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A B S T R A C T 

The finite element m e t h o d has found ever increasing 

applications in the various branches of engineering and 

t e c h n o l o g y . In this instance it has been adopted to find 

solutions to the m u l t i g r o u p form of the Boltzmann 

t r a n s p o r t e q u a t i o n . 

A variational approach has been adopted in which a 

functional w a s derived from the second-order form of the 

Boltzmann e q u a t i o n . The solution of the integrals of the 

functional results in the d i s c r e t i z a t i o n of both angle and 

s p a c e . In the former Spherical Harmonics expansions w e r e 

used while finite elements w e r e used for the spatial 

d o m a i n . 

The main aim of this thesis w a s to d e v e l o p a package 

to solve the d i s c r e t i s e d form of the f u n c t i o n a l . This 

p a c k a g e consists of two major p a r t s . In the first 

instance CORFU w a s developed to handle the angular integrals 

arising from the angular d i s c r e t i z a t i o n . It is interfaced 

w i t h F E L T R A N , the main p r o g r a m , in which the problem is 

s o l v e d . FELTRAN consists of data input, spatial 

i n t e g r a t i o n , global assembly and solution of the resultant 

set of linear e q u a t i o n s . The o b j e c t i v e was to c o n s t r u c t 

the package so that it w o u l d be m o d u l a r in order that 

a d d i t i o n a l features can be built into the existing body 

w i t h e a s e . D i r e c t solution t e c h n i q u e s w e r e used in solving 

the global set of e q u a t i o n s . An out-of-core s o l v e r , to 

o v e r c o m e the problems of p r i m a r y s t o r a g e , w a s also 

i n c o r p o r a t e d . 
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In validating the p a c k a g e source and eigenvalue 

problems from various research work were used as the 

y a r d s t i c k . Accurate solutions have confirmed that the 

technique has been correctly established and the p o t e n t i a l 

lies in the fact that solutions have been obtained that 

can only be achieved by other established methods w i t h 

difficulty and constraints on computing r e s o u r c e s . 
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"In brief, analytical methods are the foundation 

of the whole subject, and in practice they 

are the most accurate when they will work, 

but in the integration of partial equations, 

with reference to irregular-shaped 

boundaries, their field of application is 

very limited. 

for engineering .... there is a demand 

for rapid methods, easy to he understood and 

applicable to unusual equations and 

irregular bodies". 

L.F. Richardson [83] 
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CHAPTER 1 

1 .1 The Importance of N u m e r i c a l Methods 

Since high speed computing m a c h i n e s came into 

e x i s t e n c e , numerical m e t h o d s have been steadily d e v e l o p e d 

to play the dominant role in the engineer's task of 

problem solving and a n a l y s i s . Today it is inconceivable 

that solutions to engineering problems could be achieved 

w i t h o u t the aid of c o m p u t e r s . The applications embrace 

all fields of e n g i n e e r i n g , be it iterative treatment of 

heat and mass balances such as in the analysis of flash 

d i s t i l l a t i o n in chemical engineering or the prediction 

of flow and thermal patterns as in the analysis of the 

flow of fluids in various types of m e d i a . That n u m e r i c a l 

m e t h o d s should assume such an important position in 

engineering analysis is due to several f a c t o r s . F i r s t l y , 

m o s t natural phenomena can best be described by d i f f e r e n t i a l 

equations with varying boundary conditions w h o s e solutions 

cannot be obtained by analytical means e x c e p t in the 

simplest c a s e s . Improvements in numerical techniques 

have m a d e feasible at low cost precise solutions of problems 

significantly m o r e complex than h i t h e r t o . As a conse-

quence the stage has been reached w h e r e engineering 

tolerances can be tailored with a precision never dared 

b e f o r e . This directly leads to an economic savings in 

terms of m a t e r i a l and human r e s o u r c e s . In the years 

before 1945 engineering analyses w e r e l e n g t h y , repetitive 

and time consuming because similar problems had to be 

performed from the beginning to the end with equally 

demanding efforts and c a r e . Nowadays related problems 
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can be solved on a blackbox basis in a short space of 

t i m e . This blackbox w o u l d comprise of a computer code 

w i t h facilities for data i n p u t / o u t p u t , m o d u l e s for 

rendering the problem to be analysed numerically and the 

solution a l g o r i t h m . 

This potential of numerical analysis as seen in the 

light of present-day achievements contrasted w i t h the 

cautious predictions when computers were just introduced 

in the 1940's. Then it w a s considered t h a t only a dozen 

computers would suffice to perform all the envisaged 

numerical calculations [70]. 

N u m e r i c a l m e t h o d s , as a means for solving large 

scale engineering p r o b l e m s , saw their introduction in 

the paper d e l i v e r e d by L . F . Richardson [83] to the 

Royal Society in 1910. Later o n , contributions by 

Liebmann [64] and C o u r a n t , Friedrichs and Lewv [23] laid 

the foundations of the finite-difference m e t h o d . Progress 

in developing numerical m e t h o d s before the 1940's w a s 

n e c e s s a r i l y slow because of the absence of automatic 

c o m p u t a t i o n . But since the arrival of the computer 

engineers and scientists have been quick to e x p l o i t 

numerical m e t h o d s and its popularity has never declined 

s i n c e . The finite element m e t h o d grew out of a number 

of intuitive procedures and associated m a t h e m a t i c a l 

t e c h n i q u e s during the m i d - 1 9 5 0 ' s , in the way outlined in 

the next s e c t i o n . Before its conception the finite-

d i f f e r e n c e method held the d o m i n a n t position in the 

n u m e r i c a l solution of continuum p r o b l e m s . Today both 
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methods are equally i m p o r t a n t , each with its own advantages 

and d i s a d v a n t a g e s . However certain problems are m o r e 

amenable to the finite e l e m e n t treatment than the finite 

d i f f e r e n c e m e t h o d , and v i c e - v e r s a . The choice of w h i c h 

m e t h o d to use in solving a particular p r o b l e m , although 

still subjected to the whims and fancies of the 

p r a c t i t i o n e r , is more or less dictated by the obvious 

advantages of one method over the o t h e r , although in 

certain applications there m a y be no clear cut a d v a n t a g e s . 

1.2 Finite Elements: A Historical Perspective 

It was in the field of structural engineering that 

the finite element m e t h o d (abbreviated to FEM from now on) 

had its o r i g i n . The early w o r k of Hrennikoff [41 ] in 

1941 and M c H e n r y [68] in 1943 w e r e probably the first 

attempts at discretizing a continuum into smaller regions 

or elements interconnected at only a finite number of 

nodal p o i n t s . There w a s an inactive period following 

this early w o r k which was finally broken in 1954 when 

Argyris [ 8 , 9 ] and colleagues adapted the so-called 

m a t r i x m e t h o d s of structural analysis to solve problems in 

linear structural a n a l y s i s . In p a r t i c u l a r , e f f i c i e n t 

solution t e c h n i q u e s , w e l l suited to automatic digital 

c o m p u t a t i o n , w e r e utilised for the first t i m e . In 1956, 

Turner et al [96] of the Boeing A i r c r a f t C o . introduced 

the d i r e c t stiffness m a t r i x for triangular elements to 

solve plane stress p r o b l e m s . In 1 960 Clough [21 ] coined 

the name "finite element" in a paper on plane e l a s t i c i t y . 

W i t h the d i g i t a l computer also becoming an ever m o r e 
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effective tool for the engineer the FEM soon gained a 

firm f o o t i n g . 

After 1963 the foundations of the FEM w e r e laid when 

Besseling [12 ]f Melosh [69 ] r Fraeijis de V e u b e c k e [32] 

and Jones [47] recognised that the FEM w a s a form of the 

Ritz m e t h o d in which v a r i a t i o n a l principles can be used 

to h a n d l e the problems of e l a s t i c i t y . 

In 1965 Zienkiewicz and Cheung [103] paved the w a y 

for the application of the FEM to problems other than 

structural engineering when they applied the F E M , using 

V a r i a t i o n a l P r i n c i p l e s , to solve Poisson's E q u a t i o n . 

This is u s u a l l y referred to as the Rayleigh-Ritz M e t h o d 

and w a s a major m i l e s t o n e because the FEM was the ex-

clusivity of the structural engineers prior to this p e r i o d . 

A p p l i c a t i o n s in other fields soon followed when Wilson 

and N i c k e l l D 01 ] and Doctors [27] applied the FEM to 

h e a t conduction and p o t e n t i a l flow problems r e s p e c t i v e l y . 

In 1969 Szabo and Lee [93] utilised the weighted 

residuals approach in setting up a finite element 

analysis of a plane elasticity p r o b l e m . This alternative 

approach is especially u s e f u l w h e r e no v a r i a t i o n a l 

functional can be set up for a particular type of problem 

in order to apply the R a y l e i g h - R i t z M e t h o d . 

During this interesting era in the formulation of 

the F E M , i . e . the 1960's, there was a concensus that the 

m e t h o d m i g h t already have been formulated from a mathe-

m a t i c i a n ' s point of v i e w . The advocates w e r e not to be 
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dis appointed because the classic paper by Courant [22] 

in 1943 w a s soon recognised as the corner stone in the 

e s t a b l i s h m e n t of the F E M . In that paper Courant had 

used p i e c e w i s e continuous functions over triangular 

domains and the principle of minimum potential energy in 

.studying the S t . Vej/nant torsion p r o b l e m . This v i e w can 

be seen to be an extension of the Rayleigh-Ritz p r i n c i p l e . 

Prager and Synge [80 ] in the late forties utilised the 

concept of function s p a c e , which resulted in the hyper-

circle m e t h o d , to solve continuum problems in much the 

same m a n n e r as finite e l e m e n t t e c h n i q u e s . The h y p e r c i r c l e 

m e t h o d was applied to neutron transport problems by 

Ackroyd and Ball [ 4 ] in 1960 but the vogue in those 

days was to use finite d i f f e r e n c e techniques for such 

p r o b l e m s , and this m e t h o d was not pursued by other 

r e s e a r c h e r s . Finally it w a s acknowledged that the 

w o r k of G r e e n s t a d t [37 ], w h i c h appeared in 1959, contained 

m a n y important and basic concepts that are essential 

in the m a t h e m a t i c a l formulation of the F E M . 

1.3 An O u t l i n e of the Finite Element M e t h o d 

The finite element m e t h o d has been described 

in m a n y e x c e l l e n t textbooks [10,20,42,45,76,91,92,95,102]. 

B e s i d e s , the number of papers published annually is 

of the order of thousands [102]. In the early days 

m o s t of the contributions came from structural engineers 

but since Zienkiewicz and Cheung [103 reported the 

application of the finite element m e t h o d to other 

types of problems contributions have come in from d i v e r s e 

fields of engineering and m a t h e m a t i c s . 
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W h a t is the finite element method? Since no single 

sentence can suffice to provide sufficient information 

to e v e r y o n e it can briefly by described as the execution 

and c o m p l i a n c e of the following stages: 

(i) a continuum problem is d i v i d e d into a number of 

p a r t s , finite in n u m b e r , called e l e m e n t s ; 

(ii) these elements are assumed to be connected at a 

number of points lying on the b o u n d a r i e s ; 

(iii) the values of the dependent variable at the nodal 

points constitute the set of unknowns w h o s e solutions 

are desired; 

(iv) a set of f u n c t i o n s , known as the shape (or inter-

polation) f u n c t i o n s , is chosen to represent the 

unknown v a r i a b l e within the element in terms of 

its nodal v a l u e s ; 

(v) e m p l o y m e n t of the shape functions can be m a d e by 

one of two a v a i l a b l e r o u t e s , i . e . either to use 

the method of w e i g h t e d residuals or v a r i a t i o n a l 

principles; 

(vi) both procedures lead to sets of linear e q u a t i o n s 

for the nodal v a l u e s ; the m a t r i x of these equations 

is called the element stiffness m a t r i x b e c a u s e 

of its first use in structural m e c h a n i c s ; 1 

(vii) t h e l o a d , or s o u r c e , contributions of the p r o b l e m 

are assumed to act at the nodes of the e l e m e n t ; 

(viii) the assembly of the w h o l e system is achieved by 

collocating the individual element stiffness m a t r i c e s 

and load v e c t o r s ; 



- 24 -

(ix) the solution of this global system of linear equations 

yields the values of the unknown nodal v a r i a b l e s . 

Items (i) to (ix) t h e r e f o r e constitute a short review 

of the finite e l e m e n t m e t h o d . 

A t this juncture it w o u l d be best to e l a b o r a t e on 

the m e t h o d of w e i g h t e d residuals and variational p r i n c i p l e s . 

In the first m e t h o d the functions are substituted directly 

into the d i f f e r e n t i a l equation and this results in a residual 

owing to the approximate nature of the f u n c t i o n . Then 

l i n e a r l y independent w e i g h t functions are chosen to w e i g h t 

the residual by imposing the integral of the p r o d u c t of 

each w e i g h t function and the r e s i d u a l to be z e r o . The 

r e s u l t is a set of algebraic e q u a t i o n s . The t h r e e m o s t 

coctironly used w e i g h t functions are the Dirac delta f u n c t i o n s , 

the interpolating functions (usually p o l y n o m i a l s ) defining 

the a p p r o x i m a t i o n , and the functions obtained by d i f f e r e n t i a t i n g 

the r e s i d u a l w i t h respect to each of the nodal v a l u e s . 

The associated t e r m s for these m e t h o d s are the c o l l o c a t i o n , 

G a l e r k i n . and least squares a p p r o a c h e s to the m e t h o d of 

w e i g h t e d r e s i d u a l s . On the other h a n d , when v a r i a t i o n a l 

p r i n c i p l e s are used the functions c a n n o t be substituted 

d i r e c t l y into the d i f f e r e n t i a l e q u a t i o n . A functional 

has first to be o b t a i n e d from v a r i a t i o n a l c o n s i d e r a t i o n s 

on the d i f f e r e n t i a l e q u a t i o n . The functions are then 

s u b s t i t u t e d and a set of algebraic equations r e s u l t by 

requiring the first differential of the functional w i t h 

r e s p e c t to each n o d a l value to be z e r o . 
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The choice as to which approach to use is not always 

e a s y . To use the variational m e t h o d a functional m u s t 

first be f o u n d . Naturally in the situations w h e r e no 

v a r i a t i o n a l functionals exist the method of w e i g h t e d residuals 

is u s e d . On the other hand the variational a p p r o a c h , 

and also the least squares a p p r o a c h , guarantee that the 

g l o b a l m a t r i x w i l l be s y m m e t r i c . This is important b e c a u s e 

only one-half of the m a t r i x including the d i a g o n a l need 

to be s t o r e d . 

No p r a c t i c a l (or even a d e m o n s t r a t i o n ) finite e l e m e n t 

calculations can be accomplished w i t h o u t t h e aid of the 

d i g i t a l c o m p u t e r . Consequently it should be borne in 

mind t h a t the dependence on programming t e c h n i q u e s , the 

e a s e of data input and the intermediate and p o s t - p r o c e s s i n g 

of o u t p u t , a l t h o u g h not commented upon a b o v e , are important 

features.. 

In bringing continuum p r o b l e m s to a discretized form 

all numerical m e t h o d s , and certainly the finite element 

m e t h o d , involve an approximation w h i c h a p p r o a c h e s the 

true continuum solution as the number of d i s c r e t e c o m p o n e n t s 

i n c r e a s e s . T h e r e f o r e one should be aware of the struggle 

between the d i f f e r e n t methods in achieving as accurate 

a solution as p o s s i b l e with the least number of discrete 

c o m p o n e n t s . This can be realised from the p o i n t of view 

t h a t computing e f f o r t and resources increase as the number 

of discrete c o m p o n e n t s i n c r e a s e s . 
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1.4 Practical Solution M e t h o d s 

Just as the NavieT-Stokes Equations govern the flow 

of fluids, the Boltzmann t r a n s p o r t equation governs the 

behaviour of particles and their interaction w i t h the 

bounded media in which they are d i f f u s i n g . As w i l l be 

seen in the next c h a p t e r , the e q u a t i o n , being of a d i f f e r e n t i a l -

integral f o r m , is c o m p l e x . T h e r e f o r e the problems are 

usually simplified by imposing certain a s s u m p t i o n s . A 

h o s t of m e t h o d s exist for the solution of the Boltzmann 

t r a n s p o r t equation and have been reviewed accordingly [5, 

16,63,84 ]. H o w e v e r , the p r e d o m i n a n t m e t h o d s for solving 

the Boltzmann equation are the discrete-ordinates m e t h o d 

[18,58] and the Monte Carlo m e t h o d [49,89]. 

In solving the Boltzmann equation one is also concerned 

w i t h the angular variable owing to the scattering nature 

of the particles with the m e d i a in which they are d i f f u s i n g . 

T h e r e f o r e in the d i s c r e t e - o r d i n a t e s m e t h o d , w h i c h w a s 

initially advanced by Carlson [17], the angular variable 

is d i s c r e t i z e d into a set of directions or rays w h i l e 

the spatial variables are treated by finite d i f f e r e n c e 

m e t h o d s . W e i g h t s are assigned to the set of angular d i r e c t i o n s 

by means of q u a d r a t u r e s e t s . I n c i d e n t a l l y , in the P ^ 

m e t h o d [29 ], the other major finite-difference based m e t h o d , 

spherical h a r m o n i c s are used to approximate the angular 

v a r i a b l e . 

In the M o n t e Carlo m e t h o d the histories of a s i g n i f i c a n t 

number of particles are individually t r a c k e d . The course 

of each p a r t i c l e is followed from b i r t h , through its v a r i o u s 
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interactions with the h o s t media until its death which 

u s u a l l y m e a n s an escape from the media under study or 

d u e to a b s o r p t i o n . The book-keeping of all these partic les 

enable one to draw up a m a c r o s c o p i c picture of the behaviour 

of the s y s t e m . 

Both these methods although p o p u l a r , established 

and in general u s e , suffer from certain d i s a d v a n t a g e s . 

The discrete-ordinates m e t h o d do not conform well to problems 

with irregular g e o m e t r i e s , suffer from ray effects (i.e. 

u n n a t u r a l oscillations in the flux d i s t r i b u t i o n s owing 

to the way the angular v a r i a b l e is being d i s c r e t i z e d ) 

and can p r o d u c e negative scalar fluxes especially when 

the mesh is not sufficiently fine (and h e n c e impose greater 

computer storage r e q u i r e m e n t s ) . The M o n t e Carlo m e t h o d , 

although w e l l suited for irregular g e o m e t r i e s , is cost 

p r o h i b i t i v e because a large number of particles need to 

be tracked before any statistically significant results 

can be o b t a i n e d . 

S o , bearing the d i s a d v a n t a g e s of the d i s c r e t e - o r d i n a t e s 

and M o n t e C a r l o methods in m i n d , there is an impetus for 

introducing new methods in solving the Boltzmann t r a n s p o r t 

e q u a t i o n . To this end the finite element method shows 

g r e a t p r o m i s e . The FEM is an established m e t h o d in t h e 

sense that its foundations are thoroughly laid and that 

it has m e t with considerable success in a m u l t i t u d e of 

a p p l i c a t i o n s . One great advantage of the FEM is its ability 

to cope w i t h irregular geometries (that is why it has 

m e t w i t h so much success in structural e n g i n e e r i n g ) . 
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Direct elimination m e t h o d s , rather than iterative o n e s , 

are usually employed to solve the system of equations 

set up in the finite element analysis and this affords 

an a d v a n t a g e in execution s p e e d s . Besides such solutions 

are unlikely to suffer from unnatural o s c i l l a t i o n s . Therefore 

there is potential for the FEM as an alternative m e t h o d 

for solving the Boltzmann t r a n s p o r t e q u a t i o n . 

1.5 C u r r e n t Status 

There a r e , as w e have s e e n , two approaches when employing 

the F E M , the method of weighted residuals and the m e t h o d 

of v a r i a t i o n a l p r i n c i p l e s . To date both m e t h o d s have 

been employed in trying to solve the Boltzmann t r a n s p o r t 

equation although when the v a r i a t i o n a l m e t h o d is used 

the e v e n - p a r i t y second-order form of the Boltzmann equation 

is used in order to obtain a variational p r i n c i p l e . This 

lack of an extremal v a r i a t i o n a l principle for the first-

order equation has now been remedied by A c k r o y d [2]. 

This w i l l be discussed in m o r e d e t a i l in the next c h a p t e r , 

w h e r e it w i l l also be seen that the Boltzmann equation 

is g e n e r a l l y expressed in a m u l t i g r o u p form owing to the 

d e p e n d e n c e of the m a t e r i a l s cross-sections on incident 

p a r t i c l e s p e e d . B e s i d e s , the diffusion equations usually 

refer to the lowest order of the Boltzmann transport e q u a t i o n . 

The following is a very concise review of the work done by 

other r e s e a r c h e r s . 

In the initial stages Ohnishi [77] initiated w o r k on the 

F E M . This w a s responded when Semenza et al [88]r Kang 
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and Hansen [50 ], Kaper e t al [51 ], Komoriya and W a l t e r s [56 ], 

Deppe and Hansen [25 ], Biswas et al [13 ] and Schmidt et 

al [85,86 ] reported work achieved on the diffusion a s p e c t s . 

In particular emphasis w a s on one or few groups problems 

with the exception of Schmidt et al w h e r e they d e v e l o p e d 

a package called DIFGEN w h i c h has been thoroughly exercised 

on analysing practical problems concerned with the High 

Temperature Reactor at Jiilich. Later on and in parallel 

with the d e v e l o p m e n t of the diffusion a s p e c t s , the FEM 

was also being applied to transport p r o b l e m s . M i l l e r 

et al [71] and Kaper et al [53] reported results for x - y 

g e o m e t r y using the Rayleigh-Ritz a p p r o a c h , and in the 

same vein Pitkaranta [78 ] reported results for spherical 

s y s t e m s . This w a s followed on by Briggs et al [15 ] w h o 

d i s c u s s e d the elimination of ray effects w i t h finite elements 

and further w o r k by B l o m q u i s t and Lewis [14 ], Martin and 

D u d e r s t a d t [66]+ M o r d a n t [73], Lillie and Robinson [65] 

and Galliara and Williams [33 ]. 

On the local front previous work has been achieved 

on a systematic study basis starting with the theoretical 

c o n s i d e r a t i o n s of Ackroyd [ 1 ]. Ziver [104] has d e a l t 

w i t h the study of linear elements in x - y geometry for 

up to two groups and two m o m e n t s (the meaning of m o m e n t s 

w O l be d i s c u s s e d in Chapter 3) w h i l e Issa [46 ] has also 

achieved some results for t h r e e - d i m e n s i o n a l diffusion 

problems and in parallel with this work has also investigated 

higher order elements but for simple s y s t e m s . Splawski [90 ] 

w o r k i n g in collaboration with Ziver had performed studies 

on the angular aspects of the w o r k . 
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The present work is a continuation of the efforts 

m e n t i o n e d above but extended to contain m u l t i g r o u p and 

multiregion c a p a b i l i t y , generalised angular t r e a t m e n t , 

a choice of Lagrangian e l e m e n t s , a treatment on the solution 

aspects and attention to ease of data h a n d l i n g . M o r e o v e r , 

for the first t i m e , after^ separating the w h e a t from the 

c h a f f , a truly modular computer code has been d e v e l o p e d 

the structure of w h i c h w i l l remain intact when future 

w o r k is c o n t i n u e d , in w h i c h new features can be added 

or old features deleted with the m i n i m u m of interference 

to the s t r u c t u r e . 

For the remainder of this t h e s i s , Chapter 2 w i l l 

be c o n c e r n e d with the Boltzmann transport equation and 

the v a r i a t i o n a l f u n c t i o n a l . This w i l l be followed by 

a chapter on the treatment of the angular v a r i a b l e w h i l e 

finite elements are d i s c u s s e d in the fourth c h a p t e r . 

Results follow and this is concluded with the final chapter 

on summary and r e c o m m e n d a t i o n s . 
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"Here and elsewhere we shall not obtain 

the best insight into things until we 

actually see them growing from the 

beginning " 

Aristotle 
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2.1 The Boltzmann Transport Equation 

The Boltzmann transport e q u a t i o n is very often referred 

to when neutron particle t r a n s p o r t is d i s c u s s e d . It was 

during the 19th Century that Boltzmann derived his equation 

to describe the kinetic behaviour of very d i l u t e g a s e s . 

T h e behaviour of neutrons in nuclear reactors or penetrating 

m e d i a is of a similar nature [24] and hence the reference 

to Boltzmann's equation when the transport of neutrons are 

d i s c u s s e d . 

Under rarefied conditions the gaseous particles tend 

to cover longer distances between interactions and as a 

r e s u l t the mean free paths are rather long when compared 

w i t h those for normal diffusion processes w h e r e inter-

actions are m o r e f r e q u e n t . In neutron t r a n s p o r t the only 

s i g n i f i c a n t type of interaction is between neutrons and 

the nuclei of t h e media in w h i c h they are s t r e a m i n g . 

However the frequency of such interactions is rather low 

owing to the fact that n e u t r o n i c densities are very sparse 

in m o s t media through w h i c h t h e y are t r a v e l l i n g . Hence 

t h e mean free p a t h s of n e u t r o n - n u c l e i interactions are 

also rather long and t h e r e f o r e the fundamental ideas used 

in deriving the Boltzmann t r a n s p o r t equation are similar 

to those used in deriving the neutron transport e q u a t i o n , 

the major d i f f e r e n c e being t h a t in the latter only one 

species involved in the interactions is c o n s i d e r e d to 

be m o b i l e . 

In order to know the d i s t r i b u t i o n of neutrons in 

a given m e d i u m , and hence the v a r i o u s reaction r a t e s , 
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it would be necessary to solve the neutron transport e q u a t i o n . 

Analytical solutions are not possible for practical problems 

owing to the complexity of the equation. Numerical solutions 

are usually sought for w h e n e v e r such situations a r i s e . 

The complex nature of the equation is further enhanced 

by the fact that the neutronic cross-sections and their 

relation with the incident neutron energy is very com-

p l i c a t e d . Therefore averaging procedures and approximation 

t e c h n i q u e s , especially the m u l t i g r o u p form of the transport 

e q u a t i o n , are used to remove this c o m p l e x i t y . In p r a c t i c e , 

engineering constraints dictate the choice of materials 

used in nuclear reactor cores and shields. As a result 

such systems are highly heterogeneous and this further 

complicates the dictates on the e q u a t i o n . In the eventuality 

even before numerical techniques can be used to solve 

the Boltzman transport equation a number of simplifications 

and approximations have to be m a d e . 

By considering conservation principles one arrives 

at the integro-differential form of the Boltzmann transport 

equation [28]: 

D T F / ( T , E ^ E , N ' - I I ) 4> E : I I ; T) 8 E ' (2 .1 ) 

w h e r e , 
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<f>(^,E = angular flux 

V » neutron speed 

^ • t o t a l m a c r o s c o p i c cross-section 

" d i f f e r e n t i a l form of the m a c r o -

scopic scattering cross-section 

source 

and the independent v a r i a b l e s being 

't - position vector 

E = energy 

JL » unit d i r e c t i o n a l vector 

"t • time 

The source term is expressed as the sum of the contri-

butions due to a fixed source and fission: 

+ X T / totE') I 4 > ( t E X 0 d E ' < t a ' 

(2.2) 

w h e r e 

^ ^ E ,11 = fixed source contribution 

M ^ ^(f = p r o d u c t of average number of neutrons 

per fission and the m a c r o s c o p i c fission 

c r o s s - s e c t i o n 

^ ( E ) — fission spectrum 

A l t h o u g h complicated in appearance E q . ( 2 . 1 ) is nothing 

m o r e than an expression for the rate of change of neutron 

density as the d i f f e r e n c e between the rates of production 
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and loss at a point f in space and at a particular v e l o c i t y , 

V . It can be seen that in addition to the temporal v a r i a b l e 

the equation involves 3 spatial v a r i a b l e s , 2 angular variables 

and 1 energy v a r i a b l e . The first simplification to this 

equation involves the steady-state form only t h e r e b y removing 

the t e m p o r a l v a r i a b l e . T h e r e f o r e , Eq.(2.1) s i m p l i f i e s 

to: 

2.1.1 Boundary c o n d i t i o n s 

In p r a c t i c e two types of exterior boundary c o n d i t i o n s 

are considered: 

(i) the bare surface (or v a c u u m ) c o n d i t i o n , 

and (ii) the p e r f e c t reflector c o n d i t i o n . 

The surface sources t h a t are sometimes used for shielding 

c a l c u l a t i o n s are not t r e a t e d because they a r e , in p r a c t i c e , 

the d i s t r i b u t e d or v o l u m e sources of the p r e s e n t m e t h o d . 

The first c o n d i t i o n , when expressed for a non re-

e n t r a n t b o d y , m e a n s t h a t no neutrons are entering the 

body from the o u t s i d e , i.e.: 

( i , E - E . Jl-n)4>C±. e: j dE' 

CO 

(2.3) 

for J L . n < O 
(2.4) 
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w h e r e , 

is on the bare surface 

and Q is the outward drawn normal to the surface at £ s . 

The p e r f e c t reflector condition represents a symmetry 

c o n d i t i o n . 

In diffusion problems the zero flux boundary condition 

is sometimes c o n s i d e r e d . This is the situation in w h i c h 

the flux on an e x t r a p o l a t e d boundary in a vacuum is set 

to z e r o . Usually this condition is not applied when the 

choice of the rather m o r e e l e g a n t vacuum condition is 

a v a i l a b l e . However in Section 5.2 where the ZION-1 reactor 

p r o b l e m is discussed the zero flux boundary condition 

w a s introduced by the o r i g i n a l i n v e s t i g a t o r s . N e v e r t h e l e s s 

a good approximation for the flux within a system can 

be m a d e with this condition if the distance of the extra-

p o l a t e d boundaries from t h e true boundary is chosen 

a p p r o p r i a t e l y . 

