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ABSTRACT 

The miscibilities of solution chlorinated polyethylenes with 

ethylene-vinyl acetate copolymers have been established using various 

techniqueso 

The cloud point curves of the mixtures have been measured 

using a light scattering turbidimeter. The heats of mixing of low 

molecular weight analogues were found to be favourable for mixing,, 

The volume contractions on mixing for the analogues were measured using 

a densimeter and that of a polymer blend was obtained indirectly from 

the effect of pressure on the cloud point,, Negative interaction 

parameters were found for the blends below their cloud point temperatures 

using the inverse gas chromatography technique. 

Knowing all these experimental thermodynamic properties of 

the mixtures it was possible to compare the results with the various 

theories of polymer-polymer miscibility. A modified version of the 

Flory-Huggins lattice model was used to calculate the interaction 

parameters and also to simulate the phase boundaries. The disadvantages 

of this model were discussed. Flory's equation of state theory with an 

entropy correction factor was used to calculate the volume contraction 

on mixing, the interaction parameters and the residual thermodynamic 

quantities. This model was also used to simulate the spinodal curve 

of the mixtures„ The advantages and inherent difficulties of this 

model were discussed„ A need for a completely new model to explain 

the thermodynamic quantities of blends with specific interaction is 

recommended„ 
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CHAPTER ONE 

1.1 INTRODUCTION 

In the polymer literature the term compatibility is generally 

used to describe the single phase behaviour of a mixture. In 

commercial production processability is often used as a criterion 

for compatibility, but this is not necessarily dependent on the 

existence of a single phase. Miscibility is therefore better defined 

in thermodynamic terms where the free energy of mixing provides an 

unambiguous criterion for predicting miscibility and a true picture 

of the equilibrium states of the polymer-polymer mixture, both 

qualitatively and quantitatively. 

The first attempt to treat the change in entropy and enthalpy 

when two liquids are mixed was made in 1910 by van Laar (1910), who 

based his work upon the van der Waals equation of state. A volume 

additivity assumption was used and according to his expression, the 

heat of mixing is always positive and can be zero in one special 

condition. The theory also assumed that in a mixture, (a) the molecules 

are arranged in a regular lattice, (b) the separate liquid components 

have ordered structures of the same type and (c) the intermolecular 

potential energy is the sum of contributions from nearest neighbours in 

the lattice. The volume change in mixing is ignored by this theory. 

The following equation, derived independently by Hildebrand 

and Wood (1933), and Scatchard (1931, 1937), has formed the basis of 

the theory of the regular solution (solubility parameter) developed 

by Hildebrand et al. (1970) 
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M 
where AE is the internal energy of mixing i0e0 difference between 

the energies of the solution and the components? X^ and X^ are the 

molar fractions and and a r e volume fractions of the 
A E V 

components. V^ and are the molar volumes. — i s called the 

energy of vaporization per unit volume, or more commonly, "the 

cohesive energy density" and is related to the solubility parameter by: 
1.2 

The theory proves to be useful for thermodynamic considerations 

of non-ideal mixtures (Hildebrand et al., 1970). This theory, 

however, is only applicable to mixtures of non-polar molecules 

with equivalent molar volumes and positive enthalpies of mixing. It 

assumes an ideal entropy of mixing and ignores any volume change on 

mixing. 

The regular solution model has little practical value, 

because very few mixtures are composed of two kinds of molecules whose 

volumes are so nearly equal as to permit them to fit into even a 

quasi-lattice, with a heat of mixing that is symmetrical in molar 

composition. Despite these limitations, the theory proved to be able 

to predict symmetrical phase diagrams, but failed to deal with 

asymmetrical phase diagrams, caused by the difference in the molar 

volumes of the components. 
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The first attempts to calculate the entropy of mixing of 

long chain molecules with segments occupying sites of a lattice and 

small molecules occupying single sites were made simultaneously and 

independently by Flory (1941, 1942) and Huggins (1941, 1942). They 

assumed that a chain molecule in solution may be regarded as built 

up from segments arranged on a regular array of sites, and that the 

intermolecular energy arises entirely from interactions between segments 

on neighbouring sites« The lattice model has been reasonably 

successful in interpreting the thermodynamic properties of polymer 

solutions, but the assumption of a lattice structure can scarcely be 

regarded as physically realistic. This method, however, has a wide 

range of usefulness as a first approximation in dealing with polymer 

solution properties„ It also has a series of shortcomings, some of 

which will be briefly described here. 

The restricted nature of the theory of regular solutions is 

one of the reasons for the limitation of the Flory-Huggins theory. 

The combinatorial entropy of mixing (i.e. a measure of the total 

number of molecular arrangements on the lattice) was calculated on 

the basis of that theory (Hildebrand, 1953), by assuming random 

distribution and no orientation for a solution in which the molecules 

of the components differ very considerably in size. The values 

obtained differ considerably from the ideal entropy of mixing. All 

the other assumptions of the theory are the same as in Hildebrand's 

theory i.e. it assumes equal volumes for polymer segments and solvent 

(therefore no change in volume on mixing) and that the enthalpy of 

mixing does not affect the magnitude of the entropy of mixing. These 

assumptions mean that the theory is applicable only for certain 

systems (Flory, 1942). 
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According to the original formulation, the Flory-Huggins 

interaction parameter X, which arises from the mixing of n^ moles of 

polymer with n^ moles of solvent at constant temperature and pressure, 

is zero for athermal mixtures. Subsequent work proved that this Ls 

not true because both the excess entropy and the excess enthalpy 

contribute to X: 

X = X + X 1.3 S H 

where X is the contribution from the excess entropy and X„ is that S H 

from the excess enthalpy. It was also supposed that X is independent 

of concentration, pressure, temperature and molecular weight. 

Experimental evidence has shown that these assumptions are over-

simplifications and X is now considered dependent on the above 

quantities. 

A modified interaction parameter suggested by Tompa (1956) 

has several advantages over the Flory-Huggins interaction parameter 

and has been extensively used to describe binary mixtures: 

X = X + X $ + X $ 2 + 14 1 2 2 3 2 

where $2 is the volume fraction of component two. 

A similar empirical function, g, has been introduced by 

Koningsveld and Kleintjens (1971) to replace the Tompa and Flory-

Huggins interaction parameter: 

9 = gK,l + gK,2 / T" 9K,3 T + gk,4 l n T X" 5 
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g . in turn depends on measurable physical quantities such as the K, 1 

heat of mixing and molecular weight. This g function is related 

to X in the following way: 

6 F 
x= g ( i - 1 - 6 

and has been used (Koningsveld et al., 1974A) when only the second and 

third terms of Equation 1.5 are retained, to describe the phase boundaries 

of mixtures. However, no completely satisfactory molecular 

interpretations of g exist (Koningsveld et al., 1974A, 1980 and 

Koningsveld and Kleintjens, 1977) and the coefficients remain, at 

best, empirical. 

Another shortcoming of the lattice theory was pointed out 

by Allen et al. (1960A, 1961) who found a bimodality on the cloud 

point curves of polyisobutene-poly(dimethylsiloxane) mixtures. 

Koningsveld et al. (1974A), by assuming a quadratic dependence of 

the interaction parameter on concentration, and combining it with 

Equation 1.5, managed to reproduce the observations of Allen et al. 

theoretically. In their theoretical simulation a restricted 

temperature dependence of g was used and polydispersity of the system 

was ignored. On this basis, Koningsveld et al. (1974A) drew the 

conclusion that the concentration dependence of the interaction 

parameter can outweigh the effect of the entropy of mixing, and the 

results of Allen et al. (1961A) can only be explained in this way. 
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The Flory-Huggins formulation does not take into account the 

effect of pressure on the miscibility of mixtures whereas experimentally 

introducing pressure to an oligomeric system with positive heat of 

mixing would result in elevation of the cloud point curves to higher 

temperatures. This effect was observed by Tripathi (1979) for the 

polystyrene-polybutadiene system for which positive heats of mixing 

were measured by Chong (1981). Here, one may conclude that if the 

spatial freedom for the mixture reduces due to applied pressure, then 

the configurational entropy increases to prevent an ordered arrangement 

of the mixture. 

Finally, the present theory of polymer mixtures assumes that 

the force field around the molecules or polymer segments is isotropic . 

In other words, there are no orientation effects. However, clearly 

the interactional energy of two molecules depends on whether the 

molecules are "face to face" or "face to edge" or "edge to edge" or 

in any other mutual orientation. Hence, the mixing of two components 

will interfere with the state of each and will lead to an additional 

term in the enthalpy of mixing, which must take into account such 

factors as the shape and size of the molecules0 

Rowlinson (1970) demonstrated that the idea of random mixing 

is an attractive and good approximation for mixtures of molecules of 

equal sizes and different energies. This makes it possible to specify 

exactly the configurational free energy of such a mixture in terms of 

that of one of the components, but it is quite inappropriate for 

mixtures of different sizes with steep Lennard-Jones potential 

energies. He concluded that the treatment of real mixtures must 

start from a position which at least does justice to the simple case 

of mixtures of hard spheres. 
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The inadequacies of the lattice model and its failure to 

predict the experimental results, has encouraged Flory and collaborators 

(Flory et al., 1964? Flory, 1965? Orwell and Flory, 1965? Abe and 

Flory, 1966? Eichinger and Flory, 1968) to initiate and develop a new 

so called "equation of state" theory by treating the molecules as 

hard spheres with equal volumes. In this new theory the hard core 

properties were introduced, which allowed calculation of all thermo-

dynamic parameters and their corresponding excess values. Also for 

the first time a negative heat of mixing, interaction parameter and 

excess volume of mixing could be predicted by a theory. 

The equation of state theory shows its superiority over the 

lattice model in many aspects, for example it predicts lower and/or 

upper critical solution phase boundaries for polymer mixtures whereas 

the lattice model can only predict upper critical solutions phase 

boundaries. 

The present equation of state theory, however, although adequate 

in explaining early experimental results, was not completely capable 

of predicting the recent findings of Chahal et al. (1973) where 

theoretical prediction of X are not matched with experimental ones. It 

therefore underwent some modification whereby an entropy correction 

parameter, w a s introduced. This will be discussed in detail later 

on. 

The original equation of state theory ignored polydispersity 

and its effect on the phase diagrams of the mixtures, and did not 

make any allowance for copolymers. It is also, like the corresponding 

equation of states theory of Prigogine et al. (1953) and the lattice-
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fluid theory of Sanchez and Lacombe (1976), unable to give the exact 

^ values of free energy, enthalpy and entropy change on mixing whereas 

their corresponding partial molar quantities are accessible. In 

addition, none of these theories considers the effect of polymer 

^ tacticity on the miscibility of the polymer blends, as demonstrated 

recently by Schurer et al. (1975) where changing the stero configuration 

of poly(methyl methacrylate), PMMA, from isotactic to syndiotactic 

causes it to become miscible with poly (vinylchloride), PVC. 
a. 

One of the more interesting aspects of miscible blend studies 

is the finding that many miscible systems with specific interactions 
pi, 

show cloud points on heating, which signal the existence of a lower 

critical solution temperature, (LCST). The systems with LCST behaviour 

have negative interaction parameters, and volume changes on mixing 

^ below the LCST. For example, Olabisi (1975) has measured a negative 

interaction parameter for PVC and Polyfe. caprolactone) by inverse 

gas chromatography, IGC. He proposed the possiblity of charge transfer 

interactions between these two polymers which are weaker at higher 
A 

temperatures thus ensuring an LCST behaviour. Cruz et al. (1979) 

have obtained negative heats of mixing for oligomeric systems with 

specific interactions„ They concluded that the polymer pairs whose 

^ oligomeric analogues have negative heats of mixing are likely to form 

miscible or partially miscible mixtures, and polymer pairs whose 

oligomeric analogues show positive heats of mixing are invariably 

immiscible. On the other hand, the miscibility due to a specific 

interaction between PVC and the carbonyl oxygen of several polyesters 

has been compiled by Ziska et al. (1981). Their findings indicate that 

a negative interaction parameter exists between PVC and polyesters 
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when 3 <(CH9) /COO <12, and it is more negative for linear polyesters 

compared to branched ones at the same value of (CI^^/COO. 

Nishi and Wang (1975 ) showed that the heat of mixing 

parameter in the classical theory of melting point depression is 

negative when it is applied to a miscible blend of poly(vinylidene 

flouride) (PVF2) with PMMA. It is similarly negative for miscible 

blends of PVF2 with poly(ethylmethacrylate), poly(methylacrylate), 

poly(ethylacrylate) and poly (vinylmethylketcne), (Paul and Barlow, 

1979). The LCST of these systems and also of PVF2~PMMA was described 

by Bernstein et al. (1977). 

The LCST behaviour of monodisperse poly(styrene) and poly 

(vinylmethylether PVME) with a molecular weight range of 10,000 to 

20,000 was described by Nishi and Kwec (1975). These systems were 

studied in more detail by Davis and Kwct- (1980) and Cowie and Saeki 

(1982) who found both LCST and UCST behaviour when polystyrene had the 

appropriate molecular weight. There are several other miscible 

systems which have already been documented by Krause (1978) and Olabisi 

et al. (1979) and more recently miscible pairs of PVC-solution chlorinated 

polyethylene (Doube and Walsh, 1979) solvent cast from 2-butanone and 

PVC with various polyacrylates and polymethylacrylates both solvent 

cast and prepared by in situ polymerization (Walsh and McKeown, 1980) 

were established and studied. 

Lipatove et al. (1978) have found that the negative interaction 

parameters for poly(ethylene glycol), PEG 2,000-poly(ethylene glycol), 

PEG 40,OOO, a mixture with specific interactions, will become positive 
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at elevated temperatures. Nesterov et al. (1976) have also studied the 

effect of temperature on the free energy of mixing of oligomers with 

both UCST and LCST behaviour by the IGC technique. They found two 

minima in the free energy of mixing for poly(propylene glycol), PPG 

1050-poly(ethylene glycol adipate), PEGA 2,000 mixtures at all 

compositions. They attributed the negative free energies to a miscible 

region and positive free energies to immiscible regions, and thus 

generated the phase diagrams of the system. Their calculation shows 

that the heat of mixing is negative in the miscible region and remains 

negative but small in the immiscible region. These considerations 

commonly show that the most important factor for enhancing the 

miscibility of high molecular weight polymers is the introduction of 

specific interactions between constituents of individual chains, which 

provide the necessary driving force for miscibility. Hydrogen bonding 

is a specific interaction which has been proposed for many miscible 

polymer systems as described by Paul and Newan (1978) and Olabisi et 

al. (1979). 

If we accept the concept of additivity of heats of mixing 

given by Paul (1978) as 

AH = AH (dis) + NAH (sp) 1.6 M M M 

where NAH (sp) is the contribution of specific interaction and AH (dis) M M 
is that of dispersive forces to the total heats of mixing, then for 

a negative heat of mixing, the energy of the specific interactions 

must exceed the positive contribution of AH. (dis). Recent calculations 
M 

of Combs and Danne (1982) have predicted that the repulsive forces 

between CH2 and C atoms of two parallel and opposed paraffin molecules 

to be 0.22 and 0.13 Kcal mol"1 respectively. The results are given at 
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separation distances where attraction forces vanish. According to 

these results, a kind of specific interaction can bring about miscibility 

of two polymers which can outweigh the repulsive energies. 

The search for miscibility after all remains in the hands of 

experimental findings. There are a number of examples given by 

Krause (1978) indicating that preparation procedure and the method 

used in studying the miscibility play a role in establishing a 

miscible blend. For example, a transparent film, with a single glass 

transition temperature, cast from cyclohexane was obtained by Kosai and 

Higashino (1975) for EVA55 (and EVA with more than 55w% acetate content) 

in PVC where two Tg's were detected by Marciucin. et al. (1972) when 

the blends were precipitated from 1% chlorobenzene solution. Storstom 

and Randy (1971) and also Hedvig and Marossy (1981) without knowing 

the cloud point temperature of EVA74-PVC have blended the sample at a 

very high temperature in a two roll mill which gave a phase separated 

blend. There are similar examples in other systems such as PMMA-PVC 

as discussed by Walsh and McKeown (1980). 

The aim of the present work is to establish miscible polymer 

pairs and apply both the lattice and the equation of state models to 

the mixtures to calculate their thermodynamic quantities and demonstrate 

the advantages or disadvantages of each model in the light of experimental 

results. 

The mixtures presented here are blends of solution chlorinated 

polyethylenes and ethylene-vinyl acetate copolymers. The miscibilities 

and cloud point curves of the mixtures are established and the thermo-

dynamic parameters of the materials measured. The phase diagrams are 

then simulated using the various theories. 



21 

CHAPTER TWO 

THEORIES OF POLYMER-POLYMER MISCIBILITY 

2.1 FLORY-HUGGINS LATTICE MODEL 

There are two distinct statistical mechanical approaches to 

formulating a theory of chain molecular liquids and their mixtures. 

The first seeks to know the process by which the intermolecular forces 

determine the structure of the system. This is the method of radial 

distribution functions which is a correction factor applied to the 

random probability term of spherical, non-polar and non-interacting 

molecules (Hildebrand and Wood, 1933). The second proceeds from an 

assumed structure which usually resembles the regular lattice structure 

of crystalline solids. This is the so-called "lattice" method in 

which a polymer chain is conceptionally divided into segments of the 

same size as the lattice sites, and the size is set equal to that of the 

solvent molecules. In doing so, the most important features of the 

theory of strictly regular solutions, namely, maximum random mixing and 

no volume change on mixing were used by Chang (1939), Miller (1942), 

Huggins (1941, 1942) and Flory (1941, 1942) . 

2.1.1 The Entropy Change on Mixing 

The combinatorial entropy of mixing of two monodisperse 

polymers with an arbitrary common segmental volume V° and each 

consisting of N^ molecules with x^ segments, can be obtained by 

assuming that the segments are occupying cells (sites) of a three 

dimensional lattice with a total number of N.x. + 
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N. 
The number of moles of each polymer is n. = —— , the total volume 

o " of the mixture is + N2 X2^ V ' an<^ t*le vol111116 fraction, of 

polymer i would be: 

n2 X2 , 4>x = 1 - (J>2 2.1 
n., x,+n~x. 1 1 2 2 

By assuming that i.2 molecules of polymer 2 are already in the 

lattice, the fraction of occupied sites is: 

f = 12 x2 2.2 
i 2 N 1x 1 + N 2X 2 

and the fraction of unoccupied sites = 1 - f 2 2.3 

The first segment of the (i2 + 1)th polymer molecule can be 

added in several ways in free places, i.e. (1 - ^Nixi + N2X2^ * 

The second segment must be added in the adjacent and free places in 

(1 - ways where Z is the number of immediate neighbouring sites. 

The third segment should occupy another neighbouring site which must 

not be occupied by first segment of the molecule? in (z - 1)(1 - f.^) 

ways. This will be true for the rest of polymer segments. Flory 

and Huggins separately assumed that f^2 is independent of position 

and the polymer is fully flexible. Hence, the number of distinguishable 

ways of placing the (i2 + 1)th segments on the lattice is a product 

of the following series: 
X2 , , X2~ 2 

vj[ + 1 = h(l - f i 2) Z(Z - 1) (N1x1 + N2X2) 2.4 

The factor one half being introduced, since the two chain 

ends are indistinguishable. Therefore, the number of ways, ft2, of 

adding N 0 polymer molecules in the lattice is: 
1 V 1 

= rr~ n. „ v. 2.5 
2 21 1 2 = 0 12+l 
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By an analogous procedure the segments of polymer one are 

introduced into the remaining vacant sites, and one obtains: 

i A " 1 
= — n. v 

1 N • jl a^+l 2.6 

where 
X 1 x -2 

V i + 1 = ) Z(Z-l) ^Nixi + N2 x2 } 2 , 7 

and J ± = (N2X2 + i.^) / ( N ^ + N2*2) 2 o 8 

The total number of ways of introducing N^x^ and N 2x 2 

segments into the lattice is: 
fl = ft « 2 2.9 

From Boltzman's law the entropy of mixing is given by: 
SM 

— — = lnfl.fi. = lnfi. + lnfi. 2.10 k J. z ± z 

where k = — , Boltzman constant, R is the gas constant and N^ is 
A 

Avogadro1s number 0 

To obtain lnfij,and I n t h e terms which are not dependent 

on i can be taken outside the product. Applying Sterling's 

approximation for the logarithmic factorial gives: 
SM x2 ~ 2 

•= -N„lnN_ + N 0-N 0ln2 +N0lnZ(Z-l) + N0ln(N,x, + N~xJ k 2 2 2 2 1~1 "2 2' 

x f 2 
-N2x2-N1lnN1 + Nj-N^ln 2 + iN^lnZtZ-1) + N lntN.^ + N ^ ) 

-N 1x 1 2.11 

The entropy of polymer 2 in a lattice of N 2x 2 sites and the 

entropy of polymer 1 in a lattice of N-̂ x̂  sites can be obtained 

easily by using N = O for the former and N 2 = O for the latter, then 

in order to obtain the change in the entropy of mixing of the mixture the 

following relation must hold: 
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4 SM 1 
k = k ( S

M " Si ~ S2 ) 2 o 1 2 

therefore, 
A SM 

•=-N1ln(N1x1)/(N1x1 + N2x2) - N 2
l n ( N ^ J / t N ^ + N ^ ) 

2.13 

By replacing the number of molecules by the practical unit 

of moles, the total volume of the mixture by (n^x^ + n2 x2^ V° an<^ 

volume fraction of each component from Equation 2.1, then as a first 

approximation for the combinatorial entropy of mixing per mole of 

mixture, Equation 2.13 provides: 
M 

AS , = -R (n ln<j). + n0ln<|>0) 2.14 comb. 1 1 2 2 
M or AS , = -R Zn.ln<p. 2.15 comb. l i 

* 

The partial molar entropy of each component in the mixture 

relative to its standard is, 
x S 1 - S° = -R (ln^ + <J>2) 2.16 

x 
s
2 ~ s2 = ~R { l n ^2 + (1" % } 2 , 1 7 

and the combinatorial free energy of mixing of two components, for an 

ideal mixture is: 

AG =- TASM . = RT (n, lncf). + n0ln<f>0) 2.18 comb. comb. 1 1 2 T2 

* Partial molar quantities are designated by bars above the symbols for 
molar quantities and are defined as the rate of increase in the content 
of that particular quantity of the system while that particular 
component is being added at constant temperature, pressure and mole 
numbers of other components. The partial molar quantity of the 
free energy is called the chemical potential. 
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2.12 The Enthalpy Change on Mixing 

The energy change involved in replacing neighbouring sites 

occupied by like segments by unlike segments may be calculated in 

terms of molecular pair contacts. If the attraction energy between 

like segments in polymer 1 and polymer 2 is assumed to be e ^ and e^ 

respectively, that between unlike segments would be a v e r a 9 e 

number of polymer 1 segments surrounding each segment of this polymer 

in the mixture is (Zn^x^)/(N^x^ + N^x^) and for segments of polymer 

2 is (ZN2X2)/(N1X]L + N 2X 2) . 

a. The interaction energy of N^x^ segments by is 
2 2 -ZN x e11/2(N1x + N 2x 2) 2.19 

b. The similar interaction for the segments of polymer 2 is 

" Z N 2 X 2 e22 / 2 ( Nl Xl + N2X2» 2 " 2 0 

c0 This interaction between segments of polymer 1 and polymer 2 

would be 

-ZN 1x 1N 2X 2
 £

1 2
/ ( N 1 x 1 + N2 X2 ) 2 , 2 1 

The heat of mixing in the mixture will rise from the addition of these 

three terms, and the change in heat of mixing will be obtained by 

subtracting the heat involved if the pure components occupied the 

lattice individually from that or: 

AH = H - H 2.22 M M pure 

where H = (-ZN.x.e., - ZN0x0e_0)/2 2.23 pure 1 1 11 2 2 22 

Substituting the corresponding terms in Equation 2.22 and 

simplifying yields: 

AH, = nn x. 4>0Ae 2.24 M 1 1 4 
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where Ae = ZN^ {(e±1 + e 2 2 ) / 2 ~ ̂ ei2) X = X12 R T 2 , 2 5 

and AH, = RTn.xJ.Xn 2.26 M 1 1 4 14 

where X- 2̂
 c aH e <3 the "interaction parameter". 

2.13 The Gibbs Free Energy Change on Mixing 

If the configurational entropy change is assumed to represent 

the total entropy change on mixing, then the free energy of mixing 

can be written as: 

AG,, = AH - TAS„ 2.27 M M M 

Equations 2.14, 2.26 and 2.27 yield 

AGm = RT(n1ln<f>1+ n2lr4> 2 + n-jX-^x^) 2.28 

This equation is not absolutely correct due to the fact 

that the contact energy associated with AH may change the non-
M 

interacting combinatorial entropy change on mixing. It was also shown 

by Longuet-Higgins (1953) that this is not dependent on the lattice 

model. He derived the same equations by starting from the free 

energy of mixing, in an entirely classical statistical manner. 

