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POLARISED LIGHT IN CIRCULAR AND ELLIPTICAL OPTICAL FIBRES 

V. A. Handerek 

Abstract 

The potential application of single mode optical fibre to 

polarimetric sensing is investigated with special reference to 

Faraday Effect e . h . t . current sensors. Many 'single' mode fibres 

produced by CVD possess non-uniform birefringence which limits the 

accuracy of this sensing technique. Evidence is presented for the 

existence of length-dependent birefringence in double crucible drawn 

'single' mode fibre also. Such fibre must be regarded as having not 

one, but two, fundamental modes which propagate with orthogonal 

polarisations. The causes of coupling of energy between these 

polarisations are briefly considered after the need for two new 

types of optical fibre is identified; the first type should be 

inherently isotropic for transducer applications and the second 

should be capable of transmitting a particular, fixed polarisation 

between transducers and source/detector packages. 

One way of producing the second fibre type is to produce a highly 

birefringent fibre which suppresses coupling between the 

orthogonally polarised modes. Elliptically cored fibres can exhibit 

high birefringence due to core shape. Perturbation theory is used 

to show that the birefringence is proportional to the square of the 

index difference in these fibres. Comparison with the exact theory 

of elliptical dielectric waveguides supports the evidence for this 

relationship and also predicts the frequency dependence of the 

birefringence. 

Tests are described for beat length, radiation pattern and mode 

coupling in fibres with solid elliptical cores. Liquid cored 

elliptical fibres were chosen to test the accuracy of the 

theoretical birefringence predictions because of the freedom from 

stress in these guides. The production technique for short lengths 

of hollow elliptical bore Pyrex tube is described in detail. Tests 

are described for both the frequency and index difference 

dependences of the birefringence of liquid cored fibres made from 

these tubes. Results are shown to be in reasonable agreement with 

theory. 
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FOREWORD 

This thesis describes work which I carried out largely between 
October 1976 and February 1980. Since roughly mid-1979, the subject 
area of polarisation in 'single' and low moded fibres has enjoyed 
growing attention from an increasing number of research groups 
around the world. This growth of interest in the subject continues 
even now and, for completeness, I have endeavoured to integrate into 
this thesis the most important recent discoveries where these are 
directly relevant to subjects I have treated. As each chapter is 
relatively self-contained, references to each chapter are grouped at 
the end of that chapter. 

It may be worth emphasising which are the more original parts of 
this thesis. Most importantly the idea itself for the polarisation 
maintaining elliptically cored fibre appeared to begin with as an 
attempt to explain some of my observations on double crucible drawn 
fibre. The measurements themselves are, to my knowledge, the only 
birefringence measurements which have been made on samples of this 
type of fibre. The observations of elliptical radiation patterns 
from elliptically cored fibre appearing in Chapter IV are the first 
example of their type ever made. The relationship of inverse 
proportionality between the ellipticity and peak normalised 
birefringence of elliptically cored fibres has not, as far as I 
know, been noticed or published before. Although it has only 
limited application, the production of controlled ellipticity single 
mode size tubes has not been previously achieved. The existence of 
these tubes made possible the production in turn of reliably stress 
free elliptical core fibres, and in that very important sense the 
optical tests described in Chapter VI are unique. 

I cannot end this foreword without paying extensive tribute to the 
many people who helped me along the path to the production of this 
thesis. Professor Eric Laithwaite inspired and guided my very first 
steps in research work, while Professor John Brown's personal help 
brought me into optical fibres. Janet O'Loughlin of Chelsea College 
was instrumental in assisting my search for refractive index 
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liquids. For countless lively technical discussions, practical help 
and moral support I owe a great debt to fellow students Bimal Nayar, 
Noori Nourshagh, Sumaia Al-Shukri, Sourin Bose and Nick Whitehead. 
Bimal Nayar was especially helpful in providing me with major 
subroutines for the calculations of Chapter IV. 

There is no way to express the debt I owe to Dr. John Cozens and 
Dick Dyott. I am very grateful for their combined support, from 
which I learned so very much. They also deserve very special thanks 
for patiently putting up with my sometimes highly eccentric ways. 

Enid Mattison's battle with my manuscript under arduous conditions 
earns my deep gratitude. My own wife Faith's tireless effort in 
drawing the figures and being so understanding of my late nights is 
far better than I deserve. 
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CHAPTER I 

COMMUNICATION AND MEASUREMENT BY OPTICAL FIBRES 

CARRYING POLARISED LIGHT 

This chapter begins by surveying the possible uses of guided, 
polarised light in optical communication and instrumentation. A 
detailed study is then made of the use of the Faraday Effect EHT 
current monitor. From this study, conclusions are drawn regarding the 
utility of particular types of optical fibre in polarisation sensitive 
applications. Finally, the usefulness of such fibres is illustrated 
by a proposal for their employment in a new design for a Faraday 
monitor. 

1.1. The importance of polarised light to optical communication 

Existing optical fibres possess some unique advantages for the 
transmission of information. Their immunity to electrical 
interference and lack of stray field make them prime candidates for 
secure communication systems. In addition, the optical link provides 
complete electrical isolation between stations and the light output 
from fibres is unlikely to drastically interfere with the fibre's 
immediate surroundings. This makes the optical fibre useful for 
taking signals into and out of potentially hazardous environments. 

Some of these considerations can alone dictate the use of optical 
fibres for communication as, for example, in aircraft, military 
vehicles and chemical works. However, suitably designed fibres 
possess yet another advantage over electrical cable communication. 
This lies in their potential bandwidth. Early fibres of the step 
index multimode variety could not compete with good coaxial cable 
links for transmission distances measured in kilometres. But today, 
with graded index fibre and semiconductor laser light sources, optical 
links with performance comparable to coaxial systems are operating 
commercially. 
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The situation is amenable to further development, since advances can 
be expected in both sources and fibres, but present commercial aims 
seem to lie at systems operating at 140 Mbits per second information 
rate with repeater spacings of up to 9 km"'". The bandwidth limit is 
set at present by the waveguide dispersion characteristics. Typically 
1 ns/km pulse broadening is attainable with graded index fibre, and 
this in turn is limited by the accuracy with which the refractive 

28 index of the core can be graded 

To gain a significant improvement in bandwidth, it is very likely that 
single mode fibre will be used. This is partly because of the widely 
expected difficulty in improving graded index fibre manufacturing 
techniques; the use of single mode fibre may well provide a very 
dramatic improvement in performance with less technical development 

2 
effort. It has been estimated that single mode guides could offer 
an improvement of between ten and a hundred times the information rate 
possible with current fibre optic systems. A further advantage of 
single mode communication is that it would facilitate totally optical 
methods of signal processing on 'integrated optics' chips by improving 
the coupling of light from fibres onto these chips, which themselves 
normally operate in the single mode condition. 

It is in the latter respect that polarisation of light becomes 
important. Since integrated optics devices are of rectangular design 
and function correctly for only one polarisation, an unpolarised light 
input would need to be polarised by filtering before launching, thus 
suffering a 3 dB attenuation on coupling into an integrated optics 
chip. Since present losses for fibre optic cables are about 
0.5 dB/km, this would necessitate a considerable cut in repeater 
station spacing in cases where loss is the limiting factor in the 
system. 

Another application of optical fibres where polarisation behaviour is 
a limiting factor is the possible use of fibres themselves as light 

20 
sources. Optical fibre Raman oscillators have been built and have 
also been proposed as aids in assessment of materials and devices for 
integrated optics. In addition, they are useful tools for 
investigation of the fibres themselves. However, unless 
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polarisation can be maintained over long- lengths in such fibres, the 
optical gain can be cut by as much as 3 dB, thus raising the 
oscillation threshold. This occurs because the pumping and stimulated 
fields should have the same polarisation for efficient amplification 

33 of the stimulated field 

1.2 Polarisation sensitive applications of optical fibres to 
instrumentation 

Quite apart from telecommunications, there is another field of 
application for optical fibres in the world of measurement. Optical 
fibres have already extended optical observation of events in 
previously inaccessible areas by providing remote imaging and recently 

34 
by facilitating use of Doppler techniques . If it were possible to 
preserve a single phase velocity of light in a guide, the range of 
remote measurements could be extended to include remote interferometry 
and polarimetry. Unfortunately, the phase velocity of light in 
existing guides is polarisation sensitive, both because of the 
inherent characteristics of practical fibres and because of the 
influences which affect them in practical applications. Both of these 
aspects will be examined more fully in later chapters. 

Despite these problems, several attempts to extend the range of fibre 
optic measurements to interferometry have already been made. The case 
where polarisation is not changing with time (but may change with 
position along the fibre) is simplest and has been used to produce a 

3 4 fibre ring interferometer or 'laser gyroscope' ' and also a strain 
gauge and an interferometric acoustic sensor"*. Work is also in 

35 
progress to develop techniques for remote holography , but all 
these instruments are reported to be severely affected by vibrations 
and general movement of the fibre used, these influences causing 
variations in the output of the devices. 

In the medical field, it is possible that polarisation preserving 
fibres might be useful as an aid for the diagnosis of, for instance, 
arthritis in joints. It has been proposed that such fibres might be 
used in vivo for reflection polarimetry of the small birefringent 
crystals which are a symptom of the disease. 
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For reasons which will be dealt with in detail later, the problems of 
using interferometric and polarisation sensitive techniques become far 
worse when the polarisation state at a point in the guide is not 
static. Considerable attention has recently been given to the 
investigation of applications where this is the case. In particular, 
the original aim of this project was to investigate the feasibility of 
using optical fibres as the transmission and sensor medium for a 
current-measuring system employing the Faraday magneto-optic effect. 

Such a device poses many problems of manufacture, but also offers 
great potential advantages when compared with existing current 
measurement systems in electrical power distribution networks. The 
following sections describe the reasons for attempting to build a 
Faraday Effect current monitor and identify the problems associated 
with the construction and operation of these instruments. The 
application is explored here in detail as a case study because it 
involves most of the major advantages and disadvantages connected with 
using optical fibres to guide polarised light in a real application. 

1.3 Case Study: Faraday Effect measurement of electric current 

1.3.1 EHT current transformers 

At present, current measurement in EHT power distribution systems is 
made by the use of current transformers. A typical specification for 
such a transformer is shown below: 

CONSTRUCTION: Iron cored single phase transformer 

OPERATING VOLTAGES: (i) Primary coil: at system operating 
voltage. Anything from 0 - 1500 kV. 

(ii) Secondary coil: at or near ground 
potential. 
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CURRENT RATING: Short term rating is set by inter-conductor 
force during maximum fault currents. On a 
large system, this can be > 150 kA and is 
often 80 - 100 x rated continuous current. 

ACCURACY: Amplitude error ± 0.3 - 0.6% for metering 
from 10% up to 120% continuous rated current. 
Phase error < 20° for same range. 
± 10% for protection at maximum fault levels. 

TEMPERATURE RANGE: In Great Britain -25°C to +45° C but in foreign 
lands much wider variations must be 
accommodated. For example, Canadian Standards 
require operation between -55°C and +55° C. 

FREQUENCY RESPONSE: For simple metering 1 kHz is adequate. For 
protection and fault diagnostics d.c. to 10 MHz 
is desirable. The output should also include 
an indication of current direction. 

OUTPUT: There should be a capability for direct driving 

of protection equipment. 

(see also reference 22 for British Standard requirements) 

1.3.2 Disadvantages of conventional current transformers 

Unfortunately, these transformers have several defects which degrade 
their accuracy and reduce their usefulness as part of a measurement 
and protection system. First, the soft-iron cores suffer from 
hysteresis and saturation, both of which make for non-linearity in the 
amplitude response to input current. Second, the magnetisation 
current taken by the device limits the accuracy of the output for 
small currents in the primary. This second fault is partly due to the 
fact that current transformers must be very conservatively designed in 
order to withstand fault conditions where currents and voltages may 
rise orders of magnitude above normal operating levels. During such 
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faults, current transformers may also produce misleading outputs due 
to their limited frequency response. Some types of fault will produce 
large but slowly varying currents lasting several seconds which can 
only produce small changes in the output due to their extremely low 
frequency. These changes may not be detectable when superimposed on a 
normal output waveform. At the high frequency end, the current 
transformer's response is limited by winding capacitance to a few 
kilohertz. This is totally inadequate for efficient protection 
against lightning strikes, for instance, where massive currents build 
up in microseconds. 

Current transformers are necessarily large because saturation problems 
must be minimised. In addition, heavy insulation is needed to isolate 
the input and output coils and these two requirements combine to make 
EHT current transformers very large indeed. As a result, present 
devices are expensive to build and transport, require much costly 
substation ground space and are physically difficult to handle. These 
problems all increase sharply as line voltage is raised, and make the 
use of current transformers in 1 MV distribution systems almost 
impossible to contemplate. 

1.3.3 Basic considerations in applying new solutions to the 
problem of EHT current measurement 

The disadvantages of current transformers described in the preceding 
section have stimulated research into the use of radical alternatives 
in EHT current measurement. In order to avoid the necessity for large 
amounts of insulation, techniques not involving earthed conductors 
close to EHT lines are attractive. This then either requires that any 
conductors used in the sensor are continuously at line potential or 
that a totally passive sensor not employing conductors be used. 
Sensors of the former type are being developed, but are unreliable and 
suffer from the additional disadvantage that power must be supplied to 
the sensor head. 
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Sensors of the passive type are attractive for their simplicity and 
attendant long term reliability. To avoid electrical contact with 
such a sensor, the most obvious possibility is the use of radiation 
either generated spontaneously by the sensor or supplied from and 
reflected back to a ground station. The Faraday Effect, involving the 
action of magnetic fields on electro-magnetic waves in a material, 
provides an elegant method of current measurement by sensing the 
magnetic field produced by the current. 

1.3.4 The Faraday Effect 

When linearly polarised light travels through a material and there is 
a component of a magnetic field parallel to the path of the light, the 
polarisation remains linear but rotates at a rate which is linearly 
dependent on the strength of the field and also dependent on the 
nature of the material. This is the Faraday Effect. The total 
rotation of polarisation, 0, of a monochromatic beam of light 
travelling for a distance, i t , in a material subject to a parallel 
magnetic field, H, is therefore: 

0 = V&H 

where V is a constant depending on the material, the wavelength of the 
light and possibly also other variables such as temperature, pressure, 
etc. V is the "Verdet constant" of the material under the conditions 
quoted. Since it is easier to detect large polarisation rotations 
rather than small ones, for engineering applications we obviously 
require materials with a high Verdet constant and we also try to 
maximise the interaction length, &. 

1.3.5 Choice of sensor material 

One of the first choices in implementing such a device is that of 
wavelength for the interrogating beam. This choice is influenced by 
the environmental conditions that the device will normally be 
subjected to, also by the availability of sensing materials with 
desirable qualities at the frequency concerned and also of suitable 
sources and detectors for the wavelength used. There have been 
attempts to use the Faraday Effect in this connection at microwave, 
infra-red and optical wavelengths. An important factor in each case 
was the choice of the sensor material. 
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Yttrium iron garnet (YIG) has a high Verdet constant at both infra-red 
and microwave frequencies, and both parts of the spectrum have been 

6 7 8 18 
used to produce experimental Faraday Effect devices ' ' ' . The 
main problems with these devices were their liability to 
non-linearities caused by saturation and domain structure 
inhomogeneities in the material. Furthermore, the susceptibility of 
YIG is temperature dependent, and so current monitors using YIG must 
have temperature compensation built into them*'. 

In order to avoid the problems with YIG and similar materials, 
researchers have looked to materials with the weakest magnetic 
properties, the diamagnetics, for a solution; these do not suffer from 
domain structure inhomogeneities or temperature dependence of the 
Verdet constant. Since the diamagnetics have low susceptibility, the 
Faraday Effect in these materials is also very small, typically 
10 ^rad/cm/G. However, optical•glass with high transparency can be 
doped with diamagnetic material without increasing its absorption to 
unacceptable levels, and so the smaller Faraday rotation per unit 
length in the material can be countered by providing a much longer 
interaction length in the glass than is possible with other materials. 

1.3.6 Review of Faraday Effect current monitors using bulk 
glass sensors 

By far the largest amount of work on EHT current measurement by the 

Faraday Effect has been carried out using bulk glass as the sensor 
material. In general, a block of heavy lead glass is supported inside 
an insulating ceramic protective shield close to an EHT line. The 
shield also serves to protect the light path from obstruction by 
smoke, fog, rain, etc. and the light source and detectors with 
associated electronic processing circuitry are situated in a metal 
cabinet at earth potential and beneath the ceramic bushing. A typical 

9 
design is shown below . 



