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ABSTRACT 

Ichthyophthirius multifil-iis is a ciliate parasite of freshwater 
fish species. The population dynamics of its interaction with the 
fish host Poecilia latipinna are investigated, as a laboratory model 
of more general host-parasite interactions. Short term experiments 
investigate the infection dynamics and survival of the infective stages 
and simple models are developed to assist in the analysis of the results. 
The rate of acquisition of resistance to infection, subsequent to pre-
vious exposure, and the degree of protection afforded against reinfec-
tion are examined experimentally. Experiments are described in which 
the death rate of the host is determined in relation to the burden of 
parasites harboured. 

Some mechanisms generating aggregation in the distribution of 
parasites between hosts are investigated, and their implications at 
the population level are discussed. Particular attention is paid to 
the importance of differing host susceptibility to infection as a 
source of overdispersion. 

Simple deterministic models are developed to describe the system, 
including important features of the biology of Ichthyophthirius identified 
by the experimental programme. Parasite survival of host death is found 
to have a strong destabilizing influence on the host parasite interaction. 
Acquired resistance to infection is found to stabilize the interaction, a 
wide range of parameter values leading to the parasite being maintained 
endemically at low levels within the host population. Laboratory epi-
demics of Ichthyophthirius are described, and their behaviour is dis-
cussed in relation to the predictions of the models. Finally, the 
likely influence of seasonal factors on the epidemiology of the parasite 
and future research priorities are discussed. 



iii 

TABLE OF CONTENTS 

PAGE 

ABSTRACT H 

LIST OF TABLES i x 

LIST OF FIGURES ix 

1. INTRODUCTION 1 

2. BIOLOGY OF ICHTHYOPHTHIRIUS MULTIFILIIS 5 

2.1 Life Cycle 5 

2.2 Pathology 7 

2.3 Epidemiology 13 

3. GENERAL EXPERIMENTAL METHODS 16 

3.1 Source and maintenance of hosts and parasites 16 

3.2 Methods of obtaining tomites and of 17 

experimental infection. 

3.3 Numerical methods 18 

4. THE REPRODUCTIVE RATE 19 

4.1 Introduction 19 

4.2 Methods 19 

4.2.1 Trophozoite survival 19 

4.2.2 Time required for encystation 19 

4.2.3 Number of infective stages produced per cyst. .. 20 

4.2.4 Tomite survival 21 

4.3 Results 21 

4.3.1 Trophozoite survival 21 

4.3.2 Time required for ency station 27 

4.3.3 Number of tomites produced per cyst 30 



iv 

PAGE 

4.3.4 Mean number of tomites -per cyst 34 

4.3.5 Net reproductive rate 34 

4.3.6 Tomite survival 36 

4.4 Conclusions and discussion 40 

5. TOMITE INFECTIVITY 42 

5.1 Introduction 42 

5.2 Experimental Methods 42 

5.2.1 Varying the number of infective stages 43 

5.2.2 Varying the number of hosts 43 

5.2.3 Varying the concentration of infective 

stages 43 

5.2.4 Varying the duration of exposure time 43 

5.2.5 Distribution of parasites on the surface 

of the host 44 

5.3 A Model to describe the infection process 44 

5.4 Results 46 

5.4.1 Distribution of parasites over the 

surface of hosts 58 

5.5 Discussion and Conclusions 58 
• • • 1 • i • • , 

6. ACQUIRED RESISTANCE TO INFECTION 64 

6.1 Introduction 64 

6.2 Experimental Methods 64 

6.2.1 Time required to develop resistance (I) 64 

6.2.2 Time required to develop resistance (II) 65 

6.2.3 Effect of previous exposure on time spent 

by trophozoites on hosts 66 



V 

PAGE 

6.2.4 Effect of starvation on resistance 

to infection 66 

6.3 Results 67 

6.3.1 Time required to develop resistance (I) 67 

6.3.2 Time required to develop resistance (II) 72 

6.3.3 Effect of previous exposure on time 

spent on hosts 73 

6.3.4 Effect of starvation on resistance 

to infection 77 

6.4 Conclusions and discussion 77 

7. PARASITE INDUCED MORTALITY 8 2 

7.1 Introduction 82 

7.2 Experimental methods 82 

7.3 Age dependent parasite induced mortality 83 

7.4 An averaged death rate 90 

7.5 Parasite survival of host death 93 

7.6 Discussion 98 

8. THE DISTRIBUTION OF PARASITES WITHIN THE HOST 

POPULATION 102 

8.1 Introduction '102 

8.2 Experimental Methods 103 

8.3 Results 103 

8.4 The expected distribution of parasites on 

hosts 112 



vi 

PAGE 

9. EXPERIMENTAL EPIDEMICS 120 

9.1 Introduction 120 

9.2 Constant host immigration 120 

9.2.1 Methods 120 

9.2.2 Results of the first series 121 

9.2.3 Results of the second series 124 

9.3 Constant host numbers in tanks 134 

9.3.1 Methods 134 

9.3.2 Results 134 

10. THE BASIC MODEL 140 

10.1 Aims of Modelling 140 

10.2 A brief history of the modelling of disease 

and parasitism 142 

10.3 A basic model to describe the population 

dynamics of Ichthyophthirius multifiliis 146 

10.4 Constant host immigration 164 

10.5 Logistic host population growth 165 

11. PARASITE SURVIVAL OF HOST DEATH 170 

11.1 Introduction 170 

11.2 A simple model of survival of host death 171 

11.3 Parasite survival decreasing with mean 

parasite burden 179 

11.4 Conclusions 183 

12. MODELLING OF THE IMMUNE RESPONSE 186 

12.1 Introduction 186 



vii 

PAGE 

12.2 A simple model of immunity 187 

12.3 Host population growth restricted ig4 

12.4 The effect of the rate of development of 

immunity reaching a maximum level 206 

12.5 Partial immunity 223 

12.6 Conclusions and discussion 225 

13 THE EFFECT OF DIFFERENCES IN HOST SUSCEPTIBILITY 

ON POPULATION DYNAMICS 232 

13.1 Introduction 232 

13.2 A deterministic model 233 

13.3 A simulation model 237 

13.3.1 Model structure 240 

13.3.2 Simulation results 243 

14. MODELLING THE EXPERIMENTAL EPIDEMICS 249 

14.1 Constant host immigration 249 

14.2 Constant host numbers 262 

14.2.1 A difference equation model 264 

15. GENERAL DISCUSSION 27 2 

15.1 Seasonality and age structure 272 

15.2 Susceptibility to infection 274 

15.3 Coevolution 280 

ACKNOWLEDGEMENTS 282 

BIBLIOGRAPHY 283 



via 

PAGE 

APPENDICES 

1. Non linear curve fitting 295 

2. Raw data from parasite induced mortality experiments 297 

3. The effect of heterogeneity in host susceptibility 

on parasite distribution 299 

4. Microparasitic disease models 301 

5. Stability analysis of the basic model 309 

6. Stability analysis of the host parasite model 

with constant host introduction 312 

7. Local stability analysis of the model with constant 

parasite survival of host death and exponential 

host population growth 314 
— vi . .2 — t,i 

8. The expected values of e , ie and i e 316 

9. Local stability analysis of the simple model of 

immunity 318 

10. Derivation of the relations dM/dt = 0 and dQ/dt = 0 322 

11. Stability analysis of the model with a fixed 

proportion of hosts resistant at birth 324 

12. Stability analysis of models in which the parasite 

survives host death, and host numbers are 

maintained constant 327 

13. Two forms of a parasite, one with a higher 

reproductive rate than the other 332 



ix 

PAGE 

LIST OF TABLES 

2.1 Developmental rates of Ichthyophthirius 
o 

4.1 The number of trophozoites producing tomites 31 

6.1 The influence of host sex on parasite burden 69 

6.2 Results of a nested analysis of variance on 

data of resistance experiment I 69 

6.3 Results of a nested analysis of variance 

on data of resistance experiment II 69 

8.1 Variability in susceptibility to infection 

10.1 Parameters of the model defined by eqns (10.7) 

- (10.8) 151 

10.2 Parameters of the model defined by eqns. (10.27) 

- (10.28) 160 

11.1 Variables and parameters used in models in 

Chapter 11 173 

12.1 Parameters used in Chapter 12 190 

LIST OF FIGURES 

Figure No. 

2.1 Developmental rates of Ichthyophthirius 11 

4.1 Survival of trophozoites 23 

4.2 Proportion of trophozoites remaining on hosts 

at day 8. 26 

4.3 Trophozoite establishment and survival .. 26 

4.4 Time required for encystation 29 

4.5 Trophozoite size and time required for 

encystation 29 



X 

LIST OF FIGURES (Cont) PAGE 

4.6 Trophozoite growth 33 

4.7 Number of tomites per cyst 33 

4.8 Tomite survival and age dependent infectivity 39 

5.1 Trophozoite establishment 48 

5.2 The effect of host density on trophozoite 

establishment 51 

5.3 Effect of water volume on trophozoite 

establishment 54 

5.4 Time dependent infectivity 57 

5.5 Trophozoite densities at different points on 

the fish surface 60 

6.1 Time required to develop resistance to 

infection (I) 71 

6.2 Time required to develop resistance to 

infection (II). 74 

6.3 Survival of trophozoites on control and previously 

exposed hosts 78 

6.4 The relationship between the number of parasites 

established in a second infection and number 

established in an initial infection 78 

7.1 The age dependent parasite induced death rate 85 

7.2 An alternative presentation of the results shown 

in Figure 7.1 88 

7.3 An averaged death rate 92 

7.4 The surface area of a black mollie 92 

7.5 The relationship between trophozoite density and 

tomite production per trophozoite 97 



xi 

LIST OF FIGURES (Cont) PAGE 

7.6 Density dependence in total tomite production 97 

8.1 Mean and variance of parasite burden per host 105 

8.2 The relationship between y* and x\ using data of 

Figure 8.1 110 

8.3 The relationship between 1/k and mean parasite 

burden 110 

8.4 Distributions of parasites on hosts 114 

8.5 Numerical solutions of equation (8.7) compared 

with negative binomial distributions 117 

9.1 Results of the first series of constant 

immigration experiments 123 

9.2 Analysis of the results of the first series of 

constant immigration experiments, using the 

method of Bliss and Owen (1958) 126 

9.3 Results of the second series of constant immigration 

experiments 130 

9.4 Analysis of the results of the second series 

of constant immigration experiments 132 

9.5 Results of the experiment in which host numbers 

were maintained constant 136 

10.1 Schematic life cycle of Iohthyophthirius 149 

10.2 The dynamical behaviour of eqns. (10.7), (10.9) 

and (10.20) 156 

10.3 An unstable solution of the basic model 163 

10.4 A numerical solution of eqns. (10.27) and (10.28) 163 

10.5 Phase diagram analysis of eqns (10.36) and (10.28) 169 

10.6. Phase diagram analysis of eqns. (10.39) and 

(10.40) 169 



LIST OF FIGURES (Cont) 
x^% 

11.1 Increasing Oscillations Generated from eqns. (11.8) 

and (11.9) 

11.2 Stable limit cycle generated from eqns (11.16) 

11.3 Stable limit cycle generated from eqns. 

(11.18) and (11.19) 

11.4 Stability regions of the model defined by eqns. 

(11.24) and (11.25) 

11.5 Stable limit cycle generated from eqns. 

(11.24) and (11.25) 

11.6 A stable solution of eqns. (11.24) 

and (11.25) 

12.1 A solution of eqns. (12.5) - (12.7) with 

q = 0.001 
12.2 The effect of increasing ri on equilibrium values 

of eqns. (12.5) - (12.7) 

12.3 The region of the r\ - v parameter space within 

which eqns. (12.5) - (12.7) have an equilibrium 

solution 

12.4 A solution of eqns (12.5) - (12.7) with r\ = 0.0019. 

12.5 A solution of eqns (12.5) - (12.7) with n = 0.003 

12.6 A solution of eqns (12.5) - (12.7) with n = 4.0 

12.7 The effect of increasing n on the equilibrium 

of eqns (12.18) - (12.20) 

12.8 The effect of increasing the rate of joining 

the immune class on equilibria of a compartmental 

model 

12.9 The effect of changing K on the equilibrium 

solutions of eqns (12.18) - (12.20) 

12.10 The effect of changing k on the solution of 

eqns (12.18) - (12.20) 



xiii 

LIST OF FIGURES (Cont) PAGE 

12.11 The effect of doubling the number of susceptibles 

on the solution of eqns. (12.18) - (12.20) 208 

12.12 The effect of increasing c on the equilibrium 

of eqns (12.30) - (12.32) 214 

12.13 The effect of increasing c on the equilibrium 

of eqns (12.31), (12.32) and (12.35) 214 

12.14 The approach to equilibrium of the simple 

model of immunity 217 

12.15 The approach to equilibrium of the more complex 

model of immunity 217 

12.16 Rates of development of immunity used in 

Figures 12.14 and 12.15 219 

12.17 The number of solutions to eqns (12.37) - (12.39) 222 

12.18 Partial immunity (s = 0.01, R = 0.001) 227 

12.19 Partial immunity (s = 0.01, n = 0.01) 227 

12.20 Partial immunity (S = 0.5, n = 0.01) 229 

12.21 Partial immunity (s = 0.5, n = 0.001) 229 

13.1 Results of the deterministic model in which a 

proportion of hosts are resistant to infection 239 

13.2 Results of the simulation model 245 

13.3 Changes in host susceptibility during a 

simulation run 248 

13.4 The behaviour of k 1 during a simulation run 248 

14.1 Comparison of forms of the survival function, l(x) 252 

14.2 The predicted behaviour of the constant immigration 

experiments, if the immune response is not allowed for .. .. 256 

14.3 The predicted behaviour of the constant immigration 

experiments, when an immune response is included 259 



xiv 

LIST OF FIGURES (Cont) PAGE 

14.4 Solutions of the simulation model with constant 

immigration 261 

14.5 The Ricker curve for trophozoite numbers 268 

14.6 The fit of the Maynard Smith - Slatkin 

model to the Ricker curve 268 

14.7 The numerical solution of eqn. (14.15) 271 



- 1 -

CHAPTER 1 

INTRODUCTION 

The mathematical studies of the epidemiology and population 

dynamics of infectious disease began in 1760, with a paper by Bernoulli 

on the mortality induced by smallpox. Since that time, a large sophis-

ticated literature has developed on disease epidemiology. This is mainly 

concerned, not unreasonably, with public health problems, and deals only 

indirectly with the ecology of pathogens and the role they may play in 

the regulation of natural populations. Although Lotka (1923) pub-

lished on epidemiology before his classic work on predation and com-

petition, ecologists tend to have concentrated their attention on 

predators or insect parasitoids as regulators of animal populations. 

With the exception of the work of Kostitzin (1934), the importance of 

parasites in population dynamics has been neglected until recently. 

Over the last decade, there has been increasing interest in the sig-

nificance of parasites in the ecology of natural populations (Crofton, 

1971b, Bradley, 1972, Anderson and May, 1978). This interest has per-

haps culminated in the suggestion of Hamilton, (1980) that selection 

pressure caused by parasitism may have led to the evolution of sex. 

A number of factors have probably made parasitism a less attractive 

subject of investigation to both experimental and theoretical ecologists 

than either predation or the action of insect parasitoids. The influ-

ence of a parasite on its host is,by it nature, rather more subtle than 

that of a predator on its prey in which the prey is killed outright, or 

of a parasitoid on its host, in which case there is usually a simple one 

to one replacement of host by parasitoid (Hassell, 1978). Parasites 
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are usually hidden from view, and estimation of their population size 

is often extremely difficult without destructive sampling of the host 

population. A large number of parasites have complex life histories, 

utilizing several intermediate hosts, and hence are difficult to deal 

with in laboratory culture and manipulation. The complexity of their 

life cycles also raises problems of mathematical description. A final 

factor, that should probably not be underestimated, is the rather unplea-

sant nature aesthetically of certain parasitological investigations. 

This thesis is an integrated experimental and theoretical exam-

ination of the population dynamics of the protozoan Ichthyophthirius 

multifiliis, a parasite of freshwater fish. Ichthyophthirius is of 

considerable economic significance as a pathogen affecting commercial 

fish culture. The main reason for its use as an experimental organism 

in this study, however, is that it provides an ideal laboratory model 

with which to investigate some of the problems of parasite ecology. 

Certain features of the biology of the organism enable the avoid-

ance of some of the problems of investigation of parasite population 

dynamics mentioned above. Its life cycle is direct, involving only 

one host, and at laboratory temperatures, the generation time is short, 

being a few days as opposed to weeks. The parasite is visible externally, 

and the parasite burden of a host can therefore be assessed without 

unduly interfering with either host or parasite population. 

The thesis falls into two main parts. In the first section, aspects 

of the biology of Ichthyophthirius are examined experimentally. After 

a review of the available literature on the biology of the organism 

(Chapter 2) and a brief description of experimental techniques used, 
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the time spent in each life cycle stage and the reproductive rate 

of the parasite are determined in Chapter 4. Chapters 5 and 6 ex-

amine the infectivity of tomites to naive and previously exposed 

hosts respectively. The complex nature of the effect of parasites 

on the survival of their hosts is investigated in Chapter 7, and 

through this, the relationship between parasite burden per host and 

parasite fecundity is examined. The distribution of parasites within 

a host population is of crucial importance to the dynamics of a host 

parasite interaction (Anderson and May, 1978; Bradley, 1972; Crofton 

1971b). Chapter 8 examines the influence of differing host suscept-

ibility to infection on this distribution. To conclude the experimental 

side of the project, the results of some laboratory epidemics of 

Ichthyophthirius are considered in Chapter 9. 

The second part of the dissertation considers theoretically the 

consequences of the behaviour of the parasite observed in Chapters 4 - 9 . 

Although the models developed are specifically framed around Ichthyophth-

irius , the factors they examine are common to the biology of a large 

number of host-parasite interactions. A general model is formulated 

in Chapter 10, and the significance of the time delays in the transmission 

of Ichthyophthirius is considered. Chapter 11 examines the influence 

of parasite survival of the death of their hosts on the stability of 

the interaction. In Chapter 12, the significance of acquired immunity 

of a host to parasites is considered, and compared with the influence of 

acquired immunity in models of microparasitic disease. Chapter 13 examines 

the influence of differences between hosts in the level of innate sus-

ceptibility to infection on a free running population, in contrast to 

Chapter 8, which considered the influence of varying susceptibility on 

parasite burdens developed after a single infection. Finally, in Chapter 
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14, the results of the experimental epidemics in Chapter 9 are re-

examined in the light of the theoretical conclusions, and in Chapter 

15, the findings of the dissertation and future research needs are 

discussed. 
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CHAPTER 2 

BIOLOGY OF ICHTHYOPHTHIRIUS MULTIFILIIS 

2.1 Life Cycle 

Ichthyophthirius multifiliis (Fouquet, 1876) is a ciliate of 

the order Hymenostomatida (Corliss, 1979) parasitic on freshwater 

fish. The life cycle of the organism has been well documented. The 

description given below is primarily based on that of Wagner (1960). 

The adult, known as a trophozoite, lives beneath the epidermis 

of its host, and is visible externally as a white spot, leading to 

the disease being commonly known as "white spot disease". Tropho-

zoites are approximately spherical,uniformly ciliated and with a well 

developed cytostorae. Ichthyophthirius multifiliis was originally 

described as having a horseshoe shaped macronucleus, and although 

variants have been described with rod shaped or spiral macronuclei 

there are suggestions that these may, in fact, represent different 

species. (Nigrelli et al, 1976). To date,.Ichthyophthirius multifiliis 

is the only member of its genus recognized (Corliss, 1979). 
» 

After some time feeding on the host, the mature trophozoite 

leaves in order to reproduce. Although several trophozoites occupying 

a single lesion may give the impression of being products of division 

(Wagner, 1960).reproduction on live hosts has not been reported. Having 

left the host, the mature trophozoite settles on to a solid substrate, 

secretes a thin, gelatinous cyst wall and begins rapid mitotic division. 

Division has been reported in the absence of a cyst wall, or without 

the trophozoites attaching to a substrate (Negele, 1975), but viable 

tomites do not appear to be produced under such circumstances (Wagner, 
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1960; Bauer, 1962). If host death forces trophozoites to leave the 

host before reaching full maturity, most are able to successfully 

encyst, although there is a minimum age below which trophozoites 

appear to be incapable of secreting a cyst wall (MacLennan, 1937). 

Trophozoites leaving hosts before reaching maturity do not produce 

as many infective stages as do mature parasites (Wagner, 1960). 

Once division is complete, the infective stages or tomites, 

bore through the cyst wall and are released into the environment. 

Tomites are ovoid in shape, ciliated and highly mobile. They are a 

non feeding stage, living off reserves of glycogen and proteins 

(Wagner, 1960). As far as is known, Ichthyophthirius tomites en-

counter hosts as a result of essentially random movements. Lom and 

Cerkasovova (1974) failed to detect any long range chemotactic res-

ponse to either fish mucus or serum, although they believe that the 

observed positive phototaxis of tomites may bring them toward the 

water surface, a habitat favoured by certain species of fish. On 

locating a host, tomites attach to the epidermis and bore through 

it until reaching a level on or just above the basement membrane, 

reaching it within 24 hours at 18°C (Hines and Spira, 1974b) where 

they assume a rounded shape and develop into trophozoites (Bauer, 

1962). 

The time required for the completion of these life cycle stages 

is extremely dependent on water temperature. According to both 

Bauer (1962) and Wagner (1960), the parasite is able to survive and 
o o 

reproduce in water temperatures between 3 C and 27 C, taking in 

excess of 100 days to complete the cycle at 3°C, and less than 5 at 

27°C. The optimum temperature for reproduction is around 25°C. The 
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growth rates reported in the literature are compared in Fig. 2.1 and 

Table 2:1. Some caution should be exercised in comparing these, as the 

methodologies may differ, but the striking general impression is the 

close similarity in rates reported over forty years from three con-

tinents. Nigrelli et at (1976) consider it probable that distinct 

physiological races or species of Ichthyophthirius exist, adapted 

to differing water temperature regimes. The constancy of the dev-

elopment times shown in Table 2.1 suggests that these observations 

relate to only one species. 

2.2 Pathology 

The parasite is extremely pathogenic, and is responsible for 

severe economic losses in the intensive conditions of commercial fish 

culture. The best description of the pathology and physiological 

effects of Ichthyophthirius infection is found in a series of papers 

by Hines and Spira (1973a, 1973b, 1974a, 1974b, 1974c). The gross 

appearance of an infected host is characterized by the already described 

white pustules and a thickened or patchy appearance of the mucus 

layer. In the later stages of infection, tissue necrosis is common, 

fins becoming frayed, scales lost and gill filaments exposed. His-

tological examinations reveal an increase in the number of mucous 

cells early in the infection, and up to a fourfold increase in the 

thickness of the epithelium. Examination later in the course of the 

infection revealed a total lack of mucous vacuoles, and loss of the 

epithelium down to the level of the basement membrane (Hines and 

Spira, 1974a). 

The physiological effects of the disease on mirror carp, Cyprinus 

carpio are discussed by Hines and Spira (1974b). The primary finding 
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Table 2.1 Developmental Rates of Iohthyophthirius 

(a) Time spent by trophozoites on hosts 

Temperature (°C) Time (days) Source 
2 - 4 > 100 Wagner 

5 70 - 80 Wagner 
10 25 - 30 Wagner 
10 t 28 Lahav and Sarig 
15 10 - 12 Wagner 
15 t 8 Lahav and Sarig 

18 - 20 8 Hines and Spira 
20 7 

6 + 

Wagner 
20 

7 
6 + Lahav and Sarig 

22 5 »-6 MacLennan (1937) 
25 5 Wagner 
27 3. 5 - 4 MacLennan (1937) 

f'time until beginning of release from trophozoites. 

(b) Time required for encystation 
Temperature ( C) Time (days) Source 

3 - 4 11 - 15 Wagner 
5 7 - 8 Wagner 

7 - 8 3 - 3.5 Bauer 
10 2 - 2.5 Wagner 

11 - 12 1.5 - 1.7 Bauer 
15 1 - 1.5 Wagner 

15 - 16 1.2 Bauer 
20 0.75 Wagner 

20 - 22 0.8 Bauer 
24 - 25 0.6 Bauer 

25 0.5 Wagner 
26 - 27 0.45 Bauer 

27 0.45 MacLennan 

(Sources are given in more detail overleaf) 
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Table 2.1 (continued) 

(c) Size of "Mature" Trophozoites 

Temperature C C) 
2 - 5 
5 - 1 0 
10 

10 - 20 
15 

18 - 20 
20 

20 - 30 
22 
27 

Diameter (mm) 
1.0 

0.8 

0.85 
0.6 

0.6 

0.6 

0.50 
0.50 
0.45 
0.3 

Source 
Wagner 
Wagner 
Lahav and Sarig 
Wagner 
Lahav and Sarig 
Hines and Spira 
Lahav and Sarig 
Wagner 
MacLennan (1942) 
MacLennan (1942) 

(d) Growth Rate of Trophozoites on Hosts 

Diameter of Trophozoites (yim) 
Days after infection MacLennan (1942) Hines and Spira 

(22°C) (18 - : 
1 53 70 
2 71 84 
3 126 186 
4 203 -

5 316 317 
6 446 485 
7 512 586 

Host Species Examined 
Source 

MacLennan (1937, 1942) 

Wagner (1960) 

Bauer (1962) 
Lahav and Sarig (1973) 
Hines and Spira (1973a) 

Host Species 
5 cm Speckled Dace 
Apocope oscuta carringtoni 

3 year old "carp" (40 cm), similar 
results for sticklebacks, gudgeon 
perch, guppies 

"carp" 
15 - 20g "carp" 
250g Mirror carp Cyprinus carpio 
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Figure 2.1 Developmental rates of Ichthyophthirius 

Figure 2.1(a) compares times spent by trophozoites on hosts reported 

in the literature, and Fig. 2.1(b) compares times required for 

encystation. In each, the curve shown is obtained from Wagner (1960). 

Circles represent the observations of Bauer (1962), squares repre-

sent the observations of Hines and Spira(1973a), triangles those 

of MacLennan (1937) and diamonds those of Lahav and Sarig (1973). 
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was that the osmoregulatory ability of the infected carp was affected. 

It is suggested that this is due to changes in the mucus layer, and 

the physical damage caused by the parasite to the epithelium. The 

ability of diseased fish to tolerate low oxygen levels was also decreased. 

Hines and Spira suggest that this is partially caused by epithelial 

damage, and not solely due to the reported obstruction of the gills. 

Little evidence exists in the literature concerning the number of 

parasites that constitute a lethal burden. Lahav and Sarig (1973), 

working with 15-20 g carp (species not reported), found no mortality 

occurring with parasite burdens of up to 300 per fish. Hines and 

Spira (1973a) report 100% mortality of mirror carp, Cyprinus carpio, 

weighing between 240 and 260 g with a peak infection level of 430 
2 trophozoites per cm of tail fin, and no mortality of carp with a 
- 2 

peak burden of 8 cm . Burdens of less than five trophozoites were 

found to be sufficient to kill carp fry 9-12 mm long by Komarova (1975), 

although older fry survived infection at this level. 
\ 

Fish are capable of acquiring a degree of resistance or immunity 

to infection by Ichthyophthirius, subsequent to earlier exposure. This 

was first noted by Buschkiel in 1910 (Buschkiel, 1936), who observed 

that three successive generations of the parasite do not seem to be 

able to establish on the same host. Bauer (1962) was able to show that 

fish with a previous experience of infection developed burdens approx-

imately one tenth of those established on hosts with no previous ex-

perience of infection, if exposed to the same density of tomites. Hines 

and Spira (1974c) examined the acquisition of resistance by Cyprinus 

carpio to infection by Ichthyophthirius in some detail. Sterile immunity 

was observed to develop in fish that had recovered from moderately heavy 
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—2 infestations (peaking at around 100 cm of caudal fin area). This 

was maintained for at least eight months, in contrast to the finding 

of Bauer (1962) that the effectiveness of the immune response decreased 

after two weeks. Blood serum from fish that had recovered from in-

fection was found to be capable of immobilizing Iahthyophthirius tro-

phozoites, as were mucus washings from recovered hosts. Hines and 

Spira believe "that the immune response acts on the parasite 

via the mucoid secretions of the host, as infective stages were not 

recovered in mucus from resistant hosts. Recently, Goven et at (1980) 

have shown that channel catfish, Ictaturus punctatus may be protected 

from Iehthyophthirius infection by immunization with preparations of 

Iehthyophthirius cilia, or with cilia preparations from the related 
% 

Tetrahymena pyriformis, 

2.3 Epidemiotogy 

Iohthyophthirius muttifitiis is extremely widespread in natural 

conditions, both geographically and in terms of the range of species 

it may attack. The parasite has been reported from freshwater fish 

in every part of the world, with the possible exception of the arctic 

(Nigrelli et at, 1976). Infection has been reported on a wide variety 

of host species. In the British Isles, for example, it has been found 

on the three spined stickleback Gasterosteus aeuteatus, brown trout 

Satmo tiutta, carp Cyprinus oarpio, crucian carp Carassius oarassius, 

bream Abramis brama, minnows Phoxinus phoxinus, roach Rutitus rutitus , 

tench Tinea tinea and pike Esox tueius (Kennedy, 1974). 

Despite this widespread distribution, reported outbreaks of the 

disease amongst natural fish populations are relatively rare. When 

they do occur, however, epizootics may be severe. Elser (1955) describes 
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an epizootic amongst yellow perch Perca flavescens in a 3,900 acre 

impoundment in Maryland, U.S.A. The outbreak commenced in April, and 

by the end of May, Elser estimated that around 170,000 fish had been 

killed. A population of sticklebacks Gasterosteus aculeatus in a 
o 

small scottish lochan (1000 m ) being studied by Hopkins (1959) was 

nearly wiped out by an epizootic of Ichthyophthirius, which commenced 

in August. Host density during the epizootic was crudely estimated 

by the number of fish per net haul, and by November, the fish population had 

been reduced to 1% or less of its former level. Other documented out-

breaks are those at Schonerlinde near Berlin amongst grass carp (Wagner, 

1960) and those amongst trout in the Black Forest (Buschkeil, 1936). 

Information on the distribution of the parasite amongst natural 

populations of fish in Europe is limited. A number of general surveys 

of fish parasite fauna, ranging geographically from Finland (Calenius, 

1980) through England (Mishra and Chubb, 1969) and Ireland (Kane, 1966) 

to Bosnia and Herzogovinia (Zitnan arid Cankovic, 1980) have detected 

Iahthyophthirius , but not, apparently, in large numbers. Interpretation 

of this information is restricted by the failure of some authors to 

note the level of prevalence of the parasite in the host population. 

Calenius (1980) recorded prevalence, finding Ichthyophthirius in low 

numbers only,on seven out of 2000 fish examined. Kane (1966) found 

higher levels of prevalence (30 out of 450 pike, 20 of 84 minnows, 

16 of 38 carp and 30 of 80 sticklebacks). However, with the exception 

of the pike, he recommends caution in the interpretation of these fig-

ures, as fish were not sampled randomly. Kane also contrasts the dis-

tribution of Ichthyophthirius , which was found on fish at only two of 

over thirty sites surveyed, with the more general distribution of the 
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other parasites in his study. Pickering and Christie (1980) and 

Wooten and Smith (1980), comparing parasite faunas on wild and hatchery 

reared salmonids iSalmo trutta and Salmo salar respectively), detected 

the parasite on hatchery raised fish, but failed to find it on wild 

hosts in the same area. 

Ichthyophthirius appears thus to usually be endemically present 

amongst wild fish populations in low numbers only, although fish 

populations may be subject to occasional epidemic outbreaks. 

Amongst the far higher densities of fish to be found in commercial 

fish culture practices, Ichthyophthirius outbreaks are of sufficient 

frequency and severity to pose a considerable economic problem. Bauer 

(1962) reports more than ten epizootics between 1950 and 1953 in 

hatcheries in the Belorussian Soviet Socialist Republic (White Russia) 

in which between 50 and 100% of the breeding stock was killed. Severe 

epizootics have also been described in Israel (Lahav and Sarig, 1973) 

and Java (Buschkeil, 1936). It is generally believed that these out-

breaks are caused by the introduction of the parasite from wild host 

reservoirs (Bauer, 1962, Zitnan and Cankovic, 1980). Ichthyophthirius 

is also one of the most important pathogens of aquarium fishes. 
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CHAPTER 3 

GENERAL EXPERIMENTAL METHODS 

3.1 Source and Maintenance of Hosts and Parasites 

An aquarium variety of PoeciHa latipinna (Lesueur, 1821), the 

black mollie, was utilized as the host species throughout these ex-

periments. Fish were obtained from a commercial supplier (Queensborough 

Fish Farm, Wraysbury, Berkshire). Fish sold commercially as "black 

mollies" may be black strains of several related species native to 

the south eastern U.S.A. and central America (Poecilia sphenops3 P. 

latipinna and P. velifera) or hybrids between them (Schiotz, 1972). 

The species identification may be determined by the number of dorsal 

fin rays. Fourteen were found to be present in fish used in these 

experiments, and on this basis, they were identified as POeciHa 

latipinna. 

Fish were fed ad''libitum with Aquarian tropical fish flakes 
o 

(Thomas's, Halifax) and maintained in aerated, filtered water at 20 C. 

Hosts used in experiments ranged in size from 35-45 mm, measured from 

snout to caudal peduncle. Cultures of Ichthyophthirius multifiliis 

were collected from a variety of fish from Queensborough Fish Farm, 

the most reliable source species being goldfish Carassius auratus. 

It is probable that the infection was brought in with these fish from 

Singapore. The disease was maintained by serial transmission on black 

mollies, and the culture replenished periodically by fresh introductions 

of Ichthyophthirius, Stock infection tanks held ten litres of aerated, 

but unfiltered water at 20°C, and had a layer of coarse gravel on the 

bottom. It was found necessary to treat tap water with a commercial 

"conditioner" (Aquasafe, Tetrawerke Gmbh) to remove chlorine. High 
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levels of infection were found to be best maintained by commencing 

a culture with one heavily infected fish and ten susceptible hosts. 

After two days, the heavily infected host was removed and the water 

changed. A week later, large numbers of now mature trophozoites could 

be obtained from the remaining fish. One or more of the fish were used 

to repeat the process, ensuring a constant supply of parasites. Hosts 

were treated with commercially available remedies to control pathogens 

other than Ichthyophthirius (few such treatments affect Iohthyophthirius 

trophozoites on the host). However, such treatments were used only when 

necessary. 

3.2 Methods of Obtaining Tomites and of Experimental Infeotion 

Mature trophozoites were obtained by confining heavily infected 

fish, eight to nine days after infection, in a small body of conditioned 

water so that parasites were dislodged by the agitated movements of 

their hosts. The fish were then removed, and the trophozoites incubated 

at 20°C in diffuse lighting for 24 hours, by which time large numbers 

of tomites had been produced. The suspension containing tomites was 

then decanted, and the concentration of infective stages determined 

by counting the number present in nine 0.1 ml samples drawn from the 

suspension after agitation. To facilitate counting, tomites were 

immobilized with a drop of formalin. All experiments reported here 

were commenced between 24 and 28 hours after the trophozoites had been 

removed from the fish. 

Infection experiments, except when explicitly stated to the con-

trary, were undertaken using the following procedure. Hosts were placed 

individually in clear plastic containers holding 500 ml of conditioned 

water at 20°C, and the required amount of tomite suspension added. They 
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were then maintained in diffuse lighting at 20°C. Parasite burden 

was assessed four or five days after infection by complete counting, 

under a stereomicroscope, of all parasites.visible on the fish. 

Fish were first anaesthetized using ethyl-m-ofliinobenzoate (Sigma) 

at a concentration of 1:10,000 in tap water. 

3.3 Numerical Methods 

The statistical analysis- in the early part of this thesis 

(Chapters 4 - 7 ) was carried out using a Hewlett Packard 9845 

desktop microcomputer and associated Hewlett Packard software. 

The analysis in the remainder of the thesis required more numerical 

power and (with the exception of analysis for Fig. 12.17), the 

Imperial College computer system was used. Routines available 

in the Numerical Algorithms Group library were utilized extensively. 

In particular, the numerical solutions of systems of differential 

equations in Chapters 10 - 14 were obtained using a Runge-Kutta-Merson 

method that adjusted the step length to maintain an accuracy of 

approximately one part in 1000. 
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CHAPTER 4 

THE REPRODUCTIVE RATE 

4.1 Introduction 

A number of estimates of the life expectancies of each of the 

life cycle stages of Ichthyophthirius may be found in the literature 

(Table 2.1). It is not clear, however, whether these represent means 

or maxima, and evidence concerning the form of the survivorship func-

tions and the number of infective stages produced per cyst is limited. 

The experiments described in this section are intended to estimate 

the survivorship functions of the three life cycle stages of Ichthy-

ophthirius when infecting black mollies under controlled laboratory 

conditions. Together with an estimate of the number of tomites pro-

duced per cyst, these data enable the determination of the maximum 

reproductive rate of the parasite under these conditions. 

4.2 Methods 

4.2.1. Trophozoite survival 

Twenty-five fish were placed individually in containers holding 

150 ml of conditioned water at 20°C, and exposed to five concentrations 

of infective stages. Hosts were maintained in the infective solution 

for a time exceeding the lifespan of the tomites. Each concentration 

of infective stages was replicated five times. The fish were ana-

esthetized with ethy 1-m-amino b^A-zoaAe (Sigma) and the parasite burden 

assessed by direct counting five, seven, eight, nine and ten days 

after the initial infection 

4.2.2. Time required for encystation 

Trophozoites were removed from the fish eight or nine days after 
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infection, using the procedure described in Section 3.2. Eighty 

were then measured with an eyepiece graticule and transferred in-

dividually to 0.25 ml tissue culture wells (Cooke microtitre) 

filled with conditioned water. They were then incubated at 20°C 

in diffuse lighting and examined every two hours for the presence 

of tomites. Tomites are not released instantaneously from cysts: 

excystation was taken to be complete when a substantial number of 

tomites (> 50) could be detected in the well. 

4.2.3. Number of infective stages produced per cyst 

Hosts were infected with heavy Ichthyophthirius burdens by 

placing them in containers holding suspensions of freshly hatched 

tomites obtained by the method described in Section 3.2. Each day 

after infection, the hosts were placed in a small volume of con-

ditioned water so that trophozoites were dislodged by the move-

ments of the hosts. The container was then briefly agitated and then 

allowed to settle for five minutes, by which time the majority of 

trophozoites had attached themselves to the bottom of the container. 

Working in order of proximity to the centre of the container, tro-

phozoites were measured with an eyepiece graticule and then indivi-

dually pipetted into 0.25 ml tissue culture wells containing con-

ditioned water. The above method aims to produce a random sample 

of the trophozoites dislodged from the fish. After 24 hours, the 

number of tomites present in wells in which division had been succ-

essful was determined by pipetting out the entire contents of the 

well onto a gridded slide, and counting the number of tomites present 

after immobilizing them with a drop of formalin. It was not always 

possible to count the pumber of tomites produced by every trophozoite 
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that had divided within a reasonable time, so to minimize bias, well 

counts were chosen in the same order in which the trophozoites had 

been placed in the wells. 

4.2.4. Torrrtte survival 

Mature trophozoites were obtained by the method described in 

Section 3.2 and incubated at 20°C in diffuse lighting for 24 hours. 