2.2 The M u l t i g r o u p A p p r o x i m a t i o n 

In the operation of a typical r e a c t o r , neutrons spanning 

the energy range from 10 M e V to less than 0.01 eV are 

p r e s e n t . The behaviour of the neutronic c r o s s - s e c t i o n s 

in this enormous energy range is rather c o m p l i c a t e d . 

A n y interaction could n o t be represented by a c o n s t a n t 

c r o s s - s e c t i o n . Hence, in order to use nuclear data in 

a p r a c t i c a l m a n n e r , the m u l t i g r o u p approximation is introduced 

in w h i c h the w h o l e energy spectrum of interest is dis-

cretized into -a-finite number of e n e r g y ' g r o u p s . The number 
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of energy groups employed in a particular analysis depends 

to a large e x t e n t on the type of problem and the accuracy 

d e s i r e d . S o m e t i m e s , only 2 or 3 groups suffice for t h e r m a l 

reactor calculations w h e r e a s for fast reactors the number 

of energy groups employed is of the order of t e n . 

Details of the m u l t i g r o u p approximation have been 

d e s c r i b e d e l s e w h e r e [16,18] but it can be written as: 

4TT 

+ V t i O 3 , 1 2 ^ 

w h e r e , 

(q* = total number of energy groups c o n s i d e r e d . 

The other v a r i a b l e s in the equation are as defined 

in E q . ( 2 . 1 ) e x c e p t that they refer to a particular energy 

g r o u p g . The fastest g r o u p in this approximation assumes 

the value g 3 ^ - w i t h the slowest being g r o u p (5* • 

Before w r i t i n g out the c o n t r i b u t i o n s in the g r o u p 

source t e r m , , it w o u l d be usual to separate the 

in-scattering c o n t r i b u t i o n s in the scattering term from 

w i t h i n the g r o u p scattering c o m p o n e n t and lump it together 

w i t h the source t e r m . T h e r e f o r e : 
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+ 5 , ( u ) 
(2.6) 

in w h i c h 

f ^ 

w i t a,:1 

3*3 

+ 
3*1 J 4 T 

( 2 . 7 ) 

+ Q,(i,tt) 
In order of a p p e a r a n c e , the source c o n t r i b u t i o n s 

are the s c a t t e r i n g , fission and fixed source t e r m s . A t 

each stage the c o n t r i b u t i o n s from other groups to the 

g r o u p under consideration is assumed to be k n o w n , w h i l e 

the w i t h i n - g r o u p scattering term involves the unknown 

g r o u p f l u x . If a d i r e c t , as opposed to i t e r a t i v e , m e t h o d 

is to be used for each group the w i t h i n - g r o u p scattering 

term m u s t be retained e x p l i c i t l y w h i l e the inter-group 

scattering terms are incorporated into the s o u r c e . 
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If only downscattering is considered then the summation 

index for the scattering term in Eq.(2.7) can be w r i t t e n 

as g ' - g - l i . e . 

+ Q,Gu) 

2.3 The Second-Order T r a n s p o r t Equation 

As w a s o u t l i n e d in Section 1.3 there are two main 

approaches in a finite e l e m e n t formulation of the neutron 

t r a n s p o r t e q u a t i o n . The first m e t h o d is the application 

of the method of w e i g h t e d residuals to the first-order 

equation w h i l s t the second u t i l i s e s a v a r i a t i o n a l p r i n c i p l e 

for the second-order e q u a t i o n . Since the latter approach 

is the m e t h o d employed in this t h e s i s , it is necessary 

then to m e n t i o n the properties of the second-order e q u a t i o n . 

The inherent a d v a n t a g e of the second-order equation is 

t h a t the leakage and removal operators are p o s i t i v e - d e f i n i t e 

and s e l f - a d j o i n t and this m a k e s it fairly easy to e s t a b l i s h 

v a r i a t i o n a l p r i n c i p l e s of the extremal k i n d . The v a r i a t i o n a l 

a p p r o a c h leads to a set of linear equations w i t h a s p a r s e , 

symmetric and p o s i t i v e - d i a g o n a l m a t r i x . B e s i d e s , the 

v a r i a t i o n a l p r i n c i p l e s are b o u n d a r y free [ 1]. 



- 41 -

2.3.1 Even- and odd-parity definitions 

The even- and odd-parity fluxes are defined as: 

C 1 J (2.9) 

The group s u b s c r i p t , g , has been omitted from the 

above definition but nevertheless the meaning is implied. 

Similarly, the even- and odd-parity sources and scattering 

cross-sections are defined as: 

2*(*.JU'K{l5 ( i ,4 a')±Is (t.-i 4 

Starting with these d e f i n i t i o n s , the second-order 

transport equation is derived as will be seen in the next 

few s u b - s e c t i o n s . The angular flux can then be expressed as 

a sum of the even- and odd-parity fluxes by 

-a) = + ^ " ( + 4 ) ( 2 

2.3.2 Coupled first order even- and odd-parity equations 

Since Eq. (2.6) holds for the whole range of the vector 

Si , it can also be written as 

( 2 . 1 0 ) 

( 2 . 1 1 ) 
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2 S ( + + 5 ( + - 4 ) ( 2 - i 3 > 

J4.1T 

On adding and subtracting Eq.(2.6) and (2.13) the following 

equations result: 

I* (±, 4.4')̂ , 4') 4J1' + 5+(±,4) 
4lT 

I l U , 4 . 4 ' ) < K ± . 4 ' ) c U ' + 

r4ir ( 2 . 1 5 ) 

Substituting Eq.(2.12) into these two equations it is seen 

J 47T 

•s 

'4-TT 

(2.34) 
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because the integral over all directions of the product of 

an even and odd function of 11 is z e r o . 

W e finally arrive at the following pair of coupled 

first-order differential-integro equations: 

-- / 4 . 4 ' ) 4 > " ( * , r ) d J L ' + S " ( + f l ) 

J 4 T T 

(2.17) 

( 2 . 1 8 ) 

2.3.3 Expansion of the scattering cross-section 

The scattering cross-section can be expanded in terms of 

Legendre Polynomials [16 ] f i.e.: 

oo 

t=o 

in which s E ^ i * ) , the scattering c o e f f i c i e n t s , are generated 

via the relation 
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Recalling the odd-parity scattering cross-section 

from Eq.(2.11) using Eq.(2.16) and observing the 

relation 

£(4.4') = P4 (-A.fi') 
( 2 .21 ) 

for JL even 

the odd-parity scattering cross-section becomes 

(2.22 

loda 

2.3.4 Spherical harmonics representation 

The following relation is derived from the Addition 

Theorem of Legendre Polynomials 

(2.34) 
tKm / iqm V -Si- / 

M<-JT 
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w h e r e , 

V M (-ft) i s t h e complex conjugate of ( A ) 

From Eq.(2.22) and (2.23), 

iodd m:-!1 

w h i c h on substitution into E q . ( 2 . 1 8 ) results in 

- 2 

+• 5 " ( > 4 ) 

1 ( 4 ) 

2.3.5 O r t h o g o n a l i t y r e l a t i o n s h i p 

Let 

f ( + a ) - - a . V < t > Y t , 4 ) + 5 " ( + 4 ) 

and Eq.(2.25) b e c o m e s 

£ r » J 4 i r 

(2.25 

(2.26) 

ftO d a ' < 2 - 2 7 > 
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Multiplying t h r o u g h o u t by and integrating over i i 

and using the O r t h o g o n a l i t y R e l a t i o n s h i p 

U ) dji = L L 
'4? 

(2.28) 

w e arrive at 

F4ir 

E U - ) f ( ± x ) dil' 

(2.29) 

f+TT 

2.3.6 The odd-parity flux equation 

Finally substituting E q . ( 2 . 2 9 ) and (2.26) into (2.25 

results in an expression for the odd-parity f l u x , 

1 

I odd v/4ir 

(2.30) 
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A similar expression is obtained for the e v e n - p a r i t y 

flux when the stages from E q . ( 2 . 2 2 ) till (2.29) are 

observed except that the e v e n - p a r i t y scattering cross-

section is used as the starting p o i n t and Eq.(2.17) is 

used instead of E q . ( 2 . 1 8 ) . 

2.3.7 The final expression 

Substituting Eq.(2.30) into (2.17) yields the second-

order e v e n - p a r i t y form of the transport e q u a t i o n , i.e. 

| o d d ftP v4»ir 
(2.31 ) 
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2.4 The Leakage and Removal Operators 

A t this stage of the discussion it is necessary to 

introduce two o p e r a t o r s . One reason is that they can be 

shown to be both self-adjoint and positive-definite [ 1 ] 

The properties allow one to establish extremal v a r i a t i o n a l 

p r i n c i p l e s . W e introduce operators and C to describe 

the equations in a compact m a n n e r . These o p e r a t o r s , 

serve as a shorthand for the lengthy expression in 

E q . ( 2 . 3 1 ) . 

If uCt,.a) be any arbitrary function of * and JL , 

the leakage o p e r a t o r , Q* , can be defined as 

(2.32) 

w h e r e , 

(2.33) 

or using the expression for from Eq.(2.23) 

(2.34) 
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The other operator is the removal o p e r a t o r , 

and is defined as 

(2.35) 

s 

ton 

o r , in terms of spherical harmonics 

Cu(± fft)
 s 2 t(f f4)u(t fft) 

(L 

W / - \ l v i * / \ l * / . . 
(2.36) 

lever\ m.-l" J ^ 

Hence it can readily be seen that Eq.(2.31) becomes 

+ C 4 » * f c . A ) - 5 Y u ) 

(2.37 

or in the m o r e u s u a l form 

(2.38) 
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2.5 Self-Adjoint and Positive Definite Conditions 

In order to apply variational methods to obtain m a x i m u m 

p r i n c i p l e s , t h e two conditions of self-adjointness and 

p o s i t i v e - d e f i n i t e n e s s m u s t be m e t by both the leakage and 

removal o p e r a t o r s . 

Taking the removal operator C as an e x a m p l e , the 

d e f i n i t i o n s of these two conditions are [ 1 ]; 

(i) The operator C is self-adjoint if 

( 2 . 3 9 ) 

or using the notation for the inner p r o d u c t , 

( 2 . 4 0 ) 

in w h i c h , 

( 2 . 4 1 ) 
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(ii) The operator C is positive-definite if 

< u ( r , n ) , C u k , n ) \ > O (2.42) 

w i t h equality if U is z e r o . 

Kaplan and Davis [ 55] h a v e shown that both the 

leakage and removal operators are self-adjoint and 

p o s i t i v e d e f i n i t e when the scattering cross-section w a s 

expanded in terms of L e g e n d r e Polynomials as in E q . ( 2 . 1 9 ) 

and (2.22). A c k r o y d [1 ] has extended this proof for a 

general scattering l a w . 

2.6 The -Functional from Maximum Principles 
A 

If be an a d m i s s i b l e function, chosen as an 

approximation for ^ f e / i ) , it can then be shown [1] 

t h a t , by applying maximum p r i n c i p l e s to E q . ( 2 . 3 8 ) , the 

following functional results: 

(2.43) 
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w h e r e , 

d v , dS are the v o l u m e and surface differentials 

D is the outward n o r m a l to the s u r f a c e s . 

Consideration of the boundary conditions for bare 

surfaces and perfect reflectors has resulted in the surface 

integral t e r m . When p e r f e c t reflectors are considered 

that term vanishes as it only applies h e r e to bare 

s u r f a c e s . The present t r e a t m e n t can be generalised so 

t h a t surface sources can be accounted for [3]. . 

A 
2 . 7 E x p l i c i t Expression for K ( 4 0 

A | | 

d J i j 
I odd J4ir 

- / - y ^ y x j * ) A i f e j ^ . ^ i i ] 
w h t fe J A J 

+ Zjj>(ij)S>(*.t)*L + z f j . v k + t i ^ S ' b n ) 

4 R 

l o d * J 4TT 
d i i ' d V 

A 

(2.44) 
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Equ.(2.44) is the general expression of the f u n c t i o n a l . 

A g a i n , simplifications are r e q u i r e d . Two n o n - g e o m e t r i c a l 

assumptions are m a d e in this thesis: 

(i) The source contribution is i s o t r o p i c , i . e . t h e down-

s c a t t e r i n g , fission and extraneous source contri-

butions are equal in all d i r e c t i o n s . This leads to 

The assumption is quite valid for the fission and 

e x t r a n e o u s source terms but the downscattering can be 

anisotropic to some d e g r e e . If anisotropic down-

scattering is s i g n i f i c a n t , the above relation is not 

t r u e . 

(ii) The w i t h i n - g r o u p scattering term is i s o t r o p i c , i . e . 

and 

for 

Applying condition (i) gives: 
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K(+)- I 1-J 

+ 
lode 

d a 

ftjr «/4* 

I even •»»•! J4T 
d a 

d V 

— j I | - 6 . o | d J l d S 
J s J4ir 

(2.45) 
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Applying condition (ii) in addition gives 

K ( 4 ) = 
4T 

2t(±) 
d i i 

14* 

( 4 ) [ x U j l ' ) J A J c m 

U j 

+ I [ 4 ) d i l } d v ( 2 . 4 6 ) 
M r 

r4ir 

As 

2JT 
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(Refer A p p e n d i x A in which XL has been explicitly expressed 

as (^oi) defined in Fig.2.1) Eq.(2.46) is simplified to 

K(4)= {- 4.vi(t.4) dii 

m 

+ 2 / <H*,4)S+(d;/i)dJ2 
I4J 

(2.47) 

d V 

— | J IA.oI+UA) dildS 
J 5 J 4 T 

Eq.(2.47) represents the K - F u n c t i o n a l for a general 

geometry w i t h isotropic source contributions and w i t h i n -

g r o u p s c a t t e r . 

2.8 The -Functional for Rectangular G e o m e t r y 

The p r e s e n t work lays emphasis on obtaining solutions 

to problems in rectangular g e o m e t r y . In particular only 

t w o - d i m e n s i o n a l (or x - y ) problems are s o l v e d . T h e r e f o r e 

it is necessary to express Eq.(2.47) for such a s y s t e m . 
A 

Any differences in the K ( ^ ) -Functional for d i f f e r e n t 
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Fig.2.1 The Rectangular Coordinate System 
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Fig.2.2 Inclination of a Bare Surface to the X-Axis 
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geometries w i l l originate from the expressions for 

4 V and |jl.Q|. 

For x - y g e o m e t r y , with r e f e r e n c e to Fig.2.1 and 2 . 2 , 

it is known that 

4 . V - J T 7 ( C O S « ! + sincoA) 

and 

(2.48) 

•Q.Q J H ? «in(et-«)| 
(2.49) 

in w h i c h c( is the angle between the x - a x i s and the bare 

s u r f a c e . To be m o r e p r e c i s e , c( m u s t be m e a s u r e d from the 

x - a x i s to the side of the bare surface w h e r e Q is directed 

o u t w a r d s . 

In such a g e o m e t r i c a l system 

d n E E 

'4ir -i 

air 

dco (2.50) 

as can be r e a d i l y seen from F i g . 2 . 1 . 

Using E q . ( 2 . 4 8 ) to (2.50), it is seen t h a t 



- 60 -

K f + ) -

JLTT 

X I | j -f-sinZw 
a / 34>V 

-hsin cO [ — 3b 

+ 2 / dV 

I TJLT 

5 i n ( o ( - o o ) | 4 > a ( ± y i , t o ) d ^ d e o d S 

( 2 . 5 1 ) 
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A 
E q . ( 2 . 5 1 ) then represents the -Functional i in x - y 

geometry for the specific case of isotropic scattering and 

isotropic source c o m p o n e n t s . Before we conclude it is 

necessary t o express the even parity s o u r c e , 

in terms of the d o w n s c a t t e r i n g , fission and extraneous 

source components in a r e l e v a n t form. 

2.8.1 The even-parity source term 

In the p r e s e n t d i s c u s s i o n the g r o u p g subscript w i l l 

be introduced for the q u a n t i t i e s expressed in Eq.(2.9) 

and (2.10). Recalling the g r o u p 3 source expression from 

Eq.(2.8) and using the definition of the even-parity source 

term in E q . ( 2 . 1 0 ) it can easily be shown t h a t 

S i ( ± , 4 ) = 

(2.52) 

+ 

in w h i c h the e v e n - p a r i t y inter-group scattering cross-

section and the e v e n - p a r i t y extraneous source term are 

defined in a similar m a n n e r as in Eq.(2.9) to (2.11), i . e . 
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(2.53) 

(2.54) 

In a similar m a n n e r to the stages from Eq.(2.22) to 

(2.24), 

% wen m- -x 

T h e r e f o r e , 

+ Q * s ( t , 4 ) 
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Since only isotropic scattering is considered then 

- o 

for Si greater than 0. 

Besides extraneous sources, when they are considered, 

are always isotropic. Thus Q j f ^ f l ) can be replaced by 

Q ^ C t ) . Hence 

frf J4TT 

3'= I i/4TT 

+ 4 k Q S ( * ) V L . I . . . S 

Although the angular integrals are not explicitly 

expressed in terms of Jjl and cO in Eq.(2.57), nevertheless 
A 

Eq.(2.51) and (2.57) represent the m ) -Functional and 

source term for x-y geometry but only for isotropic 

scattering. 

2.8.2 The odd-parity source term 

To conclude this chapter we indicate how anistropic 

sources can be accounted for through the odd-parity source 
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t e r m . This term is also essential if one w e r e to treat 

anisotropic scattering between groups as can be seen from 

E q . ( 2 . 4 4 ) . Hence 

s ; = v > ^ J ± ] 2 

+ q; ( M ) 

(2.58) 

The order of anisotropic scattering to be treated 

w i l l thus govern the limit to w h i c h summation over I is to 

be taken in the above e q u a t i o n . 
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C H A P T E R 3 

CORFU 

3.1 I n t r o d u c t i o n 
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3.3 A n A l t e r n a t i v e F o r m u l a t i o n 

3.4 T h e R e d u c e d Form of the L e a k a g e Term 

3.5 T h e R e d u c e d Form of the R e m o v a l Term 

3.6 T h e R e d u c e d Form of t h e S o u r c e T e r m 

3.7 T h e R e d u c e d F o r m of the B a r e S u r f a c e Term 

3.8 T h e R e d u c e d F u n c t i o n a l 

3.9 I m p l e m e n t a t i o n 

3.9.1 S o l u t i o n of the I n t e g r a l s over J* 

3.9.2 S o l u t i o n of the I n t e g r a l s over a) 

3.10 D i s c u s s i o n 
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"One should never forget that the functions 

like all mathematical constructions, are 

only our own creations, and that when the 

defini tion with which one begins ceases to 

make sense, one should not ask: what is it, 

but what is it convenient to assume in 

order that it remain significant?" 

Karl Friedrich Gauss 



- 67 -

3.1 Introduction 

C O R F U , as the title of this c h a p t e r , is an a c r o n y m for 

Constants Of the R e d u c e d - F U n c t i o n a l . As w a s seen in the 
A 

previous c h a p t e r , the -Functional involves both a 

spatial and an angular integration of each of the t e r m s . 

N a t u r a l l y the order of the integration is arbitrary but 

in the p r e s e n t w o r k angular integrations are p e r f o r m e d 
A 

first w i t h the result t h a t the K ( 4 0 -Functional is reduced 

to one in which the integrand depends directly on space 

o n l y . This functional is referred to as the Reduced-

Functional and the results of the angular integrations 

being c o n s t a n t s , hence the acronym C O R F U . The constants 

are d e p e n d e n t on the g e o m e t r y under consideration w h i c h 

happens to be rectangular in this c a s e . The number of 

constants depend on the accuracy of the angular repre-

sentation desired w h i c h is connected through the order of 

the t r i a l f u n c t i o n . T h i s w i l l be discussed in the n e x t 

section b u t , suffice to s a y , a higher order trial function 

is used whenever a m o r e accurate t r a n s p o r t order solution 

is r e q u i r e d . H o w e v e r , the number of constants w i l l also 

be g r e a t e r . The number of terms representing a trial 

function is equal to t h e square of its order and since the 
A A 

-Functional is q u a d r a t i c in , the number of 

con stants associated w i t h a trial function is equal to 

its order e x p o n e n t i a t e d to four. For e x a m p l e , a 1 - m o m e n t 

trial function (the s i m p l e s t ) gives only one c o n s t a n t 

w h i l e a 2-moment t r i a l function gives sixteen constants 

when angular integrations are p e r f o r m e d . The term 'moment' 

d e s c r i b e s the order of the trial f u n c t i o n . 
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Spatial integrations are performed after the Reduced-

Functional is obtained but this is the subject of the next 

c h a p t e r . 

3.2 The Trial Function 

The admissible function ^(^.ft) chosen as an approxi-

m a t i o n for ^ a s shown in Section 2.6 can be 

represented as: 

oO . £ t 

_ (3.1) 
S." O m>:i 

in w h i c h the angular d e p e n d e n c y has been represented by 

the set of Spherical Harmonics YimCft) a n ^ w h e r e b y fe) 

are the m o m e n t s of the spatial f l u x e s . The expression 
A 

in E q . ( 3 . 1 ) constitutes a trial function for the K (4*) 

F u n c t i o n a l . 

As seen from A p p e n d i x A , the Spherical Harmonics for 

x - y geometry are e x p r e s s e d in terms of JLi and co . Hence 

E q . ( 3 . 1 ) needs to be m a n i p u l a t e d into a form containing 

the shape functions and the angular components jx and cO. 

From A p p e n d i x B , t h e trial function can t h e r e f o r e be 

w r i t t e n as 

M - l . 

X*o 
L 

4- > /4H.(am)! 
4TT mr| 

ct (t)cos2mco-f- cb U ) s \ n Z « \ < D I 
. W+am) f(la+am + l) " J J 

( 3 . 2 ) 
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w h e r e 

M = n o . of m o m e n t s in the trial function. 

The m a n n e r in which the spatial fluxes have been 

subscripted ensures that they w i l l be numbered in an 

ascending order commencing w i t h u n i t y . 

In a similar manner the extraneous source 

is thereby e x p a n d e d as in Eq.(3.2) but since only the 

isotropic case is c o n s i d e r e d , 

3.3 An A l t e r n a t i v e Formulation 

From E q . ( 3 . 2 ) it can be seen that every term in the 

expression can be expressed in the following manner: 

T [ = c o n s t a n t x A s s o c i a t e d Legendre Polynomial 

x Function of co 

x cjj (±) (3.3) 

w h e r e , 

""|7 = ^th t e r m q £ t h e trial function 

and the s u b s c r i p t g is now r e - i n t r o d u c e d for the spatial 

f l u x e s . 

If w e d e n o t e , 

C; = constant 

Hi f/0 - A s s o c i a t e d L e g e n d r e P o l y n o m i a l 

Q j f 1 0 ) = Function of o> 

th 
for the i t e r m , 

T - C . H C y u l ^ W i ^ ) 
(3.4 
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and 
M

x
 M

: 

+3 (t.)>.») = 2  T =2  H i ^ C < 0 ) to (3.5) 

Eq.(3.5) is a more compact expression for the trial 

function than Eq.(3.2) and therefore easier to handle 
A 

when the trial function is substituted into the K(4>)-

Functional. 

The discussion in the next few sections will deal 
A 

wth the substitution of the trial function in the K l ^ ) -

Functional. The leakage term is the first to be considered 

This will be followed by the removal, source and bare 

surface t e r m s . 

3.4 The Reduced Form of the Leakage Term 

if L 
denotes the leakage term, then from Eq.(2.51) 

it is readily seen that 

I 

(3.6) 

x i i ^ j + ^ m ^ j ^ 

A x M * 

(3.7) 
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w h e r e , 

the dependence on Jik,oi and £ have been dropped from 

the notation for b r e v i t y . 

Substituting (3.7) to (3.9) in (3.6), 

L= -
l 

v i»l J=» 

^ / (i-XjHHjdyu 
H 

X 

+ 

cos
x
co (q-jGj d w 

r 

I sin 2ca<XjGi da) I 

(3.10) 

U1T 
4- J Sina<0 Q"; dco / ~ d V 



- 72 -

I f , 

l i s = J ( i - / ) H i H j d / i 
(3.11 ) 

at 

X = / cosaco (JiGj dco 
(3.12) 

Ut 
J^ st I sin 2w 65 dco (3.13) 

I.. « sinaco Qi (5j dco (3.14) 

T h e r e f o r e , 

ci Cjliii 

4 ^(mHmm^mm d v 

(3.15) 
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F i n a l l y , let 

E ^ = c i c j l i i i T\\j 

E ^ = CiCiL-jXij 

E a , = ^ c X I , 

> (3.16) 

•ij J 'j 

w h e r e b y 

+ dV 
(3.17) 

ies Ei;: , EJL-,; , E3;: H e n c e , the q u a n t i t i e s Ci;j , UjLij , L-3i,- are the c o n s t a n t s 

of t h e R e d u c e d F u n c t i o n a l for the leakage t e r m . 

3.5 The R e d u c e d Form of the R e m o v a l Term 

L e t R r e p r e s e n t the r e m o v a l term .which from E q . ( 2 . 5 1 ) is 

shown to be 
\ rJtii 

K  = ~l I I i A ^ ) [ z t 3 ( i ) 4 > 3 ( i , f « ) 

Iv j-l Jo 
(3.18) 1 n i r 

^ ( i ^ d / d c o ' J ^ c U o d V 
4tt 

LI jo 
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lei j«l 

(3.19) 

M* 

4TT Z , 
i»l 

T H P* ran 

2 M ^ d c o d V 

F i n a l l y , 

M* M* 

R = - / > > HiHjd^u / (J.^dco 
jal r-i 

£ 
(3.20) 

4TT is I 

A s b e f o r e , 

L = Hi Hi dju 

JIT 
G i d « / C j + J H j d j u ' / ( J . d c o ] d V 

(3.21 ) 

I * - Hi 
-i 

UTT 

X - = •̂i&j doo 

(3.22) 

(3.23) 

UTT 
(3.24) 
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T h e r e f o r e , 

/ M* M* 

^ (3.25) 

\ c r r \ « - 1 , j <+ 1 d V 
/ i a i J s i T s ; 7 C J - L 3 j s J s j J 

i»i j-l 
F i n a l l y , let 

Rj - ^ j l a g X a ( 3_ 2 6 ) 

and so 

/

Mx Mx 

»=l j - l 

(3.27) 

<fe 

(3.28) 

4 i r 

Mx 

2 ^ > J d V 

The quantities , are t h e r e f o r e the constants 

of the removal term in the reduced f u n c t i o n a l . 

3.6 The Reduced Form of the Source Term 

This is represented as 

d V 

' (3.29) 

Substituting for from Eq.(2.64) 
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S = Z t t o ) 

f•4TTZ, ( - ] J [ 4 " ' ) d / * dco 

4 t A 

+ A 

2*. & ) 
/-I Jo 

r»air 
A 

dyu'dto 
(3.30) 

As in the p r e v i o u s s e c t i o n s , upon substituting for 

the f l u x , 

M^ t 1 rair 

i»l J-l J 0 

a f r 
dec 

t( ^ ^ r 1 r A T m x 

4ir 

S f Q s W ) ^ / 
(3.31 ) 

M 
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Finally via E q . ( 3 . 2 2 ) , (3.24) and (3.27), 

A H M*t M* 

S=ZI [ w Z ^ D i 2 

3*' j s ? 
M1. 

(3.32) 

3.7 The Reduced Form of the Bare Surface Term 

Let this be represented as 

P=-
IT 

yj2j?sin(o(-uj) ^ j C + y M ^ c l r t d S (3.33) 

Substituting for (jĵ  t 

J=l 
h / l * H ; HJ cj/U 

(3.34) 

l i r 

sin(U-co) doO 
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L e t , 

"A 
H 

Hi Hj d/u 

x - sin(oUw) 

P=~ QCjL- I, ii J*ii % 

A n d , if 

B i j ~~ c . c j I 4 , J i n 

P-- B s < h , % d S 
5 i«l j»i 

3.8 The R e d u c e d Functonal 

F i n a l l y , since 

K ( ^ ) « L + R + S + P 



t h e r e f o r e , 

" i-I j-l 

+ + « * & ) ( & ) ] 

•.--I j=7 

S ^ i M^ M3-

3'"' W jTT1 

- / Z Z * * 

Js >1 j=| 

by substituting from (3.17), (3.28), (3.32) and (3.39) 

E q . ( 3 . 4 0 ) is the g e n e r a l form of the Reduced F u n c t i o n a l 

for x - y g e o m e t r y for a trial function of m o m e n t M . As 

can be seen by the d o u b l e summation and the limit of 

in each t e r m , the number of constants increases as M 
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for those with double subscripts and as M for those 

with single subscripts. Clearly then there will always 

be a practical limit to the number of moments chosen for 

the trial function. 

Tables 3.1 to 3.3 summarises the expressions for the 

constants as obtained in the last few sections. 

