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A B S T R A C T 

Filters are extensively used in all types of electronic equipment 

and are an essential part of any communication network. In the past 

most high precision filters were classical LC networks realised using 

discrete components. However, the advent of high quality Hybrid 

technology has made it possible to use active RC filters, which offer 

advantages such as reduced size and weight, and increased reliability. 

Apart from trying to reduce the DC power consumption, which is 

done by reducing the number of operational amplifiers (OP-AMPs) used 

in the circuit, a primary objective in the design of active RC filters 

is to produce circuits whose responses are relatively insensitive to 

changes in component values. One way of achieving this objective is 

to design the active RC network to "simulate" a suitably designed LC 

network in such a way that the inherently low sensitivity property of 

the LC network is retained. In this thesis, two such methods of 

designing active RC filters are considered. In the first method, 

which is referred to as the signal flow graph simulation, the 

mathematical relationships between the voltages and currents in the LC 

network are simulated. In the second method, which is referred to as 

the simulation of the elements and the structure, impedances of 

certain branches of the LC prototype are simulated. 

In the signal flow graph simulation method, single amplifier 

biquadratic (SAB) circuits are used as the basic building blocks. In 

order to design practical circuits the effect of the finite amplifier 

gain-bandwidth product (f
T
) must be taken into account. In this 

context, it is shown that the available predistortion technique, while 

giving improved results, is not very satisfactory, and a method of 

fully compensating SAB circuits, by adding an extra resistor, is 



developed. Also a method of minimising the sensitivity of high order 

filters, realised using SAB circuits, is described. 

In the case of the element and the structure simulation method, a 

novel approach is presented in which the negative impedance converter 

(NIC) is used as the basic active unit. It is shown that, contrary to 

the common belief, filter circuits which use NICs can be designed to 

have low sensitivity. A method of reducing the effect of"finite f^ in 

this type of circuit is also described. A detailed discussion of the 

stability properties of NIC circuits is presented and it is shown that 

the majority of the circuits derived by the new method are perfectly 

stable. However, for the unstable circuits a method of achieving 

stability by the introduction of few additional components is 

developed. 
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1.1 General 

This thesis is concerned with the design of active RC filters 

which are derived by simulation of resistively terminated 

inductor-capacitor filters (usually referred to as LC filters). The 

main reason for the interest in active RC filters stems from the fact 

that these can be realised microelectronically, which is advantageous 

lux mau> reasons such as reduced size and weig^
1

", fnrrpased 

reliability; whereas, on the other hand, the microminiaturization of 

LC filters has not been achieved because attempts to 

microelectronically realise inductors have been unsuccessful. 

Active RC filters consist of active devices (usually operational 

amplifiers), resistors and capacitors. The engineering aim in this 

field is the development of low cost, high quality, high precision 

microelectronic filters. However, the integrated circuit technology 

used to fabricate the active devices cannot produce resistors and 

capacitors with the high stability required for high precision 

filters; hence, the resistors and the capacitors are fabricated using 

an alternative technology; the complete circuits being known as 

"Hybrid" circuits. There are two basic methods of fabricating high 

precision resistors, namely, thin-film [1] and thick-film [2]. 

Thin-film and thick-film techniques of producing resistors are similar 

in one respect that they can both produce resistors which can be 

adjusted to their required values very accurately by laser trimming. 

In general, thick-film resistors are preferred because they are 

cheaper, however some applications may require the use of thin-film 

resistors as these have lower temperature coefficient (TC). For 

example, typical values for the TCs of thick and thin-film resistors 

are 30 ppm/°C and 5 ppm/°C, respectively. 



It is possible to fabricate capacitors with the thin-film 

technology whereas the thick-film technology cannot p.roduce capacitors 

at all, and hence when using thick-film resistors it is necessary to 

add separate capacitors, which are usually of miniature NPO ceramic 

chip type [2]. Thin-film capacitors have certain practical 

disadvantages which make their use unfeasible in practice. For 

pvpmple, silicon-dioxide capacitors hsvp low capacitance per unit area 

and tantalum capacitors suffer from low Q-values which are rather 

temperature dependant. The ceramic chip capacitors have very high 

Q-values (Q > 2000), their TC is very low (e.g. TC within - 10 ppm/°C 

for -20°C < T < +70°C), and their capacitance per unit volume is very 

3 

high (typically 0.5 nF/mm ). The main disadvantage of ceramic chip 

capacitors is that they are cheaply available only if their nominal 

values are restricted to manufacturers' preferred values and if they 

have wide manufacturing tolerances (e.g. - 10 %). Since ceramic chip 

capacitors do not have individual markings to denote their values, the 

circuit manufacture is considerably simplified if all the capacitors 

in the circuit have the same nominal preferred value. 

From the above discussion it follows that, in order to reduce the 

manufacturing costs of active RC circuits, it is desirable to adopt 

active RC circuits in which the capacitors can have preferred and 

equal nominal values (by appropriate design), and also it must be 

possible to adjust the circuit to obtain the desired response when 

•f 

using capacitors with wide manufacturing tolerances of - 10 % (this is 

done by the application of suitably developed resistor-adjustment 

methods). The active RC circuits to be derived in this thesis will 

satisfy these desirable requirements. 



Numerous methods of synthesising active RC networks have been 

proposed (e.g. see [3,4]) and many of these have been shown to be 

feasible in practice in that microelectronic models have been 

constructed successfully [5,6,7]. Historically, the first active RC 

synthesis method was proposed in 1954 by Linvill [8], who showed that 

any transfer function T(s) (where s is the complex frequency variable) 

can be realised by a passive RC circuit with the addition of one 

negative impedance converter (NIC) — which can be realised by a 

single operational amplifier (OP-AMP) and two resistors. Two other 

active RC synthesis methods, which also require one NIC each, have 

been proposed by Yanagisawa and Saraga [9,10]. However, the main 

problem with these synthesis methods, requiring only a single active 
0 

device, is the high sensitivity of the loss-frequency response to 

changes in the values of the components of the circuit. Due partially 

to the unacceptably high sensitivities and partially to the practical 

difficulties encountered (e.g. circuit stability), this synthesis 

technique never became a serious contender as a basis for the design 

of active RC filter circuits. On the contrary, these factors have 

played a vital role in creating a myth in that all circuits which use 

NICs, regardless of their origin or derivation, are automatically 

labelled as high sensitivity circuits (one result of the work to be 

described in this thesis is to seriously challenge this myth). 

There are various other different approaches to the design of 

active RC filters, all of which have sensitivities much lower than the 

Linvill approach, and these are usually classified as follows: 



1. cascading of biquadratic circuits [11] 

2. multiple feedback circuits [12,13,14] 

3. simulation of the elements and the structure of low sensitivity 

resistively terminated LC ladder filters [15] or impedance scaled 

LC ladder filters [16] 

4. linearly transformed active filters [17] 

In the cascade design method we factorise the required voltage 

transfer ratio into second order factors and the product of the 

factors is then realised by cascading (without interaction) the second 

order active RC sections. Note that if the order of the filter is odd 

there will be one first order factor in the realisation — this can be 

realised by a passive RC network. 

The multiple feedback approach can be considered as comprising a 

"cascade" connection of second order active RC sections (and one first 

order section in the case of odd order filters) which have feedback 

interconnections. The required voltage transfer ratio can be realised 

by various feedback topologies; however, one particular feedback 

structure (known as the leap-frog feedback), which was first suggested 

by Girling and Good [18,19], is equivalent to simulating the signal 

flow graph of (low sensitivity) LC filter; thus some of the active RC 

circuits in this category reproduce the low sensitivity properties of 

LC networks [20,21]. 

In the third method of active RC design listed in the above 

classification, active RC circuits are used to simulate the impedances 

of certain branches (e.g. the inductive branches) of a resistively 

terminated LC ladder * filter. Now, the sensitivity of the 

loss-frequency response of an LC filter to changes in the values of 
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be 

the elements c&njvery small [22,23], and hence by designing the active 

RC network to simulate an LC filter it is possible to retain the low 

sensitivity properties of the LC filter in its active RC counterpart. 

Another approach to the design of active RC filters, which is 

also based on simulation of LC filters, is the so called linearly 

transformed active filter approach [17]. The basic principle of this, 

approach is to linearly transform the variables of the LC prototype 

filter (i.e. the voltages and the currents) into new variables, the 

relationships between which are then realised using active RC 

circuits. Yet another method of simulating LC filters is the "wave 

active" filter [24], in which the relationship between the incedent 

and the reflected waves of the LC filter are simulated. This method 

has been interpretted as being a special case of the linearly 

transformed active filter approach [17]. 

In this thesis we shall consider two different methods of 

simulating LC filters; viz, the signal flow graph simulation method 

and the simulation of the elements and the structure of LC filters. 

After a discussion of LC filters in general we shall review the state 

of the art in these two methods and then give an outline of the 

thesis. 

1,.2 Introduction to LC filters 

1.2.1 LC filter structures and types 

There are two basic types of LC filter structures, namely the 

lattice and the ladder. The ladder type of structures are superior to 
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lattice type of structures in the sense thatjthe sensitivity of their 

loss-frequency response to changes in element values is much lower 

than for the lattice structures. Because of the low sensitivity 

properties of LC ladder filters, they are ideal as prototypes for the 

design of active RC filters (a discussion on the sensitivity of LC 

filters is presented later on in this section). 

The general form of a ladder type filter is shown in Fig 1.1(a), 

where R
g
 and R^ are the source and the load resistors, respectively. 

In the ladder structure of Fig 1.1(a) the series and the shunt arms of 

the ladder comprise inductors and capacitors only. Thus the elements 

of the ladder (e.g.
 Z

n
, Y

n ^
 a r e

 P
ure

^-Y reactive and for 

this reason, these type of structures are often referred to as 

lossless LC ladders with resistive terminations. A schematic 

representation of a resistively terminated LC ladder filter is shown 

in Fig 1.1(b). 

It has been stated above that the series and the shunt arms of 

the ladder in Fig 1.1(a) are composed of inductors and capacitors; 

however, the actual composition of the ladder arms is dictated by the 
* 

type of "loss -frequency" characteristic for which the LC filter is 

designed. There are four basic types of filter function response 

(namely: lowpass, highpass, bandpass and bandstop) and for each of 

these types of reponse, there are four common types of approximating 

functions. For a lowpass filter, which is the one having a passband 

* In this thesis we shall define the loss of a filter as, 

LOSS = - 20 LOG 

where V and V are the output and the input voltages, 
respectively, of trie filter (see Fig 1.1(a)). 

V v i 



extending from zero frequency to a finite cut-off frequency, f^, and 

an increasing loss above this frequency, the four types of 

approximating curve are shown in Fig 1.2. The Butterworth 

characteristic in Fig 1.2(a) provides a maximally flat passband 

(around zero frequency) and has monotonically increasing loss in the 

passband and the stopband. The Chebyshev characteristic in Fig 1.2(b) 

provides an equi-ripple passband nnd a monotonically increasing loss 

in the stopband. For a given order filter having equal amount of 

passband distortion, the Chebyshev characteristic achieves greater 

loss in the stopband than the Butterworth characteristic. The type of 

LC ladder structures suitable for the realisation of Butterworth or 

Chebyshev characteristic are often referred to as all-pole structures, 

because in these filters the transmission zeros (i.e. the points of 

infinite loss) do not occur at finite frequencies (in the case of 

lowpass all-pole filters, they occur only at infinite frequency). 

The loss-frequency characteristic shown in Fig 1.2(c) is called 

the inverted Chebyshev characteristic for which the loss increases 

monotonically in the passband but oscillates between A
g
 and infinity 

in the stopband; the inverted Chebyshev function can be derived by 

transformation of the Chebyshev function [25]. The loss-frequency 

curve shown in Fig 1.2(d) is called the elliptic approximation 

function since It is based on elliptic function theory. From 

Fig 1.2(d) we note that for this type of characteristic the loss 

oscillates between zero and A^ in the passband, and between A
g
 and 

infinity in the stopband. Of the four loss-frequency characteristics 

shown in Fig 1.2, the elliptic is the most efficient in the sense that 

if a filter is to be designed to meet some specification with a 

maximum loss A in the passband and a minimum loss A in the stopband, 
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then the elliptic approximation will yield a filter with a lower 

order. Elliptic type filters are sometimes also referred to as Cauer 

filters. 

Highpass filters, and certain bandpass and bandstop filters can 

be obtained from lowpass filters by frequency transformations [26]. 

These frequency transformations serve two main purposes.. Firstly, for" 

a given lowpass filter transfer function they enable us to derive the 

corresponding transfer function of the highpass, the bandpass or the 

bandstop filter. Secondly, for a given lowpass filter structure they 

enable us to derive the corresponding structures for the highpass, the 

bandpass and the bandstop filters. Let us illustrate this point by 

considering some examples. 

A frequency transformation for obtaining a highpass filter 

characteristic from a lowpass filter characteristic is, 

2 , 
w - w /w 

o 

where w is the frequency in radians per second and w
q
 is a reference 

frequency at which the lowpass and the highpass filters have identical 

loss (usually w
q
 is chosen equal to the cut-off frequency of the 

lowpass filter). The loss-frequency responses of a lowpass and a 

highpass filter derived from it, by applying the above transformation, 

are shown plotted, on a logarithmic scale, in Fig 1.3(a) 

and (b), respectively. Now, the effect of applying this 

transformation to a lowpass filter structure (to obtain the structure 

of the highpass filter) would be to replace each inductor, of value L, 

2 
in the lowpass filter by a capacitor, of value 1 / ( W Q L ) , and to replace 

each capacitor, of value C, in the lowpass filter by an inductor, of 

2 
value 1 / (W Q C ) . 
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The above lowpass to highpass transformation may infact be 

applied to any type of LC filter and it has the effect of pivoting the 

loss-frequency response (on a logarithmic scale) about the 

frequency w
q
. 

In contrast, a frequency transformation for obtaining a bandpass 

filter characteristic from a lowpass filter characteristic is, 

2 , 
W M W - W / W 

O 

The loss-frequency response of the bandpass filter obtained by this 

transformation has a geometrical symmetry about the frequency w . The 
o 

lowpass and the bandpass filter characteristics have the same 

bandwidth for any given loss value, as indicated in 

Figs 1.3(a) and (c). In particular, the passband width of the 

bandpass characteristic is equal to the cut-off frequency of the 

lowpass characteristic. The method of obtaining the bandpass filter 

structure, by applying the above transformation to a lowpass filter, 

is to replace each inductor, of value L, in the lowpass filter by a 

series combination of an inductor and a capacitor, of values L and 

2 
1/(WQL), respectively; whereas each capacitor, of value C, in the 

lowpass filter is replaced by a parallel combination of a capacitor 

2 
and an inductor, of values C and 1/(WQC), respectively. 

A bands top characteristic can be obtained by applying the above 

lowpass to bandpass transformation to a highpass filter (e.g. see 

Fig 1.3(d)). 
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In the case of bandpass filters having very small relative 
* 

bandwidth , which have been obtained from lowpass filters by lowpass 

to bandpass transformation, a large spread in the component values is 

obtained. In order to reduce this large spread in the component 

values, use is made of some impedance transformations due to Norton. 

These transformations [2 7,28,2 9] affect the values of the elements 

without affecting the basic shape of the filter response. 

Fig 1.4(a) shows the general left-hand "L" to right-hand "L" 

transformation, where 0 is a constant transformation parameter. Since 

0 is a constant it follows that Z^ and Z
fi
 must be same type of 

impedances. As indicated in Fig 1.4(a), the transformer may be 

2 

removed if all the impedances to the right of it are multiplied by 0 . 

As a direct consequence of the transformation, the values of the node 

voltages and branch currents are changed hence, although the basic 

shape of loss characteristic remains unaltered, the value of the 

passband loss may be shifted by a constant amount. 

The right-hand "L" to left-hand "L" transformation may easily be 

obtained by reversing the left-to-right "L" transformation and it is' 

shown in Fig 1.4(b). 

1.2.2 Synthesis and design of LC filters 

The first step in the design process is to determine the 

mathematical functions which, on the one hand, satisfy the required 

response specifications and, on the other hand, can be exactly 

* The relative bandwidth of a bandpass filter is defined as the 
ratio of the filter passband-width to its centre frequency. 
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realised by a circuit structure. This latter requirement restricts 

the mathematical properties of these functions and gives rise to 

approximation theory. The design of circuits to realise an 

approximating function is known as synthesis. The approximation and 

the synthesis processes are highly specialised subjects in themselves 

and as such are outside the scope of this thesis. However it is 

seldom necessary to start the design process of the most commonly 

specified filter characteristics (discussed in the previous 

subsection) from first principles as catalogues of design tables 

already exist for these filter types. 

Thus the first step in the design of LC filters begins with 

consultation of the published tables to find the element values of the 

LC network. The published tables [30,31] list the element and / or 

the values of the poles and zeros of the transfer function for lowpass 

filters only; the frequency transformation, presented in the previous 

subsection, are used to derive highpass, bandpass and bandstop filter 

structures. 

If characteristic different from those tabulated are required it 

is necessary to obtain a suitable loss-frequency function from first 

principles or by use of a suitable computer program [32]. For 

example, loss-frequency functions with equal ripple in the passband 

and meeting an arbitrary specification in the stopband can be obtained 

by a partly graphical procedure using templates [25]. Filters with 

such characteristics are referred to as general parameter filters. 
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1.2.3 LC filter sensitivity 

It has been stated previously in Sec. 1.2.1 that LC filter 

networks are usually inserted between a resistive source and a 

resistive load, as shown in Fig 1.1(b). In this subsection we shall 

discuss the sensitivity properties of a certain class of resistively 

terminated LC filters. Before we proceed any further, let us define 

what we mean by "sensitivity". 

As filter designers we are mainly interested in realising a 

network which has a certain loss-frequency characteristics; hence the 

parameter of primary importance is the modulus of the voltage transfer 

ratio, T(s) (=
 V

Q
/ V

i
 , where V

Q
 and V^ are the output and the input 

voltages, respectively). In particular, the sensitivity of 
i 

T(s) to any component, x^, of the network is defined as 

|T(s)| » 1 T ( S ) | / | T ( S ) 
S ^ " " (1.1) 

i ^x. /x. 

l l 

We shall now show, following the argument first put forward by 

Orchard [22], that a certain type of LC filters with resistive 

tersminations can be designed to have a very low sensitivity. 

Consider the resistively terminated LC filter shown • in 

Fig 1.1(b). Let us express the input impedance of the LC network 

terminated in R^ as Z ^ = R ^ + j
x

n * Then, it can easily be shown 

that the real power, ĵjyjj flowing into the input port of the LC 

network is 

I 12 
V. . R.. 

P

I N — 2 2
 ( 1

'
2 ) 

<
R

s
+ R

l l >
 + X

U 
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Now, the LC network is lossless; therefore, all the power delivered 

into the LC network must be dissipated in the load resistor R^. 

Hence, if P
L
 is the power dissipated in R^, then 

p l = 
R 

= P 
11 

*l 
IN 2 2 

(R
s
 + R

n
)

2

 + X
2

, 
(1.3) 

V 
2 |v | 

T(s)|
2

 = 
o 

1

 o
1 

T(s)|
2

 = 
V. 
l M 

R n V 

(R
s
 + R

n
)

2

 + X
2

U 

(1.4) 

Let x be a reactive element of the LC network; then, the 

differential sensitivity of | T(s)| • with respect to element x can 

be written as 

|T(s)|
 = 

3|T(s)| 

x

 |T(S)| 

using the chain rule for differentiation, we have 

3|t(S)| 3|t(s)| 3 r u 3|t(S)| 3x li 

)x Br li IX 3x 11 3x 

Using equation (1.4), we obtain 

3|t(s)| i 

3 R
n
 2 | T(s ) j 

2 2 2 R

s "
 R

11
 + X

11 

[ ( R
s +
R

1 1
)

2

 + X
2

1
] 

(1.5) 

(1.6) 

(1.7) 
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3|T(S)| 1 - 2 R X
1 T 

and . /
 ?

 (1.8) 
B X

U
 2 | T(s) | [(R

s
 + R

n
)

Z

 + 

Now suppose R ^ = R
g
 and X ^ = 0, then, from equations (1.3), 

(1.7) and (1.8), we have 

K l
2 

s 

3 | T ( S ) | 3 | T ( S ) | 
and = = 0 (1.10) 

Combining equations (1.10), (1.6), and (1.5) gives 

'
T ( S ) I

 = 0 (1.11) s 
x 

Note that equation (1.9) represents the power delivered to the load, 

R^, and is equal to the maximum power that the source can supply. 

Therefore if we can design the LC network to transfer maximum power 

from the source into the load then the above assumed conditions 

(i.e. R. = R and X,.= 0) would be satisfied and the first order 
11 s 11 

differential sensitivity of the modulus of the transfer function to 

any reactive component of the network would be zero, as indicated in 

equation (1.11). Now let us consider an intuitive interpretation of 

the above result. 

Suppose the loss-frequency response of the network is equiripple 

in the passband and that maximum power is delivered to the network at 

frequencies w^, w^ and w^, as illustrated in Fig 1.5(a). Since the LC 

part of the network is lossless, all the power entering the network at 



these frequencies must be transmitted to the load R^. Thus the power 

P^ delivered to the load is P^ = | V
Q
| / R^. Since maximum power is 

being transmitted to the load then any change in the value of a 

component x of the reactive part of the network, wether it be an 

increase or a decrease, can only cause a decrease in the power being 

delivered to the load. Hence the characteristics of the filter loss 

function, at the frequencies of maximum power transfer, plotted 

against the change in the value of the component x is as shown in 

Fig 1.5(b), from which we conclude that 3 | T ( S ) | / = 0 . The result 

given in equation (1.11) follows directly on substituting for 

in equation (1.5). 

Now since the loss characteristic is a continuous function of 

frequency it is reasonable to expect that the sensitivity at 

frequencies between the frequency points of maximum power transfer 

will remain small. Therefore an LC filter which can be designed to 

deliver maximum power to the load at some frequencies in the passband 

will have low sensitivity in the entire passband. This argument of 

low sensitivity does not apply in the stopband or the transition-band 

(i.e. the region between the passband and the stopband), but this is 

not very serious limitation because in most filter applications the 

passband is the most critical region from the point of view of 

sensitivity. 

We have shown above that the sensitivity of the modulus of the 

voltage transfer function of an LC filter network to • changes in 

reactive elements is small. Let us now examine the sensitivity of 

| T(s)| to changes in the terminating resistors (i.e. R
g
 and R^ in 

Fig 1.1(b)), under the assumption that the LC network has been 

designed to give maximum power transfer at some frequency points in 
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the passband. It has been stated earlier that at points of maximum 

power transfer, R
g
 and 0; therefore, from equation (1.4) we 

see that the modulus of the voltage transfer ratio, T(s), is given by 

I t ( s ) I = w r (1-12) 
s 

Hence, using equations (1.1) and (1.12), we can derive the sensitivity 

expressions for the terminating resistors. 

i.e. si
T

<
s

>l - - s!
T

<
s

>l = I (1.13) 
»L R 

s 

By the same argument as in the case of reactive components, the 

sensitivity expressions given in equation (1.13) are expected to be of 

similar magnitude at other frequencies in the passband between the 

frequency points of maximum power transfer [33]. 

Thus the sensitivities of the response of an LC filter network to 

changes in the values of the reactive elements and the terminating 

resistors are 0 and - j, respectively, at frequencies of maximum 

power transfer. The only question now remaining to be answered is 

Whether LC ladder networks can be designed to deliver maximum power to 

the load. It is indeed quite possible to design LC filter networks 

with all types of response characteristics (e.g. Butterworth, 

Chebyshev, inverted Chebyshev and elliptic) which satisfy this 

important requirement; infact the LC ladder networks obtained from 

most filter Tables fall into this class of networks. 

Above we have only considered the sensitivity to infinitesmal 

changes in the element values; however there is much empirical 



evidence to show that LC filters are also relatively insensitive, in 

the passband, to finite changes in element values [11,34,35]. 

The above low sensitivity argument applies to the passband 

sensitivity of a general LC network. However, the stopband 

sensitivity of LC networks is dependent on the type of structure used. 

For example, in the stopband, where the loss of an LC network is high, 

the LC lattice structure acts like a bridge which is close to balance 

(it is exactly balanced at frequencies of infinite loss). 

Consequently the response in the stopband is very sensitive to changes 

in the values of the reactive elements. On the other hand in the case 

of LC ladder structure each element is responsible for only a part 

of the total loss and consequently the response in the stopband is 

relatively insensitive to element value changes. 

1.2.4 The idea of simulation of LC filters 

In the previous subsection it has been shown that certain types 

of resistively terminated LC filters exhibit extremely low sensitivity 

of filter response (both in the passband and the stopband) to 

variation of component values. This low sensitivity performance of LC 

ladder filters, together with the wealth of knowledge that has 

accumulated over the years in the area of passive LC ladder filter 

design, provides a strong motivation for designing active RC filters 

based on the simulation of passive LC ladder prototypes. As mentioned 

in Section 1.1, the two most commonly used methods of simulating LC 

ladder filters, by active RC networks, are the signal flow graph 

simulation and the element and structure simulation of LC filters. In 

the signal flow graph simulation approach the relationships between 

the network variables (e.g. the nodal voltages and the branch 



currents) are expressed mathematically in terms of the branch 

impedances and from these a signal flow graph of the circuit is 

constructed which is subsequently realised using active RC sections 

and summers [36] (the active RC sections can be first or second order 

sections, e.g. integrators or biquadratic sections). On the other 

hand, in the element and structure simulation approach impedances of 

certain branches (e^g- the inductor branches) are replace by active 

RC circuits simulating the corresponding impedances. 

One main disadvantage of the above simulation methods is that 

they require relatively large number of amplifiers compared with the 

cascade method . In the cascade realisation method the required 

voltage transfer ratio is represented as a product of second order 

transfer functions (and one first order transfer function in the case 

of odd order filters), which are then realised using single or 

multiple amplifier second order sections; thus by this method an N-th 

order filter can be realised by N/2 amplifiers (the first order 

section, in the case of odd N, is usually realised as a passive RC 

section). In contrast, for the signal flow graph simulation method 

the number of amplifiers is equal to the number of reactive components 

in the prototype filter if first order sections (i.e. integrators) 

are used; whereas the element and structure simulation method requires 

two amplifiers to simulate a grounded element and four amplifiers to 

simulate a floating element. 

In order to reduce the number of amplifiers some "tricks" of the 

trade are at the designer's disposal. For example, in the case of 

signal flow graph simulation the number of amplifiers can be reduced 

by carrying-out simple manipulations on the signal flow graph of the 

filter such that it allows the use of second order active RC sections; 
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whereas, in the element and structure simulation method the number of 

amplifiers can be reduced considerably by choosing a "suitable" 

structure to be simulated. 

In view of the availability of -low cost integrated circuit 

operational amplifiers, the above concern about the number of 

amplifiers may not appear as a serious economic matter. However 

increase in the DC power requirement and the problem of heat 

dissipation are often two important reasons for reducing the number of 

amplifiers. 

The signal flow graph simulation and the element and structure 

simulation methods have been extensively studied over the past 10-15 

years and as a result of this activity a large amount of litrature is 

available on these approaches. In the remainder of this chapter a 

short literature review on these simulation methods is presented. The 

emphesis is laid on presenting the fundamental principles of each 

approach and examining it from the practical implementation 

point-of-view, rather than carrying-out a critical comparison between 

the work of various authors. Since there is a fundamental difference 

between the design procedures of the two simulation techniques each 

is discussed separately. 

The signal flow graph simulation (which is also often referred to 

as the leap-frog type multiple feedback) will be discussed in the 

wider context of multiple feedback filters. This is justified, since 

some multiple feedback topologies (e.g. follow the leader feedback, 

minimum sensitivity topology [12], etc.) which although they cannot be 

classified as simulation of LC filters, exhibit low sensitivity 



properties and hence are appropriate for inclusion in the present 

discussion on low sensitivity filters. 

1.3 Simulation of the signal flow graph of LC filters 

1.3.1 General 

The method of designing low sensitivity active RC filters by the 

so called multiple feedback approach can be divided into two main 

groups. The first of these groups encompasses multiple feedback 

structures which are obtained by means of a signal flow graph from LC 

filter prototypes; we shall refer to these as "leap-frog" type 

multiple feedback filters. All other multiple feedback structures 

fall within the second group and we shall refer to these as "other" 

types of multiple feedback filters. 

The leap-frog multiple feedback method of simulating LC filters 

was first discussed in detail by Girling and Good [19], who proposed 

the name "leap-frog" [18] for the resulting networks. This method of 

LC filter simulation is also referred to as "direct signal flow graph 

simulation" [36] or "operational simulation" [3 7] of LC filters. For 

this method, negative integrators together with inverting summers form 

the basic building blocks. One apparent drawback of this method is 

t 

that for a given order filter a relatively large number of active 

devices (i.e. operational amplifiers) would be required compared with 

other realisation techniques (e.g. the cascade or the element and 

structurs
 (
simulation methods). However, by carrying-out simple 

manipulative operations, the signal flow graph of the LC prototype 

filter can be modified such that it is possible to use biquadratic 

sections (and one first order section in the case of odd order 
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filters) and thus obtain a reduction in the number of amplifiers. The 

possibility of using biquadratic sections in the simulation of low 

sensitivity LC filters, via the leap-frog multiple feedback method, 

has led over the past ten years to much research activity in the 

general field of multiple feedback filters, and as a result of these 

efforts other multiple feedback topologies (e.g. follow the leader) 

be.pn dftT-ivpH which, in some cases, give low sensitivity 

active RC realisations. 

The use of biquadratic sections as the basic building blocks, in 

multiple feedback structures, introduces considerable flexibility in 

the design of these filters and it also has numerous other advantages. 

For example, the cascade method has led to successful production of 

microelectronic filters [11,38], therefore the type of fabrication 

technology used for this method is readily adaptable for the multiple 

feedback filters which use the biquadratic section as the basic 

building block. The amount of knowledge and experience that has been 

gained over the years in the area of design and adjustment of second 

order biquadratic sections, provides a strong motivation to adopt the 

biquadratic section as the basic building block. Another advantage of 

using biquadratic sections is that there is a considerable reduction 

in the total number of OP-AMPs required, compared with the operational 

simulation method [37], since each biquadratic section can be realised 

using only a single OP-AMP. 

In this thesis, we shall only consider multiple feedback 

structures which employ the biquadratic section as the basic building 

block; we shall further assume that this building block is realised by 

means of single amplifier biquadratic (SAB) circuits. The problem of 

designing multiple feedback filters thus involves the design of SAB 



circuits. In subsection 1.3.3 we shall present some typical well 

known SAB circuits and discuss the points which should be taken into 

account when deciding which of the many available SAB circuits to use. 

1.3.2 Leap-frog type multiple feedback filters 

There are two ways of deriving filter ptxu.f* turps employing 

leap-frog type multiple feedback. Firstly, if we are given a specific 

transfer function to synthesise then by assuming a general leap-frog 

type feedback structure we can derive design equations by equating 

coefficients of the given transfer function with those of the transfer 

function obtained by analysis of the multiple feedback structure. 

Secondly, in the case when an LC prototype filter is given the 

corresponding leap-frog multiple feedback structure can be obtained by 

deriving a signal flow graph or by carrying-out matrix operations on 

the state variable equations. In the former method, referred to as 

coefficient matching, the design equations obtained become non-linear 

for transfer functions of order greater than three [12], and hence 

these equations can only be solved numerically. An alternative 

approach to the transfer function synthesis method is presented in 

[14], where a "pseudo-ladder" network is formed by assigning biquad 

voltage transfer functions to the series impedances and the shunt 

admittances of the pseudo-ladder network; this enables one to 

synthesise the leap-frog ladder in a manner similar to passive 

ladders. 

Since the central theme of this thesis is the simulation of LC 

filters, we shall now show how to derive leap-frog feedback structures 

using the second approach mentioned above. 
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Let us consider the fifth order all-pole lowpass LC prototype 

filter shown in Fig 1.6(a). The equations describing this circuit 

are 

V-

<vi - V 
V

1
 =

 sC 

sL, 

V

2 ~ sC, 

(I
x
 - I

2
) 

X

3 sL, (v
2
 - V ) 

V = - T 
o sCc + 1 3 

(1.14) 

/ 

The above network equations can be represented by the signal flow 

graph block diagram shown in Fig 1.6(b), from which we observe that 

the structure is realisable using first order blocks (i.e. 

integrators); also note that the variables at the output of these 

blocks are either the node voltages of the prototype filter, or the 

currents of the series branches of the prototype filter. Since our 

intention is to use biquadratic sections (with one first order section 

in the case of odd order filters), we need to carry-out some 

manipulative steps on the signal flow graph of the filter in order to 

obtain the signal flow graph in the desired form. For this purpose, 

equations (1.14) are represented in a more familiar signal flow graph 

form which is shown in Fig 1.6(c). 

There are many ways in which a given signal flow graph can be 

manipulated in order to yield the same end result; intermediate steps 

of one such manipulative procedure are shown in Fig 1.6(c) (h). 

Note that the realisation of the signal flow graph in Fig 1.6(h) 



requires two biquadratic sections and one first order section 

(a positive integrator); furthermore, since the sections are coupled 

by negative feedback loops, at the inputs of sections one and two we 

require to produce the difference of two signals and usually extra 

OP-AMPs would be needed to perform this task. However, the coupling 

feedback loops in Fig 1.6(h) can be made positive if the central 

section is negated (i.e. if it is made a negative integrator), in 

which case the summers at the input of the first and second sections 

can be incorporated into the appropriate section without requiring any 

extra OP-AMPs [13,39]. 

Therefore, the fifth order lowpass filter of Fig 1.6(a) can be 

realised by the block diagram of Fig 1.6(i), in which the second order 

sections are represented by their usual intermediate parameters, i.e. 

the resonance frequency ( W Q ) » T L I E Q-factor (Q
q
) and the gain 

factor (A). The relationship between the sectional parameters and the 

components of the ladder prototype of Fig 1.6(a) are given in 

Table 1.1. Note that the restriction of feedback coefficients to a 

value of unity in Fig 1.6(1) can be removed by scaling the structure 

accordingly, e.g. in Fig 1.6(i) the feedback factor from output of 

the second section to the input of the first section can be made 

F

12
 W e s i m u l t a n e o u s l

y divide and multiply the transfer 

functions of the second and the third sections by F ^ * respectively. 

This technique of scaling can infact be used to optimise the dynamic 

range of such filter structures [37]. The above scaling method 

ensures that the loop gains are not altered; thus as long as we keep 

the loop gains constant, the forward gain factors of the sections 



(i.e. A^, A^ and A^) can be scaled to achieve any desired overall 

gain. 

It has been shown above that the signal flow graph of a filter 

can be reduced such that the resulting structure can be realised with 

biquadratic sections (and one first order section in the case of odd 

order filters) which are connected in a so-called leap-frog 

configuration. It has been stated previously that there is not a 

unique way of obtaining a suitable signal flow graph, and furthermore 

the end result in itself is not unique. For example, there are three 

possible realisation schemes for the fifth order filter discussed 

above. The first scheme is the one shown in Fig 1.6(1) in which the 

outer two sections are biquadratic in form (with finite Q-factors) and 

the central section is of first order. In the second scheme we can 

have sections one and two as biquadratic and the third section as a 

lossy-integrator. Altenatively, in the third scheme we can have the 

first section as a lossy-integrator and sections two and three as 

biquadratic sections. It can be easily shown that if the signal flow 

graph is manipulated such that we obtain a biquadratic section in the 

middle (e.g. schemes two and three discussed above) then its Q-factor 

will be infinite. Due to high sensitivity and the practical 

difficulties associated with very high-Q circuits, the use of infinite 

Q-factor biquadratic sections is undesireable and for this reason the 

signal flow graph manipulation in Fig 1.6 is aimed towards producing 

the structure shown in Fig 1.6(1). 

Let us now make some observations regarding the sensitivity of 

the leap-frog multiple feedback structure derived above. In 

Fig 1.6(a), a change in any of the feed-forward blocks" can be directly 

related to an equivalent change in one of the components of the LC 
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ladder prototype. As a consequence of this fact, it is sometimes 

stated in the litrature that there is one-to-one relationship between 

the elements of the prototype filter of Fig 1.6(a) and the elements of 

the active realisation of Fig 1.6(b). It can be shown that a change 

in any of the feedback factor in Fig 1.6(b) can be translated as 

representing a simultaneous changes in one or more components of the 

prototype filter (this is done by .scaling the structure in' Fi© l.fi(b) 

such that all feedback loops have a value of minus one). Thus the 

structure of Fig 1.6(b) is said to retain the low sensitivity 

properties of its LC counterpart. 

In the case of the leap-frog structure of Fig 1.6(1), any change 

in the parameters of the sections cannot be considered as being 

representative of an equivalent change in one of the elements of the 

prototype ladder; therefore, we do not have a direct one-to-one 

correspondence between the components of the ladder prototype and the 

parameters of the sections in Fig 1.6(i). However, suppose a 

component in the active RC circuit realising the first section in 

Fig 1.6(i) changes such that the resonance frequency, the Q-factor and 

the gain-factor of the circuit are changed. These changes in Q-̂  

and A^ can be interpreted. , through Table 1.1, as some equivalent 

changes in terms of the ladder elements (e.g. C^, L2, R^, etc.). The 

changes in the feedback factors, in Fig 1.6(1), can also be 

interpreted in terms of some equivalent changes in the gain-factors 

of the feed-forward sections. Thus, the leap-frog structure of 

Fig 1.6(i) is said to "duplicate" the low sensitivity properties of 

its LC prototype; this fact has also been confirmed by pratical 

observations [21]. 
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As a second illustrative example of deriving leap-frog filter 

structures, which use biquadratic sections as the basic building 

blocks, we shall discuss an all-pole bandpass filter which has been 

obtained from a lowpass filter by application of the lowpass to 

bandpass transformation. 

Consider the third order lowpass LC filter and its signal flow 

graph block diagram shown in Figs 1.7(a) and (b), respectively. Now, 

we can obtain a sixth order all-pole bandpass LC filter structure (see 

Fig 1.8(a)) by applying the lowpass to bandpass transformation to the 

structure of Fig 1.7(a)"'. If we apply the mathematical equivalent of 

2 

the lowpass to bandpass transformation (i.e. s m s + w
q
 /s) to 

the signal flow graph block diagram of Fig 1.7(a), then the signal 

flow graph block diagram of the corresponding bandpass filter is 

obtained [40] (see Fig 1.8(b)). Note that all the blocks in 

Fig 1.8(b) will have biquadratic transfer functions of the bandpass 

form, i.e. 

A (s/w ) 
1 , ( 8 ) (1.15) 

(s/w r + QT (S /W ) + 1 

where i= 1, 2, 3 and w ., Q. and A. are the resonance 
oi' ^i i 

frequency, the Q-factor and the gain-factor, 

respectively, of the biquadratic section. 

The relationships between the sectional parameters (i.e.
 w

o:
^> Q^

 a n < 1 

A ^ and the components Of the LC bandpass filter are given in 

Table 1.2. Note that in Fig 1.8(b) all the sections have the same 
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resonance frequency, w
q
, where w

q
 is also the midband frequency of the 

LC bandpass filter; furthermore, the first and the third sections have 

finite Q-factors whereas the second section has an infinite 

Q-factor. 

From Table 1.2 we note that any changes in the parameters of the 

sections in Fig 1.8(b) can be directly interpreted in terms of some 

equivalent changes in the elements of the prototype LC filter of 

Fig 1.8(a). For example, for the first section in Fig 1.8(b), changes 

in Q^ and A^ can be interpreted as some equivalent changes in 

R
g
, C^ and L^ of the prototype filter. As explained earlier for the 

lowpass filter, any changes in the feedback factors can be translated 

into equivalent changes in the gain-factors of the forward sections. 

Therefore the leap-frog feedback structure of Fig 1.8(b) retains the 

low sensitivity properties of its LC counterpart in Fig 1.8(a). It is 

relevant to point-out here that in single amplifier biquadratic 

circuits, the realisation of infinite Q-factor transfer functions is 

usually achieved by cancellation of terms; consequently, if this 

cancellation is not exact the Q-factor of the circuit becomes finite 

and if such a circuit is used for the realisation of the middle 

section in Fig 1.8(b) then this would be equivalent to an appearance 

of a resistor in series with L
3
 and C

3
 in Fig 1.8(a). 

It has previously been mentioned that the restriction of feedback 

factors to values of minus one can be removed as long as the loop 

gains of the structure remain unaltered. In order to show how this 

can be implemented let us consider the leap-frog feedback structure 

of Fig 1.8(b). The form of the transfer function of each section in 

Fig 1.8(b) is given by equation (1.15), whereas the relationships 

between the sectional parameters (i.e.
 w

0
i>

 a n c l

 A^) and the 
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components of the LC prototype filter are given in Table 1.2. Now let 

us assume that F ^ and F
2 3

 a r e t 0 t

*
ie

 feedback factors coupling the 

various sections of the multiple feedback topology, as shown in 

Fig 1.9. The transfer functions of the second order sections in 

Fig 1.9 have the form 

A (s/w ) • 
T (s) ^ (1.16) 

(s/w )
Z

 + Q
 1

 ( s / w ) + 1 

where i = 1 , 2, 3 and and Q^ are given in Table 1.2. 

Now, by equating the loop gains of the multiple feedback structures of 

Figs 1.8(b) and 1.9(a), we obtain 

- 1 . T^(S) . T^S) = - F ^ . TL(S) . T2(S) (1.17a) 

and - 1 . T 2 ( S ) . T 3 ( S ) = ~ '
 T

2
( s )

 *
 T

3
( s )

 (1.17b) 

Substituting in the above equations from equations (1.15) and (1.16) 

and making use of Table 1.2, we obtain 

F

12
 =

 t "ol
 w

o2
 C

1 4
 A

1
 A

2 J"
1

 (1.18a) 

and F
2 3
 = [ w

q 2
 w

o 3
 C

3
 4 A

2
 A

3
 f

1

 (1.18b) 

Hence, the restriction of the feedback factors, in Fig 1.8(b), to 

unity can be removed if the relationships expressed in equation (1.18) 

are observed. 
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As explained previously, negative feedback factors are 

undesireable because they give rise to the requirement of extra 

OP-AMPs to perform the difference at the inputs of sections one and 

two, in Figs 1.8(b) and 1.9(a). However, if the feedback factors are 

positive then the summation at the input of a section can be performed 

by a resistive summation junction using the technique of [39]. In the 

multiple feedback structure of Fig 1.9(a) the feedback factors '
 2 

F^^ c
a n

 t>
e

 made positive if the signs of T^(s) and Tg(s) are negated, 

as shown in Fig 1.9(b). 

