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A LINE-~-SOURCE METHCD FOR THE MEASUREMENT OF TEMPERATURE AND
PRESSURE DEPENDENCE OF ROCK THERMAL CONDUCTIVITY

Abstract

A transient method for accurate laboratory measurements
of the temperature and pressure dependence of the thermal
conductivity and diffusivity of crystalline rocks and other
poor conductors is described. The method involves heating a
cylindrical sample by a thin axial heater wire, and
monitoring the resulting temperature increase at points
within the rock by a microcomputer. The temperature and
pressure dependence of the thermal parameters is
investigated by allowing the samples to reach thermal
equilibrium in an oven or autoclave before commencing

measurements.

Several line-source solutions to the heat equation were
derived from a rigorous study of the boundary conditions to
provide an accurate description of the temperature field
within the rock. A nonlinear least-squares fit of the
theoretical results to the experimental data yields
absolute values of rock conductivity and diffusivity, and

requires no calibration against standard materials.

Conductivity values of several rock specimens and two
standard materials are presented in the temperature range
250-570 K. They exhibit the expected temperature dependence
and show good agreement with conductivities from a steady-
state apparatus at room temperature and with published
results for similar types of rock over the whole
temperature range. A discussion of the errors and accuracy
of the results is given. The results of investigations of
rock dehydration during high-~temperature measurements and
the pressure dependence of granites in the range to 50 MPa

are discussed.
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Chapter 1

INTRODUCTION

1.1 Background.

Hot Dry Rock (HDR) technology requires detailed
information on the dependence of the thermal properties of
crustal crystalline rocks on temperature, pressure,
moisture and mineralogy up|to depths of the order of 5 Km.
For a given regional heat flow, the crustal thermal
conductivty controls the geothermal gradient. Thus the
drilling depth required to reach a rock at a given
temperature will vary in direct proportion to the mean
thermal conductivity of the formation (Wheildon et al.,
1980).

In the course of an investigaéion of the S.W. England
thermal anomaly zone by this Department, Francis (1980)
calculated a set of extrapolatéd crustal temperature
profiles (Fig. 1l.1) based on observed surface values of
conductivity for a typical Cornish granite with two
different published wvalues for the temperature dJdependence
of conductivity of Westerly and Rockport granites (Birch
and Clark, 1940). It will be noticed that for formation
temperatures of 180-230 °©C suitable for power production
the drilling depth is critically dependent on the
temperature dependence of the conductivity. Because
drilling costs increase exponentially with depth (Sibbitt
et.al, 1979), thermal conductivity characteristics are

important in determining costs associated with developing a

reservoir. In the performance modelling of a HDR reservoir,
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Fig. 1.1 Crustal temperature profiles for exponential function
heat-production model and temperature—-dependent thermal
conductivity. From Francis (1980). The temperature
dependence values are from Birch and Clark (1940).



the thermal conductivity will strongly affect the maximum
rate of heat extraction, the depletion rate and hence the

lifetime of the reservoir.

1.2 Measurement techniques.

The objective of the present work was to develop a
simple line-source method for fast measurements of rock
thermal conductivities over a range of ordinary and
elevated temperatures and pressures. The stimulus to the
research was mainly due to previous work on the line-source
in this Department by Cheyne (1978),° Jackson (1978),
Robinson {(1979), Bassett (1979), Jason (1980), Zapalowski
{(1980) and Cameron (1981). |

The line-source method was first used by Van der Held
and Van Drunen {1949) and Van der Held et al. (1953) for
the measurement of thermal conductivity of liquids, and
later developed, among others, by Jaeger and Sass (1964),
Scott et al. {19273), Cull (1974), Kieffer et al. {1976) and
Arakawa and Shinohara (1980).

The present method employed the sample geometry
suggested by Cull (1975). Cylindrical samples of rock,
which had reached thermal equilibrium in an oven, were
heated by means of a thin axial heater wire. The resulting
transient temperature increase at points inside the rock
was detected by a thermocouple and interpreted to yield
values of thermal conductivity and diffusivity. In the
development of the method an attempt was made to overcome
some of the shortcomings of well-established divided-bar
(Beck,1957) and needle-probe methods (Von Herzen and

Maxwell, 1959, Woodside and Messmer, 1961), such as the



need for carefully characterized reference materials over
wide temperature and pressure ranges. In the present
method, absolute wvalues of the thermal paramenters are
obtained, thus no calibrations being required. The
expensive drilling of long and narrow holes in the
crystalline samples needed to accommodate needle-probes was
avoided, and the reduced thickness of the heater
contributed to minimizing contact-resistance effects. Large
specimens could be investigated, thus decreasing grain-size
related inaccuracies. The simultaneous determination of
conductivity and diffusivity provided a self-checking
property in that both these must be of reasonable orders of
magnitude.

Some of the difficulties previously encountered in
transient thermal conductivity measurementé were oQvercome
as follows:

1) Modern analogue and digital techniques were used to
perform the relatively fast and accurate measurements of
sensor temperature required by all transient methods.

2) New mathematical models were developed to represent
accurately the temperature fields within the rock samples.
In particular, the thermal contact-resistance between
heater and rock had to be investigated in detail.

3) The collection and reduction of the large data samples,
a considerable source of error in previous studies, was
simplified by the use of a microcomputer, with the added
advantage of immediate computation of results.

A short description of this line-source method is given

in a paper by Sartori and Francis (1982), reported in



Appendix VI. For a comprehensive account of thermal
conductivity measurement techniques see Tye (1969). Various
technigques for in situ conductivity and diffusivity
measurements are given in Beck et al. (1971), Murphy and

ILawton (1977) and Lee {1982).

1.3 Units and nomenclature.

Unless otherwise stated, S.I. units will be used
throughout this thesié. Table 1.1 gives a 1list of the most
commonly used symbols and their meanings. The occasional
departures from this nomenclature will be made explicit in

the text.



TABIE 1.1 Nomenclature.

" Unless otherwise stated, the following symbols will be used

throughout the text:

c Specific heat capacity
-Ei(-x) Exponential integral
h Thermal diffusivity

I Modified Bessel function of the first
kind and order n

3 Euler's constant

J Ordinary Bessel function of the first
kind and order n

k Thermal conductivity

K Modified Bessel function of the second
kind and order n

L{f)}=T Laplace transform of function £
P Laplace transform variable

Line-source: linear power

r Radial coordinate

t Time

T Absclute temperature

v Temperature rise

v Laplace transform of temperature

Yo Ordinary Bessel function of the second

kind and order n

o =r2/4ht

p Density




Chapter 2

HEAT CONDUCTION THEORY

The thermal conductivity coefficient k of a solid is
most easily defined with respect to the steady-state flow
of heat down a long rod with a temperature gradient 4T/dx:

q = - k dT/dx - (1)
where q is the flux of thermal energy, or the energy
transmitted across unit area per unit time. The thermal
diffusivity h is then defined by

h = k/pc (2)
where p is the density and ¢ the heat capacity. ¢ and p are
not constant for a given material, and their temperature
and pressure dependence must be taken into account when

applying equation (2).

2.1 Crystalline solids.

The physical mechanisms controlling the transfer of heat
in earth materials at normal and elevated temperatures are
phonon diffusion, radiation and electron processes. Heat

3 relationship (Clark,

transfer by radiation follows a T
1957} and can be assumed to be negligible compared to
conduction up to temperatures of about 800 K (Sibbitt,
1979). At the temperatures normally encountered in the
upper crust, free electrons do not significantly contribute
to transport mechanisms, as testified by the small
electrical conductivity of crustal rocks.

In modern solid-state theory, a dielectric solid is

regarded as a lattice of closely—-coupled atoms. An increase



in vibrational energy in one part of a crystal, associated
with an increase in temperature, will be transmitted to the
other parts. Heat is here considered as being transﬁitted
by phonons, which are the guanta of energy associated with
of the atomic lattice vibration modes.

From the kinetic theory of gases applied to the phonon
gquasi-particles, the following expression for the thermal
conductivity is found {see for example Kittel, 1976):

k= cvl , {1)

1
3

where ¢ is the lattice heat capacity per unit volume
v is the average particle velocity (velocity of
sound)
1 is the mean phonon free path.

A study of the absclute value of k and its dependence on
temperature and pressure requires a knowledge of the
parameters v,c,l in equation (1): the velocity v can be
assumed to be almost constant (Rosenberg, 1975). The heat
capacity c is given to a good approximation by the Debye
specific heat function (Kittel, 1976). c is plotted against
T/86 in Fig. 2.1, where 0 is the Debye temperature, a
constant for a given material. At high temperatures, c¢
tends to the constant Dulong-Petit value of 3Nk where N is
Avogadro's number and k the Boltzmann constant. It should
be noted, however, that 8 for Si is about 640 K, so that at
normal temperatures the value of ¢ has a slight positive
dependence on T. The estimation of the phonon mean free
path 1is complex and requires considerable analysis of
phonon scattering mechanisms. These include interaction of

phonons with one another (u-processes), scattering by point
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Heat capacity ¢ of a solid according to the Debye
approximation. The horizontal scale is the temperature
normalized to the Debye temperature 6. The asymptotic
value at high values of T/6 is 24.943 J mol-1lk-1,



defects {impurities) or dislocations and scattering by the
boundary of the specimen or crystallite.

Three-phonon interactions are dominant in rock specimens
at high temperatures. In this case the conservation laws
for the combination of phonons are

hw; + hw, = hwy . (energy conservation) (2)
Kl + Ky =Ky +6 {momentum conservation) (3)
where the w's are the phonon frequencies, the K's the
wavevectors K=21/XA , A is the phonon wavelength and h the
Planck constant. The reciprocal lattice wvector G expresses
the periodic nature of the lattice, where a phonon with
wavevector K is physically equivalent to a phonon with
wavevector K+G. The mechanism described by equations (2)
and (3) is called an umklapp, or u-process. It causes a
reversal of energy flow after a collision (Fig. 2.2), which
gives rise to a thermal resistance. Normal or n-processes,
in which G=0, also play an important role in establishing
thermal equilibrium, but they do not directly contribute to
heat conduction.

The probability for the occurrence of a u-process
increases with increasing phonon energy and therefore with
increasing temperature. At high temperatures, when T ,
nearly all the phonons will have large enough wavevectors
to produce u-processes, and the probability will then be
proportional to the total number of phonons which are
present, which is in turn proportional to T. Hence 101 /T,
and, substituting in equation (1), we get Xkn1/T.

More rigorous estimates give the conductivity in the
form

K « Mag3/Ty2 , ' (4)

10
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(a) Normal and (b) umklapp phonon collision
processes in a two-dimensional square lattice.
The square in each figure represents the first
Brillouin zone in the phonon K-space; this
zone contains all the possible independent
values of the phonon wavevector. Note that in
the umklapp process (b) the direction of the
x-component of the phonon fiux has been
reversed.
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where a3

is the volume occupied by one atom, M is the
atomic weight and vy is the Grueneisen constant. This simple
dependence on the properties of a crystal has been deduced,
with different constants of proportionality, by many
workers (see Berman, 1976). Its experimental applicability
to earth materials was confirmed by Birch and Clark (1940),
as shown in Fig. 2.3.

Roufusse and Clemens (1974) argued that the phonon mean
free path cannot become arbitrarily short as the
temperature is increased, but should instead approach a
lower limit 10, which one would expect to be comparable
with the linear dimensions of the unit cell of the crystal
lattice. The transition from the 1/T dependence to the
minimum conductivity is, however, very gradual, and in most
minerals it should set in at temperatures above 500 K.
Deviations from the inverse temperature dependence would be
expected to be appreciable only above 1500 K.

The absolute value of k was calculated by Slack (1977)
for crystals with more than one kind of atom and more than
one atom per primitive unit cell:

3.Ox10'5ﬁaeg (5)

k =
2 273

where M is the mean atomic weight of all the costituent
atoms, n is the number of atoms per unit primitive cell, ad
is the average volume of one atom, and 90 is the Debye
constant taken from low-temperature heat capacity
measurements. The agreement with experimental values is
fairly good. For quartz {n=9), the calculated and measured

thermal conductivities are 20 and 13 wm 1g~1 respectively.

12
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Fig. 2.3 Thermal resistivity (=1/k) of rocks and
crystalline quartz. Data from Birch and
Clark (1940).
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Mooney and Steg (1969) used an equation of the same form
as {4) to estimate the préssure dependence of k at high
temperatures. The expression they derive, however, is of
limited use here as it depends on values for the Grueneisen
parameter and its dilatational derivative which are not
readily available. The order of magnitude of the expected
pressure dependence is best estimated from previous
experimental work. Kieffer (1976) reports a measured value
of +1.7x10~% MPa~! for fhe fractional P-dependence of
conductivty of crystalline quartz.

The results guoted so far apply only to very pure
crystals. In earth materials the conductivity is further
affected by phonon scatter from grain boundaries and
lattice defects such as point defects and dislocations.
Callaway and von Bayer‘(1960) estimated these effects for
small defect concentrations at T»8 and obtained an
expression of the form

W = wph + Wy (6)

where W=K~1, angd th, W; are the phonon and defect
contributions. Cull (1975) used this equation to estimate
the pressure dependence of k in olivine with arbitrary
defect concentrations of 10 and 50%, and found that the
pressure derivative of kX was little decreased from the

value obtained for a pure crystal.
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2.2 Amorphous solids.

It was suggested by Berman (1976) that amorphous solids
such as vitreous silica or nylon are ideally suited as
thermal conductivity standards because the values found are
little dependent on the particular sample used. Kittel
(1949) pointed out that the conductivity of glasses
decreases with decreasing temperature and that there is
much less difference between the conductivities of
amorphous solids than there is between the conductivities
of crystals.

The temperature dependence of thermal conductivity of
amorphous solids can be explained with referenﬁe to their
molecular structure. The solids considered so far .have
been crystals which were nearly perfect or contained
imperfections within such limits that there was still an
underlying regularity in the lattice. In amorphous solids,
however, there is no long-range order in the atomic
structure (Fig. 2.4). For short wavelengths, the mean free
path of equation 2.1(1) is constant because it is limited
to the dimensions of the structural atomic units (unit
cells) which are of the order of tenths of nanometers. At
high temperatures, therefore, the conductivity follows the
specific heat and decreases with decreasing temperature.
This is in agreement with experimental measurements on
fused quartz (Ratcliffe, 19592) and with the results of

chapter 5 for fused silica and a ceramic sample.

15



Fig.

2.4

Schematic two-dimensional figures
illustrating the difference between

a) the regularly repeating structure
of a crystal and b) the random network
of a glass (From Kittel, 1949).



2.3 Porosity effects.

The problem of relating laboratory conductivity
measurements to the in situ values was first analyzed by
Clark (1941), who investigated the effects of water
saturation and uniaxial compression on a set of samples of
widely different porosities. He observed conductivity
variations of up to 30% in high-porosity samples, and up to
13% even in a 1.1% porosity marble sample. Even larger
variations were reported by Woodside and Messmer (1961) for
| highly porous rock. Walsh and Decker (1966} made a detailed
study of the relationship between porosity, water
saturation and confining pressure in compact rock. Some of
their conclusions will be summarized here. Two types of
cavities can be distinguished in low-porosity rocks.
approximately spherical cavities have a negligible effect
on the conductivity for porosities of a per cent or so. The
elastic behaviour of low-porosity rocks, however, suggests
that a large part of the porosity is in the form of very
narrow crack-like openings along grain boundaries or
cleavage planes which close under external compressive
stress. Because of the narrowness of the cracks, many may
be required to account for a porosity of even 1%2.

To establish tﬁe effect of pore fluid, we must find the
effective conductivity of a composite material with two
isotropic phases, rock and pore fluid. A maximum bound for
the effective conductivity k, of a system composed of a
rock matrix of conductivity k and porosity n<<l, and a
fluid of conductivity k' can be estimated from:

k-k. _n (1)
k=%k* - 3¢

17



where €=k'/k<<l, Equation (1) describes the system shown in
Fig.2.5a, where the solid phase is considered as inclusions
in the continuous fluid phase; Fig. 2.5b shows the opposite
limiting case in which the fluid is an inclusion of the
so0lid. A more realistic model would be represented by an
intermediate case where both rock and fluid form continuous
phases. Equation {l) always overestimates the effect of
pore fuid: for better accuracy the total porosity n is
replaced by the porosity N due to-cracks. The wvalue of the
crack porosity can be found from a plot of the volumetric
strain -AV/V_ of a jacketed sample as a function of
pressure p. As éhown by Walsh (1965) the crack porosity is
the intercept on the AV/V0 axis of the linear portion of
the pressure-strain curve extrapolated to zero pressure.

A more rigorous study which takes into account a
distribution of penny-shaped cracks of various dimensions
leads to an improved estimate

k=k* ~ 3e-

where R is a function of the crack distribution and can be
determined experimentally from pressure-volumetric strain
curves. Walsh and Decker analyzed two granite samples from
Casco, Maine. The results are reported in Table 2.1. Both
egquation (1) with the value for the crack porosity and
equation (2) give deviations in agreement with experimental
values for dry samples. For water-saturated samples, the
deviations are negligible when compared to the experimental
errors.

The pressure dependence of the effective conductivity

can be determined from Fig. 2.6, where the intercept n.;

18
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Fig. 2.5 Pore fluid models (from Walsh and Decker,
1966). In a) the pore fluid and in b) the

rock form a continuous phase.
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2.6 Crack porosity found from pressure-strain
data for Casco granite ( From Walsh and
Decker, 1966). The crack porosity at
pressure P, is the intercept Nay-
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represents the residuval crack porosity at pressure P,. The
value n; is then substituted in equations (1) or (2) to

give an estimate of the porosity correction.

TABLE 2.1 Effect of porosity on measured conductivity of
granite.

Dry samples Wet samples
Equation (1) n=.007 k-k_ = 29.5% 1.2%
Kok
L] n n=nc=.004 17 . 7
Equation (2) R=0.86 14.5 .6
Experimental value 1 16 -
n n 2 13 -

The following conductivity values were used:

k(granite)= 3.35 wWm—1g~1
k'(air) = 0.026
k'(water) = 0.63

21



Chapter 3

MATHEMATICAL THEORY

3.1 Introduction.

This chapter presents solutions of the heat equation and
techniques for the computation of thermal constants of rock
samples from transient measurements of temperature.

It was felt that existing treatments of the problem
could not achieve the accuracy required in the present
experiments. Much of the theoretical background to the
problem has been developed for needle-probe systems having
geometries considerably different from the present one
{cf. Blackwell, 1954)}. In particular, the thin heater used
here required different sets of boundary conditions in the
mathematical solutions. The availability of microcomputers
for the fast computation of large data samples allowed a
departure from previous "straight line" approaches in which
the mathematics is simplified as much as possible in order
to make calculations of the thermal constants more
manageable. Fairly complex, nonlinear equations could thus
be used to represent the temperature fields, resulting in a
higher accuracy.

After a cursory presentation of the heat equation and of
the theory of the Laplace transform, the main line-source
solution is derived in section 3.3. This solution was found
to be sufficiently flexible to accurately represent the
physicai situation, and at the same time simple enough to
be manipulated by a microcomputer. Various corrections to
this basic equation are then presented in sections 3.4 to

3.8, wich are shown to impose intercorrelated constraints
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on the minimum and maximum data-acquistiton times (the
sampling window), the diameter and length of the samples,
the dimensions of the heater wire, and the amount of
permissible contact resistance (in the form of thermal
grease, high-temperature cement or adhesive between heater
and rock). A nonlinear least-squares method for fitting the
equations to the experimental results is then presented in
-seciton 3.10.

A flowchart highlighting the relationship befween the
sections of the chapter is shown in Fig.3.0. Readers not
interested in the details of the mathematical derivations
are referred to section 3.11 for a qualitative account of

the results guoted in this chapter.

3.2 The heat equation.

In an infinite isotropic solid of diffusivity h and
conductivity k the temperature v satisfies the equation of
conduction of heat

2 (1)

_ 12wy
Vov h

Sv__A
at k
where A is the heat productivity within the solid, and
h=k/pc, with p as the density and ¢ as the specific heat
capacity per unit mass of the solid (Carslaw and Jaeger,
1959 - for compactness referrd to as C.J. in the remainder
of this chapter). If the heat productivity within the solid

is assumed to be zero, equation (1) takes the form
32v |, 32 32y _

1 3v (2)
+ ¥ o+ IR
3x2 ay2 az2 h 9t

in Cartesian coordinates and
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SRS e R A
in cylindrical polar coordinates, where r and 8 are the
radial coordinate and the azimuth angle respectively. The
parameters kX and h.will be assumed constant for any
constant value of the ambient temperature. This is not
strictly justified as any transient measurement necessarily
raises the temperature of a sample, but it simplifies the
mathematical treatment. Also, if the heating of the samples
is kept small during measurements, the variations in the
parameters will be negligible.

In obtaining the subsidiary equations and their boundary
conditions (see section 3.2.2), assumptions as to the
commutability of certain operators have to be made, so that
the solutions obtained in this chapter are not rigorous and
must be regarded as purely formal. Strictly speaking, it
must be verified that the solutions do satisfy the original
differential equations and boundary conditions (Carslaw and

Jaeger, 1940). However, the solutions were considered

adequate for the purpose of this study.

3.2.1 The Laplace transformation.
In the solution of the heat equation, extensive use will
be made of the Laplace transformation defined by
Liv(x,y,z,t)} = V(x,y,z,p)=
il?o e Pt y(x,y,z,t)dt (1)
where p is a number with a positive real part and large
enough to make the integral in (1) convergent. For example,
to solve the partial differential equation in two variables

32v _ 1 av (2)
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the Laplace transformation is applied to (2) to get the
"subsidiary" equation

%% _p V-, (3)
dx2 h

an ordinary differential equation. Solving (3) subject to
the appropriate boundary conditions yields v(x,p). v(x,t)
can then be found:

1) from tables of transforms (e.g. Bateman Manuscript
Project, 1954)

2) by using the inversion theorem of the Laplace

transformation

vit) = 1/(2w1)f*+1 Mt T )ar (4)

where Y is to be so large that all the singularities of
v(l) 1lie to the left of the line (y-i= ,Y+i® }.

The line integral (4) can usually be put in real form by
the use of one of two standard methods:

(i) If v (A) is a single-valued function of A with a row of
poles along the negative real axis (and possibly other
poles also), we complete the contour 5y a large circle of
radius R, not passing through any pole of the integrand
(Fig. 3.1). In all the problems in this work the integral
over the large circle vanishes in the limit as its radius
tends to ® . Thus, in the 1limit, the line integral {(4) is
equal by Cauchy's theorem to 27i times the sum of the
residues at the poles of its integrand. This case usually
arises in problems of conduction of heat in finite regions.
(ii) In problems of conduction of heat in semi-infinite
regions, Vv (A) usually has a branch point at A=0. In such

casec we use the contour of Fig. 3.2 with a cut along the
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negative real axis so that v(A) is a single-valued function
of A within and on the contour. In the limit as the radius
of the large circle tends to infinity the integral round it
can be shown to vanish, and the line integral (4) is
replaced by a real infinite integral, derived from the
integrals along CD and FG, together, possibly, with
contributions from the small circle about the origin and
any poles of the integrand.

For a more exhaustive account of the Laplace transform

and other methods of solution of the heat eguation, see

C.J. chapter 12.

