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ABSTRACT 

This thesis investigates the effect of non-uniform 

boundary conditions on Thermal Explosion Theory. Using Frank-

Kamenetskii's postulates of purely conductive heat transfer within 

the reactant, we seek to determine the critical criteria for the 

onset of thermal ignition. 

Chapter One contains a brief summary of the history 

and developments of thermal explosion theory. Most of the 

discussion is dominated by Semenov's and Frank-Kamenetskii's 

theories. 

In Chapter Two, we consider Liouvilie's nonlinear 

partial differential equation in an infinite rectangular strip 

with various surface conditions. This problem arises in the 

determination of the two-dimensional temperature distribution 

within a self-heating partially insulated slab, with the remainder 

of the surface offering no resistance to heat transfer. For 

symmetrical heating in a dimensionless Cartesian frame of reference 

Oxyz, with insulating strips at y = ±1, the critical Frank-

Kamenetskii's parameter is found to be 

<S
c
(e) = 5

c
( 0 (l-£-0.555e

3 / 2

 + . . . ) , £ « 1 

where 6
c
CO) = 0.878 and £ is the ratio of insulation length to 

the slab thickness. However, for e » l , we are unable to 

determine an explicit relationship between and e except to 

note that 

6 C O ) 

^ " V ;
 & > >

 '
 4 
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In Chapter Three, we seek to solve the above 

problem with the boundary condition at y = ±1 replaced by ef(x), 

where a « 1 and f(x) is a smooth monotonic function of x with 

the following asymptotic properties 

x ->• +» : f(x) -»• 1 , 

x -» : f(x) -»• 0 . 

Although the problem is well defined at x = ±», 

attempts to determine the temperature distribution at criticality 

and for finite x leads to failure. This paradox is resolved by 

constraining f(x) to be such that f'(x) « f(x) . The critical 

Frank-Kamenetskii's parameter is then found to be 

6
c
(e) = 6

c
(0) exp(-e) 0 < € « 1 . 

Chapters Four and Five contain details of the numerical 

schemes for the solution of the problem defined in Chapter Two. 

Chapter Five has computational results for the schemes discussed 

and possible suggestions for future implementation of the 

schemes. 
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P R E F A C E 

In the following chapters, the figure legends and the 

tables of results for each chapter are to be found 

at the end of that particular chapter. However, 

in Chapters Two and Four, some of the figure 

legend's have been included in the text to make it 

easier for the reader to follow the text. 
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CHAPTER ONE: REVIEW OF THERMAL EXPLOSION THEORY 

1. INTRODUCTION 

The theory of thermal explosion, examines the thermo-

kinetic behaviour of chemically reacting systems with respect to 

the stability of exothermic reactions. An important feature of 

these systems, is the existence of at least one distinct mode and 

the possibility of switching from one mode to another under 

certain conditions. These modes are well defined and distinct from 

each other. In the steady-state theory, thermal imbalance in heat 

generation and heat dissipating mechanisms, is considered the 

predominant factor in understanding the nature and stability of 

these modes. The kinetics of the reacting system is then relegated 

to the determination of initial temperatures and the rates of the 

reacting systems. The kinetics also exhibit the sensitivity of the 

reacting system to any temperature change. Consequently any 

temperature rise within the reacting system will be opposed by heat 

dissipating forces. However, as the ambient temperature is increased, 

there will exist an ambient temperature such that the heat generating 

mechanisms will exceed the heat dissipating forces resulting in 

thermal runaway or ignition. Thus thorough studies of these 

chemically reacting systems have concentrated on the prediction of this 

criterion for the onset of spontaneous ignition for self-heating 

systems. 

To facilitate our understanding of this criterion of 

spontaneous ignition it is necessary to refer to early works on 

thermal explosion theory. The basis of recent thermal explosion 
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theory rests with earlier works by Semenov [1] and Frank-Kamenetskii 

[2]. 

1.1 Semenov's Treatment of Thermal Explosion Theory 

In his model, Semenov considered the reacting systems to 

be in steady-state with uniform temperature T throughout the 

reactant, different from the uniform temperature T
g
 of its surroundings. 

The reaction rate was considered to be of the Arrhenius form. Hence 

the rate of reaction is proportional to Exp(-E/RT), where E is the 

overall activation energy of the reactant. He ascribed the heat 

losses to convective forces due to Newtonian-Cooling at the interface 

of the reactant and its surroundings. As a result, the resistance 

to heat-transfer is directly proportional to the temperature difference 

(T-TQ), at the boundary. These postulates lead directly to energy 

equations (1.1.0) and (1.1.1) representing the rate of heat production 

q and the rate of heat loss t. 

q = VQA exp(-E/RT).C
0
 (1.1.0) 

I = XS(T-TQ) (1.1.1) 

where:-

Q is the exothermicity of the reactant 

X is the heat-transfer coefficient at the boundary 

CQ is the concentration of the reactants, assumed 
constant throughout the reaction. 

V and S are the volume and surface area of the reactant 
vessel. 

The graphs of the rates of heat production against 
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temperature of the Arrhenius' rate of reaction exhibit an S-shaped 

form. However, in Figure 1.1, for example, the graphs of the rate 

of heat production q^ and the rate of heat loss Z, are shown 

exhibiting two stationary states P and R, instead of the three states 

to be expected. This is because in classical thermal explosion theory, 

the rates of heat release would be insufficient to give rise to 

the third state. Semenov identified the critical condition as the 

tangency between the graphs of the heat loss and the rate of heat 

production, see Figure 1.1. At criticality two conditions have 

to be met. Firstly an energy balance must exist and secondly the 

rate of change with temperature of the rate of heat loss should 

equal the rate of change with temperature of the rate of heat 

production. Hence at criticality we have, 

VQACQ Exp(-E/RT) = XS(T-T
0
) ( 1 . 1 . 2 ) 

V Q A CQ E Exp(-E/RT) = XS RT
2

 ( 1 . 1 . 3 ) 

with T = T 
crit 

Dividing equation ( 1 . 1 . 2 ) by ( 1 . 1 . 3 ) results in giving the critical 

temperature and the maximum temperature difference for a stable 

reacting system. Therefore we get 

(T . - T J = (RT
 2

/E) (1.1.4) 
crit 0 crit

 J K J 

or 

T

crit = m
 { l ±

 t
1

- C
4 R

V
E )

] '
 }

 u -
1

-
5

) 

The larger value of T ^ in equation (1.1.5) corresponds to the very 

high rates of heat release. This higher value represents the point 
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of thermal extinction. However, for spontaneous ignition to occur, 

^crit ky "the lower value of (1.1.5), namely 

T

crit " ^ U - [ l - ( 4 R T
o
/

E 1
] S (1.1.6) 

Both equations (1.1.5) and (1.1.6) give the range of TQ 

for which the system will self-heat and possibly lead to ignition. 

This will be true for E > 4RT
Q
 or 0 < T

Q
 < . Expansion of 

equation (1.1.6) as a binomial series results in equation (1.1.7) 

E

 (T ,,-Tj = 1 + 2(RT/E) + ... (1.1.7) urn 2
 v

 crit 0' 0 
R 1 0 

Hence for a reacting system to remain stable, equation (1.1.7) 

shows that the maximum dimensionless temperature excess is bounded, 

namely 

E

 (T . -T
n
) < 1 . (1.1.8) nm 2 crit 0 

0 

In their 1977 Review paper on thermal explosion theory, 

Gray and Sherrington [3], rewrote the energy equation and the criticality 

condition in form of dimensionless variables. They defined the 

E 

dimensionless excess temperature 0 = j (T-T
n
) and a parameter 0, 

RT
0
 RT

0 

such that 3 = -g— • On substituting these new variables into 

the energy balance equation, we get 

9 exp[-0/(l+36)] = (VQAEC
0
/xSRT

0

2

) exp(-E/RT
0
) (1.1.9) 

Gray and Sherrington defined tu = o)(0) , such that, 

V 
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to (0)
 =

 0 exp[-0/(1+39)] (1.1.10) 

Hence the criticality condition ^ L
 =
 becomes, 

(1 + 89)
2

 exp[-0/(1 + 80)] = (VQAEC
0
/

X
SRT

0

2

) exp(-E/RT
Q
) 

( 1 . 1 . 1 1 ) 

Comparing equations (1.1.10) and (1.1.11) gives the condition for 

0 at criticality, namely 

0 . = (1+80 . J
2

 ( 1 . 1 . 1 2 ) 
crit

 v

 crit^
 v 3 

Consider again equation (1.1J0) 

to(0) = 0 exp[-0/(1+80)] 

1 R ( 0 ( 0 ) 1 Q 

O R L O G H H - ] = - (1+80) 

Differentiating with respect to 0, we have 

1

 = {(l+80)
2

-0}/[0(l+80)
2

] 
to (0) d0 

Thus the criticality condition given by equation (1.1.12) corresponds 

to the stationary value of (o(0). In fact the criticality condition 

corresponds to the maximum value of (o(0) . Expansion of 0 . as- a power 
crit

 r 

series in 8 leads to equations (1.1.13) and (1.1.14) 

0

crit
 = 1 + 2 6 + 5 b 2 +

 (1.1.13) 

V i x ^
3 = e

"
1 ( 1 + 3 +

 1 ̂
 +

 (1.1.14) 

Equations (1.1.13) and (1.1.14) give a mathematical representation 

of some of Semenov's most important contributions to thermal explosion 
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theory. In the classical theory of thermal explosion (the limit 

3 0) , the reacting system will become unstable and explode if there 

is an e-fold increase in the rate of heat release above that of TQ. 

There is also a bound on the dimensionless temperature excess, 9, 

if the reacting system is to remain stable. Hence in the limit 3 0, 

0 < 1 and to(0) < e"
1

. 

Semenov's model of thermal explosion offerSseveral 

advantages:-

(i) The model itself is a function of the dimensions of the 

reacting vessel in the form of the ratio of its total volume V to 

its surface area S. 

(ii) Significant results can be obtained by the use of simple 

mathematics. The mathematical analysis can be applied to both 

endothermic and exothermic reactions. 

(iii) The theory can readily be applied to nonlinear heat transfer 

(radiation for example) and to reactions with temperature-dependent 

pre-exponential factors. 

(iv) Although Semenov applied his model to reacting systems 

with high overall activation energies, the case for low activation 

energy can certainly be discussed. 

(v) Its prediction of the maximum dimensionless excess temperature, 0
c r 3

_
t
» 

and the e-fold increase in the rate of heat release above that for 

TQ for the reacting system to become unstable and explode, have 

hardly been altered by more sophisticated theories of thermal explosion. 
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However, the model failed to describe the temperature 

distribution within the reactant. Its assumption of uniform pre-

explosion temperatures does not agree with experimental facts, it is 

well known that ignition always begins at one point and then 

the flame spreads through the rest of the reactant. In fact, Semenov's 

description of uniform pre-explosion temperatures within the reactant 

can be realised for only two cases:-

(i) Self-heating solid in form of small particles of high 

thermal conductivity surrounded by a medium of low 

thermal conductivity. 

(ii) Liquid under intense mixing. 

1.2 Frank-Kamenetskii's Treatment of Thermal Explosion Theory 

Frank-Kamenetskii [2], in his 1939 work, adopted most 

of Semenov's postulates except the assumption of uniform pre-explosion 

temperatures within the reactant and the nature of heat dissipating 

mechanisms. Frank-Kamenetskii attributed the heat resistance to 

conductive forces within the reactant. T n fact, the heat losses 

were considered to be strictly conductive within the reacting vessel. 

Furthermore, the reactant was assumed to be surrounded by a medium of 

infinitely large thermal conductivity. He also postulated that the 

thermal conductivity of the reactant remained constant throughout the 

reaction. By invoking the principle of conservation of energy, the 

temperature of the reactant satisfies the Fourier equation (1.2.1) 
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XAT + QW(T) = 0 in volume 
( 1 . 2 . 1 ) 

T = T
q
 at the surface 

where: 

X is the thermal conductivity of the reactant 

Q is the heat of reaction 

A is the Laplacian operator. 

W(T) = ZQ exp(-E/RT), is the rate of reaction with Z
Q 

being the pre-exponential factor. 

In his 1939 work, Frank-Kamenetskii studied the stability 

of reactants within an infinite vessel with plane parallel walls. 

Equation (1.2.1) was transformed to its dimensionless form by Cb n e w 

choice of variables:-

E

 (T-TJ 
N R R 2 ^ A 0 

RTq 

3 = (RTQ/E) 

Z = (r/a) where a is half-width of vessel and r is 

the equivalent length for an infinite vessel. 

6 = (E/RTQ
2

)(Q/X) a
2

Z
Q
 exp(-E/RT

0
) (1.2.2) 

6 is the so-called Frank-Kamenetskii parameter. Hence equation 

(1.2.1) reduces to 

A_0 + 6 exp[9/(1 + 30)] = 0 in volume 
(1.2.3) 

0 = 0 at surface 
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To simplify mathematical solutions, equation (1.2.3) was solved for 

the case 6 = 0 . Thus the one-dimensional energy equation becomes 

d
2

0 k d0 . 8 _ . . 
— y + — + oe = 0 m volume 
dz

Z z d z

 (1.2.4) 
0 = 0 at surface 

where k = 0,1,2 represents the slab, cylinder and the sphere 

respectively. The criticality condition for thermal ignition was 

identified as the condition when stable stationary states are 

impossible to realise for the steady-state zero-order chemically 

reacting system. 

Class A geometries:-

Frank-Kamenetskii further simplified the mathematical 

solution of equation (1.2.4) by considering symmetrical geometries. 

(a) The Slab Solution (k = 0) 

d
2

0 
+ 6exp0 = 0 , 0 < z < 1 , 

dz 

0 = 0 , z = 1 , (1.2.5) 

0 , z = 0 . 
dz 

Multiplying (1.2.5) by we have 

fd0D d
2

0 . 0 d0 
feJ ~ 2

 + 6 e

 d l =
 0 

dz 

d r1
 r
d9D

2

 x
 . 8, 

d7
 {

2 W
 + 6 6 }

 =
 0 
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Therefore 

de
 2 

fe") = constant - 2<5exp0 (1.2.6) 

The maximum temperature rise 0^ will occur, by symmetry, at the 

centre. Hence equation (1.2.6) becomes 

(ff3 = (26)* [exp 0
m
 - exp0]* 

Integrating, we get 

d0 % 
^ = (26) z + constant 

exp(0/2) {exp[ (9 -0)/2]-l}
2 

m

 (1.2.7) 

We now put;coshlf = exp[(0
m
-0)/2] into equation (1.2.7). On integrating, 

we get 

ip = exp(0
m
/2) {constant - (6/2)

 2

z } 

and hence 

( 9 M / 2 ) % 

0 = 0
m
 - 2 log cosh{e [(6/2) z+c]} (1.2.8) 

where c is a constant. We now consider the boundary conditions at 

z = 0, and z = 1; 

at z = 0 ^ = 0 

dz 

therefore c e 0. Thus 0 becomes 

0 = 0
m
 - 2 log cosh z[(6exp0

m
)/2]

2

 (1.2.9) 

at z = 1, 0 = 0 . Hence 

JL 

0
m
 = 2 log cosh[(6exp0

m
)/2]

 2

 (1.2.10) 
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Substituting from (1.2.10) into equation (1.2.9) we obtain 

9 = 2 log cosh[(6exp9
m
)/2]

2

 -2 log cosh z[(Sexp0
m
)/2]

2 

(1.2.11) 

I5 

Putting a = [(6exp9
iii
)/2] . 

Hence 6 = 2a
2

 exp(-0
m
 ) (1.2.12) 

Writing 0 in terms of a, we obtain 
9

 -
2 

Note: at z = 0, 0 = 0 . Hence from (1.2.13) 
M 

0
m
 = 2 log cosh a (1.2.14) 

Substituting 0^ into (1.2.12), 6 becomes 

6 = 2a
2

sech
2

a (1.2.15) 

Frank-Kamenetskii identified the critical conditions for the 

onset of spontaneous ignition by the maximum possible 6 in equation 

(1.2.15). At criticality, this results in the following transcendental 

equation for the critical parameter a = a , namely 

A C T A N H A C = 1 ( 1 . 2 . 1 6 ) 

Numerical solution of equations (1.2.16), (1.2.15), and (1.2.14) 

gives the following critical values for the parameter 

a = 1 . 2 
c 

6 . = 0.878 (1.2.17) 
crit

 3 

0 . = 1.19 
m,crit 
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(b) The Infinite Cylinder (k=l) 

^ + Ct) t I
 +

 6exp0 = 0 , 0 < z < 1, , 2
 K

z
J

 dz 
dz 

0 = 0 , z = 1, (1.2.18) 

= 0 , z = 0. 
dz 

The problem is simplified if we follow the approach by 

Lemke and Reine [4] and Chambre [5]. Thus we put 

D FI 0 
i|) = z ( ~ ) and n = z exp0. (1.2.19) 

On substituting ip and n into (1.2.18), we get 

= -6/ (2+i|>) (1.2.20) 

On integrating (1.2.20) we obtain 

ip 2 + 4ip + t + 26ti = 0 (1.2.21) 

At the centre of the cylinder, that is, at n = 0, ^ = 0 and hence 

t = 0. The equation for \p reduces to 

i(J
2

 + 4ijj + 26n = 0 (1.2.22) 

Rewriting equation (1.2.22) in terms of 0, we have 

2 
z

2

^ ) + 4 z ( ^ ) + 26z
2

 exp0 = 0 (1.2.23) 

By simultaneously solving equations (1.2.23) and (1.2.18), 

Gray and Lee [6] were able to show that 9 is given by 

0 = log[ (8G/<5)/ (Gz
2

+1)
 2

] (1.2.24) 
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and 

6 = 8G/(G+1)
2

 (1.2.25) 

The maximum value of 6 occurs when G = 1. On substituting this 

value of G into (1.2.24) and (1.2.25), we obtain the following 

critical parameters; 

6 . = 2 
crit 

= log[4/(z
2

+l)
2

] (1.2.26) crit 

) 
m,crit 

log 4 

1.39 

The critical values (1.2.26) are in agreement with the numerical results 

obtained by Frank-Kamenetskii. 

(c) The Sphere (k=2) 

Putting k = 2, equation (1.2.4) becomes 

2 
+ (

l
}

 if
 + 5 e x

P
6 = 0

 (1.2.27) 
dz 

with boundary conditions 

z = 0 : 0 , 
dz 

z = 1 : 9(1) = 0. 

In the survey by Gray and Lee [6], equation (1.2.27) 

was transformed to model an isothermal gas sphere in gravitational 

equilibrium. To enable this transformation, new auxiliary variables 



were chosen such that 

ift = 9
m
- e and ̂  = z/6exp0

m
 (1.2.28) 

Using the above substitutions, Gray and Lee then transformed equation (1.2.27) 

together with the boundary conditions to get 

+ ( 2 / N ) ^ . - E = 0 

dn 

with boundary conditions 

ilr = 0 at n = 0 where ĵj- = 0 (1.2.29) 

and = 6 at n, = /5exp0 
R M 1 R M 

Although equation (1.2.29) is no easier to solve by 

analytical methods than the original equation (1.2.27) y mevertheless 

a numerical solution can be expressed in terms of known tabulated 

functions developed by Chandrasekhar and Wares [7] and [8]. Thus 

rewriting the boundary condition at the surface of the sphere, we 

have 

2 
6 = n^ exp(-i|0, since 0 = 0 when n = n^ (1.2.30) 

The maximum value of 6 can be obtained from (1.2.30). This critical 

condition is satisfied by 

" I ( 1 - 2 - 3 1 ) 

From the tabulated values in [8], the values of n^
 a n

d $ satisfying 

(1.2.31) are 
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n
1
 = 4.07 : ip = 1.61 

Hence the critical values of 8 and 6 are 

6 = 3.32 
C r i t

 (1.2.32) 
9 .. = 1.60 
crit 

These critical values correspond to those obtained by Frank-Kamenetskii 

[2], 

Summary on Class A geometries: 

Figure 1.2 exhibits the bound on 8 for thermal stability. 

Time-dependent linear analysis by Istratov and Librovich [10] for the 

slab shows that the upper branch of versus 6 curve to be unstable 

while the lower branch represents a stable state. Istratov and Librovich 

also showed that the same situation was true for the infinite cylinder 

with the stable branch corresponding to 9^ < 1.387. Whilst for 

the sphere the problem was complicated by the lack of analytical 

solution. However,Steggerda [9] has solved the usual steady-state 

equation for the sphere by extending the range of tables of 

Chandrasekhar and Wares [8]. The results of the analysis are indicated 

by Figure 1.3. In the region of criticality 1.66 < 8 < 3.32, there 

are more than two centre temperatures, thus more than two temperature 

distributions for a given <5. Using Istratov and Librovich's notation, 

the number of temperature profiles becomes infinite as 8 tends to 2. 

Figure 1.4 exhibits the stable temperature profiles at the centre of the 

vessels for class A geometries. From the work on class A geometries, 
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the temperature profile is roughly parabolic. However, Parks [11], 

in his numerical work suggests that there is evidence of inflexion 

points, at least in the case of the sphere. In the work by Enig [12] 

and confirmed by Gray and Lee [13], they showed that the critical 

values of 6 are determined by critical surface temperature gradients. 

On examination of class A geometry temperature solutions, they were 

able to show for the critical case that 

dz .. 
crit 

at z = 1 (1.2.33) 

A simple physical result follows from (1.2.33). In the 

stationary state, the total heat transfer from the interior of the 

reacting vessel is proportional to its surface area and to the 

temperature gradient at the surface. However, since at criticality, 

the temperature gradients at the surfaces of class A geometries are 

equal, we expect the rates of heat generation to be in the ratio of 

their surface to volume ratios,namely 1:2:3. This result is indeed 

satisfied by the results obtained for the slab, infinite cylinder 

and the sphere. 

Frank-Kamenetskii postulates of conductive theory for 

thermal explosion are valid if the following conditions are satisfied; 

(i) The temperature difference (T-TQ) at the surface is so low 

such that radiation plays no part in heat transfer. 

