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ABSTRACT

The non-linear behaviour of electrothermal instabilities in
a fully ionised, homogeneous, two temperature plasma is studied using
a fluid model. The current is carried predominantly parallel to the
magnetic field, as in the Tokamak configuration, and modes with wave
vector K perpendicular to the magnetic field are considered. -The
optimum wavelength for growth of such modes has previously been shown
to be of the order of a few ion Larmor radii, with growth rates of
the order of the Ohmic heating rate. The inclusion of Bremsstrahlung
radiation loss is shown to enhance the instability.

Non-linear steady-state solutions of the electron energy eguation
reveal the possibility of large amplitude filaments of current when the
instability has developed and saturated. Furthermore it is shown that
ion acoustic turbulence and electron runaway can occur in the maxima of
the current filaments; although the average plasma parameters preclude
the existence of either of these phenomena. The possible effects of
the presence of these filaments on electron energy transport ig considered.

The developmént in time.of the electrothermal instability in one
space dimension is followed numerically. The two cases of constant
applied electric field, and constant total current are considered. 1In
the former case it is found that the instability develops until a point
is reached when the electron temperature increases everywhere and the
system runs away. In the latter case a filamentary structure develops
and a steady state is reached for short wavelengths. For longer
wavelength, faster growing modes the condition for onset of ion acoustic

instability is violated in the filament peaks. The model is changed to



include the effects of the presence of ion acoustic turbulence and

the results from it are discussed.
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CHAPTER 1

INTRCDUCTION

This work was embarked upcon in an attempt to explain the
anomalously high electron energy leoss cbserved experimentally in
Tokamaks[lj. The anomalous electron enerqgy loss rate is reflected in
the electron energy confinement time, which is tens of times smaller
than predicted by theory. With this aim in mind, we study the non-linear
behaviour of an electrothermal instability in a fully ionised, magnetised,
two temperature plasma using a fluid model. If this instability exists
in Tokamaks, it may increase the electron energy loss rate by increasing
the rate at which energy is equipartitioned to the ions to a rate above
that caleculated assuming the electrothermal instability were absent.

In Chapter 1 we review the work done by other authors on electro-
thermal instabilities; not only in fully ionised, but also in partially
ionised, gases. The review leads us to the reasons why the work in this
thesis was carried out. A description is given of how the electrothermal
ins;ability manifests itself in a fully ionised, magnetised twc temperature
plasma, and under what conditions it exists. It is this type of electro-
thermal instability which ig the theme of this thesis. Finally in
Chapter 1, we define and briefly describe the basic equations from which
most of the equations used in the rest of this thesis are derived.

(2]

In Chapter 2 we add to existing results of the linear behaviour
of an electrothermal instability by including a radiation loss term. The

effect of Bremsstrahlung loss is specifically described, and from the
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mechanism by which it affects the instability, we deduce how the

presence of other, more important, radiation loss terms would affect

thiz instability. Also in this chapter we analyse the model used by
Tomimura and Haines[3] to test its suitability for the basis of a

numerical simulation to follow the growth of an electroéhermal instability
into the non-linear regime. Consequently, some changes are made to the
model.used in [3] which facilitate the computer model without substantially
affecting the behaviour of the instability.

A study is made in Chapter 3 of the properties of possible
saturated steady states of the electrothermal instability. The results
obtained from this model are shown to depend strongly on which of the
many possible steady states the electrothermal instability relaxes to
if any. One is unable to predict from this model either the steady state
which would be preferred if the instability were allowed to develop
from a small, random perturbation, or the time taken to reach it[4].

The numerical model used to follow the evolution of an intially
small, random perturbation about a steady state into the non—liﬁear
regime is developed in Chapter 4. The model used by Tomimura and
Haines[B] is modified on the grounds of the results found in Chapter 2.

In this chapter we describe the computational and mathematical problems
arising in the simulation and how they are dealt with. During the
gsimulation it is found neceésary to solve a sparse matrix equation

rapidly. A description of the method and the computer program used for
this purpose is given in Appendix A. Appendix B contains a discussiocn

of the details of the numerical stability test also used in the simulation.

In Chapter 5 we present the results from the numerical model.
These results fall into two main categories; those obtained when the
applied electric field to maintain the discharge is held constant in time

and thosge obtained when the electric field is allowed to vary in time
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to keep the total current constant.

In the last chapter of this thesis we formulate a model to
include the macroscopic effects of ion acoustic turbulence on the
evolution of the instability. Some calculations are presented showing

the effect on energy transport and on electrical conductivity.

A general review of electrothermal instabilities

Electrothermal instabi;ities cover a broad class of thermal
instabilities in which Ohmic dissipation provides the free energy to
drive the instability. They have been shown tc cccur in many different
types of plasma, and their nature and behaviour varies considerably
with the device in which they occur.

The presence of electrothermal instabilities in alkali seeded
noble gases has been experimentally observed by many authors [e.g. 5 and

(7,8,9]

6]. The instability mechanism in partially ionised gases depends

on the high sensitivity of the degree of ionisation of the gas to

(8]

electron temperature. Nelson and Haines made an extensive survey of
the properties of this kind of instability, incorporating the effects of
finite ionisation rates, energy convection, radiation transfer, thermal
conduction, finite degree of lonisation and Coulomb as well as neutral
collisions. In this model the electron density isin Saha equilibrium

at the electron temperature. DPerturbations of the electron temperature
lead to much larger perturbations in the electron density. These larger
fluctuations in electron density substantially alter the plasma parameters,
such as conduqtivity and Hall parameter, and the energy balance in the
plasma is altered so that the fluctuations are amplified under certain

conditions. In general these fluctuations can propagate as a wave, If

the Hall parameter, defined as
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(when ¢ is the electrical conductivity, B the magnetic field, n, the
electron number density, e the charge on an electron and ¢ the velocity
of light) is greater than some critical wvalue, growth of the instability
occurs because the perturbed Ohmic heating rate exceeds the perturbed
equipartition rate to the neutrals. The critical value for the Hall
parameter exists because only when this is exceeded is the perturbed
current large enough to produce a perturbed Ohmic heating rate greater
than the perturbed equipartition rate which depends upon the electron
density. The wave vector is perpendicular to the magnetic field here,
and maximum growth rate occcurs with an angle of about 45° between the
wave vector and the current vector. This is because the perturbed Chmic
heating peaks when the perturbed current, which is perpendicular to the
wave vector (charge conservation), is parallel to the zero order current,
but the all important contribution to the perturbed current from the
Hall term peaks when the wave vector is parallel to the zero order
current. The growth time for these instabilities is typically of the order
of 10“6 seconds. They can occur in closed loop magnetohydrodynamic
generators and are of ggeat importance because non uniformities in the
electron density and temperature have a damaging effect on the performance
of the generator. We note here that radiation transfer is shown in this
paper to have a damping effect on these instabilities.

We now turn our attention to the work done on the nature and
behaviour of the electrothermal instability in a fully ionised, resistive

[10]

plasma. Haines succeeded in explaining the break up of a plasma

shell into separated current elements during the early stages of a 6

[11]

pinch, reported by Dixon et al , in terms of such an instability where

the wave vector is parallel to the magnetic field and perpendicular to
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the current. It was in this paper that the behaviour and the conditions
for onset of the non conﬁective electrothermal mode were first
calculated. These conditions and a description of the instability
mechanism is deferred to the next paragraph where we discuss the nature
of the instability with the wave vector perpendicular to the magnetic
field. Returning to the work in [10], the growth time, for conditions
relevant to a 8 pinch, was found to be of the order of 10“6 seconds
for wavelengths of the order of a few centimetres or less. It was also
pointed out that, for conditions relevant to Tokamaks, using this model,
the wavelength of the instability would be much longer and the growth
rates much shorter and therefore the instability of no interest.
However they realised that the situnation may be changed if the wave
vector were perpendicular to the magnetic field instead of parallel.
This is because, as will be seen later, one of the factors determining
the wavelength cof the instability is the effect of the thermal conducticn
which damps the short wavelength modes. Across the magnetic field, in a
Tokamak, the thermal conduction would be severely reduced by a factor
(1 + weZTez) (where.me're is the Hall parameter). Alsoc the growth rate,
which goes like the Ohmic heating rate, would be larger in the early
stages at low temperatures. This partly inspired the work carried out
by Tomimura and Haines[z] on the behaviour cf the electrothermal
instability in a fully ionised plasma with wave vector perpendicular to
the magnetic field. Further inspiration for this work came from the
appearance of (spatially) oscillatory electron temperature profiles
when they studied the steady-state of a diffuse pinch in cylindrical
geometry[lzl.

The work in this thesis was largely inspired by the work done

(21

by Tomimura and Haines on the linear theory of electrothermal

instabilities in a fully ionised, magnetised, two temperature plasma
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with wave vector K perpendicular to the magnetic field B. It seems
fitting, therefore, to report here in greater detail on the salient
features of, and pertinent results, from the above mentioned work,
in order to establish the foundations for this non-linear model.

In a fully ionised, magnetised plasma the electrothermal
instability presents itself as spatial oscillations in electron
temperature, number and current density, as well as in electric and
magnetic fields. The free energy to drive the instability is provided
by Ohmic dissipation. Physically, the unstable modes are driven, in
most cases, by the following mechanism. A local increase in electron
temperature increases the electrical conductivity, using a Spitzer
model. The current flows preferentially in that region, hence increasing
the local Ohmic heating rate. If the corresponding changes in energy
dissipation rate mechanisms, such as equipartition from the electrons
to the ions, electron thermal conduction, and radiation loss, do not
equal this increased Ohmic heating rate, the perturbation in electron
temperature will grow. In some cases, however, with long wavelength
convective modes, it is the local decrease in the eguipartition rate,
as opposed to any increase in the Ohmic heating rate, providing the net
source of energy required to make the perturbation grow.

Tomimura and Haines completed an extensive analysis of the
nature of electrocthermal instabilities, which can be divided into two

main sections each with two subsections :

1. a) A scalar conductivity assumption, neglecting
thermoelectric forces, with ion at rest.
b) As above but with ion motion included.
2. a) A tensor conductivity model including thermo-

electric forces with ions at rest
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b) As above, with ion motion included.

From the model in la) above, they discovered the condition for

existence of the unstable non-convective mode to be,

20

where Teo represents the equilibrium electron temperature {(uniform in
space) before a perturbation is applied. Ti represents the ion
temperature considered uniform in space and constant in time. The

(13] when they studied the

condition above was also found by Furth et al
thermal stability of a Tckamak. Returning te la) above, they discovered
the optimum wavelength for growth of this ingtability is a few times

4 a_, where a0 represents the electron Larmor radius

t h o
greater than (m ) eo

e
measured at the eguilibrium wvalues. The maximum growth rate is of the
order of (E?ﬁ vei in most cases, where vei is the electron-ion collision

i
frequency.
From the model briefly described by 1lb), they discovered the
existence of a convective unstable mode at long wavelengths which was
not found in the previous model. 'This mode disappears for very large

values of (meTe)z, relevant to fusion conditions. The condition for

existence of the non-convective mode becomes,

T
— > 1.3187

and this time a second condition, which at large wvalues of weTe

simplifies to, in terms of the plasma beta
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+T,
BTrnokB (Teo T:L)

Boé < 1.07 (1 + Ti/Teo)

where n_ is the equilibrium density, Teo the electron temperature,

'I'i the ion temperature, kB Boltzmann's constant and Bo the magnetic
field. The optimum wavelength for growth and the maximum growth rate
are more difficult to assess in this model. However, they did
establish that, for large values of (meTe)z, the optimum wavelength
and growth rate do not depend upon W T,

The results above are not substantially modified in model 2)
with tensor conductivity assumption and thermo electric effects
included. There is a reduction in the range of wavelengths for which the
non-convective unstable mode exists, as well as an increase in its

optimum wavelength for growth as compared with model 1).

Motivation for the work in this thesis

Electrothermal instabilities in a fully iconised plasma have
been successfully used to explain the break up of a plasma shell in

the early stages of a 8 pinchElo]. It has also been shown that they

can occur in Tokamak type discharges[3]; if they occurred in the early
Ohmic heating phase their growth rates could be large enough for their
presence to be important. Furthermore, their presence would not be

[14]

detected using existing diagnostic techniques , assuming the dominant
mede to be the one with the largest growth rate as found from linear
theory. This is because, the resultant electron temperature
fluctuations would occur over a distance of the order of centimetres
or less. Changes over this distance would not be spatially resolved

, . [15] .
using Thomson scattering . The presence of such fine scale

fluctuations could affect the transport processes in a Tokamak. Before

this hypothesis can be tested it is necessary to establish the time it
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takes for the instability to develop fully and compare this with the
appropriate time scales in a Tokamak. It is also necessary to study

the nature and behaviour of the fully developed instability.

Transport and Maxwell's Equations

The purpecse of this section is to define the equations, and
introduce the notation used throughout this thesis. The transport
equations used are briefly derived from well established starting points,
and expressed in a form suitable for the plasma model considered. The

regime of validity of the equations is summarised.

1.1 Transport Equations

The transport equations, for a fully ionised plasma comprised
of electron and a single ion species with charge e, consist of the
equations of continuity, momentum transport, and heat balance for the
ions and the electrons. Assuming neutrality so that n,=n, =n these

equations may be written as follows :

Continuity Eguation

— + V.(nﬂé) = 0 {1.1.1)

Momentum Transport

3y, V_xB
mS n(?ﬁ?'+ (YE.V) Ys) = —Vps - V'Es + esn(§_+ ) + Bs
(1.1.2)
Heat Balance
3 aTs
-2—-nkB (Tﬁ? + (ys.V) TS) + nkBTs V.YS + gs : Vys + V.gs = Qs
(1.1.3)

for both species, s.
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These equations, describing the transport of particles, momentum, and
internal energy in an ionised gas are obtained by taking zeroth, first
and second order meoments of the Boltzmann kinetic equations respectively
for both species. The wvelocity of each particle is then divided into
two parts, a mean velocity Es and a random velocity !sl and identifying
some average quantities with macroscopic parameters. It is assumed
that total momentum and energy are conserved in collisions, and momentum
and energy are conserved in collisions between particles of one
species, that is elastic collisions only are considered. The gas is
fully ionised and neither production nor annihilation of particles is
allowed. Hence the right hand side of equation {(1.1.1) is zero.

In equation (1.l.2) m, represents the mass of the particle species,

P the scalar pressure. The complete pressure tensor is

where the traceless tensor Ls represents the part of E:arising from

any anisotropy in the random velocity part of the distribution function.
E and B represent macroscopic fields averaged over a volume containing
many particles and over times long compared to some appropriate scale
time. (The effects of rapidly fluctuating microfields are taken care
of in the collision term.} R represents the mean change in the momentum
of the particles of one species due to collisions with all other

particles. k in equation (l.l1l.3) is Boltzmann's constant. This

B’
equation, for the internal energy transport, is derived from the total
energy transport equation by eliminating the kinetic energy part with
the aid of the other two equations. Ts is the temperature of the

species measured in °K, while g is the heat flux density representing

transport of energy associated with random motion. Finally, Q is
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the heat generated in cone species due to collisions with the cther
species. The Gaussian system of units is employed throughout this

work.

Transport Coefficients

In order to close the above equations, it is necessary to
derive the relationships between ws, gé 5% Qsand n, Zs' Ts' and the
derivatives of the latter. The corresponding coefficients of
proportionality are known as the transport coefficients. _These
coefficients for a fully icnised gas have been calculated in ([16-19]
and in other literature, and will only be quoted in this work as and

when they are used.

Conditions of Applicability

Although the difficult and extensive task of determining the
transport coefficients has been carried out by many authors in
different forms, in all cases their results apply only when the local
distribution is wvery close to a Maxwellian. In a fully ionised plasma
the ratio of the masses of the two components is very small (the
electron to the ion mass ratio). As a consequence of this, a local
Maxwellian distribution is established within each component before
it is established between the components. This point makes it possible
to obtain transport equations when the ion and electron temperatures
differ. Hence the plasma can be considered to be made up of two
interpenetrating fluids.

The important approximation that the local distribution is
very close to a Maxwellian restricts the regime of validity of the
transport equations. In essence, they can only be considered wvalid

when the phenomena they are being used to describe are such that all
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average quantities in the plasma change slowly in space and time
compared toc some characteristic scale length and time. The distribution
function becomes Maxwellian in a time of the order of a collision time
T. Therefore all plasma quantities must not change significantly in

time 1. This may be expressed mathematically as :

When there is a very small or no magnetic field (mere £ l,wherewe is
the electron cyclotron frequency and Te the electron-ion collision time),
the characteristic scale length over which plasma quantities vary must

be much larger than the mean free path between collisions
1
v » = .. L >> imfp
L
However, when the magnetic field is very strong, (mere >> 1), the motion
of the particles in the direction perpendicular to the magnetic field
is bounded by the Larmor radius, which is smaller than the mean free
path. So that the validity condition becomes :
L > a, L, >> imfp
where L, and L, are the characteristic distances in the perpendicular
and parallel directions to the magnetic field respectively, and a is

the Larmor radius.

Maxwell's Egquations

Other equations appearing in this work are the two vector

Maxwell eguations
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VXKE = = = == (1.1.4)

JE

<]

e

(5]

1]

=

+
=

(1.1.5)

where L and w—l are, respectively, a length and a time over which the
electric and magnetic fields change appreciably. For the interaction
between flow and macroscopic fields to be significant, the flow wvelocity

V associated with the plasma should intuitively satisfy
Vv v wl

this implies

performing a dimensional analysis to compare the relative magnitude of

the terms in equation (1.1l.5) one obtains :

3E

2=/ lwxe) v BB o«

therefore (1.1.5) is replaced by

VB = 4?“';_ ) {1.1.6)

This is the form of Amparc's Law used.



27

CHAPTER 2

THE PLASMA MODEL AND LINEAR THEORY EXTENDED

INTRODUCTION

In this chapter the linear behaviour of the electrothermal
instability is discussed in greater detail than the results from it
warrant. That is, the results obtained here are only a small extension
of published theory[z' 13}. However, the detailed discussion serves
to establish the plasma model and all the basic equations used in the
rest of the thesis; hence combining the tasks of deriving the additicnal
results to existing linear theory and describing the conditions under
which the evcoclution of the electrothermal instability into the non-
linear regime is followed.

Extensive as it is, the analysis performed by Tomimura and
Haines, in [2], d4id not include the effects of radiation loss on an
electrothermal instability. As a fully ionized hydrogen plasma is
being studied and for simplicity, the only radiation loss mechanism
considered is Bremsstrahlung. This is the subject of the first part of
this chapter. As the results that follow show, the inclusion of
Bremsstrahlung radiation loss enhances the instability because of its
nzTeé dependence.

The main reason for using perturbation theory is to determine,
as far as possible, what physical effects are responsible for various
aspects of the electrothermal instability. Having done go, the relative
importance of the terms representing these physical effects is assessed,

and the conditions under which they can be neglected, if at all,
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guantified. The information gleaned from this exercise is then used
to facilitate the formulaticon of the medel used to describe the evolution
of the aforementioned instabilities in Chapter 4.

The analysis described below follows closely that first used by
Haines[loz and later by Tomimura and Haines[zl. FPor simplicity, and to
avoid conditions giving rise to gradient driven drift instabilities, the
stability analysis is carried out in an infinite, homogeneous plasma with
wave vector perpendicular to the magnetic field and current, with uniform
equilibrium profiles for number density and temperatures. This approach
is acceptable provided the wave lengths of the perturbation are much
smaller than the scale lengths over which the equilibrium quantities
vary. We know from the last chapter, that the optimum wavelength for
growth of the electrothermal instability, under these conditions, is a

mi

)i a_ . For devices of fusion interest, this

few times greater than (—
me [=18]

is a few centimetres or less, therefore, the above approximation is wvalid.
We also know from the results guoted in the last chapter, that using a
tensor eleétric conductivity model and including therme electric effects,
does not appreciably change the behaviour of the instability in question.
For this reascn, the stability analysis is performed assuming the electric

conductivity to be scalar, and neglecting thermo electric terms.

2.1 STABILITY ANALYSIS OF AN ELECTROTHERMAL INSTABILITY WITH

BREMSSTRAHLUNG RADIATION LOSS INCLUDED

The system considered is an infinite, fully ionized, two temperature,
plasma in constant and uniform applied magnetic and electric fields in the
same direction, with zero order uniform profiles for electron and ion
temperatures as well as number density. It is assumed that the plasma is
neutral in equilibrium and quasi-neutral when the perturbation is applied.

The ion temperature is considered to remain unchanged throughout, because
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any perturbation, with a wavelength of the order of magnitude of interest,
would be quickly flattened because of the high thermal conductivity of
the massive ions, perpendicular to the magnetic field. Only perturbations
perpendicular to the magnetic field are considered, and, for simplicity,
all plasma guantities are allowed to vary only along the direction of
propagation of the perturbation.

The linear analysis is described in a rectangqular coordinate
system, the z axis along the equilibrium magnetic field go, with the x
and y axes orientated to comply with a right handed system of coordinates.
All perturbed quantities are assumed to vary as exp(inx + at), so the
wave vector K of the perturbation is parallel to the x axis. Subscripts

0 and 1 represent equilibrium and perturbed gquantities respectively.

Equations and a guantitative description

Maxwell's Vector Equations

The total electric and magnetic fields and current density can be

written, when the perturbation is applied,

2t & L=+t

usiﬁg Faraday's and Ampere's Laws as given in (1.1.4) and (1.1.6) applied

to the equilibrium :

VXE, = 0 (2.1.1)
_ Ar
VB, = — 3, (2.1.2)

iKxE, = - =B (2.1.3)
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iKxB = ?j— (2.1.4)
Where the equilibrium eguations (2.1.1l) and (2.1.2) have been used to
eliminate the zero order fields from the full equations, and where the
following relation has been used :

¥Vx ~ iKx

taking the divergence of equatiens (2.1.3) and (2.1.4) gives,

5% = 0 1£.§mmmmwhrm§y8ﬂ=0
and
Efli = 0 K perpendicular to li' ]xl =0

0 has been used.

where the wvector identity a.(axb)

Transport Equations

Pressure Balance

Equation (1.l.2) is written for the electrons and the ions.
Writing e, = ~e for the electrons and e = e for the ions, Es = R for the
electrons and 55 = -R for the ions, that is total momentum is conserved,

and adding the resulting equations one obtains,

e . 33 . _ newts
et (G * eV} rmgn (G * W ME) = oW - Vel - g
(2.1.5)

where p =P, * Py Ly = L+ L, u =Y, - V.