3.3 Infinite line-source solution.

3.3.1 Ideal case.

The simplest mathematical model for a line-source
experiment consists of a thin heater in perfect contact
with a large sample. We seek a solution to the one-
dimensional heat equation for an infinite line-source along
the z-axis transmitting heat at the rate Q per unit length
per unit time into an infinite medium for t>0. 1In

cylindrical coordinates

o%v . 1 v _ 1 3v , £50 (1)
8r2 r or h ot

subject to
lim (r 8v/or) = - Q/(27k} , t>0. (2)
r—>0

The boundary condition at the surface of a cylindrical
heater of radius r requires that the radial component of
the heat flux F be the same on both sides of the surface of

the heater:
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F = =kdv/3r . (3)
F is the flux in the outward direction and is related to
the linear power Q through the equation F = Q/(2m r).
Hence

Q = -27mrk 9v/3r . (4)
A line-source can be regarded as the 1imit of a cylindrical

source as r~ 0. The required boundary condition is then

lim (r av/9r) = -Q/f(27k) . (5)
r~ 0O

A second boundafy condition requires that v be bounded as
r>o

Laplace transformation of (1) and (2) résults in the
subsidiary equation

(6)

as
dr2
subject to

lim (r d%/dr) = Q/(27kp) (7)
r> O

where q2 = p/h, and p is the transformation variable. The
general solution of (3) is (MacLachlan, 1955)

v = AIo(qr)+BKo(qr) ’ (8)
where A and B are functions of p, and IO,KO are Bessel

functions. I, diverges as r—->« ,thus A=0. Applying the
boundary condition (7) to (8) gives
v=0 Ko(qr)/(2ﬂkp) . (9)

Taking the inverse Laplace transform of this (Bateman

Manuscript Project, 1954),

2
—_ - Q * -Ir - (10)
v =T gk BY (4‘nt)
where
_Ei (-x) =fx e"¥/u du (11)
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the "exponential integral”, a tabulated function (Beyer,
1981). This is a well known result. It was described here
only to introduce the Iaplace transform method which will
be used extensively in subsequent sections.

A power series expression of the exponential integral can
be shown to be

Ei(-x) = j + 1In x - x + xz - x3 + e (12)

2.21 3.31!

where 7j=0.5772157 is Euler's constant.

A plot of -Ei(—r2/4ht) against ln(ht/rz) is given in
figure 3.3. The first two terms of the expansion (12) are
often used as an approximation to Ei in equation (10) to
determine the thermal constants frdm a plot of temperature
v against 1ln t, as also shown in figure 3.3. This plot,
however, shows that care must be exercised (in the present
experiment) in applying this approximation as the error
becomes less than 1% only when ht/r2>10. For a rock with
h=1.5x10_!6 m?s~) and an offset r=0.003 m, this corresponds
to a time of about 60 seconds, which tends to make
acquisition times rather long. Also, at such large times
the sensitivity decreases as the rate of temperature
increase is small. The acquisition time can be reduced
considerably if r is made smaller. In the present work,
however, a wide range of offsets were used and the series
for Ei was computed with a number of terms sufficient to
give the required accuracy. Because powers of the parameter
h appear in expression (10}, a nonlinear least-squares
fitting method is required to determine the parameters k
and h from the experimental data. This is described in

section 3.10.
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3.3.2 Maximum gradient solution.

Differentiating equation 3.3.1 (10) with respect to time

gives
v' = v/t = Q/(47k) exp {-rz/(4ht)} (1)
which has a maximum v& = 9v/ a3t at tm=r2/4h. (2)
t
Substituting in (1), m
Xk =0 exp(—l)/(4ﬂv$tm) . ' (3)

The conductivity k and diffusivity h can be determined
very easily if v& and t_ are known (Scott et al., 1973;
Cull, 1975). Tﬁis method, however, is not very accurate in
this type of experiment as it relies on the precise
determination of just one point on the temperature versus
time curve. Better repeatability is achieved by fitting a
set of experimental points to a theoretical curve, as
described in section 3.3.1. Differentiation of the
experimental curve also introduces unce;tainty in the value
of vé, and reguires filtering of the high—frequenqy
components to reduce noise. The value of t depends on the
offset r of the temperature sensor through equation (2). If
r is made small, vﬁ occurs at a low time, when the shape of
the curve is largely dependent on the thickness of the
heater and the contact resistance between heater and rock,
as shown in sections 3.5 and 3.8. On the other hand, large
values of r reduce the overall sensitivity thus making v&

difficult to determine.

32



3.4 The cylindrical source.

In the previous sections the heater was assumed to have
zero diameter, and no heat capacity. The error introduced
by such an assumption will be computed here.

The problem is modelled as follows: consider the region
r»>a initially at zero temperature, in contact at r=a with a
perfect conductor of heat capacity S per unit length of the
cylinder. Heat is supplied to the cylinder for t>0 at the
rate Q per unit length per unit time. C.J. show that the

temperature v at the surface of the cylinder is given by

v = 20 B 2 l—exp(-—htuz/az) du (1)
ﬂak 0 uag‘(u)
where
a(u) = [uTg(u)-pd; (u)1? + [uy_(u)-pY,(u)]? , (2)
Jo' Jl' Yo' Yl are Bessel functions, k and h are the

2 oe/s

conductivity and diffusivity of the medium and B=2ma
is a parameter which is twice the ratio of the heat
capacity of an equivalent volume of the medium to that of
the perfect conductor. The temperature at the surface of
the wire computed using (1) was compared with that given by
the simple line-source solution at the same position. The
function (vy-v)/v, where v; is the line-source solution
3.3.1 (10) is plotted in figure 3.4, and decreases rapidly
with time. Taking pc=2x10° gn 3k™! for a typical rock and
c=4x106 for a constantan or nichrome heater wire, =1 and
the error becomes less than 1% when ht/a2=50. For a wire of
diameter 3.0x10"% m, and a sample with h=1.5x10"% m‘?s"l,

this corresponds to a time of about 1 second.
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3.5 Line-source with contact resistance.

3.5.1 The temperature transform.

In this section an attempt will be made to evaluate the
effect of the layer of cement between the heater and the
sample. In needle-probe experiments the contact resistance
is sometimes modelled by a vanishingly thin resistive
coating on a éylindrical heater of finite radius {see for
example Blackwell, 1956), Fig. 3.5a. This method, however,
is not suitable for modelling the present expefiment
because the radius of the heater is one order of magnitude
smaller than the thickness of the cement. The model by
Blackwell (1956) is modified here to include a resistive
cylindrical layer of radius b surrounding and concentric
with a linear heat source, Fig. 3.5b. The initial
temperature is zero and the linear power supplied to the
heater is Q for t>0. The temperature sensor is embedded in
the rock, i.e. we are looking for a solution in the region
r>b. In cylindrical polar coordinates, the subsidiary
equations are

a%s, 1 av,

5 + — —— = q%Gl 0<r<b (1)
dr r 4ar
a?s, 1 av,

St - — = q%vz ,r>b (2)
dr r 4ar

subject to the boundary conditions

vV = ¥, and k;dV;/dr = k,4d¥,/dr at r=b (3)
lim (rdGl/dr) = -Q/(27k,p) ‘and (4)
r->0

V5 bounded as r-> o. (5)

Subscript 1 refers to the cement, subscript 2 to the rock

and
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qi2 = P/hi y 1i=1,2 . (6)
The general solutions of (1) and (2) are
VvV, = AIO(qlr)+BKO(qlr) {(7)

Vo = CIo(qzr)+DKo(q2r) (8)

where A,B,C and D are arbitrary functions of p, and Io' KO
are Bessel functions. Io(p) diverges as p»« , so equation
(5) requires that C=0. Using Ié(p)=Il(p) and K'O(p)=—K1(p),
(4) gives

B = Q/(27 kyp) . * (9)

The boundary conditions (3) and (9) give

D

Il

Q/(2mbpd ) (10)
with A = a1k K (a,b)I (g b)+ak,K, (ayb)I (g;b). (11)
Thus the ‘Laplace transform of the temperature in the sample
is given by

Vo = Q Ko(qzr)/(Zﬂpr) (12)

with a similar expression for V.

3.5.2 Exact solution.
By the inversion theorem of the Laplace transform, the
temperature in the sample is
i
vy(t) = 1/(21Ti)f V,(p) e*P ap . (1)
y-ie
To evaluate v2(t) a standard artifice is employed. Let
v,(p) = F(p)/p - (2)
Then, by a well-known theorem of the Laplace transform
(Bateman Manuscript, p.150)

vy(t) i/j}i%IJfY+in(p)etp ap } at . (3)

y-ie
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v,(p) has a branch point at the origin, and the method
outlined in 3.2(ii) can be used. The contour of integration
can be replaced by the Bromwich contout Br, in Fig. 3.2.
The portions ABC and GHI of the integral vanish as R » ,
as does the integral around DEF as e~ O.

-1

Setting p = ce on the portion CD

¢ .
= get on the portion FG,

where ¢ is real and positive,

‘}f F(p) etP ap =“/ﬁ Floe 1) e 0 4o (4)
Br 0

2
‘-'f F(oeiﬂ) e"t0 4o
0

= ~2i/r Im {F(oeiﬂ)} e tY% 4o .
0

Setting x=(0/h2)1/2, 1'1=(112/hl)1/2 , and using

K (2e2"/2) = 4 572 i eMT1/2 [Lg (z)4iY_(2)] (5)

I, (z eini/z) = otnTi/2 J, (z) (6)

to replace the modified Bessel functions of imaginary
argument by ordinary Bessel functions of real argument,

equation 3.5.1 (11) becomes

A =Tmx ¥(x)/2 + inx o(x)/2 (7)
where y(x) = hleb(xb)Jl(hxb)—szl(xb)Jo(hxb) (8)
and d(x) = hlio(xb)Jl(hxb)-szl(xb)Jo(hxb) (9)

From equation 3.5.1 (12),
Im (F) = Im {K_(q,r) A"/(aa™)} , (10)
where A* denotes the complex conjugate of A .

Then equation (3) becomes
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dt 5 5 e_hzx‘t dx. (11)
0 0 ye(x)+9°(x)

thfj? ® Jo(xr) ¥(x)-Y_(xr) o(x) 2

Integrating over t,

Q ro 2 J_ (xr)y(x)-Y_(xr)¢(x)
vy = - (l—e-hzx t) o o
m™“bJ 0 x2 {y2 (x)+92(x)}

ax . (12)

If hl=h2, k1=k2, or in the 1limit b— 0, this scolution

reduces to the simple line-source solution 3.3.1 (1l0).

3.5.3 Approximate solution.

An alternative approximate solution to eguation 3.5.2
(12) valid for small values of b will be derived in this
section. Assuming that (qzb) is small, which corresponds
either to the large-time solution or the case where b is
small (small contact resistance), a solution 1is derived as
a power series in increasing powers of qzb. Approximating
the modified Bessel functions in Egq. 3.5.1 (11) by the
first few terms of series in ascending powers of p, (C.J.,

Appendix III),

I (z) = 1+22/4+... (1)
1,(z) = z/2+z3/16+. .. (2)
K (z) = -{In(2/2)+j}{1+22/4+. .. }+z2/4+. .. (3)
Ky(z) = 1/2 {in(z/2)+3}{z/2+23/16}-2z/4+1/z . (4)

Substituting in 3.5.1 (11),

A = ky/b [1 + bz/(4k2)p In(gp) (ky/hy-k,/hy)

+ b2/4 p(1/hy-1/h,) + 0(p2):| (5)

2

where 0(p2) represents the terms of order p“ and higher and

8=b2e2j/(4h2). Making use of the binomial theorem to find

AL,
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Ty = QK (q,r)/(2Tpk,) [ 1 - b2/(4k,)p 1n(Bp)(ky/hy=k;/hy)

_ b2/4 (l/hl—l/hz)p + O(pzﬂ. (6)

v, can be found from this by applying the inversion theorem
to the separate terms of the series. From standard tables

(Bateman Manuscript, 1954)

L_l{Ko(qzr)/p}.= 1/2 f e Y/u du (7)
o

L K, (g,r)) = e /2t (8)

L71{pr_(q,r)} = (a~1)e™® /2t? (9)

where a=r2/(4h2t)
for the first, third and error terms respectively. 1In
Appendix III the inverse Laplace transform of the second
term is shown to be

LMK (ar)in(ep)} = —e"*/(2t) 1n[t/(aB)] . (10)

Then, from (6), (7)), (8), (9) and (10},

vy, = Q/(41k,) N e"%/u du
- amal [
+ b2/(4k,)(ky/hy=k,/hy) €%/t In[t/(xB)]

-~ p2/4 (1/hy-1/h,) &%/t + 0. (11)

If b=0, or k1=k2, hl=h2, this reduces to the line-source
solution 3.3.1 (10). The approximation is valid for
b2/h2t<<1 and is often more useful than the exact solution
as it easier to evaluate numerically.

A numerical comparison of the exact solution with
equation (11) shows good agreement. Fig. 3.6 is a plot of
vg/v against h2t/b2, where vp is the sum of the second and
third terms in (11), and v; is the line-source solution
with no contact resistance. The values of the

conductivities and diffusivities are the following:

40



18%

rib=\1 2 5 10 \20 50 100

| ] ] I N | ] i ——

10

b

Fig.

3.

6

102

Effect of contact resistance on line-source solution.

103

k2Ik1=15
holh,=15




velv, x1072

(A

rib= \1 2 5 10 20 50

I | l | I A S O - - .

1

Fig.

3.

7

10

Effect of contact resistance on line-source solution.

T

102

100

ky Ik, =33
h]l h2='[1-r




k,=0.2W/mK, h;=10"7 m?/s, k,=3, h,=1.5x10"°, which
correspond to a typical granite/epoxy resin interface. Fig.
3.7 is a similar plot with k1=1.0, h1=0.6x10"'6 for a

typical granite/fire cement interface.

3.6 Boundary effects.
The effect of reflection of heat from the curved

surfaces of a sample will be estimated in this section.

3.6.1 Constant surface temperature.

Consider a linear source emanating heat at the rate Q
per unit length per unit time into an infinitely 1long
cylinder with the surface r=b kept at constant temperature.
The contact resistance at r=b is assumed to be zero. The

differential equation describing the problem is

32y L 13v 1 3v ' O<r<b, t>0 (1)
Z r 3r  h 3t
ar
subject to
v=0 at r=b (2)
and lim (r a3v/sr) = -Q/(21k) . (3)
r->e
The subsidiary eguation is
azs L, lLav_ - O<r<b (4)
3.2 T ar - 9DV
r
subject to v=0 at r=b (5)
and lim (r av/dr) = -Q/(25kp) . (6)
r—>0

Using the same technique as in 3.3,

- 01 I,{gb)K,(qr)-I,{qr)K,(gb) (?)
V=K B T Tq6)

where the symbols have their usual meaning. An exact

solution can be found for v using the Inversion theorem

43 -



Y+ic
v = l/(2ni)~/ﬂ Z(p)ePt ap . (8)
Y= e

The integrand is a single-valued function of p with simple
poles at zero and on the negative imaginary axis. By the

theorem of residues

v = 271 x residues , or
0 I,(gb)K (qr)-I (ar)K, (gb) | .pt ' (9)
V=Oox :Z: o /oplpI (ab)} p=£;

i

where the g;'s are the poles of the function. Then

v = 0 I,{(gb)K {ar}-I_(gr)K (gb)
Zak 1,lab) p=

+ Z_exp(_hzagt) I (iagr)K,(ia b) (10)
Tp d/dp Io(q57]p=_ha§

where  is the sth root of Io(iub)=0 or Jo(ab)=0- Then, using
Ko(z) Il(z)+Io(z)Kl(z) = }/z,

I,(zi) = J (z} and

oo

exp(—hazt) Jola_ 1)
v = 0/(ak) | 1/2 1n(b/r) -Z s s [ iy

2.2_2
asb J7 (agb)

s5=1

Fig. 3.8 shows a family of curves (VI—V)/V plotted
against ht/b2 for several values of b/r. v is the line-
source solution 3.3.1 (10) in an infinite medium. The set
of curves thus represent the error in the simple solution
vy and provide useful information on the relative sizes of
b, r and the upper bound of t in the design of experiments.

Equation (11) can also be used to yield values of k and h
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(see section 3.10) when equation 3.3.1 (10) is not
applicable because of the small size of a sample or to

limitations on the upper bound of t.

3.6.2 Zero flux at surface.

The fcollowing model represents a sample with zero heat
flux across the surface r=b (perfect lagging). The
differential equation and boundary conditions are the same
as in the previous case, with equation (2) replaced by

av/3ar=0 , r=b. (1)

The solution in the p-domain is

0 1 Ko{ar)I; (gb)+K, (gb)I (qr).
2tk p I, (gb)

(2)

v =

Using the inversion theorem,

+iw
., 0 Y ePt Ko(qr)Il(qb)+Kl(qb)Io(qr) (3)
V= 271 2nk ' Il(qb) dp .
y-ie

The integral has a double pole at the origin and a row of
simple poles along the negative imaginary axis. Proceeding
in a similar way as in the previous case, the residue at

the origin is found to be

2ht/b2 + r2/(2b%) - 3/4 + In(b/r) . (4)
The sum of the remaining residues is

=]

exp(-o _ht) J_(a_r)
s :E: s . o0'\Cg (5)
(aibz)Jo(asb)

s=1

where the as's are the positive roots of Jl&xb)=0. The

solution is then
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o0

2
Q 2ht | r2 3, In{b/r)_ 2 z exp(-h%gt) J5(%gr)
21k | p2 " gp2 4 [a bJ (a b)]I2
s=1 570 s {6)

Fig. 3.9 shows a family of curves (VI—V)/V against

ht/b2, where the notation is the same as in 3.6.1. The
same general considerations also apply to equation (6). The
errors in the two cases have opposite signs, which implies
that imperfect stirring of the heating fluid or partial

lagging may help reduce the the error in real experiments.

3.7. Axial—-flow effects.

In the previous sections the rock samples were assumed
to be infinitely long, which resulted in an entirely radial
heat flow. The effect of axial flow in a finite-length
cylinder will be evaluated here in order to determine the
minimum acceptable length for a sample. The relatively
simple case of a cylindrical sample of finite length with a
non-conductive axial heater is discussed by Blackwell
{1953). Jaeger (1955) introduced a useful boundary
condition for a cylindrical heater of radius "a" in contact
at its surface with a solid. The heater is supposed to be a
relatively good conductor so that its temperature is
uniform over its cross-section, and there is no contact
resistance at the surface. In the usual notation, the

boundary condition at r=a is

a%v . 2k v _ 1 jv_ _A (1)
2 ak1 or hl Jt kl

32
where A is the rate of supply of heat to the wire per unit
volume. Jaeger (1955) solved the heat equation for a sample
of length 2 1 and a heater of radius a. The initial

temperature is assumed to be zero, the surface I|zI=1 are
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Fig. 3.9 Effect of boundary reflections:
zero flux at surface.

48



maintained at zero temprature for t>0, and the boundary
condition (1) holds at r=a. The expression for the
temperature at the mid-point of the wire z=0, r=a is shown

to be:

2 [+4]
vi{a,0) = .ES i_ (-u° KO(Bn)
nzkl a’ =0 (2n+1)2[(2n+1)HZKO(Bn)+2nl€K1(Bn)

(o]

80 h%k (-1)8 5 5 @ exp(—huzt/az)
- -——————-EE: exp(-hB-t/a“) u du

w4 n2x? ~ 2ot o (w4828 (u)
(2)
with B,=(n+1/2})ma/1, (3)
A, (u)=[ (b ~u?)J (u)+uBT; (u) 12 (4)

+[ (b —u?)Y_ (u)+uHY, (u)]?

and b =g2(h;-h)/h, H=2kh,/(k;h), e=2k/(ak;).  (5)

Equation (2) was evaluated and compared with line-source
solution VI (equation 3.3.1 (10)}). The error (VI—V)/V is
plotted in Fig. 3.10. Because of the assumptions made, this
is only a rough estimate of the errors involved in a real

experiment. For a typical granite with h=1.5x10"° mzs_l,

4. If the length 21 is 12x1072

t=140 s, a=10"% m, ht/a’=2x10
m, 1/a=600 and the maximum error is well under 1% (Fig.

3.10). If 2 1=6x10~2 m, the error increases to about 1%.
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3.8 Line~-source between two slabs.

In the previous sections cylindrical symmetry around the
heater was assumed. In this section, a more realistic model
is presented which takes into account the layer of cement
between the two semi~cylinders of rock. The mathematical
solution was derived in collaboration with A. Cameron, and
details of the calculations can be found in Cameron (1981}.

Fig. 3.11a depicts a sample where the thickness of the
cement has been deliberately exaggerated. The model chosen
to represent the physical situation 1is shown
diagrammatically in Fig. 3.11b, where medium 1 is the layer
of cement of thickness 2a and medium 2 is the rock. The two
media are assumed to extend to infinity in the x and y
directions. As shown in section 3.6, this is justified
provided that a suitable upper bound is chosen for the
sampling time. The seemingly unusual choice of axes
orientation simplifies the boundary conditions.

The problem can be solved by the use of Green's
functions, an account of which is given in C.J., chapter
14. If the heater is assumed to be an instantaneous unit
strength point source placed at the origin, the Laplace

transforms of the temperature fields will be in the form

¥ =0 + W in medium 1 (1)

Vo = Wo 7 in medium 2 {2)

where u is the Green's function of the heater, and w;, w,
have to satisfy the heat equation, to vanish for t=0, and
to be such that Vir Vo satisfy the boundary conditions. The
Green's function of the heater is

u = 1/8 (mh1t)=3/2 exp [~R2/(4h;t)] (3)
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Fig. 3.11 Mcdel for line-source between two infinite
slabs with contact resistance. a) View of sample
and cement. b) Axis orientation.
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where R=(x2+y2+z2)l/2. The Laplace transform of this is
(C.J., p.372)

& = (4hR)™! exp (-q;R) (4)
where the symbols have their usual meaning. Watson (1952),

section 13.47, shows that this can be put in the form

o= (4nhl)“1f0 I (Ex)E/n | exp(-nlz]) @& (5)
where n%= 52+q% and r=(x2+y2)l/2 . (6)

The subsidiary equations for w;, W, in cylindrical polars

are
2= 2= - =
1 3% 9wy 1 8wy oW, _5
— g b=+~ —— + — - q;#) =0, | z| <a (7)
r2 048 3r r or 0z
and
2— 2- — —
— + + ——— +—= - qyw5 =0, |z|>a (8)
r? 302 dr2 r or dz
and these are satisfied by
# = (4nhl)'1foa/nl 3 (EX)A(E)cosh(n,z) d (9)

in medium 1 and by

7, = (47h,)"L foa/n2 3 (Er)B(E) exp(-nylz|) &&  (10)
in medium 2. A(£) and B(£) are arbitrary functions of &,
with

ng < (£2+qf)l/2 and qf = p/hi . 1=1, 2.

