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ABSTRACT 

A study was carried out to determine the effects of compounding 

on the stress-strain behaviour of rubbers. The study was based on 

a model which expresses a nominal stress as a function of a 

strain invariant, and three material constants, A, B and C. 

Parameter A is the limiting modulus at high strain, the reciprocal 

of C is the difference between the limiting moduli at low and high 

strains while B determines the change in modulus between the two 

limits. In tension, lubricated compression and simple shear, 

parameters A , B and C for a rubber vulcanizate were the same. 

The dependence of A , B and C on the types and concentrations of 

carbon black and crosslink are discussed. 

The presence of carbon black has been found to alter the 

cross linking efficiency of the vulcanizing systems. When the 

crosslink density of the peroxide cured rubber was assumed to be 

unaffected by the presence of carbon black, results showed that the 

crosslink density of the corresponding rubber crosslinked using 

the sulphur vulcanizing system increases linearly with the volume 

fraction of black. A correction to the Guth-Gold type of the 

hydrodynamic equation used for predicting the modulus of filled 

rubber, to account for the change in crosslink density of the 

rubber matrix is proposed. 
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section 1 general introduction 

1.1 Objective and scope of the present investigation 

In engineering applications, rubbers are mostly subjected to 

low to moderate strains. In compression, for instance, rubbers 

are generally deformed to about 157», while in shear, strains of up 

to 1007o are sometimes employed. There are various theories which 

provide the relationships between stress and strain for low to 

moderate strains but in general they are not applicable to filled 

rubbers. Thus, a satisfactory prediction of a stress at any defined 

strain or vice-versa of components made from filled rubber cannot 

be made. 

The objective of the studies described in this thesis is to 

find a relationship between stress and strain which is applicable 

to both filled and unfilled rubbers and to determine the effects 

of compounding on the stress-strain behaviour, so that an adequate 

description of the elastic behaviour of rubbers can be made. 

The experimental work carried out is discussed in section 3. 

The effects of measurement techniques and types of test-piece on the 

stress-strain measurements were investigated using three simple 

modes of deformation viz. simple extension, lubricated compression 

and simple shear at low to moderate strains. 

Section 4 gives the derivation of a relationship between the 

stress and strain for different modes of deformation and the 

verification of the proposed relationship. 

The effects of compounding on the stress-strain behaviour are 

discussed in section 5. The variables investigated were the effects 

of types and concentrations of crosslink and carbon black. 
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The conclusions of the studies described in this thesis are 

given in section 6. 

1.2 Natural rubber 

Natural rubber comes from the latex of many plants, the major 

source being Hevea Brasiliensis, a large tree which is indigenous 

to South America and which is cultivated mainly in South East Asia 

and West Africa. The coagulum, obtained by treatment of the latex 

with acid, followed by washing and drying, contains a high 

proportion of hydrocarbon mixed with proteins, resins and other 

constituents. The non-rubber contents are usually characterised 

analytically as "acetone soluble", nitrogen and ash. A typical 

analysis of the raw rubber on weight basis being: hydrocarbon 94.57., 

acetone soluble 2.87., nitrogen 0.47. (in a form of protein), ash 0.27., 

with the rest being moisture (l). 

1.2.1 Chemical Structure 

Natural rubber hydrocarbon consists of linear chain cis-

1,4, polyisoprene having a number average molecular weight of about 

1 0
6

. It has the same empirical formula as Gutta-percha, 

having one carbon-carbon double bond for each cI-h
q
 unit, the 

d o 

difference being solely in the arrangement of the carbon-carbon 

bond adjacent to the double bond. In natural rubber, the single 

bonds both lie on the same side of the double bond (ie \ / ) 

forming the cis-configuration, whilst in Gutta-percha, the single 

bonds lie on the opposite sides of the double bond (ie ,• — / ) 

to form the trans-configuration (2). These differences give markedly 

different physical properties for the two materials, witt) natural 

rubber being rubbery at room temperature while Gutta-percha is a 

crystalline solid. 



2 0 

1.2.2 Vulcanization 

Raw rubber is a mass of soft-flexible material. It shows 

viscoelastic properties since the molecules interact strongly with 

their neighbours through the attractive forces and physical entanglements 

Being uncrosslinked, the rubber does not exhibit wholly elastic 

properties. Unvulcanized rubber is tacky when hot and slowly 

crystallises to a rather hard and tough material when stored at 

low temperature (<15°C)
0
 In the unvulcanized state, raw rubber 

has rather limited uses but it can be transformed from its 

predominantly plastic state to a highly elastic state through a 

process called vulcanization. 

Vulcanization consists, essentially, of chemical crosslinking 

of rubber molecules to form a three dimensional network. It is 

generally carried out under pressure at high temperature (normally 

>100°C). Vulcanized rubber is generally referred to simply as 

"rubber", a term which is used in this thesis. 

1.2.3 Compounding 

Commercial rubber, in its usual form, requires compounding 

prior to vulcanization. This is a process of blending the rubber 

with vulcanizing agents and other substances to produce a 

homogeneous mix. The compounding ingredients, may be classified, 

in the approximate order of importance as: 

(a 

(b 

(c 

(d 

(e 

(f 

<g 

Vulcanizing agents 

Accelerators 

Accelerator modifiers 

Fillers 

Processing aids 

Protective agents 

Others 
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Any chemicals which are capable of forming crosslinks between 

the rubber chains can act as vulcanizing agents, but the preferred 

agent is still sulphur. 

When sulphur and rubber are heated together, a very slow 

crosslinking reaction takes place. In order to speed up the reaction 

processes, organic accelerators are used, and the major functions of 

the accelerators (when used in conjunction with auxiliary agents) 

are: 

(a) To increase the rate of sulphur reacting with rubber 

(b) To increase the efficiency of the utilization of sulphur 

as a crosslinking agent and thereby producing a simpler 

network structure. 

Various types of accelerator are available and the types used depend 

mainly on the processing stages involved. The sulphenamide 

(N-cyclobenzothiazole sulphenamide) was used for this thesis because 

it gives a fairly long (>20 minutes at 120°C) scorch time (i.e. time 

before onset of: crosslinking) thus allowing a reasonable length of 

time for the mixing processes. 

The organic accelerator used in the sulphur vulcanizing systems 

requires Zinc oxide and a fatty acid (normally Stearic acid) as 

auxiliary agents or accelerator modifiers. The Zinc oxide-fatty 

acid system are also known as activators. Their function in the 

crosslinking process is mainly to interact with the accelerator to 

form an active sulphurating complex prior to the attack on the rubber 

chain. When dicumyl peroxide is used as the vulcanizing agent, no 

activator is required. 

Unfilled or pure gum rubbers are not suitable for most practical 

applications because they are too soft. Fillers are therefore added 
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to stiffen the product. Carbon black is the most popular type of 

filler which is used to increase the rubber stiffness. 

When fillers are mixed with rubber, the use of process oils 

is necessary. These are hydrocarbon oils and their presence reduces 

the frictional energy generated during mixing. 

Protective agents are added to protect the rubber from 

degradation. The types of protective agent used depend on the use 

of the finished product. Waxes, for instance, are incorporated 

to protect the rubber against ozone attack while chemicals such as 

1,2-dihydro 2,2,4-trimethyl 6-phenyl quinoline are used to protect 

against oxidative degradation. 

Apart from the compounding ingredients discussed above, there 

are other substances which are added for certain specific purposes, 

where their presence does not significantly alter the physical 

properties or the service life of the products. Among these 

substances are the colouring pigments, used to make articles look 

attractive and deodorant used for imparting a pleasant scent. 

Mixing of the compounding ingredients with rubber is usually 

carried out on an open two roll mill or in an internal mixer, 

details of which are discussed in section 3. 

1.2.4 Crosslinks 

Different types of vulcanization system produce different types 

of crosslink. The accelerated sulphur vulcanizing system produces 

three different types of crosslink, namely the mono-, di- and 

polysulphidic types (3). The structural features of vulcanizates 

of rubber crosslinked using an accelerated sulphur system may be 

represented pictorially in figure 1.1. Apart from crosslinks, 
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pendent 
cyclic accelerator 
monosulphide triene group 

S S
2
 S

x
( x > 2 ) i 

i i i ̂  

r S - S - i 

mono- di- polysulphide diene cyclic disulphcde 

Figure 1.1. Structural features of an Accelerated Sulphur 

Vulcanizate of Natural Rubber. 
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cyclic mono- and di-sulphides, pendent sulphide groups containing 

accelerator fragments and conjugated diene and triene units are 

also present. 

There is an accepted terminology for the accelerated sulphur 

vulcanizing system. Conventional systems contain much higher 

concentrations of sulphur than accelerator, . efficient 

vulcanization systems (EV) contain a much lower concentration of 

sulphur than accelerator and semi-efficient vulcanization 

systems (semi-EV) are between the first two extremes. Typical 

concentrations of sulphur and accelerator used for the above three 

systems in parts per hundred parts by weight of rubber (pphr) are 

given in table 1.1. 

Table 1.1 The proportions of sulphur and accelerator used for 

conventional, Semi-EV and EV systems (4) 

Curing Systems Sulphur (pphr) Accelerator (pphr) 

Conventional 2.0 - 3.5 0.4 - 1.0 

Semi-EV 1.0 - 1.7 1.6 - 2.5 

EV 0.3 - 0.8 2.5 - 6.0 

The relative proportion of different types of sulphidic 

crosslink present in an accelerated vulcanizing system depends on the 

concentrations of sulphur and accelerator,, A higher concentration of 

sulphur in relation to accelerator (i.e. conventional systems) gives 

a higher proportion of di- and polysulphidic crosslinks while those 

containing a lower concentration of sulphur relative to the 

concentration of accelerator give a higher yield of monosulphidic 
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crosslinks. The approximate proportion of these crosslinks present 

in the three different systems are given in table 1.2. 

Table 1.2 Approximate types of crosslink present in the 

accelerated sulphur systems at optimum cure 

^ ^ ^ V u l c a n i z a t i o n 
system 

Conventional Semi-EV EV Peroxide 

Crosslinks 

Poly and di-
sulphidic 

< - S
x
— , - S — ) 

95% 50% 20% -

Monosulphidic 

( — s — ) 

5% 50% 80% -

Carbon-carbon 
(C-C) 

- - - 100% 

Polysulphidic crosslinks are thermally less stable than mono 

or di-sulphidic types of crosslink. Thus, variation in time and 

temperature of vulcanization also changes the proportion of different 

types of crosslink (5). 

Organic peroxides, such as dicumyl peroxide form carbon to carbon 

crosslinks. The crosslinks are formed without the use of any catalyst 

or accelerator, so normally their formation requires high temperature 

or long cure times. 

Different vulcanizing systems impart different properties to 

the rubber vulcanizates. Conventional systems give rubber with 

higher tensile and tear strengths than rubber cured with an EV 

system and these in turn are stronger than rubbers cross linked using 

the peroxide vulcanizing system. These differences are due to 

variation in bond energies for the rupture of the crosslinks, with 
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the S—S < C—S < C—C bonds; the weakest bond gives the strongest 

rubber because it is labile and able to break under stress, thus 

giving a yield mechanism for the dissipation of stress at the 

critical point of incipient failure (6). 

The ranking of vulcanized rubbers to heat resistance is the 

reverse order to that based on its strength properties. This is 

because the C—C crosslinks are more stable to heat than the 

monosulphidic crosslinks, and the polysulphidic crosslinks are the 

least stable. The order of heat resistance for rubbers crosslinked 

using different vulcanizing systems is as follows: 

Conventional < Semi EV < EV < Peroxide . 

The crosslink density (or number of crosslinks per unit volume) 

also affects the physical properties of rubbers (6). The modulus 

and hardness, for instance, both increase with crosslink density 

because more networks chain are available to bear the stresses. The 

tensile strength, on the other hand, initially increases with 

crosslink density for the same reason as that of the modulus and 

hardness, but it reaches a maximum and finally starts to decrease 

as the network chains become shorter and less extensible. Hence, 

the network is prone to rupture before appreciable orientation 

has occurred and ultimately the loss in extensibility is accompanied 

by a loss in strength. 



27 

SECTION 2; ELASTICITY OF UNFILLED AND FILLER RUBBERS 

2.1. Theories of Rubber-like Elasticity 
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2.2.2. The nature and classification of carbon black 
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2.2.3.1. Hydrodynamic effects 
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2.1 Theories of Rubber-like Elasticity 

2.1.1 Introduction 

Rubber-like materials (7) are long chain molecules with 

chemical structures permitting free rotation of segments of molecules 

about their chemical bonds in many places and sufficiently small 

intermolecular forces to take up random configurations. The linear 

distances between the ends of the molecules form a normal distribution 

about the most probable value (8-14). Irrecoverable deformation or 

flow is prevented by some permanent connections between molecules 

such as the chemical crosslinks introduced during vulcanization. 

The interlocking of the molecules at few places along the chain 

length forms a three dimensional network. 

The kinetic theory of elasticity of rubber-like materials was 

put forward by Meyer, Von Susich and Valko (8). It was based on 

the concept that the rubber-like materials can take up various 

conformations by virtue of the independent vibrations and rotations 

of the individual atoms of the chain due to thermal Brownian motion. 

Of all the conformations which may arise as a result of these random 

rotations, the great majority will be of the highly irregular kinked 

forms. When the chain is straightened out by an application of a 

force to its ends the entropy decreases because the freedom of the 

chains to take up different configurations is limited, but on removal 

of the force the chain will return in the course of time to one of 

its original form i.e. it will exhibit the property of elasticity. 

This forms the fundamental concept of the now generally accepted 

theory of rubber elasticity. 

2.1.2 The Statistical Theory of Elasticity 

The statistical treatment requires the calculation of the entropy 

of the whole assembly of chains as a function of the microscopic state 
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of strain in the sample and the derivation of the free energy or 

work of deformation from that. The work done in deforming the 

rubber elastically is considered to arise from the decrease in 

entropy when the molecules are forced by deformation to take up 

less probable configurations (8-14). From the work of deformation, 

corresponding to a given state of strain, the associated stresses 

are then readily derived from the application of mechanics. 

The development of the theory for a crosslinked rubber has been 

carried out by a number of workers (8-14) and the assumptions made 

are listed in the appendix. 

The quantitative analysis of the change of entropy with deformation 

and network structure has been successfully carried out using a 

modified molecular model consisting of hypothetical chains of freely 

jointed links about which there is a complete freedom of rotation; 

other than by the crosslinks, no interaction occurs between elements 

of the chains (assumption a). 

The configuration of the freely jointed chain resembles the 

path described by a diffusing gas molecule. If one end of a chain 

containing n links each of length 1 is considered to be at the origin 

of the coordinate system (x, y, z) and the other held in a small 

volume element /VC (=Ax,Ay«A. z) at a point (X
q
, y , Z

q
), the probability 

of such positions for the chain ends is given by, 

P < W
z

o
) A x

" *
y

*
z =

 exp[-b U
0
 + y

o
 + z

o
) > x A y ^ z (2.1) 

2. 3 

where b = . The function p(x , y , z ) is the probability 
2nl o o o 

function or probability per unit volume (sometimes referred to as the 

probability density). 
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The entropy of a system ( S
q
) is related to the number of 

possible configurations by Boltzmann's relation, 

S
Q
 = k [ l n p ( x

o
, y

Q
, z

o
) A t ] (2.2) 

where k is the Boltzmann constant. Substituting (2.1) into (2.2) 

gives 

S
Q
 = k[ln ( X ) exp ( - b

2

 r ^ A t ] 
it 

3 
= k[In (~tt) - b

2

r
2

 + l n A ' t - ] (2.3) 

k* ° 

/ 2 2 2 
where r ( = / x + y + z ) is a vector representing the end-to-end o v o j o o

 r & 

distance of an undeformed chain. Since the volume element dC. is 

assumed constant, then equation (2.3) may be written as 

S = C - k b
2

r
 2

 = C - k b
2

 (x
2

 + y
2

+ z
2

) (2.4) 
O O O •'o o 

where C is an arbitrary constant which includes the volume element d C . 

Equation (2.4) shows that the entropy of the chain is maximum when the 

two ends of the chain are coincident (i.e. r = o) and decreases 

continuously with increasing distance between the ends. 

When the chain is subjected to a pure homogeneous strain , the 

coordinate of the free end of the chain changes from (x
q
> y

o
>

 Z

Q
)

 t o 

(x, y, z) and the vector representing the end-to-end distance 

correspondingly changes from r
Q
 to r (Figure 2.1). The affine 

* 
In a pure homogeneous strain, the principal extension ratios \ are 

along the three mutually perpendicular axes. Under such strain, a cube 
is transformed into a rectangular parallel piped having three unequal 
lengths These extension ratios may either be greater than 1 
corresponding to a stretch or less than 1, corresponding to a compression, 
provided that the volume is constant, i.e. X^ X^ = 1 (assumption C). 
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z 

Figure 2.1 Effects of chain deformation 

deformation assumption implies that the relative displacement of 

the chain ends is defined by the macroscopic deformation (assumption d) 

Thus on deformation, when the axes of coordinates are chosen to 

coincide with the principal axes of strain, then 

X = J^x 

y - V o ( 2 - 5 ) 

z = \
0
z 

3 o 

where and \^ are the three principal extension ratios referred 

to the unstrained state. The entropy of the chain before deformation 

is given by equation (2.4) and the corresponding entropy of the chain 

after deformation will be 



3 2 

9 9 ? 9 9 9 9 
S = C - kb (\fx"~ + + \

z

z
z

) (2.6) 
1 o 2'o 3 o 

The change in entropy from an undeformed to a deformed state of 

strain will be 

A S = s - s o = - k b 2 [ ( X 2 - l ) x^ + < x 2 - i ) y 2 + ( x 2
3 - 1 ) z 2

o ] ( 2 . 7 ) 

The total entropy for all N chains contained in a unit volume of 

network is obtained by summation of all the changes in entropies 

for the individual chains (assumption e). Thus, the total entropy 

change is given by 

A s = - k b
2

[ ( \
2

- i ) ^ x
2

 + < x
2

- i £ > > o + (2.8) 

The terms j) x
q
, y^ and

 a r a

 the sums of squares of the x, y 

and z components respectively in the unstrained state of the network 

for the assembly of N chains. Since the directions of the chain 

vectors v
q
 in the unstrained state are entirely random, there were 

no preferences for the x, y and z directions. Hence, remembering 

that, 

+

 z
y

o
+

 » o = ' <
2

-
9

> 

we may write 

Z » £ - Z r J • Z - o
2

 • £ > 2 

Therefore, A S
N
 = — | k b

2

 + \
2

 + \
2

- 3 ) (2.11) 

2 
2 ^

 r 

By definition, < r
Q
 > = — ^ - 2 - (2.12) 2 

where <r
Q
 > is the mean square end-to-end distance of the chains in 

the unstrained state. Rearranging (2.12) and substituting into 

equation (2.11) gives 
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a
 s

n

 =

 ' i ^ h
2

^
 ( x

1
 + + x3 '

3 ) ( 2 , 1 3 ) 

If we introduce the assumption that the mean-square end-to-end 

distance in the unstrained state is the same as for a corresponding 

2 3 
set of free chains (assumption f), we have <r > = —

 9
 , which on 

° 2b 
insertion into equation (2.19) gives 

A S
N
 = - j Nk(\

2

 + X
2

 + X
2

 -3) (2.14) 

Equation (2.14) does not contain the parameter b, which is a function 

of the contour length. It follows that, the same formula could be 

applied to chains having different contour lengths, such as randomly 

crosslinked rubber. Assuming, in accordance with the basic principles 

of the kinetic theory, that there is no change in internal energy on 

deformation (15-17) then the work of deformation (or Helmholtz free 

energy) is given by 

W = hG U
2

 + A
2

 + A
2

 -3) (2.15) 

where G = NkT and T is the absolute temperature. W represents the 

elastically stored free energy per unit volume of rubber and is also 

known as the strain energy function. The elastic constant, G, is 

related to the number average molecular weight, M^ of the chains 

(i.e. segment of molecules between successive crosslinks) by, 

G = m (2.16) 

1

 c 

where ^ is the density of the rubber and R is the gas constant. 

Equation (2.16) assumes that the rubber network is perfect in 

that all chains in the network are effective in giving rise to the 

elastic stress. Ideally each crosslink connects four network chains. 

In reality however, a number of imperfections are possible. Even if 
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the molecules are all connected by crosslinks, each chain with molecular 

weight M must give rise to two terminal chains that are incapable of 

supporting stress. Thus the number of effective chains must not 

include the imperfections due to chain ends. Taking the terminal 

chains or loose ends into consideration, Flory (18) expressed G as 

2M 
G

 • f r
( 1

 • <
2

-
1 7

> 
c 

where the second term in the bracket represents the contribution from 

the loose ends. Note, however, that if we assume that the initial 

molecular weight of polymer is infinite or sufficiently large, 

equation (2.17) reduces to equation (2.16) (ie as — — > 0). 

Another type of deviation from an ideal network structure is 

the effect of chain entanglements (18). The effects would impose 

additional conformational restrictions on the network chains, and 

thus produce the effect of quasi-crosslinks in increasing the elastic 

stress. Since in reality, the chains are rather closely packed 

together, one might expect that several entanglements would occur 

between the crosslinks. Thus their contribution to the stress may 

be quite significant, especially for chains that are long enough to 

permit a number of such entanglements. The effects of entanglements 

on the elastic stress have been studied by a number of authors (18-22) 

and empirical methods have been proposed to account for the effects. 

In the absence of an effective way to calculate the number of 

entanglements, we could in general add its contribution to the shear 

modulus (22) as 

2M 

G = a)(l - ) (2.18) 

where a represents the entanglement contribution. 
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In addition to terminal chains and entanglements, there are 

other types of network imperfection which do not contribute to the 

elastic stress such as inter-chain loops (18). Unfortunately owing 

to its complexity, it is at present impossible to characterise 

completely the network structure of a rubber. 

