD* (1.-F1)
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204

285

21

22

327

CPBORN=FUL*CFU (I)+0OXL*COX{I)+(1.-F1)*OXD1*CN2(I)+
1 (1.-FUL-0XL-(1.-F1)*0XD1)*CH20 (I)
TEML=(ENTHL-FUL*HFU) /CPBORN

CONTINUE

FUAV (I )=FUAV(I)+FUL*OMLEFT

OXAV (I)=0XAV(I)+O0OXL*OMLEFT

PRAV (I )=PRAV(I)+PROL*OMLEFT

TEMAV (I )=TEMAV (I )+TEML*OMLEFT

TEMAVS (I )=TEMAVS (I )+TEML*TEML*OMLEFT

FUAVS (1)=FUAVS (I1)+FUL*FUL*OMLEFT

OXAVS (I )=0XAVS {I)+0XL*0XL*OMLEFT

PRAVS (1 )=PRAVS (I)+PROL*PROL*OMLEFT

FFIAVS (I )=FFIAVS (I)+F1*F1*OMLEFT

FBAR1=F1-FAMP

DO 21 I0=1,NDIFOM
OMA(IO)=DDELAJ*@.5* (FLOAT (I0-1)+FLOAT (10))
FSR(I0)=FBAR1+FAMP*SIN ( (DELAJ-OMA(IO)) /(DENOM2+1.E-32})
IF(FSR(I0).GT.FSTOIC) GO TO 2084

FUM{IO)=0.

OXM(I0)=0XD*(FSTOIC-FSR(IOQ))/FSTOIC
PROM(I0)=1.~FUM{IO)~-0XM(I0)~(1.~FSR(I0))*0XDl
ENTHFO (10} =ENTHA*FSR (I0Q)+ENTHD*(1.-FSR(10))
CPBORN=FUM(I0)*CFU(I)+0XM(I0)}*COX(I)+(1l.-FSR(IO)}*OXD1*CN2(I)+
1l (1.-FUM(IO)=-0XM(TI0)~(1l.~-FSR(I0))*0XD1l)*CH20(I)
TEMM (I0)=(ENTHFO (I0)-FUM(IO)*HFU) /CPBORN

GO TO 285

FUM(I0)=FUA* (FSR(I0)-FSTOIC) /FS1

OXM(10)=0.
PROM(I0)=1,-FUM(IOQ)-0XM(I0)-(1.-FSR(IO}) *0XDl
ENTHFO (IO )=ENTHA*FSR (I0)+ENTHD* (1.-FSR({I0))
CPBORN=FUM(IO) *CFU (I)+0XM(IO)*COX(I)+(1.-FSR(IO))*OXD1*CN2(I)+
1 (1.-FUM{TO)-O0XM(I0)-{1.-FSR(IO))*0XD1l)*CH20(I)
TEMM (I0)}= (ENTHFO (I0)-FUM(I0O)*HFU) /CPBORN
CONTINUE

FUAV(I)=FUAV(I)+FUM(IO)*DDELAJ
OXAV(I)=0XAV(I)+0XM(IO) *DDELAJ

PRAV (I )=PRAV(I)+PROM(IQ) *DDELAJ

TEMAV (I )=TEMAV (I )+TEMM(IO)*DDELAJ

TEMAVS (I }=TEMAVS (I)+TEMM (I0)*TEMM(I0)*DDELAJ
FUAVS (I)=FUAVS (I )+FUM(IQO)*FUM(I0)*DDELAJ

OXAVS (I)=0XAVS (I)+0XM(IO)*OXM(IO)*DDELAJ

PRAVS (I )=PRAVS (I)+PROM(IOQ) *PROM(I0) *DDELAJ
FFIAVS (I )=FFIAVS (I)+FSR(IQO) *FSR (I0) *DDELAJ
CONTINUE

GO TO 5@

OMRIGT=2.*DELAJ

ISTAGE=3

IF(F2.GT.FSTOIC) GO TO 286

FUR=4,

OXR=QXD* (FSTOIC-F2) /FSTOIC
PROR=1,-FUR-OXR-(1.-F2) *0XD1l
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ENTHR=ENTHA*F2+ENTHD* (1.-F2)
CPBORN=FUR*CFU(I)+0XR*COX(I)+(1.-F2)*0XD1*CN2(I)+
1 (1.-FUR-0OXR-(1.-F2)*0XD1)*CH20(I)

TEMR= (ENTHR-FUR*HFU) /CPBORN

GO TO 207

206 FUR=FUA* (F2-FSTOIC) /FS1

OXR=0.

PROR=1.-FUR=-0XR- (1.-F2) *OXD1
ENTHR=ENTHA*F2+ENTHD* (1.-F2)
CPBORN=FUR*CFU (I)+0XR*COX (I)+(1l.~F2)*OXD1*CN2 (I )+
1 (1.-FUR~OXR-(l.-F2)*0XD1)*CH20 (I)

TEMR= (ENTHR~FUR*HFU) /CPBORN

2807 CONTINUE

231

232

OMR1=1.-OMRIGT

FUAV(I)=FUAV (I)+FUR*OMR]

OXAV (I )=0XAV(I)+0XR*OMR1

PRAV (I )=PRAV (I )+PROR*OMRI1

TEMAV (I ) =TEMAV (I )+TEMR*OMR1

TEMAVS (I)=TEMAVS (I )+TEMR*TEMR*0OMR]1

FUAVS (I)=FUAVS (I)+FUR*FUR*OMR1

OXAVS (I)=0XAVS (I)+0XR*OXR*OMR1

PRAVS (I)=PRAVS (I)+PROR*PROR*OMR1

FFIAVS (I )=FFIAVS (I)+F2*F2*0MR1

FBAR2=F2+FAMP

DO 23 I0=1,NDIFOM

OMA (I0)=DDELAJ*@,.5*% (FLOAT (I0-1)+FLOAT (I0))

FSR (I0)=FBAR2+FAMP*SIN ( {DELAJ-OMA (I0))/(DENOM2+1.E-30)})
IF(FSR(I0O).GT.FSTOIC) GO TO 231

FUM(I0)=0.

OXM(IO)=0XD*(FSTOIC~FSR(I0O)) /FSTOIC
PROM(I0)=1.-FUM(IO)-O0XM(IO)-(1.-FSR(I0))*0XDl
ENTHFO(IO)=ENTHA*FSR (IO)+ENTHD*(1l.-FSR(I0)}
CPBORN=FUM (I0Q) *CFU (I )+0XM(IO)*COX(I)+(1.-FSR(IO))*0OXD1*CN2(I)+
1 (1.-FUM(IO)-0XM(IO)~(1.-FSR(IO)})*0XD1l)*CH20 (I}
TEMM (I0)=(ENTHFO (I0)-FUM(IO)*HFU) /CPBORN

GO TO 232 ]

FUM(I0)=FUA* (FSR(I0)-FSTOIC) /FS1

OXM(IO)=4.
PROM(IO)=1.-FUM({IO)-O0XM(IO)~-(1.-FSR(IO))*0XD1
ENTHFO (I0)=ENTHA*FSR (I0)+ENTHD* (1.-FSR(I0))
CPBORN=FUM (I0) *CFU (I)+0XM (I0)*COX(I)+(l.-FSR(IO))*OXD1*CN2(I)+
1 (1.-FUM(IQ)-0XM(IO)-(1.-FSR(IO))*0XD1l)*CH20(I)
TEMM (I0)= (ENTHFO (I0)-FUM (I0)*HFU)/CPBORN
CONTINUE

FUAV (I)=FUAV(I)+FUM(I0)*DDELAJ

OXAV(I)=0XAV (I)+0XM(I0)*DDELAJ

PRAV (I)=PRAV (I)+PROM (I10) *DDELAJ

TEMAV (I )=TEMAV (I)+TEMM(IO) *DDELAJ

TEMAVS (I )=TEMAVS (I)+TEMM (I0)*TEMM(IO)*DDELAJ
FUAVS (I)=FUAVS (I)+FUM(I0)*FUM(10)*DDELAJ

OXAVS (I )=0XAVS (I)+0XM (IQ)*0OXM(I10)*DDELAJ
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PRAVS (1) =PRAVS (I )+PROM(I0) *PROM(I0)*DDELAJ
FFIAVS (I)=FFIAVS (I)+FSR(I0)*FSR(I0)*DDELAJ
23 CONTINUE
GO TO 50
---------- THE DIFFUSION IN FOLD STOPS DURING THE THIRD STAGE
3@ DDELAJ=l./FLOAT (NDIFOM)
ISTAGE=4
DENOM3=1,
AGEND=AGEND-TIME2
ARGUM3=AMAX1 (-ADIF*PI*PI *AGEND,-608.)
FAMP=ABS (FFRESH-FRFENG) *SQRT (TERM) *EXP (ARGUM3) /DENOM3-
DO 31 1I0=1,NDIFOM
OMA (I0)=DDELAJ*@.5* (FLOAT (I0-1)+FLOAT (I0))
FSR(IO)=FFI+FAMP*SIN (PI*(8.5-OMA(I0)))
IF(FSR(I0).GT.FSTOIC) GO TO 311
FUM(10)=8.
OXM (I0)=0XD* (FSTOIC-FSR(I0))/FSTOIC
PROM(I0)=1.,~FUM(I0)-0XM(IQ)~-(1.=FSR(IQ))*0XD1
ENTHFO (I0)=ENTHA*FSR (I0)+ENTHD* (1.-FSR(I0))
CPBORN=FUM (I0) *CFU (I)+0XM (I0)*COX(I)+(l.-FSR(IO))*OXD1*CN2(I)+
1 (1.~FUM(IO)=~0XM(IQ)-(1.~FSR(I0))*0XD1)*CH20(I)
TEMM (I0)= (ENTHFO (I0)-FUM(I0Q) *HFU) /CPBORN
GO TO 312
311 FUM(IQ)=FUA*(FSR(IOQ)-FSTOIC)/FSl
OXM(IO0)=0.
PROM(I0)=1,-FUM(IO)=-0XM(I0Q)~(1.-FSR{IO))}*0XD1
ENTHFO (I0)=ENTHA*FSR (I0)+ENTHD*(1.-FSR (I0))
CPBORN=FUM (IQ) *CFU(I)+0XM(IO)*COX(I)+(1.-FSR(I0))*0OXD1*CN2(I)+
1 (1.-FUM(IO)-O0XM(IO)~(1.~FSR(IO0))*0XD1l)*CH20(I)
TEMM (I0)=(ENTHFO(IQ)~-FUM(IO)*HFU) /CPBORN
312 CONTINUE :
FUAV (I)=FUAV(I)+FUM(IQ)*DDELAJ
OXAV(I)=0XAV(I)+0XM(I0)*DDELAJ
PRAV (I)=PRAV(I)+PROM(I0) *DDELAJ
TEMAV (I )=TEMAV (I )+TEMM(I0)*DDELAJ
TEMAVS (I )=TEMAVS (I)+TEMM (IO)*TEMM (I0) *DDELAJ
FUAVS (I)=FUAVS (I)+FUM(I0)*FUM(I0O) *DDELAJ
OXAVS (I)=0XAVS (1)+0XM (I0)*OXM (10)*DDELAJ
PRAVS (I )=PRAVS (I)+PROM(IO)}*PROM(IO)*DDELAJ
FFIAVS (I)=FFIAVS (I)+FSR(IO)*FSR(I0)*DDELAJ
31 CONTINUE
58 CONTINUE
---------- CALCULATION OF FOLD-AVERAGE QUANTITIES ENDS HERE
IF (ISTEP.GT.1) GO TO 53
CMIX(I)=F(I,JF)*CFU(1)+F(I,JOX)*COX(1)+(1.-F(I,JF)-F{(I,J0X)})
1 *CPR (1)
FUUNBT=T3*F(I,JP)+T4
IF (FUAV(I).GT.FUUNBT) FUAV(I)=FUUNBT
53 CONTINUE
EXPO=EXP (~ARRCON/TEMAV (1))
PHII=(-FFI*(PHID-PHIB))+0.232
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382
381
380

385

386
383

338

320

330

FUBRNT=0.5/STOICH* (ABS (PHII)~PHII)
TERM=-EXPO*OXAV (I)

RATEAL (I)=TERM*FUAV(I)/(FUAV(I)~FUBRNT+TINY)
RATEA2 (I)=-RATEAL (I)*FUBRNT

————— CALCULATION OF POPULATION AVERAGE QUANTITIES
FDAGE=F (I, IA+JAl~1) *DAGE (IA)

AVRATL (I)=AVRATL (I)+RATEAL (I)*FDAGE
AVRAT2 (I)=AVRAT2(I)+RATEA2 (I)*FDAGE
AVFU (I)=AVFU (I)+FUAV (I)*FDAGE

AVOX (I)=AVOX (I)+OXAV (I)*FDAGE

AVPR (I)=AVPR (I)+PRAV (I)*FDAGE

AVTEM (I )=AVTEM(I)+TEMAV (I) *FDAGE
AVTEMS (I ) =AVTEMS (I)+TEMAVS (I)*FDAGE
AVFUS (I)=AVFUS (I)+FUAVS (I) *FDAGE
AVOXS (I )=AVOXS (I)+0XAVS (I) *FDAGE
AVPRS (I )=AVPRS (I)+PRAVS (I) *FDAGE
AVFFIS (I)=AVFFIS (I)+FFIAVS (I)*FDAGE
POPAGE (I )=POPAGE (I )+AGEC (IA)*FDAGE
----- CALCULATION OF POPULATION-AVERAGE PDF QUANTITIES
————— STARTS HERE.

