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A LINE-SOURCE METHOD FOR THE MEASUREMENT OF TEMPERATURE AND 
PRESSURE DEPENDENCE OF ROCK THERMAL CONDUCTIVITY 

Abstract 

A transient method for accurate laboratory measurements 
of the temperature and pressure dependence of the thermal 
conductivity and diffusivity of crystalline rocks and other 
poor conductors is described. The method involves heating a 
cylindrical sample by a thin axial heater wire, and 
monitoring the resulting temperature increase at points 
within the rock by a microcomputer. The temperature and 
pressure dependence of the thermal parameters is 
investigated by allowing the samples to reach thermal 
equilibrium in an oven or autoclave before commencing 
measurements. 

Several line-source solutions to the heat equation were 
derived from a rigorous study of the boundary conditions to 
provide an accurate description of the temperature field 
within the rock. A nonlinear least-squares fit of the 
theoretical results to the experimental data yields 
absolute values of rock conductivity and diffusivity, and 
requires no calibration against standard materials. 

Conductivity values of several rock specimens and two 
standard materials are presented in the temperature range 
250-5 70 K. They exhibit the expected temperature dependence 
and show good agreement with conductivities from a steady-
state apparatus at room temperature and with published 
results for similar types of rock over the whole 
temperature range. A discussion of the errors and accuracy 
of the results is given. The results of investigations of 
rock dehydration during high-temperature measurements and 
the pressure dependence of granites in the range to 50 MPa 
are discussed. 
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Chapter 1 

INTRODUCTION 

1-1 Background. 

Hot Dry Rock (HDR) technology requires detailed 

information on the dependence of the thermal properties of 

crustal crystalline rocks on temperature, pressure, 
i 

moisture and mineralogy up to depths of the order of 5 Km. 

For a given regional heat flow, the crustal thermal 

conductivty controls the geothermal gradient. Thus the 

drilling depth required to reach a rock at a given 

temperature will vary in direct proportion to the mean 

thermal conductivity of the formation (Wheildon et al., 

1980). 

In the course of an investigation of the S.W. England 

thermal anomaly zone by this Department, Francis (1980) 

calculated a set of extrapolated crustal temperature 

profiles (Fig. 1.1) based on observed surface values of 

conductivity for a typical Cornish granite with two 

different published values for the temperature dependence 

of conductivity of Westerly and Rockport granites (Birch 

and Clark, 1940). It will be noticed that for formation 

temperatures of 180-230 °C suitable for power production 

the drilling depth is critically dependent on the 

temperature dependence of the conductivity. Because 

drilling costs increase exponentially with depth (Sibbitt 

et.al, 1979), thermal conductivity characteristics are 

important in determining costs associated with developing a 

reservoir. In the performance modelling of a HDR reservoir, 

1 



TEMPERATURE (°C) 

Fig. l.i Crustal temperature profiles for exponential function 
heat-production model and temperature-dependent thermal 
conductivity. From Francis (19 80). The temperature 
dependence values are from Birch and Clark (1940). 
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the thermal conductivity will strongly affect the maximum 

rate of heat extraction, the depletion rate and hence the 

lifetime of the reservoir. 

1.2 Measurement techniques. 

The objective of the present work was to develop a 

simple line-source method for fast measurements of rock 

thermal conductivities over a range of ordinary and 

elevated temperatures and pressures. The stimulus to the 

research was mainly due to previous work on the line-source 

in this Department by Cheyne (1978), Jackson (1978), 

Robinson (1979), Bassett (1979), Jason (1980), Zapalowski 

(1980) and Cameron (1981). 

The line-source method was first used by Van der Held 

and Van Drunen (1949) and Van der Held et al. (1953) for 

the measurement of thermal conductivity of liquids, and 

later developed, among others, by Jaeger and Sass (1964), 

Scott et al. (1973), Cull (1974), Kieffer et al. (1976) and 

Arakawa and Shinohara (1980). 

The present method employed the sample geometry 

suggested by Cull (1975). Cylindrical samples of rock, 

which had reached thermal equilibrium in an oven, were 

heated by means of a thin axial heater wire. The resulting 

transient temperature increase at points inside the rock 

was detected by a thermocouple and interpreted to yield 

values of thermal conductivity and diffusivity. In the 

development of the method an attempt was made to overcome 

some of the shortcomings of well-established divided-bar 

(Beck,1957) and needle-probe methods (Von Herzen and 

Maxwell, 1959, Woodside and Messmer, 1961), such as the 

3 



need for carefully characterized reference materials over 

wide temperature and pressure ranges. In the present 

method, absolute values of the thermal paramenters are 

obtained, thus no calibrations being required. The 

expensive drilling of long and narrow holes in the 

crystalline samples needed to accommodate needle-probes was 

avoided, and the reduced thickness of the heater 

contributed to minimizing contact-resistance effects. Large 

specimens could be investigated, thus decreasing grain-size 

related inaccuracies. The simultaneous determination of 

conductivity and diffusivity provided a self-checking 

property in that both these must be of reasonable orders of 

magnitude. 

Some of the difficulties previously encountered in 

transient thermal conductivity measurements were overcome 

as follows: 

1) Modern analogue and digital techniques were used to 

perform the relatively fast and accurate measurements of 

sensor temperature required by all transient methods. 

2) New mathematical models were developed to represent 

accurately the temperature fields within the rock samples. 

In particular, the thermal contact-resistance between 

heater and rock had to be investigated in detail. 

3) The collection and reduction of the large data samples, 

a considerable source of error in previous studies, was 

simplified by the use of a microcomputer, with the added 

advantage of immediate computation of results. 

A short description of this line-source method is given 

in a paper by Sartori and Francis (1982), reported in 

4 



Appendix VI. For a comprehensive account of thermal 

conductivity measurement techniques see Tye (1969). Various 

techniques for in situ conductivity and diffusivity 

measurements are given in Beck et al- (1971), Murphy and 

Lawton (1977) and Lee (1982). 

1-3 Units and nomenclature. 

Unless otherwise stated, S.I. units will be used 

throughout this thesis. Table 1.1 gives a list of the most 

commonly used symbols and their meanings. The occasional 

departures from this nomenclature will be made explicit in 

the text. 

5 



TABLE 1.1 Nomenclature. 

Unless otherwise stated, the following symbols will be used 

throughout the text: 

c Specific heat capacity 

-Ei( -x) Exponential integral 

h Thermal diffusivity 

Jn Modified Bessel function of the 
kind and order n 

first 

j Euler's constant 

Jn Ordinary Bessel function of the 
kind and order n 

first 

k Thermal conductivity 

Kn Modified Bessel function of the 
kind and order n 

second 

L{f} =1 Laplace transform of function f 

P Laplace transform variable 

Q Line-source linear power 

r Radial coordinate 

t Time 

T Absolute temperature 

V Temperature rise 

V Laplace transform of temperature 

Yn Ordinary Bessel function of the 
kind and order n 

second 

a =r2/4ht 

P Density 

6 



Chapter 2 

HEAT CONDUCTION THEORY 

The thermal conductivity coefficient k of a solid is 

most easily defined with respect to the steady-state flow 

of heat down a long rod with a temperature gradient dT/dx: 

q = - k dT/dx (1) 

where q is the flux of thermal energy, or the energy 

transmitted across unit area per unit time. The thermal 

diffusivity h is then defined by 

h = k/pc (2) 

where p is the density and c the heat capacity, c and p are 

not constant for a given material, and their temperature 

and pressure dependence must be taken into account when 

applying equation (2). 

2-1 Crystalline solids. 

The physical mechanisms controlling the transfer of heat 

in earth materials at normal and elevated temperatures are 

phonon diffusion, radiation and electron processes. Heat 

transfer by radiation follows a T relationship (Clark, 

1957) and can be assumed to be negligible compared to 

conduction up to temperatures of about 800 K (Sibbitt, 

1979). At the temperatures normally encountered in the 

upper crust, free electrons do not significantly contribute 

to transport mechanisms, as testified by the small 

electrical conductivity of crustal rocks. 

In modern solid-state theory, a dielectric solid is 

regarded as a lattice of closely-coupled atoms. An increase 
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in vibrational energy in one part of a crystal, associated 

with an increase in temperature, will be transmitted to the 

other parts. Heat is here considered as being transmitted 

by phonons, which are the quanta of energy associated with 

of the atomic lattice vibration modes. 

From the kinetic theory of gases applied to the phonon 

quasi-particles, the following expression for the thermal 

conductivity is found (see for example Kittel, 1976): 

k= 1 cvl , (1) 
3 

where c is the lattice heat capacity per unit volume 

v is the average particle velocity (velocity of 

sound) 

1 is the mean phonon free path. 

A study of the absolute value of k and its dependence on 

temperature and pressure requires a knowledge of the 

parameters v,c,l in equation (1): the velocity v can be 

assumed to be almost constant (Rosenberg, 1975). The heat 

capacity c is given to a good approximation by the Debye 

specific heat function (Kittel, 1976). c is plotted against 

T/0 in Fig. 2.1, where 0 is the Debye temperature, a 

constant for a given material. At high temperatures, c 

tends to the constant Dulong-Petit value of 3Nk where N is 

Avogadro's number and k the Boltzmann constant. It should 

be noted, however, that 0 for Si is about 640 K, so that at 

normal temperatures the value of c has a slight positive 

dependence on T. The estimation of the phonon mean free 

path is complex and requires considerable analysis of 

phonon scattering mechanisms. These include interaction of 

phonons with one another (u-processes), scattering by point 

8 
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Heat capacity c of a solid according to the Debye 
approximation. The horizontal scale is the temperature 
normalized to the Debye temperature 0. The asymptotic 
value at high values of T/0 is 24.943 J mol-J-K-l. 



defects (impurities) or dislocations and scattering by the 

boundary of the specimen or crystallite. 

Three-phonon interactions are dominant in rock specimens 

at high temperatures. In this case the conservation laws 

for the combination of phonons are 

hWj + hW2 = "hwg (energy conservation) (2) 

where the w's are the phonon frequencies, the K's the 

wavevectors K = 2 T T / X , X is the phonon wavelength and h the 

Planck constant. The reciprocal lattice vector G expresses 

the periodic nature of the lattice, where a phonon with 

wavevector K is physically equivalent to a phonon with 

wavevector K+G. The mechanism described by equations ( 2 ) 

and (3) is called an umklapp, or u-process. It causes a 

reversal of energy flow after a collision (Fig. 2 . 2 ) , which 

gives rise to a thermal resistance. Normal or n-processes, 

in which G=0, also play an important role in establishing 

thermal equilibrium, but they do not directly contribute to 

heat conduction. 

The probability for the occurrence of a u-process 

increases with increasing phonon energy and therefore with 

increasing temperature. At high temperatures, when T^0 , 

nearly all the phonons will have large enough wavevectors 

to produce u-processes, and the probability will then be 

proportional to the total number of phonons which are 

present, which is in turn proportional to T. Hence 1^1/T, 

and, substituting in equation (1), we get k'vl/T. 

More rigorous estimates give the conductivity in the 

form 

K-̂  + K2 — K^ ^ (momentum conservation) (3) 

k cc MaG3/Ty 2 (4) # 

10 
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K 
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K 

K 

K, +K2 

Fig. 2.2 (a) Normal and (b) umklapp phonon collision 
processes in a two-dimensional square lattice. 
The square in each figure represents the first 
Brillouin zone in the phonon K-space; this 
zone contains all the possible independent 
values of the phonon wavevector. Note that in 
the umklapp process (b) the direction of the 
x-component of the phonon flux has been 
reversed. 
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3 where a is the volume occupied by one atom, M is the 

atomic weight and y is the Grueneisen constant. This simple 

dependence on the properties of a crystal has been deduced, 

with different constants of proportionality, by many 

workers (see Berman, 1976). Its experimental applicability 

to earth materials was confirmed by Birch and Clark (1940), 

as shown in Fig. 2.3. 

Roufusse and Clemens (1974) argued that the phonon mean 

free path cannot become arbitrarily short as the 

temperature is increased, but should instead approach a 

lower limit 1Q, which one would expect to be comparable 

with the linear dimensions of the unit cell of the crystal 

lattice. The transition from the l/T dependence to the 

minimum conductivity is, however, very gradual, and in most 

minerals it should set in at temperatures above 500 K. 

Deviations from the inverse temperature dependence would be 

expected to be appreciable only above 1500 K. 

The absolute value of k was calculated by Slack (1977) 

for crystals with more than one kind of atom and more than 

one atom per primitive unit cell: 

3.OxlO"5Ma0^ (5) 
k = 2 2 7 T ° 

where 5T is the mean atomic weight of all the costituent 
3 

atoms, n is the number of atoms per unit primitive cell, a 

is the average volume of one atom, and 0 Q is the Debye 

constant taken from low-temperature heat capacity 

measurements. The agreement with experimental values is 

fairly good. For quartz (n=9), the calculated and measured 

thermal conductivities are 20 and 13 Wm"1K"'1' respectively. 



300 400 50 0 600 
TEMPERATURE ( K ) 

Fig. 2.3 Thermal resistivity (=l/k) of rocks and 
crystalline quartz. Data from Birch and 
Clark (1940). 
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Mooney and Steg (1969) used an equation of the same form 

as (4) to estimate the pressure dependence of k at high 

temperatures. The expression they derive, however, is of 

limited use here as it depends on values for the Grueneisen 

parameter and its dilatational derivative which are not 

readily available. The order of magnitude of the expected 

pressure dependence is best estimated from previous 

experimental work. Kieffer (1976) reports a measured value 

of +1.7x10"^ MPa""^ for the fractional P-dependence of 

conductivty of crystalline quartz. 

The results quoted so far apply only to very pure 

crystals. In earth materials the conductivity is further 

affected by phonon scatter from grain boundaries and 

lattice defects such as point defects and dislocations. 

Callaway and von Bayer (1960) estimated these effects for 

small defect concentrations at T>0 and obtained an 

expression of the form 

w = W p h + Wj (6) 

where W=K~"1, and W p Wj are the phonon and defect 

contributions. Cull (1975) used this equation to estimate 

the pressure dependence of k in olivine with arbitrary 

defect concentrations of 10 and 50%, and found that the 

pressure derivative of k was little decreased from the 

value obtained for a pure crystal. 

14 



2-2 Amorphous solids. 

It was suggested by Berman (1976) that amorphous solids 

such as vitreous silica or nylon are ideally suited as 

thermal conductivity standards because the values found are 

little dependent on the particular sample used. Kittel 

(1949) pointed out that the conductivity of glasses 

decreases with decreasing temperature and that there is 

much less difference between the conductivities of 

amorphous solids than there is between the conductivities 

of crystals. 

The temperature dependence of thermal conductivity of 

amorphous solids can be explained with reference to their 

molecular structure. The solids considered so far have 

been crystals which were nearly perfect or contained 

imperfections within such limits that there was still an 

underlying regularity in the lattice. In amorphous solids, 

however, there is no long-range order in the atomic 

structure (Fig. 2.4). For short wavelengths, the mean free 

path of equation 2.1(1) is constant because it is limited 

to the dimensions of the structural atomic units (unit 

cells) which are of the order of tenths of nanometers. At 

high temperatures, therefore, the conductivity follows the 

specific heat and decreases with decreasing temperature. 

This is in agreement with experimental measurements on 

fused quartz (Ratcliffe, 1959) and with the results of 

chapter 5 for fused silica and a ceramic sample. 

15 



Fig. 2.4 Schematic two-dimensional figures 
illustrating the difference between 
a) the regularly repeating structure 
of a crystal and b) the random network 
of a glass (From Kittel, 1949) . 
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2-3 Porosity effects. 

The problem of relating laboratory conductivity 

measurements to the in situ values was first analyzed by 

Clark (1941), who investigated the effects of water 

saturation and uniaxial compression on a set of samples of 

widely different porosities. He observed conductivity 

variations of up to 30% in high-porosity samples, and up to 

13% even in a 1.1% porosity marble sample. Even larger 

variations were reported by Woodside and Messmer (1961) for 

highly porous rock. Walsh and Decker (1966) made a detailed 

study of the relationship between porosity, water 

saturation and confining pressure in compact rock. Some of 

their conclusions will be summarized here. Two types of 

cavities can be distinguished in low-porosity rocks, 

approximately spherical cavities have a negligible effect 

on the conductivity for porosities of a per cent or so. The 

elastic behaviour of low-porosity rocks, however, suggests 

that a large part of the porosity is in the form of very 

narrow crack-like openings along grain boundaries or 

cleavage planes which close under external compressive 

stress. Because of the narrowness of the cracks, many may 

be required to account for a porosity of even 1%. 

To establish the effect of pore fluid, we must find the 

effective conductivity of a composite material with two 

isotropic phases, rock and pore fluid. A maximum bound for 

the effective conductivity k e of a system composed of a 

rock matrix of conductivity k and porosity n<<l, and a 

fluid of conductivity k' can be estimated from: 

k-k _ n (1) 

17 



where Equation (1) describes the system shown in 

Fig.2.5a, where the solid phase is considered as inclusions 

in the continuous fluid phase; Fig. 2.5b shows the opposite 

limiting case in which the fluid is an inclusion of the 

solid. A more realistic model would be represented by an 

intermediate case where both rock and fluid form continuous 

phases. Equation (1) always overestimates the effect of 

pore fuid: for better accuracy the total porosity ri is 

replaced by the porosity n due to cracks. The value of the 

crack porosity can be found from a plot of the volumetric 

strain -AV/V Q of a jacketed sample as a function of 

pressure p. As shown by Walsh (1965) the crack porosity is 

the intercept on the AV/V Q axis of the linear portion of 

the pressure-strain curve extrapolated to zero pressure. 

A more rigorous study which takes into account a 

distribution of penny-shaped cracks of various dimensions 

leads to an improved estimate 

k-k = Rn (2) 

P F 3 E 

where R is a function of the crack distribution and can be 

determined experimentally from pressure-volumetric strain 

curves. Walsh and Decker analyzed two granite samples from 

Casco, Maine. The results are reported in Table 2.1. Both 

equation (1) with the value for the crack porosity and 

equation (2) give deviations in agreement with experimental 

values for dry samples. For water-saturated samples, the 

deviations are negligible when compared to the experimental 

errors. 

The pressure dependence of the effective conductivity 

can be determined from Fig. 2.6, where the intercept 

18 



FLUID 

R O C K 

Q) 

R O C K 

F L U I D 

b) 

Fig. 2.5 Pore fluid models (from Walsh and Decker, 
1966). In a) the pore fluid and in b) the 
rock form a continuous phase. 
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Fig. 2.6 Crack porosity found from pressure-strain 
data for Casco granite ( From Walsh and 
Decker, 1966). The crack porosity at 
pressure P. is the intercept ri . . 
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represents the residual crack porosity at pressure P-̂ . The 

value ri is then substituted in equations (1) or (2) to 

give an estimate of the porosity correction. 

TABLE 2-1 Effect of porosity on measured conductivity of 
granite. 

Dry samples Wet samples 

Equation (1) n=.007 k-k = 29.5% 1.2% 

n=n =.004 c 
Equation (2) R=0.86 

II 

14. 5 

.7 

.6 

Experimental value 1 16 
•• II 2 13 

The following conductivity values were used: 

k(granite)= 3.3 5 Wm K 
k'(air) = 0.026 
k'(water) = 0.63 
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Chapter 3 
MATHEMATICAL THEORY 

3.1 Introduction. 

This chapter presents solutions of the heat equation and 

techniques for the computation of thermal constants of rock 

samples from transient measurements of temperature. 

It was felt that existing treatments of the problem 

could not achieve the accuracy required in the present 

experiments. Much of the theoretical background to the 

problem has been developed for needle-probe systems having 

geometries considerably different from the present one 

(cf. Blackwell, 1954). In particular, the thin heater used 

here required different sets of boundary conditions in the 

mathematical solutions. The availability of microcomputers 

for the fast computation of large data samples allowed a 

departure from previous "straight line" approaches in which 

the mathematics is simplified as much as possible in order 

to make calculations of the thermal constants more 

manageable. Fairly complex, nonlinear equations could thus 

be used to represent the temperature fields, resulting in a 

higher accuracy. 

After a cursory presentation of the heat equation and of 

the theory of the Laplace transform, the main line-source 

solution is derived in section 3.3. This solution was found 

to be sufficiently flexible to accurately represent the 

physical situation, and at the same time simple enough to 

be manipulated by a microcomputer. Various corrections to 

this basic equation are then presented in sections 3.4 to 

3.8, wich are shown to impose intercorrelated constraints 
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on the minimum and maximum data-acquistiton times (the 

sampling window), the diameter and length of the samples, 

the dimensions of the heater wire, and the amount of 

permissible contact resistance (in the form of thermal 

grease, high-temperature cement or adhesive between heater 

and rock). A nonlinear least-squares method for fitting the 

equations to the experimental results is then presented in 

seciton 3.10. 

A flowchart highlighting the relationship between the 

sections of the chapter is shown in Fig.3.0. Readers not 

interested in the details of the mathematical derivations 

are referred to section 3.11 for a qualitative account of 

the results quoted in this chapter. 

3.2 The heat equation. 

In an infinite isotropic solid of diffusivity h and 

conductivity k the temperature v satisfies the equation of 

conduction of heat 

y2 v . i l v = _ A_ C D 
h 91 k 

where A is the heat productivity within the solid, and 

h=k/pc, with p as the density and c as the specific heat 

capacity per unit mass of the solid (Carslaw and Jaeger, 

1959 - for compactness referrd to as C.J. in the remainder 

of this chapter). If the heat productivity within the solid 

is assumed to be zero, equation (1) takes the form 
92v + + l^v = JL !y (2) 
8x2 9y2 9z2 h 8 t 

in Cartesian coordinates and 
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3.2 HEAT EQUATION 

Fig. 3.0 Flowchart of chapter 3. 



32V + 1 3v + 1_ + 3fv = 1 3v (3) 
3r2 r 8 r r 2 362 3z2 h 3 t 

in cylindrical polar coordinates, where r and 0 are the 

radial coordinate and the azimuth angle respectively. The 

parameters k and h-will be assumed constant for any 

constant value of the ambient temperature. This is not 

strictly justified as any transient measurement necessarily 

raises the temperature of a sample, but it simplifies the 

mathematical treatment. Also, if the heating of the samples 

is kept small during measurements, the variations in the 

parameters will be negligible. 

In obtaining the subsidiary equations and their boundary 

conditions (see section 3.2.2), assumptions as to the 

commutability of certain operators have to be made, so that 

the solutions obtained in this chapter are not rigorous and 

must be regarded as purely formal. Strictly speaking, it 

must be verified that the solutions do satisfy the original 

differential equations and boundary conditions (Carslaw and 

Jaeger, 1940). However, the solutions were considered 

adequate for the purpose of this study. 

3.2.1 The Laplace transformation. 

In the solution of the heat equation, extensive use will 
be made of the Laplace transformation defined by 

L{v(x,y,z,t)} = v(x,y,z,p)= 

e ^ v(x,y,z,t)dt (1) =f° JO f0 

where p is a number with a positive real part and large 
enough to make the integral in (1) convergent. For example, 
to solve the partial differential equation in two variables 

02v 1 8v = Q (2) . 2 ' h 3t 9x 
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the Laplace transformation is applied to (2) to get the 

"subsidiary" equation 

an ordinary differential equation. Solving (3) subject to 

the appropriate boundary conditions yields v(x,p). v(x,t) 

can then be found: 

1) from tables of transforms (e.g. Bateman Manuscript 

Project, 1954) 

2) by using the inversion theorem of the Laplace 

transformation 

where Y is to be so large that all the singularities of 

v(A) lie to the left of the line (Y-i00 ,Y+i°° ). 

The line integral (4) can usually be put in real form by 

the use of one of two standard methods: 

(i) If v (A) is a single-valued function of A with a row of 

poles along the negative real axis (and possibly other 

poles also), we complete the contour by a large circle of 

radius R, not passing through any pole of the integrand 

(Fig. 3.1). In all the problems in this work the integral 

over the large circle vanishes in the limit as its radius 

tends to 00 . Thus, in the limit, the line integral (4) is 

equal by Cauchy's theorem to 2iri times the sum of the 

residues at the poles of its integrand. This case usually 

arises in problems of conduction of heat in finite regions. 

(ii) In problems of conduction of heat in semi-infinite 

regions, v(A) usually has a branch point at A=0. In such 

cases we use the contour of Fig. 3.2 with a cut along the 

d^v _ £ v = Q 

dx2 h 
(3) 

v (t) (4) 
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Fig. 3.1 Contour of integration 1. 

Fig. 3.2 Contour of integration 2: 
The Bromwich contour 
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negative real axis so that v(A) is a single-valued function 

of A within and on the contour. In the limit as the radius 

of the large circle tends to infinity the integral round it 

can be shown to vanish, and the line integral (4) is 

replaced by a real infinite integral, derived from the 

integrals along CD and FG, together, possibly, with 

contributions from the small circle about the origin and 

any poles of the integrand. 

For a more exhaustive account of the Laplace transform 

and other methods of solution of the heat equation, see 

C.J. chapter 12. 

