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ABSTRACT
The finite element method has found ever increasing
applications in the various branches of engineering and
technolegy. In this instance it has been adopted to find
sclutions to the multigroup form of the Boltzmann

transport equation.

A variational approach has been adopted in which a
functional was derived from the second-order form of the
Boltzmann equation. The solution of the integrals of the
functional results in the discretization of both angle and
space. In the former Spherical Harmonics expansions were
used while finite elements were used for the spatial

domain.

The main aim of this thesis was to develop a package
to solve the discretised form of the functional. This
package consists of two major parts. In the first
instance CORFU was developed to handle the angular integrals
arising from the angular discretization. It is interfaced
with FELTRAN, the main program, in which the problem is
solved. FELTRAN consists of data input, spatial
integration, global assembly and solution of the resultant
set of linear equations. The objective was to construct
the package so that it would be modular in order that
additional features can be built into the existing bedy
with ease. Direct solution techniques were used in solving
the global set of equations. An out-of-core solver, to
overcome the problems of primary storage, was also

incorporated.



In validating the package source and eigenvalue
problems from various research work were used as the
yardstick. Accurate solutions have confirmed that the
technique has been correctly established and the potential
lies in the fact that solutions have been obtained that
can only be achieved by other established methods with

difficulty and constraints on computing resources.
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"In brief, analytical methods are the foundation
of the whole subject, and in practice they

are the most accurate when they will work,

but in the integration oprartial equations,
with reference to irregular-shaped

boundaries, their field of application 1is
very limited.

..... for engineering .... there 1is a demand

for rapid methods, easy to be understood and
applicable to unusual equations and

irregular bodies™.

L.F. Richardson [83]



CHAPTER 1

1.1 The Importance of Numerical Methods

Since high speed computing machines came 1into
existence, numerical methods have been steadily developed
to play the dominant role in the engineer's task of
prcblem scolving and analysis. Today it is inconceivable
that solutions to engineering problems could be achieved
without the aid of computers. The applications embrace
all fields of engineering, be it iterative treatment of
heat and mass balances such as in the analysis of flash
distillation in chemical engineering or the prediction
of flow and thermal patterns as in the analysis of the
flow of fluids in various types of media. That numerical
methods should assume such an important position in
engineering analysis is due to several factors. Firstly,
most natural phenomena can best be described by differential
equations with varying boundary conditions whose solutions
cannot be obtained by analytical means except in the
simplest cases. Improvements in numerical techniques
have made feasible at low cost precise solutions of problems
significantly more complex than hitherto. As a conse-
guence the stage has been reached where engineering
tolerances can be tailored with a precision never dared
before. This directly leads to an economic savings in
terms of material and human resources. In the years
before 1945 engineering analyses were lengthy, repetitive
and time consuming because similar problems had to be
performed from the beginning to the end with equally

demanding efforts and care. Nowadays related problems



can be solved on a blackbox basis in a short space of
time. This blackbox would comprise of a computer code
with facilities for data input/output, modules for
rendering the problem to be analysed numerically and the

solution algorithm.

This potential of numerical analysis as seen in the
light of present-day achievements contrasted with the
cautious predictions when computers were just introduced
in the 1940's. Then it was considered that only a dozen
computers would suffice to perform all the envisaged

numerical calculations [70].

Numerical methods, as a means for solving large
scale engineering problems, saw their introduction in
the paper delivered by L.F. Richardson [83] to the
Royal Society in 1910. Later on, contributions by
Liebmann [64] and Courant, Friedrichs and Lewy [23] laid
the foundations of the finite-difference method. Progress
in developing numerical methods before the 1940's was
necessarily slow because of the absence of automatic
computation. But since the arrival of the computer
engineers and scientists have been quick to exploit
numerical methods and its popularity has never declined
since. The finite element method grew out of a number
of intuitive procedures and associated mathematical
techniques during the mid-1950's, in the way outlined in
the next section. Before its conception the finite-
difference method held the dominant position in the

numerical solution of continuum problems. Today both



methods are equally important, each with its own advantages
and disadvantages. However certain problems are more
amenable to the finite element treatment than the finite
difference method, and vice-versa. The choice of which
method to use in solving a particular problem, although
still subjected to the whims and fancies of the
practitioner, is more or less dictated by the ocbvious
advantages of one method over the other, although in

certain applications there may be no clear cut advantages.

1.2 Finite Elements: A Historical Perspective

It was in the field of structural engineering that
the finite element method (abbreviated to FEM from now on)
had its origin. The early work of Hrennikoff [41] in
1941 and McHenry [68] in 1943 were probably the first
attempts at discretizing a continuum into smaller regions
or elements interconnected at only a finite number of
nodal points. There was an inactive period following
this early work which was finally broken in 1954 when
Argyris [ 8, 91 and colleagues adapted the so-called
matrix methods of structural analysis to solve problems in
linear structural analysis. In particular, efficient
solution technigues, well suited to automatic digital
computation, were utilised for the first time. 1In 1956,
Turner et al [96] of the Boeing Aircraft Co. introcduced
the direct stiffness matrix for triangular elements to
solve plane stress problems. In 1960 Clough [21] coined
the name "finite elementé in a paper on plane elasticity.

With the digital computer alsc becoming an ever more



effective tool for the engineer the FEM soon gained a

firm footing.

After 1963 the foundations of the FEM were laid when
Besseling [12], Melosh [g9], Fraeijis de Veubecke [32]
and Jones [47] recognised that the FEM was a form of the
Ritz methed in which variational principles can be used

to handle the problems of elasticity.

In 1965 Zienkiewicz and Cheung [103} paved the way
for the application of the FEM to problems other than
structural engineering when they applied the FEM, using
Variational Principles, to solve Poisson's Equation;
This is usually referred to as the Rayleigh-Ritz Method
and was a major milestone because the FEM was the ex-
clusivity of the structural engineers prior to this period.
Applications in other fields soon followed when Wilson
and Nickell [101] and Doctors [27] applied the FEM to

heat conduction and potential flow problems respectively.

