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N. NOURSHARGH

ABSTRACT

Existing integrated-optical switches and couplers have inherent
problems associated with propagation loss and efficiency of coupling
to circular fibres. This thesis describes an alternative structure
which may overcome these problems.

The device considered uses low loss glass fibre cores as the guiding
channels and operates on directional coupler principles,

The structurs consistis of a pair of very fine parallel glass rods
embedded into an electro-optic crystal which thus acis as an

active cladding. Meta-nitroaniline was selected as the crystalline
cladding because it has high electro-optic coefficients, low melting
point and is relatively easy to grow in single crystal fomm.

The implications of having an active cladding were numerically
investigated using the theory of a static fibre coupler. The extent
to which fibre parameters affected the performance of the switch
were determined; it was found, for example, that opiimum performance
would not be achieved if the cores were in contact.

In order to ensure that the device would be single-moded, it was
essential to maintain a very small difference between the indices of
the glass rods and of the crystal. This presented a serious problem
as the glass rods underwent a significant index change, of perhaps
1% during the drawing process. The extent of this index variation
and its possible causes were invesiigated.

The principle of operation of the switch was demonstrated by building
a very much simpler version in which an index-matching 0il was used
as the cladding and its refractive index was varied by heating.

With this structure nearly 100% switching was achieved between the
two fibres. The experiment provided data which supported the

earlier theoretical work.
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CHAPTER 1 : OPTICAL FIBRE COMMUNICATIONS

1.1 Intrcduction

The demand for more extensive communication has been rapidly
increasing since the advent of the telephone a century ago. This has
resulted in a continual search for larger bandwidths, traditionally
achieved by extending carrier frequencies ever upward. This trend,
however, reaches something of an impasse in the vicinity of

mierowave frequencies. The problem is of a very fundamental nature,
Classical electronic methods of signal detection tend to rely on
assumptions about negligible electron transit times and also low
capacitances of Jjunctions etc. As frequencies rise above, say, GHz,
these assumptions become progressively less valid, leading to rather
acute practical problems. The paradox is that while these frequencies
are 'high' by conventional standards, the quantum energy, hy, is still
extremely small when compared with, say, chemical bond energies or
even kT at room temperature. Thus we find that the higher microwave
frequencies are becoming embarrassingly high for conventional
techniques but are still toc small to allow the use of quantum

detectors.

In these circumstances a break from the conventional step by step
progression through the frequency scale seems inevitable; a leap
in carrier frequency across the sub-millimetre and far infra-red
bands to the near infra-red and visible, where quantum energies are

ordexrs of magnitude higher, offers enormous advantages.

Research in lightwave communication began in earnest after the advent
of the laser in 1960 (1). After some early wildly optimistic
estimates of useful bandwidth, a more sober assessment of potential
developed. The outstanding problem was clearly associated with the
transmission medium. Free space propagation of optical signals was
not a very practical solution since it would be limited to line of
sight operation and severely handicapped by atmospheric changes.
Following a proposal in 1966 by Kao and Hockham (2) that low loss glass
fibres could be used as the transmission medium, research programs on
glass fibres were launched by several organisations. These have now
led to the development of optical fibres with losses reduced from the
initial value of over 1000 dB/km to 0.2 dB/km (3). Low attenuation is
not, however, the only significant property of a fibre lightguide.



The dispersive characteristics of the fibre, which influence pulse
broadening and hence capacity, are also of great importance. In the
next section we examine, in brief, the various types of optical fibre

and outline their main characteristics.

1.2 QOptical Fibre Waveguides

In its simplest form an optical fibre consists of a cylindrical glass
core surrounded by a cladding of a somewhat lower refractive index,
Fig (1.1). When the core radius is very much larger than a wavelength
we can think of light waves in the fibre as rays that propagate by
undergoing a series of total internal reflections at the core-cladding
interface (4), Fig (1.2). The complete analysis of wave propagation
in fibres is achieved by solving Maxwell's eguations for propagation
in the core and cladding regions with appropriate boundary conditions
imposed on these solutions (5, 6). The results show that the fibre is
generally capable of supporting many modes of propagation. Following
the tradition of microwave engineering, the principal characteristics
of a fibre can be schematically represented on an w-g diagram (7),

Fig (1.3). Each mode is represented by a line whose slope, dw/dR,

at any point gives the group velocity of the mode, The two dotted
lines represent the propagation of plane waves through bulk materials
with indices ny and n,, The diagram also shows that single-mode
operation of the fibre is possible. In order to achieve this,
however, we need very small values of the core radius - typically

only a few microns,

It can be seen from the w-R diagram that at any frequency different
modes generally have different group velocities. When a pulse of
light is launched into such a nultimode fibre all the modes will be
excited, each carrying some of the energy of the pulse. Since these
modes do not have the same group veloclty they arrive at the far end
of the fibre at different times. This broadens the pulse thus reducing
the maximum repetition rate of the pulses and hence the bandwidth.

For a 10 km repeater spacing, for example, the marimum bandwidth of a
step-index multimode fibre, with a GaAs laser source, is only about
20M bits/sec (8). For the same conditions a single-mode fibre has a
bandwidth of about 5G bits/sec (8). Single mode fibres, however, have

other problems associated with them. Launching light into single-mode



fibres and also butt-jointing two such fibres pose rather serious
problems of alignment since the core radius is only a few microns.
These difficulties have retarded the introduction of single-mode

fibres into telecommunications.

In order to overcome the pulse spreading problem associated with
step-index multimode fibres, the graded index fibre was developed (6).
" The index profile of this fibre is very nearly parabolic with a
maximum at the core centre, Fig (1.4), This results in the
approximate equalisation of the group velocities of all the modes.

By sophisticated design of the index profile one can theoretically
have bandwidths of up to 1.4G bits/sec for a 10 km repeater spacing.
In practice bandwidths of about 100M bits/sec have already been
achieved for the same repeater spacing. Graded index fibres,
therefore, combine relatively large bandwidths with ease of launching
and jointing. TFor these reasons the majority of the existing fibre

links for communication purposes use graded index fibres.

1.3 Wave Propagation in Optical Fibres

The optical field equations within the fibre are required in later
chapters for analysing the operation of the coupler. A derivation
of these equations is given in this section. We begin with the wave
equation, in cylindrical polar coordinates, for a homogeneous

medium (6), Fig (1.5),

2. 193 ,03A 1 328 321 32A
VR = Tar ) v2 g2t g, THoteosp2 (1.2)

where, A can be either the electric or the magnetic field. We now

postulate a solution of the following general form

A= Fl(r)Fé(¢)Fé(z)F4(t) (1.2)

Since we expect the field to be a travelling wave 1n the positive 2

direction we try solutions for the z and t dependence of the form
Py ()R () = exp 1 (wi-B2) (1.3)

where, B is the propagation constant in the z direction. ¥Furthermore
since we want the fields to be periodic in ¢ with the period 2n

we try for

Fo(¢) = exp (ivp) (1.4)



where, v can be a positive or a negative integer.
Substituting (1.2), (1.3) and (1.4) in (1.1) gives
2

adF , 1 dF 2 2 _
—_—t= =+ - Fp =0 1.
= T w W oh (1.5)
where, K% = w2€eoppo-82 = n2k02_82
and ko = 27 is the free space wave vector.
Ao

Since Kz might be negative we introduce the symbol vy, which is
related to ¢ as follows:
K =1y

