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ABSTRACT

A class of probability models called Multipivotal

Models is examined.

Pi%otal Models, which are an extension of the Structured
Models developed by Fraser, are considered first.

The group structure of the transformations defined in
Structured Models is found to be too strong and can

be weakened to an algebraic structure called a Loop
while still keeping most of the properties of the
Structured Model. This includes preserving the exist-
ence of a "pivotal distribution" of the transformations
from which pivotal probability statements about the
transformations can be obtained. A pivotal prbbability
measure is introduced which offers an explanation for
some of the more unusual properties of pivotal probability.
One possible interpretation of the pivotal distribution

is also given.

Multipivotal models are introduced by combining pivotal
models in a symmetrical step by step method, thus
ensuring that the order of combination of the pivotal

models is not important.

These multipivotal models provide a general method of
fitting a shape from a class of geometrical shapes,

such as ellipses or cones, to a set of data that lies
approximately on a shape from the class; this specific

application is called the shape fitting problem.



Multipivotal models lead to tests between various
hypotheses of shape associated with Megalithic stone
rings. Other examples are in manufacturing industry

in supplying testslof the shape of engineered components
within acceptable tolerances. Examples are presented

from these fields of application.
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1 INTRCDUCTION

Increasingly many disciplines are producing data
structures that take the form of a set of points lying
approximately on the perimeter of an unknown geometrical
shape which is believed to come from a particular class
of geometrical shapes. Questions associated with this
type of data strﬁcture are collectively known as Shape

Fitting Problems.

The '"true" shapes of Megqlithic stone rings, such as
Avebury br Stonehenge, have been the subject of various
hypothéses about their being circular or elliptical or
whether their shape is a series of arcs of a circle,

The analysis of shape fitting problems can suggest tests

of the:alternative hypotheses.

The need of manufacturing industry to test the quality
of its products is increasing. As the shape of most

engineered components is specified in a blueprint, the
accuracy of the fit to the blueprint shape can confirm
that the components have the specified shape to within

acceptable tolerances.

The particular case when thé-unknown geometrical shape
is believed to come from the class of all circles was
shown in Scott's DIC thesis, Scott (1981), that this
could be modelled by a conditional structural model
(Fraser 1968 part II). This makes use of geometrical

transformations which seem to be sensible for such
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geometrical problems.

With this particular case in mind, it was decided to
extend the results of Fraser to encompass a wider class
of geometrical shapes. The theory for this is described

in Chapter two.

Section 2.1 begins with the definition of a class of
probability models called Structured Models (Fraser 1971),
The distinction between Structured Models and Classical

Probability Models is made.

In section 2.2 a Pivotal Hodel is defined. It is a
Structural Model that satisfies three conditions:

a Partition condition, an Additivity condition and a

-~ Pivotal condition. This particular form of definition

is that used by Dawid and Stone (1982).

Furthermore it is shown how upper and lower probabili-
ties (Dempster 1966) can be constructed on the set of
transformations of a structured model, when it satisfies
the partition condition. If a Structured Model also
satisfies the additiﬁity condition, the upper and lower
probabilities on any particular subset of transformations
will be equal to each other. This was shown by DPlante
(1979). Because 2 Pivotal Model satisfies both the
Partition and Additivity conditions, we can alternatively
define a Pivotal Distribution on the set of transforma-

tions.
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In section 2.3 some properties of Pivotal Models are
explored. The idea of Equivalent Pivotal Models is
introduced., It is shown that any two Equivalent Pivotal
Models will generate the same Pivotal Distribution on
their common parameter space. It is then demonstrated
how to construct a mathematically simple Equivalent
Pivotal Model for any given Pivotal Model. It is then
assumed for the remainder of this thesis that any given
pivotal model is already in its mathematically simple

equivalent form.

The sample space is decomposed into what are called
reference variables and transformation variables.

(These are analogous to the sufficient statistics and
ancillary statistics of classical statistical inference).
By conditioning on the reference variables we obtain a
_Reduced Pivotal Model which contains all the relevant
information about the parameters in the model. A binary
operation, defined on the parameter space, is induced

by tﬁis particular reduction of the model and this is
shown to have the algebraic property called a Loop.
Loops do have a connection with geometrical transforma-
tions (see Bruck (1971) for instance), which is one of

the reasons for this particular avenue of exploration.

The Pivotal Distribution is then calculated using loop-
invariant differentials and the resulting distribution
is written in a form that is similar to the form of the

distribution obtained for Structural Models (Fraser 1968).
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Finally in this section the relationships between
Pivotal and Structural Models and between the Fiducial

and Pivotal Distributions are discussed.

Section 2.4 is concerned with developing the idea of
Pivotal Measure. The concept arose in answer to the

following question:

"If the Pivotal Distribution is a probability distribu-
tion then what is its event space, o-algebra and

probability measure?"

The resulting Pivotal Measurable sets are shown to have

an expected. posterior probability interpretation.

Pivotal Measurable Functions are then introduced as a
way of extending Pivotal Probability to other parameter
spaces and the resulting measurable sets are also shown

to have an expected posterior probability interpretation.

Finally there is a discussion of the relationship between
some of the ideas of Wilkinson (1977) and those intro-

duced in this section.

In section 2.5 the Pivotal Hbdel is generalised to in-
clude the composition of transformations, such that for
a particular transformation if the others were known
then the model would be a Pivotal Model. This general-

isation is called a Multipivotal Model.
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The Conditional Pivotal Distributions of each transfor-
mation in the composition, given that we know the other
transformations of the composition, are calculated and
combined using a symmetrical step by step procedure to
obtain a joint distribution called the Multipivotal
Distribution. Finally the interpretation and some
problems of using the Multipivotal Distribution are

discussed.

In Chapter three some alternative approaches for spec-
ific shape fittiné problems that have been suggested

are described and compared with the methods developed
in Chapter two through the analysis of some real data

from the engineering industry and archaeology.

We begin, in section 3.1, by examining some of the
alternative methods for fitting a2 circle through a
set of data that are believed to be approximately on a

circle.

A multipivotal model is constructéd for the problem.
From this a multipivotal distribution ié obtained.

This can be used to construct intervals of the para-
meters that have various pivotal probabilities attached .
to them. These can be usetho make various inferences

about the parameters.

The first illustrative example is Brogar Megalithic
Stone Ring (Figure 3.1.1). One hypothesis about this

ring is that it is a cirele with a diameter of 125
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Megalithic Yards. Assuming this to be true, one can
obtain estimates of the length of a megalithic yard.
A comparison of various methods of fit is given together

with their estimates of the value of the megalithic yard.

The second example is Avebury Megalithic Stone Ring
(Figure 3.1.4). It was suggested by Thom et al (1976)
that the ring consists of a series of arcs of a circle

with specific centres and radii. This is investigated.

In section 3.2 we examine the ellipse fitting problem.
Some of the alternative methods of fitting an ellipse
through a set of data that are believed to lie approx-

imately on an ellipse are given.

Two multipivotal models are constructed together with
their multipivotal distributions. The distributions
fof the two models have different interpretations, so
the choice of model depends on the final interpretation

that is required.

The illustrative example used for this comes from the
engineering industry: a mechanical component that is
believed to have an elliptic cross-section with major

and minor axes of 12.70 mm and 6.35 mm.

In section 3.3 the rectangle, limacon, cuboid and cone
fitting problems are nresented. A multipivotal model
is constructed for each, together with its multipivotal

distribution. These particular shape fitting problems
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illustrate some of the typical problems of shape fitting.
The limacon fitting problem is an example where the data
and the class of geometrical shapes are expressed in
polar co-ordinates. The cuboid and cone fitting
problems are examples of three dimensional shape

fitting problems.

Finally, in chapter four, conclusions and suggestions

for further work are discussed.

In Appendix one some theorems and definitions are

given.

In Appendix two a summary of the theory of loop and

loop invariant differentials is presented.

Appendix three contains an algorithm used in the
circle and ellipse fitting problem and listings of

the computer programs used in chapter three,
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2 PIVOTAL AND MULTIPIVOTAL MODELS

We start this chapter by defining a class of prob-
ability models called Structured Models (Fraser 1971).
We then restrict the Structured Models to a category
called Pivotal Models (Dawid & Stone, 1982) which we
examine in some detail. Later in this section we extend

the pivotal models to a class called Multipivotal Models.

2.1 Structured Models

Structured Models are a theoretically useful class
of probability models. They are also called Functional
Models (Dawid & Stone, 1982). In Structured Models we
observe a realisation of a random variable from a fixed
known distribution which has undergone an unknown trans-
formation taken from a known set of transformations.

This set is such that each realisation and transformation

produces a unigue observation. We denote this model by
X = foe (2.1.1)

where eeQ 1is a random variable from a known distribution
f(+) and @ is the sample space of e's, we observe -xXeX
the '"observed'" sample spacegﬁnd {¢B:eee } the set of
transformations: Q+X is given. A more extensive formal
definition of a Structured Model may be found in

appendix Al.1 and is due to Plante (1979).
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Example 2.1.1 N(s8,1) model.

Let f(+) be the standard normal distribution N(0,1) on
ﬂ=4R; and consider the family of locaticon transformations
{¢g:0e0 =R} : o =R+>x2=R
such that if €@ and 89 then
Boe = § + ecX (2.1.2)
We now have a Strucfured Model with
X = 8oe , evN{(0,1) (2.1.3)

where XeX , 60 and ee® o

Example 2.1.2 Bin (3, 1-8) model.

Let ¥ be the set {0,1,2,3} , let £(.) be the rectangular
distribution on & = (0,1) and consider the family of
transformations {@e:ese = (0,1)}

defined as follows. If 8«2 and ecQ then

Boe = .(0 if 0 < e s ty

1 if t1 < e 2 t2
' P (2.1.4)
2 if tp < e £ tg

A
U

3 if t3 < e

where t; =03, t, =ty + 382(1-08), t3 = t, + 30(1-8)2,

We now have a Structured Model with
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X = 8oe e v rect(0,1) (2.1.5)

where XeX, 8e® and ecl o

From the definition of a Structured Model, it is easily
seen that the interpretation is different from that of a
classical probability model. In the classical model the
random variable is observed directly but its distribution
is known only to come from a set of possible distributions,
whereas in the Structured Model the random variable has a
fixed distribution but we only observe the random wvariable
after it has been transformed by a transformation taken

from a set of transformations.

0f course we can always convert a Structured Model into a
classical model fairly easily ensuring that there is a
one to one correspondence hetween the transformation used
in the Structured Model and the distribution used in the
classical model. 1In the classical theory, x of example
2.1.1 would have a normal distribution with mean & and
variance 1 and x of example 2.1.2 would have a binomial

(3,1-8) distribution.

This conversion to a classical model may involve a loss
of the information contained in the internal structure of

the Structured Model.

The classical model ignores this internal structure.
As a consequence it is possible to construct different
Structured Models which correspond to the same classical

model.
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Example 2.1.3

Consider the Structured Model

X1 1, 0 €1
= 3 (2.1.8)
X2 Py (1-p2) e,
with e;,e, iid N(0,1)
X1 €1
where e =X , Em: = Q
X R €1 [R
1, 0 '
and : pe (-1,1) = © a set of
£y (l‘Qz)k
transformations QX%
This model corresponds to the classical model
X1 §] 1 P
N N ’ (2.1.7)
X2 a 4] 1

Now x; and x, enter equation (2;1.7) symmetrically but
equation (2.1.6) is not symmetric in él and x,, so if we
exchange xX; for x, in equation (2.1.6) we will obtain a
Structured Model thgt is different from the original
Structured Model but correéponds to the same classical

model. O
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2.2 Pivotal Models

We have defined the Structured Model and shown how it
differs from the claséical model. In this section we begin
by defining upper and lower probabilities (Dempster 1966)
on the set of transformations used in the Structured

Model.

It is assumed throughout this section that we have no
additional information about the model apart from
observing an xeX. If this is not the case then other
methods of analysis might be more appropriate, e.g. if

we had a prior distribution for 8 then a Baysian analysis

would be more appropriate.

Given an observation x and a Structured Model, the set of

possible antecedents for xeX is

Q, = {e: ec,J0ed s.t. x = doe} (2.2.1)
that is to say, the subset of the sample space of e that
can be transformed into the observed x. The set Qy might
include the whole of the sample space @, but usually this
is not the case so we restrict our attention to the set
Q- Since we know that the’'random variable must take its
value on the set @ we can limit the probability distri-
bution on ? to a conditional probability distribution on
Q.

X

To calculate the conditional probability distribution by
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conventional formulae we require either

a) that the probability given to the set 2, by £(.)

be non-zero, or

b) that the sets {Qx: xeX} form a partition of @ where

we partition @ as follows.

Consider the set Qx of possible antecedents for xeX and

the set of feasible observations from an ec@.

X, = {x: xe¥,30€0 s.t. x = doe) (2.2.2)

then the sets @ partition the space Q.

Iff Vee?, Vy, zeX, , 2, = Qi . (2.2.3)

that is to say iff each feasible observation xeX, from any
fixed element ecQ, produces the same set of possible

antecedents, namely Qx.

Example 2.2.1 N(8,1) model with two observations.

We consider the structured model

o and e:0 = IR

=
=
D
x ]
]
o
1]
—
Ed ke
r -
e S
m
Ry
i
f
|®
I
P
0] 0]
N
3]
»,
i
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indexing a family of location transformations

{og° peR} : 9+X i.e. R2>[ defined to be

e : g + =2
g0 - =
Now consider a fixed element ecf. The set of feasible

observations from e, X, takes the form

e, + @
Xe= : se R
- e, + §

e; + 8
Consider a general element from X_, X = ©
e, + s

Boﬁﬂ% This element will generate a set of possible

antecedents gx which will take the form

ey - g*
: G*ER
e; - 9%

er + . - 0
8y ~ ° ‘80’ 6cR
i-Re;
2 llex +0, -9 ©

One can easily see that the generated set of possible

antecedents 0y is independent of the element chosen from

%, Hence from (2.2.3) the sets Q. : xe¥  partition the

space 2. These positions are a beam of straight lines

parallel to the line z; = zz,(zl,zz)aﬁf. o

We will consider only thosegstrﬁctured models where the
conditional probability distribution on Qs has been
obtained by a partition. This is one of the restrictions
on a structured model needed to obtain a Pivotal Model.

The details of how to calculate the conditional probability
on 2, for a Pivotal Model will be dealt with more fully

X

later.
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Having obtained the conditional distribution on Q., we

can proceed to obtain the upper and lower probabilities

on 0, the indexing set of the transformations.

Consider a set CC® (a measurable subset of @), that is to
say, C is a subset of the possible indexes. Given that we
have observed xc¥, we define the set of antecedents of x

that are generated by the set {¢,}, 8ecCCO as

2.(C) = {e: ee and for which 8e¢C s.t. x = foel

(2.2.4)

Then QX(C)E.QX and one can see that the previous definition

of @ the set of all antecedents of xc¥, coincides with

X’
the definition of'nxce>.

We now define the upper probability of Cco given that we
have observed xeX, P+X(C) say, to be the probability given
to the set 2 (C) by the conditional probability distribution
on Qx‘ We define the lower probability of Cc@ given that

we have observed xeX, P_x(C) say to be

P*x(C) =1-P x(E)

where C is the complement of C in 0, that is to say, the

set of indexes in © that are not in C,.

Example 2.2.2 (Example 2.1.2 continued) Bin(3,1-8) model.

Consider the case when we have observed x and we are
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Figure 2.1.1 Upper and Lower Probability Diagram for

Example 2.2.2, Bin(3,1-9)

The subset illustrated is C = {0:0g<0<.4}<c® when we observe

x=2.
P,(C) = 0.784 = 1 - (1-0.4)3
P7(C) = 0.352 = (0.4)3 + 3(0.4)2(1-0.4)
1.0
Transformation : o=t
6 j —l
0.8
- e=%
1 e=t
- ""_i
0.6 x=0 x=1 x=2
-
d x=3
0.4
0.2
P (c) p¥(c)
D'O l | L L] 1 l ¥ | § | § 1 l ) ] 1] L] ] L] 1 ) | I L ] ) ¥ ¥
0.0 0.2 0.4 0.8 0.8 i.0

random variable e
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required to find the upper and lower probabilities for the

set of indexes

C =1{8: 0 <8 < .4} Cco
The set of antecedents of each xeX, nx are all equal to
the original space § , hence we have a trivial partition
of 9, namely the whole space ¢ itself. As a result the
conditional probability distribution will be the original
probability distribution defined on @, namely

e v rect(0,1) esQ = (0,1)

In the particular case in which we observe x = 2, the
set of antecedents generated by the set {¢9}, 8eC is easily
shown to be

0,(C) = {e: 0 < e < 0,784}

where 0.784 = 1 - (1 - 0.4)3.

This is illustrated in figure 2.1.1. This set has probability

0.784, so the upper probability of C is just
+ .
P.,(C) = 0.784. -
The complement of the set C is

C =1{8: 0.4 <8 < 1}
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The set of antecedents of x = 2 generated by {¢G} 0eC

can be shown to be
0s(C) = {e: 0.352 < e < 1}
where 0.352 = (0.4)3 + 3(0.4)2(1 - 0.4).

This set has probability 0.648, so the lower probability

of C is
P ,(C) = 1 - 0.648 = 0.352, o

Example 2.2.3 (Example 2.1.1 continued) N(8,1) model.

Consider the case when we have observed x and we are
required to find the upper and lower probabilities for

the set of indexes
C=1{86 :1¢< 8 < 4.92}

The set of antecedents of each: xeX, ., are all equal to
the original space 9. As a result the conditional prob-
ability distribution will be the original probability

distribution defined on @, namely e ~ N(0,1) ecQ ={R.
In the particular case in which we observe x = 2.96, the
set of antecedents generated by the set {¢é} 9eC can be

easlly shown to be

92.96(0) = {e: -1.96 < e < 1.96}
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This set has a probability of 0.9500, rounded to 4 dp

so the upper probability of C will be
Py 46(0) = 0.9500.

The complement of the set C is
C=1{6: 81 or o 2 4.96}

The set of antecedents of x = 2.96 generated by {¢e} 8eC

can be shown to be
92.96((:) = {e: e s -1.96 or e 2 1.961}

This set has a probability of 0.0500, rounded to 4 dp
so the lower probability of C is

P = 0.9500 a

2.96¢®
A more thorough discussion of upper and lower probabilities,
together with some of their properties, is given in
Dempster (1967). Their use in a decision theory framework
can be found in Beran (1971), and although his upper and
lower probabilities were obtained by a different mechanism

than the one adopted here, his results still remain valid.

We now investigate the question: "When are the upper and
lower probabilities equal to each other for all subsets
of @, the indexing set of the transformations defined in

the structured model?"
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This is an important question because when they are we

can define a probability distribution on ©, the indexing

set of the transformations.

The question of equal upper and lower probabilities was

answered by Plante (1979) using the idea of additivity.

A structured model is called additive at the point xe¥ if

and only if
ﬁx({el})ﬂ Qx({ez}) = ¢ (2.2.5)

the empty set, whenever the elements 81 and 6 of © are

different, that is to say the point xe¥ is additive if and

only if for each random variable eeﬂx there is only one
“transformation dgr 8@ that transforms it to x. A struc-
tured model is called additive if and only if it is

additive at every point xeX.

Plante in the above paper was then able to prove that the
upper and lower probabilities are equal to each other for
any (measurable) subset of © if and only if the structured

model is additive.

Example 2.2.4 (Example 2.2.2 continued) Bin(3, 1-8) model.