The suspension containing tomites was then decanted, and the con-

centration of infective stages determined by countingfafter agitation, 

the number present in nine 0.1 ml samples drawn from the suspension. 

To facilitate counting, tomites were immobilized with a drop of 

formalin, but before this, samples were examined beneath a stereo-

microscope to ensure that all tomites visible were active. If necess-

ary, motionless tomites were disturbed with a fine wire. This counting 

procedure was repeated at intervals until live tomites could no longer 

be detected. Four times during the experiment, the infectivity of 

the remaining tomites was assessed by individually exposing five 

hosts to 2 ml of infective solution. 

4.3 Results 

4.3.1. Trophozoite survival 

Figure 4.1 shows the proportion of the trophozoites present at 

day five that are still present on hosts, plotted against the time 

since infection. Survival data of this form can often be well des-

cribed empirically by assuming that the death rate increases exponen-

tially with time (Anderson and Whitfield, 1975) so that 

dP(x)/dx = -a exp(bx) P(.x) (4.1) 

where x is the age in days of a cohort of trophozoites, P(x) is the 
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Figure 4.1 Survival of Trophozoites 

The horizontal axis shows the time since infection of the hosts 

in days. The proportion of those trophozoites on fish at day 5 

still present is shown on the vertical axis. The error bars shown 

are 95% confidence limits for the overall proportion of trophozoites 

surviving. Also shown on the figure is the solution of eqn. (4.2) 

with parameters estimated by a non linear least squares procedure. 

The estimated values of a and b are: 
-4 

a = 1.44 x 10 per day and b = 1.084 per day. 

The mean lifespan of trophozoites, as calculated by eqn. (4.3) is 

7.7 days. The results are based on 4592 trophozoites on 25 hosts 

(the range of parasite burdens can be seen in Fig. 4.2) 

The confidence limits may underestimate the true error in the experiment, 

as they do not allow for the heterogeneity in trophozoite survivorship 

between hosts. 
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size of the cohort at age x and a and b are constants. Equation 

(4.1) may be integrated to find l(x), the proportion of the cohort 

surviving to age x: 

l(x) = exp a/b [r - exp (bx)~] (4.2) 

The line shown on Figure 4.1 is a solution of eqn. (4.2) with 

the parameters a and b estimated from the experimental data by means 

of a non linear least squares procedure (Appendix 1). Equation 4.2 

may be used to estimate the mean time, Z , spent by trophozoites 

on hosts, 

I o l(x) dx (4.3) 

Using the values of a and b found from the non linear least squares 

procedure, Z^ was estimated as 7.7 days. 

No evidence of density dependence in the time spent on hosts 

was found in this experiment. Figure 4.2 shows the proportion of 

parasites present on hosts at day five remaining at day eight, 

plotted against the size of the original burden. A negative corr-

elation would be expected if higher burdens resulted in trophozoites 

leaving the host earlier, but no such relationship is evident. There 

is, however, considerable variability in the proportions of parasites 

surviving to day eight between individual hosts. A x test of homo-

geneity of the numbers of parasites remaining on hosts yielded a 

highly significant value of x2 = 439 with 24 degrees of freedom. 

These differences may be caused by differing levels of activity 
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Figure 4.2 Proportion of trophozoites remaining on hosts at day 8 

The parasite burden at day 5 (horizontal axis) is shown plotted 

against the proportion of that burden remaining on hosts 8 days 

after infection (vertical axis) 
2 

(r = 0.0015 with 23 degrees of freedom) 

Figure 4.3 Trophozoite establishment and survival 

The proportion of the tomites to which hosts were exposed that were 

counted as trophozoites at day 5 (the "proportion take", horizontal 

axis) is shown plotted against the proportion of trophozoites es-

tablished at day 5 remaining to day 8 (vertical axis) 

(r2 = 8.6 x 10~8, 23 df). 
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of the fish. Active hosts may dislodge their trophozoites earlier 

than those that are less active. They may also be caused by 

differences in the efficiency of host defence mechanisms to para-

sitic invasion. The differences may be genetic in origin, or caused 

by differing history of exposure to the disease. If such differences 

do exist, however, their influence on parasite longevity does not 

seem to be related to the degree of resistance to the initial in-

fection. Figure 4.3, for example, shows the proportion of tomites 

added that were initially detected as trophozoites,plotted against 

the proportion of trophozoites established that are still present at 

day 8. No relationship is evident. A third possibility is that 

inaccuracies in counting may be responsible for some of the diff-

erences observed. 

4.3.2. Time required for enaystation 

The proportion of viable cysts yet to release tomites is shown 

related to time since removal from the host in Fig. 4.4, The curve 

shown is a solution of eqn. (4.2) with parameters a and b estimated 

by a non linear least squares procedure. A majority of cysts are 

found to produce tomites between 19 and 25 hours after removal from 

the host. The time by which half the viable cysts have released tomites 

is estimated at approximately 21 hours. 

Figure 4.5 shows the results of an analysis of variance comparing 

the diameter of trophozoites requiring differing amounts of time to 

produce infective stages. Trophozoites requiring more than 21 hours 

are larger than those requiring either less than this time, or failing 

to produce tomites at all. As 85% of excystation occurs between 19 

and 24 hours, this effect is unlikely to be of great significance to 
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Figure 4.4 Time required for enoystation. 

The proportion of viable cysts yet to release tomites (vertical 

axis) is shown related to the time in hours since the release 

of the trophozoites from the host. 95% confidence limits for the 

proportions are shown on the figure. The curve shown is the sol-

ution of eqn. (4.2) with parameters a and b estimated by a non 

linear least squares procedure. Estimated values of a and b are: 
—6 

a = 4.9 x 10 per hour, b = 0.5277 per hour. The data presented 

are based on the 67 viable cysts of 80 examined. 

Figure 4.5 Trophozoite size and, time required for enoy station. 

The figure presents the results of an analysis of variance comparing 

trophozoite diameter and the time elapsed before trophozoites are 

produced. Trophozoite diameter in mm is shown on the vertical axis. 

The level numbers on the horizontal axis represent the time elapsed 

until tomites appear and correspond to: < 2 1 hours (1); > 21 hours 

and unsuccessful encystation (3). The bars represent half the least 

significant difference in either direction. 

Analysis of Variance 

Source S.S df M.S F P 

Total 0.229 79 

Time 0.027 2 0.0137 5.21 < 0.01 

Error 0.202 77 0.0026 
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the population dynamics of the system. 

4.3.3. Number of tomites -produced per cyst 

No trophozoites were found to be detached from hosts earlier 

than four days after the initial infection. The relationship be-

tween the diameter of trophozoites and time since infection is 

shown in Figure 4.6. 

The growth rate, as measured by increase in diameter, is con-

siderably smaller than that found by Hines and Spira (1973a) at a 

similar temperature (see Table 2.1), but it should be noted that 

Hines and Spira's results are biased upward, as they did not count 

parasites less than 0.1 mm in diameter after day 4. 

Table 4.1 shows the number of trophozoites of different ages 

that successfully produced tomites. The overall proportion of 

cysts producing tomites is only 0.49, but this result should be 

interpreted with a degree of caution. It is probable that a number 

of trophozoites may have been damaged or ruptured during pipetting. 

No trend in proportion of cysts producing tomites with age is evi-

dent, and the age related values do not depart significantly from the 

total proportion producing tomites over all ages (x2 = 9.25, df = 5,n. 

The number of tomites produced per cyst is shown related to time 

since infection in Figure 4.7. These results are well described 

empirically by a relation of the form: 

nix) = ax (4.4) 

where x is the time in days since infection, and nix) is the number 

of tomites produced from a trophozoite leaving the host at that time. 

The parameters a and b are constants. 
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Table 4.1 The Number of Trophozoites Producing Tomites 

Age of trophozoite 4 5 6 7 8 9 
(days) 

Number producing 28 20 19 26 13 8 
tomites 

Number failing to 19 27 17 18 27 9 
produce tomites 

Total 47 47 46 46 40 17 
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Figure 4.6 Trophozoite Growth 

The mean diameter of trophozoites (in mm) is shown plotted against 

the time since infection in days. The bars represent 95% confidence 

intervals for the means. 

Figure 4.7 Number of tomites per cyst. 

The number of tomites per cyst (vertical axis) is shown plotted 

against time since infection, on double log axes. The circles 

represent the geometric mean of the number of tomites per cyst, and 

the bars are 95% confidence intervals for this mean, obtained from 

the transformed data. The line shown is the solution of eqn. (4.4) 

with b and log-^Q^) obtained by linear least squares regression of 

1<*10 [*<«>] o n Details of the regression are given below. 

Coefficient Estimated value ± se t 

log1Q(a) -0.725 ± 0.176 - 4.13 

b 3.633 ± 0.226 16.1 

107 degrees of freedom. 
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4.3.4. Mean number of tomites per cyst 

Over a short time period Acc, l(x)-l(x+&pc) trophozoites leave 

the host, producing 

nix) [ lix) - Hx+bt)} 

tomites. In the limit as Ass tends to 0, the rate of tomite pro-

duction is: 

-nix) d lix)/6x (4.5) 

Hence the mean number of infective stages produced is 

M = - [d lix)/dx~\\nix)] dx (4.6) 

Using the expression found for l(x) in Section 4.3.1. (eqn. 4.2) 

and eqn.(4.4)this was calculated to be 344.24. 

4.3.5. Net reproductive rate 

The maximum reproductive rate, r , of an age structured population 

is given by the Euler equation (Roughgarden, 1979): 

1 = exp^r^u) lix)mix) da; (4.7) 

where x is the age of the organisms, lix) the proportion surviving 

to time x, and m (x) the age specific fecundity (the mean number of 

births to an individual of age x). In reality, the population is 

unlikely to grow at a rate as high as r , as this rate will only be o 
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realized in the absence of density dependent constraints, and if 

unconstrained population growth has occurred for long enough for the 

population to attain a stable age distribution (Roughgarden, 1979). 

Nevertheless, r^ is a valuable measure of the maximum reproductive 

potential of the population and will be required in the mathematical 

models of Iohthyophthirius dynamics in Chapter 14. Equation (4.7) 

requires some modification before it can be applied to Iohthyophthirius. 

Trophozoites reproduce only when they leave the host, when they pro-

duce n(x) tomites. In a short period Aa:, the proportion of tro-

phozoites leaving the host is l(x) - Z-(a:+Aac), each of which is assumed 

to produce n{x) tomites. Hence, the rate of production of tomites 

per trophozoite present on the host at time x is 

n i x ) \ l ( x ) - Z(a;+Aa;)] / [£(a;)Aa? ] (4.8) 

This expression is equivalent to the mix) of eqn. (4.7). Letting 

Aa; approach 0, the modified version of eqn. (4.7) is: 

1 = 
o 

-[d Z(a:)/da;] nix) expi-rjx) da; (4.9) 

Two further complications must be dealt with before r c a n be 

estimated. All tomites do not successfully infect a host and form 

a trophozoite. The size of this proportion is dependent on host 

density, but experiments described in Section 5 indicate that it 

will saturate at high host densities to around 10% of the number of 

tomites present. There is also a time delay of approximately one day 

caused by the time required for encystation. This may be included in 

eqn. (4.9) by using exp(-2?o[fc+l]) instead of exp(-r a:). All trophozoites 
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do not successfully encyst, but as this proportion appears to be 

variable, and it is the maximum reproductive rate which is of 

interest here, all encystations are assumed successful. The following 

equation was therefore used to estimate r 

1 = -

o 
eaq>(-r [flff+l]) d l(x)/6x n(x) s dx (4.10) 

where l(x) is obtained from eqn. (4.2), n(x) is obtained from eqn. 

(4.4) and s, the proportion of tomites successfully forming tropho-

zoites, is set at 0.1. 

The value of r was estimated to be 0.392, using an iterative 
o 

procedure and numerical integration. This rate may be compared 

with that obtained by assuming that all trophozoites leave the host 

at exactly the mean time spent on hosts found in Section 4.3.1, and 

that all produce the mean number of tomites found in Section 4.3.4. 

after one day. In this case, 

1 = exp (r [7.7+l]).(344) (4.11) 

Here r^ is found to be 0.407. This rate is slightly higher than the 

estimate obtained from eqn.(4.10.) In the more exact expression 

(eqn. 4.10), the higher number of trophozoites leaving hosts later 

than the mean time is discounted by the increased time they take to 

produce tomitea. 

4.3.6. Tomite survival 

The number of tomites present in the suspension remained app-

roximately constant for twenty hours, after which the rate of mor-

tality rose rapidly (Fig. 4.8). Dead tomites were not detected: it 
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appears likely that they are rapidly broken down after death. The 

data are well described by the curve shown in Figure 4.8, which is 

a logged version of eqn. (4.2). 

log(T(x)) = log (Tq) + a/b (1 - exp(bx)) (4.12) 

where T(x) is the number of tomites of age x present, T is the number 

of tomites of age 0 and a and b are constants. The parameters T, 

a and b were estimated by means of a non linear least squares pro-

cedure (Appendix 1). 

Survival curves of the general form of that shown in Figure 4.8 

in which the death rate increases exponentially with age have been 

observed for a wide variety of non feeding infective stages (Anderson 

and Whitfield, 1975). The parameters a and b determined from the non 

linear least squares procedure may be used in conjunction with eqn. 

(4.3) to estimate the mean life expectancy of the tomites, which was 

estimated to be 22.5 hours. It should be realized, however, that 

this estimate is approximate, as it is not possible to precisely 

determine the time at which tomites were produced. The results in 

Section 4.3.3. indicate that tomites are released over a relatively 

short period prior to 24 hours after the removal of trophozoites 

from the host. 

The infectivity of the tomite suspension, as measured by the 

burden on hosts infected at various times during the course of the 

experiment, appears to decline faster than the number of tomites 

present (Fig. 4.8). This indicates that the ability of surviving 

tomites to successfully infect hosts decreases with age. 
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Figure 4.8 Tomite survival and age dependent infeotivity 

The proportion of tomites surviving of those originally present 

(vertical axis) is shown plotted against the time since release of 

tomites from cysts. A log transformation has been performed, which 

acts to stabilize the variance at different times. The circles re-

present the mean proportion of tomites surviving, which is recorded 

with 95% confidence limits based on the transformed data. The 

curve shown is the solution of eqn. (4.12) with parameters a, b 

and log-̂ Q (2^) estimated by a non linear least squares procedure. 

It is possible for the first data point to exceed unity because T , 

the number of tomites originally present, was determined as a para-

meter of the model. Estimated parameter values are: iog^Q ) = 1.87 

(= 74 tomites per 0.1 ml), a = 0.00166 per hour, b = 0.1858 per hour. 

Also shown on the figure, represented by squares, is the infectivity 

of the tomites in the suspension. This is defined as the number of 

trophozoites established after exposure to tomites of a given age, 

relative to the mean number established after exposure to tomites of 

age 3.75 hours (the variable is log transformed and 95% confidence 

intervals are shown). When hosts were exposed to tomites of age 26 

hours or older, no successful infections were recorded.(This point 

cannot be plotted on the logged axes). The geometric mean number of 

trophozoites established using tomites of age 3.75 hours was 260, 

which is 15% of the number of tomites to which the hosts were exposed. 
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4.4 Conclusions and Discussion 

o 
The estimates made in this section of the time spent at 20 C 

in each of the three life cycle stages are in close agreement with 

those reported by other authors, working with a variety of host 

species (Table 2.1). No evidence was found that parasite density 

affects the time spent by trophozoites on the host, although the 

range of parasite densities used did not approach the level at which 

significant host mortality occurs. 

Trophozoite survival could not be monitored from the time of 

infection, because of the difficulty in counting very small tropho-

zoites. It is possible that a considerable number of trophozoites 

are overcome by the host defences in the early stages of infection. 

For the purposes of this analysis, they are included with tomites 

that encounter a host, but fail to establish upon it. Later in the 

infection, no distinction is drawn between trophozoites that have 

left the host to encyst, and those that might have been killed by 

the host defences. No evidence was seen of trophozoites being 

resorbed by the host. 

It was not possible to determine when cysts that failed to pro-

duce tomites actually died, and the curve showing encystation time 

therefore refers only to those cysts that proved to be viable by 

eventually releasing tomites. 

Each of the three curves describing the proportion of parasites 

originally present still in the life cycle stage under consideration 

is well fitted by assuming that the death or emigration rate increases 

exponentially with time. This assumption was first used by Gompertz 

in 1825 (Benjamin and Pollard, 1980) to describe the increasing rate 
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of mortality of humans with age. It should be thought of as a 

convenient two parameter method of generating a sigmoid curve, rather 

than suggesting any particular underlying biological mechanism. 

Estimation of confidence intervals for the parameters of these 

survivorship functions is an extremely difficult statistical problem, 

and hence only point estimates are given. 
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CHAPTER 5 

TOMITE INFECTIVITY 

5.1 Introduction 
The infection process is of fundamental importance in the pop-

ulation dynamics of any parasite. Ichthyophthirius multifiliis, which 

is unable to reproduce on its host, and has a short life expectancy 

in each of its life history stages, must have a high infectivity 

if it is to persist within fish populations. Having encountered a 

host, a tomite must attach to its surface and successfully penetrate 

the mucus layer and the epidermis in order to establish as a trophozoite. 

It is at this stage and immediately afterwards, that one might expect 

the parasite to be most vulnerable to the host's specific and non-

specific defence mechanisms. 

In this chapter, the infectivity of tomites to previously un-

exposed black mollies is investigated in a series of linked experi-

ments. Possible sources of density dependence are examined, and an 

estimate is made of the proportion of tomites infecting a host that 

are able to form trophozoites. 

5.2 Experimental Methods 

Tomites for experimental infections were obtained by the methods 

described in Section 3.2. Trophozoite burdens were assessed by complete 

counting of parasites on hosts four or five days after the initial 

infection. A number of experiments were carried out on parasite in-

fectivity. The methods used for each are described below. 
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5.2.1. Varying the number of infective stages 

Fish were placed individually in containers holding 150 ml of 

conditioned water at 20°C and exposed to five concentrations of in-

fective stages. Hosts were maintained in the infective suspension 

for a time exceeding the maximum lifespan of the tomites. Five 

replicates were used at each concentration. Parasite burden was ^^^ 
( ^ 

assessed five days after the initial exposure. 

5.2.2. Varying the number of hosts 

Differing numbers of hosts, ranging from one to fifteen, were 

placed in tanks holding 10 1 of conditioned water at 20°C. Each host 

density was replicated at least twice. 
Approximately 1150 tomites were added to each tank 
The fish were maintained in this infective solution until the 

parasite burden was assessed four days after the initial exposure. 

5.2.3. Varying the concentration of infective stages 

Fish were placed individually in containers holding between 250 ml 

and 10 1 of conditioned water at 20°C. The same amount of a tomite 

suspension was added to each container, thus varying the concentration 

of tomites present, whilst maintaining a constant overall number of 

infective stages. Hosts were removed five days later and the parasite 

burden assessed. Each treatment was replicated five times. 

5.2.4. Varying the duration of exposure time 

Hosts were exposed individually to the same amount of tomite 
o 

suspension (containing approximately 1070 tomites) at 20 C for six 

different times, ranging from £ hour to 6 hours, in two water volumes, 

250 ml and 500 ml. Each combination of exposure time and water volume 

was replicated five times. At the end of their exposure period, fish 
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were removed and placed in 500 ml of conditioned water, in which they 

were kept until the parasite burden was assessed four days later. 

5.2.5. Distribution of parasites on the surface of the host. 

This experiment follows a different pattern from the others 

reported in this section. One heavily infected host was added as 

a "seed" to a tank holding 10 1 of conditioned water, together with 

twenty-five naive hosts. Seven days later, ten of the previously 

uninfected hosts were removed and the parasite density at eight 

points on their surface was assessed by counting the number of tro-
2 

phozoites visible within a square of 0.08 cm area, measured by an 

eyepiece graticule. The following positions were examined : right 

pectoral fin, left and right opercula; left and right sides of the 

tailfin, immediately behind the peduncle; either side of the flank, 

immediately below the dorsal fin; and the top of the head, between 

the eyes. 

5.3 A Model to Describe the Infection Process 

The following simple model, modified from Anderson (1978) will 

be used to assist in the analysis of experimental results. 

Suppose that initially there are I^ tomites and N hosts present in 

a tank. No tomites are added during the course of the experiment and 

infective stages are removed either by dying or infecting a host. 

Suppose also that each host has a "susceptibility" to infection, s, 

between 0 and 1, such that only the proportion s of tomites infecting 

this host developsto form detectable trophozoites. The remainder are 

assumed to be overcome by host defences (either nonspecific or imm-

unological) . Initially, both the death rate of the tomites and their 
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infectivity are taken as constant. In a short time period, At, 

the probability that an individual infective stage will die is assumed 

to be yAt, where y is the instantaneous death rate of the tomites 

(defined per capita, per unit time). The probability that one will 

infect a host is assumed to be &NAt, where 3 is the instantaneous 

infection rate of the tomites (defined per host, per tomite, per unit 

of time). This expression is based on the assumption that infection 

occurs as the result of an encounter between randomly distributed 

hosts and infective stages, and the value of 3 should therefore be 

inversely proportional to the water volume in which the experiment is 

being carried out. 

Letting Tit) and Pit) be the number of tomites and trophozoites 

present at time t and letting s be the mean susceptibility of the host 

population, these assumptions lead to the following differential equa-

tions to describe temporal changes in the two variables; 

dTit)/dt = - vTit) - ZNTit) (5.1) 

dPit)/dt = 3/1fsPit) (5.2) 

The solution of eqn. (5.1) and eqn. (5.2) for the number of 

parasites present on hosts by time t is: 

Pi t) = ivT s/ o (y/3) + N {l - exp(- y + 3/1/ t)) (5.3) 

If the exposure time, t, is long compared with the lifespan of 

the infective stages (yt large), the number of parasites established, 

Pi t + is simply: 
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B(t oo) = nt 8/ ( y/3) + N (5.4) 

5.4 Results 

The number of trophozoites established on hosts subjected to 

differing numbers of tomites was found to be linearly dependent on 

the number of tomites added to the infection arena (Fig. 5.1). Al-

though there is considerable variability in the burden established 

from the same infective dose, there is no evidence of an infection 

threshold nor of nonlinear!ty over this range of parasite burdens. 

The gradient of the line of best fit is 0.18: slightly less than one 

fifth of all tomites are found as adult trophozoites on the host. 

This linear relationship may exist for two quite separate reasons. 

It may be that only a proportion of tomites locate a host before they 

die, or that only a proportion of the tomites that infect a host 

survive to form detectable trophozoites. In the forms of the model 

defined in Section 5.3, the gradient of the best fit line in Figure 5.1 

is: 

L' / y/3 + i 

The relative importance of the two terms, the susceptibility of 

the hosts to the infective stages, s, and the death rate divided by 

the infectivity, y/3, to the infection dynamics may be determined by 

subjecting differing numbers of hosts to the same number of infective 

stages in water bodies of equal size (Section 5.2.2.). If essentially 

all tomites locate a host before death, the hosts should divide the 

number of tomites between them. Provided host location is the limiting 

factor, mean parasite burden should be approximately independent of. 
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Figure 5.1 Trophozoite establishment 

The relationship is shown between the number of parasites 
» 

established on a single host (P) and the number of tomites 

to which it was exposed (T) . The circles represent the observed 

mean number of trophozoites established, and the bars are 95% 

confidence intervals for these means. 

The line shown is the linear least squares regression line 

of P on T : P = -12.6 + 0.184T (se of intercept = 40.4, 

se of coefficient = 0.0311, df = 28). 
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host density. Equation (5.4) predicts that the burden, M, per host is: 

Figure 5.2 shows the results of experiment (5.3.2.) with the 

inverse of parasite burden per host plotted against host density. 

The relationship between inverse of burden per host and host density 

is indeed linear (F = 12.7, d.f. = 1,76 p <0.001 for regression; 

F = 0.2, d.f. = 3,73 N.S., lack of fit test). The intercept does 

not differ significantly from 0 (t = 0.81, n = 76, N.S.). It there-

fore appears that in water bodies of up to 10 1, essentially all 

tomites will locate a host before death. 

The results of the tomite survival experiment (Section 4.3.6) 

indicate that the assumption of a constant tomite death rate made in 

the model of Section 5.3 is an oversimplification. It is possible to 

modify the model to include an age dependent death rate of the form 

defined in eqn. (4.2), so that eqn. (5.1) becomes: 

where a and b are constants, and the other parameters and variables 

are as defined in Section 5.3. Equation (5.2)remains unchanged. The 

time dependent solution of eqn. (5.2) and eqn. (5.6) is of the form: 

M = T s / [y/s + N] (5.5) 

d T(t)/dt = -a exp(bt) T (t) - ̂ NT(t) (5.6) 

t 

P( t) = &TNs exp a/b (1-exp [bx] ) - gtff dt (5.7) 
o 

For any particular set of parameter values, this equation can be solved 

by numerical means (It is not possible to solve eqn. (5.7) analytically). 
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Figure 5.2 The effect of host density on trophozoite establishment. 

The relationship is shown between the inverse of parasite burden 

per host (1/M) and number of hosts in a tank. Each tank contained 

approximately 1150 tomites. The circles represent the observed 

means of inverse parasite burden, with 95% confidence limits shown. 

The evenly dashed line represents the linear least squares regression 

of 1/M on N using the experimental data (1/A/ = 0.0307 + 0.0119W; 

se of intercept = 0.0378; se of coefficient = 0.0036, 76 df). The 

dotted line is the prediction of the simple model, eqn. (5.4). The 

solution of the complex model, eqn. (5.7) is denoted by the unevenly 

dashed line. 
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Values of 1/ [ P(t ] for a range of N were calculated from 

eqn. (5.7) using estimates of a and b obtained in Section 4.3.6. 

and values of 3 and s obtained from the results of experiment 5.2.4. 

These are shown on Fig. 5.2. (The integration was performed between 

0 and 40 hours). Figure 5.2 also displays the inverse burden per 

host (1/M) predicted by the original model (eqn. 5.4) using y cal-

culated as the inverse of tomite life expectancy from Section 4.3.6. 

and 3 and s again obtained from experiment 5.2.4. It can be seen 

that both lines are very similar and close to the best fit exper-

imental line. In this case, the admittedly more biologically real-

istic model with time dependent tomite survival has little extra 

predictive power when compared with the simple model in which y is 

assumed to be constant. 

A further result that lends support to the contention that most 

tomites will locate a host before death in water bodies of less than 

10 1 is given by experiment 5.2.3. If host location is the main 

determinant of parasite establishment, there should be a positive 

linear relationship between the inverse of water volume and mean 

parasite burden when the volume of the infective arena is varied but 

the number of infective stages is held constant. Figure 5.3 shows 

that no such relationship was found to exist for water volumes of up 

to 10 1. 

The rate of infection, 3 , can be directly measured using the 

results of experiment 5.2.4. If it is assumed that over the six hours 

of the experiment, tomite death may be neglected, and that the instan-

taneous infection rate is inversely proportional to the volume of the 

experimental container, eqn. (5.3) becomes: 
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Figure 5.3 Effect of water volume on trophozoite establishment 

The relationship is shown between the number of parasites 

established on a single fish and the inverse of the water 

volume in which the hosts were exposed to approximately 810 

tomites. The circles represent mean burden per host, with 95% 

confidence limits shown. 

(r2 =0.02 df = 22.) 
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P ( t ) = TqS 1 - exp [ -3t/V] (5.8) 

where V is the volume of the water body in litres, i, the duration of 

exposure in hours, and 3 is the infection rate, which has units 1 hr 1 

At each exposure time, the number of parasites established on 

hosts in 500 ml of water was around half that established in 250 ml 

of water, confirming the hypothesis that a volume dependent infection 

rate is being measured. A two way analysis of variance performed on 

the logged data gave a 95% confidence interval for the overall ratio 

of burden in 250 ml to burden in 500 ml of (1.85 - 3.28). 

A solution of eqn. (5.8) with parameters s and 3 chosen by a 

non linear least squares procedure is shown, together with the observed 

data, in Fig. 5.4. Approximate confidence limits for parameters s 

and 3 are given in the legend of the figure. These should be inter-

preted with a considerable amount of caution, as they are based on 

the assumption that over this range, the function may be approximated 

by the linear terms of a Taylor series. A better way to consider 

the suitability of the model is to compare the non linear model with a 

simple linear regression. A linear regression of parasite burden on 

exposure time per unit volume is highly significant (F = 14.2; d.f. = 

1,58; p < 0.001) but the intercept is significantly greater than zero 

(t = 3.44, d.f. = 58, p < 0.001). To be biologically realistic, the 

relation must pass through the origin (with an exposure time of zero, 

no parasites can establish). A linear model is therefore inadequate 

to describe the observed relationship. Furthermore, the residual sum 

of squares of the unconstrained two parameter linear model is greater 

(51084) than that of the two parameter non linear model (49772). 
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Figure 5.4 Time dependent infeativity 

The relationship is shown between number of parasites established 

per tomite added to the exposure arena ip/T) and the time of ex-

posure to tomites (defined per unit of volume). The circles re-

present means, and the bars represent their standard errors. 

The curve shown is a solution of eqn. (5.8) with parameters s and 

8 estimated by a non linear least squares procedure. 

The estimated values of s and 8, together with linear confidence 

limits, are given below. 

Parameter Estimated 90% confidence limits 

Value One at a time Simultaneous 

Lower Upper Lower Upper 

0.063 0.040 0.086 0.033 0.093 

0.141 0.040 0.241 0.009 0.272 

(90% confidence limits are given, as the 95% linear confidence 

limits for 8 allow negative values, which are biologically unrealistic). 
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By combining the estimate of $ with the life expectancy of a 

tomite (Section 4.3.6.), the saturation term, is estimated at 

0.32 l"1 

5.4.1. Distribution of parasites over the surface of hosts. 

Results of a two way analysis of variance on the logarithm of 
2 

the number of trophozoites per 0.08 cm grid are shown in Figure 5,5. 

The sites at which parasite density was measured divide into two clear 

groups. The five sites on the surface of the fish itself have app-

roximately equal mean parasite densities, whereas the density of 

trophozoites on the three sites on the fins is approximately twice 

as great. 

The uniformity of trophozoite density at different sites on the 

body ̂contrasts with the observations of Hines and Spira (1973a), who 

found considerably larger numbers of Ichthyophthirius on the dorsal 

surface of mirror carp Cyprinus carpio than on either ventral or lateral . 

surfaces. Wagner (1960) also asserts that Ichthyophthirius infections 

are more dense on the dorsal surface. His observation that fins are 

more heavily infected than the body is,however, consistent with the 

results reported here. The apparent uniformity of Ichthyophthirius 

distribution on black mollies found in this study is convenient, in 

that it permits overall parasite density to be estimated from the 

density at any site on the body of the fish. 

5.5 Discussion and Conclusions 

The infection of black mollies by Ichthyophthirius tomites can 

adequately be described by an extremely simple population model. The 

linear relationship between the number of infective stages to which a host 
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Figure 5.5 Trophozoite densities at different points on the fish surface 

The mean logarithm of parasite density is shown related to the position 

on the host. The bars shown represent half the least significant 

difference in each direction. Various positions on the host are shown 

along the horizontal axis as follows: 

1. Right pectoral fin 

2. Flank right side 

3. " left side 

4. Tail right side 

5. " left side 

6. Operculum right side 

7. " left side 

8. Top of head 

The values on the vertical axis are natural logarithms of the number 
2 of trophozoites per 0.08 cm of fish surface 

Analysis of Variance 

Source df S. S. M.S. F P 

Total 79 32. 512 0.411 

Position 7 12. 426 1.775 8.37 <0. ,001 

Fish 9 6. 740 0.748 3.53 <0. ,01 

Error 63 13. 345 0.212 
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1s exposed and the resulting burden implies the absence of density 

dependent constraints on parasite establishment. A linear relation-

ship was also found for the digenean Transversotrema patialense 

(Anderson, Whitfield and Dobson,1978a) and miracidia of Eohinostoma 
3 tVvs <=.cxsej 

Undoenae infecting snails (Anderson, 1978). Infection/appears to be 

a rather simpler process than predation, with its complications of 

interference and handling time that may produce non linear functional 

responses (Hassell, 1978). The searching behaviour of Ichthyophthirius 

tomites is apparently simple. Although Lom and Cerkasovova (1974) 

found that tomites will attach preferentially to agar blocks containing 

fish serum, they were unable to detect any evidence of a long range 

chemotactic response to either fish mucus or serum. 

A number of possible sources of density dependence in parasite 

establishment can be postulated. A host has only a finite capacity 

to harbour infective stages and hence space will ultimately limit 

parasite burden (Anderson, 1978). Ichthyophthirius tomites, however, 

are so small (30 y m ) that for any but the smallest fish, this capacity 

would be extremely large. Hosts may respond either behaviourally or 

physiologically in a fashion that limits parasite establishment after 

an initial contact with the parasite. Fish are capable of acquiring 

a degree of resistance to Ichthyophthirius subsequent to exposure, but 

this resistance does not appear to develop rapidly enough to cause 

any non linearity in parasite establishment from a single infection 

(see Chapter 6). If hosts are irritated by the process of infection, 

they may move from areas of high infective stage density (Marshall, 

1981). For this to act as a density dependent constraint on parasite 

establishment, infective stages must be aggregated in their spatial 

distribution. It is unlikely, even if this process is a feature of 
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Ichthyophthirius infection, that experiments in small containers would 

detect such effects. Density dependence may also be introduced if 

infection occurs as a result of predation (Anderson et al 1978b,Keymer 

and Anderson, 1979). Although the mechanism by which tomites locate 

the host is not known, predation by the fish does not appear to be 

involved. 

The most significant result of the experiments described in this 

chapter is the importance of the susceptibility of the hosts to infection. 

In the conditions under which the experiments were carried out, ess-

entially all tomites were able to locate a host before death, but only 

a proportion were able to successfully form trophozoites. A partial 

explanation of the failure of all tomites to produce trophozoites 

may be that only a proportion of the tomites counted are viable. 

However, the degree of heterogeneity observed in parasite burdens 

established on hosts exposed to the same concentration of infective 

stages indicates that differences in host susceptibility to infection 

are also of importance. Tomites may well differ in their ability to 

infect hosts, due to such factors as nutritional status or the size 

of the parent trophozoite. These variations in tomite infectivity will 

effect the mean parasite burden established, but would not result 

in the distribution of parasites amongst hosts being overdispersed, 

unless the differences make tomites more likely to attack particular 

hosts. Anderson (1978) suggests that a similar degree of heterogeneity 

in parasite burdens generated by miracidia infecting snails may be 

generated by variation in the attractiveness of snails to miracidia, 

and Anderson, Whitfield and Dobson (1978) suggest heterogeneity in 

burdens of cercariae of Transversotrema patialense establishing on the 

fish host Brachydanio vevio may result from differing activity patterns 
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of the fish affecting the ability of cercariae to locate and attach 

to the host. Given that all tomites appear to be able to locate a 

host within their lifespan, it is unlikely that such mechanisms are 

responsible for the high degree of heterogeneity observed in these 

experiments. It is probable that this heterogeneity is generated 

by the efficiency of the hosts' defences against infection (both 

specific and non specific) varying between fish, resulting in differ-

ential survival on the host. Such heterogeneity may be genetically 

based or may result from differing past experiences of infection by 

pathogens. Variability in the susceptibility of the hosts to infection 

is of fundamental importance to the dynamics of the system, and is 

considered further in Chapter 8. 
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CHAPTER 6 

ACQUIRED RESISTANCE TO INFECTION 

6.1 Introduction 

A number of authors have found that fish may acquire a degree 

of resistance to infection by Ichthyophthirius after exposure to 

the pathogen. (Buschkeil, 1936; Bauer, 1962; Hines and Spira, 1974c; 

Goven et al 1980). The conclusions reached, however, vary as to 

whether protection is complete and long lasting (Hines and Spira, 

1974c) or partial and of fairly short duration (Bauer, 1962). This 

chapter describes a series of experiments designed to investigate 

the following problems concerning the acquired resistance of black 

mollies to Ichthyophthirius infection. These are as follows: 

(i) time taken to develop resistance; 

(ii) degree of protection against infection afforded; 

(iii) length of the refractory period; 

(iv) dependence of the previous three factors on the level of the 

initial infection; 

(v) the effect of acquired resistance on trophozoites, once on 

the host. 

6.2 Experimental Methods 

6.2.1. Time required to develop resistance (I) 

Forty-five uninfected hosts were divided into three groups of 

fifteen. Each group was subjected to infection, the parasite burden 

was assessed, and the fish within each group ranked according to the 

severity of infection. Host sex was also recorded. These infected 

hosts were then assigned systematically in rotation to three groups, 
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A, B and C. Each group thus consisted of three subgroups of five 

hosts with similar infective burdens, and differences in parasite 

load between groups A, B and C were as small as possible. 

Once assessment of burden was complete, each host was isolated 

and maintained in a 500 ml container at 20°C. The containers were 

scrubbed and the water replaced daily with tap water in order to 

prevent self reinfection. Each fish was fed daily, uneaten food 

being removed after approximately two hours. 

Seven days after the initial infection, group A was subjected 

to reinfection, together with five control fish. The fish used in 

the controls were obtained from the same batch provided by the 

suppliers as the previously infected hosts. The parasite burden 

established from this second infection was assessed four days 

afterwards. Groups B and C were similarly reinfected ten and fifteen 

days after the initial infection. The numbers of tomites used for 

each reinfection experiment were kept approximately constant. 

6.2.2. Time required to develop resistance II 

A broadly similar experimental procedure to that used in the 

first experiment was employed. Seventy fish were divided into two 

groups of thirty-five. Within each group, hosts were infected with 

the same number of infective stages and individually maintained in 

500 ml containers. The infective dose to which one group was subjected 

was ten times that used for the other. Parasite burden was assessed 

four days after the initial infection, and fish in each group ranked 

according to the severity of infection. They were then assigned in 

turn to five groups of fourteen hosts each, consisting of seven with a 
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light infection, and seven with a heavier parasite.burden. The order 

in which these groups were to be reinfected was randomized. Until 

hosts were to be reinfected, they were isolated and maintained in 

500 ml containers at 20°C. The water was replaced with tap water 

and the containers scrubbed daily to prevent self reinfection. Fish 

were fed daily and uneaten food removed after two to three hours. 

Reinfection of the first group, together with seven controls 

from the same batch of fish was attempted four days after the initial 

infection. The other groups were reinfected, together with controls, 

ten, fourteen, twenty and forty-two days after the initial infection. 

6.2.3. Effect of previous exposure on time spent by trophozoites 

on hosts 

Twenty fish were infected with the same number of tomites. Para-

site burden was assessed six days after the initial infection. As 

before, until reinfection was attempted, the fish were maintained 

individually at 20°C in 500 ml containers, with daily changes of tap 

water to prevent self reinfection. Twelve days after this initial 

infection, the hosts were subjected to a second infection, as were 

twenty controls. The previously infected fish were given five times 

the infective dose of the controls in order to establish absolute 

numbers of parasites on each host that were comparable. Three days 

after this infection, the burden on all hosts was counted, and re-

counted daily until.ten days after infection. 

6.2.4. Effect of starvation on resistance to infection 

Twenty fish obtained together from the supplier were divided into 

two groups of ten, and placed in 10 1 tanks containing aerated, conditioned 

water. One group was not fed for 24 days, and the other was fed 
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ad libitum with "Aquarian" tropical fish food. After this time, the 

fish were placed individually in 500 ml containers of conditioned 

water, and all fish subjected to the same number of infective stages. 