IF (IPDF.NE.1) GO TO 411

IF (MOD (ISTEP1,NSTAT) .NE.$.AND. XD.NE.XULAST) GO TO 411
DO 39¢ II=1,NDIFOM

PHI (IT)=TEMM(II)

PHIL=TEML

PHIR=TEMR

CALL PDF

IF (EMIX.LT.7.999) GO TO 381

DO 382 K=1,NPDFM1

PDFIT (K)=1.,/FLOAT (NPDFM1)

GO TO 383

DO 383 K=1,NPDFM1

PDFIT (K)=PDF1l (K) *PHIDIF

TOPDF=0.

DO 385 K=1,NPDFM1
TOPDF=TOPDF+PDF IT (K)

IF (TOPDF.GT.%.95) GO TO 383

DO 386 K=1,NPDFM1

PDFIT (K)=1./FLOAT (NPDFM1)
PHIMAA=2700.

PAIMIA=300.

FMAX (I )=PHIMAA

PHIBVA (1)=PHIMIA

PHIBVA (NPDF)=PHIMAA
DPHI=(PHIMAA-PHIMIA) /FLOAT (NPDFM1)
DO 338 K=2,NPDFM1

PHIBVA (K)=DPHI*FLOAT (K-1)+PHIMIA
DO 328 K=1,NPDFM1

PDFITA (K)=0.

NPDFM2=NPDF -2

DO 368 K=1,NPDFM2
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IF ((PHIBV (1)-PHIBVA(K))* (PHIBV(1l)-PHIBVA (K+1)) .GT.d.)
1 GO TO 340
IF ( (PHIBV(2)-PHIBVA(K))* (PHIBV(2)-PHIBVA (K+l)).LE.D.)
1 GO TO 284
FAC1=PHIBV(2)-PHIBV (1)
FAC2=PHIBVA (K+1)~PHIBV (1)
PDFITA (K)=PDFITA (K)+PDFIT (1) *ABS (FAC2/FAC1)
IF (ABS (FAC2) .GT.#.)PDFITA (K+1)=PDFITA (K+1)+PDFIT (1) *
1 (1.-ABS (FAC2/FAC1))
GO TO 348
280 PDFITA (K)=PDFITA (K)+PDFIT (1)
340 DO 369 II=2,NPDFM1
IF ((PHIBV(II)-PHIBVA(K))* (PHIBV(II)-PHIBVA (K+1)).GT.0.)
1 GO TO 360
IF((PHIBV(II+1)-PHIBVA(K))*(PHIBV(II+1)—PHIBVA(K+1)) LE.O.)
1 GO TO 290
FACL=PHIBV (II+1)-PHIBV(II)
FAC2=PHIBVA (K+1)-PHIBV(II)
PDFITA (K)=PDFITA (K)+PDFIT (I1)*ABS (FAC2/FAC1)
IF (ABS (FAC2) .GT.d.)PDFITA (K+1)=PDFITA (K+1)+PDFIT (II)*
1 (1.-ABS(FAC2/FAC1))
GO TO 368
299 PDFITA (K)=PDFITA(K)+PDFIT (II)
360 CONTINUE
DO 376 II=1,NPDFM1
IF ((PHIBV (II)-PHIBVA (NPDFM1))* (PHIBV (II) PHIBVA(NPDF)) LE.
1 @.) PDFITA(NPDFM1)=PDFITA (NPDFM1)+PDFIT (II)
IF (PHIBV(II).LT.PHIBVA (1)) PDFITA(l)=PDFITA(1l)+
1 PDFIT(II)
370 CONTINUE
DO 418 K=1,NPDFM1
AVPFA (I,K)=AVPFA (I,K)+PDFITA (K)*F(I,IA+JA1-1)*DAGE (IA)
SUMPDF (I )=SUMPDF (I)+PDFITA (K)*F(I,IA+JAl-1)*DAGE (IA)
41¢ AVPDF (I,K)=AVPFA(I,K)/DPHI
411 CONTINUE
999 CONTINUE
1868 CONTINUE
---------- CALCULATION OF RMS QUANTITIES HERE————-——=~=m
DO 1588 I=2,NM1
TFLU (1) <AVTEMS (I)-AVTEM (I ) **2
TFLU (I)=SORT (ABS (TFLU(I)))
FUFLU (I )=AVFUS (I)-AVFU (I)**2
FUFLU (I)=SQRT (ABS (FUFLU (I)))
OXFLU (I)=AVOXS (I)-AVOX (I)**2
PRFLU (I )=AVPRS (I)~-AVPR (L) **2
PRFLU (I)=SQRT (ABS (PRFLU (I)))
OXFLU (I)=SQRT (ABS (OXFLU(I)))
FRFLU (I ) =AVFFIS (I)—FVAL (I)**2
FRFLU (I)=SQRT (ABS (FRFLU (I)))
FRFLU (I )=FRFLU (I) /FVAL(I)
1500 CONTINUE
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o S CALCULATION OF REACTION RATE
DO 2088 I=2,NM1
FUBRNT=T2* (ABS (F(I,JP))-F(I,JP))
FUUNBT=T3*F(I,JP)+T4 )

o[ MODIFY FOR ACCOUNT THE FU.LT.FUUNBT AS IT IS DONE IN GENMIX

Comommmamme A PHYS.177
IF (F(I,JF).LT.FUUNBT) GO TO 918
SIP(I)=-BIG
SI(I)=~SIP (I)*FUBRNT
GO TO 930

919 SIP(I)=AVRATL(I)*DX*ADPEI (I)*PREEXP*PRESS**2
SI(I)=AVRAT2(I)*DX*ADPEI (I)}*PREEXP*PRESS**2
939 IF(MOD(ISTEP,NSTAT).NE.d) GO TO 2008
2308 CONTINUE

Crmmmam CALCULATION OF MOLAR FRACTION OF

o — VARIOUS SPECIES HERE
DO 3@88 I=2,NM1
FH20 (I)}=1,-AVFU (I)-AVOX(I)}-FN2(I)
FH20 (I)=AMAX1 (#.,FH20(I))
TMIX=AVFU (I) /WFU+AVOX (I) /WOX+FN2(I)/WN2+FH20 (I)/WH20
FMFU (I)=(AVFU (I) /WFU) /TMIX
FMOX (I )= (AVOX(I)/WOX)/TMIX
FMN2 (I)=(FN2(I)/WN2)/TMIX
FMH20 (I)=(FH20 {I)/WH20) /TMIX
PRFLUM(I)=(PRFLU (I)/WH20) /TMIX

3099 CONTINUE

AVFU (1)=AVFU(2)
AVFU (N)=F (N,JF)

AVOX (1)=AV0X (2)

AVOX (N)=F(N,JOoxX)
AVTEM(1)=AVTEM(2)
AVTEM(N)=TD

SUMPDF (1)=SUMPDF (2)
SUMPDF (N )=SUMPDF (NM1)
TFLU(1)=TFLU (2)
TFLU{(N)=4.

PRFLU (1)=PRFLU(2)
PRFLU(N)=0.

PRFLUM (1)=PRFLUM(2)
PRFLUM (N}=0.
FRFLU (1 )=FRFLU(2)
FRFLU (N)=d.

FMAX (1)=FMAX (2)

FMAX (N)=FMAX (NM1)
POPAGE (1)=POPAGE (2)
POPAGE (N )=POPAGE (NM1)
FN2(1)=FN2(2)

FN2 (N)=1.-0XD
FH20({1)=FH20 (2)
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FH20 (N)=FUD
FMFU (1)=FMFU (2)
FMFU (N)=FUD

FMOX (1 )=FMOX (2)
FMOX (N)=8.2897
FMN2 (1) =FMN2 (2)
FMN2 (N)=8.7934
FMH20 (1) =FMH20 (2)
FMH20 (N) =FUD
FUFLU (1) =FUFLU (2)
FUFLU (N)=8,
OXFLU (1) =0XFLU (2)
OXFLU (N)=@.
RETURN

END
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SUBROUTINE PDF
SINCLUDE 9,COMALl.FTN
$INCLUDE 9,COMB,.FTN

Cc

Commmamaa—— THIS SUBROUTINE IS CALLED FROM SUBROUTINE BIOG,
Crwmmmm AFTER ENTRY BIOS.IT CALCULATES THE PROBABILITY
Commmmmme DENSITY FUNCTION OF PROPERTY PHI IN A FOLD.
Crmm—nmma=— FIND MAXIMUM AND MINIMUM OF PHI

GO TO (1,2,3,4), ISTAGE
1 PHIMIN=AMINI (PHIL,PHIR)
PHIMAX=AMAXL (PHIL, PHIR)
GO TO 5
2 PHIMIN=PHIL
PHIMAX=PHIL
GO TO 5
3 PHIMIN=PHIR
PHIMAX=PHIR
GO TO 5
4 PHIMIN=PHI (1)
PHIMAX=PHI (1)
5 DO 1¢ I=1,NDIFOM
PHIMIN=AMIN] (PHIMIN,PHI (I))
1@ PHIMAX=AMAX1 (PHIMAX,PHI (I))

o SR DETERMINE BOUNDARY VALUES OF PHI INTERVALS
PHIDIF=(PHIMAX~-PHIMIN) /FLOAT (NPDF~1)
NPDFM1=NPDF-1
DO 28 K=1,NPDFM1

20 PHIBV(K)=PHIDIF*FLOAT (K-1)+PHIMIN
PHIBV (NPDF)=PHIMAX

C
Commmmm DETERMINE MASS PROPORTION IN INTERVAL
Commmwr JUST ABOVE PHIBV(K) AND INSERT IN PDF1 (K)
DO 25 K=1,NPDFM1
25 PDF1(K)=0.
c

EMIX=PHIMIN/(PHIMAX+TINY)
IF (EMIX.LT.3.999) GO TO 26
DO 27 K=1,NPDFM1
27 PDF1 (K)=PDF1(K)+1./FLOAT (NPDFM1)
GO TO 88
26 DO 4@ I=1,NDIFOM-1
L1=0
PHI1=PHI (I)
PHI2=PHI (I+1)
IF { (PHI (I+1)-PHI(I)).LT.#.) PHI1=PHI (I+1)
IF ((PHI(I+l)-PHI(I)).LT.d.) PHI2=PHI (I)
DO 38 K=1,NPDFM1
IF ( (PHIBV (K)~PHI1)* (PHIBV (K+1)-PHI1).LE.@.) L1=K
IF(L1.NE.#) GO TO 31
3@ CONTINUE
31 DO 32 K=L1,NPDFM1
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32 IF((PHIBV(K)-PHI2)*(PHIBV (K+l1)-PHI2).LE.@.)} L2=K+l
L2M1=L2~1
DO 35 K=L1,L2M1 ‘
35 PDF1(K)=PDF1 (K)+DDELAJ/FLOAT (L2-L1)
40 CONTINUE
GO TO (58,6A,79,808), ISTAGE
5§ DO 51 K=1,NPDFM1
IF ((PHIBV(K)-PHIL)* (PHIBV (K+1)~PHIL).LE.d.)
1 PDF1 (X)=PDF1 (K)+OMLEFT
IF ((PHIBV(K)-PHIR) * (PHIBV (K+1)-PHIR) .LE. . )
1 PDF1(K)=PDF1 (K)+(l.-OMRIGT)
51 CONTINUE °
GO TO 80
66 DO 61 K=1,NPDFM1
IF ( (PHIBV(K)-PHIL)* (PHIBV (K+1)~-PHIL) .LE.G.)
1 PDF1 (K)=PDF1 (K}+OMLEFT
61 CONTINUE
GO TO 80
78 DO 71 K=1,NPDFM1
IF ((PHIBV (K)-PHIR)* (PHIBV (K+1)~PHIR) .LE.3.)
1 PDF1 (K)=PDF1 (K)+(1l.-OMRIGT)
71 CONTINUE
80 DO 81 K=1,NPDFMl
81 PDF1 (K)=PDF1 (K)/(PHIDIF+1.E-30)
RETURN
END
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SUBROUTINE PHYS

C——--—— GENMIX-T (TURBULENCE MODELS), HTS/77/4,

c BASED ON GENMIX, HTS/77/9, FEB.1977, APPENDIX A.