]
[

Again consider the case in which we observe x The

set of antecedents of x = 2 generated by $g 8 = 0.4 can

be shown to be
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92({0.4}) = {e: 0.352 ¢ e ¢ 0.784}

and by ¢a: 8 = 0,5 can be shown to be

92({0.5}) = {e: 0,5 < e < 0.8751}

Hence the intersection of these two sets is

R({0.4131 24({0.5}) = {e: 0.5 < e < 0.784}

which is non empty. This implies that the structured
model is not additive, since it is not additive at the
point x = 2. Hence the upper and lower probabilities need
not be the same on a given subset of 0. This fact was
borne out in example 2.2.2 where an example was given of

a subset of © that had different upper and lower probab-

ilities. g

Example 2.2.5 (Example 2.1.1 continued) N(8,1) model.

Consider the case in which we have observed xeX the set of
antecedents of x generated by an element ¢B 8e® consists
of the single point

o (8) = {e: e = x - 8} -

To have a non empty intersection of two of the above sets

for a fixed xeX, we require

X = 01=x - 82 81,820 oOr 81 = 82
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This implies from condition (2.2.5) that the structured

model is additive at the point x and as this is true for
a general xeX the structured model is additive. Hence
any (measurable) subset of © will have equal upper and
lower probabilities which proved to be the case for the

subset used in example 6. n|
The additive and partition properties are restrictions
on a structured model needed to obtain a Pivotal Model.

The final restriction is the Pivotal condition (Dawid and

Stone 1982).

A structured model satisfies the pivotal condition if and

only if

xe¥ andV 9e03qlecn s.t. X = ooe (2.2.6)
that is to say, for every observation xec¥ and transfor-
mation ¢g: 06e0, it is possible to solve x = foe for a

unique eef.

Notice that the pivotal condition implies that there exists

a function T: X x 6 -t such that
if x = 8oe then T(x,B)fé’e (2.2.7)
where xeX, 98¢0 and ecQ.

T is called the pivotal function. Since e has a known

distribution on @, the pivotal funection T corresponds to
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the classical definition of a pivot that is a function of
the data and parameters that has a known distribution.
Unlike classical models, where a model might have many
maximal pivots a particular structured model that
satisfies the pivotal condition will have only one maximal

pivotal function.

Example 2.2.6 (Example 2.1.1 continued) N(8,1) model.

Given a random variable eell and a transformation ¢B Be@,

the observation generated is

il
@
+
o«

X = 6oe
By rearranging this we obtain x - ¢ = e. The difference
between the two real numbers is unique hence this example
admits a pivotal function

T(X,8) = x - 8 .

In summary: a Pivotal Model is a structured model with

the following restrictions

a) The transformations ¢, e partition Q the set of

random variables.
b)Y The structured model is additive.

c¢) The structured model satisfies the pivotal condition.
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Example 2.1.1, the N(98,1) model, is an illustration of a
pivotal model since it satisfies all three conditions

(see examples 2.2.3, 2.2.5 and 2.2.6).

In the next section are developed some thecoretical aspects

of pivotal models.
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2.3 Properties of Pivotal Models

In the 1asf section we defined pivotal models by
placing restrictions on structured models. 1In this
section we begin to explore some of their properties.
We start by introducing the idea of equivalent pivotal

models. Given a structured model
X = fgoe (2.3.1)

where xe¥X, ecl and 8 indexes a set of transformations

¢e:ﬂ-+X , Be@

Consider another observable sample space % such that
there exists a one to one mapping a: %+§. If a is a
fixed and known mapping then this induces a structured
model of the form

~

X = 8oe (2.3.2)

where xcX, ecfl and ¢ indexes a set of transformations

-

by = a“lo¢e : QX , 08e0

We then say that the structured model given in (2.3.2)
is an equivalent structured model to the one given in
(2.3.1). This leads to the definition of an equivalent

structured model as follows:

Given a structured model, a second structured model is

said to be an equivalent structured model to the first
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if there exists a one to one transformation of its
observable sample space that converts it into the first

structured model.

One can easily show that the above relationship is an
equivalence relation on the set of structured models.
The following theorem indicates why we have pursued the
definition of equivalent structured models; it is proved

in the appendices Al.2.

Theorem 2.3.1

a) Given a pivotal model, then any equivalent structured

model will also be 2 pivotal model.

b) Given a (measurable) subset Cs6 and an observation
xeX then the probability induced by x on C will be
the same as that induced by the corresponding point

xsi in the equivalent pivotal model on C.

This is an important theorem because it means that if
we have a pivotal model we can take any equivalent
pivotal model and still obtain the same probability
statements about the (measurgble) subsets of 0. Hence
if an equivalent pivotal md&él simplifies a particular

pivotal model then we are allowed to consider it instead.

Corollary 2.3.1

Any pivotal model has an equivalent pivotal model with
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the following properties:

a) The observable sample space ¥ and the random variable

sample space 2 are the same, that is % = Q.

b) One of the transformations ¢i , -1€0 say, 1s the

identity transformation (-+R.
Proof

This can be achieved by taking the one to one mapping
a i = QX to be a fixed transformation from the set

{¢4 » 0c0} , a = ¢, ieo say. Then ¢, = ¢.'1o¢e : QR

i

with 8c0. When 8 = ied , ?pi will be the identity
transformation. Note from the definition of a pivotal
model that all transformations ¢a,eee will be one to one

mappings of Q@ onto %.

Example 2.3.1

Consider the pivtal model
x = Hoe e v N(0,1)

with x, eeft ={R- where 6c0 =R indexes a set of trans-

formations ¢, :R>R, 8e® defined to be
goe = (6+e)3 8e0 , eefl

Note that the observed sample space and the random
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variable sample space are the same but that there is no
identity element amongst the set of transformations

¢e : 8e@.

By taking the one to one mapping a¢ = ¢0 : 2+ we can

obtain an equivalent pivotal model that takes the form
x = 8oe e ~ N(0,1)

with x, ec? =R where 0¢0 = R indexes a set of trans-

formations ¢, = ¢0-1o¢e : 0+ , 8e® defined to be
e~ - 3 *.1/3 -
ce = ((8+e)? - 0} = 8+e 8ed , eef

This equivaleht pivStal model now has the desired prop-
erties namely the observable sample space and the random
variable sample space are the same and the transformation

;0 : 0e® =R is the identity element.

Note that the equivalent pivotal model is the one

described in example 2.1.1 namely the N(9,1) model. a

It will be assumed throughout the rest of this thesis,
unless otherwise stated, that for a given pivotal model

the above simplification has already been carried out.

The simplification enables us to rewrite the restrictions
(a) - (c¢) given in section 2.2, on structured models to
obtain pivotal models, in an equivalent form that makes

it easier to explore the properties of pivotal models.



37
It can easily be shown that the following are eguivalent

to the above named restrictions and a brief outline is
given afterwards.
Consider a structured model

X = Boe with x, ee , a sample space.

e has a probability distribution f(.) say and 8¢®

indexes a set of transformations
¢e : Q=0 , 0e0@ with the following properties:

P1. If h, geo, eec then hoe = goe = h =g

P2. Y h, ged,¥eecl, let z = go(hoe) then

Jh*e0 s.t. z = h¥*ce

P3. Jico s.t. Yeeq ioe

il
O

P4. Yh,;, he0 Veel 3Jged®@ s.t. go(hjoe) = hpoe
P5. Vze, ¥Vge® Jleen s.t. z = goe
Note since we have ¥ = 2 we can simplify the partition

condition (2.2.3) into an equivalent definition as

follows:

n
He

Vee Vye N X
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Pl is the additivity condition in a slightly different

form.

P2 is obtained by applying the simplified partition

condition as follows:

Given ee® we have hoe ¢ ¥, so by the simplified

partition condition we have

but z = go(hoe) = Xhoe SO z & % hence by the definition

of Xg (2.2.2) there exists h*e® s.,t. 2z = h*¥oe hence P2,

P3 specifies the existence of an identity transformation

amongst the set ¢e 8ecd

P4 is obtained by applying the simplified pivotal cond-

ition twice. Given ec? we have hoe ¢ &,, k = 1,2;

so by the simplified pivotal condition we have

% = Xe = % ; but by P3 we have hsoe ¢ Xhz and

hioe hsoce oe

so hpoe ¢ ¥ Hence by the definition of Xe (2.2.2)

hioce”
we have that there exists ge® s.t. go(h;oe) = hjoe.

Hence P4.
PS5 is the pivotal condition in a slightly different form.
Having defined the above properties we now consider ob-

taining the partitions Qx of 2 and the probability

distribution of e conditional on eeQx.
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Consider the set

0, = {60x : 8¢e6} Xe (2.3.3)
that is to say, the set of points that it is possible
to transform x to, by the set of transformations

{49 = 620}

Lemma 2.3.2

The sets {ex} XeQ partition @, the same partitioﬁ as
{Qx} xef

This lemma is proved in appendix Al.3.

To obtain the probability distribution of e conditional
on eed, (= Qx) a particular partition, we first have to
transform the random variables into two variables; the
first called the reference variable and denoted by D(e),
describes the partition that a particular eeQ is in; the
second, called the transformation variable and denoted by
[e], describes the position it takes on that partition.
From the joint distribution of the two variables D(e)

and [e] we can obtain the probability distribution of

the transformation variablé;[e] conditional on the
reference variable D(e) and this conditional distribution
will be the required probability distribution used to
obtain probability statements concerning 8. The details

of this argument are as follows:
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Let the set Qe be a cross~section to #/0, that is to
say, the set Q has one point from each partition
{GX: XeQl.

We define a reference variable D(-) : Q-p as follows:

Let D(e) = Bef}Q eeq (2.3.4)

that is to say D(e) esq 1is the set of points that are
in both the same partition as eec and the set Q; but from
the definition of @, the set D(e) ec will consist only
of one point from the sample space, so D(e) eeq 1is well

defined.

Lemma 2.3.3

Let D(e) ecR be a reference variable as defined in

(2.3.4) then ee? 6e® D(e) = D(6oe) e Oe.

Proof:

From the definition (2.3.3) of Ge, the point 89ce e 0de.
Hence from Lemma 2,3.2 we have eeoe = Qe, thét is to say,
the point %ce & £ generates the same partition as the
point ecQ. Hence from the definition (2.3.4) of D(e),

we have D(8pe) = D(e). Also from the definition of D(e)

we have D(e) e ©€e, Hence the Lemma is established. 1

This tells us that all points in the same partition have
the same reference variable, and, because this reference
variable is a member of that partition, different
partitions have different reference variables. We can

therefore use the reference variable to label the part-
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itions. We define the transformation wvariable [.] : =0

as follows. Let [ele®, eéﬂ, be such that
[el]oD(e) = e (2.3.5)

for a given reference variable; that is to say, let
¢[e] , e , [eleo, be the unique element of the set
{¢5 = eed} that transforms D(e) back to e. Note
existence is guaranteed by the fact that eEeD(e)’ and

uniqueness by Pl.

We can now define a binary operation *: g X g+0
conditional on the reference point D(e) for each part-

ition as follows:

If 8;, 63e0® then by P2-there exists 08;,e@ such that

81 o {82 o0 D(e)l = B350 D(e). We use this fact to
define el*eg = B15 where * is conditional on D(e).

The reason for this definition is given in the following

Lemma .

Lemma 2.3.4

Let [elec® be a transformation variable, then¥ 6esd

we have 8*[e] = [go0e] with * conditional on D(e).
Proof:
{6*[e]l} o D(e) = 80 {[e]l o D(e)} by definition

= B8oe = [8oe] o D(Boe) by (2.3.5)
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= [goe] o D{(e) by Lemma 2.3.3.
Hence 8*[e] = [8oe] by Pl with * conditional on D(e).

Hence Lemms. I

We can now show that it is possible to decompose a
pivotal model x = 80e where x, esl, 8e0 a5 follows.
From Lemma 2.3.3 we have D(x) = D(e) and from Lemma
2.3.4 [x] = 8*[e] with * conditional on D(X).

Since we observe xeQ and hence know the reference point
D(x), the binary operation, *: 0 X ©-0 defined above,
is well defined. This particular decomposition will

be called the Reduced Pivotal Model.

Example 2.3.2 (example 2.2.1 continued)

N(8,1) model with two observations.

It is easily shown that this example is a pivotal model
of the required form. It was demonstrated in example
2.2.1 that the partitions form a beam of straight lines
parallel to the line z,; = z; (2;,Z5)el =MR2.

We can take @ to be the set

Q= {(z1,23) ¢ 21 =0,(2,,2)e R?!}
that is to say Q is the line z; = 0 in R2. It is
easily verified that the set Q is a cross-section of

the partitions.

Given an observation x = (x,,X;)e@ = R®, the partition
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that x belongs to is the set

0, = {(x; - 8, X5 — 8) ! sc0 =R}

—

hence the reference variable is the point

D(x1,x2) = {(x1; - 98, Xo - 8) : 8elR} /)
{(z1,22) : 2, =0, (z21,22)eR?*}

{(0, Xo =- X1)}

From this the transformation variable is easily shown
to be [(x1,x2)] = x; € @ =R since the transformation

¢, s X190 transforms the point (0, x5 - x1)ef back

X1

to the point (x1,x5).

" We can now examine the binary operation *: 9 x 6-+8
conditional on the point (0, X; - X;). Consider
81, 6,0 =/R then from the definition of the binary

operation we have

(81*8,)0(0, xp, - X;) 810{8, o(0, X, - x1)}

U

610(62, 8o + Xy - Xl)

(8 + 65, 81 + 8, + X5 = X3)

i

(81.+ 8,)0(0, kz - x1)
Thus we have 8;*6, = 8; + 6, with * conditional on D(x).
From this we can write the pivotal model in a reduced

pivotal model form as follows

(0, x2 - x1) = D(x) = D(e) = (0, e2 - e;) and
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x]‘_ = [(X]_, Xz)] = B*{(el’ ez)] =g + el

with * conditiomal on D(X) = (0, X, - X). a

Before we calculate the joint probability distribution
of the reference and transformation variables, we look
at some of the properties of the binary operation

*: 0 x 00 conditional on the point D(x), defined

above.

Theorem 2.3.2

The binary operation *: 0 x ©6-0 conditional on the
point D{(x) has the algebraic structure called "a loop".

That is to say, it has the following properties:

Ll Ye; , 6560 then 81*8,e0

i.e. 0 is closed under the operation *.

L2 Jied s.t. Veeo i*e = 8 = o*i

i.e. ® has an identity element, namely i.

13 Ve, , 6,6 3! hyj,h,e0 s.t.
61*¥h; = 8, , hy*8; = 6,

This theorem will be proved in appendix Al.4.

Two further binary operations 0 x 9-+0 associated with
a loop are left division \ and right division / defined

as follows:
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If k = h*g (k, h, ge® with * conditional on D(x))

then h\k = g and k/g = h.

Note these binary operations are both well defined

being the solutions of the equations given in L3.

The three binary operations *, \, / defined on 6 to-
gether form an algebra that enables us to manipulate
the transformation variables with the transformations
¢9, 6e® . Further properties of loops are gi#en in

appendix 2 and Bruck (1971).

We now return to the question of obtaining the joint
probability distribution of the reference and transfor-
mation variables. This will be achieﬁed by using

"loop-invariant'" differentials.

The methods assume that the spaces Q and © are locally
compact topological spaces and the transformations

8, = g*h, 8, = g\h, 83 = g/h, x = ho(goe), where

*, \ , and / are conditional on the point D(x), are
continuously differentiable with respect to g, heo

and ec8 , with [e] also a continuous transformation.
The derivatives are the appropriate Radon-Nikodym
derivatives relative to thé'éiven measures on § and @;
these measures are also assumed to be totaly o - finite

on 2 and & .

Consider an element V at a point zeQ. A transformation

$q 8e@ applied to the point zeQ will change the
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"volume" of V by the positive Jacobian factor

Jo(e:2), = IE%%g%l say. : (2.3.6)

i.e. d(poz) = Jg(e:z)dz

The existence of the Jacobian, with the above property
is assured by Theorem D §39 in Halmos (1950).
This Jacobian can be used to produce a loop-invariant

differential dm(z) on @, where

dz

dm(z) = T (Tz]: D(z))

(2.3.7)

Loop-invariant differentials on a space are a measure

of "volume" that remain constant under any transformation
of the space, from a set of possib;e transformations

that are in a 1-1 éorrespondencé with ﬁ loop structure.
It is shown in appendix A2.3 that the differential
defined in (2.3.7) is indeed a loop-invariant differen-

tial on @, that is to say
Vzel Yoeo dm(80z) = dm(z) (2.3.8)

The transformations {¢e ¢t B0} on the reference and
transformations variables do not affect the reference
variable by definition so ;Ly differential based only on
the reference variable will automatically be a loop-
invariant differential. The transformations affect

only the transformation variables via the binary

operation *: p x 0-+8
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Consider an element V at a point [zle® . A transformation
$g 8e® applied to the réference variable [z] will change

the "volume" of V by the positive Jacobian factor

(e*[z])l

5 (12]) say (2.3.9)

JeCe: [z1|D(=z)) = |20
where * is conditional on D(z).

Again the existence of the Jacobian is assured by
Theorem D 5§39 in Halmos (1950). This Jacobian can also
be used to produce a loop-invariant differential du(s)
on 6 as follows:

de

-wherei is the identity element of the loop.

This differéntial is shown in appendix A2.3 to indeed be

a loop—inVariant differential on ¢.1i.e.

V g,he0 du{g*h) = du(h) (2.3.11)
where * is conditional on D(z).
Now consider the two invariant differentials as they
apply to the element V and to images of V under the
transformations from {¢e: 8e@} at the reference point

D(z).

Let 8(D(z)) be the ratio
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dz _ dlz]
TXIpeEy P TamE ey

dm(z) =

§(D(z)) dul(lz])

Since both differentials are invariant under the trans-
formation from {¢e : 9e0} the equality holds throughout

the orbit; thus we obtain

Jo(121]D(2))
dz = §(D(z)) T, ((z1,1]D(z))

dlz] (2.3.12)

The joint distribution of D(e), = D say and [e] ecQ

can now be derived.

Let the random variable ee® have a generalised probability

density function £(.) say.

Note we might have to use the appropriate Radon-Nikodym
derivative to obtain this;
Then from (2.3.12) we obtain

Jo(lel D)
T(lel,1]D)

f(e)de = f([e]oD) §(D) dleldDd (2.3.13)
The right hand side of (2.3.13) is the joint probability
density function of the reféfence and transformation
variables D(e) and [e]. From this the conditional
probability density function of [e] given D = D(e),

g([el |D) say, is easily calculated to be
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g(le]l|D)d[e] = k(D) f([eloD) Jf([e],ilD) dlel

1 JQ([e]|D)
where -k—z—DT = f f([eloD) J*([e],iID) dlel
[e]e®

the constant of proportionality.

The reduced pivotal model can now be written as

D(x) = D(e) =D
[x]

[e]

6*fe], * conditional on D

'S

g(fel|D) (2.3.15)

with x,ee , 6<8

'Examgle 2.3.3 (example 2.3.2 continued)

N{(e,1) model with two observations.

In example 2.3.2 it was shown that, given the particular
reference variable defined there, the binary operation

*¥: 0 X 040 is of the form g%, = 6, + 6, 87,0,c0 =

From the definitions of the binary operations \ and /

it can easily be shown that™
81182 = 87 - 83 and 81/62 =867 - 0,

Hence the Jacobian factors given in (2.3.6) and (2.3.9)

are calculated to be

(2.3.14)

Al
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.3 (802) -43(9+Z1--;-3;“Zz')
Jate:z) = =l = 5 | =1
*
and  J,(0:0z][D(z)) = |HLED) - lelel)) -

This enables us to calculate the conditional probability

density function of [e] given'D(g) = {di]= D
. d
2

g([el|D) e« exp(-#{(lel+d;)? + ([el+d,)2})
= exp(—(rgg; )2)

= —_— w2 = i =
where p 5 and: o 3}, since d, e, - e

Hence the reduced pivotal model can be written as

| | 0 0

D(x) = = =D(e) =D

X9 = X3 22 - &)
X]. = B+e1
(el = e, g(le]|D) = N(&5=S=, 3)

We can now proceed to obtain a confidence kernel on
the indexing set. TFrom this confidence kernel we can
obtain probability statements about ©.

