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ABSTRACT

This thesis investigates the effect of non-uniform
boundary conditions on Thermal Explosion Theory. Using Frank-
Kamenetskii's postulates of purely conductive heat transfer within

the reactant, we seek to determine the critical criteria for the

onset of thermal ignition.

Chapter One contains a brief summary of the history
and developments of thermal explosion theory. Most of the

discussion is dominated by Semenov's and Frank-Kamenetskii's

theories.

In Chapter Two, we consider Liouville's nonlinear
partial differential equation in an infinite rectangular strip
with various surface conditions. This problem arises in the
determination of the two-dimensional temperature distribution
within a self-heating partially insulated slab, with the remainder
of the surface offering no resistance to heat transfer. For
symmetrical heating in a dimensionless Cartesian frame of reference
Oxyz, with insulating strips at y = 1, the critical Frank-

Kamenetskii's parameter is found to be

5.(e) = 8.(e) (1-¢-0.555¢>/% &+ ), e<< 1

where SC(O) = 0.878 and ¢ is the ratio of insulation length to
the slab thickness. However, for «>>1, we are unable to

determine an explicit relationship between 6c(e) and € except to

note that
5, (0)
e? )

§.(e) e€>>1.



In Chapter Three, we seek to solve the above
problem with the boundary condition at y = %21 replaced by ef(x),
where ¢ << 1 and f(x) is a smooth monotonic function of x with

the following asymptotic properties

X + +eo : f(x) -~ 1,

X +> - : f(i) = 0

Although the problem is well defined at x = #=,
attempts to determine the temperature distribution at criticality
and for finite x leads to failure. This paradox is resolved by
constraining f(x) to be such that f'(x) << f(x). The critical

Frank-Kamenetskii's parameter is then found to be

Gc(e) = Gc(O] exp(-€) 0 <egX1

Chapters Four and Five contain details of the numerical
schemes for the solution of the problem defined in Chapter Two.
Chapter Five has computational results for the schemes discussed
and possible suggestions for future implementation of the

schemes.



PREFACE

In the following chapters, the figure legends and the
tables of results for each chapter are to be found
at the end of that particular chapter. However,

in Chapters Two and Four, some of the figure
legends have been included in the text to make it

easier for the reader to follow the text.
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CHAPTER ONE: REVIEW OF THERMAL EXPLOSION THEORY
1. INTRODUCTION

The theory of thermal explosion, examines the thermo-
kinetic behaviour of chemically reacting systems with respect to
the stability of exothermic reactions. An important feature of
these systems, is the existence of at least one distinct mode and
the possibility of switching from one mode to another under
certain conditions. These modes are well defined and distinct from
each other. In the steady-state theory, thermal jmbalance in heat
generation and heat dissipating mechanisms, is considered the
predominant factor in understanding the nature and stability of
these modes., The kinetics of the reacting system is then relegated
to the determination of initial temperatures and the rates of the
reacting systems. The kinetics also exhibit the sensitivity of the
reacting system to any temperature change. Consequently any
temperature rise within the reacting system will be opposed by heat
dissipating forces. However, as the ambient temperature is increased,
there will exist an ambient temperature such that the heat generating
mechanisms will exceed the heat dissipating forces resulting in
thermal runaway or ignition. Thus thorough studies of these
chemically reacting systems have concentrated on the prediction of this
criterion for the onset of spontaneous ignition for self-heating
systems.

To facilitate our understanding of this criterion of
spontaneous ignition it is necessary to refer to early works on

thermal explosion theory. The basis of recent thermal explosion
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theory rests with earlier works by Semenov [1] and Frank-Kamenetskii

[2].

1.1 Semenov's Treatment of Thermal Explosion Theory

In his model, Seﬁenov considered the reacting systems to
be in steady-state with uniform temperature T throughout the
reactant, different from the uniform temperature T0 of its surroundings.
The reaction rate was considered to be of the Arrhenius form. Hence
the rate of reaction is proportional to Exp(-E/RT), where E is the
overall activation energy of the reactant. He ascribed the heat
lossés to convective forces due to Newtonian-Cooling at the interface
of the reactant and its surroundings. As a result, the resistance
to heat-transfer is directly proportional to the temperature difference
[T-TO), at the boundary. These postulates lead directly to energy
equations (1.1.0} and (1.1.1) representing the rate of heat production

q and the rate of heat loss £.

VQA exp(—E/RT).CO (1.1.0)

(o]
I

= XS(T-T,) (1.1.1)

where: -

Q 1s the exothermicity of the reactant
X is the heat-transfer coefficient at the boundary

C0 is the concentration of the reactants, assumed
constant throughout the reaction.

V and S are the volume and surface area of the reactant
vessel.,

The graphs of the rates of heat production against



10

temperature of the Arrhenius' rate of reaction exhibit an S-shaped
form. However, in Figure 1.1, for example, the graphs of the rate

of heat production dq and the rate of heat loss £, are shown
exhibiting two stationary states P and R, instead of the three states
to be expected. This is because in classical thermal explosion theory,
the rates of heat release would be insufficient to give rise to

the third state. Semenov identified the critical condition as the
tangency between the graphs of the heat loss and the rate of heat
production, see Figure 1.1. At criticality two conditions have

to be met. Firstly an energy balance must exist and secondly the
rate of change with temperature of the rate of heat loss should

equal the rate of change with temperature of the rate of heat

production. Hence at criticality we have,

VOAC, Exp(-E/RT) = XS(T-T,) (1.1.2)
VOAC,E Exp(-E/RT) = XS RT’ (1.1.3)
with T=T ., .
crit

Dividing equation (1.1.2) by (1.1.3) results in giving the critical
temperature and the maximum temperature difference for a stable

reacting system. Therefore we get

) 2
(TopipTo) =RT . /E) (1.1.4)
or
T .= £ {1 [1- (arT /E)]F (1.1.5)
crit 2R - 0 .1.

The larger value of T _.
cr

it in equation (1.1.5) corresponds to the very

high rates of heat release. This higher value represents the point
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of thermal extinction. However, for spontaneous ignition to occur,

T is given by the lower value of (1.1.5), namely

crit

E X
T 5§£1-[1-(4RT0/E)] } (1.1.6)

crit ~

Both equations (1.1.5) and (1.1.6)} give the range of T0

for which the system will self-heat and possibly lead to ignition.

. . E .
This will be true for E » 4RTO or 0 < T, < (Tﬁfa' Expansion of

equation (1.1.6) as a binomial series results in equation (1.1.7)

> (Tcrit-TO) =1+ ZCRTO/E] + ., (1.1.7)

Hence for a reacting system to remain stable, equation (1.1.7)
shows that the maximum dimensionless temperature excess is bounded,

namely

Ty <1 . (1.1.8)

crit 0

In their 1977 Review paper on thermal explosion theory,
Gray and Sherrington [3], rewrote the energy equation and the criticality

condition in form of dimensionless variables. They defined the

dimensionless excess temperature 6 = “E_f (T~T0) and a parameter B,

RTO RTO

such that 8 = —= .  On substituting these new variables into

the energy balance equation, we get

o exp[-0/(1480)] = (VQAEC,/XSRT,*) exp(-E/RT)) (1.1.9)

Gray and Sherrington defined w = w(6), such that,
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w(0) =96 exp[-8/(1+R8)] (1.1.10)

s ... dq _ dL
Hence the criticality condition IT - aT-becomes,
(1+80)% exp[-6/(1+86)] = (VQAEC,/XSRT,%) exp(-E/RT,)
(1.1.11)
Comparing equations (1.1.10) and (1.1.11) gives the condition for

§ at criticality, namely

2

8 = (L+86 ) (1.1.12)

crit crit

Consider again equation (1.1.0)

w(8) = 8 exp[-8/(1+88)]

w(8)

or log] 5 1 = - (1+26)

Differentiating with respect to 8, we have

1 duw

= 2 + 2
OB {(1+g8)“-8}/[8(1+B6)“]

Thus the criticality condition given by equation (1.1.12) corresponds

to the stationary value of w(8). In fact the criticality condition

corresponds to the maximum vajue of w(6). Expansion of 8. as a power

Tit
series in B leads to equations (1.1.13) and (1.1.14)

_ 2
ecrit = 1+2B + S5B° + ... (1.1.13)

-1 3 .2
mmax(e) =e (l+B+ > BT + ce) (1.1.14)

Equations (1.1.13) and (1.1.14) give a mathematical representation

of some of Semenov's most important contributions to thermal explosion
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theory. In the classical theory of thermal explosion (the limit
g -+ 0), the reacting system will become unstable and explode if there
is an e-fold increase in the rate of heat release above that of TO.
There is also a bound on the dimensionless temperature excess, 6,
if the reacting system 1s to remain stable. Hence in the limit g » 0,
8 <1 and w(s) <et.

Semenov's model of thermal explosion offersseveral

advantages:-

(1) The model itself is a function of the dimensions of the
reacting vessel in the form of the ratio of its total volume V to

its surface area S.

(11) Significant results can be obtained by the use of simple
mathematics. The mathematical analysis can be applied to both

endothermic and exothermic reactions.

(iii) The theory can readily be applied to nonlinear heat transfer
(radiation for example) and to reactions with temperature-dependent

pre-exponential factors.

(iv) Although Semenov applied his model to reacting systems
with high overall activation energies, the case for low activation

energy can certainly be discussed.

) Its prediction of the maximum dimensionless excess temperature, 8

and the e-fold increase in the rate of heat release above that for
T0 for the reacting system to become unstable and explode, have

hardly been altered by more sophisticated theories of thermal explosion.

crit’
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However, the model failed to describe the temperature
distribution within the reactant. Its assumption of uniform pre-
explosion temperatures does not agree with experimental facts, it is
well known that ignition always begins at one point and then
the flame spreads through the rest of the reactant.In fact, Semenov's
description of uniform pre-explosion temperatures within the reactant

can be realised for only two cases:-

(1) Self-heating solid in form of small particles of high
thermal conductivity surrounded by a medium of low

thermal conductivity.

(ii) Liquid under intense mixing.

1.2 Frank-Kamenetskii's Treatment of Thermal Explosion Theory

Frank-Kamenetskii [2], in his 1939 work, adopted most
of Semenov's postulates except the assumption of uniform pre-explosion
temperatures within the reactant and the nature of heat dissipating
mechanisms. Frank-Kamenetskii attributed the heat resistance to
conductive forces within the reactant. I fact, the heat losses
were considered to be strictly conductive within the reacting vessel.
Furthermore, the reactant was assumed to be surrounded by a medium of
infinitely large thermal conductivity. He also postulated that the
thermal conductivity of the reacﬁant remained constant throughout the
reaction. By invoking the principle of conservation of energy, the

temperature of the reactant satisfies the Fourier equation (1.2.1)



15

L}
Q

MT + QW(T) in volume

(1.2.1)
T=T at the surface

where:
A 1is the thermal conductivity of the reactant
Q is the heat of reaction

A is the Laplacian operator.

W(T) = Z, exp(-E/RT), is the rate of reaction with ZO

0
being the pre-exponential factor.

In his 1939 work, Frank-Kamenetskii studied the stability
of reactants within an infinite vessel with plane parallel walls,

Equation (1.2.1) was transformed to its dimensionless form by @ mew

choice of variables:-

- _E -
8 = —— (T-Ty)

RTO

w
It

(RT,/E)

Z (r/a)} where a is half-width of vessel and T is

the equivalent length for an infinite vessel.
2 2
§ = (E/RTO Y(Q/A) a ZO exp(-E/RTO) (1.2.2)

8 is the so-called Frank-Kamenetskii parameter. Hence equation

{1.2.1) veduces to

A8 + & expl6/(1+B8)] 0 in volume

Z

I

(1.2.3)

8 0 at surface
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To simplify mathematical solutions, equation (1.2.3)} was solved for

the case B = 0. Thus the one-dimensional energy equation becomes

2
gw%-+ % dd + Gee 0 in volume
dz (1.2.4)

6 =20 at surface

g
™

where k = 0,1,2 represents the slab, cylinder and the sphere
respectively. The criticality condition for thermal ignition was
identified as the condition when stable stationary states are
impossible to realise for the steady-state zero-order chemically

reacting system.

Class A geometries:-

Frank-Kamenetskii further simplified the mathematical

solution of equation (1.2.4) by considering symmetrical geometries.

(a) The Slab Selution (k = 0)

2
ﬂ_% + dexpb

= 0 , 0<z<1,
dz
=0 , z =1, (1.2.5)
de _
-C—I—_Z-O N z =0
de

Multiplying (1.2.5) by 70 e have

2
sy d2g 6 de
(@) 2 Se” g7 =0
d .1 ,dey? 8
E‘[z— (d_f) + e } =0
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Therefore

dey 2
(3;) = conmstant - 2&expe (1.2.6)

The maximum temperature rise em will occur, by symmetry, at the

centre. Hence equation (1.2.6) becomes
de
(EEJ = (26)% [exp O, - expe];S

Integrating, we get

de
J = (26)%2 + constant

%
exp(B/Z){EXP[(GT‘G)/Z]‘l} (1.2.7)

We now put;coshy = exp[(em—e)/Z]into equation (1.2.7). On integrating,

we get

exp(em/z) {constant - (6/2)%2}

=
[}

and hence

(6_/2) L
6 - 2 log cosh{e [(8/2) "z+c]} (1.2.8)

[ar]
1}

where ¢ is a constant. We now consider the boundary conditions at

z =0, and z = 1;

de _
at z =20 Iz " 0
therefore ¢ = 0. Thus 6 becomes
L

8§ = em - 2 log cosh z[(ﬁexpem)/Z]2 (1.2.9)

at z =1, 8 = 0. Hence
%
Bm = 2 log cosh[(ﬁexpem)/Q] (1.2.10)
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Substituting em from (1.2.10) into equation (1.2.9) we obtain

L
8 = 2 log cosh[(Gexpem)/z]!’i -2 log cosh z[(Gexpem)IZ]2
(1.2.11)
. _ %
Putting o = [(Gexpem)/ZI .
2
Hence § = 20 exp(—em ) (1.2.12)
Writing 9 in terms of o, we obtain
8 =2 1og(5°-’-§-h——°——] (1.2.13)
cosh oz T
Note: at z =0, 8 = em. Hence from (1.2.13)
6, = 2 log cosh o (1.2.14)
Substituting em inte (1.2.12), & becomes
§ = 2025ech20 (1.2.15)

Frank-Kamenetskii identified the critical conditions for the
onset of spontaneous ignition by the maximum possible & in equation
(1.2.15). At criticality, this results in the following transcendental

equation for the critical parameter o = Oes namely
GctanhcrC =1 (1.2.16)

Numerical solution of equations (1.2.16), (1.2.15), and (1.2.14)

gives the following critical values for the parameter

Gcrit 0.878 {1.2.17)

E’m,c:rit = 1.19
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(b) The Infinite Cylinder (k=1)
d%e 1. de
— + () = + G8expop =0 , 0sz<1,
2 27 dz
dz
8 =0 R z =1, (1.2.18)

de _ N
az =0 o z=0

The problem is simplified if we follow the approach by

Lemke and Reine [4] and Chambré [5]. Thus we put

V= Z(gga and n = z° exph. (1.2.19)

On substituting ¢ and n into (1.2.18), we get

O-l‘l-
&

= -8/ (2+y) (1.2.20)

On integrating (1.2.20) we c¢btain

02+ 4y +1+ 257 =0 (1.2.21)

At the centre of the cylinder, that is, atn = 0, ¢ = 0 and hence

T = 0. The equation for ¥ reduces to

o>+ 4y + 26n =0 (1.2.22)

Rewriting equation {1.2.22) in terms of 8, we have

zz[%ga + 42[323 + 2827 expd = 0 (1.2.23})

By simultaneously solving equations (1.2.23) and (1.2.18),

Gray and Lee [6] were able to show that 6 is given by

6 = log[(8G/6)/ (Gz2+1)°] (1.2.24)
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and

§ = 8G/(G+1) 2 (1.2.25)

The maximum value of §occurswhen G = 1. On substituting this
value of G into (1.2.24) and (1.2.25), we obtain the following

critical parameters;

Scrit - 2
8 = log[4/(z°+1) %] (1.2.26)
crit e
em,crit = log 4

= 1.39

The critical values (1.2.26) are in agreement with the numerical results

obtained by Frank-Kamenetskii.

(¢) The Sphere (k=2)

Putting k = 2, equation (1.2.4) becomes

d”e 2, db
> + (EJ gz *+ Sexp® = 0 (1.2.27)

with boundary conditions

do
z =10 az-— o,
z =1 8(1) = 0.
In the survey by Gray and Lee [6], equation (1.2,27)

was transformed to model an isothermal gas sphere in gravitational

equilibrium. To enable this transformation, new auxiliary variables
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were chosen such that

Y =8 -0 and g = zVGexpem (1.2.28)

Using the above substitutions, Gray and Lee then transformed equation (1.2.27)

together with the boundary conditions to get

2

d°v dy ]
— +(2/n)z%> -e " =0
dnz dn

with boundary conditions

p =0 at n =0 where %% =0 (1.2.29)
and Yy = Bm at ny = Véexpem

Although equation (1.2.29) is no easier to solve by
analytical methods than the original equation (1.2.27) 5 mnevertheless
a numerical solution can be expressed in terms of known tabulated
functions developed by Chandrasekhar and Wares [7] and [8]. Thus
rewriting the boundary condition at the surface of the sphere, we

have

§ = nl2 exp(-y), since 8 = 0 when n=n (1.2.30)

1

The maximum value of § can be obtained from (1.2.30). This critical

condition is satisfied by
v _, (1.2.31)

From the tabulated values in [8], the values of n. and y satisfying

1
(1.2.31) are
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ng = 4.07 : y o= 1.6l

Hence the critical values of § and 8 are

Gcrit = 3,32
(1.2.32)

ecrit = 1.60

These critical values correspond to those obtained by Frank-Kamenetskii

[2].

Summary on Class A geometries:

Figure 1.2 exhibits the bound on § for thermal stability.
Time-dependent linear analysis by Istratov and Librovich [10] for the
slab shows that the upper branch of ém versus § curve to be unstable
while the lower branch represents a stable state. Istratov and Librovich
also showed that the same situation was true for the infinite cylinder
with the stable branch corresponding to Bm < 1.387. Whilst for
the sphere the problem was complicated by the lack of analytical
solution. However, Steggerda [9] has solved the usual steady-state
equation for the sphere by extending the range of tables of
Chandrasekhar and Wares [8]. The results of the analysis are indicated
by Figure 1.3. In the region of criticality 1.66 < § < 3.32, there
are more than two centre temperatures, thus more than two temperature
distributions for a given &. Using Istratov and Librovich's notation,
the number of temperature profiles becomes infinite as & tendsto 2.
Figure 1.4 exhibits the stable temperature profiles at the centre of the

vessels for class A geometries. From the work cn class A geometries,
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the temperature profile is roughly parabolic. However, Parks [11],
in his numerical work suggests that there is evidence of inflexion
points, at least in the case of the sphere. 1In the work by Enig [12]
and confirmed by Gray and Lee [13], they showed that the critical
values of ¢ are determined by critical surface temperature gradients.
On examination of class A geometry temperature solutions, they were
able to show for the critical case that

(%2-3 = 2 atza=1 (1.2.33)
crit

A simple physical result follows from (1.2.33}. In the
stationary state, the total heat transfer from the interior of the
reacting vessel is proportional to its surface area and to the
temperature gradient at the surface. However, since at criticality,
the temperature gradients at the surfaces of class A geometries are
equal, we expect the rates of heat generation to be in the ratio of
their surface to volume ratios,namely 1:2:3, This result is indeed
satisfied by the results obtained for the slab, infinite cylinder
and the sphere.