In 1969 Szabo and Lee [93] utilised the weighted
residuals approach in setting up a finite element
analysis of a plane elasticity problem. This alternative
approach is especially useful where no variational
functional can be setup for a particular type of problem

in order to apply the Rayleigh-Ritz Method.

During this interesting era in the formulation of
the FEM, i.e. the 1960's, there was a concensus that the
method might already have been formulated from a mathe-

matician's point of view. The advocates were not to be
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disappointed because the classic paper by Courant [22]

in 1943 was soon recognised as the corner stone in the
establishment of the FEM. In that paper Courant had

used piecewise continuous functions over triangular
domains and the principle of minimum potential energy in
studying the St. Ve?hant torsion problem. This view can
be seen to be an extension of the Rayleigh-Ritz principle.
Prager and Synge [BO] in the late forties utilised the
concept of function space, which resulted in the hyper-
circle method, to solve continuum problems in much the
same manner as finite element techniques. The hypercircle
method was applied to neutron transport problems by
Ackroyd and Ball [ 4] in 1960 but the vogue in those

days was to use finite difference techniques for such

problems, and this method was not pursued by other

¥h researchers. Finally 1t was acknowledged that the
e
W work of Greenstadt [37 ], which appeared in 1959, contained
many important and basic concepts that are essential

in the mathematical formulation of the FEM.

1.3 An Outline of the Finite Element Method

The finite element method has been described
in many excellent textbooks [10,20,42,45,76,91,92,95,102].
Besides, the number of papers published annually is
of the order of thousands [02]. 1In the early days
most of the contributions came from structural engineers
but since Zienkiewicz and Cheung [103J reported the
application of the finite element method to other

types of problems contributions have come in from diverse

fields of engineering and mathematics.
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What is the finite element method? Since no single
sentence can suffice to provide sufficient information

to everyone it can briefly by described as the execution

and compliance of the following stages:

(1) a continuum problem is divided into a number of
parts, finite in number, called elements;

(ii) these elements are assumed to be connected at a
number of points lying on the boundaries;

(iii) the values of the dependent variable at the nodal
points constitute the set of unknowns whose solutions
are desired;

(iv) a set of functions, known as the shape (or inter-
polation) functions, is chosen to represent the
unknown variable within the element in terms of
its nodal values;

{(v) employment of the shape functions can be made by
one of two available routes, i.e. either to use
the method of weighted residuals or variational
principles;

(vi) both procedures lead to sets of linear equations
for the nodal values; the matrix of these equations
is called the element stiffness matrix because
of its first use in structural mechanics;

(vii) the load, or source, contributions of the problem
are assumed to act at the nodes of the element;

(viii) the assembly of the whole system is achieved by
collocating the individual element stiffness matrices

and lcad vectors;



(ix) the solution of this global system of linear equations

yields the values of the unknown nodal variables.

Items (i) to (ix) therefore constitute a short review

of the finite element methed.

At this juncture it would be best to elaborate on
the method of weighted residuals and variational principles.
In the first method the functions are substituted directly
into the differential equation and this results in a residual
owing to the approximate nature of the function. Then
linearly independent weight functions are chosen to weight
the residual by imposing the integral of the product of
each weight function and the residual to be zero. The
result is a set of algebraic equations. The three most
camronly used weight functions are the Dirac delta functions,
the interpolating functions (usually polynomials) defining
the approximation, and the functions obtained by differentiating
the residual with respect to each of the nodal values.
The associated terms for these methods are the collocation,
Galerkin. and least sguares approaches to the method of
weighted residuals. O©On the other hand, when variational
principles are used the functions cannot be substituted
directly into the differential equation. A functional
has first to be obtained from variational considerations
on the differential equation. The functions are then
substituted and a set of algebraic equations result by
requiring the first differential of the functional with

respect to each nodal value to be zero.



The choice as to which approach to use is not always
easy. To use the variational method a functional must
first be found. Naturally in the situations where no
variational functionals exist the method of weighted residuals
is used. On the other hand the variational approach,
and also the least squares approach, guarantee that the
global matrix will be symmetric. This is important because
only one-half of the matrix including the diagonal need

to be stored.

No practical (or even a demonstration) finite element
calculations can be accomplished without the aid of the
digital compater. Cohsequently it should be borns in
mind +hat the dependence on programming techniques, the
ease of data input and the intermediate and post-processing
of output, although not commented upon above, are important

features.

In bringing continuum problems to a discretized form
all numerical methods, and certainly the finite element
method, involve an approximation which approaches the
true continuum solution as the number of discrete components
increases. Therefore one should be aware of the struggle
between the different methods in achieving as accurate
a solution as possible with the least number of discrete
components. This can be realised from the point of view
that computing effort and resources increase as the number

of discrete components increases.
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1.4 Practical Solution Methods

Just as the Navier-Stokes Egquations govern the flow
of fluids, the Boltzmann transport eguation governs the
behaviour of particles and their interaction with the
bounded media in which they are diffusing. As will be
seen in the next chapter, the equation, being of a differential-
integral form, is complex. Therefore the problems are
usually simplified by imposing certain assumptions. A
host of methods exist for the solution of the Boltzmann
transport equation and have been reviewed accordingly [5,
16,63,84 ]. However, the predominant methods for solving
the Boltzmann equation are the discrete-ordinates method

[18,58] and the Monte Carlo method [49,g9].

In solving the Boltzmann eguation one is also concerned
with the angular variable owing to the scattering nature
of the particles with the media in which they are diffusing.
Therefore in the discrete-~ordinates method, which was
initialily advanced by Carlson [17], the angular variable
is discretized into a set of directions or rays while
the spatial variables are treated by finite difference
methods. Weights are assigned to the set of angular directions
by means of guadrature sets. 1Incidentally, in the PN
method [29 ], the other major finite-difference based method,

spherical harmonics are used to approximate the angular

variable.

In the Monte Carlo method the histories of a significant
number of particles are individually tracked. The course

of each particle is followed from birth, through its various
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interactions with the host media until its death which
usually means an escape from the media under study or

due to absorption. The book~keeping of all these particles
enable one to draw up a macroscopic picture of the behaviour

of the system.