It is more convenient in this work to use the centre of mass velocity

defined as,
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me_\_{e + miVi
= e where n_ = n, and z = 1 has been used.
—_ me + mi a 1

In terms of the centre of mass velocity and the current density j given by,

j= -—ne(\_fe - Zi) = = neu (2.1.6)

V_ and V., can be written
—a —i

V =V = be:l
—e — ——
ne
(2.1.7)
b.J
L= Vo ——
—i - ne
Ma -1 My .
Where b = (1 + —) “1 and b, = — b, Using {(2.1.6) and (2.1.7),
e m. i m e

(2.1.5) becomes

+ 9 + v.V + b 1 v .,_J_ = V v.IE _j_X_B_
—n (my mi) (Bt Y.V + m, ene (ne) ) = Vo V.E- c
(2.1.8)

Using the centre of mass wvelocity for the equilibrium equal to zero,

zo =0, V.V¥ = _\{l.v_\_r_l, is a second order term and can be neglected. Using

the x-component of Ampere's law,

ar.. _ 3Bz 3By
c Ix T Ty 2z - °
so that,
1 ] 3 bl
— . (= = _ﬁi(_ = 0 (2.1.9)
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Neglecting viscosity and using m, << m, (2.1.8) becomes,

@
<
|u

-nm, — = Vp - ——= (2.1.10)

In equilibrium, the above equation for pressure balance becomes

i

c

= 0 (2.1.11)

Vpo = lo =

therefore, io is parallel to Eo' However, Ampere's Law tells us

vxB_ = 2L 4 (2.1.12)
—o
Tomimura shows how eguations (2.1.11) and (2.1.12) can be simultaneously

satisfied. One puts Eo(x) = § jo(x) where ¢ is a constant. A solution to

(2.1.12) gives :

oX oX

. . . B .
oy o cé oy oy
(2.1.13)

oz o el oz oz

where ¢ = velocity of light.

Considering the direction of the applied electric field to be fixed, say in
the z direction, then there exists a plane parallel to the y-z plane and
passing through some value of x for which §o' everywhere parallel to jo' isg
parallel to Eo' The coordinates have this point as origin and the z axis
is parallel to Eo'

In order that the steady state magnetic field may be considered
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uniform and in the z direction, it is necessary for the wavelength of
rotation of the magnetic field to bhe much larger than the wavelength of

the perturbation, that is,

{2.1.14)

The restriction this condition imposes on the range of validity of the
model is guantified at the end of this section.
Looking at equations (2.1.13), the region of x for which this

. . . ™
analysis is valid, is close to x = 0 so that, cos LAS R 1. Hence

cb
sin %5$-m 0. From (2.1.13) it can be seen that,
B << B

yo z0

Alsco in this region,

is cbeyed. That is the unperturbed magnetic field changes very slowly
compared to the growth time of the instability.

Having decided the analysis is only wvalid for a region of x where
Bzo >> Byo' the linear analysis is now carried out neglecting By in the
perturbation phase as well. The motivation for this analysis comes from
the problems encountered in setting up a model to lock at the time
development of the electrothermal instability. These problems are not
encountered in a linear analysis when the plasma is considered infinite.
However, when boundary conditions have to be quantified, rotating fields
introduce complications. If ngo = 0 is not identically satisfied in the

numerical model, it would be impossible to separate the effects produced

by an electrothermal instability from those produced by the evolution of
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the non steady state. We wish to establish the importance of B This

yl’

is done by comparing the results from linear analysis with and without

Byl' An efficient way of doing this is to use switch parameters. That

is, multiply Byl' and every equation containing Byl which would not be

used if B __ were neglected, by o The switch parameter o, is given a

vl 1 1

value of one if B is included or zeroc if B is neglected. If B
vl yl yl

is neglected, the perturbed z-component of the electric field goes to
zZero.

Including the inertial term in equation (2.1.10) allows magnet-
acoustic waves to exist. Multiplying the inertial term by the switch
parameter Gy which is set equal to either one or zero, allows us to

jxB
examine the effects of neglecting deviations from Vp = —;z.
Returning to equation (2,1.10}, writing each quantity as a

sum of equilibrium and perturbed parts, and neglecting terms of order

higher than the first, we have, using p = nkB (Te + Ti)

LxBo _ jomimr
c C

-nmaV, @, = K nk T, + iK nk, (T, + T;) -

(2.1.15)

where the zero order equation (2.1.11) has been used, and all perturked

quantities are assumed to vary as exp(ot + inx) so that,

3f;
5~ o)

(2.1.16)
f1
ax M lkal

where fl represents any first order parameter.

Taking the c¢ross product of equation (2.1.15) with _IE(Kx g) yields .
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KxV. = 0 i.e. ¥, is parallel to K

Chm's Law

Equation (l1.1.2) is again applied to the electrons and the iens

with the same prescriptions as before, namely e, = ", ey = e, Ee = R,
and Ei = -R. The equation for the electrons is multiplied by ig, and
e
that for the ions by éi-. R can be considered to be made up of two
i

parts, a friction force Eu’ and a thermal force ET' Eu arises from the
randomization of electron velecity due to collisions with ions, hence
producing a decrease in the ordered wvelocity of the electrons with
respect to the ions and a corresponding loss of momentum of the electrons
which is given to the ions. BT represents the thermal force brought
about due tc differences in fricticnal forces fro¢ different directions
in space due to temperature gradients. The thermal force BT is neglected
here for reasons previously given.

The resulting equations are added together. Weglecting terms of
order gg, and using the relation j.V = 0 (as jx = 0) equation (2.1.17) is

i
obtained. After rearranging,

Vpe . VB mg 3 i Me 3 Ry

E +
- ne c e 3t ‘ne e

{(2.1.17)

I=
<]
{
i

|

+
sru
@{%
o ||

!é and !i have also been written in terms of the centre of mass velccity V.
using equations (2.1.7) to produce (2.1.17). Before linearizing this
equation, a comparison of the relative magnitude of some of the terms is
made. First compare the magnitude of the fourth term on the left with

that of the third. A dimensicnal analysis of Ampere's Law gives

B .
o & (2.1.18)
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where I, is the scale length over which fields vary significantly.

This is expected to be, approximately, the optimum wavelength
for growth of the electrothermal instability. The expected growth
rate gives the time over which things change significantly. Therefore,

V and ji—can be replaced by,

at
1 eBg ms 5 L (HE)£
vr\’_""mc(k_'l‘_) = aeo mi
i B el
and (2.1.19)}

3 n0e2 Mg

-y = — v ,

at v m, el

o i

For the fields to interact with the plasma,

v Y wL (2.1.20)

Now comparing the magnitudes of the above mentioned terms gives

4th term N 5th term " Tg_jL
3rd term 3rd term mi Be

Both the 4th and 5th terms are negligible provided Be >> %?3
i

8mnk_T

B e

where B, = ——p—
e Bz

Neglecting the fourth and fifth terms, Ohm's Law for the plasma

considered, becomes,

X.

|<s

VPe
ne

[
bl
|

+

Il

a
+
||

E + (2.1.21)

o I
=]
1]
Q



37

Where the Spitzer model for scalar conductivity [20) has been used that is,

{2.1.22)

i
SYTE

All parameters in Ohm's Law can be expressed as a sum of equilibrium and
perturbed parts. Using the second of the relatiens in (2.1.16),
linearizing and neglecting terms of higher corder than the first, the

three components of Ohm's Law may be written :

ikyx Pe1 _ Jyl Bzo B Jzo Byl @1

E

x1 n_e n _ec n_ec
(<) o) o
B - Vx1 Bzo - Iyl
vi c UQ
(2.1.23)
E _ Zzl Jzo 91
z1 g c “
o o
Where the equilibrium Ohm's Law has been used in the z-component,
jzo
Ezo = 3 (2.1.24)

The orientation of the vector quantities involved in this linear model are

shown in Figure (2.1)

Z
A . .
El and 3, are in y-z
o, Bo, Eo 4 B plane. E, has components

in %z, y and z directions.

Figure 2.1
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Although the x-component of the electric field exists, it dces
not enter any of the other equations pbut has been written here fox

completeness.

Heat balance equation for the electrons

As was discussed at the beginning of this chapter, the ion
temperature is considered to remain uniform and constant always. It is
only necessary to use the heat balance equation for the electrons.
Consider the heat balance equation (1.1.3) applied to the electrons.
Before splitting each parameter into its equilibrium and perturbed

parts, this reads, again neglecting viscosity,

3 3Tg
5 =
5 nkB ( 3 T (ZE.V) Te) + nkBTe V.Yé + V.ge Qe (2.1.29)
Now V. = (% i}
) ax’’

the unit vector h defining the direction of the total magnetic field is,

~ . B _ . Bly.
h o= 5] = E+5--¢ (2.1.26)

where second order terms have been neglected.

So that

=
(5

- = &8 - L8
v, = V-7, = %3 Vo= ko (2.1.27)

Therefore, the only component of the heat flux, ge, of interest is that
perpendicular to the total magnetic field. Furthermore, by analogy with
. - + ) .

Bé’ g, is alsc made up of two parts, ge Lie e When Be was discussed

previously, the thermal force was put to zero, that is, effectively, the

current flow due to a temperature gradient (Seebeck effect) was neglected.
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We correspondingly neglect the heat flow produced by the electric field

driving the current. Hence,

= —8.. (_ Ke aTe
1 g 9x (l+we4

T2y ¥5 3x? (2.1.28)
e

where mere is the electron cyclotron frequency multiplied by the electron-
ion cellision time. The coefficient of thermal conductivity K, along the

magnetic field is reduced by a factor l/(l+me2

Tez) due to the inhibiting
effect of the magnetic field on thermal conduction across the field.
The expression for K,e is given later.

Qe is the heat transferred to the electrons due to collisions
with the ions. The electron velocities are randomized in collisions and
the energy associated with their ordered velocity, u = Ee - Zi’ is
converted into heat. The heat generated in the electrons is equal to the
work from the frictional force on the electrons by the ions, "Bh'Ef 1f
Te > Ti' heat is transferred from the electrons to the ions. Therefore

the energy exchanged per unit volume per unit time from the electrons

to the ions is,

0 - 3 Mg n
ie m, T
i e

kB (Te - Ti) (2.1.29)

where T, = collision time between electrons and ions. Neglecting the

fraction of —Eu.g_acquired by the ions

0
Il

-R .u - Q,
- — Qle

Q = — =3 — (T - Ti) {(2.1.30)

Scalar electrical conductivity has been assumed.
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Including Bremsstrahlung loss effects Qe' The energy radiated per

unit volume per unit time by the electrons is,

- 2. 4
Pp = Br n T,
Kgm 6
where Br 8 /3me m 1.5 x 10 (2.1.31)
. s - [21) , \
is the Bremsstrahlung radiation ccefficient . So that Qe in equation
{(2.1.25) 1is,
2
1 3mgnkpy 2 }
Qe = 5 - miTe (T - Ti) - Br n Te (2.1.32)

The transport coefficients and parameters which will be employed freguently

in this work are :

The electron thermal conductivity[22]

nkg T, T
Ke = .g_._._.gm._._e—_e (2.1.33)
e
[22]

the electric conductivity

ne’te (2.1.34)

the electron cyclotren frequency

{(2.1.353)

[23]

and the electron-ion collision time
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3/2
3m? (kg T,) | (2.1.36)

4(2m) % ne* log A

Using relation (2.1.36) in relations (2.1.33) and (2.1.34) gives,

respectively,
K = cl T 5/2 (2.1.37)
e e
15 kg2/2
where cl = i B4 = 1.04 x 1010 (2.1.38)
8Y2r m_* e’ log_ A -
e e
and g = al TeB/2 (2.1.39)
3kg3/2
where ol = B * 6.97 x 10° (2.1.40)

4v2Tm meé e2 loge A

Returning to the heat balance equation (2.1.25), the electron velccity may

be written in terms of the centre of mass velocity using the first of

- 3

equations (2.1.7). We also use the fact that jx = 0 and V = %_3;.

Using equations (2.1.28), (2.1.32) and (2.1.34) in equation (2.1.25) the

heat balance equation for the electrons becomes

aT aT av. K. k 3T
3k 22430k v 284k X - i( esz 2
2 B ot 2 B x ox B e 8x ax (l+me T, ) 9x

2 2 2,2
ik 3n“e“kg (Te-Ti) 2 &
+ G . o - Br n Te (2.1.41)

1 -
Writing each parameter as a sum of its equilibrium value and a perturbed
part, using relaticns (2.1.16) and neglecting terms higher than first

order, equation (2.1.41) becomes,



2 .
3 . _ kx“ Keo kp 2)z0dz1
2 BKp%Te1 * ey 1% Teo Vi1 (Tre_21_2) Tel ¥ g
eo eo o
2
_ 3np"e"kg Teg (Tel L 2 Ti
m.J T n n T
i‘o eo o o “eo
o T 2n
1, 1 “el 1 2 l
o [ == = 2.1.42
[U * 2 T * n ) Br no Teo { )
o eo o
Where the zero order heat balance equation has been used,
j 2 2a2
J Ins<e?kp (Tan~Ts )
<o _ To ¥ eoT i | g 2p @ (2.1.43)
g m,o ro "eo
o} i'o

This equation de;cribes the steady state before the perturbation is
applied. The Ohmic heating rate is balanced by the equipartition rate
from the electrons to the ions and Bremsstrahlung radiation loss. The
ions, therefore, act as a sink of energy in this model.

It should be noted here that in the perturbation phase the
y-component of the current gives a negligible contribution +to the
perturbed Ohmic heating rate to first order. Also the perturbed Chmic

heating is a maximum where io'ji is a maximum.

Continuity Equation

Starting with equation (l1.1.1), it is a simple matter to obtain

the perturbed continuity equation,

unl + 1kxn°V¥l = 0 (2.1.44)

where the centre of mass velocity has been used to replace species

velocity.
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Having completely described both the steady and perturbed
states of the plasma, we are now in a position to quantify the assumption
of the wavelength of rotation of the steady-state fields being much
larger than the optimum wavelength for growth of the electrothermal
instability. Using equations (2.1.13) and (2.1.43) in relation (2.1.14)

and after some algebra we find,

wavelength of rotation >> wavelength of instability

T
provided %E.(ETErE%ErTJi >> 1 (2.1.45)
eo 1

where the Bremsstrahlung term has been neglected in the derivation of

(2.1.45) for simplicity.

2.2 THE DISPERSION RELATION

Summary of Equations

The object of this exercise is to cbtain an equation for the
growth rate, o, as‘a fraction of wave number kx' that is a dispersion
equation,

The equations derived in the last section are summarised here to
make it easier for the reader to follow the brief account of how the
dispersion relation is obtained. Equations (2.1.3), (2.1.4), {2.1.15),

(2.1.23) and (2.1.42) can be written,

Faraday's Law

(2.2.1)

+
"
td
[
I
ale
v:]

zl
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- -1
lkx Ezl = - Byl {(2.2.2)
Ampere's Law
X _ 4T .
lkx vl = 3 jzl al (2.2.3)
. - 4an
lkx le = p. jyl (2.2.4)
Pressure Balance
—nomi a Vxlaz = lkx nO kB Tel + lkx nl kB(TeO+Ti)
Jy1 B jq B
_ 2yl ©°z0 + zQ Syl (2.2.5)
G c
Chm's Law
Vxi Bzo jxl
Eyl - p = 5 (2.2.6)
0
jzl ij o1
Bl T 5T o2 (2.2.7)
0 0
Electron heat balarce
3h k aT. 4k n ok T v, =-_5x keoks
- 2 2
2 o' B el x o B el xl (1+meO T ) el
L. 23z0 Jz1  3ng2%e?kp Tep (Tel L 2n1 Ty,
= - J
00 miGO TeO n0 nO TeO
g T 2n
- 2 1 %1 1 Cel | 401
Br A, TeO [c >T _tTh ] (2.2.8)
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Continuity Egquation

anl + lkx no vxl = 0 (2.2.9)
g1
It is also necessary to use an expression for G From (2.1.39)
0
(¢} Tl
El. = %’E;L" (2.2.10)
0 el

Equation {(2.2.1) is used as an expression for Bz Using this in equation

1°

(2.2.4) gives a relation between E and jyl' which is used in equation

vl

(2.2.6) to produce an expression for jyl in terms of Vx This

1t
expression is used in equation (2.2.5).

Equation (2,2.2) gives B in terms of Ezl' then eliminating

vl

B from equation (2.2.3) gives Ez

vl in terms of J,q- Using this equation

a
in equation {2.2.7) gives jzl in terms of El-(and hence Tel/Te
0

is substituted in equation (2.2.3) to give B

1

0). This

as a functicn of T ..
el

This expression is used in equation (2.2.5). HNow nl is written in terms

vl

of Vxl from eguation (2.2.9), therefore equation (2.2.5) becomes an

equation with Tel and Vxl as the only perturbed guantities. That is,
2
. ng kg (Teg*tTi) ky? 90 Bzo
ik Vv, Inm aao,+ + .o rroandl|
a 2 0
c (lt—og—)
c<ky
- [k 2n ¥ - AT 9 nozesz (l-Ti/Teo) o]
el ' "x 0B~ cZ 2 4ToQoal
m, (1 X )
%%
3 Brig2Tep ! 4mogay
-3 o500 ] (2.2.11)
c2(1 o
%

where the-equilibrium eguation (2.1.43) has been used.
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Another equation in terms of Vxl and Tel is obtained from
o]
equation (2.2.8). Using an expression for j in terms of t {T /7T
zl 00 el’ "el
using relation 2.2.10), derived as explaihed previously, and using

equation (2,2,9) to eliminate n1 from equation (2.2.8), the following

equation is obtained after rearranging,

22 i
6ny e kg (Tep-Ti) . 2By n02 Tao"

lkx Vkl L - o kB TeO * m, 6_« @ !
i "o
. 2 2 2 2
=7 { §_n k o + kXZREOkBA + 0o © 5 - X 2 kB(i-Ti/TeO)
MO GO0
el © 2 0B (190 Tap ) "% m.o (l+—z°—z£)
10 c kx
2., 4 38rnozTe0“%
5 Tep @ 4wooaal)
czkx2

This leaves two simultaneous equations in Vﬁl and Tel which are solved
to obtain a dispersion equation. The dispersion equation is written in

dimensionless form, using the following dimensionless quantities.

m.oc o kT c 2 :
_ io _ ,B7e0, M 2 oM,
* =T e? y= g ) KT 3y Me ky
o] i z0
where aeo = electron Larmor radius
at equilibrium
8mnokpTeg 3noc2
T = — E = ————
e Bzo SonKeo
Brmic
R = k';ml Z fo = L+ meOzTeO2
B el
T, ¢~B
i 0 zZ0
r = E;g W = 8o%0 ~ T ec (2.2.13)

With the quantities defined in (2.2.13), the eguation describing the
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dimensionless growth rate, x {or damping rate if x is negative), as a

function of the square of the dimensionless wave number y becomes,

G 0 X2 + 20

172

h Y 1 2R
2X [‘ﬂ' (l + 31(14"&:—{;)) +C£l [1 + 3]]

e

2 0q+0a)
3 p 4y” (1772 24 (2 2
+ x [“7(Ef +u2]+y(Wa1(3+T+ﬂ)

e o e

4 R
+ F;'QZ(GI -2 4 3T + 3-(2a1—1))) ]
gyday g2 5+a1) o
2 2y (e (L2010 2,2 2
R R (w2 ¢ T+ T(Leg) + 5=+ o (14T
e o e e o e
4 R 2 4 ,2._1% =
* oy (3722 2) + vl (R -+ T -3 + (“e ~549T) ) ]
+ [ 3._.2.4Wz (-—1 (L+T+a (1+T)-|;-2—)+E+T)
*x LY 3 ef 1l m 3
[#] e
2
2 2W- 4 -2 - & -g - 2 ~1)~2-
+ T (“e (37 = 2 - ) + 3T(2T+3a,+2) - 8 - Su; + R(FT(20,-1)-2 o))

+ 20, y W& (3(1-T) + R)2 ]

1
L ooy BV LT g 8wl (372 + 37 - 4 - LT
T et ¥ T 2 3
e o e
2 4W? 2
+ vy 7;—-al (3(1~T) + R) = 0 (2.2.14)
e
Putting R = 0, and al = a2 = 1, in the abowve equation gives the same
(3]

dispersion relation as obtained by Tomimura , as indeed it should.
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2.3 RESULTS

Analysis of Dispersion equation with Bremsstrahlung radiation loss

A detailed analysis of the behaviour of electrothermal instabilities
in the linear regime can be found in references [2, 3]. It is only
necessary here to observe the specific effects of Bremsstrahlung radiation

loss. o, and o, are set egqual to one, therefore the inclusion of

1 2

Bremsstrahlung is the only difference between this analysis and that

in references [2, 3].

Condition for onset of nen—convective unstable mode

The conditicon for onset of the non convective (real x only)
unstable mode can be found by putting, x = 0, in equation (2.2.14).

This determines the condition for onset because x is real at x = 0 and,
21 ﬂeaefo

dx 2 \ .
— - 3
ay 0 at x 0 . Multiplying through by §_ZTI:§T§Z'glVES’

TLEf
2, B ° w2 p3mad) -
Yt oD ((372+37-4) - R

{1+T) .
3 y) 'y

2
Ta efo

CTRET TN (3¢1-1) (3(1-T) + 2R) + R?) =0 (2.3.1)

which is of the form,
yz BN by + C = 0] (2-3-2)

with solution

Hence, for real and positive y {y is proportional te kxz), two conditions
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are required. These are :

3T2+3T-4-R~(-}—§E—)-<0
and (2.3.3)

efo _ 2(9(1-m2 + 6R(1-T) + R?)

+
(341 (372 + 3T - 4 - RLE%EL)Z
1 By my al Ty
By putting t = T and R = Bt, so that B = R vy the first of the
B

above conditions becomes,

3Bt? + (12 + B)t2 =9t -9 > O (2.3.4)

and the second becomes,

1
E; N (18t (£-1)2 + 12Bt3 (t-1) + 2Bt%)? (t+l)%

.

(2.3.5)

2 _ - 2 (it 2. 2
{4t 3t 3 + Bt (t+5))(1 T Teg )

If B = 0 in the last two relations, the necessary and sufficient conditions

for onset of a non-convective unstable mode, as obtained by Tomimura and

[2]

Haines , are recovered. These are
4t?2 - 3t - 3 > 0 1leading to t > 1.3187 (2.3.86)
and
(Jiﬂé - (t-1) (t(t+l))£ .
18 Z (4t€ -3t - A +w_ 1 _“2)i
el eo

Comparing the first of (2.3.6) with (2.3.4), it is apparent that the
inclusion of Bremsstrahlung radiation loss causes the plasma to be mere
unstable to electrothermal instabilities, because it reduces the value
of t (£t = 3;?-) above which the unstable mode is present. The higher

. i
the value of B (B = constant T;), the lower the threshold value of t
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above which the plasma is unstable. At B = 1.5 it can be shown that
the threshold value of £ is ¢ = 1.0. As the only source of energy for
the ions is from equipartition in this model, t must be greater than
one, but t must be less than one to be stable (at B = 1.5). Therefore
Ti = 1.3 % 109K is the maximum deuterium temperature attainable by
Joule heating in the presence of pure Bremsstrahlung in a homogenecus,
stable plasma.