3.3 Infinite line—source solution. 

3.3.1 Ideal case. 

The simplest mathematical model for a line-source 

experiment consists of a thin heater in perfect contact 

with a large sample. We seek a solution to the one-

dimensional heat equation for an infinite line-source along 

the z-axis transmitting heat at the rate Q per unit length 

per unit time into an infinite medium for t>0. In 

cylindrical coordinates 
92v 1 9v _ 1 9v , t>0 (1) 
ar2 r 9r h 9t 

subject to 
lim (r 9v/9r) = - Q/(2nk) , t>0. (2) 
r-> 0 

The boundary condition at the surface of a cylindrical 

heater of radius r requires that the radial component of 

the heat flux F be the same on both sides of the surface of 

the heater: 
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F = -k9v/9r . (3) 

F is the flux in the outward direction and is related to 

the linear power Q through the equation F = Q/(2 TT r). 

Hence 

Q = -277rk 3v/9r . (4) 

A line-source can be regarded as the limit of a cylindrical 

source as r-*0. The required boundary condition is then 

lim (r 9v/3r) = -Q/(27rk) . (5) 
r+ 0 

A second boundary condition requires that v be bounded as 
r->oo . 

Laplace transformation of (1) and (2) results in the 

subsidiary equation 

a£f + I as _ q 2v = o 
dr r d r 

subject to 

lim (r dv/dr) = Q/(27Tkp) (7) 
r-*- 0 

where q 2 = p/h, and p is the transformation variable. The 

general solution of (3) is (MacLachlan, 1955) 

v = AIQ(qr)+BKo(qr) , (8) 

where A and B are functions of p, and i 0* K
0
 a r e Bessel 

functions. I diverges as r->°° ,thus A=0. Applying the 

boundary condition (7) to (8) gives 

v = Q K0(qr)/(2irkp) . (9) 

Taking the inverse Laplace transform of this (Bateman 

Manuscript Project, 1954), 

fl= Ei felY ( 1 0 ) V = - -r^r El 
4TTK i^nr j 

where 
/ CO 

e"u/u du (11) 
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the "exponential integral", a tabulated function (Beyer, 

1981). This is a well known result. It was described here 

only to introduce the Laplace transform method which will 

be used extensively in subsequent sections. 

A power series expression of the exponential integral can 

be shown to be 

Ei(-x) = j + In x - x + x2 - x3 + ... (12) 

2.2! 3.3! 

where j=0.5772157 is Euler's constant. 

A plot of -Ei(-r2/4ht) against ln(ht/r2) is given in 

figure 3.3. The first two terms of the expansion (12) are 

often used as an approximation to Ei in equation (10) to 

determine the thermal constants from a plot of temperature 

v against In t, as also shown in figure 3.3. This plot, 

however, shows that care must be exercised (in the present 

experiment) in applying this approximation as the error 

becomes less than 1% only when ht/r >10. For a rock with 
_ r O 

h=1.5xl0, m s and an offset r=0.003 m, this corresponds 

to a time of about 60 seconds, which tends to make 

acquisition times rather long. Also, at such large times 

the sensitivity decreases as the rate of temperature 

increase is small. The acquisition time can be reduced 

considerably if r is made smaller. In the present work, 

however, a wide range of offsets were used and the series 

for Ei was computed with a number of terms sufficient to 

give the required accuracy. Because powers of the parameter 

h appear in expression (10), a nonlinear least-squares 

fitting method is required to determine the parameters k 

and h from the experimental data. This is described in 

section 3.10. 30 
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3.3.2 Maximum gradient solution. 

Differentiating equation 3.3.1 (10) with respect to time 

gives 

v' = 3v/3t = Q/(4Trk) exp {-r2/(4ht)} (1) 

which has a maximum v' = 3v/3t 
m ' 

Substituting in (1), 

at tm=r2/4h. (2) 
t m 

k = Q exp(-l)/(47ivi;tm) . (3) 

The conductivity k and diffusivity h can be determined 

very easily if v^ and t are known (Scott et al., 1973; 

Cull, 1975). This method, however, is not very accurate in 

this type of experiment as it relies on the precise 

determination of just one point on the temperature versus 

time curve. Better repeatability is achieved by fitting a 

set of experimental points to a theoretical curve, as 

described in section 3.3.1. Differentiation of the 

experimental curve also introduces uncertainty in the value 

of v^, and requires filtering of the high-frequency 

components to reduce noise. The value of t m depends on the 

offset r of the temperature sensor through equation (2). If 

r is made small, v^ occurs at a low time, when the shape of 

the curve is largely dependent on the thickness of the 

heater and the contact resistance between heater and rock, 

as shown in sections 3.5 and 3.8. On the other hand, large 

values of r reduce the overall sensitivity thus making v^ 

difficult to determine. 
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3.4 The cylindrical source. 

In the previous sections the heater was assumed to have 

zero diameter, and no heat capacity. The error introduced 

by such an assumption will be computed here. 

The problem is modelled as follows: consider the region 

r>a initially at zero temperature, in contact at r=a with a 

perfect conductor of heat capacity S per unit length of the 

cylinder. Heat is supplied to the cylinder for t>0 at the 

rate Q per unit length per unit time. C.J. show that the 

temperature v at the surface of the cylinder is given by 

v = 2 Q P 2 f m l-exp(-htu2/a2) du (1) 
7R3K J U 3A" (U) 

where 

A(u) = CuJ0(u)-3J1(u)]2 + [uYo(u)-3Y1(u)]2 , (2) 

J Q, J-̂ , YQ , Y-̂  are Bessel functions, k and h are the 

conductivity and diffusivity of the medium and 3=2rra pc/S 

is a parameter which is twice the ratio of the heat 

capacity of an equivalent volume of the medium to that of 

the perfect conductor. The temperature at the surface of 

the wire computed using (1) was compared with that given by 

the simple line-source solution at the same position. The 

function (vj-v)/v, where v^ is the line-source solution 

3.3.1 (10) is plotted in figure 3.4, and decreases rapidly 
ft _ q _") with time. Taking pc=2xl0 Jm K for a typical rock and £ 

c=4xl0 for a constantan or nichrome heater wire, (3 and 

the error becomes less than 1% when ht/a2=50. For a wire of 

diameter 3.0xl0~4 m, and a sample with h=1.5xlO~6 m 2s" 1, 

this corresponds to a time of about 1 second. 

33 





3-5 Line—source with contact resistance. 

3.5.1 The temperature transform. 

. In this section an attempt will be made to evaluate the 

effect of the layer of cement between the heater and the 

sample. In needle-probe experiments the contact resistance 

is sometimes modelled by a vanishingly thin resistive 

coating on a cylindrical heater of finite radius (see for 

example Blackwell, 1956), Fig. 3.5a. This method, however, 

is not suitable for modelling the present experiment 

because the radius of the heater is one order of magnitude 

smaller than the thickness of the cement. The model by 

Blackwell (1956) is modified here to include a resistive 

cylindrical layer of radius b surrounding and concentric 

with a linear heat source, Fig. 3.5b. The initial 

temperature is zero and the linear power supplied to the 

heater is Q for t>0. The temperature sensor is embedded in 

the rock, i.e. we are looking for a solution in the region 

r>b. In cylindrical polar coordinates, the subsidiary 

equations are 

d 2v x 

dr2 

1 
+ — r 

dvj 

dr 
= q 2v x ,0<r<b (1) 

d 2v 2 

dr2 

1 
+ — r 

dv2 

dr 
= q 2v 2 , r>b (2) 

subject to the boundary conditions 

Vjl = and k^dv^/dr = k2d\?2/dr at r=b (3) 

lim (rdv^/dr) = -Q/^irkjp) and (4) 
r->0 

v2 bounded as r-> (5) 

Subscript 1 refers to the cement, subscript 2 to the rock 

and 
35 



+ 

ROCK 
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b) 

Fig. 3.5 Needle-probe (a) and line-source (b) 
models. Enlarged cross-sectional views 
of heater, contact material and sample 
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qi = p/hi , i=l,2 . (6) 
The general solutions of (1) and (2) are 

v x = AI o( q ir)+BK o( q ir) (7) 

v 2 = CIo(q2r)+DKo(q2r) (8) 

where A,B,C and D are arbitrary functions of p, and I0, K q 

are Bessel functions. IQ(p) diverges as p->°° , so equation 

(5) requires that C=0. Using IQ(P) = I 1(P) and K' ( p ) ( p ) , 

(4) gives 

B = Q/(2 TT k l P) . (9) 

The boundary conditions (3) and (9) give 

D = Q/(2nbpA ) (10) 

with A = q 1^ 1K 0(q 2b)I 1(q 1b)+q 2k 2K 1(q 2b)I 0(q 1b). (11) 

Thus the 'Laplace transform of the temperature in the sample 

is given by 

v 2 = Q Ko(q2r)/(27TbpA) (12) 

with a similar expression for v^. 

3.5.2 Exact solution. 

By the inversion theorem of the Laplace transform, the 

temperature in the sample is 

Y+i°° 
v2(t) = l/(2TFi)y v2(p) etp dp . (1) 

y-lco 
To evaluate v2(t) a standard artifice is employed. Let 

v2(p) = F(p)/p . (2) 

Then, by a well-known theorem of the Laplace transform 

(Bateman Manuscript, p.150) 

v2(t) =/'t/ 1 P+±C°F(p)etP dp 1 dt . (3) 
J oXwiJ Y_i00 f 
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V2(p) "has a branch point at the origin, and the method 

outlined in 3.2(ii) can be used. The contour of integration 

can be replaced by the Bromwich contout B ^ in Fig. 3.2. 

The portions ABC and GHI of the integral vanish as 00 , 

as does the integral around DEF as e+0. 

Setting p = ae~l7F on the portion CD 

= ael7T on the portion FG, 

where a is real and positive, 
no 

"i1T» ~"ta do (4) / F(p) efcP dp = f F(ae"i1T) e 
•'Br, J 0 

F(aei7r) e-tff da - / 

/
CO 

Im (F(aeilT)} e"ta da 
0 Setting x=( a/h2 )1//2, h= (h2/h1)1//2 , and using 

K n ( z E I 7 1 1 / 2 ) = + TT/2 i E
+ N 7 R I / 2 [-Jn ( 2 )+iYn (z ) ] (5) 

In (z ei 7 7^ 2) = e+n7Ti/2 J n ( z ) ( 6 ) 

to replace the modified Bessel functions of imaginary 

argument by ordinary Bessel functions of real argument, 

equation 3.5.1 (11) becomes 

A = TTX y (x)/2 + i-rrx $(x)/2 (7) 

where y(x) = hk1YQ(xb)J±(hxb)-k2Y1(xb)JQ(hxb) (8) 

and $(x) = hkJLJ0(xb)J1(hxb)-k2J1(xb)J0(hxb) (9) 

From equation 3.5.1 (12), 

Im (F) = Im {KQ(q2r) A*/(AA*)} , (10) 
•k 

where A denotes the complex conjugate of A . 

Then equation (3) becomes 
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> • £ / V 
7T b J 0 J 0 

JQ(xr) y(x)-Y0(xr) $(x) 

y2(x)+$2(x) 
dx. (11) 

Integrating over t 

JQ(xr)y(x)-Yq(xr)$(x) dx . (12) 
x2{y2(x)+$2(x)} 

If 11̂ =112/ k 1=k 2/ or in the limit b-> 0, this solution 

reduces to the simple line-source solution 3.3.1 (10). 

3.5.3 Approximate solution. 

An alternative approximate solution to equation 3.5.2 

(12) valid for small values of b will be derived in this 

section. Assuming that (q2b) is small, which corresponds 

either to the large-time solution or the case where b is 

small (small contact resistance), a solution is derived as 

a power series in increasing powers of Approximating 

the modified Bessel functions in Eq. 3.5.1 (11) by the 

first few terms of series in ascending powers of p, (C.J., 

Appendix III), 

IQ(z) = 1+Z2/4+... 

I1(z) = Z/2+Z3/16+... 

KQ(z) = -{ln(z/2)+j}{l+z2/4+...}+z2/4+... 

K1(z) = 1/2 {ln(z/2)+j}{Z/2+Z3/16}-Z/4+1/Z . (4) 

(3) 

(1) 

(2) 

Substituting in 3.5.1 (11), 

A = k2/b 1̂1 + b2/(4k2)p ln(^p) (k2/h2-k;L/h:L) 
+ b2/4 p(l/h1-l/h2) (5) 

where 0(p ) represents the terms of order p and higher and 

3 = b 2 e 2 V (4h2). Making use of the binomial theorem to find 
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v2 = QKo(q2r)/(27Tpk2) 1 - b2/(4k2)p ln(3p) (k2/h2-k1/h1) 

- b2/4 (l/h1-l/h2)p + 0(p2)]. (6) 

v2 can be found from this by applying the inversion theorem 

to the separate terms of the series. From standard tables 

(Bateman Manuscript, 1954) 

/
oo 

e~u/u du (7) 
a 

L"1{K0(q2r)} = e"a/2t (8) 

L"1{pK0(q2r)} = (a-l)e"a /2t2 (9) 

where a=r
2/(4h2t) 

for the first, third and error terms respectively. In 

Appendix III the inverse Laplace transform of the second 

term is shown to be 

L-1{K0(qr)ln(3p)} = -e~a/(2t) ln[t/(a3)] . (10) 

Then, from (6), (7), (8), (9) and (10), 
v 2 = Q/(47Tk2)jy e"~u/u du -u 

+ b 2/(4k 2)(k 2/h 2-k 1/h 1) e~a /t ln[t/(a3)] 

- b2/4 (l/h1-l/h2) e"a/t + 0(a2 ) |. (11) 

If b=0, or k1=k2, h1=h2, this reduces to the line-source 

solution 3.3.1 (10). The approximation is valid for 

b2/h2t<<l and is often more useful than the exact solution 

as it easier to evaluate numerically. 

A numerical comparison of the exact solution with 

equation (11) shows good agreement. Fig. 3.6 is a plot of 

vE/v-j- against h 2t/b , where v £ is the sum of the second and 

third terms in (11), and Vj is the line-source solution 

with no contact resistance. The values of the 

conductivities and diffusivities are the following: 
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k 1=0.2W/mK, h j = 10 7 m 2/s, k 2 = 3, h 2=1.5xlO~ 6, which 

correspond to a typical granite/epoxy resin interface. Fig. 
— 6 

3.7 is a similar plot with k2=l-0, h2=0.6xlO ° for a 

typical granite/fire cement interface. 

3-6 Boundary effects. 

The effect of reflection of heat from the curved 

surfaces of a sample will be estimated in this section. 

3.6.1 Constant surface temperature. 

Consider a linear source emanating heat at the rate Q 

per unit length per unit time into an infinitely long 

cylinder with the surface r=b kept at constant temperature. 

The contact resistance at r=b is assumed to be zero. The 

differential equation describing the problem is 

92v 1 3v = 1 8v , 0<r<b, t>0 (1) 
+ r dr ~ h 3t 

subject to 
v=0 at r=b (2) 

and lim (r 3v/8r) = -Q/(2frk) . (3) 
r—>°o 

The subsidiary equation is 
d2v 1 dv - 0<r<b (4) 

T + — -A— = 
dP r Hr ^2 

subject to v=0 at r=b (5) 
and lim (r dv/dr) = -Q/(27Tkp) . (6) 

r->0 

Using the same technique as in 3.3, 
Q i Io(qb)Ko(qr)-i0(qr)K0(qb) ( 7 ) 

V " ^ P IQ(qb) 
where the symbols have their usual meaning. An exact 

solution can be found for v using the Inversion theorem 
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V = 1/(2^1 
/

Y+i< 

y-i< 

v(p)ept dp . (8) 

The integrand is a single-valued function of p with simple 

poles at zero and on the negative imaginary axis. By the 

theorem of residues 

v = 2iri x residues , or 

v = 2iTT J ] 
1 

8 /8plpl0(qb) J J 
(9) 

where the f^'s are the poles of the function. Then 

I0(qb)K0(qr)-: v = Q 
T-n-X 

|r)-I0(qr)K0(qb) "I 

J p=0 
+ V-exp(-h 2a2t) I0(iasr)K0(iasb) 

^ LP d/dp I 0(qb)j p =_ h a2 s 

(10) 

where is the sth root of IQ(iab)=0 or JQ(ab)=0. Then, using 

K Q(z) I1(z)+I0(z)K1(z) = 1/z, 

IQ(zi) = JQ(z) and 

I-L (zi) = iJx (z), 

v = Q / U k ) 1/2 ln(b/r) 
- S 

3=1 

exp(-ha t) J0(a r) s ° s 
a2b2jf(asb) 

. (11) 

Fig. 3.8 shows a family of curves (v^-vj/v plotted 

against ht/b for several values of b/r. Vj is the line-

source solution 3.3.1 (10) in an infinite medium. The set 

of curves thus represent the error in the simple solution 

Vj and provide useful information on the relative sizes of 

b, r and the upper bound of t in the design of experiments. 

Equation (11) can also be used to yield values of k and h 
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( V J - V ) / V x 1 0 ~ 2 

Fig. 3.8 Effect of boundary reflections:zero surface 
temperature. 
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(see section 3.10) when equation 3.3.1 (10) is not 

applicable because of the small size of a sample or to 

limitations on the upper bound of t. 

3.6.2 Zero flux at surface-

The following model represents a sample with zero heat 

flux across the surface r=b (perfect lagging). The 

differential equation and boundary conditions are the same 

as in the previous case, with equation (2) replaced by 

8v/8r=0 , r=b. (1) 

The solution in the p-domain is 

Q 1 K0(qr)l1(qb)+K1(qb)l0(qr). 
v = TFk p l1(qb) ( 2 ) 

Using the inversion theorem, 

.y+ic 

2iri 2 irk J 
y-i 

e p t K0(qr)I1(qb)+K1(qb)Io(qr) 
v - ^ r d p . O ) 

The integral has a double pole at the origin and a row of 

simple poles along the negative imaginary axis. Proceeding 

in a similar way as in the previous case, the residue at 

the origin is found to be 

2ht/b2 + r2/(2b2) - 3/4 + ln(b/r) . (4) 

The sum of the remaining residues is 

_2 V e X p ( ~ a s h t ) J o ( a s r )
 ( 5 ) 

(c^b2) j2(«sb) 

where the a 's are the positive roots of J-, (a b)=0. The 
5 i 

solution is then 
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V = 

OO 

[~2ht ri_ 3+ ln(b/r) 2 V eXp("h°st) Jo<asr)"| 
l b 2 2b2" 4 " ^ [. b J ( a b ) ] 2 J 
L s=l S O S 

2 Trk 
i n • n i r \ i n i i i r ^ n i l i 

(6) 
Fig. 3.9 shows a family of curves (vj-v)/v against 

ht/b , where the notation is the same as in 3.6.1. The 

same general considerations also apply to equation (6). The 

errors in the two cases have opposite signs, which implies 

that imperfect stirring of the heating fluid or partial 

lagging may help reduce the the error in real experiments. 

3-7. Axial-flow effects. 

In the previous sections the rock samples were assumed 

to be infinitely long, which resulted in an entirely radial 

heat flow. The effect of axial flow in a finite-length 

cylinder will be evaluated here in order to determine the 

minimum acceptable length for a sample. The relatively 

simple case of a cylindrical sample of finite length with a 

non-conductive axial heater is discussed by Blackwell 

(1953). Jaeger (1955) introduced a useful boundary 

condition for a cylindrical heater of radius "a" in contact 

at its surface with a solid. The heater is supposed to be a 

relatively good conductor so that its temperature is 

uniform over its cross-section, and there is no contact 

resistance at the surface. In the usual notation, the 

boundary condition at r=a is 

a 2 v + 2k _ay _ 1 _9v = _A (1) 
2 ak, 3r h n 9 t kn gz 1 1 1 

where A is the rate of supply of heat to the wire per unit 

volume. Jaeger (1955) solved the heat equation for a sample 

of length 2 1 and a heater of radius a. The initial 

temperature is assumed to be zero, the surface Izl =1 are 
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Fig. 3.9 Effect of boundary reflections: 
zero flux at surface. 
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maintained at zero temprature for t>0, and the boundary 

condition (1) holds at r=a. The expression for the 

temperature at the mid-point of the wire z=0, r=a is shown 

to be: 

8Q I 2 ^ ( " D n K 0(3 n) 
v(a,0) = — / ^ 

tt2X1 a 2 ~ (2n+l)2[(2n+l)7r2K0(3n)+2TTleK1(3n) 

8Q h?k ^ ^ (-l)n
 0 „ exp(-hu2t/a2) fk ^ (-1)" f exp(-hu t/a ) 

— > exp(-h32t/a ) J u du 
IT4 h2kf ' 2n+l n J (u2 + 32)An(u) 

n=0 
(2) 

with 3n=(n+l/2) ira/l, (3) 

An(u)=[(bn-u2)J0(u)+uHJ1(u)]2 (4) 

+[(bn-u2)YQ(u)+uHY1(u)]2 

and bn=3^(h1-h)/h, H=2kh1/(kxh), e=2k/(ak1). (5) 

Equation (2) was evaluated and compared with line-source 

solution Vj (equation 3.3.1 (10)). The error (vj-v)/v is 

plotted in Fig. 3.10. Because of the assumptions made, this 

is only a rough estimate of the errors involved in a real 
6 2 — 1 

experiment. For a typical granite with h=1.5xl0 D m s , 

t=140 s, a=10"4 m, ht/a2=2xl04. If the length 21 is 12xlO"2 

m, l/a=600 and the maximum error is well under 1% (Fig. 

3.10). If 2 l=6xlO"2 m, the error increases to about 1%. 
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3-8 Line—source between two slabs. 

In the previous sections cylindrical symmetry around the 

heater was assumed. In this section, a more realistic model 

is presented which takes into account the layer of cement 

between the two semi-cylinders of rock. The mathematical 

solution was derived in collaboration with A. Cameron, and 

details of the calculations can be found in Cameron (1981). 

Fig. 3.11a depicts a sample where the thickness of the 

cement has been deliberately exaggerated. The model chosen 

to represent the physical situation is shown 

diagrammatically in Fig. 3.11b, where medium 1 is the layer 

of cement of thickness 2a and medium 2 is the rock. The two 

media are assumed to extend to infinity in the x and y 

directions. As shown in section 3.6, this is justified 

provided that a suitable upper bound is chosen for the 

sampling time. The seemingly unusual choice of axes 

orientation simplifies the boundary conditions. 

The problem can be solved by the use of Green's 

functions, an account of which is given in C.J., chapter 

14. If the heater is assumed to be an instantaneous unit 

strength point source placed at the origin, the Laplace 

transforms of the temperature fields will be in the form 

V-L = u + WJL in medium 1 (1) 

v 2 = w 2 in medium 2 (2) 

where u is the Green's function of the heater, and w^/ w 2 

have to satisfy the heat equation, to vanish for t=0, and 

to be such that v^/ v2 satisfy the boundary conditions. The 

Green's function of the heater is 

u = 1/8 (7rh1t)-3/2 e x p [-R2/( 4 h lt)] (3) 
51 



/ 
/ 

M E D I U M 2 

\ 
\ 

M E D I U M 1 
H E A T E R X 

S E N S O R 

Z = - Q 

\ M E D I U M 2 

\ 
b) 

\ / 
/ 

Fig. 3.11 Model for line-source between two infinite 
slabs with contact resistance, a) View of sample 
and cement, b) Axis orientation. 

52 



where R= ( x 2 + y 2 + z 2 ) T h e Laplace transform of this is 

(C.J., p.372) 

u = (4TTh1R)"1 exp (-q-,R) (4) 

where the symbols have their usual meaning. Watson (1952), 

section 13.47, shows that this can be put in the form 
00 

u = (47rh1)"1/' J 0 ( £ r e x p ( - n 1 | z | ) d£ (5) 

J 0 

where r i £ 2 + q 2 and r=(x2+y2)1/2 . (6) 

The subsidiary equations for w 1 # w 2 in cylindrical polars 
are 

1 d2w1 8 2w x 1 8wx 8wx 
— — + — + - : + q 2w 2 = 0, | z| <a (7) 
r 80 3r r 3r 3z 

and 

1 9 2 W 2 8 2 W 2 1 3W2 3W2 

- — — + - — + + q 2w| = 0, |z|>a (8) 
r dQz drz r 3r 3z 

(9) 

and these are satisfied by 

/

CO 

S/Ti! J0(?r)A(^)cosh(n1z) at 
0 in medium 1 and by 

/

oo 

C/n2 J 0 U r ) B U ) exp (-ri2 | z | ) d£ (10) 
0 

in medium 2. A(£) and B(£) are arbitrary functions of 

with 

Hi = U ^ q ? ) 1 / 2 and q? = p/h± , i=l,2. 

The form of the solutions (9) and (10) was suggested by 

similar expressions given by C.J. in the solution of a 

related problem (see C.J., p.372). The exponential and 

hyperbolic functions (both symmetrical in r\(z)) were chosen 
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to reflect the symmetry of the problem. 

The boundary conditions are 

V^=V2 / |z|=a and (11) 

k19v1/9z = k29v2/9z , |z|=a . (12) 

Applying these to (9) and (10), we get 

^•klnl~k2ri2^ exp(n1a) 
k 2ri2coslirl1a+k1ri2sinhri2a (13) 

and 

v1=(47fh ) _ 1 f ^iTl1coshn1(a-z)+k2ri2sinhn1(a-z) 
J kj^n-j^sinhTij^ 

J UrK/ThdS a+k2n2coshri1a '1 ̂  

(14) 

In the z=0 plane (14) simplifies to 
00 

v1=(41rh1)-1/" lc1n1coahTl1a-Hc2n2Binhn1a 
0 klr1is^n^lrlla+k2r|2cosllr,la^^ ° (15) 

The inversion theorem can be applied to this to give an 

expression for v^. However, an approximation for small 

values of (ri^a) simplifies the inversion. This corresponds 

to the large time solution (Blackwell, 1954) or the case 

when a is small (cf. section 3.5.3). To the first order in 

(r^a), 
CO 

VX = (4-iThjL)"1 f £Jq( £r) {k/n2+ (l-k2n2/ri2)a} <3£ (16) 
J 0 

where k=k1/k2. This may be written as 

v-l = v ( 1 ) + v ( 2 ) (17) 

where v^1^ is the term in a 0 and v^2^ the term linear in a. 