Both these methods although popular, established
and in general use, suffer from certain disadvantages.
The discrete-ordinates method do not conform well to problems
with irregular geometries, suffer from ray effects (i.e.
unnatural oscillations in the flux distributions owing
to the way the angular variable is being discretized)
and can produce negative scalar fluxes especially when
the mesh is not sufficiently fine (and hence impose greater
computer storage reguirements). The Monte Carlo method,
although well suited for irregular geometries, is cost
prohibitive because a large number of particles need to
be tracked before any statistically significant results

can bz obtained.

So, bearing the disadvantages of the discrete-ordinates
and Monte Carlo mz2thods in mind, there is an impetus for
introducing new methods in solving the Boltzmann transport
equation. To this end the finite element method shows
great promise. The FEM is an established method in the
sense that its foundations are thoroughly laid and that
it has met with considerable success in a multitude of
applications. One great advantage of the FEM is its ability
to cope with irregular geometries (that is why it has

met with so much success in structural engineering).
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Direct elimination methods, rather than iterative ones,

are usually employed to scolve the system of equations

set up in the finite element analysis and this affords

an advantage in execution speeds. Besides such solutions

are unlikely to suffer from unnatural oscillations. Therefore
there is potential for the FEM as an alternative method

for solving the Boltzmann transport equation.

1.5 Current Status

There are, as we have seen, two approaches when employing
the FEM, the method of weighted residuals and the method
of variational principles. To date both methods have
been employed in trying to solve the Boltzmann transport
equation although when the variational method is used
the even-parity second-order form of the Boltzmann eguation
is us=2d in order to obtain a variational principle. This
lack of an extremal variational principle for the first-
order equation has now been remedied by Ackroyd [2].
This will be discussed in more detail in the next chapter,
where it will also be seen that the Boltzmann equation
is generally expressed in a multigroup form owing to the
dependence of the materials cross-sections on incident
particle speed. Besides, the diffusion equations usually
refer to the lowest order of the Boltzmann transport equation.
The following is a very concise review of the work done by

other researchers.

In the initial stages Ohnishi [77] initiated work on the

FEM. This was responded when Semenza et al [gg ], Kang
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and Hansen [50 ], Kaper et al [31], Komoriya and Walters [56 ],
Deppe and Hansen [25], Biswas et al [13] and Schmidt et

al [85,86 ] reported work achieved on the diffusion aspects.
In particular emphasis was on one or few group$ problems
with the exception of Schmidt et al where they developed

a package called DIFGEN which has been thoroughly exercised
on analysing practical problems concerned with the High
Temperature Reactor at Julich. Later on and in parallel
with the development of the diffusion aspects, the FEM

was also being applied to transport problems., Miller

et al [71] and Kaper et al [53] reported results for x-y
geometry using the Rayleigh-Ritz approach, and in the

same vein Pitkaranta [78 ] reported results for spherical
systems. This was followed on by Briggs et al [15] who
discussed the elimination of ray effects with finite elements
and further work by Blomguist and Lewis [14 ], Martin and
Duderstadt [66]i Mordant [73], Lillie and Robinson [65]

and Galliara and Williams [33].

On the lccal front previous work has been achieved
on a systematic study basis starting with the theoretical
considerations of Ackroyd [ 1]. Ziver [104 has dealt
with the study of linear elements in x-y geometry for
up to two groups and two moments {(the meaning of moments
will be discussed in Chapter 3) while Issa [46 ] has also
achieved some results for three-dimensiocnal diffusion
problems and in parallel with this work has also investigated
higher order elements but for simple systems. Splawski [90 ]
working in collaboration with Ziver had performed studies

on the angular aspects of the work.



The present work is a continuaticn of the efforts
mentioned above but extended to contain multigroup and
multiregion capability, generalised angular treatment,

a choice of Lagrangian elements, a treatment on the solution
aspects and attention to ease of data handling. Moreover,
for the first time, after separating the wheat from the
chaff, a truly modular computer code has been developed

the structure of which will remain intact when future

work is continued, in which new features can be added

or old features deleted with the minimum of interference

to the structure.

For the remainder of this thesis, Chapter 2 will
be concerned with the Boltzmann transport equation and
the variational functional. This will be followed by
a chapter on the treatment of the angular variable while
finite elements are discussed in the fourth chapter.
Results follow and this is concluded with the final chapter

on summary and recommendations.
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"Here and elsewhere we shall not obtain
the best 1insight into things wuntil we
actually  see them growing from the

beginning."

Aristotle



2.1 The Boltzmann Transport Equation

The Boltzmann transport eguation is very often referred
to when neutron particle transport is discussed. It was
during the 19th Century that Boltzmann derived his equation
to describe the kinetic behavicur of very dilute gases.

The behaviour of neutrons in nuclear reactors or penetrating
media is of a similar nature {24] and hence the reference
to Boltzmann's equation when the transport of neutrons are

discussed.

Under rarefied conditions the gaseous particles tend
i cover longer distances between interactions and as a
result the mean free paths are rather long when compared
with those for normal diffusion processes where inter-
actions are more frequent. 1In neutron transport the only
significant type of interaction is between neutrons and
the nuclei of the media in which they are streaming.
However the frequency of such interactions is rather low
owing to the fact that neutronic densities are very sparse
in most media through which they are travelling. Hence
the mean free paths of neutron-nuclei interactions are
also rather long and therefore the fundamental ideas used
in deriving the Boltzmann transport equation are similar
to those used in deriving the neutron transport equation,
the major difference being that in the latter only one
species involved in the interactions is considered to

be mobile.

In order to know the distribution of neutrons in

a given medium, and hence the various reaction rates,
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it would be necessary to solve the neutron transport equation.
Analytical solutions are not possible for practical problems
owing to the complexity of the eguation. Numerical solutions
are usually sought for whenever such situations arise.