In simple extension (figure 2.2b) whereby during deformation 

one dimension of the specimen is increased in the ratio and the 

other two dimensions are correspondingly reduced by L/fax^ (since 

the volume was assumed to be constant), the strain energy function is 

given by 

W = h G (X? + 3) (2.19) 
1 x

1 

The force required to extend the network chain in the direction 

will be 

0" = ^ = g(a
1
-a

1
"

2

) (2.20) 

where 0~ is the force per unit cross-section area measured in the 

unstrained state (or nominal stress). 

Uniaxial compression (figure 2.2c) is a reverse of simple 

extension and the compression ratio X^ is less than one. The 

extension ratios of the lateral dimensions are also 1/x and CT 
c c 

is negative. The stress-strain relation for rubber under compression 

is similarly given by equation (2.20). 

Simple shear (figure 2.2d) may be represented by the sliding of 

planes which are parallel to a given plane through a distance 

proportional to their distances from a given plane. Shear deformation 

transformed a cube into parallelograms and a sphere into ellipsoids. 

The amount of shear is measured by the tangent of the angle 0 through 
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Types of strain (a) Unstrained unit cube 

(b) simple extension (c) Uniaxial compres 

(d) simple shear 
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which a vertical edge is tilted and there is no strain in the plane 

normal to the plane of shear. Since the volume of the material is 

constant the three principal extension ratios may therefore be 

expressed in terms of the major axis of strain X^ by 

and and the shear strain, jj' , is related to the angle 0, 

or to the principal extension ratio (23) by 

^ = tan 0 = X
1
 - i (2.21) 

The strain energy per unit volume has the form. 

w = hg (x
2

 4- \ - 2) 
xz 

= k g f i
2

 (2.22) 

If the work done on the body is entirely due to the shear force, then 

the shear stress will be given by 

o"
s
 - f • GX <

2

-
2 3

> 

Equation (2.23) thus predicts that Hooke's Law will be obeyed in 

simple shear. 

Experimental examination of the stress-strain relationships 

however, reveals significant deviations between the theoretical and 

experimental results. In simple extension for instance (figure 2.3) 

there are two distinct deviations (24). First at moderate strains, 

the experimental curve falls below the theoretical values, and 

secondly, at very large strains, the stresses tend to rise sharply 

and may eventually exceed the theoretical predictions. 

The deviations from the statistical theory are also observed 

in shear deformations (24). The theory predicts that shear stress 
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simple extension (Treloar (24)) 



is proportional to shear strain but results showed that the shear 

stress falls initially below the predicted value at low strain and 

subsequently rises sharply. The deviations observed with shear 

deformations are similar to those observed for simple extension. 

The deviations discussed above suggest that the statistical 

theory, which only involves a constant G, is inadequate to describe 

the stress-strain behaviour of a real rubber. There is as yet no 

satisfactory explanation for the deviation in the region of 

intermediate or moderate strains. At high strains though, the 

deviation observed has been attributed to the finite maximum 

extensibility of the network chains (11,13). It arises because a 

Gaussian type of probability distribution is used to describe the 

end-to-end distances between the rubber chains. The use of a 

Gaussian distribution is only justified when the end-to-end distance 

is much smaller than the fully extended length of the chain. Hence, 

the departure from the theory is expected to become more prominent 

at higher strains. 

The range of validity of the statistical theory also depends on 

the degree of vulcanization. Between a comparatively"highly and 

lightly vulcanized rubber, the former will have long enough chain 

segments for the probability distribution to be valid up to a much 

higher strain than the latter since the statistical argument will 

fail with the highly crosslinked rubber after a small amount of 

deformation. This follows because a short molecule is more likely 

to be found near its maximum length compared to a long molecule (11). 

2.1.3 Phenomenological Theories of Elasticity 

In an effort to describe the mechanical properties of rubber, 

a number of purely phenomenological theories have sprung up over the 

years. The theories are based not on the molecular or structural 
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concept, but on purely mathematical reasoning i.e. they are concerned 

with the way of describing the properties of the material not with 

their explanation or interpretation in the molecular or physical 

sense. 

2.1.3.1 The Theory of Mooney 

One of the earliest and most widely applied of the phenomenological 

theories is that due to Mooney (25). The theory appeared some years 

before the statistical theory and its evolution obviously has no 

relation to deviations from the latter theory. Mooney was concerned 

with the problem of developing a general theory for large elastic 

deformations. Making use of the assumptions that a rubber is 

incompressible and isotropic in the unstrained state, and that 

Hooke
f

s Law is obeyed in simple shear, Mooney derived by purely 

mathematical argument based on the considerations of symmetry, the 

stored energy function, 

W = C
±
(\l + \l + \l - 3) + ^ ( f a + f a + f a

 3

> <
2

-
2 4

> 

K1 X2 X3 

which contained two elastic constants, (£ and C^. The first term on 

the left hand side of equation (2.24) corresponds to the form derived 

from the statistical theory with 20^ = NkT. The statistical theory 

is therefore a particular case of the Mooney theory corresponding 

to C
2
 = 0. 

For a simple extension or uniaxial compression, where 

equation (2.24) becomes, 

W = + ~ 3) + C
2
( ^ - + 2X± - 3) (2.25) 

1 X± 

and the nominal stress is given by 
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(T= 2 ( \

1
- \

1
"

Z

) ( C
1
 + ̂  ) (2.26) 

For a case of simple shear, where the shear strain, = A^-l/A.^ 

and the principal extension ratios are = = 1, equation (2.24) 

becomes 

W = (C^ + C ^
2

 (2.27) 

The shear stress, 0~ , is therefore given by 

qt
s
 = k ^ + c^tf (2.28) 

which corresponds to Hooke's Law, where the shear modulus G is given 

by 2(C^ + C^). 

The term C^ was found to be dependent on the crosslink density 

and was consequently related to the elastic constant of the statistical 

theory (26). The origin of the C^ term is still obscure, but it can 

be regarded as a measure of the departure of the observed stress-strain 

relationship from the form suggested by the statistical theory. 

Numerous experiments have been carried out which give support to 

the applicability of the Mooney equation in simple extension for 

natural rubber and other polymers (26,27). However, the data of Rivlin 

and Saunders (28) for equibiaxial extension (which is equivalent to 

uniaxial compression) showed marked deviation from the Mooney 

relationship. In the extension region (l/A. <1) the Mooney line 

(Fig. 2.4) corresponds to a value of C ^ / C ^ 0 . 8 , but in compression 

(l/\ >1), C^ was found to be about zero. Thus, when considering the 

extension and compression data together, it is clear that the Mooney 

equation is no improvement over the statistical theory. 

In simple shear, deviations from linearity of the same kind and 

of a similar order of magnitude to the deviation from the statistical 

theory in the case of simple extension were observed (24). The 
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deviation from the basic postulate of the Mooney theory (ie obeys 

Hooke's Law in simple shear) is thus of the same order as the 

deviation in simple extension which this theory is being used to 

interpret. 

Taken as a whole, the Mooney equation does not seem to give a 

closer fit to the experimental data than the statistical theory. 

The interpretation of experimental data using the Mooney equation 

must be treated with caution since the Mooney form of the stored 

energy function cannot be adequately used to describe the mechanical 

properties of rubber for all possible types of strain, particularly 

those in compression. 

2.1.3.2 The Theory of Rivlin 

In 1948 Rivlin (29) argued that for a material that is 

incompressible and isotropic in the unstrained state, the strain 

energy must be a symmetrical power function of the three 

principle extension ratios. The stored energy function (W) was 

quoted as 

W = W ( I
1
, I

2
, I

3
) (2.29) 

where I^, and are the strain invariants given by 

2 2 2 

1

2
 =

 \
2 k

2
2 + X

1
 X 2 + X

3
2

\
2

 (2.30) 

2 2 2 
1

3
 = \

2
 \

3 

The incompressibility requires that 1^= 1. In the undeformed state, 

\^=\
2
=\

3
= 1, so = I

2
 = 3. Thus, according to Rivlin and Saunders 

(28) the most general form of the stored energy function has the 
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form of a double-infinite series in (1^-3) and (I
2
~3) viz 

oo 

W = I C (I
1
-3)

i

(l
2
-3)

j

 (2.31) 

i=o,j=o 

where C . ^ s are constants, 
ij 

Purely from consideration of mathematical simplicity, Rivlin (28,29) 

argued that the lowest member of the series would predominate. Thus 

by putting i = l,j = 0, he obtained 

W = C
1 Q
 ( 1 ^ 3 ) (2.32) 

which represents the form of the stored energy function derived from 

the statistical theory. The other possible simple form takes the 

value of i = 0, j = 1. This gives 

W = C
Q 1
 (l

2
-3) (2.33) 

but it has no obvious application to rubber. The combination of 

equations (2.32) and (2.33), however yield the Mooney equation, viz. 

w = c

10
 ( i

1 "
3 ) + c

01
 ( i

2 ~
3 ) ( 2

-
3 4 ) 

For an incompressible material, equation (2.29) becomes, 

W = W ( I
1
, I

2
) (2.35) 

By partial differentiation, Rivlin (3,31) expressed equation (2.35) 

in terms of the principal stresses corresponding to a pure homogeneous 

strain of d\
2
 and as 

i 

where p is an arbitrary hydrostatic stress. Equation (2.36) indicates 

that for a material which is incompressible, the stresses are 
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indeterminate to the extent of an arbitrary hydrostatic stress, p. 

Only the differences between any two of the principal stresses 

which of course are unaffected by the addition of a hydrostatic 

stress are determinate. They are given by 

v
t

2
 - 2 u

2

- x
2

) ( | ^
+
x

2

j ^ ) 

V
t

3
 - (2.37) 

. „ _ of%2 .2,, 3 w , ,2 s w . 
h'h = 2<-h'hh x2 sq> 

where
 a n d a r e

 stresses per unit strained area (true stress) 

In simple extension, or uniaxial compression, Rivlin's equation 

becomes 

°-
T
 • 2 <

V
* 2 ) ( 2 j L

 +
 ^ | j L , (2.38) 

The corresponding shear stress is given by 

2. iX 
where ^ = \

2

 + l/\.
2

 - 2 = I
±
-3 = I

2
« 3 . When = C

±
 and 

t) w 
= C

0
 equation (2.39) reduces to 

0
l

 2
 l 

a
s
 = 2(C

1
 + C

2
) ^ (2.40) 

which is the Mooney relationship for simple shear. 

^ w ^w 

The determination of :ry— and -^p— involves biaxial strain 

u 1 j 2 

measurements, the values of which can be related to the true stresses 

(ie stress per unit strained area) and extension ratios by the 

equations below 
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In their analyses, Rivlin and Saunders (28) observed that the term 

was independent of both I. and but varies with I
0 

0
1

!
 1 1

 o12
 1 

but was independent of (for a given I
2
) . ***

 w a s s u

g g
e s t e

d that 

the strain energy function has the general form of 

w = c

1
 ( i

1 "
3 ) +

 ^
 ( i

2 "
3 ) ( 2

-
4 2 ) 

where C^ is a constant and is a function whose slope diminishes 

continuously with increasing I^. Other workers (30,31) later showed 

that neither î -jr- nor O r - was constant. Obata et al (30) 

*
 1

 ^
 2

 <3w 

for instance showed that initially decreases with and 

subsequently tends toward a constant, but increases with The 

3 W 3 W 
behaviour of was found to be directly opposite to that of -

(in contrast to that of Rivlin and Saunders), namely, it increases 

with increasing I
2
 but decreases with increasing Jones and 

<3 W <3 W 
Treloar (31) on the other hand suggested that neither , nor <r-=— 

a i
1 

was constant, but that each depends on both and I^. The variations 

<3 w 
in 7 7 — , were relatively much less important than the variations in 

-> ° 1 
O W 
7 7 — , the extreme variations amounting to only about 107. in the case 

2 <3w <3 
of j j - , compared with about 707, for (fig. 2.5). Obata 

1 2

 j w 
et. al. and Jones and Treloar observed that the values of 5-7— were 

<3 w
 2 

much smaller than -77— . 

^ 1 
^ w <3 w 

Since both ^ y -
 a n

d
 a r e n o t c o n s t a n t s

> then equation (2.42) 

may be more appropriately written as 
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W = ( L
±
- 3 ) + ( I 2 - 3 ) ( 2 . 4 3 ) 

where
 a n d

 $ 2
 a r e

 ^
u n c t

^
o n s

 which vary with both and I
2
» 

It therefore appears that the deviation of the experimental data from 

both the statistical and Mooney theories may be associated with the 

terms ^ and ' according to Jones and Treloar, bear no 

relation to the empirical Mooney constants, C^ and C
2 >
 The stored 

energy function as expressed by equation (2.43) for unfilled rubbers 

may therefore be a more appropriate form compared to the statistical 

or the Mooney theory. 

2 . 1 . 3 . 3 Alternative Forms of Stored Energy Function 

There have been a number of attempts to represent the stored 

energy function by incorporating the terms in and I
2
 higher than the 

first and also cross terms in and I
2
. These include among others 

that due to Isihara et. al. (32) , Alexander (33), Tschaegl (34) 

and Gent & Thomas (35) , but these formulae raised no new principal 

since they utilise the basic formula of Rivlin. 

New departures from Rivlin and Saunders formulae, were made by 

Ogden (36) and Valanis and Landel (37) . Their equations were based 

on a power function of the extension ratios, but not of an invariant 

form. 

Ogden in his treatment, discarded the requirement that the strain 

energy function shall be a power function of the extension 

ratios, as implied by Rivlin (28) and expressed the stored-energy 

function in terms of the \'s directly, which can be written as, 

\ |A el cl 3, 

w = fa (X* + X
n

 + \ n - 3 ) ( 2 . 4 4 ) 
n n 

in which a may have any values, positive or negative and are not 
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necessarily integers, and n is a constant. 

The statistical theory is thus a special 

case corresponding to a
n
 = 2, while the Mooney equation contains 

two terms, corresponding to a^ = 2 and a^ = -2. The principal 

stresses corresponding to the stored energy function expressed in 

equation (2.44) take the form 

a^ 

t. = Y H
n
 U . ) - P (2.45) 

n 

while the difference in the principal stresses is given by 

a a 
=

 l
 n

 ~
 a

2
 n (2.46) 

11 jl L. 

n 

For simple extension of uniaxial compression, the true stress is 

given by 

a -
 a

n 

fcl = Z _ ^ n ( A 1 n " \ ~ ) ( 2 ' 4 7 ) 

n 

and the corresponding nominal stress, Q"
 t

/A. is 

r v
1

 - T -
1 

°1
 =

 z_
 11

 n
 u

1 " \ >
 < 2

-
4 8 ) 

n 

In simple extension, Ogden showed that the predicted and the 

experimental stress-strain values are in good agreement except at 

very high strains (\>6), where the latter gets progressively higher 

than the former. Thus by using an appropriate number of terms, the 

stress-strain behaviour of a rubber may be represented to any desired 

degree of accuracy using Ogden formula. The main advantage of the 

formula is that it is mathematically simple to handle. 
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Valanis and Landel put forward a more radical hypothesis, which 

states that the strain energy function may be expressed as the sum 

of three separate functions of the three principal extension ratios. 

Thus we have 

W = w U p + w ( \
2
) + w ( \

3
) (2.49) 

in which, from the consideration of symmetry, the separate functions 

w(A.) is of identical form for each of the extension ratios. The 

corresponding principal stresses are given by 

yrj 

-
 (

> - p <
2

-
5 0

> 

- I t ' i <*•"> 
w

 l i 

where (T. is the nominal stress and p is the arbitrary hydrostatic 

stress. The principal stress differences are, 

~ t2 = x1 " x2 

t
2
 - t

3
 = X

2
 w

f

( X
2
) - X

3
 w ' ( X

3
) (2.52) 

t

3 '
 t

l
 =  X

3 *
 X

1
 W

'
(

V 

^ y 

where w'(A) = -c-r— (i = 1,2, or 3), which can be determined by 
d\ 

experiment, in pure shear. 

In the case of pure shear, when = 1, 

< 4 - 4 0 = 1 • 4
w

' < 4 > "
c ( 2

-
5 3 ) 

where C is a constant and equal to w'(l). According to Valanis and 

Landel, without loss of generality, w'(l) may be considered to be zero, 
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Subsequently therefore, from equation (2.53) the form of w'(\^) 

could be determined from the plots of ^s l / \ B a s e d on the 

experiments in pure shear, Valanis-Landel claimed that the function 

w'(\) has the form 

w
1

 (X) = 2[ilnX (2.54) 

where \i is a constant. However, according to Treloar (38), the 

assumption that w*(l) = 0 (ie. C in equation 2.53) is incorrect and 

the author subsequently proposed an improved form of equation (2.54) 

namely 

w
f

(\) = 2\iln\ + C/\ (2.55) 

Based on the studies carried out by Obata, Kawabata and Kawai (30) the 

forms of w'(\) given by both equations (2.54) and (2.55) were found 

to be inadequate ie. the function could not fit Obata
f

s data. Later, 

two different forms of w'(\) were proposed. The first was that due 

to Jones and Treloar (31). Their proposal was based on the fact that 

the Valanis-Landel hypothesis is consistent with the Ogden formula, 

and combining the two formulae, the authors obtained 

cl cL Si 
kw

1

 (\) - C = ^ - 1) + |I
2
 ( \

2

2

 - 1) + n
3
 ( \

3

3

 - 1) (2.56) 

where \i
2
, [i

3
, a^, a

2
, a

3
 are constants which were determined 

by trial and error methods. Tobisch (39) also introduced a new form 

of w'(\). It involves three parameter constants and takes the form, 

w'(X.) = 2 ^ ( e
a a

i "
1 }

- p\-
3

 ) (2.57) 

where a , (3 and ^ are constants. The constant ^ was said to be 

equal to 1/3 of the Young's modulus and 3 = 1/3 a. Both equations 

(2.56) and (2.57)were said to be able to represent all the 

experimental data satisfactorily. 
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To date, it is fair to say that no satisfactory form of w'(X) 

appears to be generally acceptable. Different authors obtained 

different forms of w'(X), which were the results of curve fitting 

exercises (31,39). However without the knowledge of w'(X), the 

hypothesis of Valanis-Landel could still be verified. The 

verification takes the form of plotting t^-t^ as a function of X^ 

(or for -t^ as a function of X^) for pure shear deformations. The 

hypothesis is verified if all the curves obtained are superimposable 

since equation (2.53) implies that all curves differ from one another 

only by an additive constant. In a variety of cases (40) 

verification was indeed made for X ^ O . O suggesting that equation (2.52) 

is valid. However, when the strains were in excess of X ^ ^ 3.0, the 

hypothesis was shown to be unreliable (41). 

In general, the Valanis-Landel hypothesis has been verified 

experimentally but unless an accurate form of w'(X) is obtained, the 

hypothesis cannot be used to predict other types of strain. 

Consequently it will not be useful in practice. 
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2.2 Effects of carbon black on rubber vulcanizates 

2.2.1 Introduction 

The use of fillers in rubbers ranks as one of the two most 

important processes in rubber technology - only vulcanization can 

be considered to surpass it in its universal application. 

Carbon black is the principal filler used in rubbers. Generally 

the incorporation of carbon black alters the properties of rubber; 

some show an improvement while others deteriorate (42). In this 

thesis, we are concerned with the effects of carbon black on the 

modulus of rubber. 

2.2.2 The nature and classification of carbon blacks 

Carbon black is formed by incomplete combustion of many organic 

substances: solid, liquid and gaseous. Its production is so simple 

that it was known in ancient times. The Chinese and Hindus used 

carbon black as colourants in ink in the third century A.D. 

The generic term of carbon black now refers to a group of 

industrial products consisting of furnace blacks, channel blacks, 

thermal blacks and lamp blacks. 

Furnace black is the most widely used black today. It is made 

by the incomplete combustion of hydrocarbons in steel furnaces. The 

black produced is separated from the combustion gases by means of 

cyclones and filter bags. The yield of carbon black varies from 

about 257, to 707, of the available carbon and the particle diameter 

ranges from about 20 nm to 80 nm (43). 

Channel black is manufactured by impingement process. The 

process essentially involves piping the feedstock to thousands of 

small burners and impinging the small flames on to a large rolling 

drum or on to a slowly reciprocating channel irons. The deposited 



54. 

black is taken off by scrapers and collected. The process is very 

inefficient (57. or less yield) but fine blacks, of particle diameters 

ranging from 9 nm to 30 nm can be made. 

Thermal black is produced by thermal decomposition of natural 

gas in the absence of air at 1300°C in cylindrical furnaces filled 

with an open checkerwork of silica bricks. Two furnaces are used, 

the process being cyclic. Natural gas is admitted to one which has 

already been heated by firing a mixture of hydrogen and air; carbon 

and hydrogen are formed. The carbon is collected as carbon black 

and hydrogen is used to heat the other furnace. The recovery is 

about 40-507. of the available carbon and the black obtained range 

in particle diameter from about 120 nm to 500 nm. 

Carbon blacks are essentially (90-997.) composed of elemental 

carbon in the form of non-spherical particles of colloidal size. 

The carbon atoms are in layer planes, which by parallel alignment 

and overlapping gives the particles their semi-graphitic nature. The 

other elements in carbon black which are of significance are 

hydrogen, oxygen and sulphur (44). 

Hydrogen is always found, as part of the hydrocarbons from 

which the black is formed. The hydrogen content may vary depending 

on the feed stock and process used but it is generally less than 17.. 

Oxygen is introduced in the flame during particle formation. 

The proportion of oxygen present varies depending on the process of 

formation involved. Thermal blacks have less oxygen than other 

blacks, usually below 0.57., while furnace blacks contain up to 1.27.. 

Channel blacks contain a rather high proportion of oxygen (about 37. 

or more). 

Sulphur is present generally in both free and chemically bound 

forms. Thermal and channel blacks have very low sulphur content 



0.017o), while furnace blacks may contain about 0.2 to 0.87» sulphur. 