C/ FEB,1978 —=—=————~ GENMIX ——————=—x COPYRIGHT, D.B.SPALDING ————=————n
o

SINCLUDE 9,COMAl.FTN
SINCLUDE 9,COMB.FTN

c
DIMENSION DUDY (68),YEDGE (6)
DIMENSION ADPEDX (58)
c
C _____________________ - et e 7l e el e S e il S e e e e o S s e
CHAPTER A ————m————m PHYSU ~=———=———m PHYSU —=——=————m PHYSU —=——=—m————m
c —— _— - e e e e i 2 o e e e i
ENTRY PHYSU
KUDIF=-1
C mem——————ee- — - -===——- LAMINAR VISCOSITY
o —- SQUARE-ROOT FORMULA, WITH WEIGHTING ACCORDING TQ MASS FRACTION

DO 118 I=1,N

114 EMU(I)=(VISFU*F (I,JF)+VISOX*F(I,JOX)+VISPR*F(I,JPR)}*
1 SORT (F(I,JTE))
IF (MODEL.EQ.1) GO TO 289

———————————————————————— - - ——— TURBULENT FLOW
————— VELOCITY GRADIENTS
DO 114 I=2,NM1

114 DUDY(I)=ABS(U(I+1)-U(I-1))/(Y(I+1)-¥(I~1))

666 CONTINUE

QOO0

an

----- CALCULATE LENGTHS ACCORDING TO CHOSEN TURBULENCE MODEL.
IF (MODEL=-4) 162,163,164

- ———————— e MODELS 2 AND 3
162 GOTO(112,117,1288), LENGTH

LENGTH=1, MIXING-LENGTH MODEL,
—————————— STANDARD GENMIX FORMULATION OF HTS/77/9, FEB.1977.

112 IF(KUDIF.EQ.ISTEP) GO TO 192
————— CALCULATE UDIF, IF NOT ALREADY DONE IN MAIN, CH.6.
UMAX=U (1)
UMIN=U (1)
D0 181 I=2,N
UMAX=AMAX] (UMAX,U(I))
191 UMIN=AMINI (UMIN,U(I))
UDIF=UMAX-UMIN

G OO0 o000
I
1
]
|
l
t
1

182 HUDIF=,5*UDIF
DUDYMN=FR*UDIF/Y (N)
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K=1

EX=DUDY(2)-DUDYMN
IF(EX.LT.4.) GO TO 1ld3
YEDGE (K)=4.

R=2

193 Do 1¢#4 I=3,NM1
EXL=EX
EX=DUDY (I)~-DUDYMN .
IF{EX*EXL.GE.f.) GO TO 194
YEDGE (K)=.5% (Y (I)+Y(I-1))
IF(K.EQ.6) GO TO 107
K=K+1

104 CONTINUE
IF(EX.LT.0.) GO TO 148
YEDGE (K)=Y (N)

IF(X.EQ.6) GO TO 187
K=K+1

148 DO 146 KAY=K,6

106 YEDGE (KAY)=Y (N)

137 EL12=(YEDGE (2)-YEDGE (1) ) *ELCON
EL34=(YEDGE (4)~YEDGE (3) ) *ELCON
EL56=(YEDGE (¢ )=-YEDGE (5) ) *ELCON
EL23=,.5*(EL12+EL34)

EL45=,.5* (EL34+EL56)
ASSIGN 119 TO K

DO 138 I=2,NM1
YVALUE=Y (I)
GO TO K, (119,121,123,125,127,129)
119 IF(YVALUE.LT.YEDGE (1)) GO TO 120
ASSIGN 121 TO K
121 IF(YVALUE.LT.YEDGE(2)}) GO TO 122
ASSIGN 123 TO K
123 IF(YVALUE.LT.YEDGE (3)) GO TO 124
ASSIGN 125 TO K
125 IF(YVALUE.LT.YEDGE(4)) GO TO 126
ASSIGN 127 TO K
127 IF(YVALUE.LT.YEDGE (5)) GO TO 128
ASSIGN 129 TO K
GO TO 129
120 EL=0.
GO TO 130
122 EL=EL12
GO TO 138
124 EL=EL23
GO TO 130
126 EL=EL34
GO TO 138
128 EL=EL45
GO TO 138
129 EL=EL56
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142
141

144

Qo

117

115

aaon

1200

92

93
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-------------------- UPPER LIMITS TO MIXING LENGTH
F(I,JEL)=AMIN1 (EL,HUDIF/ (DUDY (I)+TINY))

IF (KIN,NE.1) GO TO 141
DO 142 I=2,NM1

F(I,JEL)=AMIN (F(I,JEL) ,AK*Y (1))

IF (KEX.NE.1) GO TO 173

DO 144 I=2,NM1
F(I,JEL)=AMINI (F(I,JEL) ,AR* (Y (N)=Y(I)))
GO TO 138

---------- LENGTH=2, NIKURADSE"S LENGTH SCALE, WALL AT E,.
FACTOR=ELCON/(.14*Y (N))

DO 115 I=2,NM1

YTILDE=1.-Y (1) *FACTOR v
F(I,JEL)=¥Y(N)*YTILDE*(.4-YTILDE*(.44-YTILDE*(,24-,86*YTILDE))) .
GO TO 138

—————————— LENGTH=3, UNIFORM LENGTH SCALE,
UDIF=U(N)-=U(1l)

REUDIF=1./{UDIF+TINY)

————— FIND REFERENCE LENGTHS, ACCORDING TO BOUNDARY CONDITIONS.
IF (KIN.EQ.KINL.AND.KEX.EQ.KEXL) GO TO SEARCH, (1201,1282,1285)
KINL=KIN

KEXL=KEX

—-—---- DEFAULT VALUES APPLY FOR A WALL OR A SYMMETRY AXIS.
YREF1=0.

YREF 2=Y (N)

PRINT,YREF1,YREF2

IF(KIN.EQ.2.AND.KEX.EQ.2) GO TO 92
IF(KIN.EQ.3.AND.KEX.EQ.2) GO TO 93

IF (KIN.EQ.2.AND.XEX.EQ.3) GO TO 24
IF(KIN.EQ.l.AND.KEX.EQ.2) GO TO 95
IF(KIN.EQ.2,AND.KEX.EQ.1) GO TO 96

ASSIGN 1285 TO SEARCH

GO TO 1285

————— INNER BOUNDARY IS FREE AND OUTER BOUNDARY IS FREE
UREF1=0.1

UREF2=§.9

PRINT,UREF1,UREF2

ASSIGN 1202 TO NEXT

ASSIGN 12¢1 TO SEARCH

GO TO 1281

—————————— INNER IS A SYMMETRY AXIS AND OQUTER IS FREE
UREF2=¢.5

ASSIGN 1292 TOQO SEARCH

PRINT,UREF2

GO TO 1282

—————————— INNER IS FREE AND QUTER IS A SYMMETRY AXIS
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95

96

1291

1203

12p2

1206
1285
1247

nanNaaan

163

165

164

166
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UREF1=0.5

PRINT,UREF1

ASSIGN 1285 TO NEXT

ASSIGN 12@1 TO SEARCH

GO TO 1241

————==—=—=- INNER IS A WALL AND OUTER IS FREE
UREF2=0.,99

ASSIGN 1282 TO SEARCH

PRINT,UREF2

GO TO 1202

—————————— INNER IS FREE AND OUTER IS A WALL
UREF1=0.081

PRINT,UREF1

ASSIGN 1285 TO NEXT

ASSIGN 12@1 TO SEARCH :

- -— —-—== SEARCH FOR YREF!

UTILDL=4.

DO 1283 I=2,N
UTILD=(U(I})-U(1l))*REUDIF

IF (UTILD.LE,UREF1l) GO TO 1203

YREFL=Y (I-1)+ (¥ (1)=¥ (I-1)) * (UREF1-UTILDL)/(UTILD-UTILDL)
GO TO NEXT, (1282,1285)

UTILDL=UTILD

- - _—— —— SEARCH FOR YREF2
UTILDL=1.

DO 1286 IDASH=2,N

I=N+1-TDASH

UTILD=(U(I)-U(1l))*REUDIF

IF (UTILD.GE.UREF2) GO TO 1206

YREF2=Y (I+1)+ (¥ (I)=-Y (I+1))* (UREF2-UTILDL)/ (UTILD-UTILDL)
GO TO 1285

UTILDL=UTILD ,

- CALCULATION OF LENGTHS
FL=ELCON* (YREF2-YREF1)

DO 1287 I=2,NM1

F(I,JEL)=EL

GO TO 138

- - - MODELS 4 AND 5, CALCULATE LENGTHS.
THESE ARE USED ONLY IN OUTPUT AND MAY BE SKIPPED FOR ECONOMY.
NOTE THAT WE USE MODEL 2 INSTEAD OF MODELS 4 OR 5 AT THE START.
———————————————————————— MODEL 4
IF(ISTEP.LT.3) GO TO 162
DO 165 I=2,NM1
F(I,JEL)=CD*SQRT(F(I,JK))/(F(I,J2)+TINY)
GO TO 138
———————————————————————— MODEL 5
IF(ISTEP.LT.3) GO TO 162
DO 166 I=2,NM1
F(I,JEL)=CD*F(I,JK)*SQRT (F(I,JK))/(F(I,J2)+TINY)
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138

172

145

146

147

173

181

201

340

- _— ————————— LENGTH ADJUSTMENTS NEAR EDGES
F(1l,JEL)=F(2,JEL)

F(N,JEL)=F (NM1,JEL)

IF(ISTEP.GT.2) GO TO 173

- - B e T COMPUTE SOME STARTING VALUES.
—————— - —————— - INITIAL MINIMUM LENGTH VALUE.
ELMIN=. #681*Y (N)

DO 172 I=1,N

F(I,JEL)=AMAXL (F(I,JEL) ,ELMIN)

IF (MODEL.EQ.2) GO TO 181

—————————— COMPUTE INITIAL PROFILES FOR MODELS 3, 4, 5
- - - ———————————————— INITIAL PROFILE OF ENERGY
FAC1=CMU/CD
DO 145 I=2,NM1
FIJK=FACLl* (DUDY(I)*F(I,JEL))**2
F(T,JK)=AMAXL (FIJK, .0@B1*U (I)**2)
F(1,JK)=F(2,JK)
F{N,JK)=F (NM1,JK)
IF(MODEL EQ 3) GO TO 181
——~—~-—— INITIAL PROFILE OF FREQUENCY

FAC2= SQRT(CMUCD)
DO 146 I=2,NM1
F(I,J2)=FAC2*AMAXL (DUDY (I) , TINY)
F(1,J2)=F(2,J2)
F(N,J2)=F (NM1,J2)
IF(MODEL EQ.4) GO TO 181

——=—= INITIAL PROFILE OF DISSIPATION RATE
DO 147 I= 1,N
F(I,J2)=F(I,J2)*F(I,JK)
GO TO 181

T EFFECTIVE VISCOSITIES
SIMPLE ADDITION OF TURBULENT AND LAMINAR CONTRIBUTIONS.
GO TO (209, 181 182,183,184), MODEL

- ——__ MIXING LENGTH, HIGH RE, MODEL=2
Do 201 I=2, NM1
DUDYL=DUDY (1) *F(I,JEL)

UDMIN=UFAC*U (I)
DUDYL=AMAX] (DUDYL, UDMIN)
EMUT=RHO (I ) *F (I, JEL) *DUDYL
EMU (I )=EMU (I )+EMUT
CONTINUE

GO TO 289

—— -=-~= PRANDTL ENERGY, HIGH RE, MODEL=3
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182 DO 151 I=2,NMl
EMUT=CMU*RHO (I) *SQRT (ABS (F(I,JK}) ) *F(I,JEL)
151 EMU(I)=EMU(I)+EMUT
GO TO 289

c - ~-—- KOLMOGOROV, HIGH RE, MODEL=4
183 DO 152 I=2,NMl
EMUT=CMUCD*RHO (I)*F (I,JK)/(F(I,J2)+TINY)
152 EMU{I)=EMU(I)}+EMUT
GO TO 289

C e HARLOW, HIGH RE, MODEL=5
184 DO 153 I=2,NM1
EMUT=CMUCD*RHO (I) *F (I,JK)**2/(F(I,J2)+TINY)
153 EMU(I)=EMU(I)+EMUT

naao

e - MOMENTUM SOURCE
209 AGRVDX=AGRAV*DX
RPRLST=1.
IF (ABS (DP) .GT.TINY) GO TO 204
IF (ABS (AGRAV) .GT.TINY) GO TO 204
MOMSOU=0
RETURN
204 DO 210 I=2,NM1
219 SI(I)“ADPEI(I)*(AGRVDX*(RHO(N)-RHO(I))-DP)

MOMSO0U=1
c
o J WRITE TEST OUTPUT IF REQUIRED, THEN RETURN
' IF (ITEST.EQ.1) RETURN
WRITE (6,9611) J,(F(I,JEL),I=1,N)
IF (MODEL.GT.2) WRITE (6,9012) (F(I,JK),I=1,N)
IF (MODEL.GT.3) WRITE(6,9813) (F(I,J2),I=1,N)
GO TO 9¢gl
c
c
C e ——————m e - - —_—— ————
C

HAPTER B ——————e——m _PHYSF ——————m—e PHYSF ~=——em————- PHYSF ———m——=————m

ENTRY PHYSF :
IF (MODEL,NE.1) GO TO 312
RECPR=RECPRL (.J)
GO TO 3104

312 RECPR=RECPRT (J)

318 NEWPR=1
IF (ABS (RECPR-RPRLST).LT.1.E-18) GO TO 314
NEWPR=2
DO 313 I=2,NM2

313 DIF(I)=DIFU(I)*RECPR
RPRLST=RECPR

c - e e ———_——— KINETIC HEATING SQURCE
314 IF(J.NE.JH) GO TO 3068




329

321

322

3a0@

342

346

344

352

342

IF (ABS (RECPR-1.).LT.1.E-14) GO TO 328
IF (NOVEL.NE.1) GO TO 321
KSOURC=3

RETURN

DUSQP=4.