The complex nature of the equation is further enhanced

by the fact that the neutronic cross-sections and their
relation with the incident neutron energy is very com-
plicated. Therefore averaging procedures and approximation
techniques, especially the multigroup form of the transport
equation, are used to remove this complexity. 1In practice,
engineering constraints dictate the choice of materials

used in nuclear reactor cores and shields. As a result

such systems are highly heterogeneous and this further
complicates the dictates on the equation. 1In the eventuality
even before numerical techniques can be used to solve

the Boltzman transport equation a number of simplifications

and approximations have to be made.

By considering conservation principles one arrives
at the integro-differential form of the Boltzmann transport

equation [28]:

-'\;%"f +aVo(r e a0+ S, (1E)b(1E04)
N e f 5460 blre g )dE e
47 o

+ S(+,E 0 t)

where,
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4>('!.E~f_t-t)

EGQ
> (r E~E, 0~2)

angular flux

= neutron speed

total macroscopic cross-section

differential form of the macro-
scopic scattering cross-section
source

and the independent variables being

= position vector

energy

unit directional vector

D Mmoo
1

= time

The source term is expressed as the sum of the contri-

butions due to a fixed source and fission:

SGeay)=Qlieas)
X(Ef 2, (z, E)f‘l’(tE 0 t)dEde’

(2.2)

where

Q ({'E ) ’{;) = fixed source contribution

'“Z{,('f,E')= product of average number of neutrons
per fission and the macroscopic fission

cross—section

fission spectrum

Y ()

Although complicated in appearance Eg.(2.1) is nothing
more than an expression for the rate of change of neutron

density as the difference between the rates of production
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and loss at a point € in space and at a particular velocity,
v. It can be seen that in addition to the temporal variable
the equation involves 3 spatial variables, 2 angular variables
and 1 energy variable. The first simplification to this
equation involves the steady-state form only thereby removing
the temporal variable. Therefore, Eg.(2.1}) simplifies

to:

AVP(2E a)+ 3, (+.E)d(2.E,0)

fdn/ > (2, E%E. n~0)d (e 0') dE
(2.3)

+5¢E,{1

2.1.1 Boundary conditions

In practice two types of exterior boundary conditions
are considered:
(1) the bare surface (or vacuum} condition,

and (ii} the perfect reflector condition.

The surface sources that are sometimes used for shielding
calculations are not treated because they are, in practice,

the distributed or volume sources of the present method.

The first condition, when expressed for a non re-
entrant body, means that no neutrons are entering the

body from the outside, i.e.:

Cb(i},E,{L) = O for

i
i5
FaS
0

(2.4)
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where,
4, is on the bare surface

and N is the outward drawn normal to the surface at is_

The perfect reflector condition represents a symmetry

condition.

In diffusion problems the zero flux boundary condition
is sometimes considered. This is the situation in which
the flux on an extrapolated boundary in a vacuum is set
to zero. Usually this condition is not applied when the
choice of the rather more elegant vacuum condition is
available., However in Section 5.2 where the ZION-1 reactor
problem is discussed the zero flux boundary condition
was introduced by the original investigators. WNevertheless
a good approximation for the flux within a system can
be made with this condition if the distance of the extra-
polated boundaries from the true boundary is chosen

appropriately.

2.2 The Multigroup Approximation

In the operation of a typical reactor, neutrons spanning
the energy range from 10 MeV to less than 0.01 eV are
present. The behaviour of the neutronic cross-sections
in this enormous energy range is rather complicated.

Any interaction could not be represented by a constant
cross-section. _Hence, in order to use nuclear data in
a practical manner, the multigroup approximation is introduced
in which the whole energy spectrum of interest is dis-

cretized into a finite number of energy groups. The number
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of energy groups employed in a particular analysis depends
to a large extent on the type of problem and the accuracy
desired. Sometimes, only 2 or 3 groups suffice for thermal
reactor calculations whereas for fast reactors the number

of energy groups employed is of the order of ten.

Details of the multigroup approximation have been

described elsewhere [16,18] but it can be written as:

oV (+.0) + 2, (214 (+.4)

G

- 25y, (£,2.0) 4, (2.0) da

4‘- s’!l

(2.5)

+ 53 (T,Q) 3-.-1,2,...6'

where,

G'== total number of energy groups considered.

The other variables in the equation are as defined
in BEq.(2.1) except that they refer to a particular energy
group g. The fastest group in this approximation assumes

the value 3':1 with the slowest being group § .

Before writing out the contributions in the group
source term, fg(t,g), it would be usual to separate the
in-scattering contributions in the scattering term from
within the group scattering component and lump it together

with the scurce term. Therefore:



i
M
T_\
e
=
-~
SO0
™~
Br
=,
o
p\

‘|‘ 53(&'&) (2.6)

in which
G
53(1,_) = EZS“ (_,1_1 1_1’) ‘E(* _’)dﬂ’
" i
+Zgi:l-g' ‘UZ'FS'(’!) 4} (t‘_g_') d-ﬂ-' (2.7)
8= AT

t+ Qs(t,i_l)

In order of appearance, the source contributions
are the scattering, fission and fixed source terms. At
each stage the contributions from other groups to the
group under consideration is assumed to be known, while
the within-group scattering term involves the unknown
group flux. If a direct, as opposed to iterative, method
is to be used for each group the within-group scattering
term must be retained explicitly while the inter-group

scattering terms are incorporated into the source.
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If only downscattering is considered then the summation
index for the scattering term in Eq.{2.7) can be written

as g'=3-i i.e.

(2.8)

2.3 The Second-Order Transport Equation

As was outlined in Section 1.3 there are two main
approaches in a finite element formulation of the neutron
transport equation. The first method is the application
of the method of weighted residuals to the first-order
equation whilst the second utilises a variational principle
for the second-order equation. Since the latter approach
is the method employed in this thesis, it is necessary
then to mention the properties of the second-order equation.
The inherent advantage of the second-order equation is
that the leakage and removal operators are positive —definite
and self-adjoint and this makes it fairly easy to establish
variational principles of the extremal kind. The variational
approach leads to a set of linear eguations with a sparse,
symmetric and positive-diagonal matrix. Besides, the

variational principles are boundary free [ 1],
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2.3.1 Even- and odd-parity definitions

The even- and odd-parity fluxes are defined as:

$"(r,0) = 3 {$(2.0) + Plr,-2)]
¢ (2,0) = {$(2,0) - $(s-2)}

The group subscript,g , has been omitted from the

(2.9)

above definition but nevertheless the meaning is implied.