Koningsveld et al. (1971, 1974A, 1977, 1980) benefiting from the lattice 

model formulated an expression for the change in free energy of 

mixing of a quasi-ternary mixture consisting of a solvent, and two 

polydisperse polymers. A simple version of it for a linearly 

monodisperse mixture can be summarized as follows: 
AG m 

= + + ^ I 4 ^ 2- 2 9 

where the first two terms are the combinatorial entropy, and the term 
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g<}>d<J>2 represents any correction that might be needed to make 

Equation 2.29 conform with experimental reality, m^ and n^ are 

the polymer chain lengths respectively, expressed as the number of 

lattice sites they occupy. 

Various representations of g as a series function of or as 

a semi-empirical closed form, have been used (for example see 

Equation 1.5) . Another version with four constants has been used to 

fit the critical temperature and composition data of Koningsveld and 

Kleintjens (1972) for polystyrene in cyclohexane. 

g = a + (6o + ?jr-)/(l - Y<f>2) 2.30 

where a, 8 / 8-, and y are constants and can be obtained from the o 1 1 

phase boundaries of the system (Koningsveld and Kleintjens, 1972). 

Although there is some foundation for this equation based 

on detailed lattice calculations, the constants were used merely as 

adjustable parameters to fit the data. This modification improved 

the shape of the unmodified Shultz-Flory (1952) curves, but still cannot 

predict the experimental results. 

According to Huggins (1970, 1976) allowance must be made for 

the influence of the immediate surroundings on a segment in the chain. 

Setting the average allowed number of orientations of the segment 

equal to \P when it is at infinite dilution in the second polymer, and 

correcting it to a value v°(l - k ) for a segment in the undiluted 

polymer, Huggins calculated two orientational contributions to the 
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»f* 

entropy of mixing. Inserting these two terms into Equation 2.29, 

one obtains: 
AG 

ln<f> + — Incf) + g<f> <f> 
RT m^ 1 m^ 1 1 l 

-<j> In (1 + Kl(1 -y)(})2Q~1} -Cf>2 In (l + K ^ Q - 1 } 2.29.1 

where the two parameters K, and K„ are related to K and K by 
J- / o^X o ̂  c 

K. = K / (K-K .)? Q = 1 - y(}>0 and y = 1-S_/S_ ; where s. = interacting i s , s,i 2 2 1 i • 

surface of a segment i per unit volume. 

This new correction, still based on random mixing, takes 

into account the effect of flexibility of one chain on the flexibility 

of its neighbours. K^ and K 2 are also responsible for bimodality in 

the spinodal. 

By definition, the thermodynamic limits of stability are 

called the spinodal and are characterized by a AGM(<j>2) function. The 

relation between AG., (d)n) and the phase diagrams is illustrated in 
M 2 

Figure 2.1. The AG ((j>2) curve (Figure 2.1.B) for a two phase system 

has two inflection points where: 

3 2 a GM 2 31 ( ?! ) = 0 V 3<|> 2 T,P 

2 

The locus of these points in a T(<J>2)plot (i.e. phase diagram) is the 

spinodal. As the temperature changes (upwards for a UCST and downwards 

for an LCST) the two minima move together. The so-called consulate 

point or critical state occurs where the two points of inflection and 

the tangent points (coexisting phase compositions) coincide. Therefore 
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at the critical point: 

3
 3AG 

Since A-?M = ^ ^ ^ + t h e n 

3 
3 — = Ay^-Ay v 2^ 3 3 

where Ay^ and Ay^ are the chemical potential changes on mixing for 

component 1 and 2 respectively. By this definition equality of Ay^Afh 

AHcAfi for the whole composition range will produce the binodal curve 

shown in Figure 2.1. The region between the binodal and the spinodal 

is called the meta-stable region. 

It has been shown (Chong, 1981) that the Flory-Huggins 

expression for AG^ is useful in describing liquid-liquid mixtures. 

The description is at least qualitatively correct. To ascertain this, 

the AG function must be checked against experimental data, such as, M 

vapour pressure, osmatic pressure, etc. Such methods yield the chemical 

potentials i.e. the first derivations of AG^ with respect to the concen-

tration, (Vink, 1975). On the other hand, the spinodal curve can be 

obtained for liquid-liquid mixtures by the Pulse Induced Critical 

Scattering (PICS) method which has been successfully applied by 

various authors (Koningsveld et al., 1980; Kleintjens et al., 1980). 
5 A G M 

This can also give the critical point, i.e. ( — from the 

phase volume ratio: 

r = (<fr2« -<fr2)/«>2 -cf>2') 

which at critical point gives r = 1. 

2.34 
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Ay, 
RT 

FIG. 2.1. The Gibbs free energy change on mixing as a function of 
volume fraction of component two showing 
A. Complete, B. Partial miscibility. 
Graph C is the phase diagram as a result of variation 
of free energy with temperature. Solid line in this 
graph represents the binodal curve and dashed line 

f represents the spinodal curve. 
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Unfortunately there has not been a consistent series of 

measurements of binodal, spinodal and critical point on the same 

system to allow careful comparison with the Flory-Huggins theory. 

It isfhowever, certain that the original model is incapable of 

predicting lower critical solution temperature (LCST) phase 

diagrams which are common phenomena in high molecular weight polymer 

mixtures with a specific interaction (Bernstein et al., 1977). It 

also fails to deal with systems like polystyrene - poly(vinyl methyl 

ether) which exhibit both lower critical solution temperature (LCST) 

and upper critical solution temperature (UCST), for a selected range 

of molecular weights (Davis and Kwei, 1980 and Cowie and Saeki, 1982). 

The lattice theory does not make allowance for an influence 

of pressure on the mixture because it ignores volume changes on 

mixing. However, if the g function of Koningsveld is used, one could 

assume g to depend on pressure as well as concentration. 

Despite the corrections and new developments allowed in the 

theory, it cannot deal with all the new available data in the 

recent literature. Three major corrections in the theory are still 

necessary: 

a. Segment surface-area ratio 

b. Chain dimensions as a function of concentration, temperature 

and molar mass, 

c. Free volume. 

In order to take into account all these corrections, and the 

contributions of the liquid state to the thermodynamics of mixtures in 

general, Flory and his collaborators, Flory et al. (1964), Flory (1965) 
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developed a new partition function. This partition function combines 

a geometrical factor for hard spheres (or any other shape) with an 

intermolecular energy of the van der Waals form, and also defines 

the equation of state and partial molar thermodynamic functions. 

Although this new approach is an improvement over the 

classical Flory-Huggins formulation in terms of agreement between 

theory and experiments, the latter is still used by numerous workers 

due to its simplicity. 

202 Flory's Equation of State Theory 

In the equation of state model, Flory and co-workers abandoned 

the whole concept of a lattice, and characterised each pure component 

by three equation of state parameters, v*, T* and P*, which may be 

evaluated from the pure component data, density, thermal expansion 

coefficient, and thermal pressure coefficient. In addition an 

interaction term, characterised by X^r associated with a difference 

in chemical nature between the components was introduced in order to 

calculate the properties of the mixture. 

This theory like other new theories (Patterson and Delmas, 

1970, and Sanchez and Lacorabe, 1978) benefits from the essential 

assumption of Prigogine et al. (1953) who divided a chain into 

"r-segments" and specified the number of external degrees of freedom. 
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We start with N molecules each one divided into r-segments 

(the choice of a segment is arbitrary). The partition function for 

non-attractive spherical molecules is given by: 
a = { y

1 / 3
( v

1 / 3 - v 1 / 3 * ) e > 3 N r c 7 

3 

where y = 1* /v* is a purely geometrical factor, v is the volume and 

v* is the hard-core volume of the molecule. The term 3 Nrc is interpreted 

as follows: if Nr segments were independent of each other, then 3Nr would 

be the number of degrees of freedom related to intermolecular motions. 

Owing to the constraints of the chain this number is reduced, i.e. 3c 

is the number of intermolecular degrees of freedom per segment: 

o < c < l . The total number of degrees of freedom is then divided 

between internal and external. Flory ignored the contribution of 

internal interaction and assumed c to be independent of temperature. 

The derivation of Equation 2.35 is given in Appendix A-I. 

Having formulated Equation 2.35 for non-attractive molecules, 

a volume dependent "mean" intermolecular (attractive) energy, EQ, 

is introduced: 

Eq = -constant/vm; m - 1 2.36 

This gives a new partition function: 

Z = fi exp (-E /kT) 2.37 

This expression is fundamental to the new theory which is 

no longer related to a fixed volume. Provided only nearest-neighbour 

interactions are important, E q can be written 

Eq = -(number of contacts) .ri/v = -NrSg/2v 2.38 

where the number of contacts is h NrS, and g/v is the intermolecular 

energy per contact, S being the number of contact sites per segment, 

proportional to the ratio of the surface area to the segmental volume. 
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Equation 2.38 can be expressed in terms of temperature by 

introducing the reduced volume, temperature and pressure as: 

v = v/v*, T = T/T*, P = P/P* 2.39 

where the characteristic hard core parameters P*, v* and T* satisfy 

the equation 

p*v* = ck.T* 2.40 

In further calculations it is convenient to define 

T = T/T* = 2v*ckT/Sn 2.41 

therefore Equation 2.40 gives 

P* = Sn/2v*2 2.42 

In Equation 2.37 where Eq is substituted from Equation 2.38 

and v = ^.v* we have: 

Z = ft exp (NrSn/2w*kT) 2.42 

The exponential can be further simplified by using relation 2.41 

to become: 

Z = Q exp(Nrc/vT) 2.43 

Equation 2«35 can also be converted to: 

fi = (yv*e ) . (v - 1) 2.44 

Equations 2.43 and 2.44 will now yield the final partition function as 
~l/-> 3Nrc 

Z = constant (v ' $ - 1) exp(Nrc/vT) 2.45 

the constant being independent of T and v. 

The pure component equation of state can be derived by 

differentiating Equation 2.45 for the pressure of the system, i.e. 

P = (kT/Nr) . (dlnZ/Bv) „ 2.46 
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With the aid of Equations 2.39 and 2.40 this equation will 

become 

P = (T/Nrc).(3lnZ/3v)~ N 2.46a 

The resulting equation of state is: 

Pv/T = v 1/ 3 / (v1/3 - 1) - 1 /Tv 2.47 

At atmospheric pressure P-0 this equation yields: 

5 = (v1/3 _ i)/v4/3 2.48 

The equation of state parameters for a pure component may 

be obtained from its thermal expansion coefficient,a , and thermal 

pressure coefficient, y, defined as: 

a = (1/v) . (6V/3T) m = (3 In V/3T) 2.49 P,N P,N 

y = (3 P/3 T) M 2.50 v,N 

from which it follows that 

v = (1 + (aT)/3(l + aT)}3 2.51 

A derivation of this equation is shown in Appendix A-II. For a given 

a , Equation 2.51 gives v and Equation 2.48 will provide T. 

Differentiation of Equation 2.47 followed by substitution from 

Equations 2.39 and 2.48 yields (see A-III) 

P* = Y TV 2 2.52 

Evaluation of the equation of state parameters in this way enables 

one to obtain the other parameters such as c and Sn/2v (intermolecular 

energy per segment) etc. 
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2.2.1 Monodisperse Binary Mixtures 

Adaptation of this theory to binary mixtures proceeds 

unambiguously from two premises, as follows: 

a. The core volumes of the pure components are additive, and 

the specification of a segment for each component remains arbitrary. 

Hence, it is convenient to choose segments of equal size so that 

v1*=v2*=v*. 

b. The intermolecular energy depends on the surface area of 

contact between molecules and/or segments. The validity of this 

assumption rests on the fact that the intermolecular attractions are 

of short range compared with the molecular diameter of most liquids. 

These assumptions were further discussed by Patterson and 

Delmas (1970). 

The application of assumptions a and b leads at once to 

the following relations (fixing the parameters r, S and c applicable 

to the mixture) 

N = N^ + N2 2.53 

r = (<P1/r1 + 4>2/r2)~L 2.54 

S = <p1S1 + * S = (r1N1S1 + r2N2S2)/rN 2.55 

c = <f> c^ + (p2c2 = ( r
1N 1c 1 + r2N2c2)/rN 2.56 

It is necessary to redefine <f>̂  and <p>2 as segment fractions, 

instead of volume fractions as introduced in the lattice model, i.e. 

cf>2 = 1 - <P1 = r2N2/rN 2.57 

The molar hard-core volume is given by V^* = rv^*, thus r 2^ ri = V2*^Vl*f 

and we may write the segment fraction as 
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(f>2 = n 2 V2* / ( N2 V2* + Nivi*} 20 58 

or 

^ 2 = m2VSP,2/(m2VSP,2 + mlVSPfl} 2- 5 9 

where m. is the mass of component i and v* . is the hard-core volume 
1 bP J 1 

per gram. These definitions will lead us to the following partition 

function for the mixture, 

Z = Z ^.(yv*)rNc.(v1/3-l)3rNc.exp(-E /kT) 2.60 comb. °M 

where Z , is the combinatorial factor for intermixing the two comb 
components. 

The intermolecular energy of the mixture E assumes a 

similar form to that of the pure components, i.e. 

EO M
 = -(Allnll + A22n22 + A12 n12 ) / V 2' 6 1 

where A ^ is the number of nearest neighbour contents of energy /v, 

Assuming random mixing, it follows that (see Equation 2.38), 

A12 = Sl rl Nl 02 = S2 r2 N2 9l 2' 6 2 

2A11 + A12 = Sl rl Nl 2- 6 3 

2A22 + A 1 2 = S 2r 2N 2 2.64 

Ag = ni;L + n 2 2 ~ 2ni2 2 , 6 5 

where 8 2 and are site fractions and defined by: 

02 = 1 - 0 1 = S2r2N2/(S2r2N2 + S ^ ) = ( S ^ ) 

{<t>1 + (S2/S1)(})2 } = S24>2/S 2.66 

Substitution of these equations into Equation 2.61 gives: 

E o m = - (SrN/2v) (Q^^ + e 2n 2 2 - 6102An) 2.67 

By an analogous definition to the energy of the pure component (see 

Equations 2.38 and 2.42), the energy of the mixture can be defined as: 

-EQM/rN = P*v*/v 2.68 

(where Pi* = S i 1 ^ / ^ * 2 2.42) 
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Comparison of Equation 2.67 with Equation 2.68 and each individual 

^ term with Equations 2.42 and 2.66 gives: 

P* = cf^Px* + <1>2P2* - (J)
1
e2X

12
 2' 6 9 

where X 1 2 = S1An/2v* 2.70 

and is the interaction term, with dimensionsof energy per unit 
r 

volume, and arises from the difference in chemical nature of the components. 

Since Equation 2.40 is also applicable to the mixture, it 

follows that: 

P*v* = cKT* 2.71 
-» -I 

and T* = P*/ (<j> i^T * + 4>2P2*T2*) 2.72 

Equations 2.69 and 2.72 show that the reduced parameters, P and T, 

for the mixture are composition dependent. Knowing T for the mixture, 

Equation 2.48 provides an important quantity, v, which is essential 

in order to specify the binary mixture quantitatively. 

2.2.2 The Enthalpy Change on Mixing 

We now have all the quantities needed to calculate the 

enthalpy change (i.e. excess enthalpy) on mixing which is equal to the 

energy change on mixing at low pressure: 

AH„ = E - (E , E J 2.73 
M °1,2 °1 + ° 2 

This can be expressed in terms of a subscripted version of Equation 2.68 

as: 

AH = rNv*{<j) P */v + 4>0P */v„ - P*/v} 2.74 M 1 1 1 Z Z z 

Introducing P* from Equation 2.69 yields: 
- -l r-lx . A - -l AH M = rNv*{(})1P1* (V - v ) + <}>2P2*(V2 - v ) 

+ * 1e 2x 1y;j 2.75 
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Since A.rN = r.N. and r.v* = V.*, Equation 2.75 can be written as: Yi 1 1 l l ^ 
AH = N.P *V *(v ~1-v~1) + N_P *V * (v0"1-v_1) M 1 1 1 1 2 2 2 2 
+ N1V1*62X]L2/v 2.76 

The latter form is preferred for mixtures of molecules 

which are comparable in size. The last term in each of these equations 

represents the contributions from contact interactions attributable 

to a difference between 1,2 pairs and the mean of 1,1 and 2,2 contact 

pairs. The terms preceding it, will be referred to as the equation of 

state terms. Their contribution to the enthalpy change on mixing 

depends on the reduced volume of the mixture. Eichinger and Flory 

(1968) wrote Equations 2.75 and 2.76 in a simple form as: 

AH, = BN.<j>0 2.77 M 1 2 

where B is assumed to be constant and independent of concentration. 

B is determined from the measured heat of mixing of one polymer with 

a large excess of the other. The important quantity in the limit 

of infinite dilution, may be obtained by series expansion of Equation 

2.75 in powers of <J>2. This gives B in energy per mole as: 

B = lim (AHm/N1<^2) = lira (AH /N2) (V1*/V2*) 

<J>2 0 N 2 0 

= (V1*/v1) {P2* ((v^/v^l) - a1T(l-T2/T1) + (1+c^T) 

(S2/S1)X12) 2.78 

If T ^ > T 2 ' ecJuati°n °f state contribution within the 

square brackets is negative, and the enthalpy change on mixing for a 

large excess of solvent will be negative unless X^2 is large enough 

to dominate the terms in brackets. The negative enthalpy change on 

mixing will ensure a negative excess volume change on mixing defined 

as follows: 
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vE = v - v°, v° = ̂ v + <P2V2 2.19 

or 

vE/v° = v / ^ v + (f>2v2) - 1 2.80 

Equation 2.80 is related to the composition through T or T*. 

Measurements of the volume change on mixing AV M and the unmixed V° 

gives vE/v° = AV^/V0 directly. 

Differentiating Equation 2.76 with respect to N^ will give 

the partial molar heat of mixing of component i. In this derivation 

the variation of v with composition must be considered. 

A"l = "l - Hi° - < 3 A HM 7 3 NI'T,P,N 2 

• ( 3 A V 3 N I > N 2 , T , V + ^ V 9 * ^ , * , ^ < ^ / 3 V N 2 , T , V 2 _ 8 1 

This lengthy procedure is given in Appendix B-I, the final 

result being: 

AHl = P1*V1*{ ( v ^ 1 - v"1) + (aT/v) (T -T) /T } + 

(V1*X12/V) (1-HXT) 9 2
2 E RT X h* 2

2 2.82 

where a, is the thermal expansion coefficient of the mixture and is 

related to v of the mixture according to Equation 2.51. Equation 

2.82 serves as a definition of XJJ-

Expansion of the reduced partial molar residual (or excess) 

enthalpy in powers of <j>2 leads to 

% = V l + XH,2*2 + hi, A + ° ' ° 2- 8 3 

The x defined by Equation 2.82 can be used in the following equation 
H 

to evaluate the integral heat of mixing: 
2 2 AHm = -N1 (<|)2/(|)1) / (AHj/cf^ )d<|>2 2.84 

1 
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2 Substituting AĤ /<j) 2 = R TX H into the Equation 2.84 and integrating 

yields: 

AHm = RTN14>2{xh?1 + (XH ^ 2 / 2 ) ( l + $ 2 ) + ( X H f 3 / 3 ) ( l + $ 2 + <P2
2) + ' ° 

2.85 

This indicates that a measured heat of mixing at infinite dilution 

can be used to obtain xu w if X„ X„ ^ etc. are known. 
H, 1 H, 4 H, 5 

2.2.3 The Free Energy Change on Mixing 

The factors of prime importance in the present theory are 

the size, shape, contact interaction and the equation of state terms 

of each component. According to the partition function (Equation 2.60) 

and direct comparison with Equation 2.75 the free energy change on 

mixing comprises a combinatorial term, (AG , = -TAS , = -kTlnZ , ), 
comb comb comb 

equation of state terms and the contact interaction term. If the 

molecules of the two components are comparable in size and shape, then 

AG , should be given approximately by the ideal mixing expression, comb 

and the remaining terms may be identified with the excess or residual 

free energy, G . Therefore the residual free energy of mixing is 

represented by a sum of the contact and equation of state terms 

without limitation on the nature of the combinatorial expression. 

This is also true in the case of the combinatorial and residual 

entropy of mixing. Hence, 

GR = AG - AG 2.86 M comb 
S R = AS,, - AS 2.87 M comb 

Neglecting the difference between the Helmholtzand the Gibbs free energy 

at low pressure, the partition function will provide G as follows: 

G = -kTlnZ 2.88 
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The details of this derivation are given in Appendix B-II, 

only the residual part, which we will be using in the present work 

will be treated here. 
p - 1 / - , - - I / 3 

G = 3P1*V1*N1T1 ln(v J - l)/(v - 1) + 3Po*V2*T2 

In(v - l)/(v1/3 - 1) + Ah 2.89 2 M 

The residual entropy of mixing arising from differences between the 

equation of state parameters for the pure components is implicit in 

the term of Equation 2.89. It may be written alternatively as: 
r V i -l/l S = -3 { (P1*V1*N]_/T1*) - l)/(v - 1) + (P2*V2*N2/T2*) 

ln(v2
1/3 - l)/(v1/3 - 1)} 

= -3rNv* { (({)1P1*/T1*) ln(v 1
1 / 3 - l)/(v1/3 " 1} + 2 P2* / T2* ) 

- 1/3 -1/3 In (v2 ' - l)/(v / J - 1) 2.90 

The combinatorial part of the entropy is the one given in 

Equation 2.15. The partial molar residual entropy of mixing is 

obtained by the same method as was used to derive Equation 2.82, see 

Appendix B-III. Here we only write the final result: 

R - - 1/3 1 /3 - -
TSX =-P *VX* {3T1 In (vL - 1) / (v - 1) - - T) . aT/Tv} 

2 - 2 + aT (V1*02 X12/v) = -RTxs<P2 2.91 

p 

The important feature of this equation is the relation between TS^ 

(or xs) and the reduced parameters of the mixture (i.e. v, T). It 

can be shown that when v < + ^2^2'^S smaller and that it 

becomes larger as v approaches + 4>2v2. 
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Addition of Equations 2.82 and 2„91 would yield the partial 

residual chemical potential of component one in the mixture. For 

derivation see Equations B.21, 22 and 23 in Appendix B-II. 

(p-px°)R = P1*V1* {3T1 In -JL2 + (V^1 - v"1). } + 
2 2 i V 1*0 2 X12/v = RTxt(})2 V " 1 2.92 

This applies when the effect of the pressure on the mixture is neglected 

and the entropy correction factor, Q ^ ' n o t keen introduced. 

However, from the procedures used to obtain Equation 2.92 one can 

define: 

X t = X H +x s 2.93 

In the same way as with Equation 2.83, x t
 a nd Xg c a n k e 

expanded to give: 

Xt = Xt,l + *t,2+2 + Xt(3^22 + • • • 2-94 

XS = XS,1 + XS,j*2 + xs,3*22 + • • • 2- 9 5 

Obviously the chemical potential of component one in the 

mixture is composed of a combinatorial and residual part. The combinat-

orial part is the one given by the Flory-Huggins theory. Therefore: 

(tx = (Hi V comb + ( > X l V ) R 2- 9 6 

^ V ' c o - b " R T U n * l + ( 1" rl / r2> } 2" 9 7 

On these grounds, the chemical potential of component one in the 

mixture may be written as: 

(p^p^J/RT = ln(l-4.2) +(l-r1/ r2)d>2+ { (p-p^)R/RT<£22}<f>22 2.98 
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By equating the chemical potentials from the two theories 

an expression which relates X ^ to the Flory-Huggins interaction 

parameter can be obtained: 

1/3 1/3 -1 -1 2 

X l 2 = P l V l / R T $ 2 { 3 T l n ( vl ~ 1 ) / ( v " 1 ) + ( V1 " V ) + X12° 2 / P1 V 

2.99 

2.2.4 The Entropy Correction Parameter 

The configurational entropy of formation of a mixture may be 

generally separated into two parts, an entropy of disorientation, 

and an entropy of mixing of the disoriented molecules0 The former, 

has been disregarded in the discussion of polymer mixture by assuming 

an equal molecular size for the components,, However, inequality of 

molecular sizes for the two components suggests a difference between 

AS , and AS., , and also between the excess and the residual comb ideal 
entropy of mixing, i.e. 

S E = SR + (AS , - AS., . ) 0 comb ideal ' 2.100 

the value of (AS , - A S . , ,) goes to zero when r, r«. 
comb ideal 1 2 

R E 
Discrepancies between S and S from calculated and 

experimental values were observed by Abe and Flory (1966). This 

directly reflects a difference between the calculated and observed values 
of \ and x • Furthermore, the predicted values of the X+. and xc L S u b 
parameters are much lower than the experimental values calculated 

R R 
from experimental Ajĵ  and S^ (Chalal et al., 1973). For instance, 

the predicted xs parameter for PDMS in n-heptane is about 0.5 

whereas its experimental value, obtained by a vapour sorption 
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technique, lies between 0.2 and 0.4o Similarly, the theoretical 

Xs parameters are negative throughout the concentration range for 

PDMS in xylene, whereas its experimental values are 0.3 (Chalal 

et al., 1973)Q 

Flory has overcome these differences by introducing a 

purely entropy correction term into the free energy equation of the 

mixture. The correction seems inevitable since the theory assumed 

only contact interactions between neighbouring segments contribute 

to X ^ and treated X^2 as an enthalpy parameter, while the interactions 

between neighbours also affect the entropy. Such an entropy 

contribution involving contacts of end and midchain segments, must 

depend on the composition of the mixture in the same manner as the 

interactional energy term. 