Figure (2.3) shows a plot of x against y from equation (2.2.14)
11

, T = 1.536 x 10°, T = 2 x 10%k,

for m_ = 0.02267, € = 2.259 x 10
e eQ

Ti = 108k (proporticnal to kxz). From the graph, there exists a purely
growing mode for y greater than about 10-2. For smaller values of y

0—2.2

(1 >y > 10-3) there is a growing mode with non zero values of lmag

X. The effect of including Bremsstrahlung radiation loss is to increase
slightly the growth rate of the purely growing mode (for y > 10-1'9).
The purely growing mode is of greater interest for two reasons. For
conditions relevant to present day Tokamaks (high mere) the growth rate
of the non—convect;ve mode is much greater than that of the convective
mode. Also the wavelengths of the non-convective modes are smaller (v
centimetres) than that of their convective counterparts.

Physically, the inclusion of Bremsstrahlung radiation loss

1

increases the growth rate because of the n2'I'e2 dependence of the

radiation loss term. Substituting (2.2.9) into (2.2.11) gives, with

al = a2 =1,
2m =%
ng r 25 k ar 9 ng2elkg (1-T3/Teg) 3 BpNy“Teg 2470,
a Tel | Ky'Mokg = 7 3 m (L 4ﬁﬁoa) ) 2 1 Aooa )
1 czkx2 c kx
n., =
1 noKkp (Teo*Ti) ky? UoPzo”
[ nma + - + T Ir550 ]
c°k
X

(2.3.7)
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Each term in the sguare brackets of the denominator in (2.3.7) is positive,
for positive o provided Teo > Ti' The condition for nl to be of opposite

sign to T in the region of y for which the growth rate with

el’

Bremsstrahlung is greater than that without is,

2,2 -T. 2p -~}
n ek (1-T;/T..) B.n_<T 4no
k 2n k> 4m 2 Yo B 41 eo’  37ro Zo o (2.3.8)
x ‘o B ¢Z2 m, TaoQ 2 9 Moo
1 (It+=—o—7) <t (l4=—g—y)
c“k ck
X X
or in terms of x and vy,
9 3 2y
x > > (1 - Ti/Teo) + 2 R F; {2.3.9)

This curve is also shown in Figure{2.3a). For real positive values of

. 0.2 =1.53 .
x above this curve (for 10 >y > 10 ) the increased growth rate
is produced by the following mechanism. The perturbed temperature peaks
coincide with the density troughs. Therefore the stronger dependence of

}

the radiation loss term on density than on temperature (nzTe ) leads to a
decrease in radiation loss rate in the temperature peaks. The converse
argument applies to the temperature troughs. Hence the Bremsstrahlung
term helps to driwve the instability.

For lower values of y the growth rate is increased but condition
(2.3.9) does not hold. For the same steady state values of density and
temperature, a higher electric field is required to balance the extra
Bremsstrahlung loss term. Hence the perturbed Ohmic heating rate is
higher leading to a slightly increased growth rate, because the corresponding
change in the Bremsstrahlung loss does not quite cancel the effect of
the extra Ohmic heating.

We conclude this section by noting the inclusion of Bremsstrahlung

only has a significant effect at very high temperatures because the

Bremsstrahlung coefficient is very small. Its ability to enhance the
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growth rate of the instability is a consequence of its nzTe% dependence,
and is primarily brought about because of the inclusion of ion motion
which allows the density to change. Impurity radiation, which
represents the most significant fraction of radiation loss in present
day devices, would also be destabilising. Impurity radiation from
free-free and free-bound transitions could have an even greater
destabilising effect because the density and electron temperature

Y, where vy v fé} The value of Yy depends upon

2
8 1[24]
the temperature, and for temperatures above 10 K y = 5 .

dependence goes as n2Te

2.4 RESULTS

The Effect of neglecting the y-component of the Magnetic Field

The effect of neglecting the y-component of the magnetic field
on the linear behaviour of the electrothermal instability may be assessed
by putting a, = 0, a, = 1 in the dispersion relation, equation (2.2.14).

The equation reduces to a quartic in x and cubic in vy,

By o3 (X (14 Ly 4a3p_o R
x 2x° I ™ {1 + Efo) + 3T 2 3 ]

2
2 4y 2.2 2, ., 4 2 -k
+ x< [ ;?E-f;-l- y(W (3 + T + Tl'e) + _n,e (3T 2 3)] 1 (2.4.1)

2y22
29w 1 25 42 2 (2 -, -R
+x [ o (sfo (l+T+“e) 3+ T) o+ 2y (“e (31 - 2 - 3

4W2 (1+T) y3 L 4w%y?
m

m ‘ef
e "o

+ 3T(1+T) -4 - R(l+-§-)) ] + (3T2+3T-4-R(1-%))= 0

The only condition for onset of the non-convective unstable mode is now,

3Bt3 + (12 + B) t2 -9% -9>0 ‘ {(2.4.2)
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This is identical to one of the requirements for onset obtained in the

last section. However, there is not a condition on £ as there was

4
before (¢ « nO/Teo V.

Figure 2.4 is a plot of x against y for both equations (2.4.1)
and (2.2.14) clearly showing the consequences of neglecting the y-
component of the magnetic field. The purely damped mode, (labelled 1
on Figure 2,4a)) does not exist when BY is neglected. The damped
magneto acoustic mode (labelled 2 on Figure 2.4a) and b)) is
virtually unaéfected by neglecting By. This mode is non-dispersive,

4

(imagx/y* = constant) with much larger values of [xl than any other

mode. The mode labelled 3 in figure 2.4 is purely damped for all

is neglected, but when B is included this mode

values of y when B vyl

vl

has values of ¥y for which it is growing and is convective (non-zero
values of imag x).

The most important mecde for our purposes is the purely growing
mode {labelled 4 in Figqure 2.4) representing an electrothermal

instability. This root is considerably changed by neglecting B at long

vl

wavelengths (small y). If Byl is included an optimum wavelength for

growth exists. sShort wavelengths (large y} are damped due to perpendicular
electron thermal conduction, while long wavelengths ﬁre more slowly
growing because of Faraday's law, which acts to reduce the perturbed
current. If BY1 is neglected there is no such reduction in the z-component
of the perturbed current; the Ohmic heating rate is larger and hence the
growth rate increased. The behaviour of the z~component of the current

is more important than that of the y-component, because the contribution

to the OChmic heating by jy is second order and therefore negligible. The
amount by which jzl is reduced depends upon the wavelength and can be

found using equation (2.2.2) as an expression for B substituting this

yl’

into equation (2.2.3), giving E, in terms of jzl' and finally using this

1
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equation to eliminate Ez from equation (2.2.7),

1

g ATO 0
\ s 1 oBel -1
d21 T e [P T (2.4.3)

The effects of including B . are negligibly small if,

vl

(2.4.4)

or, in terms of dimensionless quantities

Te* c 1 2.4.5
2y (2.4.5)

The reduced Ohmic heating rate is not the only reason for the difference
in growth rate. The phase angle hetween the perturbed number density

can be found using

n. and the perturbed electron temperature ‘I‘e

1 1

equation (2.2.9) as an expression for n, and substituting this into

equaticn (2.2.1l1l) to give,

ng2e?kg (1-Ti/Teo) ay -3 BrnozTeo-h'Woc‘l

4w 9
-7 . % [k %nk - -5= ]

1 — AT 00 gm0 00
e - X ©oB cc 2 m. (1 o l) 2 c? (1 o l) :

i czkx2 . czkx2

Ay = nky (T__+T.) K 2 5_B,7
[ nmyae, + P + IToo0 |
¢ (g 2
X

(2.4.6)

In the wavelength range for which the growth rate of the purely growing

mode with BY1 included is much less than the growth rate without, the

sign of the upper square bracket is negative if a; = 1 and positive if

al = 0. The sign of the lower square bracket is always positive. Therefore
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n are in phase if ¢

and Te =1 (Byl included) and 180° out of

1 1

phase if e, = 0. The dominant energy loss mechanism in this region

1

is equipartition from the electrons to the ions, as can be shown by

comparing the size of the terms in equation (2.2.8). Equipartition
2 3/2 . .

goes as n /Te . If n, and Tel are 180° out of phase this term is

are in phase.

smaller in the temperature peaks than it is if n, and Te

1 1l

Conversely, it is larger in the temperature troughs. This means the
equipartition term tends to increase the growth rate for the case with
o, = 0 above that for the case with a, = 1, by making the energy loss
comparatively lower in the temperature peaks and higher in the
temperature troughs.

We may conclude this section by stating the effect of the y-
component of the magnetic field on the linear behaviour of the electro-
thermal instability is negligible prowvided the initial conditions and
the wavelengths considered are such that relation (2.4.5) is obeyed.

In section (2.1) we established the zero order y-component of
the magnetic field is wvery small and should be neglected in a numerical
model to follow the evolution of the electrothermal instability. To
include the perturbed y-component of the magnetic fiald only would
therefore necessitate separating zero order and perturbed components
of B and all other quantities affected by this component of B, and
solving for the perturbed guantities only. Clearly this is not a
viable proposition. Having shown the y-component of B has a negligible
effect under certain circumstances (2.4.5), we can circumvent this

problem by neglecting BY totally in the numerical model.
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2.5 RESULTS

jxB
The effect of neglecting deviations from Vp = =;=

The consequences of ignoring the inertial term on the linear
behaviour of the electrothermal instability may be determined by

putting a, = 0 (al = Q) in the dispersion relation, equation (2.2.14},

2

and comparing this to the dispersion relation obtained in the last
section,equation (2.4.1). We shall not compare the two curves with

ga, =a, =1l and o, =1, a, = 0, because this work is, for the most

1 2 1

part, concerned with conditions such that the y-component of the

2

magnetic field may be neglected. The dispersion relation obtained

with @, =, = 0 reduces to a quadratic in x and y, namely,
i ™
2 TeT 5T 5, (T 2
x[l+2 +3 ]+xy[3+Ef +T+-;;gf]
o e o
1 4 2 TI'e'I|
+ x [ 3neT( +T) = ﬁe -4 + 6T - R 03 + -5 + we) 1
222 L er2igmoga2r(14D)) = 0 (2.5.1)
neefo 3

It can be seen by inspection of equation (2.5.1) that the condition for
onset of the electrothermal instability does not differ from that
obtained in the last section.

Figure (2.5) is again a plot of x against y for both equations

(2.5.1) and (2.4.1) with T, = lOSK, T =2x 108K, w T = 1.54 x 106,
i eo e e

T, = 2.27 x 1072, R = 0.22 and ¢ = 2.259 x 10" "', The most important
point to notice, from the point of view of this problem, is the neglect
of the initial term has a negligible effect on the behaviour of the

electrothermal mode (labelled 1 in Figure 2.5). The growth rate of

this mode without the inertial term is very nearly the same as that with
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for all wavelengths.
For the wavelength range of interest, x is real, which brings
us to the only difference between the dispersion relation with e, = 1

and that with a, = 0. The root with a large imaginary component

ixB
{labelled 3 in Figure 2.5) does not exist if Vp =:f;= is used (a2 =0).

This root is non-dispersive and has a phase velocity equal to (VA2 + Csz)%
where Vh is the Alfvén speed and Cs the sound speed. It can therefore
be identified as a damped, fast, magneto acoustic wave.

As the inertial term may be neglected in the equation for
pressure balance without substantially affecting the behaviour of the
electrothermal instability, this term will be neglected when studying
the development in time of the above mentioned instability. This is
because when any initial value problem is modelled on the computer, one
is always restricted to using a time step which is smaller than the
fastest time scale associated with the problem, in order that the results
obtained accurately represent the true solution at any point in time.
Even if one were able to use a finite difference scheme which is
numerically unconditionally stable, that is the errors in the results
do not amplify without bound, regardless of choice of time step, the
results may still be inaccurate if the restriction on the time step is
not adhered to.

Iooking at Figure 2.5, the wavelength range of interest is the
region where the electrothermal mode grows in time as opposed to damps.

The dimensionless growth time, tg' of the electrothermal instability is

given by

tg = [xl] (2.5.2)

where subscript 1 means the value of x for the root labelled 1 in
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Figure 2.5 while the dimensionless damping time of the mode labelled 2

is,

td = T;;T (2.5.3)

As can be seen from the graph, lel and |x2| are of order one, therefore
the time scale over which parameters change is of order of one scale
time for these two modes. If the inertial term is included, however,
the magneto acoustic mode is present which has a damping time of order
of 10_1 of a scale time and an oscillation period of order of 10_‘6 of a
scale time.

Clearly, the fastest time scale associated with the problem
is about 106 times greater if the inertial term is included. It is
therefore advantageous, from the point of view of computational speed
and efficiency, to neglect the inertial term in any numerical model
designed to follow the evolution of the electrothermal instability in
time intc the non-linear regime.

More generally, the time scale associated with the magneto
acoustic wave is much smaller that that associated with the electrothermal

instability if,

A YVer
v A
m

;3 << 1 {2.5.4)

where'%nand te refer to the time scale associated with the magneto acoustic

wave and the electrothermal instability respectively, and Vm and Vet refer

to their associated velocities. Vet may be defined as,

2

scale length my 1 nee
v = : = a_ (—)
et scale time 80 m, m;c

{2.5.5)
o
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while Vn is given by

therefore equation (2.5.4) becomes,

tm Tre
-E—- = m-:ﬁ:-—)— << 1 (2-5.6)
a a e

Provided relation (2.5.6) is true, it is worthwhile and, more importantly,
1XB

valid to neglect deviations from Vp = ;2— .
SUMMARY

We have shown the inclusion of Bremsstrahlung radiation loss to
enhance the growth rate of the non~convective electrothermal mode.

We deduce from this result that impurity radiation would also have a
dastabilising effect.

The y~component of the magnetic field may be neglected without
substantially affecting the linear behaviour of modes with wavelengths
up to and including the optimum wavelength for growth. Hence we may
neglect this component in the numerical model to follow the development
of the instability into the non-linear regime.

The inclusion of the inertial term in the equation for pressure
balance allows the existence of damped fast magneto acoustic waves.
Neglecting this term does not considerably affect the linear behaviour
of the electrothermal instability. For computational speed this term
will be neglected in the numerical model.

On route to obtaining these results we have described the
system, the approximations and set out the equations on which our
numerical model is based to follow the evolution of the electrothermal

instability.
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CHAPTER 3

NON-LINEAR, STEADY-STATE SOLUTIONS

INTRODUCTION

In this chapter a model is described, and the consequences
discussed, for the non-linear saturated, steady-state behaviour of the
electrothermal instability. As will be shown later, it is possible for
this instability to exhibit saturated, steady-state profiles of current
density and electron temperature which have a large amplitude, filamentary
structure. Furthermore, it is demonstrated that runaway electrons and
ion acoustic instabilities can occur in the sgpatial maximum of the
current density and electron temperature. Some calculations are presented
showing the effect the presence of these filaments would have on energy

4]

transport.

3.1 THE NON-LINEAR STEADY-STATE MODEL AND ASSUMPTIONS

It is assumed the electrothermal instability saturates to a
steady-state in which the current density iz is again everywhere parallel
to the magnetic field Ez' We know the spatial wvariations of the relevant
parameters occur on a sufficiently small scale length that the larger
scale, slower change in total pressure of the confined plasma can be
neglected. We consider an equilibrium in one space dimension in which

the total pressure p is a constant, that is,

P = n(x) kB (Te(x) + Ti) = constant (3.1.1)
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where the ion temperature Ti is considered uniform. The ion temperature
may be considered uniform because any fluctuation in ion temperature on

a length scale of order of the wavelength of an electrothermal instability
would be quickly flattened due to the ion thermal conductivity being

much larger than the electron thermal conductivity perpendicular to the

magnetic field, provided meTe >> 1

i
Xy m. %

Xle e

where xi and Xyg are the ion and electron thermal conductivities
perpendicular to the magnetic field respectively. Faradays' law dictates
that the electric field Ez is also uniform.

In the steady state the electron energy equation consists of
Ohmic heating, as the only energy source term, balanced by equipartition
to the ions, electron thermal conduction perpendicular to the magnetic
field, and Bremsstrahlung radiation loss. Assuming mezrez >> 1 the

electron energy equation {2.1.41) becomes,

. 2
iz _ 3n2e2kp (Te-Tj! 2} _ d  Kekp dTe
. = n;o PEATS S G T & (3.1.2)

The number density, n, may be eliminated from egquation (3.1.2) using
equation (3.1.1). Using Ohm's law, equation (2.1.24), equations (2.1.33),

(2.1.34),(2.1.35) and (2.1.39) in egquation {3.1.2) we obtain,

)

2m %
olp 325 2 3p2e? (Tg-T;) . Brp“Te* d (5 p2c2 dTe
=TT o 2 wIm 372 ¥ Z21m om 12  Aw ko
e z k_ (T +T,.;%m.alT k_ < (T +T,) dx ‘2 alT 2B<(T +T,)¢ dx
B e 1 1 e B e 1 e e 1

(3.1.3)

Equation (3.1.3) may be written in dimensionless form by defining t = Te/Ti
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kgT; >/ ?mal
and multiplying each term by “_—?E:;T__—-to give
125 2 n 1
c P MifpTi 32 age-y B0 e g Smezkels 1 e
ple® / (£+1)2€3% 7 Tk e (£+1)%  dx "2°eBy’ m, (£+1)%t? dx

(3.1.4)

As each term is dimensionless, we can define a parameter AH defined as the

ratio of the electric field E_ to some natural electric field, —T__jéfL—__?;
z atT, (m,k_)

i.e.

120 4
m.k_a* T,
a2 = 1—;’2-52;1322 (3.1.5)

The natural scale length for variation of Te(x) is approximately
the ion Larmor radius. It is therefore convenient to replace x by s

defined as,

no* (3.1.86)

The Bremsstrahlung term defines a characteristic ion temperature for
radiation loss TR’ the strength of the dimensicnless radiation term being

determined by,

T, alg m
i ri
B = —— = —=m (3.1.7)
T k.e i
R B
8
where T, = 9.1 x 10 for deuterium, Equation (3.l.4) is simplified if we

R

employ a distorted s dimension which we c¢all vy, defined by,

d _ 1 EL
dy - ©i(? as (3.1.8)
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This eguation now conveniently has only a second derivative and no

fractional powers, that is,

2t _ _3{t-1) B _ d%t
Py (t+1) B2 (t+1) T T (e+1) 7 ay? (3.1.9)

Before attempting to solve equation (3.1.9}), it is instructive to consider
the behaviour of the eguation as to varies, where to is defined as the value

a2t
of t at which a§z-= o,

3 (to-1) B
H - Ot Tt T’ (3.1.10)
o o o' © e

Figure (3.1) shows a plot of AHZ versus to for B = 0 (no Bremsstrahlung).

_ — ;
AH2 has a maximum value at t0 = §i§§Z.= 1.3187. This is the condition for

onset of the electrothermal instability and gives confidence in the
constant pressure model to describe both marginal stability and the non-
linear steady-state.

The maximum value of AHz(to) for B =0 is 7.755 x 10_2. For

2 a’t X

values of AH2 above the A _“-t_ curve, 3§Z'< 0, whilst under the curve we
have g§§-> 0, as can be seen from equation {3.1.2). Therefore, for values
of AHZ-greater than the maximum value, t(y) can only vary monotonically
on the length scale of an ion Larmor radius. For solutions of t(y) which

are flat or periodic it is necessary that the electric field be less

than a critical wvalue Ec given by,

0.278 ep

= T (3.1.11)
c (mikB) o Ti

If radiation is included, the critical value of to' toc at which AH2 is a

maximum is the root of,
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3Bt 3 + (12+4B) t Z 9t -9 = 0 (3.1.12)
oc oc oc

toc is the value of Te/Ti above which the homogeneous plasma is unstable
to electrothermal instabilities with Bremsstrahlung loss included as
found in Chapter 2, section 3. fThe maximum electric field is alsc
increased to EcR when radiation loss is included. Figure (3.2) is a
plot of both toc and EcR/Ec as functions of B, showing the plasma is
unstable at a lower value of Te/Ti as radiation is increased, while the

maximum electric field that c¢an be applied to sustain the discharge

increases.

3.2 FILAMENTARY STRUCTURE

Referring again to figure (3.1) we can say flat profiles for t,
i.e. £ = constant, can only occur on the to curve. Also both small
and large amplitude periodic, oscillatory seolutions for t, for given

values of AH2 and B, are finite lines parallel to the t axis which must

include an intersection of the AHZ - to curve on the right hand branch

only. This is because oscillatory solutions have maxima and minima.

2
The minimum value of t must lie in a region where §§§ > 0 i.e. under

2 , . . .
the AH - to curve, while the maximum value of t must lie in a region
a%t .
where a;z-< 0, above the curve, and clearly the maximum value of £ must

be larger than the minimum value.
The maximum possible amplitude of temperature oscillations may be

estimated without solving equation (3.1.9) completely, as follows.

Multiplying equation {3.1.9) by Zgg-and integrating with respect to y

we obtain,
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at. 2 4 9 24 6 t+1
(E§° = ¥t enet T T om0

1 ] - 2B
(t+1) 3(t+l

- 2AH2 [An(t+1) + f3-+ constant of integration

{3.2.1)

As will be shown, the constant of integration determines the amplitude

of the electron temperature variation. For given values of AH2 and B

2
there are two real values of t, (values of t for which %;% = 0). Let

us refer to these two values of t_as t_ . and tgy (£ _, > ¢t As
o ol o2

01)'

stated previously, the minimum value of t must lie between tOl and LY that
2 2

. . t .
is in the region where g;% > 0. Figure 3.3 is a plot of g;z-agalnst
2

t for three values of AH with B = 0 in all three cases. If the

minimum lies arbitrarily cleose to either to or to2 the value of the

1
second derivative and all higher derivatives tends to zero. BRetween
these wvalues, the second derivative has a maximum value. If we choose
the minimum value of t, tmin' we know the left hand side of equation
{3.2.1) is equal to zerp at t = tmin' Therefore, this determines the
constant of integration. The maximum value of t, tmax' can now be
determined by finding a second value of t for which the left hand side
of equatien (3.2.1) is equal to zero, using Newton's method. Table (3.4)
shows the values of tmax found as described above for randomly chosen
From this we can see t

values of t_ . 1lying between t . and t
min o o

1 2°

increase as tmin decreases. Therefore the maximum amplitude of the
temperature os¢illation corresponds to the minimum value of t lying

arbitrarily close to to For the case B = 0 the maximum value of

1

t is plotted in figure 3.1 and lies to the right of the A 2

- £t curve.
max H [o]

Having found the maximum possible amplitude of the temperature
oscillations we can make an interesting observation with regard to

the profile of Te(x). For large amplitude oscillations the minima occur
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Figqure 3.3
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with very small values of —r, whilst the maxima have comparatively

large and negative values of é—g.
flat and shallow and the maxima sharply peaked.

the case when equation (3.2.1) is integrated numerically.

dy

dy

3.4

TABLE

A; = 0.5x10'2, B =
o = 4.146239
o2
t .
min
1.006852
1.7
2.4
3.1
4.146238

2

2 . 1.5x10" , B =

toz

2
o
02

= 2.923649

t .
min
1.021806

1.5

2.0
2.923648

= 5x10'2, B=0,

= 1.842697

0. tol =

t
max

278.2075
35.5162
10.3184

6.0204
4.1446

1.006851,

0, t ., = 1.021805

ol

t
max
12.4712
7.5814
4.6722
2.9239

t = 1.096616

ol

t
max

2.6651
2.6099
2.3683
2.1112
1.8445

This suggests the minima are very

This is shown to be
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3.3 NON-LINEAR STEADY-STATE SOLUTIONS

Equation (3.2.l1l) can be integrated numerically as follows.
It is convenient at this stage to revert to the undistorted
dimensionless space s. Using equation {3.1.8), and taking the square

root, equation {(3.2.1) becomes,

dt

i [ 4t (t+l) + 9t(t+1}2 + 24t(t+1)3 + 6(t+1)™

|
1+

30t (£+1) Qn(E%lﬁ - ZAHZt(t+l)3 [ {t+1} &n (t+1) + 1 ]

-%B—t(t-bl) + ¢ £ (t+1) " ]é = + G(t) (3.3.1)

Therefore s can be found as a function of t, namely,

at
s(e) = * [ g S (3.3.2)

where C2 is a constant of integration. The first constant of integration,
Cl' is determined by choosing the minimum temperature, tmin’ for given
values of AHZ and B. The maximum temperature trnax is then found, as
described in the last section. Using tmin as the lower limit of the
integral, we can find s(t) by varying the upper limit from a value very
close to tmin to tmax' The problem then bhecomes one of evaluating many
definite integrals numerically. This was done using a NAG library
routine. ‘The value of the second constant of integration, C2, does not
affect the shape of the temperature profile. We are therefore free to
choose C2 such that tmin is positioned at s = 0 for convenience.