(ii) The effect of convective forces is negligible in low 

densities. However, as the pressure and hence density of the reactant 

is increased,we expect that there is a limit at which convective 

forces will have to be taken into account. In effect in regions 

2 

of Rayleigh numbers of 0(10 ) purely conductive heat transfer is 

still valid. 
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(iii) if the reactant consistSof large masses of solid explosive 

and materials such as wood and fibre board. 

1.3 Comparison of Semenov and Frank-Kamenetskii Theories for 

Thermal Explosion 

In both theories we assumed, that at the surface of the 

reacting vessel, the heat transfer was either convective or 

conductive. However, when there is a resistance to heat transfer, 

not only due to finite thermal conductivity, we must also take 

into account both mechanisms for heat dissipation. Thomas [15] 

considered the case where heat-transfer at the surface is due to 

Newtonian-Cooling. He replaced the boundary condition at the 

surface by 

DFL 

a ! + a e
s
 = 0 , at z = 1 (1.3.0) 

with a = ^ 

where: 

X is the heat-transfer coefficient at the surface 

a width of vessel 

X thermal conductivity of the reactant. 

a is the Biot Number. The significance of the Biot 

Number is that it compares the internal and external resistances to 

heat flow. For large values of a, the resistance to heat flow is 

due to conduction within the reactant with the surface temperature 

T
g
 equal to the ambient temperature. These high values of a are 
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the conditions assumed by Frank-Kamenetskii. Semenov's conditions 

are satisfied for low values of a in which the heat loss at the 

surface becomes insignificant resulting in surface temperature T
g 

being different from TQ. The effect of the Biot Number on the critical 

parameters for thermal ignition can easily be obtained for class A 

geometries by imposing condition (1.3.0) on the analysis in above 

sections. In the review by Gray and Lee [3] the following results 

were obtained; 

(i) The Slab 

0 = 9 - 21og cosh DZ 
M 

with log6 = log 2D
2

 - 21og coshD - (2D tanhD)/a (1.3.1) 
2 

D . .sinh D ....cosh D . . + D .. 
, crit crit crit crit 

and a =
 : 

(1-D .. .tanh D .Jcosh D . v

 crit crit' crit 

where ^
C
rit

 c r 3 L t

i
c a

l
 v a

l u e of D for the limiting case on 

5 . 

(ii) Infinite Solid Cylinder 

9 = log[8G/5(l+GZ
2

)
2

] 

with log6 = log[8G/(G+l)
2

] - [4G/a(G+l)] (1.3.2) 

and a = 4G . ./(1-G .J") 
crit'

 v

 crit ' 
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(iii) The Sphere 

log6 = - T|»
s
 + 21og n

s
 - (n

s
/o) 

s 
<-> j, J, (1.3.3) 

a . [n
s
 e

 s

 - n,(g) ]/[2-n,(g) ] 
s s 

where the subscript s refers to the surface z = 1. 

The relationships between 9
m
 and 0 * ^crit

 a

§
a 3

-
n s t a 

are shown in Figure 1.5 and Figure 1.6, which we have reproduced 

from [6]. From the figures of 6 ^ against a, it is apparent 

that the Frank-Kamenetskii values (a «) are higher than the case 

for moderate values of a. However, for small values of a, say 

a < 0.5, it is possible to use Semenov's postulates. For small 

values of a, especially a = 0, the critical centre and surface 

temperatures approach unity, which is in agreement with results of 

equation (1.1.7). 

1.4 Some Steady-State Problems of Asymmetrically-heated 

Reactants 

In above sections all the analytical solutions have been 

based on symmetrically heated reactants. However, Armittage 

[14] asserted that if a symmetrical slab is in critical condition 

so is the asymmetrical slab. In order for us to consider reactants 

with large temperature differences between the surfaces, it is 

necessary to alter the specification for 9 in terms of ambient 

temperature at the hotter surface. Thus we re-define a new dimension-

less excess temperature 9 such that 



27 

9 = — ( T - T ) (1.4.0) 
RT

 P 

P 

where subscripts p and s refer to the hot and cold surfaces 

respectively. The definition (1.4.0) implies that temperature 

will be negative throughout the vessel except at the hot surface where 

it vanishes. In the heat generation term, we still consider the 

Frank-Kamenetskii exponentiation to be valid. This assumption will 
the. 

hold good in^region near the hot surface. However, by assuming 

negligible heat generation at the cold surface compared to the hot region, 

the Frank-Kamenetskii exponentiation can then be considered valid 

throughout the whole reactant. We now have a
g
 and a being the Biot 

Numbers at the cold and hot surfaces respectively. Of the asymmetrically-

heated reactants, we only consider slabs which are of interest to 

us. Thus we consider slabs with the interest of determining the 

temperature profiles within the reactant and where possible to 

determine the critical Frank-Kamenetskii parameter 6
c
 (or • 

1.5 Steady-State Problems in Some Asymmetrically-heated Slabs 

The effect of insulating a self-heating slab can be 

physically understood by considering a slab 0 < z' < 2a with the 

hot surface being maintained at temperature T . This temperature 

Tp can be maintained constant by using a heat reservoir. However 

the other face is then exposed to its surroundings at temperature TQ 

Depending on the nature of heat exchange between the slab and the 

surroundings, we assume a surface temperature T at the cold surface. 
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By varying the Biot Number at the cold surface the effect of 

insulation can be obtained by letting a tend zero. 

(a) Slab with insulation at the cold surface (a
p
=°°; a

s
=0) 

Curve 2 in Figure 1.7 representsthe asymmetrical slab with 

perfect conduction (a
s
=®) at the cold surface. However, as a 

values are reduced, the temperature profiles take the form of curves 

3 to 6. The significant feature of these curves is that maximum 

temperature within the slab shifts from the 'hot surface' to the 

'cold face' with T £ representing the maximum temperature for the 

onset of thermal ignition. This temperature T
g
^ represents the 

symmetrically-heated case with 0 < z < 2. Hence the corresponding 

the 

limiting can be determined in the same approach as in^earlier 

section on class A geometries. In fact, for the limiting case we have 

k 
9 = 21og cosh(26exp0 )

2 

max
 &

 ^
 r

 max' 

and 5 .
 n

 0.22 (1.5.0) 
crit,a =0

 v

 ' 
s 

The result (1.5.0) can also be derived from physical 
W H E N 

arguments, since a = 0, the slab corresponds exactly to one half of 
A

 5  

symmetrically heated slab subject to the Frank-Kamenetskii surface 

condition. Curve 1 is for the trivial case for an inert material 

in which case the temperature profile is linear. 

(b) Slab with hot face on a perfect conductor and with 

restricted heat loss at the cold face (a
p
=0; finite) 

The slab is once again assumed to have temperature T
p 
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maintained at the hot face by a heat reservoir with Newtonian-Cooling 

at the cold face. By defining z = z'/a, we have at the cold 

surface 

(1.5.1) 

D Q ~ ~ 

jf- + a (9 -9J = 0 at z = 2 
dz s s Cr 

with 0 = — ^ - (T -T ) and 6
n
 = (T

n
-T ) 

s ^ 2 s p RT P 
P P 

Note for = 0, this correponds to the symmetrically heated 

slab with the limiting case (1.5.0). In general the slab solution 

is given by 

A * 
0 = logA - 21og cosh[z(£) + c] (1.5.2) 

We expect from (a) that for a finite a t h e maximum 

temperature will occur within the slab. We let the maximum 

temperature 9 correspond to the point z = z . Therefore our r

 max
 r r

 max 

problem becomes 

D 2 9 

+ 6exp9 = 0 , 0 < z < 2. 
dz 

with boundary conditions; 

(i) 9 = 0 , z = 0 

d9 ~ ~ 

(ii) 3—
 =

 0, 9 = 9 at z = z _ 
^
 J

 dz max max (1.5.3) 
H A ^ ^ 

dt
 +

 °s
(

v
0

o > •
 0 a t z

 •
 2 
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Imposing boundary condition (i) into (1.5..2), we get 

A = cosh ( — ) 

But at the point z = z , r

 max 

~ V V 
d9

 o r
A6i

 2

 . ,
 r r

A6i
 2

 * 
dz

 =  + C ]  

= 0 

Therefore 

C

 = " W t
0 

Hence Q solution is 

A6 * 
9 = logA - 21og cosh[(^) (z-z

m a x
)] (1.5.4) 

Note once again at z = z . 9 = 9 . Thus &

 max} max 

A = exp0 r

 max 

Finally (1.5.4) becomes 

8

 =
 8

max "
 2 1 o g C 0 s h

^
6 e x p 5

m a x
/ 2

^ ^
z

-
z

m a x ^ 

h (1.5.5) 
with 9 = 21og cosh(6exp0 /2) z 

max
 & r

 max
 J

 max 

Considering the boundary condition at z = 2 

_ dQ = a (0 -9_) 
dz s

v

 s 0
J 

Differentiating 9 with respect to z in (1.5.5) and then 

imposing the boundary condition we obtain 
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A S ( V V = P T A N H P D - - i p o 

= (1.5 .6) 

~ k 

where P = (2Sexp0 ) 2 (1 .5 .7) 
max 

Hence 

But 

p2 max 
6 . - 5 - 6 

2 P , 2 P = -x- sech sr z 2 2 max 

= 7 U - t a n h 2 | 2 m a x ) (1 .5 .8) 

>s " ®max " 2 1 0 8 

D
 Z 

P _ / . T./-, max. = 21og[cosh i- z m a x / c o s h P ( l -

Therefore 

(9 /2) cosh z „ s 2 max e = z 
coshP (1— 

We note 
z 

^—) = coshPcosh _ _ 
2 max 2 max 

'max P P coshP(1 z—) = coshPcosh — z -s inhPsinh z 
2 ? max 2 r 

Thus 

(6/2) s e 
p 

(coshP - sinhP tanh •=• z ) 
2 max 

OR 
- ( 0 / 2 ) 

tanh 2 P z = [ c o s h P - g 5 1 2 max . . 2n smh P 
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2 P 
Hence on substituting tanh z into (1.5.8), we get 

z max 

P
2

 2 2 " ( V
2

) "®s 
6 = [sinh P-cosh P+2coshP e -e ] 

2sinh P 

P 2 - ( 0 / 2 ) - 0 

= [2coshP e -e
 5

 -1] 
2sinh P 

P 2 ( 0 / 2 ) - ( 0 / 2 ) - ( 0 S / 2 ) 

= [2coshP-(e + e )] e 
2sinh P 

Therefore 

6 = (P
2

/sinh
2

P)[coshP-cosh(e
s
/2)] exp(-9

s
/2) (1.5.9) 

A summary of the above analysis is contained in [6]. However, 

D D 

attempts to determine the limiting case when = 0 for all values 

of a
g
 and 0Q is not possible. Thomas and Bowes [16] were able to 

determine the limiting case for a wide range of practical interest 

by assuming large values of parameter P. Infact they chose $ = 1 

which is the implicit condition P + in (1.5.6). Hence the maximum 

6 is obtained when 

2(1-P cothP)(coshP-coshN) + (P/2a
s
)e"

N 

+ [1-(coth P/2a )] PsinhP = 0 (1.5.10) 

where 

N = (P/2a
s
) + 

Note: From equation (1.5.6) we have 

~ p 
Q = E N + — $ 

s 0 a 
s 

Hence N = (6
s
/2) corresponds to the case when $ = 1 
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The determination of P that satisfies (1.5.10) is 

essentially numerical. Thomas and Bowes were able to determine P 

and z for a wide range of 9
n
 and in the process did determine 

max u 

$ ~ 1. They also showed that both z and 0 were small for 
' max max 

a > 0 . 5 . However as a tends to zero, z was noticed to move 
s s max 

towards the 'cold face'. For a
g
 < 0.5, the temperature was 

approximately uniform, the Semenov condition. To determine the 

limiting case for < 0.5, Thomas and Bowes assumed the heat generation 

term to be constant and equal to 6exp 0 . Thus for a « 1, 
max s 

the critical Frank-Kamenetskii parameter becomes 

6

crit "
 6

crit,
a
 =0"C

1 + 2

«
S
l

e

ol> C
1

"
5

"
1 1

^ 

' s 

with 5
 A

 _Q =( J - ) = 0.182, which is a good approximation to 
e n ,a

g
 e 

(1.5.0). 

(c) Slab with the hot face insulated and the cold surface in 

contact with a perfect conductor (a =0,a
s
=°°) 

This problem has been studied by Semenov [17] and Zeldovich 
CL 

[18] for^slab with large temperature differences. Their assumption 

of zero temperature gradient at the hot face and a linear temperature 

profile at the cold face is a good model to problem (a), which is 

a special case of (b). In (b) Thomas and Bowes found Q
m a x

 to be 

independent of a and 9 satisfies the above assumptions. Gray and 
J the 

Lee [3] were able to show that Semenov - Zeldovich treatment leads 
A 

to the limiting case 
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By assuming 0 » 1 Thomas and Bowes [16] replaced T
g
 by T

g
 and 

hence replaced by 9
s
 in (1.5.12). Thomas and Bowes extended 

the analysis of Semenov-Zeldovich to include the cases where / °° 

and accordingly modified the limiting case for 6. Hence they 

were able to determine 0 apd 6 . namely 

s c n f
 } 

2 2 

0

s
 S

 [2«
s
/(l

+
2a

s
)]0

( 

a n d 6

crit
 B

 /
a

s t
1 + 2 a

s » V
 ( 1

-
5

"
1 3 ) 

with the proviso that 

[2cc
s
/(l

+
2cx

s
)] | 0

O
| » 1 

Zeldovich also studied the problem (b) with ct = 0 and 

a finite and was able to determine 6 .. such that 
s crit 

2 2 
6

crit
 S

 k [°s
/ ( 1 + 2 c ,

»"
 C 1

-
5

-
1 4 } 

Equation (1.5.14) gives a value of greater than 

0 0
 1

—' 
(1.5.13) by afactor [(1.4-|6

0
|) /e

Q
 ]. However, when |e | becomes 

large both approaches of (1.5.13) and (1.5.14) give the same value 

of 6 This result corresponds to the case when a becomes 
crit

 r

 s 

large. 

1.6 Multi-dimensional Self-heating Bodies 

The discussions in the earlier sections have concentrated 

on the solution of problems with one spatial variable. However, 

techniques and methods have also been developed to cater for thermal 
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ignition for generally shaped bodies. J.T. Stuart [19] developed 

a general analytical solution of the Liouville problem by using 

complex analysis methods. 1*0 fact his 1967 paper suggested typical 

solutions of Liouville's problem for given fluid conditions. Of 

importance is the solution he suggested for spatially periodic 

problems, this was used by Adler [20] to determine the critical 

parameters for the slab with a periodic surface temperature. 

(a) Procedure for determining solution of Liouville's problem 

using complex analysis methods 

Consider the Liouville's problem 

+ 6exp0 = 0 (1.6.0) 2 
+ 

3x 

We define complex variables z and z by putting 

z = x + iy and z = x - iy 

and treat them as new independent variables. Hence 

3 _ _ = 3 _ 

3x 3z 
+ 3 _ 

3z 
a n d

 ! y
s

 h - h 5 

Thus equation (1.6.0) becomes 

( 1 . 6 . 1 ) 
3z3z 

Differentiating (1.6.1) with respect to z, we obtain 

3 
5 0 3 9 

4
 6

 3z 
3 0 
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Therefore 

3
3

6 80 8
2

9 
2 - 3z 

8z 8z 8z8z 
= 0 

T ( | f )
2

> = o 
8z 8z

 d z 

Integrating the equation with respect to z, we get 

= ( 1 . 6 . 2 ) 

8 z 

where G(z) is as yet an unspecified analytic function of z. We 

now define a solution f(z,z) for equation (1.6.2) by putting 

© R - V - 6 / 2 

f(z,z) = e 

On substituting f(z,z) into (1.6.2), we have a condition on f(z,z), 

namely 

f
z z
(z,5) - G(z) f(z,z) = 0 (1.6.3) 

On repeating the same procedure with z instead of z, we obtain 

f
£ i
(z,i) - H(z)f(z,z) = 0 (1.6.4) 

H(z) is an arbitrary analytic function of z. In general the 

solution of equation (1.6.3) is 

f(z,z) = a
1
(z)3

1
(z) + a

2
(z)3

2
(z) 

where
 2

 are linearly independent solutions. However, f(z,z) 

must be real, therefore 

V 
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& X ( Z ) = A X ( Z ) 

and
 = a

2 ^ 

Hence 9 becomes 

0 = -21og[a
1
(z) a

1
(£) + a

2
(z)a

2
(z)] (1.6.5) 

By imposing Wronskian constraint on (1.6.3) we get 

D A ^ D A ^ 

a

l
( z )

 IT "
 a

2
( z )

 dT
 =  x

 '
 s a y

' 

On substituting into (1.6.1) it can be shown that 

U 2 | = ! ( 1 . 6 . 6 ) 

In his 1975 paper Adler [20] solved the symmetrically heated slab 

(1.6.0) with conditions; 

(i) 7 = 1 : 0(x,l) = E C O S O J X 

2IR 

where the wavelength = — , with OJ being the wave number. 

(ii) y = 0 : If- = 0 

Adler chose a periodic solution in x such that 

2 
) A! F 1 (I) / >. M Z - ^

2

" ! J C 1 T > H • / W Z . 

G(z) = —-j-, a. (z) = A c o s M and a
9
(z) = B ^ s m ^ - ) 

He was able to express the Frank-Kamenetskii parameter as a function 

of the wave number and the amplitude, namely 

2 cosh
2

(f) 
5 = 2u> [ j-=- - sinli (|)] (1.6.7a) 

cosh a) 
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OR 

2 2 
sinh

2

(-) =
 s e c h

 <i)-(<S/2o) ) 

^ tanh
2

o) 
(1.6.7b) 

Adler [20] also determined the dependence of temperature 

profile 9(x,y) on oiande, namely 

0(x»y) = - 21og[cosh(|)
 C Q s k

 - sinh(-|) cos cox] 
cosh co 

(1.6.8) 

We have reproduced the curves of 6 versus co for various 

values of c, see Figure 1.8. Adler observed that the maximum 6 

decreased for an increase in e. Hence his conclusion that the 

oscillatory motion decreased the critical 6 and that this amount 

of decrease is dependent on the amplitude of the oscillation. 

(b) Many other attempts have been made to determine the critical 

conditions for multi-dimensional bodies, for example, the Frank-

Kamenetskii [2] practical approach on finite cylinders. An important 

feature of these solutions is the dominance of the harmonic 

mean-square lengths in the relevant formulae of the critical parameters. 

One of the most practical aids is the concept of an equivalent 

sphere . In essence this method replaces an arbitrary body by an 

equivalent sphere of appropriate radius such that the equivalent 

sphere will reach the same critical conditions as the arbitrary 

body under the same surface temperature. Since the limiting case for 

the spheres is known and is expressed in terms of its radius, the 
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problem reduces, to determining the equivalent radius of the sphere and 

hence the critical parameters of the arbitrary body. Gray and Lee 

[6] have used this concept with reasonable success for the cube and 

the regular cylinder. They calculated 5 ^ (cube) = 2.65 

and 5 ^ ^ (regular cylinder) = 2.89. These values compare 

favourably with the 'exact' values quoted by Gray and Sherrington 

[3], namely <5
c r i t

 (cube) = 2.52 and <$
c r
^

t
 (regular cylinder) = 2.77. 

In [3] Gray and Sherrington describe three further approaches 

which can be used to generalize the steady-state problem. These 

methods are summarised below:-

(i) Collocation Methods 

This method involves defining a suitable polynomial for 

the temperature profile within the reactant, and satisfying the boundary 

conditions. The degree of accuracy and complexity of the chosen 

polynomial will be determined by the number of internal points, 

since the coefficients of the polynomial must be chosen such that 

the polynomial satisfies exactly the energy equation at these 

internal arbitrary number of points. The profile chosen may 'blur' 

the bifurcation (or turning point, see Figure 1.2) point which occurs 

at 6 = thus it is necessary to 'impose' the critical 

condition. Gray and Sherrington define this 'criticality' as the 

condition underwhich a small change in temperature at some point well 

removed from 'centre' results in large changes in central excess 

temperature. This definition is consistent with results from 

experiments discussed in [3]. This method has been used successfully 

for class A geometries and other bodies, see Table 1. 
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In practice this method results in solving numerically 

Of 

a pair^transcendental equations which completely specify the 

critical values of 6 and the central excess temperature. Note the 

method avoids the integration of the energy equation though the 

work itself is tedious. Another advantage of the scheme is that no 

approximation of the heat generation term is necessary, namely the 

term 6exp[0/(1+30)], need not be altered. Thus the method can also 

be used to determine the effect of 3 on the Frank-Kamenetskii 

parameter. However, the polynomial exhibits some non-symmetrical 

terms where there should be symmetry. A major weakness of this 

scheme is that it offers no scope for a transient study due to its 

lack of a theoretical basis. 

(ii) General Series 

This method was developed to offer a unified solution 

of class A geometries making use of the harmonic mean-square lengths 

in the formulae. The equation to be solved is 

d
2

0 d0 0
 n — o + (—) j— + 6e = 0 

, 2
 K

z
J

 dz 
dz 

with boundary conditions; 

0 = 0 at z = 1 (1.6.9) 

= o at z = 0 

dz 

A parametric solution of (1.6.9) was expressed as 

00 j 

e = e - 2 & 9 l b.(yz
2

) 
^ J = O 3 



On imposing the condition at z = 1, it can be shown that 

0 0 E 0 

1 b (yz ) = exp(-r-) 
j=0

 3 

For the recurrence relation of b^ see [3]. Gray and Sherrington 

sought to determine the solution for an arbitrary body by considering 

9 = 9 (0Q ,Z ,K). For the limiting case they obtained 

=
 2 (K+l) (K+3) 

crit (K+7) 

( 1 . 6 . 1 0 ) 
f

e
 ) = 21og(££) 

^ max' . .
 5 V

 4
 J 

crit 

where K is the shape factor, with K = 0,1,2 representing the slab, 

infinite cylinder and the sphere respectively. 