Equation (1.5) can, therefore, take one of the following forms

2 .
arn 4, 1 an (KZ-%-)F]_:O (1.6)
dre T ér r

or
2 2
8L+ 28 L (P m =0 (1.7)
dr r dr ;Z

Equations (1.6) and (1.7) are both Bessel equations and the general
solutions to them consist of pairs of cylinder functicns. For
guided modes the solutions inside the core must remain finite at

r = 0, while the solutions in the cladding must decay for r » « .
With these points in mind we choose the Bessel function JU(Kr) for
the core solution and the Hankel function Hj(iyr) to represent the
field in the cladding (5). We have, therefore, inside the core,

ie for r<a

By = AJv(Kr) exp (ivo) expi (wt-Bz) (1.8)
and

Hy = BJ,(kr) exp (ivp) expi (wt-Bz) (1.9)
where, K2 = nlzkoz-B2 (1.10)

And for the cladding, ie r>a

E, = Cﬁg(iyr) exp (ivd) expi (wt-Rz) (1.11)
and "
H, = DH\,’(iyr) exp (ivd) expi (wt-Bz) (1.12)

where, y° = 8%-n,%k,” (1.13)
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The remaining field components are readily derived from the 2
components (5). For r<a and omitting the two exponential terms (1.3)

and (1.4) which are common to all the field equations we obtain

E. ="i2[BKAJG(KP) + dwpg f BJ,,(kr)] (1.14)
i v
B =-;2[1B; AJy(kr) - kuwioBd! (kr) ] (1.15)
H, = 2[ lw€1 AJ, (Kr) + kBBJ', (kr)] (1.16)
B, =.-§2[zwe1Ava(Kp) + 182 BJ (k) (1.17)
And for r > a
Bp = -2 [BYCH (1YP) + wuo DH (ivr)] (1.18)
Y
1
E@ ; [B‘ CH, (lYP) - YwuoDHv(lyr)] (1.19)
Hy --%2[-w52§ CHﬁ(in) + YBDH@(in)] (1.20)
Hy = i [ywe,CH, iye) » B DH\(iyr)] (1.21)

In equations (1.14) to (1.21) the prime indicates differentiation with
respect to the argument, ie xr for the Bessel functions and iyr for
the Hankel funetions. The constants A, B, €, D and the value of R

are determined by taking into account the boundary conditions.

These require that the tangential field components are continuous at

r =a, ie Eb, J H¢ and H, must have the same value on the inside and
outside the fibre core at r = a. Implementing these requirements with
the help of equations (1.8), (1.9), (1.11), (1.12), (1.15), (1.17),
(1.19) and (1.21) resuits in the following system of equations

Ad,{ka) —Cﬁ”(iya) =0 (1.22)
v v
.) l’

B2 psytka) + EQEQ BJ'(ka) + Ez 2 cHyiva)- 2opg) (iva)=0 (1.23)

K-a Y- a Y
BJy,(ka) -DHﬁ(iya):o (1.24)
At gtka) + §2 =BJ,, (ca) + =2 Cﬁ”(le)+ ¥ Di{(1va)=0 (1.25)

K< a Y e

Equations (1.22) and (1.24) can be used to connect the coefficients
A, Cand B, D



_ Jdylka)
C = Hiya) A (1.26)

and

= dulya) o (1.27)

Hy(ivya)
Similarly A and B can be connected using (1.25), (1.26) and (1.27)

p .1 acy[e;yd'y, (ka)Bu(iva) + i€2KJv(Ka)H$kiYa)] (1.28)

<

w(€1-€2)uoBJv(Ka)H$(iYa)

The relation

2 2 _ .2 2 2

was used to simplify this expression.

In order to obtain a non-trivial solution to the system of
equations (1.22) to {1.25) we must set the determinant of the

coefficients egual to zero.

Jylka) 0 -H%kiya) 0

¥ B ogyka) 18 gy (ka) ¥ Ho(iva) - %9 Hy(iYa)
a a

B
-

K
L(}] = 0
0 Jvu(ka} 0 -Hu(iya)
(1.29)
. (]
- 1 ¥Elgvy(xa) X §2Jv(Ka) 22 Hv( a) vE Hv(iya)
K ak Y a Y2
Evaluation of the determinant results in the eigenvalue
equation
€1 aY2 J'vu(ka) Hglea) aY2 J'v(Ka) Hv(lYa)
-t ar J'vika) _ . i 1.30
(€2 « Jv (ka) © iva Hb(lYa)) ( k Jvlka) Tra Hv(lYa)) (2.30)
£ Bko 2
= vt -1 =
€2 K

The propagation constant, B, is determined by a numerical solution
of this equation which requires the core radius, a, and the
dielectric constants, & and Y of the core and the cladding as
inputs. The dielectric constants are related to be refractive

indices, ng and P of the core and the cladding by the following

equations



In general a fibre can support many modes of propagation,
corresponding to different values of v in (1.30). An important
parameter for each mode is its cut-off frequency. A mode is called
cut-off when its field no longer decays on the outside of the core.
The rate of decay of the field with increasing r is determined by the
value of the constant Y. The funection Hg(iyr) decays like an
exponential function for large values of its argument. The

asymptotic approximation for large argument is (9)
(1)
H(iyr) = V2/TiYr exp-i(TV/2 + /%) exp (-yr) (1.31)

for yr >> 1

For large values of y the field is tightly concentrated inside and
close to the core. With decreasing values of Y, the field reaches
further out into the space outside the core. Finally for Y = 0,

the field detaches itself from the guide. The frequency at which this
happens is called the cut-off frequency. The cut-off condition is
thus

Y = /B2 - n2k2 = 0 ie: B = nk (1.32)

2

This is the propagation constant of a plane wave travelling in a
material of refractive index N, . It confirms that the fields are no

longer bound to the core.

From equations (1.10) and (1.13)

2 2 2 2 2
+ ¥y = K, (nl - n, } (1.33)
At cut-off v = 0 and ¢ = Kg» ie
Ke = Kgv'ny© - n,
or
2ta r—mp—73
aKc = V = T nl2 - n22 (1‘34)

where, a is the core radius.

12
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V is called the normalised freguency of the fibre and is clearly
related to the cut-off condition. For V < 2.405 the fibre can
support only the HE,, mode, ie we have a single-mode fibre (5, 6).
As V increases beyond 2.405 the fibre becomes progressively more
multimode. For large values of V the number, N, of the

propagating modes in the fibre is given by (6)
2 .
= & (1.35)

1.4 OQperating Wavelength And Modulation

The majority of the first generation of optical fibre 1links use GaAs
based sources and operate at a wavelength near 0.83 um. There is,
however, a growing interest in sources and detectors for operation
in the wavelength range 1.3 - 1.6 ym. Near 1.3 um material
dispersion can be made vanishingly small (10), thus reducing pulse
broadening and increasing the bandwidth-repeater spacing product of
the fibre. On the other hand, the lowest fibre losses occur at

A= 1.55 um (3). Operating at A = 1.3 or 1.55 pym will, therefore,
allow larger bandwidths and/or longer distances between repeaters
to be used. In order to benefit from these advantages, the second
generation of optical fibre 1links are already belng developed for

operation at A =~ 1.3 - 1.6 ym.