6.3 Result 8 

6.3.1. Time required to develop resistance (I) 

The same method of analysis was used for experiments I and II. 

All trophozoite counts were transformed using the following equation: 

2 = In (P + 1) (6.1) 

where P is the parasite burden and 2 iS the transformed count. As 

variability is primarily generated by differences between hosts in the 

proportion of tomites forming trophozoites (see Chapter 8), the error 

expected is multiplicative and a log transformation is required to 

produce the additive error assumed in analysis of variance. A log 

trunsformation also enables conclusions about the ratio of parasite 

burden on controls to that on resistant fish to be drawn. 

Data were analysed using a nested analysis of variance, which 

assumes that each point may be represented as 

z m - " + \ + hj + < 6 - 2 ) 

where 2 . is the transformed value of the k t h replicate reinfected 

at time i with previous burden level j, a . is the effect on Z of 
t 

being reinfected at time i. and 3.. the effect on Z, when reinfected 

at time i, of having previous burden level j. represents the 

error associated with each observation. The important quantities for 
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th e determination of the rate of acquisition of resistance are the 

terms 8 • •. 

The results of this analysis are given in Table 6.2 (Table 6.1 

shows the influence of host sex on the parasite burden established 

after the initial infection). Two hosts in the third reinfection 

were found to have reinfected themselves, and were omitted from the 

analysis, the data values being replaced by the means of the other 

replicates in the cell. 

There is a highly significant difference between overall parasite 

burden at different times since the initial infection, but this is not 

necessarily of interest, as it may merely represent differences in 

the infectivity of the tomites used at each time. 

The significant value of F for 8 indicates that the previous 

level of infection does indeed affect the parasite burden established, 

and this result therefore provides evidence of a significant host 

response (possibly immunological in nature) to reinfection. To identify 

which values are responsible for this difference, the estimated values 

of 8-,. for each combination of time since infection and previous para-

site burden are plotted in Figure 6.1, together with bars representing 

half the least significant difference in either direction. If the 

bars do not overlap, there is evidence of a difference between the 

means with a 95% significance level. Unfortunately, the high degree 

of variability found in this experiment makes the ̂ result not entirely 

clear cut. With 95% confidence, only the difference between the con-

trol at day 14 and the reinfection burden on hosts with the highest 

previous burden is clearly significant. The significance of other 

differences is borderline. With 90% confidence, it appears that the 
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Table 6.1 The Influence of Host Sex on Parasite Burden 

Level of Mean Burdens Number of fish t 
infection cJ 9 6 9 
Low 1 2 . 7 1 1 1 . 1 3 7 8 0 . 3 8 

Medium 4 1 . 3 7 6 1 . 3 2 6 9 0 . 9 2 

High 169 175 4 11 0 . 1 2 

Table 6.2 Results of a Rested Analysis of Variance on Data 

of Experiment I 

Source df s . s . M.S. F P 
Total 59 5 0 . 4 2 0 . 8 5 5 

Time (cc) 2 2 7 . 9 6 1 3 . 9 7 9 4 7 . 1 2 0 . 0 0 1 

Pr evious 
exposure (3) 9 8 . 2 3 0 . 9 1 4 3 . 0 8 0 . 0 1 

Error 48 1 4 . 2 4 0 . 2 9 7 

Table 6.3 Results of a Rested Analysis of Variance on Data 

of Experiment II 

Source 1 * S.S. M.S. F P 
Total 104 3 9 3 . 1 2 3 . 7 8 0 

Time (a) 4 1 9 3 . 4 6 4 8 . 3 6 6 2 9 . 3 0 . 0 0 1 

Previous 
exposure (3) 1 0 5 1 . 2 8 5 . 1 2 8 3 . 1 1 0 . 0 0 5 

Error 9 0 1 4 8 . 3 9 1 . 6 4 9 
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Figure 6.1 Time required to develop resistance to infection (I) 

The figure shows the results of a nested analysis of variance, 

using the model described by eqn. (6.2). Results of reinfections 

at each time since the initial infection are shown on a separate 

graph. On each, the level of previous exposure to infection is 

represented on the horizontal axis in the following way: 

Level Mean parasite burden after initial 

infection 

1 0 (Control) 

2 12 (light) 

3 53 (moderate) 

4 173 (heavy) 

The vertical axis shows the estimated value of 3 ( defined in 

eqn. (6.2)). Low values of 3 relative to the control are evidence 

of acquired resistance to infection. The bars shown represent 

half the least significant difference in each direction. If 

they do not overlap, the values differ with 95% confidence. 
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burden established on hosts with intermediate previous exposure differs 

from the control at day 7. By day ten, hosts with intermediate and 

high burdens differ with 90% confidence from the control, and by day 

14, the differences are similar but more marked. Due to the low levels 

of significance, however, conclusions drawn from this experiment can 

only be tentative. 

6.3.2. Time-required to develop resistanceII 

The results of the second reinfection experiment lend more weight 

to the conclusion that hosts are able to mount an effective response 

to reinvasion. Replication was greater, and the size of the error 

term consequently reduced. Once again, a nested analysis of variance 

was applied to the logged data, the results of which are shown in 

Table 6.3. Four observations were excluded and replaced by the means 

for their cells because of either death of the host or self reinfection. 

These four records came from separate cells. 

In this case there is very strong evidence (p < 0.005) that the 

level of previous exposure affects the parasite burden established. 

Figure 6.2 displays estimated values of 6, together with 95% least 

significance bars, for each time reinfection was attempted. Four 

days after the initial infection, there is no evidence of development of 

acquired resistance. After 10 days, there is an indication that hosts 

which previously had a high parasite burden are less susceptible to 

infection than controls, but this is only significant with 90% con-

fidence. There is clear evidence that both categories of experienced 

hosts are resistant to infection 14 days after the initial infection, 

but there does not appear to be any difference in susceptibility 

between previously exposed groups. The difference between the logged 
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burden on controls and the resistant hosts is 1.87,indicating that 

previously exposed hosts are of the order of 6.5 times less susceptible 

to infection than the controls. A more accurate estimate of the 

degree of resistance acquired is obtained in the next section. Twenty 

days after the initial infection, the hosts with high previous ex-

perience of Ichthyophthirius infection are more resistant than the 

controls, but the fish with only light previous experience appear to 

be in the process of losing resistance. This indication is confirmed 

with the results 42 days after the initial infection, when the previously 

heavily infected hosts are still resistant, but those with only 

light infection ^experience appear to be as susceptible as the controls 

to Ichthyophthirius. 

6.3.3. Effect of previous ̂ e^osure^ onm time_spentm on hosts 

Figure 6.3 compares the survivorship of trophozoites on hosts with 

previous history of infection,with survivorship on control hosts. 

There appears to be a tendency for trophozoites to remain longer on 

controls. The significance of this observation was tested by comparing 

the proportion of trophozoites remaining on hosts in each group at 

day six. This proportion was calculated for each host, and the 

difference between control and resistant groups was found to be highly 

significant using a Mann-Whitney U test (U = 66.5, p < 0.001). Tro-

phozoites do therefore remain for a longer time on naive hosts than 

experienced hosts, but as median survival times differ by only one 

day, the effect is of less importance to the dynamics of the disease 

than the effects of previous infection experience on parasite establish-

ment . 

Analysis of the counts three days after infection reveals further 

information about the immune response. Although the means of logged 
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Figure 6.2 Time required to develop resistance to infection (II) 

The figure shows the results of a nested analysis of variance, using 

the model defined by eqn.(6.2.) Results of reinfections at each time 

since the initial infection are shown a separate graph. On each, 

the level of previous exposure to infection is represented on the 

horizontal axis in the following way: 

Level Mean parasite burden after initial infection 

1 0 (Control) 

2 18.8 (light) 

3 151.0 (heavy) 

The vertical axis shows the estimated value of 8 (defined in eqn. 

6.2). Low values of 8 relative to the control are evidence of 

acquired resistance to infection. The bars shown represent half 

the least significant difference in either direction. If they do 

not overlap, the values differ with 95% confidence. 
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number of parasites per host are very similar between controls and 

resistant fish (4.07 for control fish, 4.15 for resistant fish) the 

variance for previously exposed hosts is very much greater than that 

for the controls (F =7.05; df = 19,19; p < 0.001). Fish appear to 

differ considerably in their ability to acquire resistance to infec-

tion. These differences do not appear to be related to the actual 

parasite burden established in the first infection. Figure 6.4 shows 

no evidence of correlation between log burden established in the 

initial infection, and log burden established in the second infection. 

The ratio of susceptibility of exposed fish to susceptibility of 

naive fish was estimated to be 0.22, using the logged data from day 

three and recalling that controls were given one fifth of the in-

fective dose of experienced hosts. Allowing for the large difference 

in variance, a 95% confidence interval for this ratio was found to 

be 0.10 to 0.48. The level of resistance found is similar to that 

observed in the previous experiment. 

6.3.4. Effect of starvation on resistance to infection 

The mean of the natural logarithm of parasite burdens established 

on hosts that had been deprived of food for 24 days was found to 

be 2.09, compared with 1.8 for the controls. This difference is not 

significant (i = 0.74, 18 df). 

6.4 Conclusions and Discussion 

Black mollies are able to acquire a degree of resistance to 

infection by Ichthyophthirius in approximately ten days after an 

initial infection. There is some evidence that resistance may be 

acquired more rapidly by heavily infected hosts than by lightly 
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Figure 6.3 Survival of trophozoites on control and previously 

exposed hosts 

The time since infection is shown on the horizontal axis. The 

proportion of those trophozoites established on day 3 still remaining 

on hosts is shown on the vertical axis. The circles represent data 

points for control hosts, and the squares represent data points for 

hosts with previous history of infection. The bars shown are 95% 

confidence intervals for the overall proportion of trophozoites in 

each category surviving. The equally dashed line is eqn. (4.2) 

fitted to the control data using a non linear least squares procedure, 

and the unequally dashed line represents the same equation fitted 

to the data of the previously infected hosts. The geometric mean 

of the burden established on experienced hosts in the initial in-

fection was 44. 

Figure 6.4 The relationship between the number of parasites established 

in a second infection3 and number established in an initial infection 

The number of trophozoites established in the second infection is 

plotted on the vertical axis, and the number established in the 

first infection is shown on the horizontal axis. Double log axes 

are used. 

2 (r = -0.05, 18 df, based on logged data). 
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infected hosts. Resistant fish appear to be approximately one fifth 

as susceptible to infection as previously unexposed fish, and the 

degree of protection against infection does not appear to depend on 

the level of the initial!1 exposure. It appears that resistance is 

more rapidly lost by hosts with only a mild experience of infection. 

This resistance is true post invasive immunity, rather than premunition 

(in which parasites currently on a host protect it from further attack) 

because, more than ten days after infection, no parasites from the 

initial cohort remain on the host. Those trophozoites that succeed 

in establishing on resistant hosts do not remain on the host for as 

long as do trophozoites on naive fish. 

These conclusions are more closely in agreement with those of 

Bauer (1962) than with those of Hines and Spira (1974c). In Bauer's 

experiments, which were similar in principle to those described in 

this chapter, previously infected fish were found to develop parasite 

burdens one tenth of those established on control fish, in contrast 

to the nearly solid resistance reported by Hines and Spira. These 

differences may result from the experimental methods used in each 

study. Hines and Spira exposed fish to infection until they re-

covered, which corresponds to a number of generations of parasites. 

The hosts were therefore exposed until nearly complete resistance was 

established. In the experiments reported in this chapter, and in 

Bauer's experiments, the fish were subjected to one infection only. 

Hines and Spira report maintenance of high levels of resistance for 

eight months or more, but this is for fish continually exposed to 

Ichthyophthirius. 

The experiments of this chapter do not attempt to examine the 
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mechanism responsible for the acquired resistance. Hines and Spira 

(1974c) were able to demonstrate that serum from resistant fish was 

able to immobilize Ichthyophthirius trophozoites. They suggest, 

however, that the resistance actually operates at the level of the 

mucus surrounding the fish, as no tomites were recovered from mucus 
> 

scrapings from immune fish. They were also able to detect qualitative 

differences electrophoretically between mucus from resistant and control 

fish. Goven et al (1980) were able to demonstrate resistance to 

Ichthyophthirius infection after inoculation with preparations of 

Ichthyophthirius cilia or with cilia from the related Tetrahymena 

pyriformis. It therefore appears that the acquired resistance observed 

is immunological in nature. 

The most interesting aspect of these results, from a population 

dynamic point of view, is that very low parasite burdens, relative 

to the burden necessary to produce significant host mortality, are 

sufficient to confer considerable resistance to reinfection. The 

importance of this to the dynamics of the parasite is discussed in 

Chapter 12. Similar acquisition of significant resistance after only 

light exposure to a parasite is reported by Weinmann (1958) with regard 

to infection of laboratory mice Mus musculus by the cestode Eymenolepis 

nana and by Wassom et aK1973)concerning infection of the deer mouse 

Peromyscus maniculatus by Hymenolepis citelli. Both these studies 

also reported faster rates of acquisition of resistance following 

heavy initial infections. 
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CHAPTER 7 

PARASITE INDUCED MORTALITY 

7.1 Introduction 

As one of the major parasites affecting commercial fish culture, 

the high potential pathogenicity of Ichthyophthirius is well known 

(Bauer, 1962). Despite the detailed examination of the pathology of 

the disease by Hines and Spira (1974a, 1974b, 1974c), there is little 

available information on the relationship between parasite burden 

and the rate of host mortality. The experiment described in this 

chapter examines this problem in quantitative terms. 

7.2 Experimental Methods 

Fish were infected with high parasite burdens by either placing 

them in highly infective tanks for twenty-four hours or by directly 

infecting them with large numbers of tomites. Two days after the 

commencement of the initial infection, the trophozoite density on the 
2 

host was assessed by counting the number visible within two 0.16 cm 

grids positioned one on each side of the body just in front of the 

caudal peduncle. This particular position was chosen as a plane 

surface on which small trophozoites are readily visible. Given the 

uniformity of trophozoite distribution over the surface of the host 

found in Section 5.4, these counts should be representative of the 

overall parasite density. After assessment of the parasite burden,hosts were 

placed individually in 500 ml containers of tap water and maintained 

at 20°C in diffuse lighting. Each day, survival was checked, and 

the remaining fish fed. The water was changed regularly to restrict 

self reinfection. Monitoring of survival was continued for ten days 
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after the initial infection, by the end of which time the initial 

infecting cohort of parasites has left the fish (Section 4.3.1). 

7.3. Age Dependent Parasite Induced Mortality 

Raw results obtained are in the form of a table of number of 
2 

days survived against number of trophozoites per 0.16 cm square 

(see Appendix 2). Analysis of data of this form is difficult. Days 

survived cannot simply be regressed against parasite density, because 

of the considerable number of hosts surviving more than ten days. 

A second difficulty is that it was not possible to count burden earlier 

than two days after the initial infection. This is not a problem over 
i 

a greater part of the range of trophozoite densities examined, but 

a number of attempts to investigate very high densities failed because 

the fish died before their parasite burden could be counted. The 

few results obtained at very high densities (in excess of 300 tro-

phozoites per square) represent only the tails of the distribution, 

and must be assessed with caution. 

A satisfactory way to deal with these data is to group fish 

according to the severity of infection, and to calculate, for each 

day, the proportion of each group surviving. Figure 7.1 presents 

the results of this analysis. 

Some form of age dependent survival curve is clearly required 

to fit these data. Over the range of the experiment, it appears 

that a function of the following form may adequately describe the 

observed data: 

dy/dt = -N a(P) exp [MP)z] (7.1) 
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Figure 7.1 The age dependent parasite -induced death rate 

A series of graphs are presented, each grouping results from fish with 
2 

parasite densities (per 0.16 cm of body surface) over the range given 

in the graph heading. The horizontal axis of each graph shows the 

time in days since infection, and the vertical axis shows the pro-

portion of the hosts originally present surviving. The solid circles 

represent observed data values. The number of hosts originally 

present, N, is shown in the heading of each graph. The dashed lines 

shown are a solution of eqn. (7.2) with parameters a and b estimated 

from all the data points together, using a non linear curve fitting 

routine. (The estimated values of a and b are : a - 0.195 per day, 

b = 0.00485 per parasite, per day.) 
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Figure 7.2 An alternative presentation of the results shown in 

Figure 7,1. 

The solution of eqn. (7.2) is shown as a surface, and the data 

points are shown as "lollipops" above or below the fitted surface. 

The vertical axis shows the proportion of hosts surviving, and 

the two horizontal axes show the time in days since infection, 
2 and the parasite burden in numbers per 0.16 cm square. 
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where N is the number of hosts originally present, P is the initial 

parasite density per host, t' is the time since infection, and 

aiP) and biP) are functions of P. 

Two possibilities were examined: 

lix) = exp ia/bP [l- exp (bPt) ] ) (7.2) 

in which b(P) is assumed to be a linear function of t, but a is 

constant, and 

lix) = exp iaP/b [l- exp(b t) ]) (7.3) 

is which a(P) is a linear function of P and b is constant. For both 

these functions, a non linear curve fitting procedure was used to find 

values of a and b that minimized the residual sum of squares.(Appendix 

1). The value of P at the midpoint of each time interval was used. 

A value of 1.02 for the residual sum of squares was obtained for eqn. (7.3) 

compared with 0.80 for eqn. (7.2). The data therefore are better 

described by eqn. (7.2), which is shown fitted to the data of Figure 

7.1. This model is also more satisfactory in that it predicts a 

constant, disease independent death rate of 0.02, which is in the region 

observed for uninfected mollies. Equation (7.3) predicts no disease 

independent death whatsoever. Figure (7.2) shows eqn. (7.2) plotted as 

a surface. 

It must be realized that the functional form of dependence of 

death rate on infective burden is almost certainly considerably more com-

plicated than eqn(7.2). The rate will, in fact, depend on the number 

of trophozoites currently on the host, their size, and the number 

that have left the host already. The data are not sufficiently com-
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prehensive to justify attempts to fit a more complex relation. Equation 

(7.2), with only two free parameters, provides an adequate fit over 

the range of the observations. 

7.4 An Averaged Death Rate 

Although the age dependent survivorship function is evidently 

complex, there is a simple relationship between median survival times 

of hosts with similar burdens and the level of the infection. Figure 

7.3 relates median survival time (the time since infection by which 

half the hosts have died) to the initial trophozoite density. These 

medians were calculated by simple linear interpolation from the 

data presented in Figure 7.1. The inverse of the median survival time 

appears to be linearly dependent on the initial parasite burden. 

Furthermore, the inverse median survival time predicted by eqn. (7.2) 

shows approximately the same relationship (Figure 7.3). This linear 

relationship is expected from the simplest conceivable form of para-

site induced mortality, in which the death rate is constant with time, 

and directly proportional to the burden. In this case; 

1/t^ = &/ln2 + aP/ln2 (7.4) 

where V^^ is the inverse of the median survival time, b is the 

disease independent death rate and a is the per parasite increment in 

the disease induced host death rate. Ignoring the complications of 

age dependence, a may be estimated from the gradient of the line in 

Figure 7.3. This estimate is of more value when expressed in terms of 

the total parasite burden rather than parasite density. The surface 

area of the black mollies used in these experiments was estimated with 

the aid of the stylized drawing of a fish in Figure 7.4, the measurements 
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Figure 7.3 An averaged death rate 

2 The relationship is shown between Trophozoite density (P) per 0.16 cm 

of host surface area, and the inverse of the median survival time 

(in days) of infected hosts (1/d). The solid dots represent exper-

imental observations, and the closely spaced dashed line represents 

a linear least squares, regression on the experimental data (1/d = a + bP 

a = 0.0712, se = 0.0119, b = 0.00104, se = 0.00009, 5 df). The 

widely spaced dashed line represents the inverse of the median 

survival time predicted by eqn. (7.2). 

Figure 7.4 The surface area of a blaek mollie 

The figure shows the stylized drawing used to estimate the surface 

area of a black mollie. Means of measurements from eighteen fish 

are given below. 

Measurement Mean (cm) 
A 1.24 
B 1.79 
C 2.20 
D 0.67 
E 1.07 
F 0.65 
G 0.99 
H 0.37 
I 0.71 
J 0.42 
K 0.25 
L 0.58 
M 0.24 
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shown being obtained as means from eighteen fish. This is obviously 

only a crude approximation to the area of a highly complex three 

dimensional surface, but gives an estimate accurate to at least an 
2 order of magnitude. The body area was thus estimated as 6.4 cm ' 

2 

and fin area as 2.6 cm . Using the observation of Section 5.4 that 

trophozoite density is similar on all parts of the host body surface, 
2 

but approximately double on the fins, trophozoite numbers per 0.16 cm 

area may be converted to total burden by multiplying by 73. 
The increment in host death rate, a, per parasite, per day is 

-5 
estimated to be in the region of 1 x 10 

7.5 Parasite Survival of Host Death 

Ichthyophthirius trophozoites are not killed by the death of their 

host (Section 2.1). It was not possible to directly count the number 

of tomites produced per trophozoite on a dead fish, however, because 

putrifaction of the corpse of the host prevented encystation in the 

small amounts of water necessary to produce measurable tomite den-

sities. There is no reason to suppose that trophozoites of a par-

ticular age leaving fish because of host death produce fewer tomites 

than trophozoites leaving the host for any other reason. If this 

assumption is correct, it is possible to estimate the density dep-

endent decline in fecundity of trophozoites resulting from parasite 

induced death. 

The following assumptions are made: 

(i) Parasites on the host have a density independent survival 

rate of the form of equation (4.2) 

lit) = exp [ia/b)(1 - exp ibx))] (7.5) 
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The results of Section 4.3.1. indicate that this is a reasonable 

assumption over the range of parasite burdens examined in that exper-

iment. At very high parasite densities, there may be trophozoite 

losses due to large scale sloughing of the epidermis, and with it 

the parasites beneath it, but as such sloughing rapidly results in the 

death of the host, it can be dealt with as part of the density dep-

endence due to parasite induced death. 

(ii) The survival of infected hosts may be described by an 

equation of the form of eqn. (7.2). The proportion of hosts with an 

initial burden, P, surviving to a time, xt since infection, is there-

fore given by a function L(xtP), where 

L(xtP) = exp (a</[b'P] (l - exp (b«Px) ) ) (7.6) 

where ay and b1 are constants. 

(iii) The number of tomites produced from a trophozoite leaving 

the host at agejX for whatever reason is described by equation (4.4): • 

d n(x) = ex (7.7) 

P(t), the number of infective stages produced per trophozoite 

on a host dying at time t after infection has two components: 

(a) Tomites produced from trophozoites that have already left 

the host by time £. This quantity is given by: 

I 

-n (x) — dx (7.8) 

( b) Tomites produced from trophozoites forced to leave the host 

at time t due to host death. This component is given by the product 
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lit). nit), where nit) is obtained from eqn. (7.7) evaluated at time 

t. Hence 

Nit) = 
d 7 

-nix) <te + nit) lit) QX (7.9) 

The rate at which hosts die is 

%Ljt,P) 
n 

(7.10) 

and the expected number of offspring per trophozoite at an initial 

density P is 

OiP) = (7.11) 

which can be simplified by integrating by parts to 

odP) = lit). Lit,P) d
d^ ( t > d t (7.12) 

Numerical solutions of eqn. (7.12) using parameter values obtained 

from Sections 4.3.1, 4.3.3. and 7.3 are shown over a range of values 

for P in Figure 7.5. 

A variety of simple functions have been used to model density 

dependence in single species populations (Bellows, 1981). One of the 

most general, derived by Maynard Smith and Slatkin (1973), is 

f(N) = (1 + iv.Nf)'1 (7.13) 

where N is the population size and fiN) is the fecundity relative to 

the fecundity at population sizes approaching zero. The dashed line 
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Figure 7.5 The relationship between trophozoite density and tomite 

production per trophozoite 

Trophozoite density is expressed as the number of parasites per 
2 

0.16cm of surface area of the host. The solid line represents 

the results of numerical integrations of eqn. (7.12), and the 

dashed line is a solution of eqn. (7.13), fitted (using a non-linear 

least squares procedure) to fifty equally spaced points generated 

from eqn. (7.12). 

The estimated values of V and w are: V = 0.0109, W = 2.87. 

Figure 7.6 Density dependence in total tomite production 

2 
The tomite production from a fish surface area of 0.16 cm 

(predicted from eqn. (7.12)) is related to the trophozoite density 

in that area. 
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in Figure 7.5 represents a solution of eqn. (7.13) with v and w 

chosen by a non linear curve fitting procedure using 50 equally 

spaced points generated from equation (7.12). Equation (7.13) 

provides a very satisfactory approximation to eqn. (7.12). 

The nature of the intra specific competitive interaction de-

termines the value of the parameter w of the model (Bellows, 1981). 

High values of w occur if the competition is a "scramble", in which 

the overall number of progeny decreases at high population levels. 

If perfect contest competition exists, in which the total number of 

progeny reaches a saturation level at high host densities, w equals 

1. The high value of w obtained here indicates scramble competition, 

and the relationship between the total number of tomites produced and 

trophozoite density is clearly humped (Fig. 7.6). Such a relationship 

is destabilizing, and may lead to stable limit cycles, if the intrinsic 

rate of increase of the population is great enough. The function in 

Figure 7.6 cannot, however, be directly translated into a recruitment 

curve: it represents only the relationship for a single host between 

the total number of tomites produced and trophozoite density. The 

proportion of these tomites able to form the next generation of tro-

phozoites is clearly dependent on the host density, which may be a 

dynamic variable. This problem is returned to in Chapter 14. 

7.6 Discussion 

The parasite induced mortality considered in this chapter is 

what might be termed the death rate of hosts from acute Ichthyophthirius 

infection, as it is the short term effect of the parasite on the 

survival of its host. When free of infection, the death rate of a fish 
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th at has been infected with Ichthyophthirius might be expected to 

be considerably greater than that of a host that has never been 

infected. Ichthyophthirius infection results in damage to the 

epithelium and gills, and these wounds are liable to be infected by 

a variety of other pathogen species.particularly fungi of the genus 

Saprolegnia (Richards and Pickering, 1978). As such pathogens do not 

normally attack healthy fish, mortality due to these secondary 

infections should properly be considered a component of the mortality 

caused by Ichthyophthirius, It is probable that the death rate re-

sulting from a second infection of Ichthyophthirius on a host already 

debilitated by an initial infection will exceed the rate of mortality 

resulting from a single infection. 

Although the inverse of the median life expectancy of hosts was 

found to be approximately linearly dependent on the parasite burden, 

it is unlikely that this relationship holds at low infective burdens. 

If the regression line shown in Fig. 7.3 is extrapolated back to a 

parasite burden of zero,the disease free instantaneous rate of mortality is 

predicted to be 0.1. This is too high to be plausible. Mortality at 

this rate would leave only 35% of uninfected hosts alive after ten 

days. Such a high rate of host death was not observed in any of the 

experiments described in Chapters 5 and 6. The rate of parasite 

induced mortality must therefore initially rise more steeply with 

increasing parasite burden than predicted by the regression presented 

in Fig. 7.3. 

Despite the differences in experimental design and host species, 

it is valuable to compare the results obtained in this chapter with 
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the observations of Hines and Spira (1973a), which were discussed in 

Chapter 2. Hines and Spira, working with 250 mirror carp Cyprinus 
S 

carpio, report no mortality resulting from infections that peaked 
2 at 11 trophozoites per cm of dorsal fin, and 100% mortality resulting 

2 from infections peaking at 430 per cm of dorsal fin area (this latter 
2 

figure is equivalent to 68 per 0.16 cm of dorsal fin area). Even 

allowing for the density of trophozoites on the fins being higher than 

that on the body surface, Fig. 7.1 shows that few black mollies sur-

vived more than 10 days with infections of this intensity. Infections 
2 

of around 10 per cm of fin area produced very little mortality of 

black mollies. 

Anderson and May (1978) reviewed a number of studies of the re-

lationship between the parasite burden of a host and its instantaneous 

death rate. In several cases the relationship appears to be linear, 

although in others the rate of mortality increases exponentially with 

parasite burden. Lanciani (1979) investigated the influence of para-

sitic larvae of water mites on nymphs of the hemipteran Hydrometra 

australis and on larvae of the mosquito Anopheles crucians. In both 

cases, the instantaneous death rate increased linearly with increasing 

parasite burden. Ichthyophthirius appears to be unusual in that 

the function relating rate of mortality to parasite burden is apparently 

convex rather than linear or concave. 

Parasites may also act to decrease the fecundity of their hosts 

(May and Anderson, 1978). No direct evidence on this was available 

in this study, as the black mollies did not readily reproduce under 

experimental conditions. It appears that Ichthyophthirius may have . 
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a considerably greater effect on fry than on adult fish. Komorova 

(1975) found burdens of three to five trophozoites sufficient to 

kill carp by less than 15 mm in length. High fry mortality due to 

parasitism has a very similar effect in population dynamic terms 

to parasite induced reduction of the fecundity of adult fish. 
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CHAPTER 8 

THE DISTRIBUTION OF PARASITES WITHIN THE HOST POPULATION 

8.1 Introduction 

In the models of Anderson and May (1978), the death rate of 

hosts due to parasite induced mortality is dependent on the dis-

tribution of parasites amongst hosts. The nature of this distri-

bution is of considerable importance, as it contributes in the 

determination of both the stability of the systems and the numerical 

levels of host and parasite abundance. Most parasites are distri-

buted in an aggregated or overdispersed manner amongst hosts, whether 

in natural conditions (Crofton, 1971a;Pennycuick, 1971; Anderson 

and May, 1978) or whether the hosts have been infected under uniform 

laboratory conditions (Keymer and Anderson, 1979; Anderson, Whitfield 

and Dobson,1978a; Anderson, Whitfield, Dobson and Keymer, 1978b). 

Many of these distributions are well described empirically by the 

negative binomial distribution. 

The negative binomial distribution was originally derived as 

the probability distribution for the number of binomial trials necessary 

to produce exactly k successes (Feller, 1968). This has little bio-

logical application, but the same mathematical form may be produced 

by a broad range of processes, many based on plausible biological 

assumptions (e.g. Pielou, 1969; Boswell and Patil, 1973). The dis-

tribution can be described by two parameters, the mean, y, and a 

dispersion parameter, k. The value of the parameter k varies inversely 

with the degree of aggregation or overdispersion of the distribution. 

If k is large and positive, the distribution approaches a Poisson 
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form (variance = mean) while when k is small and positive, the 

distribution is highly aggregated (variance >> mean). The parameter 

k is therefore a convenient measure of the overdispersion of a dis-

tribution, independent of its mean, although its use for this pur-

pose has recently been criticized (Taylor, Woiwod and Perry, 1979). 

8.2 Experimental Methods 

The results analysed in this section were obtained during the 

course of a number of the experiments described in previous sections. 

In each of these, a number of hosts were simultaneously infected with 

the same concentration of tomites in 500 ml of conditioned water and 

kept individually until the parasite burden was assessed four or five 

days after the initial infection. The experiments were not all 

carried out at the same time, and are therefore obtained from a 

variety of different batches of fish and tomite suspensions. Fish 

numbers used in the experiments ranged from 15 to 35. 

8.3 Results 

The variance of the parasite burden established in each experiment 

is compared with the mean parasite burden in Figure 8.1. In all but 

one case, the variance is greater than the mean, indicating over-

dispersion. Note also that the variance is approximately proportional 

to the square of the mean burden per host. In these controlled con-

ditions, overdispersion can be generated by two factors: variability 

in the number of infective stages encountering each host, or variability 

in the proportion of infective stages successfully forming trophozoites. 

As was discussed in Chapter 5, essentially all tomites appear able to 

locate a host before death, and this heterogeneity is therefore unlikely 
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Figure 8.1 Mean and variance of parasite burden per host 

The relationship is shown between the mean parasite burden per host 

(x, horizontal axis) and the variance in parasite burden per host 
2 

(s , vertical axis) for ten separate infection experiments. Double 
log axis are used. The line shown represents the linear least squares 

2 - 2 -regression of log1Q(s ) on log^Cc): log1Q(s ) = a +b log1Q(aO. 

(a = -0.174, se = 0.158; b = 1.88, se = 0.11; 8df) 

Solid circles represent observations based on 30 replicates, solid 

squares, observations based on 35 replicates, and triangle obser-

vations based on 15 replicates. 
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to be generated by variability in the number of tomites encountering 

each host. It is probable that the heterogeneity is generated by 

variability in the proportion of tomites infecting a host that are 

able to form trophozoites (in the language of the model of Section 5.3, 

variability in s). Such variability could be due to innate genetic 

factors, differing previous experience of infection,or physiological 

status. 

If the observed heterogeneity is generated by differing host 

susceptibilities to infection, a simple relationship can be predicted 

between the variance of parasite burden per host and its mean. 

Suppose that each host has a susceptibility, s, to infection, such 

that the probability of a tomite encountering that host surviving 

to form a trophozoite is s. If the number of infective stages en-

countering each host follows a Poisson distribution (a reasonable 

assumption under these controlled experimental conditions), it is 

shown in Appendix 3 that the expected number of parasites establishing 

per host, E(P), is given by 

E(P) = Ts (8.1) 

and the variance in burdens between hosts, var (P) is given by 

va:r(P) = T2 var(s) + Ts (8.2) 

Here T is the mean number of tomites infecting each host, s is the 

mean susceptibility of the host population, and var(s) is the variance 

in susceptibility between hosts. 



-107-

If the distribution of parasites on hosts can be considered to 

be negative binomial in form, the parameter, k, which describes the 

degree of overdispersion can be obtained from eqns. (8.1) and (8.2) 

where 

The parameter k should therefore be independent of the mean parasite 

burden. 

The data were further analysed by a method described by Bliss 

and Owen (1958) which tests whether a common k can be used to des-

cribe a series of distributions. The procedure is based on the moment 

estimate of k. 

where k is the estimated value of k and x and s are the sample 

mean and variance. The inverse of k, which has better statistical 

properties then kt is estimated as 

k = is)2/ var(s) (8.3) 

k - ix)2/ s2 ~ x) (8.4) 

2 

2 (8.5) y s X 

divided by 

(8 .6) 

where N is the size of the sample. The inverse of a common k descri 

bing a series of distributions is estimated as the gradient of a 
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regression of 2/* on x', constrained to pass through the origin, and 

weighted inversely according to the expected variance at each point. 

Two tests of significance are produced: a statistic with a x2 dis-

tribution which tests for the homogeneity of the distributions with 

respect to k, and an analysis of variance which, if significant, 

indicates a trend in k with the mean. It is important to note that 

the test does not examine whether the individual samples follow 

negative binomial distributions. It is a test of whether, given that 

each sample does follow a negative binomial distribution, a constant 

k is appropriate to describe all of them. 

The relationship between y1 and x' calculated from the data of 

Fig. 8.1 is displayed in Fig. 8.2. No extreme outlying data points 
o 

are evident, but the significant value of x indicates that a common 

k does not describe all the distributions. The inverse of kt estimated 

at yx/xl, is shown related to the mean parasite burden of each sample 

in Fig. 8.3, No trend in 1/k with the mean is evident, and the analysis 

of variance does not detect any indication of systematic change in 1/k 

with mean burden. 

Despite attempts to standardize the experimental conditions, there 

is a great deal of variability between experiments in the mean pro-

portion of tomites forming trophozoites. (Table 8.1). This may be due 

to the mean susceptibility of hosts varying between batches of fish, 

or may be due to differing tomite viability between experiments. Given 

the variability in s between experiments, the degree of constancy in 
- 2 

va!r(s)/(s) is surprising. 

The number of observations in each sample is too small to satisfac-

torily examine whether the individual samples follow negative binomial 
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Figure 8.2 The relationship between y' and x', using data of 

F<Lg. 8,1, 

- 2 2 
The horizontal axis represents re1 = (x) - s /N, and the vertical 

2 - 2 

axis represents z/' = s - (x) . The dashed line shown is the 

weighted least squares regression of y* on x* , calculated following 

the method of Bliss and Owen (1958). The test indicates that a 

single k is inappropriate to describe all the distributions of 

parasites on hosts (x2 = 19.2, 8df, p < 0.05). 

Figure 8.3 The relationship betDeen 1/k and mean parasite burden 

The estimated value of 1/k (vertical axis) for each distribution 

of parasites on hosts is shown related to the mean parasite burden 

for each distribution (horizontal axis). The dashed line represents 

the constant 1/k of 0.474 determined by the weighted regression of 

y1 on x1. No evidence of a significant trend in 1/k with mean burden 

is found. (F = 0.036; 1, 7 df). 
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Table 8 .1 Variability in Susceptibility to Infection. 

Sample size 

35 

35 

29 

28 

15 

15 

15 

15 

15 

15 

Mean parasite 

burden 

151.7 

18.7 

3.9 

109.6 

2.01 

5.93 

11.4 

11.9 

53.4 

173.4 

Mean proportion of 

tomites forming 

trophozoites 

0.069 

0.085 

0.002 

0.359 

0.030 

0.044 

0.034 

0.114 

0.128 

0.173 
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distributions. Figure 8 .4 shows frequency distributions of the 

number of parasites per host for the four largest samples used in the 

analysis described above. Overlayed on each is the distribution expected 

if the sample followed a negative binomial with k = 2 .1 . One sample, 

with a mean of 18 .7 , appears to show a significant departure from 

the expected distribution, with too many high parasite burdens, but 

the other three distributions appear to be satisfactorily described 

by the negative binomial distribution. The next section explores the 

expected distribution of parasites >on hosts by means of a simple 

probability model. 

8 .4 The Expected Distribution of Parasites on Hosts 

In the previous section, a simple relationship between the mean 

and variance of parasite burden per host is predicted, assuming that 

the heterogeneity in burden per host is generated solely by differing 

host susceptibility to infection. The actual form of the probability 

distribution of parasites on hosts is given by: 

1 

P(P = p) = [f(s) exp(-Ts)(Ts) p ]/ pi ds (8 .7 ) 

where P(P = p) is the probability of a host harbouring exactly P 

parasites, T is the mean number of infective stages encountering each 

host, and f(s) is the probability density function of the suscepti-

bility, s (see Appendix 3 ) . The distribution {P(P = p)} is exactly 

negative binomial if s follows a gamma distribution and the integra-

tion is performed between 0 and infinity rather than 0 and 1 (Moran, 

1953). A logical difficulty with this assumption is that certain hosts 

will have more parasites establishing than tomites infecting them 
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Figure 8 .4 Distributions of parasites on hosts 

Frequency distributions of the number of parasites per host are 

shown for the four largest samples used in the preceeding analysis. 

Negative binomial distributions with the same mean as the observed 

samples and the common value of k, 2 . 1 (determined in the preceeding 

analysis), are shown as a dashed curve overlayed on each distribution. 

Details of the distributions are given below. The x 2 values compare 

the observed distributions with the negative binomial distributions 

shown. The tails of each distribution were amalgamated so that the 

expected frequency in any category was greater than 5. 

Sample Size of sample Mean X 2 d . f . P 

(a) 35 151.7 0.22 1 N.S . 

(b) 35 18.78 8.13 2 <0.05 

(c) 28 109.2 2.82 2 N .S . 