Frank-Kamenetskii postulates of conductive theory for

thermal explosion are valid if the following conditions are satisfied;

(i) The temperature difference (T-TOJ at the surface is s0 low

such that radiation plays no part in heat transfer.

(ii) The effect of convective forces is negligible in low
densities. However, as the pressure and hence density of the reactant
is increased,we expect that there is a limit at which convective
forces will have to be taken into account. 1In effect in regions

of Rayleigh numbers of 0(102) purely conductive heat transfer is

still valid.
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(iii) If the reactant consistsof large masses of solid explosive

and materials such as wood and fibre board.

1.3 Comparison of Semenov and Frank-Kamenetskii Theories for

Thermal Explosion

In both theories we assumed, that at the surface of the
reacting vessel, the heat transfer was either convective or
conductive. However, when there is a resistance to heat transfer,
not only due to finite thermal conductivity, we must also take
into account both mechanisms for heat dissipation. Thomas [15]
considered the case where heat-transfer at the surface is due to
Newtonian-Cooling. He replaced the boundary condition at the

surface by

de _ _
Gtad =0, at z =1 (1.3.0)
with a = X—;

where:

X is the heat-transfer coefficient at the surface
a width of vessel

A thermal conductivity of the reactant.

¢ is the Biot Number. The significance of the Biot
Number is that it compares the internal and external resistances to
heat flow. For large values of «, the resistance to heat flow is
due to conduction within the reactant with the surface temperature

Ts equal to T,, the ambient temperature. These high values of o are

O)
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the conditions assumed by Frank-Kamenetskii. Semenov's conditions
are satisfied for low values of o in which the heat loss at the
surface becomes insignificant resulting in surface temperature Ts

being different from T The effect of the Biot Number on the critical

0°
parameters for thermal ignition can easily be obtained for class A
geometries by imposing condition {1.3.0) on the analysis in above

sections. In the review by Gray and Lee [3] the following results

were obtained;
(i) The Slab

8 = Bm - 2log cosh DZ

with logé = log 2D° - 2log coshD - (2D tanhD)/a (1.3.1)
D _.,.sinh D . .coshD _.  +D__. 2
crit crit. crit crit
and o = >
(l-Dcrit.tanh Dcrit)COSh DCrit
where DCrit is the critical value of D for the limiting case on
§.
(ii) Infinite Solid Cylinder

6 = log[8G/6(1+6Z%)]

with logé = 1og[8G/(G+1)?] - [4G/a(G+1)] (1.3.2)

2

and a = 4G orit )]

/(1-G

crit
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(1ii) The Sphere

logé = - y_ + 2log ng - (ns/a)(%% S
and * = [nsz'c':wS ) “s(%%ﬁsl/[Z-ns(§%JS] (1:3:3)
where the subscript s refers to the surface z = 1.

The relationships between em and 65: 6crit against o

are shown in Figure 1.5 and Figure 1.6, which we have reproduced

from [6]. From the figures of 8 ri

it against a, it is apparent

that the Frank-Kamenetskii values {(a + =) are higher than the case
for moderate values of a. However, for small values of a, say

a < 0.5, it is possible to use Semenov's postulates. For small
values of w, especially « = 0, the critical centre and surface
temperatures approach unity, which is in agreement with results of

equation (1.1.7}.

1.4 Some Steady-State Problems of Asymmetrically-heated

Reactants

In above sections all the analytical solutions have been
based on symmetrically heated reactants. However, Armittage
[14] asserted that if a symmetrical slab is in critical condition
50 is the asymmetrical slab. In order for us to consider reactants
with large temperature differences between the surfaces, it is
necessary to alter the specification for 9 in terms of ambient
temperature at the hotter surface. Thus we re-define a new dimension-

less excess temperature § such that
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5 (T—Tp] (1.4.0)

where subscripts p and s refer to the hot and cold surfaces
respectively. The definition (1.4.0) implies that temperature

will be negative throughout the vessel except at the hot surface where
it vanishes. 1In the heat generation term, we still consider the
Frank-Kamenetskii exponentiation to be valid. This assumption will

the
hold good in, region near the hot surface. However, by assuming

A
negligible heat generation at the cold surface compared to the hot region,
the Frank-Kamenetskii exponentiation can then be considered valid
throughout the whole reactant. We now have o, and ap being the Biot
Numbers at the cold and hot surfaces respectively. Of the asymmetrically-
heated reactants, we only consider slabs which are of interest to
us. Thus we consider slabs with the interest of determining the
temperature profiles within the reactant and where possible to

).

determine the critical Frank-Kamenetskii parameter 8. (or 5crit

1.5 Steady-State Problems in Some Asymmetrically-heated Slabs

The effect of insulating a self-heating slab can be
physically understood by considering a slab 0 < z' < 2a with the
hot surface being maintained at temperature Tp' This temperature
Tp can be maintained constant by using a heat reservoir. However
the other face is then exposed to its surroundings at temperature TO.
Depending on the nature of heat exchange between the slab and the

surroundings, we assume a surface temperature TS at the cold surface.
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By varying the Biot Number g at the cold surface the effect of

insulation can be obtained by letting a tend zero.

(a) Slab with insulation at the cold surface (ap=m; as=0)

Curve 2 in Figure 1.7 representsthe asymmetrical slab with
perfect conduction (as=w) at the cold surface. However, as «
values are reduced, the temperature profiles take the form of curves
3 to 6. The significant feature of these curves is that maximum
temperature within the slab shifts from the 'hot surface’' to the
'cold face' with T , representing the maximum temperature for the
onset of thermal ignitionm. This temperature T52 represents the
symmetrically-heated case with 0 € z < 2. Hence the corresponding

the

limiting acrit can be determined in the same approach as inAearlier

section on class A geometries. Im fact, for the limiting case we have
5

2log cosh(26exp8max

[as]
[}

)

max

and = 0.22 (1.5.0)

§ .
crlt,as=0

The result (1.5.0} can also be derived from physical
Whén
arguments, sincena5 = 0, the slab corresponds exactly to one half of
symmetrically heated slab subject to the Frank-Kamenetskii surface

condition. Curve 1 is for the trivial case for an inert material

in which case the temperature profile is linear.

(b) Slab with hot face on a perfect conductor and with

restricted heat loss at the cold face (ap=0; ag finite)

The slab is once again assumed to have temperature Tp
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maintained at the hot face by a heat reservoir with Newtonian-Cooling

at the cold face. By defining z = z'/a, we have at the cold

surface
46 ~ o~ )
iz " as(es—eo) =0 at z = 2
(1.5.1)
with 8 = —E _ (T T ) and 6. =" (T.-T)
s RTp2 s p 0 RTPZ 0 p

Note for a, =0, this correponds to the symmetrically heated
slab with the limiting case (1.5.0). In general the slab solution

is given by
L
~ A®
8 = logA - 2log cosh[z(za + c} (1.5.2)

We expect from (a) that for a finite o the maximum
temperature will occur within the slab. We let the maximum
temperature 6 correspond to the point z = z___. Therefore our

max max

problem becomes

2

im% + Gexpg = 0, 0szs2
dz
with boundary conditions;
(i) 8=0, z=0
. ds ~ _
(i1) 2 -9 85 Cpay 8tz (1.5.3)

.. d e
(ii) o us(GS-G
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Imposing boundary condition (i) into (1.5.2), we get

%
A= cosh26%5

But at the peoint z = z s

max
o~ 5 X
4§ _ . AS AS
- '2(759 tanh[zmax(ﬁfa + ]
=0
Therefore
c = -z (E)%
T T 'max V2

Hence & solution is

AS 3
8 = logA - 2log cosh[(TTJ (z-z

max)] (1.5.4)

Note once again at z = zmax)e = emax. Thus

A= expemax
Finally (1.5.4) becomes

5 =5 - 2log cosh[(ﬁexpa /2)%(2-2 )]

max max max

~ - 5 (1.5.5)

with emax = 2log cosh(dexpemaX/Z) Zoax

Considering the boundary condition at z = 2

~

Differentiating 6 with respect to z in (1.5.5) and then

imposing the boundary condition we obtain
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z
~o~ max
a (8,-85) = P tanhP(l- —=)
= P
h P = (26expd_ )%
where = (28exp max)
Hence o
2 max
_ P
§ = T e
= -Bi sech2 E—z
2 2 "max
_ P 2P
= 5 (1-tanh fnzmax)
But
~ ~ zmax
GS = emax - 2log coshP(1- > )
= 2log{cosh B-z /coshP(1- zmax)]
2 “max 2
Therefore
(8./2)  cosh = 2
o ] - 2 "max
z
coshP(1- gax]
We note
zmax P P
coshP(1- > 3} = coshPcosh E'zmax-SIHhPSIHh 7 Zrax
Thus
(84/2) .
e = B
(coshP - sinhP tanh > Z )
max
OR -
-(8./2)
tanh2 g_z [coshP - e ]
2 "max

sinh2P

(1.5.6)

(1.5.7)

(1.5.8)
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; ; 2P .
Hence on substituting tanh 7 Loy MRTO (1.5.8), we get
2 -(8_/2) -8
§ = —E-——~—-[sinhZP-cosh2P+2coshP e ° e ®]
2sinh™P
2 -(8./2) -8
= P [2coshP e 5 e S -1]
2s5inh”P
2 (8./2) -(6./2)  -(38./2)
= P [2coshP-(e S Tse P )] e s
25inh”P
Therefore
2, ..2 ~ ~
§ = (P"/sinh P)[coshP-cosh(es/Z)] exp(—BS/Z) (1.5.9)

A summary of the above analysis is contained in [6]. However,

attempts to determine the limiting case when ds | 0 for all values

dP

of o and 6, is not possible. Thomas and Bowes [16] were able to

0
determine the limiting case for a wide range of practical interest
by assuming large values of parameter P. Infact they chose ¢ =1

which is the implicit condition P + » in (1.5.6). Hence the maximum

§ is obtained when

2(1-P cothP) (coshP-coshN) + (P/Zus]e-N

+ [1-(coth P/Zus)] PsinhP = 0 (1,5.10)
where -
%
N = (P/2ag) + ()
Note: From equation (1.5.6) we have

~ _ % P
8 =8 * g ¢
s

Hence N = (ES/Z) corresponds to the case when &3 1.
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The determination of P that satisfies (1.5.10) is
essentially numerical. Thomas and Bowes were able to determine P
and 2 ax for a wide range of EO and in the process did determine
¢ ~ 1. They also showed that both z and 8 were small for

max max

@ > 0.5. However as o_ tends to zero, z was noticed to move
s s max
towards the 'cold face'. For o < 0.5, the temperature was
approximately uniform, the Semenov condition. To determine the
limiting case for o < 0.5, Thomas and Bowes assumed the heat generation

term to be constant and equal to Sexp Eﬁax . Thus for ac <1,

the critical Frank-Kamenetskil parameter becomes

acrit = acrit,as=0'(l+2asleol) (1.5.11

: o1y . L.
with Scrit,us=0 _(53) = 0.182, which is a good approximation to
(1.5.0).

(c) S51ab with the hot face insulated and the cold surface in

contact with a perfect conductor (up=0,as=m)

This problem has been studied by Semenov [17] and Zeldovich

@
[18] fo%ﬂslab with large temperature differences. Their assumption

of zero temperature gradient at the hot face and a linear temperature
profile at the cold face is a good model to problem (a), which is

a special case of (b). In (b) Thomas and Bowes found amax to be

independent of a)and 8 satisfies the above assumptions., Gray and
the
Lee [3] were able to show thaEASemenov - Zeldovich treatment leads

to the limiting case

~ 2
Scrit = 80 /8 (1.5.12)
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By assuming Es >> 1 Thomas and Bowes [16] replaced TO by Ts and
hence replaced EO by gs in (1.5.12). Thomas and Bowes extended

the analysis of Semenov-Zeldovich to include the cases where g £ oo

and accordingly modified the limiting case for §. Hence they
were able to determine 3 and & _.. , namely
s crit
BS ot [20;5/(1+2015)]E|O
1 2.
and acrit = 7[as(1+2a5)] eo {1.5.13)

with the proviso that

[2a /(1+20)]18,1>> 1

Zeldovich also studied the problem (b) with GP = 0 and

oo finite and was able to determine 8 ., such that
[ crit

1 2 ~ 2
> le/(1+2a )] (1.4-[8,]) (1.5.14)

nt

6crit

Equation (1.5.14) gives a value of acrit greater than
{1.5.13) by afactor K1.4—|30|J2/302]. However, when Igbl becomes

large both approaches of (1.5.13) and (1.5.14) give the same value

of Gcrit' This result corresponds to the case when o becomes
large.
1.6 Multi-dimensional Self-heating Bodies

The discussionsin the earlier sections have concentrated
on the solution of problems with one spatial variable. However,

techniques and methods have also been developed to cater for thermal
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ignition for generally shaped bodies. J.T. Stuart [19] developed

a general analytical sclution of the Liouville problem by using

complex analysis methods.]n fact his 1967 paper suggested typical

solutions of Liocuville's problem for given fluid conditions. Of

importance is the solution he suggested for spatially periodic

problems, this was used by Adler [20] to determine the critical

parameters for the slab with a periodic surface temperature.

(a)

Procedure for determining solution of Liouville's problem

using complex analysis methods

Consider the Liouville's problem

2 2
é—g- + g_g, + Gexpb = 0 (1.6.0)

X oy

We define complex variables z and z by putting

M
n
»

z =x +1y and - iy

and treat them as new independent variables. Hence

8 _ 3,3 3 _jf{8__3_
X - 3z 3z °amd ay‘l[az 75 )
Thus equation (1.6.0) becomes
2
: e_ = '% e (1.6.1)
023z

Differentiating (1.6.1) with respect to z, we obtain

[ar]
Ql
[an)

|

3z°9z

¥ Bo
SR
4}

[P ]
™D
Q2

a2
]
Qr
(o ]
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Therefore
2% 38 30 =0
3z“az 32 4,52
3 EEE__ l{ 99.)2} =0
53 az2 2\ 3z

Integrating the equation with respect to z, we get

2 2

__g._ %{ g%.) = _2G(2) (1.6.2)
5 ,

Q» |

where G(z) is as yet an unspecified analytic function of z. We

now define a solution f(z,z} for equation (1.6.2) by putting

f(z,z) = e-e/2

On substituting f(z,z) into (1.6.2), we have a condition on f(z,z),

namely
fzz(z,z) - G(z) f(z,z) =0 (1.6.3)
On repeating the same procedure with z instead of z, we obtain
fii(z,E) - H(z2)f(z,z) = 0 (1.6.4)

H(z) is an arbitrary analytic function of z. In general the

solution of equation (1.6.3) is
£(z,2) = a;(2)B,(2) + a,(2)B,(2)

where o ,a, are linearly independent solutions. However, f£(z,z)

1’72

must be real, therefore
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and BZ(E) = &2(5).
Hence @ becomes
9 = -2log[a, (2) &1(2} + uZ(Z)&Z(E]] (1.6.5)

By imposing Wromskian constraint on (1.6.3) we get

da2 dal
(11(2.) E_ - 0’.2(2) a—z— = A s Say.

On substituting into (1.6.1} it can be shown that
lle =§ (1.6.6)

In his 1975 paper Adler [20] sclved the symmetrically heated slab

{(1.6.0) with conditions;

(i) y =1 : 8(x,1) T e cosux

2m

where the wavelength = — |, with w being the wave number.

. _ 38 _
(ii) y =0 5y 0

Adler chose a periodic solution in x such that

2 N
L i
G(z) = - %f“ al(z) = Azcos(%;a and az(z) = stin(%;)

He was able to express the Frank-Kamenetskii parameter as a function

of the wave number and the amplitude, namely

2.e
cosh™ (5}
6 = 2% ——2= - sinh? () (1.6.72)

coshzm
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OR

sech?u-(8/2u2)

tanhzw

sinhz(gq - (1.6.7b)

W
o

Adler [20] also determined the dependence of temperature

profile 68(x,y) on wand e, namely

cosh wy

8(x,y) = - 210g[cosh(%a - sinh(%a cos wx]

cosh w
(1.6.8)

We have reproduced the curves of § versus w for various
values of €, see Figure 1.8, Adler observed that the maximum §
decreased for an increase in e. Hence his conclusion that the
oscillatory motion decreased the critical § and that this amount

of decrease is dependent on the amplitude of the oscillation.

(b) Many other attempts have been made to determine the critical
conditions for multi-dimensional bodies, for example, the Frank-
Kamenetskii [2] practical approach on finite cylinders. An important
feature of these solutions is the dominance of the harmonic

mean-square lengths in the relevant formulae of the critical parameters.
One of the most practical aids is the concept of an equivalent

sphere . In essence this method replaces an arbitrary body by an
equivalent sphere of appropriate radius such that the equivalent

sphere will reach the same critical conditions as the arbitrary

body under the same surface temperature. Since the limiting case for

the spheres is known and is expressed in terms of its radius, the
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problem reduces to determining the equivalent radius of the sphere and
hence the critical parameters of the arbitrary body. Gray and Lee

[6] have used this concept with reasonable success for the cube and
the regular cylinder. They calculated acrit {cube) = 2.65

and & .
cT

it (regular cylinder) = 2.89. These values compare

favourably with the 'exact' values ciuoteci by Gray and Sherrington

[3], namely & {cube) = 2,52 and 5crit (regular cylinder) = 2.77.

crit
In [3] Gray and Sherrington describe three further approaches
which can be used to generalize the steady-state problem. These

methods are summarised below:-

(i) Collocation Methods

This method involves defining a suitable polynomial for
the temperature profile within the reactant, and satisfying the boundary
conditions. The degree of accuracy and complexity of the chosen
polynomial will be determined by the number of internal points,
since the coefficients of the polynomial must be chosen such that
the polynomial satisfies exactly the energy equation at these
internal arbitrary number of points. The profile chosen may 'blur'
the bifurcation (or turning point, see Figure 1.2) point which occurs

at 8 = éc thus it is necessary to 'impose' the critical

rit’
condition. Gray and Sherrington define this 'criticality' as the
condition underwhich a small change in temperature at some point well
removed from 'centre' results in large changes in central excess
temperature. This definition is consistent with results from

experiments discussed in [3]. This method has been used successfully

for class A geometries and other bodies, see Table 1.
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In practice this method results in solving numerically
a paiiz{ranscendental equations which completely specify the
critical values of § and the central excess temperature. Note the
method avoids the integration of the energy equation though the
work itself is tedious.  Another advantage of the scheme is that no
approximation of the heat generation term is necessary, namely the
term Sexp[6/(1+B8)], need not be altered. Thus the method can also
be used to determine the effect of B on the Frank-Kamenetskii
parameter. However, the polynomial exhibits some non-symmetrical
terms where there should be symmetry. A major weakness of this

scheme is that it offers no scope for a transient study due to its

lack of a theoretical basis.