The majority of optical communicatlion systems developed for use in
telecommunications carry their information in a two-level binary

form (6). This digital modulation is achieved in most cases by
modulating the source directly. There is, however, a strong case to
be made for using external modulators in some systems. The most
important of these are perhaps coherent optical communication systems
which are currently receiving considerable attention (11). The main
attraction of using a heterodyne type receiving technique is the
significant improvement that can be obtained in the eguivalent
receiver sensitivity. This can be over 20 dB for ) = 1.55 yn and

is particularly important since for this wavelength silica fibre losses
are at their lowest (~0.2 dB/km) and good detectors for direct
detection are not available (3, 11). A 20 dB improvement in detector

sensitivity will allow the repeater spacing to be increased by

100 km when the fibre loss is 0.2 dB/km.
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In a heterodyne system one beats a local oscillator (eg a second laser)
with the incoming signal to obtain an intermediate frequency, IF,
typically 0.2 - 2 GHz, which contains the information. Since the IF
frequency is about 105 - 106 times smaller than the carrier

frequency (typically 200 THz) a very high degree of frequency
stability is required. Extensive research aimed at developing highly
wavelength selective semiconductor lasers has been in progress for
-many years. This has led to significant advances in the development
of distributed feedback lasers (31) and injection locking techniques
for semiconductor lasers (32). Nevertheless the realisation of a
practical device with a sufficiently high degree of frequency
stability is still many years away. Currently available semiconducior
lasers can, however, be made Lo operate with a highly stable
wavelength and narrow linewidth. This requires the drive current and/
or the temperature of the laser to be accurately controclled using
feedback loops (11). The laser must, therefore, be run cw and external

modulation will have to be used.

External modulators are also needed for applications where very fast
modulation speeds, eg >10 GHz, are required. The maximum practical
analogue modulation frequency of currently available laser diodes is
about 5 GHz (12). This frequency is limited by a combination of
laser-relaxation resonance, laser parasitics and drive current
necessary for long-life operation (12). On the other hand, external
modulators have already been demonstrated with modulation speeds
extending to 18 GHz (29), and are theoretically capable of frequencies
in excess of 60 GHz (30). Such extremely high frequencies, while
unlikely to be necessary in telecommunications,would be of great value

in microwave and radar applications.
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FIG[1.5] Cylindrical polar coordinates
for an optical fibre.
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CHAPTER 2 : EXTERNAL MODULATORS

2.1 Introduction

In order to convey information on an optical wave it is necessary

to modulate some property of the wave in accordance with the
information signal (8). Analogue or digital techniques could be used
to modulate the wave intensity, phase, frequency, polarisation or
direction. The choices are dictated by the characteristics of the
transmission medium, the availability of sources and detectors, and by
systems considerations. Probably the main attraction of analogue
modulation is its simplicity. But the large signal to noise ratios
required 1limit its use to relatively narrow bandwidth, short distance
applications {15). Digital modulation provides noise immunity at the
expense of large bandwidth. It is, therefore, ideally suited to fibre

transmission where the available bandwidths are large.

The majority of the existing fibre 1inks developed for tele-

communications use digital intensity modulation and direct detection.
Since the present systems have been geared to this mode of operation
any external modulator intended for use in a fibre telecommunication
link must be capable of producing digital intensity modulation of the

light wave.

The optical wave property that lends itself most readily to external
modulation by a number of physical effects is the phase, Once phase
modulation is realised, intensity, polarisation or direction
variations can be achieved with passive components. The most commonly
used physical effects in external modulators are the electro-optic,
magneto-optic and acousto-optic effects whereby the refractive index

n of a transparent medium is changed by An in proportion to an applied
electric field, magnetisation or strain respectively. Each of these
effects serves to change the phase of the optical carrier passing
through a length L of the material by 2mAnL/A where ) is the optical
wavelength. Intensity modulation is obtained by interfering a phase
modulated wave with an ummodulated wave or by combining two waves

modulated in phase opposition.

External modulators can be divided into two broad categories; bulk and
waveguide modulators. Bulk modulators have simple structures but

since their dimensions are limited by diffraction effects, their



modulating power efficiencies can be poor. Furthermore, very

little attention has been paid, so far, to the problem of efficient
coupling of modulators to sources and fibres. On the other hand,
waveguide devices have the potential advantages of ease of
fabrication using photolithographic technigues and compatibility with
single=mode fibres. In addition, because diffraction effects do not
limit the modulator dimensions, their modulating power efficiencies
can be orders of magnitude better than bulk devices. This ability to
operate with a low drive power becomes particularly important at high
modulation speeds (eg > a few GHz) where large amounts of rf power

are not readily available.

One type of wavegulde modulator that has received considerable
attention in recent years is the optical directional coupler.
Before we discuss the operation of this device a brief review of the

underlying theory of two coupled waveguides is given.

2.2 Coupling Between Two Parallel Waveguides

The fields of a dielectric waveguide are not fully contained inside
the core, but they reach out into the outside region where they decay
exponentially. If two such waveguides are placed close enough to one
another to ensure some overlap of these evanescent fields, coupling
will take place between them. The wave amplitudes aj and ap, in
guides 1 and 2 respectively, are related to one ancther through the

following simultaneous equations (5):

8ay (2.1)
3z ° _iBlal + icla2
dan (2.2)
52 -iBya, + 10,3y
where, B1 = propagation constant in guide 1
B> = propagation constant in guide 2
¢7 = coupling coefficient of guide 2 to guide 1
¢z = coupling coefficient of guide 1 to guide 2

The derivation of (2.1) and (2.2) will be given in the next chapter,
but the equations have such a clear intuitive meaning that it is
possible to write them down without derivation. Note, for example,
that in the absence of coupling, ie ¢ = cp = 0, the aguations are

reduced to:
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day ] (2.3)
32 T3
332 (Z.LI')
L 3z T iR,
Giving,
_ -ipgjz 2.
a, = A e (2.5)
and
- -1Boz 2.6
a, = A2 e ( )

where A] and A, are the constant field amplitudes in the two guides.
Equations (2.5) and (2.6) represent the spatial variation of the
fields in the two guides along the fibre lengths. The terms cjao
and cpal in equations (2.1) and (2.2) represent the effect of each
guide on the other, If the wavegulde materials are not lossy ¢ and
C, will both be real and furthermore they must be equal for

conservation of power between the two guides (5).

When there is coupling between the guides we must allow A and Ap
tc become functions of z. With this in mind we can use equations
(2.5) and (2.6) to write equations (2.1) and (2.2) in a different
form:

344
P icihp expi(By - By)z (2.7)

). ) (2.8)
55 icphy exp-i(B1 - Bplz

where, A and Ay are now functions of z.

1]

It is easy to see that substantial amounts of power can be transferred
only if By =B». Let us assume that A2 = 0 at 2z = 0. We then obtain
from (2.8) and after an interaction length L
L

A, (L) = ic, g B, (z) exp-i(B; - B,) dz (2.9)
If B4 = 8, # 0, the function Aj(z) is multiplied by exp-i(B1-f2)z
which is a rapidly oscillating function and prevents any appreciable
build up of the integral (2.9). However, if Bl - 82 = 0, the integral
grows proportional to L (at least initially when Al(z) has not yet
changed very much). This consideration shows that A>(z) can obtain
appreciable values only if the propagation constants of the two guides

are the same.
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If the two guides are identical and loss-less, ie §3 = Bo and
¢] = ¢ = ¢ and if initially only guide 1 is excited -ie 42(0) = 0 -
equations (2.7) and (2.8) have the following solutions:

A (z) = A,(0) cos (cz) (2.10)
Ay(z) = 1A,(0) sin (cz) (2.11)

Since the power, P, in each guide is proportional to |A[2 we get
from (2.10) and (2.11)

P, (=)

P,(0) cos® (cz) (2.12)

P,(z) = P1(0) sin® (cz) (2.13)

where, P,(z) = power in guide 1
P,(z) = power in guide 2

Equations (2.12) and (2.13) show clearly that energy is

contimiously exchanged between the two waveguides.