On this basis, the entropy parameter Q^2 is represented by 

its contribution ~ v TQ 12 t o tlie t o t al exchange interaction parameter 
X12 w*1:'-c11 c°nsists of both an entropy and an enthalpy part. The enthalpy 

interaction parameter is defined as: X^2 = ~ 2.101 

Thus, Equation 2.92 will be written in terms of X as: 
1/3 1/3 -1 -l 

(|Lil"^l0) = W {3<?1 l n ( v + C V! - v )} 

+ "" V 1e 2/ V . ( x 1 2 - T v Q12 ) E RT x t <D2 
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is reported to be positive for n-alkanes mixtures 

(Orwalland Flory, 1967) and negative for natural rubber in benzene 

(Eiching er and Flory 1968) and for PDMS in benzene, cyclohexane or 

chlorobenzene (Shih and Flory, 1972) . 

From these examples and also relation 2.101, one may conclude 

that when Q^2 i s positive the entropy of interaction between unlike 

segments is favourable for mixing, while when it is negative the 

entropy of interaction between unlike segments makes unfavourable 

contribution to the mixing. The effect of Q^2 on the phase boundaries 

of mixtures will be discussed later. 

In conclusion the theory under review appears to be more 

successful in the treatment of the polymer mixtures than the classical 

Flory-Huggins theory. It has a number of arbitrary parameters, but 

in principal it overcomes the inadequacies of the conventional theory 

of polymer solutions. For example, the concentration enthalpy and 

entropy dependence of x approximated by the theory, the volume 

change on mixing is brought within the scope of the treatment and the 

phase diagrams of the polymeric systems have been treated more 

realistically than any other existing theory0 This theory is simple 

to apply when the state parameters of the pure components are known. 

Due to the reasons stated, this theory has been applied in the present 

work to calculate x values and other thermodynamic quantities. The 

spinodal simulated on the basis of this theory will be presented 

later. 
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McMaster (1973) has also carried out an extensive numerical 

analysis of this theory for the phase stability of polymer blends. 

Unlike Flory and co-authors, he has considered internal and external 

degrees of freedom and also polydispersity of the polymers in his 

derivations. In addition, the potential energy is assumed to be of 

the form 

E a - i »1 < n < 1.5 2.103 o n v 

His observation shows that the theory is well capable of predicting 

both LOST and UCST behaviours with an LOST being the more common 

in high molecular weight polymer mixtures. Also, negative or very small 

positive values of the interaction parameter X^2 favour miscibility. 

The latter is responsible for both the UCST and LCST, whereas larger 

positive values yield hourglass-type phase diagrams and larger negative 

values give LCST behaviour. The effect of molecular weight, thermal 

expansion coefficients, thermal pressure coefficients and the entropy 

parameter on the phase boundaries of the mixtures are also considered. 

His binodal, spinodal and critical point derivations have been 

applied to other systems (ten Brinke et al., 1981) but they will not 

be used in this work due to the possible error in evaluation of 

T,V,N0 as was pointed out by Sanchez (1978). oN^ 2 

Finally, the Prigogine "corresponding equation of state" and 

the Sanchez 11 lattice-fluid" theories will briefly be compared with 

the Flory equation of state theory. (Flory and collaborators 

equation of state theory will from now on be referred to as Flory's 

equation of state theory.). 
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2.3 The Corresponding Equation of State Theory 

This theory is based on the treatment of quasi-spherical 

molecule mixtures by Prigogine et alQ (1953) who have considered the 

effect of the volume change on mixing on the excess thermodynamic 

functions. They applied the corresponding states principle of 

Prigogine (1957), the concept of a division of the degrees of freedom of 

the chain molecules into internal and external degrees of freedom, to 

long chain molecular mixtures. 

The free volume of a liquid is characterized by the reduced 

temperature, which is the ratio of the thermal energy of the 3c 

external degrees of freedom to the intermolecular contact energy, q * 

X _ £ . KT = T 2.104 
q £* T* 

and 

p*=u* = qe* = SE^ , u*= U = * 2.105 
V* r 63 63 U 

Here e* and 6 are the intermolecular energy and distance parameters 

for the interaction between segments, U is the configurational energy 

(essentially the negative of the energy of vaporization). For chain 

molecules, the quantity q is obtained from r in the Prigogine treatment 

by means of a lattice model: 

s _ q = Z-2 + _ 2 2.106 
r z rZ 

where Z is the lattice coordination number. 

The partial molar quantities of the mixtures are given by the 

corresponding state approach in an identical form, (Patterson, 1972): 
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Ah x
R= RTX<j>22 = ?1*V1* { (G(T)-G(T1) ) + (T^-T) (3G/9T)-} 

^ o 
+ P vx* (- G(T) + T(3G/3T)~ (X12e2 /P *)} 2.107 

where G = G/rN£*. 

The expressions for A h ^ = RTxH<f>22 and TS-J* = -RTXg^ 2 are 
** ~ R 

obtainable by replacing the reduced function G by H and TS 

respectively. The first term in this eguation corresponds to the 

eguation of state term and the second to the contact interaction term 

of- Flory. Prigogine used a lattice model to calculate X^2 while 

Flory's approach considers the actual molecular structures. 

The following relations between the eguation of state and the 

corresponding eguation of state exist , 

P1*V1* = UlJXl2/Pl* = v 2 2.108 

U = -V~ 1
/-U 1 = P 1*V 1*V 1~ 1 2.109 

S = 3 In (V1/3 - 1) 2.110-

Cp = a/v = ctT/VT 2.111 

which makes it possible to derive all corresponding expressions of 

Flory's theory from Eguation 2.107. 

The corresponding state theory predicts X and its relation 

with X^2 as follows: 

_ v2
 +

 CP,1 T 2 2.112 
RT 2R 

P *V * S z 
x = — i - ( ( — ) 

RT S 
H2 + V 
P * 2 P * 

s 2 x 1 2 
t - — ° ̂ -r) ) 

bi 
2.113 

V 
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2 Since -t^ = P1*V1*/V1 and a 1 Pi* v
1*/ vi = cp i a n d v represented by 

•S 2 X 2 

( ) ° I2r these two equations will be similar if g— is set to unity. 
s i V 1 

As shown in Equation 2.113 the pressure effects on the X is 

better illustrated in this case than with Flory's equation of state, 

theory. However, Patterson and Delmas (1970) have tested this theory 

against the precise thermal expansion coefficient and isothermal 

compressibility data for the normal alkanes given by Orwolland Flory 

(1967) and Abe and Flory (1966)„ Their result shows that the model 

reproduces the data qualitatively, and the principle of corresponding 

state is well obeyed, but as T or v are increased, the predicted 

thermal expansion coefficient increases too rapidly and the isothermal 

compressibility too slowly. 

By comparing AHW, TAS„ and Av„ calculated from both theories, M M M 

they pointed out that the predictions of Flory's theory are superior 

to those calculated from the original theory of Prigogine and his 

collaborators. This does not seem to be due to any marked superiority 

of Flory's model but rather to 

a. Fitting the reduction parameters of the pure components to 

the liquid state properties rather than using gas-phase data. 

b. The exaggeration by the corresponding equation of state model 

of the size differences in the mixture reduction parameter, e.g. 

V* = <}'1V1* + <!>2V2* i n Tory's model 
9 3 

but V* = 4>1V1* + <J>2V2* p ' 2 + 3 P / 4 ) Vl* i n t h e P r e s e n t 

model where a large positive "volume interaction" term is 
* * * 

added for V* which is probably incorrect, (P ,=r 'x - 1, r being 
22 11 

the distance between two non-bonded segments at the potential 

minimum). 
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204 The Lattice-Fluid (LF) Theory 

The LF theory developed by Sanchez-Lacombe (1976 and 1978) and 

Sanchez (1978, 1980) departs markedly from the corresponding state theory 

and does not require a separation of the internal and external 

degrees of freedom, but divides a chain into r-segments. This theory 

has much in common with the Flory-Huggins theory but differs in one 

important respect, that it allows the lattice to be compressible. 

The generalization is accomplished by allowing an equilibrium number 

of vacant sites to exist in the lattice. Thus the compressible lattice 

theory is capable of describing volume change on mixing as well as 

LCST and UCST behaviours. 

Three equation of state parameters are required to describe 

the LF equation of state and they are related to three molecular 

parameters £*, v* and r as 

e* = KT* = P*v* 2.114 

r = MP*/KT* p* = Mv* /v* 2.115 
SP 

As with Flory's model, negative heats of mixing will yield a negative 

volume change on mixing, although a negative AV^ is not a sufficient 

condition for negative AH^. 

Unlike Flory's theory the hard core volume of the mixture is 

obtainable from the close-packed volumes of the pure components: 

VSP = n^/Pl* + m2/P2* 2.116 

v = p*/p =l/p 2.117 
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where p̂  * is the close-packed mass density of component i and p is 

the density of the mixture which is required to obtain v. Characteristic 

pressures are pairwise additive in the close-packed mixture, i.e. 

P* = (J'jP-L* + <f»2P2* ~ {1)1(f>2Ap* 2.118 

AP* = + P2* - 2P12* 2.119 

(Ĵ  = r^N^/rN = 1 - <J>2 2.120 

Like Flory's theory X^2 (which is proportional to the change in 

energy that accompanies the formation of a 1-2 contact from a 1-1 and 

a 2-2 contact) is obtainable from the experimental values of AHM(°°), 

and V = similarly a negative AHM yields a negative Knowing X^2 

v1*/v2* = (S2/S1)3 yield T* of the mixture. 

X^2 has the following relation with x is the only parameter 

required to characterise a binary mixture, therefore this theory can 

be called a one parameter theory. 

*1 = rl 5l {X12 + * } 2.121 

where ip̂  is a dimensionless function given by Sanchez and Lacombe 

(1978) and is the isothermal compressibility of component one. The 

first term is the energetic contribution and the second one is an 

entropic contribution as with Xi = L i + L if which is similarly defined 
1 H , 1 S , 1 

in Flory's theory. 

The phase stability and the spinodal equation are more 

illustrative in this case than with Flory's theory, i.e. the following 

inequality must hold for a binary system to be miscible. 

<S (Ayi/kT) , i 1 - 1 2 -
— + ^ > - b y I * Tp*s} > 0 2-122 
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where the first term is combin,atorial contribution, p X^2 is a n 

% 2 
energetic contribution and lp ¥ TP*8 is an entropic contribution from 

the equation of state. It is significant to note that this entropic 

contribution makes an unfavourable contribution to the miscibility. 

The temperature dependence of the three terms in the spinodal is 

illustrated in Figure 2.2. The combinatorial entropy makes a larger 

contribution on both sides of the spinodal curve, Figure 2.3. To 

relax this effect a correction factor of Q^2 which has been ignored 

by the LF theory is inevitable. 

The LF theory is in an early stage of its development, which 

makes it difficult to compare with Flory's theory .Its advantage is 

in inequality (2.122), where the first term is negligible and the 
~ 2 

term TT P*8 is always positive, then miscibility for high molecular 

weight polymers can only be predicted when AH^ or X^2 is negative.. 

Some other comparisons of both the theories are given by Sanchez (1978). 

The main disadvantage of the present theory is the prediction 

of Av from the close-packed densities. Most of the P* values M 

predicted by the theory are about 10% smaller than their known crystalline 

densities, which is most probably due to the packing factor of the 

lattice. 

Finally, the LF theory is intended to describe the fluid 

(disordered) and not crystalline (ordered) state, even though a 

lattice is used in the formation of the theory. 
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r2*2 

UCST LCST r TEMP 

FIG. 2.2. Schematic behaviour of the three terms in the spinodal 
inequality. The inequality is satisfied between the 
UCST and LCST. 

ft 

FIG„ 2.3. Combinatorial entropy contribution to the spinodal against 
close-packed volume fraction 
a. r^=r2=1 b. r1=l, r2>>1 c. r ^ r ^ l O d. r ^ r ^ S O 
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CHAPTER THREE 

EXPERIMENTAL DETERMINATION OF MISCIBILITY 

AMONG CHLORINATED POLYETHYLENES AND 

„ ETHYLENE-VINYL ACETATE COPOLYMERS 

3„1 MATERIALS 

Polyethylene possesses several outstanding electrical and 

chemical properties, and is made from a low cost monomer. There is 

an attraction in trying to make a rubber using a chain backbone 

related to that of polyethylene, but less regular, in order to inhibit 

or at least restrict crystallization. It is also desirable that 

neither interchain interaction nor chain stiffness should be greatly 

increased. There are two ways of achieving these aims: 

I Copolymerization of ethylene with either alkenes such as in 

ethylene-propylene rubbers, or non-hydrocarbon monomers, 

such as vinyl acetate and methylacrylates. 

II Modifications of already formed polyethylene, for example 

by chlorination and chlorosulphonation. 

The ethylene-vinyl acetate copolymers (EVA) have been 

available for some years under the commercial names of EVATONE (ICI), 

LEVAPREN (Bayer) and EVA (Wacker kemie). Introducing polar monomers 

into polyethylene chains increases the rubber like elasticity and 

reduces the crystallinity. The procedures for preparation of these 

copolymers are given by ICI and Reynolds and Conterine (1961) patents, 

their modified procedures are explained by German and Heikens (1971, 

1975). 
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The chlorination of polyethylene may be carried out either 

in solution or suspension. The former gives reasonably random and 

uniform chlorination, while the latter is more uneven (Brydson, 1978). 

The introduction of chlorine groups into the polyethylene molecules 

has two opposing effects: 

I It reduces chain regularity restricting and eventually 

eliminating the ability of the polymer to crystallize. 

II It increases interchain attractions (and barriers to rotation) 

causing the Tg to be raised eventually to a point where the 

amorphous polymer is no longer rubbery. 

The physical forms of chlorinated polyethylene (CPE) related 

to their chlorine content are compared in Table 3.1 as given by 

Brydson (1978) and Abu-Isa and Myers (1973). 

TABLE 3.1 

EFFECT OF CHLORINE CONTENT ON THE PHYSICAL PROPERTIES OF 
CHLORINATED POLYETHYLENE 

Structure at Ambient Physical Form at Cl% Content m _ f . . m Temperature Ambient Temperaturi 

8 Mainly crystalline Flexible 

25 25% " Rubbery 

35 <6% " Rubbery 

40 <2% " Soft, Flexible 

45 <2% " Flexible, Leathery 

54 <2% " Rigid 
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Ibu-Isa and Myers (1973)^ using the statistical treatment of 

Frensdorff and Ekiner (1967) and the NMR and IR spectrum of several 

chlorinated polyethylenes, have shown that the presence of a chlorine 

in the polymer chain hinders the substitution of another chlorine 

atom, up to a 52 weight percent degree of chlorination. On this 

basis the chlorinated polyethylenes used in this work (higher than 

35 W% CI content) are assumed to be randomly chlorinated and contain 

no appreciable amount of crystallinity. In the present work two types 

of commercial chlorinated polyethene supplied by DuPont under the trade 

name of Hypalon 40 and Hypalon 48 were usedQ These are essentially 

chlorinated polyethylene and possess a small amount of ("SC^ 

side chains (-1.5 w% sulphur). These samples are designated H 40 and 

H 48respectively in this work. 

The other solution chlorinated polymer made specifically for 

this study is designated as CPE3. 

As the other blending component, two types of EVAs were used, 

EVATONE 40 with a nominal 40% w/w vinyl acetate content hence called 

EVA40 and LEVAPREN 45 with a nominal 45% w/w vinyl acetate hence 

called EVA45. 

3.1„1 Preparation of CPE3 

Polyethylene can be chlorinated in solution or in suspension 

(Billmeyer, 1971)„ Solution chlorination is preferred due to the 

random substitution of the chlorine along the polyethylene chains. 

Chlorination is by means of a radical reaction in the presence of 
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light. High density polyethylene (HDPE) with a nominal molecular weight 

t> of 10,000 was used in order to avoid chain branching in the products. 

HDPE (20 grams) was dissolved in analar chlorobenzene (400 cm ) by 

stirring and gradually heating up to 130°C„ A flow of chlorine gas was 
3 -1 

conducted into the solution at an average flow rate of 30 cm .min , I 
after passing it through concentrated sulphuric acid. A visible light 

source was used as a radical initiator, and to avoid any oxidation the 

solution was kept under a nitrogen blanket. The chlorination process 
• o was carried on for six and a half hours at 130 C while the solution 

was stirred. 

The following radical substitution reactions are presumed to 

occur under these conditions: 
hv o Cl2 — » 2 CI 

RH + Cl° > R° + HC1 3.1 

R° + Cl2 > RCl + Cl° 

where RH stands for polyethylene and RCl for chlorinated polyethylene. 

At the end of the chlorination time the flow of chlorine gas was 

stopped, and the light source turned off. The reaction product was 

cooled and precipitated into a ten times excess of methanol (A.R.), 

washed with methanol and dried for two weeks at 50°C in a vacuum oven 

at 0.1 mm Hg. This product gives a transparent film by moulding. 

The intrinsic viscosity of CPE3 in THF at 2fPc is 1.41 and its elemental 

analysis is given in Table 3.3. 
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In order to measure the heat of mixing of the CPEs and EVAs, 

two commercial chlorinated paraffins, ceroclor 45 and ceroclor 52 

(ICI) were used as low molecular weight analogues of chlorinated 

polyethylenes. 

3.1.2 Preparation of Sec-Octyl Acetate (Oc.Ac.) 

Secondary octyl acetate (1-methyl heptyl acetate) was 

used as a low molecular weight analogue for ethylene-vinyl acetate 

copolymers. It was prepared by the reaction of octan-2-ol with acetic 

anhydride as follows: 

The octane-2-ol (A.R., BDH) was distilled at 64°C and 20 mm Hg prior 

to use, all other reagents were Analar grade and were used as supplied. 
•j 3 

Octan-2-ol (100 cm , 0.77 moles) and Pyridine (80 cm , 1.008 moles) 

were placed in a flask fitted with a stirrer and reflux condenser. 
3 

Acetic anhydride (86 cm , 0.91 moles) was slowly added to the flask via 

a dropping funnel while the contents were refluxed. The mixture was 

then refluxed for a further four hours9 it was cooled and 100 cm3 

3 
of ether added to the contents of the flask. After mixing 100 cm 

of distilled water was also added. Pyridine was separated from the 

organic phase which contained the acetate. The ether solution was 
3 

washed three times, with 10% of concentrated sulphuric acid (40 cm ) 

to remove the remaining pyridine, followed by a saturated sodium 

carbonate solution in order to remove any acid. The ether solution 

was then dried over anhydrous sodium sulphate, filtered, and the ether 

evaporated off. The acetate was distilled and the product was collected 

at 68-70°C and 20 mm Hg pressure. 
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Gas chromatography analysis showed the product to be greater 

than 98% pure, the only observable impurity being unreacted octan-2-ol 

which has an 11°C difference in boiling point compared with the acetate at 20 mm Hg 

Elemental analysis of the product given below is compared with the 

theoretical values. 

Elemental Analysis c = 69.86, H = 11.65, 0 = 18.60 

Theoretical c = 69.77, H = 11.63, 0 = 18.60 

3.1.3 Physical Properties of the Components 

The degrees of chlorination of the low molecular weight 

materials, ceroclor 45 (designated as S45) and ceroclor 52 (designated 

as S 52) were determined by elemental analysis. The molecular weights 

were determined by vapour phase osmometry (VPO) at 37°C using 

butanone as a solvent. The results are given in Table 3.2. 

Material 

TABLE 3.2 
Chlorine Mn 
Content w% V.P.O, 

Ceroclor 45 45.74 395 

Ceroclor 52 53.08 437 

The chlorine, carbon and hydrogen content of the chlorinated 

polyethylenes and the carbon and hydrogen content of the EVAs were 

also determined by elemental analysis, and their molecular weight 

examined by gel permeation chromatography (G.P.c.) in tetrahydrofuran, 

relative to polystyrene. The number average molecular weight M , 

and weight average molecular weight Mw, relative to polystyrene, were 

computed from the following expressions: 
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M = n 
EN.M. I x 
EN. l 

EW. l ' M = E (Wi/M±) w 
EN.M. ' 1 l 
EN.M. l l 

EW.M. l l 
EW. 

3.2 

where N^ is the number of species i of molecular weight M^ and W^ = 

N.M./N , with N being Avogadro's number. The results of these 
3. 1 A A 

computations, together with the elemental analysis results for CPEs and 

EVAs are given in Table 3.3 

TABLE 3.3 

Material w% CI w% C w% H -4 M xlO n MwxlO 5 M w 
M n 

H40 35.41 54.26 8.18 2.06 1.88 9.12 

H48 44.05 47.16 6.68 2.39 1.82 7.61 

CPE 3 52.65 42.25 5.50 3.22 2.56 7.95 

EVA 40 - 74.46 11.55 2.29 1.19 5.20 

EVA45 _ 71.72 11.04 3.77 2.56 6.79 

When the Mark-Houwink-Sakurada parameter, K and a, (Brandrup 

and Imergut, 1975) for the polymers are not known? the actual molecular 

weights can be approximated by a so-called one parameter method. 

Busnel (1982) has explained that macromolecules eluted from 

G.P.C. at one elution volume have the same "hydrodynamic volumes", 

V o i r : 

V h ( v ) • { W X M X } (V) 

where [h]x and M x are the intrinsic viscosity and molecular weight 

of the species x eluted at volume v. It is, therefore, possible to 

accept that: 

3.3 
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In) PS } = B 3.4 
H x <v> X 

where B is the "Benoit factor" and is constant for the family of x for 

a given element (PS stands for polystyrene). 

On this basis, 

M. =B M.-- or M = BM __, Mr7 = BM___ 3.5 ix iPS nx nPS' Wx WPS 

The intrinsic viscosity of polystyrene in THF at 25°C is given by 

Busnel (1982) as: 

[TI] = 0.9 x 10"3 M°°5, M < 10,000 3.6 

[n] = 0.145 x 10 3 M°o7, M > 10,000 3.7 

The intrinsic viscosities of CPE3 and EVA45 in THF at 25°C 

were found to be 1.415 and 1.07 dl.g 1 respectively. The B valueP 

obtained for CPE3 is 0.625 and that of EVA45 is 0.827. The 

approximated molecular weights are: 

CPE3 M * 1.6 x 105 
W 

EVA45 M^ - 2.1 x 105 

The more precise methods for molecular weight determination of the 

polymers are explained by Collins et al. (1973). 

The crystallinity of the polymers was checked using Guinier 

and philips cameras (Alexander, 1965). The monochromatic X-ray 

beam (CuK ,X = 1.54^) with a nickel filter was used in each case, a 

No crystallinity was detected in either case, therefore we are 

essentially dealing with amorphous polymers in this work. 
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Densities of the polymeric compounds were measured by the 

equal volume titration method at 25°C (ASTM, 1971). Water-sodium 

bromide and n-propanol-water mixtures were used for CPEs and EVAs 

respectively. The equivalent density of the titrated solutions were 

measured by a digital densimeter DMA46 (Anton, Paar, Austria) at 

the same temperature. The densities of low molecular weight compounds 

were directly measured by the densimeter. The results of these 

measurements are given in Table 3.4. The error in the density of 

solid polymers is ^0.0005 g.cm 3 and that of liquids is -0.0002 g.cm 3. 

TABLE 3.4 

DENSITIES AT 25°C 

Material Oc.Ac. S45 S52 H40 H48 CPE3 EVA40 EVA45 

Density 0 e 8 5 5 4 l oi6 4 0 102592 1.1220 1.2556 1.296 0.9498 0.9530 g.cm J 

3.2 BLEND PREPARATION 

The miscibility of the following six binary polymer-polymer 

systems were studied: 

1. EVA40-H40 2. EVA45-H40 3. EVA40-H48 

4. EVA45-H48 5. EVA40-CPE3 6. EVA45-CPE3 

Mixtures of each individual binary system were found to be 

transparent at room temperature when they were cast from a 5 w/v% solution 

in tetrahydrofuran (A.R., BDH). 



A total amount of one gram of the two components was 
3 

dissolved in THF (20 cm ) with stirring over one day. The clear 

solution obtained was poured into a petri dish (2" diameter) which 

had been treated by washing with a 2V/V% solution of 1.1.1-trimethyl 

chlorosilane (BDH) in 1.1.1-trichloroethane, to ease removal of the 

film. Slow evaporation of THF left a clear film of 200 to 300 pm 

thickness. The films were kept under vacuum at room temperature for 

one week before being used and kept in a desiccator until required. 