TABLE 3. 1 

EXPRESSIONS FOR THE CONSTANTS OF THE 

REDUCED-FUNCTIONAL 

Term Expression 

E , QCjliij X 

E îj CiCjLyXij 

Esij Ci Cj Ljj Xij 

F s q c j l s J+ij 

Bs C ^ I t J * 

ft CjI3iX; 
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T A B L E 3.2 

THE INTEGRALS OVER ̂ U 

Term Expression 

i , 
/ . ' ( l - / ) H i H j ty 

L . £ H; Hj 

L £ H; 

L , £ l / T O l K H ^ 

T A B L E 3.3 

THE INTEGRALS OVER O) 

Term Expression 

Jlij 
rn 

J cosx<o (q-jQj dec 

y s"in2o0 (J, Cj- du) 

f2* sin1** Ch (jj d<A 
JQ 

X j 
r** 
J 0 % ^ 

X 
fO.lt 

£ 

jT * doD 
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3.9 Implementation 

A computer package has been w r i t t e n to evaluate the 

angular constants for a trial function of any o r d e r . In 

practice there w i l l a l w a y s be a limit to the order of the 

trial function employed because of p r o b l e m s related to 

core s t o r a g e , processing time and b e c a u s e of the n e c e s s a r y 

compromise between a c c u r a c y and c o s t . (This a r g u m e n t 

assumes t h a t enough g r o u p s are chosen for the p r o b l e m 

and t h a t neutronic data are a c c u r a t e . ) 

The CORFU p a c k a g e can be extended to include 

evaluation of angular integrals for other types of 

g e o m e t r i e s and also to e v a l u a t e those constants that w i l l 

arise when a n i s o t r o p i c scattering is considered (and in 

this case an option for the level of scattering d e s i r e d ) . 

This constitutes the solutions of -L, to x-f as t a b u l a t e d 

in Table 3 . 2 . In CORFU the associated Legendre P o l y n o m i a l s 

are systematically g e n e r a t e d . The number of terms con-

structed i s , of c o u r s e , d e p e n d e n t on the order of the 

trial f u n c t i o n . 

The integrals are solved by using G a u s s - L e g e n d r e 

Q u a d r a t u r e Sets [IS]. In particular the NAG subroutines 

at Imperial C o l l e g e (and also w i d e l y a v a i l a b l e e l s e w h e r e ) 

w e r e relied u p o n . The specific a l g o r i t h m employed a l l o w s 

one to use u p to 64 q u a d r a t u r e p o i n t s . N a t u r a l l y , fewer 

points w e r e required w h e n evaluating the integrals w h i c h 

contain the lower order L e g e n d r e P o l y n o m i a l s . 

3.9.1 Solution of the Integrals over 
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A n a l y t i c a l integration was n o t used here b e c a u s e 

n u m e r i c a l integrations for polynomials using the Gauss-

L e g e n d r e Quadrature Sets are a c c u r a t e [ 19] and can be 

easily p e r f o r m e d on a c o m p u t e r . Of course the other 

reason for using n u m e r i c a l integration is because the 

L e g e n d r e Polynomials associated w i t h any m o m e n t t r i a l 

function are systemat ically g e n e r a t e d and t h e r e f o r e 

n u m e r i c a l l y i n t e g r a t e d . j 

3.9.2 Solution of the integrals over 

The integrals over W are as shown in Table 3.3. 

However these integrals involve t r i g o n o m e t r i c functions and 

it w a s trivial to solve them a n a l y t i c a l l y , thereby avoding 

the use of G a u s s - L e g e n d r e Q u a d r a t u r e S e t s , as w a s performed 

for the integrals over . The results of these integrations 

are summarised in A p p e n d i x C . T h e s e results are also 

s y s t e m a t i c a l l y p r o d u c e d by the CORFU module for trial 

functions of any o r d e r . 

3.10 Discussion 

W i t h r e f e r e n c e to Table 3.1, all those terms w i t h 

d o u b l e indices can be regarded as elements of ( M z x M x ) 

m a t r i c e s w h e r e M is t h e order of the chosen trial f u n c t i o n . 

H o w e v e r , these c o n s t a n t s are s y m m e t r i c . For e x a m p l e Ei^ 

is e q u a l to Eij,- . T h e r e f o r e w h e n high order t r i a l functions 

are u s e d , this fact can be u t i l i s e d to m i n i m i s e the 

c a l c u l a t i o n s and s u b s e q u e n t storage of the c o n s t a n t s . 
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The constants Eijj and E3jj are equal in m a g n i t u d e 

w h e n the subscripts correspond but some of them differ 

only in the s i g n s . 

Although t h e constants F]j are considered s y m m e t r i c , 

due to o r t h o g o n a l i t y of spherical harmonics in a'ctuality 

Fij - 0 if 

This fact is u t i l i s e d in storage and computation con-

siderations w h e n the global m a t r i x is a s s e m b l e d . 

The values of B y are d e p e n d e n t upon d , i . e . the 

angle between a bare surface and the x-axis as shown in 

Fig.2.2 In x - y problems the v a l u e s of o( are n a t u r a l l y 0, 

Tr/2,TT ,3TT/Z if only h o r i z o n t a l and vertical sides are 

c o n s i d e r e d . W h e n these values of oi are considered it was 

f o u n d that the v a l u e s of By are similar for d ' O and ck- 7T 

on the one hand and for and on the other 

b e c a u s e 

|sin (o<± TT-oo)| = |-̂ 'in(c(-uj)| = |s'.n(*-uo)| 

Even then the o n l y difference in the two sets lie in 

d i f f e r e n c e s in signs w h i l e the m a g n i t u d e s remain the s a m e . 

As for b ; , t h e only set of constants with a singular 

s u b s c r i p t , it w a s found that 

Dj = fif for L « I 

= 0 for J- > I 

A g a i n this r e s u l t w i l l be utilised in reducing the com-

p l e x i t y of E q . ( 3 . 4 0 ) . 
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Hence with the observed results from CORFU Eq.(3.40) 

is now simplified as 

JV W jTr 

trr1 

2 - F J + + 
3's| 

J33 J l 

d V 
(3.41 ) 

\3i l3j 
fS i- l j=i 

To conclude this c h a p t e r , the constants for a 3-

m o m e n t trial function are displayed in Tables 3.4 to 3.6 

to e m p h a s i s e the points discussed a b o v e . Table 3.4 

c o n t a i n s the constants for the three components of the 

l e a k a g e t e r m . The results for Fij and D; have been grouped 

t o g e t h e r in Table 3.5. Finally T a b l e 3.6 display the two 

sets of results for the bare surfaces determined by the 

v a l u e of o(. 
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TABLE 3.4 

THE CONSTANTS OF THE LEAKAGE TERM 

VALUES OF El 
1 3.33333E-G1 0 2 -1.490716-01 1.01015E-C1 3 1.B2574E-01 -4.12393E-02 * 0 n 5 0 -1.23206E-01 6 0 1.49351E-01 7 9 0 6 n -3.43604E-02 9 0 0 

-1.4997 IE-01 0 2.33095E-D1 0 -1.166425-01 0 0 "4.12393c-32 -1.27775E-01 0 1.C 1D15--01 
0 0 1.49351E-01 0 0 

-3.4»€04 £-02 

1.92574E-01 0 • 1.16642E-01 0 2.14236E-01 1.09109E-0 1 0 0 2.60820E-02 0 »4.12393E-0 2 •2.436045-02 0 0 1.0910 9£-01 2. 27271E-01 
C 0 

0 0 0 0 0 0 2.14236E-01 1.091C9E-01 0 0 n o -4.12393E-02 -3.43604E— 0? 0 0 1.09109E-01 2.27273E-01 

- 1. 27775E-01 
2.60829E-0? 

9 
2.46753E-91 
-1.23206E-01 

0 
9 
0 

VALUES Cr E 2 
0 0 0 0 0 p 3.6514 8E-01 u 0 0 
c 9 0 0 p 0 9 -6. 6720 Et-02 

0 0 C 2.G2031E-01 0 0 •2.33285E-01 0 0 •2. <*6««11£- 01 0 0 2. 0 20316-01 0 0 6.67208E-02 0 0 

0 0 
C 0 0 0 0 •2.18218E-01 0 
0 0 6.87208E-0 2 0 0 2.13216E-0 1 0 

3. 6514BE-01 3 -2. 33295E-01 9 0 2.1B219E-91 0 0 5.21641E-02 0 0 -6.87298E-92 0 0 -2. 1B213E-P1 0 0 0 

0 
c 
3 

5.21641F-32 
a 
0 

2.4641IE-91 
C 
9 

VALUES OP E 3 
1 3. 33332E-C 1 0 2 -1.490716-C 1 -1.C1015E-C1 3 -1.825746-C1 -4. 12393E-G2 4 0 r 5 0 1 • 2320 6E-0 1 
6 0 1 • 49 35 IE- 0 1 7 0 0 
8 0 3.43604E-02 9 0 0 

-1.4 9071E-01 0 2. 3 S395E-31 0 1.16642E-C1 0 0 — 4. 12393E—32 -1.27775E-01 0 -1.G1015E-01 0 c 1.49351E-01 0 0 P 3.436045-02 

1.82574E-21 0 1.16642E-91 t 2.14286E-01 •1.39199E-01 0 
c • 2.608 20E-0 2 P • 4•12393E-0 2 3.43604E-3 2 0 0 •1.0910 9E-0 1 2.27 273E-01 0 0 

3 0 0 0 0 9 2.14286E-01 -1.09109E-01 0 0 O 0 —4.123932-92 3.4 3694E-0? 0 0 -1.09199E-01 2.272 + 3E-31 

•1.2777EE-01 
•2.6082CE-02 

r, 
2.46797 E-01 
1.23206E-01 

0 
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TABLE 3.5 

THE CONSTANTS OF THE REMOVAL AND SOURCE TERMS 

VALUES OF F 
i.oooDOE*or 0 c 0 0 c c n 0 0 

r 5.OOOOOE-Ol 0 0 c n 0 D 

0 0 1.ccc:o"*oo 0 0 
0 0 0 B 0 c 5.000C0E-91 0 0 0 0 

r 0 0 0 5.OOOOOE-Ol C 0 B 0 
D C 0 0 5.OOOOOE-Ol 0 0 

0 0 9 0 0 D 5. 000 90E-91 0 n 
G 0 0 0 0 0 5.0000DE-C1 

0 
c 
0 
0 

1.0000f)£4 GO 

VALUES OF O 
3. 5̂ QlE4CE 
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TABLE 3.6 

THE CONSTANTS OF THE BARE SURFACE TERM FOR HORIZONTAL 

AND V E R T I C A L INCLINATIONS OF THE BARE SURFACE 

WITH THE X - A X I S 

VALUES OF e (ALPHA=0 OR TT> 
5.00921E-C1 •2.<+ 735 OE-C 2 •1. 3970 6E-L1 •1. 07 0 3 2E-01 . 71 it'E-D1 •2. 96305E-C2 r 0 • 2.33736E-02 1.198605-01 -2.«i705 3E-C2 2.23023E-01 0 n -3. 28820E-02 2.76137E-02 0 

-1.397085-01 3 3.907305-01 0 9.568335-9? 3 0 -3.382915-92 -l.R 07 C2-- 01 0 -1.070325-01 0 0 2.5C3S3t-91 2. 283735-92 0 0 2.3 2537£-02 

-1.71163E-01 -3.268205-0 2 9.56933E-9 2 2. 25373c.- 0 2 2.73L385-D1 -1.062 8 5E-01 0 0 -1.20"*L7E-0? -6.893875-0 3 -2.96305E-C? 2.76137E-0 2 0 C -1.06235E-01 2.98009E-D1 0 9 

0 D 0 0 D 0 3.12500E-31 •6. 950 ?<+E- 02 0 9 0 0 •3.?82Q1Z-92 2. 32537E-C2 0 o •ft.950 3LE-02 
3. C7617E-01 

•2.337365-0? 
• 1 • 107 0 25- 01 
• 1.203L7E-G2 

0 
3.99F51E-C1 
1.1986 0 E-C1 

n 
•6.893975-03 

0 

VALUES OF B (AL*HA=T/2 OR 31T/2 ) 
5.00021E-G1 2.«+7t>5 OE-O? •1. 3970 St-Cl 1. 07 0 3 2E- 0 1 1.711635-01 •2.96 005E-0 2 9 
•2.33736E-02 •1. 1986 OE-O1 2.<«705 0E-02 2.23023E-G1 
•3.2692 0E-02 •2.76137E-C2 0 0 

-1.3970PE-01 9 3.9C730E-01 0 -9.56E335-02 0 0 -3.3 8 291F- 3 2 -1.<«C7{:2C-91 0 1. C703?£-91 0 9 2.FU8P3E-31 2.28373E-02 0 0 -2.3 25375-02 

1.71163E-01 - 3. 26P 20E- 0 2 - 5.56933E-0 2 2.29373E-0 2 2. 73«»38fr-0 1 1.062 BEE-0 1 0 0 1.2C3U7E-0 2 -6.99397E-0 3 - 2. 960 05E-9 2 -2.76137E-0 2 0 0 1.062955-01 ?• 990 0*»E-0 1 0 0 

0 0 0 0 0 0 3.12500E-01 8. 9 50 3<*C- 0? 0 9 0 0 •3.38291E-0? •2.325375-02 9 0 8.95D3UE-02 3.97617E-D1 

•2.337365-0? 
'1.L07025-01 
1.2G3L75-02 

0 
3.99551E-01 
1. 19950E- 31 

0 
6. 393975-03 

0 
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CHAPTER 4 

E L E M E N T S , BANDS AND SOLVERS 

4. 1 Introduction 

4. 2 The Element 

4. 3 The Shape Functions 

4. 4 The Element Stiffness M a t r i x 

4. 5 Numerical Integration 

4. 6 Assembly 

4. 7 The Global Stiffness M a t r i x 

4. 8 Fixed Source and E i g e n v a l u e Problems 

4. 9 Solution Schemes 

4. 10 The O u t - o f - C o r e Solver 

4.11 Implementation 
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"Finite elements ceased to burgeon long ago, 

and the first harvest is in. Most consumers 

are satisfied. Those suppliers who planted 

their programs early are jubilant. It is a 

growth industry " 

Irons and Ahmad [45] 
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4. 1 Introduction 
A/ A 

In the previous chapter the R e d u c e d - F u n c t i o n a l , K C ^ ) , 

was obtained together w i t h the constants resulting from 

the angular integrations. The stage is now set for 

incorporating the finite element techniques into the 

a n a l y s i s . Performing spatial integrations is one of 

the features at this s t a g e . This is performed by approximating 

the spatial fluxes using the shape functions of the chosen 

type of element in terms of its nodal v a l u e s , i.e. values at 

prescribed points of the e l e m e n t . However before this is 

embarked upon the essential features of elements and shape 

functions are reviewed in the next two s e c t i o n s . 

To begin w i t h , the shape functions and associated nodal 

values are substituted into the R e d u c e d - F u n c t i o n a l . Since 

the F u n c t i o n a l is derived from m a x i m u m p r i n c i p l e s , its first 

derivatives with respect to the nodal values will be z e r o . 

Once this is obtained the spatial integrations in terms of 

the shape functions are then p e r f o r m e d . This results in a 

set of equations (equal to the number of nodal v a r i a b l e s ) to 

represent the conditions governing the e l e m e n t . In m a t r i x 

notation these equations can be represented by the e l e m e n t 

stiffness m a t r i x , the unknown nodal values and source v e c t o r s . 

Detailed discussion of these aspects are found in Section 4.4. 

The n e x t section then discusses the union of the individual 

elements into the complete system that describes the p r o b l e m . 

In the final sections d i s c u s s i o n w i l l dwell upon the types 

of p r o b l e m s e n c o u n t e r e d , nature of the global stiffness m a t r i x 

and its relation to storage r e q u i r e m e n t s , solution algorithms 
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and the implementation of the computer code that has been 

set u p . 

4.2 T h e Element 

The selection of particular elements and the definition 

of the shape functions associated w i t h the chosen element 

is a m o s t important subject in finite element a n a l y s i s . 

This is obvious because of the many types of e l e m e n t s 

a v a i l a b l e and certainly some types of elements w o u l d 

be better suited to the geometrical configurations of 

certain p r o b l e m s . A l s o it is m a t h e m a t i c a l l y m o r e demanding 

to represent a complex or h i g h e r - o r d e r e d element and 

in general these elements yield m o r e accurate results 

whe n compared with simpler e l e m e n t s . H o w e v e r , a trade-off 

sets in when one takes into account the level of accuracy 

required and additional computation effort and storage 

required in utilising a higher-ordered e l e m e n t . 

In order to fully describe the type of element 

employed one needs four pieces of information [42 ]: 

(i) shape of the element; 

(ii) number and type of n o d e s ; 

(iii) number of nodal v a r i a b l e s ; 

(iv) type of shape f u n c t i o n s . 

T h e shape of the e l e m e n t and the number of nodes are 

easily d i s c e r n i b l e . When one refers to the type of nodes 

it m e a n s that nodes are either exterior or interior n o d e s . 

Exterior nodes are those lying on the corners or along the 

edges of e l e m e n t s . They represent the point of connection 

between bordering e l e m e n t s . On the other h a n d , interior 
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nodes lie inside the e l e m e n t and d o not connect with 

n e i g h b o u r i n g e l e m e n t s . 

The number of nodal variables is related to the 

number of degrees of freedom per n o d e and the number of 

nodes per e l e m e n t . In the previous chapter it was shown 

t h a t the number of terms in the expansion of the angular 

flux w a s equal to the square of t h e order of the trial 

f u n c t i o n . H e n c e , if a t w o - m o m e n t trial function w a s 

used over a domain discretised by quadilaterals w i t h four 

nodes per element then the number of nodal v a r i a b l e s per 

e l e m e n t would be s i x t e e n . 

The last c a t e g o r y , i.e. item (iv) refers to the many 

types of functions t h a t could serve as shape f u n c t i o n s . 

P o l y n o m i a l s are by far the m o s t popularly used f u n c t i o n s . 

This is because they are easy to m a n i p u l a t e m a t h e m a t i c a l l y , 

i . e . they can be differentiated and integrated w i t h o u t 

d i f f i c u l t y , a point that w i l l be emphasised in the later 

sections of this chapter when the element stiffness matrix 

is d e r i v e d . Needless to say then only polynomials are 

c o n s i d e r e d in the derivation of the shape functions 

used h e r e . 

Since the fundamental p r e m i s e of the finite element 

m e t h o d is that a continuous domain can be a c c u r a t e l y 

m o d e l l e d by an a s s e m b l a g e of simple shapes it is not 

surprising that m o s t finite elements are g e o m e t r i c a l l y 

s i m p l e . The 3-node straightsided triangular e l e m e n t is 

the simplest t w o - d i m e n s i o n a l e l e m e n t and is the m o s t 

p o p u l a r l y u s e d , since an a s s e m b l a g e of triangles can 

r e p r e s e n t fairly w e l l a t w o - d i m e n s i o n a l domain of any s h a p e . 
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N e x t in vogue is the four-node rectangular e l e m e n t . 

It enjoys the advantage that an assemblage of such elements 

can be easily constructed because of its regular s h a p e . 

In addition to the v a r i o u s types of straight-edged 

elements that have been d i s c u s s e d it is also possible to 

construct elements with curved b o u n d a r i e s . The so-called 

isoparametric family of elements belong to this c a t e g o r y . 

Experience has shown that these elements have been especially 

h e l p f u l in the solution of t h r e e - d i m e n s i o n a l problems 

w h e r e it is often necessary to reduce the cost of com-

putations by choosing fewer elements [42]. However 

isoparametric elements are not employed here since the 

problems solved are confined to regular g e o m e t r y . 

In the p r e s e n t work b e c a u s e of the restriction to 

regular geometry only right-angled trianges and rectangles 

are used in the choice of e l e m e n t s . 

4.3 The Shape Functions 

To illustrate how shape functions arises the simple 

example of a 3-node triangle is e x e m p l i f i e d . For such an 

e l e m e n t , 

4 > - + + ( 4 > 1 ) 

is the form of the polynomial used to approximate the flux 

within the e l e m e n t . 

Let ( x ^ y j for k = 1,2,3 be the coordinates of the 

nodes of the t r i a n g l e and the corresponding values of 
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the flux. Therefore one can w r i t e three equations using 

relation (4.1) and from the solution of these three 

equations c( e, and can be obtained in terms of 

for k = 1,2,3. Substitutiing back in (4.1) and 

re-arranging one arrives at 

I 'i -a. -a ' * '3 (4.2) 

H e r e , the N ^ are functions of x,y and the coordinates of 

the nodes and they represent the shape functions of the 

triangular e l e m e n t . 

In general the spatial flux can be represented over 

the ith element as 

( * , s ) - > N k u l ? (4.3) 

where, 

L = number of nodes in the element 

N * = the shape functions of the e l e m e n t 

UK = nodal values of the spatial flux 

Note that the group representation g is posed as a 

superscript for the nodal fluxes purely for the con-

v e n i e n c e of n o t a t i o n . 

An important property of the shape functions is that 

a shape f u n c t i o n , N * , w i l l be unity if the coordinates 

of its associated node is substituted into it and it w i l l 

be zero if the substitution is achieved with the co-

ordinates of the other n o d e s , i.e. 
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I k - J L 
N k ( * * , y J = 1 

O kjtjl (4-4) 

The Lagrangian family of rectangular elements p r o v i d e 

an easy and systematic m e t h o d of generating shape 

functions of any order [1021. This is achieved by the 

m u l t i p l i c a t i o n of a p p r o p r i a t e polynomials in the x- and 

y - a x e s . The derivation of the shape functions for the 

Lagrangian elements is shown in Appendix D . Fig.4.1 shows 

the first three members of the Lagrangian family with 

equal number of nodes in both the x- and y - d i r e c t i o n s . 

(7 
The number of nodes are 4, 9 and 16 respectively and because 

of the form of the shape functions produced (see A p p e n d i x 

D) they are naturally referred to as the b i - l i n e a r , bi-

quadratic and bi-cubic e l e m e n t s . For brevity they w i l l 

be referred to as l i n e a r , q u a d r a t i c and cubic e l e m e n t s . 

In the present work all the elements used are Lagrangian 

e l e m e n t s . 

In p a s s i n g , the Serendipity family of elements m u s t 

be m e n t i o n e d as they relate to rectangular e l e m e n t s . 

These e l e m e n t s , w h o s e name was coined by Zienkiewicz [ io2 ] , 

resemble the Lagrangian family of elements except t h a t 

they do not possess any internal n o d e s . A l t h o u g h they are 

not employed at all in the p r e s e n t work they w i l l be 

recommended for further investigation by future w o r k e r s . 

This investigation is w o r t h w h i l e because of the p r e s e n c e 

of the large number of internal nodes and better curve-fitti 

properties of the higher order Serendipity elements [102]. 



- 97 -

Fig.4.1 The first three m e m b e r s of the Langrangian family 
of elements 
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Is there any economic or other types of advantages to 

be gained by increasing the order (and hence the c o m p l e x i t y ) 

of an element? The answer is not an easy one although 

generally as the order of an e l e m e n t increases the total 

number of unknowns in the w h o l e domain can be reduced for 

a given level of a c c u r a c y . However economic advantage 

requires a reduction in the total amount of computations 

and the effort in setting up the input d a t a ; and this does 

not necessarily follow from a reduction in the total number 

of unknowns (in which case the equation solving times may 

be reduced) as the time required for formulating the e l e m e n t 

i n c r e a s e s . N e v e r t h e l e s s it w i l l be seen that linear 

elements do not perform as w e l l as the higher-ordered 

e l e m e n t s . In general quadratic elements appear to p r o d u c e 

o p t i m u m r e s u l t s . 

4.4 The Element Stiffness M a t r i x 

As was outlined in Section 4.1, the element stiffness 

m a t r i x together with the unknown and source vectors 

c o n s t i t u t e the set of linear equations governing the 

conditions w i t h i n the element under c o n s i d e r a t i o n . To 

a r r i v e at this stage w e need to carry on from where w e 

left off in the last chapter w i t h the equation of the 

R e d u c e d - F u n c t i o n a l , i.e. E q . ( 3 . 4 1 ) . F i r s t , each m o m e n t of 

the spatial flux is replaced by its finite element form in 

g e n e r a l t e r m s , i . e . Eq.(4.3) and h e n c e , 
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From the maximum p r i n c i p l e s , the first derivatives 
M A 

of K ( 4 3 ) w i t h respect to the nodal fluxes are zero, 

A , A 

3 K ( 4 > J 
du 

= O (4.6) 

and so, 

3K(4>f) 

Z M 3 

m I , Z , U 

dm km = / f i i [ ( E s - % + ^ 
»/V j=| JZrl 5TP 

+ ^ d j Z ^ Z ^ ^ 
J=l f»l U j = l 1=1 

+ 
T J K ^ F 

+ E 
jt-1 

- 2 f l t a ( i ) F h k M m ^ M ^ - N X ] 
L fi.l 1=1 

a-'t 

+ 2 W ^ H . N X (4.7) 

1=1 

+ 2 r ^ y ( t ) M t < 

- I K m 
'S >1 

• dS = o 

h = U , M l 
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Recalling the results of Section 3.10 it is known 

that owing to symmetry the paired values (^Iwj^Eijh), 

(E1SEa>),(E3hi,EJjk) and (Bhi.Bju) » e equal. 
Since in x-y geometry the volume integrals are double 

integrals over x and y and the surface integral is a 

single integral over either x or y , Eq.(4.7) can be 

written as: 

M l . . J L < h E f l 
3 ^ . - Z , 1 d>. Z , 3x 

+ 2 
• F E ^ ' - T H 

- 2 (±) [m*^ NC uk\ dxdy - SI(K ) [fttj^H^ dxdy] 

JJ JJ CT 

+ n > ' h l 2 S s f e J / / ^ J N t u i d x d . 

+ J N , ^ dxdy + § 3 W / K d x d 3 

NtUji d ^ = o 

rvi s I, 2;. .. . L 
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in w h i c h dp takes up dx or dy according to the surface. 

A t this stage it would be proper to compact Eq-(4.8 

by using a notation for the spatial integrals. T h i s is 

h e l p f u l when the evaluation of the spatial integrals are 

d i s c u s s e d later o n . 

L e t , 

V C = 

mi 

w r . = m i 

d x d y 
3 x ax ^ 

V L ' 1 1 * a ? B 

^ d x d u 
3 x D 

3N* 3 N . dx d j 

(4.9) 

Y a = N m N t dx dy 

U m = d x d y 

X t - y N m N a 

J 
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Substituting the expressions from Eq.(4.9) into (4.8) 

and grouping the source components to one side of the 

e q u a t i o n , 

Mx L 

S T O I F 2 E I > + W * V C ) + w 
>1 

3jW r ̂ ml Uj£ 

+ [ 2 t j ( ± ) F , K - V U 3 

+ 2 

M* L 

SjW y > Tn* Ujl 

(4.10) 

+ 2 x a 

8*1 

L 
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Gathering the terms on the L . H . S . under the common 

s u m m a t i o n s , 

S S T j=l M 
IJ±)L 

93 
ml 

+ - i , 2 s J ± ) J v . 

+ Z B i T O j u/e 

+ 2 
3'* I 

(4.11) 

m - 1,2,... L 
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If w e now introduce 

* - i s N-w:; + ( c • wr. j+ze^mcJ 

and 

d1" - Z ^ t j s w ] > V „ . u i 
u'=l 0- l' JM 

u 

E q . ( 4 . 1 1 ) is now re-written as 

NT L 
km J 

Ojt 4J I = d 

(4.12) 

(4.13) 

(4.14) 

h = M 2 

r* L. 
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The d o u b l e subscripted from of Eq.(4,14) is rather 

u n w i e l d y . To simplify m a t t e r s the indexing over j and JL 

can be combined and another similar one for fl and m . 

If the new subscripts are now ^ and ^ , w e have 

I p» i 

(4.15) 

l , z , T 

w h e r e , 

T - L M 1 

and ^ and ^ can be related to the original indices in 

the following m a n n e r : 

v H . 1 6 ) 
^ = + h 

The indexing achieved in this manner ensures that all 

the components of the angular flux at a node can be 

p h y s i c a l l y located at the same nodal p o i n t . 

In m a t r i x n o t a t i o n , the system of equations in (4.15) 

can be expressed as 

AiyJ - 4 
(4.17) 

in w h i c h m a t r i x is of dimension (LM 2 x L M 2 ) and the 

C it 
vectors U<j and Cl^ are of length L M 2 . The s u p e r s c r i p t 

6 is introduced to signify that Eq.(4.17) represents the 



- 107 -

e l e m e n t equation and s u b s c r i p t g of course denotes the 

neutronic g r o u p . The m a t r i x jA^ is very often referred to 

as the element stiffness m a t r i x , the parody on the word 

stiffness being due its c o i n a g e by structural engineers 

during the early days of the finite element m e t h o d . In 

essence Eq.(4.17) is the simplest building block in the 

problem a n a l y s i s . 

4.5 N u m e r i c a l Integration 

Should the spatial integrals represented by 

Eq.(4.9) be evaluated n u m e r i c a l l y or analytically? 

According to Irons and A h m a d [45] numerical i n t e g r a t i o n , 

in their own e x p e r i e n c e , always p a y s . This is attributed 

to the fact that analytical solutions take longer times 

and m i s t a k e s frequently o c c u r . A l s o , with numerical 

m e t h o d s the procedure is u n i f o r m and provides a modular 

feature to the c o d e . In large codes m o d u l a r i t y is 

i m p o r t a n t . When irregular m e s h e s are used analytical 

integrations become impractical and this is also true 

when curved elements are e m p l o y e d . Hence it is not ' 

surprising t h a t numerical integration has b e c o m e an 

increasingly important part of the finite e l e m e n t 

t e c h n i q u e . 

During the initial stages of this work the integrals 

w e r e evaluated numerically by the use of G a u s s - L e g e n d r e 

q u a d r a t u r e s e t s . Since only regular elements w e r e used 

a switch to analytical integration was m a d e later on to 

provide a c h e c k . There w a s no difference when results 
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w e r e c o m p a r e d , but the switch to analytical methods was 

based purely on grounds of regular elements and p o r t a b i l i t y . 