In what follows it will be assumed that the orders of 

integration can be freely interchanged. Inverse Laplace 
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transformation of v ^ ^ gives (C.J., p. 372) 

v ( 1 ) = kh2/[8h1(7rh2t)3/2] exp C-r2/(4h2t)] . (18) 

- (7 ̂  

vv ; can be rewritten as 

v < 2 ) = ( 4 7 r h 1 ) " 1 r. CaJQ(Cr) (l-«2h2/h1[l + (h1-h2)C2/(h2^2+p)]} d£ 

Setting H = k 2h 2a (l^-T^) / (47rh2 ) , 

and using L""1 (l/(h2£2+p)} = exp (-h2£2t) , 

(constant) = 0 , 

(19) 

(20) 

(21) 

(22) 

we get 
(2) 

/ CO 
J U r ) exp (-h2£2t) 

r\ 

Using 

gives 

(23) 

d/dt exp (-h2^2t) = -h 2^ 2 exp (-h2£2t) (24) 

/
oo 

CJQ(?r) exp (-h2£2t) d£.(25) 
Making use of expression (29) in C. J., Appenxix III to 

evaluate the integral, 

v ( 2 ) = H/h2 d/dt (l/(2h2t) exp C-r2/(4h2t)]}. (26) 

The two expressions derived for v^^ and v^2^ represent the 

response to a unit strength instantaneous point source. To 

get the response for a continuous line-source of strength 

Q, we have to integrate over time and along the entire y-

axis and multiply by the "source strength" Q/picl* 

vx = Q/(p1c1) f°° I (v1(x,y-y',t-t'} dt' dy' 
J-co J 0 

(27) 

The final result is 
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/ / 
e"u/u du + Qaee"a/[4k2(7Th2t)1/2] (28) 

a with e=k1/k2 (l-h^h^ and a=x2/(4h2t) . (29) 

The first term is the well-known line-source solution 

3.3.1(10) in a medium of conductivity k 2 and diffusivity 

h2. This corresponds to the limiting case where the thermal 

behaviour of the system is controlled by the rock only and 

the effect of the layer of cement is negligible. The second 

term is a first order correction for the layer of cement 

and tends to zero as time increases. The approximation is 

valid for a2/h2t<<l. 

Equation (28) can be rewritten as 

V1 = VI + VE ' 

where Vj is the first term and v E the second, or "error" 

term. A graph of vg/ vj against h 2t/a is plotted in Fig. 

3.12 for various values of x/a. For a granite sample with 

k2=3 Wm'^K"1, h2=1.5xlO"^ m2s~'1" in contact with epoxy resin 

(k^C.2, h2=lO""7), the parameter £=-0.9; for granite and 

fire cement (k^l, h-^0.6xlO~6), E=-0.5. In Fig. 3.13, 

values of v E/vj derived in this section are compared with 

those of 3.5.3 for a granite/fire cement interface with 

x/a=r/b=10. As expected from the geometry of the models, 

the correction is always smaller and decreases more rapidly 

with time in the circular symmetry case. 
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3-9- Temperature equilibrium in cylindrical samples. 

It is often useful to be able to predict the time a 

cylindrical sample takes to come to thermal equilibrium 

when the temperature of the surroundings is altered. In the 

following analysis the sample is treated as a finite 

cylinder, and the effect of the heater wire and 

thermocouple neglected. C.J. show that for a cylindrical 

sample |z|<l, 0<r<a initially at zero temperature and with 

surface temperature v , the temperature v at the centre 

point r=0, z=0 is given by 
00 oo _ 2 

V _ 1 _ 8 V y (-l)
n

 expj-ht 

V
Q
 7T^Z^(2n+l)amJ1

(a
rn
) | 

n=0 m=l 

° m + ( 2 n + l )
2

7 T
2 

2 4 12 
( 1 ) 

where a is the mth root of J (a )=0. The function 1-v/v is m o o 
plotted against ht/b2 in figure 3.14. 

In the analysis above perfect surface contact was 

assumed. In practice, surface contact resistance and 

temperature disturbances due to imperfect stirring of the 

heating fluid will increase the equilibrium time. This is 

partly offset by the heat flowing into the sample along the 

heater wire and thermocouples. A treatment which takes into 

account the effect of a conductive wire is presented in 

Jaeger (1955). 
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Fig. 3.14 Temperature equilibrium in finite cylindrical 
sample. 
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3.10 Nonlinear least—squares. 

All the solutions of the heat equation derived in this 

chapter are of the form: 

v = v(tn;k1,k2#•.•,kp) = v(tn,k) (1) 

where t is treated as a variable and k=(k2,k2,...) is a 

vector of parameters k,h,r,... . If the function v is 

linear in the parameters, it can be written as 
oo 

v(tn,k) = £ k rx n r (2) 
r=l 

where the x
n r's are known or calculable functions of t n 

only. In this simple case, linear least-squares theory (see 

for example Jenkins and Watts, 1968) provides a way of 

calculating all the unknown parameters from a fit of 

equation (2) to a set of experimental points. In general, 

however, the temperature v is not a linear function of the 

parameters and a nonlinear least-squares fit is required. 

The following treatment of the problem is due to Box 

(1960). Suppose that within a region in the paramenter 
* 

space in the neighbourhood of the true parameter k fair 

accuracy is given by the linear approximation 
P v(tn,k*)-v(tn,k°) + £ (k?-k*)x£r (3) 
r=l 

where x°r={ 3v(tn,k)/3krIk=ko (4) 

and k° is some point within the region. k° is a set of 

guessed starting values. Substituting the starting values 

in the response function, let Av be the vector of 

discrepancies Avn=v^-v (tn,k°) between the observations v^ 

and the calculated responses v. The expectation value of 

the Avn's is then 
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p 
E(Av„)= £ <k?-*r>*£r <5> 

r=l 
which is linear model of the same form as equation (2). 

Treating the Avn's as observations, we can by means of 

ordinary least-squares obtain an estimate A k of k°-k*- if 

the functions were linear in the parameters, then the 

adjusted values k°+ k for the kr's would be elements of k, 

the true least-squares values. Because of nonlinearity, 

however, k°+ k does not give k at once, but a vector of 

"improved values" which now may be substituted for k° to 

provide a starting point for a second iteration, and so on. 

In this way, provided the function v is well-behaved and 

the starting values of k° are nt too far from the final 

values, the adjusted values will converge to the least-
A 

squares estimates k. The linear theory can then be used to 

judge adequacy of fit, to obtain an approximate 

representation of the sum of squares function in the 

neighbourhood of its minimum, and to find an approximate 

confidence region. 

In some cases the derivatives x n r are obtainable by 

direct differentiation of v. If this is not practicable, 

small changes can be made in each of the parameters in turn 

and the derivatives calculated from the differences. With 

this device it is necessary only to be able to compute the 

numerical value of the function v for any given values of t 

and k in order to carry out the iterative process. For the 

functions derived in this chapter, convergence to the real 
A values k is fast. 

Nonlinear least-squares theory was used in conjunction 
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with the infinite line-source solution (Eq. 3.3.1 (10)) in 

most of the experiments to yield values of conductivity and 

diffusivity from a set of experimental temperatures. The 

equation is restated here for clarity: 

v =-Q/(4lIk) Ei(-r2/4ht) . (6) 

k and h were chosen as the adjustable parameters. Then 

k_=(k,h) with guessed starting values k 0=(k°,h°). 

Differentiating (6) with respect to k and "h, 

x°nl = 8 v H k = k ° = <7> 

xn2 = 8 v / 8 h U = * ° = Q e~a/(47Tkh°) . (8) 

Eq.(5) can be written as 

E(Avn) = Ak 9vn/9k| k = k o + Ah 9vn/9h =1,0 • (9) h=h 

Applying linear least-squares theory to this expression, we 

obtain estimates of A k=(A k,A h): 

Ak = 

Ah = 

_ Z v k Z h 2 - Z k h Z v h (10) 
Z k 2 £ h 2 - ( j y ^ ) 

- S v h S k 2 - Z)khZ)vk (11) 
E k 2 L h 2 - (^kh) 

2 

2 

where v,k,h were substituted for ^v
n»xni'xn2 r e s P e c t i v e l y 

for clarity. The sums extend over all n's. k°+Ak,h°+Ah are 
then substitted for k°, h° respectively, and the iteration 
repeated to the required accuracy. The method was also 
tried in conjunction with equation 3.5.3(11) and three 
adjustable parameters, but the increased comlexity of the 
calculations was not offset by a better accuracy, and the 
method was not pursued. 
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3-11 Summary of results. 

The ideal line-source solution (equation 3.3.1(10)) was 

found to represent the temperature field within the rock 

adequately in the experiments, and was used in all 

calculations of conductivity. Because this equation cannot 

be inverted to give values of conductivity and diffusivity 

explicitly, the nonlinear least-squares technique outlined 

in sections 3.10 is required for calculations of the 

thermal parameters. 

Several factors contribute to departures from the ideal 

line-source solution, but they can be minimized by a 

suitable choice of experimental parameters. As shown in 

section 3.4 the finite thickness of the heater (0.2-0.3 mm) 

only caused an appreciable departure from the ideal 

solution in the first second of an experiment, and can be 

neglected. The contact resistance between heater and rock 

causes more serious departures from the ideal case at low 

times, which become progressively less important at larger 

times, thus imposing a lower bound on the sampling time. 

The approximate model of section 3.5.3 predicts an error of 

less than 1% at times greater than 20 s for a typical 

granite (k = 3 Wm~ 1K~ 1,h = l.5xlO""6 m 2 s _ 1 ) in contact with 

epoxy resin (k=0.2, h=10~"7) and times greater than 30 s for 

granite/fire cement (k = l, h=0.6x10""^). The more realistic 

model of section 3.8 predicts minimum sampling times of 50 

and 25 s respectively. 

The finite dimensions of the samples cause heat 

reflections at the surface at large times and impose an 

upper bound to the sampling time for a rock specimen of a 

given diameter. For a lagged sample 6xlO~2 m i n diameter 
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such time is 180 s (section 3.6.2) and for a sample in a 

constant temperature environment 150 s (section 3.6.1). As 

shown in section 3.7, for a maximum sampling time of 150 s, 
_ 2 

the length of a typical specimen must be at least 6x10 m 
for an error of less than 1%. 

Temperature equilibrium to within 0.1 K in a sample 
— 7 

6x10 m m diameter and 0.12 m long subjected to a surface 

temperature increase of 10 K is reached in 15 minutes 

(section 3.9). All these figures must be re-calculated 

referring to the relevant diagrams in this chapter if the 

size or conductivity of the specimen, the type of adhesive 

or the sampling window are modified considerably. 
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Chapter 4 

APPARATUS 

4.1 line-source apparatus. 

The line-source apparatus, shown schematically in Fig. 

4.1, comprises the following main working blocks: 

1) A set of rock samples under measurement, provided with 

an axial heater and thermocouple (only one sample is 

shown in figure 4.1 for simplicity). A cross-sectional 

view of a typical sample is given in Fig. 4.2. 

2) An oven to maintain the samples at a constant 

temperature prior to measurements and a set of 

thermocouples for the measurement of oven temperature. 

3) A power supply to energize the linear heaters and 

ancillary circuits to measure such power. 

4) Signal processing apparatus for amplification and 

filtering of thermocouple voltages. 

5) A microcomputer for the acquisition, digitization and 

recording of sample temperature and power data, control 

of the heater and real-time data reduction according to 

the exponential integral solution described in chapter 

3. 

The apparatus is described in detail in the rest of this 

chapter. 

4.2 Rock samples, ovens and power measurements. 

4.2.1 Sample preparation. 

All the samples investigated were cylindrical, which led 

to a simplification of the mathematical modelling. However, 
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OVEN AMPLIFIER 10 Hz LOW-PASS 

Fig. 4.1 Line-source apparatus. 



r THERMOCOUPLE OFFSET = 1-4 mm 
b SAMPLE RADIUS = 30-40 mm 
1 SAMPLE LENGTH = 60-120 mm 

APPROX. DIAMETER = 0.5 mm 
OF GROOVES 

Fig. 4.2 Cross-sectional view of rock sample. 
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the shape is not critical provided the samples are large 

enough to satisfy the requirements set out in sections 3.6 

and 3.7. Sample preparation was relatively simple: the 

rock samples were cored (if required) to a diameter of 60-

75 mm, the ends cut at right angles to a length of 60-120 

mm and the cylinders sliced longitudinally into two 

semicylinders. Grooves were then scribed into one of the 

semicylinders to accommodate the nichrome and constantan 

heater (diameter- 0.2-0.3 mm) and one or more copper-

constantan thermocouples (wire diameter 0.12 mm - 40 SWG) 

parallel to the heater. The two semicylinders were then 

bonded back together with high-temperature epoxy resin, 

fire cement or zinc oxide-loaded silicone grease if quick 

dismantling was required. Two high-temperature PTFE-coated 

leads were welded to either side of the heater for the 

supply of current and measurement of voltage. 

4.2.2. Power measurements. 

The heater wires were subjected to very large 

temperature variations, with a consequent variation in 

their electrical resistances. Constantan was found to 

perform better than nichrome under these conditions due to 

the lower temperature dependence of its electrical 

resistivity and was used in the later experiments. However, 

resistance variations of 1% over a temperature range of 250 

K were observed even in the constantan wire. To obtain a 

better accuracy in the power measurements, the voltage 

across the heater and the current through it were monitored 

separately, the current being measured as a voltage across 



a high-stability resistor of known value. The two signals 

were digitized separately by the microcomputer and 

multiplied digitally at the data reduction stage. A check 

could thus be kept on the variations of electrical 

resistance with temperature and time. Typical voltages were 

of the order of 3-5 V, and currents 1-2 A, giving linear 

power inputs of the order of 30-60 w/m. 

The measured thermal conductivity of a sample is 

directly dependent on the linear power supplied to the 

heater. The greatest source of error in this parameter is 

probably due to mis-positioning of the welded joints at 

either end of the sample. For a sample 100 mm long, an 

uncertainty of 1 mm in the position of the voltage sensing 

leads introduces an error of 1% in the measured 

conductivity. This was taken as the average estimated error 

in the power measurements. 

4.2.3 Ovens. 

The samples were maintained at a constant temperature in 

one of three different temperature-regulated enclosures: 

1) A laboratory oven (Gallenkamp OV 150) with automatic 

on/off temperature control for the temperature range 300 to 

470 K. The temperature stability was better than 0.1 K over 

the duration of one conductivity measurement (Fig. 4.3). 

Slight temperature gradients existed inside the oven and 

had to be taken into account. The oven could accommodate up 

to eight samples on each of three trays. 

2) A constant-temperature water/ethyl glycol bath (Colora 

Ultra Cryostat KT 20 S) for temperatures between 2 50 and 

370 K, with a quoted temperature stability of 0.03 K. It 
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Fig. 4.3 Measured temperature drift in oven (including amplifier drift) 



could accommodate up to two samples, which were coated with 

self-amalgamating tape and wrapped in polythene bags for 

insulation of the elecrical connections. 

3) An autoclave (Fig. 4.4 and 4.5 - modified Chas Cook & 

Sons 0.75 litre stainless steel high-pressure autoclave) 

for high temperature and high pressure experiments (up to 

to 770 K and 50 MPa respectively). It was capable of 

accommodating one sample in a specially-designed holder. 

Oil was used as the pressurizing fluid. All the electrical 

connections were sealed by a high pressure, high 

temperature gland provided with a magnesium silicate 

sealing element. A proportional temperature control circuit 

was designed and built (for details see Appendix I) to give 

a temperature stability of 0.1 K over a time interval of 

200 s . 

Temperature equilibrium to within 0.1 K between samples 

and oven or autoclave was usually reached in 8-12 hours. 

However, best conductivity results were obtained if the 

samples were left in the oven at a constant temperature for 

20-24 hours. These much larger times than the results of 

secion 3.9 suggest are accounted for by the extra time the 

oven itself takes to come to equilibrium. In the cryostat, 

much shorter equilibrium times (2-4 hours) were possible 

because of the better mixing and higher thermal 

conductivity of the heating fluid. Measurements on the same 

sample could be repeated at intervals of one hour in air 

and 30-40 minutes in water. 
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Fig. 4.4 Cross-sectional view of autoclave. 
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Fig. 4.5 High-pressure equipment. 
From left to right are visible the oil pump, the autoclave 
with the pressure gauge, two rock samples, the microvolt-
meter, the heater power supply with the current-sensing 
standard resistor and the heater relay, the zero-point 
chamber, the thermocouple amplifier and the autoclave 
temperature regulator. 
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4.3 Temperature measurements. 

4.3.1 Thermocouples. 

T-type copper-constantan (Cu/Cu-43Ni) thermocouples were 

used throughout the experiments for the measurement of oven 

and rock temperatures. They were constructed by welding 

cotton-covered copper and constantan wires from the same 

batch in a Helium atmosphere. 

Thermistors (Robertson et al., 1966; Sachse, 1975) were 

also considered as temperature sensors because of their 

high sensitivity at moderate temperatures but were rejected 

because of the following limitations: 

- Low maximum working temperature - about 400 K for the 

small thermistors needed in the present experiments 

- Slower response than thermocouples for the same sensor 

size 

- Need for individual temperature calibrations for each 

thermistor 

- Severe loss of sensitivity at high temperatures 

- Drift due to mechanical and thermal shock 

- Higher cost than thermocouples. 

T-type thermocouples have a range of 80 to 640 K and a 

high thermoelectric power in the temperature range 270 to 

500 K, their sensitivity ranging from 38 yV/K at 270 K to 

61 yV/K at 640 K. Due to the rapid oxidation of copper at 

high temperatures, the maximum working temperature is lower 

than that of other thermocouple types such as iron-

constantan. This was not a limitation in the present 

experiments as oven and rock temperatures were kept below 

600 K at all times. 
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4.3.2 Thermocouple calibration. 

The voltage-temperature characteristic of a T-type 

thermocouple can be represented by an equation of the form 

V = aTc + bT2 + cT3 (1) 

between 2 70 and 570 K, to within 0.2 K (Kinzie, 1973). T c 

is the temperature in °C and V the output voltage. The 

Constantsa, b, c are determined by a cubic least-squares 

fit to a set of calibration points. Table 4.1 shows the 

thermoelectric voltage as a function of temperature for the 

thermocouples used for the transient measurement of rock 

temperatures as quoted by the manufacturers. 

Basset (1979) calibrated three thermocouples from the 

same batch against a platinum resistance thermometer 

(Rosemount Engineering Company model WS 104 calibrated to 

0.01 K by the National Physical Laboratory) in the range 

270-330 K and obtained e.m.f. values very close to those 

quoted by the manufacturers. A least-squares fit of 

equation (1) to Basset's data complemented by the data from 

table 4.1 in the range 330 to 470 K gave the following 

values for the constants: 

a=38.736yV/°C 

b=0.036 yV/°C2 (2) 

c=1.5xl0"7yV/°C3 . 

All the deviations of the experimental data from the cubic 

fit are less than 10 pV, or about 0.25 K, which is of the 

same order of magnitude as the resolution of the data in 

table 4.1. 

The thermocouple sensitivity S(T) is defined as the 

first derivative of equation (1) with respect to 

temperature: 
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TABLE 4.1 E.m.f. values (mV) for copper/ 
constantan thermocouples (B.S. 1828/1921). 
Manufacturer's data. 

°C 0° 100° 200° 300° 

0 0 4.24 9.18 14.66 
5 0.19 4.47 9.44 14.95 

lO 0.39 4. 70 9.70 15.24 
15 0. 58 4.94 9.97 15.53 
20 0.78 5.18 10.24 15.82 
25 0.98 5.41 10.50 16.11 
30 1.19 5.65 10.77 16.40 
35 1. 39 5.89 11.04 16.69 
40 1. 60 6.14 11.31 16.99 
45 1. 81 6. 38 11.59 17.28 
50 2.02 6.63 11.86 17.58 
55 2. 23 6.88 12.14 17.88 
60 2.45 7.13 12.41 18.17 
65 2. 67 7.38 12.69 18.47 
70 2.88 7.63 12.97 18.77 
75 3.11 7.88 13.25 19.07 
80 3.33 8.14 13.53 19.37 
85 3. 55 8.40 13.81 19.68 
90 3.78 8.66 14.10 19.82 
95 4.01 8.92 14.38 20.29 

0°C at cold junction. 
Tolerances to B.S. 1041/1966: 0°C - 100°C +1°( 

100°C - 400°C +1% 
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S(T) = dV/dT = a + 2bTc + 3cT2 . (3) 

To obtain a measure of the scatter in sensitivities, a 

least-squares fit of the linear equation 

V = a'T + b* (4) 

to a set of experimental points was performed for three 

random thermocouples in the range 270 to 330 K. The mean 

value of a'=41.04 uV/K with a standard deviation of only 

0.01 uV/K suggested that the likely scatter in 

sensitivities was too small to warrant individual 

calibration for every thermocouple. Equations (1) or (3) 

and the constants (2) were therefore used to convert 

voltage readings into temperatures for all thermocouples. 

Roeser and Lonberger (1958) indicated that a given 

couple will maintain its calibration within 0.2 K up to 570 

K. Repeated temperature cycling does not cause significant 

drift (Baxter et. al., 1969). When the e.m.f. of the 

calibrated thermocouples is compared with reference tables 

(e.g. Roeser and Dahl, 1938), the calibration output 

differences are usually proportional to the thermoelectric 

voltage. In other words, a 10 V error at 1 mV output will 

double when the output is 2 mV. Kinzie (1973) quotes the 

accuracy tolerance typical of commercial thermocouples as 

+0.8 K between 210 and 370 K and 0.3% of reading between 

3 70 and 470 K. Kinzie also reports a pressure dependence in 

the thermoelectric potential, whereby increased pressure 

results in a decreased output. A nearly linear temperature 

vs. pressure correction curve holds from 0 to 7xlO MPa, 

giving an additive correction of about 5.2xlO~4 K/MPa when 

there is a 100 K temperature difference between the 
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thermocouple junctions. This correction was considered too 

small to be significant in the present work, and was 

neglected. 

4.3.3 Temperature measurements. 

The temperatures of the oven, cryostat and autoclave 

were measured by a copper-constantan thermocouple. The hot 

junction was inserted in an aluminium block to smooth out 

rapid temperature fluctuations, the cold junction being 

maintained at the ice point in an air-cooled ice point 

reference chamber (De la Rue Frigistor model 106) with 

automatic temperature control, quoted temperature accuracy 

of 0.00 to 0.05 K and temperature stability of +0.01 K. The 

resulting e.m.f was measured with a differential voltmeter 

( Honeywell model 1002 and later Fluke 8860A or Fluke 

8050A) to an estimated accuracy of +10 pV, or about +0.25 

K. The voltage reading was then converted to a temperature 

value by a microcomputer program making use of the first 

two terms of equation (1) together with the values in (2) 

for the constants a and b. The contribution of the cubic 

term in (1) was found to be negligible for temperatures up 

to 500 K. The overall acuracy was estimated at about 0.5% 

due to thermocouple calibration errors plus 0.5% due to the 

slight temperature gradients in the ovens. 

Small diameter thermocouples (0.12 mm wire) were used in 

the transient measuremnts of the temperature of the rock 

samples. The thermocouple wires were positioned parallel to 

the heaters to reduce conductive heat losses along the 

wires. In this arrangement, the leads run roughly parallel 

to equithermal surfaces, thereby reducing the distortion of 
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the temperature field within the rock. The reference 

junction of the thermocouple was placed in a second 

aluminium block inside the oven. This proved sufficiently 

stable for most measurements as the e.m.f.'s of the two 

junctions were nearly equal and tended to track each other 

during fluctuations in the oven temperature. The output 

voltage V of the thermocouple was then a measure of the 

temperature difference v between the oven and the rock 

sample, which allowed direct amplification of the signal 

without the need for a large and accurate offset reference, 

and a means of testing the thermal equilibrium between oven 

and sample. The temperature was calculated from the 

sensitivity S(T) of the thermocouple at the temperature T 

using the expression 

v=V/S(T) . (5) 

•For measurements at oven temperatures within +20 K of 

the ice point, the ice point chamber was used as the cold 

junction reference point because of its better stability; a 

voltage offset was subtracted from the output of the 

amplifier in order to bring the signal within the range of 

the data acquisition system. 
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4.4 Signal processing. 

4.4.1 Noise. 

The very low voltage levels associated with 

thermocouples in the high-resolution temperature 

measurement system required protection against electrical 

noise. The main types of noise encountered and the steps 

taken to counteract them are listed below in order of 

importance (Fig. 4.6): 

1) Shot noise and 1/f noise (Motchenbacher and Fitchen, 

1973) caused by the semiconductors in the front stage of 

the thermocouple amplifier contributed most to the overall 

noise figure. Because they lie in the same frequency range 

as the signals (Fig. 4.6), they could only be partly 

reduced by the use of a good thermocouple amplifier with a 

low noise figure (see section 4.4.2). 