The form of the solutions (2) and (10) was suggested by
similar expressions given by C.J. in the solution of a
related problem (see C.J., p.372). The exponential and
hyperbolic functions (both symmetrical in n{z)) were chosen
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to reflect the symmetry of the problem.
The boundary conditions are
V=5 |z|=a and (11)
k137,/9z = k,3V,/3z , |z|=a . (12)
Applying these to (9) and (10}, we get

Kk nycoshn;atk;nysinhn;a (13)

A

and
o

§1=(4ﬂh1)_14/- kjn;coshn, (a-z)+k,N,sinhn, (a-2z)
o klnlsinhnla+k2n2coshnla

J_(Er)£/n dE

(14)
In the z=0 plane (14) simplifies to
‘_’1=(4“h1)"lf k Njcoshnjatkyfpsinhma () ac

The inversion theorem can be applied to this to give an
expression for v,. However, an approximation for small
values of (nla) simplifies the inversion. This corresponds
to the large time solution (Blackwell, 1954) or the case

when a isgs small (cf. section 3.5.3). To the first order in

(T]la):

¥, = (4sh))"1 f 35 (Er) Ik/ny+(1-k%nf/mP)a) at (16)
0

where k=k;/k,. This may be written as

7, = ¢(1) 4 5(2) (17)

o and 6(2) the term linear in a.

whete (1) is the term in a
In what follows it will be assumed that the orders of

integration can be freely interchanged. Inverse Laplace
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transformation of G(l)gives (C.J., p. 372)

v(l) = khz/[shl('frhzt)B/z] exp [—r2/(4h2t)] . (18)

2)

G( can be rewritten as

\7(2) = (4'1Thl)-l

fo £ad (£r) (1= 2h,/h [14(h;-h,)E2/(h,g24p) ]} GE.  (19)

Setting H = kzhza(hl—hz)/(tlvhf) ’ ‘ (20}
and using L7 {1/(h,e2+p)} = exp (-h,e2t) , (21)

L~! {constant] =0 , ‘ (22)
we get

(2) _ 73 2
v = - £° J, (Er) exp (-h,E<t) at. (23)
Jro o} 2
Using d/dt exp (-h2£2t) = —h2£2 exp (—h2€2t) (24)
gives v(2) - H/h2 d/dtJr EJO(Er) exp (—h2£2t) dg . (25)
0

Making use of expression (29) in C.J.,Appenxix III to

evaluate the integral,
v{2) = H/n, a/at {1/(2n,t) exp [-r?/(4n,t)]}. (26)

The two expressions derived for v(l) and v(z) represent the
response to a unit strength instantaneous point source. To
get the response for a continuous line-source of strength

0, we have to integrate over time and along the entire y-

axis and multiply by the "source strength" Q/p;c3-

vy = Q/(plcl)_/.mft {vilx,y-y',t=t'} at' ay' . (27)
-t o

The final result is
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vy, = Q/(4ﬂk2),/” e 9/u du + Qaee_u/[4k2(ﬂh2t)l/2] (28)
4]
with e=k;/k,(1-h,/h;) and a=x2/(4h,t) . (29)

The first term is the well-known line-source solution
3.3.1(10) in a medium of conductivity k2 and diffusivity
hy. This corresponds to the limiting case where the thermal
behaviour of the system is controlled by the rock only and
the effect of the layer of cement is negligible. The secbnd
term is a first order correction for the layer of cement
and tends to zero as time increasésf The approximation is
valid fof a2/h2t<<1.
Equation (28) can be rewritten as

vy = vi-+ vp o, {30)

where v; is the first term and vp the second, or "error"
term. A graph of VE/VI against h2t/a2 is plotted in Fig.
3.12 for various values of x/a. For aAgranite sample with
k=3 wm1k1, h2=l.5x10_6 m?s™l in contact with epoxy resin
(k=C.2, h1=10'7), the parameter e=-0.9; for granite and
fire cement (k1=1, h1=0.6x10-6), €=-0.5. In Fig. 3.13,
values of vE/vI derived in this section are compared with
those of 3.5.3 for a granite/fire cement interface with
x/a=r/b=10. As expected from the geometry of the models,

the correction is always smaller and decreases more rapidly

with time in the circular symmetry case.
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3.9. Temperature equilibrium in cylindrical samples.

It is often useful to be able to predict the time a
cylindrical sample takes to come to thérmal equilibrium
when the temperature of the surroundings is altered. In the
following analysis the sample is treated as a finite
cylinder, and the effect of the heater wire and
thermocouple neglected. C.J. show that for a cylindrical
sample |z|<1, O<r<a initially at zero temperature and with
surface temperature Vr the temperature v at the centre

point r=0, z=0 is given by

00 [e+] 2
_1 QZZ (-1)" exp }-ht | %m+ (2n+1)272 (1)
m (2n+1)umJ1(am) 2 412

n=0 m=1 a

|<

<

o]

where a_ is the mth root of Jo(a)=0. The function 1—-v/vo is
plotted against ht/b2 in figure 3.14.

In the analysis above perfect surface contact was
assumed. In practice, surface contact resistance and
temperature disturbances due to imperfect stirring of the
heating fluid will increase the equilibrium time. This is
partly offset by the heat flowing into the sample along the
heater wire and thermocouples. A treatment which takes into
account the effect of a conductive wire is presented in

Jaeger (1955).
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3.10 Nonlinear least-squares.
All the solutions of the heat equation derived in this
chapter are of the form:

v = v(tn:kl,kz,...,kp) = v(tn,E) (1)

where th is treated as a variable and E=(k1'k2'“') is a
vector of parameters k,h,r,... . If the function v is

linear in the parameters, it can be written as

v(tn,E) = E kX . (2)
r=1
where the xnr's are known or calculable functions of tn

only. In this simple case, linear least-squares theory (see
for example Jenkins and Watts, 1968) provides a way of
calculating all the unknown parameters from a fit of
equation (2) to a set of experimental points. In general,
however, the temperature v is not a linear function of the
parameters and a nonlinear least-squares fit is required.
The following treatment of the problem is due to Box
(1960). Suppose that within a region in the paramenter
space in the neighbourhood of the true parameter E* fair

accuracy is given by the linear approximation

p
v(tn']i*):v(tn']_co)"';(k?_k:‘)xgr (3)

o _
where xnr—{ BV(tn'E)/Bkr}g=59 (4)

and k® is some point within the region. k° is a set of
guessed starting values. Substituting the starting values
in the response function, let Av be the vector of
discrepancies Avn=vﬂ—v(tn,E°) between the observations v}
and the calculated responses v. The expectation value of

the Avn's is then
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P
E{dv )= Z (k?—k;)xgr (5)
r=1

which is linear model of the same form as equation (2).
Treating the Avn's as observations, we c¢an by means of
ordinary least-squares obtain an estimate Ak of _15_0-3*. 1f
the functions were linear in the parameters, then the
adjusted values §°+ k for the kr's would be elements of 1_;_,
the true least-squares values. Because of nonlinearity,
however, 1(_°+ k does not give E at once, but a vector of
"improved values" which now may be substituted for _]50 to
provide a starting point for a second iteration, and so on.
In this way, provided the function v is well-behaved and
the starting values of k© are nt too far from the final
values, the adjusted values will converge to the least-
squares estimates %. The linear theory can then be used to
judge adequacy of fit, to obtain an approximate
representation of the sum of squares function in the
neighbourhood of its minimum, and to find an approximate
confidence region.

In some cases the derivatives x_ , are obtainable by

r
direct differentiation of v. If this is not practicable,
small changes can be made in each of the parameters in turn
and the derivatives calculated from the differences. With
this device it is necessary only to be able to compute the
numerical value of the function v for any given values of t
and k in order to carry out the iterative process. For the
functions derived in this chapter, convergence to the real

values E is fast.

Nonlinear least-squares theory was used in conjunction
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with the infinite line-source solution (Eq. 3.3.1 (10)) in
most of the experiments to yield values of conductivity and
diffusivity from a set of experimental temperatures. The

equation is restated here for clarity:
v =-Q/(4lk) Ei(-r2/4nt) . (6)

k and h were chosen as the adjustable parameters. Then
k=(k,h) with guessed starting values k°=(k°,n°)}.

Differentiating (6) with respect to k and h,
xonl = 3v/3k,k=ko = —-vn/k0 \ (7)
592 = 2v/0h[ 40 = Qe /(4mkn®) . (8)
Eq.{5) can be written as

E(Av,)) = Ak an/akl k=Kk® + bh 3v_ /3hl|, 40 . (9)

Applying linear least-sguares theory to this expression, we

obtain estimates of A _}E=(A k,Ah):

2wk h? - D2 kxh2vh (10)
2 x22m? - (> k)2

_ 2vh2kx2 - 2 kh2ovk (11)
2x22m2% - (Q_xn)2

1

Ak =

where v,k,h were substituted for Avn,xgl,xgz respectively
for clarity. The sums extend over all n's. k?+Ak,ho+Ah are
then substitted for ko, h° respectively, and the iteration
repeated to the required accuracy. The method was also
tried in conjunction with equation 3.5.3{11) and three
adjustable parameters, but the increased comlexity of the
calculations was not offset by a better accuracy, and the
method was not pursued.
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3.11 Summary of results.

The ideal 1line-source solution (equation 3.3.1(10)) was
found to represent the temperature field within the rock
adequately in the experiments, and was used in all
calculations of conductivity. Because this equation cannot
be inverted to give wvalues of conductivity and diffusivity
explicitly, the nonlinear least-squares technigue outlined
in sections 3.10 is required for calculations of the
thermal parameters.

Several factors contribute to departures from the ideal
line~source solution, but they can be minimized by a
suitable choice of experimental parameters. As shown in
section 3.4 the finite thickness of the heater (0.2-0.3 mm)
only caused an appreciable departure from the ideal
solution in the first second of an experiment, and can be
neglected. The contact resistance between heater and rock
causes more serious departures from the ideal case at low
times, which become progressively less important at larger
times, thus imposing a lower bound on the sampling time.
The approximate model of section 3.5.3 predicts an error of
less than 1% at times greater than 20 s for a typical
granite (k=3 Wm"lK—l,h=l.5):10"'6 mzs_l) in contact with
epoxy resin (k=0.2, h=10'7) and times greater than 30 s for
granite/fire cement (k=1, h=0.6x10-6L The more realistic
model of section 3.8 predicts minimum sampling times of 50
and 25 s respectively.

The finite dimensions of the samples cause heat
reflections at the surface at large times and impose an

upper bound to the sampling time for a rock specimen of a

given diameter. For a lagged sample 6x10~2 ® in diameter
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such time is 180 s (section 3.6.2) and for a sample in a
constant temperature environment 150 s (section 3.6.1). As
shown in section 3.7, for a maximum sampling time of 150 s,
the length of a typical specimen must be at least 6x10"2 m
for an error of less than 1%.

Temperature equilibrium to within 0.1 K in a sample
6x10_21an1diameter and 0.12 m l1ong subjectéd to a surface
‘temperature increase of 10 K is reached in 15 minutes
(section 3.9). All these figures must be re-calculated
referring to the relevant diagrams in this chapter if the

size or conductivity of the specimen, the type of adhesive

or the sampling window are modified considerably.
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Chapter 4

APPARATUS

4.1 Line-source apparatus.

The line-source apparatus, shown schematically in Fig.

4.1, comprises the following main working blocks:

1)

2)

3)

4)

5)

A set of rock samples under measurement, provided with
an axial heater and thermocouple (only one sample is
shown in figure 4.1 for simplicity). A cross-sectional
view of a typical sample is given in Fig. 4.2,

An oven to maintain the samples at a constant
temperature prior to measurements and a set of
thermocouples for the measurement of oven temperature.

A power supply to energize the linear heaters and
ancillary circuits to measure such power.

Signal processing apparatus for amplification and
filtering of thermocouple voltages.

A microcomputer for the acquisition, digitization and
recording of sample temperature and power data, control
of the heater and real-time data reduction according to
the exponential integral solution described in chapter
3.

The apparatus is described in detail in the rest of this

chapter.

4.2 Rock samples, ovens and power measurements.

4.2.1 Sample preparation.

All the samples investigated were cylindrical, which led

to a simplification of the mathematical modelling. However,
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the shape is not critical provided the samples are large
enough to satisfy the requirements set out in sections 3.6
and 3.7. Sample preparation was relatively simple: the
rock samples were cored (if required) to a diameter of 60-
75 mm, the ends cut at right angles to a length of 60-120
mm and the cylinders sliced longitudinally into two
semicylinders. Grooves were then scribed into one of £he
semicylinders to accommodate the nichrome and constantan
heater (diameter- 0.2-0.3 mm) and one Or more copper-
constantan thermocouples (wire diameter 0.12 mm - 40 SWG)
parallel to the heater. The two semicylinders were then
bonded back together with high-temperature epoxy resin,
fire cement or zinc oxide-loaded silicone grease if quick
dismantling was required. Two high-temperature PTFE-coated
leads were welded to either side of the heater for the

supply of current and measurement of voltage.

4.2.2. Power measurements.

The heater wires were subjected to very large
temperature variations, with a consequent wvariation in
their electrical resistances. Constantan was found to
perform better than nichrome under these conditions due to
the lower temperature dependence of its electrical
resistivity and was used in the later experiments. However,
resistance variations of 1% over a temperature range of 250
K were observed even in the constantan wire. To obtain a
better accuracy in the power measurements, the voltage
across the heater and the current through it were monitored

separately, the current being measured as a voltage across
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a high-stability resistor of known value. The two signals
were digitized separately by the microcomputer and
multiplied digitally at the data reduction stage. A check
could thus be kept on the variations of electrical
resistance with temperature and time. Typical voltages were
of the order of 3-5 V, and currents 1-2 A, giving linear
power inputs of the order of 30-60 W/m.

The measured thermal conductivity of a sample is
directly dependent on the linear power supplied to the
heater. The greatest source of error in this paramefer is
probably due to mis-positioning of the welded joints at
either end of the sample. For a sample 100 mm long, an
uncertainty of 1 mm in the position of the voltage sensing
leads introduces an error of 1% in the measured
conductivity. This was taken as the average estimated error

in the power measurements.

4.2.3 Ovens.

The samples were maintained at a constant temperature in
one of three different temperature-regulated enclosures:
1) A laboratory oven (Gallenkamp OV 150) with automatic
on/off temperature control for the temperature range 300 to
470 K. The temperature stability was better than 0.1 K over
the duration of one conductivity measurement (Fig. 4.3).
Slight temperature gradients existed inside the oven and
had to be taken into account. The oven could accommodate up
to eight samples on each of three trays.
2} A constant-temperature water/ethyl glycol bath (Colora
Ultra Cryostat KT 20 S} for temperatures between 250 and
370 K, with a quoted temperature stability of 0.03 K. It
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could accommodate up to two samples, which were coated with
self-amalgamating tape and wrapped in polythene bags for
insulation of the elecrical connections.

3) An autoclave (Fig. 4.4 and 4.5 - modified Chas Cook &
Sons 0.75 litre stainless steel high-pressure autoclave)
for high temperature and high pressure experiments (up to
fo 770 K and 50 MPa respectively). It was capable of
accommodating one sample in a specially-~designed holder.
0il was used as the pressurizing fluid. All the electrical
connections were sealed by a high pressure, high
temperature gland provided with a magnesium silicate
sealing element. A proportional temperature control circuit
was designed and built (for details see Appendix I) to give
a temperature stability of 0.1 K over a time interval of
200 s.

Temperature equilibrium to within 0.1 K between samples
and oven or autoclave was usually reached in 8-12 hours.
However, best conductivity results were obtained if the
samples were left in the oven at a constant temperature for
20-24 hours. These much larger times than the results of
secion 3.9 suggest are accounted for by the extra time the
oven itself takes to come to equilibrium. In the cryostat,
much shorter equilibrium times (2-4 hours) were possible
because of the better mixing and higher thermal
conductivity of the heating fluid. Measurements on the same
sample could be repeated at intervals of one hour in air

and 30-40 minutes in water.
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I'ig. 4.5 High~pressure eguipment.

From left to right are visible the oil pump, the autoclave
with the pressure gauge, two rock samples, the microvolt-
meter, the heater power supply with the current-sensing
standard resistor and the heater relay, the zero-point
chamber, the thermocouple amplifier and the autoclave
temperature regulator,
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4.3 Temperature measurements.

4.3.1 Thermocouples.

T—typé copper—-constantan (Cu/Cu-43Ni)} thermocouples were
used throughout the experiments for the measurement of oven
and rock temperatures. They were constructed by welding
cotton-covered copper and constantan wires from the same
batch in a Helium atmosphere.

Thermistors {Robertson et al., 1966; Sachse, 1975) were
also considered as temperature sensors because of their
high sensitivity at moderate temperatures but were rejected
because of the following limitations:

- Low maximum working temperature - about 400 K for the
small thermistors needed in the present experiments

- Slower response than thermocouples for the same sensor
size

~ Need for individual temperature calibrations for each
thermistor

- Severe loss of sensitivity at high temperatures

- Drift due to mechanical and thermal shock

- Higher cost than thermocouples.

T-type thermocouples have a range of 80 to 640 K and a
high thermoelectric power in the temperature range 270 to
500 K, their sensitivity ranging from 38 pvV/K at 270 K to
61 pV/K at 640 K. Due to the rapid oxidation of copper at
high temperatures, the maximum working temperature is lower
than that of other ihermocouple types such as iron-
constantan. This was not a limitation in the present
experiments as oven and rock temperatures were kept below

600 K at all times.
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4.3.2 Thermocouple calibration.

The voltage-temperature characteristic of a T-type

thermocouple can be represented by an equation of the form

V = ar_ + bTZ + crd (1)
between 270 and 570 K, to within 6.2 K (Kinzie, 1973). T
is the temperature in °C and V the output voltage. The
constantSa, b, ¢ are determined by a cubic least-sguares
fit to a set of calibration points. Table 4.1 shows the
thermoelectric voltage as a function of temperature for the
thermocouples used for the transient measurement of rock
temperatures as quoted by the manufacturers.

Basset (1979) calibrated three thermocouples from the
same batch against a platinum resistance thermometer
(Rosemount Engineering Company model WS 104 calibrated to
0.01 K by the National Physical Laboratory) in the range
270-330 K and obtained e.m.f. values very close to those
quoted by the manufacturers. A least-squares fit of
equation (1) to Basset's data complemented by the data from
table 4.1 in the range 330 to 470 K gave the following
values for the constants:

a=38.736 u V/°C

b=0.036 uv/9c? (2)

c=1.5x10—7uV/°C3 .
Al]l the deviations of the experimental data from the cubic
fit are less than 10 pV, or about 0.25 K, which is of the
same order of magnitude as the resolution of the data in
table 4.1. A

The thermocouple sensitivity S(T) is defined as the
first derivative of equation (1) with respect to

temperature:
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TABLE 4.1 E.m.f. values (mV) for copper/
constantan thermocouples {B.S. 1828/1921).
Manufacturer's data.

O¢ o° 100° - 200° 300°
o o) 4.24 9.18 14.66
5 0.19 4.47 9,44 14.95
10 0.39 4.70 9.70 15.24
15 0.58 4.94 9,97 15.53
20 0.78 5.18 10.24 15.82
25 0.98 5.41 10.50 16.11
30 1.19 5.65 10.77 16.40
35 1.39 5.89 11.04 16.69

40 1.60 6.14 11.31 16.99

45 1.81 6.38 11.59 17.28
50 2.02 6.63 11.86 17.58
55 2.23 6.88 12.14 17.88
60 2.45 7.13 12.41 18.17
65 2.67 7.38 12.69 18.47
70 2.88 7.63 12.97 18.77
75 3.11 7.88 13.25 19.07
B0 ~  3.33 8.14 13.53 19.37
85 3.55 8.40 13.81 19.68
20 3.78 8.66 14.10 19.82
95 4.01 8.92 14.38 20.29

o®°c at cold junction.
Tolerances to B.S. 1041/1966: 0% - 100°¢C iloc
100°C - 400°C ¥1%
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S(T) = 4V/aT = a + 2bT_ + 3ch . (3)
To obtain a measure of the scatter in sensitivities, a
least-squares fit of the linear eguation
V=a'T+ b' (4)
to a set of experimental points was performed for three
random thermocouples in the range 270 to 330 K. The mean
value of a'=41.04 uvV/K with a staﬂdard deviation of only
0.01 uV/K suggested that the ‘likely scatter in
sensitivities was too small to warrant individual
calibration for every thermocouple. Equations (1} or (3}
and the constants (2) were therefore used to convert
voltage readings into temperatures for all thermocouples.
Roeser and Lonberger (1958) indicated that a given
couple will maintain its calibration within 0.2 Kup to 570
K. Repeated temperature cycling does not cause significant
drift (Baxter et. al., 1969). When the e.m.f. of the
calibrated thermocouples is compared with reference tables
(e.g. Roeser and Dahl, 19238), the calibration output
differences are usually proportional to the thermoelectric
voltage. In other words, a 10 V error at 1 mV output will
double when the output is 2 mV. Kinzie (1973) quotes the
accuracy tolerance typical of commercial thermocouples as
+0.8 K between 210 and 370 K and 0.3% of reading between
370 and 470 K. Kinzie also reports a pressure dependence in
the thermoelectric potential, whereby increased pressure
results in a decreased output. A nearly linear temperature .
vs. pressure correction curve holds from O to 7x103 MPa,
giving an additive correction of about 5.2;&:10"4 K/MPa when

there is a 100 K temperature difference between the
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thermocouple junctions. This correction was considered too
small to be significant in the present work, and was

neglected.

4.3.3 Temperature measurements.

The temperatures of the oven, cryostat and autoclave
were measured by a copper-constantan thermocouple. The hot
junction was inserted in an aluminium block to smooth out
rapid temperature fluctuations, the cold juncti;)n being
maintained at the ice point in an air-cooled ice point
reference chamber (De la Rue Frigistor model 106) with
automatic temperature control, qguoted temperature accuracy
of 0.00 to 0.05 K and temperature stability of +0.01 K. The
resulting e.m.f was measured with a differential voltmeter
( Honeywell model 1002 and later Fluke 8860A or Fluke
8050A) to an estimated accuracy of +10 pV, or about +0.25
K. The voltage reading was then converted +to a temperature
value by a microcomputer program making use of the first
two terms of equation (1) together with the values in (2)
for the constants a and b. The contribution of the cubic
term in (1) was found to be negligible for temperatures up
to 500 K. The overall acuracy was estimated at about 0.5%
due to thermocouple calibration errors plus 0.5% due to the
slight temperature gradients in the ovens.

Small diameter thermocouples (6.12 mm wire) were used in
the transient measuremnts of the temperature of the rock
samples. The thermocouple wires were positioned parallel to
the heaters to reduce conductive heat losses along the
wires. In this arrangement, the leads run roughly parallel

to equithermal surfaces, thereby reducing the distortion of
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the temperature field within the rock. The reference
junction of the thermocouple was placed in a second
aluminium block inside the oven. This proved sufficiently
stable for most measurements as the e.m.f.'s of the two
junctions were nearly equal and tended to track each other
during fluctuations in the oven temperature. The output
voltaée V of the thermocouple was then a measure of the
temperature difference v between the oven and the rock
sample, which allowed direct amplification of the signal
without the need for a large and accurate offset reference,
and a means of testing the thermal equilibrium between oven
and sample. The temperature was calculated from the
sensitivity S(T) of the thermocouple at the temperature T
using the expression
v=vV/S(T) . (5)
‘For measurements at oven temperatures within +20 K of
the ice point, the ice point chamber was used as the cold
junction reference point because of its better stability: a
voltage offset was subtracted from the output of the
amplifier in order to bring the signal within the range of

the data acquisition system.
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4.4 Signal processing.