(d) 29 3.90 4 .87 2 N .S . 
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(s > 1 ) . A more plausible form of the distribution of s is a beta 

distribution of the first kind, (Moran, 1968) which is a continuous 

function defined between 0 and 1 with a probability density function, 

B(s) : 

B(s) = T(Z + ra^rOOrOn)] 8£" 1(l-a.)O T" 1 ( 8 . 8 ) 

where SL and m are parameters describing the distribution, and T denotes 

the gamma function (the mean of the distribution is 1 / ( 1 + m) , and 

-2 -1 

the variance is 1(1 + m") (I + m + 1) ) . If eqn. ( 8 . 8 ) is substituted 

into eqn. ( 8 . 7 ) , the resulting integral is not analytically soluble. 

Numerical solutions of eqn. ( 8 . 7 ) with f (s ) of the form of eqn. (8 .8) 

are shown in Fig. 8 . 5 . These are compared with negative binomial 

distributions, with the same mean and k obtained from substituting 

the mean and variance of the beta distribution into eqn. ( 8 . 3 ) . The 

solutions of eqn (8 .7 ) would, for practical purposes, be indistinguish-

able from negative binomial distributions. 

This simple model therefore predicts that if heterogeneity is 

generated solely by differences in susceptibility to infection between 

hosts, the distribution of parasites on hosts should be approximately 

negative binomial in form, with the parameter k dependent on the 

susceptibility of the hosts, and independent of the mean number of 

infective stages to which hosts are exposed. This provides some 

justification for the assumption made by Crofton(i971b) and Anderson 

and May (1978) that the parasite distribution may be described by a 

negative binomial distribution with constant k. 

In free running infections, however, the distribution would be 
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Figure 8 .5 Numerical solutions of equation (8,7) compared with 

negative binomial distributions. 

The solutions of eqn. (8 .7 ) are shown as solid lines, and the 

negative binomial distributions are shown as dashed lines. On 

each graph, the number of parasites per host is shown on the hor-

izontal axis, and the vertical axis shows the probability of that 

number of parasites occurring, given the probability model under 

consideration. Negative binomial distributions with k - 0 .5 and 

k = 2 . 0 are shown, with means ranging from 2 to 100. 

The parameters I and m with which the solutions of eqn. (8 .7) 

were calculated were chosen to satisfy two criteria: 

(i) The mean of the beta distribution, l/(l+m) 

was set at 0 . 1 , which is approximately the mean 

susceptibility of black mollies to Ichthyophthirius 

(T, the total number of infective stages, is hence 

10 times the mean) 

- 2 , 

(ii) (s) /var(s) was set equal to the k of the negative 

binomial with which the solution of eqn. (8 .7 ) was 

being compared. Hence: ( l /m ) (l+m+1) = k 



P
R

O
B

A
B

I
L

I
T

Y
 

P
R

O
B

A
B

I
L

I
T

Y
 

cn
 

o
 

o
 

o
 

o
 

P
R

O
B

A
B

I
L

I
T

Y
 

P
R

O
B

A
B

I
L

I
T

Y
 

P
R

O
B

A
B

I
L

I
T

Y
 

P
R

O
B

A
B

I
L

I
T

Y
 

O
 

O
 

o
 

o
 

o 

P
R

O
B

A
B

I
L

I
T

Y
 

P
R

O
B

A
B

I
L

I
T

Y
 

-
A

T
I-



P
R

O
B

A
B

I
L

I
T

Y
 

P
R

O
B

A
B

I
L

I
T

Y
 

o
 

h
 N

 u
 

. 
tn

 
o)

 

Z
 

_
 

P
R

O
B

A
B

I
L

I
T

Y
 

P
R

O
B

A
B

I
L

I
T

Y
 - 

- 
M

 

g
A

'A
'A

-
A

'A
-

A
'A

-
A

'A
'A

-
A

'A
'A

-
A

'A
'A

 
O

 
—

 fS
J 

*
 

u
i 

cn
 

P
R

O
B

A
B

I
L

I
T

Y
 

A
'
A

'
A

'
A

'
A

'
A

 
A

'
A

'
A

'
A

 

P
R

O
B

A
B

I
L

I
T

Y
 

-
8
1
1
-



-119-

distorted to some extent. Non random infective stage distributions 

can be expected to lead to increased overdispersion (Keymer and 

Anderson, 1979) as will the fact that hosts recently b o m or added 

have not been exposed for as long as others to infection. Overdispersion 

will be reduced by the deaths of heavily infected individuals. The 

effect of the interplay of these factors on the distribution of 

parasites on hosts is examined with a simulation model in Chapter 13. 
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CHAPTER 9 

EXPERIMENTAL EPIDEMICS 

9 .1 Introduction 

The experiments described in this chapter took place over a longer 

term than those discussed in previous chapters. They are intended to 

examine experimentally the effect that the factors discussed pre-

viously have together on the dynamics of the pathogen:".in fish pop-

ulations. As black mollies did not readily breed in the laboratory, 

it was necessary to introduce fresh hosts to produce a continuous 

epidemic. In the first series of experiments, this was done at a 

constant rate of one host per day, and in the second series, hosts 

were introduced when necessary to maintain the fish population at a 

constant level. 

9 .2 Constant Host Immigration 

9.2.1. Methods 

Two series of experiments are described. In each, three replicates 

were set up under the same initial conditions. Ten uninfected mollies 

were placed in 10 1 tanks holding conditioned water. Tanks were aerated, 

but not filtered, and the bottom of each was covered with approximately 

1 cm of coarse gravel. Water temperature was maintained at approximately 

18°C. 'Experiments were commenced by adding the same number of infective 

stages to each tank, approximately 3600 per tank in the first series, 

and 25,000 per tank in the second series. After this, uninfected hosts 

were added at a constant rate of one per day. Any dead fish were left 

in the tank for approximately 24 hours, to allow trophozoites present 

on them to leave and encyst. Fish were fed daily with "Aquarian" 
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Tropical Fish Flakes and the water level in the tanks topped up to 

10 1 when necessary. Every two days, initially, all fish were removed 

and their total parasite burden counted under anaesthesis with ethyl-

m-amino benzoate (Sigma). Only trophozoites of greater diameter than 

0.1 mm (representing approximately those older than four days) were 

counted. Frequency of counting was decreased later in the course of 

the experiments. 

9.2.2. Results of the first series 

Changes with time of the number of hosts present and mean para-

site burden for the first series of experiments are shown in Figure 

9 . 1 . All three replicates show broadly the same pattern. Host numbers 

decrease slightly initially, possibly due to secondary infections 

harboured by hosts prior to the beginning of the experiment, but after 

this, there is virtually no host mortality. Mean parasite burden 

initially shows a series of peaks following the generation time of the 

parasite, and then decreases to a low level. In no case do parasite 

numbers reach levels at which they might cause substantial host mor-

tality. The extremely large potential reproductive rate of Ichthyophthirius 

(Section 4 . 3 . 5 . ) does not appear to be realized. 

Two reasons for this failure to increase at the expected rate 

can be postulated. It is possible that the unfiltered water in the 

tanks may have become progressively more toxic to Ichthyophthirius 

during the fifty days of the experiment. Accordingly, at the completion 

of the experiment, water from one tank (tank 24) was kept for ten 

days to ensure that any Ichthyophthirius present had died. Ten fish 

were then infected in this water, ten others being infected in conditioned 

water. Fish infected in water from tank 24 developed burdens that were 
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Figure 9 . 1 Results of the first series of constant immigration 

The time in days since the commencement of the experiment is shown 

on the horizontal axis. The solid line represents the number of 

hosts present in the tank, and is scaled on the axis to the left of 

the figure. The mean trophozoite burden per host is shown as a 

dashed line, and scaled on the axis on the right of each graph. 
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in fact higher than those developing in conditioned water (t = 2 . 28 , 

18 df, based on logged data) indicating that the water was not toxic 

to tomites. A second possibility is that the fish may have acquired 

resistance to infection. Ten fish were taken at random from tank 24, 

kept for ten days until parasite free, and then reinfected along with 

ten controls. The number of trophozoites establishing on the controls 

was significantly higher than that establishing on the hosts from the 

immigration-death experiment (t = 2 .47 , 18 df, based on logged data). 

Host resistance appears therefore to be the likely cause of the ob-

served decline in parasite numbers. 

The distribution of parasites on hosts was examined using the 

method of Bliss and Owen (1958) described in Section 8 . 3 . These 

results cannot be interpreted too stringently, because successive 

observations of distribution of parasites are not strictly independent, 

but nevertheless, some important indications can be obtained. The 

results of the analysis are given in Figure 9 . 2 . In all three cases, 

the distribution on hosts is highly overdispersed, with a value of k 

considerably less than 1. The results are consistent with a common k 

describing the distributions, with the exception of tank 24, where 

the deviation appears to be due to a single point. 

9.2.3. Results of the second series 

Results of the experiments commenced with a higher initial number 

of tomites are displayed in Figure 9 . 3 . In each of these cases, para-

site burden increases to a level where significant parasite induced 

mortality is caused. The Ichthyophthirius populations do not, however, 

appear to be able to persist at these high levels: every replicate 

shows a decline in mean parasite burden to a low level, following a 

peak in which there is major host mortality. Only in one tank (Tank 7) 
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Figure 9 .2 Analysis of the results of the first series of constant 

immigration experiments3 using the method of Bliss ccnd 

Owen (1958), 

Two graphs are shown for each replicate: 

2 - 2 
(i) y x - s - x (vertical axis) is plotted against x x = (x) 

2 
- s /N (horizontal axis). 

Each point is based on the distribution of parasites on hosts at 

one sampling occasion. The dashed line shown is the result of a 

weighted linear least squares regression of y 1 on x'. 

(ii) The estimated value of 1/k at each sampling occasion 

is shown, related to the sample mean. The dashed line 

represents the common 1/k estimated by Bliss and Owen's 

method. 

Details of the analysis for each replicate follow. The 

X2 is a test for homogeneity of each sample with respect 

to k and the F, if significant, indicates a trend in k with 

mean burden. 

Tank Estimated x 2 d . f . sig F d . f . sig 

k 

17 0 .35 4 .4 13 NS 0 .49 1,12 NS 

26 0 .47 6 .4 14 NS 0 .39 1,13 NS 

24 0 .57 99 15 .0001 0.09 1,14 NS 
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does the infection actually die out: in the other two replicates, 

it persists at a low level, and there are indications that further 

outbreaks may be possible. 

Due to the nature of the experiment, conditions did not remain 

constant during the course of the epidemics. The water became pro-

gressively more turbid: it is not possible to change the water with-

out destroying all tomites and parasites undergoing encystation. 

Increasing host mortality with time due to crowding or progressive 

debilitation may also be postulated. The very low rate of mortality 

in tank 7 once Ichthyophthirius had become extinct indicates that 

these factors are not of overriding importance. A number of secondary 

infections were also inevitably present in each tank, including fungi 

of the genus Saprolegnia, the alga Oodinium limneticum and monogeneans 

of the genus Gyrodaotylus. Whilst secondary infections added to the 

variability observed in results, secondary infection of lesions re-

sulting from Ichthyophthirius infection is very probably a normal and 

important component of the parasite induced host death rate (see Chapter 

7) . 

The distribution of parasites on hosts was again analyzed by 

the method of Bliss and Owen (1958). Results are shown in Figure 9 . 4 . 

The highly significant values of x 2 obtained in two of the three cases 

indicate that, for these experiments with higher mean parasite burdens, 

y cannot be assumed to be constant. The degree of overdispersion does 

not appear to be related in any simple way to mean parasite burden. 

In the only case in which the F test for trend is k is significant, 

the x 2 value does not indicate a significant departure :from a constant 

k value. A more detailed discussion of these results follows in Chapter 

14. 
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Figure 9 .3 Results of the second series of constant immigration 

experiments 

The time in days since commencement of the experiment is shown 

on the horizontal axis. The solid line represents the total 

number of hosts present, and is scaled on the axis to the left 

of the page. The mean trophozoite burden per host is shown as a 

dashed line, and is scaled on the axis to the right of each 

graph. 
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Figure 9 .4 Analysis of the results of the second series of 

constant immigration experiments 

Details are as described in Figure 9 . 2 . 

Tank Estimated x 2 d . f . sig F d . f . sig 

k 

2 0.42 101.6 26 .0001 0.094 1,25 NS 

7 0 .50 27 .0 25 NS 8.34 1,24 .01 

1 0 .94 98 .5 26 .0001 0 .877 1,24 NS 
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9.3 Constant Host Numbers in Tanks 

9.3.1. Methods 

Ten fish were placed in each of eight 10 1 tanks, holding con-

ditioned water at 20°C. The bottom of each tank was covered with 

a layer of coarse gravel and the water aerated but not filtered. 

The experiment was commenced by adding a large number of tomites 

(36,000) to four of the tanks, and a lower number (1800) to the other 

four replicates. Host numbers were maintained at a constant ten 

live fish by daily replacing any dead hosts with uninfected mollies. 

Dead fish were left in the tanks for 24 hours to allow trophozoites 

to leave them and encyst. Fish were fed daily with "Aquarian" tro-

pical fish flakes, and the water level topped up to 10 1 with con-

ditioned water when required. Parasite burden was assessed every three 

days by removing all hosts, anaesthetizing them with Ethyl-m-Amino-

benzoate and counting the number of trophozoites visible within a 

2 

0.16 cm grid, positioned on either side of the tail , just forward 

of the caudal peduncle, and on either side of the operculum. This 

method, utilizing higher magnification than that used for the previous 

experiment, detects most trophozoites older than one day. 

9 . 3 . 2 . Results 

Figure 9 .5 shows the changes with time in mean parasite burden 

and the number of hosts dying each day. One replicate (Tank 15) 

was discontinued after 34 days, because of a severe fungal infection 

that killed the entire host population. With the exception of tank 13, 

in which the effect is not pronounced, the remaining replicates show 

two or more sharp peaks in mean parasite burden associated with high 

levels of host mortality. Each peak is followed by a crash in mean 
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Figure 9 .5 Results of the experiment in which host numbers were 

maintained constant. 

The infections in Tanks 1, 26, 15 and 23 (first page) were commenced 

with a large initial dose of tomites (36,000) and tanks 10, 3, 16 

and 13 (second page) were subjected to a smaller initial dose (1800). 

In each of the eight graphs, the time in days since commencement of 

the experiment is shown on the horizontal axis. The number of tro-

2 
phozoites per 0.16 cm of host surface on fish alive at the time of 

counting is scaled on the axis to the left of the figure and repre-

sented by a solid line. Number of hosts dying each day is repre-

sented by the histogram bars, and scaled on the axis to the right 

of the figure. The replicate in tank 15 was terminated 34 days 

after commencement of the experiment after a fungal infection killed 

all the fish in the tank. 
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parasite burden. These peaks are not merely a reflection of the age 

structure of the parasite population, as were the peaks observed in 

the results of the previous section, since the interval between them 

is considerably more than the eight day generation length of the 

parasite. The eight replicates are not sufficiently consistent to 

determine whether or not- these results represent convergent oscillations, 

diverging oscillations or stable limit cycles. There is no consistent 

trend toward either increase or decrease in magnitude of*the peaks. 

The differing initial conditions do not qualitatively effect the system 

behaviour: the first peak in parasite burden merely takes longer to 

occur. 

Total parasite burdens established in this experiment appear to 

be very much higher than those described in the previous section: the 

highest mean parasite burden established is in the region of 30,000 

per host. Unfortunately, parasite burdens between the two series of 

experiments cannot be quantitatively compared, due to differences 

in the counting methods used. Only trophozoites older than four days 

were counted in the immigration-death experiments, and as can be seen 

in Chapter 7 , hosts with infections approaching 30,000 would be most 

unlikely to survive long enough for the burden to be counted. Each 

counting method has its particular advantages. Complete census of all 

trophozoites older than four days is more accurate when sampling at 

low infection levels, and enables conclusions about distribution of 

parasites on hosts to be drawn. It is difficult to obtain a reliable 

estimate of distribution of parasites amongst fish from sample den-

sities at four points on the host, but this method yields an estimate 

of the level of total parasite population, regardless of age, and is 

presumably more accurate than an attempted census at extremely high 
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paraslte densities. Qualitatively, peak parasite burdens established 

in the constant host density experiment did appear to be considerably 

greater than those established in any of the constant immigration 

experiments. 

These results are discussed more fully in Chapter 14. 
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CHAPTER 10 

THE BASIC MODEL 

1 0 . 1 Aims of Modelling 

Ecological models can broadly be divided into two categories: 

"strategic" and "tactical" models (Holling, 1968). The essential 

feature of the strategic approach is simplicity. The intention is 

to include as little detail as possible, describing only the "bare 

bones" of an interaction. Results of the model can then be applied 

as generally as is possible, and insights can be gained into the 

effects of particular factors on the behaviour of the system under 

examination. The approach is exemplified by Ross (1916) who dev-

eloped models with the object of identifying the factors that may 

lead to certain diseases displaying epidemic behaviour, and to others 

persisting endemically at approximately constant levels. An ines-

capable result of the simplicity of these models is that they are 

unlikely to provide accurate quantitative predictions about the be-

haviour of particular populations or interactions between populations 

(in some cases, however, predictions are remarkably accurate. See 

for example, Anderson and May 1982a). Tactical models, on the other 

hand, aim to include as much detail as possible about the system 

under examination, with the object of making accurate forecasts about 

the behaviour of the system under particular circumstances. A corollary 

of the inclusion of this detail is that the applicability of the model 

is limited, and it is often difficult to identify which factors are 

responsible for the behaviour observed. When digital computers first 

became available, there was a hope that their numerical powers might 
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enable the development of detailed simulation models that would 

revolutionize ecological thought (Holling, op cit ) . This dream does 

not seem to have been realized. The conclusion that the aims of 

generality and precision are,by their nature, incompatible has been 

reached by a number of authors (Bailey, 1967; May, 1974; Maynard 

Smith, 1974). 

The models discussed in this and following chapters are of the 

strategic type, although based on the behaviour of a particular para-

site. A number of the assumptions made in their construction involve 

what are, in the light of the previous chapters, considerable sim-

plications of the actual biology of Ichthyophthirius. The models 

aim to examine the effect on host parasite interactions of particular 

features of the biology of Ichthyophthirius such as acquired immunity 

or parasite survival of host death. These are introduced one at a 

time so that the influence they have on the population dynamics of 

the system can be ascertained. Implicit in this approach is the 

assumption that a first approximation to the behaviour of a complex 

system can be gained from the behaviour of the sum of its parts. Whilst 

this may, in general, be an oversimplification (Holling op c i t ) , i t 

provides a valuable first approach (May, 1974). 

The models described in this thesis are unlikely to be able to 

quantitively mimic the results of even controlled laboratory epidemics, 

but should be capable of reproducing the qualitative behaviour ob-

served under experimental conditions. The function of this type of 

model is to identify important components of the population biology 

of the disease, and to indicate areas in which experimental investigation 

would prove valuable (Bradley, 1982). 
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1 0 . 2 A brief history of the modelling of disease and parasitism 

Bernoulli (1760) was probably the first to use mathematical 

models to assist in the understanding of epidemics, developing a 

simple differential equation to describe the progress of smallpox 

epidemics. Although his model is remarkably similar to more recent 

epidemic models, further progress was restricted because of the 

limited understanding of the biology of infectious diseases at that 

time. 

Modern epidemic theory is based on work in the early part of the 

twentieth century by Hamer (1906) and Ross. The theory of "happenings" 

developed by Ross (1916), in which a population is divided into 

affected and unaffected parts, and infection occurs at a rate pro-

portional to the product of the number of infected and uninfected 

individuals, is basic to many subsequent epidemiological models. 

The most important result Ross obtained is that epidemics may die 

out due to the depletion of the susceptible host population, without 

necessarily involving any decrease in infectivity of the disease 

itself, which had been thought necessary by some previous workers 

(e.g. Brownlee, cited in Ross, 1916). 

It was left to Kermack and McKendrick (1927) to develop one of 

the most important results in epidemiology. Their threshold theorem 

states that, for a given disease, there exists a minimum density of 

hosts that must be present in order for an epidemic to occur, and that 

in general, the epidemic ceases before all the susceptible hosts have 

become infected. This result is central, in a variety of guises, 

to the discussion in the remainder of this thesis. Kermack and Mc-

Kendrick divide the host population into susceptible, infected and 
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immune categories and assume that infection occurs at an overall rate 

proportional to the product of the number of infected and susceptible 

hosts. In their 1927 paper, the host population is assumed to be 

approximately constant, but in later work (Kermack and McKendrick 1932, 

1933) immigration and birth are included, and the stability of equil-

ibrium solutions is considered. 

A literature of considerable size has been built up based on 

these "compartmental" models. It is reviewed in detail by Bailey 

(1975). Many modifications of these models involve introducing sto-

chastic effects (e.g. Bartlett, 1966) and are mathematically very 

sophisticated. An assumption common to most developments, however, 

is that the total host population can be considered to be constant. 

Anderson and May (1979) have recently relaxed this assumption, 

allowing the host population to be a dynamic variable affected by the 

course of the epidemic. The construction and properties of these 

models are described in Appendix 4. 

Such compartmental models, which divide the host population into 

susceptible, infected and immune classes, are most applicable when 

considering the population dynamics of microparasitic diseases, which 

are able to reproduce within their hosts. It is implicitly assumed 

that, after infection, the number of disease organisms within each 

host increases rapidly to a level determined by the host responses, 

(whether non specific or immunological in nature) rather than by the 

size of the infective dose. All hosts harbouring the disease are 

assumed to be equally infected. This approach is unlikely to be 

successful in describing the dynamics of parasites such as Ichthyophthirius 
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which are Incapable of reproduction within the host. In these 

cases, the parasite burden is a function of the number of infective 

stages encountered and the burden determines both the death rate of 

the host and its infectivity to further hosts. It is therefore 

necessary to explicitly consider the dynamics of the parasite pop-

ulation. 

Kostitzin (1934) derived a general model in which there were 

separate differential equations for the number of hosts harbouring 

different numbers of parasites, but was able to obtain analytical 

results only in very restricted cases. He noted "This system is not 

linear, and its solution presents almost insurmountable difficulties" . 

Compared with the degree of attention given to predator prey dynamics, 

host parasite interactions were subsequently rather neglected by 

theoretical ecologists. Pielou (1969) considered the host parasite 

interaction to be mathematically equivalent to predator prey inter-

actions, and that it could therefore be described by the Lotka Volterra 

equations: 

dH/dt = (a1 - b P)ff (10.1) 

dP/dt = (-a2 + b2H)P (10.2) 

where H is the number of hosts and P is the number of parasites, and 

a , a , b and b are constants. It is difficult, however, to ascribe 

biological interpretations to the constants, as the model is not derived 

from parasitological principles. (It turns out that eqns. (10.1) and 

(10.2) are equivalent to Anderson and May's (1978) basic model, if 

P denotes the mean parasite burden per host, and only a very small 
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proportion of infective stages succeed in locating hosts). 

Recent examination of the host-parasite interaction has empha-

sized the crucial role played in the stability and regulation of 

parasite and host numbers by the nature of the distribution of para-

sites within the host population. Bradley (1972) argued that an agg-

regated distribution of parasites on hosts implies that a relatively 

small proportion of hosts harbours a large proportion of the parasite 

population. As the parasite population size increases, the few heavily 

infected hosts die, restricting the host and disease populations 

without massive host mortality that may lead to an equilibrium being 

overshot. An important advance was made by Crofton (1971b), who des-

cribed a difference equation model in which it was assumed that 

parasites were distributed according to a negative binomial distri-

bution amongst the host population. Imposing this distribution a priori 

provides a means of circumventing some of the insurmountable diff-

iculties referred to by Kostitzin. Unfortunately, Crofton did not 

explicitly write down the equations upon which his model is based, 

although they have subsequently been ddduced by May (1977). A feature 

of this model is the extremely complicated shape of the zone of att-

raction to its equilibrium (May, 1979). This may be the result of an 

unrealistic assumption made concerning the transmission of parasites 

which, in certain conditions, allows more parasites to become established 

than there are infective stages! 

Anderson and May (1978) have developed a firmly biologically based 

model, framed as differential equations, which utilizes Crofton !s 

assumption of a negative binomial distribution of parasites on hosts. 

This model forms the basis of the theoretical work in this thesis, and 
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a modified version is described in the following section. 

10.3 A Basic Model to Describe the Population Dynamics of 

Ichthyophthirius multifiliis 

The following model is a slightly modified version of one des-

cribed by Anderson and May (1978). Its formulation and dynamical 

properties are described in some detail, as it forms the basis for 

a series of extension^,aimed at adding further biological detail, 

which are described in the following sections. 

Hosts are assumed to reproduce, in the absence of infection, at 

a per capita rate, a, per unit of time, and to die from the effects 

of all factors other than parasitism at a constant per capita rate, 

b. The death rate of an infected host is taken to be augmented by 

an amount ai, where i is the parasite burden of the host. The total 

rate of loss of infected hosts due to parasitism is therefore: 

00 

aH l>ip(i) (10 .3) 

i-o 

where H is the size of the host population, and pii) the probability 

that a host harbours i trophozoites. These assumptions lead to the 

following equation to describe changes in host population size. 

oo 

dH/dt = (a-b)H - aH \ ipii) (10.4) 

i=o 

The number of individuals of the three main developmental stages 

of Ichthyophthirius at time t will be denoted by the variables Pit) 

representing trophozoites on the host, C(t) representing the encysting 

stage, and Tit) representing the free living infective tomites. The 



-147-

life cycle is shown schematically in Fig. 10.1. Age structure of these 

life history stages is not considered in this basic model. The number 

of trophozoites leaving the host in a small time interval, At is 

assumed to be simply y^P(t)At where y^ is constant and is the reciprocal 

of the mean time spent on the host.. Similar assumptions are made 

concerning the rate at which cysts rupture to release tomites, which 

is expressed as y C(t) . Exactly A tomites are assumed to be produced 

per rupturing cyst. Cysts and tomites are assumed to have constant 

death rates of y_ and y respectively. Trophozoite mortality has 
2 o 

two components, death of trophozoites on hosts at a per capita rate 

y^ and mortality due to the death of the host. Initially, it is 

assumed that no parasite survives the death of its host. Under the 

above assumptions, the net loss of trophozoites due to host mortality 

is: 

a I 
i-o 

i(b+ai) p(i) tibE(i) + aHE(i 2) (10 .5) 

.2 .2 
where E(t ) and E(i ) are the expected values of % and i . E(£) 

.2 

is simply the mean parasite burden, P/H, but evaluation of E(i ) 

requires some knowledge of the nature of the distribution of the 

parasites within the host population. Following Anderson and May 

(1978) it is assumed that this distribution is negative binomial in 

form, and that the parameter, k, of this distribution, which varies 

inversely with the degree of parasite overdispersion, is constant. 

In this case, 

E (Y 2) = P/H + (k+i)/k (P/H) 2 ( 1 0 . 6 ) 
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Figure 10.1 Schematic life cycle of Ichthyophthirius 
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Death y 
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Infection is taken to occur as a result of the result of binary 

collision between infective stage and host at a rate 3 per tomite, 

per host,per unit of time. 

These assumptions lead to the following four coupled differ-

ential equations to describe the dynamic behaviour of H, P, C and 

T with respect to time: 

dH/dt = (a-b)H - aP (10 .7) 

dP/dt = WT - ( y ^ y ^ a +b)P - a [(fc+1)/k\ [P 2/H] (10.8) 

dC/dt = YlP - (y2+V2)C (10 .9) 

dT/dt = Ay2C - 3NT - PgT (10.10) 

Table 10.1 provides a summary of the identification of the various 

parameter symbols. 

In the system represented by the above set of equations, the 

intrinsic rate of increase of the host population (a-b) is small 

compared with the rate of parasite population change (at 20°C, the 

total generation time of Ichthyophthivius is around one week). If 

the parasite population size is small, so that the rate of parasite 

induced host death is low, parasite population dynamics can be con-

sidered assuming that the host population level is essentially con-

stant. The cyst and tomite stages are short lived compared with the 

trophozoite stage (Table 2 .1 ) and so it can be assumed, as a first 
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Table 10.1 Parameters of the Model Defined, by eqns, (10,7) - (10.8) 

Parameter 

a 

b 

a 

Biological interpretation 

birth rate of hosts 

disease independent death 

rate of hosts 

increment in the rate of 

parasite induced mortality 

per trophozoite 

rate of tomite infection 

of hosts 

rate of trophozoite emi-

gration from hosts 

rate of trophozoite death 

on hosts 

rate of excystation 

units 

.per host, per unit of time 

per trophozoite, per 

host, per unit of time 

per tomite, per host 

per unit of time 

per trophozoite, per 

unit of time 

per trophozoite, per 

unit of time 

per cyst, per unit 

of time 

death rate of cysts 

number of tomites produced 

per excystation 

death rate of tomites 

per cyst 

per tomite, per 

unit of time 

parameter of negative 

binomial distribution 

inversely describing the 

degree of aggregation of 

trophozoites on hosts 

i 
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approxlmatlon, that the number of cysts and tomites are at levels in 

equilibrium with the current trophozoite population size. Setting 

eqns. (10 .9) and (10 .10) to zero and substituting into eqn. ( 1 0 . 8 ) , 

the following condition can therefore be found for P to be able to 

increase (at low parasite burdens, the second order term, 

a[(k+l)/k][P2/H], can be neglected) 

A ( Y 1 Y 2 ) P / [ ( Y 2 + y 2 ) ( V 3 / 3 + H)d] > 1 (10.11) 

Here, d is defined.for notational convenience as 

(10.12) 

The dimensionless quantity 

R0 = A(YlY2)i5r/[(Y2 + V ( V 3 + H ) d ] 
(10 .13) 

is the basic reproductive rate of the parasite (MacDonald, 1965; 

Anderson and May 1981) and can be thought of in biological terms 

as the mean number of trophozoites in the next generation established 

from each trophozoite in the current generation. It can readily be 

seen that in order for R > 1, and for the parasite to be able to 

persist in the host population, the host density must exceed a cri-

tical level, Hy, where 

Ht = < y 3 / 3 ) / hy1y2/[(y2+]x2)d] - l (10 .14) 

This is the threshold host population necessary for disease persistence 
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(Kermack and McKendrick, 1927). If A y i y 2 ^ ' Y 2 + V i 2 

)d]< 1, no host 

density exists great enough to enable disease persistence. For 

notational convenience it is useful-to define another dimensionless 

quantity 

R = A y ^ g / L C Y a + y g ) d} ( 1 0 . 1 5 ) 

A 

R is simply the level to which R asymtotes at very high host den-

sities and, in biological terms, is the mean number of infective 

stages produced per trophozoite establishing on a host. 

Returning to the case where H is a dynamic variable, an equil-

ibrium may be found by setting eqns. (10.7) to (10.10) to zero. 

There is a trivial equilibrium with H and P = 0 , which is unstable, 

and there may be an equilibrium with both parasites and hosts present 

* 
with a host population, B. , where: 

H* = <y / 3 ) / 
3 

R/[l+(k+l) (a-b)/(kd)]-l (10.16) 

* 
and an equilibrium parasite population, P , where: 

P* = H*(a-b)/a (10.17) 

Clearly 

A 

R > 1 + (k+l)(a-b)/(kd) (10.18) 

A 

for a non trivial equilibrium to exist. If i? < 1, the parasite is 

unable to persist and will decline in numbers to extinction whilst 

host numbers increase exponentially at a rate r = a-b. In the region 
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1 < i? < 1 + (k+1) (a-b)/(kd), the parasite is able to persist in the 

host population, but is unable to regulate its growth: both parasite 

and host populations increase exponentially. In the case of Ichthy-

ophthirius and probably most host parasite systems, the time scale 

on which parasite populations change is very much shorter than that 

on which host populations change ( i . e . d »a-b). 

This region is therefore likely to be small unless the parasites 

are very highly aggregated in their distribution within the host 

population (k 0) . Figure 10.2 shows the region of the A - k para-

meter space within which this type of behaviour occurs. 

Consider now the case in which eqn, (10.18) is satisfied, and 

an equilibrium with both hosts and parasites present does exist. The 

local stability of the equilibrium may be determined by considering 

the eigen values of the community matrix (May, 1974), but this app-

roach is algebraically cumbersome and biological interpretation of 

the results is difficult when the model consists of four equations. 

Some progress can be made by assuming that the tomite stage operates 

on a time scale that is short in comparison with the other life history 

stages ( i .e . y >> y ; y » y„) . The tomite population is essentially 
J -L «j Z 

always in equilibrium with the current numbers of cysts and hosts at 

a level 

T* = (AY 2 0 / ( y 3 +S# ) (10.19) 

obtained by setting eqn. (10.10) to zero. Equation (10.8) then becomes 

dP/dt = \y2HC/(H + y /B) - dP - aP 2(k+1)/(kH) (10.20) 
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Figure 10.2 . The dynamical behaviour of eqns. (10.7), (10.9) and (10.20) 

The figure shows a portion of the A - k parameter space of the model 

defined by eqns. (10 .7 ) , (10.9) and (10 .20) . In the unshaded region, 

the system possesses a stable equilibrium. In the cross hatched 

( ) region to the right of the graph, equilibrium solutions 

exist, but they are unstable, and the system follows diverging 

oscillations. The parasite is able to persist in the host population, 

but is unable to regulate it in the narrow region with right sloping 

hatching ( f / / / / j ) . Below this region, the reproductive potential 

of the parasite is insufficient to allow it to persist in the host 

population. This part of the k-k parameter space is shown by leftward 

sloping hatching ( ^ ^ ^ ) . Parameter values used are: 

a = 0 .02 , b = 0 .01 , a = 0 .001 , y, = 0 .167 , y_ = 0 .05, y_ = 1, y0 = 1 
1 1 A « 
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The quantity yg/3, the death rate of the tomites divided by 

their infectivity, is an inverse measure of the transmission eff-

iciency of the disease, and it is convenient to define: 

H q = y 3 / 3 ( 1 0 . 2 1 ) 

At a given host density, H, a proportion H/(H + H ) of tomites are 

able to locate a host before death. The quantity H i s discussed 

in some detail in Section 5 . 4 . In particular, it should be recalled 

that 3 and hence H' depend not only on the biology of the host and 

parasite, but also on the size of the water body containing the 

populations. 

The non trivial equilibrium of the system described by equations 

(10 .7 ) , (10.20) and (10.9) is shown in Appendix 5 to be stable, pro-

vided: 

[Y 2 + y 2 + ia-b)/k + df][R/(kf) - # 7 < V V L > tffof-1] ( 10 .22) 

where f = 1 + (k+1)(a-b)/(kd) (10.23) 

The right hand side of eqn. (10.22) is positive if the equilibrium 

exists (see eqn. 10 .18) . The left hand side will be negative, and 

the equilibrium therefore unstable, if the distribution of parasites 

within the host population approaches a random (Poisson) pattern (k 

large) or if the cyst stage is sufficiently long lived (Y 2
+ y 2 small). 

The cyst stage of Ichthyophthirius is relatively short lived compared 

with the time spent on the host by the trophozoite or the lifespan 

of the host, and the first term on the left hand side of eqn. (10.22) 

will therefore approximate Y„+yo, except for extreme degrees of over-
• -

dispersion (fc small). Hence, eqn. (10.22) is approximately: 
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d/Uv2+v2)f] «i/k (10.24) 

The regions of the A - k parameter space in which the equilibrium is 

stable or unstable are shown in Fig. 10.2. 

May and Anderson (1978) considered the effect on the stability 

of a host parasite system of long lived infective stages, in contrast 

to the system described above, in which there is an incubation period 

before short lived infective stages are produced. The precise con-

dition for stability is different, but if it is assumed that the life 

span of the infective stages is short compared with that of the para-

A 

sites on the host, and that R is considerably greater than 1, a very 

similar condition to eqn. (10 .24) : 

is obtained. If a time delay of exactly t days occurs in transmission 

( i . e . , the cyst stage requires exactly t days) the condition for 

stability becomes 

(May and Anderson, 1978). 

The conclusion that the system is unstable if the ratio of time 

delay in transmission to time spent on the host exceeds 1 / k appears to 

be robust and not dependent on the precise details of the model form-

ulation. It should be noted, however, that if the condition defined 

in eqn. (10.25) is violated in a system with long lived infective 

stages, stable limit cycles ensue, whereas violation of eqn. (10.22) 

d/v3 < l/k (10.25) 

d t < l/k (10.26) 
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results in the system described above oscillating in a divergent manner 

(Fig. 10 . 3 ) . 

Given that the time spent in the cyst stage and the lifespan 

of the tomites of Ichthyophthirius are both short compared with the 

time spent on hosts by trophozoites (Table 2 . 1 ) , and that most para-

sites are overdispersed on hosts, typically with k < 1 (Anderson and 

May, 1978), time delays are unlikely to cause instability in the 

Ichthyophthirius system. 

As a basic model of Ichthyophthirius dynamics, one may therefore 

use a two equation system obtained by "collapsing" eqns. (10 .9) and 

(10.10) into eqn. (10.8) 

dH/dt = (a-b)H - aP (10,27) 

with parameters as defined in Table 10.2 . 

By analogy with the four equation model (equations 10 .7 - 1010) one 

may define: 

dP/dt = AyHP/iH +H) - (y+y+cx+Z?)P -a(k+l)P 2 / (kP) (10.28) 

d = y+y+a+Z? ; (10.29) 

the basic reproductive rate 

(10.30) 
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Table 10.2 Parameters of the Model Defined by Eqns (10,27) - (10,28) 

Parameter Biological interpretation units 

a birth rate of hosts per host, per unit 

of time 

disease independent death 

rate of hosts 

increment in the rate of 

parasite induced mortality 

per trophozoite 

per trophozoite, per 

host, per unit of time 

number of tomites produced 

per trophozoite leaving 

the host 

per trophozoite 

rate of trophozoite emi-

gration from hosts 

per trophozoite, 

per unit of time, 

death rate of trophozoites 

on hosts 

per trophozoite 

per unit of time 

H saturation term in 

transmission 

dimensionless 

parameter of negative binomial dimensionless 

distribution 
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and R = Xy/d (10.31) 

The threshold host population for disease maintenance Is simply 

Ht = # /D?-l] • (10.32) 

Once again, there is a trivial equilibrium with E = P = 0, 

and an equilibrium with hosts and parasites present, where: 

* 
H = H / 

o 
A 
R/[l+(k+l)(a-b)/Ckd)] -1 (10.33) 

and P* = H*(a-b)/a ; (10.34) 

provided 

P[i + (fc+1) (a-b)/(kd)] > 1 (10.35) 

which will be stable if k is finite and positive. The approach to 

this equilibrium is oscillatory (Fig. 10 .4 ) . 

A counter intuitive result of this basic model is that the 

conditions for the existence and stability of the equilibria do 

not involve the transmission efficiency of the parasite . This 

is because of the unrealistic assumption made of unlimited host pop-

ulation growth in the absence of parasitism. Provided the relation 

(10.35) holds, whatever the transmission efficiency (the value of H^Y 

host density will increase until transmission is sufficient for para-

site maintenance (as H -»• H/iH^+H) ->1). If host density is in 

any way restricted, independent of parasitism, H0 assumes a crucial 
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Figure 10.3 An unstable solution of the basic model 

A solution is shown of the model defined by eqns. (10 .7 ) , (10.9) 

and (10 .20) , with condition (10.22) not satisfied. The solid line 

represents the number of hosts Hit) and is scaled according to the 

axis to the left of the figure. The trophozoite population P it ) , 

is shown as an evenly dashed line, and scaled according to the axis 

to the right of the figure. The cyst population, Cit), is shown as 

an unevenly dashed line, and scaled on the axis to the left of the 

figure. Parameter values are those used in Fig. 10.2 , with A =50, 

k = 10 and Hq - 100. Note that the divergence of the oscillations 

is extremely slow if the cyst stage is short (y2 and y 2 large). 