- 21 -

Ultra-high voltage 
bus wire 

Faraday rotator 

Supporting insulator 

Photodetector 
package 

Laser package 

Electronic circuits 

Fig. 1 Proposed laser current transformer 

The detailed description of each practical scheme can be seen in 
references 9 to 20 and will not be discussed here. However, the 
general conclusions arising from the body of work done are worth 
attention. 

Not unexpectedly, a major problem with Faraday Effect instruments is 
the difficulty in accommodating the large dynamic range necessary. 
Since the Faraday rotation in glass is very small even at moderate 
currents, the photodetector noise limits the smallest detectable 
current in most systems to ten amps or so. The high limit on range is 
set by non-linearity in the detector system for rotations greater than 
a few degrees, normally corresponding to about a thousand amps. 

In order to solve the dynamic range problem, several techniques have 
been tried. Systems employing a second Faraday rotator governed by an 
auxiliary coil fed with a current to keep the polarisation relatively 
static have been built. They are complex and unreliable^' 
and current work is aimed at simulating a rotator by means of the 
Pockels Effect in conjunction with suitable retarders. A better 
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solution seems to be to linearise the output for large rotations by 
using sophisticated electronic processing techniques and then to 
produce the large rotations by increasing the interaction length with 
the interrogating beam bouncing back and forth several times in the 
sensor before departing towards the ground station^. 

With such a large path length (> 1 m) and number of reflections 
inside the glass sensor block (20 reflections), the instrument then 
becomes limited by vibration causing the beam to wander off the 
detector and also limited by the natural birefringence of the glass 
itself. Although this second problem can be ameliorated somewhat by a 
compensation technique^, the problem of stress induced 
birefringence due to mounting and temperature gradient effects is not 
easily soluble. The manner in which birefringence interacts with 
Faraday Effect will be discussed in more detail later. In order to 
avoid the vibration problems, sophisticated mechanical design is 
required and periodic adjustment would also be necessary to compensate 
for slow beam movements due to creep. 

One final disadvantage of bulk glass sensors is that they are also 
prone to inaccuracy due to stray fields from neighbouring conductors. 
This problem has been approached by using two similar glass blocks 
near the wanted conductor so that rotations add for that conductor but 
subtract for all o t h e r s ^ ' T h e success of this technique depends 
on careful matching of the optical paths in the two blocks and slow 
variation of stray field across the apparatus. In substation 
environments, the last requirement is rarely likely to be closely met. 

The foregoing assessment of bulk glass Faraday Effect devices has been 
only cursory and was designed to pick out the main faults of these 
instruments. Some are suitable as laboratory or portable instruments 
for current measurement under unusual conditions, in fact, but none 
has been adopted for long term use on any large scale power system. 
For a recent comparison of a wide selection of devices including more 
detail than given here, see reference 21. 
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1.3.7 Early attempts to employ optical fibres in current 
measurement equipment 

Faraday Effect devices have also incorporated optical fibres"^' 
purely to protect light from obstructions between the ground station 
and sensor head, but due to the depolarising effect of the fibres used 
it was necessary to polarise and analyse the light at the head 
itself. The consequent loss of signal power and lack of easy 
maintenance (due to inaccessibility of the optical components) made 
the devices unacceptable for service. Despite this, a new proposal 

32 running along these lines has recently been made 

An attempt to use an optical fibre itself as a Faraday sensor in 1972 
failed totally because a multimode fibre with extreme depolarising 

25 
characteristics was used . The same authors also attempted to use 
graded index fibre as a transmission and sensing medium, but abandoned 
the attempt due to gross polarisation disturbances caused by fibre 
bending. The mechanisms behind these effects will be discussed in 
later chapters. 

Another effect which limits the performance of optical fibres as 
Faraday Effect sensors has been investigated recently. This is the 
effect of strong birefringence in fibres which partially destroys 
linear polarisation. Certain types of fibres, specifically graded 
index and single mode types, will preserve a linear input polarisation 
under ideal conditions (ie. straight fibre; no external stress) and 
for specific angles of E-field. However, for all other angles of 
E-field, these fibres effectively split the polarisation up into two 
orthogonally polarised modes which then propagate down the fibre with 
different phase velocities. If the difference in phase velocities is 
large enough to produce a phase shift per unit length much greater 
than the polarisation rotation - also measured in angular units per 
length - then the result is that the Faraday Effect loses its 
proportionality to field interaction length and is also severely 

# , 26 reduced m magnitude 
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1.3.8 Recent applications of optical fibres as Faraday sensors 

As will be explained in the next chapter, the problem of fibre 
birefringence has been tackled by improved manufacturing techniques 

27 36 
and recent publications ' describe laboratory models of Faraday 
sensors using improved fibres. It has been demonstrated that 
birefringence had been sufficiently reduced to produce an instrument 

27 
workable within a generating station environment but it was also 
clear that the problems of vibration and fibre bending still need 
attention before a generally applicable field instrument of this type 
can be made. 

1.4 Conclusions from the case study: The need for two types of 
polarisation-transmitting fibre 

The case study produced above demonstrates several interesting 
conclusions. 

First, the principal attraction in using optical fibres for this 
application is that they provide a convenient method of constraining a 
beam of light to travel over a very extended interaction path where an 
optical effect occurs. They do so wthout involving problems of 
alignment, instability and size of the active part of the device. 
These advantages are common to the laser gyroscope and Raman 
oscillator. In this particular instance, there is the further 
consequent advantage that the fibre can be wrapped closely around a 
particular conductor in the form of a coil, thus producing the best 
chance that stray fields will cancel out within the sensor. 

Second, transmission through fibres protects the light from 
attenuation by foreign bodies (smoke, rain, dust, animals, vegetation, 
etc.) in the optical system. This obviously prevents premature ageing 
and catastrophic failures of the device which might otherwise occur. 

Third, the use of polarisation transmitting fibres allows a hitherto 
unparallelled flexibility in the situation of source, detector and 
processing electronics. Since these parts may require periodic 
attention, freedom to place them in safe areas where work may be done 
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without interrupting operation of the system may be a significant 
advantage. (Naturally, it is the safety inherent in using- a 
dielectric path to communicate with an EHT environment which makes 
this possible at all.) 

Fourth, the small size and weight of a fibre device leads us to expect 
that it might become less costly in terms of labour and materials than 
its conventional counterpart. (Incidentally, the mechanical 
simplicity of a fibre device is also strongly marked but in a 
different way in the fibre gyroscope, where the absence of moving 
parts leads to better potential reliability as well as potential 
accuracy.) 

Finally, it has become clear that the main drawback to the use of even 
top quality single mode fibre for the devices mentioned is the 
sensitivity of polarisation within the fibre to external mechanical 
influences. In particular, it seems very likely that no reliable 
optical fibre gyroscope can be produced unless a fibre much less 
sensitive to external influence is developed. 

Ideally, we require a fibre which will faithfully reproduce any input 
polarisation state at its output. However, it will be shown later 
that this requirement is incompatible with the further condition that 
the output polarisation state should be robust to externally imposed 
influences on polarisation. We must forego trying to satisfy both 
conditions in the same fibre. 

Specifically then, two types of fibre are needed. The first type 
should be such that all polarisation perturbing tendencies of the 
fibre are eliminated. This would be for use in situations where we 
want to transmit polarisation in any form which might itself be 
varying with time, such as in the sensing section of a Faraday Effect 
device. Care would obviously have to be taken, when using such a 
fibre, to eliminate all unwanted sources of polarisation distortion, 
both internal and external to the fibre. 
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The second type of fibre needed is one which should be capable of 
transmitting a single polarisation state only, for example linear 
polarisation which is not affected by any external influences. If 
such a fibre is used in conjunction with a properly aligned 
polarisation splitter at its output, the function of this fibre would 
be to act as a remote polarising beamsplitter acting at the input end 
of the fibre. 

1.5 Proposal for a workable optical fibre Faraday Effect current 
monitor 

Figure 2 shows a schematic arrangement for a Faraday Effect current 
monitor employing both types of fibres described above. 

Linearly polarised light is fed into a fibre designed to hold this 
polarisation in spite of bends and vibrations. The polarisation is 
therefore linear at the point where it is coupled into the sensor 
head. The sensor itself should be made from isotropic fibre wound 
into a coil around the busbar in such a way as to minimise 

30 
bend-induced disturbance of polarisation . In this way, the 
polarisation remains linear at the end of the sensing section, but is 
rotated by the Faraday Effect with respect to the original 
orientation. At the input end of the downward guiding fibre, the 
polarisation is resolved into two linear, orthogonal components which 
are then guided independently down to the ground station and are 
measured separately by photodetectors placed at the outputs of a 
polarising beamsplitter orientated so as to split the two components 
apart. 

The use of a completely sealed optical path above ground level 
prevents obstruction of the light beam and obviates any necessity for 
cleaning of optical surfaces at or near the sensor head. Measurement 
of two orthogonally polarised components affords a simple method of 
eliminating noise due to fluctuations in source intensity or system 

. 31 attenuation 
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High quality isotropic single 

Fig. 2 Schematic arrangement of Faraday Effect current monitor 
incorporating polarisation holding fibres 
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CHAPTER II 

PROPAGATION OF LIGHT IN IDEAL AND NON-IDEAL FIBRES 

In chapter I the various problems involved in preserving the 
polarisation of light in optical fibres were outlined without 
explanation. In this chapter we shall consider the polarisation 
performance of various types of optical fibre by means of a review of 
the relevant propagation theory. At first, we shall restrict our 
attention to benign environments where ideal fibres are not strongly 
affected by their surroundings and then we shall extend our treatment 
to examine a way in which imperfections may be incorporated into our 
model to bring it closer to reality. 

2.1 The failure of geometrical optics to explain propagation of 
polarised light in optical fibres 

We begin the chapter by considering the applicability of geometrical 
optics to the function of propagation characteristics in fibres. In 
general, an optical waveguide is formed by any structure which 
contains an area of a certain refractive index completely surrounded 
by other regions of lower index. Large structures of this sort can be 
understood as guiding light by total internal reflection. The 
structure may be almost any shape, which normally does not change 
along the guide. Two common types are the rectangle and the circle. 
These are depicted in figure 2.1, where the central and surrounding 
materials are shown as having refractive indices, n^ and n^ 
respectively. 

AIR 

Rectangular guide Circular guide 

Fig. 2.1 Two common shapes of optical waveguide 
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Typically, optical fibres are constructed with circular cross 
section. The central region is called the core and the surrounding 
material the cladding. 

If it were possible to gain an intuitive understanding of the 
polarisation behaviour of light in optical fibres using the familiar 
principles of ray optics and plane wave behaviour, this would 
obviously be an attractive starting point for our study. Such an 
approach works acceptably for the slab waveguide^", yielding 
equations for the guided modes of the structure. There has been an 

2 
attempt to extend this approach to circular guides , and it is 
indeed possible to produce equations giving approximately the modes of 
the structure. However, the published analysis neglects the effect of 
polarisation, as this would have considerably complicated the 
treatment. In addition, the physical significance of rays is much 
reduced in the fibre case because of the curvature of the boundary, 
which causes any imaginable plane wave of finite size to converge 
after reflection and also because the ray approach ignores the 
penetration of optical energy into the cladding. These effects 
significantly modify the behaviour of the guide. 

2.2 Electro-magnetic theory of circular optical fibres 

The inadequacies of the simpler methods of analysing optical fibres 
recommend us to use a more general and fundamental study of their 
characteristics. This is supplied by electro-magnetic theory. The 
general treatment of electro-magnetic wave propagation in optical 

1 3 . 
fibres is well documented elsewhere ' and will only be given here 
in sufficient detail for a general appreciation of the method and the 
important results of the analysis. 

As in figure 2.1, we assume a circular cylindrical region of 
refractive index, n^, having radius, a, surrounded by another medium 
of lower refractive index, n^> extending to infinity. Both media 
are assumed to be lossless and non-magnetic, therefore they have 
purely real values of dielectric constant, e^ and anc* 
magnetic permeability p equal to that of a vacuum. We assume a 
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system of cylindrical polar co-ordinates, r, <}> and z with the z axis 
lined up with the axis of the guide, as this appears to be most 
convenient for analysis. In this situation, where we have dielectric 
material inhomogenous in cross-section but independent of z, applying 
Maxwell's equations leads to the wave equation for both the E and 
H components of the waveguide fields: z 

62f 1 <5f ^ 1 62f A 2 * n o i + — — + + K f = 0 2.1 
Sr2 r 6r r 2 5<J>2 

Here f represents either E^ or H^. No other field components are 
needed because in this situation, the transverse field components can 
be expressed totally in terms of the z components. The wave equation 
applies to the fields separately inside and outside the core and this 
leads to the necessity for two sets of solutions, one for the core and 
one for the cladding, which can be chosen by remembering the physical 
considerations relevant to the problem. 

We search for solutions to the equations by using the method of normal 
modes, building up a general solution from linear superpositions of 
harmonic oscillations. Each such possible basic oscillation in the 
system is called a 'mode' of the system, and can be defined as 'an 
eigensolution of Maxwell's equations belonging to a particular 
eigenvalue, and satisfying all the boundary conditions of the 

4 ' 

problem ' . 

We apply a trial solution of this form: 

i (cot - 0z 
E = A F(r) eiv* z e 2.2 

Here, A is an amplitude factor and F(r) contains the radial variation 
of the field. V is a constant with any integer value and governs 
the azimuthal variation of the field. The term in square brackets 
expresses the time and z dependences of the field. The angular 
frequency 0) and the propagation constant 0 respectively 
characterise these two dependences. Normally, for convenience in 
writing, these dependences are not stated explicitly since they occur 
throughout the subsequent analysis and can be assumed. We follow this 
practice below. Substitution of the trial solution into the wave 
equation yields: 
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— + + | K 2 - — If = 0 
dr2 r dr 

2.3 

This is Bessel's equation and its solutions are the well known 
cylinder functions. We have already noted that our situation has two 
separate sets of solutions, one for the core and the other for the 
cladding, and we now choose the appropriate cylinder functions which 
represent a guided mode. We require that the field should not be 
infinite anywhere inside the core and that it should be localised in 
the cladding so as to be near the co re and not travelling in the 
transverse direction. These considerations lead us to choose the 
Bessel J function for the field in the core as this remains 
finite for zero argument. The Hankel H ^ ^ function with 
imaginary argument is used to represent guided fields outside the core 
as this function falls to zero at infinity. We have within the core: 

E = AJ (Kr) elv<,) z v 
and in the cladding 2.4 

E = BH (1)(iYr)-eiv* 

2 2 2 A and "B are amplitude factors and ic = k^ - 8 

? 2 ? and y = 8 ~ k^ 

(with k^ and k^ being the bulk propagation constants for the core 
and cladding respectively). The expressions for K and y follow 
from the derivation of the wave equation. Exactly similar equations 
for the H fields yield two more amplitude factors. We now know the 
shapes of the field distributions, but in order for the field to be 
completely specified, we need to know 8* We can find 8 by 
applying the boundary conditions at the core/cladding interface. 
These specify that magnetic field components tangential to the 
boundary must each be respectively continuous across this boundary. 
Consequently, for any guided mode this imposes a relation between the 
two sets of solutions. Since these are two tangential E-field 
components and two H-field components, we now have four equations 
relating these solutions. For non-trivial solutions, the determinant 
of this system of four homogeneous equations must be zero. This 
yields the eigenvalue equation: 
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X 

ay2 J^ (<a) 

J^ (ica) 

ay2 JT (<a) i ^ 

J (ica) 
v 

H (1)'(iya) + 1 y a v 
(iya) 

. H (1)T(iya) + lya v 
H v

( 1 ) (iya) 

- 1 
2.5 

This is a transcendental equation in B which can only be solved by 
numerical methods. We can considerably simplify the solution by 
remembering that usually for optical fibres - £ This 
allows us to treat e /e as being unity but otherwise 

1 2 retaining and a s distinguishable values. 

With this approximation, we find two simpler eigenvalue equations 

Jv±l ( K a ) 

KaJ^ (ica) 

Hv±r
(iya) 

iya H ^ ^ i y a ) 
2.6 

These equations describe two sets of modes which are labelled HE ^ vy 
(minus sign) and EH (plus sign). The index v indicates the 
number of cycles of azimuthal variation in the fields. This is 
already explicit in the trial solution 2.5. The second suffix y 
counts the number of radial nodes in the pattern, ignoring any at the 
fibre axis. Both types of modes generally have six field components, 
except for those where V = 0. However, there is a physical 
difference between the types; the peaks in the energy distribution for 
the EH modes lie further from the centre of the guide than for HE 
modes of the same V and y. In the special case where V = 0, we 
can classify the modes by their field configurations because we find 
that this case embraces two types of modes, one with no z-component 
for the E-field and the other with a z-directed H-field. These modes 
are classified as TE and TM respectively to denote that the electric 
and magnetic fields are respectively purely transverse. 