Similarly, the even- and odd-parity sources and scattering

cross-sections are defined as:

$*(+,0)=#{S(x.0)  S(x-0)] 2. 109

Z: (fr,.f_l.f..l')z%{zs (¢,LL.L1')1' 25 (‘I.‘ﬂ-ﬂ)} (2.11)

Starting with these definitions, the second-order
transport equation is derived as will be seen in the next
few sub-sections. The angular flux can then be expressed as
a sum of the even- and odd-parity fluxes by

P(1,0)= 7(x0) + $(24)

(2.12}

2.3.2 Coupled first order even- and odd-parity equations

Since Eg. (2.6) holds for the whole range of the vector

fl, it can also be written as
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AV (2,-n) + 3, (£)d(+,-2)

=f > (+,-0.0) (e, 0)de + Sr -0) (2.13)

On adding and subtracting Eq.(2.6) and (2.13) the following

equations result:

AV (+,0)+ >, (4)* (+.0)

=j S (e 0.0)blra)an + 57(x,0) e

AV (+,0)+ 2, (£)F (+0)

= j 2 (+0.0)(+.0)da + S 2)

(2.15)

Substituting Eg.(2.12) into these two equations it is seen

f 50 (e0.0)4 (4.0)dn

(2.16)
=j S (£00)¢ (£0)da’ =0
47
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because the integral over all directions of the product of

an even and odd function of fL is zero.

We finally arrive at the following pair of coupled

first-order differential-integro equations:

ANP (£,0) + 2, ()™ (2,0)

(2.17)

> (0.0 (£0)dn + Slza)

47

AV (+,0) + Z, ()P (s,4)

(2.18)

E(-,_ & (+,0)dy + 5 (+42)

2.3.3 Expansion of the scattering cross-section

The scattering cross-section can be expanded in terms of

Legendre Polynomials [16], i.e.:

{(2.19)

in which :iafi), the scattering coefficients, are generated

via the relation
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S (x)=2m | Z(x00)R(aq)da.g) (220

]

Recalling the odd-parity scattering cross-section

from Eq.{(2.11) using Eg.(2.16) and observing the

relation

(2.21)
for l even

the odd-parity scattering cross-section becomes

5.(ran) = ) (FH)3, ()R (a) o

1 cdd

2.3.4 spherical harmonics representation

The following relation is derived from the Addition

Theorem of Legendre Polynomials

P (a.24) = am Z)’h(n))’h (n) (2.23)

me-f
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where,

»ﬁ:'(g) is the complex conjugate of jém (Q)

From Eqg.(2.22) and (2.23)},

2. (+.0.0) z Zy ()Y (a) (2.24)

which on substitution into Eqg.(2.18) results in

AV (2.0) + 3, () (1)

Z,ffr)z Y, (2) / Yo () (x,07) da

(2.25)
+ 5 (x,)
2.3.5 Orthogonality relationship
Let
{(£2)=-0V#'(r,0) + 5 (20) 2200

and Eq.(2.25) becomes

f(x4) = 2, (£)$ (+,2)

zzst( Z\ém(ﬂf () (r0)dn’  (2.21)
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*
Multiplying throughout by \ﬁ%,ﬁg) and integrating over (L

and using the Orthogonality Relationship

f Yo ()Y (2} da = &, 6.

we arrive at

f Yiu (27) &7 (2, 2) da

47

2.3.6 The odd-parity flux equation

(2.28)

{(2.29)

Finally substituting Eg.(2.29) and (2.26) into (2.25)

results in an expression for the odd-parity flux,

3 (¢,xz)=i'—m {S'(r.@)-i_l.vcb*(»r.&)

i
:Zh(ﬁ) o
1 cdd E"(ﬁ)-zsg(’f) ZX”‘ ("@)‘[;XM (fl)

X [ 5(2,27) -2V (i‘,f.l')_} dn‘}

(2.30)
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A similar expression is obtained for the even-parity
flux when the stages from Eg.(2.22) till (2.29) are
observed except that the even-parity scattering cross-
section is used as the starting point and Eg.{(2.17} is

used instead of Eg.(2.18).

2.3.7 The final expression

Substituting Eq.(2.30) into (2.17) yields the second-

order even-parity form of the transport equation, i.e.

W{;( ,[S (£9)-2.94" (2. 2)]

25 (%)
a2 (4)(2) -2 ‘*))Z Yon () 7 L (@)

m:-A

(2.31)

X [S(._rx_l) -0 V' (1,2 :}dn'} + 2, ()P (+2)

Z%(me RECIYE

4 ewn mz=)

+ S (x2)
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2.4 The Leakage and Removal Operators

At this stage of the discussion it is necessary to
introduce two operators. One reason is that they can be
shown to be both self-adjoint and positive-definite [ 1]
The properties allow one to establish extremal variational
principles. We introduce operators G’ and C to describe
the eguations in a compact manner. These operators,
serve as a shorthand for the lengthy expression in

Eg.{(2.31).

If U('L',-Q-) be any arbitrary function of &4 and &L ,

the leakage operator, G’, can be defined as

Gu(z.2)= UE(’('f)) + ﬂ(f,ﬂ.ﬂ')u(i,{l’)dn’ (2.32)

4%

where,

zi%(* a0+ 1 ’ (2.33)
9(r.9.4)- ZZ(*)(ZQ) b3 (,r))(w)P( )

or using the expression for B(-Qf_l') from Eqg.(2.23)

L
2., (%) *
+ 0.9 z 56 )(ft(t)-fs,(t))zxm(g)i" (2) (2.34)

Mz~




The other operator is the removal operator,

and is defined as

CU(d',f_l)

n
M
L
P
iy
1=
<
i)
=
I
.-N
™M
» o+
S
=
=
~
&
Lamn
__Pr
e
=
o
b\

or, in terms of spherical harmonics

Culz, )= 2, (+0)uls,n)

{
_ZZ‘&)Z Y (I_t)[ Yo (a) " (+.0) da’ (2.36)

L even AT

Hence it can readily be seen that Eg.(2.31) becomes

2965 a0 099 )}
+C$'(2,2) = 5" (+,0)

(2.37)

or in the more usual form

aviglave e} + ceiaa)
= S'(+,0) -2 VG[s(£4)] (2.38)
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2.5 Self-Adjoint and Positive Definite Conditions

In order to apply variational methods to obtain maximum
principles, the two conditions of self-adjointness and
positive-definiteness must be met by both the leakage and

removal operators.