Any light launched into guide 1 at z = 0 will be completely transferred
to guide 2 over a length z given by z = 7/2¢c. The length over which
a complete cycle of energy transfer takes place is called the

beatlength, A., and is clearly given by

B!

Ay = f (2.14)

We have, therefore, shown that if two coupled waveguides have
significantly different propagation constants, no appreciable exchange
of energy can take place between them, If the two waveguides are
synchronous, there will be a periodic exchange of power between

them with a periodicity Ay given by equation (2.14).

2.3 BHlectro-Optical Directional Couplers

These will probably be the fundamental building blocks of the
future electro-optical signal processing devices. They can be used
either for modulating the light or switching it from one channel to
another, Fig (2.la) schematically shows the construction of

a simple version of an electro-optical directional coupler.



The device consists of a z-cut lithium niobate substrate into which
titanium channels are diffused to form the waveguides (16). An
electric field can be applied to the device via the electrodes which

are deposited on top of the waveguides.

In the absence of an applied electric field, the propagation constants
of the two waveguides are equal and the power coupled from the input
waveguide to the adjacent channel varies sinusoidally with the length
of the coupler. The device is constructed such that the coupler
length is an odd multiple of half beatlengths. This means that any

power launched into one guide emerges from the adjacent guide.

In order to switch the power back to the first guide, an electric
potential difference is applied to the electrodes. This will have
opposite effects on the two guides, Fig (2.1b); increasing the index
of one and reducing that of the other. As a result the two guides
will no longer be synchronous, ie By # Bo. We showed in section 2.2
that no appreciable coupling can take place if the propagation
constants of the iwo guides are not the same. The energy that was
initially coupled to the second guide, therefore, couples back to
the first guide. Removing the electric field allows the energy to

couple to the second guide yet again.

The chief difficulty with the directicnal-coupler switch is that its
dimensions must be carefully controlled in order that complete
coupling from guide 1 to guide 2 takes place with no applied electric
field; otherwise 100% switching cannot be realised., This difficulty
has been overcome in the so-called AB-switch by splitting the
electrode pattern in two as in Fig (2.2) in order to introduce an
additional degree of freedom. Anzlysis of this structure shows that
complete switching is possible without the critical dimentional

requirements (16).

These planar electro-optic couplers have several weak points; they are,
for example, polarisation sensitive because of the anisotropy of
LiNbO3 and the fact that TE and ™ modes have different coupling
coefficients. This could cause problems if the modulator was used
with a single-mode optical fibre, because light coupled from the

fibre is likely to have an unknown elliptical polarisation (14) or
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indeed no polarisation,and both TE and TM modes will be excited in

the directional-coupler. Device performance, therefore, depends on
identical processing of both polarisation states. In general the
planar electro-optic directional-couplers do not possess polarisation-

insensitive characteristics.

The other problems associated with these couplers include high
propagation loss ~ compared to optical fibres - through the crystalline
material of the waveguide and inefficient jointing to circular optiecal

fibres due to mismatch of field patterns in the two structures.

We propose an alternative structure for an electro-optic coupler that
will reduce, to a large extent, all the above-mentioned problems.

Our device consists of two thin parallel glass rods embedded in an
electro-optic crystal with electrodes deposited on the two sides of
the crystal, Fig (2.3).

Before analysing the operation of the device let us consider the

advantages it has over the couplers with planar geometry.

Since the guiding channels are glass, the propagation loss through
this coupler can be made negligibly small., Simple and efficient
Jjointing to optical fibres can be achieved since the structures and
therefore the field patterns can be made very similar. Furthermore,
it will be shown in the next chapter that the polarisation
sensitivity of this coupler is very small indeed. This device does,
however, have several problems mainly associated with fabrication.

These will be discussed in later chapters.

The principle of operation of the new coupler is somewhat different
from the previously mentioned couplers. Here, since the applied field
affects the two guides in exactly the same way, they always stay in
synchronism, ie B = Bp. Applying the field, however, changes the
coupling coefficient, ¢, and hence the beatlength, equation (2.14).
One can, therefore, have the situation where & device that is N
beatlengths long initially will become, in effect, N + 4 beatlengths
long when the correct voltage is applied to it, Fig (2.4). A half
beatlength change in the effective length of the device would result



in a complete switch over of light from one fibre to the other.
Removing the electric field switches the light back to the first
guide.

Clearly the performance of the device depends very strongly on the
magnitude of the change in the beatlength that can be achieved by
applying a given voltage to the crystal.

A detailed analysis of the performance of the device as a function
of the various parameters of the fibre and the crystal is given

in Chapter 3.
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CHAPTER 3 : PERFORMANCE OF THE COUPLER SWITCH: A THEORETICAL INVESTIGATION

3.1 Introduction

In order to investigate the performance of the coupler, it is
necessary to determine the coupling coefficients as a function of the
normalised frequency of the fibres. PFurthermore, it is necessary to

establish the dependence of the coupling coefficients on the centre to

- centre separation of the fibres. We shall start by deriving the

coupled wave equations (2.1) and (2.2). These will be used to
determine the coupling between the HE;j; modes of two round fibres.

The results will then be used to predict the change in the refractive
index of the cladding that is necessary for 100% switching. It will
be shown that for the fibre-crystal combination that we have selected,
the required index change is in the range 1073 - 10"4. For a more
realistic value of, say 1075, only a few percent of the total power
can be switched between the guides, It will also be shown that the

coupler is virtually polarisation insensitive.

3.2 (Coupled Wave Eguations

The coupled wave equations (2.1) and (2.2) are quite general and apply
to any two coupled waveguldes. In this section we shall give an
approximate derivation of these equations for the case of two arbitrary
dielectric waveguides (5). Each waveguide consists of a dielectric
medium with a2 maximum of the refractive index in the region of the
waveguide and a constant value outside this region., The distributions
of the square of the refractive indices of the two guides are shown

in Fig (3.1) under the assumption that each exists by itself. If the
waveguides are placed side by side, the square of the refractive index

of the medium in which both guides are present can be expressed as

n2 = (n12 = n32) + (n22 = n32) + n32 (3.1)

where nj% and ny2 are the index distributions shown in Fig (3.1a)
and Fig (3.1b) respectively. Equation (3.1) gives the correct index
distribution everywhere provided that the two waveguides do not
overlap. We shall represent the fields of each guide in the absence
of the other by subscripts 1 and 2 attached to the field quantities.

We, therefore, have for each guide

By = 8 expi (wt - Byz) (3.2)



and

H, = By expi (wb - B\2) (3.3)

where, Vv = 1, 2. These fields satisfy Maxwell's equations in the

following form

Yt X By-1iBy(Z x Hy)-iwe ny2E, = 0 (3.4)

Tt ¥ By-1Byl2 x Ey)+itigHy = 0 (3.5)

where, v = 1, 2

Z unit vector in z direction

V¢ = transverse part of the § operator

~

When the waveguides are placed near each other we can approximately
express the total field as a superposition of the unperturbed fields
of the two guides. However, sinece we anticipate the two guides will
influence each other we must allow for the possibility that the field
amplitudes might vary with distance. The total field can, therefore,

be expressed as

E = A)(2)B + Ay(2)E ” (3.6)

E..-
H = 4(z)1 +‘A2(Z)§2 (3.7)

These field expressions are, of course, not exact since we have
assumed that the fields of each guide are not affected by the presence
of the other. Additional small terms are required to express the
fields exactly (5). The total electric field E and magnetic field H

satisfy Maxwell's equations
x § = iwe on°F (3.8)