Figure 3.4 shows plects of t against s for half a wavelength. As
expected, the electron temperature profile has a flat shallow minimum
and sharply peaked maximum for sufficiently small values of A 2 when

H

the minimum temperature, tmin' is chosen to be very close to tOl
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(Figure 3.4a). For the same value of AHZ, as tmin increases the
amplitude of the oscillation decreases. Furthermore, the temperature
profile is no longer filamentary, it is very nearly sinusocoidal

(Figure 3.4b}). The smaller the amplitude of the oscillation for fixed
AHZ the shorter the associated wavelength. The inclusicn of
Bremsstrahlung loss has two effects. It increases the amplitude of

the temperature oscillation and shortens the wavelength as well (Figure
3.4c). As AHZ is increased, the maximum amplitude of the oscillations

decreases. However, the wavelength of the maximum amplitude oscillations

increases as AH2 is increased (Figure 3.4d).

3.4 RUNAWAY ELECTRONS AND ION ACOUSTIC INSTABILITIES

If the applied electric field exceeds a critical value Ecl,
determined by the drift velocity equal to the electron thermal speed,

i.e.

kT
gl = Be Bed . n

c - - T (3.4.1)
e

e

the plasma will be in an extreme condition of generating runaway

[25]. The applied field should not exceed about 1% of this

electrons
value if significant numbers of runaway electrons are to be avoided.

The ratio E/Ecl can be calculated using equations (3.1.1l) and (3.1.5)

as a function of t to give,

m
-E%- = (m_e)i ALE(E+D) (3.4.2)
c i

2 MWy 1
B T m YD (3.4.3)
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This curve is plotted in Figure (3.1l) for deuterium, and it crosses
the tmax curve showing that runaway electrons can be important in the
temperature maxima of the filaments even though, based on the average
temperature and density of the plasma, runaway electrons should not
cccur. This is because the number density is low and the electron
temperature high in the temperature maxima (see equation (3.4.1)).

If Te >> '1‘i ion acoustic instabilities can occur at a much

lower electron drift welocity. We take a simplified form for the

critical drift velocity above which ion acoustic instability occurs[zel,
that is,
kT kpT: 1
B e, B i,
vy > ¢ ;%4-(m ) (3.4.4)

Equating the right hand side of relation (3.4.4) with Egvand employing

equation (3.1.5) we obtain,

[1 tg(me)gﬁ

. + A——

A2 = & ;i (3.4.5)
H mg t2{t+l)“ I

Choosing the icn to be deuterium the variation of AH2 with t as in
equation (3.4.5) is also plotted in Figure (3.1} as the condition for
onset of ion acoustic instability. If filaments tend to grow to their
maximum amplitude, the ion acoustic turbulence will develop in the
temperature maxima due to the high drift velocity there for AH2 less

than about 1.5x10-2. A fully developed runaway condition will occur in

the current filament for AH2 less than about 10-2.

3.5 EFFECTS OF THE PRESENCE OF TEMPERATURE FILAMENTS ON ENERGY
TRANSPORT

Here we consider the effects of an electron temperature profile
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which has a fine scale filamentary structure, with filament separation
of the order of a few ion Larmor radii, on the electron energy
transport in an Ohmically heated, magnetically confined plasma. It is
clear the presence of such filaments could not produce a net energy
loss via electron thermal conduction. It is possible, however, that
their presence could lead to an anomalously high electron energy loss
via equipartition to the ions. From recent experimental results[l4],
such fine scale elegtron temperature peaks {and density troughs}, if

they existed, would not be spatially resclved. Instead, the spatial
average temperature and density would be measured, and the equipartition
rate calculated classically. The value obtained in this way would be
different from the value obtained if the fine structure of the electron
temperature and density were taken into account. We can test this
hypothesis by looking at the ratio obtained by taking the equipartition

rate averaged over one wavelength and dividing by the equipartition

rate calculated using the mean electron temperature, that is,

A
1 (t-1)
Y £ £372 (e+1y 2 98
RE = (E—l) (3.5.1)
E3/Z(E+1) 2
- A
where £ = %[ tas (3.5.2)
A o

and equation (3.1.l1) has been used in the derivation of equation (3.5.1).
The ratio RE has been calculated for many temperature profiles. We know
experimental measurements of electrical conductivity agree well with
results predicted from theory using the Spitzer model. Therefore we
must be able to demonstrate that the presence of these filaments does

not appreciably affect the electrical conductivity in order for this
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model to be acceptable as a possible mechanism for enhanced electron

energy loss.

of the electrical conductivity averaged over one wavelength to the

electrical conductivity calculated using the electron temperature

For this reason we have alsc calculated the ratio, Rc,

averaged over one wavelength.

in Table (3.

0.92036

0.4726

0.5835

0.6626
1.0372
1.2615
0.7348
1.1274
2.0109
0.8226
1.1644
1.3051
0.9352
1l.2468
1.5714

5).

2.2x10°

2

The value of this ratio is included

TABLE 3.5

t t .
max min
1.7536 1.1860
6.9425 1.0335
22.8504 1.0156
36.9329 1.0126
34.7642 1.1000
7.8835 2.0000
50.9998 1.0112
47.5551 1.1000
20.484¢9 2.0000
76.7902 1.0097
70.7340 1.1000
8.5314 2.2000
131.6769 1.0083
119.3086 1.1000
13.5490 2.0000

0 in all above

=

0.9096

0.5609

0.8682

1,0958
1.6190
1.32690
l.2812
1.8200
2.4537
1.5508
2.0923
1.4135
1.9439
2.4752
1.8318

R
<

1.0066

1.1868

1.4879

1.6366
1.5610
1.0852
1.7435
1.6143
1.2202
1.8852
1.7969
1.0831
2.0785
1.9853
1.1657
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Looking at Table (3.5), assuming the filaments have their maximum
amplitude, and neglecting the effects of ion acoustic turbulence, both
RE and Rb increase as AH2 decreases. Furthermore RE and Rc are
greater than one for AHZ £ 9x 10—3. However, if the filaments do not
have their maximum amplitude for a given wvalue of AHz, the ratio RE/Rc
increases as tmax decreases.

We may conclude from these results that for sufficiently small
values of AH2 the presence of electron temperature filaments can lead
to a substantially higher electron energy loss than would be calculated
from experimental results., However the electrical conductivity would
also be ancmalous which we know is not the case. If the temperature
filaments develop to an amplitude which is less than the maximum

possible, the electron energy loss is still anomalously high whilst the

electrical conductivity is not appreciably affected.

The necessity for a time dependent model

All the results in this chapter come from a model which assumes
the electrothermal instability saturates and reaches a steady-state
which is stable. Whether a steady-state is attainable, and whether
it is stable can be found only from a study of the development in time
of the electrothermal instability. Such a model would also establish
which of the many possible wvalues of AHZ and configurations of electron
temperature profile are obtained if a stable steady-state is reached.
It would alsc show whether at any stage in the development of the
electrothermal instability conditions are reached such that the ion
acoustic instability is triggered. We only know from this model that
it is possible provided certain conditions on the value of AHZ and

electron temperature profile are satisfied.
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CHAPTER 4

A NUMERICAL MODEL TO FOLLOW THE EVOLUTICHN
OF THE ELECTROTHERMAL INSTABILITY

INTRODUCTION

In this chapter we develop a model tc study the time development
of the electrothermal instability into the non-linear regime. The
plasma considered is subject to the same conditions as that considered
in Chapter 2. We assume the plasma is in equilibriﬁm initially as in
Section 2.1. A small perturbation is then applied and its development
in time is followed numerically. The perturbation cannot be considered
small compared to equilibrium quantities for all time so that the
linearized equations in Section 2,1 are not valid here. The equations

are again written in dimensionless form.

4.1 EQUATIONS
The equations which can be used to describe the state of the
plasma when a perturbation has been applied, and for all subsequent

times, were derived in Section 2.1 These are :

Faraday's Law

oE, L B,
3 ¢ ot (@.1.1)

remembering that all quantities are allowed to vary only in the x-direction
and the y-component of the magnetic field has been neglected (see Secticn

2.4).
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Ampére's Law

aBz 4T

S - T 7;'Jy {(4.1.2)
Pressure Balance

op j Bz

s - ¥z (4.1.3)

where the inertial term has been neglected. The reason for this was

given in Section 2.5. p is the teotal pressure. p = P, + P, -

Ohm's Law

The two relevant components of Ohm's law are,

V'xBz jy
Ey_ p- = —&—- (4.1.4)
3
z
E, = — (4.1.5)

Electron heat balance egquation

8T aT av K k aT
3 a 3 e x ] e B e
= — —_— C m—— =
2 nkB at 2 nkB vx ax * nkB Te 9x 3x[(1+mezre2) Bx]
2.2
.2 3n“e“k_(T -T.)
A B e i _ g n2p 1 (4.1.6)
o m.g r ‘e

Continuity Egquation

= 0 (4.1.7)

These equationsmay be written in dimensionless form with the help of the
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following definitions :

We define a scale length

m: % knT I mic
L =a (=) = (229 2 (4.1.8)
o) eo 'm m, eB
e i Zo
and a scale time
m,G
t = n_e? (4.1.9)

where a zero subscript denotes the egquilibrium wvalues before a perturbation

igs applied so that we can define a dimensiconless space %,

1

-

g = X L, 2
L

1l 3
% T x {(4.1.10)
(o] Q

and a dimensionless time,

P = £ L, 2 - L3
t 3t~ t 3t
Q Q

Similarly, we can write all quantities in units of equilibrium walues,"

i.e.

= Te n ~ BZ e jz - j

Te = T__ ' n-= ;1_' ’ BZ = E—-_ ’ JZ = J_ ' JY = 3 ’
eo o Zo Z0o Z0

. E, E t, i T,

Ez “E Ey T E ’ vx = Vx L Tl =7
Zo zo o eo

o g ~

5 =2 =i 3/? (4.1.11)

9 e

When equations (4.1.1) to (4.1.7) are written in terms of the guantities

defined in relations (4.1.10) and (4.1.11), it is found to be convenient
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to define the following dimensionless quantities

2

A _ ooEzo , mi \% .. 3noc
F en k.t ' ' 8rtg K

(o} B eo 0 eo

BnnokBTeo Brmiaa

= = - -
We S Zz R k-_-—m = 7(4 1.12)

zZ0 B eo

F = 1+ w27 2-2% (4.1.13)

equations {(4.1.1l) to {(4.1.7) can then be written,

aﬁz aéy
U — = = —_—
Faraday's Law T AF % {(4.1.14)
Bﬁz Thp
Amp2re's Law = - " ]y (4.1.15)
Pressure Balance a_p_ = A 3 B (4.1.16)
% o Jy z i
where p = B, + B, =1 (Te+Tl)
o 3, .
) - = —
Chm's Law AFEY Vsz 3 AF (4.1.17)
j
~ z
Ez = F (4.1.18)
ot ai'e 5 a\"rx
Electron heat A——— + 8V —+ =i —=
\ ot x 9% 3 e 3%
balance equation
T 2
- 2 3 o aTe\ . 2 % G 3 2y
T e 3% Xte ax’ © 3 & y 7
Zﬁz (T - ) 1
- e 1 | 2p a2 ? (4.1.19)
g 3 e
b 5/2
- _ e
where X, = _& 1 = F
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. . v
.. . n ~ 3 ~ b4
t t t —_—t 7 e _— = 1.
Continuity Equation E < 3% + 1 % 0 (4.1.20)

For ease in reproducing the script, from now on the tilde notation
will be dropped. All quantities referred to will be dimensionless as

defined in this section unless otherwise stated.

4,2 TRANSFORMATION OF EQUATICNS INTO SOLVABLE FORM

There are seven equations (4.1.14~20), of which three are time
dependent. If the inertial term had been retained in eguation (4.1.16),
there would be four time dependent equaticns. It would then be a simple
matter to use the three space like equations to produce four c¢oupled,
time dependent equations in the four unknowns, n, Te' Bz and Vx only.
However, this is not the case. We have three time dependent eguations :
Paraday's Law, the continuity equation and the equation for electron heat
balance, which describe the evolution of Bz' n and Te respectively, in
terms of all the other wvariables. It is straightforward tc use equations
(4.1.15) and (4.1.18) to write jy and jz in terms of Bz and '1‘e {and Ez
which is not an independent variable). However we are left finally with
the problem of cobtaining an expression for Vx in terms of Bz, Te and n as
well as incorporating the condition imposed by the equation for pressure

balance (4.1.16). In order to achieve this end the following method was

used.
Multiply Faraday's Law, equation (4.1.14) by Bz to give,
aBz 3Ey
B2 3w T TR R m (4-2-1)
Now,
3E aB
B—Y = L (g8) -5 —= (4.2.2)
Z 3x X Y z Yy 9% e
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and, using Ampere's Law, equation (4.1.15),

L BT
Y ox 2

5,3

y'y

(4.2.3)

so that eguation (4.2.1) can be written

13 ;502 -a 2
2 ot Bz AF Ix (Esz

(4.2.4)

Using Ohm's Law, eguation (4.1.17) as an expression for Ey together

with the equation for pressure

2
1o VB

B —
Y 2 GAF ox

Xz
AF

Similarly, we may write,

+ 2 B
ag? o

Substituting (4.2.5) and (4.2.86)

9B 2 i 2
= - (A ZL
at F o

2 +v
T b4

a

We now turn our attention to the

balance, equation (4.1.16), we obtain,

(4.2.5)

(4.2.6)

into (4.2.4) and rearranging we obtain,

{(4.2.7)

electron energy equation which we

rewrite in terms of electron pressure instead of electron temperature

defined by, Pe = nTe. Equation (4.1.19) then becomes,
ape 5 BV# sV ape 2 Ji_(xle Bpe _ X1ePe on
at 3 e 9x x IX TE dX 'n 9% n< 9x
Zn(p_~p.)
282 ., ., e 3/2 , 1/2
* 35 (JY +], ) - p Rn P, {(4.2.8)
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The continuity equation, {4.1.20), has alsc been used to obtain egquation
(4.2.8).
We can ¢obtain an equation for the rate of change of ion pressure

by multiplying the continuity equation, (4.1.20), by Ti to give,

—= 4+ v +p, — = 0 (4.2.9)

remembering that the ion temperature is both uniform in space and
constant in time.
We now add equations (4.2.7), (4.2.8) and (4.2.9) and obtain

an expression for the rate of change of the internal energy,

3 BZZ op 1 aBz2 5 2322 v
ae BT Ty G ta T Y PR R ) e
2

o2 MePe Mafesn Pr 2,1,

wes ax n dax n- 9x o} 3 Jz 3 Jy

2n{p_~p.)}
- e _2gp3/2 512 2 2 3p

g 3 Rn Py %z 7o 3% (4.2.10)

The second term on the left hand side of egquation (4.2.10) is equal to

zero. From equations (4.1.15) and (4.1.16) we have,

aB_2
op 1 4
- + — = .2,
ax T 9x 0 (4.2.11)
e
B 2
That is the internal energy, p2+ 7?—3 is not a function of x. We shall
B e
call this guantity EI =p + 7?—, a constant in space, not in time. We
: avs
now have an expression for-gi? in terms of pe, n, Bz and their spatial
. oE
derivatives (no time derivatiwves) and 7§§-which is not a function of =x.
28,7 2 -1
Let g = ( - + p + 3-pe) and using (4.1.15) and (4.1.18),
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Vxoloozr Koo MPean 2,00,

ax g T_E x ox n 3x 3°F

S 4 Pa2 BB 2 ap 43 2 3
3r %0 ex g 3 Pe' 7 3x T O X at

{(4.2.12)
. . . 3g _ 23 Pe
Integrating equation (4.2.12) by parts and using T 5;-(7;-+ p;)
v = 2 (x_t.e Ipe _ X Pe _B_n_) _2 29 3p
X ﬂee 9 n x n 9x 3 weo bs

X, 9P X. P P
iy tes_aeedn e lpy 2 e, L ay

T E n 3x n 3¥x J ox ax ' 3
’ 3B
25252 1,27 S 9=
+ 3 Ez AF f g adx+ 3 (ﬂe) f Bz ox (c ax ) dx
2n{p_-p,) 9E
- e 1 2, .3/2 i 1
g ( 5 + 3 Rn P, + at) dx + c(t) (4.2.13)

where c(t) is the time dependent constant of integration.

av.

. X . .
We can now use these expressions for Vx and e in the three time

dependent equations.

Continuity equation

The continuity equation (4.1.20) may be written in conservative
form,

on

© D
ETy + 3;-(n Vx) = 0 (4.2.14)

Substituting equation (4.2.13) for Vx into ecquation (4.2.14) and after

some algebra we obtain,
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n_ 3 29 Jaefe M amy | 3029 0 Kie) e
3t ox Tre En o ax Ix 1Te a £ X
2T.9 X, .Pp.g nT, > x g% <
i 1e¥a” | i 1. 2n e _ e, __g
- TTe ( En T g 30’) (ax) \ T € (Ti 3n) 37recr (l+4gnTi))
an Ip, , 292 (xle _n, (ape)z
x 9x 9x 3':?e £ o} 3x
X, 0T 3p
-8 .9 —e 3n
* [ T E (Ti 3n) 31re0' (l+4gnTi)) 3x ax
1 .,2.2 ng z 2 . . 3n
+ 3 (“e} - (Bx_) {integral texms + <¢({t)) %
2n(p_-p.) aE
_2,2g2 e i 2. 3/2 . L
+ g 3AF Ez g+ +3Rn P, + at) n (4.2.15)

where "integral terms" in equation (4.2.15) refers to all the x-dependent

terms in expression (4.2.13) for vx except those which are not integrals.

Electron energy equation

Similarly, with the help of equations (4.1.15), (4.1.18), (4.2.12)
and (4.2.13) the electron energy equation (4.2.8) becomes,
T ™ UM SRR i S
at ax T, ‘€N 3 Pe9 3 g ax
3p T. X P
5 .2 (Xue 5 5 P9, “Fe 52 4 i *ie¥e 3n 2
+8x ['n' En (l"BPeg) +3 o]ax -EigpeTi {T enZ](Bx)
5 X ePe Pd s Ti 4 X,ePe 2 Ty
+ 55 L cefy _5i 4 ee 21
'rre[3 en ['I'lg 11(]'-1-3)J 30(3Pg+l)+en +.‘.’.cr:I
3P, 2
2g .5 Le 1 P9 2 i€ e
+7re [B(En 0') (L + 3)+30‘ En](ax)
X P p.g T, X, P T,
g 2aee - L £y .21 4 e e 21
Ml el LA L+ =) =35 GPI + 1)+ + 5
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op 2 B 2
e an 2 1 5 z
dx 9x (“e) 3g (2 + 3 Peg] ( Bx)

ap
(integral terms + c(t)) —axi (4.2.16)

20 2, % S/2 1y _
A_%E %p_ 2n5/ (p-P;)

2 F 'z - -2 3/2 , ~1/2
+ [3 n3/%Z Pea/z 3 Rn P,
2n(p_-p.) 3E
S [ 2222, 4 € 7d 25 3/2 % I
+-§g[3AFEzc+ +3Rn pe+at}]Pe
3/2
where o = T 3/2 Pe has been used
e n3/2 .

Faraday's Law

Faraday's Law may also be written in the same form as equations
{(4.2.15) and (4.2.16). Starting with equation (4.1.14) and using
Ampere's Law equation (4.1.15), and Ohm's lLaw, equation (4.1.17),

Faraday's Law may be written in conservative form,

5
3t 3% 1o ox ViBs) (4.2.17)

Subgtituting equation (4.2.13) for Vx and after some algebra we obtain,

Pa_2 2Pa T Kiefe a3 221 e e
3t ax 'rre g £n ax Ix 'n'e 4] £n ax
2
o 2 SBz] _29°B,T; [x;epe Lo (.3_&)2
3X T O 9xX m ent o 9x
e e
2
y 0% Ko o Pe aTi o e T B
7 £n i 3n 30 x 9x 31reu Ix ox
2 2
+ g Bz IX*E (T. - EEQ - ﬁ.Ei.] EES.EE. 2Bzg [Ei?_ iﬂ (Effgz
T en i 3n 3 0o ¥x ox 31Te en o© 3%
P aB
- =3 _p__z_ gl___g.a_n_ g 3B P,
31Te0' gx aAx 3Tl'e0' IX  9x 3“90 3K 5%
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Bg 93B_ 3 3B
2.2 7z z . z
+ (;;ﬂ jﬁ;‘(jﬁ;ﬁ - [integral terms + c(t)] v
2n{p_-p.) OE
~2a2p2,, 874 2. 3/ 1, I
+ g1l 3 AF Ez c + + 3 Rn pe + Btl Bz (4.2.18)

This leaves us with the problem of finding a suitable method to
solve the three time dependent non-linear, second order, coupled,

partial differential equations, (4.2.15), (4.2.16) and (4.2.18), numerically.

4.3 CONCISE REPRESENTATION OF THE EQUATICNS

The equations we wish te solve, ((4.2.15), (4.2.16) and (4.2.18))
may be written more concisely using vector notation and a summation

convention, We define a three component vector U which has components :

ngl,Uz,UBJ U1 = n, U2 Z P U3 =B

then we may represent equations (4.2.15), (4.2.16) and (4.2.18) with one

equation, namely,

ou, au 3 dU_ au
m

-1 = § [jl.(K O+ ¥ 0 _n_2
ot =l 9x 7 im 3x 0=1 imf 3x 3x
U
m
in 3x * Sin '’ (4.3-1)

where i = 1,3 i.e. if i = 1 we obtain equation (4.2.15) (U1 = n) and so on.