3.2.1 Determination of THF Residue in the Blends 

The weight loss of a blend (50 w% H40 in EVA45) during the 

removal of the residual THF was measured continuously by means of an 

Oertling microbalance, Model 146. The weight of the blend reached a 

constant value after eight days, as shown below. No further weight 

losses were observed after further evacuations. 

day 1st 2nd 3rd 6th 8th 

weight lost % 7.57 0.58 0.29 0.074 0.029 

Infra-red spectroscopy did not detect any peak due to 

THF in this blend. In another experiment, one gram of 50/50w/w% of 

EVA40 in CPE3 and one gram of 50/50 w/w% of EVA40 in H40, which had 

been dried for eight days as above, were separately dissolved in 
3 

40 cm of toluene. 1 pi of these solutions were injected in the 

column of a PYE Unicam gas chromatograph, with a thermal conductivity 

detector. The chromatograph was calibrated to detect up to 0.01 w/w£ 

of tetrahydrofuran in toluene. A trace of tetrahydrofuran less than 

0.08 w/w% in both blends was observed. 
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3„3 METHODS FOR ESTABLISHING MISCIBILITY 

Optical, mechanical, electrical, morphological and thermo-

dynamic properties of various polymer mixtures are often used as 

criteria for establishing miscibility. The methods to determine these 

properties with their limitations have been extensively reviewed by 

MacKnight et al. (1978) and Olabisi et al. (1979). 

When a viscous polymer is cooled, the transition from a 

soft elastomer to a rigid glass occurs at a temperature or over a 

range of temperatures known as the glass transition temperature, Tg. 

Since all polymers exhibit a glass transition temperature, any 

miscible blend which behaves as one homogeneous phase will show a 

single glass transition temperature, which is generally between the 

Tg's of the individual polymers. In dynamic mechanical studies, the 

storage modulus of a blend decreases rapidly, and the loss modulus 

exhibits a maximum in the neighbourhood of Tg. The physical properties 

also change near Tg. For example, the line width in nuclear magnetic 

resonance undergoes an abrupt narrowing at this temperature. In 

polar polymer blends, the dielectric loss tangent and the imaginary 

part of the complex dielectric constant passes through a maximum in 

the region near Tg. The refractive index shows a change at Tg. The 

thermal expansion coefficient, and the heat capacity also change 

at Tg. 

For miscible blends, many attempts have been made by 

researchers to correlate the Tg with the blend composition as is 

frequently done with random copolymers. Several miscible blends 

(Hammer, 1971 and Hichman and Ikada, 1973) exhibit composition 

dependence of Tg which can be predicted by the simple Fox (1956) 

relationship. 
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W W 
1_ + _2 3.8 
Tgfa Tg1 Tg2 

where W^ and W 2 are the weight fraction of the respective components 

and Tg^, Tg^ and Tg2 are the Tg's of the blend component one and 

component two respectively. A logarithmic form of this equation is 

given by Pochan et al. (1979). Other polymers are reported to follow 

the Wood (1958) equation (Fried et al. 1978). Some others (Prest and 

Porter, 1972) follow the more detailed Kelley-Bueche (1961) expression. 

None of these relationships including the Gordon-Taylor (1952) and 

Dimarzio-Gibbs (1959) equations specifically take into account the 

interaction term of the blend. The equation of Pochan et al. (1979) 

remains at an empirical level. The Tg of a blend having specific 

interactions, however, may follow the general form: 

Tgb = ^Tg.,^ + <f>2Tg2 + 3.9 

where ^ and are the volume fractions of component one and two and 

A is related to the interaction term and the flexibility of one chain 

relative to the other. The presence of a single glass transition 

alone may not be a definitive test of miscible blends, as there are some 

circumstances under which the Tg criterion may not be applicable 

(MacKnight et al,, 1978). Other difficulties associated with the 

glass transition temperature are discussed by Cowie and McEwen (1979). 

Different techniques measure different motions of a miscible 

blend, and the detection and position of a relaxation maximum would 

be expected to depend on the particular measurement technique. A full 

assessment of blend homogeneity may require the use of several 

techniques for comparison. The following techniques are considered 

as reliable methods for establishing polymer-polymer miscibility in 

the present work. 
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3.3.1 Dynamic Mechanical Relaxation 

Dynamic mechanical analysis involves the determination of 

the dynamic mechanical properties of polymers and their mixtures. 

In viscoelastic studies of polymeric materials the method of sinusoidal 

excitation and response have been widely used (Murayama, 1978). In this 

case, the applied and resulting deformation both vary sinusoidally with 

time, the rate being specified by the frequency, f, in cycles per 

second or w = 2 II f in radians per seconds. 

For linear viscoelastic behaviour the strain will alternate 

sinusoidally but will be out of phase with the stress as shown in 

Figure 3.1. 

Figure 3.1. Schematic relation between various parameters in 
dynamic mechanical relaxation measurement eQ is the 
input strain and ^ the output stress. 
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A phase lag results from the time necessary for molecular 

rearrangements which is associated with the relaxation phenomena 

(McCrum et al., 1967). The stress, a, and the strain e, can be 

expressed as follows 

a =cr sin(wt + 6), e =e sinmt 3.10 o o 
where m is the angular frequency and 6 is the phase angle. Expanding a 

a = a sin ait. cos 6 + o; cos a)"t sin 6 3.11 o o 

Hence stress can be considered to consist of two components, one in phase 

with the strain, OQ COS <5, and the other 90° out of phase, a Q sin 6. 

When these are divided by the strain, the modulus can be separated into 

in phase (real) and out of phase (imaginary) components, i.e. 

d = e E' sin cob + p E" cos co t 3.12 o o 
ff a. 

E' = — c o s 6 and E" = — sin 6 3.13 
eo eo 

where E' is the real part of the modulus (storage modulus) and E" 

is the imaginary part (loss modulus). The energy loss per cycle or 

damping in the system, can be measured from the "loss tangent" tan 6 

defined as: M 
E 

t a n 6 E*' 3 a 4 

When tan 6 is near the maximum the molecular motion of the chain 

molecules starts, but with a larger phase angle delay to the stress, 

which causes the mechanical damping. 

The exponential representation of the moduli, yields the 

complex dynamic modulus, E*, as: 

E* = E' + iE" 3.15 
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A Rheovibron dynamic viscoelastomer at a constant oscillating 

frequency of 11 Hz was used (Model DDV-II, Toyo Measuring Instruments). 

The temperature was scanned at l°C.min 1 and direct tan 6 values were 

recorded. The sample dimensions were 20 x 5 x 0.3 mm. A plot of loss 

tangent against temperature was constructed. 

3.3.2 Dielectric and Depolarization Measurements 

The dielectric propoerties of polymers are analogous to the 

mechanical properties in that the dielectric constant,e', is similar 

to mechanical storage and the dielectric loss factor,e", is similar to 

the mechanical loss. In dielectric experiments an alternating electric 

field produces an alternating electric polarization which, in the 

case of polar solids, will lag behind the applied field by some 
e" 

phase angle. The loss factor or tan 6 = ^r commonly used to 

determine the glass transition. The main advantage of this technique 

over the dynamic mechanical testing is the wide range of frequencies 

available. This permits the loss factor to be determined either as 

a function of temperature over many frequencies or as a function of 

frequency at selected temperatures* The latter is particularly 

important because blend miscibility may be studied at temperatures: below 

or above CPCs permitting a study of systems showing LCST or UCST 

miscibility (Wetton et al., 1978). In this case, if one presents 

the dipole of a polar polymer by a single relaxation time, T, then 

the constituents of the complex dielectric content, £*, are defined 

by Hedvig (1977) as: 
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E ' = £ + (£ -£j/(l + W2T2) 3.17 
CO Q 00 

e" = (e -EJwt/(1 + W2T2) 3.18 
2 2 

and tan 6 = (E -EJWT/(E o te^w T ) 3.19 

where £ q and e^ are the limits of e' at zero frequency and infinite 

frequency. The d1 and tan 6 go through a maximum when WT = 1. 

The dielectric relaxation measurement has been used by Wetton 

et al. (1978) for establishing the miscibilities of polymer blends. 

Its practical application is not as common as mechanical relaxation 

measurements. The conductivity effects such as the Maxwell-Wagner-

Sillars (MWS) phenomena have made this method less attractive. The 

MWS effect has been discussed by Hedvig (1977) and Wetton et al. (1978). 

It is a polarization effect which occurs as a result of the accumulation 

of charges at an interface of two media of different conductivities. 

Dielectric relaxation measurements are normally performed 

by means of a radio-frequency bridge, which gives the conductance 

and capacitance of an unknown capacitor, polymer or blend, in digital 

numbers. A 1621 General Radio Precision Capacitance Instrument was 

used to measure the loss tangent in this work. A conventional PTFE 

insulated two-terminal cell with a working electrode diameter of 3 cm 

was used as a sample holder. All the measurements were performed at 

a constant frequency of 37 Hz and a temperature range of -50 to 80°C 

was used unless stated. The heating rate was approximately 1.5°C 

per minute and readings were taken every 2 or 3 degrees. 
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An alternative form of spectra can be obtained 'by recording 

the short-circuit current during warming-up after the blend has been 

polarized at a constant d.c. field above the transition temperature. 

This method has been referred to as the thermostimulated current 

depolarization or electric depolarization current method. The scheme 

of the dielectric depolarization process is shown in Figure 3.2. 

1 

Figure 3.2. Schematic presentation of depolarization method T p is 
the polarization temperature. 

A blend of approximately 25 pm thickness was cast onto an 

aluminium coated glass slide which acts as one electrode. The sample 

was kept under vacuum at 0.1 and then 3 x 10 mm Hg for 48 hours 

before polarization (Zambrand, 1981). A 30-40 volts d.c. supply was 

used for polarizing the blend for 30-60 minutes at the polarizing 

temperature, T , below phase separation and above the transition temperatur 
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(stage B in Figure 3.2). It was cooled to -80°C and the external 

field was removed (stage C). Using a temperature program unit the 

polarized sample was heated at a rate of 2°C.rain 1 (stage E) where 

an electrometer was connected to it to record the circuit current. 

The current peaks recorded in this way are found to correlate with the 

transition temperatures measured by the dielectric technique. The 

reproducibility of the peak intensity was found to be excellent when 

the same thermal history was repeated. 

Part of the dielectric depolarization current may be attributed 

to (a) thermal depolarization of the dipoles attached to the polymer 

chain, with a decay rate of polarization, P, expressed as: 

dP 3„20 

dT = " p/ T 

where x is the relaxation time, (Sharama et alc, 1980). For dipolar 

relaxation, the dielectric loss is a maximum at the resonance 

frequency. 

and part to (b) the depolarization of the dipoles of Maxwell-Wagner-Sillars 

type and detrapping of the charges above the transition temperature. 

3.3.3 Differential Scanning Calorimetry 

This technique measures the amounts of heat required to 

increase the sample temperature by a value of AT over that required to 

^ heat a reference material by the same AT. The variation in power 

necessary to maintain this level during a transition is monitored 

and recorded. The technique has been reviewed by MacKnight et al. 

(1978), Olabisi et al. (1979) and Rabek (1980). it has been shown 
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that the method is suitable for studying polymer-polymer miscibility. 

A detailed application of this method has been shown by Fried et al. 

(1978). The utility of the differential scanning calorimeter, DSC, for 

measuring the melting point depression in order to calculate the 

interaction parameter between PVF2 and PMMA was demonstrated by Nishi 

and Wang (1975). In this work, the DSC measurement of the blends 

were performed in a DuPont, 990 thermal analyser with a DSC cell at 

a sensitivity of 0.2 meal.sec 1 and a heating rate of 5°C0min ^ The 

heat flow as a result of a power difference between ~20 mg of a sample 

in an aluminium pan and a similar empty one was recorded. 

3 03 04 Phase Contrast Microscopy 

In this type of microscopy the beam from the interference 

diffraction maxima of the light passing through a specimen is split 

into two parts, by a beam splitting prism. Each part contains the 

full object information. These beams combine again in an interferometer 

and by shearing one beam vertically against the other the two waves 

hit each other sheared, and interference will occur depending on the 

phase difference of the components. 

The difference in phase between the two light waves depends 

on the difference in optical path length. The optical path length 

is defined as the product of the geometrical path and refractive 

index. 
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Sections from the blend, 20-30 pm thick, were illuminated 

by the transmitted light of a mercury lamp in an interference phase 

contrast microscope (Carl Zeiss Jena Ltd.). The structure of the 

blend was observed before heating,as a function of the temperature 

as it was heated, and after heating using a Cambion heating 

stage. A series of colour photographs were taken as the morphology 

of the specimen changed. The advantage of this technique is that it 

avoids the possibility of artefacts due to staining. 

More details and other applications of phase contrast 

microscopy are given by Bennett (1951) and Doube (1979). 

3.3.5 Transmission Electron Microscopy 

The resolving power of a light microscope is limited by the 

wave nature of the light. The minimum spacing, d, which can be 

resolved by a good microscope is of the order of the wavelength of 

the radiation source, A, and is given by: 

d = A 3.21 
n sin 6 

where 0 is the angle of acceptance of the lens and n is the refractive 

index of the specimen. For better resolution, larger values of Q 

and shorter wavelength radiations are required. 

Transmission Electron Microscopy (T.E.M.) has provided 

resolution of 2 to 10 A°. It is basically analogous to visible light 

microscopy but uses an electron beam instead of a light beam, and 

electrostatic or electromagnetic lenses instead of glass ones. The 

technique and its application to polymers are described by Rabek (1980) 

and Collins et al. (1973). Other specific applications of electron 



microscopy are given by McMaster (1975) and Meyer et al. (1978). 

Rabek (1980) and Collins et al. (1973) have given details 

of the considerations for sample preparation. In this work an 

Ultramicroto ne equipped with a liquid nitrogen cooled cold chamber 

(L.K.B. Sweden) was used. Glass knives were freshly prepared for each 

section. The specimen temperature was set at -80°C and the glass 

knife at -150°C. Thin sections of the blends around 900 A° in 

thickness were made and placed on a supporting copper grid. 

A JEM, 100B, Transmission Electron Microscope with 3.5A° 

resolution was used to investigate the structure of the blends which 

were heat treated for different lengths of time and at different 

temperatures. The heat treated samples were quenched down below 

their glass transition temperature on tie surface of a cold metal 

before ultramicroto ming. The blend before heat treatment provided a 

basis against which the other blends could be compared. A number of 

blends were compared in this way. 

The method is limited by the sample preparation and the 

stability of the polymers in the electron beam. Other limitations of 

the method are described by Christner and Thomas (1977). 

30306 Infra-red Spectroscopy 

Infra-red spectroscopy is an attractive method for examining 

the interactions of different polymers in a blend using the specific 

vibrations of the chemical groups. There are a number of descriptions 

in the literature of the vibrational spectra of polymer blends with 
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specific interactions. Coleman and Zarian (1979) have studied the 

Fourier-transform infra-red spectrum (FTIR) of poly (e-caprolactone), PCL-

poly (vinyl chloride) blends. They have observed a band shift to a 

lower frequency in the C=o absorption of PCL as a function of PVC 

^ concentration. They also noticed that the width at half-height of the 

carbonyl band varies with PVC composition in an S-shape manner. These 

findings indicate the existence of a specific interaction between these 

materials which is responsible for the miscibility. A shift in the 
t 

0=0 stretching frequency of PMMA in the presence of poly (vinylidene 

fluoride), PVF2, was observed by Coleman et al. (1977) „ Tabb and 

Koening (1975) studied the FTIR spectra of plasties «-<! PVC and 

proposed that interactions between the carbonyl bands and the carbon-

chloride band may occur in the amorphous regions of this polymer. 

Varnell et al. (unpublished A) have considered the shifts to a lower 

^ frequency of the C=0 stretching band to be a consequence of a 

weakening of the carbonyl band by a hydrogen bonding type interaction. 

They also draw the conclusion that the carbonyl groups are planar, 

hence carbonyl stretching vibration is a highly localized mode (i.e. 

> 90% (C=0)) and any frequency shifts for this bond in a mixture 

arise from chemical interactions. On the other hand, Varnell et al. 

(unpublished B) believe that a small change in the frequency of the 

^ carbon-chlorine stretching vibrations cannot be assumed to be definitive 

evidence for direct involvement of the chlorine atoms in any specific 

interaction. 
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The energy of hydrogen bonding in carbonyl groups may be 

estimated by considering the equilibrium constant for the dissociation 

of the hydrogen bonded group. This involves estimating the extinction 

coefficients of pure and blended components at various temperatures, and 
ft thus constructing the van't Hoff plot by Equation 3.2 2. 

- InK, = M - 3.22 
d RT R 

ft A similar suggestion was made by Senich and MacKnight (1980) and 

Earnest and MacKnight (198o). 

Preliminary studies of the infra-red spectra of EVA45-CPE3 

blends using a Perkin-Elmer Model 631 spectrometer with 0.3 cm 1 

resolution at 1000 cm \ have indicated a considerable shift of the C=o 

stretching band of EVA45 in the presence of CPE3 at room temperature. 

Shifts to a lower frequency of the C-Cl stretching band of CPE3 were 

also observed in the region 620 to 660 cm The shifts in (3=0 and 

C-Cl stretching bands have been attributed to a specific interaction 

ft between these materials. 

3.3.7 Light Scattering Turbidimetry 

A stable homogeneous mixture is transparent, whereas an 

unstable inhomogeneous mixture is turbid unless (a) the components of 

the mixture have identical refractive indexes or (b) a phase separation 

smaller than the resolution of the technique used occurs. Given a 

stable homogeneous mixture, the transition from the transparent to 

the turbid state may be brought about by variation of temperature, 

pressure or composition of the mixture. The cloud point corresponds 
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to this transition point - the initial point of phase separation. 

The cloud point can be established by light scattering turbidimetry 

or microscopy etc. The basis of light scattering turbidimetry was 

described by Stein (1978) and Olabisi (1979). A light wave 

incident upon a sample may be transmitted, absorbed or scattered. 

These phenomena can be generally described by 

1 = 1 exp {-(e +T) 1} 3.23 t o 
where I. and I are the transmitted and incident intensities of a t o 

sample of thickness 1, E is the absorption coefficient and T is the 

turbidity. T is related to the Rayleigh ratio for scattering angles 

9 and p, shown in Figure 3.3, by Equation 3.24 

t = y11 j 2 n R (0 ,p) sin (0,p) dp d0 3.24 
0=0 p=0 

Turbidity measurements are used in studying cloud point 

curves (CPC) of solutions (Cowei and Saeki, 1982), oligomers (Chong, 

1981) and solid mixtures (Reich and Cohen, 1981). 

The instrument used in the present work was fully described 

by Chong (1981). It measured the intensity of scattered light of 

a blend by means of a photodiode at a scattering angle of 0 = 45°. 

p is equal to zero in this particular machine. The temperature of 

the sample can be controlled and programmed to change at a constant 

rate either on cooling or heating. The incident light is from a 12 volts 

tungsten lamp and is focussed onto the sample and then onto the 

detector after scattering. A data logger is used to take readings 

at periodic intervals of the temperature and intensities. 
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FIG. 3.3. Scattering angles 9 and JLX for an unpolarised light after 
passing through a sample. 
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In order to obtain the cloud point of each blend a thin film 

(100-300 pm thickness and 5 x 20 mm) was screwed into a brass sample 

holder and then located in the turbidimeter. The sample was heated 

at 0.2°C.min \ The data logger was programmed to take readings at 

one minute intervals. Typical traces of scattering intensity as a 

function of temperature obtained for blends of 65 and 55 w% H48 

in EVA40 are shown in Figure 3.4. The corresponding temperature of 

the first deflection point was taken as the cloud point temperature. 

This was repeated for the whole range of concentrations for each pair 

of polymers and the cloud point curves were thus constructed. These 

curves for all the six systems are of the LCST types and are accurate 

within 5 to 10°C depending on the system and the blend itself. 

In order to determine whether a blend was undergoing phase 

separation or merely domain ripening, where the larger domains are growing 

at the expense of the small ones, the scattering intensity at an 

angle of 45° was observed as a function of time. This is equivalent 

to the light scattering invariant, at a fixed angle, as defined by 

Koberstein et al. (1979): 
00 

r) = , Rh'dh 3.25 *LS J -
o 

4 n 
where R is the Rayleigh ratio and h = is scattering vector. 

A sin £ 
2 

In the spinodal decomposition or nucleation and growth mechanisms of 

phase separations, Q increases with time, whereas in the domain LS 
ripening mechanism it remains constant with time. An example of the 

continuous increases in scattering intensities with time for blend of 

H48-EVA40 = 55-45 and 65-35 is given in Figure 3.4. The figure 

shows an increase in the intensity of the light scattered at temperatures 
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FIG. 3.4. Scattered intensity versus temperature and time. 



above the cloud point and a constant value below this point. These 

observations show that the phase separation mechanism is not by 

domain ripening and give an alternative way of finding the cloud 

point of the blends. Following these observations the blends were 

heated up at a rate of 0.2°C.min ^ to a certain temperature which 

was kept constant and the intensity of the scattered light recorded 

as time passed. This gave additional confirmation to the cloud 

points of the blends which were previously determined by scanning 

the temperature. Figure 3.4 also indicates that the growth rate of 

phase separation is faster at higher temperatures and the phase 

separated domains grow initially in a linear manner which becomes 

exponential at higher temperatures as thermodynamic equilibrium 

is approached. This confirms the findings of McMaster (197 3) and 

Gilmer et al. (unpublished). These latter authors have given an 

exponential form for the domain growth as 

D = a exp (bt) 3.26 m 

where Dm is the fluctuation spacing at an angle of maximum intensity 

9 m and a and b are constant at any given temperature. 

3.4 MEASUREMENTS OF THE THERMODYNAMIC QUANTITIES 

3.4.1 Heats of Mixing Measurements 

Experimental values of heats of mixing are normally obtained 

by direct calorimetric measurements at constant pressure. The 

combination of calorimetric data, preferably at several temperatures, 

with other state parameters of the pure components leads to the 

determination of all the excess properties given in Chapter Two with 

high precision. The sign and magnitude of the heat of mixing, which 

is a function of nearest neighbour Gontacts, is crucial in the 

miscibility study of two polymers. 
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Cruz et al. (1979) have shown that polymers with negative 

heats of mixing are likely to be miscible or partially miscible, 

vdiilst Patterson (1968) has shown that the heats of mixing change 

sign in the region corresponding to two phases. The approach of 

Tager et al. (1975) in applying Hess's law to calculating the heats 

of mixing of solid polymers was considered more carefully by Weeks 

et al. (1977). Substantial errors are reported in the heat of 

mixing measured for PS and PPO by the latter authors, which arise 

from the subtractions inherent in Hess's law. The correction required 

to obtain the enthalpy of mixing in the liquid state was also 

discussed by these authors. 

Allen et al. (1960A) have measured the heats of mixing of 

oligomeric materials by direct mixing. The same procedure was also 

followed by Cooper and Booth (1977). The usefulness of the measurement 

of heats of mixing of model compounds was demonstrated by Cruz et al. 

(1979). 

We have measured the heats of mixing of sec-octyl acetate, 

as an analogue of EVA45, and ceroclor 45 and 52, as analogues of H48 

and CPE3 respectively, in a modified NBS batch type microcalorimeter. 

The microcalorimeter used is fully described by Chong (1981)„ The 

instrument has an accuracy of - 0.002 J.g 1 as determined by an acid-base 

reaction. The stability of the temperature is within 0.00l°C. Total 

weight of the two components which were mixed at 64.5, 73.08 and 83.5°C 

at atmospheric pressure was about 1.5 grams. The microcalorimeter was 

electrically calibrated using a resistor immersed in a 50/50 w/w% 

mixture of the system under investigation. To account for the 

temperature dependence of thermal conductivity and the heat capacity 



84 

of the mixture this was repeated at each operating temperature. An 

example of such a calibration curve for 50/50 w% mixture of sec-octyl 

acetate and ceroclor 52 is shown in Figure 3.5. The horizontal axis 

shows the electrical energies given to the mixture and the vertical 

axis gives the areas of the resulting peaks. 

The required amounts of the pure liquids were kept at the 

operating temperature for 3-6 hours before mixing. The measurements 

were repeated three or four times for each composition and ap average 

value taken. The results were reproducible within the range of 0.004 

to 0.009 J.g 1 depending on the system, composition and temperature. 

3.4.2 Inverse Gas Chromatography 

Conventional gas liquid chromatography determines the 

property of an unknown sample in the moving phase with a known 

stationary phase. The inverse method, however, determines the property 

of the stationary phase using a known volatile solute in the moving 

phase. The volatile molecules are referred to as probe molecules. 

Since the initial work of Smidsrod and Guillet (1969) 

numerous investigators have used inverse gas chromatography (IGC) 

to determine physicochemical parameters characterizing the interaction 

of small amounts of volatile solutes with polymers (Olabisi et al., 

1979). 



FIG. 3.5. Calibration curves for sec-octyl acetate/ceroclor 52 - 50/50 
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Baranyi (1981) has shown that infinite dilution weight 

fraction activity coefficients, interaction parameters and excess 

partial molar heats of mixing can be readily determined with this 

technique. Partial molar heats of mixing, partial molar free 

energies of mixing and solubility parameters of a wide variety of 

hydrocarbons in PS and PMMA have been determined by this technique, 

by Baranyi and Guillet (1977) . The temperature dependence of the interaction 

parameter between PS and PVME has been studied by Robard and Patterson 

(1977). Hydrogen-bonding polymer-solute interactions have been studied 

by IGC by Baranyi et al. (1980). Doube and Walsh (1980) have utilized 

this technique to measure the interaction parameter between PVC and 

CPE. 