¥ x B = ~iwy,H (3.9)
where n? is given by equation (3.1). Substituting (3.6) and (3.7)
into (3.8) and (3.9) leads to

12

M (Te x By - 1B1(BxB1)] + £21GE x By)-twen?aiEy 5109
3.10
+A5[Yt x Ho =~ iBg(%xﬁg)]4—%§2(% x Hp)-iwe nlAsEs = 0
and
A [¥y x Ep - iBl(g x E1}] + %%1(% x B1) + iwngAiHy

. 30 A (3.11)
+A2lPt x B2 - 1Ba(z x Ep)] + 222(z x Bp) + iwighoHp = 0
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With the help of equations (3.1), (3.4) and (3.5) we can simplify

these equations so that they assume the form

43 4 : 3AD 2
35 (2 x B - tweo(ng? - n3P)apy + 322 x Be) (3.22)
12
- iwso(nlz - HSZ)AEAEZ =0
and
5A7 A dAp (A -

The next step in the derivation of the coupled wave equations is to
take the scalar product of (3.12) with E;* and a similar product of
(3.13) with H1* and subtract the two eguations. The resulting

equation is then integrated over the infinite cross-section.
+co A A A
;TR (2 x Br) - Hi*e (2 x By

*%2[51*-(3 x B) - H1*. (2 x B)] (3.14)

. 2 .
- e (np° - n32)ME*E] - dweo(m? -n3°) A5 Epldxdy = O

This equation can be simplified by neglecting small terms., The
expression n22 - n32 vanishes outside the region of the second guide.
In the region where this term makes its contribution, the field of
the first guide is already quite weak. Since it is the square of

E1 - ie E1.Fq* - that is multiplied with npe - n32, the entire term
is small of second order and can be neglected. The product

5:*.(2 x H)) is a zero order term as far as its magnitude is concerned.
2 _p2
3

is non-vanishing only in the region of the first guide where the field
of the second guide, Ep, is small. This comparison of orders of
magnitude suggests that the derivatives 94/9z are quantities that are
themselves of first order. Since the product gl*.(% x Hp) is a first
order term, becanse the fields of different guides overlap only
slightly, we see that the term with aAg/az is also small of second
order and thus be neglected. ZKeeping only first order terms we get

The term (n? - nBZ)El*.QZ is small of first oxder, since nj

PIAERER (R x B) - Bt (B x B1) D-due o(mPongP) AgET* B
dx dy = 0 (3.15)

Since A] and Ap are independent of the transverse co-ordinates x and y,

equation (3.15) can be written as
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* A g A
St (nl2 - n32)E1*.E2 dx dy

4 €0

341
9z

= =iwe A
o2 A A A A N
—of z.(El* x Hy + E, x Hl*)dx dy

1 1

This can be written as

2 A . ) .
3;1 = i cl A2 expl(Bl - 82)z (3 16)
with
ft:f (1’!12 - n 2)%1*.:&\2 dx dy
e1] = - WEg 3 (3.17)

© A A A A
fFz (B x By + B x HyY) dx dy

To indicate that the term exp(+iBvz) has been removed, we use the

A L3
notation E;, Eq* etc, introduced in (3.2} and (3.3). Similarly, by
multiplying (3.12) and (3.13) by Eo* and Hp* we obtain the equation

ol . ,
3;2 = 1 cp Ay exp-i (B - Bplz (3.18)

with
A A
ft:? (np2 - n32)E,*.Eq dx dy

c2 :-inO A A A A 3.19
ft:? %.(Ez* x Hp + E» x Ho®*) dx dy ( )

In deriving equations (3.16) and (3.18) we neglected certain second
order terms and in addition we limited the analysis to only two modes.
The coupled wave equations (3.16) and (3.18) are, therefore, not
exact. However, we showed in section (2.2) that only modes with
identical propagation constants can exchange appreciable amounts of
energy. Limiting the analysis to only two modes,is, therefore, a good
approximation and allows us to study the exchange of energy between

two modes to a high accuracy.

The expression in the denominator of equation (3.17) can be interpreted
as 4P, with P being the power of the mode in guide 1 (for A7 = 1), (5).

Furthermore, if the two guides are identical we obtain, instead of

(3.17) and (3.19)
. . A
) = ¢y = - R 1720 (0 - n32)§2*.1~31 dx dy (3.20)

We now introduce the wave amplitudes

a, = A, exp -iBy2z, v = 1. 2 (3.21)
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Using (3.21) we can write equations (3.16) and (3.18) in the

familiar form (see section 2.2)

EES)

g = - iBiay + iciap (3.22)
and

0a . .

522 = - ifsap + icpay (3.23)

For two identlcal fibres, ie B = B =B and ¢] = cp = ¢, the
coupled mode equations (3.22) and (3.23) have the following
solutions, (5)

a,(z) = 1[a,(0) + a_(0)]exp-i(B - AR}
1 1 2 z (3.24)

+

%[al(o) - a2(0)}exp-i(5 + AR)z
and
a2(z)

%[az(D) + al(O)]exp-i(B - AR)z

%[81(0) - a2(0)]exp-i(8 + AR)z

where, A8 = ¢ and a,(0) and ay(0) are the values of a; and a, at
z = 0. It is clear from equations (3.24) and (3.25) that the

solutions of the coupled wave equations consist of the superposition

(3.25)

of two new modes with propagation constants

By = B+ A8 (3.26)

and

fl

B - AB (3.27)

The coupled waveguides have, therefore, two normal modes with altered

B-

propagation constants (3.26) and (3.27). If at z = 0 only guide 1 is
excited, ie a, = 0, we get from (3.24) and (3.25)

a,(z) =a,(0) cos (cz) exp-ipz (3.28)

and

a,(2) = 1 27(0) sin (cz) exp-iBz (3.29)

These clearly show that for real values of ¢ and B energy is
continuously exchanged between the two guides. This continual exchange
of power can, of course, be interpreted as beating between the two

normal modes of the composite structure.

It follows from equations (3.28) and (3.29) that for unit power
launched into guide 1 the power variation in the two guides is given

by - see section 2.2 -
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P1(z) = cos? (cz) (3.30)

P,(2z) = sin® (cz) (3.31)
where

P;(2z) = normalised power in guide 1

P,(z) = normalised power in guide 2

After a distance z = T/2c all the power in guide 1 will be transferred
to guide 2; the beatlength, Ay, is clearly given by Ag = /e, (2.14).
In order to analyse the performance of the coupler we must determine
the coupling coefficient, c, and its dependence on the various
parameters of the fibres in particular the cladding index. As a
first step, therefore, equation (3.20) must be solved for the case of

two identical single-mode fibres.

3.3 Coupling Of HE]3 Modes Of Round Fibres

The detailed analysis of the coupling of HE|, modes of two round
fibres is given in reference (5), where, the coupling coefficients are
determined for twe fibres with thin cladding surrounded by a medium of
lower refractive index, Fig (3.2). We shall give the main results

of this analysis and then simplify them for a structure in which

the fibres do not have an intermediate cladding, Fig (3.3).