However the m o d u l e w h e r e integrations are performed 

numerically has been left intact as it is anticipated 

that numerical integrations w o u l d be performed when 

irregular elements become a feature during the later 

developments of the finite element techniques in neutronic 

a p p l i c a t i o n s . 

4.6 Assembly 

In Section 4.4 the single element equations for the 

nodal values w e r e d e r i v e d . Since the element is the basic 

u n i t of the w h o l e continuum t h e r e f o r e the complete set of 

equations w o u l d come about from combining the e l e m e n t a l 

e q u a t i o n s . This can be represented by 

(4.18) 

in w h i c h 

(4.19) 

e*i 

Here N denotes the number of elements in the s y s t e m . 

The subscripts i,j here refer to the numbering system for 



- 109 -

the global - s y s t e m . Note that the numbering system in 

the single element E g . ( 4 . 1 5 ) , (4.17) will take the values 

from 1 to L M 2 but when referred to the complete system 

there has to be a transformation into the appropriate 

global v a l u e s . 

Fig.4.2 demonstrates how the global stiffness m a t r i x 

is constructed for a ( 2 x 2 ) grid of 4-node rectangular 

elements using a 1 m o m e n t trial function. The figure has 

been adapted from a more detailed illustration by 

Zienkiewicz [1021. As can be seen the global numbering of 

each element is different from its local n u m b e r i n g . Also 

nodes lying between elements receive contributions from 

each of the e l e m e n t s . For example node 5 receives contri-

butions from all the elements w h i l e corner nodes 1, 3, 7 

and 9 receive contributions from only 1 e l e m e n t e a c h . 

In a l l , Eq.(4.15) represents L M 2 e q u a t i o n s . There-

f o r e , if a 2-moment trial function were used to approximate 

the angular flux in a 4-node rectangular e l e m e n t then 

there w o u l d be 16 unknowns embodied in 16 e q u a t i o n s . This 

can be contrasted against only 4 unknowns in 4 equations 

for a 1-moment trial f u n c t i o n . Of course the large 

number of unknowns and equations for higher m o m e n t s of 

the trial function means that there'"'as to be a limit in 

the order of the trial function for practical p u r p o s e s . 

When compared against other applications using the finite 

e l e m e n t m e t h o d it can be seen that conditions are m o r e 

demanding when trial functions of two or m o r e moments are 

u s e d . 



3 5 4 

1 2 

- F + + 

0 
1 

Fig.4.2 Construction of the global stiffness m a t r i x 



— 111 — 

4.7 The Global Stiffness M a t r i x 

The g l o b a l stiffness m a t r i x for g r o u p 9 , A g , is 

s y m m e t r i c and p o s i t i v e - d e f i n i t e . This is the r e s u l t of 

using t h e v a r i a t i o n a l formulation of the stiffness 

e q u a t i o n s . On the other h a n d , had one a p p r o a c h e d the 

finite e l e m e n t formulation from a w e i g h t e d r e s i d u a l p o i n t 

of v i e w the resulting g l o b a l m a t r i x may not n e c e s s a r i l y 

be s y m m e t r i c and p o s i t i v e - d e f i n i t e e x c e p t in the least 

squares c a s e . 

A n o t h e r feature of the m a t r i x is that it is b a n d e d , 

that is to say the n o n - z e r o c o m p o n e n t s are to be found in 

a b a n d e d region c e n t r e d round the p r i n c i p a l d i a g o n a l . 

Fig.4.3 e x e m p l i f i e s this p o i n t . The term h a l f - b a n d w i d t h 

refers to the w i d t h of one-half of this band including the 

p r i n c i p a l d i a g o n a l and is d e s i g n a t e d as Nl^ in F i g . 4 . 3 . 

T h e banded and s y m m e t r i c n a t u r e of A 5 ensures t h a t the 

w h o l e m a t r i x of d i m e n s i o n ( Ne<j,X Ne<^ ) need not be c o n s t r u c t e d 

and s t o r e d . Only the e l e m e n t s of shaded region of the 

m a t r i x in F i g . 4 . 3 need to be s t o r e d . This enables con-

s i d e r a b l e savings in c o m p u t e r m e m o r y a l l o c a t i o n s . As an 

e x a m p l e , if w e analyse a problem on a rectangular a r r a y of 

(15 x 15) linear e l e m e n t s using a 2 - m o m e n t t r i a l function 

then w e w o u l d have to a c c o u n t for 16 x 16 x 2 2 = 1024 

e q u a t i o n s due to the 1024 u n k n o w n s . Storing all the 

e l e m e n t s of A 9 m e a n s that ( 1024 x 1024) storage l o c a t i o n s 

have to be allowed f o r . However in such a problem by using 

an a p p r o p r i a t e global o r d e r i n g system the h a l f - b a n d w i d t h 

is only 72 and so o n l y (1024 x 72) storage l o c a t i o n s are 
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r e q u i r e d , which is a saving of approximately 92% in 

storage t e r m s . Of course in this instance one does not talk 

about the additional computing time in filling up a full 

m a t r i x with u n n e c e s s a r y zeroes and the u n n e c e s s a r y o p e r a t i o n s 

that would have been done with t h e m . It is clearly 

d e s i r a b l e to chose an ordering system which leads to a 

small b a n d w i d t h . 

How does one achieve an optimal bandwidth? This comes 

about from the labelling of the nodes in the g l o b a l 

numbering s y s t e m . It depends on the largest d i f f e r e n c e 

between node n u m b e r s in a single element with all elements 

under c o n s i d e r a t i o n . In regular meshes the d e t e r m i n a t i o n 

is simple and straightforward as shown in F i g . 4 . 4 . 

Segerlind [87] has shown the effects of variation in 

bandwidth due to d i f f e r e n t labelling patterns for an 

iregular g r i d . 

4.8 Fixed Source and Eigenvalue Problems 

Generally two types of problems are encountered 

depending on the nature of the sources arising from the 

p r o b l e m . There is the fixed source problem in which the 

source contribution is known and on the other hand the 

eigenvalue problem poses the situation that the source 

contribution c a n n o t be known until the unknowns in the 

p r o b l e m are solved for. S o , as to be expected an iteration 

c y c l e , known p o p u l a r l y as the outer iteration c y c l e , has 

to be imposed w h e n solving e i g e n v a l u e p r o b l e m s . The outer 

/ 

iteration cycle is so called b e c a u s e there may or may not 

be an inner iteration cycle in solving for the unknowns 
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depending on whether iteration techniques are used to 

solve the g l o b a l set of e q u a t i o n s . 

To improve categorisation of these two classes of 

p r o b l e m s w e recall that there are three types of contri-

butions in the source t e r m , i.e. scattering from one 

g r o u p to a n o t h e r , e x t r a n e o u s source and f i s s i o n . Fixed 

source problems are those for w h i c h the sources for a 

group are due to extraneous sources and downscattering 

c o n t r i b u t i o n s . For e i g e n v a l u e problems the group sources 

have intergroup scattering and fission c o n t r i b u t i o n s . A 

fission source for a g r o u p has contributions from fission 

w i t h i n the group and fissions from other g r o u p s . 

T h e r e f o r e , from E q . ( 4 . 1 3 ) it can be seen that the 

source vector for an e l e m e n t w o u l d be 

9-1 
(4.20) 

w h e r e 

N 
u 

(4.21 ) 

y 
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For eigenvalue problems 

(4.22) 

w h e r e 

(4.23) 

and the other vectors and m a t r i x are as defined in 

Eq.(4.21 ) . 

In the fission term the asterisk in the unknowns 

show that they are v a l u e s from a previous iteration 

c y c l e . In both classes of problems upscattering is not 

c o n s i d e r e d . However if upscattering were to be considered 

the following additional term w o u l d have to be c o n s i d e r e d , 

and an iteration cycle for this w o u l d be r e q u i r e d . 

4.9 Solution Schemes 

The solution of a set of linear equations can be 

obtained either by d i r e c t elimination or by i t e r a t i o n . 

In finite e l e m e n t analysis d i r e c t elimination, typified 

by Gaussian e l i m i n a t i o n , is by far the m o r e popular m e t h o d . 

It has also been reported that,in the application of the 

finite element m e t h o d to radiation t r a n s p o r t , d i r e c t 

i.e. 

3-3*' 
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elimination m e t h o d s are faster than iteration t e c h n i q u e s [63 ]. 

Hence it is not surprising that Irons and Ahmad [45] have 

attributed the fact that finite element technology owes 

m o r e to Gauss than to any other person in h i s t o r y since 

Gaussian quadrature is also widely used in numerical 

integration (see Section 4 . 5 ) . 

However in finite e l e m e n t analysis the effective-

ness of d i r e c t solution m e t h o d s depends on the specific 

properties of the finite e l e m e n t stiffness m a t r i x , 

i.e. s y m m e t r y , positive definiteness and handedness [10]. 

This is exactly the structure of the global m a t r i x as 

described in the preceding s e c t i o n . So it is natural 

enough that direct solution schemes serve to bring a b o u t 

the results to w h i c h w e sought for. However this is not 

to say that iterative m e t h o d s should not be regarded at 

a l l . It has been found that even storing only the half-

bandwidth of the global m a t r i x there can be problems with 

computer m e m o r y capacity especially when fine m e s h , high-

order elements or high-order trial functions are u s e d . 

This is w h e r e iterative methods can score over the d i r e c t 

elimination m e t h o d s because in some iteration schemes 

there is e f f e c t i v e l y zero storage of a global m a t r i x . 

The finite d i f f e r e n c e techniques have enjoyed this 

articular aspect of an iterative solution because the 

coefficients at a nodal point are assembled "on the spot" 

during the i t e r a t i o n . It is not so easy in a finite 

element scheme to assemble coefficients in this m a n n e r . 

Consequently only d i r e c t elimination schemes have been 
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considered in the present study especially since the global 

matrix ^ 3 is symmetric p o s i t i v e - d e f i n i t e and b a n d e d . 

The p o s i t i v e - d e f i n i t e nature of the m a t r i x ensures t h a t 

no pivotting is required.and is highly d e s i r a b l e because 

pivotting could destroy the banded nature of the m a t r i x . 

One other reason for using direct solvers is that the 

available computing facilities nowadays have tremendous 

storage capacity and for two-dimensional analyses the 

storage aspect is not the m o s t important factor. In the 

eventuality direct m e t h o d s are faster than iterative 

methods and as such will always be p r e f e r r e d . Besides 

one does not face the problems of convergence and 

stability associated with iterative t e c h n i q u e s . 

Two types of d i r e c t solvers w e r e used in this p r e s e n t 

w o r k . One is called BANSOL [26] and is an in-core s o l v e r , 

i.e. the w h o l e of the global m a t r i x resides in the fast 

primary s t o r a g e . The other is called SESOL [99] and is an 

out-of-core s o l v e r . Using this solver only part of the 

global m a t r i x need to be in fast storage at any one time 

w h i l e the rest is held on the slower secondary storage 

and therefore it is u n d e r s t a n d a b l e that SESOL would be 

used in those circumstances w h e r e storage is a limiting 

factor. The amount of savings achieved is dependable on 

the number of blocks as w i l l be seen in Sections 4 . 1 0 , 

5.7 and 5 . 8 . However SESOL has only been adapted to the 

stage w h e r e it can only h a n d l e source p r o b l e m s . T h e r e f o r e 

BANSOL still handles all the eigenvalue problems besides 

the smaller sized source p r o b l e m s . 
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The out-of-core solver w i l l be discussed in the next 

section w h i l e details about the mechanics of direct 

elimination methods have been discussed elsewhere [31,67]. 

A review of all available in-core direct elimination 

algorithms have been d i s c u s s e d by Mondaker and Powell [72]. 

This section would not be complete if no mention w a s 

m a d e of the frontal solution technique first reported by 

Irons [44], This is a d i r e c t elimination technique and 

is a storage saving a l g o r i t h m . The basic essence is that 

in using this algorithm the global m a t r i x is not assembled 

at one t i m e . Instead solution is performed on the 

completely assembled p a r t of the m a t r i x as one proceeds 

through the w h o l e structure of e l e m e n t s . The effect is 

rather like a w a v e front propagation and hence the n a m e . 

Wilson [100] has examined the advantages and d i s a d v a n t a g e s 

of the frontal method a g a i n s t the other d i r e c t elimination 

m e t h o d s . A l t h o u g h the frontal method w a s not used here 

it is h o p e d that t h i s , as a proposal for future research 

and d e v e l o p m e n t , would be carried o u t . 

4.10 The Out-of-Core Solver 

As w a s mentioned in the previous section the out-of-

core solver is one in w h i c h secondary storage is used to 

ease the p r o b l e m s associated with available primary 

s t o r a g e . This technique g r e a t l y enhances the number of 

equations t h a t can be solved as secondary storage can be 

very large depending on the computer and the computing 

e n v i r o n m e n t (these aspects w i l l not be d i s c u s s e d h e r e ) . 
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To begin with it is necessary to introduce a m o s t 

important c o n c e p t , i.e. blocking t e c h n i q u e s . This is 

because in using the o u t - o f - c o r e solver one needs to know 

into how m a n y "blocks" the global m a t r i x has been divided 

In using SESOL the blocks have to be of equal 

length w h i c h is an a d v a n t a g e for regular g r i d s . Imagine 

a mesh of ( 4 x 6 ) linear elements as shown in F i g . 4 . 5 . 

The system has been divided into 7 b l o c k s , each block 

consisting of equations relating to each row of the g r i d . 

If the same mesh were to contain quadratic elements then 

Fig.4.6 shows the blocking p a t t e r n , i.e. each block w o u l d 

consist of 2 consecutive rows of the grid e x c e p t the last 

w h e r e it w o u l d be filled w i t h the remaining row followed 

by a row of z e r o s . The t e c h n i q u e is extended to three 

rows in the case of cubic e l e m e n t s . 

The above technique is by no means the only m e t h o d 

available for "blocking" a mesh of e l e m e n t s . Instead of 

considering one row of e l e m e n t s , m u l t i p l e number of rows 

or fractions of a row could be c o n s i d e r e d . H o w e v e r , the 

advantage in the above t e c h n i q u e is that since w e are 

only dealing with regular grids it ensures that the 

elemental contributions are not calculated more than o n c e . 

Besides when adding the bare surface effects there is 

no other simpler m e t h o d . 

When implementing SESOL into the finite element 

program several changes w e r e m a d e . The global m a t r i x , 

which was originally assembled in one go for each e n e r g y 

g r o u p , is assembled block by b l o c k . When the assembly 
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Fig.4.6 Blocking pattern for q u a d r a t i c elements 
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for each block is complete (together with the boundary 

conditions) it is shifted to secondary s t o r a g e . This 

requires the use of storage e q u i v a l e n t to 2 blocks in 

primary storage a t any one time because blocks not on the 

boundary require c o n t r i b u t i o n s from different layers of 

e l e m e n t s . N e v e r t h e l e s s the m i n i m u m in-core storage is 

a l w a y s 2 blocks b e c a u s e in the solution stage 2 blocks of 

data are required for m a n i p u l a t i o n by SESOL at any one 

t i m e . Assembly is completed once all the blocks are 

shifted to secondary s t o r a g e . 

In the solution stage the process is reversed and 

each block is b r o u g h t in turn into primary s t o r a g e . The 

algorithm requires that 2 blocks of data should be mani-

pulated at the same time in p r i m a r y storage. The 

coefficients of the leading block are reduced and any 

coefficients of the second block affected by this process 

are suitably m o d i f i e d . The coefficients of the reduced 

leading block are returned to secondary s t o r a g e , the 

trailing block then becomes the leading block and the 

next block from secondary storage is shifted in to occupy 

the position of trailing b l o c k . The process is repeated 

until all the blocks are r e d u c e d . Back substitution 

to determine the solutions require the calling of one 

block of the reduced m a t r i x into primary storage at a t i m e . 

There is one important feature in SESOL t h a t is not 

a v a i l a b l e in B A N S O L and that is the ability to skip non-

p r o d u c t i v e zero a r i t h m e t i c a l o p e r a t i o n s . Consider the 

global matrix a s s e m b l e d from using cubic elements as 

shown in F i g . 4 . 7 . There are -4 bands of zero elements 
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Fig.4.7 The banded nature of the symmetric half of the 
global m a t r i x d e r i v e d from using cubic elements 
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within the h a l f - b a n d w i d t h . For quadratic elements there 

w i l l be three and for linear e l e m e n t s , t w o . The number of 

zero elements w i l l depend on the bandwidth for the s y s t e m , 

being m o r e for a larger b a n d w i d t h . Unproductive operations 

on these zero elements (i.e. the products of which are 

still zero) can be time c o n s u m i n g . If the above e f f e c t 

of band zeros were insignificant one w o u l d expect B A N S O L 

to perform rather faster than SESOL when the same p r o b l e m 

is considered by both a l g o r i t h m s , because SESOL is 

hindered by the relatively slower read and write processes 

between primary and secondary s t o r a g e . Contrary to all 

expectations SESOL performs better than BANSOL when cubic 

elements are analysed but not with linear elements as w i l l 

be seen from the results in Sections 5.7 and 5.8. This 

shows that the unproductive effect of zero operations is 

time c o n s u m i n g . 

To end this section on the out-of-core solver w e 

w i l l consider the percentage savings a c h i e v e d . Consider 

the ( 4 x 6 ) mesh of q u a d r a t i c elements from F i g . 4 . 6 . 

A s s u m e a 1-moment trial function (actually the p e r c e n t a g e 

savings do not depend on the order of the trial f u n c t i o n ) . 

Using SESOL there are 7 b l o c k s , but the 2 blocks of storage 

employed is only 28.5% of the actual size of the global 

m a t r i x . T h e r e f o r e if m o r e blocks w e r e used then the 

percentage savings w o u l d be greater but then the dis-

compensating factor w o u l d be computing t i m e . On the 

other hand the actual size of a b l o c k , using this m a n n e r 

of p a r t i t i o n i n g , is d e p e n d e n t on the half-bandwidth of 

the s y s t e m . A c t u a l l y , as w i t n e s s e d from F i g . 4 . 7 , there 
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are plenty of zero elements even within the h a l f - b a n d w i d t h 

of the global m a t r i x . Therefore one may ask w h e t h e r it 

w o u l d be better to store only all the non-zero elements 

and re-order them by an alternative numbering s c h e m e . 

However it has been shown by George and Liu [36] that the 

zero elements in the band of a banded m a t r i x are filled in 

during the reduction process and therefore it is necessary 

to preserve the zero elements within the b a n d . It should 

be noted that the zero arithmetic operations referred to 

above refers to the alteration of the zero coefficient by 

m u l t i p l i c a t i o n or d i v i s i o n , the result of which is still 

z e r o , and that when these zero coefficients are filled 

in they result from the subtraction between the rows of 

the m a t r i x . 

4.11 Implementation 

In order to implement the ideas discussed in the 

p r e v i o u s sections e f f e c t i v e l y it is necessary to construct 

an e f f i c i e n t computer code because it would be impossible 

to do any constructive analysis of d i f f i c u l t problems 

o t h e r w i s e . In designing an e f f i c i e n t code there are 

several important objectives to be fulfilled o t h e r w i s e the 

process of obtaining solutions to a problem can be 

p a r t i c u l a r l y t e d i o u s . Efficiency m u s t be associated with 

a flexible modular construction so that the addition or 

deletion of pertinent features in the code can be under-

taken r a p i d l y . Naturally enough the code should be 

constructed with the c o n v e n i e n c e of the user in mind so 

that only the m i n i m u m a m o u n t of data need to be read in. 
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M o d i f i c a t i o n s to modules of the c o d e , the addition of 

permanent f e a t u r e s , and options m u s t be clearly identified 

to the u s e r . The p e r t i n e n t features of the code are 

therefore encapsulated in separate m o d u l e s ; these m o d u l e s 

can be pulled out and new ones plugged in w i t h o u t inter-

fering with other parts of the c o d e , except those w h e r e 

they interact (usually subroutine c a l l s ) . It is with the 

fulfilment of these important characteristics that FELTRAN 

has been c o n s t r u c t e d . FELTRAN is the acronym . for Finite 

E L e m e n t Techniques for solving TRANsport P r o b l e m s . 

In the construction of any code there has to be 

several c h a r a c t e r i s t i c s t a g e s , and Fig.4.8 serves to 

outline these pertinent features in the finite e l e m e n t 

a n a l y s i s . The mesh generation stage can be very simple 

or complicated depending upon the geometry of the p r o b l e m , 

the type of elements to be used and the mesh r e f i n e m e n t 

r e q u i r e d . In the p r e s e n t thesis since w e are restricted 

to simple geometries and elements this aspect is not too 

c o m p l i c a t e d . The post-processing stage is usually not 

part of the computer code b e c a u s e , depending on the nature 

of the p r o b l e m , the manner in which the solutions are 

edited can be quite v a r i e d . Therefore if p o s t - p r o c e s s i n g 

edits are required these numerical values are u s u a l l y 

w r i t t e n to an external d e v i c e and s t o r e d . They are then 

retrieved and m a n i p u l a t e d . For example they can be set up 

so that they can be automatically plotted or they can be 

used to calculate power ratios in different regions of a 

reactor c o r e . 



- 128 -

Fig.4.8 Main features in a finite element analysis 
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Fig.4.9 outlines the major modules that exist in 

F E L T R A N . The DATA M o d u l e is concerned with data input 

and v a l i d a t i o n . INIT handles all the initialisation of 

variables that will be used later on in the p r o g r a m . The 

mesh is generated in M E S H w h i l e SHAPE calculates the 

integrals for the shape f u n c t i o n s . The assembly of the 

global stiffness m a t r i x and source vector is handled by 

A S S E M . 

After the ASSEM m o d u l e there is a branch out into 

F I X S O R , which handles fixed source p r o b l e m s , and E I G E N V 

where eigenvalue problems are s o l v e d . The detai* Is of 

both these modules are shown in Figs.4.10 and 4.11 and 

as can be seen some of the modules are common to both 

FIXSOR and EIGEN . 

In FIXSOR the solution cycle is simple and straight-

f o r w a r d . For each n e u t r o n i c group starting from the 

f a s t e s t , the global m a t r i x and source vector are assembled 

and s o l v e d . In E I G E N V the global matrices for each g r o u p 

are first a s s e m b l e d , triangularised and then shifted to 

any external t a p e . This process necessarily saves computing 

time because the global m a t r i c e s for each group are not 

assembled at each and every i t e r a t i o n . Also triangulari-

sation is not r e p e a t e d . Naturally the source vector is 

not stored as they are updated at every i t e r a t i o n . 

Since SESOL is only used for fixed source problems 

Fig.4.12 shows how FIXSOR has been transformed to include 

S E S O L . There is an inner loop over the number of blocks 

for the assembly stage which is available w i t h i n the 

SESOL m o d u l e . 
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Fig.4.9 Major m o d u l e s of FELTRAN 
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Fig.4.10 Outline of FIXSOR 
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Fig.4.11 Outline of EIGEN 
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Fig.4.12 A d a p t a t i o n of FIXSOR to accommodate SESOL 
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Finally it m u s t be m e n t i o n e d that in implementing and 

validating FELTRAN the CDC 6600 and AMDAHL 470/V8 computers 

at the University of London Computer Centre w e r e u s e d . 

Of particular importance was the AMDAHL computer in the 

sense that it provided an available primary storage of 

8 M e g a b y t e s . In single precision arithmetic this is 

e q u i v a l e n t to 2 million storage l o c a t i o n s , w h i l e it is 

1 million for double precision a r i t h m e t i c . When using the 

A M D A H L the source problems w e r e performed by using single 

precision arithmetic w h e r e a s with the eigenvalue problems 

double precision arithmetic was u s e d . The precision on 

the A M D A H L are 6 and 15 decimal places for single and 

double precision arithmetic r e s p e c t i v e l y . Evidence that 

single p r e c i s i o n arithmetic is accurate enough for source 

problems is shown in Section 5.7. For the CDC computer 

only single precision arithmetic is used since this is 

accurate to 14 decimal p l a c e s . Besides these two computers 

at the University of London Computer Centre the CDC 6500 

and CDC Cyber 174 at Imperial College w e r e used e s p e c i a l l y 

for the smaller sized jobs. 
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1 1Trying to find the solution, we may 

repeatedly change our point of view, our 

way of looking at the problem. We have to 

shift our position again and again. Our 

conception of the problem is likely to be 

incomplete when ive start the work; our 

outlook is different when we have made some 

progress; it is again different when we 

have almost obtained the solution." 

George Polya [79] 
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5.1 Introduction 

In the last chapter the major modules of FELTRAN were 

outlined and the manner in w h i c h they were implemented 

s h o w n . The success or failure of the implementation can 

be judged from the results produced by F E L T R A N w h e n compared 

against results produced by established methods or those 

that are deemed a c c u r a t e . T h e r e f o r e accuracy is the m o s t 

important factor otherwise FELTRAN cannot be said to be 

successfully i m p l e m e n t e d . There are also problems which 

c a n n o t be solved successfully or w h i c h demand constraints 

on available r e s o u r c e s . If FELTRAN can overcome these 

problems then it would not only be judged as accurate but 

it could be regarded as a p o t e n t i a l for replacing the 

established m e t h o d s when it comes to solving these difficult 

p r o b l e m s . 

Seven problems are considered in this c h a p t e r . The 

first five are eigenvalue problems while the last two are 

fixed source p r o b l e m s . Eigenvalue problems are particularly 

interesting in the fact that values of k are very 

sensitive and provides a gauge to the accuracy of the m e t h o d . 

All the problems are m u l t i r e g i o n a l a n d , with the exception 

of o n e , m u l t i g r o u p . 

5.2 The ZION-1 Reactor 

The q u a r t e r - c o r e layout of the ZION-1 reactor is 

shown in F i g . 5 . 1 . ZION-1 is a m o d e r n PWR with a nominal 

c a p a c i t y of 3250 M W (th). This is essentially a multi-

r e g i o n , two-group diffusion p r o b l e m . There are three 
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M a t e r i a l legend: 

1,2,3 - Fissile m a t e r i a l of d i f f e r e n t e n r i c h m e n t 
4 - Baffle 
5 - Water 
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Fig.5.1 Q u a r t e r - c c r e layout of the ZION-1 Reactor 
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types of materials in the fissile core w h o s e differences 

lie in the degree of e n r i c h m e n t . A thin stainless steel 

baffle serves to separate this region from the water 

m o d e r a t o r . A composition number serves to identify each 

of the m a t e r i a l p r e s e n t . 

The dimensions of each composition region are 

illustrated in F i g . 5 . 2 . Only a sketch of the h o r i z o n t a l 

dimensions along the centre core line are s h o w n . However 

owing to symmetry the vertical dimensions are the s a m e . 

Reflector conditions exist on the interior surfaces 

of the q u a r t e r - c o r e l a y o u t . The exterior surfaces are 

subjected to zero flux boundary c o n d i t i o n s . Bare surface 

conditions could have been imposed but results reported 

for this problem were those for the zero flux c o n d i t i o n . 

The c r o s s - s e c t i o n a l data are shown in Table 5.1. A t this 

juncture a brief note m u s t be made on the representation 

of the numbers under the heading P O S . Let k r e p r e s e n t 

any number under P O S . When k = 1, the inference is that 

fission cross-sections C-^^-f^) are r e p r e s e n t e d . T o t a l 

cross-sections ) are represented when k = 2 w h i l s t for 

k = 3 w e have the w i t h i n - g r o u p scattering cross-section 

(^Lsg3 ) . When k ^ 4 the representations are for the inter-

group c r o s s - s e c t i o n s . The representation refers to 

where j assumes the value of the column number and i = k - 3, 

and j ^ i . T h e r e f o r e , referring to Table 5.1, the non-zero 

entry when k = 4 refers to The cross-sections referred 

to in this chapter are the m a c r o s c o p i c cross-sections with 

- 1 
d i m e n s i o n s of cm 
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Fig.5.2 Dimensions (cm) of the composition regions in the 
ZION-1 reactor 
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TABLE 5.1 

CROSS-SECTIONAL DATA FOR THE ZION-1 REACTOR 

CROSS-SECTIONS 

REGION NO I 

POS GROUP 1 
1 5•3600E-03 
2 2.3514E-01 
3 2.0917E-01 
4 0 

GROUP 2 
1•0433E-01 
8.9282E-01 
8.2613E-01 
1.7420E-02 

REGION NO 2 

POS GROUP 1 
1 6.0100E-03 
2 2.3479E-01 
3 2.0903E-01 
4 0 

GROUP 2 
1.2472E-01 
8•9198E-0I 
8.1592E-01 
1.6940E-02 

REGION NO 3 

POS GROUP 1 
1 6•5300E-03 
2 2.3367E-01 
3 2•0807E-01 
4 0 

GROUP 2 
1•4120E-01 
8.9069E-01 
8.0710E-01 
I•6580E-02 

REGION NO 4 

POS GROUP 1 
1 O 
2 3.2638E-01 
3 3.2316E-01 
4 0 

GROUP 2 
0 

9.9360E-01 
8•4764E-01 

0 

REGION NO 5 

POS GROUP 1 
1 0 
2 2* 2903E-01 
3 1•9953E—01 
4 0 

GROUP 2 
0 

1•1497E+00 
1.1402E+00 
2.9030E-02 

FISSION SPECTRUM 

GROUP 1 
l.OOOOE+OO 

GROUP 2 
0 
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/ 

This problem was first reported by Deppe and Hansen [25] 

when they compare finite element a g a i n s t finite d i f f e r e n c e 

r e s u l t s . Later on Komoriya and W a l t e r s [ 5 6 ] solved 

this problem with their own version of the finite e l e m e n t 

method a n d , as of l a t e , G r e e n s t a d t [38 ] has analysed 

the p r o b l e m using the cell discretization m e t h o d , a 

t e c h n i q u e not unlike the finite e l e m e n t m e t h o d . B e f o r e 

comparing the results from FELTRAN a g a i n s t these reported 

results a brief description of these m e t h o d s w i l l first 

be p r e s e n t e d . 

