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ABSTRACT 

The non-linear behaviour of electrothermal instabilities in 

a fully ionised, homogeneous, two temperature plasma is studied using 

a fluid model. The current is carried predominantly parallel to the 

magnetic field, as in the Tokamak configuration, and modes with wave 

vector K perpendicular to the magnetic field are considered. The 

optimum wavelength for growth of such modes has previously been shown 

to be of the order of a few ion Larmor radii, with growth rates of 

the order of the Ohmic heating rate. The inclusion of Bremsstrahlung 

radiation loss is shown to enhance the instability. 

Non-linear steady-state solutions of the electron energy equation 

reveal the possibility of large amplitude filaments of current when the 

instability has developed and saturated. Furthermore it is shown that 

ion acoustic turbulence and electron runaway can occur in the maxima of 

the current filaments; although the average plasma parameters preclude 

the existence of either of these phenomena. The possible effects of 

the presence of these filaments on electron energy transport is considered. 

The development in time of the electrothermal instability in one 

space dimension is followed numerically. The two cases of constant 

applied electric field, and constant total current are considered. In 

the former case it is found that the instability develops until a point 

is reached when the electron temperature increases everywhere and the 

system runs away. In the latter case a filamentary structure develops 

and a steady state is reached for short wavelengths. For longer 

wavelength, faster growing modes the condition for onset of ion acoustic 

instability is violated in the filament peaks. The model is changed to 
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include the effects of the presence of ion acoustic turbulence and 

the results from it are discussed. 
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CHAPTER 1 

INTRODUCTION 

This work was embarked upon in an attempt to explain the 

anomalously high electron energy loss observed experimentally in 

Tokamaks ̂ . The anomalous electron energy loss rate is reflected in 

the electron energy confinement time, which is tens of times smaller 

than predicted by theory. With this aim in mind, we study the non-linear 

behaviour of an electrothermal instability in a fully ionised, magnetised, 

two temperature plasma using a fluid model. If this instability exists 

in Tokamaks, it may increase the electron energy loss rate by increasing 

the rate at which energy is equipartitioned to the ions to a rate above 

that calculated assuming the electrothermal instability were absent. 

In Chapter 1 we review the work done by other authors on electro-

thermal instabilities; not only in fully ionised, but also in partially 

ionised, gases. The review leads us to the reasons why the work in this 

thesis was carried out. A description is given of how the electrothermal 

instability manifests itself in a fully ionised, magnetised two temperature 

plasma, and under what conditions it exists. It is this type of electro-

thermal instability which is the theme of this thesis. Finally in 

Chapter 1, we define and briefly describe the basic equations from which 

most of the equations used in the rest of this thesis are derived. 
[21 

In Chapter 2 we add to existing results of the linear behaviour 

of an electrothermal instability by including a radiation loss term. The 

effect of Bremsstrahlung loss is specifically described, and from the 



15 

mechanism by which it affects the instability, we deduce how the 

presence of other, more important, radiation loss terms would affect 

this instability. Also in this chapter we analyse the model used by 
[3] 

Tomimura and Haines to test its suitability for the basis of a 

numerical simulation to follow the growth of an electrothermal instability 

into the non-linear regime. Consequently, some changes are made to the 

model used in [3] which facilitate the computer model without substantially 

affecting the behaviour of the instability. 

A study is made in Chapter 3 of the properties of possible 

saturated steady states of the electrothermal instability. The results 

obtained from this model are shown to depend strongly on which of the 

many possible steady states the electrothermal instability relaxes to 

if any. One is unable to predict from this model either the steady state 

which would be preferred if the instability were allowed to develop 
[4] 

from a small, random perturbation, or the time taken to reach it 

The numerical model used to follow the evolution of an intially 

small, random perturbation about a steady state into the non-linear 

regime is developed in Chapter 4. The model used by Tomimura and 
[3] 

Haines is modified on the grounds of the results found in Chapter 2. 

In this chapter we describe the computational and mathematical problems 

arising in the simulation and how they are dealt with. During the 

simulation it is found necessary to solve a sparse matrix equation 

rapidly. A description of the method and the computer program used for 

this purpose is given in Appendix A. Appendix B contains a discussion 

of the details of the numerical stability test also used in the simulation. 

In Chapter 5 we present the results from the numerical model. 

These results fall into two main categories; those obtained when the 

applied electric field to maintain the discharge is held constant in time 

and those obtained when the electric field is allowed to vary in time 
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to keep the total current constant. 

In the last chapter of this thesis we formulate a model to 

include the macroscopic effects of ion acoustic turbulence on the 

evolution of the instability. Some calculations are presented showing 

the effect on energy transport and on electrical conductivity. 

A general review of electrothermal instabilities 

Electrothermal instabilities cover a broad class of thermal 

instabilities in which Ohmic dissipation provides the free energy to 

drive the instability. They have been shown to occur in many different 

types of plasma, and their nature and behaviour varies considerably 

with the device in which they occur. 

The presence of electrothermal instabilities in alkali seeded 

noble gases has been experimentally observed by many authors [e.g. 5 and 
[7 8 91 6]. The instability mechanism in partially ionised gases ' ' depends 

on the high sensitivity of the degree of ionisation of the gas to 
[81 

electron temperature. Nelson and Haines made an extensive survey of 

the properties of this kind of instability, incorporating the effects of 

finite ionisation rates, energy convection, radiation transfer, thermal 

conduction, finite degree of ionisation and Coulomb as well as neutral 

collisions. In this model the electron density is in Saha equilibrium 

at the electron temperature. Perturbations of the electron temperature 

lead to much larger perturbations in the electron density. These larger 

fluctuations in electron density substantially alter the plasma parameters, 

such as conductivity and Hall parameter, and the energy balance in the 

plasma is altered so that the fluctuations are amplified under certain 

conditions. In general these fluctuations can propagate as a wave. If 

the Hall parameter, defined as 
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(when a is the electrical conductivity, 2 the magnetic field, nQ the 

electron number density, e the charge on an electron and c the velocity 

of light) is greater than some critical value, growth of the instability 

occurs because the perturbed Ohmic heating rate exceeds the perturbed 

equipartition rate to the neutrals. The critical value for the Hall 

parameter exists because only when this is exceeded is the perturbed 

current large enough to produce a perturbed Ohmic heating rate greater 

than the perturbed equipartition rate which depends upon the electron 

density. The wave vector is perpendicular to the magnetic field here, 

and maximum growth rate occurs with an angle of about 45° between the 

wave vector and the current vector. This is because the perturbed Ohmic 

heating peaks when the perturbed current, which is perpendicular to the 

wave vector (charge conservation), is parallel to the zero order current, 

but the all important contribution to the perturbed current from the 

Hall term peaks when the wave vector is parallel to the zero order 

current. The growth time for these instabilities is typically of the order 
—6 

of 10 seconds. They can occur in closed loop magnetohydrodynamic 

generators and are of great importance because non uniformities in the 

electron density and temperature have a damaging effect on the performance 

of the generator. We note here that radiation transfer is shown in this 

paper to have a damping effect on these instabilities. 

We now turn our attention to the work done on the nature and 
behaviour of the electrothermal instability in a fully ionised, resistive 

[10] 

plasma. Haines succeeded m explaining the break up of a plasma 

shell into separated current elements during the early stages of a 0 

pinch, reported by Dixon et a l , in terms of such an instability where 

the wave vector is parallel to the magnetic field and perpendicular to 
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the current. It was in this paper that the behaviour and the conditions 

for onset of the non convective electrothermal mode were first 

calculated. These conditions and a description of the instability 

mechanism is deferred to the next paragraph where we discuss the nature 

of the instability with the wave vector perpendicular to the magnetic 

field. Returning to the work in [10], the growth time, for conditions 
—6 

relevant to a 0 pinch, was found to be of the order of 10 seconds 

for wavelengths of the order of a few centimetres or less. It was also 

pointed out that, for conditions relevant to Tokamaks, using this model, 

the wavelength of the instability would be much longer and the growth 

rates much shorter and therefore the instability of no interest. 

However they realised that the situation may be changed if the wave 

vector were perpendicular to the magnetic field instead of parallel. 

This is because, as will be seen later, one of the factors determining 

the wavelength of the instability is the effect of the thermal conduction 

which damps the short wavelength modes. Across the magnetic field, in a 

Tokamak, the thermal conduction would be severely reduced by a factor 
(1 + 0) 2T 2) (where-a) x is the Hall parameter). Also the growth rate, e e e e 
which goes like the Ohmic heating rate, would be larger in the early 

stages at low temperatures. This partly inspired the work carried out 
[2] 

by Tomimura and Haines on the behaviour of the electrothermal 

instability in a fully ionised plasma with wave vector perpendicular to 

the magnetic field. Further inspiration for this work came from the 

appearance of (spatially) oscillatory electron temperature profiles 
when they studied the steady-state of a diffuse pinch in cylindrical 

[12] 
geometry 

The work in this thesis was largely inspired by the work done 
[2] 

by Tomimura and Haines on the linear theory of electrothermal 

instabilities in a fully ionised, magnetised, two temperature plasma 
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with wave vector K perpendicular to the magnetic field B_. It seems 

fitting, therefore, to report here in greater detail on the salient 

features of, and pertinent results, from the above mentioned work, 

in order to establish the foundations for this non-linear model. 

In a fully ionised, magnetised plasma the electrothermal 

instability presents itself as spatial oscillations in electron 

temperature, number and current density, as well as in electric and 

magnetic fields. The free energy to drive the instability is provided 

by Ohmic dissipation. Physically, the unstable modes are driven, in 

most cases, by the following mechanism. A local increase in electron 

temperature increases the electrical conductivity, using a Spitzer 

model. The current flows preferentially in that region, hence increasing 

the local Ohmic heating rate. If the corresponding changes in energy 

dissipation rate mechanisms, such as equipartition from the electrons 

to the ions, electron thermal conduction, and radiation loss, do not 

equal this increased Ohmic heating rate, the perturbation in electron 

temperature will grow. In some cases, however, with long wavelength 

convective modes, it is the local decrease in the equipartition rate, 

as opposed to any increase in the Ohmic heating rate, providing the net 

source of energy required to make the perturbation grow. 

Tomimura and Haines completed an extensive analysis of the 

nature of electrothermal instabilities, which can be divided into two 

main sections each with two subsections : 

1. a) A scalar conductivity assumption, neglecting 

thermoelectric forces, with ion at rest, 

b) As above but with ion motion included. 

2. a) A tensor conductivity model including thermo-

electric forces with ions at rest 
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b) As above, with ion motion included. 

From the model in ia) above, they discovered the condition for 

existence of the unstable non-convective mode to be, 

T i eo £ 
T. > 2 l 

where T ^ represents the equilibrium electron temperature (uniform in 

space) before a perturbation is applied. TL represents the ion 

temperature considered uniform in space and constant in time. The 

condition above was also found by Furth et al'"13' when they studied the 

thermal stability of a Tokamak. Returning to la) above, they discovered 

the optimum wavelength for growth of this instability is a few times 
mi 4 greater than (—)2 a , where a represents the electron Larmor radius me eo eo 

measured at the equilibrium values. The maximum growth rate is of the 
itig 

order of (—) v . in most cases, where v . is the electron-ion collision m. ei ei i -
frequency. 

From the model briefly described by lb), they discovered the 

existence of a convective unstable mode at long wavelengths which was 

not found in the previous model. This mode disappears for very large 
values of (OJ T )2, relevant to fusion conditions. The condition for e e 
existence of the non-convective mode becomes, 

T eo > 1.3187 T. l 

and this time a second condition, which at large values of 

simplifies to, in terms of the plasma beta 
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8TTn k_ (T +T.) o B eo 1 < 1.07 (1 + T./T ) B l eo' 

where n Q is the equilibrium density, T the electron temperature, 

T^ the ion temperature, kg Boltzmann1s constant and B q the magnetic 

field. The optimum wavelength for growth and the maximum growth rate 

are more difficult to assess in this model. However, they did 

establish that, for large values of the optimum wavelength 

and growth rate do not depend upon ^ e
T
e« 

The results above are not substantially modified in model 2) 

with tensor conductivity assumption and thermo electric effects 

included. There is a reduction in the range of wavelengths for which the 

non-convective unstable mode exists, as well as an increase in its 

optimum wavelength for growth as compared with model 1). 

Motivation for the work in this thesis 

Electrothermal instabilities in a fully ionised plasma have 

been successfully used to explain the break up of a plasma shell in 

the early stages of a 6 pinch^^^. it has also been shown that they 
[3] 

can occur in Tokamak type discharges ; if they occurred in the early 

Ohmic heating phase their growth rates could be large enough for their 

presence to be important. Furthermore, their presence would not be 
[14] 

detected using existing diagnostic techniques , assuming the dominant 

mode to be the one with the largest growth rate as found from linear 

theory. This is because, the resultant electron temperature 

fluctuations would occur over a distance of the order of centimetres 

or less. Changes over this distance would not be spatially resolved 
[15] 

using Thomson scattering . The presence of such fine scale 

fluctuations could affect the transport processes in a Tokamak. Before 

this hypothesis can be tested it is necessary to establish the time it 
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takes for the instability to develop fully and compare this with the 

appropriate time scales in a Tokamak. It is also necessary to study 

the nature and behaviour of the fully developed instability. 

Transport and Maxwell's Equations 

The purpose of this section is to define the equations, and 

introduce the notation used throughout this thesis. The transport 

equations used are briefly derived from well established starting points, 

and expressed in a form suitable for the plasma model considered. The 

regime of validity of the equations is summarised. 

1.1 Transport Equations 

The transport equations, for a fully ionised plasma comprised 

of electron and a single ion species with charge e, consist of the 

equations of continuity, momentum transport, and heat balance for the 

ions and the electrons. Assuming neutrality so that n g = n^ = n these 

equations may be written as follows : 

Continuity Equation 

0 (1 .1.1) 

Momentum Transport 

V ) -Vp - V.TT + e n(E + 
r s = s e — 

V xB 
c 

( 1 . 1 . 2 ) 

Heat Balance 
9T s 
9t s 

(1.1.3) 

for both species, s. 
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These equations, describing the transport of particles, momentum, and 

internal energy in an ionised gas are obtained by taking zeroth, first 

and second order moments of the Boltzmann kinetic equations respectively 

for both species. The velocity of each particle is then divided into 

two parts, a mean velocity V^ and a random velocity and identifying 

some average quantities with macroscopic parameters. It is assumed 

that total momentum and energy are conserved in collisions, and momentum 

and energy are conserved in collisions between particles of one 

species, that is elastic collisions only are considered. The gas is 

fully ionised and neither production nor annihilation of particles is 

allowed. Hence the right hand side of equation (1.1.1) is zero. 

In equation (1.1.2) mg represents the mass of the particle species, 

P s the scalar pressure. The complete pressure tensor is 

P = P I + TT =s s = =s 

where the traceless tensor TT̂  represents the part of P_ arising from 

any anisotropy in the random velocity part of the distribution function. 

2 and 2 represent macroscopic fields averaged over a volume containing 

many particles and over times long compared to some appropriate scale 

time. (The effects of rapidly fluctuating microfields are taken care 

of in the collision term.) R represents the mean change in the momentum 

of the particles of one species due to collisions with all other 

particles, k , in equation (1.1.3) is Boltzmann's constant. This 

equation, for the internal energy transport, is derived from the total 

energy transport equation by eliminating the kinetic energy part with 

the aid of the other two equations. T g is the temperature of the 

species measured in °K, while q_ is the heat flux density representing 

transport of energy associated with random motion. Finally, Q is 



24 

the heat generated in one species due to collisions with the other 

species. The Gaussian system of units is employed throughout this 

work. 

Transport Coefficients 

In order to close the above equations, it is necessary to 

derive the relationships between IT , q, R, Q and n, V , T , and the 
S —G —5 S S —S S 

derivatives of the latter. The corresponding coefficients of 

proportionality are known as the transport coefficients. These 

coefficients for a fully ionised gas have been calculated in [16-19] 

and in other literature, and will only be quoted in this work as and 

when they are used. 

Conditions of Applicability 

Although the difficult and extensive task of determining the 

transport coefficients has been carried out by many authors in 

different forms, in all cases their results apply only when the local 

distribution is very close to a Maxwellian. In a fully ionised plasma 

the ratio of the masses of the two components is very small (the 

electron to the ion mass ratio). As a consequence of this, a local 

Maxwellian distribution is established within each component before 

it is established between the components. This point makes it possible 

to obtain transport equations when the ion and electron temperatures 

differ. Hence the plasma can be considered to be made up of two 

interpenetrating fluids. 

The important approximation that the local distribution is 

very close to a Maxwellian restricts the regime of validity of the 

transport equations. In essence, they can only be considered valid 

when the phenomena they are being used to describe are such that all 
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average quantities in the plasma change slowly in space and time 

compared to some characteristic scale length and time. The distribution 

function becomes Maxwellian in a time of the order of a collision time 

x. Therefore all plasma quantities must not change significantly in 

time T. This may be expressed mathematically as : 

When there is a very small or no magnetic field (^e
T
e £ 1/where u> is 

the electron cyclotron frequency and the electron-ion collision time), 

the characteristic scale length over which plasma quantities vary must 

be much larger than the mean free path between collisions : 

V ^ L >> £mfp 

However, when the magnetic field is very strong, ((J°eTe >;> 1) / the motion 

of the particles in the direction perpendicular to the magnetic field 

is bounded by the Larmor radius, which is smaller than the mean free 

path. So that the validity condition becomes : 

L^ >> a, L„ >> £mfp 

where and L„ are the characteristic distances in the perpendicular 

and parallel directions to the magnetic field respectively, and a is 

the Larmor radius. 

Maxwell's Equations 

Other equations appearing in this work are the two vector 

Maxwell equations 



VXE -r= 
1 3B 
c 3t 

1030 

(1.1.4) 

otherwise known as Faraday's Law, and Ampere's Law 

4tt 1 2E VxB = — j + - (1.1.5) — C — C dt 

A dimensional analysis of (1.1.4) shows that 

E_ ^ toL 
B c 

where L and u) 1 are, respectively, a length and a time over which the 

electric and magnetic fields change appreciably. For the interaction 

between flow and macroscopic fields to be significant, the flow velocity 

V associated with the plasma should intuitively satisfy 

V (oL 

this implies 

« i 
c 

performing a dimensional analysis to compare the relative magnitude of 

the terms in equation (1.1.5) one obtains : 

,i|§| / [ VxbJ „ tf-)2 « i 

therefore (1.1.5) is replaced by 

VxB = — j (1.1.5) — c — 

This is the form of Ampere's Law used. 
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CHAPTER 2 

THE PLASMA MODEL AND LINEAR THEORY EXTENDED 

INTRODUCTION 

In this chapter the linear behaviour of the electrothermal 

instability is discussed in greater detail than the results from it 

warrant. That is, the results obtained here are only a small extension 
[2 131 

of published theory ' . However, the detailed discussion serves 

to establish the plasma model and all the basic equations used in the 

rest of the thesis; hence combining the tasks of deriving the additional 

results to existing linear theory and describing the conditions under 

which the evolution of the electrothermal instability into the non-

linear regime is followed. 

Extensive as it is, the analysis performed by Tomimura and 

Haines, in [2], did not include the effects of radiation loss on an 

electrothermal instability. As a fully ionized hydrogen plasma is 

being studied and for simplicity, the only radiation loss mechanism 

considered is Bremsstrahlung. This is the subject of the first part of 

this chapter. As the results that follow show, the inclusion of 

Bremsstrahlung radiation loss enhances the instability because of its 
n^ T

e ̂  dependence. 

The main reason for using perturbation theory is to determine, 

as far as possible, what physical effects are responsible for various 

aspects of the electrothermal instability. Having done so, the relative 

importance of the terms representing these physical effects is assessed, 

and the conditions under which they can be neglected, if at all, 
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quantified. The information gleaned from this exercise is then used 

to facilitate the formulation of the model used to describe the evolution 

of the aforementioned instabilities in Chapter 4. 

The analysis described below follows closely that first used by 

Haines'"'1̂ ] and later by Tomimura and Haines ̂  . For simplicity, and to 

avoid conditions giving rise to gradient driven drift instabilities, the 

stability analysis is carried out in an infinite, homogeneous plasma with 

wave vector perpendicular to the magnetic field and current, with uniform 

equilibrium profiles for number density and temperatures. This approach 

is acceptable provided the wave lengths of the perturbation are much 

smaller than the scale lengths over which the equilibrium quantities 

vary. We know from the last chapter, that the optimum wavelength for 

growth of the electrothermal instability, under these conditions, is a 
mi I few times greater than (—) 2 a . For devices of fusion interest, this me eo 

is a few centimetres or less, therefore, the above approximation is valid. 

We also know from the results quoted in the last chapter, that using a 

tensor electric conductivity model and including thermo electric effects, 

does not appreciably change the behaviour of the instability in question. 

For this reason, the stability analysis is performed assuming the electric 

conductivity to be scalar, and neglecting thermo electric terms. 

2.1 STABILITY ANALYSIS OF AN ELECTROTHERMAL INSTABILITY WITH 

BREMSSTRAHLUNG RADIATION LOSS INCLUDED 

The system considered is an infinite, fully ionized, two temperature, 

plasma in constant and uniform applied magnetic and electric fields in the 

same direction, with zero order uniform profiles for electron and ion 

temperatures as well as number density. It is assumed that the plasma is 

neutral in equilibrium and quasi-neutral when the perturbation is applied. 

The ion temperature is considered to remain unchanged throughout, because 
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any perturbation, with a wavelength of the order of magnitude of interest, 

would be quickly flattened because of the high thermal conductivity of 

the massive ions, perpendicular to the magnetic field. Only perturbations 

perpendicular to the magnetic field are considered, and, for simplicity, 

all plasma quantities are allowed to vary only along the direction of 

propagation of the perturbation. 

system, the z axis along the equilibrium magnetic field B , with the x —o 
and y axes orientated to comply with a right handed system of coordinates. 

All perturbed quantities are assumed to vary as expCiK^x + at), so the 

wave vector K of the perturbation is parallel to the x axis. Subscripts 

0 and 1 represent equilibrium and perturbed quantities respectively. 

Equations and a quantitative description 

Maxwell's Vector Equations 

The total electric and magnetic fields and current density can be 

written, when the perturbation is applied, 

using Faraday's and Ampere's Laws as given in (1.1.4) and (1.1.6) applied 

to the equilibrium : 

The linear analysis is described in a rectangular coordinate 

i = i v + h 

VxE 0 ( 2 . 1 .1 ) 

4tt . (2 .1 .2 ) 

and when the perturbation is applied the perturbed fields are described by 
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4tt . lKxB, = — J_ (2.1.4) — —1 c —1 

Where the equilibrium equations (2.1.1) and (2.1.2) have been used to 

eliminate the zero order fields from the full equations, and where the 

following relation has been used : 

Vx 'v iKx 

taking the divergence of equations (2.1.3) and (2.1.4) gives, 

and 

K.B^ = 0 i.e. K perpendicular to B^, B x l = 0 

K.j_p = 0 K perpendicular to j^, j = 0 

where the vector identity (axb) = 0 has been used. 

Transport Equations 

Pressure Balance 

Equation (1.1.2) is written for the electrons and the ions. 

Writing e = -e for the electrons and e = e for the ions, R = R for the 
s S • S 

electrons and R = -R for the ions, that is total momentum is conserved, —s — 
and adding the resulting equations one obtains, 

8Ve 9V.; neuxB 
me n C 1 T + tVe-VJV + m.n ( ^ + (V.^V.) = -Vp - V.Kt -

(2.1.5) 

where p = p + p. , IL = II + n . , u = V -V.. 
e l =t =e ri — —e —i 

It is more convenient in this work to use the centre of mass velocity 

defined as, 
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m V + m.V. 
V = where n = n. and z = 1 has been used. — m + m. e 1 e I 

In terms of the centre of mass velocity and the current density j given by, 

j = -ne (V - V.) = - neu (2.1.6) — —e —I — 

V and V. can be written : —e —l 

V = V - bei 
ne 

(2.1.7) 
bii V. = V + 

—i — ne 

me —1 me Where b = (1 + — ) ^ 1 and b. = — b . Using (2.1.6) and (2.1.7), e m. l m. e l l 
(2.1.5) becomes 

8 2. X DxB -n ( (m + m.) ( — + V.V) V + m b — .V(—) ) = Vp + V.IB: - =-= e I 8t — — e e ne ne ^ = c 

(2.1.8) 

Using the centre of mass velocity for the equilibrium equal to zero, 

V^ = 0, V.VV = V^.VV^, is a second order term and can be neglected. Using 

the x-component of Ampere's law, 

4ir. . _ 9Bz ^By _ 
c 3x 8y ~ 8z 

so that, 
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Neglecting viscosity and using m^ << nu (2.1.8) becomes, 

3V jxB 
-nm. T= = Vp - =-= (2.1.10) 

1 dt C 

In equilibrium, the above equation for pressure balance becomes : 

Vp = - V ^ o = 0 (2.1.11) o c 

therefore, is parallel to B^. However, Ampere's Law tells us 

VxB = — j (2.1.12) —o c —o 

Tomimura shows how equations (2.1.11) and (2.1.12) can be simultaneously 

satisfied. One puts B (x) = 6 j (x) where 6 is a constant. A solution to —o —o 
(2.1.12) gives : 

B = j = 0 ox ox 

4TTX _ . . 3 = j sin —f" B = 6 3 oy o c6 oy oy 

4tTv 3 = 3 cos — ^ B = 6 3 oz Jo c5 oz oz 
(2.1.13) 

where c = velocity of light. 