Carbon blacks rarely exist as separate individual particles 

but generally as aggregates of coalesced, fused elementary particles 

(45). An exception is found with thermal black where the particles 

mostly exist as individual units (44). The particles of black are 

not closely packed, but loosely coalesce leaving considerable empty 

spaces or voids in between the particles. 

The aggregates of black particles have a tendency to be attracted 

to one another by the London-Van der Waals forces of attraction to 

form more complex chains or agglomerates. These agglomerated structures 

which vary in geometric form from clustered grape-like assemblies to 

more bulky branched and filamenteous forms, can be broken up by an 

application of shear, but reagglomerate on standing. The aggregated 

black on the other hand needs a larger force than that required by 

the agglomerates to be broken up and once broken, the network is 

permanently changed. 

The term "structure" when used by the carbon black producers 

refers to the combination of both the aggregated and agglomerated 

structures. The "structure" is measured by absorption of a liquid 

(dibutyl phthalate, DBP) up to a point where the dry crumbly carbon 

black suddenly starts to cohere (46). At this point the liquid is 

supposed to have filled the voids within the agglomerates and most 

of the void spaces within the aggregates. The amount of the absorbed 

liquid, which reflects the "structure" of the carbon black is normally 

3 

expressed in cm DBP absorbed per 100 gram carbon black (or DBPA number) 

The particle size is an important property of carbon black. 

Normally particle sizes are determined using an electron microscope, 

where data are obtained from photomicrographs of known enlargement. 



Alternatively the particle size of carbon black particles can be 

calculated from the specific surface area since the latter is roughly 

inversely proportional to the particle diameter. 

The specific surface areas are determined by gas or liquid 

adsorption. For non-porous black, the surface area can be determined 

accurately by an adsorption of nitrogen, using a procedure developed 

by Brunauer, Emmett and Teller (47) (BET procedure) for calculating 

the monolayer adsorption from the data at several partial pressures 

which give coverage in the vicinity of a monolayer. Most rubber 

grade carbon blacks are non-porous; however if micropores (generally 

slit-shaped a few angstroms in width) are present, the external 

surface area can be determined by adsorption of large molecules, 

such as cetyltrimethylammonium bromide (CTAB) from aqueous solution (48). 

It is common technical practice to measure, not the surface area, 

but the iodine number (49) or number of milligrams of iodine adsorbed 

per gram of black because the determination is rapid and simple to 

perform. For this method, carbon black is shaken with an aqueous 

solution of iodine in potassium iodide. The black is then settled by 

centrifuging and the iodine concentration of the supernatant liquid 

is determined by titration with a thiosulphate solution. The results 

are normally expressed as weight of iodine (mg) per gram of carbon 

black. The iodine number is generally within 107, of the area as 

measured by the nitrogen or CTAB adsorption, but there can be 

systematic differences depending on the supplier and technology of 

manufacture (50). The iodine number is also affected by the tars 

(toluene-extractable material) present on the surface of the black 

and by surface oxygen groups (51). In view of these limitations, the 

iodine number is of limited significance and as a result, the most 



frequent use of this method is in the production control. 

There are over fifty different types of rubber grade carbon 

blacks available. They were classified previously, using a system 

of letters, but the system was found to be inadequate and cumbersome. 

This led the American Standard for Testing and Materials (ASTM) 

committee on carbon black to establish a new classification 

system (52). 

The basic distinguishing characteristics of the new system are 

the particle sizes and their effects on cure. The classification 

(D 1765) is given by a four character nomenclature system (e.g. N330) 

The first character is a letter indicating the effect of carbon black 

on the cure rate of a typical rubber vulcanizate containing the black 

The letter "N" is used to indicate a normal curing rate (for neutral 

or basic black) relative to that of the unfilled vulcanizate while 

the letter 'S' indicates a slow-curing rate (for acidic black). 

The second character (first digit) designates the typical average 

particle size of carbon black as determined by electron microscopic 

measurements. The particle sizes of the carbon black has been 

divided into ten arbitrary groups and each has been assigned a digit 

to describe the group (table 2.1). The third and fourth characters 

in the system are arbitrarily assigned digits. 
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Table 2.1 Second digit classification in ASTM System. 

Second digit Particle diameter (nm) Old Code 

0 1 - 1 0 

1 11-19 Super Abrasion Furnace (SAF) 

2 20-25 Intermediate SAF 

3 26-30 High Abrasion Furnace (HAF) 

Easy and Medium Processing 
Channel (EPC, MPC) 

4 31-39 Fine Furnace (FF) 

5 40-48 Fast Extrusion Furnace (FEF) 

6 49-60 General Purpose Furnace (GPF) 

High Modulus Furnace (HMF) 

7 61-100 Semi-reinforcing Furnace (SRF) 

8 101-200 Fine thermal (FT) 

9 201-500 Medium thermal (MT) 



59. 

2.2.3 The stiffening effects of carbon black 

The use of fillers in rubber has been known since the discovery 

of rubber but the first serious investigation of the effects of 

fillers on the physical and chemical properties of rubber was made 

by Heizerby and Pehl (53) in 1892. However the authors experiments 

were not well designed and comparison between results was difficult. 

The first recognization of the stiffening effect was only made 

following subsequent investigations by Ditma (54), the works of whom 

are considered to be the first milestone in the study of stiffening 

effects of filling materials. Today a voluminous literature on the 

stiffening effect of fillers exists (55-60) but the phenomena involved 

in the stiffening effect still remairs the subject of considerable 

controversy. 

One of the principal effects of carbon black is to increase 

the stiffness or modulus of unfilled rubbers. The mechansims involved 

have been attributed to two different phenomena (a) hydrodynamic 

effects of filler and (b) interaggregate interactions. 

2.2.3.1 Hydrodynamic effects 

In the hydrodynamic theory, the rubber is regarded as a 

continuum and attention is focussed on the effects of carbon black 

without concern for the behaviour of the rubber at molecular level. 

The mechanism proposed was derived mainly from the formally identical 

problem of the increase in viscosity of a liquid caused by a 

suspension of solid particles. For rigid particles at concentrations 

sufficiently small for interaction between particles to be neglected, 

the viscosity of the suspension is given by the Einstein equation (61) 

r\ = ti
o
 (1 + 2.5C) (2.58) 
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where r\ and q
Q
 are the viscosities of the suspension and liquid 

respectively and C is the volume concentration of particles. 

Use of the viscosity relationship given by equation (2.58) 

was proposed for the analogous elastic problem of rubber containing 

fillers, with the viscosity q replaced by Young's modulus, E . 

Smallwood (62) showed that the stress-strain data of several large 

particle size fillers at low concentration fitted the relationship, 

E = E
q
 (1 + 2.5 0) (2.59) 

where E and E
q
 are the Young's Modulus of filled and unfilled 

rubbers respectively and 0 is the volume fraction of filler. To 

take into account higher concentration of fillers by considering 

the hydrodynamic interactions between pairs of particles, Guth and 

Gold (63) added an extra term involving the square of concentration 

of fillers to the Smallwood equation, namely 

E = E
q
 (1 + 2.5 0 + 14.1 0

2

) (2.60) 

Guth (64) found that equation (2.60) fitted the data for fine thermal 

black (P33 - which consist of essentially spherical particles) up to 

a volume fraction 0 of 0.3. Equation (2.60) however could not be 

used to predict the modulus of rubbers containing fillers which 

exist as cluster or particles to form asymmetric aggregates. To 

take into account the asymmetric nature of carbon black aggregates, 

Guth proposed a modified equation, 

E = E
q
 (1 + 0.67f 0 + 1.62 f

2

0
2

) (2.61) 

where f is the ratio of the length to diameter of the aggregate 

(or shape factor). With a proper choice of the value of f, equation 

(2.61) was able to account for the variation of modulus E for several 



rubber-filler systems. For systems containing up to 30% volume 

concentration of N330 black, a shape factor of 6.5 was required (65). 

However later studies of shapes of carbon black particles and 

aggregates using electron microscope (66) indicated that the shape 

factorsof most blacks are somewhat less than 6.5; they are usually 

in the range of about 2-3. Thus if the value of the shape factor f 

is taken as between 2-3, then the predicted value of E will be much 

lower than the experimental values given by Mullins and Tobin (65). 

With rubbers filled with carbon black, the void spaces which 

are present within carbon black aggregates/agglomerates are filled 

with rubber. These rubbers are occluded within the interstices of 

the carbon black structures. When subjected to stress, this occluded 

rubber is shielded to a significant extent from deformation which 

the bulk of the rubber undergoes and it thus acts as part of filler 

rather than as part of rubber matrix (67-69), 

Sambrook (70) proposed that the effective volume fraction of 

carbon black, 0', i.e. volume fraction of carbon black plus volume 

fraction of occluded rubber, should be used in equation (2.60) 

instead of the volume fraction of filler, 0. The value of 0
1

 could 

be calculated from the value of 0 and DBPA values using the 

relationship given by Medalia (67), 

0' 46.75 + DBPA ,. 

t = o — (2-62) 

Using 0' in equation (2.60), Sambrook observed that the values of 

Young's modulus obtained were about 207. higher than experimental 

values, suggesting that the use of equation (2.62) in conjunction with 

equation (2.60) does not adequately describe the stiffening effects 

of carbon black. 
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Later Medalia (71) observed that the effective volume fraction 

of carbon black is equal to the volume fraction of carbon black plus 

about half of the occluded volume of rubber i.e. 

0* = 0 + 0.5 0 (2.63) 
occ 

where 0 is the volume fraction of the occluded rubber. This 
occ 

signified that only about half of the total occluded rubber (as 

calculated from the DBPA values) is shielded from deformation and 

acts as filler. Using the new effectiveness factor (equation 2.63) 

in equation (2.60), Medalia (72) showed that the experimental and 

calculated values of the shear modulus at 107. strain amplitude for 

several filled rubbers were in reasonably good agreement. 

Carbon black aggregates undergo limited breakdown during 

incorporation into rubber. Depending on the grades of rubber and 

types of black, after mixing processes, about 30 to 507. (on weight 

average basis) of the aggregate structure of free blacks are broken 

down (73,74). The void volume within the aggregates also reduces 

after mixing or fracture and this is revealed by the "24M4 crush 

test" (75) in which carbon black is crushed for four times before 

the measurement of DBPA values. Based on that information, Kraus (76) 

suggested that the effective volume of carbon black should be more 

appropriately related to the 24M4 DBPA values rather than the 

"uncrushed" DBPA values. The author subsequently proposed that, 

0J
 =

 24 + DBPA (24M4) ^ 
0 55 

For several blacks, Medalia (71) observed that the calculations based 

on the relatipnship due to Kraus (equation 2.64) were not quantitatively 

too different from that using his own equation. 
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For measurements made at moderate deformations (107, dynamic 

strain amplitude) Medalia (77) obtained a good prediction of the 

moduli of rubbers containing carbon black when the effective volume 

of filler obtained using equation (2.63) was used with the equation 

by Guth and Gold (equation 2.60). At low strains however, an additional 

contribution to the modulus was observed. The additional contribution 

was shown to be a function of particle diameter, details of which are 

discussed below. 

It may be noted that the development of the hydrodynamic theory 

was based on the measurement of Young's modulus. For an elastomer, 

in the absence of vacuole formation, the Poissonsratio is approximately 

0.5 (78) and the relation E = 3 G
q
 (where G

q
 is the limiting shear 

modulus at low strain) is approximately valid. Thus any equation 

relating E for filled and unfilled rubbers has equal validity for the 

shear modulus G . 
o 

2.2.3.2 Interaggregate interactions 

According to Payne (79), the shear modulus of filled rubbers is 

a maximum at low strains (ca 17.) but decreases as the strain increases 

until at a sufficiently high strain the modulus becomes independent 

of strain. The idealized form of shear modulus against shear strain 

plots may be represented by fig. 2.6. 
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Fig. 2.6: Idealized plot of shear modulus as a function of 

shear strain 

Strain 

The limiting modulus at low strain was referred to as G
q
 while 

that at high strain was referred to as G . The corresponding modulus 
GO 

for unfilled rubber is represented by the lower horizontal line. 

According to Payne, the maximum elastic modulus at low strain, G
Q
, 

is caused by a maximum development of the carbon-black agglomerates. 

At higher strains, the carbon black agglomerates are broken down and 

the elastic modulus attains a low value G , resulting from the 

oo ' 

contribution of the rubber matrix and the aggregated black (by hydro-

dynamic effect). The value G -G , therefore characterises the 
j

 o 00 ' 

maximum effects of carbon black agglomeration in rubber, and this 

constitutes the additional contribution to the modulus at low strain 

which was not accounted for by the hydrodynamic equations. 



Payne (79) referred to the effects of black agglomeration as 

the structural effects i.e. G -G arises from carbon black agglomerate 
o qo 

structures. The author's argument was supported by the results (80) 

obtained from other two phase systems, such as carbon black in oil 

and bentomite or stockalite clay in water, one phase of which easily 

forms agglomerates structure when left undisturbed. When the two 

phase systems were sheared in a manner similar to that of rubber and 

carbon black system, similar reductions in modulus with strain were 

observed. As a further demonstration, Harwood and Payne (81) dissolved 

crystals of phenyl-p-naphthylamine (PBN) in benzene and swelled it 

into an unfilled vulcanizate of natural rubber. The benzene was 

evaporated off and the three dimensional fern-like structures of PBN 

crystals in rubber vulcanizates were clearly visible by an optical 

microscope. On deforming the PBN-rubber system, results similar to 

that of the rubber plus carbon black systems were also obtained. 

In view of the fact that the origin of carbon black agglomeration 

is the mutual particle attraction, Voet, Cook and Hogue (82) argued 

that the most important parameter in determining ^ - G ^ is the 

interparticle distance. In order to verify the dependence of the 

black agglomeration (or G
Q
~(5 ) on interparticle distances, Voet 

et. al. prepared samples by swelling uncured mixtures of carbon black 

and rubber in a high boiling solvent, decahydronaphthalene (decalin), 

followed by vulcanizing the swollen mixture. The solvent was removed 

by extraction with a low boiling solvent and the latter was 

subsequently eliminated by heating in vacuum. In this manner, the 

authors obtained a series of isotropically shrunken vulcanizates. 

For varying degrees of swelling, results showed that (G
q
~(5 ) decreases 

with the content of the decalin, indicating that the interparticle 
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distance is a critical quantity in determining the effects of black 

agglomeration. When log ( G
Q
 -G ) was plotted against interparticle 

distance, a linear relationship giving log (g
q
 )

 a s

 inversely 

proportional to interparticle distances was obtained. Thus (G
q
 ) 

may be expressed as an exponential function of the interparticle 

distances. This, according to the authors is consistent with the 

London-Van der Waals forces of attraction which are normally 

/ - 6 N 

represented by a reciprocal of a high power law of the distance ) 

and therefore confirmed the view that the black agglomeration is 

attributed to the mutual particle attraction due to London-Van der 

Waals forces. 

Chemical methods have been used to remove the effects due to black 

agglomeration in rubber (80). The material used are generally known as 

chemical promoters, usually organic nitroso compounds, the coupling 

agents added to the unvulcanized during heat treatment, promoting the 

black-elastomer interaction and greatly improving the dispersion of 

carbon black. When the chemical promoters [e.g. N-(2-methyl-2-nitro-

propyl)-4-nitrosoaniline (Nitrol)] are added black to filled rubbers, the 
(G -G ) values are found to decrease considerably, o oo

 j 

Modification of carbon blacks can be achieved by severe attrition 

through ball or two roll (rubber) milling (83). It has been shown that 

attrition increases the surface area of carbon black. The increase in 

surface area was attributed partly to the breakage of the agglomerate 

structures and partly due to abrasion and fragmentation occurring at 

the surfaces of the individual particle. The use of attrited black in 

rubber led to an decrease in the values of (G -G ) compared to the 
o oo

 r 

use of the unattrited black and the attrition combined with hot milling 

treatment almost entirely eliminates the low strain structural effects 

(80,84). 
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The increase in surface area of carbon black normally arises 

from a reduction in the particle size. It follows that, if the particle 

size decreases, G -G will increase (82) and this appears to be 
' o oo 

contrary to that observed with attrited black. However, the process 

of attrition changes the nature of carbon black surfaces by abrasion 

and fragmentation and it is likely that the increase in surface area 

of the attrited black over that of the corresponding unattrited black 

is due to the increase in the surface roughness rather than the reduction 

in particle size. Such an effect produces a reduction in G
q
 ~G value 

in a similar manner to that of the chemical promoters because the process 

of attrition resulted with the increase in the oxygen content of the 

black (80). 

The nature of polymers was also found to alter the effects of 

agglomeration of carbon black (85). Polymers like Nitrile Butadiene 

rubber (NBR) appeared to possess high (G
q
 -G ) values compared to 

polymers like Natural rubber, Butadiene rubber, or Polyisoprene. 

The values of (G -G ) increase with black loading (80) since 
o oo 

the presence of more black increases the tendency for the aggregates 

to form agglomerates. However, it was reported that (G
q
 "G^) was 

independent of the crosslink density (86), and these results were 

confirmed by the small differences observed between the modulus of 

vulcanized and unvulcanized rubbers. This finding implies that any 

change in the rubber matrix does not affect the agglomerate structures 

of carbon black. 
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SECTION 3 EXPERIMENTAL 

3.1 Experimental techniques 

3.1.1 Materials 

The base polymer used was Natural rubber. Several grades of 

Natural rubber are available, but a high quality, light coloured 

Standard Malaysian Rubber, SMRL, was used. No further purification 

or treatment of the rubber was carried out. 

The grades of carbon black used, together with their relevant 

properties, are listed in table 3.1. 

Table 3.1 Grades of Carbon black used 

Types of black 
(ASTM designation) 

Particle diameter 
(nm) 

E.M. Surface Area 

(m
2

/gm) 

N110 11-19 125-155 

N347 80-100 

N330 26-30 70-90 

N326 75-105 

N500 40-48 36-52 

N762 61-100 17-33 

Vulcanizates were prepared from a series of masterbatches 

containing commercial grade ingredients as shown in table 3.2.1. 

Sulphur (flowers of sulphur) and accelerator (table 3.2.2) were 

added to the masterbatches to give the sulphur vulcanizing system. 

Zinc oxide and stearic acid are auxiliary agents used in conjunction 

with an organic accelerator (N-cyclohexy1 benzothiazole-2-sulphenamide, 

CBS) to speed up the vulcanization processes. 



70. 

Table 3.2 Formulations 

3.2.1 

3.2.2 

3.2.3 

Ingredients 

Natural rubber (SMRL) 

Carbon black 

Zinc oxide
 b 

c 

Stearic acid 

Flectol H
 d 

Process oil
 6 

Sulphur ^ 

c. b. s. 

Dicumyl peroxide 

Filled . 
vulcanizates 

100 

5 - 8 0 

5 

1 . 5 

1.0 

0 . 5 - 8 

0 . 1 7 - 3 . 7 5 

0 . 3 - 7 . 5 

1 - 4 . 5 

Unfilled . 
vulcanizates 

100 

5 

1 . 5 

1.0 

0 . 1 7 - 3 . 7 5 

0 . 3 - 7 . 5 

1 - 4 . 5 

Note: * in parts per hundred parts of rubber by weight (pphr) 

a - Cabot Corporation 

b - Durham Chemical Ltd., 99.97, pure (dry basis) 

c - Anchor Chemical Company Ltd., England 

d - Monsanto Ltd., London. 

Poly 2,2,4-trimethyl 1,2-dihydroquinoline; 98.37, active 

e - Shell U.K; Dutrex 729 

f - Anchor Chemical Company Ltd., England 

g - Monsanto Ltd., N-cyclohexyl benzothiazole-2-sulphenamide 

h - Hercules Powder Company Ltd., Dicup R, 997, pure 
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Peroxide based system consisted of a masterbatch and dicumyl 

peroxide, (> 997. pure). Although Zinc oxide and stearic acid play 

no part in the crosslinking processes, they were used to avoid any 

variation between the masterbatches of the sulphur and peroxide 

based systems. 

An antioxidant, poly 2,2,4-trimethyl 1,2-dihydroquinoline was 

used to protect the vulcanizate against oxidative degradation during 

processing, storage and testing. To facilitate mixing, a hydrocarbon 

oil (Dutrex 729) was used. 

3.1.2 Preparation of test-specimens 

The masterbatches were mixed in a laboratory internal mixer 

of one-litre capacity. The mixer rotor speed was 116 revolutions 

per minute and the starting temperature was approximately 60°C. To 

avoid any serious overheating during mixing, the temperature of the 

mixer chamber was controlled and maintained at below 120°C using 

cooling water. The mixing cycles were as follows: 

Time (Minutes) Operations 

0 Add raw rubber 

1 Add Zinc oxide, stearic acid 

and antioxidant 

2 Add half carbon black 

3.5 Add hydrocarbon oil and rest 

of black 

5 Sweep 

6 Dump and Sheet The weights of masterbatches were checked after mixing. 

Generally, losses of not more than 17. in weight of the ingredients 

were observed. 
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An open two-roll mill, having rollers 330 mm long and 152 mm 

diameter was used for the incorporation of vulcanizing agents into 

the rubber masterbatches. The temperature of the mill was 

thermostatically maintained at about 60°C and the friction ratio of 

the front to back roll was 1:1.25. 

Vulcanizing agents were added to 300 gm portions of the 

masterbatches. With sulphur vulcanizing systems, the accelerator 

was added to the rubber masterbatch prior to the addition of sulphur. 

The rubber mixes were rolled and passed through a tight nip ( ^ 0 . 5 mm) 

three times before being allowed to run at normal nip setting 

2 mm gap) to ensure the breakdown of any large undispersed 

ingredients. The total time taken for the incorporation of 

vulcanizing agents into rubber masterbatches was about 5 to 7 minutes. 