A PYE Unicam GCD chromatograph with a flame ionization detector 

was used to measure the solvent-polymer and polymer-polymer interaction 

parameters for the polymers used in this work. Nitrogen was used as a 

carrier gas. The column supporter was 30-40 mesh porous PTFE and the 

coating procedure was as explained by Doube and Walsh (1980)„ 

The link between IGC measurements and interaction parameters 

is the infinite-dilution activity coefficient, which is obtainable 

directly from the specific retention volume, Vg, data. The latter 

was computed using the relation given by Baranyi (1981): 

Vg = (t - t )Q J.273.16 3.27 
s m W T 

where t is the retention time for the solvent and t is that of a s m 

non-interacting gas, methane. W is the weight of stationary phase, 

T is the operating temperature and J is a correction factor for gas 

compressibility as described by Cruickshank et al.(1966). The values 

of Vg were extrapolated to zero flow rate to obtain Vg°. 
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The weight fraction activity coefficient at infinite dilution 
3-1 oo 

of the probe ( ) and the solvent-polymer interaction parameters, 
W1 

X ^ an<1 X i y were then calculated from the equations given by Deshpande 

et al. (1974). 
, al ,«> 273.16R „o , , „ „ 

l n ( ' = Vg°Px°MlZ ' Z = e x p P1 * (B11-V1> / R T 3"28 

273.16R v2 s p V 
~ l n V g ^ P ^ Z (1 " *2 

and 
273.16RV V 

In „ _ -( 1 ) 3 o 3° 
'13 Vg3 1 1Z V2 

where V^, M, and B ^ refer to the solute molar volume, molecular 

weight, saturation vapour pressure and second virial coefficient 

respectively. R is the gas constant and T is the column temperature, 

v. v. and <}>. are the specific volumefmolar volume and volume fraction 
1 Or f 3. 1 

of component i. The densities of the solvents were obtained from 

Timmermans (1960) as were values of P^0 except those for tetrahydrofuran 

and butanone which were calculated using the method of Ambron (1980). 

Second virial coefficients were taken from Dymond and Smith (1980), 

those for tetrahydrofuran and butanone being estimated from critical 

constants by the method of McGlashen and Potter (1962). 

Knowing x^2
 anc3 interaction between a solvent and a 

X2 3 column containing a homogeneous mixture of two polymers, , can be 
V 2 

obtained from (see Olabisi et al., 1979) 

fXl2», + X13, , 273-16R<W2V2SP + " 3 V3SP' 1 $3 - —-—<Po$o}V = ln —n 
V1 V1 V2 2 3 1 P1°Vg23

uV1Z 

v2 v3 
- (l - I!)4>2 - (l- — 3-31 
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This equation was converted to a simpler and more useful 
X 

form in this work to facilitate the calculation of —2JL and also to 
V 2 

eliminate the error contribution of Z, x ^ anc3 ^23* s ^ P ^ f 
X 2 3 

equation for j — is: 
2 

^23= I { I In V2SP + k l • V3SP L_ W2V2SP + W3V3SP 3.32 
V, Vx <J>3 Vg^ <P2 n Vg30 n Vg^o > 

where <j>2 and cf>̂  are the volume fractions and W2 and W3 are the weight 

fractions of polymers '2* and '3*, V^, V 2 are the molar volumes of 

solute and polymer '2' and v 2 s p , v3sp a r e sP e cifi c volumes of the 

polymers. VP 2
0' V<33° anc* V<323° r e f e r t o tlie s:i-nPle component and 

mixed column values. 

X 2 3 
The _ calculated from Equation 3.32 should be more 

V2 X 2 3 
accurate than the one calculated from Equation 3.31. The -yj— 

2 

obtained from IGC measurements, however, contains a contribution from the 

non-combinational entropy of mixing. We have reservations about the 

quantitative reliability of IGC results because of the problem of 

removing the effect of surface adsorption and diffusion limitation with 

stationary phase as discussed by Doube and Walsh (1980) . No attempt, 

therefore, was made to calculate the interaction tern, of the 

mixed column as done by Olabisi et al. (1979). 

ft 
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3.5 THE VOLUME CHANGE ON MIXING 

3.5.1 Density Measurements 

In the absence of electron-donor-acceptor interactions, normal 

liquids expand upon mixing, as illustrated by numerous workers. 

Densification, however, mostly occurs in mixtures with specific 

interactions. An example of this for PS in PPO mixtures is given 

by Jacques and Hapfenberg (1974) and for that of PS in PVME by 

Kwei et al. (1974). 

The volume changes of mixing of sec-octyl acetate with 

Ceroclor 45 and 52 at 25°C were measured using a DMA46 (Anton Paar, 

Austria) densimeter. The principle of the density measurement in 

this method is based on the change of the natural frequency of a 

hollow oscillator tube when filled with different liquids or gas. 

The densities of pure liquids and their mixtures were measured 

using the following procedure: 

Prior to each experimental series, the instrument was 

calibrated at 25°C, with dry air at atmospheric pressure and with 

doubly distilled water. The temperature was controlled constantly 

by a - 0.25°C thermometer. All mixtures were prepared by weighing 
+ 3 the components to - 0.1 mg. The solutions (approximately 2.5 cm ) 

were heated and mixed and after cooling were transferred to a syringe 

and injected through the densimeter. Measurements were repeated 

three or four times and average values were taken. The experimental 
+ -3 

errors of the densities measured are estimated to be - 0.0002 g. .cm 

in the regions richer in the acetates and - 0.00035 g .cm 3 in the 

regions richer in ceroclors. The volume change of mixing for these 

mixtures was calculated from the following relation: 
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M = SP l 3.33 
ttO W, v, __ + W„v V 1 ISP 2 aSP 

where viSp»V2sp anc^ v SP a r e t1ie sPec:*-fic voltes of component one, 

two and their mixture respectively, and W^ and W 2 are the weight 

fraction of the corresponding components. 

This method is becoming a standard method for obtaining 

the excess volume of mixing as reported by Pikkarainen (1982) and 

Kokkonen (1982). 

3.5.2 The Effect of Pressure on Mixing 

Patterson and Robard (1978) by using a combination of the 

prigogine and Flory equation of state theories have related the 

interaction parameter, between solvent-polymer or polymer-polymer 

to two terms, one interactional and the other free volume, as 

given below. 

*12 . V {
 ?1 1 / 3 fl2 • i!> 3.34 

Vx* RT^* v1
i/3 - 1 P1* (_4 - v1J-/3) 2 

interactional free volume 
term term 

where T is related to the volume difference between two components 
* * 

in a system and given by T = 1-T^/ T 2 The other terms in Equation 

3.34 have the same meanings as defined in Chapter Two. 
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The effect of increasing temperature on the free volume 

and interaction terms of EVA45-CPE3 mixture calculated from this 

equation are illustrated in Figure 3.6. This shows that increasing 

temperature causes the negative interactional term to decrease and 

also the positive free volume to increase. Applying pressure to 

this system is expected to reduce v and make X^2 more negative, hence 

the misicibility of the system increases in a similar manner to that 

which has been observed by Saeki et al. (1975, 1976) . A lowering of 

the LCST by pressure is extremely rare and has not so far been 

seen in a nonaqueous system. 

According to the thermodynamic analysis given by Prigogine 

(1957) in the vicinity of the critical point the pressure dependence of 

the critical solution temperature is related to the ratio of volume 

change on mixing and enthalpy of mixing as below. 

T A V 
, dTv = _ ( 9X/9P )T =

 M 3.35 
dP c ( 9X/3T )P AHM 

dT This equation implies that for positive values of ( ) c and negative 

values of AH , the system undergoes contraction. In the case of a M 
UCST, AV.. can be either negative or positive depending on the sign M » 

dT of ( ) which in turn is affected by the nature of the mixture. dP c 
dT Saeki et al. (1975) have found that the value of ( — ) for PS in dP c 

cyclohexane (with a UCST) is positive when molecular weight of PS is 

3.7 x 10^ and it becomes negative for solutions of PS of a higher 
4 

molecular weight range of 11-145 x 10 . Tripathi (1979) has also 

found that by increasing the pressure on two mixtures (methoxylated 

poly(ethylene glycol) in methoxylated poly(propylene glycol) and 

polystyrene in poly(butadiene)), which ochibit UCST behaviour, the 
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FIG. 3.6. The free volume term and interactional term calculated 
for EVA45-CPE3 at different temperatures. 

FIG. 3.7. Position of the sample in silicon oil and Hg under pressure. 



93 

miscibilities decreased. Using the Flory-Huggins model he has shown 

that x values increase on increasing the pressure for the above 

mentioned mixtures. 

It is possible to use equation 5.39r without its combinatorial 
3Y part, for the total interaction parameter to calculate (-r̂ -) and 
dp T 3v 

( ) individually. This procedure, however, may not give a precise 
dT 

answer to ( ) because of complications in pressure and temperature 

dependence of X-ĵ . 

A film of 50 w% EVA45 in CPE3, about 300 |im thick, was placed 

around a specially designed glass sample holder of 7.00 mm O.D. and 

16 o00 mm height to be tested under the pressure. The rest of the 

sample holder was filled with chromatography grade silicon oil (see 

Figure 3.7). 

The pressure apparatus used was described by Tripathi (1979) 

and was capable of studying the effect of pressure on polymer-polymer 

miscibility up to 150°C and in the pressure range of 1 to 1000 atm. 

Its pressure vessel was mounted in a thermostat controlled bath (-0.1°C) 

The optical arrangement was such that the transmitted light was 

detected by a photodiode set at zero angle to the incident light beam. 

The blend was heated gradually with an average heating rate 

of 0.17°C.min 1 at atmospheric pressure. The cloud point of the 

sample was found in a similar manner to that explained in Section 3.3.7. 

The result is almost the same as given by the turbidimeter if allowance 

is made for the detection angles. The experiment was repeated 
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at various pressures each time on a newly mounted sample. The 

pressure dependence of the cloud points obtained is reported in 

Chapter Four. 

It is worth mentioning 

pressure transferring mediun and 

no effect on the cloud point of 

that the silicone oil acts as a 

this has been found to have virtually 

the blend. 
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CHAPTER FOUR 

RESULTS 

4.1 THE ESTABLISHMENT OF MISCIBILITY AND THE PHASE BOUNDARY 

4.1.1 Dynamic Mechanical Relaxation 

The relaxation peaks obtained, using a rheovibron at a 

freguency of 11 HZ, for EVA45, CPE3, and some of their blends are given 

in Figure 4.1. The temperature was scanned at a rate of 1°C min 

Similar results for EVA40 and CPE3 and some of their blends are shown 

in Figure 4.2. The mechanical relaxation of EVA45-H48 blends and 

EVA40-H48 blends are given in Figures 4.^ and 4.4 respectively. 

The rheovibron has given a single transition temperature to 
ft 

all the blends studied. The rheovibron was also used to estimate the 

phase separation temperature of the blends. The blends were heated 

up to a certain temperature and quenched down on a surface of cooled 

^ metal, in order to freeze in the probable structure. They were then 

tested as usual. An example of the results for a blend of 65 w% EVA40 

in H48 is given in Figure 4.5. According to this result the blend 

^ will phase separate in the temperature region of 62 to 82°C. This was 

proved to be consistent with other methods of determination for this 

blend. The rheovibron failed to detect any phase separation of EVA40 

in H40 and EVA45 in H40 blends when they were similarly heat treated. 
ft 

The difference between the transition temperatures of the pure 

components of these blends is only about 20°C. 



FIG. 4.2. The dynamic mechanical relaxation curves 
for EVA40, CPE3 and their blends. 
A. 100% EVA40 C. 40% EVA40 E. 100% CPE3 
B. 80% EVA40 D. 20% EVA40 
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FIG. 4.1. The dynamic mechanical relaxation curves for 
EVA45, CPE3 and their blends. 
A. 100% EVA45 C. 50% EVA45 E. 100% CPE3 
B. 80% EVA45 D. 20% EVA45 

V£> o> 



o o 
O K> —i 1 1 1 1 1 1 r 

O H' H 3 
ON O O, 

FIG. 4.4. The dynamic mechanical relaxation curves 
for EVA40, H48 and their blends. 
A. 100% EVA40 C. 50% EVA40 E. 100% H48 
B. 80% EVA40 D. 30% EVA40 

FIG. 4.3. The dynamic mechanical relaxation curves for 
EVA45, H48 and their blends. 
A. 100% EVA45 C. 50% EVA45 E. 100% H48 
B. 80% EVA45 D. 20% EVA45 vJD 

- J 
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FIG. 4.5. Phase separation temperature of 65 w% EVA40 and H48 as 
determined by dynamic mechanical relaxation testing. 
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The results in Figures 4.1 to 4.4 show that the temperatures 

of the relaxation peaks of EVA45 and EVA40 are almost identical at 

-17°C. This relaxation is associated with the beta relaxation of 

EVA. The transition temperature remains constant until the vinyl 

acetate content increases to 55 w% of the polymer. At higher acetate 

contents, the transition temperature increases, approaching the value 

for pure polyvinyl acetate. More details of this behaviour are given 

by Nielsen (1960) . Hammer (J.971) has shown that the gamma transition 

of the copolymers around -110°C is due to a more limited type of rotational 

motion of a few CH2 groups. This transition remains entirely unaffected 

by the presence of C-Cl groups. The beta transition, therefore, is 

used to judge the presence or absence of pure EVA40 or EVA45 in the 

blends. 

The relaxation of the chlorine containing groups in amorphous 

chlorinated polyethylene has been attributed to the alpha relaxation 

which increases with temperature as the degree of chlorination increases. 

The other relaxations of chlorinated polyethylene were studied in 

more detail by Perena et al. (1980). 

t 4.1.2 Dielectric and Depolarization Relaxation 

The dielectric relaxation peaks obtained for EVA45, CPE3 and 

some of their blends are given in Figure 4.6. The Maxwell-Wigner-

Sillared effect is also shown in this figure. Similar results for 

EVA40-CPE3 and EVA45-H48 mixtures are shown in Figures 4.7 and 4.8 

respectively. The MWS effect is not plotted in these figures. 
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FIG. 4.6. The dielectric relaxation curves for EVA45, CPE3 and their 
mixtures at 37 Hz. The MWS effect in pure CPE3 and 30 w% 
EVA45 in CPE3 is exhibited. 
A. 100% EVA45 C. 30% EVA45 
B. 70% EVA45 D. 100% CPE3 
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FIG. 4.7. The dielectric relaxation curves for EVA40, CPE3 and 
their mixtures at 37 Hz. 

FIG. 4.8. The dielectric relaxation curves of EVA45, H48 and their 
mixtures at 37 Hz. 
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FIG. 4.9. The depolarization currents of some blends obtained when they were charged whilst above 
their glass transition temperatures. A. 60-40 = EVA40-H48 B. 70-30 = EVA45-CPE3 

C. 50-50 = EVA40-CPE3 

o to 
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The depolarization traces of some blends are given in 

Figure 4.9. The samples had a thickness of 20jum and were charged 

at 35 V for 50 minutes at 25°C (blend A), 60 minutes at 47° (blend B) 

and 42 minutes at 50°C (blend C). The heating rate during the charge 

release was 2°C min 

The depolarization current detected for some of the blends 

studied shows single transitions. The transition temperatures are 

higher than those given by dielectric or dynamic mechanical relaxations. 

This is partially due to the non-frequency dependence of depolarization 

and also to the complication of the depolarization peak as discussed 

by Hedvig (1977) . 

4.1.3 Differential Scanning Calorimeter 

The results for EVA40-H48 blends with a heating rate of 

5°C min 1 are given in Figure 4.10o Similar results for EVA40-CPE3 

blends are also presented in Figure 4.11. 

The transitions obtained by this technique are not generally 

sharp. This may be due to the nature of the blend constituents and 

also to the unreliability of the particular instrument used. Lower 

heating rates could also give sharper transitions especially when the 

Tg's of the pure components were well separated. Annealing the 

blends at a rate of 1°C min has improved the resolution of the 

transitions, but this technique was not considered useful for this 

s tudy. 
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FIG. 4.10. The differential scanning calorimetry traces of EVA40, 
H48 and their mixtures. 
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FIG. 4.11. The differential scanning calorimetry traces of EVA40, 
CPE3 and their mixtures. 



FIG. 4.12. The phase contrast microscopy of EVA40-H48 1 cm 
= 40 -60 blend at different temperatures < —> 

11 pm 
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4.1.4 Phase Contrast and Electron Microscopy 

The morphological features of a blend of 60 w% EVA40 in H48, 

examined by interference microscopy, are shown in Figure 4.12. In the 

first frame the specimen is at room temperature and no structure or 

colour differences can be seen (except for dust left on the sample 

to ease focussing). In the second picture the specimen was kept at 

66°C for one hour and then quenched down to below ambient temperature. 

Faint two phase structures can be seen. The same treatment was used 

for the picture C at 90°Co A two phase structure is clearly seen. 

The separated domain size is of the order of one micron or less. This 

was confirmed when morphological features of the blends were observed 

under the electron microscope. Electron micrographs of a 50/50 w/w% blend 

of EVA45-CPE3 are shown in Figure 4.13. 'A' is at room temperature and 

appears homogeneous. Blends B, C and D were heat treated at 100°C for 

10, 30 and 300 minutes respectively. The size of the phase separated 

domains which are at equilibrium in picture D varies between 0.2 to 

0.6 pm. 

Similar results for a 60 w% of EVA40 in CPE3 at room 

temperature and after heating at 90°C are given in E and F of Figure 

4.14 respectively. This figure also contains pictures of 50/50 w% 

of EVA45 in H40 at room temperature (G) and after heating at 75°C (H) . 
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J 

FIG. 4.13. Transmission electron micrographs of 50/50 mixtures 
of EVA45 and CPE3. 
A. at room temperature C. 30 minutes at 100°C 
B. 10 minutes at 100°C D. 300 minutes at 100°C 
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FIG. 4.14. Transmission electron micrographs of 60 w% EVA40 in CPE3. 
(E at room temperature, F at 90°C for 300 minutes), and 
EVA45 in H40 (G at room temperature and H after two hours 
at 75°C). 
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4.1..5 Infra-Red Spectroscopy 

To estimate the magnitude of the wavelength shifts the scales 

in the spectrometer were expanded along both axes and the wavelength 

corresponding to the maximum absorption was accurately measured. This 

was repeated three times and average values were obtained. The results 

are summarized in Table 4.1. 

TABLE 4.1 

Sample n7(D=Q) cm"1 \7(C-C1) cm"1 Shift cm"1 

EVA45-CPE3 

100-0.0 1739-1.6 0.0 

20-80 1732.5-1.1 6.5^1.9 

60-40 1737.7-0.6 1.3±1.7 

O-lOO 655.4-0.7 0.0 

80-20 624-4.7 31.4-4.7 

60-40 647.4-1.2 8±1.4 

These blends were also studied by Professor P.C. Painter of 
f 

Pennsylvania State University using an FTIR spectrometer. The 

advantages of the newer instrument are in its higher sensitivity, 

resolution, the use of signal averaging to enhance the signal to noise 

1 ratio, and the ability to manipulate the spectral data by techniques 

such as spectral subtraction and addition. 
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The FTIR spectra given for the C=0 stretching vibration 

bond of EVA45 in the presence of 0, 40 and 80 w% of CPE3 at room 

temperature are shown in Figure 4.15A. The frequency shifts and 

the ratios of width at haIf-maximum, WHM, are given in Table 4.2. 

TABLE 4.2 

Sample 

EVA45-CPE3 

100-0 

20-80 

60-40 

Shift cm 

0 . 0 

4 

2.2 

-1 WHM 

1 

1.41 

1.27 

A weaker interaction for the blend containing less CPE3 

is evident from (a) its smaller vibrational shift and (b) less 

broadening of the C=0 absorption peak of EVA45. 

* o 

These samples were then heated up to 130 C and the tests 

were repeated. They show the disappearance of the specific 

interaction at this temperature, see Figure 4.15B. These results 

Y confirm the existence of an LCST behaviour in this system as 

suggested by other methods. To our present knowledge it is the 

first time an LCST behaviour has been found by infra-red 

spectroscopy. 
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4.15. FTIR of EVA45 and its blends with CPE3 (in weight-percent) 
at; A. room temperature, B. at 130 C. 



4.1.6 Light Scattering Turbidimetry 

Typical plots of the forwards scattering intensities at an 

angle of 45° for 50, 60, 70 and 80 w% of EVA40 in CPE3, obtained using 

the turbidimeter, are shown in Figure 4.16. The temperature was 

raised at a rate of 0.2°C min The scale of the scattering axis 

is arbitrary and the cloud point temperatures correspond to the initial 

points of increase in the scattering intensities. 

The cloud points of the blends may alternatively be obtained 

by holding the blends at a series of different temperatures for a 

period of time and recording the intensities of light scattered as 

before. An example of the results from this method for a 35 w% 

EVA40 in CPE3 blend is given in Figure 4.17. The right hand side of 

this figure is the usual scattering intensities versus temperature and 

the left hand side is the variation of scattered intensities at 72, 

79 and 94°C as a function of time. A similar example for a 50/50 w/w% 

of EVA40 in H48 kept at 54, 66, 76 and 83°C is given in Figure 4.18. 

The results of this procedure have confirmed the cloud point 

temperature obtained by the usual temperature scanning method. 

Repeating these two methods for all the blends of EVA45-CPE3, 

EVA40-CPE3, EVA45-H48, EVA40-H48, EVA45-H40 and EVA40-H40 gives the 

cloud point curves of Figures 4.19 to 4.24 respectively. 

It was found that increasing the heating rate elevates the 

apparent cloud point curves. For example, the cloud point of EVA40-

CPE3 mixtures for heating rates of 0.2 and 0.5°C min 1 are compared in 

Figure 4.25. Lower heating rates gives more reliable results. 
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FIG. 4.16. Typical scattering intensities for blends of EVA40-CPE3 
as a function of temperature obtained by the turbidimeter. 
• 50-50, X 60-40, 070-30 and * 80-20 w/w % 
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4 

FIG. 4.17. Scattering intensities of EVA40-CPE3 = 35-65 w/w% as a 
function of temperature and time. 

ft 

FIG. 4.18. Scattering intensities of EVA40-H48 = 50-50 w/w% as a 
function of temperature and time. 
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FIG. 4.21. The cloud point curve of the EVA45-H48 system. 
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FIG. 4.22. The cloud point curve of the EVA40-H48 system. 
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FIG. 4.23. The cloud point curve of the EVA45-H40 system. 
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Increasing the degree of chlorination in chlorinated material 

and also the amount of acetate in the copolymer increases the 

miscibility of the mixtures studied here. This has been summarized 

for 50/50 blends in Figure 4.26. This is generally in accordance 

with a linear increase in the negative energy of the specific interaction 

between chlorinated materials and ester compounds as reported by 

Paul (1978). The results of Figure 4.26 indicate that a 1 w% increase 

in the chlorine or the acetate raises the cloud point temperature of 

the blend by about 2°C. This may not be a general rule for other 

compositions as shown in Figure 4.27 for increasing the amount of 

acetate and in Figure 4.28 for increasing the degree of chlorination. 

All the results presented here are obtained by increasing the 

temperature. Reducing the temperature caused the blends to remix when 

they were phase separated by a few degrees, /vio above their cloud 

point temperatures. It was found, however, that the blends which were 

phase separated at ^50°C above their cloud point temperatures, did 

not remix on cooling within the experimental time scale. This is 

presumably due to the reduced mobility of the blends at lower temperature. 

4.2 DETERMINATION OF THERMODYNAMIC VARIABLES 

4.2.1 Heats of Mixing 

The experimental heats of mixing (J.g for mixtures of sec-

octyl acetate with both ceroclor 45 and 52 at 64.5, 73.08 and 83.5°C are 

given in Figure 4.29. 
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FIG. 4.25. The cloud point curves of the EVA40-CPE3 system 
for different heating rates. 
A. 0.2°C.min~1". B. O.S^.min"1 
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FIG. 4.26. Increases in the cloud point temperature of a 50/50 w/w% 
blend by increasing the degree of chlorination and the 
amount of acetate. 
A. EVA40 B. EVA45 
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FIG. 4.27. The elevation of the cloud point temperatures by 
increasing the amount of acetate. A. EVA40 B. EVA45 

r 

FIG. 4.28. The elevation of the cloud point temperatures by 
increasing the degree of chlorination. A. H48, B. CPE3 
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Exothermic heats of mixing were obtained in all cases. 

The values are smaller at higher temperatures, but this trend is not 

linear with temperature in either case. The mixing of the acetate 

with ceroclor 52 is more exothermic than that of ceroclor 45 indicating 

a stronger interaction as a result of higher chlorine content. These 

results were further used to calculate other thermodynamic parameters 

of the mixtures as will be explained in Chapter Five. 