Considering the direction of the applied electric field to be fixed, say in 

the z direction, then there exists a plane parallel to the y-z plane and 

passing through some value of x for which B^, everywhere parallel to is 

parallel to E . The coordinates have this point as origin and the z axis —o 
is parallel to B^. 

In order that the steady state magnetic field may be considered 
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uniform and in the z direction, it is necessary for the wavelength of 

rotation of the magnetic field to be much larger than the wavelength of 

the perturbation, that is, 

^r ^ ^ a«n (2.1.14) 2 m eo e 

The restriction this condition imposes on the range of validity of the 

model is quantified at the end of this section. 

Looking at equations (2.1.13), the region of x for which this 
4tt 

analysis is valid, is close to x = 0 so that, cos ^ 1. Hence 
4tt--

sin — 0 . From (2.1.13) it can be seen that, 
CO 

B « B yo zo 

Also in this region, 

VxE - 0 —o 

is obeyed. That is the unperturbed magnetic field changes very slowly 

compared to the growth time of the instability. 

Having decided the analysis is only valid for a region of x where 

B z q >> ByQ/ th® linear analysis is now carried out neglecting B y in the 

perturbation phase as well. The motivation for this analysis comes from 

the problems encountered in setting up a model to look at the time 

development of the electrothermal instability. These problems are not 

encountered in a linear analysis when the plasma is considered infinite. 

However, when boundary conditions have to be quantified, rotating fields 

introduce complications. If VxE^ = 0 is not identically satisfied in the 

numerical model, it would be impossible to separate the effects produced 

by an electrothermal instability from those produced by the evolution of 
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the non steady state. We wish to establish the importance of B y l« This 

is done by comparing the results from linear analysis with and without 

B ^ . An efficient way of doing this is to use switch parameters. That 

is, multiply an<^ every equation containing B ^ which would not be 

used if B ^ were neglected, by a^. The switch parameter a^ is given a 

value of one if B , is included or zero if B , is neglected. If B ., 
yl yl * yl 

is neglected, the perturbed z-component of the electric field goes to 

zero. 

Including the inertial term in equation (2.1.10) allows magnet-

acoustic waves to exist. Multiplying the inertial term by the switch 

parameter a^r which is set equal to either one or zero, allows us to 
j_xB 

examine the effects of neglecting deviations from Vp = — 

Returning to equation (2.1.10), writing each quantity as a 

sum of equilibrium and perturbed parts, and neglecting terms of order 

higher than the first, we have, using p = nk (T + T.) 
B e 1 

-n m.aV. a. = iK n J c T . + iK n,k (T _ + T.) -o l —1 2 — 0 B el — 1 B eO l c 

(2.1.15) 

where the zero order equation (2.1.11) has been used, and all perturbed 

quantities are assumed to vary as exp(at + iK x) so that, 
X 

3fx 
I T - ofi 

(2 .1 .16) 

+ iK f 9x x 1 

where f^ represents any first order parameter. 

Taking the cross product of equation (2.1.15) with K (K x) yields 
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KxV^ = 0 i.e. V^ is parallel to K 

Ohm's Law 

Equation (1.1.2) is again applied to the electrons and the ions 

with the same prescriptions as before, namely e = -e, e. = e, R = R , 
e l —e — 

— Q 
and R. = -R. The equation for the electrons is multiplied by — , and — m e 

Q that for the ions by — . R can be considered to be made up of two m. — l parts, a friction force R , and a thermal force R . R arises from the -u -T -u 

randomization of electron velocity due to collisions with ions, hence 

producing a decrease in the ordered velocity of the electrons with 

respect to the ions and a corresponding loss of momentum of the electrons 

which is given to the ions. R^ represents the thermal force brought 

about due to differences in frictional forces from different directions 

in space due to temperature gradients. The thermal force R^ is neglected 

here for reasons previously given. 

The resulting equations are added together. Neglecting terms of 
order — , and using the relation j_.V = 0 (as j = 0 ) equation (2.1.17) is 

i x 

obtained. After rearranging, 

Vpe VxB me a i me j R u jxB 
E + + = = -r- (—) - — V.V (—) = — + (2.1.17) 
— ne c e 3t ne e — ne ne nec 

V^ and V^ have also been written in terms of the centre of mass velocity V. 

using equations (2.1.7) to produce (2.1.17). Before linearizing this 

equation, a comparison of the relative magnitude of some of the terms is 

made. First compare the magnitude of the fourth term on the left with 

that of the third. A dimensional analysis of Ampere's Law gives 

B 4ir . - * — j (2.1.18) L C 
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where L is the scale length over which fields vary significantly. 

This is expected to be, approximately, the optimum wavelength 

for growth of the electrothermal instability. The expected growth 

rate gives the time over which things change significantly. Therefore, 
g 

V and — can be replaced by, dt 

1 eB0 , mi J — (—)* V — ( — - — ) = a m. L m.c k T _ eo I i B eO 

and (2.1.19) 

g n0e2 m e —— 0) <\, = — v . at m.a m. ei 1 o 1 

For the fields to interact with the plasma, 

V < ojL (2.1.20) 

Now comparing the magnitudes of the above mentioned terms gives 

4th term 5th term 2 
r\j 3rd term 3rd term m. 8 l e 

2m Both the 4th and 5th terns are negligible provided $ >> — e-e m. 
I 

8irnkBTe 
where 8 = — — 7 — e B 

Neglecting the fourth and fifth terms, Ohm's Law for the plasma 

considered, becomes, 
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Where the Spitzer model for scalar conductivity [20] has been used that is, 

§n 
ne (2.1.22) 

All parameters in Ohm's Law can be expressed as a sum of equilibrium and 

perturbed parts. Using the second of the relations in (2.1.16) , 

linearizing and neglecting terms of higher order than the first, the 

three components of Ohm's Law may be written : 

E . + xl 
Pel 

n e o 
3yl Bzo 
n ec o 

Jzo Byl al 
n ec o 

y! 

zl 

_ vxl Bzo = 3yl 

(2.1.23) 
£zl 
a 

3zo al 
2— a o o 

Where the equilibrium Ohm's Law has been used in the z-component, 

zo 
3zo 
a 

(2.1.24) 

The orientation of the vector quantities involved in this linear model are 

shown in Figure (2.1) 

Z 
A 

jp, Bo, &> 0 
§ 1 . 

j-1 
ii 

B^ and are in y-z 

plane. E^ has components 

in x, y and z directions. 

Figure 2.1 

X 
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Although the x-component of the electric field exists, it does 

not enter any of the other equations nut has been written here for 

completeness. 

Heat balance equation for the electrons 

As was discussed at the beginning of this chapter, the ion 

temperature is considered to remain uniform and constant always. It is 

only necessary to use the heat balance equation for the electrons. 

Consider the heat balance equation (1.1.3) applied to the electrons. 

Before splitting each parameter into its equilibrium and perturbed 

parts, this reads, again neglecting viscosity, 

3 3 T nk + (V .V) T ) + nk T V.V + V.q = Q (2.1.25) 2 B 3t —e e B e —e e 

NOW V . = ( X - T - ) . 3x 

the unit vector fi defining the direction of the total magnetic field is, 

B Biy . 
h = |b| = 5. + b * (2.1.26) 

I — I O Z 

where second order terms have been neglected. 

So that 
^ ft 

VA = V - V„ = X — - h h.V = x — (2.1.27) 

Therefore, the only component of the heat flux, q^, of interest is that 

perpendicular to the total magnetic field. Furthermore, by analogy with 

R , q is also made up of two parts, q = a +cr . When R was discussed 
G iJIG 

previously, the thermal force was put to zero, that is, effectively, the 

current flow due to a temperature gradient (Seebeck effect) was neglected. 
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We correspondingly neglect the heat flow produced by the electric field 

driving the current. Hence, 

'•3, = V 3e = & '- (2.1.28) e e 

where is the electron cyclotron frequency multiplied by the electron-

ion collision time. The coefficient of thermal conductivity along the 

magnetic field is reduced by a factor 1/(I+OJ^^T^2) due to the inhibiting 

effect of the magnetic field on thermal conduction across the field. 

The expression for is given later. 

Q is the heat transferred to the electrons due to collisions e 
with the ions. The electron velocities are randomized in collisions and 

the energy associated with their ordered velocity, u = V^ - V i s 

converted into heat. The heat generated in the electrons is equal to the 

work from the frictional force on the electrons by the ions, -R .u. If —u — 
T > T., heat is transferred from the electrons to the ions. Therefore e i 
the energy exchanged per unit volume per unit time from the electrons 

to the ions is, 

2ie = 3 Z r T k E CTe " V i 2- 1' 2 9 ) 
i e 

where = collision time between electrons and ions. Neglecting the 

fraction of -R .u acquired by the ions 

Q = -R .u - Q. e —u — le 

D m e n k B Q 3 — CT - T.) (2.1.30) e a m. T e I l e 

Scalar electrical conductivity has been assumed. 



40 

Including Bremsstrahlung loss effects The energy radiated per 

unit volume per unit time by the electrons is, 

P„ = 6 n2T ^ B r e 

/Kb7T e 6 
where 3 = 8 /- 3-7- - 1.5 x 10"27 (2.1.31) 

v 3m m c° *n r e e 

[211 

is the Bremsstrahlung radiation coefficient . So that in equation 

(2.1.25) is, 
.2 
j_ 3menkR 2 A 

Q = — (T - T.) - 6 n T 2 (2.1.32) e a m.x e 1 r e 1 e 

The transport coefficients and parameters which will be employed frequently 

in this work are : 

[22] The electron thermal conductivity 

5 n kB Te Te K = — (2.1.33) e z m 

[22] the electric conductivity 

a = 
2 

ne xe (2.1.34) 
m e 

the electron cyclotron frequency 

g o 

a) = — — (2.1.35) e m c 

[23 ] and the electron-ion collision time 
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1 3/2 
T = 3me (kg Te) (2.1.36) 
e 4 (2TT) ̂  ne4 log A e 

Using relation (2.1.36) in relations (2.1.33) and (2.1.34) gives, 

respectively, 

K = c 1 T 5 / 2 (2.1.37) e e 

15 kB5/2 
8/2TT m ^ e 4 log A 

1 13 kB 10 where c = r - 1.04 x 10 (2.1.38) 

1 3/2 and a = a T ' (2.1.39) e 

3k 3/2 
where a = - 6.97 x 106 (2.1.40) 

m e loq A e ^e 

Returning to the heat balance equation (2.1.25), the electron velocity may 

be written in terms of the centre of mass velocity using the first of 
3 equations (2.1.7). We also use the fact that jx = 0 and V = x r—. — OX 

Using equations (2.1.28), (2.1.32) and (2.1.34) in equation (2.1.25) the 

heat balance equation for the electrons becomes 

3 3Te 3 8Te 3Vx 3 Ke kB 3Tei 
2 n k B l t + J n k B V x i r + n V e l T = 37 l(Uto 2x 2) I P e e 

i 2 3n2e2kB (Te-Ti) i 
+ = 8 n 2T (2.1.41) a a r e 

Writing each parameter as a sum of its equilibrium value and a perturbed 

part, using relations (2.1.16) and neglecting terms higher than first 

order, equation (2.1.41) becomes, 
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3 x Keo kB 2Izolzl — n k aT . + lk n k T V . = — — 7 77- T . + 2 o B el x o B eo xl (l+oo ^t el a eo eo o 

_ 3nQ
2e2kB T e o T e l + 2ni _ 2ni T ± 
m.a ^T n n T ' 1 0 eo o o eo 

a. . T , 2n- , 
- ( — + \ + — — ) 3 n 2 T 1 (2.1.42) M 2 T n J r o eo o eo o 

Where the zero order heat balance equation has been used, 

izo2 3no2e2kB(Teo-Ti> _ 2m ^ 
= + 3 n T 2 (2.1.43) a m.a r o eo o 10 

This equation describes the steady state before the perturbation is 

applied. The Ohmic heating rate is balanced by the equipartition rate 

from the electrons to the ions and Bremsstrahlung radiation loss. The 

ions, therefore, act as a sink of energy in this model. 

It should be noted here that in the perturbation phase the 

y-component of the current gives a negligible contribution to the 

perturbed Ohmic heating rate to first order. Also the perturbed Ohmic 

heating is a maximum where Iq- I I a "laximum. 

Continuity Equation 

Starting with equation (1.1.1), it is a simple matter to obtain 

the perturbed continuity equation, 

an, + ik n V . = 0 (2.1.44) 1 X o xl 

where the centre of mass velocity has been used to replace species 

velocity. 
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Having completely described both the steady and perturbed 

states of the plasma, we are now in a position to quantify the assumption 

of the wavelength of rotation of the steady-state fields being much 

larger than the optimum wavelength for growth of the electrothermal 

instability. Using equations (2.1.13) and (2.1.43) in relation (2.1.14) 

and after some algebra we find, 

wavelength of rotation >> wavelength of instability 

a T 1 

provided ( e° T )* » 1 (2.1.4 
e eo i 

where the Bremsstrahlung term has been neglected in the derivation of 

(2.1.45) for simplicity. 

2.2 THE DISPERSION RELATION 

Summary of Equations 

The object of this exercise is to obtain an equation for the 

growth rate, a, as a fraction of wave number k^, that is a dispersion 

equation. 

The equations derived in the last section are summarised here to 

make it easier for the reader to follow the brief account of how the 

dispersion relation is obtained. Equations (2.1.3), (2.1.4), (2.1.15), 

(2.1.23) and (2.1.42) can be written, 

Faraday's Law 

ik E _ = - - B - (2.2.1) x yl c zl 
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ik E • = - B t (2.2.2) x zl c yl ' 

Ampfere's Law 

4TT . ik B • = — 3 . a. (2.2.3) x yl c zl 1 ' 

^ x Bzl - " T j y l (2-2-4) 

Pressure Balance 

-n m. a V .a_ = ik n k T . + ik n, k (T rt+T.) o l xl 2 x o B el x 1 B eO l 

- ^ S O + jZ0 By! (2_2_5) 

Ohm's Law 

vxl Bz0 jyl o ^ 
yl c = (2'2'6) 

3zl 3 z 0
 al 

E Z 1 = -5 5 T - C 2 - 2 - 7 ) 

o 0 

Electron heat balance 

— n k a T . + ik n k_ T _ V _ 2 o B el x o B eO xl 
kx 2 ke0 kB 
(1+0) T Je0 Te0 ) el 

+
 23z0 Jzl _ 3 no 2 e 2 kB Te0 ,Tel < 2ni 2ni ^ 

V.rp r-i n rp J 
0 eO m.a0 eO 0 

2 m i rai .. 1 T®i 2ni) - $ n z T 2 I — + — - — + 
r o eO M 2 T ^ n_ ; 

(2.2.8) 
eO 0 
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Continuity Equation 

an. + ik n V . = 0 (2.2.9) 1 x o xl 

al It is also necessary to use an expression for — . From (2.1.39) 
°0 

al 3 Tel J - - J T~7 ( 2- 2" 1 0 ) 

0 eO 

Equation (2.2.1) is used as an expression for B _. Using this in equation 
zl 

(2.2.4) gives a relation between E ^ and which is used in equation 

(2.2.6) to produce an expression for j ^ in terms of This 

expression is used in equation (2.2.5). 

Equation (2.2.2) gives B ^ in terms of E t h e n eliminating 

B ^ from equation (2.2.3) gives E ^ in terms of j^* Using this equation 
al in equation (2.2.7) gives in terms of — (and hence T e l/ T

e 0^• This 

is substituted in equation (2.2.3) to give B . as a function of T yl el 

This expression is used in equation (2.2.5). Now n^ is written in terms 

of V ^ from equation (2.2.9), therefore equation (2.2.5) becomes an 

equation with T and V ^ as the only perturbed quantities. That is, 

.. „ r A "o kB ^TeO+Ti) kx 2 g0 Bz02 , 
x Vxl C no mi a a2 + 5 +

 P/,,47iaoat 1 
C 

v 2 4tt 9 n02e^kB (l-Tj/Tep) aj 
el 1 x n0 B " c T 2 ,, 47ra0aoci 

mi (1' c2k x 

3 grnQ2Teo"^ ^Opai ^ o n , 
" 2 : 1 (2 .2 .11 ) 

C (11 c2k 2 } 
X 

where the-equilibrium equation (2.1.43) has been used. 
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Another equation in terms of V ^ and T ^ is obtained from 
al equation (2.2.8). Using an expression for j . in terms of — (T n/T ZX Qq 6X 6u 

using relation 2.2.10), derived as explained previously, and using 

equation (2.2.9) to eliminate n^ from equation (2.2.8), the following 

equation is obtained after rearranging, 

6nQ2e2kB (TeQ-Tj) 2Br n Q
2 T

ep 2 
lk V [ - n k_ T _ + + ] x xl o B eO m. a a a 1 o 

3 ^x2keOkB 3no2e2kB 9nQ2e2kB (1-T^p) 
~ Tel L 2 no kB a + (i+a) ZT z) + ,.. . 47raoaal, eO eO ' i o m.a (1+—7-—7—) 

1 o czk z 
x 

o 3 B r n Q 2 T 0 - i 
+ 2 Br no 2 TeO - „ . A > a « i %

 ] ( 2' 2' 1 2 ) 
(1' c2k 2 ) • x 

This leaves two simultaneous equations in V ^ and T ^ which are solved 

to obtain a dispersion equation. The dispersion equation is written in 

dimensionless form, using the following dimensionless quantities. 

migott ,*BTeO * 2 2">i„2 x = 7— y = ( ) (——) k z = a z — k z 

n e z m. eB _ x eO nu x o 1 zO ^ 

where a „ = electron Larmor radius eO 
at equilibrium 

87rnokBTe0 3nQc2 

IT = n E = e B z 8TTC7 K zO o eO 

Br^o . , 2 2 
R = . i—2 f = 1 + 0) T Z 

k T o eO eO B eO 
Ti aoBzo T = — — W = a) T = (2.2.13) T _ eO eO n ec eO o 

With the quantities defined in (2.2.13), the equation describing the 
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dimensionless growth rate, x (or damping rate if x is negative), as a 
function of the square of the dimensionless wave number y becomes, 

V 2 x 5  2 c L2 x k [7~ I 1  +  al ( 1 +IF~ ,)  + ai f 1  + T> ]  

e o 

o 4v 2 t ( al + 0 t2) ^ o 5 2 + X3 I ̂ T (i-iy-i-H. a ) + y(w2a (f + T + f ) e o e 

+ -i- a. (a. - 2 + 3T + f (2a. -1))) ] TTe 2 1 3 1 

or 8Y3a2 2y2 r 2 (5+ax) 2 2 
+ X 2 [ Z - ^ T T - + V " (W 2 ( ^ - R + T (1+A.) + F - + — (1+T+——) ) 

7T £f -.TT 3 1 1T_ £f 7T e o e 

+ a. (3T-2-f)) + yW2a_ (2R (r|- + \ T - h + (-2- -5+9T)) ] 7T.. 2 3 1 v 3TT 3 2 it ' 

O 4WZ r 1 2 5 + x [ y3 f — ( 1 + T + a_ (1+T) + ) + - + T) J tt vef 1 ir 3 J 

+ Y 2 (3T - 2 - J) + 3 1 ( 2 1 + 3 ( ^ + 2 ) - 8 - + R ( | T ( 2 ( ^ - 1 ) -2-c^)) 
e e 

+ 2a^ y W2 (3(1-T) + R)2 ] 

, l 8W (1+T) , 3 8W .,0 , . „(1+T), + yH •) - + yJ —2" (3TZ + 3T - 4 - R ') J IT E f 7T ^ 3 e o e 

+ y2 — a, (3 (1-T) + R)2 = 0 (2.2.14) 7T 1 e 

Putting R = 0, and = a2 = 1, in the above equation gives the same 
[31 dispersion relation as obtained by Tomimura , as indeed it should. 
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2.3 RESULTS 

Analysis of Dispersion equation with Bremsstrahlung radiation loss 

A detailed analysis of the behaviour of electrothermal instabilities 

in the linear regime can be found in references [2, 3]. It is only 

necessary here to observe the specific effects of Bremsstrahlung radiation 

loss, a^ and are set equal to one, therefore the inclusion of 

Bremsstrahlung is the only difference between this analysis and that 

in references [2, 3]. 

Condition for onset of non-convective unstable mode 

The condition for onset of the non convective (real x only) 

unstable mode can be found by putting, x = 0, in equation (2.2.14). 

This determines the condition for onset because x is real at x = 0 and, 
dx [21 ^e^E^o — < 0 at x = 0 . Multiplying through by 8WZ(i+T)yZ gives, 

Y2 - ((3T2+3T-4) - y 

7re2efo 
2(1+T) (3 (1-T) (3 (1-T) + 2R) + R

2) = 0 (2.3.1) 

which is of the form, 

y 2 + by + c = 0 12.3.2) 

with solution 

-b + /b2-4c 

Hence, for real and positive y (y is proportional to k 2), two conditions 
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are required. These are : 

3T2 + 3T - 4 - R ( 1^ T ) < 0 

and (2.3.3) 
c fO 2(9(1-T)2 + 6R(1-T) + R2) 

( 1 + T ) (3T* + 3T - 4 -

1 3r mi a1 By putting t = —, and R = Bt, so that B = — 2 > t h e first of the 
T kBe 

above conditions becomes, 

3Bt* (12 + B)t2 - 9t - 9 (2.3.4) 

and the second becomes, 

i (18t(t-l)2 + 12Bt3 (t-1) + 2Bt^) 2 (t+1)* 
£ ^ - 1 (A. j . j) 

(4t2 - 3t - 3 +• Bt2(t-l^-)) (1 + a) 2t 2) 3 eo eo 

If B = 0 in the last two relations, the necessary and sufficient conditions 

for onset of a non-convective unstable mode, as obtained by Tomimura and 
[21 

Haines , are recovered. These are : 

4t2 - 3t - 3 > 0 leading to t > 1.3187 (2.3.6) 

and 

tJ-) * > (t-1) (t(t+l))2 
l18; " (4tz - 3t - 3) (1 + a) zt 

Comparing the first of (2.3.6) with (2.3.4), it is apparent that the 

inclusion of Bremsstrahlung radiation loss causes the plasma to be more 

unstable to electrothermal instabilities, because it reduces the value 
Teo 

of t (t = — — ) above which the unstable mode is present. The higher 
i 

the value of B (B = constant T^), the lower the threshold value of t 
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above which the plasma is unstable. At B = 1.5 it can be shown that 

the threshold value of t is t = 1.0. As the only source of energy for 

the ions is from equipartition in this model, t must be greater than 

one, but t must be less than one to be stable (at B = 1.5) . Therefore 
9 

T, = 1.3 x 10 K is the maximum deuterium temperature attainable by 

Joule heating in the presence of pure Bremsstrahlung in a homogeneous, 

stable plasma. 

Figure (2.3) shows a plot of x against y from equation (2.2.14) 
for IR = 0.02267, E = 2.259 x lo"11, COT = 1.536 x 106, T = 2 x 108k, e eo 

8 2 L = 10 k (proportional to k ). From the graph, there exists a purely 
-2 

growing mode for y greater than about 10 . For smaller values of y 
-2 2 -3 

(10 * > y > 10 ) there is a growing mode with non zero values of lmag 
x. The effect of including Bremsstrahlung radiation loss is to increase 

-1.9 
slightly the growth rate of the purely growing mode (for y > 10 ). 

The purely growing mode is of greater interest for two reasons. For 

conditions relevant to present day Tokamaks (high w e T e ) the growth rate 

of the non-convective mode is much greater than that of the convective 

mode. Also the wavelengths of the non-convective modes are smaller (^ 

centimetres) than that of their convective counterparts. 

