APPLICATION OF THE "ESCIMO" THEORY
 TO TURBULENT DIFFUSION FLAMES

BY

RICHARD LO-TIEN SUN B.Sc(Eng), M.Sc.

THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF ENGINEERING UNIVERSITY OF LONDON AND

FOR THE DIPLOMA OF MEMBERSHIP OF IMPERIAL COLLEGE

Computational Fluid Dynamics Unit,
Imperial College of Science and Technology,
London S.W. 7

TO MY PARENTS.

Abstract

The ESCIMO (Engulfment, Stretching, Inter-diffusion and Moving Observer) theory of turbulent combustion is further developed and applied to turbulent diffusion flames. The present theory contains both the demographic (Eulerian) and biographic (Lagrangian) aspects. Major attention is paid in the present work to the development of mathematical formulation and solution procedures for the fold demographic studies.

The distribution of "fold-populations" at each spatial point is described by a set of transport equations which are linked together through the source terms. The source terms in each equation include the effects of fold-ageing, foldformation and fold re-engulfment, respectively.

Simplifications are made in the biographic analysis in order to reduce the computational task, such as the assumption of a fast, simple chemical reaction system and unity Lewis number. The governing partial differential equation is then solved by the approximate methods, termed the "profile method".

In order to asses the validity of the "ESCIMO" theory, three different sets of experimental data are selected for comparison between the predictions and the measurements. These test cases are: (I) the diffúsion-limited chemical reaction in a turbulent mixing layer; (2) the hydrogen-air diffusion flame in co-flowing air; and (3) the natural gas-air free jet diffusion flame.

The quantities calculated by the present theory are classified into various categories presented below:

- the hydrodynamic results which include the mean velocity and the turbulent kinetic energy (obtained from the $k-\varepsilon$ model of turbulence);
- the population distribution function of various folds;
- the variation of mean temperature and species concentration across the mixing layer or jet;
- the root-mean-square fluctuation of temperature and species concentration; and
- the probability density function of temperature and species concentration.

Comparisons with the experimental data show that the agreement is fairly good, provided that a suitable choice of input parameters is made. The sensitivity analysis has been performed for both the physical parameters and numerical parameters in order to evaluate their influences on the results. However, there is a need for enlargement of the conceptual content of the "ESCIMO" theory to allow for the role of "Turbulence intermittency".

The direction of this future development is discussed, and suggestions provided.

PREFACE

I joined the Heat Transfer Section of the Mechanical Engineering Department (now the Computational Fluid Dynamics Unit) of the Imperial College of Science and Technology, as a research student, in October 1978. During these past four years, my research activities have been centred on the development of theoretical model for the prediction of two-dimensional turbulent reacting flows. The primary objective of my work has been to establish a more realistic and practical physical model which can be further developed to solve practical cōmbustion problems.

During the first six months of my studies, I followed the M.Sc.courses given by the Heat Transfer Section and worked on the numerical modelling of flows with moving interfaces. The experience obtained during that period was valuable for my later research work. In the next six months, I was working on the application of ESCIMO theory of turbulent combustion to the well-stirred reactor. I was fascinated with the contents and philosophy of the ESCIMO theory and I also realised that a lot of work has to be done in the future. From the second year, I devoted myself to the development of the demographic part of ESCIMO theory in two-dimensional parabolic flows. The first application of this work was the prediction of concentration and its fluctuations in a plane turbulent reacting mixing layer, where the experimental data are available.

The last part of my work was concerned with the calculation of temperature and concentrations in the turbulent jet diffusion flames. It was an exciting and challanging task, especially when the positive results emerged. I have gained more hand-earned knowledge and tasted the academic research life in my final years of study.

ACKNOWLEDGMENTS

I would like to express my gratitude to all those who have helped me during my studies at Imperial College. First and foremost, I am deeply grateful to my supervisors, Professor D.Brian Spalding and Dr.A.S.C.Ma, for their skilful guidance, moral encouragement and financial support. They have taught me not only on the main direction of the research topic, but also instructed me how to overcome the difficulties arising from various aspects. Professor Spalding once told me, "It is the very last detail of the problem which determines either the success or failure". He was right and I am glad that I have learned this experience. The constructive criticism received from Professor Spalding on the technical writings is also very valuable.

Dr.W.M.Pun taught me the basic prediction procedures used in the Heat Transfer Section. He explained all the methods clearly and patiently, I am very grateful. Discussions with Dres.M.A.Noseir and L.T.Tam on the modelling of combustion problems were particularly helpful.

The suggestions given by Dr.Andrzej Przekwas on the development of the demographic part of ESCIMO theory rates speciāl mentioning here. He has shared his time and experience unselfishly with me, even throughout the weekend or in the late evening.

I would like to thank Dr.G.W.Carroll, Dr.A.G.Awn and Dr.Amin Baghdadi for the help on numerical analysis. The
day-to-day exchange of ideas with other post-doctoral fellows, visiting scholars and students has also been most beneficial. These include Dr.Ahmed Abdelmeguid, Mr.W.C.Fan, Mr.S.Parameswaran, Mr.P.A.Shepherd and Mr.S.M.Lo.

Thanks are due to Miss Sue Farmiloe, Mrs.Maggie Dean and Mrs.Frith Oliver for their assistance in administrative matters; Mr.Peter Dale who helped in solving many computing problems. .The general help provided by Mr.Bob King is highly appreciated and the friendship between both of us very much enjoyable. I would also like to thank Miss E.M. Archer, Mrs.S.Boot and Miss L.Hamilton for providing very efficient library services.

I am grateful to Miss Janice Lewis and Miss Suzanne Enright for their excellent typing of the thesis, and for their patience and skill in going through every typing detail.

I would: like to extend my gratitude to my parents and brothers who offered all possible support and encouragement throughout my studies.

Finally, I wish to thank the Safety in Mines Research Establishment, Health and Sefety Executive of Great Britain for providing financial support during my studies.
ABSTRACT 1
PREFAGE 3
ACKNOWLEDGEMENTS 5
CONTENTS OF THESIS 7
LIST OF FIGURES 12
LIST OF TABLES 21
CHAPTER I - INTRODUCTION 24
1.1 The Problem Considered, 24
1.2 Objectives of the Study 26
1.3 Practical Relevance 27
1.4 Previous Work 28
1.5 Layout of the Thesis 34
CHAPTER 2 - THE PHYSICAL MODEL OF THE ESCIMO 36 THEORY
2.1 Introduction 36
2.2 The Time Average Flow 36
2.3 Fold Formation and Re-engulfment 38
2.4 Fold Stretching 40
2.5 Fold Transport 41
2.6 Fold Age and the Quantities 42correlated with it
2.7 Phenomena occurring within the fold 43
2.8 Closure 44
CHAPTER 3-THE MATHEMATICAL ANALISIS: 46 DEMOGRAPHIC ASPECTS
3.1 Introduction 46
3.2 The Hydrodynamic Calculation 46
3.2 .1 The Basic Equations in Polar 47Coordinate
3.2.2 The Transformation of the Equations 48 to the $\mathrm{x} \sim \omega$ Coordinate

3.3	The Basic Differential Equations for the Fold Population	54
3.4	Transformed Differential Equation of Fold Population	56
3.5	Discretisation of Age-Interval	59
3.6	Boundary Conditions	61
3.7	Finite Difference Approximation of the Differential Equation	61
3.8	Solution Procedure	66
3.9	Closure	67
CHAPTER 4 -	THE MATHEMATICAL ANALYSIS: BIOGRAPHIC ASPECTS	69
4.1	Introduction	69
4.2	The Basic Partial Differential Equation	70
$4 \cdot 3$	The Fold Characteristics at Birth	72
4.3 .1	The Fold Size at Birth	73
4.3 .2	Fold Composition at Birth	73
4.3 .3	The Stretching Rate of the Fold	76
4.4	The Relation Between Mixture Fraction and Other Variables	77
4.5	The Profile Method	79
4.6	The Solution Procedure	84
4.7	The Accuracy of the Profile Method	85
4.8	Closure	86
CHAPTER 5 -	THE COMBINED MATHEMATICAL ANALYSIS	88
5.1	Introduction	88
5.2	The Tracing of the Folds	88
5.3	The Population Average Properties	91
5.4	The Root-Mean-Square Fluctuation quantities	92
5.5	The Probability Density Functions	93
5.5.1	The definitions of pdf in ESCIMO approach	93
5.5 .2	The computational procedure	95
5.6	Closure	98

6.7 .2	The influence of numbers of grid	134
6.7 .3	The influence of subdivision in age-coordinate	134
6.8	Discussion of Results	134
6.9	Closure	141
CHAPTER 7 -	THE TURBULENT JET DIFFUSION FLAMES	143
7.1	Introduction	143
7.2	The Turbulent Hydrogen-Air Diffusion Flame	143
7.3	The Computational Aspects	144
7.4	Presentation of Results	147
7.4 .1	The Hydrodynamic Results	147
7.4.2	The population distribution of folds	149
7.4 .3	The mean temperature and species concentration	152
7.4 .4	The root-mean-square fluctuation of temperature	160
7.4 .5	The root-mean-square fluctuation of species concentration	162
7.4 .6	The probability density function of temperature	165
7.4 .7	The probability density function of species concentration	173
7.5	Discussion of Results	181
7.6	The Turbulent Methane-Air Diffusion Flame	185
7.7.	The Computational Aspects	185
7.8	Presentation of Results	188
7.8 .1	The hydrodynamic results	188
7.8 .2	The population distribution of folds	190
7.8 .3	The mean temperature and species concentration	196
7.8 .4	The root-mean-square fluctuation of temperature	201

7.8.5 The root-mean-square fluctuation 203of species concentration
7.8.6 The probability density functions 203of temperature
7.8.7 The probability density functions 207of species concentration
7.9 Discussion of Results 215
7.10 Closure 220
CHAPTER 8 - THE PARAMETRIC STUDIES 221
8.1 Introduction 221
8.2 The Test Cases Performed 221
8.3 The Influence of Fold Formation 223
Rate
8.4 The Influence of Fold Composition 233
8.5 The Influence of Fold Size 237
8.6 The Influence of Fold Stretching 246 Rate
8.7 The Influence of Grid Size 250
8.7 .1 The number of age-interval 250
8.7 .2 The number of cross-streall grids 256
8.7 .3 The size of forward marching step 261
8.8 Closure 264
CHAPTER 9 - CONCLUSION 268
9.1 Achievements of the Present Study 268
9.2 Suggestions for Future Work 271
REFERENCES 275
NOMENCLATURE 285
APPENDICES 292
Appendix A: Flow Chart of the Computer Program 292
Appendix B: Computer Listing for the 294 Calculation of H_{2}-air Flame
Appendix C: Sample Output of the Computer 357 Program
3.2-1 Boundaries of the computation 53 domain
3.7-1 $\quad x \sim \omega$ grid and control volumes 62 used for the derivation of the finite-difference equations
3.7-2 Grid nodes and intervals of A used 65 in the finite difference form
4.3-1. Composition of folds at birth in 74 the mixing layer
4.3-2 Composition of folds at birth in 75 the round jet
4.4-1 Sketch of dependencies of various 77 flow properties on mixture fraction
4.5-1 Evolution of the f-profile inside 82
a fold at various stages
5.2-1 Tracing of folds in the jet 90
5.5-1 Calculation of fold-pdf 97
5.5-2 Redistribution of fold-pdf to 97 the population domain
6.2-1 Test configuration of reacting 101 shear layer
6.4-1 Population distribution function 109 with respect to age; Run no.l
6.4-2 Population distribution function 10.9 with respect to age; Run no. 2
6.4-3 Population distribution function 111 with respect to age; Run no. 3
6.4-4 Radial variation of population of 111 folds belonging to a particular age-interval; Run no. 1

6.4-5	```Radial variation of population of folds belonging to a particular age-interval; Run no.2```	113
6.4-6	Radial variation of population of folds belonging to a particular age-interval; Run no. 3	113
6.4-7	Average age across the mixing layer	115
6.5-1	Radial profile of mean normalized temperature at $X=0.47 \mathrm{~m}$; Run no.l	117
6.5-2	```Radial profile of mean normalized concentration of NO2 at X=0.47m; Run no.I```	117
6.5-3	Radial profile of temperature fluctuation intensities; Run no.l	119
6.5-4	Radial profile of NO_{2} concentration fluctuation intensities; Run no.l	119
6.5-5	Temperature probability distributions at different locations across the shear layer	122
6.6-1	Influence of distribution of fold formation rate on the concentration fluctuation intensity	125
6.6-2	Influence of fold size on the concentration fluctuation intensity	125
6.6-3	Influence of fold composition on the concentration fluctuation intensity	129
6.6-4	Influence of stretching rate on the concentration fluctuation intensity	129
6.6-5	Influence of stretching rate on the mean concentration	131
6.6-6	Influence of stretching rate on the concentration fluctuation intensity	131

7.3-1	Grid system	145
7.4-1	Variation of axial-velocity in hydrogen-air flame	148
7.4-2	Variation of axial turbulenceintensities in hydrogen-air flame	148
7.4-3	Population distribution function with respect to age; $X / D=40$	150
7.4-4	Population distribution function with respect to age; $X / D=80$	150
7.4-5	Population distribution function with respect to age; $X / D=120$	151
7.4-6	Radial variation of population of folds belonging to a particular age-interval; $X / D=40$	151
7.4-7	Radial variation of population of folds belonging to a particular age-interval; $X / D=80$	153
7.4-8	Radial variation of population of folds belonging to a particular age-interval; $X / D=120$	153
7.4-9	Radial profiles of average age across the jet	154
7.4-10	Axial distribution of mean temperature and mean composition	156
7.4-11	Radial distribution of mean temperature and mean composition; $X / D=40$	156
7.4-12	Radial distribution of mean temperature and mean composition; $X / D=80$	157
7.4-13	Radial distribution of mean temperature and mean composition; $X / D=120$	157.

7.4-14 Radial distribution of mean 159
temperature and mean composition; $X / D=160$
7.4-15 Flame contours 159
7.4-16 Axial distribution of temperature 161 fluctuation
7.4-17 Radial distribution of temperature 161 fluctuation at various locations
7.4-18 Concentration fluctuation of 163 hydrogen and oxygen; $X / D=40$
7.4-19 Concentration fluctuation of 163 hydrogen and oxygen; $X / D=80$
7.4-20 Concentration fluctuation of 164 hydrogen and oxygen; $X / D=120$
7.4-21 Radial distribution of water- 166 vapour concentration and its fluctuation; $X / D=40$ \& 80
7.4-22 . Radial distribution of water- 166 vapour concentration and its fluctuation; $X / D=120$ \& 160
7.4-23 Probability density function of 167 temperature at flame axis
7.4-24 Probability density function of 169 temperature at $X / D=40$
7.4-25 Probability density function of 170 temperature at $X / D=55$
7.4-26 Probability density function of 171 temperature at $X / D=80$
7.4-27 Probability density function of 172 temperature at $X / D=120$
7.4-28 Probability density function of 174 mass fraction of H_{2} at $\mathrm{X} / \mathrm{D}=40$

7.4-29	Probability density function of mass fraction of H_{2} at $\mathrm{X} / \mathrm{D}=80$	175
$7 \cdot 4-30$	Probability density function of mass fraction of O_{2} at $\mathrm{X} / \mathrm{D}=40$	176
7.4-31	Probability density function of mass fraction of O_{2} at $X / D=80$	177
7.4-32	Probability density function of mass fraction of $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{X} / \mathrm{D}=40$	178
7.4-33	Probability density function of mass fraction of $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{X} / \mathrm{D}=80$	179
7.4-34	Probability density function of mass fraction of $\mathrm{H}_{2} \mathrm{O}$ at $X / D=120$	180
7.8-1	Variation of axial velocity in the methane-air flame	189
7.8-2	Variation of axial turbulenceintensities in the methane-air flame	189
7.8-3	Population distribution function at various positions in the jet region; $X / D=40$	191
7.8-4	Population distribution function at various positions in the jet region; $X / D=80$	191
7.8-5	Population distribution function at various positions in the jet region; $X / D=120$	193
7.8-6	Radial variation of population of folds belonging to a particular age-interval; $X / D=40$	193
7.8-7	Radial variation of population of folds belonging to a particular age-interval; $X / D=80$	194

7.8-8	Radial variation of population of folds belonging to a particular age-interval; $X / D=120$	194
7.8-9	Radial profiles of average age	195
7.8-10	Axial distribution of mean temperature	195
7.8-11	Axial variation of mean compositions in the methane-air flame	197
7.8-12	Radial variation of mean temperature and products; $X / D=60$	197
7.8-13	Radial variation of mean temperature and products; $X / D=90$	199
7.8-1.4	Radial variation of mean temperature and products; $X / D=I 20$	199
7.8-15	Radial profile of methane and oxygen concentration; $X / D=60$	200
7.8-16	Radial profile of methane and oxygen concentration; $X / D=90$	200
7.8-17	Axial distribution of rms temperature fluctuation	202
7.8-18	Radial distribution of rms temperature fluctuation; $X / D=60$	202
7.8-19	```Radial distribution of rms temperature fluctuation; X/D=90. & 120```	204
7.8-20	Concentration fluctuation of methane and oxygen; $X / D=60$	205
7.8-21	Concentration fluctuation of methane and oxygen; $X / D=90$	205
7.8-22	Concentration fluctuation of methane and oxygen; $X / D=120$	206

7.8-23	Probability density functions of temperature at flame axis	208
7.8-24	Probability density functions of temperature; $X / D=40$	209
7.8-25	Probability density functions of temperature; $X / D=110$	210
7.8-26	Probability density functions of temperature; $X / D=120$	211
7.8-27	Probability density functions of temperature; $X / D=130$	212
7.8-28	Probability density functions of mass fraction of methane; $X / D=40$	213
7.8-29	Probability density functions of mass fraction of methane; $X / D=60$	214
7.8-30	Probability density functions of mass fraction of oxygen; $X / D=40$	216
7.8-31	Probability density functions of mass fraction of oxygen; $X / D=60$	217
8.3-1	```Population distribution functions of methane-air diffusion flame; Run no.1```	224
8.3-2	```Population distribution functions of methane-air diffusion flame; Run no.2```	224
8.3-3	```Population distribution functions of methane-air diffusion flame; Run no. }```	225
8.3-4	Radial variation of average age for methane-air diffusion flame	225
8.3-5	Influence of fold formation rate on temperature fluctuation	22.9
8.3-6	Influence of fold formation rate on pdf of temperature; $X / D=60$	232

8.4-1	Influence of fold composition on the mean temperature and compositions for hydrogen-air flame	235
8.4-2	Influence of fold composition on temperature fluctuation for methane-air flame	235
8.4-3	Influence of fold composition on pdf of temperature at $X / D=60$ (Runs nos.I and 5)	238
8.4-4	Influence of fold composition on pdf of temperature at $X / D=60$ (Run nos.l and 4)	239
8.5-1	Influence of fold size on the mean temperature and compositions for hydrogen-air flame	242
8.5-2	Influence of fold size on the temperature fluctuation for methane-air flame	242
8.5-3	Influence of fold size on pdf of temperature at $X / D=60$ (Run nos. 1 and 6)	244
8.5-4	Influence of fold size on pdf of temperature at $X / D=60$ (Run nos. 1 and 7)	245
8.6-1	Influence of fold stretching rate on the mean temperature and compositions for hydrogen-air flame	249
8.6-2	Influence of fold stretching rate on temperature fluctuation for methane-air flame	249

| $8.6-3$ | Influence of fold stretching rate |
| :--- | :--- | :--- |
| on pdf of temperature at $X / D=60$ | |
| (Run nos. and 8) | |$\quad 251$

LIST OF TABLESPAGE NO.
3-2 Source terms for the relevant 54 equation in the general form
4-4 The specific constants for 79various species
673 Characteristics of computer runs 107
6.6-1 The influence of distribution of 123 fold formation rate on NO_{2} concentration
6.6-2 Influence of fold size on NO_{2} 126 concentration
6.6-3 Influence of fold composition on 127 NO_{2} concentration
6.6-4 Influence of stretching rate on 128 NO_{2} concentration
6.7-1 Influence of forward marching step 133 size on NO_{2} concentration
6.7-2 Influence of cross-stream grid no. 133 on NO_{2} concentration
6.7-3 Influence of age-intervals on NO_{2} 135 concentration
7.7-1 Composition of the natural gas 187
8.2-1 The test cases of parametric 222 studies for methane-air diffusion flame
8.3-1 Influence of fold formation rate 226 on mean temperature
8.3-2 Influence of fold formation rate 227 on mean CH_{4} molar fraction
8.3-3 Influence of fold formation rate 227 on mean temperature

8.3-4	Influence of fold formation rate on mean H_{2} molar fraction	230
8.3-5	Influence of fold formation rate on rms fluctuation of CH_{4} concentration	230
8.4-1	Influence of fold composition on the mean temperature	233
8.4-2	Influence of fold composition on mean CH_{4} molar fraction	234
8.4-3	Influence of fold composition on rms fluctuation of CH_{4} concentration	236
8.5-1	Influence of fold size on the mean temperature	240
8.5-2	Influence of fold size on mean CH_{4} molar fraction	240
8.5-3	Influence of fold size on rms fluctuation of CH_{4} concentration	243
8.6-1	Influence of fold stretching rate on the mean temperature	246
8.6-2	Influence of fold stretching rate on mean CH_{4} molar fraction	247
8.6-3	Influence of fold stretching rate on rms fluctuation of CH_{4} concentration	248
8.7-1	Influence of age-interval on mean temperature	253
8.7-2	Influence of age-interval on mean CH_{4} molar fraction	254
8.7-3	Influence of age-interval on temperature fluctuations	254
8.7-4	Influence of age-interval on rms fluctuation of CH_{4} concentration	255

8.7-5 Influence of cross-stream grids on 258
the mean temperature
8.7-6 Influence of the cross-stream grids 259on the mean CH_{4} molar fraction
8.7-7 Influence of cross-stream grids on 260 temperature fluctuation
8.7-8 Influence of cross-streall grids on 260rms fluctuation of CH_{4} concentration

CHAPTER I

INTRODUCTION

1.1. The problem considered

There have been extensive theoretical studies in turbulent reacting flows during the last decade. These continuing research activities are inspired by the increasingly urgent requirements of higher combustion efficiency and lower pollutant emissions. A better understanding of the processes involved and a more powerful predictive capability are essential to achieve the purpose.

According to the nature of the combustion problems in many practical devices, the reacting flows can be classified into two limits, namely, the nonpremixed and premixed systems. For the nonpremixed systems, fuel and oxidizer enter the field of interest in two streams, for instance, the primary jet is fuel and the secondary flow is oxidizer. For the premixed systems, the cold, premixed reactantsare fed into a single stream and the other stream is composed of hot combustion products. Intermediate cases do exist in reality, e.g., the primary jet is fuel and the secondary stream is a fuel-oxidizer mixture. Up to date, most of the developed theories and methods are confined to the nonpremixed and premixed limits due to the relative simplicity.

Different models have been developed and applied to either the nonpremixed flames (also called as diffusion flames) or the premixed flames, such as those mentioned in the literature by Spalding (1976a), Bilger (1976,.1980)
and Bray (1979,1980). The important phenomena in each type of flames can be fairly predicted with the aid of some assumptions, closures and semi-empirical formulae. However, the majority of theoretical models have been constructed and found successful for one type of flame only.

It is desirable to set up a theoretical framework which is capable of tackling both the turbulent diffusion and premixed flames. The advantage of this kind of theory is that it can be further developed to predict some practical flames, like that in the gasrturbine combustor, which has both diffusion and premixed features.

A general theory of turbulent combustion with the acronym of ESCIMO (Engulfment, Stretching, Coherence, Interdiffusion and Moving Observer), was proposed by Spalding (1976b,1978b) to meet the need. The theory combined the Eulerian approach (termed the demographic part here) and the Lagrangian approach (termed the biographic part) into one framework. The application of ESCIMO theory to the confined, premixed, baffle-stabilized flame appeared in the work of Noseir (1980), while the other application to the well-stirred reactor (also premixed flames) with complex chemical-kinetics scheme was demonstrated by Tam (1981).

The reacting flows considered in this thesis are of the open, turbulent diffusion types and it is the first test of ESCIMO theory to this kind of flows. The chemical reaction considered herein is fast compared with the rate of turbulent mixing, which is usually classified as diffusion-limited or hydrodynamics-controlled reaction.

1.2 Objectives of the study

The concepts of ESCIMO theory are based on the existence of coherent lumps of fluids, termed the "folds" or "layer-pairs" in the present work and related publications, which travel from one place to the other according to the fluid-dynamics motion. The properties of the flow are determined from the characteristics of different folds coming from various places.

The whereabouts of all folds and the history of each fold are treated in the demographic and biographic parts respectively. The demographic part is more closely related to the hydrodynamic condition than the biographic part. In the previous work of Noseir (1980) and Tall (1981), major attention has been paid to the development of biographic analysis, while the demographic analysis was rather primitive. The results of demographic analysis in the well-stirred reactor can be expressed by the simple exponential function '(Tam, 1981), since the properties are uniform in space. On the other hand, Noseir assumed that the time-average profiles of gas properties across the duct are of the top-hat form. This simplification reduces the demographic analysis to a one-dimensional problem, i.e., the population distribution of folds is a function of longitudinal distance only.

The two main objectives of the present study are, consequently:
(1) to set up the mathematical formulation of demographic analysis in actual two-dimensional, turbulent, reacting flows together with the numerical solution procedure; and
(2) to apply the ESCIMO theory to the turbulent free jet-diffusion flames as one further step toward the combustion problems of practical importance.

The results obtained from the present work can be classified into three categories, namely, the turbulent mean properties, the turbulent fluctuation intensities and the probability density functions (pdf) of various scalars.

The presumptions made in ESCIMO theory are mainly based on physical reality, with some simplifications in order to economize the computational task, The influence of various hypothesis and empirical constants on the results have been investigated and demonstrated.

1.3 Practical relevance

The turbulent diffusion flames exist in many industrial processes and natural fires, which can be divided into the following groups:
(I) Gas turbine combustors: the fuel is injected into the primary combustion zone through the injector and the air enters from the front of the combustor or from large holes in the combustor liner. The fuel and air are injected separately, mix and, subsequently, react. However, in the secondary combustion zone and dilution zone of the combustor, more air is added through the film cooling slots, indicating that the combustion changes from the diffusion type to the premixed one.
(2) Industrial furnaces: the fuel jet and air flow are supplied separately to the confined combustion chamber.
(3) Compression-ignition (diesel) engine: much of the combustion occurs at a rate controlled by the mixing of fuel spray and air.
(4) Rocket exhaust plumes: the exhaust gases from the rocket nozzle usually contain some amount of oxidisable material and secondary flame may occur when the gases mix with the surrounding air. The secondary combustion is responsible for the emission of light, intensified heat radiation, etc. in the trail of the rockets and missiles.
(5) Fires: the large scale forest fires, building fires, and the flaring waste gases are mostly mixing-controlled diffusion flames.

Usually, the higher combustion efficiency in the engineering equipments is accompanied by lower emission of soot agglomerates (smoke) and pollutants such as carbon monoxide and nitric axide, since less amount of fuel is wasted. The detailed chemistry of soot and pollutant formation is very complex and depends on the detail thermal and hydrodynamic conditions of the flows considered. Therefore, a reliable and powerful model in the prediction of flame properties is the prerequisite for the solution of our energy and environmental problems.

1.4 Previous work

It happens in many practical cases that the kinetics of the overall chemical reaction are relatively fast compared with the rate of turbulent mixing. The equilibrium concentrations of final products is then assumed to prevail everywhere in a diffusion flame (Spalding,l970a; Bilger,1976;

Libby and Williams, 1981). The additional assumption of equal mass diffusivity are also often made and justified, so that the concentration of fuel, oxidant and product are uniquely related to the mixture fraction which is a conserved scalar. The value of enthalpy can also be determined by the mixture fraction if the enthalpies of fuel and oxidant streams are uniform. Therefore, all the thermodynamic properties of the mixture are functions of mixture fraction only. This conserved scalar approach substantially simplifies the analysis of the problem, since the difficulties in modelling the turbulent mean reaction rate are largely obviated.

The turbulence fluctuation in the flames is taken into account by presuming a probability density function (pdf) for the fluctuating mixture fraction so that the mean concentrations and temperature can be evaluated. The work of Kent and Bilger (1973), Lockwood and Naguib (1975), Jones and Whitelaw (1978) and Kolbe and Kollman (1980) all follow this line. The shape of pdf is assumed as a "clipped Gaussian" or of beta function distribution. The common practice in these approaches is to obtain the mean mixture fraction and its variance (the fluctuation) from the modelled transport equation. The variance was obtained by solving the "g-equation" proposed by Spalding (1971a) or other equation with some modification.

The predictions obtained from the presumed pdf approach compared favourably with the experimental data on time mean quantities, although some discrepancies do exist, It has been demonstrated by Kent and Bilger (1976) that the predictions on mean composition and temperature do not seem very sensitive
to the variations in the pdf profiles. The limitation of this approach is that a sufficiently realistic pdf has to be specified in advance and the task becomes more difficult when the combustion process can not be properiy..described by a single-step reaction (Spalding, 1979a).

Another approach, proposed by 0^{\prime} Brien (1971), Dopazo (1975), Pope (1976) and Janicka et al (1978), is to construct the transport equation of pdf from the conservation laws. But the molecular diffusion and turbulent transport terms are unclosed and have to be modelled in all such pdf equations for reactive flow systems. The major advantage of the pdf method for reactive flows is the closediform treatment of the species production rate, which makes it attractive especially for combustion problems. But the number of independent variables increases substantially and the numerical methods become more sophisticated and time consuming, especially when the chemistry is complex.

Following the line of using a deterministic approach to the specification of a scalar pdf in a single reaction progress variable, proposed by Bray and Moss (1977), Libby et al (1979), Roberts and Moss (1981) has demonstrated a "wrinkled flame" interpretation of the open turbulent diffusion flame. It is argued in the wrinkled flame model that a laminar flamelet profile is the microscopic element in a turbulent ensemble. The pdf of any conserved scalar is related to the instantaneous flame profile through the flame sheet model, where the two parameters in the instantaneous flame profile are determined from the measured mean temperature and temperature fluctuation. The measured probability density
function of temperature, in the open turbulent methans diffusion flame, has been reproduced from this wrinkled flame model. Roberts and Moss (1981) claimed that this model is simpler and more economical in the descriptions of scalar pdfs than the multi-dimensional joint pdfs.

When the finite-rate chemistry is present in the flow, or the flame is a partially premixed one, the transport equation of one reacting species (usually is the fuel) has to be solved in addition to the mixture fraction. The production rate (or consumption rate) of the species appears in the source term of the balance equation and must be modelled. This approach is often termed the two-variable approach or two-variable formalism (Lockwood and Naguib, 1975; Lockwood, 1977; Janicka and Kollman, 1979; Bilger, 1980). The second variable is a kind of progress variable such as reactedness or other combined variables.

The closure of the production term for the second variable has been treated in various ways. Some authors simply use a mean kinetic rate based on the mean concentrations and mean temperature only. This is unsatisfactory because the effects of fluctuations and mixing are disregarded in the calculation of the reaction rates. Borghi (1974) and Hutchinson et al. (1978) employed an expansion procedure to include the effects of temperature and concentration fluctuations on the reaction rates, but the correlation terms have to be obtained by second-order closure of their balance equations. The closure problem seems to overshadow the advantage gaining from the use of conserved scalar (i.e. the first variable).

Spalding (1971b) proposed the "eddy break up" model to combine the effects of turbulent mixing and chemical kinetics. Hence, the reaction rate is a function of the local turbulence Reynolds number, the turbulent kinetic:energy and its dissipation rate, the concentration fluctuation and the kinetic rate of reaction. Many similar expressions have appeared in the literature (Lockwood, 1977; Bray and Moss, 1977) and some degree of success was achieved, such as the work of Mason and Spalding (1973); Stephenson (1972) and Serag-Eldin (1977). However, this approach is
semi-empirical and some uncertainties do exist.
Alternatively, Janicka and Kollmann (1979) employed the joint pdf of two variables to tackle the chemical reaction term. Several constraints imposed by the moments and the bounds of the variables can be placed on the pdf. The second-order moments are obtainable from the modelled balance equations and the chemical production terms from the joint pdf. Plausible results have been obtained for the concentrations of major species and nitric oxide.

Bilger (1979) proposed the "perturbation approach" to handle the source term of the second variable. The term "perturbation" here means the departure from the equilibrium or fast chemistry solution. A new term which represents the production rate of out-of-equilibrium material (by the fine scale turbulent mixing) arose in the equation. The treatment of this microscale mixing source term has been demonstrated by the author. In the mean time, the mean production rate was found to be better conditioned, in terms
of the departure from equilibrium, than the usual approach so that a lower-order closure is sufficient.

All the approaches described in the preceding paragraphs include the concept of conserved scalar. There exist some problems in which it is impossible or inappropriate to define and utilize the conserved scalar. These problems usually fall into one of the classes presented below; (1) when the turbulence Reynolds number is low and differential diffusion (in the molecular diffusion level) effects are important; or
(2) the composition and enthalpy in the fuel stream and oxidant stream are not uniform and constant; or
(3) the complex chemical reactions are far from the equilibrium conditions so that little advantage can be gained from the two-variable approach.

Some authors has already suggested that it is necessary to attempt direct closure of the chemical production term by either the moment closure or the pdf closure methods. The typical examples appeared in the work of Borghi (1974), Donaldson and Hilst (1972), Bonniot et al. (1978), Donaldson (1974). However, these methods have been developed for problems of relatively simple chemistry and equal molecular diffusivity so far. The demonstration of this approach to the more difficult problems remains to be done.

Another approach based on the detailed computations of each hypothetical element in the turbulent reaction zone has been illustrated by the earlier work of Mao and Toor (1970). They treated the flows as composed of multi-layered
sandwich, which contains either oxidant-rich layer or fuel-rich layer. The phenomena occurring in the sandwich is supposed to be unsteady and laminar, so that the full multicomponent diffusion effects and complex free radical chemical mechanism can be incorporated in the model. The effect of shear or stretching strain was, however, not considered in the early version given by Mao and Toor (1970), i.e., the model is purely diffusional. They were able to predict the experimental data of Vassilatos and Toor (1965) in the plug flow reactor over a wide range of Damkohler number and stoichiometry parameter, if the thickness of layer is properly prescribed.This model bears some resemblance in the conceptual framework to the ESCIMO theory to be presented in the present thesis.

1.5 Layout of the thesis

The remainder of the thesis is presented in eight chapters. The physical model of the ESCIMO theory will be provided in the next chapter.

The mathematical analysis of the theory is presented in Chapters 3, 4 and 5. Chapter 3 contains the mathematical formulation of the hydrodynamic computations and demographic part. The partial differential equations are two-dimensional steady and parabolic which can be solved by the marching method (in the space direction). Chapter 4 provides the mathematical framwork of the biographic part in ESCIMO theory. The equations which describe the behaviour of each fold are one-dimensional, unsteady with the laminar diffusion coefficients. An approximate method, called as "profile method" is adopted to obtain a closed form solution. Chapter 5
describes how the results obtained from the demographic and biographic parts can be linked together to yield the various turbulence properties in the flow systems of interest.

The first test case in the present work, namely, the diffusion-limited chemical reaction in the turbulent mixing layer, is demonstrated in Chapter 6. The influence of various assumptions and parameters is also discussed.

Chapter 7 is devoted to the application of ESCIMO theory to the turbulent jet diffusion flames, including the hydrogen-air diffusion flame and methane-air diffusion flame. The results are compared with the measurements from Kent and Bilger (1973), Lenze and Günther (1975), Lenz and Günther (1980).

Chapter 8 presents the sensitivity analysis for the turbulent diffusion flames, It includes the influence of fold formation rate, the fold composition at birth, the initial fold size and stretching rate on the prediction of flame properties. The influence of different grid sizes is also investigated and demonstrated in this chapter.

Finally, the main achievements of the present work and some proposals for further development of the theory are stated in Chapter 9.

CHAPTER 2

THE PHYSICAL MODEL OF THE ESCIMO THEORY

2.1 Introduction

In this chapter the various components of the ESCIMO theory from both the demographic (Eulerian) and the biographic (Lagrangian) aspects will be described; the presentation will be based on the physical phenomena first and then followed by simple mathematical formulation only. The detailed partial differential equations are depicted in the next two chapters.

The turbulence model for the time-average flow field is first presented as the starting base, followed by the description of the creation of the folds (or eddies) and the coalescence of the old folds into the new ones. The stretching effect of the folds due to the shear strain and the transport of different folds by the mean turbulent flow will be explained afterwards.

The definition of the age in the fold-history and the relevant quantities are then provided in the subsequent sections of this chapter. Finally, the molecular diffusion which occurs inside each fold and its interaction with the main flow field will be discussed.

2.2 The time average flow

Two types of similar flow field are considered in the present work, namely the turbulent plane mixing layer and the turbulent axisynmetric round jet. Both of them belong to the two-dimensional parabolic flows, thus simplifying the flow
field solution so that more efforts can be spent on the development of the ESCIMO model itself. The physical laws which govern these flows include the conservation of mass, momentum and scalar properties and the universal gas law. These laws have been written in mathematical forms and simplified according to the boundary layer assumptions, such as by Schlichting (1979), Kays (1969) and Spalding (1971a)

However, there is a need in modelling the turbulence quantities for the determination of turbulent fluxes which appear in the momentum conservation equation. In order to obtain reasonable accuracy on one-hand and the computational practicability on the other, the widely used two-equation model of turbulence given by Harlow and Nakayama (1968) and Launder and Spalding (1973) is employed here in this work.

In two-equation $k-\varepsilon$ model, it is supposed that the turbulence is characterised by two quantities, namely:
k - kinetic energy of turbulence; and
ε - dissipation rate of turbulent kinetic energy.
The "eddy viscosity" or "turbulent viscosity" used in the momentum equation is then calculated from the values of k and ε with the aid of an empirical constant. The turbulence length scale is also related to k and ε instead of being assigned a specific value such as in the Prandtl's mixing length theory. The full mathematical presentation of the hydrodynamics calculation will appear in the next chapter.

2.3 Fold formation and re-engulfment

The earlier experimental work of Brown and Roshko (1974) on non-reacting plane turbulent mixing layer with free streams of different densities has provided considerable evidence on the existence of "large scale coherent structure". The rolling up of the interface (vortex sheet) between two streams to form "layer pairs" or "folds" was revealed by the high speed photography.

The recent work of Ganji and Sawyer (1980) in the turbulent premixed step-combustor also reported the similar coherent structure. There are a number of "layer-pairs" or "sandwiches" in the mixing region and they are randomly distributed at any instantaneous moment. The fresh reactants are continuously entrained or enfolded with the products to form new eddies. From the high-speed Schlieren.film record of the flame presented. by Ganji and Sawyer (1980), it can be observed that the eddy ahead is being pushed downstream, and the following eddy moves up. At the same time, they rotate around each other and finally become a single entity (at least optically). This phenomenon can be termed the "re-engulfment process".

In the framework of the ESCIMO theory, the formation rate of "folds" or "eddies" is determined by the entrainment rate which is obtained from the hydrodynamics calculation. However, the distribution of the formation rate across the shear layer or the jet at fixed downstream location has to be postulated. There is no experimental evidence reported up to date concerning this problem, hence different hypothesis will be employed and tested in the present work to demonstrate its influence.

The distribution can be assumed to be proportional to the local mean velocity gradient; to the local mean velocity: or to the normalized stream function.

After the fold is created inside the mixing region, it is carried downstream by the mean flow field and will finally be swallowed by another fold to form a new and larger fold. Ganji and Sawyer reported a relationship, Which obeys the experimental law approximately, between the percentage of survived eddies and the surviving distance. Therefore, a distribution of the percentage (or population) of various folds formed at different upstream locations is expected at any downstream position. The folds can be identified according to their birthplaces and hence be classified into different groups.

> Re-engulfment and formation rates are directly linked, conditional upon their difference being equal to the entrainment rate from the mass conservation law. Should a new fold contain equal amounts of fresh and old material, the quotient of re-engulfment to formation rates would be 0.5. Generally speaking, this quotient is a function of position across a shear layer or jet. Thus, the function can be expressed as:

$$
\begin{equation*}
\dot{R}_{R}=(1-M 0) \dot{R}_{F} \tag{2.3-1}
\end{equation*}
$$

where \dot{R}_{R} and \dot{R}_{F} represent the re-engulfment rate and formation rate respectively, Mo is the mass fraction of the fresh fluid in the newly formed fold ($0<\mathrm{M}_{\mathrm{M}}<1$).

The re-engulfmen't rate of each group of folds is therefore calculated from the total re-engulfment rate (Eqn.2.3-1) multiplied by the population distribution obtained from the demographic analysis.

2.4 Fold Stretching

Winant and Browand (1974) observed the deformation of vortices during their pairing process in turbulent boundary layers. The vortices become elongated in the flow direction while they roll around each other which indicates strains imposed by the stream velocities.

Spalding (1976b) has attributed two factors to the rate of distortion of layers, namely the mean motion of the fluid and the random turbulence eddying movements. The random turbulence motion is very complex and not yet well understood. Hence, only the rate of distortion brought about by the mean turbulent flow is considered in the present work and it is hoped that the main effects of stretching are adequately included, at least for the present.

If the average thickness of the fold is defined as Z, the stretching rate (or the reduction rate of a certain scale) is related to the rate of strain through the following expression:

$$
\begin{equation*}
\frac{d Z}{d t}=-\left|\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}\right| z \tag{2.4-1}
\end{equation*}
$$

where t is time, u and v represent the mean velocity in the x and y direction respectively. Eqn. (2.4-1) is further reduced according to the boundary layer assumption
as:

$$
\begin{equation*}
\frac{d Z}{d t}=-\left|\cdot \frac{\partial u}{\partial y}\right| z \tag{2.4-2}
\end{equation*}
$$

in the present computation.

2.5 Fold Transport

The basic transport mechanism of the folds is the mean convective flow motion, although the local vorticity can induce the turn-over of the folds. The trajectories of the eddies in the free shear layer has been first studied by Brown and Roshko (1974) and followed by Ganji and Sawyer (1980). It has been reported in their later work that the trajectories are nearly parellel to each other, indicating that the vortices nearly move with the same convective relocity in space.

In the case of a free jet where the maximum velocity decays in the downstream direction, the trajectories of the eddies are supposed to be somewhat different from those of free shear layer where the boundary velocities are constant. It is assumed in the present work that the folds move with the local mean velocity along the path of constant mixture fraction, the mixture fraction being defined as:

$$
\begin{equation*}
f \equiv \frac{\dot{\phi}-\phi_{e}}{\phi_{e}-\phi_{\infty}} \tag{2.5-1}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi \equiv s^{2} \mathbb{m}_{f u}-m_{o x} \tag{2.5-2}
\end{equation*}
$$

and $m_{f u}$ and $m_{o x}$ are the mass fractions of fuel and oxidant
and s is the stoichiometric oxydant required to burn lkg of fuel. ϕ_{e} and ϕ_{∞} are the values of ϕ at the fuel pipe exit and the surrounding air.

The present assumption on the fold trajectories implies that the elemental composition of each fold remains constant during its life time (before it is re-engulfed by other fold to form a new one). This hypothesis is consistent with the coherent assumption that each individual fold does not communicate with the others within its life span (Spalding, I979b).

2.6 Fold age and the quantities correlated with it.

The fold which is formed at a particular point in the flow field will take a finite time to travel to another place (before it is re-engulfed). Spalding (1976b) suggested the use of an "age" dimension to describe the fold-history. The definition of "age" employed in the ESCIMO theory is the time elapsed since fold formation. Thus, it is related to the convective velocity and the distance from the birth place along the fold path.

The mathematical relation between the age and the relevant quantities is now written as:

$$
\begin{equation*}
A \equiv \int_{c^{x} b}^{x} \frac{d x}{u} \tag{2.6-1}
\end{equation*}
$$

where A is the age of the fold and x_{b} is the x-value at the birth place. c is the trajectory of the fold.

Folds which have survived through various periods of time can be characterised by their ages. Samples taken
at a particular point in a flow field over a significant time interval should be able to exhibit folds having various ages owing to the turbulent fluctuation. Consequently a population distribution curve based on age can be constructed.

The task in the demographic part of the ESCIMO theory is to obtain the population distribution of folds in the flow domain. The mathematical framework and computational technique share some similar feature with the computation of particle-size distribution in coal combustion (Gibson and Morgan, 1970; Richter and Quack, 1975) and in droplet combustion (Elgobashi, Pratt, Spalding and Srivatsa, 1976). The detail analysis is to be described in the next chapter.

2.7 Phenomena occuring within the fold

While the creation and transport of the large scale coherent structures, such as folds, are dominated by the turbulent mixing processes, the interaction between the interface of fresh reactant and the product inside each fold is a molecular one. The molecular diffusion, heat conduction and chemical reaction which take place in direction normal to the interface are subject to the laminar law and hence the laminar exchange coefficient can be employed in the computation.

The properties of the fresh component (reactant) of the fold are those which belong to the undisturbed irrotational fluid outside the shear layers or jets. On the other hand, the properties of the re-engulfed
component of the fold are determined by the mean turbulent values and the fluctuation values inside the mixing region.

The inter-diffusional and chemical-reaction processes within the fluid element are influenced by the stretching effect from the mean turbulent motion such that the distances over which the reactants must travel become steadily smaller. The interaction between turbulence and combustion is embodied in this aspect of the ESCIMO theory.

Since the moving observer concept is adopted in the biographic analysis, the equations describing the heat and mass transfer inside the fold can be reduced to more tractable partial differential equations without the non-linear convection terms. Extensive reports on this formulation can be found in the related work by Noseir (1980) and Tam (1981).

2.8 Closure

A summary of the main points in the physical model of the ESCIMO theory are listed below.
(1) The turbulent flow field has to be solved by considering the time-averaged equation of motion. The turbulence quantities are determined by the twoequation model, namely the kinetic energy of turbulence and its dissipation rate.
(2) The eddies, or folds, are created inside the mixing region and they are composed of the fresh ịrotational fliud and the fluid element already
existing in the mixing region. The rate of formation is determined by the entrainment process.
(3) The folds are being continuously subject to the shear strain caused by the turbulence motion. Only the effect of mean turbulent motion is considered in the current work.
(4) The main mechanism of the fold transport is the mean convective motion.
(5) There exists a distribution of folds which have survived through various periods of time since formation at any point in the flow domain due to the turbulent mixing.
(6) The process which takes place at the interface between the fresh and the re-engulfed part of each fold is dominated by the molecular diffusion.
(7) The mean turbulent properties at any location can be obtained from the corresponding quantities of each fold multiplied by the population distribution function there.

The mathematical formulation and the solution procedure will be set up and described in the next chapters.

CHAPTER 3

THE MATHEMATICAL ANALYSIS: DEMOGRAPHIC ASPECTS

3.1 Introduction

The governing equations of the mean velocity, turbulence quantities and the mixture fraction will be supplied in this chapter firstly, because all the results obtained herein serve as the necessary input to the ESCIMO theory.

Secondly, the transport equations which describe the population distribution of various folds will be provided. The equations will then be transformed into a non-dimensional form in order to promote the convenience of solution procedure. The boundary conditions of these equations are also discussed.

The transformed partial differential equations of folds population distribution are then written in the finite difference form which lead to a set of algebraic equations. These algebraic equations are solved by tridiogonal matrix algorithm (TDMA, see Smith (1974)). The age space is discretised into a finite number of intervals for the sake of practical calculation.

Finally, the solution procedure of the finite difference equations will be presented in detail and the upwind difference scheme is employed in both the space coordinate and the age coordinate to procure physically realistic results.
3.2 The Hydrodynamic Calculation

3.2.1 The Basic Equations in Polar Coordinate

The conservation laws of mass and momentum are applied to axisymmetrical, isobaric free boundary layers. The transport equations for the axiallydirected momemtum and for the mixture fraction, given by Spalding (197la) are listed below.

$$
\rho u \frac{\partial u}{\partial x}+\rho v \frac{\partial u}{\partial r}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \mu_{t} \frac{\partial u}{\partial r}\right)+\left(\rho_{\infty}-\rho\right) g \quad,(3.2-1)
$$

and

$$
\begin{equation*}
\rho u \frac{\partial \bar{f}}{\partial x}+\rho v \frac{\partial \bar{f}}{\partial r}=\frac{l}{r} \frac{\partial}{\partial r}\left(r \frac{\mu_{t}}{\sigma_{f}} \frac{\partial \bar{f}}{\partial r}\right) \tag{3.2-2}
\end{equation*}
$$

 axially and radially-directed velocities of the jet flow; x and r are the axial and radial coordinates; \bar{f} is the time-averaged mixture fraction (defined in Eqn2.5-1), ρ is the density of the mixture and ρ_{∞} is its value in the surroundings; g is the gravitational acceleration assumed to be aligned with the axis of symmetry, μ_{t} is the "turbulent viscosity", and α_{f} is the turbulent Prandtl/ Schmidt number.

The pressure gradient term does not exist in Eqn. (3.2-I) because the flow considered is free jet (or free shear layer). The turbulent Lewis numbers for all species have been assumed to be unity so that Eqn(3.2-2) contains no source term on the right, hand side. It implies that the turbulent diffusion coefficients of all species are equal to each other.

The equations for the turbulent kinetic energy and the dissipation rate of turbulent kinetic energy given by Launder and Spalding (1973) are presented below:

$$
\begin{equation*}
\rho u \frac{\partial k}{\partial x}+\rho v \frac{\partial k}{\partial r}=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\mu_{t}}{\sigma_{k}} \frac{\partial k}{\partial r}\right)+G_{k}-\rho \varepsilon \tag{3.2-3}
\end{equation*}
$$

and

$$
\rho u \frac{\partial \varepsilon}{\partial x}+\rho v \frac{\partial \varepsilon}{\partial r}=\frac{I}{r} \frac{\partial}{\partial r}\left(r \frac{\mu_{t}}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial \theta}\right)+\frac{\varepsilon}{k}\left(C_{1} G_{k}-C_{2} \rho \varepsilon\right),(3.2-4)
$$

where C_{1} and C_{2} are empirical constants.
G_{k} is the rate of generation of turbulence energy which is given by the following expression:

$$
\begin{equation*}
G_{k}=\mu_{t}\left(\frac{\partial u}{\partial r}\right)^{2} \tag{3.2-5}
\end{equation*}
$$

The turbulent viscosity is calculated in the $k-\varepsilon$ model by the relation

$$
\begin{equation*}
\mu_{t}=C_{\mu} \rho \frac{k^{2}}{\varepsilon} \tag{3.2-6}
\end{equation*}
$$

where C_{μ} is an empirical constant.
The combination of the laminar viscosity and the turbulent viscosity is termed the "effective viscosity":

$$
\begin{equation*}
\mu_{e}=\mu_{l}+\mu_{t} \tag{3.2-7}
\end{equation*}
$$

The values of C_{1}, C_{2}, C_{μ} and $\sigma_{k}, \sigma_{\varepsilon}$ used here are the same as those given by Launder and Spalding (1973), namely:

$$
\begin{aligned}
& C_{1}=1.43, \quad C_{2}=1.92, \quad C_{\mu}=0.09 \\
& \sigma_{k}=1.0, \quad \sigma_{\varepsilon}=1.3
\end{aligned}
$$

3.2.2 The Transformation of the Equations to the $x^{\sim} \omega$ coordinates

In the actual solution procedure, the numerical scheme of Patankar-Spalding (1967) embodied in the GENMIX computer

$$
\begin{equation*}
\omega=f^{y} \text { roudy } / \int_{0}^{y_{E}} \text { roudy } \tag{3.2-11}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{y} r d y=\left(\psi_{E}-\psi_{I}\right) \int_{0}^{\omega}(\rho u)^{-1} d \omega \tag{3.2-12}
\end{equation*}
$$

The standard mathematical technique is now employed to transform Eqn. (3.2-8) into the $x^{\imath} \omega$ coordinate system.

The task is to express $\left(\frac{\partial \phi}{\partial x}\right)_{\psi}$ in terms of $\left(\frac{\partial \phi}{\partial x}\right)_{\omega}$ and $\left(\frac{\partial \phi}{\partial}\right)_{x}$; and $\left(\frac{\partial \phi}{\partial \psi}\right)_{x}$ in terms of $\left(\frac{\partial \phi}{\partial x}\right)_{\omega}$ and $\left(\frac{\partial \phi}{\partial \omega}\right)_{x}$ respectively.

From the differentiation rule, the following results are obtained:

$$
\begin{equation*}
\left(\frac{\partial \phi}{\partial x}\right)_{\psi}=\left(\frac{\partial \phi}{\partial x}\right)_{\omega}+\left(\frac{\partial \phi}{\partial \omega}\right)_{x}\left(\frac{\partial \omega}{\partial x}\right)_{\psi} \tag{3.2-13}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial \omega}{\partial x}\right)_{\psi}=\frac{I}{\psi_{E}-\psi_{I}}\left\{\frac{d \psi_{I}}{d x}+\dot{\omega}^{2} \cdot \frac{d\left(\psi_{E}-\psi_{I}\right)}{d x}\right\} \tag{3.2-14}
\end{equation*}
$$

since $d \psi=0$ at fixed ψ.

Hence

$$
\begin{equation*}
\left.\left(\frac{\partial \phi}{\partial x}\right)_{\psi}=\left(\frac{\partial \phi}{\partial x}\right)_{\omega}-\frac{I}{\left(\psi_{E}-\psi_{I}\right.}\right)\left\{\frac{d \psi_{I}}{d x}+\omega \frac{d\left\{\psi_{E}-\psi_{I}\right)}{d x}\right\}\left(\frac{\partial \phi}{\partial \omega}\right)_{x} \tag{3.2-15}
\end{equation*}
$$

Equation (3.2-13) is now rewritten in the compact form as:

$$
\left(\frac{\partial \phi}{\partial x}\right)_{\psi}=\left(\frac{\partial \phi}{\partial x}\right)_{\omega}+(a+b \omega)\left(\frac{\partial \phi}{\partial \omega}\right)_{x}
$$

program is employed. The partial differential equations for u, f, k, ε etc are first derived in the "Von Mises" coordinate system, $x^{\imath} \psi$. They are expressed in the general form given below (Spalding (1978a)).

$$
\begin{equation*}
\frac{\partial \phi}{\partial x}=\frac{\partial}{\partial \psi}\left(r^{2} \rho u \Gamma_{\phi, \text { eff }} \frac{\partial \phi}{\partial \psi}\right)+\frac{1}{\rho u} S_{\phi} \tag{3.2-8}
\end{equation*}
$$

where ϕ stands for any of the quantities u, f, k, ε etc and S_{ϕ} stands for the corresponding source term, $\Gamma_{\phi, \text { eff. }}$ is the "effective exchange coefficient" for the variable ϕ and ψ is the streall function given by:

$$
\begin{equation*}
\psi \equiv \int_{0}^{y} r o u d y \tag{3.2-9}
\end{equation*}
$$

For the sake of economy of computer storage in the numerical calculation, Eqn.(3.2-8) is then transformed into the $x \rightsquigarrow \omega$ coordinate system; here the coordinate ω is defined by:

$$
\begin{equation*}
\omega \equiv\left(\psi-\psi_{I}\right) /\left(\psi_{E^{-}} \psi_{I}\right) \tag{3.2-10}
\end{equation*}
$$

where ψ_{E} and ψ_{I} stand for respectively, the value of ψ at the external and internal boundary of the calculation domain. The values of ψ_{E} and ψ_{I} are chosen in such a way that the whole of the interesting region is covered within the I and E boundaries and therefore ω takes values between 0 and 1. Note that ψ_{E} and ψ_{I} are functions of x and are calculated during the course of computation.

From the definition of ψ and ω, given by Eqns. (3.2-9) and (3.2-10), the following relations can be achieved:

Here a and b are defined by:

$$
\begin{align*}
& a \equiv \frac{-I}{\left(\psi_{E}-\psi_{I}\right)} \frac{d \psi_{I}}{d x} \tag{3.2-16}\\
& b \equiv \frac{-I}{\left(\psi_{E}-\psi_{I}\right)} \frac{d}{d x}\left(\psi_{E}-\psi_{I}\right) \tag{3.2-17}
\end{align*}
$$

Similarly, for the definition of ω;

$$
\begin{align*}
\left(\frac{\partial \phi}{\partial \psi}\right)_{x} & =\left(\frac{\partial \phi}{\partial \omega}\right)_{x}\left(\frac{\partial \omega}{\partial \psi}\right)_{x} \\
& =\frac{1}{\left(\psi_{E}-\psi_{I}\right)}\left(\frac{\partial \phi}{\partial \omega}\right)_{x} \tag{3.2-18}
\end{align*}
$$

Since $\left(\psi_{\mathrm{E}}-\psi_{\mathrm{I}}\right)$ is a constant at fixed x , the following relation is readily established:

$$
\begin{equation*}
\left[\frac{\partial \phi}{\partial \psi}\left\{r^{2} \rho u \Gamma_{\phi, \text { eff }}\left(\frac{\partial \phi}{\partial \psi}\right)\right]_{x}\right]_{x} \equiv\left[\frac{\partial \phi}{\partial \omega}\left\{c\left(\frac{\partial \phi}{\partial \omega}\right)_{x}\right\}\right]_{x} \tag{3.2-19}
\end{equation*}
$$

in which c is defined by:

$$
\begin{equation*}
c \equiv \frac{r^{2} \rho u \Gamma_{\phi, \text { eff }}}{\left(\psi_{E}-\psi_{I}\right)^{2}} \tag{3.2-20}
\end{equation*}
$$

Thus the resulting transformed form of Eqn. (3.2-8) in the $x^{\sim} \omega$ coordinate system is:

$$
\begin{align*}
& \frac{\partial \phi}{\partial x}+(a+b \omega) \frac{\partial \phi}{\partial \omega}=\frac{\partial}{\partial \omega}\left(c \frac{\partial \phi}{\partial \omega}\right)+d \tag{3.2-21}\\
& \text { (i) } \\
& \text { (ii) }
\end{align*}
$$

Term (i) in Eqn. (3.2-21) represents the Iongitudinal convection of variable ϕ, term (ii) stands for the lateral
convection. Term (iii) stands for the cross-stream diffusion and term (iv) is the "source" of the entity.

It should be mentioned here that the quantities a and b are respectively, the rate of inflow to the boundary layer through the I boundary and the sums of the rates of outflow from the boundary layer through both the I and E boundaries, Hence:

$$
\begin{align*}
& a=r_{I} \text { \#̈ }_{I}^{\prime \prime} /\left(\psi_{E}-\psi_{I}\right) \tag{3.2-22}\\
& b=\left(r_{E} \dot{m}_{E}{ }^{\mu} r_{I} \dot{m}_{I}^{\prime \prime}\right) /\left(\psi_{E}-\psi_{I}\right) \tag{3.2-23}
\end{align*}
$$

where the mass fluxes $\dot{m}_{E}^{\prime \prime}$ and \ddot{m}_{I} " are mass flow rates per unit area across grid boundaries, as shown in Fig.3.2-1.

The values of a and b are calculated as those in the standard GENMIX program, hence only the brief description will be given below:

- When there is a symmetry axis or symmetry plane in the flow, this will be used as one boundary of the domain of integration and the relevant m " must be equal to zero.
- When the boundary of calculation domain expands to cover the boundary layer, the mass transfer rate is chosen so that material flows into the boundary layer at such a rate that conditions just within the layer differ from those in the undisturbed stream by a small specified amount. This device is applicable to the boundary of shear layers, jets, etc.
- When the integration domain is bounded by the impermeable wall, the mass transfer rate is equal to zero;

(a) Mixing Layer

(b) Round let

Fig.3.2-1 Boundaries of the computation domain
otherwise it should be equal to the mass transfer rate prevailing in the actual problem.

The source terms, d, for the equation of u, f, k and ε have been established in the previous work of Launder and Spalding (1974), Spalding (1978a). They are now listed in Table 3-2:

Variable	Source term, d
u	$\frac{1}{\rho u}\left(\rho_{\infty}-\rho\right) g$
f	0
k	$\frac{I}{\rho u}\left(G_{k}-\rho \varepsilon\right)$
ε	$\frac{I}{\rho u} \frac{\varepsilon}{k}\left(C_{1} G_{k}-C_{2} \rho \varepsilon\right)$

Table 3-2. Source terms for the relevant equation in the general form.

3.3 The Basic Differential Equations for the Fold

Population.
At a certain location in a flow region, the population of folds there has different ages and is defined in the present theory as the propability of finding particular folds per unit age. Thus, the population P is a conserved property and has the dimension of (age) ${ }^{-1}$ and obeys the following relation:

$$
\begin{equation*}
\int_{0}^{\infty} \mathrm{PdA}=1 \tag{3.3-1}
\end{equation*}
$$

The task in the demographic analysis is to solve the conservation equation for P of the kind described in the preceding section, viz:
$\frac{\partial P}{\partial x}+(a+b \omega) \frac{\partial P}{\partial \omega}=\frac{\partial}{\partial \omega}\left(c \frac{\partial P}{\partial \omega}\right)+d p \quad,(3 \cdot 3-2)$

The source term dp includes the "simple-aging", fold formation and fold re-engulfment rates. It is presumed here that the simple aging part is $-\partial P / \partial A ;$ this signifies that the folds can only become older and that the value of P at one value of A is influenced by the shape of the population-distribution function itself. The relation between the formation rate and reengulfment rate has already been described in Sec.2.3.