4.2.2 Inverse Gas Chromatography 

The data, measurements, and the results for the solvent-

polymer interaction parameter for EVA45 and CPE3 for a series of 

solvents at 70°C and 100°C, obtained by IGC measurements, are shown 

in Tables 4.3 and 4.4 respectively. It can be seen that EVA45 has 

the most favourable interaction with an electron acceptor hydrogen-

bonding solvent (chloroform) whereas CPE3 has the most favourable 

interactions with electron doner hydrogen-bending solvents. This 

demonstrates the complementary dissimilarity between the two polymers, 

o X 23 Values of Vg,-., and the calculated values of for columns 
2 V 2 

prepared at three different mixture compositions at 70°C and 100°C are 

also shown in Tables 4.3 and 4.4 respectively. We have also shown 
X 23 an average value over all the solvents. The value of should be 

2 

independent of solvent probe used but because of effects such as 

specific interactions and non-random mixing this is not the case. 

The results, however, are similar and show the same general trend with 

composition. The estimated error in the measurements of Vg° is between 

1.5 to 5%. This translates into an error in X ̂  a n d X ^3 v a l u e s 
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FIG. 4.29. Heats of mixing of sec-octyl acetate and ceroclors at 
x 64.5, O 73.08 and o 83.5°C. Plotted against weight 
fraction of ceroclors. 
A. Sec-octyl acetate - ceroclor 45 
B. Sec-octyl acetate - ceroclor 52 
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rt EVA l*5 CPS 3 25/ w/w CPE 3 50/ w/w CPE 3 75^ w/w CPE 3 I 

Solvent V1 B11 V° g(2) X 2 v° 
c(3) 

V° 
5(23) X 2 ? 

v° 
g(23) X23 v° 

g(23) x 2 ? 
M 

(atm) (cm3/g) (ca3/g) (cm3/g) 
V2 (cm3/g) 

V2 (cm3/g) 2 
1 

Acetone 1.578 79.2.0** -1200 16.00 1.548 15.05 1.329 14.56 -.0060 15.00 -.0015 15.64 .0011 ; 

Methanol 1.208 42.920 - 950 10.01 2.86? 5-23 3.236 9.02 .0049 6.00 -.0211 5-973 -.0070 i 

Ethyl acetate 0.785 104.886 -1300 3 7 . 3 7 1 . 0 8 3 23.55 1.265 30.147 -.0063 26.00 -.0060 26.55 -.0010 

Tetrahydroduran 1.145 84.936 -1005 <•3-25 0.776 3<4.02 0.737 36.26 -.0089 32.1 -.0089 32.99 -.0058 

Diethyl ether 3 . 0 3 2 113 .450 - 768 10.28 1.000 3.66 1.752 7.58 -.0049 7-2 -.00353 5-378 .0066 

Chloroform 1 .336 <•7.625 - 8 60 72.75 0 . 6 7 7 24.34 1.493 52.71 -.0124 37-00 -.0166 32.42 -.CC-46 

n-Fentane 2 . 7 8 8 125.020 - 830 8 . 0 0 1 .237 1.96 2.362 6.07 .0006 4.00 -.0025 4.02 .0107 

2-3U tano-rie . 689 95-621 -1508 <•1.38 1.20*4 38.20 0.822 35.2 -.0097 30.00 -.0118 32.42 -.0093 

Dichloromethane 1.909 <•0.021 - 558 33-37 1.273 13.74 1.881 27-00 -.0355 15.90 -.0356 15.17 -.0201 

Average -.0119 -.0142 -.0079 

X - (from A H ) -.0022 -.0024 -.0015 

Cable 4 .3 Tie polymer-solvent interaction parameters and polymer-polymer interaction parameters for 

EVA 45, CPE J and three of their blend3 at 70°C. 

* * EVA 45 CPE 3 2535 w/w CPE 3 50/ w/w CPS 3 75'' w/w CPE 3 

Solvent 4 V1 B11 V° g(2) x12 v ° 
g(3) ^13 v ° g(23) ^ V° 

g(23) 
V° g(23) 

(atm) (craVg) (cm3/g) (caVg) " V2 (ca3/g) V2 (craVe) V2 
Ace tone 3.606 82.820 - 790 8 . 0 0 1.7383 6.00 1.7549 8 . 8 5 0.0123 6.00 0.0207 <4.74 -0.0180 

Methanol 3.615 414.820 - 543 3 . 8 6 3 .0889 1.30 3.9060 4.80 0.0610 2.70 0.<4982 2.21 0.029U 

Ethyl acetate 1.996 110.386 -1030 11.10 1.6865 8.25 1.712 17.00 0.0275 9.00 0.0012 11.50 0.0107 

Tetrahydrofuran 2.183 87.209 - 780 13 .01 1 .6607 11.76 1.4906 22.00 0.0391 13.50 0.00)42 15.20 0.0126 

Diethyl ether 6 . 3 8 8 121.212 - 607 3.64 1.6218 1 .63 2.1541 5.50 0.0296 3.00 0.0055 2.30 o ;oo ' i 2 

Chloroform 3.124 48.946 - 690 21.4 1.3960 8 . 3 0 2.072 25.70 O.O<48O 11.90 0.0UU6 15.00 0 . 0 3 0 c 

n-Pentane 5.803 133.904 - 700 3 . 0 0 1 .8175 1 .00 2.6450 4.00 0.0238 1.90 0.0024 2.01 0 . 0 1 3 1 

2-Butanone 1.661 98.754 -1100 11 .90 1 .9023 12.00 1.6228 18.02 0 .0262 12.00 0.0006 1<4.00 0 . 0 0 7 8 

Dichloromcthane 3.190 41.395 - 46? 9 . 6 0 2.3222, 4.85 2.7339 11.5 0.0420 6.9 0.0117 10.20 0.0004 

Average .03414 .0108 .0135 

Table d /[ The polymer-solvent interaction parameters and polymer-polymer interaction parameters for 
3 -1 

EVA U5, CPE 3 and three of their blends at 100°C. * i n C m . m o l 
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of 1.6 to 6.6%, depending on the total value of Vg°. This gives an 
. . X 23 

error in ranging from - 0o001 to - 0.005. Values of derived 
2 V 2 

from solvent probes such as pentane, methanol and diethyl ether, which 

give lower retention volumes, are much less reliable. 

The results also show less favourable interaction parameters 

for measurements at higher temperatures as would be expected from the 

LCST behaviour of the system. A similar temperature dependence of 

interaction parameter for PS and PVME was observed by Robard and 

Paterson (1977). 

ft Useful information can be obtained by calculating weight 

fraction activity coefficients of the solute in the presence of the 

polymers using Equation 3.28. Such results for EVA45 and CPE3 at 

70°C are given in Table 4.5. 

TABLE 4.5 

Solvent ai • 
EVA45 

AH. 
Kcal mol -1 

a. 
CPE3 
— oo 

A H1 
Kcal mol -1 

Acetone 14.85 

Methanol 56.22 +2.43 

Ethyl acetate 12.38 -0.54 

Tetrahydrofuran 11.66 -2.97 

Diethyl ether 15.16 

Chloroform 5.44 

n-Pentane 20.94 +0.11 

2-Butanone 16.80 +0.54 

Dichloromethane 15.59 

19.80 

166.95 

16.66 

12.90 

33.99 

14.02 

62.82 

16.68 

30.87 

-1.05 

+0.44 

-0.05 

-4.09 

+0.92 

-3.61 

+0.54 
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The calculated values show that the activity coefficients 

for solvent-polymer mixtures where no hydrogen-bonds are formed are 

generally higher than those of polar solvents, indicating very weak 

interaction with the polymers. The solvents, which are proton donors, 

have low activity coefficients due to the negative contribution to the 

enthalpy of mixing of hydrogen-bond formation. Acetone and butanone 

give moderate activity coefficients and the difference in their values 

are probably due to difference in molecular shapes. Methanol has 

a higher activity coefficient in the presence of these polymers, 

because of self association to form dimers. This outweighs the effect 

of solvation by hydrogen-bonding. 

Another useful quantity is the partial molar heat of mixing 

of a probe at infinite dilution in the polymers. This quantity as 

defined by Baranyi and Guillet (1977) is 

AH =R filn ( a ]y yj/ 6(1/T) 4 # 1 

_ 00 

AH^ values obtained from the slopes of the best possible straight 

lines through plots of the logarithm of the activity coefficient 

versus the reciprocal of the temperature in the range of 70 to 120°C 

are also given in Table 4.5. According to these results an 

exothermic heat of mixing indicates a strong polymer-solute interaction 

whereas an endothermic value indicates repulsive forces between them. 

The results also show that EVA45 is insoluble in butanone which was 

proved to be correct experimentally. 
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4.2,3 Volume Change on Mixing 

4.2.3,1 Density Measurements of Oligomers 
A VM The values of calculated from the density measurements of 
v° 

sec-octyl acetate in ceroclor 52 and ceroclor 45 mixtures, along 

with their errors, are given in Figure 4.30. The errors obtained on 

repeating the measurements are greater in the regions richer in 

ceroclors due to the viscosity and problems of trapped air. The 

results show a larger volume reduction for the mixtures containing 

ceroclor with higher chlorine content. 

A VM The theoretical value of for sec-octyl acetate in 
V° 

ceroclor 52 and ceroclor 45, obtained from Equation 2.80, are given 
A v M in Appendix C-I. The theoretical value of for a 50/5O w% 

_ 2' 
mixture of Oc.Ac-S52 at 64.5 C is-5.30 xlO and that for the same 

_ 3 
composition measured experimentally at 25°C is -8.4 xlO For Oc.Ac-S45, 

the theoretical value at 64.5°C and experimental value at 25°C are 
-3 -3 

-4.06 xlO and -5.5 xlO respectively. The agreement here between 

experimental and theoretical values is remarkable, provided an allowance 

is made for temperature differences. 

4.2.3.2 The Results of Cloud Point Measurements Under Pressure 

The cloud points obtained for the 50/50 w/w% of EVA45 in 

CPE3 investigated under pressure are listed below: 
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ft 

FIG. 4.30. The volume change on mixing for 
A. Sec-octyl acetate - S52 
B. Sec-octyl acetate - S45 
at 25°C. 
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TABLE 4.6 

Pressure Cloud point 
atm °C 

1 82.0 

300 86.0 

450 89„0 

550 91.5 

750 96.0 

The slope of the best fitting line, obtained by a linear regression 
dT program, through these points was taken as ^j^^r an(3 was found to be 

0.0187 deg atm Using the Ah„ value of the analogue material at M 
83.5°C (AH = -1.355 J. cm"3 = -13.371 atm) the value of AV„ according M M 

-4 
to Equation 3.35 is AV^ = -7.02 x 10 . This is comparable with the 

-4 o 
theoretical value of -10 x 10 at 83.5 C as derived in Section 5.2.4, 

Operational difficulties of the pressure apparatus have 

limited our cloud point investigations to this one system. According 

to the results of Tripathi (1979) and Saeki et al. (1975, 1976) the 

pressure will not change the shape of the cloud point curve appreciably, 

but only shift it to higher or lower temperatures. 



CHAPTER FIVE 

SIMULATION OF PHASE BOUNDARIES 

5.1.1 Application of a Modified Lattice Model 

Thermodynamic definitions of the spinodal, binodal and 

critical conditions were given in Chapter Two. The spinodal and 

binodal curves and also the critical point of a system can be either 

(a) defined mathematically as by McMaster (1973) and in the present 

work, or (b) obtained from the direct iterative construction of 

double tangents to the AG^ curves, as shown in Figure 2.1 and 

described by Koningsveld et al. (1974A, B). Both these procedures 

have been used by several workers to simulate the phase boundaries of 

mixtures. For example, Olabisi (1975) and ten Brinke et al. (1981) 

have used McMaster*s derivations, while Koningsveld and collaborators 

(1970, 1974 A, B, 1977) have used the iteration method by varying 

the g function. 

Koningsveld et al. (1974B) analysed the spinodal, binodal 

and phase separation data of polystyrene in cyclohexane using a 

modification of his previous theory (Koningsveld et al. 1974A). In 

this extensive treatment, the authors modified the concentration 

dependence of g for the two extreme cases of dilute and concentrated 

solutions. Other modified verisions of the g function were used by 

Kleintjens et al. (1976), Irvine and Gordon (1980) and also in the 

present work. 



130 

One must remember that the treatment of the phase boundaries 

of a mixture by this procedure, is based on a specific g function 

which contains some approximations. The exact expressions for the 

spinodal, binodal and the critical condition of a binary mixture, on 

this basis are very complicated due to the variable nature of the g 

function. Recently, however, Fujita and Teramoto (1982) have derived 

new expressions based on the g function of Koningsveld for phase 

boundaries of a ternary mixture. They treated g as concentration, 

pressure and temperature dependent, but no numerical applications of 

their derivations are given. It is, therefore, difficult to see how 

well their treatment fits with experimental observations. 

The expressions of Koningsveld et al. for the spinodal, 

binodal and critical point are given in several of their papers 

(1970, 1971, 1974 A, B). Simpler equations on the same basis are 

derived here. 

The molecular weight distributions of the polymers are neglected 

and the temperature dependence of g is restricted to the first two 

terms of Equation 1.5. 

g = g i + g 2 / T 5 ' 1 

g 

This is comparable with the assumption about the form of X = A + —^ 

made by McMaster (1975) and van Aartsen (1970). 

In this case the temperature variation of g depends on the 

sign of g 2 and hence on the nature of the mixture. When g takes this 

form either LCST or UCST behaviour may be predicted, depending upon the 
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value of g. This equation will not be adequate if both types of 

partial miscibility occur simultaneously. In that case the linear 

temperature dependence of g becomes predominant (i.e. the third term 

of Equation 1.5). Here, we assume no concentration dependance 

in the function and define a critical temperature for a blend 

at infinite molecular weight as: 

T c o o = ~ V , g 2 = T ( g - g ) 5 . 2 

The other approximation used here is that the A G^ relation 

will be limited to Equation 2.29. The simplest approach, therefore, 

is starting from the spinodal curve as defined by relation 2.31. 

Application of this condition to Equation 2.29 gives: 

92
 ( ^ M = + _ 1 _ } _ 2 = o 

3(f) 2 RT m2^2 

where the subscript SP stands for spinodal. The rearrangement of this 

equation for T when g is substituted from Equation 5.2 gives: 
b F Z 

— = — ( 1 - — ( - — + - — ) ) 5 4 
TSP T c « •l»! ^2m2 S P 

where the terms have their normal meaning as given before. The T 

and consolute temperature, T^, of a mixture may also be related by 

application of the critical condition to Equation 2.29, where 

33 ( ) = ( —T—2 7-2 ) -0 5"5 
— m m ~ 3cJ> 3 RT 1,1 l^l m2^2 ° 

or 
5.6 

2,c , m 9 1/2 ' H , c m. l/9 
l + ( — ) 

mi m2 
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Substitution of <j> and <f>0 in Equation 5.4 gives: 
-L F C F C 

-L -U 2 
1 1 , , 1 (m, + m 0 n , 5.7 
T" = T~ { 1 2 c } 
c c°° 1 

From these considerations the magnitude of g at the critical 

condition is: 

the position of which is given by Equation 5.6. In the present 

treatment as in the Flory-Huggins lattice model, the position of the 

critical point depends on |m0 - m,I . For m_ = m. , d>„ = 0 . 5 
1 4 l ' 4 1 2 , c 

and for mn > m_ , <j>_ will be less than 0.5 and vice versa. In the 2 1 T2,c 

extreme case of a solvent-polymer mixture, <{>2 c t e n d s t o z e r o a s m2 

goes to infinity. 

At the binodal condition the phases are separated but still 

in equilibrium. To work out the binodal temperature and composition, 

the chemical potential difference between each species in the mixture 

and their standard chemical potential will be set equal in each phase. 

At the equilibrium boundaries 

" h . % = " O B 5-9 

and 

(U2 " F2
0)a = ~ 0 )

B
 5-10 

where the subscripts A and B refer to thermodynamically homogeneous 

and inhomogeneous phases respectively. The chemical potential of 

species one in the mixture is given by: 

= lncj). + ( 1 - H . ) <f> + m.gif, 2 5.11 RT 1 m2
 2 1 2 
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Application of the relation 5.9 to the chemical potential of species 

one in both phases gives: 
$ 1 ml ' 2 2 In + (1 ) . (<f>9 - (f>- 9) = m. g (<J>' - <J> ) 5.12 $2 m2 ^ ^ 1 2 2 

A similar procedure for species two gives: 

l n ? r + ( ) " - o'i2 - h 2 ) 5-13 

Equation 5.12 is multiplied by 1/m^ and Equation 5.13 is multiplied by 

l/m2 . Subtracting these two equations from each other gives: 

1 1 i In ~ - - ln — = 2g (<J> - <j>' ) 5.14 m2 r 2 mL ^ 2 

where <J>̂  + (f>2 = 1 and <f>1 + <J>1 2 = 1. Introducing T in Equation 5.2 

and rearranging for the binodal temperature, T » gives 

J _ = ( i _ i ) m t l _ i_ , h 
Tbn Tc» 2 gi 'V̂V S *'2 ml 

5.15 

In numerical applications of these equations the g function can 

be obtained (a) from the conditions of Equations 5.12 or 5.13 where 

<J>2, <}>' and <{>' 2 are known from the cloud point curve of the mixture, 

(b) From different experimental measurements such as, I.G.C., vapour 

pressures of absorbed solvents, etc. An alternative way of finding g 
1 1 1 2 is by plotting — versus ( —r - + —r~ ) for a series of molecular T m.,̂  c C 1 2 

weights. The slope of the plot provides g and g 2 may be estimated 

from the energy of interaction between the pairs. The ratio between 

m^ and m 2 is important although their precise values are not critical. 

The values used in this work are 600 and 650 respectively. The g value 
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for a 50/50 w% blend of EVA45-CPE3 at 86°C was obtained by a 

linear interpolation of the I.G.C. results at 70 and 100°C as given 

in Tables 4.3 and 4.4. This was found to give g = +0.000207 which was 

used without any alteration for other compositions of the mixture. The 

simulated spinodal and binodal for EVA45-CPE3 blends using the equations 

derived above, are shown in Figure 5.1A. The critical point is also 

shown on the graph. 

The overall agreement between the calculated spinodal, binodal 

and critical point and the experimental cloud point is satisfactory, 

but, the metastable region between spinodal and the binodal is 

narrower than expected and the simulated curves are more symmetrical 

than the experimental cloud point curves. Decreasing g^ from 0.5 to 

a lower value shifts the phase boundaries to a higher temperature. 

This is shown in Figure 5.IB for g = 0.1. Multiplying m^ and m^ by 

a factor of two, lowers the phase boundaries by about 2 degrees. 

Altering g, however, can change the position and the shapes of 

phase boundaries considerably. 

The value of g obtained by fitting Equations 5.12 and 5.13 to 

the experimental cloud point curve given in Figure 4.19 was also used 

to simulate the spinodal and the binodal curves and to compute T c and 

d>_ . This is a simpler way to find the position and the shape of the 2c 
spinodal relative to the binodal curve. Examples of the results 

obtained by this procedure for g^ = 0.5 and g^ = 0.1 are given in 

Figures 5.2A and B. The main disadvantage of the latter method is in 

attributing a value obtained from the cloud point to g which means that 

the other mathematical equations follow the experimental cloud 

point curve. 
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FIG. 5.1. Theoretical x spinodal, o binodal and critical point 
calculated for EVA45-CPE3 mixtures according to a modified 
lattice model given in the text f Plotted against volume 
fraction of CPE3. g is taken from I.G.C. results. 
A. g = +0.000207 g-L = 0.5 4>2 c = ° - 4 8 9 9 Tc = 358.1°K 
B. g = +0.000207 gx = 0.1 <J>2'C = 0.4899 T c = 370.4°K 
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FIG. 5.2. Theoretical x spinodal, o binodal and critical point 
calculated for EVA45-CPE3 mixtures according to a modified 
lattice model described in the text. Plotted against 
volume fraction of CPE3. The g values were calculated 
from Ap-j^ = Ap2B condition. 
A. g 1 = 0.5 $ = 0.4899 T c = 359.2 
B. g l = O.l (P2 c = 0.4899 T c = 359.2 
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These simple equations, however, can be used if the equation 

of state parameters of a system are not known. 

5.1.2 The Koningsveld Interaction Parameter 

Scott in 1949, and Tampa in 1956 formulated the Flory-

Huggins free energy expression for ternary systems in order to take 

into account the polydispersity of polymers. This formulation was 

slightly modified by Koningsveld et al. (1974A) who introduced a semi-

empirical correction term, T, in order to quantify the interactions 

in a binary mixture. Assuming no chain branching, for blends of two 

homopolymers, the free energy equation of Koningsveld et al. can be 

written as: 

A GM M RT m. . " "A ni , 1,1 2,J 

where AG^ is the Gibbs free energy change on mixing per mole of lattice 

sites, 4> . and cL are the volume fractions of molecular species i in 1,1 4,J 
polymer one and J that in polymer two, and m . and m0 their 1,1 4,J 
respective chain lengths expressed as the number of lattice sites they 

occupy. RT has the usual meaning, P stands for pressure. The semi-

empirical correction term as a function of an interaction term may be 

written as: 

T = g(<J>2,T,P)<f>l(J>2 5.17 

where <p ̂  and (t>2 are the volume fractions of the polymers. The 
concentration, temperature, and pressure dependence of g is given by: 

n k 
g = £ g, <f> 5.18 

k=o 
{ g = gk,l + gk,2 / T + gk,3 T + gk,4 l n T i-51 



For further calculations, it is convenient to retain the 

first two terms of Equation 1.5, where increasing the temperature 

causes g to decrease or increase depending on the sign of gk,2. 

results do not lose their general qualitative validity by this 

limitation, which considerably facilitates calculation of the 9 

parameters. Introducing these assumptions in Equation 5.16, for 

monodisperse polymers yields: 
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5.19 

The 

2.29} 

This is the simplest equation frequently used by Koningsveld et ale to estima~ 

the stability of binary mixtures (e.g. see Koningsveldet ala 1980 and 

Kleintjens et al., 1980). It is worth noting that g will be equal to 

g12 when there are no vacancies in the lattice, i.eo gOl etc. are 

zero. 

where <Po is the volume fraction of vacancies and gOl' g02 and g12 

are the interaction terms for the ternary system. 

A value for g12 can be estimated from the molar heat of 

mixing of oligomeric analogues using Equation 5.21. 

-1 
llHM(J·mol ) 

RT (J.mol- I ) 

In order to facilitate calculations of g12 and llG
M 

the heats of 

mixing of oligomeric materials reported in Section 4u2.1 were 

5.20 

5.21 

normalized per mole of sec-cetyl acetate. The g12 values thus obtained 

for the mixtures of the acetate and ceroclor 52 and 45 at temperatures 
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FIG. 5.3. The Koningsveld g 1 2 function calculated from the heat of 
mixing of sec-octyl acetate in S52 plotted against volume 
fraction of S52 at temperatures, x 64.5, o 73.08 and •83.5°C 
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FIG. 5.4. The Koningsveld g 1 2 function calculated from the heat of 
mixing of sec-octyl acetate in S45 plotted against volume 
fraction of S45 at temperatures, x 64.5, o 73.08 and •83.5°C. 

• 
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of 64.5, 73.08 and 83.5°C are presented in Figures 5.3 and 5.4 

respectively. It is important to note that the g function is negative 

and decreases in size as temperature increases and increases in size as the 

concentration of ceroclor increases. This implies that the existing 

specific interaction between these two points is weaker at higher temp-

eratures and lower concentrations of chlorinated materials. The linear 

concentration dependence of g^2 has also been observed by Koningsveld 

(1970) for mixtures of polystyrene with cyclohexane. 

AC-
The values of — — may be calculated from the gn » function RT 1 2 

given in Figures 5.3 and 5.4 by using Equation 2.29 for the mixtures 

at given temperatures. In this calculation m^ is assumed to be 17 2 

for sec-octyl acetate and m t o be 437 or 395 for S52 or S45 respect-

ively. The Gibbs free energies of these mixtures calculated in this 

manner are presented in Figures 5.5 and 5.6. These figures show that 

the free energy change on mixing of these mixtures decreases as the 

temperature increases and furthermore that no region of instability is 

observed by this treatment. 

In order to estimate the thermodynamic quantities of the 

EVA45-CPE3 blends the above procedures have been extended to cover 

the temperature behaviour of this mixture. The g function was obtained 

(a) from the I.G.C. results as presented in Section 4.2.2, (b) from 

fitting the theoretical binodal equation into the cloud point curve 

of the mixture as explained in Section 5.1.1. Calculated values of 
A GM at 70°C for EVA45-CPE3, where m^ = 600 and m2 = 650 and g values 
RT 
from I.G.C. are shown in Figures 5.7. The values of m^ and m 2 are 

assumed to be equivalent to the number of lattice sites which the 
Apl 

polymer chains occupy. The-^, values of this mixture calculated from 

Eauation 5.11 are presented in Figure 5.8. 
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FIG. 5.5. The Gibbs free energy of sec-octyl acetate and S52 mixtures 
plotted against volume fraction of S52 at temperatures 
of x 64.5, o 73.08 and • 83.5°C. 
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FIG. 5.6. The Gibbs free energy of sec-octyl acetate and S45 mixtures 
plotted against volume fraction of S45 at temperatures of 
x 64.5, o 73.08 and •83.5°C. 
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FIG. 5.7. The Gibbs free energy of the EVA45-CPE3 system at 70°C 
plotted against volume fraction of CPE3. The g value was 

V taken from the IGC results. 