2) Electromagnetic interference was reduced by screening of 

cables and amplifier, avoiding earth loops and using an 

amplifier and data acquisition system with differential 

inputs, and by careful design of the power supplies. 

Filtering of the signals (section 4.4.3) and digital 

filtering of the data (section 4.4.4) also gave good 

results as this type of noise has characteristic 

frequencies higher than those of the signals (Fig. 4.6). 

The thermocouple wires between the oven and the switches 

could not be screened. However, noise picked up in this 

section partly cancelled out because the thermocouple wires 

ran parallel and close to each other, thus being subjected 

to electromagnetic fields of roughly equal strength. 

3) Thermoelectric noise in the thermocouple connections and 
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switches was minimized by spreading thermally conductive 

silicone grease on switches and using compensating cables 

from the same batch of wire as the thermocouples. 

4) Thermal noise. In a resistor of value R, the thermal 

noise e.m.f. in the frequency range Af is given by (King, 

1966) 

E = ( 4kTR Af J1/2 

where k=l.38x10 J/K is Boltzmann's constant and T the 

absolute temperature. E was kept to a minimum by reducing 

the resistance of the thermocouple leads and limiting the 

signal bandwidth with a low-pass filter (see section 

4.4.3). 

4.4-2 Thermocouple amplifier. 

The thermocouple amplifier is the most critical 

component in the signal-processing apparatus because of the 

small voltages involved. It must satisfy the requirements 

of very low temperature drift, low noise and relatively 

fast response. A chopper amplifier (Hewlett Packard model 

425A) was used in early experiments, but it soon proved 

inadequate due to its limited bandwidth (0.2 Hz). An 

amplifier based on an integrated instrumentation amplifier 

(IA) was then designed and built (see Appendix I) having 

good frequency response and moderate drift. This was later 

replaced by an improved amplifier based on an IA (Analog 

Devices model 606M) offering excellent drift and noise 

performance (Analog Devices, 1979). Referring to Fig. 4.7, 

the gain equation of the amplifier is 

Vout - G(V+-V") + V R E F 

when v s e n s e = V o u f T h e 9 a* n G' calculated from the formula 

83 



Vout =<1+4x105/RG) (V+-V-) + V r e f 

Fig. 4.7 Instrumentation amplifier used as the 
thermocouple amplifier. 

INPUT — a w - M W 
OUTPUT 

Fig. 4.8 Second-order low-pass filter. Two such sections 
were cascaded to give the required fourth-order 
response. 
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G=l+4xl05/RQ, was set to 10,000 to give a sensitivity o 

about 0.4 V/K at the output when used in conjunction with 

copper-costantan thermocouples. V R E F had a range of -10 to 

+10 V and was adjusted before each conductivity measurement 

to cancel out small voltage differences between the 

thermocouple junctions. 

Table 4.2 shows the main characteristics of the IA: 

unlike operational amplifiers, the input impedance of both 

inputs is very high and independent of gain (Riskin, 1979), 

which keeps electrical loading of the thermocouples low. 

The high common-mode rejection ratio ensures good 

amplification of the differential signals (V+-V~~) and 

rejection of unwanted common mode signal between either 

input and ground, thus minimizing the effects of ground 

loops and electromagnetic interference. The gain accuracy 

of the amplifier over the frequency range 0.01 to 10 Hz is 

0.2%, 0.1% being cotributed by the intrinsic amplifier 

accuracy and 0.1% by the gain-setting resistor RG, while 

the gain nonlinearity is negligible. The temperature 

fluctuations within the amplifier case over the time of one 

conductivity run is estimated to be less than 1 K, causing 

a drift in input voltage of less than 0.2 uV. The severe 

effect of warm-up drift was eliminated by leaving the 

amplifier turned on during sets of measurements and by 

allowing 1-2 hours warm-up time when switching off proved 

necessary. The wide bandwidth of the IA insured a very flat 

response well beyond the frequencies of interest. The input 

voltage noise of 1 uV peak-to-peak was the most serious 

cause of error and limited the overall accuracy of the 



TABLE 4.2 Specifications of Analog Devices Model 606 M 
instrumentation amplifier used as the thermocouple amplfier 
(typical at 298 K, gain G=10,000 unless otherwise stated). 

Gain range 

Gain accuracy (G=100) 

Gain nonlinearity 

Input offset voltage: 

warm-up drift, 10 minutes 

vs. temperature 

vs. supply 

Input differential current offset: 

vs. temperature 

Frequency response: 

for 3 dB attenuation 

for 0.1% amplitude accuracy 

Input voltage noise (0.01 to 10 Hz) 

Common-mode rejection ratio 

Input impedance 

Reference terminal offset range 

1 to 10,000 

+0.1% ma x. 

+0.002% 

+5 uV 

+0.2 5 uV/K max. 

+3 uV/V 

+20 pA/K 

5 KHz 

200 Hz 

1 uV p-p max. 

110 dB 

109 ohm/3 pF 

+10 V 
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temperature measurements to about 25 mK. The "high" 

frequency components of this noise (1 to 10 Hz) are largely 

smoothed out by the least-squares fit during data 

reduction, being as likely to cause positive deviations as 

negative ones, but at the low end of the noise spectrum 

(0.01 to 1 Hz) the fluctuations have a period of the same 

order of magnitude as the data collection window and cannot 

be distinguished from the signal. This directly affects the 

repeatability of the conductivity results. Also , the 

amplitude of the amplifier noise has a l/f behaviour (Fig. 

4.6), so that its largest components lie in the critical 

frequency range. Even lower frequency components are 

probably present (Motchenbacher and Fitchen, 1973), but 

their effects are difficult to quantify due to the lack of 

manufacturer's data. 

The new types of integrated "commutating auto-zero" 

(CAZ) and monolithic chopper amplifiers (Intersil, 1982) 

are of great interest in low-drift signal processing 

applications because of their exceptionally low long-term 

and temperature drift characteristics (down to 200 nV/year 

and 5nV/K respectively). However, they have narrow 

bandwidths, high noise figures in the 0.1 to 10 Hz 

frequency band and tend to produce large spurious voltage 

spikes. It is likely that, as the technology in this field 

evolves, commutating amplifiers will become more suitable 

for fast microvolt-level amplification than those based on 

conventional techniques. 

87 



4-4.3 Low-pass filter. 

A low-pass filter was inserted between the thermocouple 

amplifier and the data-acquisition system to reduce high-

frequency amplifier noise and 50 Hz electromagnetic 

interference. To obtain a wide frequency response with good 

high-frequency attenuation, a fourth-order Butterworth 

filter was designed (Daryanani, 1976, Moschytz, 1975). The 

magnitude of the response function of the filter is 

h(f) = c i+(f/fq)8 r 1 / 2 

where f is the frequency and f Q=10 Hz is the -3 dB point. 

The graph of this function, plotted in Fig. 4.9, shows that 

the low-frequency gain is unity and that the theoretical 

attenuation is about 56 dB at 50 Hz and 80 dB at 100 Hz. 

Limiting the bandwidth of the filter to 10 Hz reduces the 

intrinsic noise of the thermocouple amplifier to less than 

1 uV peak-to-peak. To implement the filter, two second-

order active filters of the type shown in Fig. 4.8 were 

cascaded. The circuit diagram of the filter is given in 

Appendix I. 

Low-pass filters introduce a delay in the signal, to 

obtain a measure of which the response of the filter to a 

unit step function was calculated. The response function, 

plotted in Fig. 4.10, is seen to settle to within 1% of the 
i 

value of the input function in a time of about 0.2 s. This 

is equivalent to introducing a delay of the same order of 

magnitude in the output. Assuming a maximum rate of 

temperature increase of about 10 mK/s in the region of 

interest, the error in the output due to the filter delay 

is about 2mK, of the same order of magnitude as the 

resolution of the thermocouple amplifier. This was 





0 -10 -20 -30 -40 
TIME T ( S ) 

Fig. 4.10 Transient response of fourth-order 10 Hz 
Butterworth low-pass filter to unit step 
function. 
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considered a good tradeoff between the conflicting 

requirements of fast response and low noise. 

4.4.4 Digital filtering. 

A digital filter was used for further reduction of the 

noise in the data. The low-pass filter described in the 

previous section proved very effective but electromagnetic 

interference was still injected into the line between the 

low-pass filter and the data acquisition system (Fig.4.1). 

Also, as the voltage and current-sensing lines of the 

heater were not filtered, they were particularly sensitive 

to electromagnetic interference in the electrically noisy 

laboratory. The sampling time-window of the data 

acquisition system was very small (of the order of a few 

microseconds) so that even fast unwanted transients were 

recorded. In order to minimize these effects, digital low-

pass filtering of the data was attempted at an early stage 

in the experiments: fast Fourier transformation of the 

input time series was performed, the high frequency 

components suppressed above a given cutoff frequency, and 

the resulting spectrm inverse-transformed (Jenkins and 

Watts, 1968). Although the results were satisfactory, the 

procedure was not deemed to be suited to rapid routine data 

analysis by a simple microcomputer, and therefore was not 

pursued. A simpler, but effective digital filter was 

developed instead. A set of 250 data readings taken in 

rapid succession were averaged over a time interval t' = 20 

ms equal to the period of the mains voltage. Each reading 

is the sum of a slowly increasing signal s(t) and periodic 



interference of the form n(t)=A cos(wt+$). As t' is very 

small, s(t) is nearly linear in the interval (0,t*), so its 

average value is s(t'/2). Integrating n(t) over (0,t') 

gives the average interference 

<n> = A sin(wt'+$) - sin$ . (1) 
wt' 

As shown in figure 4.11, this function has zeroes at 

f=w/2n=50, 100, 150,... Hz, so that m a i n s - b o r n e 

interference is completely suppressed together with all its 

harmonics. Fluctuations in the mains frequency somewhat 

reduce the effectiveness of the filter. From equation (1), 

the average noise at the frequency (wQ+Aw) close to w Q will 

be .(neglecting the phase) 

<n>(wQ+Aw) = A AW/W q , (2) 

so for a typical fluctuation Aw/wo=0.01 in the mains 

frequency, the noise attenuation will be about 100. The 

filter is thus seen to have a small effect on the signal 

while offering good rejection of electromagnetic 

interference and some reduction of high-frequency noise. 

4-5 The microcomputer. 

The main purpose of the microcomputer was to perform the 

following operations: 

1) Analogue-to-digital conversion and temporary storage in 

memory of transient sample temperature, voltage and 

current signals from the heater. 

2) Switching the power to the rock heater on and off under 

the control of a programmable timer. 

3) Digital reduction of data and calculation of thermal 

constants. 
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<n> 

f = w/2TT (Hz) 

Fig. 4.11 Frequency response <n> of digital filter. 
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4) Display of data, programs and results on a visual 

display unit. 

5) Permanent storage of data and results on magnetic 

cassette tape for further analysis. 

4.5.1 Hardware. 

The microcomputer (Fig. 4.12) was a commercial single-

board unit (Nascom 1) expanded and modified to perform the 

required analogue data capture. The eight-bit central 

processing unit (CPU - Zilog Z80) performed all the major 

internal data transfer, input/output, arithmetic and 

logical functions and communicated with the memory and 

peripherals via the data, address, and control buses. 

Temporary storage of data and programs was provided by 16 

K-bytes of random-access memory (RAM). The computer 

monitor, Basic language interpreter, user programs and 

routines were permanently stored in read-only memory (ROM) 

and on cassette tape. Programs were inputted and all 

machine functions controlled from the keyboard. Data and 

programs were displayed on a visual display unit (VDU). A 

serial link enabled data transfers to/from a Cyber 176 

mainframe computer for fast calculation of time-consuming 

routines, access to library routines, hard-copy production 

and alternative storage of large data files on magnetic 

tape or cards. 

Two data-acquisition systems (DAS) were designed and 

built to perform the analogue data-acquisition and 

analogue-to-digital conversion (Fig. 4.12). The earlier DAS 

had a basic resolution of 8 bits (1 part in 256) and is 

described in Appendix I. Although this resolution was 
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Fig. 4.12 Block diagram of Nascom 1 microcomputer. 



adequate for the purposes of the experiments, the dynamic 

range (the ratio between the largest voltage input and the 

resolution) was rather limited. For example, if the 

resolution was set to 0.01 K, the maximum possible 

temperature rise was only 2.5 K, which was often exceeded 

in the measurements. For this reason, this DAS was later 

replaced by an improved version with higher resolution and 

speed whose main functional blocks are shown in Fig. 4.13. 

The 8-channel differential multiplexer selected the 

appropriate signal line. The signal was amplified and 

sampled at intervals determined by the programmable timer, 

and converted to digital form by the analogue-to-digital 

converter with a range of 0 to 5 V (or about 13 K) and a 

resolution of 12 bits (1 part in 4096) or 1.25 mV, 

corresponding to a temperature resolution of about 3 mK. 

The raw data was displayed in binary format to facilitate 

the setting-up of experiments and to check that the 

thermocouple and signal conditioning apparatus were in 

working order. Upon receipt of an "end of conversion" 

signal, the parallel interface temporarily stored the data, 

interrupted the CPU and instructed it to transfer the data 

into the memory. This interface also switched the power to 

the heater on and off under program control. The salient 

characteristics of the DAS are reported in Table 4.3: input 

current and and temperature drift were negligible and the 

input impedance very high, thus the accuracy was +0.025% of 

full scale reading after calibration of the scale factor 

and adjustment of the zero offset. 
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TABLE 4.3 Characteristics of the data-acquisition system 
(@ 298 K). 

Full-scale differential input voltage 

adjustable to 

Resolution 

Accuracy 

Inherent quantizing error 

Maximum data-acquisition rate 

Data-sampling time window 

Input current 

Input impedance 
Externally adjustable zero offset 
and scale factor (to calibrate scale) 

0 to 5.12 V 
(1.25 mV/bit) 

0 to 10.24 V 
(2.5 mV/bit) 

12 bits 
(0.025%) 

0.025% 

+ 1/2 bit 

30,000 samples/s 

5 us 

1 nA 

108 ohm/lOOpF 
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4-5-2 Software. 

The microcomputer was programmed in machine language in 

all the cases when high execution speed was required (for 

example in the data-acquisition routines which required 

service times of 80-100 ps), in peripheral control, and in 

interrupt routines requiring immediate attention from the 

machine and interruption of the current program. The Basic 

language was used in operations involving floating-point 

mathematical routines and output to the VDU or printer. The 

Basic interpreter was much slower in the execution of the 

programs than the machine language monitor, but eased 

programming considerably. 

The accuracy of the floating-point numbers was limited 

to 6 decimal digits, which was adequate for most 

calculations. Although least-squares routines generally 

require better accuracy, close examination of the nonlinear 

least-squares method of section 3.10 reveals that the final 

values of the unknowns are not sensitive to the number of 

decimal digits employed. To confirm this, several data sets 

were analyzed both on the microcomputer and a mainframe 

computer with an accuracy of 18 decimal digits. The same 

final results were obtained, although in some instances the 

microcomputer required more iterations than the mainframe 

computer to achieve the same accuracy in the results. 

Widely different initial values of the thermal constants 

were found to lead to identical final values of k and h. 

Data collection and automatic calculation of the thermal 

constants took 2 to 6 minutes, depending on the initial 

values assigned to the constants and on the number of 

iterations (usually 2 to 6) required to achieve the target 
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computational accuracy of 0.1%. As occasional transients in 

the mains supply caused spurious temperature readings, a 

routine was incorporated in the microcomputer program to 

detect and correct temperature readings which did not fit 

the trend of the temperature curve. 

The advantages of performing all the data processing 

locally were twofold: 1) Data transfers to the mainframe 

computer were quite slow due to the limitations of the 

connecting line (30 characters per second). With local 

processing, results could be obtained in a very short time, 

and if spurious readings were suspected, the causes could 

could be searched immediately. Also, data transfers on long 

lines are an extra source of random errors. 2) The data set 

analyzed could be made large, with a consequent increase in 

the accuracy of the results. For example, for a typical 

experiment with a time window of 60 s and temperature 

readings taken at intervals of about 0.3 s, over 200 

temperature points were analyzed, each point being an 

average of 250 digitizations. The same number of data 

points were taken in the heater current and voltage lines. 

A flowchart of the line-source programm used in most 

experiments is shown in Fig 4.14, and a listing in Appendix 

II. A more comprehensive Fortran/Assembly Language program 

was developed by M.A. Adam (1983) to run the line-source 

experiment on a Research Machines microcomputer with 

facilities for fast printing and storage on magnetic disc 

of data and results. 
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Fig. 4.14 Flowchart 
of line-source program, 
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Chapter 5 

RESULTS 

After a discussion of the expected overall accuracy of 

the method, thermal conductivity and diffusivity results 

for various rock types and two standard materials are 

presented in this chapter. 

5.1 Error analysis-

Estimates of the component errors contributing to the 

total experimental error are given in table 5.1. These are 

typical values only and are dependent on experimental 

parameters such as oven regulation, thermocouple offset and 

sample length. The error introduced by amplifier and 

reference drift in the transient temperature measurements 

was estimated from the standard deviation of sets of 

repeated conductivity measurements at a constant oven 

temperature and its average value is given for each sample 

in Appendix IV. It is dependent on oven regulation and 

amplifier type and increases with increasing sample 

conductivity. Average values of the standard deviation are 

about 1.5 and 3% for samples measured in conjunction with 

the new and old amplifiers respectively. The error in the 

heater length was derived from the uncertainty in the 

positioning of the welded joints (section 4.2.2), and the 

error in the current determination is mainly due to the 

uncertainty in the measurement of the standard resistor. 

The fluctuations of Q with time were observed to be less 

than 0.1 % of the average value during a run. The total 
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TABLE 5-1 Error components contributing to the total 
estimated error in measured conductivity and diffusivity. 

Param. Component Error (%) 

v Amplifier and reference drift 1.5-3 

Thermocouple calibration 1 

Amplifier 0.2 

Filter 0.02 

Data-acquisition system 0.025 

Q Sample length 1 

Voltage 0.025 

Current 1 

r 15 

t Zero error <0.02 

Scale error <0.01 

Mathematical model 1 

Working equation (Eq.3.3.1(10)): 

v= -Q/(4uk) Ei(-r2/4ht) 
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error in the conductivities, calculated as the sum of all 

the relevant components in table 5.1 (independent of r), is 

about 5-6%. However, the contribution of the reference 

drift is random and cancels out in averaging a large number 

of readings. The total (systematic) error under these 

conditions is about 4%. 

The error in the thermocouple offset r, due to the 

finite radius of the thermocouples (0.3-0.5 mm) and the 

heater wire (0.1-0.2 mm), introduced a systematic error of 

about 30% in the diffusivity measurements. The random error 

is also higher than in the conductivity measurements. This 

can best be illustrated with reference to the logarithmic 

solution of section 3.3.1 (restated below): 

v=Q/(4-rrk) {in t -j-ln(r2/4h)}. (1) 

k and h can be determined by ordinary least squares from 

the slope and intercept respectively of the curve v against 

In t in the interval (t min, t max), Fig. 5.1. The slope 

will only be affected by the reference drift in the 

sampling window t min to t max, whereas the intercept is 

sensitive to reference drift in the whole time interval t=0 

to t max. With t max" 2 tmin , the random error in h can be 

expected to be about twice that in k, a fact borne out by 

most results even when the exponential integral solution is 

used. 

The error in the oven and autoclave temperature 

measurements was estimated to be 1% (section 4.3.3) and 

that in the pressure measurements about 5%. 

A plot of the temperature residuals (the differences 
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Fig. 5.1 Errors in slope and intercept caused by 
temperature reference drift. The fractional 
error in the intercept is larger than that 
in the slope because of reference drift 
at times less than tm,_„. MIN 
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between the experimental temperature points and the best 

fitted curve) is given in figure 5.2. The residuals in the 

sampling window are less than 3.5 mK with a standard 

deviation of 1.2 mK and are randomly distributed around the 

zero level, which confirms the adequacy of the mathematical 

model. 

Some of the rock samples had two thermocouples embedded 

at different offsets from the heater. By determining the 

conductivity from both thermocouples, the quality of the 

mathematical model could be checked. Figures 5.3 to 5.6 

show conductivity vs. T plots for four Cornish granite 

samples having two thermocouples each. Each point is an 

average of one to four runs, with the error bars 

representing standard deviations. For most points the 

error bars of two conductivities from different 

thermocouples at the same temperature overlap, and the two 

sets of points for sample M5 are almost undistinguishable. 

A similar correlation was found in the temperature 

dependence of the diffusivity results even when the 

absolute values of h do not compare well due to 

inaccuracies in the determinations of the offset r. Some 

samples had to be dismantled at the end of a set of runs to 

re-measure the offsets, because the thermocouples and 

heaters had moved slightly during the high-temperature 

curing of the epoxy resin. 

A comparison of the conductivity results for samples M2, 

M3 and T9 (figures 5.3, 5.4 and 5.6 - measured in 

conjunction with the old amplifier) and sample M5 (Fig. 5.5 

- new amplifier) shows the importance of a very low-drift 

amplifier in obtaining good-quality results. 
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Fig. 5.3 Thermal conductivity of Merrivale granite sample M2. Suffixes A and B denote 
thermocouples A (offset r=2.85 mm) and B (r=4.27). 
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Fig. 5.4 Thermal conductivity of Merrivale granite sample M3. Offsets are 1.51 mm and 5.19 
mm for thermocouples A and D respectively. 
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Fig. 5.5 Thermal conductivity of Merrivale granite sample. M5. Offsets are 2.77 mm and 
4.26 mm for thermocouples A and B respectively. 
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Fig. 5.6 Thermal conductivity of Troon granite sample T9. Offsets are 1.96 mm 
and 3.51 mm for thermocouples A and B respectively. 



Robinson (1979) performed a set of tests to monitor the 

dependence of measured conductivity on the linear power, 

and detected no appreciable correlation. 

During all the experimental runs, the resistance of the 

heater wire was calculated from the average measured 

voltage and current through the heater. This provided 

useful information on the resistance variations with 

temperature and time. The standard deviation of a set of 

measurements of wire resistance at a constant temperature 

was usually less than 0.2% of the mean value, but larger 

variations occurred at different temperatures due to the 

temperature dependence of the wire and other random effects 

(Appendix IV). Fig. 5.7 shows that for a typical constantan 

heater the random variation is larger than the temperature 

variation (which should have a slightly positive trend with 

increasing temperature). This suggests that the 

potentiometric method of power measurement is slightly more 

accurate than simple current measurements coupled with a 

single resistance determination at room temperature, and 

justifies the increased complexity of the wiring and 

apparatus. 
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TEMPERATURE ( K ) 
Fig. 5.7 Heater wire resistance as a function of temperature. The figures next to the points 

show the chronological order of the measurements. 



5.2 Conductivity of fused silica and ceramic. 

The conductivities of two standard materials were 

measured in order to compare the absolute accuracy of the 

present method against published results. The requirements 

on standard materials are high thermal stability over a 

wide temperature range and a conductivity value similar to 

those of most rocks. Fused silica is widely acknowledged to 

have very stable thermal characteristics over a wide 

temperature range (Sibbitt et al., 1979). Conductivity 

measurements were performed in the range 300-470 K on a 

high-purity fused silica sample (supplied by Gooch & 

Housego Ltd.) with zinc oxide-loaded silicone grease as the 

contact material. A set of at least three readings was 

taken at each oven temperature in increasing steps of 25 K 

from 300 to 470 K. The effect of temperature cycling on the 

fused, silica, silicone grease, sample thermocouple and 

heater was checked by repeated readings at 300 and 470 K, 

and found to be negligible. Fig. 5.8 compares the results 

with those of Ratcliffe (1963) and Birch and Clark (1940). 

Values of individual measurements are shown together with 

average values at every temperature as a measure of the 

scatter in the results. The larger scatter at the low and 

high ends of the range is probably attributable to poorer 

oven regulation in these regions. The average percentage 

standard deviation of the individual conductivity values is 

1.5 %. The agreement with the published results is good in 

view of the limited length of the available sample (60.13 

mm). As previously shown, the accuracy in the determination 

of the power input Q (and hence the conductivity) is 

inversely proportional to the sample length. 
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The diffusivity results are plotted in Fig. 5.9 together 

with the values calculated from the equation h=k/pc, with k 

taken from the present experiments and p , c from Kanamori 

et al. (1968). The slopes of the h vs. T curves are in 

agreement, but the absolute values of the measured 

conductivities are 30% too low, probably because of the 

inaccuracy in the thermocouple offset measurement. Values 

of h from Kanamori et al- (1968) are also shown in Fig.5.9. 

Fused silica is unsuitable for use as a standard in 

needle-probe measurements where a long and thin hole has to 

be drilled into the sample. A material which has been 

found to possess the required machinabi1ity in this 

application is zero-porosity Corning Macor 9658 ceramic 

(Bloomer, 1980). The results of a set of conductivity 

measurements on a Macor sample (supplied by McGeoch & Co. 

Ltd.) with zinc oxide-loaded silicone grease as the contact 

material are shown in Fig. 5.10. Each point is an average 

of three to seven experimental values and the error bars 

represent the standard deviations. The increase in 

conductivity with temperature is that expected for a 

glassy material. The value at room temperature (Table 5.2) 

is in good agreement with that from a divided bar apparatus 

on discs from the same Macor block and those reported by 

Bloomer (1980), measured by a divided-bar and by a needle-

probe calibrated against a silica glass standard. 
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Fig. 5.9 Diffusivity of fused silica sample FS4A. The values of p and c in the equation 
h=k/pc are from Kanamori et. al. (1968), k is from the present study. 