The creation of a new fold is always accompanied. by the death of an existing fold as a kind of "reincarnation" under present conceptual framework, since all the fluid in the mixing region is fold material. The source term in Eqn.(3.3-2) is therefore given by

$$
\begin{array}{rlr}
d p & =\left[-\rho \frac{\partial P}{\partial A}+\rho \dot{R}_{F} \delta(A)-\rho \dot{R}_{R} P-\rho M \circ \dot{R}_{F} P\right] / \rho u \quad,(3.3-3) \\
& =\left[-\frac{\partial P}{\partial A}+\dot{R}_{F} \delta(A)-\dot{R}_{F} P\right] / u & ,(3.3-4) \tag{3.3-4}
\end{array}
$$

where $\delta(A)$ is the Dirac delta function defined as :

$$
\delta(A)=\lim _{\Delta A \rightarrow 0}\left\{\begin{align*}
\frac{I}{\Delta A} & \text { for } 0<A<\Delta A \tag{3.3-5}\\
\sigma & \text { for } A>\Delta A
\end{align*}\right.
$$

with the property of $\int_{0}^{\infty} \delta(A) d A=I$ (the portion of $A<0$ is not considered here because of the non-negativity of age).

The second term on the right hand side of Eqn. (3.3-3) represents the generation of new folds at $A=0$ only (it needs to be approximeted by a small interval in the finite difference formulation). The third and fourth terms denote, respectively, the consumption of fold material required for the re-engulfed and fresh part of newly formed folds. Note that the value of Mo does not appear explicitly in the final expression of Eqn(3.3-4).

3.4 Transformed Differential Equation of Fold Population
 From the definition of age in Eqn. (2.6-1) it can

 be observed that the maximum age in question increases with the longitudinal distance x. Hence, it will be necessary to employ a large number of sub-intervals in the age-coordinate in order to obtain reasonably accurate results in the downstream region of the flame jet.A non-dimensional age \AA, is now introduced to economize the computational procedure and to cover the age-interval of important interest, viz:
$A \equiv A F f x t \quad,(3.4-1)$
where $F f x \neq$ indicates that F is a function of x only.
The characteristics of non-dimensional age, \mathbb{A}, are similar to those of non-dimensional strean function, ω, in the Patankar-Spalding procedure. The function F is chosen in such a' way that the whole of the interesting region in the age-dimension is included and \AA takes the value between 0 and 1 . This device is justified because the population of the very old folds (in the boundary layer type flow at least) must be negligibly small. Thus, a moderate number of sub-division in the A -coordinate is sufficient to yield acceptable accuracy.

The standard mathematical technique is now employed to transform Eqn. (3.3-2) from the x, ω, A coordinate system into the X, W, A one with the following definition:

$$
\begin{array}{ll}
\mathrm{X} \equiv \mathrm{x} & ;(3.4-2) \\
\mathrm{W} \equiv \omega & ;(3.4-3) \\
\tilde{A} \equiv \mathrm{AF} f \mathrm{x}\rangle & ;(3.4-4)
\end{array}
$$

It can be shown from the chain rule of differentiation that

$$
\begin{align*}
& \frac{\partial P}{\partial x}=\frac{\partial P}{\partial X} \frac{\partial X}{\partial x}+\frac{\partial P}{\partial W} \frac{\partial W}{\partial x}+\frac{\partial P}{\partial \tilde{A}} \frac{\partial \tilde{A}}{\partial x} \tag{3.4-5}\\
& \frac{\partial P}{\partial \omega}=\frac{\partial P}{\partial X} \frac{\partial X}{\partial \omega}+\frac{\partial P}{\partial W} \frac{\partial W}{\partial \omega}+\frac{\partial P}{\partial \tilde{A}} \frac{\partial \tilde{A}}{\partial \omega} \tag{3.4-6}\\
& \frac{\partial P}{\partial A}=\frac{\partial P}{\partial X} \frac{\partial X}{\partial A}+\frac{\partial P}{\partial W} \frac{\partial W}{\partial A}+\frac{\partial P}{\partial \tilde{A}} \frac{\partial \tilde{A}}{\partial \tilde{A}}
\end{align*}
$$

From the definitions in Eqns.(3.4-2) to (3.4-4), the following relations are valid:

$$
\begin{align*}
& \frac{\partial X}{\partial x}=1, \quad \frac{\partial W}{\partial \omega}=1, \quad \frac{\partial \tilde{A}}{\partial A}=F \tag{3.4-8}\\
& \frac{\partial \tilde{A}}{\partial x}=\frac{\partial \tilde{A}}{\partial X}=A \frac{\partial F}{\partial X}=\frac{\tilde{A}}{F} \frac{\partial F}{\partial \bar{X}} \tag{3.4-9}\\
& \frac{\partial W}{\partial x}=\frac{\partial W}{\partial X}=0 \tag{3.4-10}\\
& \frac{\partial \tilde{A}}{\partial \omega}=\frac{\partial \tilde{A}}{\partial W}=0 \tag{3.4-11}
\end{align*}
$$

$$
\begin{align*}
& \frac{\partial X}{\partial \omega}=\frac{\partial X}{\partial W}=0 \\
& \frac{\partial X}{\partial A}=\frac{\partial X}{\partial A}=0 \tag{3.4-13}
\end{align*}
$$

$$
,(3.4-12)
$$

Hence:

$$
\begin{align*}
& \frac{\partial P}{\partial x}=\frac{\partial P}{\partial \bar{X}}+\frac{\partial P}{\partial \tilde{A}} \frac{\tilde{A}}{F} \frac{\partial F}{\partial X} \\
& \frac{\partial P}{\partial W}=\frac{\partial P}{\partial W} \\
& \frac{\partial P}{\partial A}=\frac{\partial P}{\partial \tilde{A}} F \tag{3.4-16}
\end{align*}
$$

$$
,(3.4-14)
$$

, (3.4-15)

Equation (3.3-2) written in X, W, \tilde{A} coordinate system is now given by:

$$
\begin{align*}
& \frac{\partial P}{\partial X}+(a+b W) \frac{\partial P}{\partial W}=\frac{\partial}{\partial W}\left(c \frac{\partial P}{\partial W}\right)-\left(\frac{\tilde{A}}{F} \frac{\partial F}{\partial X}+\frac{F}{u}\right) \frac{\partial P}{\partial \tilde{A}} \\
&+\left[\dot{R}_{F} F \delta(\tilde{A})-\dot{R}_{F} P\right] / u \tag{3.4-17}
\end{align*}
$$

since $\tilde{A}=0$ when $A=0$.
The second transformation to the dependent variable, P, is now introduced to satisfy the requirement of:

$$
\begin{equation*}
\int \mathrm{PdA}=\int \tilde{\mathrm{P}} \mathrm{~d} \tilde{A} \tag{3.4-18}
\end{equation*}
$$

i.e., the area under the $\tilde{P} \sim \tilde{A}$ curve will be equal to that of the P~A curve. Noted that \tilde{P} and \tilde{A} are both dimensionless.
because F and u are not functions of \tilde{A}. From now on the variables X and W can be restored to the original forms of x and ω, since they are identical to each other.

3.5 Discretisation of Age-Interval

The new feature of the \tilde{P}-equation is that an additional coordinate (or dimension), \tilde{A}, has been introduced. It is essential to divide the age-coordinate into a number of sub-intervals in the numerical solution procedure, as for x and ω coordinates. The problem is analogous to the particle-size distribution in coal combustion and droplet size distribution in droplet combustion and hence similar technique of discretisation is employed here.

The \tilde{P}-equation is now represented by a set. of equations, each one represents the probability, \tilde{P}_{j}, of finding the folds which belong to a finite age-interval, $\Delta \tilde{A}_{j}\left(\equiv \tilde{A}_{j+1}-\tilde{A}_{j}\right)$. Each equation is then coupled with the other through the source terms, viz:

$$
\begin{aligned}
& \frac{\partial \tilde{P}_{I}}{\partial x}+(a+b \omega) \frac{\partial \tilde{P}_{I}}{\partial \omega}=\frac{\partial}{\partial \omega}\left(c \frac{\partial \tilde{P}_{1}}{\partial \omega}\right)-\frac{\partial}{\partial \tilde{A}}\left[\left(\frac{F}{u}+\frac{\tilde{A}}{F} \cdot \frac{d F}{d x}\right) \tilde{P}\right]_{I 2}+\frac{1}{u}\left[\frac{\dot{R}_{F}}{\Delta \tilde{\mathrm{~A}}_{1}}-\dot{\mathrm{R}}_{F} \tilde{P}_{I}\right] \text {, } \\
& \text {,(3.5-1) } \\
& \frac{\partial \tilde{P}_{2}}{\partial \bar{X}}+(a+b \omega) \frac{\partial \tilde{P}_{2}}{\partial \omega}=\frac{\partial}{\partial \omega}\left(c \frac{\partial \tilde{P}_{2}}{\partial \omega}\right)-\frac{\partial}{\partial \tilde{A}}\left[\left(\frac{F}{u}+\frac{\tilde{A}}{F} \quad \frac{d F}{d x}\right) \tilde{P}\right]_{23}+\frac{1}{u}\left[-\dot{R}_{F} \tilde{P}_{2}\right] \text {, } \\
& \text { • } \\
& \text { - } \\
& \text { - } \\
& \stackrel{\rightharpoonup}{\bullet} \\
& \frac{\partial \tilde{P} j_{j}}{\partial x}+(a+b \omega) \frac{\partial \tilde{P}_{i}}{\partial \omega}=\frac{\partial}{\partial \omega}\left(c \frac{\partial \tilde{P}}{\partial \omega}\right)-\frac{\partial}{\partial \tilde{A}}\left[\left(\frac{F}{u}+\frac{\tilde{A}}{F} \frac{d F}{d x}\right) \tilde{P}\right]_{j, j+1}+\frac{1}{u}\left[-\dot{R}_{F} \tilde{P}_{j}\right] \\
& \text {,(3.5-3) }
\end{aligned}
$$

Thus, P is now expressed as:

$$
\begin{align*}
P & =\tilde{P} \frac{d \tilde{A}}{d A} \\
& =\tilde{P} F f x f \tag{3.4-19}
\end{align*}
$$

Hence:

$$
\begin{align*}
\frac{\partial P}{\partial X} & =F \frac{\partial \tilde{P}}{\partial X}+\tilde{P} \frac{\partial F}{\partial X} \tag{3.4-20}\\
\frac{\partial P}{\partial \tilde{A}} & =F \frac{\partial \tilde{P}}{\partial \tilde{A}}+\tilde{P} \frac{\partial F}{\partial \tilde{A}} \\
& =F \frac{\partial \tilde{P}}{\partial \tilde{A}} \text { (since F does not depend on } \tilde{A} \text {) } \\
\frac{\partial P}{\partial W} & =F \frac{\partial \tilde{P}}{\partial W}+\tilde{P} \frac{\partial F}{\partial W} \\
& =F \frac{\partial \tilde{P}}{\partial W} \tag{3.4-22}
\end{align*}
$$

Equation (3.4-17) is now transformed into the following form with the aid of Eqns. (3.4-20) to (3.4-22):

$$
\begin{align*}
\left(F \frac{\partial \tilde{P}}{\partial X}+\tilde{P} \frac{\partial F}{\partial X}\right) & +(a+b W) F \frac{\partial \tilde{P}}{\partial W}=\frac{\partial}{\partial W}\left(c F \frac{\partial \tilde{P}}{\partial W}\right)-\left(\frac{\tilde{A}}{F} \frac{\partial F}{\partial X}+\frac{F}{u}\right) F \frac{\partial \tilde{P}}{\partial \tilde{A}} \\
& +\left[\dot{R}_{F} F \delta(\tilde{A})-\dot{R}_{F} \tilde{P} F\right] / u \tag{3.4-23}
\end{align*}
$$

Equation (3.4-23) is rearranged after algebraic manipulation to yield the following form:

$$
\begin{align*}
\frac{\partial \tilde{P}}{\partial X}+(a+b W) \frac{\partial \tilde{P}}{\partial W} & =\frac{\partial}{\partial W}\left(c \frac{\partial \tilde{P}}{\partial W}\right)-\frac{\partial}{\partial \tilde{A}}\left[\left(\frac{F}{u}+\frac{\tilde{A}}{F} \frac{\partial F}{\partial X}\right) \tilde{P}\right] \\
& +\left[\dot{R}_{F} \delta(\tilde{A})-\dot{R}_{F} \tilde{P}\right] / u \tag{3.4-24}
\end{align*}
$$

where the $\frac{\dot{R}_{F}}{\Delta \tilde{A}_{I}}$ term in Eqn. (3.5-1) is the finite. difference approximation of $\dot{R}_{\dot{\sim}} \delta(\tilde{A})$ for the generation of folds; the
 \tilde{P}_{j+1} terms which will be discussed in Sec.3.7.

3.6 Boundary Conditions and Initial Conditions

The zero gradient boundary conditions have been employed at the jet (and mixing layer as well) edge and the jet axis for \tilde{P} for $2 l l$ age sizes. This is easy to understand if one regards the folds as being formed by "injection" into the inside of the jet (or mixing layer) of material "shot" from outside; they do not arrive by molecular diffusion. Thus,

$$
\begin{equation*}
\frac{\partial \tilde{P}}{\partial \omega}=0 \quad \text { at } \omega=0 \text { and } \omega=1 \tag{3.6-1}
\end{equation*}
$$

It is assumed in the present work that only the newly formed folds exist at the nozzle exit plane (or the initial cross section of the mixing layer). Hence,

$$
\begin{array}{ll}
\tilde{P}=0 & \text { for } \tilde{A}>\tilde{A}_{2} \text { at } x=0 \tag{3.6-2}\\
\tilde{P}=\frac{1}{\Delta \tilde{A}} & \text { for } 0 \leq \tilde{A}_{1} \leq \tilde{A}_{2} \text { at } x=0
\end{array}
$$

where $\Delta \tilde{A}_{1}=\tilde{A}_{2}-\tilde{A}_{1}=\tilde{A}_{2}\left(\tilde{A}_{1}=0\right)$.
The influence of the initial conditions will gradually die out as the marching procedure in x-direction proceeds.

3.7 Finite Difference Approximetion of the Differential

Equation

The finite difference equations for u, f, k, ε are the same as those employed by the GENMIX computer program, while
the finite difference form for \tilde{P}-equations are new only in the expression of source terms. The full contents of the equations will be provided below for the sake of completeness. The general Eqn. (3.3-2) is first integrated over the control volume defined between $\omega_{i+\frac{1}{2}}, \omega_{i-\frac{1}{2}}, X_{u}$ and X_{D}, as shown in Fig.3.7-1.

Fig.3.7-1 $x \sim \omega$ grid and control volumes used for the derivation of the finite-difference equations

The values of $\omega_{i+\frac{1}{2}}$ and $\omega_{i-\frac{1}{2}}$ are defined by:

$$
\begin{aligned}
& \omega_{i-\frac{1}{2}}=\frac{1}{2}\left(\omega_{i-1}+\omega_{i}\right) \\
& \omega_{i+\frac{1}{2}}=\frac{1}{2}\left(\omega_{i}+\omega_{i+1}\right)
\end{aligned}
$$

and

$$
\begin{array}{ll}
\omega_{i-\frac{1}{2}}=0 & \text { for } i=2 \\
\omega_{i+\frac{1}{2}}=1 & \text { for } i=N M I \tag{3.7-3}
\end{array}
$$

The integrated form of Eqn. (3.3-2) combined with the fully implicit scheme is given by:

$$
\begin{align*}
& (1 / \Delta x){\underset{i-\frac{1}{2}}{i+\frac{1}{2}}\left(\phi_{D}-\phi_{u}\right) d \omega-b\left[\begin{array}{l}
i+\frac{1}{2} \\
\int_{i-\frac{1}{2}}
\end{array} d \omega\right]_{D}}_{+}\left[\{(a+b \omega) \phi\}_{i+\frac{1}{2}}-\{(a+b \omega) \phi\}_{i-\frac{1}{2}}\right]_{D} \\
= & {\left[\left(c \frac{\partial \phi}{\partial \omega}\right)_{i+\frac{1}{2}}-\left(c \frac{\partial \phi}{\partial \omega}\right)_{i-\frac{1}{2}}\right] D+\left[\sum_{i-\frac{1}{2}}^{i+\frac{1}{2}} d \cdot d \omega\right]_{D} }
\end{align*}
$$

It can be seen that the only upstream value of ϕ appeared in the first term of Eqn. (3.7-4), while all other ϕ-values are taken from the downstream station. The finite difference expression of Eqn. (3.7-4) takes the following form:

$$
\begin{align*}
& \frac{1}{\Delta x}\left[\frac{\left(\Psi_{E}-\psi_{I}\right) D}{\left(\psi_{E}-\psi_{I}\right)_{u}} \phi_{i, D}-\phi_{i, u}\right]\left(\omega_{i+\frac{1}{2}}-\omega_{i-\frac{1}{2}}\right) \\
+ & \frac{I}{2\left(\psi_{E}-\psi_{I}\right)_{u}}\left\{\ddot{m}_{i+\frac{1}{2}}\left(\phi_{i}+\phi_{i+1}\right)_{D}-\ddot{m}_{i-\frac{1}{2}}\left(\phi_{i}+\phi_{i-1}\right)_{D}\right\} \\
= & \frac{I}{\left(\psi_{E}-\psi_{I}\right)_{u}}\left\{Q_{i+\frac{1}{2}}\left(\phi_{i+1}-\phi_{i}\right)_{D}-Q_{i-\frac{1}{2}}\left(\phi_{i}-\phi_{i-1}\right)_{D}\right\} \\
+ & d_{i}, D\left(\omega_{i+\frac{1}{2}}-\omega_{i-\frac{1}{2}}\right) \tag{3.7-5}
\end{align*}
$$

wherein $\dot{\underline{m}}_{i}^{\prime} \equiv\left(1-\omega_{i}\right)\left(\underset{\mathrm{rm}}{ }{ }^{\prime \prime}\right)_{I}+\omega_{i}\left(\text { rm }^{\prime \prime}\right)_{E}$

$$
\begin{equation*}
Q_{i+\frac{1}{2}} \equiv\left(\mathrm{rr}_{\phi, \text { eff }}\right)_{i+\frac{1}{2}} /\left(y_{i+1}-\mathrm{y}_{i}\right)_{u} \tag{3.7-6}
\end{equation*}
$$

and

$$
\begin{gather*}
Q_{i-\frac{1}{2}} \equiv\left(r \Gamma_{\phi, e f f}\right)_{i-\frac{1}{2}} /\left(y_{i}-y_{i-1}\right)_{u} \tag{3.7-8}\\
d_{i, D}\left(\omega_{i+\frac{1}{2}}-\omega_{i-\frac{1}{2}}\right) \equiv S_{i}+S_{i}^{\prime} \phi_{i, D} \tag{3.7-9}
\end{gather*}
$$

Eqn.(3.7-4) can be written in the more compact form given by:

$$
\begin{equation*}
\zeta_{i} \phi_{i, D}=\alpha_{i} \phi_{i+1, D}+\beta_{i} \phi_{i-1, D} \not+\gamma_{i} \tag{3.7-10}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{i} \equiv \max \left[0,\left(Q-\frac{1}{2} \dot{m}^{\prime}\right)_{i+\frac{1}{2},}, \dot{\dot{m}}_{i+\frac{1}{2}}^{\prime}\right] \tag{3.7-11}\\
& \beta_{i} \equiv \max \left[0,\left(Q+\frac{1}{2} \dot{m}^{\prime}\right)_{i-\frac{1}{2}}, \dot{4}_{i-\frac{1}{2}}^{\prime}\right] \tag{3.7-12}\\
& \gamma_{i} \equiv \phi_{i}, u\left(\psi_{E}-\psi_{I}\right)_{u}\left(\omega_{i+\frac{1}{2}}-\omega_{i-\frac{1}{2}}\right) / \Delta X+S_{i} \tag{3.7-13}\\
& \zeta_{i} \equiv \alpha_{i}+\beta_{i}+\left(\psi_{E}-\psi_{I}\right)_{u}\left(\omega_{i+\frac{1}{2}}-\omega_{i-\frac{1}{2}}\right) / \Delta X-S_{i}^{\prime} \tag{3.7-14}
\end{align*}
$$

The upwind difference scheme is adopted in Eqns. (3.7-11) and (3.7-12) to ensure physically realistic results for the case of high lateral convection. A similar technique has to be employed in the finite difference form of the source terms for $\tilde{\mathrm{P}}_{\mathrm{j}}$-equations, so that negative values of $\tilde{\mathrm{P}}_{\mathrm{j}}$ will be prevented: The reason is given below.

The folds can only become older in the real age-space and will not be influenced by folds having larger age, but this statement is not always true when the non-dimensional age is used due to the moving grid effect. On the present
transformed coordinates, it is the sign of the term $\left(\frac{F}{u}+\frac{\tilde{A}}{F} \frac{\partial F}{\partial x}\right)$, multiplying $\frac{\partial \tilde{P}}{\partial \tilde{A}}$ in Eqn. (3.5-1), which determines whether the high- \tilde{A} or low- \tilde{A} value is to be regarded as crossing the \tilde{A}-interval boundaries. A better understanding can be achieved with the aid of the figure presented below:

Fig.3.7-2 Grid nodes and intervals of A used in the finite difference form

The values of \tilde{P}_{j} are stored in the centres of the intervals and the simple ageing term appropriate to the age interval $\Delta \tilde{A}_{j}$ is:

$$
\begin{align*}
-\frac{\partial}{\partial \tilde{A}}\left[\left(\frac{F}{u}+\frac{\tilde{A}}{F} \frac{\partial F}{\partial x}\right) \tilde{P}\right] j, j+1 & =-\frac{1}{\Delta \tilde{A}_{j}}\left[\left(\frac{F}{u}+\frac{\mathbb{A}_{j}+1}{F} \frac{\partial F}{\partial x}\right) \tilde{P}_{j+}\right. \\
& \left.-\left(\frac{F}{u}+\frac{\tilde{A}_{j}}{F} \frac{\partial F}{\partial x}\right) \tilde{P}_{j-}\right] \tag{3.7-15}
\end{align*}
$$

where \tilde{P}_{j+} and \tilde{P}_{j-} are determined by the upwind difference as:

$$
\begin{array}{ll}
\tilde{P}_{j+}=\tilde{P}_{j} & \text { when }\left(\frac{F}{u}+\frac{\tilde{A}}{\tilde{F}+1} \frac{\partial F}{\partial x}\right) \geq 0 \\
\tilde{P}_{j+}=\tilde{P}_{j+1} & \text { when }\left(\frac{F}{u}+\frac{\tilde{A}_{j+1}}{F} \frac{\partial F}{\partial x}\right)<0 \tag{3.7-17}
\end{array}
$$

and

$$
\begin{array}{ll}
\tilde{P}_{j-}=\tilde{P}_{j-l} & \text { when }\left(\frac{F}{u}+\frac{\tilde{A}_{j}}{F} \frac{\partial F}{\partial x}\right) \\
\tilde{P}_{j-}=\tilde{P}_{j} & \text { when }\left(\frac{F}{u}+\frac{\tilde{A}_{j}}{F} \frac{\partial F}{\partial x}\right) \tag{3.7-19}
\end{array}
$$

where

$$
\begin{equation*}
\Delta \tilde{A}_{j} \equiv \tilde{A}_{j+1}-\tilde{A}_{j} \text { and } \tilde{A}_{c_{j}}=0.5\left(\tilde{A}_{j}+\tilde{A}_{j+1}\right) \tag{3.7-20}
\end{equation*}
$$

Finally, the expression for the total (positive and negative) source term of \tilde{P}_{j} - equation is:

$$
\begin{equation*}
S_{1}=-\frac{1}{\Delta \tilde{A}_{1}}\left[\left(\frac{F}{u}+\frac{\tilde{A}_{2}}{F} \frac{\partial F}{\partial x}\right) \tilde{P}_{1+}\right]+\frac{1}{u}\left[\frac{\dot{R}_{F}}{\Delta \tilde{A}_{1}}-\dot{R}_{F} \tilde{P}_{1}\right] . \tag{3.7-2I}
\end{equation*}
$$

and

$$
\begin{aligned}
& S_{j}=-\frac{I}{\Delta \tilde{A}_{j}}\left[\left(\frac{F}{u}+\frac{\tilde{A}_{j}+1}{F} \frac{\partial F}{\partial x}\right) \tilde{P}_{j+}-\left(\frac{F}{u}+\frac{\tilde{A}_{i}}{F} \frac{\partial F}{\partial x}\right) \tilde{P}_{j-}\right] \\
&+\frac{I}{u}\left[-\dot{R}_{F} \tilde{P}_{j}\right] \text { for } j \neq 1 . \quad \text { (3.7-22) }
\end{aligned}
$$

3.8 Solution Procedure

The order of variables solved in the demographic part of the current work are $u, f, k, \varepsilon, \tilde{P}_{1}, \tilde{P}_{2}, \tilde{P}_{3}, \ldots \ldots$, $\tilde{P}_{j}, \ldots, \tilde{P}_{\text {NA }}$, where NA is the number of subdivisions in the \tilde{A}-coordinate. The tridiagonal matrix algorithm (TDMA) has been employed in solving Eqn. (3.7-10) and the marching procedure in longitudinal direction is also the same as that embodied in GENMIX program. The enthalpy, temperature and species concentration are calculated
from the combined biographic and demographic analysis in a different manner to be described in the next chapters.

What remains to be emphasised here is that the iteration procedure has been introduced in the calculation of $\tilde{\mathrm{P}}_{\mathrm{j}}$, because the values of $\tilde{\mathrm{P}}_{j}+1$ are unknown when we are solving for \tilde{P}_{j}. Hence, the value of \tilde{P}_{j+1} in the corresponding upstream position is taken as the initial guess and the iteration loop is given by:

$$
\begin{aligned}
& \left(\tilde{P}_{1}, \tilde{P}_{2}, \ldots, \tilde{P}_{j-1}, \tilde{P}_{j} \tilde{P}_{j+1}, \ldots, \tilde{P}_{N A}\right) \\
& \rightarrow \quad\left(\tilde{P}_{1}, \tilde{P}_{2}, \ldots, \tilde{P}_{j-1}, \tilde{P}_{j}, \tilde{P}_{j+1}, \ldots, \tilde{P}_{N A}\right), \\
& \rightarrow\left(\tilde{P}_{1}, \tilde{P}_{2}, \ldots, \tilde{P}_{j-1}, \tilde{P}_{j}, \tilde{P}_{j+1}, \ldots, \tilde{P}_{N A}\right) \cdots \text { etc }
\end{aligned}
$$

Where the single dash and double dash stand for the values obtained after the first and second iteration respectively.

According to the experience obtained during the computation, only four or five iterations are sufficient to achieve the convergent solution because the \tilde{P}_{j} values do not change drastically in one marching step.

3.9 Closure

The partial differential equations, finite difference equations and the solution procedure of the demographic analysis have been presented in this chapter. The formulation is partly new and partly old; the new part refers to those related to the population distribution function and the old part stands for the integration domain and solution algorithm for other hydrodynamics variables.

In the next chapter, the mathematical analysis of the biographic aspects will be provided and the accuracy of the results assessed.

CHAPTER 4

THE MATHEMATICAL ANALYSIS: BIOGRAPHIC ASPECTS

4.1 Introduction

The Lagrangian (moving observer) approach of the biographic part of the ESCIMO theory has been reported by the earlier work of Noseir (1980) and Tam (1981) for the premixed flames in simple hydrodynamic flows. The purpose of the present chapter is to describe how the biographic calculation can be performed for the turbulent jet diffusion flames with a rather moderate computing cost.

The basic partial differential equation for the fast chemistry diffusion-controlled reaction will be presented first and followed by the description about the fold characteristics at the birth place, because these properties will serve as the initial conditions to the equation,

An approximate method, termed the "profile method", is then introduced to obtain the closed form solution of biographic equation. The computer time is considerably reduced when compared with the corresponding one used in the "time marching method".

The presentation of the profile method is followed by the description of solution procedure to demonstrate where and how the biographic analysis is performed during the course of complete computation. Finally, the accuracy of the profile method will be discussed and attempt has been made to compare the results with those obtained from the more accurate time marching method.

4.2 The Basic Partial Differential Equation

The general transport equation for any conserved property, ϕ, such as mass, momentum and enthalpy, in the fixed coordinate system takes the following form in Spalding (1978b):

$$
\begin{equation*}
\frac{\partial \rho \phi}{\partial t}+\operatorname{div}(\rho \vec{u} \phi)=\operatorname{div}\left(D_{\phi} \operatorname{grad} \phi\right)+S_{\phi} \tag{4.2-1}
\end{equation*}
$$

where $\overrightarrow{\mathrm{u}}$ is the velocity vector, \mathscr{D}_{ϕ} is the diffusion coefficient for the quantity ϕ, ρ is the density.

The second term in the left-hand side of Eqn. (4.2-1) disappears when the moving observer approach is adopted, i.e., the coordinate system is moving at the same velocity with the fluid element. Hence, Eqn.(4.2-1) is simplified to:

$$
\begin{equation*}
\frac{\partial \rho \phi}{\partial t}=\operatorname{div}\left(\oint_{\phi} \operatorname{grad} \phi\right)+S_{\phi} \tag{4.2-2}
\end{equation*}
$$

Therefore the nonlinear convection term has been dropped out and the mathematical task becomes easier; this is one of the major advantage in the Lagrangian approach.

The diffusion coefficient, \boldsymbol{O}_{ϕ}, is a laminar one in the biographic analysis (the "small scale mixing" is treated as the laminar process) and hence no modelling is required in its evaiuation.

It has been shown by many authors, such as Hawthorne et al. (1949) and Bilger (1980), that the mixture fraction for a fast chemical reaction process (when the diffusion coefficients are equal) is an important and useful Zeldovich function. The enthalpy and mass fraction of species are uniquely determined by f and hence the other thermodynamics
variables can also be related to f.
Another advantage in using f as the main dependent variable is that Eqn. (4.2-2) contains no source terill in the present case, this means that no chemical-kinetic knowledge is needed for the solution of this problem.

If the average density is employed in the calculation, the governing equation for f is now expressed as:

$$
\rho \frac{\partial f}{\partial t}=\operatorname{div}\left(\mathscr{D}_{f} \operatorname{grad} \cdot f\right)
$$

The chemical reaction and diffusion processes inside the fold are assumed to take place in the direction normal to the interface between the fresh and old layer. Thus, Eqn. (4.2-3) reduces to a one-dimensional, unsteady type differential equation given by:

$$
\begin{equation*}
\rho \frac{\partial f}{\partial t}=\frac{\partial}{\partial z}\left(\mathscr{\theta}_{f} \frac{\partial f}{\partial z}\right) \tag{4.2-4}
\end{equation*}
$$

where z is the distance normal to the interface inside the fold, In reality, the processes should be described by two (or even three)-dimensional equations, but the computing cost will be significantly enlarged without gaining a clear advantage as mentioned by Spalding (1979b).

If the further assumption of uniform diffusion coefficient in the fold is made, Eqn.(4.2-4) takes the simpler form:
$\frac{\partial f}{\partial t}=-\frac{\mathscr{D}_{f}}{\rho Z^{2}} \frac{\partial^{2} f}{\partial \eta^{2}}$
where Z is the thickness of the fold and η is z / Z.
From now on the independent variable,t, will be replāced by the "age" of the fold, A. However, the fold
thickness, Z, varies with age as a consequence of the stretching effect and the relation between them is supposed to be:

$$
\begin{equation*}
\frac{1}{Z} \frac{d Z}{d A}=-R \tag{4.2-6}
\end{equation*}
$$

so that:

$$
\begin{equation*}
Z=Z_{0} \exp (-R A) \tag{4.2-7}
\end{equation*}
$$

where Z_{0} is the fold thickness at birth (at $A=0$). Eqn. (4.2-7) implies that the fold size diminishes and the "average" stretching rate, R, is taken.

When Eqn. (4.2-5) is combined with Eqn. (4.2-7), a compact form is achieved after some mathematical manipulation:

$$
\begin{equation*}
\frac{\partial f}{\partial A^{*}}=C \frac{\partial^{2} f}{\partial \eta^{2}} \tag{4.2-8}
\end{equation*}
$$

where A^{*} is a kind of non-dimensional age and C is a non-dimensional constant; they are defined by:

$$
\begin{align*}
& A^{*} \equiv \exp (2 R A)-1 \tag{4.2-9}\\
& C \equiv \mathscr{D}_{f} /\left(2 \rho R Z_{0}^{2}\right) \tag{4.2-10}
\end{align*}
$$

The value of 1 in Eqn. (4.2-9) has been chosen in such a way that $A^{*}=0$ when $A=0$.

4.3 The Fold Characteristics at Birth

The initial conditions of Eqn. (4.2-8) are the values of f in the fresh and old part of the fold at birth place. In the mean time, the fold size at birth and the local
stretching rate are needed in the evaluation of the constant C. Therefore, the necessary information will be provided below.

4.3.1 The Fold Size at Birth

It is assumed in the present work that the fold size at the birth place is proportional to the local length scale of turbulence, viz:

$$
\begin{equation*}
Z_{0}=C_{Z} k^{3 / 2} / \varepsilon \tag{4.3-1}
\end{equation*}
$$

where C_{Z} is the proportionality constant. Various values of C_{Z} have been investigated and it has been recognized that the value of 0.328 yields reasonable agreement with experimental data of Batt (1977), Kent and Bilger (1973), Lenz and Günther (1980). The value of 0.328 is actually obtained from the $k-\varepsilon$ model.

The present assumption implies that the fold size is proportional to local jet width (about $1 / 20$ in the round jet) or local shear layer width (about $1 / 16$ in the shear layer). Hence, the size of folds created in the downstream region of the flow is larger than the counter part in upstream points.

4.3.2 Fold Composition at Birth

The fresh part of the fold is always supposed here to be the irrotational fluid, while the old (re-engulfed) part of the fold has the properties derived from those of the local mean values. The situation in the mixing layer and jetare slightly different and hence will be discussed separately:

The Mixing Layer Case

In the case of the mixing layer, both of the free streams
are irrotational fluid and capable of forming the new fold. Two kinds of new folds are represented in the graphs:

> Fig.4.3-1 Composition of folds at birth in the mixing layer

The value of f^{\prime} is calculated in accordance with:

$$
\begin{equation*}
f^{\prime}=C_{F} \ell\left|\frac{\partial \bar{f}}{\partial y}\right| \tag{4.3-2}
\end{equation*}
$$

where C_{F} is the proportionally constant, ℓ is the local length scale of turbulence. The symbol f_{0} and f_{R} stand for the mixture fraction of the fresh part and re-engulfed part repectively. The value of ω^{*} is given by:
so that:

$$
\begin{aligned}
& f_{0}=1 \\
& f_{R}=\bar{f}-f^{\prime}
\end{aligned}
$$

when $0 \leq \omega \leq \omega^{*}$
, (4.3-4)
and

$$
\begin{align*}
& f_{0}=0 \\
& f_{R}=\bar{f}+f^{\prime} \tag{4.3-5}
\end{align*}
$$

$$
\text { when } \omega^{*<} \omega \leq 1
$$

The Round Jet Case

In the case of the round jet, the irrotational fluid is the surrounding air only $\left(f_{0}=0\right)$ and hence only one kind of fold exists, viz:

Fig.4.3-2 Composition of folds at birth in the
round jet

The composition is now given by:

$$
\begin{array}{ll}
f_{0}=0 \\
f_{R}=\bar{f}+f^{\prime}
\end{array} \quad \text { when } 0 \leq \omega \leq 1
$$

The Mass Fraction of Fresh Mass in the Fold

The mass fraction of the fresh part, characterised by f_{0}, in the newly formed fold is determined in such a way that the average f-value in the fold is equal to the local mean value, \vec{f}. Hence,

$$
\begin{equation*}
f_{0} M_{0}+f_{R}\left(I-M_{0}\right)=\bar{f} \tag{4.3-7}
\end{equation*}
$$

or

$$
\begin{equation*}
M_{0}=\frac{f_{R}-\vec{f}}{f_{R}-f_{0}} \tag{4.3-8}
\end{equation*}
$$

The M_{0} values may vary between 0 an l at different places in the calculation domain. It will be shown in the later chapters that the M_{0} value is larger near the outer region of the flow, this implies that more irrotational fluid exists in the fold.

4.3.3. The Stretching Rate of the Fold

The stretching rate varies with the path of the fold and hence it is not constant during the lifetime of the fold. However, the "average" stretching rate is employed in Eqn. (4.2-10) to simplify the computational task.

The arithmetic mean between the stretching rate at the.. birth place and that at the point of combined computation (demographic and biographic analysis) is taken in the present work. The expression takes the form as:

$$
\begin{equation*}
R=C_{S}\left[0.5\left(\left|\frac{\partial u}{\partial y}\right|_{b}+\left|\frac{\partial u}{\partial y}\right|_{\ell}\right)\right] \tag{4.3-9}
\end{equation*}
$$

where C_{S} is the stretching rate constant. The subscripts b and h refer to the birth place and the point where the combined analysis is performed. Various values of C_{S} (from 0.1 to 2.0) have been investigated in the present work.

4.4 The Relation Between Mixture Fraction and Other Variables

The chemical reaction is represented by the single-step, irreversible, global reaction scheme. The intermediate species and radicals are being neglected to allow more attention to be paid on the development of demographic analysis. The previous work of Tam (1981)'has already demonstrated that the. complex chemical kinetics scheme can be handled in the biographic part of ESCIMO theory.

The chemical reaction rate is assumed to be fast and the laminar exchange coefficients of all species and heat transfer are also assumed to be equal. therefore the relation between the mixture fraction and other variables can be represented by the graph below:

Fig.4.4-1 Sketch of dependencies of various flow properties on mixture fraction

The mathematical formulae are listed below:

$$
\begin{array}{ll}
m_{f u}=0, m_{o x}=m_{o x, \infty}\left(\frac{f_{s t}-f}{f_{s t}}\right) \text { when } 0 \leq f \leq f_{s t} & ,(4.4-1) \\
m_{f u}=m_{f u, e}\left(\frac{f-f_{s t}}{I-f_{s t}}\right), m_{o x}=0 \text { when } f_{s t}<f \leq 1 & ,(4.4-2) \\
m_{i n}=m_{i n, e^{\prime}}+\left(m_{i n, e}-m_{i n, \infty}\right) \text { when } 0 \leq f \leq 1 & ,(4.4-3) \\
m_{p r}=1-m_{f u}-m_{o x}-m_{i n} & ,(4.4-4) \\
h & =h_{e^{f}}+h_{\infty}(1-f) \\
T & =\left(h-m_{f u} H_{f u}\right) / C_{p, m i x} \\
\rho & =W_{m i x} p / R_{u} T
\end{array},(4.4-5)
$$

wherein:
$f_{s t}$ stands for the mixture fraction of the
stoichiometric mixture,
$m_{\text {in }}$ represents the mass fraction of inert species,
m_{pr} is the mass fraction of product,
h is the enthal py of the mixture,
T is the temperature of the mixture,
$H_{f u}$ is the heat of combustion of fuel,
p is the pressure of the mixture,
R_{u} is the universal gas constant,
$W_{\text {mix }}$ is the molecular weight of the mixture,
C_{P} is the specific heat of the mixture.
The subscript e and ∞ denote, respectively, the values at the jet exit and the surrounding air stream.

The specific heat of mixture, $C_{p, m i x}$ is calculated in accordance with:

$$
C_{p, \text { mix }}=\sum_{j} m_{j} C_{p_{j}} f T \neq
$$

where m_{j} is the mass fraction of the $j-t h$ species and $C_{p_{j}}$ is the corresponding specific heat. The temperature dependent function of $C_{p_{j}}$ is taken from the third order polynomial of Perry and Chilton (1973):

$$
\begin{equation*}
C_{p_{j}}=K_{1}+K_{2} T+K_{3} T^{-2} \tag{4.4-9}
\end{equation*}
$$

where K_{1}, K_{2} and K_{3} are constants given in Table 4.4-1,

Species	K_{1}	$\mathrm{~K}_{2}$	$\mathrm{~K}_{3}$
H_{2}	13849.62	1.6945	0
O_{2}	1081.3	0.0337	-0.2454×10^{8}
$\mathrm{~N}_{2}$	1021.3	0.1346	-0.0179×10^{8}
CO_{2}	1005.83	0.1998	-0.196×10^{8}
$\mathrm{H}_{2} \mathrm{O}$	1698.06	0.572	0
CH_{4}	1478.53	2.994	-0.12×10^{8}

Table 4.4-1 The specific constants for various species (the SI unit of $J /{ }^{0} \mathrm{~K} \mathrm{Kg}$ is adopted)

4.5 The Profile Method

Equation (4.2-8) belongs to the category of second order, Iinear, parabolic partial differential equation. This type of equation often appears in the unsteady heat conduction problem and has been solved in various ways, such as Fourier series exparsion, the time marching method and the profile
method. The profile method has enjoyed its simplicity and rather satisfactory accuracy in the boundary-layer theory recorded by Von Karman (1921) and Pohlhausen (1921). It has also been applied to flame problems by Marble and Adamson (1954).

The major feature of the profile method is that the solution of the governing equation is assumed to obey a certain type of function, while the parameters are determined by the integral form of the governing equation together with the initial and boundary conditions. Usually, the linear profile, sinusoidal profile and other polynomial profiles are the popular choice. The sinusoidal profile has been employed in the current work for the sake of simplicity. Thus, the solution of Eqn. (4.2-8) has the form given by:

$$
\begin{equation*}
f=\xi_{1} f A^{*} f \sin \left[\xi_{2}\left(A^{*} f\right)+\xi_{3} f A^{*} f n\right] \tag{4.5-I}
\end{equation*}
$$

where $\xi_{1}\left(A^{*} \neq, \xi_{2}\left(A^{*}\right)\right.$ and $\xi_{3}\left(A^{*} f\right.$ are functions of A^{*} which represent the amplitude and wavelength of the profile.

The variation of the amplitude and wavelength are governed by the integral form of Eqn. (4.2-8), namely:

$$
\begin{equation*}
\int_{0}^{1} \frac{\partial f}{\partial A^{*}} d \eta=\int_{0}^{1} c \frac{\partial^{2} f}{\partial \eta^{2}} d \eta \tag{4.5-2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{\eta_{D}} \frac{\partial f}{\partial A^{*}} d \eta=\int_{0}^{\eta_{D}} C \frac{\partial^{2} f}{\partial \eta^{2}} d \eta \tag{4.5-3}
\end{equation*}
$$

where η_{D} is the η-value which separates the fresh part and re-engulfed part at fold-formation time.

The boundaries of the fold are assumed to be plane
symmetric and hence the zero-gradient boundary conditions are employed:

$$
\frac{\partial f}{\partial \eta}=0 \quad \text { at } \eta=0 \text { and } \eta=1 \quad .(4.5-4)
$$

Generally speaking, the value of η_{D} is not equal to 0.5 (because the M_{0}-value is not equal to 0.5) and the evolution of the sinusoidal profile with age is divided into three stages (as shown in Fig. 4.5-1), namely:
(I) In the first stage, the curve spreads from the initial position toward the boundaries of the fold until one of them is reached. The amplitude is constant and equal to $\frac{1}{2}\left|f_{R}-f_{0}\right|$.
(2) During the second stage, the curve further spreads until it covers the whole distance across the fold. The amplitude also diminishes during the course.
(3) In the third stage, only the amplitude of the curve decreases as age increases.

The resulting formulae representing the f-distribution in each stage are obtained by inserting Eqn. (4.5-1) into Eqns(4.5-2) and (4.5-3) with the aid of Eqn. (4.5-4) and the auxiliary information listed above. Subsequently, a set of coupled ordinary differential equations which describe the variation of amplitude and wavelength of the profile are constructed. These equations can be solved by the standard mathematical technique and the results are given below: (I) In the first stage $\left(A^{*} \leq A_{1}^{*}\right)$:

Fig.4.5-1 Evolution of the f-profile inside a fold at various stages

$$
\begin{array}{ll}
f=f_{1} & \text { for } 0 \leq n \leq \eta_{D}-\delta \\
f=f_{3}+f_{4} \sin \left[\frac{\pi}{2}\left(\frac{\eta_{D}-\eta}{\delta}\right)\right] & \text { for } \eta_{D}-\delta<\eta \leq \eta_{D}+\delta \tag{4.5-5}\\
f=f_{2} & \text { for } \eta_{D}+\delta<\eta \leq 1
\end{array}
$$

wherein:

$$
\begin{align*}
& f_{1}=\max \left(f_{R}, f_{0}\right) \tag{4.5-6}\\
& f_{2}=\min \left(f_{R}, f_{0}\right) \tag{4.5-7}\\
& f_{3}=\frac{1}{2}\left|f_{R}+f_{0}\right| \tag{4.5-8}\\
& f_{4}=\frac{1}{2}\left|f_{R}-f_{0}\right| \tag{4.5-9}\\
& \delta=\left[C \pi A f_{4} /\left(f_{3}-\frac{2}{\pi} f_{4}\right)\right] \frac{1}{2} \tag{4.5-10}\\
& A_{1}^{*}=\left(f_{3}-\frac{2}{\pi} f_{4}-f_{2}\right) \delta_{1}^{2}<f_{4} \pi \tag{4.5-11}\\
& \delta_{1}=\min \left(n_{D}, I-n_{D}\right) \tag{4.5-12}
\end{align*}
$$

(II) In the second stage $\left(A_{1}^{*}<A^{*} \leq A_{2}^{*}\right)$

If $\eta_{D}<0.5$ the following relation holds:

$$
\begin{array}{ll}
f=f_{5}+f_{6} \sin \left[\frac{\pi}{2}\left(1+\frac{\eta}{\delta_{2}}\right)\right] & \text { for } 0 \leq \eta \leq 2 \delta_{2} \tag{4.5-13}\\
f=f_{2} & \text { for } 2 \delta_{2}<\eta \leq 1
\end{array}
$$

wherein:

$$
\begin{align*}
& f_{5}=f_{1}-f_{6} \tag{4.5-14}\\
& f_{6}=f_{4} \cdot \frac{\delta_{1}}{\delta_{2}} \tag{4.5-15}
\end{align*}
$$

$$
\begin{align*}
& \delta_{2}=\left(C \pi A^{*}+\delta_{1}^{2}\right)^{\frac{1}{2}} \tag{4.5-16}\\
& A_{2}^{*}=A_{1}^{*}+\left(\frac{1}{4}-\delta_{1}^{2}\right) / C \pi \tag{4.5-17}
\end{align*}
$$

If $\Pi_{D} \geq 0 \cdot 5$, the relation is:

$$
\begin{array}{ll}
f=f_{1} & \text { for } 0 \leq \eta \leq 1-2 \delta_{2} \\
f=f_{7}+f_{6} \sin \left[\frac{\pi}{2}\left(1+\frac{\eta}{\delta_{2}}\right)\right] & \text { for } 1-2 \delta_{2}<\eta \leq 1
\end{array}
$$

where

$$
\begin{equation*}
f_{7}=f_{2}-f_{6} \tag{4.5-19}
\end{equation*}
$$

(III) In the third stage $\left(A^{*}>A_{2}^{*}\right)$:

$$
f=f_{\theta}+f_{9} \sin \left[\pi\left(\frac{1}{2}-\eta\right)\right] \quad \text { for } 0 \leq \eta \leq 1 \quad, \quad(4.5-20)
$$

where

$$
\begin{align*}
& f_{g}=f_{1} \eta_{D}+f_{2}\left(1-\eta_{D}\right) \tag{4.5-21}\\
& f_{9}=f_{1} \delta_{1} \exp \left[-C \pi^{2}\left(A^{*}-A_{2}^{*}\right)\right] \tag{4.5-22}
\end{align*}
$$

4.6. The Solution Procedure

The biographic analysis described in this chapter is performed after the demographic analysis at each grid node in the computational domain. The folds are supposed to be formed in each grid-cell and the characteristics at birth are stored in the computer storage from the first step of calculation (i.e. the marching in the longitudinal direction is adopted). This information has been stored outside the central core memory of the computer system, i.e., in the disc or the tape, so that the computer program can be accomodated
even in the smaller machine such as Perkin-Elmer 3220. The values of A^{*} of different folds are calculated from Eqns.(3.4-1) and (4.2-9) as:

$$
\begin{equation*}
A_{C_{j}}^{*}=\exp \left(2 R \tilde{A}_{C_{j}} / F\right)-I \tag{4.6-1}
\end{equation*}
$$

where A_{j}^{*} is the A^{*}-value of folds which belong to the j-th group at the mid-point of the age, interval.

The f~n distribution of each group of folds are then determined with the aid of the profile method, followed by the calculation of temperature and species concentration through Eqns. (4.4-1) to (4.4-6). The sinusoidal profile has been divided into 20 intervals and hence all the required quantities are obtained at those discrete points. The fold-average properties, $\tilde{\phi}$, are computed numerically in accordance with:

$$
\begin{align*}
\tilde{\phi} f A^{*} f & =\int_{0}^{1} \phi f A^{*}, \eta t d \eta \\
& \approx \sum_{j} \phi f A^{*}, \eta_{j} f \Delta \eta_{j} \tag{4.6-2}
\end{align*}
$$

4.7 The Accuracy of the Profile Method

The accuracy of the profile method, compared with the known exact solutions, has been investigated in the work of Spalding (1958) on the constant-enthalpy flames. The governing equation of the temperature across the flame is similar to that of Eqn. (4.2-8), except that a non-Iinear source term exists.

The temperature gradient and the speed of steady flame propagation obtained from linear profile, sinusoidal profile
and parabolic profile have been compared with the exact solutions. It has been pointed out that the accuracy is normally better than 20% and can achieve excellent agreement (2%) with the exact solutions in some cases. Of course, the accuracy of profile method varies from problem to problem and can not be predicted in advance.

The more accurate time marching method has been employed to solve Eqn. (4.2-8) in the hydrogen-air jet diffusion flame, by Fan (1982), to assess the reliability of profile method. The difference in the results obtained from the two methods is of the order of 1% only. Therefore, the errors caused by the profile assumption are negligible in the present problem.

Since the computer time is increased by a factor of three when the profile method is replaced by the marching method, it is probable that the former method will still be useful in the future work to reduce the computational task. 4.8 Closure

The mathematical analysis of biographic aspects has been presented in this chapter for the simple chemical reaction system. The more realistic, multi-step chemical reaction scheme can be incorporated in the future development of ESCIMO theory without formidable difficulties. Of course, an efficient computer program which combines the numerical solution procedure of the present work and that of Tam (1981) is needed.

Some presumptions about the size and the composition of folds at birth have been made to initiate the computation.

The influence of various parameters has been investigated for the reacting mixing layer and jet diffusion flames and will be presented in Chapters 6 and 8.

The profile method is able to produce satisfactory results in the present problem, according to the comparison with the more accurate time marching method.

The more interesting results of turbulent reacting flows are obtained from the coupling of the demographic and biographic analysis, such as the mean turbulent quantities and the fluctuation quantities; the coupling procedure will be described in the next chapter.

CHAPTER 5

THE COMBINED MATHEMATICAL ANALYSIS

5.1 Introduction

The purpose of this chapter is to demonstrate how the demographic analysis and the biographic analysis are linked together to yield the useful information in turbulent combustion.

The average birth places of all kinds of folds arriving at a particular point have to be located first, this will be described in Sec.5.2. Then, the fold-average properties will be multiplied by the population distribution function, \tilde{P}, to obtain the population-average quantities (i.e., the turbulent time average quantities); the description is provided in Sec. 5.3.

The root mean square fluctuation of temperature and species concentration are of great importance in the turbulent reacting flows; the calculation of these quantities will be presented in Sec.5.4.

The detail information of turbulence can be seen only from the probability density functions of various quartities and they can be predicted by the ESCIMO theory; the computational process is to be demonstrated in Sec.5.5. Finally, a short summary will be provided in Sec.5.6.

5.2 The Tracing of the Folds

It has been mentioned in Sec. 2.5 that the fold trajectories are supposed to follow the constant mixture fraction line, and that all folds move downstream with the mean convective
velocity. The birth place of the folds which arrive at a particular point can therefore always be located at the upstream position, since the flow considered here is a parabolic one.

A simple function of $F f x \neq$, which appears in Eqn. (3.4-1), is chosen in the calculation of the mixing layer and jet diffusion flame, namely:

$$
\begin{array}{ll}
F f(x) \equiv \frac{U_{m i n}}{x} & \text { for reacting mixing layer, (5.2-1) } \\
F f(x) \equiv \frac{U_{r e f}}{x} & \text { for jet diffusion flame, (5.2-2) }
\end{array}
$$

where $J_{\text {min }}$ is the velocity of lower-speed stream and $\mathrm{J}_{\text {ref }}$ is a chosen reference velocity. $U_{\text {min }}$ is a constant, but $U_{r e f}$ can be a constant or a function of distance x (see Chapter 7).

The physical meaning of $F f x \neq$ can be regarded as a kind of scaling factor, or the reciprocal of the maximum reference age. Thus, the maximum reference age defined in Eqns.(5.2-1) and (5.2-2) are $x / U_{m i n}$ and $x / U_{r e f}$ respectively and the maximum distance from the birth place of any fold to the point in question is smaller than or equal to x .

The following procedure has been adopted in this work to locate the birth place of each kind of folds, viz: (I) calculate the longitudinal distance which the folds of age, \tilde{A}_{c}, have travelled through, in accordance with:

$$
\begin{equation*}
x_{F_{j}}=x_{D}\left(1-\tilde{A}_{c_{j}}\right) \tag{5.2-3}
\end{equation*}
$$

where $x_{F j}$ is the average journey length of folds belonging to the j-th age-interval. The effect of the curvature of
constant mixture fraction line on X_{Fj} is neglected here. (2) Usually the value of x_{Fj} lies between two consecutive marching steps at which the information about fold characteristics at birth are stored in the computer memory. The larger of the two (in the x-value), say x_{R}, is chosen as the representative step to be searched in the cross-stream direction. The birth place of the folds which survive at $x=x_{D}$ with $\tilde{A}=\tilde{A}_{c j}$ and $f=\bar{f}$ is supposed to stand at $x=x_{R}$.
(3) The ω value of the birth place, ω_{b}, is determined by:

$$
\begin{equation*}
\omega_{b}=\omega_{i}+\frac{f_{i}-\bar{f}}{f_{i}-f_{i+1}}\left(\omega_{i+1}-\omega_{i}\right) \tag{5.2-4}
\end{equation*}
$$

where $f_{i} \geq \bar{f} \geq f_{i+1}$ and f_{i}, f_{i+1} represent the stored $f-v a l u e s$ at $\omega=\omega_{i}$ and $\omega=\omega_{i+1}$ respectively. Eqn. (5.2-4) implies a linear interpolation procedure to obtain the required fold characteristics at ω_{b} from information stored at ω_{i} and ω_{i+1}. The figure provided below serves as the supplementary explanation to the searching process of the birth place:

Fig.5.2-1 Tracing of folds in the jet

5.3 The Population Average Properties

Once the birth places of various folds have been spotted and all relevant infcrmation cbtained from the interpolation procedure described in the preceding section, the biographic calculation can be performed via the profile method and the fold-average values computed with the aid of Eqn. (4.6-2).

The local time average value of any property, $\bar{\phi}$, is deduced from the fold-average values of all folds multiplied by the population distribution function in ESCIMO theory and termed the "population-average property". The expression is given below:

$$
\begin{align*}
\bar{\phi} & =\int_{0}^{\infty} \Phi \in \tilde{A} \nmid \tilde{P} d \tilde{A} \\
& =\int_{0}^{1} \tilde{\phi} f \tilde{A} \nmid \vec{P} d \tilde{A} \\
& \approx \sum_{j=1}^{N A} \tilde{\phi} f \tilde{A}_{c} \neq \tilde{P}_{j} \Delta \tilde{A}_{j} \tag{5.3-2}
\end{align*}
$$

It can be observed that the population distribution function, \tilde{P}, in Eqn. (5.3-1) serves as a kind of weighting function during the course of computation. Therefore the variation of properties in each group of folds will make a certain contribution to the local population-average values. The shape of the $\tilde{P} \sim \tilde{A}$ curve is the most important factor which determines the $\bar{\Phi}$-value, while the quantitative difference in P's values (under the same shape) has less critical influence.

The local average density, \bar{p}, is also calculated from Eqn.(5.3-2) in which the fold-average density is obtained by
the biographic analysis. The hydrodynamics results are affected by the chemical reaction mainly through the density variation.

5.4 The Root Mean Square Fluctuation Quantities

The turbulence intensity of each variable in the turbulent flow is usually represented by the "root mean square" fluctuation quantity and defined by:

$$
\begin{equation*}
\sqrt{\left(\phi^{\prime}\right)^{2}}=\sqrt{(\phi-\bar{\phi})^{2}} \tag{5.4-1}
\end{equation*}
$$

where the over bar stands for the local time-average value.
In the framework of ESCIMO theory, the root mean square fluctuation is calculated from the difference between the $\phi-$ profile inside each fold and its population-average quantity, viz:

$$
\begin{align*}
\overline{\left(\phi^{\prime}\right)^{2}} & =\int_{0}^{1}\left\{\int_{0}^{1}\left[\phi(\tilde{\mathrm{~A}}, \eta \xi-\Phi]^{2} \mathrm{~d} \eta\right\} \tilde{\mathrm{P}} \mathrm{~d} \tilde{\mathrm{~A}}\right. \\
& =\int_{0}^{1}\left\{\int_{0}^{1} \phi^{2} \mathrm{~d} \eta\right\} \tilde{\mathrm{P}} d \tilde{\mathrm{~A}}-2 \int_{0}^{1}\left\{\int_{0}^{1} \phi \cdot \bar{\phi} d \eta\right\} \tilde{\mathrm{P}} d \tilde{\mathrm{~A}}+\bar{\phi}^{2} \\
& =\int_{0}^{1} \tilde{\phi^{2}} \tilde{\mathrm{P}} d \tilde{\mathrm{~A}}-2 \bar{\phi} \int_{0}^{1 \tilde{\phi} \tilde{P} d \tilde{\mathrm{~A}}+\bar{\phi}^{2}} \\
& =\overline{\phi^{2}}-(\bar{\phi})^{2} \tag{5.4-2}
\end{align*}
$$

The younger folds have a larger contribution in the fluctuation level, since the degree of non-uniformity is more pronounced in those folds. Lower stretching rate can also result in higher fluctuation value, since the layer thickness, hence the distance for diffusive material to
travel, will not be reduced rapidly and a larger difference in properties remains in the fold. Therefore it is expected that the influence of population distribution function and stretching can be examined more thoroughly by the distribution of root mean square fluctuation quantities.

5:5 The Probability Density Functions

The value of any property, ϕ, fluctuates within a particular range in the turbulent flows, say between $\phi_{\max }$ and $\phi_{\text {min }}$. If someone is taking the instantaneous sampling at a fixed point, he will recognise that the time portion occupied by various ϕ-values are normally different and hence there exists a probability in finding the signal (which represents the magnitude of ϕ) prevailing at the interval between ϕ and $\phi+\delta \phi$. The shape of the probability density functions is of great interest to the researchers in turbulent reacting flows, since it reveals the detail structure of turbulence.

In the present approach of ESCIMO theory, there are two kinds of probability density functions which have to be distingushed, namely:
(1) The probability density function in a fold (fold-pdf) and
(2) The population-average probability density function at a point in the fluid region.

The latter is equivalent to those employed in other models of turbulent combustion. The methods of computation for them are to be presented below.

5.5.1 The definitions of pfd in ESCIMO approach

(a) The fold probability density function $\tilde{\mathrm{P}}_{\phi}$

It has been explained in the biographic analysis that the properties across each fold are non-uniform and can be represented by a certain profile. The probability density function of the fold, $\tilde{\mathrm{P}}_{\phi} \delta \phi$, is defined as the mass fraction of material having the property which lies between ϕ and $\phi+\delta \phi$. Hence, at any particular age, the \tilde{P}_{ϕ} distribution is computed in accordance with:

$$
\begin{equation*}
\tilde{P}_{\phi} f \phi, \tilde{A} f=\frac{\sum_{\phi}^{\phi+\delta \phi} \frac{d \eta}{\int_{0}^{Z} d \eta}}{\delta \phi} \tag{5.5-1}
\end{equation*}
$$

The summation in Eqn. (5.5-1) refers to all possible portion of fold, $d \eta$, which have the property between ϕ and $\phi+\delta \phi$.
(b) The population-average probability density function $\stackrel{\rightharpoonup}{\mathrm{P}}_{\phi}$

Once the fold pdf has been obtained for all folds belong to different age-group, the population-average pdf, P_{ϕ}, is computed from the following expression:

$$
\begin{equation*}
\left.\bar{P}_{\phi}(\phi)=\int_{0}^{1} \tilde{P}_{\phi} f \phi, \tilde{A} \not\right) \tilde{P} d \tilde{A} \tag{5.5-2}
\end{equation*}
$$

The argument that the $\overrightarrow{\mathrm{P}}_{\phi}$ in Eqn. (5.5-2) has the same physical meaning as those used by Borghi (1979), Kennedy and Kent (1981), Ballantyne and Bray (1976) can be proved from the derivation provided below:

The fold-average value of $\phi, \tilde{\phi}$,is given by

$$
\begin{align*}
\tilde{\phi}(\tilde{A} t & =\int_{0}^{1} \phi d \eta \\
& =\int_{\phi \min }^{\phi \max } \phi \tilde{P}_{\phi}(\phi, \tilde{A}) d \phi \tag{5.5-3}
\end{align*}
$$

and the time-average value of $\phi, \bar{\phi}$, by

$$
\begin{align*}
& \bar{\phi}=\int_{0}^{1} \tilde{\phi} f \tilde{A} \neq \tilde{P} d \tilde{A} \\
& =\int_{0}^{1}\left[\int_{\phi_{\min }}^{\phi_{\max }} \phi \tilde{P}_{\phi} f \phi, \tilde{A} \nsucc d \phi\right] \tilde{\mathrm{P} d \tilde{A}} \\
& =\int_{\phi_{\text {min }}}^{\phi_{\text {max }}} \phi\left[\int_{0}^{1} \tilde{P}_{\phi}(\phi, \tilde{A}) \tilde{P} d \tilde{A}\right] d \phi \\
& =\int_{\phi_{\min }}^{\phi_{\max }} \phi \overline{\mathrm{P}}_{\phi} \not \subset \phi \nmid \mathrm{d} \phi \tag{5.5-4}
\end{align*}
$$

Where Eqn. (5.5-4) is the conventional form adopted by the other approaches in turbulent reacting flows.