(ii) General Series

This method was developed to offer a unified solution
of class A geometries making use of the harmonic mean-square lengths

in the formulae. The equation to be solved is

d 8 K, d8 8
2 ( ) dZ 58 = 0
dz
with boundary conditions;
g =20 at z =1 (1.6.9)
de _ _
Fe 0 at z =0

A parametric solution of (1.6.9}) was expressed as

8 = 8, Qﬁojz b(YZ).
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On imposing the condition at z = 1, it can be shown that
@ J g
L2 0
z b.(yz") = exp(jia
j=0
For the recurrence relation of bj see [3]. Gray and Sherrington

sought to determine the solution for an arbitrary body by considering

8 = B(BO,Z,K). For the limiting case they obtained

s . = 20k+1) (Ke3)
crit (K+7)

(1.6.10)

K+7
(8 nax) = 2log (=)
max’erit 4
where K is the shape factor, with K = 0,1,2 representing the slab,
infinite cylinder and the sphere respectively.
Gray and Sherrington were also able to show that 6 depended

feebly on the shape factor K and wrote

~ 2 K+1 2
8 = 90(1-2 )[1- WZ 90 + ...] (1.6.11)
The justification of this method can be seen from Table 1, in that
its solutions broadly agree with the results independently obtained
by other schemes. However, its advantage is that the temperature
attains its maximum value at the centre and that the total heat

balance equation is satisfied. It also offers a unified solution

for class A geometries, even though the bodies differ widely in shape.

(iii) Variational Methods

This method was developed to cope with the transient

behaviour of a reacting system. However, Sherrington [21] and Wake
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[22] have shown how powerful this method is even for the stationary
state problems. Both authors have solved the class A geometries,
cube and other geometries (see Table 1). The method involves
choosing a physica@brealistic temperature polynomial satisfying
exactly the boundary conditions. Thus the temperature polynomial
must exhibit parabolic or convex temperature profiles with the
maximum temperature occurring at the centre of the reactant. The
coefficients of the polynomial are then considered to be functions

of time only and hence independent of spatial coordinates. The power
of the variational method is that any errors in approximating the

temperature are reduced by the following procedures:-

(a) Two vector fields H and G are defined representing the
heat flow and heat generation fields respectively. G is defined as

an integral in time. Thus we have

div H = - pud {(1.6.12)
t
G= Q.Ky(T)dt (1.6.13)
0
where
p = density of the reactant
u = specific heat
KO = kinetic rate
(b) Fourier law and heat conduction gives
1
gradd + — .H=20 (1.6.14)

A
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A variational in 8 can be obtained from combination of

equations {1.6.14) and (1.6.13). Hence, we get

{ oud 868 dv + [ % fSHdv = - [ %(’; §H dv (1.6.15)
v v v
Equaticn (1.6.15} can be made more tractable to analysis by defining

the temperature profile. Gray and Sherrington [3] chose

8 = (1-22)(q0+q122+q224 + ...) (1.6.16)

By substituting (1.6.16) into (1.6.15) we obtain n equations;

foue 2-dvif s Ay =268 g (1.6.17)
v 9 v 94 v 94
i = 1(n)

The n equations are equivalent to the Lagrangian equations of
classical mechanics, However, for the steady-state problem equation

(1.6.17) becomes

%é——dv (1.6.18)

Equations (1.6.18) now represent n algebraic equations.
For nonlinear heat generation, equations (1.6.17) are not always
amenable to analysis. However, the Frank-Kamenetskii conditions of
criticality can be obtained when the solutions of the n-equations
cease tc be bounded. Sherrington [21] considered the solution for
class A geometries, the cube and other gecometries (see Table 1,
variational (1)), using a quadratic heat generation rate.
Sherrington obtained the results by using a temperature polynomial
as described abhove. He further assumed that & = 0 at surface.

Wake [22], on the other hand, generalised the surface condition by
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imposing the condition

%% + 06 = 0, at the surface

Unlike Sherrington, Wake chose trigonometric terms to represent

the temperature profile within the reacting mass. By assuming

the heat losses to be purely due to heat conduction within the

reactant, Wake further investigated the effect of the Biot Numbers

on the critical Frank-Kamenetskii parameter. He defined this

criticality as the condition when solution of the time-dependent
are Shown

variational equations is just possible. His resultiﬂin Table 13

variational (2} corresponds to the Frank-Kamenetskii condition,

a = <@,

1.7 The Effect of B Values on the Ignition Phenomena

In the above sections, we have limited our discussions
to the case B8 = 0 in the heat generation term. However, it is
of interest to investigate the effect of non-zero B values on the
possibilities qf existence of the conditions for thermal ignition.
It is known that the curve in Figure 1.2 represents the simplest
bifurcation of a self-heating medium, in which no temperature

solutions exists for & > Gcr However, for B # 0 and

it’

s > Sc it(B=O), there exists a stable state, given by the upper part

T

of curve in Figure 1.9, for which the temperature is sufficiently

high to lead to ignition. This stable state is called the super-
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critical state. Fradkin and Wake [23], have investigated the
disappearance of the critical phenomena for thermal explosion,

when B = Btr.]31 fact they have shown that criticality always exist
for thermal ignition for small values of B, namely 0 < B = Btr’

in which acrit(s) monotonically approaches Scrit(8=0) from above as
B - 0. Several authors have sought to determine Btr for various
rates of heat generation and geometries. Fradkin and Wake suggested
a variational model for determining Btr by assuming a local critical
§. However, their scheme results in considerable difficulties

even for simple geometries. Bazley and Wake [24] have successfully

conputed 8, , using aw approwimate teactin: tale form,

B = 0.2:138 For me anfinite Slab .Qnd Bep = 01732 for
[ ¢

the infinite circular cylinder. On the other hand, Boddington

and Gray [25] have conducted an extensive study of the transition
region for the slab using Arrhenius and 'bimolecular law' rates of heat
generation, namely dexp(6/(1+86)] and {5[1+Be)%exp[e/(l+86)]}
respectively. They also determine the shape of the critical locus,
the bifurcation set, a curve in three dimensional space (G,B,em)

for the two rate laws for both Frank-Kamenetskii and Semenov extremes.
Curves in Figure 1.10 represents some of their results. Table 2
contains some of the data with a comparison of the transition and
critical parameters for both Frank-Kamenetskii and Semenov conditions
for the infinite slab. The main conclusions of Boddington and Gray3

investigation are:-

(1) The size of the excess central temperatures em(str) is
nearly four times the classical value with temperatures (Tm—TO)

being of the order 400K greater than T T and T, are temperatures

0- m 0

at the centre and surface of the vessel respectively.



46

(ii) For any particular rate law, the Semenov extreme sets an upper
bBound on Btr for the Frank-Kamenetskii extreme and all the

intermediate Biot Numbers.

(iii) The suddenness with which the criticality is lost with

the ignition phenomena persisting to within 0.025 of Btr'

Kordylewski [26] has also investigated numerically the
B effect on the disappearance of the criticality for thermal explosion
using the reduced Frank-Kamenetskii rate of heat generation. Figure
1.11 exhibitsthe loci of the & curves for extinction and ignition
dependence on B, with the stable solutions possible within the

* *
confines of 61 and 62 curves.

1.8 Conclusions

The effect to which the postulates and approximations of
thermal explosion theory provide an adequate description of the
gas phase reactions has been the‘subject of interest to many authors.
However, due to lack of satisfactory precision instruments most
of the experimental data are erroneous. Gray et al [27] have
conducted an extensive study on the decomposition of diethyl peroxide
in the gas phase. By limiting the heat losses due to convection
and radiation, any heat losses could then be attributed to the
conductive heat transfer.jﬁh.Spite of the deviation in practice of
the reacting systems from the various assumptions of the steady-
state conductive theory, their results are in excellent agreement

with the predictions of the thermal explosion theory. The experimental
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results may be summarized as follows:-

(i) Ignition is always preceded by self-heating with the
largest temperatures occurring at the centre of the reactant. At the
" vessel walls the temperature is O(TO), where T0 is the temperature of

reactant's surroundings.

(ii) A critical temperature increment exists above which ignition
is inevitable. The size of this increment is a multiple of

2
RT0 /E.

(iii) The dimensionless critical temperature gradient at the wall

is given by

(iv) The temperature differs significantly from a parabola
close to criticality, being less steep at the walls and more curved

at the centre.

The assumption of the Arrhenius rate of reaction in the
postulates of thermal explosion theory implies a monotonic increase
in the reaction rate with an increase in temperature. However, this
case is true for chemically simple reactions. The interaction of
chemical kinetics sometimes exhibit reaction rates which fall over
certain temperatures ranges leading to many interesting and complex
phenomena. One of these is the substantial self-heating that may
be tolerated in a reaction without ignition. This is the case for
the oxidation of hydrazine with the reaction being overwhelmingly

thermal in origin.
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Although thermal explosion theory has led to an excellent
prediction of chemical ignition of simple chemical systems in
open stirred systems, its prediction of the critical dimensionless
temperature excess offers a bound on closed systems. It has also
led to a better understanding of hydrocarbon oxidation, in that a
does
unified theory of both thermal and kinetic theories play a part

in determining chemical reactions of more complex systems

(see Reference [3]).
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_

Semenov's diagram of heat release rates 499497 and
heat loss £. P and R of 9 and £ represent stable
and unstable modes. However, the intersection Q
represents the highest attainable temperature Tcrit
for the reacting mass to remain stable. TCrit is
given by the tangency of 4 and £. Hence Q represents
the critical condition for the onset of thermal

ignition.

0 Tcrit T temperature
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Figure 1.2: Schematic diagram of the temperature of the centre of
slab versus the Frank-Kamenetskii parameter, exhibiting
stable temperature for & < ecrit with 6crit being
the limiting case.
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S
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Figure 1.3: § as a function of em‘ﬁmﬁ1a sphere as data published

by Steggard {9].
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Figure 1.8: Adler [20] curves of § against w for specified values of €.
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Fifgure 1.9: Graph of the maximum dimensionless temperature excess 8,
against ¢ exhibiting typical behaviour of reacting medium

for various B values. B __ corresponds to the transition

T
region. For B > Btr reactant no longer exhibits ignition
phencmena (Gczécrit).
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Figure 1.10: The curves for Biot number a = =. The B effect on the slab
with (a) Arrhenius rate law (b) Bimolecular law. Curve CT
is the ignition locus and DA the extinction locus. T
corresponds to the transition point, Point C represents
Frank -Kamenetskii's classical solution. B~-+E and D+F
represent typical ignition and extinction jumps respectively.
Curve from [25].
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Figure 1.11: Curves obtained from [26]. Curves represent the

dependence of the critical parameters of self-ignition
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&
6, and extinction §, for the slab and the sphere

on parameter B .



TABLE 1: Values of 6

for various geometries; table reproduced from [3]

crit
BODY YEXACT! COLLOCATION SERIES VARIATIONATL
(1) (2)
Slab 0.88 0.90 0.86 0.89 0.88
Cylinder 2 2.10 2 2.06 2
Sphere 3.32 3.47 3.32 3.42 3.32
Cube 2.52 2.36 2.57 2.54 2.45
Square Rod 1.70 - 1.72 1.73 1.69
Equicylinder 2.77 2.78 2.84 2.77 2.77
Right Cone 3.09 3.25 - 2.88 -

TABLE 2: Critical-continuity transition data from [25]

FRANK-KAMENETSKII (o=«) SEMENOV {(a=0)

Parameters Arrhenius Bimolecular Parameters Arrhenius Bimolecular
&tr 0.2458 0.3369 Btr 0.25 0.34315
6crit(Btr) 1.3074 1.1677 (Se)tr 0.5413 0.48113
m cr1t(8 ) 4,897 5.101 atr 4 4,121
Tl =0) 0.8758 (Se )crlt(B_ ) 0.36788
em,crit(8=0) 1.18 crlt(B_ ) !

(Se) = (6/a)

9¢
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CHAPTER TWO: REACTIVE SLAB WITH PARTIAL SURFACE INSULATION

2.0 INTRODUCTION

We consider modelling the thermaQbstability of buildings
constructed on thermal active sites. These sites are covered
by surface soil containing active organic material (refuse). The
mass is usually slowly reacting and in thermal equilibrium with
its surroundings. Of interest to us is the effect that the
insulation provided by the buildings has on the thermal balance.
Any meaningful analysis can only be considered for an idealised
model of the physical problem.

Thus in some cartesian frame of reference Ox'y'z', we
consider a symmetrically heated exothermically reacting slab with
the steady temperature distribution being a function of x' and
y' only. The slab surface is partially covered by parallel
insulation strips of length 2£ at y' = *a, with the remainder of
the surface maintained at temperature TO’ the ambient temperature.
We are then interested in determining the critical Frank-Kamenetskii
parameter, 6c, as a function of the insulation length, 2£, the slab
thickness 2a, etc., for the steady-state thermal explosion theory.

We make use of the same assumptions as in Chapter One, namely

(i) Zero order reaction
(i1) constant physical properties
(1ii) Frank-Kamenetskil approximation in the

reduced Arrhenius rate law, namely the case

g = 0.

Thus the two-dimensional Fourier equation in temperature becomes
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BZT . 82T . QZ0 exp( -E ) =0
' [ - H

% 2 3y 2 A RT
where

T',y") : absolute temperature distribution within the

slab

E : the overall activation energy

A : thermal conductivity

R : universal gas constant

ZO :  frequency factor

Q :  heat of reaction.

We conveniently choose our axes Ox'y'z' such that the
temperature T(x',y') is symmetrical about 0x' and 0y' (see
Figure 2.0). Hence we only need to consider the region 0 < y' < a,

x' 2 0. The boundary conditions are:-

y' =0 %;7 =0, ¥xt=> 0 ,

y' = a g§7-= 0, ¥x' <2 ,
T(x',a) = TO’ vt > £

x' =0 : —g%=0, jc:u" 05__3'&@‘

If the temperature T(x',y') is to be unique, we need to

specify the boundary condition as x' -+ =,



fo— —— — ——

ST _ T=T

Figure 2.0: Schematic diagram for the reactive

slab with the convenient choice of

Ox'y' axes.

However, the equation can be made dimensionless by defining

new auxilliary variables

- X A - ¢
X=3r Y3 €73 ¢
. E
with g = £y (T-TO);
RT."
0
B = RTe
N =
and § = (%J E%a? ( E——EJ exp( - £ ). The choices for 9, B

T
RTO R‘O

and 8 are consistent with the definitions in Chapter One. Hence the

energy equation together with boundary conditions reduces to
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2 2
278 3 b
+ + § expl ] =0,
ax 2 By2 (1+88)
00
= - — = }
y =0 : 3y 0 ¥x e,
o8
y =1 : 'a—y- = 0 for 0sx<e,
8(x,1) =0 ¥x > e , {2.0.0)
— . 08 _ [ <
x =0 : aX-O ior og‘d_l

In general B << 1, hence we shall make the usual
Frank-Kamenetskii approximation in the exponential term of the
Arrhenius rate law, namely B = 0. When ¢ = 0 (the case for zero
insulation), 6 becomes a function of y only and the solution is

known (1.2.5). In this case 8 = eg:O(Y) such that

cosh o )

se=0(Y) =2 1og(cosh oy

3

(2.0.1)

and § = Zczsechzc.

The curve of & versus ¢ in Figure 2.1, shows that real
solutions exist only for 0 < § < 6c(0), where GC(O) = 0.878 with

9. = 1,2,
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5
(s/2) 4

(8 (Of/Z)%—- =
c

Q\‘f

Figure 2.1: Graph of (§/2) vs o for ¢ 2 0. The curve is
symmetrical about the(G/Z]%axis.

tHlowever, when « # 1, we seek to determine the critical
Frank-Kamenetskii parameter 6.(e] as a function of ¢, We also note
that the boundary condition at x + =, is now given hy 8(@,y1=6€=0[y)

with o = (e¢].

2.1 The Case ¢ <1 1.

When the surface insulation length is small, ¢ << 1, we
expect the critical Frank-Kamenetskil parameter Gc(ej,to differ

slightly from §.(0), Hence we consider the perturbation about



62

o= 0., namely

g=g,_ -5 {2.1.0)

the
where s << 1., Substituting o intoAé equation, we get

‘-
~

2 2
§ = Z(GC-S) sech (os—s).

Expanding § as a Taylor series in powers of s, we get the

critical parameter éc(s) as a function of s, thus

2 3
1 5 2 s 3
5,(s) = 6.(0) + s s, (0) + -Z—o‘c( Yoy + 3 s Yoy + ..
where
§ (0) = 20 _2sech’s.  (=0.878)
c T %Ye c e
(1) - 2
SC (0) = 4ocsech oc.{l-uctanhoé)
= 0
note: octanhoC =1 [see equations (1.2.15) and (1.2.16)].
Similarly it can easily be shown that
(2) -
8.7 (0) = - 28_(0),
(3) - 4
Sc (0) = - o GC(O), etc.
c
Therefore
_ 2 2 3
(SC(S) = (SC(O)[I—S - -?E s + -..] (2.1.1)

Quter Problem

We consider the critical solution in the slab far from

the insulation, that is, as x » =, where 6(=,y}] - ee—O(Y)'



63
Replacing o by G.-S in (2.0.1) and expanding 6(«,y} as Taylor
series in powers of s, we have

cosh(cc-s)

8. (=,y) = 2 log[ EBEFTE;j§7§J
0 0 2,0 3,0
=0, (y) +s8,(y) + 58, (y) +s8;,(y) * ...
where

0 cosh o,
. (v) = 2log( EEEE—Ezy—J ,
8 0(y) = - 2(tanho -y tanho y)

1 c c ’

0. . _ 2 2 .2 —
62 (y) = sech oY sech oy (2.1.2)

0: . _ 2 2 3.2
63 {y) = g-(sech o tanho -y sech o.ytanho y) ,
etc.

In order to express Gc(s) as a function of e, we need to determine

the relation between s and ¢. To determine this relationship,

it is imperative that we solve the energy equation in the neighbourhood
of the insulation length, that is, when x = 0(e), and y = 0(1).

Hence, we need to rescale the cartesian coordinates. However, the
scaling terms will themselves depend on the relationship between s

and €. By assuming, ¢ = O(SG), we put

- 1y _ X
n = —;? and £ = ) (2.1.3)

S

where a > 0,
We now expand the component functions of BC(M,y) [see

equation (2.1.2)] about ¥y = 1 to enable us to deal with the inner
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region where insulation is of importance. It can be shown that the
dominant term of each component function is 0(5“). Hence the

dominant term for ac(m,n) is the O(sa) contribution from Bco(n).

Note: log cosh o y = log cosh[cc-cc(l—y)]
_ B
= log cosh{c_-o.s™n)
[» )
= log cosh 0.0, tanhccs n+ ...
Therefore

o

Bco(n) = 25% + O(S2 )
Tﬁus Bc(m,n) becomes
Gc(m,n] = ZSun + smaller terms (2.1.4)

Inner Solution

Through the introduction of the auxiliary variables (2.1.3),

the energy equation becomes

2 2
876, (&,m) 378 _(E,n) 3 0_(&,n)
< + < + 8§ (O)sza(l-s2 + 2s + ...)e ¢
2 2 c 30
13 an c
=0 (2.1.5a)
with the boundary conditions;
af
= ¢ _ £
n=20 5= 0 lg] < iR
_ €
8.(8) = 0 le] > < (2.1.5b)
36
£=0 —= =0 ¥n ,
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E+ o to8.(e,n) = 2s%n . {2.1.5¢)
We now put
ec(g,n) = saea(ﬁ,n) + smaller terms, (2.1.6)

to represent the temperature solution in the inner region. Expansion
(2.1.6) takes into account the dependence of BC(E,n) on powers of s

as £ + o, Since we have assumed ¢ = 0(5“), we now define El by

€, =

€
o
5

with El assumed to be 0(1). On substituting ec(g,n) in (2.1.6) into
(2.1.5) and then equating coefficients of powers of su, we have

the dominant equation

2 2
376 (E,n) 3 BG(E,n) i

_ +  — 0 (2.1.7)
852 an

Writing @a(E,n) = Ba(g,n) -2n, equation (2.1.7) reduces to
2 -
V ‘I’a(g,ﬂ) - 0)

with the boundary conditions

Bqla

n=20 'é?l—=—2 IE|<EI’
¢ (£,00 =0 gl >¢g, (2.1.8)
B(Du.