Gray and Sherrington were also able to show that 9 depended 

feebly on the shape factor K and wrote 

S
e

0
( i - z

2

) [ i - z e
Q

2

 + ...] (1.6.113 

The justification of this method can be seen from Table 1, in that 

its solutions broadly agree with the results independently obtained 

by other schemes. However, its advantage is that the temperature 

attains its maximum value at the centre and that the total heat 

balance equation is satisfied. It also offers a unified solution 

for class A geometries, even though the bodies differ widely in shape 

(iii) Variational Methods 

This method was developed to cope with the transient 

behaviour of a reacting system. However, Sherrington [21] and Wake 
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[22] have shown how powerful this method is even for the stationary-

state problems. Both authors have solved the class A geometries, 

cube and other geometries (see Table 1). The method involves 

choosing a physical?-^realistic temperature polynomial satisfying 

exactly the boundary conditions. Thus the temperature polynomial 

must exhibit parabolic or convex temperature profiles with the 

maximum temperature occurring at the centre of the reactant. The 

coefficients of the polynomial are then considered to be functions 

of time only and hence independent of spatial coordinates. The power 

of the variational method is that any errors in approximating the 

temperature are reduced by the following procedures 

(a) Two vector fields H and G are defined representing the 

heat flow and heat generation fields respectively. G is defined as 

an integral in time. Thus we have 

div H = - py0 (1.6.12) 

t 
G = / Q.K

n
(T)dt (1.6.13) 

0 U 

where 

p = density of the reactant 

y = specific heat 

KQ = kinetic rate 

(b) Fourier law and heat conduction gives 

grade + i .H = 0 (1.6.14) 
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A variational in 0 can be obtained from combination of 

equations (1.6.14) and (1..6.13)., Hence, we get 

| pyQ 60 dv + / i H 6H dv = - / ^ G 6H dv (1.6.15) 
v v

 A

 v
 A 

Equation (1.6.15) can be made more tractable to analysis by defining 

the temperature profile. Gray and Sherrington [3] chose 

0 = ( L - Z 2 ) ( Q 0 + Q I Z 2
+ Q 2 Z 4

 + . . . ) ( 1 . 6 . 1 6 ) 

By substituting (1.6.16) into (1.6.15) we obtain n equations; 

/ p u 9
f i - d v ^ H f - d v - - - j l G M - d v (1.6.17) 

V
 N

L V
 N

L V
 N

L 

i = l(n) 

The n equations are equivalent to the Lagrangian equations of 

classical mechanics. However, for the steady-state problem equation 

(1.6.17) becomes 

J p u e M - d v = - / i G | S - d v (1.6.18) 
V
 N

L V
 N

L 

Equations (1.6.18) now represent n algebraic equations. 

For nonlinear heat generation, equations (1.6.17) are not always 

amenable to analysis. However, the Frank-Kamenetskii conditions of 

criticality can be obtained when the solutions of the n-equations 

cease to be bounded. Sherrington [21] considered the solution for 

class A geometries, the cube and other geometries (see Table 1, 

variational (1)), using a quadratic heat generation rate. 

Sherrington obtained the results by using a temperature polynomial 

as described above. He further assumed that 0 = 0 at surface. 

Wake [22], on the other hand, generalised the surface condition by 
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imposing the condition 

+ a9 = 0, at the surface 
DZ 

Unlike Sherrington, Wake chose trigonometric terms to represent 

the temperature profile within the reacting mass. By assuming 

the heat losses to be purely due to heat conduction within the 

reactant, Wake further investigated the effect of the Biot Numbers 

on the critical Frank-Kamenetskii parameter. He defined this 

criticality as the condition when solution of the time-dependent 
&t-<L shouxo 

variational equations is just possible. His results^in Table 1; 

variational (2) corresponds to the Frank-Kamenetskii condition, 
A = OO. 

1.7 The Effect of 3 Values on the Ignition Phenomena 

In the above sections, we have limited our discussions 

to the case 3 = 0 in the heat generation term. However, it is 

of interest to investigate the effect of non-zero 3 values on the 

possibilities ô - existence of the conditions for thermal ignition. 

It is known that the curve in Figure 1.2 represents the simplest 

bifurcation of a self-heating medium, in which no temperature 

solutions exists for 6 > 5 . . However, for 3 / 0 and 
crit 

6 > -̂j.'-Lt > there exists a stable state, given by the upper part 

of curve in Figure 1.9, for which the temperature is sufficiently 

high to lead to ignition. This stable state is called the super-



critical state. Fradkin and Wake [23], have investigated the 

disappearance of the critical phenomena for thermal explosion, 

when 3 = 9
t r
- X n fact they have shown that criticality always exist 

for thermal ignition for small values of 3, namely 0 < 3 ^ 3
t r
, 

in which ^ ^ ( 3 ) monotonically approaches ^ . ^ ^ ( ^ O ) from above as 

3 ^ - 0 . Several authors have sought to determine 3 for various 

rates of heat generation and geometries. Fradkin and Wake suggested 

a variational model for determining 3 by assuming a local critical 

<S. However, their scheme results in considerable difficulties 

even for simple geometries. Bazley and Wake [24] have successfully 

/ cr 

the infinite circular cylinder. On the other hand,Boddington 

and Gray [25] have conducted an extensive study of the transition 

region for the slab using Arrhenius and 'bimolecular law' rates of heat 

respectively. They also determine the shape of the critical locus, 

the bifurcation set, a curve in three dimensional space (6,3,9
m
) 

for the two rate laws for both Frank-Kamenetskii and Semenov extremes. 

Curves in Figure 1.10 represents some of their results. Table 2 

contains some of the data with a comparison of the transition and 

critical parameters for both Frank-Kamenetskii and Semenov conditions 

for the infinite slab. The main conclusions of Boddington and Grays 

investigation are:-

(i) The size of the excess central temperatures
 0

m
( 3

t r
) is 

nearly four times the classical value with temperatures (T -TQ) 

being of the order 400K greater than T
g
. T

m
 and T

g
 are temperatures 

at the centre and surface of the vessel respectively. 

generation, namely 6exp[6/(1+36)] and {6(1+36)
2

exp[6/(1+36)]} 
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(ii) For any particular rate law, the Semenov extreme sets an upper 

bound on B for the Frank-Kamenetskii extreme and all the 
tr 

intermediate Biot Numbers. 

(iii) The suddenness with which the criticality is lost with 

the ignition phenomena persisting to within 0.025 of 3 . 

Kordylewski [26] has also investigated numerically the 

3 effect on the disappearance of the criticality for thermal explosion 

using the reduced Frank-Kamenetskii rate of heat generation. Figure 

1.11 exhibits the loci of the 6 curves for extinction and ignition 

dependence on 3, with the stable solutions possible within the 
* * 

confines of and 6
2
 curves. 

1.8 Conclusions 

The effect to which the postulates and approximations of 

thermal explosion theory provide an adequate description of the 

gas phase reactions has been the subject of interest to many authors. 

However, due to lack of satisfactory precision instruments most 

of the experimental data are erroneous. Gray et al [27] have 

conducted an extensive study on the decomposition of diethyl peroxide 

in the gas phase. By limiting the heat losses due to convection 

and radiation, any heat losses could then be attributed to the 

conductive heat transfer. .spite of the deviation in practice of 

the reacting systems from the various assumptions of the steady-

state conductive theory, their results are in excellent agreement 

with the predictions of the thermal explosion theory. The experimental 
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results may be summarized as follows:-

(i) Ignition is always preceded by self-heating with the 

largest temperatures occurring at the centre of the reactant. At the 

vessel walls the temperature is O(TQ), where TQ is the temperature of 

reactant's surroundings. 

(ii) A critical temperature increment exists above which ignition 

is inevitable. The size of this increment is a multiple of 

RT
q

2

/E. 

(iii) The dimensionless critical temperature gradient at the wall 

is given by 

f — l ^ dz
 J

 crit 
= 2 

(iv) The temperature differs significantly from a parabola 

close to criticality, being less steep at the walls and more curved 

at the centre. 

The assumption of the Arrhenius rate of reaction in the 

postulates of thermal explosion theory implies a monotonic increase 

in the reaction rate with an increase in temperature. However, this 

case is true for chemically simple reactions. The interaction of 

chemical kinetics sometimes exhibit reaction rates which fall over 

certain temperatures ranges leading to many interesting and complex 

phenomena. One of these is the substantial self-heating that may 

be tolerated in a reaction without ignition. This is the case for 

the oxidation of hydrazine with the reaction being overwhelmingly 

thermal in origin. 
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Although thermal explosion theory has led to an excellent 

prediction of chemical Ignition of simple chemical systems in 

open stirred systems, its prediction of the critical dimensionless 

temperature excess offers a bound on closed systems. It has also 

led to a better understanding of hydrocarbon oxidation, in that a 
does 

unified theory of both thermal and kinetic theories play a part 

A 
in determining chemical reactions of more complex systems 

(see Reference [3]). 
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Figure 1 .1 : Semenov's diagram of heat r e l e a s e r a t e s q Q ' ^ i ' 0 ^ a n d 

heat l o s s t. P and R of q^ and £ r ep re sen t s t a b l e 
and uns t ab l e modes. However, the i n t e r s e c t i o n Q 

r e p r e s e n t s the h ighes t a t t a i n a b l e temperature T ^ 
f o r the r e a c t i n g mass to remain s t a b l e . T ._ i s & c r i t 
given by the tangency of q^ and Hence Q r e p r e s e n t s 
the c r i t i c a l condi t ion f o r the onset of thermal 
i g n i t i o n . 

V 



Figure 1 .2 : Schematic diagram of the temperature of the c e n t r e of 
s l ab versus the Frank-Kamenetskii parameter , e x h i b i t i n g 
s t a b l e temperature fo r 9 < with <5cr^ t being 
the l i m i t i n g case . 

Figure 1 .3 : 6 as a func t ion of 9m froo a sphere as da ta published 

by Steggard [9] . 
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Figure 1.4: Temperature profiles for the class A geometries 

across the reactant's vessel. 



Figure 1.5: The critical values of 6 against a for class A 

geometries. 

Figure 1.6: 9
m
 and 6

s
 are the centre and surface temperatures 

respectively for the infinite slab, infinite cylinder 

and the sphere d t C r i H €<a & fy, 



hot 
face 
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Figure 1.7: Temperature profiles for asymmetrically-heated slab; 

(a =°°, 0 < a < . 
p s

 J  

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 

Figure 1.8: Adler [20] curves of 6 against u) for specified values of e. 
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Figure 1.9: Graph of the maximum dimensionless temperature excess 9
m 

against 6 exhibiting typical behaviour of reacting medium 

for various 3 values. 3 corresponds to the transition 

region. For 3 > 3 reactant no longer exhibits ignition 

phenomena • 

Figure 1.10: The curves for Biot number a =
 0 0

. The 3 effect on the slab 
with (a) Arrhenius rate law (b) Bimolecular law. Curve CT 
is the ignition locus and DA the extinction locus. T 
corresponds to the transition point, Point C represents 
Frank-Kamenetskii's classical solution. B-+E and D + F 
represent typical ignition and extinction jumps respectively. 
Curve from [25]. 



Figure 1.11: Curves obtained from [26]. Curves represent the 

dependence of the critical parameters of self-ignition * * 

and extinction 6
2
 for the slab and the sphere 

on parameter 3 . 



TABLE 1: Values of 6 . for various geometries; table reproduced from [3] 

BODY 'EXACT' COLLOCATION SERIES V A R I A T I O N A L 

(1) (2) 

Slab 0.88 0, .90 0.86 0.89 0.88 
Cylinder 2 2, .10 2 2.06 2 
Sphere 3.32 3, .47 3.32 3.42 3.32 
Cube 2.52 2, .36 2.57 2.54 2.45 
Square Rod 1.70 1.72 1.73 1.69 
Equicylinder 2.77 2, .78 2.84 2.77 2.77 
Right Cone 3.09 3, .25 - 2.88 -

TABLE 2: Critical-continuity transition data from [25] 

Parameters 

6

tr 

^crit ^ t r
1 

g . (3 ) 
m,crit tr 

6 . (3=0) 
crit

v J 

FRANK-KAMENETSKII (a=«) 

Arrhenius 

0.2458 

1.3074 

4.897 

m,crit 
(3=0) 

Bimolecular 

0.3369 

1.1677 

5.101 

0.8758 

1.18 

Parameters 

tr 

(Se) 
tr 

tr 

(Se) 
crit 

(3=0) 

6 . .(3=0) 
crit 

SEMENOV (a=0) 

Arrhenius 

0.25 

0.5413 

4 

Bimolecular 

0.34315 

0.48113 

4.121 

0.36788 

1 

( S e ) = (S/ct) 
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CHAPTER TWO: REACTIVE SLAB WITH PARTIAL SURFACE INSULATION 

2.0 INTRODUCTION 

We consider modelling the thermal^stability of buildings 

constructed on thermal active sites. These sites are covered 

by surface soil containing active organic material (refuse). The 

mass is usually slowly reacting and in thermal equilibrium with 

its surroundings. Of interest to us is the effect that the 

insulation provided by the buildings has on the thermal balance. 

Any meaningful analysis can only be considered for an idealised 

model of the physical problem. 

Thus in some cartesian frame of reference Ox'y'z', we 

consider a symmetrically heated exothermically reacting slab with 

the steady temperature distribution being a function of x' and 

y' only. The slab surface is partially covered by parallel 

insulation strips of length 2£ at y' = ±a, with the remainder of 

the surface maintained at temperature T
g
, the ambient temperature. 

We are then interested in determining the critical Frank-Kamenetskii 

parameter, 6
c
, as a function of the insulation length, 2Z, the slab 

thickness 2a, etc., for the steady-state thermal explosion theory. 

We make use of the same assumptions as in Chapter One, namely 

(i) Zero order reaction 

(ii) constant physical properties 

(iii) Frank-Kamenetskii approximation in the 

reduced Arrhenius rate law, namely the case 

3 = 0. 

Thus the two-dimensional Fourier equation in temperature becomes 
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3 T 3 T
 Q

 0 * -E -
— r y

 +

 — r r
 +

 y —
 e x

p( iff) = o> 
3x

 2

 3y
 2 x R T 

where 

T(x',y') : absolute temperature distribution within the 
slab 

E : the overall activation energy 

X : thermal conductivity 

R : universal gas constant 

ZQ : frequency factor 

Q : heat of reaction. 

We conveniently choose our axes Ox'y'z
1

 such that the 

temperature T(x',y') is symmetrical about Ox' and Oy' (see 

Figure 2.0). Hence we only need to consider the region 0 < y
T

 < a, 

x' > 0. The boundary conditions are:-

jst 
y* = 0 : I p r = 0, V x ' > o , 

it 
y' = a : o, Vx» < I , 

: T ( X ' , a ) = T
0
, V X ' > I , 

3T 
x

'
 = 0 :

 w - a . 

If the temperature T(x',y') is to be unique, we need to 

specify the boundary condition as x' 



Figure 2.0: Schematic diagram for the reactive 

slab with the convenient choice of 

Ox'y' axes. 

However, the equation can be made dimensionless by defining 

new auxilliary variables 

x' r £ x

 = it >
 y =

 t
 £ =

 a ' 

with 9 = (T-T ), 
R

V 

8 - a s 
6 ' e ' 

6 = C?) Z > a
2

 C - — y )
 e x

P C - )• The choices for 9, 3 
A

 ^ RT
Q
" RT

Q 

and 5 are consistent with the definitions in Chapter One. Hence the 

energy equation together with boundary conditions reduces to 

and 

V 
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2 2 
3 6 3 0 
2 + — 

8x 8y 

+ 6 e x p [

( i t 3 e t
] = 

y = 0 

y = 1 

_89_ 
9y 

89 

= 0 Vx > 0 , 

t — = 0 for 0 < x < e , 
8y ' 

9(x,1) = 0 Vx > e , (2.0.0) 

x = 0 
89_ 
8x 

0 j o r ^ ^ i 

In general $ « 1, hence we shall make the usual 

Frank-Kamenetskii approximation in the exponential term of the 

Arrhenius rate law, namely 3 = 0 . When e = 0 (the case for zero 

insulation), 9 becomes a function of y only and the solution is 

known (1.2.5). In this case 9 = 6
e
_g(y) such that 

8
 ( y )

 .
 2
 logf'

03

?
1

 ° ) , 
e = 0

u ; 5 V

cosh ay 

(2.0.1) 
2 2 

and 6 = 2a sech a. 

The curve of 6 versus a in Figure 2.1, shows that real 

solutions exist only for 0 < 6 < 6
c
(0), where <$

c
(0) = 0.878 with 
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h 
Figure 2.1: Graph of (6/2) vs o for a > 0. The curve is 

symmetrical about the (<5/2)
2

axis . 

However, when e. / Q, we. seek to determine the. critical 

Frank-KamenetsRii parameter
 a

 function of e, We also note 

that the boundary- condition at x + is now given by 0 ("Syl^Q q G O 

with cr = cr(£). 

2.1 The Case e « 1. 

When the surface insulation length is small, e « 1, we 

expect the critical Frank-Kamenetskii parameter 6 (e}, to differ 

slightly from 6 (Q)
 t
 Hence we consider the perturbation about 
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a = a , namely 
c

 J 

a = cr
c
 - s (2.1.0) 

the 
where s « 1. Substituting o into <5 equation, we get 

A 

2 2 
6 = 2(a

c
-s) sech (a

g
-s). 

Expanding 5 as a Taylor series in powers of s, we get the 

critical parameter <$
c
(s) as a function of s, thus 

2 3 
<5

c
(s) = 6

C
(0) + s 6

c

( 1 )

( 0 )
 +

X _ 6
c

( 2 )

( 0 ) + 6
c

( 3 )

( 0 ) + . 

where 

6 CO) = 2 a
c

2

s e c h
2

a
c
 (=0.878) 

6 ^ ( O ) = 4a sech
2

a .(1-a tanha ) 
c ^ ^ c c

v

c c 

= 0 

note: a
c
tanha

c
 = 1 [see equations (1.2.15) and (1.2.16)]. 

Similarly it can easily be shown that 

6
c

( 2 )

( 0 ) = - 2<$
c
(0) , 

6
c

( 3 )

( 0 ) = - fa 6
c
(0), etc 

c 

Therefore 

<5
c
(s) = 6

c
(0)[l-s

2

- fa- s
3

 +
 ...] (2.1.1) 

c 

Outer Problem 

We consider the critical solution in the slab far from 

the insulation, that is, as x + where 6(°°,y) -»•
 0

£
_ Q ( y ) . 
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Replacing a by o^-s in (2.0.1) and expanding 9(°°,y) as Taylor 

series in powers of s, we have 

cosh (o -s) 

9 K y ) = 2 log[ r-
f
 H 

c
v y J J & L

 cosh(a
c
-s)y

J 

= 9
c
°(y) + s9

1
°(y) + s

2

9
2
°(y) - s

3

9
3
°(y) + . 

where 

« cosh a 
9 (y) = 21og( r — - — ) , 
c

 W J s v

 cosh a y
 J

 * 

©
1
°Cy) = - 2(tanha

c
-y tanha

c
y) , 

0 2 2 2 
9

2
 (y) = sech a^-y sech a

c
y , (2.1.2) 

0 2 2 3 2 0

3 ^ ^
 =

 3" (
s e c b a

c
tanho

c
-y sech a

c
ytanha

c
y) , 

etc. 

In order to express <$
c
(s) as a function of e, we need to determine 

the relation between s and e. To determine this relationship, 

it is imperative that we solve the energy equation in the neighbourhood 

of the insulation length, that is, when x = 0(e), and y = 0(1). 

Hence, we need to rescale the cartesian coordinates. However, the 

scaling terms will themselves depend on the relationship between s 

ct 
and e. By assuming, e = 0(s ), we put 

n = ^ and £ = — (2.1.3) 
a a 

s s 

where a > 0 . 

We now expand the component functions of 9
c
(°°,y) [see 

equation (2.1.2)] about y = 1 to enable us to deal with the inner 
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region where insulation is of importance. It can be shown that the 

ol 
dominant term of each component function is 0(s ). Hence the 

ol 0 
dominant term for 9

c
(°°,n) is the 0(s ) contribution from 0

c
 (ti) . 

Note: log cosh cx
c
y = log cosh[a

c
~a

c
(1-y)] 

= log cosh(a
c
-a

c
s

a

n) 

= log cosh a -a tanha s
a

n + ... &

 c c c 

Therefore 

i 0
r
 v ~ a 2a. 

)
c
 (n) = 2s n + 0(s ) 

Thus 0
c
(«,n) becomes 

ct 
»

c
C

00

>n) = 2s n + smaller terms (2.1.4) 

Inner Solution 

Through the introduction of the auxiliary variables (2.1.3), 

the energy equation becomes 

3
2

9
c
 (?,„) 9

2

8 (£,n)
 2 2 2 s

3 e^e.n) 

z r
 +

 7 t - v
1 ) s ( 1

"
s +

 •••
) e 

9£ 9 t) c 

= 0 (2.1.5a) 

with the boundary conditions; 

90 ri = 0 :

 ^
£ = 0

 |5| < -tr ' 

3n
 s

a 

: 6
c
C O = 0 > , (2.1.5b) 

s 
90 

5 = 0 : = 0 vn , 
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£ + « : e
c
O ,

n
) = 2s

a

n . (2.1.5c) 

We now put 

9
c
(£,n) = s

a

9
a
(C,n) + smaller terms, (2.1.6) 

to represent the temperature solution in the inner region. Expansion 

(2.1.6) takes into account the dependence of 9
c
(£,ti) on powers of s 

as £ Since we have assumed e = 0(s
a

), we now define E,̂  by 

f = 
n a 

s 

with assumed to be 0(1). On substituting 9 (£,n) in (2.1.6) into 
X ^ 

(2.1.5) and then equating coefficients of powers of s
a

, we have 

the dominant equation 

a
2

e a
2

9 (s,n) 
+

 — r - =
 0 ( 2

-
1

-
7 } 

h an 

Writing $
a
(£,ri) = 9^(2;,n) -2n, equation (2.1.7) reduces to 

v \ ( S , n ) = 0, 

with the boundary conditions 

n = 0 : ^ = - 2 |
5
| <

5 l
 , 

: <^(£,0) = 0 |g| > q , (2.1.8) 

3$ 
5 = 0 : jAL = 0 Vn , 

00

 : $ 0 
^' a 
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The solution of (2.1.8) is expressible in terms of the 

Weber-Schafheitlin discontinuous integral [28], namely 

W P "V 
$ (£,n) = 2£ /

 u

 cosXg^ e dX (2.1.9) 
a

 1

 0
 A

0 

Therefore 

a
 J

l W . - V 

0
 x

0 
e

c
C5,n) = e

c
(°°,n) + 2 £

l S

a

 J — J L i _
 C O

s X
0
s e

 v

 dx
Q 

+ smaller terms 

Writing the inner solution in terms of the outer variables, we have, 

e (x,y) = 0 (°°,y) + 2£.s /
 u

 cos(X
n
xs

 a

).e dX 
c

 1

 0
 A

0
 U U 

+ smaller terms. 