Physically, the inclusion of Bremsstrahlung radiation loss 
2 1 

increases the growth rate because of the n T^2 dependence of the 

radiation loss term. Substituting (2.2.9) into (2.2.11) gives, with 

ax = a2 = 1, 
9 -1 

Hq 2 4ir 9 "o 2 e 2 kB (1-Tj/Tep) 3 3 rn Q
zT e Q

 247raQ 
* a el L x o B " IF 2 47ra0a 2 2

 47rao<\ mi c 
__ X X 

n l ; nokBlTeo+Tj) . °ouzo' 
[ W + 5 + ,, . 4ira0a c 

X 

(2.3.7) 
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a) Plots of dimensionless growth rate real x against 
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Each term in the square brackets of the denominator in (2.3.7) is positive, 

for positive a provided > TL . The condition for n^ to be of opposite 

sign to T in the region of y for which the growth rate with 

Bremsstrahlung is greater than that without is, 

, v 4TT 9 "o 2e 2 kB <l-Ti/Teo) 3 grnQ2Teo"l47rao 
kx ^ > S2- 2 — S T " .4ira0at <2'3-8> 

x x 

or in terms of x and y, 

x > f- (1 - T./T ) + R - ̂  (2.3.9) 2 1 eo 2 7t e 

This curve is also shown in Figure(2.3a). For real positive values of 
0.2 -1 53 

x above this curve (for 10 > y > 10 " ) the increased growth rate 

is produced by the following mechanism. The perturbed temperature peaks 

coincide with the density troughs. Therefore the stronger dependence of 
2 1 

the radiation loss term on density than on temperature (n T e
2) leads to a 

decrease in radiation loss rate in the temperature peaks. The converse 

argument applies to the temperature troughs. Hence the Bremsstrahlung 

term helps to drive the instability. 

For lower values of y the growth rate is increased but condition 

(2.3.9) does not hold. For the same steady state values of density and 

temperature, a higher electric field is required to balance the extra 

Bremsstrahlung loss term. Hence the perturbed Ohmic heating rate is 

higher leading to a slightly increased growth rate, because the corresponding 

change in the Bremsstrahlung loss does not quite cancel the effect of 

the extra Ohmic heating. 

We conclude this section by noting the inclusion of Bremsstrahlung 

only has a significant effect at very high temperatures because the 

Bremsstrahlung coefficient is very small. Its ability to enhance the 
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2 k 

growth rate of the instability is a consequence of its n T 2 dependence, 

and is primarily brought about because of the inclusion of ion motion 

which allows the density to change. Impurity radiation, which 

represents the most significant fraction of radiation loss in present 

day devices, would also be destabilising. Impurity radiation from 

free-free and free-bound transitions could have an even greater 

destabilising effect because the density and electron temperature 
2 Y -3 dependence goes as n T # where y * —. The value of y depends upon 

8 1 [241 

the temperature, and for temperatures above 10 K y = — 

2.4 RESULTS 
The Effect of neglecting the y-component of the Magnetic Field 

The effect of neglecting the y-component of the magnetic field 

on the linear behaviour of the electrothermal instability may be assessed 

by putting o^ = 0, a^ = 1 in the dispersion relation, equation (2.2.14). 

The equation reduces to a quartic in x and cubic in y, 

x^ + 2x3 [ (1 + + 3T - 2 - | ] 
TT £f 3 e o 

2 
+ X

2

 [ % f + y (w2 (J + T + + A . (3T - 2 - |)) ] (2.4.1) 
e o e e 

2 2 
+ x [ (_L_ (1 + T + + | + T) + 2yW2 Gf- (3T - 2 - f) 7T vEt TT 3 J VTT 3 e o 

+ 3 T ( 1 + T ) - 4 - R ( 1 + ^ ) 1 ] +
 4 W 2

( L
+

T ) Y
3

 +
 4 W 2 y 2 ( 3 t

2

+ 3 T - 4 - R ( 1 - f | ) ) = 0 

3 ' TT Ef TT 3 e o e 

The only condition for onset of the non-convective unstable mode is now, 

3Bt3 + (12 + B) t 2 - 9t - 9 > 0 ' (2.4.2) 
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This is identical to one of the requirements for onset obtained in the 

last section. However, there is not a condition on e as there was 
4 before (e « n /T ). o eo 

Figure 2.4 is a plot of x against y for both equations (2.4.1) 

and (2.2.14) clearly showing the consequences of neglecting the y-

component of the magnetic field. The purely damped mode, (labelled 1 

on Figure 2.4a)) does not exist when B^ is neglected. The damped 

magneto acoustic mode (labelled 2 on Figure 2.4a) and b)) is 

virtually unaffected by neglecting B^. This mode is non-dispersive, 

(imagx/y^ = constant) with much larger values of |.x| than any other 

mode. The mode labelled 3 in figure 2.4 is purely damped for all 

values of y when B ^ is neglected, but when B ^ is included this mode 

has values of y for which it is growing and is convective (non-zero 

values of imag x). 

The most important mode for our purposes is the purely growing 

mode (labelled 4 in Figure 2.4) representing an electrothermal 

instability. This root is considerably changed by neglecting B ^ at long 

wavelengths (small y). If B ^ is included an optimum wavelength for 

growth exists. Short wavelengths (large y) are damped due to perpendicular 

electron thermal conduction, while long wavelengths are more slowly 

growing because of Faraday's law, which acts to reduce the perturbed 

current. If B ^ is neglected there is no such reduction in the z-component 

of the perturbed current; the Ohmic heating rate is larger and hence the 

growth rate increased. The behaviour of the z-component of the current 

is more important than that of the y-component, because the contribution 

to the Ohmic heating by j is second order and therefore negligible. The 

amount by which j is reduced depends upon the wavelength and can be 

found using equation (2.2.2) as an expression for substituting this 

into equation (2.2.3), giving E z l in terms of j and finally using this 
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equation to eliminate E . from equation (2.2.7), zl 

al 4ira0aai j n = j — [ 1 + 2 3 (2.4.3) Jzl zo a czk o x 

The effects of including are negligibly small if, 

47rcr a 
« 1 (2.4.4) 

x 

or, in terms of dimensionless quantities 

7rex 
2y << 1 (2.4.5) 

The reduced Ohmic heating rate is not the only reason for the difference 

in growth rate. The phase angle between the perturbed number density 

n^ and the perturbed electron temperature T can be found using 

equation (2.2.9) as an expression for n^ and substituting this into 

equation (2.2.11) to give, 

rp n r v 2 v 47T 9 n° B (3.-Tj/Teo) <*1 -3 Z ^ o T e o ~ ^ ™ o a l _ 
el -2. 1 x o B " ^ 2 4™o*«ls 2 2 ^ a a ; , J 

mi (1' c2k 2 X c (11 czk 2 } 
X X n, = 1 n k (T +T.) k z a B z 

r o B eo i x o o , [ n m.aa + - • „ ,4w 0a 1 
c 

X 

(2.4.6) 

In the wavelength range for which the growth rate of the purely growing 

mode with B . included is much less than the growth rate without, the yl 
sign of the upper square bracket is negative if a^ = 1 and positive if 

a. = 0 . The sign of the lower square bracket is always positive. Therefore 
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and T ^ are in phase if = 1 (By]_ included) and 180° out of 

phase if a^ = 0. The dominant energy loss mechanism in this region 

is equipartition from the electrons to the ions, as can bq shown by 

comparing the size of the terms in equation (2.2.8) . Equipartition 
2 3/2 

goes as n /T^ . If n^ and T ^ are 180° out of phase this term is 

smaller in the temperature peaks than it is if n^ and are in phase. 

Conversely, it is larger in the temperature troughs. This means the 

equipartition term tends to increase the growth rate for the case with 

a^ = 0 above that for the case with a^ = 1, by making the energy loss 

comparatively lower in the temperature peaks and higher in the 

temperature troughs. 

We may conclude this section by stating the effect of the y-

component of the magnetic field on the linear behaviour of the electro-

thermal instability is negligible provided the initial conditions and 

the wavelengths considered are such that relation (2.4.5) is obeyed. 

In section (2.1) we established the zero order y-component of 

the magnetic field is very small and should be neglected in a numerical 

model to follow the evolution of the electrothermal instability. To 

include the perturbed y-component of the magnetic field only would 

therefore necessitate separating zero order and perturbed components 

of By and all other quantities affected by this component of B, and 

solving for the perturbed quantities only. Clearly this is not a 

viable proposition. Having shown the y-component of B has a negligible 

effect under certain circumstances (2.4.5), we can circumvent this 

problem by neglecting B totally in the numerical model. 
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2.5 RESULTS 

j_xB 

The effect of neglecting deviations from Vp = — 

The consequences of ignoring the inertial term on the linear 

behaviour of the electrothermal instability may be determined by 

putting a^ = 0 (a^ = 0 ) in the dispersion relation, equation (2.2.14), 

and comparing this to the dispersion relation obtained in the last 

section, equation (2.4.1). We shall not compare the two curves with 

a^ = a 2 = 1 and a^ = 1, a 2 = 0, because this work is, for the most 

part, concerned with conditions such that the y-component of the 

magnetic field may be neglected. The dispersion relation obtained 

with a^ = a 2 = 0 reduces to a quadratic in x and y, namely, 

.2 r i 4. T 4. 3 - 5 . (1+T) xz [ 1 + — + — e ] + xy [ — + _ + T + 2 3 3 ef tt ef o e o 

2 ^e
1 

+ x [ 37TeT(l+T) - 4-rre - 4 + 6T - R (j + — — + ] 

+ y2 2 ̂ ltT) + (6T2+6T-8-2R(l+|) ) = 0 (2.5.1) 
it er 3 e o 

It can be seen by inspection of equation (2.5.1) that the condition for 

onset of the electrothermal instability does not differ from that 

obtained in the last section. 

Figure (2.5) is again a plot of x against y for both equations 

(2.5.1) and (2.4.1) with T. = 108K, T = 2 x 108K, to x = 1.54 x 106, 
i eo e e -2 -11 irg = 2.27 x 10 , R = 0.22 and e = 2.259 x 10 . The most important 

point to notice, from the point of view of this problem, is the neglect 

of the initial term has a negligible effect on the behaviour of the 

electrothermal mode (labelled 1 in Figure 2.5). The growth rate of 

this mode without the inertial term is very nearly the same as that with 
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for all wavelengths. 

For the wavelength range of interest, x is real, which brings 

us to the only difference between the dispersion relation with a^ = 1 

and that with a^ = 0. The root with a large imaginary component 
jxB 

(labelled 3 in Figure 2.5) does not exist if Vp = is used (a_ = 0). 
c 2 

9 2 i 
This root is non-dispersive and has a phase velocity equal to (V + Cg ) 

where V^ is the Alfvdn speed and C g the sound speed. It can therefore 

be identified as a damped, fast, magneto acoustic wave. 

As the inertial term may be neglected in the equation for 

pressure balance without substantially affecting the behaviour of the 

electrothermal instability, this term will be neglected when studying 

the development in time of the above mentioned instability. This is 

because when any initial value problem is modelled on the computer, one 

is always restricted to using a time step which is smaller than the 

fastest time scale associated with the problem, in order that the results 

obtained accurately represent the true solution at any point in time. 

Even if one were able to use a finite difference scheme which is 

numerically unconditionally stable, that is the errors in the results 

do not amplify without bound, regardless of choice of time step, the 

results may still be inaccurate if the restriction on the time step is 

not adhered to. 

Looking at Figure 2.5, the wavelength range of interest is the 

region where the electrothermal mode grows in time as opposed to damps. 

The dimensionless growth time, t^, of the electrothermal instability is 

given by 

fcg = |xx| (2.5.2) 

where subscript 1 means the value of x for the root labelled 1 in 
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Figure 2.5 while the dimensionless damping time of the mode labelled 2 

is, 

tfl - ^ (2.5.3, 

As can be seen from the graph, and [ | are of order one, therefore 

the time scale over which parameters change is of order of one scale 

time for these two modes. If the inertial term is included, however, 

the magneto acoustic mode is present which has a damping time of order 
—1 —6 of 10 of a scale time and an oscillation period of order of 10 of a 

scale time. 

Clearly, the fastest time scale associated with the problem 
g 

is about 10 times greater if the inertial term is included. It is 

therefore advantageous, from the point of view of computational speed 

and efficiency, to neglect the inertial term in any numerical model 

designed to follow the evolution of the electrothermal instability in 

time into the non-linear regime. 

More generally, the time scale associated with the magneto 

acoustic wave is much smaller that that associated with the electrothermal 

instability if, 

e m 

where t and t refer to the time scale associated with the magneto acoustic 
• r o e 

wave and the electrothermal instability respectively, and V^ and V t refer 

to their associated velocities. V may be defined as, 

scale length ,mix i nr e 
= — 3 - 4 - - = a c — ) ~ 

2 

V = -T-2— = a C—) — — (2.5.5) 
et scale time eo mQ i^cJq 
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while V is given by 
m 

2 2 V = {V + C ) m A s 

therefore equation ( 2 . 5 . 4 ) becomes, 

t_ 7t 
~ = r t r — r << 1 ( 2 . 5 . 6 ) 
t CO T (2+TT ) e e e e 

Provided relation ( 2 . 5 . 6 ) is true, it is worthwhile and, more importantly, 
jxB 

valid to neglect deviations from Vp = . 

SUMMARY 

We have shown the inclusion of Bremsstrahlung radiation loss to 

enhance the growth rate of the non-convective electrothermal mode. 

We deduce from this result that impurity radiation would also have a 

destabilising effect. 

The y-component of the magnetic field may be neglected without 

substantially affecting the linear behaviour of modes with wavelengths 

up to and including the optimum wavelength for growth. Hence we may 

neglect this component in the numerical model to follow the development 

of the instability into the non-linear regime. 

The inclusion of the inertial term in the equation for pressure 

balance allows the existence of damped fast magneto acoustic waves. 

Neglecting this term does not considerably affect the linear behaviour 

of the electrothermal instability. For computational speed this term 

will be neglected in the numerical model. 

On route to obtaining these results we have described the 

system, the approximations and set out the equations on which our 

numerical model is based to follow the evolution of the electrothermal 

instability. 
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CHAPTER 3 

NON-LINEAR, STEADY-STATE SOLUTIONS 

INTRODUCTION 

In this chapter a model is described, and the consequences 

discussed, for the non-linear saturated, steady-state behaviour of the 

electrothermal instability. As will be shown later, it is possible for 

this instability to exhibit saturated, steady-state profiles of current 

density and electron temperature which have a large amplitude, filamentary 

structure. Furthermore, it is demonstrated that runaway electrons and 

ion acoustic instabilities can occur in the spatial maximum of the 

current density and electron temperature. Some calculations are presented 

showing the effect the presence of these filaments would have on energy 

transport.[ 4 1 

3.1 THE NON-LINEAR STEADY-STATE MODEL AND ASSUMPTIONS 

It is assumed the electrothermal instability saturates to a 

steady-state in which the current density j is again everywhere parallel 

to the magnetic field B^. We know the spatial variations of the relevant 

parameters occur on a sufficiently small scale length that the larger 

scale, slower change in total pressure of the confined plasma can be 

neglected. We consider an equilibrium in one space dimension in which 

the total pressure p is a constant, that is, 

p = n(x) k (T (x) + T.) u e l = constant (3.1.1) 
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where the ion temperature is considered uniform. The ion temperature 

may be considered uniform because any fluctuation in ion temperature on 

a length scale of order of the wavelength of an electrothermal instability 

would be quickly flattened due to the ion thermal conductivity being 

much larger than the electron thermal conductivity perpendicular to the 

magnetic field, provided to x >> 1 
e e 

xx m± 

— a, (—) 

where xx
 a nd XXq

 a r e t1ie i°n an<^ electron thermal conductivities 

perpendicular to the magnetic field respectively. Faradays* law dictates 

that the electric field E is also uniform. 
z 

In the steady state the electron energy equation consists of 

Ohmic heating, as the only energy source term, balanced by equipartition 

to the ions, electron thermal conduction perpendicular to the magnetic 

field, and Bremsstrahlung radiation loss. Assuming uj^tj2' » 1 the 
electron energy equation (2.1.41) becomes, 

Iz2 3n2e2kB CTe-Ti) i d k ek B dTe = ± - = 2 — — + M 2 T 5 - f ( — — ( 3 . 1 . 2 ) a m.a r e dx ai zx z dx i e e 

The number density, n, may be eliminated from equation (3.1.2) using 

equation (3.1.1). Using Ohm's law, equation (2.1.24), equations (2.1.33), 

(2.1.34),(2.1.35) and (2.1.39) in equation (3.1.2) we obtain, 

1 T 3/2
e 2 = 3 p W CTe-Tj) 3rp2Te* 5 p2c2 dTe> 

a e z k (T +T.)zm.aiT d/z k z (T +T.)Z " dx M a AT ^Bz (T +T. )z dx > B e i i e B e i e e i 

(3.1.3) 

Equation (3.1.3) may be written in dimensionless form by defining t = Te/TV 
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kb ti 5 /" 2 i ni a l 

and multiplying each term by t o give 

2 
a1 E 2m.k T.1* _ /n „ 8 m.o^T. A , _ m.c2k~T. r z l B i i 3/2 _ 3 (t-1) r l l t2 d 5 ,mi , B l 1 dt. 
^ p 2e 2 J (t+1) zt 6 / z + k e z (t+l)z * dx 2(eB„) m. (t+l)ztl dx B z i 

(3.1.4) 

As each term is dimensionless, we can define a parameter A defined as the H 
pe ratio of the electric field E to some natural electric field, i _ >j,—;——l z a XT. (m.k„)2 

l i b 
i.e. 

i 2 . 
m. k_a1

 t. o 1 B 1 9 A 2 = -2T2 E 2 (3.1.5) H p e z 

The natural scale length for variation of T q ( X) is approximately 

the ion Larmor radius. It is therefore convenient to replace x by s 

defined as, 

f
 2 ml , 1 eB 

s " ( s i e ^ f 3- 1- 6' 
B l l 

The Bremsstrahlung term defines a characteristic ion temperature for 

radiation loss T , the strength of the dimensionless radiation term being 
r 

determined by, 

T. a18 m. i r i B = — = — 7— T. (3.1.7) 
R B 

g 
where T = 9.1 x 10 for deuterium. Equation (3.1.4) is simplified if we R 
employ a distorted s dimension which we call y, defined by, 

d _ 1 d 
dy ~ tht+l) z ds (3.1.8) 
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This equation now conveniently has only a second derivative and no 

fractional powers, that is, 

2 t _ 3 (t-1) B d2t 
AH (t+l)z ~ t^it+l)1* + (t+l)4 ~ dj2* (3.1.9) 

Before attempting to solve equation (3.1.9), it is instructive to consider 

the behaviour of the equation as t varies, where t is defined as the value o o 
of t at which = 0, dyz 

2 _ Wo-U b 
H "" t *(t +l)z t (t +l)z (3.1.10) o o o o 

Figure (3.1) shows a plot of A 2 versus t for B = 0 (no Bremsstrahlung). 
o 

3+^57 A 2 has a maximum value at t = — - — = 1.3187. This is the condition for H o 8 
onset of the electrothermal instability and gives confidence in the 

constant pressure model to describe both marginal stability and the non-

linear steady-state. 
2 - 2 The maximum value of A„ (t ) for B = 0 is 7.755 x 10 . For H o 

2 d21 values of Ar 2 above the ATT -t curve, -r-r- < 0, whilst under the curve we H H o dy^ 
d2t 

have —2- > 0, as can be seen from equation (3.1.9). Therefore, for values 
2 of A greater than the maximum value, t(y) can only vary monotonically H 

on the length scale of an ion Larmor radius. For solutions of t(y) which 

are flat or periodic it is necessary that the electric field be less 

than a critical value Ec given by, 

0.278 ep E < E = -—:—rf lm 2 3.1.11) c (m.k )2QL1-t./L l B l 

• 2 If radiation is included, the critical value of t , t at which A is a o oc H 
maximum is the root of, 
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3Bt 3 + (12+B) t 2 - 9t - 9 = 0 (3.1.12) oc oc oc 

t is the value of T^/T^ above which the homogeneous plasma is unstable 

to electrothermal instabilities with Bremsstrahlung loss included as 

found in Chapter 2, section 3. The maximum electric field is also 

increased to E c R when radiation loss is included. Figure (3.2) is a 

plot of both t and E /E as functions of B, showing the plasma is 
O C C R C 

unstable at a lower value of T /T. as radiation is increased, while the 
e i 

maximum electric field that can be applied to sustain the discharge 

increases. 

3.2 FILAMENTARY STRUCTURE 

Referring again to figure (3.1) we can say flat profiles for t, 

i.e. t = constant, can only occur on the t curve. Also both small 
o 

and large amplitude periodic, oscillatory solutions for t, for given 
2 values of A and B, are finite lines parallel to the t axis which must h 

2 include an intersection of the A^ - t curve on the right hand branch 
only. This is because oscillatory solutions have maxima and minima. 

d2t 
The minimum value of t must lie in a region where ^pr > 0 i.e. under 

2 

the A r - t curve, while the maximum value of t must lie in a region 
d2t 

where -^pr < 0, above the curve, and clearly the maximum value of t must 

be larger than the minimum value. 

The maximum possible amplitude of temperature oscillations may be 

estimated without solving equation (3.1.9) completely, as follows. 

M u l t i p l y i n g equation (3.i,> b y ^ a . integrating „ith aspect to y 

we obtain, 
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4 9 24 6 „„ „ ,t+lN 
(d75 = oTiF + Tt+ip" + Tt+IT + 7 - 30 ( — } 

O 1 2B 
~ 2 AH l^n(t+l) + Jt+lT^ " 3(t+1)3 + c o n s t a n t integration 

(3.2.1) 

As will be shown, the constant of integration determines the amplitude 
2 of the electron temperature variation. For given values of A and B 

h 
d 2t there are two real values of t (values of t for which -r—r = 0)• L e t 

o dŷ -
us refer to these two values of t as t . and too (t „ > t ,). As o ol o2 ol 
stated previously, the minimum value of t must lie between and t Q 2, that 

d2t d2t is m the region where > 0. Figure 3.3 is a plot of against 
2 t for three values of A with B = 0 in all three cases. If the H 

minimum lies arbitrarily close to either or t Q 2 the value of the 

second derivative and all higher derivatives tends to zero. Between 

these values, the second derivative has a maximum value. If we choose 

the minimum value of t, t . , we know the left hand side of equation 
min 

(3.2.1) is equal to zero at t = t . . Therefore, this determines the min 
constant of integration. The maximum value of t, t , can now be max 
determined by finding a second value of t for which the left hand side 

of equation (3.2.1) is equal to zero, using Newton's method. Table (3.4) 

shows the values of t found as described above for randomly chosen 
max 

values of t . lying between t , and t From this we can see t min 3 ol o2 max 
increase as t . decreases. Therefore the maximum amplitude of the m m e 

temperature oscillation corresponds to the minimum value of t lying 

arbitrarily close to t F o r the case B = 0 the maximum value of 
2 t is plotted in figure 3.1 and lies to the right of the A„ - t curve, max H o 

Having found the maximum possible amplitude of the temperature 

oscillations we can make an interesting observation with regard to 

the profile of Te(x). For large amplitude oscillations the minima occur 
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Figure 3.3 

cl̂ t 2 • 2 Plots of t against t for 1) A„ = 5x10 
dy^ h 

2) A 2 = 1.5xl0"2 

h 
3) A 2 = 0. 5xl0~*2 

h 
B = 0 in all three cases. 
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dzt with very small values of ^p-/ whilst the maxima have comparatively 
d2t 

large and negative values of This suggests the minima are very 

flat and shallow and the maxima sharply peaked. This is shown to be 

the case when equation (3.2.1) is integrated numerically. 

TABLE 3.4 

2 - 2 A = 0.5x10 , B 
t\ = 4.146239 o2 

= 0, t . = 1.006851, ol 

m m max 

1.006852 
1.7 
2.4 
3.1 
4.146238 

278.2075 
35.5162 
10.3184 
6.0204 
4.1446 

= 1.5x10 -2 B = 0, 
t = 2.923649 02 

t . = 1.021805 ol 

m m 
1.021806 
1.5 
2.0 
2.923648 

max 
12.4712 
7.5814 
4.6722 
2.9239 

2 - 2 A = 5x10 , B = 0, 
t . = 1.842697 02 

t _ = 1.096616 ol 

m m max 
1.096017 
1.2 
1.4 
1.6 
1.842696 

2.6651 
2.6099 
2.3683 
2.1112 
1.8445 
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3.3 NON-LINEAR STEADY-STATE SOLUTIONS 

Equation (3.2.1) can be integrated numerically as follows. 