This figure represents nearly neutral oscillations and does not show 

a stable limit cycle. 

Figure 10.4 A numerical solution of eqns. (10,27) and (10.28) 

A time dependent solution is shown of the model defined by eqns. 

(10.27) and (10 .28) . The number of hosts, Hit), is shown as a solid 

line, and is scaled according to the axis to the left of the figure. 

The number of parasites Pit), is shown as a dashed line, and is scaled 

on the axis to the right of the figure. Parameter values used are: 

a = 0 .02 , b = 0 .01 , a = 0 .001, y = 0 .15 , y = 0 .05 , X = 25 . 0 , HQ = 100. , 

k = 0 . 5 . 
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Time (days) t 
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role in determining the conditions for parasite persistence. This 

will be discussed more fully in the following section. Another 

surprizing result is the limited importance of the magnitude of the 

per capita pathogenicity of the parasite, a, to the dynamics of the 

system, which should be contrasted with the central role the magnitude 

of a plays in the disease model (Appendix 4. ) . Provided the increment 

in host mortality caused by a single parasite is small compared with 

the natural loss rate of the parasites (y+y » a ) , the conditions for 

* 

an equilibrium to exist (eqn. 10.35) and the equilibrium burden (H ) 

are affected very little by changes in a. Per capita parasite path-

ogenicity acts only as a scaling factor that determines the equilibrium 
* 

mean parasite burden, M (eqn. 10 .34) . The biological explanation 

of this is straightforward. The only density dependent constraint 

on mean parasite burden occurs through the pathogenicity itself. 

Mean parasite burden, M, is thus able to increase until host mortality 

sufficient to regulate the system occurs. It is the effect of the 

product aM on the host population which is of importance, rather than 

a, the effect of each individual parasite. 

10.4 Constant host immigration 

The model described by eqns. (10.27) and (10.28) can be modified 

to allow for modes of host population growth other than exponential 

increase. If hosts are introduced at a constant rate A per unit time, 

and suffer a constant disease independent per capita mortality of b , 

eqn. (10.27) becomes: 

dH/dt = A - bH - aP (10.36) 

Equation(10.28)remains unchanged. In the absence of parasitism, there 
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ls an equilibrium at 

H* = A/b ( 1 0 . 3 7 ) 

at which point the constant death rate, b, balances the immigration 

rate A. The threshold host population level, H^, below which para-

sites cannot persist remains unchanged.from the basic model (eqn. 10.32) 

and hence the disease is only able to invade a host population i f 

•v 

A/b > H /[R - L] ( 1 0 . 3 8 ) 

Note the crucial role played in this case by the transmission eff-

iciency, R . If eqn. (10.38) is satisfied, a stable equilibrium with 

* 

host numbers, H , less than A/b and parasites present exists. This 

point is shown graphically in the phase plane (Maynard Smith, 1974) 

$ * 

in Fig. 10.5 (See appendix 6 for equations for H and P and stability 

analysis). 

10.5 Logistic Host Population Growth 

A closer approximation to the behaviour of real populations may 

be obtained by assuming that the host population increases in a log-

istic fashion in the absence of parasitism. Host population growth 

is assumed to be subject to density dependent constraints other than 

parasitism, so that the per capita host death rate is (b + kH) rather 

than b as in eqns (10.27) and (10 .28) . The constant K determines the 

degree of density dependence in host population growth. The following 

equations are obtained to describe the dynamics of the system: 

dH/dt = (a-b)H - kH 2 - ctP ( 1 0 . 3 9 ) 
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dP/dt = AyHP/[H +H] - (ct+fc+y+y)P - kHP - a(£+l)P/(fcff) (10.40) 

In the absence of infection, there is a stable host equilibrium of 

H* = (a-b)/k (10.41) 

Determination of the conditions under which an equilibrium with both 

hosts and parasites present may exist is facilitated by expressing 

eqns.(10.39)and(10.40)in terms of the mean parasite burden M = P/H.. 

Thus: 

dH/dt = H[a-b - kH - aM~] (10.42) 

dM/dt = M[XyH/(HQ+H) - (ct+y+y+a) - aM/k] (10.43) 

Equation (10.43) is positive in vhlue for small M provided 

H > H
0 /[^y/(a+y+y+a) - l] (10.44) 

It is important to note that this threshold condition is not the same 

as that for dP/dt to be positive: there may be a small range of H 

values within which total parasite numbers, P, can increase, but at 

a slower rate than host numbers, H, so that dM/dt is negative. The 

condition for an equilibrium to exist with parasites present (JM > 0) 

is obtained from eqns. (10.41) and (10.44) and is: 

ia-b)/k > Hq/[ay/(a+a+y+y) - l] (10.45) 
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If this equilbrium exists, it can be shown to be stable (Anderson, 

1979a). The system is illustrated with the aid of a phase plane in 

Figure 10 .6 . 
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Figure 10.5 Phase diagram analysis of eqns (10.36) and (10,28) 

Along the solid line shown, dH/dt = 0 (ie eqn. 10.36 = 0 ) , and along 

the dashed line, dP/dt = 0 (ie eqn. 10.28 = 0 ) . The equilibrium of 

the system is given by the intersection of the two lines. The arrows 

drawn show the trajectory of the solution of the system in each of the 

four quadrants. Parameter values used are: A = 0 .10 , b = 0 .01 , 

a = 0 .001 , y = 0 .15 , y = 0 .05 A = 2 5 . , k = 0 . 5 , H = 10. 

Figure 10.6 Phase diagram analysis of eqns. (10,39) and (10.40) 

Along the solid line shown, dH/dt = 0 (eqn. 10.39 = 0) and along the 

dashed line, dM/dt = 0 (eqn. 10.40 = 0 ) . As in the figure above, the 

equilibrium is given by the intersection of the two lines, and the 

arrows show the trajectory of the solution of the system. Parameter 

values used are: a = 0 .02 , b = 0 .01 , k = 0 .001, a = 0 .001, y - 0 . 15 , 

y = 0 .05 , A = 25 . , k = 0 .5 , H = 1 0 . ; 
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CHAPTER 11 

PARASITE SURVIVAL OF HOST DEATH 

11.1 Introduction 

The host-parasite models developed by Anderson and May (1978) 

assume that the death of a host results in the death of any para-

sites that it might be harbouring. They argue that this component 

of the death rate of parasites contributes to the regulation and 

stability of both host and parasite populations. As has been dis-

cussed in the previous chapters, Ichthyophthirius trophozoites are 

not necessarily killed by the death of their host: most are able to 

leave the fish, successfully encyst and produce infective stages, 

although more tomites are produced per parasite if the trophozoites 

are able to grow to full maturity on the host. 

Although many parasites, such as cestodes, are killed by the 

death of their host, Ichthyophthirius is by no means unique in being 

capable of surviving the death of its host. Many microparasites, 

particularly those infecting insects, do not die with their host. 

Examples are fungi of the genus Entomophora (Bell, 1974) or the nuclear 

polyhedrosis viruses (Smith, 1976). These pathogens typically have 

very high reproductive potentials within their host, and are best 

modelled by modifications to the susceptible-infected-immune frame-

work commonly employed in studies of viral and bacterial diseases 

(e.g. Bailey, 1975; Anderson and May 1980). Amongst metazoans, 

arthropod ectoparasites are often capable of surviving the death of 

their host (Marshall, 1981). Many do not reproduce on their host: or 

as do most ticks; larvae, nymphs and adults may utilize different host 

species (Savory, 1977). The deleterious effects that ectoparasites 
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may have on their hosts' survival and fecundity should not be under-

estimated (Marshall, op .c it . ) . Models that do not consider the size 

of the parasite burden of ectoparasites are unlikely to be successful 

in describing their dynamics. Some parasites of fish, other than 

Ichthyophthirius, are also capable of surviving the death of their 

host. An example is the monogean Gyrodactylus. 

1 1 . 2 A simple model of survival of host death 

The following model, whilst developed specifically to describe 

the dynamics of Iehthyophthirius populations, may also serve, with 

suitable modifications, to describe the dynamics of some of the 

parasites discussed above. 

In the basic model of Ichthyophthirius dynamics (eqns 10.27 and 

10 .28) , it was assumed that each trophozoite leaving the host gave 

rise to X tomites. Suppose that each trophozoite on a host which dies 

produces xX tomites, where x varies between 0 and 1. This proportional 

survival may arise from a combination of two factors: some tropho-

zoites dying with the host, and fewer tomites being produced because 

some trophozoites, forced to leave the host after its death, will 

be immature. In mathematical terms, assuming each trophozoite on a 

dying host produces xX tomites is equivalent to assuming that a 

proportion x of trophozoites survive, each of which produces X tomites. 

In the model described by eqns. (10.27) and (10.28) the rate of loss 

of parasites due to their hosts dying is: 

(a + b) P + [a(k+l)/k] [P2/H] (11 .1) 

The rate of production of tomites from these trophozoites will 

therefore be: 
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Xx [ (a+b)P + a(k+l) P 2/' (k H)] (11.2) 

Following the lines of model construction outlined in Chapter 10, 

the following three differential equations may be obtained to des-

cribe the interaction between host and parasite. 

dH/dtv = (a-b)H - aP (11.3) 

dP/dt = $HT - (a+fc+y+y)P - a(fc+l) P2/(kH) (11.4) 

dT/dt = x[ yP + x(a+b)P + (k+1) P /(&#)]- y2T- -3P21 (11.5) 

The parameters and variables of this model are defined in Table: 11.1, 

Following the arguments of Chapter 10, if the life expectancy 

of the tomites is short, their population level may be assumed to be 

in equilibrium with the current host and parasite populations at: 

21* = XP[y + x(a+b) + xa(k+l)P/ks] / [y9+3#] (11.6) 

Hence, 

dP _ XPH[y+x(a+b) +. xa(k+l)P/(kH)] , , a(k+l)P2(11.7) 
dt ~ (H + P) -ta+0+a+y^- kR , 

where H = y_/3 O 

The analysis of the system is simplified if eqns (11.6) and (11.7) 

are expressed in terms of the new variables, N = P/PQ and M - P/H . 

d717 
fr = N (a-b - uM) (11.8) 
dv 
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Table 11.1 Variables arid Parameters used in Models in Chapter 11 

Variable 

H 

P 

T 

M 

N 

t 

Biological Interpretation 

Number of Hosts 

Number of trophozoites 

Number of tomites 

Mean parasite burden (P/E) 

Rescaled host population (H/H^) 

time 

Parameter 

a 

H 
c 

k 

A 

Biological interpretation 

birth rate of hosts 

disease independent death 
rate of hosts 
increment in rate of para-
site induced mortality per 
trophozoite 
number of tomites produced 
per trophozoite leaving 
the host 
rate of trophozoite emi-
gration from hosts 
death rate of trophozoites 
on hosts 
death rate of tomites 

rate of tomite infection 
hosts 
saturation term in 
transmission (y2/$) 
parameter of negative 
binomial distribution 
rate of introduction of 
hosts 
parameter determining the 
degree of density dependent 
constraint on host popula-
tion growth 
proportion of trophozoites 
surviving host death 

parameters of eqn. (11.21) 

units 

per host, per unit 
of time 
per host, per unit 
of time 
per trophozoite, 
per host, 
per unit of time 
per trophozoite 

per trophozoite 
per unit of time 
per trophozoite, 
per unit of time 
per tomite, per unit 
of time 
per tomite, per host 
per unit of time 

per unit of time 

2 

(per host) , per unit 
of time 
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d t 
\N\y+x(a+ b+aM(k+l)/k)~\ _ • 

(N+1) 
aM 

(y+a+a+y) ^ (11.9) 

The basic reproductive rate of the parasite (see Anderson, 1981) 

i? , . i s obtained from eqn. (11.9), where: 

R = Atf[y+a;(a+fc)] / [(N+l) (y+a+a+y)] (11.10) 

As is expected, parasite survival of host death increases R by a o 
factor x(a+b) in the numerator of this expression. (In the absence 

of survival of host death, the basic reproductive rate, is simply: 

R = \Ny/[(/17+1) (y+a+a+y)] ). Equations (11.8) and (11.9) will have 

an equilibrium with the parasite present if: 

\[y+x(a.+b+ (k+1) (a-b)/k)]> y+a+a+y+ (a-b)/k ( 1 1 . 1 1 ) 

The host population at equilibrium, N , is given by 

N 
A[y+x(a+t+ (k+1) (a-b)/k)] 
—c; 

ia-bY/k ] 

(11.12) 

and the equilibrium mean parasite burden, M , is 

M = (a-b)/a (11.13) 

It is shown in Appendix 7 that this equilibrium is stable if: 

x < y/[(k+l)(y+a+a+y) - (a+fc)] U 1 . 1 4 ) 

As the life expectancy of trophozoites is short, y is likely to be an 

order of magnitude greater than the other parameters in eqn. (11.14), 
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and eqn. (11.14) can therefore be approximated by 

x < l/(fc+l) (11.15) 

It is clear from eqn. (11.14) that the equilibrium cannot be 

stable if the tomite production of trophozoites on dead hosts is 

equal to that of trophozoites leaving the host at maturity. Tro-

phozoites must leave the host in any case to reproduce, and if host 

death has the effect of forcing them to leave more rapidly, without 

decreasing their tomite production, death of the host will actually 

increase the reproductive rate of the parasite. As with all the models 

discussed throughout this thesis, stability of the host parasite 

interaction is enhanced if the parasites are highly aggregated within 

the host population. Equation (11.15) shows that the interaction will 

be unstable as the distribution of parasites on hosts approaches a 

Poisson form. Without parasite survival of host death, the equilibrium 

is neutrally stable if parasites are distributed randomly on hosts 

(Anderson and May, 1978) and any survival whatsoever is sufficient 

to induce instability. At the other extreme, even as overdispersion 

becomes very great indeed (?c-> 0) , an equilibrium with parasites 

present will not be stable if x > y/(y+a-b+]i). Numerical studies 

indicate that if eqn. (11.14) is not satisfied, the system will 

exhibit diverging oscillations (Fig. 11.1). 

Equations (11.8) and (11.9) can be easily modified so that the 

host population grows in a logistic manner in the absence of infection. 

The per capita host death rate in a population of size N is assumed to 

be b+\cN where b is defined as before, and K is a parameter determining 

the extent of the disease independent constraints on host population 
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growth. In the absence of infection, the equilibrium density 

of hosts, Kt is simply K = (a-Z?)/k, The system is described by 

the following equations: 

dN/dt = N [(a-Z?) - KN - aM] 

dM 
dt 

=M 
\N 

(ZIZ+1) [y-Kt (b+a+KN) + xa (k+l)M/k] - (y-KZ+a+y) - ~ 

> ( 1 1 . 1 6 ) 

Full algebraic analysis of eqns. (11.16) is cumbersome. A suff-

icient condition for the existence of an equilibrium with parasites 

present can be obtained without difficulty where: 

A (y+x(b+a) )/(y+a+a+y) > </(a-Z?) + 1 (11.17) 

If eqn. (11.17) is satisfied, numerical studies show that the equil-

ibrium established with parasites present is locally unstable if x 

is sufficiently large. In this case, in contrast to the system des-

cribed by eqns. (11.8) and (11.9), the system described by eqns. (11.16) 

will follow stable limit cycles1 (Fig. 11.2). 

Similar behaviour is also observed if it is assumed that hosts are 

introduced into the system at a constant rate A, and that they die at 

a per capita rate, b. In this case, 

dt 
= A - bH - aMN (11.18) 

An analytical technique for detecting closed orbits in two dimensional 
systems exists (the Poincare - Bendixon criteria; Clark, 1976), but 
these and other limit cycles discussed in this thesis were detected num-
erically. Time dependent solutions of the equations were found to follow 
increasing oscillations until the limit cycle solution was reached, if com-
menced close to the (unstable) equilibrium values, but were found to con-
verge towards the limit cycle if started with initial conditions sufficiently 
far from the equilibrium. 
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Figure 11.1 Increasing Oscillations Generated from eqns (1-1,8) and (11,9) 

The increasing oscillations shown are generated from eqns. (11.8) and 
(11.9) if eqn. (11.14) is not satisfied. The solid line represents 
the size of the host population, Nit), and is scaled on the axis to 
the left of the figure. The dashed line represents the mean parasite 
burden, Mit), and is scaled on the axis to the right of the figure. 
Parameter values used are: a = 0.02,: b = 0.01, a = 0.001, A = 4.0, 
y = 0.15, y = 0.05, k = 0.5, x = 0.5. Other numerical solutions 
with these same parameter values and differing starting conditions 
failed to show any evidence of the existence of a stable limit cycle. 

Figure 11.2 Stable limit cycle generated from eqns (11.16) 

The stable limit cycle shown is generated from eqns. (11.16) 
when parasite survival of host death is high. The variables are 
represented in the same way as in Fig. 11.1. Parameter values used 
for this solution are: a = 0.02, b = 0.01, k = 0.01, a = 0.001, 
A = 4.0, y = 0.15, y = 0.05, k = 0.5, x = 0.76. In the absence of 
parasitism, the equilibrium level of the host population is 1.0. 

There appears to be a secondary oscillation in peak mean para-
site burden, but this is an artifact. Although the integration pro-
cedure used maintained accuracy in both variables to approximately 
0.001, only results at every tenth day are plotted. The peak plotted 
value of Mit) therefore does not necessarily correspond to its actual 
peak value in that cycle. 
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and 

dM 

d t 
= M [y +x(a+b) + xa.(k+l)M/k] -(y+y+a) - ^ - | J (11.19) a M A 

In the absence of infection, there is a host equilibrium population 

of K = A/b. An equilibrium with parasites present will exist if 

x[y+x(a+2))] / (y+y+a+2?) > b/A + 1 (11.20) 

Numerical studies again show that this equilibrium may be locally 

unstable, and the system may follow stable limit cycles if x is suff-

iciently large (Fig. 11.3). 

11.3 Parasite survival decreasing with mean parasite burden 

The results of Section 4.3.3 show clearly that the age of a tro-

phozoite determines the number of infective stages it produces. This 

means that the number of tomites produced per trophozoite on a host 

that dies will be determined by the age structure of the trophozoite 

population on the particular fish in question. The higher the para-

site burden on a host, the more rapidly it will die, and thus the 

lower the average age of its trophozoites. One should therefore 

expect that the proportion of parasites surviving host death should 

be related in an inverse manner to the parasite burden of the host. 

Ideally, this situation should be examined by an age dependent model 

in partial differential equation form (Oster, 1977). An approximate 

model may be obtained by assuming that the proportion of trophozoites 

surviving host death (or equivalently, the number of tomites produced 

relative to a mature trophozoite) is a function, s(i), which decreases 

with increasing parasite burden, i. The .following function has this 

property: 
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s(i) = <{> exp (-(d-Z) (11.21) 

where w > 0 and 0 < <J> < 1. The expected rate of survival of host 

death, S(M), is hence 

S(M) = ECzIcKb+a-Z) exp(-wt)) (11.22) 

If the distribution of parasites amongst the host population can be 

described by a negative binomial distribution with parameter k, eqn. (11.22) 

can be evaluated via the generating function of the probability dis-

tribution (see Appendix 8) and is found to be 

S(M) = cj>Mz [l+M(l-z)/k] 
-ik+2) 

b+a+ [M/k][a.(kz+l)+b(l-z)] (11.23) 

where z = exp (-cat) 

If the host population grows in an exponential fashion in the 

absence of parasitism, the following equations will describe temporal 

changes in the variables M(t) and M{t): 

dM/dt = N ( ia-b) - aM) (11.24) 

dM/dt = M [XM/(M+1)] [Y+S(M)/M] - (y+y+a+a) -aM /k (11.25) 

If equations (11.24) and (11.25) have a non trivial equilibrium, it 

may be unstable if <}> is large and w is small. Figure 11.4 shows the 

region within the (J)-w parameter space in which the equilibrium is locally 

unstable. In contrast to the model described by eqns. (11.8) and (11,9), 
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Figure 11.3 Stable limit cycle generated from eqns, (11,18) and (11,19) 

An example is shown of the stable limit cycles generated from eqns. 

(11.18) and (11.19) when parasite survival of host death is high. 

The variables Nit) and M(t) are represented in the same way as in 

Fig. 11.1. Parameter values used are: A = 0.15, b - 0.01, a = 0.001, 

A = 4.0, y = 0.15, y = 0.05, k = 0.5, x = 0.85. 

Figure 11.4 Stability regions of the model defined by eqns, (11,24) 

and (11,25) 

Stability regions in the & - to plane for the model defined by eqns. 

(11.24) and (11.25) are shown. In the hatched region to the left 

of the figure, the system will exhibit stable limit cycles. The 

equilibrium with parasites present is locally stable to the right 

of the figure. Parameter values used are: a = 0.02, b - 0.01, 

a = 0.001, A = 4.0, y = 0.15, k = 0.5, y = 0.05. The parameters 

used in Fig. 11.5 are shown by a solid circle. 
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parameter combinations that result in locally unstable equilibria 

lead to the system following stable limit cycles rather than div-

erging oscillations (Fig. 11.5). Figure 11.5 should be contrasted 

with Fig. 11.6, which shows a time dependent solution of eqns. (11. 

and (11.25) with to chosen so that parasite survival of host death 

falls off more rapidly with increasing parasite burden. 

11.4 Conclusions 

Parasite survival of host death is a strongly destabilizing 

factor. If sufficient tomites are produced from trophozoites on 

hosts that die, stable limit cycles may be induced in populations 

which have stable equilibria in the absence of parasitism. 
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CHAPTER 12 

MODELLING OF THE IMMUNE RESPONSE 

12.l Introduction 

Most vertebrates are capable of mounting some type of immun-

ological defence against infective agents (Roitt, 1980). The immune 

response is of particular importance in the dynamics of microparasitic 

disease agents (in the sense of Anderson and May, 1979) such as bac-

teria and viruses, which have extremely large potential rates of 

increase within the host. In such cases, the period during which 

a host is refractory to further infection is often much longer than 

the course of a single infection (Bailey, 1975). Many models aiming 

to describe the dynamics of microparasitic diseases in vertebrates 

include an immune class, into which hosts pass when they recover from 

infection (Ross and Hudson, 1917 , Bailey, 1975; Anderson and May 1979, 

also see Appendix 4). 

Ichthyophthirius, although a protozoan, behaves more like a macro-

parasite in that it is incapable of reproduction on its host. For 

the reasons detailed in Chapter 10, models dividing the host population 

into infected, susceptible and immune categories are therefore in-

appropriate to describe the dynamics of the disease. A further com-

plication arises when considering the modelling of immunity to macroparasitic 

infections. Both the rate of gaining immunity and pathogenicity are 

functions of the parasite burden, and thus the proportion of hosts 

becoming immune before death is liable to depend on the level of in-

fection (Bradley, 1972). Anderson and May (1978), in their discussion 

of the population dynamics of host parasite interactions, do not specifically 
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include an Immune class. Immunity to many metazoan parasites is of 

short duration, relative to the life expectancy of an individual 

parasite, and often incomplete (Weinmann, 1970). It is therefore 

reasonable to consider such an immune response as being included 

within the density dependent constraints on parasite burden within 

individual hosts. Immunity to some cestode infections (for example 

to Hymenolepis nana and Taenia saginata) has been reported as lasting 

for a considerable time after the removal of the parasite from the 

host (Weinmann, 1970). Immunity to Ichthyophthirius, whilst incomplete, 

lasts considerably longer than the life expectancy of an individual 

trophozoite (Hines and Spira, 1974c, Chapter 6, this study) and is 

maintained in the absence of parasites. An immune class of hosts with 

parasite burdens very much less than those of susceptible hosts may 

therefore develop within fish populations. In this chapter, the con-

sequences of adding an immune class to the basic model of Chapter 10 

are considered. 

12.2 A Simple Model of Immunity 

The model described below introduces immunity into the host 

parasite model in the simplest conceivable manner. Many of the ass-

umptions made are gross oversimplifications of the biology of the 

immune response to Ichthyophthirius as described by Hines and Spira 

(1974c), Goven et al (1980) or as indicated by the results of the 

experiments described in Chapter 6. The intention is to provide a 

simple baseline from which to discuss more realistic modifications, 

and to elucidate some of the general features of the effects of an 

immune response on the dynamics of a host parasite interaction. 

It is initially assumed that parasites are distributed in a 
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random (Poisson) pattern within the susceptible host population. If 

such a distribution occurs in a host parasite system without immunity, 

any non trivial equilibrium is neutrally stable (Anderson and May, 

1978). Making this assumption will thus highlight any effect that 

the immune response may have on the stability of the host-parasite 

interaction. The overall distribution of parasites within the total 

host population will take the form of a Poisson distribution with 

added zeroes, and hence is overdispersed in form (Pielou, 1969). 

The basic model described by eqns. (10.27) and (10.28) is 

modified by the inclusion of an immune class, J, of hosts, which 

tomites may infect, but upon which they cannot survive to become 

trophozoites. Susceptible hosts are assumed to enter this class at 

a rate determined by their parasite burden. In this simplest case, 

the rate is assumed to be r\i; a function directly proportional to the 

host's current parasite burden, i. Immune hosts are assumed to lose 

resistance at a constant per capita rate of v per unit time. Imm-

unity is assumed to be total, and all trophozoites on a host when it 

enters the immune class are assumed to die. 

Denoting the number of susceptible hosts by S, the number of 

immune hosts by X, the number of trophozoites on hosts by P and the 

number of tomites by T, the following four differential equations are 

obtained to describe temporal changes in S, I, P and T: 

dS/dt = aiS+I) - bS - (a+n)P + vl (12.1) 

dl/dt = TIP - bl - vl (12.2) 
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2 dP/dt = &ST - (b+y)P - P <a+n)/S' (12.3) 

dT/dt = AP - y!T - 3T(S+I) (12.4) 

Construction of this model closely follows the lines described 

in Section 10.3. Both classes of host are assumed to reproduce at 

the same rate, a per unit time (all offspring are susceptible). Tomites 

may be removed from the system by dying or by infecting either a 

susceptible or immune host. Parameter definitions vary slightly from 

those used in Chapter 10. Table 12.1 outlines the new definitions. 

As with eqns. (10.7) - (10.10), the system may be reduced to three 

equations by assuming that the life expectancy of the free swimming 

tomites is much shorter than that of the trophozoites or hosts, so 

that the tomite population is essentially in equilibrium with the 

current host and trophozoite populations. It is also convenient to 

sum eqns. (12.1) and (12.2), to express the system in terms of the 

total host population, H, the number of immune hosts, J , and the 

number of parasites, P. Hence: 

dll/dt = (a-b)H - «P (12.5) 

61/dt = nP -(2>+v)J (12.6) 

d P / d i = A P ( H - I ) / ( y / 3 + E)-(b+y+a)P - ( a + n ) P 2 / ( P - J ) (12.7) 

Equations (12.5 - 12.7) can be analyzed in a similar fashion to 

eqns. (10.27) and (10.28). The threshold host population necessary 

for the introduction of the disease is found to be: 
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Table 12.1 Parameters used in Chapter 12 

Parameter 
a 

H 

Biological meaning 
birth rate of hosts 

disease independent death 
rate of hosts 
increment in rate of para-
site induced mortality per 
trophozoite 
increment in rate of enter-
ing the immune class per 
trophozoite 
rate of tcmite infection 
of hosts 
rate of tomite production 
by trophozoites 
rate of loss of tropho-
zoites from hosts 
death rate of tomites 

rate of loss of immunity 

parameter determining the 
degree of density dependent 
constraint on host popu-
lation growth 
saturation term in transmission 

(m /6 ) 

Asymtotic rate of gaining 
immunity 
parameter determining 
per parasite increment in 
the rate of gaining immunity 
parameter of negative 
binomial distribution 
survival of tomites infec-
ting resistant hosts 
relative to survival on 
susceptibles 

Units 
per host, per .unit of 
time 
per host, per unit of 
time 
per trophozoite, per 
host, per unit of 
time 
per trophozoite, per 
host, per unit of 
time 
per tcmite, per host, 
per unit of time 
per trophozoite, 
per unit of time 
per trophozoite 
per unit of time 
per tcmite, per unit 
of time 
per host, per unit of 
time 

2 
(per host) , per unit 
of time 

per host, per unit 
of time 
per trophozoite 
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B T = y / B / X/OB+Y+N+A) - 1 (12.8) 

Two conditions must be satisfied if an equilibrium is to exist: 

p > 0 (12.9) 

where p = 1 - r\(a-b)/[a(b+v)] (12.10) 

and X > (&+Y+A+N)/P + <a+n)(a-fc)/(ap2) (12.11) 

If this equilibrium exists, it can be shown to be always stable 

(Appendix 9, see also Fig. 12.1). Increasing the rate of gaining 

immunity, TI, relative to the rate of host induced mortality, a, 

decreases the ability of the parasite to regulate the host population 

to a low level (Fig. 12.2). If the rate of gaining immunity is large 

enough, eqns. (12.9) and (12.11) are no longer satisfied, and the 

parasite alone cannot regulate host population growth. Parasites 

against which hosts rapidly develop immunity can regulate host pop-

ulations only if the rate of loss of immunity is rapid (Fig. 12.3). 

Equations (12.9) and (12.11) should be compared with the condition for 

the existence of an equilibrium in the related disease model (Appendix 

4); 

a > (a-b) [ 1 + y/(b+v)] (12.12), 

Here Y> the rate of recovery from infection is analogous to q, the 

per capita rate of entering the immune class. Conditions (12.9) and 

(12.12) are very similar. In the disease model, the rate of parasite 
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Figure 12.1 A solution of eqns. (12.5) - ' (12,7) with n =,0.001 

The time dependent solution of eqns. (12.5) - (12.7) is shown, with 

parameter values chosen so that an equilibrium with the parasite present 

exists (eqns. (12.9) - (12.11) satisfied). The solid line represents 

the total number of hosts, H(t), and the evenly dashed line, the 

number of immune hosts, T(t). Both these variables are scaled on the 

axis to the left of the figure. The unevenly dashed line represents 

the mean parasite burden per susceptible host, and is scaled on 

the axis to the right of the figure. Parameter values used are: 

a = 0.02, b = 0.01, a = 0.001, X = 4.0, HQ = 100., V = 0.01, X\ = 0.001, 

Y = 0.15. The equilibrium is at H* = 11.23, J* = 5.12, M* = 20.0. 

Figure 12.2 The effect of increasing n on equilibrium values of 

eqns. (12.5) - (12.7) 

The effect is shown of increasing the rate of gaining immunity on the 

equilibrium of the system described by eqns. (12.5)-(12.7). The solid 

line represents the equilibrium total host population, H , and 

the evenly dashed line, the number of immune hosts at equilibrium, 
* 

I . These are scaled on the axis to the left of the figure. The 

unevenly dashed line shows the equilibrium value of the mean parasite 
* 

burden per susceptible host, M , and is scaled on the axis to the right 

of the figure. The values of parameters other than r) are the same 

as those used in Fig. 12.1. 
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induced death must exceed a-b, the natural rate of host population 

growth, in order to control the host population. In addition, a 

must be sufficiently large in comparison with the rate of gaining 

immunity, Y> that the number of immune hosts does not increase without 

limit. 

The absolute size of a, the increment in parasite induced mortality 

per parasite, is not of importance in the host-parasite model (for 

reasons discussed in Chapter 10), but a must also be sufficiently 

large relative to n, the per capita rate of gaining immunity. If 

the parasite induced death rate is sufficiently great, the disease 

will be able to regulate the host population provided the parasite 

growth rate outstrips that of the host (eqn. 12.11). Should either 

eqn. (12.9) or (12.11) not be satisfied, but 

X > b+y+a+n (12.13) 

hosts become immune at a rate rapid enough to escape regulation by the 

disease and hosts and parasites both increase in an unbounded manner. 

(Figs. 12.4 and 12.5). Whether or not both eqns. (12.9) and (12.11) 

are violated does not appear to qualitatively affect the behaviour 

of the system. If eqn. (12.13) is not satisfied, no host population 

level exists which is sufficient to enable parasite increase, and 

parasite numbers decline to extinction while host numbers increase 

without limit (Fig. 12.6). 

12.3 Host Population Growth Restricted 

Natural populations of hosts do not increase without limit if 

not regulated by parasitism. A better approximation to the behaviour 
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Figure 12.3 The region of the n - v parameter space within which 

eqns. (12.5) - (12.7) have an equilibrium solution 

In the hatched region of the n - v parameter space below the line 

shown the parasite is unable to regulate the host population. Above 

the line, immune hosts are removed from the system by recovery at a 

rate high enough that the parasite can stably regulate host population 

growth. The figure is obtained from eqn. (12.11), with a - 0.02, 

b = 0.01, a = 0.001, A = 4.0 and y = 0.15. 

Figure 12.4 A solution of eqns. (12.5) - (12.7) with q - 0.0019 

The time dependent solution of eqns. (12.5) - (12.7) is shown, with 

parameter values chosen so that eqns. (12.9) and (12.13) are sat-

isfied, but eqn. (12.11) is not satisfied. The solid line represents 

the total number of hosts,H(t) and the evenly dashed line, the number 

of immune hosts lit). Both these variables are scaled on the axis 

to the left of the figure. The mean parasite burden on susceptible 

hosts, Mit), is represented by an unevenly dashed line, and is scaled 

on the axis to the right of the figure. Parameter values used are: 

a = 0.02, b = 0.01, a = 0.001, A = 4.0, y = 0.15, H = 100., v = 0.01, 

n = 0.0019. Initial conditions are Hio) = 10., Ho) = 0., Mio) = 10. 
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Figure 12.5 A solution of eqns. (12.5) - (12.7) with n = 0.003 

The time dependent solution of eqns. (12.5) - (12.7) Is shown, with 

parameters chosen so that eqn. (12.13) is satisfied, but eqns. (12.9) 

and (12.11) are not satisfied. Details are as for Fig. 12.4, except 

that n = 0.003. 

Figure 12.6 A solution of eqns. (12.5) - (12.7) with n = 4.0 

The time dependent solution of eqns. (12.5) - (12.7) is shown, with 

parameter values chosen so that eqn.(12.13) is not satisfied. Details 

are as for Fig. 12.4, except that ri = 4.0. 
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of real host-parasite interactions may be obtained by assuming that 

host populations grow in a logistic fashion in the absence of para-

sitism, in such a way that the parasite independent death rate of 

hosts is b + KHf where H is the size of the host population, and K 

is a parameter determining the degree of density dependence in host 

population growth. The temporal changes in total host population, ft, 

the number of immune hosts, J , and the number of parasites, Pj may 

be described by the following equations: 

d P / d t = X ( # - I ) P / ( i M ) - (a+n+Y+fc)P - KPff-(a+n)P 2 / (P-I ) (12.17) 

where H Q is defined as y/3. 

Analysis of the system is facilitated if it is defined in terms 

of new variables M(t), the mean parasite burden on susceptible hosts, 

and Q(t), the proportion of hosts that are immune. 

dH/dt = (a-b)H - - aP (12.15) 

dl/dt = nP - (b+x>)I - KHi (12.16) 

Hence: 

dH/dt = H [a-b - KH - aM(l-Q)} (12.18) 

dQ/dt = M(l-Q)(r]+aQ) - (a+v)Q (12.19) 

dM/dt = M XHa-Q>/(H+P0)-(Y+ct+TL-v)-(a+v)/(l-Q) (12.20) 

It is also possible to rescale the total host population in terms 
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of H. If N' = H/Ho the first term in eqn. (12.20) becomes 

N (1~Q)/(N +1) and eqn. (12.18) becomes dN/dt = N [a-b - KH N -aM(l-Q)] 
o 

It is therefore the size of the saturation term, H , relative to K, 
o 

the degree of density dependence, which is of importance in this model. 

Two equilibrium states exist for this model. There is a disease 

free equilibrium at which 

H* = (a-b)/k (12.21) 

and Q and M are both zero. If 

H > 1/ [x/(y+a+n+a) - 1 ] (12.22) 

eqn. (12.20) will be positive if M and Q are small. An equilibrium 
* 

with parasites present will therefore exist if the value of H given 

by eqn. (12.21) exceeds the threshold value given by eqn. (12.22): i.e. 

A/(Y+a+n+a) > K/(a-b) + 1 (12.23) 

Figure 12.7a shows the effect on the equilibrium values of the variables 

H3 I and M of increasing r\, the per parasite increment in the rate of 

gaining immunity. The equilibrium mean parasite burden on susceptible 
* * 

hosts, M , increases initially with n: at this stage, H is low^ 

the density dependent constraints introduced by K are unimportant and 

the system behaves essentially like that illustrated in Fig. 12.2. 

Once the equilibrium host density reaches levels at which density 
* 

dependent constraints begin to act, M declines with increasing p. 

The overall mean parasite burden on all hosts decreases monotonically 
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with increasing TI (Fig. 12.7b). 

The most interesting prediction of this model is that, for a 

wide range of values of n, the parasites persist at low levels, with 

most hosts immune and the host population only slightly depressed 

below its disease free carrying capacity, (a-b)/K. This type of 

behaviour occurs if T) is large enough so that eqn. (12.9) is not 

satisfied, provided TI is small compared with y (eqn. 12.23 satisfied). 

Such behaviour might well account for the low levels of Ichthyophthirius 

observed in most natural situations. These patterns are difficult 

to generate from the simple disease models (Appendix 4; see also 

Fig. 12.8). To be a satisfactory model for Ichthyophthirius dynamics, 

however, the model must also be capable of generating outbreak epi-

demic behaviour. 

* * 
Figure 12.9 shows the effect on the equilibrium values, H , J 
* 

and M , of changing K, the degree of density dependence in host pop-

ulation growth. This particular parameter is of interest as it 

might be expected to vary greatly in natural populations. In the 

presence of parasitism, changes in K do not necessarily produce 

changes in the equilibrium host population size of a magnitude that 

would be expected in disease free populations. Under the conditions 

defined in Fig. 12.9, for example, halving K from 0.002 to 0.001 

increases the total host population very little. Mean parasite 

burden, however, shows a considerable increase as the system shifts from 

being regulated mostly by disease independent factors to being con-

trolled to a greater extent by the parasite. Sharp decreases in K 

do not, however, appear to generate outbreaks of infection. Figure 

12.10 shows the time dependent solution of equations (12.18 - 12.20) 
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Figure 12.7. The effect of increasing TI on the equilibrium of eqns> 

(12,18) - (12.20) 

The effect is shown of increasing the per parasite increment in the 

rate of gaining immunity, n, on the equilibrium described by eqns. 

(12.18) - (12.20). The total equilibrium host population, H , is shown 

as a solid line, and scaled according to the axis to the left of the 

figure. For convenience, the equilibrium number of immune hosts, 
* 

J , is shown, rather than the equilibrium proportion of immune hosts, 
* * 

Q . I is represented by the evenly dashed line, and is scaled on 

the axis to the left of the figure. In Fig. 12.7a, the equilibrium 

mean parasite burden per susceptible host, M , is shown, and is 

represented by an unevenly dashed line and scaled according to the 

axis to the right of the figure. The overall equilibrium mean para-

site burden per host is shown, represented in the same manner, in 

Figure 12.7b. In both cases, the parameter values used are: a =0.02, 

b = 0.01, a = 0.001, k = 0.0001, A = 4.0, y - 0.15, Hq = 100., V = 0.01. 