We now put 

y = 

thus 0
c
(x,y) becomes 

00

 J (y£. s
a

)
 r

 _ ^ 

9 (x,y) = 0 (°°,y) + 2£ s
a

 J — ± cosyx e ~
y U

~
y J

d y c 1

 0
 y 

+ smaller terms (2.1.10) 

Intermediate problem 

We seek to determine the solution valid away from the 

insulation but which has the limiting form of (2.1.10). Making 

the substitution 
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9
c
(x,y) = 6

c
(°°,y) + s

a

^ ( x , y ) + smaller terms (2.1.11) 

in the energy equation and then equating the coefficients of powers 

of s, and noting that 9
c
(°°,y) satisfies the equation 

e
c
"(oo,y) + 6

c
(e) e ° = 0 . 

We also obtain 

o 0
c
(«,y) v

 ¥
 + 6

c

( e ) e

 - v
x

>
y : )

 = o> 

etc. 

_ 2 ,2 
We note that 6 ( O e = 2a sech ay. Therefore the equation 

for ¥ is 
a 

V
2

V
a
 + 2a

2

sech
2

ay.¥
a
(x,y) = 0, 

with the boundary conditions; 

y = 0 : ^ = 0 , 

y = 1 : ¥
a
(x,l) = 0 , (2.1.12) 

x + ® : ¥ + 0 
a 

Several attempts to determine the solution of (2.1.12) proved 

unsuccessful. However, Adler [29] suggests the following procedure 

for determining ¥ ; 
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Adler's Scheme 

If H(x,y) is a harmonic function, a solution of (2.1.12) 

may be written 

5
a
(x,y) = f | - atanhay-H(x,y) (2.1.13) 

which is easily verified on substitution. Taking 

H(x,y) = A(y) cosyx sinhyy, 

the required solution of (2.1.12) becomes 

00 

T (x,y) = / ? (x,y)dy 
a

 Q
 a 

CO 

= J A(y)(ycoshyy-atanhay.sinhyy)cosyx dy 
0 

(2.1.14) 

Comparing equations (2.1.10) and (2.1.14), at y = 1, we have 

A(y)(ycoshy-atanhasinhy) = j ( y L s ) 
u 1

 1 

Therefore 

2£ J (y£ s
a

) 
A(y) = -7 , \ * . . ^ (2.1.15) 

y (ycoshy-atanha. s m h y ) 

Finally equation (2.1.11) becomes 

9
c
(x,y) = e

c
(co,y) + 2 ^

l S

a 

cc 

)(ycoshyy-atanhay.sinhyy)cosyx dy 

y(ycoshy-atanha.sinhy) 
0 

+ smaller terms (2.1.16) 

Adler further assumed that because of symmetry the maximum temperature 

should he 
should occur at the centre of the slab, that is at (0,0), and equal to 

A 
0

c
 (0). In fact 9

c
 (0) is in some sense a "critical temperature". 
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Thus at (0,0), we have 

« J
1
(£p)dy 

log cosho = log cosha + e / J

q (ycoshy-atanha .sinhy) 

(2.1.17) 

d0
c
°(O) 

However, this assumption violates the condition ^ — = « at 

criticality. Adler justifies this departure as due to insulating 

the slab surface. By substituting a = a
c
 - s into (2.1.17), Adler 

was able to determine the relationship between e and s, namely 

~ h. 
s = e with = 1 and a = 2. Hence the critical Frank-Kamenetskii 
parameter, S

c
(<0 becomes 

3/2 
6 (<0 = 6 COD (l-£- (2/3a ).e + ...) 
c c

 c 

= 0.878(1-£-0.56£
 3 / 2

 + ...) (2.1.18) 

Adler also showed that 

2 h 

= 2e
i
Re[(l-z ) + iz] 

where z = y — (£+in). 

Hence the critical temperature distribution near the surface of the 

slab is 

e
c
(S,n) = e

c
(oo,n) + 2s

2

Re[ ( 1 - z V
2

 + iz] 

2 r 2 h n 

- 3s a Re[(l-z ) + iz] + smaller terms 

(2.1.19) 

Equation (2.1.19) forms a basis for numerical computation. 

V 
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2.2 The Case € » 1 

We expect for £ » 1, that the temperature distribution 

within the slab 0
c
(x,y) 0 and 6

c
(e) 0, where 9 (x,y) is the 

£ 
limiting case correponding to 6 (e). The energy equation for a c 
6(x,y) is 

2 2 
^ - |

 +
 ^ - | + 6 e

0

 = O, 0 < x < 0 < y < 1 
8x 8y 

with the boundary conditions; 

8 6 7 = 1 :

 87
 = < €

 ' 

: 9(x,1) = 0 , |x| > £ , 

7 = 0 : | ^ = 0 , Vx, 

(2.2.0) 

x » : 0 0(oo,y) = 0
£ = o

( y ) , Vy, 

x = 0 : f = 0 , V y . 

As £ we expect the temperature distribution within 

the reacting slab to be almost uniform except in the regions near the 

edges of the insulation where the slab loses its heat to the 

surroundings. Thus we expect the temperature within the slab to 

vary sufficiently slowly in the y-direction for the process to be 

dominated by the heat conduction in the x-direction. However, 

difficulties arise when we try to solve the one-dimensional equation 

in x, since the boundary condition at x = £ (£=£><») is unknown. 

This difficulty can be overcome by solving the equation when the 

surface is completely insulated, e = «», with a zero heat reservoir at 
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x = e. This assumption is consistent with our expectation of 

0
c
(x,y) 0 and <$

c
(0 + 0 as e + ». Physically, this assumption 

will yield an upper bound on 6
c
(e), since the temperature at 

x = £ (e will be small but non-zero for the idealised model. 

Therefore, the energy equation, neglecting the y-dependence of the 

temperature, becomes 

9"(x) + 6 e
6

 = 0 , 0 < x < e (e= °°) , 

with boundary conditions; 

x
 = 0 9

1

 (0) = 0 (2.2.1) 

x = £ 0(£) = 0 

We rescale equation (2.2.1) by setting 

F -
 X

 8 -
 6  

z - 7 > 6 - ~2 ' 
£ 

to get 

)"(5) + 6 e
6

 = 0 , 0 < 5 < 1, (2.2.2) 

(2.2.3) 

with the boundary conditions; 

5 = 0 : 0' (0) = 0 

5 = 1 : 9(1) = 0 

tie 
Therefore solution of (2.2.2) is 

a 

- • 
~ 2 2 

and 6 = 2p sech p (2.2.4) 
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The limiting <$
c
(<0 is determined by maximizing p in (2.2.4), namely 

p = a and hence r

 c 

6
c
(e) = 6

c
(0)/e

2

 (2.2.5) 

and 9 (x) = 21og (cosha /cosh(a x/e) } (2.2.6) 

Equations (2.2.5) and (2.2.6) represent the upper bounds 

on 6 (e) and 9 (x) respectively. However, for the case e » 1 (e f
 0 0

), 
g c 

the true boundary condition as x °° is given by 9 (x,y) 9 _
n
(y), 

c c , £ —u 
where 

2 2 
and 6 = 2a sech a . 

(2.2.7) 

The boundary condition (2.2.7) is consistent with our 

assumption of zero heat reservoir for the case e •* since a 0 

as £
 00

 . The effect of this boundary condition is that it 

introduces the y-dependence on the lower order terms of the temperature 

distribution within the slab for £ » 1 (e k - Physically (2.2.7) 

modifies solution (2.2.6) to take into account the temperature changes 

that occur at the edges of the insulation. Expanding <5 in (2.2.7) 

in powers of a, we get 

* o 2 „ o
2

 ^ a
6 

6 = 2a (1 + -j-
 +

 24
 + 7

20
 + 

2 2 2 4 (2.2.8) 
= 2a (1-a + y a + ...) 

Comparison of equations (2.2.5) and (2.2.8), gives 

, 2
n
 2 2 4 . «c (»' 

2a (1-a + j a + . . . ) = 
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hence, since a « 1, 

or 

a = j (6
c
(0)/2)^ 

ae = (6
c
(0)/2)^ 

(2.2.9) 

= 0(1) 

Equation (2.2.9) represents the relationship that exists between 

a and e when we ignore the temperature changes that occur at the 

edges of the insulation. Of importance to us is that (2.2.9) 

gives the rescaling required for the inner problem for the case 

e » 1 (e /
 00

) and x < e . Thus for the inner region we rescale the 

variables by putting 

h h 
? = (£) ax and n = (£) ay (2.2.10) 

in in 

where K = 0(1). However, the critical solution in the outer region, 

where x » £ , is given by equation (2.2.7), namely 

e c (°°,y) = 0 £ = o ( y ) 

21 fcosh a g

^cosh ay' 

Writing the outer solution in terms of the rescaled inner variables 

we obtain 

>
c
(°°,n) = 21og 

cosh a 
£ 

K. 2 

cosh (qr) n 
i ' 

( 2 . 2 . 1 1 ) 
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Consider the Inner Region (x « e) 

From the analysis in above sections, we expect the dominant 

term of the temperature solutions to be a function of £ only. Using 

the auxiliary variables of (2.2.10), the energy equation becomes 

3
2

e
r
 3

2

q o a
 0 

+ +
 ic(l-a + 4 a + . . .) e

 c

 = 0 (2.2.12) 
h 9o

z 

we now put 

ec(C,n) = 8qC5) + a a0 1 (5 ,n) + terms 

where a > 0. 

Hence equation (2.2.12) becomes 

7
 9

n 
6 "CCD + V (a

0 t

9
1
+...) + Ke (l+a

a

0
1
+...) = 0 

On equating the coefficients of the powers of a, we get 

9

0 
8

0

f f

( O + Ke = 0 (2.2.13) 

V
2

0 

y

0 r 
: + Ke .61(C,n) = J o a / 2 

Ke ^ a = 2 

(2.2.14) 

etc. We note that (2.2.13) satisfies the boundary condition, 

£ = o 01 (0) = 0 . 

Frank-Kamenetskii (Ref. [2] (i) page 379) gives the solution of 

equation (2.2.13) satisfying the boundary conditions as 

0 
e 
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The relationship that exists between the constants A 

and ic can be determined if we know the temperature within the 

slab at the point x = e. We hope this temperature can be 

evaluated by matching the inner solution with the solution of the 

outer region. However, we put 

h 
r
akx

 2 

P = (-T-) 

hence 0Q becomes 

eQ(S) ( 2 p V < ) 

cosh p£ 
(2.2.15) 

Thus the equation for 0^(£,n) becomes 

2 2 2 C 
V 8 + 2p sech p^.0

1
 = V a / 2 

2 2 
^ 2p sech p£ , a = 2 

(2.2.16) 

with the boundary conditions; 

30. 

s = 0 

n = 0 

h = 
2 * 
Cf) a 

9s 

30. 

3n" 

30. 

3n" 

= 0 , 

= 0 

= 0 , 

Vn , 

vs , 

2 * 
S < (f) oe 

(2.2.17) 

If H(£,n) is a harmonic function, it can easily be verified that 

0^(£,n) is a solution of (2.2.16), where 
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9
1
(5,n) a t 2 

[6^5,70-1] a = 2 

Attempts to determine H(5,n) present difficulties since the 

appropriate conditions are difficult to deduce from (2.2.17). 

2.3 Conclusions 

Attempts to determine the intermediate region to match the 

solution in the region x < e with (2.2.11) were unsuccessful. 

However, it is hoped that the solution of (2.2.16) might suggest 

the nature of scaling required in the intermediate region, since we 

expect the solution as x °° to interact with to give a smooth 

temperature solution in the intermediate region. 

J^ = H " - ptanhp5.H(5,n) 

(2.2.18) 
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CHAPTER THREE: SLAB WITH VARIABLE SURFACE TEMPERATURE 

3.0 INTRODUCTION 

We consider a symmetrically heated exothermically reacting 

slab occupying the region -1 < y < 1, -co <
 x
 < °° with respect to 

some suitable dimensionless frame of reference Oxyz as in 

Chapter Two. The same assumptions as in Chapter Two, including 

Frank-Kamenetskii's approximation (8 = 0) to the Arrhenius rate 

law, are still considered to be valid for this problem. 

The energy conservation equation is then considered for 

the situation in which there is a variable surface temperature 

distribution. The surface temperature at x + ® is considered to be 

slightly higher than that at x + - »• Thus the energy equation 

is 

2 2 
8 6 8 6

 p
 0

 n
 ^ , < / 

—7) + — 2
 +

 6e = 0 , -1 < y < 1, -oo <
 x
 < « 

8x" 8y 
(3.0.0) 

where 0 and 6 correspond to the dimensionless excess temperature 

and the Frank-Kamenetskii parameter respectively. The temperature 

0(x,y), is symmetrical about y = 0 and satisfies the boundary 

conditions; 

y = 0 : 

(3.0.1) 

y = 1 : 0(x,l) = ef(x), 0 < e « 1 

where f(x) is a smooth monotonic function with the following 

characteristics at x + + 
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f (x) -h 0 as x -
 00 

(3.0.2) 
f (x) + 1 as x -»• + °° 

A typical example of f(x) is: 

(i) f(x) = j (1+tanhx ) 

We seek to determine the critical Frank-Kamenetskii parameter, 

6 (6) as a function of e and the corresponding critical temperature 

9
c
(x,y) . We now consider the regions x ± °° , where 0 is expected 

to be a function of y only. 

Solution as x ->• - <» 

The temperature within the slab at x satisfies the 

equation 

0" + 6e
9

 = 0, 0 < y < 1 

with the boundary conditions; 

Y = 0
 :

 | i = o , (3.0.3) 

y = 1 : 9(-»,l) = 0. 

The solution of (3.0.3) is given by 

C-.y) - 2log(f25
r
2

5 ;
) , 

cosh a 

7> -
(3.0.4) 

2 2 
and 5 = 2

a

 sech a 
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Solution as x +
0 0 

The energy equation in this region becomes 

0" + Se
9

 = 0, 0 < y < 1 ; 

with the boundary conditions: 

y = o : 0 t 3 - 0 - 5 ) 

y = l : e o , i ) = e 

We now put 

9 = e + <J>(y) and A = 6e
€

 . 

On substituting 0 and 6 into equation (3.0.5), we get an equation 

in cf>(y) , namely 

<{>
M

 + Ae^ = 0, 0 < y < 1 , 

with boundary conditions: 

y = 0 : ^ = 0
 (3

-°-
6

> 
J

 dy 

y = 1 : ({.(1) = 0 . 

Finally the solution of (3.0.5) is 

• «
 +

 • (3.0.7) 

and 6 = 2p
2

e
 €

sech
2

p 
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3.1 Perturbation Analysis about the Criticality 

On comparing the solutions (3.0.4) and (3.0.7), it is 

apparent that the criticality conditions for thermal ignition 

will first occur in the region x
 0 0

. The asymptotic solution 

can then be determined by replacing p in (3.0.7) by a
c
, where a

c 

is the critical parameter for the slab solution. Thus we get 

9
c
(°°,y) = e + 21og 

and 6 (e) = 6 (0)e"
€

 , 
c 

2 2 
where 6 (0) = 2a sech a 

c c c 

= 0.878 

with a = 1 . 2 . 
c 

cosh a 
c 

cosh a y c 
(3.1.0) 

In order for us to evaluate the asymptotic solution as 

x we put a = a
c
 - s, where 0 < s « 1. 

Consider x - °° 

On substituting a = a
c
 - s into equation (3.0.4), we 

get 

2 2 

6
c
(s) = 2(a

c
-s) sech (a

c
-s) 

Expanding <$
c
(s) as a Taylor series in powers of s, we obtain 

3 
<5

c
(s) = S

c
(0)[l-s

2

 - + ...] (3.1.1a) 

[Note: see equations (2.1.0) and (2.1.1)] 
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h 
Comparison of (3.1.0) and (3.1.1a) shows that s = e , thus a and 

6 (s) become 
c 

a = a - e
2 

C

 (3.1.1b) 

and 6
c
(

€
) = 5

c
(0)[l-e - J L . e

3 / 2

 + ...] . 
c 

This expansion for <$
c
(e) is valid to 0(e). We now seek to determine 

the solution of (3.0.3) 6 replaced by 6 (0) e ~
€

. Thus the 

energy equation becomes 

9" + 5
c
(0)e"

€

exp9 = 0 , 0 < y < 1; 

with the boundary conditions 

H fl 

y = 0 : 2 L = 0 , (3.1.2) 

y = 1 : 8(-®,l) = 0. 

Writing the solution of (3.1.2) in powers of e, we put 

9 = 9
c
(--,y) = 9

c
°(y) + £^0

1
°(y) + £9

2
°(y) + ... (3.1.3) 

Therefore 

e
 0

 , . 

6
c
(e) ex

P
9 = 6

c
(0)e ° (1-e + . ..) [1+e

 2

9
1
°+ e { e ^ *-(9°)

2

 -1 > + - -

Equation (3.1.2) now becomes 

^ [9
c

( d

+
a

1
°

+
e0

2
°

+
 ...]

 +
 6

c
( 0 ) e

e c

°[l
+
e v

+
 ,{0/+ \ (q^)

2

-! 
dy 

= 0 

On equating the coefficients of powers of e, we obtain 
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d
2

e
 0

 e
 0 

+ 5
c
(0)e

 c

 = o , 
dy 

d
2

e i
° 9

 0

 n 

— - f - + 6
c
(0)e ° . 0

 U

 = 0 , (3.1.4) 
dy 

dy 

etc 

Equations (3.1.4) give the expansion 0 (-°°,y) to 0(e). 

However, the functions 0^
9

(y), 9
2

0

( y ) etc., can be obtained 

directly from (3.0.4) by expanding 9(-°°,y) about the point a = a
c 

in powers of e. Note this expansion will only lead to identical 

results with solutions of (3.1.4) up to 0(e). Hence 

v y 
0 (-°°,y) = 21og{ cosh (a -e

 2

)/cosh(a -e
2

)y} 
c c c 

(3.1.5) 

h 
Taylor series expansion of (3.1.5) in powers of e gives 

where 

(-°°>y) = 0
c
°(y) + €

: 5

0
1

o

(y)+ e0
2
°(y) + 

n
 cosh o 

0 (y) = 21og( © — — 1 
c

 W J 5

1 cosh a y
 } 

0
1
°(yD = -2(tanha

c
-y tanha

c
y) , (3.1.6) 

0 2 2 2 
0

2
 (y) = sech cr

c
-y sech a

c
y , etc. 
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Intermediate Region 

We seek to determine a solution of the temperature 

distribution within the slab as a function of x and y, which has 

the asymptotic form of (3.0.7) and (3.1.6). Noting the dependence 

of the asymptotic solutions on the powers o f e
2

, w e consider the 

following expansion for the intermediate region, namely 

9(x,y) = 9
c
(x,y) = 9

c
°(y) + (x,y) + €0

2
(x,y) + ... 

and 6
c
(£) = 6

c
(0)[1-£

+
 ...] (3.1.7 ) 

Therefore 

0 0 

c + 1 2 
Sexp0 = 6 (0)e (1-e + . ..)[l+e

2

0 +
 €
(0 + j 0 - 1 ) + . . . ] 

but 

0
 o 
c 2 2 

5 (0)e = 2a sech a y 
c

K J

 c c
J 

Hence the energy equation becomes 

V
2

(0 °+€^0
1
+£0

o
+...) + 2a

 2

sech
2

a y [ 1 + c v +e (0-+ -1-0
 2

-l) + ...] v

c 1 2 c c
 L

 1 2 2 1 

= 0 

Equating the coefficients of the powers of e, we get 

d
2

0 ° 0
 0 

— f a + S c ( 0)e ° = 0, 
dy 

V
2

0 , + 2a
 2

sech
2

a y.0. = 0 , (3.1.8) 
1 c c 1 

V
2

0
2
 + 2 a

c

2

s e c h
2

a
c
y . ( 0

2
+ £ 9 ^ - 1 ) = a , 

etc. 
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where 
2 2 

v 2 = • 3 
2 2 3x 3y 

with boundary conditions 

36, 96 
y = 0 :

 3 t
 =

 a t
 = 0

 ' 

y = 1 : 0
1
(x,l) = 0, 0

2
(x,l) = f (x) 

and asymptotic conditions 

x
 00

 : 0
1
- + O , 0

2
 -»• 1 , 

(3.1.9) 

o o o c
3

-
1

-
1 0

) 

x
->_ oo : 0

X
 0

X
 (y) , 0

2
 6

2
 (y), etc. 

Solution of the -equation 

We use the following result: 

If is a harmonic function, a solution of the equation 

2 2 2 
V 0, + 2a sech a y.0, = 0 , 

1 c c
J

 1 ' 

W (3.1.1D 

is QjCx.y) = gy- - a
c
 tanha^.ij^ 

which can be easily verified on substitution. Below we now consider 

the equation 

V
2

i|»
1
(x,y) = 0 , (3.1.12) 

with ^ appropriately chosen at x = ± °° and at y = 0,1. 
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3.2 Determination of the Appropriate Boundary Conditions to 

Equation (3.1.12) 

9

l
( x

'
y ) =

 "
 a

c
 t a n h

V ^ l
( x

'
y )

 • (3.2.0) 

The boundary conditions satisfied by ^ ( X j y ) can be obtained from 

equations (3.1.9) and (3.1.10). 