Given the reduced pivotal model

D(x)
[x]

i

D(e) =D

g*[e]l, * conditional on D
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[e] v g(lel|D) with x,ecR , 08¢0

The value of [x] in the reduced pivotal model is known,
so every value of the unknown [e] corresponds to a

possible value for a.
e = [x]/[e] [el = 8\ [x] (2.3.16)

Thus a probability statement about [e] will alsoc be a
probability statement about €. Hence the conditional
probability demnsity function of [el given g([el|D) will
induce a probability density function of 8 given [x]land

D called the Pivotal Distribution of 6 given [x] and D.

Before we can calculate the pivotal distribution of ©
given [x] and D, we need some further results about loop-

invariant differentials.

Consider an element V at a point 6@ . If we multiply
8 by heo on the right hand side by the binary operation
*, This will change the "yolume" of V by the positive

Jacobian factor

‘]
Ia(h 0) L

= say (2.3.17)

Jep(0: hID)

where * is conditional on D,

Again the existence of the Jacobian is assured by theorem

D §39 in Halmos (1950).
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The Jacobian can be used to preoduce a right loop-invariant

differential dv(8) on © as follows:

_ dé

where i is the identity element of the loop.

This differential is shown in appendix A2.3 to be a right

loop-invariant differential on 8, i.e.
Ve,he®  dv(h*g) = dv(h) (2.3.19)
where * is conditional on D.

Also we define A(8) to be the ratio of the right and left

invariant differentials, i.e.
du(e) = a(s8) dv(se) (2.3.20)

Hence by definition

J*R(ai_i}D)
a(e) = T.C5, 1| (2.3.21)

The result that is required to calculate the pivotal

distribution of & given [x] and D is
du(s\h) = a(e\h) du(s) (2.3.22)

This result is proved in appendix A2.4.
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Hence the pivotal distribution of 8 given [x] and D can

be calculated to be:

g(lel|D)dle]l = K(DYf([eloD)J,(lel[D)du(le])
k(D)£({8\[x]1}oD)JI (6\[x]|D)du(e\[x]) by (2.3.186)
k(D)f(a™lox)J (8 \[x]|D)aCo\[x1)du(8) by (2.3.22)

]

(2.3.23)
Jxp(8\[x1,i[D)de

-1
k(D)£ (87 0x) I (O\IX1 | D)y Sy, 1D 7, (5, 17D

]

by (2.3.21) and (2.3.10)

That is to say the pivotdl distribution of ¢ given [x]

and D is p(8|D,[x])de

Jxg(o\[x1,1|D)ds
Jx (8 \[%1,1[D)J,(8,1[D)

-1
k(D)f(8™tox)J (o \[x]]|D)

(2.3.24)

The question now remains about what happens if we had
chosen a differént reference variable. Do we still
obtain the same pivotal distribution of s given [x]'!
and D'(x), where D'(x) and {x]' are the new reference
variable and its associated transformation variable?

The answer is yes and this is proved in appendix Al.S5.

We have now proved that the'ﬁivotal distribution of
8e® is unigque given a value of xc*% and we can thus
simplify the expression of the confidence kernel by
taking the reference point D to be x itself thus

obtaining
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p(e|x)de =
Jeg(8\L, 1[2) 4,

-1 .
k(x)2C6 0x)T Co\L ) g=ror ey 7705, 1T

(2.3.25)

Example 2.3.4 (example 2.3.3 continued)

N(&,1) model with two observations.

In example 2.3.3 it was shown that the reduced pivotal

model takes the form

0 0
Plz) = {XZ'XI " lez-er) Ple) =D

X, =8+ e;

ep N(el_ea ,&)'
3

The Jacobian factor given in (2.3.17)-can be calculated

to be

‘5(h* h
Jeg(8: h|D) = | é(hi’l lag(gg)'

Using this in 2.3.25 we obtain the pivotal distribution

of 8 given x to be

P(olx) = exp {-3((8+x)2+(8+x,)2))

(e—x)

=« exp {-} }

X] +xX2

where X = 5

g? =% , i.e.
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6 v N(X,3) 0

The pivotal models developed here are an extension of
the structural models developed by Fraser (1968). 1In
the structural models the binary operation *: 0 x ©-0
used in this section has the algebraic property of a
group, which is a loop with the additional property

of associativity, 1i.e.

V a,b,c €@ a*(b*c) = (a*b)*c
In all the examples of pivotal models so far presented,
the loop induced is also a group. The following

example results in a loop that is not a group.

Example 2.3.5

Let © and ¢ be the set {(0,1,2,3,4} . Let the distribu-
tion P defined on 2 be {Pm} where P, = P(uwe)
(o = 0,1,...,4); and consider the family of transfor-

mations {¢4: @+2 , 6e0)} defined as follows:

Q
¢e g 1 2 3 4
0 )0 1 2 3 4
o 111 4 3 270
512 0 1 4 3 e.g. 91 takes 2-+3
313 2 4 0 1
4 14 3 0 1 2

It can easily be shown that the model
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X = 8oe ep

where x,ecQ 6e0 is a pivotal model and satisfies
properties P1 to P5. Consider the case where we have
observed x = 2 and we wish to calculate the pivotal

distribution of 6 given x = 2,
The partition Q. is the trivial partition namely the
whole space @ itself. Without loss of generality we

take the reference point D to be X itself.

| This induces the loop *

D B WO
- O B WL N
[ T S T
W R O okl

B W N e O
W W oM O

In the appendices A2.,2 it is shown that this particular

loop is not a group.

The Jacobian factors given in (2.3.6), (2.3.9) and

(2.3.17) are calculated to be
Jo(8: DY = Jy(e,h: D) = Jyp(e:hD) =1

Thus from (2.3.25) we obtain the pivotal distribution

of 6 given x = 2 to be
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8 | 0 [ 1.} 2| 3] 4

p(e|x=2)| le P3’ P°| Pll Py, . a

Structural models are obtained if we replace property

P2 by the stronger property P2' defined as follows.

P2' Y h,ge®  Jh**co s.t. Yeeqn let z = go(hoe)

then z = h**ce

That is to say the element h**go with the above defined
property depends only on h,geq and is independent of the
choice of eeQ, unlike the element h*¢0 defined in
property P2 which also could depend on the choice of

eeQ . Hence P2'=>P2.

It is shown in Bruck (1971) that if a loop has the
additional property of associativity then it is a group.
Theorem 2.3.2 Has already shown us that the indﬁced
binary operation *: 0 x 00 has the properties of a
loop. Hence to prove that this binary operation is
a group, when we replace property P2 by property P2',
we need only show that the induced binary operation
also has the property of associativity.
Consider any three elements h;, h,, h3e0 and eeq
Now hj,o(h,o(hzoe))

= hjo(h;,30e) h, 3 exists by P2!

= h1’23oe h1,23 exists by P2

{h,*(h,*h3) }oe where * conditional on e
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but h;o(h,o(h,oe))

h,o(hjy0z) where z = hgoe

his.0z hi, exists by P2!

h;so(hzoe) = hyy 30e hi, 3 exists by P2
Hd ¥

{(hl;hz)*hq}oe where * conditional on e

* conditional on =z
but hi*h, = hyp = h;*h,

since the construction of h;; is independent of any

element of @ by P2'.
hence {h;*(h,*h3)} oe = {(h,*h,)*h;3l}oe
thus hl*(hz*hg) = (hl*hz)*ha by P1.

This proves that the binary operation * does indeed

have the property of associativity.

The next example was chosen to illustrate the fact that
the pivotal distribution has the same form as the
fiducial distribution for a wide variety of cases.
It is also an example of where the induced binary oper-

ation is a continuous loop.

Example 2.3.6

uﬁumwkih

Let F(x|8) be a family of,cumulative distribution
functions indexed by 6ec® = (a,b). Suppose F(x[8) is

strictly increasing in x for each 9 , strictly decreasing
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0, F(x[b) = 1  xeQ

in 8 for each x, and F(x|a)

We can write this model as a pivotal model as follows:

let y = F(x|8,), where 8,c6 is fixed and known.
Define 6oe = F(F '(e|8)|s0) (2.3.26)
then it can be shown that
y = 8oe e vuniform(0,1)
where y,een = (0,1)
is equivalent to the above model and is a inotal model.

The partition induced-on Q is the trivial partition,

namely the whole space ¢ itself.

Thus every point zef can be transformed into any other
peoint in Q@ by a transformation given in (2.3.26). From

this fact we have that

To(8\i]x) JepCo\i,i]x)
Je(8,1i[x) J,(8\i,i[x)

_Jgllellx)  Jegllel, x40y
T (8, [x11x) J,(fel,(x][x) and @\[x]

[e]

by definition of

‘B([e]ox) ’3([x]*[e])
the jacobians

_ a(x) aClx]1)
"a(e*[x]) Ia([e]*[x])
3([x1) 3([x1)
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= |[aeloxy | |atIxD)
EI)) [ a(x)

after some rearranging.

Now the second factor will be a constant since x is
assumed to be fixed. Hence from (2.3.25) we find that

the pivotal distribution of 8 given x is

U

-1
k(x)f(e—lox)lﬁig——gzllsince [elox =_9-10x

p(8|x) T

U

9(F(xle8))
k(x){ YED) ‘

which is of the same form as that obtained by the

fiducial method.
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2.4 Pivotal Measure and Pivotal Measurable Functions

In this section the idea of Pivotal Measure will be
introduced. The concept arose in answer to the follow-

ing question:

"If the pivotal distribution is a probability distribu-
tion then what is its event space, co-algebra and

probability measure?"

First we note that the transformation variable [e]e8
has a probability density function conditional on D,
given by (2.3.14), and so will have an event space @ ,

+), already

c-algebra&) and pFobability measure g[ellD('
defined. We also note that from (2.3.16) we have

[e]l] = 8\[x] with \ conditional on D. TFrom these two
facts we can construct a c—algebra,q), on an event space

@ x 9 as follows:

For every E*c<p® that is a member of the event space of

[e] given D we define a set 0*¥ co x 9 as follows:
(8,{x1)e 0*cP iff 6\ [x]cE*cD (2.4.1)
with \ conditional on D, hence @* is conditional on D,

It is easily seen that the sets {E*: E¥c0} and {0*:0%<Q }
are in a 1-1 correspondence with each other and hence
it can be shown that the sets {9*} do indeed form a

oc-algebra on the event space @ x @.
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We can construct a probability measure conditional on D,

PM(.lD) say, on the event space o x 0 as follows:

For every e*e? let E*ed be the event in 1-1 correspond-

ence with ©*, then let

Pye*|D) = [ . g(lel|D)dlel (2.4.2)
[eleE*

Again since the sets {E*: E*cd} and {o*:0%P}
are in 1-1 correspondence, it can be shown that PM(-|D)
is a conditional probability measure defined on the event

space © x O,

The relationship of the event space @ x 0, o-algebra ?
and the conditional probability measure PM(.|D) to
pivotal models and the pivotal distribution will now be

demonstrated.

Define the cross-section of an event e*sﬁ) by a fixed

[x]eB, S(O*, [xl, D)&® say, as follows:

$(6*, [x], D) = {6: (8, [x])e6*, 6* conditional on D}

(2.4.3)
This leads to the following lemma:

Lemma 2.4.1

voxeP V [x]eo
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f p(8|lxloD)de = Py (6*[D)
eES( e*! [x] ,D)

that is to say the same probability is given to every
cross-section of a fixed event ©*eP by the pivotal
distribution and this is equal to the probability

given to ©* by the probability measure PM('|D)-
Proof:

Now . i p(9|[x]oD)d8 =

8eS(0*,[x],D)

- [ D2 ox)T,(8\[x1[DIA(ONIx] ) du(8)

0eS(0%,[x],D) by 2.3.24
Let © = [x]/[e] or [e]l = 8\[x]

Now ©8eS(0*, [x], D) iff [eleE*ed® by 2.4.1 where E*

is the event in 1-1 correspondence with 0%,

Hence LHS /[ k(D)f(leloD)Jy([el|D)du(lel) by 2.3.24

[e]eE*
[ g(lel|D)dle]l = P (o*|D) by 2.4.2
[eleE*

which proves the lemma. ‘ I
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This lemma supports our calling the sets 0*e9 pivotal

measurable sets.

If we consider each set S(0*, [x], D) to be a particular
cover of the parameter space 0 given that we have ob-
served xefl, then we can calculate the posterior probab-
ility of the cover if we are given a conditional prior
distribution of 6e6 given [el, N(e|[e]) say. Denote

the calculated posterior probability of S(e*, [x1, D)

given a conditional prior distribution n(s|[el) by

a{S|T}.

We can also calculate the generalised probability density
of [x] given D and H(e}[el), 5([x]|D, n(e|lel)) say.

The following theorem, wbich is pfoﬁed in appendix Al.6,
gives one interpretation of the pivotal probability

attached to each cover S(e*, [x], D).

Theorem 2.4.1

For every conditional prior distribution T(8]|[el),

Blyep|pfel $(0%, [x1, D)|T (ofleD}|D} =

[ ol s(ox, [x], DY|n¢e|fel)} p(Ix]l|DYdlx]

[x}e0

= f p(8| [x]oD)de

8es(e*, [x], D)
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that is to say the expected value of a{S|H} taken over
[x]1€9 given D is eqﬁal to the pivotal probability of the
set S(&*, [x], D) given D and this is true no matter
what conditional prior distribution Tm(e|[el) we might

choose.

This property of the pivotal distribution, the specifi-
cation of the expected posterior probability of the

sets S(&*, [x], D) rather than the actuzal posferior
probability which is unknown, is a property Fisher gives
to his fiducial probability (Fisher 1930). There are

a great many  other similarities to fiducial probability
such as the dependence on pivots. The main difference
is that Fisher uses classical probability models, where-
as the pivotal model is a structured model. It was
shown in section 2.1~ that there is a difference between
these two types of probability model. It is for this
reason that the. pivotal distribution is not called a
fiducial distribution despite their having many proper-

ties in common.

" Example 2.4.1 (based on an example given in Buehler 1971)

Consider the pivotal model

X = 6+e evf(.)

where x,ecQ =& 06c0 =%
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and f(e) = P >0 ife=1
1-P > 0 if e = =1
0 otherwise

We note that this is already in a reduced pivotal model

form.

It can be shown that there are four sets in the g-algebra
? namely {¢, 0%, ©,%, 0,*y8,*} where
1% = {(z-1,2): zef}, B,* = {(z2+1,z2): zZeQ} and they

have the following pivotal probabilities:

Py(¢) = 03 Py(@1%) = P; Pyle,*) = 1-P;

Py (81%u82%) = 1 . (2.4.3)
We will now calculate the posterior probability of the
sets {S(0*,x): xe#Z} given a conditional prior distri-
bution of 8e¢® given ecq, N(8le) say.

The joint distribution of e and 8 is

I(e|le=1OP e

1’ Gei

N(8|e=-1)(1~P) e = -1, 6cE&

and from this we can calculate the joint distribution of

X and 8, %(x,e) say.

%(x,e) =] n(s|le=1OP X = g8+1

T(e|e=-1)(1-P) x

-1 (2.4.4)

0 otherwise
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The marginal distribution of x is

P(x) = ) P(x,0)
Be

and the conditional distribution ¢f p given x satisfies

~

P(x,8) = P(p|x)P(x) (2.4.5)

The posterior probability of the set S(el*,x) Xe &

will then be a{S(81%,x)|N(8]|e)} = P(s = x-1|x).
We can now verify theorem 2.4.1 for this particular
example by calculating the expected posterior probability

of the sets {S(01*,x): xc&}

E_(af (e1*,x)[N(8|e)}) =

=7 D(s = x-1]x)P(x)
Xe g
=) P(o = x-1,x) by 2.4.5 (2.4.6)
Xe®
=P ) n(x-1|e=1) by 2.4.4
XeE
=P = Py(61%) by 2.4.3

Hence the theorem is verified for this particular

example.

The following betting scheme was proposed {(Buehler 1971)

to defeat any '"pivotal type" of argument with respect
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to this example. (Buehler used the value P = %, though

this is not necessary).

"If x 1 bet with even money 6 = x-1

[1)¥

If x < 1 refuse to bet."

If we have a conditional prior distribution 1(e|e)

this betting scheme is equivalent to reconditioning the

joint distribution of x and 8 to

o+1

- -1
Pe(x,8) ={ k. 1I(e|e=1) 1 ¢x=
-1
k™ 'm(ele==1) 1 ¢ x = g-1
0 otherwise
where k = ] {I(6 = x-1]e=1)+N(8 = x+1|e=-1)}

. x=1

(2.4.7)

This is well defined as long as k > 0 otherwise no bet

will take place.

The expected posterior probability of the sets

{S(8]o1*,x) xez} will be by 2.4.6

) b*(x,e = x-1)
XeR

LT n¢e = x-1fe=1) by (2.4.7)
x=1

]
b

} I(e = x-1]e = 1
x=1 '

{M(8~x-1]e=1)+n(s = x+1l|e = -1)}
1

g

1§13

X
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and this can take any value between 0 and 1, Thus it is

possible to construct conditional prior distributions
of 6 given e where the "pivotal" gambler would win

every bet, such as

mele=1) = {1 o= -4
0 otherwise
m(ele=-1) = {1 ¢ = 3133

0 otherwise
To be fair the '"pivotal" gambler would not accept the

bet because he is being asked to put a pivotal prob-
ability on a non pivotal measurable set, namely

{{o = x+1,x} : x 2 1}¢ 9

Example 2.4.2 (example 2.1.1 continued) N(e,l)fmodei

As a reminder this model takes the form

X = g+e ewN(0,1)

with x,ee =R gee =R

The measure induced by the random wvariable e on the
space @ is the ordinary Lebesgue measure on R . Thus
from 2,4.1 given a Lebesgue measurable set E* onR ,
(-1.96, 1.96) say, we can construct a pivotal measurable

set 0%
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(8,x)c0%xeP iff =x-0¢B* = (-1.96,1.96)

The cross-sections ${©*,x) will take the form

S(e*,x) = (x-1,96,x+1.96) =xeQ

The pivotal measure assigned to the pivotal measurable

set 6% is
Py(e*) = [ ¢(elde by 2.4.1
ecE*
1.96
= [  ¢(edde = .9500 to 4 d.p.
~-1.96

where ¢(.) is the standard normal density function.

Thus by Theorem 2.4.1 the expected posterior probability
of the sets S(ef,x) when x is allowed to vary over @
will be 95%. This is true whatever conditional prior

distribution of 68«6 given ecQ we might choose.

Suppose that we are told beforehand that the parameter
86 takes values only on the interval (0,3)ce. This

in essence places a restriction on the set of conditional
prior distributions of ese-éiven es, namely to those
distributions whose supports are contained in the inter-
val (0,3)., The expected posterior probability of the
sets S(@*,x) as x varies over @ will still be 95% because
Theorem 2.4.1 states that the expected posterior prob-

ability is independent of which conditional prior distri-
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bution one takes even if we restrict them to having

supports contained in the interval (0,3). o

We now extend the idea of pivotal probabilities to
parameters other than 8, This will be achieved using

pivotal measurable functions.

Given a function H: 6 x @ - T, where T is a topological
space, we say that H is a pivotal measurable function
if and only if for every open set t in T H'l(t)g;e X 0

is a pivotal measurable set.

Note this is just an application of the usual definition

of a measurable function to the pivotal measure.