We can further simplify the equations by making use of the recurrence 
relations for Bessel Functions and show that both equations reduce to 
exactly the same form when v is replaced with (v1 + 1) in the HE 
case and with (v' - 1) in the EH-case. Thus, to the degree of 
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approximation inherent in assuming - e^) w e find that 
H E ^ modes propagate with the same phase velocity as 
E H ^ ^ modes. The approximation we have made is equivalent 
to ignoring the z components of the modal fields. In practice these 
are smaller than the transverse components by a factor of order 
(e^ - e2)/e, typically about 0.01. 

Before we can consider the implications of this analysis for 
polarisation behaviour, we note that for each mode there is a 
frequency below which that mode will not propagate. The mode is said 
to be 'cut off' in this eventuality. The cut-off frequency of each 
mode occurs when 8 = n^ kQ, that is when y = 0. In order to 
study more easily the cut-off conditions, the eigenvalue equation 2.5 
is re-expressed: 

El J 
1 V , (ica) 

: ica J ( a) 
2 v 

£ J (Ka) 
1 V+1 ' 

£ KaJ (Ka) 
2 v 

v H,(1)(iya) 
!ZJ 

iya H^1}(iya) 

_ Hff (iya) 

J (Ka) H ( 1 ) (iya) v-H v+i VTl v '1 
Ka J^(Ka) iya H ^ (iya) 

iya H<1}(iya) 

J (Ka) 

Ka J (Ka) v 

H<» (xya) -
: i 

iya H^^iya) 

= 0 2.7 
We then make use of the approximate forms for the Bessel and Hankel 
functions with small arguments to simplify this equation and thereby 
give us the following simple expressions: 

For V = 0 J (Ka) = 0 o for TE, TM modes 

V = 1 (Ka) = 0 for H E ^ mode 

V > 1 J^ (Ka) = 0 for EH modes and 
HE, modes 

V > 2 for HE modes 
VU 

2.8 

We see that the H E ^ mode has no cut-off and that the first modes 
with a cut-off are those at the first zero of J (Ka). These are o 
the TE Q 1 and TM Q 1 modes. 
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We see from the above that it is the value of Ka which governs the 
cut-off wavelength for all modes of the fibre. Unfortunately, this 
contains the value of 0 and would involve much calculation if used 
in this form when designing fibres to have only a single mode. We 
noted earlier that y = 0 at cut-off and we can make use of this to 
arrive at a simpler way of calculating cut-off conditions for fibres. 

2 2 

If we add (ya) to (Ka) we can eliminate the actual 0 from 

our calculations and work simply in terms of the core diameter and 
index difference of the fibre. Thus: 

(Ka)
2

 + (ya)
2

 = (k2 - k2) a
2 

= (n? - n 2Jk 2a 2 2.9 1 I o 

The square root of this sum is an easily calculated quantity which is 
conventionally given the symbol V and is called the 'normalised 
frequency1 of the fibre. Thus: 

V = 2iTa /nz - n 4 2.10 
— 'I 2 
o 

2.3 Representation of propagation behaviour; the (JJ-0 diagram 

The algebraic treatment of propagation in optical fibres given above 
can be interpreted diagrammatically with the help of the U)/0 
diagram. This is a very useful aid for visualising many effects in 
optical fibres. The U)/0 diagram is a plot of the propagation 
constants for the modes of a waveguide against the frequency of the 
launched wave. A typical diagram of this sort is shown in figure 2.2. 
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HE^^ mode line 

Propagation constant 0-

Fig. 2.2 The U)/0 diagram for representation of optical fibre 
propagation characteristics 

Referring to equations 2.2, we note that when 0z = 27T, the 
distance, z, is equivalent to the wavelength of the radiation in the 
guide, X , since the exponential factor duplicates itself at § 
intervals of 2iri. Thus we see that: 

0 = 2tt 2.11 
X 
g 

And so U) divided by 0 is simply the product of the optical 
frequency, f, and X , which gives the phase velocity of light in § 
the guide. For non-dispersive isotropic materials, the phase velocity 
of light is independent of frequency and so these materials can be 
represented on the CO —0 diagram by a straight line through the 
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origin. Figure 2.2 shows the core and cladding materials of a fibre 
in this way, the phase velocity of light in each medium being given by 
the free space velocity of light divided by the appropriate refractive 
index. 

The phase velocities of guided modes of the fibre must always lie 
between the limits imposed by the core and cladding lines. At 
cut-off, when a transverse modal field extends very far into the 
cladding, the modal propagation constant is equal to that of the 
cladding for the frequency concerned. As the frequency is raised, the 
mode becomes better bound and the field is confined more nearly to the 
core and so the modal propagation constant approaches that of the core 
material. Many standard texts'* show that the velocity of 
propagation for energy in a weakly dispersive medium is given by the 
slope of the U)-0 curve at the operating frequency. This velocity 
is the "group velocity" of the wave. The diagram is therefore well 
suited to the visualisation of fibre dispersion characteristics. 

For any particular operating frequency, the mode structure of the 
fibre is displayed along the appropriate horizontal line in the 
diagram. The figure clearly displays that the fibre has only one 
guided, propagating mode for frequencies up to 0)̂ . When operated 
below this frequency, the fibre is known as a 'single mode* fibre. 
Radiation modes of the fibre can be regarded as existing throughout 
the space to the left of the cladding line in the diagram. 

Problems involving mode coupling, anisotropy and harmonic generation 
can also be visualised with the 0)-6 diagram. In particular, the 
problems of mode coupling and anisotropy will be examined in the 
following sections. 

2.4 Polarised light in multimode fibres 

In section 2.2 we noted that to a very good approximation the 
propagation constant of HE modes and EH _7 modes are 
closely equal. We may make use of this fact to produce new 
approximate and simplified modes of optical fibres. The field 
configurations of these modes govern our expectations of the 
polarisation behaviour of these fibres. 
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Equations 2.4 gave the z-component of guided modes in the core and 
cladding of a fibre. We can re-express these equations in terms of 
the more familiar circular functions by adding a new trial solution of 
the wave equation in cylindrical co-ordinates (2.1) , replacing V with 
-V and forming linear combinations with the original solutions by 
addition and subtraction of the equations. Thus we find 

E = F z v (cos v<j> ) 
(i sin v<{>; 

2.12 

H = ± G (- sin v< z v _ 
i cos v<j) 

Here, the F and G are new amplitude factors and the two possible signs 
and sets of circular functions must be used independently. The 
differing signs denote HE and EH modes as before, while the different 
groups of circular functions describe orthogonal polarisations. The 
transverse field components can be derived from the z-components by 
applying Maxwell's equations to give: 

E = ±F , (i cos (v±l x 

H 

H 

v±i 

E F , y v±i 

= -G v±-

= ±G V±! 

Si sin (v±l 

[i sin (v±l 
[cos (v±l 

(i sin (v±l 
(cos (v±l 

î cos (v±l 
sin (v±l 

2.13 

If we now add or subtract the field components for HE , 
V +1 ,|1 

modes to those for EH . , modes, we achieve cancellation of 
V 

the E^ and H^ components, leaving only the four field components 
E^ and H^, E^ and H^ to describe the approximate, simplified 
modes. In particular, the transverse fields become: 

E y = 2Fv, cos V'<t> 

H = -2G , cos V'd) x v 

2.14 
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This is true for addition of the HE and EH modes. Subtraction of the 
components leads to fields which are orthogonally polarised to these. 
We see then, that this description of the modal fields, which was 
perfected by Gloge , leads to the conclusion that the resulting 
field of all the modes in a multimode fibre will be linearly 
polarised. In the limit of weak guidance, when n^ = n^, this 
would be exactly true, and Gloge coined the name, 'linearly polarised' 
(LP) modes for the simplified modes of optical fibres. 

In reality, however, since the core and cladding indices are never 
equal, the propagation constants of the true fibre modes are likewise 
unequal and the linear superpositions forming the LP modes decompose 
progressively along the fibre, leading to elliptical polarisation at 
moderate distances from the fibre end. Further phase shift of the 
true modes leads to periodic variation in the polarisation along the 
fibre, from linear to elliptical to linear, etc. So we see that even 
under ideal conditions multimode fibres cannot be expected to preserve 
the polarisation of the light they carry. 

In non-ideal conditions, the picture is further complicated by the 
effects of mode coupling within the fibre, imperfect launching 
conditions and selective modal attenuation. In addition, finite 
spectral width of the light source will produce depolarisation by a 
loss of coherence due to inter-mode delays^ and, finally, any 
attempt to use these fibres in interferometric applications would also 
be severely hampered by the variations in phase and polarisation 
across the far-field patterns. This is a manifestation of the modal 
noise effect which will always occur in situations where only a 
part of an end pattern is used for measurements. 

2.5 Polarised light in single mode fibres 

Returning to the general description of the true modal fields (2.13) 
we now examine the behaviour of an ideal fibre operating in the 
'single mode' region. We have already seen that the H E ^ mode for 
which V = 1, has no cut-off. When only this mode propagates, the 
transverse field in a fibre is described completely by the field 
expressions appropriate to this mode. When we insert V = 1 into 
these expressions, taking the upper and lower circular functions 
separately as we must in all cases to account for orthogonal 
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polarisations, we see that one E and one H component vanishes for each 
polarisation. Thus the field of the HE mode is linearly polarised 

\ XL 
and can exist in either of two orthogonal states. Taking one 
polarisation only, we find that the complete set of fields for one 
polarisation of the H E ^ mode are given by: 

Inside the core (r < a) Outside the core (r > a) 

E = iA< J (<r) sin <j> 
-5- 1 Ay Jo (>ca) H ( 1 ) (iyr) sin<f> 

B H ( 1 )(iYa) 1 

E = A J (xr) 
- \ ,y o A Jo ( < a ) (iyr) 

H ( 1 ) ( i v a ) o 

E = 0 

H = ro) iA< J (<r) cos <j> 
- H 1 

= 0 

& Ay J (ica) 

\p l k -j (1) r • \ 1 o I o H (iya) o 
H ^ (iyr) cos<j> 

H = 0 
/ v y 

H = -n A 
131 p 

o| J (icr) o 

= 0 

= -nA re (<a) o I o 

l"! "0 H ( 1 ) (iya) 

X H q
( 1 ) (iyr) 

(A is an amplitude factor) 2.15 

The orthogonally polarised mode is obtained by replacing sin(j) with 
-cos<J) and cos<j) with sintj) in the expressions where they appear. 
This orthogonal polarisation is degenerate with the first when the 
fibre is perfectly cylindrically symmetrical. In reality, however, it 
is more helpful to regard these two polarisations as being two 
separate, fundamental modes.- This is because real 'single' mode 
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fibres turn out to be significantly anistropic (for reasons which will 
be examined in chapter three) exhibiting birefringence and optical 
activity. In fact, the term 'single mode' fibre should be regarded as 
a misnomer for most fibres of this type. 

2.6 The coupled mode theory for analysing real fibre behaviour 

To see how polarisation changes occur we must extend our theory to 
approach reality more closely by taking into account the imperfections 
which all real fibres possess. 

We have seen that the solutions for the circular step index optical 
fibre are available in fairly simple forms. Unfortunately, real 
fibres tend to have non-circular cores with something other than a 
step index change between the core and cladding. There is also very 
often an index dip in the centre of the core. Solutions for these 
real fibres are much more difficult to produce in simple form. For 
this reason, we try to express the solutions for the real guide in 
terms of those appropriate to a similar appropriately chosen 
hypothetical guide. Because the real guide differs from the 
hypothetical one the modes we use are obviously not individually 
solutions of Maxwell's equations for the system and the effect of the 
difference between the real and hypothetical guides will be to cause 
coupling between the modes we choose to represent the actual field. 
Coupled mode theory can be used to analyse this process. For many 
practical cases the real waveguide may differ only very slightly from 
the hypothetical guide and any changes in shape will be very slow over 
a wavelength. This allows us to consider the coupling as being weak. 
In addition, many practical cases also involve only two modes, 
allowing perturbation solutions to be applied. 

The coupled mode formalism is well documented elsewhere and only a 
brief outline of the mathematical argument will be given here as a 
preparation for later work. We begin by noting that the longitudinal 
(z) components of the total field in a fibre can be derived from the 
transverse components using Maxwell's equations. We can separate the 
total field, E, in a fibre into its transverse part Et and its 
longitudinal part, E^. Thus: 

E = E + E 2.16 ^ ^t vz 
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Because Ez is totally dependent on Et, we can simplify the problem 
by eliminating all Ez components from the field equations and 
replacing them in terms of Et and solving for the transverse fields 
only. We can now represent Et in terms of a superposition of the 
guided fields £ and radiation fields, £ .of the normal & Vt Pi 
modes of our hypothetical guide. (Here V and p represent mode 
labels) These fields are taken to be functions of the transverse 
co-ordinates only, the z-dependences being separately expressed, as 
described below. 

S 
V=l ^vt J 

£ 
-vp t 

dp 2.17 

A similar equation applies for the magnetic fields. The a are 
amplitude coefficients which express the z dependence of the mode 
fields: 

= c (±) exp (+ j z) 2.18 

Here C^ is the constant mode amplitude coefficient appropriate to 
the hypothetical guide. The ± signs serve to differentiate forward 
and backward travelling modes. Substituting these field expansions 
into Maxwell's equations gives a system of coupled differential 
equations relating the amplitude coefficients. By applying the 
orthogonality condition for the modes of the hypothetical guide and 
simplifying, we arrive at the following system of coupled equations 
covering all the modes of the system. 

dc (+) 
dz 

dc 

dz 

(+,+) „ (+) c exp 
v 

i (eu-ev)z 

K <+•"> c ( _ ) exp 
yv v 

i (By>Sv) z 

exp -i (B y +3 v) z 

K c (" ) exp -
yv v 

i (3 +3 ) z y v 

2.19 
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Here the K represent the coupling coefficients between modes y 
and V travelling both forward and backward, as designated by the + 
and - signs. These coupling coefficients are defined by the relation: 

(p,q) K yv = a) e 
4 i P -I I (n2-n|) 

CO —CO 
i 
(p) H t 

nivt 
dxdy 

2. 20 
P is a normalisation factor derived from the orthogonality 

9 
condition . The p and q represent + and - signs as appropriate to 
describe modes travelling in their particular directions. This 
expression tells us that modes couple only if there is an overall 
non-zero sum of the scalar product of the fields for the two modes 
concerned in that region of an infinite cross section where the actual 
guide index, n, differs from that of the hypothetical guide, n . 

2.7 Perturbation solutions of the coupled mode theory for the single 
mode case 

The normal modes of the real fibre must have a simply periodic z 
dependence, such that the total transverse fields can be represented 
as : 

E t = C(. exp ( - i 0 t z) £ 2.21 

If we consider this total field as formed from a sum of only the 
guided modes of the fibre and compare this expression with 2.17 and 
2.18, we can absorb the remaining slow z-dependence in the real fibre 
of the ideal mode amplitude factors C^ as follows: 

C+ = C+ exp [- i (8 - 6 ) z] 
V VO t V 

2. 22 

C~ = C~ exp [- i (8 + 8 ) z] 
V Vo t V 

+ 

Now are independent of z. 
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We have already remarked that for weak coupling, where there are only 
slight differences between the real and hypothetical guide, and where 
these differences change only slowly along the guide, it is often 
adequate to consider coupling between only two modes, and so 
perturbation solutions can be applied. Substituting the expressions 
2.22 into the coupled mode equations 2.19 leads in this case to four 
simultaneous equations for the amplitudes of the hypothetical modes: 

K ( +' + ) + i (8-6 ) c + + K ( +' + ) c + K (+>"} c " 
yy t y yo yv VO yy yo 

+ K c = 0 yv vo 

K ("' + ) c + + K ("' + ) c + + K + i(8 +8 ) c yy yo yv vo yy t y yo 
+ K c = 0 yv vo 

K ( +' + ) c +
 + K ( +' + ) • i(B "8 ) c + + K c " yv yo vv t v vo vy yo 

• K c ' . = 0 VV vo 

K ("> + ) c + • K c +
 + K (-'"> c " • vy yo vv vo vy yo 

K + i(8 +6 ) c = 0 VV t V vo 
2.23 

For non-trivial solutions, the determinant of the coefficients of 
these equations must be zero. This leads to a fourth order equation 
in 8 • This can be simplified if we can reason that K and t ^ yy 
K , which represent modes coupling to themselves, will be large 
for small perturbations, while K = K will be small. We v yv vy 
then have: 

± 

8 = ± (82 + 2 i 8 K ty py y yy 
, 2.24 

8 = ± ( 8 2 + 2 i 8 K ) J ' tv V V vv 
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In the case of the single mode fibre, there is only one guided mode, 
so, = = K ^ = 0 and we are left with only one 
equation for 3t> with y = 1. Thus: 

2. 