It is convenient at this stage to revert to the undistorted 

dimensionless space s. Using equation (3.1.8), and taking the square 

root, equation (3.2.1) becomes, 

~ = ± [ 4t(t+l) + 9t(t+l)2 + 24t(t+l)3 + 6(t+l)4 as 

- SOttt+l)4 £n(^-) - 2A 2t (t+l) 3 [ (t+l) in (t+l) + 1 ] 
t H 

- ~ t ( t + l ) + Cx t(t+l)1+ = ± G(t) (3.3.1) 

Therefore s can be found as a function of t, namely, 

r dt (t) = ± J C 2 (3.3.2) 

where C^ is a constant of integration. The first constant of integration, 

C^, is determined by choosing the minimum temperature, for given 
2 

values of A„ and B. The maximum temperature t is then found, as H max 
described in the last section. Using t . as the lower limit of the m m 
integral, we can find s(t) by varying the upper limit from a value very 

close to t . to t . The problem then becomes one of evaluating many m m max 3 J 

definite integrals numerically. This was done using a NAG library 

routine. The value of the second constant of integration, C^, does not 

affect the shape of the temperature profile. We are therefore free to 

choose C_ such that t . is positioned at s = 0 for convenience. 2 m m r 

Figure 3.4 shows plots of t against s for half a wavelength. As 

expected, the electron temperature profile has a flat shallow minimum 
2 and sharply peaked maximum for sufficiently small values of A when 

h 

the minimum temperature, t . , is chosen to be very close to t n m m ol 



t i = 1.015605, t . = 1.015606 ol m m 
t = 22.85, ^ = 3.14 s max 2 

2 - 2 b) A = 1.1x10 , B = 0 
n 

t . = 2.0, t = 6.32 , m m max 
| = 2.11 s 

Figure 3.4 

Electron temperature profiles showing filamentation 
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X 
(Figure 3.4a). For the same value of A„ , as t , increases the r H m m 
amplitude of the oscillation decreases. Furthermore, the temperature 

profile is no longer filamentary, it is very nearly sinusoidal 

(Figure 3.4b). The smaller the amplitude of the oscillation for fixed 
2 

A the shorter the associated wavelength. The inclusion of H 
Bremsstrahlung loss has two effects. It increases the amplitude of 

the temperature oscillation and shortens the wavelength as well (Figure 
2 3.4c). As A is increased, the maximum amplitude of the oscillations 

h 

decreases. However, the wavelength of the maximum amplitude oscillations 
2 increases as A is increased (Figure 3.4d). H 

3.4 RUNAWAY ELECTRONS AND ION ACOUSTIC INSTABILITIES 

If the applied electric field exceeds a critical value E \ 

determined by the drift velocity equal to the electron thermal speed, 

i.e. 

„ 1 ne , B eN J n E = — ( ) a — (3.4.1) c a m T e e 

the plasma will be in an extreme condition of generating runaway 
[251 

electrons . The applied field should not exceed about 1% of this 

value if significant numbers of runaway electrons are to be avoided. 

The ratio E/E ^ can be calculated using equations (3.1.1) and (3.1.5) as a function of t to give, 

E 
E -L m. H c i 

When E = E ^ we have, c 

m-i 

m e l 
= (—) 2 A t(t+1) (3.4.2) 

AH " t2(t+l)2 (3'4'3) 
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This curve is plotted in Figure (3.1) for deuterium, and it crosses 

the t curve showing that runaway electrons can be important in the max 
temperature maxima of the filaments even though, based on the average 

temperature and density of the plasma, runaway electrons should not 

occur. This is because the number density is low and the electron 

temperature high in the temperature maxima (see equation (3.4.1)). 

If T >> T. ion acoustic instabilities can occur at a much e i 
lower electron drift velocity. We take a simplified form for the 

t261 

critical drift velocity above which ion acoustic instability occurs 

that is, 

k„t , v_t. i 
v d > f - p - ' * + < 3- 4- 4' d m. m 

i e 

ce 

Equating the right hand side of relation (3.4.4) with — and employing 

equation (3.1.5) we obtain, 

l nu l 2 - *P 

m. [l+t 2(rV] 
a h 2 - ^ - p i w r ( 3 - 4 - 5 ) 

2 Choosing the ion to be deuterium the variation of A with t as in H 
equation (3.4.5) is also plotted in Figure (3.1) as the condition for 

onset of ion acoustic instability. If filaments tend to grow to their 

maximum amplitude, the ion acoustic turbulence will develop in the 
2 temperature maxima due to the high drift velocity there for A less H 

- 2 than about 1.5x10 . A fully developed runaway condition will occur in 
2 - 2 the current filament for A less than about 10 H 

3.5 EFFECTS OF THE PRESENCE OF TEMPERATURE FILAMENTS ON ENERGY 
TRANSPORT 

Here we consider the effects of an electron temperature profile 
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which has a fine scale filamentary structure, with filament separation 

of the order of a few ion Larmor radii, on the electron energy 

transport in an Ohmically heated, magnetically confined plasma. It is 

clear the presence of such filaments could not produce a net energy 

loss via electron thermal conduction. It is possible, however, that 

their presence could lead to an anomalously high electron energy loss 
[141 

via equipartition to the ions. From recent experimental results , 

such fine scale electron temperature peaks (and density troughs), if 

they existed, would not be spatially resolved. Instead, the spatial 

average temperature and density would be measured, and the equipartition 

rate calculated classically. The value obtained in this way would be 

different from the value obtained if the fine structure of the electron 

temperature and density were taken into account. We can test this 

hypothesis by looking at the ratio obtained by taking the equipartition 

rate averaged over one wavelength and dividing by the equipartition 

rate calculated using the mean electron temperature, that is, 

kf 
• (t-l) 
t V z (t+l)z 

(t-l) 

ds 
(3.5.1) 

1 r* 
where t = — / t ds (3.5.2) 

a
 o 

and equation (3.1.1) has been used in the derivation of equation (3.5.1). 

The ratio R^ has been calculated for many temperature profiles. We know 

experimental measurements of electrical conductivity agree well with 

results predicted from theory using the Spitzer model. Therefore we 

must be able to demonstrate that the presence of these filaments does 

not appreciably affect the electrical conductivity in order for this 
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model to be acceptable as a possible mechanism for enhanced electron 

energy loss. For this reason we have also calculated the ratio, Rc, 

of the electrical conductivity averaged over one wavelength to the 

electrical conductivity calculated using the electron temperature 

averaged over one wavelength. The value of this ratio is included 

in Table (3.5) . 

TABLE 3.5 

V R c >H2 t max t . min R c 

0.9036 7x10" -2 1 .7536 1 .1860 0. ,9096 1. ,0066 

0.4726 2 .2x10" •2 6 .9425 1 .0335 0. 5609 1. ,1868 

0.5835 1 .lxio" •2 22 .8504 1 .0156 0. 8682 1. 4879 

0.6696 9x10~ •3 36 .9329 1 .0126 1. 0958 1. 6366 
1.0372 it 34 .7642 1 .1000 1. 6190 1. 5610 
1.2615 ii 7 .8835 2 .0000 1. 3690 1. 0852 
0.7348 8x10 ~ •3 50 .9998 1 .0112 1. 2812 1. 7435 
1.1274 II 47 .5551 1 .1000 1. 8200 1. 6143 
2.0109 II 20 .4849 2 .0000 2. 4537 1. 2202 
0.8226 7x10~ 3 76 .7902 1 .0097 1. 5508 1. 8852 
1.1644 II 70 .7340 1 .1000 2. 0923 1. 7969 
1.3051 it 8 .5314 2 .2000 1. 4135 1. 0831 
0.9352 6xl0~ 3 131 .6769 1 .0083 1. 9439 2. 0785 
1.2468 it 119 .3086 1 .1000 2. 4752 1. 9853 
1.5714 ii 13 .5490 2 .0000 1. 8318 1. 1657 

B = 0 in all above 
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Looking at Table (3.5), assuming the filaments have their maximum 

amplitude, and neglecting the effects of ion acoustic turbulence, both 
2 R and R increase as A„ decreases. Furthermore R„ and R are E c H E c 

2 -3 greater than one for A £ 9 x 10 . However, if the filaments do not H 
2 have their maximum amplitude for a given value of A H , the ratio R

E/ R
C 

increases as t decreases, max 
We may conclude from these results that for sufficiently small 

2 values of A the presence of electron temperature filaments can lead H 
to a substantially higher electron energy loss than would be calculated 

from experimental results. However the electrical conductivity would 

also be anomalous which we know is not the case. If the temperature 

filaments develop to an amplitude which is less than the maximum 

possible, the electron energy loss is still anomalously high whilst the 

electrical conductivity is not appreciably affected. 

The necessity for a time dependent model 

All the results in this chapter come from a model which assumes 

the electrothermal instability saturates and reaches a steady-state 

which is stable. Whether a steady-state is attainable, and whether 

it is stable can be found only from a study of the development in time 

of the electrothermal instability. Such a model would also establish 
2 which of the many possible values of A and configurations of electron H 

temperature profile are obtained if a stable steady-state is reached. 

It would also show whether at any stage in the development of the 

electrothermal instability conditions are reached such that the ion 

acoustic instability is triggered. We only know from this model that 
2 it is possible provided certain conditions on the value of A and H 

electron temperature profile are satisfied. 
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CHAPTER 4 

A NUMERICAL MODEL TO FOLLOW THE EVOLUTION 
OF THE ELECTROTHERMAL INSTABILITY 

INTRODUCTION 

In this chapter we develop a model to study the time development 

of the electrothermal instability into the non-linear regime. The 

plasma considered is subject to the same conditions as that considered 

in Chapter 2. We assume the plasma is in equilibrium initially as in 

Section 2.1. A small perturbation is then applied and its development 

in time is followed numerically. The perturbation cannot be considered 

small compared to equilibrium quantities for all time so that the 

linearized equations in Section 2.1 are not valid here. The equations 

are again written in dimensionless form. 

4.1 EQUATIONS 

The equations which can be used to describe the state of the 

plasma when a perturbation has been applied, and for all subsequent 

times, were derived in Section 2.1 These are : 

Faraday's Law 

9E . 9By 
(4.1.1) ~y_ _ 1_ z 

9x c 9t 

remembering that all quantities are allowed to vary only in the x-direction 

and the y-component of the magnetic field has been neglected (see Section 

2.4) . 
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Ampere's Law 

3B 
= - - D (4.1.2) 3x c y 

Pressure Balance 

3p =
 Jy z 

3x c (4.1.3) 

where the inertial term has been neglected. The reason for this was 

given in Section 2.5. p is the total pressure, p = p g + p^. 

Ohm's Law 

The two relevant components of Ohm's law are, 

V B j 
e = -f (4.1.4) 
y e a 

e z = — (4.1.5) 

Electron heat balance equation 

3 „ 3 t * + 3 . „ 3 t e + v „ 3v=c ) , V b " e , 
2 B ~W 2 B x 1x~ B e I T = ^ " ( I W ^ T e e 

.2 3n2e2k (T -T.) , 
+ B 6 1 - 8 n 2T * (4.1.6) 

a m.a r e 

Continuity Equation 

a 9 v 9 
= 0 (4.1.7) 3t 3x x 3x 

These equation* may be written in dimensionless form with the help of the 
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following definitions : 

We define a scale length 

i 4 kBTeo 4 ™±c m 
L = a (-=•) = ( ~ " ) — (4.1.8) o eo m_ m. eB e 1 zo 

and a scale time 

m. a 1 o t = 2" (4.1.9) 
o n e* 

where a zero subscript denotes the equilibrium values before a perturbation 

is applied so that we can define a dimensionless space x, 

x d i d x = -— ->- -— = — (4.1.10) L 9x L 9x o o 

and a dimensionless time, 

t = — + J L = _L _<L_ t 3t t 9t o o 

Similarly, we can write all quantities in units of equilibrium values, 

i.e. 

T B j j - e_ ^ n_ ~ z_ -r _ Jz ~ _ y 
e T ' n ~ n ' z " B ' 3z ~ j '  Jy ~ j 

eo o zo zo zo 
E E t T. - z ~ v o - i E = , E = -r2- , V = V — , T. = Z E ' y E ' x x L ' i T ' zo zo o eo 

a = — = T 3/2 (4.1.11) a e o 

When equations (4.1.1) to (4.1.7) are written in terms of the quantities 

defined in relations (4.1.10) and (4.1.11), it is found to be convenient 
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to define the following dimensionless quantities 

a E m. i 3n c 2 
_ o zo 1 2 _ o 

F ~ en k_T ) ' E 8ttct K 
o B eo o eo 

7t 
87m k T 8 m.a o B eo _ r i o R = k T (4.1.12) e B zo B eo 

and a function we call F given by 

T 3B 2 
F = 1 + a) 2T 2 % Z (4.1.13) o o nz 

equations (4.1.1) to (4.1.7) can then be written, 

Faraday's Law 
3B z 
3t 

3E 
= - A, F 3x (4.1.14) 

Ampere's Law 
3B 
z 

3x 

7T A„ e F t 
~ 2 ~ 3 y 

(4.1.15) 

Pressure Balance 3p ~ -
3k = AF 3y Bz (4.1.16) 

where p = p + p. = n (T +T.) 
e i e l 

Ohm's Law A_E - V B F y x z 5 F (4.1.17) 

z 
5 (4.1.18) 

Electron heat 
balance equation 

3T 3T _ 3V ~ e ^ .. - e , 2 ~ x n — + n V -T7T- + — nT 3t x 3x 3 e 3x 

2 3 ~ e 2 F - , 7 ? N 
^TT 3k Is* + I — y 

2n2 (T -T.) 
e 1 2 - 2 m 2 - — R nzT 2 3 e (4.1.19) 

where X, 
K e 1 
K (1+0) ZT z) eo e e 

T 5/ 2 
e 
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dn ~ dn „ x Continuity Equation + V — + n -rr- = 0 (4.1.20) dt X D X dx 

For ease in reproducing the script, from now on the tilde notation 

will be dropped. All quantities referred to will be dimensionless as 

defined in this section unless otherwise stated. 

4.2 TRANSFORMATION OF EQUATIONS INTO SOLVABLE FORM 

There are seven equations (4.1.14-20), of which three are time 

dependent. If the inertial term had been retained in equation (4.1.16), 

there would be four, time dependent equations. It would then be a simple 

matter to use the three space like equations to produce four coupled, 

time dependent equations in the four unknowns, n, T , B and V only. 
6 Z X 

However, this is not the case. We have three time dependent equations : 

Faraday's Law, the continuity equation and the equation for electron heat 

balance, which describe the evolution of B^, n and T q respectively, in 

terms of all the other variables. It is straightforward to use equations 

(4.1.15) and (4.1.18) to write j and j in terns of B and T (and E 
y z z e z 

which is not an independent variable). However we are left finally with 

the problem of obtaining an esqpression for V in terms of B , T and n as 
X Z Q 

well as incorporating the condition imposed by the equation for pressure 

balance (4.1.16). In order to achieve this end the following method was 

used. 

Multiply Faraday's Law, equation (4.1.14) by B^ to give, 

3B dE 
b

z i t - " b
z i f < 4- 2- 1' 

Now, 

dE dB 
B -r-^ = -r- (E B ) - E -r^- (4.2.2) z dx dx y z y dx 
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and, using Ampere's Law, equation (4.1.15), 

3bz it a f 

E -r-5- %r— E j (4.2.3) 
y dx 2 y y 

so that equation (4.2.1) can be written 

7T A. 
— ~ B 2 = — A —— (E B ) + — c r — E j (4.2.4) 2 3t z F dx y z 2 yJy 

Using Ohm's Law, equation (4.1.17) as an expression for E^ together 

with the equation for pressure balance, equation (4.1.16) , we obtain, 

i a v b 2 

e b = — & + x z 
y z aAw 3x A (4.2.5) F F 

Similarly, we may write, 

• 2 

E j = (4.2.6) y y a a ^ 3x 

Substituting (4.2.5) and (4.2.6) into (4.2.4) and rearranging we obtain, 

3B 2 i 2 
= . (, 2 i _ + v |e, . _ l j_ (i |£ + v b 2, ( 4 . 2 . 7 ) 7T 3t F a x 3x it 3x a 3x x z e e 

We now turn our attention to the electron energy equation which we 

rewrite in terms of electron pressure instead of electron temperature 

defined by, p e = nT^. Equation (4.1.19) then becomes, 

+ i l k + v = _2_ . l ! £ • _ la, 
3t 3 Pe 3x x 3x IT e 3 X n 3x n 2 3x e 

2 A2 . o . o 2 n^e" Pi } 2 q/o w o + j — (jy
2+jz

2) - j R n3/2 p ^ / 2 (4.2.8) 
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The continuity equation, (4.1.20), has also been used to obtain equation 

(4.2.8). 

We can obtain an equation for the rate of change of ion pressure 

by multiplying the continuity equation, (4.1.20), by T^ to give, 

3p. 3p. 3V 
i r + v x i r + p i i f • 0 ( 4- 2- 9 > 

remembering that the ion temperature is both uniform in space and 

constant in time. 

We now add equations (4.2.7), (4.2.8) and (4.2.9) and obtain 

an expression for the rate of change of the internal energy, 

\ B 2 . _ 3B 2 2B 2 3V 
( p +J5_, + 2V (|E + i --5-J + (P4 P 4-^-) -ii 3t ^ tt x 3x 7t 3x ^ 3 tt 3x e e e 

2 a x±e
 9Pe xiePe a a / 

at tz— TZ) + — (t J- ? 3' ) it e 3x n 3x n z 3x a 3 Jz 3 Jy 

2 n ( p e " p i ' _ , n 3 / 2 p l / 2 . ( j l _ 
P ~ T T ( Z T 2 7 - T

1

) ( 4 . 2 . 1 0 ) a 3 e 3x it a 3x e 

The second term on the left hand side of equation (4.2.10) is equal to 

zero. From equations (4.1.15) and (4.1.16) we have, 

3p 1 3 Bz 2 
+ ^ — = 0 (4.2.11) 3x it 3x e 

B 2 
z That is the internal energy, p + , is not a function of x. We shall 

o tt B 2 e 
2 call this quantity E = p 4- — — , a constant in space, not in time. We 

3vjf now have an expression for — — in terms of p , n, B and their spatial 
dx Q Z 

3EX derivatives (no time derivatives) and -r— which is not a function of x. o ot 2 B z 2 -1 Let g = ( + p + — p ) and using (4.1.15) and (4.1.18), 
it 3 e 
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5Vx f 2 3 A e 3pe T Pe )n, 2 , , 2 IT = 3 tlT 3x 17 " 3X1 I V z 
e 

»B 2 2n(pe-p.) 2 3 a* 
> rr _ R II p - ( ) - J 3ir ̂ a 3x a 3 3x tt a 3x 3t e e 

(4.2.12) 

3g o 3 Pe Integrating equation (4.2.12) by parts and using -r2- = g^r— ( — + p^) 
dx dX 3 

2 A e ^Pe _ XiPe 3n _ _2 _2g_ 3p 
x ir e g n 3x n z 3x' 3 tt a 3x e e 

2 r /̂ifi. 3Pe X+ePe 3n e 3p 2 8 P* . _ 
- f t J 3^ " a g 37 ( t + p i } ^ e 

| E 2 A 2 / g a dx + i (^-)2 / B (SL 3 z F J 3 f J z 3x a 3x + - E * A_zl / q a dx + T ( ) I B — (~ ~ — ) dx 
e 

2n(p -p.) , 3E 
- / g ( ^ + T R n 3/ 2 p J + -r-i-) dx + c(t) (4.2.13) 

where c(t) is the time dependent constant of integration. 
3vx We can now use these expressions for V and — — in the three time 

x 3x 
dependent equations. 

Continuity equation 

The continuity equation C4.1.20) may be written in conservative 

form, 

3n 3 
it + te^V = 0 (4-2-14' 

Substituting equation C4.2.13) for v into equation (4.2.14) and after 

some algebra we obtain, 
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- _L rl£ ,XxePe n Ti 3tin J_f2g n Xxe 3pen 
3t S 3x W ( en a dx J 3xM  {a " e ' 3x ̂  e e 

2T.g x P 9 nT- i 2 X g2 P 
l xe l 1 - »e e a n 
— ( + — - + — ) (All) + — (T. —) 2 — (l+4gnT )] 7T £n a 3a Mx W e v i 3n 3tt a v y i;j 
e e e 

x i e !f± + 221 . n 2 
3x 3x 3tr v e o }  K dx ' e 

rXxeg2 P e a t 3pe 3n + (T. - - T 3 — (l+4gnT.)) W e i 3n 3tt a ' 1 ; 3x 3x e e 

„ o 3B o . 1 ,2 / ng , z / ... ... 3n + t- (—) -f- (-r—) - (integral terms + c(t)) — 3 i a 3x. 3x e 

2 2n(p -p ) , 3E 
+ g (- J A / E z

2 a + - + j R n3 2 p e
2 + n (4.2.15) 

where "integral terms" in equation (4.2.15) refers to all the x-dependent 

terms in expression (4.2.13> for V except those which are not integrals. 

Electron energy equation 

Similarly, with the help of equations (4.1.15), (4.1.18), (4.2.12) 

and (4.2.13) the electron energy equation (4.2.8) becomes, 

8 pe 3 r
2 pe f

xj.e „ ^ 5 , 5 g Ti , 3n, 
I t " 37 ( S T U + I p e

g ) + 3 — J S71 
e 

. 3 .2 f
Xxe 5 „ . S W ^ 5 2 2 „, f

Ti V t . t a . 2 
+ 37 U " 3 Pe g ) + 3 — W " 3 — g Pe Ti ^ T ^ " 1 <37' e e 

g 5 xiepe , 1 Pe g n 5 Ti A- ^ .. ^ XiePe 2 Ti. 3n 
e 

2a 5 Xie 1 Pe g 2 Xie 3pe 2 
+ r- - b <x + -f-) + h -

tt 3 en a 3 3a en 3x e 

g .5 Xj.ePe / 1 ,, Pe g n 5 Ti ,4 . , XiePe , 2 Ti_ 
+ , ' J " ( T i g " n (1 + T ' ) 3* ~a~ 3~ Pe g I m 7 " 3 7 1 
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8pe 3n 2 2 1 5 , ,3Bz 2 
X - R — — + ( — r- [2 + - p g] ( — ) 3x 3x 7T 3a 3 e 3x e 

3pe - (integral terms + c(t)) — — (4.2.16) 
O X 

. A 2E 2p ^ 2n5/2(p -p.) . , 2 F z e e 2 _ 3/2 -\/o + [— rrrn 5-77 — R n J / z p 3 nJ/z p V z 3 e e 

c o 2n(p -p.) , 3E 
+ |g [- \ A 2E 2a + + f R n3/2 p i + —I]] p 3 3 F z a 3 e 3t e 

p 3/2 
o /o ^e 

where a = T = —ttt- has been used. 

Faraday's Law 

Faraday's Law may also be written in the same form as equations 

(4.2.15) and (4.2.16). Starting with equation (4.1.14) and using 

Ampere's Law equation (4.1.15), and Ohm's Law, equation (4.1.17), 

Faraday's Law may be written in conservative form, 

Z_ _ _ D _ . 2 Z_ _ ^ 

3t 3x Sr a 3x " x zJ e 
(4.2.17) 

Substituting equation (4.2.13) for V and after some algebra we obtain, 

3B . 2gB T. y p . „ 2gB 
2 - -L r  2 t-± 4.  i e  e\  3 ni +

 8
 r

 2 t 1  

3 X TT 

X 3P xe, e. 
en 3x 

. - a - t - a - ^ -
3x IT a 3x e 

2 g 2 Bz Ti XxePe Ti, 3n 2 
7t + 3x 

g2Br 

IT e 

92B, 
d 

7t 

Xie Pe 4 i 
_±b. (r. -) - - — ] 
en i 3n 3 a 

en i 3n 3 a 

3n 3 p
e
 g Ti 9n 3B 

3x 3x " 3tt a 3x 3x e 

3pe 3n 2BzP' 
3x 3x 3tt 

xe 2 
en a ^ 3x ; 

- 9 
3iT a e 

3p 3B e 
~3x 

z 
3x 

gT. J i 3tt a e 

8b 
z 

3x 
3n 
3x 37rea 

3b z e 
3x 3x 
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_ o B q 3B O 3B 2 z z z + (—) — — (-r—) - [integral terms + c(t)] — — 
7T 30 OX OX e 

2n(p -p.) L 3E 
+ ' 3 W " + + 3 R " Pe 2 + I T 1 Bz <4-2-18' 

This leaves us with the problem of finding a suitable method to 

solve the three time dependent non-linear, second order, coupled, 

partial differential equations, (4.2.15), (4.2.16) and (4.2.18), numerically. 

4.3 CONCISE REPRESENTATION OF THE EQUATIONS 

The equations we wish to solve,((4.2.15), (4.2.16) and (4.2.18)) 

may be written more concisely using vector notation and a summation 

convention. We define a three component vector U which has components : 

E « 1 ' W U1 5 u2 s pe' U3 E B

Z 

then we may represent equations (.4.2.15), (4.2.16) and (4.2.18) with one 

equation, namely, 

3U. 3 . 3U 3 3U 3U„ v r ° m. y n 5L 
3t L

1
 l3x im 3x im£ 3x 3x m=l Jt=l 

3U 
+ R. + S. U ] (4.3.1) lm 3x lm m 

where i = 1,3 i.e. if i = 1 we obtain equation (4.2.15) (U^ = n) and so on. 