The finite difference results w e r e achieved using 

the codes PDQ-5 [40 ] and CITATION [30 ]. The results 

quoted from these codes w e r e obtained from using finer 

m e s h i n t e r v a l s , and t h e r e f o r e m o r e m e s h p o i n t s , than 

the finite element r e s u l t s . 

Deppe and Hansen used Hermite-type piecewise bi-

cubic e l e m e n t s . Hermitian elements allow the preservation 

of the flux derivatives across the e l e m e n t interfaces 

but necessitates additional c o m p u t a t i o n s when compared 

w i t h L a g r a n g i a n e l e m e n t s . The presence of the core 

b a f f l e (as seen in F i g . 5 . 1 ) d i s t u r b e d the regular structure 

of the fuel elements w h i c h would otherwise have provided 

an e x c e l l e n t partition for the p r o b l e m . Deppe and Hansen 

"defined a region with varying parameters on the outside 

of the core to include both baffle and water" in order 

to prevent w h a t would otherwise have been a finer m e s h . 

T h e a l t e r n a t i v e method is to h o m o g e n i s e the baffle and 

w a t e r . This latter alternative is attempted in the 
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FELTRAN r e s u l t s . In all Deppe and Hansen tried 3 d i f f e r e n t 

m e s h e s of (10 x 10), (7 x 7) and ( 6 x 6 ) . In the coarser 

m e s h e s each element w o u l d contain contributions from 

d i f f e r e n t m a t e r i a l s . Deppe and Hansen produced their 

results using their code called C H D . 

Komoriya and W a l t e r s used Lagrangian b i - q u a d r a t i c 

e l e m e n t s . However they also investigated e n e r g y - d e p e n d e n t 

spatial mesh schemes in which a finer mesh was used 

for the thermal g r o u p . This scaling was merited on 

the basis that the neutron diffusion length is generally 

smallest in the lower energy group and largest in the 

fast g r o u p s . Conventionally the finite element method 

has adhered to similar mesh sizes for all energy g r o u p s . 

The results were obtained by using a code called EDFEM 

(Energy Dependent Finite Element M e t h o d ) . In all they 

reported mesh refinements of L/8 (1 - 1), L/4 (1 - 2) 

and L/4 (1 - 1). For example in L/8 (1 - 1) the mesh 

r e f i n e m e n t is ( 8 x 8 ) and the mesh is similar for both 

groups w h i l e in L/4 (1 - 2) the m e s h is ( 4 x 4 ) for 

the fast group and ( 8 x 8 ) for the thermal g r o u p . No 

m e n t i o n was made on how to account for the d i f f e r e n t 

compositions in an element or the baffle/water arrangement 

F i n a l l y , in the Cell Discretization (CD) method 

the similarity with finite elements lie in the subdivision 

of the problem domain into smaller regions called c e l l s . 

The d i f f e r e n c e lies in the fact t h a t approximations 

need not be polynomials and no a t t e m p t was made to establi 

a priori elemental c o n t i n u i t y . However G r e e n s t a d t [39] 
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has established m a t h e m a t i c a l l y the distinction between 

CD and finite e l e m e n t s . The important concept in CD 

lies in the number of interfaces between the adjacent 

cells and also the number of interface conditions at 

each i n t e r f a c e . The p r o d u c t gives the total number 

of unknowns for the p r o b l e m . G r e e n s t a d t analysed the 

p r o b l e m using 169 cells because of the presence of the 

b a f f l e . However a "synthetic method" was introduced 

by constructing m i x e d interface conditions in order 

to h o m o g e n i s e the baffle with the w a t e r . This a r r a n g e m e n t 

results in 81 c e l l s . 

In all eight sets of results w e r e reported using 

FELTRAN using two d i f f e r e n t m e s h e s . In the first instance 

no a t t e m p t was m a d e to homogenise the baffle with the 

w a t e r . Such an a r r a n g e m e n t results in a grid of (13 x 13) 

elements as shown in Fig.5.3 in w h i c h there is a p r e s e n c e 

of small and thin rectangular e l e m e n t s . An a t t e m p t 

was m a d e at homogenising the baffle/water system 

which reduces the grid to (9 x 9) e l e m e n t s . The resulting 

system is shown in F i g . 5 . 4 . However homogenisation 

results in three new m a t e r i a l s numbered from 6 to 8 

w h o s e percentile compositions are shown in Table 5 . 2 . 

For each mesh specification results w e r e reported using 

l i n e a r , q u a d r a t i c and triangular e l e m e n t s . 

The values of k obtained from all the d i f f e r e n t 
ef f 

codes are shown in Table 5.3. The following points 

should be noted: (i) the meshes referred to for PDQ-5 

and CITATION are with respect to nodal points; (ii) the 
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Fig.5.3 Mesh layout for u n h o m o g e n i s e d arrangement of 
(13 x 13) elements 
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1 2 1 2 1 2 1 3 6 

2 1 2 1 2 1 3 3 6 

1 2 1 2 1 2 1 3 6 

2 1 2 1 2 1 3 3 6 

1 2 1 2 2 2 3 7 8 

2 1 2 1 2 3 3 6 5 

1 3 1 3 3 3 7 8 5 

3 3 3 3 7 6 8 5 5 

6 6 6 6 8 5 5 5 5 

Fig.5.4 Mesh layout for homogenised arrangement of 
(9 x 9) elements 

TABLE 5.2 

COMPOSITION OF H O M O G E N I S E D REGIONS 

M a t e r i a l 
N o . % Baffle % Water 

6 15.24 84.76 

7 24.70 75.30 

8 1 .75 98.25 
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T A B L E 5 . 3 

COMPARISON OF k p P FROM VARIOUS CODES 

C o d e 
R u n 
N o . 

M e s h 
N o . of 

U n k n o w n s 
p e r G r o u p 

E l e m e n t T y p e k e f f 

P D Q - 5 1 44 X 44 1936 - 1 . 2 7 4 9 

C I T A T I O N 
1 
2 

44 
75 

X 
X 

44 
75 

1936 
5 6 2 5 -

1 . 2 7 3 1 3 
1 . 2 7 5 0 8 

1 10 X 10 3 4 8 H e r m i t e C u b i c 1 . 2 7 4 6 9 

C H D 2 7 X 7 190 H e r m i t e C u b i c 1 . 2 7 4 7 4 

3 6 X 6 128 H e r m i t e C u b i c 1 . 2 7 5 5 4 

1 L / 8 ( 1-1 ) 2 8 9 - 2 8 9 Q u a d r a t i c 1 . 2 7 5 0 2 

E D F E M 2 L / 4 ( 1 - 2 ) 8 1 - 2 8 9 Q u a d r a t i c 1 . 2 7 4 5 3 

3 L / 4 ( 1 - 1 ) 8 1 - 8 1 Q u a d r a t i c 1 . 2 7 5 2 9 

1 13 X 13 3 1 2 1 . 2 7 5 0 6 8 

2 13 X 13 6 2 4 - 1 . 2 7 4 8 9 6 

C D 
3 13 X 13 936 - 1 . 2 7 4 8 9 3 

C D 
4 13 X 13 1248 - 1 . 2 7 4 8 9 0 

5 13 X 13 1560 - 1 . 2 7 4 8 7 4 

6 9 X 9 5 7 6 — 1 . 2 7 4 4 9 4 

1 13 X 13 196 L i n e a r 1 . 2 7 5 0 9 

2 13 X 13 7 2 9 Q u a d r a t i c 1 . 2 7 4 7 8 

3 13 X 13 1 6 0 0 C u b i c 1 . 2 7 4 7 2 

F E L T R A N 4 26 X 13 196 T r i a n g u l a r 1 . 2 7 4 6 2 

5 9 X 9 100 L i n e a r 1 . 2 7 4 0 8 

6 9 X 9 361 Q u a d r a t i c 1 . 2 7 3 9 2 

7 9 X 9 7 8 4 C u b i c 1 . 2 7 4 0 0 

8 18 X 9 100 T r i a n g u l a r 1 . 2 7 3 4 0 
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. . , ,.-7 for the CD results 
convergence criterion on k was 10 

-5 

and 10 for the FELTRAN results w h i l e no mention w a s 

m a d e in the other r e s u l t s . 

As can be seen the values of k ^ obtained from 

ef f 

the various codes agree very w e l l with each o t h e r , the 

d i f f e r e n c e lying in the order of up to 0.2%. In the 

FELTRAN results the from the unhomogenised system 

are larger than those from the homogenised s y s t e m . 

Also the results for the quadratic and cubic elements 

are almost identical indicating that quadratic elements 

are suitable for such analyses and that there is no 

necessity in using higher ordered e l e m e n t s . 

Table 5.4 shows the execution times and the number 

of outer iterations for the FELTRAN r e s u l t s . In all 

the runs the initial guess was 1.0 for k ^ ^ and the 

f l u x e s . This is also the starting guess for all the 

s u b s e q u e n t FELTRAN results in the sections to come w h e r e 

e i g e n v a l u e problems are d i s c u s s e d . The number of outer 

iterations is quite h i g h , being higher for the homogenised 

baffle/water r e s u l t s . Naturally if the initial guess 

on k w a s nearer 1.274 rather than unity the number 
ef f 1 

of iterations w o u l d be considerably l o w e r . A l s o , in 

the outer iterations no attempt w a s made to accelerate 

the convergence on l i k e , for e x a m p l e , in the CD 

r e s u l t s . G r e e n s t a d t reported that by using the m e t h o d 

of d o m i n a n c e ratio to speed up the convergence in the 

outer iterations an improvement of 2 to 3 times was 

o b t a i n e d . However none of the other results (other 
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than FELTRAN) quoted the number of outer 

iterations. 

The FELTRAN results in Table- 5.4 are quoted in CDC 6600 

seconds. Only Run 3 was achieved by using the AMDAHL 

c o m p u t e r . A conversion factor of 8 was used in converting 

the AMDAHL time to equivalent CDC 5600 seconds. This 

factor was made by comparing the run times by running 

an identical case on both m a c h i n e s . No attempt was 

m a d e to optimise the compilation in the FELTRAN results 

(except for the AMDAHL r u n ) . A factor of 3 to 4 times 

increase in s p e e d . [ 4 3 ] can be reported if an optimisation 

compiler such as FTN5, was u s e d . 

None of the other reports quoted their execution 

times except for Greenstadt who ran the CD results on 

an IBM 370/158. For comparison p u r p o s e s , Greenstadt 

has quoted an approximate execution time of 10 sec when 

two (100 x 100) matrices are m u l t i p l i e d . The equivalent 

time for this matrix multiplication on the CDC 6600 

is approximately 5 sec. Therefore basing on this factor 

of 2 in favour for the speed on the CDC 6600, Table 

5.5 tabulates the execution times for the CD results 

in both IBM 370 and CDC 6600 seconds. It can be mentioned 

that basing on the number of unknowns per energy group 

FELTRAN performs better than C D . However the comparison 

cannot be taken at face value because of the following 

reasons: (i) FELTRAN execution times are reported with 

a non-optimising compiler w h i l e CD results w e r e obtained 

with an optimising compiler; (ii) the convergence criterion 
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T A B L E 5.4 

E X E C U T I O N T I M E S A N D N U M B E R O F O U T E R I T E R A T I O N S 

F O R F E L T R A N R E S U L T S 

R u n 
N o . 

N u m b e r of 
I t e r a t i o n s 

E x e c u t i o n T i m e 
( C D C 6 6 0 0 s e c ) 

T i m e p e r I t e r a t i o n 
(CDC 6 6 0 0 s e c ) 

1 32 9 . 3 9 0 . 2 9 

2 44 1 1 4 . 4 5 2 . 6 0 

3 42 4 4 0 . 9 6 * 1 0 . 5 0 

4 32 1 0 . 3 7 0 . 3 2 

5 61 8 . 0 6 0 . 1 3 

6 59 5 9 . 4 1 1.01 

7 59 9 5 . 5 7 1 .62 

8 60 7 . 5 0 0 . 1 3 

* 5 5 . 1 2 s e c o n t h e A M D A H L 

T A B L E 5 . 5 

C O M P A R I S O N O F E Q U I V A L E N T E X E C U T I O N T I M E S 

F R O M C D A N D F E L T R A N R U N S 

R u n 
N o . 

E x e c u t i o n T i m e 
( I B M 3 7 0 / 1 5 8 s e c ) 

E x e c u t i o n T i m e 
(CDC 6 6 0 0 s e c ) 

1 152 76 

2 4 2 0 210 

3 1 106 5 5 3 

4 1 2 9 3 6 4 6 . 5 

5 3 4 4 2 1721 

6 5 3 7 2 6 8 . 5 
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_7 
on k was finer in CD (being 10 against 10 

-5 
in 

F E L T R A N ; (iii) convergence t e c h n i q u e was used to accelerate 

the outer iterations in CD; (iv) a d i r e c t elimination 

algorithm (BANSOL) was used in solving the set of equations 

in FELTRAN while CD utilised the generalised c o n j u g a t e 

g r a d i e n t (GCG) m e t h o d which is an iterative t e c h n i q u e . 

Deppe and Hansen performed power c a l c u l a t i o n s . 

R a t h e r , the region-averaged to core-averaged power ratios 

w e r e c a l c u l a t e d . Fig.5.5 is a reproduction of their 

results for the (10 x 10) mesh compared against CITATION 

(75 x 75) and PDQ-5 (44 x 44) r e s u l t s . 

The power in a region of v o l u m e V ^ is given by 

the expression: 

(5.1 ) 

w h e r e , 

= conversion factor from fission rate into e q u i v a l e n t 

power u n i t s . 

S i n c e , 

(5.2) 

P k - * [ H u f l f d V 
(5.3) 



- 152 -

o r , 

p . J T ' - " 
' k | I / / I N . U q ; ( 5 _ 4 ) 

S ^ > N-,u 3 i d x d y 

a=» iTi* O V Q 3 

w h e r e , 

X k , y K being the dimensions of the region 

Finally, 

G D . = 1 

w h e r e , 

U = 

R 

. • P C O F E ^ FK / V C O R E 

K= I 

w h e r e , 

R. = no. of regions in the core 

H e n c e , 

(5.5) 

(5.6) 

(5.7) 

P = = (5.8) 
k Vk p, RK ' CORE. 

will give the region averaged to core-averaged power ratio. 
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1 2 3 4 5 6 7 8 

1 
1.6271 
1.6361 
1.6524 

1.7590 
1.8002 
1.8108 

1.5320 
1.5387 
1.5524 

1.5519 
1.5856 
1.5918 

1.2537 
1.2560 
1.2623 

1.1587 
1.1758 
1.1742 

0.8039 
0.7904 
0.7896 

0.5115 
0.4954 
0.4871 

2 
1.5800 
1.5873 
1.6025 

1.6563 
1.6951 
1.7038 

1.3945 
1.3990 
1.4087 

1.3556 
1.3818 
1.3841 

1.0372 
1.0318 
1.0339 

0.9166 
0.9230. 
0.9186 

0.4970 
0.4786 
0.4705 

3 
1.4452 
1.4490 
1.4603 

1.4664 
1.4966 
1.5023 

1.1831 
1.1813 
1.1859 

1.0779 
1.0903 
1.0878 

0.7262 
0.7092 
0.7078 

0.4455 
0.4285 
0.4206 

4 
1.2447 
1.2439 
1.2493 

1.2123 
1.2255 
1.2257 

0.9001 
0.8872 
0.8869 

0.7216 
0.7123 
0.7067 

0.3233 
0.3013 
0.2911 

5 • 

1.0777 
1.0749 
1.0747 

0.8526 
0.8401 
0.8379 

0.5340 
0.5104 
0.5019 

6 
0.6682 
0.6516 
0.6462 

0.3277 
0.3042 
0.2947 

7 

8 KEY 

CITAT. (75 x 75) 
P D Q - 5 (44 x 44) 
CHD ( 1 0 x 1 0 ) 

.5.5 D eppe and Hansen's results for region-aver 
to core-averaged power ratios 
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1.6503 

1 .5923 

1 .5834 

1 .8873 

1.7512 

1.7387 

1 . 5446 

1.5155 

1 .5076 

1.6849 

1.5755 

1.5670 

1.2622 

1.2654 

1 .2619 

1.2344 

1.1877 

1 . 1863 

0.7446 

0.7954 

0.7993 

0.4422 

0.4822 

0.4883 

1.5907 

1.5545 

1.5460 

1 .7927 

1 .6687 

1 . 6587 

1.4037 

1.3972 

1.3913 

1 .4645 

1.3904 

1.3863 

1.0170 

0 . 0 4 6 0 

1.0467 

0.9364 

0.9271 

0.9293 

0.4125 

0.4671 

0.4719 

1 . 4553 

1 .4424 

1 . 4355 

1.5918 

1.5009 

1.4947 

1 . 1853 

1.1975 

1.1958 

1 . 1332 

1.1054 

1.1059 

0.6570 

0.7133 

0.7180 

0.3784 

0.4157 

0.4223 

1.2399 

1.2607 

1.2573 

1.2783 

1.2476 

1.2467 

0.8540 

0.9021 

0.9057 

0.6864 

0.7120 

0.7172 

0.2431 

0.2890 

0.2942 

1.0836 

1 . 1008 

1 . 1004 

0.8111 

0.8531 

0.8580 

0.4529 

0.5054 

0.5115 

0.5933 

0.6548 

0.6577 

0.2389 

0.2943 

0.2999 

Key 

LINEAR 

Q U A D . 

CUBIC 

Fig.5.6 FELTRAN's results for region-averaged to 
c o r e - a v e r a g e d power ratios 
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Fig.5.7 Flux plots from Deppe and Hansen 
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8 1 I . I * T I I I ' I » • » ' I 1 1 1 ' I ' 1 1 1 

7 

D I S T A N C E ( C M ) 

19X9) CUBIC ELEMENTS 

Fig.5.8 Flux plots from FELTRAN 
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Fig.5.6 shows the values of l k for the homogenised 

baffle/water system from F E L T R A N . As can be seen closer 

agreement was obtained for q u a d r a t i c and cubic elements 

as contrasted against linear e l e m e n t s . Comparing Figs.5.5 

and 5.6 it can be seen that the FELTRAN results for both 

q u a d r a t i c and cubic elements agree w e l l w i t h the results 

quoted by Deppe and H a n s e n . In particular the PDQ-5 and 

CHD results show closer agreement with FELTRAN higher ordered 

e l e m e n t s . Any differences between these two sets of results 

can be attributed to the d i f f e r e n t methods of homogenising 

the baffle/water a r r a n g e m e n t . 

To conclude this section Figs.5.7 and 5.8 show the 

plot of the fluxes from Deppe and Hansen's study and FELTRAN 

(Run 7) r e s p e c t i v e l y . The similarity in the flux profiles 

reflect the excellent a g r e e m e n t . 

5.3 A 4-Group M u l t i r e g i o n Diffusion Problem 

This problem was first reported by K a p e r , Leaf and 

Lindeman [51]. Fig.5.9 is a quarter-core representation 

of the geometry and m a t e r i a l properties of the problem 

w h i c h is a m o c k u p of a typical oxide-fuelled liquid m e t a l 

fast breeder r e a c t o r . In all there are five d i f f e r e n t 

m a t e r i a l regions whose cross-sections are represented by 

four energy groups w h i c h w e r e obtained from the A r g o n n e 

National Laboratory (ANL) data by averaging and collapsing 

t e c h n i q u e s . The aim of this analysis is to d e t e r m i n e the 

value of k ^ ^ for the system shown in F i g . 5.9. The interior 

boundaries are reflectors w h i l e vacuum conditions are considered 

for the exterior b o u n d a r i e s . 
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M a t e r i a l legend: 

1 - Core 1 
2 - Blanket 1 
3 - Reflector 
4 - Core 2 
5 - Blanket 2 

CN 

CTI 
V£> 

CO 
RO 

U 

4 
cr» 
RO 
o 

in 
M 

1 

54.85 

92.95-

123.45 

Fig.5.9 Typical q u a r t e r - c o r e oxide-fuelled LMFBR 
configuration (dimensions in cm) 
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In the study by Kaper et a l , results from low order 

finite d i f f e r e n c e approximations and high order finite 

e l e m e n t approximations were p r e s e n t e d . The finite difference 

results were obtained from the D A R C 2 D [48 ] code w h i l e the 

finite element results w e r e produced by H O D , w h i c h is a 

t w o - d i m e n s i o n a l m u l t i g r o u p high order diffusion program 

adapted from a finite element p r o g r a m originally written 

by G e o r g e [35 ]. DARC2D was the production program in the 

A r g o n n e Reactor Computation (ARC) System for t w o - d i m e n s i o n a l 

d i f f u s i o n calculations at the A r g o n n e National L a b o r a t o r y . 

The objective of the study by Kaper et al was to determine 

a timing comparison between low order finite d i f f e r e n c e 

approximations and high order finite element a p p r o x i m a t i o n s . 

The low order finite d i f f e r e n c e approximation in DARC2D 

w a s achieved by using a five-point difference approximation 

w h i l e in the high order finite e l e m e n t approximations triangular 

elements of up to quintic p o l y n o m i a l representations were 

u s e d . In all seven sets of results w e r e reported for DARC2D 

ranging from 48 to 1452 mesh c e l l s . Six sets of results 

w e r e quoted for HOD using q u a d r a t i c to quintic triangular 

elements and two m e s h e s of 17 and 24 e l e m e n t s . In all 

-5 

runs the convergence criterion on was 10 e x c e p t 

in the case of the q u i n t i c elements w h e r e it was 10 

Kaper et al considered the q u i n t i c result using 24 elements 

as their benchmark v a l u e . 

G r e e n s t a d t [38], w h o s e Cell Discretization m e t h o d 

w a s d e s c r i b e d in the previous s e c t i o n , has also reported 

the v a l u e s of k ^ ^ for this p r o b l e m . He only used one 

type of m e s h , i . e . one of ( 3 x 4 ) c e l l s , but with interface 
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conditions ranging from 1 to 5. The convergence criterion 

-7 
on w a s , as in the previous e x a m p l e , 10 

When FELTRAN was used to analyse this problem the 

l i n e a r , q u a d r a t i c and cubic elements were used as w e l l 

as the triangular e l e m e n t s . Three m e s h e s of ( 3 x 4 ) , 

( 6 x 8 ) and (12 x 16) were used for the rectangular elements 

w h i l e the corresponding e l e m e n t a l mesh for the triangular 

elements w e r e ( 6 x 4 ) , (12 x 8) and (24 x 16). The ( 3 x 4 ) 

mesh is depicted in F i g . 5 . 1 0 . The finer m e s h e s are built 

up in a p r o p o r t i o n a t e manner from this basic m e s h . The 

reason for attempting such a fine m e s h r e f i n e m e n t for this 

p r o b l e m w a s that since this particular problem is especially 

suited for mesh refinement in a "doubling" m a n n e r , it was 

d e s i r a b l e to see the manner in w h i c h was behaving 

when such mesh refinements w e r e carried o u t . The convergence 

-5 
criterion on k was 10 and in all runs the initial 

er r 

guess for w a s 1.0. 

Table 5.6 shows the cross-sections associated with 

this p r o b l e m . 

Table 5.7 shows the values of k e f f reported from the 

v a r i o u s c o d e s . As can be seen FELTRAN results for quadratic 

and cubic elements agree very w e l l w i t h the CD and HOD 

v a l u e s while the k for the linear elements (for both 
ef f 

rectangular and triangular) are approaching a higher value 

w i t h increasing m e s h r e f i n e m e n t . This indicates the accuracy 

a f f o r d e d by higher order elements even w i t h a very coarse 

m e s h . If one w e r e to accept Kaper e t al's value of 1.056992 

as the benchmark value then Table 5.8 indicates the percentage 

d e v i a t i o n of the FELTRAN values for k Q f f from the b e n c h m a r k . 
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I 
I 

3 
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3 1 
I 

3 

5 
I 

5 3 

4 2 3 

1 2 3 

Fig.5.10 The (3 x 4) mesh of rectangular elements used 
in FELTRAN 
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T A B L E 5 . 6 

C R O S S - S E C T I O N A L D A T A F O R T H E 4 - G R O U P 

C R O S S - S E C T I O N S 

D I F F U S I O N P R O B L E M 

REGION NO 1 

POS 
1 
2 
3 4 
5 
6 

GROUP 1 
1 . 7 9 1 1 E - 0 2 
1 . 1 6 7 6 E - 0 1 
7 . 2 3 5 2 E - 0 2 

0 
0 
0 

GROUP 2 
4 . 7 7 6 9 E - 0 3 
2 . 2 1 9 3 | - 0 1 
2 . 1 4 3 6 E - 0 1 
3 . 7 6 7 3 E - 0 2 

0 
0 

GROUP 3 
6 . 3 2 0 2 E - 0 3 
3 . 4 8 5 8 E - 0 1 
3 . 3 7 8 5 E - 0 1 
4 . 1 5 8 2 E - 0 3 
1 . 9 0 8 4 E - 0 4 

0 

GROUP 4 
2 . 4 4 7 8 E - 0 2 
3 . 5 0 9 7 E - 0 1 
3 . 2 2 5 8 E - 0 1 
1 . 8 0 0 5 E - 0 3 
3 . 0 7 0 8 E - 0 7 
1 . 3 1 0 5 E - 0 8 

REG ION NO 2 

POS 
1 
2 
3 
4 
5 
6 

GROUP 1 
1 . 4 1 2 6 E - 0 2 
1 . 2 2 6 8 E - 0 1 
7 . 4 9 3 3 E - 0 2 

0 
0 
0 

GROUP 2 
8 . 3 8 2 6 E - 0 4 
2 . 3 4 0 9 6 - 0 1 
2 . 2 7 6 4 E - 0 1 
4 . 1 9 6 5 E - 0 2 

0 
0 

GROUP 3 
1 . 0 7 3 5 E - 0 3 
3 . 6 3 1 6 E - 0 1 
3 . 5 4 4 4 E - 0 1 
4 . 3 1 7 0 E - 0 3 
2 . 2 1 0 5 E - 0 4 

GROUP 4 
4 .2049E—03 
3 . 4 5 2 2 E - 0 1 
3 . 2 9 0 5 E - 0 1 
1 . 7 9 3 3 E - 0 3 
1 . 7 5 7 8 E - 0 7 

0 

REG ION NO 3 

POS 
1 
2 
3 
4 
5 
6 

GROUP 1 
0 

1 . 1 3 1 7 E - 0 1 
8 . 2 2 9 2 E - 0 2 

0 
0 
0 

GROUP 2 
0 

1 . 7 7 6 2 E — 0 1 
1 . 7 4 5 6 c — 0 1 
3 . 0 2 8 2 E - 0 2 

0 
0 

GROUP 3 

3 . 6 7 0 5 E - 0 1 
3 . 6 4 2 0 E - 0 1 
2 . 8 2 5 2 E - 0 3 
7 . 2 0 4 7 E - 0 5 

0 

GROUP 4 

4 . 1 1 5 4 E — 0 1 
4 . 0 7 0 3 E - 0 1 
1 .6299E—03 

0 
0 

REG ION NO 4 

POS 
1 
2 
3 4 
5 
6 

GROUP 1 
1 . O 5 0 5 E - 0 2 
1 . 1 6 7 0 E — 0 1 
7 . 2 3 8 3 E - 0 2 

0 
0 
0 

GROUP 2 
6 .1077E—03 
2 . 2 1 7 8 E - 0 1 
2 . 1 3 7 6 E - 0 1 
3 .7094E—02 

0 
0 

GROUP 3 
8 . 0 8 9 1 E - 0 3 
3 . 4 8 8 r E — 0 1 
3 . 3 7 4 1 E - 0 1 
4 .1507E—03 
1 .8535E—04 

0 

GROUP 4 
3 . 1 3 0 6 E - 0 2 
3 . 5 6 3 3 E - 0 1 
3 . 242<»E—01 
1 . 6 0 3 0 E - 0 3 
3 . 0 8 1 7 E - 0 7 
1 . 3 6 4 8 E - 0 8 

REG ION NO 5 

POS 

2 
3 
4 
5 
6 

GROUP 1 
1 • 7 3 0 1 E - 0 2 
1 . 3 2 5 9 E - 0 1 
7 .9093E—02 

0 
0 
0 

GROUP 2 
1 . 3 5 8 4 E - 0 3 
2 . 5 6 0 3 E - 0 1 
2 . 4 8 6 8 E - 0 1 
4 .6522E—02 

0 
0 

GROUP 3 
1 . 7 6 7 2 E - 0 3 
3 . B 6 9 5 E — 0 1 
3 .7668E—01 
4 .6940E—03 
2 . 5 6 4 7 E - 0 4 

0 

GROUP 4 
6 . 9 2 0 4 E - 0 3 
3 . 6 9 5 9 E - 0 1 
3 . 4 9 7 2 E - 0 1 
1 .9052E—03 
2 . 0 8 6 1 E - 0 7 

0 

F I S S I O N SPECTRUM 

GROUP 1 GROUP 2 GROUP 3 GROUP J 
5 . 8 8 1 5 6 - 0 1 4 . 0 8 1 9 6 - 0 1 3 . 6 3 8 3 E - 0 3 1 . 9 4 7 2 E - 0 5 
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T A B L E 5 . 7 

C O M P A R I S O N O F k „ F R O M V A R I O U S C O D E S 

C o d e 
R u n 

N o . 
M e s h 

N o . of 
U n k n o w n s 
P e r G r o u p 

E l e m e n t T y p e k -F F 
e f f 

1 6 X 8 48 1 . 0 6 7 1 7 6 

2 10 X 14 140 - 1 . 0 6 4 1 4 2 

3 14 X 20 2 8 0 - 1 . 0 5 8 8 7 4 

D A R C 2 D 4 20 X 28 5 6 0 - 1 . 0 5 7 8 4 2 

5 25 X 36 900 - 1 . 0 5 7 8 3 8 

6 29 X 40 1 160 - 1 . 0 5 7 4 1 4 

7 33 X 44 1 4 5 2 — 1 . 0 5 7 2 9 8 

1 17 46 Q u a d . T r i . 1 . 0 5 6 7 0 0 

2 24 63 Q u a d . T r i . 1 . 0 5 6 8 5 1 

H O D 
3 17 94 C u b i c T r i . 1 . 0 5 7 0 0 7 

H O D 
4 17 159 Q u a r t i c . T r i . 1 . 0 5 6 9 9 5 

5 17 241 Q u i n t i c . T r i . 1 . 0 5 6 9 9 2 

6 24 336 Q u i n t i c . T r i . 1 . 0 5 6 9 9 2 ^ 

1 3 X 4 17 1 . 0 5 9 8 1 9 

2 3 X 4 34 - 1 . 0 5 7 0 6 3 

C D 3 3 X 4 51 - 1 . 0 5 7 0 0 5 

4 3 X 4 68 - 1 . 0 5 6 9 9 5 

5 3 X 4 85 — 1 . 0 5 6 9 9 5 

1 3 X 4 20 L i n e a r R e c t . 1 . 0 3 6 0 1 8 

2 3 X 4 63 Q u a d . R e c t . 1 . 0 5 7 0 7 3 

3 3 X 4 130 C u b i c R e c t . 1 . 0 5 7 1 5 6 

4 6 X 4 20 L i n e a r T r i . 1 . 0 3 2 6 7 3 

5 6 X 8 63 L i n e a r R e c t . 1 . 0 5 2 4 9 9 

F E L T R A N 6 
7 

6 
6 

X 
X 

8 
8 

221 
4 7 5 

Q u a d . R e c t . 
C u b i c R e c t . 