While on the mill, the rubber mixes were regularly cut and rolled 

and not allowed to run uncut for more than 30 seconds. 

Vulcanizates were cured a day after the addition of vulcanizing 

agents in steam heated presses at 150°C. Sulphur based vulcanizates 

were cured for the time required to develop maximum torque on a 

Monsanto rheometer at 150°C, while for peroxide based systems, the 

vulcanization time was 90 minutes. 

3.1.2.1 Tensile test-pieces 

Rubber sheets of various thicknesses (1 to 2 mm) were prepared 

2 

by moulding the vulcanizates in a square frame mould, 228 x 228 mm . 

All tensile test-pieces were diestamped from moulded sheets using 

appropriate dies. 

The tensile-pieces were either parallel sided dumbells, type C 

dumbells (B.S. 903, part A2) or rings. The parallel 

sided dumbell (fig. 3.1a) consists of a strip (100 mm long, 3.8 mm wide) 
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(a) 

(b) 

Figure 3.1. Tensile test-pieces: (a) parallel sided 

dumbell (or bongo) and (b) type C dumbell 
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2 
having square shoulders (12.7 x 12.7 mm ) at the opposite ends. 

Type C dumbells (fig. 3.1b) consists of a test length 25.4 mm long 

and 4 mm wide between widened ends. The rings have an internal 

diameter of 44.6 mm and external diameter of 52.6 mm giving a radial 

width of 4 m m . 

3.1.2.2 Compression test-pieces 

Compression samples were disks of various diameters having a 

thickness of about 8 mm, prepared by compression moulding. 

Compression samples (termed "cold bonded" sample) were also made 

by plying up 2 mm thick disks diestamped from moulded sheet. These 

were bonded together to form 8 mm thick compression samples using 

a two-part fast-curing rubber cement having the following formulation 

(in parts per hundred parts of rubber by weight, pphr) 

Table 3.3 Natural rubber cement 

A B 

Natural rubber (SMRL) 100 100 

Zinc oxide 5 5 

Stearic acid 0.5 0.5 

Sulphur 4 

ZIX
a

 - 1.25 

DDCN
b

 - 0.5 

a - Zinc isopropyl xanthate; 

b - Diethyl ammonium di-ethyl dithiocarbamate 
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The rubber cement was prepared by dissolving mixes A and B 

separately in toluene to give about 157
0
 solid contents, which were 

thoroughly mixed immediately before use. The surfaces of rubber 

which were to be bonded were roughened using a medium grade of 

sandpaper. Bonding of rubber to rubber was achieved by applying 

a layer of the adhesive to the roughened surfaces, keeping the 

bonded surfaces under light pressure for at least 48 hours. 

3.1
c
2c3 Shear test-pieces 

The shear test-pieces used were either double or of a quadruple 

type (fig. 3.2). Double shear test-pieces consist of two rubber 

disks, 25.4 mm in diameter and of various thicknesses, bonded 

between three cylindrical metal pieces. Quadruple shear test-pieces 

consist of four identical parallel sided rubber elements, about 22 mm 

long, 12.7 mm wide and of various thicknesses, bonded to four rigid 

plates to form a symmetrical double sandwich arrangement. With both 

types of shear test-piece, bonding was achieved during moulding or 

with methyl cyanoacrylate. 

Prior to moulding, metal pieces were sandblasted, degreased in 

1,1,1 trichloroethane and painted with the proprietary bonding agents, 

Chemlok 205 (primer coat) and 220 (top coat). An interval of about 

15 minutes was allowed between the painting of the primer and top 

coats, and a further 20 minutes was allowed for the painted metals 

to dry before moulding. 

Moulding was carried out in a transfer mould consisting of two 

sections, an upper chamber which held a rubber blank and the sample 

cavity, which held the shear test-pieces. The rubber blank was 

transferred into the sample cavities from the upper chamber with 

the use of an integral ram via appropriate nozzles. 
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(a) rubber 

metal pieces 

(b) rubber 

Figure 3.2. Shear test-pieces: (a) Double 

and (b) quadruple 
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Prior to room temperature bonding, the metal pieces were 

cleaned as described above and the rubber surfaces were cleaned 

with ethanol. The rubber samples for double shear test-pieces were 

either moulded disks (similar to the compression disks) or disks 

diestamped from moulded sheets. For quadruple shear, parallel 

sided rubber elements, diestamped from sheets, were bonded to 

the metal pieces using methyl cyanoacrylate. Bonding occurred 

within 30 seconds of contact but the bonded samples were not tested 

for at least 24 hours after preparation. 

3.1.3 Instrumentation 

Stress-strain measurements were mostly carried out on Instron 

testing machines, Models 1115 and 1122. Each instrument is 

comprised of a loading frame and a moving crosshead operated at a 

constant rate by two vertical drive screws. Strain gauge load cells 

were mounted either on the crosshead (Model 1122) or the frame base. 

The capacities of the load cells used were 20N, 5 kN or 100 kN, 

depending on the loads required during deformation. The outputs 

from load cells were fed into recorders via amplifiers which were 

calibrated in steps of 1,2,5,10,20,50 and 100. The full scale 

sensitivity of the load cells were as follows: 

Load cells capacity (N) Ranges of full scale sensitivity (N) 

20 0-1 to 0-20 

5000 0-10 to 0-5000 

100,000 0-2000 to 0-100,000 

The accuracy of the load was + 0.57. of the indicated load or + 0.257. 

of the recorder scale used, which ever was greater for all load 

ranges. 
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The recorder chart and crosshead were both driven at a constant 

rate, enabling the crosshead movement and grip separation to be 

measured. The accuracy of displacement readings (or grip 

separation) depends on the ratio of crosshead to chart speeds. 

A ratio of crosshead to chart speed of 1:100 enabled a crosshead 

movement of 0.01 mm to be measured with reasonable accuracy. 

The above technique of measuring displacement assumed the test 

equipment was rigid. The accuracy of the results may be affected if 

there is any machine deflection, the amount of which depends on the 

machine stiffness. The stiffness of the large capacity machine was 

50 kN/mm. For most tests, loads of < 5 kN were required, for which 

the machine deflection gave less than 57. error. In certain cases, 

in particular for compression tests, an error due to machine 

deflection may be appreciable because of the high load required 

(> 10 kN). Corrections were therefore made for machine deflection 

where necessary. 

In tension tests carried out on the testing machine, two 

different types of grips were used. The grips used for parallel 

sided dumbells consisted of spring loaded pads (fig. 3.3a). 

Lubricated pulleys were used to hold ring samples. A pulley 

consisted of two smooth aluminium cylinders, about 8 mm in diameter, 

which were secured to a metal plate (fig. 3.3b). Rings were laid 

down with the inner diameter in contact with the cylinders, which 

rotated freely when the sample was stretched. 

Double shear samples were held in screw tightened collar grips 

(fig. 3.4a) by the three metal pieces. The middle section was 

attached to the moving crosshead while the two end pieces were 

attached to the frame via the load cell. 
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(a) 

(b) 

Figure 3.3. Grips for tensile test (a) spring loaded 

(b) pulley 
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.Figure 3.4. Grips for shear test (a) Collar 

(b) Notched 



81. 

Quadruple shear test-pieces were held at their T-piece plates 

in the notched grips (fig. 3.4b). 

Compression tests were carried out between two polished 

circular metal plates (ca. 10 mm diameter). One plate was mounted 

on the load cell which was fixed to the machine base while the 

other was fixed to the moving crosshead. 

For measurements carried out using dead loading techniques, the 

parallel sided and type C dumbells were held by screw tightened brass 

clamps. With the rings and shear test-pieces, the grips used for 

dead loading tests were the same as those used on the testing machines. 

3.1.4 Stress-strain measurements 

All measurements were carried out on samples which were conditioned 

at least 24 hours at room temperature (23°C) after vulcanization. 

Except where indicated, all measurements of force and deflection were 

carried out on previously undeformed samples at room temperature. 

Where a testing machine was used, the recorder chart speed was 200 mm 

per minute and zero deflection was taken as the zero load position. 

The extension ratio, X, was taken as the ratio of the deformed 

length to the original undeformed length of the sample for simple 

extension and compression while for simple shear, it was taken as the 

ratio of sample deflection to the undeformed thickness. The nominal 

stress was obtained by dividing the applied load by the appropriate 

cross-section area of the sample. 

3.1.4.1 Uniaxial extension 

For tests carried out using the testing machines, all extensions 

were at 20 mm per minute until the sample broke or, in the case of 

parallel sided dumbells, until the sample slipped out of the grips. 



On extension, the parallel sided dumbells gave fairly clear 

strain origins (i.e. no tailing or soft lead-in of the load-deflection 

curve). With the rings, no clear origin was obtained and the 

load-deflection curves appeared to give a tailing effect at low 

strains before it rises. Zero deflection and load positions were 

obtained by extrapolating the linear region of the load-deflection 

curve to the base line. 

For dead loading techniques of measurement, two reference lines 

about 25 mm apart, were drawn mid-way between the two gripped ends. 

Extension of the test piece hanging vertically was measured by 

following the movement of the reference lines using a cathetometer. 

The position of the reference line was measured to + 0.01 m m . To 

standardise and reduce the errors in measurement, three readings 

were taken after each load increase. The first reading (upper 

reference line) was taken at 60 seconds after adding the weights. 

It was immediately followed by reading the lower reference line 

(second reading) and a repeat reading of the upper reference line 

(third reading). The average of the first and third readings gave 

the position of the top reference line. 

The increment of load varied, depending on the stiffness of the 

rubber, so as to result in a 2 to 37. change in strain at low strain 

region and about 10 to 207. change in strain at high strains. The 

maximum load added was about 120N or that giving about 300% extension, 

whichever was achieved first. 

3.1.4.2 Lubricated uniaxial compression 

(a) Evaluation of suitable lubricant for compression test 

In lubricated compression, the role of lubricants is to reduce 

the friction between the rubber block and compression plates so as to 



ensure homogenous deformation. An evaluation of the most suitable 

lubricant to be used, based on the coefficients of sliding friction 

between the rubber block and metal plate was carried out. 

The lubricants evaluated were water/teepol mixtures and silicone 

oils. Tests were carried out on two rubber disks (25.4 mm diameter, 

8.0 mm thick) bonded to a polished circular metal plate (50 mm 

diameter, 5 mm thick) using methyl cyanoacrylate (fig. 3.5). 

Lubricants were applied to the unbonded surfaces of the rubber, and 

the laminate was placed between compression plates. A compressive 

load was applied and a steady pull force required to slide the sample 

noted. The laminate was removed, fresh quantity of lubricant applied 

and the process was repeated with different loads and lubricants. 

The load was increased by an arbitrary amount and the maximum load 

applied was determined by the magnitude of pulling force, the latter 

not exceeding 200N. 

Results obtained were expressed as p, the coefficient of sliding 

friction p (= pull force -f load) Vs Load (N) (fig. 3.6). Water 

appeared to be a comparatively poor lubricant, but as indicated by 

the coefficients of friction, the 1:1 volume:volume water-teepol 

mixture proved to be the best lubricant, particularly at low loads, 

although at high loads, silicone oil of 1000 c/s viscosity appeared 

to be comparable to the water-teepol mixture. Concentrated teepol 

and the water-teepol mixtures showed comparable coefficients of 

friction at low loads but at high loads, the water-teepol mixture 

gave a much lower coefficient of sliding friction. Therefore, in 

subsequent studies, the 1:1 volume:volume water-teepol mixture was 

used as a lubricant. 
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Figure 3.6. Coefficients of sliding friction, p, as a 

function of applied load 
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(b) Compressive stress-strain measurements 

Rubber disks which were lubricated with a water-teepol mixture 

were placed between two compression plates. Displacement was applied 

by lowering the upper compression plate onto the samples at 2 mm 

per minute, up to a maximum of about 807. strain. 

3.1.4.3 Simple shear 

All shear tests carried out on the testing machine were at 2 mm 

per minute until the samples broke. Failures occurred mainly at the 

rubber-metal bonds but occasionally within the rubber. For dead 

loading techniques, samples were deformed to about 507, shear strain. 

(a) Double shear tests 

The two ends of the samples were held firmly in a jig which was 

suspended freely from a load cell while the lower grip holding the 

central section was secured to the crosshead. Deformation was 

applied by displacing the central section of the test-piece. 

For dead loading techniques of measurement, two reference lines 

were drawn opposite each other on one end and the central section 

of the test-piece. Samples were firmly gripped at the two ends and 

loads were applied to the central section of the test-piece. The 

separation of the two reference lines was followed as described in 

section 3.1.4.1. The load increment was chosen so as to give a 

strain increment of about 27, at low strain region and about 107, 

increment at high strain. The maximum load added was about 220N. 

(b) Quadruple shear tests 

Samples were suspended on by upper grip and deformation was 

achieved by applying a displacement to the lower grip. The outer 

metal plates were free to move horizontally and the contraction of 

the sample was monitored using a Vernier caliper. 
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For dead loading techniques, two reference lines were drawn 

at the centre of the unbonded faces on the metal T-plates. The 

separation of the reference lines on deformation was followed as 

described in section 3.1.4.1 and the load increment was as described 

above (section 3.1.4.3a). 

3.1.5 Equilibrium swelling measurements 

The tests were carried out to determine the amount of swelling 

agent/solvent imbibed at equilibrium swelling by both unfilled and 

filled rubbers. The samples were prepared from masterbatches 

(table 3.2) which contained no process oil, as this was leached 

out during swelling, causing an undesirable variation in the results. 

The products of sulphur and accelerator concentrations for EV, 

Semi-EV and conventional vulcanizing systems used were kept constant 

so as to maintain approximately the same crosslink density using 

weight ratios of CBS:S of 6.0:0.3, 1.0:1.8, and 0.6:3.0 respectively. 

For the peroxide vulcanizing system, a 3.0 pphr dicumyl peroxide 

was used because it gave comparable moduli to that of the sulphur 

vulcanizing system. 

The solvent used was n-Decane having a specific gravity (at 23°C) 

of 0.7298 and not highly volatile (b.p. 174°C) at room temperature. 

The use of highly volatile solvent will introduce inaccuracy in the 

results since appreciable loss of solvent will occur during weighings. 

Swelling tests were carried out on 25 mm square samples, cut 

from 1 mm moulded sheet. The pre-weighed samples were swollen in 

solvent contained in a covered container placed in the dark for 

about a week, during which the weights of the samples were regularly 

monitored. The swollen samples were subsequently transferred into 

fresh solvent and left to stand for several more days. At equilibrium 
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swelling, the weights of the swollen samples were recorded and 

samples were dried in a vacuum oven at 60°C. The difference between 

the weight of swollen and dried samples was taken as the true weight 

of the solvent imbibed. 

During swelling, a small proportion of non-rubbers leached out, 

since they are soluble in the swelling agent (1). The amount of 

non-rubbers leached out was very small (about 17.) and no significant 

effect on the results was expected. 
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3.2 Experimental Discussion 

The objective of the studies was to establish the reliability 

and accuracy of stress-strain measurements carried out on the 

testing machine. The tests were checked against the dead loading 

technique of measurement (except for compressions) and the variability 

of modulus due to the effect of types of test-piece and anisotropy 

(87-89) was investigated. All tests were carried out using 25 pphr 

N330 carbon black filled natural rubber vulcanizates. 

3.2.1 Uniaxial extension 

3.2.1.1 Effects of measurement techniques 

With dead loading techniques, the magnitude of load and extension 

were measured to a known precision because direct measurements were 

carried out; the load was measured to about + 0.01N and the extension 

to + 0.01 m m . 

The extensions using dead loading were taken 60 seconds after 

the addition of load. Variations in modulus due to creep were 

therefore expected. The increase in strain with time at constant load 

(i.e. creep) during the first two minutes was difficult to monitor, 

but the reduction in stress with time (i.e. stress-relaxation) was 

much easier to measure. When the rates of creep (C ) and stress 

relaxation (S_) are defined respectively by, 

(3.1) 

and 

s 
R 

(3.2) 

Gent (90) showed that, at a given extension e 

C, 
'R 

a S. 
R 

(3.3) 
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where 

a = 
cr 
m e k 

(3.4) 

c r is the stress per unit unstrained area corresponding to an 

extension e, t is the relaxation time and is the slope of the 

stress-extension curve. Knowing a and S_, the values of C„ 

k k 

can be evaluated. 

For our vulcanizates, the reduction in stress during the first 

2 minutes was observed to vary from about 27. at low strain to over 

87. at high strain (table 3.4). Using equation (3.1), the amount of 

creep occurring over two minutes was calculated. Over the range of 

strain investigated, the predicted amount of creep was observed to 

vary from about 37. to 57. (table 3.4). The reduction in modulus over 

the strain ranges investigated was therefore expected to be about 

the same extent as the amount of creep. 

Table 3.4 Values of creep calculated from stress-relaxation using 

conversion factor a at t = 2 minutes 

Strain 

7o 

Stress relaxation 
(measured) 

7, 

Creep (calculated) 

20 

30 

50 

70 

100 

120 

150 

170 

200 

250 

1.34 

1.44 

1.38 

1.27 

1.12 
1.07 

0.88 

0.77 

0.69 

0.62 

2.2 
2.3 

2.5 

2.6 
3.3 

3.9 

5.4 

6.4 

7.5 

8.0 

2.9 

3.3 

3.5 

3.3 

3.7 

4.2 

4.8 

4.9 

5.2 

5.0 
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For tests carried out using the testing machine, the extension 

was not measured directly; the grip separation was taken as the 

measure of strain. The accuracy of strain was therefore dependent 

on whether the sample deformation varies proportionally to the grip 

separation. The accuracy of load measured using the load cells was 

about 0.25-0.57, (see section 3.1.3). 

(a) Parallel sided dumbells 

A comparison of the modulus obtained from the two techniques 

of measurement is shown in figure (3.7). The results were for the 

mean of three readings, and the variability was not more than + 27, 

from the mean. 

At low to moderate strains, fairly close agreement (+ 27.) was 

observed between the results obtained using the two techniques of 

measurement. As indicated above, some differences due to the effects 

of creep were expected with dead loading techniques, but as figure (3. 

shows, no significant difference in modulus was observed between the 

two techniques of measurement, suggesting that the variations due to 

the diffferences in times of measurement are within the experimental 

scatter. 

At higher strains (>1507,), the modulus obtained using the 

testing machine was found to be lower than those obtained by the dead 

loading. The differences increased with strain, up to about 3507, 

strain, when the samples slipped out of the grips. 

The differences observed could not be due to creep during dead 

loading measurements as this effect would be to reduce the 

modulus by no more than 67,. 

Extensions of the parallel sided dumbells on the testing 

machine were also measured directly from the separation of two 
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F i g u r e 3 . 7 . E f f e c t s o f m o d u l u s o n t e c h n i q u e s o f m e a s u r e m e n t 

f o r p a r a l l e l s i d e d d u m b e l l s a m p l e s 
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reference lines on the sample (when the extension was stopped), 

using a cathetometer. The moduli obtained by this method are 

given in table 3.5 together with the results obtained using grip 

separations to determine the strain. 

Table 3.5 Effects of sample slippage on modulus 

Obtained from Grip Separation Direct measurement 

e (T e IT 
% 

6

 (MPa) 7. 
6

 (MPa) 

20 2.24 20 2.24 

60 1.53 59 1.55 

150 1.41 146.5 1.44 

250 1.82 238.5 1.91 

300 2.09 283 2.21 

320 2.20 303 2.34 

Up to 1507o strain, no significant difference in strain or 

modulus was observed between the two sets of results, but at higher 

strains, the extension given by crosshead separation (column 1) 

became progressively higher than those measured using the 

cathetometer (column 3). 

The differences in strain measurements observed in table 3.5 were 

thought to arise from slippage of the sample at the gripped 

shoulders. When lines were drawn across the parallel strip at the 

intersections of the shoulders and the strip prior to extension, 

the lines were observed to be displaced in the direction of tensile 

force on extension, indicating that the square shoulders were being 
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pulled out of the grips. This confirmed the view that the differences 

in strain observed in table 3.5 were due to sample slippage. 

Column 4 of table 3.5 gives the values of modulus based on the 

strain obtained by direct measurement. The results are consistent 

with those obtained using the dead loading technique, where the 

strains were also directly measured (figure 3.7, corrected results). 

This suggest that, if accurate strains were measured, the moduli 

are independent of measurement techniques. 

At low to moderate strains, the moduli obtained by taking the 

grip separation as the measure of strain are the same as those 

obtained by direct measurement. At higher strains, sample slippages 

result in errors in the strain measurement since the grip separation 

do not represent the true strain. Measurements of the modulus 

using parallel sided dumbells on the testing machine are therefore 

reliable at low to moderate extensions (<1507.) before any slippage 

occurs. 

(b) Ring samples 

When rings were tested on the testing machine, the stresses 

did not immediately increase with displacement. A tail or soft 

lead-in of the load-deflection curves developed during straightening 

of the rings, resulting in an uncertainty in the origin. Zero 

deflection was obtained by extrapolating the linear region of the 

load-deflection curve onto the base line. 

All strains were calculated from the mean circumference of 

the undeformed rings and the results obtained were the means of 

three readings. At low strains, the results obtained vary by more 

than + 57. from the mean while at higher strains, they vary by about 

+ 27,. When the tests were carried out using the dead loading techniques, 
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more reproducible results were obtained (+ 27» from the mean). 

A comparison of moduli obtained using the two techniques of 

measurement using rings is shown in figure 3.8. At low to moderate 

strains the moduli obtained using dead loading were considerably 

higher than those using the testing machine. Only at very high 

strains (>2007o) were the moduli obtained using the two different 

techniques of measurement within the experimental scatter. 

The basic difference between the two techniques of measurement 

was the measurement of strain. With dead loading, the strains were 

measured directly and to a known precision, whereas when tests were 

carried out using the testing machine, settlement of the sample onto 

the grip resulted in some uncertainty in the strain origin. 