The overall transfer function, T(s), of the feedback structure in 

Fig 1.9(b) is given by 

T ^ s ) T
2
(S) T

3
(S) 

T ( S )

 1 + F
1 2
 T

x
(s) T

2
(S) + F

2 3
 T

2
(S) T

3
(S)

 ( 1 # 1 9 ) 

It can be shown that the gain, G
q
, at the midband frequency, w

q
, is 

given by 

F

12
 F

23 -1 
G

o - - [ - r r q r
 +

 - s r t - 1 (
1

-
2 0

> 
o 3 3 1 M 

In equations (1.18) and (1.20) we have six unknowns (i.e. ^12*
 F

23* 

A^, A
2
, A

3
 and and thus by selecting any three, the values of the 

remaining unknown? can be calculated by solving these design 

equations. Hence we have the means of choosing the midband gain of 

the filter to be any desired value; this can be considered as an 

advantage of active RC filters, since in LC filters it is generally 

not possible to achieve this result. 



We have shown above how leap-frog type multiple feedback 

structures are derived from LC prototype filters and have briefly 

examined the mechanism through which the low sensitivity of the 

prototype filters is retained in the active RC realisation. Only 

all-pole filters have been considered, but the leap-frog structures 

for elliptic filters can be derived in a similar way by starting with 

an appropriate prototype. Ali-pmaf-lvply. t-bf>.transmission zeros at 

finite frequencies can also be formed by the "feed-forward" techniques 

described in [12]. 

Another type of multiple feedback structure which is also 

derivable from LC prototypes is the so called "modified" leap-frog 

feedback topology. In the conventional leap-frog feedback structures 

the synthesis procedure is based on LC filters which are resistively 

terminated and as a consequence of this the two sections at either 

end of the feedback structure have finite Q-factors while all other 

sections have infinite Q-factors. In contrast, the synthesis of 

modified leap-frog structures is based on LC filter prototypes in 

which resistors appear through-out the ladder structure in such a way 

that all the sections in the feedback structure have finite Q-factors. 

Hence the modified leap-frog feedback structures do not have minimum 

passband sensitivity; however the extra degrees of freedom available 

in the modified leap-frog structures can be used to improve the 

transition-band and the stopband sensitivities [12,41]. 

Let us now briefly consider another two multiple feedback 

topologies which are not of the leap-frog type, but whose low 

sensitivity behaviour has been substantiated both by computational and 

practical results. These are the so called follow—the—leader feedback 

and the minimum sensitivity feedback topologies, which are shown 



schematically in Fig 1.10, for a sixth order filter (the transfer 

function of each block in Fig 1.10 is of second order). The synthesis 

of these type of feedback networks proceed directly from the required 

transfer function [12,13]. 

The follow-the-leader feedback is a general feedback topology 

which encompasses the primary-resonator-block [42] and the 

shifted-companion-form [43] as special cases. Furthermore, tne 

minimum sensitivity feedback topology [44] is the most general 

multiple feedback topology in that all other feedback structures can 

be considered as special cases of the minimum sensitivity topology. 

An attractive feature of the minimum sensitivity feedback topology is 

that it gives lower sensitivity, both in the passband and the 

stopband, than that is obtainable from the leap-frog or the 

follow-the-leader feedback topologies [12]. The synthesis procedures 

for the follow-the-leader and the minimum sensitivity topologies are 

very complex; since these types of feedback structures are not to be 

considered in this work the treatment of their synthesis procedures 

are out side the scope of this thesis. A very good review of all the 

multiple feedback topologies and a discussion of their basic design 

philosophies is given in [12]. 

1.3.3 Single amplifier biquadratic circuits for use in leap-frog 

multiple feedback filters 

In the design of multiple feedback active RC filters biquadratic 

sections are used as basic building blocks for two main reasons. 

Firstly, use of single amplifier biquadratic (SAB) circuits allows 

high order filters to be realised with considerable reduction in the 

total number of amplifiers required. Secondly, a lot of work has been 
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done on the design and methods of adjusting second order sections 

(which have been successfully used in manufacturing active RC circuits 

* designed by the cascade technique) and hence this knowledge can be 

directly utilised for the realisation of multiple feedback filters. 

The general form of the transfer function of a biquadratic 

^ section is 

N(s) 
T(s) = = (1.21) 

4 (s/w / + Q (s/w ) + 1 

where w^ and Q are the resonance frequency and the Q-factor, 

respectively, of the section and N(s) determines the type of section, 

e.g. 

N(s) = a Lowpass 

N(s) =b.(s/w
r
) Bandpass 

2 

N(s) = c.(s/w
r
) Highpass 

2 

N(s) = d.[(s/e) + 1 ] e = w
r
 Bandstop 

e > w^ Lowpass Notch 

e < w^ Highpass Notch 

where a, b, c, d and e are constants. 

There are many active RC circuits available for implementing 

equation (1.21) and the number of OP-AMPs required by these circuits 

range from a minimum of one to a maximum of four. For high order 



filters the use of multi-amplifier biquadratic circuits is 

unattractive since a large number of amplifiers would be necessary and 

this would result in increased cost and heat dissipation would be a 

serious problem. On the other hand, we can over-come these 

limitations by using single amplifier biquadratic circuits. 

A search through the active RC filter literature shows that many 

different single amplifier topologies have been proposed [45,46,4 7] 

for realising the basic biquadratic transfer function of 

equation (1.21). No systematic procedure is available for selecting 

tha SAB circuits for a given application. Each SAB circuit has its 

advantages and disadvantages; hence a direct comparison to determine 

which SAB circuit is "best" is unfeasible, because the criteria for 

comparison would be different in different applications. In this 

subsection we shall present a brief discussion of the points which 

should be born in mind when considering which SAB circuit to use. We 

shall also present a few SAB circuits which are frequently used in 

practice; infact some of these SAB circuits will be referred to in 

Chapters 2 and 3. 

Although, as stated above, there is no general criterion for 

comparing the different SAB circuits the two most important 

parameters to be taken into account are cost and performance. In the 

area of cost, attributes such as the ease of realising the different 

biquadratic transfer functions, the number of passive components (i.e. 

resistors and capacitors) required, the resulting spread in element 

values and the convenience of tuning the SAB circuit, to compensate 

for initial component tolerances, are considered; whereas the 

sensitivity of the transfer function, due to changes in passive and 



active components, is considered in evaluating the circuit 

performance. 

One SAB circuit, which has the advantage of versatility (i.e. 

lowpass, highpass, bandpass and bandstop functions are available by 

using different input terminals) and acceptability of preferred value 

wide tolerance capacitors, has been proposed by Lim [46]. It 

basically consists of a unity-gain amplifier with a balanced twin-T 

feedback network. The bandpass version of this SAB circuit is shown 

in Fig 1.11(a) from which we note that the circuit is non-cannonic 

since it requires three capacitors to realise a second order transfer 

function. In order to obtain the required transfer function a 

pole-zero cancellation has to take place; also the Q-factor of the 

circuit is proportional to a ratio of two resistors but the gain 

factor of the circuit is inversely proportional to the Q-factor. This 

implies that this circuit is not suitable for realising the infinite 

Q-factor sections in the leap-frog feedback structures because the 

spread in the component values would be very unrealistic for practical 

purposes. For this reason and also due to the effect of the parasitic 

input capacitance of the OP-AMP, the operation of this circuit is 

restricted to below 10 kHz and the Q-factor of the circuit is usually 

restricted to be less than 50. The adjustment procedure for the Lim 

type SAB circuit is discussed in [11]. 

Another SAB topology which can be used to realise any of the 

biquadratic transfer functions and which can also accept preferred 

value wide tolerance capacitors, has been proposed by Friend [4 7]. 

This topology is based on a bandpass design first published by 

Delyannis [48]. The flexibility and the general usefulness of the 

Friend SAB topology is stated in [49] and this has resulted in the 
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development of the STAR (standard tantalum active resonator) circuits 

in a thin-film hybrid integrated form. The bandpass version of the 

Friend SAB topology is shown in Fig 1.11(b) and its transfer function 

(assuming the OP-AMP to be ideal) is given in equation (1.22) 

- A (s/w ) 
V s ) ^ 1 — . (1.22) 

(s/w T + Q (s/w ) 4 1 
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- 1 / 2 
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1/2 
and A = ( C ^ / C ^ r ( 1 4 (1.22c) 

From equations (1.22a) and (1.22b) we note that the resonance 

frequency (W
q
) and the Q-factor (Q) of the SAB bandpass circuit can be 

adjusted independently, e.g. w
q
 by means of R

2
 and Q by means of R^. 

Furthermore, the gain factor A of the circuit can be reduced from the 

value given by equation (1.22c) by splitting resistor R^ into a 

voltage divider, as shown in Fig 1.11(b). This principle can be used 

to form a summation junction at the input of a section [39] as 

required in multiple feedback structures. Since the Q-factor of the 

circuit is defined by the difference of terms (see equation (1.22b)), 

it is possible to realise transfer functions with very high Q-values 



(even infinite Q-values, if desired), without having a large spread in 

component values. 

Another family of SAB circuits which is frequently used in 

practice was first proposed by Sallen and Key [45]. The bandpass 

version of the Sallen and Key SAB circuit is shown in Fig 1.11(c) and 

its transfer function (assuming the OP-AMP is ideal) is given by 

A (s/w ) 
T_„(s) - :

 2
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This SAB bandpass circuit offers the same sort of flexibility as the 

Friend SAB circuit; e.g. preferred value wide tolerance capacitors 

can be used, the resonance frequency and the Q-factor of the circuit 

can be adjusted independently (see equations (1.23a) and (1.23b)), and 

transfer functions with very high (including infinite) Q-factors can 

be realised. Also the gain factor A of the circuit can be reduced 

from the value given by equation (1.23c) by splitting resistor R^ into 

a voltage divider, as explained above. 



From equations (1.22) and (1.23) we note that the transfer 

function of the Friend SAB bandpass circuit has a negative sign, 

whereas the transfer function of the Sallen and Key SAB bandpass 

circuit .has a positive sign. In leap-frog multiple feedback filters 

we need SAB sections with positive and negative sign transfer 

functions (e.g. see Fig 1.9(b)). In the realisation of a sixth order 

leap—frog feedback bandpass filter- to be i.n the next 

Chapter we shall adopt the Friend and the Sallen and Key SAB circuits 

discussed above. The Lim circuit (Fig 1.11(a)) is not adopted because 

it is not C&nonic. 

It is seen from above that under the assumption of ideal OP-AMPs 

the design equations of the Friend and the Sallen and Key SAB bandpass 

circuits are simple. However, a very complex set of design equations 

results if the OP-AMP imperfections are taken into account. 

Neglecting the imperfections of the OP-AMPs would confine the 

operation of the circuits to very low frequencies and it would not be 

possible to design practical circuits. Of all the OP-AMP 

imperfections the one which limits the frequency range, and hence is 

most serious, is the finite gain-bandwidth product, f
T
, of the OP-AMP. 

In Chapter 2 we shall examine more closely the effect of finite f^ on 

the Friend and the Sallen and Key SAB bandpass circuits. It will be 

shown there that while the technique of predistorting the design 

allows practical design of SAB circuits in the presence of finite f
T 

OP-AMPs, the overall response of the structure in which these SAB 

circuits are used may not be satisfactory; hence, it may be necessary 

to resort to other ways of counter-acting the effect of the finite f̂ , 

(one such possibility will be presented in Chapter 2). 



- 53 -

1.4 Simulation of the elements and the structure of LC filters 

1.4.1 General 

It has been shown in Section 1.2.3 that resistively terminated LC 

ladder filters, which are designed for maximum power transfer, have 

very low sensitivity of their response to changes in component values 

in both the passband and the otcpband. The necessity to simulate LC 

filter structures using active RC networks stems from the fact that we 

wish to retain the low sensitivity properties of the LC networks in 

active RC realisations. The basic philosophy of the element and 

structure simulation method is to some-how "eliminate" the inductors 

(which cannot be realised microelectronically) by using active RC 

circuits. There are two main approaches for accomplishing this task 

1. inductors in the prototype filter are replaced by active RC 

circuits, 

2. the prototype LC filter is impedance scaled by a 

factor (
w

r e
f

7 s

) which has the effect of transforming the 

resistors, inductors and capacitors of the prototype LC filter 

into capacitors, resistors and super-capacitors (i.e. impedance 

-2 

proportional to s ), respectively, and the objective in this 

case is to replace these super-capacitors.by active RC circuits. 

The above two simulation approaches have been extensively studied 

in the past and as a consequence of this a large amount of literature 

is available on the subject. In this section we shall discuss the 

basic principles of the above two simulation approaches, which can be 

viewed as impedance simulation methods. The design of structure 

simulation methods is usually based on some sort of conceptual units, 

such as impedance converters and impedance inverters, which are 
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realised by means of active RC circuits. Gyrators and positive 

impedance converters (PICs) form two such conceptual units and these 

have been extensively used in the element and structure simulation 

method. Hence it is appropriate to start our discussion by reviewing 

the definitions and some properties of these building blocks. 

A gyrator, the symbolic representation of which is shown in 

Fig 1.12(a), is a 2-port network having the transmission matrix 

(1.24) "
v

l~ 
A B Vo r o rH 

"
v

l~ 2 i ° 2 
I. C D I- R 0 In 1 2 o _ 2_ 

where R
q
 is called the gyration resistance. 

Now if port 2 in Fig 1.12(a) is terminated by impedance Z then the 

2 

impedance presented at port 1 is Hence if Z represents a 

grounded capacitor then a grounded inductor is realised at port 1, as 

shown in Fig 1.12(b) [50]. This concept has been extended to realise 

a floating inductor as shown in Fig 1.12(c) [51]. Thus we have the 

means of simulating any inductor network and hence any LC filter. In 

the 3-terminal circuits realising gyrators, the zeros in the 

transmission matrix (see equation (1.24)) are produced by cancellation 

of terms and as a consequence of this extra sensitivities are 

introduced into the active circuit, which have no counterpart in the 

LC network, when the conditions for the cancellation are not 

satisfied. This problem does not rise in 4-terminal gyrator 

circuits [52]; however 4-terminal gyrator circuits cannot be used to 

realise floating inductors because they require floating power 

supplies, which is undesireable for practical reasons. 
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The positive impedance converter (PIC) is a 2-port network which 

when terminated at one port in an impedance Z, represents an impedance 

k.Z at the other port (k is a dimensionless quantity and is called the 

PIC scaling factor) [53]. The transmission matrix definition of a 

commonly used "current" converting type PIC is 

~
v

l~ 
A B 1 0 " v ; 

A C D A 0 k A 
' (1.25) 

The symbolic representation of a PIC together with the directions of 

the port voltages and currents are shown in Fig 1.13(a). Suppose we 

load the PIC in Fig 1.13(a) with impedance Z at port 2, then the 

impedance presented at port 1 is Z ^ = Z, whereas if Z is 

connected across port 1, then the impedance presented at port 2 is 

= k Z; hence the PIC has impedance transforming properties. 

The PIC scaling factor, k, can have either of two forms 

corresponding to two types of PICs; these are the s-type PIC, for 

±1 2 

which k is proportional to s , and the s -type PIC, for which k is 

±2 

proportional to s . The above current converting type PIC is usually 

realised as shown in Fig 1.13(b). This circuit was first proposed by 

Antoniou [52] and is sometimes referred to as a generalised impedance 

converter (GIC). The value of the PIC scaling factor k is related to 

the impedances in Fig 1.13(b) by the following expression 

k = 

Z

2
 Z

4 
Z

1
 Z

3 
(1.26) 

From equation (1.26), we note that the realisation of the s-type PIC 

would require one of the four impedances to be a capacitor, whereas 
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2 
the s -type PIC would require two of the four impedances to be 

capacitors. 

Simulation of a grounded inductor can be achieved by terminating 

a s-type PIC by a resistor, as illustrated in Fig 1.13(c). Floating 

inductors can be simulated by using two s-type PICs and a resistor, as 

shown in Fig 1.13(d). Furthermore, simulation of super-capacitors 

(i.e. impedance proportional to s ^ and super-inductors 

2 2 
(i.e. impedance proportional to s can be obtained by using s -type 

PICs terminated by resistors. Hence we can simulate any inductor or 

super-capacitor network and hence effectively have the means of 

simulating any LC filter. 

Unlike some gyrator circuits, the zeros in the transmission 

matrix (see equation (1.25)) are not produced by cancellation of terms 

and hence any changes in the impedances of the circuit in Fig 1.13(b) 

can be interpreted as only affecting the PIC scaling factor (see 

equation (1.26)). Thus no extra sensitivities are introduced by the 

passive components forming the PIC circuit. The effect of the finite 

gain-bandwidth products (f
T
's) of the OP-AMPs in the circuit has been 

studied in detail and various methods of designing the PICs 

"optimally", to minimise the active sensitivity, have been 

proposed [54,55,56,57]. The functional adjustment of PIC circuits has 

been studied [29] which allows the use of preferred value wide 

tolerance capacitors and also full compensation for the finite f^ 

effects can be achived, at a single frequency, by laser trimming of 

resistors. These efforts have culminated in the development of low 

cost, high quality, high precision microelectronic filters, in the 

frequency range from about 10 Hz to about 110 kHz, which are now in 



production [5,7] and are based on a design philosophy [6] which uses 

the PIC as the basic building block. 

Several impedance converter / inverter circuits which use only a 

single OP-AMP have been proposed for simulating grounded 

inductors [58,59,60] and grounded super-capacitors [35,61]. These 

circuits derive their impedance expressions by cancellation and 

matching of terms and hence they generally have higher sensitivities 

than the circuits using the PIC. Another major disadvantage of these 

single amplifier circuits is that it is not possible for all the 

capacitors in the simulated filter to have preferred values or wide 

tolerances. However by using these single amplifier circuits a 

considerable reduction in the total number of OP-AMPs used for the 

overall filter can be achieved than if the same filter is realised 

with PICs. 

In the next subsection we shall discuss the various methods which 

have been described in the literature over the past fifteen years for 

simulating the elements and the structure of LC filters. 

1.4.2 Method of simulation 

The very first methods proposed for simulating resistively 

terminated LC ladder filters by active RC networks may be classified 

as inductor simulating methods [22,50,62,63]. The basic principle of 

the inductor simulation methods is that each inductor in the LC 

prototype network is replaced by an active RC circuit while the 

resistors and • capacitors of the prototype network remain unchanged. 

The inductors are realised either by capacitively terminated gyrators 

or by resistively terminated PICs; one gyrator or one PIC is required 
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for a grounded inductor while two gyrators or two PICs are required 

for a floating inductor. Tfre—major drawback of this approach of 

simulating each inductor separately is that large number of OP-AMPs 

would be required. However, the inductor simulation method using PICs 

has been generalised by Gorski-Popiel [15] which results, in most 

cases, in a significant reduction in the number of PICs that are 

required to realise a given filter network. The basic principle of 

Gorski-Popiel's method is illustrated in Fig 1.14, where we start with 

an LC network from which we "pull-out" all inductors to create an L 

subnetwork and an RC subnetwork, while maintaining all the links 

between the two subnetworks. The L subnetwork is now replaced by a 

topologically equivalent R subnetwork and PICs (with scaling factor 

proportional to s are inserted in the links between the R 

* 
subnetwork and the RC subnetwork 

In the above method of simulation only the inductive part of the 

prototype network is simulated and the resistive and the capacitive 

parts of the prototype network appear unaltered in the active 

realisation. Now in LC networks the capacitors in general have 

non-preferred values and require narrow tolerances hence it follows 

that the active RC networks derived by the above method will also 

require non-preferred value narrow tolerance capacitors, which leads 

to increase in production costs as mentioned in Section l.L. Note 

that the capacitors occuring within the PIC circuits can have wide 

tolerances since we can adjust the scaling factors of the PICs by 

means of resistors within the PIC circuit. 

* A similar generalisation has been proposed for the gyrator 
approach in which case the L subnetwork is replaced by a network 
of capacitors viewed via a multi-gyrator [64]. 
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As an illustrative example of the above simulation method, let us 

consider the LC network shown in Fig 1.15(a). The active RC 

realisation of this network is shown in Fig 1.15(b) for the case when 

each inductor is simulated individually (note that in order to save 

one PIC, we have interchanged the positions of L^ and C^ to make L^ 

grounded). The active RC realisation of the LC network in 

Fig 1.15(a), using the Gorski-Popiel's method is shown in Fig l'.15(c). 

The fewer number of PICs required by the Gorski-Popiel's method is 

quite obvious from Figs 1.15(b) and (c). 

Another approach to the simulation of LC ladder filters, which is 

usually referred to as the impedance scaling method, was originally 

proposed by Bruton [16]. The basic principle of this approach is that 

the voltage (or the current) transfer ratio of a filter being a 

dimensionless quantity is not affected if the impedances of all the 

branches of the ladder filter are multiplied (i.e. are scaled) by the 

same factor. Thus by appropriatly choosing the scaling factor, we can 

eliminate the inductors in the prototype network. For example, 

consider the lowpass filter shown in Fig 1.6(a); if all the impedances 

in Fig 1.6(a) are multiplied by
 W

r e f
7 s

 (
w l i e r e s t l i e

 complex 

frequency variable and
 w

r e
£ is

 a

 reference frequency) then the 

inductors become resistors, the resistors become capacitors and the 

- 2 
capacitors become components with an impedance proportional to s , 

which Bruton termed "frequency dependent negative resistors" (fdnr's) 

2 
because their impedances become proportional to -1/w at real 

frequencies (i.e. s=jw) [65]. The impedance scaled version of the 

circuit in Fig 1.16(a) is shown in Fig 1.16(b) together with the 

symbol for the fdnr elements, which we shall refer to as 

super-capacitors in order to distinguish these components from those 
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2 

jtfith impedances proportional to s , which are another type of fdnr's 

and we shall refer to these as super-inductors. The super-capacitors 

in Fig 1.16(b) can be realised using s-type PICs (with scaling factor 

proportional to s
+

^) terminated by a capacitor [16], as shown in 
2 

Fig 1.16(c), or by s - t y p e PICs (with scaling factor proportional 

+2 
to s ) terminated by resistors [7]. In Fig 1.16(c) all capacitors, 
with the exception of C and C , may have preferred values with wide 

S LI 

tolerances, since the resistors within each PIC circuit can be 

adjusted to compensate for any variations in the capacitor values; 

however, the manufacturing tolerance for C and C is restricted to be 
S LI 

that of R
g
 and R^ in the prototype filter (this tolerance is typically 

± 2 % to ± 5 % [5]). 

In the above example, we have only encountered grounded 

super-capacitors whereas for bandpass and bandstop filters both
 u 

grounded and floating super-capacitors would be obtained. In order to 

minimise the number of PICs required for such circuits, use can be 

made of Gorski-Popiel's idea of splitting the impedance scaled version 

of the prototype network into one subnetwork containing resistors and 

capacitors and another subnetwork containing super-capacitors; the 

super-capacitor subnetwork is then realised either by a topologically 

equivalent capacitor subnetwork, or by a topologically equivalent 

resistor subnetwork which is connected to the RC subnetwork via PICs 

having the appropriate scaling factors. 

The Gorski-Popiel's and Bruton's methods of simulating LC filters 

have been interpreted in a slightly different way [6,7,29], and are 

referred to as partial, and modified partial, impedance scaling 

methods, respectively. The term "partial" arises from the fact that 

in the Gorski-Popiel's method only part of the prototype network 
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(i.e. only the inductive part) is impedance scaled. Bruton's method 

of simulating lowpass filter structures (in which all capacitors are 

grounded) can be viewed as modification of the Gorski-Popiel's method. 

For" example, in Fig 1.16(a) if we had used the Gorski-Popiel's partial 

impedance scaling method, then the active RC realisation would have 

been as shown in Fig 1.16(c) with two s-type PICs inserted at 

positions marked "X" and capacitors C_ and C
T
 replaced by resistors 

3 jj 3 

and R^, respectively. Hence the circuit in Fig 1.16(c) can be 

considered as being obtainable by "modifying" the partial impedance 

scaling approach of Gorski-Popiel. 

In the "full" impedance scaling approach mentioned in [6,7,29], 

the LC network is partitioned into an inductor and a capacitor 

subnetworks with the terminating resistors being associated with the 

inductor subnetwork. The subnetwork containing inductors and the 

terminating resistors is impedance scaled by a factor k^/s , where k^ 

is a constant; this has the effect of transforming the inductors and 

the resistors into resistors and capacitors, respectively. The 

capacitor subnetwork of the LC filter is also impedance scaled but 

using a scaling factor » where k^ is a constant, which 

transforms the capacitor subnetwork into a resistor subnetwork. The 

effect of impedance scaling the subnetworks is compensated by 

inserting PICs, having a scaling factor s /(k^ k^) , in the links 

between the two subnetworks. The principle of the full impedance 

scaling method is illustrated in Fig 1.17. In the full impedance 

scaling method of simulating LC filters, all capacitors, except the 

two corresponding to the terminating resistors, occur inside the PIC 

circuits and thus they can have any preferred values by design, with 

wide manufacturing tolerances. 



Let us now look at the sensitivity aspects of the active RC 

networks derived by the above simulation methods. The passive 

components in the active RC realisations can be classified into two 

groups; those within the subnetworks and those within the PICs. By 

the virtue of the fact that the impedance of each element in the 

subnetworks is proportional to the impedance of an element in the 

corresponding" prototype network it follows that the sensitivity of 

the amplitude response of the active network to changes in the values 

of the subnetwork elements is low [22]. It can be shown that the 

sensitivity of the amplitude response of the active RC network to the 

passive elements within the PICs is low provided the network satisfies 

the "PIC embedding constraint" given in [6,7,29]. The main 

contribution to the active sensitivity of the simulated network arises 

from the finite gain-bandwidth products of the OP-AMPs used in the 

realisation of the PIC circuits. Methods of compensating for the 

finite f
T
'

s

 by adjusting the resistors inside the PIC circuits and 

techniques for designing the PIC circuit to minimise the effect of 

finite t^'
3

 have been proposed in the litrature [6,29,54,56]. Thus 

the simulated active RC networks can be designed to retain the low 

sensitivity properties of their passive LC prototype counterparts. 

1.5 Purpose of present thesis 

The purpose of this thesis is to study in detail two methods 

suitable for designing high-precision low sensitivity active RC 

filters. The design methods to be studied are the "signal flow graph" 

simulation of LC filters and the simulation of the "elements and the 

structure" of LC filters. In both of these methods low sensitivity 

resistively terminated LC filters are used as prototypes. The 



attractiveness of these methods lies in the fact that the active RC 

circuits obtained, retain the low sensitivity properties of their LC 

prototype counterparts-

The signal flow graph simulation method gives rise to leap-frog 

type multiple feedback structures in which integrators and / or 

biquadratic sections are used as the basic building blocks. Thus the 

design problem of this approach involves the design of first and / or 

second order sections. In Chapter 2, we consider the design of an 

all-pole sixth order bandpass filter which can be realised using three 

second order bandpass sections interconnected with leap-frog type 

feedback. This filter is realised using three single amplifier 

biquadratic (SAB) circuits (in order to minimise cost, power 

consumption and heat dissipation) and it is shown that in order to 

design practical circuits the effect of the finite f^, of the OP-AMPs 

must be taken into account at the design stage; it is further shown 

that the conventional techniques of predistorting the design of SAB 

circuits leads to unsatisfactory results. A compensation technique, 

which involves the modification of the SAB circuit topology, is 

proposed and it is shown that by means of this it is possible to 

fully compensate for any value of the f and hence to obtain ideal 

nominal response characteristics inspite of non-ideal OP-AMPs. 

In Chapter 3, the sensitivity aspects of the sixth order 

leap-frog type bandpass filter considered in Chapter 2 are examined 

with the view of minimising the sensitivity of the filter due to 

post-adjustment variations in the components (both passive and active) 

of the SAB circuits. A criteria is developed for minimising the 

sensitivity of multiple feedback filters. This criterion is then 

applied to obtain the optimum design of the sixth order leap-frog 
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feedback bandpass filter. The active sensitivities of the optimised 

and the unoptimised designs of the multiple feedback filter are 

compared in order to show the validity of the sensitivity minimisation 

criterion. Some practical measurements carried out on the discrete 

component model of the filter are given together with a brief 

description of the adjustment method used for the discrete component 

model. 

In Chapter 4, a novel approach to the simulation of the elements 

and the structure of LC filters is presented. In contrast to the 

conventional approach of element/structure simulation which uses the 

positive impedance converter (PIC) as the basic active unit, the new 

method uses negative impedance converter (NIC) as the basic active 

unit. Active RC subcircuits are developed for simulating grounded and 

floating inductors and super-capacitors which are then used in the LC 

structure (or an impedance scaled version of it) in a novel way such 

that the number of amplifiers required is in many cases less than the 

number required by the conventional approaches. Great emphasis is 

placed on the ability of the resulting active RC circuits to accept 

preferred value wide tolerance capacitors, which is desirable in 

order to minimise production costs. The basic principles of the new 

approach are illustrated by considering all types of filter design 

examples (e.g. all-pole and elliptic lowpass, highpass and bandpass 

filters). The sensitivity of the active RC structures is examined by 

considering a lowpass filter example and it is shown that the 

active RC circuit retains the low sensitivity properties of its LC 

prototype. 

In Chapter 5, a study of the effect of the finite amplifier 

gain-bandwidth product (f^) in NIC circuits is presented. A criterion 



for reducing the effect of finite f
T
 is developed and its 

effectiveness is illustrated by means of a computed example. Also in 

Chapter 5, the problem of stability associated with circuits using 

NICs is considered at some length and it is shown that the stability 

of most of the NIC circuits can be predicted simply by looking at the 

amounts of positive and negative feedbacks being applied at zero and 

infinite frequency to the non-inverting and the inverting terminals, 

respectively, of the'OP-AMP used to realise the NIC. 

1.6 Statement of originality 

The following main items presented in this thesis are, as far as 

the author is aware, original: 

Chapter 2 The method of fully compensating for the effect 

of finite f
T
's for the Friend SAB bandpass and the Sallen and Key SAB 

bandpass circuits. 

Chapter 3 The sensitivity minimisation criterion 

developed and used in this chapter. 

Chapter 4 The systematic development of the essential 

subcircuits for simulating grounded and floating inductors and 

supercapacitors. The derivation of a multitude of simulated inductor 

and super-capacitor circuits. The novel way (out-lined in 

Section 4.5) in which these essential subcircuits are used to design 

filters. The interpretation of the sensitivity of the simulated 

active RC structures in terms of the sensitivity of an "equivalent" LC 

filter. 
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Chapter 5 The method of reducing the effect of finite 

f
T
's in NIC circuits (developed in Section 5.2) and the simple method 

of determining the stability of, and / or stabilisation of 

"potentially" unstable, NIC circuits (reported in Section 5.4). 

Some of the results of the present work have been published [84]. 
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C H A P T E R 2 

A METHOD OF COMPENSATING FOR THE EFFECT OF FINITE AMPLIFIER GAIN 

BANDWIDTH PRODUCT IN MULTIPLE FEEDBACK FILTERS 

w

 2.1 Introduction 

2.2 The concepts of predistortion and compensation 

2.2.1 Predistortion 

2.2.2 Compensation 

2.3 Compensation of the Friend bandpass section 

2.4 Compensation of the Sallen and Key bandpass section 

2.5 Derivation and solution of the design equations for the 

compensated bandpass circuits 

2.5.1 Compensated Friend bandpass circuit 

2.5.2 Compensated Sallen and Key bandpass circuit 

2.6 Comparison of the computed results of the compensated and 

predistorted designs with the nominal designs 

2.7 Conclusions 

m 
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2.1 Introduction 

The interest in designing multiple feedback active RC networks 

arises from the fact that these networks possess low sensitivity and, 

as described in Chapter 1, their design can be based on biquadratic 

sections which is desireable for two reasons. Firstly, a considerable 

reduction in the total number of amplifiers required, in order to 

realise a given order filter, can be obtained by using single 

amplifier biquadratic (SAB) sections; secondly, the past experience of 

designing and adjusting such biquadratic sections can be directly 

utilised. Once the synthesis procedure has been carried-out to obtain 

the transfer functions of the various blocks in the multiple feedback 

structure, the design problem reduces to that of designing the second 

order biquadratic sections. 

In the realisation of the biquadratic sections operational 

amplifiers (OP-AMPs) are usually employed as the basic active 

elements. Basically an OP-AMP consists of high gain differential 

amplifiers which are DC coupled. An ideal OP-AMP has infinite input 

impedance, zero output impedance, infinite common mode rejection 

ratio (CMRR) and infinite gain at all frequencies. However, a 

practical OP-AMP has finite input impedance, non-zero output 

impedance, finite CMRR and finite gain which is dependent on 

frequency. Assuming the OP-AMP is internally compensated by a 

dominant pole, which is the usual case, theh for all practical 

purposes the open loop gain, A(s), of the OP-AMP is characterised by 

A w w_ 
» / \ O C I 
A(s) = = (2.1) 

s + w s + w 
c c 
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where A
q
 and w^ are the DC gain and the 3 dB frequency of the OP-AMP, 

respectively, s is the complex frequency variable and w^ ( = 2TTf^) is 

the gain bandwidth product of the OP-AMP. The finite values of the 

CMRR encountered in pratice, for commercially available OP-AMPs, are 

such that it is not a limiting factor. Furthermore the effect of the 

typical values of the finite input impedance and the non-zero output 

impedance of the OP-AMPs can usually . be made negligible by 

appropriately choosing the impedance level of the RC circuit in which 

the OP-AMP is embedded. However, the effect of the frequency 

dependent nature of the OP-AMP gain given by equation (2.1) cannot be 

neglected unless the operation of the circuit is confined to very low 

frequencies (e.g. a few kilohertz or even less if common OP-AMPs such 

as the type 741 are being used). Therefore in order to design 

useful circuits at higher frequencies it is necessary to take account 

of the effect of finite f
T
 of the OP-AMP at the design stage. 

In this Chapter we shall examine in some detail the effect of 

finite gain bandwidth product in single amplifier biquadratic (SAB) 

circuits. The basic concepts of two distinct methods, namely 

predistortion and compensation, which can be used to take account of 

the effect of the finite f
T
 will be discussed in Section 2.2. The 

scheme proposed in Section 2.2.2 for fully compensating for the f.̂ -

of the OP-AMP in SAB circuits will be applied to the Friend and the 

Sallen and Key SAB bandpass circuits in Sections 2.3 and 2.4, 

respectively. The application of the predistortion or the 

compensation technique results in a set of non-linear equations. 

Derivation of the design equations for the two SAB bandpass circuits 

and a numerical procedure, based on a simple computer program, for 

solving these non-linear equations will be described in Section 2.5. 



In Section 2.6 we shall carry-out a comparison of the computed 

responses for the predistorted and the compensated designs of the SAB 

circuits. We shall also examine the response of a sixth order 

all-pole leap-frog feedback bandpass filter realised using these 

predistorted and compensated SAB circuits. The derivation of the 

leap-frog feedback bandpass filter structure, which is to be used as 

an example, was given in Section 1.3.2. This filter can be realised 

as shown in Fig 1.9(b) with three second order sections. The 

relationship between the parameters of the second order sections and 

the elements of the prototype filter of Fig 1.8(a) are shown in 

Table 1.2. Now, if this filter is designed for a centre frequency 

of 15 kHz, bandwidth of 500 Hz, passband ripple of 0.5 dB and for 

feedback factors and midband gain of unity, then the values of the 

parameters of the second order sections are as shown in Table 2.1. We 

shall use the above specification for the leap-frog feedback bandpass 

filter to be considered here as an example. 

2.2 The concepts of predistortion and compensation 

2.2.1 Predistortion 

The design of circuits is often carried-out assuming the 

components of the circuit are free from any parasitic effects as this 

leads to simpler design equations. Consequently if the circuit is 

analysed by taking into account the parasitic effects of the 

components then the actual characteristic of the circuit may depart 

considerably, from those for which the circuit was designed, such that 

the circuit no longer remains useful. For example, suppose we design 

the Friend and the Sallen and Key SAB bandpass circuits in 

Figs 1.11(b) and (c) to have a resonance frequency of 15 kHz and 



Q-factors of value 4 7.8875 and infinity, respectively. Assuming 

the OP-AMPs to be ideal, the component values of the Friend circuit 

can be obtained by solving equations (1.22a) and (1.22b); similarly, 

the component values for the Sallen and Key circuit can be obtained by 

solving equations (1.23a) and (1.23b). Now, if both SAB circuits are 

analysed assuming the OP-AMPs to be ideal and assuming the OP-AMPs to 

be characterised by equation (2.1) with f„ = 1 MHz, then the 

amplitude-frequency characteristics obtained for the two circuits are 

as shown in Figs 2.1(a) and (b). From Fig 2.1 we note that both SAB 

circuits realise the desired characteristics if the OP-AMPs are ideal; 

however, significant errors in the responses occur when the OP-AMPs 

have a finite f
T
's ( =• 1 MHz). In Fig 2.1 the effect of the finite 

f
T
's can be interpretted as causing changes in the values of the 

resonance frequencies and the Q-factors of the circuits. 

The above example clearly shows that in order to design practical 
« 

circuits (i.e- which use OP-AMPs of finite f
T
), we must take into 

account the effect of the finite f^ at the design stage; this can be 

achieved using a design step that is usually referred to as 

predistortion . In essence the predistortion technique involves the 

prediction of the changes in the circuit parameters (e.g. the 

resonance frequency and the Q-factor in the case of the above SAB 

circuits) that would result when the components of the circuit become 

non-ideal; in accordance with these changes, the initial values of the 

circuit parameters are modified (i.e. are "predistorted") in the 

opposite direction by the appropriate amounts and the design of the 

circuit is carried-out using these parameter values in the ideal 

circuit design equations; thus when the circuit is analysed taking 

into account the parasitics of the components, the circuit parameters 
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attain their desired nominal values. Oviously the limitation of the 

predigtortion technique is governed by how accurately we can predict 

the changes in the circuit parameters. 

One method of predistorting the design of biquadratic- sections is 

presented in [66], where analytical expressions are derived to predict 

the change in the resonance frequency, - A w
q
, and the change in the 

Q-value, - A Q , of the sections. These values of A w
q
 and AQ are then 

used as corrective factors. For example, if the biquadratic section 

is designed for a resonance frequency of (W
Q
 + A W ) and a Q-factor of 

value (Q + AQ)> assuming the OP-AMP(s) to be ideal, then in the 

presence of non-ideal OP-AMP(s) the resonance frequency and the 

Q-factor of the circuit would be w
q
 and Q, respectively. In [66], the 

expressions for Aw
q
 and A Q are obtained by considering the rate of 

change of the complex pole-pair locations with respect to the gain 

bandwidth product at the nominal pole positions and hence are only 

valid if these changes are small; this imposes an upper limit on the 

frequency at which this predistortion technique can be applied. 

In the following we shall present two methods of predistorting 

the design of biquadratic sections which are better than the method 

of [66] in the sense that they can cope with higher operating 

frequencies. The basic principle of these methods can be applied to 

predistort the design of multi-amplifier biquadratic circuits; 

however in order to keep the analysis simple we shall only consider 

SAB circuits here. The basic philosophy of these methods can be 

better understood if we first examine the effect of the amplifier 

finite f^, on the transfer functions of SAB circuits. 
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It can be shown that the general form of the voltage transfer 

ratio of a SAB circuit can be put into the following form : 

N(s) N(s) 
T(s) (2.2) 

P C )
 D ( s ) +

_ l L _ D
2
( s ) 

A(s) 

where N(s) = G. [(s/w )
2

 4 Q
- 1

 (S/W ) 4 1] 
1 z z z 

D1(s) - (s/w
p
)

2

 4 Q^
1

 (s/w ) 4 1 

D9(S) = (s/w )
2

 4 < Q"
1

 4 K_} (s/w ) 4 1 
2 p p 2 p 

where w^, w
p
, Q^, Qp, G^, K^ and K

2
 are constants and A(s) is the gain 

of the amplifier. In the case of bandpass filters, equation (2.2) 

reduces to the form 

G. (s/w ) 
T (s) ^-t

 2

 (2.3) 
s/w ) + Q (s/w ) 4 1 

o o o 

4 K. A ' ^ s ) [(s/w )
2

 4 (Q*"
1

 4 K.) (s/w ) 4 1] 
1 O O Z o 

where w
q
 and Q

q
 are the resonance frequency and the Q-factor of the 

circuit when the OP-AMP is ideal. From equation (2.3) we can deduce 

that in the case of an ideal OP-AMP the transfer function of a 

bandpass filter becomes 
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t

b p
( s ) 

G

1
 ( s / w

J 
1 ° (2.4) 

A ( s ) — ( s / w )
2

 4 Q"
1

 (S/W ) 4 1 

o ^o o 

If we substitute for A(s) from equation (2.1) into equation (2.3), 

then Tgp(s) can be written as 

TBP(s) 3 . 2 ' 7 — ( 2 - 5 ) 
a

3
s a

2
s a

l
s 

where G^, a^, a
2
 and a^ are constants. From equation (2.5) we note 

that the effect of the non-ideal OP-AMP is to convert the biquadratic 

transfer function , of the ideal OP-AMP case, into a third order 

transfer function . This effect can alternatively be interpreted as 

producing a shift in the position of the dominant complex pole pair 

and introducing an unwanted pole on the negative real axis of the 

complex s-plane. 

The dominant complex pole pair can be shifted back to its nominal 

position in the s-plane by predistorting the design. There are two 

ways in which predistortion can be implemented in the case of 

equation (2.5). Firstly, we can factorise the denominator of 

equation (2.5) into a first order term and a biquadratic term, viz: 

G„ S 

T^
p
(s) (2.6) 

(b s 4 1) (b
2
s^ 4 b

x
s 4 1) 

where b^, b
2
 and b^ can be related to a^, a

2
 and a^ by equating the 

coefficients in the denominator polynomials of 

equations (2.5) and (2.6). Equation (2.6) can be rewritten in the 

following form 
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G~ (s/w ) 
T

B p
( s ) ^ — (2.7) 
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 + Q (s/w ) 4 I] 
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r
 = [b

2
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Q
r
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2
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and G
3
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2
 [ b

2
]

1 / 2

 (2.7c) 

Now if the frequency of interest is such that b
3
w << 1, then the first 

order term in denominator of equation (2.7) can be approximated to 

unity, and hence we can treat T (s) as being the transfer function of 
BP 

a biquadratic section with a resonance frequency w^ and a Q-factor Q^. 

Working through equations (2.7), (2.6), (2.5) and (2.3), it is 

possible to obtain expressions relating w
q
, Q

q
 and G^ in terms of w^, 

Q r» G
3
 and the gain of the OP-AMP; however, these expressions are 

non-linear (this will be shown in Section 2.5) and hence they cannot 

be solved analytically, but this problem can be overcome by obtaining 

a numerical solution using the method of successive substitution (one 

such method will be described in Section 2.5). 

The second method of predistortion can be illustrated as follows. 