£E=0 f=0 ¥n o,

g,n +» ¢ >0
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The solution of (2.1.8) is expressible in terms of the

Weber-Schafheitlin discontinuous integral [28], namely

Ji(AGE4) -A N
144051 0
9, (E.n) =28 [ —5—— coshf e dx, (2.1.9)
0 0
Therefore
Iy (ApE4) -AqN
- (e o 14%051 0
8.(8,n) = 8 (=,n) + 2&;s g I L

+ smaller terms

Writing the inner solution in terms of the outer variables, we have,

-0
® J (AE,) L A (1-y)s
6 _(x,y) = 8_(»,y) + 2£,5% 1 o071 cos(A.xs ).e 0 dA
c ¢ 1 A 0 0
0 0
+ smaller terms.
We now put
-a
H = )\OS »
thus ec(x,y) becomes
® J. (E;s")
6. (x,y) = 8 (=,y) +26,5% [ 1L T cogqux e (Vg
c c 1 0 i
+ smaller terms (2.1.10)
Intermediate problem
We seek to determine the solution valid away from the
insulation but which has the limiting form of (2.1.10). Making

the substitution
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ec(x,y) = Bc(w,yJ +sa‘%(x,y) + smaller terms (2.1.11)

in the energy equation and then equating the coefficients of powers
of s, and noting that ec(m,y) satisfies the equation
6. (=,¥)
ec”(m,y] + dc(e) e =0 .
We also obtain
2 8. (=,¥)

v Wu + 6C(e]e .Wa(x,y) = 0,

etc.
8.(=,y) 2
We note that Gc(e) e = 20 sech”oy. Therefore the equation
for ¥ 1is
a

VZWQ + Zozsechzcy.wa(x,y) =0,

with the boundary conditions;

B?u
y:o V:O,
y =1 : ?a(x,l) =0 , (2.1.12)
X > » ¥y >0

o

Several attempts to determine the solution of (2.1.12) proved
unsuccessful. However, Adler [29] suggests the following procedure

for determining Y5
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Adler's Scheme

If H(x,y) is a harmonic function, a solution of (2.1.12)

may be written
o~ dH )
Y (x,v} = — - otanhoy-H(x,y) (2.1.13)
o 3y
which is easily verified on substitution. Taking
H(x,y) = A(p) cosux sinhuy,

the reﬁuired solution of (2.1.12) becomes

o0

i ¥ (x,y)du
0 s

=]

f A(u) (ucoshuy-otanhoy.sinhuy)cosux du

¥, (x,¥)

0
(2.1.14)
Comparing equations (2.1.10) and (2.1.14), at y = 1, we have
251
A(y) (ucoshu-otanhgsinhy) = —— Jl(uilsu)
u
Therefore
o
A(u) = (2.1.15)

p{pcoshuy-otanho.sinhy)

Finally equation (2.1.11) becomes

J, (ng Sa)(ucoshuy-ctanhcy.sinhuy)cosux du
o 1 1
6. (X,¥) = 8 (=,y} + 2&;s

u{pucoshu-otanho.sinhy)
it

+ smaller terms {2.1.16)

Adler further assumed that because of symmetry the maximum temperature

Shoutd b2
should occur at the centre of the slab, that is at (0,0}, andAFqual to
0

0 .. ..
ec (G). In fact BC (0) is in some sense a ''critical temperature".
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Thus at (0,0), we have

= J;(en)dy
log coshcc ¥ log coshg + ¢ ! (icoshi—o tanho . sinhn)
(2.1.17)
de _"(0)
However, this assumption violates the condition I =« at

criticality. Adler justifies this departure as due to insulating

the slab surface. By substituting o = o, - s into (2.1.17), Adier

was able to determine the relationship between ¢ and s, namely

~

1
[ €? with El =1and a = 2. Hence the critical Frank-Kamenetskii

parameter, Sc(e) becomes

3/2
GC(O) (l1-€-(2/3¢ ). + ..0)
c

6, (€]

/2
0.878(1-¢ -0.56E3 + ..) (2.1.18)

Adler also showed that
2.5
QQCE,H) = 2£1Re[(1-z )+ iz]
1 .
where z = — (E+in).
51

Hence the critical temperature distribution near the surface of the

slab is

1
0,(6,m) = 8. (=, 1) + 25°Re[(1-29)7 + i2]

%5

- 3S%ICR6[(1—ZZ) + iz] + smaller terms

(2.1.19)

Equation (2.1.19) forms a basis for numerical computation.
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2.2 The Case ¢ >> 1

We expect for € >> 1, that the temperature distribution
within the slab Bc(x,y) + 0 and éc(e) + 0, where ec(x,y) is the

.- 5 . .
limiting case corrapondlng to Gc(s). The energy equation for

B(x,y) 1is
2 2
28,238 .50, o0<x<e, 0<y<1
2 2
3x y
with the boundary conditions;
ae
y =1 y -0 x| <e,
8(x,1) =0, |x]>e,
- a8 _
y =0 5y - 0, ¥x,
(2.2.0)
X > P> e(=y) =0 (), ¥y,
- a8 _
x =0 o o, Yy .

As ¢ » =, we expect the temperature distribution within
the reacting slab to be almost uniform except in the regions near the
edges of the insulation where the slab loses its heat to the
surroundings. Thus we expect the temperature within the slab to
vary sufficiently slowly in the y-direction for the process to be
dominated by the heat conduction in the x-direction. However,
difficulties arise when we try to solve the one-dimensional equation
in x, since the boundary condition at x = ¢ { ¢ => «») is unknown.
This difficulty can be overcome by solving the equation when the

surface is completely insulated, € = =, with a zero heat reservoir at
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x = €. This assumption is consistent with our expectation of
Bc(x,y) + 0 and Gc(e) -+ 0 as ¢ + =, Physically, this assumption
will yield an upper bound on dc(e), since the temperature at

X = ¢ (¢ = ») will be small but non-zerc for the idealised model.
Therefore, the energy equation, neglecting the y-dependence of the

temperature, becomes

o' (x) + e =0 0<x<e (e=w) ,

with boundary conditions;

x =0 ' (0) =0 {(2.2.1)
X = ¢ 8(¢} =10
We rescale equation (2.2.1) by setting
x 3
E = _E— ] § = _-2_ »
€
to get
OU(E) + 5 el =0 , 0<Eg<1, (2.2.2)
with the boundary conditions;
£€=0 ©81(0) =0 (2.2.3)
£ =1 : 8(1)y =0
the
Thereforfdsolution of (2.2.2) is
- cosh
8,(8) 210g[-—&cosh pg) ,
i~ 2 2
and § = 2p sech™ (2.2.4)

626

I
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The limiting 6C(e) is determined by maximizing p in (2.2.4), namely

p = o, and hence

n?

s.(e) T 6_(0)/¢° (2.2.5)

and Bc(x)

2log {coshcc/cosh(btﬁ/s]} (2.2.6)

Equations (2.2.5) and (2.2.6) represent the upper bounds
on Gc(e) and Gc(x) respectively. However, for the case € >> 1 (e # =),
the true boundary condition as x + = is given by Bc(x,y) > ec €=0(y),

where

cosh o ]

ee=O(Y) = 2log cosh oy

(2.2.7)

and § = Zozsechzo .

The boundary condition (2.2.7) is consistent with our
assumption of zero heat reservoir for the case ¢ + =, since g + 0
as ¢ -+ = . The effect of this boundary condition is that it
introduces the y-dependence on the lower order terms of the temperature
distribution within the slab for ¢ > 1 (¢ # =), Physically (2.2.7)
modifiessolution (2.2.6) to take into account the temperature changes
that occur at the edges of the insulation. Expanding § in (2.2.7)

in powers of o, we get

8 202[1 + Ei— + o=+

3 55 *730 * )

(2.2.8)
202(1-02 + %— 04 + ...

Comparison of equations (2.2.5) and (2.2.8), gives

202(1-02 +'%—04 .0 = =
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hence, since ¢ KX 1,

o2 L (s, 0/2)7
or (2.2.9)
oe % (5_(0)/2)
= 0(1)

Equation (2.2.9) represents the relationship that exists between

o and ¢ when we ignore the temperature changes that occur at the
edges of the insulation. Of importance to us is that (2.2.9)

gives the rescaling required for the inner problem for the case

e > 1 (e # =) and x < ¢, Thus for the inner region we rescale the

variables by putting

£=1(2 ox and n= (3 oy (2.2.10)

where ¢ = 0(1l). However, the critical solution in the outer region,

where x >> ¢ , is given by equation (2.2.7), namely
B.(=y) = 8__o(¥)

cosh o )

- 210g(cosh oy

Writing the outer solution in terms of the rescaled inner variables

we obtain

cosh g
ec(m,n) = 2log EE— . (2.2.11)

cosh (gﬂ n
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Consider the Inner Region (x <X ¢)

From the analysis in above sections, we expect the dominant
term of the temperature solutions to be a function of § only. Using
the auxiliary variables of (2.2.10), the energy equation becomes

4 c

2+§-c +..0e% =0 (2.2.12)

. k{l-o

we now put
0.(E,m) = 85(E) + cuel(i,ﬂ) + Swmalléer - terms

where o > 0.
Hence equation (2.2.12) becomes
2. o 80 o
60”(E) + V (o Bl+...) + ke (l+g 81+._,) =0

On equating the coefficients of the powers of ¢, we get

%
80“(5) + ke =0 (2.2.13)
6
v291 + ke O.Bl(g,n) = 0 a # 2
g (2.2.14)
Ke 0 o= 2
etc. We note that (2.2.13) satisfies the boundary condition,
E=20 Br(0) = 0

Frank-Kamenetskii (Ref. [2] (i) page 379) gives the solution of

equation (2.2.13) satisfying the boundary conditions as

0o _ A

:
cosh*{ (59 ¢
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The relationship that exists between the constants A

and « can be determined if we know the temperature within the

slab at the point x = €. We hope this temperature can be

evaluated by matching the inner solution with the solution of the

outer region. However, we put

%
Ax
p = 053 s
hence 6. becomes

0

0, (&) (2p°/¢)
e =

costhg

Thus the equation for sl(g,n) becomes

VZBI + 2p25ech2p5.81 = 0

2p25ech2p£

with the boundary conditions;

36
E—‘—O f=0’ Vn,
n=20 : EE}- =0 VE
- n 3 3
X a0
- (2 .1 2
n=(@o: o5 =0, E< @

b

3

%

o€

a # 2

=]
L]
g8}

(2.2.15)

(2.2.16)

(2.2.17)

If H(g,n) is a harmonic function, it can easily be verified that

el(g,n) is a solution of (2.2.16), where
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8, (£,1) o # 2

) jL = %%-_ ptanhpg .H(&,n)
[el(ggn)-l] a =2

(2.2.18)

Attempts to determine H(Z,n) present difficulties since the

appropriate conditions are difficult to deduce from (2.2.17).

2.3 Conclusions

Attempts to determine the intermediate region to match the
solution in the region x < ¢ with (2.2.11) were unsuccessful.
However, it is hoped that the solution of (2.2.16) might suggest
the nature of scaling required in the intermediate region, since we
expect the solution as x -+ « to interact with €, to give a smooth

temperature solution in the intermediate region.
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CHAPTER THREE: SLAB WITH VARTABLE SURFACE TEMPERATURE

3.0 INTRODUCTION

We consider a symmetrically heated exothermically reacting
slab occupying the region -1 € y < 1, -» < x < o with respect to
some suitable dimensionless frame of reference Oxyz as in
Chapter Two. The same assumptions as in Chapter Two, including
Frank-Kamenetskii's approximation (B = 0) to the Arrhenius rate
law, are still considered to be valid for this problem.

The energy conservation equation is then considered for
the situation inwhich there is a variable surface temperature
distribution. The surface temperature at x -~ = is considered to be
slightly higher than that at x + - =». Thus the energy equation
is

32 828 . § 0
— 5 e

0, -1<y<1, -2<x< w

g ] Kl

9x 3y
(3.0.0)

where 8 and § correspond to the dimensionless excess temperature
and the Frank-Kamenetskii parameter respectively. The temperature

8(x,y), is symmetrical about y = 0 and satisfies the boundary

conditions;
_ . 88 _
y =0 Poay T 0
(3.0.1)
y =1 o8(x,1) = ef(x), 0 <ek 1

where f(x) is a smooth monotonic function with the following

characteristics at x - £ w«;
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f(x) - 0 as X >-
(3.0.2)
f(x} - 1 as X >+

A typical example of f(x) is:

(i) £(x) = = (l+tanhx).

(TR

We seek to determine the critical Frank-Kamenetskii parameter,
56(5) as a function of ¢ and the corresponding critical temperature
ec(x,y). We now consider the regions x + *« , where 6 is expected

to be a function of y only.

Solution as x > -«

The temperature within the slab at x +-«, satisfies the

equation

6" + se” = 0, 0<y<1

with the boundary conditions;

39
y =0 tey s 0 (3.0.3)

y =1 . 6(-=,1) = 0.

The solution of (3.0.3) is given by

cosh @ ]

8(-=,y) = 210g(cosh ay

(3.0.4)

and § = ZUzsechzo .



Solution as x >+

The energy equation

o + 8¢’ = 0,

with the boundary conditions:

de

=0 o — =0
Y y
y=1 i 8(=,1)

We now put

D
il

e + ¢(y) and A

On substituting & and & into

in ¢(y), namely
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in this region becomes

(3.0.5)

6e6

equation (3.0.5), we get an equation

o + pe® = 0, o<y<1,
with boundary conditions:
y =0 g%_z 0 (3.0.6)
y=1 o¢(1) =0
Finally the solution of (3.0.5) is
8(=,y) = + 210g(S1 L)
cosh py (3.0.7)

and § = sze_esecth
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3.1 Perturbation Analysis about the Criticality

On comparing the solutions (3.0.4) and (3.0.7), it is
apparent that the criticality conditions for thermal ignition
will first occur in the region x -+ «. The asymptotic solution
can then be determined by replacing p in (3.0.7) by O.s where o,

is the critical parameter for the slab solution. Thus we get

(3.1.0)

cosh o,
8. (=,y) = € + 21og[ ] :

cosh oY

-€
and Gc(e) = GC(O)e ,
h 5 (0) = 26 %sech’
where c = 20_"sech'g,
= 0.878
with g. = 1.2

In order for us to evaluate the asymptotic solution as

X +-®, we put g = o, - s, where 0 < s << 1.

Consider x »--=

On substituting ¢ = g, - S into equation (3.0.4), we

Expanding ac(s] as a Taylor series in powers of s, we obtain

Cov 2 2s
SCLS) = GC(O)[l—s -

+ ... (3.1.1a)

[Note: see equations (2.1.0) and (2.1.1)]



&1

Comparison of (3.1.0) and (3.1.la) shows that s ¥ e%; thus ¢ and

6c[s) become

(3.1.1b)

2
and 5.(e) = 6_(0)[1-¢ - gé: RIEN

This expansion for ac(e) is valid to 0(e). We now seek to determine
the solution of (3.0.3) - & replaced by GC(O) e €. Thus the

energy equation becomes

8" + §.(0)e “exps = 0, 0<y<1;
with the boundary conditions
de
=0 Po5—=0 3.1.2
Y dy ( )
y =1 : 0(-=,1) = 0.

Writing the solution of (3.1.2) in powers of ¢, we put

%Slo(y) +e0,0) v ... (3.1.3)

- o wy._ o 0
8 28 (=) =98_(y) +¢
Therefore

9 0

c 5.0 0 0.2
ﬁc(e) exps = 6_(0)e (1-e+ ...)[l+6251 + 6{82 + %{81) -1}t '~]

Equation (3.1.2) now becomes

0
2 e .
0 % 1 0 1 0.2
§.(0)e © [1+52810+ 6{92 + 5‘(91 ) -1}+'QJ

—
[a]
+
m
@
+
m
<
+
[ N—
+

=0

On equating the coefficients of powers of e, we obtain
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(3.1.4)

c 0.2 7
+ GC(O)e {92 + E‘(Sl ) f— 0,
etc.

Equations (3.1.4) give the expansion Bc(—m,y) to 0(e).
However, the functicns Slo(y), ezo(y) etc., can be obtained
directly from (3.0.4) by expanding 8(-=,y) about the point ¢ = g_-¢
in powers of €. Note this expansion will only lead to identical

results with solutions of (3.1.4) up to 0(e). Hence

ec(-m,y) = Zlog{COSh(UC‘E%)/COSh(OC—e%]y}
(3.1.3)

L
Taylor series expansion of (3.1.5) in powers of €? gives

0 5, 0 0
8. (-=,y) = 8_(y) + €78 W)+ <0, (y) +...

where
0 cosh O
ec ) = Zlog( cosh o.Y ’
0
6, (y) = -Z(tanho -y tanho y) , (3.1.6)
0 3 2 2 2
62 {(y} = sech Sy sech .y etc.
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Intermediate Region

We seek to determine a solution of the temperature
distribution within the slab as a function of x and y, which has
the asymptotic form of (3.0.7) and (3.1.6). Noting the dependence
of the asymptotic solutions on the powers ofe%,we consider the

following expansion for the intermediate region, namely

6(x,y) = 8 (x,y) = 6.0(y) + €6 (x,y) + €8, (x,y) + .

and Sc(e) = GC(O)[l—e+ ced] (3.1.7)
Therefore
eco 1 2
Sexpd = 6C(0)e {(1-e+ ...)[1+e B+ 5(82 + 5-81 -1+ 0]
but
0" 2 .2
GC(O)e = ZUC sech 0.y
Hence the energy equation becomes
2,0 % 2 2 5 1,2
v (ec +E 91+€82+...) + ch sech ccy[1+e el+e(ez+ ﬁ'el o DL
= 0
Equating the coefficients of the powers of ¢, we get
dzeco 6,
+ & _(0)e ~ =0,
2 c
dy
2 2 2
v el + ZUC sech ccy.el =0, {3.1.8)
2 2 2 1 2
v 82 + ZUC sech ccy.(82+ z-el -1) = Q,

etc.



where

_ 1 2
Y"O ay - ay =0 )
(3.1.9)
y =1 : Bl(x,l) =0, ez(x,l) = £ (x)
and asymptotic conditions
X > @ el -0 , 82 - 1
(3.1.10)
0 0 0
X>- = : 81 - 61 (y) , 82 > 82 {v), etc.

Solution of the Bl-equation

We use the following result:

If 13} is a harmonic function, a solution of the equation

2 2 2
v 81 + 20c sech Ucy.Bl =0 ,
o, (3.1.11)
is el(x,y) = Tl o tanhccy.w1

which can be easily verified on substitution. Below we now consider

the equation
2
vy (x,y) =0, (3.1.12)

with ¢1 appropriately chosen at x = £= and at y = 0,1.
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3.2 Determination of the Appropriate Boundary Conditions to

Equation (3.1.12)

op
1
el(x,y) = 3 . tanhocy.wl(x,y) . (3.2.0)

The boundary conditions satisfied by ¢1(X,Y) can be obtained from

equations (3.1.9) and (3.1.10).