Considerable systematic errors could be introduced in using linear 

extrapolation to obtain the strain origin and this may explain the 

differences in moduli observed at low to moderate strains (fig. 3.8). 

At very high strains, reasonable agreement was obtained between the 

two techniques of measurement because small absolute errors in strain 

did not significantly affect the moduli. 

At low to moderate strains, the measurement of moduli using 

rings was not reliable for tests carried out on the testing machine 

since the grip separation did not give an accurate measure of strain 

in the sample. Reliable moduli were only obtained when measurements 

were carried out using dead loading techniques. Rings therefore 

proved to be unsuitable for our purpose. 

3.2.1.2 Effects of types of test-piece 

The samples compared were parallel sided dumbells, type C dumbells 

and rings. The measurements of moduli were carried out using dead 

loading techniques because the strains were able to be measured to a 
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Figure 3.8. Effects of modulus on techniques of measurement 

for ring samples 
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known precision with all samples. The results are shown in figure 3.9. 

All moduli (or y") values appeared to be within the experimental 

scatter i.e. no significant difference in modulus was observed 

between samples of different geometries. This suggests that, when 

force and deflection are measured accurately, the tensile stress-

strain values over the strain range covered are unaffected by the 

sample geometries. 

3.2.1.3 Effects of anisotropy 

The effects of anisotropy on modulus was investigated using 

parallel sided dumbells diestamped along and perpendicular to the 

direction of milling. No significant differences between moduli 

were observed for the two different directions of test, suggesting 

that the effects of anisotropy on tensile moduli of normally prepared 

samples were minimal. 

3.2.2 Lubricated compression 

All tests were carried out using the testing machine and the 

crosshead separation was taken as the measure of strain. No tailing 

of soft-lead in of the load-deflection curves was observed during 

the tests and the errors due to the strain origin were expected to be 

small. 

3.2.2.1 Effects of types of test-piece 

The investigations into the effects of types of test-piece on 

compression modulus were carried out using (a) moulded disks 

(b) square samples cut from 4.0 mm moulded sheet and (c) disks formed 

by plying 2.0 mm thick moulded sheet. 

Different types of test-piece were used in order (a) to check 

the effects of sample dimensions on compression modulus since there 
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Figure 3.9. Effectsof modulus of types of test-piece 



was a possibility that the extent of lubrication may vary with 

sample diameter/size and (b) to use the rubber samples which were 

obtained from the same sheet as those in tension and simple shear 

(cold bonded samples). 

The results for moulded samples are shown in figure 3.10, 

where the points are the results obtained from disks and the broken 

lines are those for square samples cut from moulded sheet (4 mm thick). 

At low to moderate strains (<507») the moduli obtained for samples 

of different geometry were approximately the same but at high strains 

(>507.), about 157» difference was observed between the lowest and 

highest value. 

With plied-up disks of different diameters about 107. difference 

in modulus was observed between the highest and lowest values at low 

to moderate strains (<507») (fig. 3.11). At higher strains (>507»), 

the variability observed with plied-up disks was similar to that 

observed with moulded samples. At all strains, the variability 

observed followed no specific trend. 

It was expected that all plied-up disks would give the same 

modulus since they were made up of rubbers cut from the same sheet. 

But as figure 3.11 shows, differences in moduli were observed with 

sample of different dimensions. The differences were not due to 

the machine error since a similar effect was not observed with moulded 

samples which were similarly tested. The possibility was that the 

scatter was due to the presence of the bonding agents within the 

samples. No firm evidence could be put forward to support the view 

but based on the observation that the plied-up samples became 

distorted after the tests, it was deduced that the bonding agent 

used was not effective and such an effect may have contributed to 

the scatter of results observed in figure 3.11. 
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The experimental results indicate that the coefficient of 

friction and so the modulus was unaffected by sample cross-sectional 

area (i.e. area of contact) when 1:1 volume to volume teepol-water 

mixture was used as lubricant. Some variability though was observed 

when plied-up disks were used because the samples were not well 

bonded. For this study, moulded disks appeared therefore to be the 

more suitable test-specimens. 

3.2.3 Simple shear 

The measurements were carried out on the testing machine and 

the grip separation was taken as the measure of strain. With all 

samples tested,no tailing of the stress-strain curve was observed 

and subsequently a clear origin was obtained. The variation in 

modulus due to errors in selecting the strain origins were 

consequently expected to be small. 

No anisotropic effects were expected with shear samples since 

the rubber was randomly mixed during the mould filling process. 

Tests also indicated that when the double shear test-pieces 

were rotated, no differences in modulus were obtained. 

3.2.3.1 Effects of types of test-piece 

Experiments on the effects of types of test-piece on shear 

modulus were carried out using double and quadruple shear samples 

which were prepared both by moulding and cold bonding. 

During deformation, the three metal pieces of the double 

shear samples were firmly gripped, ensuring the dimension 

perpendicular to the direction of shear remained unchanged. The 

samples were therefore subjected to simple shear deformation. 

With the quadruple shear test-pieces, the metal pieces were 

unrestrained, and contraction perpendicular to the shear direction 



103. 

could occur. For samples of about 5 mm thick, the extent of 

contraction and the variations of shear moduli due to contraction 

are given in table 3.6. 

Table 3.6 Effects of sample contraction (Quadruple shear) 

Shear Strain 

(7.) 

Reduction in thickness 

(7.) 

G . 
expt 

(MPa) 

G

calc 

(MPa) 

19 0 0.90 0.90 

49 1.2 0.8 0.80 

98 1.8 0.73 0.72 

146 2.5 0.74 0.73 

195 3.9 0.78 0.75 

244 5.9 0.91 0.85 

The experimental values of shear modulus, (G
e
 were obtained by 

calculating based on the original sample thickness while the values 

of G ^ were obtained based on the deformed thickness. At moderate 

strains (<1507.) the sample contraction and hence the differences 

between the experimental and calculated values of modulus were not 

significant (i.e. within experimental scatter). At higher strains 

(>1507o), however the difference between G and G , became 
expt calc 

detectable. 

A comparison between moduli obtained using double and quadruple 

shear samples is shown in fig. 3.12. Within the strain range 

covered, it appeared that the types of test-pieces and bonding 

have no significant effect on the modulus. The contraction of 

samples in quadruple shear is not large enough to be significant 

at low to moderate strains (>1507.). Thus, for tests at low to 
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moderate strains, both the quadruple and double shear samples can 

be used. 

3.3 Conclusion 

The section discusses the reliability of the stress-strain 

measurements carried out on the testing machine using samples of 

different geometries. For low to moderate strains, (<1007
o
), the 

following conclusions can be drawn. 

(a) In tension, the stress-strain values obtained with the 

parallel sided dumbells were more reliable and reproducible (+ 27. 

from the mean) than those obtained from rings. All further tensile 

tests were therefore carried out on the testing machine using the 

parallel sided dumbells. 

(b) No significant difference in modulus was obtained with 

the use of the two different types of shear samples, which were 

prepared either by cold bonding or moulding. In all cases, the 

results were within the experimental scatter (+ 27> from the mean). 

However since the cold bonded samples could be more easily made from 

disks used for compression tests, double shear samples were used 

for all further tests. 

(c) A water-teepol mixture (1:1 by volume) was found to be a 

good lubricant for the compression tests. Hence, all the lubricated 

compression tests were carried out using water-teepol as the 

lubricant. 

The moulded samples gave more reliable and reproducible (+ 27. 

from the m e a n ) results than the corresponding plied-up samples. 

Consequently, further tests were carried out using moulded samples. 

Since all the moulded samples evaluated gave approximately the same 

modulus, then for convenience, disks of 25.4 mm in diameter and those 



cut from 4.0 mm thick moulded sheet were used because (i) both 

samples could be bonded onto the double shear end pieces and 

(ii) tensile tests could also be carried out on the sample obtained 

from the same sheet. Thus, direct comparison of the stress-strain 

properties for rubber taken from the same sheet but tested using 

different modes of deformation could be carried out. 
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SECTION 4: STRESS-STRAIN RELATIONSHIP FOR FILLED AND 

UNFILLED RUBBERS 

4.1 Introduction 

4.2 A form of stress-strain relationship 

4.3 Verification of the stress-strain relationship 

4.3.1 The correlation between stress and strain 

4.3.2 Comparisons between experimental and predicted 

values 

4.4 Physical significance of parameters A, B and C 
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SECTION 4 STRESS-STRAIN RELATIONSHIP FOR FILLED AND UNFILLED 

RUBBERS 

4.1 Introduction 

There are two main approaches in defining constitutive 

equations to describe the elastic nature of rubber-like materials. 

The molecular approach considers the response of the molecular 

network to deformation. Typically, this is the statistical or 

Gaussian theory where the parameters are calculated from such 

quantities as finite molecular length and molecular weight between 

crosslinks. There is also the phenomenological approach where the 

elasticity theory was derived from entirely mathematical considerations. 

The theories of Mooney, Rivlin and Valanis-Landel, are among those 

which are derived based on the phenomenological approach. 

The statistical theory does not satisfactorily describe the 

stress-strain behaviour of rubber. The phenomenological theories, 

were able to describe the stress-strain behaviour of rubber fairly 

accurately. However, those theories were based on the assumption 

that the stresses are uniquely determined by the strain imposed. 

This assumption is valid provided that there is complete reversibility 

and no hysteresis occurs. With rubber-like materials in general, the 

assumption can be challenged on three grounds. Firstly the stresses 

on extension and retraction cycles are not identical and a significant 

proportion of the energy input is lost on retraction. Secondly the 

stresses are dependent on the strain history i.e. stress relaxation 

occurs with rubber resulting in variation of stresses with time. 
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The third factor concerns the effects of stress-softening, 

which give rise to a rubber requiring a greater stress to 

produce a given elongation on its first extension than during 

subsequent extension (91, 92). This phenomenon is exhibited 

by both filled and unfilled rubbers. On these grounds, it is 

clear that the assumption of stresses being uniquely determined 

by the imposed strains cannot be justified. 

The theories of rubber elasticity are also based on the 

assumption that the sample is isotropic in the undeformed state. 

The assumption may be valid when the samples are at an equilibrium 

state of strain. However, all previous theories were tested using 

samples which were subjected to cyclic deformations to a relatively 

high strain prior to the test i.e. the samples were conditioned. 

The prestretching process can result in stress-softening, the effect 

of which may vary along the three different principal directions. 

Anisotropy may consequently be induced during conditioning cycles, 

making the assumption of isotropy invalid. 

Even though there are uncertainties about the assumptions made, 

the phenomenological theories are still used for the prediction 

of the stress-strain characteristics of rubbers. As indicated by 

Tschoegl (34) and James, Green and Simpson (93) the most promising 

and widely used approach is that which involve the strain invariants, 

and I^, and which is basically that suggested by Rivlin (28,29). 

The prediction of stress using the theory of Rivlin involves the 

partial derivatives, ^ y and ^ y , which are obtained from biaxial 

1 2 ^ w 
strain measurements. As indicated by Rivlin, determinations of ^ y 

.
 1 

and ^ y are subject to large experimental errors because they 
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2 2 - 1 

involve the inverse term (A^-A^) (see equation (2.41)). The errors 

are magnified as A^ and A
2
 tend'to equality. In the limiting case, 

when A^ = A
2
 and t^ = t

2
, the values of g y and r y are 

1 2 

indeterminate. Consequently the calculated values of jjjjr and ^ y 

for values of A^ and A
2
 which are nearly equal are subject to large 

errors. At low stresses, the values of these partial derivatives 

are also likely to be subject to large errors because the probable 

errors in t^ and t
2
 are more nearly absolute in value than proportional 

to the magnitudes of t^ and t
2 # 

The relation between A^ and A
2
 at constant and I

2
 is shown 

in figure 4.1. During the determination of ^jr and , one 

a i
1
 ai

2 
of the strain invariants is kept constant while the other is varied, 

by increasing or decreasing A^ and A
2
, the variation of which follows 

the curves in figure 4.1. If there is any irreversibility with the 

test samples, two different stresses and consequently two different 

values of err and ^ r will be obtained at the same strain. The 3  1  2

 3w dw 
theory of Rivlin however considers err and rrr as material constants d

 1 ^ 2 

which only depend on strain; two different values at a fixed strain 

are therefore unacceptable. Thus if the deformation is irreversible, 

the theory of Rivlin cannot adequately describe the stress-strain 

behaviour of rubber. 

The stress-strain relationship in tension or compression obtained 

from the phenomenological theory of Rivlin may be expressed as: 

- 2 L _ - 2 ( I f + i I f ) (4.1) 
A-A 1 Z 

and in simple shear, it may be written in the form, 
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\ 
Figure 4.1. Relation between X^ and 

at constant and I
0
 (28) 



Explanatory note 

The theory of Rivlin expresses the stored energy function, W 

as a function of t̂-t and qr-r . If W is strongly dependent on I
i o -0 o*- 2

 1 

and I
2
, the moduli in tension, compression (H) and simple shear (G) 

cannot be simply related because the contributions due to and I
2 

will be different for different types of strain. Only if W is a 

function of or I
2
 are the moduli likely to be related. 

Previous work (94) had suggested that the stored energy 

function for the three simple modes of deformation considered was 

dependent only on I-^, and the contribution due to I
2
 was small. 

If this were true, then the moduli in tension, compression and 

simple shear should be equal if the strains at which they were 

measured gave equal values of 1^. For convenience and because 

(1^-3)
2

 is equal to the shear strain (equation 2.39), this function 

was used. 

Comparing the moduli at equal values of can also reveal 

any dependence of W on I
2 >
 If ^ y is dependent- on I

2
 and/or 

a w
 1 

the contribution due to is not small, differences in the values 

i?-
of H and G at equal (l^-3)

2

 will be observed. 
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Knowing 3 7 and 7 7 , stress-strain behaviour in tension, compression 
011 d12 

or shear can be calculated using equation (4.1) and (4.2) respectively. 

The terms 3 7 and 3 7 have been found to vary with both I
1 

1 
and (30,31). Several attempts have been made to quantify these 

partial derivatives. For unfilled rubbers, Obata, Kawabata and Kawai 

^ W 3 W 

(30) expressed the values of — and in terms of I
i
 and I

O J 

d
1

! o
i

2

 1 1 

namely, 

a, a (I -3) 
^ W = a +

 3

1 2 2* 
o 

( l
r
3 )

2

 ( l
r
3 )

2

-
5 

(4.3) 

<5w = A + A. + 2a„ 
^ y ° — -

 2

 ^ 

where a , a., a_. A and A„ are constants for a particular rubber, 
o' 1' 2* 0 1

 v 

Using equation (4.3) and the values of the constants given by Obata 

et al, stresses at defined strains were calculated for tension, 

compression and shear deformations using the Rivlin's equation (equation 

4.1 and 4.2). The results obtained, expressed as ^
 2

 (or H) and 

fT t 
(or G) Vs (l

1
-3)

2

 are shown in figure 4.2. For the three modes of 
0 • l 

deformation considered, values of H and Gpredicted at equal (1^-3) are 

not identical. At moderate strains (l^-3)
2

 >1.0) for instance, the 

modulus in tension was about 507. higher than in compression and such 

differences were not observed in practice (94). At low strains, values 
of H (in tension/compression) and G (in shear) rose sharply such that 

•l' 
h 

the calculated values of modulus below 207. shear strain (or I--3 <0.2) 



Note (refer to figure 4.2) 

The values predicted by the relationships of 

Obata et al and James and Green are represented by 

points in order to enable comparison to be made between 

the moduli in tension, compression and simple shear at 

specified (1^-3) values. The broken line represents typical 

values of moduli obtained experimentally on a vulcanizate 

similar to that of James and Green. 
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became extremely high. At very high strains, on the other hand, the 

moduli remained fairly independent of strain. No sign of the sharp 

up-turn in the plots of G or H Vs (1^-3)
2

, which occurs in practice, 

was observed. The predicted values are therefore inconsistent with 

the experimental observations and the values of rrp and r̂jr obtained 

o li c?
i

2 

using the Obata relationship are considered inadequate. 

James and Green (95) developed an empirical relationship for 

the calculation of the values of rrr and -rrr which takes the form, 

<?h & 2 

-
 c

io
 + 2 c

2 o
( i

r
3 ) + 3 c

3 o
( i

r
3 ) 2 + c

1 1
(

v
3 ) 

d
1

1 (4.4) 

a i l d

5 I
2

 = C

0 1 + C
n
 (1,-3) 

where ^^0*^20 ^ O ' ^ l l ' ^ O l
 a n c

* ^11
 a r e c o n s t a n t s

 f°
r a

 particular rubber. 

Using equation (4.4), values of 3 7 and ^-r for the James and Green 

rubber (i.e. Natural rubber + 40 phr N330 black) were calculated. The 

relative contributions of the terms given in equation (4.4) relative 

3 w 3 w 
to C

1 A
 for rrr and to C

n 1
 for for simple extension are shown 

10 0 iTO ui cjl 
dw 

in table 4.1. The contributions to y ? at low strain (A <2.0) appear 
d I

l 
to be mainly due to the constant c^Q, since the terms involving C

2
o ' ^11 

and C^Q are very small. At higher strains (A > 2.0) the contribution 

from the C ^ term becomes insignificant due to the increase in the term 

2 
involving C^o'

 t b e

 i
n c r e a

s
e

 of which is due to the (1^-3) term. The 

^ y 2 
value of -err is therefore dependent mainly on the 3 C__(l„-3) term 

C / 3 0 1 

at high strains. 

The partial derivative, ^ y is given as a sum of two terms, 

but as table 4.1 shows, the term involving C ^ is negative. 
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Table 4.1. Relative Contribution of the terms given by James 

and Green formula for simple extension 

"3w "3w 

X 

C

10 2 C
2 0

(
V
3 ) 3 C

3 0
( I

1
- 3 )

2 

C
n
( I

2
- 3 ) c

o i 
c

u
( I

i -
3

> 

(MPa) C

1 0 
C

1 0 
C

1 0 
(MPa) C

01 

1.01 0.47 -5.55xl0"
6 -10 

5.72x10
 u -2.74xl0'

5 

0.041 -3.17xl0"
5 

1.05 TI -3.4 x l O
- 4 

2.15xl0"
6 

-1.65xlo"
4 

I I -1.75xlO~
3 

1.10 I I -1.32xlO
- 3 

3.23xlO'
5 

-6.19xl0"
3 

I I -7.56xlo"
3 
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2 

1.39xlO
- 2 

-1.04x10'
2 

I I -1.56x10""*" 

2.0 I I -9.45x10"
2 
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2 

I I -5.51x10""*" 
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1 
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- 2 
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Effectively depends only on the C at low strains (X <1.5) but 
o 2 

becomes negative at higher strains <1.5). 

The total stress depends on both ^ y and g y , but since 

2)w ^
 2 

the two terms which constitute ^ y are very small, then only the 

9w
 2 

value of ^ y is significant. The latter only depends on the C^Q 

term at low strain and the term involving C^Q at high strain, as 

indicated above. Thus using the James & Green formula, the modulus may 

effectively be approximated to a constant at low strains (X <1.5) and 

2 

to a term depending on (1^-3) at high strains (X >1.5). 

Predictions of modulus in tension, compression and simple shear 

deformations using the James & Green formulae for natural rubber 

filled with 40 phr N330 black are shown in figure 4.2 (top curve). 

At all strains, the moduli in the three modes of deformation considered 

are approximately equal, which is consistent with the experimental 

observation (94). However in practice, at low to moderate strains 

h 

( (1^-3) <1.0), the moduli are dependent on strain. This can be 

clearly seen from the results obtained in tension for a rubber of 

similar stiffness, which are plotted together in figure 4.2 (broken line) 

where the modulus progressively decreases with strain at low to moderate 

(before the up-turn in stress-strain curve). 

It may be argued that with the James and Green data, the modulus is 

independent of strain at low to moderate strains because the samples 

were subjected to cyclic deformations prior to the tests (i.e. the sample 

was conditioned). As a result, carbon black agglomerate structures were 

broken down by the applied strain. Such arguments are however not 

justified since when natural rubber filled with 40 phr N347 black 

were subjected to ten cyclic deformations, the moduli are still 

dependent on strain (fig 4.3). The moduli at low strains are higher 

than those at high strains (1^-3) >1.0). 
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Figure 4.3. Effects of cyclic deformations on tensile modulus 

of 40 pphr N347 filled natural rubbers 
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The type of carbon black used for the samples which were 

subjected to cyclic deformations has about the same structure (as 

denoted by DBPA values) as that used by James & Green and the cyclic 

deformations were expected to give similar effects. However as 

figure 4.3 shows, the results obtained are not consistent with those 

predicted by the James & Green formula. Thus even though the James & 

Green formula may predict the same values of modulus in tension and 

compression (H) to that in simple shear (G), the constant moduli 

obtained at low to moderate strains does not conform to experimental 

observations. The equations of James & Green are therefore not adequate 

for the description of stress-strain behaviour of rubbers. 

Without attempting to calculate the values of the partial 

derivatives, Gregory (94) studied the stress-strain behaviour of a 

series of black filled rubbers. At low to moderate strains (before 

the upturn in the stress-strain curve) the author observed that the 

values of H in tension and compression are identical to G in shear 

at equal No results were available at higher strains (1^-3)
2

>1.0). 

In order to extend the correlation between tension, compression and shear 

moduli up to higher strains, similar experiments have been carried out. 

Typical results are shown in figures 4.4 and 4.5. Figure 4.4 shows 

¥ 
the plots of H or G Vs ( ^ - 3 )

 2

 for rubber containing 25 phr N330 

black while figure 4.5 shows similar plots for rubber filled with 

60 phr N347 black. At low to moderate strains, ((1^-3)
2

<1.0), both 

figures show the values of H in tension and compression to be 

approximately the same as the shear modulus, G. At higher strains 

however ( ( ^ - 3 )
 2

>1.0), diffe 

rences were observed between the moduli 

in the three modes of deformation considered. The tensile modulus, H 
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for instance, was about 107. higher than the shear modulus at 

(1^-3)
2

 = 3.0, and the differences appeared to increase with strain. 