USQP=U (2) **2

DO 322 I=2,NM2

USQ=U (I+1)**2

DUSQ= (DIFU(I)-DIF(I))* (USQ-USQP)
SI(I)=.5*(DUSQ-DUSQP)

DUSQP=DUSQ

USNP=USQ

KSOURC=2

SI (NM1)=-.5*DUSQP

GO TO 9998

IF(J.NE.JF) S0 TO 40900
IF{INERT.EQ.2) GO TO 342
KSQURC=3

RETURN

KSOURC=1

IF(MODEL.NE.1) GO TO 352
T1=DX*PREEXP*PRESS**2
T2=,5/STOICH

DO 344 I=2,NM1
FUBRNT=T2* (ABS (F(I,JP)})-F(I,JP)}}
IF(F(I,JF) .GT.FUBRNT) GO TO 346
SIP(I)=A.

GO TO 344

EXPO=EXP (-ARRCON/F(I,JTE))
F(1,JO0X)=AMAX1(8.,F(I,JP)+F(I,JF)*STOICH)
TERM=-T1*EXPO*ADPEI (I)*F(I,JOX)
SIP(I)=TERM/{(1.-FUBRNT/F{I,JF))
SI(I)=-SIP(I)*FUBRNT

GO TO 2990

T2=,5/STOICH

IF(IBIO.EQ.1) GO TO 354
T3=1./(PHIB-PHID+TINY)
T4=-PHID*T3

————— RATE CONTROLLED BY EDDY BREAK-UP
CEBUDX=CEBU*DX

DO 353 I=2,NM1
FUBRNT=T2* (ABS (F(I,JP))-F(I,JP))
FUUNBT=T3*F(I,JP)+T4

IF(F(I,JF) .LT.FUUNBT) GO TO 356
SIP(I)=2.

GO TO 353

- FUEL SQURCE

356 SIP{I)=-ADPEI (1) *CEBUDX*DUDY(I)*RHO (I)* (FUUNBT-F(I,JF))/

353

1
SI(I)=-SIP(I)*FUBRNT

(FUUNBT-FUBRNT+TINY)
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GO TO 358
------------------ THE ENTRY BIOS IN SUBROUTINE--=-----——-
————————————— BIOG IS CALLED HERE=—==—
354 CALL BIOS
358 CONTINUE
GO TO 9800

T — JP (PHI)
468@ IF(J.NE.JP) GO TO 5000

KSOURC=3

RETURN

————- ————— e e ENERGY SOURCE
5489 IF(J.NE.JK) GO TO 6800
: —————— ————— e GENERATION OF TURBULENCE ENERGY
DO 3961 I=2,NM1
3%@1 GENK(I)=DX*ADPEI (I)*EMU (I )*DUDY (I)**2
--------------------------- DISSIPATION OF TURBULENCE ENERGY
IF (MODEL-4) 3ﬁ03 3054 3885
——————— e - - MODEL 3
3@3 CDDX=CD*DX
DO 3006 I=2,NM1
3866 DISSK(I)=CDDX*ADPEI(I)*ABS(F(I,JK))**1.5/(F(I,JEL)+TINY)
GO TO 3097
- e e e e MODEL 4
3904 DO 3608 I=2,NMI
3808 DISSK(I)=DX*RHO (I)*ADPEI (I)*F(I,J2)*F(I,JK)
GO TO 30097
-------------------------------------- MODEL 5
39@5 DO 3889 I=2,NM1
3089 DISSK (I)=DX*RHO(I)*ADPEI(I)*F(I,J2)
3687 CONTINUE
——————————————————— —————— SI AND SIP
KSOURC=1 ]
CONST1=1.5
CONST2=C2MOD5-1.
CONST3=.5
CONST4=C 2MOD5
DO 3918 I=2,NM1
RECFJK=1./(F(I,JK)+TINY)
SI(I)=CONST1*GENK (I)+CONST2*DISSK (I)
3818 SIP(I)= —RECFJK*(CONSTB*GENK(I)+CONST4*DISSK(I))
—————— e ————— e NEAR-WALL CELLS
IF (KIN.NE.1) GO TO 3911
TAU=TAUT+Y (2) *DPDX+RMI*U (2} /R(2)
F2JK=TAU/ (RHO (2) *TAUDK)
SI (2)=F2JK*BIG
SIP(2)=-BIG
3911 IF(KEX.NE.l) GO TO 9980
TAU=TAUE+ (Y (N)~Y (NM1) ) *DPDX~RME*U (NM1) /R (NM1)
FNM1JK=TAU/ (RHO (NM1) *TAUDK)
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SI(NM1)=FNM1JK*BIG
SIP(NM1)=-BIG
GO TO 9@0a

c - e SOURCE OF 2ND TURBULENCE QUANTITY
6000 IF(J NE.J2) G0 TO 7080
KSOURC=1
c - - m—————————— SOURCE OF FREQUENCY (MODEL=4)
C OR DISSIPATION (MODEL=5)
IF (MODEL.EQ.4) GO TO 4401
CONST1=C1MOD5
CONST2=C2MOD5~1.
CONST3=0.
CONST4=2.*C2MOD5-1.
GO TO 4892
4681 CONST1=3,*C1MOD4
CONST2=C2MOD4-1.
CONST3=2.*C1MOD4
CONST4=2.*C2MOD4-1.
4062 DO 4083 I=2,NM1
RECFJK=1./(F(I,JK)+TINY)
FJ2DJK=F (I,J2) *RECFJIK
ST (I)=FJ2DJK* (CONST1*GENK (I)+CONST2*DISSK(I))
4683 SIP(I)= —RECFJK*(CONSTB*GENK(I)+CONST4*DISSK(I))
c - NEAR-WALL CELLS
IF (KIN.NE. 1) "GO TO 4894
F2J2=WALCON*SQRT (F2JK) *RECYDF (1)
IF (MODEL.EQ.5) F2J2=F2J2*F2JK
SI (2)=F2J2*BIG
SIP (2)=-BIG
4094 IF(KEX.NE.l) GO TO 9400
FNM1J2=WALCON*SQRT (FNM1JK) *RECYDF (NM1)
IF (MODEL.EQ.5) FNM1J2=FNML1J2*FNM1JK
ST (NM1)=FNM1J2*BIG
SIP (NM1)=-BIG

C
Ch**x*x**x** SOURCE TERMS FOR FOLD POPULATION DISTRIBUTION#*#%%
Ce—=—===-——  SOURCE TERM FOR AGE (1)
70¢¢ IF(J.NE.JAl) GO TO 8040
KSOURC=1
TRANF=UMIN /XD
DTRANF=~1, /XD
DO 540 I=2,NM1
ADPEDX (I })=ADPET (I)*DX
AVELP=TRANF /U (I ) +DTRANF *AGE (2)
SIAP=AMIN] (@.,AVELP)*F(I,JA2)
SIPAP=AMAX] (@.,AVELP)
SI (I)=(PAd(I)*RECDA (1)-SIAP)*ADPEDX (I)
SIP(I)=(-RHO (I)*U (I)*SIPAP*RECDA (1)-PA@(I))*ADPEDX(I)
549 CONTINUE
GO TO 9987
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—————— SOURCE TERMS FOR AGE (2)...AGE (NAGE)
KSOURC=1

JM2=J-JA 1M1

DO 620 I=2,NMl

C——=—=—— PFLUX THROUGH THE WEST FACE

620
c
93060

9601

c
9411
9012
9@13
9621
9@22

AVELM=TRANF/U (I)+DTRANF*AGE (JM2)
SIAM=AMAX1(@.,AVELM) *F(I,J-1)
SIPAM=AMIN1 (8. ,AVELM)

-- PFLUX THROUGH THE EAST FACE

AVELP=TRANF /U (I1)+DTRANF*AGE (JM2+1)

FIJP1=F(I,J+1)

IF(J.EQ.JAL) FIJP1l=F(I,J)
SIAP=AMIN1 (4. ,AVELP) *FIJPl

SIPAP=AMAX1 (4. ,AVELP)
SI(I)=RHO(I)*U(I)*(~-SIAP+SIAM) *RECDA (JM2) *ADPEDX(I)
SIP({I)=(RHO(I)*U(I)*(-SIPAP+SIPAM) *RECDA (JM2)-PAG{I))
1 *ADPEDX{I)

CONTINUE

=—=== WRITE TEST OUTPUT,IF REQUIRED, THEN RETURN
IF(ITEST.EQ.1l) RETURN

WRITE(6,9021) J,(SIP(I),I=2,NM]1)

WRITE (6,9022) (SI(I),I=2,NM1)

RETURN

FORMAT (18H PHYS TESTS FOR J=,13/19H F(I,JEL}=/{(3X,1PHE1ll.3))
FORMAT(9H F(I,JK)=/(3X,1P6Ell.3))

FORMAT (9H F(I,J2)=/(3X,1P6E1ll.3))

FORMAT (18H PHYS TESTS FOR J=,13/8H SIP(I)=/(3X,1P6Ell.3))
FORMAT(7H SI(I)=/(3X,1P6E1ll.3))

END
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SUBROUTINE COMP

C/FEB, 1977 —————m—meee GENMI X ———a————m COPYRIGHT, D.B.SPALDING ---
DIMENSION A(60),B(6d),C(A%),CON(68),D(68) ,HCON (6@) ,0MDIF (60)

$INCLUDE 9,COMA2.FTN

SINCLUDE 9,COMB.FTN

c
EQUIVALENCE {(A(1l),DIF(1l)),(C(1),SI(1)),(D(1l),SIP(1))

c

CHAPTER A ————=——=mem - e

c INIT =-- -— INIT - - = INIT —s—e—mmmaeeae INIT
ENTRY INIT |

C e INITIAL VALUES AND DEFAULT VALUES

IF (KRAD.EQ.3) NOVEL=1
JUSTIN=ISTEP
JUSTEX=ISTEP
IFIN=1
DXLAST=BIG
DX=BIG
PSII=0.
BPE=1.
BPI=l.
Y(1)=4.
DP=@,
DO 13 I=1,N
EMU(I)=0.
CON (I)=4.
13 R(I)=1.
IF (NOVEL.NE.1) RETURN
DO 16 I=1,N
16 U(I)=1.
RETURN
CHAPTER B ———- ———— ———— —_——— S G
c GRID =~w——m——m—me GRID ———————m— e GRID -- GRID
ENTRY GRID
OMI=OM (2)
OME=1.-OM (NM1)
BOM (2)=.5%(OM(2)+OM(3))
OMINT (1)=0.
OMINT (2)=BOM(2)
DO 282 I=3,NM2
OMINT (I)=.5% (OM(I)+OM(I+1})
BOM (I )=OMINT (I)-OMINT (I-1)
262 OMDIF (I)=OM(I)-OM(I-1)
HOMDFI=, S*OMDIF (3)
BOM (NM1)=1,-OMINT (NM2)
OMINT (NM1)=1.
OMDIF (NM1)=0M (NM1)~-OM (NM2)
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HOMDFE=.5*0OMDIF (NM1)