Identifyving the components ¢f the matrices K, 0, ., R, and S,
im ~imf im im

with the coefficients in equations (4.2.15), (4.2.16) and (4.2.18) we

find :
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(4.3.2)

(4.3.4)
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U.g T, A
3 T i
“U59T, T 5 170 + 3 3
u.g |8 )= (C)
_ 3 T. 3
Qi-379 2 T30+ 3 3 3
TiA N i_UBﬁ @55
3 3 T 3 T
=
X P 2x
_ 2 MeTe - ie
where F_ve U2 ®=19 T el
e 1 e e 1
2X
A= ﬂ—l—c- and & = E‘; (4.3.6)
e Tev¥1
Rim = =« [integral terms + c(t)] Gim (4.3.7)
where 6im is the Kronecker delta function i.e. 5im =1 if i = m and
Gim =0 if i # m.
BEI
gy + —é-t-__——) 0 0
3E
5 I Y
s = 0 3 g (Y + vy ) - T 0
2
BEI
0 0 g{¥ + 7ﬁ;ﬁ
I
{4.3.8)
20, (U.~U.T,)
s -2 2p2 1 2 17i 2 3/2 1/2
where ¥ = 3 AF Ez g + 5 + 3 R Ul U2

4.4 DIFFERENCE SCHEME

There are wery few guidelines for choosing difference schemes for
non-linear initial-value problems. All the literature on the subject

of difference methods deals with linear or very simple non-linear
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equations. The approach taken here is to choose a difference method

based on its merits for performance on similar, but much simpler,

equations of the same type as the system of equations {4.3.1) which

is essentially parabolic. We use the Crank Nicholscn implicit

difference scheme which has the following advantages and disadvantages

a)

b)

c)

It is accurate to second order in both the time step
and the space step.

As it is an implicit method we shall be able to use a
larger time step than if an explicit method were used.
This scheme is unconditionally stable for equations
with one independent variable regardless of choice of
time step. However, we shall have to perform scme
"local" stability analysis on the linearised form of
the equations. Whether or not these stability tests
are sufficient can only practically be assessed by the
feasibility of the results. Practical experience shows
that instabilities usually start as local phenomenatz?l
which gives confidence in this local stability approach.
The accuracy and stability of the scheme will be
obtained at the expense of a more complex set of

equations for the variables as a function of time and

space.

In difference form, the system of equations described by (4.3.1)

becomes,

3
Up+l _ .n Atd z

- +1 +1, = +1 +1
i 7Y T B L Singey (Urse1 ™ Y 0 = Kim 53 ng - Yy
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3 = n n - n n
+ 220§ Wip ey nger ™ Yng? 7 Kim gy Ty 7 V-]
=1 .
3
Atd _ P +1 +1
* apx? Z Z [lezg U§j+l Umj l)(U€j+l Uij-l
m=1 2=1
3
At{1l-9) n n n
* aAx? mzl EE [lelj mj+l Umj-l)(U£j+1 - 1]*1)]
3
At¢ = p+tl _ p+l At{1l-¢) = n _f
2Ax z Rimj(Umj+l Uﬁj-l) + 2Ax mEL lej(Umj+l mj-l)
3 3
+aep § 5Pt v aea-e ) 5, P (4.4.1)
m=1 J ™3 m=1 ] ™

where the subscript j denotes the space mesh point, the superscript n

the time step and the supefscript p refers to the pth iteration step

. . . +
during the time interval At = tn L - tn. Also, Ax = xj+l - xj. Values

of the variable H-(Ul'u2'u3) at the previous iteration step p are used

to define the time average for the coefficients,

g =41 1 2 -1 P 1 n
K—2K(_[_T_p)+2K(__Un), Q—ZQ(LI_)+2Q(H)
R =2 R + 3 R, §=2s@) +3s@h (4.4.2)

During each time step we are required to iterate around the non-linear
coefficients K,Q,R and S. To clarify the situation we shall go through

U3) are known for all j at

the first time step. The values of g;(Ul,U2,

time step n; these are the initial conditions. To start the iteration
procedure we assume that Hj after one iteration will be very close to
the known initial conditions for all j i.e. put gg = gg so that, for
the first iteration K = K(gé) etc. Therefore the only unknowns in

{4.4.1) are g§+l, that is, the first approximation for the values of U
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at the new time level n+l. Furthermore, the system of equations in
. X . Up+l
(4.4.1) is first order in the unknowns gy and can be rearranged

to give a matrix equation of the form,
+
ar’*l = w (4.4.3)

(The exact form of the matrix equation (4.4.3) and its method of
solution is discussed in the next section.) Having solved this matrix
equation and obtained our first approximation to U at the new time
, . Up+1 , Up

level n+l, the procedure is repeated. That is U, is now called g
the coefficients in (4.4.2) are calculated again and a second

. . + . . .
approximation for g; 1 obtained. Hopefully, after a number of iterative

steps, convergence is achieved,

1im o?* = P
p—)-m

then g?+l is the required solution at the time step n+l[28].

LJ-n+l - lim Up+1
e

If $ = 4 in (4.4.1) the method (in the limit) described is the
Crank Nicholson implicit difference method. If ¢ = 0, the method is
explicit and if ¢ = 1 the scheme is fully implicit. For very little
extra work, we have left ourselves the option of varying ¢. This

proved to be of use particularly when testing the computer programs.

+
4.5 THE MATRIX EQUATION, AQP 1 W, AND BOUNDARY CONDITIONS

The matrix equation (4.4.3) is obtained by rearranging (4.4.1)
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and ccllecting the coefficients of Up (U, ,u.,0.}, UP+1(U U

I R Rt L =5 2:U3) and
?:i(Ul ,U3). These coefficients then form the matrix A which is

block tridiagonal, whilst the remaining known terms form the column
vector W.

The system of difference equations (4.4.1) can be written,
+1 +1 +1
g, U8+, BT 4y, BT - g, (4.5.1
J i+l J ] Y3 V-1 )

+
where o, B and y are 3x3 matrices and Up 1 and W are 3 component column

vectors. Identifying the elements of the matrices a, B and y and the

elements of the column vector W with the ccefficients of UE+; 3541
+1 +1 .. R .
Up ,2,35° U§,2,3j-l and the remaining terms respectively we find,
At = 19 - o P £ 3
“imj T ExZ ! Rim 344" Z'Ezl Qmes Upger ~ Ugyr? 1Y S & mj
{4.5.2)
oo _ At¢ = = =
B.'Lmj im ~ Ax% [ im j+4 Kim j-i] + At Simj (4.5.3)
Atd = 1 3 UP UP Atd =
Yimj = 3x2 L ¥ -1 T 4 221 Qimzj( 25-1 2j+l) 1 = 2ax B imj
(4.5.4)
where Gim is the Kronecker delta function i = 1,3 m= 1,3
n AE(l-¢) = . = n
Wij - Ulj [____2__- ; t Kim j+4 ( mi+1l - Umj)
m=1
= n
" Kim 5-4 Pn3 " Umg-1? !
3 3
At(l $) = n n n .
e L U0 W - U ) Wy - Uy ) ]

m=1 =1
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3 3
At (1-4) - n n - n
+ ==t YR . (U. . =U_. )+ At(l-¢) )} S .U}
24x% m=1 imj mnj+1 mj-1 2, im) mj

(4.5.5)

¢, B and v form the elements of the matrix A which is block

tridiagonal because of the three point difference scheme.

Boundary Conditions

Returning to the physics of the problem, we know the optimum
wavelength for growth of the electrothermal instability is of the
order of a few ion Larmor radii which in Tokamaks is a few centimetres
or less. This was our justification {see Chapter 2) for considering
the electrothermal instability to be born out of a perturbation about
a steady-state plasma with uniform profiles for number density,
electron temperature and magnetic and electric fields. For this
reason our space mesh must be restricted to a small region over which
the above approximation holds. Furthermore, in Section 4 of Chapter 2
we demonstrated that the model we are now using, in which the y-
component of the magnetic field is neglected, only holds for wavelengths
less than some upper limit. For wavelengths greater than this upper
limit the growth rate from this model is much greater than the growth
rate from the model with the y-component of the magnetic field
included (see Fiqure 2.4a). An effective and acceptable way of
suppressing these long wavelength modes, which could otherwise dominate,
is to restrict the space mesh to a size which is equal to the upper
wavelength limit.

As we can only represent a small region of space on our mesh,
and therefore only a small region of plasma compared with the diameter

of a Tokamak, we choose to use periodic boundary conditions because
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these are as valid as any and simpler to apply than others.
Let the region of space in which our equations apply be
discretely represented by J mesh points. Therefore using periecdic

boundary conditions we have

U, = U,
_J - —J =J
and (4.5.6)
ou v
§;'j=1 9x

In this case the matrix A in equation (4.4.3} isg block perdiagonal

(see Figure 4.5).

Figure 4.5 Block Perdiagonal matrix equation.

Bl oy 0 . . . . - Yy Ul Wl
Yo 82 ay . . . . 0 U2 w2
0 Y5 83 e, . . . . 0 U3 W3
%1 © - S S L X | UJ—{J Wil

. B. and Y. are 3x3 matrices whose elements given by (4.5.2)
ta (4 5.4) agd U:j and Wj are 3 component column vectors.
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That is, it is block tridiagonal with additional blocks in the upper
right and lower left hand corners. The dimensicons of the matrix A

are 3(J~1}x3(J-1), and the matrix equation has to be solved at each
iteration within every time step. Hence we require that the matrix
equation be solved rapidly and efficiently. The methed and the computer

[29]

program used are discussed in Appendix A This computer program is
now obtainable from the Computer Physics Communications International

Physics Program Library.

4.6 EVALUATION OF THE MATRICES K, O, R AND §

The evaluation of the elements of the matrices K and ¢ is
fairly straightforward. Egquations (4.4.2) tell us that we require the
values of the elements of K and é. These are calculated quite simply
by finding the values of the elements using n, pe and Bz (Ul,UzandLH)
at the previocus time level n, finding the values of the elements using
n, Py and Bz at the last iteration p and taking the average of the
two gquantities,

The evaluation of the elements of R and S is not as simple.
Looking at the definitions of R and S, relations (4.3.7) and (4.3.8)
respectively, there are three points to notice. Firstly, it is
necessary to evaluate an integral numerically at every mesh point j.
Secondly, we must find a way of determining the value of %;§3 bearing
in mind that it is not a function of space, and thirdly we must find
the value of c(t}). We recall that c(t) arises as a constant of
integration (therefore a constant in space but not in time) when
finding an expression for Vx (see equation (4.2.13)).

For clarity we shall repeat the integral terms which have to be

evaluated,
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9B

_2 ., 2.2 1,272 2 g_=z
Integral terms = = A_“E, [goax+ 3 (we) I B, & ) &

Ip X, P

X P
2 (Fie e edn sy o2 P
T E [( n 9x n‘ 93x g Bx) 5% 3 T p;) dx
2n(p_-p.)} E
_ e 1 2 3/2 , 1/2 - I
fg = + 3 R n pe ) dax T fg’ dx (4.6.1)
2
2Bz 2 -1
where g = ( = + p + E-Pe) and p = P, * Py-
e

These terms are evaluated by interpreting the integral as the area under
the -curve and using the Trapezium rule. Generally, if a function f(x)
is discretely represented at J mesh points from j=1 to J, then we
approximate the value of the integral of f(x) at the point xj by,

X, j_l
if £(x) dx = ¥ (£, + £,

) — (4.6.2)
Equation (4.6.2) is applied to every term in equation (4.6.1). The
gradient terms are dealt with in the usual way.

.The constant of integration c(t) is determined by specifying
the centre of mass velocity, V&, at the left hand boundary i.e. ij=l'

As the boundary conditions are periodig,

ij=l = vﬁj=J (4.6.3)
The &-direction corresponds to the radial direction in a Tokamak so

there cannot be a net flow in the % direction. Therefore, we choose,

ij=l = ijzJ = 0 for all t (4.6.4)

Iooking at equation (4.2.13) we can new determine c(t). At j=1 the

integral terms are all zero therefore, putting Vx. to zero, we have,

j=1
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X, oP X
_ (2 29 9p _ 29 ie "e  “1ape 0N
clt) = (3 ™9 9x T ( n 9x n® Sx))j=l (4.8.5)
2E

Finally, we must evaluate 7;§u This is done by making use of

3
the fact that 7§} is not a function of space together with the right

hand boundary conditions, V# = 0 at j = J. Applying equation (4.2.13)

oE
at the point j=J and rearranging we obtain an expression for 7;%%

3E B
I 2,252 1.2, 3 9z
at [ 3 AF Ez I g o dx+ 3 (we) f Bz Ix (0 ax ) dx
.2 f (Xle BPe - *1ePe an _ §.§£q 2 Ji.(EE.+ ) dx

™€ n 3% nZ  9x o ax 2 x '3 Py

2n(P_-p.)
e 2

- g{ = . s R n3/2 pel/z) ax 1/fg ax (4.6.6)

all evaluated at j=J.

where the periedic boundary conditions have been used to eliminate the

non integral terms in equation (4.2.13) to get eguation (4.6.6).

4.7 LOCAL STABILITY ANALYSIS FOR THE DIFFERENCE SCHEME

For the difference scheme to be considered numerically stable
we require that any error in the result is reduced from one time step
to the next. The system of difference equations {4.4.1} couples both
the dependent variables Ul,U2 and U3, which comprise the state of the
system, and different points on the space mesh. Before determining
the stability we simplify the problem by deccupling points on the
space mesh. This is done, in the usual way, by studying the Fourier
modes on the mesh separately and by demanding that the scheme is stable
for every Fourier mecde.

It is generally accepted that lower order terms do not affect

(271

the stability of diffusion type problems, such as we have . However,
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their presence may force one to use smaller time steps, e.g. a

large source term causes rapid changes in U so that a small time
step is regquired. For this reascn, and for simplicity, we shall
examine the stability of the difference scheme applied to the system
of equations (4.3.1l) neglecting terms of order lower than the second.

That is applied to,

BUi 3 3 3Um
® 7 Lo R (4.7.2)
IF

Furthermore, we shall assume Kim to be constant. The stability
conditions obtained are then "local conditions" and must be satisfied
everywhere on the space mesh for all time steps. The difference
scheme applied to (4.7.1), if the elements. of Kim are considered

constant, gives,

n+1l n 3 KimAtqb n+1l n+l n+l
. = , . + — s - ..+ U,
Ulj Ul] mzl Ax (U13+l 2U13 Ulj-l)
3 Kim(l-¢)At n n
+ mzl ar Wiy = 2055 * Uggy) (4.7.2)

Analysing the method for a Fourier mode,

u.. = 0, ¥ o §, otKIAX (4.7.3)

ij i i

we obtain,
ey A 3 K, Até  y ; .

AN+ ~ A b -
U? 1 o ikjax  _ U? elkjﬁx + Z im Un+l elij (elkAx_Z + e lkAx)

1 1 AxZ m

m=1
3 K, At(1-¢) - . ,
+ Z _ig_zzz_____ﬁ; elkjﬁx (elkAx_2 + e lkAx) (4.7.4)

m=1
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ika =ikA

Now, using e + e 2 cos kix

[

» kAx (4.7.5)

- 4 sin 2

and 2{cos kAx-1)

in (4.7.4) and dividing through by elij, we obtain,

3
an+l _  an At ~11+1 . 2 kix
LI E Al Kim Um 4 sin >

3
- n o k
y AE(-d) p  §R 4 gin2 KAX (4.7.6)
el Ax im m 2

This equation is of the form,

1

(x+m 7 = @-pi (4.7.7)

where I is the identity matrix (3x3) and the elements of M and P are,

_ 4Atd . okAax
Mim T 2 ST Ky
;:i,g (4.7.8)
! P - 4At (1=¢) sin2 kAx X
im AxZ 2 im

} the difference scheme is the Crank Nicholson implicit

Clearly if ¢
difference scheme and M = P. Rearranging (4.7.7), we obtain an expression
for the amplification matrix G{At,Ax,k} of the difference scheme for the

Fourier mode of wavenumber k.

= G(At,bx,k) §° (4.7.9)

where G = (I + M)"l (I - P) (4.7.10)

For stability, if the amplitude of a Fourier mode is finite at time £ = 0
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then it must be finite for all time steps[zsl. This condition imposes

a requirement on each of the eigenvalues 9 of the amplification matrix

G such that a necessary and sufficient condition for stability is

lg | s 1 (4.7.11)

for all modes k and all eigenvalues m.
To find all the eigenvalues of the matrix G is impracticable and
unnecessary. We only need to know the magnitude of the largest eigen-

(301 tells us that the eigenvalue with the

value. Gerschgorin's theorem
largest magnitude of the matrix A is always less than or equal to a

certain combination of summations of the elements of A, that is,

P (&) = max [A,] (4.7.12)
i
p (A) £ min (max E ]a. |; max Z [a. l)
im m m i im

where p(A) denotes the spectral radius of the matrix A, Ai are the
eigenvalues of A and a:in are 'the elements. The implementation of
Gerschgorin's theorem is discussed in more detail in Appendix B.

[27]

Finally, it can be shown that the worst case to consider

for stability is the Fourier mcde with wavenumber k such that,
m
== 3 or A = 2Ax (4.7.13)

This is because it is the smallest wavelength which can be represented
on the space mesh. Three mesh points are insufficient to represent one
wavelength so that, if the difference scheme adequately deals with this

wavenumber and does not allow this mode to dominate the solution, we
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can assume the scheme is stable.

4.8 THE COMPUTER PROGRAM

We conclude this chapter with a description of the computer
program used to follow the time development of an electrothermal

instability using the metheods described in the preceding sections.

The initial conditions and the behaviour of E,

The steady-state condition of the plasma, before the perturbation
is applied, is completely described by giving the wvalues of :
BnnokBTeo
w T ., T, , T and 7 =

[a o) 1 eo e B
20

The value of AF is obtained by applying the electron energy equation
{(4.1.19) to the steady-state, before the perturbation is applied giving,
2

AF = 3(1 - Ti) + R (4.8.1)

If Bremsstrahlung is not included, it is only necessary to give the
ratio Ti/Teo as opposed to both Ti and Teo' The size of the space mesh

together with the number of mesh points determines the value of Ax,

A
_ mmesh length _ m
Ax = - E— 5 (4.8.2)

The perturbations in n, P, and Bz are chosen such that :

J=-1
a) total mass is conserved, .Z (nj+nj+l) %;- = lm
J=1
Bzz
b) Pressure balance is obeyed, (p + 7;—0 is not a function of j.

e
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c) The mesh length, Am, is less than the cut off wavelength
above which the model is not valid (see Chapter 2, section 4).
d) This value is obtained from linear theory, given WoTy Ti’

Teo and LN Periodic boundary conditions are observed.

The value of ¢ must be given at the beginning of each run.

This determines whether the difference scheme is explicit (¢ = 0),
implicit (0 < ¢ < 1) or fully implicit {¢ = 1}.

Ez is not an independent variable in the problem. However, we
consider two ways of treating this parameter which are consistent with
both the linear model and the non-linear steady-state problem considered
in Chapter 3. The first set of results are obtained with Ez constant
in £ime as well as uniform in space. The remaining results are obtained
by imposing the more realistic constraint of constant total current,

lm J-1
f5 ax = 7 (5. +d..) 2 < (4.8.3)
5 2 i zj+l” 2 U

. z m

i= ]
Hence the applied electric field is chosen at each time step such that
the above relation (4.8.3) is satisfied. Using Ohm's Law, equation

{(4.1.18), Ez is given by,

E,(t) = 37 T (4.8.4)
L (05405, %§'
P

{(The total current is equal to Am because we are working in dimensionless

units normalised to the initial values.)
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The main program

The perturbations together with the initial steady-state
conditions determine g?. The subroutine TPORT calculates the electrical
conductivity U? and the electron thermal conductivity xij at every
mesh point j=1, J-1. These values are used in subroutine KAPQ to find
the elements of the matrices K and Q at level n for all j. Now that K
is known a stable time step At can be cbtained. A first approximation
for At is chosen intuitively. Subroutine DTIME (see Appendix B) tests
the stability of the difference scheme with this value of At at every
mesh point. If this value of At fails the stability test it is halved
and the stability test performed again. This process is repeated until
a stable time step is found. Subroutine RSUMS is used to evaluate %;5?
(equation (4.6.8)) and c(t)n {equation (4.6.5)), and then used to evaluate
the elements of the matrices R and S. The right hand side of eguation
(4.5.1) W, is a column vector whose elementsare given by (4.5.5). These
are calculated by a subroutine called RHS. Similarly the elements of
the matrices ¢, B and v, given by ecuations (4.5.2) to (4.5.4), are
calculated by subroutine ALBGAM. Subroutine PERDIAG is called upon to
solve the matrix equation (4.4.3) hence giving a first approximation to

n+1

U called g?. Ezp

is updated, if necessary, using equation (4.8.4)

p

P and Xij and KAPQ to find k® and oF.

TPORT is called to find Uj
In practice it is not found necessary to test the stability of the time
step at every iteration, or even at every time step. Hence we move to
RSUMS which gives us the elements of ®® and sP. wWith these new values
for K, Q, R and S we use relations (4.4.2) to find the time awveraged values,
K, 5, R and S. Subroutines RHS and ALBGAM are again called upon to £find
"A" and "W" of the matrix egquation (4.4.3) which is again solved by
PERDIAG. We now have a second approximation for g?+l which we call QP.
The process described in this paragraph is repeated until convergence is

achieved.
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A test for convergence

A convergence test which proved satisfactory in most cases may

be described with the following inequality,

=4 IJ < b for all j (4.8.5)
g -y 1 n+l
-3 - U" = lst approximation to U

where b was varied from lOw2 to 10_3. This test for convergence obvicusly

breaks down when the system is tending towards a steady-state in which

case,
ot = o (4.8.6)

and therefore the denominator in (4.8.5) is very small, so that the
. accuracy demanded by (4.8.5) is unreasonable. However, the approcach of

a steady-state would also be indicated by the behaviocur of other

aE
parameters e.g. ?ﬁg-and Vx tending to zero. At other times we can
JEy
compare the value of ETN calculated using the condition that V% =0

at j = J, to tbe values cbtained using the converged results as another
test for convergence.

In summary, the test for convergence given by (4.8.5) on its
own is possibly inadequate. However, used in conjunction with other

tests it is acceptable.

Further program tests

Other functions performed by the program include a test to
verify that mass is conserved. We cannot expect exact mass conservation
because the equations were not differenced conservatively, so that

truncation errors will be present as well as the ever present round off
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errors. However, we do expect mass conservation within a few percent,
otherwise the difference equations do not even approximately represent
the differential equations. Therefore, in the program we calculate

the quantity,

j=J-1 Ax
sb (nj+nj+l) >

and print its value every n timesteps, where n is specified according

to the particular run.