X>-o
8 0 -2(tanho -y tanho _y)
1 C c
= 2z (l-g ytanho y)
T o cyranna.y
c
note: o_ tanho_ = 1.
c c
0 .9 2y 2y
Therefore 8, () = 55 ( E;-] - o_ tanho_y.(- E: )
b 8.°0) = &= ¥ (-=,y)- o_ tamh .
ut 1 (YJ - By 1 Y- UC an UC}’-‘J}l(- sY)
Hence as x » - =,y - - 2y
" cc'

X >+ + @

3
3y Y1(=»y) - o, tamho.y.$,(=,y) = 0

integrating with respect to y, equation becomes

di (»,) )
QIT;T§T-H O tan ccy dy

Thus (=) = A cosho_y



but Vzwl = 0, hence A =0 (wl is harmonic everywhere).
as x + wl -+ 0,
Also
2
ae 35y 3
1 1 1 2 2
y - ;yz— - o, tanhocy "3y 9. sech ccy.lpl
aztPl ow 2 2
= - o - o, tanhccy. 5§_'- 0. sech ccy.wl
ael
but at y =0 -é—)-r-" = Q.
Therefore
3 2
B_XTZ‘ IPI(X:O) + UC ‘PI(X,O) = 0
which gives
wl(x,O) = A2 sinccx + B2 cosg X

36

However, the asymptotic conditions at x + *» show that A2

Hence ¢1(X,0) = 0.

The problem for ¥y becomes

V2$1(X,Y) =0, 0sy<]1, S < x <o
with boundary conditions;
y =0 ¥, (x,0) = 0
Bwl
y=l F'¢1(X,l]=0
X >+ o wl_,. 0
X+- = 1p1 —>—§l ,

Thus

(3.2.1)
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with ¢1(x,y) as a smooth function of x (so as to exclude

P, = - 2y for x < 0, and ¢, =
1 o, 1

but non-physical solution).

0 for x > 0, which is a possibility

We now put

4’1 (X, Y) == '6?:" ¥ ‘bl(x)Y)

c
Therefore
y [++]
l’,f)l > - 0_ as X > -
c
i -> =~ as X > + o and v2¢ =0
i o, 1
Hence
¢1(‘X3Y) = - ¢l(st)
On setting x = 0, we get
¢1(0s)0 =0

The problem then reduces to

2
vy y) =0, 0

with boundary conditions

x =0 2oy, 00,y)
X > @ wl -0
y =0 ¥y (x.0)
y =1 e

ay

<y<1, 0€x <> ;

(3.2.2)

- wl(x)]') =0



33

Attempts to solve equation (3.2.2) leads to failure.

Consequently we conclude that there is no solution for the inter-

mediate region for the case when the region x + = is critical.

The result is astonishing since the solutions at x -+ = o are well

defined.

3.3

We seek to overcome this paradox by determining:-

(i) the temperature excess 8 when the whole
slab is in a stable non-critical

state.

(i1) By invoking the method of "adiabatic
invariants', which has been used to
resolve corresponding difficulties
in electrical and mechanical systems

[30].

Perturbation Analysis for the Non-Critical State

We consider the problem

y =1 : 6(x,1) = ef(x)
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where f{x) has the same properties as in section 3.0. A particular

case is:

(i) f(x) = %—(l+tanh x)

Asymptotic Solutions

o - - - cosh p
As x - 1 8 =0 _(y) =e+?2 1Og(EB§E_E§ﬂ
(3.3.1)
and § = sze'esecth
As x>-®: 8328 (y) =2 log(Se3h o,
- cosh oy (3.3.2)

and 8 2025ech20.

We seek to find an expression for o as a function of ¢ and

p. Comparing the &'s in equations (3.3.1) and (3.3.2), we get
2025ech26 = 2p2e_Esech2p
Therefore

oseche = pe-(E/z)sechp . (3.3.3)

We now consider expressing o as function of p in powers

of ¢ by putting

g:p+UET+OEZT+0€3T+
1 2 3 )

. - . T
Expanding osecho as a Taylor series in powers of ¢ , we get
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o secho = p sechp + (cleT+0262T+...) (1-ptanhp)sechp
+ %’(01€T+02€2T+...)2(ptanhp-2tanhp-pSeCh2p)SeChp
+ oL, (3.3.4)

From equation (3.3.3)

pA 1 e 3

€
-z 3+ (3.3.5)

)

o secho psechp[l-(%J + %—(

Comparison of equations (3.3.4) and (3.3.5) gives

o-[p/2(1-ptanhp) e + [p(1+p sech®0)/8(1-ptanhp) Je

Q
1]

+

0(e>) . (3.3.6)
Expansion of log(coshoy) as a Taylor series in powers of ¢ gives
log coshoy = log coshpy + (01€+02€2 + ...)y tanhpy
+ %(012€2+20102€3+022€4+...)ystCthy

1 3
- 3{0136 +...)yssech2py tanhpy + ...

Therefore
0 0 2,0 3.0
8 L) =9, () +ed, (y) +€7d, (¥) +e7¢; (¥) + ...
0 1 2 3
(3.3.7)
where
Q - cosh p
¢0 (Y) - 210 ( COSh DY s
0
¢‘l (Y) = 201(tanhp_y tanhQY) >
¢20(Y) = 202(tanhp—y tanhpy)} + alz(secth-yzsecthy) ,
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¢30 = ch(tanhp—y tanhpy) + chcz(secth—yzsecthy)

- %—013(secthtanhp-yBSecthy tanhpy),

etc.

The Intermediate Problem

We seek solution 6(x,y) which satisfies the asymptotic
solutions (3.3.1) and (3.3.7), taking into consideration the powers

of e, we put

006, Y) = 0y (y) + €6 (x,y) + € b,(x,y) + ...

(3.3.8)
and § = 2p2e-Esech2p

Therefore

0
2 % 2 ¢?
S exp 8(x,y) = 2p"e =~ sech™p{(l-¢ tost c.l)

[l+(e¢l+ez¢2)+... + %—(€¢1+€2¢2)2+...]}

5 0

but 202e 0 secth = 2p259ch2py .
Hence
8 expB(x,y) = 2p25ech2py{l—(l-¢l)€+[¢2‘¢1 + %’(1+¢12)] 52...]
Thus equation (3.3.0) becomes
V2(¢00+e¢1+62¢2+---)+2025ecthy{1-(1-¢1)€+[¢2—¢1
+ %{1+¢12)]52+ ...} =0
On equating the coefficients of the powers of e, we get

2.0
d ¢0

dy2

+ ZpZSBCthy =0 |,
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2 2 2
Vi -25 sech py.(1_¢1) =0 |,

(3.3.9)
2 2 2 1 2
V¢, + 2p sechToy.[(¢,-¢) + 5 (1+¢,7)] =0 ,
with boundary conditions
9¢ 3¢
1 2
y-—O . ——ay = '_—ay' =0 »
y =1 Pogy (1) = £, 0,(x,1) = 0,
0 3.

X+ (1)1 +~1, ¢2 > 0 .

Consider the ¢1(x,y) equation

6, (xy) - 2pzsech2py.(l—¢1) =0, 0<y<1, w<x<em

with boundary conditions

3¢,
y =0 -a—y—-z
y=1 Poey(x,1) = £(x)

(3.3.11)
X S P 1
x> oo > 6,0

We put El(x,y) = 1-¢1(x,y) and hence the equation for g1 is

Vzil(x,y) + ZDzsecthy-El(x,y) =0, 0<Sy<1l, -=»2<x<=»

(3.3.12)
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with boundary conditions

(43
1
y =20 : W— o ,
y = 1 . El(xsl) = l—f(}() ]
X > @ : El + 0,
) 0
x>-@ 1oE 190y

The solution of equation (3.3.12) is given by

Wy
51CX,Y) = B_Y__ - ptanhpY'wl(XJY)
where V2¢l = 0, To determine wl(x,y) we consider the appropriate

boundary conditions from the conditions on El(x,y):
(i) when x -+ o: 51 > 0

Therefore

ay

_ N
0 = 55— - etanhoy. ¥, (=,y)

¢1(m,Y) = ¢ coshpy satisfies the above

equation, but Vzwl = 0 (everywhere), hence ¢ = 0. Thus as x + = wl -~ 0.

(ii) when x » - o £, 1 -¢10(Y)
but $,°0) = - °(§§?§§;§h5§“h°y)
Thus
£ (~=,y) = 1+ [2LE2hey _tanhey),
= 57 Ty - ey (T iamms)



94

Y

Hence as x » - @ y, = (I-ptanhp)

]
(iii) y = 0: gy'gﬂx,O) = 0
Therefore

82 2
'_*2"4’1(3(:0) +p IPI(X,O) =0
9X

with ¢1(X:0) = B1 cCOS pXx + B2 sin px. However, we are seeking
a decaying solution as x - +», consequently By =B, = 0. Hence

at y =0 wl(x,O) = 0. The problem then reduces to

Vzwl(x,y) =0, 0<y<1, —o < x < =, (3.3.13)

with boundary conditions

y =0 9, (x,0) =0
]
y =1 ;o 1-f(x) = -5}71111 (x,1) - otanhp-wl(x,l)
X > : wl -0
X 5> - @ . [p &> ————-——y Wlth IP
1 (1-ptanhp) ’ 1

being a smooth function of x (so as to exclude non-physical sclutions
for example ¢1 = 0 for x > 0 and wl = y/(l-ptanhp) for x < 0).

We put

y

$ ;) = xy) - ——
2 (1-ptanhp)

Thus as

X + @ : 51 + - %[y/(l-otanhp)]
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and as

x~ == & ) >2ly/(1-ptanhp)].

Hence $1(X,Y) = - Ei(-X,Y)

setting x = 0, we get
3,00,y) =0

We now replace the boundary conditions at x = #= of

{(3.3.13) by
x =0 : 900,) = Ay/(1-ptanhp)]
X + o : wl -0

We then consider the modified problem

Vzwl(x,y)=0; 0<y<1, 0 <x<wm,
(3.3.14)
with boundary conditions
y =0 : lbl(x,O):O
Bwl
y =1 o 1-f(x) = 5;«-— ptanhe . ¥ (x,1)
x=0 i ¥(0,y) =3y/(1-ptanhp)]

and the asymptotic condition
X + : wl - 0,

In order to solve problem (3.3.14) we apply a Fourier-Sine

transform and solve the transformed problem. We define:



%26

@«

¥r0ny) = F iy 0=, %— J ¥ (x,y) sinyx  dx
0

and its inverse transform

L=

wl(X’Y) = /% J \yl(Y:YJ Sian dY
0

oY )}

Thus
2
2 = 2 8y
FS {a——g} = % J 21 sinyx dx
IxX X
0
. 2 _2
= / T le(OJY) Y wl(Y,Y)

Taking the Fourier-Sine transform of equation (3.3.14) we obtain

3 2
— ¥ 0ey) o+ L -y ¥ by) =0
3y v2m(l-ptanhp)

The Wl(y,y) solution is given by

Wl(y,y) = A coshyy + B sinhyy + [ Y
Y21 y(l-ptanhp)

(3.3.15)
Y

aty =1 : 1-f(x) = 3;1-— ptanhp.wl(x.l).

We consider the case (i) f(x) %(l+tanh x) and taking

the Fs of the boundary condition when y

1, we get
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=]

Fs{l—f(x)} = ‘/% J %— {(1-tanh x)sinyx dx
0
1 T Y
= —/_: [y- §cosech(—2—)]
2m
[Note: f {(l1-tanh x})sinyx dx = vy - %~cosech(%a, see[31].1]
0

Hence when y = 1

[¥- % cosech (Iz-) ]

3 1
3y '{‘1(‘(,1} - ptanhp.‘{’l(*(,l) /i-.-n-—
At vy = 0 ¢1(X,0) = 0, hence ‘?1(7,0) = 0.

Therefore A = 0. Equation (3.3.15) becomes

Y

¥, (y,y) = B sinhyy +
Y21 y(1-ptanhp)

Differentiating ¥y with Tespect to y, we get

1
v21 y(1-ptanhp)

a¥, {y,y) = Bycoshyy +
oy

when y = 1, we obtain

1 1
—— [y-{m/2)}cosech(y/2)] = Bycoshy +
V2T Y21 v (l-ptanhp)

- Bptanhpsinhy- ptanhp

Y21 v (1l-ptanhp)
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Therefore

o _L [y-{1/y)-(n/2)cosech(v/2}]
V21 {(ycoshy-ptanhp sinhy)

Thus Wl(y,y) becomes

¥ 0ry) = L x=UWm)-(/2)cosech(y/2)y o5y vy
Y27 (ycoshy-ptanhp .sinhy)
+ A (3.3.16)
V21 y(l-ptanhp)
Hence
1 2 2 . .
Py (x,y) = {Yéoégi iﬂé1%ﬁ$s§Ch(Y/ ) ] sinhyy.sinyx dy

(3.3.17)

0
1_ y_sinyx Slan
T (1-2)y
0

where X = ptanhp.

Note: j 512 Zdz = %—, from the '"Residue Theory', or otherwise
0 I
consider C
iz
1 e Fos
2mi J’ z dz —9
c
0 eiz @ jz
Therefore f = dz + f = dz = 1i
‘o Z 5 Z
Hence
© iz -iz



99

Equation (3.3.17) becomes

y-(1/y)-(m/2)cosech(y/2) ]
(ycoshy-isinhy)

1 . .
Yy = — J sinhyy.sinyx dy

-y 3.3.18
-0 (3.3.18)
We now put F(y) = —— [y~ 7 cosech ()] (3.3.19)
V2r
Hence
- /2 F{y)sinhyy.sinyx y
wl(X’Y) - //; J (Ycoshy-Asinhy) dy + 2(1-)1)
0
1 ® sinhyy sinyx dy 20
T J ¥ (ycoshy-Asinhy) (3.3.20)
0
Note: f (I-tanh x)sinyx dx =y - g-cosech(%a
0
= V21 F(¥)
but 1-f(x) = la%{1+tanh x)
=-%(1—tanh X)
Therefore 2 | [1-£{x)]sinyx dx =27 F(y) (3-3‘2’)
0

We consider a function G(t) such that

o

_ 2: sinytsinyx sinhyy
G(r) = - J (vcoshy-Asinhy) dy (3.2.22)
0
Thus we have
sinyx sinhyy _ y/i- .
(ycoshy-isinhy) ~ / 7 | G(T)sinyt dr (3.3.23)

0
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The first integral in (3.3.20) becomes

o3 =] o

Z F(y}sinyx sinhyy _ /Z /': .
//; J (ycoshy-Asinhy) dy= /< G(t)dt F{y)sinyt dy

0 0 0

8]

3

(3.3.24)

but from equation (3.3.21)

[1-£(x)] =/%JF(Y)53'-TWX dy
Therefore
n-£0] = /2 J F(y)simg dy

0

Hence equation (3.3.24) reduces to

oo (=}

@J F(y)sinyx_sinhyy , ‘/%( [1-£(1)]6(1) dt
0

(ycoshy-Asinhy)

0 (3.3.25)

Also

e [+ o] -]

1 .sinyx sinhyy ! J/?i sin yT
T J ¥ (ycoshy-Asinhy) dy = T G(T)dt T o v dy
o o

o

_1_J G(1)dt (3.3.26)

V2m
0

Using equations (3.3.26) and (3.3.25) equation (3.3.20) becomes

o [=o]

¥y () = /%J [1-£(0]6(1)dT - %j JOLE
0

0
(3.3.27)
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We define the complex variable z = x + iy and hence

Im[cos z] = - sinhy sinx,... where Im[ ] refers to the imaginary
part, It can be easily shown that

-]

_ 2 [ sinyr cos yz
6 =Ll y3 J (ycoshy- A51nhy) Y]
0
- 1 siny (z+1) 1 siny(z-1) 1Y ]
nt (Ycoshy A51nhy) /5; {ycoshy-isinhy)
0 0
(3.3.28)
Note: ¢ (x,y) = 1-8, (x,¥)
Bwl
=1 - 3y -Fptanhpy.wl(x,y) (3.3.29a)

Substituting ¢1(X,Y) from (3.3.27) into equation (3.3.29a)
gives the solution for ¢l. We now seek to determine if the
integral of (3.3.18) is well defined for all positive values of x
and y. We now put

]

I [ ¥ 51nh(y/2) -sinh{y/2)-(n/2)y
ysinh{y/2) [ycoshy-Asinhy]

] sinhyy sinyx dy

0
x3 xs
Note: sinh x = x + T + T + ¥x
x2 x4
cosh x =1 + 5T + T + ¥x

when v >~ 0

L

. . 2
y251nh(y/2)-51nh(y/2) - guy =y &+

3]
-bl-‘(
[ea]
+
—t
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3
Y LY '
Gr@mt ) o3

¥ -2.1y + 0.48 'Y3 + .
Similarly

sinh(3) [ycoshy-Asinhy]

2 4 3

3
. A £ 0 ¢ TR SRR S B Y CTa

48

Y2 Y4
TT-(lak) + Zg-(IS-A)

2 24 6

Hence put

2 . .
_ Y sinh(y/2)-sinh(y/2) -(n/2)y A :
Lot = vysinh(y/2) [ycoshy-Asinhy] b sinhyy sinyx

22,1 + 0.48v° . :
[ = 3 ] sinhyy sinyx

nt

%T-(l-x) + %g-(ls-x)

2 Y2 3
(-4 + 0.9y )(y + — Yy + ...)

3 6 sin yx

§
[r(1-3) + 1 (13-2)]

ne

In the limit x » «; yx - 0(1l). Hence the integrand is divergent

since IO(Y) becomes

42y
y(1-2)

lim IO(Y) > -

X
when x = 0; vx - 0 and hence IO(Y) becomes

limit I. - - 42 yx
o0 0 (-0

Hence the integrand is finite for vanishing values of y.

)1
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When y » w:

v2sinh(y/2)-sinh(y/2) - s

n?

. %YZE(Y/Z)[I_ Y2 35]

¥ Y
1 2 2 T =y/2
>y oY/ )[1_ Le Y/ ]
(ycoshy-Asinhy)sinh(y/2)
~  (/2)
= ke [hve'-Zae']
~ (3v/2)
= le (y-2)
Hence
-(y/2)
. xa-Te )
IO(Y) = eVsin X
Y el (y-1)
Note: at criticality lmax = 1 and hence for the subcritical
slab solution x» < 1. Therefore

~r/2)  -y(1-y)

2[?i§ﬁ€ le

.. i
Iimit I . (y) =+ — —
Yo 0 eY(I‘Y}

I

Iy0v)

when y = 1 the integrand is singular. However for y <1, IO(Y)

tend to zero as y approaches infinity.