RETURN
CHAPTER C -- TR DR e
c DISTAN —=———————— DISTAN —=m——e———— DISTAN ———mw—m———e DISTAN

ENTRY DISTAN

IF (NOVEL.NE.1) GO TO 226

DO 224 I=1,N
224 RECRU(I)=1./(RHO(I)}+TINY)

GO TO 222
22¢ DO 221 I=1,N

RECRU (I)=1,/ (RHO (I)*U (I)+TINY)

IF (RECRU(I).GT.#.) GO TO 221

IFIN=2

WRITE (5,223) RECRU(I),I,ISTEP
223 FORMAT (14H *** RECRU(I)=,l1PE1$.3,6H AT I=,I4,11H AND ISTEP=,IS,

1 16H *** COMP DISTAN)
221 CONTINUE
————————— CALCULATION OF Y"S AND R"S
222 IF(KIN. EQ 1) GO TO 388

RAT=RECRU (2) *RHO (1) *U (1)

IF (KRAD.EQ.2) GO TO 387

BPI=.33333+.66667*RAT

GO TO 308
367 BPI=(R(1)*(.83333*RAT+.16667)+.5*R (2) * (RAT+1.))/(R(1)+R(2))
3¢8 IF(KEX.EQ.l) GO TO 238

RAT=RECRU (NM1) *RHO (N) *U (N)

IF (KRAD.EQ.2) GO TO 327

BPE=,33333+.66667*RAT

GO TO 230
327 BPE= (R(N)*( 833333*RAT+.16667)+.5*R (NML) * (RAT+1.)) /(R (N})+R (NM1))

— —— ~-— Y"S FOR PLANE FLOW
230 STORE=OM(2)/BPI

ADPEI (2)= (HOMDFI+STORE ) *RECRU (2)

Y (2)=PEI*RECRU (2 ) *STORE

HPEI=,5*PEI

DO 231 I=3,NM1

ADPEI (I)=BOM(I)*RECRU(I) .
231 Y(I)=Y(I~1)+HPEI*OMDIF (I)* (RECRU(I)+RECRU(I-1))

STORE=OME/BPE

ADPEI (NM1)= (HOMDFE+STORE) *RECRU (NM1)

Y(N)*Y(NM1)+PEI*RECRU(NM1)*STORE

—— —— - -

IF(KRAD-2) 279,240,280
' -- Y"S AND R"S FOR AXIAL SYMMETRY
249 IF(CSALFA.LT.TINY) GO TO 268
- - - - CSALFA NE 4.
COSD2=, 5*CSALFA
TWDCOS=2, /CSALFA
IF(R(1) .GT.TINY) GO TO 250
- - - R{1)=0.

b0 242 I=2,N
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Y (I)=SQRT (ABS (Y (I)*TWDCOS})
242 R(I)=Y (I)*CSALFA
GO TO 278
c —————————————— R(1) NE @.
250 R1D2=.5*R(1l)
R1D2SQ=R1D2*R1D2
Do 251 I=2,N
Y(I)=Y(I)/(R1D2+SQRT (ABS (R1D2SQ+COSD2*Y (I))))
251 R(I)=R(1)+Y (I)*CSALFA
GO TO 270
C e e CSALFA=d.
263 RECR1=1./R(1l)
DO 261 I=2,N
R(I)=R(1)
261 Y (I)=Y(I)*RECR1
GO TO 278
c _—— - - - - POINT SYMMETRY, KRAD=3
289 RICUB=R (1) **3
DO 281 I=2,N
R(I)=(R1CUB+Y(I))**.3333333
281 Y(I)=R{I)-R(1)
c - - GENERAL
279 YI=Y(2)
YE=Y (N)-Y (NM1)
DO 273 I=1,NMl
273 RECYDF(I)=1l./(Y(I+1)-Y(I))
IF(ITEST.EQ.1l) RETURN
WRITE (6,274) (RHO(I),I=1,N)
WRITE (6,275) (RECRU(I),I=1,N)
WRITE (6,276) (ADPEI(I),I=1,N)
WRITE (6,277) (Y(I),I=1,N)
WRITE (6,278) (R(I),I=1,N)
WRITE (6,279) (RECYDF(I),I=1,N)
RETURN
274 FORMAT (18H@COMP DISTAN TESTS/8H RHO (I)= /(3X,1P6El1l.3))
275 FORMAT (10H RECRU(I)=/(3X,1P6E11.3))}
276-FORMAT (18H ADPEI(I)=/(3X,1P6E1ll.3))
277 FORMAT(6H Y(I)=/(3X,1P6Ell.3))
278 FORMAT(6H R(I)=/(3X,1P6Ell.3))
279 FORMAT (11H RECYDF (I)=/(3X, IPGEll 3))

CHAPTER D ~—————m—mesr e —m——— -— - - e e e
c SOLVE —w——=———a——— SOLVE =—w—w—e———— SOLVE -— SOLVE

ENTRY SOLVE
c R - - - - - PRELIMINARIES

DXDPEI=DX/PEI
CONST1=.5*NDXDPEI

ENT=ABS (RMI)}+ABS (RME)
IF(ENT.LE.TINY) GO TO 318
HCONI=RMI*CONST1
HCONDF=(RME-RMI) *CONST1
DO 412 I=2,NM1
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HCON (I ) =HCONI+HCONDF*OMINT (I}
412 CON (I)=HCON (I)+HCON (I)
SR . -— —~—— COEFFICIENTS FOR U
31¢ IF(NOVEL.EQ.1) GO TO 442
J=0
———-— CALL SUBROUTINE PHYS AT ENTRY PHYSU
CALL PHYSU
IF (KRAD-2) 414,415,411
41¢ DO 413 I=2,NM2 :
413 DIFU(I)=CONSTL1* (EMU(I)+EMU(I+1))*RECYDF (I)
GO TO 414
415 CONST2=,5*CONST1
DO 4156 I=2,NM2
416 DIFU(I)=CONST2* (R (I+1)+R(I))*(EMU(I)+EMU(I+1))*RECYDF (I)
GO TO 414
411 CONST3=,25*CONSTI
DO 419 I=2,NM2
410 DIFU(I)=CONST3* (R (I+1)+R (I))**2% (EMU(I)+EMU (I+1))*RECYDF ()
——————— S ——————————— -- A"S AND B"S
414 IF(ENT.LE.TINY) GO TO 312
DO 417 I=2,NM2
A(I)=AMAX1(d.,DIFU(I)-HCON(I),-CON(I))
417 B(I+1)=A(I)+CON(I)
GO TO 314
312 DO 315 I=2,NM2
A(I)=DIFU(I)
315 B(I+1)=A(I)
314 TI=0.
TE=9.
IF(KIN.EQ.1) CALL WALL(1l,BPI,TI)
IF (KEX.EQ.1) CALL WALL (N,BPE,TE)
B(2)=AMAX]1 ( (TI+RMI)*DXDPEI,d.)
A(NM1)=AMAX] ( (TE-RME) *DXDPEI, d.)
———— _—— - - - C"S AND D"S
IF (MOMSOU.EQ.2) GO TO 431
DO 418 I=2,NM1
C(I)=U(I)*BOM(I)+SI(I)
418 D(I)=A(I)+B(I)+BOM(I)
GO TO 432
431 DO 433 I=2,NM1
C(I)=U(I)*BOM(I)
433 D(I)=A(I)+B(I)+BOM(I)
432 CONTINUE
IF(ITEST.EQ.1l) GO TO 444
WRITE (6,341) (DIFU(I),I=2,NM1)
WRITE (6,342) (CON(I),I=2,NM1)
WRITE(6,485) (A(I),I=2,NM1)
WRITE (6,466) (B(I),I=2,NM1)
WRITE (6,487) (C(I),I=2,NM1)
WRITE (6,408) (D(I),I=2,NM1)
341 FORMAT (23HOCOMP SOLVE TESTS FOR U/9H DIFU(I)=/(3X,l1P6Ell.3))
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342 FORMAT (8H CON(I)=/(3X,1P6E1ll.3))
495 FORMAT (6H A(I)=/(3X,1P6Ell.3))
435 FORMAT (6H B(I)=/(3X,1P6E11.3))
A@7 FORMAT (6H C(I)=/(3X,1P6Ell.3))
498 FORMAT (6H D(I)=/(3X,1P6E1ll,3))
434 CONTINUE
c —————————————— e e ADJUST FREE-BOUNDARY VALUES —-——=~———=
IF (KIN.EQ.2) U(1l)=Y(1)~DP*RECRU (1)
IF (KEX.EQ.2) U(N}=U(N}~DP*RECRU (N)
oS S S SOLVE FOR DOWNSTREAM U ™S ——————
C(2)=(B(2)*U(1)+C(2)) /D (2}
D(2)=A(2)/D(2)
DO 421 I=3,NM1
T=1./(D(I)-B(I)}*D(I-1))
D(I)=A(I)*T
421 C(I})=(B(I)*C(I-1)+C(I))*T
DO 422 IDASH=1,NM2
I=N-IDASH
422 U(T)=D(I)*U(I+1)+C(I)
IF (KIN-2) 444,445,446
444 TAUI=TI*U(2)/R(1)
GO TO 445
446 U(1)=U(2)
445 IF(KEX-2) 447,440,448
447 TAUE=TE*U (NM1) /R (N)
GO TO 440
448 U (N)=U(NM1)
449 IF (ITEST.NE.l) WRITE(6,443) (U(I),I=1,N)
443 FORMAT (6H U(I)=/(3X,1P6Ell.3}))

C  memmmemmmmc e

C e e e et e F-SECTION
442 IF(NF.LT.1) GO TO 481

C RESTORAGE OF UPSTREAM VALUES-———===——-

DO 4882 J=1,NF
IDJ=IDIMF* (J-1) -
DO 4802 I=1,N
IJ=I+IDJ
FP(IJ)=F(IJ)
4842 CONTINUE

C~——-——=——-ITERATION LOOP STARTS HERE-—=———=m——=—=—n
DO 4801 ITER=1,4
DO 480 J=1,NF

Cmmmem e~ ITERATION FOR P-A EQUATIONS ONLY-————--
IF (J.LT.JAL.AND, ITER.GT.1) GO TO 480
IF (J.GT.JAL.AND.ITER.GT.1) GO TO 488
IDJ=IDIMF* (J-1)
I1J=1+IDJ
12J=2+IDJ
INM1J=NM1+IDJ
INJ=N+IDJ

o CALL SUBROUTINE PHYS AT ENTRY PHYSF
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CALL PRYSF
TIF=0,
FDIFI=0.
TEF=4.
FDIFE=8.
IF (KIN.EQ.1l) CALL WALL(l,FDIFI,TIF)
IF (KEX.EQ.1) CALL WALL (N,FDIFE,TEF)
IF (ITEST.EQ.1) GO TO 458
WRITE (6,451) J, (DIF(I),I=2,NM1)
451 FORMAT (24H COMP SOLVE TESTS FOR J=,I3/8H DIF(I)=/(3X,1P6E1l1.3))
- e COEFFICIENTS FOR F"S
——————————— e n . A"S AND B"S
450 IF (NEWPR.EQ.1) GO TO 337
IF (ENT.LE.TINY) GO TO 335
DO 484 I=2,NM2
A(I)=AMAX1(4.,DIF(I)-HCON(I),~CON(I))
484 B (I+1)=A(I)+CON(I)
GO TO 337
335 DO 338 I=2,NM2
A(I)=DIF(I)
338 B(I+1)=A(I)
337 CONTINUE
B(2)=AMAXL ( (TIF+RMI)*DXDPEI, d.)
A(NMl)—AMAXl((TEF-RME)*DXDPEI g.)
-— - —-—- C"S AND D"S
GO TO (591 562, 503), KSOURC
-— — ———— KSOURC=1, GENERAL
5¢1 SI2= sx(z)
SINM1=ST (NM1)
DO 485 I=2,NM1
IJ=I+IDJ
D(I)=A(I)+B(I)+BOM(I)-SIP(I)
485 C(I)=FP{IJ)*BOM(I)+SI(I)
GO TO 564
_— - . KSOURC=2, NO SIP
562 SI2=SI(2)
SINM1=STI (NM1)
DO 505 I=2,NM1
IJ=I+IDJ
D(I)=A(I)+B(I)+BOM(I)
5@5 C(I)=F{IJ)*BOM(I)+SI(I)
GO TO 504

- ——————— e KSOURC=3, NO SIP OR SI
503 SI12=6.
SINM1=0.
Do 506 I=2,NM1
IJ=I+IDJ
D(I)=A(I)+B(I)+BOM(I)
566 C(I)=F(IJ)*BOM(I)

564 C(2)=C (2)—TIF*FDIFI*DXDPEI
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C(NM1)=C (NM1)-TEF*FDIFE*DXDPEI
IF(KIN.GT.1) GO TO 484

IF(IBIN(J).EQ.1l) GO TO 48§

B(2)=4a.
C(2)=F(12J)*BOM(2)+SI2+RJITOTI (J) *DXDPEI
D(2)=D(2)-TIF*DXDPEIL

IF (KEX.GT.1l) GO TO 491

IF (IBEX(J) .EQ.1) GO TO 491

A(NM1)=90.