If H is a pivotal measurable function, for every open

set teT we can assign a probability namely
Py (H™'(t) D), = Pp(t|D) say (2.4.8)

Hence if we can find a pivotal measurable function

D) to

H: @ x 6 +T we can extend the probabilify PM(-

the topological space T to obtain PT(.]D).

Returning to the question of extending the idea of
pivotal probabilities, we would like to obtain parameters
other than 8 that also have the expected posterior

probability interpretation.

Consider functions H: 6@ x @ =T that take the form
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H: (e,[x1) + (o6(s,[x]1),[x]) T (2.4.9)

L4

where 6 is an arbitrary function of (8,[{x]) e0 x 6,
8: 8 X @ - 0 a new parameter space, and where T is a
topological space that is a direct product of the spaces

~

& and 06 .

For every open set teT we define its cross-section by a

fixed [x]ceo, SH(t,[x],D) say, as follows:
Sg(t,[x1,D) = {8: (8,[xDet} (2.4.10)
This leads to the following lemma.

Lemma 2.4.2

If H: (6,[x]) - (8(8,[x],[x])cT

is a pivotal measurable function then for every open

set teT
oe S(H™'(t),[x1,D) iff 8(8,[xD)e Sy(t,[x],D)
Proof:

Since H is a pivotal measurable function, for every open
set teT, H (t) is a pivotal measurable set, thus the
cross-sections are well defined. By construction of H,
the element (68,[x])e H'l(t) maps onto the element

(8(0,[x]),[x]) which is easily seen must be a member of
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the open set t. Now both these elements are in the

appropriate cross-sections, hence
oc S(H™H(1),[x1,D) = (8,[xDe  Sy(t,[x1,D)

Furthermore by the construction of H, if the element
(8(06,[x1),[x]1)et then (as can easily he seen) the
element (9,[{x]) must be a member of the pivotal meas-

urable set H-'(t)eP . Thus
8(8,[x1)e Sg(t,[x],D)»0e SCH (t),[x],D)
which proves the lemma., ' i

For a fixed [x]Je® it is easily seen that the set of
cross-sections of the open sets of T form a o-algebra
on é. To each of these cross-sections we assign a
pivotal probability conditional on {x] and D namely

the same pivotal probability that was given to the
corresponding cross-section of a pivotal measurable set.
mentioned in lemma 2.4.2, Hence we can construct a
pivotal density conditional on [x] and D on the para-
meter space 6 by taking the generalised probability
density induced by the pivot;l probabilities on the

cross-sections of the open sets of T. We denote this

conditional pivotal density on 0 by pH(Bl[x],D).

Lemma 2.4.3

\V open sets teT, VI[xleo
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/ py(8|[x],D)de = Pr(t|D)

8e Sg(t[x1D)
Proof:

Pn(t|D)

PM(H'I(t)ID) by 2.4.8

/ pelixiD)ds by lemma 2.4.1
be SCH™'(t),[x],D)

[ p(e]|lx1ID)de by lemma 2.4.2 and
by construction

oe Sy(t,Ix1,D)

Hence the lemma. i

Having now obtained the conditional pivotal density
on the parameter space ©, we wish to show that it has an

expected posterior probability interpretation.

Again if we are given a conditional prior distribution
of 8e0 given [e], NM(8|[e]) say, then the joint distri-
bution of 6 and [x] given D, 5([x],e|D), is given by
A1.6.3. From this joint distribution we can calculate
(as in Al.6.4) the marginal distribution of [x] given

D p(ix]|D), and the conditional distribution of © given

[x] and D, p(e|[x]1,D) (in A1.6.5).

In a similar construction to that for obtaining the
conditional pivotal density p(é][x],D) from the condi-

tional pivotal density p(se|{x],D) we can construct from
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p(8|[x]1,D) the conditional distribution of g given [x]
and D, p(e{[x],D) say. This conditional distribution
will be defined on the o-algebra constructed from the

cross-sections {SH(t,[X],D): teT} Zfor fixed [x]cq.

Thus given the conditional prior distribution N(&|[el)
and considering each set SH(t,[x],D) as a particular
cover of the parameter space é given that we have
observed xef we can calculate the posterior probability
of the cover. Denote the calculated posterior prob- -
ability of SH(t,[x],D) given a conditional prior distri-
bution M(8[[e]) by aylSu(t,[x],D)[n(e[lel)}. The
following theorem shows that the sets SH(t,[x],D) do
indeed have an expected posterior probability iﬁter-
pretation,

" Theorem 2.4.2

For every conditional prior distribution m(s|[e])

E[x]ID {ag {SH(t,[x],D)IH(Bl[e])}

[ aglSgCt,[x]1,D)]nCe] [eD} DCIx]|D)dlx]

[elco

f pH(él[x],D)dé

as SH(t,[x],D)
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Proof:
/ pg(8[[x1,D)ds = Pr(t[D) by lemma
A 5.4.3
be Sg(t,[x],D)
= Py(H™'(£) D) by 2.4.8

= Epgppfet S(H™M(t),Ix1,D) [n(elel)}} by Al.6.9

[ p(x1lD) [  p(ollx]1,D)ded[x] by Al.6.6

[x]1e0 Be S(H_I(t),[x],D)

U

/ 5([X]|D) e QH(al[x],D)dad[x] by construc-
~ tion and
ixlee fe SH(t,[x],D) lemma 2.4.2

- .

= Erx1ip {om {Sg(t,[x1,D)[n(e|[[el)}}
Hence theorem. i

We have thus found a sufficient condition to extend the
expected posterior probability to parameters other than
8e@. Since we are only using [x]e® as a label of the
cross—-sections of the open sets of T, without loss of

generality we can take functions of the form:
H: (8,[x]) = (8(8,[x]), h([x])) T (2.4.11)

where ® is an arbitrary function of [x],8c@ and h is

a 1-1 function of [x].
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If H is a pivotal measurable function then the cross-
sections of the open sets of T with fixed h([x]) will

have an expected posterior probability interpretation.

It is still an open question whether this is still true
if h is an arbitrary function of [x], with H being a

pivotal measurable function.

Note H being a pivotal measurable function is a necess-
ary condition otherwise we are unable to transfer the

pivotal probability onto the open sets of T.

Example 2.4.3 (example 2.1.1 continued) N(6,1) model

Consider taking the function H: © x 6-T to be of
the form H: (8,x) - (6 = 83,x)eT = RxR and define

the open sets of T to be of the form:

t¢T is an open set iff 3J1S*g¢R a Lebesgue
measurable set s.t. (a,x)st iff J seS* s.t.

~

8 = (x-s5)° (2.4.12)

It can easily be shown that this does define a

topology on T.

We will now show that H is a pivotal measurable function.
Let t be an open set of T and let S*cfR a Lebesgue
measurable set that satisfies the conditions given in
2.4.12 for this particular open set t. From 2.4.12

the set H-l(t) will take the form
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(8,x)e H_l(t) iff 1seS* s.t. 8 = x-s
This is precisely the condition given in example 2.4.2
for the pivotal measurable sets. Hence H is a pivotal

measurable function.

The pivotal density for 6¢© conditional on x is

: o a—x)2
p(elx) = 1 exp{ -ngil—}

3

From this the pivotal density for 8 = o3 conditional

on X is easily calculated to be

=

1

A . ~ 3

1 -{8 -X) 2

py(8ix) = —_ eXP{ ————}
H Y21 30 73 2

and this will have an expected posterior probability

interpretation. o

Wilkinson (1977) extended fiducial probability to what
he called '"pivotally equiﬁalent functions'. From
arguments he géve in his paper, it can be seen that
these "pivotally equivalent functions'" are isomorphic
to the functions a(e,[x]) given in (2,4.9) when H is a
pivotal measurable functionff'ln the same paper

Wilkinson alsc mentioned the Noncoherence Principle:

"The inferential implications of observational data alone
(with sampling distribution known in parametric form)

are nonccoherent, in that they cannot be represented by
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a single inferential probability distribution on the

parameter space."

We have shown above that we can extend pivotal prob-
ability by the idea of pivotal measurable functions.

It is possible to have a function that is not pivotal
measurable with respect to a given model. We then need
another model for which it is a pivotal measurable
function. We can then represent our inferential
implications with this new model. Hence the Noncoherence
Principle is a consequence of the pivotal measure.
Examples of non pivotal measurable functions {(non
pivotally equivalent functions) are given in Wilkinson

(1977, pl29).
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2.5 Multipivotal Models

In this section we define the multipivotal model
which is a generalisation of the pivotal model discussed

in the previous sections,
The multipivotal model takes the form
x = 8j0830....08 0e (2.5.1)

where e is a random variable from a fixed known distri-

bution f(.) and x,ec? a sample space.

i=1, ..., m 1is an index element of a set of
transformations {¢e s Q03 eieei} where ei is the

_ i
indexing set.

For convenience define

vi = B;ilo...oeflox i=2,...,m (2.5.2)
p:4 i=1
and d; = (8;,,0...08 0¢e i=1,...,m-1 (2.5.3)

e i=m

Three restrictions are placed on the set of transfor-

mations in a multipivotal model namely:

I For a fixed j = 1,...,m. If the values

814000, ++,8 become known then the

8. 8.
J=17 J+17°
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reduced model

v, = 8.0d. (2.5.4)
is a pivotal model.
II FOI‘ a- fixed j = 1,...,111—1 aﬂd k = j+1’ooo,m.
If the values 81,..., aj_l, ek+1""’ 8y become known,
then the reduced model
Y‘ = ejO...OBkOdk (2.5-5)

J

is not a pivotal model.

II For fixed ecQ

510...Oem08 = q’lo---owmoe

ﬁ V i= 1’lul’m 6' = \P‘ (2.5.6)

Example 2.5.1

Consider the model

(x,y) = goro(e,d) (e,d) ~£(.) (2.5.7)

with (x,y), (e,d)en =R?2.
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Let (V,W)eR. We define the transformations ¢6:9+9

and ¢r:9+ﬂ as-follows:
8o(V,W) = (Vcosé - Wsinb, Vsine + Wcosé)

{¢4:08e0, = 0 ¢ 6 < 20} being the set of rotations

about the origin, and

ro(V,W) = (rV,W)
{¢r: re@r =iR+} being the set of enlargements in the

X direction about the Y-axis.

Note both of these sets of transformations individually
form a group on ©. As a result each will form a

reduced pivotal model of the form (2.5.4) if the value
of the index of the other transformation becomes known.
The last two requirements, namely the combination of the
two sets of transformations not forming a pivotal model
and the uniqueness of the combination of the transfor-
mations are both easily demonstrated. Hence the model

(2.5.7) is a multipivotal model. o

We first derive the pivotal distributions of 65

conditional on 81,..., ei—i’ Bippreees B3 i=1,...,m

being known. From (2.5.4) we can rewrite the multi~

pivotal model (2.5.1) as
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We first though have to find the distribution of di; call

this distribution fi(-)-

Let Ji’Q(BiIDi) be the Jacobian J,(e|D), defined by
(2.3.6) applied to the set of transformations
{¢e : eieei} i=1,...,m. (Similarly we define
i
Ji’*(ei,hilDi), Iy, #g(8y: h;|D;), u;¢8,), y (6;) and

A."(ei) i-= 1,.--,m)-

From (2.5.1) and (2.5.2) and using standard transfor-

mation of variables we obtain

_ -1 -1

m
T R -1
j=i+1Jjgg(ejJ;dj' ej—lo"'oeiilg?i)
(205.8)

where ¢id is the identity transform of the jth set
J

of transformations.

Substituting this into equation (2.3.25) we obtain the
pivotal distribution of 03 conditional on x and
91,-.., si—l’.ei“"l,...’ em a.S

p(eilel"", ei__l! Bi+’1—,--., em, x) = (2-5-9)
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1 Ji,ﬂ(ei\idilyi)JiL*R(ei\idi’idilyi)

-1
= k.f(® "o...00 Tox) - - -
i 'm 1 Ji,*(ei\ldi’ldilyi)Ji,*(ei’ldilyi)
m
i J; (e \id.: v.)

where ki is the constant of proportionality which is

6, and x.

Bi+1,..., m

dependent on Bireces B85 s
Having obtained all the conditional pivotal distributions,
we obtain the joint pivotal distribution (which we call
the Multipivotal Distribution) as the following product

of ratios:

p(el,-oo’emlx)

IC TR TNy

m .

p(8.le1,..0,8:_,h. ;,.v.,h %)
I { 1 i-17 d¥ D 2.5.10)
i=1

p(hilel’...’e h hm,X)

i1 ?Bierone o

where Gi,his@i i=1,...,m and hl,...,hm are known

fixed index elements.

Note the conditional pivotal distributions on the right
hand side of (2.5.10) have to satisfy certain conditions
for a consistent probability structure to be specified.
These conditions are stated in a theorem due to
Hammersley and Clifford diséﬁssed with a simple proof in
Besag (1974). It can be shown that the conditional
pivotal distributions, for the multipivotal model,
always satisfy these conditions. We thus have a con-
sistent probability structure and equation (2.5.10) is

well defined.
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If we take ¢hl""’¢hm to be the identity transformations
in the respective set of transformations {¢ei: 0,04}
i=1,...,m and assume that none of the probabilities

in the denominator of equation (2.5.6) are zero, then
from equations (2.5.9) and (2.5.10) we can write the
multipivotal distribution of BraeeesBp conditional on

knowing xeQ in the form:

p(el,...,em[x) j _ f(e;lo...oeflox)
p(idl,-.-,idm|X) f(X)
m

Ji)g(ei\idilyi)Ji’*E(ei\idi,idilyi)

It
i=1

(2.5.11)
Thus up to a constant of proportionality we have the
multipivotal distribution for the parameters B1seevsbp

given an observed xeQ.

Example 2.5.2 (example 2.5.1 continued)

In example 2.5.1 it was stated that both sets of

transformations {¢e: 6ecO {0,21]} and

g =
{¢,.: red =R™} form groups on the sample space g.

The binary operations g and ; induced by the respective
" groups (see section 2.3) will both be independent of the
choice of the reference variéble (as a consequence of
property P2' of section 2.3). The reduced binary
operations will therefore take the form:

Given 0,¥e0_ 38 ¥ = o+y mod 21

8
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Hence ee ¢y= y-g mod 2 and géw = p-y mod 27,
and given r,Ree, r R = rR.

Hence riR = v~ IR and réR = rR7!

From this we can calculate the relevant Jacobians:

JB’Q(G](V:W)) - a(Vcose—zfé?SSVsins+W?ose) =1
Jg,x(839) = ‘3%%%§l -1
Jé,*R(e3T) = 3%%%%1 = 1
Tp,oxlrmy = | -
Jr’*(r,R) = 2E§§) =r
et - [HED

Substituting these into eguation (2.5.11) we obtain the

multipivotal distribution of 8«6, and reer given an

8

observation (Xx,y) as

po,rl(x,y)) _ £(r~ os " o(x,¥)) 1
p(0,1[(x,y)) T((x,y)) T2 o

Historically the method of combining the conditional
pivotal models given in equation (2.5.10) is related to
"step by step procedures™ of Fisher (1956 (1973 edition)).
But unlike most step by step procedures it does not

depend on the order that the parameters are entered into

the process, there being only one resulting multipivotal
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distribution.

The interpretation of the multipivotal distribution is a
little more complicated than for a pivotal distribution.
From the construction of the multipivotal distribution
from the set of conditional pivotal distributions
defined in (2.5.9), we see that it will have a con-
ditional expected posterior probability interpretation
for each of the parameters ei given x and

9 i=1,...,n , being the

91,00',61_1!Bi+1’-°': n

interpretation for the individual conditional pivotal

distributions.

Is there more than just this conditional expected
posterior probability interpretation? For instance,

is there a joint expected posterior probability inter-
pretation? Unfortunately from the above combination of
conditional pivotal distributions we have to answer ﬁno”,

as the following example demonstrates.

" Example 2.5.3

Consider the model

MRS ER

e , d _
( v f£(.) (2.5.12)
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R1,R;eR QeR.

The following set of transformations form groups:
+
RI’O m,o 1’Q 1,m
81 = g@y * + ] 362 g8, =
O!RZ O’m 0,1 0,1
R:RIQ RI’U 1
and 08,5, = =
0 ,R, 0, R o,

If we relax condition II (2.5.5) of the definition of

&
~—
™
@
o
]
o
a"l"
74
b=
\__/

the multipivotal model then we have two routes for
cbtaining a distribution of the parametgrs R,,R; and Q.
The first is to consider the model aS'a'pivdfal model
using the group based on the space ©;,. The distribution
will then have a joint expected posterior probability
interpretation. The second way is to obtain the con-
ditional pivotal distributions of 8; given o6,, and

8, given g;. Then using equation (2.5.11) we combine
them to obtain a distribution of R;,R, and Q that will
have a conditional expected posterior probability
interpretation. We will show that these two approaches
give different distributionéi Hence in general the
distributions that have conditional expected posterior
probability and joint expected posterior probability

interpretations will be different.

We consider first the model to be a pivotal model.
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R;,R1Q v,V R1U,R{QW+R,V
Now , = eQ
0 ’ Rz 0 ’ W 0 » RZW

RlsRIQ g,V
where = 81,e0;, and = DeQ
0 H R 2 . 0 ’ W

3(R,U,R|QW+R;V,R, W)
- = 2
R;,R1Q r,r19
Now for €d;, and h;, = eG19
0 ’ R2 o, Ty
R;,R;Q\ /ri,ra\ ‘(Ryry,R;r;q+R,Qr,
we have =
0 ’ Rz 0 ’ I'Z 0 ,Rzrz

T2
i.e. (R1,R2,Q)(r1,r2,Q) = (erl’RZrZ’q+"FT @

. o - rs Sl
Aa(erl,Rzrz,q+ ?T Q)

T

Hence J,(81;|h1p) = = By
a(rl,rz;q)
R,
, a(r Ry ,r3R,,Q+ RV
= = 2
and J*R(BIZIhIZ) 3(r13r23q) | Rz

Hence substituting the above into equation (2.3.25) we

obtain the pivotal distribution

-RI’RIQ)_I

I X H Y 1
p(RlvR21Q| X,¥,2) « £ ( ( ) TORCT
0, Ry ¢, z 1 =2

(2.5.13)

Secondly we consider the model as a combination of two

conditional pivotal models.



Ry, OV\fU , V R,U,R,V
Now = cq
0 ,Ry/\0 , W 0 LR,W

Rl’ 0 U ] V
where = 91¢0; and = Deq
0 ,R, 0, W
3(R,U,R,V,R,W) .
Hence Jn(allD) = ] YORAD] ’ = R,%R,
R,, 0 Ty, 0
Now consider s = h,e0,
0 LR, 0,r,
R,, 0)(r1, 0) (erl’ 0
0 ,R,/\0 ,r, 0 ,Rzr2
i.e. (R;,Ry)0(r;,r,) = (R;r;,R,1;)
3(Ryr;,R,T,)
Hence Jy(oy|hy) =l 3(r,r,) | tifa

a(r;Ry,r,R,)
a(ry,r,) 152

and J,p(py|hy) =

£
=
©
H
D
T —
o =
-0
—
|
o]
[y%]
m
@
%]
——
]
= <«
e
1
o
L)
el

Hence J,(8,|D) = liﬁggiigﬂ;ﬂl

3 (U,V,W)

20
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1, Q 1, q
Now consider y = h2¢e02
0, 1 0,1

1, 1,4 1 ,Q+d
0, 1/ 0o, 1 0, 1
i.e. (Q)o(g) = (Q+q)

]
Hence Jy(0z[n ) = ]—%%&%l] =1

and J,p(0zlhp) = ‘3%%3%1 =1

Substituting the above into equation (2.5.11) we obtain

the following distribution:

: -1
~ R ,R Q X, 9 1
p(R1,R2,Qx,y,2) = £ B IR 2
0, R 0, = 1 2

(2.5.14)
Ro
= g p(R1,R2,Q |x,y,2)
so ﬁ(RI’RZ:Q|X’Y:Z) # p(RI’RZ’QIX’Y,Z)°
m

By imbedding the model inté a pivotal model, it is
possible sometimes to obtain a distribution that has
a joint expected posterior probability interpretation.