104

3.4 Method of "Adiabatic Invariants™: Resolution of paradox

Inorder to resolve the paradox of section 3.2, we
reconsider the formulation of the surface temperature for the
slab. We insist that the temperature gradient with respect to x
is negligible in comparison to the surface temperature. Thus we now

put
8(x,1) = eF(ex),

where %%—[x,l) = ezF'(ex) << 6(x,1). Putting X = ex, and

substituting into equation (3.0.0), the energy equation becomes

2 2
& 22 .22 . s -0, 0<y<1, =<x<w
X 3y
(3.4.0a)
with boundary conditions
: 30
y =0 3y - 0
(3.4.0b)
y =1 B8(X,1) = eF(X).
where
F(X) -~ 0 as X > - =,
F(X) -~ 1 as X > o,

Equation (3.4.0) implies that the surface temperature varies
sufficiently slowly for the conductive forces to become quasi-one
dimensional. Thus at each X, the surface temperature is nearly
constant and the dominant conduction process is in the y direction.

Hence for ¢ << 1, the energy equation reduces to
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+ e =0, 0<y<1, 1

- tich
y =0 3y - 0 ¢ (3.4.1)
y =1 o 8(X,1) = eF(X).
The solution of equation (3.4.1) is given by
a cosh o(X)
e(x:}r) = eF(X) + 2108( cosh O'(X)y) ’
and (3.4.2)

seSF (X = 252 (x) sech?o(X)
However, in the limit when the conditions at x = = are critical,
§ = (Sc(O)e-'E (see section 3.1, equation(3.1.0))

Substituting this value of § into (3.4.2) we obtain an expression

for o(X) in powers of ¢, namely

202(X)sech20(x) = 5c(0)e-e[1~F(x)]

It can be shown (section 3.2} that

i
g(X) = cc-e%[l-F(X)]2
Expanding @ = eC(X,y) in powers of e%, we get

8. (y) = 8.0(y) + [1-F01% 8, ()

. e{F(X)+[l-F(X)]620(y) . (3.4.3)
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and

Sc(e) = 6C(0) exp(-€)

Equation (3.4.3) represents the critical solution everywhere
in the slab with eC(X,y) expansion valid to O(e). Functions Bco(y),
elo(y), etc., are the same as defined in section 3.1, equation (3.1.6).
The asymptotic properties of (3.1.0) and (3.1.6) follow directly

from (3.4.0) and (3.4.3).

3.5 Conclusion

Attempts to express the critical Frank-Kamenetskii
parameter Gc(e) as a function of ¢ for an arbitrary surface
temperature f(x), as defined in equation (3.0.2) proved unsuccessful.
This difficulty arose in failing to determine a physically realistic
solution for the intermediate region satisfying both the boundary
conditions and the asymptotic conditions, even though the problem
is well defined as x + £ =« ., However, this paradox was resolved
by using the method of "Adiabatic Invariants', where limitations were
imposed on the gradient with respect to x of the surface temperature,
namely Bx(x,l) < 8(x,1).

By seeking to determine the non-critical slab solution
in section 3.3, we hoped to ascertain the behaviour of the
temperature solution as p - - Infact our solution (3.3.18) will

become singular as p -+ o, due to the term [l-ptanhp)_l
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Consequently, these observations and our failure to
solve the critical case directly as in section 3.1 lead us to doubt
the existence of a critical solution for the slab with an

arbitrary surface temperature f(x) as defined in (3.0.1) and (3.0.2).
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CHAPTER FOUR:  FINITE DIFFERENCE FORMULATION OF THE INSULATED SLAB

4.0 INTRODUCTION

In numerical solutions of partial differential equatioms,
one normally employs the finite-difference grid system, such
that the numerical solution, to a required degree of accuracy,
corresponds to the continuous system it represents. The
choice of the number of points and the grid interval are normally
dictated by practical considerations, for example, computer time
and the domain of solution. However, normally uniform grid
intervals are chosen in a given direction, with spatial derivatives
usually represented by central differences. The central
differences for the uniform grid intervals give accuracy of O(hz)
for the spatial derivatives, where h is the interval in the
direction of coordinate differentiation. Although finite-
differences schemes that use uniform grids are the simplest and most
accurate, they are unsatisfactory for problems with boundary layers.
If the number of grid points in the boundary layer is not large
enough, then the numerical solution is apt to have gross errors
even in the region outside the boundary layer. Increasing the
number of grid points will result in unacceptably large
computational time. However, this problem can be resolved by the
introduction of an irregular grid with smaller spacing near the
boundary layer. In fact, a non-uniform grid interval can be
constructed which gives the same order of accuracy as the uniform

grid when the derivatives are represented by central differences.
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4.1 Generation of non-uniform grid points

In the insulated slab problem, we expect singular behaviour
in the temperature profile near the region y = 1 and x = €. Thus
it is dimperative to develop a non-uniform grid in the y-direction
with smaller grid spacing in the region y ~ 1. However, in the
x-direction, we have an additional requirement, namely our domain
of interest is semi-infinite in length. We expect the temperature
to be almost uniform for values of x >> . Thus once again it
is important to develop an irregular grid system to maximize
efficient use of computational time.

To develop this non-uniform grid system, suppose the
range (0,L) of the independent variable z is divided into N
intervals of non-constant length as indicated in Figure 4.0.

We number the grid points i(i=l to i=N+1) and represent the value of
z at the point i by z;, SO that z, = 0 and z = L. The grid

1 n+l

interval between zi and Zs,

1s1 18 represented by hi

h, h
i-1 i
- . T -
Fi-1 %3 Zi+1
i-1 i i+l

Figure 4.0: Finite difference scheme with irregular
grid interval hi=zi+1'zL and
h, .=z.-z. ..
i-1 71 "i-1
Now consider an analytic function f(z) in the range

0 <z <L, with fi = f(zi]. In order to express the derivatives
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as finite difference approximations, we expand fi+1 and fi—l

as Taylor series about the point z = z, to derive

2 3 4
h h h
- (1), 4 (2) , 3 . 4
fi+1 = fi + hifi 2 f 6 f 24 f
(4.1.0)
2 3 4
1) h, h: h
£ . =f, -h, £ i-1 . (2 i1 (3) (4,
i-1 1 i-1"1 + T £, - 6 f + 24 f
(4.1.1)
Since we generally want f ( ) f (2 ), we assume that

higher derivatives are negligible. Thus to solve for fi(l),
2
take hi-l x(4.1.0) - hi x(4.1.1), we get

2 2 (0 2 2 2
(hihi-l i )f = hl 1f1+1 -h; fl—l - (hi-l_hi)fi

1..3.2 3 (3)
‘E(hihi-fhizhi-l)fi *

Finally, we obtain

hi 2 h 2
£, - ( } £, . - [1-(
. (1) i i+l hi-l 1-1 h 1
i hi
By [1+()]
1-1
h.h

—la—i-'-l fim . (4.1.2)

To solve for

(2)
fi , we have hi-l =x(4.1.0) + hi x(4.1.1),

to get
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2 2

1 2 (2) _
7 (hyhy grhihy PE T =y g ey - Gy D
1 .32 2,3 (3)
s (hihi_1 + hihi_l)fi + .,
. . . (2)
On further simplication fi becomes
hy hy
£, =
i hi
hyhy Tl
i-1
3.3 {(4)
Pln ey ® Dm0
T L T R, o
i-1
(4.1.3)

Equations (4.1.2) and (4.1.3) give fi(l) and ficz) correct to
O(hihi_l) and O(hi-hi_l) respectively. However, for a

regular grid, fi(l) and fi(z) can be determined directly by putting
h = hi = hi-l into equations (4.1.2) and (4.1.3) respectively.

Hence for the uniform grid spacing we obtain

£

NSV I 5 W £ B G & B
i 2h 6 1
(4.1.4)
2 _ Gearfo?h 0 w2
£. = - — f, + ..,
i h2 12 i

Thus the finite-difference representations in (4.1.4})
give an error bound of O(hz) for the derivatives. This error
bound is normally acceptable in numerical solution of partial
differential equations. However, equation (4.1.3) gives the
expression for fi(z) correct to O(hi-hi_l), a first order error
fi(Z)

term, To cbtain second order error term for we choose the

3
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grid spacing such that

2
hy-h, , = 0(h_ ) . (4.1.5)

Thus, to construct irregular grid intervals, with the same order of
accuracy as a regular grid, we are restricted in our choice of
hi and hi-l’ as in equation (4.1.5)}). In the paper by Sendquist, H

and Veronis, G., [32], they choose hi’ namely

i=2,... (4.1.6)

where v is a constant of 0{1). By using (4.1.6), the error terms
for the derivatives in equations (4.1.2) and (4.1.3) are now of
O(hf_l) and 0(yh§_1) Tespectively. Consequently fi(l) and fi(ZJ
have the same order of accuracy for both the regular and irregular
grid systems. However Sandquist and Veronis found their choices of
v lead to unacceptably large errors in the region outside the
boundary layer for the theoretical model of wind-driven ocean
circulation proposed by Stommel (1948). To overcome this difficulty

vy was modified such that

]
ye 2
0 0
where o and T are constants, with a being of order unity and
>0, z, Tepresents the region in which the grid-spacing is
largest. This choice of y resulted in considerable reduction in

numerical errors in the region near z = Zg- Hence for the non-



regular grid system we get

(4.1.7)

=
0
o
=
+
IQ
V¥
o
-
L —
-
| —

i i-1

This choice of h, also reduces the grid density in the boundary

ny =

layer, namely z = 0. Numerical tests of the Stommel (1948) model
were carried out for ¢ = 1,2,3,4 and 7t = 1,2,3,4 for twenty grid
points and with Zy = - The best results were obtained for

@ =4 and T = 1, which gave 2.5% error near z = n, This was a
significant improvement compared to 3.4% error obtained for the
original choice of vy =2 1in (4.1.6).

However, the major difficulty in implementing this choice
of hi is the cumbersome way of determining the optimum values of
@,7 and number of grid points. In two-dimensicnal problems,
this difficulty will result in considerable computational effort to
get the appropriate optimum values for the non-regular grid system.
This difficulty can be resolved by using a system of stretched
coordinates. This methed involves the transformation of the region
of differentiation into a region where a regular grid will be used.
The regular grid in the transformed region is infact equivalent
to a non-regular grid interval in the original z-plane, see

Figure 4.1
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Az. £, Az,
-L
fiMfi+l
- Y * o
, Fi-l P hi i+l
/ : \
/ I \
/ | \
/ | \
/
, 8¢ | 1\ \
—_k'_ —l y L ————
& (G2 &
dg’i-% de’i de’i+h

Figure 4.1: Non-uniform grid defined through use of
coordinate stretching.

The idea in the use of stretched coordinates is to reduce the error
bound ;n the derivatives by making the grid interval Af{ in the
trans formed plane as small as possible. Thus to obtain first
order error in finite-difference approximation of fi(l), subtract
equation (4.1.1) from (4.1.0) to obtain
£ £

_ Ti+l77i-1 1 (2)
“ Ty 2 (h,-h, E + . (4.1.8)

f.{l)
i
Replacing hi and hi—l by Azi+% and Azi—% respectively in

equations (4.1.8) and (4.1.3), we get

£ (D _ £t
i

(Azi+%+Azi_%)

(2)
+ O(Azi+%_Azi~%)fi

150

(Azi+%+Azi_%)

11

(4.1.9)

and
. (D) _ 2 L N R B
i (Azi+%4-Azi_%) ‘{ Azi-‘_;2 Azi-%
+ O(Azi+% - Azi_%)
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- 2 {fi+1'fi ) fi‘fi-l}
(Bzy,p * 82y 3) & Bz bz;
(4.1.10)
We now define a stretched coordinate £, such that
z = z(£&)
and its inverse
£ = &(z)
Thus f(z) = £(z(&(2))).
Differentiating £(z) with respect to z, we obtain
df _ df d&(z)
G- 4 (4.1.11)
also note
g(z(g)) = &
dg dz B
therefore Fra {z(&)) 3 (&) =1 . (4.1.12)
Substituting (4.1.12) into (4.1.11) we get
df(z(g)) _ df(z(&)), dz(&)
1z = [dg / I ] {4.1.13)

Using central difference approximation in the numerator

we obtain

Gy = Al 1 (4.1.14)
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Also we have

a*£(2(8)) _d_ dE(2(8))

dz 2 dz

&

df(z(£)) dz (&)
{5 Yo &

&l

NN CONE-CBVE-C

dg - d&
(4.1.15)
Discretizing equation (4.1.15)
(1) Using the central difference in the numerator
(ii) and using the central difference approximation for
df
IE we obtain
f1+1 fi fi-f -1
_g(z(a)J; 1 At ) d“ (%E)
dz G (5D Sy
i-%
~ fi+l
i), . (2
givk Tegi
. fi—l
&) (z.); 1 (2)
gi-5"E01
- [ —— ¢+ —— ]+ 0(ag))
(08)"(zp);  (zp)j (z2); ¢

(4.1.16}
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For details of the error terms in the finite-difference formulation
of the derivatives in equations (4.1.14) and (4.1.16), see

Ref. [32]. However, it suffices to note the following properties

of z(&);

(i) ~%§ should be finite throughout the whole interval.
However, if g% is infinite, then the mapping will give
poor resolution since Az = (%%J.AE. Thus the resolution

cannot be improved even if we increase the number of

grid points.

(ii)  On the other hand, if (g-é) - 0, at z = 0, higher
resolution will be obtained near z = 0. This condition

is true if z1 = 0.

The finite-difference approximations for the derivatives
can be simplified by a convenient choice of the function of z,
namely z{(E) = Pn(E), where Pn(g) is a polynomial of degree greater
than unity. In the paper [33] by Eugena K. de Rivas, comparisons
were made between the method of stretched coordinates with the
method used by Sundquist-Veronis. Although the method of coordinate
stretching gave higher error values, there is no tendency for the
relative errors to grow for z + 0 for the Stommel (1948) model.
However, the major advantage of this method is the ease with which
grid-spacings are immediately known once the number of the grid points
have been decided whereas for the method used by Sundquist-Veronis
would require considerable effort in determining a and v in (4.1.7}.
Consequently in our computaticnal work on the insulated slab, we employed
the method of coordinate stretching as defined by equations (4.1.14)

and (4.1.16).
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4.2 Grid-System in y-direction

As afore mentioned, we expect the temperature within the
slab to vary rapidly as y approaches unity. Hence we seek to deter-
mine a function y = y(n) as shown in Figure 4.2. For y values
approaching unity, we require the grid-intervals to become very
small to cope with rapid changes in temperatures. We impose the

following conditions on y(n), namely

(i) y(0} =0, y(1) =1, with 0<np<1

(i1) 8 =1 and & =y where 0 <y << 1
dn =0 dn n=1

(4.2.0)

To satisfy the conditions (4.2.0), we require a cubic

polynomial function of y(n), namely

y =a, +a.n +an2+an3
0 1 2 3

On imposing the condition (4.2.0) we have

y =n {1+ (1-v) (1-n)n}
OR
y=n + (l-yn? - (pn°
Although choosing (%%J = 0, would give high resolution

n=0

near y = 0, we anticipate difficulties since we have to generate

an extra grid point because of the Neumann boundary condition

at x = 0, since %gj@,y) = 0. Hence the convenience of choosing
d . .
(E%Jn=0 = 1 becomes more apparent. By an appropriate choice of vy,

the overall truncation error can be reduced with a view of obtaining
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small grid spacing near y = 1.

4.3 Grid-spacing in the x-direction

Our choice of the irregular grid is dictated by two

main considerations;

(1) We expect the temperature within the slab to change rapidly
in the region x ~ € and y ~ 1. Hence we require very small grid
intervals in this region. Infact the mapping of the insulation in
E-plane covers a region of length £ as shown in Figure 4.3. The
mapping function x = x(&) is chosen such that we have uniform

grid intervals in the region 0 € x< 2¢, or 0 € £ < 2E. This
choice of region with uniform grid allows the temperature to settle

down before the introduction of irregular grid spacing.

fii) The temperature profiles for large values of x, namely
X 2> ¢, are dominated by heat conduction in the y-direction, hence
in this region large computer time savings can be obtained by using
a finite-difference scheme with irregular grid intervals, with
intervals largest as x + «, For numerical computational purposes,
the point x » =, is defined to be equal to X_.

The difficulty of choosing a continuous function x(£&)
with the above constraints was resolved by taking separate mappings

of x into g-plane, namely

(a) XI(E) 0 xS 2 or 0<£< 2

e

ow

(b) X;p(8) 2 <x<X or 2 £E< 1.0
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We then imposed constraints on XICEJ and XII(E) with a
view of minimizing interpolation errors in the derivatives

fi(l) and fi(z). We therefore consider

Region I: 0< g<2€

We put X, (g) = £

£
£
Region II:

At x = 2¢ or E = ZEZ we at least expect XI and XII to equal
each other. However, the nature of the continuity in the
derivatives for the two mappings is dictated by the degree of
accuracy we require in the finite-difference formulation of the
spatial derivatives of the temperature within the slab (see below).

Accepting errors in spatial derivatives of O(AE)Z, we insist that

XI(E) and XII(E) have the following properties;

at £= 2F
1) X (2D = X (@
= 2¢
dx dx
(i1) 3 Hl . T #]gﬂf
JE=2E )
= &
3
dszI dsz
(11i) 7 Sl
de”  Jg=2% de”  lg=2E

1l
Q
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3
d XII

a%x
. I
(iv) 3 } _ —5 ] _
dg”  je=2¢ dg”  |Eg=2% (4.3.1)

11
o

We also impose a bound on £ such that 0 <E< 1, with £ = 1,
being equivalent to x = %r in the x-plane. Thus at &£ = 1, we

put

XII[I) = Xoo

{(4.3.2)

dXII

?g“"‘]g:l = B

Hence we can vary the grid intervals by altering BO thereby
controlling the size and spread of grid intervals in the region
X > 2¢, with a view of minimizing the errors on the spatial
derivatives as defined in equations (4.1.14) and (4.1.16). To
satisfy the conditions (4.3.1) and (4.3.2) we choose the mapping
function XII(E) such that

2 3 4 5
XII(E,) = aO + alg * azg + 335 + 3.45 + asg

where ai's are constants, i = 0(5). (4.3.3)
By substituting equations (4.3.0) and (4.3.3) into equations (4.3.1)
and (4.3.2), we obtain a system of equations in ai's. From

these system of equations, ai's can be expressed in terms of BO.

€ and X_. (For the details of a;'s see Appendix) .
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4.4 Computational Molecule and the finite-difference of

Equations for the slab problem

We now replace the energy equation (2.0.0) with the finite-
difference system of equations. The Neumann boundary conditions
are approximated by the use of equation (4.1.14). Thus we need
to generate extra grid points to take into account this
approximation to the first derivatives of the temperature. The
computational molecule at the point (i,j) for the Laplacian

operator becomes

2 2
VZB = J g + 3 9
9x 9y
o tieL R W 15
- 2 2
N 5 5 N ¥ £

1 1 1 1
- 2{ [ + 1+
(AE) (XE)i (x,).

(g5 0y ei-%
2 1 1
%%) 1 [ ¥ ] e:'L,J
(yn)j (yn)j*-!i ()rn)j 1
+ 0[aE)?, (am?]
(4.4.0)
where i= 1,2,...N
j = 112,'--3(M-1):M VE<E

j = 1:2:-7'-5(M_2)3(M'1)- V€>g .
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M and N represents the number of grid points in the n and £

spatial directions. Thus

(1/N)

il

Ag

an 1/(M-1).