C(NM1)= F(INMlJ)*BOM(NM1)+SINM1-RJTOTE(J)*DXDPEI
D(NM1)=D (NM1)-TEF*DXDPEI

CONTINUE

DO 492 I=2,NM1

Al(I)=A(I)

B1l(I)=B(I)

IF(ITEST.EQ.1l) GO TO 464

WRITE (6,485) (A(I),I=2,NM1)

WRITE (6,466) (B(I),I=2,NM1)

WRITE (5,487) (C(I),I=2,NM1)

WRITE (6,408) (D(I),I=2 NMl)

- - - SOLVE FOR DOWNSTREAM F
C(Z)F(B(Z)*F(IlJ)+C(2))/D(2)
D(2)=A(2)/D(2)

DO 465 I=3,NM1
T=1./(D(I)-B(I)*D(I-1))
D(I)=A(I)*T
C(I)=(B(I)*C(I-1)+C(I))*T
DO 4A6 IDASH=1,NM2
I=N-IDASH

IJ=I+IDJ

F(I1J) D(I)*F(IJ+1)+C(I)

ADJUST F(1,J) AND F(N,J)
IF(J.GE.JAl.AND.J.LE.JAL) GO TO 469

IF(KIN-2) 467,468,469

IF(IBIN(J).EQ.1) GO TO 468

F(I1J)=FDIFI+F (I2J)+(RJTOTI (J)-F(I1J)*RMI)/TIF
GO TO 468

F(I1J)=F(I2J)

IF(J.GE.JAl.AND.J.LE.JAL) GO TO 473

GO TO 460

RJTOTI (J)=TIF* (F(I1J)~F(I2J)~-FDIFI)+RMI*F(I1J)
IF (KEX-2) 471,47¢,473

IF(IBEX(J).EQ.1) GO TO 472
F(INJ)=FDIFE+F (INM1J)~- (RJTOTE (J)~F (INJ) *RME) /TEF
GO TO 478

F (INJ)=F (INM1J)

GO TO 47¢

RJTOTE (J ) =TEF* (F (INM1J)+FDIFE-F (INJ) )+RME*F {INJ)
IF(ITEST.EQ.1) GO TO 484

WRITE(6,476) J, (F(I+IDJ),I=1,N)

FORMAT (6H F(I,,I2,1H)/(3X,1P6E1l.3))

"s
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43¢ CONTINUE
o THE ERROR CAN BE CHECKED HERE-—~——=n=-
4381 CONTINUE
eaeenecescssc s s mmm e s o e e e e e e e i o
481 XU=XD
PSII=PSII-RMI*DX
PSIE=PSIE-RME*DX
PEI=PSIE-PSIT
ISTEP=ISTEP+1
RETURN
END
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SUBROUTINE WALL

C/FEB.1977 ===——e——— GENMIX —————m———e COPYRIGHT, D.B.SPALDING -—-
DIMENSION S1(2),S52(2),S3(2) 54(2) §5(2),86(2)

SINCLUDE 9,COMAl.FTN

SINCLUDE 9,COMB.FTN

O

c EFFECTS OF PRESSURE GRADIENT AND MASS TRANSFER ARE INCLYUDED
C EFFECTS OF RADIUS VARIATION ARE NEGLECTED

C FOR VELOCITY, OUT1=BP, ouT2=T

C FOR F "5, OuT1=FIDIF, O0QUT2=T
C
c

HAPTER A =—=——=—w————— - - PRELIMINARIES ~~——m—me————a————
DATA SHALF/.@4/, BPLAST/l1./
KWALL=2-1/T1
I2=I1+3-2*KWALL
I13=I1+6-4*KWALL
IF(J.GT.4) GO TO 2049
CHAPTER B - ———————————————— e VELOCITY =—————mmmmmem e
UREF=U (I2)
RHOREF=RHO(I2)
RUREF=RHOREF*UREF
RREF=R (I2)
VREF=EMU (I1)
YREF=YI+ (YE-YI)*OM(Il)
RE=RUREF *YREF/VREF
RRUREF=RREF*RUREF
AM=(RMI- (RME+RMI)*0OM(Il))/RRUREF
EF=YREF*DP/(DX*RUREF*UREF)
IF (MODEL.EQ.1) GO TO 1194
IF(RE.LT.132.25) GO TO 110
C mmmmmmmm e ~me=—=w= TURBULENT FLOW
C  ——m———— EXTENDED LOG LAW
ER=RE*EWALL
ARGMIN=11.5*EWALL
NIT=0
121 SHALF1=SHALF
S=SHALF**2 .
SLOC=S+AM+EF
IF (SLOC.GT.8.) GO TO 194
SLOC=TINY
SHALF=SQRT (ABS (AM+EF))
184 BEE=SORT (SLOC) /AK
ARG=ER* (SHALF+ (AM/ (1.+BEE)+.5*EF) /SHALF)
IF (ARG.LT.ARGMIN) GO TO 119
SHALF=AK/ALOG (ARG)
IF (ABS (SHALF-SHALF1).LT..80801) GO TO 1l@2
NIT=NIT+1l
IF(NIT.LT.11l) GO ToO 1@l
182 S=SHALF**2
SAV=.5%*(S+SLOC)
BP=1./(1l.+BEE)
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GO TO 193
o J——— - ————————————— LAMINAR FLOW
114 AMRE=AM*RE
FRE=EF*RE
IF (ABS (AMRE) .LT..91) GO TO 111
AMRE=AMAX1 (~68.,AMIN1 (6. ,AMRE) )
EXPMRE=EXP (AMRE)
STORE=EXPMRE-1.-AMRE
AMRESQ=AMRE *AMRE
SRE=AMRE * (1 . ~STORE*FRE/AMRESQ) / (EXPMRE~-1. )
BP=SRE*STORE/AMRESQ+FRE* (STORE-. S*AMRESQ) / (AMRESQ*AMRE )
GO TO 112
111 SRE=(2.-FRE*(l,+AMRE*.33333))/(2.+AMRE)
BP=SRE* (.5+AMRE*.16667)+FRE* (.16667+AMRE*.341667)
112 IF(SRE.GT.TINY) GO TO 113
SRE=TINY
BP=.33333
113 S=SRE/RE
SAV=S
183 T=S*RRUREF
C ~—=——==—= UNDER-RELAX BP
BP=BPLAST+.5* (BP-BPLAST)
BPLAST=BP
OUT1=BP
QUT2=T
S1 (KWALL)=SAV
S2 (KWALL) =RRUREF
S3 (KWALL) =UREF
S4 (KWALL) =AM
S5 (KWALL) =AMRE
S6 (KWALL)=RE
GO TO 988

c e — ———— -

CHAPTER C -- - —-— OTHER DEPENDENT VARIABLES ——

209 SAV=S1(KWALL)
RRUREF=S2 (KWALL)
UREF=53 (KWALL)
AM=S4 (KWALL)
AMRE=S5 (KWALL)
RE=S6 (KWALL)
IF(MODEL EQ 1) GO TO 21P
0 TURBULENT FLOW
PRRAT‘PRL(J)*RECPRT(J)
c ———=- THE FOLLOWING P-FUNCTION IS NOT TO BE USED FOR PRRAT.LT.0.5
PJAY=9.* (PRRAT-1.) /PRRAT** 25
S=SAV*RECPRT (J) /(1.+AMAX1 (~. 99999, PJAY*SQRT (ABS (SAV) ) ))
OUT 2=S *RRUREF
IF(J.NE.JH) GO TO 221
OUT1=(H—-1.)*.5*UREF**2
GO TO 904
221 OUT1=@.
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GO TO 900
c —-—— ——————————— LAMINAR FLOW
2144 IF(ABS (AMRE).LT..81) GO TO 211
S=AM/ (EXP (PRL (J) *AMRE) ~1.)
GO TO 212
211 S=RECPRL(J)/(RE+.5*RE*PRL (J) *AMRE)
212 QUT2=S*RRUREF
IF(J.NE.JH) GO TO 214
OUT1=(PRL(JH)~-1.) * .5*UREF**2
GO TO 946
714 0OUT1=4.

Qo - ——— - -

c - - ———————————— NULL OUTPUT FOR JK OR J2

399 OUT1=TINY
OUT2=TINY

9¢¢ IF(ITEST.EQ.l) GO TO 9@1
WRITE (6,94¢4%) J,Il,0UT1,00T2

900¢ FORMAT (12H WALL TESTS,,3H J=,I3,4H Il=,I3,6H OUTl=,1PEld.3,
1 6H 0OUT2=,E1Q.3)

901 RETURN
END
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APPENDIX C

Sample Output of the Computer
Program (H,-Air Flame)
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GENMIX-T, SEPT.1977, TURBULENCE MODELS TEACHING PROGRAM,
BASED ON APPENDIX A OF HTS REPORT NO. HTS/77/9, FEB.1977.
COMBUSTION OF HYDROGEN AND AIR IN A JET, AXI-SYMMETRICAL FLOW
KASE IRUN KIND KRAD CSALFA MODEL LENGTH MOD4C!1 INERT NOVEL

4 0 1 2 1.000 5 1 1 2 2

FHARTHE ESCIMO MODEL OF TURBULENT COMBUSTION®##-#%
#HEERTS TNCORPORATED IN THE PRESENT PROGRAM s
#AFHFDEMOGRAPHIC CORSTARTSH###

NAGE JA1 JAL  FOLMO UMAX MODFOR
10 4 13 0.50151.00 3
AGEA1 AGE3 AGES AGET AGE9 AGEN1

0.00000 0.10000 0.20000 0.4C000 0.65000 1.00000

#HHERBTOGRAPHIC CONSTANTS*#*%%
EMPC1 EMPC2 EMPC3
0.200E+01 0.200E+01 0.500E+00
oM(I), FOR OMPOW= 2.000

0.000E+00 2.494E-03 9.975E-03 2.244E-02 3.990E-02 6.234E-02
8.977E~02 1.222E-01 1.596E-01 2.020E-01 2.494E-01 3.017E-O1
3,989E-01 4.681E-01 5.429E-01 6.233E-01 7.091E-O01 8.006E-01
8.975E-01  1.000E+00 :
HEXO XHEXO AHEX BHEX CHEX
3.810E-03 0.000E+00 0.000E+00 0.000E+00 0.000E+00
HINO XHINO AHIN BHIN CHIN
0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00
UEXO XUEXO AUEX BUEX CUEX
1.510E+01 0.Q00E+00 0.000E+00 0.000E+00 0.000E+00
XEND X0UT XULAST HDIV AGRAV
0.000E+00 0.000E+00 6.096E-01 2.000E-03 9.800E+00
UA UB uc up TA TB C D
151.000 151.000 151.000 15.100 300.000 300.000 300.000 300.000
PRESS  PREEXP REY  EQRAT  AMACH ULIM  PEILIM
1.00E+05 1.00E+00 2.70E+03 3.04E+10 8.31E-03 5.00E-02 1.00E-02
AKX ELCON TAUDK ELEXP SIGK SIG2
4.350E-01 1.985E-01 3.000E-01 2.380E+00 1.000E+00 1.314E+00
MU cp FJKA FJ24 FJKD FJ2D
5.477E~01 1.643E-01 6.840E+02 0.000E+00 1.000E-01 6.871E+00
C1MOD5 C2MOD5
0.144E+01 0.192E+01
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#% Y= 3.035E-01 ISTEP= 312
JUSTIN= 0 JUSTEX= 0 DX= 1.918E-03 PRESSD= 0.000E+QQ