Identifying the components of the matrices K. 0. R. and S. 
j
 * xr 1itl im im 

with the coefficients in equations (4.2.15), (4.2.16) and (4.2.18) we 

find : 
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uxgr 

u. 5 "2 

J v r - ^ $ 

u3gr 

u ^ e 

j u 2 ge + t 

v ® 2A 

(4.3.2) 

-T. [uigr + f-] 4 4 * v - i 

4 4 * v . 4 
u^gg 

X[2 • |gu2l 

7t 1 3 e 

(4.3.3) 

-3 U2 g Ti r 

T. 
-J7[2A + 5gU20] 

+ fgu2] -f[2 + fgu2] 

T. 
-~-[2A + 5gU20] A 

jl jl [ 2 + lj j 7T 3g 3 2 e ^ 

(4.3.4) 
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• w 
U g T A 
_ 2 _ [ t . 0 + i] 

2i=3 = g 
u,g r u g0 
- f [Ti0 + I ] - T -

T. A 
l 

where T - — r ^ — * 
it e U, e 1 

tr 3 e 

2x 
q = 

xe 
ir a e tt eu, e 1 

(4.3.5) 

A = 
it a e 

and $ = 2X xe 
*eGUl 

(4.3.6) 

R. = - [integral terms + c(t)] 6. 
lm lm (4.3.7) 

where 6. is the Kronecker delta function i.e. 6. = 1 if i = m and lm lm 
6. = 0 if i / m. 
im 

S = 

3e 
9 ( ' + i t ' 

5 3EI 
3 g « + 1F> a 

3e 

»<* + i t ' 

(4.3.8) 

0 2U.(U9-U.T.) 9 
where ¥ = - \ A Je 2c + 1 2 1 1 + £ R 0 3/2 D 1/2 3 F z a 3 1 2 

4.4 DIFFERENCE SCHEME 

There are very few guidelines for choosing difference schemes for 

non-linear initial-value problems. All the literature on the subject 

of difference methods deals with linear or very simple non-linear 
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equations. The approach taken here is to choose a difference method 

based on its merits for performance on similar, but much simpler, 

equations of the same type as the system of equations (4.3.1) which 

is essentially parabolic. We use the Crank Nicholson implicit 

difference scheme which has the following advantages and disadvantages 

a) It is accurate to second order in both the time step 

and the space step. 

b) As it is an implicit method we shall be able to use a 

larger time step than if an explicit method were used. 

This scheme is unconditionally stable for equations 

with one independent variable regardless of choice of 

time step. However, we shall have to perform some 

"local" stability analysis on the linearised form of 

the equations. Whether or not these stability tests 

are sufficient can only practically be assessed by the 

feasibility of the results. Practical experience shows 
[27] 

that instabilities usually start as local phenomena 

which gives confidence in this local stability approach. 

c) The accuracy and stability of the scheme will be 

obtained at the expense of a more complex set of 

equations for the variables as a function of time and 

space. 

In difference form, the system of equations described by (4.3.1) 

becomes, 

up +l . r f . + m . i [ k _ c u ^ l - u p + 1 ) - k. . . ( u p
+ 1 - up+ 

ID ID Axz ^ im D + 2 nrj+1 no lm v no no 
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^ At (l-<f>) v [K. . .(U* - Un.) - K. . . (Un. - Un. .)] + — A x 2 L im j + $ nrj+1 mj' 1m mj mj-r J 
m=l 

+ ^ i ~ ̂ - i > < o K i - 0 1 

+ ||t j 5. . ( 0PtX _ oPtI , + atilzil £3 5 n _ n 2 Ax imD mj+l mg -1 2Ax L, im;j nn+1 irn-1 m=l m=l 

3 3 
+ At<J> J S U^ + At (1-(J>) J (4.4.1) 

m=l ^ m:i m=l m i J m D 

where the subscript j denotes the space mesh point, the superscript n 
th 

the time step and the superscript p refers to the p iteration step 

during the time interval At = tn+3" - tn. Also, Ax = x. , - x.. Values 
3+1 3 

of the variable U (U^U^t^) at the previous iteration step p are used 

to define the time average for the coefficients, 

K = j K(uP) + j K(l/1) , Q = | Q(UP) + j Q(Un) 

R = j R(UP) + J R(UN), S = j S(lf) + j S(UN) (4.4.2) 

During each time step we are required to iterate around the non-linear 

coefficients K,Q,R and S. To clarify the situation we shall go through 

the first time step. The values of U ^ U ^ U ^ U ^ ) are known for all j at 

time step n; these are-the initial conditions. To start the iteration 

procedure we assume that U.. after one iteration will be very close to 

the known initial conditions for all i i.e. put = U. so that, for 
-3 

the first iteration K = K(tJn) etc. Therefore the only unknowns in 

(4.4.1) are 
that is, the first approximation for the values of U 
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at the new time level n+1. Furthermore, the system of equations in 
>+1 

: it. 

to give a matrix equation of the form, 

(4.4.1) is first order in the unknowns and can be rearranged 

Al^4"1 = W (4.4.3) 

(The exact form of the matrix equation (4.4.3) and its method of 

solution is discussed in the next section.) Having solved this matrix 

equation and obtained our first approximation to U at the new time 

level n+1, the procedure is repeated. That is trf is now called 0?. 

the coefficients in (4.4.2) are calculated again and a second 
n+1 approximation for U^ obtained. Hopefully, after a number of iterative 

steps, convergence is achieved, 

= f 

P"H» 

P+l r 281 then IT is the required solution at the time step n+1 

U n + 1 = l i m u ^ 1 

p+w 

If (J) = £ in (4.4.1) the method (in the limit) described is the 

Crank Nicholson implicit difference method. If <p = 0, the method is 

explicit and if <j> = 1 the scheme is fully implicit. For very little 

extra work, we have left ourselves the option of varying <J>. This 

proved to be of use particularly when testing the computer programs. 

4.5 THE MATRIX EQUATION, AIJp+1 = W, AND BOUNDARY CONDITIONS 

The matrix equation (4.4.3) is obtained by rearranging (4.4.1) 
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and collecting the coefficients of (U ,U ,U ) , U?+1(U ,U ,U ) and 
j i. m j j x a j 

(UlfU2,U3). These coefficients then form the matrix A which is 

block tridiagonal, whilst the remaining known terms form the column 

vector W. 

The system of difference equations (4.4.1) can be written, 

a. U + 3. U P + 1 + Y. = W. (4.5.1) 
3 D+1 3 3 3 J~1 3 

where a, 6 and y are 3x3 matrices and and W are 3 component column 

vectors. Identifying the elements of the matrices a, 6 and y and the 

elements of the column vector W with the coefficients of Uf „ „. ,, 
1,2,3:+1 

o r : . . . o r ; and the remaining terms respectively we find, 
X / » / J J X F / / J J ""X 

„ , I y 5 (UP _ rjP ) 1 + M R 
imj IP^ 1 im + 4 Qim£j (Uij+l ^j-l 5 ] + 2Ax Rimj 

(4.5.2) 

3. • = -6. - [ K. + K. . ,] + AtcJ) S. . (4.5.3) 
ino im ax^ lm lm ino 

Y r i? _ I V 5 /rjP _ TJP ) i _ AM. R 
imj Art 1 im j-J 4 £ yim£jv Jlj-1 Aj+l' J 2Ax imj 

(4.5.4) 

where 6. is the Kronecker delta function i = l , 3 m = l , 3 lm 

w.. = - un. . ( A t i i I - n _ un.) 
ID ID ^ Axz t lm nrj+1 no' 

m=l 

- K. . , (Un. - Un. .) ] im 3-J m;j no-l 

+ ^ I I l q i m , . (u: j + 1 - - , 



97 

4- I R. . <u" - Un. ,) + AtU-<H I 8. . U".) 2Ax L. im;j nrj+l toj-1 l, im;j my m=l m=l 

(4.5.5) 

a, 8 and y form the elements of the matrix A which is block 

tridiagonal because of the three point difference scheme. 

Boundary Conditions 

Returning to the physics of the problem, we know the optimum 

wavelength for growth of the electrothermal instability is of the 

order of a few ion Larmor radii which in Tokamaks is a few centimetres 

or less. This was our justification (see Chapter 2) for considering 

the electrothermal instability to be born out of a perturbation about 

a steady-state plasma with uniform profiles for number density, 

electron temperature and magnetic and electric fields. For this 

reason our space mesh must be restricted to a small region over which 

the above approximation holds. Furthermore, in Section 4 of Chapter 2 

we demonstrated that the model we are now using, in which the y-

component of the magnetic field is neglected, only holds for wavelengths 

less than some upper limit. For wavelengths greater than this upper 

limit the growth rate from this model is much greater than the growth 

rate from the model with the y-component of the magnetic field 

included (see Figure 2.4a). An effective and acceptable way of 

suppressing these long wavelength modes, which could otherwise dominate, 

is to restrict the space mesh to a size which is equal to the upper 

wavelength limit. 

As we can only represent a small region of space on our mesh, 

and therefore only a small region of plasma compared with the diameter 

of a Tokamak, we choose to use periodic boundary conditions because 
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these are as valid as any and simpler to apply than others. 

Let the region of space in which our equations apply be 

discretely represented by J mesh points. Therefore using periodic 

boundary conditions we have 

U. . = U. _ 
-:=i -d=j 

and 

3U 
3x j=l 

3U 
3x j=J 

(4.5, 

In this case the matrix A in equation (4.4.3) is block perdiagonal 

(see Figure 4.5). 

Figure 4.5 Block Perdiagonal matrix equation. 

B1 "l 0 • • • Y X U1 _W1 
V2 B2 a2 • 0 U2 W2 
0 Y3 B3 ct 3 . 0 U3 

= 

w 3 

°J-1 0 • • • * YJ-1 BJ-1 WJ-1 

a., $. and y. are 3x3 matrices whose elements given by (4.5.2) 
ti (4?5.4) and IL and W. are 3 component column vectors. 
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That is, it is block tridiagonal with additional blocks in the upper 

right and lower left hand corners. The dimensions of the matrix A 

are 3(J-l)x3(J-l), and the matrix equation has to be solved at each 

iteration within every time step. Hence we require that the matrix 

equation be solved rapidly and efficiently. The method and the computer 
[29] 

program used are discussed m Appendix A . This computer program is 

now obtainable from the Computer Physics Communications International 

Physics Program Library. 

4.6 EVALUATION OF THE MATRICES K, Q, R AND S 

The evaluation of the elements of the matrices K and Q is 

fairly straightforward. Equations (4.4.2) tell us that we require the 

values of the elements of K and Q. These are calculated quite simply 

by finding the values of the elements using n, p^ and B^ (U^iU^andU^) 

at the previous time level n, finding the values of the elements using 

n, p and B at the last iteration p and taking the average of the 
6 Z 

two quantities. 

The evaluation of the elements of R and S is not as simple. 

Looking at the definitions of R and S, relations (4.3.7) and (4.3.8) 

respectively, there are three points to notice. Firstly, it is 

necessary to evaluate an integral numerically at every mesh point j. 
3ej Secondly, we must find a way of determining the value of -rr-, bearing ot 

in mind that it is not a function of space, and thirdly we must find 

the value of c(t). We recall that c(t) arises as a constant of 

integration (therefore a constant in space but not in time) when 

finding an expression for V^ (see equation (4.2.13)). 

For clarity we shall repeat the integral terms which have to be 

evaluated, 
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2 1 2 2 3 ^^ Integral terms = - A 2E 2 / g a dx + - (—) / B t— (— -r^-) dx ^ 3 F z J 3 IT
 J z 3x a 3x re 

tt e e 
f rXj-e d P e X xe Pe 9n„ £ 9pi 2 5 ,Pe 
J 1 n 3x a2"" 3x " a 3xj g 3x ( 3 Pi ) dx 

2n(p -p.) . 3E 
- / g ( + f R n 3 / 2 pel/2) dx - J g dx (4.6.1) 

2B 2 
/ z 2 -1 

where g = ( + p + — p ) and p = p + p. . it 3 e ^ e e 
These terms are evaluated by interpreting the integral as the area under 

the-curve and using the Trapezium rule. Generally, if a function f(x) 

is discretely represented at J mesh points from j=l to J, then we 

approximate the value of the integral of f(x) at the point x^ by, 

Xj/ f(x) dx - (f + f ) (4.6.2) 
j—i 

Equation (4.6.2) is applied to every term in equation (4.6.1). The 

gradient terms are dealt with in the usual way. 

.The constant of integration c(t) is determined by specifying 

the centre of mass velocity, V^, at the left hand boundary i.e. vxj_-]_' 

As the boundary conditions are periodic, 

V . . = V . _ (4.6.3) x]=l xj=J 

The x-direction corresponds to the radial direction in a Tokamak so 

there cannot be a net flow in the x direction. Therefore, we choose, 

V . , = V . , = 0 for all t (4.6.4) 
xj=i x:=j 

Looking at equation (4.2.13) we can now determine c(t). At j=l the 

integral terms are all zero therefore, putting vxj_-j_ t o zero, we have, 
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C ( t ) " TT a 9x tt e n 3x 3x)Jj=l (4'6'5) 
e e J 

3 e i Finally, we must evaluate -tt-. This is done by making use of a t 
3ex the fact that -r—- is not a function of space together with the right 
ot 

hand boundary conditions, V^ = 0 at j = J. Applying equation (4.2.13) 
3EJ 

at the point j=J and rearranging we obtain an expression for -rr-, 
31 

£ = [ f y v / g c d x + ^ f , 2 / . ^ ^ 
e 

2 { r
Xie 3pe Xx e

Pe 3n e 2 3 ,Pe , 
- 7 7 * I — 1 7 * - a a? ^ a 5 T ( T + p i } d x 

2n(P -p.) 
- I g( I R n pe1/2^ ** d x (4.6.6) 

all evaluated at j=J. 

where the periodic boundary conditions have been used to eliminate the 

non integral terms in equation (4.2.13) to get equation (4.6.6). 

4.7 LOCAL STABILITY ANALYSIS FOR THE DIFFERENCE SCHEME 

For the difference scheme to be considered numerically stable 

we require that any error in the result is reduced from one time step 

to the next. The system of difference equations (4.4.1) couples both 

the dependent variables and U^/ which comprise the state of the 

system, and different points on the space mesh. Before determining 

the stability we simplify the problem by decoupling points on the 

space mesh. This is done, in the usual way, by studying the Fourier 

modes on the mesh separately and by demanding that the scheme is stable 

for every Fourier mode. 

It is generally accepted that lower order terms- do not affect 
[271 the stability of diffusion type problems, such as we have . However, 
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their presence may force one to use smaller time steps, e.g. a 

large source term causes rapid changes in U so that a small time 

step is required. For this reason, and for simplicity, we shall 

examine the stability of the difference scheme applied to the system 

of equations (4.3.1) neglecting terms of order lower than the second. 

That is applied to, 

3U. 3 . 3U 
1 r o m 

3 t • ( 4 - 7 - 1 ' m=l 

Furthermore, we shall assume K. to be constant. The stability 
im 2 

conditions obtained are then "local conditions" and must be satisfied 

everywhere on the space mesh for all time steps. The difference 

scheme applied to (4.7.1), if the elements, of K. are considered 
im constant, gives, 

3 K. Atd> 
flH+1 = un> + l n+1 _ n+l+ n+1 
ID ID ^ Axz 1D+1 ID iD-1 

3 K,_(l-(J))At 
Ax2 xwij+l ij ' wij-lJ + I " 2U", + u" ) (4.7.2, 

m=l 

Analysing the method for a Fourier mode, 

„.. = 6. e i k x = 6. e i k j A x (4.7.3) 
id i i 

we obtain, 

-n+l lkDAx -n lkDAx v lm .-.n+1 lkDA . lkAx _ -lkAx, U. e J = U. e J + ) — — n u e J (e -2 + e ) 
i i l

n ax^ m m=l 

3 K. At (1-<J>) . . ... .. . r im -n lkDAx , lkAx ^ -ikAxv . . _ + Z r-2 U e J (e -2 + e (4.7.4) 
m=l 
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ikA -ikA _ , . Now, using e + e = 2 cos kAx 
kAx (4.7.5) 

and 2(cos kAx-1) = - 4 sin2 — — 

in (4.7.4) and dividing through by we obtain, 

3 -n+1 ~n r At<fr -n+1 . 2 kAx U. = U. - ) 7—7- K. U 4 sinz 1 , Axz 1m m m=l 

3 r At(l-<J>) T, -n . . 2 kAx .. _ - ) — . 2 K. U 4 sinz -r— (4.7.6) L„ Axz 1m m 2 m=l 

This equation is of the form, 

(i + m) u
n + 1 -n 

(I - P)U (4.7.7) 

where I is the identity matrix (3x3) and the elements of M and P are, 

i=l,3 
m=l,3 

4At$ . 2kAx M. = . 2 s m —r— K. 
im ax'

1
 2 im 

P. = 4At
A
(1

2^» sin2 M * K. im Axz 2 1m 

(4.7.8) 

Clearly if <t> = { the difference scheme is the Crank Nicholson implicit 

difference scheme and M = P. Rearranging (4.7.7), we obtain an expression 

for the amplification matrix G(At,Ax,k) of the difference scheme for the 

Fourier mode of wavenumber k. 

U n + 1 = G(At,Ax,k) U n (4.7.9) 

where G = (I + M)"1 (I - P) (4.7.10) 

For stability, if the amplitude of a Fourier mode is finite at time t = 0 
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[28] then it must be finite for all time steps . This condition imposes 

a requirement on each of the eigenvalues g of the amplification matrix m 
G such that a necessary and sufficient condition for stability is 

|g | * 1 (4.7.11) m 

for all modes k and all eigenvalues m. 

To find all the eigenvalues of the matrix G is impracticable and 

unnecessary. We only need to know the magnitude of the largest eigen-

value. Gerschgorin1 s theorem^"' tells us that the eigenvalue with the 

largest magnitude of the matrix A is always less than or equal to a 

certain combination of summations of the elements of A, that is, 

p (A) = max |A.| (4.7.12) 
i 

p (A) £ min (max T la. |; max £ |a. |) . u 1 im' . 1 lm1 
l m m i 

where p(A) denotes the spectral radius of the matrix A, A^ are the 

eigenvalues of A and are the elements. The implementation of 

Gerschgorin1s theorem is discussed in more detail in Appendix B. 
[27] 

Finally, it can be shown that the worst case to consider 

for stability is the Fourier mode with wavenumber k such that, 

j or A = 2Ax (4.7.13) 

This is because it is the smallest wavelength which can be represented 

on the space mesh. Three mesh points are insufficient to represent one 

wavelength so that, if the difference scheme adequately deals with this 

wavenumber and does not allow this mode to dominate the solution, we 
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can assume the scheme is stable. 

4.8 THE COMPUTER PROGRAM 

We conclude this chapter, with a description of the computer 

program used to follow the time development of an electrothermal 

instability using the methods described in the preceding sections. 

The initial conditions and the behaviour of Ez 

The steady-state condition of the plasma, before the perturbation 

is applied, is completely described by giving the values of : 

8Tm k T 
m m j o B eo 

A) X , T. , T and IT = 7 — o o l eo e B zo 

The value of A is obtained by applying the electron energy equation 

(4.1.19) to the steady-state, before the perturbation is applied giving, 

A p
2 = 3(1 - T±) + R (4.8.1) 

If Bremsstrahlung is not included, it is only necessary to give the 

ratio T./T as opposed to both T. and T . The size of the space mesh l eo l eo 
together with the number of mesh points determines the value of Ax, 

mesh length \n 
A x " j=l~ " m ( 4 ' 8 ' 2 ) 

The perturbations in n, p^ and B^ are chosen such that : 

J-l A r Ax a) total mass is conserved, ) (n.+n. ,) — = X . , i l+l 2 m 3=1 

B 2 
z b) Pressure balance is obeyed, (p + ) is not a function of j 

IT e 
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c) The mesh length, A , is less than the cut off wavelength 

above which the model is not valid (see Chapter 2, section 4). 

d) This value is obtained from linear theory, given , T^, 

T and ir . Periodic boundary conditions are observed. 
60 6 

The value of cf> must be given at the beginning of each run. 

This determines whether the difference scheme is explicit (cj> = 0) , 

implicit (0 < <j> < 1) or fully implicit (<f> = 1) . 

E z is not an independent variable in the problem. However, we 

consider two ways of treating this parameter which are consistent with 

both the linear model and the non-linear steady-state problem considered 

in Chapter 3. The first set of results are obtained with E z constant 

in time as well as uniform in space. The remaining results are obtained 

by imposing the more realistic constraint of constant total current, 

\n J-l 
/ j dx « I (j + j ) ̂  = X (4.8.3) ' z . _ z*j zj+l 2 m 
o ]=1 

Hence the applied electric field is chosen at each time step such that 

the above relation (4.8.3) is satisfied. Using Ohm's Law, equation 

(4.1.18), E is given by, z 

x 
E (t) = (4.8.4) z J — i . 

v , ax 
£ ( V a j + D T 

(The total current is equal to X^ because we are working in dimensionless 

units normalised to the initial values.) 
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The main program 

The perturbations together with the initial steady-state 

conditions determine un. The subroutine TPORT calculates the electrical 

conductivity a^ and the electron thermal conductivity x±j at every 

mesh point j=l, J-l. These values are used in subroutine KAPQ to find 

the elements of the matrices K and Q at level n for all j. Now that K 

is known a stable time step At can be obtained. A first approximation 

for At is chosen intuitively. Subroutine DTIME (see Appendix B) tests 

the stability of the difference scheme with this value of At at every 

mesh point. If this value of At fails the stability test it is halved 

and the stability test performed again. This process is repeated until 
3EJN 

a stable time step is found. Subroutine RSUMS is used to evaluate -Tr-ot 
(equation (4.6.6)) and c(t)n (equation (4.6.5)), and then used to evaluate 

the elements of the matrices R and S. The right hand side of equation 

(4.5.1) Wj is a column vector whose elements are given by (4.5.5). These 

are calculated by a subroutine called RHS. Similarly the elements of 

the matrices a, 3 and y, given by equations (4.5.2) to (4.5.4), are 

calculated by subroutine ALBGAM. Subroutine PERDIAG is called upon to 

solve the matrix equation (4.4.3) hence giving a first approximation to 

U called oP. E is updated, if necessary, using equation (4.8.4) 
p 

TPORT is called to find and Xxj and KAPQ to find Yp and QP. 

In practice it is not found necessary to test the stability of the time 

step at every iteration, or even at every time step. Hence we move to 

RSUMS which gives us the elements of rP and SP. With these new values 

for K, Q, R and S we use relations (4.4.2) to find the time averaged values, 

K, Q, R and S. Subroutines RHS and ALBGAM are again called upon to find 

"A" and "W" of the matrix equation (4.4.3) which is again solved by 

PERDIAG. We now have a second approximation for un+3' which we call UP. 

The process described in this paragraph is repeated until convergence is 

achieved. 
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A test for convergence 

A convergence test which proved satisfactory in most cases may 

be described with the following inequality, 

U?+1 - U? 

un - u 1 

~3 

* b for all j (4.8.5) 
J, , , U = 1st approximation to U n+1 

-2 -3 

where b was varied from 10 to 10 . This test for convergence obviously 

breaks down when the system is tending towards a steady-state in which 

case, 

u n - u n + 1 

-J • 
(4.8.6) 

and therefore the denominator in (4.8.5) is very small, so that the 

accuracy demanded by (4.8.5) is unreasonable. However, the approach of 

a steady —state would also be indicated by the behaviour of other 
3ej 

parameters e.g. and V tending to zero. At other times we can 
3EJ 

compare the value of -^7/ calculated using the condition that V^ = 0 

at j = J, to the values obtained using the converged results as another 

test for convergence. 

In summary, the test for convergence given by (4.8.5) on its 

own is possibly inadequate. However, used in conjunction with other 

tests it is acceptable. 

Further program tests 

Other functions performed by the program include a test to 

verify that mass is conserved. We cannot expect exact mass conservation 

because the equations were not differenced conservatively, so that 

truncation errors will be present as well as the ever present round off 
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errors. However, we do expect mass conservation within a few percent, 

otherwise the difference equations do not even approximately represent 

the differential equations. Therefore, in the program we calculate 

the quantity, 

, , ax 

and print its value every n timesteps, where n is specified according 

to the particular run. 

We also check that the internal energy 

B 2. 
p + -5-1 = Ex (4.8.7) 

e 

does not vary significantly with j. We calculate the internal energy 

E^ at every mesh point j and find the mean value of E , that is, 

e i = j £ eij ( 4 ' 8 ' 8 ) 

3=1 

The standard deviation from the mean is then given by 

i ? 
" j J. ( eij " V 

3=1 

We arbitrarily impose the condition that the standard deviation from the 

mean should be less than one percent of the mean value of E , 

Sd -2 
g - < 10 ( 4 . 8 . 9 ) 

If this condition is not satisfied subroutine PROBLEM is called which 

prints out an error message together with the time step at which it 



occurred and the program stops. 
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CHAPTER 5 

RESULTS FROM THE TIME DEPENDENT MODEL 

INTRODUCTION 

This chapter consists of two distinct sections. In the first 

section we present the results obtained from following the evolution 

of the electrothermal instability when the applied electric field E z 

is considered to be held constant for all time. The second section 

deals with the results obtained for the more realistic situation 

experimentally of E varying in time in such a way as to keep the total 
z 

current constant. 