Taking the removal operator C as an example, the
definitions of these two conditions are [ 11];

(i) The operator ( is self-adjoint if

u(2.2)Cv(t.0)da = | vi2)Culz.0)dn

am 4n (2.39)

or using the notation for the inner product,

<u(~:,!_1),Cv(f,g)>= <v(¢,f_1),CUC¢,f_L> (2.40)

in which,

<UN> = u(£,2)v(s,0) da (2.47)
47 .



(ii) The operator(: is positive-definite if

with equality if v+ a) is zero.

Kaplan and Davis [ 55] have shown that both the
leakage and removal operators are self-adjoint and
positive definite when the scattering cross-section was
expanded in terms of Legendre Polynomials as in Eq.{(2.19)
and (2.22). Ackroyd [!1 ] has extended this proof for a

general scattering law.

)
2.6 TheK(¢) -Functional from Maximum Principles

.3
If ¢(‘I.Q~) be an admissible function, chosen as an
approximation for ¢;(f,ﬂ) , it can then be shown [1]
that, by applying maximum principles to Eg.(2.38), the

following functional results:

K@) = {—<£.V$(¢,Q),G[Q.V$ (¢,f_l)]>

v

< $e0),Coea)y + 240, S ()
+2 &V§>(¢,f_l),('¢5'(¢,f_l)>} dV

- <|!_Lﬂl, $1(¢,4)> dS

(2.43)



_52_

where,

dv, dS are the volume and surface differentials

n is the outward normal to the surfaces.

Consideration of the boundary conditions for bare
surfaces and perfect reflectors has resulted in the surface
integral term. When perfect reflectors are considered
that term vanishes as it only applies here to bare
surfaces. The present treatment can be generalised so

that surface sources can be accounted for [3].

2.7 Explicit Expression for K ()

A

K($)- {-— J_1.V$( n)[z(*l_l Ve (z0)

2, (x)
* Z XS CAABAE) z P ﬁi () 2V (.0) dnJ dn

| deasebe - 24-)2»:,, 2) [ () He.0)de] a0

4" ! oen mr=f 4-.-

+2[$(10)S (2, 0)da + 2 -Q-VJ’(‘RQ)[E(*)S( 9)

A%

+Z§%;(;(*)—§ (+))Z\/ () [V @) S (s n)dn}dn}

- fh_x.g[él‘:’(»r,&)dncls
s Jor (2.44)
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Equ.(2.44) is the general expression of the functional.

Again, simplifications are required. Two non-geometrical

assumptions are made in this thesis:

(i)

(ii)

The source contribution is isotropic, i.e. the down-
scattering, fission and extraneous source contri-

butions are equal in all directions. This leads to

S(xp)=0

and

S (x.0)= 7 S)

The assumption is guite valid for the fission and
extraneous source terms but the downscattering can be
anisotropic to some degree. If anisotropic down-
scattering is significant, the above relation is not
true.

The within-group scattering term is isotropic, i.e.

Esx(i‘) =0 for >0

Applying condition (i} gives:
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KG;):_[{‘[ ﬂ-V%(f,g)[z'&)w o
Zs‘{a-
i Z 2,#)(2udx)-2, (*)Z ./7 (a' -Rv<i>(*ﬂ)a.a}

— j %(fr,r_t)[ft (+)(+2)

— z '2,,&)27{,,@) [ A (ﬁ)%(f_r,r.t’)dn'Jam

1 even

B>
*

+ 2[$(¢,a)5+(¢,g)dn} dV

(2.45)
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Applying condition (ii) in addition gives

K@) [{/zmhw{ 20)] da

— / 4;&,.0.)[2&) $(¢,1_1)

"z}ivr' 2 ()Y, (Il)/ Y2 (@) blag) o\n'_] da
+ 2[ $(¢,1_1) S+(¢,ﬂ_-) d.ﬂ} dy (2.46)

g Sk

2)dadS

As
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(Refer Appendix A in which{l has been explicitly expressed

as (4,®) defined in Fig.2.1) Eq.(2.46) is simplified to

K(d)= V _th(ﬂ [g_vcfa(g,@)]z dn

an

— $(¢,4>[z () b l3,0)~ 4'7230 (x) ] b(s.0) dn’]clﬂ

4y

(2.47)

+2[$(¢,&)S*(¢,ﬂ)dﬂ dV

_ [ .
SJAT

Eq.(2.47) represents the K-Functional for a general

;F('t,g.) dndSs

geometry with isotropic source contributions and within-

group scatter.

A
2.8 The K(C‘“ -Functional for Rectangular Geometry

The present work lays emphasis on obtaining solutions
to problems in rectangular geometry. In particular only
two-dimensional (or x-y) problems are solved. Therefore
it is necessary to express Eg.(2.47) for such a system.

A
Any differences in the K($) -Functional for different
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z 4

\ A -

Fig.2.2 1Inclination of a Bare Surface to the ¥-Biis
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geometries will originate from the expressions for

4V anlel{lL

For x-y geometry, with reference to Fig.2.1 and 2.2,

it is known that

ﬂ.v '—'JI-—}.‘(COS w% +- sinm-aég) (2.48)

and

[20]= |/1=F sina-o)] 2.9

in which o is the angle between the x-axis and the bare
surface. To be more precise,tx must be measured from the
x-axis to the side of the bare surface where fi is directed

outwards.