With these parameter values, the disease free equilibrium host pop-

ulation level is 100. 
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Figure 12.8 The effect of increasing the rate of joining the immune 

class on equilibria of a compartmental model 

The figure shows the effect of increasing the rate of entering the 
immune class, y, on the equilibrium of a microparasitic disease model. 
The model is defined by the following equations. 

dN/dt = (a-b)N - kN 2 - aY 

dY/dt = £Y(N-Y-Z) - (b+<N)Y - (a+y)Y 

dZ/dt = yY - (b+vzN) Z - vZ 

* (see Appendix 4). The equilibrium total host population, N , is 
shown as a solid line and is scaled on the axis to the left of the 

* 

figure; the equilibrium number of infected hosts, Y , is shown as an 
evenly dashed line and scaled on the axis to the right of the figure, 
and the equilibrium number of immune hosts, Z , is shown as an unevenly 
dashed line, and scaled on the axis to the right of the figure. Para-
meter values used are: a = 0.02, b = 0.01, k = 0.001, 3 = 0.02, a = 0.02, 
v = 0.05. 

Figure 12.9 The effect of changing k on the equilibrium solutions of 

eqns. (12.18) - (12.20) 

The effect is shown of changing K (the degree of non parasite induced 
density dependent constraint on host population growth) on the equil-
ibrium of the system described by eqns. (12.18) - (12.20). As in 
Figs. 12.7, 7/ is shown by a solid line and J by an evenly dashed line. 
Both these variables are scaled on the axis to the left of the figure. * 
M is shown by an unevenly dashed line, and is scaled on the axis to 
the right of the figure. Parameter values used are: a = 0.02, b = 0.01, 
a = 0.001, A = 4.0, y = 0.15, H = 100., n = 0.003, v = 0.01. 
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when K is reduced from 0.001 to 0.0002. All the variables increase 

almost monotonically toward the new equilibrium. This should be 

contrasted with the increase in mean parasite burden caused by 

doubling of the number of susceptible hosts present, the effect of 

which is shown in Fig. 12.11. 

12.4 The Effect of the Rate of Development of Immunity Reaching 

a Maximum Level 

An unsatisfactory feature of the model just described is that 

both the rate of parasite induced death and the rate at which infected 

hosts become immune are linearly dependent on the parasite burden 

per host. This means that the probability of a host becoming immune 

before it dies is independent of its parasite burden. The experiments 

described in Chapter 6 indicate that black mollies require of the order 

of X0 days to develop an immune response to Ichthyophthirius. Whilst 

hosts with heavy parasite burdens may become immune somewhat faster 

than lightly infected hosts, the nearly tenfold difference in mean 

parasite burden between the two infected groups in Fig. 6.2 is not 

reflected in a tenfold difference in the time taken for an immune 

response to become established. The experiments of Chapter 7 indi-

cate, however, that parasite induced mortality is approximately 

linearly related to the parasite burden. Hosts with light parasite 

burdens are therefore likely to become immune to further infection, 

whereas heavily infected hosts are likely to die before immunity can 

become established. 

In this section, the model of immunity is modified so that the 

rate at which hosts enter the immune class initially increases app-

roximately linearly with parasite burden, but as mean parasite burden 
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Figure 12.10 T}ie effect of changing K on the solution of eqns. 

(12.18) - (12.20) 

A time dependent solution of the system described by eqns. (12.18) -
(12.20) is shown. The numerical integration was performed with 
K = 0.0002, but commenced at the equilibrium reached if K = 0.001. 
Total number of hosts, Hit), is shown as a solid line, and scaled on 
the axis to the left of the figure. The number of immune hosts, 
lit), is shown as an evenly dashed line and scaled on the same axis. 
The mean parasite burden per susceptible host, Mit), is shown as an 
unevenly dashed line, and scaled according to the axis to the right 
of the figure. Parameter values other than K are: a = 0.02, b = 0.01, 
a = 0.001, A = 4.0, K = 0.0002, R = 100., y = 0.15, q = 0.003, 
v = 0.01. 

Figure 12.11 The effect of doubling the number of susceptibles 

on the solution of eqns. (12.18) - (12.20). 

The effect of doubling the number of susceptible hosts on the time 
dependent behaviour of the system described by eqns. (12.18) - (12.20) 
is shown. The total numbers of parasites and immune hosts at the 
beginning of the integration were set equal to their equilibrium values, 
but the number of susceptible hosts was doubled. Representation of 
the three variables Hit), I it) and Mit) follows that of Fig. 12.10. 
Parameter values used are: a = 0.02, b = 0.01, a = 0.001, A = 4.0, 
K = 0.001, H = 100., y = 0.15, n = 0.003, V = 0.01. 
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increases, the rate asymtotes to a constant level. To mirror this 

assumption, the rate per unit time with which a host with i parasites 

enters the immune class is assumed to be: 

= o [ 1 - exp(-£•£)] ( 1 2 . 2 5 ) 

At low parasite burdens the rate, r(i), is approximately cz,i> but at 

high parasite densities, it asymtotes to the rate c per unit time. 

Hosts will enter the immune class at an overall rate • 

00 

S i c (1-exp(-£-£) )p(i) (12.26) 
i-0 

where S is the size of the susceptible host population, and p(t) is 

the probability of a susceptible host harbouring i trophozoites. If 

it is assumed that all trophozoites on hosts becoming immune die, the 

rate of loss of trophozoites due to immunity is 

00 

S I ci ( 1 - e x p ) ) p ( t ) (12.27) 
i-0 

Expressions (12.26) and (12.27) clearly depend on the nature of 

the distribution of parasites on susceptible hosts. If the probability 

generating function of this distribution can be specified, they may 

be explicitly determined as outlined in Appendix 8. In the case of 

a Poisson distribution for parasites within the susceptible host 

population, expression (12.26) becomes 

So { 1 - exp[-Af(l- exp(-£))] } (12.28) 
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and expression (12.27) is 

ScM { 1- exp [-C- M(1- exp(-C))] } (12.29) 

Assuming that the loss of inmunity, v, occurs at a constant rate per 

immune host, and that all other assumptions made in deriving eqns. 

(12.5 - 12.7) hold, the following equations may be obtained.to describe 

the system: 

dN/dt = N [(a-b) - ctM<l-£)] (12.30) 

dQ/dt = c(l-Q)(l- exp(-Mf)) - (a+x>)Q + aMQ(l-Q) (12.31) 

dM/dt = M{XN(1-Q)/(N+l)-(y+a-v)-(a+v)/(1-$)-fc exp (-Mf)} (12.32) 

where f is defined for notational convenience as 

f = 1- exp(- £) (12.33) 

The system represented by eqns. (12.30 - 12.33) is difficult to handle 

analytically. It is possible to obtain the reproductive rate, R , at 
o 

a given population size: 

R = XN/ {(W+l)(y+a+a+fc)} (12.34) 

but the equations for an equilibrium with parasites present are 

transcendental in form and must be solved by numerical means. This 

was accomplished using a program that minimized the sum of the squared 
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values of eqns. (12.30) - (12.32). The numerical approach will not 

necessarily locate multiple equilibria, a problem which is considered 

with respect to a slightly more complex model in the following section. 

Qualitatively, the equilibrium behaviour of this model is very 

similar to the simpler model described by eqns. (12.5 - 12.7). Figure 
* 

12.12 shows the effect on N (the equilibrium value of the total number 
* * 

of hosts), I (the number of immune hosts) and M , (the mean burden 

on susceptible hosts) of increasing c, the asymtotic rate of gaining 

immunity. The general form of Fig. 12.12 closely resembles that of 

Fig. 12.2, the analagous figure for the simple model. High values 

of c may mean that the parasite is unable to control the host pop-

ulation growth. All equilibria located numerically were found to 

be locally stable. As with the simple model, the model described 

by eqns. (12.30 - 12.32) can be made more biologically realistic by 

assuming that, in the absence of infection, the host population grows 

in a logistic fashion. Equation (12.30) then becomes 

dN/dt = N [ a-b-KN - a.M(l-Q)] • (12.35) 

Equations (12.31) and (12.32) remain unchanged. A condition for 

parasite persistence may be obtained from eqns. (12.21) and (12.34). 

\/{y+a+a+ c[l- exp(-?)]} > 1 + k / ( a - b ) (12.36) 

The immune response may have an important influence on whether a 

parasite can persist in the host population if relatively few para-

sites elicit a strong immune response (C large) and if the time 

required to develop immunity is of shorter or of similar duration to 
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the life expectancy of the parasite on the host (c > y). 

Figure 12.13 shows the effect of increasing Q on the equilibrium 

values of the population variables. There is a striking resemblance' 

between Fig. 12.6 and 12.13. The equilibrium behaviour of the simple, 

analytically tractable model is very similar qualitatively to the 

more complex, but more biologically realistic model. 

The behaviour of the two models in their approach to equilibrium^ 

however, is very different. It is possible that in natural conditions, 

Ichthyopthirius may persist at low levels within host populations, 

being regulated by a strong immune response. The natural situation 

may therefore correspond to a point around the value of ti = 0.03 

in Fig. 12.6, with the host population close to its carrying capacity, 

most hosts immune, and a low mean parasite burden on the susceptible 

hosts. The approach to this equilibrium, as predicted by the simple 

model (eqns. 12.18 - 12.20), if the parasite is introduced into a 

host population at its disease free carrying capacity,is shown in 

Fig. 12.14. 

The peak mean parasite burden reached is approximately 40 per 

host, and the host population does not decrease to a level below its 

equilibrium with the pathogen present. This should be contrasted 

with Fig. 12.15, which shows the approach to equilibrium of the model 

described by eqns. (12.35), (12.31) and (12.32), commencing with the 

same initial starting conditions. In this case, the peak mean parasite 

burden reached is very much higher, at nearly 500 per host, and the 

host population level is depressed to a level considerably below its 

equilibrium. This is closer to the outbreak behaviour apparently 

displayed by Ichthyophthirius in natural conditions. (Hopkins, 1959; 
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Figure 12.12 The effect of increasing 'c on the equilibrium of 

eqns. (12.30) - (12.32). 

* 

The equilibrium total host population, N , is shown as a solid line 

and is scaled according to the axis to the left of the figure. The 
evenly dashed line represents the number of immune hosts present at 

* 
equilibrium, I , and is also scaled according to the axis to the 

left of the figure. The equilibrium mean parasite burden on sus-
* 

ceptible hosts, M , is shown as an unevenly dashed line, and is scaled 

according to the axis to the right of the figure. Parameter values 

used are: a = 0.02, b = 0.01, a = 0.001, A = 4.0, y = 0.15, £ = 0.1, 

v = 0.01. This figure should be compared with Fig. 12.2. 

Figure 12.13 The effect of increasing c on the equilibrium of 

eqns. (12.31) t (12.32) and (12.35) 

• • * 

Equilibrium values of the variables N , I and M are represented in 

the same way as in Fig. 12.12. Parameter values used are, a = 0.02, 

b = 0.01, a = 0.001, A = 4.0, y = 0.15, K = 0.01, C = 0.1, v = 0.01. 

This figure should be compared with Fig. 12.7, noting that, in Fig. 

12.7, H is shown with H = 100, and hence x = 0.01 in Fig. 12.13 
' o 

is equivalent to k = 0.0001 in Fig. 12.7. 
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Elser, 1955). The reason that this behaviour occurs can be seen in 

Fig. 12.16, which shows the rate of development of immunity as a 

function of parasite burden for the two different models. In order 

to make the results shown in Figs. 12.14 and 12.15 as comparable as 

possible, the rate of development of immunity is the same for both 

models at burdens equal to the equilibrium mean burden of the simple 

model with the parameter values used in Fig. 12.14. When parasite 

burdens are considerably above this level, the linear model pred'icts 

very rapid growth in the number of imiiune hosts, thus depressing the 

parasite population and stabilizing the system. The more complex 

model, however, does not predict this increase in the per capita rate 

of gaining immunity, and there is not this extremely rapid rate of 

increase in the number of immune hosts. The parasite population 

instead is depressed by parasite induced host mortality. 

The numerical approach used to find the equilibria of this model 

will not necessarily locate multiple equilibrium points. It was 

thought conceivable that an immune response of this type might result 

in two stable equilibrium points, one close to the carrying capacity 

of the host population, with parasites regulated at a low level by the 

immune response, and a second, lower equilibrium where host numbers 

were controlled by parasite induced death, and mean parasite burdens 

were high enough so that the rate of parasite induced death dominated 

the rate of gaining immunity. Such behaviour might correspond to 

the behaviour o f the "natural enemy ravine" model postulated by Southwood 

and Comins (1976). (Certain forms of non linearity in the parasite 

induced death rate are known to result in multiple equilibrium states 

(Anderson, 1979b)). In order to see if this might occur, a slightly 

modified version of the model described by eqns. (12.35), (12.31) and 
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Figure 12.14 The approach to equilibrium of the simple model of immunity 

A time dependent solution of eqns. (12.18) - (12.20) is shown. 

The integration is commenced with a mean parasite burden of 1 per host, 

and with the host population, consisting entirely of susceptible hosts, 

at the disease free carrying capacity. The solid line represents 

H{t), the total number of hosts present, which is scaled on the axis 

to the left of the figure. The evenly dashed line represents Qit), 

the proportion of hosts that are immune, and is also scaled on the 

axis to the left of the figure. The mean parasite burden per sus-

ceptible host, Mit), is shown as an unevenly dashed line, and is 

scaled on the axis to the right of the figure. Parameter values used 

are: a = 0.02, b = 0.01, K = 0.01, a = 0.001, A = 4.0, y = 0.15, 

o = 0.01, H^ = 1.0, n = 0.03. The equilibrium with hosts present is 

at H = 0.92, Q = 0.82 and M = 45. This figure should be compared 

with Fig. 12.15. 

Figure 12.15 The approach to equilibrium of the more complex model 

of immunity 

A time dependent solution of eqns. (12.35), (12.31) and (12.32) is 

shown. As with Fig. 12.14, the integration was commenced with MiO) = 

1, Qi0) = 0 and M(0) = 1 (Note that in this case, the rescaled host 

population, Nit) = Hit)/Ho, is used). The host population, proportion 

of hosts immune and mean burden on susceptible hosts are represented 

in the same manner as in Fig. 12.14. Parameter values used are: 

a = 0.02, b = 0.01, k = 0.01, a = 0.001 A = 4.0, y = 0.15, v = 0.01, 

c = 0.2, C = 0.25. The equilibrium with parasites present is at N 
* 4c 

= 0.91, Q =0.83 and M =5.4. This figure should be compared with 

Fig. 12.14. 
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Figure 12.16 Rates of development of immunity used in Figs. 12.14 

and 12.15. 

The relationship is shown between the rate of development of 

immunity, r(i), and the parasite burden per host, i, in the models 

used to generate Figs. (12.14) and (12.15). The solid line shows 

the linear relationship assumed in eqns. (12.18) - (12.20) (Fig. 12.14) 

and the dashed line shows the relationship assumed in eqns. (12.35), 

(12.31) and (12.32) (Fig. 12.15). 
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(12.32) was used. The distribution of parasites on susceptible hosts 

was assumed to follow a negative binomial distribution. (If the dis-

tribution of parasites on hosts follows a Poisson distribution, an 

equilibrium in which immunity and density dependent constraints on 

host population are unimportant will be only neutrally stable (see 

Chapter 10). 

Assuming that the distribution of parasites on susceptible hosts 

may be described by a negative binomial distribution with parameter 

k, the following equations may be obtained to describe the system: 

dN/dt = N {(a-b) - kN - aM(l-Q)} (12.37) 

dQ/dt = c (1-$) (1 - f(M)~ k) - (v+a) Q + aMQ(l-Q) (12.38) 

dM/dt=M \N(l-Q)/(N+l)-(y+a-v)-c±(M)~ i l < + 1 ) [f(M)-exp(-C)] 

-(a+v)/(l-Q) - aM/k 

(12.39) 

Here f(M) = 1 + (M/k) (1 - exp(-£)). 

All parameters and variables are as defined for eqns. (12.35), (12.31) 

and (12.32). At equilibrium, N can be expressed in terms of M and Q 

using eqn. (12.37) 

N = [a-b - oM(1-Q)\/k • (12.40) 

Figure 12.17 shows the curve in the Q - M plane along which dQ/dt - 0, 

and the curve along which dM/dt = 0 , if N is given by eqn. (12.40). 

Any equilibrium in the plausible region of solutions (M > 0, 0 ^ Q ^ 1) 
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Figure 12.17 The number of solutions to eqns. (22.37) - (12.39) 

Curves in the M - Q plane along which dM/dt = 0 (Solid line) and 

dQ/dt - 0 (dashed line) are shown. The mean burden, M, is shown 

on the horizontal axis, and the proportion of immune hosts, Q Is 

scaled on the vertical axis. The figure is based on eqns. (12.37) to 

(12.39). The derivation of the curves, dM/dt = 0 and dQ/dt = 0 

is given in Appendix 10. At any point on the solid curve, N is 

given by eqn. (12.4). At any intersection of the two lines shown, 

the eqns. (12.37) to (12.39) have an equilibrium (eqn. (12.39) has 

singular values when M = 0 which are not plotted). 

Parameter values used for (a) are: a = 0.02,b = 0.01, a = 0.001 

X = 4.0, y = 0.15, k = 0.5, K = 0.01, V = 0.01,£ = 0.2, c = 0.02. 

Parameter values used for (b) are the same, except o = 0.2. 
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will be shown as an intersection of the two curves. It should be 

emphasized that Fig. 12.17 is not a phase plane in the sense of 

Maynard Smith (1974). The figure represents the surface within 

three dimensional phase space on which N is at equilibrium with 

respect to M and Q. Trajectories of the system with time cannot there-

fore be drawn on the figure, as they will not necessarily remain 

within the plane. A wide range of parameter combinations were examined, 

but in no case was more than one non trivial solution (M ^ 0) found. 

It therefore does not appear that the system described by eqns. (12.37) 

- (12.39) has multiple stable states. 

12.5 Partial Immunity 

The experiments of Chapter 6 show that the immunity to Ichthy-

ophthirius developed by black mollies is not complete. Partial 

immunity only of hosts to parasitic infection appears to be the rule 

rather than the exception (Weinmann, 1970; Cohen, 1974). 

In this section, the model described by eqns. (12.5 - 12.7) 

is modified to allow for only partial resistance.of immune hosts to 

further infection. 

It is assumed that parasites are distributed in a random fashion 

within the populations of both susceptible and resistant hosts, and 

that the rate of transition from the susceptible to the resistant 

class is linearly dependent on parasite burden. Trophozoites currently 

on a host are assumed to survive this transition, and resistant hosts 

are assumed to rejoin the susceptible class at a constant per capita 

rate, v, independent of their parasite burden. The proportion of tomites 

surviving to form trophozoites on resistant hosts is assumed to be 

lower, by a factor s, than the proportion surviving on susceptible 
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hosts. A minimum of four variables is required to describe the system. 

Two classes of host must be specified; H^it), fully susceptible hosts,and 

H it), resistant hosts. The parasite population must likewise be 

divided into two categories; P^it), parasites on susceptible hosts, 

and P it), parasites on the resistant fish. Using the parameters 

defined in Table 12.1, the following four equations may be derived 

to describe .temporal changes in the above variables: 

dH 

= a iHl + H2) - m2 - (a+n)P1 + vP2 (12.41) 

dU2 nP - iv+b)Hn - aP0 (12.42) dt '1 N ' 2 2 

J2 
dP A(P + P)H ( a+n)P 

I T " (P + H + H ) - (T^+a+Zp)P1+vP2 - - g — (12.43) 
1 2 O 1 

dP As(P +P)H a^t P 
dt~ = (g + H + H ) - < ^ + v + f c ) P 2 - - - + n P l ( l + ( 1 2 . 4 4 ) 

1 2 c 2 1 

The parameters are as defined in Table 12.1. Unfortunately, it 

is difficult to make analytical progress with these four equations. The 

threshold host population necessary for parasite persistence is: 

Ht = Bq/ iX/ia+b+y) - 1 (12.45) 

If immunity acts only to restrict further establishment of parasites, 

and does not affect parasites already on the host, the rate of acqui-

sition of immunity does not affect the conditions for parasite per-

sistence. Figures 12.18 - 12.21 show numerical integrations of eqns. 

(12.41 - 12.44) with a number of differing values of s and n. Unlike 

the simple model (eqns. 12.5 - 12.7), a rapid rate of gaining immunity 
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does not appear to enable hosts to entirely escape control by the 

parasite, because resistant hosts continue to harbour some infection 

(Fig. 12.19). Apart from this, the behaviour of the model is not 

qualitatively different from the behaviour of eqns. (12.5 - 12.7). 

Some insight into the behaviour of this system may be gained by con-

sidering Fig. 10.2, which shows the behaviour of the basic model of 

Ichthyopthirius (eqns. 10.7, 10.9 and 10.20) in terms of the number 

of tomites establishing per trophozoite leaving the host, A, and 

the degree of overdispersion, k. An increase in the value of 5, the 

relative susceptibility of the resistant hosts, has the effect of 

decreasing the degree of heterogeneity of the host population, and thus 

makes the system less stable (compare Figs 12.18 and 12.21). Low 

values of s, and high rates of entering the resistant class (r) large), 

however, have the effect of decreasing the reproductive potential of 

the parasite, and increasing the degree of heterogeneity, thus dim-

inishing the net impact of the parasite on host survival (the majority 

of parasites are harboured by a few hosts) (Fig. 12.19). 

12.6 Conclusions and Discussion 

The previous analysis suggests that host immunity acts to stabilize 

host-parasite interactions. Too high a rate of development of immunity 

(relative to the rate at which the parasite increases host mortality) 

may lead to a parasite being unable to control the population of its 

host. The conditions determining whether or not a parasite can control 

a host population are similar to those produced by the microparasitic 

model of immunity discussed by Anderson and May (1979). 

If host populations are regulated by density dependent constraints 

other than parasitism, both the simple and more complex models make 
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Figure 12.18 Partial immunity (s = 0. 013 n'= 0.001) 

A time dependent solution of the system represented by eqns. (12.41) -

(12.44) is shown. The solid line represents the number of fully sus-

ceptible hosts (H^(t)), and the evenly dashed line the number of re-

sistant hosts (H(i)). These two variables are scaled on the axis 

to the left of the figure. The two unevenly dashed lines represent the 

number of parasites on susceptible hosts ( P ^ ( t ) ) and the number of 

parasites on resistant hosts (P0(t))f which is represented by the 

more finely subdivided line. Both these variables are scaled on 

the axis to the right of the figure. Parameter values used are: 

a = 0.02, b = 0.01, a = 0.001, y = 0.15, A = 4.0, Hq = 100., v = 0.01, 

s = 0.01 and n = 0.001. 

Figure 12.19 Partial immunity (s = 0.01, p = 0.01) 

A time dependent solution of the system represented by eqns. (12.41) 

to (12.44) is shown. The variables are represented in the same 

way as in Fig. 12.18. The parameters used are also the same, except 

s = 0.01 and n = 0.01. If the integration is continued, an equil-
* * ibrium is eventually reached at approximately H = 9.8, H = 143., 
1 4 

4c 4c P = 400., P = 1130. 
1 2 
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Figure 12.20. Partial immunity (s = 0.53 r\ = 0.01) 

A time dependent solution of the system represented by eqns. (12.41) 

- (12.44) is shown. The variables are represented in the same way 

as in Figs. 12.18 and 12.19, and the same initial conditions as Fig. 

12.18 are used. Parameter values are also the same, except Si = 0.5 

and ri = 0.01. 

Figure 12.21. Partial immunity (s = 0.5^ r\ = 0.001) 

A time dependent solution of the system represented by eqns. (12.41) 

- (12.44) is shown. The variables are represented in the same way 

as Fig. 12.18, and the same initial conditions are used. Parameter 

values are also the same, except s = 0.5 and r\ = 0.001. 
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similar predictions about the equilibrium established. If the rate 

of gaining immunity is rapid, the parasite will be maintained at a 

low level in a host population close to its carrying capacity, with 

most hosts immune. The results of the experiments discussed in 

Chapters 6 and 7 indicate that the rate of development of immunity 

to Ichthyophthirius is rapid compared to the parasite induced death 

rate at low parasite burdens. Weinmann (1958) reports that immunity 

to Hymenolepis nana develops rapidly in mice after exposure to low 

numbers of eggs of the cestode. High rates of development of immunity 

may therefore be responsible for the low levels of parasite infection 

observed for some parasites in natural conditions. 

The more complex model discussed, in which the rate of develop-

ment of immunity reaches a maximum value as parasite burden rises, predicts 

outbreaks of parasites under certain conditions. Stochastic factors may 

lead to parasites present at low levels being eliminated from host 

populations. In such cases, the number of immune hosts will decline 

and the host population will increase to its disease free carrying 

capacity. Parasites reintroduced to such populations will increase 

rapidly, before the number of immune hosts builds up, and produce 

high levels of host mortality. The simpler model, in which immunity 

is a linear function of parasite burden, is unable to generate such 

behaviour. 

The most obvious shortcoming of the models discussed in detail 

is that the immunity to infection is assumed to be solid, whereas 

experimental evidence suggests that hosts remain partially susceptible 

to Ichthyophthirius. Limited analysis of a model in which immunity 
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gives only partial resistance to future infection reveals few qual-

itative differences in behaviour. One difference results from hosts 

that become immune not killing the parasites they currently harbour. 

In this case, the immune response does not diminish the ability of a 

parasite to invade a host population. This will further Increase the 

region of parameter values within which the parasite is maintained 

endemically within the host population. 

The model of partial immunity examined assumes a constant rate 

of loss of partial immunity. It is probable, however, that a degree 

of resistance to infection may be maintained by continual re-exposure 

to infection. Aron and May (1982) have developed a model for the 

dynamics of malaria which includes this feature. Hosts are assumed 

to lose their partial resistance to infection if not reinfected for 

a period t. The model is difficult to generalize to cases in which 

the host population is a dynamic variable as, in the Aron and May 

model, it is assumed that the per capita rate of infection is constant. 
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CHAPTER 13 

THE EFFECT OF DIFFERENCES IN HOST 

SUSCEPTIBILITY ON POPULATION DYNAMICS 

13.1 Introduction 

In the basic models of host parasite interactions developed by 

Anderson and May (197 8) and discussed in Chapter 10 of this thesis, 

it is assumed that the distribution of parasites within the host 

population may be described by a negative binomial distribution with 

the parameter k, which determines the degree of overdispersion, in-

dependent of the mean parasite burden. It is shown in Section 8.3 

that reasonable assumptions about host susceptibility lead to parasite 

burdens established from single infections following distributions 

that are approximately negative binomial in form, with k independent 

of the mean parasite burden. In the case discussed, infective stages 

were assumed to be randomly distributed between hosts with differing 

susceptibilities to infection. 

In natural populations of hosts and parasites, many factors may 

affect the distribution of parasites within the host population. Re-

production within the host will obviously result in considerable agg-

regation of parasites, but even restricting the discussion to parasites 

incapable of reproduction without leaving the host, a great number of 

possible causes of overdispersion remain. Clumped infective stage 

distributions will be reflected in overdispersion in the parasite dis-

tribution amongst hosts (Keymer and Anderson, 1979) or equivalently 

host lifestyle or behaviour may result in non random encounters with 

infective stages. Hetereogeneity in parasite burdens can also be 

generated by the age structure of a host population: younger hosts 



-233-

have been exposed to infection for a shorter time than older hosts, 

and if parasites are long lived, mean parasite burden will increase 

with age (Anderson, 1982). Conversely, prevalence of infection may 

decrease with host age if older hosts acquire resistance to infection 

(Aron and May, 1982). Immunity to infection has been discussed as 

a source of overdispersion in the previous chapter. 

Other factors may act to decrease heterogeneity in parasite 

burdens per host. These are the density dependent constraints, of 

various forms, that act on parasites within individual hosts. 
, C ' 

.->-', I ' • K 

Under laboratory-conditions, if the rate of infection is high, and the 

number of infective stages low, distributions that are underdispersed 

may become established (eg Anderson, Whitfield and Mills,1977). Death 

of heavily infected animals lops off the upper tail of the distri-

bution of parasites on hosts, and might be expected to decrease the 

degree of overdispersion. 

With this range of possible influences on parasite distributions, 

the relationship between the degree of parasite overdispersion apd 

mean parasite burden is likely to be extremely complex, and dependent 

to a large extent on the biology of the particular system in question. 

This chapter restricts its attention to one factor only - the effect 

of differing host susceptibility to infection on overdispersion when 

host population size is a dynamic variable. 

13.2 A Deterministic Model 

As a beginning to examining this problem, it will be assumed that 

there are two types of host: those that are susceptible to infections 

and those that are fully resistant. If these two classes cannot be 
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distinguished, apart from the size of their parasite burden, the 

overall distribution of parasites within the host population will 

appear to be aggregated. Random infective stage distribution will 

result in the distribution of parasites within the host population 

having the form of a Poisson distribution with added zeroes. The 

mean and variance of this distribution are given by Peilou (1969). 

Suppose that a proportion, x, of all hosts born are equally 

susceptible to infection, the remainder being totally resistant. 

This proportion is assumed to be fixed: the probability of being 

born susceptible does not depend on the susceptibility of the parents. 

Representing the susceptible hosts by H (f) and the resistant hosts 

by following equations may be obtained to describe temporal 

changes in the variables #_(t), # (t) and the number of parasites, 
1 Ci 

Pit). 

dP^dt = ax(H + #2) - bH - aP (13.1) 

d//2/di = ad-K) ( ^ + H2) - bH2 (13.2) 

dP/dt = \PE_/(H + H+ H ) - (y+a+b)P - aP 2 / H . (13.3) 
1 1 l 

Construction of the model and parameter definitions follow those 

outlined in Chapter 10. It is immediately clear that, for an equil-

ibrium to exist, there is a lower limit on x, the proportion of suscep-

tible hosts. If 

a(1 - x) > b (13.4) 



„-235-

the number of resistant hosts will increase without limit, and the 

parasite will not be able to persist in the host population. The 

system is best analyzed by introducing new variables: H = i/ + #2» 

the total host population; R = M2/M, t h e prop01"^011 o f resistant hosts; 

and M = P/ff^, the mean parasite burden on susceptible hosts. Equations 

(13.1) - (13.3) then become 

A close resemblance between eqns. (13.5 - 7) and eqns. (12.18 - 20) 

is evident. 

An equilibrium, which can be shown to be stable (Appendix 11), 

will exist if condition (13.4) does not hold, and if 

dM/dt = H [((a-b) - aM(l - R)] (13.5) 

dR/dt = a(l-x) - aR + aM?(l - R) (13.6) 

dM/dt = M [\.H(1-R)/(H+H0) - (y+a) - ax/(l-R)] (13.7) 

A(l - a(l-x)/b) > a+y+ax + a2{l-x)/[b-a(l-x)] (13.8) 

* At this equilibrium, the proportion of resistant hosts, R , is 

* 
a(l-x)/b R (13.9) 

* and the mean burden on susceptibles, M , is 

M* = bia-b)/[a(b-a(l-x))] (13.10) 



„-236-

An interesting feature of the model is that the overall mean 

parasite burden (obtained from eqns. (13.9) and (13.10))is (a-b)/a, 

the same as in the basio model (eqns. (10.27) and (10.28))and is 

unaffected by the proportion of hosts that are resistant to infection, 

At equilibrium, the variance in parasite numbers per host, var (A/) is 

var (M) = ( ) 
a a (l-rc)] (13.11) 

using formulae given by Pielou (1969).. 

A quantity which can be used as a useful measure of the degree 

of overdispersion is 

k1 = (x)2 / (s2 - x) (13.12) 

_ 2 

where x and s are the mean and variance of the burden. If. the distribution 

is negative binomial, this is the parameter k which inversely 

describes the degree of overdispersion (in the case under discussion 

here, k1 does not have this direct meaning, as the distribution is 

not strictly negative binomial). 

At equilibrium, k1 is found to be 

ky = x/(l-x) - (a-b)/[a(l-x)] (13.13) 

This should be compared with the /c' which would result from a single 

infection of a population of hosts when a proportion, x, are susceptible 

to infection: ' 

k % = x/Cl-x) (13.14) 
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(obtained from eqn. 8.3). 

For any combination of parameters which permits the existence of a 

stable equilibrium, the model predicts that a greater degree of over-

dispersion exists at the equilibrium of a free running population than 

is produced by a single infection of a population with the same 

initial proportion of susceptible hosts. The equilibrium mean sus-
* 

ceptibility to infection, 1-i? , is also always less than the suscept-

ibility of the same host population before the introduction of infec-

tion. In this very simple model, both the mean susceptibility to 

infection and the degree of overdispersion of parasites within the 

host population are dynamic variables (Fig. 13.1). The expression 
/ 

giving k' at any particular time,^ = (1-R)R, does not explicitly 

involve the mean parasite burden, Af. The next section considers a 

more complex simulation model, in which the distribution of suscept-

ibility of hosts to infection is a continuous function. 

13.3 A Simulation Model 

The model developed in the previous section allows a limited 

degree of difference in susceptibility between hosts, but imposes, 

a priori,' a Poisson distribution of parasites on the susceptible 

hosts. Parasite induced mortality will have a tendency to decrease 

the heterogeneity of parasite burdens on susceptible hosts by removing 

hosts with heavy parasite burdens. This is a difficult factor to 

handle within the constraints of these purely deterministic models. 

This simulation model attempts to examine the results of this dynamic 

interplay between parasite induced death reducing overdispersion and 

differing susceptibilities of hosts increasing it. This interplay 

is an important feature of natural host parasite systems (Anderson and 
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Figure 13.1. Results of the deterministic model in which a proportion 

of hosts are resistant to infection 

A numerical solution is shown of the system described by eqns. (13.5) 

- (13.7) (in which a fixed proportion of all hosts both are resistant 

to infection). Three variables are scaled on the axis to the left of 

the figure, the total host population, Hit) (shown as a solid line) ; 

the proportion of resistant hosts, Rit) (shown as an evenly dashed 

line); and the inverse of the parameter k 1 (determined from the 

equation k  1 = i?(t)/( 1 - Rit)), and shown as the unevenly dashed line 

with the longer length dashes). The mean parasite burden on sus-

ceptible hosts, Mit), is scaled according to the axis to the right 

of the figure, and is shown as the unevenly dashed line with dashes 

of a shorter length than k *it). 

Parameter values used are: a = 0.02, b = 0.01, a = 0.001,A = 4.0, 

Y = 0.15, # = 10.0, x = 0.8; and initial conditions are Hio) = 1., 

Rio) = 0 .2 , Mio) = 1.0. 

Note that whilst both Rit) and k ^it) change in an oscillatory 

fashion, both the proportion of resistant hosts and the degree of 

overdispersion are always greater than at the introduction of the 

parasite. 
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Gordon, 1982). The model is not intended to be any more realistic 

or detailed than the simple models discussed in Chapter 10. The 

object is to construct a model identical, as far as is possible, 

to eqns. (10.27) and (10.28), but instead of imposing a negative 

binomial distribution on the parasite population, the distribution 

is generated by the dynamics of the interaction between host and 

parasite concomitant with differing host susceptibilities to in-

fection. As far as is possible, the model is deterministic. Stochastic 

elements are introduced only when necessary to consider the distribution 

of parasites on hosts. The model is thus hybrid in structure, con-

taining deterministic and stochastic elements. 

13.3.1. Modelmstructure 

The simulation is commenced at time 0 with H(0) hosts. Each 

of these is assumed to have a susceptibility, s, to infection between 

0 and 1. The susceptibility, s . of the j t h host present initially, 
3 

and of all hosts added during the course of the infection is determined 

by sampling from a beta distribution, which has a probability density 

function: 

x T (l+m) l-l ,, .m-1 
B ( s ) = r o o m ) 8 ( 1 " s ) < 1 3 " 1 5 ) 

The parameters I and m together specify the mean and variance of the 

distribution. For the simulation, values of l = 0.5 and m = 4 were 

used. If an infection is commenced with a mean of T tomites encount-

ering each host, these parameter values will result in a distribution 

approximately negative binomial in form being established, with mean 

of 0.11T and k = 0.5. 
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Initially, T(0) tomites are assumed to be present to commence 

the simulation, and the number of tomites establishing on the jth 

host is determined by sampling from a Poisson distribution with mean 

X . = s .T(0) / #(0) (13.16) 
3 3 

After initialization, the system is run with a finite step length of 

t days. Iterations proceed as follows: 

(i) Each host has a probability q of surviving from the previous 

stepj where 

q = exp (-[fr+cet] t ) (13.17) 

Here b is the instantaneous disease independent rate of 

host death, and t the per parasite increment in parasite 

induced mortality. 

(ii) Hosts are assumed to have a deterministic instantaneous 

per capita rate of increase, a. The number of new fish 

present, H , is thus 

H
a = H W [exp(ax) - l] (13.18) 

where Hit) is the number of hosts present after mortality in 

(i). If the result of eqn. (13.18) is not an integer, it 

is rounded down and the fractional part added to an accumulator 

which is added to H for the next iteration. New hosts are 
a 

assigned susceptibilities from the beta distribution specified 

in eqn. (13.15). 
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(iii) The parasite burden of each host, -t.(t+x), is determined 
3 

by the following equation: 

t .(t+t) = i At) exp [-( y + vO t] +J . (13.19) 
3 3 3 

where y is the instantaneous per capita death rate of 

trophozoites on the host, and yis their per capita emigration 

rate. I^ is generated from a Poisson distribution with mean 

Tit) s ./{Hit) + Hj (13.20) 
3 o 

where Tit) is the number of tomites present at time t, s . 
3 

is the susceptibility of the jth host to infection, #(£) 

is the size of the host population at time t and Hq is a 

saturation term. 

(iv) Tit+t), the number of tomites present at the next time 

interval, is 

W + T ) = i f e i [ 1 " e " < Y + w ) T ] v < « < 1 3 - 2 1 > 

where X is the number of infective stages produced per 

trophozoite. 

2 To an accuracy of terms in t , this system is an analogue of 

<WdT = Hia-b -qlM) (13.22) 

dM/dt = As HMy/iH+H0) - Miy+\i+b) - aEii2) (13.23) 
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in which s and E(i ) are dynamic variables. 

13.3.2 Simulation results 

Figure 13.2 shows the changes in number of hosts and mean para-

site burden during the course of one simulation run. A strong ten-

dency toward oscillatory behaviour is evident, increases in mean 

parasite burden leading to crashes in host population numbers (as in 

all the host-parasite models discussed in this thesis, the actual 

peak in mean parasite burden lags behind the peak in host population). 

Other simulationrmis produced qualitatively similar results. In 

no case did the oscillation appear to damp out to a stable equilibrium. 

White noise (uncorrelated stochastic variation) in the parameters 

governing the behaviour of a two species predator prey system may 

lead to maintenance of oscillations in a case where the equilibrium 

would otherwise be stable (May, 197 4). The stochastic variation in 

this model has a similar effect, although random variations introduced 

in host susceptibility may be maintained for more than one time period, 

until the removal of the host from the system. There is therefore 

serial correlation in the varying terms. Similar results have also 

been obtained by Bartlett (1957) for models of recurrent epidemic 

behaviour, demographic stochasticity acting to pump otherwise damped 

oscillations. 