The field components for the HEj; mode of a fibre with a thin cladding
are as follows, (5),

inside the core

& = AJ.(kr) cos (3.32)

& l( ) ¢ ) Ccsrx<a

A ) >

H, = BJ;(kr) sin ¢ ) - (3.33)
in the cladding

B, = [oHy(ivr) + D (1yr)] cos ¢ ) (3.34)

yagrgh
A t
H, = [FH (iyr) + G (1yr)] sin ¢ ) (3.35)

and finally the field in the surrounding medium is given by

A

E, = MH(ipr) cos ¢ ) (3.36)

A W ) b L£r< @«
H, = NH,(ior) sin¢ (3.37)
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The parameters k, Y and p are given by

« = /n_2ky2 - B2 (3.38)
Y = }/82 - nm2k02 (3'39)
o = VB2 - n32ky2 (3.40)

where, ko =t /€ouo

The coefficients A, B, C and F are related through the following

expressions

B = /£ aEKQK2Yg{nc
U Blke+ye) 'kg

2r1  Jo(ka), ng2 1 iﬁg(iya)
[Ka - Jl(Ka)]+:§r[§E.- Hi(iYa)]} (3.41)

¢ _F _J1(Ka
A B H{%iYa) (3.42)

To the approximation that the fileld intensity is weak at the

and

interface between the cladding and the surrounding medium, we have

D=G=0 (3.43)
The coefficients M and N can be related toc C and F by replacing the
Hankel Functions by their approximations for large arguments,

3/2

(P By2.,_ Y2\2.Y
M = (Y) eXP(D—Y)b{C[(b) (1- pg) (p - 1)

2 >
ke 2v2 X 2 20X Y 2 _»
k2Y (lq—p){nm maS o + (ng ~n, )}]+2MUOFY%(1"é2)}

(3.44)
B Y2 2.2 Y 2y
L (- p2)] - kY (1 + p)(nm2 + 13 5)]

and

2
- 22(p Zipmal) 2 X
N o= - Yp/Y exp{p-y)b 2FkoY (nm +n3 p) + 2L§Jnm eox%(pz— 1)cC,

(3.45)

B/i Yo 2., 22,0 Y\, 2 2%
[F(1-52)] kY (X +5)(n +nz 5

The coefficient A, finally, is related to the power carried by

the mode,
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2
P = (WHVE /u A%%ﬁ?KaK)2(J02(Ka)+J12(Ka))—2J12(Ka)](n02+%§-%2)

L 2
koB 2 iHp(iYa),2 2 2 Uo B
+ -Yu [(aY) (1-( th‘(i.Ya)) ) + 2]J1 (Ka)(nm +'€O Az)

2 2, 2 2 2 2
+ 2/No/ € %[BQ +nguko _ Bo +$E ko ]le(Ka)} (3.46)

The coupling coefficients then follow (5), for horizontal

polarisation

2
A M 1
Ch = 1/50/110 E M ‘A‘ . ‘EJ’Z'IT/DR exp(-DR)

2
. exp(p-Y)b.Jy (ka) ., B2 B 2_2y,, ko /—=B
oy By (iva) Hp) (7P + e (0 7Y ) (g o/ So) ]

2 2 .
+ 13, Goa)[al€ —)3 (ka) + ag Y’%ﬁz—; 3y (xa)
2
2 .2 k B
- E%§§ (k™+Yy7) (1 - ?f Yuo/eo 3) I (ka)1} (3.47)

and for vertical polarisation

rexp{p-y)b-J) (Ka) B p2-y2, g . 2 2
{“Yb/EV HY(iYa) [kovno/eq A((Y+D)b-+—;&;—-)-,Yp(O ~Y7)]

()]
. . B .1 1 iHg(iva)
+ipd; (ipa) [k avhe/eq 300 Jolka) + 3 —E§TE§ET J,(ka))

2 2 k B
+ ;%;5<K +Y )(1-15 Yio/eo 3) I, (Kad} (3.48)

If the fibre claddings are removed completely (eg by etching) the
structure shown in Fig (3.3) is obtained. As a result, the following
changes have to be made in the equations for the field coefficients
b » a
oy > 03 (3.49)
P>y
This as expected leads to - from (3.44) and (3.45) -
M = C
N =

(3.50)
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Equation (3.41) remains unaltered and the power equation (3.46) is

only slightly modified

k 2,. 2 2 B2
(n/4) EO/uogz{:ﬁg[(aK) (Jo2(Ka) + 3,°(ka)) - szz‘Ka)1<né’+Eﬁ';z°

o
"

+

FLE 2
%%[(a‘y)z(l- (AHgliva)y2y | 2]J12(Ka)(n32 , 2o By

Hi(iya) € A2
2.2, 2 2 .2 2
B, Bg +No"ko™ _ Bo“+n3“ko 2
+ 2/po/co . 5 T ] 9, (ka)} (3.51)

The coupling coefficients become

2 2
ey = VE/Hg %; '-% 'ﬁ% vemn/yR exp(—YR){gilLEEl 1 + %5)

THY (iva)
2 > _Htll .
v 13y ) fal - g a) + als Y)% 3, (ka)
2 k
- E%;E(K2+Y2) (l-?f Yo/ €o %) Jl(Ka)]} (3.52)
and
A2 C B 1 2kod1(ka) B
¢, *%p "3 TR ¥ V2T /YR exp(-YR){;;ET?E?QT YUo/€o T
1 ng(iYa)

. . B .1
+ 1YJl(lYa)[koaVuo/€0 i (E JO(Ka) + ; —ETTE;;T Jl(Ka)

2 .2 k B .
+ s YD) (- P ATe ) Ik} (3.53)

3.4 Calculation Of Coupling Coefficients

It was shown in sectlion 2.2 that the operation of the switch is based
on changing the coupling coefficient via a change in the cladding index.
It is, therefore, necessary to calculate not only the magnitudes of
the coupling ccefficients, but also their rate of change with the
cladding index. An analytic determination of Bc/anB - from equations
(3.52) and (3.53) - cannot be carried out and instead a numerical
approcach must be adopted. For this purpose, the coupling coefficlents
¢y, and ¢, were calculated for five values of V in the Trange

1.75 ¢ V< 3.0. For each value of V the coupling coefficients were
calculated as a function of the centre to centre separation, R, of the
fibres., This procedure was carried out for four values of the core

radius, a, in the range 1 ym ¢ a ¢ 5 m. In all the calculations the



refractive index of the cladding was taken to be 1.675. This is the
smallest of the three indices of meta-nitroaniline, the electro-optic
crystal that was selected for the experiments. Details about this
crystal and the reasons for choosing it for the active cladding are

given in the next chapter.

The parameters B, y and k which are necessary for determining the
coupling coefficients were calculated by numerically solving the
eigenvalue equation (1.30), (17). For each value of the core radius
¢, was plotted against V for several values of fibre separation, R,
Fig (3.4), (3.5), (3.6) and (3.7). 1In addition, in order to
determine the sensitivity of the coupler to polarisation, a graph of
E%%§X. x 100% was plotted against V for different values of the core
radius, Fig (3.8). These graphs contain several important features.
In general the coupling coefficient decreases (ie the beatlength
increases) for increasing values of V and R. The situation is slightly
different when the cores are in contact, ie R = 2a. In this case the
coupling coefficient peaks at V = 2.2 and decreases on either side,
This can be explained gqualitatively by considering how the fields in
the core and the cladding vary when V is changed. The coupling
coefficient is determined by the extent of the overiap of the cladding
field of one fibre with the core field of the second fibre, eguation
(3.20). A clear insight into the dependence of ¢ on V can be
obtained by considering two extreme values of V. PFor a low value of
vV (eg V= 1.0) the rate of decay of the field in the cladding is

very slow., As a result a significant amount of the cladding field of
one fibre reaches the core of the second fibre, Fig (3.9a).