X - oo 

= -2(tanha
c
~y tanha

c
y) 

2 
= - — (l-a

c
ytanha

c
y) 

c 

note: a tanha = 1. 
c c 

Therefore flAy) = (- — ) - a tanha y.(- ^ ) 
1

 w

 3y
 v

 a ' c c' a 
c c 

0 9 
but 6

X
 (y) = jp- 

1̂
(-°°,y)- a

c
 tanha

c
y.i|)

1
(-«,y) . 

Hence as x - -> - — . r

l a 
c 

x + °° 

- o
c
 tanha

c
y.i|)

1
(«',y) = 0 

integrating with respect to y, equation becomes 

d^
1
(

00

,y) 
tanha

c
y dy 

Thus ^ ( " ^ y ) = A cosha
c
y 
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2 
but V ip̂  = 0, hence A = 0 (ip̂  is harmonic everywhere) . Thus 

as x
 00

 ip^^-0. 

Also 

30j d
2

ip
i
 3ip

x 2 2 

-— = —= o tanha y . - — • - a sech a y.ip-, 
3y . 2 c c

J

 3y c c
J r

l 
3y 

2 2 
- a tanha v. a sech a y.ip.. 

2 c c
J

 dy c c
y

 1 
3x 

39, 
but at y = 0 = 0. 

' 3y 

Therefore 

3
2

 2 
—

T
 ip_(x,0) + a ip, (x,0) = 0 

3x 

which gives 

ip, (x,0) = A
0
 sincr x + B© cosa x ' j 2 c 2 c 

However, the asymptotic conditions at x ±°° show that A
2
 = B

2
 = 0 

Hence ip^(x,0) = 0. The problem for ip̂  becomes 

V
2

ip
1
(x,y) = 0, 0 < y < 1, - o o <

x
< o o

; 

with boundary conditions; 

y = 0 : ip^x.O) = 0 

3^ 

y = 1 : w - = 0 

x + ® : ip̂  -H 0 

2

y 
x + - o° : ip

x
 -> - , 

c 

(3 .2 .1) 
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with as a smooth function of x (so as to exclude 

2y 
ij/̂  = - — for x < 0, and = 0 for x > 0, which is a possibility 

c 
but non-physical solution). We now put 

^ ( x , y) + <f>
1
(x,y) 

c 

Therefore 

y 
< 4 > - — as x - > - » 
1 a 

c 

y 2 
<1>, — as x -*- + « and V 6. = 0 
1 a

 Y

1 
c 

Hence 

*
1
(-x,y) = - (j>

1
(x,y) 

On setting x = 0, we get 

^ ( 0 , y ) = 0 

The problem then reduces to 

v \ ( x , y ) = 0 , 0 < y < 1, 0 < x < o o ; 

with boundary conditions 

x = 0 : 1 ( 1 . ( 0 , y ) = - - f -
i o 

c 

x -> °° : ip̂  ->• 0 

y = 0 : ^ ( x . 0 ) = 0 ( 3 . 2 . 2 ) 

y = 1
 :

 37" - tit*'
1

) =
 0 
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Attempts to solve equation (3.2.2) leads to failure. 

Consequently we conclude that there is no solution for the inter-

mediate region for the case when the region x +
 00

 is critical. 

The result is astonishing since the solutions at x + ±
 M

 are well 

defined. We seek to overcome this paradox by determining:-

(i) the temperature excess 9 when the whole 

slab is in a stable non-critical 

state. 

(ii) By invoking the method of "adiabatic 

invariants", which has been used to 

resolve corresponding difficulties 

in electrical and mechanical systems 

[30]. 

3.3 Perturbation Analysis for the Non-Critical State 

We consider the problem 

2 2 
— 2

 +

 — f
 e =

 ' 0 < y < 1, < x < 
3x 3y 

with boundary conditions 

y = 1 : 9 (x, 1) = ef(x) 
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where f(x) has the same properties as in section 3.0. A particular 

case is: 

(i) f(x) = j (1+tanh x) 

Asymptotic Solutions 

As x «
 :
 0 e Q (y) = e + 2 l o g (

C Q s b p

 ) 
®

w

 cosh py' 

2 2 
and 6 = 2p e~

€

sech p . 

(3.3.1) 

As x — 9 E 9 (y) = 2 
y

 (3.3.2) 

2 2 
and 6 = 2a sech a. 

We seek to find an expression for a as a function of e and 

p. Comparing the 6's in equations (3.3.1) and (3.3.2), we get 

2 2 2 -e 2 
2a sech a = 2p e sech p 

Therefore 

asecha = pe ^
7 2 1

s e c h p . (3.3.3) 

We now consider expressing a as function of p in powers 

of e by putting 

t 2T 3T 
a = p + a^e + a^e + o^e + ... 

Expanding asecha as a Taylor series in powers of e
T

, we get 
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t 2r 
o secha = p sechp + (a^e

 +

cr
2
e + ...) (1-ptanhp)sechp 

1 x 2t 2 2 
+ 2 (cr̂ e

 +

°2
e

 (ptanhp-2tanhp-psech p)sechp 

(3.3.4) 

From equation (3.3.3) 

1 e
 2

 1
 e

 3 

a secha = psechp[l-(j) + j (j) - g- (j) + ...] (3.3.5) 

Comparison of equations (3.3.4) and (3.3.5) gives 

2 2 3 2 
a = p-[p/2 (1-ptanhp)]e + [p(l+p sech p)/8(l-ptanhp) ]e 

+ 0(e
3

) . (3.3.6) 

Expansion of log(coshay) as a Taylor series in powers of e gives 

2 
log coshcry = log coshpy + (cr^e+c^e + ...)y tanhpy 

1 2 2 3 2 4 2 2 
+ y C

0

^
 6 +

^
a

i
a

2
e +

02 e +...)y sech py 

1 3 3 3 2 
-

 6

 +. • -)y sech py tanhpy + ... 

Therefore 

e _ o o(y) = *o°
cy) + + + + 

(3.3.7) 

where 

• 0 / L L cosh p . 
m •

 21

°s( ssskpy) • 

= 2a^(tanhp-y tanhpy) , 

0 2 2 2 2 
<j>2 (y) = 2q

2
 (tanhp-y tanhpy) + a (sech p-y sech py) 
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0 2 2 2 

<J>
3
 = 2a

3
(tanhp-y tanhpy) + 2c^a

2
(sech p-y sech py) 

2 3 2 3 2 
~ T

 a

l P
t a n b

P ~ y sech py tanhpy), 

etc. 

The Intermediate Problem 

We seek solution 9(x,y) which satisfies the asymptotic 

solutions (3.3.1) and (3.3.7), taking into consideration the powers 

of £, we put 

0 2 
9(x,y) = cf>

Q
 (y) + £(1>

1
(x,y) + £ <f>

2
(x,y) + ... 

2 -£ 2 (3.3.8) 
and 6 = 2p e sech p 

Therefore 

* ° 2 2 0 2 e 
6 exp 9 (x,y) = 2p e sech p{ (1- £ + -j + ...) 

2 1 2 2 
[l+(£tj>

1
+£ <f>

2
) + ... + j (6<J>

1
+£ (J)

2
) +...]} 

* ° 
2 0 2 2 2 

but 2p e sech p = 2p sech py . 

Hence 

6 exp9(x,y) = 2p
2

sech
2

py{l-(1-cf^)£+ [<|>
2
-4»

1
 + \ ( l * ^

2

) ]
 e

2

. . . ] 

Thus equation (3.3.0) becomes 

2 0 2 2 2 
V (<|>

0
 +€(})

1
 + £ <j>

2
+. . .) +2p sech py{l-(l-(j)

1
)£+[<t)

2
-(J)

1 

+ fatfafa* ••.} = 0 

On equating the coefficients of the powers of e, we get 

fa 0 
d 2 2 
— = — + 2p sech py = 0 , d

y 
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V
2

^ -2
p

2

sech
2

p
y.(l-

(
|

) l
) = o , (3.3.9) 

V
2

<p
2
 + 2p

2

sech
2

py. [(cf^-c^) + j (l+f^
2

)] = 0 , 

with boundary conditions 

1 3<l>2 
y = 0 :

 " ay"
 = 0

 ' 

y = 1 : = f(x), (j)
2
(x,l) = 0 , 

v ^ a «i 0/ , . 0, v (3.3.10) 
x

 • Cy), <P
2 

x - + « : 1 , <f>2 0 . 

Consider the <f>-̂ (x,y) equation 

V
2

<j>
1
(x,y) - 2p

2

sech
2

py. (l-(f>
1
) = 0 , 0 < y < 1, -« < x < 

with boundary conditions 

a<f>? 
y = 0 : — = 0 

y = 1 : ^ ( x , ! ) = f(x) 

x
 00

 : <j>
1
 1 

x-+- « : <j>
1
°(y) 

(3.3.11) 

We put 5
1
(x,y) = l-<f>^(x,y) and hence the equation for is 

v \ ( x , y ) + 2p
2

sech
2

py.5
1
(x,y) = 0 , 0 < y < 1, < x < 

(3.3.12) 
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with boundary conditions 

3 5

1 

7 = 0 : _ 0 , 

y = 1 : q ( x , l ) = l-f(x) , 

x
 00

 : 0 , 

x h- -
 00 

q - i-4»
1
°cyd 

The solution of equation (3.3.12) is given by 

8ip
1 

^ ( x ^ y ) = - ptanhpy.ip
1
(x,y) 

2 

where V ip̂  = 0. To determine ip^(x,y) we consider the appropriate 

boundary conditions from the conditions on £^(x,y): 

(i) when x -»• 0 

Therefore 

9ip
1 

0 = — ptanhpy.ip
1
 (®,y) 

tpl(°°>y)
 = c c o s h

P y satisfies the above 

2 
equation, but V ip̂  = 0 (everywhere), hence c = 0. Thus as x

 00

 ip̂  0 

(ii) when x - -»• 1 - <P
1
°(y) 

but •
1
°Cy) = - P(tanhp-y tanhpy) 
1 (1-ptanhp) 

Thus 

r f.oo y) = 1 +
 r
p (tanhp-y tanhpy) ) Y ) 1 L

 (1-p tanhp)
 J 

= |y
 (

l-ptanhp)
3

-
 p t a n h p y

^ - p t a n h p
3 



Hence as x -
 00

 ip 
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y 
1 (1-ptanhp) 

(iii) y = 0: f y ^(x,0) = 0 

Therefore 

2 
^ ( x . O ) + p

2

i|)
1
(x

J
0) = 0 

9x 

with tJ>^(x,0) = B^ cos px + B
2
 sin px. However, we are seeking 

a decaying solution as x + ±°°, consequently B^ = B
2
 = 0. Hence 

at y = 0 i|;^(x,0) = 0. The problem then reduces to 

V
2

i{/
1
(x,y) = 0 , 0 < y < 1, -« < x < «, (3.3.13) 

with boundary conditions 

y = 0 : ^ ( x , 0 ) = 0 

y = 1 : l-f(x) = | - ^
1
( x , l ) - ptanhp.^Cx.l) 

x » : 0 

:

 +1
 +

 Cl-ptanhp) •
 W i t h

^ l 

being a smooth function of x (so as to exclude non-physical solutions 

for example = 0 for x > 0 and ip̂  = y/( 1-ptanhp) for x < 0) . 

We put 

?'
1
(x,y) = i^(x,y) - I Z 

2 (1-p tanhp) 

Thus as 

x
 00

 : ^ + - I [y/(1-ptanhp)] 

V 
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and as 

x - » : y[y/( 1-ptanhp)] 

Hence (P
1
(x,y) = - (j^C-x^) 

setting x = 0, we get 

^(0,7) = 0 . 

We now replace the boundary conditions at x = ±°° of 

(3.3.13) by 

x = 0 : i|>
1
(0,y) = -|(y/ (1-ptanhp)] 

x -*•
 00

 : ip̂  •> 0 . 

We then consider the modified problem 

V
2

^P
1
(x,y) = 0 ; 0 < y < 1 , 0 < x < °° . 

(3.3.14) 

with boundary conditions 

y = 0 : ^ ( x . O ) = 0 

3ip 

y = 1 : l-f(x) = - ptanhp .\p(x,l) 

x = 0 : ip̂  (0,y) = j[y/ (1-ptanhp)] 

and the asymptotic condition 

x
 00

 : ip̂  0. 

In order to solve problem (3.3.14) we apply a Fourier-Sine 

transform and solve the transformed problem. We define: 
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(Y >y) = F
s
^

1
( x , y ) } =

/
 f j T()

1
(x,y) sinyx dx 

and its inverse transform 

Thus 

^ ( x , y ) = / § ^ ( y . y ) Sinyx dy 

0 

v ^ ^ 2 f • F

s
 {

7 T
 }

 = / 7 — r
 s i n y x d x 

3x J 9x 

= / f . (0,y) - y
2

7
1
( y , y ) 

Taking the Fourier-Sine transform of equation (3.3.14) we obtain 

3
2

 9 
— T (y,y) +

 Y y

 - y t. (y,y) = 0 
3y v2tt (1-ptanhp) 

The ^ ( y , y ) solution is given by 

T
1
(y,y) = A coshyy + B sinhyy + [ ^ ] 

/2tT y (1-ptanhp) 

(3.3 

at y = 1 : l-f(x) = ptanhp .ip
1
 (x. 1) . 

We consider the case (i) f(x) = ^(1+tanh x) and taking 

the F
s
 of the boundary condition when y = 1, we get 



F
s
U - f ( x ) } = H 

97 

£ (l-tanh x)sinyx dx 

= [y- j cosech (j) ] 

t 7T Y 
[Note: j (l-tanh x)sinyx dx = Y - -z- cosech ( y ) , see[31].] 

0
 z 

Hence when y = 1 

(y,l) - ptanhp.^ (y,l) = - i — [
Y
- f c o s e c h ( h ] 

At y = 0: i|i
1
(x,0) = 0, hence ^ ( y ^ O ) = 0 

Therefore A = 0. Equation (3.3.15) becomes 

= B sinhyy +
 y 

/2tt y(l-ptanhp) 

Differentiating Hf̂  with respect to y, we get 

(Y,y) = Bycoshyy +
 1 

9y 

when y = 1, we obtain 

/2tT y(l-ptanhp) 

—— [Y-(ir/2)cosech(Y/2)] = BycoshY + 1 
/2tt Jlr y(l-ptanhp) 

- Bptanhpsinhy- — P t a n h p 
/2tt y(l-ptanhp) 
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Therefore 

B =
 [ y - ( l / y ) - ( 7 7 / 2 ) c o s e c h ( y / 2 ) ] 

/27 (ycoshy-ptanhp sinhy) 

Thus ( y b e c o m e s 

'jCy.y) = - i - t T-(i/r)-W2)cosech(r/2)
} s i n h y y 

/2tT (ycoshy-ptanhp .sinhy) 

/ 2 t T y ( 1 - p t a n h p ) 

(3.3.16) 

Hence 

P̂-i (x, y) = -

1 77 

r Y~(l/y) - (tt/2) cosech(y/2) . , . , [

 (ycoshy-X sinhy )
 ] s

^ h y y . s m y x dy 

1 
+ — 

77 

y s m y x 

(l-X)y 
dy (3.3.17) 

where X = ptanhp. 

Note 

consider 

sin z 77 
dz = y , from the "Residue Theory", or otherwise 

i 1Z 
A - / * d: 
2771

 j

 z 
c 

0 iz
 00

 iz 
Therefore f — dz + f — dz = tt! j

-»
 z

 0
 z 

Hence 
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Equation (3.3.17) becomes 

h ^ l A £ S : S r
C h ( Y / 2 3 1

 sinhyy.sinyx dy 

" 2(1-X) (3.3.18) 

We now put F(y) = — - [y- j cosech(^)] (3.3.19) 
/2tt 

Hence 

y (x,y) = J \ 
1 y 77 

F(y)sinhyy.sinyx
 +

 y 
(ycoshy-Xsinhy)

 1

 2 (1-X) 

0 

sinhyy sinyx dy 
y(ycoshy-Xsinhy) I • • J 

Note: J (1-tanh x)sinyx dx = y - X cosech(X) 
0

 z 

= /Tn F(y) 

but l-f(x) = l-i{l+tanh x) 

= ^-(l-tanh x) 

00 / 
Therefore 2 J [1-f (x) ]sinyx dx = / I 7 F(y) [ 3 . 3 - 2 / ) 

0 

We consider a function G(x) such that 

= / 7 
sinyxsinyx sinhyy 
(ycoshy-Xsinhy)

 a y

 (3.2.22) 

Thus we have 

sinyx sinhyy _ /2 f 

(ycoshy-Xsinhy) " / 7 J
 G

(
T

)
s

i n y x dx (3.3.23) 
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The first integral in (3.3.20) becomes 

F(y)sinyx sinhyy 

0 
(ycoshy-Asinhy) /tt G(x)dx J — | F(y)sinyx dy 

but from equation (3.3.21) 

[l-f(x)] \F(y)sinyx dy 

Therefore 

(3.3.24) 

[i-f(x)] = 
tt 

F(y)sin^
r
 dy 

Hence equation (3.3.24) reduces to 

Also 

F (y)sinyx sinhyy 
(ycoshy-Xsinhy) 

A 2 

dy = / -
v 77 

[l-f(x)]G(x) dx 

(3.3.25) 

sinyx sinhyy 1 
y (ycoshy-Asinhy)

 Y

 ~ TT G ( x ) d
T
/ f i i ^ x i d y 

o o 

1 

/27 
G(x)dx (3.3.26) 

Using equations (3.3.26) and (3.3.25) equation (3.3.20) becomes 

= jn [l-f(x)]G(x)dx 
/2tt 

G(x)dx 

(3.3.27) 
y 

2 ( 1 - A ) 
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We define the complex variable z = x + iy and hence 

I^fcos z] = - sinhy sinx where X [ ] refers to the imaginary 

part. It can be easily shown that 

•gco = i [ / — v

 m
l

 / it 

0 

i [ - ! -

s m y r cos yz , 
(ycoshy-Xsinhy)

 y

 * 

siny (z+x) , _ J__ 
(ycoshy-Xsinhy)

 Y 
siny(z-r) rly 
(ycoshy-Xsinhy)

 J 

0 

(3.3.28) 

Note: *
1
(x,y) = 1-S

1
(x,y) 

= 1 - +ptanhpy.i|j
1
(x,y) (3.3.29a) 

Substituting ^
1
(x,y) from (3.3.27) into equation (3.3.29a) 

gives the solution for . We now seek to determine if the 

integral of (3.3.18) is well defined for all positive values of x 

and y. We now put 

i = 
2 . 

r
 Y

 sinh(y/2)-sinh(y/2)-(7r/2)
Y] L

 ysinh(y/2)[ycoshy-Xsinhy]
 1 7

 ' 

0 
3 5 

x x 
Note: sinh x = x + j j - + j | - + . . . Vx 

2 4 
x x 

cosh X = l + y j - + " 4 y + . . . Vx 

when y 0 

3 
y

2

sinh (y/2) -sinh (y/2) - ~
y
 =

 y

2

 (L + + ...) 
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_
C
X + 3L. + .) - IX 

l

2 48
 J

 2 

Sf -2. ly + 0.48 y
3

 + ... 

Similarly 

y 
sinh(-j) [ycoshy-Xsinhy] 

= # + . . o ( y ( I
+
v

 +

 k
+

 " V
+ 

2 4 

= O X ) + (13-X) 

Hence put 

I (y) = { Y
2

sinhCy/2)-sinh(y/2)-(7r/2)y
 } 

V
Y J

 S s i n h ( y / 2 ) [ycoshy-Xsinhy] *
 s i n n Y y s i n Y X 

~
 r
 -2.1 + 0.48y

2

 -| . . 
= [ 4 ] s m h y y s m y x 

\ (1-X) + Jg (13-X) 

2
 2

 3 
„ (- 4 - a + 0.96y ) (y + ^ y + . . . ) 
= ^ sin yx 

[y(l-X) + I f (13-X)] 

In the limit x yx 0(1). Hence the integrand is divergent 

since IQ(Y) becomes 

lim I
n
(y) - -

x - yd-*) 

when x H- 0; yx -»• 0 and hence IQ(Y) becomes 

limit I -
™

 x

o (1-X) 

Hence the integrand is finite for vanishing values of y. 
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When y
 00

: 

2 . 

Hence 

Y sinh(Y/2)-sinh (Y/2) - ^ 

z . v e ^ l l - ^ e ^
2

 -
 1

 ] 
2 y 2

 j 

y 

~ 1 2 (Y/2)
 r i
 TT -y/2, 

= y Y
 e

 - e
 Y /

 ] . 

(YCOshY-XsinhY)sinh(y/2) 

~ , (Y/2) 

= he [hye -hxe ] 

~ (3y/2) 

= ie (Y-x) . 

2 * 
2y (1- —

 e
 ) 

~ • n y ' yy 

I
n
(Y) =

 1

 e sin yx 
° Y e > y - X ) 

Note: at criticality X = 1 and hence for the subcritical 
max 

slab solution X < 1. Therefore 

-(y/2) -y(l-y) 

I
0
(Y) = ]e [yf)t 

^
 !

0
M

 ^ ^ b ) 

when y = 1 the integrand is singular. However for y < 1, Iq(y) 

tend to zero as y approaches infinity. 
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3.4 Method of "Adiabatic Invariants": Resolution of paradox 

In order to resolve the paradox of section 3.2, we 

reconsider the formulation of the surface temperature for the 

slab. We insist that the temperature gradient with respect to x 

is negligible in comparison to the surface temperature. Thus we now 

put 

9(x,l) = eF(6x), 

39 2 

where ^ (x,l) = e F'(£x) « 9(x,l). Putting X = ex, and 

substituting into equation (3.0.0), the energy equation becomes 

2 2 
e

2 + +

 5e
6

 = 0, 0 < y < l , -» < X < « 
3x 3y 

(3.4.0a) 

with boundary conditions 

: I f -

(3.4.0b) 

y = 1 : 9(X,1) = eF(X). 

where 

F(X) 0 as X - «, 

F(X) + 1 as X ^ oo. 