5.1 CONSTANT FIELD E z 

A random perturbation is applied to a steady-state system. The 

evolution of the perturbation is followed numerically assuming the 

applied electric field E z is constant for all time. For a given set of 

initial conditions, about which the perturbation is applied, the cut 

off wavelength, A , above which this model is invalid, is found from 

linear theory. The length of the mesh is set equal to A . The 

perturbation is chosen such that total mass is conserved, 

7 (n. + n.,n) ~ = A = Ax(J-l) (5.1.1) 
.m l l+l 2 m . 

and such that the quantity E^ is not a function of j. The perturbations 

in p^ and Bz are chosen using a random number generator for j=l, J-l. 

Writing equation (4.2.11) in discrete form we have, 
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B .2 

p . + n.T. + Z J = c_ for all j (5.1.2) 
^e] j i it 1 j 

where is an unknown constant. Using (5.1.2) as an expression for the 

number density n we may rewrite equation (5.1.1) which can be rearranged 

to give the value of the constant c^ in terms of known quantities. 

J-l (B .2+ B 2 ) 
c.. = T. + 7 (p . + p . _ + -53 2 3 1 ) (5.1.3) 1 i 2 (J-l) ^ei rei+l tt 

3 = 1 e 

Having found the value of c^ we can use equation (5.1.2) to find n^ 

for j=l, J-l. The amplitude of the perturbation is chosen so that the 

effects produced by second order terms are negligible. The minimum 

number of mesh points required for a particular run can be approximated 

from linear theory. For a given set of initial conditions we know the 

wavelength, X , below which all modes are damped. Hence for the 

difference scheme to be able to handle the shortest growing wavelength 

we require, 

A 
Ax * -j- (5.1.4) 

so that this mode is acceptably resolved. 

< as > 

Figure 5.1 The minimum number of 
mesh points required to represent 
A adequately. 

This condition implies that, 
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16 
J * 1 + 4 ^ (5.1.5) 

s 

In order to assist the analysis of the results obtained, we discretely 

Fourier analyse the profiles for the number density n, the electron 

temperature T^ and the magnetic field, B^, as these are the independent 

variables in the problem. In this way, we can also check that the 

amplitude of the smallest wavelength on the mesh is insignificant at 

all times. If this is found not to be true a finer mesh must be used 

and the time step changed accordingly. The discrete function f^ periodic 

in J such that, 

f i • f j 

which is neither an odd nor an even function may be represented exactly 

at the mesh points by the trigonometric series, 

J-l 
a 2 

f. = — + ) (a cos — - + b sin — - ) (5.1.6) 
j 2  L. n J-l n J-l n=l 

where the coefficients a , a and b are defined, o n n 

? J-l 
a = Tr^rr I f 

a 

b (J-l) ^ j 

v , 2mr (j -1) 
• ̂  fj c o s — j i t " 

n J-l ^ ,. ., r 2 2mr(3-l) 
/ - c o s J-l 

b 

Y f. s in 
j-i j j" 1 

n J-l _ .. ., 
jii — 
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The denominators in the expressions for a^ and b^ are exactly equal 
2 

to in the limit of f being a continuous function. However, for the 
2 discrete case they only approximate to ——r-. In practice the deviation J—1 

2 from was found to be insignificant and certainly no bigger than J -1 
round off error for small n. 

Many runs on the computer were performed to follow the growth 

of the electrothermal instability keeping E constant and applying a 
z 

random perturbation in the manner previously described. Results obtained 

with different numbers of mesh points were compared. Also results were 

compared at the same time, t = nAt, for different values of n and At. 

These tests allow us to check the accuracy of the results. 

Figure (5.2a) is a plot of the dimensionless perturbed electron 

temperature profiles at different times in the earlier stages of the 

run. (These particular plots were obtained with the random number 
-4 

generator choosing values between ± 5x10 . However the same behaviour 

pattern persists with even smaller values for the magnitudes of the 

initial perturbations.) We can see from these profiles how the longer 

wavelength modes quickly dominate. Figure (5.2b) shows the electron 

temperature profiles at later times, whilst figures (5.2c-g) show the 

corresponding profiles for the number density, the £ and £ components of 

the current density, the centre of mass velocity and the magnetic field 

respectively. As expected, we can see that the density peaks in the 

electron temperature troughs and vice versa. Also, at all times, the 

perturbed current density in the £ direction is always very much 

smaller than that in the £ direction. Returning to the electron 

temperature profiles, Figure (5.2b), by this time the longest wavelength 

mode on the mesh is very much stronger than all shorter wavelength modes. 

However we also observe that the average electron temperature is 

increasing in time. That is the infinite wavelength mode is growing as 
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Figure 5.2a Electron temperature profiles at 

a) dimensionless time t = 5x10 

1) 
2) 
3) 
4) 

0.5 
1.0 
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2.0 

Figures 5.2 
Results from numerical model with electric field 

(jOQTQ = 1.54x10 

E z held constant 

= 2.2667x10"2, R = 0, Tj_/Teo = 0.5 
Mesh length set to eleven scale lengths. 
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Figure 5.2c Number density 
profiles at : 

1) dimensionless time t = 5.0 
2) t = 5.1 
3) t = 5.2 

A ftt 

Figure 5.2d z-component 
of current density profiles 
at : 

1) dimensionless time t = 5.0 
2) t = 5.1 
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Figure 5.2h 
against time. 

The rate of change of the internal energy 
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well. These observations are quantified by looking at the values of 

the Fourier coefficients a , a and b as a function of time, Table o n n 
(5.1). We print here the values of a and b for n = 1 and n = 2 n n 
only as these modes are the strongest. These results show that the 

constant term aQ, or the amplitude of the infinite wavelength mode, becomes 

comparatively stronger as time increases. Hence the system is starting 

to run away, that is, it is getting hotter everywhere at an ever 

increasing rate and this effect is becoming increasingly dominant. As 

will be shown, a steady-state will never be achieved in such a system. 
dEj 

This is also indicated by a plot of the value of — - as a function of 
dt dEj 

time, figure (5.2h). This figure shows not only that -r— is increasing 9
 d t 

d2Ej 
in time, but >j is also, dt 

The neglect of the y-component of the magnetic field appears to 

be directly responsible for allowing the infinite wavelength mode to 

grow. This is not strictly the case although this argument is upheld 

by once again looking at the results from linear theory. The dispersion 

relation obtained from the linear model where the y-component of the 

magnetic field is included and the inertial term is neglected is obtained 

by putting a^ = 1, a^ = 0 in equation (2.2.14) and dividing through by 

y. The growth rate of the infinite wavelength mode is then found by 
2tt 2 

putting y = 0 (because y = (—) ) in the resulting equation. The non zero A 
growth rate is given by 

(5 - 9T) ± [(5 - — - 9T)2 - 4(4 + T + — ) 18(1-T)2]* 
IT TT 3 7T 

_ e e e 
X ~ 5 2 2 (f + T + — ) 3 tr e 

(5.1.8) 

Again the radiation term has been neglected to obtain equation (5.1.8). 



TABLE 5.1 

Amplitudes of the Fourier modes as a function 
of time for the electron temperature profile 

lensionless 
time t 

ao ai a2 bi b2 

0 2.34xl0~3 8.68xl0~3 - 2.02xl0~2 2.71xl0~3 - 7.05xl0~3 
0.5 1.44xl0~3 1.90xl0~2 - 2.54xlo"*2 6.14xl0~3 - 9.95x10~3 
1.0 3.39xl0~3 3.22xl0~2 - 2.69xl0~2 1.05xl0"2 - 1.05xl0~2 
1.5 7.42xl0~3 5.01xl0~2 - 2.76xl0"2 1.67xl0"2 - 1.07xl0~2 
2.0 1.58xl0~2 7.62xl0"2 - 2.79xl0~2 2.62xl0~2 - 1.05xl0~2 
2.5 3.36xl0~2 1.16X10"1 - 2.72xl0"2 4.13xl0~2 - 9.38xl0~3 
3.0 7.30xl0~2 1.82xl0_1 - 2.43xl0~2 6.74xl0"2 - 5.63xl0~3 
3.5 1.65xl0_1 3.05X10"1 - 1.53xl0"2 1.18xl0_1 5.44xl0~3 
4.0 4.07X10"1 5.84xl0_1 1.22xl0"2 2.42X10"1 4.18xl0~2 
4.5 1.20 1.46 1.20X10"1 6.64xl0-1 2.04X10"1 
5.0 6.33 7.28 9.66X10"1 4.05 2.01 
5.1 11.15 12.75 1.54 8.03 4.33 
5.2 27.40 28.88 0.48 25.15 13.15 
5.25 68.41 53.88 -16.34 80.80 30.16 

h• 
t o 
to 
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x is negative for all values of T for which the instability condition 

is violated, and negative for tt̂  << 1 regardless of the value of T. 

We can say that the infinite wavelength mode is always damped in any 

situation of interest if the y-component of the magnetic field is 

included in the model. It is important to notice here that if the y 

component of the magnetic field is included the electric field E z is 

no longer held constant. We compare this result with that from the 

dispersion relation for the model we are using where both the inertial 

term and the y-component of the magnetic field are ignored, (a^=a2=0) 

equation (2.5.1). Putting y = 0 in this equation we find the 

dimensionless non zero growth rate x to be given by 

x = 4 + 4tt - 6T - 3tt T(1+T) (5.1.9) e e 

Assuming it to be negligibly small for the moment, we see that this 

infinite wavelength mode will grow provided, 

2 T 
T < j or -^2. > 1 . 5 (5.1.10) 

i 

We know the onset condition for the electrothermal instability to be 

T eo 
— — > 1.3187 without radiation (5.1.11) 
i 

It appears that there exists a temperature range within which the 

electrothermal instability may be excited and the infinite wavelength 

mode damped, as we require. However, this is not so. Referring to the 

plots obtained, Figures 5.2, from the numerical model, it is only the 

electron temperature which has a growing constant t<=- .m. This must be so 

because we conserve total mass and hence a u^ '.lorm perturbation of the 
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density can never exist. Haines ̂ ^ showed that the condition for 

onset of the non-convective electrothermal instability is, 

T eo 
— — > 1 . 5 if the density is unperturbed (5.1.12) 
i 

Therefore provided the plasma is unstable to electrothermal instabilities, 

this infinite wavelength mode will grow in our model. 

In order to overcome this flaw in the model we must first 

understand physically why the inclusion of the y-component of the magnetic 

field prevents an increase in the average electron temperature, or 

conversely, why the neglect of it allows a "runaway" behaviour. Consider 

perturbing the steady-state electron temperature uniformly and leaving 

the other parameters, n and B^, undisturbed. The electron energy 

equation (4.1.19) tells us that a uniform increase in the electron 

temperature alone grows, provided the electrothermal instability 

condition is violated, if the current is given by 

j = aE = T 3 / 2 E (5.1.13) Jz z e z 

and E is held at its steady-state value. In which case we have, z 

dTe 2 , 3/2 ZfTg-Ti) 
~dT = f V Te " (5-1-14> T e 

Furthermore, not only will T^ continue to increase, but the rate at 

which it increases will increase as T g gets larger. Hence the system 

runs away. This behaviour is a direct result of allowing the current 

density j , and hence j_.E_, to increase everywhere without limit. In 
Z " 

reality, an increase in produces an increase in the curl of B^ 

(Ampere's Law). That is, some of the energy available goes into 
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magnetic energy. This change in time in B^ produces a curl E^ 

(Faraday's Law) which acts in such a way as to oppose the increasing 

current. We have effectively allowed the current density to increase 

without limit by not allowing the electric field E^ to change. Hence 

the fundamental reason for the runaway behaviour is the constant 

electric field condition. The system runs away if the electric field 

is held constant whether or not the y-component of the magnetic field 

is included. In the two models compared it is whether or not the 

electric field is allowed to vary rather than the inclusion or neglect 

of By which determines the behaviour of the infinite wavelength mode. 

In the next section we formulate a model which prevents this unrealistic 

runaway behaviour. 

5.2 CONSTANT TOTAL CURRENT CONSTRAINT 

In this section we change the model to overcome the unrealistic 

runaway behaviour of the system produced by allowing the current 

density to increase without limit because E^ is held constant in time. 

We impose the condition that the total current in the 2 direction be 

conserved. This is fortunately a more realistic model because it is 

found experimentally that the total current in the discharge remains 

approximately constant in time. Therefore we choose to vary the 

electric field E such that total current is conserved, that is z 

a
m 

/ j dx = X for all time (5.2.1) J z m o 

because j is equal to one everywhere before the perturbation is applied, 

so that, 

x 

M t } = r rr A (5.2.2) z J a dx 
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where Ohm's Law, equation (4.1.18), has been used. Limiting the length 

of the mesh to X^ should mean that, for the wavelengths we are able 

to represent with this model, the amount of energy going into the magnetic 

field, which we have ignored, is negligibly small. This assumption can 

be tested for each run. 

A random perturbation is again applied to the system in the 

same manner as described in the last section. That is, such that total 

mass is conserved equation (5.1.1) and the quantity E is not a function 

of i. Equation (5.2.2) is then used in discrete form to find the value 

of the applied electric field E^, 

E ° = jrr ^ (5.2.3) 
I (t n. 3 / 2

 + t n . 3 f ) £ 
ej ej+l 2 3=1 

at every time level n. Inner iterations are performed at later time 

steps as successively improved approximations for T q at time levels n+1 

are found. This ensures that the value of E obtained is self-
z 

consistent. 

Again many runs were performed for each set of results presented 

here to check that the effects observed are physical and not produced 

by numerical errors. We compared the results from runs with different 

initial amplitudes of perturbation with the same time step and space 

step. In every case the results exhibited the same behaviour. The 

space step Ax and the time step At were also changed and the results 

consistently compared. In all of these tests the results did not 

appreciably deviate from those presented here. 

5.3 THE MESH LENGTH EQUAL TO THE CUTOFF WAVELENGTH 

The initial steady-state to be perturbed is completely described 
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Ti by giving the values of the temperature ratio — — , tt̂  and ^ 
eo 

Bremsstrahlung radiation is neglected. If Bremsstrahlung is included we 

have to specify the electron temperature. For this reason and because 

Bremsstrahlung has a very small effect except at high temperatures, we 

neglect radiation loss. Choosing, 

6 03 x = 6.14 x 10 o o 
-3 7T = 4.338 x 10 e 

T./T = 0.5 (5.3.1) l eo 

we can calculate the linear dimensionless growth rate x for any value 

of the square of the dimensionless wavenumber y, using the dispersion 

relation equation (2.2.14). Using equation (2.2.14) and the condition 

for the effect of the inclusion of the y-component of the magnetic 

field to have negligible effect upon the growth of the electrothermal 

instability, relation (2.4.5), it is a simple matter to find the 

dimensionless wavelength X^ above which our model breaks down. 

If X = 20 (5.3.2) 

which is the optimum wavelength for growth, we find the left hand side 

of (2.4.5) has the value, 

tt x ir x X 2 
I t = -TTT^T = 2 x 10-2 (5.3.3) 2y 2(2tt) 

Hence we consider the value of X^ given in (5.3.2) to be the largest 

wavelength that can be represented using this model, with this particular 

set of initial conditions. The mesh length was set equal to Xm and the 

following results were obtained. 
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The plots in Figure 5.3 depict the evolution of the initial random 

perturbation. As can be seen from these figures, the longest wavelength 

the space mesh can represent eventually dominates. This result is 

expected because linear theory tells us that this mode has the largest 

linear growth rate. The electron temperature profile develops a 

large single filament (Figure 5.3a). At t = 12 scale times, this hot 

filament has a half-width equal to about 0.13 Am. The electron 

temperature troughs are very flat. The maximum electron temperature is 

about 16 times the initial electron temperature, while the temperature 

in the trough is very nearly equal to the ion temperature. This minimum 

temperature in the trough is reached quite quickly. After t = 5 scale 

times the temperature in this region is virtually constant. This can be 

understood by looking at' the current density profiles and the electron 

energy equation (4.1.6). Figures (5.3c) and (5.3d) tell us that after 

t = 5 scale times there is about one tenth of the initial current in the 

electron temperature trough. All derivatives of the electron temperature 

here are very nearly zero and the electron and ion temperatures are very 

nearly equal. Hence the small rate of change of the electron temperature 

here is due to the fact that all the terms are small in equation (4.1.6). 

The density in this region, however, is still changing considerably 

(Figure (5.3b)). The large scale structure ofthe number density shows 

there is a density minimum at the temperature maximum and vice versa. 

Again this result was expected from linear theory. However, there is a 

secondary density peak located at the density minimum which quickly 

develops, and continues to grow. The secondary peak is a result of 

the plasma not leaving this region as quickly as that either side of it, 

and it does not mean the density is increasing here. This phenomenon 

may be explained by looking at the current density profiles, Figures 

(5.3c) and (5.3d). We observe that the current density in the y-
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Figure 5.3a Electron temperature profiles at 
dimensionless times 1) t = l ; 2) t = 5 ; 3) t = 1 2 . 
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Figure 5.3b Number density profiles at 1) t = 1; 
2) t = 5; 3) t = 12. 

Figures 5.3 
Results obtained when the mesh length is set equal 

to the cutoff wavelength 

(d t = 6.14x10s, 7t = 4.338xl0~3, t./t =0.5, R = 0 o o e l eo 



1 3 0 

Figure 5.3c z-component of current density 
at 1) t=l, 2) t=5, 3) t=12. 

Figure 5.3d y-component of current density 
at 1) t=l, 2) t=5, 3) t=12. 



Figure 5.3e Spatial variation of total 
pressure at 1) t=l, 2) t=5, 3) t=12. 

Figure 5.3f z-component of the magnetic 
field at 1) t=l, 2) t=5, 3) t=12. 
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of the internal energy and the curve labelled b) 
shows the variation in time of the rate of change 
of the applied electric field required to maintain 
constant total current. 
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direction, in the early stages (t $ 1), is much less than the current 

density in the ^-direction; the initial current density in the y-

direction is equal to zero. As the instability develops the y-component 

of the current density becomes increasingly important. After time t = 

5 scale times the magnitude of the peak value of the y-component is of 

the same order as that of the z-component. Furthermore the maxima of 

|j | occur either side of the maximum value of j . As the Ohmic heating 
Y (jy2+jz2) rate goes as — , the monotonic decrease of the heating rate 

away from the j peak no longer occurs as it did at previous times when 

|jy| <<: \iz\- Hence an extra heating at the "flanks" of the electron 

temperature filament occurs, leading to a spiky structure with wider 

spikes than expected from the results presented in Chapter 3. It is 

worth noting here that the perturbation in the magnetic field, Bz, is 
-3 

always comparatively small; its maximum value being about 9x10 

the end of the run (Figure 5.3e). 

In Figure (5.3g) we plot the values of the rate of change of the 

dimensionless electric field and the rate of change of the dimensionless 

internal energy E^ against dimensionless time. The purpose of these 

plots is to indicate whether the system is approaching a steady-state. 

In this case clearly it is not. They also tell us that the applied 

electric field is decreasing in time throughout the simulation. 

In summary we can say that the instability develops in such a 

way as to produce current filamentation. The electron temperature in 

the filaments is much higher than that of the surrounding plasma while 

the number density is much lower. The filaments are narrow and spiky 

with a separation distance equal to the wavelength of the fastest 

growing mode. In the regions surrounding the filaments the profiles 

for the number density, current density, electron temperature and 

magnetic field become very flat. The electron temperature is very 

nearly equal to the ion temperature and the current density is only 
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about 10% of its equilibrium value. The amplitude of the filament 

grows in time and becomes narrower. The filament has grown to a 

large amplitude after twelve linear growth times and the system is 

not approaching a steady-state. The electric field is decreasing 

throughout the simulation in order to keep the total current constant. 

Results found at times later than t = 12 scale times show that the 

filament continues to grow and becomes narrower and the electric field 

tends to zero. A steady state is not found and the system continues 

to behave in the way already described. The results at later times do 

not add to our information on how the system evolves and are therefore 

not reproduced here. 

There are two further reasons why we do not show results at 

times later than t = 12 scale times. The first reason is that a fluid 

model of the system becomes invalid shortly after this time. As stated 

in Chapter 1, the fluid approach is only valid for large ^ e
T
e if/ 

L ± » a o (5.3.4) A e 

where LA is the characteristic scale length over which the plasma 

quantities vary perpendicular to the magnetic field and a^ is the 

electron Larmor radius. If condition (5.3.4) is not satisfied, the 

transport coefficients in the form used here are no longer valid. The 

characteristic dimensionless length scale over which the electron 

temperature varies may be approximated by, 

L x 3T 
- = ' (5-3-5) o e 

We arbitrarily stipulate that the quantity in (5.3.5) should always 

be greater than about ten times the dimensionless electron Larmor radius. 
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Shortly after t = 12 scale times this condition is violated and hence 

our model is no longer applicable. 

Before the fluid model breaks down, the condition for onset of 

ion acoustic instability (as given in equation (3.4.4) of Chapter 3) is 

violated in parts of the current filament. The presence of ion acoustic 

instability would have an important effect on the further evolution of 
[31 321 

the filament, because it is known ' to lead to a high effective 

electron-ion collision frequency when fully developed. In Chapter 6 

we simulate the macroscopic effects of ion acoustic turbulence on the 

further evolution of the system. In the rest of this chapter we 

explore the changes in the behaviour of the electrothermal instability 

brought about by using a smaller mesh length and hence reducing further 

the longest wavelength represented. 

5.4 MESH LENGTH LIMITED TO SIX SCALE LENGTHS 

A perturbation was applied to the steady-state system in 

exactly the same manner as described in the last section. The same 

initial conditions were used and the only change made was that 

the length of the mesh was set equal to six scale lengths instead of 

twenty. 

Figure (5.4a) shows the electron temperature profile at 

different times during the simulation. We notice again that the 

longest wavelength on the mesh quickly dominates which is acceptable 

because linear theory tells us that the linear growth rate of growing 

modes increases as the wavelength is increased up to the optimum 

wavelength for growth. The shape of the electron temperature profile 

is smoother throughout the simulation than it was in the results in 

the last section; the temperature peaks are not as sharp nor the 

troughs as flat. The density profile (Figure 5.4b) has the shape one 
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Figure 5.4b Number density profiles at 1) t = 17; 
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Figures 5.4 
The mesh length set equal to six scale lengths 

oj T = 6.14X106, tt = 4.338xl0"3, T./T =0.5, R = 0 o o e i eo 
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Figure 5.4d y-component of current density at 1) t = 17; 
2) t = 21 and 3) t = 35. The y-component of the current 
density returns to zero when a steady-state is reached 
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Figure 5.4e Spatial variation of magnetic 
field at 1) t = 17, 2) t = 21 and 3) t = 35. 

Figure 5.4f Total pressure profiles at 1) 
t = 17, 2) t = 21 and 3). t = 35. 
When a steady-state is reached after time 
t = 35 the magnetic field returns to its 
initial configuration and the final total 
pressure is uniform again. 
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would expect from looking at the electron temperature profiles. 

Looking at the current density profiles, Figure (5.3c) and Figure (5.3d) 

it is evident that the y-component of the current is always much 

smaller than the z-component, and again both are more smoothly varying 

than in the last set of results. 

The most important result here is that a steady-state is 

reached. After the time labelled t = 35 scale times the electron 

temperature, z-component of the current density and the number density 

remained constant, while the y-component of the current density returned 

to zero and the magnetic field configuration returned to its initial 

value. The final total pressure is lower than its initial value. 
dEj 

Figure (5.4g) shows the temporal behaviour of the quantities - — and 
dt 

d Ez —rr~ both of which are very close to zero at t = 35 scale times, dt 

Furthermore the steady-state reached must be a stable one as the run 

was continued beyond this point in time with no further change. If the 

steady-state were not stable round-off error would be enough to trigger 

further changes. 

Comparison with results in Chapter 3 

The steady-state maximum value of the electron temperature is, 

T = 2.433 in dimensionless units (5.4.1) emax 

or in units of degrees Kelvin, 

T = 2.433 T °K (5.4.2) emax eo 

where T is the initial steady-state electron temperature in degrees 

Kelvin before the perturbation was applied. The minimum electron 
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temperature attained is, 

T = 1 - 0.3844 in dimensionless units (5.4.3) e m m 

or in units of degrees Kelvin, 

T . = 0.6116 T °K (5.4.4) emin eo 

In Chapter 3 we obtained solutions to the steady-state electron energy 

equation. For the results presented in this section to be believable 

the electron temperature profiles must satisfy equation (3.1.9) with 

B = 0 (no radiation loss). This must be so because every assumption 

that was made to obtain solutions of the electron energy equation in 

Chapter 3 hold for these steady-state solutions, i.e. 