TABLE 5-2 Comparison of conductivity results of Macor 
ceramic at 298 K. 

Source of data No. of readings k,S.D. 

Line-source (at 302 K) 
Divided-bar 
Needle-probe (Bloomer, 1980) 
Divided-bar (Bloomer, 1980) 

6 1.610+0.011 
24 1.605+0.003 
39 1.62 +0.03 
13 1.59 +0.04 

One of the values at 325 K was obtained after 

dismantling and reassembling the sample with a new heater 

and thermocouple, and shows a negligible discrepancy in the 

measured conductivity. The smoothed curve of Fig. 5.10 is a 

second-order polynomial in T. Other curves could have been 

fitted to the experimental points with as good a 

justification, but the differences would have been 

negligible within the temperature range of the experiments. 

Good repeatability was observed after temperature cycling 

to 470 K. 

The diffusivity results are plotted in Fig. 5.11. Tables 

of results for both standard materials are given in 

Appendix IV. 

119 



- 1 -0 
I 

CM 

E 

CO I 
O 
X 
sz 

09 
ZD 
L i _ 
L i -

a 

MAC 4A 

h=(AT+B) -1 

A=1.356E-3 
B=7.94 7E-1 

300 350 400 
TEMPERATURE (K) 

450 500 

Fig. 5.11 Diffusivity of Macor ceramic sample MAC 4A. 



5.3 Temperature dependence of conductivity. 

A set of samples representative of the main geological 

suites found in S.W. England were investigated. The size of 

the samples was kept as large as possible, yet compatible 

with the attainment of thermal equilibrium in a reasonably 

short time, so as to minimize the effects of grain-size 

inhomogeneities and heat reflections at the boundaries. A 

description of the samples is given in Appendix V, and the 

conductivity and diffusivity results, together with other 

relevant sample parameters, are tabulated in Appendix IV. 

Each result in Appendix IV is an average of several 

experimental runs, the standard deviation giving a measure 

of the repeatability. Some spurious results (probably 

caused by bad oven regulation or noisy data sets) are not 

reported. The heater wire resistances are also shown for 

each measurement as a good standard deviation in the 

measured wire resistance was found to be associated with 

repeatability in the conductivity. Corrections to the 

conductivity results were attempted in some cases where the 

resistance variations were wide: the conductivity was 

scaled proportionally to the wire resistance at a given 

temperature (normally room temperature), and in general 

this was found to decrease the scatter in k. This 

procedure, however, is no substitute for good temperature 

sets, a reflection of the fact that high wire resistance 

variations are associated with a shape degradation in the 

input power step function. 

Conductivity values of a set of granite samples from 

Merrivale (Dartmoor, Devon) are plotted against absolute 

temperature in Fig. 5.3, 5.4, 5.5 and 5.12. The samples 
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Fig. 5.12 Thermal conductivity of Merrivale granite samples M3, M5 and M8B. 
All least-squares curves are of the form k=(AT+B)-l 



were cut from a single block of rock and with the same 

orientation thus allowing a study of grain-size related 

conductivity variations. Each point on the graphs is an 

average of several measurements with the error bars 

representing the standard deviations. All the samples were 

dried at 400 K for 24 hours prior to measurements. The 

temperature sequence was started at 400 K, then T was 

increased in steps of 25 K to 470 K, then decreased to room 

temperature and increased again to 375 K in steps of 25 K. 

Measurements at sub-ambient temperatures down to 250 K were 

then performed on samples M5 in the cryostat in order to 

verify the l/T relationship in this range. Some 

measurements at 470 K were then repeated. It was thus hoped 

that conductivity variations caused by moisture loss from 

the samples would be minimized. The standard deviations at 
/ 

room temperature are considerably larger than the others, a 

consequence of poor oven regulation in this range. The 

absolute values of k also tend to be lower than expected at 

room T. The marginally poorer repeatabilty of measurements 

in the cryostat (sample M5) is not easily accounted for 

given the good intrinsic temperature stability of the ethyl 

glycol bath. 

The curves on the diagrams are best least-squares fitted 

lines of the form k=(A+BT)~1. This equation was chosen from 

the considerations of chapter 2, but the choice is rather 

arbitrary, as fits of lines of the form k=A+BT~1 or even 

straight lines k=A+BT led to similar correlation 

coefficients over the limited t e m p e r a t u r e range 

investigated. Fig. 5.13 shows a comparison of the smoothed 
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k-values for all the Merrivale granite samples together 

with a mean curve calculated from a least-squares fit to 

all the conductivity points. The sample-to-sample spread of 

conductivities is within +3% of the mean value at all 

temperatures. This is probably at least partly due to 

grain-size effects as it cannot be entirely accounted for 

by the inaccuracy in the linear input power measurements. 

Such differences are not uncommon in adjacent regions of 

coarse-grained rock (the average grain size of the 

orthoclase megacrysts in the Merrivale granite samples was 

20 mm). The slopes of the curves were all very similar, 

suggesting an almost identical temperature dependence of 

conductivity. 

Fig. 5.14 shows conductivity results from a set of 

samples from Troon (Carnmene11 is, Cornwall) all cut from 

the same block together with least-squares fitted curves. 

The temperature sequence was the same as for the Merrivale 

samples (except that for T12 which is described later). The 

values for sample T12 at 250 K seems to be anomalously low, 

but it was included having proved repeatable. Fig. 5.15 is 

a plot of the smoothed values only together with the mean 

curve for all the samples. The range of conductivities at a 

fixed temperature is wider than in the Merrivale granite, 

even if the grain sizes were comparable. The mean 

conductivity is slightly lower at ambient and sub-ambient 

temperatures, becoming substantially equal at temperatures 

above 400 K. This similarity in conductivities was 

attributed to the similar compositions of the granites. 

Values for a Cornish slate (Killas) specimen are shown 

in Fig. 5.16. The scatter in conductivities at a fixed 
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Fig. 5.14 Conductivity of Troon granite samples T9, T10A, T11A, T12, T13A and T14A. 
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Fig. 5.16 Conductivity of Cornish slate sample K20. 



temperature is small, reflecting the tendency of all line-

source measurements to give better repeatability for lower 

conductivity materials. For the same input power, a low-

conductivity material will cause a larger temperature 

increase at the sensor, leading to a lower experimental 

error. 

A granite sample from Holman Mine (Troon, Carnmenellis, 

Cornwall), was investigated over the extended temperature 

range 320-570 K. The sample was initially dried at 370 K, 

then measured repeatedly at 320, 370, 420, 510 and 570 K in 

increasing steps of temperature, then at 510, 420, 370 and 

320 K in decreasing steps. A similar second cycle from 320 

to 570 K and back to 320 K was subsequently performed. The 

resulting conductivities plotted in Fig. 5.17 show that a 

considerable conductivity decrease took place between 420 

and 500 K in the first T-cycle, which resulted in a lowered 

conductivity at the end of the cycle. The second cycle 

showed very similar conductivities at high temperatures, 

with a further decrease in the 320 K value at the end of 

the cycle. This behaviour was attributed to water loss and 

possibly some irreversible opening of microcracks in the 

quartz grains and at grain boundaries, and is within the 

limits predicted by the theory of section 2.3. Fig. 5.18 

shows the averaged conductivities as functions of 

temperature, the large error bars reflecting real changes 

in rock conductivity rather than experimental scatter. 

A similar procedure was applied to a dry Troon granite 

sample, Fig. 5.19. The conductivity of T12 was measured in 

increasing steps of oven temperature from 250 to 470 K. 
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Fig. 5.17 Effect of temperature cycling on conductivity of Holman granite sample H1A. 
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Fig. 5.13 Conductivity of Holman granite sample H1A. 
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Subsequent measurements at 320, 250 and 320 K showed a 

slight decrease in k, although point 11 at 320 K has too 

high a standard deviation to be conclusive. 

Fig. 5.20 shows a comparison of the present results for 

the line-source temperature dependence of conductivity for 

the Merrivale, Troon and Holman granites with those of 

Dodson (1979) for a Cornish granite sample, and those of 

Birch and Clark (1940) for Rockport, Barre and Westerly 

granites. Also shown are room-temperature conductivities of 

water-saturated Merrivale granite from divided-bar 

measurements on 8 samples and two water-saturated 

Gaveriggan granites by the needle-probe method. The Troon 

and Gaveriggan values at room temperature, obtained after a 

compression cycle to 50 MPa, are discussed in section 5.5. 

The values for the dry samples are seen to be about 5% 

lower than those for wet samples, as fairly high-

conductivity pore fluid is replced by air (with low 

conductivity), thus decreasing the apparent conductivity of 

the two-phase system. 

The diffusivities of all the samples are tabulated in 

Appendix IV. The absolute values for some samples are lower 

than expected. It is suggested that in some cases the 

thermocouple wires, uninsulated in the proximity of the 

junction, may have come into contact thus forming a second 

junction at a larger offset from the heater. The measured 

offset would then tend to underestimate the real one, thus 

leading to an underestimate in the measured diffusivity. 

The temperature dependence of the diffusivity closely 

approaches the expected theoretical trend h~l/T for all the 

samples measured in conjunction with the new amplifier. 
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5.4 Water saturation. 

In order to relate the measured high-temperature 

conductivities of dry samples to those of water-saturated 

samples, which are more representative of the in situ 

conditions of the rock, several approaches can be adopted: 

1) The samples are kept fluid-saturated over the entire 

temperature range. Birch and Clark (1940) used Helium and 

Nitrogen as the saturating fluids for temperatures up to 

770 K, obtaining repeatable measuremnts after temperature 

cycling close to those for water-saturated samples (Clark, 

1941). This method, however, is impractical and expensive 

for routine measurements, although high boiling-point 

liquids such as ethyl glycol or oil could be used as 

saturating fluids for temperatures up to 450-500 K. 

2) The conductivity is measured under hydrostatic pressure, 

thus closely reproducing the in situ conditions of the 

rock. Water-saturation should be almost irrelevant in this 

case because at sufficiently high pressures all the penny-

shaped cracks which most affect conductivity should be 

closed. This approach will be described in section 5.5 

below. 

3) The indirect method of section 2.3 is applied to relate 

dry to water-saturated conductivities by measuring the rock 

porosity. Alternatively, such a relationship can be 

determined experimentally by measuring (at room 

temperature) the conductivity of a sample after water-

saturation and again after drying. All the high-temperature 

measurements can then be corrected by multiplying them by a 

constant factor equal to the ratio of the wet to the dry 

conductivities at room temperature. The latter method was 
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attempted and the results are described below. 

The effect of water-saturation on two granite samples 

from adjacent core sections taken from Gaveriggan, 

Cornwall, was investigated at room temperature using a 

needle-probe technique. A 2 mm diameter hole was drilled in 

each of the samples by the Los Alamos Scientific Laboratory 

using an ultrasonic technique. The needle probe was 

calibrated against a Macor ceramic standard (k=1.605 at 300 

K). Water-saturation was achieved by evacuating the air 

from the samples (vacuum down to~l mm Hg for three hours), 

submerging the samples in water, and then allowing the 

water to penetrate the cracks under atmospheric pressure. 

Drying was performed at 450 K for 24 hours. The results are 

reported in Table 5.3. The conductivity of the water-

saturated samples are substantially identical, but the 

percentage variations after drying differ markedly, 

suggesting that pore and crack patterns have a more marked 

effect on the conductivity of dry samples than on wet ones 

where the interstitial fluid short-circuits the crack 

thermal resistance. It is likely that the same effect may 

also partially account for the spread of conductivities in 

the Merrivale and Troon granites. 
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TABLE 5.3 Differences between thermal conductivities of 
water-saturated and dry Gaveriggan granite samples at 296 
K. Units are Wm'^K"'1'. Figures in brackets are numbers of 
runs. 

SAMPLE k(WET) k (DRY) % CHANGE 

G1 3.177+0.036 (12) 3.067+0.058 (70) -3.5 

G2 3.164+0.039 (75) 2.861+0.038 (19) -9.6 

5.5 Pressure dependence of conductivity. 

The conductivities of two granite samples were measured 

over a range of hydrostatic pressures between normal 

pressure and 50 MPa, corresponding to in situ lithostatic 

pressures down to depths of about 2 Km. From the discussion 

of section 2.1, it is clear that pressure variations of up 

to 50 MPa do not directly affect the crystal lattice 

conductivity to a measurable extent. The present 

measurements were designed to investigate the effects of 

pressure on dry rocks, i.e. two-phase systems in which 

microcracks play a significant role in controlling the 

effective thermal conductivity. 

Oil was used as the pressurizing agent in the autoclave 

to provide true hydrostatic compression. The samples were 

carefully coated with silicone rubber compound to prevent 

ingress of oil. 

The results for a dry Troon granite sample (T12) at room 

temperature are shown in figures 5.21 and 5.22. The sample 

conductivity was measured at increasing pressure levels 

from 0 to 50 MPa and then re-measured in three subsequent 

137 



• T 12 

• 

A • 
> 
A 

• 
h D 0 • A 0 
1 • 0 A 

* • A • A • 
I F O • 

r • « o * 
o 4 

• cycle 1 increasing p . (( O I' 
0 • 2 

0 " 3 
A " 4 " 

a ^ • " 4 decreasing p 
A 

1 
0 10 20 30 40 50 

PRESSURE (MPQ) 
Fig. 5.21 Pressure dependence of conductivity for Troon Granite at 29 3 K. 

Points show results of individual runs. 



Fig. 5.22 Pressure cycling of Troon granite 
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cycles after heating respectively to 370, 420 and 470 K for 

24 hours. In the first pressure cycle the conductivity is 

seen to decrease slightly with pressure, but this result is 

not very conclusive given the considerable scatter in the 

values at normal pressure and their anomalously high values 

when compared to those for T12 at room temperature in Fig. 

5.14. The possible causes of this anomaly are the 

following: 

a) An experimental error whose causes remain unexplained -

the equipment was checked against a Macor standard and gave 

accurate results. 

b) A slight increase in the conductivity in the several 

months between the temperature and the pressure 

cycles, possibly associated with a gradual closing of the 

microcracks under internal stresses. A similar, if smaller 

effect was detected in sample H1A after the heating cycles. 

A more detailed investigation would be needed to confirm 

this effect. 

In the second and third pressure cycles of Fig. 5.22, 

heating caused the conductivity to drop in direct 

proportion to the temperature, but after applying a 

moderate pressure of 20-30 MPa all the values seem to 

converge to the same slight direct linear dependence on 

pressure. The set of measurements at normal pressure at the 

end of the last cycle are about 3% higher than those at the 

beginning of the cycle, which implies a permanent closing 

of some of the cracks even after the pressure is released. 

This is not an uncommon effect (see for example Kappelmeyer 

and Haenel, 1974, p.216). 

The pressure dependence for a Gaveriggan granite sample 
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(G3) is illustrated in figures 5.23 and 5.24. The sample 

was initially saturated with water, then measured at O, 25, 

50 MPa and again at normal pressure. Two more similar 

pressure cycles were performed after heating respectively 

to 370 and 450 K for 24 hours. Heating to 370 K had a 

negligible effect on the zero pressure conductivity, and 

heating to 450 K decreased it by about 2%. A pressure of 25 

MPa was sufficient to bring the dry conductivity back to 

the water-saturated value at the same pressure. 

The following conclusions were drawn from the high-

pressure experiments: 

1) The conductivity of both granite samples increases with 

increasing pressure. If a linear dependence is assumed, the 

average rate of increase is about 1.5x10 Wm K MPa for 

both the Troon and the Gaveriggan samples. 

2) Pressures of the order of 20-25 MPa are sufficient to 

equalize the conductivities of the dry and water-saturated 

rocks. 

3) The increase in conductivity is not totally reversed 

when the pressure is released. 

4) Better stability is observed in the conductivities at 

elevated pressures than at normal pressure. 

These cosiderations would appear to make conductivity 

determinations of dry granites at moderate pressures of 20-

25 MPa a feasible alternative to measurements of water-

saturated samples. Further experiments on a wider range of 

samples, which time limitations prevented in this study, 

are needed to confirm these results. 
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Fig. 5.24 Pressure cycling of Gaveriggan granite. Points shown are averages of 2-6 runs. 



Chapter 6 

CONCLUSION 

The results presented in the previous chapter 

demonstrate the validity of this line-source method of 

rapid thermal conductivity measurement over a range of 

elevated temperatures and pressures. The high-temperature 

measurements highlighted the marked temperature-dependent 

decrease in thermal conductivity for rocks likely to be 

encountered in a typical geothermal resevoir, and showed 

good agreement with the theoretical predictions and with 

published results for similar rock types. The high-pressure 

experiments detected a weak positive pressure dependence in 

Cornish granite and proved a valuable tool for relating the 

conductivity of dry samples to those of water-saturated 

ones, more representative of the in situ rock conditions. 

The use of the exponential integral solution within a 

well-defined sampling time window, though increasing the 

computational complexity, led to a satisfactory 

experimental accuracy. The statistical reliability was 

enhanced by the large size of the data sample obtainable 

using modern digital techniques. Local data processing by 

microcomputer resulted in a rapid detection of spurious 

results. 

Some of the mathematical solutions, and much of the 

instrumentation described in chapters 3 and 4 can be 

employed in conjunction with needle-probes for the thermal 

conductivity determination of unconsolidated or soft 

sediments. 
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Some aspects of the line-source experiment could not be 

investigated in detail because of time limitations. 

Suggestions for improvements and extensions to the method 

are given below as guidelines for further work. 

The improved availability of low-cost, fast 16 and 32 bit 

microcomputers will soon allow more complex mathematical 

computations to be carried out in real time. A quick 

determination of the conductivity, possibly by the 

logarithmic method, would enable a precise calculation of 

the upper and lower time bounds of the sampling window for 

every sample, based on parameters such as the thermal 

constants of the adhesive, sample dimensions and 

thermocouple offset. The conductivity would then be re-

calculated to a better accuracy by the standard method 

based on the sampling window thus determined. 

Automatic control by microcomputer of the oven and 

switching of sample thermocouples and heaters could easily 

be implemented. Temperature-sensing routines could be 

designed to continuously monitor the temperatures of the 

samples and start a measurement as soon as satisfactory 

temperature equilibrium is reached. This would allow 

concurrent measurement of up to 20-30 samples in the same 

oven over a range of temperatures and a period of several 

days, thus decreasing running costs and errors. 

The bonding materials used here were considered to be 

satisfactory, thermal silicone grease being preferred for 

ease of sample dismantling and inspection after 

measurements. However, a selection of sample bonding 

materials with thermal parameters matched to those of the 

rock would result in a decreased lower time bound for the 
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sampling window, with a consequent improvement in the 

repeatability of the results. 
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Appendix I 

CIRCUIT DIAGRAMS AND COMPONENT LAYOUTS 

OF LINE-SOURCE APPARATUS 
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Appendix II 

LINE-SOURCE BASIC AND MACHINE LANGUAGE COMPUTER PROGRAM 
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LINE-SOURCE PROGRAM 

10 REM - ALL REM STATEMENTS IN THIS PROGRAM SHOULD BE 
20 REM - REMOVED PRIOR TO EXECUTION TO INCREASE EFFICIENCY 
50 CLS:SCREEN 15,18:REM - CLEAR SCREEN 
60 PRINT"LINE-SOURCE PROGRAM" 
70 INPUT "OVEN TEMP. ";TE:REM - e.m.f. IN mV 
75 TE=(SQR(1500.48+0.144*TE)-38.736)/0.072 
78 PRINT "OVEN TEMP. = " ? TE?" C" 
80 INPUT "RADIUS (mm) ";R:R=R/1000 
85 REM - INITIAL VALUES OF CONDUCTIVITY AND DIFFUSIVITY 
90 K=3.2:INPUT "COND. ";K 
95 KS=.2:INPUT "DIFF. ";KS:KS=KS*lE-6 
100 DATA 125,10,10:REM - CLOCK PERIOD WHEN HEATER OFF 
110 DATA 125,10,10:REM - CLOCK PERIOD WHEN HEATER ON 
120 UL=400:REM - TOTAL NO. OF SAMPLES 
125 REM - V(N)=VOLTAGE, C(N)=CURRENT,T(N)=TEMPERATURE 
127 REM - (ADC UNITS),VX(N)=TEMPERATURE (K), TI(N)=TIME 
130 DIM V(UL+1),C(UL+1),T(UL+1) 
140 DIM VX(UL),TI(UL),TL(UL) 
150 GOSUB10000:REM - SET UP M/C CLOCK PERIOD TABLE 
160 DOKE 4100,3332 
170 A=USR(1): REM INITIALIZE PARALLEL PORTS,TIMERS -
175 REM - M/C ROUTINE AT 0D04H 
180 GOSUB 10010 
190 DOKE4100,3397:REM - ADDR. OF M/C READ ROUTINE 
200 A=10:REM - NO. OF READINGS WITH HEATER OFF 
205 REM - MAIN DATA-COLLECTION LOOP 
210 FOR 1=1 TO UL 
220 OUT 13,0:REM - MUX ADDR. 0 
230 T(I)=USR(1):REM - M/C SUBROUTINE READ 
240 OUT 13,32 
250 V(I)=USR(1) 
260 OUT 13,48 
270 C(I)=USR(A-I):REM - RELAY ON WHEN A=I 
275 PRINT I?T(l);V(I);C (I) 
280 NEXT 
290 OUT 13,0 
300 OUT8,0: REM RELAY OFF 
310 REM - END OF DATA-COLLECTION ROUTINE 
510 SN=38. 736+0 .-072*TE 
515 PRINT"THERMOCOUPLE SENSITIVITY=";SN;" uV/C" 
520 ST=0.064/SN:REM - TEMPERATURE CONVERSION FACTOR 
530 RESTORE 
540 READ A,B,C,A,B,C 
550 TI=A*B*C*24E-6+0.06 
555 PRINT"TIMING INTERVAL=";TI;" s" 
560 TJ=A*B*C*8E—6+0.01:REM - TIME OFFSET 
570 A=0 
580 B=0 
590 T0=0 
600 FOR 1=1 TO 10 
610 A=A+V(I) 
620 B=B+C(I) 
630 T0=T0+T(I) 
640 NEXT 
650 A=A/10:REM - V OFFSET 
660 B=B/10:REM - I OFFSET 
670 T0=T0/10:REM - TEMPERATURE OFFSET 
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680 V=0 
690 C=0 
695 REM - AVERAGE VOLTAGE, CURRENT 
700 FOR 1=11 TO UL 
710 V=V+V(I) 
720 C=C+C(I) 
730 J=I-10 
740 VX(J)=(T(I)—T0)*ST:REM - TEMP. ARRAY 
750 TI(J)=(J-L)*TI+TJ:REM - TIME ARRAY 
760 NEXT 
770 V=V/(UL-10)-A 
780 C=C/(UL—10)—B 
790. RE=0. 5056 
800 PO=V*C*3.41333E-6/RE 
810 PRINT"POWER= ";PO;" W/M" 
815 PRINT"OFFS. =";T0 
820 ZW=V*RE/C 
830 PRINT"RES. =" ,ZW 
1900 LL=230 
1905 L2=390 
1910 FOR N=L1 TO L2:REM - DISPLAY BAD POINTS 
1920 D1=VX(N)-VX(N-1) 
1930 IF(D1<0.04)AND(D1>0)GOTO1950 
1940 PRINTN,D1 
1950 NEXT 
2000 REM - SIMOD ROUTINE- TO CALCULATE CONDUCTIVITY 
2005 REM - AND DIFFUSIVITY BY NONLINEAR LEAST-SQUARES 
2015 A=100:B=0.0001:C=05772 
2030 PP-PO/(4*3.14159) 
2040 FOR IT=1 TO 10 
2050 S1=0:S2=0:S3=0:S4=0:S5=0 
2055 D=R~2/(4*KS) 
2060 FOR N=L1 TO L2 
2070 X=D/TI(N):Y=X:XX=X 
2100 FOR NN=2 TO A:XX=-XX*X*(NN-1)/NN"2:Y=Y+XX 
2110 IF ABS(XX)<B GOTO 2150:NEXT 
2150 VM=(—C-LOG(X)+Y)*PP/K:DE=VX(N)-VM 
2170 VL=—VM/K:V2=PP/(K*KS)*EXP(-X) 
2190 S1=S1+V1~2 
2200 S2=S2+V2"2 
2210 S3=S3+V1*V2 
2220 S4=S4+V1*DE 
2230 S5=S5+V2*DE 
2 240 NEXTN 
2250 D0=S1*S2-S3"2 
2260 D1=(S4*S2-S3*S5)/D0 
2270 D2=(S5*S1-S3*S4)/D0 
2280 K=K+D1 
2290 KS=KS+D2 
2300 PRINT K,KS 
2305 IF ABS(DL)<0.001 GOTO 2320 
2310 NEXT IT 
2320 END 
10000 REM -SUBROUTINE POKE-
10010 READ A,B,C 
10020 POKE 3328,A 
10030 POKE 3329,B 
10040 POKE 3330,C 
10050 RETURN 
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Interrupt 
occurred 