The following example illustrates this procedure.
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Example 2.5.4

Consider the model

X = 0i06820e envi(.) (2.5.15)

where x,ec0 = {0,1,2,3,4,5}, 01e{i,al}, B8,e{i,B} and

the transformations ¢e are given by the following table:

Q
0 I 2 3 4 5

4. |0 1 2 3 4 5

This model is a multipivotal model since each set of
transformations {¢el} and‘{¢6é} form groups of order 2,

but the joint model is not a pivotal model.

By considering the set of four transformations
{¢912:8123 {i,a,B,aB}} obtained by taking every combin-
ation of the two sets of transformations, we see that
by adding just two transformations ¢Y and ¢6 to this
set we obtain a pivotal model (2.5.16) into which the
model of (2.5.15) is imbedded, where

X = 91208 e'\af(!) (2.5.16)

where x,ee = {0,1,2,3,4,5} and 8;, indexes a set of

transformations {, :615¢ (i,a,8,a8,7,v)} defined to be
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f2
0 1 2 3 4 5
i 0 1 2 3 4 5
al 1 0 3 2 5 4
812 Bl 5 2 1 4 3 0
aB| 2 ) 4 1 0 3
¥ 3 0 5 1 2
§| 3 4 5 0 2 1

From this pivotal model we can obtain a pivotal distri-
bution that has a joint expected posterior probability
interpretation of the parameter g¢;, and hence of the
parameters 6; and 8,. This is because wé have shown in
theorem 2.4.1 that the expected posterior probability
interpretation is true no matter what conditional prior
distribution m(e8;,]e) we might choose. 1In this particu-
lar case we know that the support of this unknown
conditional prior distribution 1(8;,|e) lies in the set

{i,a,B,aBl.

Thus by imbedding the multipivotal model into a pivotal
model we have obtained a distribution of the parameters
81 and 98-, that has a joint expected posterior probability

interpretation. - O

Unfortunately there can be various ways of embedding
some multipiﬁotal models in a pivotal model which leads
to different distributions on the parameters. An
example of this will be given in section 3.2 the ellipse

fitting problem.
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Note in the case of finite and countably finite multi-

pivotal models whatever the imbeddings there will be a
unigue parameter distribution, that derived from
combining the conditional pivotal distribution using

(2.5.10). This is because all the Jacobian products

i, g€0y 1d51y4)d; 4p(8; idy,id,ly,y)
Ji,*(ai 1di,1diIyi)Ji,*(ai,ldini)

i=1,...,m
take the wvalue one.

In summary, with multipivotal models we have shown how

to obtain the multipivotal distribution which will have

a conditional expected posterior probability interpre-
tation and noted that in general this distribution will
not have a joint expected posterior Q;obability inter-
pretation. We have also shown: that SOmetiméS'it:ist
possible to obtain a distribution of the parameters in
the model that has a joint expected posterior probability
interpretation, but with a general multipiﬁotal model

this is not always possible.
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3 APPLICATIONS OF MULTIPIVOTAL MODELS TO SHAPE FITTING

In this chapter we look at the problem of fitting a
shape from a class of geometrical shapes, such as circles
or cones, to a set of data that lies approximately on a
shape from the class. This specific application is

called the Shape Fitting Problem.

We will illustrate how the methods developed in the
previous chapter can bhe applied to the shape fitting
problem for various classes of geometrical shapes and
will compare the results obtained by these methods with
other techniques. The examples given come from the
engineering industry and Avebury and Brogar Megalithic

stone rings.

3.1 The Circle Fitting Problem

In this section we look at fitting a circle through
a set of data that lies approximately on a circle or

arc of a circle.

When the members of the class of geometrical shapes,
defined in the shape fitting_problem, are all two
dimensional we will call the problem a two dimensional
shape fitting problem. For such problems we will
assume that the set of data points is in the form of

a profile.
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A profile is defined as a finite collection of data
points lying in a fixed plane. ZEach data point is given

rectangular co-ordinates (X,y).

This definition of a profile was given in Scott (1981)
and will be used throughout this thesis and is the one
used in the engineering industry, even though this is

not the usual meaning.

Let the data points for the circle fitting problem be
the profile (xi,yi) i=1,...,n, The radius and co-
ordinates of the centre of the "true” circle are taken
to be unknown, so the problem is reduced to one of
obtaining estimates or "confidence" intervais of these

particular parameters.

The circle fitting problem was discussed in some detail
in Scott (1%81) where two methods were propoéed. The
first was a curﬁe fitting technique and was called
"Modified Least Squares'. It consisted of minimiéing

with respect to a, b and ¢ the function

n
D4y (3.1.1)

i=1

where di = - ax; - by; - ¢ i=1,...,n.
The values of a, b and ¢ that achieve this minimisation
a, b and c say provide estimates of the co-ordinates of

the centre of the circle (5,5) and an estimate of the
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radius r = (2& + a? + %2)%.

- Note Angel and Barbker (1977) minimised the function

n
__X (4; - a2

i=1
with respect to a and b, where
n
1
n 43

i=1

d =

and solved d = 0 for ¢ to obtain estimates of a, b and
c; this can be shown to be equivalent to the modified

least squares procedure.

The second method consisted of writing the circle
fitting problem in terms of a conditional structural

model, as defined in Fraser (1968, part II), as follows:

(x,y) = [a,b,r]o(e,d)} (3.1.2)

where (x,y), (e,d) e¢q = R® xR_®. [a,b,rlea =RxRxR*
index a set of transformations 4400 8e0 defined

to be [a,b,rlo(e,d) = (al + re, bl + rd). This set of
transformation form a groupiander composition and the’

errors have a distribution function f(-

v) indexed by

the parameters v.

From this model a conditional structured distribution

of [a,b,r] given v (X,y) was obtained,
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p{la,b,rl|yv,(x,9)} =

-(2n+1)

K{v,(%,y) H {[a,b,r]1 " o(x,y) |vIr (3.1.3)

where k{v,(x,y)} is the constant of proportionality.
Also a marginal likelihood function for v
L{(x,y) v} = 1/k{v,(x,y)} (3.1.4)

An estimate of the parameters v,v say was obtained by
maximising the marginal likelihood function with respect

to the E's.

The values of i were then substituted into the conditional
structured distribution (3.1.3),; from which it is poss-
ible to make various inferences about the parameters a,

b and r. For instance it was suggested that one possible
way to obtain estimates of the parameters a, b and r was
to use those values that maximise the conditional struc-

tured distribution.

Finally one possible distribution was suggested for
f(.|v) which was based on the assumption that each
point (ei,di) i=1,...,n wé; independent and identically
distributed radially from the origin as a Normal distri-

bution with mean 1 and variance v.

Several authors have suggested using maximum likelihood.

This requires a probability model for the distribution
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of the data points. For example, Mardia and Holmes
(1980) use a construction based on maximising entrony
to obtain the probability density function of a single

data point (xi,yi) = X4 of the form

p(x, |2, I,k) =

ctr) x| texp -tk {(x;-) s (x -a)-1121  (3.1.5)

where C(k) is the constant of proportionality;
g? = (2,b)efR%; £ is a 2x2 symmetric nonsingular matrix,

and k is a positive concentration parameter.
The density has a mode on the quadratic form

(x-2)T 1~ l(x-a)-1 (3.1.8)

Estimates of these parameters are obtained by taking
those values ;, 6, ; and'ﬁ say, that maximise the
likelihood function, assuming the data points are
independent, given by (3.1.5). Then (5,6) estimates

the centre of the "true" circle and r its radius;

k gives an indication of how well a fit the model was.

The following is suggested as an alternative to the
above methods for the circle fitting problem. It is

based on the work of Chapter two.
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We start by defining a '"datum profile".

A datum profile is a profile whose data points

(si,ti) i=1,...,n are assumed to lie on the perimeter

of a known geometrical shape.

In pivotal models (and multipivotal models) we will
assume that the unknown random variables, mentioned in
(2.1.1), lie approximately on a datum profile with a
known error distribution about the datum profile. The
error distribution giving an indication of how.auxL a

fit the random variables are to the datum profile.

For the circle fitting problem we will assume that the
datum profile is a unit circle with its centre at the
origin. In-the multipivotal model i; is Eonvenienf to
assume that each point in the error distribution is
independent identically distributed radially, about the
datum profile, as a truncated N(1,1) distribution,

restricted to positive values. The truncation is

because radial directions have to be positive.

Transforming the distribution to cartesian co-ordinates

we obtain

n ’ n

(3.1.7)

The full multipivotal model we shall consider for the
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circle fitting problem is as follows:

(z,y) = [a,b,r] 0(c],0(e,d) (3.1.8)

(e,d) ~ £(.) given by (3.1.7)

where (x,y),(e,d)e2 = R"x® and both [a,b,r] co; and
[0],8, 1index the transformations

+ +
{¢61361261 = RxRx R and {¢82:625@2 =R}
respectively, defined on the ith element of (s,t)en

to be

[a,b,r]lo(si,ti) =-(d+rsi, b+rti) (3.1.9)
{(ui—l)g+1}si {(ui—llg+1£ti
[olz0(sy,t;) =( o ’ Uy

(3.1.10)

where u; = /s;*+t;?  with [a,b,rl;e0;, , [olye0, fixed.

Both sets of transformations form groups on their

respective indexing spaces namely
[A}B,Rll*[a,b,rll = [A+Ra, B+Rb, BRrl,eco; (3.1.11)
when [A,B,R1,,[{a,b,rl;e0; _

and [£1,*[c]l, = [zgl,202 (3.1.12)

when [zl,, [olze0,
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The group action of {¢82:92592} on the sample space Q
has the effect of altering the dispersion of the unknown
random variables about the datum profile in a radial
direction and can be used to measure the goodness of fit
of the multipivotal model to the data, resembling the

concentration parameter k¥ given in (3.1.3).

The group action of {¢91:eleel} on the sample space Q
has the effect of enlarging a profile by a scaling
factor of r and translating the origin to (a,b). Since
we have assumed that the unknown random variables lie
approximately on a unit circle with a centre at the
origin, the transformed profile will be approximately
on a circle with a radius r and a centre ét the point

(a,b).

Having defined cur model we can now proceed to calculate
the multipivotal distribution for the parameters using

the results from Chapter two.

From (3.1.9), (3.1.10), (3.1.11) and (3.1.12) we can

calculate the relevant Jacobians:

J1 o¢la,b,rl | (s,8)) = r2B

14
J1 «(la,b,r]l ,00,0,11 ) = r (3.1.13)
J1 wg(la,b,r] ,00,0,11 ) = r
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d2 o([ol21(s,t)) = 1T |——

’ Q =r= i=1 ui
Jz,*([Ulzs[l]z) = g ' (3.1.14)
Jz’*R([Glz,[I]z) = g

where [a.,b,r]l, [0,0,1]18@1 [0’]2, [1]25:@2
[0,0,11;, [1]; being the identity elements of the
respective groups and (s,t)eQ with u; = /si5+tiﬁ

i= 1’...’11.

Substituting the above into equation (2.5.11), we obtain
the multipivotal distribution for the parameters as

follows:

p{a,b,r,o[(x,y)) =«

n 2 n
T.
1 i 1 1
e"P{‘_ﬁza‘ iz=1[_r ‘1] } CEILAE Iy (3.1.15)

where r; = /{(xi—a)2+(yi—b)2}

We will use the multipivotal distribution to construct
the shortest interval of the parameters a,b,r given o
that has approximately 95% probability attached to it
by the distribution, knowing that from results given in
section 2.5 the probability assigned to a particular
interval of the parameters by the distribution has a
conditional expected posterior probability interpre-

tation. The approximation is due to the fact that the
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interval is calculated from an asymptotic expansion of
the multipivotal distribution about its maximum with
respect to the parameters. The details of the cal-
culation of the maximum are as follows. For computation-

al convenience we reparameterise the distribution to

n n

1 z 1 1
exp{;—_f [r.-r]2} S+t T =— .
27% 471 T j=1 T4 (3.1.186)
where t = ro and r; = /[(xi-a)2+(yi-n)2].

Taking minus the log of the reparameterised distribution

we obtain an equivalent minimisation problem:

n n
min 1 : .
a,b,r,f{zrﬁ §=1[ri-r] + (n+l)logr + §=110g r;}

(3.1.17)

The above equation has to be solved numerically; an
iterative procedure was used, details can be found in
Appendix 3.1. The starting values were taken to be the
solutions of the modified least squares method (3.1.1),

this being a non iterative procedure.

Denote the values of the parameters that maximise the

multipivotal distribution b§ 5,6,5 and ;. (Note 8 is
calculated by 5 = </r where : is the value that

minimises (3.1.17) together with a,b and ).

To calculate an approximate 95% pivotal probability

A

interval of a,b,r given ¢, we use a multivariate normal
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approximation to the multipivotal distribution about
its maximum. The multivariate normal distribution has
its mean at the maximum and its covariance matrix equal
to the inverse of the matrix of second derivatives of
minus the log of the multipivotal distribution calcu-

lated at its maximum.

The interval we will use is the central 95/ probability
ellipsoid of the multivariate normal distribution.
Experience has shown that this gives an adequate approx-
imation to the desired interval. It is possible to
improve on this interval by ﬁsing an iterative procedure
based on gaussian quadrature which uses hermitian
polynomials (see Naylor & Smith, 1982), but this is

computationally very heavy and so will not be used.

A listing of a computer program that calculates the
maximum of the multipivotal distribution and the co-
variance matrix of the multivariate distribution is given

in Appendix 3.2.

The first numerical example is the calculation for the
Brogar Megalithic stone ring shown in Fig. 3.1.1. This
ring was surveyed by Thom and Thom (1973), who gave the
positions of each stone in'éélar co~ordinates, with
radii measured to the nearest tenth of a foot and angles
to the nearest tenth of a degree. 1In table 3.1.2 the
positions of the stones in rectangular co-ordinates are
given to the nearest hundredth of a foot. It was

decided to give the position of the stones to an extra
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decimal place so that the conversion to rectangular

co-~ordinates does not have an effect on the final results.

Thom in the above paper suggested that the builders of
the Brogar ring intended that its shape be a circle with
a diameter of 125 MY (Megalithic Yards). Assuming this
hypothesis of exactly 125 MY to be correct, the fitting
of a circle provides an estimate of the value of the

Megalithic Yard in feet.
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Figure 3.1.1 Plan of Brogar Megalithic Stone Ring

Brogar is on the Orkney Islands. The plan indicates
for certain stones identification numbers given to them

by archaeologists.
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Table 3.1.2

Position of the stones in Brogar Ring

Stone X Y
1 199.06 349.93
2 213.99 347.08
3 229,84 342.01
7 289.31 302.26
8 301.36 292.38
10 330.28 261.59
12 342.64 233.79
14 349.07 199.56
15 350 .40 178.81
16 349,07 159,54
19 337.78 114.32
20 333,29 105.57
22 302.70 62.34
24 284.58 44,20
28 218.16 - 17.32
29 192.44 10.56
30 177 .00 8.03
39 142.63 14.16
33 126.25 19.39
34 109.72 27.19
36 79.66 44.89
37 66.23 55.84
38 52.37 69.83
39 40.56 83.81
a1 23.88 113.73
44 9.43 164.18
45 7.90 180.60
46 9.67 199.11
47 12.50 . 217.75
48 16.32 235.40
49 25.64 252.64
50 35.55 268.87
53 63.23 304.79
56 105.65 332.44
58 144.41 348.89

Co-ordinates are all in feet.

108
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We shall use two alternative methods for comparison with
our pivotal procedure. These are firstly the one Thom
developed in his original paper, which is an iterative
scheme that is equivalent to a least squares fit of a

cirele in a radial direction. That is to say we find

those values of a, b and r that minimise

n

§=1{/[(xi—a)2+(yi—b)2]—r}z

(3.1.18)

where (xi,yi) i=1,...,n are the positions of the

stones. The second is Modified Least Squares (3.1.1).
The results are given in the following table.

Table 3.1.3 Brogar Ring Results

Thom MLS Pivotal
g = 1.03E-2
a 179.52 179.52 179.50
b 180.26 180.26 180.24
r 170.01 170.01 170.00
MY 2.7202 2.17202 2.7200

All entries

are in feet.

The approximate 95% Pivotal Probability ellipsoid

calculated from the multivariate approximation is:

(o-80)T 7 M8 -84) < 7.81

where g¢ = (a,b,r), ioT = (a,b,r)

(3.1.19)
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4.0739E-2
and J] = | 1.0988E-4, 4.6989E-3
1.6826E-3, 5.8814E-3, 2,2793E-3,

the covariance matrix of the approximation.

As can easily be seen all three methods give similar
results; this is because Brogar approximates very
closely to a full circle. This is not true for our

next example.

Avebury Megalithic stone ring (Fig. 3.1.4) is the
largest and most complicated in Europe. Details of the
survey of this ring can be found in Thom and Thom (1978).
Table 3.1.5 gives the positions of the stones in rect-
angular co-ordinates to the nearest tenth of a foot.

As can eﬁsily be seen Avebury is far from circular.
Thoms' geometrical interpretation of this site consis-
ted of a series of arcs of circles. When the centres

of the arcs are linked they form right angle Pythagorean
triangles, that is to say the lengths of the sides of
the triangles take integer Values when measured in
Megalithic Yards. The radii of the arcs themselves are
also assumed to be integer mgltiples of a MY, This
extremely complicated design is explained in greatér

detail in Thom et al (19786).

The alternative comparisons we shall employ on the
individual arcs are: the Modified Least Sguares

method (3.1.1) and one by Thom, who fitted the whole
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set of arcs simultaneocusly, again by an iterative
method which is described in Thom and Thom (1978).

The results are given in Table 3.1.6.

There is a large discrepancy between Thom's method and
the others. We conclude that it is very unlikely that

Thom's geometrical interpretation of Avebury is correct.
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Figure 3.1.4 DPlan of Avebury Megalithic Stone Ring

Avebury is in Wiltshire. The plan indicates for certain
stones identification numbers given to them by archaeolo-

gists.

680

0 1 T 1 ] l 3 ' ] | l
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Table 3.1.5 Position of the stones in Avebury Ring

Stone X Y
1 733.7 44.0
3 659.7 28.0
4 624.2 19.3
5 588 .4 13.9
6 441.6 12.3
7 515.1 9.5
8 478.0 16.6
9 445.3 23.4

10 413.8 46.2
11 377.9 74.1
12 357.1 94.1
13 327.7 112.4
14 300.6 136.2
15 272.0 158.8
16 243.5 183.0
17 216.3 205.0
18 188.9 229.8
19 163.5 255.5
20 140.0 285.0
21 120.6 305.7
22 103.1 323,1
23 85.9 344.0
24 61.8 371.3

continued overleaf



30 19.3 624.4
31 24.9 663.0
. 32 33.3 698.3
- 33 43.7 731.3
34 55.5 764 .4
35 62.9 790.1
36 69.2 815.0
37 85.0 849.8
38 98.5 884.6
39 123.6 910.5
40 146.8 936.9
a1 175.2 962.4
42 206.7 984.7
43 237.6 1002.9
44 270.3 71022.5
45 292.5 1031.2
. 46 315.8 . .1042.0
50 461.1 1085. 4
68 1033.4 946, 2
08 769.9 64.9

Co-ordinates are all in feet.
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Avebury Ring Results
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Thom MLS Pivotal
Max. § covariance matrix.