4.4.1 Noise.

The very low voltage levels associated with
thermocouples in the high-resolution temperature
measurement system required protection against electrical
noise. The main types of noise encountered and the steps
taken to counteraét them are listed below in order of
importance (Fig. 4.6):

1) Shot noise and 1/f noise (Motchenbacher and Fitchen,
1973) caused by the semiconductors in the front stage of
the thermocouple amplifier contributed most to the overall
noise figure. Because they lie in the same frequency range
as the signals (Fig. 4.6), they could only be partly
reduced by the use 0of a good thermocouple amplifier with a
low noise figure (see section 4.4.2).

2) Electromagnetic interference was reduced by screening of
cables and amplifier, avoiding earth loops and using an
amplifier and data acquisition system with differential
inputs, and by careful design of the power supplies.
Filtering of the signals (section 4.4.3) and digital
filtering of the data (section 4.4.4) also gave good
results as this type of noise has characteristic
frequencies higher than those of the signals (Fig. 4.6).
The thermocouple wires between the oven and the switches
could not be screened. However, noise picked up in this
section partly cancelled out because the thermocouple wires
ran parallel and close to each other, thus being subjected
to electromagnetic fields of roughly equal strength.

3) Thermoelectric noise in the thermocouple connections and
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switches was minimized by spreading thermally conductive
silicone grease on switches and using compensating cables
from the same batch of wire as the thermocouples.

4) Thermal noise. In a resistor of value R, the thermal
noise e.m.f. in the frequency range Af is given by (King,
1966)

E = ( 4xTR af )}/2

where k=1.38x10"%3 J/K is Boltzmann's constant and T the
absolute temperature. E was kept to a minimum by reducing
the resistance of the thermocouple leads and limiting the

signal bandwidth with a low-pass filter (see section

4.4.3).

4.4.2 Thermocouple amplifier.

The thermocouple amplifier is the most critical
component in the signal~processing apparatus because of the
small voltages involved. It must satisfy the requirements
of very low temperature drift, low noise and relatively
fast response. A chopper amplifier (Hewlett Packard model
425A) was used in early experiments, but it soon proved
inadequate due to its limited bandwidth (0.2 Hz). An
amplifier based on an integrated instrumentation amplifier
(IA) was then designed and built (see Appendix I) having
good frequency response and moderate drift. This was later
replaced by an improved amplifier based on an IA (Analog
Devices model 606M) offering excellent drift and noise
performance (Analog Devices, 1979). Referring to Fig. 4.7,
the gain equation of the amplifier is

Vout = G(VF-V") + Vpgp

when V Y . The gain G, calculated from the formula

sense " out

83



_ 5 + o -
Vout =(1+4x107/R.) (V-V ) + Vo

Thermocouple
Sample junction

Now

out Output

A

Oven junction

+10 V

Offset adjustment

-10 V

Fig. 4.7 Instrumentation amplifier used as the
thermocouple amplifier.

C
I
i
r X1
A \
INPUT
< c * OUTPUT

Fig. 4.8 Second-order low-pass filter. Two such sections
were cascaded to give the reguired fourth-order
response.
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G=1+4x105/RG, was set to 10,000 to give a sensitivity of
about 0.4 V/K at the output when used in conjunction with
copper-costantan thermocouples. VREF had a range of -10 to
+10 V and was adjusted before each conductivity measurement
to cancel out small voltage differences between the
thermocouple junctions.

Table 4.2 shows the main characteristics of the IA:
unlike operational amplifiers, the input impedance of both
inputs is very high and independent of gain (Riskin, 1979),
which keeps electrical loading of the thermocouples low.
The high common-mode rejection ratio ensures good
amplification of the differential signals (vt-v™) ana
rejection of unwanted common mode signal between either
input and ground, thus minimizing the effects of ground
loops and electromagnetic interference. The gain accuracy
of the amplifier over the frequency range 0.01 to 10 Hz is
0.2%, 0.1% being cotributed by the intrinsic amplifier
accuracy and 0.1% by the gain-setting resistor Rg, while
the gain nonlinearity is negligible. The temperature
fluctuations within the amplifier case over the time of one
conductivity run is estimated to be less than 1 K, causing
a drift iﬁ input voltage of less than 0.2 uV. The severe
effect of warm-up drift was eliminated by leaving the
amplifier turned on during sets of measurements and by
allowing 1-2 hours warm-up time when switching off proved
necessary. The wide bandwidth of the IA insured a very flat
response well beyond the frequencies of interest. The input
voltage noise of 1 uV peak-to-peak was the most serious

cause of error and limited the overall accuracy of the
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TABLE 4.2 Specifications of Analog Devices Model 606 M
instrumentation amplifier used as the thermocouple amplfier
(typical at 298 K, gain G=10,000 unless otherwise stated).

Gain range 1 to 10,000
Gain accuracy (G=100) +0.1% max.
Gain nonlinearity +0.002%

Input offset voltage:

warm-up drift, 10 minutes +5 uv
vs. temperature +0.25 uV/K max.
vs. supply +3 uv/v

Input differential current offset:
vs. temperature +20 pA/K
Freguency response:
for 3 4B attenuation 5 KHz
for 0.1% amplitude accuracy 200 Hz

Input voltage noise (0.01 to 10 Hz) 1 uV p-p max.

Common-mode rejection ratio 110 4B
Input impedance 10% ohm/3 pF
Reference terminal offset range +10 VvV
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temperature measurements to about 25 mK. The "high"
frequency components of this noise (1 to 10 Hz) are largely
smoothed out by the least-squares fit during data
reduction, being as likely to cause positive deviations as
negative ones, but at the low end of the noise spectrum
(C.01 to 1 Hz) the fluctuations have a period of the same
order of magnitude as the data collection window and cannot
be distinguished from the signal. This directly affects the
repeatability of the conductivity results. Also , the
amplitude of the amplifier noise has a 1/f behaviour (Fig.
4.6), so that its largest components lie in the critical
frequency range. Even lower frequency components are
probably present {(Motchenbacher and Fitchen, 1973), but
their effects are difficult to gquantify due to the lack of
manufacturer's data.

The new types of integrated "commutating auto-zero"
(CAZ) and monolithic chopper amplifiers (Intersil, 1982)
are of great interest in low-drift signal processing
applications because of their exceptionally low long-term
and temperature drift characteristics (down to 200 nV/year
and 5nV/K respectively). However, they have narrow
bandwidths, high noise figures in the 0.1 to 10 Hz
frequency band and tend to produce large spurious voltage
spikes. It is likely that, as the technology in this field
evolves, commutating amplifiers will become more suitable
for fast microvolt-level amplification than those based on

conventional technigues.
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4.4.3 low-pass filter.

A low-pass filter was inserted between the thermocouple
amplifier and the data-acquisition system to reduce high-
frequency amplifier noise and 50 Hz electromagnetic
interference. To obtain a wide frequency response with good
high-frequency attenuation, a fourth-order Butterworth
filter was designed (Daryanani, 1976, Moschytz, 1975). The
magnitude of the response function of the filter is

H(£) = [ 1+(£/£,)8 373/2

where £ is the fregquency and f,=10 Hz is the -3 dB point.
The graph of this function, plotted in Fig. 4.9, shows that
the low-frequency gain is unity and that the theoretical
attenuation is about 56 dB at 50 Hz and 80 dB at 100 Hz.
Limiting the bandwidth of the filter to 10 Hz reduces the
intrinsic noise of the thermocouple amplifier to less than
1 uV peak-to-peak. To implement the filter, two second-
order active filters of the type shown in Fig. 4.8 were
cascaded. The circuit diagram of the filter is given in
Appendix I.

ILow-pass filters introduce a delay in the signal, to
obtain a measure of which the response of the filter to a
unit step function was calculated. The response function,
plotted in Fig. 4.10, is seen to settle to within 1% of the
value of the input function in a time of abéut 0.2 s. This
is egquivalent to introducing a delay of the same order of
magnitude in the output. Assuming a maximum rate of
temperature increase of about 10 mK/s in the region of
interest, the error in the output due to the filter delay
is about 2mK, of the same order of magnitude as the

resolution of the thermocouple amplifier. This was
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function.
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considered a good tradeoff between the conflicting

requirements of fast response and low noise.

4.4.4 Digital filtering.

A digital filter was used for further reduction of the
noise in the data. The low=~pass filter described in the
previous section proved very effective but electromagnetic
interference was still injected into the line between the
low~pass filter and the data acquisition system (Fig.4.1).
Also, as the voltage and current-sensing lines of the
heater were not filtered, they were particularly sensitive
to electromagnetic interference in the electrically noisy
laboratory. The sampling time-window of the data
acquisition system was very small (of the order of a few
microseconds) so that even fast unwanted transients were
recorded. In order to minimize these effects, digital low-
pass filtering of the data was attempted at an early stage
in the experiments: fast Fourier transformation of the
input time series was performed, the high frequency
components suppressed above a given cutoff fregquency, and
the resulting spectrm inverse-transformed (Jenkins and
Watts, 1968). Although the results were satisfactory, the
procedure was not deemed to be suited to rapid routine data
analysis by a simple microcomputer, and therefore was not
pursued. A simpler, but effective digital filter was
developed instead. A set of 250 data readings taken in
rapid succession were averaged over a time interval t'=20
ms equal to the period of the mains voltage. Each reading

is the sum of a slowly increasing signal s(t) and pericdic
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interference of the form n{t)=A cos{wt+d). As t' is very
small, s{t) is nearly linear in the interval {(O,t'), so its
average value is s(t'/2). Integrating n(t) over (0O,t')
gives the average interference

<n> = A sin{wt'+%®) - sind . (1)
wt'

As shown in figure 4.11, this function has zeroces at
f=w/27W=50, 100, 150,... Hz, so that mains-borne
interference is completely suppressed together with all its
harmonics. Fluctuations in the mains frequency somewhat
reduce the effectiveness of the filter. From equation (1),
the average noise at the freguency (wO+Aw) close to w, will
be .(neglecting the phase)

<n>(w_+iw) = A Aw/wo . (2)
so for a typical fluctuation Aw/woﬂL01 in the mains
freguency, the noise attenuation will be about 100. The
filter is thus seen to have a small effect on the signal
while offering good rejection of electromagnetic

interference and some reduction of high-fregquency noise.

4.5 The microcomputer.

The main purpose of the microcomputer was to perform the
following operations:

1) Analogue-to-digital conversion and temporary storage in
memory of transient sample temperature, voltage and
current signals from the heater.

2) Switching the power to the rock heater on and off under
the control of a programmable timer.

3) Digital reduction of data and calculation of thermal

constants.

92



<>

<p> =

ANEIVAN

sin{wt"+¢)-sind

wt!

t'=0.2 s , ¢=7/16

4

S

N TN
N

0 50 100

Fig. 4.11 Frequency response <n> of digital filter.

150

f=wl2T (Hz)

93

200

250



4) Display of data, programs and results on a visual
display unit.
5) Permanent storage of data and results on magnetic

cassette tape for further analysis.

4.5.1 Hardware.

The microcomputer {Fig. 4.12) was a commercial single~
board unit (Nascom 1} expanded and modified to perform the
required analogue data capture. The eight-bit central
processing unit (CPU - Zilog Z280) performed all the major
internal data transfer, input/output, arithmetic and
logical functions and communicated with the ﬁemory and
peripherals wvia the data, address, and control bﬁses.
Temporary storage of data and programs was provided by 16
K-bytes of random-access memory (RAM). The computer
monitor, Basic language interpreter, user programs and
routines were permanently stored in read-only memory (ROM)
and on cassette tape. Programs were inputted. and all
machine functions controlled from the keyboard. Data and
programs were displayed on a visual display unit (VDU}. A
serial link enabled data transfers to/from a Cyber 176
mainframe computer for fast calculation of time-consuming
routines, access to library routines, hard-copy production
and alternative storage of large data files on magnetic
tape or cards.

Two data~acquisition systems (DAS) were designed and
built to perform the analogue data-acguisition and
analogue~to~digital conversion (Fig. 4.12). The earlier DAS
had a basic resolution of 8 bits (1 part in 256) and is

described in Appendix I. Although this resolution was
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adequate for the purposes of the experiments, the dynamic
range (the ratio between the largest voltage input and the
resolution) was rather limited. For example, if the
resolution was set to 0.01 K, the maximum possible
temperature rise was only 2.5 K, which was often exceeded
in the measurements. For this reason, this DAS was later
replaced by an improved version with higher resolution and
speed whose main functional blocks are shown in Fig. 4.13.
The 8-channel differential multiplexer selected the
appropriate signal 1line. The signal was amplified and
sampled at intervals determined by the programmable timer,
and converted to digital form by the analogue-to-digital
converter with a range of 0 to 5 V {(or about 13 K) and a
resolution of 12 bits (1 part in 4096) or 1.25 mV,
corresponding to a temperature resolution of about 3 mK.
The raw data was displayed in binary format to facilitate
the setting-up of experiments and to check that the
thermocouple and signal conditioning apparatus were in
working order. Upon receipt of an "end of conversion"
signal, the parallel interface temporarily stored the data,
interrupted the CPU and instructed it to transfer the data
into the memory. This interface also switched the power to
the heater on and off under program control. The salient
characteristics of the DAS are reported in Table 4.3: input
current and and temperature drift were negligible and the
input impedance very high, thus the accuracy was +0.025% of
full scale reading after calibration of the scale factor

and adjustment of the zerc offset.
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TABLE 4.3 Characteristics of the data-acquisition system

(@ 298 K).

Full-scale differential input wvoltage
adjustable to
Resolution

Accuracy

Inherent quantizing error
Maximum data-acquisition rate
Data-sampling time window
Input current

Input impedance

Externally adjustable zero offset
and scale factor {to calibrate scale)

0 to 5.12 V
(1.25 mV/bit)

0O to 10.24 V
(2.5 mV/bit)}

12 bits
(0.025%)

0.025%

+ 1/2 bit
30,000 samples/s
5 us

1 nA

108 ohm/100pF
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4.5.2 Software.

The microcomputer was programmed in machine language in
all the cases when high execution speed was required (for
example in the data-acquisition routines which required
service times of 80-100 ps), in peripheral control, and in
interrupt routines requiring immediate attention from the
machine and interruption of the current program. The Basic
language was used in operations involving floating-point
mathematical routinés and output to the VDU or printer. The
Basic interpreter was much slower in the execution of the
" programs than the machine language monitor, but eased
programming considerably.

The accuracy of the floating-point numbers was limited
to 6 decimal digits, which was adequate for most
calculations. Although least-squares routines generally
require better accuracy, close examination of the nonlinear
least-~squares method of section 3.10 reveals that the final
values of the unknowns are not sensitive to the number of
decimal digits employed. To confirm this, several data sets
were analyzed both on the microcomputer and a mainframe
computer with an accuracy of 18 decimal digits. The same
final results were obtained, although in some instances the
microcomputer required more iterations than the mainframe
computer to achieve the same accuracy in the results.
Widely different initial values of the thermal constants
were found to lead to identical final values of k and h.

Data collection and automatic calculation of the thermal
constants took 2 to 6 minutes, depending on the initial
values assigned to the constants and on the number of

iterations {(usually 2 to 6) required to achieve the target
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computational accuracy of 0.1%. As occasional transients in
the mains supply caused spurious temperature readings, a
routine was incorporated in the microcomputer program to
detect and correct temperature readings which did not fit
the trend of the temperature curve.

The advantages of performing all the data processing
locally were twofold: 1) Data transfers to the mainframe
computer were quite slow due to the limitations of tl}e
connecting line (30 characters per second). With local
processing, rgsults could be obtained in a very short time,
and if spurious readings were suspected, the causes could
could be searched immediately. Also, data transfers on long
lines are an extra source of random errors. 2) The data set
analyzed could be made large, with a consequent increase in
the accuracy of the results. For example, for a typical
experiment with a time window of 60 s and temperature
readings taken at intervals of about 0.3 s, over 200
temperature points were analyzed, each point being an
average of 250 digitizations. The same number of data
points were taken in the heater current and voltage lines.

A flowchart of the line-source programm used in most
experiments is shown in Fig 4.14, and a listing in Appendix
II. A more comprehensive Fortran/Assembly Language program
was developed by M.A. Adam (1983) to run the line-source
experiment on a Research Machines microcomputer with
facilities for fast printing and storage on magnetic disc

of data and results.
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Chapter 5

RESULTS

After a discussion of the expected overall accuracy of
the method, thermal conductivity and diffusivity results
for various rock types and two standard materials are

presented in this chapter.

5.1 Error analysis.

Estimates of the component errors contributing to the
total experimental error are given in table 5.1. These are
typical values only and are dependent on experimental
parameters such as oven regulation, thermocouple offset and
sample length. The error introduced by amplifier and
reference drift in the transient temperature measurements
was estimated from the standard deviation of sets of
repeated conductivity measurements at a constant oven
temperature and its average value is given for each sample
in Appendix IV. It is dependent on oven regulation and
amplifier type and increases with increasing sample
conductivity. Average values of the standard deviation are
about 1.5 and 3% for samples measured in conjunction with
the new and old amplifiers respectively. The error in the
heater length was derived from the uncertainty in the
positioning of the welded joints (section 4.2.2), and the
error in the current determination is mainly due to the
uncertainty in the measurement of the standard resistor.
The fluctuations of Q0 with time were observed to be less

than 0.1 % of the average value during a run. The total
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TABLE 5.1 Error components contributing to the total
estimated error in measured conductivity and diffusivity.

Param. Component Error (%)

v Amplifier and reference drift 1.5-3
Thermocouple calibration 1
Amplifier 0.2
Filter 0.02
Data~acquisition system 0.025

Q Sample length 1
Voltage 0.025
Current 1

r 15

t Zero error <0.02
Scale error <0.01
Mathematical model 1

Working equation (Eq.3.3.1(10)):

v= -Q/(47k) Ei(-r?/4nt)
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error in the conductivities, calculated as the sum of all
the relevant components in table 5.1 (independent of r), is
about 5-6%. However, the contribution of the reference
drift is random and cancels out in averaging a large number
of readings. The total (systematic) error under these
conditions is about 4%.

The error in the thermocouple offset r, due to the
finite radius of the thermocouples (0.3-0.5 mm) and the
heater wire (0.1-0.2 mm), introduced a systematic error of
~about 30% in the diffusivity measurements. The random error
is also higher than in the conductivity measurements. This
can btest be illustrated with reference to the logarithmic

solution of section 3.3.1 (restated below):
v=0/(4rk) {1n t -j-1n(r2/4n)}. (1)

k and h can be determined by ordinary least squares from
thg slope and intercept respectively of the curve v against
In t in the interval (t min, t max), Fig. 5.1. The slope
will only be affected by the reference drift in the
sampling window t min to t max, whereas the intercept is
sensitive to reference drift in the whole time interval t=0
to £t max. With £t max™ 2 tmin , the raﬂdom error in h can be
expected to be about twice that in k, a fact borne cut by
most results even when the exponential intégral solution is
used.

The error in the oven and autoclave temperature
measurements was estimated to be 1% (section 4.3.3) and
that in the pressure measurements about 5%.

A plot of the temperature residuals (the differences
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between the experimental temperature points and the best
fitted curve) is given in figure 5.2. The residuals in the
sampling window are less than 3;5 mK with a standard
deviation of 1.2 mK and are randomly distributed arcund the
zero level, which confirms the adequacy of the mathematical
model.

Some of the rock samples had two thermocouples embedded
at different offsets from the heater. By determining the
conductivity from both thermocouples, the quality of the
mathematical model could be checked. Figures 5.3 to 5.6
show conductivity vs. T plots for four Cornish granite
samples having two thermocouples each. Each point is an
average of one to four runs, with the error bars
representing standard deviations. For most points the
error bars of two conductivities from different
thermocouples at the same temperature overlap, and the two
sets of points for sample M5 are almost undistinguishable.
A similar correlation was found in the temperature
dependence of the diffusivity results even when the
absolute values of h do not compare well due to
inaccuracies in the determinations of the offset r. Some
samples had to be dismantled at the end of a set of runs to
re—-measure the offsets, because the thermocouples and
heaters had moved slightly during the high-temperature
curing of the epoxy resin.

A comparison of the conductivity results for samples M2,
M3 and T9 (figures 5.3, 5.4 and 5.6 - measured in
cbnjunction with the old amplifier) and sample M5 (Fig. 5.5
-~ new amplifier) shows the importance of a very low-drift

amplifier in obtaining good-quality results.
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Robinson (1979) performed a set of tests to monitor the
dependence of measured conductivity on the linear power,
and detected no appreciable correlation.

During all the experimental runs, the resistance of the
heater wire was calculated from the average measured
voltage and current through the heater. This provided
useful information on the resistance variations with
temperature and time. The standard deviation of a set of
measurements of wire resistance at a constant temperature
was usually less than 0.2% of the mean value, but larger
variations occurred at different temferatures dﬁe to the
temperature dependence of the wire and other random effects
{(Appendix IV). Fig. 5.7 shows that for a typical constantan
heater the random variation is larger than the temperature
variation (which should have a slightly positive trend with
increasing temperature). This suggests that the
potentiometric method of power measurement is slightly more
accurate than simple current measurements coupled Qith a
single resistance determination at room temperature, and
justifies the increased complexity of the wiring and

apparatus.
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5.2 Conductivity of fused silica and ceramic.

The conductivities of two standard materials were
measured in order to compare the absolute accuracy of the
present method against published results. The requirements
on standard materials are high thermal stability over a
wide temperature range and a conductivity value similar to
those of most rocks. Fused silica is widely acknowledged to
have very stable thermal characteristics over a wide
te‘mperature range (Sibbitt et al., 1979). Conductivity
measurements were performed in the range 300-470 K on a
high-purity fused silica sample {supplied by Gooch &
Housego Ltd.) with zinc oxide-loaded silicone grease as the
contact material. A set of at least three readings was
taken at each oven temperature in increasing steps of 25 K
from 300 to 470 K. The effect of temperature cycling on the
fused silica, silicone grease, sample thermocouple and
heater was checked by repeated readings at 300 and 470 K,
and found to be negligible. Fig. 5.8 compares the results
with those of Ratcliffe (1963) and Birch and Clark (19240).
Values of individual measurements are shown together with
average values at every temperature as a measure of the
scatter in the results. The larger scatter at the low and
high ends of the range is probably attributable to poorer
oven regulation in these regions. The average percentage
standard deviation of the individual conductivity values is
1.5 %. The agreement with the published résults is good in
view of the limited length of the available sample (60.13
mm). As previously shown, the accuracy in the determination
of the power input Q (and hence the conductivity) is

inversely proportional to the sample length.
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The diffusivity results are plotted in Fig. 5.9 together
with the values calculated from the equati&n h=k/pc, with k
taken from the present experiments and p, ¢ from Kanamori
et al. (1968). The slopes of the h vs. T curves are in
agreement, but the absolute values of the measured
conductivities are 30% too low, probably because of the
inaccuracy in the thermocoupie offset measurement. Values
of h from Kanamori et al. (1968) are also shown in Fig.§.9.