Equation (3.4.0) implies that the surface temperature varies 

sufficiently slowly for the conductive forces to become quasi-one 

dimensional. Thus at each X, the surface temperature is nearly 

constant and the dominant conduction process is in the y direction. 

Hence for e « 1, the energy equation reduces to 



05 

+ Se
9

 = 0, 0 < y < 1 , VX 

ay 

with boundary conditions 

7

 = °
 :

 a ?
=

 ° • (3.4.1) 

y = 1 : 9(X,1) = eF(X). 

The solution of equation (3.4.1) is given by 

e ( x , y 3 . .F(X) • 2 iog( . 

and (3.4.2) 

6 e
€ F ( X )

 = 2a
2

(X)sech
2

a(X) 

However, in the limit when the conditions at x =
 00

 are critical, 

6 = 6
c
(0)e

 6

 (see section 3.1, equation(3.1.0)) 

Substituting this value of 6 into (3.4.2) we obtain an expression 

for a(X) in powers of e, namely 

2a
2

(X)sech
2

a(X) = 6 ( 0 ) e ~
e [ 1

~
F ( X ) 1 

It can be shown (section 3.2) that 

a(X) = a
c
-e^[l-F(X)4 

Expanding 9 E 9 (X,y) in powers of E , we get 

i
c
(X,y) = 9

c
°(y) +6^[l-F(X)k e

1
°(y) 

+ e{F(X)
+
[l-F(X)]9

2
°(y) + ... (3.4.3) 
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and 

6
c
C O = 6

c
(0) exp(-e) 

Equation (3.4.3) represents the critical solution everywhere 

in the slab with 0 (X,y) expansion valid to 0(e). Functions 9 °(y), 
c c 

0^
0

(y), etc., are the same as defined in section 3.1, equation (3.1.6). 

The asymptotic properties of (3.1.0) and (3.1.6) follow directly 

from (3.4.0) and (3.4.3). 

3.5 Conclusion 

Attempts to express the critical Frank-Kamenetskii 

parameter <5
c
(e) as a function of e for an arbitrary surface 

temperature f(x), as defined in equation (3.0.2) proved unsuccessful. 

This difficulty arose in failing to determine a physically realistic 

solution for the intermediate region satisfying both the boundary 

conditions and the asymptotic conditions, even though the problem 

is well defined as x + ± ® . However, this paradox was resolved 

by using the method of "Adiabatic Invariants", where limitations were 

imposed on the gradient with respect to x of the surface temperature, 

namely 0 (x,l) « 0(x,l). 
X 

By seeking to determine the non-critical slab solution 

in section 3.3, we hoped to ascertain the behaviour of the 

temperature solution as p a . Infact our solution (3.3.18) will 

become singular as p + a due to the term ( 1 - p t a n h p ) . 
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Consequently, these observations and our failure to 

solve the critical case directly as in section 3.1 lead us to doubt 

the existence of a critical solution for the slab with an 

arbitrary surface temperature f(x) as defined in (3.0.1) and (3.0.2). 
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CHAPTER FOUR: FINITE DIFFERENCE FORMULATION OF THE INSULATED SLAB 

4.0 INTRODUCTION 

In numerical solutions of partial differential equations, 

one normally employs the finite-difference grid system, such 

that the numerical solution, to a required degree of accuracy, 

corresponds'to the continuous system it represents. The 

choice of the number of points and the grid interval are normally 

dictated by practical considerations, for example, computer time 

and the domain of solution. However, normally uniform grid 

intervals are chosen in a given direction, with spatial derivatives 

usually represented by central differences. The central 

2 

differences for the uniform grid intervals give accuracy of 0(h ) 

for the spatial derivatives, where h is the interval in the 

direction of coordinate differentiation. Although finite-

differences schemes that use uniform grids are the simplest and most 

accurate, they are unsatisfactory for problems with boundary layers. 

If the number of grid points in the boundary layer is not large 

enough, then the numerical solution is apt to have gross errors 

even in the region outside the boundary layer. Increasing the 

number of grid points will result in unacceptably large 

computational time. However, this problem can be resolved by the 

introduction of an irregular grid with smaller spacing near the 

boundary layer. In fact, a non-uniform grid interval can be 

constructed which gives the same order of accuracy as the uniform 

grid when the derivatives are represented by central differences. 
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4.1 Generation of non-uniform grid points 

In the insulated slab problem, we expect singular behaviour 

in the temperature profile near the region y = 1 and x = e. Thus 

it is imperative to develop a non-uniform grid in the y-direction 

with smaller grid spacing in the region y ~ 1. However, in the 

x-direction, we have an additional requirement, namely our domain 

of interest is semi-infinite in length. We expect the temperature 

to be almost uniform for values of x » e. Thus once again it 

is important to develop an irregular grid system to maximize 

efficient use of computational time. 

To develop this non-uniform grid system, suppose the 

range (0,L) of the independent variable z is divided into N 

intervals of non-constant length as indicated in Figure 4.0. 

We number the grid points i(i=l to i=N+l) and represent the value of 

z at the point i by z^, so that z^ = 0 and
 =

 The grid 

interval between z^ and is represented by h^ 

i-1 i + 1 

Figure 4.0: Finite difference scheme with irregular 
grid interval h.=z. ,-z; and 
w © i l+l l 
h. =z.-z. . . 
l-l i l-l 

Now consider an analytic function f(z) in the range 

0 < z < L, with f^ = f(z
i
). In order to express the derivatives 
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as finite difference approximations, we expand f^+i
 a n <

i 2 

as Taylor series about the point z = z^ to derive 

f . = f . 
l + l i i i 2 I 6 i 24 l 

(4.1.0) 

f. = f. - h. _f.
 h

i - l ^ (2)
 h

i - l - (3)
 h

i - l -
i-l i i-l i

 + +
_ f 

(4.1.1) 

Since we generally want and f.f , we assume that 

higher derivatives are negligible. Thus to solve for f. 

2 2 1 

take h.
 x
 x(4.1.0) - Jk x(4.1.1), we get 

( h i h i - i + h i h i - P f i C " • h i - i f i + r h i f i - i - ( h i - r h i ) f i 

- I ( h
3

h
2

 . h ^
3

 +
 .... 

l l-l l l-l l 

Finally, we obtain 

2 2 
h h 

m

 f

i +
i - h n V

 f

i-i •
 ] f

i 

£ ( 1j _ 1^1 1-1 

1 " h. 

l-l 

h.h. i l-l 

- -igiii f c ®
 +

 ... (4.1.2) 

(2) 
To solve for f^ , we have lu ^ x(4.1.0) + lu x(4.1.1), 

to get 
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1 2 2 121 2 2 

2 l l-l l 1-1/ l i-I i+l i i-I
 v

 l-l i
J

 i 

1 ,, 3,2 ,2,3 - - (3) 
- -r (h.h. , + h.h. ,)f. + ... 

6 ^ i l-l l l-l l 

(2) 
On further simplication ^ becomes 

h. h. 
2 { f . + ( — l _ ) f . - [ i+( 

ri 1 + 1 h. ' l-l
 L

 h. /
 J

 l j 1-1 1-1 

h.h. [i+(-_L-)] 
i l-l

l

 ^h. .
 j 

l-l 

! h. (h.
3

+h
3

 _)f. 

+ t
h

i - i
[ 1

~
(

h 7 t
) ] f

i "
 1

 " V * -

1-1 

(4.1.3) 

Equations (4.1.2) and (4.1.3) give f k
1

^ and f ^
2 1

 correct to 

0(h^h^ and 0(h^-h
d
 respectively. However, for a 

regular grid, f ^
1 1

 and f ^
2 1

 can be determined directly by putting 

h = h^ = h^ into equations (4.1.2) and (4.1.3) respectively. 

Hence for the uniform grid spacing we obtain 

f
 (1)

 f

i+l"
f

i-l h ^
 f
 (3) 

l ~ 2h 6 i 
(4.1.4) 

f (2) = f i + l + f i - r 2 f i _ ^ f (4) + 

i ,2 12 i 
h 

Thus the finite-difference representations in (4.1.4) 

2 
give an error bound of 0(h ) for the derivatives. This error 

bound is normally acceptable in numerical solution of partial 

differential equations. However, equation (4.1.3) gives the 

(2) 
expression for ^ correct to 0(h

d
~h^ fi), a first order error 

(2) 
term. To obtain second order error term for f. , we choose the 

i ' 
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grid spacing such that 

h.-h. . = 0(h? ,) . (4.1.5) 
1 l-l l-l 

Thus, to construct irregular grid intervals, with the same order of 

accuracy as a regular grid, we are restricted in our choice of 

¥ and h^ as in equation (4.1.5) . In the paper by Swndquist, H 

and Veronis, G., [32], they choose lu, namely 

h 

i=2,... (4.1.6) 

where y is a constant of 0(1). By using (4.1.6), the error terms 

for the derivatives in equations (4.1.2) and (4.1.3) are now of 

2 2 (1) (2) 
0(lu p and

 1
) respectively. Consequently f ¥ and fri 

have the same order of accuracy for both the regular and irregular 

grid systems. However Sandquist and Veronis found their choices of 

y lead to unacceptably large errors in the region outside the 

boundary layer for the theoretical model of wind-driven ocean 

circulation proposed by Stommel (1948). To overcome this difficulty 

y was modified such that 

where a and t are constants, with a being of order unity and 

t > 0. ZQ represents the region in which the grid-spacing is 

largest. This choice of y resulted in considerable reduction in 

numerical errors in the region near z = z
n
. Hence for the non-
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regular grid system we get 

h
x
 = h 

(4.1.7) 
z -z. t

 J 

h. = h. ,[1+ h. .] 
1 l-l

l

 zg ^ zg
 }

 l-l
j 

This choice of lu also reduces the grid density in the boundary 

layer, namely z = 0. Numerical tests of the Stommel (1948) model 

were carried out for a = 1,2,3,4 and x = 1,2,3,4 for twenty grid 

points and with ZG = IT. The best results were obtained for 

a = 4 and x = 1, which gave 2.5% error near z = it. This was a 

significant improvement compared to 3.4% error obtained for the 

original choice of y = 2 in (4.1.6). 

However, the major difficulty in implementing this choice 

of L is the cumbersome way of determining the optimum values of 

a,x and number of grid points. In two-dimensional problems, 

this difficulty will result in considerable computational effort to 

get the appropriate optimum values for the non-regular grid system. 

This difficulty can be resolved by using a system of stretched 

coordinates. This method involves the transformation of the region 

of differentiation into a region where a regular grid will be used. 

The regular grid in the transformed region is infact equivalent 

to a non-regular grid interval in the original z-plane, see 

Figure 4.1 
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Az. , f. Az. 

/ 
/ 

/ 
as as 

\ 
\ 
\ 

dS i+% 

Figure 4.1: Non-uniform grid defined through use of 
coordinate stretching. 

The idea in the use of stretched coordinates is to reduce the error 

bound on the derivatives by making the grid interval AS in the 

transformed plane as small as possible. Thus to obtain first 

order error in finite-difference approximation of f ^
1

"
1

, subtract 

equation (4.1.1) from (4.1.0) to obtain 

£ . C « J f . C
2

)
 +
 ... (4.1.8) 

i (h.+h. J 2 i i
 v J 

l l-l 

Replacing h^ and lu ^ by and Az^ ^ respectively in 

equations (4.1.8) and (4.1.3), we get 

f. c d - f i + l ~ f i - l 4. n r A © _ a © ^ c 2 ) • = n r - ^ - — t — — r + 0(Az. ,-Az. J f. l (Az. ,+Az J i+h i-h I 

(4.1.9) 
f. _-f. . 

1+1 1 - 1 
(Az. i+Az. ,) v

 i+h l - v 

and 

f. 
(2) 2 r

 f

i+l"
f

i
 £

i"
f

i-l 
i ( A z . ^

 +
 A z . ^ ) ^ Az.

+
^ Az._^ 



f. ,-f. f.-f. . 
l + l 1 1 l-l 

(Az.
+ % +

 Az._jJ L A z . ^ 

We now define a stretched coordinate such that 

z = z ( 0 

and its inverse 

5 = 5(z) 

Thus f(z) = f(z(£(z))) . 

Differentiating f(z) with respect to z, we obtain 

also note 

(4.1.10) 

= df d5czi
 c 4

.
1 > n ) 

dz d£ dz 

= 5 

therefore | | (z(£>) (5) = 1 . (4.1.12) 

Substituting (4.1.12) into (4.1.11) we get 

d f ( z C O ) _ rdfCzCOD, dzCO-,
 r 4

 t
 1 V 1 

dz "
 L

d£
 7

 d£
 J

 l^.i.i^ 

Using central difference approximation in the numerator 

we obtain 

2 a 5 (

d f \ 
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Also we have 

d^f(z(0)
 =
 d_ df(z(0) 

, 2 dz dz 
dz 

_ d_ , d f ( z ( C ) )
w
 dz(C) 

~ dC dz dC 

r f d£Cz(C))/ dz(5) •,, d z ( 0 L

 dC
 1

 dC ' dC
 J /

 dC 

Discretizing equation (4.1.15) 

(4.1.15) 

(i) Using the central difference in the numerator 

(ii) and using the central difference approximation for 
d f

 uft • 
-ttt , we obtain 

dz 

o ( z u ) ) - _l 
2 ac 

f. _-f. f.-f. 
l + l l 
ac 

c — ) dc . , l+k 

"i + 1 

cas) cz
5
)

i + %
(z

5
). 

£i-l 

CAC)
2

(z
5
)._

%
(Z

5
). 

1

 ] * ocas
2

) 

( 4 . 1 . 1 6 ) 
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For details of the error terms in the finite-difference formulation 

of the derivatives in equations (4.1.14) and (4.1.16), see 

Ref. [32]. However, it suffices to note the following properties 

of z(5); 

dz 
(i) should be finite throughout the whole interval. 

dz 
However, if ^ is infinite, then the mapping will give 

dz 

poor resolution since Az « C ^ ) . A £ . Thus the resolution 

cannot be improved even if we increase the number of 

grid points. 

dz 

(ii) On the other hand, if = 0 , at z = 0, higher 

resolution will be obtained near z = 0. This condition 

is true if z^ = 0. 

The finite-difference approximations for the derivatives 

can be simplified by a convenient choice of the function of z, 

namely z(£) = P
n
(€)» where P

n
( 0 is

 a

 polynomial of degree greater 

than unity. In the paper [33] by Eugena K. de Rivas, comparisons 

were made between the method of stretched coordinates with the 

method used by Sundquist-Veronis. Although the method of coordinate 

stretching gave higher error values, there is no tendency for the 

relative errors to grow for z + 0 for the Stommel (1948) model. 

However, the major advantage of this method is the ease with which 

grid-spacings are immediately known once the number of the grid points 

have been decided whereas for the method used by Sundquist-Veronis 

would require considerable effort in determining a and x in (4.1.7). 

Consequently in our computational work on the insulated slab, we employed 

the method of coordinate stretching as defined by equations (4.1.14) 

and (4.1.16). 
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4.2 Grid-System in cj-direct ion 

As afore mentioned, we expect the temperature within the 

slab to vary rapidly as y approaches unity. Hence we seek to deter-

mine a function y = y(n) as shown in Figure 4.2. For y values 

approaching unity, we require the grid-intervals to become very 

small to cope with rapid changes in temperatures. We impose the 

following conditions on y(q), namely 

(i) y(0) = 0, y(l) = 1, with 0 < n < 1 

(ii) = l and ( & = y where 0 < y « 1 
d T 1

 n=0
 d t 1

 tpI 

(4.2.0) 

To satisfy the conditions (4.2.0), we require a cubic 

polynomial function of y(n), namely 

y = a
Q
 + a

1
n + a

2
n + a

3
n 

On imposing the condition (4.2.0) we have 

y = n {l + (l-y)(l-n)n> 

OR 

2 3 
y = q + (l-y)n - C 1-y) n 

dv 
Although choosing (-r̂ -) = 0, would give high resolution 

n

 n=0 

near y = 0, we anticipate difficulties since we have to generate 

an extra grid point because of the Neumann boundary condition 

at x = 0, since = o. Hence the convenience of choosing 
oX 

dy 

^dir rrO
 =

 * becomes
 m o r e

 apparent. By an appropriate choice of y, 

the overall truncation error can be reduced with a view of obtaining 
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small grid spacing near y = 1. 

4.3 Grid-spacing in the x-direction 

Our choice of the irregular grid is dictated by two 

main considerations; 

(i) We expect the temperature within the slab to change rapidly 

in the region x ~ £ and y ~ 1. Hence we require very small grid 

intervals in this region. Infact the mapping of the insulation in 

£-plane covers a region of length £ as shown in Figure 4.3. The 

mapping function x = x(£) is chosen such that we have uniform 

grid intervals in the region 0 < x < 2e, or 0 < £ < 2$. This 

choice of region with uniform grid allows the temperature to settle 

down before the introduction of irregular grid spacing. 

(ii) The temperature profiles for large values of x, namely 

x » e, are dominated by heat conduction in the y-direction, hence 

in this region large computer time savings can be obtained by using 

a finite-difference scheme with irregular grid intervals, with 

intervals largest as x -> For numerical computational purposes, 

the point x « , is defined to be equal to X . 

The difficulty of choosing a continuous function x(£) 

with the above constraints was resolved by taking separate mappings 

of x into £-plane, namely 

(a) X
t
(5) 0 < x < 2e or 0 < £ < 2? 

(b) X
T T

( 0 2 e < x < X or 2^ < £ < 1.0 
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We then imposed constraints on X^(5) and X J J ( 5 ) with a 

view of minimizing interpolation errors in the derivatives 

We put X (5) = 

5 

Region II: 

At x = 2e or 5 = 25, we at least expect Xj and X^j to equal 

each other. However, the nature of the continuity in the 

derivatives for the two mappings is dictated by the degree of 

accuracy we require in the finite-difference formulation of the 

spatial derivatives of the temperature within the slab (see below). 

2 
Accepting errors in spatial derivatives of 0(A5) , we insist that 

f. ̂  and f . . We therefore consider 
i I 

Region I: 0 < 5 < 25 

X
t
(5) and X

T T
( 5 ) have the following properties; i ii 

at 5 = 25 

(i) X
n
( 2 5 ) = Xj (5) 

ii 

= 2e 
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3 
d X 

( i v ) 
I I 

dv 

3 
<TX, 

d5' 

0 

5=25 (4.3.1) 

We also impose a bound on L such that 0 1, with 5 = 1 , 

being equivalent to x = X^ in the x-plane. Thus at 5 = we 

put 

x
n
( D = X

c 

dx 

df 

(4.3.2) 

II 

5=1 

Hence we can vary the grid intervals by altering BQ thereby 

controlling the size and spread of grid intervals in the region 

x > 2e, with a view of minimizing the errors on the spatial 

derivatives as defined in equations (4.1.14) and (4.1.16). To 

satisfy the conditions (4.3.1) and (4.3.2) we choose the mapping 

function X J J ( £ ) such that 

2 3 4 5 x

n
( 5 ) =

 a

0

 + + a

2
s

 + a

3^
 + + a

5^ 

where a^'s are constants, i = 0(5). (4.3.3) 

By substituting equations (4.3.0) and (4.3.3) into equations (4.3.1) 

and (4.3.2), we obtain a system of equations in a^'s. From 

these system of equations, a^'s can be expressed in terms of 6 . 

£ and X . (For the details of a.
!

s see Appendix). 
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4.4 Computational Molecule and the finite-difference of 

Equations for the slab problem 

We now replace the energy equation (2.0.0) with the finite-

difference system of equations. The Neumann boundary conditions 

are approximated by the use of equation (4.1.14). Thus we need 

to generate extra grid points to take into account this 

approximation to the first derivatives of the temperature. The 

computational molecule at the point (i,j) for the Laplacian 

operator becomes 

v 2 e = ^ * 4 

3x 3y 

e . . . e . . . 

=
 1 + 1,j

 +
 1,3+1 

( A £ )
2

( x J .
 l

( X J . ( A n )
2

( y ) . ,(y ) . 
v £ i + h £ i n 3 + % n 3 

O . TO . V . . TO 
1-1,3

 +
 1,3-1 

( A S )
2

( x J . i (x ). (An)
2

(y ). ,(y ). 
£ £ l n j-? n i 

1 1 1
 r

 1 i n 
— [ + ] + 

CAS)2 V. (x5). 

( m )
2

 [
 1

 +

 1

 ] le. . 
An

 L

 , , <» f 
C

V j
 C

V j + * j-h 

+ 0[(AS) 2, (An)2] 

where i = 1,2,.. .N 

j = 1,2,..., (M-l) , M < "S 

j = 1,2,...,(M-2),(M-l). V £ > S . 

(4.4.0) 
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M and N represents the number of grid points in the n and £ 

spatial directions. Thus 

AS = (1/N) 

An = 1/CM-1). 

Boundary conditions: 

2 2 
Accepting errors of 0(A£) or 0(An) , therefore using 

equation (4.1.14), we have 

(i) x = 0 f = 0 

but H s
 e

i+i,j-
9

i-i,j 

3x 2(A?)(x)
i 

hence at x = 0 i = 1 

0

2,j =
 e

o j J • ^ 

(ii) 7 = 0 

but 

39 
3y 
£2. = 0 

_39_ 

9y 

9. 
i,j + l i, j -1 

2(An)(7
n
)

j 

thus at y = 0 

9. © 
i,2 

6

i,0 
i = 1(N) 

(iii) y = 1 = 0 x < e or £ < £ 
3y 

Let represent the number of grid points in the region 

covered by insulation, therefore at y = 1; j = M . 
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9- w i = 9- i
 15

 u n 3 • l ,M+1 i,M s
7 

N
s
 can be determined from the following relationship, namely 

or N = N£ + 1 
s 

(iv) at x = X , £ = 1 

(4.4.1) 

2 2 
with 5 = 2a sech a. 