However, since the magnitude of the normalised field in the core of
the second fibre is not appreciable at low values of V, the resultant
field overlap will be small. This gives rise to & small coupling
coefficisnt. At the other extreme, for large values of V, the field
decays very fast in the cladding and hence very little field reaches
the core of the second fibre. Therefore, despite the fact that the
normalised field in the core of the second fibre is quite strong,
there will be little overlap, Fig (3.90), and the resultant coupling
coefficient will again be small. Clearly as V increases from a very
small to a very large value, the field in the core increases while
that in the cladding diminishes. The overlap of the fields,
therefore, is small at the two extremes and reaches a maximum for some

intermediate value of V, Fig (3.9b). When the two cores are in
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contact this maximum occurs at V= 2.2. For increasing values of R,
the peak in the c versus V graph moves progressively towards lower
values of V - outside the range covered by the graphs. Similar

resilts can be found in reference (18).

Increasing the separation, R, between the two fibres leads to less

of the cladding field of one fibre reaching the core of the second
fibre. Consequently, an increase in R always results in a decrease
in the coupling coefficient. Maximum coupling is achieved for the
two cores in contact, ie R = 2a. The coupling coefficient is very
strongly dependant on the separation beiween the fibres; doubling R
reduces ¢ by more than one order of magnitude for low (= 1.75) values
of V, whereas for a high V (eg = 3.0) the reduction in ¢ is more than

two orders of magnitude.

It can be seen from Fig (3.4) - (3.7) that as the core radius is made
smaller the coupling coefficient increases. In order to demonstrate
this variation more clearly a graph of c, v. r was plotted at V = 2.3
and for several values of R, Fig (3.10). For each value of R the
points lie on a straight line with a slope of -2, thus demonstrating
that C, varies inversely with r2. ie, c @ l/rz. This inverse square
law dependence can be deduced from the coupling integral (3.20).

The term (n22 - n32) is non-zero only within the core of the second
fibre. In this region it can be expressed in terms of the core radius
and the V of the fibres, using equation (1.34),

2
n,? - ny? - xfgaz (3.54)

2
The coupling integral, therefore, becomes

o= -@o. A% Lot e B oax gy (3.55)

P2 a2 1
with the integration carried out over the cross-sectional area of
the second fibre. If v and the fibre separation, R, remain constant,

E. and E. will be independant of the core radius - at least to a

1 2
good approximation. It, therefore, follows from equation (3.55) that

ca 1/a2. The same inverse square law dependence is obtained if the
weakly guiding approvimations are used to derive the coupling

coefficients (19).
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The polarisation dependence of the coupling coefficient is shown in
Fig (3.8) and Fig (3.11). The coupling coefficients for the vertically
and horizontally polarised fields differ only very slightly - less
than 1% for a = 1 ym at V =2.3, Fig (3.8). The difference between
the coupling coefficients for the two polarisations decreases as the
core radius is increased, Fig (3.11). For a = 5 mm and V = 2.2 this

is less than 0,04%. The fact that a small difference remains between
the itwo coupling coefficients is simply because the fields inside the
fibre are not strictly linearly polarised. Figure (3.12) schematically
shows the transverse electric field lines for one polarisation of the
HEjj; mode in the core of a fibre. The field magnitude at A differs
slightly from that at B. Consequently the strength of the coupling
achieved with a second fibre with centre 0' will depend on whether Q7
is on the OA or the OB axis. If V is reduced, the fibre fields

become more plane-wave like and as a result the two coupling
coefficients become closer in magnitude. Increasing the core radius
while keeping V constant will have the same effect, since this makes

n] - np smaller. Both these effects are clearly illustrated in

Figures (3.8) and (3.11). It must be emphasised that the most
important feature of Figures (3.8) and (3.11) is that for all practical
values of V and 2 there is virtually no polarisation dependence in the
coupling coefficients. This insensitivity to polarisation is one of
the advantages that this structure for an electro-optic switch has

over the existing integrated optic directional couplers.

3.5 Power Switching Between Two Fibres

It was shown earlier in this chapter that any power launched into
guide 1 switches back and forth between the two guides with
periodicity Ap given by equation (2.14). We shall now calculate the
amount of power switching, 6P, caused by a given change, &c, in the
coupling coefficient. From equation (3.30), for a coupler of

length L, we have at the output of the first guide
P (L) = cos®(Le) (3.56)

If the coupling coefficient is changed by Sc, there will be a
corresponding change 6P1 in the power coming out of guide 1. We,

therefore, have
P (L) + &Py = cos® [L{c+de)] (3.57)

Subtracting (3.56) from (3.57)



6Py = cosz[L(c+60)] - cosz(Lc) (3.58)
Equation (3.58) can be written as

GPl = =[sin(2Lc).cos{Lsc)+cos(2Le).sin(LSc) 1sin{Lsc) (3.59)

Clearly, the value of L plays an important role in determining 8Py.
We shall, therefore, consider two special cases
- gl
L = N'EE (3.60)

and

I

L | (2N+1) EE (3.61)

where, N is a positive integer. Wnen L = Nn/2c, we get from (3.59)
. 2
|6Pl| = sin“(L&c) (3.62)
And for L = (2N+1)m/hc, equation (3.59) yields

18P | = 1 sin(2Léc) (3.63)

in both cases, it is the product L8c that determines the amount of
power switching. Note that when L = (2N+1)n/4c the power at the output
of the coupler is equally divided between the two guides, ie from
(3.30), (3.31) and (3.61)

P1(L) = P,(1) = 0.5

On the other hand, for L = Nﬂ/ZO, all the power emerges out of one
fibre. This explains why |6Pl| has a maximum value of 1 according

to (3.62) but is limited to 0.5 by (3.63). It is important too

to note that for small values of LSec, equation (3.63) gives larger
values of |6Pl[ than does (3.62). 1In both cases, however, the same
value of I§c = M/4 is required to produce a [§Py| of 0.5. These
points are illustrated in Fig (3.13). It must be pointed out that the
two special cases that were considered are both limifting cases.

This means that for an arbitrary value of L and a given Gc, the
associated switched power, |6P1|, will have a value between those

given by (3.62) and (3.63).

It was explained earlier that the switching action of the device

is obtained by changing the coupling coefficient via a change in the
refractive index, LV of the cladding. Of course, it would be
desirable to achieve a large 8P for a relatively small §ny (and hence

a small §c). Since it is the product Ldc that determines §F,

435
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one must use the largest possible value of I in the construction of
the device. This is limited by the length of a single-crystal of

the electro-optic material that can be grown for the cladding. It is
unlikely that L can be larger than a few centimetres in practice,

We shall, therefore, limit our calculations to values of L in the

range L em ¢ L £ 5 cm.

From equation (3.62) we find that in order to achieve a P of 1.0,

we require

de = T - > (3.6"4')

For a coupler of length 1 cm, we find, from (3.64), 8c = 157.1 rad/m.
We assume that the fibres in the coupler have & V of 2.3 in the absence
of an electric field applied to the cladding. With the help of the
graphs in Figures (3.4) - (3.7), one can read off the change, 8V, in

V that is required to give §c = 157.1 rad/m. Equation (1.34) can then
be used to calculate the corresponding 5n2. Note that in the majority
of cases there are two values of 8§V - one positive and the other
negative - that givé the same 6¢. Virtually in every case the
negative value of &V is smaller than the positive value. 1In order to
maintain the single moded nature of the fibres it is important to
ensure that V does not rise above 2.405 - see section 1.3. The
easiest way of achieving this is to choose the polarity of the field
such that it causes a reduction in V. Bearing this point in mind, and
also taking into account the fact that for the same Sc the negative
value of 8V is, in general, smaller than the positive value, it was

decided to base all our calculations on the negative values of &V,

Three values of L were cheosen, L =1, 3, 5 cm. For each value of L

we determined the required 8n, for achieving 100% switching* between
two fibres with touching cores, le R = 2a., This procedure was carried
out for three values of the core radius (a = 1.5, 2.5, 5.0 um) and the
graph in Fig (3.14) was plotted. As expected, larger values of L

lead to a smaller §np for complete coupling. It is also interesting to

note that énp is smaller for larger values of the core radius -

keeping everything else the same.