Fused silica is unsuitable for use as a standard in
needle—prqbe measurements where a long and thin hole has to
be drilled into the sample. A material which has been
found to possess the required machinability in this
application is zero-porosity Corning Macor 9658 ceramic
(Bloomer, 1980). The results of a set of conductivity
measurements on a Macor sample {(supplied by McGeoch & Co.
Ltd.) with zinc oxide-loaded silicone grease as the contact
material are shown in Fig. 5.10. Each point is an average
of three to seven experimental values and the error bars
represent the standard deviations. The increase in
conductivity with temperature is that expected for a
glassy material. The value at room temperature (Table 5.2)
iz in good agreement with that from a divided bar apparatus
on discs from the same Macor block and those reported by
Bloomer (1980), measured by a divided-bar and by a needle-

probe calibrated against a silica glass standard.
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TABLE 5.2 Comparison of conductivity results of Macor
ceramic at 298 K.

Source of data No. of readings k,S.D.

Line~source {(at 302 K) 6 1.610+0.011
Divided~bar 24 1.605%0.003
Needle~-probe (Bloomer, 1980) 39 1.62 +0.03
Divided-bar (Bloomer, 1980) 13 1.59 +0.04

One of the wvalues at 325 K was obtained after
dismantling and reassembling the sample with a new heater
and thermocouple, and shows a‘negligible discrepancy in the
measured conductivity. The smoothed curve of Fig. 5.10 is a
second-order polvnomial in T. QOther curves could have been
fitted to the experimental points with as good a
justification, but the differences would have been
negligible within the temperature range of the experiments.
Good repeatability was observed after temperature cycling
to 470 K.

The diffusivity results are plotted in Fig. 5.11l. Tables
of results for both standard materials are given in

Appendix 1IV.
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5.3 Temperature dependence of conductivity.

A set of samples representative of the main geological
suites found in S.W. England were investigated. The size of
the samples was kept as large as possible, yet compatible
with the attainment of thermal equilibrium in a reasonably
short time, so as to minimize the effects of grain-size
inhomogeneities and heat reflections at the boundaries. A
description of the samples is given in Appendix V, and the
conductivity and diffusivity results, togethér with other
relevant sample parameters, are tabulated in Appendix IV.
Each result in Appendix IV is an average of several
experimental runs, the standard deviation giving a measure
of the repeatability. Some spurious results (probably
caused by bad oven regulation or noisy data sets) are not
reported. The heater wire resistances are also shown for
each measurement as a good standard deviation in the
measured wire resistance was found to be associated with
repeatability in the conductivity. Corrections to the
conductivity results were attempted in some cases where the
resistance variations were wide: the conductivity was
scaled proportionally to the wire resistance at a given
temperature (normally room temperature), and in general
this was found to decrease the scatter in k. This
procedure, however, is no substitute for good temperature
sets, a reflection of the fact that high wire resistance
variations are associated with a shape degradation in the
input power step function.

Conductivity values of a set of granite samples from
Merrivale (Dartmoor, Devon) are plotted against absolute

temperature in Fig. 5.3, 5.4, 5.5 and 5.12. The samples
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were cut from a single block of rock and with the same
orientation thus allowing a study of grain-size related
conductivity variations. Each point on the graphs is an
average of several measurements with the error bars
representing the standard deviations. All the samples were
dried at 400 K for 24 hours prior to measurements. The
température seguence was started at 400 K, then T was
increased in steps of 25 K to 470 K, then decreased to room
temperature and increased again to 375 K in steps of 25 K.
Measurements at sub-ambient temperatures down to 250 K were
then performed on samples M5 in the cryostat in order to
verify the 1/T relationship in this range. Some
measurements at 470 K were then repeated. It was thus hoped
that conductivity variations caused by moisture loss from
the samples would be minimized. The standard deviations at
room temperature are considerably larger éhan the others, a
consequence of poor oven regqulation in this range. The
absolute values of k also tend to be lower than expected at
room T. The marginally poorer repeatabilty of measurements
in the cryostat (sample M5) is not easily accounted for
given the good intrinsic temperature stability of the ethyl
glycol bath.

The curves on the diagrams are best least-squares fitted
lines of the form k=(A+BT)"l. This equation was chosen from
the considerations of chapter 2, but the choice is rather
arbitrary, as fits of lines of the form ]-:=A+BT_l or even
straight lines k=A+BT 1led to similar correlation
coefficients over the limited temperature range

investigated. Fig. 5.13 shows a comparison of the smoothed
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k-values for all the Merrivale granite samples together
with a mean curve calculated from a least-sgquares fit to
all the conductivity points. The sample-to-sample spread of
conductivities is within +3% of the mean value at all
temperatures. This is probably at least partly due to
grain-size effects as it cannot be entirely accounted for
by the inaccuracy in the linear input power measurements.
Such differences are not uncommon in adjacent regions of
coarse~grained rock (the averége grain size of the
orthoclase megacrysts in the Merrivale granite samples was
20 mm). The slopes of the curves were all very similar,
suggesting an almost identical temperature dependence of
conductivity.

Fig. 5.14 shows conductivity results from a set of
samples from Troon (Carnmenellis, Cornwall) all cut from
the same block together with least-squares fitted curves.
The temperature sequence was the same as for the Merrivale
samples {except that for T12 which is described later). The
values for sample T1l2 at 250 K seems to be anomalously low,
but it was included having proved repeatable. Fig. 5.15 is
a plot of the smoothed values only together with the mean
curve for all the samples. The range of conductivities at a
fixed temperature is wider than in the Merrivale granite,
even 1f the grain sizes were comparable. The mean
conductivity is slightly lower at ambient and sub-ambient
temperatures, becoming substantially equal at temperatures
above 400 K. This similarity in conductivities was
attributed to the similar compositions of the granites.

Values for a Cornish slate (Killas) specimen are shown

in Fig. 5.16. The scatter in conductivities at a fixed
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temperature is small, reflecting the tendency of all line-
source measurements to give better repeatability for lower
conductivity materials. For the same input power, a low-
conductivity material will cause a larger temperature
increase at the sensor, leading to a lower experimental
error.

A granite sample from Holman Mine {Troon, Carnmenellis,
Cornwall), was investigated over the extended temperature
range 320-570 K. The sample was initially dried at 370 K,
then measured repeatedly at 320, 370, 420, 510 and 570 K in
increasing steps of temperature, then at 510, 420, 370 and
320 K in decreasing steps. A similar second cycle from 320
to 570 K and back to 320 K was subsequently performed. The
resulting conductivities plotted in Fig. 5.17 show that a
considerable conductivity decrease took place between 420
and 500 K in the first T-cycle, which resulted in a lowered
conductivity at the end of the cycle. The second cycle
showed very similar conductivities at high temperatures,
with a further decrease in the 320 K value at the end of
the cycle. This behaviour was attributed to water loss and
possibly some irreversible opening of microcracks in the
quartz grains and at grain boundaries, and is within the
limits predicted by the theory of section 2.3. Fig. 5.18
shows the averaged conductivities as functions of
temperature, the large error bars reflecting real changes
in rock conductivity rather than experimental scatter.

A similar procedure was applied to a dry Troon granite
sample, Fig. 5.19. The conductivity of T12 was measured in

increasing steps of oven temperature from 250 to 470 K.
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Subsequent measurements at 320, 250 and 320 K showed a
slight decrease in k, although point 11 at 320 K has too
high a standard deviation to be conclusive.

Fig. 5.20 shows a comparison of the present results for
the line-source temperature dependence of conductivity for
the Merrivale, Troon and Holman granites with those of
Dodson (1979) for a Cornish granite sample, and those of
Birch and Clark (1940) for Rockport, Barre and Westerly
-granites. Also shown are room-temperature conductivities of
water~saturated Merrivale granite from divided-bar
measurements on 8 samples and two water-saturated
Gaveriggan granites by the needle-probe method. The Troon
and Gaveriggan values at room temperature, obtained after a
compression cycle to 50 MPa, are discussed in section 5.5.
The values for the dry samples are seen to be about 5%
lower than those for wet samples, as fairly high-
conductivity pore fluid is replced by air {(with low
conductivity)}, thus decreasing the apparent conductivity of
the two-phase system.

The diffusivities of all the samples are tabulated in
Appendix IV. The absolute values for some samples are lower
than expected. It is suggested that in some cases the
thermocouple wires, uninsulated in the proximity of the
junction, may have come into contact thus forming a second
junction at a larger offset from the heater. The measured
offset would then tend to underestimate the real one, thus
leading to an underestimate in the measured diffusivity.
The temperature dependence of the diffusivity closely
approaches the expected theoretical trend h™1/T for all the
samples measured in conjunction with the new amplifier.
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5.4 Water saturation.

In order to relate the measured high-temperature
conductivities of dry samples to those of water-saturated
samples, which are more representative of the in situ
conditions of the rock, several approaches can be adopted:
1) The samples are kept fluid-saturated over the entire
temperature range. Birch and Clark (1940) used Helium and
Nitrogen as the saturating fluids for temperatures up to
770 K, obtaining repeatable measuremnts after temperature
cycling close to those for water-saturated samples (Clark,
1941). This method, however, is impractical and expensive
for routine measurements, although high boilinngoint
liguids such as ethyl glycol or oil could be used as.
saturating fluids for temperatures up to 450-500 K.

2) The conductivity is measured under hydrostatic pressure,
thus closely reproducing the in situ conditions of the
rock. Water-saturation should be almost irrelevant in this
case because at sufficiently high pressures all the penny-
shaped cracks which most affect conductivity should be
closed. This approach will be described in section 5.5
below.

~3) The indirect method of section 2.3 is applied to relate
dry to water-saturated conductivities by measuring the rock
porosity. Alternatively, such a relationship can be
determined experimentally by measuring (at room
temperature) the conductivity of a sample after water-
saturation and again after drying. All the high-temperature
measurements can then be corrected by multiplying them by a

constant factor egqual to the ratio of the wet to the dry

conductivities at room temperature. The latter method was
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attempted and the results are described below.

The effect of water~saturation on two granite samples
from adjacent core sections taken from Gaveriggan,
Cornwall, was investigated at room temperature using a
needle-probe technique. A 2 mm diameter hole was drilled in
each of the samples by the Los Alamos Scientific Laboratory
using an ultrasonic technique. The needle probe was
calibrated against a Macor ceramic standard (k=i.605 at 300
K). Water-saturation was achieved by evacuating the air
from the samples (vacuum down to”~1 mm Hg for three hours),
submerging the samples in water, and then allowing the
water to penetrate the cracks under atmospheric pressure.
Drying was performed at 450 K for 24 hours. The results are
reported in Table 5.3. The conductivity of the water-
saturated samples are substantially identical, but the
percentage variations after drying differ markedly,
suggesting that pore and crack patterns have a more marked
effect on the conductivity of dry samples than on wet ones
where the interstitial fluid short-circuits the crack
thermal resistance. It is likely that the same effect may
also partially account for the spread of conductivities in

the Merrivale and Troon granites.
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TABLE 5.3 Differences between thermal conductivities of
water-saturated and dry Gaveriggan granite samples at 296

K. Units are Wm™ “K~~., Figures in brackets are numbers of
runs. '
SAMPLE kK (WET) k(DRY) % CHANGE
Gl 3.17740.036 (12) 3.067+0.058 (70) -3.5
G2 3.164+0.039 (75) 2.861+0.038 (19) -9.6

5.5 Pressure dependence of conductivity.

The conductivities of two granite samples were measured
over a range of hydrostatic pressures between normal
pressure and 50 MPa, corresponding to in situ lithostatic
pressures down to depths of about 2 Km. From the discussion
of section 2.1, it is clear that pressure variations of up
to 50 MPa do not directly affect the crystal lattice
conductivity to a measurable extent. The present
measurements were designed to investigate the effects of
pressure on dry rocks, i.e. two-phase systems in which
microcracks play a significant role in controlling the
effective thermal conductivity.

0il was used as the pressurizing agent in the autoclave
to provide true hydrostatic compression. The samples were
carefully coated with silicone rubber compound to prevent
ingress of oil.

The results for a dry Troon granite sample (T12) at room
temperature are shown in figures 5.21 and 5.22. The sample
conductivity was measured at increasing pressure levels

from O to 50 MPa and then re-measured in three subsequent
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cycles after heating respectively to 370, 420 and 470 K for
24 hours. In the first pressure cycle the conductivity is
seen to decrease slightly with pressure, but this result is
not very conclusive given the considerable scatter in the
values at normal pressure and their anomalously high values
when compared to those for Tl12 at room temperature in Fig.
5.14. The possible causes of this anomaly are the
following:

a) An experimental error whose causes femain unexplained -
the eguipment was checked against a Macor standard and gave
accurate results.

b) A slight increase in the conductivity in the several
months between the temperature and +the pressure
cycles, possibly associated with a gradual closing of the
microcracks under internal stresses. A similar, if smaller
effect was detected in sample H1lA after the heating cycles.
A more detailed investigation would be needed to confirm
this effect.

In the second and third pressure cycles of Fig. 5.22,
heating caused the conductivity to drop in direct
proportion to the temperature, but after applying a
moderate pressure of 20-30 MPa all the values seem to
converge to the same slight direct linear dependence on
pressure. The set of measurements at normal pressure at the
end of the last cycle are about 3% higher than those at the
beginning of the cycle, which implies a permanent closing
of some of the cracks even after the pressure is released.
This is not an uncommon effect (see for example Kappelmeyer
and Haenel, 1974, p.216).

The pressure dependence for a Gaveriggan granite sample
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(G3) is illustrated in figures 5.23 and 5.24. The sample
was initially saturated with water, then measured at O, 25,
50 MPa and again at normal pressure. Two more similar
pressure cycles were performed after heating respectively
to 370 and 450 K for 24 hours. Heating to 370 K had a
negliagible effect on the zero pressure conductivity, and
heating to 450 K decreased it.by about 2%. A pressure of 25
MPa was sufficient to bring the dry conductivity back to
the water-saturated valuve at the same pressure.

The following conclusions were drawn from the high-
pressure experiments:

1) The conductivity of both granite samples increases with
increasing pressure. If a linear dependence is assumed, the
average rate of increase is about 1.5x1073 wm~lk IMpa~! for
both the Troon and the Gaveriggan samples.

2) Pressures of the order of 20-25 MPa are sufficient to
equalize the qonductivities of the dry and water-saturated
rocks.

3) The increase in conductivity is not totally reversed
when the pressure is released.

4) Better stability is observed in the conductivities at
elevated pressures than at normal pressure.

These cosiderations would appear to make conductivity
determinations of dry granites at moderate pressures of 20-
25 MPa a feasible alternative to measurements of water-
saturated samples. Further experiments on a wider range of
samples, which time limitations prevented in this study.

are needed to confirm these results.
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Chapter 6

CONCLUSION

The results presented in the previous chapter
demonstrate the validity of this line-source method of
rapid thermal conductivity measurement over a range of
elevated teﬁperatures and pressures. The high~temperature
measurements highlighted the marked temperature-dependent
decrease in thermal conductivity for rocks likely to be
encountered in a typical geothermal resevoir, and showed
good agreement with the theoretical predictions and with
published results for similar rock types. The high-pressure
experiments detected a weak positive pressure dependence in
Cornish granite and proved a valuable tool for relating the
conductivity of dry samples to those of water—saturatéd
ones, more representative of the in situ rock conditions.

The use of the exponential integral solution within a
well-defined sampling time window, though increasing the
computational complexity, 1led to a satisfactory
experimental accuracy. The statistical reliability was
enhanced by the large size of the data sample obtainable
using modern digital techniques. local data processing by
microcomputer resulted in a rapid detection of spurious
results.

Some of the mathematical solutions, and much of the
instrumentation described in chapters 3 and 4 can be
employed in conijunction with needle-probes for the thermal

conductivity dJdetermination of unconsolidated or soft

sediments.
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Some aspects of the line-source experiment could not be
investigated in detail because of time limitations.
Suggestions for improvements and extensions to the method
are given below as guidelines for further work.

The improved availability of low-~cost, fast 16 and 32 bit
microcomputers will soon allow more complex mathematical
computations to be carried out in real time. A quick
determination of the conductivity, possibly by the
logarithmic method, would ehable a precise calculation of
the upper and lower time bounds of the sampling window for
every sample, based on parameters such as the thermal
constants of the adhesive, sample dimensions and
thermeocouple offset. The conductivity wouid then be re-
calculated to a better accuracy by the standard method
based on the sampling window thus determined.

Automatic control by microcomputer of the oven and
switching of sample thermocouples and heaters could easily
be implemented. Temperature-sensing routines could be
designed to continuously monitor the temperatures.of the
samples and start a measurement as socon as satisfactory
temperature equilibrium is reached. This would allow
concurrent measurement of up to 20-30 samples in the same
oven over a range of temperatures and a period of several
days, thus decreasing running costs and errors.

The bonding materials used here were considered to be
satisfactory, thermal silicone grease being preferred for
ease of sample dismantling and inspection after
measurements. However, a selection of sample bonding
materials with thermal parameters matched to those of the

rock would result in a decreased lower time bound for the
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sampling window, with a consequent improvement in the

repeatability of the results.
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Appendix I

CIRCUIT DIAGRAMS AND COMPONENT LAYOUTS

OF LINE-SOURCE APPARATUS
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Appendix II

LINE-SOURCE BASIC AND MACHINE LANGUAGE COMPUTER PROGRAM
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LINE-SOURCE PROGRAM

1% REM - ALL REM STATEMENTS IN THIS PROGRAM SHOULD BE
2¢ REM - REMOVED PRIOR TO EXECUTION TO INCREASE EFFICIENCY
5@ CILS:SCREEN 15,18:REM - CLEAR SCREEN '

60 PRINT"LINE~SOURCE PROGRAM"

7¢ INPUT "OVEN TEMP. ";TE:REM - e.m.f. IN mV

75 TE=(SQR(1500.48+0.144*TE)-38.736)/0.0872

78 PRINT "OVEN TEMP. =";TE;" C"

8¢ INPUT "RADIUS (mm) ";R:R=R/1000

85 REM - INITIAL VALUES OF CONDUCTIVITY AND DIFFUSIVITY
99 K=3,2: INPUT "COND. ":;K

95 KS=.2: INPUT "DIFF. ";KS:KS=KS*1E-6

16¢ PATA 125,19,10:REM ~ CLOCK PERIOD WHEN HEATER OFF
11¢ DATA 125,18,10:REM - CLOCK PERIOD WHEN HEATER ON
120 UlL=40@:REM - TOTAL NO. OF SAMPLES

125 REM - V(N)=VOLTAGE, C(N)=CURRENT,T(N)=TEMPERATURE
127 REM - (ADC UNITS),VX(N)=TEMPERATURE (K), TI(N)=TIME
130 DIM V(UL+1l),C(UL+1),T(UL+1)

149 DIM VX(UL),TI(UL),TL(UL)

150 GOSUB1@0@Y:REM - SET UP M/C CLOCK PERIOD TABLE
16¢ DOKE 4108, 3332

17¢ A=USR(1): REM INITIALIZE PARALLEL PORTS, TIMERS -
175 REM - M/C ROUTINE AT @DQ4H

180 GOSUB 1010

190 DOKE410@,3397:REM - ADDR. OF M/C READ ROUTINE

206 A=1@:REM -~ NO. OF READINGS WITH HEATER OFF

285 REM - MAIN DATA-COLLECTION LOOP

216 FOR I=1 TG UL

220 OUT 13,@:REM - MUX ADDR. 0O

230 T(I)=USR(1):REM - M/C SUBROUTINE READ

249 oOUT 13,32

250 V{(I)=USR(1l)

2680 OUT 13,48

270 C(1)=USR(A-I):REM - RELAY ON WHEN A=I

275 PRINT I;T(I);V(I);C(I)

280 NEXT

290 OUT 13,0

300 OUT8,@: REM RELAY OFF

319 REM - END OF DATA-COLLECTICN ROUTINE

510 SN=38.736+0.872*TE

515 PRINT"THERMOCOUPLE SENSITIVITY=";SN;" uv/c"

52¢ ST=0.064/SN:REM - TEMPERATURE CONVERSION FACTOR
530 RESTORE

549 READ A,B,C,A,B,C

550 TI=A*B*C*24E-6+0.06

555 PRINT"TIMING INTERVAL=";TI;" s"

560 TJ=A*B*C*8E-6+0.0J1:REM ~ TIME OFFSET

576 A=@

580 B=0

598 T@=0

600 FOR I=1 TO 10

610 A=A+V(I)

620 B=B+C(I)

630 TO=TG+T(I)

640 NEXT

650 A=A/10:REM - V OFFSET

660 B=B/10:REM - I OFFSET

670 TO=T@/10:REM - TEMPERATURE OFFSET
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680
690
695
780
710
720
730
740
750
764
770
780
790.
809
810
815
82¢
830
1900
1905
1919
19209
193@
194@
195@
2000
20085
2015
2030
2p40
2058
2855
2060
2078
2100
2110
2150
217@
2190
2200
2210
2220
2230
2240
2250
2260
2270
2280
2290
23049
23@5
2310
2320
1620
1891
1682
1983
lpga4
1985

V=g

C=

REM - AVERAGE VOLTAGE, CURRENT

FOR I=11 TO UL

V=V+V (I}

C=C+C(I)

J=I-10

VX(J)=(T{I)-T@)*ST:REM - TEMP. ARRAY
TI(J)=(J-1)Y*TI+TJ:REM - TIME ARRAY
NEXT

v=V/(UL-18)-A

c=Cc/{(UL-18)-B

RE=0.5056
PO=V*C*3.41333E-6/RE
PRINT"POWER= ";PO:" W/m"
PRINT"OFFS. =";T®
ZW=V*RE/C
PRINT"RES. =", ZW

L1=230

L2=390

FOR N=L1 TO L2:REM - DISPLAY BAD POINTS
D1=VX(N)-VX(N-1)
IF(D1<@.04)AND(D1>@)}GOT0195@
PRINTN, D1

NEXT

REM - SIMOD ROUTINE- TO CALCULATE CONDUCTIVITY
REM -~ AND DIFFUSIVITY BY NONLINEAR LEAST-SQUARES
A=100:B=0.0001:C=05772
PP-P0O/(4*3.14159)

FOR IT=1 TO 10
S1=0:82=P:53=0:54=0:55=0
D=R"2/({4*KS)

FOR N=L1 TO L2

X=D/TI(N):Y=X:XX=X

FOR NN=2 TO A:XX=-XX*X*(NN-1)/NN"2:Y=Y+XX
IF ABS(XX)}<B GOTO 2158:NEXT
VM=(-C-LOG(X)+Y ) *PP/K: DE=VX(N)-VM
V1=-VM/K:V2=PP/(K*KS ) *EXP(-X)
S1=S14V1~°2

S2=82+4+V2"2

S3=83+V1*V2

S4=S4+V1*DE

S5=S5+V2*DE

NEXTN

D@=S1*52-83"2

D1={84*52-83*35) /D@
D2={S5*S1-53*54) /D@

K=K+D1

KS=KS+D2

PRINT K,KS

IF ABS(D1)<@.0@1 GOTO 2328

NEXT IT

END
@ REM -SUBROUTINE POKE-
@ READ A,B,C
@ POKE 3328,A
@ POKE 3329,B
@ POKE 3338,C
2 RETURN
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gDp41
@D43
@gD44