KIN= 3 KEX= 2 DXY= 3.066E-02 DPDX= 0.000E+Q0
PSII= 0.000E+00 PSIE= 1.940E-03 DXRE= 1.024E+02 PEI= 1.940E-03
RMI= 0.0Q00E+00 RME=-1.002E-02 DXINC= 9.533E-03 YREF1= 0.Q00E+00
R(1)= 0.000B+00 R{X)= 3.252E-02 DXPSI= 1.918E-03 YREF2= 0.000E+00
ELCON= 1{.985E-01
UFLUX= 1.254E-02
FLUX(J)= =7.234E-04 4.731E-02 1.228E+01 8.288E-03 7T.142E-03%
6.041E-03 4.956E-03 3.172E-03 1.763E-03 8.257E-04
2.40TE-04 4.168E-05 2.066E-06 1.095E+04 4.682B-05
FACE= 2.052E-01 RATE= 9.956E-01
Y(N)= 3.25E-02
R/RO UVEL TEMP FUEL 0XYG H2M
0.00E+00 3.47E+01 1.31E+03 1.04E-01 0.00E+00 5.89E-01
4.31E-01 3.47E+01 1.31E+03 1.04E-01 0.00B+00 5.89E-01
8.65E-01 3.43E+01 1.33E+03 1.02E-01 9.44B-05 5.82E-01
1.30E+00 3.36E+01 1.34E+03 9.83E-02 2.08E-03 5.72E-O01
1.74E+00 3.28E+01 1.35E+03 9.34E-02 4.44E-03 5.59E-01
2.18E+00 3.18E+01 1.37E+03 8.T4E-02 6.99E=03 5.41E-Of
2.62E+00 3.07E+01 1.40E+03 B8.05BE-02 9.79E-03 5.20E-01
3.07E+00 2.95E+01 1.43E+03 7.28E-02 1.27E-02 4.93E-01
3.53E+00 2.81E+01 1.46E+0%3 6.46E-02 1.58B-02 4.61B-01
10 3.99E+00 2.68E+01 1.50E+03 5.60E-02 1.89E-02 4.24E-01
11 4.45B+00 2.54E+0! 1.55E+03 4.70E-02 2.18E-02 3.81E-01
12 4.93E+00 2.40E+01 1.61E+03 3.80E-02 2.55B-02 3.30E-O1
13 5.72E+00 2.17E+01 1.69E+03 2.35E-02 3.35E-02 2.32E-Of
14 6.23B+00 2.03E+01 1.76E+03 1.48E-02 3.94E-02 1.59E-01
15 6.75E+00 1.90E+0t 1.80E+03 6.94E-03 4.85E-02 8.14E-02
16 T.24E+00 1.79E+01 1.66E+03 2.90E-03 7.87E-02 3.62E-02
17 7.69E+00 1.71E+01 1.48E+03 6.03E-04 1.10E-01 7.90E-03
18 8.09E+00 1.65E+01 1.24E+03 1.58E-04 1.40B-0t1 2.13E-03
19 8.42E+00 1.61E+01 9.99E+02 2.43E-04 1.68E-01 3.33B-03
20 B8.54E+00 1.51E+01 3%.00E+02 0.00B+*00 2.32B-01 0.00E+Q0Q
o2M H20M N2M TEMF FUFL 0XFL
0.00E+00 1.42E-01 2.69E-~01 2.43E+02 3.12E-02 0.00E+Q0
. 0.00E+00 1.42E-01 2.69E-01 2.43E+02 3.12E-02 0.00E+00
3.37E-05 1.44E-01 2.T73E=01 2.75E+02 3.26E-02 1.39E-03
7.56E-04 1.47E-01 2.80E-01 2.76E+02 3.39B-02 1.75E-02
1.66E-03 1.50E-01 2.90E-01 3.03E+02 3.488-02 2.86B-02
2.71E-03 1.54E-01 3.02E-01 3.16E+02 3.53E-02 3.57E-02
3.95B-03 1.60E-01 3.17E-01 3.26E+02 3.51E-02 4.19E-02
5.39E-03 1.66E-01 3.35E-01 3.40E+02 3.42E-02 4.77E-02
7.05E-03 1.7SE-01 3.57E-01 3.61E+02 3.26B-02 5.32E-02
8.94E-03 1.84E-01 3.82E-01 3.94E+02 3.05E-02 5.85E-02
1.10E-02 1.96E-01 4.12E-01 4.38E+02 2.798-02 6.33E=-02
1.38E-02 2.09E-01 4.47BE-01 4.74E+02 2.4BE-02 6.T4E-02

W O3RN —

e
QWO AT PBAN -

-_—
N -

13 2.06E-02 2.31E-01 5.16E-01 5.42E+02 1.90E-02 7.42E-02
14 2.65E-02 2.4T7E-01 5.67E-01 6.04E+02 1.48E-02 7.84E-02
15 3.55E-02 2.59E-01 6.24E-01 6.84E+02 1.07E-02 8.32E-02
16 6.158B-02 2.32E-01 6.71E-01 6.69E+02 5.T7T1E-03 7.80E-02

—
-3

8.98E-02 1.94E-01 7.08E-01 6.66E+02 1.62E-03 7.21E=02
1.18E-01 1.49E-01 7.30E-01 7.15E+02 7.45E-04 T7.17E-02

—
(03]
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1
12
13
14

15

16

17

18

19
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2.10E=01

1.07E-01

7.46B-01
0.0CE+00 7.93E-01

6. 1TE+02
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*RRSDOPULATION DISTRIBUTION OF FOLDSH####

FRAT
4.693E+01
1.179E+02
1 .641E+02
2.053E+02
2.395E+02
2.660E+02
2;845E+02

2.958E+02

‘A

.Q05E+02

n

«997E+02
2.9118+02
2.7898+02
2.569E+02
2.350E+02
2.055E+Q2
1.728E+02
1.402E+02

3 .049E+02

PA ( 1)

Pa ( 6)

3.600E+00
6.303E-01
3.836E+00
6.272E-01
4.097E+00
6.267E-01
4.353E+00
6.302E-01
4 .578E+00
6.390E-01
4.755E+00
6.536E-01
4.873E+00
6.744E-01
4,932E+Q0
T.014E=-01
4.931E+00
7+346E-01
4.87TSE+Q0
T.7358-01
4.768E+00
8.179E-01
4.511E+00
8.990E-01
4.,275E+00
9.548E-01
4.017B+00
1.008E+00
3.TT6E+00
1.050E+H0
3.643E+00
1.069E+00
3.742E+00
1.058E+00
4.204E+00
1.016B+00

PA ( 2)

PA( 7)

4.231E+Q0
1.357E-01
4,215E+00
1.410B-01
4.204E+00
1.499E-01
4.193E+00
1.627E-01
4,178E+00
1. T95E-01

4.156E+00 .

2.000E-01
4.125E+00
2.241E-01
4.083E+00
2.515E-01
4.027E+Q0
2.823E-01
3.957E+00
3.165E-01
3.8738+00
3.5388-01
3.T07E+Q0Q
4,204E-01
3.595E+00

4.647E-01.

3.490E+00
5.070E-01
3.418E+00
5.4058-01
3.402E+00
5.577B-01
3.429E+00
5.545E~01
3.421E+00
5.317E-01

#¥HRIPDF VALUES OF TEMPERATURE

PDF( 1)

PDF{ 6)
0.000E+00
3.007E-04
0.000E+00
2.226E-04
0.000E+00

PDF( 2)
PDF{ 7)
0.000E+Q00
2.022E-04
0.000E+00
1.940E-04
0.000E+00

PDF( 3)
PDF( 8)
0.000E+00
4.423E-05
0.000E+00
6.289E-05
1.905E-05

PA ( 3)

PA { 8)

3.958E+00
1.909E-02
3.879E+00
2.0018-02
3.783E+00
2.166E-02
3. 680E+00
2.418E-02
3.579E+C0
2.781E-02
3.484E+00
3.282B-02
3.398E+00
3.961 BE=02
3.321E+00
4.844E-02
3. 252E+Q0
5.340E-02
3.192E+00
T.256E-02
3.137E+00
8.782E-02
3.057E+00
1.164E-01
3.023E+00
1.362E=-01
3.000E+00
1.555E-01
2.995E+00
1.715E-01
2.996E+00
1.807E-01
2.974E+00
1.812B-01
2.892E+00

1.736E-01
R

POF( 4)
PDF( 9)
1.565E-03
5.276E-05
1.546E-03
1.053E-04
1.586E-03

PA ( 4)

PA ( 9)

3.207E+00
1.553E-03
3.129E+00
1.649E-03
3.034E+00
1.819E-03
2.931E+C0
2.081E-03
2 .832E+Q0
2.458E-03
2.T41EB+00
2.985R-03
2.663B+00
3.709E-03
2.600B+00
4.692E-03
2.552E+C0
6.024E-03
2.518E+00
7.832E-03
2.498E+00
1.029E-02
2.486E+00
1.617E-02
2.498E+00
2.1278-02
2.519E8+00
2.693E-02
2.542E8+00
3.204E-02
2.548E+00
3 . 542E-02
2.516E+00
3.642E-02
2.430E+00
3.506E~-02

PDF( 5)
PDF( 10)
1.942E-03
0.000BE+00
1.932E-03
5.728E-06
1.891E-03

1.3%E-03 5.95E-02
0.00E+00 0.C0E+C0 0©.00E+Q0

PA ( 5)

PA { 10)

1.T705E+00
7 .906E-05
1.6T0E+00
8.165E-05
1.630E+00
8.654E-05
1.589E+00
3.442E~05
1.553E+00
1.062E-04
1.525E+00
1.230E-04
1.507E+00
1.4658-04
1.499E+00
1.787E-04
1.503E+00
2.228E-04
1.518E+00
2.831E-04
1.543E+00
3.662E-04
1.600E+00
5.692E-04
1.64TE+Q0
7.818E~04
1.696E+00
1.086E-03
1.T36E+00
1.502E-03
1.751E+QC
1.887E-03
1.727E+00
2.096E-03
1.662E+00
2.0T1E-03



10
1"
12
13
14
15
16
17
18

19

A% XU=

2.109E-04
4.120E-05
2.0478-04
T.484E-05
2.640E-04
1.074E-04
3.683E-04
1.381E-04
5. 496E-04
1.666E-04
1.767E-03
1.982E-04
1.883E-03
2.626E-04
1.756E-03
3.158E-04
4.T77E-04
3.BBOE-04
8.922E-04
4.235E-04
3.981E-04
4.TO4E-04
4.307E-04
5.77T7E=04
1.285E-04
6.427E-04
1.418E-03
1.012E-03
1.098E-04
1.176E-03
1.125E=-04

JUSTIN=

KIN=

6.096E-01

2.196E-04
8.057E-06
2.024E-04
8.430E-06
2.438E-04
8.633E-06
2.923E-04
8.654E-06
2.548E~04
8.499E-06
2.875E-04
3.895E-05
3.299E-04
4.311E-05
5.303E-04
3.117E-05
1.853E-03
4.563E-05
5.010E-04
4.782E-05
7.333E-04
1.199E-04
6.97TTE-04
8.804E-05
1.506E-03
1.032E-04
3.376E-04
1.464E-04
1.180E-04
9.642E-05
1.537E-04

ISTEP=
0 JUSTEX=
KEX=

PSII=
RMI=
Rr(1)=
ELCON=
UFLUX=

FLUX(J)= -7.234E-04 2.754E-02 2.155E+00
1.287E-02 9.851E-03 T.046E-03 4.559E-03
2.066E-03 6.252E-04 T.268E-05

1.457E-02

3
0.000E+00
0. 000B+00
0.00QE+C0
1.985E-01
1.503E-02

7.268E-05
8.094E-06
7.545E-05
8.473E-06
1.122E-04
8.787E-Q6
1.106E-04
9.012E-06
1.5358-04
1.149E-05
2.249B-04
3.3338-05
2.578E-04
2.466E-05
2.436E-04
2.939E-05
3. 309E-04
2.522E-05%
1.859E-03
83.003E-05
1.940E-03
1.196E-04
4.443E-04
8.080E-05
9.080E-04
1.384E-04
2.118E-04
1.097E-04
3.086E-04
3.046E-04
3.762E-05

420
0]
2

PSIE= 5.655E-03
RME=-1.367E-02
B(N)= 4.931E-02

FACE= 1.712E-01 RATE= 9.996E-O1

(W)= 4.