Arc 1 Stones 1-8 5 = 2.86E-3
a 520.9 538.6 537.2

3.522E0

720.8 585.0 596.9 113751, 3.683E1

T 707.7 573.0 584.8 -4.176E-1, -1.9980, B8.083%E2
Arc 2 Stones 9-24 5 = 9.93E-4
a | 1612.8 1375.9 1386.9 5 969E2
b | 1697.1 1446.8 1459.1 ~1.075E~1, 2.503EQ
r 2041.5 1697.6 1714.0 6.705E-2, 1.,708E0Q, 2.593E3
Arc 3 Stones 30-39 g = 3.55E=3
a 723.2 667.1 690.9 . 638E-1
B 538.6 561.1 552.7 5.605E-2, 6.424E0
r 707.7 648.6 673.5 1.562E~1, -2.074E0, 1.089E3
Arc 4 Stones 40-46 ¢ = 1.13E-3
a 586.6 503.2 504.6

4,773E-2
b 386.9 548 .5 546 .2 7.513E-2, 3.366E-1
r 707.7 527.4 530.1 2.520E-2, -1.479E-1, 2.589E2

All entries in the table are in feet.
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3.2 The Ellipse Fitting Problem

In this sectionh we look at fitting an ellipse
through a set of data that lies approximately on an

ellipse or part of an ellipse.

Let the data points for the problem be a profile

(x4,v4) 1 =1,...,n. The lengths and orientation

of the major and minor axes and the centre of the "true"
ellipse are taken to be unknown. The problem is reduced

to one of obtaining estimates or '"confidence" intervals

for these particular parameters.

Modified Least Squares is easily adapted to the ellipse
fitting problem. It consists of minimising with respect

to A, B, C, D and E the function

;] od.z (3.2.1)

= 2 2
where d; x;% + Axyy; + By;® + Cx; + Dy, + E.

Denote those values of the parameters that minimise
(3.2.1) by A, ﬁ, é, ﬁ and é. From these it is not
diffienlt to calculate the;{éngths and orientation of
the major and minor axes and the co-ordinates of the

centre of the fitted ellipse.

The probability model (3.1.5) for the distribution of

profile points used by Mardia & Holmes was originally
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constructed for the ellipse fitting problem, with I
being any non-singular positive definite matrix. The
values of the parameters a, I and k that maximise the
resulting likelihood function can then be used to obtain
estimates of the lengths and orientation of the major
and minor axes as well as the co-ordinates of the centre

of the "true' ellipse.

There are two possible multipivotal models that could

be uéed for the ellipse fitting problem. The choice of
which one to use should depend on the ihterpretation of
the resulting multipivotal distribution that is required
for the particular application being used. We will

present both models here.

Ih both of the alternative models, the datum profile
will be the same as that used for the circle fitting
problem, namely a unit circle with its centre at the
origin, The distribution of the unknown random

variables (ei,di) i=1l,....,n about this particular

datum profile is also given by (3.1.7).

The first multipivotal model we shall consider for

the ellipse fitting problem is as follows:

(X,¥7) = [M,cl10 {cl20(e,d) (3.2.2)

(e,d) ~ £(.) given by (3.1.7)

where (x,y), (e,d)ef = Rn xiRn and both
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[M,a 1,60 and [ o]e0s2 index the transformations

+
{¢Bl:aleel = 5 x@®R? and {¢82:azaez =R}
respectively, where £ 1is the space of non-singular

positive definite 2x2 real matrices.

The first set of transformations [M,a];e@; is defined

on the ith element of (s,t)eR? to be’

m; my a
where M = el and o = eR? are fixed

mz My b

and the second set of transformations [¢]l,e0, is

defined by (3.1.10).

The relevant Jacbbians.for'thé calculation of the

multipivotal distribution are (3.1.14) and

n
(mimy - mpmsy)

Jl,g([M,glll(g,E))

(mimy - mpomg)3 (3.2.4)

Jl,*-( [Mya]l,,[1,0]1:)

JI’*R([M’E]I:[Isg]I) (mimy - mpoms)?

where [M,el;, [I,01;¢0; ;3 [I,0]; being the identity
element of this particular set of transformations and

(s,t)eq.

Substituting the above into equation (2.5.11), we

cbtain the multipivotal distribution for the parameters
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as follows:

p([M,al1,[c]l2 (X,¥)) =

n
-1 2 1 1 1
exp{ Foz(Ui-D) } (mlmu—mzmg)“+2 gntl 1 U,
i=1
(3.2.5)

T T
where U; = J{(xi—a,yi—b) MM (xi—a,yi-b) }

The second multipivotal model we shall consider for

the ellipse fitting problem is as follows:

(x,y) = [a,b]lol8),0lr,,r;]0lc]l4o(e,d) (3.2.6)
(e,d) ~ £(-) given by (3.1.7)

where (x,y), (e,d>ea =R"™ xR" and
[a,b]l;, [¥]5, [Ty,T,]3 and [o], index the transformations
{4,61:31591 =R?21, {¢92=92€@2 = [0,2m},

+ + +
{4y,83503 =R xR} and (4g,500c00 = R]
respectively, which are defined on the ith element of

(s,t)eft to be:
[a,b]lo(si,ti) = (sifg,ti+b) (3.2.7)

[T]ZO(si,ti) = (sjcosy-t;sin¥,s;sin¥+t,cosY)

(3.2.8)

[rl’r2]30(si’ti) = (I‘lsi,l‘zti) (3.2.9)
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and [U]“O(Si’ti) defined by (3.1.10).

The relevant Jacobians for the calculation of the

multipivotal distribution are (3.1.14) and

J1 o(la,bl1(s,t)) = 1

]
J1 «([2,b]11,00,0]1) = 1 (3.2.10)
J1 xg(la,b]11,00,011) = 1
J2 o(1¥12](s,1)) = 1
Jz,*([W]z,[O]z) = 1 (3.2.11)
T2 4p(l¥12,1012) = 1
Ja’Q([r1,I‘z]3|(_S_,£)) = (riry |
Ja’*([rl,r2]3,[1,1]3)‘= TIiT) (3.2.12)
JS,*R([TI:TZ]S’[1:1]3)= rirs

where {a,b];, [0,0],€06; , E?]z, [0]2202 and
[ry,r2]l3, [1,113e03 5 [0,0]7, [0]ls and [1,1]3 being
the identity elements of the respective set of trans-

formations and (s,%)eq.

Substituting the above into equation (2.5.11), we obtain

the multipivotal distribution for the parameters as
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follows:

p(la,bl,[¥ls,[ry,r5)3,00],[(x,¥)) =

n
-1 1 1
e%p { 205(/[V12+w12]-1{}(crlrz)n+1 I /v 2+w; %]
i=1
(3.2.13)

: -1 ~1 =1
where (Vi’wi) = [rl,r2]3 O[‘P]Z o[a,b]1 O(Xi:Yi).

As mentioned before the interpretation'of the two above
muiltipivotal distriﬁutions are different. From the
first (3.2.2), it is possible to construct intervals

of the parameters M and o that have joint expected
posterior probability interpretations given g. From

M and g it is possible to calculaté;fﬁe parameters

ry, r,, ¥, a and b which denote the length and
orientation of the major and minor axes and the co-
ordinates of the centre of the "true" ellipse
respectively. Thus we can construct intervals of these
parameters that also have a joint expected posterior

" probability interpretation given o.

The second multipivotal distribution (3.2.13) does not
have the joint expected poéterior probability inter-
pretation given ¢ but a conditional expected posterior
probability interpretation for each of the parameters
indexing a particular set of transformations given the
values of the parameters indexing the other sets of

transformations. For example it is possible to
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construct intervals of the parameters r; and r, given
¥, a, b and ¢ that have the above interpretation, since
r; and r, index the third set of transformations defined

by the model (3.2.6).

The example we will use to illustrate the ellipse

fitting problem comes from the engineering industry.

The blueprint of a certain engineered component specifies
that its shape should be an ellipse with major and

minor radii of 12.7 mm and 6.35 mm respectively with

a tolerance of * 2 um., Table 3.2,1 gives the measured
profile of a particular component measured in milli-
metres. We wish to find if this particular part con-

forms to the blueprint specification.

The multipivotal model we will use is the second one
given in (3.2.6), this is because the only parameters
we are interested in are the lengths of the major and
minor axes. The other parameter'ﬁalues are mainly due
to setting up errors when the component was originally

measured.

Again we will use a multivariate normal approximation
of the multipivotal distribution abouts its maximum
with respect to the paramefers a, b, ry, r2, ¥ and o,
to calculate an approximate 95% conditional pivotal
probability interval of r; and r; given a, b, ¥ and o.
For computational convenience we reparameterise the

distribution to:



Table 3.2.1

Profile Measurements in mm of an

Engineered Components

X Y.
0.329387 -0.333805
0.562751 -0.270705
0.797104 -0.210446
1.032404 -0.153019
1.2683597 -0.098341
1,505636 | -0.046362
1,743488 0.002926
1.982113 0.049570
2.221479 0.093604
2.461551 0.135054
2.702301 0.173944
2.943700 0.210303
3.185721 0.244162
3.428342 0.275545
3.671542 0.304457
3.915303 0.330915
4.159610 0.354922
4.404448 0.376483
4.649794 0.395663
4,895650 0.412392
5.141997 0.426718
5.388830 0.438640
5.636141 0.448155
5.883926 0.455252
6.132184 0.459934
6.380912 0.462194
6.630114 0.462003
6.879787 0.459373
7.129941 0.454276
7.380583 0.446681
7.631721 0.436560
7.883365 0.423907
8.135527 | 0.408686
8.388226 | - 0.390843
8.641482 0.370342
8.895314 0.347149
9.149739 .;0.321236
9.404794 0.292511
9.660505 0.260932
0.226422

9.916909

123
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n+1 n
exp{_ﬁ%g-(Ui—l)zj (@a-a®) 2 laeim b
i=1 *
(3.2.14)
Va
q; dy\ [X5-2
where U; = (xi_a,yi—b)
qQ, 44 Yi"b
_ cos?y sin?y
and q; = T, T,
q, = coswsinw-;lr - —l?
2 Ty r
- sin?y | cos?y
S U

Taking minus the log of the reparameterised distribution

we obtain an equivalent minimisation problem

n
min gor [ (U;-1)+(n+1)logo~
asb’ql’qZ’Q3’U i=1
-g-—n;—ll lOg(qlq:g—qu)E (3.2.15)

The above equation has to be solved numerically. An
iterative procedure was used, details can be found in
Appendix 3.1. The starting values were calculated from
the modified least squares-égtimates for the ellipse

fitting problem.

Denote the values of the parameters that maximise the

multipivotal distribution (3.2.13) by a, B, ;1, Ty, ¥

and o. These can be calculated from the wvalues of
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a, b, g1, 92, g3 and ¢ that minimise equation (3.2.15).

Table 3.2.2 summarises the results for this particular
component giving the blueprint values, the modified
least squares estimates and the values of the multi-

pivotal distribution.

Table 3.2.2 Results for the component whose measurements

are given in Table 3.2.1.

Blueprint . ~MLS : Pivotal max.
r 12.700 mm 12.70046 mm 12.70057 mm
T 6.350 mm 6.35054 mm 6.35054 mm
a - 6.48642 mm 6.48680 mm
b - -5.88812 mm -5.88812 mm
¥ - -0.,00045° 0.00038°
o - - - | 1.3665E-6

The approximate 95% conditional pivotal probability

ellipsoid for r; and r, given é, b, ; and o, calculated

from the multivariate approximation is
(6-80)T T71(8-84) < 5.99

where g? = (rl,rz),‘ggT = (ri,r3) (3.2.16)

9.048E-10,
and ) =
-1.183E-8 , 1.547E-7

is the covariance matrix of the multivariate normal
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approximation. This is the inverse of the matrix of
second derivatives with respect to r; and r, of the log
0f the reciprocal of the multipivotal density evaluated
at its maxi. A listing of a computer program that cal-
culates this maximum and calculates the covariance
matrix of the multivariate normal distribution is given

in Appendix 3.3.

There is no evidence from the results in the talk that
the component does not conform to the blueprint speci-
fication and so this component would not be rejected

for being the wrong shape.
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3.3 Other Shape Fitting Prcblems

In this section we briefly describe some other
shape fitting problems. These include higher dimension-
al as well as two dimensional problems. For each
particular class of geometrical shapes we will construct
a multipivotal model to illustrate how the methods
developed in chapter two are easily adapted to shape

fitting.

 Example 3.3.1 The rectangle fitting problem

In the rectangle fitting problem we look at fitting

a rectangle through a set of data that lies approximately
on a rectangle. Let the data points for the rectangle
fitting problem be the profile (Xé;yi) i=1,...,n.

The lengths and orientation of the sides and the centre
of the "true" rectanglé, denoted by 2r, 2r,, ¥, a and

b respectively, are taken to be unknown, so the problem
is reduced to obtaining estimates or '"confidence"

intervals of these particular parameters.

The multipivotal model we will use for the rectangle
fitting problem is similar tg the second model for

the ellipse fitting probleé’given by (3.2.6), The datum
profile is assumed to be a square with an area of 4
units, its sides parallel to x-y axes and its centre at

the origin.

We will assume that the unknown random variables
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(e;,d;) 1 = 1,...,n defined in the model have an error
distribution about the datum profile of the following
form:

n

f(e,d) = exp {;% ¥ (Ui-l)2 (3.3.1)

i=1
where U; = max {|e;|,[d;[} i =1,...,n, that is to say
they have a truncated N(1,1) distribution, restricted
to positive values, about the nearest edge of the datum
profile. The full multipivotal model we shall consider

is as follows:

(x,y) = [a,bljol¥]s0lr;,r;1000ls0(e,d)  (3.3.2)
(e,d) ~ £(.) given by (3.3.1)

where (x,y), (e,d)en =" x R and (a,bl;, [¥],,
[ry,r5] , [o]y index the transformations

{¢el=91891 =R?%}, {¢92=92€92 = [0,2mM) 1,
(4g,:03505 = R x W} and (o5 :04c0y =R’}
respectively, which are defined on the ith element of

(E,E)EQ to be:

[a,b]lo(si,ti) defined by (3.2.7)
[¥lz0(sy,t5) defined by (3.2.8)

[r,,r,]150(s;,t;) defined by (3.2.9)

V. ’ V.

[o]40(s;,t,) =({(vi—1)c+1}si {(Vi'1)°+l}ti)
1 i

(3.3.3)

where v; = max{|s; |, |t; [}
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This last set of transformations has the effect of
altering the dispersion of the unknown random variables

about the datum profile.
Having defined our model we can now proceed to calcu-
late the multipivotal distribution for the parameters

using the results from chapter two.

The relevant Jacobians for the calculation are given:

by equations (3.2.10), (3.2.11), (3.2.12) and by

n
Iy o(Tolul(s,t)) = o1
1

Jq’*([dlu,[llq) = 9 - (3.3.4)

il
Q

J!;.’*R([O']q.,[]-]q.)

where [oly, [1314e 04 , ({11, being the identity element

of the set of transformations and (g,t)eq.
Substituting the above into equation (2.5.11) we obtain
the multipivotal distribution for the parameters as

follows:

p(la,b),[¥],,[r,r,]3,00),[(X,7)) =«

n n
‘ : -1
-1 1 (U,-1)o "+1
exp{z‘;ﬂ “’f“"’} SEP LA { 1 }

i=1 i=1 Us

(3.3.5)
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{ (x4-a)cos¥+(y;-h)sin¥

where Ui = max T ’

(Yi—b)cos?-(xi~a)sinw

T2

The multipivotal distribution can then be used to
obtain intervals of the parameters that have 95%
pivotal probability attached to them, so that various

inferences about the parameters can be made. =

The next example is slightly different from the
previous examples in that the class of geometrical

shapes 1s defined in polar co-ordinates,

- Example 3.3.2 The Limacon Fitting Problem

In the limacon fitting problem we look at fitting a
limacon through a set of data that lies approximately

on a limacon,

A limacon is a figure whose equation in polar co-

ordinates is

r = R + Asiny + Bcosy .-~ (3.3.6)

Reﬂf; A,BETR

The limacon is a useful figure because it is a linear
approximation, in polar co-ordinates, to a circle of
radius R when the centre, in cartesian co-ordinates,

at (A,B) is close to the origin (relatiﬁe to R)
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i.e. when A,B <<R.

Let the data points for this problem also be measured
in polar co-ordinates (ri,ﬁi) i=1,...,n. The multi-
pivotal model we will use for this particular problem

takes the following form:

(r,8) = [A,B,Rl10lclz0(g,¥) (3.3.7)

where (z,8), (g,¥) €2 =

T x [0,2m",

The unknown random variables (e;,¥;) 1 = 1,...,n are
assumed to lie approximately on a unit cirele with its
centre at the origin and an error distribution about
this shape assumed to be

n

t(e,¥) = exp{‘% ) (ei-l)z} (3.3.8)
i=1
that is to say each point in the error distribution is
independent identically distributed radially about the
unit circle as a truncated N(1,1) distribution restric-

ted to positive values.

The transformations indexed by [A,B,R]1 and [o]z are

defined on the ith element.of'(g,y)sn to be:

[A,B,R];0(s;,w;) = (Rs; + Asinw; + Bcosw,,w;)

(3.3.9)
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where [A,B,R1; £0; = Rx [Rx R" and [o];c0, =R

The relevant Jacobians for the calculation of the

multipivotal distribution are:

Ty o([4,B,R]11{(s,%)) = R"

J1 ([A,B,R]1,10,0,111) = R? (3.3.11)

Jl’*R([A,B,Rll,[0,0,1]1) = R

Iz o(lol2[(s,®)) = off

T2 x(Lol2,[112) =g (3.3.12)
- B

32 4g(lel2, [115)

where [A,B,R]l,, [0,0,1]1¢©1 and [o]l2, [1]2c9 s

[0,0,1]; and [1]2 being the identity elements of their

respective set of transformations.

Substituting the above into equation (2.5.11) we obtain
the multipivotal distribution for the parameters as

follows:

p([A,B,R] 4, [ o] [(_15'_,_9_)) =

n

- 1 . 1

exp{ T ZRT Z (I‘i-ASln Gi-BCOS Bi—R)z} m-)—n+]_
i=0

(3.3.13)
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The multipivotal distribution can then be used to obtain
intervals of the parameters with the usual interpre-

tation.

Note the value of the parameters that maximise the
multipivotal distribution coincide with the least

squares solution for the parameters A, B and R. u

All the previous examples have been two dimensional
shape fitting problems. There is no reason at all to
restrict our attention to two dimensional problems,
so the final two éxamples are both three dimensional

shape fitting problems.

These both illustrate the extension of multipi#otal
models to model higher dimensionzl shape fitting

problems.

" Example 3.3.3 The Cuboid Fitting Problem

In the cuboid fitting problem we look at fitting a
cuboid through a set of data that lies approximately
on a cuboid. Let the data points for the cuboid fitting

problem be the 3D profile (xi,yi,zi) i=1,...,n.

A 3D profile is defined as a finite collection of data
points lying in the Euclidian space R®*. Each data
point is given by its cartesian co-ordinates in the
space. This definition is an obvious extension of a

profile defined in section 3.1.
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The lengths and orientation of the sides and the centre
of the "true" cuboid, denoted by 21,, 21,, 21ls, o, B,
Y, a, b and c respectively, are taken to be unknown, so
the problem is reduced to that of obtaining estimaes or

"confidence' intervals of these particular parameters.

The datum profile for the problem is assumed to be a
cube with a volume of 8 units, its sides parallel to

the axes and centre at the origin.

We will assume that the unknown random variables
(uj,vy5w;) 1 = 1,...,n defined in the multipivotal
model have an error distribution about the datum profile
of the following form:

n

I(u,v,w) = exp{;% y (ei-l)é (3.3.14)
i=1

where e; = max{|u;{,|vy|,|ws]} 1 =1,...,n.