@p45
2D48
#D4Aa

3E4F
D30E
3ECF
D3OF
3EQF
D3@F
3E@7
D314
3E47
D315
D316
F3
ED5E
CDC98D
3EQE
ED47
3E28B
D3BE
3E87
D30E
FB
CD3506
3E24
D30E
3AG98D
D314
3A@16D
D315
3AZ20D
D316
F3

co

CDBBE®
3EBD
BB

LINE SOURCE PROGRAM - ASSEMBLER LISTING

DY TR

ORG OD@GH

PIODA EQU 12 :PIO ADDRESSES
PIODB EQU 13

PIOCA EQU 14

PIOCB EQU 15

RTCZ EQU 28 :TRC(CLOCKS) ADDR.
RTC1 EQU 21

RTC2 EQU 22

KDEL EQU @@35H ;DELAY SUBROTINE
DEINT EQU OES8BH;GET ARG. FROM BASIC
SENDB EQU PF@F2H;RET ARG. TO BASIC

TC@: DEFB @ :SPACE FOR CLOCK

TC1: DEFB @ + TIME CONSTANTS

TC2: DEFB 0@ : INITIAL. FROM BASIC
DEFB @

; SUBROUTINE INITIALIZE
;TO INITIALIZE PIO AND RTC
INIT: LD A,A4FH ; INITIALIZE PIO
OUT (PIOCA),A
LD A,BCFH
OUT (PIOCB),A
LD A,Q@FH
OUT (PIOCB),A

LD A, @7H ;CLOCK MODE

ouT (RTCH),A

LD A,47H : COUNTER MODE

our (RTC1l),A

OoUT (RTC2),A ; COUNTER MODE

DI :DISABLE CPU INTERRUPT
IM2 ;CPU INTERRUPT MODE 2
CALL RETINT ;FAKE RETURN FROM INT.
LD A, PEH ;CPU INT. VECTOR

LD I,Aa

LD A, 28H ;PIO INT. VECTOR (DUMMY)
our (PIOCA).,A

LD A, 87H

ourT (PICCA),A ;PIO INT. CONTROL WORD
ET sENABLE CPU INTERRUPT
CALEL KDEL ;WAIT ROUTINE

LD A, 24H ;PIO READ INT. VECTOR
ourT (PIOCA},A

LD A, (TCo) ;START CLOCKS

QUT (RTCO),A
LD A, (TCl)
our (RTC1l),A
LD A, (TC2)
OUT (RTC2),A

DI ;DISABLE CPU INTERRUPT
RET
; SUBROUTINE READ
CALL DEINT ;ARG. IN D,E
LD A,0
CcP A,E
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gD4B
@D4D
@D4E
@D50
#D52
2Db54
@D55
gD56

gp8sd
@eD8a
D82
gDB4
@DEG6
@D88
@gD8A
ZgD8B
2D8D
OD8E
@D2g
gD91
@D93
D94
@D96
gDo7
aDpo29
GD9A
@ D9B
gpac
@DoD
@DY9E
@ DOF
@DAG
gDA2
@DA4
@DAG
@DAS
ODAA
¢JDAB
¢JDALE
¢gDAF
@DB2
PDB3
ZDB6
GDB7
gDB9
@DBA
@DBB
ODBC
@DBD
¢DBE
ODBF
2Dce
gpc2
gDC4
apc7
@DC9
gDCB

2007 JR  NZ,HALT1
BA CP  A,D
2004 JR  NZ,HALT1
3E26 LD A, 26H ;CHANGE INT. ADDR.
D38E OUT (PIOCA),A
FB HALT1: EI
76 HALT :WAIT FOR INTERRUPT
co RET

: INTERRUPT SUBROUTINE

ORG @DSOH
3EG7 LD A,87 : STOP CLOCKS
D314 OUT (RTC@),A _
3E47 LD A,47H
D315 OUT (RTCl),A
D316 OUT (RTC2),A :
D9 EXX : SAVE CLOCKS
DB14 IN A, (RTCO)
67 LD H,A
DB15 IN A, (RTC1)
6F LD L,A
DB16 IN A, (RTC2)
47 LD B,A
gEG1 LD C,1
D9 EXX
1827 JR  INTL
30 NOP
RO NOP
o0 NOP
oo NOP
o0 NOP
29 NOP
29 NOP
3E@7 LD A,7 ; STOP CLOCKS
D314 OUT (RTCH),A
3E47 LD A,47H
D315 OUT (RTC1l),A
D316 oUT (RTC2),A
D9 EXX ;READ CLOCK TIME CONST.
3AG08D LD A, (BDBGH)
67 LD H,A
3A010D LD A, {(OD@1H)
6F LD L,A
3A020D LD A, (BDB2H)
47 LD B,A
PEDQ LD C,0
D9 EXX
o] NOP
3 NOP
oo NOP
o0 NOP
417 NOP
o0 NOP
3E20 INT1l: LD A,20H ;PIO INT. ADDRESS
D30E OUT (PIOCA),A ;(MULTISAMPLE SUB.)
CDC9@D CALL RETINT :MOCK INT. CALL
1802 JR  INT2
EDAD RETINT: RETI
DB@D INT2: IN A, (PIODB) ;GET MUX. ADDRESS
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apch
@gDCE
@DDJ
aDD2
@pp4
@DD6
@DD8
apDo
@DDA
gpDC
JDDE
(DE@
@DE2
BDE4
@DE6
@DE7
@DES8
JgDE9
JDEBR
@DEC
@DEE

ZgDF@
@gDF1
gDF2
@DF3
@DF4
@DF5
@DF7
@DF8
gDFAa
ODFB
BDFD
JDFF
PEO1
GED3
PEBS
GEB7
PEQ9
OEOA
JE@B
BEBD
GEOAF
@E10D
gE11l

PE14

PE20
PE20
PE22
gE24
PE26
PE28
PE2A
@E2C
@E2E

4F
CB8l1
CB89
CB91
CB99
@eF9
37
3F
ED&2
3EZA
D314
3EZ1
D315
D316
AF
FB
76
10FC
a8
3E22
D3GE

FB
76
g8
D9
7C
D314
7D
D315
78
D316
CB41
2004
3EQL
D308
3E24
D30E
g8
DO
CB15
CB14
17
44
CDF2F@

ED4D

3CPE
300E
80@D
AOOD
co@gD
]%15]%}
9151515
511%]%)

HALT2:

INT3:

LD
RES
RES
RES
RES
LD
SCE
CCF
SBC
LD
our
LD
ouT
ouT
XOR
ETX
HALT
DJINZ
EX
LD
ouT

EI
HALT
EX
EXX
LD
OouT
LD
ouT
LD
ouT
BIT
JR
LD
ouT
LD
ouT
EX
EXX
RL
RL
RLA
LD
CALL

RETI

WwroHZ™N
- - W - - -

MO

49

HL, HL

A, BAH
(RTCZ) ,A
A, 1
(RTC1),A
(RTC2),A
AA

HALT2
AF,AF'
A, 22H

(PIOCA),A

AF,AF'

A,H
(RTCB),A
A, L
(RTC1),A
A,B
(RTC2),A
g,Cc

NZ, INT3
Al
(g8H),A
A, 244
(PIOCA),A
AF,AF'

L
H

B,H
SENDB

:CLEAN MUX. ADDR.

:SET NO. OF READINGS
:CLEAR HL

;CLOCKS TO 80 us

;CLEAR A

;sWAIT FOR INTERRUPT

;PIO INT. ADDR.
;s (LAST CYCILE)

: START CLOCKS

:RELAY ON?
: NO
:SWITCH RELAY ON

;PIO INT. ADDR.
;RESULT / 8

s SEND DATA BACK TO BASIC
;ARG. IN A,B

; INTERRUPT ADDRESS TABLE
ORG OE20H

-

DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW
DEFW

JE3CH
@E3BH
@D8ZH
@DAGH
@DCOH
ajuyulel
16141414}
nfugu)al
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; MULT ISAMPLE

H " (CHANGE CLOCK)
:READ

: READ (CHANGE CLOCK)
; DUMMY SUB



; SUBROUTINE MULTISAMFPLE
;FOR FAST DATA ACQUISITION (80 us)

@E38 3EB7 LD A,7 1 STOP CLOCKS

PE32 D314 ouT ° (RTCZ),A

PJE34 3E47 LD A,47H

PE36 D315 ouT (RTC1l),A

PE38 D316 oUT (RTC2),A

PGE3A 08 EX AF,AF'

GE3B 00 NOP

PE3C @8 EX AF,AF' :COLLECT ADC DATA

PE3D DB@C IN A, (PIODA) ;LO BYTE

OE3F 5F LD E,A ’

GE44d DEBED IN A, (PIODB) ;HI BYTE

PE42 A9 XOR A,C ;CLEAN HI RBYTE

PE43 57 LD D,A

PE44 @8 EX AF,AF'

PE45 19 ADD HL,DE ;SUM IN HL AND A

PE46 CEQO ADC A,Q

@E48 EDA4D RETI
E98B DEINT D54 HALT1 PDE7 HALT2 PD@4 INIT BGDCYP INT1
@DCB INT2 GE@5 INT3 @g@35 KDEL PgOPE PIOCA POgF PIOCR
gBeC PIODA 923D PIODB @gDC9 RETINT @014 RTCO @d15 RTC1
0916 RTC2 FOF2 SENDB gDgg TCH gpgl TCl gDg2 TC2

No errors
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Appendix IIX

Inverse Laplace transform of Koln(p)

To find the inverse Laplace transform of
F(p) = K (ar)in(Bp) . (1)
set

G(p) = ar(p)/dp = -r (4hp)_1/2 Kl(qr)ln(Bp)+K0(qr)/p

B(p) + K (ar)/p . (2)
The second term is easily transformed. H can be written as
H(p) = -rpl/2/(2n!/2) Kk (qr) 1n(Bp)/p (3)
and the two terms pl/zK1 and 1ln(p)/p transformed
separately. From standard tables (Bateman Manuscript
Project, 1954)
1-1{pl/2k (qr)} = r exp(-a/t)/(4nl/2¢2) (4)
L™1{in(8p)/p} = -1In(cCt)/B (5)
where a=r2/4h and 1ln C=j.
Using the conveolution theorem _
Ll ix(p)v(p)) = LHx(p)) * Lhv(p)], (6)

gives .

hit) = L™ 1{H(p)) =f a exp(-a/T1)/(2 2y 1n[c(t-T)/ 8] at  (7)
§]

Setting 1=1/x, - -
h(t) = a/2 in(C/B) e 3X gx + a/%/. e X 1n(tx~1) dx
1/t 1/t
~- a/.'2./.me_alx In(x) dx . (8)
1/t
The second iniegral is evaluated using
.j; e™® 1In(x) dax = -3 . (9)
Then o
n(t) = e=%/2 1nlt/(eB8)] - 1/2f e~X/x ax, (10)
o

where a=r2/(4ht)
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and

glt) = 171} = e~¥/2 1nlt/(aB)] . (11)
Finally, using
fm G(s) ds = - F(p) (12)
and the theorem ? N
Ll a(s)as} = g(t)/t (13)
gives Nl;
L™ K, (ar)In(8p)} = -e™"/(2t) In[t/(aB)] . (14)

It is found that if the Laplace transforms of Ko(qr) and
In{Bp) in (1) are evaluated separately and the results

convolved, the convolution integral diverges.
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Appendix IV

TABLES OF RESULTS

The experimental results of the temperature cycles are
tabulated in the following form:

Sample identifier (e.g. M2A): type of rock (first
letter(s)),sample number, thermocouple number (A-D)
T Oven temperature (K)

k Conductivity (Wm_lK_l). Average of N readigs

S.D.(k) Standard deviation of conductivity

h Diffusivity (1(35_6 m?s~1). Average of N readings
S.D.(h) Standard deviation of diffusivity (lﬂ_6 mzs_l)
R Wire electrical resistance (Ohm). Average of N

readings
S.D.(R) Standard deviation of wire resistance
N Number of readings
Average resistance: mean of all wire resistances +S.D.

Average errors in k and h: mean of all standard deviations
shown in table

r Thermocouple offset (mm)
1,4 Sample length, diameter

In the pressure dependence tables, the results of
individual runs are quoted as follows:

P Pressure {MPa)
k Conductivity (Wm-lK"l)
R Heater wire resistance (Ohm)

The sampling window for ' v is 80,149 s (161 points);
for linear power, resistance measurements @,148 s (398
points). Sampling rate 9.36 s.

The results are quoted to four significant figures to ease

mathematical manipulation. This does not reflect their true
statistical reliability.
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MERRIVALE GRANITE SAMPLE M2A

T k

384.1 3.197
324.6 3.182
348.1 3.121
372.08 2.890
4006.1 2.849
448.8 2.788

SD(k}

g.199
g.052
0.090
@.038
2.822
g.000

LEAST-SQUARES CURVES

1/k=AT+B
A= 3.641E-04+-
B= 2.0@5E-@1+-

1/h=AT+B
A= 2.296E-03+-
B=-2.@58E-01+-

R=AT+B
A= 1.28B4E-04+-

NUMBER OF RUNS=

~h

2.853
1.999
1.590
1.540
1.335
1.258

6.297E-85
2.326E-82

2.952E-04
1.091E-01

6.777E-@5
2.504E~-@2

14

NUMBER OF POINTS= 6
AVERAGE RESISTANCE= 3.329+-0.610
AVERAGE ERROR IN k=
AVERAGE ERROR IN h= 4.5%

r=2.85, 1=120, d=75 mm

2.4%
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sSD(h)

g.200
@.106
g.00a
2.099
2.925
g.000

3.316
3.336
3.318
3.328
3.334
3.340

SD(R)}

0.006
g.603
2.000
2.807
g.004
2.209

=
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MERRIVALE GRANITE SAMPLE MZ2BR

T k

396.2 3.119
324.9 3.878
348.4 3.953
371.9 2.932
408.2 2.853

LEAST-SQUARES

1 /k=AT+B
A= 3.24BE-04+-
B= 2.192E-81+-

1/h=AT+B
A= 3.904E-@3+-
B==4.072E~@1+~

R=AT+B
A= 1.437E-04+~
B= 3.275E+88+-

NUMBER OF RUNS=

NUMBER OF POINTS= 5
AVERAGE RESISTANCE= 3.326+-0.011
AVERAGE ERRCR IN k=
AVERAGE ERROR IN h= 3.6%

r=4.265, 1=128, d=75 wmm

+ 8D(k) h
g.162 @.090
2.325 1,172
#.138 2.994
B.923 1.843
8.051 g.839

CURVES
4.236E-85
1.49PE-82
1.348E-23
4.883E-01
1.405E~-34
4.9403E-02

13

2.6%

177

SD(h)

g.989
G.816
2.296
g.0619
g.014

3.311
3.337
3.320
3.327
3.334

SD(R)

@.009
6.804
2.801
0.006
0.004

=4
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MERRIVALE GRANITE SAMPLE M2

T k

385.1 3.158
324.3 3.1308
348.2 3.875
372.0 2.908
400.1 2.851
448.8 2.788

SD(k) h

g.151 2.000
g.268 g.000
@.165 0.808¢
B.337 g.899
@.835 g.008
2.2008 d.900

LEAST-SQUARES CURVES

1/%x=AT+B
A= 3.248E-04+-
B= 2.168E-@1+-

1/h=AT+B
A= 0.000E+00+-
B= 0.000E+00+~-

R=AT+B
A= 1.39BE-@4+~-
B= 3.277E+08+-

NUMBER OF RUNS=

4.259E-05
1.571E~02

@, 0@PE+00
0.000E+G0

7.127E~-85
2.634E-082

27

NUMBER OF POINTS= 6 _
AVERAGE RESISTANCE= 3.328+-0.010
AVERAGE ERROR IN k= 2.6%

AVERAGE ERROR

1=124, d4=75 mm

IN h= 0.8%

178

SD(h)

0.000
0.000
2.000
2.900
g.000
0.800

3.313
3.336
3.319
3.327
3.334
3.346

SD(R)

2.005
@.983
B.002
B.006
B.982
0.900

e
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MERRIVALE GRANITE SAMPLE M3A

T k SD(k) h

304.3 3.8095 @.083 g.754
314.3 3.082 ©9.025 7.860
324.1 3.199 0£.326 P.932
348.8 2.978 @.025 3.702
372.1 2.889 0.006 g.759
493.0 2.799 0.060 #.653
448.7 2.691 @.000 @.581

LEAST-SQUARES CURVES

1/k=AT+B
A= 3.656E-@4+- 2.489E-85
B= 2.088E-0l1+- 9.012E-03

1/h=AT+B
A= 3.633E-0@3+- 9.559E-04
"B= 6.139E-P2+- 3.462E-01

R=AT+B
A= 1.926E-04+- 4.315E-65
B= 3.268E+@@+- 1.563E-02

NUMBER OF RUNS= 22
NUMBER OF POINTS= 7

SD(h)

g.13¢
@.931
0.027
g.825
g.01e
P.024
3.000

AVERAGE RESISTANCE= 3.337+-9.011

ABVERAGE ERROR IN k= 1.3%
AVERAGE ERROR IN h= 5.5%

r=1.565, 1=1268, 4=75 mm

179

3.329
3.335
3.322
3.336
3.338
3.341
3.358

SD(R)

0.003
?.001
2.9085
9.001
g.008
g.001
2.0

=
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MERRIVALE GRANITE SAMPLE M3D

T k

385.5 3.133
314.5 3.135
324.2 3.873
348.4 2.983
371.8 2.929
400.0 2.798

SD(k)

#.028
@.345
g.027
g.926
p.833
p.g12

LEAST-SQUARES CURVES

1/k=AT+B
A= 4.@55E-04-+-
B= 1.934E-@1+4-

1/h=AT+R
A= 1.833E-03+-
B= 1.374E-01+-

R=AT+EB
A= 1.711E-@44-
B= 3.274E+@0+-

NUMBER OF RUNS=

h

1.281
1.503
1.477
1.209
1.352
1.08¢9

2.657E-05
9.184E-03

9.371E-04
3.2392E-01

2.992E-05
1.934E-02

17

NUMBER OF POINTS= 6
AVERAGE RESISTANCE= 3.333+-0.006
AVERAGE ERROR IN k=
AVERAGE ERROR IN h= 1.9%

r=5.185, 1=124,

d=75

3.9%

180

SD(h}

g.918
g.060
Z.819
0.012
#2.035
2.019

3.327
3.330
3.326
3.336
3.339
3.342

SD(R)

2.901
g.091
2.903
g.991
g.889
g.092

=
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MERRIVALE GRANITE SAMPLE M3

T k

394.8 3.111
314.4 3.100
324.2 3.891
348.6 2.981
371.9 2.999
409.0 2,799
448.7 2.691

SD(k)

g.064
2.0839
2.031
A.a23
2.030
g.044
0.008

LEAST-SQUARES CURVES

1/k=AT+B
= 3.715E~-04+-
B= 2.060E-01+-

1/h=AT+B
A= @.000E+004~
B= 0.0Q00E+Q30+—

R=AT+B
A= 2.019E-@4+-
B= 3.265E+00+-

NUMBER OF RUNS=
NUMBER OF POINT

g.004d
2.000
g.000
0.000
2.080
0.000
0.000

1.648E-05
5.967E-03

7.000E+80
g.000E+80

3.245E-85
1.175E-82

39
s= 7

SD(h)

2.009
g.000
0.0060
g.008
2.800
2.000
9.000

AVERAGE RESISTANCE= 3.337+-0.011
AVERAGE ERRCR IN k=
AVERAGE ERROR IN h= #.8%

1=12¢, &=75 mm

1.3%

181

3.328
3.333
3.324
3.336
3.339
3.342

~3.358

SD(R)

B.002
2.003
@.004
3.001
2.0a8
d.091
g.000

=
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MERRIVALE GRANITE SAMPLE M5A

T

253.9
274.2
290.8
298.2
382.7
322.4
349.0
374.8
401.7
424.6
447.7
469.5

k

3.248
3.131
3.970
3.0835
3.9011
2.942
2.881
2.785
2.713
2.677
2.610¢
2.553

sD(k)

0.050
@.045
2.056
0.0d1
g.883
g.012
0.004
B.687
g.026
g.0083
2.911
g.811

LEAST-SQUARES CURVES

1/k=AT+B
A= 3.726E-04+-
B= 2.174E-@1+~

1/h=AT+B
A= 2.122E~G3+~
B= 1.256E-01+-

R=AT+B

A= 1.5B4E-04+-~
B= 3.220E+00+-

NUMBER OF RUNS=
NUMBER OF POINTS=

1.521
1.419
1.293
1.335
1.314
1.250
1.138
1.295
1.824
B.977
@.927
d.891

8.348E-06
2.984E-03

5.079E-835
1.815E~82

1.743E-05
6.231E~03

34

12

sD(h)

g.071
g.062
g.128
9.007
2.002
8.012
g.059
g.0085
9.021
3.010
0.014
g.010

AVERAGE RESISTANCE= 3.275+-0.012
AVERAGE ERROR IN k=
AVERAGE ERROR IN h=

r=2,77,

1=1284,

d=75

mm

7.6%
2.7%

182

3.264
3.267
3.262
3.272
3.263
3.268
3.272
3.277
3.282
3.284
3.299
3.301

SD(R)

9.601
g.881
0.909
2.0d1
0.001
g.0d1

0.002

2.801
g.0061
B.0208
g.601
g.002

WWNDODNDDDWW O
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MERRIVALE GRANITE SAMPLE M5B

T k
392.5 3.836
322.3 2.944
349.4 2.887
374.0 2.787
491.7 2.716
424.2 2.682
447.6 2.613
469.1 2.5490

SD(k)

B.081
g.020
g.028
g.8d1
g.889
9.906
0.0618
0,080

LEAST-SQUARES CURVES

1.183
l1.861
1.006
g.938
2.896
g.864
g.816
B.779

SD(h)

@.665
g.031
g.007
@.8a3
g.612
g.0809
g.029
g.001

1/k=AT+B
A= 3.684E-04+-
B= 2.191E-8l+-

1/h=AT+B
A= 2.245E-0G3+-
B= 2.191E-01+-

R=AT+B
A= 2.089E-04+-
B= 3.199E+03+-

NUMBER OF RUNS=

NUMBER OF POINTS=

1.238E-865
4.834E-023

6.166E-15
2.407E-02

1.829E-05
7.141E-83

17
B

AVERAGE RESISTANCE= 3.280+-0.013

AVERAGE ERROR IN k=

9-3%

AVERAGE ERROR IN h= 1.2%

r=4.255,

1=128, 8=75 mm

183

3.263
3.268
3.271
3.276
3.283
3.284
3.299
3.382

SD(R)

g.801
9.002
7.801
g.0081
¢.000
g.000
g.000
g.892

]
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MERRIVALE GRANITE SAMPLE M5

T k

253.9 3.248
274.2 3.131
290.8 3.070
298.2 3.035
3902.6 3.023
322.3 2.943
349.2 2.884
374.6 2.786
401.7 2.714
424.4 2.680
447.6 2.611
469.3 2.548

LEAST~-SQUARES CURVES

1/k=AT+B
A= 3.747E-04+-
B= 2.166E-@1+~

1/h=AT+B

B= 0.090Q0E+00+-
R=AT+B

= 1.591E-04+-
= 3.219E+80+4-

NUMBER OF RUNS=

NUMBER OF POINTS=

AVERAGE RESISTANCE=
AVERAGE ERROR IN k=

AVERAGE ERROR 1

1=12@, d=75 mm

SD(k) h SD(h)}
P.050 0.000 O.000
@.945 g.000 @.000
2.956 6.008 0,000
g.001 g.000 0.000
@.815 g.000 0.000
@.915 p.000 0.0060
G.006 9.900 ©.080
g.004 2.0080 9.000
g.d16 ¢.080 0.040
g.085 G.0060 O.000
g.912 g.000 0.000
g.011 g.000 0.000
8.061E-06
2.881E-03
.6Q0E+00
1.795E-05
6.417E-03
51
12