03 T >> 1 e e 
E, B and T. uniform — — i 

Vp = 0 

j II B everywhere (5.4.5) 

2 2 A (not to be confused with A ) is defined as given in equation (3.1.5), H F 
that is, 

m.k_a12T.ItE 2 
2 l B l z A = 2 2 (5.4.6) H p^e^ 

2 (dimensionless quantities have not been used in equation (5.4.6)). A H 
2 can be written in terms of Ap defined in equation (4.1.12) (and in 

equation (4.8.1)) as follows : 
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E
 2 

2 2 z 4 A = A —o-T. (5.4.7) H F p 2 l 

where the dimensionless quantities T^, E z and p are defined in (4.1.11). 
2 We can calculate A for the steady-state solutions in this section. H 

2 From the results and equation (4.8.1) for A and the initial F 
conditions, 

2 A = 1.5 F ) 
E 2 = 0.78552 ) final values (5.4.8) 
2 -2 2 } 

p = (1.5 - 4.28 x 10 ) ) 
m 4 4 T. = 0.5 
l 

Hence, 

A 2 = 2.7241 x 10"2 (5.4.9) H 

We now briefly recall the method used in Chapter 3 to solve for the 

steady state electron temperature profile using the electron energy 
2 equation. For a given value of A^ we choose "t (remembering 

"t . " = T . /T.). With this value of t . we can find the constant min emin i min 
of integration. Using this value of the constant of integration we 

can find t (t = T /T.). For a clearer account of this method max max emax i 
we refer the reader to section 3.2 of Chapter 3. 

2 From the results in this section we know A , t . and t H m m max 
2 We now use these known values of A„ and t . and use the method H m m 

described in Chapter 3, section 2 to find t a x* Obviously the value 

of t calculated in this way must agree with the value which can be max 
derived from (5.4.2). Also, the wavelength calculated using the 

numerical method in Chapter 3 must equal the length of the mesh. The 
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results are compared in Table 5.4 

T A B L E 5.4 

2 -2 Att = 2.7241x10 , t . 1.2232, no radiation H mm loss 

Temax ^i ̂  t = — X in units of a (—) max Tj_ eo me 

value calculated using 4.882 5.89 
method in Chapter 3 

value obtained from 4.866 6 
present model 

The good agreement between the results obtained from the non-linear 

steady-state model and the steady-state results obtained here as a 

result of following the evolution of the electrothermal instability 

until saturation gives confidence in the computer program. 

We note that the condition for onset of ion acoustic 

turbulence (5.3.7) is never violated in the electron temperature and 

current peaks. 

5.5 MESH LENGTH SET TO SEVEN SCALE LENGTHS 

The results obtained when the mesh length is limited to seven 

scale lengths are portrayed in Figures (5.5). The system again evolved 

to a stable steady-state. That is the results shown did not change 

appreciably after time t = 18.5. The arrival at a steady-state is also 
dEj dEz indicated by -—— and -r— tending to zero at this time (Figure 5.5h). at at 

dT e m a x We have also plotted — — — as a function of time which also tends to 
dt 

zero, as it should. The final value of the electric field is somewhat 

lower than that obtained when the mesh length was limited to six scale 

lengths, 
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Figure 5.5a Spatial variation 
of electron temperature profile 
at 1) t=4, 2) t=7, 3) t=8 and 
4) t=18.5. Steady-state exists 
after time t=18.5. 
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steady-state value E z 0.5584 (5.5.1) 

Correspondingly the final total pressure which is uniform has a lower 

value as can be seen by comparing figures (5.4f) and (5.5f). The 

electron temperature profile is more sharply peaked with a higher maximum 

value and the electron temperature trough is flatter with a lower 

minimum value. The y-component of the current density is at all times 

much smaller than the z-component. 

acoustic instability is just violated in the electron temperature peak. 

The characteristic scale length at the steepest point of the electron 

temperature profile is such that it is still valid to consider the plasma 

a fluid. 

Comparison with results in Chapter 3 

The steady-state electron temperature profile from these results 

is compared with the steady-state solutions found using the method in 

Chapter 3 in the same way as described in the last section. Good 

agreement was again found as can be seen from Table 5.5. 

It can be easily verified that the condition for onset of ion 

Final value of E 0.5584 z 
Final value of p 1.5 - 0.1283 

Hence from (5.4.7) 

A, 2 1.5536 x 10 - 2 

H 

2 Notice that this value of A is less than the value obtained for the H 

steady-state with the mesh length limited to six scale lengths. 
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TABLE 5.5 

A, 2 1.5536xl0"2, t . 1.0805, no radiation loss 
H m m 

X in units of a (—) eo me t max 

Value calculated using method 
in Chapter 3 

11.5544 6.5 

Value obtained from present 
model 

11.7842 7 

5.6 MESH LENGTH SET TO EIGHT SCALE LENGTHS 

The results obtained when the mesh length was limited to eight 

scale lengths are shown in Figure (5.6). The simulation was terminated 

after time t=8 because the characteristic scale length of the electron 

temperature gradient at its steepest point is just greater than ten 

electron Larmor radii. Hence a fluid approximation is no longer valid 

by our criterion after time t=8 scale times. Furthermore the condition 

for ion acoustic instability to be present is well violated by this 

time. As previously stated, the macroscopic effects of ion acoustic 

turbulence would have a considerable effect on the evolution of the 

plasma parameters after the condition for onset is first violated. 

These effects have not been taken into account in these results. 

We observe from Figure (5.6a) that the peak electron temperature 

is greater at time t=8 scale times than it is when a steady-state is 

found for the cases when the mesh length is shorter (sections 5.4 and 

5.5) and the temperature minimum is lower. In the light of what has 

been said in the last three sections most of the results here are self 

explanatory. It should be noted that although the y-component of the 

current is still small everywhere at all times compared to the z-
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Figure 5.6e z-component of magnetic field 
at 1) t=3, 2) t-7, 3) t=8. 
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Figure 5.6f Variation in time of 1) the 
rate of change of the internal energy, 
2) the rate of change of the applied electric 
field. 
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component it is certainly larger here comparatively than in the cases 

considered in the last two sections. Likewise the perturbation of the 

magnetic field is greater although still very small in absolute terms. 

5.7 SUMMARY OF RESULTS 

Further runs on the computer were produced with the mesh 

length increased above eight scale lengths. These results do not add 

any further information to or change the conclusions that can be made 

from the results presented here. Therefore they are not included. 

We have demonstrated that the wavelength with the largest linear 

growth rate dominates in the non-linear regime. Valid steady-state 

solutions were found only for the cases where the mesh length was 

limited such that only short wavelength modes could grow; valid in 

the sense that our fluid model of the system is still applicable, and 

also in the sense that corrections or changes to the model do not have 

to be made due to the presence of ion acoustic instability. From the 

steady-state solutions obtained by following the evolution of the 
2 electrothermal instability we can say that the value of A decreases H 

as the mesh length increases. Also the longer the mesh length the 

lower is the final energy state of the system (the value of E^ = 
Bz 2 

p + ) , and the lower the value of the applied electric field E 
7T Z 

e 2 required to maintain constant total current. A for a given value of 
H 

2 2 
T^ (dimensionless T^) is a measure of the ratio E^ /p in the steady-state. 

As the mesh length is increased the electron temperature and current 

filaments become more spiky and the troughs flatter while the amplitude 

of the electron temperature oscillation increases. The shorter the 

mesh length the longer is the time taken to reach a steady-state. This 

point can be understood by remembering that shorter wavelengths have 

smaller growth rates. The instability saturates at smaller deviations 
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from the initial steady-state (before the perturbation is applied) as 

the mesh length is decreased. It must be pointed out here that the 

absolute value of the time when the instability saturates and reaches 

a steady-state must be treated carefully as its value varies with the 

amplitude and shape of the initial perturbation. 

We now turn our attention to the results obtained for longer 

mesh lengths. Some general comments can be made about the behaviour of 

the system when a short mesh length is used and those when a longer 

mesh length is used. Firstly "valid" steady-state solutions are not 

obtained. Secondly the shape and behaviour of the profiles change. 

The electron temperature filaments are less sharply peaked with steeper 

sides. The number density develops a maximum at the position of the 

density minimum (see Figure 5.3b). Both these features are due to the 

no longer negligible presence of the y-component of the current density 

compared to the z-component as explained in Section 5.3. For the cases 

where steady-state solutions were obtained, 

j << j z everywhere at all times (5.7.1) 

Hence j is now playing an important part in the evolution of the electro-

thermal instability to such an extent that the maximum Ohmic heating 

rate is no longer necessarily at the very peak of the electron temperature 

profile. 

In Section 5.2 the comment was made that the amount of energy 

going into the y-component of the magnetic field is negligibly small. 

This assumption can be roughly tested by calculating the magnetic field 

generated by the perturbed current j . Using Faraday's Law we can 

approximate the back emf generated by the changing magnetic field and 

compare this with the applied electric field at a given time. This 
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method gives only an approximate idea of the effect of neglecting 
Approximate because these effects should be included self consistently. 
In all cases the back emf calculated in this manner was less than a few 
percent of the applied electric field at a given time. 

We have illustrated the general behaviour of the system as the 
mesh length is increased. It must be stated here that the most important 
results are those obtained when the mesh length is set equal to the 
optimum wavelength for growth, because this mode would be expected to 
dominate in a real device as it is shown to do here. 
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CHAPTER 6 

INTRODUCTION 

In the last chapter we showed that the electrothermal 

instability leads to current filamentation in its non-linear stage. 

When the mesh length is set equal to the largest value this model will 

allow, the amplitude of the filaments becomes sufficiently large for 

ion acoustic turbulence to develop. We now formulate a model to 

include the effects of ion acoustic instability on the further 

evolution of the system. 

6.1 THE MACROSCOPIC EFFECTS OF ION ACOUSTIC INSTABILITY 

The nature and behaviour of the ion acoustic instability can 

only be obtained using a kinetic model. This is because the presence 

of this instability depends upon the details of the distribution 

functions. Hence its behaviour could not be simulated using our fluid 
[33] model. However it is known that the fully developed instability 

produces an effective electron-ion collision frequency which is much 
[34] 

greater than classical. From a recent review of ion acoustic 

turbulence typical values of the effective coll'sion frequency are, 

v -- = C10~3 + 3 x 10"5) u) (6.1.1) eff pe 

where is the plasma frequency. Hence for Tokamak devices we can 

safely say, 

"eff » uci a s s i o ai (6-1-2) 
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The increased effective collision frequency results from enhanced 

electron collisions due to ion sound turbulence. The values quoted 

here are from theories and particle-in-cell simulations based on ion 
[33 351 

tail formation being the saturation mechanism ' . Simulations show 

three distinct phases of growth of ion sound turbulence. The early 

phase is exponentially growing in time. The middle phase grows roughly 

linearly in time and marks the onset of non-linear modifications of the 

plasma processes. The final phase is the saturated phase. Workers 

differ to some extent on the late-time evolution. The time of evolution 

of the instability to saturation in present simulations is typically 

100 a) ̂  \ Comparing this to the growth time of the electrothermal 

instability we get, 

100 me 100 ,ne2 A - -3 , n % 2 , — v , = (~A = 10 (r—r) (6.1.3) a) . m. class a 4irm. T J pi i i e 

From relation (6.1.3) we can say the ion acoustic turbulence grows and 

saturates in a time very much shorter than the time scale of interest in 

our model. The fastest growing modes (for ion sound turbulence) are 

those with wavenumber K such that, 

K XD = /2/2 (6.1.4) 

where is the Debye length. 

We know the ion acoustic instability grows and saturates in a 

time which is very much shorter than even the time step used in our 

simulation. During this short time the collision frequency could increase 

to a very high value. We therefore simulate the effect of ion acoustic 

turbulence by modelling the time averaged behaviour. This can be 

approximated when we have answered the question, what is the effect on 
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the filament of increasing the electron-ion collision frequency at 

the points where the condition for onset of ion acoustic instability 

is violated? 

6.2 CHANGES TO THE MODEL 

If the collision frequency increases, the electrical conductivity 

decreases as can be seen from equation (6.2.1) 

2 ne a = in cgs units (6.2.1) m v . e ei 

The dependence of the thermal conductivity perpendicular to the magnetic 

field Xj.e l e s s straightforward, 

Ke 5 " V , 1 xn cgs unxts x « - (1+u) - J 5 - 7 7 e B 2 (6.2.2) 
e e e ei (H ) mecvei 

However, provided w^x^ >> 1 still holds equation (6.2.2) may be simplified 

to 

:2> _ e e ei 
•̂e - a) 2x 2 S 2 i2!2 (6.2.3) e e 

Ke 5 n V c " 

In which case equation (6.2.3) tells us the thermal conductivity 

perpendicular to the magnetic field increases with collision frequency. 

Looking at the equations used to describe the evolution of the system, 

only the electron heat balance equation (4.1.6) and Ohm's Law, equations 

(4.1.4) and (4.1.5) are directly affected by a and Xj.e« th® collision 

frequency were increased less current would be driven in this region 

and hence the drift velocity would fall. Assuming the increase in 

collision frequency is sufficiently large the electron temperature would 

fall because of the increased equipartition and thermal conduction rates. 
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The ion acoustic instability arises when T^ >> T^ and a current flow 

drives an electron drift with velocity V, > c , the ion sound speed. d s 
Therefore if increasing the collision frequency acts to reduce the 

drift velocity and the electron to ion temperature ratio the region 

will quickly become ion acoustic stable, with the collision frequency 

returning to its classical value. This will decrease the rate of 

energy dissipation and increase the Ohmic heating rate resulting in an 

increase in electron temperature accompanied by an increase in drift 

velocity. Once again the conditions for ion acoustic instability will be 

present. In this way the region will oscillate in time about the 

marginal stability condition for ion acoustic turbulence. We therefore 

approximate the time averaged behaviour by assuming that once the 

marginal stability condition is reached at any point the collision 

frequency increases to maintain marginal stability at that point. Let 

us assume the dimensionless collision frequency increases to v* given by, 

v* = £ v (6.2.4) 

where v is the dimensionless classical collision frequency. The anomaly 

factor £ is found by using the condition for onset of ion acoustic 

turbulence which is, 

me A kR Te A mi 1 kRT.: i in cgs units V. > (—) * (-2-=-) 5 + (—) * i (6.2.5) a m. m m 0 nu 

as an upper limit for the drift velocity. The drift velocity V, may be d 
written in terms of the current density, 

(jy2 + j z
2)2 in cgs units V, = — (6.2.6) 

d ne 
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In terms of the dimensionless quantities defined in (4.1.11) relation 

(6.2.5) becomes, 

AF * 3Z
2>* - A - J ,mi J 

> t 2 + t < 2 —) (6.2.7) 
n e l m e 

Again the tilde notation will be dropped and the quantities when referred 

to are dimensionless unless otherwise stated. At marginal stability, 

the current density is obtained from relation (6.2.7), 

1 n i i 1 (j 2 + j 2)2 = (T 2 + t.2 (—-)2) (6.2.8) 
y z Ap e i m e 

However the current density must also obey Ohm's Law, equations (4.1.17) 

and (4.1.18), that is, 

o l vx bz 2 o -i 
(j 2 + j 2 ) 2 = a*[(E — ) + E 2 ] 2 (6.2.9) y z y Ap z 

where a* is the dimensionless electrical conductivity decreased as a 

result of the increased collision frequency, 

a* = j (6.2.10) 

Equations (6.2.8), (6.2.9) and (6.2.10) are combined to find the anomaly 

factor £ giving, 

AF a Vx Bz 2 o k 1 mi A A -1 
5 - -f" [(Ey " " V * + Ez2] [Te2 + t i 2 ] (6'2'11) 

The introduction of an increased collision frequency to maintain 

marginal stability is consistently incorporated in the program as 

follows. When the system is approaching the condition for onset of ion 
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acoustic instability the solutions are tested at each mesh point at 

every time step. If condition (6.2.7) is true at any point on the 

mesh at time step n+1 we say the solutions at this time step are 

invalid. At the mesh points where the condition for onset is violated, 

we use the invalid solutions in the right hand side of equation (6.2.11) 

to obtain a first approximation for the anomaly factor £. This value of 

£ is used to calculate the dimensionless anomalous electrical conductivity 

a* as defined in (6.2.10), and the dimensionless anomalous thermal 

conductivity Xj.e* defined as, 

XJ.E* = 5 X i e (6.2.12) 

where x i e dimensionless thermal conductivity as defined in 

equation (4.1.19). At the mesh points where the ion acoustic instability 

condition is not violated £ is set equal to one. With these values of 

Xie* and a* we find the next approximation to the solution of equations 

(4.1.14-20) at time step n+1. Again the solutions are tested for ion 

acoustic instability and using the same method as before a second 

approximation for £ is obtained. We note here that once the marginal 

condition for ion acoustic instability has been reached at any mesh 

point marginal stability is maintained at that mesh point for all 

future time. This means that if our first approximation for £ is so 

large that the next approximate solutions produce results showing ion 

acoustic stability this would not be acceptable. The only acceptable 

results are those showing marginal stability. The iteration procedure 

is repeated obtaining successively improved values of £ and all other 

variables until convergence is achieved. In practice convergence was 
th achieved more rapidly by using a combination of the p and p-1 

th th values of £ in the p+1 iteration instead of using the p i.e. 
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•P-l (6.2.13) 

where p denotes the iteration number. 

6.3 RESULTS FROM THE MODEL INCLUDING THE EFFECTS OF ION 

ACOUSTIC TURBULENCE 

The results from the simulation described in section three of 

Chapter 5, at a time just before the conditions for onset of ion 

acoustic instability are met, are used as a starting point for this 

simulation. The model and equations are changed according to the 

prescriptions given in the last section and the run continued. The 

results obtained are shown in Figures (6.3). The curve labelled 1 in 

Figure (6.3a) shows the perturbed electron temperature profile at a-

time just before the anomalous collision frequency is introduced. 

Looking at the curves labelled 2 and 3 we can see that the electron 

temperature filament continues to grow. This shows the Ohmic heating 

rate is still larger than the total energy dissipation rate despite 

the introduction of the anomalous collision frequency. However the 

width of the filament increases with time instead of decreasing. This 

can be understood by looking at the current density profiles in 

Figures (6.3b) and (6.3c). The z-component of the current density is 

falling in the region where an anomalous collision frequence exists, 

as expected. In order to maintain constant total current the width of 

the current filament is increasing so that more current is flowing in 

regions where the z-component of the current density was previously low. 

Hence the Ohmic heating rate rises expanding the width of the electron 

temperature filament. We also observe the z-component of the current 

density develops two spikes which mark the edges of the region where an 

anomalous collision frequency exists. Current is being expelled from 
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Results obtained including the effects 

of ion acoustic turbulence 
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Figure 6.3c y-component of current density 
profiles at 1) t=12, 2) t=27, 3) t=37*. 

Figure 6.3d Number density profiles at 
1) t=12, 2) t=27, 3) t=37. 
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the region between the spikes because of the high resistivity brought 

about by the anomalous collision frequency, while either side of the 

spikes the resistivity is high because of the lower electron temperature. 

Therefore the spikes develop because these regions offer paths of least 

resistance. This explanation is upheld by the behaviour of the y-

component of the current density which is also being expelled from 

the region affected by ion acoustic turbulence and concentrating in the 

same regions as the z-component. However the total magnitude of 

the y-component of the current density is decreasing in time. As can be 

seen from Figure (6.3e) the electric field E z starts to rise shortly 

after the onset of ion acoustic turbulence and continues to do so 

because the current cannot be instantaneously expelled from the anomalous 

region at any given time in order to maintain constant total current. 

Plots of the number density profile at various times, Figure (6.3d), show 

that particles are still evacuating the high electron temperature region. 

The number density minimum becomes square and the secondary maxima 

disappears as a result of the combined effects of the y-component of 

the current density dying away and becoming once again much smaller than 

the z-component, and the development of the spikes in the z-component. 

Figure (6.3f) shows the width of the region affected by ion acoustic 

turbulence is increasing in time. Furthermore the anomaly factor £ 

increases in time showing the collision frequency has to become more and 

more anomalous to keep marginal stability. 

After a time equal to about sixty six scale times the system is 

approaching a steady state; the centre of mass velocity, the y-component 

of the current and the total pressure gradient are all very close to 

zero while the time rate of change of any quantity is very small. The 

steady-state electron temperature, current and number density profiles 

' are plotted in Figures (6.3g-i) and the steady-state anomaly factor £ is 
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plotted in Figure (6.3j). The maximum electron temperature is about 

120 times the initial equilibrium value while the minimum electron 

temperature is very nearly equal to the ion temperature. 

6.4 THE EFFECTS OF THE PRESENCE OF THE FILAMENTS ON ENERGY 

TRANSPORT 

We are now in a position to test the hypothesis that the 

presence of a fully developed electrothermal instability may increase 

the rate at which energy is equipartitioned to the ions from the 

electrons to a value above that deduced from experiments. The 

separation of the electron temperature filaments if they existed would 
mi A be about 20 a (—) . Such fine scale structure would not be detected eo m e 

using existing experimental methods. In a Tokamak the electron density 

and temperature are most reliably measured by Thomson scattering. 

There are typically only 1-4 laser pulses of short duration 25 ns) 

during a discharge pulse giving 1-4 time resolved measurements at one 

point in the plasma. Thus to build up radial profiles requires many 

pulses and good plasma reproducibility. Even using a high brightness 

laser, and complex detection systems, it is only possible to measure 
[231 the parameters at several radial positions from a single laser pulse 

Using Thomson scattering an experimentalist would measure the average 
[33] 

electron temperature over the scattering volume weighted with density 

It is generally assumed that the equipartition rate is classical. 

Therefore the average equipartition rate as calculated from Thomson 

scattering measurements would be 

3 n 2 e2 k (T . - T. ) _ B e scat i 
Eq scat ~ m. a1 T ~J7l (6'4'1) 

i e scat 
a 

- 1 m -3 where n = — / n(x) dx cm" (6.4.2) 
m o 
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X 

1 m 
and T ^ = tt-t— / n (x) T (x) dx °K (6.4.3) e scat n X J e m o 

The electrical conductivity is known from experiment to agree well with 

the Spitzer formula which has been used in equation (6.4.1). We must 

compare E with E , the average equipartition rate calculated q scar q fit 
taking into account the fine scale filamentary structure, and the 

anomalous collision frequency in regions affected by ion acoustic 

turbulence, 

Am 3n2(x) e2k (T (x) - T.) 
E = j - J — S dx (6.4.4) 
q m o m. a1 T (x)3/2 

l e 

If our hypothesis is correct, 

> 1 (6.4.5) 
q scat 

Not only should condition (6.4.5) be true, but also the presence of 

the filaments and associated regions of ion acoustic turbulence must be 

shown not to give rise to differences between the calculated and 

experimentally measured values of electrical conductivity. As previously 

stated these two values should agree well. Therefore we also compute 

the ratio, 

a a1 T 3/2 
scat e scat . _ — = (6.4.6) 
o o et et 

where ^ 
n m j 

"at • - I (6-4-7) 
m o z 

Returning to our dimensionless units and remembering the total current 



1 7 1 

is held constant and the electric field E is not a function of z 
position we obtain, 

E . n2(T - T ) Am n2(x) (T (x) - T ) g et _ e scat 1 _1_ r e 1 
E " L T ~3J7- A J T (x) V z 5 d X 
q scat e scat m o e 

(6.4.8) 

and 

^ ^ = T 3/2 E (6>4>9) o ^ e scat z et 

From the steady-state solutions the final electric field is equal to 

0.46 of its initial value before the perturbation was applied, and from 

the results shown in Figures (6.3g) to (6.3j) we obtain, 

E 
— = 0.4302 < 1 (6.4.10) E q scat 

and 

= 1.09 (6.4.11) a . et 

Relation (6.4.10) tells us that the presence of the filaments leads 

to a reduced rather than an enhanced energy equipartition rate. The 

equipartition rate goes as, 

nz(T - T.) 
E « — (6.4.12) q a 

Now T , is the dimensionless average electron temperature weighted 
Q sccfc 

with number density. The density is a minimum where the electron 
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temperature is a maximum and vice versa. From the steady-state results, 

T ^ = 1.7575 (6.4.13) e scat 

The average dimensionless number density n defined in relation (6.4.2) 

is equal to one because mass can neither enter nor leave the system at 

any time and therefore the final average number density equals the initial 

uniform number density. Therefore E is approximately one half the 
c£ sca u 

initial equilibrium equipartition rate. In the electron temperature 

peaks the number density is very small. Despite the anomalously high 

collision frequency there the equipartition rate is still only about 2% 

of the initial equilibrium value. In the electron temperature troughs 

the electron temperature is very nearly equal to the ion temperature 

producing a very small value for the equipartition rate in this region. 

This explains the result obtained in (6.4.10). 

6.5 SUMMARY OF THE RESULTS 

We have included the effects of ion acoustic turbulence by 

introducing an anomalous collision frequency in the region concerned 

in such a way as to maintain marginal stability. Current is expelled 

from the region because marginal stability is held by imposing, 

|j| « n (T^2 + constant) (6.5.1) 

The number density continues to fall because the pressure is still high 

in this region and hence the current density falls. Condition (6.5.1) 

then determines the anomalous collision frequency. The current spikes 

at the edges of the turbulent region arise because of the strict 

adherence to the constant total current condition and because of the 
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abrupt onset in time and space of ion acoustic turbulence. Therefore 

we would not expect the spikes to occur in reality. After about 

seventy linear growth times the system reaches a steady-state. The 

electron temperature filament persists accompanied by a sharp number 

density well. The fine scale structure of the filament is shown to 

decrease the value of the average equipartition rate compared with 

that calculated from experimental results, while the electrical 

conductivity is unaffected. 