That is to say they have a truncated N(1,1) distribution
restricted to positive wvalues, about the nearest face

of the datum profile. The full multipivotal model we
shall consider is as follows:

(x,¥,2) = [a,b,cliole ]zo[slgo[y l,0l1;,1, ,13]150

[c]ao(g,j,g) (3.3.15)

(u,v,w) ~ £(.) given by (3.3.14)

where (X,y,2), (u,v,%¥) ¢qo = RP x[Rn xR? and
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[a’b’c]ly[alz,[s]3,[Y]4;[11,12,13]5,[0]5 index the

transformations {¢91:61a 01 =[R3}, {¢82:eze 6, = [0,2m)},

{¢93:93E P (0,2m 1}, {¢9u:e”€ 6, = (0,2m1,

R*x{R+ x R} ana {¢96:esg g =‘R+}

{¢65:95€ @5
respectively, which are defined on the ith element of

(r,s,t)ef to be:

[a,b,c]1b(ri,si?ti) = (ri+a,si+b,ti+c) (3.3.186)
[a]zo(ri,si,ti) = (r;,s;cosa-t;sina,s;sina+t ;cosa)
(3.3.17)
[Blgo(ri,si,ti) = (ricoss—tisinﬂ,si,risin8+ticoss)
(3.3.18)
[Y]uo(ri;si,ti) = (rjcosy-s;siny,r; siny+s;cosy,t;)
(3‘3.19)

[olgolr;,s;,t;) = (a;r;,448;,95%5) (3.3.21)
(di—l)a+1
where q; = —-——E;——— and d; = max{[ri|,|si|,|ti|}.

The action of the wvarious éet of transformations on the

samples space 0 is as follows:

The first set has the effect of moving the origin to
point (a,b,c). The next three rotate the space, about

the x, ¥y and z axes respectively. The fifth set of
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transformations enlarge the space by a factor of 1;

in the x direction and by 12 and 1; in the vy and z
directions respectively. The final set of trans-
formations has the effect of altering the dispersion

of the unknown random variables about the datum profile.

Having defined our model we can now proceed to calculate
the relevant Jacobians to obtain the nmultipivotal

distribution for the parameters.

JS’Q([11,12,13]5|(£,§,£) = 11n12n13n
Js s([l1,12,13]501,1,1s) = 111213 (3.3.22)
JS’*R([11,12,13]5’[1’1,1]5) = 11]213
o _ . ]
Jg o(Lolsl(x,s,1)) =" ] ay
4
1=1
Js,*([G]e,[lls) =0 (3.3.23)
Jﬁ’*R(talev[l}E) ’ =0

where [1:,12,13]s5, [1,1,1]5¢c ©5 ; [olg, [llse @ ,
[1,1,1]5 and [l1]g being the 1dent1ty elements of the
respective set of transformatlons and CEvaE)

All the other relevant Jacobians take the value one.

Substituting the above into equation (2.5.11), we
obtain the multipivotal distribution for the parameters

as follows:
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p(fa,b,cl 1,[0‘-] 2’[B] 3:[“{] Lp’[l 1’12!13] 5’[‘3] 6 (}_{.’X’E))

e n 0 ((h,-1)o *+1
« exp ——2-1 Z (h,-1)2 N S n+l T S :
20’ 1 (0’1 11213) - hi
i=1 i=1

(3.3.24)

where hi=max{|pi|,\qil’[ril:(pi’qi’ri) =

(11,1,,1513%(v15 0l]7 0lal; ola,b,el] 0(x,,y,,2;)}

This multipivotal distribution can then be used to
construct intervals of the parameters that have various
measures of pivotal probability attached to them, so

that inferences about the parameters can be made. 0

Example 3.3.4 The Cone Fitting Problem

In the cone fitting problem we look at fitting a cone
with circular cross-section through a set of data that
lies approximately on a cone. Let the data points for
the cone fitting problem be the 3D profile (xi,yi,zi)

i=1,...,n.

The position of the peak, the orientation of the axis

of symmetry and the ratio of;the width to the height

of the cone, denoted by a,'b, c, ay, B and 1 respectively,
are taken to be unknown, so the problem is reduced to
obtaining estimates or "confidence'" intervals of these

particular parameters.

The datum profile for the problem is assumed to be the
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cone given by the following equation:

that is to say a cone that has its peak at the origin,
the axis of symmetry is the z axis and the ratio of

the width to the height of the cone of one.

The unknown random variables (ui,vi,wi) i=1,...,n
are assumed to lie approximately on the datum profile,

with an error distribution given by

n

f(u,v,w) = exp['% } (/[uiz+v12]*[wi[;} (3.2.25)

i=1
that is to say each point has a truncated N([wil,l)
distribution restricted to positivé values,-in a radial
direction about the z axis in the x-y plane through
Zz = w.,. The full multipivotal model we shall consider

i
is as follows:

= [a:b!c]10[G]20[B]30[1140[0}50(E,z,i)

~
w
e
N
|

(3.3.26)

(u,v,w) ~ f(.) given by (3.3.25)

-where (x,y,2), (u,v,W)eq = R x R® x R? and
[a,b,cl;, [alp, [B8]3, [1],, [ols index the transfor-

mations {¢el:ele 9; =R3}, {¢92:925 0, = f[o,2m)1},

I

{¢83:B3£ O3 [0,2m}}, {¢91+=9q_8 Oy =m+} and

{¢es:ess @5 (R+} respectively, which are defined on
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the ith element of (r,s,t)en to be

[a,b,c]lo(ri,sigti) defined by (3.3.16)

[a]zo(ri,si,ti) defined by (3.3.17)

[8)30(r;,s;,t;) defined by (3.3.18)

[1]“°(ri’$i'ti) (1r;,1s;,t;) (3.3.27)

[°]5°(ri’si'ti) (qiri,qisi,ti) (3.3.28)

(VIr;2+s:21-|t; Do+|ty |

/[riz+sizl

where a; =

The relevant Jacobians for the calculation of the

multipivotal distribution are:

T, o114 [(z,5,80) = 177
Ty (114, 0114) =1 (3.3.29)
JL[.’*R([]-]{.;;[]-]L.,) =1
n
s o(lols[(x,s,1)) =" I q
i=1
I5 x(lals,[115) = g (3.3.30)

JS,*R([U]5’[1]5) =g
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where [11y, [1]y ¢04 and [ols, [1]15 e0s5; [1]4 and [1]5
being the identity elements of the respective set of

transformations and (r,s,t)cQ.

All the other relevant Jacobians take the value one.
Substituting the above into equation (2.5.11), we obtain
the multipivotal distribution for the parameters as

follows:

p([a"b’C]1’[u]2,[8]3![1]&.,[0]5](}_(.,1,5)) o«

n n
-1 1
eXP[Wf (‘/[eiz"'diz]"[hil);}m noky
i=1 o i=1
(3.3.31)

-1 -1 -1 -1
where (e;,d;,h;) = [11, 0olgl; olal; ofa,b,cly 0(X;,¥;,24)

(Vles2+d;21-h; Do +[hy |
/[eiz+diz]

and ki =

This multipivotal distribution can be used to construct
intervals of the parameters that have various measures

of pivotal probability attached to them. 0

As all the examples show, multipivotal models adapt
very easily to shape fitting problems, making use of

the geometrical properties of each particular problem,



141

4 CONCLUSIONS AND FURTHER WCRK

The main conclusion that one can drawn from the
previous chapter is that multipivotal models provide a
very versatile way to handle shape fitting problems,
making use of the geometrical properties in each par-
ticular case. For those problems where alternative
analyses are available the method compares favourably.
In the circle and ellipse fitting problems the modified
least squares method does provide a non-iterative
alternative which has the advantage of speed of compu-
tation over the iterative multipivotal method. However
it does have the disadvantage compared with the multi-
pivotal methad of not being able to take into account
information about the distribution of the dafa points

about the "true'" shape.

One suggestion for further work is to use simulation

to compare the robustness of alternative methods of fit
for particular shape fitting problems against various
extreme forms of data., For instance it is known that

as the angle of arc of a circle is reduced the estimates
of the radius and co-ordinates of the centre of the
"true" circle become less ;gliable. A simulation study
would indicate which of the various methods of f£it of

an arc of a cirele is the most robust against this type

of data.

Finally on the more theoretical side, it would be
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desirable to find some criteria for the choice of the
"best" interval -of the parameters that has a fixed
pivotal probability. In chapter three the shortest
interval criterion was chosen, but this has problems
because under repeated trials the resulting interval
might not remain the shortest. One possible solution
might be to incorporate pivotal and multipivotal models

in a decision theory framework.
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APPENDICES

Al1,1 Definition of Structured Model

A structured model is an ordered sequence
uo= [(2,8,P),(%,0),(0,6),{4,}]

where (9,4,P) is a probability space, X and 6 are a
sample space and a parameter space each being associated
with a o-field @ and £ respectively, {-¢e: 8e®} are

measurable functions from & to X and sets of the form:

U ¢;1({x}) 6eCef ; xe¥

8

Up () 6eCe £, and
8

{p:8c06 and ¢9-1({x}) #F ¢}
are all measurable.

Al.2 Theorem 2,3.1

(a) Given a Pivotal Model, then any equivalent

structured model to it will also be a Pivotal

Model.

(b) Given a (measurable) subset C&® and an observation
xc¥ then the probability induced by xe¥ the

corresponding point in the equivalent Pivotal Model.
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Proof:
Before we prove this theorem we need a couple of results:

R1 Given a point x¢¥ and a (measurable) subset CGP

then gi(C) = Qd(i)(C)'

R2 Given a point ee then there exists a 1-1 corres-

pondence between Xe and ﬁé such that:

if xe¥, =» o (x)e¥,  and

if xaKe = a(x)sKe.

Both these results are easily demonstrated from the

~ =1
definition of ¢e:eee = o ¢e:eee

Proof of theorem: We have to prove the structured
model generated by the 1-1 transformation «a satisfies
the three restrictions on a structured model for it to

be a pivotal model.

a) Partition condition

[

Since the transformations {¢e:eee} partition @

we have Yeed Vx,yeX = Qg = . Al1.2.1

Now consider Veef V’x,ys;Xe. Consider an element eOsQ;.

From Rl and the fact 2, = @ (9) we have e cQ 2.

From R2 we have u(;), a(})s %, hence from Al.2.1 we

-

have eosﬂa(y).
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Hence we get @ CQ§ By symmetry we also get ny P

hence 27 = Q;, hence the transformations {¢e:eee}
partition the space. 9.

b) Additivity condition

Let esq ({8 1)NQ ({8,}) for an xe% where xe¥% and

81 # 0228,
From Rl we obtain

esﬂa(;)({el}) and eeﬂa(%)({ez}) hence

eeQy 1y (101 NR 5y ((82})

d(x a(x

but this is impossible since by additivity

)({el}) Q )({az}) = ¢

'a(x G(X

hence the induced model is also additive.

c) Pivotal condition

Since the original model satisfies the pivotal
condition we have Y xeX¥ andVeeo Jleen

s.t. a(x) = 8ope. Rearranging we arrive at X = a_1(¢eoe).

Now since o is a 1-1 mapping of §+X the induced struc-

tured model satisfies the pivotal condition.
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Hence the induced structured model is a pivotal model
because it too satisfies the three conditions (a), (b)

and (c¢). Hence the first part of the theorem.

We need only consider equality of the upper probability
for the two models because we have already proved that
both models satisfy the additivity condition and hence
that the upper and lower probabilities are equal to
each other for every (measurable) subset of 6 for both

models.

From Rl we have that the partitions induced by the
transformations {940e0]) and {56:639} are the same,
hence the conditional probability induced will also be
the same on each partition. Rl also shows that the set
of antecedents produced by a (measurable) subset C @
from observations xe¥ and x = a(X)eX are also the same,
hence from the definition of upper probability the
upper probabilities induced will also be the same.

Hence theorem, it

Al.,3 Lemma 2.3.2

The sets {eX: XeQ} partition @, the same partition

of @ as the sets {Qx: xeX}.
Proof:

We first have to prove that if the sets O, and O,

Xx,x'eQ? have a point in common, x"eQ say then ex = ex,.
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The sets {Gx} xeQ will then partition ®. We need only

prove:

if x"eex then @x” = GX (A1.3.1)

We start by proving the following:
if x"eex then Gx,,s-@x (A1.3.2)

Given he® hox'e hoCox by definition of x". Now
ho®, = 6, by P2 hence Al.3.2. To prove Al.3.1 we need

only prove that xaex" and then from A1.3.2(%{gﬁx" hence

Since x"s@x we have, there exist he® such that x" = hox.
Now from P3 and P4 there exists h¥*e0® s.t. h*o(hox) = x,

that is x = h*¥ox" hence xeexn.

So we have now proved that the sets {@x} xe@ partition
the space @, we only have to prove that this is the same

partition as {QX} xefl, We achieve this by proving that:

¥ xeQ 2, = 0, (A1.3.3)

-

Consider a point eeﬂx by definition there exists 6¢@

s.t. X = Boe, hence XEOe. From Al1.3.1 we have OX = Ge.

Now from P3 eeee = ex hence

0X © 8% (A1.3.4)

Consider a point x'e@x by definition there exist he®
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s.t. ¥' = hox, by P3 and P2 there exist a 6;e6 s.t.
8i10(hox) = x that is 9§10X' = x so X' ey and hence
ex 8, then from Al.3.4 we have proved Al1.3.3 hence
result.

Al.4 Theorem 2.3.2

The binary operation *: g X 0-+0 conditional
on the point D(x), defined in §2.3, has the algebraic
structure called "a loop" that is to say it has the

following properties:

L1 é;,6,c0 then 061%0,e0 that is to say 0 is closed

under the 6peration *,

L2 3i€@ s.t. V0e0 i*8-'= 8 = 6*i that is to say O

has an identity element, namely i.

" L3 Ve1,82¢0 3Ith;,hred s.t.

81*h; = 62, hy*8; = 06;.

‘Proof:

Before we can prove this theorem we need the following

results:
Vh]_ ,the VGEQ ?‘gl ,gzee

s.t. gro(h;oe) = hjoe h;o(gy0e) = hyoe

(Al1.4.1)
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By P4 we already have 1g1¢0 s.t. gio(hioe) = hzoe

s0 we only have to prove uniqueness of this element.

Assume‘lgl'ae s.t.
g1'o(hjoe) = hyoe = gio(hioe).
Let h,oe = e'eQ then we have gi'oe' = gioe' and by P1
we must have g3,' = g1 hence uniqueness so we have proved
the first part of the result.
To prove the existence of g,e0 consider the following.
Let z = hyoe, by P5 11de® s.t. hjod = z, Define 8¢0@
to be that element of 0 that satisfies 6o(hiod) = 4,
f exists by P3 and P4 and is unique by P1 hence

d = so(hi0d) = soz = go(hjce) = gaoe (A1.4.2)

g, exists by P2. Now ge® has the desired property

since hyo(gj,oe) h,od by Al.4.2

(]

z = h,oe by definition,
To prove uniqueness consider g,'e® s.t.

h;o(g,'ce) = hyoe = hio(gaoe).

-"‘

Since defl defined above is unique we have

g,'oe = d = groe, by Pl we have g2' = g2, hence result.

We can now proceed to prove the theorem,
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Droof of theorem

By the definition of the binary operation

*: 0 x 00 given in §2.3 this is true hence L1.

Let ic® be the identity element mentioned in P3

then we have ged

(ifg)oD(x) = jo(goD(x)) - by definition
= joz

where z = goD(x).

Now ioz = z by P3

= goD(x)

hence i*g = g - by P1

(g¥i)oD(x) = go(ioD(x)) by definition
= goD(x) by P3

thus g*i = g by P1

hende L2,

By Al.4.1 3J!gye0 s.t. gyo(h;oD(x)) = h,oD(x)
hence (g;*h;)oD(x) = g;o(h;oD(x)) = h,oD(x).

Thus g;*h = h, by Pl, hence the first part of L3.
By Al1.4.1 'gpe0  s.t. hjo(gyoD(x)) = h,oD(x)
hence (h,*g2)oD(x) ='£;o(gzoD(X)) = h,0D(x).

Thus h,*g = h, by Pl, hence the second part of L3,

hence L3, hence the theorem. I\
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Al.5 Proof of the unigueness of the pivotal

‘distribution of ¢ given x

Since we have observed xefl we can take the
reference point in the partition &, to be x itself.
We will now prove that the pivotal distribution of 6¢0
given the reference variable xeQ and its associated
transformation variable iec®, is the same as the pivotal
distribution of 6:6 given a general reference variablec

DeﬂX and its associated transformstion variable [x]co.

Before we proceed with the proof we do need a slight
change in notation. Denote by *: 6 X 6-+© the loop
obtained when we take x to be the reference wvariable
and,§: @ X 6>0 the loop obtained when we take D to

be the reference wvariable.

Since DEQX there exists uniquely k£ such that

D = kox (A1.5.1)

Let a,be® consider agb = ¢, then from the definition

of g ® X 6-+8 we have

Il

(a£b)oD = ao(boD) = 20 (bo(kox))

i}

coD = co(kox)

hence ax*x(bxk)
x x

1]
1
s

(Al1.5.2)
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From this we obtain
adb = {ax(bxk)}/ k (A1.5.3)
-] x x X
where /xis right division associated with *.

if atb = ¢ then aj¢ = b, and from Al.5.2 we obtain

a\e = {a)ecxk)}/ k (A1.5.4)

where b and.} are the left divisions associated with
¥ and ¥ respectively.

Consider (eé[x])oD = 7z say.

Now 8oz = {8§(8§lx])}oD
= [x]oD = x ~ from lemma A2.1.1
Thus from lemma 2,.3.4 we obtﬁin Bijz] = i or [z] ==9Q@

hence we obtain

(8\[x1)oD = (oy1)ox (A1.5.5)
. _ (8¢ {anN[xT}YoD)
Consider JQ(Bé[x]|D) l rﬁ(D)
3({63}1}01:)’ !a(x) _ from A1.5.5
3(x) 3 (kox) and Al1.5.1.

Hence we obtain
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Jo(8NxI|D) = AT (0)I]x) (A1.5.6)

where A is a constant independent of #8e6.

Consider du(.) the left loop invariant differential on

® based on the loop ¥ © x ©+8 .

Now du(h*6) = du({hx(e%k)}/k by A1.5.3
— 1 . 1
= a7y du(hglexk)) by A2.4.6
_ 1
= m dl.l(eik) bY A2.3.4
= du(e) . Dby A2.4.4

Hence dp(.) is also a left loop-invariant differential

on & based on the loop ¥* & X 0-+0 and must therefore
only differ by a multiplicative constant from any other
left loop invariant differential on @ based on the loop

?‘ 8@ X 030 that is to say
du'(s) = Bdu(s) (A1.5.7)
where B is a constant independent of 5.

Consider dv(.) the right loop invariant differential

on 6 based on the loop £ © x 00

Now dv(&xh) = dv({ex(bxk)}/k) by Al.5.3

dv( 8%(hXk)) by A2.4.9

dv(8) by A2.3.6
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Hence dv(.) is also a right loop invariant differential

on @ based on the loop ¥ © x 0-+9 and also must only
differ by a multiplicative constant from any other
right loop invariant differential on @ based on the

loop ¥ 0 x 0-+0 . From this fact and Al1l.5.7 we obtain
At(8) = Ca(®) (A1.5.8)

where A'(.) and A(.) are the ratios of the left and

right loop invariant differentials on ¢ based on ¥ and

;-respectively and C is a constant independent of 9e6.