3.275+-0.9012

a.7%
N h= 0.0%

184

3.264
3.267
3.262
3.272
3.263
3.268
3.271
3.276
3.283
3.284
3.290
3.301

SD(R)

g.001
2.081
a.004d
g.291
@.931
g.001
2.002
g.001
@.001
g.a90
g.0a91
@.202
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MERRIVALE GRANITE SAMPLE MB8B

T

290.8
302.7
322.3
349.5
374.5
4@1.7
424.4
447.6
469.5

k

3.162
3.125
3.066
2.993
2.960
2.818
2.766
2.737
2.613

SD(k)

g.968
g.908°
g.019
3.912
g.a18
p.230
2.987
g.018
B.916

LEAST-SQUARES CURVES

1/k=AT+B

h

1.256
1.244
1.282
1.127
1.847
@.977
@.925
g.879
@.818

A= 3.599E-P4+4+- 1.021E-85
B= 2.1¢3E-P1+- 3.8B92E-@3

1/h=AT+B

A= 2.387E-@3+- 1.037E-04
B= 7.388E-@2+- 3.947E-82

R=AT+B

A= ]1.935E-04+- 1.549E-0@5
B= 3.221E+@8+- 5.89BE-23

NUMBER OF RUNS=

32

NUMBER OF POINTS= 9

AVERAGE RESISTANCE=

AVERAGE ERROR IN k=

AVERAGE ERROR IN h=

r=%4.915,

1=128, d=75 mm

185

sp(h)

0.040
0.008
g.918
0.010
g.917
d.024
2.983
g.088
2.088

3.293+-0.013
B.7%
1.4%

3.277
3.280
3.285
3.288
3.292
3.298
3.299
3.365
3.317

SD{R)

0.002
g.001
@.006
@.002
0.4491
g.8081
g.801
g.001
g.003

2
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TROON GRANITE

T

384.4
323.9
348.2
372.1
40@.1

k

3.145
3.112
3.931
2.976
2.9009

LEAST-SQUARES

1/k=AT+B
A= 2.865E-044-
B= 2.298E-@1+-

1/h=AT+B
A=-2.635E-04+—
B= 8.854E-01+-

R=AT+E

SAMPLE TO9A

SD(k) h
2.871 1.143
7.953 1.419
7.012 1.192
@.031 1.380
B.009 1.215
CURVES
1.304E-@5
4.582E-@3
1.123E-93
3.945E-01

A= 3.506E-04+- 1.409E-04
B= 3.2B9E+@@+- 4.950E-02

NUMBER OF RUNS= 15
NUMBER OF POINTS= 5
AVERAGE RESISTANCE= 3.411+-0.016
AVERAGE ERROR IN k=
AVERAGE ERROR IN h=

r=1.955,

1.1%
3-9%

1=129, 4d=6# mm

186

SD{(h)

6.119
g.936
g.g11
g.051
@.835

3.494
3.388
3.418
3.416
3.431

SD(R)

v.090
9.p84@
9.205

@.083

0.009
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TROON GRANITE SAMPLE T9B

T k SD(k) h

305.2 3.063 9.023 g.966
324.1 3.120 0.000 1.158
348.3 2.953 8.4915 @.885
371.8 2.922 0.064 B.979
400.2 2.848 0.021 G.821

LEAST-SQUARES CURVES

1/k=AT+B
A= 3.027E-04+- 7.053E-05
B= 2.299E-@1+4+- 2.479E-02

1/h=AT+B
A= 2.357E-03+- 1.499E-03
B= 2.308E-#1+- 5.271E-@1

R=AT+B
A= 3.516E-04+- 4.493FE-05
B= 3.296E+00+- 1.579E-02

NUMBER OF RUNS= 13
NUMBER OF POINTS= 5

SD(h)

@.a87
J.0009
g.3d9
0.248
G.a17

AVERAGE RESISTANCE= 3.419+-{.0d14

AVERAGE ERRCOR IN k= 1.0%
AVERAGE ERROR IN h= 4.3%

r=3.51, 1=128, d4=68 mm

187

3.4@3
3.411
3.415
3.431
3.435

SD(R)

g.d02
g.a99
g.0a1
d.024
2.313

=
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TROON GRANITE

T

304.8
323.9
348.4
371.9
490.1

k

3.194
3.114
2.992
2.949
2.874

LEAST-SQUARES

1 /k=AT+B

A= 2.939E-94+-
B= 2.301E-@1+-

1/h=AT+B

A= 0.000E+00+-
B= 0.000E+00+-

R=AT+B

= 3.744E-04+-
B= 3.283E+00+-

SAMPLE T9

SD(k)

0.065
8.043
g.944
P.854
8.232

CURVES

9.000
2.069
0.0900
0.0080
@.00a

3.943E-85
1.386E-02

0. 000E+99
2.000E+00

9.889E-05
3.476E-02

NUMBER OF RUNS= 28
NUMBER OF POINTS= 5
AVERAGE RESISTANCE=
AVERAGE ERROR IN k=
AVERAGE ERROR IN h=

1=120, r=60 mm

188

SD{(h)

g.000
@.000
g.000
g.9080
@.000

3.414+-2.016
1.6%
g.0%

3.494
3.394
3.417
3.424
3.433

SD(R)

g.0801
#.435
2.0603
a.817
2.419

=1
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TROON GRANITE

T

314.4
324.0
348.4
372.0
493.1

k

2.925
2.889
2.804
2.800
2.787

LEAST-SQUARES

1/k=AT+B

SAMPLE

SD(k)

g.41@
g.a19
B.928
@.019
9.019

CURVES

T1@A

h

1.277
1.245
1.891
1.233
1.98¢

A= 2.987E-04+- 3.983E-05
B= 2.492E-Pl+- 1.487E-82

1/h=AT+B
A= 1.311E-@3+-
B= 3.867E-@1l+-

R=AT+B
A==1,222E-05+-
B= 3.345E+00+-

8.185E-04
2.891E-01

1.847E-04
6.524E-02

NUMBER OF RUNS= 16
NUMBER OF POINTS= 5

AVERAGE RESISTANCE=

AVERAGE ERROR IN k=

AVERAGE ERROR IN h=

r=2.49,

1=120,

P.5%

2.0%

d=6d mm

189

sD(h)

g.012
@.a17
B.947
A.038
g.498

3.349+-9.011

3.341
3.346
3.324
3.354
3.336

SD{R)

g.002
g.001
0.901
@.901
g.0d5
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TROON GRANITE SAMPLE T11A

T k

392.7 3.953
322.3 3.015
349.4 2.975
374.6 2.882
4901.7 2.823
424.3 2.763
447.6 2.737
469.5 2.663

Sp(k)

g.816
0.916
g.819
0.832
g.623
@.0a7
g.820
2.313

LEAST-SQUARES CURVES

1/%=AT+B
A= 2.878BE-04+-
B= 2.387E-@l+-

1/h=AT+B
A= 1.15PE-03+~

B= 3.037E-@1+-
R=AT+B
= 3.290E+00+-

NUMBER OF RUNS=
NUMBER OF POINT

1.457
1.525
1.455
1.365
1.336
1.244
1.231
1.166

1.206E-05
4.710E-83

l.30eE-24
5.099E-02

2.970E-@5
B.@B83E-83

3¢
S= 8

AVERAGE RESISTANCE=
AVERAGE ERROR IN k=
AVERAGE ERROR IN h=

r=2.265, 1=120,

d=68 mm

190

sSD(h)

g.019
2.088
g.036
g.050
g.950
2.015
g.029
2.017

3.372+-2.013
g.6%
2.7%

3.355
3.360
3.363
3.367
3.374
3.376
3.382
3.395

SD(R)

g.000
g.002
g.0a1
g.001
g.001
g.001
g.0d1
a.992

=z
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TROON GRANITE

T k

253.4 3.008
266.9 3.054
275.6 3.825
298.3 3.091
323.4 2.838
376.6 2.780
423.6 2.622
468.5 2.537

SAMPLE T12A

SD(k)

g.839
0.9813
2.0329
g.230
2.045
g.854
g.00°2
B.9085

LEAST-SQUARES CURVES

1/k=AT+B
= 3.176E-04+-
B= 2.450E-01+-

1/h=AT+B
= 1.060E-03+-
B= 4.043E-01+-

R=AT+B
A= 2.0B4E-04+-
B= 3.287E+00+-

1.364
1.451
1.444
1.497
1.358
1.288
1.171
1.879

2.276E-05
7.806E-03

1.713E-04
5.877E-02

2.680E-05
9.192E-03

NUMBER OF RUNS= 48
NUMBER OF POINTS= 8
AVERAGE RESISTANCE=

AVERAGE ERROR
AVERAGE ERROR

IN k=
IN h=

r=4.025, 1=128, d=60 mm

191

SD(h)

g.02d
G.923
g.0845
9.0862
0.074
#.037
g.014
g.207

3.357+-G.817
1.9%
2.6%

3.346
3.341
3.342
3.345
3.362
3.360
3.371
3.390

SD(R}

2.0208
g.001
B.801
2.0801
2.087
g.081
g.201
2.003

=
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TROON GRANITE SAMPLE T13Aa

T k

304.6 2.989
314.5 3.013
324.9 2.980
348.4 2.868
372.0 2.847
4900.0 2.754

SD(k) h

g.819 @.929
B.823 1.825
@.006 1.01¢
2.028 6.842
2.905 g.894
B.014 B.745

LEAST-SQUARES CURVES

1/k=AT+B
A= 3.241E-@4+-
B= 2.327E-014-

1/h=AT+B
A= 3.147E-@3+-
B= 3,293E-012+-

R=AT+B
A= 2.08PE-G4+-
B= 3.400E+00+-

RNUMBER OF RUNS=

3.644E-05
1.259E-82

9.9061E-04
3.421E-01

3.525E-024
1.218E-01

19

NUMBER OF POINTS= 6
AVERAGE RESISTANCE= 3.472+-0.@27
AVERAGE ERROR IN k= #.5%
AVERAGE ERROR IN h= 1.7%

r=2.94, 1=1206, 4d=60 mm

192

SD{(h)

g.021
g.823
@.885
@.824
g.989
g.010

3.437
3.493
3.487
3.439
3.497
3.479

SD(R)

0.063
g.002
@.a91
0.002
@.a801
g.004

=
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TROON GRANITE S

T k

3¢5.2 3.062
348.4 2.887
400.0 2.861

AMPLE T14A

SD(k) h

0.066 1.879
g.048 g.958
p.050 g.921

LEAST-SQUARES CURVES

1/k=AT+B
A= 3.173E-044-
B= 2.319E-@1+-

1/h=AT+B
A= 1.649E-03+-
B= 4.395E-01+-

R=AT+B
A= 5.864E-04+-
B= 3.252E+@8+-

NUMBER OF RUNS=
NUMBER OF POINT

AVERAGE RESISTANCE=

2.545E-82

5.419E-04
1.915E-01

1.223E-04
4.320E-02

19
s= 3

AVERAGE ERROR IN k= 1.9%
AVERAGE ERROR IN h= 5.6%

r=3.15, 1=120, d4d=6@ mm

193

SD(h)

P.066
B.053
0.847

3.458+-8.828

3.435
3.458
3.490

SD(R}

0.886
0.002
g.901
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CORNISH SLATE SAMPLE K20

T k

253.7 2.175
274.2 2.134
297.9 2.857
3g2.7 2.082
322.4 1.997
349.5 1.946
374.6 1.905
4@1.7 1.867
"424.3 1.842
447.7 1.8108
469.2 1.775

SD(k)

0.006
g.016
g.627
B.265
B.084
?.411

&.004

g.ogg9
0.003
g.006
B.022

LEAST-SQUARES CURVES

1/k=AT+B
A= 4.806E-04+-
B= 3.4@5E-@1+-

1/h=AT+B
A= 4.71BE-03+-
B=-1.115E-92+-

R=AT+B
A= 1.389E-04+-
B= 3.345E+00+-

. NUMBER OF RUNS=
NUMBER OF POINT

1.829
6.636

2.592
2.485

g.871
#.825
#.755
B.677
g.627
#.585
@.556
g.529
9.506
#.486
g.460

E-35
E-B3

E-04
E-@2

2.736E~-05
9.926E-03

36
S= 1

AVERAGE RESISTANCE=
AVERAGE ERROR IN k=
AVERAGE ERROR IN h=

r=4.58, 1=124,

1

SD(h)

g.913
g.011
g.d21
@.0805
0.003
g.006
ag.002
g.o85
0.004
B.003
g.808

3.395+-0.012

g.5%
1.1%

d=6¢ mm

194

3.386
3.388
3.394
3.379
3.384
3.389
3.393
3.4p08
3.401
3.407
3.420

SD(R)

@.0d2
g.08d
@.001
g.001
g.201
2.0@2
2.601
2.8da1
g.001
2.2d91
g.002

=
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HOLMAN GRANITE SAMPLE Hla

T k sD(k) h

320.6 2.783 02.974 1.523
377.9 2.744 @.0891 1.444
418.9 2.6392 B.065 1.319
467.3 2.501 @.916 1.204
587.6 2.374 ©B.827 1.997
573.2 2.270 @6.046 d.080

LEAST-SQUARES CURVES

1/k=AT+B _
A= 3.488E-@4+- 3.298E-~-@5
B= 2.392E-01+- 1.490QE-@2

1/h=AT+B
A= 1.378E-@3+~ 1.442E-04
B= 1.939E~0l+- 6.108E-02

R=AT+B
A=-~-4.,73%E-65+~ 2.332E-~-¢5
B= 1.911E+8@+~ 1.@53E-@2

NUMBER OF RUNS= 64
NUMBER OF POINTS= 6

SD(h)

g.123
B.179
g.048
B.836
g.240
@.000

AVERAGE RESISTANCE= l.892+~.006

AVERAGE ERROR 1IN k= 2.0%
AVERAGE ERROR IN h= 6.2%

r=2.67, 1=120, d=69 mm

195

1.891
1.899
1.895
1.886
1.884
1.885

SD(R)

7.885
g.2829
g.010
g.000
g.a0d5
g.862

23
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SOUTH AFRICAN NORITE SAMPLE N7A

T

253.9
274.5
322.0
374.5
427.9
467.6

k

2.356
2.320
2.252
2.241
2,232
2.237

LEAST-SQUARES

1/k=AT+B
A= 1.012E-04+-
B= 4.044E-01+-

1/h=AT+B

A= 1.164E-@3+-
B= 4.738E-0l+-

R=AT+B
A=-4.538E-05+-
B= 1.999E+08+-

NUMBER OF RUNS=

NUMBER OF POINTS= 6
AVERAGE RESISTANCE=
AVERAGE ERROR IN k=
AVERAGE ERROR IN h=

r=3.94, 1=120, d=60

SD(k) h
@.827 1.326
g.016 1.277
@.017 1.155
6.609 1.067
@.917 1.025
#.014 1.005
CURVES
2.889E-05
1.045E-02
1.156E-04
4.183E-02
1.065E-05
3.853E-03
24

SD(h)

g.045
0.024
B.325
P.014
0.020
2.918

1.983+-0.004
g.7%
2.1%

mm

196

1.988
1.986
1.983
1.985
1.9281
1.976

SD(R)

g.0d1
g.000
g.001
2.001
g.081
2.000
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FUSED SILICA SAMPLE FS4A

T k SD(k) h

395.9 1.385 @.034 g.524
327.3 1.425 0@.014 B.537
349.1 1.476 @2.987 g.541
373.8 1.498 @.0601 g.519
492.7 1.532 9.917 g.560
427.5 1.546 G.030 g.466
449.9 1.574 @.945 g.441
467.4 l.628 ©.040 B.467

LEAST-SQUARES CURVES

k=A+BT+CT2

A= .B10044

B= 2,27493E-3
C= -1.208741FE~6

1/n=AT+B
A= 2.344E-@3+4- 4.937E-P4
B= 1.103E+80+~ 1.934E-9@1

R=AT+B
A=-2.997E-g5+- 3.972E-06
B= 9,988E-PA1+- 1.556E-03

NUMBER OF RUNS= 37
NUMBER OF POINTS= 8

SD{(h)

@.851
B.017
g.069
g.003
g.919
0.927
0.942
G.343

AVERAGE RESISTANCE= &.986+-0.082

AVERAGE ERROR IN k= 1.5%
AVERAGE ERROR IN h= 5.4%

r=2.9, 1=68.13, 4d=64 mm

197

g.989
g.988
g.987
@.987
#.986
g.986
g.985
@.983

SD(R)

g.000
g.0888
2.00a
g.000
g.09a
g.000
a.a08
g.egl
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MACOR CERAMIC SAMPLE MAC4A

T k

302.3 1.610
323.3 1.618
348.5 1.621
374.5 1.625
401.6 1.63¢°
424.3 1.653
447.7 1.674
469.3 1.678

LEAST-SQUARES CURVES

k=A+BT+CT2
A= 1.73292
'B= -9.62481F-4
C= 1.82204E-6

1/h=AT+B
A= 1.356E-03+-
B= 7.947E-81+~

R=AT+B
A= 6.055E-033+-
B= 7.716E-01+-

NUMBER OF RUNS=
NUMBER OF POINT

SD(k)

g.611
2.0088
B.913
g.98a3
g.806
2.910
2.088
8.286

?.846
?.809
@.785
6.758
g.742
g.722
@.721
. 705

1.207E-24
3.934E-082

2.826E-93
7.910E-21

35
S= B

SD(h)

2.867
0.008
2.814
g.0a5
@.8a7
@.014
P.013
g.009

AVERAGE RESISTANCE= 3.112+-0.467
AVERAGE ERROR IN k=
AVERAGE ERROR IN h=

#.5%
1.3%

r=3.8, 1=120.4, 4=75 mm

198

2.354
2.356
3.355
3.359
3.364
3.342
3.370
3.393

SD(R)

#.011
g.910
2.0a5
7.803
7.803
7.003
2.001
2.094
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PRESSURE DEPENDENCE OF CONDUCTIVITY
TROON GRANITE SAMPLE T12

Temperature 297 K

P k R Notes
5] 3.499 3.362 Cycle 1: Increasing P
] 3.514 3.361
4] 3.402 3.358
a 3.457 3.358
50.0 3.427 3.358
46.0 3.4308 3.359
46.9 3.432 3.357
44.0 3.415 3.358
4] 3.450 3.360 Cycle 2: After heating to 378
g 3.360 3.361 K for 24 h. Increasing P
4] 3.354 3.362
8.0 3.376 3.362
9.5 3.354 3.361
21.5 3.387 3.361
21.5 3.377 3.362
31.5 3.397 3.362
31.5 3.365 3.362
36.5 3.415 3.360
42.0 3.3808 3.360
49.5 3.41¢ 3.362
50.9 3.403 3.362
5] 3.327 3.364 Cycle 3: After heating to 420
4] 3.288 3.364 K for 24 h. Increasing P
12.9 3.331 3.364
11.9 3.260 3.363
19.5 3.348 3.364
22.5 3.344 3.364
38.8 3.491 3.362
36.8 3.364 3.363
40.0 3.354 3.362
37.9 3.390 3.362
50.0 3.399 3.368
46.0 3.401 3.361
4] 3.250 3.367 Cycle 4: After heating to 47¢
g 3.235 3.367 K for 24 h. Increasing P
12.0 3.379 3.365
12.0 3.327 3.365
23.5 3.356 3.365
22.5 3.322 3.365
29.5 3.356 3.363
-30.0 3.374 3.363
39.5 3.39¢ 3.363
41.5 3.414 3.364
46.5 3.384 3.364
49.0 3.394 3.364
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3.342
3.362
3.370
3.368
3.368
3.349
3.363
3.375

3.365
3.365
3.365
3.365
3.366
3.364
3.364
3.364
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PRESSURE DEPENDENCE OF CONDUCTIVITY

GAVERIIGAN GRANITE SAMPLE G3

Temperature 297 K

lav!

B DN
(SRR R

B NN
aas oo m L ] oo EE
aoaoe

47.0

25.5
25.5
50.0
49.0

]
g

k

3.295
3.268
3.256
3.258
3.352
3.335
3.368
3.413

3.310
3.346

3.329
3.39d
3.340
3.343
3.348
3.333
3.464
3.381

3.295
3.294
3.3084

3.339

3.241
3.226
3.333
3.341
3.365
3.372

3.286
3.288

R

2.023
2.823
2.023
2.819
2.833
2.928
2.048
2.827

2.018
2.017

2.061
2.862
2.263
2.863
2.189
2.137
2.167
2.196

2.182
2.179
2.178

2.196

1.943
1.943
1.942
1.941
1.940
1.941

1.942
1.942

Notes

Cycle 1l:
Sample water-saturated
Increasing P

Decreasing P

Cycle 2: After heating to 37¢
K for 24 h. Increasing P

Decreasing P

Increasing P

Cycle 3: After heating to 450
K for 24 h. Increasing P

Decreasing P

Conductivities were corrected for heater resistance
variations.
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Appendix V

DESCRIPTIONS OF ROCK SAMPLES

The following description was kindly supplied by J.R.

Hawkes of the Institute of Geological Sciences.

Generalized description of SW England granites.

The principal constituents are orthoclase, guartz,
plagioclase and a fairly iron-rich biotite mica. The
mineral contents are broadly as follows:

Approximate volume per cent

Alkali feldspar 40
Quartz ' 32
Plagioclase 20
Biotite 6
Others ‘ 2

Most samples contain a little muscovite which may partly
replace biotite, and/or some of the plagioclase. Finely
divided sericitic muscovite is a common feature in large
numbers of plagioclase crystals. Another alteration product
of biotite is chlorite. Except where the granite has been
greisened and/or affected by vein mineralization, the
amounts of muscovite and chlorite are small; generally of
the order of 1 or 2 per cent. Since they replace either
biotite or plagioclase, the approximate modal figures shown
above would be modified only by these small percentage
amounts. |

Accessory minerals account on average for a further two
per cent. The chief of these 1is commonly schorlite

tourmaline; others 1include apatite, zircon, ilmenite,
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uraninite, rutile, fluorite and monazite. Monazite occurs
along with the rutile and fluorite in biotite and is
responsible for numerous "pleochroic haloes" of o-partical
damage seen in such crystals.

The granites have a hypidiomorphic texture. Mean matrix
grain sizes are of the order of 1-3 mm and most specimens
contain scatterd gquartz and orthoclase megacrysts. The
orthoclase megacrysts range in size from 5 mm up to nearly
200 mm. Their mean size varies considerably according to
location within the granite intrusions.

Holman Mine granite.

(Carnmenellis. National Grid Reference SW 6580 3670).
Troon dgranite.

(Carnmenellis. National Grid Reference SW 6570 3677).

Granite at this locality has the general characteristics
outlined above. Orthoclase megacrysts account for 5-10 per
cent of the rock with a mean size of around 20 mm.
Merrivale Granite.

(Dartmoor. Natiocnal Grid Reference SX 5660 7350).