1 . 0 5 7 1 3 9 
1 . 0 5 7 1 0 6 

8 12 X 8 63 L i n e a r T r i . 1 . 0 5 1 3 3 8 

9 12 X 16 221 L i n e a r R e c t . 1 . 0 5 5 9 2 7 

10 12 X 16 8 2 5 Q u a d . R e c t . 1 . 0 5 7 1 0 8 

1 1 12 X 16 1 8 1 3 C u b i c R e c t . 1 . 0 5 7 0 9 4 

12 12 X 16 221 L i n e a r T r i . 1 . 0 5 5 5 5 9 
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T A B L E 5 . 8 

P E R C E N T A G E D E V I A T I O N O F k ^ F R O M B E N C H M A R K 
e r r 

F O R F E L T R A N R E S U L T S 

F E L T R A N R u n E l e m e n t T y p e A K „ 
e f f 

1 L i n e a r R e c t . - 1 . 9 8 4 6 

2 Q u a d . R e c t . 0 . 0 0 7 4 

3 C u b i c R e c t . 0 . 0 1 5 2 

4 L i n e a r T r i a n g . - 2 . 3 0 1 1 

5 L i n e a r R e c t . - 0 . 4 2 5 4 

6 Q u a d . R e c t . - 0 . 0 1 3 6 

7 C u b i c R e c t . 0 . 0 1 0 5 

8 L i n e a r T r i a n g . - 0 . 5 3 5 2 

9 L i n e a r R e c t . - 0 . 1 0 1 0 

10 Q u a d . R e c t . - 0 . 0 1 0 7 

1 1 C u b i c R e c t . - 0 . 0 0 9 4 

12 L i n e a r T r i a n g . - 0 . 1 3 5 9 

T A B L E 5 . 9 

V A L U E S O F k c c F R O M F E L T R A N U S I N G L I N E A R 
e r r 

E L E M E N T S W I T H M E S H R E F I N E M E N T 

R u n 

N o . 
M e s h 

N u m b e r of 
U n k n o w n s 
P e r G r o u p 

E l e m e n t 
T y p e 

k 4 ^ 

e f f 

A k 
e f f 

13 24 x 32 8 2 5 
L i n e a r 
R e c t . 

1 . 0 5 6 8 1 5 - 0 . 0 1 6 7 

14 48 x 32 8 2 5 
L i n e a r 
T r i . 

1 . 0 5 6 7 1 8 - 0 . 0 2 5 9 
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The deviation is calculated as 

K F F - K * 

A k e f f - X I O O ( 5 . 9 ) 

w h e r e , 

* 
benchmark value of Kaper et a l . k * = 

As can be seen the deviations for the linear rectangular 

and triangular elements drop when the mesh is r e f i n e d . 

For the quadratic elements there is an increase followed 

by a decrease but in the case of the cubic elements the 

d r o p is steady but not a p p r e c i a b l e . W h a t can therefore 

be deduced is that higher order elements provide reasonable 

and accurate answers even on a c o a r s e mesh and improved 

a c c u r a c y is not matched by an increase in mesh refinement 

owing to the already excellent estimate on a coarse m e s h . 

As for linear e l e m e n t s , mesh r e f i n e m e n t serves to bring 

about an increasing order of accuracy which can be seen 

to be approaching the benchmark v a l u e . A c t u a l l y the 

for the linear elements do not seem to have attained the 

"equilibrium s t a t e " . Therefore it was decided to further 

refine these meshes for the linear elements and see how 

the values of k c c turn o u t . Table 5.9 shows these values 
ef f 

and their corresponding ^ e f f approach to "equilibrium" 

is m a i n t a i n e d . Indeed, the values of k are now closer 
ef f 

to those for the coarsest mesh w i t h q u a d r a t i c and cubic 

elements (Runs 2 and 3) but still not as s m a l l . Therefore 

one can infer that the higher order elements are d e f i n i t e l y 

to be used in preference over the linear e l e m e n t s . This 

observation agrees with that of Biswas et al [13 ] w h o showed 
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that quadratic elements provide the same trend when compared 

against linear rectangular and triangular e l e m e n t s . 

One important feature to bear in mind is that the 

results from HOD and CD do not show an attempt at mesh 

r e f i n e m e n t . It is almost certain that if mesh refinement 

had been carried out as w e l l then the pattern turned out 

by FELTRAN w o u l d be followed. That means to say the values 

of from HOD and CD w o u l d not necessarily turn out 

to be 1.056992 but some values around t h e r e . Hence on 

an equal footing comparison basis the FELTRAN Runs 1 to 

4 when compared with those results from HOD and CD demonstrate 

the accuracy of higher order finite elements for diffusion 

problems using coarse mesh a n a l y s i s . On the other hand 

finite d i f f e r e n c e methods do not demonstrate this feature 

as can be seen from the DARC2D results w h e r e the values 

of are still varying to some extent even with mesh 

r e f i n e m e n t . 

The execution t i m e s , number of outer iterations and 

time per iteration for the FELTRAN results are shown in 

Table 5.10. A l l the results are quoted in CDC 6600 s e c . 

Run 11 was m a d e on the A M D A H L and the result quoted in 

e q u i v a l e n t CDC 6600 sec by using a conversion factor of 

8 (as in the previous s e c t i o n ) . As can be seen the time 

per iteration for the linear elements agree v e r y well with 

each other when compared on the basis of e q u i v a l e n t mesh 

s i z e s . The time per iteration for Runs 5 and 8 are very 

close to those for Runs 9 and 12 although the latter runs 

h a v e more u n k n o w n s . This can be attributed to the fact 
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T A B L E 5 . 1 0 

E X E C U T I O N T I M E S A N D N U M B E R O F O U T E R I T E R A T I O N S 

F O R F E L T R A N R E S U L T S 

R u n 
N o . 

N u m b e r o f 
I t e r a t i o n s 

E x e c u t i o n 
T i m e 

(CDC 6 6 0 0 s e c . ) 

T i m e P e r 
I t e r a t i o n 

( C D C 6 6 0 0 s e c . ) 

1 22 7 . 6 0 0 . 3 5 

2 25 9 . 4 0 0 . 3 8 

3 26 2 3 . 7 1 0 . 9 1 

4 18 4 . 5 8 0 . 2 5 

5 9 10.01 1.11 

6 26 3 0 . 8 1 1 . 1 9 

7 26 1 5 5 . 1 6 5 . 9 7 

8 8 9 . 1 5 1.14 

9 24 2 2 . 0 2 0 . 9 2 

10 26 2 2 9 . 6 6 8 . 8 3 

1 1 26 7 2 4 . 3 2 * 2 7 . 8 6 

12 24 2 4 . 4 7 1 .02 

13 25 1 2 4 . 8 4 4 . 9 9 

14 25 1 3 2 . 1 8 5 . 2 9 

* 9 0 . 5 4 s e c . o n t h e A M D A H L 
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that Runs 5 and 8 require a surprisingly low number of 

iterations and hence the time per iteration for these runs 

include a significant portion due to initialisation and 

assembly of the global m a t r i x . 

The times for the other codes are reproduced in Table 5.11 

together w i t h their number of unknowns per g r o u p . DARC2D 

and HOD were run on an IBM 360 M o d e l 50/75 while CD was fun 

on IBM 370/158 which is, of c o u r s e , a faster machine than 

the IBM 360. However comparison times between these two 

machines are unavailable and therefore no conclusion can 

be made about the HOD or CD r e s u l t s , but nevertheless the 

times quoted by Kaper et al for both codes are quite impressive 

since one can surmise that the IBM 370/158 m u s t be at least 

3 or 4 times faster than the IBM 360. The relation between 

the speed of the IBM 370/158 and CDC 6600 is two in favour 

of the latter as was shown in the previous s e c t i o n . To 

provide a not unreasonable comparison consider CD/5 and 

F E L T R A N / 3 . The time for CD/5 in CDC 6600 time w o u l d be 

about 65 s e c . while it is about 24 s e e s , for F E L T R A N / 3 . 

A l t h o u g h the number of unknowns are more for FELTRAN/3 

the time t a k e n is about 2\ times faster. H o w e v e r , in the 

e n d , no firm conclusion can be drawn up as regards the 

execution times of these v a r i o u s c o d e s . The reasons have 

already been expounded in the previous s e c t i o n . 

TO 

To conclude it can be said that FELTRAN do provide 

excellent results especially with q u a d r a t i c and cubic e l e m e n t s . 

No firm conclusion can be drawn as regards the speed w h e n 

compared w i t h the other p u b l i s h e d r e s u l t s . 
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T A B L E 5.11 

E X E C U T I O N T I M E S F O R D A R C 2 D , H O D A N D C D R E S U L T S 

C o d e 
R u n N o . U n k n o w n s E x e c u t i o n 
N o . P e r G r o u p T i m e ( s e c . ) 

1 48 3 0 . 7 

2 140 3 6 . 4 

3 2 8 0 5 0 . 6 

4 5 6 0 8 7 . 4 
D A R C 2 D 

5 900 1 7 6 . 5 

6 1 160 2 8 4 . 7 

7 1 4 5 2 3 1 7 . 4 

1 47 1 6 . 5 

2 63 2 3 . 0 

3 94 4 6 . 2 
H O D 

4 159 1 1 0 . 8 

5 241 2 4 6 . 1 

6 336 3 7 0 . 5 

1 17 2 0 . 0 

2 34 5 0 . 0 

C D 3 51 5 2 . 0 

4 68 1 2 7 . 0 

5 85 1 3 0 . 0 

y ^ - I B M 3 6 0 M o d e l 5 0 / 7 5 

g - I B M 3 7 0 / 1 5 8 
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D I S T A N C E < C M ) 

F i g . 5 . 1 1 F l u x p l o t s a l o n g x = 0 . 0 c m f o r F E L T R A N u s i n g 
c u b i c e l e m e n t s (Run 11) 
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Fig.5.12 Flux plots along y = 0.0 cm for FELTRAN using 
cubic elements (Run 11) 
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None of the other results have shown any flux p r o f i l e s . 

However Figs.5.11 and 5.12 show the scalar flux profiles 

along x = 0.0 cm and y = 0.0 cm respectively for F E L T R A N / 1 1 . 

Both exhibit a downwards trend for all four group fluxes 

as the exterior boundaries are a p p r o a c h e d . Besides the 

r e l a t i v e distributions of the four groups behave in a similar 

m a n n e r to that shown by a typical four group m o d e l represent-

ation of a LMFBR [97]. This further confirms the accuracy 

a f f o r d e d by FELTRAN in analysing d i f f u s i o n p r o b l e m s . 

5.4 A 5-Group E i g e n v a l u e Problem 

After witnessing the ability of FELTRAN to cope with 

d i f f u s i o n problems our attention is now focussed on a transport 

p r o b l e m . This 5 - g r o u p problem was first analysed by Lillie 

and Robinson [65] w h o incidentally also provided the data 

set by private c o m m u n i c a t i o n . Fig.5.13 shows this 7-region 

p r o b l e m which is a o n e - d i m e n s i o n a l representation of the 

ZPR-9 reactor at the A r g o n n e N a t i o n a l L a b o r a t o r y . In the 

FELTRAN analysis the vertical dimension was chosen as 1 cm 

w i t h reflective boundary conditions on all sides e x c e p t the 

right hand end w h e r e bare surface conditions w e r e con-

s i d e r e d . Table 5.12 lists the cross-sections for this 

p r o b l e m . 

In their s t u d y , Lillie and Robinson employed three 

d i f f e r e n t methods to solve this p r o b l e m . F i r s t l y , the problem 

w a s to validate their own finite e l e m e n t code called D A F E . 

This code is based on a variational approach to the finite 

e l e m e n t m e t h o d . Lillie and Robinson used a second-order 

form of a discretized Boltzmann t r a n s p o r t e q u a t i o n . The 
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2 1 3 4 5 6 

0 1 0 . 1 5 1 7 . 9 0 2 4 . 4 8 3 9 . 2 7 4 6 . 4 9 5 5 . 6 3 6 3 . 4 0 

POSITION (em) 

1-Core Zonel 
2-Core Zone 1 +Loops 
3-CoreZone 2 
4-Reflector+Control Material 
5-Reflector 
6-Shield 

Fig.5.13 Geometrical and materials representation of the 
ZPR-9 Reactor (dimensions in cm.) 
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TABLE 5.12 

CROSS-SECTIONAL DATA FOR THE 5 -GROUP EIGENVALUE PROBLEM 

CROSS-SECTIONS 

REGION NO 1 

POS GROUP 1 
1 9.79Q2E-03 
2 1.60b6E—01 
3 1.3150E—01 
4 0 
5 0 
6 0 
7 0 

GROUP 2 
4.5500E-03 
2.2063C-01 
2.13146-01 
2.4734E-0Z 

0 
0 
0 

GROUP 3 
5.2237E-03 
3.3302E-01 
3.2307E-C1 
4•8741E—03 
4.6632t-C4 

0 
0 

GROUP 4 
1.0833E-02 
4.89C4t-01 
4.7319E-C1 
4.8484E-03 
3• 36 38E-06 
3.2206F-05 

0 

GROUP 5 
2.3846E-02 
4.09866-01 
3* 8765E-01 
4.0625E-03 
1.8872E-06 
2.50205-08 
2.27386-06 

REGION NC 

POS GROUP 1 GROUP 2 
1 4.89375 -03 2.304 3E-03 
2 1.5550E -01 2.1197E-01 
3 1.3116E -01 2.0642E-01 
4 0 2.1572E-02 
5 0 0 
6 0 0 
7 0 0 

GROUP 3 
2.6484F-03 
3.G560E-01 
3.5752E-01 
4.1O72E-03 
5.15<>6E-04 

0 
0 

GROUP 4 
5 • 50961'—03 
5.3636E-C1 
5•24 33E—01 
5.38405-03 
3.4157E-C6 
4.5139E-05 

0 

GROUP 5 
1.46C0E-02 
4.5972E-01 
4.4673E-01 
A•2 1896-03 
9.2929E-07 
1•28 00E-O8 
3.5972E-06 

REGION NO 3 

POS GROUP 1 
1 1.33165-02 

1.7866 E—01 2 
1.33165-02 
1.7866 E—01 

3 1.4504E-01 
4 0 
5 0 
6 0 
7 0 

GROUP 2 
6.4095E-C3 
2.4o63£-01 
Z.3804E-01 
2.7838E-02 

0 
0 
0 

GROUP 3 
7.3151E-03 
3.7242E-C1 
3.6C49E-C1 
5.0683E-03 
5.6095E-04 

0 
Q 

GROUP 4 
1.5141E-02 
5.2955C-Q1 
5.0836E-01 
5.2531E-03 
4.0382E-06 
3•R26SC-05 

0 

GROUP 5 
4.3267E-02 
4.8Z59E—01 
4.472ZE-01 
4.3213E-03 
2.3035E-06 
3. 87046-08 
2.7030E-06 

REGION NO 4 

POS 
1 
2 
3 
4 
5 
6 
7 

GROUP 1 
9.64106-15 
2.1552E-01 
1 • "195 E—01 

0 
0 
0 
0 

GPOUP 2 
7.8964E-15 
3.02U9E-01 
2.9452E-01 
2.0266E-02 

0 
0 
0 

GROUP 3 
1.06216-14 
3.0108E-01 
7.839«E-01 
6.3811P-03 
7.2145E-04 

0 
0 

GROUP 4 
2.5050E-14 
1.C055E+C0 
9.P534E-01 
1.4353E-02 
1.Q033C-C6 
4.6683E-05 

0 

GROUP 5 
1.39196-13 
1.0172E+00 
9.647ZE-01 
1•1711E-02 
4.7415E-19 
1.8779E-10 
2.2371E-06 

REGION NO 5 

POS 
1 
2 
3 
4 
5 
6 
7 

GROUP 1 
9.3336E-15 
2.14496-01 
1.9117C—01 • 

0 
0 
0 

GROUP 2 
7.9002£-15 
3.0054c—01 
2.O363E-01 
2.0889E-02 

0 
0 
0 

GROUP 3 
1.0516F-14 
7.7351E-01 
7.5948 E-C'l 
6.3567E-03 
6.9633E-04 

0 
0 

GROUP 4 
2.5826E-14 
9.9200E-01 
0.^6176-01 
1.3025E-02 
2.P028E-06 
4.8504E-05 

0 

GROUP 5 
1.5231E-13 
0,70555-01 
9,6331E—01 
1.3361E-02 
4•9815E—19 
1.7994E—10 
2.5907E-06 

REGION NO 6 

POS 
1 
2 
3 

GPOUP 1 
9.2172E-15 
1•6704E-P1 
1.5724E-01 

GROUP 2 
7.9143E-15 
2.6449E-01 
2.6039E-01 

GROUP 3 
1.0401F—14 
5.7203E-C1 
5.6501E-01 

GROUP 4 
2.61422-14 
7.1268E-G1 
6.9749E-01 

GROUP 5 
1.62356-13 
6.5780E-01 
6.5120E—01 

2.7967E-02 
0 
0 
0 

3.76366-03 
1.29876-03 

0 
0 

5.8470E-G3 
5.1880E-06 
1.4652E-04 

0 

9.47526-03 
5.3743E-19 
7.7887E-10 
1.2748E—05 

FISSION SPECTRUM 

GPOUP 1 GROUP 2 
7.5504E-C1 2.38036-01 

GROUP 3 
6.°300E—03 

GROUP 
0 

GROUP 5 
0 
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angular dependence is discretised using the discrete 

coordinates m e t h o d . S e c o n d l y , DOT-III [82], a discrete 

ordinates c o d e , was used to analyse the problem in order 

to provide comparative results for D A F E . Being of a more 

established nature the DOT-III results w e r e held as the 

representative s o l u t i o n s . F i n a l l y , a Monte Carlo 

simulation was carried out with the KENO [98 ] code to 

provide a further c h e c k . 

A distinction should be made between DAFE and FELTRAN 

as regards the application of the variational m e t h o d . In 

D A F E , the variational is applied after angular discretization 

of the Boltzmann e q u a t i o n , w h e r e a s in FELTRAN the vari-

ational m e t h o d is applied d i r e c t l y to the second-order 

Boltzmann E q u a t i o n . 

Two sets of DOT-III results w e r e p r e s e n t e d . Both 

used the same spatial mesh of 72 rectangles and were S^ 

and S^ calculations using 6 and 16 angular directions 

r e s p e c t i v e l y . The DAFE results utilised 144 linear 

triangles and w e r e labelled E 2 and E^ in the angular 

r e p r e s e n t a t i o n . However these only used 2 and 6 angular 

directions respectively although both DOT-III and DAFE 

used the same quadrature s e t s . Lillie and Robinson attri-

buted this to the fact that they only used those discrete 

angles having positive and n o n - z e r o direction cosines 

owing to symmetry in their c a n o n i c a l form of the transport 

e q u a t i o n . The KENO results w e r e obtained by tracking 

30,000 p a r t i c u l a t e h i s t o r i e s . In both the DOT-III and 

-4 
DAFE results a convergence criteria of 10 was imposed on 
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the value of k f f . DAFE uses a d i r e c t elimination solver 

w h i l e D O T - I I I , with an iterative s o l v e r , used a convergence 

-3 
criteria of 10 on the pointwise flux. 

Table 5.13 presents the results of Lillie and Robinson 

together with those from FELTRAN using 72 elements for all 

b u t one c a s e . The allocation of elements was 8 for all 

the regions except Region 3 w h e r e 24 w e r e u s e d . In the 144 

elements run the elements per region w e r e d o u b l e d . 

The symbols NOM refer to the number of moments in the 

trial function w h i l e NORD refers to the order of the 

e l e m e n t employed ranging from 1 for linear elements to 3 

for cubic e l e m e n t s . Since Lillie and Robinson have chosen 

to compare their results with those of DOT-III as the 

standard owing to the established nature of that code the 

same policy was adopted h e r e . In particular the DOT-III 

S^ case w a s chosen to be the y a r d s t i c k in Table 5. 13 and the 

A k f f is calculated as in E q . ( 5 . 9 ) . From the figures 

for k ^ ^ it can be seen that they agree very w e l l with the 

DOT-III S 4 r e s u l t . In f a c t , the results are better than 

those from DAFE or K E N O . However this is assuming that 

the DOT-III S 4 result is a c c u r a t e . 

I n t h e r e m a i n i n g p r o b l e m s t o b e d i s c u s s e d a n d i n c l u d i n g 

t h i s o n e n o F E L T R A N r e s u l t s u s i n g l i n e a r t r i a n g l e s a r e 

p r e s e n t e d . T h e d i f f u s i o n r e s u l t s i n t h e p r e v i o u s t w o 

s e c t i o n s h a d a l r e a d y s h o w n t h a t b o t h l i n e a r t r i a n g l e s a n d 

r e c t a n g l e s a r e o f n e a r l y t h e s a m e a c c u r a c y b u t w i t h l i n e a r 

r e c t a n g l e s b e i n g b e t t e r o f f . A n d w h e n c o m p a r e d a g a i n s t 

t h e h i g h e r o r d e r e l e m e n t s t h e s e l i n e a r e l e m e n t s a r e n o t 
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T A B L E 5 . 1 3 

C O M P A R I S O N O F k c £ F R O M V A R I O U S C O D E S 

C o d e 
N o . of 
E l e m e n t s 

A n g l e / 
N O M 

N O R D k c .c 
ef f A k e f f 

D O T - I I I 
72 S 2 

- 1 . 1 4 9 6 - . 17 

72 S 4 
- 1 . 1 5 1 5 -

D A F E 
144 E 2 

- 1 . 1551 + .31 

144 E 4 
- 1 . 1 5 7 6 + .53 

72 2 1 1 . 1 5 2 4 5 + . 0 9 5 

72 3 1 1 . 1 5 2 5 7 + .093 

72 4 1 1 . 1 5 2 5 9 + . 0 9 5 

F E L T R A N 72 2 2 1 . 1 5 2 0 8 + .050 

72 3 2 1 . 1 5 2 2 2 + . 0 6 3 

72 2 3 1 . 1 5 2 0 4 + .047 

144 2 2 1 . 1 5 1 9 9 + .043 

K E N O , u s i n g 3 0 , 0 0 0 p a r t i c u l a t e h i s t o r i e s , p r e d i c t 

k „ = 1 . 1 6 4 9 ± . 0 0 7 8 
e f f 

N o t e : 

(i) D A F E u s e l i n e a r t r i a n g l e s 
(ii) N O M = n u m b e r of m o m e n t s 
( i i i ) N O R D = o r d e r of e l e m e n t 
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quite as a c c u r a t e . Hence it is not surprising that the 

DAFE results are not as accurate as FELTRAN for this 

problem since only linear triangles are used in D A F E . 

On the other hand the FELTRAN results agree very w e l l 

w i t h each other and in all the runs 10 outer iterations 

w e r e required to satisfy the convergence criterion on 

-5 

of 10 . When the NOM = 2, NORD = 2 case was compared with 

the NOM = 2, NORD = 3 case the k e f f are very nearly 

i d e n t i c a l . Therefore it w a s decided to run a finer mesh 

case using 144 elements for NOM = 2 and NORD = 2 to see if 

any significant change in k w o u l d result and the result 

is that no significant c h a n g e was n o t i c e d . Therefore in 

this study the mesh of 72 elements w a s adequate for the 

p r o b l e m . 

No m e n t i o n was m a d e a b o u t computing times and number 

of outer iterations by L i l l i e and R o b i n s o n . Therefore 

the FELTRAN times are not m e n t i o n e d here except that in 

the 72 elements runs with N O M = 2 the times on the A M D A H L 

computer w e r e 21.45 sec for N O R D = 2 and 134.91 sec for 

N O R D = 3. The ratio of the global m a t r i c e s in these two 

cases was 1:3.55. 

Fig.5.14 shows the 5 g r o u p fluxes for the NOM = 2, 

N O R D = 2 case with 72 e l e m e n t s . No flux profiles were 

provided by Lillie and Robinson and therefore no com-

parison could be m a d e . N e v e r t h e l e s s the profiles are 

r e p r e s e n t a t i v e of such a s y s t e m . In particular Groups 4 

and 5 do e x h i b i t the humps in the reflector region and 

all the fast groups show a gradual descent from the centre 

to the bare s u r f a c e . 
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Fig.5.14 F l u x p l o t s from F E L T R A N u s i n g 72 q u a d r a t i c 
e l e m e n t s and a 2 - m o m e n t t r i a l f u n c t i o n 
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To conclude, this m u l t i g r o u p , multi-region problem has 

confirmed that FELTRAN can p r e d i c t accurate results for 

t r a n s p o r t p r o b l e m s , although the problem is essentially 

o n e - d i m e n s i o n a l in a s p e c t . However in the next sections 

m o r e rigorous studies will be m a d e to examine the 

t r a n s p o r t a s p e c t s . 

5.5 A High Leakage Problem 

A high leakage situation arises when all four 

boundaries are bare surfaces as in this p r o b l e m . A l s o 

because the angular flux is highly anisotropic it w o u l d be 

d i f f i c u l t to analyse such problems w i t h o u t high angular 

r e s o l u t i o n . 

Fig.5.15 shows the geometry and material distribution 

of this problem which was first posed by Kaper et al [53]. 

Of the eight different materials p r e s e n t only m a t e r i a l 4 

is n o n - f i s s i l e . The c r o s s - s e c t i o n s for these eight materials 

appear in Table 5 . 1 4 . 

Kaper et al had m e t with considerable success in 

applying the finite element m e t h o d to solve the m u l t i g r o u p 

d i f f u s i o n problems [52]. In solving this problem they 

w e r e extending their earlier work to solve t r a n s p o r t 

p r o b l e m s . Their finite element approach is based on a 

v a r i a t i o n a l formulation of the s e l f - a d j o i n t form of the 

o n e - g r o u p transport e q u a t i o n . Lagrangian triangular 

elements ranging in p o l y n o m i a l order from 1 to 5 w e r e 

used to span the spatial domain w h i l e three types of angular 

a p p r o x i m a t i o n s w e r e t r i e d , n a m e l y , piecewise p o l y n o m i a l 

f u n c t i o n s , surface h a r m o n i c functions and cubature formulae 
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M a t e r i a l s 1 to 8 a r e f i s s i l e e x c e p t for m a t e r i a l 4 

F i g . 5 . 1 5 G e o m e t r y and m a t e r i a l s r e p r e s e n t a t i o n in t h e 
h i g h l e a k a g e p r o b l e m 
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TABLE 5.14 

CROSS-SECTIONAL DATA FOR THE HIGH LEAKAGE PROBLEM 

MOSS-SECTIONS 
REGION NO 1 
MS GROUP 1 3.6522E-02 1.2.19E-G1 0.95.7E-G2 0 0 0 0 0 

CROUP 2 2.57 J9E-02 1. J.02E-O1 G.7926E-0? 3.39001-02 
CROUP 5 i:UttE:li 2.6.09E-O1 7.9.821-03 6.8205E-0. 9.2922E-0. I.I35.t-0k I 

GROUP 6 b.911.1-02 3.2Jtjf-01 2. 9.80E-C1 8. 995.E -0 3 Illlkli-Ss 1. 5581; -Oh 1.3B29E-B. 
REGION NO 2 
POS 1 2 3 k 5 » 

a 

CROU® 1 3.6.69E-02 1.2.361-01 k.85151-02 0 0 0 8 

GROUP 2 2. 5837;-02 1.3S30E-01 8. 00201-02 3.N006C-02 0 0 0 0 

GROUP 3 2. 0N76E-02 1.82N1E-01 1.553 .E-01 2.3398E-02 1.63.9E-02 0 

SR5UP 8 2.3976E-02 2.27.61-01 2. 02 62E-01 fcm&IS N.5573E-03 8 

GROUP I 3.0212E-02 2.93.7E-81 fcttWfli 6.9fc78£-0k 9.30.61-0. I.1.29E-I. 