From this we obtain

I

av(e)x1) = CACBNIx])

CaC{e\{ [x1%k}} /k)

From Al.5.4

I

From [x]xk=i CAC{ONI} k)

From A2.4.3 = céﬁ%ﬁ%l (41.5.9)

Consider the pivotal distribution of & given D and [x]

p(8|D,[x]1) from (2.3.23).
- k(D)f(s'lox>J9(e§[x1JD)A(9§[xl)du(9)

From Al1.,5.6, A1.5.7, A1.5.9 and Al.5.4 we obtain

_C
6(K)

k(D)E( 6™ "ox)AJ 5( 671 [D) AC8\1)Bdyu( @)
.= x

K(x)E(8™ 0x)J (8N D) AN du( 8)
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where k(x) = k(D)ABE%%-,the constant of proportionality,

= p¢8]x,i) by 2.3.23, the pivotal distribution of 8

given x, hence result.

Al1.6 Theorem 2.4.1

For every conditional prior distribution n(e|[el)

Epxy[p (2(8¢6%,[x1,D)|T(s| [eD)}[D}
= [ afse”,1x1,D)[nCe|leD}p(Ix1|D,n(0|[e1))
[x]eo dlx]
= [ p(e|[x1,D)ds
8esS(e",[x1,D)
DProof: -
Let X = goe evf(e) (Al.6.1)

e,xe® 0e® be a pivotal model, and let N(8] [e]) be

the conditional prior distribution for 8¢@ given [el].

By 2.3.15 we can rewrite Al.6.1 in terms of a reduced

pivotal model:
D(x) = D(e) =D
[x] = g*fel * conditional on D

[el ~ g(lel|D) 8 ~ n(a|leld (41.6.2)

with x,ecl 60
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We first calculate the joint distribution of [x] and @

given D, 5([x],e]D) say, as follows:
The joint distribution of [e] and g given D is

g([el|D)n(e|[el)dpd[e] =
= (e |le])k(D)f([eloD)J (el |D)dul{e])de
by 2.3.14

Letting [e] = a\[x] we obtain

p([x1,0|D)d[x]de= (A1.6.3)
= m(o]e\Ex])k(D)£(s ' ox)J, e\ [x]|D)du( [x]1)de
by A2.4.5

The marginal distribution of [xX] given D thus becomes

P(Ix1|D) = [ p(ix1,8|[D)de . (A1.6.4)
BeB

and the conditional distribution of 8 given [x] and D is

p(e|Lx1,D) = §‘E§§|85D’ (A1.6.5)

Al

The posterior probability of a particular set

*
3(e ,[x]1,D) = S say given a conditional prior distri-

bution N(e|[e]) is

a{sCe,[x1,D) |n(e|le])} =

= [ p(o|[x],D)de (A1.6.6)

ses( o, [x1,D)
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And so the expected posterior probability is

*
E[X] ID{Q{S(G ,EXI.D)IH(BHe])}} =

= [ p(lxl,e|D)ded[x] by Al.6.6
and A1.6.5
[x]ee 8:S
(A1.6.7)

f i n(e|evx])k(D)f(e-lox)JQ(e\[x]|D)dedu[x]

[x]=©@ B8eS

by A1.6.3

(x1/[el.

il

Let 8

Now do = J,(o,i|D)duce) = 5, XLLLELAID) gy(qer)

by A2.4.8
#* . * ‘
Also 8eS(e ,[x]1,D) iff [eleE e D by 2.4.1

*
where E is the event from ® in 1-1 correspondence

by 2.4.1, thus Al.6.7 becomes

f f H([x]/[e]|[e])k(D)f([e]oD)JQ([e]|D)

[x]ee [eleE

.d’

x]/fe],i[D)
a(lel)

J*([ duleldu(x]

Changing the order of integration we obtain
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= [ kMn([x1/[e]|le])E([eloD)J ([e]|D)
[eleE® [x]eo

-g*([xlgEZ};ilD) dulx]ldule] (A1.6.8)

Now let [x] = 8*[e]

J . (lel/[x],i|D) _ Ja(e,i|D)
T dulx] = ‘*ET?€+T“ dute*iel)

= J,(8,i|D)du(s) by A2.4.4

do

Also for fixed [é],[x] taking values on g implies 8

taking values on ¢. Thus Al.6.8 becomes

f k(D)f([eloD)Jy([e]l|D) [n(e|[elddedulel

[e]eE* 8e0

f k(D)f([eloD)J ([el|D)dulel
[elcE"

I

*

p(a| [xJoD)de by lemma 2.4.1

seS(e,x],D)

Hence result. ”
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A2,1 Definition and some properties of loops

A binary operation * on a non-empty set ¢ is
defined to be a single-valued mapping from some subset
of © x 9 into ©® and we denote this mapping by 8:%62

where 8,,0,e0.
A groupoid 6,* is a system consisting of a non-empty
set © and a binary operation *¥ on © such that 91%8;

is defined in ¢ for all B81,02c6.

We define a loop ©,*% as a groupoid with the following

properties:
L1l V91,6,e@ then 8,*%9,06 that is to say

0 is closed under the operation *.

L2 Jice s.t. Veeo i*g = g = g*i that is to

say © has an identity element namely i.

L3 Ve,,6,e6 3J'hy,he0 s.t. 61%¥h; = 8, , ho*sy = 8,

An example of a loop is given in A2.2.

Two further binary operations defined on @ which are

associated with a loop are the following:

The operation of left division (N\)

a\b = ¢ 1iff a*c = b (A2.1.1)
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and the operation of right division (/)
a/b = ¢ iff c*b = a (A2.1.2)

These binary operations are both well defined being the
solutions of the equations given in L3. An example of

the operations / and \ is also giﬁen in A2.2.

The three binary operations *,\,/ defined on g together
form an algebra. The following lemma gives some of

their properties.

Lemma A2.%1.1

Yh,geo _
i) (h/g)*g = h
ii) h*(h\g) = g

Proof:

i) Let k¥ = h/g then by definition we have h = k*g,
hence (h/g)*g = k*g = h, hence part (i).

1i) Let k = h\g then by definition we have g = h*k,

hence h*(h\g) = h*k = g, hence part (ii).

Hence lemma. !
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A2.2 Example of a loop and its asscociated bingry

" operations \ and /

Consider the set © =1{0,1,2,3,4} and the binary

operation * defined to be

N PR X
‘ w

S

o

[N

[

This can easily be shown to be a loop with the element

0z8 being the identity element of the loop.
Note the binary operation * defined on © does not form
a group since it does not have the property of assoc-

iativity for consider the following:

(3*2)*4

0*4 = 4

but 3*%(2%4) 3*0 =3

hence the above loop is notf@-group.

The binary operations of left and right division can

easily be shown to be
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/ a 1 2 3 4 -\ | @ 1 2 3 4
0 0 1 3 4 2 0 0 1 2 3 4
1 1 0 4 2 3 1 1 0 4 2 3
2 2 4 0 3 1 2 4 3 0 1 2
3 3 2 1 0 4 3 2 4 3 0 1
4 4 3 2 1 0 4 3 2 1 4 0

A2.3 Loop-invariant differentials

. . . _ - dz ‘
Consider the differential dm(z) = JQ([z]):D(z)
defined on & where J.{(8:zz) = 3(602) as defined in
9] ~ BZZ)

2.3.6.

3 ([h*gloD)
3(D)

Consider Jg(h*g: D) = l

=B(ho(goD))"3(goD)
3(goD) 3 (D)

= Jﬂ(h: goD)Jﬂ(g: D) (A2.3.1)

We can now show that the differential dm(z) is a loop-

invariant differential that is to say

dm{8o02) dm(z) Y aco_-'¥Y zeq

d(6oz)
JQ([eoz]: D{(6oz))

Now dm(soz)

_ d(soz)
Jo(8*[z]: D(z))
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By A2.3.1 and definition of J,(.[.)

Jo(8:2z)dz
T To(8:[210D(2))d (2] :D(2))

_ dz -
= JQ([z]:DZz)) dm(z) (A2.3.2)

Hence dm(z) is a loop-invariant differential on Q..

. R . _ 'dg .
Consider the differential du(s) = T, Te: 1TD) defined
on @ where J,(0: h|D) = lié%%%l as defined in 2.3.9

where * is conditional on D.

Consider J, (h*g,i|D) ='|3[(§?%%*i]

a(h*(g*i))]}a(g*i)
I(g*1i) 3 (1)

Ju(h,g|D)d,(g,1|D) (A2.3.3)

We can now show that the differential dp(s) is a left
loop invariant differential on @ that is to say

du(h*8) = du(9) where ¥ is conditional on D.

_d(h*g)

Now — du(h*8) = 5r1%5,1|D)y

By A2.3.3 and definition of J,( )

_ Jy(h,0|D)ds
Je(h,6 [D)J, (e ,1[D)
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do

- ey = o (A2.3.4)

hence du( ) is a left loop-invariant differential on 0.

de

Consider the differential dv{(e) = J*R(931|D)

defined

on @, where J,.(8:h[D) ]a(h*e)

—é-z—h'—)—" as defined in 2.3.17

where ¥ is conditional on D,

Consider J,p(g*h,i|D) = ‘3&%%%%fﬁl|

"3({i*g}*h)l 3 (i*g)
3(i*g) 3 (i)

= Jyp(h,g[D)J(g,i|D) ' (A2.3.5)

We can now show that the differential dv(e) is a right
loop invariant differential on 6 that is to say

dv(8*h) = dv(6) where * is conditional on D.

~d{8*h) -

By 42.3.5 and definition of J*R( )

J4g(h,elD)ds .
T4g(B,8[D) T, (8,1]D)

~__de -

1]

hence dv(8) is a right loop invariant differential on O.



165

A2.4 Some properties of loop invariant differentials

We first examine A(.) the ratio of the right and
left loop invariant differentials as defined in (2.3.20).

Consider A(h*g)

by 2.3.21

- 7,.(b¥g,i[D)
_ Jap(&,0|D) Jyp(h,1]D) by 42.3.3
Ju(h,g|D) Jx(g,1i[D) and A2.3.5

Now it can be shown that

Tup(e,h[D)  Jyp(g,1[D)
T.(0,gD) ~ Jy(m,1]D)

hence A(h*g) = TE, i) T.(g, 1D = A(h)A(g) (A2.4.1)

Consider aA(h*{h\g}) = A(g) by lemma A2.1.1

ACh)

but  ACh*{h\g}) = a(h)a(h\g) by AZ2.4.1
hence A(h\g) = v if AC(h) # 0 (A2.4.2)
Consider A{{g/h}*h) = A(g)fjr by lemma A2.1.1

but A({g/h}*h) = A(g/h)a(h) by A2.4.1

hence A(g/h) = =-BL if A(h) # O (A2.4.3)




166

For the rest of this section we examine some of the

properties of dp(.) and dv(.) the left and right loop

invariant differentials as defined in (2.3.10) and

(2.3.18) respectively.

A(8*h)dv(e*h)

Consider du{e*h)

a(h)a(e)dv(e)

A(h)du(s)

thus we have duy(sg*h)

Consider dp(h*{h\8}) du(s)

but dp(h*{h\6}) = du(h\s)

hence dp(h\8) = du(e)’

Consider du({s/h}*h) = du(s)

but du({8/h}t*h) = A(h)du(é/h)

hence dW(8/h) = yphy du(8) if A(h) #

by

by

by

by

by

by

2.3.20

A2.,4.1 and A2.3.6
2.3.20 (A2.4.4)
lemma A2.1.1
A2.3.4 .

(A2.4.5)

lemma AZ2.1.1
A2.4.4

(A2.4.8)

Consider du(8#*{6\h}) = dp(e\h)
but dp(e*{8\h}) = A(8\h)du(8)

hence dp(e\h) = A{(8\h)du(s)

by

A2.3.4

(A2.4.7)
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Consider du{{ h/s} *g) = dula) by A2.3.4

‘but  du({h/e}*e) = A(8)du(h/e) by A2.4.4

1 .

hence du(h/9) = ey du(e) if A¢e) # 0 (A2.4.8)
Consider dv({&/hl}l*h) = dv(&/h) by A2.3.6
but = dv(8) by lemma A2.1.1

hence dv(s6/h) = dv(8) (A2.4.9)
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A3.1 An Algorithm to Solve a certain Minimisation

Problem

The problem is the minimise with respect to = > 0

and 8 = (el,...,ep), functions of the following form:

m
S(8,T) = 5iy I £;2(9) + g(8) + Alogr (A3.1.1)
=1

where g(-.) and fi(g) i=1,...,m are arbitrary functions

such that g(.) is slowly varying compared to -
m
zl
Io£52¢).
i=1

The algorithm used is a two stage iterative process.

The first stage is to assume that the 8 are fixed.  The

problem then reduces to minimising (A3.1,1) with respect
to t. This is achieved by differentiating with respect

to t and setting this to zero; we thus obtain:

m
2oLy ot =0
i=1

or rearranging:

m B
2= 2] £,2(8) (A3.1.2)

i=1

assuming T,T'l # 0,

The value of 1 given in (A3.1.2) minimises this



169

particular reduced problem.

The second stage is to assume r is fixed and that we
have an estimate En say of the value of the parameters

that minimise (A3.1.1).

We will obtain an improved estimate of the parameters,

8 = 06_ + 48§ as follows:

—n+ Zn T 2%, Say,

Taking linear expansions of g(.) and fi(-) i=1,...,n

(A3.1.1) becomes:

1
sor(£,-X 80, )2+g(8, )+g 0 +rlogr (A3.1.3)

T
where £ ° = (£1(8,),...,% (8,))
T _/3g€) ag(-) 5 = 8
En 58; "7 38 = =n
p
{_afl(.) =3E, ()
s raey T o
) a:al a:ep
n - . -
_3fm(.) -afm(-) _
387 '°°°° T ae 8% 8y
L P

We require to minimise (A3.1.3) with respect to §g .
This is achieved by differehtiating with respect to

88 and setting this to zero, we thus obtain:

n
1,o Ty T _
(X X80 =X gy = 0

Rearranging we obtain:
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e Ty =l To  ag To (=1
88 = (X "X )7 K Cf ~t3(X X )7 gy (A3.1.4)

and the improved estimate becomes

8 = + &8 (A3.1.5)

Note in the calculation of (XnTXn)'1 it is often

convenient to decompose the X matrix to

where Q is a mxp matrix whose columns are orthogonal
and Rn is a pxp upper triangular matrix. This can be
achieved using Givens transformations, see Gentleman

(1973).

The iterative procedure to minimise (A3.1.1) thus

becomes:

Given a estimate, 8 say, of the parameters g, where

n
8 and t are the values of the parameters that achieve

the desired minimisation.

By fixing 8 calculate = from (A3.1.2), then fixing

n

T, calculate 8 by (A3.1.4) and (A3.1.5). Again

—n+1

fixing 8 we calculate = from (A3.1.2) ete, etc.

n+1 n+1l

The procedure can be started by an initial esgtimate

of 8, 8, say.
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Experience has shown that g ,r, converge to the

A A
required values 8§ ,t .



APPENDIX 3.2

Circle fitting program using Pivotal Probability

Written for the BBC Microcomputer.

1gEX=L2Ra505
2ZALIM Z¢ 1afE
zapIinM 3,30
4alIM M3
SEDIM A3
SEHREEM IHPUTS DATH FROM TAHFE

TRAINFPUT"FILE HAME", A

SaVH=0PEMIMC A% 2

SAIMPUTHAR , M

1A THPLITH N, WY

118IF “WiHr1968 THEM PRIMNT"DATA SET TOD LARGE" :5TOF
129F0RI=1TON )

135PEIHT:PRIHT"HECTDR "I

148FORI=T0O¢ Y—1 2

15BIMPLITHNS, 22

1SRFRIMT 22, ",

17aZ¢ JTEM+1 2=22

138MEST (HEAT

1saREM SELECTS DATH T2 BE AMALYSED
2EAFRINT ‘M, " WECTORS WITH ";%W;" ELEMEMTS"
Z19IMPUT "IMPUT CUT; Mi TO M2 "M1l,H=2
228IF HMi<=a QR HM1l:>=MHzZ OF MZ>1888 THEHZ1S
2IAMNI=H2~H1+Z
248rEM FITS LERST SRUARES CIRCLE
2EnFROCCLERAR

?Eﬁﬁ{53~1 9

TBFHP I=M1 TD HZ
s L a=EC D a A2 a=Z0 H+ T
RIWT A(l,;“ LR 2
.

.- |"I

-

Py

N

R A A IR Y 14

w
T

IRORTN VR VN
YR Ut T ]
P At A Y
= X 'U '\
3

DR J=8 TO 2

S3PIF W=g OR w0 J =8 THEM <443
SdbE=00 T 0

350G T a=00 T DHMEAC T ifi=n T 0
ZRBC=DRADC T2

3?3 =HthT'fD' I

Ry
AR LY

BEBFUR F=CI+10 TO 2
4@5."1[”":";'- I"‘ J

G 10 K =l B =G T 2R T L Ko
S2ERE T, K x=DEE LT, K aSEE

4 3EAMNENT

44BHEST

GHAL 2 a=00 F bR 233 0
4EOMEAT

ATEAC R a=RO2, 30

GG L D=L, 30BN 1, 2 RN 2
ARG B =R, 3 0-ROE, L IRHC L 2~ROD, 20K
SERC=m0E H-m La:B=rHian
S1RRFE=SHRY ZXC+AEA+BEER &
SEaPROCFRIMTY AS 2
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SEREM SOLYES FOR PIWOTAL ESTIMATES
4HPFIHT " A B
SeaT=HA
BEk=8
FHREFERT
t?BV}~VF+1
S2aFROCCLEAR
SPRRL=RR: AL=A: BL.=F
S18HC @ =1 5GA=80: GF=4
S;BFDP I=H1 TO HZ
SaRudsZe I 2~AiYY=ZCH+1 =8
r:-?lz?F'I SEIRC AmdEAE Y Y 2
S35 1 r=mpasRL iRl 2 0= oR ]
BREEEn 3 =RI~-RR
STOGH=GA+RT 1 /R GE=GEB+E 2 0 R ]T

LA R l_ﬁ
i ._

t

=74

sEEk=1

SSEFOR J=B TO &

79BIF M=9 OF ¥i.J>=9 THEM 819
71E0R=DC T

?3@ ﬁDPkaJ,
rABS=WERC T 2DO T

;)

Toob =k

TRAFIR K=(J+1 > T 2
TrERRK=S K 3

Pari G R AR e S S B A A I
FRERY, T K x=0RRE T D Rk 04 4
= :JHEAT
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SEEDC 3 =00 2 dHEE 2 PR 30
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S4aT22=D0 3 0M3
SEQTI=SRRCT22 0
SEAGE=GRB-RC 1, 2 »¥5H

& 1F"-.':., 3 a=RC 2, ..-L'+T""‘H“I» T 2
A 1) o =Ry 1, TS L o

1} sy "y
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[y

)

F..! bR ]
e L
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LR H '=F.‘ B, 3R, 1 vk 1] '—F’ PR 21

15
RE=RA+AC @ 3 A=A+RE L 2 B=B+HC 2 )
GPRINT A" "B " "IRR
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B CALCULATES DECOMPOSED HESZIAW MATRIM HT ESTIMATES
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APPENDIX 3.3

Ellipse fitting program using Pivotal Probability

Written for the BBC Microcomputer.

Cp———
-'l‘_'::-g’.ﬁ-l
-

D DR
o ]
T

HLL
]
2
=
':‘
L

1

o m
[
P ]

ot

2EHD

g
P ()

A
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‘B"
3 IM Rﬁﬁ,ﬁ}

SE0In frf:
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THREEA=0PEMIM A% &

SATHPUTH#xM M
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15
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AGEHNEXT

A 1 EAD S =m0 D Dbl S R D D

4 2AHEAT
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R e B i
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4
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2 l

— r'u J:_.-‘

B L, RN 40
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