5.5:2 The Computational Procedure

The detail numerical computation of fold pdf and population everage pdf is now described as follows:
(i) Search for the maximum and minimum ϕ-values from the biographic analysis in a kind of fold. Then divide the whole domain (from $\phi_{\text {min }}$ to $\phi_{\text {max }}$) into a number of uniform intervals, each of which takes the value of:

$$
\begin{equation*}
\delta \phi=\left(\phi_{\text {max }}-\phi_{\text {min }}\right) / N_{\phi} \tag{5.5-5}
\end{equation*}
$$

where N_{ϕ} is the total number of fraction intervals ($N_{\phi}=10$ is the typical value chosen in the computation). (ii) The values of ϕ-profile across the fold are calculated at each discrete point (20 points in the present work).

Identify all these ϕ-values with their appropriate $\delta \phi-$ intervals defined in step (i): - If a pair of consecutive ϕ-values, say ϕ_{j-I} and ϕ_{j}, lie within the i-th ϕ-interval, $\delta \phi_{i}$, essign the mass fraction in $\Delta \eta_{j}$, occupied by the $\Delta \phi_{j}\left(\equiv \phi_{j}-\phi_{j-I}\right)$, to the "fold-pdf domain" of $\delta \phi_{i}, P_{\phi}$, with. the aid of Eqn. (5.5-1). The process is illustrated in Fig.5.5-1. Linear interpolation is employed if $\Delta \phi_{j}$ ranges across the $\delta \phi_{i}$ and $\delta \phi_{i+1}$ interval.
(iii) Repeat steps (i) and (ii) for all kinds of f \cap lis and determine a suitable set of maximum and minimum values of ϕ, say $\bar{\phi}_{\text {max }}$, and $\bar{\phi}_{\text {min }}$ for the whole population of folds. Of course, the following relation should be satisfied:

$$
\begin{array}{ll}
\Phi_{\max } \geq \max \left(\phi_{\max , 1}, \phi_{\max , 2}, \cdots, \phi_{\max , \mathrm{NA}}\right) \\
\Phi_{\min } \leq \min \left(\phi_{\min , 1} ; \phi_{\min , 2}, \ldots, \phi_{\min , \mathrm{NA}}\right) \quad,(5.5-6) \tag{5.5-7}\\
\end{array}
$$

where

$$
\begin{aligned}
& \phi_{\max , i} \text { is the value of } \phi_{\max } \text { for the folds belonging } \\
& \text { to the }\left(\tilde{\Delta \tilde{A}_{i}}\right) \text { interval, } \\
& \phi_{\min , i} \text { is the value of } \phi_{\min } \text { for the folds belonging } \\
& \text { to }\left(\Delta \tilde{A}_{i}\right) \text { interval. }
\end{aligned}
$$

The domain defined by $\Phi_{\max }$ and $\bar{\Phi}_{\min }$ here is called the "population domain of ϕ ", in contrast to the "fold domain of $\phi^{\prime \prime}$ mentioned in step (ii). The reason for using two different domains is to increase the accuracy of fold=pdf. The population domain of ϕ, is again divided into a number of uniform intervals, given by:

$$
\begin{equation*}
\delta \Phi=\left(\Phi_{\max }-\Phi_{\min }\right) / \mathrm{Np} \tag{5.5-8}
\end{equation*}
$$

Fig.5.5-1 Calculation of fold-pdf

Fig.5.5-2 Redistribution of fold-pdf to the population domain of ϕ
where N_{p} is the total number of fraction intervals ($N_{p}=10$ is the typical value used in the computation). (iv) Redistribute the fold-pdf, \tilde{P}_{ϕ}, obtained in step (ii) to the population domain given by Eqn. (5.5-8), as follows: Identify all the ϕ-values with their appropriate $\delta \Phi$ intervals defined in Eqn. (5.5-8): - If a pair of consecutive ϕ-values, say ϕ_{i-1} and $\phi_{i}\left(\delta \phi_{i}=\phi_{i}-\phi_{i-1}\right)$, lie within the j-th $\bar{\phi}$-interval, $\delta \bar{\phi}_{j}$, assign the corresponding $\tilde{P}_{\phi} \delta \phi$ value to the "population-averaged pdf" of $\overline{\mathrm{P}}_{\phi} \delta \bar{\phi}$. Linear interpolation is also adopted if the values inside $\delta \phi_{i}$ ranges across $\delta \bar{\phi}_{j}$ and $\delta \bar{\phi}_{j+1}$. The process is further. illustrated in Fig.5.5-2.
(v) Multiply the redistributed values of $\tilde{P}_{\phi} \delta \phi$ by the population distribution function \tilde{P} for all folds to.give the population average pdf:

$$
\begin{equation*}
\bar{P}=\frac{\int_{0}^{1}\left(\tilde{P}_{\phi} \delta \phi\right) \tilde{P} d \tilde{A}}{\delta \Phi} \tag{5.5-9}
\end{equation*}
$$

Another reason for redistribution of fold pdf to the population domain in step (iv) is that a common domain is essential for the relation in Eqn. (5.5-9) to be valid. 5.6 Closure

The coupling procedure of the demographic and biographic analysis has been developed and described in the present chapter. Some presumptions about the trajectories of the folds have been made in order to simplify the calculations, but the essential features of fold motion have been considered.

The detail structure of turbulence, such as the
probability density functions of various properites, can be predicted by the ESCIMO theory as well as the turbulent mean quantities and the root mean square fluctuation level.

The theory has been applied to the two-dimensional turbulent reacting mixing layer and turbulent jet diffusion flames and the results will be presented in the next two chapters.

CHAPTER 6

THE TURBULENT REACTING MIXING LAYER

6.1 Introduction

In the earlier works of Noseir (1980) and Tam (1981), the simplified demographic analysis was incorporated with the more advanced biographic analysis. The results of the demographic computation is either presumed to be of the "top-hat" profile (uniform in the cross-stream direction) or expressed in an analytical form. Therefore, the complete set of transport equations for the population distribution has neither been formulated nor solved in their work.

The purpose of the present work is to set up the mathematical framework for the calculation of population distribution function in two-dimensional boundary layer flow problems, to allow for the variation in the cross-stream direction as well as the longitudinal one.

The plane mixing layer is the first flow process to be investigated, because of the simple fixed boundary conditions and entrainment rate involved therein. Also, the selfsimilarity prevails in the fully developed region of the mixing layer. Very few experimental results on the turbulent reacting mixing layers are available in the present literature and those obtained by Batt (1977) have been regarded as reliable and typical. Thus, the flow configuration of Batt's experiment has been chosen in the prediction and will be described in Sec.6.2.

The numerical input of the computation will be listed
in Sec.6.3, followed by the results obtained from the demographic analysis in Sec.6.4. The results obtained from the combined analysis will be presented in Sec.6.5 and the influence of various physical parameters demonstrated in Sec.6.6. The effects of numerical grid size have also been investigated and will be illustrated in Sec.6.7. The discussion of the results is to appear in Sec.6.8, followed by a closure in Sec.6.9.

6.2 Description of the flow configuration

The test case considered is a two-dimensional turbulent shear layer in which the mixing of both a passive and a chemically reacting streams occurred. The velocities of twc streams are $23 \mathrm{ft} / \mathrm{s}$ and $2 \mathrm{ft} / \mathrm{s}$ respectively. The high speed stream is composed of low temperature air ($252^{\circ} \mathrm{K}$) seeded with dilute concentrations of $\mathrm{N}_{2} \mathrm{O}_{4}$, while the low speed stream consists of hot and clear air ($310^{\circ} \mathrm{K}$).

A schematic diagram of the shear layer and a list of test conditions are shown in Fig.6.2-1:
(1) Primary flow (bold and seeded)
$\mathrm{u}_{1}=23 \mathrm{ft} / \mathrm{s}$
$\mathrm{T}_{1}=252^{\circ} \mathrm{K}$ $\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\mathrm{a}_{1}}}{\left[\mathrm{~N}_{2}\right]}=0.00278$

(2) Secandary flow
(hot and clear)
$\mathrm{u}_{2}=2 \mathrm{ft} / \mathrm{s}$ $\mathrm{T}_{2}=310^{\circ} \mathrm{K}$
$\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{a_{2}}}{\left[\mathrm{~N}_{2}\right]}=0$

Fig.6.2-1 Test configuration of reacting shear layer

Batt (1977) has mentioned that the flow is directed vertically downwards through the $5 f$ ft long test section in order to minimize the buoyancy effects accompanying the imposed thermal gradients.

The chemical process is a kind of first order dissociation-recombination reaction denoted by:

$$
\begin{equation*}
\mathrm{N}_{2}+\mathrm{N}_{2} \mathrm{O}_{4} \rightleftharpoons 2 \mathrm{NO}_{2}+\mathrm{N}_{2} \tag{6.2-1}
\end{equation*}
$$

The recombination-rate constants have been measured extensively and successfully by Wegener (1959) in a supersonic nozzle flow.

It should also be noted that a unique feature of the tetroxide dissociation is that if the temperature is varied from $-20^{\circ} \mathrm{C}$ to room temperature the degree of dissociation changes from 0.3 to 0.96 .

The heat released from the chemical reaction is negligible in the present flow process since the concentration of $\mathrm{N}_{2} \mathrm{O}_{4}$ is lower than 0.5% (by volume).

6.3 Computational Notes

6.3.1 The Grid Systems

The expanding grid of GENMIX code is employed in the present prediction with 20 cross-stream grid nodes ($N=20$). The intervals of ω (from 0 to 1) are distributed in accordance with the expression given below:

$$
\omega_{i}=\left(\frac{i-1}{N-1}\right)^{0.5} \quad i=1,2,3, \ldots, N \quad \cdot(6.3-1) .
$$

Therefore, the grids are more densely distributed near the external boundary where the velocity is lower.

The total number of marching steps to reach the
downstream distance of $\mathrm{x}=1.52 \mathrm{~m}$ (5 ft) is equal to 300 in the typical computation. The initial width of the mixing layer is $0 \cdot 001 \mathrm{~m}$. The forward marching step size is controlled by the following formulae as in GENMIX program:

$$
\begin{equation*}
\Delta x=\min \left[\Delta x_{1}, \Delta x_{2}, \Delta x_{3}, \Delta x_{4}, \Delta x_{5}\right] \tag{6.3-2}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta x_{1}=\lambda_{1} y_{N-2} \tag{6.3-3}\\
& \Delta x_{2}=\frac{\Delta x_{1} \cdot\left(\psi_{E}-\psi_{I}\right)}{0 \cdot 5\left(r_{1}+r_{N}\right) \mu_{1}} \tag{6.3-4}\\
& \Delta x_{3}=\lambda \Delta x_{1 \text { ast }} \tag{6.3-5}\\
& \Delta x_{4}=\frac{\lambda_{3} \cdot\left(\psi_{E}-\psi_{I}\right)}{\left(r_{I} \dot{m}_{I}^{\prime \prime}-r_{E^{m}} \dot{m}_{E}^{\prime \prime}\right)} \tag{6.3-6}
\end{align*}
$$

$$
\begin{equation*}
\Delta x_{5}=\Delta x_{\max } \tag{6.3-7}
\end{equation*}
$$

and

$$
\begin{aligned}
& \lambda_{1}=1 \\
& \lambda_{2}=5 \\
& \lambda_{3}=0.01
\end{aligned}
$$

y_{N-2} is the value of y at the N-2th grid node
μ_{1} is the viscosity at the lst grid node
r_{1} is the radius of $1 s t$ grid node ($=1$ for plane flow)
r_{N} is the radius of N th grid node ($=1$ for plane flow)
$\Delta x_{\text {last }}$ is the value of Δx in the previous step

$$
\Delta x_{\max }=5
$$

The total number of age-intervals, NA, is equal to 10 and they are uniformly distributed, viz:

$$
\begin{equation*}
\tilde{A}_{j}=\frac{j-1}{N A} \quad j=1,2,3, \ldots, N A+1 \tag{6.3-8}
\end{equation*}
$$

The total number of sub-divisions inside the profile of fold-biography calculation, $N P$, is equal to 10 in the current calculation.

6.3.2 The chemical reaction rate constants

The local chemical equilibrium condition has been assumed to prevail in the test conditions considered herein, based on the equilibrium conclusion which has been reached in the work of Batt (1977). It has been observed that the magnitude of the measured eddy decay time of turbulence (30 ms) is large compared with the typical chemistry times ($\leq l m s$).

The chemical equilibrium constant is taken from the measured data of Wegener (1959):

$$
\begin{equation*}
\mathrm{k}_{\mathrm{D}}\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]\left[\mathrm{N}_{2}\right]=\mathrm{k}_{\mathrm{R}}\left[\mathrm{NO}_{2}\right]^{2}\left[\mathrm{~N}_{2}\right] \tag{6.3-9}
\end{equation*}
$$

and

$$
\begin{equation*}
K_{C}=k_{D} / k_{R}=\frac{1}{82 T} \exp \left(20.72-\frac{6747}{T}\right) \tag{6.3-10}
\end{equation*}
$$

where
k_{D} is the forward dissociation rate constant,
k_{R} is the recombination rate constant,
K_{C} is the equilibrium constant,
$\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$ is the mole fraction of $\mathrm{N}_{2} \mathrm{O}_{4}$ species,
$\left[\mathrm{NO}_{2}\right]$ is the mole fraction of NO_{2} species ,
$\left[\mathrm{N}_{2}\right]$ is the mole fraction of N_{2} species,

The production rate for the total oxide mass fraction is zero, under the present reaction scheme, i.e.

$$
\begin{equation*}
\dot{\mathrm{m}}=\dot{\mathrm{m}}_{\mathrm{N}_{2} \mathrm{O}_{4}}+\dot{\mathrm{m}}_{\mathrm{NO}_{2}}=0 \tag{6.3-11}
\end{equation*}
$$

where in stands for the production rate (mass fraction per unit time). The relation between the total mass fraction of oxide and the mole fractions of oxide is given by:

$$
\begin{align*}
\mathrm{m} & =\mathrm{m}_{\mathrm{N}_{2} \mathrm{O}_{4}}+\mathrm{m}_{\mathrm{NO}_{2}} \\
& =\left[\mathrm{N}_{2} \mathrm{O}_{4}\right] \mathrm{W}_{\mathrm{N}_{2} \mathrm{O}_{4}}+\left[\mathrm{NO}_{2}\right] \mathrm{W}_{\mathrm{NO}_{2}} \tag{6.3-12}
\end{align*}
$$

where $\mathrm{W}_{\mathrm{N}_{2} \mathrm{O}_{4}}$ and $\mathrm{W}_{\mathrm{NO}_{2}}$ are the molecular weight of $\mathrm{N}_{2} \mathrm{O}_{4}$ and NO_{2} species respectively. Thus, the value of m obeys the species conservation equation of the boundary layer form:

$$
\begin{equation*}
\frac{\partial m}{\partial \bar{x}}+(a+b w) \frac{\partial m}{\partial w}=\frac{\partial}{\partial w}\left(c \frac{\partial m}{\partial w}\right) \tag{6.3-13}
\end{equation*}
$$

with the boundary conditions:

$\mathrm{m}=\mathrm{m}_{1}$	at $\omega=0$
$\mathrm{~m}=0$	at $\omega=1$

$a=0 \quad$ at $\omega=1$

The next expression can be established by dividing the both sides of Eqn. (6.3-12) by $\mathrm{W}_{\mathrm{N}_{2} \mathrm{O}_{4}}$:

$$
\begin{equation*}
\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\mathrm{a}}=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]+\frac{1}{2}\left[\mathrm{NO}_{2}\right] \tag{6.3-16}
\end{equation*}
$$

where $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\mathrm{a}} \equiv \mathrm{m} / \mathrm{W}_{\mathrm{N}_{2} \mathrm{O}_{4}}$ and called as the "available" mole fraction of $\mathrm{N}_{2} \mathrm{O}_{4}$ for the reaction. Obviously, the relation between $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\mathrm{a}}$ and m is:

$$
\begin{equation*}
\frac{\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\mathrm{a}}}{\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]_{\mathrm{a}_{1}}}=\frac{\mathrm{m}}{\mathrm{~m}_{1}} \tag{6.3-17}
\end{equation*}
$$

or

$$
\begin{equation*}
\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\mathrm{a}}=\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\mathrm{a}_{1}} \frac{\mathrm{~m}}{\mathrm{~m}_{1}} \tag{6.3-18}
\end{equation*}
$$

where the $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\mathrm{a}}$ is the value of $\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]_{\mathrm{a}}$ in the primary flow.
The local equilibrium mole fraction of NO_{2} is obtained by inserting Eq̄n.(6.3-16) into Eqn.(6.3-10), viz:

$$
\begin{equation*}
\frac{\left[\mathrm{NO}_{2}\right]}{\left[\mathrm{N}_{2}\right]}=\frac{\mathrm{K}_{\mathrm{c}}}{4}\left\{\left(1+16\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]_{\mathrm{a}_{1}} \frac{\mathrm{~m}}{\mathrm{~m}_{1}} \frac{1}{\mathrm{~K}_{\mathrm{c}}}\right)^{\frac{1}{2}}-1\right\} \tag{6.3-19}
\end{equation*}
$$

The quantity, m / m_{1}, varies from 0 to 1 across the mixing layer (according to Eqns. (6.3-13) to (6.3-15)) and can be treated as the mixture fraction in the present case. The value of m / m_{1} will be solved at every ω-node in the prediction with the turbulent diffusion coefficient obtained from the turbulent viscocity and uniform Schmidt number (the turbulent Schmidt number measured by Batt is equal to 0.5). The value of $m^{\prime} m_{1}$ will be given the symbol f in this chapter and all argument about f in Chapter 4 applies to $\mathrm{m} / \mathrm{m}_{1}$ from now on, i.e.: .

$$
\begin{equation*}
f \equiv \frac{m}{m_{1}} \tag{6.3-20}
\end{equation*}
$$

for the present chemical reaction process.

6.3.3 The computations performed

Several computations have been performed, with different combinations of input empirical constants, in order to investigate the influence of each presumption on the results.

All computations are characterised as indicated in Table 6.3 and the entry under "Mode" indicates the presumption used about the distribution of fold-formation rate. The number of "Mode" refers to:

Mode (i) - proportional to the local mean velocity gradient, Mode (ii) - proportional to the local mean velocity,

Mode (iii) - proportional to the normalized stream function. Same notation applies to the calculation in the next two chapters.

Table 6.3: Characterisations of computer runs

Run No.	C_{Z}	C_{F}	C_{S}	Mode	NA
1	0.164	2	1	(i)	10
2	0.164	2	1	(ii)	10
3	0.164	2	1	(iii)	10
4	0.328	2	1	(i)	10
5	0.164	3	1	(i)	10
6	0.164	2	0.3	(i)	10
7	0.328	2	0.5	(i)	10

6.4 Results of demographic analysis

6.4.1. The population distribution versus age at a fixed position

The population distribution with respect to age will be presented in this subsection, for three different runs, i.e., Run No.I to Run No.3. All 3 runs have some conditions
except the assumption on fold-formation rate. Firstly, results obtained from Run No.l are shown in Fig.6.4-1, at three different positions across the mixing layer. The abscissa is the non-dimensional age, \tilde{A}, while the ordinate represents the non-dimensional population of folds having a particular age. The three curves in the figure refer to the population distribution prevailing at position near the high speed edge ($\eta_{T}=-1.5$), the centre ($\eta_{T}=-0.4$) and the low speed edge $\left(\eta_{T}=1.5\right)$ of the mixing layer respectively. The mixing-layer similarity parameter η_{T} stands for the width of the mixing layer and is defined by the following realtion:

$$
\begin{equation*}
\eta_{T} \equiv \frac{12\left(y-y_{0.5}\right)}{x-x_{0}} \tag{6.4-1}
\end{equation*}
$$

where $y_{0.5}$ is the value of y in which \bar{T} is equal to 0.5 $\left(T_{1}+T_{2}\right)$, x_{0} is the effective origin of the mixing layer. The value of $x 0$ is taken from Batt's measurements (=3in) in the present computation.

It can be observed from. Fig.6.4-1 that the $\tilde{P} \sim \tilde{A}$ curve has the steepest slope in the centre of the mixing layer, where the fold formation rate reaches its maximum value according to the presumpticns made here. The curve has a similar shape of exponential decay near the low speed edge, but with a less steep gradient. The distribution near the high speed boundary is however somewhat different, the curve being almost flat for $0 \leq \tilde{\sim} \leq 0.15$ and followed by a sudden drop to the range of $0.2 \leq A \leq 0.35$.

Fig.6.4-1 Population distribution function with respect to age

Fig.6.4-2 Population distribution function with respect to age

The overall feature of the population distribution is that the youngest folds are the most popular ones in the present case. The population of very old folds (say, $\tilde{A}>0.6$) is negligible, signifying that most folds are born in near up-stream locations.

Secondly, the results from Run No. 2 are demonstrated in Fig.6.4-2 in which the distribution of fold formation rate is assumed to be proportional to local mean velocity. The three curves correspond to the same positions as in Fig.6.4-I. Inspection of the figure reveals that all curves belong to the type of exponential decay and the curve near the high speed edge has the largest slope where the fold formation rate is the highest. The population distribution near the low speed stream is more uniform here, with significant amount of old folds (e.g. $\tilde{A}>0.6$) in existence.

Finally, the results from Run No. 3 are provided in Fig.6.4-3. The distribution of fold formation rate is supposed to be proportional to the "local entrainment rate", $\left(r \dot{m}^{\prime "}\right)_{\ell}$, defined by

$$
\begin{equation*}
\left(r_{\underline{\underline{m}}}{ }^{\prime \prime}\right)_{\ell} \equiv(1-\omega) r_{I^{\prime}}{ }_{\underline{I}}^{\prime \prime}+\omega r_{E} \ddot{\mathrm{M}}_{\mathrm{E}}^{\prime \prime} \tag{6.4-2}
\end{equation*}
$$

It can be seen that the fastest diminution of population with respect to age again happens near the high speed edge of the mixing layer where the entrainment rate is at its peak. The population distribution at the low speed side is now even more uniform than that obtained

Fig.6.4-3 Population distribution function with respect to age

Fig.6.4-4 Radial variation of population of folds belonging to a particular age interval
from Run No.2, and there remains a finite amount of the oldest folds which are born in the far upstream region of the mixing layer and have undergone lower re-engulfment rate.

6.4.2 The population distribution across the mixing layer at fixed age

Further illustration for the spatial variation of the population distribution is supplied by the diagram of \tilde{P}_{j} (at fixed \tilde{A}_{j}) versus η_{T} through Figs.6.4-4 to 6.4-6. The results presented in these figures are obtained in the self-similar region (at $x=0.47 \mathrm{~m}$).

In Fig.6.4-4, the results obtained from Run No. 1 are presented and each curve stands for the population of folds belonging to a particular age-interval. Only four lines are shown here, since the magnitude of other groups outside the range are much smaller. The population of the youngest folds, P_{1} has the peak value at $\eta_{T} \approx-0.4$ where the velocity gradient and the fold formation rate attain the maxima. The \tilde{P}_{2} distribution behaves as a monotonic decreasing function with respect to η_{T}, while the population of older folds \tilde{P}_{3} and \tilde{P}_{4} reflect the opposite tendency.

The corresponding results from Run No. 2 are plotted in Fig. 6.4-5. The curve representing \tilde{P}_{1} now has its highest value at the high speed edge of the mixing layer where the fold formation is large under the present presumption. The \tilde{P}_{2} distribution is fairly uniform in

Fig.6.4-5 Radial variation of population of folds belonging to a particular age-interval

Fig.6.4-6 Radial variation of population of folds belonging to a particular age-interval
the region between $-2 \leq \eta_{T} \leq-0.4$ and then decreases smoothly towards the low speed boundary. The shapes of \tilde{P}_{3} and \tilde{P}_{4} distribution are similar to those in Fig.6.4-4.

Finally, the results produced by Run No. 3 are again provided in Fig.6.4-6. All curves have actually the same qualitative characteristics as their counterparts in the previous diagram, except that the difference between each curve diminishes quickly as Π_{T} approaches the value in low speed stream.

6.4.3 The average age of the folds versus position

Another interesting quantity in the demographic analysis is the average age of the folds defined by:

$$
\begin{equation*}
\tilde{A}_{\text {ave }} \equiv \int_{0}^{1} \tilde{A P} \tilde{\mathcal{A}} \tag{6.4-3}
\end{equation*}
$$

The variation of the average age across the mixing layer are plotted in Fig.6.4-7 for Run Nos. 1 to 3. In the case of Run No.l, the minimum value occurs at $\eta_{T} \tilde{\sim}-0.8$, while it happens at $\eta_{T} \tilde{\sim}-2.0$ for other cases. The average age in the centre of the layer ($-0.2 \leq \eta_{T} \leq 0.2$) is not larger than 0.2 for all cases, signifying that most of the folds are created within the distance of $0.2 X_{D}$ from the point in question. However, the difference between the average age calculated from three cases is remarkably large in the region near the low speed stream. For instance, the $\tilde{A}_{\text {ave }}$ at $\eta_{T}=1.6$,

Fig.6.4-7 Average age across the mixing layer
varies from 0.25 to 0.4 under different hypothesis regarding the distribution of fold formation rate.

6.5 Results of the combined analysis

6.5.1 The mean temperature profile

The normalized mean temperature profile across the mixing layer for Run No.l (at $x=0.47$ II) is plotted in Fig.6.5-1 together with the measurements from Batt (1977). It should be noted that the mean temperature is calculated from the solution of enthalpy equation which did not contain the heat release effect in the present chemical reaction scheme. Therefore, the contribution of ESCIMO theory does not appear in the mean temperature.

The quantitative agreement between the predictive results and the measured data is satisfactory as revealed by the graph, this implies that the turbulent diffusion coefficient is adequately determined by the turbulent model employed. The mean temperature is important in the calculation of NO_{2} concentration since the chemical equilibrium constant is temperature dependent.

Fig.6.5-1 Radial profile of mean normalized temperature at $x=0.47$; Run no.l

Fig.6.5-2 Radial profile of mean normalized concentration of NO_{2} at $\mathrm{x}=0.47$; Run no.l

6.5.2 The mean concentration profile of nitrogen dioxide

The normalized mean NO_{2} concentration profile across the mixing layer for Run No. 1 is plotted in Fig.6.5-2. The experimental results fron Batt (1977) are also shown in the figure (by the solid symbols). Now that the mean concentration is calculated from the full ESCIMO approach described.earlier.

The prediction exhibits a hump near $\eta_{\mathrm{T}}=-1$, where the normalized concentration of NO_{2} is equal to $1 \cdot 2$. However, there appears a slight double hump when the measured data points are connected with a smooth curve. No explanation about the existance of this double hump has been provided in Batt's paper, but the author did mention that the concentration measurement accuracy in this case is roughly $\pm 10 \%$ of the core-flow concentration levels. The maximum measured value of NO_{2} is equal to $1 \cdot 1$, while the NO_{2} concentration calculated from the mean temperature and local equilibrium condition (excluding the concentration fluctuation effect) could reach 1.3. Thus, the non-uniformity of properties (in each fold) accounted by ESCIMO theory has reduced the peak level of NO_{2} by 10 per cent.

The level of NO_{2} concentration decays slightly faster according to Batt's data than the present prediction, in the region where $\eta_{T}>0 \cdot 5$.

6.5.3 The root-mean-square fluctuation of temperature

The variation of root mean square fluctuation on temperature for Run No.l, across the mixing layer is presented in Fig.6.5-3. The predictions show a maximum fluctuation of

Fig.6.5-3 Radial profile of temperature
fluctuation intensities; Run no.l

Fig.6.5-4 Radial profile of NO_{2} concentration fluctuation intensities; Run no.l
0.23 at $\eta_{T} \approx 0.5$, followed by a sharp decrease until the magnitude is smaller than $0 \cdot 1$. The experimental data, however, reveal a slight double hump with a rather flat plateau in the central part of the mixing layer. The maximum measured value is around 0.14 and is lower than the present prediction.

Brown and Roshko (1974) have performed the experiments on turbulent shear layers with density gradients and Fiedler (1974,1975) has studied the temperature field within a plane mixing layer. They have found out that instantaneous density (temperature) fluctuations were often equivalent to the density (temperature) difference between the two external streams. Fiedler (1975) has also measured the maximum fluctuating temperature intensities which are as large as 0.20, considerably larger than the corresponding results for the Batt (1977) study.
6.5.4 The root mean square fluctuation of species concentration

The fluctuation intensities of NO_{2} across the mixing layer, obtained from Run No.l, are plotted in Fig.6.5-4. The predicted results exhibit a small hump ($\because 0 \cdot 11$) near $\eta_{T}=-1 \cdot 0$, with the maximum fluctuation intensity equal to 0.36 and located at $\eta_{T}=0.7$.

The experimental data share the similar characteristics with the predictions, though some quantitative discrepancy still exist. The maximum measured fluctuation intensity is equal to 0.4 which is about 10% higher than the calculated one, while the results in the region of $-1.5 \leq n_{\mathrm{T}} \leq-0.5$ are slightly overpredicted.

The prediction of concentration fluctuation is one of the main contributions made by ESCIMO theory, since the effect of local unmixedness has been taken into account for the eddies (or folds) coming from various places.

6.5.5 The probability density function of temperature

The temperature probability distributions at different locations across the shear layer, under the conditions of Run No.1, are now shown in Fig.6.5-5. The distributions have been represented by the step functions profile in order to indicate the intervals without causing any confusion.

The predictions reveal a one-sided pdf near the mixing layer boundaries (at $\theta=0.82$ and $\theta=0.22$) where the mean temperatures are close to the free stream conditions. The distributions broaden as the looations are further from the boundaries, e.g. at $\theta=0.74,0.64,0.56$ and 0.32 . In the central part of the layer, e.g., at $\theta=0.56$ and 0.44 , the pdf mainly consists of three portions, namely those correspond to the free stream value, the mean value and the value of re-engulfed part in the newly formed folds.

The measured probability distributions from Batt (1977)
are also indicated in the figure (by broken lines). It
can be observed that the pdf are nearly Gaussian over a broad domain (approximately the mid- 50% of the shear layer), which has not been fully portrayed by the present computations.
6.6 The influence of various assumptions

6.6.1 The influence of fold formation rate

Tig.6.5-5 Temperature Probability Distributions at Different Locations Across the Shear Layer

Various hypothetical distributions about the fold formation rate have been adopted in the current study and hence it is important to assess their influences on the results. Firstly, the influence of different distributions on the mean NO_{2} concentration profile are presented in a tabulated form listed below, since the difference between each set is too small to be distinguished on the graph.

Location across the mixing layer, n_{T}	Normalised mean NO_{2} concentration obtained from each mode no.		
	Mode (i)	Mode (ii)	Mode (iii)
-2.00	1.00	1.00	1.00
-1.50	1.10	1.10	1.10
-1.07	1.21	1.20	1.20
-0.674	1.21	1.22	1.21
-0.300	1.13	1.15	1.15
0.104	0.947	0.989	0.988
0.508	0.712	0.756	0.764
0.889	0.575	0.582	0.586
1.17	0.398	0.400	0.403
1.57	0.178	0.179	0.179

Table 6.6-1: The influence of distribution of fold formation rate on NO_{2} concentration

The maximum difference between each set of results occurs around $\eta_{\mathrm{T}}=0.508$, where the relative difference reaches 7%. However, the relative difference is very small in most part of the mixing layer and lower than 2%.

On the other hand, the influence of fold formation rate on the concentration fluctuation intensities of NO_{2} is more significant and can be presented in graphic form as Fig.6.6-1. The results obtained from three runs are almost identical in the region of $-2 \leq n \leq 0$, especially those correspond to Run No. 2 and Run No. 3 (hence the results of Run No. 3 are not shown in this part). The discrepancies become more apparent when $\eta_{T}>0.3$ and the maximum fluctuation intensity varies from 0.36 in the Run No.l to 0.29 in Run No.3. The predicted locations of the peak value are slightly shifted towards the low speed side of the mixing layer when compared with the data of Batt (1977).

6.6.2 The influence of fold size

The results produced by Run No. 1 and Run No. 4 are compared in the table 6.6-2.

It should be noted that the fold size at birth is taken as the length scale of turbulence in Run no.l, while it is equal to twice as the length scale in Run no.4. The influence of fold size on the mean NO_{2} concentration is significant only in the central part of the mixing layer. Thus, the assumption about the fold size within present range is not crucial to the mean concentrations.

The influence is more visable for the fluctuation intensities of NO_{2} as shown in Fig.6.6-2. The maximum

Fig.6.6-I Influence of distribution of fold formation rate on the concentration fluctuation intensity

Fig.6.6-2 Influence of fold size on the concentration fluctuation intensity

Location across the mixing layer, η_{T}	Mean NO_{2}	concentration
	Run No.1 $\mathrm{C}_{\mathrm{Z}}=0.164$	Run No.4 $\mathrm{C}_{2}=0.328$
-2.00	1.00	1.00
-1.50	1.10	1.09
-1.07	1.21	1.20
-0.674	1.21	1.18
-0.300	1.13	1.10
0.104	0.947	0.907
0.508	0.712	0.669
0.889	0.575	0.565
1.17	0.398	0.397
1.57	0.178	0.180

Table 6.6-2 Influence of fold size on NO_{2} concentration
predicted value is equal to 0.42 in Run No.4, compared with the value of 0.36 in Run No.I. The results obtained from Run No. 4 are generally larger than the measured data, indicating that larger fold size will yield higher fluctuation intensities.

6.6.3 The influence of fold composition

The results of mean NO_{2} concentration from Run No.l and Run No. 5 are given in the following table:

Location across the mixing layer, η_{T}	Mean NO_{2} concentration	
	Run No. 1 $C_{F}=2.0$	Run No. 5 $C_{F}=3.0$
-2.00	1.00	1.00
-1. 50	1.10	1.10
-1.07	1.21	1.21
-0.674	1.21	1.20
-0.300	1.13	1.07
0.104	0.947	0.884
0.508	0.712	0.663
0.889	0.575	0.574
1.17	0.398	0.398
1.57	0.178	0.179

Table 6.6-3 Influence of fold composition on NO_{2} concentration

Again, the discrepancies are apparent only in the mid-region of the mixing layer, where the relative difference between each set is around 7% (e.g. at $\eta_{T}=0.104$). The peak
value is almost identical under both cases.
The fluctuation intensities calculated from Run No. 1 and Run No. 5 are now plotted in Fig.6.6-3. Considerable increase in the fluctuation intensities are observed for $-0.5<n_{T}<0.6$ and the peak value computed from Run No. 5 is equal to 0.43 (the measured value is 0.40). The percentage difference in two runs can reach 40% ($a t n_{T}=0$) and hence the parameter C_{F} is an important factor in determining the fluctuation level. The location of the peak was also shifted from $\eta_{T} \approx 0.8$ to $\eta_{T} \approx 0.40$ when C_{F} changes from 2.0 to 3.0 .

6.6.4 The influence of the stretching rate

The mean NO_{2} concentration computed from Run No.l and Run No. 6 are provided in the following table:

Location across the mixing layer, N_{T}	Mean $\cdot \mathrm{NO}_{2}$	concentration
	Run No.1	Run No.6
$\mathrm{C}_{\mathrm{S}}=1.0$	$\mathrm{C}_{\mathrm{S}}=0.3$	
-2.00	1.00	1.00
-1.50	1.10	1.09
-1.07	1.21	1.19
-0.674	1.21	1.14
-0.300	1.13	1.03
0.104	0.947	0.840
0.508	0.712	0.621
0.889	0.575	0.558
1.17	0.398	0.391
1.57	0.178	0.177

Table 6.6-4 Influence of stretching rate on NO_{2} concentration

Fig.6.6-3 Influence of fold composition on the concentration fluctuation intensities

Fig.6.6-4 Influence of stretching rate on the concentration fluctuation intensity

Inspection of Table 6.6-4 reveals that the maximum difference between the results computed from two runs is now around ll\%. The peak value is lower in Run No. 6 and equal to 1.19.

More evident influence has been realised in the concentration fluctuation intensities as in the other cases, this is now presented in Fig.6.6-4. The secondary hump (at' $\eta_{T} \tilde{\sim}-1.1$) is magnified in the case of low stretching rate and the maximum fluctuation increases up to 0.46 now. The predictions are in good quantitative agreement with the measurements over the range of $-0.5 \leq \eta_{T} \leq 0.6$ in Run No.6. However, the fluctuation level is overpredicted in the near high speed area (-1. $4 \leq \eta_{T} \leq-0.8$) for both runs.

Further investigation about the influence of stretching effect have been carried out in the comparison between Run No. 4 and Run No.7, where the fold ${ }^{\text {size }}$ at birth is twice as large as those in the other runs. The results are presented in Figs.6.6-5 and 6.6-6.

It can be observed, in Fig.6.6-5, that the mean NO_{2} concentration is lower as the stretching rate decreases. The results obtained from Run No. 7 show better aggrement with the experimental data in the outer regions of the mixing layer (i.e. for $-1.5 \leq \eta_{T} \leq-0.5$ and $0.5 \leq \eta_{T} \leq 1.5$), but larger deviation occurs in the central part of the layer $\left(-0.5 \leq \eta_{T} \leq 0.5\right)$.

On the other hand, inspection of Fig.6.6-6 reveals

Fig.6.6-6 Influence of stretching rate on the concentration fluctuation intensity
that the fluctuation level calculated from Run No. 7 is generally higher and the peak level attains the value of 0.47 . The secondary hump is also more significant when the stretching is moderate.

6.7 The influence of grid size

6.7.1 The influence of forward marching step size

It has been observed that the step size of forward marching is controlled by the factor, λ_{3}, in Eqn.(6.3-6) under present computational conditions. Hence, three different values of $\dot{\lambda}_{3}$ have been employed to investigate the influence of step size, Δx, on the results and the comparison is presented in Table 6.7-1. The RMS values. of NO_{2} concentration are chosen for the comparison, since they are more sensitive to step size than the mean NO_{2} concentration. All physical constants are the same as those employed in Run No.l.

The results from three different λ_{3} values are close to each other, signifying that the influence of marching step size is a minor one for the problem considered. The value of $\lambda_{3}=0.02$ actually yields the grid independent results.

Location across the mixing layer, $\dot{\eta}_{T}$	RMS of NO_{2}		
	$\lambda_{3}=0.04$	$\lambda_{3}=0.02$	$\lambda_{3}=0.01$
-2.00	0	0	0
-1.50	0.0686	0.0700	0.0706
-1.07	0.117	0.120	0.121
-0.674	0.123	0.124	0.124
-0.300	0.181	0.182	0.182
0.104	0.262	0.261	0.260
0.508	0.315	0.313	0.313
0.889	0.333	0.337	0.340
1.17	0.244	0.249	0.252
1.57	0.113	0.115	0.116

Table 6.7-1 Influence of forward marching step size on NO_{2} concentration fluctuation

Location across the mixing layer,	RMS of NO_{2}		
	$\mathrm{~N}=20$	$\mathrm{~N}=40$	$\mathrm{~N}=60$
-2.00	0.0	0.0	0.0
-1.50	0.0414	0.0700	0.0792
-1.07	0.126	0.120	0.118
-0.674	0.121	0.124	0.126
-0.300	0.213	0.182	0.185
0.104	0.317	0.261	0.260
0.508	0.388	0.313	0.312
0.889	0.364	0.337	0.330
1.17	0.264	0.249	0.245
1.57	0.102	0.115	0.121

Table 6.7-2 Influence of cross stream grid no. on NO_{2} concentration fluctuation

6.7-2 The influence of numbers of grid

The RMS fluctuations of NO_{2} concentration computed from three different cross-stream grid numbers, N, are listed in Table 6.7-2. The discrepancies between the results from $N=20$ and $N=40$ are significant, i.e., the maximum relative difference at $\eta_{T}=0.508$ is of the order of 20%. However, the calculated values from $N=60$ are only slightly different from those of $N=40$. Thus, 40 grids across the mixing layer can actually achieve the grid-independent results.

6.7-3 The influence of subdivisions in age-coordinate

The age-coordinate and its subdivisions are the newly introduced grid system in the current work and hence it is important to assess their influences on the results. Three values of NA have been employed in the computations and the RMS values of ${ }^{-} \mathrm{NO}_{2}$ fluctuation are provided in Table 6.7-3.

The difference between the results from $N A=5$ and $N A=10$ are small over most part of the mixing layer, while they are more negligible in the cases of $N A=10$ and $N A=15$. Therefore it can be concluded that 10 age intervals are sufficient to produce the grid independent results. It should be noted here that all other numerical and physical constants are the same as those appear in Run No.l.

6.8 Discussion of the results

The population distribution of folds

The major significance of the results obtained from the demographic analysis (in Sec.6.4) is that the cross-stream variation has been calculated from the transport equations.

Location across the mixing layer, n_{T}	RMS of NO_{2}	concentration fluctuation	
	$\mathrm{NA}=5 \%$	$\mathrm{NA}=10$	$\mathrm{NA}=15$
-2.00	0.0	0.0	0.0
-1.50	0.0595	0.0700	0.0705
-1.07	0.113	0.120	0.120
-0.674	0.124	0.124	0.124
-0.300	0.182	0.182	0.182
0.104	0.261	0.261	0.261
0.508	0.313	0.313	0.313
0.889	0.329	0.337	0.337
1.17	0.231	0.249	0.249
1.57	0.103	0.115	0.115

Table 6.7-3 Influence of age-intervals on NO_{2} concentration fluctuation

* The distribution of age-interval in this case is:

$$
0 ., 0.1,0.3,0.5,0.7,1
$$

The location-dependence of the population distribution, as indicated in Figs.6.4-1 to 6.4-3, is significant in the mixing layer. The basic factors which contribute to the cross-stream variation are the turbulent diffusion effect and the distribution of fold formation rate.

The turbulent diffusion effect is determined by the turbulent viscosity and turbulent Schmidt number which are taken from the existing turbulence model as the necessary input to ESCIMO theory. No special attention has been paid to the development of the turbulence model itself, since it does not belong to the scope of current study.

On the other hand, the hypothesis about the distribution of fold formation rate is a new and unique feature of present approach. According to the knowledge of the author, there are no direct experimental measurements to verify the hypothesis. Therefore, only the influence on the mean properties and RMS quartities can be tested.

Nevertheless, there is a common trend from the average age described in Fig.6.4-7 where the $\tilde{A}_{\text {ave }}$ is always larger on the slower-moving side of the layer for all three runs. The explanation of this variation lies on the velocity distribution across the mixing layer, since higher velócity results in the shorter time (and hence smaller age) for a fold born in the upstream position to travel to downstream region.

The mean NO_{2} concentration profile
It has been pointed out that the quantitative agreement between the present predictions and the measurements are reasonably good in Fig.6.5-2. However, some degree of
discrepancies do exist near the hump of the concentration profile and the probable explanations will be given below.

Apart from the uncertainties in experimental measurements declared by Batt (1977), the effects of non-equilibrium chemistry and turbulence intermittency factor may cause the diviation of predictions from measured values.

Alber and Batt (1975) has estimated six time scales regarding the chemical reaction and fluid mechanical processes, namely; the time scale associated with:
(1) chemical dissociation ($\left.\tau_{\text {chem }} \approx 0.00016 \mathrm{sec}\right)$,
(2) chemical recombination ($\left.\tau_{\text {chem }} \approx 0.00016 \mathrm{sec}\right)$,
(3) turbulent dissipation ($\tau \approx 0.0007 \mathrm{sec})$,
(4) turbulent convection ($\tau \approx 0 \cdot 01 \bar{s} e c)$,
(5) turbulent diffusion ($\tau \approx 0.05 \mathrm{sec})$,
(6) Iaminar diffusion ($\tau \approx 400 \mathrm{sec}$) ,

The chemical raaction rate is so rapid that only the turbulent dissipation time scale associated with the smallest scale eddies is of the same order as $\tau_{\text {chem }}$. Hence, the non-equilibrium phenomena (i.e. finite rate chemistry) may only appear in the finest scale of turbulence structure.

Batt (1977) has studied the effect of finite rate chemistry and the interaction between chemical kinetics and turbulence intensities by including the second-order correction to the effective rate expression. It was recognised that the result changed by -5% approximately.

The turbulence intermittency factor, defined as the time portion when the flow exhibits the turbulent charactersitics, has not been accounted in the present model. According to
the experimental data of Sunyach and Mathieu (1969), Batt (1977), the intermittency factor varies from zero near both edges of the mixing layer to unity in the mid-region. Strictly speaking, the results calculated from ESCIMO theory refer to the fully turbulent part only and hence should be weighted by the intermittency factor. Consequently, the contribution of the irrotational potential flow will be more dominant near the boundaries of the mixing layer and the results will be given by:

$$
\begin{equation*}
\overline{\overline{\left[\mathrm{NO}_{2}\right]}}=(\mathrm{I}-\mathrm{I})\left[\mathrm{NO}_{2}\right]_{\mathrm{p}}+\mathrm{I} \cdot \overline{\left[\mathrm{NO}_{2}\right]} \tag{6.8-1}
\end{equation*}
$$

where $\overline{\left[\mathrm{NO}_{2}\right]}$ is the mean concentration of NO_{2} including the intermittency factor, I is the intermittency factor, $\left[\mathrm{NO}_{2}\right]_{p}$ is the concentration of NO_{2} in the potential flow and [NO_{2}] is the mean concentration obtained from the ESCIMO theory excluding the intermittency effect. Therefore, it is expected that the results calculated from Eqn.(6.8-1) will be somewhat different from the present ones.

The fluctuation intensities of NO_{2} concentration

There are more influential factors in the determination of fluctuation intensities of NO_{2} concentration than the mean quantities described above. The various parameters employed in ESCIMO theory play the significantrole on the quantitative comparison with experimental data.

The following remarks can be made from the sensitivity analysis performed in Sec.6.6:

- The fluctuation intensities at a fixed position increase when the population of youngest folds become more prominent. This is reflected in the results of Fig.6.6-1 where the population of youngest folds is highest for Run No.l near $\eta_{T} \approx 0 \cdot 8$. The reason is that the profile in each fold is evened out by molecular diffusion and fold stretching as the fold gets aging.
- The fluctuation intensities magnify as the fold size at birth increases, because the distance which the diffusion process must travel is longer.
- The fluctuation level heightens as the properties of the re-engulfed part in the newly formed fold are further different from the local mean values (in the case of larger C_{F} value), since the initial profile in the fold is steeper and it remains so if other parameters are the same.
- Slower stretching rate yields larger fluctuations over most part of the mixing layer, except in the region between $-0 \cdot 8 \leq \eta_{\mathrm{T}} \leq 0$ where the mean concentration is high. The reason is that the thickness of the fold does not reduce so rapidly and the non-uniformity of the properties within each fold can last longer. Since the relation between the temperature and NO_{2} concentration is non-linear and not a monotonic one, it is possible that the fluctuation intensity of concentration is lower even when the temperature fluctuation is high under the low stretching condition.

Therefore, satisfactory agreement with the experimental data can be realised if a set of optimised parameters is employed in the computation.

The temperature fluctuation intensities

The maximum fluctuation intensities have been overpredicted by the order of 60%, as shown in Fig.6.5-3. This is in remarkable contrast with the fluctuation intensities of NO_{2} concentration (from Run No.l) which are underpredicted by 10% only.

Batt (1977) suggested that the relative low fluctuation level was caused by random motion or three-dimensionality effects in the experiment and less influenced by large-scale two-dimensional coherent structures which has been observed in other shear-layer investigations.

The probability density function of temperature
The predicted pdf near both sides of the mixing layer show similar trend with the measured ones, i.e., they all behave as skewed one-sided pdf. But in the fully turbulent zone of the mixing layer where the intermittency factor is of the order of unity, the experimental results are almost Gaussian and cover the whole temperature domain. Unfortunately, the calculated pdf do not fulfill this requirement.

The careful review of the presumption regarding the fold composition at birth provides the answer to the discrepancy between measured and predicted pdf. The newly formed folds are composed of two parts having different properties (the fresh part and the re-engulfed part) and hence the pdf of these folds mainly consist of two blocks. The population average. pdf is significantly influenced by the -
pdf of younger folds because of their high proportion. Therefore, the shape of population average pdf contains three amjor portions which correspond to the fresh stream value, the population-average value and the value associated with the re-engulfed part in new born folds.

6.9 Closure

The application of ESCIMO theory to the turbulent reacting plane mixing layer has been described in this chapter. The population distribution of folds have been presented in two-dimensional flows for the first time and the influence of various hypotheses about the distribution of fold formation rate tested.

The mean turbulent properties, the RMS fluctuation intensities and the probability density functions have been calculated and compared with the experimental data of Alber \& Batt (1975) and Batt (1977). The sensitivity analysis about various presumptions made in the present theory have been carried out. The grid independence test was also performed to assess the influence of all grid sizes.

The quantitative agreement between measured and predicted results is acceptable on the overall basis, although some discrepancies happen in the fluctuation intensities of temperature and the pdf related to it.

In order to further evaluate the applicability and the credibility of ESCIMO theory, it is essential to perform more test cases and compared with other experimental work. Therefore, the application of ESCIMO theory to the turbulent hydrcgen-air diffusion flame and the turbulent
methane-air diffusion flame will be presented in the next chapter.

CHAPTER 7

THE TURBULENT JET DIFFUSION FLAMES

7.1 Introduction

The application of the ESCIMO theory to the turbulent round jet diffusion flames which have more practical importance is presented in this chapter. The chapter is mainly divided into two parts, the first part is associated with the hydrogen-air diffusion flame (Sections 7.1-7.5) and the second part with the methane-air diffusion flame (Sections 7.6-7.9).

In each part of the presentation, the results of the hydrodynamic calculations (from the $k-\varepsilon$ model of turbulence), the population distribution of folds, the turbulent mean quantities, the RMS fluctuation intensities and the probability density functions of scalar and species concentration will be provided and compared with the experimental data available. The measurements obtained from Kent and Bilger (1973) in $H_{2-a i r ~ f l a m e ~ a n d ~ L e n z ~ a n d ~ G u ̈ n t h e r ~(1980) ~ i n ~ m e t h a n e-a i r ~}^{\text {- }}$ flame have been chosen for the comparison, since the results are more comprehensive and regarded as reliable ones.

All the numerical factors and physical presumptions have been kept unchanged for both cases in order to assess the generality of those constants in the current work. The influence of different parameters on the predictions will be discussed separately in the next chapter. Therefore, all results produced in this chapter are based on a single set of constants.

7.2 The turbulent hydrogen-air diffusion flame

The experimental work of Kent and Bilger (1973) was carried out for turbulent diffusion flames of a horizontal round jet of hydrogen issued in a co-flowing stream of air. The jet diameter at the exit plane was 7.62 mm and the crosssection of wind tunnel was 305 by 305 mm . The tunnel crosssection is large enough so that the wall effects can be neglected and the pressure gradient is almost equal to zero. It was also mentioned by Kent and Bilger (1973) that the buoyancy effects were negligible.

The measurements were made at jet to external streamvelocity ratios of $2,5,8$ and 10 to 1 . The particular set of data from velocity ratio of 10 to 1 has been selected here for the comparison, because they are more extensively presented in the literature. The jet velocity at jet exitplane is equal to $151 \mathrm{~m} / \mathrm{s}$ and the free-stream velocity is 15.1m/s.

The temperature measurements were made with a $\mathrm{Pt}-\mathrm{Rh}$ (5\% and 20\%) thermocouple, coated with a special noncatalyic coating developed by Kent (1970). The samples of different species were withdrawn from the flow iso-kinetically with the aid of a hot-water-cooled probe. The samples were analyzed on-line using a lithium chloride hygrometer for water vapour, a katharometer for hydrogen, and a paramagnetic analyzer for oxygen. The radiation corrections have also been performed.

7.3 The computational aspects

The grid system
Twenty-grid nodes across the jet are employed in the
$\mathrm{x} \sim \omega$ coordinate system, ie., $N=20$. The distribution of ω-intervals is given by the following expression:

$$
\omega_{i}=\left(\frac{i-1}{N-1}\right)^{2} \quad i=1,2, \ldots, N
$$

The ω grid-nodes are more densely distributed near the jet axis where the temperature is high and hence the density is lower. The actual distance (y-interval) between each grid node is then nearly uniform.

Fig.7.3-1 Grid system

The size of forward marching (in x-direction) step, ΔX, is calculated according to Eqns. (6.3-2) to (6.3-7) with the same numerical factors.

The number of intervals in the age-coordinate, NA, is again equal to 10. The distribution of these intervals is given by:

$$
0,0.05,0.1,0.15,0.2,0.3,0.4,0.5,0.65,0.8,1 .
$$ The transformation function $F \notin X \neq$ in Eqn. (5.2-2) is chosen as:

$$
F \in X t \equiv \frac{\mathrm{~J}_{\text {air }}}{X}
$$

where $U_{a i r}$ is the velocity of co-flowing air and does not vary with x.

The computer time and storage required

The central processor unit time (CPU time) required for the calculation in this case is 360 seconds in the CDC 6600 machine. Hence, the computation time for each grid point in each marching step is approximately equal to 0.033 sec .

The central core memory required is equal to 30 K words, while the additional information of the fold characteristics are stored in the magnetic tape.

The thermodynamics properties

The specific heat of each species and mixture are calculated according to the Eqns. (4.4-7) and (4.4-8). The heat of combustion of hydrogen is taken as $1.208 \times 10^{8} \mathrm{~J} / \mathrm{Kg}$ from the standard thermodynamics handbook.

Both turbulent PrandtI and Schmidt number is assumed to be equal to 0.9 in the computations and hence the turbulent Lewis number is taken as unity.

The laminar diffusion coefficients of all species and heat transfer have been assumed to be equal in the fold biography analysis. It has been recognised that the molecular diffusivity of hydrogen is two or three times faster than the other species because of its small molecular weight. Therefore a definite amount of error will be introduced from the assumption of unity laminar Lewis number.

The error in the above mentioned assumption was tolerated, because the uncertainties in the fold size at birth and the
stretching rate are of the same order of the error introduced by the hypothesis of equal diffusivities. In the mean time, the simple chemical reaction scheme, described in Sec.4.4, will not be valid if the differential diffusion effect is considered and hence additional transport equations will have to be solved for each fold. The considerable expansion of computing time was not favoured at the present stage of development, since the influence of other presumptions will have to be tested first.

7.4 Presentation of results

7.4.1 The hydrodynamic results

The results of hydrodynamic calculation form the basis for the further combustion computation and hence it is desirable to check the turbulence model at the first place.

The axial distribution of jet centre-line velocity is plotted in Fig.7.4-1 together with the experimental data from Kent and Bilger (1973). The quantitative agreement between the predicted and measured values are satisfactory, signifying that the $k-\varepsilon$ model of turbulence is capable of producing correct results about the global turbulent diffusion effects for this flow case.

The turbulence levels on the centre line of the jet are plotted in Fig.7.4-2. The predictions are obtained from the turbulent kinetic energy based on the assumption of isotropic turbulence, while the data points stand for the measurements of radial velocity turbulence intensity, $\sqrt{\mathrm{V}^{\prime 2}}$, on the centre-line of the flame. Therefore, only a qualitative comparison can be expected for this case.

Fig.7.4-1 Variation of axial-velocity in hydrogen-air flame

Fig.7.4-2 Variation of axial turbulenceintensities in hydrogen-air flame

7.4.2 The population distribution of folds

The results to be presented in this chapter are obtained from the assumption that the fold formation rate across the jet is proportional to the gradient of local mean axial velocity. Firstly, the population distribution with respect to age, at three different downstream locations, will be presented in Figs.7.4-3 to 7.4-5 respectively.

In Fig.7.4-3, the three curves represent the $\tilde{\mathrm{P}} \sim \tilde{\mathrm{A}}$ distribution at three radial positions for $X / D=40$. The folds having age between 0.1 and 0.15 are the most popular near the jet axis (i.e., r/D=0.27), in which .the fold formation rate is minimum. On the other hand, the youngest folds are more dominant in the mid-region ($r / D=2.10$) and the outer region ($r / D=4.04$) of the jet. It should be noted that the highest population of the newly formed folds appear at $r / D=2.10$ where the fold formation rate reaches its climax (the velocity gradient is large there).

Similar results at $X / D=80$ are shown in Fig.7.4-4, where the slope of each curve is now more moderate. Eventually, inspection of Fig.7.4-5 reveals that the population distributions become rather uniform at the further downstream region of $X / D=120$, where the velocity gradient diminishes and the fold formation rate also follows suit.

Secondly, the radial variation of the population of folds belonging to a particular age-interval are demonstrated through Figs.7.4-6 to 7.4-8. In Fig.7.4-6, the population of four kinds of folds, at $X / D=40$, are plotted against the radial distance. The population of the youngest folds, \tilde{P}_{1},

Fig.7.4-3 Population distribution function with respect to age

Fig.7.4-4 Population distribution function with respect to age

Fig.7.4-5 Population distribution function with respect to age

Fig.7.4-6 Radial variation of population of folds belonging to a particular ageinterval
attains the maximum value round $r / D=2.12$ as described above. For the population of folds having age between 0.10 and $0.15, \tilde{P}_{3}$, the curve decays monotonically from the axis $(r / D=0)$ towards the outer edge of the jet. The value of \tilde{P}_{5} (for $0.20 \leq A \leq 0.25$) first decreases as the value of r / D increases and then rises slightly in the outer part of the jet. However, the population of older folds (for $0.40 \leq$ A ≤ 0.45), \tilde{P}_{9}, increases steadily with the radial distance.

The variation of folds population, obtained at $X / D=80$, are presented in Fig.7.4-7. The patterns of $\tilde{\mathrm{P}}_{1}, \tilde{\mathrm{P}}_{3}$ and $\tilde{\mathrm{P}}_{5}$ are similar to their counterparts in the previous figure, while the trend of $\tilde{\mathrm{P}}_{9}$ is somewhat different. The results in Fig.7.4-8, for $X / D=120$, bear much resemblence to those in Fig.7.4-7, apart from the gentler change in the magnitude of each curve.

Thirdly, the radial distribution of average age at $X / D=40,80$ and 120 are provided in Fig.7.4-9. The noticeable point is that the folds in the mid-region of the jet have the lowest average age, since the fold formation rate is highest there and the newly born folds are more prominent. Also it can be observed that the level of average age increases in the further downstream region of the jet, where the mean velocity of the flow approaches the velocity of co-flowing air stream.

7.4.3 The mean temperature and species concentration

The general features of the diffusion flame considered are described by the turbulent'mean temperature and species concentration, namely the concentration of $\mathrm{H}_{2}, \mathrm{O}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$.

Fig.7.4-7 Radial variation of population of folds belonging to a particular age-interval

Fig.7.4-8 Radial variation of population of folds belonging to a particular age-interval

Fig.7.4-9 Radial profiles of average age across the jet

The concentration of minor species, radicals and nitric oxides have not been considered in the present reaction scheme.

The axial distribution of mean temperature and mean species concentration (in molar fraction) are plotted in Fig.7.4-10 with the experimental results of Kent and Bilger (1973). It can be observed that the concentration of fuel and oxygen are under-predicted for X / D larger than 40, and the temperature is also slightly underpredicted. Nevertheless, the agreement between the predictions and measurements is believed to be reasonably good.

The radial distribution of mean temperature and species concentration, at $X / D=40,80,120$ and 160 respectively, will be provided in Figs.7.4-11 to 7.4-14.

The results obtained at $X / D=40$ are demonstrated in Fig.7.4-11. The calculated peak temperature is lower than the measured value by $200^{\circ} \mathrm{K}$, and the predicted peak location has been shifted towards the outer region of the jet by the distance of one jet radius approximately. The hydrogen concentration and water vapour concentration have been well predicted from the jet axis until $r / D=3$. For the region of r/D greater than 3, the concentration of water vapour is overpredicted, while the amount of oxygen is underpredicted. The overlapping of fuel and oxygen, which is the characteristics of turbulent diffusion flames, has been shown in the present calculation. However, the calculated value at the over-lapping point (≈ 0.05) is lower than the measured one (≈ 0.08).