^tl = ± (ei + 2 1 31 Kll)3" 2* 2 5 

We shall use this expression later to consider the effect of 
deformations on the propagation of polarised light in single mode 
fibres. 
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CHAPTER III 

POLARISATION PERFORMANCE OF EXISTING OPTICAL FIBRES 

This chapter describes experiments to test the polarisation 
performance of double crucible drawn single mode fibre and compares 
the results with work done elsewhere on other types of fibre. At the 
time this work was done there was only one published study^ on the 
polarisation characteristics of 'single mode' fibre. Since then, 
several other similar investigations have been published, allowing the 
work reported in this chapter to be put in a broad perspective. 

The chapter continues by examining the mechanisms of polarisation 
change in fibres in the light of the theory developed in chapter two. 
Once again, since this work was done, further publications have 
appeared elsewhere and these will be briefly discussed for 
completeness. 

3.1 Measurement of the polarisation performance of double crucible 
drawn single mode fibre 

3.1.1 Reason for measurements 

The only study of polarisation in single mode fibres which appeared in 
the literature before the work described in this chapter was done 
concerned single mode fibres made by the controlled vapour deposition 
(CVD) process^". Since the fibre available at Imperial College was 
of significantly different design and was made by the double crucible 
process, we were interested to know how this type of fibre compared 
with CVD fibre. Firstly, it seemed that the core could be expected to 
be more precisely circular in the double crucible fibre because this 
fibre is made by a one stage process, being drawn directly from the 
circular orifice of a crucible containing molten glass. The CVD 
fibre, on the other hand, must withstand many stages of production 
without being significantly distorted. 
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The double crucible drawn fibre used in these experiments had a 3 ym 
diameter core and 15 ym diameter cladding. The base glass was 
borosilicate and the core-to-cladding refractive index difference was 
8 x 10"3 . 

3.1.2 Basis of measurements 

The two effects which transform polarisation in a non-absorbing, 
non-scattering body are linear and circular birefringence. (Circular 
birefringence is also known as optical activity.) Linear 
birefringence is the name given to that effect whereby a material will 
impart different phase velocities to two orthogonally, linearly 
polarised waves propagating in the same direction in the material. In 
general, there will be a particular orientation of these mutually 
perpendicular polarisations for which the difference in phase 
velocities is a maximum. When light linearly polarised along either 
of these axes is directed into the material in the given direction, it 
will remain linearly polarised and undergo no transformation. Under 
these conditions, such axes are called privileged axes. 

An optical component exhibiting linear birefringence is called a 
linear retarder. The retarder can be completely characterised by the 
degree of retardation - i.e. phase shift - it produces between 
perpendicularly polarised waves and by specification of the 
orientation of the privileged axes. In order to find these two pieces 
of information for a particular piece of optical fibre or any other 
type of retarder, the following measurements must be made. 

Linearly polarised light entering a linear retarder will become 
elliptically polarised during its passage through the retarder and on 
leaving will have a general ellipse as its polarisation form. A 
polarisation analyser may be rotated in front of this emergent beam so 
as to secure a minimum transmitted intensity. The E-field 
transmission axis of the analyser will now correspond to the minor 
axis of the ellipse, and the wave polarised in this direction will be 
TT/2 radians out of phase with the wave polarised on the major axis. 
The ellipse can therefore be reconverted into plane polarised light by 
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interposing a quarter-wave plate between the fibre output and the 

analyser. The orientation of the quarter-wave plate may be set 

correctly simply by reference to the orientation of the transmission 

axis of the analysing polariser. Finally , the polariser may be 

rotated once more to find the correct orientation for complete 

extinction of the light . 

Figure 3 . 1 shows that the ratio of the field amplitudes on the ellipse 

axes is given directly by the tangent of the angle, 0 , between the 

minor axis position for the initial minimum transmission and the 

position for a final extinction angle of the polariser. The ratio of 

the corresponding intensities is then given by the square of the 

amplitude ratio. 

Orientation of 

linearly polarised 

light after 

compensation by quarter-

wave plate 

Reference direction 

\Orientation of polariser for minimum 

transmission before compensation 

Orientation of polariser forj 

f inal extinction-

Fig . 3 . 1 Output polarisation ellipse and linear polarisation 

attainable by means of a quarter wave plate 

The 'degree of polarisation ' , P, of a beam of light is commonly 

defined by the following equation: 

I - I . q q 
P = max m m -3'1 

I + I . 
max m m 
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where I and I . are the intensities corresponding to those of 
max m m 

the major and minor axes respectively of the polarisation ellipse . 

12 . . . . 

Papp and Harms show that for light which is linearly polarised and 

launched into^ a fibre at 45° to the privileged axes, the degree of 

polarisation of light emerging from the fibre is given by the cosine 

of the phase shi ft , $ , between the modes travelling on the privileged 

axes: 

P = cos 6 3 . 2 

Therefore, to find the phase shift produced by the test fibre in the 

experiments described here, it was only necessary to substitute the 

intensity ratio , Q, observed in the output ellipse under the correct 

launching conditions into equations 3 . 1 and 3 . 2 : 

6 = cos " 1 (1 ~ Q) 3 - 3 

(1 + Q) 

The intensity ratio itself was found for a 180° range ( i n i t i a l l y ) of 

input linear polarisations in order that graphical display of the 

results should identify the privileged axes of the fibre and provide a 

more accurate estimate of the intensity ratio at midway-between-

privileged-axis launching. This was necessary because of the 

variability in the results obtainable using the available equipment. 

3 . 1 . 3 Measurement made and reduction of data 

A single piece of monomode fibre was laid on a flat level surface and 

linearly polarised light was launched into it with the polarisation 

direction ranging in 10° steps from 0 ° to 180° with respect to the 

vertical axis . For each input polarisation the output ellipse was 

measured and the intensity ratio of the fields on the ellipse axes was 

plotted against the input polarisation angle. A sample of the graphs 

plotted is shown in figure 3 . 2 . 
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Launched polarisation 

angle 

Fig . 3 . 2 Intensity ratio versus azimuth of launched polarisation for 

single mode fibre 

The peak intensity ratio for the fibre concerned yielded the phase 

retardation produced by that fibre, as shown in equation 3.3 above. 

This value of phase retardation was then plotted as a point on a graph 

of phase retardation against fibre length. 

The difference between the orientation of the major axis of the output 

ellipse and the input linear polarisation orientation was also plotted 

against this input orientation. Attention to this angle served as a 

double check on errors in measurements, which were in some cases very 

difficult to gauge accurately. The theoretical relationship between 

the input polarisation direction and that of the output ellipse major 

13 
axis has been investigated by Born and Wolf and is given as: 

Tan 2 \J; = (Tan 2 <j>) cos 6 3 . 4 

This is illustrated in figure 3 . 3 , where X and Y are the privileged 

axes of the fibre and OP represents the amplitude of the linearly 

polarised launched-wave1s electric vector. The vector may be resolved 

into two components along the privileged axes. These components remain 
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bound to the privileged axes and fixed in amplitude, but their 

relative phase changes until at the output end of the fibre the 

polarisation ellipse is as shown. 

F ig . 3 . 3 The relation between input polarisation, privileged axes 

and output ellipse of a retarder 

With the phase shift calculated as above, it was possible to calculate 

the expected orientations of the ellipse major axes for all 

measurements for comparison with measured values, as shown in figure 

3 . 4 . The extra polarisation shift was then the optical activity of 

the f ibre . 
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When measurements had been completed on a single piece of f ibre , the 

fibre was then cut shorter and the entire test run was repeated. This 

procedure was continued until the fibre was so short that further 

measurements were impractical. 

3 . 1 . 4 Experimental arrangement 

An optical fibre was laid on the specially prepared f lat , level 

surface of a wooden beam so that the fibre was perfectly straight and 

unstressed. Laser light was launched into this fibre by means of a 

x45 microscope objective, the light having been passed through a prism 

polariser. It was necessary to position the fibre to a fraction of a 

micron for good launching. With normal triaxial micrometer driven 

micromanipulators, this accuracy is very d i f f icult to attain ; merely 

touching the adjustment knob lightly is liable to deflect the 

structure by this amount. 

Accordingly, a better launching arrangement was sought and a novel 

solution was adopted. It is possible to use stereophonic pickup 

cartridges of the moving magnet type as micropositioning units by 

feeding them with electric currents. The forces associated with the 

resulting stylus movements are miniscule, but are sufficiently large 

to move optical fibres of the size used here. 

The launcher arrangement is shown in figure 3 . 5 . The fibre enters the 

launcher at the rear through a hole and is supported on a card support 

which bridges the distance between the main fibre support and the 

launcher platform. The launcher platform supports the fibre for 4 cm 

and this section is normally covered in high index liquid beneath a 

microscope cover glass so as to strip out unwanted cladding modes. 

The launcher platform is level with the stylus platform, which is a 

small piece of 'minimagnet' material and together with another similar 

piece of material forms a magnetic clamp which holds the fibre end 

firmly without greatly stressing it . For the major part of the tests, 

the fibre was glued down to the launcher platform with collodion so 

that the launching face would be static over as many test runs as 

possible. The cartridge launcher assembly is screwed to a standard 
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triaxial micromanipulator which provides a coarse adjustment. The 

supply to the cartridge is made by a cable carrying the left and right 

signal voltages and neutral supply, and these are connected to 

independently variable constant voltage sources so as to give movement 

independently in two directions at the stylus. The entire assembly is 

mounted on a double stem optical bench carrier to reduce the 

possibility of relative movement between the lens and launcher. 

Fig. 3 . 5 Monomode fibre launcher 

The cartridge chosen for this application was a moving magnet 

cartridge (type Shure M44) . The circuit used for controlling the 

cartridge was a straightforward dual output dc voltage source. Each 

output was taken directly from a 741 operational amplifier voltage 
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follower driven from a potential divider comprising fixed resistors 

and two potentiometers of very different value to allow independent 

coarse and fine control of stylus position on each axis . The circuit 

diagram is shown below: 

Fig 3 . 6 Cartridge controller 

The sensitivity of the cartridge to applied voltage was measured at dc 

with a microscope and measuring eyepiece. The movement on each axis 

was approximately linear with voltage until about 1 . 5 V, the 

displacement being non-linear above this value. The useful range of 

movement was about ± 5 ym on each axis with the circuit shown 

above. No more than 1 volt was supplied to each channel so as to keep 

power dissipation in the cartridge safely low. The displacement/ 

Volts 

Fig. 3 . 7 Stylus displacement v. applied voltage for Shure M44 
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The launcher proved invaluable for providing stable, repeatable 

launching conditions over long periods. The accuracy is more than 

satisfactory and there is the additional benefit that the stylus 

mounting provides isolation from vibration at other parts of the 

bench. The final attraction of this device is its extreme cheapness. 

The analysis of the f i b r e ' s light output was accomplished (after 

further cladding mode stripping at the output end) by collecting the 

light output with a collimating lens focussing through a quarter wave 

plate and polarisation analyser onto a screen. 

Figure 3 . 8 shows the complete optical arrangement. 

Card bridge 

Polariser in 

rotatable mount 

A A Ar 

5 

Quarter-wave plate Polariser 

in precision rotator in precision 

rotator 

Collimating lens 

A A A A A 
Optical Bench 

-Resilient Supports Q 
Fig. 3 . 8 Optical layout for fibre polarisation experiments 

3 . 1 . 5 Limitations of experiment 

The extreme limits of fibre length which can be investigated by the 

arrangement are set at the high end by fibre strength and at the low 

end by the intrusion of cladding modes. Long fibres of the sizes used 

here need extreme care if they are to be handled without breakage. 
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Several opportunities for measurement were lost by premature breakage 

of the fibre in this experiment. For short fibres , it is impossible 

to take repeatable, stable readings from fibres below about 10 cm in 

length due to the interference between ineradicable cladding modes and 

core light. It is not possible to remove cladding modes even with 

normally eff icient mode stripping liquids over such short lengths and 

this is why the results reported here stop at this length. 

The accuracy of the readings themselves is limited firstly by the 

polarisation quality of the optical components used. I n i t ia l ly , 

several sets of measurements were lost because the predominant 

birefringent element in the optical system was the collimating lens. 

The second accuracy limit is due to the precision of alignment between 

the transmission axes of the two polarisers and the privileged axes of 

the quarter-wave plate. Misalignment results in lack of symmetry over 

a 180° set of measurements. 

For phase shifts in the region of 4 5 ° , the eye itself is unable to 

distinguish precise transmission minima, and so there is more 

variability in resul-ts in this area. 

A further limitation of the experiment was the amount of time required 

to make measurements; each length of fibre took a day to characterise. 

3 . 1 . 6 Results 

The overall phase retardation, R, privileged axis orientation, <J>, 

and optical activity , £2, of the fibre when cut for measurement are 

displayed as figures 3 . 9 , 3 . 10 and 3 . 11 respectively. 
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Fig. 3 . 9 Phase retardation v . fibre length. 
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Fig . 3 . 10 Position of privileged axis v. fibre length 
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Fig. 3.11 Optical activity v. fibre length 

3 . 2 Analysis of results for measured fibres 

3 . 2 . 1 . Analysis by the Jones calculus 

The results in the preceding section were analysed using the Jones 

calculus in a manner described by Kapron and KeclY in order to find 

the local variation of the birefringent properties of the tested fibre, 

The Jones calculus represents a beam of polarised light by means of a 

two-element column vector representing the orthogonal, transverse 

components of the electric field directed along a pair of chosen axes 

which we conventionally label x and y. Normally, these components are 

written with the time dependent e1^*" omitted for brevity. Phase 

relations are preserved, however, by expressing the two vector 

elements in complex form. Thus the general full Jones vector is 

w r i t t e n ^ : 

E e 
x 

E e 
y 

id 

iB 
3 . 5 
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Transformation between different polarisations is accomplished 

mathematically by modelling retarders with, in general, four element 

matrices describing their properties. The effect of linear and 

circular retarders acting on a beam of light with in it ial polarisation 

is then written as: 

3 . 6 

where: 

A = cos R / 2 cos £2 + i sin R / 2 cos C 24> + £2) 

B = cos R /2 sin £2 + i sin R/2 sin (2<f> + £2) 

Here we assume a linear retardance, R, with fast"axis orientation, 

<j>, followed by a circular retarder producing angular rotation, £2. 

These macroscopic equations hold for an arbitrary length of optical 

path and if this is shrunk to an infinitesimal section of length, 

A z , say, these values of retardance become local for that section. 

We now introduce the local retardance per unit length r ( z ) , rotation 

per unit length U)(z) and fast axis angle 9 ( z ) . Obviously for our 

section, R = r ( z ) A z , £2 = to(z)Az and <j) = 0 ( z ) . These 

expressions may be substituted into 3 . 6 to gain the Jones matrix of 

each section and then we can find an expression for the matrix of the 

whole fibre of length L by integrating the contributions from all the 

infinitesimal sections of the retarder. This matrix is of the form 

3 . 6 with the relations^": 

A = cos X + i C sinX 

and B = ( i S + y) sinX 

X 

where X(L) = (C2 + S 2 + y 2 ) 1 

3 . 7 

y (L) = J u) (z) d z 

o 

C(L) 

S(L) 

= 1 J r (z) 

o 

cos 29 (z ) 

sin 20 ( z ) 
dz 

3 . 8 
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Since the macroscopic matrix for the whole fibre must be equal to 

the integrated matrix for the infinitesimal sections, we f ind : 

C = X sin R(L) cos (<j> (L) (L) ) 

sinX 

S = C tan^ (L )+f i (L ) ^ 

y = Xq with q = cos R(L) tan 

/ s i n 4 R(L)+tan4ft(L) 

and X = tan (tan fl (L) 

3 . 9 

Finally , we can find the local values of specific retardance etc. by 

substitution between 3 . 8 and 3 . 9 : 

* 
r ( z ) = 2 

dC\2 /dS^ 2 

dz + dz 

9 ( z ) = j tan 
_1 

/ \ dy 
w ( z ) = dz 

3 . 10 

3 . 2 . 2 Local characteristics of the measured fi"br< 

The relations of the preceding section were used in the following 

way. A range of eleven equispaced data points were chosen between 

13 cm and 23 cm along the tested f ibre . R, ti and <j) were 

tabulated for each point, and from these C, S, and y were 

calculated as defined in equations 3 . 9 . Graphs of each of these 

were then drawn and the slope of each at every data point was found 

by carefully drawing tangents to these curves in the appropriate 

places. (The tabulated values and graphs are recorded in Appendix 

I . ) This method was used rather than numerical differentiation as 

it was d i f f icult to estimate the size of the errors involved in 

using the associated finite difference techniques. Having thus 

obtained dC/dz , dS/dz and dy /dz , the values of local specific 

retardance r ( z ) , local fast axis orientation 9 ( z ) and local 

optical activity 0)(z) were calculated at each data point using the 

formulae 3 . 1 0 and they are plotted as figures 3 . 1 2 , 3 . 13 and 3 . 14 

respect ively. 
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These results disclose that the local birefringence is subject to a 

large variation even over short distances in this type of fibre . 