Data at very high strain for compressive deformation are not available 

because of experimental difficulties. The simple relationship between 

H in tension and compression and G in shear only exists at low to 

moderate strains. 

The values of H and G are given by equations (4.1) and (4.2) 

respectively. For H to be identical to G, two explanations are suggested, 

(a) The term r r is much less than -37 and 7 7 is independent 

01z oj-j d
1

! 

of I
2
 as suggested by Gregory. This reduces equations (4.1) and (4.2) 

respectively to 

H ^ 2 (§ ) 

(4.5) 

g » 2 < & ) a i

l 
Experimental evidence tends to suggest that, for both unfilled (30,31) 

W 3 W 
and filled rubbers (95), is much greater than 3 7 and the 

oli ol2 

approximation given by equation (4.5) may be justified. 

(b) Alternatively, the agreement between H and G observed at 

moderate strain may suggest that, when expressed as a function of 

the values of 7 7 and 3 7 for different modes of deformation may 
a i

l 2 g-
compensate each other so as to give the values of

 9
 in tension 

cr
 x

'
x  

and compression to be approximately equal to in simple shear. 
0 

Whichever reason is correct, the agreement observed in practice 

between H and G suggests that at moderate strain, serious errors are 

not introduced if one assumes that the moduli in tension, compression 

and shear are only a function of 
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4.2 A form of stress-strain relationship 

Assuming that, at low to moderate strains, the moduli in 

tension, compression and simple shear are a function only of 

then we may write, for simple extension or compression. 

CT, = F d ^ a - A "
2

) (4.6) 

and for simple shear 

ct = f(i
1
)^ (4.7) 

where F(l^) is a term which is a function of the strain invariant 

It follows that, if F(I^) is known, the stress-strain behaviour in 

tension, compression and simple shear can be predicted. 

Let us consider a simple shear deformation. When the shear 

stresses are plotted against shear strain, the relationship is linear 

at moderate strains (fig. 4.6). The linear region may be expressed 

as, 

0~
s
 = A ^ + k (4.8) 

where A is the modulus at high strain and k is a constant. At low 

strain however, equation (4.8) cannot be applicable since the 

predicted shear stress does not approach zero at limiting shear 

strain. To accommodate the behaviour at low strains, the value of k 

may take the form, 

k = <
4

-
9

> 

where f(][) is a function which decreases with shear strain. The 

simplest possible form of f()f) which gives the required decrease 

in f( ) with increasing , but which provides a finite value of 

f(jf) at zero strain is: 
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Figure 4.6. Shear stress as a function of shear strain 

for rubbers filled with 25 pphr N330 black 
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f

< p • b j p n :
 ( 4

-
1 0 ) 

where B and C are constants. 

Shear strain is related to the strain invariant by, 

% = (I
±
-3)

h

 (4.11) 

Substitution of equation (4.11) into (4.10) gives, 

f

< 1 0 = t — <
4

-
1 2

> 
B(l^-3) + C 

From equations (4.8), (4.9) and (4.12), it follows that the shear 

stress may be expressed as: 

0" = (A + J^r (4.13) 
S

 B(I^-3) + C 

d
t
 l 

The plots of Vs (l
i
-3)

2

 were found to be approximately 

q- p 
the same as the corresponding plots of Vs (I

1
-3)

2

 for low to 

- 2 

TA /T T"» rr n l n f e A -P , „ ^ . . 

ts 1 

moderate strains, suggesting that the function F(I^) for simple 

extension and compression is the same as that for simple shear. 

It follows that a more appropriate form of equation (4.13), which 

is applicable to the three modes of deformation considered will be 

CT = (A + ^ ) f ( £ ) (4.14) 

B(l^-3) + C 

_ 2 

where f(^) = for tension or compression and f ( £ ) = ̂  for 

simple shear. 
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4.3 Verification of the stress-strain relationship 

4.3.1 The correlation between stress and strain 

The relationship given by equation (4.14) is applicable to 

tension, compression and simple shear, but verification was carried 

out on rubbers subjected to tensile deformation because, experimentally, 

tensile tests are much easier to perform than shear or compression. 

Furthermore, repeat tests can be carried out for rubbers originating 

from the same source (i.e. same moulded sheet), thus reducing 

variability. 

In tension, equation (4.14) may be written as, 

H = A + (4.15) 
B(l^-3)

2

 + C 

where H (= — ^ "
 9
) is an elastic modulus which depends on the three 

unknown constants, A, B and C. Rearranging equation (4.15) gives, 

(H-A)"
1

 = B(l^-3)^ + C (4.16) 

-1 t 

If equation (4.16) is valid, then plots of (H-A) Vs (1^-3)
2 

should be linear with a slope B and an intercept C. 

In principle, A can he estimated from the limiting value of 

at high strain. For lightly filled ( ^ 2 0 phr black) 

d(\-\~
Z

) 

rubbers, a fairly good estimation of A can be obtained graphically, 
but for unfilled rubbers estimation of A becomes difficult and 

2 
inaccurate because the slope of 

Vs plots at high strains 

does not reach a limiting value. For heavily filled rubbers on 

the other hand, the on-set of non-affine deformation at relatively 

low strain makes determination of — d i f f i c u l t . 

d U - \ "
Z

) 
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dLJ -2 
Taking — as the linear portion of (X Vs , 

curves (as value of A) plots of (H-A) Vs (1^-3) were made. 

Typical results are shown in figures 4.7 and 4.8 and this suggests 

that equation (4.15) gives a good description of the stress-strain 

behaviour for the low to moderate strain region. 

It may be noted that straight lines were only obtained from 

-1 h 

the plots of (H-A) Vs (1^-3)
2

 in the region before the upturn in 

the stress-strain curve, or in the region of affine deformation 

because the proposed relationship (equation 4.15) was derived based 

on the stress-strain behaviour in this region. 

-1 h 

The linearity of the plots of (H-A) Vs (1^-3) are sensitive 

to changes in A , particularly at high strains where H approaches A 

An accurate determination of A is therefore required in order to 

get an accurate value of B and C. Since graphical determination of 

A was inaccurate, a statistical technique using the method of least 

squares was subsequently used to obtain parameters A , B and C. 

l 

In the analyses, variables H and (1^-3) were known, but parameter 

A was unknown. In order to obtain parameters A , B and C by this 

method, values of A were fed into equation (4.16) at an incremental 

step of 0.01 MPa. As a first approximation, a limiting value of 

was taken as the value of A . The values of A , B and C 

d(\-\"
Z

) 

which correspond to the maximum correlation coefficients were taken 

to be the best fit to the experimental data. 

Typical values of parameters A, B and C and the corresponding 

maximum correlation coefficients obtained are shown in tables 4.2 

to 4.5. For unfilled rubbers of different crosslink density (table 4.2), 

the maximum correlation coefficients of the range 0.9934 - 0.9990 

were obtained. For sulphur cured rubbers, the values of the maximum 
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Figure 4.7. (H-A) as a function of (1^-3)

2

 for 

rubbers filled with 20 pphr N347 black 
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 for 

rubbers filled with 60 pphr N347 black. 
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TABLE 4.2: VALUES OF A, B AND C FOR UNFILLED RUBBERS 

(SULPHUR AND PEROXIDE SYSTEMS) 

CBS/S Ratios A B C Max. correlation 

pphr 
(MPa) (MPa"

1

) (MPa"
1

) 
coefficient 

0.25/0.45 0.081 5.78 5.55 0.9990 

0.5/0.9 0.150 4.73 5.37 0.9983 

0.75/1.35 0.215 3.30 5.07 0.9983 

1.0/1.8 0.270 2.86 5.06 0.9983 

1.25/2.25 0.355 4.29 5.73 0.9976 

1.5/2.7 0.45 6.83 5.74 0.9934 

DCP pphr 

1 0.207 7.31 6.41 0.9962 

2 0.326 3.40 5.35 0.9973 

3 0.504 6.67 7.23 0.9964 

4 0.698 6.56 5.90 0.9965 
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correlation coefficients seem to improve with decreasing crosslink 

density (i.e. lower sulphur content) and averaged about 0.9975. 

For peroxide cured rubbers, the maximum correlation coefficients 

averaged about 0.9966, which was comparable to that of the 

corresponding sulphur system. 

Typical values of the correlation coefficients for filled rubbers 

are given in tables 4.3 to 4.5. For rubbers filled with N550 black 

and crosslinked using the sulphur vulcanizing system (semi-EV), 

maximum correlation coefficients from 0.9944 to 0.9992 were obtained. 

The correlation coefficients appeared to be generally better for those 

containing 60 phr black than those containing 20 phr black. The 

maximum correlation coefficients of rubbers filled with the N347 black 

and crosslinked using the sulphur vulcanizing system (semi-EV) ranged 

from 0.9940 to 0.9998, with less heavily filled rubbers (e.g. 20 phr 

black) having higher correlation coefficients than the heavily filled 

rubbers. The peroxide cured rubbers showed equally good maximum 

correlation coefficients, ranging from 0.9943 to 0.9999 (table 4.4). 

Generally it was observed that lightly filled and unfilled 

rubbers gave relatively poor ( ^ 0.99) maximum correlation 

coefficients compared to heavily filled (> 20 phr black) rubbers. 

For over 200 rubbers tested, the maximum correlation coefficients 

obtained varied from 0.9934 to 0.9999, which is fairly good and 

-1 + 

these results showed that the plots of (H-A) Vs (1^-3)
2

 were 

linear and that equation (4.15) is valid. 
4.3.2 Comparison between experimental and predicted values 

j. 

Equation (4.14) gives the value of H or G as a function of (1^-3)
2

, 

with parameters A, B and C as constants. For either tension, 

compression or simple shear, values of A , B and C for a particular 



TABLE 4.3: VALUES OF A , B AND C FOR SULPHUR CURED N550 BLACK 

FILLED RUBBERS 

Black CBS/S Ratios A B C max 
Loadings • « correlation 
pphr pphr (MPa) (MPa" ) (MPa" ) coefficient 

0.25/0.45 0.08 7.17 2.89 0.9984 

0.5 /0.9 0.26 9.79 2.71 0.9988 

0.75/1.35 0.35 4.91 3.53 0.9944 

1.0 /l.8 0.56 11.4 3.90 0.9987 

1.25/2.25 0.63 11.22 3.56 0.9983 

1.5 /2.7 0.79 15.12 3.61 0.9981 

0.25/0.45 0.148 8.47 1.97 0.9986 

0.5 /0.9 0.405 12.04 1.50 0.9975 

0.75/1.35 0.590 10.08 1.49 0.9976 

1.0 /1.8 0.790 11.82 1.51 0.9986 

1.25/2.25 0.965 11.18 1.52 0.9988 

1.5 /2.7 1.125 14.8 2.29 0.9975 

0.25/0.45 0.208 8.74 1.25 0.9992 

0.5 /0.9 0.54 8.60 1.162 0.9992 

0.75/1.35 • 0.93 11.06 0.794 0.9991 

1.0 /l.8 1.10 7.45 0.918 0.9987 

1.25/2.25 1.48 8.73 0.688 0.9997 

1.5 /2.7 1.51 10.22 0.613 0.9990 



TABLE 4 .4 : VALUES OF A , B AND C FOR SULPHUR CURED N347 BLACK 

FILLED RUBBERS 

Black CBS/S Ratios A B C max 
Loadings ^ ^ correlation 

pphr pphr (MPa) (MPa ) (MPa ) coefficient 

0.25/0.45 0.10 10.46 2.99 0.9995 

0.5 /0.9 0.275 9.30 2.52 0.9994 

0.75/1.35 0.460 10.22 2.33 0.9991 

1.0 /1.8 0.52 9.33. 2.26 0.9997 

1.25/2.25 0.675 13.93 2.34 0.9989 

1.5/ 2.7 0.800 12.94 2.08 0.9993 

0.25/0.45 0.093 8.63 1.61 0.9993 

0.5 /0.9 0.360 8.15 0.93 0.9989 

0.75/1.35 0.580 7.65 0.71 0.9996 

1.0 /1.8 0.760 8.07 0.77 0.9990 

1.25/2.25 0.930 8.09 0.57 0.9995 

1.5 /2.7 1.130 9.09 0.41 0.9982 

0.25/0.45 0.320 7.63 0.53 0.9966 

0.5 /0.9 0.615 5.94 0.43 0.9985 

0.75/1.35 0.970 5.38 0.31 0.9995 

1.0 /1.8 1.350 7.13 0.17 0.9981 

1.25/2.25 1.570 5.0 0.19 0.9995 

1.5 /2.7 2.05 7.67 0.068 0.9940 
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TABLE 4.5: VALUES OF A, B AND C FOR PEROXIDE CURED N550 AND 

N347 BLACKSFILLED RUBBERS 

Black 
Loading 
pphr 

Dicumyl 
Peroxide 

pphr 

A 

(MPa) 

B 

(MPa"
1

) (MPa"
1

) 

max 
correlation 
coefficient 

20 FEF 0.248 

0.470 

0.620 

0.820 

14.75 

23.43 

15.30 

25.75 

4.39 

4.53 

4.93 

3.67 

0.9982 

0.9991 

0.9998 

0.9998 

40 FEF 0.380 

0.670 

0.920 

1.205 

13.45 

17.85 

17.15 

19.07 

2.42 

2.01 

2.01 

1.50 

0.9991 

0.9995 

0.9997 

0.9995 

60 FEF 0.510 

0.910 

1.285 

1.640 

10.45 

12.06 

15.25 

16.36 

1.23 

0.80 
0.70 

0.57 

0.9996 

0.9997 

0.9997 

0.9998 

20 HAF-HS 0.26 

0.46 

0.60 

0.87 

10.60 

12.93 

17.39 

27.92 

3.09 

3.30 

2.63 

2.40 

0.9997 

0.9997 

0.9986 

0.9998 

40 HAF-HS 0.37 

0.64 

0.95 

1.18 

10.13 

12.54 

12.80 

14.15 

1.20 

0.87 

0.72 

0.69 

0.9993 

0.9943 

0.9999 

0.9997 

60 HAF-HS 0.58 

1.01 

1.37 

1.74 

8.25 

8.23 

8.61 
10.21 

0.63 

0.43 

0.43 

0.30 

0.9989 

0.9993 

0.9994 

0.9994 



rubber were the same since H and G were identical at equal (1^-3)
2

. 

Hence knowing the values of A, B and G for any one mode of deformation, 

prediction of stress-strain values in other modes of deformation 

can be made. 

Values of A, B and C were obtained using a method of least 

squares from data obtained in simple extension. With these values 

of A , B and C, prediction of tensile, compressive and shear moduli 

were made using equation (4.15). Typical results are shown in 

figure 4.9 to 4.11, where the continuous lines represent the 

predicted values and the points were the experimental values. 

In tension (fig. 4.9), good agreement was obtained between 

the experimental and predicted values, with the latter differing 

with the former by not more than 3%. For both unfilled and filled 

rubbers. 

Comparisons between the experimental and predicted compressive 

moduli are shown in figure 4.10. The agreement observed was also 

reasonably good, with the predicted values differing by not more 

than 57. from the experimental values for all rubbers tested. 

For simple shear deformations (fig. 4.11), the agreement observed 

between the experimental and predicted moduli was similar to those 

observed with compression, with the latter differing from the former 

by not more than 57.. The agreement appears to be better with heavily 

filled rubbers (60 phr N347) than with lightly filled rubbers. 

At low to moderate strains (i.e. before the upturn in stress-

strain curve) equation (4.14) has been shown to give a good description 

of the stress-strain behaviour of both filled and unfilled rubbers 

crosslinked with different vulcanizing systems. The shear and 

compressive moduli were able to be predicted using the data from 
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Figure 4.9. Comparison between experimental and predicted 

tensile moduli 
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Figure 4.10. Comparison between experimental and predicted 

compressive moduli 
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Figure 4.11. Comparison between experimental and predicted 

shear moduli 
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simple extension to within 57», and this will enable tests in 

different modes of deformation to be rationalized and simplified. 

The proposed equation is also more useful than the available stress-

strain relationship because it is applicable to filled rubbers and 

it correctly predicts the non-linear stress-strain behaviour in 

simple shear. 
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4.4 Physical significance of A , B and C 

The proposed relationship between stress and strain takes the 

form, 

H or G = A + (4.17) 
B ( l

1
- 3 )

2

 + C 

where H = , G = and A , B and C are constants. The 

0 
limiting conditions for the proposed relationship are: 

( a ) a s ( L 1 - 3 ) ^ — > O , HQ = A + ~ ( 4 . 1 8 ) 

and (b) as (1,-3)^ — ^ O O , H = A 
± CD 

The parameter A is equivalent to H or G , the modulus at high 
CD CD 

strain. According to Payne (79,80), G is the value of shear 
CD 

modulus which is independent of strain at sufficiently high strains 

i.e. at strain greater than those needed to breakdown any structure 

of carbon black. 

The difference in modulus, H -H = — gives the value of the 
o oo C

 & 

change in modulus with strains, which in the literature is given as 

G -G . This term has been attributed to the structural effect of o oo 

carbon black agglomeration i.e. G -G arises from the breakdown of 
o oo 

1 
the carbon black agglomerate structures. Since — is equal to G -G , 

l o 00 

the former describes the extent of breakdown of carbon black 

structure due to the effects of strains. 

From equations (4.17) and (4.18), it is clear that the term 

involving parameter B is negligible at the limiting strains. However 

in between the two strain limits, parameter B gives a significant 

effect since it is associated with the strain invariant, The 
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modulus contribution from the B(l^-3) term decreases with strain 

1 

while that of A and — are constant. Thus parameter B may be 

associated with the manner in which H changes to H 
o CD 
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SECTION 5: EFFECTS OF COMPOUNDING ON PARAMETERS A, B AND C 

5.1 Introduction 

5.2 Parameter A 

5.2.1 Effects of crosslink density 

5o2o2 Effects of carbon black 

5.2.3 The enhancement of crosslink density 

5.3 Parameter C 

5.3.1 Effects of crosslink density 

5.3.2 Effects of interparticle distance 

5.3.3 A combined function of crosslink density 

and interparticle distance 

5.4 Parameter B 
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SECTION 5 EFFECTS OF COMPOUNDING ON PARAMETERS A, B AND C 

5.1 Introduction 

For the three simple modes of deformation considered in this 

thesis, namely simple extension, lubricated compression and simple 

shear, the moduli at low to moderate strains were observed to 

conform with the relation, 

H or G = A + (5.1) 
B ( l

1
- 3 ) ^ + C 

where A , B and C are constants. In order to characterise H or G, 

factors affecting these constants have to be known. 

The amount and types of compounding ingredients are the most 

important factors affecting the modulus of a rubber, hence the 

effects of compounding on A , B and C were investigated in this 

section. 

5.2 Parameter A 

5.2.1 Effects of crosslink density 

With rubbers crosslinked using the sulphur vulcanizing system, 

parameter A was found to be linearly related to the concentration 

of sulphur (or phr sulphur) for both filled and unfilled rubbers 

(fig. 5.1 and 5.2). The correlation coefficients for the relationship 

of A to sulphur concentration were found to be more than 0.99 

suggesting that the relationship between the variables plotted was 

close. Coran (96) has shown that the crosslink density of a rubber 

is proportional to the square root of the product of the sulphur and 

accelerator concentrations. It follows that, with a constant 

accelerator: sulphur ratio, the crosslink density will be proportional 
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phr 5 

Figure 5.1. Parameter A as a function of (phr S) for 

unfilled and rubbers filled with N347 black 
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0-9 1-8 
phr S 

Figure 5.2. Parameter A as a function of(phr S) for 

rubbers filled with N550 black 



145. 

to the sulphur concentration. This implies that for rubbers 

crosslinked using sulphur vulcanizing systems, the parameter A is 

proportional to crosslink density. 

For rubbers crosslinked using the peroxide vulcanizing system 

(DCP) results obtained indicate that A is also linearly related to 

the concentration of dicumyl peroxide for both filled and unfilled 

rubbers (fig. 5.3 and 5.4), with correlation coefficients of more 

than 0.99. Assuming that the crosslink density of the peroxide 

cured rubbers is proportional to the concentration of dicumyl peroxide 

used, then the parameter A is proportional to crosslink density for 

the peroxide cured rubbers. 

The statistical theory relates the nominal stress to the 

extension ratio in simple extension by, 

CT = NkT(\-\~
2

) (5.2) 

where N is the number of chains per unit volume, k is the Boltzmann 

constant and T is the absolute temperature. Separation of the 

proposed equation (4.12) gives 

ct = A(A-\"
2

) + u - A "
2

) (5.3) 

B ( l
1
- 3 )

2

 + C 

Ignoring the second term on the right hand side of equation (5.3) 

comparison of equations (5.2) and (5.3) suggests that A to be equal 

to NkT. 

Assuming that A may be equated to NkT, then values of A at the 

test temperature may be calculated for peroxide cured rubbers, assuming 

that (a) all dicumyl peroxide is used for the crosslinking process 

(b) one molecule of dicumyl peroxide crosslinks two molecules of 

rubber hydrocarbon and (c) rubber has an infinite molecular weight. 
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phr DCP 

Figure 5.3. Parameter A as a function of phr DCP for 

unfilled and rubbers filled with N347 black 
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Figure 5.4. Parameter A as a function of phr DCP for 

rubber filled with N550 black 
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3 
Taking T = 296 K and jO = 0.96 gm/cm , the calculated values of A 

are compared with the experimental results in table 5.1. 

Table 5.1. Experimental and Calculated Values of A 

Dicumyl peroxide (pphr) 1 2 3 4 

Experimental A (MPa) 0.207 0.326 0.504 0.695 

Calculated A (MPa) 0.171 0.343 0.514 0.685 

Except for that of the lowest level of dicumyl peroxide (i.e. 1 pphr), 

the calculated values of A were within 107» of the experimental values. 