-1.00 

(CPE3) 

- 2 . 0 0 

RT 
-3.00 

-4.00 

FIG. 5.8. The chemical potential of 
at 70°C. Plotted against 
value was taken from the 

EVA45 in the mixtures of EVA45-CPE3 
volume fraction of CPE3. The g 
IGC results. 
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No region of instability is observed at this temperature 

in either case. This is in agreement with experimental results, 
AGm Ap1 

whereas at 100°C, both and show an unstable region between 
RT RT 

0.3 ^ (f>2 0.8 as shown in Figures 5.9 and 5.10. Here the value of 

g(+0.0033) was obtained by equating the chemical potential of the 

constituents at 100°C on the cloud point curve. 

These calculations, however, are only qualitatively important 

and provide only an estimate of the thermodynamic states of the 

mixture due to the inherent simplifications of the Flory-Huggins 

model. 

5.2 APPLICATION OF FLORY'S EQUATION OF STATE THEORY 

5.2.1 The Equation of State Parameters of the Pure Components 

In this theory the properties of the blends are defined in 

terms of the state parameters of the pure components. The theory 

accounts properly for the differing nature of the components as well 

as for the interactions between neighbouring molecules. The work 

of Biroz et al. (1971), who compared solubility parameter theory with 

Prigogine's corresponding equation of state theory and also of 

Patterson and Delmas (1970) who compared Prigogine's and Flory's 

theories, favoured Flory's theory. The application of this theory 

in explaining the entropy and enthalpy contributions to the residual 

free energy of mixing have been studied by Eichinger and Flory (1968), 

Booth and Pickles (1973), Shih and Flory (1972), Chalal et al. (1973), 

and presently in this work. 
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FIGo 5.9. The Gibbs free energy change on mixing of EVA45-CPE3 
mixtures at 100°C plotted against volumes fraction of 
CPE3. g 2 = +0.0033. 
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r Fig. 5.10. The chemical potential of EVA45 in the mixtures of 
EVA45-CPE3 at lOO°C plotted against volume fraction 
of CPE3. g = +O.OQ33. 
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In the view of these workers, the modified Flory equation 

of state theory is an improvement but not completely satisfactory in 

explaining the thermodynamic states of polymeric mixtures, governed 

by dispersion (or attraction) forces. The application of this theory 

to a binary mixture requires the following state parameters of the 

pure components: 

a. The specific volume, v
s p-

b. The surface area per unit of core volume ratio, S^/ S2 

c. The thermal expansion coefficient, a = — 
v dt dP d. The thermal pressure coefficient, Y = ( — 

e. The interaction term, X • 

a. The specific volume of the components 

These are obtainable from the densities = rj- ) at a 

particular temperature. The densities of several polymers are given 

by van Krevelen (1972) and Brandrup and Imergut (1975). In general, 

densities can be measured by pycnometry, equal density titration and 

other methods. 

The temperature dependence of the specific volume is given 
ct AT 

by v = v ° e which for a small AT gives: SP SP 
v « v ° (1+aAT) 5.22 SP SP 

b. The surface area per unit core volume ratio 

This ratio can be calculated (i) by using the tabulation of 

group surface areas and volumes given by Bondi (1964) who listed the 

volume of molecules impenetrable to thermal collision, the so-called 

van der Waals volumes, and the corresponding area per molecule, or 
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(ii) as Flory and co-workers have often done, by casting shadows of 

molecules for various orientations, where an average area for the 

monomer unit is estimated from the area of the projections (Eichinger 

and Flory, 1968 and Shih and Flory, 1972). These workers normally 

assume a spherical shape for small molecules and a cylindrical shape 

for polymers. (iii) The other alternative is the use of the Abe and 

Flory (1965) equations: 

S1 V -V 3
 rl _ 1/3 

2 2 2 

where V* is the product of v * and the molecular weight of the 

corresponding component. None of these methods, however, gives a 
S1 

precise value for and the agreement between the different methods 
S 2 

Si is usually poor. For example, the estimated ratio of for benzene-
2 ' 

poly (dimethyl siloxane), from Bondi1s group contribution, is 1.14 

and that of the sphere-cylindrical method is 1.67 (Shih and Flory, 

1972). For methyl ethyl ketone-poly (styrene) the value given by 

Bondi is 1.2 compared with the value of 2.1 given by the sphere-
ii 

cylindrical approximation (Flory and Hocker, 1971). The intermediate 
c 

value of is normally taken by these authors for further calculations, 
z 

S 
The ratio of L is close to unity when two polymers or two 

S2 

solvents are mixed, unless there is a strong specific interaction 

within the molecules of one of the components. It will be shown later 

that this ratio plays a role in determining the polymer-polymer 
S1 miscibility and also the shape of the phase boundaries. The 
S2 

ratios, calculated from Bondi's approximation, for the systems 

investigated here, are presented in Table 5.1. In this calculation 

the intermolecular interactions of the two components were not considered, 

The ratios calculated from Equation 5.23, for some of the blends, are 
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TABLE 4.6 

RATIOS ACCORDING TO (a) BONDI (1964) AND (b) EQUATION 5.23 

No Blends 
s^ a S1 b 

®2 

1 OC.AC-S52 1.064 1.2054 

2 OC.AC-S45 1.059 1.2055 

3 EVA45-CPE3 1.025 0.9246 

4 EVA45-H48 1.021 1.0184 

5 EVA45-H40 1.018 

6 EVA40-CPE3 1.019 

7 EVA40-H48 1.016 

8 EVA40-H40 1.013 

c. The coefficient of thermal expansion 

This coefficient plays an important role in the miscibility 

of polymer blends and is obtainable either from densities or 

dilatometric measurements of the samples. The latter provides more 

accurate values for a at various temperatures. The former gives slightly 

higher corresponding values due to the trapped air in the oligomeric 

materials or in the interfaces between the solid polymers and liquid 

media. 

In order to measure the thermal expansion coefficients of a 

series of n-alkenes, Orwoll and Flory (1967) designed a special 

dilatometer, a different version of which is given by Rabek (1980) and 
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employed here to measure the thermal expansion coefficients of 

solid and liquid materials. 

The temperature and pressure dependence of a can be 

calculated from theoretical considerations when it is written in 

terms of the reduced variables and provided its value is known at 

one particular temperature and pressure: 

1_ 9v _ T 3v 
a v * 8T Tv " dT P 

where 

and 

da (T,P) = ( | | )pdT + ( )TdP 

< f^ K = (7 + 4aT) . a2/3 dT P=o 

( )_ =-Ta/y {1 + 13aT/3 +4(aT)2/3} d P i 

5.24 

5.25 

5.26 

5.27 

Neglecting the pressure dependence of a at atmospheric pressure gives: 
2 a = a + a " ( 7 + 4a T ) AT/3 o o o 5.28 

This equation was used to calculate a at the required temperatures. 

The thermal expansion coefficient of the pure components 

obtained by dilatometry at 83.5°C are given in Table 5.2. 

TABLE 5.2 

No Material 4 -1 a x 10 (deg. ) 

1 (OC.AC)* 8.850 
2 S45 6.575 
3 S52 6.625 
4 EVA 4 5 4.5103 
5 H48 4.4199 
6 CPE3 3.6546 

* sec-octyl acetate 
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d. The thermal pressure coefficient 

Reliable values for the thermal pressure coefficients of 

polymeric materials, solids or liquids, are not generally available. 

This is mainly due to the practical difficulties of measuring this 

quantity. 

Allen et al. (1960B), however, designed a pressure bomb to 

measure the thermal pressure coefficients of polymeric materials. A 

slightly modified version of it was used by Orwoll and Flory (1967) 

to measure this quantity for n-alkenes. Application of this method to 

solid polymeric materials is difficult and time-consuming. The 

thermal pressure coefficient, however, does not have a significant 

effect on the treatment of polymer-polymer miscibility by Flory's 

equation of state theory, i.e. the equation of state is not sensitive 

to the Y coefficients and a good estimation of these is sufficient. 

One way to estimate this coefficient is through the solubility 

parameter (6) of the component which itself is related to the cohesive 

energy density (C.E.D.) and therefore to the strength of internal 

pressure of the structural molecules. According to Allen et al. (1960B) 

the internal pressure, and consequently the thermal pressure coefficient 

can be computed from the thermal expansion coefficient, a, and the 

isothermal compressibility, 8T, at any temperature by using the 

following relation: 

Pi E ' IV >T = T ( If >V " P 5"29 

where U is the internal energy. This equation at low pressures can 

be written as 

P^ = T i ir- ) - TX 5.30 
T 

These authors, and also Olabisi and Simha (1977) have used the following 

:om the C.E.D.• 
.2 5.31 

relation for calculating Pi from the C.E.D.: 
= m. (C.E.D.) = m 6 
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400 or m 6 =. T Y 5.32 

where m for most polymers is close to one. Thus, knowing the 

solubility parameter of the component theoretically or experimentally, 

Y at any temperature, can be estimated. The best way to calculate the 

solubility parameters is from group contributions using Small's 

theory (1953). According to Small, 6 is a linear function of an 

additive structural constant, f.. called the "molar attraction constant" 
l 

6 = - Zf. (cal.cm"*3) ** 5.33 M l 

where d is the density and M is the molecular weight of the repeating 

units in the polymer. Small calculated the molar attraction constants 

of different groups from vapour pressures and heats of vaporization 

data. His values were recently improved and updated by Hoy (1970) and 

van Krevelen (1972). Askadskii et al. (1977) have modified this 

method by considering all possible configurations, orientations and 

specific interactions of molecules. They have computed the solubility 

parameters of a large number of solvents and polymers which show a 

remarkable agreement with experimental results. These calculations 

normally give 6 and y at 25°C, where the temperature dependence of X 

at atmospheric pressures is given by: 

ay 
~ = - + 2 aT)/T 5.34 3T 

or 

y = Y - Y (i + 2 a T)AT/T 5.35 o o o 
The solubility parameters and the thermal pressure coefficients of 

the pure materials at 25°C calculated according to Equations 5.3 2 and 

5.33 are presented in Table 5.3. The f. values were taken from Hoy's 

(l97o)data. Intramolecular interactions of the pure components were 

neglected. . 
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TABLE 4.6 
-3 h -3 -1 No Material **6 (cal.cm ) S (cal .cm .deg ) 

1 (OC.AC.)* 7.092 0.1670 

2 S45 8.558 0.2456 

3 S52 8.986 0.2708 

4 EVA40 8.487 0.2415 

5 EVA45 8.540 0.2446 

6 H40 8.690 0.2532 

7 H48 9.208 0.2843 

8 CPE3 9.273 0.2884 

* sec-octyl acetate ** 1 cal.cm = 4.18 J.cm 

e. The interaction term, X-\ ? 

The simplest approach in calculating X ^ i-s the use of 

experimental heats of mixing of model compounds, given in Figure 4.29, 

as recommended by Eichinger and Flory (1968). The results of applying 

Equation 2.74 and 2.77 to the model compounds in this work are given 

in Table 5.4. 

TABLE 5.4 
-3, 

X12 ( J , c m ' 
Mixture 

64.5°C 73.08°C 83.5°C s
2
/ si 

OC.AC-S45 -5.00 -4.20 -2.63 0.883 

OC.AC-S52 -7.50 -6.50 -4.90 0.881 
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The values thus determined can be used to calculate partial 

molar residual quantities of the mixtures. The temperature dependence 

of X 2 i s not mathematically understood. Therefore, any interpolation 

or extrapolation of it was avoided, where possible. 

Knowing the aforementioned parameters, the other equation of 

state quantities for pure and binary mixtures can be computed as follows: 

(i) The Pure Component Parameters 

The thermal expansion coefficient gives v according to 

Equation 2.51. Knowing v Equation 2.48 provides T and hence T* and 

VSP* ^VSP* = vsP/^) w h i c h c a n b e obtained from Equation 2.39. The thermal 

pressure coefficient is related to P* by Equation 2.52 where P = P/P*. 

The value of v* can be obtained from Equation 2.40, for infinite chain 

length assuming 3C - 2 (3Cr = 2r + 1). Results of these calculations for 

sec-octyl acetate, ceroclors 45 and 52, EVA45, H48 and CPE3 at 83.5°C 

are given in Table 5.5. 

TABLE 5.5 

THE STATE PARAMETERS FOR THE PURE MATERIALS AT 83.5 C 

. , axlO Material deg x 

-3 v X J.cm . SP 
deg-1 

OC.AC 8.850 0.4893 

S45 6.575 0.6708 

S52 6.625 0.7360 

EVA45 4.5103 0.8043 

H48 4.4199 0.9544 

CPE3 3.6546 0.9592 

3 -1 
SP 
3 "I cm .g 

1.2442 0.9877 

0.9025 0.7506 

0.8306 0.6901 

1.0636 0.9288 

0.81506 0.7134 

0.8089 0.7223 

T * 
K 

1.2596 6067.21 

1.2022 7200.98 

1.2036 7167.45 

1.14509 9250.29 

1.1424 9384.51 

1.1198 10790.13 

P* + 
J. cm 

276.930 

345.854 

380.305 

376.182 

444.342 

429.477 

-3 -3 t 1 atm = 0.1013 J.cm = 0.02422 cal.cm 
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(ii) Binary Mixture Parameters 

The and Q^ values are given by Equations 2.59 and 2.66 

respectively. P* and T* are given by Equations 2.69 and 2.72 where 

P and T are defined as before. The values of v are obtainable from 

either Equation 5.36 or 5.37 by iterative means. 

vL/3_I 

v = (1 - Tv)~3 5.37 

v* of a binary mixture can be similarly obtained as described for 

pure components, but the number of external degrees of freedom per 

molecule of mixture is 

C = + l C l + + 2 C 2 - 5.38 

This is the shortest and simplest approach in obtaining all 

the state parameters required for pure components and their blends at 

any temperature and composition. 

5.2.2 Simulation of Phase Boundaries by Applying Flory's 

Equation of State Theory 

Using the general version of Flory's equation of state 

theory, McMaster (1973) examined the contribution of the state parameters 

to the miscibility of hypothetical polymer-polymer mixtures, by 

allowing variations in the values of these parameters. He observed 

that the theory is capable of predicting both LCST and UCST behaviours 

individually or simultaneously, the shape and position of which depend 

upon the equation of state parameters. 
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Olabisi (1975) has applied McMaster's treatments to a real 

system consisting of a poly(caprolactone) and poly(vinyl chloride) 

mixture. His spinodal simulation shows that for a constant negative 
S 

value of X as the ratio increases the spinodal curve tends to 
S ̂  

show more obvious bimodality. 

The asymmetrical phase boundary has recently been attributed 

by ten Brinke et al„ (1980) to the following condition: 

Q 1 2 = 0.0, X 1 2 < 0, ji < 1, ^ < 1 and C 1 2 > 0 

The equation for the spinodal, based purely on the chemical potential 

of Flory's equation of state theory is derived in the present work. 

In this derivation the pressure effect on the phase boundary is 

considered, whereas the effect of polydispersity and the C^2 factor 

are neglected. 

The addition of the combinatorial chemical potential of 

component one and the effect of the pressure term into Equation 2.102 

gives: 
~ 1/3 

rl W T V1 - I 1 1 = In d>, + (1 - — )<!>„ + — — — (3 — In — + — - — RT yl r 2 2 RT T.^ ~!/3_ ]_ v 

V1*X12 022 V Q 1 2 2 

6 A^1 9 A^1 The spinodal condition is — ^ ( ) = — ( = Oc 

Differentiating Equation 5.39 with respect to <J>2 gives: 
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r p *\j * p *v * 
1 1 . 1 V1 . A ^ F1 V1 .1 ^ s , , 7" + (1 - ) — — - --W-, + — — + P,) A r RT * v-v2/3 RT v 2 
1 2 v v SP 
* 2 

V1 X12 262 0ie2 V X 1 2 02 V Q 1 2 + 1 ( "zr~~ -r-r- ) - ° — ' A - 1 l Z (20 ' RT v <p RT „ ~2 R 2 SP 1 2 SP v 

1 2 x — — ) = O 5.40 
1 2 

9v 9v where A = — = - — or, 9 <p 9p 

a* B~c ( I + ) 

0<})2 2 * . (3^/3-2) 
5.41 

3v5/3 (vX/3 _ 1 }
2 

and 

9P P r © I t B = 37 = iP. * - P0* - (1-̂ r- ) ' 5.42 94>2 P* 1 2 2 12 1 

- - P * P * 9T T T 2 1 
c = f f 2 " ¥ • B + 1 < v " V } 

Using Equations 5.40 to 5.43 a number of spinodal curves at various 

conditions have been simulated. The results are generally in agreement 

with the finding of McMaster (1973) and ten Brinke et al. (1980). 

One example is the spinodal curves simulated for EVA45-CPE3 when 

Q^2 = -0.010 J.cm~3.deg This is shown in Figure 5.11. The shape of 

the curve for Q, = O is similar to that of Olabisi (1975) and ten Brinke 12 

et al. (1980) and occurs in a higher temperature range. The negative 

value of Q^2 reduces the interaction term, which in turn reduces the 

miscibility. The other state parameters of this simulation are shown 

in the Figure caption. The simulated spinodal is more symmetrical than 

the experimental cloud point curve given in Figure 4.19. The reason 
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FIG. 5.11. Simulated spinodal curve for the EVA45-CPE3 mixtures, 
using Flory's equation of state theory at the following 
condition: 

=-4.9 J.cm" , Q 1 2 = -O.OlO J.cm ,deg T 2 

S1 r2 5 — = 1.03, — = 1.336 and v * = 2 x 10 s2 r 1 
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for an asymmetry in the cloud point curve may be a strong intramolecular 

interaction in CPE which tends to become significant in the region with 

higher CPE content. The effect of this factor was neglected in 

Flory's equation of state theory. 

The spinodal equation is sensitively dependent on v and the 

factor. On the other hand, it is not very sensitive to small 
s2 s2 variations of — or V *. Decreasing — ratio from 1.03 to 0.98 
S1 1 S1 

lowers the by about 2 degrees and increasing V^* by a factor of 

5 lowers it by about 4 degrees. 

Similarly simulated spinodal curves for EVA45-H48 mixtures 

at quoted conditions are presented in Figure 5.12. The simulated 

spinodal curves in Figure 5.12A, B, are flatter than the experimental 

cloud point curves given in Figure 4.20. This is due to large negative 

values of X ^ given by the heat of mixing of the analogue compounds 

at 73.08 and 83.5°c. A similar effect of X ^ on the spinodal curve 

was observed by McMaster (1973). Reducing the value of X ^ to a 
-3 

value of -0.17 J.cm will improve the shape of the spinodal curve 

as shown in Figure 5.12C. 

The simulated results are generally in agreement with the 

proposal of McMaster (1973) that a negative Q ^ decreases the 

miscibility by reducing the contact energy. They also conform to the 

condition set up by ten Brinke et al. (1980) for an asymmetrical 

spinodal curve. They also show that a smaller negative value of X 

improves the shape of the spinodal curve due to the temperature 

dependence of the interaction term as given in Table 5.4. 



o 0.2 0o 4 0.6 0.8 <t> (H48) 

FIG. 5.12. Simulated spinodal curves for EVA45-H48 mixtures, using 
Flory's equation of state theory at following conditions 
Plotted against H48 segmental fraction. 

•4.2 J.cm q = -0.108 J.cm~3.deg-1 

•2.63 J.cm 3 Q = - o . 0 0 6 7 8 J.cm" 3.deg~ 1 

•0.17 J.cm 3 Q = -0.00048 J.cm~3.deg~1 

A. X12 = 

B. X12 = 

c . Xl2 = 

s „ 2 
— ( 

l 
*_2 
ri 
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5.2.3 The Interaction Parameters 

To calculate v , Equations 2.82 and 2.51 were used where 

the thermal expansion coefficients of the mixtures were continuously 

computed from the V values of the mixtures. The entropy interaction 

parameter, xs/ w a s calculated from Equation 2.91 and xt from 

Equation 2.92 or 2.93. In these calculations the entropy correction 

factor, Qj^' w a s introduced in Equation 2.91 in the same manner as 

in Equation 2.102. The Q^2 values were taken from the spinodal 

simulation of the corresponding mixture. These calculations were 

carried out for atmospheric pressure. Results obtained for EVA45-H48 

and EVA45-CPE3 mixtures at 83.5°C are given in Figures 5.13 and 5.14 

respectively. Other specifications of these computations are given 

in the figure captions. 

In order to obtain x„r X an(3 X*. a t infinite dilution, 
H S t 

OO CO oo 

(x„ , X o a n d Xo. ) Eichinger and Flory (1968) have expanded Equations H S t 

2.82, 2.91 and 2.92 in series to infinite dilution of component two. 

In doing so, they neglected the contribution of Q^2 to the X^2 parameter 

Whereas here we correct for this contribution, knowing that X^2 

contains a contribution from the entropy of the interaction between 

unlike neighbouring segments in a similar way to the enthalpy term. 

To include this correction, we substitute X^2 from Equation 2.101 

into the series expansions giving: 

P *V * X - TVQ s 

< p / + K ™ > <*23> 5"44 

W r
 X12 s2 2 T0Q12 s2 2 "l™ 2 

xs " " i k f { F 7 • ' ̂  > V + * < ̂  >2 - — < 4 4 2 2 3 
1 + j a x T + f a x T ) > + 0( ( j ) 2 ) 5 . 4 5 
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FIG. 5.13. The interaction parameters for EVA45-H48 mixtures at 
8305°C calculated according to Flory's equation of state 
theory. Plotted against segmental fraction of H48 
X, « = -2.63 J.cm""3 and Q. = -0.00678 J.cm"3.deg"1 c 12 -12 

X X x-

+0.03 

+0.01 

0 . 0 

- 0 . 0 1 

-0.03 
0.2 

<>—o 6 o • O" o • •• -o- • o a y-

0.4 0 . 6 0 . 8 (CPE3) 

FIG. 5.14. The interaction parameters for EVA45-CPE3 mixtures at 
83.5°C calculated according to Flory's equation of state 
theory. Plotted against segmental fraction of CPE3. 

= -4.9 J.cm"3 and Q = -O.OlO J.cm~3.deg~1 
"12 12 
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CO X„ can be obtained by subtraction of Equation 5.45 from 5.44 or, H 
by series expansion of its corresponding equation: 

P *V * X s 
xh° " 5 5 5 ^ ' i r i r " < ̂  >2 " f ( A V ) 2 } ( 1 + a i T ) + 0 < h 3 ' 5 " 4 6 

In these expressions A is given by: 

Tl* V s2 X12 A = (1 - IT* } ( P~* } " ( s } ( p T } 5-47 
2 1 si *1 

3 
The term 0(^2 ) is given in Flory's paper (1965) and as in the 

calculation of Shih and Flory (1972) was neglected in this work, due to 

its minor effect on the reduced partial molar residual quantities 

at infinite dilution. The calculated values of X °° and xu°° are also 
t s H given in Figures 5.13 and 5.14 at <f>̂  = 0. 

The significance of these treatments are in the "exchange" 

entropy and energy contribution to the x °° and X These exchange 
H s 

quantities are the purely energetic and entropic parts (excluding the 

equation of state terms) of the Xtt°° and X °° respectively and given by: 
H S 

V1*X12 S2 2 X H : 1 (exchange) = ' ( — ) 5.48 

V Q 1 2 S 2 2 X n (exchange) = - — ( — ) 5.49 s: 1 R s^ 

The calculated values of XR ^ (exchange) and xh°° and also xg 1 

(exchange) and Xs°° at 83.5°C for EVA45-H48 and EVA45-CPE3 mixtures 

are given in Table 5.6. 
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T A B L E 5.6 

Mixture Xu°° X" , (exch) X °° X°° . (exch) n n: 1 s s: 1 

EVA45-H48 -0.1729 -0.1487 +0.1815 +0.1566 

EVA45-CPE3 -0.3692 -0.3062 +0.3730 +0.2552 

5.2.4 The Excess Volume, Enthalpy and Free Energy Change on Mixing 

The volume changes on mixing were calculated for EVA45-H48 

and EVA45-CPE3 mixtures at temperatures at which the heat of mixing 

of their model compounds were measured. The values of X^2 for Oc.Ac-S45 

and OC.ACT-S52 were assumed to be equivalent to those of EVA45-H48 

and EVA45-CPE3 respectively, at the same temperatures. This assumption 

may not be completely correct, but it is the practical way of finding 

X^2 for the solid polymer mixtures. 