Boundary conditions:

Accepting errors of O(Ag)z or O(An)z, therefore using

equation (4.1.14), we have

. _ 38

(1) x =0 - 0

but 20 » 11,3701
X 208 (xg);

hence at x =0 i=1

ez,j = eO,j j=1M).
.. 38
= —_— = 0
(i1) y =0 Sy
bt 20 o~ %1,3+17% 31
-T2 .
3y (An)(yn)J
thus at y = 0
81’2 = ei,o i=1{N).
(ii1) vy = LA x<e or E<E
ay

Let Ns represent the number of grid points in the region

covered by insulation, therefore at y = 1; j = M.
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O Mel = ei,M = 1(N]J.

Ns can be determined from the following relationship, namely

£ = BE(NS-1).
(4.4.1)
or NS = N+ 1
(iv) at x = X, E=1
cosho

#%»7) = 2 108l oshoy )
with § = 2025ech20.
Note that

2 3 .
y = n+ (l-y)n” - (l-v}n~ . (see section 4.2)

On using the boundary conditions, the finite-difference
scheme results in [M.Ns + (M-l).(N-NS)] system of

nonlinear equations which can be expressed in matrix form as

Ag = d (4.4.1)

where § 1s a vector representing the unknown temperature at the

grid points within the region (see Figure 4.4), such that

8= (8 ooy yiveiBy qoeenBy WOy pg 1oeeeeBy gy Mol
S 5 ] S
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where gl and gz

terms and boundary conditions (at x = X_) respectively, namely

d = -8

where ()

= ONslL

However, A is the
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}

C
.
(14

6(X_,y), the boundary condition at x = X

j o= 1(M-1).

contains the contributions due to the nonlinear

coefficient matrix of the form
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Gy +1 By +1 On 41
S S S

GN—l BN—l

where gK's are tri-diagonal matrices of order (M x M) for

1< ks NS and of order [(M-1)x(M-1)] for Ns < k < N, nanmely

— K K =
Be = [P1,1 P12
b* b* b¥

bT ., . b ) b )
j-1,j-2 “j-1,j-1 "j-1,]
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with

+ (A_E_ ? 1 l: 1 + L :l}

{ 1M) for 1€|<<Ns

1(M-1) for NS < k<N

2
. Ag 1 ! :
by 5 = (%) ! ! bt
2
1, an S )yt s, Uy
K = ( 5 )2 1
1 .
5,9+ An 5000 50
where
2(M-1) for 1< k< N
= q
2(M-2) for Ng =x< N
B -(Aé)z - j=2M-1) lsxsN
.,._1 A s - ] )
j.J n S =20-2) k> Ng
K ( A )2 L [ : * ; ]
p,p-1 An Odp Y pey -y
with
M for lsxks Ng
o - {
M-1 for N, <k <N

Cés represent diagonal matrices with all the elements equal to C(K)

such that
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SO T R i
oK)
- .
with
(1) _ 1 1 1
S c L e I S e
and
(1) 1
¢ o= k = 2(N-1)
(XE)K (X-E)K.’_%
GK+1'S represent the sub-diagonal matrices of A such that
g - S ]
i g(K)_
. (k) 1
with g = k = I1{N-1).
(X8 a1 ) cah

Note that dimensions of CK's and GK+1's are given by

(1) (M x M) for 1< < (Ns—l)

(ii)  M-1x(M-1) for N, < x < (N-1)
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4.5 Conclusions

The finite-difference scheme developed in this chapter is
applicable to any partial differential equation with spatial
coordinates. However, in our case, emphasis has been on developing
the system of equations for the slab problem with insulation.
Details of the computational procedure and the nature and form
of the grid spacing in both the y and x directions will be discussed
in Chapter Five. It is apparent that more analysis of the
finite-difference equations is required in order to obtain the

solution.
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Y-direction

A
r_,;ari=’ﬂ
0 1.0
L
Figure 4.2: Distribution of grid points required in
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1.0
Figure 4.3: The required grid distribution in the X-direction
with 0 < £ < £ being in the region in the g-plane
occupied by the insulation. The shaded region represents

regular grid

"

intervals in the X-direction.

m Y
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He 4
"nu
=

Figure 4.4:

X=e X=2¢
i=N_ J =2Ns i

The circled points in the domain of differentiation
represent the nature and form of the grid points in the X-Y
plane. Extra grid points are generated to take into
account the Neumann boundary conditions at

(1) y =1, XK e
(ii1) y =0, ¥x
(iii) x =0, Yy
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CHAPTER FIVE: NUMERICAL SOLUTION OF THE FINITE DIFFERENCE

SYSTEM OF EQUATIONS

5.0 INTRODUCTION

We seek to determine numerically the critical conditions
for the onset of thermal instability of the slab defined in
Chapter Two. Using the finite-difference system of equations
developed in Chapter Four, we want to obtain the critical Frank-
Kamenetskii parameter Sc(e) as a function of ¢, the dimensionless
insulation length. Norﬁally Newtonian methods have been used to
solve similar systems of equations. Of importance to us, is
the determination of the relationship between éc(g) and e,
especially for ¢ = 0(1), since no perturbation analysis is
possible for ¢ of this order of magnitude. However, computational
results for Gc(e) for ¢ <X 1 and € >> 1, will provide comparisons
with the predictions of the perturbation analysis given in

Chapter Two -

5.1 Direct Newtonian Method

We now consider the finite-difference formulation

contained in Chapter Four by putting

£(8) = A8 -d=0 (5.1.1)

where A and d are matrices as defined in section 4.4.
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In order for us to employ a Newtonian scheme, we

need to define a correction vector Agn, namely

where n denotes the nth iteration. On combining equations

(5.1.1) and (5.1.2), we get

n_Fﬁgn)=0

Expanding equation (5.1.3) as a Taylor series in powers

of Ap_n, we obtain

£6™ + £1¢e™M.a8" + ... =0
where
3f_ (8)
1 = P -
£7(e) =5
q
ety ef
38, 98,
3, 3%,
38, 98,
of 5f
_r _r
36, 89,
e

(5.1

(5.1.2)

(5.1.3)

.4)

—

|

o8]
(o 1]
H

(28]

|

@
D
H

QI
Fh
R
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where T corresponds to the number of the equations. If a

Pq

denotes the elements of the coefficient matrix A, then

f (6 = a 8 -d.[(8 R

P['q) g Pq q P('q)
and hence

of (6}

R S Y

38 38 p =

q Pq P4 q P
where qu is the normal Kronecker delta, namely,
1 if P=q

s ={

pd 0 if p#q
Using the definition of d in section 4.4, we obtain

3f (8)

_p z

59 apq + (AE) 6exp(8p)

q

Finally equation (5.1.4) becomes

JeeMa™ = - £(eM (5.1.5)

where the Jacobian matrix J(8) is given by
3(8) = A + (88)° § diaglexp(9)]

where 'diag[exp(8)]' defines a diagonal matrix with elements equal
exp(f). We note that the non-linear terms of the energy equation
(4;1.4) only occur in the principal diagonal of the Jacobian matrix,
J(8). Consequentiy the elements of J(8) are equal to the elements

of the coefficient matrix A except for principal diagonal

elements which now become
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Ko 2 _ 1 1 1
bl,i = (AE) Gexp(en,i) (XE)K { (xE)K+!5 + (Xg)K_
peta 2 1 [ R S
At (s i )i
1(M) for l1<ksN
with i= { s
1(M-1) for NS‘< kK <N

{see Section 4.4 for details).

The critical conditieon for the onset of thermal
instability occurs when the Jacobian matrix, J(8), becomes singular.
Ideally we seek a solution of (5.1.5) for the case when the
determinant,D, of the Jacobian matrik vanishes. However, at
criticality, the inverse of the Jacobian matrik is undefined
and hence the Newtonian scheme will lead to failure in computation.
To avoid this difficulty, we instead seek to solve (5.1.5) with
§ chosen as close as possible to the critical § but with J(8)
remaining non-singular. Thus by a Block Tri-diagonal solver or
computer library facility we determine the approximate solution
to (5.1.5) and consequently we then evaluate the determinant D.
Hence for various values of § we compute the corresponding
determinants and from a plot of D versus §, seek to approximate

the critical values of § corresponding to the case when D = 0.

Computational Procedure:-

For small values of the insulation length, say, ¢ <1,
we expect Gc(e) to be approkimated by 6c(0), where GC(O) = 0.878.

Hence for ¢ << 1, say € = 0.01, we consider the following
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procedure for numerical computation of the critical Frank-

Kamenetskii parameter,

{1 At § = 0, the inert problem, after computing the
approximate 6 solution, we evaluate the corresponding

determinant, say DO'

(2) Next we choose & = 61 such that 61 is as close as

possible to the critical & but at the same time J(§)

remaining non-singular. Choosing &, = 0.8, we compute

1

D., the corresponding determinant.

1’

(3) Increasing &, by a small increment 4§, we get 62 and

1
finally Dz. Because of instability problems during

computation, we select 48 such that A8 = 0.0025. Thus

62 = 00,8025,

(4) Similarly 63 = 0.805 and hence the corresponding
determinant is D3.

(5) From a plot of D vs. § , the critical conditions for

thermal instability can be approximated by passing through

these points a simple quadratic polynomial of the form

where D = (D/DO). The determinants D , D, and D, were scaled by

D0 to overcome 'over-flow' problems in computations on the computer
due to the large magnitudes of the determinants.
On fitting the curve through these points, see Figure 5.1,

we obtain the suspected critical 6, namely Gc(l)(e), the value

corresponding to the value 6(D = 0) = a This value GC(I)(E),

0
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is the value of § that results in a singular Jacobian matrik,
and hence the limit for the convergence of the iterative scheme.
Taking an appropriate weighting between dctl)(e) and
63, we evaluate 84 and consequently we compute the scaled
determinant ﬁﬁ' Through these points, in the D - § plane, we

fit a cubic polynomial of the form

and we label éc(z)(c) this new value of a Again taking the

0"
weighting between Gc(zj(e) and 64, we obtain 65. The above
procedure is repeated until a desired criterion of convergence

is met, namely -

lac(“](e) -8 .l < 10°% , a>0

5|

o« represents the degree of accuracy required.

Discussion of the Direct Newton's Method

The afore-mentioned computational procedure for determining
éc(e) can be repeated for different ¢ values. This method offers
a relatively simple and easy procedure for determining the
critical Frank-Kamenetskii parameter corresponding to a singular
Jacobian matrix, J(8). The main advantage of this curve fitting
scheme is that it is both simple and easy to implement. For a
well behaved curve of D vs. §, the method can be cheap, since few

points will be enough to achieve the desired accuracy of Gc(e).
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However, in the neighbourhood of the critical §, the computations
tend to become unstable. This difficulty is partially resolved by
choosing successively smaller increments of &§. Unfortunately,
in our case, the computations became unstable even for ¢ values
far away from the critical 8. For ekample for ¢ = 0.01, the
computation became unstable for & > 0.6, whereas the critical §
is expected to be close to GC(O). Attempts to resolve this
difficulty by reducing further the step size of ¢ resulted in the
computed determinants remaining almost unchanged despite changes
in §. These small changes in D's make curve fitting both
unreliable and expensive in predicting the critical §. Infact,
we anticipate for moderate values of € and large number of grid
points, the scheme will result in unacceptable large computing
time. We however note that this scheme, for ¢ = 0,01, gives

results for the critical § of the correct order of magnitude.

5.2 Quasi-Newtonian Methods

In order for us to solve equation (5.1.5), and
simultaneously avoid the singular behaviour exhibited at criticality
by the Jacobian matrix in (5.1.5), we consider the following

modified system of equations,

F(9,8) = g(8,8)

£(8,9) (5.2.0)
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with
E n+m > lRT'H'III
£ ﬁn N n-m
g ﬂm - ﬁm

where m represents the number of singularities of fﬁggd).
However, since we are dealing with a simple turning point problem
(see Figure 1.2), we expect the system of equations to exhibit one
singularity at § = Gc(e) . Hence m is equal to unity. The
function g(®,d) , here represents an auxiliary condition,

required so that the Jacobian matri;c of F(B,8) will remain non-
singular for all values of § including § = Sc(e).

We now define the correction vector AE’C and A§® by putting

and (5.2.1)

ASS = & -6

where k refers to the Kth iteration. On combining equations (5.2.0)

and (5.2.1), we obtain

K

F(8"+a8°, §° +as") = 0

Expanding F as a Taylor series in powers of Agf and Ad, we get

vy E(85,8988° + v, F(e5,6Ma8" = - (5,59 (5.2.2)
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Elaborating on equation (5.2,2), we obtain

[Fo o (8,897 [a8%,86°1" = - [g,£]" (5.2.3)

K Ky . .
where EB_,:S(-@- ,87) is given by

r T
fg_,s@"s) = Ve_ g(8,38) vs8(8,9)
v t(e,8) vs£(8,8)

Thus f_e 5[_8_,5) Tepresents the overall (n+l) square Jacobian
it ]
matrix of equation (5.2.0). Because vector £(8,8) is known
explicitly its derivativescan be obtained analytically and are given

by: -

Wi

v.£(8,8) =IO

the original n-square matrix defined by the iterative scheme
in equation (5.1.5). The elements of the n-vector Vsﬁ(g,S) are

also explicitly known and are given by

v £(0,6) = -(a8) exp(®) + o5 (d,)

We note from Chapter Four that all the elements of iz

are identically equal to zero except for the last row-bleck,

representing the imposed boundary condition at x = X . (For details

see Chapter Four).
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Finally

1M
e

. -
]
v E(8,8) =- (407 { e 101 ]

R —

[—_-_J
R——— — 2

-~ =~ =

k-1,1
e
eenc.-l,M-l O

K,1 v

I L%

with

(tanho-y tanhoy) (5.2.4)
chechzc(l—atanhc) '

Veb =

The suffixes k and M represent the number of grid points in the x
and y directions respectively.

Although the original Jacobian matrix, VGE[Q)G) becomes
singular at criticality, we seek to choose an ap;;opriate scalar
function g(8,d) such that the overall Jacobian matrix 56,6(2,5)

will remain non-singular throughout the entire computation for all

values of § including the critical value of §. Hence we now put

g(8,8) = det[v, £(0,6)] (5.2.5)
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This choice of the auxiliary function g(8,8) is both
convenient and consistent with our definition of the vector
F(8,8) in equation (5.2.0). This is because the determinant
of the matrix Vs £(8,6) vanishes when § equals to the critical
value of the Fr;;k-Kamenetskii parameter. Consequently the
iterative scheme of equation (5.2.3) will yield the critical
value of ¢ as part of its solutionm.

In solving equation (5.2.3), difficulties arise when we
attempt to update the boundary condition at x = X_. This is

because the boundary condition is not known explicitly as a function

§ but is instead given by

cosho
b,

8(=,y} = 2 log( Soshoy

with

§ = 2025ech20 .

Further difficulties will arise when we seek to evaluate
the elements of the vector vdg_in equation (5.2.4). This is
because, for small values of ¢, otanho ~ 1, To avoid these
difficulties, we replace § by o as the unknown parameter in (5.2.3),.

Hence equation (5.2,3) becomes

K T T
(E, GCEKNSK)][AQ 80517 = - [g,£] (5.2.6)
Y
: T
with Eﬂ3c(§95) = Vs g(8,d8) s vcg(gJa)

v, £(8,8) . Y_£(8,9)



and

with

and

facilities.

v £(8,9)

2 ds 3
- (48)" exp(8) . 3o * 57
2 dé [ 91 1 |
= - ——— L
(48) do ?
0
. 1,M
I
t |
! ‘ l
i ]
} ° I
& T
ezc—l,l
e
O -1,M-1
eK,l
e
eK,M-l
L. e —

14y

d§ = 4d[1~dtanhc)sech20,

do

v

a

= 2(tanho-ytanhoy).

(d

d;)

W= — — — — =2

N~ —~— ———2n

Equation (5.2.6) can be solved by using computer library

computational procedure:-

(1)

We choose our starting vector (EP,GO) with (gp,c

being close to the expected critical region.

For a given value of ¢, we suggest the following

0

)
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(2) We then compute the elements of the vector i(ﬁ?,co),

such that

A8, = [ Y, g(8,0)

(5.2.7)
v, g(8,0)

- the elements of the differentiation of the
determinant with respect to © and o.

(3) Thus we now determine the elements of

v, £67,6%,v, £°,0%) and (208”0, £(°,0N1
(4) Soclution of (5.2.6) will yield the correction vectors
(AEP,AGO), and hence we obtain the new starting point (2},01), where

g} = ¢% + 26 ang ol = o+ add

Or generally

§}+1 -0+ add

GJ+1 = ol + ad’ (5.2.8)

with j

0,1,2, etc.

With the modified value of o in (5.2.8), we now compare

the coresponding value of the Frank-Kamenetskii parameter, namely

. . . 2
63+1 = 2[uJ+1 5ecth+1]
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We now repeat the computational steps (2) to (4} with
the vector CQP,UO] now replaced by (§?+1,0J+11 . The above
procedure is continually repeated until a desired criterion of

convergence is met, say

-7
g /gg < 10

where

g(g?,cn], [see equation (5.2.5)}]

o]
Wi

It is of importance during the computation to check the

values and behaviour of;
@ [ets]]
(i) (g £

Gii)  |ed*loed|

Since the auxiliary function g(g,s) is not known explicitly,
it is apparent that the elements of A(6,0) can only be determined
by numerical differentiation. However, numerical differentiation is
both a risky and expensive operation. Thus the computational effort
required to evaluate A(8,0) will become unacceptably large since
A(8,0) has to be updated for each and every iteration step. Hence
we seek to overcome this difficulty by considering the following

methods; Andreas 1 and Andreas 2.
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Andreas 1:

In this method, we seek to reduce the computational effort
in evaluating A(8,c) by using the Broyden's method (see Appendix)

to update Aj to Aj+l by putting

i 3 T, j
X, . = A, + (gj+1-g.-A.T(§§n)) ((a8-) ", 407)

(5.2.9)
j*1 7 7] 30 0 syt ae?

Andreas 2:

In this method, we seek to overcome the difficulties in
determining the elements of A(8,c) in (5.2.7) by considering
factorisation of the original Jacobian matrix J(f) (see equation
(5.1.5)) after a suitable row and column interchange. Thus we

now consider the following factorisation

J(8,6) = L(8,8) , O R(S,8) , G(8,6)
al(e,8) , 1 0 ., w(8,08)
(5.2.10)

where R(8,8) and L(6,8) are (n-1) x (n-1) upper and unitary lower
triangular matrices respectively. On combining equations (5.2.10)

and (5.2.5), we get

g(8,8) =det [ [ L(g,8) , o0 ]] det [{ R(8,8) , G(8,8)

i, , 1 0 , (8,8

(5.2.11)

and hence the condition g(gja) = 0, implies that w(8,8§) = 0.
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Hence we seek to solve the following (n+l) system of equations

£(8,9)

1l
[}

(5.2.12)

1]
o

w(8,8)

The aboye factorizaticn of the original Jacohian matrix
is suggested by Griewank [34]. The advantage in using the above
factorization is that by an appropriate choice of null vectors,
the scalar function w(8,8) can be known explicitly and its gradient
can then be determined by taking one divided difference. Furthermore,
we do not have to do any Broyden updating (seeequation (5.2.9))
but can obtain quadratic convergence at the expense of two
evaluations of VG,GEIEJG) per step. In {34] Griewank approximates

the null vectors by putting

u(e,8) = (-q(e,8)" L7le,8), 1), (5.2.13)
and

Vo,8) T = (-6(8,8)T R71(8,8) , 1), (5.2.14)
so that

w(9,8) = u(s,8) 3,8 V¢e,8) (5.2.15)

Verification of (5.2.15):

u@e,8) Je,8) = [t 11 (L, 0 R , G

L
-

|O
€
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Therefore

ul 38,8V = [0,1] R , 6} [-RT'G

0, o) 1

[0,1] [%J
[N}

Lt

On using Newton's approximation on equation (5.2.11),

we obtain

Vw65 . v w(ets) | e w(g",8%)
v, £85,6%) v £(85.6%) | [ac" £(8°,69

(5.2.16)

The elements of Ve £(8,8) and Vd £(5,8) are known

and are as evaluated in above sections. However, the elements

of ve w(B,8) and Vc w(8,8) can be determined by differentiating

equation (5.2.15}.