I

1 0.00B+00 2.43E+Q1
2 8.05E-01
3 1.61E+00 2.40E+01

93E-02
R/RO

1.84E+0Q%
1.84E+Q3
1.84E+03

2.43E+01

TEMP
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9.608E-05
1.441E-03
1.349E~04
1.229E-03
1.013E-04
1.051E=03
9.7198-05
8.241E-04
9.181E-0%
7.427E-04
T7.221E-05
5.444E-04
1.145E-04
1.378E-04
1.726E-04
2.926E-05
1.847E-04
3.216E-05
1.769E-04
1.312E-04
2.211E-04
1.331E-04
1.586E-03
1.754E-04
4.65TE-04
1.965E-04
6.716E-04
1.014E-04
4.201E-04
1.781E-03
1.049E-04

DX=
DXY=

2.115E-03

8.135E-07
0.000E+Q0

2.049E-03

0.000E+00
2.044E-03
0. 000E+00
2.057E-03
0.000E+00
8.129E-04
0.000E+00
7.202E-04
0.000E+00
9.494E-04
0.000E+00
8. TOOE-04
0.000E+00
2.039E-04
0.000E+00
1.511E-04
0.000E+00
1.267E-04
0. 000E+00
1.415E-04
0.00QE+00
3. 77T3E-04
0.000E+00
1.669E-03
8.777E-05
1.539E-04
1.862E-04

PRE

SSD= 0.000E+00
PDX= 0.C00E+Q0

DXIRE=
DXINC=
DXPSI=

1.095E+04

FUEL

2.65E-02
2.65E-02
2.54E-02

4.704E-02 D

.2.489E+02
2.042E-02
4.117E-03

1.809E-02

1.349E-05

0XYG
5.65B-03
5.65E-03
7.93E-03

PEI= 5.655E-03
TREFt= 0.0COR+00
YREF2= 0.000E+00

1.632E-02

H2M
2.51E-01
2.51E-01
2.43E-01
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2.41E+00 2.37E+01 1.84E+03 2.37E-02 1.11E-02 2.31E-Of
3,21E+00 2.32B+01 1.84E+03 2.14E-02 1.46E-02 2.148-01
4.01E+00 2.278+01 1.84E+03 1.87E-02 1.90E-02 1.92E-01
4.81E+00 2.21E+01 1.85E+03 1.56E-02 2.36E-02 1.65E-01
5.61E+00 2.14E+01 1.86B+03 1.21E-02 2.87E-02 1.33E-O1
6.40E+00 2.07E+01 1.87E+03 B8.50B-03 3.46E-02 9.72E-02
7.20E+00 1.99E+01 1.86E+03 5.01E-03 4.32E-02 5.97B-02
7.97E+00 1.91E+01 1.77E+03 2.89E-03 6.26E-02 3.58E-02
8.7T1E+Q0 1.84E+01 1.66E+03 1.29E-03 8.38E-02 1.65E-02
9.83B+00 1.T74E+01 1.41E+03 O0.Q0E+00 1.22E-01 0.00E+00
1.05E+01 1.69E+01 1.22E+03 O0.00E+00 1.46E-01 0.00E+00
1.10E+01 1.65B+01 1.05E+03 O.00E+00 1.65E-01 0.00E+00
1.15E+01 1.62E+01 9.02E+02 0.00E+00 1.80E-01 0.Q0E+00
1.20E+01 1.59E+01 T7.87E+02 O0.00E+00 1.91E-01 0.00E+00
1.24E+01 1.57E+01 6.84E+02 0.00E+00 2.00E-01 0.00E+00
1.278+01 1.56E+01 5.92E+02 0.00E+00 2.08E-01 0.00E+00
1.29E+01 1.51E+01 3.00E+02 0.00E+00 2.32E-01 0.00E+00
02M H20M N2M TEMF FUFL 0XFL
3,35B-03 2.54E-01 4.92E-01 1.79E+02 1.29E-02 2.33E-02
3.358-03 2.54E-01 4.92E-01 1.79E+02 1.29E-02 2.33E-02
4.75E-03 2.54E-01 4.98E-01 2.13E+02 1.27E-02 3.05E-02
6.74E-03 2.55B-01 5.08B-01 2.68E+02 1.26E-02 3.89E-02
9.10E-03 2.57B-01 5.20E-01 3.24E+02 1.22E-02 4.64E-02
1.21E-02 2.59E-01 5.37E-01 3.82E+02 1.18E-02 5.38E-02
1.56E-02 2.63E-01 5.57E-01 4.38E+02 1.11E-02 6.01E-02
1.97E-02 2.67E-01 5.80E-01 4.99E+02 1.01E-02 6.61E-02
2.47E-02 2.T1E-01 6.07E-01 5.63E+02 8.94E-03 7.18E-02
3.228-02 2.72B-0% 6.36BE=01 6.20E+02 7.37E-03 7.58E-02
4.84E-02 2.53E-01 6.62E-01 6.28E+02 4.95E-03 7.47E-02
6.69E-02 2.29B-01 6.87E-01 6.43E+02 2.53E-03 7.33E-02
1.01B-01 1.78E-01 7.20E-0! 6.34E+02 0.00E+00 6.52E-02
1.23E-01 1.42E-01 7.35E-01 5.66E+02 0.00E+00 5.40E-02
1.41E-01 1.12E-01 7.47E-01 4.99E+02 0.00E+00 4.47E-02
1,56E-01 8.81B-02 7.56E-01 4.32E+02 0.00B+00 3.68E-02
1.67E-01 7.00B-02 7.63E-01 3.82E+02 0.00E+00 3.13E-02
1.76E-01 5.45E-02 T7.69E-01 3.49E+02 0.00E+00 2.80E-02
1.84E-01 4.11E-02 7.75E-01 3.23E+02 0.00E+00 2.56E-02
2.10E-01 0.00E+00 7.93B-01 0.00E+00 0.00E+00 0.00E+00
#HHHADODULATION DISTHRIBUTION OF POLDSHE®##
FRAT PA( 1) Pa( PA{ 3) PrA( 4) ©PA(
PA( 6) Pa( 7)) PA( 8) pa({ 9) PA(10)
1.580E+01 1.995E+00 2.593E+00 2.797E+00 2.T49E+00 2.234E+00
1.522E+00 8.166E-01 2.231E=01 1.708E-02 1.191E-03
3.9648+01 2.288B+00 2.671E+00 2.780B+00 2.687E+00 2.160E+00
1.4T0B+00 7.940E-01 2.230E-01 1.843E-02 1.266E-03
5.507E+01 2.597E+00 2.774E+00 2.769E+00 2.618E+00 2.074E+00
1.408E+00 7.68TB=01 2.248E-01 2.079E-02 1.399E-03
6.894E+01 2.896E+00 2.885E+00 2.763E+00 2.548E+00 1.984E+00
1.345E+00 7.442E-01 2.288E-01 2.444E-02 1.605E-03
8.072E+01 3.161E+00 2.987E+00 2.483E+00 1.898E+00

2. 75TE+00
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11
12
13
14
15
16
17
18

19
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11

9.034E+01
9.800E+01
1.039E+02
1.076E+02
1.080E+02
1.044E+02
9.818E+01
8.597E+01
7.618E+01
6.717E+01
5.912E+01
S« 176E+01

1.189E+02

1.285E+00
3. 380E+00
1.234E+00
3.54TE+00
1.195E+00
3.659E+00
1.168E+00

3. TOBE+00

1.156E+00
3.683E+00
1.160E+00
3.588E+00
1.178E+Q0
3.335E+00
1.226E+00
3. 104E+00
1.261E+00
2.910E+00
1.288E+00
2.791E+00
1.299E+Q0
2.788E+C0
1.293E+00
2.962E+00
1.266E+00
3.404E+00
1.220E+00

T.235E-01
3.0TOE+QC
T.086E-01
3.128E+00
7.009E-01
3.155E+00
T.013E-01
3.150E+00
T.108E-01
3.111B+00
7.296E-01
3.044E+00
7.562E-01
2.892E+00
8.083E-01
2.802E+00
8.410B-01
2.741B+00
8.647E-01
2.T723E+00
8.T61E~01
2.751EB+00
8.T35E-01
2.808E+Q0
8.561E-01
2.834E+00
8.246E-01

#RNWRPDF VALUES OF TEMPERATURE

PDF( 1)
PDF( 6)
0.000E+00
1.138E-03
3.898E-06
6.673E-04
3.232E-05
7.6T0E-04
8.006E-05
5.685E-04
1.2B4E-04

- 4.8838-04

1.798E-04
4.634E-04
2.525E~04
J+344E-~04
3 001 TE‘04
1.841B-04
3.710E-04
1.494E-04
4.375E-04
1.051E-04

PDF( 2)
PDF( T)
0.000E+00
2.136E-0%
1.350E-05
2.564E-03
3.186E-05
2.%86E-03
3.086E-05
2.452E-03
3.039E-05
1.300E-03
3.273E-05
1.099E-03
4.137E-05
1.042B-03
9.472E-05
8.083B-04
8.670E-05
5.402E-04
6.649E-05
4.433E-04

POR( 3)
PDF( 8)
8.270E-06
6.2238-04
2.980E-05
6.406E-04
2.886E-05
6.B806E-04
2.940E-05
T-444E-04
3.200E~05
1.884E-03
6.121E-05
2.048E-03
7.T48E-05
1.971B-03
6 .093E-05
1.058B-03
6.590E-05
1.273E-03
9.574E-05
2.202E-03

363

2.353E-01
2.749E+00
2.444E-01
2.734E+00
2.565E-01
2.7128+00
2.719E-01
2 .680E+00
2.9098-01
2.643E+00
3.132E-01
2.603E+00
3.3TTE-04
2.540E+00
3.786E-01
2.523E+00
4.016E-01
2.521E+00
4.182E-01
2.529E+00
4.271E-01
2.536E+00
4.278E-01
2.525E+00
4 .200E-01
2.469E+00

4.043E-01
R

PDF{ 4)
PDF( 9)
2.425E-05
9.420E-05
2.T43E-05
1.153E-04
2.624E-05
8.902E-05
4.812E-05
8.909E-05
7.T30B-05
9.8318-05
6.848E-05
9.066E-05
4.190E-05
2.701E-04
3.032E-05
1.426E-03
1.153E-04
1.362E-03%
1.212E-04
5. 135E~04

2.972E-02
2.423E+00
3.6685-02
2.369E+00
4.5358-02
2.321E+00
5.581E-02
2.281E+30
6.809E-02
2.251B+00
B.1T4E-02
2.233B+00
9.584E-02
2.227E+00
1.182E-01
2.245E+C0
1.302E-01
2.264E+00
1.391E-01
2.276E+00
1.445E-01
2.2TQE+00
1.462E-01
2.236E+00
1.442E-01
2.166E+Q0
1.389E~01

PDF( 5)
PDF( 10)
4 .42TE-05
0.00CE+00
4 .728E-05
0.000E+00
6.313E-05
0.000E+C0
5.867TE-05
0.000RE+00
5.887E-05
0.000E+CQ
5.239E-05
0.000E+C0
6.181B-05
0.000E+Q0
1.506E-04
0.0C0E+00
1.5088-04
0.0COE+Q0Q
1.051E-04
0.000E+0Q0

1 » 904E"03
1 .822E+00
2.326E-03
1.758E+C0
2.911E-03
1. TO9E+00
3.7238-03
1.67TTEH0
4.850E-03
1.663B+00
6.381E-03
1.667E+CO
8.388E-~-03
1.701E+CO
1.242E-02
1.735E+00
1.489E-02
1.762E+Q0
1.692E-02
1.773E+Q0
1.835E8-02
1.764E+00
1.911E-02 -
1.729E+00
1.918E-02
1.668E+00
1.857E-02



12
13
14
15
16
17
18

19

4.964E-04
3.321E-04
5. 968E-04
4.139E-04
6.873E-04
2.897E-04
8.266E-04
4.1T2E-04
9.949E~04
4.294E-04
1.210B-03
0.000E+00
1.358B-03
6.329E-05
1.553E-03
1.406E-04

1.029E-04
1.538E-0%
1.468E-04
1.288E-04
1.610E-04
3.698E-04
2.699E-04
3.687E-04
3.048E-04
0 .000E+Q0
2.402BE-04
0.000E+00
1.7058-03
0.000E+00
1.946E-03
0.000E+00

1.416E-04
4.939E-04
1.491E-04
3.372E-04
3.014E-04
%.658E-04
3.354E-04
0.000E+0
1.533E~03
0.000E+Q0
1.512B-03
0.000E+Q0
3.675E-04
0.000E+00
2.421E-04
0.000E+CO

364

1.064E-04
7.817E-04
2.318E-04
4.622B-04
1.581E-03
0.Q00E+00
1.550E-03
0.000E+00
3.929E-04
0.000E+00
3.666E~04
0.000E+00
3. TT9E~-04
0.000E+00
1.258E-04
0.000E+00

CROSS-STREAM PLOT, XU= 6.096E-01 ISTEP= 420
TERMINATED AT

ISTEP=

420 LASTEP= 1000 XU=

6.096E-01 XULAST=

DOWN-STREAM PLOT, U= 6.096E-01 ISTEP= 420

9.658E-05
0.000E+00
1.650E-03
0.000E+00
3.669E-04
0.000E+Q0
3.366E-04
0.000E+00
4.536E-04
0.000E+00
7.483E-04
0.000E+Q0
2.449E-04
0.000E+00
1.046E-04
0.000E+00

6.096E-01 IFIN=

2