Note that 

2 3 
y = x] + (l-y)n - (l-y)ri . (see section 4.2) 

On using the boundary conditions, the finite-difference 

scheme results in [M.N
s
 + (M-l).(N-N

s
)] system of 

nonlinear equations which can be expressed in matrix form as 

A 0 = d (4.4.1) 

where 0 is a vector representing the unknown temperature at the 

grid points within the region (see Figure 4.4), such that 

0 (
0

i
 M

; - - - ;
0

N
 , r - - - >

e

N ,M
; 0

N + i , r - "
, e

N + I , M - I
;

" "
; 

s s s ' s 
T 
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Writing 

d = cL + d_ 
~ ~1 ~2 

where d^ and d^ contains the contributions due to the nonlinear 

terms and boundary conditions (at x = X ) respectively, namely 

d = -(A5) 6 
1,1 

1 ,M 

N,1 

N,M-1 
M-l 

where <j> = 0(X ,y), the boundary condition at x = X 

= 9 
N+l,j 

j = l(M-l). 

However, A is the coefficient matrix of the form 
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A = I B 1 C x 

G2 B2 C2 

°N
 B

N
 C

N 
s s s 

B„ C 
+ 1 N +1 N +1 

s s s 

G

N-1
 b

N-I
 C

N-1 

s b 
N 

where B^'s are tri-diagonal matrices of order (M x M) for 

1 < k < N and of order [CM-1)x(M-l)] for N < k < N, namely 

'1,1 1,2 

2,1 2,2 2,3 

bf , . © bK. - . . bf . . 
1-1,1-2 1-1,1-1 1-1,1 

b
K

 . 
i, j-i 

b
k

 . 
i ,i 
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with 

3.3 
r i 

c x

pic-% j 

+ c
M f 
An ( y j . C y J

J + 1
. 

n ] 'n j+3 

1 = 

KM) for 1 < k < N 

l(M-l) for N
s
 < ic < N 

k
k

 - r d 1
 r

 1 

o = c — ) tttt— [ 1.2 An C y
n
)

3 / 2 

] V K > 1 

b
K

 = ( ^ ) I 
3 , 3 + 1 1 A n J ( y J . ( y j . 

where 

3 = 
2(M-1) for 1 < K < N 

2 (M-2) for N
s
 < k < N 

u
k

 - R ^ , i i " ( tt ) • • i - v A J t — 7 — 7 — * j = 2(M-1) 1 < K < N
s 

J ,3-1 Ari (y ) . (y ).
 L 

n 3 H 3-^ j = 2 ( M - 2 ) K > N 

b
K = ( ) p , p - l 1 A n J ( y j 

n P 

r l
 +

 1 , 
( y

n
}

p
^

 + 

with 

P = 

M 

M-l 

for 1 < K < N 

for N < k < N 
s 

C^s represent diagonal matrices with all the elements equal to C m 

such that 
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-co .co 

• co 

• co 

with 

.(1) 1 r 1 1 1 
[ ttr-1

 +

 t ^ ] (x (x )
3 / 2

 • (x )
1 / 2 

and 

• co _ k = 2(N-1) 

represent the sub-diagonal matrices of A such that 

-co ,co 

.co 

with g co k = l(N-l) 

Note that dimensions of C 's and G 's are given by 

k ic+l & J 

(i) (M x M) for 1 < < < CN -1) 

(ii) (M-l)x(M-l) for N
g
 < k < (N-l) 
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4.5 Conclusions 

The finite-difference scheme developed in this chapter is 

applicable to any partial differential equation with spatial 

coordinates. However, in our case, emphasis has been on developing 

the system of equations for the slab problem with insulation. 

Details of the computational procedure and the nature and form 

of the grid spacing in both the y and x directions will be discussed 

in Chapter Five. It is apparent that more analysis of the 

finite-difference equations is required in order to obtain the 

solution. 
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i 

Figure 4.2: Distribution of grid points required in 
Y - di re cti on 



Figure 4.3: The required grid distribution in the X-direction 
with 0 < 5 < 5 being in the region in the 5-plane 
occupied by the insulation. The shaded region represents 
regular grid intervals in the X-direction. 

V 
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j=m 
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j=l 
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X=0 
i-l 
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i=n 
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X = 2 e 
j = 2 N 

x= 
i = N 

Figure 4.4: The circled points in the domain of differentiation 
represent the nature and form of the grid points in the X-Y 
plane. Extra grid points are generated to take into 
account the Neumann boundary conditions at 

C D y = 1 , X < £ 

Cii) y 3 0> Vx 

(iii) X 3 0 , Vy 
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CHAPTER FIVE: NUMERICAL SOLUTION OF THE FINITE DIFFERENCE 

SYSTEM OF EQUATIONS 

5.0 INTRODUCTION 

We seek to determine numerically the critical conditions 

for the onset of thermal instability of the slab defined in 

Chapter Two. Using the finite-difference system of equations 

developed in Chapter Four, we want to obtain the critical Frank-

Kamenetskii parameter 6
c
C O as a function of £, the dimensionless 

insulation length. Normally Newtonian methods have been used to 

solve similar systems of equations. Of importance to us, is 

the determination of the relationship between 6
c
C.e) ^ ^

 €

> 

especially for e = 0(1), since no perturbation analysis is 

possible for e of this order of magnitude. However, computational 

results for 6
c
O O for e « 1 and e » 1, will provide comparisons 

with the predictions of the perturbation analysis given in 

Chapter TiVC-

5.1 Direct Newtonian Method 

We now consider the finite-difference formulation 

contained in Chapter Four by putting 

f(0) = A9_ - d = 0 (5.1.1) 

where A and d are matrices as defined in section 4.4. 
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I n o r d e r f o r u s t o e m p l o y a N e w t o n i a n s c h e m e , w e 

n e e d t o d e f i n e a c o r r e c t i o n v e c t o r A 9 n , n a m e l y 

. „ n J i + 1 _ n 
A 9 = 9 - 9 ( 5 . 1 . 2 ) 

t h 

w h e r e n d e n o t e s t h e n i t e r a t i o n . O n c o m b i n i n g e q u a t i o n s 

( 5 . 1 . 1 ) a n d C 5 . 1 . 2 ) , w o g e t 

f ( 0 n + A 9 n ) = 0 ( 5 . 1 . 3 ) 

E x p a n d i n g e q u a t i o n ( 5 . 1 . 3 ) a s a T a y l o r s e r i e s i n p o w e r s 

.n 
o f A 9 , w e o b t a i n 

f ( 9 n ) + f r ( 9 n ) . A 0 n + . . . = 0 ( 5 . 1 . 4 ) 

w h e r e 

f ' ( 9 ) = 
f i ® 
99 

q 

9f
x
 df

] 

397 39^ 
!fs 
3 9 

3f
2
 3f 

7§7 "dol 

3 f . 

39" 

3 f i 
3 9 . 

3 f i 
3 9 , 

3 f 

9 9 
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where r corresponds to the number of the equations. If a
p q 

denotes the elements of the coefficient matrix A, then 

f C9 ) = J a 0 - d (9 ) , 
p q J p q q p q 

and hence 

3f (6) 

^ =
 a

.n " ifl- c.d (0) 3Qq pq pq " q p -

where <5 is the normal Kronecker delta, namely, pq 

r
 1

 i
f

 P = q 

6 p q

 I 0 if p * q 

Using the definition of d in section 4.4, we obtain 

3f C£)
 2 

^ = a
p q
 + (A5) 5 exp(9

p
) 

Finally equation (5.1.4) becomes 

J(9
n

)A0
n

 = - f(0
n

) (5.1.5) 

where the Jacobian matrix JC.0) is given by 

J(£) = A + (A5)
2

 6 diag[exp(£)] 

where *diag[exp(£)]
f

 defines a diagonal matrix with elements equal 

exp(0). We note that the non-linear terms of the energy equation 

(4.1.4) only occur in the principal diagonal of the Jacobian matrix, 

J(9) . Consequently the elements of J£0) are equal to the elements 

of the coefficient matrix A except for principal diagonal 

elements which now become 
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= (AS)
2

 <5 exp(e .) 
k , i 

* "n'l-l ' 

{ 1(M) for 1 < K < N 
with 

s 
l 

1 (M-l) for N
s
 < k < N 

(see Section 4.4 for details). 

The critical condition for the onset of thermal 

instability occurs when the Jacobian matrix, J(9), becomes singular. 

Ideally we seek a solution of (5.1.5) for the case when the 

determinant,D, of the Jacobian matrix vanishes. However, at 

criticality, the inverse of the Jacobian matrix is undefined 

and hence the Newtonian scheme will lead to failure in computation. 

To avoid this difficulty, we instead seek to solve (5.1.5) with 

6 chosen as close as possible to the critical 6 but with J(£) 

remaining non-singular. Thus by a Block Tri-diagonal solver or 

computer library facility we determine the approximate solution 

to (5.1.5) and consequently we then evaluate the determinant D. 

Hence for various values of 6 we compute the corresponding 

determinants and from a plot of D versus 5, seek to approximate 

the critical values of 5 corresponding to the case when D = 0. 

For small values of the insulation length, say, € « 1, 

we expect 6 (e) to be approximated by 6 CO), where 6 (0) = 0.878. 

Hence for e « 1, say e = 0.01, we consider the following 

Computational Procedure:-
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procedure for numerical computation of the critical Frank-

Kamenetskii parameter, 

(1) At d = 0, the inert problem, after computing the 

approximate £ solution, we evaluate the corresponding 

determinant, say DQ. 

(2) Next we choose 5 = 6 ^ such that d^ is as close as 

possible to the critical d but at the same time JC£) 

remaining non-singular. Choosing d^ = 0.8, we compute 

D^, the corresponding determinant. 

(3) Increasing d^ by a small increment A5, we get and 

finally D^. Because of instability problems during 

computation, we select Ad such that A6 = 0.0025. Thus 

d
2
 = 0.8025. 

(4) Similarly = 0.805 and hence the corresponding 

determinant is D^. 

(5) From a plot of D vs. 6 , the critical conditions for 

thermal instability can be approximated by passing through 

these points a simple quadratic polynomial of the form 

— — 2 
5 = a

Q
 + a

1
D + a

2
D , 

where D = (D/DQ) . The determinants D^, D
2
 and D^ were scaled by 

DQ to overcome 'over-flow' problems in computations on the computer 

due to the large magnitudes of the determinants. 

On fitting the curve through these points, see Figure 5.1, 

we obtain the suspected critical 6, namely 5 ^ ( e ) , the value 

corresponding to the value 6(1) = 0) = a
n
. This value 6 ^ (e), 
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is the value of <5" that results in a singular Jacobian matrix, 

and hence the limit for the convergence of the iterative scheme 

Taking an appropriate weighting between 5 ^ C O and 

we evaluate d^ and consequently we compute the scaled 

determinant D^. Through these points, in the D - d plane, we 

fit a cubic polynomial of the form 

d = a
Q
 + a-jD + a

2
D

2

 + a
3
D

3 

r 2") 

and we label d^ (e) this new value of a^. Again taking the 

(2) 

weighting between d
c
 (e) and d^, we obtain d

g
. The above 

procedure is repeated until a desired criterion of convergence 

is met, namely 

| d
c

( n )

0 0 - S
n + 2

I < 10~
a

 , a > 0 

a represents the degree of accuracy required. 

Discussion of the Direct Newton's Method 

The afore-mentioned computational procedure for determining 

5 C O can be repeated for different e values. This method offers 

a relatively simple and easy procedure for determining the 

critical Frank-Kamenetskii parameter corresponding -to a singular 

Jacobian matrix, J"C9) . The main advantage of this curve fitting 

scheme is that it is both simple and easy to implement. For a 

well behaved curve of D vs. d, the method can be cheap, since few 

points will be enough to achieve the desired accuracy of d (e) . 
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However, in the neighbourhood of the critical <5, the computations 

tend to become unstable. This difficulty is partially resolved by 

choosing successively smaller increments of 5. Unfortunately, 

in our case, the computations became unstable even for 6 values 

far away from the critical 5. For example for e = 0.01, the 

computation became unstable for <5 > 0.6, whereas the critical 6 

is expected to be close to <^(0). Attempts to resolve this 

difficulty by reducing further the step size of 6 resulted in the 

computed determinants remaining almost unchanged despite changes 

in 6. These small changes in D's make curve fitting both 

unreliable and expensive in predicting the critical 6. Infact, 

we anticipate for moderate values of e and large number of grid 

points, the scheme will result in unacceptable large computing 

time. We however note that this scheme, for e = 0.01, gives 

results for the critical 6 of the correct order of magnitude. 

5.2 Quasi-Newtonian Methods 

In order for us to solve equation (5.1.5), and 

simultaneously avoid the singular behaviour exhibited at criticality 

by the Jacobian matrix in (5.1.5), we consider the following 

modified system of equations, 

F(9,6) = g o m ) 

fc9,6) 

0 

( 5 . 2 . 0 ) 
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with 

F <r „n+m <r 

f 
n <r „n-m <r 

g 
m 

<r m 
(r 

where m represents the number of singularities of £(£,6) . 

However, since we are dealing with a simple turning point problem 

(see Figure 1.2), we expect the system of equations to exhibit one 

singularity at 6 = <5 C O • Hence m is equal to unity. The 

function g_(£, 6) , here represents an auxiliary condition, 

required so that the Jacobian matrix of £(£,6) will remain non-

singular for all values of 5 including 6 = <$
c
(e) . 

k k 
We now define the correction vector A0 and A 5 by putting 

. _ K K + 1 _K 
A9 = 9 -9 

and (5.2.1) 

A 6 = 6 - 6 

th 

where K refers to the K iteration. On combining equations (5.2.0) 

and (5.2.1), we obtain 

F(0
,C

+A9
IC

, S
K

 +A6
K

) = 0 

Expanding F as a Taylor series in powers of A9 and AA, we get 

v

9
 F(£

K

,S
K

)A£
K

 + V
5
 FC£

K

,6
K

)A5
K

 = - £(£^,5^) (5.2.2) 
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Elaborating on equation (5,2,2), we obtain 

jo 
[ Z e s 6 C 6 ^ , 0 ] [A9

K

,AS k] t = - [ g,f] T (5.2.3) 

.k .k where F^
 5
(0_ ,5 ) is given by 

= 

f T 

Vfl gC£,5) , 

ve£c£,<$) 

v
5
gc£,<5) 

V
6
f(9,6) 

Thus ^C9_><5} represents the overall (n+1) square Jacobian 

matrix of equation (5.2.0). Because vector £(£,6) is known 

explicitly its derivatives can be obtained analytically and are given 

by:-

V
0
f(£,6) = J (£) 

the original n-square matrix defined by the iterative scheme 

in equation (5.1.5). The elements of the n-vector V^f(£, 6) are 

also explicitly known and are given by 

v

6
£C£,6) = -(A5)

2

 exp(£) + f y (d
2
) 

We note from Chapter Four that all the elements of £
2 

are identically equal to zero except for the last row-block, 

representing the imposed boundary condition at x = X . (Tor details 

see Chapter Four). 
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Finally 

1,1 

1,M 

V <f> 
^ 6 M-l 

with 

v

6± 
(tanhg-y tanhgy) 

2 
2asech a(l-atanhcr) 

(5.2.4) 

The suffixes k and M represent the number of grid points in the x 

and y directions respectively. 

Although the original Jacobian matrix, v f(0,<5) becomes 
0 

singular at criticality, we seek to choose an appropriate scalar 

function g(0.,6) such that the overall Jacobian matrix F_Q 3(0.,^) 

will remain non-singular throughout the entire computation for all 

values of 6 including the critical value of 6. Hence we now put 

g(0,6) = det[V f(_0,6)] (5.2.5) 
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This choice of the auxiliary function g(£, <5) is both 

convenient and consistent with our definition of the vector 

£(£,6) in equation (5.2.0). This is because the determinant 

of the matrix V
Q
 f(9_, 6) vanishes when 6 equals to the critical 

value of the Frank-Kamenetskii parameter. Consequently the 

iterative scheme of equation (5.2.3) will yield the critical 

value of 6 as part of its solution. 

In solving equation (5.2.3), difficulties arise when we 

attempt to update the boundary condition at x = X . This is 

because the boundary condition is not known explicitly as a function 

6 but is instead given by 

Further difficulties will arise when we seek to evaluate 

the elements of the vector V ^ in equation (5.2.4). This is 

because, for small values of e, crtanhcr ~ 1. To avoid these 

difficulties, we replace 6 by a as the unknown parameter in (5.2.3). 

Hence equation (5.2.3) becomes 

0 O , y ) = 2 log ( 
cosha 
coshay 

with 

2 2 
2a sech a 

[L, fTC£
K

,6
K

)][A£ ,Aa
K

]
T

 = - [g,£J 
T 

(5.2.6) 

with F^ aC£,d) = V Q T g C M ) 7ag C M ) 

vfi f(£,<5) v a f ( M ) 
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and V
a
 f ( . M ) = - (-AS)

2

 expce; . g • (d
2
) 

t a « 2 § 
9 

e • 
1,1 

9 
e 

1,M 

R\J 

1 
I 
1 

» 

e 

1 
1 ^ 

/V 

• 

9 
e • 

K-1,1 

9 
e 

K-1,M-1 

9 
e 
• 

K,1 

9 
e 

k,M-1 

with d6 = 4aQ-crtanha)sech a, 
da 

and V
a
i = 2(tanha-ytanhay). 

Equation (3.2.6) can be solved by using computer library 

facilities. For a given value of e, we suggest the following 

computational procedure:-

(_1) We choose our starting vector (.9°,a
9

) with 

being close to the expected critical region 
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(2) We then compute the elements of the vector 

such that 

X(9_,a) = 

v
a
 g(£,a) 

(5.2.7) 

the elements of the differentiation of the 
determinant with respect to £ and a. 

(.3) Thus we now determine the elements of 

v

rr 1(0 >° £c£ ) and [g(6_ ,0 ), f(£ ,a )] 

(4) Solution of (5.2.6) will yield the correction vectors 

(A0^,Aa^), and hence we obtain the new starting point (Q
1

",^), where 

1 Q0 .«0 , 1 0
 a

 0 
l = 9 + A9 and cr = a + Aa 

Or generally 

= 9_
J

 + A9_
J 

a ^
1

 = a
3

 + Aa
j

 (5.2.8) 

with j = 0,1,2, etc. 

With the modified value of a in (5.2.8), we now compare 

the coresponding value of the Frank-Kamenetskii parameter, namely 

6
j + 1

 = 2 [ a
j + 1

 s e c h a
j + 1

]
2 
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We now repeat the computational steps (2) to (41 with 

the vector now replaced by • The above 

procedure is continually repeated until a desired criterion of 

convergence is met, say 

l g
n
/ g

0
l < 10"

7 

where 

g
n
 = gC£

n

,o
n

), [see equation (5.2.5)] 

It is of importance during the computation to check the 

values and behaviour of; 

(i) | 6
j + 1

Y | 

(ii) 11 (g,f
T

)ll 

Ciii) |e
j + 1

-ej| . 

Since the auxiliary function g(£,a) is not known explicitly, 

it is apparent that the elements of _X(9,a) can only be determined 

by numerical differentiation. However, numerical differentiation is 

both a risky and expensive operation. Thus the computational effort 

required to evaluate _X(9_,a) will become unacceptably large since 

_X(£,cr) has to be updated for each and every iteration step. Hence 

we seek to overcome this difficulty by considering the following 

methods; Andreas 1 and Andreas 2. 
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Andreas 1: 

In this method, we seek to reduce the computational effort 

in evaluating ML£,oj by using the Broyden's method (see Appendix) 

to update X^ to by putting 

A - A. • Cgj + 1 - g j - A j T ( A - j ) ) C t A l b ; . ^ ] e . 2 . 9 , 
3 1 3 3 + 1 3 3

 io
3

 II CCA9 D .A® 

Andreas 2: 

In this method, we seek to overcome the difficulties in 

determining the elements of x.c§.>
a

) in (5.2.7) by considering 

factorisation of the original Jacobian matrix J(£) (see equation 

(5.1.5)) after a suitable row and column interchange. Thus we 

now consider the following factorisation 

j c m ) = l(£,6) , 0 

q
T

(9,<5) , 1 

r c m ) 

0 

GC9,6) 

wce,6) 

C5.2.10) 

where R(£, 6) and L(£, 5) are (n-1) x (n-1) upper and unitary lower 

triangular matrices respectively. On combining equations (5.2.10) 

and (5.2.5), we get 

g(9,6) = det l ( m ) , 0 

q
T

C£,S) , 1 

det R(9_,S) , G(0_,6) 

0 , u>(£,6) 

C5.2.11) 

and hence the condition g(e,6) e 0, implies that o)C9,6) = 0. 
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Hence we seek, to solve the following (n+1) system of equations 

f(£,6) = 0 
(5.2.12) 

ojC£,<5) = 0 

The above factorization of the original Jacohian matrix 

is suggested by Griewank £34]. The advantage in using the above 

factorization is that by an appropriate choice of null vectors, 

the scalar function 03(£,6) can be known explicitly and its gradient 

can then be determined by taking one divided difference. Furthermore, 

we do not have to do any Broyden updating (see equation (5.2.9)) 

but can obtain quadratic convergence at the expense of two 

evaluations of V. _fC9,6) per step. In [34] Griewank approximates 
9, o— — 

the null vectors by putting 

u(£,6)
T

 = (-q(£,6)
T

 L
- 1

 (£, 6) , 1), 
T

 T
- 1 

(5.2.13) 

and 

VC£,6)
T

 = (-G(£,6)
T

 R"
T

(£,6) , 1), C5.2.14) 

so that 

03 (£,6) = u(£,<$)
T

 J(£,<5) V(£,<5) (5.2.15) 

Verification of C5.2.15): 

UC£,<$)
T

 J(£, 6) = [ - q
T

L
_ 1

, l ] [ L , 0 M R , G ' 

T 
q , 1 £ , 03 
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= [0, 1] R , G 

0 , 0) 

Therefore 

u
T

 JC9,S)V= [0,1] f R , G 

0 , w 

a 
-R G 

1 

= [0,1] 

= to 

On using Newton's approximation on equation (5.2.11), 

we obtain 

T „K. 