Suppose we substitute s = jw in equations (2.5) and (2.4), 

respectively, then 

G . j(w/w ) 
T

B p
(jw)

 ;

 f : (2.8) 
1 - (w/wr)z + j(w/wr) Q'

A

(W) 
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and T
B p
(jw) 

G
1
 j(w/w

Q
) 

a(jw) ^ OO 1 - (W/W
q
)

2

 + j(w/w
Q
) q "

1 
(2.9) 

Now, the bandpass transfer function in equation (2.9) has a resonance 

frequency w
q
 and a Q-factor Q

q
. Therefore by comparing 

equations (2.8) and (2.9), it can be argued that equation (2.8) 

represents a biquadratic bandpass transfer function with a resonance 

frequency w^ and a Q-factor Q
r
(w). Note that whereas the Q-factor of 

a biquadratic circuit is normally a constant, Q
r
(w) in equation (2.8b) 

is dependent on frequency. The variation of Q^(w) with frequency are 

expected to be small because in practice the value of a^ will be 

2 

very much greater than the value of a^w in the frequency range of 

interest. Clearly the frequency dependent Q-factor, Q
r
(w), can be 

made identical with the required Q-factor, Q
q
, at any chosen finite 

frequency. Expressions for W q , Q
q
 and G^ can be derived in terms of 

w
r
, Q

r
(w), G

3
 and the gain of the OP-AMP, but again a set of 

non-linear equations is obtained which can only be solved numerically. 

We have presented two methods for predistorting the design of 

SAB bandpass circuits but the general idea is also applicable to 

other type of circuits (e.g. lowpass, highpass, etc.), both single 

amplifier and multi-amplifier. However, it is relevant to point-out 

that the predistortion technique makes the transfer function of the 

circuit only "approximately" ideal; this is apparent from the fact 

that even after predistortion we still have a third order transfer 

function instead of the required second order. Note that in the 

first method of predistortion described above we assume the effect of 

the first order term to be negligible and hence the actual amplitude 

and phase of the circuit suffer small deviations from their respective 



nominal values over the entire frequency range. In contrast to this, 

in the second method of predistortion the response is exact at the 

frequency where Q
r
(w) = Q

q
 but suffers deviations at all other 

frequencies. Hence the performance of the circuits designed by the 

second predistortion method will be slightly superior to those 

designed by the first predistortion method. 

The amplitude and the phase of the circuit predistorted by the 

second method . can exhibit its nominal values at any one frequency, 

whereas the amplitude and the phase of the circuit predistorted by the 

first method can only attain their nominal values, simultaneously, at 

zero frequency. This is equivalent to saying that in the second 

predistortion method we can take into account the effect of the 

unwanted real pole at a single finite frequency, whereas this is not 

possible in the case of the first method. 

It is also interesting to note that the amplitude characteristics 

of the cascade and the multiple feedback filters, which use the 

biquadratic section as the basic building block, are affected 

differently by the errors in the amplitude and the phase of the 

biquadratic transfer ' functions. For example, the amplitude 

characteristics of cascade filters depends only on the amplitude 

characteristics of the biquadratic sections, whereas in the case of 

multiple feedback filters, the amplitude characteristics of the 

overall structure is dependent on both the amplitude and the phase of 

each biquadratic section. 
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2.2.2 Compensation 

It has been shown in the previous subsection that finite 

amplifier f
T
 causes two effects in SAB circuits. Firstly, the 

dominant complex pole pair is displaced from its nominal location; 

secondly, an additional pole is introduced into the transfer function 

due to the singularity of the OP-AMP. Predistortion techniques can be 

used to shift the dominant complex pole pair to its nominal location; 

however, due to the presence of the additional unwanted real pole, the 

resulting transfer function suffers from small deviations in both 

amplitude and phase. This short-coming of the predistortion technique 

can be avoided by adopting a completely different approach, which we 

shall refer to as compensation . 

The fundamental difference between the predistortion and the 

compensation techniques is that the latter requires modification to 

the circuit topology in the sense that extra components (passive 

and/or active) are added to the existing circuit, whereas no 

alteration is made to the circuit topology in the former. For 

biquadratic circuits, various schemes have been proposed in the 

literature for compensating both single and multi amplifier circuits. 

In the following we shall consider the basic principles of these 

compensation schemes and also comment on the advantages and 

disadvantages of these schemes from the practical implementation point 

of view. 

In principle a circuit can be either compensated actively or 

passively. In the methods of active compensation [6 7,68] extra 

OP-AMPs (together with passive components, if necessary) are added to 

the existing circuit in such a way that some OP-AMPs of the circuit 



provide compensation for other OP-AMPs of the same circuit. The 

"mechanism" by which this compensation method works is that the 

addition of the extra OP-AMPs introduces additional zeros and poles 

into the transfer function of the circuit and due to the location of 

these zeros and poles in the s-plane it is possible to a first order 

approximation to achieve cancellation of the excess phase produced by 

the OP-AMPs. This compensation technique works well if the 

characteristics of the OP-AMPs are matched closely — a condition 

easily satisfied in practice for OP-AMPs fabricated on the same chip. 

The main advantage of active compensation is that since the 

characteristics of the OP-AMPs track each other with changes in 

ambient temperature and supply voltage, the circuit performance is not 

affected by changes in the environmental conditions. The main 

disadvantages of the active compensation are that it is not possible 

to "fully" compensate the circuit to achieve ideal amplitude and phase 

characteristics and also this compensation method cannot be applied in 

circumstances where DC power consumption and the problem of heat 

dissipation are major considerations, i.e. in SAB circuits. 

In contrast to active compensation, passive compensation is 

achieved by modifying the topology of the passive RC part of the 

circuit by adding extra passive component(s). The basic principle of 

this approach is to add the compensating component(s) in such a way so 

as to create a zero in the transfer function of the circuit. The 

phase lead resulting from this zero is used to cancel the excess 

phase lag arising from the unwanted poles introduced by the OP-AMPs of 

the circuit. By adding a single compensating component to 

multi-amplifier biquadratic circuits [69,70] it is possible to 

achieve compensation only over a limited frequency band; however, for 
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SAB circuits in which the numerator of the transfer function is at 

least one degree lower than the denominator, full compensation for 

amplitude and phase can be achieved at the expense of adding a single 

passive component to the circuit [71], over the entire frequency range 

in which the OP-AMP gain can be adequately described by the first 

order roll-off model depicted in equation (2.1). We shall now examine 

more closely the means by which this full compensation is implemented. 

Let us again consider the SAB bandpass transfer .function 

discussed in the previous subsection. Suppose we can modify the 

circuit topology so as to introduce a zero into the transfer function. 

Then the transfer function of the circuit, assuming the OP-AMP to be 

characterised by equation (2.1), can be written as 

G
2
s (b.s + 1) 

T

B P
(

s ) = — f t t ~ — ( 2- 1 0> a

3
s a

2
s a

l
s 

where G^, b^, a^, a
2
 and a^ are constants expressible in terms of the 

circuit components and the open loop gain of the OP-AMP. Factorising 

the denominator of equation (2.10) into a first order term and a 

biquadratic term gives 

G s (b.s + 1) 
T

B p
(s) * ^ (2.11) 

(a^s + 1 ) (a^s + a^s + 1) 

where a., a- and a, can be determined in terms of the circuit 
4 5 6 

components by equating coefficients in equations (2.10) and (2.11). 

In equation (2.11) a pole-zero cancellation takes place if b^ = a^, 
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and we are then left with a biquadratic bandpass transfer 

function, i.e. 

(s/w ) 
T

R P
( S )

 9 1 ( 2 . 1 2 ) 
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Thus full compensation has been achieved and the resulting transfer 

function has the required form over the frequency range in which the 

gain of the OP-AMP can be characterised by equation (2.1). 

The
 N
main advantages of passive compensation are that it can be 

easily implemented; the amount of additional circuitry required is 

small (e.g. usually one passive component); in the case of single 

amplifier circuits, if the degree of the transfer function numerator 

is lower than the degree of the denominator, both amplitude and phase 

characteristics of the circuit can be fully compensated. The main 

disadvantage of the passive compensation is that the compensating 

element has to adjusted for a given OP-AMP at a specific ambient 

conditions of temperature and power supply voltage; hence under 

changing ambient conditions, the compensation will not be exact. With 

respect to the last remark it is important to realise that although 

the change in the ambient conditions causes the poles and zeros of the 

transfer function to be displaced from their nominal positions, the 
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fact that the compensating zero still lies in the vicinity of the 

OP-AMP created pole will result in less deviations in the amplitude 

and phase than if no compensation is used. 

The active or passive compensation methods lead to circuits 

requiring more components than the minimum necessary. Therefore extra 

sensitivities introduced by these additional elements have to be taken 

into account. In Chapter 3 we shall discuss sensitivity minimisation 

of a multiple feedback bandpass filter which uses passively 

compensated SAB bandpass circuits, and it will be shown there that the 

sensitivity introduced by the compensating elements is relatively 

small compared with the sensitivities of the other elements of 

the SAB circuits. 

2.3 Compensation of the Friend bandpass section 

Consider the basic Friend SAB bandpass circuit shown in 

Fig 2.2(a). By straight forward analysis, the transfer function of 

this circuit can be shown to be given by 
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where A(s) is the open loop gain of the amplifier, given by 

equation (2.1). In order to be able to compensate for the non-ideal 

OP-AMP we need to modify the passive part of the circuit such that a 
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zero is introduced into the transfer function of the circuit. Let us 

examine how this can be achieved. 

Suppose a capacitor C^ is connected in parallel with the 

resistor R^ in the circuit Of Fig 2.2(a). The transfer function of 

the resulting circuit, given in equation (2.14), can be obtained by 

making the following substitution in equation (2.13) 
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Alternatively, suppose a resistor is connected in series with the 

capacitor C^ in the circuit of Fig 2.2(a). The transfer function of 

the resulting circuit is given in equation (2.15) and it can be 

obtained from equation (2.13) by making the following substitution: 
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Therefore, we effectively have two ways of compensating the circuit, 



but the capacitive compensation method is undesirable for four 

reasons, viz: 

1. number of capacitors used will not be minimum (note that we are 

realising a second order transfer function and hence only two 

capacitors are required) 

2. all the capacitors in the circuit cannot have equal values 

without having unpractical spread in resistor values 

3. capacitors are often added as discrete components and hence their 

values cannot be trimmed' 

4. the resistor R^ in the circuit of Fig 2.2(a) can be split-up to 

provide a summation point and to obtain a required gain constant, 

but this possibility is precluded if a compensating capacitor is 

connected in parallel with R^. 

On the other hand, the method of adding a resistor in order to 

compensate for the finite amplifier f^ does not have any of the above 

difficulties and hence is a practical proposition; we shall make use 

of this resistive compensation method. 

The circuit diagram of the compensated Friend SAB bandpass 

circuit is given in Fig 2.2(b) and its transfer function is given by 

equation (2.15). The derivation of the relevant design equations is 

given in Section 2.5. 

2.4 Compensation of the Sallen and Key bandpass section 

Let us consider the Sallen and Key SAB bandpass circuit shown in 

Fig 2.3(a). By straight forward analysis, the transfer function of 
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this circuit can be shown to be 
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where A(s) specifies the open loop gain of the amplifier. In order to 

compensate for the non-ideal OP-AMP, we need to modify the passive 

part of the circuit in Fig 2.3(a) such that a zero is introduced into 

the transfer function of the circuit. Let us examine the possible 

ways of achieving this. 

Suppose a capacitor C
3
 is connected in parallel with the resistor 

Rĵ  in the circuit of Fig 2.3(a). The transfer function of the 

resulting circuit is given in equation (2.17) and it can be obtained 

from equation (2.16) by making the following substitution: 
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Now suppose that in addition to capacitor C
3
 being connected in 
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parallel with resistor R^, another capacitor Ĉ , is connected in 

parallel with resistor R^. The transfer function of the circuit thus 

modified is given in equation (.2.18) which can be obtained by making 

the following substitution in equation (2.17): 

R 

R

3 
3 sC.R. 4 1 

4 3 

T(s) — " (2.18) 
s C 2 R 2 ( l 4 R a / R b ) ( s C R j + l ) 

[s"C
2
R

2
(C

1
R

1
4C

3
R

1
-C

4
R

1
R

a
/R

b
)4s(C

1
R

1
4C

2
R

1
4C

2
R

2
4C

3
R

1
4C

4
R

1 

U + V V 2 
"

C

2
R

2
R

l
R

a
/ R

3
R

b
) + 1 + r

i /
r

3
^

 4

 A ( s )
 I

s C

2

R

2 ( C ^ C ^ C ^ ) 

4s(C
1
R

1
4C

2
R

1
4C

2
R

2
4C

3
R

1
4C

4
R

1
4C

2
R

2
R

1
/R

3
)4l4R

1
/R

3
] 

Alternatively, suppose a resistor R^ is connected in series with 

the capacitor C^ in the circuit of Fig 2.3(a). The transfer function 

of the resulting circuit is given in equation (2.19) which can be 

obtained from equation (2.16) by making the following substitution: 
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Hence there are three possible schemes for compensating the 

circuit of Fig 2.3(a); two of these schemes require one or two 

additional capacitors whereas the third requires an additional 

resistor. Reasons for not using additional capacitors, in order to 

compensate for finite f^, , were given in Section 2.3. For these 

reasons, we shall use the method which requires an additional resistor 

in order to compensate for the finite amplifier gain bandwidth 

product. 

Hence the circuit diagram of the compensated Sallen and Key SAB 

bandpass circuit is as shown in Fig 2.3(b) and its transfer function 

is given by equation (2.19). The derivation of the relevant design 

equations for this circuit are considered in the next section. 

2.5 Derivation and solution of the design . equations for the 

compensated SAB bandpass circuits 

In this section we shall derive the design equations for the 

Friend and the Sallen and Key SAB bandpass circuits which have been 

compensated for the finite gain bandwidth product of the amplifier. 

It will be shown that the design equations obtained cannot be solved 

analytically because they are non-linear. A numerical procedure used 

for solving these non-linear equations, which is based on a simple 

computer program, will also be described. 

2.5.1 Compensated Friend bandpass circuit 

The compensated form of the Friend SAB bandpass circuit is shown 

in Fig 2.2(b) and its transfer function is given by equation (2.15). 

For the purpose of convenience, equation (2.15) can be expressed in 



- 88 -

terms of new variables as shown below: 
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Note that in equation (2.20), if A(s) is infinite (i.e. ideal OP-AMP) 

and K^ = 1 (i.e. R^ • 0), then T(s) reduces to a biquadratic transfer 

function for which the resonance frequency is w
q
 and the Q-factor 

is Q
q
. Rewriting A(s) in equation (2.1) as 

v
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and substituting for A(s) in equation (2.20) gives 

4 
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We may now factorise the denominator of equation (2.22) into a 

first order term (which will subsequently be cancelled by the first 

order term in the numerator) and a biquadratic term. Suppose the 

resonance frequency and the Q-factor of the resulting transfer 

function are w^ and Q^, respectively. Then 
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also, in order to have a cancellation of the real pole and the real 

zero in equation (2.23T/we must have 
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when the pole-zero cancellation takes place, the transfer function of 

the circuit becomes 
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Let us now consider how we can calculate the component values. 

In the circuit of Fig 2.2(b) we have seven passive components and 

hence seven degrees of freedom. In order to realise the required 

transfer function, we need to set four parameters; namely, the 

resonance frequency, the Q-factor, the condition for the pole-zero 

cancellation and the gain factor of the circuit. Thus the values of 

four components of the circuit are determined by the required transfer 

function and hence by arbitrarily choosing the values of the three 

components of the circuit, we can solve the design equations to 

determine the values of the remaining components. It is desirable to 

select the two capacitors of the circuit in Fig 2.2(b) as the two 

arbitrarily chosen components because the capacitors cannot be 

trimmed. For the sake of argument, let the third arbitrarily chosen 

component be the resistor R^. Then, in order to calculate the values 

of the remaining components of the circuit, we first need to determine 

the values of the intermediate variables W q , Q
q
, K , and K'. This 
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can be done using the following equations, which are obtained by 

rearranging equations (2.23a), (2.23b), . (2.23c), (2.24a) 

and (2.20f), respectively. 
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The non-linear nature of the above equations is quite apparent, 

hence an analytical solution is not feasible; therefore we have to 

resort to solving these equations numerically. A flow chart of a 

simple computer program for performing this task is shown in Fig 2.4, 

which uses the method of successive substitution in order to obtain 

the solution. That is, we make an initial guess of the values of W
Q
, 

Q
q
, K^, Kĵ  and K'; substitute these into equations (2.25)—^-(2.29) 

to obtain the updated values which are then resubstituted into the 

equations. This procedure is repeated until the values of the 

variables change less than some specified amount (assumed 10 ^ in the 

actual program) with subsequent iterations. The number of iterations 

required to reach the final solution is highly dependent on the values 
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used for the initial guesses. A method of assigning these initial 

values, which has been found to be successful in practice, is to 

assume wq= w r , Qq= Q r , 1, arbitrarily choose K' and then evaluate 

Kĵ  from equation (2.20f) taking the positive solution. 

Once the final values of W q , Q
q
, K^, K^ and K ' have been 

obtained, the following equations, which are obtained by rearranging 

equations (2.20e), (2.20a), (2.20d) and (2.20c)Respectively, are used 

to evaluate R^, R
2
, R^ and R^. 
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Note that the computer program based on the flow chart given in 

Fig 2.4 can also be used for predistorting the design of the 

Friend SAB bandpass circuit in accordance with the first predistortion 

method discussed in Section 2.2. This is done by forcing K^ to be 

equal to unity. Furthermore, the same program can also be used for 

designing circuits assuming the OP-AMP to be ideal; this is achieved 

by forcing K^ to be equal to unity and by assigning A
q
 and w

c
 to be 

99 
large numbers (e.g. 10 )• 

2.5.2 Compensated Sallen and Key bandpass circuit 

The compensated form of the Sallen and Key SAB bandpass circuit 

is shown in Fig 2.3(b) and its transfer function is given by 

equation (2.19). For the sake of convenience, equation (2.19) can be 

expressed in terms of new variables as shown below. 
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Note that if A(s) is infinite (i.e. ideal OP-AMP) and if 

K
2
 = 1 (i.e. R

4
 = 0), then equation (2.34) reduces to a biquadratic 

transfer function for which the resonance frequency is w
q
 and the 

Q-factor is Q
q
. Substituting for A(s) from equation (2.21) into 

equation (2.34) gives 

4 

4 
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We now want to factorise the denominator of equation (2.35) into 

a first order term and a biquadratic term so that the first order term 

can be cancelled with the zero in the numerator. Suppose the 

resonance frequency and the Q-factor of the resulting transfer 

function are w^ and Q^, respectively. Then 
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also, in order to have a pole-zero cancellation, we must have 

(X -]) (K
a
K./K
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 (K'K^/w ) {K
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+(K.-1) K?K

2

> (2.36c) 
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When the pole-zero cancellation takes place the transfer function of 

the circuit becomes 

' (s/w ) G 
T(s) H : (2.37) 

(s/w
r
)

z

 + Q"
1

 (s/w
r
) + 1 

where G = gain-factor = (w K ^ K ' l ^ / w i^) (2.37a) 

In the circuit of Fig 2.3(b) we have eight passive components, 

thus giving eight degrees of freedom. We require one degree of 

freedom each to adjust for the resonance frequency, the Q-factor, the 

pole-zero cancellation and the gain factor. Thus by arbitrarily 

choosing the values of four components of the circuit we can 

determine the values of the remaining components by solving the 

appropriate design equations. For the same reasons as mentioned 

previously, two of the arbitrarily chosen components were the two 

circuit capacitors. For the remaining two degrees of freedom we can 

either arbitrarily choose the values of two resistors or, 

alternatively, arbitrarily choose the value of one resistor and a 

resistor ratio (i.e. K', K^, etc.) as the other degree of freedom. It 

was decided to use the latter scheme and thus the remaining 
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arbitrarily chosen variables were the resistor R^ and the resistor 

ratio K^ (see equation (2.34d)). 

In order to calculate the values of the remaining components we 

first need to determine the values of the intermediate variables w , 
o 

Q
q
, K^, KĴ  and K'; this can be done by solving the following 

equations, which are obtained by rearranging equations (2.36a), 

(2.36b), (2.36c), (2.37a) and (2.34g), respectively. 
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Again, the non-linear nature of the above equations is quite apparent; 

hence we have to resort to solving these equations numerically using 

the same technique as for the Friend circuit. The flow chart of a 

computer program for solving these equations is given in Fig 2.5. The 

initial guess values of w
q
, Q

q
, K

2
, K' and K^ are chosen as follows: 

w
q
 = w^, Q

q
 = Q

r
, K

2
 = 1, arbitrarily choose K' and evaluate Kĵ  from 
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equation (2.34g), taking the positive solution, i.e. 

* [(K1/Qq )2+4(l+K2){(K^-l)(K
2

-l)-l}]
1/2

 -K
1
/Q

q 

Kp - 5 — - (2.43) 
i 2K

c
[(r-l)(K^-l)-l] 

where suffix i denotes "initial value". 

» 
Once vv , Q , K_ , K_ and K' have been determined, the values of 

o o 2 K 

resistors R^, R
2 >
 R^, R^ and R^ can be evaluated from the following 

equations, which have been obtained by rearranging equations (2.34f), 

(2.34a), (2.34d), (2.34e) and (2.34c), respectively. 

R

1 "
 [ w

o ^ C W "
1 ( 2

-
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* R2 = K^ R
x
 (2.45) 

R
3
 = R

x
 [K

2

 - l]"
1

 (2.46) 

R
4
 = (I^ - 1) R2 (2.47) 

* R
a
 = R

b
 (K' - 1) (2.48) 

The computer program based on the flow chart diagram of Fig 2.5 

can also be used for predistorting the design (in accordance with the 

method one presented in Section 2.2.1) as well as designing the Sallen 

and Key SAB bandpass circuit in the case of an ideal OP-AMP. The 

predistorted design is obtained by forcing K
2
 to be equal to unity, 

whereas the ideal design is obtained by forcing K^ to be equal to 

unity and by setting A
q
 and w^ to be very large. 

In the preceeding discussion we have derived design equations for 

the compensated Friend and the Sallen and Key SAB bandpass circuits; 

also a numerical procedure has been proposed for solving these 

equations. The design equations are solved using an iterative 
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procedure and obviously the number of iterations taken to reach the 

final solution is highly dependent on the initial values used to start 

the iteration process; for poor initial values the process may not 

even converge. One way of choosing the initial guess values, which 

will always guarantee a solution, is as follows. 

We begin by assuming f
T
 of the OP-AMP to be infinite (i.e. ideal 

OP-AMP), in which case the initial values are identical to the nominal 

values (e.g. w = w , Q = Q , etc.). Now the idea is to reduce the 
o r o r 

value of f^ from infinity to its actual finite value by decreasing it 

in steps. At each step the iteration procedure is repeated to 

determine the values of the intermediate variables; these values are 

then used as the initial guess values for the next decrement step 

of f^,. The size of the step is adjusted, if necessary, such that the 

iteration process always converges. Therefore if the ideal design of 

the circuit exists, then the above procedure guarantees a compensated 

design of the circuit for any value of f
T
 ( >0 ). 

It was found that the circuits of Figs 2.2(b) and 2.3(b) could be 

designed quite satisfactorarily by reducing the value • of f^ from 

infinity to its actual value of 1 MHz in just one step. 

2.6 Comparison of the computed results of the compensated and 

predistorted designs with the nominal design 

In this section we shall compare the amplitude and phase 

characteristics of the SAB bandpass circuits considered above for 

three different designs of each circuit; in addition, the amplitude 

and phase characteristics of the three sixth order leap-frog multiple 

feedback bandpass filter circuits corresponding to these three designs 



of the SAB circuits will also be compared. Each SAB bandpass circuit 

is designed as follows: 

1. the OP-AMP is assumed to be ideal 

2. assuming an OP-AMP gain bandwidth product of 1 MHz and 

predistortion of the design of the SAB circuits according to 

method one discussed in Section 2.2.1, with A(s) characterised 

by A(s) = w
T
/s 

3. assuming an OP-AMP gain bandwidth product of 1 MHz and 

compensation of the design of the SAB circuits by using an 

extra resistor. 

The method of designing the Friend and the Sallen and Key SAB bandpass 

circuits was discussed in Section 2.5 and the three sets of component 

values, corresponding to the above three designs, for each SAB circuit 

are shown in Table 2.2 and Table 2.3 Respectively• 

The three sets of component values shown in Tables 2.2 and 2.3 

were used in a network analysis program, assuming an appropriate model 

for the OP-AMP, and the results obtained are shown plotted in Figs 2.6 

and 2.7. From Figs 2.6 and 2.7, we observe that whereas the response 

curves of the compensated design are in good agreement with the 

nominal curves, the response curves of the predistorted designs show 

small deviations as predicted in Section 2.2. 

The circuit of Fig 2.8 is obtained by connecting two Friend SAB 

bandpass circuits and one Sallen and Key SAB bandpass circuit to 

realise the feedback topology shown in Fig 1.9(b). The summers at the 

input of the first and the second sections in Fig 1.9(b) and the 
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correct gain factors for the sections are realised by splitting-up the 

input resistor (i.e. R^) of each SAB circuit as mentioned in 

Section 1.3.2. The three sets of component values for the circuit of 

Fig 2.8 are given in Table 2.4. 

The computed response curves for the three designs of the 

multiple feedback filter are given in Fig 2.9, from which we note that 

while the characteristics of the compensated circuit are exactly 

coincedent with the nominal, the characteristics of the predistorted 

design shows the expected deviation. The difference between the 

predistorted and the nominal characteristics is a direct result of 

neglecting the effect of the real pole, created by the OP-AMP, in the 

predistortion method used to design the SAB circuits. 

2.7 Conclusions 

In this Chapter the effect of the amplifier finite gain bandwidth 

product of SAB circuits was discussed in the context of multiple 

feedback filters. It has been shown that the effect of frequency 

dependent nature of the amplifier gain is to perturb the poles of the 

transfer function from their nominal locations and to give rise to 

additional unwanted poles. For single amplifier biquadratic (SAB) 

circuits, two methods of predistorting the design, in order to counter 

act the effect of finite f^, were discussed. Using predistortion 

techniques it is possible to move the dominant complex pole pair of 

the transfer function back to its nominal position; however, the 

effect of the OP-AMP created poles cannot be eliminated, and at best 

can only be taken fully into account at a single frequency. 
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The basic principles of actively and passively compensating for 

the effect of the OP-AMP created poles were also discussed. While 

active or passive compensation of multi-amplifier circuits is only 

approximate, it has been shown that in the case of SAB circuits which 

realise a lowpass or a bandpass type of transfer function, it is 

possible to fully compensate for the effect of the finite f^. Passive 

compensation method was used to design the Friend and the Sallen and 

Key SAB circuits which were subsequently used to realise a sixth order 

multiple feedback bandpass filter. The computed amplitude and phase 

responses showed an excellent agreement between the nominal and the 

compensated designs, whereas the expected deviations between the 

predistorted and the nominal designs were confirmed. 
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C H A P T E R 3 

MINIMISATION OF THE SENSITIVITY OF MULTIPLE FEEDBACK FILTERS 

3.1 Introduction 

3.2 General method and optimisation criterion 

3.3 Example of sensitivity minimisation of a leap-frog feedback 

bandpass filter 

3.3.1 General 

3.3.2 Sensitivity minimisation of the Friend SAB bandpass circuit 

3.3.3 Sensitivity minimisation of the Sallen and Key SAB bandpass 

circuit 

3.3.4 Computed and practical results 

3.4 Conclusions 
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3.1 Introduction 

In Chapter 2 we discussed a method of compensating for the effect 

of finite amplifier gain bandwidth product, f^, in multiple feedback 

filters. It was shown there that the multiple feedback filter can be 

designed to have nominal response characteristics even in the presence 

of non-ideal operational amplifiers (OP-AMPs). The purpose of this 

chapter is to examine how the filter response is affected when the 

components of the second order sections vary from their nominal design 

values, and also to present a method of designing the single amplifier 

biquadratic (SAB) circuits, which are used as the basic building 

blocks in high order filters, in such a way that variations in the 

overall filter response, due to variations in the values of the 

components, are minimised• 

In practice there are two types of component variations; values 

of components may differ from their respective nominal values due to 

manufacturing tolerances or due to changes in ambient conditions such 

as temperature, supply voltage, etc.. The manufacturing tolerances of 

the components can be accounted for by tuning the circuit [49], 

deterministically or functionally [72], and hence the circuit can be 

adjusted to obtain the desired characteristics at the time of 

manufacture. In this case the main factor contributing towards the 

sensitivity of the filter is that due to the post-adjustment 

variations of the components. 

The main cause of post-adjustment variation is due to changes in 

the temperature. A typical value of the temperature coefficient of 

passive components (e.g. thick film resistors and ceramic chip 

capacitors) is of the order of 28 ppm/°C, whereas the temperature 



coefficient for the f^ of the amplifier is of the order of 

- 2500 ppm/ C. Thus, a temperature variation of - 40 C around the 

ambient would produce - 0.112 % change in passive components and 

+ 10 % change in the gain bandwidth product of the OP-AMP. Note that 

the temperature coefficient of thick film resistors may be positive 

for both an increase or a decrease of the ambient temperature [2]. 

There are two basic approaches for minimising the sensitivity of 

multiple feedback filters. The first of these, which is explained in 

more detail in [12], is concerned with choosing the parameters of the 

sections in the multiple feedback structure in such a way that the 

sensitivity of the structure to changes in the sectional parameters is 

minimised. In the case of leap-frog type multiple feedback 

structures, with which we are concerned in this thesis, the parameters 

which we utilise to minimise the sensitivity of the structure are the 

Q-factors and the gain factors of the sections, and also the feedback 

factors [12]. 

In contrast to the above approach to sensitivity minimisation, in 

the second approach we are concerned with minimising the effect on the 

filter response of changes in the values of the components 

(i.e. R, C or f̂ ,) of the second order sections. In this case, the 

sectional parameters are regarded as constant and the optimisation 

exploits the degrees of freedom available in the design of the 

individual sections. This is more relevant to what we are interested 

in, but it is also more difficult to achieve in that it requires 

greater computational effort. Our aim in this chapter is the 

implementation of this latter approach for minimising the sensitivity 

of the multiple feedback filter response to changes in the element 

values of the second order sections. 
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In order to illustrate the basic principles of the sensitivity 

minimisation method, and to provide continuity, we shall consider the 

compensated leap-frog feedback bandpass filter discussed in Chapter 2. 

We shall refer to the multiple feedback filter circuit developed in 

Chapter 2 as the compensated but "un-optimised" circuit, and later 

we shall compare its' sensitivity performance with the "optimised" 

version which is to he .developed in this chapter. 

3.2 General method and optimisation criterion 

In this section we shall present a general method, and also 

develop a criterion, for minimising the sensitivity of multiple 

feedback filters. The basic principle of the sensitivity minimisation 

criterion can be more effectively explained by considering a 

particular example. For this end, we shall formulate the problem to 

minimise the sensitivity of the sixth order leap-frog feedback 

bandpass filter circuit discussed in Chapter 2. However, before we 

begin a detailed discussion of the actual method, a few general 

remarks, which are relevant to the problem under consideration, are in 

order. 

Firstly, for .the schematic diagram of Fig 1.9(b), we note that 

the transfer function of the multiple feedback structure is given by 

T(s) = 
T ^ s ) T

2
(s) T 3 ( S ) 

1 + F12 T
x
(s) T2(s) + F23 T2(S) T 3 ( S ) 

(3.1) 



- 106 -

(-1)
1

 (s/w
r >
) G. 

i 
where T.(s) = 

(sA* )
2

 + Q"
1

 (S/w ) + 1 
(3.1a) 

r. 
i 

r. 
l 

r. 
i 

and i = 1, 2, 3 

Now, in Chapter 2 the multiple feedback filter of Fig 1.9(b) was 

designed for the case F
2 3
= 1 . Therefore, from equation (3.1) 

we note that for this condition we can interchange T^(s) and ^ ( s ) 

without affecting the overall transfer function, T(s). Moreover, this 

coupled with the fact that the parameters (i.e. the resonance 

frequency, the Q-factor and the gain factor) of T^(s) and
 T

3
( s ) are 

identical (see Table 2.1) suggests that the sensitivity of T(s) to 

variations in the components of the circuits realising T^(s) and T^(s) 

is also identical. Thus in the multiple feedback filter of 

Fig 1.9(b) we have only to minimise the sensitivity of T(s) to 

variations in the components of T^(s) and T
2
(s); the design of

 T

3
( s ) 

is then made identical to the design of T^(s). 

Secondly, we note that in the design of the Friend and the Sallen 

and Key SAB bandpass circuits the frequency dependent nature of the 

gain of the OP-AMPs is fully compensated by achieving a pole-zero 

cancellation. Therefore when the components of the circuit change 

from their respective nominal values the pole-zero cancellation no 

longer takes place and the transfer function of the SAB circuit under 

these conditions becomes of the form 
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 ?

 1

 . (3.2) 
(b.s + 1) [(s/w; r + q;

1

 (S/W; ) + i] 
i i i 

where i = 1, 2, 3 

Equation (3.2) shows that in addition to the pole-zero cancellation 

not taking place, the values of the rcocnancc frequency, the Q-factor 

and the gain factor of the circuit also deviate from their respective 

nominal values. In equation (3.2), due to the magnitude of the 

changes that we shall be considering and also because of the 

locations, in the s-plane, of the real pole and the zero relative to 

the position of the dominant complex pole-pair, the effect on the 

transfer function of the SAB circuit of the non-cancellation of the 

pole-zero is negligible compared with the effects caused by the 

changes in the "dominant variables" (i.e. the resonance frequency, the 

Q-factor and the gain factor of the circuit). Thus for all practical 

purposes we can regard the pole-zero cancellation as taking place and 

then we have only to consider the effect of changes in the dominant 

variables. 

Thirdly, we note that in practical situations variations in the 

environmental conditions would produce correlated changes in the like 

components of the circuit and thus the resonance frequency of the 

SAB circuit would be affected more severely than its gain factor or 

the Q-factor, because the latter two variables are functions of 

component value ratios, whereas the former is dependent on the product 

of component values. Hence, if we assume the component variations to 

be correlated then the sensitivity of the filter transfer function to 
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only the resonance frequency of each biquadratic section needs to be 

minimised; however, for uncorrelated component changes, we need to 

consider the sensitivity of the filter transfer function to three 

parameters of each biquadratic section, i.e. the resonance frequency, 

the Q-factor and the gain factor. In the case of uncorrelated 

changes, the problem of selecting the direction of the component 

variations can be avoided by choosing the sets of -variations which 

produce worst case change in the resonance frequency, the Q-factor or 

the gain factor. For the remainder of this chapter we shall assume 

that although the magnitude of the post-adjustment variations in the 

components of the circuit are equal (i.e. - 0.112 % for the passive 

components and - 10 % for the f / s of the OP-AMPs), the direction of 

the variations are independent of each other. 

Fourthly, one way of minimising the sensitivity of the multiple 

feedback filter would be to formulate the objective function to 

minimise the sensitivity of each biquadratic section individually in 

isolation. This type of objective function has been used by 

Fleischer [73] to minimise the sensitivity of the resonance frequency 

and the Q-factor of the Friend SAB circuit to variations in its 

component values. However, since we are interested in minimising the 

sensitivity of the multiple feedback filter structure this may be 

done more effectively if the objective function is based on the 

transfer function of the overall filter; indeed, we shall adopt this 

approach for the problem under consideration. 

The sensitivity of the filter response to changes in the values 

of the components (i.e. R's, C's and f / s ) can be considered in two 

steps. In the first step we consider the sensitivity of the sectional 

parameters to changes in the values of the components of the SAB 
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circuits; and as a second step, we consider the sensitivity of filter 

transfer function to changes in the sectional parameters. 

Let us now consider the development of the sensitivity 

minimisation criterion in detail. In Chapter 2, in the course of 

designing the compensated Friend and the Sallen and Key SAB bandpass 

circuits . we utilised four component parameters to achieve 

the following: 

1. a pole-zero cancellation 

2. a specific value for the resonance frequency 

3. a specific value for the Q-factor 

4. a specific value for the gain factor of the circuit 

While it is necessary to satisfy conditions 1, 2 and 3, the 

condition 4 is optional since we can design the SAB circuits to have 

maximum gain and then achieve gain reduction by splitting resistor R^, 

in Figs 2.2(b) and 2.3(b), into a voltage divider as mentioned in 

Section 1.3.2. Thus, another degree of freedom results which may be 

used to minimise the sensitivity of the SAB circuits to 

post-adjustment variations in the values of the components of the 

circuits. We shall designate this optimisable parameter as the 

"closed loop gain" (CLG) and define it as 

K' 
CLG (3.3) 

K' - 1 

where K' for the circuits of Figs 2.2(b) and 2.3(b) is given by 

equations (2.20c) and (2.34c), respectively. 
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Now, we are interested in acquiring a figure of merit (i.e. an 

objective function) which relates the sensitivity of the multiple 

feedback filter transfer function to the variations in the components 

of the SAB sections. For this purpose the objective function to be 

formulated here is concerned with minimising two parameters of the 

multiple feedback filter; namely, "reduction in useful bandwidth" and 

"variation cf lose in useful bandwidth". The definition of the above 

terms and the basic principle of the sensitivity minimisation 

criterion can be more effectively made by considering an example. 

Suppose we want to minimise the sensitivity of the transfer 

function of the multiple feedback filter circuit of Fig 1.9(b) to 

variations in the components of the compensated Friend SAB bandpass 

circuit of Fig 2.2(b) which realises T^/s) in Fig 1.9(b). Then we 

design the Friend SAB circuit for various values of the closed loop 

gain using the computer program described in Section 2.5.1. Note 

that the equations used in this program are rearranged such that the 

closed loop ' gain (see equations (3.3) and (2.20c)) is a free 

parameter. For each value of the closed loop gain, the f
T
 of the 

OP-AMP is varied by - 10 % and then each passive component is 

varied, individually, by - 0.112 % and the resulting changes 

produced in the values of the resonance frequency, the Q-factor and 

the gain factor are plotted as functions of the closed loop gain. 

From these curves the signs of the variations of the components 

required to produce the worst case changes in the resonance frequency, 

the Q-factor and the gain factor are established. Starting at some 

value of the closed loop gain, we simultaneously change all the 

components of the SAB circuit in the appropriate directions to produce 

the worst case change in the resonance frequency, and then calculate 
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the actual value of the resonance frequency and the corresponding 

values of the Q-factor and the gain factor. These parameters which 

define T^(s) are then substituted into equation (3.1) (assuming the 

parameters of T
2
(s) and T^(s) to have their respective nominal values) 

to evaluate the frequency response of the overall filter transfer 

function. Note that one set of component variations gives worst case 

positive change in the resonance frequency, whereas the complementary 

set of component variations gives worst case negative change (this 

argument also applies for the Q-factor and the gain factor); in order 

to evaluate equation (3.1) we use the larger of these two changes. 

From the loss-frequency response of the filter computed assuming 

the parameters of T^(s) vary as stated above, we need to determine the 

two objective function parameters, i.e. the reduction in the useful 

bandwidth and the variation of loss in the useful bandwidth. In order 

to define these terms more precisely, we shall now consider some 

examples of loss-frequency responses. Fig 3.1 shows some typical 

response curves (shown in dashed line) which result when all 

components of one of the section in the multiple feedback structure 

are changed simultaneously to produce worst case change in the 

resonance frequency (the nominal response curves are shown in 

continuous line). From Fig 3.1, we note that when the sectional 

parameters of one of the section in the multiple feedback structure 

change from their respective nominal values, the loss-frequency 

response of the resulting filter has four observable differences 

compared with the nominal response. Firstly, the response is shifted 

in frequency; secondly, the passband loss is no longer equi-ripple; 

thirdly, the variation of loss in the passband is different from the 

passband loss variation of the nominal response, which is equal to the 
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ripple value; fourthly, the response has a level shift, i.e. the 

minimum loss points of the two responses aire not at the same level. 

It is not very important that the loss-frequency response should be 

equi-ripple or have the same level as the nominal response; however, 

in order to minimise the sensitivity, it is necessary to ensure that 

the frequency shift and the variation of loss in the passband are as 

small as possible in the frequency band of interest. 

In Fig 3.1(a), the bandwidth B
w
 and the variation of loss in the 

passband V^ for the nominal response are given by B
w
 = f2 " 

and V^ = d
2
 - d^, respectively; whereas, when the components of one 

of the SAB section are changed the bandwidth and the variation of the 

loss in the passband of the filter become B^ = - and 

V£ = d
2
 - respectively. We can now define the useful bandwidth, 

B , as the portion of B' which lies inside B ; whereas the variation 
u*

 r

 w w' 

of loss in the useful bandwidth, V , is simply given by the difference 

between the maximum and the minimum losses occuring in the useful 

bandwidth. Thus, in Fig 3.1(a), B = f' - f, and V = di - d,'. 
'

 0 ,

u 2 1 u 2 1 

Now the bandwidth for which the filter was designed is B^ and the 

useful bandwidth obtained is B ; therefore the reduction in the useful 
u' 

bandwidth is given by B = B - B . The determination of the useful &

 -
 J

 r w u 

bandwidth (and hence the reduction in the useful bandwidth) and the 

variation of loss in the useful bandwidth for another typical response 

curve is shown marked in Fig 3.1. 

We have shown above how to determine the two objective function 

parameters (i.e. the reduction in useful bandwidth and the variation 

of loss in the useful bandwidth) when the SAB bandpass circuit 

realising T^(s) in Fig 1.9(b) is designed for a specific value of the 

closed loop gain and when all the components of the SAB circuit are 



changed to produce the worst case change in the resonance frequency. 

By designing the SAB circuit for other values of the closed loop gain, 

we can plot the reduction in the useful bandwidth and the variation of 

loss in the useful bandwidth as functions of the closed loop gain. 

Furthermore, if we repeat the above procedure for the cases when the 

component changes are selected to produce worst case changes in the 

Q-factor and the gain factor, then we can obtain another two pairs of 

graphs which are also plotted as functions of the closed loop gain. 

From these six curves obtained in this way (three for reduction in the 

useful bandwidth and three for the variation of loss in the useful 

bandwidth), we will have to choose a single "compromised" value of the 

closed loop gain which minimises the sensitivity of the overall 

transfer function to the component variations of the SAB circuit under 

consideration. The name compromised value of the closed loop gain is 

appropriate because the minima of the six curves may not occur at the 

same value of the closed loop gain. One way of overcoming this 

difficulty would be to combine these six curves, using appropriate 

weighting factors, to yield just a single curve; we shall not consider 

this approach here because the weighting factors can only be based 

upon a given specification that the filter is designed to meet and we 

have no such specification for the filter under consideration. In 

evaluating the compromised closed loop gain, we shall use two curves 

only which correspond to the largest reduction in the useful bandwidth 

and the largest variation of the loss in the useful bandwidth. When 

we consider the sensitivity minimisation of the compensated Friend and 

the Sallen and Key SAB bandpass circuits, in the next section, it will 

be seen that as long as the closed loop gain value lies within a 

certain range the increase in the sensitivity of the overall response 
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is quite small. Thus the above criterion of determining the 

compromised value of the closed loop gain is quite justified. 

We have described above a method of designing one of biquadratic 

sections in the multiple feedback structure such that the sensitivity 

of the overall filter response to post-adjustment variations in the 

values of the components in the biquadratic section is minimised. By 

repeating the procedure outlined above, we can design the remaining 

biquadratic sections in the same way to yield an optimum design of the 

multiple feedback filter. 