* A prerequisite for achieving 100% switching, ie [§P;[|= 1, is that
the lengtn, L, of the coupler satisfies (3.60). For each case,
therefore, I was adjusted - typically by a few percent of the quoted
value - so that it satisfied this requirement. It was this new
corrected value that was subsequently used in the analysis.



We also investigated the effect of the separation of the fibres on the
required an for complete switching. In Fig (3.15) the regquired

an for 100% switching is plotted against the centre to centre
separation, R, of the fibres. It is interesting to note that the
'best' case is not when the two cores are in contact. The optimum
separation of the core centres is about 2.5 times the core radius.
Figure (3.15) refers to the specific case of a = 2.5 ym and L = 3.0 cnm,
its shape is nevertheless quite general. For all the core radii, a,
and device lengths, L, that we considered, it was found that the
optimum centre to centre separation was given by R = 2,5a. This is a
very important point since it could substantially reduce the voltage
required for switching. It can be seen from Fig (3.15) that when

R
R

meta-nitroaniline, this reduces the drive voltage by a factor of 2.

2.5a we need only half the an that would be required for

If

2.0a. For a linear electro-optic crystal, such as

It must, however, be pointed out that keeping two fibres parallel, but
not in contact, over a length of one or two centimetres will be
a formidable task. Nevertheless, the potential is there if the

practical difficulties can be overcome.

8o far the performance of the switch has been considered theoretically
and without taking into account the practical difficulties which will
inevitably hamper its operation. The two main limiting factors to

the performance are the length, L, and the &np that can be obtained in
practice. A realistic value for L is about ! ¢m and a typical 6n2 for
mNA is approximately 1072 - see section 4.3. It is unlikely that the
length of the coupler can be increased to a value significantly larger
than 1 em. On the other hand, it is conceivable that 6n2, for mNA, can
be increased to 10‘4 by using a high enough voltage and/or reducing the
gap between the electrodes. It is, therefore, important to know how
much power can be switched between the guides if L = 1 ¢m and

10-5 ¢ §ny g 107%, Figure (3.16) shows the percentage switched power
{ie, 8P x 100%) as a function of the core radius and assuming

8n, = 107 and R = 2a (ie touching cores). The two lines correspond

2
to the special cases (3.60) and (3.61)%

*], was very nearly 1 cm for both cases and only minor adjustments
of less than a few percent had to be made to its value to
satisfy (3.60) and (3.61).
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As explained earlier, these are limiting cases and if L is about 1 cm
but does not quite satisfy either (3.60) or (3.61), the switched

power will lie somewhere between the two lines on the graph.

Figure (3.16) shows that the coupler is only capable of switching very
small amounts of power. The exact length of the coupler plays a very
important role in determining the amount of switched power; a few
percent change in L alters §P by several orders of magnitude. The

other interesting point about these results is that the switched power
is very nearly independent of the core radius, c.f. Fig (3.10).

6n2 was increased to 10'1‘L and the calculations were repeated,

Fig (3.17). The switched power has clearly been increased significantly.
The results are still nearly independent of the core radius. The

exact value of L is still important but much less than the previous

case.

In order to show the improvement that one can achieve by spacing the
fibres apart, we plotted §P x 100% against R assuming that 6n2 =10
and T = 1.5 um, Fig (3.18). For R = 2.5a the switched power is about
22%, c.f. Fig (3.16) and Fig (3.17).

The analysis so far has been largely based on a.V value of 2.3. This
choice was made somewhat arbitrarily and was only guided by two
criteria. Firstly it was necessary, for single mode operation, to
have V < 2,405, On theother hand, a large value of V was desirable in
order to relax the fabrication tolerances - see Chapter 5. V =2.3
was, therefore, arrived at as a compromise. However, similar
calculations were also carried out for Vv = 1.8, 2.2 and 3.0. The
results are illustrated in Figures (3.19) - (3.21). The shapes of
these curves are very much the same as those for V = 2.3. Some of the
results, however, have quite different magnitudes. V = 1.8 for
example, gives considerably better results than the other values of

V. The main reason for this is that the slope of c-V graph becomes
quite large for small values of V - see Figures (3.4) - (3.7) and
(5.17) and also reference (18). As a result only a small &V (and
hence 6n,) is required for producing a large 8¢ (and hence &P).
However, it will be shown in Chapter 5 that constructing a device for
operation at V = 1.8 would be extremely difficult due to the very

strict tolerances that would be imposed on the core-cladding index

difference.
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It can also be seen from Figs (3.20) and (3.21) that, in general,

V = 2.2 produces worse results than the other values of V. This

is due to the fact that for R = 2a the c¢c=V graphs, Figs (3.4)-(3.7),
have a turning point in the viecinity of V = 2,2, Consequently

a given change in V will result in a small change in ¢ and thus
cause very little power switching. For maximum efficiency,
therefore, the coupler switch should be designed with a V value

as far away from 2.2 as possible.

The results presented in this chapter demonstrate the potentials and
the limitations of the proposed structure for a singie-mode fibre
switch. Even assuming that an index change of 10-4 can be achieved
in practice, this will result in no more than a few percent of the
power to be switched between the guides. This will only be good
enough as a demonstration of the principle of operation of the switch.
Whether or not the device will ever have a practical application
depends largely on how much improvement can be made on the index
change of 10_4. Nevertheless, it was decided to proceed and
construct the device in order to substantiate the theoretical

predictions that we have presented in this chapter.
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CHAPTER 4 : ELECTRO-OPTIC CLADDING: PREPARATION AND PROPERTIES

4,1 Introduction

The performance of the coupler has so far been analysed theoretically
and based on the assumption that the refractive index, n,, of the
cladding can be varied in step with the information signal. In fact,
strictly speaking, it is An = n; - n, that should change with the
modulating signal; ie varying either the core or the cladding index
will be sufficient for the operation of the device. However, from a
fabrication point of view it is very much simpler to

change the refractive index of the c¢ladding. The most commonly used
Physical effects for introducing a change of refractive index in a
material are the electro-optic and the acousto~optic effects; the
former is much more convenient 1o use at high frequencies and was

selected for the coupler switch.

The material that we decided to use for the cladding was
meta-nitroaniline (mNA), an organic crystal with a high electro-optic
coefficient. Details of the properties of mNA, as well as a
description of the methods that were used for growing it in single
crystal form, are given later in this chapter. We start with a brief
discussion of the electro-optic effect and the propagation of

electromagnetic waves through anisotropic media.

4,2 Electro-Optic Effect

In their most general form Maxwell's equations for a non-magnetic

dielectric material are (20)

I

¥ xE = -pg : (4.1)
_ 3D

Yxi= 3 (4.2)

where E, H and D are the time dependent vectors of the electric field,
the magnetic field and the electric displacement respectively.
The electric polarisation, P, of the propagation medium is related

to the electric displacement by
D=€,E+P (4.3)
For an isotropic medium the induced polarisation is parallel to

the applied electric field and is related to it by a (scalar) factor

that is independent of the direction in which the field is applied, ie

P=toXeE (4.4)
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where ¥e is the electric su