The results in Fig. 7.4-12 are obtained at $X / D=80$. The

Fig.7.4-10 Axial distribution of mean temperature
and mean composition

[^0]

Fig.7.4-12 Radial distribution of mean temperature and mean composition

Fig.7.4-13 Radial distribution of mean temperature
and mean composition
temperature at the axis is now higher ($\approx 1800^{\circ} \mathrm{K}$) , and the computed peak temperature reaches $1880^{\circ} \mathrm{K}$ at $\mathrm{r} / \mathrm{D}=3$.5. The measured maximum temperature is located at $r / D=3.0$ and has the magnitude of $2040^{\circ} \mathrm{K}$ approximately. The amount of water vapour is overpredicted for r / D greater than 3 , while the oxygen concentration is lower than the experimental counterpart. The fuel concentration is underpredicted in whole part of the jet.The degree of overlapping in the prediction (≈ 0.045) is again lower than the measurement. Similarly, the same set of quantities are provided in Fig.7.4-13 for $X / D=120$. The axial temperature has now achieved the highest value in both prediction and measurement, signifying that the flame zone is around the jet axis. The concentration of hydrogen and oxygen have been underpredicted, while the amount of water vapour was overpredicted from the jet axis until $r / D=6$. The measured degree of mixing (or overlapping) is still higher than the calculated value, as in other positions.

The hydrogen content is nearly exhausted at $X / D=160$, as indicated in Fig.7.4-14. The oxygen has already penetrated into the central zone of the jet and the temperature is highest in the axial position, all these phenomena suggest that the flame tip is located near $X / D=160$. The amount of oxygen is still underpredicted across the jet, while the water vapour is overpredicted for $0 \leq r / D \leq 5$ and underpredicted for $r / D>5$.

Finally, the flame and temperature contours from the predictions and measurements are presented in Fig.7.4-15.

Fig.7.4-14 Radial distribution of mean temperature
and mean compositions

Fig.7.4-15 Flame contours. H_{2} limit is for mole fraction of 1 per cent and O_{2} limit for 0.5 per cent

The smooth variation in all predicted curves indicates the correct tendency obtained from the present theory. However, the major discrepancies between the computation and Kent and Bilger's data appear in the O_{2} limit, where under-prediction persists.

7.4.4 The root mean square fluctuation of temperature

The RMS fluctuation of temperature will be presented here as a further demonstration of the applicability and power of ESCIMO theory. The axial distribution of temperature fluctuation is now plotted in Fig.7.4-16 together with the prediction made by Kent and Bilger (1976). The measurements are not available for this flame as mentioned by Kent and Bilger (1976).

Kent and Bilger (1976) has assumed a Gaussian turbulent pdf in the mixture fraction with a prescribed fiuctuation intensity to calculate the temperature fluctuation. Inspection of Fig.7.4-I6 reveals that the results obtained with both approaches follow the similar trend although higher fluctuation level has been detected from the current study. The decay of the fluctuating intensities between $X / D=50$ and $X / D=80$ are observed from both curves and the shape is in qualitative agreement with the measurements of Lockwood and Odidi (1975) in the methane-air free jet diffusion flame.

The radial variation of temperature fluctuations, obtained at $X / D=40,80$, and 120 respectively, are now shown in Fig. 7.4-17. The locations of the peak in each curve shift toward the central part, of the jet in the further downstream region in a similar way to the mean temperature profile. The

Fig.7.4-16 Axial distribution of temperature fluctuations

Fig.7.4-17 Radial distribution of temperature fluctuations at various locations
maximum fluctuation intensity decreases and the profile broadens as the value of X / D further increases, indicating the diffusive spreading of the flame zone. The experimental data have not been reported by Kent and Bilger.

7.4.5 The root mean square fluctuation of species concentration

The concentration fluctuation intensities of hydrogen and oxygen, at $X / D=40,80$ and 120 , are presented through Figs.7.4-18 to 7.4-20 respectively. The mean concentration profiles are also shown in the graphs so that the relative magnitude of fluctuation can be recognized.

In Fig.7.4-18, the RMS value of hydrogen concentration fluctuation is equal to 0.175 at the jet axis and reaches the maximum value of 0.235 at $r / D=1$. 75. It can be observed that the RMS fluctuation value of H_{2} molar fraction is higher than the mean value when the latter quantity is low, e.g., in the region where r/D>3.25. On the other hand, the fluctuation level of O_{2} concentration is greater than the mean value in the range $0.5 \leq r / D \leq 3.75$, i.e., when the mean oxygen concentration is lower than 0.06. The fluctuation intensities approach zero as the mean value of O_{2} concentration reaches the free-stream value.

Similarly, the results obtained at $X / D=80$ are plotted in Fig.7.4-19. The RMS value of H_{2} concentration fluctuation is now lower than the counterpart in the preceding graph, but the variation is similar in each case. The profile of 0_{2} fluctuation also exhibits a peak value of 0.06 near the intersection point of mean H_{2} and mean O_{2} concentration curves.

Fig.7.4-18 Concentration fluctuation of
hydrogen and oxygen

Fig.7.4-19 Concentration fluctuation of hydrogen and oxygen

In Fig.7.4-20 the RMS values of H_{2} concentration fluctuation, at $X / D=120$, further decrease below the level of O.1, but the relative fluctuation intensities (the ratio of RMS value to the mean value) are higher now. The location of the maximum RMS value, for H_{2} fluctuation, is now situated at the jet axis where the temperature is highest (as shown in Fig.7.4-13).

Finally, the RMS values of $\mathrm{H}_{2} \mathrm{O}$ concentration fluctuation, at $X / D=40,80,120$ and 160, are demonstrated in Figs.7.4-21-7.4-22. The profiles of concentration fluctuation spread outwards as the value of X / D increases, which is the result of the diffusion process. It can also be observed that the peak of fluctuation is located in the inner region of the jet $(r / D=2.5)$ at $X / D=160$.

7.4.6 The probability density function of temperature

The temperature pdf is one of the most interesting quantities associated with the detail structure of turbulent flames, since it depends on the composition of the mixture and the enthalpy as well.

The temperature pdfs at the centre line of the jet, for four X / D values, will first be demonstrated in Fig.7.4-23. Then, the radial evolution of temperature pdfs at the corresponding X / D positions will be presented from Figs.7.4-24 to 7.4-27 respectively.

In Fig.7.4-23, the axial temperature pdfs calculated at $X / D=40,55,80,120$ were shown by four diagrams. The location of the maximum value shifts towards the high temperature direction as the value of X / D increases and

Fig.7.4-23 Probability density function of temperature at flame axis
this is consistent with the variation of mean axial temperature represented in Fig.7.4-10. It should be noted that no contribution of free stream fluid (at $T=300^{\circ} \mathrm{K}$) is present in any of these diagrams and the pdf profiles are unimodal.

The radial evolution of pdfs at $X / D=40$ are plotted in Fig.7.4-24 where the four curves stand for the distribution at $r / D=0.69,1.86,3.21$ and 4.20 respectively. The temperature corresponding to the maximum distribution in each curve is approximately equal to the mean value. A small but finite contribution of free stream property appears in the profile of $r / D=3.21$, i.e. near the outer edge of the jet.

The pdf profiles at $X / D=55$ are drawn in Fig.7.4-25 with the results from Kennedy and Kent (1981) who have measured the pdfs of the mixture fraction with the aid of optical devices and converted to temperature pdfs. There is a larger intermittent spike $\left(T=300^{\circ} \mathrm{K}\right)$ in the outer edge of the flow (e.g., at $r / D=4.16$) in Kennedy and Kent's data. The present predictions produce a narrower distribution (hence smaller fluctuation) in the outer region of the jet where the influence of free stream conditions are stronger.

The pdf profiles at $X / D=80$ are shown in Fig.7.4-26 and it can be seen again that the mean temperature coincides with the corresponding value where the distribution is maximum. The contribution of free stream properties, at $r / D=2.95$, is still small.

In Fig.7:4-27, where $X / D=120$, the probability of finding

P(1)
$\times 10^{3}$

Fig.7.4-24 Probability density function of temperature at $X / D=40$

Fig.7.4-26 Probability density function of temperature at $X / D=80$

the temperature near the ambient condition is greater at the outer edge of the jet, at $r / D=5.65$. Furthermore, the pdf at $r / D=6.90$ is composed of lower temperature intervals (from $300^{\circ} \mathrm{K} \sim 1300^{\circ} \mathrm{K}$), indicating that the mean temperature is well below the flame temperature there.

7.4.7 The probability density function of species concentration

The radial variation of pdf of the mass fraction of hydrogen, for $X / D=40$, and 80 respectively, are presented in Figs.7.4-28 and 7.4-29. In Fig.7.4-28, the pdf profile is broader in the inner region of the jet (e.g., at $r / D=0.69$ and 1.86) and narrows as the mean value of hydrogen diminishes in the outer region (e.g., at $r / D=4.20$). The similar trend can also be detected in Fig.7.4-29, where the quantitative contribution of fuel is smaller.

The same variation regarding the pdf of mass fraction of oxygen are demonstrated in Figs.7.4-30 and 7.4-31. It can be observed that the profile is mainly concentrated around the lower limit of oxygen content for r / D value up to 3:Il, where the mean value is small compared with the free stream value. The profile shifts towards the higher limit only in the outer region of the jet, e.g., at $r / D=4.20$. The evolution pattern at $X / D=80$ is also similar as shown in Fig.7.4-31.

The pdf of mass fraction of $\mathrm{H}_{2} \mathrm{O}$, at $\mathrm{X} / \mathrm{D}=40,80$ and 120 , are presented through Figs.7.4-32 to 7.4-34. It is evident that the shape of the pdf is neither Gaussian nor symmetric. The profile moves towards the lower bound in the outer region of the jet, for all X / D-values, indicating

Fig.7.4-28 Probability density function of mass fraction of H_{2} at $X / D=40$

Fig.7.4-29 Probability density function of mass fraction of H_{2} at $\mathrm{X} / \mathrm{D}=80$

Fig.7.4-31 Probability density function of mass fraction of O_{2} at $\mathrm{X} / \mathrm{D}=80$

Fig.7.4-32 Probability density function of mass fraction of $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{X} / \mathrm{D}=40$

Fig.7.4-33 Probability density function of mass fraction of $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{X} / \mathrm{D}=80$

Fig.7.4-34 Probability density function of mass fraction of $\mathrm{H}_{2} \mathrm{O}$ at $\mathrm{X} / \mathrm{D}=\mathrm{I} 20$
that the mass fraction of $\mathrm{H}_{2} \mathrm{O}$ diminishes gradually there. 7.5 Discussion of results

The population distribution of folds
It has been observed that the radial variation of $\tilde{P} \sim \tilde{A}$ distribution diminishes in the further downstream region of the jet, as revealed from Figs. 7.4-3 to 7.4-5. The reason is that the velocity difference across the jet becomes smaller as X increases, which results in more uniform ageing rate (c.f. Eqn.3.7-15). Therefore, one can expect that the $P \sim \tilde{A}$ curve will be a function of longitudinal distance x only, if the velocity (and also density) is uniform in the cross-stream direction as in the case of plug flow reactor.

However, the shape of the $\tilde{P} \sim \tilde{A}$ curve is dependent on the hypothesis about the distribution of fold formation rate. The results obtained from the present chapter show a similar trend as those from the mixing layer calculation in chapter 6, since it is supposed that the fold formation rate is proportional to the gradient of local mean velocity. Actually, the population of the youngest folds will not be the most dominant one, at least in some points, when the fold formation rate is low in the central region of the jet. The influence of the formation rate on the $\tilde{P} \sim \tilde{A}$ profiles will be presented and discussed separately in the next chapter.

The turbulent mean quantities

From the results presented in the previous section,
several remarks can be made about the comparison between the predictions and measurements.

Firstly, the general trend in the variation of. mean temperature and species concentration have been satisfactorily predicted based on the simple chemical reaction scheme. The discrepancy between the present computations and experimental data is almost the same as in the work of Janicka and Kollman (1979) where a multistep non-equilibrium reaction scheme was employed.

Secondly, the degree of coexistence of reactants (i.e., H_{2} and O_{2}) is an important feature of turbulent diffusion flames and it is one of the purposes and contributions of the ESCIMO theory to predict this quantity. However, the amount of overlapping was found to be underpredicted here and hence attention has been paid to seek further improvements. Therefore, various values of the parameters, C_{Z}, C_{F}, C_{S} have been tested and larger overlapping obtained. The results produced from the parametric studies will appear in the next chapter.

Thirdly, the oxygen content was underestimated in the results of Sec.7.4 and it also happened to the theoretical calculations of Janicka and Kollman (1979.). Since the Shvab-Zeldovich assumptions (in particular the assumption of equal molecular diffusivities for mass and energy) are adopted in both calculations, one may speculate that the preferential diffusion effect of hydrogen (high mobility of hydrogen molecules) is the cause of this disagreement.

The root mean square fluctuation quantities

The maximum temperature fluctuation in the jet centre line is around $450^{\circ} \mathrm{K}$, as indicated by Fig.7.4-16. The fluctuation level is believed to be reasonable, although experimental data for this case are not available. The indirect supporting evidence of the statement is the measurements of Lenz and Günther (1980) in methane-air free jet diffusion flame where the maximum axial temperature fluctuation is about $400^{\circ} \mathrm{K}$. It is well understood that the peak temperature in H_{2}-air flame is higher than the counterpart in CH_{4}-air flame (by $300^{\circ} \mathrm{K} \sim 400^{\circ} \mathrm{K}$) and hence the fluctuation temperature is expected to be larger for the former flame (under the same turbulence level).

The decay of temperature fluctuation between X / D of 40 and 80 has not yet been confirmed by experimental data, although the same feature ocurred in the theoretical results of Lockwood and Naguib (1975) for the town-gas flame and those of Kent and Bilger (1976) for the present case.

In the radial profiles of temperature fluctuation indicated by Fig.7.4-17, the peak value has reached $600^{\circ} \mathrm{K} \sim 700^{\circ} \mathrm{K}$. The value is also thought to be realistic, because the maximum value of $600^{\circ} \mathrm{K}$ in RMS fluctuation has been observed in the turbulent methane-air diffusion flames (c.f. Lenz and Günther (1980)).

The relative fluctuation intensities of hydrogen and oxygen concentration are greater than unity in the region where the mean values are small, as shown in Figs.7.4-18
to 7.4-20. The same phenomena were detected in the calculations of Becker (1975) for turbulent propaneair diffusion flames. In the concentration fluctuations obtained by Becker (1975.), a finite amount of RMS value exists in the region where the mean quantity is equal to zero.

The probability density functions

It can be seen from the comparison between present predictions and the pdf deduced from Kennedy and Kent (I981), shown in Fig.7.4-25, that there is a stronger intermittency effect near the edge of the jet from the experimental observation. The influence of the free stream appears in the ESCIMO theory through the fold-composition at birth only, and it becomes less significant in the older folds because of molecular diffusion and fold stretching.

The shape of the pdf profiles is directly related to the fold size, stretching rate and population distribution of folds. Since all the results obtained in this chapter are based on a single set of parameters only, more parametric studies are necessary before drawing any final conclusion about the model. The presentation of parametric studies is to appear in chapter 8.

7.6 The turbulent methane-air diffusion flame

The systematic experimental investigation on the turbulent methane-air free jet diffusion flames have been performed during the last decade by Lenze and Günther (1975), Lenz and Günther (1980). The experimental burner was of a nozzle type with a diameter of 8mm. The velocity of fuel jet at the jet exit plane is equal to $70 \mathrm{~m} / \mathrm{sec}$, corresponding to a Reynolds number of 3.7×10^{4}. The flame was stabilised with an annular oxygen supply of a few litres per hour. Lenz and Gunther (1980) claimed that the oxygen from the annular supply can be neglected compared to the oxygen content of the entrained air, especially in the downstream region where most measurements were made. They believed that the oxygen affects only the flame root.

The experimental data include the axial and radial distribution of species concentration, the mean temperature distribution, the temperature fluctuation and the pdf of temperature at flame axis.

The measuring system of fluctuating temperature consisted of a thermocouple whose frequency response was determined at each measurement point and compensated with an electrical network. The signal from the RMS voltmeter was passed through a spectrum analyser and a pdf analyser to reveal any marked peaks in the spectrum and to determine the skewness and flatness of the pdf.

7.7 The computational aspects

The grid system

The grid distribution in the x, ω and \tilde{A} coordinate are
the same as those described in Sec.7.3, except the definition of the transformation function $F f x \neq$. It is inadequate to assign the velocity of surrounding air, for the present case, $\mathrm{U}_{\text {air }}(\approx 0)$, as the reference velocity. Alternatively, the reference velocity is given by:

$$
\begin{equation*}
U_{\text {ref }}=\frac{U_{e}}{3(1+0.01 x / D)} \tag{7.7-1}
\end{equation*}
$$

where U_{e} is the velocity of the jet at the nozzle exit.
The value of $\mathrm{U}_{\text {ref }}$ is now a function of x and it decays approximately at the same rate as the velocity at the centre line of the jet, U_{C}, viz:

$$
\mathrm{U}_{r e f} \approx \frac{\mathrm{U}_{\mathrm{c}}}{3}
$$

Therefore, $F \notin \mathrm{f} \ngtr$ is now defined as:

$$
\begin{equation*}
F f x t \equiv \frac{0_{\mathrm{e}:}}{3 \mathrm{x}(1+0.01 \mathrm{x} / \mathrm{D})} \tag{7.7-3}
\end{equation*}
$$

and $\frac{\partial F}{\partial x}$ is obtained by its first derivative as:

$$
\begin{equation*}
\frac{\partial F}{\partial x}=\frac{-U_{e}(1+0.02 x / D)}{3[x(1+0.01 x / D)]^{2}} \tag{7.7-4}
\end{equation*}
$$

The input data

The fuel jet in the experimental conditions of Lenze and Günther's (1975) work is mainly composed of methane and nitrogen, with small amount of other hydrocarbon fuels. The volumetric composition of the fuel jet is reproduced here for the sake of clarification:

Species	Volumetric fraction $\%$
CH_{4}	81.3
$\mathrm{C}_{2} \mathrm{H}_{6}$	2.85
$\mathrm{C}_{3} \mathrm{H}_{8}$	0.60
CO_{2}	0.90
$\mathrm{~N}_{2}$	14.35
O_{2}	0.01

Table 7.7-1 Composition of the natural gas

Some simplifications have however been made in the numerical predictions, i.e., the fuel jet is treated as composed of CH_{4} and N_{2} only. Since the species conservation equation is based on the mass fraction instead of the volume (or molar) fraction, the following mass fraction of methane and nitrogen have been used as the initial conditions at the jet exit:

$$
\begin{align*}
& \mathrm{m}_{\mathrm{CH}_{4, \mathrm{e}}}=0.713 \tag{7.7-5}\\
& \mathrm{~m}_{\mathrm{N}_{2}, \mathrm{e}}=0.287 \tag{7.7-6}
\end{align*}
$$

The errors introduced by this approximation is believed to be of the same order as those of the simple chemical reaction scheme.

The thermodynamics properties

The specific heat, $C p$, of each species is again calculated according to Eqn. (4.4-8) and the coefficients given by Table 4.4-1. The species considered in this case
include $\mathrm{CH}_{4}, \mathrm{O}_{2}, \mathrm{~N}_{2}, \mathrm{H}_{2} \mathrm{O}$ and CO_{2}, the intermediate species of the chemical reaction (e.g., H_{2} and CO) being neglected.

The products of the chemical reaction are assumed to consist of water vapour and carbon dioxide only and the amount of each species is determined by:

$$
\begin{align*}
& \mathrm{m}_{\mathrm{H}_{2} \mathrm{O}}=0.45 \mathrm{~m} \mathrm{pr} \tag{7.7-7}\\
& \mathrm{~m}_{\mathrm{CO}_{2}}=0.55 \mathrm{~m}_{\mathrm{pr}} \tag{7.7-8}
\end{align*}
$$

since the following one-step reaction scheme is assumed:

$$
\begin{equation*}
\mathrm{CH}_{4}+2 \mathrm{O}_{2}+7.52 \mathrm{~N}_{2}+\mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}+7.52 \mathrm{~N}_{2} \tag{7.7-9}
\end{equation*}
$$

where $\mathrm{m}_{\mathrm{H}_{2} \mathrm{O}}$ and $\mathrm{m}_{\mathrm{CO}_{2}}$ represent the mass fraction of $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} respectively.

The heat of combustion for methane is taken as equal to $5 \times 10^{7} \mathrm{~J} / \mathrm{Kg}$ in the computation, according to the data from Perry and Chilton (1973).

7.8 Presentation of results

7.8.1 The hydrodynamic results

The axial distribution of mean velocity, $\overline{\mathrm{T}}_{\mathrm{c}}$, is presented in Fig.7.8-1 together with the measurements obtained by Wittmer (1980) with the Laser-anemometry. It can be seen that the mean velocity is well predicted until $X / D=40$, while the rate of decay is overpredicted afterwards.

Fig.7.8-2 shows the turbulent kinetic energy anduthe velocity fluctuations for the same flame. It is not possible to calculate the axial velocity fluctuation and radial velocity fluctuation separately from the present $k-\varepsilon$ model,

Fig.7.8-1 Variation of axial-velocity in
the methane-air flame

Fig.7.8-2 Variation of axial turbulenceintensities in methane-air flame
therefore it is assumed that the turbulence is isotropic and the "equivalent velocity fluctuation", $\sqrt{2 / 3 \mathrm{k}}$, is now compared with the measured values of $\sqrt{\mathrm{u}^{-2}}$ and $\sqrt{\mathrm{v}^{\pi^{2}}}$.

The main discrepancies between the predictions and the experimental data exist in the region of $0<X / D<60$, where the predicted location of peak fluctuation is situated further downstream ($X / D \sim 30$) to the position found by Wittmer (at X/D̃16). Nevertheless, the maximum fluctuation level is only slightly underpredicted by the turbulence model The value of $\sqrt{2 / 3 k}$ is lying between the $\sqrt{u^{\prime 2}}$ and $\sqrt{v^{\prime 2}}$ for X / D ratios greater than 80 , i.e., in the fully developed region of the jet.

7.8.2 The population distribution of folds

Figures 7.8-3, 4 and 5 present the population distribution with respect to age, at three different X / D values, for the methane-air diffusion flame. In Fig.7.8-3, the $\tilde{P} \sim \tilde{A}$ distributions obtained at three radial locations, for $X / D=40$, are denoted by separate curves. It can be observed that the population distributions at $r / D=2.4$ and 5.3 are close to the exponential decay function, while the result at $r / D=0.2$ (near the jet axis) behaves in a different way. This feature is the consequence of the distribution of fold formation rate and the local mean velocity. The fold formation rate is assumed to vary with the gradient of mean velocity (\bar{U}) and hence it reaches the maximum value near the mid-point between the jet axis and outer boundary. The larger is the fold formation rate, the more popular are the youngest folds. The influence of the mean velocity itself mainly

$$
\begin{aligned}
\text { Fig. 7.8-4 } & \text { Population distribution function } \\
& \text { at various positions in the jet } \\
& \text { region }
\end{aligned}
$$

appears in the aging term (see Eqn.3.4-24) and the latter quantity is larger when the mean velocity diminishes. Therefore, the steepest curve at $r / D=2.4$ is caused by the large formation rate and moderate aging effect, while the distinctive curve at $r / D=0.2$ is the result of relatively small formation rate and aging effect.

The results demonstrated in Fig.7.8-4 are obtained at $X / D=80$, again at three different radial locations. Now the peak value of $\tilde{\mathrm{P}} \sim \tilde{\mathrm{A}}$ distribution is located at $\tilde{A} \approx 0.12$, for r/D=0.6. Similar features are also detected in the results from $X / D=120$ which are shown in Fig.7.8-5.

The radial variation of folds-population is shown in Figs.7.8-6, 7 and 8 for X / D values of 40,80 and 120 respectively. It is evident in Fig.7.8-6, that the highest population of youngest folds (\tilde{P}_{i}) appears around $r / D=2$, where the fold formation rate is large. On the other hand, the value of \tilde{P}_{3} (for folds having \tilde{A} value between 0.1 and 0.15) has its maximum at the jet-axis and decreases monotonically towards the outer edge. The variation of \tilde{P}_{5} (for \tilde{A} value varying between 0.2 and 0.25) is very small across the jet and \tilde{P}_{g} (for \tilde{A} value lying between 0.4 and 0.45) increases with the radial distance from the axis. The results obtained at $X / D=80$ and 120 are similar to those in Fig.7.8-6, apart from the fact that the profiles have spreaded in radial direction.

The radial distribution of "average age", for three X/D values, are plotted in Fig.7.8-9. The average age is larger in the outer region of the jet where the mean velocity is

Fig.7.8-5 Population distribution function at various positions in the jet region

> Fig. 7.8-6 Radial variation of population of folds belonging to a particular age interval

Fig.7.8-7 Radial variation of population of folds belonging to a particular age-interval

Fig.7.8-8 Radial variation of population of folds belonging to a particular age-interval

Fig.7.8-9 Radial profiles of average age

Fig.7.8-10 Axial distribution of mean temperature
slower. The difference in the average age diminishes as the value of X / D increases, since the velocity gradient is smaller in the further downstream region of the jet.

7.8.3 The mean temperature and species concentration

The distribution of mean axial temperature along the jet centre-line is plotted in Fig.7.8-10 together with the experimental data of Lenz and Günther (1980). It can be noticed that the axial temperature is slightly over-predicted from $X / D=40$ until $X / D=120$ and underpredicted afterwards. The calculated maximum temperature is equal to $1840^{\circ} \mathrm{K}$, which is close to the measured value of $1800^{\circ} \mathrm{K}$. The computed location of the peak value is equal to 112 diameters from the nozzle exit, while the measurements show that it is situated at $X / D=120$.

The axial variation of species concentration is shown in Fig.7.8-11 with the experimental results from Lenz and Günther (1975). The concentration of CH_{4} is overpredicted. in the region of $10 \leq X / D \leq 40$, while the agreement is satisfactory from $X / D=60$ to $X / D=120$. The concentration of $H_{2} \mathrm{O}$ has been well predicted from $X / D=20$ to $X / D=100$, but some discrepancies occur between $X / D=120$ and $X / D=160$. The amount of CO_{2} is generally overestimated in the present calculation, since the existence of CO and H_{2} have been ignored. The experimental data revealed that the mole fraction of $C O$ and H_{2} along the flame axis vary between 0.02 and 0.065 , indicating that the influence of these species is just enough to cause the discrepancies between the predictions and measurements.

$\begin{array}{ll}\text { Fig.7.8-11 } & \text { The axial variation of mean } \\ \text { compositions in methane-air } \\ \text { flame }\end{array}$

Fig.7.8-12 The radial variation of mean temperature and products concentration

The radial profiles of mean temperature, $\mathrm{H}_{2} \mathrm{O}$ and CO_{2} concentration, at $X / D=60$, are demonstrated in Fig.7.8-12. The quantitative agreement between the calculated and measured temperature is satisfactory. The flame front (denoted by the position of the highest temperature) appeared at $r / D=5.5$ in the predictions, but the measurements show the corresponding value is equal to 4.5 only. The concentration of $\mathrm{H}_{2} \mathrm{O}$ is overpredicted in the regions of $0 \leq r / D \leq 2$ and $5 \leq r / D \leq 6.5$, while the content of CO_{2} is everywhere overpredicted. Lenz and Günther's measurements have confirmed that the volume fraction of $C O$ gas can reach the value of 0.045 at this station.

Similarly, the correspondent results at $X / D=90$ are presented in Fig.7.8-13. The mean temperature is well predicted according to the measurements available (the data for r/D greater than 6.5 have not been provided). The calculated $\mathrm{H}_{2} \mathrm{O}$ concentration is now lower than the experimental values, but the amount of CO_{2} is still overpredicted by $2 \sim 3 \%$ in volume fraction across the flame zone. It should be noted that the $C O$ concentration is equal to 0.05 near the axis and gradually diminishes towards the outer edge of the flame, according to Lenz and Gunther's results.

Also, the predictions made at $X / D=120$ are demonstrated in Fig.7.8-14. No experimental data has been found for this cross-section and hence only qualitative assessment can be done. The temperature and concentration of main products achieve the maximum values at the jet centre-line, signifying that the flame tip is now located at the axis.

The radial profiles of methane and oxygen concentration, at $X / D=60$, are plotted separately in Fig.7.8-15, since the

Fig.7.8-14 Radial variation of mean temperature and products

Fig.7.8-15 Radial profile of methane and oxygen concentration

Fig.7.8-16 Radial profile of methane and oxygen concentration
overlapping feature of fuel and oxygen deserves more attention. It can be observed that the amount of reactants at the intersection points of two curves is equal to 0.025 .

Finally, the radial variation of reactants concentration obtained at $X / D=90$ are provided in Fig.7.8-16. The degree of the cross-over: of two curves is almost the same as that in the previous figure.
7.8.4 The root mean square fluctuation of temperature

The axial distribution of temperature fluctuation (the rms values) is shown in Fig.7.8-17 with the data of Lenz and Günther (1980). The predicted curve reveals a peak value of $400^{\circ} \mathrm{K}$ at $X / D=160$, which is consistent with the measurements. The predictions follow the same trend of the experimental observations for X / D values larger than 80 . The decay of fluctuation level between $X / D=20$ and $X / D=40$ in the measurements has not been demonstrated by present calculations. On the other hand, there is a slight double hump between $x / D=50$ and $X / D=80$ in the computed curve.

The radial distribution of temperature fluctuation, at $X / D=60$, is provided in Fig.7.8-18 with the measured data. The maximum fluctuation intensity occurs at the outer region of the jet (outside the main reaction zone) and achieves the value of $600^{\circ} \mathrm{K}$ which is slightly higher than the predicted one ($\approx 560^{\circ} \mathrm{K}$). However, the present predictions overestimate the fluctuation intensities for r / D smaller than 5 , while the rate of decay becomes faster in the region of r / D greater than 7.

The calculated temperature fluctuations at $X / D=90$ and

Fig.7.8-17 Axial distribution of rms temperature fluctuation

$X / D=120$ are shown in Fig.7.8-19. Inspection of the graph reveals that the highest fluctuation quantities nearly remain constant in the downstream region of the flow. However, the radial profile becomes more uniform and broadens as the value of x increases.
7.8.5 The root mean square fluctuation of species concentration

The RMS fluctuations of methane and oxygen concentration, at $X / D=60,90$ and 120 respectively, are presented in Figs.7.8-20 to 7.8-22. The concentration fluctuation of methane reaches the maximum value of 0.047 at $\mathrm{r} / \mathrm{D}=1.5$, in Fig.7.8-20, while the highest fluctuation of oxygen occurs at $r / D=5.6$, which is inside the main reaction zone. It can be seen that the relative fluctuation intensities of oxygen are greater than unity from the axis up to $r / D=6.3$.

The location of highest concentration fluctuation in methane is situated at the flame axis, in Fig.7.8-21, indicating that the axial fluctuation intensities become larger now. However, the maximum fluctuation of oxygen still takes place around $r / D=7.0$.

In Fig.7.8-22, the fluctuation level of methane concentration is lower as a consequence of smaller mean value. Larger fluctuation value is observed on the axis for the oxygen species and the peak value (at $r / D \sim 5$) is now around 0.0425.

7.8.6 The probability density functions of temperature

The probability density functions of temperature at flame axis, for X / D values of $40,110,120$ and 130 , are

Fig.7.8-20 Concentration fluctuation of methane and oxygen

Fig.7.8-21 Concentration fluctuation of methane and oxygen

Fig.7.8-22 Concentration fluctuation of methane and oxygen
shown in Fig.7.8-23. The experimental results of Lenz and Günther (1980) are also presented (by the broken lines) for comparison. The predictions show that the pdf profiles shift with the value of mean temperature at different positions. There is no contribution of the low temperature gases ($300^{\circ} \mathrm{K}<T<800^{\circ} \mathrm{K}$) being observed in the present calculation. .

The radial evolution of pdf profiles at $X / D=40$ is plotted in Fig.7.8-24. Obviously, the pdfs are not Gaussian and there is a finite amount of cold air existing in the outer edge of the jet, e.g., at $r / D=2.38$ and 4.66. The peak value of the distribution curve corresponds to the mean temperature at the point in question.

The similar results for $X / D=110$ are presented in Fig. 7.8-25 where the amount of cold air becomes more significant near the outer boundary of the jet, i.e., at $r / D=14.0$. Further results obtained at $X / D=120$ and 130 are demonstrated by Figs.7.8-26 and 7.8-27 respectively.

7.8.7 The probability density functions of species concentration

The radial evolution of pdf profiles for the mass fraction of fuel, at $X / D=40$ and 60 , are presented in Figs.7.8-28 and 7.8-29 respectively. It can be seen in the diagrams of Fig.7.8-28 that the mass fraction of fuel decreases as the value of r / D increases. The pdf profile is broad in the centre of the jet and becomes narrow near the edge where the amount of fuel is almost exhausted. Similar phenomena are observed in Fig.7.8-29, apart from the fact that smaller fuel contents are present.

Fig.7.8-23 Probability density functions of temperature at flame axis (—— Predictions,
----- Measurements)

Fig.7.8-24 Probability density functions of temperature at $X / D=40$

Fig.7.8-25 Probability density functions of temperature at $X / D=110$

Fig.7.8-26 Probability density functions of temperature at $X / D=120$

Fig.7.8-28 Probability density functions of mass fraction of methane at $X / D=40$

Fig.7.8-29 Probabilty density functions of mass fraction of methane at $X / D=60$

Figs.7.8-30 and 7.8-31 show the pdf curves for the mass fraction of oxygen at $X / D=40$ and 60 respectively. The pdf profiles at $X / D=40$ are mainly located near the lower bound of the domain until $r / D=3.51$, where a small but finite contribution from the free stream exists. At r/D=5.05, the peak value of the pdf moves towards the central part of the domain, while the proportion of free-stream property also increases. The evolution pattern in Fig.7.8-31 bears the resemblance to the previous graph, where higher mass fraction of oxygen is situated in the outer edge of the jet, e.g., at $r / D=8.50$.

7.9 Discussion of results

The turbulent mean quantities

The axial distribution of mean temperature in Fig.7.8-10, and the radial variation in Figs.7.8-12 and 7.8-13 have been found to agree fairly with the experimental measurements. It can be inferred that the gross nature of the flame was correctly predicted, although the primitive chemical scheme is incorporated with the ESCIMO model.

There exists some discrepancies between the predictions and the measurements on the species concentration, especially the amount of CO_{2} is overpredicted. The main reason is that only water vapor and carbon dioxide are included in the calculation of products, while a finite contents of hydrogen and carbon monoxide do present in actuality during the reaction process. The calculated value of CO_{2} will be smaller if $C O$ is included as a product in the reaction scheme and hence better agreement.with the experimental

Fig.7.8-30 Probability density functions of mass fraction of oxygen at $X / D=40$

217

Fig.7.8-31 Probability density functions of mass fraction of oxygen at $X / D=60$
data can be achieved.
Dryer and Westbrook (1979) have mentioned that typical hydrocarbons (such as methane, propane etc.) burn in a sequential manner. That is, the fuel is partially oxidised to CO and H_{2}, which are not appreciably consumed until all of the hydrocarbon species have disappeared. The two-step reaction scheme has been used by Dryer and Glassman (1972) for methane oxidation in a turbulent flow reactor and is given by:

$\mathrm{CH}_{4}+3 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}+2 \mathrm{H}_{2} \mathrm{O}$,$(7.9-1)$
$\mathrm{CO}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$,$(7.9-2)$

where the chemical reaction rates were derived empirically.
However, the author has decided to adopt the global reaction mechanism at the present stage of development of ESCIMO theory, because additional transport equations with non-linear source terms (for the production rate) will have to be solved in the biographic analysis and the computer time will be enlarged considerably. On the other hand, the earlier work of Tam (1981) has demonstrated the capability of handling detail multistep reaction machanism in a well-stirred reactor.

The root mean square fluctuation quantities

The successful predictions on temperature fluctuations as indicated by Figs.7.8-17 and 7.8-18 further substantiates the potential power of the present model. Lenz and Günther (1980) have discussed the cause of larger temperature fluctuation at $X / D=20$ than that of $X / D=40$ and they supposed that the influence of flame stabilization by the annular
oxygen supply can still be felt there.
The fluctuating temperatures of an open methane diffusion flame at a Reynolds number of 9200 have been measured in the work of Ballantyne and Moss (1977) with the aid of fine wire thermocouple. The peak RMS temperature fluctuation is of the order of $450^{\circ} \mathrm{K}$ which is lower than the results obtained by Lenz and Günther, probably because the Reynolds number is lower and so is the turbulence intensity.

The quantitative validation of predicted fluctuations level on the species concentration can not be made, since the relevant experimental data are not reported in the literature. But one can be sure that the present theory is capable of calculating the important and interesting quantities in turbulent flames.

The probability density functions

From the comparison between the calculated pdf and measured pdf in Fig.7.8-23, it can be observed that the experimental curves are broader. Since the shape of pdf is more closely related to the various parameters such as C_{F}, C_{Z} and C_{S} than the mean quantities, it will be necessary to investigate the influence of each constant before making the concrete remarks.

The intermittent effect is observed from the pdf profiles near the free stream boundary, e.g., in Fig.7.8-24, at $r / D=4.66$ and $X / D=40$. This feature is included in the fold composition at birth, as described in Sec.7.5, and hence it is expected that the fold formation rate and stretching rate will have considerable influence on it.

7.10 Closure

The application of ESGIMO theory to turbulent hydrogen-air diffusion flame and methane-air diffusion flame have been made. A single set of parameters is employed for both cases and the results have been compared with the experimental data available in the literature.

Generally speaking, the quantitative agreement between the predictions and the measurements is reasonably good, including the fluctuating quantities as well as the turbulent mean values. However, some discrepancies do exist in the comparison between calculated and measured probability density functions of temperature.

Therefore, it is important to investigate the influence of different presumptions and parameters on the results, especially the fluctuation levels and the shape of pdf profiles. The systematic presentation of the sensitivity analaysis and grid independence tests will appear in the next chapter.

CHAPTER 8

THE PARAMETRIC STUDIES

8.1 Introduction

In the previous chapter, the predictions on the turbulent diffusion flames have been made with the aid of some simplified assumptions to compromise between the realism and economy. Several empirical constants related to the fold composition, fold size at birth and, the stretching rate have been chosen during the computations.

The purpose of the present chapter is to check whether the final results are sensitive to those presumptions and empirical constants. Hence, the description of all test cases performed in this chapter will be provided in Sec.8.2, followed by the report on the influence of various hypothesis about the distribution of fold formation rate in Sec.8.3. Subsequently, the influence of fold composition at formation time, fold size at birth and the stretching rate will be discussed in Secs.8.4, 8.5 and 8.6 respectively.

The effects of grid-size in x, ω and \tilde{A} coordinate will also be investigated and depicted in Sec.8.7 to ensure that all results are practically grid independent. Finally, a short closure will appear at the end.

8.2 The test cases performed

A systematic study has been performed in such a way that each test case is different from the "standard run" by one parameter only. The standard run stands for the case
described in the previous chapter. The list of all test runs is given by the following table:

Run No	Mode	C_{F}	C_{Z}	C_{S}	$N A$	N	λ_{3}
1	(i)	2.	0.328	0.5	20	20	0.01
2	(ii)	2.	0.328	0.5	20	20	0.01
3	(iii)	2.	0.328	0.5	20	20	0.01
4	(i)	1.	0.328	0.5	20	20	0.01
5	(i)	3.	0.328	0.5	20	20	0.01
6	(i)	2.	0.164	0.5	20	20	0.01
7	(i)	2.	0.082	0.5	20	20	0.01
8	(i)	2.	0.328	2.0	20	20	0.01
9	(i)	2.	0.328	0.1	20	20	0.01
10	(i)	2.	0.328	0.5	10	20	0.01
11	(i)	2.	0.328	0.5	6	20	0.01
12	(i)	2.	0.328	0.5	20	30	0.01
13	(i)	2.	0.328	0.5	20	40	0.01
14	(i)	2.	0.328	0.5	20	20	0.02
15	(i)	2.	0.328	0.5	20	20	0.03
16	(i)	2.	0.328	0.5	20	20	0.005

Table 8.2-1 The test cases of parametric studies (Run No.l is the standard run) for methaneair diffusion flame.

In contrast to the full scale parametric studies of methane-air diffusion flame, only a selective number of runs will be presented for the hydrogen-air diffusion flame. The
same definition of "Run No" will be used for hydrogen-air flame and the cases are Run nos $1,2,3,5,6$ and 8.

8.3 The influence of fold formation rate

The population distribution functions
The population distributions with respect to age, for methane-air diffusion flame, obtained from various presumptions on the fold formation rate are now presented through Figs.8.3-1 to 8.3-4.

In Fig.8.3-1, the $\tilde{P} \sim \tilde{A}$ distribution exhibits a stronger characteristic of exponential decay at $r / D=3.8$, where the fold formation rate reaches its climax. In Run No. 2 , the fold formation rate is assumed to be proportional to the mean velocity and hence the peak value is always located at the jet axis. Therefore, the steepest curve in Fig.8.3-2 is the one which corresponds to the distribution near the axis, i.e.,at $r / D=0.42$. Both the fold formation rate and the ageing effect are small at $r / D=8.3$, which result in a rather flat distribution. Similarly, the maximum fold formation appears at $r / D=8.3$, for Run No. 3 (Fig.8.3-3), and the curve again shows the exponential behaviour.

The influence of fold formation rate on the radial variation of average age is demonstrated in Fig.8.3-4. It can be observed that the average age increases as the distance from the jet axis enlarges, for all three runs. The average age calculated from Run No. 3 does not increase rapidly in the outer edge of the jet, since the fold formation rate there is higher than that of the other runs.

Fig.8.3-1 Population distribution functions of methane-air diffusion flame

Fig.8.3-2 Population distribution functions of methane-air diffusion flame

Fig.8.3-3 Population distribution functions of methane-air diffusion flame

Figure 8.3-4 The radial variation of average age for methane-air diffusion flame

The turbulent mean quantities
The mean temperature of methane-air diffusion flame, at $X / D=60$, calculated from Runs Nos.1, 2 and 3 are presented in the following table for comparison. The longitudinal station of $X / D=60$ has been chosen here because more comprehensive experimental data are available (Lenz and Günther, 1980).

Radial Location r / D	Turbulent Mean Temperature ${ }^{o_{K}}$		
	Run No.1	Run No.2	Run No. 3
0.40	1520	1520	1520
1.46	1540	1540	1550
2.87	1590	1570	1630
4.45	1680	1670	1740
5.55	1740	1760	1770
6.80	1430	1430	1410
8.50	787	786	783

Table 8.3-1 Influence of fold formation rate on mean temperature

Table 8.3-1 shows that the effect of various distributions about fold formation rate on the mean temperature is rathèr small. The maximum discrepancy between each run is only around $70^{\circ} \mathrm{K}$ (e.g.,at $\mathrm{r} / \mathrm{D}=4.45$), which is less than 4% of the flame temperature

The mean molar fraction of methane, at $X / D=60$, is selected as a representative to demonstrate the influence of different formation rates on the species concentration. The results are provided in the following table:

Radial Location r/D	Mean CH_{4} Molar Fraction		
	Run No.1	Run No.2	Run No.3
0.40	0.138	0.137	0.139
1.46	0.126	0.126	0.126
2.87	0.0962	0.0970	0.0938
4.45	0.052	0.0510	0.0470
5.55	0.0165	0.0161	0.0135
6.80	0.0015	0.0013	0.0013
8.50	0.0	0.0	0.0

Table 8.3-2 Influence of fold formation rate on mean CH_{4} molar fraction

Again it can be noticed that the results obtained from each case are very close to each other. Hence the attention is now turned to the fluctuation quantities.

Similar to the case for methane-air flame, the influence of various fold formation rates on the mean temperature for hydrogen-air flame, at $X / D=80$, is demonstrated in Table 8.3-3.

Radial Location r/D	Turbulent Mean Temperature ${ }^{\circ}{ }_{\mathrm{K}}$		
	Run No.1	Run No.2	Run No.3
0.42	1830	1860	1810
1.68	1840	1900	1830
3.36	1860	1980	1860
4.56	1580	1580	1580
5.25	1210	1200	1210
5.75	900	900	900
6.20	680	690	680

Table 8.3-3 Influence of fold formation rate on mean temperature

It can be observed that the mean temperature are not very sensitive to the distribution of fold formation rate, except in the peak value (at $r / D=3.36$). The peak temperature obtained in Run No. 2 is equal to $1980^{\circ} \mathrm{K}$, which is $120^{\circ} \mathrm{K}$ higher than the counterpart from the other two runs.

The mean molar fraction of hydrogen, at $X / D=80$, calculated from three different fold formation rates are presented in Table 8.3-4. The main discrepancies again happen at $r / D=3.36$, where the value in Run No. 2 is substantially lower (around 27% difference).

The root mean square fluctuation quantities

Fig.8.3-5 shows the fluctuating temperatures calculated from three different fold formation rates, at $X / D=60$. The measurements of Lenz and Günther are also presented for the sake of comparison. It can be observed that the difference between each case is now more significant and the predictions from Run No. 3 fit the experimental data very well. In the case of Run No. 3, the fold formation rate is assumed to vary linearly with the ω-value, i.e., the fold formation rate is minimum in the jet axis and reaches the maximum value near the outer edge of the jet.

The rms fluctuation of methane (in molar fraction) calculated from Run Nos.1, 2 and 3, at X / D, are shown in Table 8.3-5 given below:

Fig.8.3-5 Influence of fold formation rate on temperature fluctuation

Radial Location r/D	Mean H_{2} Molar Fraction		
	Run No. 1	Run No 2	Run No.3
0.42	0.250	0.253	0.250
1.68	0.209	0.204	0.213
3.36	0.0815	0.0592	0.0819
4.56	0.007	0.005	0.007
5.25	0.0	0.0	0.0
5.75	0.0	0.0	0.0
6.20	0.0	0.0	0.0

Table 8.3-4 Influence of fold formation rate on mean H_{2} molar fraction

Radial Location r / D	RMS fluctuation of CH 4		
	Run No.1	Run No.2	Run No.3
0.40	0.0464	0.0451	0.0412
1.46	0.0468	0.0511	0.0357
2.87	0.0455	0.0485	0.0311
4.45	0.0360	0.0365	0.0311
5.55	0.0256	0.0254	0.0238
6.80	0.0037	0.0035	0.0032
8.50	0.0	0.0	0.0

Table.8.3-5 Influence of fold formation rate on rms fluctuation of CH_{4} concentration

Considerable difference between each run was found, especially at $r / D=1.46$ and 2.87 where the maximum relative
discrepancy reaches the order of 30%. In Run no. 2 the concentration fluctuations at $r / D=1.46$ and 2.87 are greater than the value at $r / D=0.40$, while the peak of concentration fluctuation is situated at $r / D=0.40$ in the case of Run no.3. It is worth mentioning here that the fold formation rate is large in the central region of the jet and small near the outer edge for Run no.2, exactly oppposite to Run no.3. In the case of Run no.l, the fold formation rate has its peak value situated between the jet axis and the outer boundary, since it is proportional to the mean velocity gradient. Thus, the population of youngest folds is the most prominent one in the near axis region for Run no. 2 and results in higher fluctuation level (the non-uniformity of properties inside the fold has not yet evened out). The probability density functions

The pdf profiles of temperature obtained from Run no.l and Run no.2, at $X / D=60$, are illustrated in Fig.8.3-6. The difference is not visible in the near-axis region (e.g.,r/D $=0.40$) and the results actually collapse on the same profile. However, some discrepancies do exist in other positions, especially in the higher values of $P(T)$.

The pdf profiles are composed of two parts for the newly formed folds, namely the values which stand for the properties of fresh layer and re-engulfed layer respectively. For the very old folds, a single spike representing the fold-average value is dominant. A broad distribution exists for those medium age folds in which the molecular diffusion effect is stial taking place. Hence, the population average

Fig.8.3-6 Influence of fold formation rate on pdf of temperature at $X / D=60$
. (—— Run no.1, ---- Run no. 2)
pdf is dependent on the population distribution of various folds.

8.4 The influence of fold composition

The turbulent mean quantities
The radial distribution of mean temperature, at $X / D=60$, obtained by three different empirical constants for the fold composition are compared and listed in Table 8.4-1.

The peak temperature (at r/D=5.55) varies from $1660^{\circ} \mathrm{K}$ (for $\mathrm{C}_{\mathrm{F}}=3.0$) to $1850^{\circ} \mathrm{K}$ (for $\mathrm{C}_{\mathrm{F}}=1.0$) when the composition of fold at birth is altered. In other words, the flame temperature is far below the adiabatic temperature ($\approx 2150^{\circ} \mathrm{K}$ for methane-air flame) when the re-engulfed layer has the

Radial Location r/D	Mean Temperature ${ }^{\circ}{ }_{\mathrm{K}}$		
	Run No.1	Run No.4	Run No. 5
0.40	1520	1520	1510
1.46	1540	1550	1520
2.87	1590	1630	1550
4.45	1680	1760	1610
5.55	1740	1850	1660
6.80	1430	1450	1360
8.50	787	792	775

Table 8.4-1 Influence of fold composition on the mean temperature
properties far different from the local mean values. The flame temperature becomes higher if the properties in the re-engulfed layer are closer to the mean values. The experimental flame temperature from Lenz and Günther is around $1740^{\circ} \mathrm{K}$ which is close to the value from Run No.l.

The influence of C_{F} values on the mean concentration of methane, at $X / D=60$, is now presented in Table:8.4-2.

Radial Location r/D	Mean CH_{4} Molar Fraction		
	Run No l	Run No 4	Run No 5
0.40	0.138	0.141	0.135
1.46	0.126	0.129	0.124
2.87	0.0962	0.0965	0.0947
4.45	0.0502	0.0475	0.0511
5.55	0.0165	0.0111	0.0189
6.80	0.0015	0.0	0.0042
8.50	0.0	0.0	0.0

Table 8.4-2 Influence of fold composition on mean CH_{4} molar fraction

Inspection of Table 8.4-2 reveals that higher C_{F} value yields larger concentration of methane across the jet and hence it is expected that the overlapping of methane and oxygen also increases as a consequence.

The influence of initial fold composition on the mean temperature and compositions, for hydrogen-air flame, is now demonstrated in Fig.8.4-1. When larger C_{F} value ($C_{F}=3.0$ in Run no.5) is employed, the mean concentration of hydrogen

Fig.8.4-1 Influence of fold composition on the mean temperature and compositions for hydrogen-air flame

and oxygen increase. The degree of overlapping for fuel and oxidant is slightly enhanced, but it is still lower than the measured value. On the other hand, the temperature profile has been reduced by about $80^{\circ} \mathrm{K} \sim 100^{\circ} \mathrm{K}$ in the case of higher C_{F} value.

The root mean square fluctuation quantities

The rms values of temperature fluctuations: for three runs are plotted in Fig.8.4-2 to demonstrate the influence of different fold compositions. It is evident that the fluctuation intensities are sensitive to the value of C_{F}, i.e., larger C_{F} will result in higher fluctuation. The present comparison with the experimental data suggests that the value of $C_{F}=2.0$ produces. reasonable agreement.

The influence of fold composition on the concentration fluctuation of CH_{4} is demonstrated in Table 8.4-3.

Radial Location r / D	RMS fluctuation of CH_{4}		
	Run no I	Run no 4	Run no 5
0.40	0.0464	0.0257	0.0612
1.46	0.0468	0.0282	0.0597
2.87	0.0455	0.0297	0.0578
4.45	0.0360	0.0229	0.0458
5.55	0.0256	0.0142	0.0340
6.80	0.0037	0.0	0.0105
8.50	0.0	0.0	0.0

Table 8.4-3 Influence of fold composition on rms fluctuation of CH_{4} concentration

The probability density functions

Fig.8.4-3 shows the pdf of temperature obtained from two different values of $C_{F}\left(C_{F}=2.0\right.$ and 3.0), at $X / D=60$. The pdf profiles calculated from larger C_{F} value exhibit a broader characteristic:in the inner part of the jet, i.e., at $r / D=0.40$ and 2.87. This is consistent with the structure inside the fold, since larger C_{F} value means greater variation of properties are present for each fold.

The results obtained from run no. $4\left(C_{F}=1.0\right)$ are plotted separately with those of run no.l in Fig.8.4-4 for the sake of clarity. The pdf profiles now become narrower as expected, indicating that the non-uniformity of properties has diminished.

8.5 The influence of fold size

The turbulence mean quantities

The mean temperature of methane-air flame obtained from three different values of fold size at birth, for X / D values of 60, are listed and compared in Table 8.5-1

The peak temperature of the flame (at r/D~5.55) varies from $1740^{\circ} \mathrm{K}\left(C_{Z}=0.328\right)$ to $1910^{\circ} \mathrm{K}\left(C_{Z}=0.082\right)$ when the initial fold size changes by a factor of four. It can be seen that the results from run no.l are closer to the experimental data, since the measured flame temperature is around $1740^{\circ} \mathrm{K}$.

The smaller the fold is at birth, the faster the evening out of the fluctuation level is under the conditions that other parameters remain fixed. Hence, the peak temperature will be closer to the equilibrium adiabatic temperature when

Fig.8.4-3 Influence of fold composition on pdf of temperature at $X / D=60$ (-_ Run no.1, ---- Run no.5)

Fig.8.4-4 Influence of fold composition on pdf of temperature at $X / D=60$
(—_ Run no.1, -... Run no.4)

Radial Location r/D	Mean temperature ${ }^{0} \mathrm{~K}$		
	Run no 1	Run no 6	Run no 7
0.40	1520	1520	1520
1.46	1540	1560	1550
2.87	1590	1630	1640
4.45	1680	1750	1800
5.55	1740	1830	1910
6.80	1430	1440	1390
8.50	787	792	776

Table 8.5-1 The influence of fold size on the mean temperature
the fold is rather small.
The influence of initial fold size on the mean concentration of CH_{4} is now demonstrated in Table 8.5-2.

Radial Location r/D	Mean CH_{4} molar fracticr		
	Run No.1	Run No.6	Run No.7
0.40	0.138	0.140	0.140
1.46	0.126	0.128	0.127
2.87	0.0962	0.0960	0.104
4.45	0.0502	0.0477	0.0439
5.55	0.0165	0.0117	0.0054
6.80	0.0015	0.0005	0.0
8.50	0.0	0.0	0.0

Table 8.5-2 The influence of fold size on mean CH_{4} molar fraction

It can be observed that the major discrepancies between each run occur in the flame zone (e.g., at r/D \quad 5.55) where the concentration of CH_{4} decreases significantly as the value of C_{Z} becomes smaller.

The mean temperature and compositions claculated from two different fold sizes, for the hydrogen-air flame, are shown in Fig.8.5-1. The mean temperature is higher in the case of the smaller fold size ($C_{Z}=0.164$ in Run No.6) and closer to the experimental data. However, the concentration of hydrogen and oxygen are lower around the flame zone ($3<r / D<4.5$) and less amount of cross-over is observed.

The root mean square fluctuation quantities

The radial distribution of temperature fluctuations calculated from three different values of C_{Z}, at $X / D=60$, are plotted in Fig.8.5-2. It is evident that the fluctuation intensities are sensitive to the initial fold size, i.e., larger fold size will result in higher fluctuation level. The C_{Z} value of 0.328 in Run No.l yields better quantitative agreement between the predictions and measurements.

The root mean square fluctuation of methane concentration obtained by Run Nos.1, 6 and 7, at $X / D=60$, are given in Table 8.5-3.

Radial Location r / D	KMS fluctuation of CH_{4}		
	Run No.1	Run No.6	Run No.7
0.40	0.0464	0.0274	0.0097
1.46	0.0468	0.0323	0.0150
2.87	0.0455	0.0361	0.0235
4.45	0.0360	0.0300	0.0217
5.55	0.0256	0.0210	0.0152
6.80	0.0037	0.0021	0.0059
8.50	0.0	0.0	0.0

Table 8.5-3 Influence of fold size on rms fluctuation of CH_{4} concentration

Table 8.5-3 reveals that the concentration fluctuation diminishes when the initial fold size is small. In the mean time, the location of maximum fluctuation shifts from the jet axis towards the outer region as the value of C_{Z} decreases.

The probability density functions
The influence of fold size on the pdf of temperature, at $X / D=60$, is demonstrated in Figs.8.5-3 and-8.5-4. The shape of the pdf profile becomes narrower and concentrated around the mean value when the fold size is smaller. For example, at $r / D=2.87$, the maximum value of $P(T)$ varies from 2.65×10^{-3} in Run No.1 $\left(C_{Z}=0.328\right)$ to 4.08×10^{-3} in Run No. 7 $\left(C_{Z}=0.082\right)$, while the corresponding value in Run No. 6 $\left(C_{Z}=0.164\right)$ lies between the two extremes and is equal to 3.28×10^{-3}. In the meantime, the contribution of the cold ambient air diminishes (e.g., at $r / D=5.55$ and 8.50) as the

[^1]value of C_{Z} decreases. On the other hand, the distribution in the high temperature domain (between $1900^{\circ} \mathrm{K}$ and $2100^{\circ} \mathrm{K}$) is stronger for lower C_{Z} values, e.g., the $P(T)$ values at $r / D=5.55$ for Run nos. 6 and .7 .

8.6 The influence of fold stretching rate

The turbulent mean quantities

The mean temperature calculated from three different values of fold stretching rate, at $X / D=60$, are compared and listed in Table 8.6-1.

It is obvious that the flame temperature (at r/D~5.55) is significantly lower ($T=1600^{\circ} \mathrm{K}$) in the case of rather moderate stretching effect (e.g.,Run No.9, $C_{S}=0.1$). The difference between the peak temperature is about 17% when the value of C_{S} changes from 2.0 to 0.1 , i.e., by a factor of 20. The value of $C_{S}=0.5$ in Run No.l gives the best agreement with experimental data for the present test case.

Radial Location r/D	Mean Temperature ${ }^{\circ} \mathrm{K}$		
	Run No.1	Run No.8	Run No.9
0.40	1520	1520	1520
1.46	1540	1540	1530
2.87	1590	1610	1550
4.45	1680	1740	1590
5.55	1740	1870	1600
6.80	1430	1440	1410
8.50	787	794	.777

Table 8.6-1 Influence of fold stretching rate on the mean temperature

The influence of the stretching rate on the flame temperature is expected, since slower stretching results in greater proportion of cold fresh air inside the fold (the diffusion is slower) and hence reduces the average temperature.

The effects of the stretching rate on the mean concentration of methane, at $X / D=60$, are demonstrated in Table 8.6-2.

Radial Location r/D	Mean CH_{4} molar fraction		
	Run no 1	Run no 8	Run no 9
0.40	0.138	0.141	0.135
1.46	0.126	0.129	0.123
2.87	0.0962	0.0974	0.0940
4.45	0.0502	0.0490	0.0517
5.55	0.0165	0.0104	0.0225
6.80	0.0015	0.0007	0.0022
8.50	0.0	0.0	0.0

Table 8.6-2 Influence of fold stretching rate on mean CH_{4} molar fraction

There is a considerable influence of stretching rate on the amount of methane near the flame zone (i.e., at $r / D=5.55$) where the value of molar fraction varies from 0.0104 to 0.0225 , i.e., by a factor of 2.2. Thus, the degree of overlapping of fuel and oxygen in the filame zone is considerably enlarged when a low stretching rate is applied.

The influence of stretching rate on the mean temperature
and compositions, for the hÿdrogen-air flame, is illustrated in Fig.8.6-1. The temperature obtained from larger stretching rate ($\mathrm{C}_{\mathrm{S}}=2.0$ in Run no 8) exhibit a better agreement with the experimental data. However, the overlapping of hydrogen and oxygen again becomes smaller and the results are similar to those obtained from Run no 6 (c.f. Fig.8.5-1).

The root mean square fluctuation quantities

The temperature fluctuations obtained from three different values of stretching rate, at $X / D=60$, are plotted in Fig.8.6-2 with the experimental data. It can be observed that the highest fluctuation level rises from $440^{\circ} \mathrm{K}$ to $710^{\circ} \mathrm{K}$ as C_{S} changes from. 2.0 to 0.1. It is evident from the graph that the results from Run no.l yield a better agreement with the measurements on the overall comparison.

Next, the effects of stretching rate on the concentration fluctuation of methane, at $X / D=60$, are presented in Table 8.6-3.

Radial location r/D	RMS fluctuation of CH_{4}		
	Run no I	Run no 8	Run no 9
0.40	0.0464	0.0225	0.0624
1.46	0.0468	0.0272	0.0630
2.87	0.0455	0.0308	0.0579
4.45	0.0360	0.0256	0.0425
5.55	0.0256	0.0201	0.0277
6.80	0.0037	0.0025	0.0045
8.50	0.0	0.0	0.0

Table 8.6-3 Influence of fold stretching rate on rms fluctuation of CH_{4} concentration

The table reveals that the concentration fluctuation level enhances when the stretching rate diminishes. The most distinguished difference occurs around $r / D=0.40$, where the value from run no. 9 is approximately equal to 2.8 times its counterpart in run no.8.

The probability density functions

The influence of fold stretching rate on the pdf of temperature are shown in Figs.8.6-3 and 8.6-4 respectively. In Figs.8.6-3 the higher stretching rate results in narrower pdf and higher peak, indicating that the fluctuation level is lower. On the other hand, the slower stretching rate significantly broadens the pdf profiles as shown in Fig. 8.6-4.

8.7 The influence of grid size

8.7.1 The number of age-interval

The newly introduced coordinate in the present work is the age-coordinate and hence the number of sub-division, NA, should be chosen carefully to yield the grid independent results without overspending the computing resources.