Note that the objective function described above minimises the 

variations in the bandwidth and the passband loss of the filter. 

Frequently it may be necessary to minimise the response variations of 

the transition-band or the stopband; this can be achieved by 

formulating a different objective function. Indeed, it would be quite 

possible to obtain a "weighted" objective function which takes .into 

account the response variations in the passband, the transition-band 

and the stopband. However, we shall only use the objective function 

based on the passband variations since the purpose -of the exercise is 

to present a general method of minimising the sensitivity rather than 

to formulate the "best" objective function; anyway, the latter can 

only be done if we have some specification to meet, but as stated 

previously this is not the case for the example under consideration. 
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3.3 Example of sensitivity minimisation of a leap-frog feedback 

bandpass filter 

3.3.1 General 

In the previous section a method of minimising the sensitivity 

of multiple feedback filters to the post-adjustment variation in the 

values of the components of the biquadratic sections, which are used 

to realise multiple feedback structures, was presented. In this 

section we shall apply this method to minimise the sensitivity of the 

sixth order leap-frog feedback bandpass filter discussed in Chapter 2. 

This multiple feedback filter consists of three second order sections, 

two of which are realised with the compensated Friend SAB bandpass 

circuit of Fig 2.2(b), while a compensated Sallen and Key SAB bandpass 

circuit of Fig 2.3(b) is used for realising the other section. As 

explained in Section 3.2, since the first and the third sections in 

the multiple feedback realisation, in Fig 2.8, are identical we need 

only minimise the sensitivity of the multiple feedback filter with 

respect to sections one and two. In Section 3.3.2, we shall consider 

the sensitivity minimisation of the multiple feedback filter to 

variations in the component values of the compensated Friend SAB 

bandpass circuit; whereas, the problem of minimising the sensitivity 

to variations in the component values of the compensated Sallen and 

Key SAB bandpass circuit is to be discussed in Section 3.3.3. 

After the minimum sensitivity designs of the compensated Friend 

and the Sallen and Key SAB bandpass circuits have been obtained we 

shall compute the sensitivity of the optimised leap-frog feedback 

filter and compare the results with a corresponding analysis of the 

un-optimised design obtained in Chapter 2• 
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3.3.2 Sensitivity minimisation of the Friend SAB bandpass circuit 

In this subsection we shall consider the sensitivity minimisation 

of the compensated Friend SAB bandpass circuit of Fig 2.2(b), which 

realises.the first biquadratic section in the multiple feedback filter 

of Fig 2.8. In order to carry-out the sensitivity minimisation 

procedure we need to establish the sets of component variations 

required to produce the worst case change in the resonance frequency, 

the Q-factor and the gain factor. To achieve this we proceed as 

follows. 

By arbitrarily choosing the value of the closed loop gain 

(i.e. the optimising parameter), we design the SAB circuit for some 

nominal f^ value, which we shall assume to be 1 MHz, using the 

computer program based on the flow chart of Fig 2.4. We now select a 

particular component of the SAB circuit and change its value by a 

certain specified amount (for the f^ this variation is - 10 %, 

whereas for the passive components it is - 0.112 %) and calculate the 

magnitude and the sign of the changes in the resonance frequency, the 

Q-factor and the gain factor of the circuit. The selected component 

is now varied in the opposite direction by the same amount and the 

corresponding magnitude and sign of the changes in the resonance 

frequency, the Q-factor and the gain factor are noted. By repeating 

this procedure for other values of the closed loop gain we can plot a 

pair of graphs each for the changes in the resonance frequency, the 

Q-factor and the gain factor as functions of the closed loop gain. 

Similarly, the whole procedure is repeated by varying each component 

of the circuit in turn. Some typical results obtained for the circuit 

of Fig 2.2(b), which is ^designed for a resonance frequency 
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of 15 kHz and a Q-factor of 47.8875 (for nominal f
T
 of 1 MHz), 

will be discussed presently. 

The graphs in Fig 3.2 show the changes in the resonance 

frequency, the Q-factor and the gain factor of the circuit of 

Fig 2.2(b) when the gain bandwidth product of the OP-AMP is changed 
+ 

by - 10 % from its nominal value. The corresponding curves are 

shown in Fig 3.3 for the case when the value of resistor R^, in the 

circuit of Fig 2.2(b), is changed by - 0.112 % from its nominal 

value. The changes which occur when all the passive components are 

varied individually by - 0.112 %, from their respective nominal 

values, are shown in Fig 3.4. From the graphs in Fig 3.4, the 

relative effects of the passive components on the resonance frequency, 

the Q-factor and the gain factor of the circuit can be seen at a 

glance. It is interesting to note that the sensitivities of the 

compensating resistor, R^, in the circuit of Fig 2.2(b) are either 

less than or comparable with the sensitivities of the other components 

of the circuit. 

In Table 3.1, the sign of component variations required to 

produce a positive and a negative change in the resonance frequency, 

the Q-factor and the gain factor of the circuit are tabulated. The 

worst case change in the resonance frequency (or the Q-factor or the 

gain factor) is obtained by changing all the components of the circuit 

simultaneously according to the appropriate set of signs given in 

Table 3.1. The results for the worst case variations are shown in 

Fig 3.5. From Table 3.1, we note that in order to produce worst case 

changes in the Q-factor and the gain factor, the set of component 

variations required is the same. Hence we need only consider the 

worst case changes in the resonance frequency and the Q-factor. 



Having done the preliminary work we now proceed to evaluate the 

objective function parameters. 

We design the SAB circuit for some value of the closed loop gain 

and vary all components of the circuit to produce worst case negative 

change in the resonance frequency. The resulting actual changes in 

the resonance frequency, the Q-factor and the gain factor of the 

circuit are determined. The sectional parameters of Tj,(s) are changed 

by the corresponding percentage amounts and the loss-frequency 

response of the multiple feedback filter structure is computed by 

evaluating equation (3.1), assuming T
2
(s) and

 T

3
( s ) to have their 

respective nominal sectional parameters. The components of the 

circuit are now varied so as to produce the worst case negative change 

in the Q-factor and the actual values of the sectional parameters are 

determined and the equivalent percentage changes are introduced in the 

parameters of T^(s) when evaluating equation (3.1). Some typical 

graphs obtained for the worst case changes in the resonance frequency 

and the Q-factor are shown in Fig 3.6; from these curves we measure 

the useful bandwidth and the variation of loss in the useful bandwidth 

in accordance with the procedure described in Section 3.2. The above 

procedure is repeated for other values of the closed loop gain and 

from the results obtained in this way we plot the reduction in the 

useful bandwidth and the variation of loss in the useful bandwidth as 

functions of the closed loop gaiq, as shown in Fig 3.7. 

From the graphs of Fig 3.7 it is seen at a glance that the 

optimum value of the closed loop gain lies between about four and ten; 

this region of Fig 3.7 is shown on an expanded scale in Fig 3.8. In 

order to obtain the optimum value of the closed loop gain, we have to 

consider the curve corresponding to the worst case Q-factor change in 
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Fig 3.8(a) and the curve corresponding to the worst case resonance 

frequency change in Fig 3.8(b). It was decided to select seven as 

being the compromised value of the closed loop gain. We note from 

Fig 3.8 that very small changes in the reduction of the useful 

bandwidth and the variation of loss in the useful bandwidth result if 

the closed loop gain value varies from the chosen optimum of seven; 

therefore, the optimum value is not very critical as long as it lies 

in a certain range. This range is from about four to ten in Fig 3.8. 

3.3.3 Sensitivity minimisation of the Sallen and Key SAB bandpass 

circuit 

The sensitivity minimisation of the compensated Sallen and 

Key SAB bandpass circuit of Fig 2.3(b), which is used to realise the 

central section in the multiple feedback filter of Fig 2.8, is 

carried-out with an identical procedure to that described in 

Section 3.3.2 for the compensated Friend SAB bandpass circuit. 

However, with regard to the sensitivity minimisation of the Sallen and 

Key SAB bandpass circuit, there are two additional factors which must 

be taken into account. 

Firstly, compared with the Friend SAB circuit, the Sallen and 

Key SAB circuit has one more component; hence whereas in the case of 

the Friend circuit we just had one parameter to optimise the circuit 

for the Sallen and Key circuit we effectively have two parameters. 

Secondly, the central section of the multiple feedback filter of 

Fig 2.8 is designed for a resonance frequency of 15 kHz and a 

Q-factor of value infinity; hence in the case of such a section it 

would be meaningless to talk about "changes" in the Q-factor. 
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The difficulties arising in the terminology, with respect to the 

latter of above two points, can be overcome by replacing the phrase 

"worst case change in the Q-factor", used in conjunction with the 

Friend SAB circuit, with the phrase "worst case Q-factor" for the 

present circuit. However, the dilemma of having two free parameters 

for minimising the sensitivity is of more complex nature. An ideal 

solution to this problem would be to choose one of these parameters as 

the optimising parameter and then carry-out the sensitivity 

minimisation procedure with the constraint that the value of the other 

free parameter is chosen optimally for each value of the optimising 

parameter. Obviously the implementation of this scheme would require 

a large amount of computing effort and may not be practically 

feasible. Instead, it was decided to adopt an alternative strategy 

which is out-lined in the following. 

We assume one of the free parameter as our optimising variable 

while the value of the other parameter is chosen arbitrarily. The 

sensitivity minimisation procedure is now carried-out as before with 

different values of the optimising parameter; if the results obtained 

are considered satisfactory then the current circuit is taken as the 

optimum circuit;, otherwise the optimisation procedure is repeated by 

choosing a different value for the second free parameter. 

In the case of the compensated Sallen and Key SAB bandpass 

circuit of Fig 2.3(b), the two free parameters are the closed loop 

gain, K', and the resistor ratio K^. In the first instant the value 

1/2 

of K^ was chosen as K^ = {301} and the sensitivity minimisation 

was carried-out with respect to the closed loop gain. However, it was 

found that the spread in the circuit component values corresponding to 

the optimum closed loop gain -was unpractical. When the sensitivity 
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1/2 

minimisation procedure was repeated for K^ = {31} , the circuit 

component spread was satisfactory. Furthermore, it was observed that 

very little changes result in the values of the reduction in useful 

bandwidth and the variation of the loss in the useful bandwidth 

corresponding to the two values of K^. It was also noticed that the 

variations in the sectional parameters which are produced when the 

value of compensating resistor is changed from it,? "omj.pal vain*
3

 arp 

generally very much less than the corresponding variations resulting 

as a consequence of a similar change in the value of any other 

component of the circuit. 

Table 3.2 shows the set of component variations required to 

produce the worst case change in the resonance frequency, the worst 

case Q-factor and the worst case change in the gain factor. We note 

from Table 3.2 that the same set of component variations are required 

for the worst case Q-factors and the worst case changes in the gain 

factors; hence we need only consider the effect of worst case change 

in the resonance frequency and the worst case Q-factor when evaluating 

the objective function parameters. 

The plot of the objective function parameters against the closed 

loop gain is shown in Fig 3.9. Note that in order to obtain the 

optimum value of the closed loop gain we have to consider the curves 

corresponding to the worst case change in the resonance frequency in 

Fig 3.9(a) and the worst case Q-factor in Fig 3.9(b). From these 

curves of Fig 3.9 it is seen that in order to have a smaller 

reduction in the useful bandwidth we need to choose our compromised 

optimum value of the closed loop gain between 1.4 and 1.56; 

whereas in order to have a smaller value of the variation of loss in 

the useful bandwidth the value of the closed loop gain should be 
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chosen to lie between 1.06 and 1.12. In this sort of a situation, 

we would require more information about the specification the filter 

is required to meet, so that we can decide as to wether the reduction 

in the useful bandwidth or the variation of loss in the useful 

bandwidth is a more critical factor. In the present filter under 

discussion, it was decided to take the reduction in the useful 

bandwidth as being the critical factor and the compromised value of 

the optimum closed loop gain was chosen to be equal to 1.4021. 

* 3.3.4 Computed and practical results 

In Subsections 3.3.2 and 3.3.3 we discussed the sensitivity 

minimisation of the compensated Friend and the compensated Sallen and 

Key SAB bandpass circuits, respectively. The sensitivity minimisation 

was carried-out in the context of a sixth order leap-frog feedback 

bandpass filter assuming a reasonable variations in the passive 

^ component values and in the the amplifiers. The optimum 

circuit obtained by such a procedure should ideally be tested by means 

of a Monte-Carlo analysis in which all the circuit components are 

tt allowed to vary by their respective tolerances in a statistical 

manner. However, such a sophisticated program was not available to 

test the optimum design; therefore, it was decided to carry-out some 

limited computer simulation tests and to construct a discrete 

component model of the optimum design. The results of these efforts 

are presented in the following. 

The circuit diagram of the multiple feedback filter is shown in 

Fig 3.10 and the component values of the optimised circuit are listed 

in Table 3.3 for the case when the multiple feedback filter is 

designed to have feedback factors, F.„ and F
9
~ , equal to unity and the 



midband frequency gain also equal to unity. The loss-frequency 

response of this circuit is to be compared with the loss-frequency 

response of the un-optimised circuit whose component values are listed 

in Table 2.4. 

The loss-frequency responses of the un-optimised and the 

optimised circuits were computed using a circuit analysis program for 

the case of nominal component values (with f / s of the OP-AMPs equal 

to 1 MHz) and when the gain bandwidth product of each OP-AMP is 

varied by - 10 %, individually, and also when the gain bandwidth 

products of all the OP-AMP are varied simutaneously by - 10 % in the 

same direction. The results are shown in Figs 3.11 and 3.12, 

respectively. 

On comparing the computed results of the un-optimised circuit, 

shown in Fig 3.11, with those of the optimised circuit, shown in 

Fig 3.12, we observe that the performance of the latter is very much 

better than the performance of the former, although for the nominal 

values of the gain bandwidth products both circuits have ideal 

response curves. In particular, comparing the responses in 

Figs 3.11(d) and 3.12(d), we note that as well as there being a 

smaller reduction in the useful bandwidth, the optimised circuit also 

has a smaller increase in the variation of loss in the useful 

bandwidth. For example, with a - 10 % change in the gain bandwidth 

products of all three OP-AMPs, the reduction in the useful bandwidth 

and the variation of loss in the useful bandwidth for the un-optimised 

circuit are 180.69 Hz and 1.14 dB, respectively; whereas the 

corresponding figures for the optimised circuit 

are 58.0 Hz and . 0.53 dB, respectively; note that the nominal 

response is designed for a passband ripple value of 0.5 dB. This 



- 124 -

limited sensitivity test indicates that the objectives of the 

sensitivity minimisation has been achieved as far as variations in the 

amplifier gain bandwidth product aire concerned. 

It was decided to construct a discrete component model of the 

optimised leap-frog feedback filter for two main reasons: 

1. to show that the circuit "under investigation is practically 

viable, i.e. to show that it does not suffer from instability, 

large DC offsets, etc. 

2. to show that the sensitivity of the optimised circuit is 

sufficiently low to enable excellent response curve to be 

obtained quite easily in practice. 

For the practical model, it was considered that the values of 

resistors R
2 a
 and R ^ *

n

 Table 3.3 are too high and thus the stray 

capacitances associated with these resistor values may have a 

significant effect. In order to overcome this problem, the impedance 

level of the multiple feedback circuit was decreased by a factor of 

ten, and also the circuit was redesigned to have a midband frequency 

gain of 0.5; the resulting component values of the filter are listed 

in the second column of Table 3.4. It should be appreciated that the 

above modifications would not have any effect what-so-ever on the 

optimisation procedure, and hence the resulting circuit is still 

optimum. 

The capacitors for the discrete component model were taken from a 

batch of 10 nF polystyrene capacitors having a nominal tolerance 

of - 2.5 %. All resistors, except two, in each SAB section were 

taken from a batch of "the nearest standard available value, having a 
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nominal tolerance of - 5 %. The amplifiers used in the practical 

circuit were of the type 741, which have a nominal f
T
 of 1MHz. The 

remaining two resistors in each section were made variable in order to 

functionally adjust for the resonance frequency and the Q-factor of 

each SAB section. 

Note that the funtional adjustment of the first and the third 

sections, which have finite Q-factors, is quite straight forward. For 

the adjustment of the second section, which has an infinite Q-factor, 

it was found necessary to apply, for the purpose of adjustment, a 

negative feedback path around the section in order to make its 

Q-factor of finite value. Thus the second section was adjusted for a 

finite Q-factor, but since the negative feedback loop around the 

second section does not exist in the multiple feedback circuit, its 

Q-factor enhances to an infinite value when it is used in the multiple 

feedback circuit. In the adjustment of the sections, it was found 

that an iterative procedure was not necessary, and hence only two 

adjustments per section were made. The element values of the adjusted 

circuit were measured and are listed in column three of Table 3.4. 

The measured response of the discrete component model is 

shown in Fig 3.13. 

3.4 Conclusions 

A method of minimising the sensitivity of multiple feedback 

filters has been presented. In the sensitivity minimisation, 

post-adjustment variations of both the passive and the active 

components are taken into account. The basic principle of the 

sensitivity minimisation criterion is that each biquadratic section in 

the multiple feedback filter structure is designed such that the 
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variations in its component values has a minimum effect on the overall 

filter transfer function. In order to achieve this, an objective 

function which characterises some desirable features of the overall 

filter response was introduced. 

The basic idea of the sensitivity minimisation was applied to the 

bandpass filter discussed in Chapter 2 and a computer sensitivity 

analysis due to changes in the f / s of the amplifiers showed a marked 

improvement in the performance of the optimised circuit, compared with 

that of the un-optimised circuit which was developed in Chapter 2. 

A discrete component model of one version of the optimised filter 

circuit has been built. Each second order section was adjusted for 

resonance frequency and Q-factor using two adjustments per section. 

The measured response characteristics are found to be satisfactory. 
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4.1 Introduction 

In this chapter we shall describe a novel approach to the 

active RC simulation of low sensitivity LC ladder filter structures. 

In the conventional methods of simulating LC filter structures, 

positive impedance converters (PICs) or positive impedance 

inverters (e.g. gyrators) are used as the basic active units. In 

contrast, in the new approach to be presented here, negative impedance 

converters (NICs) are used as the basic active units. 

As mentioned in Section 1.1, Linvill [8] proposed a synthesis 

technique in 1954 for realising any transfer impedance by a passive RC 

network together with one NIC; subsequently, two other 

techniques [9,10] which also required only one NIC were also proposed. 

The active RC filter circuits derived by these methods had 

unacceptably high sensitivities of the transfer function to variation 

in the values of the components of the circuit. This fact together 

with the practical difficulties encountered in building stable NIC 

circuits has led to general mistrust of all circuits which use NICs. 

A search through the active RC filter litrature shows a consensus of 

opinion which automatically labels all circuits which use NICs, 

regardless of their origin or method of derivation, as high 

sensitivity circuits. Therefore, i.t must be stressed here that the 

basic philosophy of the new approach to be described here is 

completely different from the above mentioned single NIC methods. It 

will be shown in Section 4.8 that the sensitivities of the active RC 

circuits to be derived here is indeed low. Furthermore, in Chapter 5, 

it is shown that the stability or the instability of these circuits 

can be predicted very simply and that it is possible to design 

guaranteed stable circuits. 
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The definition of the NIC and some of its properties which are 

relevant to the present discussion are presented in Section 4.2. In 

Section 4.3, a simple procedure is presented for obtaining, in a 

"visual" way, novel active RC subcircuits which simulate grounded and 

floating inductors and grounded and floating frequency dependent 

negative resistors (fdnr's) of the supercapacitor type (i.e. elements 

- 2 

with impedance proportional to s , where s is the complex frequency 

variable). For ease of reference, we shall refer to these grounded 

and floating simulated inductors and supercapacitors as the "essential 

subcircuits". The essential subcircuits derived in Section 4.3 are 

2-port networks, and it is shown in Section 4.4 that by "viewing" 

these circuits in various ways, we can obtain a multitude of other 

simulated 2-port inductor and supercapacitor circuits. The novel 

essential subcircuits developed in Sections 4.3 and 4.4 can be 

interpreted as consisting of grounded and floating positive and 
+ + + + 

negative resistors and capacitors (- R, - C). These - R, - C 

subcircuits can be realised by means of +R and +C circuits and 

NICs; however the resulting circuits are not very attractive because 

they require rather large numbers of components (both passive and 

active). The second most important step of the novel approach is the 
+ + 

way in which these -R, -C essential subcircuits are used in the 

realisation of high order filters; this principle is discussed more 

fully in Section 4.5. In the essential subcircuits derived in 

Sections 4.3 and 4.4, all components except one are of the same type 

(i.e. either resistor or capacitor) and are of equal value which can 

be chosen arbitrarily. In Section 4.6 it is shown by considering 

some design examples that by appropriately choosing the values of 

these components, it is possible to obtain active RC filter circuits 

which are competitive from the total number of components and the 
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ease of circuit adjustment points of view, with other LC filter 

simulation techniques. 

The advantages and disadvantages of the active RC filter circuits 

developed in Section 4.6 are discussed in the context of comparisons 

with the active RC circuits which are designed by the conventional 

partial or full impedance scaling methods [5,6,7]. 

In order to show that the active RC circuits obtained by the new 

method are practically feasible, some computed and measured results 

(for discrete component models) are presented in Section 4.7. The 

sensitivity aspects of the active RC circuits developed in Section 4.6 

are considered in Section 4.8. 

The novel approach to active RC filter design presented in this 

chapter has been published by the author [84] together with some 

design examples and measured results. It is of interest to note that 

in a recent publication [79], this novel method has been interpreted 

as being derivable by an application of a new type of linear 

transformation. 

The novel approach to be described here makes frequent use of the 

star-delta equivalences; hence, for the sake of convenience, we 

reproduce these equivalences here (see Fig 4.1): 

Star ^ Delta 

Z

1 •
 Z

A
 + Z

C
 + Z

A
Z

C
/ Z
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Z
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B
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C
 + Z

B
Z

C
/ Z

A 
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Delta Star 

ZA = z Z j / U + z2 + Z ) 

ZB = Z 2 Z 3 / ( Z l + z2 + Z ) 

zc = z 1 z 3 / (z 1 + z2 + z3) 

4.2 Negative impedance converter definition and some properties 

A negative impedance converter (NIC) is a 2-port network which is 

defined by the following transmission matrix: 

(4.1) 

- — — — — 

V

1 A B V

2 
1 0 V

2 
I. 

— 
C D lo 

— 
0 -k To 1 _ 2 2_ 

The 2-port representation of a NIC together with the conventions for 

the signs of the voltages and currents are shown in Fig 4.2(a). 

Equation (4.1) defines what is commonly referred to as the "current 

converting" type of NIC. The parameter k in equation (4.1) is 

referred to as the NIC "conversion factor" and it is a dimensionless 

quantity. In general k may be a function of frequency but for all 

the NICs to be used in this thesis we require k to be independent of 

frequency. 

The current converting type of NIC, in which k is independent of 

t 

frequency, can be realised using a single operational 

amplifier (OP-AMP) and two resistors, as shown in Fig 4.2(b). The 

circuit symbol which is to be used in this thesis for the 3-terminal 

NIC of Fig 4.2(b) is shown in Fig 4.2(c). The conversion factor, k, 

of the NIC is also stated in Fig 4.2(c) and we shall assume that 

terminal 1 of the NIC is always marked by a "*"; in this case the 
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electrical properties of the NIC are described by equation (4.1). 

Now, if the 3-terminal NIC of Fig 4.2(c) is terminated at port 2 by 

an impedance Z^, as shown in Fig 4.2(d), then it can be shown that the 

input impedance presented at port 1 is given by 

Z

i l = "
 Z

2
 k _ 1

 <
4

-
2

> 

Similarly, if as shown in Fig 4.2(e) the NIC is terminated at 

port 1 by an impedance Z^ then the input impedance presented at 

port 2 is given by 

Z
i 2

= - k Z
1
 (4.3) 

The configurations in Figs 4.2(d) and (e) show how to realise 

negative grounded impedances. In order to realise a floating negative 

impedance, say Z, we require two NICs connected as shown in 

Fig 4.2(f). The use of NICs for the realisation of the -R, -C 

circuits to be developed in the next section becomes really attractive 

when a number of identical NICs (termed as a multi-NIC) are terminated 

in a network N^, as shown in Fig 4.3(a). In this case, the impedance 

matrix of the equivalent network N
2
 is related to the impedance matrix 

of network N^ by 

[Z
2
] = " k"

1

 [ZJ (4.4) 

where it is assumed all the NICs are identical and the value of the 

conversion factor is k. Thus the network N
2
 may be simulated by using 

a multi-NIC which is terminated by network N^, the impedance matrix of 

which is given by 
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[Z
x
] = - k [Z

2
] (4.5) 

It is convenient to let the network N^ have the same topology as that 

of network N
2
; then the impedance of each element in N^ is simply the 

impedance of the corresponding element in N
2
 multiplied by k 

Furthermore a change in the impedance of any element in the network 

N, is equivalent to the same change in the impedance of the 

corresponding element in the network N
2
« A general network topology 

will contain both positive and negative impedances and it can be 

realised with positive impedances and a multi-NIC in the following 

manner• 

We divide the network into two subnetworks, viz: a subnetwork 

containing all the positive impedances and a subnetwork containing all 

the negative impedances. The subnetwork comprising negative 

impedances is now replaced by a topologically similar subnetwork 

comprising positive impedances and this subnetwork is then connected 

to the other positive subnetwork via the multi-NIC, as shown in 

Fig 4.3(b). 

Note that, as stated previously, equation (4.1) represents a 

current converting type NIC whereas a voltage converting type NIC 

would be obtained if in equation (4.1) we have A = - k , B = C = 0 

and D = 1; but such NICs are not suitable for the present discussion 

and hence these are not considered here. The effect of the finite 

gain bandwidth product, f^, of the OP-AMP for the current converting 

type NIC will be examined in Chapter 5 where a discussion of the 

stability of NIC circuits will also be presented. 
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4.3 Realisation of essential subcircuits 

4.3.1 Grounded inductors 

Let us consider the grounded inductor 2-port shown in Fig 4.4(a), 

which consists of a shunt arm inductor. This inductor can be 

equivalently represented using "redundant" elements by the 

2-port in Fig 4.4(b), where at this stage R can have any convenient 

positive value. The encircled part of Fig 4.4(b) can then be 

equivalently replaced (using the star delta transformation) by the 

encircled part of the circuit in Fig 4.4(c). Thus we have obtained a 
+ + 

-R, -C circuit which simulates a grounded inductor. The basic 

+ + 

principle illustrated in Fig 4.3(b) can be used to realise this -R, -C 

circuit by means of +R, +C circuit and three NICs, as shown in 

Fig 4.4(d). Note the the circuit in Fig 4.4(d), as it stands, is not 

very attractive since it require a large number of components (both 

passive and active). This problem will be overcome in Section 4.5. 

4.3.2 Floating inductors 

Let us consider the floating inductor 2-port shown in Fig 4.5(a), 

which is equivalently represented in Fig 4.5(b) by connecting some 

redundant -R's. In Fig 4.5(b), transforming the encircled delta 

+ + 

network into its star equivalent gives the -R, -C network shown in 

Fig 4.5(c), which can be realised using NICs as shown in Fig 4.5(d). 

Again, the circuit in Fig 4.5(d) is not very suitable for use in 

filter design because it requires a large number of components. 

The floating inductor simulation circuit of Fig 4.5(d) has also 

been proposed in [74] and more recently in [75]. The application of 
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the simulated inductor circuits of [74,75] to filter design differs 

from the approach to be outlined in Section 4.5. It has been 

pointed-out to the author that the circuit of Fig 4.5(d) can also be 

derived from a TYPE 1 circulator [76], which has been proposed 

in [77]. The author is grateful to D.J. Perry for this information. 

4.3.3 Grounded supercapacitor 

Fig 4.6(a) shows the 2-port representation of a grounded 

supercapacitor of value D (i.e. its impedance is given 

- 1 - 2 + + 
by Z = D s ). Its -R, -C equivalent circuit -can be obtained by 

connecting positive and negative redundant series-arm capacitors to 

the circuit in Fig 4.6(a) and then transforming the resulting star 

subcircuit into its equivalent delta to yield the circuit of 

Fig 4.6(b). Alternatively, if we appreciate the fact that 

an R ^ m C interchange transforms the impedance of an active RC 
simulated inductor into an impedance of an active RC simulated 

* + + 

supercapacitor , then we can obtain the -R, -C circuit of Fig 4.6(b) 

by simply carrying-out R * m C interchange in the circuit of 

Fig 4.4(c). The realisation of the circuit in Fig 4.6(b) using NICs 

is shown in Fig 4.6(c). 

* Note that an impedance Z
g
 of a simulated inductor is given by an 

expression of the type, Z
g
 = Z^Z^/Z^, in which we make Z^ and Z^ 

as resistors and Z^ as a capacitor. Now, if we were to choose Z^ 

and Z
2
 as capacitors and Z^ as a resistor, then Z

g 

2 

becomes Z
g
= l/(s C^C

2
R

3
) which is an impedance of a simulated 

supercapacitor• 
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4.3.4 Floating supercapacitor 

Let us consider the floating supercapacitor shown in Fig 4.7(a). 

Following the argument presented in the preceeding subsection, we 
+ + 

obtain the -R, -C representation of the supercapacitor in 

Fig 4.7(a) by carrying-out R ̂  ^ C interchange in the circuit of 

Fig 4.5(c); the resulting circuit is shown in Fig 4.7(b). The circuit 

in Fig 4.7(b) can be realised using NICs as shown in Fig 4.7(c). 

4.4 Derivation of a multitude of simulated .inductor and 

supercapacitor circuits 

+ + 
In the preceeding section we developed -R, -C circuits for. 

simulating grounded and floating inductors and supercapacitors. In 

+ + 

this section we shall show that by "viewing" these -R, -C circuits in 

different ways, many more -R, -C circuits can be obtained for 

simulating grounded and floating inductors and supercapacitors. 

Let us consider the 2-port grounded inductor shown in Fig 4.4(a) 
+ + 

and its -R, -C equivalent circuit of Fig 4.4(c). In 

Figs 4.4(a) and (c), suppose we create a "new" terminal 2 which is 

directly connected to the "old" terminal 1, as shown in Fig 4.8(a). 

Thus we have obtained another -R, -C circuit for simulating a 

grounded inductor 2-port. In a similar manner we can create a new 

terminal 1 in Figs 4.4(a) and (b) to give yet another -R, -C 

circuit for simulating a grounded inductor 2-port; this is shown in 

Fig 4.8(b). Alternatively, if we create two new terminals, 

i.e. terminals 1 and 2 as shown in Fig 4.8(c), then one more 

simulated grounded inductor circuit is obtained. 
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The floating inductor 2-port in Fig 4.5(a) can be interpretted as 

a grounded inductor 2-port either by shorting terminal 2 to 

terminal 2' and then creating a new terminal 2 which is directly 

connected to terminal 1, or by shorting terminal 1 to 

terminal 1' and then creating a new terminal 1 which is directly 

connected to terminal 2. Now if these terminal modifications are also 

+ + 

performed on the -R, -C circuit of the floating inductor of 

Fig 4.5(c) then another two circuits for simulating grounded inductors 

are obtained, as shown in Figs 4.8(d) and (e). 

Therefore, altogether we have six different -R, -C circuits for 

simulating 2-port grounded inductors; i.e. five in Fig 4.8 and one in 

+ + 
Fig 4.4(c). These -R, -C circuits have been obtained from the 
+ + 
-R, -C circuits of Figs 4.4 and 4.5 by terminal modification; 

+ + 

alternatively, we could have obtained these -R, -C circuits by 

starting with a grounded inductor and then connecting the redundant 

-R's to it in various ways so as to form delta (star) networks, 

comprising +R, -R and the inductor, which are then transformed into 

star (delta) networks in order to eliminate the inductor. However, it 

is thought that the above approach of terminal modification is much 

more elegant and systematic, and hence is preferrable to the latter. 

It is interesting to note that the -R, 

-C circuits in Figs 4.8(a), (b), (d) and (e) can be interpretted as 

negative impedance inverters [3] terminated in negative capacitors. 

Each grounded inductor 2-port in Fig 4.8 can be considered as a 

floating inductor 2-port, with respect to another arbitrary ground 

reference, for which terminals 1 and 2' (or 1' and 2) comprise 

the floating terminals of the inductor. Therefore, we effectively 

+ + 
have six different -R, -G circuits for simulating 2-port floating 
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inductors; i.e. five corresponding to Fig 4.8 with the above mentioned 

•terminal modification, and one in Fig 4.5(c). For ease of reference, 
+ + 

all the six -R, -C circuits derived so far for the grounded and 

floating inductors are given in Figs 4.9 and 4.10, respectively. 
+ + 

These -R, -C circuit can be realised with positive value resistors 

and capacitors by inserting NICs at positions marked "X" in 

Figs 4.9 and 4.10. 

+ + 

It is possible to obtain yet more -R, -C circuits for 

simulating grounded and floating inductors. In order to derive these 

additional circuits we make use of the port symmetry properties of 

grounded and floating inductors. For example, in the case of the 

grounded inductor 2-port of Fig 4.4(a), we can interchange the 

position of port 1 (formed by terminal pair 1 and 1') with the 

position of port 2 (formed by the terminal pair 2 and 2') without 

affecting the electrical properties of the inductor with respect to 
+ + 

either port. Since the -R, -C circuit of Fig 4.4(c) simulates a 

grounded inductor we can also carry-out the above port interchange on 

this structure without affecting its electrical port symmetry. 

However, we note that the port interchange in the circuit of 
+ + 

Fig 4.4(c) would result in a structurally different -R, -C circuit 

for simulating a grounded inductor. Again, referring to the grounded 

inductor 2-port of Fig 4.4(a) we note that the electrical properties 

of the inductor are not changed if we refer the ground reference to 

terminals 1 and 2 and then use terminals 1' and 2' as the 

floating terminals of the inductor. Now, if this terminal interchange 

is implemented in the -R, -C circuits of Fig 4.9, then another five 

structurally different -R, -C circuits for simulating a grounded 

inductor would be obtained. Finally, another structurally 
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+ + 
different -R, -C circuit for simulating a grounded inductor is 

obtained if we simultaneously carry-out terminal and port interchanges 
+ + 

on the -R, -C circuit of Fig 4.9(a). Thus, in addition to the 
+ + + + 

six -R, -C circuits shown in Fig 4.9, another seven -R, -C circuits 

are available for simulating grounded inductors. 

It can be shown that if the above concepts of terminal and port 

interchange are applied to the -R.
}
 -C circuits of a simulated 

floating inductor, then in addition to the six circuits shown in 

+ + 

Fig 4.10, it is possible to obtain another seven -R, -C circuits for 

simulating floating inductors. 

+ + 
In order to derive a multitude of -R, -C circuits for 

simulating grounded and floating supercapacitors we can simply make 

+ + 
an R ^ m C interchange in the corresponding -R, -C circuits 

of the grounded and floating inductors, in accordance with the 

+ + 

argument presented in Section 4.3.3. A set of six -R, -C circuits 

each for simulating grounded and floating supercapacitors are shown in 

Figs 4.11 and 4.12, respectively. 

It has been shown above that the -R, -C circuits of 

Figs 4 . 4 — ^ 4 . 7 can be viewed in many different ways to generate other 

-R, -C circuits which simulate grounded and floating inductors and 

supercapacitors. Due to the requirement of a large number of 

components (both passive and active) most of these circuits are only 

of theoretical interst. However, by using the novel design technique 

discussed in the next section, it will become apparent that some of 
+ + 

these -R, -C circuits are well suited for simulating LC 

ladder type filters. 
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4.5 The basic principle of the novel approach 

In the previous two sections a systematic method of deriving 

+ + 

-R, -C circuits for simulating grounded and floating inductors and 

supercapacitors was described. At first sight the application of 

these simulated circuits to filter design does not appear very 

attractive because the active RC realisation of these simulating 

circuits require a rather large number of components. In this section 

we shall discuss the basic principle of the novel approach which 
+ + 

allows us to make an efficient use of these -R, -C circuits in the 

design of high order filters. The word "efficient" is used in this 

context to mean that the final active RC network obtained is 

competitive with other simulation methods in the sense that it retains 

the low sensitivity properties of its prototype, the total number of 

components required is less than or equal to other simulation methods 

and that it is possible to use preferred and equal value capacitors 

which can have wide manufacturing tolerances. 

The process of filter design by the new approach involves 

three steps, viz: 

+ + 
1. selection of suitable -R, -C circuits 

2. selection of appropriate type of prototype filter 

3- sensible selection of the free parameters in the -R, 
+ 

-C circuits 

Let us now discuss the above three steps in greater detail. 
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There are two ways in which a given LC prototype filter can be 

simulated; i.e. we can either simulate the inductors in the prototype 

filter or impedance scale the prototype filter by a scaling 

factor
 w

r e
f

s

 * (where w ^ is a reference frequency and s is the 

complex frequency variable) and then simulate the supercapacitors in 

the resulting impedance scaled structure. Thus the selection of 

suitable -R, -C circuits depends in the first instant on whether we 

decide to simulate the original prototype filter or an impedance 

+ + 

scaled version of it. Only some of the -R, -C circuits derived in 

the previous sections have been found useful for designing high order 

filters. For example, of all the inductor simulation circuits the 

circuits of Figs 4.9(a) and 4.10(a) have been found to be very useful, 

whereas the circuits of Figs 4.11(a) and 4.12(a) have been found to be 

very useful for simulating supercapacitors. As mentioned in the 
+ + 

previous section, these -R, -C circuits although electrically port 

symmetrical are structurally unsymmetrical; this gives two possible 

active RC realisations per simulated element. Thus for a prototype 

filter in which N elments are being simulated there 

N 
are 2 different active RC realisations possible. 

Let us now consider the second step of the design procedure, 

i.e. the selection of an appropriate type of prototype structure. As 

far as the design of all-pole lowpass filters, all-pole highpass 

filters and all-pole bandpass filters derived from lowpass filters via 

the lowpass to bandpass transformation is concerned, the structure of 

the LC prototype filter is not very critical and we can usually design 

these filter types with minimum number of capacitors (i.e. the number 

of capacitors is equal to the order of the filter) and all these 

capacitors can have preferred values with wide manufacturing tolerances 



(assuming that laser trimming of resistors is possible). In the case 

of lowpass and highpass elliptic filters, if the prototype filter 

leads to an active RC realisation in which the number of capacitors is 

not a minimum and if all capacitors cannot have equal and preferred 

values with wide tolerances, then basing the active RC design on the 

dual structure of the prototype will usually lead to a circuit in 

which the number of capacitors is minimum and all capcitors can have 

preferred values with wide manufacturing tolerances. In the case of 

elliptic and asymmetric all-pole bandpass filters, in addition to 

using the dual structure, it may be necessary to carry-out Norton 

transformations on the prototype structure in order to reduce the 

spread of component values. In general, if inductor simulation is to 

be used then it is desirable to have the minimum number of inductors 

in the prototype structure, whereas the prototype structure should 

have the minimum number of capacitors if supercapacitor simulation is 

to be used. Observing the above rule for all-pole filters would lead 

to active RC circuits with minimum number of OP-AMPs. However, as a 

/ 

general rule for elliptic filters, the simulation of inductors would 

lead to active RC circuits in which all the capacitors cannot have 

equal values or wide manufacturing tolerances; on the other hand, if 

the design is based on simulation of supercapacitors, then the 

active RC circuits obtained can be designed to have equal value 

capacitor and also the circuit can cope with wide tolerance 

capacitors. 

Once we have selected an LC prototype to be simulated, the 
+ + 

corresponding -R, -C circuits (i.e. for the inductors or the 

supercapacitors) are substitutes in the prototype structure. Now the 

values of the "redundant" resistors (capacitors) can be chosen 
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arbitrarily and the objective of implementing step three is achieved 

by choosing these "free" parameters in such a way that we obtain 

cancellation between the positive and negative resistors (capacitors). 

This idea of cancelling impedances results in two main advantages. 

Firstly, the complexity of the overall filter structure is 

considerably reduced, which results in a simpler procedure for 

adjusting the circuits. Secondly, the number of negative elements in 

the overall filter structure are also considerably reduced, which 

implies that the active RC realisation requires fewer passive and 

active components• 

The three design steps discussed above are very much 

inter-dependent and therefore the design process is an inter-active 

process. However as will become apparent in the next section the 

whole exercise of the design process is quite straight forward in the 

sense that after some familiarity with the approach described above, 

the selection of an appropriate prototype and the selection of the 

-R, -C circuits can be readily made. 

4.6 Filter design using the essential subcircuits 

4.6.1 Lowpass filters 

4.6.1.1 All-pole structures 

All-pole lowpass filters comprise inductors in the series arms 

and capacitors in the shunt arms of the LC ladder structures. 

Therefore, the active RC realisation of lowpass filters can be 

achieved either by simulating the floating inductors in the series 

arms of the prototype filter, or by simulating the shunt arm 



- 145 -

supercapacitors in the impedance scaled version of the prototype 

filter. In the following, we shall consider the design of all-pole 

lowpass filters by both of these methods. 

Let us consider the fifth order all-pole lowpass filter shown in 

Fig 4.13(a); we shall obtain the active RC realisation of this filter 

+ + 

by simulating the floating inductors using the -R, -C circuit of 

Fig 4.5(c). As stated in the previous section, it is one of the 

characteristic feature of the novel design approach that even using 

the same essential', subcircuits we can, depending on the port 
N 

orientation of the essential subcircuits, obtain 2 different 

active RC realisations of a prototype in which N elements are being 

simulated. In order to illustrate this point, the four possible 

realisations, designated designs 1 , 2 , 3 and 4, of the filter in 

Fig 4.13(a) will now be derived. 

Design 1 

The circuit shown in Fig 4.13(b) is obtained by replacing each of 

the floating inductor in Fig 4.13(a) by its equivalent circuit in 

accordance with Fig 4.5(c). In Fig 4.13(b), the resistor values R^ 
2 

and R^ can be chosen arbitrarily, but if we choose 

R^ = R^ = R^ = R
g
 , then we achieve cancellation of the positive and 

2 4 n n 

negative shunt resistors at nodes 3 and 4, giving the circuit in 

Fig 4.13(c). The negative elements in this circuit can be realised by 

means of NICs as shown in Fig 4.13(d); all'NICs have unity conversion 

factor. 

Note that in the prototype filter of Fig 4.13(a) we have assumed 

that the values of the terminating resistors (i.e. R and R^ ) are 
n n 
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equal. This would be the case for odd order filters which are 

designed for maximum power transfer. However, this may not be the 

case for even order filters which have also been designed for maximum 

power transfer. As far as the new approach is concerned it can be 

applied equally as well for the design of odd or even order filters, 

but even order filters may require one more component than would be 

necessary if the terminating resistors are equal. 