We also check that the internal energy

p. + =L = E (4.8.7)

does not vary significantly with j. We calculate the internal energy

EI at every mesh peint j and find the mean value of EI, that is,

- 1 J
E, = F E E_. (4.8.8)

We arbitrarily impese the condition that the standard deviation from the

mean should be less than one percent of the mean value of EI'
S
= < 107 (4.8.9)

If this condition is not satigfied subroutine PROBLEM is called which

prints out an error message together with the time step at which it
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occurred and the program stops.
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CHAPTER 5

RESULTS FRCM THE TIME DEPENDENT MODEL

INTRCDUCTICN

This chapter consists of two distinct sections. In the first
section we present the results obtained from following the evolu?ion
of the electrothermal instability when the applied electric field Ez
is considered to be held constant for all time. The second section
deals with the results obtained for the more realistic situation
experimentally of Ez varying in time in such a way as to keep the total

current constant.

5.1 CONSTANT FIELD E,

A random perturbation is applied to a steady-state system. The
evolution of the perturbation is followed numerically assuming the
applied electric field Ez is constant for all time. For a given set of
initial conditions, about which the perturbation is applied, the cut
off wavelength, Am’ above which this model is invalid, is found from
linear theory. The length of the mesh is set equal to Am. The
perturbation is chosen such that total mass is conserved,

J-1

E (nj + n,

Ax
=1 j+1) 2

= Am = Ax(J-1) {5.1.1)
and such that the gquantity EI is not a function of j. The perturbations

in P, and Bz are chosen using a random number generator for j=1, J-1.

Writing eguation (4.2.1ll1l}) in discrete form we have,
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Poy * 1yT; * —:3— = ¢, for all j (5.1.2)

where cy is an unknown constant. Using (5.1.2) as an expression for the

number density n we may rewrite equation {5.1.1) which can be rearranged
to give the value of the constant ¢y in terms of known gquantities.

J-1 (B .2+ B 2 .)

- 1 3 zj+1
¢ = Tt .E (péj * pej-l-l * m

! (5.1.3)
e

Having found the value of cl we can use equation (5.1.2) to find nj

for j=1, J-1. The amplitude of the perturbation is chosen so that the
effects produced by second order terms are negligible. The minimum
number of mesh pointé required for a particular run can be approximated
from linear theory. For a given set of initial conditions we know the
wavelength, As' below which all modes are damped. Hence for the
difference scheme to be able to handle the shortest growing wavelength

we require,

A
Ax g Ts (5.1.4)

so that this mode is acceptably resolved.

)(! ' N, Figqure 5.1 The minimum number of
' . : . — T .
: i )& jﬁ mesh points required to represent
' I Y / As adequately.
g x> Y 7
N

This condition implies that,
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T oz 1l+4 2 (5.1.5)

In order to assist the analysis of the results obtained, we discretely
Fourier analyse the profiles for the number density n, the electron
temperature 'I‘e and the magnetic field, Bz' as these are the independent
variables in the problem. In this way, we can also check that the
amplitude of the smallest wavelength on the mesh is insignificant at

all times. If this is found not to be true a finer mesh must be used
and the time step changed accordingly. The discrete function fj periodic

in J such that,

which is neither anodd nor an even function may be represented exactly

at the mesh points by the trigonometric series,

J-1
a, 2 2nm (§-1) 2nm (§-1)
fj = S+ n£l (a, cos ===+ b_ == (5.1.6)

where the coefficients ao, an and bn are defined,

P Jil
a = -— £,
(o] {(J-1) j=1 3
J-1 .
f. cos nr(J-1)
N j J-1
a = =1
n Jfl 5 207 (§-1)
CeST /I
J=1
J=1 .
Z f. sin 2nm{j-1)
- ] J-1
j=1
bn = J-1
§ sin2 2nm(j-1)
J-1 {(5.1.7)

j=1
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The denominators in the expressions for a, and bn are exactly egual

to in the limit of f being a continuous function. However, for the

2
J-1
. X 2 . . L
discrete case they only approximate to I In practice the deviation

from E%I-was found to be insignificant and certainly no bigger than
round off error feor small n.

Many runs on the computer were performed to follow the growth
of the electrothermal instability keeping Ez constant and applying a
random perturbation in the manner previously described. Results obtained
with different numbers of mesh points were compared. Alsc results were
compared at the same time, t = nAt, for different wvalues of n and At.
These tests allow us to check the accuracy of the results.

Figure (5.2a) is a pleot of the dimensicnless perturbed electron
temperature profiles at different times in the earlier stages of the
run. (These particular plots were obtained with the random number
generator choosing values between # leO-4. However the same behaviour
pattern persists with even smaller values for the magnitudes of the
initial perturbations.) We can see from these profiles how the longer
wavelength modes gquickly dominate. Figure (5.2b) shows the electron
temperature profiles at later times, whilst figures (5.2c-g) show the
corresponding profiles for the number density, the ¢ and 2 components of
the current density, the centre of mass velocity and the magnetic field
respectively. As expected, we can see that the density peaks in the
electron temperature troughs and vice versa. Also, at all times, the
perturbed current density in the ¢ direction is always very much
smaller than that in the 2 direction. Returning to the electron
temperature profiles, Figure (5.2b), by this time the longest wavelength
mode on the mesh is very much stronger than all shorter wavelength modes.
However we alsc chserve that the average electron temperature is

in¢reasing in time. That is the infinite wavelength mode is growing as
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Figure 5.2a

Electron temperature profiles at :

5x10_2

a) dimensionless time t

1) t = 0.5
2} t=1.0
3) t = 1.5
4) t=2.0

Figures 5.2

Results from numerical model with electric field

E, held

constant

6

WaTy = 1.54x10", T

= 2.

2667x1072, R = 0, Ty/Tep = 0.5

Mesh length set to eleven scale lengths.
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well. These observations are guantified by locking at the values of

the Fourier coefficients ao, a, and bn as a function of time, Table

(5.1). We print here the values of a and bn for n=1andn= 2

only as these modes are the strongest. These results show that the
constant term ao, or the amplitude of the infinite wavelength mode, becomes
comparatively stronger as time increases. Hence the system is starting

to run away, that is, it is getting hotter everywhere at an ever

increasing rate and this effect is becoming increasingly dominant. As

will be shown, a steady-state will never be achieved in such a system.

dE
This is alsc indicated by a plot of the value of ?ﬁ? as a function of
dE
. . . . I . . R
time, figure (5.2h). This fignre shows not only that :ﬂ;‘ls increasing
d%Eg
in time, but :ﬁ;r-is also.

The neglect of the y-component of the magnetic field appears to
be directly responsible for allowing the infinite wavelength mode to
grow. This is not strictly the case although this arqument is upheld
by once again looking at the results from linear theory. The dispersion
relation obtalned from the linear model where the y-component of the
magnetic field is included and the inertial termis neglected is obtained

by putting @, = 1, &, = 0 in equation (2.2.14) anddividiﬁgthrough by

1 2

y. The growth rate of the infinite wavelength mocde is then found by

: 2m 2 : .
putting v = 0 (because y = (jgﬂ ) in the resulting eguation. The non zero

growth rate is given by

4 4 2 _ a3 2. 213
(5 - 2 oM + [(5 - = 9T) 45+ T+ Tre) 18 (1-T)2]

e e

5 2
2(5‘ + T + Tl'_-)
a

{5.1.8)

Again the radiation term has been neglected to obtain equaticn (5.1.8). .



Bmplitudes of the Fourier
of time for the electron

dimegsionless a,

time t

o 2,34x%10
0.5 1.44x10
1.0 3.39x10
1.5 7.42x10
2.0 1.58x10
2.5 3.36x10
3.0 7.30x10
3.5 1.65x10
4.0 4,07x10
4.5 1.20
5.0 6.33
5.1 11.15
5.2 27.40
5.25 68.41

-3
-3
-3
=3
-2
-2
-2
-1
-1

TABLE 5.1

8.68x10
1.90x10
3.22x10
5.01x10
7.62x10
1.16x10
1.82x10
3.05x10
5.84x10
1.46
7.28
12.75
28.88
53.88

-3
-2
-2
-2
-2
-1
-1
-1
-1

modes as a function
temperature profile

- 2.02x10
- 2.54x10
-~ 2,69x10
- 2.76x10
- 2,79x10
- 2.72x10
- 2.43x10
- 1.53x10
1.22x10
1.20x10
9.66x10
1.54
0.48
-16.34

-2

-2
-2
-2
=2
-2
-2
-1
-1

2.71x10
6.14x10
1.05x10
1.67x10
2.62x10
4.13x10
6.74x10
1.18x10
2.42x10
©.64x10
4.05
8.03
25.15
80.8B0

-3
-3
-2
=2
-2

-2
-1
-1
-1

7.05x10
9,95x10
1.05x10
1.07x10
1.05x10
9.38x10
5.63x10
5.44%10

3
3
2
2
2
3
3
3

4.18x10°

2.04x10

2.01

4.33
13.15
30.16

1
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¥ is negative for all wvalues of T for which the instability condition
is vioclated, and negative for “e << 1 regardless of the value of T.

We can say that the infinite wavelength mode is always damped in any
situation of interest if the y-component of the magnetic field is
included in the model. It is important to notice here that if the vy
component of the magnetic field is included the electric field Ez is
no longer held constant. We compare this result with that from the
dispersion relation for the model we are using where beth the inertial
term and the y-component of the magnetic field gre ignored, (al=a2=0)

eguation (2.5.1). Putting y = 0 in this eguation we find the

dimensionless non zero growth rate x to be given by
x = 4 + 4we - 6T = 3we T(1+T) (5.1.9)

Assuming T to be negligibly small for the moment, we see that this
infinite wavelength mode will grow provided,

2 Teo
T < 3 or — > 1.5 (5.1.10)

We know the onset condition for the electrothermal instabkility to be
T
— > 1.3187 without radiation {5.1.11)

It appears that there exists a temperature range within which the
electrothermal instability may be excited and the infinite wavelength
mode damped, as we reguire. However, this is not so. Referring to the
plots obtained, Figures 5.2, from the numerical model, it is only the
electron temperature which has a growing constant te.n. This must be so

because we conserve total mass and hence a ur _.:orm perturbation of the
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{10]

density can never exist. Haines showed that the condition for

onset of the non-convective electrothermal instability is,

H

e0

> 1.5 if the density is unperturbed (5.1.12)

Therefore provided the plasma is unstable to electrothermal instabilities,
this infinite wavelength mode will grow in our model.

In order to overcome this flaw in the model we must first
understand physically why the inclusion of the y-component of thé magnetic
field prevents an increase in the average electron temperature, or
conversely, why the neglect of it allows a "runaway" behaviour. Consider
perturbing the steady-state electron temperature uniformly and leaving
the other parameters, n and Bz' undisturbed. The electron energy
equation (4.1.19) tells us that a uniform increase in the electron
temperature alone grows, provided the electrothermal instability

condition is violated, if the current is given by

j, = °E, = Te3/2 E, (5.1.13)

and Ez is held at its steady-state value. In which case we have,

2(Te—Ti)

- 2,2 -——e 1
= Fa2rT —573 (5.1.14)
e

Furthermore, net only will Te continue to increase, but the rate at
which it increases will increase as 'I'e gets larger. Hence the system
runs away. This behaviour is a direct result of allowing the current
density jz' and hence j.E, to increase everywhere without limit. 1In
reality, an increase in jz produces an increase in the curl of By

(Ampére's Law). That is, some of the energy available goes into
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magnetic energy. This change in time in BY produces a curl EZ
{(Faraday's Law) which acts in such a way as to oppose the increasing
current. We have effectively allowed the current density to increase
without limit by not allowing the electric field Ez to change. Hence
the fundamental reason for the runaway behaviour is the constant
elactric field condition. The system runs away if the electric field
is held constant whether or not the y-component of the magnetic field
is included. 1In the two meodels compared it is whether or not the
electric field is allowed to vary rather than the inclusion or neglect
of BY which determines the behavicur of the infinite wavelength mode.
In tﬁe next section we formulate a model which prevents this unrealistic

runaway behaviour.

5.2 CONSTANT TOTAL CURRENT CONSTRAINT

In this section we change the model to overcome the unrealistic
runaway behaviour of the system produced by allowing the current
density to increase without limit because Ez is held constant in time.
We impose the condition that the total current in the 2 direction be
conserved. This is fortunately a more realistic model because it is
found experimentally that the total current in the discharge remains
approximately constant in time. Therefore we choose to vary the

electric field Ez such that total current is conserved, that is

j o odx = A for all time (5.2.1)

because jz is equal to one everywhere before the perturbation is applied,

so that,

Ez(t) = m (5.2.2)
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where Ohm's Law, equation (4.1.18), has been used. Limiting the length
of the mesh to lm should mean that, for the wavelengths we are able
to represent with this model, the amount of energy going into the magnetic
field, which we have ignored, is negligibly small. This assumption can
be tested for each run.

A random perturbation is again applied to the system in the
same manner as described in the last section. That is, such that total
mass is conserved equation (5.1.1) and the gquantity EI is not a function
of j. Equation (5.2.2) is then used in discrete form to find the wvalue

of the applied electric field Ez’

E.= = — (5.2.3)
z le (o 32, n 32, bx
ej ej+l 2

i=1

at every time level n. Inner iterations are performed at later time
steps as successively improved approximations for Te at time levels n+l
are found. This ensures that the value of Ez ¢btained is self-
consistent.

Again many runs were performed for each set of results presented
here to check that the effects observed are physical and not produced
by numerical errors. We compared the results from runs with different
initial amplitudes of perturbation with the same time step and space
step. In every case the results exhibited the same behaviour. The
space step Ax and the time step At were also changed and the results
consistently compared. In all of these tests the results did not

appreciably deviate from those presented here.

5.3 THE MESH LENGTH EQUAL TO THE CUTOFF WAVELENGTH

The initial steady-state to be perturbed is completely described
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T.
by giving the values of the temperatureratioErL-, ﬁe and moTo' if
eo

Bremsstrahlung radiation is neglected. If Bremsstrahlung is included we
have to specify the electron temperature. For this reason and because
Bremsstrahlung has a very small effect except at high temperatures, we

neglect radiation loss. Choosing,

W T = 65,14 x 106
oo
-3
T = 4,338 x 10
&
= 1
Ti/'I‘eo 0.5 (5.3.1)

we can calculate the linear dimensionless growth rate x for any value
of the sauare of the dimensionless wavenumber y, using the dispersion
relation equation (2.2.14). Using equation {2.2.14) ;nd the condition
for the effect of the inclusion of the y-compconent of the magnetic
field to have negligible effect upon the growth of the electrothermal
instability, relation {2.4.5), it is a simple matter to find the

dimensionless wavelength lm above which our model breaks down.

If A = 20 (6.3.2)

which is the optimum wavelength for growth, we find the left hand side
of (2.4.5) has the value,

T X m™x A2
e e m

3y 2(2m2

= 2 x 1072 (5.3.3)

Hence we consider the value of Am given in (5.3.2) to be the largest
wavelength that can be represented using this model, with this particular
set of initial conditions. The mesh length was set equal to Ay and the

following results wexre obtained.
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The plots in Figure 5.3 depict the evolution of the initial random
perturbation. As can be seen from these figures, the longest wavelength
the space mesh can represent eventually dominates. This result is
expected because linear theory tells us that this mode has the largest
linear growth rate. The electron temperature profile develops a

large single filament (Figure 5.3a). At t = 12 scale times, this hot
filament has a half-width equal to about 0.13 A,. The electron
temperature troughs are very flat. The maximum electron temperature is
about 16 times the initial electron temperature, while the temperature
in the trough is very nearly equal to the ion temperature. This minimum
temperature in the trough is reached quite quickly. After t = 5 scale
times the temperature in this region is virtually constant. This can be
understood by looking at the current density profiles and the electron
energy equation (4.1.6). Figures (5.3¢) and (5.3d) tell us that after

t = 5 scale times there is about one tenth of the initial current in the
electron temperature trough. All derivatives of the electron temperature
here are very nearly zero and the electron and ion temperatures are very
nearly equal. Hence the small rate of change of the electron temperature
here is due to the fact that all the terms are small in equation (4.1.6).
The density in this region, however, is still changing considerably
{(Figure (5.3b)). The large scale structure ofthe number density shows
there is a density minimum at the temperature maximum and vice versa.
Again this result was expected from linear theory. However, there is a
secondary density peak located at the density minimum which quickly
develops, and continues to grow. The secondary peak is a result of

the plasma not leaving this region as quickly as that either side of it,
and it does not mean the density is increasing here. This phenomenon
may be explained by looking at the current density profiles, Figures

(5.3c) and (5.3d). We observe that the current density in the ¥-
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direction, in the early stages (t £ 1), is much less than the current
density in the 2-direction; the initial current density in the $-
direction is equal to zero. As the instability develops the y-component
of the current density becomes increasingly important. After time t =

5 scale times the magnitude of the peak value of the y-component is of
the same order as that of the z-component. Furthermore the maxima of
ij[ occur either side of the maximum value of jz. As the Ohmi¢ heating
rate goes as EEIEEEEEL ; the monotonic decrease of the heating rate

away from the jz peak no longer cccurs as it did at previous times when

ij] <<'|jz . Hence an extra heating at the "flanks" of the electron
temperature filament occurs, leading to a spiky structure with wider
spikes than expected from the results presented in Chapter 3. It is
worth noting here that the perturbation in the magnetic field, Bz' is
always comparatively small; its maximum value being about 9x10—3 Bzo at
the end of the run (Figure 5.3e).

In Figure (5.3g) we plot the values of the rate of change of the
dimensionless electric field and the rate of change of the dimensionless

internal energy E. against dimensionless time. The purpose of these

I
plots is to indicate whether the system is approaching a steady-state.
In this case clearly it is not. They also tell us that the applied
electric field is decreasing in time throughout the simulation.

In summary we can say that the instability develops in such a
way as to produce current filamentation., The electron temperature in
the filaments is much higher than that of the surrounding plasma while
the number density is much lower. The filaments are narrow and spiky
with a separation distance equal to the wavelength of the fastest
growing mode. In the regions surrounding the filaments the profiles
for the number density, current density, electron temperature and

magnetic field become very flat. The electron temperature is very

nearly equal to the ion temperature and the current density is only



134

about 10% of its equilibrium value. The amplitude of the filament
grows in time and becomes narrower. The filament has grown to a
large amplitude after twelve linear growth times and the system is
not appreaching a steady-state. The electric field is decreasing
throughout the simulation in order to keep the total current constant.
Résults found at times later than t = 12 scale times show that the
filament continues to grow and becomes narrower and the electric field
tends to zero. A steady state is not found and the system continues
to behave in the way already described. The results at later times do
not add to our information on how the system evolves and are therefore
not reproduced here.

There are two further reasons why we do not show results at
times later than t = 12 scale times. The first reason is that a fluid
model of the system becomes invalid shortly after this time. As stated

in Chapter 1, the fluid approach is only valid for large mete if,
I >> a (5.3.4)

where L, is the characteristic scale length over which the plasma
‘quantities vary perpendicular to the magnetic field and a, is the
electron Larmor radius. If condition (5.3.4) is not satisfied, the
transport coefficients in the form used here are no longer valid. The
characteristic dimensionless length scale ovef which the electron

temperature varies may be approximated by,

L.L
— = (=) (5.2.5)

We arbitrarily stipulate that the quantity in (5.3.5) should always

be greater than about ten times the dimensionless electron Larmor radius.
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Shortly after t = 12 scale times this condition is violated and hence
our model is no longer applicable,.

Before the fluid model breaks down, the condition for onset of
ion acoustic instability (as given in equation (3.4.4) of Chapter 3) is
viclated in parts cof the current filament. The presence of ion acoustic
instability would have an important effect on the further evolution of

(31,32] to lead to a high effective

the filament, because it is known
electron-ion ceollision frequency when fully developed. In Chapter 6
we simulate the macroscopic effects of ion acoustic turbulence on the
further evolution of the system. In the rest of this chapter we
explore the changes in the behaviour of the electrothermal instability

brought about by using a smaller mesh length and hence reducing further

the longest wavelength represented.

5.4 MESH LENGTH LIMITED TO SIX SCALE LENGTHS

A perturbation was applied to the steady-state system in
exactly the same manner as described in the last section. The same
initial conditions were used and the only change made was that
the length of the mesh was set egual to six scale lengths instead of
twenty.

Figure (5.4a) shows the electron temperature profile at
different times during the simulation, We notice again that the
longest wavelength on the meshquickly dominates which is acceptable
because linear theory tells us that the linear growth rate of growing
modes increases as the wavelength is increased up to the optimum
wavelength for growth. The shape of the electron temperature profile
is smoother throughout the simulation than it was in the results in
the last section; the temperature peaks are not as sharp nor the

troughs as flat. The density profile (Figure 5.4b) has the shape one
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would expect from locking at the electron temperature profiles.

Looking at the current density profiles, Figure (5.3c) and Figure (5.3d)
it is evident that the y-component of the current is always much
smaller than the z~component, and again both are more smoothly varying
than in the last set of results.

The most important result here is that a steady-state is
reached. After the time labelled t = 35 scale times the electron
temperature, z-component of the current density and the number density
remained constant, while the y-component of the current density returned
to zero and the magnetic field configuration returned to its initial

value. The final total pressure is lower than its initial value.

dE
Figure (5.4g) shows the temporal behaviour of the quantities :ﬂ? and
dE
755- both of which are very close to zero at t = 35 scale times.

Furthermore the steady-state reached must be a stable one as the run
was continued beyond this point in time with no further change. If the
steady-state were not stable round-off error would be encough to trigger

further changes,

Comparison with results in Chapter 3

The steady-~state maximum wvalue of the electron temperature is,

T = 2.433 in dimensionless units (5.4.1}
emax

or in units of degrees Kelvin,

T = 2.433 T °X (5.4.2)
emax eo

where Teo is the initial steady-state electron temperature in degrees

Kelvin before the perturbation was applied. The minimum electron
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temperature attained is,

T . = 1 - 0.3844 in dimensionless units {(5.4.3)
emin

or in units of degrees Kelvin,

Temin = 0.61l1l6 'I‘eo °K (5.4.4)
In Chapter 3 we obtained solutions to the steady-state electron energy
equation. For the results presented in this section to be believable
the electron temperature profiles must satisfy egquation (3.1.9) with

B = 0 (no radiation loss). This must be so because every assumption
that was made to obtain solutions of the electron energy equation in

Chapter 3 hold for these steady-state soluticns, i.e.

e
E, B and Ti uniform

i ]| B everywhere (5.4.5)

AHZ {(noct to be confused with AF2) is defined as given in equation (3.1.5),

that is,

mikBalz'I‘il’Ez2
al = 5257 (5.4.6)

(dimensionless quantities have not been used in equation (5.4.6)). AHZ

. . 2 . . . ,
can be written in terms of AF defined in equation (4.1.12} (and in

equation (4.8.1)) as follows



2 2 B 4
Z
AH = AF -E)—z_Ti
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(5.4.7)

where the dimensionless quantities Ti’ Ez and p are defined in (4.1.11).

We can calculate AH2 for the steady-state solutions in this section.