CPOUP 6 6.9399E-B 2 3.29kkE-01 2.95271-01 7.0032j-0 J 2.6b69*-Cfc 1.88261-Ok 1. 56Q9j-e. 
REGION NO 3 
POS GROU® 1 2..500 2 1. 0779; 3 k « 3k 36' k 0 5 0 6 0 7 0 • a 

REGION NO k 
POS GROUP 1.E52kE-01 7.763̂1-02 

GROUP 2 1.7377E-02 1.1675t-01 7.91305-02 3.16651-02 

GROUP 2 0 1.8DC7E-01 l-.tt&iSi 
0 

GROUP 3 1.J70.E-OZ 1.6205.-01 1.39661-01 2. 0612E-0 2 1.2765E-02 
If I 

GROUP 3 0 
2.kSlkE-01 
1. N077E-02 

e o o 

GROUP k • 61.JJ-J2 • 9.56E-01 1. 73 99.-01 1.0775E-02 S. 057.£-03 3. .7131-03 0 0 

GROUP k 2.7390E-I1 
J.963.E-03 3.6630E-03 

CROJP 3 2.03.61-02 2..9011-01 2. 2667E- 01 7.N770E-03 5.067.E-8. 6.B638E-Ok 8*1390E-Ok 0 

GROUP B 3.5S23E-01 
1.978kE-0k 7.96361-Ok 6.S59.E-(k I 

GROUP 6 
ilWrlHU 2.k956E-81 6.70B3E-03 1.79501-0. 7,31191-C5 1.1.95E-0 k 9.62671-05 

GROUP 6 k.129$E-01 k. 062i.i-01 1.16.0;-0 2 2.05.91-05 2.8991J-05 
i.37.0.-8. 
•5505E-05 REGION NO 5 

POS I 3 k 5 8 

SROU" 1 
i:!M8l:» k.33911-02 0 0 0 0 0 

GROUP 2 9.971l:-03 i.lesfct-oi 0.01991-02 2.-210E-S2 0 0 0 0 

KRUU" 3 
V M l i - . l l 1.32k 7E-01 2.k519E-02 9.020.£-13 0 0 0 

GROUP k !:W!Jf:|f 1.5I.7E-01 1.50 99E-0 2 
0 0 

CROUP 5 
8:!!o!i :8f 1.9.75E-01 8.97l7£-03 1.52k6E-0k k.J996E-0. k. 3965E-lk 0 

GROUP 6 
2.17591-01 0.7565E-0 3 1.7.321-85 2.6089J-05 7,100 0.-0 5 6.B622E-05 

REGION NO 6 
POS 3R0UP 
1 3.3369] 2 1. 1511: 3 k. 56.8: k 
I 

G 8 } a 8 0 

GROUP 
I:HRf:|f 8. 113 01-0 2 J.15k0E-O2 

f:8Xfkf:8i 1.41671-01 I! 1..1671-01 5.1N37E-02 1.k33 3E-02 a o o 

GROUP 6 
fc«8ff:lf 1.8200.-01 1.10 22E-S2 k.60 731-0 3 3. 9733£-03 0 0 

C O U P 5 

fcltflfclf 2.398NE-01 7..1651-03 6.65.6E-0. k i m l n 0 

GROUP 

REGION NO 7 
P3S 1 f k 5 

GROUP 1 3.606O1-C2 1.2.971-01 km 053gE~D2 0 0 0 0 

GROUP 2 2. 613.E-02 1.35E5t-01 
G 0 
8 

GROUP 3 2.C723E-02 1.6330E-B1 !:}Usf:l* 
8.6kk8E-02 

GROUP k 2..266E-8? 
f.207.1-11 5.3 8 62C-83 6.5853E-03 

GROUP 5 3. 35001-02 2.9511E-01 
6.91.91-0. 
2.3655E-|fc .1933E-Ok 

GROUP 6 5.080kf-l2 3.31k2E-01 
2.69B5E-Ok 1. 0116E-Ik 8:t»2l:i: 

REGION NO • 
POS * 3 k 5 
\ 
8 

GROUP 1 1.&922.-01 5.8916E-G2 0 
GROUP 2 8.0.211-03 1. 79051-01 1.22731-01 ..E93kE-02 

8 0 a 

GROUP 3 3. C'O5E-8k 2. kEi 9t - 01 2,2.9 71-01 3.3663E-02 3. 8k 1 Jl-02 0 0 

GROUP k 
i n n i i i 3.10 EkE-01 l.k7 07E-12 
m u m 

8 

GROUP » 
i . m i t n k»89691-01 1.1779E-12 I.5.70E-O. 1.3708E-13 1.5773E-I3 

CROUP 6 t:8IH|:|J k. 7209; -11 1. 0075;-1 2 9.3839E-I5 8.55581-05 
f.26381-8. .411kE-0k 

PISSION SPECTCUN 
GROUP 1 3.kl2fcE-0l GROUP 2 k«llikE-Dl G"QUP 3 I.7971E-01 GROUP k 5.1222E* 02 GROUP 5 1. 2.66E-12 GROU® . 6 3.721.1-03 
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with positive weights. In assessing their own results 
Kaper et al used TRIPLET [81] to obtain benchmarking data. 
In their conclusion the cubature method showed the most 
promising results but on the whole they were not very 
enthusiastic about the extension of the finite element 
method to transport problems. 

Lillie and Robinson [65] had another look at this 
problem when they were validating DAFE against DOT-III 
and Keno (as shown in the previous section). They made 
comparative studies using the aforementioned codes and 
their own TRIPLET results. The TRIPLET computer code 
solves two-dimensional transport problems using regular 
triangular elements which are based on Lagrangian poly-
nomials up to quadratic order. The finite element approach 
is based on the method of weighted residuals. For the 
angular domain a discrete ordinates1 approximation is 
used and an iterative, rather than direct, solver was 
used to solve the system of equations. 

In this presentation the work of Lillie and Robinson 
will be referred to for comparative results since they 

have quoted many different results. The work of Kaper et al 
s 

have concentrated mainly on the choice of the angular dis-

cretization for their code and as such is not so easily 

presentable for comparative studies without delving into a 

lot of subsidiary material. 
-3 -4 

Convergence criteria of 10 and 10 on the point-
wise scalar flux and eigenvalues were observed in the 
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DOT-III and TRIPLET results. For DAFE the eigenvalue 
-4 -5 criterion was 10 while in FELTRAN it was 10 as usual. 

The KENO result, based on 30,000 particulate histories, 
was chosen to be the benchmark value when working out the 
percentage deviation of the values of k eff a s i-n Eq.(5.9). 
No reason was given as to why the KENO result was taken 
as the benchmark but nevertheless the FELTRAN results are 
judged by the same benchmark. The DOT-III results were 
based on a rectangular mesh while triangular elements were 
used in both TRIPLET and DAFE. Although TRIDENT can 
provide results for quadratic triangular elements no 
mention was made by Lillie and Robinson as to whether a 
linear or a quadratic element was used in their analysis. 
DAFE can only handle linear trianges but two types of 
triangulation were used. Fig.5.16 depicts these arrange-
ments which have been referred to as the regular and 
crossed triangle arrangement. The regular arrangement is 
similar to the mesh used in the TRIDENT analyses. 

Table 5.15 shows the results obtained by Lillie and 
Robinson. In the angular approximation the S S ^ and S^ 
denote the use of 6, 16 and 30 angles in the DOT-III cal-
culations whereas for these calculations 4, 12 and 24 
angles were used by TRIPLET. In DAFE the corresponding 
number of angles were 2, 6 and 12. Fig.5.17 (a) shows the 
msh for the 30 triangular elements used in DAFE and 
TRIPLET and the 15 rectangular cells in DOT-III while 
Fig.5.17 (b) shows the corresponding 50 triangular elements 
and 25 rectangular cells. A refinement of this second 
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(a) 

(b) 

Fig.5.16 Triangular arrangements used by Lillie and 
Robinson in DAFE 
(a) Regular triangle ..arrangement 
(b) Crossed triangle arrangement 
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TABLE 5.15 

VALUES OF k £ £ QUOTED BY LILLIE AND ROBINSON eff 
FOR THE HIGH LEAKAGE PROBLEM 

Code No. of 
Elements 

Angular 
Approx. eff A keff 

15 S2 0. 1462 - 18.19 
25 S2 0.1556 - 12.93 
100 S2 0.1600 - 10.46 

DOT-III 15 
25 

S4 
S4 

0.1586 
0.1711 _ 

1 1 .25 
4.25 

100 S4 0.1754 - 1 .85 
15 S6 0. 1588 - 11.13 
25 S6 0.1716 - 3.97 

30 S2 0. 1526 - 14.60 
50 S2 0.1578 - 1 1 .70 

200 S2 0.1607 - 10.07 
30 S4 0.1651 - 7.61 

TRIPLET 50 S4 0. 1725 - 3.47 
200 S4 0.1760 - 1.51 
30 S6 0.1654 - 7.44 
50 S6 0. 1730 - 3.19 

30 E2 0.1440 - 19.42 
50 E2 0. 1540 - 13.82 

200 E2 0.1590 - 11 .02 
30 E4 0. 1560 - 12.70 

DAFE 50 E4 
E4 
E6 

0. 1662 - 6.99 
(with 
regular 
triangles) 

200 
30 

E4 
E4 
E6 

0.1734 
0. 1549 — 

2.97 
13.32 

50 E6 0. 1664 - 6.88 

DAFE 60 E2 
E2 
E4 

0.1484 - 16.96 
(with 
crossed 
triangles) 

100 
60 

E2 
E2 
E4 

0.1581 
0. 1560 

11.53 
12.70 

100 E4 0.1710 — 4.31 

KENO, based on 30,000 particulate histories and used 
as benchmark for problem, predicts k g f f = 0.1787 ± 0.0012 
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Fig.5.17(a) Mesh of 30 triangles used in DAFE 
and TRIPLET and 15 rectangles used 
in DOT-III 
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7.68 
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Fig.5.17(b) Mesh of 50 triangles used in DAFE 
and TRIPLET and 25 rectangles in DOT-III 
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mesh yields the case for 200 triangles and 100 triangles. 
In DAFE, the upper right and lower left triangles are 
reversed because DAFE requires the use of two triangles at 
the intersection of two vacuum boundaries. By replacing 
the two regular triangles per box in Fig.5.17 (a) and (b) 
by the four crossed triangles (as shown in Fig.5.16) the 
resultant meshes correspond to the cases for the 60 and 
100 crossed triangular elements used in DAFE. 

A quick glance at the figures for A k _ in 
ef f 

Table 5.15 shows that the percentage errors are relatively 

high, but this is not unexpected for a system with a low 

multiplication. The values of k e f f improve to a higher 

value when the angular approximation gets better or when 

the mesh is refined. 

Table 5.16 gives the FELTRAN results. The notation 
for NOM and NORD is as in the previous section. The mesh 
for the 25 elements is the same as the array of rectangular 
elements shown in Fig.5.17 (b) while the 100 elements is a 
refinement of this mesh. Only Run Number 13 was performed 
using 15 elements and this mesh corresponds to the 
rectangular array in Fig.5.17 (a). A run with 25 elements 
could not be made in this case because the resultant 
global matrix alone would occupy more space than is 
available on the AMDAHL computer. Runs 1 to 10 were 
achieved with 1 and 2 moments trial function respectively 
and with mesh refinement except for the cubic elements. 
A saturation value of nearly 0.15 was reached for the 1 
moment results while in the 2 moment results this appears 
to around 0.173. The value of ke£f increases as the angular 



- 189 -

TABLE 5.16 
VALUES OF k pp AND PERCENTAGE DEVIATIONS FROM ef r 

FELTRAN FOR THE HIGH LEAKAGE PROBLEM 

Run No. of 
Elements 

NOM NORD keff A keff 

1 25 1 1 0. 14688 - 17 -81 

2 100 1 1 0.14906 - 16.59 
3 25 1 2 0. 14978 - 16.18 
4 100 1 2 0.14979 - 16.18 
5 25 1 3 0.14979 - 16.18 
6 25 2 1 0.16617 - 7.01 

7 100 2 1 0.17043 - 4.63 

8 25 2 2 0.17188 - 3.82 

9 100 2 2 0.17194 - 3.78 

10 25 2 3 0.17214 - 3.67 

1 1 25 3 1 0.16952 - 5.14 

12 25 3 2 0.17651 - 1 .23 

13 15 3 3 0.17657 - 1.19 

14 25 4 1 0.17058 - 4.54 

15 25 4 2 0. 17819 - 0.29 



- 190 -

approximation improves as borne out by the 3 and 4 moment 
results. In particular the 3 and 4 moment results for the 
higher order elements are encouraging. This suggests that 
better spatial and angular approximation would give higher 
values of k e f f Tests of this kind would have been attempted 
had the out-of-core solver been available for eigenvalue 
problems. Nevertheless this would hopefully be exploited 
in the next phase of the finite element development 
being done at Imperial College. 

Table 5.17 gives the computing times, number of outer 
iterations and the size of the global matrix for the 
FELTRAN results. The size of the global matrix is an 
indication of the size of the problem which is often the 
limitation factor, rather than execution time, for most 
practical problems. Conversion between the two different 
computer times could be taken as a factor of 8 in favour 
of the AMDAHL as mentioned in Section 5.2. No comparison 
in computing times could be made with the results provided 
by Lillie and Robinson since they did not provide any 
results on computing resources. 

To conclude this discussion our attention is now 
focussed on the flux profiles for the six groups. Fig.5.18 
shows the horizontal profiles at the location of 5.76 cm. 
(when referred to Fig.5.15) from the results of TRIPLET 
and DAFE as reported by Lillie and Robinson from their S^ 
and E^ results with 200 triangular elements. The FELTRAN 
results with 4 moments and quadratic elements (Run 15) 
are shown in Fig.5.19 and agree very well with the results 
of Lillie and Robinson. 



- 191 -

TABLE 5.17 
COMPUTATION DATA ON THE FELTRAN RUNS 

FOR THE HIGH LEAKAGE PROBLEM 

Run 
No. 

No. of 
Iterations 

Time 
(CDC 6600 
sec. ) 

Time 
(AMDAHL 
sec. ) 

Size of 
Global 
Matrix 

1 10 6.3 288 

2 10 9.9 1573 

3 10 16.2 3025 

4 10 74.3 1 9845 

5 10 50.4 13312 

6 13 16.4 4608 

7 13 111.5 25168 

8 13 258.5 48400 

9 13 285.5 317520 

10 4 257.7 212992 

1 1 14 107.0 23328 

12 14 240.6 245025 

13 15 702.4 440640 

14 14 59.6 73728 

15 14 1457.4 774400 
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Fig.5.18 Flux plots for the high leakage problem as 
reported by Lillie and Robinson 
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Fig.5.19 Flux plots for the high leakage problem 
from FELTRAN (Run 15) 
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Table 5.19 presents the results from DOT-III, TWOTRAN-II 
and FELTRAN. To start with both DOT-III and TWOTRAN-II 

-5 
imposed a convergence criteria of 2 x 10 on the value of 
k PP and since both are discrete ordinates codes it is not ef f 
surprising that the values of k ^ ^ are close to each other 

in the similar cases. When compared to the (48 x 48)/SQ 

results the (12 x 12)/S0 and (24 x 24) /&« results in these 
o 2 

CXo 
two sets of results do not agree st5 well as would be 
expected. On the other hand, no more than 5 transport 
results could be obtained from FELTRAN owing to computer 
storage requirements exceeding available resources. This 
is so because FELTRAN for k ^ ^ problems is restricted to 
an in-core solver which uses a direct solution algorithm. 
The whole of the global matrix is stored for FELTRAN 
whereas in the discrete ordinates codes no such problem 
arises because the iterative methods of solution allow 
the coefficients to be assembled during each point of the 
solution cycles. As an idea of the size encountered, 
consider the case of (12 x 12) mesh using cubic elements 
and a two-moment trial function. The global matrix 
requires 2,518,960 storage locations and in double 
precision format this far exceeds the available memory on 
the AMDAHL computer. In order to run larger size jobs 
using FELTRAN the out-of-core solver, which can only 
handle source problems presently, would have to be modified 
in order to solve eigenvalue problems. This would be 
one of the proposals for future work and it is hoped then 
that more analysis on this problem would be attempted using 
FELTRAN. 
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To conclude, the results obtained by FELTRAN for this 
difficult problem are excellent when compared against 
the reported results from other codes. Nevertheless the 
available computing resources place a constraint on the 
achievement of high levels of accuracy by all the methods 
considered above. 

5.6 BWR Fuel Bundle Benchmark Problem 

This is a standard benchmark problem which first 

appeared in the ANL Benchmark Problem Book [ 7] and was 

first proposed by B.A. Zolotar of EPRI. From the finite 

element point of view the interesting aspect of this problem 

is the manner in which computing resources are constrained. 

Fig.5.20 shows the layout of this problem which 
represents a ( 7 x 7 ) fuel assembly in a BWR rod bundle. 
The dimensions and composition numbers are shown in Fig.5.21 
with the basic mesh of (12 x 12) elements. Being a rod 
bundle inside a BWR perfect reflector conditions exist on 
all four sides. Table 5.18 gives the cross-sections for 
the seven different materials which are characterised by 
two energy groups. 

Both transport and diffusion results to this problem 
were presented separately. The transport results would 
be discussed first. Zolotar and Zahn of EPRI presented 
their results obtained with the DOT-III code [82] while 
Mallen of SRL used TWOTRAN-II [61 ] for his results. Both 
are discrete ordinates codes. 
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TABLE 5.18 

CROSS-SECTIONAL DATA FOR THE BWR ROD BUNDLE 

CROSS-SECTICSS 

REGION NO 
POS 1 2 3 ft 

GROUP 1 5.9250E-Q3 2.5310E-01 2.33ft3E-ll 0 

GROUP 2 9.617BE-02 5.7320E-81 5. lft 28E-01 1. C6 50E-02 
REGION NO 
POS 1 

2 3 ft 

GROUP 1 5m2ft?0£-03 2.5360E-01 2.3392E-B1 3 

GROUP 2 8.2280£-02 5.7670 E-01 5.2W96E-01 1.0950E-02 
REGION NO 3 
POS 1 

2 3 ft 

GROUP I ft. 820 BE- 03 2.535IE-11 2.3379E-01 
a 

GROUP 2 7.20 ODE-02 5.7970E-01 5.3253E-01 1.1120E-02 
REGION NO 
POS 1 

2 3 ft 

GROUP 1 ft.3370E-03 2.5330E-01 2.3369E-I1 i 

GROUP 2 5. 500 0E-02 5.63 70E-01 5.ft230E-01 1.1130E-02 
REGION NO 5 
POS 1 2 3 ft 

GROUP 1 5.605 OE-O 3 2 m 5060E-0 1 2.3085E-01 0 

GROUP 2 2.ft2ft0E-02 5•85 30E-01 <••22 70E- 01 1.0160E-02 
REGION NO 19 
POS 1 

2 3 ft 

GROUP 1 0 2.1720E-01 2.07D6E-Q1 1 

GROUP 2 0 ft.7ft80£-01 ft.70ftl£-81 9. 095 0E-03 
REGION NO 20 
POS GROUP 1 1 0 2 2.U760E-01 3 2.1058E-01 ft 0 

GROUP 2 0 1. 1230E+01 l.U52E»30 3.6620E-02 
FISSION SPECTRUM 

GROUP GROUP 
1.0000E»B0 
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TABLE 5.19 
COMPARISON OF k „ FROM VARIOUS CODES FOR THE 

ef f 
TRANSPORT ASPECTS OF THE ROD BUNDLE PROBLEM 

Code Mesh ANGLE/NOM NORD k « ef f 

48 X 48 S8 - 1 .08714 

24 X 24 S8 - 1.08709 

DOT-III 12 X 12 S8 - 1 .08441 
24 X 24 S4 - 1.08724 
24 X 24 S2 - 1 .09195 

48 X 48 S8 - 1.08727 

24 X 24 S8 - 1.08712 
TWOTRAN-II 12 X 12 S8 - 1.08427 

24 X 24 S4 - 1.08708 

24 X 24 S2 - 1.09214 

12 X 12 2 1 1.08116 

12 X 12 3 1 1.08068 
FELTRAN 12 X 12 2 2 1 .08663 

24 X 24 2 1 1.08525 
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The FELTRAN results for the (12 x 12) linear elements 

are very poor as would be expected from using linear 

eements. When the mesh was refined to (24 x 24) in the 

case for 2-moments and linear elements there is quite an 

increase in the value of k eff thereby emphasising that 

with mesh refinement better accuracy can be expected even 

with linear elements. The (12 x 12) mesh using quadratic 

elements and a 2-moment trial function produces an excellent 
k _ _ which is not too far from the DOT-III or TWOTRAN-II eff 
benchmark value. To summarise it is expected that FELTRAN 

can produce excellent values of k e££ for this problem when 

higher spatial and angular resolutions can be attempted. 

In the diffusion mode, Fowler and Vandy of ORNL used 
the VENTURE and VANCER codes to obtain their results. 
VENTURE is a mesh-centred finite difference code while 
VANCER is mesh-edged. The VANCER code was also able to 
produce results using linear finite elements. In these 

-5 
results the convergence criterion on k ^ ^ was 5 x 10 
In the same vein, Zolotov and Rahn used the CITATION [30] 
code (described in Section 5.2) with a convergence criterion 

-4 
of 10 . The results of these diffusion codes and FELTRAN 
are presented in Table 5.20. 

The entries for the mesh sizes in all the codes refer 
to number of mesh points except in CITATION and FELTRAN, 
where the elemental concept has always applied. Therefore 
the mesh sizes quoted for the VANCER finite element results 
and FELTRAN for NORD = 1 refer to the same element and 
meshes. The most striking thing about the results in 
Table 5.20 is the identical values for k from the 



- 201 -

TABLE 5.20 

COMPARISON OF k ^gFROM VARIOUS CODES FOR • -si r—-— • 
DIFFUSION ASPECTS OF THE ROD BUNDLE PROBLEMS 

Code Mesh NORD k « ef f 

12 X 12 - 1 .09238 

24 X 24 — 1 .08759 
VENTURE 

48 X 48 - 1 .08606 
96 X 96 - 1 .08565 

VANCER 13 X 13 - 1.08061 
(finite 
difference) 25 X 25 - 1.08389 

49 X 49 - 1.08525 

VANCER 13 X 13 - 1.08185 
(finite 
element) 25 X 25 - 1.08454 

49 X 49 - 1.08525 

12 X 12 1 1.08185 

12 X 12 2 1.08544 
FELTRAN 

12 X 12 3 1.08642 

24 X 24 1 1.08454 

24 X 24 2 1.08548 

48 X 48 1 1.08525 

CITATION 48 X 48 - 1.087575 
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VANCER finite element and FELTRAN with NORD = 1 for the 

coarse, medium and fine meshes. Also the finest mesh 

VANCER finite difference result attained the same value 

as the linear finite elements results. For this fine mesh 

the CITATION code produced a higher value of than the 

VANCER and FELTRAN results. In both VANCER and FELTRAN 

the values of k ^ increase with mesh refinement while the 
ef f 

reverse was observed for VENTURE. Of particular interest 
is the fact that the from the (24 x 24) quadratic 
elements of FELTRAN do not show an appreciable improvement 
over that of the (12 x 12) mesh. The trend observed in 
Section 5.3, viz. that higher order elements do produce 
excellent results even with a coarse mesh, is confirmed 
by these results. 

In conclusion it is seen that FELTRAN can achieve 
excellent results for benchmark problems. This problem 
in particular demands considerable computer storage 
requirements and consequently the use of FELTRAN is not 
feasible at present for eigenvalue problems with very high 
spatial and angular resolutions. Even with a coarse mesh 
of quadratic elements and a 2 moment trial function the 
^eff w a s very close to the benchmark value. 

5.7 A 1-Group Scattering Problem 

In this problem the aim is to show that FELTRAN can 
produce results that are free from ray effects and at the 
same time accurate. It was mentioned in Section 1.5 that 
one of the aims of the FEM in solving the Boltzmann 
transport equation was to eliminate ray effect which is a 
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major defect of the discrete ordinates method. According 

to Lathrop [59], the ray effect, peculiar to discrete 

ordinates method, is due to the discretization of the 

angular variable of the leakage operator in the transport 

equation especially in problems with isolated sources. 

This discretization restricting the particles to travel or 

stream in straight lines between collisions produces the 

flux distortions. 

Several remedies have been proposed for the elimination 

or mitigation of the ray effect in the discrete ordinates 

method [62,54,65,59]. Lathrop [59] has suggested a 

method whereby the discrete ordinates equations are 

altered in order that they have the desirable properties 
of spherical harmonics equations. In addition, Lathrop 
also provided evidence that using more angular directions 
in the discrete ordinates method (in this case the code 
used was TWOTRAN [60]) do not remove ray effects. Examples 

forS~, S. and S.^, involving 6, 16 and 144 angular A 4 lb 
directions respectively, were provided and it was shown 
that even in the S1ir calculation "bumps" were still present. I b 

A typical problem to illustrate ray effect was 
reported by Lillie and Robinson [65]. They used linear 
triangular elements in their finite element formulation 
called DAFE which included a discrete angle representation 
to compare with results from DOT-III [82], a discrete 
ordinates code. Both DAFE and DOT-III have already been 
discussed in Section 5. 
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Fig.5.22 shows the geometry and material composition 
of the problem which is completely bounded by bare surfaces. 
The basic mesh of ( 3 x 6 ) elements as analysed by FELTRAN 
is shown in Fig.5.23. Table 5.21 shows the cross-
sections for the problem. In actuality materials 1 and 2 
are identical except that material 1 also contains a 
fixed source. Since no value is quoted for the source 
it is assigned the arbitrary value of 1.0 for FELTRAN 
calculations. 

Lillie and Robinson undertook an S^ calculation using 
144 squares and an S ^ calculation using 576 squares on 
DOT-III while on DAFE they produced an E^ calculation 
using 288 triangles. The S^ and S ^ calculations resulted 
in the use of 16 and 96 discrete angular directions 
respectively. The E^ calculation required only 6 angular 
directions. The results from Lillie and Robinson are 
reproduced in Fig.5.24, in which the scalar flux in the 
y-direction at x = 2.875 cm are presented. 

The situation should be contrasted to that of FELTRAN 
where only a coarse mesh of ( 3 x 6 ) elements were used. 
However the analysis was performed by using linear, 
quadratic and cubic elements and using a trial function 
of 2, 3 and 4 moments. It is to be expected that with a 
relatively coarser mesh when compared to those of DOT-III 
and DAFE the higher order elements would give the more 
accurate results. 

Figs.5.25, 5.26, 5.27 show the FELTRAN results 
achieved with linear, quadratic and cubic elements 
respectively. In each case trial functions ranged from 
2 to 4 moments. 
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Fig.5.22 Geometry and material composition of the 1-group 
scattering problem (dimensions in cm) 
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Fig.5.23 Basic mesh of ( 3 x 6 ) elements 



- 207 -

TABLE 5.21 
CROSS-SECTIONAL DATA FOR THE 
1-GROUP SCATTERING PROBLEM 

CROSS-SECTIONS 

REGION NO 1 

POS GROUP I 1 0 
2 7» 5000E-01 
3 2« 5000E-01 

REGION NO 2 

POS GROUP 1 1 0 
2 7.5000E-01 
3 2.5000E-01 

REGION NO 3 

POS GROUP 1 1 0 
2 l.COOOE+OO 
3 9.000UE-01 

SOURCES 

REG GROUP 1 
1 l«000CE«-00 

REG GROUP 1 2 0 

REG GROUP 1 
3 0 



- 208 -

RIGHT EDGE FLI 
2.875, Y) 

JX D 
D 
OT 
AFE 

\ 

/ / 
* / 

/ ^ N 
\ 
v \ 
N \ 

A. 
> v 

— ' s ^ 
y X 

\ V 
/ 

0 1 2 3 
Y (cm) 

.5.24 Lillie and Robinson's results for the 
1-group scattering problem 



- 209 -

0.0287, 

0.0233 r 

t 0.0200 k 

0.01671 

0.0133 

0.01QQ 

0.0067 

0.0033 

O 2 MOMENT 
A 3 MOMENT 
4 4 MOMENT 

0.0000 J1 L—J—1—1—»-•••* -i i i i I > i ».. 1 i ' 1 1 i i i l i »—i I » ,» « L_j i uJ 
0.0000 0.3556 0.7111 1 .0667 1 .4222 1.7778 2.1333 2.4869 2.6444 3.2000 

DISTANCE ( C M ) 
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problem using quadratic elements 
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Fig.5.26 FELTRAN results for the 1-group scattering 
problem using quadratic elements 
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Fig.5.27 FELTRAN results for the 1-group scattering 
problem using cubic elements 
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To start with, Lillie and Robinson has criticised 
the DOT-III results as inaccurate on two counts. Firstly, 
the flux gradients for the S^ calculations predicted an 
inward flow of neutrons. Secondly, the S ^ results, while 
being more representative of the physics of the problem, 
display many oscillations due to the presence of ray 
effect. In contrast the DAFE E^ results were free of ray 
effects thereby confirming that the finite element method 
does eliminate ray effects. However the large hump 
illustrated by the E^ curve is subjected to uncertainty 
which the researchers could not resolve with another 
analysis with higher angular approximation owing to problems 
of computer storage on their local environment. Further-
more, the DAFE result indicates no leakage at the bare 
surface at y = 0 cm, a serious deficiency. 