The good agreement observed between the experimental and the calculated 

values of A suggests that parameter A is equal to the NkT term of the 

statistical theory. 

5.2.2. Effects of carbon black 

Carbon black increases the stiffness of rubbers and thus the 

value of A. The extent of increase in the stiffness or the value of A 

depends, in part, on the amount of carbon black used. With the results 

obtained, parameter A was observed to be non-linearly related to 

the volume fraction of black, 0. 

The non-linear increase in modulus with increasing concentration 

of carbon black is usually described by the use of the Guth-Gold (63) 

type of hydrodynamic equation. (Section 2.2). When the same 

principle is applied to the increase in A for a filled rubber relative 

to that of an unfilled rubber (A
q
) , the Guth-Gold type of equation 

takes the form: 

A = Aq (1 + a 0 + 3 02) (5.4) 
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where a and (3 are constants associated with the shape factor and 

occluded volume effects. Rearranging equation (5.4) gives: 

( t " ^ 
— ^ = a +(3 0 (5.5) 

If equation (5.5) is valid, then plots of 1) , Vs 0 should 
o ' 0 

be a straight line of slope (3 and intercept a, the constants of 

which should be the same for rubbers filled with the same type of 

carbon black since the constants are functions of occluded volume and 

shape factor. However, as figure 5.5 shows, the values of a and (3 

were independent of the types of carbon black but depend on the 

vulcanizing systems used. This suggests that the difference in shape 

factor and occluded volume of carbon black gives no significant 

change in the values of the slope and intercept of the (-r— - 1 ) / Vs 

o 0 

0 plots. Hence it must be assumed that other factors, in addition to 

the volume filling effects, determined the stiffening effects of 

carbon black. 

Several authors (97-99) have reported that there were differences 

between the cure efficiency of black filled peroxide and sulphur cured 

rubbers. Kraus (97) for instance stated that the incorporation of 

50 phr N330 black resulted in a 407, increase in the cross linking 

efficiency for the sulphur cured rubbers, while for the corresponding 

peroxide cured rubbers, the author obtained a maximum apparent "black 

contribution" of about 207,. Porter (99) reported that the presence 

of carbon black in the N-cyclohexyl benzothiazole-2-sulphenamide (CBS) 

accelerated sulphur vulcanizing system increased the crosslinking 

efficiency of rubber, but with the peroxide vulcanizing system, 

particularly at higher crosslink density, it tends to suppress it. 
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Figure 5.5. ( y - 1) as a function of 0 for rubbers 
o 

0 

filled with different blacks and crosslinked 

using different vulcanizing systems 
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Based on these reports, it is likely that the differences observed 

between the results for rubbers crosslinked using the peroxide 

and sulphur based vulcanizing systems shown in figure 5.5 were due 

to the differences in their cure efficiencies. 

If the presence of carbon black alters the crosslink density 

of the sulphur and peroxide cured rubbers, then equation (5.4) does 

not adequately describe the stiffening effects of carbon black. 

To take into account the changes in the rubber matrix, it is 

proposed that equation (5.4) takes the form 

A = AQ F ( 0 ) ( l + A 0 + P 0 2 ) ( 5 . 6 ) 

where F(0) is a function which is associated with the change in 

modulus of the rubber matrix due to the presence of carbon black, 

which may be different for different vulcanizing systems. If F (0) 

and F ' ( 0 ) are the functions for peroxide and sulphur cured rubbers 

respectively, then 

(A) = (A) (5 7) 
A } F ( 0 ) A ' 
° CBS/S ° DCP 

where the ratios
 a n d

 ("A")
 a r e

 those for rubbers 
A A 
° CBS/S ° DCP 

crosslinked using sulphur and peroxide vulcanizing systems 

respectively. 

There is no evidence to indicate if the differences in the 

crosslinking efficiencies between the peroxide and sulphur based 

vulcanizing systems were due to either an enhancement of the 

crosslinking for the latter or the suppression of the former or both, 

However since we are interested in the differences between the 

crosslinking efficiencies of the two vulcanizing systems, then for 
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simplicity, it is assumed that the crosslink density of the peroxide 

cured rubbers is independent of filler loading. The modulus of 

filled rubbers crosslinked using dicumyl peroxide is then given by, 

A = Aq (1 + a 0+(B 02) (5.8) 

For the corresponding sulphur vulcanizing system, we may therefore 

write, 

x 

° CBS/S ? = (1 + a 0 + 0 0Z) (5.9) 
F'(0) 

2 

where (l + a 0 + ( 3 0 ) i s the scaling factor due to the volume 

filling effects of the black. Using equation (5.9), values of F'(0) 

for rubbers crosslinked using sulphur vulcanizing systems may be 

estimated using the experimental values of A and A
q
 and the values 

of a and (3 for the corresponding rubbers crosslinked using the 

peroxide vulcanizing system. 

For rubbers crosslinked using the sulphur vulcanizing system 

(i.e. CBS/S), results (table 5.2) show that F'(0) increases with 

black loading up to about 20 pphr, after which it remains fairly 

constant. At black loadings of more than 10 pphr, about 40-507. 

increase in the F(0) value was observed. The function F'(0) appears 

to be independent of crosslink density and the type of black used. 

The determination of the crosslink density of filled rubbers and 

hence the term F(0) could not be made directly because no direct 

technique is available. For unfilled rubbers, the number of crosslinks 

present can be determined from equilibrium swelling data using the 

Flory-Rehner equation (100), relating the volume fraction of rubber (V ) 



Table 5
e
2 : Values of F'(0) for sulphur (semi-EV) cured rubbers 

CBS/S 
ratios 
(pphr) 

Types of 
Black 

Black 
Loading 

^ r t i p p h r ) 
5 10 20 30 40 50 60 70 80 

0.5 /0.9 0.98 1.25 1.38 1.49 1.45 1.36 1.35 - -

0.75/1.35 - - 1.29 1.55 1.47 1.62 1.62 - -

1.0 /1.8 N550 1.13 1.32 1.65 1.61 1.56 1.49 1.53 - -

1.25/2.5 - - 1.43 1.50 1.48 1.39 1,58 - -

1.5 /2.7 0.98 1.16 1.40 1.41 1.34 1.29 1.26 - -

0.5 /0.9 1.11 0.93 1.43 1.27 1.28 1.15 1.54 1.94 1.47 

0.75/1.35 1.05 1.04 1.59 1.43 1.44 1.38 1.69 1.73 1.45 

1.0 /1.8 N347 1.09 1.21 1.62 1.39 1.55 1.46 1.87 1.55 1.42 

1.25/2.25 0.99 1.29 1.41 1.45 1.42 1.37 1.68 1.43 1.39 

1.5 /2.7 1.07 1.10 1.35 1.31 1.34 1.28 1.71 1.30 1.27 

1.0 /1.8 N110 1.12 1.33 1.49 1.49 1.45 - 1.48 - -
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and the molecular weight between crosslinks (M
c
), namely 

M 
c 

1 
In (1-V

r
) + V

r
 + D ( y

r

2

 ] (5.10) 

where jD is the density of the rubber, V is the molar volume of 

solvent a n d ) C l
s

 the solvent-rubber interaction parameter. In the 

presence of fillers, equation (5.10) fails because swelling is 

also restricted by the fillers and the value of V^. will not represent 

that of the rubber matrix. However if the equivalent value of V 

for the rubber matrix is known, value of M and hence the crosslink 

' c 
density (r| = ) can be calculated. 

c 

The dependence of degree of restriction of swelling on the 

volume fraction of filler has been quantitatively investigated by 

Kraus ( 9 7 ) and Lorenz and Park (98). The Kraus investigations 

were based on a model which assumed that the rubber molecules 

covering the surfaces of filler particles were not displaced by 

swelling agents, and were not able to swell at all. Away from these 

layers, restriction to swelling was assumed to decrease with distance 

from the filler surfaces, until at a certain distance, the rubber 

matrix swelled normally, that is, to the extent of the corresponding 

unfilled rubber. Using different polymers, several sulphur 

vulcanizing systems and solvents and different crosslink density 

Kraus obtained the relation, 

V 1 

= 1 - [3c(l-V
r

 3

 ) + V
r
 - 1] A (5.11) 

r o o 

where V
r
 and V are the volume fractions of rubber matrix for 
o

 r 

unfilled and filled rubbers respectively and c is a constant for a 

given filler. Lorenz and Park on the other hand considered restricted 
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swelling of the rubber matrix in the neighbourhood of filler particles. 

The zones nearest to filler particles were .considered to exhibit the 

smallest swelling and zones sufficiently far from filler particles 

exhibited the same swelling as the unfilled rubber. For N330 black 

filled natural rubber, Lorenz and Park found that their results 

followed an empirical relationship, 

= a e "
z

+ b (5.12) 

where Q and Q
q
 refer to the weights of the swelling agent imbibed 

per unit weight of rubber matrix in filled and unfilled rubbers, z is 

the weight of filler per unit weight of rubber matrix and a and b are 

constants. 

Equations (5.11) and (5.12) were derived assuming that the 

presence of carbon black did not influence the crosslink density of 

the rubber. If, however, the presence of filler influences the 

crosslink density of rubber, then the restriction of swelling will 

be due to one or more of the following three causes: 

(a) The filler may cause an increase in crosslinking efficiency 

of the vulcanizing agents, thus giving additional chemical crosslinks. 

(b) The filler may restrict swelling of rubber because of 

adhesion of rubber to filler surfaces either by physical adsorption 

or through the formation of rubber to filler bonds. 

(c) The filler may alter the affinity of swelling agent for 

rubber. 

If the same type of carbon black and swelling agent are used, 

then the contributions to swelling from factors (b) and (c) for 

rubber crosslinked using different vulcanizing agents will be about 
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the same. Any difference in swelling will be only due to factor (a) 

The results obtained from the swelling tests were analysed in 

accordance with the treatment put forward by Kraus and Lorenz and 

Park. The equation due to Kraus (equation 5.11) predicts a linear 
r

o 0 

dependence of (1 - — — ) on ( — b u t results obtained did not 

conform to equation (5.11). Similar observations were made by 

Porter (99). 

When the results were analysed in accordance with the relation 

due to Lorenz and Park, they conformed with equation (5.12) in that 
Q -z 

a linear dependence of jp- on e was obtained (fig. 5.6). The 

0 -z 
values of at equal e were different for rubbers crosslinked 

^o 

using different crosslinking systems; the values for rubber 

crosslinked using the EV and peroxide systems were approximately the 

same, but both were higher than for the corresponding rubbers 

crosslinked using the semi-EV and conventional systems, which were 

also approximately the same. The two linear equations representing 

rubbers crosslinked using the EV or the peroxide systems and the 

Semi EV or the Conventional Systems are, respectively, 
= 0.41 e~

Z

 + 0.59 (5.13) 

° DCP,EV 

= 0.56 e ~
Z

 + 0.44 (5.14) 

° Semi-EV, Conv. 

The difference in the slopes between equations (5.13) and (5.14) was 

about 387o, the difference of which was due to the differences in 

restriction to swelling. These differences were consistent with 

the results obtained earlier, where the values of F
f

( 0 ) for the 
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sulphur cured rubbers were about 407. higher than for the corresponding 

peroxide cured rubbers. 

To accommodate the changes in the rubber matrix, it is proposed 

that the Lorenz and Park equation be modified to, 

Q = Q
m
( a e "

Z

+ b ) (5.15) 

where Q^ replaces Q
q
 and a and b are constants. The parameter 

is defined as, 

n
 _ Weight of solvent imbibed 
mi Weight of rubber matrix 

= (5.16) 

t
 r 

where ^ is the density of solvent and V^ is the volume fraction 

of the rubber matrix. 

For rubbers crosslinked using the peroxide vulcanizing system, 

if the presence of carbon black is assumed to have no influence on 

the crosslink density of the rubber matrix, then (from equation 5.13), 

^n = £ <
5

-
1 7

> 

0.41e + 0.59 

Using the experimental values of Q, values of were calculated. 

For the peroxide cured rubbers used, values of of filled rubbers 

were observed to approximately the same as the equivalent unfilled 

rubber, in accordance with the assumption made (table 5.3). 

The values of Q^ for the corresponding rubbers crosslinked using 

the sulphur systems were calculated based on the values of a and b 

(of equation 5.15) for that of the peroxide cured rubbers. Using 

the calculated values of values of V^ were obtained using 
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Table 5.3: Influence of carbon black on crosslink density of 

rubbers crosslinked using different vulcanizing systems 

Black loading 
(pphr) 

Unfilled 10 20 40 60 

q 1.54 1.49 1.46 1.45 1.33 1.26 

1.54 1.52 1.52 1.57 1.54 1.55 

Peroxide 
M x 10"

3 

c 
4.98 4.87 4.87 5.12 4.97 5.01 

system (gm/mole) 

4 
T| X 10 1.93 1.97 1.97 1.87 1.93 1.92 

(moles/cc) 

q 1.97 1.95 1.90 1.85 1.68 1.59 

1.97 1.99 1.97 2.0 1.95 1.95 

EV 
M x 10~

3 

c 
7.55 7.71 7.60 7.78 7.42 7.43 

system 
(gm/mole) 

Tlx 1 0
4 

1.27 1.25 1.27 1.23 1.29 1.29 

(moles/cc) 

q 1.85 1.79 1.70 1.66 1.53 1.39 

1.85 1.82 1.77 1.79 1.77 1.71 

Semi-EV M x 10~
3 

c 
6.81 6.62 6.32 6.42 6.31 5.91 

system (gm/mole) 

T| X 10
4 

1.41 1.45 1.52 1.50 1.52 1.62 

(moles/cc) 

q 1.72 1.68 1.61 1.56 1.42 1.32 

sn 1.72 1.72 1.68 1.69 1.65 1.62 

Conventional M x 10"
3 

c 
5.98 5.97 5.75 5.82 5.56 5.43 

system (gm/mole) 

Ti x 10
4 

1.60 1.61 1.67 1.65 1.73 1.77 

(moles/cc) 

> ) 
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equation (5.16). These values of V , which were for the rubber matrix 

of filled rubbers, were used for the calculations of M
c
 (and q) 

using equation (5.10) by taking J C = 0.41 (102,103). For rubbers 

crosslinked using an EV (CBS/S) system, the calculated values of M^ 

and crosslink density were observed to be independent of black 

loading (table 5.3). This indicates that the crosslinking efficiency 

of an EV system was not affected by the presence of carbon black. 

For rubbers crosslinked using the conventional and semi-EV 

systems, the M
c
 was observed to vary with carbon black loading 

(table 5.3). Assuming that the crosslink density of the unfilled 

rubber (r|
0
) represents the crosslink density of the rubber matrix 

unaffected by the presence of carbon black, then for rubber 

crosslinked using the semi-EV or conventional systems, a 60 phr N347 

black gave rise to about 10 to 15% higher crosslinking efficiency 

compared to the corresponding rubber crosslinked using an EV or 

peroxide system. For the four different types of vulcanizing 

systems used, the variation in crosslink density of rubbers, plotted 

as — — Vs 0 are shown in figure 5.7. Some scatter of results was 
^o 

observed, but essentially the values of for rubbers crosslinked 
'o 

using the semi-EV and conventional systems were linearly related to 

the volume fraction of carbon black (0). 

There could be two possible reasons for the increase in crosslink 

density of rubbers crosslinked using the semi-EV/conventional 

vulcanizing systems over that of the peroxide vulcanizing system. 

Firstly, carbon black could act as a catalyst for the vulcanization 

reactions and secondly carbon black itself could react with the 

sulphur pendent groups present along the rubber main chain. Both 

mechanisms will result in more efficient vulcanization. 
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0 

T| 
Figure 5.7. Values of — as a function of 0 for 

n 
'o 

rubbers filled with N347 black and 

crosslinked using different vulcanizing 

systems. 
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The chemistry of sulphur vulcanization of natural rubber (104) 

is complex, but it is known that during vulcanization processes, 

sulphur may form crosslinks and pendent or side groups. In crosslinks, 

sulphur may be present as monosulphide, disulphide or polysulphide, 

while as side groups, it may be as pendent sulphides, or cyclic 

mono- and disulphides (fig. 1.1). The first possibility involves 

catalysis of the vulcanization process by carbon black. If the 

presence of carbon black catalyses crosslink formation, then more 

crosslinks will be formed. On the other hand if carbon black 

catalyses the formation of sulphidic pendent groups, then comparatively 

less crosslinks will be formed. Assuming that, during vulcanization, 

k

i 

Sulphur - ^ crosslinks 

k

2 

pendent groups 

where k^ and k
2
 are rate constants. The rate of formation of either 

crosslinks or pendent groups will depend on k^ and k^ respectively 

and the concentration of the two products formed is related to the 

rate constants by, 

k

l 
[Crosslinks] = r — [pendent groups] 

k

l 
and the total number of crosslinks formed = [sulphur][r—, , ] . 

1 2 
If the presence of carbon black catalyses crosslink formation, then 

k

l 
Total number of crosslinks formed = [sulphur][ ] 

k^ + k
2 

where k^ is the rate constant for the formation of crosslinks in 

the presence of carbon black. 
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The ratio of the modulus of the rubber matrix (A ) to that of m 

the unfilled rubber (A
q
) may be expressed as, 

a 
m *" k . + k

0 

— = i + «0 + P0 a r _ A _ , i f — 2 - 1 ( 5 a 8 ) A

o a
 l

 k + k„
 j 1

 k.
 j 

a 
which gives —

 t o

 independent of crosslink density (or sulphur 

« . . . V 
concentration), but increases with k

4
 . The limiting value of 

k

l'
+ k

2 
m 

is unity, representing the saturation value of -r— but this is not 
o 

consistent with the results shown in figure 5.7 where for up to 

0 =» 0,22 no limiting value was observed. This suggests either that the 

increase in crosslink density is not due to catalysis of crosslink 

formation reaction by carbon black or the saturation condition has 

not been reached with the concentrations of filler used. 

The second possibility requires that the reactive functional 

groups present on the carbon black surfaces react with the sulphidic 

pendent groups. This type of reaction will result in a rubber-

sulphur-carbon black type of network, which consequently depends on 

the availability of both the functional groups and the sulphidic 

pendent groups. For this type of reaction, two cases are possible, 

depending on whether the concentration of sulphidic pendent groups 

are greater or less than the reactive functional groups. (a) If the 

concentrations of reactive, functional groups on the carbon black 

surfaces are much more than those of the sulphidic pendent groups, 

the networks form will not increase with carbon black loading but 

(b) if the reactive functional groups are much fewer than the 

sulphidic pendent groups, the networks form will increase with carbon 

black loading. Results obtained (fig. 5.7) showed a linear increase 
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of crosslink density with the volume fraction of carbon black, 

indicating that the more probable reaction is that of case (b). 

It thus appears that both reactions are possible and there is 

no evidence to suggest whether the first or second reaction mechanisms 

is more probable. 

5.2.1.3. The enhancement of crosslink density 

The Guth-Gold equation which is used to predict the modulus of 

filled rubber relative to that of the unfilled rubber was derived 

based on the assumption that the presence of fillers does not enhance 

the crosslink density of the rubber matrix. To take into account the 

change in the crosslink density of rubber, it is proposed that the 

equation be modified to, 

A = A (1 + a 0 + (3 0
2

) (5.19) 
m 

where A
m
 is the modulus of the rubber matrix. Using the values of 

M
c
 given in table 5.3, values of A

m
 were calculated (table 5.4). 

Contrary to that observed earlier (fig. 5.5), when these values 

of AM were used in the Guth-Gold equation instead of A
q
, values of 

a 
(•£ ^V/TJ

 a t e

9
u a

I value of 0 for the four different vulcanizing 

m ^ 

systems used were approximately the same (fig. 5.8). This suggests 

the proposed equation (5.19) is valid and A
m
 should be used in place 

of A
q
 in order to account for any change in the crosslink density of 

the rubber matrix. 

Even though the modulus A can satisfactorily be described using 

equation (5.19), the coefficients a and (3 did not appear to conform 

to the Guth-Gold equation; equation (2.60) predicts much lower 

moduli than the experimental values (fig. 5.8). The use of the Guth 
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Table 5.4; Influence of carbon black on the experimental values 

of A and of the rubber matrix (A ) 

Black loading 
(pphr N347) 

0 6 10 20 40 60 

Peroxide A 

expt 
0.51 0.61 0.68 0.79 1.15 1.82 

system 
A 
m 

0.48 0.49 0.49 0.46 0.48 0.47 

EV 
A

 -expt 0.29 0.34 0.37 0.47 0.76 1.14 

system 
A 
m 

0.31 0.31 0.31 0.30 0.32 0.32 

Semi-EV 
system 

a

 h 
expt 

A 
m 

0.34 

0.35 

0.41 

0.36 

0.53 

0.37 

0.66 

0.37 

1.02 

0.38 

1.59 

0.46 

Conventional 
a

 h 
expt 

0.40 0.45 0.55 0.71 1.16 1.76 

system 
A 
m 

0.39 0.40 0.41 0.41 0.43 0.44 

equation (2.61) with f = 5.3 may be able to fit the experimental 

data, but such value of f is rather high for most black (67), and 

consequently it is not favourable. 

Lately (67-71) a concept of effective volume of carbon black 

was introduced where the total volume of 'filler' was assumed to 

comprise the volume fraction of filler, 0, and a proportion of rubber 

occluded within the black structure which is shielded from deformation. 