From the results and equation (4.8.1) for A 2

conditions,

2
A" = L.
E % = 0.7855°
Z
p2 = (1.5 - 4.28 x 102
v = o.5%
1
Hence,
AH2 = 2.7241 x 1072

F

)
) final values
)
)

and the initial

(5.4.8)

(5.4.9)

We now briefly recall the method used in Chapter 3 to solve for the

steady state electron temperature profile using the electron energy

equation. For a given value of A 2

H

"t " =T /T.). With this value of t .
i min

min emin

we chooge "t , "
min

{remembering

we can find the constant

of integration. Using this value of the constant of integration we

can find t {t = T /T.).
max & max emax’ "1

we refer the reader to section 3.2 of Chapter 3.

From the results in this section we know A 2, t
H min

We now use these known values of AH2

and t .
min

and use the method

For a clearer account of this method

ax

described in Chapter 3, section 2 to £f£ind tmax' Obviously the wvalue

of tmax calculated in this way must agree with the value which can be

derived from (5.4.2). Also, the wavelength calculated using the

numerical method in Chapter 3 must equal the length of the mesh.

The
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results are compared in Table 5.4

TABLE 5.4
2 -2 .
A = 2,7241x10 7, t ., = 1.2232, no radiation
H min
loss
T m;
t - _SMax A in units of a (—&0
max Ty eo mg
value calculated using 4.882 5.89
method in Chapter 3
value obtained from 4.866 6

present model

The good agreement between the results obtained from the non-linear
steady~state model and the steady-state results obtained here as a
result of following the evolution of the electrothermal instability
until saturation gives confidence in the computer program.

We note that the condition for onset of ion acoustic
turbulence (5.3.7) is never viclated in the electron temperature and

current peaks.

5.5 MESH LENGTH SET TQO SEVEN SCALE LENGTHS

The results obtained when the mesh length is limited to seven
scale lengths are portrayed in Figures (5.5). The system again evolved
to a stable steady-state. That is the results shown did not change

appreciably after time t = 18.5. The arrival at a steady-state is also

. a. dEq dEz

indicated by ?ﬂ;-and jﬁ?-tending to zero at this time (Figure 5.5h).
ATemax . . .

We have alsc plotted — as a function of time which also tends to

dt

zero, as it should. The final value of the electric field is somewhat
lower than that obtained when the mesh length was limited to six scale

lengths,
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steady~-state value Bz = 00,5584 (5.5.1)

Correspondingly the final total pressure which is uniform has a lower
value as can be seen by comparing figqures (5.4f) and (5.5f). The
electron temperature profile is more sharply peaked with a higher maximum
value and the electron temperature trough is flatter with a lower
minimum value. The y-component of the current density is at all times
much smaller than the z-component.

It can be easily verified that the condition for onset of ion
acoustic instability is just violated in the electron temperature peak.
The characteristic scale length at the steepest point of the electron
temperature profile is such that it is still walid to consider the plasma

a fluid.

Comparison with results in Chapter 3

The steady-state electron temperature profile from these results
is compared with the steady-state solutions found using the method in
Chapter 3 in the same way as described in the last section. Good

agreement was again found as can be seen from Table 5.5.

Final value of Ez 0.5584

Final value of p 1.5 - 0.1283

Hence from (5.4.7)

AH2 = 1.5536 x 10

2

Notice that this wvalue of AHZ is less than the wvalue obtained for the

steady-state with the mesh length limited to six scale lengths.
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TABLE 5.5

a2 = 1.5536x10'2, t . = 1.0805, no radiation loss
H min

t A in units of a_ _(—)
max e0 my

Value calculated using method 11.5544 6.5

in Chapter 3

Value obtained from present 11.7842 7

model

5.6 MESH LENGTH SET TO EiGHT SCALE LENGTHS

The results obtained when the mesh length was limited to eight
scale lengths are shown in Figure (5.6). The simulation was terminated

after time t=8 because the characteristic scale length of the electron
temperature gradient at its steepest point is just greater than ten
electron Larmor radii. Hence a fluid approximation is no longer valid
by our criterion after time t=B scale times. Furthermore the condition
for ion acoustic instability to be present is well violated by this
time. As previously stated, the macroscopic effects of ion acoustic
turbulence would have a considerable effect on the evolution of the
plasma parameters after the condition for onset is first wviclated.
These effects have not been taken into account in these results.

We observe from Fiqure (5.6a) that the peak electron temperature
is greater at time t=8 scale times than it is when a steady-state is
found for the cases when the mesh length is shorter (sections 5.4 and
5.5) and the temperature minimum is lower. In the light of what has
been said in the last three sections most of the results here are self
explanatory. It should be noted that although the y~component of the

current is still small everywhere at all times compared to the z-
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component it 1s certainly larger here comparatively than in the cases
considered in the last two sections. Likewise the perturbation of the

magnetic field is greater although still very small in absolute terms.

5.7 SUMMARY OF RESULTS

Further runs on the computer were produced with the mesh
length increased above eight scale lengths. These results do not add
any further information to or change the conclusions that can be made
from the results presented here. Therefore they are not included.

We have demonstrated that the wavelength with the largest linear
growth rate dominates in the non-linear regime. Valid steady-state
solutions were found only for the cases where the mesh length was
limited such that only short wavelength modes could grow; valid in
the sense that our fluid model of the system is still applicable, and
also in the sense that corrections or changes to the model do not have
to be made due to the presence of ion acoustic instability. From the
steady-state sélutions obtained by following the evolution of the
electrothermal instability we can say that the value of AHZ decreases
as the mesh length increases. Also the longer the mesh length the

lower is the final energy state of the system (the value of E_ =

I
By2
p + 7;—%, and the lower the value of the applied electric field Ez
e
required to maintain constant total current. A 2 for a given value of

H

Ti {dimensionless Ti) is a measure of the ratio Ezz/p2 in the steady-state,.
As the mesh length is increased the electron temperature and current
filaments become more spiky and the troughs flatter while the amplitude

of the electron temperature oscillation increases. The shorter the

mesh length the longer is the time taken to reach a steady-state. This
point can be understood by remembering that shorter wavelengths have

smaller growth rates. The instability saturates at smaller deviations
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from the initial steady-state (before the perturbation is applied) as
the mesh length is decreased. It must be pointed out here that the
absolute wvalue of the time when the instability saturates and reaches
a steady-state must be treated carefully as its value varies with the
amplitude and shape of the initial perturbation.

We now turn our attention to the results obtained for longer
mesh lengths. Some general comments can be made about the behaviour of
the system when a short mesh length is used and those when a longer
mesh length is used. Firstly "valid" steady-~state solutions are not
obtained. Secondly the shape and behavicur of the profiles change.

The electron temperature filaments are less sharply peaked with steeper
sides. The number density develops a maximum at the position of the
density minimum (see Figure 5.3b). Both these features are due tc the
no longer negligible presence of the y-component of the current density
compared to the z-component as explained in Section 5.3. For the cases

where steady-state sclutions were obtained,
3j << jz everywhere at all times (5.7.1)

Hence jy is now playing an important part in the evolution of the electro-
thermal instability to such an extent that the maximum Ohmic heating
rate is no longer necessarily at the very peak of the electron temperature
profile.

In Section 5.2 the comment was made that the amount of energy
going into the y-component of the magnetic field is negligibly small.
This assumption can be recughly tested by calculating the magnetic field
- generated by the perturbed current jz. Using Faraday's Law we can
approximate the back emf generated by the changing magnetic field and

compare this with the applied electric field at a given time. This
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method gives only an approximate idea of the effect of neglecting By,
Approximate because these effects should be included self consistently.
In all cases the back emf calculated in this manner was less than a few
percent of the applied electric field at a given time.

We have illustrated the general behaviour of the system as the
mesh length is increased. It must be stated here that the most important
results are those obtained when the mesh length is set equal to the
optimum wavelength for growth, because this mode would be expected to

dominate in a real device as it is shown to do here.
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CHAPTER 6

INTRCDUCTICN

In the last chapter we showed that the electrothermal
instability leads to current filamentation in its non-linear stage,
When the mesh length is set equal to the largest value this modei will
allow, the amplitude of the filaments becomes sufficiently large for
ion accustic turbulence tc develop. We now formulate a model to
include the effects of ion acoustic instability on the further

evolution of the system.

6.1 THE MACROSCOPIC EFFECTS OF ION ACOUSTIC INSTABILITY

The nature and behaviour of the ion acoustic instability can
only be cobtained using a kinetic model. This is because the presence
of this instability depends upon the details of the distribution
functions. Hence its behaviour could not be simulated using our fluid

[33]

model. However it is known that the fully developed instability

produces an effective electron-icn collision frequency which is much

[34]

greater than classical. From a recent review of ion acoustic

turbulence typical values of the effective collision frequency are,

-3 -5
Vegr = {10 >3 x 10 ) mpe {6.1.1)

where w o is the plasma frequency. Hence for Tokamak devices we can

safely say,

Veff 27 Vejassical (6.1.2)
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The increased effective collision frequency results from enhanced
electron collisions due to ion sound turbulence. The values quoted

here are from theories and particle-in-cell simulations based on ion
tail formation being the saturation mechanism[33'35]. Simulations show
three distinct phases of growth of ion sound turbulence. The early
phase is exponentially growing in time. The middle phase grows roughly
linearly in time and marks the onset of non-linear modifications of the
plasma processes. The final phase is the saturated phase. Workers
differ to some extent on the late-time evolution. The time of evolution
of the instability to saturation in present simulations is typically

100 mpi-l. Comparing this to the growth time of the electrothermal

instability we get,

100 Me _ 100  ne? } 3 g }
w_. m Yclass - o ‘dm) = 10 T3 (6.1.3)
Pl 1 1 e

From relation {6.1.3) we can say the ion acoustic turbulence grows and
saturates in a time very much shorter than the time scale of interest in
our model. The fastest growing modes {(for ion sound turbulence) are

those with wavenumber K such that,

KA, = v2/2 (6.1.4)
where AD is the Debye length.

We know the ion acoustic instability grows and saturates in a
time which is very much shorter than even the time step used in our
simulation. During this short time the collision frequency could increase
to a very high value. We therefore simulate the effect of ion acoustic
turbulence by meodelling the time averaged behaviour. This can be

approximated when we have answered the question, what is the effect on
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the filament of increasing the electron-ion collision frequency at
the points where the condition for onset of ion acoustic instability

is viclated?

6.2 CHANGES TO THE MODEL

If the collision frequency increases, the electrical conductivity

decreases as can be seen from equation (6.2.1)

g = —— in cgs units (6.2.1)

The dependence of the thermal conductivity perpendicular to the magnetic

field x,o is less straightforward,

in cgs units = Fe = 2 . KBTe 1 (6.2.2)
g Xie (1+mezrez} 2m, v g (l eB )& T
MaCVeai

However, provided W Ty >> 1 still holds equation (6.2.2) may be simplified
to

n T m clv_,
Ke 5 KB e e ei

Xig = Ir Z © pyr~vi (6.2.3)

18]

In which case equation (6.2.3) tells us the thermal conductivity
perpendicular to the magnetic field increases with collision frequency.
Looking at the egquations used to describe the evolution of the system,
only the electron heat balance equation (4.1.6) and Ohm's Law, equations
{(4.1.4) and (4.1.5) are directly affected by o and Xte® If the collision
frequency were increased less current would be driven in this region

and hence the drift velocity would fall. Assuming the increase in
collision freqguency is sufficiently large the electron temperature would

fall because of the increased equipartition and thermal conduction rates.
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The ion acoustic instability arises when Te >> Ti and a current flow
drives an electron drift with velocity Vd > Gy the ion sound speed.
Therefore if increasing the collision frequency acts to reduce the
drift velocity and the electron to ion temperature ratic the region
will guickly become ion acoustic stable, with the collision fregquency
returning to its classical value. This will decrease the rate of
energy dissipation and increase the Chmic heating rate resulting in an
increase in electron temperature accompanied by an increase in drift
velocity. Once again the conditions for ion acoustic instability will be
present., In this way the region will oscillate in time about the
marginal stability condition for ion acoustic turbulence. We therefore
approximate the time averaged behaviour by assuming that once the
marginal stability condition is reached at any point the collision

frequency increases to maintain marginal stability at that point. Let

us assume the dimensionless collision frequency increases to v* given by,

vk = £y (6.2.4)

where v is the dimensionless classical colliszion frequency. The anomaly
factor £ is found by using the condition for onset of ion acoustic

turbulence which is,

m kT ms kT
in cgs units Vd > (—Eii (—E—S)ﬁ + (—&0% (—E—jﬁi (6.2.5)
my o Ma mj

as an upper limit for the drift velocity. The drift velocity va may be
written in terms of the current density,
2 + jzz)é

in cgs unit v . Uy (6.2.6)
in cgs u s 4 = 2.
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In terms of the dimensionless quantities defined in (4.1.11) relation

{(6.2.5) becomes,

.~ 1 - 1
4 L LA JL S (6.2.7)

Again the tilde notation will be dropped and the quantities when referred
to are dimensionless unless ctherwise stated. At marginal stability,
the current density is obtained from relation (6.2.7),
1 ms 1
L2 4 o4 2y o 0O 4 ooyt
(Jy +3,9) o (Tg2 + T2 (=97) (6.2.8)
s a
However the current density must alsc ocbey Ohm's Law, egquations (4.1.17)

and (4.1.18}, that is,

V,B, 2 1
X Z, +Ezz]2 (6.2.9)

1
(jy2 + jz?*)z = g* [(E -

where g* is the dimensionless electrical conductivity decreased as a

result of the increased collision fregquency,

o* = (6.2.10)

m|a

Eguations (6.2.8), (6.2.9}) and (6.2.10) are combined to find the anomaly

facter § giving,

Apd VB2 2 2.4 : i 4 1-1
£ = - [(Ey - ﬁ) + E, 1 [Te + (E) T, 1 (6.2.11)

The introduction of anincreased collision frequency to maintain
marginal stability is consistently incorporated in the program as

follows. When the system is approaching the condition for onset of ion
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acoustic instability the sclutions are tested at each mesh point at

every time step. If condition (6.2.7) is true at any point on the

mesh at time step n+l we say the solutions at this time step are

invalid. At the mesh points where the condition for onset is violated,

we use the invalid soclutions in the right hand side of equation (6.2.11)
to obtain a first approximation for the anomaly factor £. This value of

E is used to calculate the dimensionless anomalous electrical ceonductivity
g* as defined in (6.2.10), and the dimensionless ancmalous thermal

conductivity x,o* defined as,

Xie* = £ Xie (6.2.12)
where X,, is the dimensionless thermal conductivity as defined in
equation (4.1.19). At the mesh points where the ion acoustic instability
condition is not violated £ is set equal to one. With these values of
xle*and g* we find the next approximation to the solution of egquations
(4.1.14-20) at time step n+l. Again the solutions are tested for ion
acoustic instability and using the same method as before a second
approximation for £ is cbtained. We néte here that once the marginal
condition for ion acoustic instability has been reached at any mesh

point marginal stability is maintained at that mesh point for all

future time. This means that if our.first approximation for £ is so
large that the next approximate solutions produce results showing ion
acoustic stability this would not be acceptable. The only acceptable
results are those showing marginal stability. The iteration procedure

is repeated obtaining successively improved wvalues of £ and all other
variables until convergence is achieved. In practice convergence was

achieved more rapidly by using a combination of the pth and p—lth

values of £ in the p+lth iteration instead of using the pth i.e.
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ptl (£P-1y + P71 (6.2.13)

g

where p denctes the iteration number.

6.3 RESULTS FROM THE MODEL INCLUDING THE EFFECTS OF ION

ACQUSTIC TURBULENCE -

The results from the simulation described in section three of
Chapter 5, at a time just before the conditions for onset of ion
accustic instability are met, are used as a starting peint for this
simulation..The model and equations are changed according to the
prescriptions given in the last section and the run continued. The
results obtained are shown in Figures (6.3). The curve labelled 1 in
Figure (6.3a) shows the perturbed electron temperature profile at a-
time just before the anomalous collision frequency is introduced.
Looking at the curves labelled 2 aqd 3 we can see that the electron
temperature filament continues to grow. This shows the Ohmic heating
rate is still larger than the total energy dissipation rate despite
the introduction of the anomalcus collision frequency. However the
width of the filament increases with time instead of decreasing. This
can be understood by locking at the current density profiles in
Figures (6.3b) and (6.3¢c). The z-component of the current density is
falling in the region where an ancmalous collision frequence exists,
as expected. In order to maintain constant total current the width of
the current filament is increasing sc that more current is flowing in
regions where the z-component of the current density was previously low.
Hence the.Ohmic heating rate rises expanding the width of the electron
temperature filament. We also observe the z-component of the current
density develops two spikes which mark the edges of the region where an

anomalous collision frequency exists. Current is being expelled from
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the region between the spikes because of the high resistivity brought
about by the anomalous collision frequency, while either side of the
spikes the resistivity is high because of the lower electron temperature.
Therefore the spikes dewvelop because these regions offer paths of least
resistance. This explanation is upheld by the behaviour of the y-
component of the current density which is also being expelled from

the region affected by ion acoustic turbulence and concentrating in the
same regions as the z-component. However the total magnitude of

the y-component of the current density is decreasing in time. As can be
seen from Figure (6.3e} the electric field Ez starts to rise shortly
after the onset of ion acoustic turbulence and continues te do so
because the current cannot be instantanecusly expelled from the anomalous
region at any given time in order to maintain constant total current.
Plots of the number density profile at various times, Figure (6.3d), show
that particles are still evacuating the high electron temperature region.
The number density minimum becomes sgquare and the secondary maxima
disappears as a result of the combined effects of the y-component of

the current density dying away and becoming once again much smaller than
the z-component, and the development of the spikes in the z-component.
Figure (6.3f) shows the width of the region affected by ion acoustic
turbulence is increasing in time. Furthermore the anomaly factor §
increases in time showing the collision frequency has to become more and
more anomalous to keep marginal stability.

After a time equal to about sixty six scale times the system is
approaching a steady state; the centre of mass velocity, the y-component
of the current and the total pressure gradient are all very close to
zerc while the time rate of change of any quantity is very small. The
steady-state electron temperature, current and number density profiles

‘are plotted in Figures (6.3g-i) and the steady-state ancmaly factor £ is
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plotted in Figure (6.3j). The maximum electron temperature is about
120 times the initial equilibrium value while the minimum electron

temperature is very nearly equal to the ion temperature.

6.4 THE EFFECTS OF THE PRESENCE OF THE FILAMENTS ON ENERGY

TRANSPORT

We are now in a position to test the hypothesis that the
presence of a fully developed electrothermal instability may increase
the rate at which energy is equipartitioned to the ions from the
electrons to a value above that deduced from experiments. The
separation of the electron temperature filaments if they existed would

ms
be about 20 aeo (Ei)i. Such fine scale structure would not be detected

using existing expgrimental methods. 1In a Tokamak the electron density
and temperature are most reliably measured by Thomson scattering.
There are typically only 1-4 laser pulses of short duration (v 25 ns)
during a discharge pulse giving l-4 time resolved measurements at one
point in the plasma. Thus to build up radial profiles requires many
pulses and good plasma reproducibility. Even using a high brightness
laser, and complex detection systems, it is only possible to measure
[23]

the parameters at sewveral radial positions from a single laser pulse .

Using Thomson scattering an experimentalist would measure the average

electron temperature over the scattering volume weighted with density[33].
It is generally assumed that the equipartition rate is classical.
Therefore the average equipartition rate as calculated from Thomson
scattering measurements would be
n? e2 x -
B - 3n B (Te scat Ti) (6.4.1)
= T 37 s
q scat moot T, /
A
- 1 " -3
where  n = T f n(x}) dx cm (6.4.2)
m o
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1 *n
and T osear = ﬁi n(x) T_(x) dx °K (6.4.3)

The electrical conductivity is known from experiment to agree well with
the Spitzer formula which has been used in equation (6.4.1). We must

compare E with E the average equipartition rate calculated

q scat q et’
taking into account the fine scale filamentary structure, and the

anomalous collision frequency in regions affected by ion acoustic

turbulence,

An 3n2 (x) ek _(T (x) - T.)
1 B e i
B or = 3/ £ dx (6.4.4)
4 m o m, al T (:ﬂ:)a/2
i e
If our hypothesis is correct,
E
g et s 1 {(6.4.5)
E
g scat

Not only should condition (6.4.5) be true, but alsc the presence of

the filaments and associated regions of ion acoustic turbulence must be
shown not to give rise to differences between the calculated and
experimentally measured values of electrical conductivity. As previously
stated these two values should agree well. Therefore we also compute

the ratio,

1 3/2
[s3 a+ T
t t
gca - edsca (6.4.6)
et et
where Am ;
1 z
Opp = 3‘—-[ = dx (6.4.7)
m o Z

Returning to our dimensionless units and remembering the total current
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is held constant and the electric field Ez is not a function of

position we obtain,

=2 _ -1 A 2 _

Eq et _ : n (Te scat Ti) : 1 fm n< (x) (Te(x) Ti) e o
E T 3/ < A T (x)3/¢

g scat e scat m o e

(6.4.8)
and

O‘scat

=Sear - g 3/2 g (6.4.9)

Uet e scat z

From the steady-state solutions the final electric field is equal to
0.46 of its initial wvalue before the perturbation was applied, and from

the results shown in Figures (6.3g} to (6.3j) we obtain,

E

5—3—95— = 0.4302 <1 (6.4.10)
g scat
and
o
2cat = 1.09 ' (6.4.11)
et

Relation {6.4.10) tells us that the presence of the filaments leads
to a reduced rather than an enhanced energy equipartition rate. The

equipartition rate goes as,

n? (T - T,) ~
E & — {(6.4,12)
d g
Now Te scat is the dimensionless average electron temperature weighted

with number density. The density is a minimum where the electron
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temperature is a maximum and vice versa. From the steady-state results,

Te scat = 1.7575 . (6.4.13)
The average dimensionless number density n defined in relation (6.4.2)

is equal to one because mass can neither enter nor leave the system at
any time and therefore the final average number density equals the initial
uniform number density. Therefore Eq scat is approximatelyone half the
initial equilibrium equipartition rate. In the electron temperature

peaks the number density is very small. Despite the anomalously high
collision frequency there the equipartition rate is still only about 2%
of the initial equilibrium wvalue. In the electron temperature troughs

the electron temperature is very nearly equal to the ion temperature

producing a very small value for the equipartition rate in this region,

This explains the result obtained in (6.4.10).

6.5 SUMMARY OF THE RESULTS

We have included the effects of ion acoustic turbulence by
introducing an anomalous collision frequency in the region concerned
in such a way as to maintain marginal stability. Current is expelled

from the region because marginal stability is held by imposing,
|j[ « 1 (Te% + constant) (6.5.1)

The number density continues to fall because the pressure is still high
in this regicon and hence the current density falls. Condition (6.5.1)
then determines the anomalous collision frequency. The current spikes
at the edges of the turbulent region arise because of the strict

adherence to the constant total current condition and because of the
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abrupt onset in time and space of ion acoustic turbulence. Therefore
we would not expect the spikes to occur in reality. After about
seventy linear growth times the system reaches a steady-state. The
electron temperature filament persists accompanied by a sharp number
density well. The fine scale structure of the filament is shown to
decrease the value of the average equipartition rate compared with
that calculated from experimental results, while the electrical

conductivity is unaffected.