Note that the shunt resistor R at node 2 and the series source 
s 
n 

resistor R
g
 can be replaced by a single series resistor in accordance 
n 

with Thevenin's theorem; the value of this single resistor would be 

equal to the parallel combination of the two resistors it is 

replacing. This modification would result in the transfer function of 

the active circuit being multiplied by a factor of two. 

It is useful to interpret the circuit in Fig 4.13(d) as 

consisting of five RC sections which are coupled by four NICs; we 

shall refer to these RC sections as the "inverted L-sections". These 

inverted L-sections can be defined by their time constants 

(i.e. ^C R , C
T
 R , C~ R , C

T
 R and C,. R ) and by their 

2 1 S L
n
 S J S Li/S O S 

n n 2 n n n 4 n n n 
impedance levels. Whereas the time constants are fully specified by 

the required transfer function, the impedance levels may have 

arbitrary values if the NICs are used to provide appropriate impedance 

matching between the adjacent L-sections. This flexibility can be 

used to obtain nominally equal (and preferred) value capacitors 

throughout the filter since we can still obtain each required time 

constant by adjusting the appropriate time constant resistor and then 

adjust the conversion factor of each NIC to match the impedance levels 

of the adjacent inverted L-sections. Note that since the time 

constant resistors and the NIC resistors are adjustable then by the 
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above argument the capacitors can also have arbitrarily large 

manufacturing tolerances. Fig 4.13(e) shows an active RC realisation 

of the filter in Fig 4.13(a) in which all capacitors have equal value; 

the conversion factors of the NICs are also shown in Fig4.13(e). Note 

that the active RC circuit requires only five capacitors (i.e. the 

theoretical minimum) which are all grounded and four 

operational amplifiers. 

Design 2 

As mentioned earlier, the essential subcircuit of Fig 4.5(c) is 

electrically port symmetrical but it is structurally unsymmetrical. 

Thus, we can interchange the ports in Fig 4.13(b) of the subcircuit 

which simulates the inductor L^ and the resulting circuit is then as 

shown in Fig 4.14(a). The circuit of Fig 4.14(b) is obtained if we 

choose R^ = R^ = 2R
g
 in Fig 4.14(a). A very attractive feature of 

2 4 n 

this circuit is that it can be realised with only three NICs as shown 

in Fig 4.14(c), whereas Design 1 required four NICs. 

Note that the resistive potential divider at node 2 in 

Fig 4.14(b), formed by the resistors R and -2R , has been replaced 
s s 
n n 

by a single series resistor of value +2R which is connected between 
s 
n 

nodes 1 and 2 in Fig 4.14(c). This has the effect of multiplying 

the transfer function of the active RC circuit of Fig 4.14(c) by a 

factor of half. 

It can be shown that it is also possible to interpret the circuit 

of Fig 4.14(c) as consisting of five RC sections which in this case 

are coupled by three NICs. However, the interpretation is not as 

straight forward as in the case of Design 1. These RC sections can be 
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defined by their time constants and impedance levels. Therefore, by 

the same argument as for Design 1, it would be quite feasible to have 

nominally equal (and preferred) value capacitors throughout the filter 

circuit. For example, the circuit in Fig 4.14(d) shows the equal 

capacitor realisation of the circuit in Fig 4.14(c); the values of the 

components are determined by using the design equations derived 

in Appendix A. 

In the case of the four NIC circuit (Design 1) it was stated that 

if we assume that the time constant forming resistors and the NIC 

resistors are trimmable then the capacitors of the circuit can have 

arbitrarily large manufacturing tolerances. In contrast, it is only 

possible to design the three NIC circuit with arbitrarily chosen 

capacitors provided the spread between some capacitors of the circuit 

is restricted to lie within a certain range. The derivation of the 

design equations for calculating the resistor values, when all the 

capacitor values are known, for the three NIC circuit are given in 

Appendix A where it is also shown that the circuit is well suited for 

deterministic adjustment only, whereas the four NIC circuit can be 

adjusted either deterministically or functionally. Hence, although 

the adjustment of the three NIC circuit is not very flexible it does 

provide a saving of one OP-AMP compared with the four NIC circuit. 

Design 3 

Another active RC realisation of the the fifth order lowpass 

filter is obtained by reversing the port orientations of the 

subcircuits simulating inductors L^ and L^ in Fig 4.13(b) and the 

resulting circuit is shown in Fig 4.15(a). The circuit of Fig 4.15(b) 

is obtained if we choose R
7
 =- p _

 9 p 

2 s in the circuit of Fig 4.15(a). 
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The negative elements in this circuit can be realised by means of four 

NICs, as shown in Fig 4.15(c). 

The resistive potential divider at node 2 in Fig 4.15(b), formed 

by resistors R and -2R , has been replaced by a single series 
s s 
n n 

resistor of value +2R which is connected between nodes 1 and 2 in 
s 
n 

Fig 4.15(c). As a consequence of this modification the transfer 

function of the circuit in Fig 4.15(c) is multiplied by a factor of 

half compared with the transfer function of the prototype filter of 

Fig 4.13(a). 

Like the circuit of Fig 4.13(d), it is also possible to interpret 

the circuit of Fig 4.15(c) as consisting of five RC sections which are 

coupled by four NICs. Again, these RC sections can be defined by 

their time constants and impedance levels and hence by the same 

argument as for Design 1, we can design the circuit such that 

nominally equal (and preferred) value capacitors are used throughout 

the circuit, as shown in Fig 4.15(d). Furthermore, following the same 

reasoning as in the case of Design 1, all capacitors can have 

arbitrarily large manufacturing tolerances and the circuit can be 

adjusted either deterministically or functionally. 

Now let us supose that the impedance terminating the right hand 

side of the NIC which has a conversion factor k^ in the circuit of 

Fig 4.15(d) is Z. Then the impedance represented at the left hand 

side of the NIC under consideration is -k,Z. Now it has been 

shown [78] that an impedance ~k^Z can be realised with an impedance 

+Z and a voltage amplifier of gain (1 + k^), as shown in Fig 4.15(e). 

If the output voltage in Fig 4.15(d) is V
q
, then when -k^Z is realised 

using an amplifier of gain (1 + k,), the voltage at the output of this 
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amplifier is
 V

Q
( 1

 +

 R4); thus the filter output can be taken from the 

output of the amplifier with the consequence that the transfer 

function of ' the filter has been multiplied by a constant 

factor (1 + k^). Therefore the circuit can be realised with three 

NICs and one voltage amplifier of gain (1 + k^), i.e. four OP-AMPs 

altogether. The main advantage of this four OP-AMP circuit, compared 

with the four OP-AMP circuit of Design 1, is that it provides a 

buffered output. 

Design 4 

The fourth active RC realisation of the prototype filter of 

Fig 4.13(a) is obtained by reversing the port orientation, in 

Fig 4.13(b), of the subnetwork which simulates the inductor L^; the 

resulting circuit is shown in Fig 4.16(a). The circuit of Fig 4.16(b) 

is obtained if we choose R^ = R^ = R , which can be realised using 
2 4 n 

five NICs, as shown in Fig 4.16(c). Note that the shunt resistor at 

node 2 in Fig 4.16(b) has been incorporated into the source resistor, 

as shown in Fig 4.16(c); „ this has the effect of multiplying the 

transfer function of the filter circuit by a factor of two. 

Again, the circuit of Fig 4.16(c) can also be interpreted as 

consisting of five RC sections which are coupled by four NICs. Hence, 

by the same argument as for Design 1, we can design this circuit to 

obtain nominally equal (and preferred) value capacitors throughout the 

filter circuit. The equal capacitor realisation of the circuit in 

Fig 4.16(c) is shown in Fig 4.16(d). By virtue of the same reasoning 

as before, all the capacitors in the circuit can have arbitrarily 

large manufacturing tolerances and the circuit can also be adjusted 

deterministically or functionally. 
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As already explained for the circuit of Fig 4.15(d), it is quite 

apparent that the circuit of Fig 4.16(d) can be modified to have a 

buffered output. However the circuit of Fig 4.16(d) is not very 

attractive because it requires more passive and active components than 

the corresponding circuits of Figs 4.13(e), 4.14(d) and 4.15(d). As a 

consequence of requiring a larger number of components, the adjustment 

of the circuit in Fig 4.16(d) would involve more steps than the 

adjustment of any of the other three circuits; hence this circuit is 

not very attractive for practical applications. 

Above we have generated all the four possible active RC designs 

of the fifth order lowpass filter of Fig 4.13(a) using the -R, 

-C circuit of Fig 4.5(c). It has been shown that in all the four 

designs the filter circuit can be designed to have nominally 

equal (and preferred) value capacitors which can also have wide 

manufacturing tolerances. Another approach to the active RC 

realisation of lowpass filters would be to impedance scale the 

prototype filter structure, using a scaling factor inversely 

proportional to the frequency variable s, and then to simulate the 

grounded supercapacitors in the impedance scaled prototype structure. 

We shall presently explore this possibility by designing a fifth order 

lowpass filter. In the first instance we need to select an 

"appropriate" prototype structure. Fig 4.17(a) shows the dual 

structure of the fifth order lowpass filter discussed above; this 

structure is more suitable because it has the minimum number of 

capacitors. 

Let us consider the impedance scaled version, shown in 

Fig 4.17(b), of the prototype filter of Fig 4.17(a). The circuit 
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shown in Fig 4.17(c) is obtained by replacing each of the grounded 

+ + 

supercapacitor in Fig 4.17(b) by its -R, -C equivalent circuit in 

accordance with Fig 4.6(b). In Fig 4.17(c) the capacitor values Cp 

and C can be chosen arbitrarily, but if we make C = C = C , then 
Ui - L/

0
 D. S 

4 2 4 n 
we achieve cancellation of the positive and negative capacitors in 
series with resistors R^ and R^ giving the circuit shown in 

n n 
Fig 4.17(d). The capacitive potential divider at the output of the 
filter circuit in Fig 4.17(d) can be replaced by a single shunt 

capacitor of value ^C and the resulting circuit can be realised 
z s 

n 

with four NICs and equal value capacitors, as shown in Fig 4.17(e). 

As a consequence of replacing the capacitive potential divider by a 

single capacitor the transfer function of the filter is multiplied by 

a factor of two. 

The circuit in Fig 4.17(e) can be interpretted as consisting of 

five RC inverted L-sections which are coupled by four NICs. Thus by a 

similar argument to one presented for the circuit of Fig 4..13(e), all 

the capacitors in the circuit of Fig 4.17(e) can also have arbitrarily 

large manufacturing tolerances. 

Note that the active RC realisations shown in 

Figs 4.13(e) and 4.17(e) have identical structures, although for equal 

value capacitor designs the values of the NIC scaling factors are 

different in the two cases. It will be shown in Section 4.7 that the 

sensitivity behaviour of the two circuits is also quite different, 

inspite of the fact that structures of the two circuits are similar. 

We have only obtained one realisation of the circuit in 

Fig 4.17(b), whereas another three different realisations are possible 

+ + 
by interchanging the orientation of the ports of the -R, -C circuits 



simulating the supercapacitors D
2
 and D^ in Fig 4.17(c). However, 

these other three realisations give rise to structures which are not 

cannonic with respect to the number of capacitors and/or which require 

a larger number of NICs. Hence, since these other realisations do not 

have any practical advantages over the one shown in Fig 4.17(e), they 

are not discussed here. 

In order to compare the number of capacitors and OP-AMPs used in 

the above realisations of the fifth order all-pole lowpass filter, we 

shall now briefly consider the design of the same filter by 

conventional methods which use positive impedance converters (PICs) as 

the basic active unit (note that as mentioned in Section 1.4.1, two 

amplifiers together with four passive components are required for the 

realisation of a PIC)• For the partial impedance scaling approach of 

Gorski-Popiel's method [15]
f
 the circuit of Fig 4.13(a) is most 

suitable as a prototype. The active RC realisation of this circuit 

would require three PICs (i.e. six OP-AMPs) and six capacitors. All 

the capacitors can have equal (and preferred) values with wide 

manufacturing tolerances. Using the modified partial impedance 

scaling approach [29] the filter of Fig 4.13(a) can be realised by 

three PICs and seven capacitors but by appropriately designing the 

circuit it is possible to obtain a buffered output. Again, all 

capacitors can have equal and preferred values with wide" manufacturing 

tolerances. 

The circuit of Fig 4.17(a) is suitable as a prototype for 

obtaining the active RC realisation by the modified or the full 

impedance scaling approach [16,29]. This approach is most likely to 

be used in actual practice because it requires only two PICs 

(i.e. four OP-AMPs). The number of capacitors required by this method 
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is six and four of these capacitors can have arbitrary values and 

tolerances, whereas the relative tolerance of the two capacitors 

corresponding to the terminating resistors in the prototype is 

restricted. Note that in order to obtain a buffered output, it would 

be necessary to use another OP-AMP. 

4.6.1.2 Elliptic structures 

The application of the new design approach to lowpass elliptic 

filters will be illustrated in this subsection by considering the 

design of a fifth order lowpass elliptic filter shown in Fig 4.18(a). 

In the all-pole lowpass filter of Fig 4.13(a) we note that if 

capacitors C^ and C^ are connected in parallel with inductors 
n n n 

and L^ , respectively, then we obtain the lowpass elliptic structure 
n 

of Fig 4.18(a). Therefore the active RC realisation of the circuit in 

Fig 4.18(a) can be obtained by connecting, in any active RC 

realisation of the circuit in Fig 4.13(a), a capacitor C^ between 
n 

nodes 2 and 3 and a capacitor C^ between nodes 3 and 4. For 
n 

example, one active RC simulation circuit of the elliptic lowpass 

filter of Fig 4.18(a) is shown in Fig 4.18(b), which has been obtained 

by modifying the circuit in Fig 4.13(d). In the case of all-pole 

circuits it is possible to design the filter circuit to have equal 

(and preferred) value capacitors which can have wide manufacturing 

tolerances; however, for the circuit of Fig 4.18(b) all capacitors 

except C
T
 and C, , are restricted to have non-preferred values with 
2 4 

narrow manufacturing tolerances. The capacitors C, and C
T
 can have 

2 4 

any preferred values with wide manufacturing tolerances; this is 

achieved by changing the value of the time constant resistor 

associated with each capacitor to maintain the time constants of each 
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of these two RC sections at their nominal values and then using the 

NICs adjacent to these RC sections to match the impedance levels. 

Another three active RC realisations of the circuit in 

Fig 4.18(a) can be obtained by connecting a capacitor C
2
 between 
n 

nodes 1 and 3 and a capacitor C^ between nodes 3 and 4 in the 
n 

circuits of Figs 4.14(c), 4.15(c) and 4.16(c), but the requirement of 

non-preferred narrow tolerance capacitors make all these circuits 

unattractive from the practical point of view. 

Let us now consider the dual prototype filter circuit, shown in 

Fig 4.19(a), of the fifth order elliptic lowpass filter of 

Fig 4.18(a). The impedance scaled version of the circuit in 

Fig 4.19(a) is shown in Fig 4.19(b). The active RC realisation of 

this circuit can be achieved by simulating the supercapacitors D
2
 and 

D^. The circuit in Fig 4.19(c) is obtained by replacing each 

+ + 
supercapacitor in Fig 4.19(b) by its equivalent -R, -C circuit in 

accordance with Fig 4.6(b). The values of capacitors C and C
T
 , in 

2 4 

Fig 4.19(c), can be chosen arbitrarily but if we choose 

C
T
 = C, = C then the simplified circuit of Fig 4.19(d) is obtained 

L0 L. S 
2 4 n 

which can be realised with six NICs, as shown in Fig 4.19(e). 

Note that the capacitive potential divider at the output of the 

circuit in Fig 4.19(d) has been replace by a single capacitor in 

Fig 4.19(e). This modification has the effect of multiplying the 

transfer function of the circuit by a factor of two. 

The circuit in Fig 4.19(e) can be described by seven RC sections 

which are coupled by six NICs. The time constants of these 

RC sections are given by the specifications for which the filter is 

designed. Therefore using the same argument as in the case of 
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all-pole lowpass filters, it is feasible to use capacitors of 

arbitrary values and manufacturing tolerances in the circuit 

of Fig 4.19(e). 

Note that the realisation of the circuit in Fig 4.19(e) requires 

five capacitors and six operational amplifiers. 

For the purpose of comparison we note that the circuit in 

Fig 4.18(a) has the minimum number of inductors and hence it is a 

suitable prototype for realisation by the Gorski-Popiel's method [15]; 

whereas the circuit of in Fig 4.19(a) has the minimum number of 

capacitors and hence it is most suitable prototype for the Bruton's 

method [16] of impedance scaling. The active RC realisation of the 

circuit in Fig 4.18(a) by Gorski-Popiel's method would require three 

PICs (i.e. six OP-AMPs) and eight capacitors, most of which will have 

non-preferred values with narrow manufacturing tolerances. In 

contrast, the active RC realisation of the circuit in Fig 4.19(b) by 

Bruton's method would require two PICs (i.e. four OP-AMPs) and six 

capacitors, all of which can have equal and preferred values with wide 

manufacturing tolerances. Alternatively, if the circuits of 

Figs 4.18(a) and 4.19(a) are simulated using the full impedance 

scaling method [29], then three PICs and eight capacitors or two PICs 

and six capacitors, respectively, would be required; all capacitors 

can have equal and preferred values with wide manufacturing 

tolerances. 

Therefore, in comparison, if preferred value capacitors with wide 

manufacturing tolerances are to be used, then the best active RC 

circuit that can be realised by the new approach requires two OP-AMPs 

more than the corresponding best circuit realised by the full 
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impedance scaling method; however, the new method requires one less 

capacitor. 

4.6.2 Highpass filters 

4.6.2.1 All-pole structures 

All-pole highpass filter structures comprise inductors in the 

shunt arms and capacitors in the series arms of the LC prototype 

ladder. Thus active RC realisation of these structures can be 

achieved by either simulating the grounded inductors or by impedance 

scaling the prototype structure and then simulating the floating 

supercapacitors. In order to illustrate the design of highpass 

filters by the new method we shall make use of both of these 

approaches. 

Let us consider the fifth order all-pole highpass filter shown in 

Fig 4.20(b), which is the impedance scaled version of the prototype 

filter shown in Fig 4.20(a). If the floating supercapacitors in 

Fig 4.20(b) are replaced by the -R, -C circuit of Fig 4.7(b), then 

we obtain the circuit shown in Fig 4.20(c). The values of capacitors 

C
n
 and C

n
 , in Fig 4.20(c), can be chosen arbitrarily - but the 

2 4 
circuit of Fig 4.20(d) is obtained if we choose C

n
 = CL = C ; this 
JJrw U » S 
2 4 n 

circuit can be realised using four NICs, as shown in Fig 4.20(e). 

The capacitive potential divider at the input of the filter 

circuit in Fig 4.20(d) has been replaced by a single capacitor of 

value 2C in Fig 4.20(e). As a consequence of this modification the 
s 
n 

transfer function of the circuit in Fig 4.20(e) has been multiplied by 

a factor of two. 
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The circuit in Fig4.20(e) can be thought as being composed of 

five RC inverted L-sections which are cottpled by four NICs. Hence by 

the virtue of the discussion presented in Section 4.6.1.1 we conclude 

that it would be quite feasible to use equal and preferred value 

capacitors which can have wide manufacturing tolerances. 

It is interesting to note that the circuit of Fig 4.20(d) could 

have been obtained by carrying-out R ^ — C interchange in the 

circuit of Fig 4.13(c); the reason for this is as follows. In 

Fig 4.13 we are simulating floating inductors and the impedance of the 

simulated inductor is of the form Z^= Z^Z^/Z^, where we choose Z^ 

and Z^ to be resistors and Z^ to be a capacitor. Now if we 

interchange resistors and capacitors in the expression for Z^, then Z^ 

will become an impedance of a supercapacitor. Thus in the circuit of 

Fig 4.13(a) if we assume the floating inductors to be simulated by 
+ + 

-R, -C circuits, then as a consequence of carrying-out 

an R ^ C interchange, the terminating resistors would become 

capacitors, the shunt capacitors would become shunt resistors and the 

floating inductors would become floating supercapacitors in the 

transformed circuit; i.e. we would obtain the circuit of Fig 4.20(b), 

which is an impedance scaled version of a highpass filter. Therefore, 

following the above argument we observe that if we carry-out 

R m m C transformation in the -RC circuit realisation of a 

lowpass filter, which has been obtained by simulating inductors, then 

we obtain a -RC circuit realisation of an impedance scaled highpass 

filter whose prototype corresponds to the prototype of the lowpass 

filter. By a similar argument to the one presented above, it can be 

shown that if an R C transformation is carried-out on an 

impedance scaled lowpass prototype filter in which the supercapacitors 
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+ + 

are simulated by -R, -C circuits, then we would also obtain a 

highpass filter structure. This implies that if we carry-out 

an R ^ C interchange on the -RC lowpass circuit of 

Fig 4.17(d), then we would obtain a -RC highpass filter circuit 

which could altenatively have been obtained by applying the lowpass to 

highpass transformation to the circuit of Fig 4.17(a) and then 

simulating the grounded inductors in'the highpass filter structure. 

From the above argument it is apparent that another three 

active RC realisations of Fig 4.20(b) can be obtained by simply 

carrying-out a R * m C transformation in the circuits of 

Figs 4.14(c), 4.15(c) and 4.16(c). The highpass circuits 

corresponding to the circuits of Figs 4.14(c) and 4.16(c) would each 

require seven capacitors whereas the highpass circuit corresponding to 

the circuit of Fig 4.15(c) would require only six capacitors. All of 

these circuits can be designed with equal (and preferred) value 

capacitors but only the highpass circuits corresponding to the 

circuits of Figs 4.15(c) and 4.16(c) can have capacitors with-wide 

manufacturing tolerances. If we obtain the three NIC realisation of 

Fig 4.20(b) by carrying-out an R ^ C transformation in the 

circuit of Fig 4.14(c) then, as stated above, a total of seven 

capacitors (all of which can have nominally equal values) would be 

required; however if we are prepared to accept a spread of two in the 

capacitor values then this circuit can be designed with only six 

capacitors as we shall show in the following. 

The circuit of Fig 4.21(a) is obtained from the circuit in 

+ + 

Fig 4.20(c) by interchanging the ports of the -R, -C circuit 

simulating the supercapacitor D^ (see Fig 4.20(b)). The circuit in 

Fig 4.21(b) results if we choose C = -yC and C = C in 
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Fig 4.21(a). The realisation of the circuit in Fig 4.21(b) using NICs 

is shown in Fig 4.21(c). Note that the shunt capacitor of value 

- |c
s
 , at node 2 in Fig 4.21(b) can be combined with the series 
n 

capacitor between nodes 1 and 2 (as shown in Fig 4.21(c)) with the 

effect of dividing the filter transfer function by a factor of two. 

The use of wide tolerance capacitors in the circuit of 

Fig 4.21(c) is not possible and hence from the practical 

implementation point of view it is not a very important circuit. 

However this circuit will be used in Chapter 5 as an example when we 

discuss a method of reducing the effect of finite amplifier gain 

bandwidth product of the OP-AMP in NIC filter circuits. 

The dual form of the filter circuit of Fig 4.20(a) is shown in 

Fig 4.22(a). The circuit of Fig 4.22(b) is obtained by replacing 

inductors L^ and L^ in Fig 4.22(a) by their equivalent -R, 
+ n Q 
-C circuits in accordance with Fig 4.4(c). In Fig 4.22(b), 

choosing ^
 =

 \
 = R

s
 results in the circuit of Fig 4.22(c). The 

2 4 n 

resistive potential divider at the output of the circuit in 

Fig 4.22(c) can be replaced by a single shunt resistor with the 

consequence of multiplying the transfer function of the circuit by a 

factor of two. The resulting circuit can be realised with four NICs 

and it is shown in Fig 4.22(d). 

Again, the circuit of Fig 4.22(d) can be thought of as comprising 

five RC inverted L-sections which are coupled by four NICs. Hence it 

would be quite feasible to use preferred value capacitors in this 

circuit and these capacitors can also have wide manufacturing 

tolerances. 
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Note that as explained previously the circuit of Fig 4.22(c) 

could have been obtained by carrying-out 

an R — m C transformation on the circuit of Fig 4.17(d). 

For the purpose of comparison, we note that the circuit in 

Fig 4.20(a) can be realised either by partial or full impedance 

scaling methods and in each case three PICs would be required; but 

whereas the partial impedance scaling method leads to a requirement 

for non-preferred value narrow tolerance capacitors, the circuit 

designed by the- full impedance scaling method can have preferred value 

capacitors which can have wide manufacturing tolerances. The highpass 

filter of Fig 4.22(a) can be designed by the partial impedance scaling 

method with only two PICs (i.e. four OP-AMPs), but this leads to the 

requirement of non-preferred value narrow tolerance capacitors. The 

full impedance scaling method of realising the filter of Fig 4.22(a) 

although permits the use of preferred value wide tolerance capacitors, 

requires four PICs (i.e. eight OP-AMPs) and hence it is pratically 

unattractive. 

Therefore as far as the design of all-pole highpass filters is 

concerned the new approach seems to offer some practical advantages 

over the conventional method in the sense that if we want to use 

preferred value capacitors with wide manufacturing tolerances, then 

the circuits realised by the new approach require only four OP-AMPs 

whereas the corresponding circuit realised by the conventional 

approach requires at least six OP-AMPs. 
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4.6.2.2 Elliptic structures 

The fifth order all-pole highpass filter of Fig 4.20(a) can be 

transformed into an elliptic structure by connecting inductors 

n 
and L^ in parallel with capacitors C^ and C^ , respectively, as 

n n n 
shown in Fig 4.23(a). The impedance scaled version of this circuit is 

shown in Fig 4.23(b). The active RG realisation of the circuit in 

Fig 4.23(b) is shown in Fig 4.23(c) and it has been obtained from the 

circuit of Fig 4.20(e) by connecting resistors R^ and R^ between 
n n 

node pairs 2,3 and 3,4 respectively. 

Note that the circuit of Fig 4.23(c) requires five capacitors 

(the theoretical minimum) and only four NICs. At first sight this 

circuit appears very promising; however a closer examination shows 

that the circuit cannot be designed to have equal value capacitors and 

furthermore the capacitors cannot be allowed to have wide 

manufacturing tolerances. At this point it may be appropriate to 

consider what conditions or limitations determine whether the type of 

NIC circuits that we have derived can be designed to have arbitrary 

capacitor values and tolerances. 

If we observe the lowpass filter structures derived in the 

previous subsection, and also observe the the all-pole highpass filter 

structures derived above, then we note that for the structures in 

which the capacitors can have arbitrary values and wide tolerances, 

the capacitors inside the filter structure are always connected to 

other capacitors in the circuit via NICs. Thus a sufficient condition 

for obtaining structures which can have arbitrary value (and 

tolerance) capacitors is that the a capacitor in the filter structure 

should only be connected to other capacitors in the circuit via NICs. 
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In the case of Fig 4.23(c) the capacitors connecting to nodes 2, 

3 and 4 have direct connecting paths via resistors R
2
 and R^ , and 
n n 

therefore the capacitors in this circuit cannot have arbitrary values 

and tolerances. One possible way of removing this constraint from the 

circuit of Fig 4.23(c) is to replace each of the NIC connected to 

nodes 2 and 3 by two NICs, as shown- in Fig 4.23(d). Now the 

circuit of Fig 4.23(d) can be interpretted as consisting of five 

RC sections which are coupled by six NICs. Each of these RC sections 

can be defined by one or two time constant(s) and an impedance level. 

While the time constants are defined by the filter characteristics the 

impedance levels within each RC sections are arbitrary as long as 

appropriate impedance matching is maintained between the various 

RC sections using the NICs. Therefore, following the same argument as 

before, we conclude that the capacitor values in the circuit of 

Fig 4.23(d) can be chosen arbitrarily, and futhermore, by extension of 

the same argument, it is obvious that the capacitors can also have 

arbitrarily large manufacturing tolerances. 

For the purpose of comparison, we note that if the fifth order 

highpass elliptic filter is to be realised with preferred value 

capacitors, which can have wide manufacturing tolerances, then the 

approach described in [5], which requires four PICs (i.e. eight 

OP-AMPs) would be most suitable. Therefore, as far as the number of 

amplifiers is concerned, the circuit of Fig 4.23(d) uses two 

amplifiers less than its PIC counterpart; also it is canonic with 

respect to the number of capacitors. 
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4.6.3 Bandpass filters 

4.6.3.1 All-pole structures derived by lowpass to bandpass 

transformation 

In the case of all-pole bandpass filters derived from all-pole 

lowpass filters via the lowpass to bandpass transformation, we 

encounter inductors and capacitors both in the series and the shunt 

arms of the ladder structure. The obvious consequence of this is the 

+ + 
requirement for two different types of -R, -C circuits for 

simulating the grounded and floating inductors (or supercapacitors). 

+ + 

The selection of the -R, -C circuits is made with the aim of 

achieving cancellation between the positive and negative elements of 

the simulated structure such that the resulting circuit does not 

require excessive number of components. 

In the following if the bandpass filter is to be realised by 

+ + 

simulating the inductors then the -R, -c circuits of Figs 4.4(c), 

4.5(c) and 4.9(f) will be used; whereas if the supercapacitors in the 

impedance scaled version of the bandpass filter are to be simulated 

then the -R, -C circuits of Figs 4.6(b), 4.7(b) and 4.11(f) will be 

used. Let us now consider some examples of designing bandpass 

filters. 

Consider the third order all- pole lowpass filter shown in 

Fig 4.24(a), which has been denormalised to have-a cut-off frequency 

equal to the bandwidth of the bandpass filter. We obtain the all-pole 

bandpass filter shown in Fig 4.24(b) by applying the lowpass to 

bandpass transformation to the filter circuit in Fig 4.24(a). In 

Fig 4.24(b) if we replace the inductors L^ and L^ by the -R, 
n n 
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-C circuit of Fig 4.5(c) and replace the inductor/ L^ by its 
n 

equivalent circuit of Fig 4.9(f) then we obtain the circuit shown in 

Fig 4.24(c). The values of resistors IL , R and R
T
 in Fig 4.24(c) 

L
2
 3 

can be chosen arbitrarily, but the circuit of Fig 4.24(d) is obtained 

if we choose R^ = R̂ ^ = R̂ ^ = R
g
 . The realisation of the circuit in 

1 2 3 n 

Fig 4.24(d) using NICs is shown in Fig 4.24(e) from which we note that 

the circuit requires six OP-AMPs and six capacitors. 

The NICs in Fig 4.24(e) can be thought of as separating the 

network into seven isolated subnetworks, six of which comprise 

resistors and capacitors (RC subnetworks) while one contains a single 

resistor (R subnetwork). Each of the RC subnetworks is defined by an 

impedance level and one or more time constants, whereas the 

R subnetwork is defined just by an impedance level. The time 

constants of the RC subnetworks are specified by the filter 

characteristics whereas the impedance levels of all the subnetworks 

are arbitrary as long as the impedance levels of the adjacent sections 

are correctly matched. Therefore using the same argument as for the 

lowpass and highpass filter circuits we conclude that the capacitors 

in the circuit of Fig 4.24(e) can have arbitrary values and tolerances 

if we adjust the resistors in each RC subnetwork to achieve the 

correct time constants and then adjust the conversion factor of each 

NIC to match the impedance levels of the subnetworks on either side of 

the NIC under consideration. 

The above approach of carrying-out a lowpass to bandpass 

transformation on a lowpass filter and then simulating the elements in 

the bandpass filter to obtain an active RC realisation works 

satisfactorarily for wide-band filters. However, if the relative 
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bandwidth (i.e. the ratio of the passband frequency to the centre 

frequency) is small ( < 0.1), then the spread in element values of 

the bandpass filter becomes very large; e.g. if a filter has a 

bandwidth B^, centre frequency w
q
 and the maximum values of an 

inductor and a capacitor in the normalised lowpass prototype filter 

are L
m
 and C^, respectively, then it can be easily shown that the 

maximum spread in the inductor and the capacitor values of th^ 

2 
bandpass filter is [L C (w /B ) ]. In order to reduce the element 

m m o w 

spread for bandpass filters with relatively small bandwidths, Norton 

transformations are used frequently; but this technique usually 

increases the number of elements to be simulated and leads also to the 

requirement for narrow tolerance capacitors (if we are simulating the 

inductors). Therefore, the conventional method of applying Norton 

transformations to reduce the spread in component values is not very 

well suited for the new approach being considered here. We shall now 

describe an alternative approach to the design of all-pole bandpass 

filters which does not result in large spread in the element values 

of the bandpass filter. 

Let us consider the third order all-pole lowpass filter shown in 

Fig 4.25(a). The circuit of Fig 4.25(b) is obtained by replacing the 

+ + 
inductor in Fig 4.25(a) by its -R, -C equivalent circuit of 

n 
Fig 4.5(c). In Fig 4.25(b), if we choose R

T
 = R then we achieve 

X

2
 S

n 
cancellation of the positive and negative resistances at node 3 and 

the series resistor R between nodes 1 and 2 and the shunt resistor 
s 
n 

at node 2 can be combined together as explained previously with the 

effect of multiplying the transfer function of the filter by a factor 

of two. The circuit in Fig 4.25(c) is obtained by applying the 

lowpass to bandpass transformation to the circuit of Fig 4.25(b). In 
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the circuit of Fig 4.25(c) we note that the spread in capacitor and 

inductor values would be same as the spread in the capacitor values of 

the active lowpass circuit of Fig 4.25(b). The circuit of Fig 4.25(d) 

has been obtained by replacing each shunt inductor in Fig 4.25(c) by 
+ + 

its -R, -C equivalent circuit of Fig 4.9(f). The realisation of the 

circuit in Fig 4.25(d) can be accomplished using six NICs, as shown in 

Fig 4.25(e). 

As in the case of the circuit in Fig 4.24(e) it can be shown, by 

following a similar argument, that it would be quite feasible to use 

preferred value capacitors in the case of the circuit of Fig 4.25(e); 

also the capacitors can have wide manufacturing tolerances. Note that 

in Fig 4.25(e) we have a NIC at the output of the filter, which is 

terminated by a resistor R^ , and this can be used to provide a 
3 

buffered output and to control the overall gain of the filter. 

For the purpose of comparison, we note that in order to realise a 

sixth order all-pole bandpass filter, using the full impedance scaling 

method, at least three PICs (i.e. six OP-AMPs) 'and six capacitors 

would be required [21]. 

4.6.3.2 Elliptic structures derived by lowpass to bandpass, 

transformation 

Let us now consider the design of elliptic bandpass filters which 

are obtained from lowpass filters by the lowpass to bandpass 

transformation. The elliptic bandpass filter of Fig 4.26(b) is 

obtained from the third order elliptic lowpass filter of Fig 4.26(a) 

by the following two steps. Firstly, the lowpass to bandpass 

transformation is applied to the circuit of Fig 4.26(a) to obtain a 
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bandpass filter. In the second step, the tuned-circuit 

transformation [27] is applied to this bandpass filter in order to 

obtain the circuit shown in Fig 4.26(b). 

The circuit in Fig 4.26(c) is obtained from the circuit of 

Fig 4.26(b) as follows. The inductor L^ is replaced by its -R, 
+

 11 

-C equivalent circuit of Fig 4.9(f); the inductors L^ and L^ are 

I •'! 
replaced by the -R, -C circuit of Fig 4.10(a); and inductor L^ is 

+ +
 n 

replaced by its -R, -C equivalent circuit of Fig 4.9(a). Note that 

the load resistor in Fig 4.26(b) has been replaced by two shunt 

resistors, each of value 2R , in Fig 4.26(-c); the reasons for doing 
s 

this will become apparent shortly. The values of resistors R_ , R^ , X

1 4 
R

t
 and R. , in Fig 4.26(c), can be chosen arbitrarily, but if we 
5 

chose
 R

l
 =

 RL = RL = R L
= s

 then we achieve cancellation of the 
1 4 5 3 

positive and negative shunt resistances at nodes 2, 2' and 3' such 

that the resulting circuit can be realised using ten NICs, having 

conversion factors of unity, as shown in Fig 4.26(d). 

The circuit in Fig 4.26(d) can be thought of as comprising eight 

RC sections and one R section which are coupled by ten NICs. 

Therefore, following the same reasoning as before, we conclude that 

the circuit in Fig 4.26(d) can be designed for preferred value 

capacitors which may also have wide manufacturing tolerances. 

As mentioned in the case of all-pole filters, the application of 

the lowpass to bandpass transformation would result in bandpass filter 

structures which have a large spread in component values if the 

relative bandwidth of the filter is very small. It was shown in the 

case of all-pole bandpass filters that the problem of component spread 

is avoided if we obtain an active RC simulation of the prototype 



lowpass filter and then carry-out the lowpass to bandpass 

transformation on this active RC circuit. This technique can also be 

applied in the case of elliptic bandpass filters which are derived 

from lowpass prototypes. 

Note that in the design examples of all-pole and elliptic 

bandpass filters we have not used the impedance scaling method because 

this would lead to structures which are not cannonic in the number of 

capacitors and consequently large number of NICs would be required if 

the capacitors are to have preferred values and wide manufacturing 

tolerances. 

For the purpose of comparison , we note that if the sixth order 

elliptic bandpass filter of Fig 4.26(b) is realised using the full 

impedance scaling method then three PICs (i.e. six OP-AMPs) and eight 

capacitors would be required. Therefore, from the number of 

amplifiers the circuit of Fig 4.26(d) is not very attractive. 

4.6.3.3 Other types of bandpass filter structures 

In Subsections 4.6.3.1 and 4.6.3.2 we described the design of 

all-pole and elliptic bandpass filters which are derived from lowpass 

prototypes by the lowpass to bandpass transformation. In this 

subsection we shall consider the design of bandpass filters which are 

not derived from lowpass filter prototypes. In particular we shall 

consider the design of an eight order elliptic (zig-zag) bandpass 

filter which has been previously studied in [17,36]. The prototype 

of the filter used in [17,36] is shown in Fig 4.27(a) and its dual 

form is depicted in Fig 4.27(b). The active RC realisation of the 

desired filter can thus be obtained by either simulating the inductors 
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in the circuits of Figs 4.27(a) and (b) or by simulating the 

supercapacitors in the impedance scaled versions of the circuits in 

Figs 4.27(a) and (b). We shall use the latter method and for this the 

circuit of Fig 4.27(b) is most suitable as it contains the minimum 

number of capacitors. The modified form of the filter circuit in 

Fig 4.27(b) is shown in Fig 4.27(c), which has been obtained from the 

former using the Norton left-to-right L transformation to split-up the 

inductors L^ and L^ into an inductor-T (formed by L^ , L^ and L^ in 
n n n 

Fig 4.27(c)). This operation is necessary in order to have equal 

value capacitors in the final circuit. 

The impedance scaled version of the circuit in Fig 4.27(c) is 

shown in Fig 4.27(d) which has four supercapacitors. We shall use 

the -R, -C circuit of Fig 4.11(f) for simulating the 

+ + 

supercapacitor D^ and use the -R, -C circuit of Fig 4.12(a) for 

simulating the supercapacitors D^
 a n c l

 °4>
 t l i e

 problem of simulating 

the supercapacitor D^ will be considered later. The circuit of 

Fig 4.27(e) is obtained by replacing the supercapacitors D^, D
2
 and 

+ + 
D^, in Fig 4.27(d), by their corresponding -R, -C circuits. In the 

circuit of Fig 4.27(e) the values of capacitors C , and CL can 
1 2 4 

be chosen arbitrarily but the circuit of Fig 4.27(f) is obtained if 

we choose Cp = C^ = C
D
 = C . In Fig 4.27(f) the negative shunt 

1 2 4 n 

capacitor at node 2 can be combined with the series capacitor between 

nodes 1 and 2; this will have the effect of multiplying the filter 

transfer function by a factor of half. 
J 

Now let us consider the problem of simulating the 

supercapacitor D^. We note from Fig 4.27(f) that D^ appears as an 

isolated supercapacitor and thus there is no possibility of achieving 

cancellation of the positive and negative components if we use one of 
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the circuits of Fig 4.11 to simulate D^. Therefore, if D^ is 

simulated using one of the circuits of Fig 4.11 then a minimum of two 

NICs and three capacitors would be required; however, if D^ is 

2 

realised using an s -type PIC (say) terminated in a resistor, then two 

OP-AMPs and two capacitors only would be required. We shall use the 

latter method to show that the simulation method of this chapter, 

which uses NICs, and the well established simulation method, which 

uses PICs, can be advantageously combined in the same circuit. 

The circuit in Fig 4.27(g) shows the realisation of the circuit 

of Fig 4.27(f) using four NICs and one PIC. Note that the circuit in 

Fig 4.27(g) requires six operational amplifiers and ten capacitors; 

however, since most of the capacitors in the circuit are coupled via 

resistors, it is necessary to have narrow tolerance capacitors. An 

alternative realisation of the circuit in Fig 4.27(g) is shown in 

Fig 4.27(h) which requires two more NICs but in this circuit all 

capacitors can have preferred values and wide manufacturing 

tolerances, provided the circuit is adjusted deterministically in the 

following way. 

In Fig 4.27(h), the NIC having a scaling factor K^ can be thought 

of as dividing the circuit into two parts • The circuit to the right 

hand side of NIC^ can be divided into three subcircuits which are 

coupled via the PIC and NIC^. Thus the capacitor(s) inside each of 

these circuits can have arbitrary values and tolerances provided we 

vary the resistors in each circuit accordingly such that the various 

time constants within each of these subcircuits are kept at their 

nominal values; the conversion factors of the PIC and NIC, are then 
o 

changed to match the impedance levels of these three subcircuits. Let 
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us now look at the circuit to the left hand side of NIC^. At the 

input end, the values of R^ and R^ are calculated as 

R

1 =
 3 c

s
 R

1
 / ( C

1
+ C

2
+

V 
n n 

R

3
 = 3 C

s
 R

2 / ( W V 
n n 

The conversion factors K^, K
2
 and K^ are chosen as: G^/G^, 

1^= C
5
/C^ and

 T h e v a l u e s o f

 ^ >
 R

4
 a n d K

3

 a r e 

2 2 
calculated as: R

2
= (C

g
 /G

3
) R ^ /R

1
 , R

4
= (C

g
 /C^) R^R^ /R and 

n I n n 2 n 
K

3
= C^/C^. Finally, the conversion factor of NIC^, which couples the 

two networks together, is calculated as:
 R

3

R

3
 * 

n n 

As stated previously, active RC realisations of the filter in 

Fig 4.27(a) have also been derived in [36] and [17] with fifteen 

OP-AMPs and twelve capacitors, and twelve OP-AMPs and eight 

capacitors, respectively. If the above filter is realised by the full 

impedance scaling method, then five PICs (i.e. ten OP-AMPs) and eleven 

capacitors would be required. 

4.7 Computed and measured results 

In Section 4.6 we developed novel active RC circuits for 

simulating lowpass, highpass and bandpass filters. Some of these 

filter circuits have been simulated on the computer using a network 

analysis program, and a limited amount of practical work has also been 

under-taken in that some discrete component models have been 

constructed and their performances measured. In this section, we 

shall present the computed and the measured results for these filters. 