Turning our attention now to the FELTRAN results it must 
be mentioned that the FELTRAN results could not be com-
pared with the results of Lillie and Robinson in terms 
of the scalar flux's magnitudes because no magnitude of 
the source (other than the fact that it is flat) was 
provided. Nevertheless from looking at Figs.5.25 to 5.27 
it can be said that the linear element results of FELTRAN 
are inaccurate in the neighbourhood of y =0.0 cm 
where there seems to be a flux inflow at the vacuum 
boundary. However this effect for the linear elements 
decreases when the trial function is increased. On the 
other hand no such discrepancy exists for the quadratic 
and cubic elements. Within the limits of the plotter 
precision the curves in Figs.5.26 and 5.27 can be said to 
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be smooth and display no oscillation. Hence this further 
confirms that finite elements do eliminate ray effects. 
It is to be expected that the linear elements would give 
better results with finer meshes but no attempt was made 
since the higher order elements already provide convincing 
evidence with a coarse mesh that ray effects do not exist 
in finite elements. 

Fig.5.28 brings together the 4 moment results for the 
three types of elements. As can be seen the FELTRAN 
results for quadratic and cubic elements agree very 
closely. 

The accuracy of the results was tested by calculating 
the ratios of the maximum flux to those at the vacuum 
boundaries. Table 5.22 gives these ratios for the DOT-III 
S 1 2, DAFE E^ and FELTRAN cubic elements with a 4 moment 
trial function. These ratios for DOT-III and FELTRAN 
agree quite well with each other while the DAFE result is 
relatively misplaced. When the ray effect ripples in the 
DOT-III flaxes are disregarded there is reasonable 

agreement with the FELTRAN flux. It is then reasonable to 
say that the FELTRAN and DOT-III S 1 2 are the best available 
solutions, and the FELTRAN solution is to be preferred 
because it is not beset with the ray effect ripples. 

Table 5.23 shows the computing aspects for the FELTRAN 
results. All the tabulated FELTRAN results were obtained 
with the out-of-core solver. No comparison can be made with 
the DOT-III and DAFE results since Lillie and Robinson did 
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DISTANCE < CM ) 

Fig.5.28 FELTRAN results for the 1-group scattering 
problem using a 4-moment trial function 
with linear, quadratic and cubic elements 



TABLE 5.22 

RATIOS OF MAXIMUM FLUX TO THOSE AT 
THE VACCUM BOUNDARIES FROM THE VARIOUS CODES 

CASE 4>mAx/cj> o / ~3 o 

DOT-III S 1 2 1 .4 3.9 

DAFE E4 2.4 11 .0 

FELTRAN 
cubic elements 1 .2 4.3 
4 moment t.f. 

+ 

4> 

= scalar flux at y = 0.0 cm 

= scalar flux at y = 3.0 cm 
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TABLE 5.23 
COMPUTATION DATA ON THE FELTRAN RESULTS 

USING THE OUT-OF-CORE SOLVER WITH 7 BLOCKS 

NOM NORD 
Time 

(CDC 6600 
seconds) 

Time 
(AMDAHL) 
seconds) 

In-Core 
Storage of 
Global 
Matrix 

Actual 
Size of 
Global 
Matrix 

2 1 1 .64 - 768 2688 
2 2 6.12 - 7616 24752 
2 3 29.06 - 32640 103360 
3 1 3.99 - 3888 13608 
3 2 38.93 - 38556 125307 
3 3 - 31 .03 165240 523260 
4 1 - 1 .97 12288 43008 
4 2 - 23.68 121856 396032 
4 3 - 157.11 522240 1653760 

Computing resources for FELTRAN results using the 
Out-of-Core Solver with 7 blocks 

TABLE 5.24 
PERCENTILE IN-CORE OCCUPANCY OF THE GLOBAL MATRIX 

WITH RESPECT TO ACTUAL SIZE 

NORD % In-Core Global Matrix 
to Actual Size 

1 28.57 
2 30.77 
3 31 .58 

Number of blocks = 7 
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not report on this aspect at all. Nevertheless Table 5.23 
is related to Table 5.24 where the percentage values for 
the in-core storage of the global matrix are presented. 
These percentages only differ in the order of the element 
with the same number of blocks (which is 7 in this case). 
The storage refers to the individual elements of the 
matrix. The AMDAHL results are single precision results. 
There is no loss of precision in using single precision 
computations for source problems. To bear this out Table 
5.25 represents the single and double precision results for 
the cubic elements and 3 moment trial function at the 
element boundaries. The values are the scalar fluxes in 
the y-direction at x = 2.875 cm. Since the values only 
differ by no more than + .00002 at the most therefore the 
single precision results are accurate enough for source 
problems. However the time taken to run the double 
precision case was 50.27 seconds, about 60% more than the 
time for the single precision results. 

On the aspect of computing time, a run was also made 
for this case using the in-core solver on the AMDAHL 
.computer and with single precision arithmetic. This was 
found to be 56.47 seconds. On this basis the in-core 
solver can be said to be slower than the out-of-core solver, 
even when double precision arithmetic was used. It is 
surprising that this should be so but when the internal 
mechanics of BANSOL and SESOL are examined the latter 
algorithm has a provision for leaving out unnecessary zero 
arithmetic operations. Therefore a large number of zero 
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TABLE 5.25 
COMPARISON OF SINGLE AND DOUBLE PRECISION 

RESULTS ON THE AMDAHL FOR THE CASE 
USING CUBIC ELEMENTS AND A 3-MOMENT TRIAL FUNCTION 

Y (cm) Single 
Precision 

Double 
Precision 

0.0 0.01516 0.01517 

0.5 0.01722 0.01723 

1 .0 0.01734 0.01736 

1.5 0.01306 0.01307 

2.0 0.01018 0.01019 

2.5 0.00716 0.00717 

3.0 0.00385 0.00386 
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arithmetic operations must have been encountered in this 

particular problem due to the nature of cubic elements 

such that even with the relatively time consuming I/O 

operations the out-of-core solver still managed to be more 

than 80% faster in this particular case. 

On the other hand when a smaller problem was examined, 

for example the 2 moment linear element case, the time taken 

using the in-core solver was 1.28 seconds as contrasted to 

1.61 seconds for the out-of-core solver (in this example 

both are CDC 6600 time). This reflects on the fact that 

the number of zero entries in this example is relatively 

less and the I/O time becomes the over-riding factor. 

To conclude, the study of this problem has shown that 
FELTRAN can handle the problem of ray effects and yield 
accurate answers with the higher order elements even with 
a coarse mesh. The out-of-core solver has been shown to 
be reliable and in this example, albeit with only 7 blocks, 
can surpass the in-core solver in terms of speed. 

5.8 A Shielding Problem 
Much has been mentioned about the problem of ray 

effects in the discrete ordinates method due to the angular 
discretization. Turning to the spatial aspects of the 
discrete ordinates method, the diamond differencing (DD) 
scheme has been the traditionally adopted method. As of 
late, the linear characteristic method [6, 57] has been 
one of the recently proposed methods to represent the 
spatial discretization in the discrete ordinates method. 
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In brief the major difference between the DD and LC method 

is that in the LC method the boundary conditions and source 

term for a spatial cell are represented by linear functions 

and the cell transport problem solved analytically by 

integration along its characteristic lines from which 

linear representations are generated for use as boundary 

conditions for adjoining cells and for constructing a 

scattering source for the next iteration. 

Larsen and Alcouffe [57] have chosen a 3-group 
shielding problem to compare the merits of the DD and LC 
schemes. In their conclusion the general concensus is 
that, using the same mesh, LC requires lengthier computation 
times, generally less than two times those for DD but it 
provides more accurate and stable results. Storage 
requirements are essentially the same for both methods. 

The geometry and compositional layout for this 3-group 
problem is shown in Fig.5.29. This layout is a 90° 
rotation from that shown by Alcouffe and Larsen. The 
reason for analysing the problem in this manner for 
FELTRAN is that the bandwidth associated with this 
arrangement will be less. From this arrangement, the top 
and left sides are bare surfaces while the other two are 
perfect reflectors. Table 5.26 shows the cross-sections 
for this problem and the fixed source contributions by 
group. Alcouffe and Larsen did not provide the magnitude 
of this source (i.e. material 1) but a total of 1 over the 
groups is assumed in the FELTRAN calculations. 
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Fig.5.29 Geometry and composition of the 3-group 
shielding problem (dimensions in cm) 
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TABLE 5.26 

CROSS-SECTIONAL DATA FOR THE 3-GROUP 
SHIELDING PROBLEM 

CROSS-SECTIONS 

REGION NO 1 

POS GROUP 1 GROUP 2 GROUP 3 1 0 0 0 
2 2.6560E-01 1.1745E+0Q 3.2749E+00 
3 1. 6000E-01 1*101GE+ 00 3.2565E+Q0 
k 0 la 052 GE-01 7a 3 00 0E-0 2 
5 0 0 0 

REGION NO 2 

POS GROUP 1 GROUP 2 GROUP 3 1 0 0 0 
2 2. 6560E-01 1.1745E+00 3a 27<f9E«-00 
3 1. 6000E-01 1*1G10E+ GO 3.2565E + Q0 
<• 0 1.0520E-01 7. 3000E-02 
5 0 0 0 

REGION NO 3 

POS GROUP 1 GROUP 2 GROUP 3 1 0 0 0 
2 2.1630F-01 3.2550E-G1 1.1228E+00 
3 la 7600E-01 3.2360E-01 9. 3230E-01 
4 0 3.9900E-02 9.8280E-01 
5 0 0 0 

SOURCES 

REG GROUP 1 GROUP 2 GROUP 3 
1 7# 3900E-01 2.ei00E-01 0 

REG GROUP 1 GROUP 2 GROUP 3 
2 0 0 0 

REG GROUP 1 GROUP 2 GRCUP 3 
3 0 0 0 
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Two sets of solutions were provided for both the DD 

and LC methods using spatial meshes of (27 x 27) and 

(55 x 55) spatial cells and an Sg quadrature set with a 
-4 

convergence criterion of 10 on the pointwise flux. Full 
convergence was not achieved on the DD fine mesh and this 
behaviour by DD for fine meshes in general is one of the 
motivations for seeking a more stable and accurate differencing 
scheme. However the authors added that the coarse mesh 
case is about as coarse as it could be for both the 
methods to achieve full convergence. These two sets of 
results are shown in Fig.5.30. The distance at 0.0 cm and 
50.0 cm corresponds to the horizontal distance of 50 cm 
and 0 cm in Fig.5.29. The cell-averaged fluxes are for 
those cells at the top face as seen in Fig.5.29. As can 
be seen the DD results do not show as smooth a variation 
as the LC results in both cases. Since cell-averaged 
fluxes were plotted it is possible that negative fluxes 
were the order of the day for the DD results especially 
since convergence was not achieved in the fine mesh run. 

Fig.5.31 shows the (12 x 20) mesh used in FELTRAN. A 
mesh of (6 x 10) would have sufficed but negative values 
in the scalar flux were observed for some values in the 
lower groups. However no negative scalar fluxes resulted 
when the (12 x 20) mesh was used. As such the results 
reported here are for the (12 x 20) mesh. 

The cell-averaged fluxes along the top face are 
also calculated from the FELTRAN results. These fluxes 
are the sum over the 3 groups, and are given by: 
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L C ( ) and DD ( x x x ) Cell-Average Fluxes on Top 
Edge of Shielding Problem (Coarse Mesh). 

L C ( ) and DD ( x x x ) Cell-Average Fluxes on Top 
Edge of Shielding Problem (Fine Mesh). 

Fig.5.30 Results of Larsen and Alcouffe 
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Fig.5.31 The (12 x 20) mesh used in FELTRAN for analysing 
the 3-group shielding problem 
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(5.10) 

4 Ztfi 
3 - 1 »»i Jv 

N ; d V . U 

(5.11) 

where, 

L = number of nodal points in the cell. 

Figs.5.32, 5.33 show the FELTRAN results with a 2-moment 
trial function using quadratic and cubic elements 
respectively. Additionally Fig.5.34 shows the 3 moments 
case with quadratic elements. It is obvious that the 
FELTRAN results are excellent since no distortion in the 
cell-averaged fluxes is discernible. Besides when compared 
with the LC results the profiles are all in agreement. 
Also, in all the FELTRAN cases the ratio of the cell-
fluxes at the ends is approximately 31. From Fig.5.31 
it is estimated that in the LC results the number is 
approximately 30. Therefore good agreement is once more 
observed. 

Fig.5.35 shows the 2-moments results for both 
quadratic and cubic elements. Agreement in both cases is 
excellent. In Fig.5.36 the quadratic elements results for 
2 and 3 moments are shown. The results are nearly 
identical. 
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Fig.5.32 FELTRAN result for the 3-group shielding problem 
using (12 x 20) quadratic elements and a 2-moment 
trial function 
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Fig.5.33 FELTRAN result for the 3-group shielding problem 
using (12 x 20) cubic elements and a 2-moment 
trial function 
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Fig.5.34 FELTRAN result for the 3-group shielding problem 
using (12 x 20) quadratic elements and a 3-moment 
trial function 
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Fig.5.35 FELTRAN result for the 3-group shielding problem 
using (12 x 20) quadratic and cubic elements 
and a 2-moment trial function 
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Fig.5.36 FELTRAN result for the 3-group shielding problem 
using (12 x 20) quadratic elements and a 2- and 
3-moment trial function 
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Therefore, FELTRAN exhibits great potential for 

solving shielding problems. Taking this difficult problem 

as an exemplary case, in which two other finite difference 

codes showed difficulty in obtained convergence with a 

coarser mesh, FELTRAN has demonstrated its ability to 

produce accurate results with a relatively coarser mesh. 

At this juncture our discussion will now be focussed 
on the out-of-core solver which was used to solve the 
3 cases by FELTRAN. Table 5.27 shows the relevant para-
meters, storage requirements and times. Without the use of 
the out-of-core solver the last two problems would not have 
been solved even on the AMDAHL. For single precision 
arithmetic the maximum size of the global matrix would 
have to be less than 2 million storage locations. In 
the three cases the number of equations encountered were 
4100, 9028 and 9225 respectively and 21 blocks were 
utilised each time. With the use of the out-of-core 
algorithm only slightly less than 10% of the actual storage 
for the global lmatrix was used which is very good savings 
indeed. However the execution times were lengthy, 
especially in the two larger jobs. This is to be expected 
because the number of equations to be solved has increased 
to more than 9000. 

In the last section it was shown that BANSOL, the in-
core solver, was slower than SESOL, the out-of-core solver 
when cubic elements were encountered. However it was 
added that there were only 7 blocks and 1 group. In this 
estimate the analysis was to be based on 21 blocks and 3 groups 
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TABLE 5.27 
COMPUTATION DATA ON THE FELTRAN 

RUNS FOR THE 3-GROUP SHIELDING PROBLEM 

NOM NORD 
Time 

(AMDAHL 
seconds) 

In-Core 
Storage 

of Global 
Matrix 

Actual 
Size of 
Global 
Matrix 

% In-Core 
of Global 
Matrix 

2 2 157.98 84800 869200 9.76 

2 3 1217.05 408480 4152880 9.84 

3 2 1644.89 429300 4400325 9.76 
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and the same test was carried out. In executing a 1-moment 

linear element case on a (12 x 20) mesh the times taken 

were 0.41 seconds and 2.96 seconds on the AMDAHL for the 

in-core and out-of-core solvers respectively. When cubic 

elements were used the times were 37.13 and 26.97 seconds 

respectively. Therefore the evidence lends further con-

viction to the fact that the zero operations encountered 

in BANSOL, especially for cubic elements, are time con-

suming. Hence the introduction of a similar feature in 

BANSOL to eliminate the zero operations would speed up 

the computing time for the in-core solver. 

In conclusion, FELTRAN has been successfully developed 
to a stage where practical shielding problems can be 
solved with relative ease. In practice there should not 
be any major problems with storage requirements since the 
out-of-core solver has been shown to be successfully 
implemented. Besides, it has been demonstrated that the 
out-of-core solver is not slow when compared with the 
in-core solver since it has the capability to avoid zero 
operations. 
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CHAPTER 6 

DISCUSSION AND RECOMMENDATIONS 
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A journey of a thousand miles 

begins with the first step. 

Old Chinese saying 
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CHAPTER 6 

The examples of the last chapter have shown that FELTRAN 

produces accurate results. Furthermore, wherever possible, 

it was shown that FELTRAN is fast. Also, with an out-of-core 
solver the problem of storage has been minimised, although 
only for source problems. All these pointers serve to 
indicate that FELTRAN could be developed into an alternative to 

Sx, codes for commercial and academic work. To achieve this N 
several recommendations are suggested. In putting forth 
these suggestions for future work it is not to be 
anticipated that they will be fulfilled in three man-years 
(the normal length of time taken to fulfill the require-
ments for a Ph.D. thesis). The length of time can only be 
guessed at when further progress has been made. 

(1) Geometry and Mesh Specification 

Perhaps this is the most important category for 
improvement. FELTRAN is at present limited to only x-y 
geometry. For two-dimensional analysis an alternative r-z 
capability is clearly needed. If successful this should 
be followed by an <+-8 alternative. At present the CORFU 
package is available for generating the constants of the 
Reduced-Functional.This can be easily extended to produce 
the constants for r-z and r -G geometries. In FELTRAN 
itself it would be the volume integrals and mesh generation 
where changes would have to be made to accommodate these 
capabilities. 
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Since the finite element method is most useful in 
applications with irregular geometries there is clearly 
a need to develop the modules to handle such situations. 
Naturally enough this is achieved by means of arbitrary 
triangulation. Therefore in this context an automatic 
mesh generator of the user-friendly kind now being produced 
commercially will also have to be integrated into the code 
together with the ability to use higher order triangles of 
arbitrary shapes in order to produce accurate results (it 
was shown throughout Chapter 5 that linear elements were 
inferior to the higher-ordered elements). 

(2) Elements 

The serendipity elements need to be investigated. 
The favourable aspect of serendipity elements is that they 
do not possess internal nodes and an arrangement of the 
higher-ordered serendipity elements will lead to a reduction 
in bandwidth when compared against Lagrangian elements 
under similar circumstances. Therefore if they can 
produce accurate results then they are clearly to be 
favoured because of the savings in storage. Extending the 
work, after including higher ordered arbitrary triangles 
(as mentioned above), would involve the use of iso-
parametric elements which are most useful with curved 
boundaries and interfaces. For example a fast reactor 
shield often used consists of graphite filled iron cylinders 
stacked to form a circular annulus. 
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(3) Solution Algorithms 

Clearly, the first task in this field is to modify 
the out-of-core solver for eigenvalue problems. Next, 
BANSOL needs modifications in order that the zero arithmetic 
operations be avoided. In Section 4.9 the frontal solution-
technique was touched upon. Since it is in use in many 
practical finite element programs its use in FELTRAN needs to be 
investigated. However it does possess one major dis-
advantage when used on vector processing computers. 
Wilson [100 ] has shown that the increase in speed when 
used on parallel computers is not applicable for the 
frontal method. As regards iterative methods it is not 
anticipated that this would be necessary until three-
dimensional work is considered. 

(4) Additional Features 
In this category we can consider anisotropicity and 

upscattering. Anisotropic scattering for example is 
important in the shields of reactors. The phenomenon of 
forward scattering is pronounced for the collisions of 
high energy neutrons with light nuclei. Upscattering 
occurs in the thermal energy range and so will be 
important in the analysis of thermal reactors. 
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(5 ) Computational Aspects 

Presently the power method is used for calculating the 

values of k e£f in eigenvalue problems and no acceleration 

technique is used. The method of dominance ratio is one 

of the methods for achieving this acceleration and 

Greenstadt [38 ] has reported improvement in convergence 

of the outer iteration cycle by a factor of 2 to 3 times 

when using this method. Therefore the method of dominance 

ratio should be a potential candidate for the acceleration 

of the outer iteration cycle. 
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APPENDICES 
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APPENDIX A 

THE SPHERICAL HARMONICS 

The Spherical Harmonics, H ^ r ^ K are defined by 

V I \ A2**1 ( T O ! p«\ . Utf 
htn = / 4ir (i+m)l (A-1) 

in which yU and a) are referred to in Fig.2.1 and 

are the Associated Legendre Polynomials, defined as 

(A.2) 

for integral values of nr)-0,l,Z , — X > I ^ C j x ) 

are the Legendre Polynomials where 

(A. 3 ) 

for X - 0 , \ , 

From Eq. (A. 1 ) it can be seen that ̂ ^ the 

complex conjugate of YjimCf*,**) is related via 

(A.4) 
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APPENDIX B 

THE TRIAL FUNCTION 

The trial function, in terms of Spherical Harmonics, 

is given by 
00 X 

^M'llijtnji) 
i=o «i.-je 

where 

(*) are the spatial components of the angular flux, 
JL W ' 

In transport calculations it is not usually necessary 

to use values of £ greater than 4 or 5. Higher values of 

Jt are seldom called for in practical calculations but 

the use of high values of i enables very precise benchmarks 

to be obtained. Let M represent the number of moments of 

the trial function (i.e. the order of the trial function), 

and therefore 

rt-i. £ 
T ' (B. 2) 
XjLr* * "" ' 

Era" 

M-l £ 

11 i^y* a) 

The Spherical Harmonics i-n terms of Jti andco are 

as represented in Eq.(A.1) in Appendix A. The integrals 

over jx for the odd Spherical Harmonics are zero. Therefore 

only the even Spherical Harmonics will yield non-zero 

terms and so 
£ 

! $ f o \ 
( B. 3 ) 

£ « 0 * 
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represents the trial function for even Spherical 

Harmonics. 

Recalling Eq.(A.4) from Appendix A, for even moments 

the complex conjugate is now related as 

y , a ) = y * u ) ( b . 4 ) 

Upon expanding the inner summation of Eq.(B.3) and 

using Eq.(B.4) we have 

wl-l 

( B. 5 ) 

+ 5 1 $ FE)Y W + F W Y * ( 4 

I 

Replacing A by yU and tO , 

fa) B. 6 

V f \ _ / 4 « + l ( 3 ( - 3 m ) l J 
/ M . a M ^ W " J W ( a l + l « ) l ^ 7 ° e 

(B. 7 
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Using these relations in Eq.(B.5) 

K M - 5 £ , , ( ' - ) 

fL*0 

2 J 
4-tt (a5+l«) 

Let, 

A - e i 3 ~ i > f e ) + -iimco T / x 
e ( + ) 

(B.9) 

(B. 10) 

or, 

A = § a Q i A m (±) ( COSZ^OJ + t5.nZ.mcuj 
+ f*) { c o 5 2 mtAi " U i n ] 

Further, if we represent 

(B. 1 1 ) 

> (B. 12) 

Then upon substitution Eq.(B.12) into (B.11) we have 
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A = E>2QiSl<n (t) cos 2mco - C2t,2« (±) sin Zmco 

.am COS ZmiO — Cafi am (±) sin ?mco 

+ { Cat,2m ( t ) Cl) Sin 

- C*e,am (l) Cos2nqw- (±)sin?muj} 

i.e. 

A - 2 ( t ) cos Zmco - I C
Jt/3m

 (±) sin 2 rrioO (B.14) 

Hence, 

m*i 

If we now denote 

= Z B ^ f e ) 

(̂CUm+l) M) - - Z Ca,(am (+) 
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we arrive finally at 
M - l 

4>(±,JU,co) = 

(B. 17) 

X S 5 ( t ) c o s Z m c O + 4 > ( ± ) s i n 2 m o o 
I '(i l+am) 1) J 

in which represent an ascending numbering order for 

the moments of the spatial fluxes. 

Examples of the expansion of the trial function: 

(i) M = 1 

(ii) M = 2 
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(iii) M = 3 

<k(t)CoS2cA> + 4 f t ) sin Zco 

p ; ( A ) 

W 4607T ^ W I ̂  f t ) COS2 + 4 7 (± ) sin 

4i(+)cos4o0 + <hj(±) Sin4u)| 

Therefore, as can be seen from these examples the 

trial function gets more complicated and lengthy with 

increasing number of moments. In particular, the number 

of terms equal M . 
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APPENDIX C 

SOLUTIONS OF THE INTEGRATION OF SOME 

TRIGONOMETRIC FUNCTIONS 

The results presented in this Appendix refer to the 
expressions tabulated in Table 3.3. As can be seen from 
Table 3.3, the are trigonometric functions. It can be 
unity or it can represent cos or smlNcO where IN is an 
even number. Each of the six expressions in the table are 
dealt with in turn below, together with all the possible 
combinations of the (j's. 

The letters M andM refer to positive even numbers 

except in the last case where they can also be taken to be 

zero. 

1. Evaluation o f T 
(i) 

ZTT 

coszco dco = T 

(ii) 

'3.TT 

COS'-GO A 
cosMcocosNcO 
sin Moo sin Nco dcO= < 

•J for M = N>Z 

I for M - N = ± Z 

o otherv/ise 

(iii) 

air 

cos^co-sin M<o cos Nco dco - O 
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2. Evaluation of 31 
Ci) 

UT 
sin 2cO doJ = O 

(ii) 

k2TT 

•sin 2<osin M cO dco - T for M = 2 

(iii) 

•an 

sin?to < 
COS MuicosNlu) 

sin Mod sin N|cO 
dcO - O 

(iv) 

'ATT 
sVi £<o sin MoJ cos M CO d«J 

for M - N = 2 

Q otherwise 
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3. Evaluation of Ji 

(i) 
uir 

sin2oo dco * 7T 

(ii) 

sin 2 co 
cos Moo casMco 1 
sin M co sin NloO / 

- < 

J 
2 
TT 

" 4 

O 

T f o r 

for M - M - ± 2. 

otherwise 

(iii) 

>2TT 

sin2 to sin Moo sin Nc^ cjco = O 

4. Evaluation of 3+ 

Since cosaco + sin 2c0 * 

J+ij = 3ljj + J34 

i.e. the constants represented by are obtained from 

the above relationship after^ and D3 have been obtained 

5. Evaluation of Jy 
(i) 

ill 
cos Mco doo = O 

(ii) 

sin Moo dco * O 
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Evaluation of Je 

It can easily be shown [90] that 

ATT 

|s in (o ( -<A )| G iG - d c o 

COS M CO COS Nod 
cos Mco sin Nw 
Sin Mod cos Nod 
sin Mod sin N oo 

dod 

eM.K cos (M-N)<?( 

e ^ M (M+MJc< 

eM+N sin (M+N) o( 

(M-M) c< 

+ eM+Hcos C m + m ) o ( 

- eM-* (M-N)* I 

+ eM.N S»n (m-n) O( 

- e M f R t o s ( m + M ) O ( 

where, 
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APPENDIX D 

DERIVATION OF THE SHAPE FUNCTIONS 

FOR LANGRANGIAN ELEMENTS 

The Lagrangian Multipliers, of order n, are given by 

the relation; 

Here z is a free coordinate. The Z.i are the coordinates 

These multipliers are used directly in the derivation 

of the shape functions of the Lagrangian quadrilateral 

elements. The order H determines the order of the 

element. For bi-linear elements n is equal to 1, for bi-

quadratic elements n is 2 and so on. The number of 

shape functions, and therefore the number of nodes, of 

the element concerned is equal to (n-H)3". 

In plane geometry, the shape functions for an element 

of order O are given by the products 

(D.1 ) 

J*'* 
i = 0 , I, n 

for the nodes of a one-dimensional element. is then 

the shape function associated with the node 

(D.2) 

k * I , Z , / n + l ) * 

in which 

k - j ( n + l ) +•!• + ! 
(D.3) 

L » O , I , . . . . n 
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The numbering of the shape functions embodied in (D.3) 
ensures that the first shape function corresponds to the 
bottom deft-hand corner node whilst the last shape function 
corresponds to the top right-hand corner node. The inter-
mediate shape functions correspond to the nodes passed 
through successively by a right-wards sweep followed by 
an upward step. Fig.D.1 serves to illustrate this point 
with the bi-quadratic element as an example. 

The bi-quadratic element is chosen as the illustrative 
element whose shape functions are to be determined. Let 
the dimensions of the element be a and b in the x- and y-
directions respectively. Further, the side nodes are 
mid-way along the sides as shown in Fig.D.2. The 
Lagrangian Multipliers of order 2, with ZQ - O , 2, » 
and are given by 

(D.4) > 
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1 3 

Fig.D.1 The numbering pattern for the nodes of a 
bi-quadratic element 
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Fig.D.2 The dimensions of the bi-quadratic element 
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Therefore, from (D.2) and (D.3) 

N,(x.a) = „ / > ) / > ) 

i.e. 

with XfE,0* and b replacing z . and Z . 

In this manner the other eight shape functions for 

the Lagrangian bi-quadratic element are arrived at. The 

nine shape functions are summarised in Table D.1. 

It should be borne in mind that the coordinate 
system for the example could be shifted. In the example, 
the origin is at the bottom left-most node. Should the 
internal node be chosen as the origin then the Lagrangian 
Multipliers would produce different expressions, but as 
long as the coordinate system is monitored correctly 
results will be similar in the end. 
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TABLE D.1 

THE SHAPE FUNCTIONS FOR THE 

BI-QUADRATIC ELEMENT 

N , 

N i 

n 3 

n 4 40-S)(i-S)(t)0-*) 

N s 

N < - 4 (5)(i-*)(*)(•-*) 

n 7 

n 8 -4(1)0 - i ) ( t ) 0 - % ) 

N , 
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