The shielded rubber acts as part of filler rather than part of rubber 

when subjected to a stress. Medalia (71) showed that about half of 

the occluded rubber acted as a filler and the effective volume of 

filler/carbon black (0') was given by (equation 2.63), 

0' = 0 + 0.5 0 (5.20) 
occ 

where 0 is the volume fraction of occluded rubber, which can be 



calculated using equation (2.62). When the values of 0' were used 

in equation (5.19) in place of 0, the results obtained (fig. 5.9) 

were observed to conform with the Guth-Gold equation (equation 2.60), 

with a slope ((3) of about 14 and an intercept (a) of 2.5. This 

suggests two possibilities: (a) the shape factor f of the Guth 

equation (2.6l) plays an insignificant part in the hydrodynamic 

equation used for predicting the modulus of filled rubbers and 

(b) the occluded volume causes the differences between the experimental 

and those calculated using Guth-Gold/Guth type of equation shown in 

figure 5.8. 

From the preceding discussion, it is clear that, in order to 

describe the modulus of carbon black filled rubbers over that of the 

unfilled rubbers, three factors have to be considered. (a) The 

effects of enhancement of crosslink density due to the presence of 

carbon black, (b) the effective volume fraction of filler/carbon black 

and (c) the hydrodynamic effects of the fillers/carbon black. When 

these factors are taken into consideration, the modulus of filled 

rubber (A) was found to conform to the equation, 

A = A
m
 (1 + 2.5 0

1

 + 14.1 0
1

) (5.21) 

where A
m
 is the modulus of the rubber matrix and 0

1

 is the effective 

volume fraction of filler/carbon black. For rubbers crosslinked 

using the peroxide and EV vulcanizing systems, results showed that 

A is equal to that of unfilled rubber (A ), and for rubbers 
m

 n

 o 

crosslinked using the semi-EV and conventional systems, values of 

A
m
 were essentially linearly related to the volume fraction of 

carbon black. 
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5.3. -Parameter C 

5.3.1. Effects of crosslink density 

1 
The term 77 has been equated to the H -H term, which has 

C
 M

 o 00 ' 

been attributed to the effects of carbon black agglomeration. 

Payne, Whittaker and Smith (86) showed that GQ-G (which in the 

notation used in this thesis is HQ-H ) was dependent on carbon 

black loading but independent of crosslink density of the rubber. 

Their results appeared to be consistent with the results obtained 
1 

for rubber filled with N550 black, where the values of — were 
V i 

fairly independent of crosslink density (where the crosslink densi 

was assumed to be linearly related to concentration of curatives). 

It was observed that the value of C could be related to the 

ratio of the modulus of filled rubber (A) to that of the rubber 

matrix (A
m
). Thus, neglecting any effects of crosslink density, 

the value of C for N550 filled rubbers may be written as 

C = C
q
 X "

1

 (5.22) 

a 
where C is the value of C for unfilled rubber and X = -7- . The 

o A 
m 

values of A were calculated based on the results obtained in m 
q RT 

section 5.2.3 using the relation A = r — , where the crosslink 
c 

density was assumed to be linearly related to the concentration of 

curatives. Except for rubbers filled with high loading of black 

( ^ 4 0 pphr), values of CX for rubbers crosslinked using the sulphu 

and peroxide based vulcanizing systems were observed to be fairly 

constant (table 5.5). Similar results were also observed with 

rubbers filled with N762 black. 

For rubbers filled with N347 black, values of C were not 

independent of crosslink density; — increasing linearly with both 

vj 
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Table 5.5: Effects of crosslink density and black loading on 

parameter C for rubbers filled with N550 black 

Black loading 
(pphr) 

CBS/S 
ratios 
(pphr) 

4 
TI X 10 
mole/cc 

CX 
(MPa"

1

) 
DCP 
(pphr) 

4 
Tl x 10 

moles/cc 

CX 

(MPa"
1

) 

Unfilled 

0.5/0.9 

0.75/1.35 

1.0/1.8 

1.25/2.25 

1.5/2.7 

0.71 

1.06 

1.41 

1.76 

2.12 

5.37 

5.07 

5.06 

5.73 

5.74 

1.0 

2.0 

3.0 

4.0 

0.64 

1.28 

1.93 

2.57 

6.41 

5.35 

7.23 

5.90 

20 it 

0.75 

1.13 

1.50 

1.88 

2.25 

4.02 

4.79 

6.46 

5.20 

5.41 

II 

0.623 

1.25 

1.87 

2.49 

6.88 

6.78 

6.53 

4.77 

40 ti 

0.76 

1.14 

1.52 

1.90 

2.28 

3.45 

3.37 

3.45 

3.38 

4.90 

it 

0.64 

1.29 

1.93 

2.57 

5.87 

4.25 

3.87 

2.84 

60 II 

0.81 

1.22 

1.62 

2.03 

3.59 

2.83 

2.91 

2.36 

it 

0.64 

1.28 

1.92 

2.56 

3.98 

2.29 

1.91 

1.47 

2.43 1.77 
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the concentration of sulphur and dicumyl peroxide (table 5.6). 

Table 5.6: Effects of crosslink density and black loading on 

parameter C for rubbers filled with N347 black 

Black loading 
(pphr) 

CBS/S 
ratios 
(pphr) 

4 
T| X 10 
moles/cc 

CX 

(MPa"
1

) 

DCP 

(pphr) 

4 
11 x 10 
moles/cc 

CX 

(MPa"
1

) 

0.5/0.9 0.75 4.0 1.0 0.62 5.14 

0.75/1.35 1.13 4.10 2.0 1.25 4.87 

20 1.0/1.8 1.50 3.54 3.0 1.87 3.32 

1.25/2.25 1.88 3.57 4.0 2.49 3.25 

1.5/2.7 2.25 3.19 

0.76 1.91 0.64 2.79 

1.14 1.58 1.29 1.77 

40 I I 1.52 1.26 it 1.93 1.44 

1.90 1.22 2.57 1.27 

2.28 0.89 

0.81 1.52 0.64 2.32 

1.22 1.15 1.28 1.39 

60 it 1.62 0.66 I I 1.92 1.23 

2.03 0.69 2.56 0.82 

2.43 0.27 

Thus taking into account both the effects of black loading and 

crosslink density, equation (5.22) may be written as: 

C = C X
- 1

 (5.23) 
o 

i+F(n,0) 
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where F(r|,0) is a parameter which depends on crosslink density and 

volume fraction of carbon black. 

For rubbers crosslinked using the sulphur vulcanizing system, 

the crosslink density can be varied by varying the proportions of 

sulphur and accelerator. But if the square root of the product of 

the concentrations of sulphur and accelerator is kept constant, the 

crosslink density will be approximately the same (96) and consequently 

F(n,0) will be dependent only on 0. For rubbers filled with N347 

black and crosslinked using conventional, semi-EV and EV vulcanizing 
C 

systems, results (table 5.7) showed that the values of — were 

approximately the same at equal loading of black. 

C 

Table 5.7: Values of — for rubbers crosslinked using different 

vulcanizing systems 

c 
o 

CX 

Vulcanizing systems Conventional Semi-EV EV 

CBS/S 

Carbon b l a c k ^ 
(pphr) 

ratios 
(pphr) 

0.6/3.0 1.0/1.8 6.0/0.3 

Unfilled 1.0 1.0 1.0 

5 1.05 0.96 1.01 

10 0.95 0.97 1.28 

20 1.44 1.32 1.32 

40 3.38 3.01 3.31 

60 3.76 4.74 4.96 

As indicated in section one, the three different types of vulcanizing 

systems used give different proportions of mono-, di- and polysulphidic 
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crosslinks, but since crosslink densities were kept constant, then 
C 

the values of given in table 3.7 suggest that F(q,0) is 

independent of the types of crosslink. 

For filled and unfilled rubbers crosslinked using the semi-EV 

and peroxide systems, the crosslink density of the rubber matrix 

calculated from the equilibrium swelling data are given in table 5.3. 

The results are for rubbers crosslinked using a 1.8 pphr sulphur and 

a 3.0 pphr dicumyl peroxide for the sulphur and peroxide vulcanizing 

systems respectively. Assuming that the concentrations of the curative 

are linearly related to the crosslink density, then the crosslink 

density of the rubber vulcanized using different concentrations 

of curatives can be calculated. For several rubbers filled with 

N550 and N347 blacks, the calculated values of crosslink density (q) 
C 

are given in tables 5.5 and 5.6. When the plots of Vs q were 

made (fig. 5.10) for rubbers crosslinked using sulphur and peroxide 

vulcanizing systems, at equal black loadings, the values obtained 

were approximately the same. The values of C were therefore independent 

of the vulcanizing systems and this confirmed the view that the 

agglomeration of carbon black (as reflected by — values) is independent 

of the types of crosslink present but depends on the crosslink density. 

5.3.2. Effects of interparticle distance 

1 

Since — has been associated with agglomeration of carbon black, 

then as suggested by Voet et. al. (82), the interparticle distance is 

an important parameter in determining the value of C. 

Assuming that the carbon black particles are spherical and if the 

particles formed a cubic lattice of distance d between the centre of 

the spheres, then the volume fraction of the particle within the 
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C 
Figure 5.10. Variations of — with crosslink density 

C ( f ) 
m 

for rubbers filled with N347 black 
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lattice will be 

(5.24) 

where D is the diameter of the particle. Rearranging equation 

(5.24) gives 

Knowing D and 0, the mean interparticle separation d may be 

calculated. 

The parameter C can be expressed as a function of d since the 

According to Van der Tempel (105), the attractive forces due to 

Van der Waal's attraction between consecutive particles in a chain 

2 5 

is inversely proportional to d * which is consistent with equation 

(5.26). Hence parameter C can be considered to arise from the Van 

der Waals forces of attraction and this is consistent with the view 

that the nature of agglomeration of carbon black is essentially 

resulting from particle attraction. 

5.3.3. A combined function of crosslink density and interparticle 

distance 

Equation (5.23) expresses the value of C as a function of 

crosslink density and volume fraction of black. Since the volume 

(5.25) 

1 
value of 77 has been found to vary with filler loading. When values 

v 1 

of l n ( — ) were plotted as a function of In ( ), a linear relation 

having a slope of about 2.5 was obtained (fig. 5.11), i.e. 

(5.26) 
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10 

Jo. 

c !

i > 1 

0-1 
0-001 0-01 

(-j-) n m ~
2 

d 

0-1 

Figure 5.11. 
C(f) 

m 

as a function of the reciprocal of 

interparticle distance for rubbers crosslinked 

using the sulphur vulcanizing system 
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fraction of filler is related to interparticle distance, then equation 

(5.23) may be more appropriately expressed as a function of crosslink 

density and interparticle distance, namely 

C 2.5 
= 1 + k.q (±) " (5.27) 

where k is a proportionality constant. For rubbers filled with 

different types of black and crosslinked using the sulphur and the 
C 

peroxide vulcanizing systems, plots of — Vs _ show a reasonable 
la j z • 0 

a 

linear relationship (fig. 5.12) suggesting that equation (5.27) is 

valid. This implies that (a) parameter C depends on the Van der Waals 

forces of attraction between carbon black particles (b) the reciprocal 

of C is linearly related to the crosslink density of the rubber matrix 

and (c) for filled rubber the values of C may be scaled up over that 

of the rubber matrix in a similar way to that for parameter A . 

5.4. Parameter B 

Parameter B was observed to be independent of crosslink density 

but highly dependent on black loadings. The values of B initially 

increase with increasing black loading up to a maximum after which it 

starts to decrease. 

Rubbers filled with different types of black gave maximum values 

of B at different black loadings. For instance, rubbers filled with 

N347 black gave a maximum value of B at lower loading than those 

filled with N550 black, while those filled with N110 black gave a 

maximum value of B at lower loading than both the N550 and the N347 

black filled rubbers. These differences could be due to the 

differences in the properties of carbon black, namely (a) the chemistry 

of the surface groups (b) the structure and (c) the particle size/ 

surface area. 
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The chemical reactivity of carbon black, is, for a large part, 

dependent on the chemical groups on the surfaces, which are 

introduced during the formation of carbon black. The surface groups 

are mainly comprised of oxygen and nitrogen, the proportion of which 

depends on the preparation techniques involved in the production of 

carbon black. For carbon blacks which undergo the same process of 

production, the proportions and types of the surface groups are 

about the same (106). Since the carbon blacks used in this thesis 

were all prepared by the same technique viz. partial combustion of 

hydrocarbon in a furnace, then the proportions and types of surface 

groups present were expected to be about the same. Hence the 

differences observed with the values of B are unlikely to be 

associated with the differences in the surface chemistry (factor a). 

The agglomerate structure of carbon black influences the 

modulus/stiffness of rubbers, details of which were discussed earlier. 

A similar phenomena may also have caused the differences in the 

maximum values of B observed with rubbers filled with different types 

of carbon black. However based on the results for rubbers filled with 

N347 and N550 blacks, which are of about the same structure (as 

measured by DBPA values), but giving the maximum values of B at 

different black loading, then it is unlikely that the effects observed 

were due to differences in the carbon black structure (factor b). 

Differences in particle size of fillers caused a variation in 

the physical properties of rubber (107). The smaller particle (or 

larger surface area) blacks for instance generally give a higher 

tensile modulus than the corresponding larger particle blacks. If 

parameter B is a function of the particle size of filler, then the 

maximum values of B, at a constant black loading, must be consistent 
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with the change in particle diameter. For the three different types 

of carbon black quoted above, their particle diameters are of the 

order, 

N110 < N347 < N550 

Apparently, the maximum values of B for the three different types 

of black were observed to vary in a similar order, and it is therefore 

likely that parameter B is a function of carbon black particle size/ 

surface area. 

When the values of B were plotted against the product of surface 

area of carbon black, S and ("J^) (where 0 = volume fraction of black) 

for all rubbers crosslinked using the sulphur (semi-EV) vulcanizing 

system, results gave a common curve (fig. 5.13), with the maximum 

values of B for all rubbers coincide. Similar results were also 

obtained with rubbers crosslinked using the peroxide system 

(fig. 5.14), and this suggests that parameter B is more appropriately 

expressed as a combined function of surface area and volume fraction 

of black (or more correctly, ). 

The trends for the sulphur (semi-EV) and peroxide cured rubbers 

in the plots of B Vs S(-y^) appear to be similar. Irrespective of 

the vulcanizing systems used, values of B appeared to be highly 

dependent on the total surface area of black. Changing the cross-

linking system from the semi-EV (CBS/S) to the peroxide system 

increased the values of B for filled rubbers by about 507„ without 

appreciably affecting those of the corresponding unfilled rubbers. 

The dependence of parameter B on the surface area of black 

suggest the possibility that the former is associated with the carbon 

black - rubber adhesion or what is commonly known as "bound rubber". 
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Earlier studies (108,109) suggest that bound rubber is proportional 

to the surface area of carbon black, but later, from an NMR 

investigation on the interactions between carbon black and rubber, 

O'Brian et.al. (110) showed that bound rubber is not linearly related 

to the total surface area of black. The bound rubber was reported 

0 

to increase initially with S ( y ^ ) values but subsequently decreases 

after reaching a maximum. 

The finding of O'Brian is consistent with the plots shown in 

figureS5.13 and 5.14. The initial increase in the values of B with 

S ( y ^ ) was due probably to the increase in rubber-carbon black contact. 

At higher loadings of black, the value of B reaches a maximum and 

then decreases. The decrease, could be due to the tendency of the 

black presence in rubber to form agglomerates, because such formation 

reduces the available surface area for the rubber-carbon black 

interactions. 
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SECTION 6: SUMMARY AND CONCLUSIONS 
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SECTION 6. SUMMARY AND CONCLUSIONS 

By assuming that the shear modulus is independent of strain at 

high strains, a semi-empirical relationship consistent with the 

elasticity theory for the first cycle deformation has been obtained. 

The relationship appears to be applicable to various types of filled 

and unfilled rubbers subjected to low to moderate strains. It 

relates a modulus, H in tension/compression or G in simple shear to 

a strain invariant and three material parameters, A , B and C, 

namely, 

H or G = A + 6.1 
B ( l

1
- 3 )

2

+ C 

0" 0" 2 2 2 
where H = r , G = —; , I = A + \ + A- and 0" , A, "Jf 

A-A"
Z

 J 

are the nominal stress, extension ratio and shear strain respectively. 

At equal the modulus H was observed to be identical to G. 

The parameter A is the limiting shear modulus at high strain. 

For unfilled rubber, the parameter A was found to be proportional to 

the crosslink density of the rubber and approximately equal to the 

NkT term of the statistical theory of elasticity, suggesting that it 

arises from the change in the entropy of the network chains during 

deformation. 

The incorporation of carbon black gives a non-linear increase in 

A with increasing volume fraction of carbon black. The stiffening 

effect of carbon black is usually explained by the use of the Guth-Gold 

type of equation, giving the modulus as a function of shape factor, 

occluded volume and hydrodynamic effects of filler. However with 

rubbers crosslinked using different vulcanizing systems, the Guth-Gold 

equation was found to be inadequate for predicting the values of A 
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for filled rubbers. The discrepancy was attributed to the differences 

in the crosslinking efficiency of the vulcanizing systems used due 

to the presence of carbon black. To take into account the change in 

crosslink density, it is proposed that the Guth-Gold equation be 

modified to, 

A = A (1 + 2.5 0
1

 + 14.1 0') (6.2) 

where A , A are the moduli of filled and that of the rubber matrix 
' m 

respectively and 0
1

 is the effective volume fraction of carbon black, 

being taken as the sum of the volume fraction of carbon black (0) and 

half that of the occluded rubber (0 ). 

occ' 

Assuming that carbon black has no effect on the crosslinking 

efficiency of the peroxide system, it could be shown that the increase 

in crosslink density of the corresponding rubbers crosslinked using 

the semi-EV and conventional N-cyclohexyl benzothiazole-2-sulphenamide 

accelerated sulphur vulcanizing systems was linearly related to the 

volume fraction of carbon black. With a 60 pphr N347 black, the 

increase in crosslink density of rubber crosslinked with the sulphur 

vulcanizing systems was about 157. higher than the corresponding rubber 

crosslinked using the peroxide vulcanizing system. 

The reciprocal of C is the maximum change in modulus with strain 
1 

or G -G . The values of — were observed to be linearly related to 
o CD C

 J 

the crosslink density but independent of the types of crosslink present. 

2*5 
It was also observed to be related to the reciprocal of d , where d 

1 

is the interparticle distance and this suggests that the nature of y 

or the agglomeration of carbon black as essentially resulting from 

particle separation. 

The value of B is negligible at the limiting low and high strains 
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and it determines the change in modulus with strain between these 

two limits. It was found to be independent of crosslink density 

of the rubber matrix, but highly dependent on the total surface 

area of carbon black. When the values of B were plotted against 

the product of surface area of carbon black and (y^j) > it initially 

increased to a maximum and then decreased to a constant value. 

The exact significance of B is still obscure but it may be 

associated with the rubber-filler interactions. 

In the study of the stiffening effects of filler, the 

challenging problem is the development of a more quantitative 

molecular understanding of the effects of filler in rubber,, The 

proposed relationship enables the stress contributions from the 

rubber matrix and carbon black be separated, analysed and quantified. 

A similar analysis was not possible with other established equations 

and this may constitute an important step in the development of a 

molecular understanding of the stiffening effects of fillers. 

The proposed relationship also enables the prediction of the 

stress-strain behaviour of rubbers in different modes of deformation 

to be made from the values of A , B and C obtained from a simple mode 

of deformation. This will enable the testing of rubbers to be 

simplified and rationalized. 
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APPENDIX 

Assumptions used for the statistical 

Theory of Elasticity 

The actual network is replaced by an ideal network in 

which each segment of a molecule between successive 

points of cross-linkage is considered to be a freely 

jointed Gaussian chain and the N chains of network per 

unit volume has the same contour length. 

In either strained or unstrained states, each junction 

points of the chain may be regarded as fixed at its mean 

position. 

There is no change of volume on deformation. 

The effect of deformation is to change the component of 

the vector of each chain in the same ratio as the 

corresponding dimension of the bulk materials. 

The entropy of the network is the sum of the entropies 

of the individual chains. 

The mean square end to end distance for the whole 

assembly of chains in the unstrained state is the same 

as for the corresponding sets of free chains. 
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Assumption (a) was made to avoid mathematical complexity. 

In actual materials though, the energetic effects of interaction 

between segments of the same molecules should be taken into account. 

The general form of long chain molecules is independent of 

the precise geometry of the chain provided that the number of bonds, 

n , about which relatively free rotation can occur is sufficiently 

large. The geometry of the chain affect the mean square end to end 

2 

distance <r >, and provided that the distance between the ends of 

the chain is not comparable with the fully extended length, nl of 

the chain (i.e. r « n l ) , assumption (a) is valid. 

The junction points of the chain are not fixed in space since 

the molecules themselves are in continuous motion. If the motion 

of those junction points is taken into consideration, the theory 

will be more complicated since mobile parts of the chain give 

entropy contribution. As a result, assumption (b) was made. 

In reality, only those junction points which are located on the 

boundary surfaces of the rubber may be regarded as fixed (13), all 

other junction points are fluctuating. The fluctuating junction 

points are very much larger in number than the fixed junction points 

and the assumption that junction points are fixed at its mean position 

is not justified. Even though the junction points are fluctuating, 

the overall results may not be signficantly different from that 

which assume that the junction points are fixed since the entropy of 

the ends of a crosslink (two junction points) have two entropic 

components, the resultant contribution of which may cancel out. 

The assumption that no change in volume occurs on deformation 

(assumption c) implies that the material is incompressible and the 

bulk modulus is many fold greater than its shear modulus. 
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Measurements suggest that the volume changes on deformation is 

very small (of the order of 10
 4

) , with a Poissonsratio of about 

0.4999 (78, 111, 112). However, for rubber containing filler 

particles which form vacuoles when the specimen is stretched, 

dilation is no longer negligible (113). 

Assumption (d) is the affine deformation assumption. It is 

the key assumption in the theory since it relates the deformation 

of the individual chains to the macroscopic strain in the material. 

It is justifiable if the fluctuations of the position of junction 

points (arising from thermal agitation of the associated chains) 

are neglected and r is much smaller than nl. 

The assumption (e) arises from the assumption that the chain is 

Gaussian and all configurations possess the same energy. 
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