However, there does appear to be a particular defect between 15 and 

16 centimetres in the measured f ibre , and this is contributing 

significantly to the overall retardation in the sample. At the same 

time, the fast axis is spinning at a roughly constant rate of 

13 radians per metre, giving a full rotation every half metre. This 

length coincides roughly with the circumference of the drum onto 

which the fibre was drawn during production and it is conjectured 

that there may be a direct connection between the winding drum size 

and the rotation rate of anisotropic axes in these fibres. The 

optical activity of the fibre is small and also is not prone to 

dramatic variation. 

35 
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Fig . 3 . 12 Local specific retardance v. position along fibre 
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Fig. 3 .13 Orientation of fast axis within fibre 

F ig . 3 . 14 Local optical activity of fibre 

3 . 2 . 3 Comparison with results for other fibres 

Since this work was done, there has been a considerable upsurge of 

interest in this subject. Many laboratories have now reported 

polarisation measurements on single mode f i b r e ^ ' ^ ' ^ 

Birefringence and privileged axis rotation have been observed by all 

workers on single mode, solid core fibres. Often the measured 

birefringence lies between one and several tens of radians per 

metre. From the foregoing, it is clear that double crucible drawn 

fibre has been shown to perform to a standard which is not unusual 

for typical fibres produced by CVD. The origins of this 

birefringence are examined in section 3 . 3 and. these include 

process-dependent variables. 
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Recently, there have been efforts made to eliminate the process 

induced birefringence of fibres and this work has been very 

successful. This performance was initially gained by paying 

attention to preserving core circularity during deposition and 

collapse and by matching the core and cladding expansion 

coefficients and viscosities , thus considerably reducing the thermal 

18 
stresses in these fibres. However, further work showed that, by 

rotating the preform during pulling , it is possible to eliminate 

almost perfectly the cumulative effect of any residual anisotropy in 

the preform, leading to fibre with birefringence below measurable 

limits. 

Although the sources of linear birefringence and privileged axis 

rotation have obviously been very fully explored, the origin of 

optical activity in unstressed fibres was not at the time explained 

by any published work, and it occurred to the author to question 

whether a possibility existed whereby polarisation might be weakly 

bound to the privileged axes. This led to the proposal for an 

optical fibre where the birefringence is deliberately enhanced, 

rather than reduced, in order to hold a stable, linear polarisation. 
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3 . 3 Mechanisms of polarisation change in optical fibres 

There are four classes of effects which can influence the polarisation 

of light travelling in single mode fibres . These are stresses, 

electro-magnetic f ields , core geometry problems and mechanical 

deformation of the fibre . We will briefly examine the first two 

effects and then go on to consider the remaining two in a l ittle more 

detai l . 

3 . 3 . 1 Stress 

Stresses in optical fibres can arise both as an unavoidable 

consequence of the fibre manufacturing process and as a result of 

external loads placed on the fibre . In the first case, thermal stress 

normally exists in optical fibres because the core and the cladding 

have different expansion coefficients and transition (setting) 

temperatures. Normally the cladding of an optical fibre is made of 

s i l ica which sets at a high temperature (circa 1615° C) while the 

core, which is normally doped with germania, is st i l l molten. When 

the core solidif ies (circa 1400° C) thermal stress begins to build up 

between the core and cladding as the fibre cools to room temperature. 

Under perfect conditions the stress pattern would be isotropic in the 

core, but under real conditions, non-uniform quenching will often 

distort this and lead to an anisotropic stress pattern. This will 

then lead to stress birefringence via the elasto-optic effect . 

We can estimate the plausibility of this theory by calculating the 

expected thermal stress level in a typical silica based single mode 

fibre designed for communication applications. Such fibres normally 

possess a deposited optical cladding having a refractive index very 

close to, but slightly lower than, that of silica to avoid secondary 

guidance effects . Normally fibre cores are made from germano-silicate 

glass . To arrive at the total thermal stress in such a fibre, we need 

to know the relations between refractive index, doping concentration 

and expansion coefficient . This information has been published for 

2 
the germama-sllica system . Using this , we find that for a typical 

- 2 

fibre having an index difference of 10 ( 0 . 7% ) the doping level in 

the core will be approximately 7 mole% germania. The resulting 
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difference in thermal expansion coefficients between the core and 

- 6 / Q 

cladding is about 10 / C. The thermal strain between the core and 

cladding starts to build up when the core solidifies at about 1400° C 

and so at room temperature the difference in the unstrained sizes of 
-4 

the core and cladding will therefore be about 7 x 10 x core s ize . 
3 3 - 2 

Using a value of Young's Modulus for silica of 7 .33 x 10 kgmm 
- 2 

we arrive at a value for the thermal stress in the fibre of 5 kg mm 

(assuming that the core and cladding are equally strained) . In 

practice this is likely to be a conservative estimate of the strain 

since many of the important thermal and mechanical parameters are 

temperature dependent and because stress in fact starts to build up 

before the core sol id i f ies . However, accepting this estimate in order 

to get an order of magnitude estimate of the index change caused by 

this strain, we now use the pressure coefficient of refractive index 

for silica to calculate the full index modification due to the thermal 

strain , which is assumed to be hydrostatic in the core. The value of 
. . 4 - 5 2 - 1 . . 

this coefficient is 9 . 1 x 10 mm kg , yielding a value of 
-4 

4 . 6 x 10 for the thermally induced modification of the core 

refractive index. The maximum intrinsic local phase retardations 

reported elsewhere are of the order of 100 radians per metre, 

equivalent to a refractive index difference of around 10 ^ for two 

orthogonal polarisations. This is equivalent to about two percent of 

the total stress modification, and it is not hard to imagine that 

slight thermal asymmetries during quenching might easily result in 

this degree of anistropic stress. 

The second source of stress in f ibres , external loading, can be 

estimated also. Typically, the outer diameter of an uncoated silica 

communications fibre is 125 microns. Imagine a fibre subjected to an 

evenly distributed transverse load of x kg per mm of fibre . If we 

take the crude assumption of an isotropic, linear stress field in the 

fibre , the transverse stress at the core will be given by 

- 2 

( x / 0 . 1 2 5 ) k g mm . The relative photoelastic constant of silica is 

given^ as 3 . 5 x 10 ^ mm^kg To get a birefringence of 10 

in refractive index, we find that the r e q u i r e d value of x is only 

36 g mm ^ loading on the fibre . This is not high, and might easily 

be produced by clamping of the fibre in an optical system. Thus care 

should be taken to arrange clamping forces properly if natural fibre 

birefringence is not to be severely modified in experimental systems. 
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3 . 3 . 2 Electro-magnetic fields 

The modification of polarisation in fibres by magnetic fields has 

already been thoroughly examined in chapter one, and no more need be 

said here. 

Electric fields can also modify polarisation in silica fibres by means 

of the electro-optic Kerr effect. Transverse electric fields in the 

fibre cause birefringence in the material. For silica this effect is 

-15 -2 

very small (the Kerr constant for silica is 9 x 10 cm V ) and 

polarisation changes due to this effect are unlikely to be often 

seen. However, this effect has been used to detect the polarisation 

state in single mode fibres^ and the linear electro-optic effect 

might be put to use for measurement of electric fields if a suitable 

fibre material can be found.^ 

3 . 3 . 3 Core sh'ape 

We saw in section 2 .7 that the propagation constant of the mode in a 

perturbed single mode guide is described by the equation 2 . 25 , 

re-stated here for convenience: } 

B t l - ± ( 8 / • 2 i B l K u > * 

We saw also in section 2 .6 that the coupling coeffient 
K & yv 

consists of two parts, corresponding to the separate effects of the 

longitudinal and transverse fields of the individual modes. If we 

label these two parts separately, we may express the coupling 

coefficient as: 

K ( p , q ) = p K + q k 3 .11 
yv yv yv 

with 

K 

yv 

and 

" e o l M Yf (n' - n 2) g* . £ dx dy 

4iP6 ( p ) JJ ^ 

y - 00 

TdT* 11 9 
4iP B.. J J rr 'vyz vvz 

U 
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If we substitute this separated expression for K into 2 . 2 4 , 
yv 

we get 

'tl - ± 3 1 
1 +

 i ( K l l + k ll> 3 .12 

Thus the propagation constant in the ideal guide, is modified 

by an additive value which we will express as 

A3 (= i ( K ^ + k ^ ) ) due to the perturbation. We will call that 

part of A3 which differs for the two polarisations ABy» 

The first obvious conclusion which we can draw from this analysis is 

that the coupling coefficient, K , cannot contribute to AB 
11 p 

since we know that the fundamental mode transverse fields are linearly 

polarised. Clearly, the two possible orthogonal polarisations must 

everywhere have a vanishing scalar product. 

We are led to the conclusion that any differences in the propagation 

constants for orthogonal polarisations must arise through coupling of 

the longitudinal fields . We now return to our expression for 

and insert the appropriate expressions for the parameters. First, we 

convert the expression for use in polar co-ordinates, as this 

simplifies calculations: 

AS = j k 
P 11 

0)E 
O 

4iP* 

2IT / \ 
/7n 

o o I I 
(n2-n 2 ) £ . P r d r d <j) 

O 1 Tl 
^ z / / ^ z * 

/ / ± 3 .13 

We also take the core deformation as being expressible in terms of a 

sum of azimuthal harmonics such that the core boundary is determined 

by: 

r (x , y) = a + Z p cos (m<f> + ^ ) 
m m m 

3 .14 

Since the perturbation index is always equal to the difference between 

the core and cladding indices, n^ and n^, we can take all 

references to index difference outside the integrals and simply employ 
2 2 

(n^ - n^) as a multiplying factor in all perturbed regions. 

Also, in the spirit of the weakly guiding approximation, we take 

n l ^ n 2 = 
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For the field expressions, we use the fundamental mode longitudinal 

fields described equation 2 . 15 . Allowing for the orthogonality of 

transverse polarisation, we have within the core: 

E = AiicJ.. / s . . 
^ z ^ 1 (KT ) sin $ 

3 l 3 . 15 

E -AiicJ^ , . 
T<ZJ = 1 (<R) COS (J) 

^ 6 i 

We have chosen the A ' s here as equal so that both polarised modes are 

carrying the same power, but this is for convenience only. 

Finally, for small perturbations, we will take the E^ as being 

constant throughout the perturbed region and equal to the value at 

r = a. This fairly crude approximation gives: 

AO U E 

P • 3*11 - 4if- ( n
x

2 - n
2

2 ) a 2 

8 2 

1 

°° 2 7T 

* fj P m C°S C0S<*> 

o o x r d r d t j ) 3 . 16 

8 
Taking advantage of normalisation relations between A and P and 

treating only one harmonic of the perturbation, we find: 
2TT 

2ir a n k 

ABp = j k x l = K2y2pm fsin<j> cos<|> cos (m^-nl^) dp 

3 . 17 

We find that, if Tm is zero, the integral vanishes for all m, but if 

¥m = IT/2, the integral will have a finite value, TT/2, when m is 

2. This shows that only elliptical deformation of the core boundary 

will introduce a difference between the propagation constants of the 

orthogonally polarised modes. 

In addition, we can deduce one more important result from the above 
/ 2 2 

equation. For a fixed value of V, / ( k . - k ] is inversely 
2 2 

proportional to a. Therefore (ica) and Cya) will be almost 

constant. Also, 3 / k - n, which is also virtually constant. We 

manipulate 3 .17 then to find: 
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- = ^ p = « a ) 2 ( y a ) 2
 Ppi 

8 4a 5 k 4 n 4 

3 . 12 

This expresses the difference in propagation constants of the 

polarised modes normalised in relation to 8* Also, i f we normalise 

the amplitude of the perturbation to a, by pm = pa, then for a given 

value of p: 

A3 
(<a ) 2 ( ya ) 2 p 

IA 
« l_ 

ka 

\ 

4n 

V 

}tl 
3 . 1 9 

And remembering V = ka /n n z - ka/2nAn we finally find 
1 2 

A6 
p « (An) 2 for fixed V and p 3 . 2 0 

The importance of this result will emerge in the next chapter. 

The analysis we have examined in this section is not completely 

accurate because of the various approximations we have made en route, 

but nevertheless the basic relationships pointed out here do bold true 

in practice. For a precise numerical prediction of A8 for a given 

e l l ipt ic ity , however, more rigorous analyses are necessary, and very 

many attempts to produce reliable versions abound in the literature. 

9 

Most of these are unreliable. However, the results of Tjaden , who 

employed a double power series expansion of the propagation constant 

with respect to the index difference and perturbation amplitude, 

appears to give acceptable accuracy. Tjaden 's analysis is limited to 

small e l l ipt ic ity , but gives good agreement with calculations based on 

the exact analysis for arbitrary ell ipticity which will be examined in 

the next chapter. 
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3 . 3 . 4 Mechanical deformation of fibres 

The case of deformation resolves into two separate instances: bending 

and twisting. At the time when the experimental work described in 

this chapter was being done, there were no explanations of these 

effects in the literature. 

In an attempt to explain this bending effect , the author applied the 

perturbation theory exposed earlier to examine the effect of the 

perturbation of the core boundary during bending, which contains a 

small asymmetrical component. This produced a result which was many 

orders of magnitude too small to explain observed results and was 

linear with the fibre curvature. Observed birefringence is 

10 
proportional to the square of the curvature . A further attempt 

was made to explain this effect using the earlier work but allowing 

for the deformation of the mode field at the bend 1 1 . This also gave 

a result which was several orders of magnitude too small, but which 

had the correct square-law relation to the curvature. 

More recently, Ulrich has shown that both the bending and twisting 

19 20 
effects can be explained by stress m the fibre material ' 
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CHAPTER IV 

ELLIPTICALLY CORED FIBRE FOR POLARISATION MAINTENANCE 

This chapter begins by arguing that fibres with very ell iptical cores 

and large refractive index differences should maintain linear 

polarisation of transmitted light . The exact theory for predicting 

propagation constants and cut-off wavelengths in such fibres is then 

examined and qualitative tests on experimental samples of such fibre 

are reported. 

4 . 1 Proposal of e l l iptically cored fibres for maintaining linear 

polarisation 

The weakness of the approach of producing perfectly axially 

symmetrical single mode fibre for polarisation maintenance has already 

been exposed in chapter one. Even if the effects of core el l ipticity 

and asymmetrical thermal stress are totally eradicated, polarisation 

modulation by deformations of and stresses placed upon the fibre would 

destroy its polarisation maintaining characteristics. In use, such 

modulation could be particularly unfortunate if it was caused by 

vibrations. A fibre is required where coupling between the 

orthogonally polarised waveguide modes is suppressed. 

Coupling beween modes of propagation is caused by suitable 

perturbations of the system for which such modes are a solution. 

Significant coupling will occur over short distances if the 

perturbations are strong, or, in the case of weak perturbations, if 

they possess a spatial frequency component which matches exactly the 

distance required for the two modes to change their relative phase by 

one full cycle. Under this condition, propagating fields induced by 

the perturbation will interfere constructively to produce a growing 

component of coupled energy. One way of suppressing significant 

coupling then is to produce a system where the propagating modes are 

travelling with phase velocities sufficiently different as to require 

a very high spatial frequency from the perturbation. In practice, 

spatial frequencies of perturbations are found to be weighted strongly 

towards the low frequencies. The amplitude of perturbations is 



- 79 -

commonly found to be almost insignificant for a spatial period (or 

pitch) less than one millimetre for normal communications fibres. In 

the case of two orthogonally polarised modes, then, we require to 

introduce strong optical anisotropy - birefringence - into the fibre 

sufficient to cause the two polarised fundamental modes to slip in 

relative phase by one cycle or more in a millimetre. This might be 

done by producing a fibre with a circular bore in which a biaxial 

anisotropic crystal has been grown. The main disadvantage of this 

approach is that in practical terms, the growth of such a crystal 

inside a fibre for more than a centimetre or so would present very 

great problems.' I f such crystal growth were easy, this would offer 

the possibility of a truly single polarisation fibre where one 

polarised mode is not merely prevented from coupling to its orthogonal 

partner, but is absolutely cut off . This would be implemented by 

arranging that the refractive indices of the crystal straddle that of 

the cladding glass. 