Three different numbers of age-interval have been employed as mentioned in Sec.8.2, where the grid-distribution for each run is given by:

```
Run no \(1(N A=20):\) uniform distribution
Run no \(10(\mathrm{NA}=10): 0 ., 0.05,0.1,0.15,0.2,0.3,0.4\),
```

$0.5,0.6,0.8,1$.
Run noll (NA=6): 0., 0.1, 0.2, 0.3, 0.4, 0.7, 1.

Fig.8.6-3 Influence of fold stretching rate on pdf of temperature at $X / D=60$ (—— Run no.l, ---- Run no.8)

Fig.8.6-4 Influence of fold stretching rate on pdf of temperature at $X / D=60$ (—— Run no.1, ---- Run no.9)

The influence of $N A$ on various quantities will be described below.

The turbulent mean quantities

The mean temperature calculated from various distributions of age-interval, at $X / D=60$, is now presented in Table 8.7-1.

Radial location r/.D	Mean temperature ${ }^{\circ} \mathrm{K}$		
	Run no l	Run no 10	Run no 11
0.40	1520	1520	1530
1.46	1540	1540	1560
2.87	1590	1590	1600
4.45	1680	1680	1690
5.55	1740	1740	1760
6.80	1430	1430	1430
8.50	787	787	789

Table 8.7-1 Influence of age-interval on mean temperature

Table 8.7-1 reveals that the mean temperatures calculated from $N A=20$ and $N A=10$ are actually the same. However, further comparison for other quantities is needed before making any conclusion.

Next, the influence of age-interval on the mean concentration of CH_{4}, at $X / D=60$, is demonstrated in Table 8.7-2.

It is again evident that the mean concentration of methane calculated from $N A=20$ and $N A=10$ are actually the same, while those obtained from $N A=6$ only differ very slightly from the former ones. Thus, the attention is now turned to

Radial location r/D	Mean CH_{4} molar fraction		
	Run no l	Run no 10	Run no II
0.40	0.138	0.138	0.138
1.46	0.126	0.126	0.126
2.87	0.0962	0.0962	0.0962
4.45	0.0502	0.0502	0.0499
5.55	0.0165	0.0165	0.0156
6.80	0.0015	0.0015	0.0012
8.50	0.0	0.0	0.0

Table 8.7-2 Influence of age-interval on mean CH_{4} molar fraction
the rms fluctuation quantities.

The root mean square fluctuation quantities

- The temperature fluctuations computed from Run Nos.l, 10 and 11 are now compared and listed in Table 8.7-3.

Radial Location r/D	Temperature fluctuations ${ }^{\circ} \mathrm{K}$		
	Run No.1	Run No.10	Run No.11
0.40	181	181	147
1.46	200	200	188
2.87	255	255	211
4.45	375	375	370
5.55	475	475	455
6.80	550	545	516
8.50	510	509	504

Table 8.7-3 Influence of age-interval on temperature fluctuations

The discrepancies between the results from Run No.l0 and Run No.ll are still significant, but further comparison between Run No. 1 and Run No. 10 shows that grid independent results have been achieved.

The effects of age-interval on the concentration fluctuation of methane, at $X / D=60$, are provided in Table 8.7-4.

Table 8.7-4 reveals that the concentration fluctuations calculated from $N A=10$ (Run No.10) are actually gridindependent. Therefore, ten intervals for the age-space are sufficient to yield grid-independent results.

Radial Location r/D	RMS fluctuations of CH_{4}		
	Run No.1	Run No.10	Run No.11
0.40	0.0464	0.0462	0.0366
1.46	0.0468	0.0468	0.0417
2.87	0.0455	0.0455	0.0417
4.45	0.0360	0.0360	0.0341
5.55	0.0256	0.0256	0.0245
6.80	0.0037	0.0037	0.0034
8.50	0.0	0.0	0.0

Table 8.7-4 Influence of age-interval on rms fluctuation of CH_{4} concentration

The probability density functions

Finally, the influence of the number of age-interval is shown in Fig.8.7-1. The difference between the pdf profiles from Run no 1 and Run no 10 is not visible and hence both of them collapse on the same distribution (indicated by the solid line). The results from Run no 11 are different from the other two runs only in some part of the domain where the dash line appears (the dash line does not appear when it is coincident with the full line).

8.7.2 The number of cross-stream grids

The influence of the number of cross-stream grids, N, will now be presented in a similar way to the preceding subsection. It should be mentioned here that the tabulated form is employed instead of the graphic form, because the values from each run are so close to each other that they are almost undistinguishable graphically.

The turbulent mean quantities

The mean temperature of methane-air flame calculated from $N=20$ (Run no 1), 30 (Run no 12) and 40 (Run no.13) are presented in Table 8.7-5. The temperatures are obtained from the linear interpolation procedure if the positions of grid nodes (for the case of Run no 12 and Run no 13) do not fall exactly on the selected radial locations, which are taken for Run no 1.

The discrepancies between the results from each run are small, except in the outer region of the jet (e.g. at $r / D=$ 8.50) where the temperature gradient is rather steep.

Fig.8.7-1 Influence of age interval on pdf of temperature
(- Run no.l and Run no.l0,
-..- Run no.ll)

Radial location r/D	Mean temperature ${ }^{0} \mathrm{~K}$		
	Run no I	Run no 12	Run no 13
0.40	1520	1540	1550
1.46	1540	1560	1570
2.87	1590	1600	1610
4.45	1680	1680	1680
5.55	1740	1730	1730
6.80	1430	1460	1480
8.50	787	870	880

Table 8.7-5 Influence of cross-stream grids on the mean temperature

The influence of the cross-stream grids on the mean concentration of methane, at $X / D=60$, are presented in Table 8.7-6.

Radial location r/D	Mean CH_{4} molar fraction		
	Run no 1	Run no 12	Run no 13
0.40	0.138	0.130	0.128
1.46	0.126	0.119	0.117
2.87	0.0962	0.0920	0.0904
4.45	0.0502	0.0505	0.0492
5.55	0.0165	0.0195	0.0201
6.80	0.0015	0.0025	0.0030
8.50	0.0	0.0	0.0

Table 8.7-6 Influence of the cross-stream grids on the mean CH_{4} molar fraction

It can be seen that the results obtained from the first run only differ slightly from the fine-grid computations. Therefore, twenty grid nodes in the cross-stream direction are practically sufficient to yield the grid independent results.

The root mean square fluctuation quantities
The temperature fluctūations computed by three different numbers of cross stream ǵrids, for methane-air flame at $x / D=60$, are provided in Table 8.7-7. The difference between each set of results is small, except in the outer region of the jet (e.g., at $r / D=8.50$) where some degree of
discrepancy exists.

Radial location r / D	Temperature fluctuation ${ }^{\circ} \mathrm{K}$		
	Run no 1	Run no 12	Run no 13
0.40	181	182	183
1.46	200	199	200
2.87	255	256	255
4.45	375	375	374
5.55	475	461	471
6.80	550	538	539
8.50	510	515	520

Table 8.7-7 Influence of cross-stream grids on temperature fluctuation

Radial location r/D	RMS fluctuation of CH_{4}		
	Run no I	Run no 12	Run no 13
0.40	0.0464	0.0466	0.0466
1.46	0.0468	0.0455	0.0449
2.87	0.0455	0.0441	0.0436
4.45	0.0360	0.0357	0.0355
5.55	0.0256	0.0263	0.0268
6.80	0.0037	0.0072	0.0076
8.50	0.0	0.0	0.0

Table 8.7-8 Influence of cross-stream grids on rms fluctuation of CH_{4} concentration

The influence of cross-stream grids on the concentration fluctuation of methane is demonstrated by Table 8.7-8. It is noticeable that the results have not been significantly altered when more cross-stream grids are employed.

The probability density functions

Figure 8.7-2 shows the effect of cross-stream grids on the pdf of temperature. The difference between the pdfs from Run no 1 and those from Run no 12 is still visible in some parts of the domain (marked by the broken line), but no. further variation can be observed when the number of grids increased from 30 to 40.

8.7.3 The size of forward marching step

It is usually essential to employ small marching step in the present solution algorithm to produce accurate results, since no iteration procedure has been employed for the solution of hydrodynamic variables and mixture fraction. The number of marching steps in Run nos $1,14, .15$ and 16 to reach 200 diameters downstream of the jet nozzle are equal to 500 , 240, 160 and 1000 respectively. The inflaence of marching step on various quantities are presented in the following paragraphs.

The turbulent mean quantities

The radial profiles of mean temperature from three runs are plotted in Fig.8.7-3 with the experimental data. Considerable discrepancies can be observed between each curve, indicating that the results calculated from larger marching steps, such as in Run nos 14 and 15, are not yet grid

Fig.8.7-3 Influence of marching step on the mean temperature

Fig.8.7-4 Influence of marching step on the
mean concentration of fuel
independent. However, it has been recognized that the results remain unchanged if an even smaller marching step than that of Run no 1 (say, $\lambda_{3}=0.005$) is adopted in the computation.

Fig. 8.7-4 presents the radial distribution of methane concentration calculated by different marching steps. The profiles corresponding to the larger marching steps exhibit a steeper characteristic.

The root mean square fluctuation quantities
The influence of the number of marching steps on the temperature fluctuations, at $X / D=60$, is demonstrated in Fig.8.7-5. The spreading of the fluctuation profile is larger and closer to the measurements in the case of Run no I, in which a small marching step is employed.

The concentration fluctuations of methane calculated from each run are provided in Fig.8.7-6. The difference between each curve is visible for Run nos 1,14 and 15 , but it is again negligible for Run nos 1 and 16.

The probability density functions

Finally, the influence of marching step on the pdf of temperature is plotted in Fig.8.7-7. The results obtained from Run no 14 are not presented here for the sake of clarity. It is evident that the pdfs computed from Run nos 1 and 16 are coincident, indicating that the value of numerical factor $\lambda_{3}=0.01$ is sufficient to produce grid independent results.

8.8 Closure

The parametric studies performed in the present chapter reveals that the fluctuation quantities and probability density

$\begin{aligned} \text { Fig.8.7-5 } & \text { Influence of marching step on } \\ & \text { temperature fluctuation at } X / D=60\end{aligned}$

Fig.8.7-6 Influence of marching step on concentration fluctuation at $X / D=60$

$\mathrm{P} / \mathrm{P}_{1}$
$\times 0^{3}$

Fig.8.7-7 Influence of marching step on pdf of temperature at $X / D=60$
(-_ Run nos.1 and 16,
---- Run no.15)
functions are generally more sensitive to the presumptions made in the ESCIMO theory than the turbulent mean properties.

It has been demonstrated that satisfactory agreement between the predictions and measurements can be achieved when proper values of various parameters are chosen, for both hydrogen-air flame and methane-air flame. The encouraging fact is that same set of parameters is capable of predicting the important phenomena for the turbulent combustion in the two different fuel-air reaction systems investigated.

Nevertheless, the discrepancies between the theoretical calculations and the experimental data on the overlapping of reactants and the probability density functions of temperature do imply that the well known intermittency effects of turbulence have to be included more explicitly. Otherwise, more extreme values of some parameters (say, the stretching rate) need to be employed during the computation.

CHAPTER 9

CONCLUSIONS

9.1 Achievements of the present study

The main achievements of the present study and the conclusions are summarized below.

The Demographic Aspects of the "ESCIMO" Theory

(a) The mathematical formulation for the governing partial differential equations of folds-population has been set up for the two-dimensional boundary layer flows. In addition to the turbulent convection and diffusion terms included in the equations, the source terms contain the simple-aging, birth rate and re-engulfment rate respectively. The age-coordinate is discretized into a number of intervals in the finite difference schemes which result in a set of equations, each one describing the population of folds belong to a particular agerinterval.
(b) The non-dimensional age and non-dimensional population distribution have been introduced and the finite difference equations have been transformed and expressed in terms of these variables. The upwind differencing in the non-dimensional age-coordinate is adopted to ensure the physical plausibility of the results.
(c) The major hypothesis employed in the calculation of folds-population is the distribution of fold formation rate in the cross-stream direction. The total amount of
fold formation rate is however related to the entrainment rate through the proportion of fresh layer in newly formed folds. Various distributions have been made and their influence on the population distribution extensively investigated. The validity of each distribution can only. be assessed indirectly (through the combined demographic and biographic analysis) in the present stage, since the direct experimental evidence is not available.

The Combined Demographic and Biographic Analyses

(a) The only variable needs to be solved in the biographic part is the mixture fraction, since the chemical reaction is relatively fast and the molecular diffusivities of all species are assumed to be equal. The resultant equation has been solved by the "profile method", because the computer time is only 25% compared with that of "time-marching method". The accuracy of the profile method is satisfactory, since the resuits calculated from the "time-marching method" virtually reproduced the same quantitative pictures.
(b) The trajectories of the folds are supposed, in the present work, to be coincident with the constant-mixture fraction contours. The birth place of different folds is located with the aid of the age, which is related to the distance through the definition. The folds are subject to the stretching effect (caused by the turbulent flow) while they are moving downstream. The link between the demographic and biographic part of the theory has now been established in a self-consistent way.
(c) The turbulent reacting plane mixing layer is chosen as the first case to verify the credibility of the theory. Both the flow configuration and the chemical kinetics are simple enough to avoid the distraction. The predictions include the turbulent mean properties, the fluctuation intensities and the probability density functions. The quantitative agreement between the present computations and the measurements of Batt (1977) is generally fair.
(d) The other two test cases are the turbulent hydrogen-air jet diffusion flame and methane-air jet diffusion flame. It has been shown from the comparison between the theoretical calculations and experimental data that most of the important features can be predicted. However, some quantitative discrepancies do appear in the mean compositions (say, fuel and oxygen) and temperature, pdf pf temperature, indicating that some improvements on the turbulence model itself are still required.
(e) The sensitivity analyses performed in this work have shown the influence of various presumptions, such as the distribution of fold formation rate, initial fold composition, fold size at birth and stretching rate, on the predictions. It is worth mentioning here that the same set of parameters and constants can produce reasonably good results for all cases considered. The successful performance in the computation of fluctuation quantities is of more importance to the development of present model, since the mean quantities can be fairly calculated from less sophisticated method as well.
(f) The main aim of this work is to use a new and more fundamental approach to tackle the conventional combustion problems. The increase of computations is the price to be paid off and it can be perceived that even larger computer time is required if the complex chemical-kinetics seheme is to be employed. But the number of equations to be solved in the biographic part only increases linearly with the number of species considered, which is still moderate in comparison with the moment closure method and pdf method. The fact that the computational amount in depmographic part is not influenced by the chemistry scheme reveals another important feature of the "ESGIMO" theory.

9.2 Suggestions for future work

In order to make the present model more complete and applicable to complex-flow situations, the following steps need to be realised:
(a) To include the intermittency effects in the turbulence model, so that the "ESCIMO" theory can be incorporated with a more realistic description of turbulence phenomena. It has been shown by the experimental evidence that, in the outer part of any turbulent mixing layer and jet, the fluid found by a fixed sampling probe is turbulent only for a proportion of time which diminishes from 100 to 0% as the distance from the mid-region increases.

A possible approach is to treat the "turbulent" and

Abstract

"non-turbulent" portion as two separate phases. The mathematical treatments can then follow closely those of the real two-phase flows (Spalding, 1982). The interphase friction laws, interphase mass-transfer and interphase heat-transfer laws will neẻd to be modified for this problem, based on the experimentally observed effective Prandtl number and the "form drag" associated with the movement of fluid parcels. An extra pressure term will be needed in the momentum equation of turbulent fluid (say, the first phase in the two-phase approach) to express the effect of turbulent separation.

Another major outcome of this intermittency model is that the engulfment rate (related to entrainment rate) can be calculated now and hence the presumption concerning the distribution of fold formation rate is no more required. This consequence will further promote the physical reality of ESCIMO model and result in better quantitative agreement with the experimental data. The GENMIX2P computer code (Spalding,1981a) and PHOENICS code (Spalding, I981b) are both capable of performing the computational task, since the mechanism of solving two-phase flows are already built in. (b) To apply the present theory to the flows of elliptic type, where the recirculation zone exists inside the flow domain. The tracing of the folds will become the major issue in the development work, since the folds may come from all directions around the point being considered.

The first possible approach is to treat the recirculation zone separately, and to take into account of the folds which are created within a small distance only (e.g., the average radius of the recirculation zone).
(c) To extend the present theory in three-dimensional combustion problems, such as the gas turbine combustors and internal combustion engines. It is necessary to devise an efficient solution procedure for these flow cases. The full biographic analysis needs to be employed (e.g., using the time-marching method), when the chemical reaction rate is moderate or slower than the turbulent mixing process. In order to economise the computational cast, some sacrifice will have to be made on the demographic side. For instance, the number of folds-group has to be reduced to the minimum allowable level (say, three or four groups).
(d) To incorporate the pollutant formation schemes, such as those of nitrogen oxides, into the present theory. The chemical reaction mechanism of nitrogen oxides has been investigated and established by many researchers, the review paper of Bowman (1975) provided a good collection of information. The process of pollutant formation is kinetically controlled and the assumption of chemical equilibrium is not valid.
(e) To perform the experimental work in simple turbulent shear flows, such as mixing layers and jets, in order to measure (or deduce) the fold formation rate and the
fold composition. A possible way is to measure the electrical conductivity (and hence the concentration of ions) in the salt-water solution, in which the salt solution is injected into the water jet at various positions.

REFERENCES

ALBER,I.E. and BATT,R.G. (1975)
"Diffusion-1imited chemical reactions in a turbulent shear layer".
AIAA Journal, Vol.14, no.l, pp.70-76.
BALLANTYNE,A. and BRAY,K.N.C. (1976)
"Investigation into the structure of jet diffusion flames using time-resolved optical measuring techniques". Sixteenth symposium (Int.) on combustion, pp.777-787.
The Combustion Institute, Pittsburgh.
BALLANTYNE,A. and MOSS,J.B. (1977)
"Fine wire thermocouple measurements of fluctuating temperature".
Combustion Science and Technology, Vol.17, pp.63-72.
BATT,R.G. (1977)
"Turbulent mixing of passive and chemically reacting species in a low-speed shear layer".
J.Fluid Mech., Vol.82, Part 1, pp.53-95.

BECKER,H.A. (1975)
"Effects of concentration fluctuations in turbulent diffusion flames". Fifteenth symposium(Int.) on Combustion,pp.601-615.
The Combustion Institute, Pittsburgh.
BILGER,R.W. (1976)
"Turbulent jet diffusion flames"
Prog.Erergy Combust.Sci., Vol.I, pp.87-109.
BILGER,R.W. (1979)
"Effects of kinetics and Mixing in Turbulent Combustion"
Comb.Sci.Technol., Vol.19, p.89.
BILGER,R.W. (1980)
"Turbulent flows with Nonpremixed Reactants".
In Turbulent Reacting Flcws, ed.Libby,P.A. and Williams,F.A. Springer-Verlag, Berlin.

BONNIOT,C., BORGHI,R. and MAGRE,P. (1978)
"Turbulent combustion in a stirred combustor". Paper presented at AIAA meeting, Los Angeles. BORGHI,R. (1974)
"Chemical reactions calculating in turbulent flows: application to a co-containing turbojet plume".
Adv.Geophys., Vol.18B, pp.349-365.
BORGHI,R. (1979)
"Models of turbulent combustion for numerical predictions" Paper presented at Von-Karman Institute of Fluid Dynamics Meeting, Rhode Saint Genese, Belgium, 1979.

BOWMAN,C.T. (1975)
"Kinetics of pollutant formation and destruction in combustion".
Prog.Energy.Combust.Sci., Vol.l, pp.33-45.
BRAY,K.N.C. and MOSS,J.B. (1977)
"A unified statistical model of the premixed turbulent. flame".

Acta Astronautica, Vol.4, p.291.
BRAY,K.N.C. (1979)
"The interaction between turbulence and combustion". Seventeenth Symposium (Int.) on Combustion, The Combustion Institute, Pittsburgh, pp.223-233.

BRAY,K.N.C. (1980)
"Turbulent flows with premixed reactants".
In Turbulent Reacing Flows,ed. Libby,P.A. and Williams, F.A. Springer-Verlag, Berlin.

BROWN,G.L. and ROSHKO,A. (1974)
"On density effects and large structure in turbulent mixing layers".
J.Fluid Mech., Vol.64, pp.775-816

DONALDSON,C.DuP. (1974)
In "Turbulent mixing in non-reactive and reactive flows". ed. Murthy,S.N.B., p.131, Plenum, New York, London.

DONALDSON,C.DUP. and HILST,G.R. (I972)
"Effect of inhomogeneous mixing on atmospheric photochemical reaction".
Environ.Sci.Technol., Vol.6, p.812.
DOPAZO,C. (1975)
"Probability density function approach for a turbulent axisymmetric heated jet. Centerline evolution".
Phys.Fluids Vol.18, pp.397-404.
DRYER,F.L. and GLASSMAN,I. (1972)
"High temperature oxidation of CO and CH_{4} ".
Fourteenth Symposium (Int.) on Combustion, The Combustion
Institute, Pittsburg, p.987.
DRYER,F.I. and WESTBROOK,C.K. (I979)
"Chemical kinetic modelling for combustion applications". Paper presented at the Propulsion and Energetics Panel 54th Specialist's Meeting, Cologne, West Germany, October 1979. NATO AGARD Conference Proceedings nc.275, University of Claifornia, Lawrence Livermore National Laboratory Report UCRL-81777, September 1977.

ELGHOBASHI,S.E., PRATT,D.T., SPALDING,D.B. and SRIVATSA,S.K.(197
TUnsteady combustion of fuel spray in jet-engine afterburners".
Third Air-Breathing Engines Conference, Munich, Germany, March, 1976.

FAN,W.C. (1982)
Private communication at Imperial College Computational Fluid Dynamics. Unit.

FIEDLER,H.E. (1974)
"Transport of heat across a plane turbulent mixing layer" Adv. in Geophys., Vol.18, pp.93-109.

FIEDLER,H.E. (1975)
"On turbulent structure and mixing mechanism in free turvulent shear flows".
In Turbulent Mixing in Nonreactive and Reactive Flows, A Project Squid Workshop, pp.381-410, Plenum.

GANJI,A.T. and SAWYER,R.F. (1980)
"Turbulence, combustion, pollutant and stability characterisation of a premixed step combustor". NASA CR 3230.

GIBSON,M.M. and MORGAN,B.B. (1970)
"Mathematical model of combustion of solid particles in a turbulent stream with recirculation". Journal of the Institute of Fuel, Vol.43, pp.517-523.

HARLOW,F.H. and NAKAYAMA,P. (1968)
"Transport of turbulent energy decay rate". Los Alomos Scientific Lab., University of California, Report LA-3854.

HAWTHORNE,W.R., WEDDELL,D.S. and HOTTEL,H.C. (1949) Third Symposium on Combustion, Flame and Explosion phenomena, p.267, Williams and Wilkins, Baltimore. HUTCHINSON, P., KHALIL, E.E. and WHITELAW,J.H. (1978) "Turbulent combustion" ed. Kennedy,L.A., Vol. 58 of Progress in Astronautics and Aeronautics, AIAA, p. 211.

JANICKA,J., KOLBE,W. and KOLLMAN,W. (1978)
"The solution of a pdf-transport equation for turbulent diffusion flames", in Proceedings of the 1978 Heat Transfer and Fluid Mechanics Institute, ed. Crowe, C.T., Grosshandler, W.L., Stanford University Press, p.298, Stanford.

JANICKA,J. and KOLLMAN,W. (1979)
${ }^{4}$ A two-variables formalism for the treatment of chemical reactions in turbulent $\mathrm{H}_{2}-a i r$ diffusion flames".
Seventeenth Symposium (int.) on Combustion. The Combustion Institute, Pittsburgh, pp.421-430.

JONES,W.P. and WHITELAW,J.H. (1978)
"Coupling of turbulence and chemical reaction". Workshop on Modelling of Combustion in Practical Systems, Los Angeles.

KAYS,W.M. (1969)
"Convective heat and mass transfer".
McGraw-Hill Book Company, New York.
KENNEDY,I.M. and KENT,J.H. (1981)
"Scalar measurements in a co-flowing turbulent diffusion flame".
Combustion Sci. Technol., Vol.25, pp.109-119.
KENT,J.H. (1970)
! A Noncataltic Cọating for Platimum-Rhodium Thermocouples".

- Combustion and Flame, Vol.14, p. 279

KENT,J.H. and BILGER,R.W. (1973)
"Turbulent diffusion flames"
Fourteenth (Int.) Symposium on Combustion, p.615-625.
The Combustion Institute, Pittsburgh.
KENT,J.H. and BILGER,R.W. (1976)
"The prediction of turbulent flame fields and nitric oxide formation".
Sixteenth (Int.) Symposium on Combustion. The Combustion Institute, pp.1643-1656.

KOLBE,W. and KOLLMAN,W. (1980)
"Prediction of turbulent diffusion flames with a fourequation turbulence model".
Acta Astronautica, Vol.7, pp.91-104, Pergamon Press.
LAUNDER,B.E. and SPALDING,D.B. (1972)
"Mathematical models of turbulence".
Academic Press, London.
LAUNDER,B.E. and SPALDING,D.B. (1973)
"The numerical computation of turbulent flows".
Computer Methods in Applied Mechanics and Engineering, Vol.3, pp.269-289.

LENZ,W. and GÜNTHER,R. (1980)
"Measurements of fluctuating temperature in a free-jet diffusion flame".
Combustion and Flame, Vol.37, pp.63-70.

LENZE,B. and GÜNTHER,R. (1975)
"Ausbrand und warmeent-wicklung in erdgas-diffusionsflamen".
Brennstoff-Warme-Kraft, Vol.17, pp.387-394
LIBBY,P.A.,BRAY,K.N.C. and MOSS,J.B. (1979)
"Effects of finite reaction rate and molecular transport
in premixed turbulent combustion".
Combustion and Flame, Vol.34,n.3, p.285.
LIBBY,P.A. and WILLIAMS,F.A. (1981)
"Some implications of recent theoretical studies in turbulent combustion".
AIAA Journal, Vol.19, p.261.
LOCKWOOD,F.C. and NAGUIB,A.S. (1975)
"The predictions of the fluctuations in the properties of free, round-jet, turbulent, diffusion flames".

Combustion and Flame, Vol.24, pp.109-124.
LOCKWOOD,F.C. and ODIDI,A.O.O. (1976)
"Measurement of mean and fluctuating temperature and of ion concentration in round free-jet turbulent diffusion and premixed flames".
Fifteenth Symposium (Int.) on Combustion. The Combustion Institute, Pittsburgh, p.561.

LOCKWOOD,F.C. (1977)
"The modelling of premixed and diffusion turbulent combustion".
Combastion and Flame, Vol.29, n.2, p.111
MAO,K.W. and TOOR,H.L. (1970)
"A diffusion model for reactions with turbulent mixing" AICHE J., Vol.16, p. 49

MARBLE,F.E. and ADAMSON,T.C. (1954)
"Selected combustion problems", Vol.2, p.68,
London:Butterworth's.
MASON,H.B. and SPALDING,D.B. (1973)
"Prediction of reaction rates in turbulent premixed
boundary layer flows"
Combustion Institute European Symp., pp.601-606

O'BRIEN,E.E. (1971)
"Turbulent mixing of two rapidly reacting chemical species" Phys.Fluids Vol.14, pp.1326-1331.

PATANKAR,S.V. and SPALDING,D.BRIAN (1967)
"A finite-difference procedure for solving the equations
of the two-dimensional boundary layer".
Int.J.of Heat and Mass Transfer, Vol.10, pp.1389-1411.
PERRY,R.H. and CHILTON,C.H. (1973)
"Chemical. Engineers' Handbook".
McGraw-Hill Book Company. New York, 5th ed.
POHLHAUSEN,K. (1921)
Z.Angew.Match.Mech., Vol.I, p. 252.

POPE,S.B. (1976)
"The probability approach to the modelling of turbulent reacting flows".
Combustion and Flame, Vol.27, p. 299
RICHTER,W. and QUACK,R. (1974)
"A mathematical model of a low-volatile pulverized fuel flame".
Heat Transfer in Flames, ed. Afgan,N.H. and Beer,J.M., pp.95-110, Scripta Book Co.

ROBERTS,P.T. and MOSS,J.B. (1981)
"A wrinkled flame interpretation of the open turbulent diffusion flame".
Eighteenth Symposium (Int.) on Combustion, pp.941-950. The Combustion Institute, Pittsburgh.

SERAG-ELDIN,M.A. (1977)
"The numerical prediction of the flow and combustion processes in a three-dimensional can combustor".
Ph.D. Thesis, University of London.
SCHLICHTING,H. (1979)
"Boundary-Layer Theory".
McGraw-Hill Book Co., 7th.ed.
SMITH,G.D. (1978)
"Numerical Solution of Partial Differential Equations: Finite Difference Mehtods".
Oxford University Press, Oxford. 2nd.ed.

SPALDING,D.BRIAN (1958)
"Approxiamte solutions of transcient and two-dimenșional flame phenomena: Constant-enthalpy flames".
Proc. of the Royal Society A, Vol.245, pp.352-372.
SPALDING,D.BRIAN (1970a)
"Mathematische Modelle Turbulenten Flammen".
In Vorträge der VDI-Tagung Karlsruhe, 1969;
Verbrennung und Feuerungen. VDI-Bericht No.146;
VDI Verlag, Dusseldorf, pp.25-30.
SPALDING,D.BRIAN (1970b)
"Notes on the Parmix Program"
Imperial College, Heat Transfer Report BL/TN/A/35.
SPALDING,D.BRIAN (1971a)
"Concentration fluctuations in a round turbulent free jet".
Chemical Engineering Science, Vol.26, pp.95-107.
SPALDING,D.BRIAN (1971b)
"Mixing and chemical reaction in steady confined turbulent
flames".
Thirteenth Synposium (Int.) on Combustion, p.649,
The Combustion Institute, Pittsburgh.
SPALDING,D.BRIAN (1976a)
"Mathematical models of turbulent flames: a review" Combustion Science and Technology, Vol.13, pp.3-25.

SPALDING,D.BRIAN (1976b)
"The ESCIMO theory of turbulent combustion".
Imperial College, Mechanical Engineering Department Report No.HTS/76/13

SPALDING,D.BRIAN (1978a)
"GENMIX: a general computer program for two-dimensional parabolic phenomena".
Pergamon Press, Oxford, U.K.
SPALDING,D.BRIAN (1978b)
"Chemical reactions in turbulent fluids".
Proceedings of Levich Birthday Conference, Advance Publications, Vol.1, pp.321-338.

SPALDING,D.BRIAN (1979a)
"Theories of turbulent reacting flows".
Paper presented at AIAA Conference, New Orleans, 1979. Imperial College, Heat Transfer Section Report No. HTS/79/1.

SPALDING,D.BRIAN (1979b)
"The influences of laminar transport and chemical
kinetics on the time-mean reaction rate in a turbulent flame".
Seventeenth Symposium (Int.) on Combustion, pp.431-440. The Combustion Institute, Pittsburgh.

SPALDING,D.BRIAN (1981a)
"GENMIX 2P: Notes and Listing".
Imperial College of Science and Technology, Department of Mechanical Engineering Report No.HTS/81/I.
SPALDING,D.BRIAN (I981b)
"A general purpose computer program for multi-dimensional one and two-phase flow".
Mathematics and Computers in Simulation, Vol.XXIII, pp.267-276, North Holland Press.

SPALDING,D.BRIAN (1982)
"Chemical reaction in turbulent fluids".
4th Physicochemical Hydrodynamics Conference,
New York City, June 1982.
STEPHENSON,P.L. (1972)
"Development of models for predicting laminar and turbulent flames".
Ph.D. Thesis, University of London.
SUNYACH,M. and MATHIEU,J. (1969)
"Mixing zone of a two-dimensional jet". Int.J.Heat and Mass Transfer, Vol.12, pp.1679-1697.

TAM,L.T. (1981)
"The theory of turbulent flow with complex chemical kinetics".
Ph.D. Thesis, University of London.

VASSILATOS,G. and TOOR,H.L. (1965)
AICHE J.,Vol.11, p. 666.
VON KARMAN,T. (1921)
Z.Agnew.Match.Mech., Vol.1, p.233.

WEGENER,P.P. (1959)
"Supersonic nozzle flow with a reacting gas mixture" The Physics of Fluids, Vol.2, pp.264-275.

WINANT,C.D. and BROWAND, (1974)
"Vortex pairing: the mechanism of turbulent mixing-layer
growth at moderate Reynolds number."
J.Fluid Mech., Vol.63, pp.237-255.

WITTMER,V. (1980)
"Geschwindigkeit und Temperatur in einer turbulenten Freistrahl-Diffusionsflammen".
Ph.D. Thesis, University of Karlsruhe, West Germany.
WYGNANSKI,I. and FIEDLER,H. (1969)
"Some measurements in the self-preserving jet".
J.Fluid Mech., Vol.38, Part 3, pp.577-612.

NOMENCLATURE

SYMBOL	MEANING	LOCATION OF FIRST
		APPEARANCE
a, b, c	Coefficients of the general partialdifferential equation	$\begin{aligned} & \text { Eqns. }(3.2-16) \text {, } \\ & (3.2-17) \text { and } \\ & (3.2-19) \end{aligned}$
A	Age of the fold (三time since formation)	Eqn.(2.6-1)
\tilde{A}, A^{*}	Non-dimensional age of the fold	Eqns.(3.4-1) and (4.2-8)
$A_{\text {cj }}^{*}$	Non-dimensional age at the centre of the j-th age interval	Eqn. (4.6-1)
C	Coefficients in the partial differential equation of the biographic analysis	Eqn. (4.2-8)
$\mathrm{C}_{1}, \mathrm{C}_{2}$	Empirical constants appearing in the transport equation for ε	Eqn. (3.2-4)
C_{F}	Empirical constant related to the fold composition at birth	Eqn. (4.3-2)
C_{p}	Specific heat	Eqn. (4.4-6)
$C_{p, j},{ }^{\text {P }}$, mix	Specific heat of species j and the mixture	Eqns. (4.4-6) and (4.4-8)
C_{S}	Empirical constant related to the stretching rate	Eqn. (4.3-9)
C_{Z}	Empirical constant related to the fold size	Eqn. (4.3-1)

C_{μ}	```Empirical constant in equation for the turbulent viscosity```	Eqn. (3.2-6)
d	Source term of the general partial. differential equation	Eqn. (3.2-21)
D	Diameter of the jet	Sec.7.4-2
D	Diffusion coefficient	Eqn. ${ }^{\text {(4.2-1) }}$
f	Mixture fraction	Eqn. (2.5-1)
F	Transformation function in equation for the nondimersional age	Eqn.(3.4-1)
g	Gravitational acceleration	Eqn. (3.2-1)
G_{k}	Rate of generation of the turbulent kinetic energy per unit volume	Eqn.(3.2-3)
h	Enthalpy	Eqn. (4.4-5)
H_{fu}	Heat of combustion in fuel	Eqn. (4.4-6)
i	Index of the control volume in the crossstream direction	Sec. 3.7
I	Turbulence intermittency factor	Eqn.(6.8-1)
j	Index of the age-interval and variable domain	Sec. 3.5
k	Turbulent kinetic energy per unit volume	Sec.2.1
k_{D}, k_{R}	Rate constants in forward and reverse chemical reaction	Eqn. (6.3-9)

$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$	Constants in the equation of specific heat	Eqn. (4.4-9)
K_{c}	Equilibrium constant in chemical reaction	Eqn. (6.3-10)
ℓ	Turbulence length scale	Eqn. (4.3-2)
${ }^{\text {m }}$	Mass fraction of species j	Eqn. (4.4-8)
$\stackrel{0}{m}_{\prime \prime}^{\prime \prime}, \ddot{m}_{\prime \prime}^{\prime \prime}$	Mass flow rate per unit area	Eqn.(3.2-23)
M_{j}	Molar fraction of species j	Sec.7.4-3
N	Number of grids in the cross-stream direction	Sec. 3.7
NA	Number of age-intervals	Eqn. (6.3-8)
N_{p}	Number of grids in the fold biography analysis	Sec.6.3-1
N_{ϕ}	Number of intervals in the equation of pdf	Eqn. (5.5-5)
NMI	Number of control volumes in the cross-stream direction ($\equiv \mathrm{N}-1$)	Fig.3.7-1
$\left[\mathrm{NO}_{2}\right] \cdot\left[\mathrm{N}_{2} \mathrm{O}_{4}\right]$	Concentration of NO_{2} and $\mathrm{N}_{2} \mathrm{O}_{4}$ gas	Eqn. (6.3-9)
P	Pressure	Eqn. (4.4-7)
P	Population distribution function w.r.t. age	Eqn. (3.3-1)
\tilde{P}	Non-dimensional population distribution function w.r.t. non-dimensional age	Eqn.(3.4-18)
$\begin{aligned} & \tilde{P}_{1}, \tilde{P}_{2}, \tilde{P}_{3}, \\ & \cdots, \tilde{P}_{N A} \end{aligned}$	Values of \tilde{P} prevailing at each age-interval	Eqns.(3.5-1) to $(3.5-3)$

P_{ϕ}	Probability density function w.r.t. variable ϕ in a fold	Eqn. (5.5-1)
$\overline{\mathrm{P}}_{\phi}$	Population-average value of P_{ϕ}	Eqn. (5.5-2)
$Q_{i-\frac{1}{2}}, Q_{i+\frac{1}{2}}$	Quantities related to the diffusion coefficient	Eqns.(3.7-7) and (3.7-8)
r	Radius	Eqn. (3.2-1)
R	Stretching rate	Eqn. (4.3-9)
R_{u}	Universal gas constant	Eqn. (4.4-7)
s	Stoichiometric ratio	Eqn. (2.5-2)
S_{i}, S_{i}^{\prime}	Linearised source terms of the general partial differential equation	Eqn. (3.7-9)
t	Time	Eqn. (4.2-1)
T	Temperature	Eqn. (4.4-6)
u	Mean axial velocity	Eqn. (3.2-1)
$\mathrm{U}_{\bar{e}}$	Axial velocity at the jetexit	Eqn. (7.7-1)
$\sqrt{\overline{0^{\prime 2}}}$	Root mean square value of of the fluctuation of U	Sec.7.8.1
\checkmark	Mean radial velocity	Eqn. (3.2-1)
$\sqrt{v^{\prime 2}}$	Root mean square value of the fluctuation of v	Sec.7.4.1
W_{j}	Molecular weight of species j	Eqn. (6.3-12)
X	Longitudinal distance	Eqn. (3.2-1)
y	Radial distance	Eqn. (3.2-9)
z	Distance across fold	Eqn. (4.2-4)
Z	Fold thickness	Eqn. (4.2-6)
Z。	Z at the instant of fold formation	Eqn. (4.2-7)

GREEK SYMBOL	MEANING	LOCATION OF FIRST
		APPEARANCE
$\alpha_{i}, \beta_{i}, T_{i}, \zeta_{i}$	Coefficients in the calculation of TDMA procedure for the i-th grid ncde	Eqn. (3.7-10)
$\Gamma_{\phi, \text { eff }}$	Effective exchange coefficient for ϕ	Eqn. (3.2-8)
Δ and δ	Indicate a finitedifference	Secs.3.5 and 3.7
ε	```Dissipation rate of turbulent kinetic energy per unit volume```	Sec.2.2
η	Normalized distance across the fold	Eqn. (4.2-5)
Π_{T}	Normalized distance across the mixing layer calculated from the temperature profile	Eqn. (6.4-1)
$\lambda_{1}, \lambda_{2}, \lambda_{3}$	Numerical factors in the calculation of forward marching step in x direction	Sec.6.3.1
θ	Normalized temperature across the mixing layer	Sec. 6.5
μ	```Viscosity; subscript \ell,t, e indicates laminar, turbulent or effective viscosity```	Sec.3.2
ρ	Density	Eqn. (3.2-1)
Σ	Summation	Eqn. (4.4-8)

τ	Time scale	Sec.6.8
ϕ	General variable	Eqn. (3.2-8)
ψ	Stream function $\left(\equiv \int_{0}^{y} r \rho u d y\right)$	Eqn. (3.2-9)
$\xi_{1}, \xi_{2}, \xi_{3}$	Arguments in the sinusoidal profile of mixture fraction	Eqn. (4.5-1)
ω	Normalized stream function	Eqn. (3.2-10)

SUBSCRIPTS

b
c

D
e
eff
E
fu
I
i,j
in
ℓ
\max
\min
-

MEANING

Birth place of the fold
Centre of the finite difference cell

Downstream neighbouring cell

At the nozzle exit of jet
Effective quantity
External boundary of the computational domain

Fuel
Internal boundary of the computational domain

Indicates location on the finite-difference cell

Inert species
Laminar quantity
Maximum
Minimum
Reference value

ox	Oxygen
p	Potential flow
pr	Products
st	Stoichiometric point
t	Turbulent quantity
U	Upstream neighbouring cell
∞	Value in the free stream
1,2	Reference values

SUPERSCRIPTS
 MEANING

Fluctuating component of
a property
Per unit area
Per unit time
Population-average value, or time average value

Fold average value
Time average value including the intermittency factor

APPENDIX A

Flow chart of the computer program

Flow chart of the computer program

APPENDIX B

Computer Listing for the calculation of H_{2}-Air Fläme

[^2]6 OMLEFT，OMRIGT，DDELAJ，PHIMAX，PHIMIN，EMIX，
7 FFIAVS（60），AVFFIS（60），FRFLU（60），FMAX（60），
8 EMPC1，EMPC 2，EMPC 3，FVAL（60），POPAGE（50） COMMON／DEM2／
$1 \mathrm{CCO2}(60), \mathrm{ACO} 21, \mathrm{ACO22}, \mathrm{ACO} 23, \mathrm{FCO} 2(60), \mathrm{FMCO} 2(60), W C O 2$,
2 PROL，PROR，PROM（20），PRAV（60），AVPR（60），PRAVS（60），
3 AVPRS（60），PRFLU（6Ø），PRFLUM（6Ø）
INTEGER SEARCH
BLOCK DATA
C／FEB． 1977 －
C＂GENMIX，A GENERAL COMPUTER PROGRAM FOR TWO－DIMENSIONAL
C PARABOLIC PHENOMENA＂BY D．B．SPALDING
C REPORT NO．HTS／77／9，FEBRUARY 1977，
C IMPERIAL COLLEGE，MECHANICAL ENGINEERING DEPARTMENT，LONDON，SW72BX
C
C
C
C
C
$\$$
$\$$
C
C APPENDIX A（BASIC PROGRAM）－COMBUSTION OF METHANE AND AIR IN A DIVERGENT DUCT EXHAUSTING INTO THE ATMOSPHERE．

\＄INCLUDE 9，COMA1．FTN
\＄INCLUDE 9，COMB．FTN
C
$C / I=T A 1411$ RECFJK ADDED，$F(I, J K)$ MADE ABS IN PHYS DO 151 LOOP．
$\mathrm{C} / \mathrm{I}=\mathrm{TA} \mathrm{A} 211 / \mathrm{P}=0 \mathrm{PL} 779 \mathrm{~A} / \mathrm{UN}=\mathrm{UMEMH02}$ ．
C $\quad 2.11 .78$ REPLACE ALMG BY ELCONの，REPLACE ELCOND BY ELCONK
C 24．10．78 GENERAL CORRECTIONS
C 29．8．78 NEW VERSION INTRODUCING LENGTH AND DELETING KONFIG
C／SEPT． 1977 －－GENMIX－T，HTS／77／9，APPXA－COPYRIGHT，D．B．SPALDING－－－
C GENMIX－T，TURBULENCE MODELS TEACHING PROGRAM，
C WITH CHEMICAL REACTION．
C BASED ON APPENDIX A OF THE HTS REPORT NO．HTS／77／9．
C／SEPT． 1981 －－THE ESCIMO MODEL OF TURBULENT COMBUSTION
C IS INCORPORATED INTO THE GENMIX－T PROGRAM．
C THE NEW SUBROUTINES ARE CALLED DEMO，BIOG AND PDF．
C－－ーーーーーー－CONFIGURATION INDEX
C KASE＝\quad STANDARD GENMIX，APPENDIX A．
C 1 PIPE OR CHANNEL
C 2 MIXING LAYER
C
C
3 PLANE JET
4 AXI－SYMMETRICAL（ROUND）JET
5 RADIAL（FAN）JET
6 PLANE PLUME
7 AXI－SYMMETRICAL（ROUND）PLUME
C
C－
DATA KUDIF／－1／
C
DATA KASE，IRUN／4， $0 /$
DATA ITEST／I／
DATA BIG，TINY／L．E2Ø，I．E－I $/$

DATA UA,TA,FUA,OXA/151.,300.,1.,0./
C ------ STREAM D, SURROUNDING ATMOS PHERE
DATA TD,FUD,OXD/300., $0 ., 0.232 /$
C ---- UD IS SUPPLIED BY WAY OF THE UEX FUNCTION
C --------- VELOCITY ALONG OUTER BOUNDARY DATA UEXØ, XUEXの,AUEX,BUEX,CUEX/15.1,4*Ø./
C ---_- WALL TEMPERATURE OF OUTER TUBE
DATA TWALL/299./
C

C --- SET ILPLOT=2 FOR DOWN-STREAM PLOT, $=1$ FOR NO PLOT
C --- SET ITPLOT=2 FOR CROSS-STREAM PLOT, $=1$ FOR NO PLOT DATA ILPLOT,ITPLOT/2,2/
C --- SET NSTAT, NPROF, NPLOT TO NUMBER OF STEPS BETWEEN OUTPUT OF
C --- STATION VALUES, PROFILES AND CROSS-STREAM PLOTS RESPECTIVELY DATA NSTAT,NPROF,NPLOT/12,12,10000/
C ---- AFTER XU=XOUT, NSTAT AND NPROF ARE SET $=24$ AT MAIN, CH. 11
C --------INPUT RELATED TO ESCIMO MODEL
DATA NAGE,NAGEP1,JA1,JAL,FOLM0/10,11,4,13,0.5/
DATA UMAX,UMIN/151.,15.1/
DATA XMø/6Ø*g.5/
DATA F/1740*Ø./,PAØ,PA/1250*の./,DUDYB/60*1.E-6/
DATA MODFOR/3/
DATA AGE/0.,.05,.1,.15,.2,.3,.4,.5,.55,.8,1./
DATA IBIO,FSTOIC/1,0.0282/
DATA EMPC1,EMPC2,EMPC3/2.,2.,0.5/
DATA IPDF/l/
DATA NPDF/ll/
END

PROGRAM MAIN
C/ SEPT. 1977 -- GENMIX-T, HTS/77/9, APPXA -- COPYRIGHT, D.B.SPALDING --
 \$INCLUDE 9,COMA1.FTN \$INCLUDE 9,COMB. FTN
C

C ----- FUNCTIONS FOR BOUNDARY CONDITIONS
HEX (X) = HEX $\sigma+X$ * (AHEX +X * (BHEX +X *CHEX))
HIN (X) $=$ HIN $\emptyset+X$ (AHIN $+X$ * (BHIN $+X$ *CHIN))
$\operatorname{UEX}(X)=U E X \varnothing+X *(A U E X+X *(B U E X+X * C U E X))$
C

C SEE DATA
C --_- KIND IS AN INDEX WHICH DENOTES A PARTICULAR GEOMETRY TYPE KIND=4
IF (KRAD.EQ.1) KIND=2
IF (KRAD.EQ.2.AND.CSALFA.EQ.1.) KIND=1
IF (KRAD.EQ.2.AND.CSALFA.EQ. ロ.) KIND=3
C ---- MODIFICATIONS TO DATA
IF (KIND.NE.3) GO TO 21
$\mathrm{XU}=.25$
XHEXV $=.25$
$\mathrm{XHIN} 0=.25$
21 CONTINUE
C
C ----- STARTING VALUES
IEND=IFIX (XEND*1.E6)
IOUT=IFIX(XOUT*I.E6)
C
CALL INIT
C ----------------------------------- GRID
DO $20 \mathrm{I}=1, \mathrm{~N}$
2б OM(I) $=($ FLOAT $(I-1) / F L O A T(N M 1)) * * O M P O W$
C
C ------------------- SUBROUTINE COMPUTE, ENTRY GRID
CALL GRID
C
$\begin{array}{llllllllllllllll}\text { CHAPTER } & 3 & 3 & 3 & 3 & 3 & 3 & 3 & \text { DEPENDENT VARIABLES } & 3 & 3 & 3 & 3 & 3 & 3 & 3\end{array}$
C SEE DATA
C $\quad U(I)=$ VELOCITY
C \quad (I,JH) $=$ STAGNATION ENTHALPY
C $\quad F(I, J P)=P H I=$ OXIDANT CONCENTRATION -F(I,JF)*STOICH
C $\quad F(I, J A I) \ldots \ldots F(I, J A L)=$ FOLD POPULATIONS
C $\quad F(I, J F)=$ FUEL CONCENTRATION
C $\quad F(I, J O X)=$ OXIDANT CONCENTRATION
C $\quad F(I, J T E)=$ TEMPERATURE
C $\quad \mathrm{F}(\mathrm{I}, \mathrm{JPR})=$ PRODUCT CONCENTRATION

```
C \(\quad F(I, J K)=\) KINETIC ENERGY OF TURBULENCE
C F(I,J2) = FREQUENCY= DISSIPATION RATE/(DENSITY*ENERGY) FOR MODEL 4
    OR \(=\) EPSILON \(=\) DISSIPATION RATE/DENSITY FOR MODEL 5
C \(\quad\) (I,JEL) \(=\) TURBULENCE LENGTH SCALE
C
```



```
\(\begin{array}{llllllllllllllllll}\text { CHAPTER } & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & \text { PROPERTY DATA } & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4\end{array}\)
C SEE DATA
C \(\quad\) IF (MODEL.LE.2) \(N F=J A L+1\)
C IF (MODEL.EQ. 3) NF=JAL+2
C IF (MODEL.GT.3) NF=JAL+3
    RECWFU=1./WFU
    RECWOX=1. / WOX
    RECWPR=1./WPR
    RECWMX \(=1\)./WMIX
    DO \(40 \mathrm{~J}=1, \mathrm{NF}\)
    PRL (J) = PRLAM
    RECPRL (J) \(=1\)./PRLAM
    \(40 \operatorname{RECPRT}(J)=1 . /\) PRTURB
    DO \(401 \mathrm{I}=1, \mathrm{~N}\)
    \(\mathrm{CFU}(\mathrm{I})=\mathrm{AFUL}+\mathrm{AFU} 2 * \mathrm{TA}\)
    \(\operatorname{COX}(\mathrm{I})=\mathrm{AOX1} 1+\mathrm{AOX} 2 * T B+A 0 \times 3 /(T B * * 2)\)
    CN2 (I) \(=\) AN \(21+A N 22 * T C\)
    \(\operatorname{CPR}(I)=C N 2(I)\)
    401 CH 20 (I) \(=\mathrm{AH} 2 \mathrm{O}\) + AH 2 O 2 * TC
    GAMMA \(=\mathrm{CFU}(1) /(\mathrm{CFU}(1)-\mathrm{GASCON} *\) RECWMX \()\)
    IF (MOD4C1.EQ.1) CIMOD4=C1MOD5*C2MOD4/C2MOD5
C --_- Cl FROM THE NO-DIFFUSION RULE
    IF (MOD4C1.EQ.2) CIMOD4=C1MOD5-1.
\(C \quad\) - Cl AND C2 ARE SAIY"S VALUES
    IF (MOD4CI.NE.3) GO TO 41
    CIMOD4 \(=9.47\)
    C2MOD4 \(=1 . \square 0\)
C
```

```
    CMU=SQRT (TAUDK)
    CD=TAUDK*CMU
    \(C M U C D=C M U * C D\)
C ---- LATER MODIFY CMU AND CMUCD FOR KASE 4 TO FIT ROUND JET DATA
    WALCON=CD/AK
    RECPRT (JK)=1./SIGK
    IF (MODEL.LT.3) GO TO 44
C ---------- MODELS 4 AND 5
    C2MOD5=1.5+1./ELEXP
    CIMOD5=C2MOD5-AK**2*TAUDK/(CMUCD*SIG2)
    IF (MODEL.EQ.5) GO TO 42
    ---------- MODEL 4 (3 VERSIONS)
    C2MOD4=C2MOD5-1.
c
C ----- MODELS 4 AND 5, SIG 2 FROM THE NEAR-WALL RULE
    41 SIG2=AK**2/(TAUDK*(C2MOD4-C1MOD4))
    GO TO 43
```

```
    42 SIG2=AK**2/(TAUDK*(C2MOD5-CIMOD5))
    43 RECPRT (J2)=1./SIG2
    4 4 \text { CONTINUE}
C
C-------------------------------------------------------------------------------
CHAPTER 5 5 5 5 5 5 5 5 5 5 STARTING VALUES 
C SEE DATA
    WB=1./(FUB*RECWFU+OXB*RECWOX+(1.-FUB-OXB)*RECWPR)
    RHOB=PRESS*WB/ (TB*GASCON)
    WC=1./(FUC*RECWFU+OXC*RECWOX+(1. -FUC-OXC) *RECWPR)
    RHOC=PRESS*WC/ (TC*GASCON )
    FLOB=RHOB*UB* (HDIV-HING)
    FLOC=RHOC*UC* (HEXø-HDIV)
    IF (KRAD.EQ.1) GO TO 55
    XSIN=XU*SNALFA
    HCOS=.5*CSALFA
    FLOB=FLOB*(XSIN+HCOS* (HDIV+HINø))
    FLOC=FLOC*(XSIN+HCOS*(HEXG+HDIV))
    55 CONTINUE
        OMDIV=FLOB/ (FLOB+FLOC+TINY)
        TMIN=.5*AMINI (TA,TB,TC,TD,TWALL)
C -------------- SEQUENCE.TO PUT CELL BOUNDARY AT OMDIV.
    IF(OMDIV.LE.I.E-1ஏ.OR.OMDIV.GE.(1.-1.E-Iஏ)) GO TO 53
    DO 52 I=3,NM1
    IF(OMINT(I)-OMDIV) 52,53,57
    57 IDIV=I+l
    GO TO 58
    52 CONTINUE
    58 FAC=OMDIV/OMINT (IDIV-1)
    DO 59 I=2,IDIV
    59 OM(I)=OM(I)*FAC
C
    ------------------- SUBROUTINE COMPUTE, ENTRY GRID
    CALL GRID
    .53 CONTINUE
C
    ----------- INSERTION INTO ARRAYS
    ENTHB=TB*(CFU(1)*FUB+COX(1)*OXB+CPR(1)*(1. -FUB-OXB))+
    1 . 5*UB**2+HFU*FUB
    ENTHC=TC*(CFU(1)*FUC+COX(1)*OXC+CPR(1)*(1.-FUC-OXC))+
    1 . 5*UC**2+HFU*FUC
    PHIB=OXB-FUB*STOICH
    PHIC=OXC-FUC*STOICH
    DO 501 I=1,N
    IF(OM(I).GT.OMDIV) GO TO 5®3
    U(I)=UB
    F(I,JH)=ENTHB
    F(I,JP)=PHIB
    F(I,JF) =FUB
    GO TO 50l
    503 U (I) =UC
    F(I,JH)=ENTHC
    F(I,JP)=PHIC
```

```
    F(I,JF)=FUC
    501 F(I,JA1)=1./(AGE(2)-AGE (1))
        DO 502 I=1,NM1
        F(I,JK)=0.03*UB**2
    502 F(I,J2)=CD*F(I,JK)*SQRT (F (I,JK))/(.\emptyset3*HEX\emptyset)
    F(N,JK)=0.1
    F(N,J2)=CD*F(N,JK)*SQRT (F (N,JK))/(.03*HEXØ)
    DO 504 I=1,N
    DISSK(I)=\emptyset.
    504 GENK(I)=Ø.
C
C
    IF(KASE.NE.g) ELCON=ELCONK(KASE)
C***********************************************************************
CALL FOR STARTING PREPARATIONS IN SUBROUTINE DEMO FOR CONSTANT AGE SIZES
C
CALL DEMOC
CALL BIOC
```



```
C
C
```



```
GO TO 70
C
CHAPTER \(6 \quad 6 \quad\) STEP CONTROL \(\quad 6 \quad 6\)
C SEE DATA
\(60 \emptyset\) DXY＝FRA＊Y（NM2）
DXRE＝DXY＊PEI／（．5＊（R（1）＋R（N））＊EMU（1）＋TINY）
DXINC＝DXLAST＊DXRAT
C
```



```
C
IF（ISTEP．GE．IEND）GO TO 6l0
KIN＝1
GO TO 611
61g IF（PSII．LE．TINY）GO TO 612
KIN＝2
GO TO 611
612 KIN＝3
C－－－N－ー－ー－ー－ー－－－－－－E BOUNDARY
611 IF（ISTEP．GE．IOUT）GO TO 613
KEX＝1
GO TO 614
613 KEX＝2
614 CONTINUE
C
C
```



```
        DO 6l5 I=2,N
    UMAX=AMAXI (UMAX,U(I))
    6l5 UMIN=AMIN1 (UMIN,U(I))
    UDIF=UMAX-UMIN
C
C
    501 IF(KEX.NE.2) GO TO 602
    RATE=ABS ((U (NMI) -U (N))/(UDIF*ULIM+TINY))
        RME=-(R (NM2) +R (NM1))*(EMU (NM2) +EMU (NM1))*RECYDF (NM2) *RATE/
        1
            FACE=FACE*RATE**FACEXP
            FACE=AMAXl(.0l,AMINl(FACE,1\emptyset.))
            RME=RME *FACE
            IF(MODEL.EQ.2) RME=AMAXI (RME,-Ø. 4*UDIF*RHO (N)*R(N))
C
    602 DXPSI=PEI*PEILIM/(RMI-RME+TINY)
C
C --------------- SET VALUE OF DX
    DX=AMIN1 (DXY,DXRE,DXINC,DXPSI,DXMAX)
C
    IF(ISTEP.GE.IEND) GO TO 6Ø5
    IF(DX.LT.(XEND-XU)) GO TO 605
C --- RESET DX SO THAT XU WILL EXACTLY EQUAL XEND AT NEXT STEP
    DX=XEND-XU
    IEND=ISTEP+1
    JUSTIN=ISTEP+1
C
    605 IF(ISTEP.GE.IOUT) GO TO 606
    IF(DX.LT. (XOUT-XU)) GO TO 606
C --- RESET DX SO THAT XU WILL EXACTLY EQUAL XOUT AT NEXT STEP
    DX=XOUT-XU
    IOUT=ISTEP+1
    JUSTEX=ISTEP+1
C
    606 IF(PSII.GT.RMI*DX) GO TO 607
    IF(PSII.LE.TINY) GO TO 6@7
    ----- RESET DX SO THAT AXIS IS REACHED AT NEXT STEP
    DX=PSII/RMI
    JUSTIN=ISTEP+1
C
C ----- RESET DX SO THAT XU WILL NOT EXCEED XULAST
607 DX=AMIN1 (DX,XULAST-XU)
C
C ---ー-ーー-ー- TRAP ZERO OR NEGATIVE DX
```

```
    IF(DX.GT.ø.) GO TO 608
        IFIN=2
    GO TO l1ø\emptyset
C
C --------------------- DETERMINE XD
    608 XD=XU+DX
        DXLAST=DX
C
c
C RECALCULATE IT, AND SNALFA AND HCOS, HERE, FOR X=XD
    GO TO 70
C
C
CHAPTER 7
    70® ASSIGN 751 TO ISTART
C --------- GENERAL BOUNDARY CONDITION INFORMATION
C --------- STREAM A, THROUGH CENTRAL PIPE
C SEE DATA
        ENTHA=TA*(CFU(1)*FUA+COX(1)*OXA+CPR(1)*(1.-FUA-OXA))+
        1 . 5*UA**2+HFU*FUA
            PHIA=OXA-FUA*STOICH
            RHOA=PRESS *WFU/(TA*GASCON+TINY)
            FLOA=RHOA*UA*HIN (XEND)
            FJKA=\emptyset.03*UB**2
            IF(KRAD.EQ.2) FLOA=FLOA*(XEND*SNALFA+HCOS*HIN (XEND))
            PSII=FLOA
            PEI=FLOB+FLOC
            PSIE=PSII+PEI
C --_-- STREAM D, SURROUNDING ATMOSPHERE
C SEE DATA
            XUEXg=XOUT
            UD=UEX\emptyset
            XD=XU
            ENTHD=TD*(CFU(1)*FUD+COX(1)*OXD+CPR(1)*(1. -FUD-OXD)) +
            1 . 5*UD**2+HFU*FUD
            PHID=OXD-FUD*STOICH
C --------- OTHER RELATED INFORMATION
            HDUCID=HIN0
            ADUCTD=HEXØ-HDUCID
            IF(KRAD.EQ.2) ADUCTD=ADUCTD*(XSIN+HCOS*(HEX0+HDUCID))
            AFLOWD=ADUCTD
        7 0 ~ C O N T I N U E
C
                            --------------- BOUNDARY CONDITIONS FOR FORWARD STEP
C ---------------------------------------- I BOUNDARY
    IF(KIN-2) 731,732,733
C --------------------N
    731 IF(ISTEP.GT.JUSTIN) GO TO 734
    U(1)=\emptyset.
    TAUI=0.
    RMI=\emptyset.
    DO 735 J=1,NF
```

```
    IBIN(J)=2
    735 RJTOTI(J)=\emptyset.
C
    734 HIND=HIN(XD-XHINØ)
        GO TO 740
C
    732 IF(ISTEP.GT.JUSTIN) GO TO 736
        TAUI=0.
        U(1)=UA
        VIMIX=FUA*RECWFU+OXA*RECWOX+(1.-FUA-OXA)*RECWPR
        F(1,JTE)=TA
        RHO(1)=PRESS/(VIMIX*F(1,JTE)*GASCON)
        RECRU(1)=1./(RHO (1)*U(1)+TINY)
        F(1,JH)=ENTHA
        F(1,JP)=PHIA
        F(1,JF) =FUA
        AREA=HDUCID
        IF (KRAD.EQ.2) AREA=AREA*(XU*SNALFA+HCOS*HDUCID)
        AFLOWD=AFLOWD+AREA
        IF(ISTEP.EQ.\sigma) GO TO 740
    736U(1)=U(1)+DX*AGRAV*(RHO (N)-RHO (1))*RECRU (1)
        F(I,JK)=FJKA
        IF(MODEL.LT.4) GO TO 740
        FJ 2A=CD*SQRT (FJKA) / (ELCON*(Y (NM2) -Y (3)))
        IF(MODEL.EQ.5) FJ 2A=FJ2A*FJKA
        F(1,J2)=FJ2A
        GO TO 740
C
    733 IF(ISTEP.GT.JUSTIN) GO TO 740
        TAUI=\emptyset.
        RMI=0.
        PSII=0.
        HIND=\emptyset.
        U(1)=U(2)
        DO 737 J=1,NF
    737 F(1,J)=F(2,J)
C --_---NO SUBSEQUENT CHANGE NEEDED
    740 CONTINUE
```