- 173 -

The main purpose of the practical work that has been carried-out 

was two-fold; firstly to show that the sensitivity of these active RC 

circuits is low enough for the method to be practically viable; and 

secondly to show that these active RC circuits do not suffer from 

adverse effects e.g. high DC off-sets, instability, etc.. 

In the discrete component models, polystyrene capacitors and 

carbon film resistors were used throughout. The values of the 

components were selected, or were made-up by combinations, from the 

+ 
available standard values to be within - 0.5 % of their 

corresponding nominal values; thus it was not necessary to tune the 

circuits. Also, the designs of the circuits were not compensated to 

take into account the effect of the finite gain bandwidth products of 

the OP-AMPs. All measurements were carried-out with 1 V_.,_ input 
rms 

signal level. 

As a first example a fifth order Chebyshev lowpass filter, with a 

cut-off frequency of 1 kHz and a passband ripple of 0.28 dB, was 

designed using the method illustrated in Fig 4.13; the active RC 

circuit is shown in Fig 4.28 and its nominal and measured component 

values are listed in Table 4.1. The element values of the prototype 

filter were obtained from [31]. The operational amplifiers used in 

the circuit were of type pA 741, which have typical f^, 

value of 1 MHz. Figs 4.29(a) and (b) show the computed passband and 

stopband responses, respectively, of the nominal design for ideal 

OP-AMPs (i.e. f^ = oo) and for the case when OP-AMPs have f
T
'

s 

1 MHz. The corresponding measured response curves of the discrete 

component model are shown in Figs 4.30(a) and (b)• 
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As a second example a fifth order Chebyshev highpass filter with 

a cut-off frequency of 1 kHz and^a~~passband ripple of 0.28 dB was 

designed using the method illustrated in Fig 4.20; the active RC 

circuit is shown in Fig 4.31 and its nominal and measured component 

values are listed in Table 4.2; the element values of the prototype 

highpass filter were obtained from the above lowpass prototype filter 

via the lowpass to highpass transformation. The OP-AMPs used in the 

circuit were again of type pA 741. 

In the absence of capacitor C the discrete component model of 

Fig 4.31 was found to oscillate at a frequency of 

approximately 250 kHz. All the other remaining fifteen combinations 

of connecting the OP-AMP input terminals were explored but no stable 

circuit was found; so the following measurements were made with the 

OP-AMP input connections as shown in Fig 4.31 and with the stabilising 

capacitor C^ present. The stability of NIC circuits is discussed 

morefully in Chapter 5 and the reasons for the instability of this 

circuit will be discussed there in more detail. 

Figs 4.32(a) and (b) show the computed passband and stopband 

responses, respectively, of the nominal design for the case of ideal 

OP-AMPs and for the case when OP-AMPs have f / s of 1 MHz. The 

corresponding measured response curves of the discrete component model 

are shown in Figs 4.33(a) and (b). 

As a third example an eight order elliptic bandpass filter, with 

a passband from 1 kHz to 1.4 kHz, passband ripple of 0.4 dB, 

stopband attenuation > 51.05 dB below 685 Hz and above 

1.714 kHz, was designed using the prototype structure of Fig 4.27(c). 

The element values of the prototype structure are given in Table 4.3 
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and the active RC circuit is shown in Fig 4.34. The nominal and 

measured component values of the circuit are given in Table 4.4. The 

capacitor C^ and resistors R^ and R^ in Fig 4.34 are required to 

stabilise the circuit (the stability of NIC circuits is discussed in 

Chapter 5) and their values were determined practically. 

The OP-AMPs used in the circuit of Fig 4.34 were of the 

type HA4741, which have typicai *s or 3.5 MHz. The computed 

passband and stopband responses of the circuit are shown in 

Figs 4.35(a) and (b), respectively, and the measured response curves 

of the discrete component model are shown in Figs 4.36(a) and (b), 

respectively. 

From above, we note that the computed and the measured results 

for the lowpass, the highpass and the bandpass filter are in good 

agreement and the small descrapencies which there are can be explained 

in terms of the tolerances on the components and non-ideal effects 

associated with the OP-AMPs (e.g. finite f^'s, etc.). 

4.8 Sensitivity considerations of the active RC filter circuits 

4.8.1 General 

The main objective in designing active RC filters via the 

simulation of resistively terminated LC ladder filters is to obtain 

active RC circuits which retain the low sensitivity properties of 

their LC prototypes. Therefore, we shall now discuss the sensitivity 

of the active RC circuits designed by the new method described in this 

chapter. 



The sensitivity of active RC filter circuits is extensively 

discussed in the literature and it often leads to considerable 

controversy as different authors use different criteria for evaluating 

the sensitivity. Hence an appropriate starting point for our 

discussion is to out-line the criterion which we shall use here to 

consider the sensitivity of the active RC circuits. In order to do 

this we begin by making the following observations. 

Filters are usually designed to meet some required loss-frequency 

specification and the design procedure is often carried-out assuming 

the components to be ideal, i.e. free from any parasitic effects 

what-so-ever. In order to estimate whether a filter circuit will 

still meet its required loss-frequency specification (and hence to 

evaluate its practical viability) when there is some tolerance on the 

values of the components, it is essential that the designer should 

have some knowledge- of the order of the sensitivity of the filter loss 

to changes in the component values and to the parasitics associated 

with the components. It is shown in Section 1.2.3 that resistively 

terminated LC ladder filters, which are designed to have maximum power 

transfer at the frequencies of minimum loss in the passband, have very 

low sensitivity in the passband to changes in the values of the 

reactive components. 
/ 

The term "low sensitivity" is also often used in the literature in 

conjunction with active RC circuits which are obtained by simulating 

resistively terminated LC ladder filters; however, the use of the term 

low sensitivity in this context is not strictly true since active RC 

circuit always has more components and hence its over-all sensitivity 

must always be greater than the sensitivity of its LC ladder 

prototype. It is obviously to be expected that active RC circuits 
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obtained by different simulation methods will have different 

sensitivities. However, it must be remembered that sensitivity is by 

no means the sole criterion for judging whether a particular 

simulation method is practically feasible; other attributes of the 

simulation method such as ease of tuning, number of resistors, 

capacitors and amplifiers used in the realisation are also equally as 

important' as the sensitivity of the circuit. 

From the above general discussion we note that the problem of 

sensitivity arises from the fact that we have tolerances on the values 

of the components used to realise the filter circuit. There are 

basically two types of tolerances; firstly, the component values may 

differ from their respective nominal values due to manufacturing 

tolerances, and secondly the component values may change due to ageing 

and variations in the ambient conditions. These latter type of 

variations are usually referred to as "post adjustment" variations and 

they are generally very much smaller than the manufacturing 

tolerances. In the realisation of high precision filters it is always 

necessary to trim some components of the circuit in order to take-up 

the manufacturing tolerances on the values of the untrimmed 

components. Hence, since it has been shown that the components of the 

active RC circuits obtained by the new method can have wide 

manufacturing tolerances the main source of sensitivity is that due 

to the post-adjustment variation in the component values. 

The sensitivity of active RC circuits is made-up of two 

contributions; one due to the passive components (i.e. resistors and 

capacitors) and the other due to the active components (i.e. finite 

f ' s of operational amplifiers). Here we shall only consider the 



sensitivity due to the passive components; the problem of the active 

sensitivity will be examined in more-detail in Chapter 5. 

It has been shown in Section 4.6 that for the active RC circuits 

derived by the present method the manufacturing tolerances on the 

values of the capacitors can be taken into account by trimming the 

resistors in the circuit. Thus the starting point in our discussion 

is that we assume that the circuit has been adjusted to have "ideal" 

characteristic at the time of manufacture. The typical values for the 

post-adjustment variation of thick-film resistors and ceremic chip 

capacitors are of the order of 28 parts per million per degree 

centigrade; hence a temperature variation of - 40°C would result in 

a - 0.112 % variation in the component values. 

It is important to note that the post-adjustment variations would 

mainly produce correlated changes in the component values, with some 

what smaller uncorrelated changes which result from the mis-match 

between the temperature coefficients of the components. The 

correlated changes in the resistors and capacitors of the circuit 

would result in variation of the RC products which would have a 

predominant effect on the cut-off frequency of the filter. On the 

other hand, the uncorrelated changes in the components would effect 

both the cut-off frequency and the passband ripple of the filter. 

Hence from the point of view of studying the sensitivity it is 

important to consider the changes in the components to be 

uncorrelated; indeed, this approach is adopted here. 

Let us now consider how we shall interpret the sensitivity of the 

active RC circuits derived in this chapter. In order to show that 

these active RC circuits exhibit low sensitivity properties - we shall 
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make use of two methods; in the first instant, we shall interpret the 

effect of changes in the passive components of the active RC filter in 

terms of "equivalent prototypes" filters; however, later-on we shall 

also present some computed sensitivity results for two active RC 

lowpass filters. 

4.8.2 Interpretation of sensitivity in terms of equivalent 

prototype circuits 

The equivalent prototype filter circuit is obtained in the 

following way. A component (say Z
q
) in the active RC circuit is 

changed by a finite amount (A Z) from its nominal value. We now trace 

back the steps which we followed to obtain the active RC structure and 

thus arrive at an LC network which is equivalent to the modified 

active RC network. Some of the elements of this equivalent prototype 

will directly correspond to the elements of the original prototype, 

except perhaps for a constant scaling of their values, while some of 

the reactive elements may become "lossy", i.e. they may have finite 

positive or negative Q-factors. 

The basic principle of the above argument will now be illustrated 

by considering the sensitivity of one of the active RC lowpass 

circuits designed in Section 4.6.1. 

Let us consider the prototype lowpass filter of Fig 4.13(a) and 

its active RC realisation of Fig 4.13(d) . which is also shown in 

Fig 4.37(a) for convenience. In Fig 4.37(a) we note that the resistor 

R , between nodes 1 and 2, and the capacitors C. , C
0
 and C

c s'
 r

 In* 3n 5n 

correspond directly to the similarly designated elements of the 

prototype LC filter of Fig 4.13(a). Moreover, any variation in the 
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values of capacitors C and C in Fig 4.37(a) can be interpreted by 
2 4 

an equivalent variation in the values of inductors L^ and L^ , 
n n 

respectively, in Fig 4.13(a). Hence we have a one-to-one relationship 

between the following elements (R (between nodes 1 and 2), C. , 
s x 
n n 

C
L
 , C

3
 , C

L
 and C

5
 ) of the active RC filter and the following 

2 n 4 n 
elements (R

g
 , C^ , L^ , C

3
 , L^ and C^ ) of the original LC filter, 

n n n n n n 

respectively. Therefore the sensitivity of the filter response to 

these elements of the active RC filter is the same as the sensitivity 

to the corresponding elements of the low sensitivity LC filter. 

Let us now consider the sensitivity of the shunt resistor at 

node 2 in Fig 4.37(a). In Fig 4.37(a), suppose we label the series 

resistor between nodes 1 and 2 as R^ and the shunt resistor as R^, 

where nominally R^= R
g
 . Now, we can replace resistors R^ and R^ 
n 

by a single series resistor of value R, where 

R1R2 
R ° r 1 + R2 < 4 - 6 > 

The effect of carrying-out this circuit modification multiplies the 

transfer function of the circuit by a constant factor G, where 

R1 
G - 1 + (4.7) 

*2 

Thus if we let the transfer function of the original circuit be T(s), 

then the transfer function, T'(s), of the modified circuit is given by 

T'(s) = G T(s) (4.8) 



- 181 -

Using the identity given in equation (1.1) and equation (4.8), we 

obtain 

sl
T/

<
s

,>l = l
 S

l
r ( s )

l = 1 (4 9) 
\ T(s)|

 1

 G
 1 

Now, making use of the identity 

S
y

 = S
y

 S
Z

 (4.10) 
X Z X 

and the results of equation (4.9), we obtain the following: 
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In equations (4.11) and (4.12) if we note that nominally R^= R ^ R
g
 , 

then s!
T

 = - si
T

 = ^ From this result we conclude that 
R1 2 2 

the sensitivity of the shunt resistor at node 2 in Fig 4.37(a) is 

equal in magnitude to the sensitivity of the series resistor between 

nodes 1 and 2 except that it has an opposite sign. But it has been 

shown above that the series resistor between nodes 1 and 2, in 

Fig 4.37(a), is directly equivalent to the source resistor in 

Fig 4.13(a). Therefore the above result together with the discussion 

on the sensitivity of LC filters to terminating resistors, presented 

in Section 1.2.3, leads us to the conclusion that the shunt resistor 

at node 2 in Fig 4.37(a) is analogous to the load resistor R^ of 
n 

Fig 4.13(a). 



It is interesting to note that if resistors R^ and R
2
 are 

replaced by a single resistor R, as stated above, then any change in 

the value of R can be represented by an equivalent simultaneous 

changes in the values of R^ and R2; the direction and magnitude of 

these changes will be same as the change in R (this follows directly 

from equation (4.6)). From equation (4.7) we note that if the values 

of R.̂  and P_
2
 change by the same amount in the santo Hi'rpnUnn t-hpn thp 

Q 
value of G does not change and consequently S in equation (4.13) 

K 
becomes zero and hence the first order sensitivity of the transfer 

function T'(s) to small changes in the value of R also becomes zero. 

The above argument shows that we have one-to-one correspondence 

between the seven elements of the active RC circuit of Fig 4.37(a) 

(i.e. two resistors and five capacitors) and the seven elements of the 

prototype filter of Fig 4.13(a). Therefore these elements of the 

active RC circuit have the same low sensitivity properties as their 

counterparts in the passive circuit. Thus, we have now to investigate 

the sensitivity of the filter response to the remaining elements of 

the circuit in Fig 4.37(a); namely, the four resistors (i.e. the 

'resistors connected to the right hand sides of the NICs) and the four 

conversion factors of the NICs. We shall first consider the 

sensitivity of the filter response to the remaining resistors and for 

this purpose we shall assume the NIC conversion factors to have their 

nominal values such that the circuit under consideration is equivalent 

to the circuit of Fig 4.37(b). 

In Fig 4.37(b), let us now consider the effect of a finite 

change A R in the value of the resistor between nodes 2 and 2'; 

this change can be represented as shown in Fig 4.37(c). The circuit 

of Fig 4.37(d) is obtained by transforming the encircled T-networks in 
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Fig 4.37(c) into their equivalent TT-networks. In Fig 4.37(d). we 

note that if A R = 0 then we obtain the original prototype circuit 

of Fig 4.13(a). The circuit of Fig 4.37(e) is obtained by using the 

Norton left-to-right "L" transformation on the encircled part of 

Fig 4.37(d). From the circuit of Fig 4.37(e) we note that the effect 

of having a change A r in the value of the resistor between 

nodes 2 and 2' in Fig 4.37(b) is twofold; firstly, a part of the 

prototype network is impedance scaled, and secondly two reactive 

elements in the resulting structure have finite Q-factors. 

Now, as stated above, if we assume that the circuit of 

Fig 4.37(a) is tuned at the time of manufacture, then A R is of the 

order of - 0.112 % of the nominal value of the source resistance, 

2 
R ; hence the value of the impedance scaling factor 0 in 
s 
n 

Fig 4.37(e) is very nearly unity. It is shown in Section 1.2.3 that 

the sensitivity of resistively terminated LC ladder filter to small 

changes in its component values is low, and hence the effect of 

impedance scaling in the circuit of Fig 4.37(e) will not drastically 

impair the low sensitivity properties of the circuit. At first sight 

it may be thought that the appearance of resistors R^ and R
g
 in 

Fig 4.37(e) may cause a serious deterioration in the sensitivity of 

the circuit but it is shown below that the effect of these resistors 

is not very serious. 

From Fig 4.13(a) we note that capacitors C^ and C^ are 
n n 

associated with resistors R
g
 and R^ ; we can therefore define 
n n 

Q-factors, Q
c
 and Q

c
 , given by wC^ R

g
 and wC^ R^ , respectively; 

1 5 n n n n 
where w is the frequency in radians/s. In the original prototype 

LC filter./ all the reactive elements are free of any parasitics and 

hence their individual Q-factors are infinite. Let us now assume that 
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parasitic resistance appears in parallel with each capacitor and a 

parasitic resistance appears in. series with each inductor of the 

prototype filter such that all the reactive components have finite 

Q-factors. LC filter designers are quite well accustomed to having 

inductors and capacitors of finite Q-factors in practical circuits. 

To them it is a well known fact that provided the Q-factors of the 

individual reactive components are very much greater (e.g. an order of 

magnitude) than the circuit Q-factors (i.e. Q_ and Q in the case 
C

1 5 

under consideration here), then it is always possible to build 

practical circuits; this implies that the circuit still preserves its 

low sensitivity properties. Therefore, in order to estimate whether 

our active RC circuit also maintains the low sensitivity properties of 

its prototype, we would have to look at the typical circuit Q-factor 

values and the values of the Q-factors of the reactive components. 

A search through filter tables [31] reveals that for equally 

terminated LC ladder Chebyshev lowpass filters, from order one through 

to fifteen and passband ripple values from 0.0004 dB to 1.2494 dB, 

the greatest value of the component Q-factor, at the passband edge 

frequency (i.e. w = 1 rads/s), is approximately 3.431. Therefore, 

in order to obtain a satisfactory response curve we require the 

Q-factors of the reactive components to be only greater than 50. 

However, it has been stated above that A R would be of the order 

of 0.112 % of the source resistance value, and hence the actual 

2 
Q-factors of C^ and L^ (= 0 L^ ) in Fig 4.37(e) would be greater 

n n n 
than 800; thus giving an excellent response curve in practice. 

Therefore, by virtue of the above argument, we can conclude that the 

active RC circuit of Fig 4.37(c) still maintains the low sensitivity 

properties of its LC ladder prototype of Fig 4.13(a). 



Let us now consider the effect of finite change, A R> in the 

value of the resistor between nodes 2' and 3, in Fig 4.37(b); the 

circuit under consideration thus becomes as shown in Fig 4.38(a). The 

circuit of Fig 4.38(b) is obtained by transforming the encircled 

T-networks in Fig 4.38(a) into their equivalent XT-networks. The 

application of the Norton right-to-left "L" transformation to the 

encicled part in Fig 4.38(b) leads to the circuit of Fig 4.38(c). As 

before, from the circuit of Fig 4.38(c) the effect of the 

c h a n g e A R c a n b e s e e n t o b e t w o - f o l d ; i . e . s o m e e l e m e n t s o f t h e 

original LC prototype are impedance scaled and two reactive components 

have finite Q-factors. Using the same argument as before, it can be 

shown that provided A R « R then the sensitivity of the filter 
n 

response to changes in the value of the resistor between 

nodes 2' and 3 in Fig 4.37(b) is expected to be low. 

The equivalent circuits for finite changes in the values of 

resistors between node pairs 3, 3' and 3', 4 in Fig 4.37(b) can also 

be derived in the same way and these are shown in 

Figs 4.39(a) and (b), respectively. Again, the sensitivities of the 

circuits in Fig 4.39 are expected to low provided A R << R 
n 

Let us now consider what effect the variations in the NIC 

conversion factors will have on the transfer function of the circuit 

in Fig 4.37(a). This problem will be approached in the following 

manner. 

We shall consider a finite change in the conversion factor of one 

NIC, while all other NICs and components in the circuit have their 

respective nominal values, and obtain an equivalent circuit on the 

same lines as above. For example, suppose the conversion factor of 
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NIC, in Fig 4.37(a) is KTO while all other components of the circuit 

have their respective nominal values, then the circuit of Fig 4.37(a) 

becomes equivalent to the circuit of Fig.4.40(a). By transforming the 

encircled T-networks in Fig 4.40(a) into their corresponding 

TT-networks we obtain the circuit shown in Fig 4.40(b). An equivalent 

representation of this circuit is shown in Fig 4.40(c) from which we 

note that the consequence of NIC^ having a variation in its conversion 

factor can be interpretted as having two effects on the prototype 

structure. Firstly, some elements of the prototype structure are 

impedance scaled; and secondly, one reactive element has a finite 

Q-factor.. Therefore, by the same argument as for the sensitivity of 

the resistors in Fig 4.37(a) (which have no counterparts in the 

LC prototype) the sensitivity of the filter response to variations in 

the conversion factor of NIC^ are expected to be low - provided the 

variation is small, i.e. |
K

J ~
 K

]| ^
 K

i> where K^ is the nominal 

value of the conversion factor (which is equal to unity in the case of 

Fig 4.37(a)). 

"Now let us derive the equivalent circuit when the conversion 

factor of NIC^ in Fig 4.37(a) is not equal to its nominal value of 

unity. The circuit in Fig 4.41(a) is obtained from the circuit of 

Fig 4.37(a) by assuming NIC^ to have a conversion factor K^, while all 

other components of the circuit have their respective nominal values. 

Fig 4.41(b) shows an equivalent representation of the circuit in 

Fig 4.41(a). Transformation of the encircled T-networks in 

Fig 4.41(b) into their equivalent IT—networks leads to the circuit 

shown in Fig 4.41(c). The circuit in Fig 4.41(d) is obtained by using 

the Norton right-to-left "L" transformation on the encircled part of 

the circuit in Fig 4.41(c). It is seen from Fig 4.41(d) that the 
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effect of NIC^ having a variation in its conversion factor is to 

impedance scale some elements of the prototype filter and to make the 

Q-factor of one of the reactive element finite. By the same argument 

as for NIC^ the sensitivity of the filter response to variations in 

the conversion factor of NIC^ will be low, provided - « K^, 

where K
2
 (=1) is the nominal value of the conversion factor of NIC^. 

In the same way as above, equivalent circuits for the case when 

NIC^ and NIC^ have variations in their respective conversion factors 

can also be derived and these are shown in Fig 4.42(a) and (b), 

respectively. 

In the above discussion we have considered the sensitivity of 

only one active RC realisation of a fifth order all-pole lowpass 

filter; obviously, the sensitivity of other types of all-pole 

structures (lowpass, highpass or bandpass) can be considered in the 

same way. The above method can also be used to interpret the 

sensitivity of elliptic structures
 x
 but the equivalent circuits 

obtained are relatively more complex than those obtained for all-pole 

structures. 

4.8.3 Computed results for the sensitivity of two active RC circuits 

In the previous subsection, it has been shown that there exists a 

one-to-one relationship between some components of the active RC 

circuit and the components of the prototype LC filter. Equivalent 

circuits were developed in order to show that the sensitivity of the 

active RC filter circuit response to variations in the values of the 

components which do not have counterparts in the LC prototype filter 

are fairly low provided the component variations are small. 
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As a further verification of the argument presented above, we 

shall now present some computed results for the sensitivity of two 

active RC circuits; the first of these circuits being the circuit of 

Fig 4.28, which is obtained by simulating the floating inductors in 

the prototype filter of Fig 4.13(a); the second circuit is shown in 

Fig 4.43 and it is obtained by simulating the grounded supercapacitors 

which result when we carry-out impedance scaling on the prototype 

filter of Fig 4.17(a). Both of these lowpass filters are designed to 

have a cut-off frequency of 1 kHz and a passband ripple of 0.28 dB; 

the nominal component values for the circuits of Figs 4.28 and 4.43 

are given in Tables 4.1 and 4.5, respectively. 

The loss-frequency responses of the circuits in 

Figs 4.28 and 4.43 were computed for the nominal values of the 

components and when each component is changed individually by 
+ 

- 2 % from its nominal value; the results are shown plotted in 

Figs 4.44 and 4.45, respectively. In Fig 4.44 the sensitivity curves 

marked by R^, R
2
,

 C

i>
 C

2>
 C

3>
 C

4
 a n d C

5 correspond directly to the 

sensitivity curves of R
g
 , R^ , C

1
 , L

2
 , C^ , L^ and C

5
 , 

n n n n n n n 
respectively, of Fig 4.13(a) whereas in Fig 4.45, the sensitivity 

curves marked by R^, R^, R^, R^Q and correspond directly to the 

sensitivity curves of L^ , C
2
 , L^ , C^ and L^ , respectively, of 

n n n n n 
Fig 4.17(a). On comparing the results in Figs 4.44 and 4.45, we make 

the following three observations. 

Firstly, although both circuits have basically the same structure 

(e.g. each circuit can be considered as consisting of five 

RC subcircuits which are coupled by four NICs), the sensitivities of 

the corresponding elements in the two structures are not the same. 
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Secondly, the circuit in Fig 4.43 can be seen to exhibit the 

interesting and useful property that the gain at zero frequency is 

independent of all passive component values. An explanation for this 

is as follows. It can be shown that the source and the load resistors 

in Fig 4.17(a) are equivalently represented by the two capacitors 

forming the capacitive potential divider at the output of the filter 

in Fig A-. 1 7 ( d ) B u t these capacitors have been replaced by a single 

capacitor C^, in Fig 4.43, which (it can easily be shown) has a zero 

small change sensitivity. 

Thirdly, we note that for the active RC circuits developed in 

this chapter we can adjust the circuit to allow for the manufacturing 

tolerances- as discussed in Section 4.6, and thus we are mainly 

interested in the effect of the post-adjustment variations of the 

components on the filter transfer function. Such variations are 

expected in practice to be of the order of - 0.112 %; 

i.e. approximately twenty times lower than the variations assumed in 

Fig 4.44 and 4.45. Therefore the response variations likely to occur 

in practice are expected to be correspondingly lower than the response 

variations shown in Figs 4.44 and 4.45. 

4.9 Conclusions 

In this chapter a novel approach to the active RC simulation of 

LC ladder filters has been presented. A simple procedure has been 

+ + 
used to obtain 2-port -R, -C subcircuits which simulate grounded and 

floating inductors and grounded and floating frequency dependent 

negative resistors, of the supercapacitor type. It has been shown 
+ + 

that by viewing the basic -R, -C subcircuits in different ways, 
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+ + 
many more -R, -C subcircuits can be obtained for simulating 

inductors and supercapacitors. 

+ + 

These -R, -C subcircuits can be realised by means 

of +R, +C circuits and current inverting type negative impedance 

converters. However, this approach of simulating the inductors 

(or supercapacitors) and then performing direct replacement of the 

simulated elements in the prototype structure is not very attractive 

since each simulated element requires rather a large number of 

components (both passive and active). The most novel feature of the 

approach presented here is the way in which the use is made of 
+ + 

these -R, -C subcircuits in filter design such that the number of 

components required in the active realisation is comparable with other 

active RC simulation methods (e.g. the method of partial and full 

impedance scaling [5,6]). 

The -R, -C subcircuits, although electrically port symmetrical, 

are structurally unsymmetrical, thus giving two possible active RC 

realisations per simulated element, depending on the orientation of 

N 

the ports of the simulated element. This gives rise to 2 different 

realisations of a prototype filter in which N elements are being 

simulated. This feature of versatility of the new design method has 

been illustrated by producing four designs of a fifth order all-pole 

lowpass filter in which two floating inductors are being simulated. 

The generality of the new design method has been shown by 

designing both all-pole and elliptic filters with lowpass, highpass 

and bandpass characteristics. The circuits designed by the new method 

can be designed in most cases to have equal and preferred value 

capacitors and also these capacitors can have wide manufacturing 



tolerances if we assume that the resistors in the circuit can be 

adjusted. 

For the design of all-pole filters the number of OP-AMPs required 

for the circuits designed by the method of this chapter is less than 

or equal to the number that would be required if the same filter is 

realised by the complex impedance scaling methods. Some type of 

elliptic structures (e.g. lowpass) may require a larger number of 

OP-AMPs, especially if capacitors with preferred values and wide 

manufacturing tolerances are to be used. 

In order to show that active RC circuits designed by the new 

method are practically feasible, some computed and measured results of 

discrete component models were presented in Section 4.7. A close 

agreement is obtained between the computed and the measured results. 

In Section 4.8 the sensitivity aspects of the active RC circuits 

derived in this chapter were discussed. It is shown that there exists 

a one-to-one relationship between some elements of the active RC 

circuit and the elements of the prototype filter. Furthermore, it has 

also been shown that changes in components which have no counterparts 

in the LC prototype can be considered in terms of equivalent prototype 

circuits. Each element of this type usually has two effects on the 

equivalent prototype circuit; firstly, some elements of the equivalent 

prototype are impedance scaled; secondly, the Q-factors of some 

reactive elements in the equivalent prototype circuit become finite. 

If the changes in component values are fairly small then these two 

effects do not seriously deteriorate the sensitivity of the active RC 

circuits. This point has been illustrated by presenting some computed 

sensitivity results for two designs of an active RC lowpass filter. 
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5.1 Introduction 

The design of active RC circuits is often carried-out assuming 

the active elements (i.e. operational amplifiers) to be ideal because 

the design procedure is then quite straight forward. However, due to 

the imperfections . of the operational amplifiers (OP-AMPs) the 

characteristics of the practical circuit may deviate considerably from 

the characteristics for which the circuit was designed. The OP-AMPs 

suffer from various imperfections but the single most serious 

imperfection is generally the finite gain bandwidth product, f^,, of 

the OP-AMP. 

In this chapter we shall consider the effect, on the filter 

response, of using OP-AMPs with finite f
T
's to realise the NICs in the 

active RC networks derived in Chapter 4; in particular, a method of 

minimising the effect of finite f
T
's in circuits which use NICs will 

be discussed in Section 5.2. The possibility of minimising the effect 

of finite f
T
's in circuits which use OP-AMPs to realise NICs - stems 

from the following argument. 

The usual requirement of an NIC is that it should have the 

required conversion factor, which is a quantity exclusively given by a 

ratio of two impedances, i.e. the "NIC impedances"; hence the 

conversion factor of an NIC solely depends on the relative impedance 

levels of the NIC impedances. Thus we have at our discretion the 

choice of the absolute impedance level of the NIC impedances and we 

shall show in Section 5.2 that this parameter can be utilised to 

minimise the effect of finite f^'s in NIC circuits. The conversion 

factors of NICs used in the filter circuits of Chapter 4 are 

independent of frequency and hence the simplest form for the NIC 



impedances is to choose them as resistances; however, we shall also 

show that the effect of finite f^'s can be reduced further by choosing 

the NIC impedances to be of more complex form (e.g. a parallel or a 

series combination of a resistor and a capacitor). 

In section 5.3, the criterion developed in Section 5.2 to 

minimise the effect of finite f^'s will be applied to the three NIC 

all-pole 5th order highpass filter of Fig 4.21(c); the validity of the 

method will be shown by means of some computed results and also by 

means of some measured results for the discrete component model. 

A discussion on the stability considerations of the circuits 

which use NICs is presented in Section 5.4. It is shown that the 

stability of a NIQ can be conviently approached in a simple way by 

considering the amounts of feedback being applied to the inverting and 

the non-inverting terminals of the OP-AMP (realising the NIC) at zero 

and infinite frequencies. Furthermore, a method is discussed , in some 

detail which can be used to stabilise inherently unstable NIC 

circuits. 

In Section 5.4 the following definition is assumed for the 

stability of a circuit: A circuit is stable if for a bounded input 

the output of the circuit is also bounded. In our discussion, we 

shall assume that the input to the circuit is zero. 

5.2 A method of minimising the effect of finite f>j/s in NIC circuits 

5.2.1 General 

In Chapter 4 we developed active RC filter circuits which require 

negative impedance converters (NICs). As discussed in Chapter 4, a 



NIC can be realised very simply by means of an OP-AMP and two 

impedances which we shall refer to here as the "NIC impedances"; the 

conversion factor of the NIC is given by the ratio of the NIC 

impedances. If the OP-AMP is assumed to be ideal then the design of a 

NIC is quite straight forward and we can arbitrarily choose the 

impedance levels of the NIC impedances as long as their ratio is equal 

to the required conversion factor. Inevitably, if the OP-AMPs suffer 

from finite gain bandwidth products ( f / s ) then the transfer function 

of the filter circuit will be in error. In this section we shall 

describe a method of minimising the effect of finite f / s in circuits 

which use OP-AMPs to realise NICs. In order to minimise the effect of 

finite f / s we have basically two parameters at our disposal; namely, 

the impedance levels of the NIC impedances and the composition of NIC 

impedances (e.g. R, parallel RC, etc). It will become apparent later 

in the chapter that both of these parameters can be exploited 

advantageously to significantly reduce the errors, due to the effect 

of finite f^'s, in the response of the circuit. The basic principle 

on which the method of minimising the effect of finite f
T
's is based 

is as follows. 

Consider the general 2-port network shown in Fig 5.1(a) which 

contains NICs. Now, one approach of minimising the effect of finite 

f
T
's would be to consider each NIC in turn to have finite f

T
 (while 

all the remaining NICs in the circuit are considered to be ideal) and 

to minimise the error in the transfer function of the circuit by 

appropriately choosing the impedance levels and/or the composition of 

the NIC impedances. In the following we shall adopt this type of 

minimisation strategy; however, before we proceed to obtain a suitable 
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objective function which is to be minimised, it is necessary to 

consider the following. 

Suppose the network of Fig 5.1(a), which comprises NICs, has been 

obtained by the method of Chapter 4. Now if we consider one of the 

NICs inside the network of Fig 5.1(a) to be non-ideal then separating 

the non-ideal NIC from the network will divide the network into one of 

the three forms shown in Figs 5.1(b), (c) or (d). In particular, if 

Fig 5.1(a) is an all-pole filter then separation of the non-ideal NIC 

will exclusively divide the network into the form shown in Figs 5.1(b) 

or (c), whereas for elliptic filters anyone of the three forms shown 

in Figs 5.1(b) ^ (d) may be obtained. Note that the subnetworks 

N
A
, and N^ in Figs 5.1(b), (c) and (d) may also contain NICs but 

these NICs are considered to be ideal. For ease of reference, we 

shall refer to the non-ideal NIC in circuits of Figs 5.1(b), (c) and 

(d) as the "coupling", the "grounded" and the "bridged" NIC circuits, 

respectively. 

In the coupling and the bridged NIC circuits of 

Figs 5.1(b) and (d) the input and the output nodes of the original 

network occur in subnetworks N^ and N
p
, respectively; whereas, in the 

grounded NIC circuit of Fig 5.1(c) the input and the output nodes are 

located in the subnetworks N^ and N^, respectively. 

In Sections 5.2.2 and 5.2.3 we shall derive the objective 

functions for minimising the effect of finite f-j/s for the coupling 

and the grounded NICs, respectively. The case of the bridged NIC is 

much more complicated and it is not considered here. Thus the method 

to be described here is applicable for minimising the effect of finite 

in all-pole structures. 
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5.2.2 Minimising the effect of finite f^ for coupling NICs 

Let us consider the problem of minimising the effect of finite f^ 

for the case of the coupling NIC network of Fig 5.1(b), which is also 

shown in Fig 5.2(a). The voltage transfer function, T, of the circuit 

in Fig 5.2(a) is given by 

V V V, 
= c 5 a ) 

1 1 1 

From equation (5.1) we note that the partial transfer function 

term i
s
 given by the ratios of the impedances within the 

subnetwork N
B
, in the circuit of Fig 5.2(a), and hence it is not iJ 

affected by the non-ideal NIC. However the other partial transfer 

function term (i.e. V / V / in equation (5.1) is dependent on the 

ratios of the impedances within the networks N^ and N
R
 and also on the 

NIC parameters and hence it is affected by the non-ideal performance 

of the NIC. Thus the object of minimising the effect of the finite f^ 

of the coupling NIC on the overall transfer function can be achieved 

by minimising the effect of the finite f^ on the partial transfer 

function
 v

j
7 V

i 

in the circuit of Fig 5.2(a). This can be achieved 

in the following manner. 
In the circuit of Fig 5.2(a) if the transfer function of the 

subnetwork N^, with port 2 open circuit, is T^ and if the input 
oc 

impedance at port 2, with port 1 short circuit, is Z then using 
ii 

Thevenin's theorem the circuit of Fig 5.2(a) can be represented as 

shown in Fig 5.2(b). Note that Z
g
 in Fig 5.2(b) represents the input 

impedance at port 1, with port 2 open circuit, of the subnetwork N^ 
D 

in Fig 5.2(a). Since the transfer function T
A
 is given by the 
oc 

ratio of the impedances within the subnetwork N^, i.e. it is not 
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affected by the 11011-ideal NIC, then our objective function for 

optimisation becomes the transfer function of the circuit in 

Fig 5.2(b) (i.e. V ^ ^ ) . The circuit of Fig 5.2(c) is obtained by 

replacing the NIC in the circuit of Fig 5.2(b) by its OP-AMP 

realisation (see Fig 4.2(b)). In the following we shall assume that 

the open loop gain, A, of the OP-AMP is characterised by 

A W C O N 

a = o c <.5.2) 
s + w 

c 

where A and w are the DC gain and the 3—dB frequency, respectively, 

of the OP-AMP and s is the complex frequency variable. 

If the voltage transfer function of the circuit in Fig 5.2(c) is 

T^ then by straight forward analysis it can be shown that 

V1 1 
v — ( 5 - 3 ) 

V

2 1 - Z
A
/

( k Z

B
} + A [ Z

A
/ Z

1
 + Z

A
/ ( k Z

B
} + Z

l
/ ( k Z

B
} + 1 1 

where k =
 Z

^/Z
2
 is the conversion ratio of the NIC 

assuming A — ^ oo. 

Let the transfer function of the circuit in Fig 5.2(c) be T
q
 when the 

OP-AMP is ideal; then an expression for T
q
 can be obtained from 

equation (5.3) by letting A ^ oo. 

T

o
 =

 1 - Z
A
/(kZ

B
) <

5

'
4

> 

Now, using equation (5.4) the expression for the transfer function T^ 

(i.e. equation (5.3)) can be rewritten as 
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T 

T , : 2 ( 5 . 5 ) 
1 + A [(2T - 1) + (T - DZx/Za

 + T

o
Z

A
/ Z

l
] 

Let us express equation (5.5) as follows 

T 

T , 2 - r - ( 5 . 6 ) 
1 + A E 

where E = (2Tq - 1) + (T
q
 - 1)Z

1
/Z

A
 + T ^ / Z j (5.7) 

Suppose we form the objective function, F, as the ratio of the ideal 

transfer function T and the non-ideal transfer function T,, then from 

o 1 ' 
equation (5.6) we obtain 

T 
F =2- = 1 + A E (5.8) 

1 

In equation (5.8) we note that if A »=oo (i.e. ideal OP-AMP), 

then value of F ^>1. Thus the problem of minimising the effect of 

finite f
T
 reduces to that of making the term A in equation (5.8) 

as small as possible compared with unity. For a given OP-AMP type, 

the range of values of the open loop gain, A, would be specified and 

hence this parameter cannot be used for minimising the objective 

function of equation (5.8). Therefore the only way of minimising the 

objective function is to make E (see equations (5.8) and (5.7)) as 

small as possible. 

The values of the impedances within the subnetworks N
A
 and N

p
 and 

the value of the NIC conversion factor k, in Fig 5.2(a), are dictated 

by the specifications for which the circuit is designed and practical 



- 200 -

considerations (e.g. the use of equal and preferred value 

capacitors); therefore T (see equation (5.4)) and Z in 
O A 

equation (5.7) are not free parameters and hence these cannot be 

considered for minimising E. From equation (5.7) we see that the only 

free parameter for minimising E is Z^, the NIC impedance (note that 

the value of Z^ is chosen as Z^ = Z / k , where k is the conversion 

factor of the NIC). From equation (5.8) we note that if we can manage 

to make E = 0, then the objective function becomes equal to unity and 

hence the effect of finite f^ becomes zero which is a very 

desirable result. Let us now see if it is possible to make E = 0. 

Equating equation (5.7) equal to zero and solving for Z^ gives 

Z = - Z. and Z = - Z T /(T - 1) = -kZ_ (5.9) 
1 A 1 A o o B 

The result given in equation (5.9) is very desirable and would 

totally eliminate the effect of the finite f^, but it must be 

remembered that the impedance Z^ represents the impedance of the 

subnetwork N^ (see Fig 5.2(a)) which may contain NICs, and hence it 

would not be very practicable to use extra NICs to realise the NIC 

impedances. Therefore it may not be possible to choose the NIC 

impedances in accordance with equation (5.9). In this situation a 

compromise solution may be found by evaluating the two expressions for 

Z^, given in equation (5.9), over some frequency band in which it is 

desired to minimise the effect of the finite f
T
 and then see if these 

expressions can be approximated by choosing the NIC impedances to be 

of "simpler" forms (e.g. resistive, parallel or series combination of 
r 

a resistor and a capacitor, etc.). In order to avoid the requirement 

of extra active devices it is necessary to restrict the NIC 



impedances to have only positive component values; obviously this 

restriction will limit the possibility of achieving closer agreement 

between the desired expressions for the NIC impedances (see 

equation (5.9)) and the expressions obtained by choosing the NIC 

impedances to be of simpler form. 

For practical purposes, we require the NIC impedances to have a 

small number of components; hence tne simplest approach is to make the 

NIC impedances resistive. Observing the constraint that the NIC 

impedances should not be realised with extra NICs, we shall now show 

how to obtain the optimum value for the NIC impedances when they are 

chosen as resistors. 

Suppose we arbitrarily choose the level of the NIC impedances and 

then compute the objective function, F, in equation (5.8) over some 

frequency band of interest (e.g. the passband of the filter) and 

determine the minimum and the maximum values (in dBs) of the objective 

function in this frequency range. Now, if we repeat the above 

exercise for other values of the NIC impedances then we can plot a 

graph of NIC resistor values against the difference in the minimum and 

the maximum values of the objective function; the optimum value for 

the NIC resistors can then be obtained from this graph. 

In the case of NIC impedances being resistors we have only one 

degree of freedom, namely the value of the resistors. However if the 

NIC impedances comprise a parallel or a series combination of a 

resistor, R, and a capacitor, C, then we have two degrees of freedom 

for minimising the objective function. The values of R and C can be 

chosen optimally but the computational procedure will be more complex 

than in the previous case when the NIC impedances were purely 
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resistive. Since the NIC impedances are more complex in form then 

the need to find the optimum values of R and C may not be as critical 

as in the previous case; an explanation for this is as follows. 

The impedances Z^ and Z
fi
 in Fig 5.2 are composed of -R's 

+ 

and -C's. Equation (5.9) shows the form that the NIC impedances 

must take in order to totally eliminate the effect of the finite 

amplifier f^. However, as stated previously, it is not practicable to 

choose the NIC impedances according to equation (5.9); instead we 

make an approximation and restrict the NIC impedances to be either 

purely resistive or a parallel or series combination of a resistor and 

a capacitor. A better approximation to equation (5.9) is achieved 

when the NIC impedances comprise a resistor and a capacitor than when 

they are chosen to be purely resistive and hence the error introduced 

into the transfer function by the finite f^, will be smaller in the 

former case than in the latter. If the values of the resistors and 

capacitors comprising the NIC impedances are chosen in a certain 

manner then the error resulting from the finite f^ may be such that it 

is not necessary to optimise the values of the NIC impedances. One 

way of choosing the values of R and C (which make-up the NIC impedance 

Z^) would be to replace Z^ in equation (5.9) by the parallel or the 

the series RC expression and then evaluate the modulus's of the left 

hand side and the right hand side expressions in equation (5.9), at 

two frequencies to obtain two simultaneous equations which can then be 

solved to give the values of R and C. 