Another method of deliberately introducing anisotropy into a fibre is 

by producing a very high transverse stress in the core region. At the 

time that the work described in this thesis was done, there was some 

relatively unsuccessful work on this approach being pursued 

2 3 
elsewhere and since then considerable progress has been made , 

but e l l iptically cored fibres produced to the designs covered by this 

4 
thesis have shown better polarisation-holding properties to date . 

Another possible technique for making anisotropic fibre is by 

modifying the distribution of refractive index in the f ibre 's cross 

section. Various complicated suggestions have appeared 

5 6 7 

recently ' ' , but the most obvious way of doing this - the method 

advocated in this thesis - is to make a fibre with an ell iptical 

core. This type of fibre requires the fewest changes in production 

methods compared to the various methods suggested elsewhere. At the 

time the work described in this thesis was done, the proposal for an 

ell iptically cored fibre was the only suggestion for a polarisation 

maintaining fibre which had been published. A rectangular guide would 

be the obvious choice in systems with 'hard' electro-magnetic 

boundaries, but the shape would be di f f icult to make in fibre form. 
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4 . 2 Prediction of the characteristics of the elliptical guide 

There exists a foundation of work already done on ell iptically cored 

fibres. It was pointed out in the last chapter that for small 

e l l ipt ic it ies many approximations have already been published, that of 

Tjaden (chapter 3 ref 9) appearing to be the most reliable . None of 

these approximations can be expected to provide accurate solutions for 

large e l l ipt ic i t ies . Analytical solution of the elliptical guide for 

any el l ipticity has been completed independently by Lyubimov et al in 

8 . 9 
Russia and Yeh in the USA . Propagation constants from the exact 

analysis are only found with d i f f iculty , since it is necessary to 

apply lengthy numerical techniques to evaluate the solutions from 

truncated inf inite determinants involving Mathieu functions. However, 

since the difference between the propagation constants for the two 

orthogonally polarised fundamental modes is of crucial importance to 

the polarisation-maintaining characteristics of the guide, the effort 

involved in extracting the propagation constants accurately was judged 

to be worth while. Accordingly, Yeh1s analysis will be summarised 

next and a universal set of curves for the difference between the 

propagation constants for the two polarised fundamental modes will be 

presented. Next the cut-off conditions for this type of guide will be 

examined and the depolarisation mechanism will be briefly discussed. 

4 . 2 . 1 Electro-magnetic theory for the propagation constants of 

an ell iptical dielectric waveguide 

( i ) Specifying the problem 

We tackle the problem of analysing the ell iptical dielectric waveguide 

in a similar fashion to that adopted for the circular waveguide. With 

the same assumptions of an infinitely long, straight guide with the 

cladding material extending transversely to infinity we assume the 

core material to have dielectric constant E^ and the cladding 

E . Both media have the magnetic permeability of a vacuum, y , 

and of course we assume > £ . We chose ell iptical cylinder 

co-ordinates, r|, z , since they suit the geometry of the 

problem. The use of these co-ordinates is displayed in figure 4 . 0 . 

The system consists of a set of confocal elliptical cylinders with 

their common central axis forming the z direction, 
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A y 

£ = constant n = IT 

£ increasing 

N = IT 

n = 3TT 

2 

Fig. 4 . 0 Use of elliptical cylinder co-ordinates 

Rectangular Cartesian co-ordinates are expressed in terms of these 

elliptical co-ordinates in the following manner: 

z = z 

where 0 £ £ < 00 and 0 ^ r) < 27T and q = semifocal length of 

ellipse. 

The value of £ determines the ellipticity of the cylinder while q 

determines the scale of the system. One of the elliptic cylinders, 

E, = E, , is chosen to coincide with the boundary of the core. 

In the circular case, our assumption of inhomogeneity in cross section 

but no z-dependence led to the characteristic that all the field 

components could be derived from the z-components of the propagating 

fields. The same is true in this case. For a propagating mode the 

z-fields must be periodic in z, and so our problem is to solve the 

wave equation for this system. In general, the wave equation for a 

field component in a dielectric medium is : 

x - q cosh E, cos 1"| 

y = q sinh E, sin F| 4. 1 

o 
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V2 f + u)2 u e f = 0 4 . 2 
o 

In our case f = either E or H . 
z z 

When expressed in elliptic cylinder co-ordinates, the wave equation 

becomes: 

+ + q 2 (k 2-3 2 ) (siiih2^ + sin 2q) f = 0 4 . 3 

6£2 <5n2 

2 
Here k has been written for U) p £ and 8 is the axial 

o 

propagation constant of the mode. 

( i i ) Solution of the wave equation 

We can express the variation of f in the cross section by the product 

of functions of £ only and of q only; 

f U , n) = F (g) G (n) 4 . 4 

This leads to the equations: 

2 ' 9 

(C - 2y z cos 2TI) G = 0 4 . 5 
6nz 

5 2G 

<S2F 
- (C - 2y2 cosh 2 0 F = 0 4 . 6 

5S2 

Equation 4 . 5 is Mathieu's equation and 4 . 6 is the modified Mathieu 

. 10 

equation . Here, C is the separation constant and 

y 2 = l / 4 (k 2 - 8 2 ) q 2 * In our case f must be periodic in q 

with period 7T or 2lT. For a lossless medium, y 2 will be real. C 
is the characteristic number''" of one particular Mathieu function 

which is a periodic solution of the equation and C is itself a 

. 2 • • • 
function of y . The Mathieu function may be even or odd in q . 

When y 2 is positive and real, the periodic solutions of Mathieu's 

equation 4 . 5 are: 
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Gx (n) = (ce n (n , Y 2 ) 

( se n (n , Y 2 ) 

even 

odd 

4 . 7 

ce is the cosine-elliptic function and se the sine-elliptic 

function1*1 . (The subscript n specifies the order of the function) . 

• • • • • 2 
Solutions of the modified Mathieu equation 4 . 6 when y is positive 

real are: 

( 5 ) =<1 
A Ce (£, Y 2 ) + B Fey ( S , Y 2 ) 

n n 

, 2 \ u ( r A. Se (C, Y
2

) + B Gey (£,Y
Z

) 
i n i n 

even 

odd 

4 . 8 

Ce and Se are quasi-periodic functions of £ playing an analogous 

role in ell iptical geometry to the J Bessel functions of circular 

geometry and the Fey and Gey are analogous to the Y Bessel functions. 

For negative real values of y the solutions of the Mathieu equation 

4 . 5 are : 

g 2 (n) = 
CE* (N, | y

2

| ) 
n 1 1 

S e * n ^ I 

even 

odd 

4 . 9 

Similarly, the solutions for the modified Mathieu equation 4 . 6 in this 

case are: 

F 2 (g) = 
D Ce* n (£, | y 2 | ) + L Fekn (£, | y 2 | ) (even) 

D 1 S e * n U , | Y 2 | ) + L l G e k
n I I > ( ° d d ) 

4 . 10 

A, A^, B, B^, C, C^, D and D^ are all arbitrary constants. 

In analogous fashion to the solution for circular guides, we construct 

our solution by choosing functions which are physically reasonable. 

We do not use the Fey and Gey functions since they would imply an 

inf inite field at £ = 0 . Ce* and Se* are also discarded since they 

become infinite at £ = 00 and so cannot represent a guided mode. 
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We can thus write the solution for the fields in the core, where y 2 

is positive and 0 ^ £ ^ £ . These are of the form: 
o 

OO m 

f- = Z A Ce (S , y 2 ) ce (n , y 2 ) e j B z (even) 
1 n=0 n n ^ n i 

oo . 

+ Z- A 1 Se U , y 2 ) se (n , y 2 ) e j B z (odd) 
n= 1 n n ^ n \ 

4.11 

Outside the core, where y 2 is negative and £ £ £ the solutions 
o 

have the form 

OO . Q 

f n = Z_, L Fek (£, I y 2 | ) ce* (n , | y 2 | ) e J 2 (even) 
2 n=0 n n 1 2 1 n 1 2 1 4 . 1 2 

+ Z1 L ' Gek (? , |y 2 | ) se* (n , I y 2 | ) e j B z (odd) 
n=l n n I 2 I n ' 2 1 

In these equations, the A and L are arbitrary constants, while Fek and 

Gek represent radial Mathieu functions which play a similar role in 

ell iptical geometry to the Hankel functions of cylindrical geometry. 

These equations apply for both the E and H fields present in the guide 

( i i i ) Applying boundary conditions 

We now wish to produce the eigenvalue equation for the system by 

applying the boundary conditions. We retain f lexibil ity in the choice 

of refractive index difference between the core and cladding 

materials. This procedure will lead to characteristic equations for 

the waveguide modes. 

The boundary conditions relate to the components of E and H on both 

sides of and directed tangentially to the core boundary i . e . along the 

z and the f| directions. These must be continuous across the core 

boundary. Thus we require: 

E , = E H = H _ 
zl z2 zl z2 

E = E H = H 
nl TI 2 nl T| 2 

4 . 1 3 

A propagating mode consists of an electric wave and a magnetic wave 

propagating together, one of these having even symmetry about r) = 0 

and the other odd symmetry. 
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We arbitrarily choose to call modes with longitudinal magnetic 

component of even symmetry as even modes, and those with odd magnetic 

symmetry, odd modes. Thus mode designations will be XX for 
e pv 

the even modes and XX for the latter. Here XX stands for any 
o pv 

particular mode type designation, p specifies the order of the 

Mathieu functions concerned and V the Vth root of the 
i 

characteristic equation. For the fundamental modes, we choose the 

mode type designation as HE in analogy to the circular case. Our 

solutions will of course degenerate into the H E ^ mode of the 

circular guide as the ell ipticity falls to zero. 

( i v ) Analysis for He modes 
^ e 

From this point onwards, we shall make use of the fact that the 

particular Mathieu functions are unambiguously connected with either 

the core or the cladding. This allows us to write them in abbreviated 

form omitting the explicit dependence on y which will now be 

implicit . 

We can now write the general expressions for the axial fields of the 

HE modes as : 
e pv 

H . = Z n A Ce (?) ce (n) 
zl p=0 p y P 

E . = B Se (?) se (n) 
zl p=l p p P 

in the core and: 

H z 2 = r=0 L r F e k r ( 5 ) C e * r ( t i ) 

(CQ < 5 < » ) 

E Z 2 = tSl P r G e k r s e * r ( n ) 4 . 1 4 

in the cladding. 

Here we have introduced new co-efficients A , B , L and P 
p p r r 

These are specific to this case and should not be confused with the 

earlier notation. 
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Applying the boundary conditions E , = E _ from 4 . 1 4 we obtain: 
zl z2 

1=1 1 Sev % ( r l ) = r h ? r G e k r ^ s e * r ( t l ) 4 " 1 5 

We now multiply both sides of this equation by se^(r|) and 

integrate with respect to r| from 0 to 2ir. Then: 

N B Se (£ ) = ? . ' P Gek ( ? ) Y 4 . 1 6 
yv y y o r=l r r 'rv 

where v = 0 , 1 , 2 . . . . 

and the prime on the summation sign indicates that only odd or even 

values of r should be chosen according to whether v is odd or even. 

2ir 

Here N = f s e 2 ( n ) dn for y = v 
yv o J y 

= 0 y / v 

(This is due to the orthogonality of Mathieu functions. ) 

2tt 

and y t v = J * se* r ( n ) sey ( n ) dp 

o 

For every y there is an infinite set of linear equations which can 

be combined to give an equation with only two arbitrary constants 

B and P : 

U y 

N B Se (£ ) P Gek (£ ) , 1 7 
yy y y v o = y y o 4 . 1 7 

H (y ) 
y rv 

where H (y ) is a function of Y 
y 1 r ,v ' rV 

As an illustration , for y = 1 in equation 4 . 1 6 
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N 1 1 B1 S e l ( 5o> " 

P 1 G e k l «o> Y 1 1 + P 3 G e k 3 ( 5o> Y 3 1 + P 5 G e k 5 ( ?o> Y 5 1 + 

0 = P x Ge k l ( 5 o ) Y 1 3 + P 3 Gek3 ( 5 q ) y 3 3 + P 5 Gekj ( ? q ) y 5 3 + 

0 = V 1 G e ^ (Co) Y 1 5 + P 3 Gek3 ( ? Q ) Y 3 5 • P 5 Gak5 ( 5 q ) Y 5 5 + 

etc 4 . 1 8 

Combining this set of equations, we obtain: 

N 1 1 B 1 S e l " P 1 G e k l 

H 1 4 . 1 9 

where H_ (y ) = 
1 rv 

33 

35 

53 

55 

11 
Y 31 Y 51 

13 Y 3 3 Y 53 

15 y 35 
Y 55 

It can be shown11 that P > P 3 > P^ > > P ® 

Having paused to examine in detail the results of matching the E 
z 

boundary condition, we will now summarize the results of matching all 

four boundary conditions listed in 4 . 1 3 . First we define some 

simplifying notation and expansions which can be readily shown from 

the theory of Mathieu functions: 

se* r ( n ) - & 8 r y s e v ( n ) 
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(ce (n ) ) = Z / x se (n) 
dn y v=l yv v 

^ (sep (n)> - VE0- P ( J V cev („) 

where 

rv 

2tt 

F C E J (TI) c e ^ ( n ) d n / F C E ^ 2 ( n ) d n 

3.12 

5 Y 
rv = rv 

N 
yv 

2 it / 2tt 

yv ~ ^ S e v ^ d y ^ ® e v 2 ^ d n 

2TT I 2ir 

• = /se^f (ti) ce^ (ti) dn / 0l) dq 

o Y / ov 

Conditions for matching the f ields at the boundary can then be 

expressed by equation 4 . 16 and also: 

A Ce (? ) = Z ' L Fek (? ) a 
y y o r=0 r r o rv 

COG ( 
B Se T(? ) + 

V V o 
1 + -L- Z ' A Ce U ) 

9 r=l r r o rv 

/ y ~ ^ £ o Z ' P Gek ' (? ) 8 
—r=l r r o rv 

coy 
o A Ce ' (? ) -
— V v o 

/ y 2 \ 
1 + I I , Z_T 3 Se (5 ) P 

r=0 r r o rv 

\ V J 

Y / 

coy 
- Z . ' L Fek ' ( ? ) a 

r=0 r v o rv 

4 . 2 1 

where the dashed functions indicate those differentiated with 

respect to the argument and 8 is the propagation constant of the 

mode under consideration. 
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Combining equations 4 .16 and 4 . 21 and defining: 

g yv 

yv 

1 + 

\ 

Y 

Yl' 

Fek U ) E-, ' X a 
y o r=l rv yr 

yv = -

yv 

rv yr 'i + I I . | G < * u « 0 > r I i 1 p 

\ * 2 

\ 2 

S e v ( S ° ) + V Gek' « ) 6 L —c. y o yv 

6 Se (E ) Y 2 3 
v o 2 

coy C e ' v Fek (5 ) a + Y i 2 u y o Fek ' ) a 
— y o yv —— y yv 

3 Ce (E ) Y 2 3 
V O 2 

we obtain: 

F ' 
y=o 

z
 T 

y=0 

L g + P h 
y °yv y yv 

L t + P s 
y yv y yv 

= 0 

= 0 (v = 0 , 2 , 4 or 1, 3, 5) 

4 . 22 

Equations 4 . 2 2 are two sets of infinite homogeneous linear algebraic 

equations in L and P . For non-trivial solutions of this set H y y 

of equations, the determinant formed by the coefficients must vanish 

§11 h U j §31 h 3 1 §51 
h 5 1 . 

S 11 S 31 
t 

51 S 51 * 

§13 " 13 §33 " 33 1 §53 h 5 3 * 

C 13 S 13 S 33 S 53 * 

§15 h 1 5 S 3 5 " 3 5 §55 h 5 5 f 

C 15 S 15 C 35 S 3 5 

• • 

= 0 4 . 23 

This applies for the modes. When the ellipticity 

approaches zero, all terms outside the dashed lines in 4 .23 tend to 

zero and these equations yield the characteristic equations for the 

circular case. For the present case, however, it is difficult to 

evaluate the roots of this determinant due to its extreme complexity. 