C
C
IF (KEX-2) 741,742,743
c
741 IF (ISTEP.GT.JUSTEX) GO TO 744
C ---n-on FIRST STEP ONLY
$U(N)=\varnothing$.
RME $=\varnothing$.
TAUE=0.
$\operatorname{IBEX}(\mathrm{JH})=1$
$F(N, J O X)=0 X C$
$F(N, J P R)=1 .-O X C-F U C$
DO $745 \mathrm{~J}=2, \mathrm{NF}$

```
            IBEX(J)=2
    745 RJTOTE (J)=0.
C --\infty- ADJUST ENTHALPY TO FIT COMPOSITION
    744 CMIX(N)=CFU(N)*F(N,JF)+COX(N)*F(N,JOX)+CPR(N)*F(N,JPR)
            F(N,JTE)=TWALL
            F(N,JH)=CMIX (N)*F(N,JTE)+F(N,JF)*HFU
C ---m-n---------- ADJUST EXTERNAL HEIGHT
    HEXD=HEX(XD-XHEX0)
    F(N,JK)=0.
    F(N,J2)=0.
    GO TO 750
```



```
    742 IF(ISTEP.GT.JUSTEX) GO TO 746
    F(N,JH)=ENTHD
    F(N,JP)=PHID
    F(N,JF)=FUD
    F(N,JOX)=OXD
    FJKD=\emptyset.1
    F(N,JPR)=1.-F(N,JF)-F (N,JOX)
    VMIX=F (N,JF) *RECNFU+F (N,JOX) *RECWOX+F (N,JPR) *RECWPR
    F(N,JTE)=TD
    RHO (N)=PRESS/(VMIX*F(N,JTE) *GASCON)
    U(N)=UD
    RECRU (N)=1./(RHO (N)*U (N)+TINY)
C O- ADJUSTMENT OF MIXING LENGTH CONSTANT
    IF(KASE.EQ.\sigma) ELCON=ELCON0 (KIND)
C ---------- ADJUSTMENT OF DOWNSTREAM.VELOCITY
    746 UD=UEX(XD-XUEX0)
        F(N,JK)=FJKD
        IF(MODEL.LT.4) GO TO 750
        FJ2D=CD*SQRT (FJKD)/(ELCON* (HEX0-HIN0))
        IF(MODEL.EQ.5) FJ2D=FJ2D*FJKD
        F(N,J2)=FJ2D
        GO TO 750
C NO SYMMETRY AXIS
    743 CONTINUE
    750 GO TO ISTART, (751,80\emptyset)
    751 ASSIGN 80\emptyset TO ISTART
    GO TO 900
C
```



```
C
MOMENTUM SOURCES
C --M------M----M-----M
    800 IF(KEX.NE.2) GO TO 821
        DP=(U (N)-UD)/RECRU (N)
        GO TO 823
C --ー-ー-ー-ー--ー-ー---------------- CONFINED FLOW
C ---ー- CALCULATION OF AREA INCREASE
    821 AFLOWU=AFLOWD
        HDUCID=Ø.
```

```
        IF(KIN.EQ.1) HDUCID=HIND
        ADUCTD=HEXD-HDUCID
        IF(KRAD.EQ.2) ADUCTD=ADUCTD*(XD*SNALFA+HCOS*(HEXD+HDUCID))
        DA=ADUCTD-AFLOWU
        DP=DA/DADP
C
    UBAR=\varnothing.
    DO 824 I=2,NMI
    824 UBAR=UBAR+(BOM(I)*U(I))
        IF(KIN.EQ.2) UBAR=(UBAR-U(1))*PEI/PSIE+U(1)
        UBAR=(UBAR-U (l))*PEI/PSIE+U (1)
        DP=DP+DX*(-TAUI*R(1)-TAUE*R(N)+2.*RME*UBAR)/ADUCTD
        DP=AMINl (DP,.5*DPMAX)
C
    823 CONTINUE
C
    CALL DEMOS
    CALL SOLVE
C
```



```
    9øø CONTINUE
C
C ------------------------ IGNITION SEQUENCE
    IF(ISTEP.GT.5) GO TO 931
    IF(INERT.EQ.1) GO TO 931
    T2=.5/STOICH
    DO 932 I=2,NM1
    F(I,JF)=T2*(ABS (F(I,JP))-F(I,JP))
    932 F(I,JOX)=F(I,JP)+STOICH*F(I,JF)
    931 CONTINUE
C
C
        PRESS=PRESS+DP
        PDGSCN=PRESS/GASCON
        DO 907 I=1,N
        F(I,JOX)=AMAXl (\emptyset.,F(I ,JP)+STOICH*F(I,JF))
        F(I,JPR)=1.-F(I,JF)-F(I,JOX)
        ENTH=F(I,JH)-.5*U(I)**2-HFU*F(I,JF)
        IF(ISTEP.EQ.0) GO TO 940
        CFU(I)=AFUl+AFU2*AVTEM(I)
        COX(I) =AOX1+AOX2*AVTEM(I)+AOX3/(AVTEM(I)**2+TINY)
        CN2(I)=AN2l+AN22*AVTEM(I)+AN23/(AVTEM(I)**2+TINY)
        CH2O(I)=AH2Ol+AH2O2*AVTEM(I)
        CMIX(I)=CFU(I)*AVFU(I)+COX(I)*AVOX(I)+CN2 (I)*FN2(I)+
        l CH2O(I)*FH2O(I)
    GO TO 943
    940 CMIX(I)=CFU(I)*F(I,JF)+COX(I)*F(I,JOX)+CPR(I)*F(I,JPR)
    943 F(I,JTE)=ENTH/CMIX(I)
    IF(F(I,JTE).GT.TMIN) GO TO 941
    IF(I.EQ.I.OR.I.EQ.N) GO TO 941
```

```
        WRITE(6,942) F(I,JTE),I,ISTEP,TMIN
    942 FORMAT(27H *** TEMPERATURE, F(I,JTE)=,1PE10.3,6H AT I=,I4,7H ISTEP
        1=,I5/l7H *** RESET =TMIN=,El0.3,23H *** MAIN CH.9 COMPLETE)
        F(I,JTE)=TMIN
    941 IF(ISTEP.LT.1) GO TO 944
        VMIX=AVFU (I) *RECWFU+AVOX (I) *RECWOX+FN2 (I)/WN 2+FH2O (I)/WH20
        RHO (I)=PDGSCN/(AVTEM (I)*VMIX)
        GO TO 907
    944 VMIX=F(I,JF)*RECWFU+F(I,JOX)*RECWOX+F(I,JPR)*RECWPR
        RHO (I)=PDGSCN/(F(I,JTE)*VMIX)
    907 CONTINUE
        IF(KEX.EQ.1) F(N,JTE)=TWALL
        DPDX=DP/DX
C
C ---------------------------- RADII AND Y'S
        IF(KRAD-2) 901,902,903
C ----- KRAD=1, PLANE
    901 IF(KIN.EQ.2) HIND=ABS(PSII*RECRU(1))
        GO TO 909
C ---- KRAD=2, AXIAL
    9ø2 IF(KIN.NE.2) GO TO 9ø8
        HIND=ABS(PSII*RECRU(1))
        HIND=2.*HIND/
        1 (XD*SNALFA+SQRT((XD*SNALFA)**2+2.*HIND*CSALFA) +TINY)
        GO TO 908
C ----- KRAD=3, POINT SYMMETRY
    903 R(1)=0.
C -_-_ CHANGE ABOVE STATEMENT IF NECESSARY FOR KRAD=3
        GO TO 909
    908 R(1)=XU*SNALFA+HIND*CSALFA
C
    909 CALL dISTAN
C
```



```
C
    IF(KEX.EQ.2) GO TO 1022
    AFLOWD=Y(N)+HIND-HDUCID
    IF (KRAD.EQ.2) AFLOWD=AFLOWD* (XU *SNALFA+HCOS*(Y (N)+HIND+HDUCID))
    DA l=ADUCTD/AFLOWD-1.
C ---------------- DEPENDENCE OF AREA ON PRESSURE
    RECGMP=1./(GAMMA*PRESS)
    DADP=0.
    IF(KIN.EQ.2) DADP=PSII*RECRU (1)*(RECRU(1)*RECRU(1)*RHO(1)-RECGMP)
    SUM=0.
    DPMAX=BIG
    DO 1025 I=2,NM1
    DPMAX=AMIN1 (DPMAX,RHO (I) *U (I) **2)
1025 SUM=SUM+BOM(I)*RECRU(I)* (RECRU (I)*RECRU (I)*RHO (I)-RECGMP)
    DADP=DADP+PE I*SUM
C
ADJUSTMENT OF PNS, U"S ETC.
```

```
            IF(ABS (DAl).LT.l.E-3) GO TO lø22
            DP=DA1*AFLOWD/DADP
            DP=AMINI (DP,.5*DPMAX)
            PRESS=PRESS+DP
            DPDX=DPDX+DP/DX
            RHOFAC=1.+DP*RECGMP
            DO 1927 I=2,NM1
            U(I)=U (I) -DP*RECRU (I)
        1027 RHO(I)=RHO(I)*RHOFAC
            IF(KIN.NE.2) GO TO 1029
            U(1)=U (1)-DP*RECRU (1)
    1029 RHO(1)=RHO(1)*RHOFAC
                            RHO (N)=RHO (N) *RHOFAC
                            RECRU(1)=1./(RHO (1)*U(1)+TINY)
            IF(KIN.NE.2) GO TO 1026
            HIND=ABS (PSII*RECRU(1))
            IF(KRAD.EQ.1) GO TO 1026
            HIND=2.*HIND/
            1 (XD*SNALFA+SQRT((XD*SNALFA)**2+2.*HIND*CSALFA)+TINY)
            R(1)=XU*SNALFA+HIND*CSALFA
    1026 CALL DISTAN
    AFLOWD=Y(N)+HIND-HDUCID
    IF(KRAD.EQ. 2) AFLOWD=AFLOWD*(XU*SNALFA+HCOS*(Y (N)+HIND+HDUCID))
    DA2=ADUCTD/AFLOWD-1.
    1022 CONTINUE
C-----------------------------------------------------------------------------------
```



```
C SEE DATA
    1100 CONTINUE
    IF(XU.LE.XOUT) GO TO 1101
    NSTAT=24
    NPROF=24
    1101 CONTINUE
    CALL DEMO2
    CALL OUTPUT
C
C-----N-N
    IF(ISTEP.EQ.LASTEP) GO TO 1203
    IF(XU.LT.XULAST) GO TO 12ø2
    1203 IFIN=2
    CALL DEMO2
    CALL OUTPUT
    1202 IF(IFIN.EQ.1) GO TO 600
    STOP
    END
```

SUBROUTINE OUTPUT
C／SEPT． 1977 －－GENMIX－T，HTS／77／9，APPXA－－COPYRIGHT，D．B．SPALDING－－ \＄INCLUDE 9．COMA1．FTN
\＄INCLUDE 9，COMB．FTN
C
DIMENSION LAB（25），OUT（25），TITLE $(3,4)$ ， 1XLPLOT（15め），YLAXIS（17），YLPLOT（150，17）， 2XTPLOT（6Ø），YTAXIS（9），YTPLOT $(60,9)$ ， 3DFE（2ø），DFI（2ø），FLUX（2ø），STANE（2ø），STANI（2ø）
C
CHAPTER A
INITIAL DATA FOR PRINTOUT
C
－－ー－ー－ー－ー－ー－ー－ー－－CROSS－STREAM OUTPUT（PROFILE）DATA
C－－－－ASSIGN KOUT＝NO．OF VARIABLES，AND OUTPUT LABELS LAB（K） DATA KOUT／12／
DATA LAB／＂R／Rø＂，＂UVEL＂，＂TEMP＂，＂FUEL＂，＂OXYG＂，＂H2M＂， $1{ }^{\prime \prime} O 2 M^{\prime \prime}$ ，＂H2OM＂，＂N2M＂，＂TEMF＂，＂FUFL＂，＂OXFL＂／
-ー-ー- ASSIGN NYT= NO. OF VARIABLES TO BE PLOTTED
DATA NYT/9/,ITDIM,JTDIM/60,9/
C ---- ASSIGN LABELS FOR PLOT AXES
DATA XTAXIS/"Y(I)"/
DATA (YTAXIS (K) , K=1,9)/"U VEL", "TEMP","FUEL","OXYG","IFAG", "2FAG"
1,"3FAG", "4FAG","5FAG"/
DATA NYL/17/,ILDIM,JLDIM/150,17/
C ——— ASSIGN LABELS FOR PLOT AXES
DATA XLAXIS/"XU"/

C -ーーーーーーーーーーーーーーーーーー TITLE DATA
DATA TITLE/"AXI-","SYMM","ETRI","CAL ","FLOW",
1 "PLAN", "E FL", "OW "," ",
2 "RADI","ALLY","- T","WARD"," FLO", "W",
3 "VARI","ABLE"," CSA","LFA "," "/
C

IF (ISTEP.GT. $\emptyset)$ GO TO 1102
C --- MODIFIED DATA
IF (MODEL.GT.2) GO TO 1øø
KOUT=12
$10 \emptyset$ CONTINUE
WRITE (6,11Ø3) (TITLE (I,KIND), I=1, 5)
1103 FORMAT (1H1, "GENMIX-T, SEPT.1977, TURBULENCE MODELS TEACHING PROGRA
1M, "/" BASED ON APPENDIX A OF HTS REPORT NO. HTS/77/9, FEB. 1977."/

```
2 n COMBUSTION OF HYDROGEN AND AIR IN A JET, ",5A4)
```

C

```
        PRESSl=PRESS
        TEM=.5*(R(1)+R(N))
        EMUl=(VISFU*F(1,JF)+VISOX*F(1,JOX)+VIS'PR*F(1,JPR))*
                SQRT(F(l,JTE))
            REY=PEI/(EMU1 *TEM)
            EQRAT=\emptyset.0
            IF(INERT.NE.1) EQRAT=FLOB*STOICH/(FLOC+TINY)/(OXC+TINY)
            AMACH=SQRT (PEI*UB/(GAMMA*PRESS*TEM))
```

 1
 WRITE (6,1ø13) KASE,IRUN,KIND, KRAD,CSALFA, MODEL, LENGTH,MOD4C1, 1 INERT,NOVEL
1013 FORMAT (IHø,5H KASE,5H IRUN,5H KIND,5H KRAD,7H CSALFA,6H MODEL,
1 7H LENGTH,7H MOD4Cl,6H INERT,6H NOVEL/1X,I4,3I5,F7.3,I6,2I7,2I6)
WRITE (6,1015)NAGE, JAl, JAL, FOLMØ, UMAX,MODFOR, (AGE (L) , L=1, NAGEP1, 2)
1015 FORMAT ($/ 5\left(1 \mathrm{H}^{*}\right), 4 \emptyset \mathrm{HTHE}$ ESCIMO MODEL OF TURBULENT COMBUSTION,
$+5\left(1 H^{*}\right) / 5\left(1 H^{*}\right), 38 \mathrm{HIS}$ INCORPORATED IN THE PRESENT PROGRAM,
$+2 \mathrm{X}, 5\left(1 \mathrm{H}^{*}\right) / 5\left(1 \mathrm{H}^{*}\right), 21 \mathrm{HDEMOGRAPHIC}$ CONSTANTS,5(1H*)/1X,
+37HNAGE JA1 JAL FOLMV UMAX MODFOR /1X,2I4,I6,2X,2F6.2,I4/
+47H AGEl AGE3 AGE5 AGE7 AGE9 AGE11,/6F8.5)
WRITE (6,1018) EMPC1, EMPC2,EMPC 3
$1 \emptyset 18$ FORMAT (/5(1H*),20HBIOGRAPHIC CONSTANTS,5(1H*)/1X,
1 25HEMPC1 EMPC2 EMPC $2 / 1 \mathrm{X}, 3 \mathrm{El} 1 \varnothing$.3)
WRITE (6,1014) OMPOW, (OM(I), I=1,N)
1014 FORMAT(1Hg,18H OM(I), FOR OMPOW=,F6.3/(1X,1P6E11.3))
WRITE $(6,101 \sigma)$
1 HEXG, XHEX 0, AHEX, BHEX,CHEX,
2 HIN $\varnothing, X H I N Ø, A H I N, B H I N, C H I N$,
3 UEXØ,XUEXØ,AUEX,BUEX,CUEX,
4 XEND, XOUT, XULAST, HDIV, AGRAV
$1 \emptyset 10$ FORMAT (1H0,
1 4X,4HHEX , 6X,5HXHEXG,7X,4HAHEX,7X,4HBHEX,7X,4HCHEX/IX,1P5E11.3/
$25 \mathrm{X}, 4 \mathrm{HHIN} 0,6 \mathrm{X}, 5 \mathrm{HXHIN}, 7 \mathrm{X}, 4 \mathrm{HAHIN}, 7 \mathrm{X}, 4 \mathrm{HBHIN}, 7 \mathrm{X}, 4 \mathrm{HCHIN} / 1 \mathrm{X}, 1 \mathrm{P} 5 \mathrm{E} 11.3 /$
3 5X, 4HUEXG,6X,5HXUEXG,7X,4HAUEX,7X,4HBUEX,7X,4HCUEX/1X,1P5E11.3/
4 5X,4HXEND, 7X,4HXOUT,5X,6HXULAST,7X,4HHDIV,6X,5HAGRAV/1X,1P5E11.3)
C
WRITE (6,1б11) UA,UB, UC,UD,TA,TB,TC,TD,
2 PRESS, PREEXP,REY, EQRAT, AMACH, ULIM, PEILIM
1011 FORMAT (1H0, $4 \mathrm{X}, 2 \mathrm{HUA}, 7 \mathrm{X}, 2 \mathrm{HUB}, 7 \mathrm{X}, 2 \mathrm{HUC}, 7 \mathrm{X}, 2 \mathrm{HUD}$,
1 7X, 2HTA , 7X, 2HTB, 7X, 2HTC, $7 \mathrm{X}, 2 \mathrm{HTD} / 1 \mathrm{X}, 8 \mathrm{~F} 9.3 /$
$24 \mathrm{X}, 5 \mathrm{HPRESS}, 3 \mathrm{X}, 6 \mathrm{HPREEXP}, 6 \mathrm{X}, 3 \mathrm{HREY}, 4 \mathrm{X}, 5 \mathrm{HEQRAT}, 4 \mathrm{X}, 5 \mathrm{HAMACH}, 5 \mathrm{X}, 4 \mathrm{HULIM}$,
2 3X,6HPEILIM/IX,1P7E9.2)
IF (MODEL.LE.2) GO TO 11б2
WRITE (6,1012) AK,ELCON,TAUDK,ELEXP,SIGK,SIG2,
2 CMU,CD, FJKA,FJ2A, FJKD,FJ2D
1 ø12 FORMAT (1Hg, 3X, 2HAK,9X,5HELCON, 6X,5HTAUDK, 6X,5HELEXP, 6X, 4HSIGK, 7X,
1 4HSIG2/ 1P6E11.3/
$24 \mathrm{X}, 3 \mathrm{HCMU}, 8 \mathrm{X}, 2 \mathrm{HCD}, 9 \mathrm{X}, 4 \mathrm{HFJKA}, 7 \mathrm{X}, 4 \mathrm{HFJ} 2 \mathrm{~A}, 7 \mathrm{X}, 4 \mathrm{HFJKD}, 7 \mathrm{X}, 4 \mathrm{HFJ} 2 \mathrm{D} / 6 \mathrm{E} 11.3$)

C

IF(MODEL.EQ.4) WRITE (6,1017) CLMOD4,C2MOD4
1017 FORMAT (1H , 3X,6HCIMOD4,5X,6HC2MOD4/2E11.3) IF (MODEL.EQ.5) WRITE $(5,1616)$ C1MOD5,C2MOD5
1016 FORMAT (IH , 3X,6HC1MOD5,5X,6HC2MOD5/2E11.3)
C
C
CHAPTER C -------------- COMPUTE OUTPUT REQUIRED AT EACH STEP
1192 CONTINUE
$\mathrm{UBAR}=\varnothing$.
DO 11Ø I=2,NM1
$116 \mathrm{UBAR}=\mathrm{UBAR}+\mathrm{BOM}(\mathrm{I}) * \mathrm{U}(\mathrm{I})$
UFLUX=PEI*UBAR
C
NFLAST=JAL+3
DO $115 \mathrm{~J}=\mathrm{I}$, NFLAST
FLUX(J) $=\varnothing$.
DO 116 I $=2$,NMI
$116 \operatorname{FLUX}(\mathrm{~J})=\operatorname{FLUX}(\mathrm{J})+\mathrm{BOM}(\mathrm{I}) * F(\mathrm{I}, \mathrm{J})$
115 FLUX(J)=PEI*FLUX(J)
C
DO $117 \mathrm{~J}=\mathrm{I}, \mathrm{NF}$
DFI (J) =FLUX (J)/PEI-F (1,J)
$117 \operatorname{DFE}(\mathrm{~J})=\operatorname{DFI}(\mathrm{J})+F(1, \mathrm{~J})-F(N, J)$
UFLUX=UFLUX-PSIE*U(N)+U(I)*PSII
FLUX (JH) =FLUX (JH)-PSIE*ENTHD+PSII *ENTHA
FLUX (JP) =FLUX (JP)-PSIE*PHID+PSII*PHIA
FLUX (JF) =FLUX (JF)-PSIE*FUD+PSII *FUA
PRESSD=PRESS/PRESSI-1.
C
C ---- ASSIGN VALUES FOR DOWNSTREAM PLOT
IPRIPL=1ஏ
XLPLOT (ISTEP) $=X U$
YLPLOT (ISTEP, I) $=\mathrm{U}$ (IPRIPL)
YLPLOT (ISTEP, 2) $=$ (IPRIPL, JTE)
YLPLOT (ISTEP, 3) =F (IPRIPL, JF)
YLPLOT (ISTEP, 4) =F (IPRIPL, JOX)
IF (KIND-I) 111,111,114
111 YLPLOT (ISTEP,5) =R (N)
GO TO 113
114 YLPLOT (ISTEP,5) $=\mathrm{Y}(\mathrm{N})$
113 CONTINUE
YLPLOT (ISTEP, 6) =R (I)
YLPLOT (ISTEP, 7) =PEI
YLPLOT (ISTEP, 8) =RME
YLPLOT (ISTEP,9) =FLUX (JF)
YLPLOT (ISTEP,IØ) =DPDX
YLPLOT (ISTEP,11)=RATE
YLPLOT (ISTEP,12)=FACE
YLPLOT (ISTEP, 13) $=$ F (IPRIPL, JAI)

```
            YLPLOT (ISTEP,14)=F(IPRIPL,JA2)
            YLPLOT(ISTEP,15)=F(IPRIPL,JA3)
            YLPLOT (ISTEP,16)=F(IPRIPL,JA4)
            YLPLOT(ISTEP,17)=F(IPRIPL,JA5)
    1105 CONTINUE
C
C ----- TESTS FOR PRINTOUT
C ----- IPRINT=1 GIVES SINGLE (STATION) VARIABLES,
C IPRINT=2 ADDS THE ARRAY (PROFILE) VARIABLES.
C IPRINT=3 ADDS THE CROSS-STREAM PLOTS.
        IPRINT=\emptyset
        IF(MOD(ISTEP,NSTAT).EQ.\emptyset) IPRINT=1
        IF(MOD(ISTEP,NPROF).EQ. Ø) IPRINT=2
        IF(ISTEP.EQ.g) GO TO 1g2ø
        IF(MOD(ISTEP,NPLOT).EQ.D
        1 .OR.ISTEP.EQ.JUSTEX.OR.ISTEP.EQ.JUSTIN
        2 .OR.ITEST.NE.1.OR.IFIN.NE.1) IPRINT=3
    1020 IF(IPRINT.EQ.0) RETURN
C
CHAPTER D -------------------------------- STATION VARIABLES
            WRITE (6,1030) XU,ISTEP,
            l JUSTIN,JUSTEX,DX,PRESSSD,
            2 KIN,KEX,DXY,DPDX,
            3 PSII,PSIE,DXRE,PEI,
            4 RMI,RME,DXINC,YREF1,
            5 R(l),R(N),DXPSI, YREF2,
            6 \text { ELCON,}
            7 UFLUX,
            8 (FLUX(J),J=1,NF)
1030 FORMAT(1H0,5H*** ,3HXU=,1PE10.3,2X,6HISTEP=,I5/
    1 2X,7HJUSTIN=,I10,1X,7HJUSTEX=,I10,5X,3HDX=,1PE10.3,
    1 8H PRESSD=,E10.3/
    2 5X,4HKIN =,I10,4X,4HKEX=,I10,4X,4HDXY=,Elg.3,3X,5HDPDX=,El\varnothing.3/
    3 4X,5HPSII=,Elø.3,3X,5HPSIE=,E10.3,3X,5HDXRE=,El0.3,
    3 4X,4HPEI=,Elø.3/
    4 5X,4HRMI=,Elø.3,4X,4HRME=,El0.3,2X,6HDXINC=,El0.3,2X,6HYREFl=,
    4 ElO.3/
    5 4X,5HR(1)=,El0.3,3X,5HR (N ) =, E10.3,2X,6HDXPSI=,E10.3, 2X,6HYREF2=,
    5 El0.3/
    6 3X,6HELCON=,Elø.3/
    7 3X,6HUFLUX=,E10.3/
    8 lX,8HFLUX(J)=,(5Ell.3))
C
    IF(ISTEP.EQ.0) GO TO 1042
    UREF=UBAR
    RUREF=PEI/((R(1)+R(N))*.5*Y(N))
    URUREF=1./(UREF*RUREF)
C
        IF(KIN-2) 1061,1062,1063
1061 TAUID=TAUI*URUREF
    DO 1025 J=1,NF
```

```
    1025 STANI (J)=(RJTOTI (J)-F(1,J)*RMI)/(R(1)*DFI (J)*RUREF+TINY)
    WRITE (6,1ø29) TAUID,(STANI (J),J=1,NF)
    1029 FORMAT(1H ,6HTAUID=,1PEl0.3,10H STANI(J)=,(4Ell.3))
        GO TO 1063
    1052 WRITE (6,1069) FACI,RATI
    1069 FORMAT(1H ,6H FACI=,1PE10.3,6H RATI=,E10.3)
C
    1063 IF(KEX-2) 1981,1082,1644
    1081 TAUED=TAUE*URUREF
        DO 1027 J=1,NF
    1g27 STANE (J)=(RJTOTE (J)-F (N,J)*RME)/(R (N)*DFE (J)*RUREF+TINY)
    WRITE (6,1028) TAUED,(STANE (J),J=1,NF)
    1028 FORMAT(1H ,5HTAUED=,1PEl0.3,10H STANE (J)=,(4Ell.3))
        GO TO 1044
    1082 WRITE(6,1g89) FACE,RATE
    1089 FORMAT(1H ,6H FACE=,1PE10.3,6H RATE=,El0.3)
    GO TO 1042
    1044 WRITE (6,1047) DA1,DA2
    1g47 FORMAT(5H DA1=,1PE10.3,5H DA2=,E10.3)
C
CHAPTER E ------------------------------- CROSS-STREAM PROFILES
    1042 IF(IPRINT.EQ.1) GO TO 1050
        YN=Y(N)
        WRITE (6,1199) YN
    1199 FORMAT (6H Y(N)=,1PE10.2)
C
    WRITE (6,1099) (LAB(K),K=1,6)
    DO lø91 I=1,N
    OUT (1)=Y(I)/HEXø
    OUT (2)=U (I)
    OUT (3)=AVTEM(I)
    OUT (4)=AVFU (I)
    OUT (5)=AVOX (I)
    OUT (6)=FMFU (I)
C ---------------------------NITE PROFILES
    1091 WRITE (6,1098) I, (OUT (K),K=1,6)
    IF(KOUT.LE.6) GO TO 1093
    WRITE (6,1099) (LAB (K),K=7,KOUT)
    DO 1092 I=1,N
    OUT (7)=FMOX (I)
    OUT (8)=FMH2O (I)
    OUT (9)=FMN2 (I)
    OUT (10)=TFLU(I)
    OUT(11)=FUFLU(I)
    OUT (12)=OXFLU(I)
    1092 WRITE (6,1098) I,(OUT (K),K=7,KOUT)
    1093 CONTINUE
    IF(ISTEP.LT.5) GO TO 2øø3
    WRITE (6, 2ø01) (J,J=1,NAGE)
    20ø1 FORMAT(/5X,5H*****,32HPOPULATION DISTRIBUTION OF FOLDS,
        l 5H*****/2X,3H I ,7H FRAT,3X,5(7H PA (,I2,2H) )/
```

```
            l 15X,5(7H PA (,I2,2H) ))
            DO 20ø0 I=2,NMl
    20\emptyset\emptyset WRITE(6,2002) I,PA\emptyset(I)/RHO(I),(PA(I,J),J=1,NAGE)
    20ø2 FORMAT(1X,I3,IP6EII.3/15X,1P5E11.3)
            IF(IPDF.NE.1) GO TO 2øø3
            WRITE (6,2007)
    2007 FORMAT(lHl,5X,5H*****,30HPDF VALUES OF TEMPERATURE
            l 5H*****)
            WRITE (6,2004) (K,K=1,NPDFM1)
    2004 FORMAT(/2X,3H I ,5(7H PDF(,I2,2H) )/
            1 5X,5(7H PDF( ,I2,2H) ))
                DO 20Ø5 I=2,NMI
    2005 WRITE (6,20\emptyset6) I,(AVPDF(I,K),K=1,NPDFM1)
    2006 FORMAT(1X,I3,1P5EII.3/4X,1P5E11.3)
    20ø3 CONTINUE
C
C ----- ASSIGN CROSS-STREAM PLOTS
    DO 1073 I=1,N
    XTPLOT (I) =Y (I)
        YTPLOT (I,I)=U(I)
        YTPLOT (I, 2)=F(I,JTE)
        YTPLOT (I, 3)=F (I,JF)
        YTPLOT (I, 4)=F(I,JOX)
        IF (MODEL.LE.2) GO TO IØ73
        YTPLOT (I, 5)=EMU (I)
        YTPLOT (I, К)=F(I,JEL)
        YTPLOT (I,7)=F(I,J2)
        YTPLOT (I, 8)=F (I,JK)
C YTPLOT (I,9)=OUT (11) ABOVE
    1098 FORMAT(1H ,I3,1P12E1Ø.2)
    1099 FORMAT(1HØ,3H I,12(2X,A8))
    1073 CONTINUE
C
    WRITE (6,1096) XU,ISTEP
    1096 FORMAT(19H1CROSS-STREAM PLOT,,4H XU=,1PE10.3,7H ISTEP=,I4)
C
```



```
    1050 IF(IFIN.EQ.l) RETURN
            WRITE (6,112) ISTEP,LASTEP,XU,XULAST,IFIN
        112 FORMAT (14HØTERMINATED AT//7H ISTEP=,I5,8H LASTEP=,I5,
            1 4H XU=,1PE11.3,8H XULAST=,E11.3,6H IFIN=,I3)
                IF(ILPLOT.EQ.I) RETURN
C
C --------------------- DOWNSTREAM PLOT OUTPUT
        WRITE (6,1g54) XU,ISTEP
    l054 FORMAT(18H1DOWN-STREAM PLOT,,4H XU=,1PE10.3,7H ISTEP=,I4)
        RETURN
C
        END
```

SUBROUTINE DEMO
SINCLUDE 9,COMAI.FTN
SINCLUDE 9,COMB.FTN

ENTRY DEMOC

DO $3 \mathrm{~L}=1$, NAGE
DAGE (L) =AGE (L+1)-AGE (L)
$\operatorname{AGEC}(\mathrm{L})=\operatorname{AGE}(\mathrm{L})+\varnothing .5 * \operatorname{DAGE}(\mathrm{~L})$
3 RECDA (L) =1./DAGE (L)
AGE 2=AGE (2)
JAlP1=JAl +1
JA1MI $=$ JAl -1
RETURN

ENTRY DEMOS


```
    42\emptyset SUM2=SUM2+RHO(I)*OM(I)*PA\emptyset(I)*XM\emptyset(I)
        ALFAl=RMI/SUMI
        ALFA2=-RME/SUM2
        DO 421 I=2,NMl
    421 PA0(I)=RHO(I)*(ALFAl*(1.-OM(I))+ALFA2*OM(I))
    GO TO 49
C-----------VELOCITY GRADIENT RATE
    43 DO 430 I=2,NMl
        DUDYB (I)=ABS (U (I+l)-U(I-l))/(Y(I+l)-Y(I-l))
    430 SUMI=SUMI+RHO(I) *DUDYB (I)*PAD(I) *XMD (I)
        ALFAl = (RMI-RME)}/\textrm{SUMI
        DO 431 I=2,NMl
    431 PA@(I)=RHO(I)*ALFAl*DUDYB (I)
        GO TO 49
C----------VELOCITY PROFILE DISTRIBUTION
    44 DO 440 I=2,NMl
    440 SUMl=SUMl+RHO(I)*U(I)*PAØ (I)*XMØ (I)
        ALFAI=(RMI-RME)/SUMI
        DO 441 I=2,NM1
    41 PA\emptyset(I)=RHO(I)*ALFAl*U(I)
        GO TO 49
C----------THETA DISTRIBUTION RATE
    45 OMSTAR=\emptyset.5
        IF(ISTEP.GT.1) OMSTAR=RMI/(RMI-RME+TINY)
        TEMI=(F(1,JH)-. 5*U (1)**2)/CPR (1)
        TEMIP1=(F(2,JH)-.5*U(2)**2)/CPR (1)
        TTI=(TD-TEMI)/(TD-TA)
        TTIPl=(TD-TEMIPl)/(TD-TA)
        SUMM0=a.
        DO 450 I=2,NMl
        TTIMl=TTI
        TTI=TTIPI
        TEMIMI=TEMI
        TEMI=TEMIPI
        TEMIPl=(F(I+1,JH)-. 5*U (I+1)**2)/CPR (1)
        TTIPl=(TD-TEMIPI)/(TD-TA)
        TPRIME=\emptyset.735*F(I,JEL)*ABS (TTIPI-TTIMI)/(Y(I+1)-Y(I-l))
        TPRIME=AMIN1(TPRIME,1.-TTI,TTI) +TINY
C IF(OM(I).LT.OMSTAR) GO TO IG
        YSTAR=Y(I)/Y (N)
        IF(YSTAR.LT.OMSTAR) GO TO lg
        TREENG=TTI+TPRIME
        TFRESH=\emptyset.
        GO TO ll
        10 TREENG=ABS (TTI-TPRIME)
        TFRESH=1.
        11 XM\emptyset(I)=(TREENG-TTI)/(TREENG-TFRESH)
    45ø SUMl=SUMl+RHO(I) *XM\emptyset(I) *PA\emptyset(I)
        ALFAl=(RMI-RME)/(FOLMD*SUMl)
        DO 451 I=2,NMI
    451 PAØ(I)=RHO(I)*ALFAl*XM0(I)
```


49 CONTINUE

RETURN

ENTRY DEMO2

IF (IFIN.EQ.2) GO TO 50
IF (ISTEP.LE.1.OR.MOD (ISTEP,NSTAT).NE.ஏ) GO TO 70
50 DO $51 \mathrm{~J}=1$, NAGE
DO $51 \mathrm{I}=2$, NM1
$P A(I, J)=F(I, J+J A I-1)$
51 CONTINUE
70 CONTINUE
RETURN
END

SUBROUTINE BIOG
\$INCLUDE 9,COMA1.FTN \$INCLUDE 9,COMB.FTN

ENTRY BIOC

C---------THE BIOGRAPHIC ANALYSIS IS PERFORMED
C----------IN THIS SUBROUTINE
C---------THE FOLLOWING "OPEN" STATEMENT IS VALID FOR
C----------PERKIN-ELMER $322 \emptyset$ COMPUTER ONLY.IT SHOULD
C----------BE MODIFIED IF OTHER MACHINE IS USED.
C----------THE RECORD LENGTH (RECL) SHOULD BE EQUAL TO
C---------OR GREATER THAN THE NUMBER OF ELEMENTS IN
C----------THE ARRAY (TO BE STORED)MULTIPLIED BY FOUR.
OPEN (7,FILE="FOLD", ACCESS="DIRECT", STATUS="UNKNOWN",
1 RECL=640,COUNTBY="RECORD",FORM="UNFORMATTED")
$\mathrm{PI}=3.141596$
NDIFOM=2ø
FSTOIC $=0.6282$
DTST=2276.
TST=DTST
PDGSCN=PRESS/GASCON
RHOAIR=PDGSCN*WPR/TD
RHOFUL=PDGSCN*WFU/TA
WOXPR $=($ WOX-WPR $) \star \not \approx .232$
WFUPR=WFU-WPR
FSI=1.-FSTOIC
VISDPR=VISMIX/PRLAM
TWODPI $=2 . /$ PI
PHID=OXD-FUD*STOICH
T2=ø.5/STOICH
T3=1./(PHIB-PHID+TINY)
T4=-PHID*T3
OXDI=1. -OXD
RETURN
ENTRY BIOS
OMSTAR=ø
IF (ISTEP.GT.1)OMSTAR=RMI/(RMI-RME+TINY)
C--------OMEGA-STAR DEVIDES THE SHEAR LAYER INTO TWO PARTS
C---------OF DIFFRENT ENTRAINED FRESH MASS . IT HAS TO BE CALCULATED
C----------IN CONSISTENT MANNER WITH FOLD FORMATION RATE.
FFI $=-(F(1, J P)-.232) /($ PHID - PHIB $)$
FFIPI $=-($ F $(2, J P)-0.232) /($ PHID-PHIB)
C----- LOOP FOR ALL LAYER GRID POINTS
$Y 2=Y(2)$
ISTEPI=ISTEP+1
DO $110 \mathrm{I}=1, \mathrm{~N}$
DO 110 $K=1, N P D F$
$\operatorname{AVPFA}(\mathrm{I}, \mathrm{K})=\emptyset$.

```
    AVPDF(I,K)=\emptyset.
    110 CONTINUE
    DO l\emptyset\emptyset I=2,NMI
C------ CALCULATION OF F- PRIME
    ELI=AMAXI (Y2,F(I,JEL))
    FFIMl=FFI
    FFI=FFIP1
    FFIPl=-(F(I+1,JP)-0. 232)/(PHID-PHIB)
    FPRIME=EMPCI*ELI*ABS (FFIPI-FFIMI)/(Y(I+1)-Y(I-I))
    IF(FPRIME.GT.\emptyset.\emptyset\emptysetl.AND.FFI.EQ.1.) FFI=Ø.5*(FFIP1+FFIMI)
    IF(FPRIME.GT.\emptyset.\emptyset\emptyset1.AND.FFI.EQ.\emptyset.) FFI=\emptyset.5*(FFIPI+FFIMI)
    FPRIME=AMINI (FPRIME,1.-FFI)+TINY
    IF(OM(I).LT.OMSTAR) GO TO 10
C------ DETERMINATION OF FRESH F AND REENGULFED F
    FFRESH=\emptyset.
    FREENG=FFI+FPRIME
    RHOFSH=RHOAIR
    GO TO 11
    1\emptyset FREENG=ABS (FFI-FPRIME)
    FFRESH=1.
    RHOFSH=RHOFUL
C------ DETERMINATION OF M\emptyset VALUE
    11 FOLMg=(FREENG-FFI)/(FREENG-FFRESH+TINY)
    XMO (I) = FOLMD
    AVRATl(I)=\emptyset.
    AVRAT2(I)=\emptyset.
    AVFU(I)=\emptyset.
    AVOX(I)=\emptyset.
    AVPR (I)=0.
    AVTEM(I)=\emptyset.
    AVTEMS (I)=\emptyset.
    AVFUS (I)=0.
    AVOXS (I)=0.
    AVPRS (I)=0.
    RBURN (I)=\emptyset.
    SUMPDF(I)=0
    AVFFIS (I)=0.
    POPAGE (I)=0.
    CXFOR=0. 5* (UMAX+UMIN)/UMAX
    DUDYB (I)=ABS (U (I+l)-U (I-I))/(Y(I+l)-Y(I-I))
C-~--- DETERMINATION OF FOLD DIVISION
C------DENSITY OF REENGULFED MASS
    IF(FREENG.GE.FSTOIC) GO TO 17
C------AIR SIDE
    RHORE=PDGSCN*(WOXPR*(FSTOIC-FREENG)/FSTOIC+WPR)/(TD+FREENG/FSTOIC*
        l
                            (TST-TD))
            GO TO 19
C--m---FUEL SIDE
    17 RHORE=PDGSCN* (WFUPR* (FREENG-FSTOIC)/FSI+WPR)/(TA+(I.-FREENG)/FSI*
        l
                            (TST-TA))
    19 CONTINUE
```

```
C
C----- FOLD DISTANCES MEASURED FROM THE FRESH SIDE
        HFOL=EMPC 2*ELI
        HDIVF=RHORE*FOLM0*HFOL/(RHOFSH+RHORE*FOLM0-RHOFSH*FOLM0)
        HFRESH=HDIVF
        RHODIV=RHOFSH
        HREENG=HFOL-HFRESH
        OMDI VF=FOLM0
C---------LEFT PART OF THE FOLD HAS THE HIGHER F-VALUE
    IF(FFRESH.EQ.1.) GO TO 24
    RHODIV=RHORE
    HDIVF=HFOL-HDIVF
    HFRESH=HFOL-HDIVF
    HREENG=HFOL-HFRESH
    OMDIVF=1.-FOLM0
    24 RHOAV=(RHOFSH*HFRESH+RHORE*HREENG)/HFOL
    IF(FREENG.LE.FSTOIC) GO TO 25
    TREENG=TA+(1.-FREENG)/FSl*(TST-TA)
    TAV=(RHOFSH*TA*HFRESH+RHORE*TREENG*HREENG)/(RHOAV*HFOL)
    GO TO 26
    25 TREENG=TD+FREENG/FSTOIC* (TST-TD)
    TAV=(RHOFSH*TD*HFRESH+RHORE*TREENG*HREENG)/(RHOAV*HFOL)
    26 DIFCOF=VISDPR*SQRT(TAV)/RHOAV
    RSTR=EMPC3*DUDYB (I) +TINY
    OMDIVF=HDIVF*RHODIV/(HFOL *RHOAV)
    ADIF=DIFCOF/(2.*HFOL*HFOL)
C----------STORE THE FOLD CHARACTERISTICS AT BIRTH PLACE
C-----------FOR EACH POINT ACROSS THE JET------------------
    ARRAY (I, 1)=HFOL
    ARRAY (I, 2) =OMDIVF
    ARRAY(I, 3)=FFRESH
    ARRAY (I, 4)=FREENG
    ARRAY (I,5)=RSTR
    ARRAY (I, 6)=FFI
    ARRAY (I, 7) =ADIF
    ARRAY (I, 8)=U(I)
    100 CONTINUE
    XM\varnothing (1) =XM0 (2)
    XMD(N)=XMD (NM1)
    IF(KIN.NE.3) GO TO 10lø
    DO 1ø1 JJ=1,8
    ARRAY (1,JJ)=ARRAY (2,JJ)
    101 CONTINUE
    GO TO 102ø
1010 ARRAY (1,1)=ARRAY (2,1)
    ARRAY (1, 2)=ARRAY (2,2)
    ARRAY (1,3)=1.
    ARRAY (1,4)=1.
    ARRAY (1,5) =ARRAY (2,5)
    ARRAY (1, 6)=1.
    ARRAY (1,7)=ARRAY (2,7)
```

```
    ARRAY (1, 8)=ARRAY (2,8)
    102\emptyset ARRAY (N,1)=ARRAY (NM1,1)
    ARRAY (N, 2)=ARRAY(NM1, 2)
    ARRAY (N, 3)=\emptyset.
    ARRAY (N,4)=0.
    ARRAY (N,5)=ARRAY (NMI,5)
    ARRAY (N,6)=\emptyset.
    ARRAY (N,7)=ARRAY (NM1, 7)
    ARRAY (N, 8)=UD
    DO 1030 I=2.NM1
    FVAL (I) =- (F(I,JP)-0. 232)/(PHID-PHIB)
    I030 FN2(I)=OXD1*(1. -FVAL (I))
C----------STORE THE FOLD INFORMATION INTO THE TAPE
C---m-----THE MASS STORAGE FACILITIES IS EMPLOYED----------
C---------HERE TO REDUCE THE IN-CORE STORAGE--------------
    WRITE(7,REC=ISTEP1) ARRAY
    XP(ISTEPI)=XD
    KBORN=ISTEP1
C----------LOOP ON AGES STARTS NOW------------
    DO 10Ø0 IA=1,NAGE
    IF(IA.GT.1) GO TO 8\emptyset\emptyset
    IBORNI=1
    GO TO 805
    80\emptyset IBORN1=1
    XFOR=XD* (1. -AGEC (IA))
    KSUM=ISTEPI+1
C---------SEARCH FOR THE BIRTH PLACE OF FOLDS AT
C---\infty----PARTICULAR AGE IN THE POPULATION ----------------
    DO 8@l KK=1,ISTEPl
    K=KSUM-KK
    IF(XFOR.GT.XP(K)) GO TO 802
    801 CONTINUE
    802 KBORN=K+1
C----------READ THE REQUIRED INFORMATION FROM THE TAPE-------
    IF (KBORN.LT.KBORNP) READ (7, REC=KBORN) ARRAY
    805 KBORNP=KBORN
    DO 90Ø I=2,NM1
    RATEAI (I)=\emptyset.
    RATEA2(I)=0.
    FUAV (I)=\emptyset.
    OXAV (I)=0.
    PRAV (I)=\emptyset.
    TEMAV (I)=\emptyset.
    TEMAVS (I)=Ø.
    FUAVS (I)=0.
    OXAVS (I)=\emptyset.
    PRAVS (I)=Ø.
    FFIAVS (I)=0.
    DO 903 L=2,N
    IF(FVAL(I).GT.ARRAY(L,6)) GO TO 904
    903 CONTINUE
```

904 IBORN=L-IBORNI
C------THE LINEAR INTERPOLATION PROCEDURE IS USED HERE
C--------TO DETERMINE THE FOLD CHARACTERISTICS AT BIRTH PLACE---FACTOR = (ARRAY (IBORN, 6) -FVAL (I)) /(ARRAY (IBORN, 6) 1 -ARRAY (IBORN+1,6) + TINY) HFOL $=(1,-$ FACTOR $) *$ ARRAY (IBORN, 1) +FACTOR * 1 ARRAY (IBORN+1,1) OMDIVF $=(1,-$ FACTOR $) * \operatorname{ARRAY}(I B O R N, 2)+F A C T O R *$ 1 ARRAY (IBORN+1,2) FFRESH=(1.-FACTOR) *ARRAY (IBORN, 3) +FACTOR* 1 ARRAY (IBORN+1,3) FREENG $=(1 .-$ FACTOR $)$ *ARRAY (IBORN , 4) +FACTOR* 1 ARRAY (IBORN+1, 4) $\operatorname{RSTR}=(\operatorname{ARRAY}(I B O R N, 5)+E M P C 3 * D U D Y B(I)) / 2$. ADIF $=(1 .-$ FACTOR $) * A R R A Y(I B O R N, 7)+F A C T O R * ~$
1 ARRAY (IBORN+1,7)
ADIF=ADIF/RSTR
FFI=FVAL (I)
UBORN $=(1 .-$ FACTOR) *ARRAY (IBORN, 8) +FACTOR *ARRAY (IBORN+1, 8)
C---------THE "PROFILE" METHOD IS EMPLOYED HERE TO CALCULATE
C---------THE DIFFUSION PROCESS INSIDE EACH FOLD.
C----------THE EVOLUTION OF THE SINUSOIDAL PROFILE IS
C----------DEVIDED INTO THREE SEPARATE STAGES.
C---------CALCULATION OF TIME SEPARATING THREE STAGES FBARI=ø.5* (FFRESH+FREENG)
FAMP $=\emptyset .5 *$ ABS (FFRESH-FREENG)
Fl=AMAX1 (FFRESH, FREENG)
F2=AMIN1 (FFRESH, FREENG)
TERM=AMIN1 (OMDIVF, 1. -OMDIVF) **2
RECAP $=1 . /($ ADIF*PI $+1 . E-3 \emptyset$)
TIME1 = (FBAR1-TWODPI*FAMP-F2)*TERM*RECAP/(FAMP+1.E-30)
TIME2 $=(.25-$ TERM $) *$ RECAP + TIME1
UFOLD $=\emptyset .5^{*}$ (UBORN + U (I))
AGEDIM=AGEC (IA) *XD/UMIN ARGUM=AMIN1 (2.*RSTR*AGEDIM, 150.)
AGEND=EXP (ARGUM)-1.
IF (TIMEI. LT.AGEND) GO TO $2 \emptyset$
C------THE DIFUSION IN FOLD STOPS DURING THE FIRST STAGE
ISTAGE=1
DELAJ2=ADIF*FAMP*PI*AGEND/(FBAR1-TWODPI *FAMP-F2+1.E-30)
DELAJ=SQRT (DELAJ2)
OMLEFT=OMDIVF-DELAJ
OMRIGT=OMDIVF+DELAJ
DDELAJ=DELAJ*2./FLOAT (NDIFOM)
IF(F1.GT.FSTOIC) GO TO $1 \boxminus 2$
FUL=ø.
OXL=OXD*(FSTOIC-F1)/FSTOIC
PROL $=1$. - FUL $-O X L-(1,-F 1) * O X D 1$
ENTHL=ENTHA*F1+ENTHD* (1.-F1)
CPBORN=FUL *CFU (I) +OXL*COX(I) +(1.-F1)*OXD1*CN2 (I) +
1 (1.-FUL-OXL-(1.-F1)*OXD1)*CH2O(I)