T1=new clock time const 
Stop clock. RL=1 

Mock Interrupt 

i 
MA=mux. address 

N=249 

Restart clocks 
T2= 80 us 

N ^ 
T , 

Switch on relay 

A=A/8. Save A 

Return 

ri=old clock time const 
Stop clock. RL=0 

J 
Return 

Interrupt 
fran ADC 

Call sub. 
Multisample 

Subroutine 
Multisample 
Read ADC 
ADOADC-MA 
A=A+ADC 
Return 

Stop clock 
Call sub. 
Multisample 

MUX=multiplexer 
ADOanalogue to digital 

converter 

Fig. AII.l Flowchart of machine 
language subroutines Read, 
Interrupt and multisample. 
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; LINE SOURCE PROGRAM - ASSEMBLER LISTING 

0D00 
/ 

ORG 0D00H 
000C = PIODA EQU 12 7PIO ADDRESSES 
000D = PIODB EQU 13 
000E = PIOCA EQU 14 
000F = PIOCB EQU 15 
0014 = RTC0 EQU 20 7TRC(CLOCKS) ADDR. 
0015 = RTC1 EQU 21 
0016 = RTC2 EQU 22 
0035 = KDEL EQU 0035H 7 DELAY SUBROTINE 
E98B = DEINT EQU 0E98BH7GET ARG. FROM BASIC 
F0F2 = SENDB EQU 0F0F2H7RET ARG. TO BASIC 

0D00 00 
/ 

TC0: DEFB 0 7SPACE FOR CLOCK 
0D01 00 TCI: DEFB 0 7TIME CONSTANTS 
0D02 00 TC2: DEFB 0 7 INITIAL. FROM BASIC 
0D03 00 DEFB 0 

/ 

;SUBROUTINE INITIALIZE 
?TO INITIALIZE PIO AND RTC 

0D04 3E4F INIT: LD A, 4FH 7 INITIALIZE PIO 
0D06 D30E OUT (PIOCA),A 
0D08 3ECF LD A,0CFH 
0D0A D30F OUT (PIOCB),A 
0D0C 3E0F LD A, 0FH 
0D0E D30F OUT (PIOCB),A 
0D10 3E07 LD A, 07H 7CLOCK MODE 
0D12 D314 OUT (RTC0)FA 
0D14 3E47 LD A, 47H ?COUNTER MODE 
0D16 D315 OUT (RTC1),A 
0D18 D316 OUT (RTC 2),A 7COUNTER MODE 
0D1A F3 DI 7 DISABLE CPU INTERRUPT 
0D1B ED5E IM2 7CPU INTERRUPT MODE 2 
0D1D CDC90D CALL RETINT 7FAKE RETURN FROM INT. 
0D20 3E0E LD A, 0EH 7CPU INT. VECTOR 
0D22 ED47 LD I,A 
0D24 3E28 LD A, 28H 7pio INT. VECTOR (DUMMY) 
0D26 D30E OUT (PIOCA),A 
0D28 3E87 LD A, 87H 
0D2A D30E OUT (PIOCA),A 7PIO INT. CONTROL WORD 
0D2C FB EI ?ENABLE CPU INTERRUPT 
0D2D CD3500 CALL KDEL 7WAIT ROUTINE 
0D30 3E24 LD A, 24H 7PIO READ INT. VECTOR 
0D32 D30E OUT (PIOCA),A 
0D34 3A000D LD A,(TC0) 7 START CLOCKS 
0D37 D314 OUT (RTC0),A -

0D39 3A010D LD A,(TCI) 
0D3C D315 OUT (RTC1),A 
0D3E 3A020D LD A,(TC2) 
0D41 D316 OUT (RTC2),A 
0D43 F3 DI 7 DISABLE CPU INTERRUPT 
0D44 C9 RET 

/ 

;SUBROUTINE READ 
0D45 CD8BE9 CALL DEINT 7ARG. IN D,E 
0D48 3E00 LD A, 0 
0D4A BB CP A, E 
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0D4B 2007 JR NZ, HALT1 
0D4D BA CP A, D 
0D4E 2004 JR NZ,HALT1 
0D50 3E26 LD A, 26H 
0D52 D30E OUT (PIOCA),A 
0D54 FB HALT1: EI 
0D55 76 HALT 
0D56 C9 RET 

/ 

7 INTERRUPT SUBROUTINE 
0D80 ORG 0D80H 
0D80 3E07 LD A, 07 
0D82 D314 OUT (RTC0),A 
0D84 3E47 LD A, 47H 
0D86 D315 OUT (RTC1),A 
0D83 D316 OUT (RTC 2),A 
0D8A D9 EXX 
0D8B DB14 IN A, (RTC0) 
0D8D 67 LD H, A 
0D8E DB15 IN A,(RTC1) 
0D90 6F LD L, A 
0D91 DB16 IN A,(RTC2) 
0D93 47 LD B, A 
0D94 0E01 LD C,1 
0D96 D9 EXX 
0D97 1827 JR INT1 
0D99 00 NOP 
0D9A 00 NOP 
0D9B 00 NOP 
0D9C 00 NOP 
0D9D 00 NOP 
0D9E 00 NOP 
0D9F 00 NOP 
0DA0 3E07 LD A, 7 
0DA2 D314 OUT (RTC0),A 
0DA4 3E47 LD A, 47H 
0DA6 D315 OUT (RTC1),A 
0DA8 D316 OUT (RTC2),A 
0DAA D9 EXX 
0DAB 3A000D LD A,(0D00H) 
0DAE 67 LD H, A 
0DAF 3A010D LD A,(0D01H) 
0DB2 6F LD L, A 
0DB3 3A020D LD A,(0D02H) 
0DB6 47 LD B, A 
0DB7 0E00 LD C,0 
0DB9 D9 EXX 
0DBA 00 NOP 
0DBB 00 NOP 
0DBC 00 NOP 
0DBD 00 NOP 
0DBE 00 NOP 
0DBF 00 NOP 
0DC0 3E20 INT Is LD A, 20H 
0DC2 D30E OUT (PIOCA),A 
0DC4 CDC90D CALL RETINT 
0DC7 1802 JR I NT 2 
0DC9 ED4D RETINT : RET I 
0DCB DB0D INT 2: IN A, (PIODB) 

7CHANGE INT. ADDR. 

7WAIT FOR INTERRUPT 

?STOP CLOCKS 

7 SAVE CLOCKS 

;STOP CLOCKS 

7READ CLOCK TIME CONST 

7PIO INT. ADDRESS 
7(MULTISAMPLE SUB.) 
7MOCK INT. CALL 

7GET MUX. ADDRESS 
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0DCD 4F LD C, A 
0DCE CB81 RES 0,C ;CLEAN MUX. ADDR. 
0DD0 CB89 RES i,c 
0DD2 CB91 RES 2, C 
0DD4 CB99 RES 3, C 
0DD6 06F9 LD B, 249 ;SET NO. OF READINGS 
0DD8 37 SC£ ;CLEAR HL 
0DD9 3F CCF 
0DDA ED62 SBC HL, HL 
0DDC 3E0A LD A, 0AH ;CLOCKS TO 80 uS 
0DDE D314 OUT (RTC0), A 
0DE0 3E01 LD A, 1 
0DE2 D315 OUT (RTC1),A 
0DE4 D316 OUT (RTC2), A 
0DE6 AF XOR A, A ;CLEAR A 
0DE7 FB HALT2: EI 
0DE8 76 HALT ;WAIT FOR INTERRUPT 
0DE9 10FC DJNZ HALT 2 
0DEB 08 EX AF, AF ' 
0DEC 3E22 LD A, 22H 
0DEE D30E OUT (PIOCA),A ;PIO INT. ADDR. 

7 (LAST CYCLE) 
0DF0 FB EI 
0DF1 76 HALT 
0DF2 08 EX AF,AF' 
0DF3 D9 EXX 
0DF4 7C LD A, H ;START CLOCKS 
0DF5 D314 OUT (RTC0),A 
0DF7 7D LD A, L 
0DF8 D315 OUT (RTC1),A 
0DFA 78 LD A, B 
0DFB D316 OUT (RTC2),A 
0DFD CB41 BIT 0,C ;RELAY ON? 
0DFF 2004 JR NZ,INT3 ; NO 
0E01 3E01 LD A, 1 ;SWITCH RELAY ON 
0E03 D308 OUT (08H),A 
0E05 3E24 INT3: LD A, 24H ;PIO INT. ADDR. 
0E07 D30E OUT (PIOCA),A 
0E09 08 EX AF,AF' 
0E0A D9 EXX 
0E0B CB15 RL L ;RESULT / 8 
0E0D CB14 RL H 
0E0F 17 RLA 
0E10 44 LD B, H 
0E11 CDF2F0 CALL SENDB 7SEND DATA BACK TO BASIC 

7 ARG. IN A, B 
0E14 ED4D RET I 

/ 

?INTERRUPT ADDRESS TABLE 
0E20 ORG 0E20H 
0E20 3C0E DEFW 0E3CH 7MULTISAMPLE 
0E22 300E DEFW 0E30H " (CHANGE CLOCK) 
0E24 800D DEFW 0D80H 7 READ 
0E26 A00D DEFW 0DA0H 7 READ (CHANGE CLOCK) 
0E28 C90D DEFW 0DC9H 7 DUMMY SUB 
0E2A 0000 DEFW 0000 
0E2C 0000 DEFW 0000 
0E2E 0000 DEFW 

7 
0000 
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;SUBROUTINE MULTISAMPLE 
;FOR FAST DATA ACQUISITION (80 us) 

0E30 3E07 LD A, 7 ;STOP CLOCKS 
0E32 D314 OUT (RTC0) , A 
0E34 3E47 LD A, 47H 
0E36 D315 OUT (RTC1) , A 
0E38 D316 OUT (RTC2) , A 
0E3A 08 EX AF, AF' 
0E3B 00 NOP 
0E3C 08 EX AF, AF' ;COLLECT ADC DATA 
0E3D DB0C IN A,(PIODA) ;LO BYTE 
0E3F 5F LD E, A 
0E40 DB0D IN A,(PIODB) ;HI BYTE 
0E42 A9 XOR A, C ;CLEAN HI BYTE 
0E43 57 LD D, A 
0E44 08 EX AF,AF' 
0E45 19 ADD HL, DE ;SUM IN HL AND A 
0E46 CE00 ADC A, 0 
0E48 ED4D RET I 

E98B DEINT 
0DCB INT2 
000C PIODA 
0016 RTC2 

0D54 HALT1 
0E05 INT3 
000D PIODB 
F0F2 SENDB 

0DE7 HALT2 
0035 KDEL 
0DC9 RETINT 
0D00 TC0 

0D04 INIT 
000E PIOCA 
0014 RTC0 
0D01 TCI 

0DC0 INT1 
000F PIOCB 
0015 RTC1 
0D02 TC2 

No errors 
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Appendix III 

Inverse Laplace transform of KQln(p) 

To find the inverse Laplace transform of 

F(P) = Ko(qr)In(Bp) , (1) 

set 

G(p) = dF (p) / dp = -r Uhp)" 1/ 2 K1(qr)ln(6p)+Ko(qr)/p 

= H(p) + Ko(qr)/p . (2) 

The second term is easily transformed. H can be written as 

H(p) = -rp1/2/(2h1/2) K-^qr) ln(6p)/p (3) 

and the two terms and In(p)/p transformed 

separately. From standard tables (Bateman Manuscript 

Project, 1954) 

L"1{p1/2K1(qr)} = r exp(-a/t)/(4h1/2t2) (4) 

L-1{ln(8p)/p) = -ln(Ct)/e (5) 

where a=r2/4h and In C=j. 

Using the convolution theorem 

L-1{X(p)Y(p)} = L~~ ̂  {X (p) } * {Y (p) }, (6) 

gives t 

h(t) = L"1{H(p)} = f a exp(-a/T)/(2 T2) ln[C(t-t)/6] dT (7) 
J 0 

Setting T=1/X, 

h(t) = a/2 In(C/3)/ e~ a x dx + a/2/ e""ax ln(tx-l) dx 
Jl/t Jl/t 

l/t 
The second integral is evaluated using 

- a/2J* e" a x In(x) dx . (8) 

/ e~x In(x) dx = -j . (9) 
J 0 

Then 

h(t) = e"a/2 ln[t/(a6)] - 1/2 f e~x/x dx, (10) J a 
where a=r2/(4ht) 

173 



and 

g(t) = L~1{G} = e~a/2 ln[t/(aB)] . (11) 

Finally, using 
. CO 

G (s ) ds = - F (p) (12) / P 
and the theorem 

r 00 

IT1*/ G(s)ds} = g(t)/t (13) 
J P 

gives 

L"1{K0(qr)ln(6p)} = -e"a/(2t) ln[t/(aB)] . (14) 

It is found that if the Laplace transforms of Ko(qr) and 

ln(3p) in (1) are evaluated separately and the results 

convolved, the convolution integral diverges. 
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Appendix TV 

TABLES OF RESULTS 

The experimental results of the temperature cycles are 
tabulated in the following form: 

Sample identifier (e.g. M2A): type of rock (first 
letter(s)),sample number,thermocouple number (A-D) 

T Oven temperature (K) 

k Conductivity (Wm^^K-1). Average of N readigs 

S.D.(k) Standard deviation of conductivity 

h Diffusivity 
(10~° m s ). Average of N readings 

S.D.(h) Standard deviation of diffusivity (10~6 m 2s - 1) 
R Wire electrical resistance (Ohm). Average of N 

readings 

S.D. (R) Standard deviation of wire resistance 

N Number of readings 

Average resistance: mean of all wire resistances +S.D. 

Average errors in k and h: mean of all standard deviations 
shown in table 

r Thermocouple offset (mm) 
l,d Sample length, diameter 

In the pressure dependence tables, the results of 
individual runs are quoted as follows: 

P Pressure (MPa) 

k Conductivity (Wnf1K""1) 

R Heater wire resistance (Ohm) 

The sampling window for v is 80,140 s (161 points); 
for linear power, resistance measurements 0,140 s (390 
points). Sampling rate 0.36 s. 

The results are quoted to four significant figures to ease 
mathematical manipulation. This does not reflect their true 
statistical reliability. 
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MERRIVALE GRANITE SAMPLE M2A 

T k SD(k) h SD(h) R SD(R) N 
304. 1 3. 197 0.190 2. 053 0.000 3. 316 0.006 2 
324. 6 3. 182 0.052 1. 990 0.106 3. 336 0.003 3 
348. 1 3. 121 0.000 1. 590 0.000 3. 318 0.000 1 
372. 0 2. 890 0.038 1. 540 0.099 3. 328 0.007 4 
400. 1 2. 849 0.022 1. 335 0.025 3. 334 0.004 3 
448. 8 2. 788 0. 000 1. 258 0. 000 3. 340 0. 000 1 

LEAST-SQUARES CURVES 

l/k=AT+B 
A= 3.641E-04+- 6.297E-05 
B= 2.005E-01+- 2.326E-02 
l/h=AT+B 
A= 2.296E-03+- 2.952E-04 
B=-2.058E-0H— 1.091E-01 

R=AT+B 
A= 1.284E-04+- 6.777E-05 
B= 3.282E+00+- 2.504E-02 
NUMBER OF RUNS= 14 
NUMBER OF POINTS= 6 
AVERAGE RESISTANCE= 3.329+-0.010 
AVERAGE ERROR IN k= 2.4% 
AVERAGE ERROR IN h= 4.5% 

r=2.85, 1=120, d=75 mm 
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MERRIVALE GRANITE SAMPLE M2A 

T k • SD(k) h SD(h) R SD( R) N 
306. 2 3. 119 0.162 0. 000 0.000 3. 311 0.000 2 
324. 0 3. 078 0.025 1. 172 0.016 3. 337 0. 004 3 
348. 4 3. 053 0.138 0. 994 0.096 3. 320 0.001 2 
371. 9 2. 932 0.023 1. 043 0.019 3. 327 0. 006 3 
400. 2 2. 853 0.051 0. 839 0.014 3. 334 0.004 3 

LEAST-SQUARES CURVES 
1/k=AT+B 
A= 3.248E-04+- 4.236E-05 
B= 2.192E-01+- 1.490E-02 
l/h=AT+B 
A= 3.904E-03+- 1.348E-03 
B=-4.07 2E-01H— 4.883E-01 

R=AT+B 
A= 1.437E-04+- 1.405E-04 
B= 3.275E+00+- 4.940E-02 

NUMBER OF RUNS= 13 
NUMBER OF POINTS= 5 
AVERAGE RESISTANCE= 3.326+-0.0I1 
AVERAGE ERROR IN k= 2.6% 
AVERAGE ERROR IN h= 3.6% 
r=4.265, 1=120, d=75 *mn 
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MERRIVALE GRANITE SAMPLE M2A 

T k SD(k) h SD(h) R SD( R) N 
305. 1 3. 158 0.151 0. 000 0.000 3. 313 0.005 4 
324. 3 3. 130 0.068 0. 000 0. 000 3. 336 0.003 6 
348. 2 3. 075 0.105 0. 000 0.000 3. 319 0.002 3 
372. 0 2. 908 0. 037 0. 000 0. 000 3. 327 0. 006 7 
400. 1 2. 851 0.035 0. 000 0.000 3. 334 0.002 6 
448. 8 2. 788 0. 000 0. 000 0. 000 3. 340 0. 000 1 

LEAST-SQUARES CURVES 
l/k=AT+B 
A= 3.248E-04+- 4.250E-05 
B= 2.168E-01+- 1.571E-02 
1/h=AT+B 
A= 0.000E+00+- 0.000E+00 
B= 0.000E+00+- 0.000E+00 

R=AT+B 
A= 1.398E-04+- 7.127E-05 
B= 3.277E+00+- 2.634E-02 

NUMBER OF RUNS= 2 7 
NUMBER OF POINTS= 6 
AVERAGE RESISTANCE= 3.328+-0.010 
AVERAGE ERROR IN k= 2.6% 
AVERAGE ERROR IN h= 0.0% 
1=120, d=75 mm 
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MERRIVALE GRANITE SAMPLE M2A 

T k SD(k) h SD(h) R SD(R) N 

304. 3 3. 095 0.083 0. 754 0.130 3. 329 0.003 4 
314. 3 3. 082 0.025 0. 860 0.031 3. 335 0.001 4 
324. 1 3. 109 0.026 0. 932 0.027 3. 322 0.005 3 
348. 8 2. 978 0.025 0. 702 0.025 3. 336 0.001 3 
372. 1 2. 889 0.006 0. 759 0.016 3. 338 0.008 3 
400. 0 2. 799 0. 060 0. 653 0.024 3. 341 0.001 4 
448. 7 2. 691 0.000 0. 581 0.000 3. 358 0.000 1 

LEAST-SQUARES CURVES 
l/k=AT+B 
A= 3.656E-04+- 2.489E-05 
B= 2.088E-01+- 9.012E-03 
l/h=AT+B 
A= 3.633E-03+- 9.559E-04 
B= 6.139E-02+- 3.462E-01 

R=AT+B 
A= 1.926E-04+- 4.315E-05 
B= 3.268E+00+- 1.563E-02 
NUMBER OF RUNS= 22 
NUMBER OF POINTS= 7 
AVERAGE RESISTANCE= 3.33 7+-0.011 
AVERAGE ERROR IN k= 1.3% 
AVERAGE ERROR IN h= 5.5% 

r=l.505, 1=120, d=75 mm 
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MERRIVALE GRANITE SAMPLE M2A 

T k SD(k) h SD(h) R SD(R) N 

305. 5 3. 133 0.028 1. 281 0.018 3. 327 0.001 3 
314. 5 3. 135 0.045 1. 503 0. 060 3. 330 0.001 2 
324. 2 3. 073 0.027 1. 477 0.019 3. 326 0.003 3 
348. 4 2. 983 0.026 1. 209 0.012 3. 336 0.001 3 
371. 8 2. 929 0.033 1. 352 0.035 3. 339 0.009 3 
400. 0 2. 798 0.012 1. 089 0.010 3. 342 0.002 3 

LEAST-SQUARES CURVES 

l/k=AT+B 
A= 4.055E-04+- 2.657E-05 
B= 1.934E-01+- 9.184E-03 
l/h=AT+B 
A= 1.833E-03+- 9.371E-04 
B= 1.374E-01+- 3.239E-01 
R=AT+B 
A= 1.711E-04+- 2.992E-05 
B= 3.274E+00+- 1.034E-02 
NUMBER OF RUNS= 17 
NUMBER OF POINTS= 6 
AVERAGE RESISTANCE= 3.333+-0.006 
AVERAGE ERROR IN k= 0.9% 
AVERAGE ERROR IN h= 1.9% 

r= 5.185, 1=120, d=75 
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MERRIVALE GRANITE SAMPLE M2A 

T k SD(k) h SD(h) R SD(R) N 
304. 8 3. 111 0.064 0. 000 0.000 3. 328 0.002 7 
314. 4 3. 100 0.039 0. 000 0. 000 3. 333 0.003 6 
324. 2 3. 091 0.031 0. 000 0.000 3. 324 0.004 6 
348. 6 2. 981 0.023 0. 000 0. 000 3. 336 0.001 6 
371. 9 2. 909 0.030 0. 000 0.000 3. 339 0.008 6 
409. 0 2. 799 0.044 0. 000 0. 000 3. 342 0.001 7 
448. 7 2. 691 0.000 0. 000 0.000 3. 358 0.000 1 

LEAST-SQUARES CURVES 

1/k=AT+B 
A= 3.715E-04+- 1.648E-05 
B= 2.060E-01+- 5.967E-03 
l/h=AT+B 
A= 0.000E+00+- 0.000E+00 
B= 0.000E+00H— 0.000E+00 
R=AT+B 
A= 2.010E-04+- 3.245E-05 
B= 3.26 5E+00+- 1.175E-02 

NUMBER OF RUNS= 39 
NUMBER OF POINTS= 7 
AVERAGE RESISTANCE= 3.337+-0.011 
AVERAGE ERROR IN k= 1.3% 
AVERAGE ERROR IN h= 0.0% 

1=120, d=75 mm 
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MERRIVALE GRANITE SAMPLE M2A 

T k SD(k) h SD(h) R SD(R) N 

253. 9 3. 248 0.050 1. 521 0.071 3. 264 0.001 4 
274. 2 3. 131 0.045 1. 419 0.062 3. 267 0.001 6 
290. 8 3. 070 0.056 1. 293 0.128 3. 262 0. 000 3 
298. 2 3. 035 0.001 1. 335 0.007 3. 272 0.001 3 
302. 7 3. 011 0.003 1. 314 0.002 3. 263 0.001 2 
322. 4 2. 942 0.012 1. 250 0.012 3. 268 0.001 2 
349. 0 2. 881 0.004 1. 138 0.059 3. 272 0.002 2 
374. 8 2. 785 0.007 1. 095 0. 005 3. 277 0.001" 2 
401. 7 2. 713 0.026 1. 024 0.021 3. 282 0.001 2 
424. 6 2. 677 0.003 0. 977 0.010 3. 284 0. 000 2 
447. 7 2. 610 0.011 0. 927 0.014 3. 290 0.001 3 
469. 5 2. 553 0.011 0. 891 0.010 3. 301 0.002 3 

LEAST-SQUARES CURVES 

l/k=AT+B 
A= 3.726E-04+- 8.348E-06 
B= 2.174E-01+- 2.984E-03 
l/h=AT+B 
A= 2.122E-03+- 5.079E-05 
B= 1.256E-01+- 1.815E-02 
R=AT+B 
A= 1.584E-04+- 1.743E-05 
B= 3.220E+00+- 6.231E-03 
NUMBER OF RUNS= 34 
NUMBER OF POINTS= 12 
AVERAGE RESISTANCE= 3.275+-0.012 
AVERAGE ERROR IN k= 0.6% 
AVERAGE ERROR IN h= 2.7% 

r=2. 77, 1=120, d=75 mm 
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MERRIVALE GRANITE SAMPLE M2A 

T k SD(k) h SD(h) R SD(R) N 
302. 5 3. 036 0.001 1. 103 0.005 3. 263 0.001 2 
322. 3 2. 944 0.020 1. 061 0.031 3. 268 0.002 3 
349. 4 2. 887 0.008 1. 006 0.007 3. 271 0.001 2 
374. 0 2. 787 0.001 0. 938 0.003 3. 276 0.001 2 
401. 7 2. 716 0.009 0. 896 0.012 3. 283 0. 000 2 
424. 2 2. 682 0. 006 0. 864 0. 009 3. 284 0. 000 2 
447. 6 2. 613 0.018 0. 816 0.020 3. 290 0.000 2 
469. 1 2. 540 0. 000 0. 779 0.001 3. 302 0.002 2 

LEAST-SQUARES CURVES 

1/k=AT+B 
A= 3.684E-04+- 1.238E-05 
B= 2.191E-01+- 4.834E-03 
l/h=AT+B 
A= 2.245E-03+- 6.166E-05 
B= 2.191E-01+- 2.407E-02 

R=AT+B 
A= 2.089E-04+- 1.829E-05 
B= 3.199E+00+- 7.141E-03 
NUMBER OF RUNS= 17 
NUMBER OF POINTS= 8 
AVERAGE RESISTANCE= 3.280+-0.013 
AVERAGE ERROR IN k= 0.3% 
AVERAGE ERROR IN h= 1.2% 
r=4.255, 1=120, d=75 mm 
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MERRIVALE GRANITE SAMPLE M2A 