In such a geometrical system

i an

dn = d/a dw
-1

o

{(2.50)

47

as can be readily seen from Fig.2.1.

Using Eqg.(2.48) to (2.50), it is seen that



——_L | :!'|'|"It
47[’250(’!)‘/. 43(;?,}4',:»') df’dw]d/hclw

+2// qbft,};,w) S+(/_|").\)u)) d/u.d:o } dV

[ e gpasas

(2.51}
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Eg.{2.51} then represents the'<($)—Functional in x-y
geometry for the specific case of isotropic scattering and
isotropic source components. Before we conclude it is
necessary to express the even parity source,
in terms of the downscattering, fission and extraneocus

source components in a relevant form.

2.8.1 The even-parity source term

In the present discussion the group 3 subscript will
be introduced for the guantities expressed in Eqg.(2.9)
and (2.10). Recalling the group § source expression from
Eg.(2.8) and using the definition of the even-parity source

term in Eqg.(2.10) it can easily be shown that

a-1
S, (,0)= Z.;,, (2,0.9) ¢, (£,0) da’
g=1 J4T
G
+.7£3. .uZ;s, (+) 4>; (+,4°) da’
AT g'=! A% (2.52)

+ Q; (:':,-.Q) g=4,2..9

in which the even-parity inter-group scattering cross-
section and the even-parity extraneous source term are

defined in a similar manner as in Eg.(2.9) to (2.11), i.e.
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+ l
Q3 (’-f,-g.-) = —Z-{Q.S (’!,f.l) + Qj (‘i',—._ﬂ.)} (2.54)

In a similar manner to the stages from Eg.(2.22) to

(2.24):
5., (r08) ) 5, wa ()Y,
¥3 (2.55)
L even
Therefore,
3-! 9

5, (2,0) = >

Z z o (¢>Z Y (a) / Vo (2) e, )
§°T feven = ar

q
‘K, " ul ' ’
+‘ﬁfz Z;’,(i)Ld:;,(¢,l_l ) da (2.56)

S': ]

+
+ @ (£,2) 9=4.2..G
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Since only isotropic scattering is considered then

2, (1) = O
for { greater than 0.

Besides extraneous sources, when they are considered,

are always isotropic. Thus GQ (-,_) can be replaced by
|
& Qﬁ(‘!). Hence

S (xa) = ) Zo () | 4 ep)an

9= 4T
+'_;_C_S_G- S, (+) (¢.Q.)dﬂ (2.57)
AT Kl
g’z

Although the angular integrals are not explicitly
expressed in terms of)& and @ in Eq.(2.57), nevertheless
Eg.(2.51) and (2.57) represent the K($) -Functional and
source term for x-y geometry but only for isotropic

scattering.

2.8.2 The odd-parity source term

To conclude this chapter we indicate how anistropic

sources can be accounted for through the odd-parity source
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term. This term is alsoc essential if one were to treat
anisotropic scattering between groups as can be seen from

Eg.(2.44). Hence

Sy (+,0) = ZZ 2o, @) D V@) [ Voo (0 (£.0)de’

(2.58)

The order of anisotropic scattering to be treated
will thus govern the limit to which summation over f is to

be taken in the above equation.
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CHAPTER 3

CORFU

Introduction

The Trial Function

An Alternative Formulation

The Reduced Form of the Leakage Term
The Reduced Form of the Removal Term
The Reduced Form of the Scurce Term
The Reduced Form of the Bare Surface Term
The Reduced Functicnal

Implementation

3.9.1 Solution of the Integrals over U
3.9.2 Solution of the Integrals over w

Discussion
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"One should never forget that the functions
like all mathematical constructions, are
only our own creations, and that when the
definition with which one begins ceases to
make sense, one should not ask: what is it,
but what 1is it convenient to assume 1in

order that it remain significant?"

Karl Friedrich Gauss
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3.1 Introduction

CORFU, as the title of this chapter, is an acronym for
Constants Of the Reduced-FUnctional. As was seen in the
previous chapter, the‘((&)-ﬁhnctional involves both a
spatial and an angular integration of each of the terms.
Naturally the order of the integration is arbitrary but
in the present work angular integrations are performed
first with the result that the‘<<$0 -Functional is reduced
to one in which the integrand depends directly on space
only. This functional is referred to as the Reduced-
Functional and the results of the angular integrations
being constants, hence the acronym CORFU. The constants
are dependent on the gecmetry under consideration which
happens to be rectangular in this case. The number of
constants depend on the accuracy of the angular repre-
sentation desired which is connected through the order of
the trial function. This will be discussed in the next
section but, suffice to say, a higher order trial function
is used whenever a more accurate transport order solution
is required. However, the number of constants will also
be greater. The number of terms representing a trial
function is equal to the square of its order and since the

A A
K($) -runctional is guadratic in ¢(4,4) , the number of
constants associated with a trial function is equal to
its order exponentiated to four. For example, a 1-moment
trial function (the simplest) gives only one constant
while a 2-moment trial function gives sixteen constants
when angular integrations are performed. The term 'moment’

describes the order of the trial function.
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Spatial integrations are performed after the Reduced-
Functional is obtained but this is the subject of the next

chapter.

3.2 The Trial Function

P
The admissible function d?@;&) chosen as an approxi-
+*
mation for Cb('i',-ﬂ-) as shown in Section 2.6 can be

represented as:

bea- 5> &, @, 0

f=0 mMa-~f

in which the angular dependency has been represented by
the set of Spherical Harmonics \&MC&) and whereby 4im(§)
are the moments of the spatial fluxes. The expression
in Eg.{(3.1) constitutes a trial function for thei((#ﬁ

Functional.

As seen from Appendix A, the Spherical Harmonics for
X-y geometry are expressed in terms ofdp and w . Hence
Eg.(3.1) needs to be manipulated into a form containing

the shape functions and the angular components}; and w.

From Appendix B, the trial function can therefore be

written as

ber)=p (IR, @

1=0

L

—47+I_(:1£+I)! [c}:a (-_t)COSZrnco -+ c‘,’p

AT (244am)) | Teetsam) (.aw.)(‘“s‘"z'““’]

mz)

(3.2)
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where

hA = no. of moments in the trial function.