For the case when the NIC impedances comprise a parallel or a 

series combination of R and C, the following procedure can be used if 

it is desired to choose the values of R and C optimally. Suppose the 

value of C is chosen arbitrarily; then the value of R can be 
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determined by the method described above (for the case when NIC 

impedances are purely resistive) such that the objective function is 

minimised. Similarly, this procedure can be repeated for other values 

of C. The optimum values of R and C correspond to the condition which 

produces the smallest deviations in the objective function. 

It should be noted that if the NIC impedance Z^ is chosen as a 

parallel or a series combination of a resistor and a capacitor, then, 

since Z^= Z^/k (where k is the conversion factor of the NIC), it 

follows that the other NIC impedance must also be composed of a 

similar resistor-capacitor combination. One serious implication of 

this is that the spread between the capacitors used for the NIC 

impedances must be exactly equal to the conversion factor of the 

NIC this is very undesirable restriction if preferred value 

capacitors, with wide manufacturing tolerances, are to be used in the 

filter circuit. 

5.2.3 Minimising the effect of finite f^ for grounded NICs 

In this subsection we shall consider a method of minimising the 

effect of finite amplifier gain bandwidth product for the grounded NIC 

circuit of Fig 5.1(c), which is also shown in Fig 5.3(a). As stated 

previously, for this circuit, the output node of the filter is 

contained within the subnetwork N^. If the voltage at the output node 

is V then the transfer function, T, .of the circuit is given by o 

V 
T o 

(5.10) V. l 

For the same reasons as stated previously for the coupling NIC in 

Section 5.2.2, it can be shown that the object of minimising the 
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effect of finite f^ on the overall transfer function can be achieved 

by minimising the effect of finite f
T
 on the partial transfer function 

term
 V

j / V
i
 in equation (5.10). 

In Fig 5.3(a) if the transfer function of the circuit to the 

point marked "X", with the NIC and the subnetwork N
R
 disconnected, 

is T^ and if Z^ represents the impedance as seen from 
oc 

point "X", then using the Thevenin's theorem it can easily be shown 

that the circuit of Fig 5.3(a) can be equivalently represented by the 

circuit shown in Fig 5.3(b), where Z
fi
 represents the impedance of 

subnetwork N_, seen by the NIC. Now the transfer function T. is not 
B A 

oc 

affected by the non-ideal NIC and our objective function for 

minimisation becomes the transfer function of the circuit in 

Fig 5.3(b) (i.e. V ^ / V ^ . The circuit in Fig 5.3(c) is obtained by 

replacing the NIC in the circuit of Fig 5.3(b) by its OP-AMP 

realisation. 

Assuming the open loop gain, A, of the OP-AMP to be given by 

equation (5.2) and designating the voltage transfer function of the 

circuit of Fig 5.3(c) as T^ then it can be shown by straightforward 

analysis that 

V, 1 - A"
1

 [1 + Z./(kZ.) ] 

T
 =

 1 B

 (5.11) 
1 V

2 ^ Y ^ V ^ "
1

 l
1 +

V
( k Z

B
) + Z

A
/ Z

l
+ Z

A
/ ( k Z

B
) ] 

where k is the conversion ratio of the NIC and is given by k = Z / Z
2
. 

If the transfer function of the circuit in Fig 5.3(c) is T
q
 when the 

OP-AMP is ideal then an expression for T
q
 can be obtained from 

equation (5.11) by letting A fa oo. 
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i.e. T (5.12) 

° 1 - V ( k V 

Now, using equation (5.12), the expression for the transfer function 

T^ in equation (5.11) can be rewritten as 

T {1 - A"
1

 [1 + Z.(T - 1)/(Z,T ]} 
T. y — — (5.13) 

1 - A"
1

 [(2T
o
 - 1) + Z

l (
T

o
 - 1)/Z

A
 + T

o
Z

A
/

Z l
] 

Let us express equation (5.13) as follows 

T [1 - A~
X

E ] 

T,
 2

 ] (5.14) 
i - A-aE2 

where E = 1 + Z.(T - 1)/(Z.T ) (5.15) 
1 1 O A O 

E
2
 = (2T

o
 - 1) + Z (T

0
 - 1)/Z + T

o
Z

A
/

Z l
 (5.16) 

Suppose F is the objective function given by the ratio of the ideal 

transfer function T and the non-ideal transfer function T., then from 

o 19 
equation (5.14) we obtain 

T 1 - A
_ 1

E 
F

 8

 - L .
 ( 5 > 1 7 ) 

T
x
 1 - A

 i

E
1 

We note that in equation (5.17) if A oo (i.e. the OP-AMP is 

ideal), then F 1; thus the essential condition for minimising 

the effect of the finite f i s to make |f| = 1 over the frequency 

range of interest. From equation (5.17), we note that this condition 

can be satisfied over the entire frequency range if E^ and E
2
 can be 
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simultaneously made equal to zero. Therefore, equating 

equations (5.15) and (5.16) equal to zero and solving for Z^ gives 

E
x
 = 0 if 

Z

1 " "
 Z

A
T

O
/ ( T

O " 1) - -
 k Z

s <
5

-
1 8

> 

and E
2
 = 0 if 

Z

1 * "
 Z

A
 o r Z

1 " " V o «
T

o " ="
k Z

B <
5

'
1 9

> 

From equations (5.18) and (5.19) we note that E^ and E
2 

simultaneously become zero if Z^ is chosen as in equation (5.18). 

Although this result is very desirable and would totally eliminate the 

effect of the finite f^ it should be remembered that it is not 

practicable if the NIC impedances comprise negative elements, since 

this would require the use of extra NICs. In this situation, a 

compromise solution may be found by evaluating the expression for Z^, 

given in equation (5.18), over some frequency band (e.g. the passband 

of the filter) in which it is desired to minimise the effect of finite 

f^, and then see if this expression can be approximated by choosing 

the NIC impedances to be of simpler form (e.g. resistive, parallel or 

series combination of a resistor and a capacitor, etc.). One obvious 

consequence of restricting the NIC impedances to have only positive 

component values is that it will limit the possibility of achieving a 

closer approximation between the desired expression of the NIC 

impedances (see equation (5.18)) and the expression obtained by 

choosing the NIC impedances to be of simpler form. 
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The procedure for minimising the objective function of the 

grounded NIC circTrtt- of Fig 5.3(c) is exactly the same as for the 

coupling NIC circuit of Fig 5.2(c). 

So far we have concentrated only on choosing the NIC impedances 

to minimise the effect of the finite amplifier gain bandwidth product. 

Let us now consider if the same desired effect can be achieved by some 

other means. 

In the ideal transfer function of the circuit of Fig 5.3(c) (see 

equation (5.12)) if we replace the NIC conversion factor, k, by the 

ratio of the NIC impedanees (i.e. Z^ and Z^), then we obtain 

1 
T (5.20) 

l - Z
A
Z

2
/ ( Z

B Z I
) 

From equation (5.20) we note that if Z
fi
 is replaced by Z^ and Z^ is 

replaced by Zg, which is equivalent to interchanging the positions of 

the impedances Z. and Z^ in the circuit of Fig 5.3(c) as shown in 
X D 

Fig 5.3(d), then T
q
 is not affected by this modification. However, if 

the same modification is carried-out in equations (5.15) and (5.16), 

then E^ and E
2
 become independent of the NIC impedances and hence the 

effect of the finite f^ on the transfer function, T^, in 

equation (5.14) will not be dependent on the level of the NIC 

impedances. In this case the value of the NIC impedances can be 

chosen arbitrarily and the effect of the finite f^, will only depend on 

Z
A
, Zg, k and the amplifier gain i.e. the parameters which are 

specified and hence cannot be chosen in order to minimise the effect 

of the finite f
T
« 
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The impedance Z in the circuit of Fig 5.3(c) represents the 
B 

input impedance of the subnetwork N . It can be shown that if the 
B 

subnetwork N contains active devices (e.g. other NICs) then on B 
interchanging the positions of the impedances Z and Z_, the grounded 

i B 

terminal of the impedance should be connected to the output 
B 

terminal of the OP-AMP in order to ensure that the OP-AMPs used in Z„ 
B 

to realise the NICs still have one of their output terminal grounded. 

The above method of interchanging impedances Z. and Zv could also 
1 B 

have been applied to the coupling NIC circuit of Fig 5.2(c) with 

similar results. However, in Fig 5.2, since the output node of the 

filter circuit is contained within the subnetwork N._, then if 

impedances Z^ and Z
R
 are interchanged, the required output will be the 

difference between the voltages at two nodes, neither of which is 

grounded. Hence, in order to obtain an output relative to ground, it 

would be necessary to use a differential amplifier, and this would 

increase the total number of OP-AMPs in the circuit. Therefore, this 

technique is not considered in the context of minimising the effect of 

finite f^, for the circuit of the coupling NIC. 

It should be noted that the interchanging of the impedances Z^ 

and Z_ can be interpreted as being equivalent to realising the 

negative impedance (i.e. -Z_.) by an amplifier of gain (1 + k as 
B 

described in [78]. 

5.3 A computed example Minimising the effect of finite for 

a three NIC all-pole 5th order highpass filter 

In this section, some of the ideas developed in the previous 

section for minimising the effect of finite f
T
's for circuits using 
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NICs will be used to minimise the effect of finite f-j/s of the three 

NIC all-pole 5th order highpass filter of Fig 4.21(c), which is also 

shown in Fig 5.4(a). Fig 5.4(b) shows the general realisation of the 

circuit in Fig 5.4(a) when the NIC impedances are chosen to be 

resistive (capacitors Cy and Cg, shown in dashed line, in Fig 5.4(b) 

should be ignored at this stage). The. nominal component values of the 

circuit in Fig 5.4(b) are given in Table 5.1 for the case when the 

filter is designed to have a cut-off frequency of 1 kHz and a passband 

ripple of 0.28 dB; note that the values of the NIC resistors (i.e. Rg, 

Ry, Rg, Rg, R
1 q
 and in the circuit of Fig 5.4(b), have been 

chosen arbitrarily. 

The computed loss-frequency responses ,of the filter circuit in 

Fig 5.4(b) are shown in Fig 5.5 for the case of ideal OP-AMPs 

(i.e. f a oo) and for the case when all OP-AMPs have a gain bandwidth 

product of 1 MHz. From the curves in Fig 5.5 we note that when the 

OP-AMPs are non-ideal the loss of the circuit starts to peak at high 

frequencies (this peaking is approximately 20 dB). We shall now show 

that a marked improvement in the non-ideal response of the filter 

circuit can be achieved by appropriately choosing the level and the 

type of the NIC impedances. 

In ' the circuit of Fig 5.4 the NIC with a conversion factor k^ is 

a coupling type NIC and hence in order to minimise the effect of 

finite f
T
 of the OP-AMP realising this NIC we need to minimise the 

effect of finite f
T
 on the transfer function of the circuit shown in 

Fig 5.6(a). The impedances comprising Z^ and Z
g
, in Fig 5.6(a), are 

shown in Figs 5.6(b) and (c), respectively. Note that since we are 

considering the non-ideal effect due to NIC^, in Fig 5.4(a), the other 

two NICs (i.e. NIC^ and NICg) are at this stage considered to be 
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ideal. The objective function for the circuit of Fig 5.6(a) is the 

same as in equation (5.8) except that due to the connection"of~~the 

OP-AMP input terminals the term "A
- 1

" is replaced by "-A
-

"
1

". 

The graph in Fig 5.7 shows the plot of the modulus of the 

objective function against frequency, in the frequency 

range 0.5 — 50 kHz, when the NIC impedances (i.e. Z^ and Z
2
) in 

Fig 5.6(a) are chosen as resistors of value 1 kOhms and the OP-AMP is 

assumed to have f
T
 value of 1 MHz. In the graph of Fig 5.7, we 

mark-off I f I and |f .1 and define ( If I—If . P) as the 
maxj min | max minj ' 

"loss variation" caused by this particular value of the NIC 

impedances. Fig 5.8 shows the plot of the loss variation against 

values of the NIC resistors and we note that the minimum of the loss 

variation has a value of approximately 1.1 dB corresponding to a NIC 

resistor value, of 541.25 Ohms; this gives the best result that can be 

achieved by choosing the NIC impedances as resistors. 

Fig 5.9 shows the plot of |f| against frequency for the case 

when the NIC impedances are chosen as a parallel combination of a 

resistor, R, and a capacitor, C, where R = 22.7201 kOhms and 

C = 2.89036 nF. In Fig 5.9 the loss variation in the frequency band 

from 0.5 — 50 kHz has been reduced to approximately 0.34 dB. 

Let us now consider minimising the effect of finite f
T
 for NIC

2 

in the circuit of Fig 5.4(b). Since NIC
2
 is a grounded NIC the 

equivalent circuit for minimising the effect of the finite f^ is as 

shown in Fig 5.10(a) and the equivalents of impedances Z^ and Zg are 

shown in Figs 5.10(b) and(c), respectively. Note that in this case 

NICj and NICg are considered to be ideal. The objective function for 

the circuit of Fig 5.10(a) is given by equation (5.17). The graph in 
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Fig 5.11 shows the plot of the modulus of the objective function 

against frequency, over the frequency band 0.5 kHz, when the 

NIC impedances (i.e. Z^ and Z
2
 in Fig 5.10(a)) are chosen as resistors 

of value 1 kOhms and 3 kOhms and the OP-AMP is assumed to have an f^ 

value of 1 MHz. The "loss variation" caused by these particular 

values of the NIC impedances is approximately 2.5 dB. The plot of 

the loss variation against the value of the NIC impedance Z^ is shown 

in Fig 5.12 and the minimum of the loss variation has a value 

of 0.777 dB corresponding to Z^= 122.18 Ohms; thus this represents 

the best result that can be achieved by choosing the NIC impedances as 

resistors• 

In the circuit of Fig 5.10(a) the NIC impedances can be chosen to 

be of more complex form (e.g. parallel combination of a resistor and a 

capacitor) in order to reduce further the loss variation. However, as 

explained in subsection 5.2.3, in the case of the grounded NIC circuit 

we have the option of interchanging the positions of the impedances Z^ 

and Z.Q. Fig 5.13 shows the loss variation plotted against the value 

of the NIC impedance Z^ (when Z^ is chosen to be resistive) for the 

case when the positions of impedances Z. and Z_. in Fig 5.10(a) have 
1 B 

been interchanged. From Fig 5.13 we note that, as predicted in 

subsection 5.2.3, the value of the loss variation (= 0.272 dB) is 

independent of the value of Z^. 

In the circuit of Fig 5.4(a), the conversion factor of NIC
2 

is 1/3; the conversion factor for this NIC can be made equal to unity 

by making the values of the resistor and the capacitor terminating 

NIC
2
 equal to

 R

3/3 and 3C
4
,respectively. Fig 5.14 shows the loss 

variation plotted against the value of the NIC impedance Z^ (when Z^ 

is chosen to be resistive) for the case when the circuit of Fig 5.4 
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has been designed to make the conversion factor of NIC
2
 equal to unity 

and when the positions of the impedances Z. and Z- in the circuit of 

1 B 
Fig 5.10(a) have been interchanged. We note from Figs 5.13 and 5.14 

that although the amplitude of the objective function, for the case 

when the positions of the impedances Z^ and Z
fi
 in Fig 5.10(a) have 

been interchanged, is invariant with respect to the level of the NIC 

impedances it is certainly dependent on the value of the conversion 

factor of NIC
2
. 

In the circuit of Fig 5.4(b), NIC^ is a coupling type of NIC and 

hence the procedure for minimising the effect of its finite f^ is 

exactly the same as described earlier for NIC^. Fig 5.15 shows the 

"equivalent circuit" of NIC^ for minimising the effect of finite f
T 

together with the equivalents of impedances Z. and Z,,. The plot of 
A B 

the loss variation against the value of the NIC impedance ,Ẑ  (when it 

is chosen as a resistor) is shown in Fig 5.16 from which we note that 

the minimum of . the loss variation has a value 

of 0.053 dB corresponding to Z^= 2.969 kOhms. The value of the 

loss variation for the circuit of Fig 5.14(a) can be reduced further 

by choosing the NIC impedances to be of more complex form; however, 

this is not necessary because the non-ideal effects of NIC^ and NIC
2 

are comparatively larger than the non-ideal effect of NIC^ and hence 

the error in the filter output of Fig 5.4(a) will be mainly due to 

NIC
L
 and NIC

2
. 

The graph in Fig 5.17 shows the computed loss-frequency 

characteristics of the circuit in Fig 5.4(b) for the case when the NIC 

impedances are chosen in the following manner. The impedances of NIC
2 

and NICg are chosen optimally from the graphs of Figs 5.12 and 5.16, 

respectively; note that choosing the impedances of NIC from Fig 5.12 



implies that the positions of impedances Z^ and Zg in Fig5.10(a) (and 

their counterparts in Fig 5.4(b)) have been interchanged. The 

impedances of NIC^ were chosen as a parallel combination of a resistor 

of value 22.7201 kOhms and a capacitor of value 2.89036 nF. The 

nominal component values of this "optimal" circuit are listed in 

Table 5.1. Comparison of the graph in Figs 5.17 with the graph in 

Fig 5.5 shows that the non-ideal performance of the NIC circuits can 

be significantly improved by appropriately selecting the level and/or 

the type of the NIC impedances. 

In order to test the validity of the above method of reducing the 

effects of finite f-j/s a discrete component model of the circuit in 

Fig 5.4(b) was built using polystyrene capacitors, carbon resistors 

and 741 type operational amplifiers, which have typical f^ value 

of 1 MHz. The measured component values of the discrete component 

model are given in Table 5.1. The measured passband and stopband 

responses of the filter are shown in Figs 5.18(a) and (b), 

respectively. These measured results are considered to be in good 

agreement with the corresponding computed response shown in Fig 5.17. 

5.4 Stability consideration of NIC circuits 

One of the main reasons for the mistrust of NIC circuits, felt by 

many circuit designers, is that in practice NIC circuits are often 

found to be unstable. A great deal has been published in the 

litrature [80,81,82] concerning the phenomena which give arise to this 

instability and some attempts have been made to develop a stability 

criterion for NIC circuits [83]. 
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In this section we shall describe a simple method of determining 

the stability or the instability of NIC filter circuits derived in 

Chapter 4. It will also be shown that in cases where inherent 

instability is encountered the NIC circuit can be stabilised by 

adding some extra components to the circuit. 

When discussing the stability of NIC circuits it is customary to 

talk in terms of the NIC ports being short-circuit stable (unstable) 

or open-circuit stable (unstable). The following discussion differs 

from others of its kind in an important respect that it does not 

employ these concepts; instead the stability of an NIC is interpretted 

in terms of the amounts of feedback being applied to the inverting and 

the non-inverting terminals of the OP-AMP used to realise the NIC. 

Before we embark on a detailed discussion of stability, it is 

appropriate to state the definition of stability to be used here; 

which is as follows. A circuit is stable if for a bounded input the 

output of the circuit is also bounded; in particular, we shall assume 

that the input to the circuit is zero. 

Consider the general 2-port network shown in Fig 5.19(a) which is 

realised using NICs. Now let us consider the stability properties of 

each NIC in turn; the remaining NICs of the circuit are considered to 

be ideal and stable for this purpose. If the NIC whose stability 

properties are being examined is "pulled-out" from the network of 

Fig 5.19(a) then the resulting network can be represented as shown in 

Fig 5.19(b). With V
i n
= 0, if Z^ and Z

fi
 represent the impedances to 

ground from terminals 1 and 2, respectively, of network N' in 

Fig 5.19(b) with the NIC disconnected then the network in Fig 5.19(b) 

can be equivalently represented as shown in Fig 5.19(c). The circuit 
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in Fig 5.19(d) is obtained by replacing the NIC in Fig 5.19(c) by its 

OP-AMP equivalent circuit in which Z^ and Z^ are the NIC impedances. 

Suppose V^, V
2
 and V

q
 are the voltages at terminals 1, 2 and 3, 

respectively, in Fig 5.19(d). Now, if F ^ and F^
2
 represent the 

amount of feedback from terminal 3 to terminals 1 and 2, 

respectively, then it can easily be shown that 

V1 -1 
= [1 + Z./Zj (5.21) bl V

 L

 1 A 
o 

V2 -1 
F

b 2
 = - y — = [1 + Z

2
/Z

B
] (5.22) 

o 

For the particular connection of the OP—AMP input terminals shown in 

Fig 5.19(d), we can classify F ^ and F^
2
 as the negative and the 

positive feedback factors, respectively. 

Now, a very simple and sufficient condition for stability of the 

circuit in Fig 5.19(d) is that at any frequency the value of the 

positive feedback factor must always be less than the value of the 

negative feedback factor. Thus from above, for the circuit of 

Fig 5.19(d), we should have 

F

bl ^
 F

b2 for 0 < w < oo 

i.e. [1 + Z
1
/Z

A
]"

1

 > [1 + V V "
1 ( 5 , 2 3 ) 

Alternatively, it can 

equivalently stated as 

be shown that equation (5.23) can be 
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z

a
/ z

1 > v
z

2
 ( 5

-
2 4

> 

for 0 < w < oo 

It is relevant to point-out that Z^ and Z
g
 would in general be 

complex impedances whereas Z^ and Z
2
 may be complex or only real. 

Thus the stability condition expressed by equation (5.24) implies that 

the real and imaginary parts of Z^JZ^ must be greater than the real 

and imaginary parts of Z„/Z
0
 for 0 < w < oo. 

D Z 

Note that the stability condition for the case when terminals 1 

and 2 in Fig 5.19(d) correspond to the non-inverting and the inverting 

terminals of the OP-AMP, respectively, is same as in equation (5.24) 

except that the inequality sign is reversed. 

It is clear from above that the stability of a NIC circuit is 

influenced by the connection of the OP-AMP input terminals• Hence in 

order to design stable NIC circuits, we require a systematic procedure 

for determining the connection of the OP-AMP input terminals. One 

such systematic procedure would be to select the form that the NIC 

impedances are to have (e.g. resistive, parallel combination of a 

resistor and a capacitor, etc.), and then evaluate Z /Z. and Z^/Z,, 
A 1 iS Z 

for 0 < w < oo; the connection of the OP-AMP input terminals can then 

be selected depending on wether Z./Z. > Z._/Z
0
 or Z./Z. < Z._/Z

0
 . 

A I ii Z A 1 d Z 

However, if either of these conditions is not satisfied for the 

frequency range 0 < w < oo , then the above procedure must be repeated 

for a different impedance level and/or a different composition of the 

NIC impedances. 
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In general, impedances Z
A
 and Z will be formed from complicated 

A tt 
RC networks and hence evaluation of Z./Z. and Z-./Z

0
 will have to 

A 1 tt Z 

be done computationally. Thus the above systematic procedure may not 

be feasible in practice because it would require large amount of 

computation. In order to considerably reduce the amount of 

computation required the following two step procedure may be more 

attractive from practical point of view. 

In the first step we evaluate Z /Z. and ZrfZ,, at zero and 
A 1 tt Z 

infinite frequencies (note that this evaluation can be done by 

inspection, assuming the circuit capacitors to be open-circuit at zero 

frequency and short-circuit at infinite frequency); hence these simple 

and necessary conditions can be used to discard many unstable cases. 

The above two simple and necessary conditions are not sufficient to 

guarantee stability but the application of these conditions would 

considerably reduce the number of possible cases (which may be stable 

or unstable) such that these are sufficiently small in number to 

enable them to be tested in the second step via the systematic 

procedure proposed above. 

It is relevant to point-out that the NIC filter circuits derived 

in Chapter 4 have been obtained from inherently stable passive ladder 

prototypes and hence are expected to be also "inherently stable". The 

question of instability is associated with the circuits used to 

realise the NICs. If the circuits- used to realise the NICs can be 

guaranteed to be stable then the question of instability will not 

arise for the circuits of Chapter 4. 

Practical experience suggests that the second step of the above 

two step method is seldom necessary and thus in virtually all the 
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cases the connection of the OP-AMP input terminals can be chosen 

without any great computational effort. We shall now illustrate the 

basic steps involved in choosing the connection of the OP-AMP input 

terminals by considering an example. Let us consider the 5th order 

all-pold highpass filter circuit of Fig 5.4(a) and let us suppose that 

we want to determine the connection of the OP-AMP input terminals for 

NIC^. If NIC^ in Fig 5.4(a) is replaced by an OP-AMP realisation the 

resulting circuit can be drawn in the form shown in Fig 5.19(d), where 

the equivalents of the impedances Z and Z are given in Figs 5.15(b) 
A ii 

and (c), respectively. Making use of Table 5.1, we note that at zero 

and infinite frequency the values of impedance Z are infinite 
ii 

and 10.9308 kOhms, respectively, whereas the corresponding values of 

impedance Z. are 6.0885 kOhms and zero, respectively. Therefore, if 
A 

Z^ and Z
2
 are chosen as resistors then at zero and infinite 

frequency
 2

 >
 a n c

*
 t l l u s z

g must be connected to the 

inverting terminal and Z^ must be connected to the non-inverting 

terminal of the OP-AMP. It can be shown by a similar reasoning as 

above that the connection of the OP-AMP input terminals for NIC^ and 

NIC
2
, for the case when the NIC impedances are chosen as resistors, 

are as shown in Figs 5.6(a) and 5.10(a), respectively. Furthermore, 

it can also be shown that the connection of the OP-AMP ipput terminals 

for NIC^ is same as shown 'in Fig 5.6(a) even when the NIC impedances 

comprise a parallel combination of a resistor and a capacitor. 

We have shown above how to connect the input terminals of the 

OP-AMPs realising NICs using very simplified conditions which are 

necessary but not sufficient to guarantee stability. However, it must 

be stressed that it has been found in some practical circuits that for 

the case when the impedances Z and Z^ tend to the same limit 
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(e.g. zero) at infinite frequency then even though the OP-AMP input 

terminal connection has been chosen to satisfy the condition at zero 

frequency, the circuit is found to be oscillatory. An obvious 

explanation of this phenomenon is that the stability condition is 

being violated at some finite frequency. In this situation the 

interchange of the OP-AMP input terminals would not lead to a stable 

circuit because the stability condition at zero frequency would be 

violated; hence the circuit is "inherently" unstable. Note that this 

implies that when impedances Z. and Z are tending to the same limit 
A 15 

we cannot make use of this information for predicting the stability of 

the circuit. 

It has been found that an inherently unstable circuit can be 

stabilised by adding two resistors and one capacitor to the existing 

circuit in the following manner. Suppose we connect a resistor of 

value R in series with the impedance Z^ and connect a resistor of 

value R/k (where k is the conversion factor of the NIC) in series with 

the impedance Z . For the case of an ideal NIC this circuit 
15 

modification does not have any effect on the filter transfer function 

as the extra added resistors cancel the effect of each other. Suppose 

we now connect a capacitor of value C in parallel with the NIC 

impedance connected to the inverting terminal of the OP-AMP. The 

value of C is chosen such that the frequency at which the impedance of 

this capacitor becomes significant is very much greater than the 

highest frequency - of interest. This circuit modification has the 

effect of making Z./Z, and Z^/Z* tend to different limits at infinite 
A 1 15 Z 

frequency. 

The value of R can be calculated by computing the stability 

expression for the modified circuit or alternatively by studying the 
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practical circuit model for various values of R. The nominal value of 

C is not very critical and hence - 10 % tolerance can be easily 

accomodated by taking account of this when choosing the value of the 

NIC impedances. 

Let us now consider another case of instability which may arise 

in practice. The method of over-coming this type of instability will 

be illustrated by means of an example. Suppose our objective is to 

determine the connection of the OP-AMP input terminals for NIC^ in the 

highpass filter circuit of Fig 4.31 (for this purpose we assume that 

the value of capacitor C^ is zero) which has been designed for the 

specification given in Section 4.7. If we assume that NIC^, NIC^ and 

NIC^ in Fig 4.31 are ideal then the equivalent circuit for considering 

the stability of NIC^ becomes as shown in Fig 5.20(a) with equivalents 

of impedances Z^ and Z
R
 as shown in Figs 5.20(b) and (c), 

respectively. Using the component values given in Table 4.2 and 

evaluating Z^ and Z
fi
 at zero frequency gives Z^= 6.971 kOhms and 

Z
g
= oo. Thus if the NIC impedances (i.e. Z^ and Z

2
) in Fig 5.20(a) 

are chosen as resistors then in order to satisfy the stability 

criterion the non-inverting terminal of the OP-AMP must be connected 

to impedance Z^ and the inverting terminal to impedance However, 

at infinite frequency, 0 and Z
fi
= -106.84 kOhms and in order to 

satisfy the stability criterion the connection of the OP-AMP input 

terminals must be reversed to the one stated above. This means that 

we cannot choose the connection of the OP-AMP input terminals such 

that the necessary stability conditions are satisfied simultaneously 

at zero and infinite frequency. Therefore the circuit of Fig 5.20(a) 

is "potentially" unstable; indeed, as stated in Section 4.7 the 

practical model of this circuit exhibited this instability behaviour. 
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The method of stabilising the circuit is to choose the OP-AMP 

input terminal connection such that the stability condition at zero 

frequency is satisfied (this amounts to making terminal 1 as the 

non-inverting terminal of the OP-AMP) and then connecting a capacitor 

in parallel with the resistive impedance Z^. The effect of connecting 

a capacitor in parallel with Z^ is that at infinite frequency the 

amount of feedback being applied to the non-inverting terminal 

approaches the value of zero, thus satisfying the stability condition 

simultaneously at zero and infinite frequency. The value of the 

"stabilising" capacitor should be kept as small as possible and should 

ideally be determined by ensuring that the stability criterion is 

valid over the entire frequency range. 

We have described above various methods for stabilising 

potentially unstable NIC circuits. These methods may seem rather 

cumbersome but it must be stressed again that the majority of the 

circuits derived in Chapter 4 are perfectly stable and hence do not 

require these measures• 

5.5 Conclusions 

In this chapter a study of the effect of finite amplifier gain 

bandwidth product in negative impedance converter circuits was 

discussed and a method of reducing the effect of finite f^ was also 

presented. Furthermore, the stability properties of NIC circuits were 

examined in some detail and some methods of stabilising potentially 

unstable circuits were also discussed-

In Section 5.2 it was shown that the effect of finite f
T
 in NIC 

circuits can be reduced by appropriately choosing the composition and 
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the values of the NIC impedances. The basic principle of the method 

for reducing the effect of finite f^, is to consider the effect of each 

NIC in turn (the remaining NICs in the circuit being considered ideal) 

and to minimise the effect of the finite f^ of this NIC on the overall 

transfer function of the circuit. There are basically three positions 

in which an NIC can occur; viz, a coupling NIC, a grounded NIC and a 

bridged NIC. In Sections 5.2.2 and 5.2.3, respectively, the coupling 

and the grounded NICs were studied in detail and the corresponding 

objective functions for minimising the effect of finite f^ were also 

derived. 

The expressions derived in Section 5.2 were used in Section 5-3 

to minimise the effect of finite f.j/s for the 5th order all-pole 

highpass filter circuit of Fig 4.21(c). Comparison of the initial 

loss-frequency response with the loss-frequency response of the filter 

in which the composition and the values of the NIC impedances are 

chosen optimally showed a marked improvement, thus providing a 

justification for the approach. 

In Section 5.4 the stability propertj.es of NIC circuits were 

discussed. The concept of viewing the stability of NIC circuits in 

terms of the amount of feedback being applied to the inverting and the 

non-inverting terminals of the OF-AMF realising the NIC was 

introduced. Some simple necessary (but not sufficient) conditions 

were stated which significantly simplify the predicting of the 

stability or the instability of an NIC circuit. Furthermore, some 

methods of stabilising,•by the use of extra components, the inherently 

unstable NIC circuits were also described and illustrated by means of 

a practical example. 
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C H A P T E R 6 

CONCLUSIONS 

AND 

DISCUSSION OF POSSIBLE FURTHER WORK 
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The objective of this work was to study methods of designing 

active RC filter circuits, which are^ suitable for microelectronic 

realisation, by simulation of low sensitivity LC filters. This 

objective has been fulfilled in the sense that two methods of 

designing active RC filters, i.e* the signal flow graph simulation 

method and the method of simulating the elements and the structure of 

LC filters, has been studied in detail and some new results have been 

obtained. 

In the signal flow graph simulation approach, active RC circuits 

are used to "simulate" the mathematical relationships between the 

nodal voltages, the impedances of the branches and the currents in the 

branches of the prototype LC filter. In contrast, in the simulation 

of the elements and the structure of LC filters, active RC circuits 

are used to replace certain branches (e.g. the inductive branches) of 

the LC prototype (or an impedance scaled version of it). 

In the
-

 signal flow graph approach to the simulation of 

LC filters, the signal flow graph can be manipulated such that the 

required transfer function is realised by second order sections which 

are coupled together with feedback loops. The use of the second order 

sections offers two main advantages. Firstly, the number of 

amplifiers required to realise a given filter is reduced considerably 

if the second order sections are realised with single amplifier 

biquadratic (SAB) circuits; this in turn eases the problems of DC 

power consumption and heat dissipation. Secondly, a considerable 

amount of work has been done in the past on the design and adjustment 

of second order circuits in general and SAB circuits in particular, 

which can be directly utilised in the practical implementation of 

active RC circuits designed by this approach. The above mentioned 



possibility of using less amplifiers (usually N/2 OP-AMPs are 

required for an Nth order filter) is considered to be the single most 

important reason for designing low sensitivity active RC filters by 

the signal flow graph approach in preference to other simulation 

methods (e.g. the method of simulation of the elements and the 

structure of LC filters). Thus the work, described in this thesis, 

relating to this approach of designing active RC filters was 

restricted to using single amplifier biquadratic circuits. We shall 

now give a brief summary of the work presented in this thesis on the 

signal flow graph approach of designing active RC filters. 

In Chapter 2 it was shown that if a SAB circuit (which has been 

designed assuming the OP-AMP to be ideal) is analysed by considering a 

typical non-ideal model for the OP-AMP then its characteristics 

deviate considerably from the nominal characteristics for which it was 

designed; for a given OP-AMP type, these deviations are increased as 

the operating frequency increases. This result suggested that in 

order to design SAB circuits for the realisation of high precision 

active RC filters the effects of the non-ideal OP-AMP must be taken 

into account at the design stage. Of the various non-ideal effects 

associated with OP-AMPs the one that is predominantly significant is 

the finite gain bandwidth product (f
p
) of the OP-AMP. 

The effect of finite f
T
 can be taken into account by 

predistorting the design of the SAB circuits. Two such predistortion 

methods were discussed in the context of SAB bandpass circuits. The 

approximate nature of the predistortion technique was high-lighted by 

considering the realisation of a sixth order leap-frog type feedback 

bandpass filter (with three predistorted SAB bandpass circuits) whose 
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characteristics showed significant 'errors in the passband of the 

filter even after predistortion. — 

As an alternative to the predistortion technique a method of 

fully compensating SAB circuits for effect of finite f^, was presented. 

This compensation method requires one additional resistor to be added 

to the existing SAB topology and it provides exact compensation for 

the finite f o v e r the frequency range in which the gain of the OP-AMP 

can be modelled by a single pole roll-off. This compensation scheme 

was utilised for designing two Friend type SAB bandpass circuits and 

one Sallen and Key type SAB bandpass circuit which were subsequently 

used to realise the above mentioned sixth order bandpass filter. The 

computed response of the compensated filter circuit was in exact 

agreement with the nominal response. 

Application of the above predistortion or the compensation 

methods to the design of SAB circuits results in non-linear design 

equations. For the Friend and the Sallen and Key type SAB bandpass 

circuits all the relevant design equations were derived in Chapter 2 

and a method of numerically solving these non-linear equations was 

also presented. 

In Chapter 3 the problem of minimising the sensitivity of 

multiple feedback filters to post-adjustment variations in the passive 

and the active elements was discussed in the context of the sixth 

order multiple feedback bandpass filter considered in Chapter 2. The 

basic principle of the sensitivity minimisation is that each SAB 

section in the multiple feedback configuration is designed such that 

the worst-case variations in the components of the SAB section has 

minimum effect on the overall filter response. In order to achieve 



this an objective function which characterises some desirable features 

of the overall filter response was developed. A computer sensitivity 

analysis showed a very much smaller variation in the response of the 

optimised circuit compared with that of the previous un-optimised 

circuit, with respect to changes in the gain bandwidth product of the 

OP-AMPs. Some practical.results for a discrete component model of one 

version of the optimised filter were also presented. 

The realisation of active RC filters by simulation of the 

elements and structure of LC filters is dealt with in the latter part 

of this thesis (i.e. in Chapters 4 and 5). In the conventional 

approach to the realisation of active RC filters by this method, 

gyrators or positive impedance converters (PICs) are normally used as 

the basic active units. The work reported in this thesis on the 

realisation of active RC filters by simulation of the elements and the 

structure of LC filters differs from methods reported in the litrature 

in an important respect that it utilises negative impedance converters 

(NICs) as the basic active units. Active RC circuits which make use 

of NICs are regarded, by most workers in the field, with great 

suspicion and are often indiscriminantly labelled as "high 

sensitivity" circuits. One result which has emerged directly from the 

investigation reported in Chapter 4 has been to show that active RC 

networks which use NICs do not necessarily have high sensitivity. We 

shall now give a brief summary of the work presented in this thesis on 

the simulation of the elements and the structure of LC filters. 

In Section 4.3 a simple procedure was used to generate 2-port 

-R, -C subcircuits which simulate grounded and floating inductors and 

grounded and floating frequency dependent negative resistors of the 
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supercapacitor type. It_. was shown that these basic -R, -C 

subcircuits can be looked upon in different ways to yield a multitude 

of -R, -C subcircuits which simulate grounded and floating inductors 

and supercapacitors. 

The most novel feature of the approach presented in Chapter 4 is 

the way in which the -R, -C subcircuits are utilised in filter design 

such that the number of components required in the active RC 

realisation is comparable with other simulation methods (e.g. the 

method of partial and full impedance scaling). 

+ + 
An interesting feature of the -R, -C subcircuits derived in 

Sections 4.3 and 4.4 is that while they are electrically 

port-symmetrical, their physical structures are port-unsymmetrical. 

Thus depending on the orientation of the ports of the simulated 

element there are two possible active RC realisations for a simulated 
N 

element. This gives rise to 2 different realisations of a 

prototype filter in which N elements are being simulated. However, 

some of these realisations may require a larger number of active 

and/or passive components than other methods and thus may not be 

practically attractive. On the other hand some of these realisations 

offer economy in the total number of components required, compared 

with other methods, and hence are very desirable. 

The design examples of both all-pole and elliptic filters with 

lowpass, highpass and bandpass characteristics were given in 

Section 4.6 to illustrate the generality of this new design method. 

The circuits designed by this method can in most cases have equal and 

nominally preferred value capacitors and it is also feasible to use 

capacitors with wide manufacturing tolerances if the resistors in the 
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circuit are trimmable. These properties make the circuits attractive 

for hybrid thin-film or thick-film realisation. 

For the design of all-pole filters the number of OP-AMPs required 

is less than or equal to the number that would be required if the same 

filter is realised by the complex impedance scaling methods. In the 

case of elliptic structures the number of OP-AMPs required may be 

larger, especially if capacitors with preferred values and wide 

manufacturing tolerances are to be used. 

In order to show that active RC circuits designed by the new 

method are practically feasible some computed and measured results 

(of discrete component models) were presented in Section 4.7 for 

lowpass, highpass and bandpass filter characteristics. 

The sensitivity aspects of the active RC circuits, obtained by 

the method of Chapter 4, were considered in Section 4.8 where it was 

shown that there exists a one-to-one relationship between the elements 

of prototype filter and some elements of the active RC circuit 

simulating the prototype. The sensitivities of the remaining elements 

in the active RC realisation, which do not have a one-to-one 

counterpart in the LC prototype, were interpretted by deriving 

"equivalent" prototype circuits. It was shown that changes in these 

elements usually has two effects on the equivalent prototype circuit; 

firstly, some elements in the equivalent prototype are changed in 

value; and secondly, the Q-factors of some reactive elements in the 

equivalent prototype circuit become finite. Due to the low 

sensitivity nature of the prototype LC filter these two effects do not 

deteriorate the sensitivity of the active RC circuits; this point was 
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illustrated by presenting computed sensitivity results for two 

realisations of an active RC lowpass filter. 

In the first part of Chapter 5 a method of minimising the effect 

of amplifier finite gain bandwidth product in NIC circuits of the type 

derived in Chapter 4 was presented. It was shown that the effect of 

finite f^ on the transfer function of the. filter can be considerably 

reduced by appropriately choosing the composition and/or the impedance 

level of the NIC impedances. This method was applied to a three NIC 

all-pole fifth order highpass filter to reduce the effect of finite 

f^'s. In Section 5.4 a discussion on predicting the stability or the 

instability of the active RC circuits derived in Chapter 4 was 

presented. The concept of viewing the stability of the NIC circuit in 

terms of the amount of feedback being applied to the inverting and the 

non-inverting terminals of the OP-AMP, realising the NIC, was adopted. 

Some simple necessary (but not sufficient) conditions were stated 

which significantly simplify the prediction of the stability or the 

instability of an NIC circuit. Also, some methods of stabilising, by 

the use of extra components, some inherently unstable NIC circuit 

were described. 
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In the discussion of possible further work, that arises out of 

the present work, it is felt that a detailed study of the following 

topics would of considerable interest. 

In Chapter 2 a method of fully compensating lowpass and bandpass 

SAB circuits for the effect of finite f^ of the OP-AMP was presented. 

Consequently a criterion was. developed in Chapter 3 for optimally 

designing the fully compensated Friend and the Sallen and Key type SAB 

bandpass circuits when these sections are used to realise a sixth 

order leap-frog feedback bandpass filter. It was found that for an 

optimum design the value of the closed loop gain for each SAB circuit 

can lie within a certain optimum band. It would be interesting to 

know how this optimum band is affected by the Q-factor and the 

resonance frequency of the SAB circuits. 

In Chapter 3 it was shown that as far as variations in the f^'s 

are concerned the sensitivity of the optimised design is better than 

the sensitivity of the un-optimised design. However the optimum 

design was arrived at by considering changes in both the passive and 

the active elements of the circuit; hence in order to evaluate the 

improvement in performance a Monte-Carlo analysis including passive 

and active component parameter changes could be applied to the 

optimised and the un-optimised circuits. 

+ + 
In Chapter 4 a multitude of -R, -C subcircuits for simulating 

floating and grounded inductors and supercapacitors were derived but 

+ + 
it was found that only few of these -R, -C subcircuits offer 

practical advantages. A major study is warranted to see if a circuit 

+ + 
in which some elements are simulated by the -R, -C subcircuits of 
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Chapter 4 can be advantageously combined with other element simulation 

methods to yield practically desirable active RC circuits. 

The simulation method of Chapter 4 uses current inverting type 

NICs which suffer from potential instability; hence a development of 

novel, inherently stable, NICs would be very useful. This would 

.almost certainly call for a departure from the conventional type of 

current inverting type NIC. 