The changes in host susceptibility with time during the course of 

the simulation run of Fig. 13.2 are shown in Fig. 13.3. Recalling 

that the expected susceptibility of hosts at birth is 0.11, it is clear 

that the mean susceptibility of the host population is at a level very 

much lower than this. A beta distribution with the values of I and m 

used in this simulation is strongly positively skewed, and the few 
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Figure 13.2 Results of the simulation model 

The figure shows the results of the simulation described in Section 

13.3. The number of hosts present is shown as a solid line, and is 

scaled on the axis to the left of the figure. The dashed line re-

presents the mean parasite burden per host, and is scaled on the axis 

to the right of the figure. Parameter values used are: a = 0.02, 

b = 0.01, a = 0.001, A = 300, y = 0.15, y = 0.05tH = 100, T = 1.0. 
4 

The simulation was commenced with T(0) = 10 and M(0) = 20. (If 

the step length, T, is reduced to 0.5, the interval between para-

site outbreaks remains at around 100 days). 
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highly susceptible outliers are rapidly eliminated from the population 

due to parasite induced death. This lowered susceptibility is not 

the result of natural selection in the normal sense of the term: the 

distribution of susceptibility of offspring to infection remains 

constant. In a real population, the offspring of hosts resistant to 

infection would themselves tend to be resistant, further reducing the 

overall susceptibility of the host population. There is also some 
/ 

evidence that susceptibility is a dynamic variable, being subject to 

other than purely random perturbations. When parasite burden is low, 

there is less selective pressure against highly susceptible hosts, 

and mean susceptibility tends to rise. This behaviour resembles that 

of the simple model discussed in Section 13.2. 

The changes with time in the degree of overdispersion of the 

parasite distribution are shown in Fig. 13.4. Overdispersion is 

measured in this case by the inverse of the moment estimate of k, 

determined according to eqn. (8.4). Estimates of k for fairly small 

populations show a high degree of variability (Taylor et al 1979). 

The degree of variability of the plotted values of 1/k does not necess-

arily reflect the same degree of variability in the underlying degree 

of overdispersion. There is no clear evidence of a relationship between 

the degree of aggregation, as measured by 1/k, and the mean parasite 

burden per host. At one point only, the distribution approaches 

randomness, but for most of the course of the simulation, the dis-

tribution of parasites on hosts is highly aggregated, to a similar or 

greater degree than the distribution with which the simulation was 

commenced. 
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Figure 13.3 Changes in average host susceptibility during a 

simulation run. 

The changes in host susceptibility during the course of the simu-

lation run of Fig. 13.2 are shown. The solid line, scaled on the 

axis to the left of the figure, represents the mean parasite burden 

per host, and the dashed line, scaled on the axis to the right of 

the figure, represents the mean susceptibility to infection of the 

host population. The expected susceptibility of hosts at "birth" 

is 0.11. 

-1 
Figure 13.4 The behaviour of k during a simulation run 

The figure shows the changes with time of k * during the course of 

the simulation run of Fig. 13.2. The solid line represents the mean 

parasite burden per host, and is scaled on the axis to the left of 

the figure. The inverse of k, calculated using eqn. (8.4), is shown 

as a dashed line, and is scaled on the axis to the right of the figure. 

The expected value of fe at the commencement of the simulation is 

2 . 0 . 
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CHAPTER 14 

MODELLING THE EXPERIMENTAL EPIDEMICS 

14.1 Constant Host Immigration 

A number of difficulties arise in attempting to compare the ex-

perimental results of Section 9.2 with the predictions of the models 

discussed in the previous chapters. The simple models do not take 

into account the age structure of parasite or host populations, but 

most of the results discussed in Chapters 4 - 7 are a consequence of 

age dependent processes acting on the trophozoites. 

The basic model (eqns 10.7 - 10.10) assumes that each tropho-

zoite leaving the host gives rise to A tomites. The mean number of 

tomites produced per trophozoite leaving the host was found to be 334 

in Section 4.3.4, and this provides a convenient estimate of A. If 

host density is high, and density dependent constraints are unimpor-

tant, the basic model predicts that the change in the number of tro-

phozoites can be described by the following equation: 

dP(t)/dt = (Ays-y)P(t) (14.1) 

where P(£) is the number of trophozoites at time' t3 s is the propor-

tion of tomites that develop to form trophozoites and y is the rate 

of emigration of trophozoites from the host. In tanks of the size 

used in the long term experiments, the experimental results of Chapter 

5 indicate that changing host density has little effect on the overall 

reproductive success of the parasite. The maximum rate of reproduction 

per unit of time, r , is hence: 
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V Q = Y ( A S - 1) (14.2) 

If s is estimated as 0.063 (Section 5.4) and y is estimated 

as 0.13 per day (Section 4.3.1), v is found to be 2.61 per day. 

This value is an order of magnitude greater than the of 0.391 

per day calculated from the Euler equation, using the observed form 

This major discrepancy occurs because of the assumption of a 

constant emigration rate of trophozoites made in the basic model. 

The actual form of the trophozoite survival function, l(x), is com-

pared with the form assumed by the model in Fig. 14.1. The model 

predicts a proportion of trophozoites leaving the host shortly after 

infection that is considerably higher than the true figure. If all 

these trophozoites are assumed to produce the same number of tomites 

as mature trophozoites are observed to produce, the model will con-

siderably overestimate the reproductive rate of the parasite. 

The experimentally observed form of l(x),is bracketed between a 

step function, in which all trophozoites leave the host at age 1/Y 

and the exponential decay function assumed by the model (Fig. 14.1). 

The step function leads to an Euler relation: 

where 7? is the number of second generation trophozoites produced per 

trophozoite in the previous generation (the basic reproductive rate). 

The maximum rate of reproduction per unit of time, r , is therefore 

given by 

of the trophozoite survival function, l(x) (See Section 4.3.5). 

1 = 7? exp(-r /Y) 
o' 

(14.3) 

v 
o 

Yin (7?) (14.4) 
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Figure 14.1 Comparison of forms of the survival function3 l(x) 

The experimentally observed form of the trophozoite survival function 

lix) is compared with the exponential decay assumed by the simple 

models and with a step function. The evenly dashed line represents 

the equation: 

l(x) = exp a/b [l-exp(kc)] 

-4 

where a = 1.04 x 10 and b = 1.084 (The parameters found to closely 

approximate the experimental results in Section 4.3.1). The unevenly 

dashed line represents the function 

I (x) - exp [ - yx ] 

where y = 0.130 (the inverse of the life expectancy of a trophozoite) 

This is the survivorship function assumed by the basic host-parasite 

models. The solid line represents the step function 

l(x) = < x <7.7 
x >7.7 

where 7.7 is the life expectancy of a trophozoite. 
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In Section 4.3.5, this was found to provide a good approximation to 

the value of r generated from the bxperimentally observed l(x). 

Comparison of eqn. (14.4) with eqn. (14.2) shows that the exponential 

survival function provides a reasonable estimate of r if ln(Z?) can 
o 

be approximated by (P-l). In the experimental systems under exam-

ination here, the host density is high and R is therefore considerably 

greater than 1, leading to the simple model greatly overestimating 

the reproductive rate of the parasite. 

There is no entirely satisfactory way around this problem, but 

a better numerical agreement between the models and experimental data 

can be obtained by estimating A so that the maximum reproductive rate, 

t , is at the level found in Section 4.3.5. If this is done, A is 
o 

estimated as 63.6 tomites per trophozoite. 

A second major problem is estimation of the rate of parasite 

induced mortality, a. Figure 7.1 shows that this rate is very strongly 

dependent on the age of the trophozoites. An approximate, averaged 

estimate of the increment in the rate of parasite induced mortality 
_5 

per trophozoite per day of 1 x 10 was obtained, but as discussed in 

Section 7.6, there are a variety of reasons why this is liable to be 

a considerable underestimate. The relationship between mean death 

rate and parasite burden was found to be approximately linear, but 

appeared to break down at low parasite burdens per host. Unfortunately, 

the results of the immigration death experiments are concerned with 

parasite burdens in this low range. A further complication is that 

only trophozoites older than three days were counted in the immigration 

death experiments, whereas the results of Chapter 7 are concerned 

with estimates of the total number of trophozoites per host. Precise 
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quantification of the effect that all these factors might have on 

the value of a is difficult. For the purposes of the numerical results 
-4 

that follow, a value of a of 1 x 10 (per host, per trophozoite, per 

day) was used. 

The results of the immigration experiments shown in Figs. 9.1 

and 9.3 follow a similar pattern. There is an initial increase in 

mean parasite burden, which leads to host mortality if the initial 

infective dose is high, but subsequently the mean parasite burden 

declines and the host population increases to a level where it does 

not appear to be depressed to any great extent by the parasite. 

The predictions of the simple model without immunity (eqns. 10.28 

and 10.36) are shown in Fig. 14.2. The equilibrium host numbers are 

low, and the mean parasite burden per host is high. This doas not 

closely correspond to the observed behaviour of the experimental systems. 

The simple model of immunity, (eqns. 12,5 - 12.7) in which the rate 

of gaining resistance to infection in a linear function of parasite 

burden, is useful in describing some of the general features of the 

effect of immunity in a host parasite interaction, but is not suitable 

for use in modelling this particular system. The results of the ex-

periments in Chapter 6 show that the rate of gaining immunity is not 

a linear function of parasite burden. It is therefore difficult to 

estimate a plausible value for, the per parasite Increment in the 

rate of gaining resistance to infection. The time required for hosts 

to acquire resistance appears to .be approximately ten days, and is 

only slightly longer with burdens of 15 parasites per host than with 

burdens of 150. The rate of gaining resistance may therefore be 

approximately of the form used in eqns. (12.30 - 12.32): 
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Figure 14.2 The predicted behaviour of the constant immigration ex-

periments 3 if the immune response is not allowed for. 

A numerical solution is shown of a simple immigration-death model, 

with no acquired immunity. The model is defined by the following 

equations, closely based on eqns. (10.36) and (10.28). 

dH/dt = A - bH - aMR 

dM/dt = M {XH/(Ho+H) - (y+a+ A/H) - aM/k } 

The total number of hosts, R(t), is shown as a solid line, and is 

scaled according to the axis to the left of the figure. The mean 

parasite burden per host, M(t), is shown as a dashed line, and is 

scaled on the axis to the right of the figure. 

Parameters used 

Parameter 

A 

b 

H 

Biological interpretation 

rate of host introduction 

disease independent death rate 

Parasite induced death rate 

Rate of trophozoite reproduction 

Saturation term in infectivity 

Emigration rate of trophozoites 

Value 

1 day 1 

0.02 per host, 
day"1 

0.0001 per para-
site, per host, 
day"1 

0.52 per tropho-
zoite, day-1 

0.32 

0,13 per tropho-
zoite 

k Parameter of negative binomial 0.5 
distribution describing degree of 
overdispersion of parasites on hosts. 

The solution was commenced with initial conditions of H(0) = 10, Af(0) = 151.0. 

(The initial conditions at the commencement of the second series of immigration/ 
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r(i) = c(l - exp(-^)) (14.5) 

where r(i) is the rate of gaining immunity with a parasite burden 

of i, with a approximately equal to 0.1 per day, and £ estimated 

by 0.1 per trophozoite. 

The predictions of eqns. (12.30 - 12.32), modified to account 

for constant host introduction, are shown in Fig. 14.3. The model 

captures certain qualitative features of the observations (it predicts 

an equilibrium host population close to the disease free carrying 

capacity, and a low equilibrium mean parasite burden) but with these 

parameter values, the model will not generate the initial high levels 

of mean parasite burden and parasite induced death shown in Fig. 9.3. 

A number of important features of the biology of Ichthyophthirius 

are not included in this model. Parasite survival of host death and 

the partial nature of resistance will tend to increase the repro-

ductive rate of the parasite, while the selective removal of more 

susceptible hosts by parasite induced death will tend to decrease 

the reproductive potential of the parasite. A close quantitative 

fit of the model to the experimental data should not therefore be 

expected. 

In these relatively small experimental systems, stochastic ele-

ments can also be expected to have a considerable influence on the 

course of the epidemics. Figure 14.4 shows the results of four runs 

of the simulation model described in Chapter 13, modified to allow 

for constant introduction of hosts, and with parameter values similar 

to those used in Fig. 14.2. This model does not include an immmune 

response, but the mean susceptibility of the host population decreases 

with time, as the more susceptible hosts are more rapidly removed by 
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Figure 14.3 The predicted behaviour of the constant immigration 

experiments3 when an immune response is included. 

Numerical solutions are shown of an immigration death model with an 
immune response of the form of eqn. (14.5). The model is defined by 
the following equations: 

^f = A - bH - aM(H-I) 
CLV 

dI 

d t 

dM 

d t 
= M 

c(H-I)(l-f(M)~ k) - (v+ib)I 

X (H-I) , N ^,^-ik+l) — - (y+a) - cf(M) N ' 
( M > 

f(M)-e 
-C v J 

(H-I) 
aM -A 
k (H-I) 

where f(M) = 1 +[_M/k[ 1 - exp (-C)l] 
The parameter values used are the same as those of Fig. 14.2, with the 
following additional parameters to describe the immune response: c 

(the rate of gaining immunity at high parasite burdens) = 0 . 1 per 
day; C(the parameter describing the increment in gaining immunity 
per parasite) = 0 . 1 per day; v (the rate of loss of immunity) = 0.02 
per day. The total host population, H(t), is represented by a solid 
line, and scaled according to the axis to the left of the figure, 
as is lit), the number of immune hosts (represented by an evenly dashed 
line. The mean parasite burden, M* (t) is shown as an unevenly dashed 
line and is scaled according to the axis to the right of the figure. 
In order to facilitate comparison with figs. 9.1 and 9.3, the overall 
mean parasite burden is shown, A/' (£) = M(t) (H(t) - I(t))/H(t). 

Figure 14.3a shows a solution with initial conditions: H(0) = 10., 
1(0) = 0., M(0) = 22.7 (approximating the starting conditions in Fig. 
9.1) and Fig. 14.3b shows a solution with starting conditions: H(0) = 10., 
1(0) = 0., M(0) = 151 (approximating the initial conditions in Fig. 9.3). 
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Figure 14.4 Solutions of the simulation model with constant immigration 

Four solutions are shown of the simulation model described in Chapter 
13, modified to allow for host introductions at a constant rate. The 
total host population is shown as a solid line, and scaled according 
to the axis to the left of the figure. The mean trophozoite burden 
per host is shown as a dashed line, and scaled according to the axis 
to the right of the figure. 

The parameters used correspond as closely as possible to the 
conditions of the immigration/death experiments described in Chapter 9. 
The immigration rate of susceptible hosts is 1 per day, and their 
susceptibility to infection is determined from a beta distribution with 
1 = 1 and m = 16, parameters which result in a mean susceptibility 
to infection of 0.06 and would generate a k = 1.13 after a single 
infection. Other parameters used (defined in Chapter 13) are: 
b = 0.02 per day, a = 0.0001 per trophozoite per day, y = 0.13 per 
day, y = 0.05 per day, H = 0.32, X = 69. The initial number of 
hosts present in each case in 10, and the initial number of tomites 
is 3600., corresponding to the conditions at the beginning of the 
first series of constant immigration experiments. 

Note the range of behaviour generated from identical starting 
conditions. 
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parasite induced death. A considerable degree of variation is evident 

between the simulation runs (which were started with identical initial 

conditions) showing the importance of stochastic effects. 

14.2 Constant Host Numbers 

The results of the second series of experiments, in which the 

total host numbers were held constant, show oscillatory behaviour in 

mean parasite burdens (Fig. 9.5). There does not appear to be any 

tendency for parasite numbers to settle to a stable equilibrium value. 

Although this particular experimental arrangement was set up with the 

intention of investigating the immune response (it was hoped that, by 

holding total host numbers constant, the effect of changes .in the 

proportion of hosts that are immune could be investigated), the immune 

response is almost certainly not of importance in this case. The 

rate of turnover of hosts is extremely rapid, because of the very 

high rates of host death in these experiments (Fig. 9.5). Few fish 

survive the ten days required for an immune response to become sig-

nificant (Chapter 6). The oscillations may result from the way in 

which the age of a trophozoite at the time of the death of its host 

affects its reproductive potential (Section 7.5). 

The models described in Chapter 11 can be modified to deal with 

hosts being replaced as soon as they die. If a constant proportion 

of trophozoites survive host death, irrespective of the parasite 

burden, the following two equations (eqns (11.4) and (11.5), with 

H a constant, rather than a dynamic variable) will describe the changes 

with time in the number of parasites, Pit), and tomites, Tit): 

dP/dt = $HT - (a+£>+y+a)P - a(?C+l)P2/ikH) (14.6) 
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i 

dT/dt = A[yP + x(a+b)P + (fc+l)P2/(&#).] - y2T- 3TH (14.7) 

where the parameters are as defined as in Chapter 11. A non trivial 

equilibrium (P J- 0, T ? 0) can exist provided H is greater than a 

threshold level 

M>y 2/3/ [y A/ (cx+y+y+fc ) ] (14.8) 

An equilibrium parasite burden exists only if 

AHX/(]A2+H) < 1 f/ (14.9) 

otherwise parasite numbers increase rapidly without limit. Any 

equilibrium that does exist is locally stable (Appendix 12) and numer-

ical studies indicate that the approach to equilibrium is rapid. The 

model is not capable of describing the behaviour of the experimental 

system. Similarly, the more complex modeljeqns. (11.24 and 11.25) 

in which the level of parasite survival decreases with increasing 

parasite burden, can be modified to apply in cases where host numbers 

are constant such that: 

dP/dt = $HT - (y+y+a+Z?)P - a(/c+l)P2/(feM) (14.10) 

dT/dt = AyP - }HS(M) - 3HT'- \i0T (14.11) 

where S(M) is defined in eqn. (11.23). 

This system, unlike eqns. (14.6) and (14.7), always has a non 

trivial equilibrium value, provided H is above the threshold level 
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(eqn. 14.8) and this equilibrium is always locally stable (Appendix 

12). Once again, numerical studies indicate that the approach to 

equilibrium is rapid. This model is also incapable of generating 

the behaviour observed in the experimental system. It appears that 

in this case, the age structure of the parasite population cannot 

be disregarded. 

14.2.i. A difference equation jnodel 

A simple way to include age structure is to frame the problem 

as a difference equation model, in which all generations are entirely 

distinct (as opposed to a differential equation model, in which 

generations are assumed to totally overlap). Figure 7.6 shows the 

number of tomites produced per unit of host surface area related to 

the trophozoite density. If one host is maintained in a small con-

tainer, and immediately replaced should it die, the number of second 

generation trophozoites per unit of host surface area will be equal 

to the tomite production shown on Fig. 7.6, multiplied by the sus-

ceptibility to infection of the hosts. Figure 7.6 is thus a Ricker 

curve (Varley, Gradwell and Hassell, 1973) for parasite numbers on 

a single host. The figure cannot, however, be simply-used in this 

way for ten hosts. Within a population of ten fish, differences in 

host susceptibility to infection will result in a range of parasite 

burdens if each host is exposed to the same number of infective stages. 

The results discussed in Chapter 8 indicate that, fox a single infection 

the number of parasites per host follows a negative binomial distri-

bution with parameter k (inversely describing the degree of overdis-

persion) of approximately 2. This variability will result in the 

relationship between the mean parasite density on hosts and the ex-

pected number of tomites produced being rather different from Fig. 7.6. 
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When the trophozoite density on a single fish is very high, the 

expected number of tomites produced is low. If the mean density of 

trophozoites on the surface of fish in a population is at this same 

level, a few hosts will have lower parasite densities, and conse-

quently produce more tomites, thereby increasing the average. The 

result is that the curve is flattened out in the manner shown in 

Fig. 14.5. 

The curve shown in Fig. 14.5 was obtained in the following manner. 

The number of tomites produced per unit of surface area of a single 

host is 

TCP) = 0(P).P (14.12) 

where 0(P) is the tomite production of each trophozoite, if the tro-

phozoite density is P per unit of host surface area. The average 

number of trophozoites produced per unit of host surface area in 

a population of fish with mean trophozoite density d will therefore 

be: 

T(d) = 
o 

TCP). f(P|3) dP (14.13) 

where t(P|3) is the probability distribution of P, given that the 

mean trophozoite density is d. The probability distribution of the 

total number of trophozoites per host can reasonably be assumed to 

follow a negative binomial distribution, but this will not be the 

distribution of trophozoite density per unit of area of the surface 

of a fish, which may take non integral values. The probability dis-

tribution f(P|3) was approximated by a log normal distribution with 
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i mean and variance ( 3 ) /2. (If the distribution of parasites 

amongst the host population follows a negative binomial distribution 

with k = 2, and the absolute parasite numbers per host are substantial, 

the variance in parasite density is approximately (3)2/2. A log 

normal distribution is used as it can only adopt positive values). A 

proportion, s, of the tomites produced is expected to form tropho-

zoites in the next generation, where s is mean proportion of tomites 

infecting hosts that are able to form trophozoites (in tanks of the 

size used, virtually all tomites will locate a host before death 

[chapter 5]). The number of second generation parasites, 

per unit area of host surface is therefore given by: 

N t + 1 = sT{Nt) (14.14) 

where is the mean number of trophozoites per unit area of host 

surface in the previous generation, and TiN^) is obtained by numerical 

integration of eqn. (14.13). 

Although the derivation of the curve defined by eqn. (14.14) 

is complex, the curve may be closely approximated by a simple model 

of density dependence in single species used by Maynard Smith and 

Slatkin (1973). 

Nt+1 = + 0VNt)W1 (14.15) 

Values of the three parameters A, v and w were estimated from 50 

equally spaced points on the solution curve of eqn. (14.14) using a 

non linear least squares procedure (Appendix 1). The resulting curve 

is compared with the actual solution of eqn. (14.14) in Fig. 14.6. 
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Figure 14.5 The Ricker curve for trophozoite numbers 

The relationship shown is that expected between the number of second 

generation parasites, ^ ^ t h e nuniber of first generation para-

sites, if hosts are replaced at death. N^ and are expressed 

2 

per 0.16 ©m of host surface area. The dashed line represents the 

relationship expected if only one host is present. The solid line is 

the relationship expected between the mean parasite densities in 

successive generations in a population of fish, and is the solution 

of eqn. (14.15). Along the dotted line, N. = N 

Figure 14.6 The fit of the Maynard Smith - Slatkin model to the Ricker 

curve 

The solution of eqn. (14.14), shown as a solid line, is compared with 

the solution of eqn. (14.15) (the Maynard Smith - Slatkin model), 

shown as a dashed line. Estimates of the parameters of eqn. (14.15) 

are as follows: A = 17.8, V - 0.012, W = 2.25. 
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The simple difference equation model defined by eqn. (14.15) 

generates a two point stable limit cycle given the estimated values 

of X, V and w' (Fig. 14.7). The qualitative predictions of the model 

are in accord with the experimental results shown in Fig. 9.5. The 

quantitative results of the model, however, do not agree closely with 

the experimental results, predicting parasite densities considerably 

in excess of those observed, at both high and low points of the cycle. 

A possible reason for this lack of agreement is that the production 

of the Ricker curve involves extrapolating the relationship between 

parasite burden and death rate that was observed in Chapter 7 (eqn. 

7.2) beyond the range of parasite burdens that could be examined. 

Small differences in the tail of the curve have large effects on the 

actual range of the oscillations. Even assuming that the relationship 

of eqn. (7.2) can reasonably be extrapolated, eqn. (14.15) overes- x 

timates the value of at high values of 

An unusual feature of this experimental system is that the gen-

eration time of the parasite is a function of its population size. 

When parasite burdens are low, host mortality is slight, and the gen-

eration time is approximately the 7.7 days that the parasite remains 

on the host(determined in Section 4.3.1),but at high parasite densities, 

it is approximately the life expectancy of the infected hosts. Although 

the host mortality observed in the experiments does occur in clear 

bursts (Fig. 9.5), there is not total synchrony in host deaths, and the 

parasite generations will also overlap to a degree. 

Within these limitations, the qualitative fit of this very simple 

model is encouraging. 
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Figure 14.7 The numerical solution of eqn. 14.15. 

The two point limit cycle generated by eqn (14.15) is shown. The 

horizontal axis shows the time in generations, and the vertical 
2 

axis shows the mean number of trophozoites per 0.16 cm of host 

body surface. The solution was started with an initial value of 

3.11, equivalent to the upper initial starting value of the ex-

periments described in Section 9.3. 



Time (generations) 



„-272-

CHAPTER 15 

GENERAL DISCUSSION 

15.1' Seasonality and Age Structure 

As a parasite of poikilothermic hosts, Ichthyophthirius is par-

ticularly susceptible to seasonal changes in temperature. All of the 

parameters governing the life history of the disease are highly tem-

perature dependent (see Table 2.1). Without the inclusion of seasonal 

variation, the models discussed in Chapters 10 - 13 are therefore 

unlikely to accurately describe the course of infection in natural 

conditions. A related problem, implicit in the use of simple diff-

erential equation models, is that the age structure of both parasite 

and host populations is ignored. 

There are several levels at which seasonal factors can be incorpora-

ted into models of this type. The simplest approach, employed by 

Fretwell (1972) is to consider two sets of parameters to describe the 

system, a "winter" set and a "summer" set. A separate equilibrium 

will exist for each combination of parameters. If the response time 

of the system is rapid (relative to the frequency of seasonal change)' 

both "summer" and "winter" equilibria may be reached in turn. The 

approach to equilibrium of the models discussed in this thesis, how-

ever, is generally via damped oscillations, and it is unlikely that 

either equilibrium would be reached, the system heading toward one 

equilibrium and then toward the other, actually attaining neither 

equilibrium state. On a slightly higher level of complexity, the 

parameters in the models may be made to oscillate periodically with 

time by the use of trigonometric functions. This approach has been 
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used by Dietz (1976) to consider the dynamics of infectious disease, 

in seasonal environments. If the response time of the system is 

fast, it may merely track the cyclic changes in the parameters, but 

if the response is slow, Dietz showed that recurrent outbreaks of 

disease may occur at lower frequencies than the frequency of the 

cyclical variations. In other words, annual cycles may cause bi-

ennial or triennial outbreaks of disease. 

The problem of age structure is in some ways related to that 

of seasonality. In both cases, the coefficients involved in the 

differential equations become functions of time. The results of the 

experiment in which host numbers were kept constant, discussed in 

Chapter 14, show how simple models assuming constant coefficients 

may be unable to generate the qualitative behaviour observed in real 

systems. In discrete time models, age structure can be handled by 

the matrix techniques discussed by Beddington (1974). In continuous 

time, with overlapping generations, the situation is more difficult. 

Age structure can crudely be taken into account by framing the model 

as differential-delay equations (Oster (1977) shows how a fully age 

structured model of Nicholson's blowflies can be approximated by a 

single differential delay equation). In general terms, the inclusion 

of time delays is destabilizing, and may result in cycles of a longer 

period than the delay itself (for example, see Gurney, Blythe and 

Nisbett, 1980). 

Seasonality and age structure are considered together in a com-

plex model by Oster and Takahashi (1974), using balance equations 

involving partial differentials. The most important conclusions 

reached are in accord with rather simpler models that include age 

structure and seasonality separately. Both factors may individually 
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linduce cycles longer in length than either the time delay or the 

period of the seasonality, and these cycles may resonate, resulting 

in peaks separated by a longer time period again. 

The development of such equations for the dynamics of Ichthyoph-

thirius is beyond the mathematical scope of this thesis. Age de-

pendent models couched in partial differential equation form are 

highly complex, both to formulate and analyze. They tend to have 

all the disadvantages of simulation models,such as the necessity to 

fully estimate birth and death rate functionals, and the difficulty 

of obtaining results in an algebraic form that enables general con-

clusions to be drawn. A particular problem is introduced by the 

importance of the distribution of parasites on hosts in host parasite 

interactions. In the simple differential equation models, the 

variance of parasite numbers per host was required, and this was ob-

tained by assuming a negative binomial distribution for parasites on 

hosts. In addition to this, the age dependent models require the 

postulation of some functional form for the covariance between para-

sites of different ages on hosts. 

The general effect of age structure and seasonality, together 

with stochastic perturbations (Bartlett, 1957) is likely to be that 

factors leading to damped oscillations in the simple models will tend 

to produce cyclic behaviour in real situations. 

15.2 Susceptibility to Infection 

Two fundamental factors that determine the transmission efficiency 

of a parasite are the host density and the susceptibility to infection 

of the host population. A major contribution made by Anderson and May 
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(1978, 1979) toward the understanding of host parasite interactions 

was that they allowed the total host population to be a dynamic 

variable, rather than fixing it at a constant level, as had most 

previous workers (Bailey, 1975). The experimental results of Chapter 

5 indicate, however, that the host density doeB not have a major 

effect on the overall reproductive success of Ichthyophthirius in 

the particular experimental conditions used in this study. This 

thesis has therefore concentrated, both experimentally and theore-

tically, on the susceptibility of the host population to infection 

and on the factors that may cause it to be a dynamic variable. 

In the parasitological literature, there are a number of 

different uses of the terms "resistant" and "susceptible" (Wakelin, 

1978). The level of resistance of an organism to a parasite or 

disease is in some cases measured by the host's ability to survive 

infection, rather than its ability to prevent establishment of the 

parasite. These two factors may well be correlated, and are diff-

icult to separate experimentally for certain classes of infection. 

No such problem exists with Ichthyophthirius, as the number of tro-

phozoites a host is harbouring can be easily counted. Suscepti-

bility throughout this discussion is defined according to the usage 

of Chapter 8: the susceptibility to infection of a host is simply 

the proportion of infective stages encountering the host that are 

able to establish on it. 

The experiments described in Chapters 5 and 8 show that, even 

under ideal conditions, a majority of tomites are overcome by the 

defences of the host, and that there is considerable variation in 

susceptibility between hosts in a single infection. Differences in 
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susceptibility to infection may come from several sources. The fish 

used in these experiments were obtained from a commercial supplier 

and some may have been exposed to infection before purchase (Ichthy-

ophthirius infection was not, however, detected on any black mollies 

at the time of purchase). As the results of Chapter 6 show, black 

mollies can acquire a degree of immunity to Ichthyophthirius from 

slight infections, and this resistance may last for a considerable 

length of time after exposure. It is therefore possible that the fish 

used in these experiments may have been resistant to infection be-

cause of previous exposure. The physiological status of a fish may 

also affect its susceptibility to infection. Pickering and Christie 

(1980) reported that sexually mature male brown trout Sahmo trutta 

had higher levels of I'bhthyophthirius infection than immature fish 

of either sex or mature females. (No evidence of black mollies 

showing sexual dimorphism in susceptibility to infection was found 

in the present study). It is likely that at least some of the var-

iability in susceptibility observed is genetic in origin. 

When considering the genetic control of susceptibility to in-

fection, it is important to distinguish between innate-resistance, 

the degree of resistance to an initial infection, and acquired 

immunity, developed subsequent to a previous exposure. The degree 

of innate resistance of a host and its ability to acquire immunity 

are both to an extent genetically determined (Wakelin, 1978) but they 

may be controlled from quite unrelated loci (Blackwell, Freeman and 

Bradley,1980). The observation made in Section 6.3 that the parasite 

burden developed on individual black mollies after an initial in-

fection is not correlated with the burden established after a challenge 

infection suggests that in this case too, the factors determining 
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innate and acquired resistance may be distinct. 

Little information is available at present concerning the gene-

tic basis of innate resistance to infection (Wakelin, 1978). One 

of the few established cases is the protection afforded against 

malaria by the sickle cell allele in man. Ichthyophthirius tomites 

may fail to successfully infect a naive host for a number of reasons. 

The mucus layer may prevent them from reaching the epithelium of the 

fish, infective stages may be unable to penetrate the epidermis, or 

they may be overcome by non specific host defences once in the dermis. 

One might therefore expect the degree of resistance to infection to 

be mediated by a number of different genes. 

Rather more information is available on the genetic aspects 

of acquired resistance to infection. In some cases certain hosts 

appear to be totally unable to mount an immune response (Wassom, 

DeWitt and Grundmann, 1974, Wakelin 1975) and the variability in 

acquired resistance appears to be mediated via a single gene. Inbred 

laboratory lines of host may clearly have more limited sources of 

variability than natural populations. The observations of Wassom 

et al, in which a single autosomal'dominant gene was found to be 

responsible for the ability of deer mice Peromyscus maniculatus to 

develop resistance to the cestode Hymenolepis citeTli, are of par-

ticular interest, being based on experiments with wild strains of 

the mice. In other cases, a number of genes are implicated in var-

iability observed in the ability to mount an immune response (Wakelin, 

1978). The high variance in parasite burdens per host established 

in the second infection compared with the control infection in 

Section 6.3 suggests that the black mollies used in these experiments 
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differed in their ability to acquire resistance to reinfection, but 

the degree of replication is insufficient to determine whether the 

distribution of trophozoites on reinfected hosts is bimodal (as 

it would be if a single dominant gene controlled resistance). 

No direct evidence was obtained in this study concerning the 

heritability or genetic basis of either innate or acquired resistance 

because of the difficulty of getting Poecilia latipinna to breed 

under laboratory conditions. The related guppy Poecilia reticulata 

breeds prolifically in the laboratory, and although parasite burdens 

might prove harder to count on a fish that is not black, it would 

prove a good subject for studies on the heritability of resistance. 

The Ichthyophthirius-fish system is ideal for this type of work: 

levels of infection can be determined without the destruction of the 

host, and innate and acquired resistance can be readily distinguished. 

The second part of this thesis considers some of the mechanisms 

that may lead to dynamic changes in the overall susceptibility to 

infection of a host population during the course of an epidemic. 

The immigration-death experiments of Chapter 9 show that, in controlled 

conditions, the parasite was unable to persist at high densities 

because of increasing host resistance to infection. As was seen in 

Chapter 14, this increase in resistance may have occurred through a 

combination of two factors: increasing acquired immunity to infection, 

discussed in Chapter 12, and rapid elimination of the more suscep-

tible elements of the host population (Chapter 13). 

The main conclusion of the models of acquired immunity in Chapter 

12 is that a rapid rate of gaining immunity will lead to parasites 

being maintained endemically at low levels within host populations. 
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This conclusion is in accord with the observations of Wassom and 

co-workers (Wassom, Guss and Grundmann, 1973; Wassom, DeWitt and 

Grundmann, 1974) who obtained experimental evidence that the exis-

tence of acquired immunity of the deer mouse Peromyscus maniculatus 

to Hymenotepis aitelti was responsible for the extremely low rate 

of prevalence (1.4%) of the cestode in populations of the mouse. 

Whilst Ichthyophthirius appears to be endemically present in very 

low numbers in natural fish populations, no evidence is available 

to suggest that it is immunity which is responsible. This could 

prove a suitable area for future research. 

The models discussed in Chapter 13 show that a parasite may 

depress the mean susceptibility to infection of a host population 

without the involvement of an immune response. Provided hosts differ 

in their innate resistance to infection, the removal of highly sus-

ceptible members of a population due to parasite induced death will 

rapidly reduce the overall susceptibility of the hosts to infection. 

When parasite burdens are low, the rate of removal of highly sus-

ceptible hosts will be reduced, and the overall susceptibility to 

infection will rise. This may result in cyclical changes in the 

overall resistance of the host population to infection (Comparison 

of the deterministic and stochastic models in Chapter 13 suggests 

that stochastic variability may be necessary to maintain the cycles). 

The model does not involve any explicit genetic structure, although 

it is assumed implicitly that the variability in susceptibility to 

infection is genetic in origin. 

In real populations, the probability distribution of innate 

susceptibility to infection amongst offspring will not be independent 
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of the susceptibility of their parents. Information on the rate 

at which resistance to infection might be expected to evolve is 

rather limited at present. Given that a polymorphism exists, the 

rate of evolution will clearly be a function of the number of genes 

involved in determining resistance, and the degree of linkage be-

tween them. Two experiments discussed by Wakelin (1978) suggest 

that even under continuous stringent artificial selection, significant 

increases in resistance may only occur over a time span of several 

generations. In real conditions, selection pressure will only be 

great at times of parasite outbreak, and there may he costs associated 

with resistance. The rate of evolution is therefore liable to be 

considerably slower than in artificial conditions. Changes in the 

susceptibility of the host population to infection caused by the 

mechanism discussed in Chapter 13 are likely to occur on a timescale 

very much faster than that of evolutionary change. 

15.3 Coevolution 

The preceeding discussion shows that the innate susceptibility 

of a host population cannot be assumed to remain constant. Given 

genetic variability in susceptibility to infection,evolution can be 

expected to occur. Genetic variability affecting virulence of the 

parasite is also likely to exist. The resulting problems of coevol-

ution are of great importance in the understanding of host parasite 

systems. Hamilton (1980) has gone as far as to suggest that co-

evolution of pathogens and hosts may have been responsible for the 

evolution of sex itself. 

In many basic parasitological texts, it is assumed that parasite 

and host should coevolve toward an amensal relationship, in which the 
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parasite has little influence on the host. The best documented 

example of coevolution actually occurring is the classic study of 

rabbits and myxamatosis in Australia (Fenner and Radcliffe, 1965). 

In this case, rabbits have become more resistant to the disease, 

but the most common form of the virus is of intermediate virulence, 

and is not the least virulent form present. Pathogenicity and 

transmissability of a parasite or pathogen may usually be correlated 

(Anderson and May, 1982b)which will limit the progress of evolution 

toward decreased virulence. Taking Ichthyophthirius as an example, 

the trophozoite affects the host primarily by the physical damage 

it causes to the epithelium. It is difficult to conceive of a way 

in which the amount of damage caused per parasite could be reduced 

without decreasing its reproductive potential. It is easy to show 

(see Appendix 13) that a form of the parasite with an increased 

reproductive rate will always be able to invade a population of the 

parasite which is less fecund. (If the two forms are both aggregated 

in the host population, independent of each other, however, a stable 

polymorphism may become established. 

A number of simple models of coevolution of parasites and hosts 

have been proposed (Gillespie, 1975, Pimentel and Levin, 1981; Lewis, 

1981a, 1981b). The Ichthyophthirius fish interaction would prove 

extremely suitable to examine both the predictions of these models, 

and the assumptions on which they are based. 
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APPENDIX 1 71Ion Linear Curve Fitting 

The results of a number of the experiments described in this 

thesis are analyzed with the aid of a non linear curve fitting pro- • 

cedure available on a Hewlett Packard 9845 desktop computer. 

The procedure is based on the assumption that each experimental 

data point may be described by a specified function of the independent 

variables, together with an additive error term, i.e. 

M V E 2 , . . . V X H , X2.r..xu ) + e (Al.l) 

where Y . is the ith observation of the dependent variable, and X_ . 
Is 

X ^ are the ith values of the k independent variables. The specified 

function f involves m parameters, 11116 e r r o r * e r m e ideally 

has a mean of zero and is normally distributed. 

The purpose of the procedure is to obtain values of the parameters 

8-r,#B so that the quantity, Q is minimized, where 
l m 

Q = 

N 
I 

i= l 
% J \ m' • ki 

(A1.2) 

{N is the number of observations of Y) 

In principle, the intention is identical to that of conventional 

linear regression : to find parameters so that the sum of the squares 

of the deviations of the observed values from the model is minimized. 

This may be done analytically for a linear model, but in general, only 

an approximate answer can be obtained iteratively for a non linear model. 

A further difference is that, whereas the least squares estimators in 
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a linear model are also the maximum likelihood estimators (provided 

e is normal, Hogg and Craig, 1970), this is not necessarily true in 

the non linear case. 

The iterative procedure used is described by Marquadt (1963). 