T k SD(k) h SD(h) R SD(R) N 

253. 9 3. 248 0.050 0. 000 0.000 3. 264 0.001 4 
274. 2 3. 131 0.045 0. 000 0. 000 3. 267 0.001 6 
290. 8 3. 070 0.056 0. 000 0.000 3. 262 0.000 3 
298. 2 3. 035 0.001 0. 000 0. 000 3. 272 0.001 3 
302. 6 3. 023 0.015 0. 000 0.000 3. 263 0.001 4 
322. 3 2. 943 0.015 0. 000 0. 000 3. 268 0.001 5 
349. 2 2. 884 0.006 0. 000 0.000 3. 271 0.002 4 
374. 6 2. 786 0. 004 0. 000 0. 000 3. 276 0.001 4 
401. 7 2. 714 0.016 0. 000 0.000 3. 283 0.001 4 
424. 4 2. 680 0. 005 0. 000 0. 000 3. 284 0. 000 4 
447. 6 2. 611 0.012 0. 000 0.000 3. 290 0.001 5 
469. 3 2. 548 0.011 0. 000 0. 000 3. 301 0.002 5 

LEAST-SQUARES CURVES 

l/k=AT+B 
A= 3.747E-04+- 8.061E-06 
B= 2.166E-01+- 2.881E-03 
l/h=AT+B 
A= 0.000E+00+— 0.000E+00 
B= 0.000E+00+- 0.000E+00 
R=AT+B 
A= 1.591E-04+- 1.795E-05 
B= 3.219E+00+- 6.417E-03 
NUMBER OF RUNS= 51 
NUMBER OF POINTS= 12 
AVERAGE RESISTANCE= 3.2 75+-0.012 
AVERAGE ERROR IN k= 0.7% 
AVERAGE ERROR IN h= 0.0% 
1=120, d=75 mm 
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MERRIVALE GRANITE SAMPLE M2A 

T k SD(k) h SD(h) R SD(R) N 
290. 8 3. 162 0.068 1. 256 0. 040 3. 277 0.002 2 
302. 7 3. 125 0. 009 1. 244 0. 008 3. 280 0.001 3 
322. 3 3. 066 0.019 1. 202 0.018 3. 285 0. 006 5 
349. 5 2. 993 0.012 1. 127 0.010 3. 288 0.002 3 
374. 5 2. 900 0.018 1. 047 0.017 3. 292 0.001 3 
401. 7 2. 818 0.030 0. 977 0.024 3. 298 0.001 4 
424. 4 2. 766 0.007 0. 925 0.003 3. 299 0.001 4 
447. 6 2. 707 0.018 0. 879 0. 008 3. 305 0.001 3 
469. 5 2. 613 0.016 0. 818 0.008 3. 317 0.003 5 

LEAST-SQUARES CURVES 
l/k=AT+B 
A= 3.599E-04H— 1.021E-05 
B= 2.103E-01+- 3.889E-03 
l/h=AT+B 
A= 2.387E-03+- 1.037E-04 
B= 7.388E-02+- 3.947E-02 
R=AT+B 
A= 1.935E-04+- 1.549E-05 
B= 3.221E+00+- 5.898E-03 
NUMBER OF RUNS= 32 
NUMBER OF POINTS= 9 
AVERAGE RESISTANCE= 3.293+-0.013 
AVERAGE ERROR IN k= 0.7% 
AVERAGE ERROR IN h= 1.4% 

r=4.915, 1=120, d=75 mm 
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TROON GRANITE SAMPLE T10A 

T k SD(k) h SD(h) R SD (R) N 

304. 4 3. 145 0.071 1. 143 0.110 3. 404 0. 000 3 
323. 9 3. 112 0.053 1. 419 0.036 3. 388 0. 040 3 
348. 2 3. 031 0.012 1. 192 0.011 3. 418 0.005 , 3 
372. 1 2. 976 0.031 1. 380 0.051 3. 416 0.003 3 
400. 1 2. 900 0.009 1. 215 0.035 3. 431 0. 009 3 

LEAST-SQUARES CURVES 
l/k=AT+B 
A= 2.865E-04+- 1.304E-05 
B= 2.298E-01+- 4.582E-03 
l/h=AT+B 
A=-2.635E-04H— 1.123E-03 
B= 8.854E-01+- 3.945E-01 

R=AT+B 
A= 3.506E-04+- 1.409E-04 
B= 3.289E+00+- 4.950E-02 
NUMBER OF RUNS= 15 
NUMBER OF POINTS= 5 
AVERAGE RESISTANCE= 3.411+-0.016 
AVERAGE ERROR IN k= 1.1% 
AVERAGE ERROR IN h= 3.9% 

r=l. 955, 1=120, <3=60 mm 
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TROON GRANITE SAMPLE T10A 

T k SD(k) h SD(h) R SD(R) N 

305. 2 3. 063 0.023 0. 966 0.087 3. 403 0.002 3 
324. 1 3. 120 0. 000 1. 158 0. 000 3. 411 0. 000 1 
348. 3 2. 953 0.015 0. 885 0.009 3. 415 0.001 3 
371. 8 2. 922 0.064 0. 970 0.048 3. 431 0.024 3 
400. 2 2. 848 0.021 0. 821 0.017 3. 435 0.013 3 

LEAST-SQUARES CURVES 
l/k=AT+B 
A= 3.027E-04+- 7.053E-05 
B= 2.299E-01+- 2.479E-02 
l/h=AT+B 
A= 2.357E-03+- 1.499E-03 
B= 2.308E-01+- 5.271E-01 

R=AT+B 
A= 3.516E-04+- 4.493E-05 
B= 3.296E+00+- 1.579E-02 

NUMBER OF RUNS= 13 
NUMBER OF POINTS= 5 
AVERAGE RESISTANCE= 3.419+-0.014 
AV3RAGE ERROR IN k= 1.0% 
AVERAGE ERROR IN h= 4.3% 
r=3.51, 1=120, <3=60 mm 
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TROON GRANITE SAMPLE T10A 

T k SD(k) h SD(h) R SD(R) N 
304. 8 3. 104 0.065 0. 000 0.000 3. 404 0.001 6 
323. 9 3. 114 0.043 0. 000 0.000 3. 394 0.035 4 
348. 4 2. 992 0.044 0. 000 0.000 3. 417 0.003 6 
371. 9 2. 949 0.054 0. 000 0. 000 3. 424 0.017 6 
400. 1 2. 874 0.032 0. 000 0.000 3. 433 0.010 6 

LEAST-SQUARES CURVES 
l/k=AT+B 
A= 2.939E-04+- 3.943E-05 
B= 2.301E-01+- 1.386E-02 
l/h=AT+B 
A= 0.000E+00H— 0.000E+00 
B= 0.000E+00+- 0.000E+00 
R=AT+B 
A= 3.744E-04+- 9.889E-05 
B= 3.283E+00+- 3.476E-02 

NUMBER OF RUNS= 28 
NUMBER OF POINTS= 5 
AVERAGE RESISTANCE= 3.414+-0.016 
AVERAGE ERROR IN k= 1.6% 
AVERAGE ERROR IN h= 0.0% 

1=120, r=60 mm 
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TROON GRANITE SAMPLE T10A 

T k SD (k) h SD(h) R SD(R) N 
314. 4 2. 925 0.010 1 .277 0.012 3. 341 0.002 4 
324. 0 2. 889 0.010 1 . 245 0.017 3. 346 0.001 3 
348. 4 2. 804 0.028 1 .091 0.047 3. 324 0.001 3 
372. 0 2. 800 0.019 1 .233 0.030 3. 354 0.001 3 
400. 1 2. 707 0.010 1 .080 0.008 3. 336 0.005 3 

LEAST-SQUARES CURVES 
l/k=AT+B 
A= 2.987E-04+- 3.983E-05 
B= 2.492E-01+- 1.407E-02 
l/h=AT+B 
A= 1.311E-03+- 8.185E-04 
B= 3.867E-01+- 2.891E-01 
R=AT+B 
A=-l.222E-05H— 1.847E-04 
B= 3.345E+00+- 6.524E-02 
NUMBER OF RUNS= 16 
NUMBER OF POINTS= 5 
AVERAGE RESISTANCE^ 3.340+-0.011 
AVERAGE ERROR IN k= 0.5% 
AVERAGE ERROR IN h= 2.0% 
r=2.49, 1=120, d=60 mm 
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TROON GRANITE SAMPLE T10A 

T k SD(k) h SD(h) R SD(R) N 

302. 7 3. 053 0.016 1. 457 0.019 3. 355 0.000 3 
322. 3 3. 015 0.010 1. 525 0.088 3. 360 0.002 3 
349. 4 2. 975 0.019 1. 455 0.036 3. 363 0.001 4 
374. 6 2. 882 0.032 1. 365 0. 050 3. 367 0.001 4 
401. 7 2. 823 0.023 1. 336 0.050 3. 374 0.001 4 
424. 3 2. 763 0.007 1. 244 0.015 3. 376 0.001 4 
447. 6 2. 737 0.020 1. 231 0.029 3. 382 0.001 3 
469. 5 2. 663 0.013 1. 166 0.017 3. 395 0.002 5 

LEAST-SQUARES CURVES 

l/k=AT+B 
A= 2.878E-04+- 1.206E-05 
B= 2.387E-01+- 4.710E-03 
l/h=AT+B 
A= 1.150E-03+- I.306E-04 
B= 3.03 7E-01+- 5.099E-02 

R=AT+B 
A= 2.121E-04+- 2.070E-05 
B= 3.290E+00+- 8.083E-03 
NUMBER OF RUNS= 30 
NUMBER OF POINTS= 8 
AVERAGE RESISTANCE= 3.3 72+-0.013 
AVERAGE ERROR IN k= 0.6% 
AVERAGE ERROR IN h= 2.7% 

r=2.265, 1=120, d=60 mm 
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TROON GRANITE SAMPLE T10A 

T k SD(k) h SD(h) R SD(R) N 

253. 4 3. 008 0.039 1. 364 0.020 3. 346 0.008 6 
266. 9 3. 054 0.013 1. 451 0.023 3. 341 0.001 3 
275. 6 3. 025 0.029 1. 444 0.045 3. 342 0.001 5 
298. 3 3. 001 0.030 1. 497 0.062 3. 345 0.001 7 
323. 4 2. 838 0.045 1. 358 0.074 3. 362 0.007 13 
370. 6 2. 780 0.054 1. 288 0.037 3. 360 0.001 8 
42 3. 6 2. 622 0.009 1. 171 0.014 3. 371 0.001 3 
468. 5 2. 537 0. 005 1. 079 0.007 3. 390 0.003 3 

LEAST-SQUARES CURVES 
l/k=AT+B 
A= 3.176E-04+- 2.276E-05 
B= 2.450E-01+- 7.806E-03 
l/h=AT+B 
A= 1.060E-03+- 1.713E-04 
B= 4.043E-01+- 5.877E-02 

R=AT+B 
A= 2.084E-04+- 2.680E-05 
B= 3.287E+00+- 9.192E-03 
NUMBER OF RUNS= 48 
NUMBER OF POINTS= 8 
AVERAGE RESISTANCE= 3.3 57+-0.017 
AVERAGE ERROR IN k= 1.0% 
AVERAGE ERROR IN h= 2.6% 

r=4.025, 1=120, d=60 mm 
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TROON GRANITE SAMPLE T10A 

T k SD(k) h SD(h) R SD(R) N 

304. 6 2. 989 0.019 0. 929 0.021 3. 437 0.003 3 
314. 5 3. 013 0.023 1. 025 0.023 3. 493 0.002 4 
324. 0 2. 980 0.006 1. 010 0.005 3. 487 0.001 3 
348. 4 2. 868 0.028 0. 842 0.024 3. 439 0.002 3 
372. 0 2. 847 0.005 0. 894 0.009 3. 497 0.001 3 
400. 0 2. 754 0.014 0. 745 0.010 3. 479 0. 004 3 

LEAST-SQUARES CURVES 
1/k=AT+B 
A= 3•241E-04+- 3.644E-05 
B= 2.32 7E-01+- 1.25 9E-02 
l/h=AT+B 
A= 3.147E-03+- 9.901E-04 
B= 3.293E-02+- 3.421E-01 

R=AT+B 
A= 2.080E-04+- 3.525E-04 
B= 3.400E+00+- 1.218E-01 

NUMBER OF RUNS= 19 
NUMBER OF POINTS= 6 
AVERAGE RESISTANCE= 3.472+-0.027 
AVERAGE ERROR IN k= 0.5% 
AVERAGE ERROR IN h= 1.7% 

r=2.94, 1=120, d=60 mm 
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TROON GRANITE SAMPLE T10A 

T k SD(k) h SD(h) R SD(R) N 

305.2 3.062 0.066 1.079 0.066 3.435 0.006 3 
348.4 2.887 0.048 0.958 0.053 3.450 0.002 3 
400.0 2.801 0.050 0.921 0.047 3.490 0.001 4 

LEAST-SQUARES CURVES 

l/k=AT+B 
A= 3.173E-04+- 7.203E-05 
B= 2.319E-01+- 2.545E-02 
l/h=AT+B 
A= 1.649E-03+- 5.419E-04 
B= 4.395E-01+- 1.915E-01 
R=AT+B 
A= 5.864E-04+- 1.223E-04 
B= 3.252E+00+- 4.320E-02 
NUMBER OF RUNS= 10 
NUMBER OF POINTS= 3 
AVERAGE RESISTANCE= 3.458+-0.028 
AVERAGE ERROR IN k= 1.9% 
AVERAGE ERROR IN h= 5.6% 

r=3.15, 1=120, d=60 mm 
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CORNISH SLATE SAMPLE K20 

T k SD(k) h SD(h) R SD(R) N 

253. 7 2. 175 0.006 0. 871 0.013 3. 386 0.002 3 
274. 2 2. 134 0.016 0. 825 0.011 3. 388 0. 000 3 
297. 9 2. 057 0.027 0. 755 0.021 3. 394 0.001 3 
302. 7 2. 082 0.005 0. 677 0. 005 3. 379 0.001 3 
322. 4 1. 997 0.004 0. 627 0.003 3. 384 0.001 3 
349. 5 1. 946 0.011 0. 585 0. 006 3. 389 0.002 3 
374. 6 1. 905 0.004 0. 556 0.002 3. 393 0.001 3 
401. 7 1. 867 0. 009 0. 529 0. 005 3. 400 0.001 3 
424. 3 1. 842 0.003 0. 506 0.004 3. 401 0.001 3 
447. 7 1. 810 0. 006 0. 486 0.003 3. 407 0.001 3 
469. 2 1. 775 0.022 0. 460 0.008 3. 420 0.002 6 

LEAST-SQUARES CURVES 
l/k=AT+B 
A— 4.806E-04+- 1.829E-05 
B= 3.405E-01+- 6.636E-03 
l/h=AT+B 
A= 4.718E-03+- 2.592E-04 
B=-l.115E-02H— 9.405E-02 

R=AT+B 
A= 1.389E-04+- 2.736E-05 
B= 3.345E+00+- 9.926E-03 
NUMBER OF RUNS= 36 
NUMBER OF POINTS= 11 
AVERAGE RESISTANCE= 3.395+-0.012 
AVERAGE ERROR IN k= 0.5% 
AVERAGE ERROR IN h= 1.1% 
r= 4. 5 8, 1=120, d=60 mm 
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HOLMAN GRANITE SAMPLE H1A 

T k SD(k) h SD(h) R SD(R) N 

123 1.891 0.005 23 
179 1.899 0.009 13 
048 1.895 0.010 8 
036 1.886 0.000 8 
040 1.884 0.005 6 
000 1.885 0.002 6 

320. 6 2. 783 0. 074 1. 523 0 
377. 0 2. 744 0. 091 1. 440 0 
418. 9 2. 639 0. 065 1. 319 0 
467. 3 2. 501 0. 016 1. 204 0 
507. 6 2. 374 0. 027 1. 097 0 
573. 2 2. 270 0. 046 0. 000 0 

l/k=AT+B 
A= 3.488E-04H— 3.298E-05 
B= 2.392E-01+- 1.490E-02 

l/h=AT+B 
A= 1.378E-03H— 1.442E-04 
B= 1.93 9E-01+- 6.108E-02 

R=AT+B 
A=-4.739E-05H— 2.332E-05 
B= 1.911E+00H— 1.053E-02 

NUMBER OF RUNS= 64 
NUMBER OF POINTS= 6 
AVERAGE RESISTANCE= 1.890+-0.006 
AVERAGE ERROR IN k= 2.0% 
AVERAGE ERROR IN h= 6.2% 

r=2.67, 1=120, d=60 mm 

LEAST-SQUARES CURVES 
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SOUTH AFRICAN NORITE SAMPLE N7A 

T k SD(k) h SD(h) R SD(R) N 
253. 9 2. 356 0.027 1 .326 0.045 1. 988 0.001 4 
274. 5 2. 320 0.016 1 .277 0.024 1. 986 0. 000 4 
322. 0 2. 252 0.017 1 .155 0.025 1. 983 0.001 6 
374. 5 2. 241 0.009 1 .067 0.014 1. 985 0.001 3 
427. 9 2. 232 0.017 1 .025 0.020 1. 981 0.001 4 
467. 6 2. 237 0.014 1 .005 0.018 1. 976 0.000 3 

LEAST-SQUARES CURVES 
l/k=AT+B 
A= 1.012E-04+- 2.889E-05 
B= 4.044E-01+- 1.045E-02 
l/h=AT+B 
A= 1.164E-03+- 1.156E-04 
B= 4.738E-01+- 4.183E-02 
R=AT+B 
A=-4.538E-05+- 1.065E-05 
B= 1.999E+00+- 3.853E-03 

NUMBER OF RUNS= 24 
NUMBER OF POINTS= 6 
AVERAGE RESISTANCE= 1.983+-0.004 
AVERAGE ERROR IN k= 0.7% 
AVERAGE ERROR IN h= 2.1% 

r=3.94, 1=120, d=60 mm 
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FUSED SILICA SAMPLE FS4A 

T k SD(k) h SD(h) R SD(R) N 

305.9 1. 385 0.034 0. 524 0.051 0. 989 0.000 10 
327.3 1. 425 0.014 0. 537 0.017 0. 988 0. 000 4 
349.1 1. 470 0.007 0. 541 0.009 0. 987 0.000 4 
373.8 1. 498 0.001 0. 519 0.003 0. 987 0. 000 3 
402.7 1. 532 0.017 0. 500 0.019 0. 986 0.000 3 
427.5 1. 546 0.030 0. 466 0.027 0. 986 0. 000 3 
449.9 1. 574 0.045 0. 441 0.042 0. 985 0. 000 4 
467.4 1. 628 0. 040 0. 467 0.043 0. 983 0.001 6 

LEAST-SQUARES CURVES 

k=A+BT+CT2 

A= .810044 
B= 2.2 7493E-3 
C= -1.20741E-6 

1 /'n=AT+B 
A= 2.344E-03+- 4.937E-04 
B= 1.103E+00+- 1.934E-01 
R=AT+B 
A=-2.997E-05+- 3.972E-06 
B= 9.980E-01+- 1.556E-03 

NUMBER OF RUNS= 37 
NUMBER OF POINTS= 8 
AVERAGE RESISTANCE= 0.986+-0.002 
AVERAGE ERROR IN k= 1.5% 
AVERAGE ERROR IN h= 5.4% 
r=2.0, 1=60.13, d=64 mm 
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MACOR CERAMIC SAMPLE MAC4A 

T k SD(k) h SD(h) R SD(R) N 
302. 3 1. 610 0.011 0. 846 0.007 2. 354 0.011 6 
323. 3 1. 610 0. 008 0. 809 0. 008 2. 356 0.010 7 
348. 5 1. 621 0.013 0. 785 0.014 3. 355 0.005 4 
374. 5 1. 625 0.003 0. 758 0. 005 3. 359 0.003 3 
401. 6 1. 639 0.006 0. 742 0.007 3. 364 0.003 3 
424. 3 1. 653 0.010 0. 722 0.014 3. 342 0.003 4 
447. 7 1. 674 0.00.8 0. 721 0.013 3. 370 0.001 3 
469. 3 1. 678 0. 006 0. 705 0. 009 3. 393 0. 004 5 

LEAST-SQUARES CURVES 
k=A+BT+CT2 

A= 1.73292 
B= -9.62481E-4 
C= 1.82204E-6 

l/h=AT+B 
A= 1.3 56E-03+- 1.007E-04 
B= 7.94 7E-01+- 3.934E-02 

R=AT+B 
A= 6.055E-03+- 2.026E-03 
B= 7.716E-01+- 7.910E-01 
NUMBER OF RUNS= 35 
NUMBER OF POINTS= 8 
AVERAGE RESISTANCE= 3.112+-0.467 
AVERAGE ERROR IN k= 0.5% 
AVERAGE ERROR IN h= 1.3% 
r=3.0, 1=120.4, d=75 mm 
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PRESSURE DEPENDENCE OF CONDUCTIVITY 
TROON GRANITE SAMPLE T12 

Temperature 297 K 

p k R 

0 3.499 3.362 
0 3. 514 3. 361 
0 3.402 3.358 
0 3.457 3.358 

50. 0 3.427 3.358 
46. 0 3.430 3. 359 
46. 0 3.432 3.357 
44. 0 3.415 3. 358 

0 3.450 3. 360 
0 3.360 3.361 
0 3. 354 3.362 
8. 0 3.376 3.362 
9. 5 3. 354 3. 361 

21. 5 3.387 3.361 
21. 5 3. 377 3. 362 
31. 5 3.397 3.362 
31. 5 3.365 3. 362 
36. 5 3.415 3.360 
42. 0 3. 380 3. 360 
49. 5 3.410 3.362 
50. 0 3.403 3. 362 

0 3. 327 3. 364 
0 3.288 3.364 
12. 0 3.331 3. 364 
11. 0 3.260 3.363 
19. 5 3.348 3. 364 
22. 5 3.344 3.364 
30. 0 3.401 3. 362 
30. 0 3.364 3.363 
40. 0 3. 354 3. 362 
37. 0 3.390 3.362 
50. 0 3.399 3. 360 
46. 0 3.401 3.361 

0 3.250 3. 367 
0 3.235 3.367 
12. 0 3. 379 3. 365 
12. 0 3.327 3.365 
23. 5 3.356 3.365 
22. 5 3.322 3.365 
29. 5 3. 356 3. 363 
30. 0 3.374 3.363 
39. 5 3.399 3. 363 
41. 5 3.414 3.364 
46. 5 3. 384 3.364 
49. 0 3.394 3.364 

Notes 

Cycle Is Increasing P 

Cycle 2: After heating to 370 
K for 24 h. Increasing P 

Cycle 3: After heating to 420 
K for 24 h. Increasing P 

Cycle 4: After heating to 470 
K for 24 h. Increasing P 
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P k R Notes 

0 3.342 3.365 Decreasing P 
0 3.362 3.365 
0 3.370 3.365 
0 3.368 3.365 
0 3.368 3.366 
0 3.349 3.364 
0 3.363 3.364 
0 3.375 3.364 

i 
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PRESSURE DEPENDENCE OF CONDUCTIVITY 
GAVERIIGAN GRANITE SAMPLE G3 

Temperature 297 K 

p k R Notes 

0 3. 295 2.023 Cycle 1: 
0 3. 268 2.023 Sample water-saturated 
0 3. 256 2.023 Increasing P 
0 3. 258 2.019 

26. 5 3. 352 2.033 
24. 5 3. 335 2.028 
48. 0 3. 368 2.048 
48. 0 3. 413 2.027 

0 3. 310 2.018 Decreasing P 
0 3. 346 2.017 

0 3. 329 2.061 Cycle 2: After heating 
0 3. 390 2.062 K for 24 h. Increasing 
0 3. 340 2.063 
0 3. 343 2.063 

25. 0 3. 348 2.109 
27. 0 3. 333 2.137 
48. 0 3. 464 2.167 
48. 0 3. 381 2.196 

0 3. 295 2.182 Decreasing P 
0 3. 294 2.179 
0 3. 304 2.178 

47. 0 3. 330 2.196 Increasing P 

0 3. 241 1.943 Cycle 3: After heating 
0 3. 226 1.943 K for 24 h. Increasing 

25. 5 3. 333 1.942 
25. 5 3. 341 1.941 
50. 0 3. 365 1.940 
49. 0 3. 372 1.941 

0 3. 286 1.942 Decreasing P 
0 3. 288 1.942 

Conductivities were corrected for heater resistance 
variations. 
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Appendix V 

DESCRIPTIONS OF ROCK SAMPLES 

The following description was kindly supplied by J.R. 

Hawkes of the Institute of Geological Sciences. 

Generalized description of SW England granites. 

The principal constituents are orthoclase, quartz, 

plagioclase and a fairly iron-rich biotite mica. The 

mineral contents are broadly as follows: 

Approximate volume per cent 

Alkali feldspar 40 

Quartz 32 

Plagioclase 20 

Biotite 6 

Others 2 

Most samples contain a little muscovite which may partly 

replace biotite, and/or some of the plagioclase. Finely 

divided sericitic muscovite is a common feature in large 

numbers of plagioclase crystals. Another alteration product 

of biotite is chlorite. Except where the granite has been 

greisened and/or affected by vein mineralization, the 

amounts of muscovite and chlorite are small; generally of 

the order of 1 or 2 per cent. Since they replace either 

biotite or plagioclase, the approximate modal figures shown 

above would be modified only by these small percentage 

amounts. 

Accessory minerals account on average for a further two 

per cent. The chief of these is commonly schorlite 

tourmaline; others include apatite, zircon, ilmenite, 
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uraninite, rutile, fluorite and monazite. Monazite occurs 

along with the rutile and fluorite in biotite and is 

responsible for numerous "pleochroic haloes" of a-partical 

damage seen in such crystals. 