,k „K. 

V
g
O)(9.

K

,6
K

) A9_ 

7

oi.(l
K

>
s K

) 
4 

A K 

Aa 
» 4 

f (£
K

,6
K

) 

(5.2.16) 

The elements of V
Q
 f_(0_,6) and V

g
 f(9_,6) are known 

and are as evaluated in above sections. However, the elements 

of V
Q
 co(9,5) and V u>(8,5) can be determined by differentiating 
9 — O — 

equation (5.2.15). 

Determination of the elements of V co(9,6) 
a,a — 

On differentiating equation (5.2.15) with respect to 9_ and a, 

we obtain 
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v m = c 7

s.a u ' > j v + " / ' e . a ^
7 + u t j ^ e . a v ) 

We note 

JCe,6) vce,6} = L , 0 

T 

R , G 

0 , u 

-R-
1

 G 

C0,u>) 

but 

and hence 

( V
Q
^ u ) J(9,6) V(9_,6) 

= [ - c v
q
^

0
 q v ^ o j t o y o ]

7 

= 0. 

Similarly 

u (9,6) J(9_,6) ( V ^
q
 V(9_, 6) ) 

= 0. 

Therefore 

0/(9,6) = u & Vg £(6,0)) V 
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We now put 

A (£, d] = v
6 ) G

f c e , 6 ) 

and hence 

V
Q > a

 a > ( M ) = u (9,6) CV
Q
 A(9_,6)) V(£,d) 

but 

CV
Q
 ACi,d)).V(£,6) 

=
 a(£+ av, 6) 

a=0 

Finally equation (5.2.17) becomes 

V
e > ( J

 u>(£,6) = u
T

(6,6) ^ - A C 6 + aV,6) 
a=0 

Therefore 

V
0
 w(£,6) = U

T

(£,6) ^ V
e
f ( £ + aV,S) 

a=0 

and 

V
a
 a)(£,6) = u

T

C£,6) ^ V
Q
f C £ + a V , 6 ) 

a=0 

On taking one divided difference, we obtain 
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V . ( 0 ( 0 , 6 } = u T [ V . f ( 0 + y V , 6 ) - V f l f ( 0 , 6 ) ] / ( y l l V I I ) 

We note 

UTCQ,6) V f (9,6) = CP,o))
T 

Therefore 

V
Q
 (0(0 ,6 } = {u

T

J(9+yV,6)- - u(9_, <S)e
n

T

}/(yllVII) (5.2.19) 

T 

where (qj(9_, 6) e^ ) is the nth entry and y is a small parameter, say 

ll II multiplied by the square root of the machine precision. 

V
q
 oj(9_, 6) now becomes 

V^ a)(6_,6) = u
T

{ V
a
 f(9_+yV,6)- V

g
 f (£, 6) }/(yllVII ) 

(5.2.20) 

However, from equation (5.2.6) V^ £(9_,<S) is given by 

2 d5 3 
V a -

 =

 ' CAO ^ • exp(9)
 +
 ^ [d

2
(a,y)j 

Therefore equation (5.2.20) becomes 

VQ (0(0,6) = - ( A O
2

 • exp(9)[exp(yV)-l]/(yllV|| ) 

or 

V
a
 (0(0,6) = - (A5)

2

[uV
+
 \ (yV)

2

+
 ...] exp (9) . 

= - ( A 0
2

( U V ) | £ e x p ( 0 ) + 0(y
2

) (5.2.21) 

V 
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Summary of Andreas 2: 

C D 
0 q. 

We start our computation from the point (9_ ,cr ), with 

(9_ ,a) being close to the expected critical condition Q L C O , crCD) 

C2) We then factorize the original Jacobian matrix 

D C =VQ D ) after a suitable row and column interchange, 

Thus we have 

J CM) = 

I q
T

Ce,6) 

r(£,6) 

0 

g(£,6) 

ojci,6) j 

(3) We now compute the null vectors u(£,6), V(_9_,6) and the 

scalar function u(£,6), namely 

u
T

C £ , D = C - q V
1

, ! ) 

t t -t 
V (£>6) = (-G R \ l ) 

and O3C0,<S) = u C9,6)J(9,5)V(9,6) 

C.4) Using equation (5.2.19), we compute the elements of the 

gradient of oj(£,6) with respect to the n-vector£as follows: 

When we evaluate the original Jacobian matrix, 

J = V f, at the neighbouring point (9+pV,6), we accumulate the 
9— — 
~~ T 

n-vector u (9_,6)J(9_+pV,6) and then subtract co(£,6) from its last 

component. On dividing by (p IIV II )>
 w e

 obtain the elements of 

2 
V u)(9_, 5) up to the term of 0(y ). 
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(.5) W.e then evaluate the elements of f.(9_, 6). The gradient of 

(JOC£,<5) with respect to the cr parameter is determined hy (5.2.21), 

namely 

V
ff
 U)C9,S) = - (A£)

2

 ^ .[exp(£)].(yV) , 

2 
up to the term of 0 Cp ). 

(.6) Using computer library facilities, but remembering to 

exploit the factorization of J(0_, <5), we compute the correction 

vectors (A£, Ao), namely we solve 

f 
I T 
V • 

V (i) a A£ 
- 03 

v

e£ V f a— f 

or 

v
0
 03(0., 6) 

' L , 0 ' • R . G 

T 
. 0 . . q > i 

j 
. 0 . la 

V 03 a 

m-

[A0_, A C T ] 7
 = -[o3,f]

7 

(7) After updating a and 6 , we repeat steps (2) to (6). 

This process is repeated until a desired criterion of convergence 

is met. 
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5.3 Discussion on the Quasi-Newtonian Methods 

Andreas 1: 

This method was designed to determine the critical conditions 

for the onset of thermal ignition for the problem defined in 

Chapters Two and Four whilst avoiding the pitfalls encountered in 

implementing the Direct Newton's iterative scheme (5.1.5). However, 

before we considered implementing Andreas 1 to determine the 

solution to (5.1.1), we sought to solve a simple but well-known 

thermal ignition problem such that the corresponding system of 

finite-difference equations £^(£, 6) exhibited the same essential 

characteristics as £C£, <$), namely at the critical value of 6, 

V
Q
_f^(£, 5) becomes singular. Infact extensive computational work 

was done for the one-dimensional self-heating slab problem defined 

in equation (1.2.5). This problem is equivalent to (5.1.1) when 

the slab surface is free of insulation, namely the case e = 0. 

Details of the Numerical Analysis for the Simple Slab Problem 

On using the same numerical analysis as in sections 5.1 

and 5.2, we derive the corresponding system of equations for 

£^(£, 6). Infact these equations are equivalent to those for £(£,6) 

with £(£,6) now replaced £^(£,6). Because of the simple boundary 

conditions (1.2.5), we can determine the critical value of the 

Frank-Kamenetskii parameter by either implementing (5.2.3) or (5.2.6). 

Hence we have 
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^ y e , ^ '
5

^
 }

 c.ae
k

,&
k

)
t

 = - q ^ l
7 

(5-3.1) 

or 

{

cf
1
)

q j c r
c£

k

,6
k

)} (a£
k

,aa
k

l
t

 = - cb
1
,£

1
}

t 

(5.3.2) 

where 

v

e
 g

i '
 v

6
g

i 

v

e 4 '
 v

6fi 

or (F ) 
- r e,o 

v

e • a
6

l 

V f V f 
9—1 ' a—1 

index ' k' refers to the Kth iteration. 

The vector function f^GL^S) is given by 

f ^ M ) = A
x
£ + h 6exp(£) 

= 0. 

(5.3.3) 

where h is the uniform grid spacing. The coefficient matrix A^,, 

is a tri-diagonal matrix of the form 

- 2 2 

1 - 2 1 

1 - 2 

1 - 2 1 

1 - 2 
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The Jacobian matrix from (5.3.3) is 

1 

B 
n _ 

2 

where B^ = -2 + h 6exp(0^) j = 1 (N) and N is the number of grid 

points. 

Before computing the solution to (5.3.1) or (5.3.2), we 

seek to determine the elements of the (n+1) vector A_(0^,cr^) at the 

starting point of the iteration, namely at the point These 

elements can be determined by numerical differentiation, but this is 

both expensive and risky. However, we note from analytical 

considerations that the elements of V_g.(9
9

,a
9

) are of the form 
0 1 — 

v

q giCS^a) = y(9) • 6
X

 (5.3.4) 

where (9) is a vector representing the exponential factors of 9_ and x 

is a positive integer such that x = 1,2,..., (n-1). Thus by 

conveniently starting our computation at 6 = 0, we reduce the 

computer effort required to obtain the elements. Hence 

we only need to compute the scalar V^g^ (9^,a
9

). We then use 

the Broyden Method to update the cr ) values at each and subsequent 

iteration step. 

v

eii 

B 
n-1 

1 
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Computational Results for Problem (1-2.5) 

With, grid mesh sizes 1/4, 1/8, 1/16 and 1/32, the results 

of the computation are contained in Tables 5.1 and 5.2. We also note 

that during the computation, the scheme apparently seeks out first the 

'critical' value of 6 and then the value of the determinant of 

Vgf^O^,6) drops rapidly with subsequent iterations. Infact, the 

~' 12 
value of determinant diminishes by a factor of 10 within a small 

number of iteration steps whilst 6 remained unchanged up to eight 

significant figures. The absolute value ofgj££, 5) can never vanish 

during iteration due to the large magnitudes involved. However,we define 

the critical value of 6 as the value of 6 at which the determinant of 

V f, (£, 6)diminishes rapidly whilst 6 remains unchanged. Infact 

9—-l 

at this 'critical' value of 6, the determinant did decrease in 

12 

magnitude by a factor of order 10 . As can be seen from 

Tables 5.1 and 5.2, the computed 'critical' value of 5 compares 

favourably with the analytical result, namely 6 = 0.878. 

5.4 Conclusion 

Although Andreas 1 predicted the critical value of 6 that 

compares favourably with the analytical result, difficulties arose 

when we considered the two-dimensional problem. These arose when we 

sought to determine the elements of by numerical 

differentiation. To avoid this difficulty we sought to solve (5.2.6) 

by arbitrarily defining the elements of V g ( 9
9

, a
G

) . From the 
o — 

computational work on the one-dimensional problem (1.2.5), we noted 
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that the elements of A_(9_,a) were of the same order of magnitude as 

g (§_> cr) • Thus we put 

V

Q
 gC£°,c

0

) = det[V
Q
 fC£°,<5)] 

We had hoped that the Broyden Method would correct the 

errors introduced in during subsequent iterations. However, 

the computation oscillated about the critical <S. To ensure convergence 

of the iteration scheme it is necessary to consider line-search 

2 2 2 

methods, namely we insist that II £(9)ll + Y g where y can be 

chosen such that 1/y = gg = det{V
Q
 £(9°,a

0

)}, the value of the 

determinant at the starting point of iteration. Infact Griewank 

[34] does suggest schemes that might ensure convergence of the 

iterative scheme. Furthermore, we can still obtain approximate 

critical values of 6 for various e values by using graphical method 

as in Section 5.1. We do not anticipate difficulties in determining 

the critical 6 values since the computed <5 and g values are in the 

neighbourhood of the critical region. The main disadvantage of 

the graphical method is that we no longer have control of the 

progress of the computation as in Section 5.1. However, the data 

obtained will be sufficient to determine the critical 6 from a plot 

of g versus 6. 

However, we hope that implementation of Andreas 2 will over-

come the difficulties encountered in Andreas 1, since we no longer 

need to compute the elements. 
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Table 5.1: Values of the scaled determinant g = (g/gg) 
for various grid mesh sizes. 

NUMBER OF h = 1/4 h = 1/8 h = 1/16 h = 1/32 

ITERATIONS g g g g 

1 1.00 1.00 1.00 1.00 

2 -0.66 -0.64 -Q.64 -0.64 

3 Q.14 0.15 0.18 Q. 12 

4 0.37 - 0.11 Q.74xl0
_ 1 

0.88xl0~
2 

5 Q.25X10'
1 

O.lOxlO"
1 

-0.31X10"
1 

-0.52xl0~
3 

6 0.23X10"
1 

0.18xl0~
2 

-Q.95xl0"
2 

0.65xl0'
4 

7 -Q.29X10"
1 

-Q.23xl0~
3 

-Q.32xl0'
3 

O.lOxlO"
5 

8 -0.72xl0"
5 

0.73xl0"
6 

0.72xl0"
5 

-Q.25xl0"
9 

9 0.59xl0~
6 

Q.90xl0"
8 

0.25xl0"
6 

0.87xl0"
1 2 

10 0.75xl0"
7 

-0.87xl0'
1 0 

-Q.39xlQ'
9 

Q.84xl0"
1 3 

11 -0.32xl0~
1 2 

0.85xl0"
1 3 

12 -0.57xl0"
1 3 

13 

Table 5.2 

NUMBER OF COMPUTED 6 VALUES 

ITERATIONS h = 1/4 h = 1/8 h = 1/16 h = 1/32 

1 2.0000 2.0000 2.0000 2.0000 

2 1.2150 1.2543 1.3927 0.9531 

3 0.9127 0.8700 0.8033 0.8843 

4 0.9683 0.8847 0.8807 0.87840 

5 0.8663 0.8767 0.8780 0.87835 

6 0.8717 0.8767 0.8780 0.87835 

7 Q.8712 0.8767 0.8780 0.87835 
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(=D/D
Q
) 

A = a
Q
 + a

1
D + a

9
D 
- i 

Figure 5.1: Graph of D vs. A 

V 
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APPENDIX 

6.0 Coordinate Stretching in the x-direction 

As discussed in Chapter Four, our choice of coordinate 

stretching in the x-direction is dictated by two main considerations: 

(i) We expect rapid temperature changes to occur within the 

slab in the region x ~ e and y ~ 1. Hence it is imperative to 

have very small grid intervals in this region. Consequently, 

we seek to determine the mapping function x = X(£) such that we 

have uniform grid intervals in the region 0 < X < 2e or 

0 < £ < 2£, see Figure 4.3. This: choice of the region with uniform 

grid spacings allows the temperature to settle down before the 

introduction of non-uniform grid intervals. 

(ii) We expect for large values of x , x » e, that the 

temperature with the slab varies slightly with changes in x. However, 

significant changes occur in the y-direction. Consequently for 

efficient use of computer time, we will use irregular grid intervals 

in the region 2e < x < X
a
 or 25 < £ < 1, with the intervals largest 

near x X . 
oo 

The difficulty in choosing a continuous mapping function 

x = X(£) with the above constraints was resolved by choosing 

separate mappings of x into £-plane, namely 

X j C O 0 < x < 2e or 0 < £ < 2£" 

X (£) 2 £ < x < X or 2 ? < £ < 1 
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We then imposed constraints on X^(£) and Xj^(C) with 0b 

view fa minimizing interpolation errors in the derivatives f. CD 

and f. 
(2) 

(see Chapter Four). We therefore consider, 

Region I: 0 < £ < 2£ 

We put X ( O = ^ 

5 
(6.0.0) 

Region II: 

At x = 2e and £ = 2£, we at least expect X^ and X^^ to 

equal each other. However the nature of continuity of derivatives 

is dictated by the degree of accuracy we require in the finite-

difference formulation of spatial derivatives of the temperature 

within the slab. Accepting errors in spatial derivatives of the 

2 
0(A£ ), we insist that Xj(£) and X J J ( £ ) have the following properties; 

at 5 = 2£ 

X
n
( 2 £ ) = X

T
(2£) = 2e 

d£
 1 1 

S=2£ 
d_ X

T 

d£ s=2£ 
_ £ (6.0.1) 

2 
d X 

a c
2 

II 

£=2£ 

2 
d x 

2 
d£ k=2 £ 

= 0 

3 

d X 

dc
3 

II 
s=2£ 

d l x . 

d C
3

 • S=2£ 
= Q (6.0.2) 
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We also impose a bound on 5 such that 0 < 5 < 1, 

with 5 = 1 being equivalent to x = X
a
 in the x-plane. Hence as 

5 = 1, we put 

x
n
( i ) = X 

(6.0.3) 

< l *
n 

d5 5=1
 = 3

0 

Thus the parameter 3Q can be used to control the size and 

spread of grid intervals in the region 5 > 2 5 . To satisfy the 

conditions (6.1) to (6.3), we choose the mapping function 

such that 

x

n
c o =

 a

0

 + + + + + 

(6.0.4) 

On substituting equations (6.0.0) and (6.0.4) into (6.0.1), 

(6.0.2) and (6.0.3), we obtain the following system of equations 

in a
i
*s (i=0(5)) 

a
Q
 + 25"a

1
 + 45"

2

a
2
 + 85"

3

a
3
 + 16 C

4

 a
4
 + 325

5

a
s
 = 2e 

?a
1
 + 4*5

2

a
2
 + 12?

3

a + 325
4

a
4
 + 8 0 5 ^ = e 

2"5
2

a
2
 + 12"5

3

a
3
 + 4 8 5 ^ + 1605

5

a
5
 = 0 

6 5
3

a
3
 + 4 8 5

4

a
4
 + 2 4 0 5 ^ = 0 (6.0.5) 

a
n
 + a + a

0
 + a + a + a = 0 

0 1 2 3 4 5 

a^ + 2a
2
 + 3a

3
 + 4a

4
 + sa^ = 3

q 
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On solving simultaneously the system of equations (6.5) 

and after tedious algebra we have expressions for a^'s (i=Q to 5), 

namely 

3$ y $ 
a

o
 = [ 1

 -
 c + 1 6 , p

7 "
 3 2 0

^ 4
 +

 e ^ f j j l . x . , 

-
 [ 1 +

 T ¥ T V s
 + 4

V * 8 - " 4 W
1 +

 ¥ [ V
8 |

V
3 2

^ V
) }

J
s

o 

o 4 

ip \l/ $ 
+

 4 s 5 — t
4

v * 8
 + c

 /
 +

 20t
8
-4*

7 +
160l

2

t
4
-640|

3

*
3
)]£ 

3 3 

15$ ¥ __ 
a

l
 =

 - f a - [1-245^3 (l-(85/3)) - fa (1-(35/2))] .X 
2 3 

1
 5 , p

i v 8 

- — t*
6
 " 4

 ] € 

r 1 7 3
 v

 o ^ r i 1 3 5-,
0 a = - { .X + —J— [1 = J B

n 2 $ 2 00 3 J 0 

y~ 2 0 5 v 
- | i [ i | - l ± ]

e
> 

3 

1205'fa-V.Vm _ 

= * .X + p - [1-55V. V J & n 
3 $

2

 00

 1 4 5
J

 0 

- > [ i - s e
w 6

]
e 

V 
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1 5

* y v l a

4
 =

 4 * ^ 3 4$. 0 

[1-
4 1 6 

a

5 " "
 {

 — *
 x

~ " —
 s

0
 + 

$ 2
 4

$ 3
 4»

 e 

where: 

4$ $ 
_ 2 3 

1 
m

1 *
3
-

5

* 2 * 4 

3 $

4 
1- = ( 1- — ^ ') 

165$
3 

*4 
*

4
 =

 ( 1

- > 4 ^ 3 

4$.
2 

t

s =
 ( 1

- — H
1 

8$ 

" c
1

" 

*4 

= 6 4 ^ - 24s
2

y
4
 + , 

with (i=l to 8) given by 
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Values 
of (p. = 

I 
COEFFICIENTS OF 

5° 5
1

 5
2 

THE POWERS 

e
3 

OF £ 

s
4 

c
5 

5
6 

c
7 

•i • 
1 -9 24 20 240 528 -512 192 

1 -12 60 -160 240 -192 64 0 

*3 " 
-1 6 -12 8 0 0 0 0 

-1 0 24 -64 48 0 0 0 

1 -3 0 4 0 0 0 0 

•6 " 
1 -6 12 0 0 0 0 0 

•7 = 
1 -4 4 0 0 0 0 0 

•« = 1 -8 24 0 0 0 0 0 

6.1 Broyden's Method 

Consider the following system of equations 

g(v) = 0 g : TR
n

 + JR
m

 (6.1.0) 

Using Newton's approximations, we have 

m

 a 
[g(v+s)]. = £ (V) + i Y g - M s . (6.1.1) 

j=l j 

th 
where g^ represents i equation of g. Therefore 

£(v+s) - g(v) = J s (6.1.2) 
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J is an (m x n) matrix and s 4S (n x l). 

Let A be an approximation to J at v. We now want to 
* 

determine A at v + s. Hence we put 

A* = A + AA 

and (6.1.3) 
T 

A A = v 

Imposing the quasi-Newton condition, equation (6.1.3) 

and (6.1.2) give 

* 

A s_ = g(v + s) - g(v) 

= q_, say (6.1.4) 

and hence 

Thus 

(A + AA) s_ = 

T 

CA + v p )_s = q 

T 
v(£ s) = q_ - As_ 

Therefore 

q_ - A s_ 

T 
(E£) 

v = ^ C6.1.5) 

Combining equations (6.1.5) and (6.1.3), we get 
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we now put s_ = and hence 

x = x + Cq - x s) 
T s s 

(6.1.6) 

substituting for £ in (6.1.4) into (6.1.6), we obtain 

X = X + [g(v + s) - g( v ) - X s] -
T 

s s 

In our particular case the value of M in equation (6.1.0) is 

equal to unity, and hence 

X = X + (g(v + s) - g(v) - X s_ ) 
T 

s s 

We now put s = (A9,Ao) . Therefore 

!
j + 1

 - ij + tf-w-a/ 
A_9 

Ao
: 

j ) ((A£
j

)
T

,A g
j

) 

ii cca0-
,

*)
t

,aa^)ll
 2 

(6.1.7) 

th 

where j refers to the j iteration. Note the notation for 9 and a 

is as was used in Chapter Five. 
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