11 9 
Using the method of successive approximations Yeh has shown 

that the first root of the y = 1 set of modes - applying to 

HE - is governed principally by: 
e 11 
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'11 '11 

= 0 4 . 2 4 

C11 S11 

provided that the core ellipse is not too flat ( i . e . £ > 0 . 5 ) . 

For other modes HE , successive approximations should start 
e pv 

from the 2 x 2 determinant formed by the elements with the 

subscripts pv. 

(v) Computation of the propagation constants 

The object of finding the propagation constants of the orthogonally 

polarised fundamental modes was to find the magnitude of the 

difference between them over useful ranges of ellipticity and 

operating frequency for a given core size and index difference. In 

order to do this we perform a similar analysis for the HE 
r J o pv 

modes to that described above. The odd modes have fields of similar 

form to the even modes, but with the symmetric and anti-symmetric 

Mathieu functions exchanging places in the field descriptions 

corresponding to 4 . 14 (the even case). The analysis finally 

produces a determinant: 

2 * g l l 
h * 
" l l 

cr * 

1 3 1 

h * 
31 

t * C 11 s i r 
1 c 3 1 * 

§ 13* h 13* I s 3 3 * 
h 3 3 * 

fc13" 
a. 

s13~ ' 3 3 * 33 
= 0 4 . 2 5 

where 2 * etc. are the same as the g etc with 
^jiV &pv 

Fek (E ) interchanged with Gek (E ) 
p o 0 p o 

Fek (? ) " " Gek (? ) 
p o M o 

a " " B 
pr pr 

rV rp 

This determinant simplifies in the same way as 4 . 2 3 . In order to 

retain comparability with the circular'guide, we now define the 

normalised frequency of an elliptically-cored fibre as: 
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V = 2irb 

X 
A 2 - n 2 

1 2 
4 .26 

where b is the semi-minor axis of the core ellipse. We also define 

U and W as for the circular guide using b in place of the radius of 

the circular fibre. Finally we define the normalised propagation 

constant: 

8 = 8 /k 4 . 27 

(where k = 27T/X ) 
o o 

Then we find the fully expanded form of 4 . 2 4 as 

n 

ir 

S V « o > 

W 

Gek ' y 

Gek 
y 

1 Ce ' (? ) 1 Fek ' (? ) 

+ —• 
U 2 Ce (? ) W2 Fek (? ) 

\i o y o 

= F F 

for the even modes and 

1 _ S e y 1 ( g o }
 + 1 . G e k y ' ( g o ) 

U 2 Se (E ) 
]1 o 

W2 Gek (? ) 
y o 

= y 2 F 

L- + L 

w
2

 u
2 

n 2 Ce ' (? ) 
i y o 

u 2 c % 

W2 

+ 1_ 

4 . 28 

n 2 Fek ' (? ) 
2 y o 

W2 Fek (? ) 

4 . 29 

for the odd modes. 

The propagation constants for the odd and even modes were calculated 

from the above equations and the difference was plotted as a 

function of V for various ellipticities . It was found during this 

work that for a given ellipticity and V-value, the difference 

between the normalised propagation constants, A8, was directly 

proportional to An 2 , just as predicted by the perturbation 

analysis described in section 3 . 3 . 3 . Deviation from this 
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relationship was less than 2% for 10~3 < An < 7 x 10~2. The 

algorithms and details of the computations are presented together 

with the final computer program in Appendix I I . The results of the 

computations are plotted in figure 4 . 1 with the vertical axis 

normalised to produce a universal set of curves for all index 

differences. These curves were originally published in reference 12. 

Note that: 

AB = AB 

k 4 . 30 
o 

The calculations show that the even wave, ie . that polarised along 

the minor axis of the core ellipse, travels faster than the odd 

wave, indicating that a greater proportion of the power is confined 

to the core for the odd wave. The position of the peak in AB 

shifts towards smaller V values as ellipticity increases and the 

curves move smoothly towards the slab guide case also. Sixty 

percent of this maximum possible AB is already gained when the a/b 

ratio is 2 . 5 : 1 (a is the semi-major axis of the core ell ipse) . 

Thereafter ellipticities must be greatly increased to secure 

appreciable gains in AB• 

4 . 2 . 2 Higher mode cut-off in elliptical dielectric waveguides 

So far, we have tacitly assumed that the elliptically cored fibre 

9 

can be operated in the single mode region. Yeh showed that the 

odd and even H E ^ modes are both 'fundamental' modes, ie . they 

have no cut-off, but did not consider the cut-off conditions for 

higher order modes. A first attempt to analyse the cut-off 
13 

conditions for higher order modes was made by Cozens and Dyott , 

but no experimental confirmation has been published and several 

authors have disputed the validity of these calculations ( e . g . ref 

17 ) . Essentially the method of reference 13 was to assume that the 

elliptical guide behaves in a similar fashion to the circular guide 

and solve for the cut-off of modes in the elliptical guide with 

li = 0. This led to the characteristic equations for TE 
e o 

modes and TM modes respectively: 
o o 
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Fig. 4 . 1 Normalised difference in propagation constant against V 

for various e l l ipt ic it ies 
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C e > o 

U Ce 

W Fek f 

i 

Fek 

e \ tt2 Cef 

o 

e U Ce 
2 I O 

W Fek' < 

Fek 
= 0 

This produces the requirement that Ce^ 0 at cut-off for both 

modes. This would lead to the cut-off behaviour shown in figure 

4 . 2 , with the cut-off moving to lower frequency as the ellipticity 

is increased. The cut-off frequency is not polarisation dependent 

for the small differences in refractive index between core and 

cladding which can be expected in the optical case. Experimental 

14 
evidence tends to support this argument between 0 . 4 ^ b/a < 

1, but for 0 < b/a < 0 . 4 , higher modes appear at lower V than 

14 . 
predicted by this theory. It is conjectured that this is due to 

the H E , mode strongly coupling to the fundamental HE, , 
e 01 e 11 

mode at high ell ipticities . 

The present author observed relevant behaviour in this respect whi 

working on the verification of the AB calculations using solid 

core fibre. A fibre with a/b = 2 .54 (measured in preform) working 

at a nominal V value of 1 .78 was found to be multimode despite 

having a predicted V for higher mode cut-off of 1 . 82 . This fibre 

discussed more fully in the next section, where it is made clear 

that fibre non-uniformity might account for this discrepancy. 

However, a very clear two lobe radiation pattern was observed with 

this fibre. This is shown in the photograph ( f i g . 4 . 3 ) below. 
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V 
HMCO 

Fig . 4 . 2 Predicted cut-off behaviour for elliptically cored guide 
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Fig. 4 . 3 Radiation pattern of first higher order mode of 

elliptically cored fibre 

4 . 3 Qualitative tests on solid core fibre 

4 . 3 . 1 Required AB values 

In section 4 . 1 , it was argued that a birefringence sufficient to 

suppress polarisation coupling should be adequate if it produces a 

relative delay of one cycle or more for every millimetre of travel 

along the fibre. 

In order to simplify the design of elliptically-cored fibres with 

respect to this requirement, the information on peak A3„ from 
N 

figure 4 . 1 has been transformed into a normalised minimum pitch (or 

beat length) and re-plotted as a function of ell ipticity . (See 

figure 4 . 4 ) Interestingly, this shows that the minimum beat length 

for a given index difference and operating wavelength is inversely 

proportional to the core ellipticity. This is an empirical result 

only, but is obviously very useful. 

Examination of figure 4 . 4 shows that this beat length requirement 

fixes the refractive index difference at very high levels compared 

to conventional telecommunications fibre. It was realised that 

fibres with the maximum possible index difference should be made. 
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ellipticity 

Fig. 4 . 4 Graph of minimum normalised pitch v. ellipticity for 

elliptical core fibre 



Using presently available materials, the largest index difference 

possible is about 0 . 0 7 , assuming a pure germania core and s il ica 

cladding. During the course of the work described in this thesis , a 

few samples of such fibre were made available for evaluation by 

R. Dyott. These were made within the Department as part of a 

research effort on the production of commercially usable e l l ipt ical 

f ibres . 

4 . 3 . 2 Measurement of AB 

It was decided to investigate the possibility of using some of these 

fibre samples for checking the AB calculations. The length 

required for one cycle of relative phase delay to occur between the 

two polarised modes has already been referred to as the "beat 

length" , symbol p, and is visible under the right conditions due to 

the directional nature of Rayleigh scattering from a fibre core. 

Each Rayleigh scattering centre acts as a miniature dipole, 

radiating maximum light at right angles to the polarisation of the 

incident wave and minimum light in a direction parallel to the 

polarisation direction of the incident light. In the case where 

circularly polarised light is launched into a fibre having a fixed 

birefringence, the light will split up so that equal power travels 

in the two polarised modes, and as the relative phase of these two 

modes slips , so the state of polarisation evolves along the fibre 

length. This evolution is shown in figure 4 . 5 . The extreme states 

of polarisation are linear and at ± 45° to the birefringent axes 

of the f ibre . When the fibre is viewed transversely in one of these 

directions, it is possible to see a periodic variation in the 

scattered light having a pitch, p, equal to the beat length. This 

yields ABM immediately: 

AB.t = AB = X o 
N 

(An) 2 p ( A n ) 2 

4 . 3 2 
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Scattered 

in plane shbwn 

ntensity 

4 . 5 Variation of scattered light intensity with change 

polarisation 



• 
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Experiments were carried out using the equipment described in section 

3.1.4, but with the quarter-wave plate now interposed between the 

laser polariser and launcher so as to produce circular polarisation 

(see fig. 3.8). The wooden beam was painted matt black for this 

experiment and the fibre was viewed transversely by means of a 

macrophotography system so as to be able to see a magnified view of 

the fibre and record the results on film. 

The camera position was fully adjustable to allow for changes in the 

orientations of the privileged axes of the fibre. It was found that a 

good beat pattern was only obtained when the fibre was immersed in 

index matching liquid which eliminated multiple scattering from fibre 

surface defects. Without this liquid, it was impossible to see any 

beat pattern. As it was necessary to move the camera for different 

fibres, a picture of a metal rule in the fibre position was made each 

time a beat pattern was recorded so that the real scale would be 

known. A photograph of the equipment ~s shown in figure 4.6 . 

Fig. 4.6 Apparatus for producing and recording beat patterns 
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Tests were made on several fibres pulled from the same preform. The 

preform data was: 

0 . 4 2 4 

0.061 

2 . 54 

Four samples of fibre were measured. The results are summarised 

below: 

Fibre 

Outer Diameter 

(lira) 

Beat length 

(mm) 

Fibre 

Reference 

15 1 .53 790514/2 

14 .4 0 . 96 790514/3 

17 . 5 1 . 20 790514/5 

17 .5 0 . 77 790514/8 

Table 4 . 1 Results of beat length scattering experiment 

Preform reference: 790514 

Measured numerical aperture: ~ n 2 2 ) = 

An = 

E l l ipt ic ity : a /b = 

Outer diameter/core major axis = 5 . 1 5 
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The beat pattern photograph corresponding to the last result in the 

table is shown here as figure 4 . 7 . This was originally published as 

part of reference 12. 

Fig. 4 . 7 Beat pattern for fibre 790514/8 

The theoretically predicted beat length calculated from the preform 

and fibre data was about 0 . 8 5 mm. From these tests it was possible to 

infer that the AB calculations were producing the correct order of 

magnitude, but the variability made it impossible to gain any more 

precise information from these results. This can be attributed mainly 

to the variability in the quality of the fibre which had an obviously 

non-uniform core. In addition, special care had to be taken to avoid 

exciting higher order modes with these fibres . When higher order 

modes were present, beat lengths increased. 

Recently workers in Japan have produced experimental samples of 

elliptically cored fibre using doped silica structures. The results 

of measurements of AB have been reported, but were expressed in a 

16 

different way to that used here . These results have been 

normalised according to our own method and are included here as figure 

4 . 8 for comparison with the predictions of figure 4 . 1 . It is 

interesting that the experimental curves appear to have the same shape 

and peak magnitude as the theoretical curves. However, all the curves 

are shifted to a higher V-value th an that predicted. This might be 

explained by postulating that the dip in the refractive index profile 
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of the test fibres lowers the V value from that of a perfect step 

index profile with the same peak index. Stress effects may also play 

Fig . 4 . 8 Comparison of theoretical and experimental A8 values 
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4 . 3 . 3 Polarisation and mode stability 

Some attempts were made to examine the polarisation preserving 

characteristics of these fibres by bending, squashing and twisting 

them mechanically. When operated single mode, the fibre samples 

performed very well ; lengths of fibre up to a metre showed no 

visible degradation of linear polarisation, even for bends of 2 mm 

diameter. It was found that even when coupling to higher modes was 

observed, this occurred preferentially to modes with the same 

polarisation. When any degradation of polarisation occurred, this 

was due to the higher mode coupling to its own orthogonal 

polarisation. Similar behaviour has since been observed by 

Stolen"1^ in low moded, stressed fibres . 

4 . 3 . 4 Radiation pattern 

Finally , the radiation patterns from the ends of these fibres were 

photographed. A typical result is shown in figure 4 . 9 below. The 

shapes of the end patterns were not obviously sensitive to 

polarisation, indicating that the differences of power containment 

in the core between the polarised modes are indeed extremely small. 

Fig . 4 . 9 Radiation pattern from an ell iptically cored fibre 
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CHAPTER V 

PRODUCTION OF GLASS TUBES WITH ELLIPTICAL MICRON-SCALE BORES 

5 .1 Liquid cored fibres for verifying A(3 calculations 

In chapter four, some limited tests on beat lengths in solid core 

elliptical fibres were described and the results were compared with 

a theoretical calculation of the normalised difference in 

propagation constants for these fibres. Although these tests 

appeared to show partial agreement with theory, it was felt that the 

remaining discrepancy and opportunities for error in the 

calculations justified a more determined attempt to expose any 

inaccuracy in the calculations or the normalisation technique. 

Since the discrepancy between theory and practice in the results of 

chapter four appeared to be attributable to the non-ideal nature of 

doped silica fibres, it was decided to avoid the practical problems 

and possible spurious effects associated with such fibres and to 

produce stress free, truly step index, liquid core elliptical guides. 

Initially this entailed production of short lengths of hollow fibre 

with an elliptical bore suitable for filling with liquid which would 

act as the core material. It was expected that the production-of a 

bore of single mode dimensions would be achievable fairly quickly. 

There were also other obvious advantages to this technique. The 

ellipse dimensions were expected to be easily measurable directly 

since the boundary would be a well defined solid surface. The 

liquid core would eliminate refractive index perturbations due to 

stress since there would be no thermal stress involved and the 

cladding could itself be annealed prior to f i l l ing . Furthermore, 

the core index would be easily measurable by using a liquid sample 

in a standard refractometer. Thus conditions would be nearly ideal 

for comparing theory and practice. 

This chapter describes the results of a sustained effort to master 

the technique necessary for the production and examination of hollow 

fibres for subsequent optical tests, which will be described in the 

following chapter. In practice, the realization of the technique 
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was replete with problems. These were largely connected with the 

rheology of the glass and required much effort for solution. 

However, once the correct conditions for fibre production had been 

established, the process became relatively routine. The production 

method described here is only suitable for short fibres and the main 

drawbacks of the technique are the lack of strength and only 

adequate uniformity of the final product. The great advantage of 

the technique is that it requires no sophisticated equipment and is 

consequently very cheap to operate. 

5 . 2 Production technique for elliptical bore tubes 

This section is intended to provide an outline of the short fibre 

production method described in this chapter. 

For optical tests on the elliptical guide, only short lengths of 

fibre were required - of the order of a few centimetres. It was 

therefore decided to dispense with the usual mechanisms for feeding 

preform material into a drawing furnace and for reeling the fibre 

outfall , and to go instead for a simplified static arrangement. 

This used a hollow glass preform hung vertically through the centre 

of a short furnace by means of a screw clamp arrangement. Fibre was 

then drawn from the furnace hot zone by the force of the weight of 

material below the hot zone (this is known as drop-loading). Under 

these conditions, the preform develops a 'neck' in the hot zone 

itself which governs the instantaneous diameter of the thread 

leaving the hot zone and thereafter solidifying. The arrangement is 

shown schematically below. 

It must be understood that this method is basically a departure from 

the standard methods of producing fibre. A basic assumption in all 

large scale fibre production, irrespective of fibre material or 

application, is that all variables in the drawing system are at 

equilibrium; they are constant. Examples of such variables are feed 

and draw velocities, neck temperature, deformation gradient, etc. 