TEML= (ENTHL-FUL*HFU)/CPBORN
GO TO 103
102 FUL=FUA* (Fl-FSTOIC)/ESI
OXL= 0 。
PROL=1. $-F U L-O X L-(1 .-F I) * O X D I$
ENTHL=ENTHA*E1+ENTHD* (1.-E1)
CPBORN = FUL *CFU (I) +OXL *COX (I) + (1.-FI) *OXD1*CN2 (I) +
1 (1.-FUL-OXL-(1.-FI)*OXDI)*CH2O(I)
TEML= (ENTHL-FUL *HFU)/CPBORN
103 CONTINUE
FUAV (I) =FUAV (I) +FUL *OMLEFT
OXAV (I) =OXAV (I) +OXL *OMLEFT
PRAV (I) =PRAV (I) +PROL*OMLEFT
TEMAV (I) =TEMAV (I) +TEML *OMLEET
TEMAVS (I) =TEMAVS (I) +TEML*TEML *OMLEFT
FUAVS (I) =FUAVS (I) +FUL *FUL *OMLEFT
OXAVS (I) =OXAVS (I) +OXL *OXL *OMLEFT
PRAVS (I) =PRAVS (I) +PROL *PROL *OMLEFT
FFIAVS (I) =FFIAVS (I) +FI*FI*OMLEFT
IF (F2.GT.FSTOIC) GO TO 106
$F U R=\emptyset$ 。
OXR $=$ OXD* (FSTOIC-F2) /FSTOIC
$\mathrm{PROR}=1 .-\mathrm{FUR}-O X R-(1 .-F 2) * O X D I$
ENTHR $=\mathrm{ENTHA} * \mathrm{~F} 2+E N T H D^{*}(1 .-E 2)$
CPBORN=FUR*CFU(I) +OXR*COX (I) + (I. - F2) *OXDI*CN 2 (I) +
1 (1.-FUR-OXR-(1.-F2)*OXD1)*CH2O(I)
TEMR= (ENTHR-EUR *HFU) /CPBORN
GO TO 107
106 FUR=FUA* (F2-FSTOIC)/ESI
OXR=0
PROR=1. $-\mathrm{FUR}-O X R-(1 .-\mathrm{F} 2)$ *OXD1
ENTHR =ENTHA*F2+ENTHD* (1. -F 2)
CPBORN=FUR *CFU(I) +OXR *COX (I) + (1.-F 2) *OXD 1 *CN $2(I)+$
1 (1.-FUR-OXR-(1.-F2)*OXDI)*CH2O(I)
TEMR= (ENTHR-EUR*HFU)/CPBORN
107 CONTINUE
OMRI=1. -OMRIGT
FUAV (I) =FUAV (I) +FUR*OMRI
OXAV (I) =OXAV (I) +OXR *OMRI
$\operatorname{PRAV}(I)=\operatorname{PRAV}(I)+P R O R * O M R I$
TEMAV (I) =TEMAV (I) +TEMR*OMRI
TEMAVS (I)=TEMAVS (I) +TEMR*TEMR*OMRI
FUAVS (I) =FUAVS (I) +FUR *FUR *OMRI
OXAVS (I) =OXAVS (I) +OXR *OXR *OMRI
PRAVS (I) =PRAVS (I) P PROR *PROR *OMRI
FFIAVS (I) =FFIAVS (I) +F2*F2*OMRI
DENOMI = 2. *DELAJ/PI
DO 108 IO=1,NDIFOM
OMA (IO) =DDELAJ * $0.5 *(F L O A T(I O-I)+F L O A T(I O))$
$F S R(I O)=F B A R 1+F A M P * S I N((D E L A J-O M A(I O)) /(D E N O M 1+1 . E-3 Q))$
IF (FSR (IO).GT.ESTOIC) GO TO 104

```
    FUM(IO)=Ø.
    OXM(IO)=OXD*(FSTOIC-FSR(IO))/FSTOIC
    PROM(IO)=1. -FUM(IO)-OXM(IO)-(1. -FSR(IO))*OXD1
    ENTHFO(IO)=ENTHA*FSR(IO)+ENTHD*(1.-FSR(IO))
    CPBORN=FUM(IO)*CFU(I)+OXM(IO)*COX(I)+(I.-FSR(IO))*OXD1*CN2(I)+
    l (1. -FUM(IO)-OXM(IO)-(1.-FSR(IO))*OXDI)*CH2O(I)
    TEMM (IO)= (ENTHFO(IO)-FUM (IO)*HFU)/CPBORN
    GO TO 105
    1ø4 FUM(IO)=FUA*(FSR(IO)-FSTOIC)/FSI
    OXM(IO)=\emptyset.
    PROM(IO)=1. - FUM(IO) -OXM(IO)-(1.-FSR(IO))*OXD1
    ENTHFO(IO)=ENTHA*FSR(IO)+ENTHD*(1.-FSR(IO))
    CPBORN=FUM(IO)*CFU(I)+OXM(IO)*COX(I)+(l. -FSR(IO))*OXDl*CN2(I)+
    l (1.-FUM(IO)-OXM(IO)-(1.-FSR(IO))*OXDI)*CH2O(I)
    TEMM (IO)=(ENTHFO(IO)-FUM (IO)*HFU)/CPBORN
    l05 CONTINUE
    FUAV (I) =FUAV (I)+FUM (IO) *DDE LAJ
    OXAV (I) =OXAV (I)+OXM (IO) *DDE LAJ
    PRAV (I) =PRAV (I)+PROM(IO)*DDELAJ
    TEMAV (I)=TEMAV (I)+TEMM (IO) *DDELAJ
    TEMAVS (I)=TEMAVS (I)+TEMM (IO) *TEMM (IO)*DDELAJ
    FUAVS (I)=FUAVS (I)+FUM (IO)*FUM (IO)*DDELAAJ
    OXAVS (I) =OXAVS (I)+OXM (IO)*OXM (IO) *DDELAJ
    PRAVS (I)=PRAVS (I) +PROM (IO) *PROM (IO)*DDELAJ
    FEIAVS (I)=FFIAVS (I)+FSR (IO) *FSR (IO) *DDELAJ
    l08 CONTINUE
    GO TO 5\emptyset
    2Ø IF(OMDIVF.EQ.ø.5) GO TO 30
    IF(TIME2.LT.AGEND) GO TO 30
C----------THE DIFFUSION IN FOLD STOPS DURING THE SECOND STAGE
    DELAJ2=TERM+ADIF*PI*(AGEND-TIME1)
    DELAJ=SQRT(DELAJ2)
    FAMP=ABS (FFRESH-FREENG) *SQRT (TERM)/(2.*DELAJ+1.E-3\emptyset)
    DDELAJ=2.*DELAJ/FLOAT (NDIFOM)
    DENOM2=2.*DELAJ/PI
    IF (OMDIVF.LT.g.5) GO TO 22
    ISTAGE=2
    OMLEFT=1.-2.*DELAJ
    IF(FI.GT.FSTOIC) GO TO 202
    FUL=\emptyset.
    OXL=OXD*(FSTOIC-F1)/FSTOIC
    PROL=1.-FUL-OXL-(1.-F1)*OXD1
    ENTHL=ENTHA*Fl+ENTHD*(1.-Fl)
    CPBORN=FUL*CFU(I)+OXL*COX(I)+(1.-F1)*OXD1*CN2(I)+
    1 (1.-FUL-OXL-(1.-F1)*OXD1)*CH2O(I)
        TEML=(ENTHL-FUL*HFU)/CPBORN
        GO TO 203
    202 FUL=FUA*(Fl-FSTOIC)/FSl
    OXL=\emptyset.
    PROL=1.-FUL-OXL-(1.-F1)*OXD1
    ENTHL=ENTHA*Fl+ENTHD*(1.-Fl)
```

```
    CPBORN=FUL *CFU(I)+OXL*COX(I) +(I.-Fl)*OXDl*CN2(I) +
    1 (1. -FUL-OXL-(1. -FI)*OXDI)* CH2O (I)
    TEML=(ENTHL-FUL*HFU)/CPBORN
203 CONTINUE
    FUAV (I) =FUAV (I) +FUL *OMLEFT
    OXAV (I) =OXAV (I) +OXL *OMLEFT
    PRAV (I) =PRAV (I) +PROL*OMLEFT
    TEMAV (I)=TEMAV (I)+TEML*OMLEFT
    TEMAVS (I)=TEMAVS (I) +TEML*TEML*OMLEFT
    FUAVS (I) =FUAVS (I) +FUL *FUL *OMLEFT
    OXAVS (I) =OXAVS (I) +OXL *OXL *OMLEFT
    PRAVS (I) =PRAVS (I) +PROL*PROL*OMLEFT
    FFIAVS (I)=FFIAVS (I)+Fl*F1*OMLEFT
    FBARI=F1-FAMP
    DO 21 IO=1,NDIFOM
    OMA (IO) =DDELAJ*@. 5* (FLOAT (IO-1) +FLOAT (IO))
    FSR(IO)=FBAR1+FAMP*SIN((DELAJ-OMA (IO))/(DENOM2+1.E-3D))
    IF(FSR(IO).GT.FSTOIC) GO TO 2\emptyset4
    FUM(IO)=0.
    OXM (IO)=OXD* (FSTOIC-ESR (IO))./FSTOIC
    PROM (IO)=1. -FUM (IO)-OXM (IO) - (1. -FSR (IO))*OXDI
    ENTHFO(IO)=ENTHA*FSR(IO) +ENTHD*(I.-FSR (IO))
    CPBORN=FUM (IO) *CFU (I) +OXM (IO) *COX(I) + (1. -FSR (IO))*OXD1*CN2 (I) +
    l (1.-FUM (IO)-OXM (IO)-(1.-FSR (IO))*OXDI)*CH2O (I)
    TEMM (IO) = (ENTHFO(IO)-FUM (IO) *HFU)/CPBORN
    GO TO 205
204 FUM(IO)=FUA*(FSR(IO)-FSTOIC)/FSI
    OXM (IO)=0.
    PROM(IO)=1.-FUM(IO)-OXM(IO)-(I.-FSR(IO))*OXDI
    ENTHFO(IO)=ENTHA*FSR(IO)+ENTHD* (1.-FSR (IO))
    CPBORN=FUM(IO)*CFU (I) +OXM (IO) *COX(I) + (1. -FSR (IO))*OXD1*CN2 (I) +
    1 (1. -FUM (IO)-OXM (IO)-(1.-FSR (IO))*OXD1)*CH2O(I)
    TEMM (IO)= (ENTHFO(IO) -FUM (IO) *HFU)/CPBORN
205 CONTINUE
    FUAV (I)=FUAV (I) +FUM (IO) *DDELAJ
    OXAV (I) =OXAV (I) +OXM (IO) *DDELAJ
    PRAV (I) =PRAV (I) +PROM (IO) *DDELAJ
    TEMAV (I)=TEMAV (I)+TEMM (IO) *DDELAJ
    TEMAVS (I) =TEMAVS (I)+TEMM (IO)*TEMM (IO) *DDELAJ
    FUAVS (I) =FUAVS (I)+FUM (IO)*FUM (IO)*DDELAJ
    OXAVS (I) =OXAVS (I) +OXM (IO) *OXM (IO) *DDELAJ
    PRAVS (I)=PRAVS (I) +PROM (IO) *PROM (IO) *DDELAJ
    FFIAVS (I)=FFIAVS (I) +FSR (IO)*FSR (IO) *DDELAJ
21 CONTINUE
    GO TO 5\emptyset
22 OMRIGT=2.*DELAJ
    ISTAGE=3
    IF(F2.GT.FSTOIC) GO TO 2g6
    FUR=\emptyset.
    OXR=OXD*(FSTOIC-F2)/FSTOIC
    PROR=1. -FUR-OXR- (1.-F2) *OXD 1
```

```
    ENTHR=ENTHA*F2+ENTHD*(1. -F2)
    CPBORN=FUR*CFU(I)+OXR*COX(I)+(I. -F 2)*OXDI*CN2 (I)+
I (1. -FUR-OXR-(l. -F 2)*OXD1)*CH2O (I)
    TEMR=(ENTHR-FUR*HFU)/CPBORN
    GO TO 207
205 FUR=FUA*(F2-FSTOIC)/FSI
    OXR=Ø.
    PROR=1. -FUR-OXR-(1. -F 2)*OXD1
    ENTHR=ENTHA*F2+ENTHD*(1.-F2)
    CPBORN=FUR *CFU(I) +OXR*COX(I) + (1.-F2)*OXDl *CN2 (I).+
    1 (1.-FUR-OXR-(1.-F2)*OXDI)*CH2O (I)
    TEMR=(ENTHR-FUR*HFU)/CPBORN
2g7 CONTINUE
    OMRI=1.-OMRIGT
    FUAV (I) =FUAV (I) +FUR *OMRI
    OXAV (I) =OXAV (I) +OXR*OMRI
    PRAV (I)=PRAV (I) +PROR*OMRI
    TEMAV (I)=TEMAV (I)+TEMR*OMRI
    TEMAVS (I) =TEMAVS (I) +TEMR*TEMR*OMR1
    FUAVS (I) = FUAVS (I) +FUR*FUR*OMRI
    OXAVS (I) =OXAVS (I) +OXR *OXR *OMR1
    PRAVS (I)=PRAVS (I) +PROR*PROR*OMR1
    FFIAVS (I)=FFIAVS (I)+F2*F2*OMR1
    FBAR2=F2+FAMP
    DO 23 IO=1,NDIFOM
    OMA (IO) =DDELAJ*Ø. 5* (FLOAT (IO-1) +FLOAT (IO))
    FSR (IO)=FBAR2+FAMP*SIN((DELAJ-OMA (IO))/(DENOM2+1.E-30))
    IF(FSR(IO).GT.FSTOIC) GO TO 231
    FUM (IO)=0.
    OXM (IO)=OXD*(FSTOIC-FSR (IO))/FSTOIC
    PROM (IO)=1.-FUM (IO)-OXM (IO)-(1.-FSR (IO))*OXDI
    ENTHFO(IO) = ENTHA*FSR(IO) +ENTHD*(1. -FSR(IO))
    CPBORN=FUM(IO) *CFU(I)+OXM (IO)*COX(I) + (I. -FSR (IO))*OXDI*CN2(I)+
    1 (I.-FUM (IO)-OXM (IO)-(I.-FSR (IO))*OXDI)*CH2O (I)
    TEMM (IO) = (ENTHFO(IO)-FUM (IO) *HFU)/CPBORN
    GO TO 232
231 FUM(IO)=FUA*(FSR(IO)-FSTOIC)/ḞSI
    OXM (IO)=\emptyset.
    PROM (IO)=1.-FUM(IO)-OXM(IO)-(I.-FSR(IO))*OXDI
    ENTHFO(IO)=ENTHA*FSR (IO) +ENTHD* (1.-FSR(IO))
    CPBORN=FUM (IO) *CFU (I) +OXM (IO) *COX(I) + (I. -FSR (IO))*OXDI *CN2 (I ) +
    1 (1.-FUM (IO)-OXM (IO)-(I.-FSR (IO))*OXDI)*CH2O (I)
    TEMM (IO)= (ENTHFO (IO)-FUM (IO) *HFU)/CPBORN
232 CONTINUE
    FUAV (I)=FUAV (I ) +FUM (IO) *DDELAJ
    OXAV (I) =OXAV (I) +OXM (IO) *DDELAJ
    PRAV (I) =PRAV (I) +PROM (IO) *DDELAJ
    TEMAV (I)=TEMAV (I) +TEMM (IO) *DDELAJ
    TEMAVS (I)=TEMAVS (I) +TEMM (IO) *TEMM (IO) *DDE LAJ
    FUAVS (I) =FUAVS (I) +FUM (IO)*FUM (IO)*DDELAJ
    OXAVS (I) =OXAVS (I) +OXM (IO)*OXM (IO) *DDELAJ
```

```
            PRAVS (I)=PRAVS (I) +PROM (IO)*PROM (IO)*DDELAJ
            FFIAVS (I)=FFIAVS (I) +FSR(IO)*FSR (IO)*DDELAJ
        23 CONTINUE
            GO TO 50
C--ーーー-ーー--THE DIFFUSION IN FOLD STOPS DURING THE THIRD STAGE
        30 DDELAJ=1./FLOAT (NDIFOM)
            ISTAGE=4
            DENOM3=1.
            AGEND=AGEND-TIME2
            ARGUM3=AMAXI (-ADIF*PI *PI *AGEND, -60.)
            FAMP=ABS (FFRESH-FRFENG) *SQRT (TERM) *EXP (ARGUM3)/DENOM3.
            DO 31 IO=1,NDIFOM
            OMA (IO)=DDELAJ*Ø. 5* (FLOAT (IO-1) +FLOAT (IO))
            FSR (IO)=FFI+FAMP*SIN(PI* (0.5-OMA (IO)))
                IF(FSR(IO).GT.FSTOIC) GO TO 311
            FUM(IO)=\emptyset.
            OXM (IO)=OXD*(FSTOIC-FSR (IO))/FSTOIC
            PROM (IO)=1.-FUM (IO)-OXM (IO)-(1.-FSR (IO))*OXD1
            ENTHFO(IO)=ENTHA*FSR (IO) +ENTHD* (1. -FSR (IO))
            CPBORN=FUM (IO)*CFU(I) +OXM (IO)*COX(I) +(1.-FSR (IO))*OXD1*CN2 (I) +
            1 (1. -FUM(IO)-OXM (IO)-(1.-FSR(IO))*OXDI)*CH2O(I)
            TEMM (IO) = (ENTHFO(IO)-FUM (IO) *HFU)/CPBORN
            GO TO 312
    311 FUM(IO)=FUA*(FSR(IO)-FSTOIC)/FS1
            OXM (IO)=\emptyset.
            PROM(IO)=1. -FUM(IO)-OXM (IO)-(1. -FSR (IO))*OXD1
            ENTHFO(IO)=ENTHA*FSR(IO)+ENTHD*(1.-FSR (IO))
            CPBORN=FUM(IO)*CFU (I) +OXM (IO) *COX(I) + (1. -FSR (IO))*OXD1*CN2 (I ) +
            1 (1. -FUM (IO)-OXM (IO)-(1. -FSR (IO))*OXD1)*CH2O(I)
            TEMM (IO) = (ENTHFO(IO)-FUM (IO)*HFU)/CPBORN
        312 CONTINUE
            FUAV (I) =FUAV (I ) +FUM (IO) *DDELAJ
            OXAV (I) =OXAV (I) +OXM (IO) *DDELAJ
            PRAV (I)=PRAV (I) +PROM (IO) *DDELAJ
            TEMAV (I)=TEMAV (I)+TEMM (IO) *DDELAJ
            TEMAVS (I)=TEMAVS (I) +TEMM (IO)*TEMM (IO) *DDELAJ
            FUAVS (I) =FUAVS (I) +FUM (IO) *FUM (IO) *DDELAJ
            OXAVS (I) =OXAVS (I) +OXM (IO) *OXM (IO.) *DDELAJ
            PRAVS (I)=PRAVS (I) +PROM (IO)*PROM (IO) *DDE LAJ
            FFIAVS (I)=FFIAVS (I)+FSR(IO)*FSR(IO)*DDELAJ
    31 CONTINUE
    5 0 ~ C O N T I N U E ~
C---------CALCULATION OF FOLD-AVERAGE QUANTITIES ENDS HERE
    IF(ISTEP.GT.1) GO TO 53
    CMIX(I) =F (I,JF)*CFU(1)+F(I,JOX)*COX(1)+(1. -F (I,JF)-F (I,JOX))
    1 *CPR(1)
    FUUNBT=T 3*F(I,JP)+T4
    IF(FUAV(I).GT.FUUNBT) FUAV(I)=FUUNBT
    5 3 ~ C O N T I N U E ~
    EXPO=EXP (-ARRCON/TEMAV (I))
    PHII=(-FFI*(PHID-PHIB))+Ø. 232
```

```
    FUBRNT=0.5/STOICH*(ABS (PHII)-PHII)
    TERM=-EXPO*OXAV (I)
    RATEAI (I)=TERM*FUAV (I)/(FUAV (I)-FUBRNT+TINY)
    RATEA2(I)=-RATEA1 (I)*FUBRNT
C----------CALCULATION OF POPULATION AVERAGE QUANTITIES
    FDAGE=F(I,IA+JA1-1)*DAGE (IA)
    AVRATl (I)=AVRATl (I)+RATEAl (I)*FDAGE
    AVRAT2(I)=AVRAT2(I)+RATEA2(I)*FDAGE
    AVFU(I)=AVFU(I)+FUAV (I)*FDAGE
    AVOX(I)=AVOX(I)+OXAV (I)*FDAGE
    AVPR (I) =AVPR (I) +PRAV (I)*FDAGE
    AVTEM(I)=AVTEM(I)+TEMAV (I) *FDAGE
    AVTEMS (I)=AVTEMS (I)+TEMAVS (I)*FDAGE
    AVFUS (I)=AVFUS (I)+FUAVS (I) *FDAGE
    AVOXS (I)=AVOXS (I)+OXAVS (I) *FDAGE
    AVPRS (I) =AVPRS (I)+PRAVS (I) *FDAGE
    AVFFIS (I)=AVFFIS (I)+FFIAVS (I)*FDAGE
    POPAGE (I) =POPAGE (I)+AGEC (IA)*FDAGE
C---------CALCULATION OF POPULATION-AVERAGE PDF QUANTITIES
C----------STARTS HERE.
    IF(IPDF.NE.l) GO TO 4ll
    IF(MOD(ISTEPI,NSTAT).NE.\emptyset.AND.XD.NE.XULAST) GO TO 41l
    DO 39ø II=1,NDIFOM
    390 PHI (II)=TEMM(II)
    PHIL=TEML
    PHIR=TEMR
    CALL PDF
    IF(EMIX.LT.ø.999) GO TO 381
    DO }382\textrm{K}=1,NPDFM
    382 PDFIT (K)=1./FLOAT (NPDFM1)
    GO TO 383
    381 DO 38ø K=1,NPDFM1
    380 PDFIT(K)=PDFl(K)*PHIDIF
    TOPDF=\emptyset.
    DO 385 K=1,NPDFM1
385 TOPDF=TOPDF+PDFIT (K)
    IF(TOPDF.GT.0.95) GO TO 383
    DO 386 K=1,NPDFM1
    386 PDFIT (K)=1./FLOAT (NPDFM1)
    383 PHIMAA=2700.
    PHIMIA=300.
    FMAX(I)=PHIMAA
    PHIBVA (l)=PHIMIA
    PHIBVA (NPDF) =PHIMAA
    DPHI=(PHIMAA-PHIMIA)/FLOAT (NPDFMI)
    DO 33ø K=2,NPDFMI
    33ø PHIBVA(K)=DPHI*FLOAT (K-1) +PHIMIA
    DO 32g K=1,NPDFM1
    32ø PDFITA (K)=ø.
    NPDFM2=NPDF-2
    DO 36\emptyset K=1,NPDFM2
```

```
            IF((PHIBV(1)-PHIBVA(K))*(PHIBV(1)-PHIBVA(K+1)).GT.\emptyset.)
            1 GO TO 340
            IF((PHIBV (2)-PHIBVA(K))*(PHIBV(2)-PHIBVA (K+1)).LE.\emptyset.)
    1 GO TO 28G
    FACl=PHIBV (2)-PHIBV(1)
    FAC2=PHIBVA (K+1)-PHIBV(l)
    PDFITA (K)=PDFITA (K)+PDFIT (1)*ABS (FAC2/FAC1)
    IF(ABS (FAC2).GT.|.)PDFITA (K+1)=PDFITA(K+1) +PDFIT (l)*
    1 (1. -ABS (FAC2/FAC1))
    GO TO 340
    28\emptyset PDFITA(K)=PDFITA (K) +PDFIT (1)
    340 DO 360 II=2,NPDFMI
    IF((PHIBV (II) -PHIBVA (K))*(PHIBV (II)-PHIBVA (K+1)).GT.0.)
    1 GO TO 360
    IF ((PHIBV (II +1)-PHIBVA (K))*(PHIBV (II +1)-PHIBVA (K+1)).LE.0.)
    1 GO TO 290
    FACl=PHIBV(II+1)-PHIBV(II)
    FAC2=PHIBVA (K+1)-PHIBV (II)
    PDFITA(K)=PDFITA(K)+PDFIT (II) *ABS (FAC2/FACl)
    IF (ABS (FAC 2).GT . D.) PDFITA (K+1)=PDFITA (K+1) +PDFIT (II)*
    1 (1. -ABS (FAC2/FAC1))
    GO TO 360
    29\emptyset PDFITA (K)=PDFITA (K) +PDFIT (II)
360 CONTINUE
    DO 370 II=1,NPDFM1
    IF((PHIBV (II) -PHIBVA (NPDFMI))*(PHIBV (II) -PHIBVA (NPDF)).LE .
    1 Ø.) PDFITA(NPDFM1)=PDFITA(NPDFM1)+PDFIT (II)
    IF(PHIBV(II).LT.PHIBVA(1)) PDFITA(1)=PDFITA(1)+
    1 PDFIT (II)
370 CONTINUE
    DO 41g K=1,NPDFM1
    AVPFA (I,K) =AVPFA (I,K) +PDFITA (K) *F (I,IA+JAl-I) *DAGE (IA )
    SUMPDF (I) =SUMPDF (I)+PDFITA (K)*F(I,IA+JAI-I)*DAGE (IA)
    410 AVPDF (I,K)=AVPFA(I,K)/DPHI
    411 CONTINUE
    9\emptyset\emptyset CONTINUE
    1Øø\emptyset CONTINUE
C----------CALCULATION OF RMS QUANTITIES HERE------------
    DO 1500 I=2,NM1
    TFLU (I)=AVTEMS (I)-AVTEM (I)**2
    TFLU(I)=SQRT (ABS (TFLU(I)))
    FUFLU(I)=AVFUS(I)-AVFU(I)**2
    FUFLU(I)=SQRT(ABS (FUFLU(I)))
    OXFLU (I)=AVOXS (I)-AVOX (I)**2
    PRFLU (I)=AVPRS (I) -AVPR (I)**2
    PRFLU(I)=SQRT (ABS (PRFLU (I)))
    OXFLU (I)=SQRT (ABS (OXFLU (I)))
    FRFLU (I)=AVFFIS (I)-FVAL (I)**2
    FRFLU(I)=SQRT (ABS (FRFLU(I)))
    FRFLU(I)=FRFLU(I)/FVAL (I)
1500 CONTINUE
```

```
C---------CALCULATION OF REACTION RATE
    DO 2\emptyset\emptyset\emptyset I=2,NMI
    FUBRNT=T 2*(ABS (F(I,JP))-F(I,JP))
    FUUNBT=T 3*F(I,JP)+T4
C~----\otimes-----MODIFY FOR ACCOUNT THE FU.LT.FUUNBT AS IT IS DONE IN GENMIX
C---------A PHYS. 177
        IF(F(I,JF).LT.FUUNBT) GO TO 910
        SIP(I)=-BIG
        SI (I)=-SIP(I)*FUBRNT
        GO TO 930
    91\emptyset SIP(I)=AVRAT1(I)*DX*ADPEI(I)*PREEXP*PRESS**2
        SI (I)=AVRAT2 (I) *DX*ADPEI (I) *PREEXP*PRESS**2
    930 IF(MOD(ISTEP,NSTAT).NE.\emptyset) GO TO 2\emptyset\emptyset\emptyset
    2\emptyset\emptyset\emptyset CONTINUE
C------CALCULATION OF MOLAR FRACTION OF
C------VARIOUS SPECIES HERE
    DO 3000 I=2,NMl
    FH2O(I)=1. -AVFU(I)-AVOX(I)-FN2(I)
    FH2O(I)=AMAXI (0., FH2O(I))
    TMIX=AVFU (I)/WFU+AVOX (I)/WOX+FN2 (I)/WN2+FH2O (I)/WH20
    FMFU(I)=(AVFU(I)/WFU)/TMIX
    FMOX(I)=(AVOX(I)/WOX)/TMIX
    FMN2 (I) = (FN2 (I)/WN2)/TMIX
    FMH2O(I)=(FH2O(I)/WH2O)/TMIX
    PRFLUM(I)=(PRFLU (I)/WH2O)/TMIX
    3ø\emptyset\emptyset CONTINUE
C--ー-ー-THE FOLLOWING BOUNDARY CONDITIONS ARE
C------VALID FOR AXISYMMETRIC FREE JET ONLY
    AVFU (1)=AVFU(2)
    AVFU(N)=F(N,JF)
    AVOX(1)=AVOX(2)
    AVOX(N)=F(N,JOX)
    AVTEM(1)=AVTEM(2)
    AVTEM(N)=TD
    SUMPDF (1)=SUMPDF (2)
    SUMPDF (N)=SUMPDF (NMI)
    TFLU(1)=TFLU(2)
    TFLU (N)=0.
    PRFLU(1)=PRFLU(2)
    PRFLU (N)=\emptyset.
    PRFLUM(1)=PRFLUM(2)
    PRFLUM (N)=0.
    FRFLU (1)=FRFLU(2)
    FRFLU (N)=\emptyset.
    FMAX(1)=FMAX (2)
    FMAX (N)=FMAX (NML)
    POPAGE (1)=POPAGE (2)
    POPAGE (N)=POPAGE (NML)
    FN2(1)=FN2(2)
    FN2 (N)=1. -OXD
    FH2O(1)=FH2O(2)
```

```
FH2O(N)=FUD
FMFU(1)=FMFU (2)
FMFU(N)=FUD
FMOX (1)=FMOX (2)
FMOX(N)=Ø. 2097
FMN2(1)=FMN2(2)
FMN2 (N) =\emptyset.7934
FMH2O(1)=FMH2O(2)
FMH2O(N)=FUD
FUFLU(1)=FUFLU(2)
FUFLU(N)=0.
OXFLU(1)=0XFLU (2)
OXFLU(N)=0.
RETURN
END
```

SUBROUTINE PDF
\$INCLUDE 9,COMAI.FTN
\$INCLUDE 9,COMB. FTN
C
C----------THIS SUBROUTINE IS CALLED FROM SUBROUTINE BIOG, C---------AFTER ENTRY BIOS.IT CALCULATES THE PROBABILITY C---------DENSITY FUNCTION OF PROPERTY PHI IN A FOLD.
C---------FIND MAXIMUM AND MINIMUM OF PHI
GO TO ($1,2,3,4$), ISTAGE
1 PHIMIN=AMIN1 (PHIL, PHIR)
PHIMAX=AMAXI (PHIL, PHIR)
GO TO 5
2 PHIMIN=PHIL
PHIMAX=PHIL
GO TO 5
3 PHIMIN=PHIR PHIMAX=PHIR GO TO 5
4 PHIMIN=PHI (1)
PHIMAX=PHI (1)
5 DO $1 \varnothing I=1$,NDIFOM PHIMIN=AMIN1 (PHIMIN, PHI (I))
1б PHIMAX=AMAXI (PHIMAX, PHI (I))
C————---DETERMINE BOUNDARY VALUES OF PHI INTERVALS
PHIDIF $=($ PHIMAX - PHIMIN $) / F L O A T$ (NPDF-1)
NPDFMI $=\mathrm{NPDF}-1$
DO $20 \mathrm{~K}=1$,NPDFM1
$20 \operatorname{PHIBV}(\mathrm{~K})=$ PHIDIF*FLOAT (K-1)+PHIMIN PHIBV (NPDF) $=$ PHIMAX
C
C---------DETERMINE MASS PROPORTION IN INTERVAL
C--------JUST ABOVE PHIBV(K) AND INSERT IN PDFl(K)
DO $25 \mathrm{~K}=1$, NPDFM1
25 PDF1 (K) $=\varnothing$.
C
EMIX=PHIMIN/(PHIMAX+TINY)
IF (EMIX.LT. $\varnothing .999$) GO TO 26
DO $27 \mathrm{~K}=1$,NPDFM1
$27 \operatorname{PDFI}(\mathrm{~K})=\operatorname{PDFI}(\mathrm{K})+1 . / F L O A T$ (NPDFMI)
GO TO 80
26 DO 40 I=1,NDIFOM-1
$\mathrm{L} 1=\varnothing$
PHIl=PHI (I)
PHI 2=PHI ($\mathrm{I}+1$)
$\operatorname{IF}((\operatorname{PHI}(\mathrm{I}+\mathrm{I})-\mathrm{PHI}(\mathrm{I}))$.LT. \quad. $) ~ \mathrm{PHIl}=\mathrm{PHI}(\mathrm{I}+1)$
IF ((PHI (I+1)-PHI (I)).LT. Ø.) PHI2=PHI (I)
DO $30 \mathrm{~K}=1$, NPDFM1
IF ((PHIBV (K)-PHIl)*(PHIBV(K+1)-PHIl).LE.ø.) Ll=K
IF (Ll.NE. Ø) GO TO 31
$3 \varnothing$ CONTINUE
31 DO $32 \mathrm{~K}=\mathrm{L} 1$, NPDFM 1

```
32 IF((PHIBV(K)-PHI2)*(PHIBV (K+1)-PHI 2).LE.0.) L2=K+1
    L2M1=L2-1
    DO 35 K=Ll,L2Ml
35 PDF1(K)=PDF1 (K)+DDELAJ/FLOAT (L2-Ll)
40 CONTINUE
    GO TO (50,60,70,80), ISTAGE
50 DO 51 K=1,NPDFM1
    IF((PHIBV (K)-PHIL)*(PHIBV (K+1)-PHIL).LE.\emptyset.)
    1 PDFI (K)=PDFI (K)+OMLEFT
    IF((PHIBV (K)-PHIR)*(PHIBV (K+1)-PHIR).LE.\sigma.)
    1 PDFl(K)=PDFl(K)+(1.-OMRIGT)
51 CONTINUE
    GO TO 8ஏ
50 DO 6l K=1,NPDFM1
    IF((PHIBV (K)-PHIL)*(PHIBV (K+1)-PHIL).LE.\emptyset.)
    1 PDFl (K)=PDFI (K)+OMLEFT
6 1 ~ C O N T I N U E
    GO TO 8\emptyset
70 DO 71 K=1,NPDFMI
    IF((PHIBV (K)-PHIR)*(PHIBV (K+1)-PHIR).LE.\emptyset.)
    l PDFl(K)=PDFl(K)+(1.-OMRIGT)
71 CONTINUE
80 DO 81 K=1,NPDFM1
81 PDFI(K)=PDF1(K)/(PHIDIF+1.E-30)
    RETURN
    END
```

```
        SUBROUTINE PHYS
C----- GENMIX-T (TURBULENCE MODELS), HTS/77/4,
C BASED ON GENMIX, HTS/77/9, FEB.1977, APPENDIX A.
C/ FEB.1978 ---ー-ー--- GENMIX --------- COPYRIGHT, D.B.SPALDING
C
$INCLUDE 9,COMA1.FTN
$INCLUDE 9,COMB.FTN
C
    DIMENSION DUDY (60),YEDGE (6)
    DIMENSION ADPEDX(50)
C
C
CHAPTER A ---------- PHYSU ---------- PHYSU ------------- PHYSU
C
    ENTRY PHYSU
    KUDIF=-1
C ----------------------m-m----------------- LAMINAR VISCOSITY
C -- SQUARE-ROOT FORMULA, WITH WEIGHTING ACCORDING TO MASS FRACTION
    DO 110 I=1,N
    11月 EMU(I)=(VISFU*F(I,JF)+VISOX*F(I,JOX)+VISPR*F(I,JPR))*
        1 SQRT(F(I,JTE))
        IF(MODEL.EQ.1) GO TO 209
C
C
C
C ----- VELOCITY GRADIENTS
    DO 114 I=2,NM1
    114 DUDY(I)=ABS (U (I+I)-U (I-I))/(Y(I+1)-Y(I-1))
    666 CONTINUE
C
C ---- CALCULATE LENGTHS ACCORDING TO CHOSEN TURBULENCE MODEL.
    IF (MODEL-4) 162,163,164
C
C
```



```
    162 GOTO(112,117,1200), LENGTH
C
C
C --ー-ー-ー-- STANDARD GENMIX FORMULATION OF HTS/77/9, FEB.l977.
112 IF(KUDIF.EQ.ISTEP) GO TO 102
C ---- CALCULATE UDIF, IF NOT ALREADY DONE IN MAIN, CH.6.
        UMAX=U (I)
        UM IN=U (1)
        DO 101 I=2,N
        UMAX=AMAXI (UMAX,U(I))
    101 UMIN=AMINI (UMIN,U(I))
        UDIF=UMAX-UMIN
C
    102 HUDIF=.5*UDIF
    DUDYMN=FR*UDIF/Y(N)
```

```
        K=1
        EX=DUDY(2) -DUDYMN
        IF(EX.LT.0.) GO TO 103
        YEDGE (K)=\emptyset.
        K=2
    103 DO 104 I=3,NM1
        EXL=EX
        EX=DUDY (I) -DUDYMN
        IF(EX*EXL.GE.D.) GO TO 104
        YEDGE (K)=.5* (Y(I)+Y(I-1))
        IF(K.EQ.6) GO TO 107
        K=K+1
    104 CONTINUE
        IF(EX.LT.0.) GO TO 108
        YEDGE (K)=Y(N)
        IF(K.EQ.6) GO TO 107
        K=K+1
    1Ø8 DO 1Ø6 KAY=K,6
    106 YEDGE (KAY)=Y(N)
    1Ø7 EL12=(YEDGE (2)-YEDGE (1))*ELCON
        EL34=(YEDGE (4)-YEDGE (3))*ELCON
        EL56=(YEDGE (К)-YEDGE (5)) *ELCON
        EL23=.5*(EL12+EL34)
        EL45=.5*(EL34+EL56)
        ASSIGN 119 TO K
C
    DO 130 I=2,NMl
    YVALUE=Y (I)
    GO TO K, (119,121,123,125,127,129)
119 IF(YVALUE.LT.YEDGE(1)) GO TO 120
    ASSIGN 121 TO K
121 IF(YVALUE.LT.YEDGE (2)) GO TO 122
    ASSIGN 123 TO K
123 IF(YVALUE.LT.YEDGE (3)) GO TO 124
    ASSIGN 125 TO K
125 IF(YVALUE.LT.YEDGE (4)) GO TO 126
    ASSIGN 127 TO K
127 IF(YVALUE.LT.YEDGE (5)) GO TO 128
    ASSIGN 129 TO K
    GO TO 129
120 EL=\emptyset.
    GO TO 13Ø
122 EL=EL12
    GO TO 130
124 EL=EL23
    GO TO 130
126 EL=EL34
    GO TO 130
128 EL=EL45
    GO TO 130
129 EL=EL56
```

```
C ------------------- UPPER LIMITS TO MIXING LENGTH
    13@ F(I,JEL)=AMIN1 (EL,HUDIF/(DUDY(I) +TINY))
C
        IF(KIN.NE.l) GO TO 141
        DO 142 I=2,NMl
    142 F(I,JEL)=AMIN1 (F(I,JEL),AK*Y(I))
    141 IF(KEX.NE.1) GO TO 173
        DO 144 I=2,NMI
    144 F(I,JEL)=AMINI(F(I,JEL),AK*(Y(N)-Y(I)))
        GO TO 138
C
C
C --------- LENGTH=2, NIKURADSE"S LENGTH SCALE, WALL AT E.
    117 FACTOR=ELCON/(.14*Y(N))
        DO 115 I=2,NM1
        YTILDE=1.-Y(I)*FACTOR
    115 F(I,JEL)=Y(N)*YTILDE*(.4-YTILDE*(.44-YTILDE*(.24-.06*YTILDE))).
        GO TO 138
C
C -------- LENGTH=3, UNIFORM LENGTH SCALE.
    120ø UDIF=U(N)-U(1)
    REUDIF=1./(UDIF+TINY)
C ----- FIND REFERENCE LENGTHS, ACCORDING TO BOUNDARY CONDITIONS.
    IF(KIN.EQ.KINL.AND.KEX.EQ.KEXL) GO TO SEARCH, (12Ø1,12ø2,12ø5)
    KINL=KIN
    KEXL=KEX
C ---- DEFAULT VALUES APPLY FOR A WALL OR A SYMMETRY AXIS.
    YREF1=\varnothing.
    YREF 2=Y (N)
C PRINT,YREF1,YREF2
    IF (KIN.EQ.2.AND.KEX.EQ.2) GO TO 92
    IF(KIN.EQ.3.AND.KEX.EQ.2) GO TO }9
    IF(KIN.EQ.2.AND.KEX.EQ.3) GO TO 94
    IF(KIN.EQ.I.AND.KEX.EQ.2) GO TO 95
    IF(KIN.EQ.2.AND.KEX.EQ.1) GO TO 96
    ASSIGN 12ø5 TO SEARCH
    GO TO 1205
C ----- INNER BOUNDARY IS FREE AND OUTER BOUNDARY IS FREE
        92 UREFI=ø.1
        UREF2=0.9
C PRINT,UREF1,UREF2
        ASSIGN 12Ø2 TO NEXT
        ASSIGN 12Ø1 TO SEARCH
        GO TO 1201
C ------- INNER IS A SYMMETRY AXIS AND OUTER IS FREE
        93 UREF2=9.5
        ASSIGN 12g2 TO SEARCH
C PRINT,UREF2
        GO TO 12ø2
C ------ INNER IS FREE AND OUTER IS A SYMMETRY AXIS
```

```
        94 UREFl=Ø.5
C PRINT,UREFI
    ASSIGN 1205 TO NEXT
    ASSIGN 1201 TO SEARCH
    GO TO 1201
C ---ー-ー-- INNER IS A WALL AND OUTER IS FREE
        95 UREF2=0.99
        ASSIGN 1202 TO SEARCH
C PRINT,UREF2
C ---ー-ー-ー INNER IS FREE AND OUTER IS A WALL
        95 UREFl=0.01
C PRINT,UREFI
    ASSIGN 1205 TO NEXT
    ASSIGN 12\emptyset1 TO SEARCH
```



```
    12Ø1 UTILDL=Ø.
    DO 1203 I=2,N
    UTILD=(U (I) -U (l))*REUDIF
    IF(UTILD.LE.UREFI) GO TO 1203
    YREFl=Y(I-1)+(Y(I)-Y(I-1))* (UREFI-UTILDL)/(UTILD-UTILDL)
    GO TO NEXT, (1202,1205)
    1203 UTILDL=UTILD
C --M-ー-ーー--ー-ー-ー--ー------------ SEARCH FOR YREF2
    12Ø2 UTILDL=1.
    DO 12g6 IDASH=2,N
    I=N+1-I.DASH
    UTILD=(U (I) -U (1)) *REUDIF
    IF(UTIED.GE.UREF2) GO TO 1206
    YREF2=Y(I+1)+(Y(I)-Y(I+1))*(UREF2-UTILDL)/(UTILD-UTILDL)
    GO TO 1205
    12g6 UTILDL=UTILD
```



```
    1205 F.L=ELCON* (YREF2-YREF1)
    DO 1207 I=2,NMI
    1207 F(I,JEL)=EL
    GO TO 138
C
C
C
C THESE ARE USED ONLY IN OUTPUT AND MAY BE SKIPPED FOR ECONOMY.
C NOTE THAT WE USE MODEL 2 INSTEAD OF MODELS 4 OR 5 AT THE START.
C ---ー-n------------------ MODEL 4
    163 IF(ISTEP.LT.3) GO TO 162
    DO 165 I=2,NM1
    165 F(I,JEL)=CD*SQRT (F (I,JK))/(F(I,J2)+TINY)
    GO TO 138
C
    ---ー--------------------- MODEL 5
    164 IF(ISTEP.LT.3) GO TO 162
    DO 166 I=2,NM1
    166F(I,JEL)=CD*F(I,JK)*SQRT(F (I,JK))/(F(I,J2)+TINY)
```

```
C
C ----------------------------- LENGTH ADJUSTMENTS NEAR EDGES
    138 F(1,JEL)=F(2,JEL)
    F(N,JEL)=F(NM1,JEL)
    IF(ISTEP.GT.2) GO TO 173
C
C
C
C
    ELMIN=.0601*Y(N)
    DO 172 I=1,N
    172 F(I,JEL)=AMAXI (F (I,JEL),ELMIN)
    IF(MODEL.EQ.2) GO TO 181
C
C --------- COMPUTE INITIAL PROFILES FOR MODELS 3, 4, 5
C
    FACl=CMU/CD
    DO 145 I=2,NM1
    FIJK=FACI*(DUDY(I)*F(I,JEL))**2
    145 F(I,JK)=AMAX1 (FIJK,.ØøøI*U(I)**2)
    F(1,JK)=F(2,JK)
    F(N,JK)=F(NM1,JK)
    IF(MODEL.EQ.3) GO TO 181
C
    FAC2=SQRT (CMUCD)
    DO 146 I=2,NMI
    146 F(I,J2)=FAC2*AMAXI (DUDY (I),TINY)
        F(1,J2)=F(2,J2)
        F(N,J2)=F(NM1,J2)
        IF(MODEL.EQ.4) GO TO 181
C
    DO 147 I=1,N
    147 F(I,J2)=F(I,J2)*F(I,JK)
    GO TO 181
C
C
C
173 GO TO (209,181,182,183,184), MODEL
C ----------------MIXING LENGTH, HIGH RE, MODEL=2
    181 DO 201 I=2,NM1
    DUDYL=DUDY(I)*F(I,JEL)
    UDMIN=UFAC*U(I)
    DUDYL=AMAXI (DUDYL,UDMIN)
    EMUT=RHO (I)*F(I,JEL)*DUDYL
    EMU (I)=EMU(I)+EMUT
    26I CONTINUE
    GO TO 2g9
C
C
```

 182 DO 151 I=2,NM1
 EMUT=CMU*RHO (I)*SQRT(ABS (F(I,JK)))*F(I,JEL)
 151 EMU(I)=EMU(I)+EMUT
 GO TO 2g9
 C
C ------------------ KOLMOGOROV, HIGH RE, MODEL=4
183 DO 152 I=2,NMl
EMUT=CMUCD*RHO (I)*F(I,JK)/(F(I,J2)+TINY)
152 EMU(I)=EMU(I)+EMUT
GO TO 209
C
C ------------------ HARLOW, HIGH RE, MODEL=5
184 DO 153 I=2,NMl
EMUT=CMUCD*RHO (I)*F(I,JK)**2/(F(I,J2)+TINY)
153 EMU(I)=EMU(I)+EMUT
C
C
C -- MOMENTUM SOURCE
209 AGRVDX=AGRAV*DX
RPRLST=1.
IF(ABS(DP).GT.TINY) GO TO 204
IF (ABS (AGRAV).GT.TINY) GO TO 204
MOMSOU=Ø
RETURN
204 DO 210 I=2,NM1
21g SI(I)=ADPEI (I)*(AGRVDX*(RHO (N)-RHO (I))-DP)
MOMSOU=1
C
C ------ WRITE TEST OUTPUT IF REQUIRED, THEN RETURN
IF(ITEST.EQ.1) RETURN
WRITE (6,9011) J,(F(I,JEL),I=1,N)
IF(MODEL.GT.2) WRITE (6,9ø12) (F(I,JK),I=1,N)
IF(MODEL.GT.3) WRITE (6,9ø13) (F(I,J2),I=1,N)
GO TO 9001
C
C
C
CHAPTER B -----------. PHYSF ---------- PHYSF
PHYSF
ENTRY PHYSF
IF(MODEL.NE.1) GO TO 312
RECPR=RECPRL (J)
GO TO 310
312 RECPR=RECPRT (J)
310 NEWPR=1
IF (ABS (RECPR-RPRLST).LT.1.E-10) GO TO 314
NEWPR=2
DO 313 I=2,NM2
313 DIF(I)=DIFU(I)*RECPR
RPRLST=RECPR
C --------------------------------------- KINETIC HEATING SOURCE
314 IF(J.NE.JH) GO TO 300ø

```
```

 IF(ABS(RECPR-1.).LT.l.E-l\emptyset) GO TO 32\emptyset
 IF(NOVEL.NE.I) GO TO 321
 320 KSOURC=3
 RETURN
 321 DUSQP=\emptyset.
 US QP=U (2) **2
 DO 322 I=2,NM2
 USQ=U (I+l)**2
 DUSQ=(DIFU(I)-DIF(I))* (USQ-USQP)
 SI(I)=.5*(DUSQ-DUSQP)
 DUSQP=DUSQ
 322 USQP=USQ
 KSOURC=2
 SI (NMl) =-. 5*DUSQP
 GO TO 9000
 C
C -- FUEL SOURCE
30日\emptyset IF(J.NE.JF) GO TO 40日g
IF(INERT.EQ.2) GO TO 342
KSOURC=3
RETURN
342 KSOURC=1
IF(MODEL.NE.1) GO TO 352
Tl=DX*PREEXP*PRESS**2
T2=.5/STOICH
DO 344 I=2,NM1
FUBRNT=T 2*(ABS (F (I,JP))-F (I,JP))
IF(F(I,JF).GT.FUBRNT) GO TO 346
SIP(I)=0.
GO TO 344
346 EXPO=EXP (-ARRCON/F (I,JTE))
F(I,JOX)=AMAXI (D.,F(I,JP)+F(I,JF)*STOICH)
TERM=-Tl*EXPO*ADPEI(I)*F(I,JOX)
SIP(I)=TERM/(l.-FUBRNT/F(I,JF))
344 SI(I)=-SIP(I)*FUBRNT
GO TO 90\emptysetD
352 T2=.5/STOICH
IF(IBIO.EQ.1) GO TO 354
T3=1./(PHIB-PHID+TINY)
T4=-PGID*T3
C ---- RATE CONTROLLED BY EDDY BREAK-UP
CEBUDX=CEBU*DX
DO 353 I=2,NMl
FUBRNT=T 2*(ABS (F (I,JP))-F (I,JP))
FUUNBT=T 3*F(I,JP)+T4
IF(F(I,JF).LT.FUUNBT) GO TO 356
SIP(I)=\emptyset.
GO TO 353
356 SIP(I)=-ADPPI (I) *CEBUDX*DUDY (I)*RHO (I)*(FUUNBT-F (I,JF))/
l
353 SI(I)=-SIP(I)*FUBRNT

```
```

 GO TO 358
 C -----------------THE ENTRY BIOS IN SUBROUTINE
C ------------BIOG IS CALLED HERE-------------------------------
354 CALL BIOS
358 CONTINUE
GO TO 9000
C
C -- JP (PHI)
40日\emptyset IF(J.NE.JP) GO TO 5000
KSOURC=3
RETURN
C
-- ENERGY SOURCE
50øø IF(J.NE.JK) GO TO 60øø
C ------------------------- GENERATION OF TURBULENCE ENERGY
DO 3001 I=2,NM1
3001 GENK(I)=DX*ADPEI(I)*EMU(I)*DUDY(I)**2
C -------------------- DISSIPATION OF TURBULENCE ENERGY
IF(MODEL-4) 3003,3004,3005
C ---MODEL }
3003 CDDX=CD*DX
DO 3006 I=2,NMI
30ø6 DISSK(I)=CDDX*ADPEI(I)*ABS(F(I,JK))**1.5/(F(I,JEL)+TINY)
GO TO 3007
C
3004 DO 3008 I=2,NMI
30日8 DISSK(I)=DX*RHO(I)*ADPEI(I)*F(I,J2)*F(I,JK)
GO TO 30ø7
C --
3005 DO 3009 I=2,NM1
3099 DISSK(I)=DX*RHO(I)*ADPEI(I)*F(I,J2)
3007 CONTINUE
C ---
KSOURC=1
CONST1=1.5
CONST2=C 2MOD5-1.
CONST3=.5
CONST4 =C 2MOD5
DO 3010 I=2,NMI
RECFJK=1./(F (I,JK) +TINY)
SI(I)=CONST1*GENK(I)+CONST2*DISSK (I)
301\emptyset SIP(I)=-RECFJK*(CONST3*GENK(I)+CONST4*DISSK(I))
C --------------------------------NEAR-WALL CELLS
IF(KIN.NE.l) GO TO 3011
TAU=TAUI+Y(2)*DPDX+RMI*U(2)/R(2)
F2JK=TAU/(RHO (2)*TAUDK)
SI(2)=F2JK*BIG
SIP(2)=-BIG
3011 IF(KEX.NE.I) GO TO 9000
TAU=TAUE+(Y (N)-Y (NMI)) *DPDX-RME*U (NMI)/R (NMI)
FNMIJK=TAU/(RHO (NMI)*TAUDK)

```
```

 SI(NML)=FNMIJK*BIG
 SIP(NMI)=-BIG
 GO TO 900%
 C
C --~---M---ー-ー-----ー------ SOURCE OF 2ND TURBULENCE QUANTITY
60\emptyset\emptyset IF(J.NE.J2) GO TO 7\emptyset\emptyset\emptyset
KSOURC=1
C --ー-ー-ーーー-ー-ーーーーーー-ーー-ー---- SOURCE OF FREQUENCY (MODEL=4)
C
IF(MODEL.EQ.4) GO TO 40ø1
CONST1=C1MOD5
CONST2=C2MOD5-1.
CONST3=\emptyset.
CONST4=2.*C2MODS-1.
GO TO 4002
4のøl CONSTl=3.*ClMOD4
CONST 2=C2MOD4-1.
CONST 3=2.*ClMOD4
CONST4=2.*C2MOD4-1.
4g\emptyset2 DO 40Ø3 I=2,NM1
RECFJK=1./(F(I,JK)+TINY)
FJ2DJK=F (I,J2)*RECFJK
SI (I)=FJ2DJK* (CONSTl*GENK (I)+CONST2*DISSK(I))
4øø3 SIP(I)=-RECFJK*(CONST3*GENK(I)+CONST4*DISSK(I))

```

```

 IF(KIN.NE.1) GO TO 40\emptyset4
 F2J2=WALCON*SQRT (F2JK)*RECYDF (1)
 IF(MODEL.EQ.5) F2J2=F2J2*F2JK
 SI (2)=F2J 2*BIG
 SIP(2)=-BIG
 4004 IF(KEX.NE.1) GO TO 90\emptyset\emptyset
FNMIJ 2=WALCON*SQRT (FNM1JK) *RECYDF (NM1)
IF(MODEL.EQ.5) FNMlJ2=FNMIJ2*FNMlJK
SI (NM1) =FNM1J2*BIG
SIP(NMI)=-BIG
C
C********** SOURCE TERMS FOR FOLD POPULATION DISTRIBUTION*****
C---------- SOURCE TERM FOR AGE (1)
7\emptyset\emptyset\emptyset IF(J.NE.JAl) GO TO 80\emptyset\emptyset
KSOURC=1
TRANF=UMIN/XD
DTRANF=-1./XD
DO 540 I=2,NMl
ADPEDX(I)=ADPEI (I)*DX
AVELP=TRANF/U (I) +DTRANF*AGE (2)
SIAP=AMIN1 (0.,AVELP)*F(I,JA 2)
SIPAP=AMAXI (\emptyset.,AVELP)
SI (I)=(PA\emptyset (I)*RECDA (1)-SIAP) *ADPEDX (I)
SIP(I)=(-RHO (I)*U (I)*SIPAP*RECDA (I)-PA\emptyset(I))*ADPEDX (I)
540 CONTINUE
GO TO 90ø\emptyset

```
```

C
C---------- SOURCE TERMS FOR AGE(2)...AGE (NAGE)
80Ø0 KSOURC=1
JM2=J-JA1M1
DO 620 I=2,NM1
C------ PFLUX THROUGH THE WEST FACE
AVELM=TRANF/U (I) +DTRANF*AGE (JM2)
SIAM=AMAX1 (}|,\mp@code{AVELM)*F(I,J-1)
SIPAM=AMIN1 (0.,AVELM)
C-ー---- PFLUX THROUGH THE EAST FACE
AVELP=TRANF/U (I) +DTRANF*AGE (JM2+1)
FIJP1=F(I,J+1)
IF(J.EQ.JAL) FIJPI=F(I,J)
SIAP=AMINI (0.,AVELP)*FIJPI
SIPAP=AMAX1 (}0.,AVELP
SI (I)=RHO (I) *U (I)* (-SIAP+SIAM) *RECDA (JM2) *ADPEDX (I)
SIP(I)=(RHO (I)*U(I)* (-SIPAP+SIPAM) *RECDA (JM2) -PAØ (I))
1 *ADPEDX(I)
62\emptyset CONTINUE
C ----- WRITE TEST OUTPUT,IF REQUIRED, THEN RETURN
9\emptyset\emptyset0 IF(ITEST.EQ.1) RETURN
WRITE (6,9021) J,(SIP(I),I=2,NM1)
9001 WRITE (6,9022) (SI(I),I=2,NM1)
RETURN
C
9011 FORMAT(18H PHYS TESTS FOR J=,I3/1gH F(I,JEL)=/(3X,1PGE11.3))
9012 FORMAT (9H F (I,JK) =/(3X,1P6E11.3))
9013 FORMAT (9H F(I,J2)=/(3X,1P6E11.3))
9021 FORMAT (18H PHYS TESTS FOR J=,I3/8H SIP(I)=/(3X,1P6E11.3))
9022 FORMAT(7H SI(I)=/(3X,1P6E11.3))
END

```

\section*{SUBROUTINE COMP}
 DIMENSION \(A(6 \varnothing), B(6 \theta), C(6 \theta), C O N(6 \varnothing), D(6 \varnothing), H C O N(6 \varnothing), O M D I F(6 \varnothing)\)
\$INCLUDE 9,COMA2.FTN
\$INCLUDE 9,COMB.FTN
C
EQUIVALENCE (A(1),DIF(1)),(C(1),SI(1)),(D(1),SIP(1))
C
CHAPTER A
C INIT
INIT
INIT ------------- INIT
ENTRY INIT
C
NMI \(=\mathrm{N}-1\)
NM2 \(=\mathrm{N}-2\)
NM \(3=\mathrm{N}-3\)
ISTEP=】
IF (KRAD.EQ.3) NOVEL=1
JUSTIN=ISTEP
JUSTEX=ISTEP
IFIN=1
DXLAST=BIG
DX=BIG
PSII=Ø.
\(\mathrm{BPE}=1\).
\(\mathrm{BPI}=1\).
\(Y(1)=\varnothing\).
\(\mathrm{DP}=\) Ø.
DO \(13 I=1, N\)
\(\operatorname{EMU}(I)=\varnothing\).
\(\operatorname{CON}(\mathrm{I})=\varnothing\).
\(13 R(I)=1\).
IF (NOVEL.NE.1) RETURN
DO \(16 \mathrm{I}=1, \mathrm{~N}\)
\(16 \mathrm{U}(\mathrm{I})=1\).
RETURN
CHAPTER B

ENTRY GRID
\(O M I=O M\) (2)
\(O M E=1 .-O M(N M 1)\)
\(\operatorname{BOM}(2)=.5\) * (OM (2) + OM (3))
OMINT (1) \(=\varnothing\).
OMINT (2)=BOM (2)
DO \(202 \mathrm{I}=3\), NM2
OMINT (I) \(=.5\) * (OM (I) O OM (I+1))
BOM (I) =OMINT (I)-OMINT (I-1)
\(2 ø 2 \operatorname{OMDIF}(I)=O M(I)-O M(I-1)\)
HOMDFI=.5*OMDIF (3)
BOM (NM1) \(=1\). -OMINT (NM2)
OMINT (NM1) \(=1\).
OMDIF (NM1) \(=\) OM (NM1) -OM (NM2)
```

 HOMDFE=.5*OMDIF (NM1)
 RETURN
 CHAPTER C
C DISTAN -----~---- DISTAN ---------- DISTAN ----------- DISTAN
ENTRY DISTAN
IF(NOVEL.NE.1) GO TO 220
DO 224 I=1,N
224 RECRU(I)=1./(RHO(I)+TINY)
GO TO 222
220 DO 221 I=1,N
RECRU (I)=1./(RHO (I) *U (I) +T INY)
IF(RECRU(I).GT.Ø.) GO TO 22l
IFIN=2
WRITE(5,223) RECRU(I),I,ISTEP
223 FORMAT(14H *** RECRU(I)=,1PEl\emptyset.3,6H AT I=,I4,1lH AND ISTEP=,I5,
l 16H *** COMP DISTAN)
221 CONTINUE
C
222 IF(KIN.EQ.l) GO TO 308
RAT=RECRU (2)*RHO (1)*U (1)
IF(KRAD.EQ.2) GO TO 307
BPI =.33333+.66667*RAT
GO TO 308
307 BPI=(R(1)* (.83333*RAT+.16667)+.5*R(2)*(RAT+l.))/(R(1)+R(2))
308 IF(KEX.EQ.1) GO TO 230
RAT=RECRU (NMI) *RHO (N) *U (N)
IF(KRAD.EQ.2) GO TO 327
BPE=.33333+.66667*RAT
GO TO 230
327 BPE=(R(N)*(.833333*RAT+.16667)+.5*R(NMI)*(RAT+1.))/(R (N)+R(NMl))
C
230 STORE=OM(2)/BPI
ADPEI (2) = (HOMDFI+STORE)*RECRU (2)
Y(2)=PEI*RECRU (2)*STORE
HPEI=.5*PEI
DO 231 I=3,NMl
ADPEI (I)=BOM (I)*RECRU (I)
231 Y(I)=Y(I-1)+HPEI*OMDIF(I)*(RECRU(I)+RECRU(I-1))
STORE=OME/BPE
ADPEI (NM1) = (HOMDFE+STORE) *RECRU (NM1)
Y(N)=Y(NMI)+PEI*RECRU(NMI)*STORE
C
IF(KRAD-2) 270,240,280
C ---------------- Y"S AND R"S FOR AXIAL SYMMETRY
240 IF(CSALFA.LT.TINY) GO TO 260
COSD2=.5*CSALFA
TWDCOS=2./CSALFA
IF(R(1).GT.TINY) GO TO 250
C
DO 242 I=2,N

```
```

 Y(I)=SQRT(ABS (Y (I)*TWDCOS))
 242R(I)=Y(I)*CSALFA
 GO TO 270
    ```

```

 250 R1D2=.5*R(1)
 R1D2SQ=R1D2*R1D2
 DO 251 I=2,N
 Y(I)=Y(I)/(R1D2+SQRT(ABS (R1D2SQ+COSD2*Y(I))))
 251R(I)=R(1)+Y(I)*CSALFA
 GO TO 270
    ```

```

 260 RECRI=1./R(1)
 DO 261 I=2,N
 R(I)=R(l)
 261 Y(I)=Y(I)*RECRI
 GO TO 270
    ```

```

 28ø RlCUB=R(1)**3
 DO 281 I=2,N
 R(I)=(RlCUB+Y(I))**.3333333
 281 Y(I)=R(I)-R(1)
    ```

```

 27\emptysetYI=Y(2)
 YE=Y(N)-Y(NMI)
 DO 273 I=l,NMI
 273 RECYDF(I)=1./(Y(I+I)-Y(I))
 IF(ITEST.EQ.1) RETURN
 WRITE (6,274) (RHO (I),I=1,N)
 WRITE (6, 275) (RECRU(I),I=1,N)
 WRITE (6, 276) (ADPEI(I),I=l,N)
 WRITE (6,277) (Y (I),I=1,N)
 WRITE (5,278) (R (I), I=1,N)
 WRITE (5,279) (RECYDF(I),I=1,N)
 RETURN
 274 FORMAT (18HØCOMP DISTAN TESTS/8H RHO(I)=/(3X,1P6E11.3))
 275 FORMAT (10H RECRU(I)=/(3X,1P6E11.3))
 276. FORMAT (10H ADPEI(I)=/(3X,1P5E11.3))
 277 FORMAT (6H Y(I) =/(3X,1P6E11.3))
 278 FORMAT (6H R(I)=/(3X,1P6E11.3))
 279 FORMAT(11H RECYDF(I) =/(3X,1P6E11.3))
 CHAPTER D
C SOLVE ---~------- SOLVE -m-m------- SOLVE
---------- SOLVE
ENTRY SOLVE
C
DXDPEI=DX/PEI
CONSTl=.5*TXDPEI
ENT=ABS (RMI) +ABS (RME)
IF(ENT.LE.TINY) GO TO 3l\emptyset
HCONI =RMI * CONST 1
HCONDF=(RME-RMI)*CONSTI
DO 412 I=2,NM1

```
```

 HCON (I) =HCONI+HCONDF*OMINT (I)
 412. CON (I)=&CON (I)+HCON (I)
    ```

```

 310 IF(NOVEL.EQ.I) GO TO 442
 J=\emptyset
 C
----- CALL SUBROUTINE PHYS AT ENTRY PHYSU
CALL PHYSU
IF(KRAD-2) 410,415,411
410 DO 413 I=2,NM2
413 DIFU(I)=CONSTl*(EMU(I)+EMU(I+l))*RECYDF(I)
GO TO 414
415 CONST2=.5*CONST1
DO 415 I=2,NM2
416 DIFU(I)=CONST2* (R(I+1)+R(I))*(EMU(I)+EMU(I+1))*RECYDF (I)
GO TO 414
411 CONST3=.25*CONSTI
DO 419 I=2,NM2
419 DIFU(I)=CONST3*(R(I+1)+R(I))**2*(EMU(I)+EMU(I +1))*RECYDF (I)

```

```

 414 IF(ENT.LE.TINY) GO TO 312
 DO 417 I=2,NM2
 A(I)=AMAXI (Ø.,DIFU(I)-HCON (I),-CON(I))
 417 B (I+I)=A(I)+CON (I)
 GO TO 314
 312 DO 315 I=2,NM2
 A(I)=DIFU(I)
 315 B(I+1)=A(I)
 314 TI=\emptyset.
 TE=0.
 IF(KIN.EQ.I) CALL WALL (1,BPI,TI)
 IF(KEX.EQ.1) CALL WALL(N,BPE,TE)
 B(2)=AMAX1 ((TI+RMI) *DXDPEI, Ø.)
 A(NM1)=AMAXI ((TE-RME) *DXDPEI,0.)
 C
IF(MOMSOU.EQ.g) GO TO 431
DO 418 I=2,NMI
C(I)=U(I)*BOM(I)+SI(I)
418 D(I)=A(I)+B(I)+BOM(I)
GO TO 432
431 DO 433 I=2,NM1
C(I)=U(I)*BOM (I)
433 D(I) =A(I)+B(I)+BOM(I)
432 CONTINUE
IF(ITEST.EQ.1) GO TO 404
WRITE (6,341) (DIFU(I),I=2,NM1)
WRITE (6,342) (CON (I),I=2,NMI)
WRITE(6,405) (A(I),I=2,NM1)
WRITE (6,406) (B (I),I=2,NM1)
WRITE (6,4ஏ7) (C (I),I=2,NM1)
WRITE (6,408) (D (I),I=2,NM1)
341 FORMAT(23HØCOMP SOLVE TESTS FOR U/9H DIFU(I)=/(3X,1P6E11.3))

```
```

 342 FORMAT(8H CON (I) =/(3X,1P6E11.3))
 405 FORMAT (6H A(I) =/(3X,1P6Ell.3))
 40.5 FORMAT (6H B (I) =/(3X,1P6E11.3))
 407 FORMAT (6H C(I) =/(3X,1P6Ell.3))
 408 FORMAT (6H D(I) =/(3X,1P6El1.3))
 404 CONTINUE
 C ---------~----------------~---- ADJUST FREE-BOUNDARY VALUES
IF(KIN.EQ.2) U(I)=U(1)-DP*RECRU(1)
IF(KEX.EQ.2) U(N)=U(N)-DP*RECRU(N)

```

```

 C(2)=(B(2)*U(1)+C(2))/D (2)
 D(2)=A (2)/D(2)
 DO 421 I=3,NMI
 T=1./(D(I)-B(I)*D(I-I))
 D(I)=A(I)*T
 421 C(I)= (B (I)*C(I-I)+C(I))*T
 DO 422 IDASH=1, NM2
 I=N-IDASH
 422 U(I)=D(I)*U(I+1)+C(I)
 IF(KIN-2) 444,445,445
 444 TAUI=TI*U(2)/R(1)
 GO TO 445
 446 U(1)=U (2)
 445 IF(KEX-2) 447,440,448
 447 TAUE=TE*U (NM1)/R(N)
 GO TO 44\emptyset
 448 U (N)=U (NM1)
 440 IF(ITEST.NE.1) WRITE (6,443) (U (I),I=l,N)
 443 FORMAT(6H U(I)=/(3X,1P6EII.3))
 C

```

```

 442 IF(NF.LT.1) GO TO 481
 C----------RESTORAGE OF UPSTREAM VALUES
DO 4802 J=1,NF
IDJ=IDIMF* (J-1)
DO 4802 I=I,N
IJ=I+IDJ
FP(IJ)=F(IJ)
4802 CONTINUE
C---------ITERATION LOOP STARTS HERE-----------------
DO 4801 ITER=1,4
DO 480 J=l,NF
C---\infty------ITERATION FOR P-A EQUATIONS ONLY-------
IF(J.LT.JAl.AND.ITER.GT.1) GO TO 480
IF (J.GT.JAL.AND.ITER.GT.1) GO TO 480
IDJ=IDIMF* (J-1)
IlJ=l+IDJ
I2J=2+IDJ
INMIJ=NMI+IDJ
INJ=N+IDJ
C --~~ CALL SUBROUTINE PHYS AT ENTRY PHYSF

```
```

 CALL PHYSF
 TIF=\emptyset.
 FDIFI=\emptyset.
 TEF=Ø.
 FDIFE=0.
 IF(KIN.EQ.1) CALL WALL(1,FDIFI,TIF)
 IF(KEX.EC!.1) CALL WALL (N,FDIEE,TEF)
 IF(ITEST.EQ.1) GO TO 450
 WRITE (6,451) J,(DIF(I),I=2,NMI)
 451 FORMAT (24H COMP SOLVE TESTS FOR J=,I3/8H DIF(I)=/(3X,1P6E11.3))
 C

```

```

 450 IF(NEWPR.EQ.I) GO TO 337
 IF(ENT.LE.TINY) GO TO 335
 DO 484 I=2,NM2
 A(I)=AMAXI(g.,DIF(I)-HCON(I),-CON(I))
 484 B(I+1)=A(I)+CON (I)
 GO TO 337
 335 DO 338 I=2,NM2
 A(I)=DIF(I)
 338 B(I+1)=A(I)
 337 CONTINUE
 B (2) =AMAX1 ((TIF+RMI)*DXDPEI, Ø.)
 A(NM1) =AMAXI ((TEF-RME) *DXDPEI, Ø.)
    ```

```

GO TO (501,502,503), KSOURC

```

```

 501 SI2=SI(2)
 SINM1=SI (NMI)
 DO 485 I=2,NMI
 IJ=I+IDJ
 D(I)=A(I)+B(I)+BOM(I)-SIP(I)
 485 C(I)=FP(IJ)*BOM(I)+SI (I)
 GO TO 504
 C --ロー-ー--------------------- KSOURC=2, NO SIP
502 SI2=SI(2)
SINM1=SI(NMI)
DO 505 I=2,NM1
IJ=I +I DJ
D(I) =A(I)+B(I)+BOM(I)
505C(I)=F(IJ)*BOM(I)+SI(I)
GO TO 504
C
503 SI2=Ø.
SINM1=0.
DO 506 I=2,NMI
IJ=I+IDJ
D(I) =A (I) +B(I)+BOM(I)
506 C(I)=F(IJ)*BOM(I)
C
504 C(2)=C(2)-TIF*FDIFI*DXDPEI

```
```