6.6 DIRECT ION HEATING BY ION ACOUSTIC TURBULENCE

An important effect which has been neglected in this model is
the direct heating of the ion tail by the ion acoustic turbulence.
This is thought by éome authors to be responsible in some numerical
simulations for the saturation of the ion acoustic instability, and
could be allowed for in this model by postulating that a fraction of
the Ohmic heating rate 6 J.E from the energy source J.E goes directly
into ion heating. Hence the Ohmic heating of the electrons will be
reduced to (1-6}J.E. The value of the variable § can be approximated
from wvalues of the electron and ion heating rates calculated by
Weinstock and SleeperEas], though i1t should be noted that this particular
paper postulates ion resonance broadening rather than icon tail
formation as the saturation mechanism., Further studies are being made
of both PIC numerical simulation results and the analytic work of

[37]

Vekstein and Sagdeev The inclusion of direct ion heating may

well change the results described in this chapter.

CONCLUSION

We have extended the work of other authors on the linear

behaviour of the electrothermal instability. From this work we
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conclude that the effect of taking into account the changes in the
y-component of the magnetic field (By << Bz assumed) on the linear
behaviour of the electrothermal instability are negligible for

wavelengths up to and including the optimum wavelength for growth

m; 1
(A , v few a (—=)?). The inclusion of deviations from
optimnum 20 ‘Mg

vp = ;%i are also shown to have negligible effects on the behaviour of
the electrothermal instability. The inclusion of Bremsstrahlung
radiation loss or indeed any radiation loss with an nzTeY (where v ¢ |
such as impurity) dependence enhances the growth rate of the instability.

Soclutions of the steady-state electron energy eguation show
the possibility of the existence of a sharply peaked filamentary
structure for the electron temperature and current profiles at
saturation of the instability. Such profiles only exist for the
electric field less than a critical value. For some of these sclutions,
the conditions for onset of ion acoustic instability are violated
in the filament peaks. For solutions with very large amplitude filaments,
the conditions for full electron runaway are violated in the current and
temperature peaks, while the average values of the plasma parameters
preclude the existence of either of these phenomena.

A numerical simulation of the development in time of the
electrothermal instability from an initially small, random perturbation
confirms the development of the filaments and shows their separaticn
to be egqual to the optimum wavelength for growth as calculated from
linear theory ({including By). However the filaments are of more uniform
width and less sharply peaked than expected from the solutions of the
steady~-state electron energy equation mentioned in the last paragraph.
The troughs are indeed very flat as predicted, and the filaments
develop to sufficiently large amplitude and composition for ion

acoustic instability to be triggered. Steady-state solutions which
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agree very well with the steady-state solutions cof the electron energy

equation are found if only very short wavelength modes are permitfed

to grow. As the optimum wavelength mode is shown to dominate,

these results only serve to give confidence in the computer program.
When the effects of ion acoustic turbulence are included by

introducing an increased effective electron-ion collision frequency

the system reaches a steady-state in approximately seventy linear

growth times. The electron temperature filament persists although its

width is increased and it is less spiky. The current density is

concentrated in the transition regions from anomalous to classical

collision frequency. However, the presence of the filament, from this

model, does not lead to an enhanced energy equipartition rate. Including

the direct heating of the ions due to ion acoustic turbulence in this

model may considerably change these results.
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APPENDIX 2

RECURRENCE SOLUTION OF A BLOCK PERDIAGONAL
MATRIX EQUATION

We wish to solve the matrix equation AU = W, rapidly, where A
is a block tridiagonal matrix with additional blocks in the upper
right and lower left corners, referred to here as perdiagonal.

The method of solution follows the principles for a recurrence

(28]

solution of a tridiagonal matrix equation , modified to deal with

the more complex case of periodic boundary conditions. We are

interested in solving equations of the form,

a, U, + B. U. + v. U, = W, la
3 9a1 T B3 U3 Y50, 3 (1a)

at every mesh point j, j=1 to J, where uj, Sj and Yj are 3x3 submatrices

and Wj and Uj are 3-component column vectors. Using periodic boundary

‘o _ du, _ dU .
conditions, U1 = UJ and (dx)l = (dx)J' the number of independent

equations reduces from J to J-1 and equation (la) may be written in

matrix form :

_ — e — ~ —
Bl ay 0] . . . Yy Ul wl
Y, 82 ay 0] . . 0 U2 W2
0 Y3 By ooy .. 0 Us b
@701 O y . © Yy Baa | Ui Wil  (2a)
- L ]
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Assume a recursive solution exists of the form,

U, = .U, + vy, U + Y, (3a)
J-1 XJ ] wJ J-1 ]
where again x. and wj are 3x3 matrices and Yj is a 3-component column
3
vector, If equation (3a} is applicable at the point j, for consistency
it must be applicable at every other point so the same formula applies

at the point j-1. Substituting equation (3a) for Uj- in equation (la)

1

and rearranging,

-1
U, = =(B. + v. ¥X. a. U
(BJ YJ xj) 3

- B. + Y. x.) " y. 0. U
3 (Bj Yj xj) Yj w]

j+l
OB+ Y. X oL -y, Y. (4a)
3T 5% 3 Y573

Equation (4a) has exactly the same form as the recursive relaticn

equation (3a), namely,

= + +
Y3 X341 Y541 ¥ Vye1 Yot Y (5a)

Identifying coefficients in eguations (4a) and (S5a) gives the

relations reguired to generate the successive values of xj, wj and Yj

-1
. = - (B, + ¥v. ¥x.) Q.

XJ+l ] YJ XJ |

Veo= o= (Bl + . x) Ly,
j+l 3 373 373

Y = (B. + ¥ B AR TR (6a)
j+1 i 5% R IR

Using equation {3a) at the point j=2, comparing it with the original
eguation (la) at the point j=1 gives the following expressions for

Xor wz and Yz’
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-1
Xp = =B %
-1
v = B M
-1
v, = 8, W (72)

Applying relations (6a) at the point j=1 and comparing these with relations

(7a), we obtain,

X1 is a null matrix

L

1 is the identity matrix

Yl is a null wvector

The relations in (6a) are now used to scan the mesh upwards from j=2 to
j=J-1 providing all required values of Xj' wj and Yj. Equation (3a) is
then used to scan the mesh downwards in j from j=J-1 to j=2 to determine
values of U at every point j on the mesh. The values of U at every
point j=J-1 is needed before the downwards scan can be carried out. This

is achieved by solving two equations in the unknown variables U d

gop 2n
UJ_2. The first equation is obtained as follows. Assume a relation

exists,

, U = h, (8a)

where ej, fj and gj are 3x3 matrices and hj is a 3-compconent column vector.

Substituting the expression for U. . from equation (3a) into equation (8a)

j=1
yields,

|
=3

I
i
[

e .U, + £ U + (e, .+ U = , , 9a
Xy 3 j "g-2 ¢ J wJ gJ) J-1 ] ] (%a)
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Equation (9a) is of the same form as equation (8a), that is,

+ + =
®541 U5 T Fye1 Yge2 T 951 Y D1 (10a)
Hence identifying coefficients in eguations (9a) and {(l0a) we obtain
the equations required to generate successive values of ej, gj, fj and

hj'

J+l i
fj+l = fj the elements of f do not vary with j
. = .t e, .
9341 % 5 %3
h, = h, - e, Y, 1la)
I+l J 3 (

If the original equation (la) is applied at the point j = J-1 and UJ is

replaced by Ul we obtaln an equation in the wvariables Ul'UJ-l and UJ_2.

Now, applying equation (10a) at the point j=1 and comparing the

coefficients with the equation described in the last sentence we obtain

expressions defining e5r Ior h2 and £,
€2 T % £ = Y
g9, = BJ-l h2 = Wj-l (12a)

The relations in (lla) are now used to scan upwards in j to find

successive values of ej, g. and hj and finally to find the values of e,
]

g and h at the point j=J-1. We can then write an equation involving the

variables UJ_ and UJ_ only from equation (1l0a),

1 2
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(eJ-l + f) UJ_2 + gJ-l UJ-l = hJ-l (13a)

The other equation in UJ—l and UJ_-2 only is obtained by applying

equation (3a) at the point j=J-1. This equation is then used to

eliminate U__, from equation (l3a) giving an equation for UJ-l in terms

J-2

of all kncown gquantities, namely,

Uy = ((eJ__1 + £) (xJ_l + le_l) + gJ_l)

) (l4a)

We now use this value of UJ_1 to initiate the scanning procedure

described previously. Hence we find U at every mesh point j.
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APPENDIX B

NUMERICAL STABILITY OF THE DIFFERENCE SCHEME USING
GERSCHGORIN'S THEOREM

The simplest way of implementing Gerschgorin's theorem is to
start by guessing a stable time step At for a given mesh spacing Ax.
The elements of the matrix Kim (4.3.2) are known at a given mesh point
j at time level n. Therefore we can find analytically the elements
of the amplification matrix G using equationé (4.7.8) and (4.7.10) for

the "worst case", sin2 Kix l. We now compute the three separate sums

2

of the rows, using the chosen wvalue of At, and store the sum of greatest
magnitude. Similarly we compute the three separate sums of the columns
and again store the sum of greatest magnitude. Gerschgorin's theorem
tells us the smallest in magnitude of the two stored values is greater
than or equal tc the magnitude of the largest eigenvalue of the
amplification matrix G. Therefore if the magnitude of this number is
less than or egual to one the chosen time step At should render the
difference scheme locally {in space and time) stable. If the magnitude
is greater than one the time step is halved and the computation
repeated until a satisfactory value for At is obtained,

The subroutine which carries out this numerical stability test
should, in theory, be applied at each mesh point at every time step.
In practice, it is only found to be necessary to apply it at, on
average, every fifty time steps. Also many test runs on the computer

showed the value of the stable time step obtained in this way to be

pessimistic.
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PROGRAM SUMMARY

Title of program: PERDIAG

Catalogue number: AARF

Program obtainable from: CPC Program Library, Queen's
University of Belfast, N. Ireland (see application form in this

issue)

Computer: CDC 6500; Installation: Imperial College Com-
puter Centre

Operating system: NOS

Programming language used: FORTRAN IV

High speed storage required: 17.7 Kwords

No. of bits in @ word: 60

Overlay structure: none

No. of magnetic tapes required: none

QOther peripherals used: card reader, line printer

No, of cards in combined program and test deck: 445
Card punching code: CDC

Key words: matrix equation, perdiagonal, tridiagonal, n X n
blocks, direct method, recursive, periodic boundary condi-

tions, n finite difference equations, one space dimension,
implicit

0010-4655/81/0000-0000/$02.75 © 1981 North-Holland

Nature of physical problem

A theorist may wish to solve the matrix equation AU = W,
rapidly, where A is a block tridiagonal matrix. This type of
matrix equation frequently arises in the solution of problems
in one space dimension; in the solution of boundary-value
and many initial-value problems (because the time-dependent
problem has been formulated implicitly), where it is necessary
to solve n coupled, finite difference equations. The program
is capable of dealing with Neumann, Dirichlet, mixed or
periodic boundary conditions, If the boundary conditions are
periodic, the resulting matrix A is block tridiagonal with addi-
tional blocks in the upper right and left corners, referred to
here a5 block perdiagonal.

Method of solution

A recurrence solution is used to solve the matrix equation
AU =W, The method follows the principles for a recurrence
solution of a tridiagonal matrix equation [1], modified, when
appropriate, to deal with the more complex case of periodic
boundary conditions.

Restrictions on the complexity of the problem
None, The method does not assume any particular properties
of the n X n submatrices, other than their being non-singular.

Typical running time

The test runs took about 0.3 s. Generally, the running time
would depend on the size of the blocks and the number of
mesh points.

References
[11 D. Potter, Computational physics (John Wiley, London,
1972).
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LONG WRITE-UP
1. Introduction

The computer program described uses a recursive
method to solve both the block perdiagonal and the
block tridiagonal matrix equations, AU = W,

The program has been used as part of a larger code
to follow the non-linear time development of electro-
thermal instabilities in a fully ionized plasma. This
involves the solution of a block perdiagonal matrix
equation at every iteration within each time step. In
this case, there are three coupled equations, differ-
enced using a Crank Nicholson implicit method. Hence
the dimensions of the blocks are 3 X 3. The number
of mesh points used was fifty.

2. Description of the problem and the method of
solution

We are interested in solving equations of general
form,

aUpsy + BiU; + iUy = Wy, (1)

at every mesh point j, j = 1, ..., J, where a;, ; and ;
are n X n submatrices, and W; and U; are n-compo-
nent column vectors. Using periodic boundary condi-
tions, Iy = Uy and (dUfdx), = ([dU/dx);, the number
of independent equations reduces fromJtoJ — 1,
and eq. {1) may be written in matrix form:

£ o 0 71 U, .

Y2 Bz 421 vae 0 UQ_

0 RE) ﬁa aa . 0 U3

o, 0 -0 ey By | | Uy
Wy
W,

= . 2

W, (2)
Wiy

Using more general boundary conditions, written in

differential form,

U ) (,dU ) ,
B— +CU) =D, B —+CU) =D, (3
( &= Yy, &Y, O

where B, B', C and C’ are n X n matrices (diagonal
matrices), and D and D' are n-component column
vectors. The number of equations isJ, and the result-
ing matrix is block tridiagonal, i.e. there are no sub-
matrices in the upper right and lower left corners.

3. Solutions and boundary conditions

3.1. Recursive solution — periodic boundary condi-
tions

Assume a recursive solution exists of the form,
Uiy =xiUp + Uy + Yy, 4

where again x; and Yy are n X n matrices, and Y} is an
n-component column vector. If the boundary condi-
tions are not periodic, the second term on the right
hand side of eq. (4) is not included. This is because,
with periodic boundary conditions, there exists a
cyclic coupling of points, as well as the intimate
coupling of neighbouring points existing with more
general boundary conditions. If eq. (4) is applicable
at the point 7, for consistency it must be applicable
at every other point, so the same formula applies at
the pointf — 1. Substituting eq. (4) for U;_, in the
original equation (1) and rearranging

Up= =@+ %)™ arUpr — B + %)™ 19U
@ Hrx)” W — Y. )

Eq. (5) has exactly the same form as the recursive
relation, eq. (4), namely,

Up=XpUpy ¥ U Up_ + Yy (6)

Identifying coefficients in eqgs. (5) and (6) gives the
relations required to generate the successive values of
Xj» ¥y and Yy,

Xjo1 = =B+ mx) ey,

Yrer = =6 + vx) " Yy Q)
Y =+ x) ™" (W — vY)) .

Using eq. (4) at the point j = 2, comparing it with the



F. Marsh, D.E, Potter [ Recurrence solution of a matrix equation 187

original equation (1) at the point j = I, gives the fol-
lowing expressions for x4, ¥, and Y3;

X2 = Flﬁiltxl:
Y2=—F1'm,
Y, "".GIl W . 8

Applying relations (7) at the point f = 1, and compar-
ing these with the relations (8), we obtain
x; is a null matrix,

Wy is the identity matrix,
Y, is a null vector.

The relations in (7) are now used to scan the mesh
upwards from j =2 toj =J — 1, providing all required
values of x;, ¥y and ¥}. Eq. (4) is then used to scan
the mesh downwards inj, fromj=J—~1toj=2,to
determine values of U/ at every point,j, on the mesh.
The values of the variable IJ at the point,j =J — 1,

is needed before the downwards scan can be carried
out.

3.2. To determine Uy_,

This is achieved by solving two equations in the
unknown variables, U;_; and U;_,. The first equa-
tion is obtained as follows. Assume a relation exists,

Uiy + iUy +gUs_ = 1y, (9)

where ¢;, f; and g; are n X n matrices and k; is an
n-component celumn vector. Substituting the expres-
sion for U;_; from eq. (4) into eq. (9) yields,

eXjUs + fiUs_a + (eply +8DUs—y =hj— ¢Y;. (10)
Eq. (10} is of the same form as eq. (9), that is,
epaatyy iUz + g Up—y = 0y (11}

Hence, identifying coefficients in eqs. {10} and (11},
we obtain the equations required to generate succes-
sive values of ¢;, g;, f; and h;;

€1 T € X

fy+1 = f; , the elements of f do not vary withj,  (12)
giv1 = & eV,

h]'+1 = hj — EjY]- .

If the original equation (1) is applied at the point

J=J—1, and U; is replaced by U, , we obtain an
equation in the variables Uy, Uy_; and U;_,. Now,
applying eq. (11) at the point j = 1, and comparing
the coefficients with the equation described in the
last sentence, we obtain expressions defining e,, g2,
hy and f;

f= ’YJ——ls
g2=8r-1, = Wy_y. (13)

The relations in (12) are now used to scan upwards in
j to find successive values of e;, g; and A, and, finally,
to find the values of e, g and h at the point j = J — 1.

We can then write an equation involving the variables
U;_, and U;_, only fromeq. (11},

(er—1 + DUz +gr Usoy =y, . (14)

It is worth noting here that successive values of ¢;, g;
and h; are not stored as only the values at the point
j=J—1areused.

The other equation in U, and U;_, only is ob-
tained by applying eq. (4) at the point j = — I, This
equation is then used to eliminate U;_, from eq.(14),
giving an equation for U;_, in terms of known quan-
tities, namely

Uper = (€71 +N0OG—1 + ¥y—1) + &7 )"
Xhyoa— g1 +H¥5-1). (15)

We now use this value of U;__; to initiate the scanning
procedure described in the last section, and hence
find U at every mesh point .

€2 =O:J—'ls

3.3, Neumann, Dirichlet or mixed boundary condi-
tions

It is a simple matter to perform the same analysis
for the case with more general boundary conditions.
It is found that the formulae defining the recursive
precedure for obtaining solutions to block tridiagonal
sets of equations are the same as those defined in rela-
tions (7) and (8) except y; is not included. The gen-
eral boundary conditions in eq. (3) may be written in
difference form,

BU, + (AC-- B)U, = AD
—B'Uy_, + (AC" + B"YU; = AD', (16)

where A represents the space separation of the mesh
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points, and is hence a number. Comparing the equa-
tions in relation (16) with eq. (1) at the pointsj =1
and j = J, respectively,

(2) (b)

a;, =B, oy is a null matrix,

1 =AC- B, [3_,=AC'+B', (17)
v: is a null matrix, ¥y =-8,

W, = AD, Wy=AD'.

Relations (17a) are then used in (8) to define the
starting values x, and Y. The first and third equa-
tions in (7) are used to scan the mesh upwards from
j=21toj=J, providing all required values of x; and
Y;. This time x; and Y} atj =J are defined because,
unlike the periodic case, the pointsj =1 and j = J are
not equivalent. The values of the variable I/ at the
point j =J are defined using the consistency of the
recursion relation, eq. (4), at the point j =J, with the
boundary condition, the second equation in (16),

Ur=(AC' +B' — B'xy)" (AD' + B'Y))
=@y Wy — Yy (18)

Uy is now used to initiate the downwards scan to
determine Uj; at every mesh point ;.

4. The computer program

The listing of the program contains a description
of the input data required, and what the program is
doing at every stage. The input required is the values
of the elements of the n X n matrices, a;, §; and ; at
every mesh point j, j= 1 toJ - 1, {or toj = J if non-
periodic boundary conditions are used) stored as
three-dimensional arrays, the values of the elements
of the n-component column vectors W; at every mesh
point f, stored as a two-dimensional array, the value
of n, (referred to in the program as NBLK) and either
meshl {meshl =J — 1) if periodic boundary condi-
tions are used or mesh {mesh = J) otherwise. The
dimensions of the arrays in the DIMENSION state-
ment in the main program must be changed accord-
ingly. The value of “NPER” should be set to zero for
general boundary conditions and 1 for periodic boun-
dary conditions. These are the only changes that have
to be made by the user. The user may, of course,
change the three FORMAT statements in the main

program to suit his requirements. There are two
READ statements, detailing how the input informa-
tion is read in, with two corresponding FORMAT
statements. The remaining FORMAT statement is
associated with the WRITE command which writes
the results, U/, a two-dimensional array,

The program consists of a main program,
PERDIAG, and the subroutines: MULT, ADD,
MINUS, EQUAL, NEG, NULL, IDENT, GAUSS and
IFAILS. All the subroutines, with the exception of
the last two, perform elementary matrix algebra, An
explanation of how each subroutine works is given in
the listing. Subroutine GAUSS has two functjons,
dependent upon the arguments with which it is called.
The first function is to invert an # X n matrix by
Gauss elimination [2]; the second is to solve the
matrix equation, CU= D, where Cis an n X n matrix,
again using Gauss elimination [2]. Subroutine IFAILS
is called if the matrix to be inverted, or the matrix, C,
is singular, and the error message, “the matrix is
singular”, is written to output, and the program stops.

The first part of the main program calculates the
elements of x;, Y; (and y;, if NPER = 1), forj = 1 to
J— 1 (toJ if NPER = 0) using relations (7) and (8),
and stores them. The second part calculates successive
values of the elements of e;, g;, ;, and the values of
the elements of f (relations (12) and (13)). Only the
values of ¢;, g7, fij, at f =J — 1 are stored together
with f. This second part is by-passed if NPER =0,
The elements of the column vector U,_; are then
found, eq. (15), if NPER = 1 or the elements of I/,
eq. (18), if NPER = 0. The final stage of the main
program consists of a backwards scan to find the ele-
ments of U; for all j using the values of x;, ¥; (and
i; defined if NPER = 1) previously stored, and eq.
(4).

The test runs were performed for mesh1 = 5 and
n =NBLK = 4, with NPER = 1 and NPER = 0. The
elements of &;, §;, v; and U; were chosen, using a ran-
dom number generator, and the elements of W; found
by multiplication. a;, §;, ¥; and W; were then used as
input for PERDIAG, and the results U; checked by
comparing them with the chosen values of U;. The
only output from the program is the set of values of
Uj.
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TEST RUN OUTPUT

RUBuEbeEoANCREATERAR800Y, UG EAGS MU0 4 00N,

1.5045E-01 -1.1252E-01 1.,2387€E=-01

3.1284E~0) =4.2521E=01 3,3655E~-01
2.3801E-02 3.5003E-01 -2,8187E-01
-2.2102E-01 B.1139E-02 =1,8375E-01

3.0056E-01
2439460E-01
245902E-01
8.7994E=-02

U(InJ)pI INCREASES ACROSS THE PAGEJANDZJ 0awWK

-2.0740E-01 -2.8187E-01 =-3,9531E-01
8,29390E-02 &.0719E-02 9.5484E-02
1.5045E=-01 -1l.1252E=-01 1.2387E-01
3.1284E-01 ~4.2521E-01 3.3655E-01

-4,4B00E-01 2.4%425E-02 3.6704E-02

437E=-01
~2+8%8%E-01
3.,0056E-01
2¢3960E=-01
-%.0595€-02

—
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