The versatility of the method of Chapter 4 was illustrated by 

designing filters with lowpass highpass and bandpass characteristics; 

however the range of operation was confined to low frequencies. In 

order for the method to be practically viable it must be possible to 

design filters at high frequencies. Inevitably as the frequency of 

operation is increased the non-ideal 'effects (i.e. the finite f^'s) of 

the OP-AMPs would dominate and the procedure described in Chapter 5 

for minimising the effect of finite f-j/s would become inadequate. 

Hence another fruitful area for further work would be to study, both 

theoretically and practically, methods of fully compensating the NICs 

for the effect of OP-AMP imperfections. 

The dynamic range is a very important parameter of active RC 

filters and it has not been dealt with in this Thesis. Therefore 

another area for further work would be to determine the dynamic range 

of the active RC circuits proposed in this Thesis, and if necessary 

develop methods of improving it 
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A P P E N D I X A 

DERIVATION OF THE DESIGN EQUATIONS FOR CALCULATING THE RESISTOR VALUES 

OF THE THREE NIC LOWPASS FILTER CIRCUIT 

In this Appendix we shall derive the design equations for 

calculating the values of the resistors of the lowpass filter which is 

realised using three NICs (see Fig 4.14) when the values of all the 

capacitors are known. In order to achieve our objective we proceed as 

follows• 

Let us assume that the filter circuit under consideration is 

realisable as shown in Fig A.1(a) where the values of the capacitors 

C^, C
2
, C^, C^ and C^ are known. The circuit of Fig A.1(b) is 

obtained by eliminating the NICs in the circuit of Fig A.1(a). In the 

circuit of Fig A.1(b) if the two encircled T-networks are transformed 

into their equivalent XT-networks under the assumptions: 

R2 — K̂  R 1 3 (A.l) 

and R
c
 = R, 

'3 6 A.2) 

then the circuit in Fig A.1(c) is obtained. Let us now assume that 

the "equivalent" prototype LC filter from which the active RC circuit 

of Fig A.1(a) .was obtained is as shown in Fig A.1(d). The 
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characteristics of the"equivalent" prototype of Fig A.1(d) and the 

"original" prototype filter of Fig 4.13(a) must be identical, except 

that the impedance levels of the two circuits may not be equal. We 

can derive relationships between the impedances of the circuits of 

Figs A . 1(d) and 4.13(a) by equating the quotient of any two impedances 

of the circuit in Fig A. 1(d) with the quotient of the corresponding 

impedances of the circuit in Fig 4.13(a). The following six equations 

are obtained by following the above procedure; the subscript "p" 

denotes the elements of the original prototype filter, the values of 

which are known. 

R C. = R C. (A.3) 
s, 1 s 1 
1 p p 

K. C
9
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K. K. R /R = R
T
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1 3 s
0
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2 1 p p 

In order to obtain the active RC circuit of Fig A.1(a) from the 

equivalent prototype of Fig A.1(d), we would have to split-up the 

source and the load resistors in Fig A.1(d) and introduce three shunt 

resistors in parallel with the capacitor C^/K^I^, as shown in 

Fig A. 1(c). This gives rise to the following three equations 
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R
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Now, we have twelve unknowns (R,, R
0
, R

3
, R

4
, R^, R^, Ry, R

g
 , , 

K^, K
2
 and K

3
) in Fig A.l but we have only eleven equations; hence we 

require another equation in order to be able to calculate the values 

of all the components in Fig A.l. The additional equation is obtained 

in the following manner. 

In splitting-up R in Fig A.1(d) into a resistive potential 
S

1 

divider, formed by R^ and R
2
 in Fig A.1(c), the output of the filter 

is multiplied by a loss factor, L^ (= R ^ C R ^ + R ^ ) ; therefore we can 

rewrite equation (A.9) as 

R. = R /L, (A.12) 
1 s^ f 

and R2 = R
g
 /(I - L

f
) (A.13) 

also equation (A.10) can be rewritten as 

®7 " ~ V <A-14> 

From equation (A.12), (A.13) and (A.14) we note that in order to 

ensure that values of resistors R^, R
2
 and Ry are positive and finite, 

we must have 0 < L
£
 < 1 and R, > R 
f 6 s

2 
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It can be shown, using equations (A.8), (A.2), (A.13), (A.l), 

(A.4) and (A.6), respectively, that the condition R, > R is 
b S2 

satisfied if 

L
f
 > {1 - (R

g
 /B^ ) [L

4
 C

2
/L

2
 C

4
]

1 / 2

} 

P P' P P 

Therefore the range in which L^ can lie is 

{1 - (R
g
 /R^ ) [L

4
 C

2
/L

2
 C

4
]

1 / 2

} < L
f
 < 1 (A.15) 

P P P P 

In equation (A. 15) R
g
 , R^ , L

2
 and L

4
 are the components of 

P P P P 
the original prototype filter and hence are specified by the 

characteristic for which the filter is designed. Hence the 

implication of equation (A.15) is that if the active filter circuit of 

Fig A.1(a) is to be designed for some specific value of the loss 

factor, L^, then there is a maximum allowable spread between the 

capacitors C
2
 and C

4 #
 Thus by choosing an appropriate value of the 

loss factor, L^, in equation (A. 15), we can deterministically 

calculate the values of the unknowns in Fig A.1(a) using 

equations (A.l) ^» (A.14). 
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Table 1.1 Relationship between sectional parameters in Fig 1.6(i) 
and the components of the prototype filter of Fig 1.6(a). 
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Table 1.2 Relationship between the sectional parameters in Fig 1.8(b) 
and the components of the prototype LC filter of Fig 1.8(a). 
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SECTION w . 
01 

A

i 

1 15 kHz 47.8875 4.1765 io~2 

2 15 kHz oo 1.5198 io"2 

¥ 3 15 kHz 47.8875 4.1765 icT2 

Table 2.1 The values of the sectional parameters of the multiple 
feedback bandpass filter of Fig 1.9(b). 
Centre Frequency • 15 kHz; Bandwidth ® 500 Hz; 
Passband Ripple = 0.5 dB; F

1 2
= F

2 3
= 1; 

Midband Gain - 1. 

COMPONENT NOMINAL 
DESIGN 

PREDISTORTED 
DESIGN 

COMPENSATED 
DESIGN 

c

i 
1.0 1.0 1.0 

C

2 1.0 1.0 1.0 

R

1 
0.807698 0.644309 0.645448 

«2 139.383 139.678 139.547 

R 
a 

10.0 10.0 10.0 

H 0.1 0.0787 0.0882362 

R

3 
0 0 0.160558 

C-values in nano-Farads and R-values in kilo-ohms• 

Table 2.2 Component values of the modified Friend SAB bandpass 
circuit of Fig 2.2(b). Centre Frequency = 15 kHz; 
Q-factor = 47.8875; f

r
o f OP-AMP = 1 MHz for the 

predistorted and compensated designs. 
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COMPONENT NOMINAL. • . PREDISTORTED COMPENSATED 
DESIGN DESIGN DESIGN 

c

i 
1.0 1.0 1.0 

C

2 
1.0 1.0 1.0 

R

1 
184.082 135.255 135.46 

"2 
184-082 184.364 184.245 

R

3 
0.613607 0.45085 0.451533 

R 
a 

0.1 0.08455 0.0911956 

«b 
10.0 10.0 10.0 

R

4 
0 0 0.160605 

C-values in nano-Farads and R-values in kilo-Ohms. 

Table 2.3 Component values of the modified Sallen and Key SAB bandpass 
circuit of Fig 2.3(b). Centre Frequency • 15 kHz; 
Q-factor = o o ; f

T
 of OP-AMP • 1 MHz for the predistorted 

and compensated designs. 
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COMPONENT NOMINAL 
DESIGN 

PREDISTORTED 
DESIGN 

COMPENSATED 
DESIGN 

C

11 1.0 1.0 1.0 

C

12 
1.0 1.0 1.0 

R

Ia ' 
256.589 204.684 205.046 

Y 
256.589 204.684 205.046 

R

Ic 
0.812814 0.648391 0.649537 

R

12 
139.383 139.678 139.547 

R

13 
0 0 0.160558 

Y 
10.0 10.0 10.0 

R

lb 
0.1 0.0787 0.088236 

C

21 
1.0 1.0 1.0 

C

22 
1.0 1.0 1.0 

^ a 705.12 518.089 518.875 

705.12 . 518.089 518.875 

385.214 283.038 283.467 

^22 
184.082. 184.364 184.245 

"23 
0.613607 0.45085 0.451533 

^24 0 0 0.160605 

*2a 
0.1 0.08455 0.0911956 

10.0 10.0 10.0 

C

31 
1.0 1.0 1.0 

C

32 
1.0 1.0 1.0 

S a 
256.589 204.684 205.046 

R

3b 
0.810247 0.646343 0.647486 

R

32 
139.383 139.678 139.547 

R

33 

^ a 

0 

10.0 

0 

10.0 

0.160558 

10.0 

0.1 0.0787 0.0882362 

C values in nano-Farads and R values in kilo-Ohms 

Table 2.4 Component values of the multiple feedback bandpass filter 
circuit of Fig 2.8. Centre Frequency « 15 kHz; 
Bandwidth « 500 Hz; Passband Ripple - 0.5 dB; 
F

l 2
 = F23 = 1; Midband Gain = 1. f o f 

OP-AMPs 1 MHz for the predistorted and 
compensated designs. 
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COMPONENT CHANGED f
T 

R

1 "2 
C

1 
c 
2 

R

3 
R 
a 

R

b 

NEGATIVE CHANGE IN 
RESONANCE FREQUENCY 

- + + + + - - + 

NEGATIVE CHANGE IN 
Q-FACTOR 

- + - + - + + -

NEGATIVE CHANGE IN 
GAIN FACTOR 

- + - + - + + -

POSITIVE CHANGE IN 
RESONANCE FREQUENCY 

+ - - - - + + -

POSITIVE CHANGE IN 
Q-FACTOR 

+ - + - + - - + 

POSITIVE CHANGE IN 
GAIN FACTOR 

+ - + + - - + 

Table 3.1 A Table showing the direction of component changes required to 
produce a positive or a negative change in the Resonance 
Frequency, the Q-factor and the Gain-factor for the modified 
Friend SAB bandpass circuit of Fig 2.2(b). 
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COMPONENT CHANGED f

T R ! 
R

2 
C

1 
C

2 
R

3 
R

4 
R 
a 

NEGATIVE CHANGE IN 
RESONANCE FREQUENCY 

- + + + + + - + -

NEGATIVE 
Q-FACTOR 

+ + + - + - - + -

NEGATIVE CHANGE IN 
GAIN FACTOR 

+ + + - + - - + -

POSITIVE CHANGE IN 
RESONANCE FREQUENCY 

+ - - - - + - + 

POSITIVE 
Q-FACTOR 

- - - + - + + - + 

POSITIVE CHANGE IN 
GAIN FACTOR 

- - + - + + - + 

Table 3.2 A Table showing the direction of component changes required to 
produce a positive or a negative change in the Resonance 
Frequency and the Gain-factor and to produce a positive or a 
negative Q-factor for the modified Sallen and Key SAB bandpass 
circuit of Fig 2.3(b). 
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4 

4 

4 

4 

4 

C-values 

COMPONENT VALUE 

C

11 1.0 

=12 
1.0 

R

h 277.601 

R

Ib 
277.601 

R

Ic 
3.03836 

R

12 
35.4632 

1? 
13 

0.135631 

R

ia 10.0 

R

lb 
1.66684 

C

21 
1.0 

C

22 
1.0 

922.583 

^ b 922.583 

187.212 

*22 
24.701 

*23 4.43891 

0.223148 

*2a 4.02099 

R

2b 
10.0 

C

31 
1.0 

C

32 
. 1.0 

R

3a 
277.601 

R

3b 
3.00547 

35.4632 

33 
0.185681 

3a 
10.0 

*3b 1.66684 

nano-Farads and R-values In kilo-Ohms 

Table 3.3 Component values of the optimised design of the circuit 
in Fig 3.10. 
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COMPONENT NOMINAL VALUES MEASURED VALUES 

+ 
C 

11 
C

12 

10.0 

10.0 

10.06 

10.17 

S a 55.522 56.75 

S b 55.522 56.94 

R

Ic 0.30055 0.3002 

S

12 
3.5463 3.439 

R

13 
0.018568 0.02037 

R

la 
10.0 10.04 

# R

lb 
1.6668 1.714 

C

21 
10.0 10.12 

C

22 
10.0 9.963 

* S a 
46..129 48.19 

S b 46.129 47.85 

S c 31.509 33.56 

®22 2.4701 2.487 

• ®23 0.44389 0.4297 

"24 0.022315 0.2416 

S a 4.021 3.943 

* 
"2b 
C

31 

10.0 

10.0 

10.16 

9.996 

C

32 10.0 10.19 

R

3a 55.522 57.19 

• S b 0.29893 0.2995 

S 2 
3.5463 3.464 

R

33 
0.018568 0.02006 

S a 
10.0 10.13 

* 
R

3b 
1.6668 1.622 

C-value in. nano-Farads and R-values in kilo-Ohms. 

Table 3.4 Nominal and measured component values of the discrete 
component model of the circuit in Fig 3.10. 



- 253 -

component nominal value measured value 

c

i 
23.173 23.18 

c

2 
20.802 20.81 

c

3 
36.335 36.37 

c. 20.802 20.80 

c

5 
23.173 23.17 

R ! 10.0 9.99 

r

2 
10.0 10.03 

r

3 
10.0 9.96 

r

4 
10.0 9.96 

r

5 
10.0 10.05 

r

6 
10.0 9.98 

r

7 
10.0 9.98 

r

8 
10.0 10.07 

r

9 
10.0 9.99 

r

io 
10.0 9.99 

r

11 
10.0 10.07 

r

12 
10.0 10.01 

r

13 
10.0 10.01 

r

14 
10.0 10.08 

C-values are in nano-Farads and R-values are in kilo-Ohms 

• 
Table 4.1 Nominal and measured component values of the discrete 

component model of the' circuit in Fig 4.28. 
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COMPONENT NOMINAL VALUE MEASURED VALUE 

S 
20.0 20.01 

C

2 
10.0 10.00 

C

3 
10.0 . 10.01 

C

4 
10.0 10.01 

S 
10.0 10.01 

c 
p 

0 0.047 

R

1 
10.931 10.92 

R

2 
10.0 10.07 

R

3 
10.0 10.08 

\ 12.177 12.16 

R

5 
10.0 10.17 

R

6 
10.0 10.17 

*7 
6.971 6.966 

R

8 
10.0 10.13 

R

9 
10.0 10.14 

r

IO 
12.177 12.16 

R

1 1 
10.0 10.10 

R

12 
10.0 10.08 

R

13 
10.931 10.95 

C-values are in nano-Farads and R-values are in kilo-Ohms 

Table 4.2 Nominal and measured component values of the discrete 
component model of the circuit in Fig 4.31. 
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4 

4 

4 

4 

4 

COMPONENT NOMINAL VALUE 

R 
sn 

3.0 Ohms 

L

ln 
29.49 pH 

C

ln 
0.626 mF 

L

2n 
1.2687 mH 

C

2n 
63.79 pF 

L

3 n 
309.38 pH 

S n 
40.837 pF 

L

4n 
90.412 pH 

C

4n 
9.6593 pF 

L

5 n 
124.76 pH 

L

6n 
202.49 pH 

L

7n 
1.7791 mH 

Table 4.3 Nominal component values of the prototype LC filter 
of Fig 4.27(c). 

4 

4 
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A 

A 

A 

A 

# 

A 

A 

COMPONENT NOMINAL VALUE MEASURED VALUE 

10.0 10.0 

°2 
10.0 9.999 

C3 
10.0 9.997 

C4 10.0 9.999 

C5 10.0 9.999 

C6 
10.0 9.999 

C7 10.0 9.996 

°8 
10.0 10.0 

C9 
10.0 9.997 

c i o 10.0 9.997 

c 0 0.04732 
p 

Pi 
0 6.879 

V 0 6.869 

h 10.0 9.95 

h 10.0 9.953 

E3 187.8 187.9 

*4 0.983 0.9833 

E5 
42.29 42.29 

E6 10.0 10.06 

«7 10.0 10.06 

E 8 19.137 19.14 

h 10.0 9.99 

•Ho 10.0 9.99 

R 10.313 10.33 
11 10.313 

E12 3.0137 3.017 

E13 4.1587 4.162 

E14 6.7497 6.744' 

E15 12.251 12.27 

E16 12.251 12.25 

E17 12.251 12.22 

E18 59.303 59.42 

E19 10.0 10.03 

10.0 10.04 

hi 2.8978 2.90 

C-values are la nano-Farads and R-value a are In lcilo-Qhma. 

Table 4.4 Nominal and measured component valuesvof the discrete 
component model of the circuit in Fig 4.34. 
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COMPONENT NOMINAL VALUE 

C 
1 

10.0 

•
 C

2 
10.0 

C

3 
10.0 

C

4 
10.0 

C

5 
10.0 

R

1 
23.173 

"2 
10.0 

R

3 
10.0 

R

4 
20.802 

R

5 
10.0 

R

6 
10.0 

R

7 • 
36.335 

R

8 
10.0 

R

9 
10.0 

R

10 
20.802 

R

11 
20.0 

R

12 
10.0 

R

13 
11.587 

C-values are in nano-Farads and R-values are in kilo-Ohms. 

Table 4.5 Nominal component values of the circuit of Fig 4.43. 
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COMPONENT NOMINAL VALUE NOMINAL VALUE MEASURED VALUE 
UNOPTIMISED DESIGN OPTIMISED DESIGN OPTIMISED DESIGN 

c

i 
10.0 10.0 9.957 

C

2 
10.0 10.0 10.04 

C

3 
10.0 10.0 10.04 

C

4 
10.0 10.0 10.05 

C

5 
20.0 20.0 20.02 

C

6 10.0 10.0 10.02 

C

7 
0 2.89036 2.890 

C

8 
0 2.89036 2.889 

R

1 5.4654 5.4654 5.485 

R

2 
24.354 24.354 24.35 

R

3 
10.457 10.457 10.46 

R

4 
6.0885 6.0885 6.112 

R

5 
10.931 10.931 10.93 

R

6 
1.0 22.7201 22.53 

R

7 
1.0 22.7201 22.51 

R

8 
1.0 2.0 1.992 

R

9 3.0 6.0 5.999 

R

10 
1.0 3.0 3.002 

R

11 
2.0 6.0 6.001 

C-values are in nano-Farads and R-values are in kilo-Ohms. 

Table 5.1 Nominal and measured component values of the discrete 
component model of the circuit in Fig 5.4(b). 
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R s 

(a) 

11 
(b) 

Fig 1.1 Resistively terminated LC ladder filters. 
(a) General form of an LC ladder filter 
(b) Schematic diagram of an LC ladder filter. structure, 
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Fig 1.2 Basic types of loss-frequency curves for lowpass filters. 
(a) Butterworth response. (b) Chebyshev response, 
(c) Inverted Chebyshev response. (d) Elliptic response. 

A 
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fc) Log co (d) Log co 

Basic filter response types derivable via transformations 
from lowpass filter response. 
(a) Lowpass filter response, (b) Highpass filter response, 
(c) Bandpass filter response. (d) Bandstop filter response. 
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Fig 1.4 Norton transformations. 
(a) General left-to-right "L" transformation. (b) General 
right-to-left "L" transformation. 

(a) (b) 

Fig 1.5 Sensitivity charateristics of resistively terminated LC 
ladder filters. 

(a) Equiripple filter characteristic. (b) Loss variation 
versus component change. 
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1.6 Signal flow graph simulation of LC ladder filters. 
(a) Fifth order all-pole lowpass LC prototype filter. 
(b) Signal flow block diagram representation of 
equations (2.14). (c) — ^ (i) Derivation of the required 
leap-frog feedback structure by manipulation of the signal 
flow graph. 
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Fig 1.7 Third order lowpass LC filter and its leap-frog feedback 
equivalent. 
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Fig 1.8 Sixth order bandpass LC filter and its equivalent leap-frog 
feedback stucture. 
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Fig 1.9 (a) Leap-frog feedback realisation of the LC filter in 
Fig 1.8(a) using non-unity feedback factors, 
(b) Equivalent structure of (a) with non-negative feedback 
factors. 

4 

( a ) 

13 

- h h - h h 

23 

Fig 1.10 Some other multiple feedback topologies. 
(a) Follow-the-leader feedback topology. (b) Minimum 
sensitivity feedback topology. 
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Fig 1.11 Some single amplifier biquadratic (SAB) bandpass circuits. 
(a) SAB Lim bandpass section. (b) SAB Friend bandpass 
section. (c) SAB Sallen and Key bandpass section. 
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Fig 1.12 Gyrators and their usage for simulating inductors. 
(a) Symbolic representation of a gyrator. (b) Simulation of 
a grounded inductor. (c) Simulation of a floating inductor. 
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Fig 1.13 Positive impedance converter (PIC) and its usage. for 
simulating inductors. (a) Symbolic representation of a PIC. 
(b) Circuit realisation of PIC. (c) Simulation of a 
grounded inductor, (d) Simulation of a floating inductor. 
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Fig 1.14 Basic principle of the Gorski-Popiel's method of simulating 
R1C filters. 

R

s
 U

J 
•S'b 0~

v 

C

1 ±c
2 

C

3
 L

A 
•II—'00*-

l
4
 — , 

'TkT-

j f i 
(a) 

R S R L 1 C 3 R 

2 2 

C1 

L2 

2 2 
L4 

2 ' 2 

M s 
Rl, 

C,
 C

5 = h 

( b ) 

Fig 1.15 Design example of simulating RLC filters by inductor 
simulation methods. 
(a) RLC - prototype filter. (b) Active RC realisation of 
(a) by simulating each inductor individually, (c) Active RC 
realisation of (a) using the Gorski-Popiel's method. 
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Fig 1.16 Bruton's method of simulating RLC filters. 

(a) Prototype filter. (b) Impedance scaled version of the 
prototype filter. (c) Active RC realisation of the circuit 
in (b) using s-type PICs. 

Fig 1.17 Basic principle of the- full impedance scaling method of 
simulating RLC filters. 



- 271 -

45 

fr=106 

132 ft.4 13.6 tifl 14.0 142 14.4 14.6 14.8 150 152 154 
FREQUENCY IN KHZ 

( Q ) 

FREQUENCY IN KHZ 

(b) 

Fig 2.1 Effect of finite amplifier gain bandwidth product. 
(a) Friend SAB bandpass circuit designed for f = 1 5 kHz, 
Q =47.8875 assuming the OP-AMP to be ideal.

 r

(b) Sallen 
and Key SAB bandpass circuit designed for f = 1 5 kHz, 
Q = oo assuming the OP-AMP to be ideal. 



- 272 -

( a ) 

( b ) 

Fig 2.2 

777" 

(a) Friend SAB bandpass, circuit. 
(b) Compensated Friend SAB bandpass circuit 

Fig 2.3 (a) Sallen and Key SAB bandpass circuit. 
(b) Compensated Sallen and Key SAB bandpass circuit 
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Fig 2.6 Comparison of the results of the nominal, predistorted and 
compensated designs of the Friend SAB-bandpass circuit? 
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Fig 2.7 Comparison of the results of the nominal, predistorted and 
compensated designs of the Sallen and Key SAB bandpass 
circuit. 
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Fig 2.8 Sixth order multiple feedback bandpass filter. 
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Fig 2.9 Comparison of the results of the nominal, predistorted and 
compensated designs of the multiple feedback filter of 
Fig 2.8. 



Nominal Response 

Filter Response with parameters of a 2nd order section 
changed from their nominal values 
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Fig 3.1 Determination of reduction in useful bandwidth and variation 
of loss in useful bandwidth. 



- 280 -

OLOO 20-00 '0.00 50.00 50.00 100.00 120.00 MO.00 150.Of 

20.00 1.00 50.00 50.00 100.00 120.00 M0.00 I60.0t 
•—CLOSED LOOP GAIN-* •CLOSED LOOP GAIN-

Tl.OO 20.00 40.00 50.00 50.00 100.00 120.00 140.00 I60.0C 
• — CLOSED LOOP GAIN—» •CLOSED LOOP GA1N-

"̂ too20.004).oo5o.oo 5o.ooibo.oo 120.0ai4o.oo iko.oc 

t 5 

.̂00 20.00 40.00 50.00 50.00 100.00 120.00 MO.00 I60.0t 
•—CLOSED LOOP G A I N — • •CLOSED LOOP GAJN-

F

i g 3.2 Changes produced in the resonance frequency, the Q-factor 
and the gain factor of the Friend circuit of Fig 2.2(b) when 
the f of the OP-AMP is changed by - 10 %. 
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Fig 3.3 Changes produced in the resonance frequency, the Q-factor 
and the gain factor of the Friend circuit <jf Fig 2.2(b) when 
the value of resistor R. is changed by - 0.112 %. 
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Fig 3.4 Changes produced In the resonance frequency, the Q-factor 
and the gain factor of the Friend circuit of Fig 2.2(b) when 
all the passive components of the circuit are varied, 
individually, by - 0.112 % (R* implies + 0 . 1 1 2 Z change 
in R

7
, etc.). 
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Fig 3.5 The worst case changes produced in the resonance frequency, 
the Q-factor and the gain factor when the passive components 
of the circuit of Fig 2.2(b) are varied, by £ 0.112 X and 
the f of the OP-AMP is varied by ± 10 % according to 
Table 3.1. 
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Fig 3.6 Typical graphs for determining reduction in useful bandwidth 
and variation of loss in useful bandwidth. 
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Fig 3.7 Plots of reduction in useful bandwidth and variation of loss 
in useful bandwidth against closed loop gain*for the Friend 
SAB bandpass circuit realising the 1st second order section 
in Fig 2.8. 
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- 287 -

CLOSED LOOP GAIN 

10 112 1.24 1.36 1.48 1.6 1.72 1.84 1.96 
CLOSED LOOP GAIN 

Fig 3.9 Plots of reduction in useful bandwidth and variation of loss 
in useful bandwidth against closed loop gain for the Sallen 
and Key SAB bandpass circuit realising the 2nd second order 
section in Fig 2.8. 
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Fig 3.10 Sixth order multiple feedback bandpass filter. 
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of the <6th order multiple feedback filter of Fig 3.10. 
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Fig 4.1 Equivalent star-delta networks. 
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of Negative Impedance Fig 4.2 Definition and properties 
Converter (NIC) circuit. 
(a) Schematic diagram of NIC circuit, (b) Realisation of an 
NIC circuit, (c) Symbolic representation of an NIC circuit, 
(d) NIC terminated at port 2. (e) NIC terminated at port 1. 
(f) Realisation of a floating negative impedance using NICs. 
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Fig 4.3 Some uses of NICs. 
(a) Multi-NIC terminated in a network l^. (b) Realisation 
of a network containing positive and negative impedances 
with positive impedances and a multi-NIC . 
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Fig 4.14 Active RC realisation of a 5th order all-pole lowpass filter 
by simulating inductors in the prototype 
filter Method 2. 
(a) -RC equivalent of Fig 4.13(a) obtjain^d from 
Fig 4.13(b) by interchanging the ports of the -R, -C circuit 
simulating the inductor L

2
 . (b) Circuit obtained by 
n 

choosing R^ = R^ = 2R in (a), (c) Active RC realisation 
2 4 n 

of the circuit in (b) using NICs of unity scaling factor, 
(d) Active RC realisation of the circuit in (b) using equal 
value capacitors. 
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filter of Fig 4.13(a) by simulating the 
inductors Method 3. 
(a) -RC equivalent of Fig 4.13(a) obt«|ine<j[ from 
Fig 4.14(a) by interchanging the ports of the -R, -C circuit 
simulating the inductor L^ . (b) Circuit obtained by 
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choosing R^ = Rĵ  = 2R
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 in (a), (c) Active RC realisation 
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of the circuit in (b) using NICs of unity scaling factor, 
(d) Active RC realisation of the circuit in (b) using equal 
value capacitors, (e) Alternative scheme for realising the 
shunt impedance at node 4 in (a). 

R.C= 2R C. ; 
1 s i 

n n 
R ^ 2 C ^ , s L

0 n 2 
R

0
C= 2R C~ : 
3 s 3 ' 

n n 
R# C= 2R C

T
 : 

4 s L, 
n 4 

R
5
C= 2R

g
 C

5
 /3; K ^ R p / R ^ Y R2/R

3
; Y R

3
/ R

4
; Y R

4
/ R

5 
n n 



- 303 -

'
S

"
A 2

 w 

0 4 = 

R U - R u 4 
V N A - r A A A " 

(a ) 

R 1 ^sn 

i - A A A 
2 

0,4= 

"Rsn Rsn 
- W — r A A A 

'Rsn -

3 Rsn "Rsn A 

- A A / M - W — 
>-1/2R 

H = - C b 

sn 
=T=C3

n
 = r - C L

4
 =T=Cs

n 

Rsn 12 

(b) 

t
m ^ M . R

s n
 M . R 

C i = h 

NIC 

0,4= 

NIC 
•

 R

Sn 
r A A A 

3 
k=1 

^NIC p—] C3n 

| ^ — I —
R s

" / 2 

k=1 R k=1 
A A A NIC - A A A NIC 

4=0/ 

4 

>1/2 

M . 
^R sn 

( c ) 

(d) 

Fig. 4.16 Active RC realisation of the 5th order all-pole lowpass 
filter of Fig 4.13(a) by simulating the inductors 

Method 4. 
(a) -RC equivalent circuit of Fig 4.13(a) gbta£ned from 
Fig 4.13(b) by interchanging the ports of the -R, -C circuit 
simulating inductor L^ . (b) Circuit obtained by choosing 
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L
 = R

L
 • R

g
 in (a). (c) Active RC realisation of the 
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circuit in (b) using NICs of unity scaling factor, 
(d) Active RC realisation of the circuit in (b) using equal 
value capacitors. 
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(a) Prototype LC filter, (b) Impedance scaled version of 
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grounded supercapacitors in (b) by their -R, -C equivalent 
circuit of Fig 4.6(b). (d) Circuit obtained by choosing 
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 in (c). (e) Active RC realisation of (d) using 

2 4 n 
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Fig 4.18 Active RC realisation of a 5th order elliptic lowpass 
filter. 
(a) Prototype filter circuit. (b) Circuit ^obtained from 
(a) by replacing each inductor by its -R, -C equivalent 
circuit. (c) Circuit obtained by choosing 
R^ = ^ » Rg in (b). (d) Active RC realisation of 

2 4 n 
(c) using NICs of unity scaling factors. 
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lowpass filter. 
(a) Prototype filter circuit. (b) Impedance scaled version 
of the prototype filter, (c) Circuit obtained frcjm (b) tjy 
replacing each supercapacitor by its -R, -C 
equivalent circuit. (d) Circuit obtained by choosing 
C = C - = C in (c). (e) Active RC realisation of the 
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circuit in (d) using equal value capacitors. 
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(a) Prototype filter circuit. (b) Impedance scaled version 
of the prototype filter, (c) Circuit obtained f^om (b) Ijy 
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filter of Fig 4.20(a). 
(a) -RC equivalent of Fig 4.20(b) obt^ine<J_ from 
Fig 4.20(c) by interchanging the ports of the -R, -C circuit 
simulating supercapacitor D
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. (b) Circuit obtained by 
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realisation of the circuit in (b) using NICs. 
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Fig 4.22 Active RC realisation of a 5th order all-pole highpass 
filter by simulating grounded inductors. 
(a) Prototype LC filter, (b) Circuit obta^ned
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by replacing 

grounded inductors in (a) by their -R, -C equivalent 
circuits (see Fig 4.4(c)). (c) Circuit obtained by choosing 
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 in (b). (d) Active RC realisation of 
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Fig 4.23 Active RC realisation of a 5th order elliptic highpass 
filter. 

(a) Prototype LC filter. (b) Impedance scaled version 
of (a). (c) Active RC realisation of (b) which requires 
narrow tolerance capacitors, (d) Alternative realisation of 
(b) which allows the use of wide tolerance capacitors. 
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Fig 4.24 Active RC realisation of a 6th order all-pole bandpass 
filter. 
(a) Prototype lowpass LC filter, (b) Prototype bandpass LC 
filter obtained from (a) by lowpass to bandpass 
transformation. (c) Circuit obtained |rom

+
(b) by replacing 

inductors L^ and L^ by the -R, -C circuit of 
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Fig 4.25 Alternative active RC realisation of the 6th order all-pole 

bandpass filter. 
(a) Prototype lowpass LC filter, (b) Active RC realisation 
of (a) obtained by replacing inductor L

2
 by its -R, -C 
n 

equivalent circuit of Fig 4.5(c). (c) Circuit obtained by 
applying the lowpass to bandpass transformation to the 
circuit in (b) in which R^ has been chosen as ^ = R . 

2 2 n 
(d) Circuit obt^ine^ by replacing each grounded inductor in 
(c) by its -R, -C equivalent circuit of Fig 4.8(e). 
(e) Active RC realisation of (d) using NICs of unity scaling 
factors. 
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filter. 
(a) Prototype lowpass LC filter, (b) Prototype bandpass LC 
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bandpass transformation and arranged into a more suitable 
form, (c) Circuit obtained from (b) by replacing inductor 
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 equivalent circuit of 
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Fig 4.2 7 Active RC realisation of an 8th order elliptic bandpass 
filter. 
(a) Prototype LC filter. (b) Dual circuit of (a). 
(c) Modified form of the filter circuit in 
(b) obtained by applying Norton transformations. 
(d) Complex impedanced scaled version o£ (

e

) Circuit 
obtained from (d) by replacing D^ by its -R, -C equivalent 
circuit of Fig 4.6(b) and by replacing D« and D, by their 

-R, -C equivalent circuit of Fig 4.7(c). (f) Circuit 
obtained by choosing C = C^ = C_ = C in (c). 

1 2 4
 s

n 
(g) Active RC realisation of the circuit in (f) using NICs 
and one PIC. (h) Active RC realisation of the circuit in 
(g) which allows the use of wide tolerance capacitors with 
deterministic adjustment procedure. 
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Fig 4.30 Measure'd response curves of the circuit in Fig 4.28. 
(a) Passband response, (b) Stopband response. 



- 318 -

FREQUENCY CkHz3 

FREQUENCY CkHz3 

Fig 4.30 Measure'd response curves of the circuit in Fig 4.28. 

(a) Passband response, (b) Stopband response. 
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Fig 4.31 Active RC realisation of a 5th order all-pole Chebyshev 
hlghpass filter. 
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(a) Passband response, (b) Stopband response. 
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Fig 4.30 Measure'd response curves of the circuit in Fig 4.28. 
(a) Passband response, (b) Stopband response. 
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by an amount AR- (b) Circuit obtained from (a) by 
transforming the encircled T-networks into their 
equivalent TT-networks. (c) Circuit obtained by applying 
Norton transformations to the. encircled part in (b). 
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Fig 4.39 • (a) Equivalent circuit obtained by considering the value of 
the resistor between nodes 3 and 3 ' in Fig 4.37(b) to be 
changed by an amount A R . (b) Equivalent circuit obtained 
by considering the value of the resistor between nodes 
3" and 4 in Fig 4.37(b) to be changed by an amount A R . 
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Fig 4.40 (a) Circuit obtained from Fig 4.37(a) assuming NIC^ to have 
a conversion factor awhile all other components have their 
nominal values. (b) Circuit obtained from (a) by 
transforming the encircled T-networks into their 
equivalent TT-networks. (c) An alternative representation 
of the circuit in (b). 
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Fig 4.41 (a) Circuit obtained from Fig 4.37(a) assuming NIC- to have 
a conversion factor 0C while all other components have their 
nominal values. (b) An alternative representation of the 
circuit in (a). (c) Circuit obtained from (b) by 
transforming the encircled T-networks into their 
equivalent TT-networks. (d) Circuit obtained by applying 
the Norton transformations to the encircled part in (c). 
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(b) R s = R S n ( a - 1 ) / a 

Fig 4.42 (a) Equivalent circuit obtained by considering the 
conversion factor of NIC- in Fig 4.37(a) to be a instead of 
its nominal value. (b) Equivalent circuit obtained by 
considering the conversion factor of NIC^ in Fig 4.37(a) to 
be a instead of its nominal value. 
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Fig 4.43 Active RC realisation of the 5th order lowpass 
filter of Fig 4.17(a). 
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Fig 4.44 (Continued on next page) 



Fig 4.44 Effect of individually changing each component of 
circuit in Fig 4.28 by - 2 % from its nominal value. 

the 



Fig 4.44 (Continued on next page) 
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Fig 4.45 Effect of individually^ changing each component of the 
circuit in Fig 4.43 by - 2 % from its nominal value. 



- 336 -

N 
NETWORK CONTAINING 

NICs Vi 

N 
NETWORK CONTAINING 

NICs X, 

O o 
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(a) 

( b ) 

(c) 

(d) 

Fig 5.1 (a) A general 2-port network containing NICs. (b) Coupling 
NIC network, (c) Grounded NIC network. (d) Bridged NIC 
network. 
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(c) k = Z-i l l 2 

Fig 5.2 Effect of finite f
T
 for the case of the coupling NIC. 

(a) Coupling NIC network, (b) Circuit obtained by replacing 
the network Ng in (a) by its equivalent 1-port impedance and 
by replacing the network N^ by its Thevenin's equivalence. 
T^ represents the open circuit voltage transfer function 

oc 
of the network N . (c) Circuit obtained by replacing the 
NIC in (b) by its CP-AMP equivalent. 
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(d) 

Fig 5.3 Effect of finite, f
T
 for the case of the grounded NIC. 

(a) Grounded NIC network. (h) Circuit obtained by replacing 
the network N^ in (a) by its equivalent 1-port impedance and 
by replacing the network N^ by its Thevenin's equivalence. 
T represents the voltage transfer function at point "X" 
A 
oc 

in (a) with the NIC disconnected, (c) Circuit obtained by 
replacing the NIC in (b) by its OP-AMP equivalent, 
(d) Circuit obtained by interchanging positions of 
impedances Z. and Z.. in (c). 
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(a) 

(b) 

Fig 5.4 (a) Active RC realisation of a 5th order all-pole highpass 
filter (obtained from the circuit of Fig 4.21(c)). 
(b) Circuit obtained by replacing the NICs in (a) with their 
OP-AMP equivalents. 
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Fig 5.5 Computed frequency responses of the circuit in 
Fig 5.4(b) for the case of ideal and non-ideal OP-AMPs. 
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Fig 5.6 Minimising the effect of finite f_ of NIC^ on the transfer 
function of the circuit in Fig 5.4(b). 
(a) The equivalent circuit for minimising the effect of 
finite f_. (b) Impedance equivalent to Z

A
 in (a), 

(c) Impedance equivalent to Z_ in (a). 

4k 
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Fig 5.7 Plot of the modulus of the objective function against 
frequency for the case when the NIC impedances in the 
circuit of Fig 5.6(a) are chosen as Z.= Z

9
 = 1.0 kilo-ohms. 
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Fig 5.8 Plot of loss variation against NIC resistor value for NIC 
of Fig 5.4(b). 



10 10 

FREQUENCY I N HZ (LOG SCALE) 

Plot of the modulus of the objective function against 
frequency for the case when the NIC Impedances ir the 
circuit of Fig 5.6(a) are chosen as a parallel combination 
of a resistor and a capacitor (R= 22.7201 kilo-ohms and 
C= 2.89036 nF). 
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Fig 5.10 Minimising the effect of finite f of NIC
2
 on the transfer 

function of the circuit in Fig 5 . 4(b). 
(a) The equivalent circuit for minimising the effect of 
finite f

T
» (b) Impedance equivalent to Z in (a), 

(c) Impedance equivalent to Z in (a). 
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Fig 5.11 Plot of the modulus of the objective function against 
frequency for the case when the NIC Impedances In the 
circuit of Fig 5.10(a) are chosen as Z^- 1.0 kilo-ohms. 
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Fig 5.12 Plot of loss variation against NIC resistor value (i.e. Z^) 
for NIC

2
 in Fig 5.4(b) (Z

2
= 3Z

t
). 



4 -4 ** t 4 t • t f 

0 140 -1 

QQ Q 

Z 
O 

a: 
CE > 

en 
en 
o 

0 . 3 0 -

0.20-

0.10-

CO 
00 

0 . 0 0 

1 0 

-i 1 1—i—i—r T 1 1 1—i—i—i—r 

10 10 

N I C RESISTORS (OHMS) 

• 5 
10 

Fig 5.13 Plot of loss variation against NIC resistor value (I.e. Z^) 
for NIC^ in Fig 5.4(b) for the case when the position* of 
impedances Z. and Z in Fig 5.10(a) have been interchanged 
and Z

2
» 3Z

X
. 
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Fig 5.14 Plot of loss variation against NIC resistor value (i.e. Z^) 
for NIC

2
 in Fig 5.4(b) for the case when the positions of 

impedances Z^ and Z
fl
 in Fig 5.10(a) have been interchanged 

and Z
2
= Z^. 
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Fig 5.15 Minimising the effect of finite f for NIC
3
 on the transfer 

function of the circuit in Fig 5.4(b). 
(a) The equivalent circuit for minimising the effect of the 
finite f (b) Impedance equivalent to Z^ in (a), 
(c) Impedance equivalent to Z in (a). 
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Fig 5.16 Plot of loss variation against NIC resistor value (i.e. Z ) 
for NIC

3
 in Fig 5.4(b) (Z

2
= 2Z

X
). 
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Fig 5.17 Frequency response of the circuit in Fig 5.4(b) when 
impedances of NXC^ and NIC- are chosen optimally from the 
graphs of Figs 5.12 and >5.16, respectively, and the 
impedances of NIC. are chosen as a parallel combination of a 
resistor (» 22.7201 kilo-ohms) and a capacitor 
(= 2.89036 nF). 
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Fig 5.18 Measured frequency responses of the the discrete component 
model of the circuit in Fig 5.4(b). 
(a) Passband response, (b) Stopband reponse. 
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(a) 

(b) 

(c) (d) k=Zi /Z 2 

Fig 5.19 Stability consideration of NIC circuits. 
(a) Network containing NICs. (b) Equivalent network of 
(a) with the NIC whose stability is being considered having 
been "pulled-out". (c) The "pulled-out" NIC in 
(b) terminated by its equivalent impedances Z^ and Z (as 
seen from terminals 1 and 2 in (b)). (d) NIC in 
(c) replaced by its OP-AMP equivalent. 
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Fig 5.20 Stability consideration of NICg in the circuit of Fig 4.31 
(see Table 4.2 for the component values). 
(a) Equivalent circuit for considering the stability of 
NIC 

3 * 
(b) Equivalent of impedance in (a). 

(c) Equivalent of impedance Z in (b). 
D 
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Fig A.1 A 5th order all-pole lowpass filter circuit realised using 
three NICs. 
(a) Active RC realisation. (b) Circuit obtained by-
eliminating the NICs in (a), (c) Circuit obtained from from 
(b) by transforming the encircled T-networks into their 
equivalent 11-networks (assuming R^- and R^= k^R^). 
(d) The "equivalent" prototype filter. 