A V M 

The —-~ calculated using Equation 2.80 on the aforementioned 

basis is presented in Figure 5.15. The v used in these calculations 

were obtained from Equation 2.47. It is evident that the volume 

changes on mixing of EVA45-CPE3 mixtures are larger in size than those 

of EVA45-H48 mixtures, and also both values become smaller at higher 

temperatures. The theoretical value of for a 50/50 w% blend of 
o -4 

EVA45-CPE3 at 83.5 C is -13.8x10 , in comparison with its experimental 
-4 dT value of -7.2x10 obtained by measuring ( —— ) over the temperature dP c 

range of 82-96°C. This is based on the assumption of Eichinger and 

Flory that the volume should be less dependent upon entropy than the 

energy. Reducing the entropy contribution of the energy term using 
Av . i Equation 2.80 reduces the value of fj. for the same blend at the same 
V ° 
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Av 

V° 
M 

xlO 

0.0 

-4.00 . 

- 8 o 0 0 -

-12 oOO 

-16.OO " 

Av M FIG. 5.15. —Q- theoretically calculated, as described in the 

text, for EVA45-H48 ( ) , EVA45-CPE3 ( ) mixtures 
at • 64.5, x 73.08 and o 83.5°C. Their values are 
plotted against segmental fraction of CPE. 

The values corresponding to the curve marked by <J> are 
obtained from the EVA45-CPE3 data at 83.5°C after correcting 
for the entropy dependence of the interaction term. The 
curve marked by ft is obtained in the same way from data as 
73.08°C for the EVA45-H48 system. 
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400 temperature to -lO.xlO . The theory also, after entropy correction, 

predicts a very small negative volume change on mixing for EVA45-H48 

at 73.08°C which is just above the phase boundary. This can only be 

explained by the fact that the reduced volume of the mixture, v, 

just above the phase boundary will not exceed the additivity volume 

of the mixture. The values of A V M for EVA45-H48 mixtures at 83.5°C, 
v° 

after entropy correction, approach zero as may be expected from the 

simulated spinodal. 

S1 A small variation of the — ratio has no significant effect on 
S 2 

the magnitude of this quantity." The only important factor here is 

the reduced volume of the mixture, v, which can change the sign and 

magnitude of A ̂ M . v in turn is related to the strength of the X 
V° 1 

quantity in as much as a strong specific interaction can outweigh the 
S1 variational effects of — and other related parameters. For a large 
s 2 

negative or positive enthalpy of mixing, ?! is necessarily of the 
V° 

same sign. 

In addition to the interaction parameters and volume changes 

on mixing already described, Flory's equation of state theory is 

capable of giving the residual Gibbs free energy change on mixing of 

a mixture. This will provide more information about the stability of 

the mixture at any given temperature as described by Flory et al. (1968) 

In order to calculate this quantity the enthalpy change on mixing was 

computed from Equation 2.74 or 2.75 where: 

rNv* = v * = m.v, „ * + m_v * 5.50 SP 1 1,SP 2 2,SP 
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and v Sp* is the hard core volume of one gram of mixture. Other 

terms of this equation were defined in Chapter Two, 

The residual enthalpy changes on mixing, per gram of mixture, 

which were calculated for EVA45-H48 and EVA45-CPE3 mixtures are of the 

same order of magnitude as shown in Figures 4.29A, B. The calculations, 

similarly give a reduction in the residual enthalpy change on mixing 

as the temperature increases for both mixtures„ 

The residual entropy changes on mixing were similarly 

calculated using Equation 2.90, while the residual Gibbs free energy 

changes on mixing were computed from: 

g
r = AH R - TS R 5.51 
M M M 

The residual free energy changes on mixing at 73.08 and 

83„5°C for EVA45-H48 mixtures obtained in this manner are presented 

in Figure 5.16A. The theory predicts a reduction in the free energy 

changes of the mixtures at higher temperatures. The predicted trend 

of this quantity is in agreement with the theoretical phase boundary 

of the mixture when the Q ^ is zero. Introducing the entropy correction 

term, derived as - vgp*TQ12(J)i®o' Equation 5.51 gives a 
R c positive values of G for the mixture at 73.08 and 83.5 C as shown 

in Figure 5.16B. This is in accordance with the simulated spinodal 

and experimental cloud point curvesof the mixture. The latter 

calculations correctly predict more instability in the mixture as the 

temperature increases. 
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0 . 8 *2 (H48) 

16. Theoretical residual free energy change of mixing of 
EVA45-H48 at • 73.08 and o 83.5°C calculated from 
Flory's equation of state theory. Plotted against 
segmental fraction of H48. 

A. X 1 2 (73,08°C) = -4.2 J.cm"3 Q = 0.0 J.cnT3.deg~1 

X 1 2 (83.5°C) = -2.62 J.cm"3 Q = 0.0 J.cm~3.deg~1 

B. X (73.08°C) = -4.2 J.cm"3 Qn „ = -0.0108 J.cm"3.deg 
12 12 (83.5°C) = -2.62 J.cm Q,. = -0.00678 J.cm" .deg 12 12 ^ 
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Similar calculations of G R for EVA45-CPE3 at 83.5°C 
M 

correctly give a homogeneous mixture in both cases (i.e. Q^2
 = O.O 

and Q^^ =-0.01 J.cm 3.deg as shown in Figure 5.17. The entropy 
p 

correction term reduces the value of G considerably at this M 
temperature. 

The calculations referred to in this text so far, were 

carried out in respect of component one which gave X^2, 2^2' X e t c' 

One may consider the possibility of performing similar calculations 

in connection with the component two in which case X^2 ^ x ^ 

and Q 1 2 * Q 2 1. 
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FIG. 5.17. Theoretical residual free energy change on mixing of 
EVA45-CPE3 at 83.5°C calculated from Flory's equation 
of state theory at following conditions: 

-3 -3 -1 • X „ = -4.9 J.cm and Q = o.O J.cm .deg 12 """ 12 
-3 -3 -1 X., = -4.9 J.cm and Q1 =-0.010 J.cm .deg 12 12 ^ 
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5.2.5 A Review of Flory's Equation of State Theory 

This theory was used to explain the experimental findings. 

It proved to be reasonably successful in interpreting the excess 

properties of the mixtures when the entropy correction factor, 

was used. It is more comprehensive than any other existing theory for 

polymer miscibility, but the theory is not fully able to interpret 

the volume change on mixing. The excess volumes observed by Shih 

and Flory (1972) for CgH^-PDMS mixtures are considerably different 

from those predicted by the theory and this cannot be resolved by any 

reasonable adjustable parameter. The Q^2 factor, at least as 

introduced at present, does not give a completely satisfactory 

explanation of the volume change on mixing. The Q^2 takes into account 

the volume dependence of the residual quantities as explained in 

Sections 5.2.3 and 5.2.4, but it has no effect on the combinatorial 

part as shown in Figure 5.18 for the combinatorial and residual entropy 

of mixing of EVA45-CPE3 at 83.5°C. The volume dependence of the 

combinatorial part, which was neglected by Flory in his early 

derivations, can be significant if there is a large densification on 

mixing. A consistent correction for the volume dependence of Flory's 

equation of state theory, has to start from a completely new form of 

the partition function. 

Furthermore, there are three adjustable or semi-adjustable 
S1 parameters in Flory's equation of state theory, — , X^2 and 

Sl2 
We believe that the semi-adjustable parameter, — , must not be used 

S 2 

as a binary adjustable parameter, since s^ (or s2) for any polymer is 

independent of the other polymer in a mixture. Thus two binary inter-

related adjustable parameters will remain, X^2 and Ql2- There is a 

limited range of variation for the X 2 parameter if we follow the 
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< - • — • — 

Q 1 2 = -0.010 

• m m _ 

• 

1 

• • 

q 1 2 = 0.0 
i i i i 

• 

< • 

• 
B 

FIG. 5.18. A. The combinatorial entropy change on mixing of 
EVA45-CPE3 at 83.5°C. 

B. The effect of Q ^ o n the reduced partial molar 
residual entropy change of mixing of EVA45-CPE3 
at 83.5°C. 
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Flory random mixing assumption. X ^ therefore should be treated as 

a constant depending upon the functional groups comprising the 

molecules of the components and specifying a binary mixture at a 

particular pressure, temperature and composition. Introduction of 

the Q ^ as an empirical parameter, however, limits the usefulness of 

the theory. 

5.2.6 Recent Improvements Over Flory's Equation of State Theory 

Renuncio and Prausnitz (1976) have questioned the complete 

randomness assumption used by Flory in his derivations. They correctly 

believe that a polymer segment has selective rules on choosing its 
s2 

closest neighbour. By plotting X._ against the — r a t i o , for three 

binary systems, they show that it is not possible to fix one set of 
s 2 

parameters and — ) which simultaneously fit the experimental 

excess enthalpy and volume change on mixing. To improve the randomness 

assumption in the mixtures, they introduced two fraction sites between 

segment i and J as 0., and 0,. where 0. / 0T, and 0 . ^ + 0 = 1 , 
lJ Ji iJ Ji lJ JJ 0.. + 0 . = 1 . One can immediately deduce that for 0 . > 0 , i-J n Ji Ji JJ 

contact is favourable whereas for 0 . <<0 it is unfavourable for Ji JJ 
mixing. 0 can be related to the overall site fractions as given by J J 
Renuncio and Prausnitz (1976). 
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Barandani (1979) has introduced a non-random mixing concept into the 

partition function, by using a two-fluid theory coupled with the non-

randomness assumption. He used two adjustable parameters, and 

^ 2\' limited in two elliptical regions to fit the theory to the 

experimental results of poly (iso-butene), PIB in benzene, heptane, 
S1 cyclohexane and acetone with a constant — . The improvement over 
S 2 

Flory's values for these systems, given by Eichinger and Flory (1968) 

is very small. 

Canovas et al. (1982) have derived the following equation of 

state by using a similar concept to Barandani. 

fv v 1 / 3 1 A C 5.52 
— = - + + T -l/o . Tv -2-2 Tv v / J-1 T v 

The values of A and C which are volume dependent are given in their 

f paper. This equation of state will reduce to Equation 2.47 for A = C = 0. 

The third term on the right hand side of Equation 5.52 arises due to the 

volume dependence of the local con-position. The fourth term is a consequence 

of the volume dependence of the combinatorial contribution. The value 

of v resulting from suppressing the A and C terms of Equation 5.52 differ 

from the one calculated from Equation 2.47. This is shown by Canovas 

et al. (1982) for a mixture of PIB in benzene at 25°C. Unfortunately, 

the non-randomness assumption, even by correcting the equation of state 

for combinatorial and non-combinatorial factors is unlikely to be a 

great improvement over the Flory equation of state theory. It assumes 

I v^* = v2* = v* and neglects the effect of internal degrees of freedom, 

whereas Hamada et al. (1980) have shown that Flory's theory can be 

largely improved by use of C and v „*. The predicted values of 



AH^ and 1— have shown a marked agreement with experimental 
v° 

results. 

Introduction of these corrections to the non-randomness 

assumption will undoubtedly give further improvement over the 

Flory theory. 
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CHAPTER SIX 

CONCLUSIONS 

The object of this work was to study experimentally and 

theoretically the miscibilities of high molecular weight polymers. 

Several miscible pairs of chlorinated polyethylenes with ethylene-vinyl 

acetate copolymers have been found. Phase boundaries of an LCST type 

were found for all the mixtures by light scattering turbidimetry. The 

region of miscibility is increased by increasing the degree of 
K 

chlorination in the chlorinated material and the amount of vinyl acetate 

in the copolymers for the mixtures studied in this work. 

( Negative interaction parameters between their analogues 

compounds were deduced frcm microcalorimetry. Inverse gas chromatography 

has also given a negative interaction parameter for the polymeric blends 

below their phase transition temperatures. Fourier transform infra-

red spectroscopy at room temperature has detected a lower stretching 

frequency for the carbonyl group in the presence of chlorinated material. 

1 Different techniques have been shown to be useful in polymer-

polymer miscibility studies, when a single glass transition is used as 

a criteria for miscibility. A combination of interference and electron 

\ microscopy has provided information about the morphological behaviour 

of the blends as a function of temperature. 
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The contractions of the liquid model compounds were quantified 

by a densimeter and that of a solid blend by the effect cf pressure 
A V M on the cloud point. The value of — i n the temperature range of V 

82 to 92°C was -7.2xlO~~4 for a 50/50 w/w% blend of EVA45 in CPE3 

according to the latter method. Pressure also caused the region of 

miscibility to increase which is a characteristic phenomena of LCST 

behaviour with negative interaction terms. 

In the thermodynamic consideration of the blends a modified 

Flory-Huggins lattice model and Flory's equation of state theory were 

used. The Flory-Huggins, X parameters were replaced by the g 

function of Koningsveld. This modification could approximate the 

interaction between the polymers and also could predict the phase 

boundary of the mixtures. To utilize Flory's equation of state 

theory, the thermal expansion coefficients of the constituents were 

measured and a method developed to estimate the thermal pressure 

coefficients of the pure components. The energy parameter of the mixture, 

was calculated from the heats of mixing of model compounds. It 

was demonstrated that Flory's equation of state theory can predict the 

excess quantities such as excess volume, enthalpy and free energy 

change on mixing and also the spinodal phase boundary of the mixture 

when the entropy correction factor, Q-^' was used. This factor was 

quantified by fitting the spinodal equation to the experimental cloud 

point curve of the mixture. The volume change on mixing for the blend 
o -4 mentioned above at 83.5 C was calculated to be -lO.xlO by this 

theory. 



Finally, we conclude that a theory able to predict the 

experimental findings would be more complicated than Flory's 

equation of state theory and would probably start with a new 

partition function which would contain an entropy correction factor. 
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Appendix A 

A-I. Derivation of Partition Function, fi 

To obtain & , we consider a one-dimensional system of N 
y * 

impenetrable,non-interacting particles on a line or length L. If 1 is 
* 

the hard-core length of a particle and 1=L/N then 1-1 is the free 

length available to each particle and ft is given by: 
* N 

n ={ (1-1 ) e) A.I 

This equation originated in modelling a liquid in a disordered 
N 

cell of free volume V. e is an entropy function and the partition 

function is defined as follows: 
9 3N/2 

fi. . = (2IT mkT/h ) . V /N! A.2 liquid 

This partition function for av< ordered solid becomes 

2 3 N / 2 N N 
"crystal rakT/h' > ' V /N A"3 

N| appears in equation A.2 because the molecules in a fluid are 

indistiguishable . The entropy change from crystalline to liquid 

state is: 

AO i i liquid , . N A . AS = k.ln = k.ln-r—- A.4 c —>1 o , N! "crys tal 
Appling Stirling's theorem̂  lnNl=NlnN-N, to equation A.4 gives: 

N AS = kN= k.lne A 5 - c —H * 
or 

• • 5 ^ - ix 'eN A.6 liquid crystal 



Equation A.l then follows from our realisation that, 

* N 
(1-1 r A.7 

and 
'crystal 

N , 1/3 *l/3 N 
^liquid {(1"1 ) 6 > = ( Y (V "V } e > A'8 

A. 11 . Thermal Expansion Coefficient 

a=(1/v).( fiv/6T)p 2.49 
^ * ^ * 

Substituting v=v.v and T=T.T in above equation yields: 

Or O, Or Or 
aT= (T/v).( fiv/5T)p A.9 

Aj Or Or Or 
Using equaticn2.48 to evaluate T/v and ( ST/6v)p will change equation 

A.9 to: 

J./3 ^7/3 ^8/3 o,l/3 o,2/3 
aT=(v -l)/v . (v / (4/3 v -v )) A.10 

or 

M / 3 <v1/3 «T =3(v -1)/(4-3v ) A.11 

and 
<v1/3 v =1+ ( (a T)/(3+3«T) > 2.51 



A.lll. Thermal Pressure Coefficient 

Y= (6P/6T) = (6P.P*/6T.T*) v v 

= P /T . (6?/ sft A. 12 

Differentiating equation 2.47 with respect toT at constant v gives: 

6P/6T = v /( v -1) A. 13 

Combining it with equation A.12, 

* „ 1/3 -2/3 
P = ( yT/T).(v -1)/ v A.14 

From equation 2.48 it follows that 

n 2 -1/3 -3/3 
T V =(v -1)/ v 

2.48 
therefore: 

2 
P~= yTv 2.52 
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Appendix B 

B.l Partial Molar Heat of mixing for Binary Mixtures 

Differentiating equation 2.76 with respect to N^ gives: 

- 1 - 1 * * 2 2 
( 6 H^/ 6Nx) = p* y* fvt ) + ( P ^ N ^ v ).(5VN1) + (P1V1N2/ V ) 

T j P j 1 1 

2 
( S v / s ^ ) +(v* q 2 X 1 2 / v ) + ( N 1 V ^ X 1 2 A )..(60^N1) -0*^*0 2 X 1 2 / V ).(6^/61^) 

B.l 

60*2/6Nxand sv/s^ were obtained separately as follows: 

02= S2$2/(S2$2+ S1$1 ) = (S2r2N2/(S2r2NjS1r1N1) 2.66 

( 6 e2/ (SN1)=-Q1O2 /N B. 2 

Three relationships are needed to evalute Sv/<5 N 
l' 

6V6N1 = r6v/6T") . (6T*/ S<j>2) . (S(p2 /<$ N ) B > 3 

* A/3 1/3 
T /T= J -1) 2.48 

* 1/3 1/3 1/3 2 1/3 2 1/3 
- (3v -4)/3. (v -1) =-v T (4-3v ) / 

2 8/3 
3 T " B.A 

or 

6^/6 T = -(T v . 3) / (T . (4-3v )) B .5 



b. To find 5T /6$2 equation 2.72 is recalled, 

* (5P*/5<^) .(<hV T? +*2P9 /T9 )"p*(p9/ T9-pi^ T*) 
(61 

($1P1/ Tx +$2P2/ T2 ) 

k . k * * k . k k . * * 

where 

P =$iP*+ $2 p2 ~ °2X
12

 2'69 

5P /6$2 = -P + P2~X
12

{$1 ( 5 02/ )- ©2 > 
k k = -P^ + P2 - Xl2{$! (0! 02/$1$2 ) - 02 } 

B.6 

(5P /6$2 ).(P /T )-P / T (P?/T2-P / T ) T 

k , k 2 (P / T ) 

=( T*/ P*).(6P*/5$2-P2(T?T2) + (P*( T1 T*)) B.7 

=~P1+ P2 ~Xl2( °2/ $1~02 ) 

Substituting it into equation B.7 and rearranging 

(6 T/6$2 )n = ( T*/P*) { P*(l- T*/T*) -P^(1-T*/ T*)-($1-02)X12 

( 02 / $9 ) } 

k k k >\j <\j <\j 2 = (T / P <D2) { ?l( T1-T. )/ T + X12 02 } B .9 



C. The last part of equation B.3 to be evaluated is (S$2 /<5 N^ 

$2= r2N2/ ( r2N2 + rjlj 

( S*2/ 6 N^ n= - ( #1*2/ N j B < 1 0 

Substituting equationsB.5, B.9 and B.10 into equationB.3 we have: 

^ J/3 
(5 Nl)N= - V • 3 • • ( ? >/* - X1202

2} 
2 P (4-3v" ) Nx 

B .11 

Before substituting equation. B.ll into equation B.l a small alteration 

is required in the latter one as, 

^ ^ -1 ^ j . 

(6A \ /6 V N T,P=P1V1( y " ̂  ) + (Vl04.X12/^)_( V l X l 2 Q ^ + 

2 
(v*/ v ).( 6v/6N1).( P3r1N1+ P^jr^- r ^ O ^ J B.12 

•k 

The term in the last brackets is equal to r N P (see equations 2.57 

and 2.69) and by replacing all - $2 equations B.ll and B.12 will 

give: 
- 1 - 1 _ 2 

(<$A H ^ V t P,N2= PlVl(yl" ^ } +(v^02x
12

/ ( r N / Nl'( v*/ 

7/3 1/3 * 2 

.(3v /(4-3v )).{ P J X1202 } B > 1 3 

_ 7C 
We have rN^^r^N^ and Vj = rjv also 

1/3 1/3 1/3 4/3 
= { 3.( • -1 )/(4 -3v )T } , ?= tf -!)/( v^) 
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,therefore equation B.13 will be simpler,i.e. 

-1 —1 2 
( SAH^/ s V T , P , N 2

 P 1 V 1 ( V ^ } + ( V1 0 2 X
1 2 ^ ) + ( P l V a T < V T)/ Tv ) 

ft 2 
+X12Vla T02/ ^ 

=P1^1 { ( * ) +( a T/ v) .( Tl- T)/ T } +(V*X12/v ) .(1+ aT)Q2 

2.82 

B.ll . Free Energy Change on Mixing 

-E / kT in equation 2.60 will be substituted by: 
°M 

ft ft% ^ -Eo-.C/ P v T = r N C/ vT B.14 M 
The Helmholtz free energy of a mixture is given by: 

F = - kT ln z B. 15 M 
o r A F M = Fm"(F1+ F2) B.16 

where F^ and F^are the free energies of the pure components.Thus,equation 

2.60 for condition B.16 gives: 

Zccmb. A ~NT N C M r 
^ = -kT in .(Yv* )rNC-rlNlCl-r2N2C2 

*comb . , 1 ĉornb ., 2 

1/3 3r.N-.C-. 1/3 3 r0N9C0 - % . 1 I L , ̂  .222 ( Vj-1) . ( v2_ 1 ) 
+kT ln 

V3 3 rNC 
( v -1 ) 

+kT(r1N1C1/v1T1-r2N2C2/ v2T2-rNC/ v T) B.17 
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By using T= T.T? , P*v*= C.k T? and rN r.N. the third term of J I I ' i i i i 1 1 1 
equationB.17 can be easily converted to: 

- , , * . 'v * . x, * o, , 
rNv*{$iPi/ vi+ $2^2/ v2- P/ v } = A R^ 2 ?4 

While using rNC= rjN1C1+ r2N2C2 in the second term yields: 

1/3 1/3 1/3 1/3 
3kT r ^ C ln ( ̂  -1 )/( v - 1 ) +3kT r2N2C2ln ( v£- l)/( v - 1 ) B.18 

or 
* * * V 3 V 3

 * * V 3 K 3 

3PlVlNlTlln ( Vl" 1 )/( V - 1 ) +3 P2V2N2T2ln ( v2- 1 )/( v -1) B.19 
or 

+ A 1/3 1/3 . 1/3 1/3 
* , * /Vi . . . -k <\j Or Or 

3rNv { P ^ T ^ n l)/( v -1 ) + P^T^ln (v2 - l)/( v -1 )} B.20 

R 
Equations B.19(or B.20) plus equation 2.74 are G given by 

equation 2.89 : The first term of equation B.17 represents the combinatorial 

part(-TASQmk ) and will be replaced from the lattice theory.Hence, 

AFM=rNkT {(fcj / rx)ln + ($2/ r2) In $2} 

* t/3 V 3 * a, l/3 V 3 
+ 3rNv { (DiP^lnC Vl-1 )/( v -1) + $2 P2 T2 ln( v2~ l)/( v - 1)} 

- * * , <\j • * , <\, * , % + r N v {$1P1/ v + $2
p
2/ v2 - P / v } B.21 
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The chemical potential of component one in the mixture relative to 

the pure component is defined as: 

V l~ hl= - RT ( 6 ln(Z /Z^/fi Nx} T,V,N2 

( 6 AFM /6 N1)T)VJN+(6AFM N - / « N
1 > T , V , N 2 B.22 

RT { In $1 + (l-r1/ r2) <f>2}+(V*X12 / v )q\ 

•k * O- J/3 , V 3 ./J ^ +Pi"vi" OTjln ( l)/( £ - 1) - ̂  ) + Px( £ - ̂  } b.23 

Whe re PYv is the contribution of the second term in equation B.22 ,on 

the chemical potent ial, (<5v =V <s(r v N) /6Nj =-( $ v / Rj) . 
1 , V , IN £ 1 

Since this contribution is very small at ordinary pressures,it may be 

neglected, but it should be included at higher pressures. 
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B.lll. Partial Molar Residual Entropy of Mixing for Binary Mixtures 

Differentiating equation 2.90 at constant N^ gives: 

* *r o ^ ^ ^ ^ * * % * * ^ 
T( <SS/6 Nl)t p n = -PxVx^ TjIn ( vx- l)/( v - 1)} +{ ( PiV^Tx +P2V2N2T2)/ 

2/3 J/3 _ o 
( v ( v - 1 ))} . (6 v /6 Nj) = T ( S - S ) B.24 

where 
* & a. * * _ _ * * B 2 5 PlViNiTi + P2V2N2T2= riNiCik+r2N2C2k = r NCk= r N P v I 

6v /SNjis given by equationB.il. Application of equation B.13 procedure 

here, will give relation 2.91 for TS^ . 

Appendix C 

C.l. The volume change of mixing calculated from equation 2.80 by the 

procedure explained in section 5.2.4. for mixtures of sec-octyl acetate in 

ceroclor 45 and 52 at 64.5°C are given in figure C-1. The state parameters 

of the pure components are given in section 5.2.1. 
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4> 0.2 0.4 0.6 0.8 2 

M FIG. Cc 1. Theoretical values of -0 calculated from Flory's 
equation of state theory at 64.5°C. Full line 
represents the sec-octyl acetate-S52 mixtures and dashed 
line represents the sec-octyl acetate-S45 mixtures. 
Plotted against segmental fraction of ceroclors. 
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