6.6 DIRECT ION HEATING BY ION ACOUSTIC TURBULENCE 

An important effect which has been neglected in this model is 

the direct heating of the ion tail by the ion acoustic turbulence. 

This is thought by some authors to be responsible in some numerical 

simulations for the saturation of the ion acoustic instability, and 

could be allowed for in this model by postulating that a fraction of 

the Ohmic heating rate 6 J.E_ from the energy source J.E_ goes directly 

into ion heating. Hence the Ohmic heating of the electrons will be 

reduced to (1-6)J.E_. The value of the variable 6 can be approximated 

from values of the electron and ion heating rates calculated by 
T361 

Weinstock and Sleeper , though it should be noted that this particular 

paper postulates ion resonance broadening rather than ion tail 

formation as the saturation mechanism. Further studies are being made 

of both PIC numerical simulation results and the analytic work of 
[37] 

Vekstein and Sagdeev . The inclusion of direct ion heating may 

well change the results described in this chapter. 

CONCLUSION 

We have extended the work of other authors on the linear 

behaviour of the electrothermal instability. From this work we 
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conclude that the effect of taking into account the changes in the 

y-component of the magnetic field (B^ << B^ assumed) on the linear 

behaviour of the electrothermal instability are negligible for 

wavelengths up to and including the optimum wavelength for growth 
mi \ (A few a (—) ). The inclusion of deviations from optimum eo me 

Vp = jxB 

— — are also shown to have negligible effects on the behaviour of 

the electrothermal instability. The inclusion of Bremsstrahlung 

radiation loss or indeed any radiation loss with an (where y £ 2 

such as impurity) dependence enhances the growth rate of the instability. 

Solutions of the steady-state electron energy equation show 

the possibility of the existence of a sharply peaked filamentary 

structure for the electron temperature and current profiles at 

saturation of the instability. Such profiles only exist for the 

electric field less than a critical value. For some of these solutions, 

the conditions for onset of ion acoustic instability are violated 

in the filament peaks. For solutions with very large amplitude filaments, 

the conditions for full electron runaway are violated in the current and 

temperature peaks, while the average values of the plasma parameters 

preclude the existence of either of these phenomena. 

A numerical simulation of the development in time of the 

electrothermal instability from an initially small, random perturbation 

confirms the development of the filaments and shows their separation 

to be equal to the optimum wavelength for growth as calculated from 

linear theory (including By). However the filaments are of more uniform 

width and less sharply peaked than expected from the solutions of the 

steady-state electron energy equation mentioned in the last paragraph. 

The troughs are indeed very flat as predicted, and the filaments 

develop to sufficiently large amplitude and composition for ion 

acoustic instability to be triggered. Steady-state solutions which 
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agree very well with the steady-state solutions of the electron energy 

equation are found if only very short wavelength modes are permitted 

to grow. As the optimum wavelength mode is shown to dominate, 

these results only serve to give confidence in the computer program. 

When the effects of ion acoustic turbulence are included by 

introducing an increased effective electron-ion collision frequency 

the system reaches a steady-state in approximately seventy linear 

growth times. The electron temperature filament persists although its 

width is increased and it is less spiky. The current density is 

concentrated in the transition regions from anomalous to classical 

collision frequency. However, the presence of the filament, from this 

model, does not lead to an enhanced energy equipartition rate. Including 

the direct heating of the ions due to ion acoustic turbulence in this 

model may considerably change these results. 
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A P P E N D I X A 

RECURRENCE SOLUTION OF A BLOCK PERDIAGONAL 
MATRIX EQUATION 

We wish to solve the matrix equation AU = W, rapidly, where A 

is a block tridiagonal matrix with additional blocks in the upper 

right and lower left corners, referred to here as perdiagonal. 

The method of solution follows the principles for a recurrence 
[281 

solution of a tridiagonal matrix equation , modified to deal with 

the more complex case of periodic boundary conditions. We are 

interested in solving equations of the form, 

a. U . - + B . U . + y.U. n = W. 
3 D+l : 3 3 D-l 3 

(la) 

at every mesh point j, j=l to J, where a^, and are 3x3 submatrices 

and Wj and U^ are 3-component column vectors. Using periodic boundary 

conditions, U. = U, and , = (4̂ ).,, the number of independent 1 J dx 1 dx J 
equations reduces from J to J-l and equation (la) may be written in 

matrix form : 

J-l 

!
2
 a

2 ° 

J-l J-l 

U, 

U. 

J-l 

w. 

w. 

w. 

w J-l (2a) 



1 7 7 

Assume a recursive solution exists of the form, 

dj-i = x
j
 u j +

 s
 uj-i + y

j
 ( 3 a ) 

where again x. ^j a r e 3x3 matrices and Y^ is a 3-component column 

vector. If equation (3a) is applicable at the point j, for consistency 

it must be applicable at every other point so the same formula applies 

at the point j-1. Substituting equation (3a) for U^ ^ in equation (la) 

and rearranging, 

U. = -<Bj + Yj Xj)"1 U j + 1 - (B. + Y. Xj)"X
 Y j ^ U ^ -

+ (8j + Yj Xj)"1 (Wj - Yj Y j) (4a) 

Equation (4a) has exactly the same form as the recursive relation 

equation (3a), namely, 

U. = X•in U, , + i , U , + Y.,_ (5a) 3 A3+l 3+1 3+1 J-1 3+1 

Identifying coefficients in equations (4a) and (5a) gives the 

relations required to generate the successive values of x./ ^. and Y. 
3 3 3 

XD+1 = " (Bj + Yj Xj ) _ 1 

V i = " (Bj + Yj x : r l Yj 

Yj+1 = (Bj + Yj Xj)_1 Cwj " Yj V (6a) 

Using equation (3a) at the point j=2, comparing it with the original 

equation (la) at the point j=l gives the following expressions for 

X2, H>2 and Y2, 
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x
2
 =

 " h
1
 "l 

" 

- y
1 " ! ( 7 a ) 

Applying relations (6a) at the point j=l and comparing these with relations 

(7a), we obtain, 

X^ is a null matrix 

is the identity matrix 

Y^ is a null vector 

The relations in (6a) are now used to scan the mesh upwards from j=2 to 

j=J-l providing all required values of xj/ ai*d Yj• Equation (3a) is 

then used to scan the mesh downwards in j from j=J-l to j=2 to determine 

values of U at every point j on the mesh. The values of U at every 

point j=J-l is needed before the downwards scan can be carried out. This 

is achieved by solving two equations in the unknown variables U and 
J—1 

U_ The first equation is obtained as follows. Assume a relation 

exists, 

Sj V l + fj UJ-2 + gj UJ-1 = hj C8a> 

where e., f. and g. are 3x3 matrices and h. is a 3-component column vector, 3 3 3 3 
Substituting the expression for U. from equation (3a) into equation (8a) 3 ""I 
yields, 

e . 3 X. U. + f . 3 3 3 UJ-2 + Cej + gj} J-l h. - e. Y. 3 3 3 (9a) 
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Equation (9a) is of the same form as equation (8a), that is, 

e. . U. + f.,_ U, . + g. . U _ = h . . (10a) 3+1 3 3+1 J-2 3+1 J-l 3+1 

Hence identifying coefficients in equations (9a) and (10a) we obtain 

the equations required to generate successive values of e^, g^, f^ and 

V 
e . = e . Y . 
j+1 j Xj 

f. , = f. the elements of f do not vary with j 3+1 j 

g. , = g. + e . ip . yD+l J 3 

h. . = h. - e. Y. (11a) 
D+l 3 0 3 

If the original equation (la) is applied at the point j = J-l and U is 
J 

replaced by Un we obtain an equation in the variables U., U and U 1 1 J—1 J—2 

Now, applying equation (10a) at the point j=l and comparing the 

coefficients with the equation described in the last sentence we obtain 

expressions defining e^/ g^, h 2 and f, 

e2 " °J-1 f = V l 

= SJ-1 h2 = Wj-1 ( 1 2 a ) 

The relations in (11a) are now used to scan upwards in j to find 

successive values of e., g and h. and finally to find the values of e, 
7 j 7 

g and h at the point j=J-l. We can then write an equation involving the 

variables U_ . and U only from equation (10a), J—1 J—2 
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(ej-l + f> °J-2 + V l V l = hJ-l ( 1 3 a ) 

The other equation in U -1 and U_ ^ only is obtained by applying 
j J~ A 

equation (3a) at the point j=J-l. This equation is then used to 

eliminate U from equation (13a) giving an equation for U in terms J-2. J - 1 

of all known quantities, namely, 

v i •
 t { v i + f ) < v i + v i > + v l ' "

1 

x <Vi - ( v i + f ) V i 1 (l4a' 

We now use this value of U . to initiate the scanning procedure 
j—1 

described previously. Hence we find U at every mesh point j. 
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APPENDIX B 

NUMERICAL STABILITY OF THE DIFFERENCE SCHEME USING 
GERSCHGORIN'S THEOREM 

The simplest way of implementing Gerschgorin1s theorem is to 

start by guessing a stable time step At for a given mesh spacing Ax. 

The elements of the matrix (4.3.2) are known at a given mesh point 

j at time level n. Therefore we can find analytically the elements 

of the amplification matrix G using equations (4.7.8) and (4.7.10) for 
2 KAx 

the "worst case", sin — = 1. We now compute the three separate sums 

of the rows, using the chosen value of At, and store the sum of greatest 

magnitude. Similarly we compute the three separate sums of the columns 

and again store the sum of greatest magnitude. Gerschgorin1s theorem 

tells us the smallest in magnitude of the two stored values is greater 

than or equal to the magnitude of the largest eigenvalue of the 

amplification matrix G. Therefore if the magnitude of this number is 

less than or equal to one the chosen time step At should render the 

difference scheme locally (in space and time) stable. If the magnitude 

is greater than one the time step is halved and the computation 

repeated until a satisfactory value for At is obtained. 

The subroutine which carries out this numerical stability test 

should, in theory, be applied at each mesh point at every time step. 

In practice, it is only found to be necessary to apply it at, on 

average, every fifty time steps. Also many test runs on the computer 

showed the value of the stable time step obtained in this way to be 

pessimistic. 
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PROGRAM SUMMARY 

Title of program-. PERDIAG 
Catalogue number: AARF 
Program obtainable from: CPC Program Library, Queen's 
University of Belfast, N. Ireland (see application form in this 
issue) 
Computer: CDC 6500; Installation: Imperial College Com-
puter Centre 
Operating system: NOS 
Programming language used: FORTRAN IV 
High speed storage required: 17.7 Kwords 
No. of bits in a word: 60 
Overlay structure: none 
No. of magnetic tapes required: none 
Other peripherals used: card reader, line printer 
No. of cards in combined program and test deck: 445 
Card punching code: CDC 
Key words: matrix equation, perdiagonal, tridiagonal, nXn 
blocks, direct method, recursive, periodic boundary condi-
tions, n finite difference equations, one space dimension, 
implicit 

Nature of physical problem 
A theorist may wish to solve the matrix equation AU = W, 
rapidly, where A is a block tridiagonal matrix. This type of 
matrix equation frequently arises in the solution of problems 
in one space dimension; in the solution of boundary-value 
and many initial-value problems (because the time-dependent 
problem has been formulated implicitly), where it is necessary 
to solve n coupled, finite difference equations. The program 
is capable of dealing with Neumann, Dirichlet, mixed or 
periodic boundary conditions. If the boundary conditions are 
periodic, the resulting matrix A is block tridiagonal with addi-
tional blocks in the upper right and left corners, referred to 
here as block perdiagonal. 

Method of solution 
A recurrence solution is used to solve the matrix equation 
AU - W. The method follows the principles for a recurrence 
solution of a tridiagonal matrix equation [ 1 ], modified, when 
appropriate, to deal with the more complex case of periodic 
boundary conditions. 

Restrictions on the complexity of the problem 
None. The method does not assume any particular properties 
of the n X n submatrices, other than their being non-singular. 
Typical running time 
The test runs took about 0.3 s. Generally, the running time 
would depend on the size of the blocks and the number of 
mesh points. 
References 
[1] D. Potter, Computational physics (John Wiley, London, 

1972). 
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LONG WRITE-UP 

1. Introduction 

The computer program described uses a recursive 
method to solve both the block perdiagonal and the 
block tridiagonal matrix equations, AU= W. 

The program has been used as part of a larger code 
to follow the non-linear time development of electro-
thermal instabilities in a fully ionized plasma. This 
involves the solution of a block perdiagonal matrix 
equation at every iteration within each time step. In 
this case, there are three coupled equations, differ-
enced using a Crank Nicholson implicit method. Hence 
the dimensions of the blocks are 3 X 3. The number 
of mesh points used was fifty. 

2. Description of the problem and the method of 
solution 
We are interested in solving equations of general 

form, 
aJUi+l+piU/ + y/UHl=WJs (1) 

at every mesh point/, / = 1 , w h e r e ay, fy and j j 
are n X n submatrices, and Wj and Uj are H-compo-
nent column vectors. Using periodic boundary condi-
tions, Ui=Uj and (dU/dx)i = (dU/dx)j, the number 
of independent equations reduces from J t o J — 1, 
and eq. (1) may be written in matrix form: 
Pi 

72 P2 

0 73 

i 0 

Wi 

w2 

w3 

Wj_ 

7i Ui . 
0 U2 

0 u$ 

PJ-I Uj-1 

(2) 

Using more general boundary conditions, written in 

differential form, 

where B, B', C and C' are n X n matrices (diagonal 
matrices), and D and D' are w-component column 
vectors. The, number of equations is J , and the result-
ing matrix is block tridiagonal, i.e. there are no sub-
matrices in the upper right and lower left corners. 

3. Solutions and boundary conditions 
3.1. Recursive solution - periodic boundary condi-

tions 
Assume a recursive solution exists of the form, 

Uj-1 =X j Uj + t j U j _ 1 + Y j , (4) 
where again x/ and ipj ar enXn matrices, and Yj is an 
n-component column vector. If the boundary condi-
tions are not periodic, the second term on the right 
hand side of eq. (4) is not included. This is because, 
with periodic boundary conditions, there exists a 
cyclic coupling of points, as well as the intimate 
coupling of neighbouring points existing with more 
general boundary conditions. If eq. (4) is applicable 
at the point / , for consistency it must be applicable 
at every other point, so the same formula applies at 
the point/ — 1. Substituting eq. (4) for Uj_ x in the 
original equation (1) and rearranging 
Uj = - (P f + 7/X/)~1 <*jUj+1 - (fif + 7 /X / )~ 1 7 /W/ -1 

+ (Pj + 7/X/) - 1 (Wj — J j Y j ) • (5) 
Eq. (5) has exactly the same form as the recursive 
relation, eq. (4), namely, 
Uj = X/W+i + fy+iUj-i + Y i + l . (6) 
Identifying coefficients in eqs. (5) and (6) gives the 
relations required to generate the successive values of 
Xj, t j and Yj\ 
X/+1 = + 7/X/)"1 , 
fy+i = ~(Pj + 7/X/)~17/>/'/ , (7) 
W W + 7/X/r1 O Y j - l j Y j ) . 
Using eq. (4) at the point j = 2, comparing it with the 



187 F. Marsh, D.E. Potter / Recurrence solution of a matrix equation 

original equation (1) at the point / = 1, gives the fol-
lowing expressions for X2 , ^2 a n d Y2; 
x2 = -Pi

1<*1 , 

Y2 = P~x1Wx. (8) 

Applying relations (7) at the point / = 1, and compar-
ing these with the relations (8), we obtain 
Xi is a null matrix, 
\px is the identity matrix, 
Yi is a null vector. 
The relations in (7) are now used to scan the mesh 
upwards from / = 2 to / = J — 1, providing all required 
values of X/, and Yj. Eq. (4) is then used to scan 
the mesh downwards in/ , from / = J — 1 to /' = 2, to 
determine values of Uat every point,/, on the mesh. 
The values of the variable U at the point, / = .7—1, 
is needed before the downwards scan can be carried 
out. 

3.2. To determine Uj_x 

This is achieved by solving two equations in the 
unknown variables, Uj_x and Uj_2. The first equa-
tion is obtained as follows. Assume a relation exists, 
ejUj-i +fjUj_2 + gjUj_ 1 = hj, (9) 
where e j , f j and gj are n X n matrices and h j is an 
^-component column vector. Substituting the expres-
sion for Uj- \ from eq. (4) into eq. (9) yields, 
ejXjUj +fjUj_2 + (ejty +gj)UJ_1 = hj - e}Yj. (10) 
Eq. (10) is of the same form as eq. (9), that is, 
£/+1 Uj + f j + iUj_2 + gj+ xUj_i = hj+1 . (11) 
Hence, identifying coefficients in eqs. (10) and (11), 
we obtain the equations required to generate succes-
sive values of gj, f j and hj; 
9+1 = 9X/> 

fj+i = f j , the elements o f f do not vary with/, (12) 
gj+i = gj + 
hj+1 = hj - ejYj . 
If the original equation (1) is applied at the point 

/ =J — 1, and Uj is replaced by Ux, we obtain an 
equation in the variables Ux, Uj_x and Uj_2. Now, 
applying eq. (11) at the point / = 1, and comparing 
the coefficients with the equation described in the 
last sentence, we obtain expressions defining e2, g2, 
h2 a n d / ; 
£2=07-1, /=7/-i, 

£2=0.7-1, h2=Wj_x. (13) 
The relations in (12) are now used to scan upwards in 
/ to find successive values of ej ,gj and hj, and, finally, 
to find the values of e, g and h at the point j-J- 1. 
We can then write an equation involving the variables 
U j - i andC//_2 only from eq. (11), 
(£7-1 +f)Uj-2 +gj-iUj_1=hj_i . (14) 
It is worth noting here that successive values of ej ,gj 
and h j are not stored as only the values at the point 
j -J — 1 are used. 

The other equation in Uj_ x and Uj_2 only is ob-
tained by applying eq. (4) at the point f = J— 1. This 
equation is then used to eliminate Uj_2 from eq. (14), 
giving an equation for U j - \ in terms of known quan-
tities, namely 
Uj_i = (fej_x +f)(Xj-i + tj-1) +£7-i)_1 

X ( h j _ i - (e f _i + / ) * / _ ! ) . (15) 
We now use this value of Uj_x to initiate the scanning 
procedure described in the last section, and hence 
find U at every mesh point /. 

3.3. Neumann, Dirichlet or mixed boundary condi-
tions 

It is a simple matter to perform the same analysis 
for the case with more general boundary conditions. 
It is found that the formulae defining the recursive 
procedure for obtaining solutions to block tridiagonal 
sets of equations are the same as those defined in rela-
tions (7) and (8) except \pj is not included. The gen-
eral boundary conditions in eq. (3) may be written in 
difference form, 
BU2 + (AC- B)Ux = AD , 

-B'Uj_x + (AC' +B')Uj = A D ' , ( 16 ) 
where A represents the space separation of the mesh 
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points, and is hence a number. Comparing the equa-
tions in relation (16) with eq. (1) at the points / = 1 
and/ = J, respectively, 
(a) 

Pi = AC — B, 
7x is a null matrix, 
Wx = AD, 

(b) 
a j is a null matrix, 
Pj=AC'+B', 
U = ~B', 
Wj = AD'. 

(17) 

Relations (17a) are then used in (8) to define the 
starting values \ 2 and Y 2 . The first and third equa-
tions in (7) are used to scan the mesh upwards from 
/ = 2 to j = J, providing all required values of x;- and 
Yj. This time X/ and Y) at j = J are defined because, 
unlike the periodic case, the points/ = 1 and j = J are 
not equivalent. The values of the variable U at the 
point j=J are defined using the consistency of the 
recursion relation, eq. (4), at the point j =J, with the 
boundary condition, the second equation in (16), 
Uj = (AC' + B' - B'XJT1 (AD' + B ' Y j ) 

= (PJ+1JXJT1(WJ-7JYJ). (18) 
Uj is now used to initiate the downwards scan to 
determine Uj at every mesh point / . 

4. The computer program 

The listing of the program contains a description 
of the input data required, and what the program is 
doing at every stage. The input required is the values 
of the elements of the n X n matrices, ay, Pj and 77 at 
every mesh point 7, 7 = 1 to J — 1, (or to 7 = J if non-
periodic boundary conditions are used) stored as 
three-dimensional arrays, the values of the elements 
of the H-component column vectors Wj at every mesh 
point/, stored as a two-dimensional array, the value 
of n, (referred to in the program as NBLK) and either 
meshl (meshl =J— 1) if periodic boundary condi-
tions are used or mesh (mesh = J ) otherwise. The 
dimensions of the arrays in the DIMENSION state-
ment in the main program must be changed accord-
ingly. The value of "NPER" should be set to zero for 
general boundary conditions and 1 for periodic boun-
dary conditions. These are the only changes that have 
to be made by the user. The user may, of course, 
change the three FORMAT statements in the main 

program to suit his requirements. There are two 
READ statements, detailing how the input informa-
tion is read in, with two corresponding FORMAT 
statements. The remaining FORMAT statement is 
associated with the WRITE command which writes 
the results, U, a two-dimensional array. 

The program consists of a main program, 
PERDIAG, and the subroutines: MULT, ADD, 
MINUS, EQUAL, NEG, NULL, IDENT, GAUSS and 
IF AILS. All the subroutines, with the exception of 
the last two, perform elementary matrix algebra. An 
explanation of how each subroutine works is given in 
the listing. Subroutine GAUSS has two functions, 
dependent upon the arguments with which it is called. 
The first function is to invert an n X n matrix by 
Gauss elimination [2]; the second is to solve the 
matrix equation, CU= D, where C is an n X n matrix, 
again using Gauss elimination [2], Subroutine IFAILS 
is called if the matrix to be inverted, or the matrix, C, 
is singular, and the error message, "the matrix is 
singular", is written to output, and the program stops. 

The first part of the main program calculates the 
elements of Xy, Yj (and i//y, if NPER = 1), for 7 = 1 to 
/ - 1 (to J if NPER = 0) using relations (7) and (8), 
and stores them. The second part calculates successive 
values of the elements of ey, gj, hj, and the values of 
the elements of /(relations (12) and (13)). Only the 
values of ej,gj, hj, at / = J — 1 are stored together 
with/ . This second part is by-passed if NPER = 0. 
The elements of the column vector Uj_ x are then 
found, eq. (15), if NPER = 1 or the elements of Uj, 
eq. (18), if NPER = 0. The final stage of the main 
program consists of a backwards scan to find the ele-
ments of Uj for all 7 using the values of x/, Yj (and 
\pj defined if NPER = 1) previously stored, and eq. 
(4). 

The test runs were performed for meshl = 5 and 
n = NBLK = 4, with NPER = 1 and NPER = 0. The 
elements of ay, Pj, 7y and Uj were chosen, using a ran-
dom number generator, and the elements of Wj found 
by multiplication, ay, Pj, 77 and Wj were then used as 
input for PERDIAG, and the results Uj checked by 
comparing them with the chosen values of Uj. The 
only output from the program is the set of values of 
Uj. 
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TEST RUN OUTPUT 

1 . 5 0 A 5 E - 0 1 - 1 . 1 2 5 2 E - 0 1 1 . 2 3 8 7 E - 0 1 . 3 . 0 0 5 6 E - 0 1 

3 . 1 2 8 A E - 0 1 - 4 . 2 5 2 1 E - 0 1 3 . 3 6 5 5 E - 0 1 2 . 3 9 6 0 E - 0 1 

2 . 3 8 0 L E - 0 2 3 . 5 0 0 3 E - 0 1 - 2 . 8 1 8 7 E - 0 1 2 . 5 9 0 2 E - 0 1 

- 2 . 2 1 0 2 E - 0 1 8 . 1 1 3 9 E - 0 2 - 1 . 8 3 7 5 E - 0 1 8 . 7 9 8 A E - 0 2 

U ( I » J ) » I I N C R E A S E S A C R O S S THE PAGE* ANO J DOWN 
-2 • 0 7 4 0 E - 0 1 - 2 . 8 1 8 7 E - 0 1 - 3 . 9 5 3 1 E - 0 1 2<»37E-01 

8 . 2 9 8 0 E - 0 2 * . 0 7 1 9 E - 0 2 9 . 5 A 8 A E - 0 2 - 2 . 8 9 8 9 E - 0 1 

1 . 5 0 A 5 E - 0 1 - 1 . 1 2 5 2 E - 0 1 1 . 2 3 8 7 E - 0 1 3 . 0 0 5 6 E - 0 1 

3 . 1 2 8 4 E - 0 1 - A . 2 5 2 1 E - 0 1 3 . 3 6 5 5 E - 0 1 2 . 3 9 6 0 E - 0 1 

- A . A 8 0 0 E - 0 1 2.<iA25E-02 3 . 6 7 0 4 E - 0 2 - 9 . 0 5 9 5 E - 0 2 