Determination of the elements of Yo g w(e,d)

On differentiating equation (5.2.15) with respect to @ and o,

we obtain
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Yoo ©= Uy uHav + uT(_VE,qJ)V + uTJ[vE’c1r V)
We note
J(,8) V(e,6) = (L , 0} (R , G R
qT s 1 0 , w
= O’
but
To,o ¥ = -0 g 'L, 0]
and hence
(v, uh) J(8,8) V(s,6)
0,0 88 Ve
= [0, a'LD),01[0,0]"
= 0.
Similarly
u'(8,8) J(8,8) (7y , V(8,8))
= Q.
Therefore

T
Vo,s 08 =u (7 oV, £(8,0)) V

1l

[as]
-

n

W7, (7 o £(8,6))1.V
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We now put

AE,8) = 7, £(8,0)

and hence

v, o w(e,e) =d%gﬁ)(weAqLﬂ)VGL&

D
-

but

(Vg A(8,6)).V(8,0)

= g—- A8+ aV,d§)
u —
o=0
Finally equation (5.2.17) becomes
T d
Ve w(8,8) = u (8,8) =— A(B+av,d)
8,0 = — do = _
a=0
T d
=u (8,8) 35 (Ve’cﬁ(ﬂ’f oV, 8)
— a=0
Therefore
T d
V, w(8,8) =u (8,8) =— V_f(8 + aV,8)
g "= — da 8——
- - a=0
and
Vo ow(0,8) = u(e,8) L v £(8+av,s)
g =4 - ="/ da ‘og="— : =0

On taking one divided difference, we obtain

(5.2.17)

(5.2.18a)

(5.2.18b)
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Ve w(8,8) % u'[V, £(0+uV,6) - V,E(8,8)]/ GV I)

We note

u'(8,8) 7,£(0,8) = (0,)"

Therefore

Ve w(8,8) ¥ {uTJ(ng,cS)- - w@,&)enT}/(ullvu) (5.2.19)

where (w(8,4) enT) is the nth entry and p is a small parameter, say
8 Il multiplied by the square root of the machine precision.

VU w(8,48) now becomes

V_w(8,8) T ul{v_ £(erwV,8)- v £(8,8)}/ (HIVI)

(5.2.20)

However, from equation (5.2.6) Vg £(8,8) is given by

VoE=- 007 L ep(®) v [4,(0,)]

Therefore equation (5.2.20) becomes

]

v, 08,8) = - )t & exp(8) [exp(V)-11/ VI )

or

[Lr}

Vo w(e,d8) = - (AE)Z[uV+ %—(uV)2+ ...] exp(8). %g

)

- () V) & exp(e) + 00 (5.2.21)
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Summary of Andreas 2:

@) We start our computation from the point (go,do), with

(go,c) being close to the expected critical condition (gc(s.), o{&)).

(2) We then factorize the original Jacobian matrix

3(8,8) (=7,

£(8,68)) after a suitable row and column interchange.

Thus we have

J(s,8) = L{g,8) , O R(8,8) G(8,8)
e, L 1 0 . w(e,®)

(3) We now compute the null vectors u{8,6), V(6,8) and the
scalar function w(§,6), namely

u'(8,8) = (-q't71,1)

vie,8) = (-6'R7T,1)
and  w(8,8) = u (8,8)J(8,86)V(E,6)
{4) Using equation (5.2.19), we compute the elements of the

gradient of w(g,d8) with respect to the n-vector § as follows:
When we evaluate the original Jacobian matrix,

J = Ve_i';, at the neighbouring point (§+uV,8), we accumulate the

n-vec;or uT(Q,G)J(Qwv,cS] and then subtract w(f,d) from its last

component. On dividing by (u IV | }, we obtain the elements of

ve w(9,6) up to the term of O(uz).
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(5) We then evaluate the elements of £(8,8). The gradient of

w(6,8) with respect to the o parameter is determined by (5.2.21),

namely
2 dé
Vo8(8,8) = - (48)° - [exp(®)]. V)
up to the term of 0(u2).
(6) Using computer library facilities, but remembering to

exploit the factorization of J(8,8), we compute the correction

vectors (A8,Ac), namely we solve

VeTm , V. uw AD w

v.f v £ Ag f

& o= =
or

Ty u(e,s) , Tw [ag,801T = ~[w,£]"
{ L, O R, G A

5, 1) [0, w

(7) After updating 8, o and & , we repeat steps (2} to (6).

This process is repeated until a desired criterion of convergence

is met.
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5.3 Discussion on the Quasi-Newtonian Methods

Andreas 1:

This method was designed to determine the critical conditions
for the onset of thermal ignition for the problem defined in
Chapters Two and Four whilst avoiding the pitfalls encountered in
implementing the Direct Newton's iterative scheme (5.1.5]. However,
before we considered implementing Andreas 1 to determine the
solution to (5.1.1), we sought to solve a simple but well-known
thermal ignition problem such that the corresponding system of
finite-difference equations 21(2363 exhibited the same essential
characteristics as £(8,6), namely at the critical value of §,
Ve_fl(gja) becomes singular. Infact extensive computational work
w;g done for the one-dimensional self-heating slab problem defined
in equation (1.2.5). This problem is equivalent to (5.1.1) when

the slab surface is free of insulation, namely the case ¢ = 0.

Details of the Numerical Analysis for the Simple Slab Problem

On using the same numerical analysis as in sections 5.1
and 5.2, we derive the corresponding system of equations for
51(936). Infact these equations are equivalent to those for £(8,6)
with £(8,8) now replaced fi(gjd). Because of the simple boundary
conditions (1.2.5), we can determine the critical value of the
Frank-Kamenetskii parameter by either implementing (5.2.3) or (5.2.6).

Hence we have
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((Fplg o086} 285,897 = - (.50 (5.3.1)
or
{ K oK K K T T
(Fylg 8,60 (887,407)° = - (g;.£) (5.3.2)
where
[y T ‘
(51)2,5 = VQ g1 ’ ngl
(g T ~
or (Ei)ﬂjd = Vg-gl AN
v§£1 o Y

index 'k' refers to the kth iteration.

The vector function El(QJG) is given by

£,(8,8) = A8 +h%sexp () (5.3.3)

1

0.

where h is the uniform grid spacing. The coefficient matrix A

1)
is a tri-diagonal matrix of the form
- » - —I
Al 2 2
1 -2 1
1 -2 1
1 -2 1
L 1 -2 |
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The Jacobian matrix from (5.3.3) is

Vof; 1

1
[ee)
[ 3]

where Bj = -2 + h2 6exp(ej) j = 1(N) and N is the number of grid
points.

Before computing the solution to (5.3.1) or (5.3.2), we
seek to determine the elements of the (n+1) vector éjg?,oo) at the
starting point of the iteration, namely at the point (EP,GO). These
elements can be determined by numerical differentiation, but this is
both expensive and risky.  However, we note from analytical

considerations that the elements of Vegl(ﬁP,Uo) are of the form

Vo 8(8,0) = u(®) ¢ 8" (5.3.4)

where p(8) is a vector representing the exponential factors of § and t
is a positive integer such that v = 1,2,...,(n-1). Thus by
conveniently starting our computation at & = 0, we reduce the
computer effort required to cbtain the ﬁjgp,co) elements. Hence

we only need to compute the scalar Vagl(gP,co). We then use

the Broyden Method to update the A(6,0) values at each and subsequent

iteration step.
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Computational Results for Problem (1.2.5)

With grid mesh sizes 1/4, 1/8, 1/16 and 1/32, the results
of the computation are contained in Tables 5.1 and 5.2. We also note
that during the computation, the scheme apparently seeks out first the
"critical' value of & and then the value of the determinant of
Vegi(§36) drops rapidly with subsequent iterations. Infact, the
v;iue of determinant diminishes by a factor of lolzwithin a small
number of iteration steps whilst & remained unchanged up to eight
significant figures. The absclute value ofg,(8,6) can nevervanish
during iteration due to thé large magnitudes involved. However,we define
the critical value of & as the value of § at which the determinant of
Vefl(gJﬁ)diminishes rapidly whilst & remains unchanged. Infact
a;-this 'eritical' value of 6, the determinant did decrease in
magnitude by a factor of order 1012. As can be seen from

Tables 5.1 and 5.2, the computed 'critical' value of & compares

favourably with the analytical result, namely 5c = 0.878.

5.4 Conclusion

Although Andreas 1 predicted the critical value of & that
compares favourably with the analytical result, difficulties arose
when we considered the two-dimensional problem. These arose when we
sought to determine the elements of 519?,001 by numerical
differentiation. To avoid this difficulty we sought to solve (5.2.6)
by arbitrarily defining the elements of Veg(gP,UOJ. From the

computational work on the one-dimensional problem (1.2.5), we noted
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that the elements of A (6,0) were of the same order of magnitude as

g(8,0). Thus we put

v, £(8°,0%) = det[v, £(°,6)]

We had hoped that the Broyden Method would correct the
errors introduced in Aﬁg?,co) during subsequent iterations. However,
the computation oscillated about the critical §. To ensure convergence
of the iteration scheme it is necessary to consider line-search
methods, namely we insist that Hﬁﬁg)”z + ng2<K11, where y can be
chosen such that 1/y = gg

determinant at the starting point of iteration. Infact Griewank

= det{v, fﬁg?,oo)}, the value of the

[34] does suggest schemes that might ensure convergence of the
iterative scheme. Furthermore, we can still obtain approximate
critical values of & for various ¢ values by using graphical method
as in Section 5.1. We do not anticipate difficulties in determining
the critical § values since the computed & and g values are in the
neighbourhood of the critical region. The main disadvantage of
the graphical method is that we no longer have control of the
progress of the computation as in Section 5.1. However, the data
obtained will be sufficient to determine the critical § from a plot
of g versus §.

However, we hope that implementation of Andreas 2 will over-
cone the difficulties encountered in Andreas 1, since we no longer

need to compute the 1 (8,0) elements.
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Table 5.1: Values of the scaled determinant g = (g/go)
for various grid mesh sizes.
NUMBER OF h = 1/4 h = 1/8 h = 1/16 h = 1/32
ITERATIONS = g g g g
1 1.00 1.00 1.00 1.00
2 -0.66 -0.64 -0.64 -0.64
3 0.14 0.15 0.18 0.12
4 0.37 -0.11 0.74x107" 0.88x10"2
5 0.25x107} 0.10x10 7" -0.31x107 " -0.52x107°
6 0.23x1071 0.18x107>  -0.95x107% 0.65x1074
7 -0.29x10 71 ~0.23x107° -0.32x107° 0.10x107°
8 -0.72x10™° 0.73x107° 0.72x10™° ~0.25x107°
9 0.59x10° 0.90x10~% 0.25x10°° 0.87x10 12
10 0.75x107 7 ~0.87x10" 10 -0.39x107° 0.84x10" 13
11 -0.32x10" 12 0.85x10" 13
12 -0.57x10° 13
13 '
Table 5.2
NUMBER OF COMPUTED & VALUES
ITERATIONS h = 1/4 h=1/8 h = 1/16 h = 1/32
1 2.0000 2.0000 2.0000 2.0000
2 1.2150 1.2543 1.3927 0.9531
3 0.9127 0.8700 0.8033 0.8843
4 0,9683 0.8847 0.8807 0.87840
5 0.8663 0.8767 0.8780 0.87835
6 0.8717 0.8767 0.8780 0.87835
7 Q.8712 0.8767 0.8780 0,87835
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8

Graph of D vs.

Figure 5.1:
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APPENDIX

6.0 Coordinate Stretching in the x-direction

As discussed in Chapter Four, our choice of coordinate

stretching in the x-direction is dictated by two main considerations:

(1) We expect rapid temperature changes to occur within the
slab in the region k ~¢ and y ~1. Hence it is imperative to
have very small grid intervals in this region. Consequently,

we seek to determine the mapping function x = X(£) such that we
have uniform grid intervals in the region 0 < X < 2¢ or

0 < g< 2E, see Figure 4.3. This choice of the region with uniform
grid spacings allows the temperature to settle down before the

introduction of non-uniform grid intervals.

(1i) - We expect for large values of x, x >> e, that the

temperature with the slab varies slightly with changes in x. However,
significant changes occur in the y-direction. Consequently for
efficient use of computer time, we will use irregular grid intervals
in the region Z2e <x< X or 2E €£ <1, with the intervals largest

near x +~ X .
(2]

The difficulty in choosing a continuous mapping function
x = X(&) with the above constraints was resolved by choosing
separate mappings of x into Z-plane, namely

XI(g) 0 < x< 2¢ or 0= 2¢

X7 (8) 2¢ <x <X or 2E £ <1
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We then imposed constraints on XI(E) and XII(E) with @
view A% minimizing interpolation errors in the derivatives ficl)

and fi(z) {see Chapter Four). We therefore consider,

Region I: 0< £< 2

]

We put X (£) = £ (6.0.0)
E

Region II:

At x = 2¢ and £ = 2Z, we at least expect X; and X;; to
equal each other. However the nature of continuity of derivatives
is dictated by the degree of accuracy we require in the finite-
difference formulation of spatial derivatives of the temperature

within the slab. Accepting errors in spatial derivatives of the

OCAEZ), we insist that XI(E) and XII(E) have the following properties;
at £ = 2F

XII(223 = XI(ij = 2Ze

d_X - 4.X = <

P T (6.0
2 2

S R e Y

ag®  lg=2f ag® |e=2E

3 3

CHENS S s d—3X1| R (6.0.2)
ds =2 dE°  |g=2E
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We also impose a bound on £ such that 0 < § < 1,

with & = 1 being equivalent to x = X_ in the x-plane. Hence as

E =1, we put
XII(l) = X
(6.0.3)
d X
aE II g=1 = BO

Thus the parameter Bo can be used to control the size and
spread of grid intervals in the region § >2E. To satisfy the
conditions (6.1) to (6.3), we choose the mapping function XII(E)

such that

_ 2 3 4 5
X17(8) = ap + a8 + a8 + azfn + a8 + aglk

(6.0.4)
On substituting equations (6.0.0) and (6.0.4) into (6.0.1),
(6.0.2) and (6.0.3}, we obtain the following system of equations

in ai's (i=0(5))

ay + 2%a, + 432212 . sE3a3 + 16E'a, + 32§5a5 - 2¢
Eal + 4E2a2 + 12€3a3 + 32€4a4 + soEsaS =€
2€2a2 + 12?3a3 + 4854a4 + 16OESa5 =0
6T°a, + 48%'a, + 240E°a; = 0 (6.0.5)
a, + a1 + a2 + a3 + a + a = 0

a; + 2a2 + 3a3 + 4a4 + 5aS = 8
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On solving simultaneously the system of equations (6.5)

and after tedious algebra we have expressions for ai's (i=0 to 5},

namely
30.¥. @
_ 7°1 . 4 2 £3
a, = I1 - 5, ( e + 16¥, - 32087Y, + 6408 ¥)].X,,
S [l + —=— {V.¥_ + 40 -0, - 50 v Y (L s [,+8E2¢,-32E%% 1) 18
48, 1S 68 471°s 5, '8 4 3 0
L2 TR
1 16 . 4 72 73
+ ion [405-05 + —— I E + 20%g-4¥,+1608"Y,-640E ¥, ) ]e
_ 159 v _ _ ® _
17 2 1248y, a-(8T/3) - 2 A-GT] X,
2 3
5Y ¥ ¥
1 1'5°8
+ [1+ g(<1>6 - 18,
Sy, v, ¥
- L [@6 - 146 8 e
0
3
w —
N 480%° ¥o¥o . ﬁ . zogwlwsws]s
2 @2 e o 3 0
208y, ¥ ¥
_ %E [1- 1 3 6 ]€}
3 3
12082 v¥
_ 14 25
ag = —4)2— X, o+ ca [1-58¥,¥,¥. 18,
2
- 5o [1-58v Y%

3



s - 7471 L 1, 5(@4"}‘1‘?5]8
4 4@2¢>3 w 4'I>3 4 0
56 ¥ V¥
. _} [1+ j@l 6}6
4E9 3
3
3@7‘91 ‘PI‘PS ‘Pl‘l’s
2. = - { - X, - By * —
_ ¢, 40, 49.E
where:
4®2¢3
‘1’1 = s
8@1433-5@2@4
30
S M SR
16£¢3
$
¥ o= (- ——)
45¢3
4®32
¥y, = (1- ——) s
5 @2
86, 0
375
Y, = (1- ) »
6 @2
¢
4
¥ = [1' _'"") >
7 CI>3
.3 =2
Yo = 64T ¥, - 24EY, + ¥,
with

¢i fi=1 to 8) given by
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gil‘;es _ COEFFICIENTS OF THE POWERS OF £
i 0 2 4 5 6 7
1 : gl : g : : £ £
¢1 = 1 -9 24 20 -240 528 -512 192
¢2 = 1 -12 60 -160 240 -192 64 0
¢ = -1 6 -12 8 0 0 0 0
¢4 = -1 0 24 -64 48 0 0 0
b = 1 -3 0 4 0 0 0 0
¢6 = 1 -6 12 0 0 0 0 0
6, = 1 -4 4 0 0 0 0 0
¢8 = 1 -8 24 0 0 0 0 0
6.1 Broyden's Method
Consider the following system of equations
gv) = 0 g: R" » R" (6.1.0)
Using Newton's approximations, we have
M 3
lg(vts)]; = g; (0 + )} 557 g (Wsy (6.1.1)
i=1 3
. th .
where g; represents i~ equation of g. Therefore
gly+s) - g(v) = J s (6.1.2)
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J is an (m x n) matrix and s & (n x 1),

Let A be an approximation to J at v.

*

determine A at v + s. Hence we put

AEFRRRY!
and
Bp=vyp

Imposing the

and (6.1.2) give
*
A 5 =

glv +s) - glv)

= q, say
and hence
(3 + 8Ms =g
(a+vpls-g
Thus
v(p's) = a- 38
There fore
o a-3s
= (p_T_)

We now want to

Combining equations (6.1.5) and (6.1.3), we get

* (_C{_‘_A_E_) T

A T
RS

(6.1.3)

quasi-Newton condition, equation (6.1.3)

(6.1.4)

(6.1.5)
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we now put s = p and hence

(6.1.6)

substituting for q in (6.1.4) into (6.1.6), we obtain

* T
A=A+ lglv+s) - gly) -2s] =

T
58

In our particular case the value of M in equation (6.1.0) is

equal to unity, and hence

. T
A =2+ {glv+s)-glv)-2Ars) 2

T
35

We now put s = (AQ,AU]T. There fore

(6.1.7)

. . j i, T j
Ao o= aL o+ [P T | 88 ((a87) " ,a0")

i A )
ha 1ceas)) a0

where j refers to the jth iteration. Note the notation for 8 and o

is as was used in Chapter Five.
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