The manner in which the spatial fluxes have been
subscripted ensures that they will be numbered in an

ascending order commencing with unity.

In a similar manner the extraneous source
is thereby expanded as in Eg.(3.2) but since only the

isotropic case is considered,

Qs(:‘.’, ,w) é ( )

'*ll—'

3.3 An Alternative Formulation

From Eg.(3.2) it can be seen that every term in the
expression can be expressed in the following manner:
1: = constant x Associated Legendre Polynomial

x Function of w

433-.&) (3.3)

—E = ith term of the trial function

and the subscript 3 is now re-introduced for the spatial

fluxes.

If we denote,
Ci = constant
H;(P) = Associated Legendre Polynomial
G{i (w) = Function of w

for the ith term,

T = cH()G (), () e
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and

M M2
4%(¢,P,w)=21?= C‘-Hi(}‘)G'i(w)cE;(’t) (3.5)

Eq.(3.5) is a more compact expression for the trial
function than Eq.(3.2) and therefore easier to handle
A
when the trial function is subkstituted into the K(Cb)-

Functional.

The discussion in the next few sections will deal
wth the substitution of the trial function in the*<6$)—
Functional. The leakage term is the first to be considered.
This will be followed by the removal, source and bare

surface terms.

3.4 The Reduced Form of the Leakage Term

1f£ L denotes the leakage term, then from Eg.(2.51)

it is readily seen that

N T
L_V Sﬁ(f)L(‘}')d

x

[T ) o

0

(3.6)

From Eq (3 5) we have

@S Secnnca@@
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(3.8)

@ .

where,
the dependence on }J,OJ and 4+ have been dropped from

the notation for brevity.

Substituting (3.7) to (3.9) in (3.6),

an z 34.\/ o4

)([j cos coGiG-j dw (—57)(?5-)
" . 3#3 a{i

‘4‘ J/R QnZuJGQGtCku (ES:J>(?i;)
T 24\ (24

[ s ()(3) 4

(3.10)
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(l/u HHd/u

sinlw G; G; dw

sin aJGif} da)

e

T
o]
|

Therefore,

(3.11)

(3.12)

(3.13)

{3.14)
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Finally, let

Ei.. = cﬁchj;ﬁ:ns

IU

E.; CiC.':I,.,J-];,-J- r (3.16)
E3§ = GG I‘B];'J

whereby

ONBEE

iz i=

O R -

_ Hence, the quantities E|;J' ' E.:.aj ,E_a;i are the constants

of the Reduced Functional for the leakage term.

3.5 The Reduced Form of the Removal Term

Let.R.represent the removal term .which from Eg.({(2.51) is

shown to be
§ a1

R==1| | depa)|S,e)dpa

2’-»‘*[[ £ o) dp'de | dudadV

(3.18)
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Therefore,

I paw M: M*
R =- f [ [ [§tsf¢)22cichiHj&@@ig

(3.19)

s, i > ' %
4“332 o H G, 4},2 Cj%j/Hid}AfGa dw'] A}Jd‘ﬂ'dv

—

Finally,

R= “/[Z,(if)ii C'-Q‘ﬁ,‘lf.,).fll"\;deja\/ng dew

(3.20)

Es° M> 1 an M> 1 T
_.4qf9 ;ZEC}451/G+¢yi/rEhChn;§EC&4Ei/hkhc»i}{éhchojcyv

As before,

IZij =[ HiH; d}.l (3.21)

1'3; =/ H,d/-l (3.22)

anw

J;‘.j = | GG dw (3.23)
Jo

rm
J;i G; des (3.24)
Jo
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Therefore,
M M2

R--/ |2, "-”Zz wola kg

:ik 0 (3.25)
__———4;‘1’_ ) C:IB;J;.' cgizc.i I%J;Jck?’-i]dv
Finally, let i a
Fi_,' = CiC.jI;Ei J:"u (3.26)
]);" Ci];ijgi
(3.27)
and so
M: >
R:—- [Zts(ﬁ)zz [;.;14:3.45,,
LY (3.28)
AN N
- ZT’:E Di<; 2 Dy | oV
1al 4=l

The guantities E ’ D; are therefore the constants

of the removal term in the reduced functicnal.

3.6 The Reduced Form of the Source Term

This is represented as

1 2T
S=2 &, (4fo0) S (1,0 dpcdeo oV

v J-1 Jo (3.29)

+
Substituting for EE(QHPHU) from BEg.(2.64)
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= z” d (21 0)

X[‘HTZ Zs, (+ )// ‘:‘9 (‘f,}A',m') d/.-'dw'
K G 1 aﬂa (3.30)
+ 4_1[_5,2 .chs, (¢ )j‘ [ 433, (:t,}.u',co') d/u'clw;
o'l -1 Jo

As in the previous sections, upon substituting for

the flux,

' X G " | ax M> ' 2
3
-I-EZ.BZ{S,&')-- Cid?g;[Hidf‘[Cﬁd&zci¢s; ]defl/@dw’

+ﬁ és(i)zchi[Hid}Jj&dedv (3.31)
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Finally via Eq.({(3.22), (3.24) and (3.27),

v = *
<
+ %z a2, ('!:)Z D-.‘E,-Z D; s, (3.32)

3.7 The Reduced Form of the Bare Surface Term

Let this be represented as

Pz—j [ i o] B )epdod$ 3

A
Substituting for 4’8'
_ M* ™™ )
= - C;C'
P /Zz 4 3;4%,'] l/l"'}ll
S =t =) -t
aT
xf
v

H‘H-"C%u (3.34)

Sh\(a-wo)’éhéh.dcg
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Let
L, ,/I-—/u‘ HiH; dy
an
Js = | |sin(d-2)| G G du
L P=e=— Z ciqLJ LJ %
S =y oy

P=—/ D By 4
)

=l =

3.8 The Reduced Functonal

Finally, since

K()=L+R+5+P

(3.

(3.

(3.

(3.

35)

36)

.37)

38)

39)
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therefore