The granites have a hypidiomorphic texture. Mean matrix 

grain sizes are of the order of 1-3 mm and most specimens 

contain scatterd quartz and orthoclase megacrysts. The 

orthoclase megacrysts range in size from 5 mm up to nearly 

200 mm. Their mean size varies considerably according to 

location within the granite intrusions. 

Holman Mine granite-

(Carnmenellis. National Grid Reference SW 6580 3670). 

Troon granite. 

(Carnmenellis. National Grid Reference SW 6570 3677). 

Granite at this locality has the general characteristics 

outlined above. Orthoclase megacrysts account for 5-10 per 

cent of the rock with a mean size of around 20 mm. 

Merrivale Granite. 

(Dartmoor. National Grid Reference SX 5660 7350). 

The generalized description again fits, but muscovite 

replaces more of the biotite than is the usual case, 

forming about 3 per cent of the rock by volume. Orthoclase 

megacrysts account for only 1-5 per cent, with a mean size 

a little over 20 mm. 

The visual difference between the ordinary and heated 

samples may be due to oxidation of dispersed limonite 

present chiefly in feldspathic areas. 
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Gaveriggan granite. 

(St. Austell. National Grid Reference SW 9316 5916. 317 m 
depth). 

A finer-grained type of granite commonly developed near 
the margins of the St. Austell main intrusion. 
Mineralogically similar to that given in the general 
description, but with a mean matrix grain size nearer to 1 
mm. Orthoclase megacrysts scarce. 
Simplified description of the Killas specimen. 
(From Gaveriggan, St.austell. National Grid Reference SW 
9316 5916 ). 

Microscope examination of this very fine-grained 
material indicates that quartz, sericite and chlorite are 
the chief constituents. Accessory minerals include 
tourmaline and a dispersed opaque material that may be 
ilmenite. There is a good deal of limonitic staining in the 
rock, particularly near the quartz-sericite-plagioclase 
veins that cut this particular sample. 

204 



A p p e n d i x V I 

Internat ional Conference on P A P E R J 6 

geothermal energy 
Florence, I ta ly : May 1 1 - 1 4 , 1 9 8 2 

A LINE-SOURCE METHOD FOR THE MEASUREMENT OF TEMPERATURE 
DEPENDENCE OF THERMAL CONDUCTIVITY OF ROCKS 

A. Sartori and M. F. Francis 
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Summary 

Hot Dry Rock technology requires a thorough knowledge of the variation of the thermal 
properties of crystalline rocks up to depths of the order of five kilometres. This paper 
describes a transient method for fast laboratory measurements of the temperature dependence 
of the thermal conductivity of rock and other poor conductors. A cylindrical sample of rock is 
heated by a thin axial heater wire, the resulting temperature increase at points within the rock 
being monitored by a microcomputer. A new line-source solution to the heat equation, derived 
to take into account contact resistance between heater and specimen, is fitted to the experimen-
tal temperature data to yield values of conductivity and diffusivity in just a few minutes. Con-
ductivity values of several Cornish granite specimens are presented in the temperature 
range 250-470 K. They exhibit a T " 1 dependence on temperature as expected for this type of 
rock, and show good agreement with conductivities from a steady-state apparatus at room 
temperature and with published results for similar types of rock over the whole temperature 
range. The method yields absolute values of conductivity, thus requiring no calibrations. 
The absolute accuracy is estimated at better than 2.5%, which compares favourably with that 
obtainable with steady-state methods. Sample preparation is simple and not critical. The 
method described is well suited for measurements of the variation of thermal properties 
with pressure. 
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NOMENCLATURE 

b radius of cement cylinder 

d radius of sample 

h thermal diffusivity of rock 

h-̂  thermal diffusivity of cement 

I n modified Bessel function of the first kind and order n 

k thermal conductivity of rock 

k^ thermal conductivity of cement 

modified Bessel function of the second kind and order n 

p Laplace transformation variable 

q =(p/h) i 

q x =(p/h1)' 

Q line-source linear power 

r radial coordinate in cylindrical polar coordinates 

t time 

T absolute temperature 

v rock temperature 

v =L{v), Laplace transform of temperature 

a =r2/4ht 

3 =b 2e 2T/4h 

y Euler's constant =0.5772 
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1. INTRODUCTION 
Hot Dry Rock (HDR) technology requires detailed information on the dependence of 

the thermal properties of crustal crystalline rocks on temperature, pressure, 
moisture and mineralogy up to depths of the order of 5 km. For a given regional 
heat flow, the crustal thermal conductivity controls the geothermal gradient. Thus 
the drilling depth required to reach a rock at a given temperature will vary in 
direct proportion to the mean thermal conductivity of the formation (Ref. 1). 
Fig. 1 shows a plot of an extrapolated temperature profile based on observed 
surface values of conductivity with two different published values for the tem-
perature dependence of conductivity of Westerly and Rockport granites (Ref. 2). It 
will be noticed that for temperatures of 450-500 K (180-230°C), the drilling depth 
is critically dependent on the temperature dependence of the conductivity. Because 
drilling costs increase exponentially with depth (Ref. 3), thermal conductivity 
characteristics are important in determining costs associated with developing a 
reservoir. In the performance modelling of a HDR reservoir, the thermal conduc-
tivity of the formation will strongly affect the lifetime of the reservoir and the 
maximum rate of heat extraction (Ref. 3). 

The objective of this work was to test a simple line-source transient method for 
fast measurements of rock thermal conductivities over a range of ordinary and 
elevated temperatures. Cylindrical samples of rock, which had reached temperature 
equilibrium in an oven, were heated by means of an axial heater wire (Ref. 4). The 
resulting transient temperature increase at points inside the rock was interpreted 
to yield values of conductivity and diffusivity in just a few minutes. In the 
development of the method an attempt was made to overcome some of the shortcomings 
of the well-established divided-bar and needle-probe methods (Ref. 5), such as the 
need for carefully characterized reference materials over a wide temperature range. 
In the present method, absolute values of the thermal parameters are obtained, thus 
no calibrations being required. The expensive drilling of long and narrow holes in 
the samples needed to accommodate needle-probes was avoided, and the reduced thick-
ness of the heater contributed to minimizing contact-resistance effects. Although 
all the samples tested to date were cylindrical, their shape is not critical, which 
simplifies preparation. The experiments described in this paper were performed at 
atmospheric pressure, but extension to a range of high pressures does not require 
major modifications and will be undertaken in the near future. 

2. THEORETICAL ANALYSIS 
2.1. Line-source solution with contact resistance. 

It became apparent early in the investigation that the existing mathematical 
treatments of the needle-probe method (Ref. 6) could not be adapted to the line-
source method. Unlike needle-probes, the heaters used in the present work were very 
thin and could be treated as ideal line sources. A new mathematical treatment was 
developed to account for the contact resistance of a thin layer of cement between 
heater and rock. An analytical solution to the equation of conduction of heat was 
sought in cylindrical polar coordinates using the following boundary conditions: 
1) An infinitely long line-source along the z-axis emits heat at a constant rate Q 
per unit length into an infinite mass of rock of conductivity k and diffusivity h for 
t>0. The initial temperature is zero everywhere. 
2) The cement is modelled as a solid cylinder of radius b concentric with the 
heater, having conductivity k^ and diffusivity h^. This is only an approximation to 
the actual shape of the cement, but it simplifies the solution. 

It is shown in Appendix I that an approximate solution in the region x^ b 1 S 

given by 
2 2 

v = { f l e ' U / v d u + £k ( k / h - V V l n ( t / a ^ - \ ( 1 / h j - l / h ) e ~ a } . 

(1) 
If b»0, or k=k^. h=hj, the second and third terms vanish, and Eq. (1 ) reduces to a 
simpler line source solution already in the literature (Ref. 7).,The approximation 
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o 
is valid for b /ht<<l and arbitrary r, which can be regarded as either the large time 
solution, or a case of a thin layer of cement. Both these requirements were satis-
fied in the present experiments. A more complex solution which takes into account a 
thin layer of cement between two semi-cylinders of rock is now under study. 

2.2. Application of theoretical results. 

The parameters k (thermal conductivity) and h (thermal diffusivity) can be cal-
culated from a least-squares fit of equation (1 ) to a graph of temperature against 
elapsed time assuming approximate values of the thermal properties and thickness of 
the cement. In the present study, however, the following simpler approach was 
adopted which is more suitable for fast data reduction by microcomputer. Equation 
(1 ) can be rewritten as 

v = v + v 
1 E (2) 

where v^. is the first term, corresponding to the ideal solution for no contact re-
sistance, and V£ is the sum of the second and third terms, the "error" caused by the 
contact resistance. A graph of v^/vj versus ht/b^ is plotted in Fig. 2 for various 
values of r/b and typical values of conductivity and diffusivity for a granite 
sample/fire cement contact. The value t ^ ^ of the time for which the term vg be-
comes negligible can be determined from this graph. At larger times, boundary effects 
at the surfaces of the samples become important. Using Laplace transformation 
techniques, the effects of keeping the surfaces of finite cylinders of radius d at 
zero temperature were calculated to be less than 1% when d/r^-lO and ht/d^o.3 for 
a samplfj of radius d. For a typical granite sample with k=1.5xl0~^ m^s"^, 
d=3xl0 m, the minimum and maximum acquisition times t^jjj and tj,^ a r e the order 
of 60-80 and 150 s respectively. 

An iterative nonlinear least-squares method due to Box (Ref. 8) was used to fit 
vj to the experimental temperatures over the range tj^^j <t<tj,j^ to obtain the 
parameters k and h. The number of iterations is not strongly dependent on the 
initial values of k and h chosen and convergence to the final values is fast. The 
well-known logarithmic approximation (Ref. 7) to the exponential integral in Eq. 
(1 ) was not used here as the requirement r^/ht<<l for the approximation to hold was 
not satisfied to the desired accuracy. The consequent increased complexity of the 
calculations was offset by the availability of a microcomputer for the fast computa-
tions of the nonlinear least-squares routines. A better accuracy could thus be 
obtained than in previous methods. 

3. LINE SOURCE APPARATUS 
3.1. Apparatus description. 

The preparation of the samples involved cutting the rock into cylinders90 to 
120 mm long and 60 to 75 mm in diameter. Each cylinder was then cut longitudinally 
into two halves, thin grooves were scribed into one half of the cylinder to accom-
modate a copper-constantan thermocouple and an axial constantan heater wire (diameter 
0.2 mm), at a separation of 1 to 4 mm. The other half of the sample was cemented 
back on with hot-cure epoxy resin or fire cement (Fig. 3). The small diameter of the 
thermocouple wires (0.12 mm) and their position parallel to the heater reduce con-
ductive heat losses along the wires. Also, the leads lie roughly parallel to 
equithermal planes in this arrangement, thereby reducing the distortion of the temp-
erature field within the rock. The cold junction of the thermocouple was placed in 
an aluminium block within the oven (Fig. 4) and had a short time temperature 
stability similar to that of the oven (0.1 K). This allowed the differential tem-
perature between sample and oven to be measured directly and independently of oven 
temperature. High temperature cables were welded to the ends of the heaters for 
current supply with separate cables for potentiometric measurement of power input. 
Typical power inputs were of the order of 30 to 40 W/m, with a time stability of 
about 0.1% in each individual experiment. The absolute accuracy of the temperature 
measurements is not critical in this type of experiment, but the sensitivity rffa? 
thermocouple at a given temperature has a direct effect on the results. Thermocouple 
sensitivity was determined by calibration of several random thermocouples from the 
same batch of wire as that used in the conductivity measurements. The standard 
deviation was found to be less than 1% of the average sensitivity. The reference 
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thermometer was a platinum resistance thermometer calibrated by the National Physical 
Laboratory to an accuracy of 0.01 K. 

Amplification of the dynamic microvolt-level signals required a low-noise 
(1.0 pV peak-to-peak between 0.01 and 10 Hz) instrumentation amplifier followed by a 
low-pass filter with a cutoff frequency of 10 Hz and a slope of -24 dB/octave for 
reduction of mains-borne electromagnetic interference and high frequency noise. This 
frequency response was a compromise between the requirement for fast response and 
noise reduction. The delay introduced by the filter was calculated to be 0.2 s for 
1% accuracy, with a negligible effect on the final values of conductivity. A 12-bit 
multichannel data acquisition system provided the interface with an 8-bit micro-
computer, which performed all the control functions, data acquisition and data re-
duction. After power to the heater was switched on, the heater voltage and current 
and the sample temperature were digitized at 0.3 intervals for about 140 s. A 
digital filter provided a further improvement in the signal-to-noise ratio: each 
signal was sampled 250 times in rapid succession and averaged over a 20 ms time 
interval, thus eliminating periodic signals with a period of 20 ms such as 50 Hz 
electromagnetic interference and its harmonics. The resolution of the system was 2 
mK with drift of less than 0.1 K in a 150 s interval. On this apparatus, the de-
termination of the thermal parameters took 2 to 6 minutes depending on the number of 
iterations required in the least-squares routine. Temperature equilibrium to better 
than 0.1 K between oven and a rock sample was established in 8-12 hours. Measurements 
of the same sample could be repeated at 60-90 minutes intervals. Up to twenty 
samples were measured in rapid succession in the same oven. 

3.2 Discussion of errors. 
Mis-positioning of the voltage-sensing leads by just +1 mm can lead to a system-

atic error of + 1% in the conductivity values. This was taken as the average error 
in the power measurements. The sensitivity tolerance of the thermocouples introduced 
an uncertainty of about + 1% in the slope of the temperature versus time curve, and 
hence in the final results. The approximations of the mathematical model are 
probably responsible for a further uncertainty of +_ 0.5% in the results, bringing the 
total error to about + 2.5%. Careful preparation of the samples is paramount in 
keeping this figure low. One sample was measured, dismantled, provided with a new 
heater and thermocouple, and re-measured, with a negligible shift in the measured 
conductivity. All the measurements were repeated at least three times at the same 
temperature as a check on the repeatability. It was found that temperature 
fluctuations in the oven and reference junction caused a scatter in the results. This 
was a function of the temperature increases measured and therefore^of the thermal 
conductivity, varying between a fraction of a percent at k=1.6Wm K to 1-2% at k=3.2. 

4. RESULTS 

A set of samples representative of the main geological suites found in S.W. 
England and one ceramic sample were investigated. A set of comparative measurements 
of a zero porosity Corning Macor 9658 ceramic sample were performed to test the ab-
solute accuracy of the method. Table 1 shows that at room temperature the measured 
conductivity was in good agreement with that obtained with a divided-bar apparatus 
and with those reported by Bloomer (Ref. 9) and measured by a divided-bar and by a 
needle-probe calibrated against a silica glass standard. The good agreement with the 
values from the divided-bar apparatus was explained by the fact that the samples were 
cut from the same block of material. In Fig. 5 the conductivity is shown to increase 
with increasing temperature, as expected from this type of material. Each point in 
Fig. 5 is an average of three to seven experimental values. The standard deviations 
of the individual readings, represented by the error bars in Fig. 5 suggest good 
repeatability. One of the values at 325K (52°C) was obtained after dismantling and 
reassembling the sample with a new heater and thermocouple, and shows a negligible 
change in the measured conductivity. The smoothed curve is a second-order poly-
nomial in T. Other curves could have been fitted to the experimental points with as 
good a justification, but the differences would be negligible within the temperature 
range of the experiments. The smoothed conductivity values are tabulated in Table 2, 
which also shows smoothed conductivity values for ten selected rock samples. Samples 
M2B through M8B were taken from the same block of granite from Merrivale (Dartmoor) , 
samples T9 through T14A are granites from Troon (Carnmenellis) , K20 is a Cornish slate 
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sample, and MAC-4A is the ceramic sample. The sample-to-sample conductivity diffe-
rences are not entirely due to experimental errors, and are probably real differences 
due to the large grain size of the samples. Fig. 6 shows a comparison of smoothed 
results for two representative Cornish samples (M5 and M8B) from this study with the 
results by other workers on similar rocks. The thermal conductivity exhibits a 1/T 
variation consistent with the anharmonic phonon scattering region. The divided-bar 
measurement at room temperature was performed on a water-saturated sample, which 
probably accounts for the marginally higher thermal conductivity. A description of 
the rock samples is given in Appendix III. 

5. CONCLUSIONS 

The results obtained confirm the accuracy of the theoretical predictions and de-
monstrate the validity of this method of rapid thermal conductivity measurement. 
Fig. 6 highlights the marked temperature-dependent decrease in thermal conductivity 
for rocks likely to be encountered in a HDR reservoir. The statistical reliability 
was enhanced by the large size of the data sample obtainable using modern digital 
techniques. The same apparatus used in the experimental measurements described may 
be easily employed in conjunction with a needle-probe for the thermal conductivity 
determination of unconsolidated or soft sediments. The use of more realistic 
boundary conditions, though increasing the computational complexity, allowed an 
improved repeatability. One of the advantages of the method is that the calculated 
thermal conductivity is less dependent on the time window over which the rock tem-
perature is sampled than with methods involving less rigorous analyses. A possible 
further application would involve measurements over a range of elevated temperatures 
and pressures and including the effects of more realistic levels of water-saturation 
such as are likely to be encountered in a typical HDR reservoir. 
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APPENDIX I 
The general form of the one-dimensional heat equation in cylindrical polars is 

92v + 1 dv = dv 
dr2 r 3r h at (1) 

Laplace transformation (Ref.10) with respect to time of this equation and of the 
boundary conditions in the two media gives the subsidiary equations 

d 2 v^ l dv1 2 - for 0<r<b 
• : = q- V1 

dr 2 r d r A (2) 

d 2v 1 dv 2- F o r + = qv 
dr 2 r dr (3) 

subject to the boundary conditions 

, , d v l k dv a t r = b » VI = V and k x — = ^ ^ 

lim (r£^l) = -Q/(2nk l P) 

r->0 dr (5) 

and v bounded as r , (6) 

where v is defined as v (p)=L{v(t)}. (7) 

Equation (5) is the boundary condition at the wire. 

Solution of Eqs. (2) and (3) subject to (4), (5) and (6) gives 

v = Q _ K0(qr) 

2 H b — (8) 

where 

A = q 1k 1K o(qb)I 1(q 1b)+qkK 1 (qb)I o( q ib) , (9) 

with a similar expression for v-^. 
An exact solution for v can be derived from Eq. (8) by the inversion theorem of 

the Laplace transformation. For the purposes of the present work, however, an 
approximate expression for small values of (qb) and arbitrary r suffices (Ref. 11). 
Approximating the modified Bessel functions in A by the first few terms of series in 
ascending powers of p, we obtain 

A =k {1+Apln(3p) + Bp + 0(p2)} 
b (10) 

9 2 9 where A=b^(k/h-k1/h,)/ 4k, B=b (1/h -l/h)/4, and 0(pi:) represents the terms of order 
9 . 1 1 1 -1 

p^ and higher. Making use of the binomial theorem to find A , 
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- =
 Q K o ( q r ) {1-Ap ln(Bp)-Bp) (11) 

2npk 

to the first order in p. 
v is found by applying the inversion theorem to each term of the series. From 
standard tables (Ref. 12), 

L" 1 {Ko(qr)/p} = e ~ U/u du (12) 

L _ 1 (Ko(qr)} = e~a/2t (13) 

for the first and last terms respectively. In Appendix II, the inverse Laplace 
transform of the middle term is shown to be 

L~1{Ko(qr)ln(8p)} = -e~ aln(t/a3)/2t. (14) 

The final result (equation (1) of section 2) follows from (11), (12), (13) and (14). 

APPENDIX II 
To find the inverse Laplace transform of 

F(p)=Ko(qr) ln(3p), U ) 

set G(p) = ~ = - ( r / 2 h M > K ^ q r ) ln(3p)+KQ(qr) /p = H(p) +Kq(qr) /p 

The second term is easily transformed. 

gives 

(2) 

H can be written as 

H=-{rpi/(2h^)K1(qr)} {ln(3p)/p} (3) 

and the two terms transformed separately. 
From standard tables (Ref. 12), 

L _ 1{p* K^(qr)} = re" a / t/(4h*t 2) (4) 

L _ 1{ln(Bp)/p} = -ln(ct)/3 (5) 
2 

where a=r /4h and In c = y 

Using the convolution theorem of the Laplace transform 

L _ 1{X(p)Y(p)} = L"1{X(p)} * L _ 1{Y(p)} 

h(t)=L_1{H(p)} = / Q ae a / x/(2t 2) ln{ c/(t-r)/3}dx (6) 

This integral is evaluated using 
co —x 

/Q e In x dx = -y 

Thim, from (2) and (6), 

g(t)=L_1{G(p)} = e~aln(t/a3V2. (7) 

Finally, using 
r G(s) ds =-F(p) (8) 
P 
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and the theorem 

L G ( s ) d s } =g(t)/t, (9) 

we obtain 

L _ 1{K o(qr) ln(Bp) } =-e^ln(t/a(3)/2t. (10) 

It is found that if the Laplace transforms of K 0(qr) and ln(Bp) are evaluated 
separately and the results convolved, the convolution integral diverges. 

APPENDIX III 
Descriptions of rock samples from Cornwall. 

The principal constituents of the granite samples are orthoclase, quartz, 
plagioclase and a fairly iron-rich biotite mica. The mineral contents are broadly 
as follows (in percentage volumes): 
Alkali feldspar 40 
Quartz 32 
Plagioclase 20 
Biotite 6 
Others 2 
The granites have a hypiodiomorphic texture. Mean matrix grain sizes are of the 
order of 1 —3 mm. In the Troon samples (T9A—T14A) orthoclase megacrysts account for 
5-10% of the rock with a mean size of around 20 mm. In the Merrivale samples 
(M2B-M8B) , muscovite partly replacing biotite forms about 3% of the rock by volume. 
Orthoclase megacrysts account for only 1-5%, with a mean size a little over 20 mm. 
In the Cornish slate specimen (K20), the chief constituents are quartz, sericite 
and chlorite. Accessory minerals include tourmaline and ilmenite, with a good deal 
of limonitic staining in the rock, particularly near the quartz-sericite-plagioclase 
veins which cut this particular sample (J.R. Hawkes, pers. comm.). 
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TABLE 1. Comparison of conductivity results of ceramic (Macor) at 298 K (25°C) 

Source of data No. of readings Conductivity 
(Wm _ 1K X) 

Line-source (at 302 K - 29°C) 6 

Divided-bar 24 
Needle-probe (Bloomer, Ref. 9 ) 39 
Divided-bar (Bloomer, Ref. 9 ) 13 

1.610+0.011 
1.605+0.003 
1.62+0.03 
1.59+0.04 

- 1 - 1 TABLE 2. Conductivity results. Smoothed values, in Wm K 

Sample 
number 

250K 300K 350K 400K 450K 470K 

M2B - 3.165 2.998 2.878 - -

M3 - 3.166 2.965 2.813 2.696 -

M5 3.278 3.029 2.851 2.717 2.613 2.578 

M8B - 3.149 2.956 2.812 2.699 2.661 

T9 - 3.198 3.010 2.869 - -

T10A - 2.955 2.828 2.733 - -

T11A - 3.090 2.933 2.816 2.724 2.693 
T13A - 3.066 2.890 2.759 - -

T14A - 3.068 2.908 2.788 - -

K20 2.207 2.056 1.949 1.869 1.806 1.784 
MAC-4A - 1.608 1.619 1.639 1.669 1.683 
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Figure 1. Crustal temperature profiles. Extrapolations are based on surface values 
of heat flow and thermal conductivity. Temperature dependence values of 
conductivity are from Birch and Clark (Ref.2). 

U£= CORRECTION TERM FOR CONTACT RESISTANCE 
IDEAL LINE SOURCE SOLUTION FOR ZERO CONTACT 
RESISTANCE 

r = POSITION OF THERMOCOUPLE 
b = RADIUS OF CEMENT CYLINDER 

k,h = CONDUCTIVITY, DIFFUSIVITY OF ROCK 
M i = " CEMENT 

h t / b : 

Figure 2. Effect of contact resistance on line-source solution. Conductivity and 
diffusivity values are for a typical granite/fire cement interface. 
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CONSTANTAN 
HEATER 

WIRE 

Figure 3. Section of a rock sample. The thermocouple junction is.located at the 
mid-point of the sample. The grooves are scribed with a rotating diamond 
wheel. The top semicylinder of rock (not grooved) is cemented back on 
after emplacement of thermocouple and heater. 

HEATER CIRCUIT LABORATORY OVEN AMPLIFIER LOW-PASS 
FILTER 

Figure 4. Line source apparatus. Only one sample is shown for simplicity. 
Appropriate switching of the power and thermocouple lines allowed 
measurements of up to twenty samples in rapid succession. Data were 
recorded on magnetic tape for further analysis. 
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Figure 5. Thermal conductivity of ceramic (Macor). Points shown are averages of 
several experimental values. The error bars indicate the standard 
deviations of the individual readings. The curve is a second-order 
polynomial in T. 

350 
TEMPERATURE 

Figure 6. Comparison of thermal conductivity of granites. Curves are smoothed 
values. Lines 6 and 7 and point 8 refer to the present study. 
1, 2: Rockport granite (Birch and Clark, Ref.2). 3: Barre granite 
(Ref.2). 4: Westerly granite (Ref.2). 5: Cornish granite (Dodson, pers, 
comm.). 6: Merrivale granite, sample M8B. 7: Merrivale granite, sample 
M5. 8: Merrivale granite, divided-bar measurement. 
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