 C(NMI)=C(NMI)-TEF*FDIFE*DXDPEI
 IF(KIN.GT.l) GO TO 485
 IF(IBIN(J).EQ.I) GO TO 486
 B(2)=0
 C(2) =F(I2J)*BOM(2)+SI 2+RJTOTI (J) *DXDPEI
 D(2)=D(2)-TIF*DXDPEI
 486 IF(KEX.GT.1) GO TO 491
 IF(IBEX(J).EQ.1) GO TO 491
 A (NM1)=\varnothing.
 C(NMI) =F (INMIJ) *BOM (NMI) +SINMI-RJTOTE (J) *DXDPE I
 D(NM1)=D (NM1)-TEF*DXDPEI
 4 9 1 ~ C O N T I N U E ~
 DO 492 I=2,NMI
 Al (I) =A (I)
 492 Bl(I)=B(I)
 IF(ITEST.EQ.1) GO TO 464
 WRITE (6,405) (A(I),I=2,NM1)
 WRITE (6,406) (B(I),I=2,NMI)
 WRITE (5,407) (C (I),I=2,NM1)
 WRITE (6,408) (D (I),I=2,NM1)
 C
464 C(2)=(B(2)*F(IlJ)+C(2))/D (2)
D(2)=A (2)/D (2)
DO 465 I=3,NM1
T=1./(D(I)-B(I)*D(I-1))
D(I) =A (I) *T
465 C(I)=(B(I)*C(I-I)+C(I))*T
DO 466 IDASH=1,NM2
I=N-IDASH
IJ=I+IDJ
466F(IJ)=D(I)*F(IJ+I)+C(I)
C
IF(J.GE.JAl.AND.J.LE.JAL) GO TO 469
IF(KIN-2) 467,460,469
467 IF(IBIN(J).EQ.1) GO TO 468
F(IlJ)=FDIFI+F(I2J)+(RJTOTI (J)-F(IlJ)*RMI)/TIF
GO TO 460
459 F(IlJ)=F(I2J)
IF(J.GE.JAl.AND.J.LE.JAL) GO TO 473
GO TO 460
468 RJTOTI(J)=TIF*(F(IlJ)-F(I2J)-FDIFI)+RMI*F(IlJ)
450 IF(KEX-2) 471,476,473
471 IF(IBEX(J).EQ.1) GO TO 472
F(INJ)=FDIFE+F (INMIJ)- (RJTOTE (J) -F (INJ)*RME)/TEF
GO TO 470
473 F(INJ)=F(INMIJ)
GO TO 470
472 RJTOTE(J)=TEF*(F(INMIJ)+FDIFE-F(INJ))+RME*F(INJ)
470 IF(ITEST.EQ.1) GO TO 48ø
WRITE (6,476) J,(F(I+IDJ),I=1,N)
476 FORMAT(5H F(I,,I2,1H)/(3X,1P6E11.3))

```
        ISTEP=ISTEP+1
        RETURN
        END

SUBROUTINE WALL

DIMENSION \(S 1(2), S 2(2), S 3(2), S 4(2), S 5(2), S 6(2)\)
\＄INCLUDE 9，COMAI．FTN
\＄INCLUDE 9，COMB．ETN
C
C EFFECTS OF PRESSURE GRADIENT AND MASS TRANSFER ARE INCLUDED
C EFFECTS OF RADIUS VARIATION ARE NEGLECTED
C FOR VELOCITY，OUT1＝BP，OUT2＝T
C FOR F＇S，OUTl＝FIDIF，OUT2＝T
C

DATA SHALF／．04／，BPLAST／1．／
KWALL＝2－1／I 1
I \(2=I 1+3-2\)＊KWALL
I3＝I1＋6－4＊KWALL IF（J．GT．Ø）GO TO \(2 \emptyset \emptyset\)

UREF＝U（I 2 ）
RHOREF＝RHO（I2）
RUREF＝RHOREF＊UREF
RREF＝R（I 2）
VREF \(=E M U\)（II）
\(Y R E F=Y I+(Y E-Y I) * O M\)（II）
RE＝RUREF＊YREF／VREF
RRUREF＝RREF＊RUREF
\(A M=(R M I-(R M E+R M I) * O M\)（II））／RRUREF
\(E F=Y R E F * D P /(D X * R U R E F * U R E F)\)
IF（MODEL．EQ．1）GO TO 11の
IF（RE．LT．132．25）GO TO 110

C－－ーーーーーー－－EXTENDED LOG LAW
ER＝RE＊EWALL
ARGMIN＝11．5＊EWALL
NIT \(=0\)
101 SHALF1＝SHALF
S＝SHALF＊＊2
\(S L O C=S+A M+E F\)
IF（SLOC．GT．Ø．）GO TO 104
SLOC＝TINY
SHALF＝SQRT（ABS（AM＋EF））
104 BEE＝SORT（SLOC）／AK
ARG \(=E R\)＊（SHALF \(+(\mathrm{AM} /(1 .+\mathrm{BEE})+.5 * E F) / \mathrm{SHALF})\)
IF（ARG．LT．ARGMIN）GO TO 110
SHALF \(=A K / A L O G\)（ARG）
IF（ABS（SHALF－SHALFI）．LT．．ØøØ1）GO TO \(1 \emptyset 2\)
NIT \(=\) NIT +1
IF（NIT．LT．11）GO TO 1øl
102 S＝SHALF＊＊2
SAV \(=.5 *(S+S L O C)\)
\(B P=1 . /(1 .+B E E)\)
```

 GO TO 103
 C -----~------------------------ LAMINAR FLOW
110 AMRE=AM*RE
FRE=EF*RE
IF(ABS(AMRE).LT..ØI) GO TO 111
AMRE=AMAXI (-60.,AMIN1 (60., AMRE))
EXPMRE=EXP (AMRE)
STORE=EXPMRE-1.-AMRE
AMRESQ=AMRE*AMRE
SRE=AMRE* (1.-STORE*FRE/AMRESQ)/(EXPMRE-1.)
BP=SRE*STORE/AMRESQ+FRE* (STORE-.5*AMRESQ)/(AMRESQ*AMRE)
GO TO 112
111 SRE=(2.-FRE*(1.+AMRE*.33333))/(2.+AMRE)
BP=SRE*(.5+AMRE*.16667)+FRE*(.16667+AMRE*.041667)
112 IF(SRE.GT.TINY) GO TO 113
SRE=TINY
BP=.33333
113 S=SRE/RE
SAV=S
103 T=S*RRUREF
C ---N--------------- UNDER-RELAX BP
BP=BPLAST+.5* (BP-BPLAST)
BPLAST=BP
OUTl=BP
OUT 2=T
S1 (KWALL)=SAV
S2 (KWALL) =RRUREF
S3 (KWALL) =UREF
S4 (KWALL) =AM
S5 (KWALL) =AMRE
S6 (KWALL) =RE
GO TO 900

```

```

 2\emptyset\emptyset SAV=S1 (KWALL)
 RRUREF=S 2 (KWALL)
 UREF=S3 (KWALL)
 AM=S 4 (KWALL)
 AMRE=S 5 (KWALL)
 RE=S6(KWALL)
 IF(MODEL.EQ.1) GO TO 210
 C
PRRAT=PRL (J)*RECPRT (J)
C ---- THE FOLLOWING P-FUNCTION IS NOT TO BE USED FOR PRRAT.LT.0.5
PJAY=9.*(PRRAT-1.)/PRRAT**. }2
S=SAV*RECPRT (J)/(1. +AMAXI (-.99999, PJAY*SQRT (ABS (SAV))))
OUT2=S*RRUREF
IF(J.NE.JH) GO TO 221
OUTl=(H-1.)*.5*UREF**2
GO TO 900
221 OUTl=ø.

```
```

 GO TO 9\emptyset\emptyset
    ```

```

 210 IF(ABS(AMRE).LT..Ol) GO TO 211
 S=AM/(EXP (PRL (J)*AMRE)-1.)
 GO TO 212
 211 S=RECPRL(J)/(RE+.5*RE*PRL(J)*AMRE)
 212 OUT2=S*RRUREF
 IF(J.NE.JH) GO TO 214
 OUT1=(PRL(JH)-1.)*.5*UREF**2
 GO TO 900
 2.14 OUTI=0.
    ```

```

 3ø\emptyset OUTl=TINY
 OUT2=TINY
 90\emptyset IF(ITEST.EQ.1) GO TO 901
 WRITE (6,9ØØ日) J,I1,OUT1,OUT2
 900\emptyset FORMAT(12H WALL TESTS,,3H J=,I3,4H Il=,I3,6H OUTl=,1PEI0.3,
 1 6H OUT2=,Elg.3)
 901 RETURN
 END
    ```

\section*{APPENDIX C}

Sample Output of the Computer
\[
\text { Prograil ( } \mathrm{H}_{2} \text {-Air Flame) }
\]


\section*{*** XU=3.035E-01 ISTEP= 312 \\ JUSTIN= \(\quad 0\) JUSTEX=}

0
\(D X=1.918 \mathrm{E}-03\) PRESSD \(=0.000 \mathrm{E}+00\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|r|}{KIN=} & \multicolumn{2}{|c|}{KEX \(=\)} & \(2 \mathrm{DXY}=\) & \(=3.066 \mathrm{E}-02\) & DPDX \(=0.000 \mathrm{E}+00\) \\
\hline \multicolumn{3}{|r|}{\multirow[t]{2}{*}{PSII \(=0.000 \mathrm{E}+00\) PS}} & PSIE \(=1.940 \mathrm{E}-03\) & 3 DXRE= & \(=1.024 \mathrm{E}+02\) & PEI \(=1.940 \mathrm{E}-03\) \\
\hline & & & \(=-1.002 \mathrm{E}\) & 02 DXINC= & \multirow[t]{2}{*}{\[
\begin{aligned}
& =9.533 \mathrm{E}-03 \\
& =1.918 \mathrm{E}-03
\end{aligned}
\]} & YREF1 \(=0.000 \mathrm{E}+00\) \\
\hline \multicolumn{3}{|r|}{\(\mathrm{R}(1)=0.000 \mathrm{E}+00 \mathrm{R}\)} & \(\mathrm{R}(\mathrm{N})=3.252 \mathrm{E}-02\) & 2 DXPSI \(=\) & & YREF2 \(=0.000 \mathrm{E}+00\) \\
\hline \multicolumn{7}{|l|}{ELCON= \(1.985 \mathrm{E}-01\)} \\
\hline \multicolumn{7}{|l|}{UFLUX \(=1.254 \mathrm{E}-02\)} \\
\hline \multicolumn{3}{|l|}{FLUX \((\mathrm{J})=-7.234 \mathrm{E}-044\).} & 4.731 \(\mathrm{E}-021\) & . \(228 \mathrm{E}+01\) & 8.288E-03 & 7.142E-03 \\
\hline 6.04 & \(41 \mathrm{E}-034\) & 956E-03 & 172E-03 & \(1.763 \mathrm{E}-03\) & 8.257E-04 & \\
\hline 2.40 & 70-04 4. & 168E-05 & .066E-06 & \(1.095 \mathrm{E}+04\) & 4.682E-05 & \\
\hline FAC & \(\mathrm{E}=2.052 \mathrm{E}\) & 01 RATE= & .956E-01 & & & \\
\hline \(\mathrm{Y}(\mathrm{N})\) & \(=3.25 \mathrm{E}-0\) & & & & & \\
\hline I & R/RO & UVEL & TEMP & FUEL & OXYG & H2M \\
\hline 1 & 0.00E+00 & \(3.47 \mathrm{E}+01\) & \(1.31 \mathrm{E}+03\) & \(1.04 \mathrm{E}-01\) & \(0.00 \mathrm{E}+00\) & 5.89E-01 \\
\hline 2 & 4.31E-01 & \(3.47 \mathrm{E}+01\) & \(1.31 \mathrm{E}+03\) & 1.04E-01 & \(0.00 \mathrm{E}+00\) & 5.89E-01 \\
\hline 3 & 8.65E-01 & \(3.43 \mathrm{E}+01\) & \(1.33 \mathrm{E}+03\) & 1.02E-01 & 9.44E-05 & 5.82E-01 \\
\hline 4 & \(1.30 \mathrm{E}+00\) & \(3.36 \mathrm{E}+01\) & \(1.34 \mathrm{E}+03\) & 9.83E-02 & 2.08E-03 & 5.72E-01 \\
\hline 5 & \(1.74 \mathrm{E}+00\) & \(3.28 \mathrm{E}+01\) & \(1.35 \mathrm{E}+03\) & \(9.34 \mathrm{E}-02\) & 4.44E-03 & \(5.59 \mathrm{E}-01\) \\
\hline 6 & \(2.18 \mathrm{E}+00\) & 3.18E+01 & \(1.37 \mathrm{E}+03\) & 8.74E-02 & \(6.99 \mathrm{E}-03\) & 5.41 E-01 \\
\hline 7 & \(2.62 \mathrm{E}+00\) & 3.07E+01 & \(1.40 \mathrm{E}+03\) & 8.05E-02 & 9.79E-03 & 5.208-01 \\
\hline 8 & \(3.07 \mathrm{E}+00\) & \(2.95 \mathrm{E}+01\) & \(1.43 \mathrm{E}+03\) & \(7.28 \mathrm{E}-02\) & 1.27E-02 & 4.93E-01 \\
\hline 9 & \(3.53 \mathrm{E}+00\) & \(2.81 \mathrm{E}+01\) & \(1.46 \mathrm{E}+03\) & \(6.46 \mathrm{E}-02\) & \(1.58 \mathrm{E}-02\) & 4.61E-01 \\
\hline 10 & \(3.99 \mathrm{E}+00\) & \(2.68 \mathrm{E}+01\) & \(1.50 \mathrm{E}+03\) & 5.60E-02 & \(1.89 \mathrm{E}-02\) & \(4.24 \mathrm{E}-01\) \\
\hline 11 & \(4.45 \mathrm{E}+00\) & \(2.54 \mathrm{E}+01\) & \(1.55 \mathrm{E}+03\) & \(4.70 \mathrm{E}-02\) & 2.18E-02 & \(3.81 \mathrm{E}-01\) \\
\hline 12 & 4.93E+00 & \(2 \cdot 40 \mathrm{E}+01\) & \(1.61 \mathrm{E}+03\) & 3.80E-02 & 2.55E-02 & 3.30E-01 \\
\hline 13 & \(5.72 \mathrm{E}+00\) & \(2.17 \mathrm{E}+01\) & \(1.69 \mathrm{E}+03\) & 2.35E-02 & 3.35E-02 & 2.32E-01 \\
\hline 14 & \(6.23 \mathrm{E}+00\) & \(2.03 \mathrm{E}+01\) & \(1.76 \mathrm{E}+03\) & 1.48E-02 & 3.94E-02 & 1.59E-01 \\
\hline 15 & \(6.75 \mathrm{E}+00\) & \(1.90 \mathrm{E}+01\) & \(1.80 \mathrm{E}+03\) & \(6.94 \mathrm{E}-03\) & \(4.85 \mathrm{E}-02\) & 8.14E-02 \\
\hline 16 & \(7.24 E+00\) & 1.79E+01 & \(1.66 \mathrm{E}+03\) & 2.90E-03 & 7.87E-02 & 3.62E-02 \\
\hline 17 & \(7.69 \mathrm{E}+00\) & \(1.71 \mathrm{E}+01\) & \(1.48 \mathrm{E}+03\) & \(6.03 \mathrm{E}-04\) & \(1.10 \mathrm{E}-01\) & 7.90E-03 \\
\hline 18 & \(8.09 \mathrm{E}+00\) & \(1.65 \mathrm{E}+01\) & \(1.24 \mathrm{E}+03\) & \(1.58 \mathrm{E}-04\) & \(1.40 \mathrm{E}-01\) & \(2.13 \mathrm{E}-03\) \\
\hline 19 & \(8.42 \mathrm{E}+00\) & \(1.61 \mathrm{E}+01\) & 9.99E+02 & 2.43E-04 & 1.68E-0t & 3.33E-03 \\
\hline 20 & \(8.54 \mathrm{E}+00\) & \(1.51 \mathrm{E}+01\) & 3.00E+02 & \(0.00 \mathrm{E}+00\) & 2.32E-01 & \(0.00 \mathrm{E}+00\) \\
\hline I & 02M & H2OM & N2M & TEMF & FUFL & OXFL \\
\hline 4 & \(0.00 \mathrm{E}+00\) & 1.42E-01 & \(2.69 \mathrm{E}-01\) & \(2.43 \mathrm{E}+02\) & 3.12E-02 & \(0.00 \mathrm{E}+00\) \\
\hline 2 & \(0.00 \mathrm{E}+00\) & 1.42E-01 & 2.69E-01 & \(2.43 \mathrm{E}+02\) & 3.12E-02 & \(0.00 \mathrm{E}+\infty\) \\
\hline 3 & 3.37E-05 & \(1.44 \mathrm{E}-01\) & 2.73E-01 & \(2.75 \mathrm{E}+02\) & 3.26E-02 & 1.39E-03 \\
\hline 4 & 7.56E-04 & 1.47E-01 & 2.80E-01 & \(2.76 \mathrm{E}+02\) & 3.39E-02 & \(1.75 \mathrm{E}-02\) \\
\hline 5 & 1.66E-03 & 1.50E-01 & 2.90E-01 & 3.03E+02 & 3.48E-02 & 2.86E-02 \\
\hline 6 & \(2.71 \mathrm{E}-03\) & 1.54E-01 & 3.02E-01 & \(3.16 \mathrm{E}+02\) & 3.53E-02 & 3.57E-02 \\
\hline 7 & 3.95E-03 & 1.60E-01 & 3.17E-01 & \(3.26 \mathrm{E}+02\) & 3.51E-02 & 4.19E-02 \\
\hline 8 & 5.39E-03 & 1.66E-01 & 3.35E-01 & \(3.40 \mathrm{E}+02\) & 3.42E-02 & \(4.77 \mathrm{E}-02\) \\
\hline 9 & 7.05E-03 & \(1.75 \mathrm{E}-01\) & 3.57E-01 & 3.61 E+02 & 3.26E-02 & 5.32E-02 \\
\hline 10 & 8.94E-03 & 1.84E-01 & 3.82E-01 & 3.94E+02 & 3.05E-02 & 5.85E-02 \\
\hline 11 & 1.108-02 & \(1.96 \mathrm{E}-01\) & 4.12E-01 & \(4.38 \mathrm{E}+02\) & 2.79E-02 & 6.33E-02 \\
\hline 12 & 1.38E-02 & 2.09E-01 & \(4.47 \mathrm{E}-01\) & \(4.74 \mathrm{E}+02\) & 2.48E-02 & \(6.74 \mathrm{E}-02\) \\
\hline 13 & 2.06E-02 & \(2.31 \mathrm{E}-01\) & 5.16E-01 & \(5.42 \mathrm{E}+02\) & \(1.90 \mathrm{E}-02\) & 7.42E-02 \\
\hline 14 & 2.65E-02 & \(2 \cdot 47 \mathrm{E}-01\) & 5.67E-01 & \(6.04 \mathrm{E}+02\) & \(1.48 \mathrm{E}-02\) & 7.84E-02 \\
\hline 15 & 3.55E-02 & 2.59E-01 & \(6.24 \mathrm{E}-01\) & \(6.84 \mathrm{E}+02\) & \(1.07 \mathrm{E}-02\) & 8.32E-02 \\
\hline 16 & 6.15E-02 & 2.32E-01 & \(6.71 \mathrm{E}-01\) & \(6.69 \mathrm{E}+02\) & 5.71E-03 & 7.80E-02 \\
\hline 17 & 8.98E-02 & \(1.94 \mathrm{E}-01\) & 7.08E-01 & \(6.66 \mathrm{E}+02\) & \(1.62 \mathrm{E}-03\) & \(7.21 \mathrm{E}-02\) \\
\hline 18 & 1.18E-01 & \(1.49 \mathrm{E}-01\) & 7.30E-01 & 7.15E+02 & 7.45E-04 & 7.178-02 \\
\hline
\end{tabular}
\begin{tabular}{lllllll}
19 & \(1.44 \mathrm{E}-01\) & \(1.07 \mathrm{E}-01\) & \(7.46 \mathrm{E}-01\) & \(6.17 \mathrm{E}+02\) & \(1.35 \mathrm{E}-03\) & \(5.95 \mathrm{E}-02\) \\
20 & \(2.10 \mathrm{E}-01\) & \(0.00 \mathrm{E}+00\) & \(7.93 \mathrm{E}-01\) & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\) & \(0.00 \mathrm{E}+00\)
\end{tabular}
*****POPULATION DISTRIBUTION OF FOLDS*****
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{FRAT} & PA & PA ( 2) & PA ( 3) & PA (4) & PA \\
\hline & & PA (6) & PA (7) & PA ( 8) & & PA ( 10) \\
\hline \multirow[t]{2}{*}{2} & \multirow[t]{2}{*}{4.693E+01} & \(3.600 \mathrm{E}+00\) & \(4.231 \mathrm{E}+00\) & \(3.958 \mathrm{E}+00\) & \(3.207 \mathrm{E}+00\) & \(1.705 \mathrm{E}+00\) \\
\hline & & 6.303E-01 & 1.357E-01 & 1.909E-02 & 1.553E-03 & 7.906E-05 \\
\hline \multirow[t]{2}{*}{3} & \multirow[t]{2}{*}{\(1.179 \mathrm{E}+02\)} & \(3.836 \mathrm{E}+00\) & \(4.215 \mathrm{E}+00\) & \(3.879 \mathrm{E}+00\) & \(3.129 \mathrm{E}+00\) & \(1.670 \mathrm{E}+00\) \\
\hline & & 6.272E-01 & 1.4105-01 & \(2.001 \mathrm{E}-02\) & \(1.649 \mathrm{E}-03\) & \(8.165 \mathrm{E}-05\) \\
\hline \multirow[t]{2}{*}{4} & \multirow[t]{2}{*}{\(1.641 \mathrm{E}+02\)} & \(4.097 \mathrm{E}+00\) & \(4 \cdot 204 \mathrm{E}+00\) & \(3.783 \mathrm{E}+00\) & \(3.034 \mathrm{E}+00\) & 0 \\
\hline & & 6.267E-01 & 1.499E-01 & 2.166E-02 & \(1.819 \mathrm{E}-03\) & 8.654E-05 \\
\hline \multirow[t]{2}{*}{5} & \multirow[t]{2}{*}{\(2.053 \mathrm{E}+02\)} & \(4.353 \mathrm{E}+00\) & \(4.193 \mathrm{E}+00\) & \(3.680 \mathrm{E}+00\) & \(2.931 \mathrm{E}+00\) & \(1.589 \mathrm{E}+00\) \\
\hline & & 6.302E-01 & 1.627E-01 & \(2.418 \mathrm{E}-02\) & \(2.081 \mathrm{E}-03\) & 9.442E-05 \\
\hline \multirow[t]{2}{*}{6} & \multirow[t]{2}{*}{\(2 \cdot 395 \mathrm{E}+02\)} & \(4.578 \mathrm{E}+00\) & \(4.178 \mathrm{E}+00\) & \(3.579 \mathrm{E}+00\) & \(2.832 \mathrm{E}+00\) & \(1.553 \mathrm{E}+00\) \\
\hline & & 6.390E-01 & \(1.795 \mathrm{E}-01\) & \(2.781 \mathrm{E}-02\) & 2.458E-03 & 1.062E-04 \\
\hline \multirow[t]{2}{*}{7} & \multirow[t]{2}{*}{\(2.660 \mathrm{E}+02\)} & \(4.755 \mathrm{E}+00\) & \(4.156 \mathrm{E}+00\) & 3.484E+00 & \(2.741 \mathrm{E}+00\) & \(1.525 \mathrm{E}+00\) \\
\hline & & 6.536E-01 & \(2.000 \mathrm{E}-01\) & 3.282E-02 & 2.985E-03 & 1.230E-04 \\
\hline \multirow[t]{2}{*}{8} & \multirow[t]{2}{*}{\(2.845 \mathrm{E}+02\)} & \(4.873 \mathrm{E}+00\) & \(4.125 \mathrm{E}+00\) & 3.398E+00 & \(2.663 \mathrm{E}+00\) & \(1.507 \mathrm{E}+00\) \\
\hline & & \(6.744 \mathrm{E}-01\) & \(2.241 \mathrm{E}-01\) & 3.961 E-02 & 3.709E-03 & 1.465E-04 \\
\hline \multirow[t]{2}{*}{9} & \multirow[t]{2}{*}{\(2.958 \mathrm{E}+02\)} & \(4.932 \mathrm{E}+00\) & \(4.083 \mathrm{E}+00\) & \(3.321 \mathrm{E}+00\) & \(2.600 \mathrm{E}+00\) & \(1.499 \mathrm{E}+00\) \\
\hline & & 7.014E-01 & \(2.515 \mathrm{E}-01\) & 4.844E-02 & 4.692E-03 & \(1.787 \mathrm{E}-04\) \\
\hline \multirow[t]{2}{*}{10} & \multirow[t]{2}{*}{\(3.005 \mathrm{E}+02\)} & \(4.931 \mathrm{E}+00\) & \(4.027 \mathrm{E}+00\) & \(3.252 \mathrm{E}+00\) & \(2.552 \mathrm{E}+00\) & \(1.503 \mathrm{E}+00\) \\
\hline & & 7.346E-01 & 2.823E-01 & 5.940E-02 & 6.024E-03 & \(2.228 \mathrm{E}-04\) \\
\hline \multirow[t]{2}{*}{11} & \multirow[t]{2}{*}{\(2.997 \mathrm{E}+02\)} & \(4.875 \mathrm{E}+00\) & \(3.957 \mathrm{E}+00\) & 3.192E+00 & \(2.518 \mathrm{E}+00\) & \(1.518 \mathrm{E}+00\) \\
\hline & & 7.735E-01 & 3.165E-01 & 7.256E-02 & 7.832E-03 & \(2.831 \mathrm{E}-04\) \\
\hline \multirow[t]{2}{*}{12} & \multirow[t]{2}{*}{\(2.911 \mathrm{E}+02\)} & \(4.768 \mathrm{E}+00\) & \(3.873 \mathrm{E}+00\) & \(3.137 \mathrm{E}+00\) & 2.498E+00 & \(1.543 \mathrm{E}+00\) \\
\hline & & 8.179E-01 & 3.538E-01 & 8.782E-02 & 1.029E-02 & 3.662E-04 \\
\hline \multirow[t]{2}{*}{13} & \multirow[t]{2}{*}{\(2.789 \mathrm{E}+02\)} & \(4.511 \mathrm{E}+00\) & \(3.707 \mathrm{E}+00\) & \(3.057 \mathrm{E}+00\) & \(2.486 \mathrm{E}+00\) & \(1.600 \mathrm{E}+00\) \\
\hline & & 8.990E-01 & 4.204E-01 & \(1.164 \mathrm{E}-01\) & \(1.617 \mathrm{E}-02\) & 5.692E-04 \\
\hline \multirow[t]{2}{*}{14} & \multirow[t]{2}{*}{\(2 \cdot 569 \mathrm{~F}+02\)} & \(4.275 \mathrm{E}+00\) & \(3.595 \mathrm{E}+00\) & \(3.023 \mathrm{E}+00\) & \(2.498 \mathrm{E}+00\) & \(1.647 \mathrm{E}+00\) \\
\hline & & 9.548E-01 & \(4.647 \mathrm{E}-01\) & 1.362E-01 & 2.127E-02 & 7.818E-04 \\
\hline \multirow[t]{2}{*}{15} & \multirow[t]{2}{*}{\(2 \cdot 350 \mathrm{E}+02\)} & \(4.017 \mathrm{E}+00\) & 3.490E+00 & \(3.000 \mathrm{E}+00\) & \(2.519 \mathrm{E}+00\) & \(1.696 \mathrm{E}+00\) \\
\hline & & \(1.008 \mathrm{E}+00\) & 5.070E-01 & 1.555E-01 & 2.693E-02 & \(1.086 \mathrm{E}-03\) \\
\hline \multirow[t]{2}{*}{16} & \multirow[t]{2}{*}{\(2.055 \mathrm{E}+02\)} & \(3.776 \mathrm{E}+00\) & \(3.418 \mathrm{E}+00\) & \(2.995 \mathrm{E}+00\) & 2.542E+00 & \(1.736 \mathrm{E}+00\) \\
\hline & & \(1.050 \mathrm{E}+00\) & 5.405E-01 & 1.715E-01 & 3.204E-02 & 1.502E-03 \\
\hline \multirow[t]{2}{*}{17} & \multirow[t]{2}{*}{\(1.728 \mathrm{E}+02\)} & \(3.643 \mathrm{E}+00\) & 3.402 \(\mathrm{E}+00\) & \(2.996 \mathrm{E}+00\) & \(2.548 \mathrm{E}+00\) & \(1.751 \mathrm{E}+00\) \\
\hline & & \(1.069 \mathrm{E}+00\) & 5.577E-01 & 1.807E-01 & 3.542E-02 & \(1.887 \mathrm{E}-03\) \\
\hline \multirow[t]{2}{*}{18} & \multirow[t]{2}{*}{\(1.402 \mathrm{E}+02\)} & \(3.742 \mathrm{E}+00\) & \(3.429 \mathrm{E}+00\) & \(2.974 \mathrm{E}+00\) & \(2.516 \mathrm{E}+00\) & \(1.727 \mathrm{E}+00\) \\
\hline & & \(1.058 \mathrm{E}+00\) & 5.545E-01 & \(1.812 \mathrm{E}-01\) & 3.642E-02 & \(2.096 \mathrm{E}-03\) \\
\hline \multirow[t]{3}{*}{19} & \(3.049 \mathrm{E}+02\) & \(4.204 \mathrm{E}+00\) & \(3.421 \mathrm{E}+00\) & \(2.892 \mathrm{E}+00\) & \(2.430 \mathrm{E}+00\) & \(1.662 \mathrm{E}+00\) \\
\hline & & \(1.016 \mathrm{E}+00\) & \(5.317 \mathrm{E}-01\) & 1.736E-01 & 3.506E-02 & \(2.071 \mathrm{E}-03\) \\
\hline & & TES OF & & ****** & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & & & & & \\
\hline & \(\operatorname{PDF}(6)\) & & & & \\
\hline 2 & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & 1.565E-03 & 942F-03 \\
\hline & 3.007E-04 & 2.022E-04 & \(4.423 \mathrm{E}-05\) & \(5.276 \mathrm{E}-05\) & . \(000 \mathrm{E}+0\) \\
\hline 3 & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & \(1.546 \mathrm{E}-03\) & -932E-0 \\
\hline & 2.226E-04 & \(1.940 \mathrm{E}-0\) & \(6.289 \mathrm{E}-05\) & \(1.053 \mathrm{E}-04\) & 5.728 \\
\hline & \(0.000 \mathrm{E}+\) & 0.000 E & \(1.905 \mathrm{E}-05\) & \(1.586 \mathrm{E}-03\) & 1 \\
\hline
\end{tabular}
\begin{tabular}{cccccc} 
& \(2.109 \mathrm{E}-04\) & \(2.196 \mathrm{E}-04\) & \(7.268 \mathrm{E}-05\) & \(9.608 \mathrm{E}-05\) & \(8.135 \mathrm{E}-07\) \\
5 & \(4.120 \mathrm{E}-05\) & \(8.057 \mathrm{E}-06\) & \(8.094 \mathrm{E}-06\) & \(1.441 \mathrm{E}-03\) & \(1.977 \mathrm{E}-03\) \\
& \(2.047 \mathrm{E}-04\) & \(2.024 \mathrm{E}-04\) & \(7.545 \mathrm{E}-05\) & \(1.349 \mathrm{E}-04\) & \(0.000 \mathrm{E}+00\) \\
6 & \(7.484 \mathrm{E}-05\) & \(8.430 \mathrm{E}-06\) & \(8.473 \mathrm{E}-06\) & \(1.229 \mathrm{E}-03\) & \(2.049 \mathrm{E}-03\) \\
& \(2.640 \mathrm{E}-04\) & \(2.438 \mathrm{E}-04\) & \(1.122 \mathrm{E}-04\) & \(1.013 \mathrm{E}-04\) & \(0.000 \mathrm{E}+00\) \\
7 & \(1.074 \mathrm{E}-04\) & \(8.633 \mathrm{E}-06\) & \(8.787 \mathrm{E}-06\) & \(1.051 \mathrm{E}-03\) & \(2.044 \mathrm{E}-03\) \\
& \(3.683 \mathrm{E}-04\) & \(2.923 \mathrm{E}-04\) & \(1.106 \mathrm{E}-04\) & \(9.719 \mathrm{E}-05\) & \(0.000 \mathrm{E}+00\) \\
8 & \(1.381 \mathrm{E}-04\) & \(8.654 \mathrm{E}-06\) & \(9.012 \mathrm{E}-06\) & \(8.241 \mathrm{E}-04\) & \(2.057 \mathrm{E}-03\) \\
& \(5.496 \mathrm{E}-04\) & \(2.548 \mathrm{E}-04\) & \(1.535 \mathrm{E}-04\) & \(9.181 \mathrm{E}-05\) & \(0.000 \mathrm{E}+00\) \\
9 & \(1.666 \mathrm{E}-04\) & \(8.499 \mathrm{E}-06\) & \(1.149 \mathrm{E}-05\) & \(7.427 \mathrm{E}-04\) & \(8.129 \mathrm{E}-04\) \\
& \(1.767 \mathrm{E}-03\) & \(2.875 \mathrm{E}-04\) & \(2.249 \mathrm{E}-04\) & \(7.221 \mathrm{E}-05\) & \(0.000 \mathrm{E}+00\) \\
10 & \(1.982 \mathrm{E}-04\) & \(3.895 \mathrm{E}-05\) & \(3.333 \mathrm{E}-05\) & \(5.444 \mathrm{E}-04\) & \(7.202 \mathrm{E}-04\) \\
& \(1.883 \mathrm{E}-03\) & \(3.299 \mathrm{E}-04\) & \(2.578 \mathrm{E}-04\) & \(1.145 \mathrm{E}-04\) & \(0.000 \mathrm{E}+00\) \\
11 & \(2.626 \mathrm{E}-04\) & \(4.311 \mathrm{E}-05\) & \(2.466 \mathrm{E}-05\) & \(1.378 \mathrm{E}-04\) & \(9.494 \mathrm{E}-04\) \\
& \(1.756 \mathrm{E}-03\) & \(5.303 \mathrm{E}-04\) & \(2.436 \mathrm{E}-04\) & \(1.726 \mathrm{E}-04\) & \(0.000 \mathrm{E}+00\) \\
12 & \(3.158 \mathrm{E}-04\) & \(3.117 \mathrm{E}-05\) & \(2.939 \mathrm{E}-05\) & \(2.926 \mathrm{E}-05\) & \(8.700 \mathrm{E}-04\) \\
& \(4.777 \mathrm{E}-04\) & \(1.853 \mathrm{E}-03\) & \(3.309 \mathrm{E}-04\) & \(1.847 \mathrm{E}-04\) & \(0.000 \mathrm{E}+00\) \\
13 & \(3.880 \mathrm{E}-04\) & \(4.563 \mathrm{E}-05\) & \(2.522 \mathrm{E}-05\) & \(3.216 \mathrm{E}-05\) & \(2.039 \mathrm{E}-04\) \\
& \(8.922 \mathrm{E}-04\) & \(5.010 \mathrm{E}-04\) & \(1.859 \mathrm{E}-03\) & \(1.769 \mathrm{E}-04\) & \(0.000 \mathrm{E}+00\) \\
14 & \(4.235 \mathrm{E}-04\) & \(4.782 \mathrm{E}-05\) & \(8.003 \mathrm{E}-05\) & \(1.312 \mathrm{E}-04\) & \(1.511 \mathrm{E}-04\) \\
& \(3.981 \mathrm{E}-04\) & \(7.333 \mathrm{E}-04\) & \(1.940 \mathrm{E}-03\) & \(2.211 \mathrm{E}-04\) & \(0.000 \mathrm{E}+00\) \\
15 & \(4.704 \mathrm{E}-04\) & \(1.199 \mathrm{E}-04\) & \(1.196 \mathrm{E}-04\) & \(1.331 \mathrm{E}-04\) & \(1.267 \mathrm{E}-04\) \\
& \(4.307 \mathrm{E}-04\) & \(6.977 \mathrm{E}-04\) & \(4.443 \mathrm{E}-04\) & \(1.586 \mathrm{E}-03\) & \(0.000 \mathrm{E}+00\) \\
16 & \(5.777 \mathrm{E}-04\) & \(8.804 \mathrm{E}-05\) & \(8.080 \mathrm{E}-05\) & \(1.754 \mathrm{E}-04\) & \(1.415 \mathrm{E}-04\) \\
& \(1.285 \mathrm{E}-04\) & \(1.506 \mathrm{E}-03\) & \(9.080 \mathrm{E}-04\) & \(4.657 \mathrm{E}-04\) & \(0.000 \mathrm{E}+00\) \\
17 & \(6.427 \mathrm{E}-04\) & \(1.032 \mathrm{E}-04\) & \(1.384 \mathrm{E}-04\) & \(1.965 \mathrm{E}-04\) & \(3.773 \mathrm{E}-04\) \\
18 & \(1.418 \mathrm{E}-03\) & \(3.376 \mathrm{E}-04\) & \(2.118 \mathrm{E}-04\) & \(6.716 \mathrm{E}-04\) & \(0.000 \mathrm{E}+00\) \\
19 & \(1.012 \mathrm{E}-03\) & \(1.464 \mathrm{E}-04\) & \(1.097 \mathrm{E}-04\) & \(1.014 \mathrm{E}-04\) & \(1.669 \mathrm{E}-03\) \\
19 & \(1.098 \mathrm{E}-04\) & \(1.180 \mathrm{E}-04\) & \(3.086 \mathrm{E}-04\) & \(4.201 \mathrm{E}-04\) & \(8.777 \mathrm{E}-05\) \\
& \(1.176 \mathrm{E}-03\) & \(9.642 \mathrm{E}-05\) & \(3.046 \mathrm{E}-04\) & \(1.781 \mathrm{E}-03\) & \(1.539 \mathrm{E}-04\) \\
& \(1.125 \mathrm{E}-04\) & \(1.537 \mathrm{E}-04\) & \(3.762 \mathrm{E}-05\) & \(1.049 \mathrm{E}-04\) & \(1.862 \mathrm{E}-04\) \\
& 104
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & & & \\
\hline & \(3.21 \mathrm{E}+00\) & \(2.32 \mathrm{E}+01\) & & & & \\
\hline & & 2.27E+01 & \(1.84 \mathrm{E}+03\) & & & 1.92E-01 \\
\hline & & & & & & \\
\hline & & 2. & 6E+03 & & & \\
\hline & \(6.40 \mathrm{E}+00\) & 2. & & & & 9.72E-02 \\
\hline & 7. & & \(1.86 \mathrm{E}+03\) & & & \\
\hline & \(7.97 \mathrm{E}+00\) & 1 & & & & \\
\hline & & & & & & \\
\hline & 9 & & & \(0.00 \mathrm{E}+00\) & \(1.22 \mathrm{E}-0\) & \\
\hline & \(1.05 \mathrm{E}+01\) & \(1.69 \mathrm{E}+0\) & \(1.22 \mathrm{E}+03\) & \(0.00 \mathrm{E}+00\) & & 0.00E+00 \\
\hline & 1.1 & 1.65 & \(1.05 \mathrm{E}+03\) & OE+00 & \(1.65 \mathrm{E}-0\) & 0 \\
\hline & 1. & 1.62 & 9.02E+02 & .00E+00 & 80E-01 & 0 \\
\hline & 1.20 E & 1. & 7 & .00E+00 & & \\
\hline & 1. & & & E+00 & 2.00E-01 & 0 \\
\hline & \(1.27 \mathrm{E}+01\) & \(1.56 \mathrm{E}+01\) & 5.92E+02 & 00E+00 & 08E & 00E+00 \\
\hline 0 & \(1.29 \mathrm{E}+0\) & 1.51 E & 3.00E+ & + & -01 & 0 \\
\hline I & 02M & H2 & & & & \\
\hline & 3.35 E & \(2 \cdot\) & & & , & 2 \\
\hline 2 & & & , & .79E+02 & 訨 & \\
\hline & \(4.75 \mathrm{E}-03\) & 2. & & \(2 \cdot 13 \mathrm{E}+02\) & 75-02 & \\
\hline & \(6.74 \mathrm{E}-03\) & 2.55E-01 & 5.08E-01 & \(2.68 \mathrm{E}+02\) & -26 & \\
\hline & 9.10E-03 & & & & & \\
\hline & \(1.21 \mathrm{E}-02\) & & & \(3.82 \mathrm{E}+02\) & 81 & \\
\hline & 1. & & \(5.57 \mathrm{E}-01\) & & E-02 & \\
\hline & 1. & 2.67E-01 & 5.80 E & +02 & & \\
\hline & 2.47 E & 2. & 6.0 & & & \\
\hline 0 & & & \(6.36 \mathrm{E}-01\) & \(6.20 \mathrm{E}+02\) & & \\
\hline & 4.84 E & & 6.62E-01 & \(6.28 \mathrm{E}+02\) & -03 & \\
\hline & 6.69E-02 & 2.29E & 6.87E-01 & & 3E-03 & \\
\hline & 1.01 E & 1.78 E & 7. & & \(0.00 \mathrm{E}+00\) & \\
\hline & \(1.23 \mathrm{E}-01\) & \(1.42 \mathrm{E}-01\) & 7.35E-01 & \(5.66 \mathrm{E}+02\) & \(0.00 \mathrm{E}+00\) & E-02 \\
\hline & \(1.41 \mathrm{E}-01\) & \(1.12 \mathrm{E}-01\) & 7.47E-01 & \(4 \cdot 99 \mathrm{E}+02\) & OOE+00 & 2 \\
\hline & 1.56E-01 & 8.81E-02 & 7.56E-01 & 2E+02 & OE +00 & \\
\hline & 1.67 E & 7.00E-02 & 7.63E-01 & 3.82\#+02 & 0.00世+00 & 3.13E-02 \\
\hline & \(1.76 \mathrm{E}-01\) & 5.45E-02 & 7.69E-01 & \(3.49 \mathrm{E}+02\) & . \(00 \mathrm{E}+00\) & \(2.80 \mathrm{E}-02\) \\
\hline & \(1.84 \mathrm{E}-01\) & 4.11E-02 & 7.75E-01 & \(3.23 \mathrm{E}+02\) & 00 & \\
\hline & \(2.10 \mathrm{E}-0\) & \(0.00 \mathrm{E}+0\) & 7.93E-0 & \(0.00 \mathrm{E}+0\) & .00E+ & . \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{7} & \multirow{3}{*}{9.034E+01} & \(85 \mathrm{E}+00\) & 7.235E-01 & 2.353E-01 & 2.972E-02 & \(1.904 \mathrm{E}-03\) \\
\hline & & \(3.380 \mathrm{E}+00\) & \(3.070 \mathrm{E}+00\) & \(2.749 \mathrm{E}+00\) & \(2.423 \mathrm{E}+00\) & \(1.822 \mathrm{E}+00\) \\
\hline & & \(1.234 \mathrm{E}+00\) & 7.086E-01 & 2.444E-01 & 3.668E-02 & \(2.326 \mathrm{E}-03\) \\
\hline \multirow[t]{2}{*}{8} & \(9.800 \mathrm{E}+01\) & \(3.547 \mathrm{E}+00\) & \(3.128 \mathrm{E}+00\) & \(2.734 \mathrm{E}+00\) & \(2.369 \mathrm{E}+00\) & \(1.758 \mathrm{E}+00\) \\
\hline & & \(1.195 \mathrm{E}+00\) & 7.009E-01 & 2.5658-01 & 4.535E-02 & 2.911E-03 \\
\hline \multirow[t]{2}{*}{9} & 1.039E+02 & \(3.659 \mathrm{E}+00\) & \(3.155 \mathrm{E}+00\) & \(2.712 \mathrm{E}+00\) & \(2.321 \mathrm{E}+00\) & 1.709E+00 \\
\hline & & \(1.168 \mathrm{E}+00\) & 7.013E-01 & 2.71 9E-01 & \(5.581 \mathrm{E}-02\) & 3.723E-03 \\
\hline \multirow[t]{2}{*}{10} & \(1.076 \mathrm{E}+02\) & \(3.708 \mathrm{E}+00\) & \(3.150 \mathrm{E}+00\) & \(2.680 \mathrm{E}+00\) & \(2.281 \mathrm{E}+00\) & 1.677E+00 \\
\hline & & \(1.156 \mathrm{E}+00\) & 7.108E-01 & 2.909E-01 & \(6.809 \mathrm{E}-02\) & 4.8508-03 \\
\hline \multirow[t]{2}{*}{11} & 1.080E+02 & \(3.683 \mathrm{E}+00\) & \(3.111 \mathrm{E}+\infty\) & \(2.643 \mathrm{E}+00\) & \(2.251 \mathrm{E}+00\) & \(1.663 \mathrm{E}+00\) \\
\hline & & \(1.160 \mathrm{E}+00\) & 7.296E-01 & 3.132E-01 & 8.174E-02 & \(6.381 \mathrm{E-03}\) \\
\hline \multirow[t]{2}{*}{12} & \(1.044 \mathrm{E}+02\) & \(3.588 \mathrm{E}+00\) & \(3.044 \mathrm{E}+00\) & \(2.603 \mathrm{E}+00\) & \(2.233 \mathrm{E}+00\) & \(1.667 \mathrm{E}+\infty\) \\
\hline & & \(1.178 \mathrm{E}+00\) & 7.562E-01 & \(3.377 \mathrm{E}-01\) & 9.584E-02 & 8.388E-03 \\
\hline \multirow[t]{2}{*}{13} & 9.818E+01 & \(3.335 \mathrm{E}+00\) & \(2.892 \mathrm{E}+00\) & \(2.540 \mathrm{E}+00\) & \(2.227 \mathrm{E}+00\) & \(1.701 \mathrm{E}+\infty\) \\
\hline & & \(1.226 \mathrm{E}+00\) & \(8.083 \mathrm{E}-01\) & \(3.786 \mathrm{E}-01\) & 1.182E-01 & \(1.242 \mathrm{E}-02\) \\
\hline \multirow[t]{2}{*}{14} & 8.597E+01 & \(3.104 \mathrm{E}+00\) & \(2.802 \mathrm{E}+00\) & \(2.523 \mathrm{E}+00\) & \(2.245 \mathrm{E}+00\) & \(1.735 \mathrm{E}+00\) \\
\hline & & \(1.261 \mathrm{E}+00\) & 8.410E-01 & 4.016E-01 & \(1.302 \mathrm{E}-01\) & \(1.489 \mathrm{E}-02\) \\
\hline \multirow[t]{2}{*}{15} & \(7.618 \mathrm{E}+01\) & \(2.910 \mathrm{E}+00\) & \(2.741 \mathrm{E}+00\) & \(2.521 \mathrm{E}+00\) & \(2.264 \mathrm{E}+00\) & \(1.762 \mathrm{E}+00\) \\
\hline & & \(1.288 \mathrm{E}+00\) & 8.647E-01 & 4.182E-01 & \(1.391 \mathrm{E}-01\) & \(1.692 \mathrm{E}-02\) \\
\hline \multirow[t]{2}{*}{16} & 6.717E+01 & \[
2.791 \mathrm{E}+00
\] & \[
2.723 E+00
\] & \[
2.529 \mathrm{E}+00
\] & \(2.276 \mathrm{E}+00\) & \[
1.773 \mathrm{E}+00
\] \\
\hline & & \[
1.299 \mathrm{E}+00
\] & 8.761E-01 & \[
4.271 E-01
\] & \[
1.445 \mathrm{E}-01
\] & \[
1.835 \mathrm{E}-02
\] \\
\hline \multirow[t]{2}{*}{17} & \(5.912 \mathrm{E}+01\) & \(2.788 \mathrm{E}+00\) & \(2.751 \mathrm{E}+00\) & \(2.536 \mathrm{E}+00\) & \(2.270 \mathrm{E}+00\) & \(1.764 \mathrm{E}+00\) \\
\hline & & \(1.293 \mathrm{E}+00\) & \(8.735 \mathrm{E}-01\) & 4.278E-01 & \(1.462 \mathrm{E}-01\) & \(1.911 \mathrm{E}-02\) \\
\hline \multirow[t]{2}{*}{18} & \(5.176 \mathrm{E}+01\) & \(2.962 \mathrm{E}+00\) & \(2.808 \mathrm{E}+00\) & \(2.525 E+00\) & \(2.236 \mathrm{E}+00\) & \(1.729 \mathrm{E}+00\) \\
\hline & & \(1.266 \mathrm{E}+00\) & 8.561E-01 & 4.200E-01 & \(1.442 \mathrm{E}-01\) & 1.918E-02 \\
\hline \multirow[t]{2}{*}{19} & \(1.189 \mathrm{E}+02\) & \(3.404 \mathrm{E}+00\) & \(2.834 \mathrm{E}+00\) & \(2.469 \mathrm{E}+00\) & \(2.166 \mathrm{E}+00\) & \(1.668 \mathrm{E}+\infty\) \\
\hline & & \(1.220 \mathrm{E}+00\) & 8.246E-01 & 4.043E-01 & \(1.389 \mathrm{E}-01\) & \(1.857 \mathrm{E}-02\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & PDF ( & 2) & \(\operatorname{PDF}(3)\) & 4) & PDF ( 5) \\
\hline & PDF( 6) & PDF( 7) & PDF( 8) & PDF( 9) & PDF( 10 ) \\
\hline 2 & \(0.000 \mathrm{E}+00\) & \(0.000 \mathrm{E}+00\) & 8.270E-06 & 2.425E-05 & 4.427E-05 \\
\hline & 1.138E-03 & \(2.136 \mathrm{E}-03\) & 6.223E-04 & 9.420E-05 & \(0.000 \mathrm{E}+00\) \\
\hline 3 & 3.898E-06 & 1.350E-05 & \(2.980 \mathrm{E}-05\) & \(2.743 \mathrm{E}-05\) & 4.728E-05 \\
\hline & \(6.673 \mathrm{E}-04\) & 2.564E-03 & 6.406E-04 & 1.153E-04 & 0.000E+00 \\
\hline 4 & 3.232E-05 & 3.186E-05 & \(2.886 \mathrm{E}-05\) & \(2.624 \mathrm{E}-05\) & 6.313E-05 \\
\hline & 7.670E-04 & 2.386E-03 & 6.806E-04 & 8.902E-05 & 0.000E+00 \\
\hline 5 & 8.006E-05 & 3.086E-05 & 2.940E-05 & 4.812E-05 & 5.867E-05 \\
\hline & 5.685E-04 & 2.452E-03 & \(7 \cdot 444 \mathrm{E}-04\) & 8.909E-05 & 0.000E+00 \\
\hline 6 & \(1.284 \mathrm{E}-04\) & 3.039E-05 & 3.200E-05 & 7.730E-05 & \(5.887 \mathrm{E}-05\) \\
\hline & -4.883E-04 & 1.300E-03 & \(1.884 \mathrm{E}-03\) & 9.831E-05 & \(0.000 \mathrm{E}+00\) \\
\hline 7 & 1.798E-04 & 3.273E-05 & \(6.121 \mathrm{E}-05\) & \(6.848 \mathrm{E}-05\) & 5.239E-05 \\
\hline & 4.634E-04 & 1.099E-03 & \(2.048 \mathrm{E}-03\) & 9.066E-05 & \(0.000 \mathrm{E}+00\) \\
\hline 8 & \(2.525 \mathrm{E}-04\) & 4.137E-05 & 7.748E-05 & \(4.190 \mathrm{E}-05\) & \(6.181 \mathrm{E}-05\) \\
\hline & \(3.344 \mathrm{E}-04\) & 1.0428-03 & \(1.971 \mathrm{E}-03\) & \(2.701 \mathrm{E}-04\) & 0.000E+00 \\
\hline 9 & 3.017E-04 & 9.472E-05 & 6.093E-05 & 3.032E-05 & \(1.506 \mathrm{E}-04\) \\
\hline & \(1.841 \mathrm{E}-04\) & 8.083E-04 & 1.058E-03 & 1.426E-03 & 0.000E+00 \\
\hline 10 & 3.710E-04 & 8.670E-05 & \(6.590 \mathrm{E}-05\) & \(1.153 \mathrm{E}-04\) & 1.508E-04 \\
\hline & \(1.494 \mathrm{E}-04\) & 5.402E-04 & 1.273E-03 & \(1.362 \mathrm{E}-03\) & \(0.000 \mathrm{E}+00\) \\
\hline 11 & \(4.375 \mathrm{E}-04\) & 6.649E-05 & 9.574E-05 & 1.212E-04 & 1.051E-04 \\
\hline & \(1.051 \mathrm{E}-04\) & 4.43 & 2.202E-03 & 5.135 & 0.000E+00 \\
\hline
\end{tabular}
```

| 12 | $4.964 \mathrm{E}-04$ | $1.029 \mathrm{E}-04$ | $1.416 \mathrm{E}-04$ | $1.064 \mathrm{E}-04$ | $9.658 \mathrm{E}-05$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | $3.321 \mathrm{E}-04$ | $1.0238 \mathrm{E}-03$ | $4.939 \mathrm{E}-04$ | $7.817 \mathrm{E}-04$ | $0.000 \mathrm{E}+00$ |
| 13 | $5.968 \mathrm{E}-04$ | $1.468 \mathrm{E}-04$ | $1.491 \mathrm{E}-04$ | $2.318 \mathrm{E}-04$ | $1.650 \mathrm{E}-03$ |
| | $4.139 \mathrm{E}-04$ | $1.288 \mathrm{E}-04$ | $3.372 \mathrm{E}-04$ | $4.622 \mathrm{E}-04$ | $0.000 \mathrm{E}+00$ |
| 14 | $6.873 \mathrm{E}-04$ | $1.610 \mathrm{E}-04$ | $3.014 \mathrm{E}-04$ | $1.581 \mathrm{E}-03$ | $3.669 \mathrm{E}-04$ |
| | $2.897 \mathrm{E}-04$ | $3.698 \mathrm{E}-04$ | $3.658 \mathrm{E}-04$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ |
| 15 | $8.266 \mathrm{E}-04$ | $2.699 \mathrm{E}-04$ | $3.354 \mathrm{E}-04$ | $1.550 \mathrm{E}-03$ | $3.366 \mathrm{E}-04$ |
| | $4.172 \mathrm{E}-04$ | $3.687 \mathrm{E}-04$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ |
| 16 | $9.949 \mathrm{E}-04$ | $3.048 \mathrm{E}-04$ | $1.533 \mathrm{E}-03$ | $3.929 \mathrm{E}-04$ | $4.536 \mathrm{E}-04$ |
| | $4.294 \mathrm{E}-04$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ |
| 17 | $1.210 \mathrm{E}-03$ | $2.402 \mathrm{E}-04$ | $1.512 \mathrm{E}-03$ | $3.666 \mathrm{E}-04$ | $7.483 \mathrm{E}-04$ |
| | $0.000 \mathrm{E}+00$ |
| 18 | $1.358 \mathrm{E}-03$ | $1.705 \mathrm{E}-03$ | $3.675 \mathrm{E}-04$ | $3.779 \mathrm{E}-04$ | $2.449 \mathrm{E}-04$ |
| | $6.329 \mathrm{E}-05$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ |
| 19 | $1.553 \mathrm{E}-03$ | $1.946 \mathrm{E}-03$ | $2.421 \mathrm{E}-04$ | $1.258 \mathrm{E}-04$ | $1.046 \mathrm{E}-04$ |
| | $1.406 \mathrm{E}-04$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ | $0.000 \mathrm{E}+00$ |

CROSS-STREAM PLOT, XU= 6.096E-01 ISTEP= 420
TERMINATED AT
ISTEP= 420 LASTEP= 1000 XU= 6.096E-01 XULAST= 6.096E-01 IFIN= 2
DOWN-STREAM PLOT, XU=6.096E-01 ISTEP= 420

```
```


[^0]: Fig.7.4-1l Radial distribution of mean temperature and mean composition

[^1]: Fig.8.5-4 Influence of fold size on pdf
 of temperature at $X / D=60$
 (—— Run no.l, ---- Run no.7)

[^2]: COMMON／COMA／
 1 ADPEI（60），BIG，BOM（60），CSALFA，DIF（6Ø），DIFU（60），DP，DX，DXLAST，
 $2 \operatorname{EMU}(6 \emptyset), F(6 \emptyset, 29), I B E X(29)$, IBIN（29），IDIMF，IFIN，ISTEP，ITEST，J，
 3 JUSTEX, JUSTIN, KEX,KIN, KRAD, KSOURC, MOMSOU, N, NEWPR , NF, NMI, NM2,
 4 NM 3, NOVEL, OM (6も), OMINT (6Ø), PEI, PSIE, PSII, R (6Ø), RECRU (6Ø) ,
 5 RECYDF (60), RHO (60), RJTOTE (29), RJTOTI (29), RME, RMI,SI (60), SIP (60),
 6 TAUE, TAUI, TINY,U(60), XD, XU,Y(60),YE,YI, Al (60), Bl (60),
 7 PEE,FP $(60,29)$
 COMMON /COMA/
 1 ADPEI (6Ø), BIG, BOM (6Ø), CSALFA,DIF (6Ø), DIFU(6Ø),DP,DX,DXLAST,
 2 EMU (60), F (1740), IBEX (29), IBIN (29), IDIMF, IFIN,ISTEP, ITEST, J,
 3 JUSTEX,JUSTIN, KEX,KIN, KRAD, KSOURC, MOMSOU, N,NEWPR,NF,NMI, NM2,
 4 NM 3, NOVEL, OM (60) , OMINT (60), PEI, PSIE, PSII, R (60), RECRU (60) ,
 5 RECYDF (60), RHO (60), RJTOTE (29), RJTOTI (29), RME, RMI,SI (6曰), SIP (6б),
 6 TAUE, TAUI,TINY,U(60),XD,XU,Y(60),YE,YI, A1 (60), B1(60),
 7 PEE,FP (1740)
 COMMON/COMB/
 I AK, AGRAV, AHEX, AHIN, ARRCON, AUEX, BHEX, BHIN, BUEX,
 2 CD, CEBU, CHEX, CHIN, CMU, CMUCD, CUEX, CIMOD 4 ,
 2 CFU (6Ø), CMIX(60), COX (6Ø), CPR (60), CN2 (60), CH20 (60) ,
 2 AFUl, AFU2, AFU3, AOXI, AOX2, AOX3, AN21, AN22, AN23, AH2O1, AH2O2,
 3 C1MOD5;C2MOD4,C2MOD5,DA1,DA2,DISSK (60), DPDX,DXINC, DXMAX,
 4 DXPSI, DXRAT, DXRE, DXY, ELEXP, ENTHA, ENTHB, ENTHC, ENTHD,
 4 ELCON, ELCONO (4), ELCONK (8) ,
 5 EWALL, FACE, FACEXP, FACI, FJKA, FJKD, FJ2A,FJ2D,FLOB, FLOC, FR,
 6 FRA, FUA, FUB, FUC, FUD, GAMMA, GASCON, GENK (6Ø) , H, HDIV, HEXØ, HFU ,
 7 HINg, ILPLOT, INERT, IRUN, ITPLOT, JEL, JF, JH, JK, JOX, JP, JPR, JTE,
 8 J2,KASE,KIND, KUDIF, LASTEP, LENGTH, MODEL, MOD4C1,NPLOT,
 9 NPROF, NSTAT, OMPOW, OXA, OXB, OXC, OXD, PEILIM, PHIA, PHIB, PHIC,
 1 PHID, PREEXP, PRESS, PRL (29) , PRLAM, PRTURB, RATE, RATI, RECPRL (29) ,
 2 RECPRT (29), REY,SIGK,SIG2,STOICH,TA,TAUDK,TB,TC,TD,TWALL,UA,
 3 UB, UBAR,UC, UD,UDIF, UEXØ, UFAC,UFLUX,ULIM,VISFU,VISMIX,VISOX,
 4 VISPR,WALCON,WFU,WMIX,WOX,WPR,XEND, XHEX $\varnothing, X H I N \emptyset, X O U T, X U E X \emptyset$,
 5 XULAST, YREFI,YREF2,UREF
 6 JA1, JA $2, J A 3, J A 4, J A 5, J A 6, J A 7, J A 8, J A 9, J A 1 \emptyset, J A L, U M I N, U M A X$,
 7 JAll,JAl2,JAl3,JAl4,JA15,JA16,JA17,JA18,JA19,JA2Ø
 COMMON/DEML/
 1 AGE (21), AGEC (20), DAGE (20), RECDA (20),NAGE,NAGEP1,MODFOR,
 2 FOLM 0, PE INEW, RECXD, UMXXD, XDUMX, $\operatorname{DUDYB~(60),~PA\emptyset ~}(60), P A(60,20)$,
 3 JAlMl, JAlPI, ENTR (60), ARRAY $(20,8)$,
 4 AVTEM (6Ø), DTST, XMø (6Ø), IBIO, FSTOIC,SIW(6も),SIPW(60),AVOX(60),

 6 AVRATl (6Ø),AVRAT2 (5Ø), RBURN (6Ø), FUAV (6Ø), AVFU (6Ø), OXAV (6Ø),

 OXFLU (6ด), FUFLU (6Ø), TEMAVS (60), AVTEMS (60),
 FUAVS (60), AVFUS (60), OXAVS (60), AVOXS (6Ø),
 PHI (60), PHIBV (60), PDF1 (60), PDFIT (60), PDFITA (60),

 IPDF, ISTAGE, OMA (6Ø), TEML, TEMR, FUL, FUR, OXL, OXR,
 FI, F2, FAMP, PHIL, PHIR, NDIFOM, NPDF, NPDFM1, PHIDIE,