The Hewlett Packard program continues iteration until the change in 

each parameter between successive iterations, 6 satisfies the 
u 

following relation: < 

/ [ 0 . 0 0 1 + 13j* I] < A ( A 1 . 3 ) 

The tolerance, A, was set at 0.005 in all cases. Condition (A1.3) 
—6 requires that the error in each parameter is less than 5 x 10 if 3; 

V 

is small, or if 3 • is large, less than 0.5% of the absolute value of 
J 

&r 

The program produces confidence limits for parameters, but these 

are liable to be misleading. They are based on the assumption that 

within the range of the error, the function may be satisfactorily 

represented by the linear terms of a Taylor series expansion. Given 

the highly non linear nature of most of the functions fitted, and the 

degree of error associated with the data, these linearized confidence 

limits are liable to be very inaccurate. 
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APPENDIX 2 Raw data from parasite induced mortality experiments 

2 
The mean number of trophozoites per 0.16 cm of host surface 

area is given in the column to the left of the page, and the number 

of days since infection the host survived is given in the column to 

the right. 

Trophozoite Days Trophozoite Days 
density survived density survived 

5.5 >10 28.5 4 
6 >10 30 9 
6.5 >10 34 9 
6.5 >10 37 8 
10 7 41 >10 
11 >10 43 9 

12.5 >10 43 9 
12.5 >10 44 8 

17 >10 44.5 8 
18 >1D 47 9 

18.5 >10 48.5 7 
20 >10 50.5 >10 
22 9 52 >10 
22.5 8 52.5 4 
2 3 . 5 >10 53 6 
2 4 . 5 9 53.5 8 
27 >10 53.5 4 
54 . 5 9 144 6 
54 . 5 6 155.5 6 
5 4 . 5 6 158.5 5 
57 . 5 5 168.5 3 
58 . 5 9 170 6 
6 2 . 5 >10 175 5 
66 5 176 9 
67. 5 9 176 4 
67.5 6 182 4 
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APPENDIX 2 (Cont) 

Trophozoite 
density 

Days 
survived 

Trophozoite 
density 

Days 
survived 

68.5 >10 183 3 
69 9 186.5 5 
70 9 188.5 4 
72 7 190.0 4 
73.5 6 199.5 6 
73.5 8 212.5 3 
74 5 212.5 4 
76.5 >10 214 4 
77 9 228.5 4 
78.5 10 228.5 3 
80 >10 233.3 3 
80.5 8 235.5 9 
85 6 236 3 
90 6 242 4 
90.5 7 254 7 
92 5 256.5 5 
93.5 >10 285 5 
104.5 4 294 7 
108 7 322.5 4 
112.5 9 322 5 
112.5 5 346 5 
114 5 346 8 
124. 5 7 348.5 3 
131 5 351.5 6 
140 5 388 3 
553 4 395.5 4 
706 5 409 3 
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APPENDIX 3 The effect of heterogeneity in host susceptibility on 

parasite distribution 

Suppose m infective stages are placed in an arena with N hosts, 

and that all will eventually encounter a host. If all hosts are 

uniform in their attractiveness to infective stages, the distribution 

of infective stages amongst hosts is positive binomial, with mean m/N 

and variance m/N(.l-l/N) . 

Provided N is reasonably large, this may be approximated by a 

poisson distribution with parameter m/N. The poisson distribution may 

also arise with many other sets of assumptions: for example, hosts 

exposed to a sample from a suspension with a known mean concentration of 

infective stages. 

Suppose only a proportion of the infective stages encountering a 

host survive to form detectable parasites: let each infective stage 

have a probability, s, of surviving. It can be easily shown that the 

probability of a host with 'susceptibility', s, having exactly p parasites 

is also poisson (Feller, 1968). 

where T is the mean number of infective stages which the host encounters. 

Consider now the total population of hosts. Assume each has a 

'susceptibility', s, between 0 and 1 to infection, and that a probability 

density function, F(S) describes the probability that a particular host 

has susceptibility s. 

Equation (A3.1) above is in fact P{P = p\S = s}. The joint p.d.f. of 

p{p = p } = [exp (A3.1) 
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S and P is thus: 

g(p,s) = exp (-Ts )<Ts ) P . . f ( s ) / p !< V = 0tlt2 
0 < s < 1 

(A3.2) 

= 0 elsewhere 

and the marginal distribution of P, the number of parasites on a host 

i s : 

P{P = p) = 
.1. 

[ e x p ( - T s ) ( T s ) P / p / ] . f(s) ds, (A3.3) 

which has a probability generating function, ( P ( 2 P ) ) , P ( 2 ) : 

,1 

P(z) = / ( s ) exp ( T s ( 2-1 ) ) d s , (A3.4) 

from which one may obtain: 

d P ( 2 ) 

dz 
= P ( P ) = T P ( s ) , (A3.5) 

2 = 1 

and 

d 2 P ( 2 ) 

d2' 

= P ( P 2 ) - P ( P ) = A c s 2 ) (A3.6) 
2=1 

Hence 

var (P) = T 2 var ( s ) + T P ( s ) . (A3.7) 
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APPENDIX 4 Microparasitic disease models 

This appendix describes the behaviour of some simple models 

reviewed by Anderson and May (1979, 1981) which divide the host 

population into susceptible, infected and immune categories. The 

biological basis of the models is described in detail in Anderson 

and May (1981) and is not repeated here. 

Basic Assumptions 

Suppose that there are X susceptible hosts and Y infected hosts 

present in a population. To derive equations to describe the progress 

of an epidemic, the following assumptions are made: 

(i) Infection occurs as a result of binary collision between 

infected and susceptible hosts at a rate 3YZ, where 3 is 

a transmission constant (the inverse of 3 is proportional to 

the average time interval between susceptible and infectious 

host contacts 

(ii) Uninfected hosts die at a constant per capita rate of b 

per unit of time. 

(iii) The per capita death rate of infected hosts is b, augmented 

by an amount a, representing the deleterious effect of in-

fection. 

(iv) Infected hosts may recover and rejoin the susceptible class 

at a rate y per host, per unit of time (where 1/y is the 

average duration of infectiousness). 

Constant Host Numbers 

Initially, suppose that the host population remains approximately 

constant at a level H. (ie H = X + Y). 
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The following equation will then suffice to describe temporal changes 

in Y: 

dY/dt = Y U&H - a - b - y) -3Y ] (A4.1) 

Equation (A4.1) has a time dependent solution which is logistic in 

form. 

In order for Y to be able to increase, dY/dt must be positive 

when Y is small, and hence: 

3#/(a+fc+y) > 1 (A4.2) 

The basic reproductive rate of the disease, which is the average 

number of secondary infections produced per newly infected host 

is therefore: 

R = 3fl/[a+£+y] (A4.3) 

It can be seen that condition (A4.2) is equivalent to requiring that 

R > 1. Condition (A4.2) may also be used to obtain the threshold 

host density, H^, below which the pathogen cannot persist in the host 

population (Kermack and McKendrick, 1927) where, 

llT = (a+i>+y)/B (A4.4) 

Exponential host population growth 

Suppose that both classes of host have a per capita growth rate 

a, so that the total, host population grows at a rate r = a-b in the absence 
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of infection. The following equations then describe temporal changes 

in X and Y. 

dX/dt = aiX+Y) - bX - 3XY + yY (A4.5) 

dY/dt = 3YY - (a+Z?+y)Y (A4.6) 

or, summing eqns. (A4.5) and (A4.6) to yield an equation for changes 

in the total host population, Hit): 

dH/dt = ia-b) - ctY (A4.7) 

dY/dt = 3(M-Y)Y - ia+b+y)Y (A4.8) 

Rq and Hy are still given by eqns. (A4.3) and (A4.4), but in this 

case, if H < Hthe population increases in size until H^ is exceeded, 

The disease is able to stably regulate the host population, provided: 

a > ia-b) (A4.9) 

* 
If eqn. (A4.9) is satisfied, the equilibrium host population is H 

where: 

II* = aia+b+y)/ [3(a-(a-£>) ) ] (A4.10) 

* At this equilibrium, the number of infected hosts is Y , where: 

Y* = ia-b)H*/a . (A4.ll) 
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< 

If eqn. (A4.9) is not satisfied, the host population grows at an 

exponential rate of less than a-b and the proportion of infected 

hosts increases toward unity. 

Constant Host Immigration 

If host numbers increase by a constant number, A, of hosts per 

unit of time, eqn. (A4.7) becomes: 

dH/dt = A - bH - aY (A4.12) 

Equation (A4.8) remaining unchanged. 

In the absence of infection, eqn. (A4.12) has an equilibrium at: 

H* = A/b (A4.13) 

The disease will therefore be able to invade the host population if 

A/b > Hy, where H^ is defined in eqn. (A4.4). 

ie A/b > (a+fc+y)/3 (A4.14) 

A highly pathogenic disease (a large) must therefore be highly infec-

tious ( 3 large) if it is not to be eliminated from the system because 

infected hosts die before they can infect another host. If condition 

(A4.14) is satisfied, the host population is regulated to a level less 

than A/b, and is smallest when a is of intermediate size. 

Logistic Host Population Growth 

A more realistic assumption is that the host population increases 

in a logistic fashion in the absence of parasitism. It may be assumed 
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th at the death rate per capita of hosts, is b + kH, where K is 

a parameter describing the effect of density dependent influences 

other than parasitism on host population growth. 

Hence: 

dH/dt = H(a -b) - kH 2 - aY (A4.15) 

dY/dt = Y [(B-K)tf - ib+y+a) - 8Y] (A4.16) 

There is a disease free host population equilibrium at 

K = ia-b)/ k (A4.17) 

and in order for eqn. (A4.16) to be positive, and for the disease 

to increase within the host population, 

H > (2M-Y+CO/($-K) 

(A4.18) 
and K < 8 

There will therefore be a (stable) equilibrium with the disease 

persisting, provided 

ia-b)/K > (2?+Y+CX)/(B-K) (A4.19) 

* * (Actual equilibrium values of H and Y are given by Anderson and 

May, 1981). 

Immunity and Exponential Growth. 

Vertebrate hosts are usually able to develop some type of immunological 
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defence against microparasitic infections. It is therefore necessary 

to include an immune class, Z, in these models of disease. Hosts are 

assumed to enter this class at the net rate yY at which they recover 

from infection, and to leave the class either by dying, at a per capita 

rate b, or by loss of immunity at a rate v, after which they rejoin 

the susceptible class. The system may be described by the following 

equations: 

dH/dt = (a-b)H - aY (A4.20) 

dY/dt = 3(tf-Y-Z)Y - (a+£>+y) Y (A4.21) 

dZ/dt = yY - (£+v)Z (A4.22) 

The threshold host population necessary for disease persistence, 

Ht, is still given by eqn. (A4.4) and Rq is still given by eqn. (A4.3). 

The disease is able to regulate the host population if 

a > (a-b)[ 1 + y/(b +v)] (A4.23) 

* in which case, the total host population, H , reaches a stable 

equilibrium where: 

Ii * _ a(a.+b+y ) 
a - (a-b) 

[l + y/(2?+v)] 
(A4.24) 

Equations (A4.23) and (A4.24) should be contrasted with eqns. (A4.9) 
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and (A4.10), the corresponding equations when there is no immune 

class. The existence of immunity makes population regulation more 

difficult: the pathogenicity must exceed the intrinsic birth rate 

of the hosts weighted by an addition factor y/(£+t>). The parasite 

cannot control the host population if the rate of recovery from in-

fection, y, is sufficiently large compared with the rate of loss 

of immune hosts (fr+v). The equilibrium host population is greater, 

than the equilibrium established with equivalent parameters but no 

immunity (Compare eqns. (A4.10) and (A4.24)). 

Immunity and Constant Host Immigration 

If hosts are introduced at a constant rate, A, eqn. (A4.20) 

becomes: 

dH/dt = A - bH - aY (A4.25) 

eqns. (A3.21) and (A4.22) remaining unchanged. The conditions for 

the existence of an equilibrium with the disease present to exist 

are identical to the model described by eqns (A4.12) and (A4.8), but 

the equilibrium host population size is greater (In eqns. (A4.25), 

(A4.21) and (A4.22), y represents the rate at which hosts recover and 

become immune, whereas in eqns. (A4.12) and (A4.8) y represents the 

rate at which hosts recover and rejoin the susceptible class). 

Immunity and logistic host population increase 

The following differential equations will describe the system: 

dH/dt = (a-b)H - kH 2 - aY (A4.26) 
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dY/dt = 3CH-J-Z) - (b+KH)Y - (cx+y)Y (A4.27) 

dZ/dt = yl - (fc+K#)Z - vZ (A4.28) 

where K is defined in the same way as in eqns. (A4.15) and (A4.16) 

The conditions for an equilibrium with the disease present to exist 

are again identical to those for the model without immunity defined 

by eqns. (A4.15) and (A4.16). In contrast to the model with expon-

ential population growth defined by eqns. (A4.20) to (A4.23), the 

rate of loss of immunity has no bearing on whether or not an equil-

ibrium with the disease present exists. 
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APPENDIX 5 Stability Analysis of the Basic Model 

Assuming that the tomites are short lived compared with the other 

life history stages, the model can be defined by the following three 

equations. 

dH 

d t 
(a-b)H - ctP (A5.1) 

dP 
d t 

hy2HC 

H + H 
o 

dP 
a(k+l)P" 

kH 
(A5.2 

d0 

dt (A5.3) 

Variables and parameters are as defined in Table 10.1 

The non trivial equilibrium of the system occurs at 

* * 
H = P/CS-l); P = H (a-b)/a ; C = Y1F/(Y2+y2> (A5.4) 

where 5 = Ay2 y1 /{ [Y2+V2] [d + (k+1)(a-b)/k] } (A5.5) 

and exists provided S > 1. 

The local stability of this equilibrium can be determined following 

standard lines (May, 1974). The elements of the "community matrix" 

(May, 1974) are as follows (defining f = dH/dt, g = dP/dt, h = dC/dt). 

a. 11 

a 21 

Bf/BH = (a-b); ai2 = Bf/BP = -a ; a^ = Bf/BC 

Bg/BH = hy2CHo/(H+Ho)
2 + a (k+l)P 2/ (kH 2) 

= 0 

(A5.6) 
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a 2 2 = 9 0 r / 3 P = " ^ + 2 a ( f e + 1 > P / < ^ > ] 

a23 = = A V / ( V P ) 

a31 = d H / M = 0 ; a32 = = Y1 ; a33 = = " ( Y2 + y2 ) 

(A5.6) 

At equilibrium, a 2 1, a 2 2 and a 2 3 may be simplified to 

a = [ ( a-£) / a ] M + 2 (fc+1) - [d + (fc+l) <a-fc)/k]/ S 
a 1 

(A5.7) 

a22 = " ^ + 2 <k+l)(a-2?)/M] (A5.8) 

a 2 3 = V P 
(A5.9) 

The eigen values, A, of the matrix satisfy the following equation: 

X3 - X2(a11+a22-«z33) + >.(ana22 + a ^ a ^ + a22a33 - a32a23 - a ^ ) 

+ a2iai2a33 + an a23 a32 " aii a22 a33 = 0 

For stability, the Routh Hurwitz criteria require that: 

(A5.10) 

( i ) a i l + a 2 2 + a 3 3 < ° 
(A5.ll) 

(ii) a 1 2a 2 1a 3 3 + a a ^ - a ^ a ^ > 0 (A5.12) 

(iii) - ^ n ^ 2 2
+ S 3 ) ( a i i a 2 2 + aiia33 + a22a33 " a32a23 " a2iai2) > 

(A5.13) 
a!2a2ia33 + aii a23 a32 " aiia22a33 
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Condition (A5.ll) requires that 

ia-b) < d + 2<fc+l)(a-2»/fc + Y2+y2 (A5.14) 

which is true if a > b 

Condition (A5.12) requires that 

A Y 2 Y 1 / (Y2+y2)(d + ik+i)ia-b)/k) > 1 which must be true 

for the equilibrium to exist (see eqn. A5.5). 

Condition (A5.13) is therefore crucial. The right hand side 

of condition (A5.13) is: 

a ! 2 a 2 i a 3 3 + a i i a 2 3 a 3 2 ~ a i i a 2 2 a 3 3 = Ay1Y2-lY2+y2] [d+ik+D ia-b)/k\ 

and the left hand side of condition (A5.13) is: 

a i i a 2 2 + a i i a 3 3 + a 2 2 a 3 3 " * 3 2 a 2 3 " " a i ' u " ^ 
(Y2+y2)A -[d+ik+i)ia-b)/k\/S 

Condition (A5.13) thus requires: 

[Y 2 +V 2 + df + ia-b)/k] [ A Y 1 Y 2/(^/)-#] > [AYxY2 - <Y 2 +Y 2 )^F] (A . 5.15) 

where f = 1 + (7;+l) ia-b)/ ikd). 
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APPENDIX 6 Stability Analysis of the Host Parasite Model with 

Constant Host Introduction 

The model is defined by the equations: 

dH/dt = A - bH - aP (A6.1) 

dP/dt = AyHP/(H +H) - dP - <x(/c+l)P̂ /(/cfl) (A6.2) 

where d = y+y+a+b 

As discussed in the main body of the text, an equilibrium with the 

parasite present exists if: 

A/b > H / [(Ay/d) - 1 ] (A6.3) 

If this equilibrium exists, the equilibrium number of parasites, P , 

* 

may be found in terms of the equilibrium host population, H , (using 

eqn. (A6.1)) where 

P* = [A - bH*] /a (A6.4) 

* 

On substitution of eqn. (A6.4) into eqn. (A6.1), it is found that H 

satisfies the following quadratic equation: 

(H*) [kXy/ik+D - dk/(k+l)-b] - #*£ H dk/(k+1) + A - bHQ] - HQA = 0 (A6.5) 

Defining f - dH/dt and g - dP/dt, the partial derivatives of f and g 
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with respect to H and P are as follows at equilibrium: 

3//3P = - b df/dP = - a 

3//3TF = XHO/(HQ+H*)2 + a(k+l)(P*)2/[k(H*)2] (A6.6) 

dg/ZP = - P* a(£+1)/(&#*) 

For two equations, the Routh Hurwitz criteria (May, 1974) require 

that: 

Condition (A6.7) is clearly satisfied, as both 3//3P and 3^/3P are 

negative at equilibrium. Condition (A6.8) requires that the product 

of two terms that are negative at equilibrium is greater than the 

product of one positive and one negative term. It is therefore also 

always satisfied at any equilibrium with parasites present that exists. 

(i) 3//3P + 3gr/3P < 0 (A6.7) 

(ii) (3//3P) (30/3P) > (3f/3P) (30/3P) (A6.8) 
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APPENDIX 7 Local Stability Analysis of the Model with Constant 

Parasite Survival of Host Death and Exponential Host 

Population Growth 

The model is defined by the equations: 

dN/dt = N( (a-b) - aM) (A7.1) 

dM/dt =M XN [y+xiu+b+aMCk+D/k^/iN+l) -(y+a+a+y)-aM/k (A7.2) 

and has a non trivial equilibrium where 

N - 1/ A[y+a;(a+2?) + x(k+1) (a-b)/k\/[y+a+a+y+ (a-b)/k\ -1 (A7.3) 

and 

M = (a-b)/a (A7.4) 

Defining f = dN/dt and g = dM/dt, the partial derivatives of 

eqn. (A7.1) and eqn. (A7.2) with respect to N and M at equilibrium 

are given below. 

df/dN = 0 (A7.5) 

df/dM = -aN (A7.6) 

3g/dN = X(a-b)/[a(l+N*) 2] y+x(a+b) + x(a-b)/(k+l)/k (A7.7) 
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30/3M = [ia-b)/k\ XNx (k+1)/(!+/) - 1 (A7.8) 

The Routh Hurwitz criteria (May, 1974) require that, for stability: 

9f/dN + 9#/9M < 0 (A7.9) 

and (3//3iV) (9^/9M) - (9//3M) W g / W ) > 0 (A7.10) 

As 3//3W = 0 (eqn. A7.5), these conditions are simply: 

dg/dM < 0 (A7.ll) 

and (df /dM) (dg /dN) < 0 (A7.12) 

Condition (A7.12) is true if any equilibrium exists, as eqn. (A7.6) is 

negative and eqn (A7.7) positive. 

Condition (A7.ll) requires that 

A/V* x(k+l)/a+N*) < 1 (A7.13) 

Now 

\N*/(1+N*) = [(y-KZ+a+y) + (a-b)/k]/[y+x(a+b) +x(a-b)(k+l)/k] (A7.14) 

Hence condition (A7.13) requires 

x [(fc+1) (y-KZ+a+y) - (a+b)~] < y (A7.15) 
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APPENDIX 8 The expected values of ie" ^ and 

The probability generating function of a probability distri-

bution, P ( 2 ) is defined as 

P(2) = E(z 1) , 0 < s < 1, i 0 , 1 , 2 . - J (A8.1) 

— Li-
lt is implicit in this definition that E(e ) is simply 

P(2) evaluated at z = e 
-LI 

Now, 
dP(2) 

dz 
tw ' 

E (^2 ) 
(A8.2) 

w dP(2) 
and hence E ^ e ) = 2 

d2 
(A8.3) 

"Li 
evaluated at 2 = e j 

and d z
K • = Eez-^-l)2 ) 

.2 £-2 . Y-2 
= ECz. 2 ) - E ^ 2 ) . (A8.4) 

w .2 -r^, z d P(2) 2P(2) 
Hence, E(^ e ) = ^ + * 7 

' d2 d2 
(A8.5) 

again evaluated at z = e 

In particular, i f i follows a poisson distribution, 

P(2) = exp(-w[1-2]) (A8.6) 



-317-

where m is the mean of the distribution, 

and E ( iz Z ) = zm exp(-m[l-s]) (A8.7) 

If i follows a negative binomial distribution with mean m and 

parameter k inversely describing the degree of overdispersion: 

P ( 2 ) = [l + m(l-z)/k]~  k (A8.8) 

E (iz %) = zm [l + m(.l-z)/k]~  i k + 1 ); (A8.9) 

and E c A S = mz( 1 + m/k + mz) (1 + m(l-z)/k)~(k+2) (A8.10) 
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APPENDIX 9 Local stability analysis of the simple model of immunity 

The model is defined by the following equations: 

f = dH/dt = (a-b)H - aP (A9.1) 

g = dP/dt = \P(H-I)/(HO+H) - (b+y+a+n)P - (a+n)P* / iH-I) (A9.2) 

h = dl/dt = nP - ib+v)I (A9.3) 

with parameters as defined in Table 12.1. 

A non trivial equilibrium exists if eqns. (12.9) and (12.11) 

are satisfied. The equilibrium host population,// , is given by: 

H 
* o 

H = r—— (A9. 4) 
X P -1 

[(i + ( a + q ) ( a - 2 ? ) / ( a p ) | 

w h e r e p = 1 - r| ia-b)/[a (2? + V ) ] 

a n d d = b + y + a + T\ 

* The equilibrium number of immune hosts, I is 

I* = H*t) (A-b)/[aib+v)] (A9.5) 

and the parasite population at equilibrium is 

P* = H*ia-b)/a 
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At equilibrium, the partial derivatives of eqns. (A9.1) - (A9.3) 

with respect to each of the three variables, M, P and J, are as 

follows: 

bf/bH » ia-b) ; bf/bP = -a ; 9 f / b l = 0 

bg/bH = APiHo+I) /iH+HQ ) 2 + (cH-n)P2iH-I)' 

bg/bP = A iH-I) / iH^+H)- ib+y+a+T)) - 2 (a+n)P/(M-J) 

-P(a+n)/(M-J) 

bg/bl = -AP/ iH+H) - (a+T1)P2/(M-J)2 

9M/9M = 0-; = U ; 9M/8-T = -(v+b) 

(A9.7) 

The eigen values, A, of the community matrix (May, 1974) are 

given by: 

bf/bH - A bf/bP 

'bg/'bH 

-> (ff-A)lA' 

bg/bP- A 

bh/bP 

M _A> M. 
bP bH ' bl 

zg/zi 

bh/bl-k 

0 

= 0 (A9.8) 

(A9.9) 

WHERE |A| = A2 - A(ff + f ) + f f f - f jg (A9.10) 
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Let b - 877 8 P (A9.ll) 

now, 2? = -(a-b) + (a-fc)(a+q)/ap 

using eqns. (A9.4) - (A9.7), As p < 1, b i s always positive. 

Let i = 8£ 8 £ _ 8£ 8 £ 

877 8P 8P 877 (A9.12) 

now, bn = 
(q-£>) (q+u) + a 

ap 
AP (H0+I) + (ct+n)(a-£) 

(H+H0)- (ap)2 

from eqns. (A9.4) - (A9.7) 

Hence 2> = ( ^ V + U ) (1-p) a\P*(Hn+I) 
n e n C e ' ^2 2 (77+77 ap a 

(A9.13) 

which is always positive. 

Equation (A9.9) can therefore be written as 

a 3 «2 ,, 8/z. A + A <Z> - - ) + A h h^L M 
2 131 " 8P 81 

8 f 87z 8 g , - n , . . 
+ 8P8P 81 -81= 0 ( A 9' 1 4> 

In order for the equilibrium to be stable, the Routh Hurwitz 

criteria (May, 1974) require that three conditions be satisfied: 

<i, - g > 0 (A9.15) 

as ^ > 0 and dh/dl < 0, eqn. (A9.15) is always satisfied if an 

equilibrium exists. 
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( i i ) x x . b Bh 
B H BP BI "2 BI > 0 (A9.16) 

Using eqns. (A9.13) and (A9.4) to (A9.7), the left hand side of 

eqn. (A9.16) may be written: 

( v + f t ) ( q - f r ) 2 ( c t + n ) ( 1 - p ) a ( v + P ) X P * ( P n + I ) 
2 + (H+Hn)'z qp o 

n(a-b)XP 
(.H+Ho) 

r\(a-b) (q+n) (P*)2 
(P-I)2 

XP Pnq(v+£) 
(Ho+H)* 

(A9.17) 

Hence condition (A9.16) is always satisfied if an equilibrium exists, 

(iii) Cb (b -b — - — Bh 
C l l l ) A a r ^ 2 a j ap a i } ap ap a i ^ 2 ai 

multiplying inequality (A9.18) out, and placing (+) below positive 

components, and (-) below negative components, one may obtain: 

u u -L2 
b i 2 ~ 1 "ax 

•7 Bh a g , 
hl -BP BI + bl 

Bh 
a i 

Bh Bg_ Bh :.3£ aP 
+ ap a i ax ap ap 

(+)(+) - [ ( + ) ( - ) ] - [(+) (+) ( - ) ] + [(+) (+)] +[(+) ( - ) (-)]><+) (+) 

ie (+) f (-) 

Hence condition (A9.18) is always satisfied if an equilibrium exists 

and thus the equilibrium of eqns (A9.1) - (A9.3) is always stable, if it 

exists. 
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APPENDIX 10 Derivation of the relations dM/dt = 0 and dQ/dt = 0 

The model under consideration is described by the following 

equations: 

— = 717 [(a-b) - k/17 - oM( 1 - Q)] (A10.1) 

|| = oil - £)(1 - f (M)~k) _ (V+a)(3 + aMQd - Q) (A10.2) 

H = M M M . ( Y + a + a ) . c f ( M ) - < ^ > 1 ( M ). e-t . . «* (A10.3) 

M -R where f (TV/) = 1 + - (l - e d 

At equilibrium, eqns. (A10.1) - (10.3) are equal to 0. From eqn. (A10.1), 
* one may obtain the equilibrium total host population, 717 , in terms 

of the equilibrium mean proportion of immune hosts Q , and the equil-
* 

ibrium mean parasite burden on susceptible hosts, M : 

717* = ( a - b ) - aM*) / K + oM*Q*/k (A10.4) 

Substitution of eqn. (A10.4) into eqn. (A10.3) produces the following 

equation, involving up to cubic terms in Q\ 

« j V A s * 

* 2 
+ (Q ) (a-b) - 3aM 

aM v-y-a-ef (M ) f(M*)-e~C aM 
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+ Q 
aM 

Y+a+a+ef(M*)~ (^ + 1 )[ ±(M*)-e~ K] + 
aM 

+ [3aM - 2 (a-b)] 

aM 
v-y-a-c±(M*)~ ( k + 1 )  f (M*)-e~^ 

aM 

\ 
+ — 

K 

- K 

(a-b) - aM 

* -Ck+1) 
y+a+a+c±(M ) f (M*)-e~C aM 

(a-b) - aM + K 

= 0 (A10.5) 

* * Hence, for any value of M , there are three values of Q at which 

dM/di = 0. 

Similarly, setting eqn. (A10.2) to zero produces the following ex-

pression, containing up to quadratic terms in Q: 

* 2 * 
(Q ) aM + Q 

* —k 
v+a-aM + c(l-±(M) ) 

-k 
- c (1-f (M) ) = 0 (A10.6) 
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APPENDIX 11 Stability Analysis of the model with a fixed proportion 

of hosts resistant at birth 

The model is defined by the following three equations: 

|| = H [ ia-b) - aMil-R) 1 (All.1) 

dR 

dt 
— = ail-x) - aR + (xMRil-R) ( A l l J 2) 

dM 
dt 

= M 
XHjl-R) 

iH+Ho) 
(y+a+a+zc) 

axR 

H-R) 
(All.3) 

Equations (All.l) - (All.3) have a non trivial equilibrium if 

b > ail-x) (All.4) 

and X(b-ail-x))/b >a+y+ax+\c?xil-x)] / [ b-ail-x)] (All.5) 

The equilibrium values of H, R and M are: 

* 
H = 

H 

Xjb-ajl-x)) 

y+a+ax + a^xjl-x) 
ib-ail-x) 

-1 
(All.6) 

R = ail-x)/b (All.7) 

M* = b ia-b)/[a (b-ail-x))] (All.8) 

Letting dH/dt = f, di?/d£ = g and dM/dt = h, the partial derivatives of 
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f, g and h with respect to H, R and M have the following values at 

the equilibrium: 

= 0 ; s i £ - - o * W > 377 3 R 

M. 
3 H = 0 ; 3 R 

* * 3a * * 
a+aM (1-2 7? off (1-7? ) 

£77 
(All.9) 

3/2 = \M*jl-R*)N0 2h 
377 (H*+Ho) 2 ; 97? 

AP aa; 3 h 

(H + 77*) 
a 

= 0 

The eigen values of the community matrix are therefore given 

by the following equation (evaluated at the equilibrium): 

-A 3//37? 3//377 

3g/37?-A 3g/377 

3/z/377 3/z/ 37? -A 

(All.10) 

le 

A 3 _ A 2 I f l L - j M f[£* 
37? L 37? 377 3 H 377 _ 

3A 

377 
3/ 3£ 
377 37? 

3 £ 3 £ 

37? 377 = 0 (All.11) 

The Routh-Hurwitz criteria require that: 

(i) 3g/37? < 0 (All.12) 

$ * 
Now, at equilibrium,- 3g/37? = a- +a77 (1-27? ) 

= -b-aM*R* (All.13) 
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which is always < 0 

<"> i 
i f i f M . 
3 M 3 i? " 3i? 3M 

> 0 (All.14) 

3 h As T77 > 0, eqn. (All.14) requires that 
oti 

i f i £ > i f 
3M 3i? 3i? 3M 

(All.15) 

Which, using eqns. (All.9) and eqn. (All.13), requires that, at 

equilibrium, 

^ * ^ 
b + aM R > aM R (All.16) 

which is always true if the equilibrium exists. 

( i i i ) f k i i + i f 
^ ' 3i? [bM bR bH 3 A/ 

bh 
bH 

3 f i l I f i£L 

3M 3i? " 3i? 3M 
(All.17) 

bg_ bh bh 3£ 
3M 3i? > 3M 3i? 

( - ) ( - ) > - (+) (+) 

which is always true. 

llence any non trivial equilibrium of eqns. (All.l) - (All. 3) is 

stable if it exists. 
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APPENDIX 12 Stability analysis of model's in which the parasite survives 

host deaths and host numbers are maintained constant 

(a) Proportion of trophozoites surviving host death is constant 

The model is defined by the following equations. 

dP/dt = $ ET - (a+b+y+\i)P - a (k+l)P*/(kH) (A12.1) 

dT/dt = X yP- x(a+b)P +x(k+l)I?/(kH) - m2t - m (A12.2) 

If a non trivial steady state exists, the equilibrium number of tomites, 
* 

T , is given by: 

JF* = XP* [y+:c(oi+k) + xa(k+l)(P*)*/CkH) 
* 2 

/ <y 2+SP) (A12.3) 

substituting eqn. (A12.3) into eqn. (A12.1) and setting it to 0: 

P a(k+1) 

kH 
1 -

XHx 
H+H 

o 

HX 
H+H 
o 

[y+a?(a+Z?>] - (a+fr+y+y) (A12.4) 

where H = yo/0 o 2 

It can be seen that an equilibrium will exist if 

a; < (HQ+H)/(XH) 

HQ 

a n d  1 1 ' { X [y+x (a +b)] / (a+k+y+y) - 1} 

Defining f = dP/dt and g = dT/dt, 

g with respect to P and T are: 

(A12.5) 

(A12.6) 

the partial derivatives of f and 
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3yyap = - (a+ib+y+y) - 2Pa(P+l)/(PP); af/827 = BP 

= A y+x [a+fc+2a (k+l)P/ (fcfl) 1 ; = -(y9+3P) 

(A12.7) 

With two equations, the Routh Hurwitz criteria are (May, 1974); 

bf/bP + bg/bT < 0 (A12.8) 

and (bf/bP) (bg/bT) > (bf/bT) (bg/bP) (A12.9) 

Condition (A12.8) is clearly always true 

Condition (A12.9) requires that: 

(y2+3P) (a+Z?+y+y+2Pa(k+1)/(kH))>XBP y+a: [a+P+2a (k+1 )P/ (ZcP)] (A 12.10) 

= > 
2a(P+1)P 

kH 1 -
APa: 
P+P ? YTZk [Y+«(<*+&>1 - (a+P+Y+y) * (A12.ll) P +P 

o 

Comparison of eqn. (A12.4) with condition (A12.ll) shows that at 

equilibrium, condition (A12.ll) requires that 

a(k+1) P 
kH > 0 (A12.12) 

which is always true. Hence any equilibrium is stable. 
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(b) Proportion of trophozoites surviving host death declines with' 

increasing burden 

The model is defined by the following equations: 

dP/dt = fflT - (y+a+y+2?)P - ct (&+l)P2/(X#) (A12.13) 

dT/dt = AyP + XHS(M) - $HT - y2X (A12.14) 

where S(M) is as defined by eqn. (11.23) 

If an equilibrium exists, the number of tomites is given by: 

x* = x [ y P + P S ( M ) ] / (y2+8P) (A12.15) 

substituting eqn. (A12.15) into eqn. (A12.13) gives the following 

equation for the equilibrium value of P 

X H 
]|c 

[y+ S(M*)/M*] = (a+y+y+Z?) + (A12.16) { h 0 + m j * • ^ 

where H = y0/8 and M* = P*/P 
o 2 

Provided 

(a+y+Y+Z?) (A12.17) 

ie. H > Hy, eqn. (A12.16) will always have a solution, because S(M) -»• 0 

as M 
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Defining f = dP/dt and g = dT/dt, the partial derivatives of 

f and g with respect to P and T are: 

3//3P = -(y+ct+y+2?) - 2p(k+l)P/<fcP) ; 3f/ZT = BP 

3//3P = Ay + A 3P(M)/3M ; 3g/3T = - <3P+y2> 

(A12.18) 

The Routh Hurwitz criteria are as defined in conditions (A12.8) 

and (A12.9). 

As df/dP < 0 and Zg/dT < 0, condition (A12.8) is obviously 

satisfied. Condition (A12.9) requires that: 

(3P+y0) (y+y+a+b+2a(7c+l)M/ZO > 3P(Ay+AdS(M)/dM) (A12.19) 

=> [ AP/(P^+P)] [y+dP(M)/dAf] < y+y+a+fc+2a (k+l)M/k (A12.20) 

Comparison of condition (A12.20) with eqn. (A12.16) shows that con-

dition (A12.20) will always hold at equilibrium if 

dS(M)/dM < S(M)/M (A12.21) 

S(M) may be written as MV(M), where V(M) is a function of M which 

is strictly monotonically decreasing with increasing M. 

Now. 

dS(M)/dM = V(M) + MdV(M)/dM (A12.22) 
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As V(M) is monotonically decreasing, and hence 

dS(M)/dM < S(M)/M, and the equilibrium is stable. 
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APPENDIX 13 Two forms of a parasite3 one with a higher reproductive 

rate than the other. 

Suppose there are two types of parasite, P^ and P2, and that 

the rate of increase of P^ (A1> is greater than that of P 2 

but the per capita pathogenicity of each is the same. Using the 

same parameter definitions as in Chapter 12 (Table 12.1), and denoting 

the number of parasites on a host by i, and the number of ? 2 

parasites by J, the following equations will describe the behaviour 

of the system: 

~ = (a-b)H - a(P1 + P 2) (A13.1) 

riP 2 
dt = (tf+H ) " (Z?+^)P1 " > - (A13.2) 

riP  X2 P2 H 2 

HI  = (H+H ) " (2?+'y)P2 " aPE(<7 > - a P E W > (A13.3) 

If both P and P parasites are independently randomly distributed, 
1 2 

dP X P H aP? aP P 
3* = 7 ^ - " ^ a ) ? , - — - — (A13.4) 

(9 

dP X P H aP? aP P 
— I F W " — - — (A13.5) 

at equilibrium, dP /dt = 0 and dP /dt = 0. If neither P or P = 0 
1 2 1 2 

then: 

A H/(H+H ) = (ib+y-Kx) + a P/H + a P/H (A13.6) 
X O 1 2 

and 
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A2H{H+HO) = (Z?+y+a) + aPg/M + aP /H (A13.7) 

If A f A , eqns. (A13.6) and (A13.7) cannot be simultaneously 
1 Cl 

satisfied. One of P_ or P must equal 0. This is merely a mani-
1 2 

festation of the competitive exclusion principle. 

Suppose, however, that the distributions of i and j are still 

independent, but that the distributions of i and j are individually 

aggregated. This is unlikely to be the case if overdispersion is 

generated primarily by differences in host susceptibility to infection, 

but may be an adequate first approximation, if overdispersion is 

generated by hosts passing through clouds of infective stages. 

Assuming that the degree of overdispersion of each parasite may 

be described by a negative binomial distribution, and (for simplicity) 

that a common k will describe both distributions, eqns. (A13.2) and 

(A13.3) become: 

dP±/dt = A P H/iH +H) - (Z?+y+a)P1 - a{k+l)P 2/(klD-aP^/H (A13.8) 
1 1 

dP2/dt = A 2P2H/iHQ+H) -(X+y+a)P2 - a(k+l)P*/ (.klD-aP^/H (A13.9) 

Assume that A, > A 2 

At an equilibrium with only P_ present 

P. 
* 

1 < 2 ? + a + Y ) ^ T I ) 
(A13.10) 

At this point, 



-334-

d P 2 

dt = P , 
V 

P+P - (b+y+a) -
aP„ 
~P 

* -

(A13.ll) 

ie d P 5 

dt 
= P, P+P - (P+Y+a) -

(fc+1) 

A P 
P+P" - (fc+y+a) (A13.12) 

Even though A > A , eqn. (A13.12) may be positive, provided k 

is sufficiently small. The form of the parasite with the lower 

reproductive rate may therefore be able to invade a population of 

the other form of the parasite. If eqn. (A13.12) is positive when 

P 2 is small, eqn. (A13.8) will also be positive when P^ is small, 

and an equilibrium with both forms of the parasite present must exist. 