The generalized description again fits, but muscovite
replaces more of the biotite than is the wusual case,
forming about 3 per cent of the rock by volume. Orthoclase
megacrysts account for only 1-5 per cent, with a mean size
a little over 20 mm.

The visual difference between the ordinary and heated
samples may be due to oxidation of dispersed limonite

present chiefly in feldspathic areas.
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Gaveriggan granite.
(st. Austell. National Grid Reference SW 9316 5916. 317 m
depth).

A finer-grained type of granite commonly developed near
the margins of the St. Austell main intrusion.
Mineralogically similar to that given in the general
description, but with a mean matriyx grain size nearer to 1
mm. Orthoclase megacrysts scarce.

Simplified description of the Killas specimen.
(From Gaveriggan, St.austell. National Grid Reference SW
9316 5916 ). ‘

Microscope examination of this very fine-grained
material indicates that quartz, sericite and chlorite are
the chief constituents. Accessory minerals include
tourmaline and a dispersed opaque material that may be
ilmenite. There is a good deal of limonitic staining in the
rock, particularly near the gquartz-sericite-plagioclase

veins that cut this particular sample.
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Appendix VI

International Conference on PAPER J6

geothermal energy

Florence, Italy: May 11-14, 1982

A LINE-SOURCE METHOD FOR THE MEASUREMENT OF TEMPERATURE
DEPENDENCE OF THERMAL CONDUCTIVITY OF ROCKS

A. Sartori and M.F. Francis

Imperial College, U.K.
Summary

Hot Dry Rock technology requires a thorough knowledge of the variation of the thermal
properties of crystalline rocks up to depths of the order of five kilometres. This paper
describes a transient method for fast laboratory measurements of the temperature dependence
of the thermal conductivity of rock and other poor conductors, A cylindrical sample of rock is
heated by a thin axial heater wire, the resulting temperature increase at points within the rock
being monitored by a microcomputer. A new line-source solution to the heat equation, derived
to take into acecount contact resistance between heater and specimen, is fitted to the experimen-
tal temperature data to yield values of conductivity and diffusivity in just a few minutes. Con-
ductivity values of several Cornish granite specimens are presented in the temperature
range 250-470 K. They exhibit a T-1 dependence on temperature as expected for this type of
rock, and show good agreement with conductivities from a steady-state apparatus at room
temperature and with published results for similar types of rock over the whole temperature
range. The method yields absolute values of conductivity, thus requiring no calibrations,

The absolute accuracy is estimated at better than 2.5%, which compares favourably with that
obtainable with steady-state methods. Sample preparation is simple and not critical. The
method described is well suited for measurements of the variation of thermal properties
with pressure,

Held at the Centro Affari Firenze

Organised and sponsored by
BHRA Fluid Engineering, Cranfield, Bedford MX43 0AJ, England
in conjunction with Ente Nazionale per I’Energia Elettrica {(ENEL), ltaly

© BHRA Fluid Engineering 1982

205



NOMENCLATURE

b radius of cement cylinder
d radius of sample
h thermal diffusivity of rock
hy thermal diffusivity of cement
I, modified Bessel function of the first kind and order n
k thermal conductivity of rock
kq thermal conductivity of cement
Kn modified Bessel function of the second kind and order n
P Laplace transformation variable
q =(p/h)%
1
94 =(P/h1)E
Q line-source linear power
r radial coordinate in cylindrical polar coordinates
t time
T absolute temperature
v rock temperature
v =L{v}, Laplace transform of temperature
a =r2/4ht
B =b2e?Y/4h
Y Euler's constant =0,5772
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1. INTRODUCTION

Hot Dry Rock (HDR) technology requires detailed information on the dependence of
the thermal properties of crustal crystalline rocks on temperature, pressure,
noisture and mineralogy up to depths of the order of 5 km. For a given regional
heat flow, the crustal thermal conductivity controls the geothermal gradient, Thus
the drilling depth required to reach a rock at a given temperature will vary in
direct proportion to the mean thermal conductivity of the formation (Ref, 1).

Fig. 1 shows a plot of an extrapolated temperature profile based on observed
surface values of conductivity with two different published values for the tem-
perature dependence of conductivity of Westerly and Rockport granites (Ref, 2), It
will be noticed that for temperatures of 450-500 K (180-230°C), the drilling depth
is critically dependent on the temperature dependence of the conductivity. Because
drilling costs increase exponentially with depth (Ref. 3), thermal conductivity
characteristics are important in determining costs associated with developing a
reservoir. In the performance modelling of a HDR reservoir, the thermal conduc-
tivity of the formation will strongly affect the lifetime of the reservoir and the
maximum rate of heat extraction (Ref. 3),.

The objective of this work was to test a simple line-source transient method for
fast measurements of rock thermal conductivities over a range of ordinary and
elevated temperatures. Cylindrical samples of rock, which had reached temperature
equilibrium in an oven, were heated by means of an axial heater wire (Ref. 4). The
resulting transient temperature increase at points inside the rock was interpreted
to yield values of conductivity and diffusivity in just a few minutes. In the
development of the method an attempt was made to overcome some of the shortcomings
of the well-established divided-bar and needle-probe methods (Ref. 5), such as the
need for carefully characterized reference materials over a wide temperature range.
In the present method, absolute values of the thermal parameters are obtained, thus
no calibrations being required. The expensive drilling of long and narrow holes in
the samples needed to accommodate needle-probes was avoided, and the reduced thick-
ness of the heater contributed to minimizing contact-resistance effects. Although
all the samples tested to date were cylindrical, their shape is not critical, which
simplifies preparation. The experiments described in this paper were performed at
atmospheric pressure, but extension to a range of high pressures does not require
major modifications and will be undertaken in the near future,

2, THEORETICAL ANALYSIS

2.1. Line-source solution with contact resistance.

It became apparent early in the investigation that the existing mathematical
treatments of the needle-probe method (Ref. 6) could not be adapted to the line-
source method, Unlike needle-probes, the heaters used in the present work were very
thin and could be treated as ideal line sources, A new mathematical treatment was
developed to account for the contact resistance of a thin layer of cement between
heater and rock. An analytical solution to the equation of conduction of heat was
sought in cylindrical polar coordinates using the following boundary conditions:

1) An infinitely long line-source along the z-axis emits heat at a constant rate Q
per unit length intc an infinite mass of rock of conductivity k and diffusivity h for
t>0. The initial temperature is zero everywhere,

2) The cement is modelled as a solid cylinder of radius b concentric with the

heater, having conductivity ki and diffusivity hj. This is only an approximation to
the actual shape of the cement, but it simplifies the solution,

It is shown in Appendix I that an approximate solution in the region r® b is
given by
2

pot =

(k/h-k /hy) e ¥ In(t/ag)-

_Q ® =y b2
v {Iae Ju du + A :

ATk (1/hy-1/h) %"“}.

(1)

If b=0, or k=k,, h=h,, the second and third terms vanish, and Eq. (1 ) reduces to a
simpler line source Solution already in the literature (Ref, 7),.The approximationm
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is valid for b2/ht<<1 and arbitrary r, which can be regarded as either the large time
solution, or a case of a thin layer of cement. Both these requirements were satis-—
fied in the present experiments. A more complexX solution which takes into account a
thin layer of cement between two semi-cylinders of rock is mow under study.

2.2, Application of theoretical results,

The parameters k (thermal conductivity) and h (thermal diffusivity) can be cal-
culated from a least-squares fit of equation (1 ) to a graph of temperature against
elapsed time assuming approximate values of the thermal properties and thickness of
the cement, In the present study, however, the following simpler approach was
adopted which is more suitable for fast data reduction by microcomputer. Equation
(1 ) can be rewritten as

E (2)

where v, is the first term, corresponding to the ideal solution for no contact re-
sistance, and vp is the sum of the second and thlrd terms, the "error™ caused by the
contact resistance. A graph of vg/vy versus ht/b2 is plotted in Fig. 2 for various
values of r/b and typical values of conduct1v1ty and diffusivity for a granite
sample/fire cement contact. The value t of the time for which the term vg be-
comes negligible can be determined from M%ls graph. At larger times, boundary effects
at the surfaces of the samples become important. Using Laplace transformation
techniques, the effects of keeping the surfaces of finite cylinders of radlus d at
zero temperature were calculated to be less than 17 when d/r210 and ht/d%<0.3 for

a samplg of radius d. For a typlcal granite sample with k=1,5x10"° m<s™

d=3x10 “m, the minimum and maximum vaUISltlon times typy and tyay are of the order
of 60-80 and 150 s respectively.

An iterative nonlinear least-squares method due to Box (Ref. 8) was used to fit
vy to the experimental temperatures over the range tyyy <t<tyay to obtain the
parameters k and h, The number of iterations is not strongly dependent on the
initial values of k and h chosen and convergence to the final values is fast, The
well~known logarithmic approximation (Ref. 7) to the exponential integral in Eq.

(1 ) was not used here as the requirement r2/ht<<l for the approximation to hold was
not satisfied to the desired accuracy, The consequent increased complexity of the
calculations was offset by the availability of a microcomputer for the fast computa-
tions of the nonlinear least-squares routines. A better accuracy could thus be
obtained than in previous methods.

3. LINE SOURCE APPARATUS

3.1. Apparatus description.

The preparatiom of the samples involved cutting the rock into cylinders%0 to
120 mm long and 60 to 75 mm in diameter, Each cylinder was them cut longitudinally
into two halves, thin grooves were scribed into one half of the cylinder to accom-
modate a copper-constantan thermoccuple and an axial constantan heater wire (diameter
0.2 mm), at a separation of 1 to 4 mm. The other half of the sample was cemented
back on with hot-cure epoxy resin or fire cement (Fig. 3). The small diameter of the
thermocouple wires (0.12 mm) and their position parallel to the heater reduce con-
ductive heat losses along the wires. Also, the leads lie roughly parallel to
equithermal planes in this arrangement, thereby reducing the distortion of the temp-
erature field within the rock. The cold junction of the thermocouple was placed in
an aluminium block within the oven (Fig. 4) and had a short time temperature
stability similar to that of the ovem (0.1 K). This allowed the differential tem-
perature between sample and oven to be measured directly and independently of oven
temperature, High temperature cables were welded to the ends of the heaters for
current supply with separate cables for potentiometric measurement of power input.
Typical power inputs were of the order of 30 to 40 W/m, with a time stability of
about 0,17 in each individual experiment., The absolute accuracy of the temperature
measurements is not critical in this type of experiment, but the sensitivity Jf a:
thermocouple at a given temperature has a direct effect on the results, Thermocouple
sensitivity was determined by calibration of several random thermocouples from the
same batch of wire as that used in the conductivity measurements. The standard
deviation was found to be less than 17 of the average sensitivity. The reference
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thermometer was a platinum resistance thermometer calibrated by the National Physical
Laboratory to an accuracy of 0.01 K,

Amplification of the dynamic microvolt—level signals required a low-noise
(1.0 pV peak-to-peak between 0.0l and 10 Hz) instrumentation amplifier followed by a
low-pass filter with a cutoff frequency of 10 Hz and a slope of -24 dB/octave for
reduction of mains-borne electromagnetic interference and high frequency noise, This
frequency response was a compromise between the requirement for fast response and
noise reduction. The delay introduced by the filter was calculated to be 0.2 s for
1%Z accuracy, with a negligible effect on the final values of conductivity. A 12-bit
multichannel data acquisition system provided the interface with an 8-bit micro-
computer, which performed all the control functions, data acquisition and data re-
duction. After power to the heater was switched on, the heater voltage and current
and the sample temperature were digitized at 0.3 intervals for about 140 s. A
digital filter provided a further improvement in the signal-to-noise ratio: each
signal was sampled 250 times in rapid succession and averaged over a 20 ms time
interval, thus eliminating periodic signals with a period of 20 ms such as 50 Hz
electromagnetic interference and its harmonics. The resolution of the system was 2
oK with drift of less than 0.1 K in a 150 s interval., On this apparatus, the de-
termination of the thermal parameters tock 2 to 6 minutes depending on the number of
iterations required in the least-squares routine, Temperature equilibrium to better
than 0.1 K between oven and a rock sample was established in 8-12 hours. Measurements
of the same sample could be repeated at 60-90 minutes intervals, Up to twenty
samples were measured in rapid succession in the same oven,

3.2 Discussion of errors,

Mis-positioning of the voltage~sensing leads by just +1 mm can lead to a system-
atic error of + 17 in the conductivity values. This was taken as the average error
in the power measurements. The sensitivity tolerance of the thermocouples introduced
an uncertainty of about + 1% in the slope of the temperature versus time curve, and
hence in the final results. The approximations of the mathematical model are
probably responsible for a further uncertainty of + 0.57 in the results, bringing the
total error to about + 2.57. Careful preparation of the samples is paramount in
keeping this figure low, One sample was measured, dismantled, provided with a new
heater and thermocouple, and re-measured, with a negligible shift in the measured
conductivity, All the measurements were repeated at least three times at the same
temperature as a check on the repeatability, It was found that temperature
fluctuations in the oven and reference junction caused a scatter in the results, This
was a function of the temperature increases measured and therefg;glof the thermal
conductivity, varying between a fraction of a percent at k=1,6Wm K to 1-2% at k=3,2.

4, RESULTS

A set of samples representative of the main geological suites found in S.W.
England and one ceramic sample were investigated. A set of comparative measurements
of a zero porosity Corning Macor 9658 ceramic sample were performed to test the ab-
solute accuracy of the method. Table 1 shows that at room temperature the measured
conductivity was in good agreement with that obtained with a divided-bar apparatus
and with those reported by Bloomer (Ref. 9) and measured by a divided-bar and by a
needle-probe calibrated against a silica glass standard. The good agreement with the
values from the divided-bar apparatus was explained by the fact that the samples were
cut from the same block of material. 1In Fig. 5 the conductivity is shown to increase
with increasing temperature, as expected from this type of material, Each point in
Fig. 5 is an average of three to seven experimental values, The standard deviations
of the individual readings, represented by the error bars in Fig. 5 suggest good
repeatability, One of the values at 325K (529C) was obtained after dismantling and
reassembling the sample with a new heater and thermocouple, and shows a negligible
change in the measured conductivity. The smoothed curve is a second~order poly-
nomial in T. Other curves could have been fitted to the experimental points with as
good a justification, but the differences would be negligible within the temperature
range of the experiments, The smoothed conductivity values are tabulated in Table 2,
which also shows smoothed conductivity values for ten selected rock samples, Samples
M2B through M8B were taken from the same block of granite from Merrivale (Dartmoor),
samples T9 through T14A are granites from Troon (Carnmenellis), K20 is a Cornish slate
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sample, and MAC-4A is the ceramic sample., The sample-to-sample conductivity diffe-
rences are not entirely due to experimental errors, and are probably real differences
due to the large grain size of the samples. Fig. 6 shows a comparison of smoothed
results for two representative Cornish samples (M5 and M8B) from this study with the
results by other workers on similar rocks. The thermal conductivity exhibits a 1/T
variation consistent with the anharmonic phonon scattering region., The divided-bar
measurement at room temperature was performed on a water—saturated sample, which
probably accounts for the marginally higher thermal conductivity. A description of
the rock samples is given in Appendix III.

5. CONCLUSIONS

The results obtained confirm the accuracy of the theoretical predictions and de-
monstrate the validity of this method of rapid thermal conductivity measurement,
Fig. 6 highlights the marked temperature-dependent decrease in thermal conductivity
for rocks likely to be encountered in a HDR reservoir, The statistical reliability
was enhanced by the large size of the data sample obtainable using wmodern digital
techniques. The same apparatus used in the experimental measurements described may
be easily employed in conjunction with a needle-probe for the thermal conductivity
determination of unconsolidated or soft sediments. The use of more realistic
boundary conditions, though increasing the computatiomal complexity, allowed an
improved repeatability. One of the advantages of the method is that the calculated
thermal conductivity is less dependent on the time window over which the rock tem-
perature is sampled than with methods involving less rigorous analyses. A possible
further application would involve measurements over a range of elevated temperatures
and pressures and including the effects of more realistic levels of water-saturation
such as are likely to be encountered in a typical HDR reservoir.
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APPENDIX I

The general form of the one-dimensional heat equation in eylindrical polars is

3r2 r ar h at (1)

Laplace transformation (Ref.l0} with respect to time of this equation and of the
boundary conditions in the two media gives the subsidiary equations

a2 Vi1 d;l 2 - for O<r<b
= 1
q
dr2 r dr 1 (2)
a’v 14y 2_ For r3zb
—-—--—+-.-...—.—=qv
dr r dr 3)

subject to the boundary conditions

dv

- - 4k 1 k dv at r=b,

vy = Vv an =

lim (r &¥1) = -q/(2nk;p)

0 dr (5)
and v bounded as r »w | (6)
where v is defined as v (p)=L{v{t)}. (7)
Equation (5) is the boundary condition at the wire.
Solution of Eqs, (2) and (3) subject to (4}, (5) and (6} gives

v=Q Kylqr)

20b
ph (8)

where

& = q,k K (qb)I,(q,b}+qkK, (gb)I (q,b) , (%)

with a similar expression for ;1.

An exact solution for v can be derived from Eq. (8) by the inversion theorem of
the Laplace transformation. For the purposes of the present work, however, an
approximate expression for small values of (qb)} and arbitrary r suffices (Ref. 11}.
Approximating the modified Bessel functions inA by the first few terms of series in
ascending powers of p, we cbtain

A =k {1+Apln(Bp) + Bp + 0(p?)}
b (10)

where A=b2(k/h—k1/h1)/ 4k, B=b2(1/h1-1fh)/4, and O(pz) represents the terms of order
p2 and higher. Making use of the binomial theorem to find Anl,
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22 T (1 1ntep)-ap) )
2Tpk

te the first order im p.

v is found by applying the inversion theorem to each term of the series. From

standard tables (Ref. 12),

Nk {K_(ar) /p} = %f: e “/u du (12)

- {K_(qr)} = e /2t (13)

for the first and last terms respectively. In Appendix 1I, the inverse Laplace
transform of the middle térm is shown to be

L—I{Ko(qr)ln(sp)} = —e %in(t/aB)/2t. (14)

The final result (equation (1) of section 2) follows from (11), (12}, (13) and (14).

APPENDIX T1
To find the inverse Laplace transform of
F(p)=K_(qr) 1n(Bp), 1
1
set cip)= %% = *(I/thp%) Kl(qr) 1n(8p)+K0(qr)/p = H(p)+K0(qr)/p (2)

The second term is easily transformed,
H can be written as
Ha-{rp!/(201)K, ()} (inep) /p) )
and the two terms transformed separately.
From standard tables (Ref. 12),
! K, (qr)} = re” 3/ ante?) (4)
L™ {1n(ep) /p} = ~1n(et) /8 (5)
where a=r2/4h and Inc = vy .
Using the convolution theorem of the Laplace transform
HxeYed = e )+ L))
gives
n(ey=L " H(p)} = J g ae 737 1(2c?)  1nfcft-)/8)ar (6)
This integral is evaluated using

L0

Iy e F ln x dx = -y .

Thén, from (2) and (6),

g(0)=L"Ha(p)} = e 1n(t/as)2. : o
Finally; using
I: c(s) ds =—F(p) (8)
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and the theorem
L"l{f‘; G(s)ds} =g(t)/t, (9

we obtain

L-l{Ko(cjr) 1n(8p) } =—e 1ln(t/aB)/2t. (10

It is found that if the Laplace transforms of K {qr) and In(Bp) are evaluated
separately and the results comnvolved, the convolution integral diverges.
APPENDIX III1

Descriptions of rock samples from Cornwall.

The principal comstituents of the granite samples are orthoclase, quartz,
plagioclase and a fairly iron-rich biotite mica. The mineral contents are broadly
as follows (in percentage volumes):

Alkali feldspar 40
Quartz 32
Plagiocclase 20
Biotite 6
Others 2

The granites have a hypiodiomorphic texture. Mean matrix grain sizes are of the
order of 1-3 mm. In the Troon samples (T9A-T14A) orthoclase megacrysts account for
5-107% of the rock with a mean size of around 20 mm. In the Merrivale samples
(M2B5-M8B) , muscovite partly replacing biotite forms about 3% of the rock by volume,
Orthoclase megacrysts account for only 1-57, with a mean size a little over 20 mm,
In the Cornish slate specimen (K20), the chief constituents are guartz, sericite

and chlorite, Accessory minerals include tourmaline and ilmenite, with a good deal
of limonitic staining in the rock, particularly near the quartz-sericite-plagioclase
veins which cut this particular sample (J.R. Hawkes, pers. comm,).
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TABLE 1. Comparison of conductivity results of ceramic (Macor) at 298 K (259°C).

Source of data * No. of readings Conductivity
(1K)
Line-source {at 302 K - 299C) 6 1.610+0.011
Divided-bar 24 1.605+0,003
Needie-probe (Bloomer, Ref. 9 ) 39 1.62+40,03
Divided-bar (Bloomer, Ref. 9 ) 13 1.5919.04
1 -1

TABLE 2. Conductivity results. Smoothed values, in ¥m K .

Sample 250K 300K 350K 400K 450K 470K
number

M2B - 3.165 2.998 2.878 - -
M3 - 3.166 2.965 2.813 2.696 -
M5 3.278 3.029 2.851 2.717 2,613 2.578
M8B - 3,149 2.956 2.812 2.699 2.661
T9 - 3.198 3.010 2,869 - -
T10A - 2.955 2,828 2.733 - -
T114 - 3.090 2,933 2.816 2.724 2.693
T13A - 3.066 2,890 2.759 - -
T14A - 3.068 2,908 2.788 - -
K20 2.207 2.056 1.949 1.869 1.806 1.784
MAC-4A - 1.608 1.619 1,639 1.669 1.683
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Section of a rock sample.
mid-point of the sample.
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........
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The thermocouple junction is.located at the
The grooves are scribed with a rotating diamond

The top semicylinder of rock {(not grooved) is cemented bhack on
after emplacement of thermocouple and heater.
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FILTER
DATA
ACQUISTION
/ SYSTEM
4
<—| MICROCOMPUTER
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HEATER CIRCUIT LABORATORY OVEN AMPLIEIER
ROCK
< SAMPLE //,//’
0 CURRENT/ |
VOLTAGE dTHeERMO+
COMPUTER - MEASURING HEATERT ﬂ COUPLE
CONTROLLED CIRCUITS
RELAY - '{
HEATER
POWER N
SUPPLY
REFERENCE
THERMOCOUPLE
Figure 4. Line source apparatus. Only one sample is shown for simplicity,.

Appropriate switching of the power and thermocouple lines allowed

measurements of up to twenty samples in rapid succession.

recorded on magnetic tape for further analysis,
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Figure 5. Thermal conductivity of ceramic (Macor). Points shown are averages of
several experimental values, The error bars indicate the standard
deviations of the individual readings. The curve is a second-order
polynomial in T,
°
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Figure 6. Comparison of thermal conductivity of granites. Curves are smcothed

values, Lines 6 and 7 and point 8 refer to the present study.

1, 2: Rockport granite (Birch and Clark, Ref.2). 3: Barre granite
(Ref.2). 4: Westerly granite (Ref.2). 5: Cornish granite (Dodson, pers.
comm.). 6: Merrivale granite, sample MBB, 7: Merrivale granite, sample
M5. 8: Merrivale granite, divided-bar measurement.
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