This requires in practice that much fibre is pulled and that time 

has elapsed before the final product is uniform. In the techniques 

used here, the maximum length of fibre drawn at any one time was no 

more than a metre and a half. The preform was not fed into the 

furnace at all and so the system was basically unstable and a 
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Fig. 5 . 1 Schematic arrangement of hollow fibre production method 

definite value of maximum thread length existed. Some degree of 

taper in the final fibre was also inevitable. In this way, the 

technique is more akin to early experimental techniques used to 

study the spinnability of fluids^". (These methods employed the 

drop-loading of fluid threads suspended from glass rods). Despite 

the existence of such work and the increases in research effort in 

this field in the last twenty years, fibre drawing remains as much 

an art as a science. The early work produced qualitative results 

only, and while there now exists some foundation of knowledge for 

the prediction of drawing and spinning behaviour, the production 

method described here is more appropria-tely described by qualitative 

argument than quantitative analysis. 

5 .3 Preform Material 

Elliptical bore capillary tubing was chosen as the preform material 

from which to draw hollow fibre. In order to satisfy conditions of 

simplicity and cheapness, a material melting at low temperature was 

required so that an electric resistance furnace could be used at the 

drawing stage without need for inert gas purging systems or 

extensive safety precautions. 
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Several possible choices for preform material were available. These 

were sil ica , lead-glass and Pyrex tubes with varying bore to 

outer-diameter ratios. Silica was rejected because of the 

necessarily high working temperature. Lead glass, although more 

transparent than Pyrex, was rejected because it was only available 

with very.small bore to outer diameter ratios. This would have 

exacerbated the problem of preserving the bore during drawing and 

would also have increased the difficulty in launching light into the 

fibre during the final optical tests. Pyrex was finally chosen as a 

preform material because it was the easiest material to work with, 

was available with suitable bore to outer diameter ratios and also 

because some samples were available with partially elliptical bores 

as manufactured. 

5 .4 Furnace Design 

Four possible approaches existed for the production of hollow 

fibre. The first alternative for fibre production was the 

employment of hand drawing by an experienced glass blower. Although 

hollow fibres of bore diameters down to 40 microns can be produced 

by hand, they are not small enough or uniform enough to permit 

stable single mode operation when filled with a liquid core. The 

next possible alternative was a hypodermic tube furnace. This was 

rejected because the hypodermic tube did not heat the fibre evenly 

and it was impossible to accurately control the internal temperature 

of such a furnace. The third alternative was the use of a large 

R .F . induction furnace. This was regarded as being unnecessarily 

elaborate. The furnace design which was finally evolved is shown 

below. 

The screw clamp system in the brass head cap consists of two levels 

of three 120° spaced bolts. These provide the necessary 

adjustability for directing preforms vertically and in the centre of 

the hot zone. 

The alumina tube was chosen to be sufficiently larger than the 

preforms to provide radially symmetrical heating and so that the hot 

zone might also accommodate a thermocouple for accurate temperature 

measurement and control. 
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Brass head cap with 

preform clamp screws 

Alumina tube 1" i . d 

Post draw-down cooling 

gas inlet. 
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To power controller 
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seating 

pad 

Drilled 

firebrick 

insulator 
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Platinum thermocouple 
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To temperature 

controller 

60 cm o .d . x 1.6 m Pyrex 

draught shield 

Soft seating pad 

Support bracket 

Fig. 5 .2 Furnace Design 

The Pyrex tube suspended below the furnace had two purposes. 

Firstly, it was used to prevent draughts from causing short term 

temperature variations in the furnace and thus to improve the 

uniformity of the fibre produced. Secondly, the tube was extremely 

useful for containing and protecting the fibre outfall after the 

drawing operation. 
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The heating element consisted of a Kanthal coil fixed inside the 

alumina tube. It was prewound on a former and slid into the tube. 

The only protruding elements are the short lengths taken down 

through holes in the baseboard for connection of power lines. The 

power is taken via a 200 amp 12:1 stepdown isolating transformer fed 

from a low current Variac supply and is governed during operation by 

a thyristor phase angle controller in the secondary of the isolating 

transformer. The circuit diagram is shown in figure 5 . 3 . The 

thyristor unit is itself controlled by a feedback signal from the 

thermocouple in the hot zone. A proprietary temperature controller 

was used for this purpose, employing proportional plus integral plus 

derivative terms to maintain a preset temperature to better than 

approximately 0 . 5 ° C in the hot zone. The furnace current could be 

read at any time on the ammeter and the total available power was 

set manually at the Variac. 

Furnace 

Winding 

Fig. 5 .3 Electrical System of Furnace 



Distance along drawn rod (cm) 

Fig. 5.4 Typical diameter profile of drawn Pyrex rod 
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5.5 Early Work: Drawing of Pyrex Rod 

5.5.1 Method 

The aim of the early rod drawing experiments was to investigate the 
conditions necessary to obtain fibre drawing at a convenient rate 
with a sensible combination of furnace temperature and pulling 
force. The pulling force was applied by attaching a weight to the 
bottom of the preform which was then clamped in the centre of the 
furnace. As heat was applied, the weight began to fall and was 
allowed to reach floor level before power was removed. This basic 
method was found adequate for all successive fibre drawing runs and 
was not changed. 

Early weights used were too large for uniform fibre production. 
Their effect was to pull hot material from the hot zone of the 
furnace more quickly than the incoming slightly cooler material 
could be heated to the same temperature, and this accounts for the 
slightly uneven tapering of the typical final drawn rod, whose 
diameter variation with drawn length is shown in figure 5.4. This 
figure shows the lower end of the preform at the left and the upper 
end at the right. It will be obvious that the establishment of the 
. neck in the typical case shown here occupied the first half-metre of 
the pull, the remaining section tapering uniformly toward the end of 
the fibre. 

5.5.2 Necking Process 

It was necessary during these experiments to gain some understanding 
of the drawing process. Now, the essential requirement for fibre 
drawing, whether transient or steady state, is that the material is 
continuous between drawn and undrawn sections which are stable in 
themselves. It is then a kinematic necessity that the velocity 
distribution along the specimen should be sigmoidal in shape, 
resembling one of the curves in figure 5.5. 
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Fig. 5.5 Velocity distribution along drawn specimen 

In the experiments reported here, preform velocity is zero, and as 
the neck approaches stability the shape of the curve changes with 
time. In standard fibre drawing, only the final curve would be 
relevant. For many polymeric materials, the undashed curve of 
figure 5.5 might be determined solely by the material deformation 
characteristics under the given drawing conditions, but this is not 

This being understood, it remains to be seen why a neck should 
approach stability as observed in these experiments. First of all, 
it will be clear that once the drawn section has reduced 
significantly in diameter with respect to the preform, considerable 
lengths of fibre can be pulled without removing a significant volume 
of material from the neck. Consequently its overall shape must be 
stable and so also its position with respect to its environment, the 
hot zone. Next, the hot zone has finite length and is placed at the 
bottom of the furnace. The temperature distribution along the rod 
is therefore very quickly varying and the viscosity is consequently 
increasing by many orders of magnitude down the neck. At the bottom 
of the neck the viscosity must be extremely high, or the fibre would 
break by local flow causing sudden thinning of the fibre at this 
point. Finally, the stress pattern may tend to prevent the neck 
from thinning further at the lower end since it is modified by the 
shape of the neck to become more nearly parallel with the axis. 

the case for glass under most practical conditions. 
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This qualitative picture of the drawing process will suffice as 
background to the observations and discussions in the remaining part 
of this chapter. A complete analysis of the necking process could 
not be produced without extensive work and in any case sufficient 
rheological information about the behaviour of Pyrex may not exist. 

5.5.3 Empirical Characteristics 

The early experiments showed that, with the existing furnace, 
pull-down ratios of twenty to one in diameter were possible and that 
final fibre taper was likely to be better than 0.3% per centimetre. 
Taper was recognised as an important factor for projected optical 
experiments since a guide of workable length (1/2 metre) with good 
mode binding and also single mode over its entire length was 
necessary. This limited the variation in normalised frequency and 
hence core diameter to some 20%. 

Change in the external ellipticity of the rod was also checked and 
was found to be better than the limits of simple measurement, i.e. 
better than 0.2%. 

t 5.5.4 Second Stage Rod Drawing 

A further obvious conclusion of the rod experiments was that it 
would be necessary to produce fibres by a two stage process since 
the draw-down diameter ratio between initial and final diameters of 
the Pyrex tubing would need to be nearer 400:1 than 20:1. Two 
stages of drawing are in any case desirable with the present 
technique, since there is an opportunity for greater control over 
the dimensions of the final fibre than with one stage. 

Accordingly the rod samples drawn in the previous experiments were 
used as preforms for drawing down a second time in the same 
furnace. The existing furnace head clamp was too clumsy to support 
preforms of 500 microns diameter and so the arrangement of figure 
5.6 was used for all second stage pulling experiments. Only 
modified sections of the furnace arrangement are shown. All other 
details are as shown in figure 5.2. 
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Fig 5.6 Modified preform support for second stage drawing 

More care was needed to pull one and a half metre lengths of fibre 
with this arrangement. It was necessary to reduce pulling 
temperatures and stress levels. This is probably because the 1.5 m 
fibre length removed a proportionately much larger volume of 
material from the neck of the approximately 0.5 mm diameter preform 
than from the stage one 5 mm diameter preforms. To compensate for 
this effect, however, it must be remembered that the furnace hot 
zone length was also unchanged. Hence the proportionate length of 
the necking region was also longer for the smaller preform. It may 
be further noted that qualitative agreement with existing findings 
on the spinning of liquid threads was found here. The glass fibres 
were subject to breakage by cohesive fracture (i.e. exceeding 
tensile strength of the fibre) and this occurred at the base of the 
neck with high drawing velocities. 

A typical result of a stage two draw run is shown in figure 5.7. 
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Distance along drawn fibre (cm) 

Fig. 5.7 Second stage of draw-down: typical result. 
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It is very instructive to note that the stability of the neck was 
found to be very dependent on the scale hot zone length. 
Experiments indicated that, at a fixed temperature the neck will 
stabilise very much more quickly with a short than with a long hot 
zone. In figure 5.7 it will be apparent that the neck did not 
approach stability until at least 60 mm of fibre had been drawn. 
This length is equivalent to 1200 preform diameters and the hot zone 
length in this case was about 50 preform diameters. An experiment 
carried out at a similar temperature with a 5 mm preform took only 
40 diameters to stabilise with a scale hot zone length of 5 preform 
diameters. This shows that for large draw-down ratios and for 
limited fibre lengths for laboratory evaluation, short hot zones 
should be employed. Where very small draw-down ratios are required 
and again only limited lengths are needed for evaluation, very long 
hot zone lengths will produce the desired effect. This has been 
verified by work with hypodermic tube furnaces, where draw-down 
ratios of two to one are easily obtainable with very low taper - in 
this case due to the very slow neck formation and extremely extended 
approach to final stability. 

All this is again in qualitative agreement with liquid thread 
> investigations, where the maximum thread length is found to increase 

as the deformation gradient (inversely proportional to neck length) 
decreases. (This again assumes cohesive fracture)^. It must be 
stressed that neck formation in glass is entirely due to the method 
of treatment and is not a fundamental characteristic of the 
material. It is for this reason that the final fibre 
characteristics can be controlled to such a high degree. 

5.6 First Stage Drawing of Pyrex Capillary Tube 

5.6.1 Necking Process 

Draw-down of Pyrex capillary tube was then tried. An early result 
is displayed in figure 5.8. Several salient points emerge here. 
The diameter profile shows the same behaviour as Pyrex rod. The 
second graph shows the variation of bore diameter as a fraction of 
local outer diameter for the drawn tube. Very significant bore 
shrinkage obviously occurred during the establishment of the neck. 
This was found to be a serious problem during early experiments. 
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Distance along drawn tube (cm) 

Fig. 5.8 Diameter profile and bore fraction as a function of 
drawn length for a single tube 
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The reason for the shrinkage of the bore probably lies partly in the 
nature of the stress pattern during necking. The stress during 
initiation of pulling is homogeneously distributed throughout the 
tube as a parallel stress pattern. This has an automatic shear 
component acting maximally at 45° to the tensile stress. In a 
homogeneous body the shear is balanced by symmetry, but at the walls 
of a bore there is no net force tending to counteract the shear, and 
since the glass is in a plastic state here, it will deform locally 
under the shearing action. 

It was discovered that the principle effect which stabilises the 
bore to outer diameter ratio is probably due to the rheology of the 
material, but this will be discussed under the heading of second 
stage bore collapse where it assumes far greater practical 
importance. 

5.6.2 Ellipticity Increase 

The Pyrex capillary tubes used in the early drawing experiments were 
inexpensive and the bores were not precisely circular. In some 
cases the initial ellipticity amounted to as much as 30%. After 

> draw-down, the ellipticity was found to have increased significantly 
in all cases. This was puzzling at first until an attempt was made 
to relate this phenomenon to the implications of the already noted 
bore shrinkage. A simple model for ellipticity increase was arrived 
at as follows. The argument is illustrated by figure 5.9. 

The Pyrex capillary tubes were first assumed to draw down without 
any deformation of their relative geometry. This would have 
produced a cross section with a bore shown as contour 'A' in figure 
5.9. This contour was compared with that made by the actual bore 
boundary, labelled 'B1 in the diagram. It was found that the 
absolute shrinkage represented by the radial distance, x, between 
the two contours was equal on the principal axes of the bore 
ellipse. Such behaviour is predicted by the argument given to 
explain bore shrinkage in section 5.6.1. Bore shrinkage was 
attributed to unbalanced shear forces in the neck. These forces 
could be expected to be equal around the bore surface since the 
preform is essentially circular and the uniform stress distribution 
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Fig. 5.9 Illustration of ellipticity increase 

should not be greatly modified by the presence of a small, slightly 
elliptical bore. This assumption of symmetrical shrinkage is in 
agreement with the observations and explains the increase in 
ellipticity in the following way. The ellipticity E^ of the 
bore in the preform is given by: 

Ei = Major axis - Minor axis 
Major axis 

= 6 
d 

for contour A 

For contour 'B1, that of the bore in the drawn fibre, the new bore 
'ellipticity e^ i-s given by: 

£ 2 = 6 > S_ 
d - 2x d 
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Thus the symmetrical absolute bore shrinkage has a greater relative 
effect on the minor axis than on the major axis of the bore. 

5.7 Second Stage Capillary Drawing 

Using the hollow fibre produced from the experiments described above 
as preforms for the second drawing stage, further problems were 
found. This was quite predictable on the basis that the end 
products from second stage draw-down are so small that even slight 
irregularities developing in deformation of the preform were bound 
to produce much greater relative effects on the geometry of the 
bores of final fibres (c.f. ellipticity change above). Because of 
this also, greater variation in results was encountered in second 
stage drawing experiments. 

5.7.1 Bore Collapse 

The problem of bore shrinkage has already been alluded to in section 
5.6.1. Initially, total bore collapse was observed during second 
stage capillary drawing. It was found that far more care had to be 
given to drawing conditions to preserve the bore at all. 

Various methods of preventing bore collapse were tried, including 
pressurising the bore and investigating the effects of temperature 
and stress. By far the most positive effect was that of stress. It 
was found that increasing the initial stress to levels much higher 
than used previously was of great benefit in obtaining fibres with 
continuous bore over the full one and a half metres. Reduction of 
pulling temperature was also found to be helpful. 

With the Pyrex tubing used in this experiment, as much as 7.8 kPa 
was inadequate to guarantee a completely preserved bore at 
approximately 900° C hot zone temperature (see photograph of fibre 
section fig. 5.10, showing point of bore collapse) but at 
approximately 790° C this initial stress would preserve the bore 
totally. A section of fibre produced at the lower temperature was 
photographed (fig. 5.11) at the same diameter as that where bore 
collapse occurred at the higher temperature. Note the difference in 
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bore diameter of the two fibres as well as the continuity of the 

bore in figure 5.11. A section of fibre produced later at 790 0 C 

hot zone temperature and initial stress of 19.0 kPa is also included 

as figure 5.12 for comparison. Note the much greater improvement in 

bore to outer diameter ratio, which in this case is very close to 

that of the preform. All preforms used in these runs were between 

570 and 580 microns in diameter, with initial bore diameter ·to outer 

diameter ratios of 0.22 to 0.27. 

The samples of fibre photographed in figures 5.11 and 5.12 were 

drawn at the same temperature and these indicate that the effect of 

changing stress by a factor of two can be more important to hore 

preservation than a change in pulling temperature of 110 0 C. This 

evidence is corrobora t ed by experience from stage one tube drawing. 

The stabilisation of the bore evidenced in figure 5.8 occurred at a 

stress level in the neck of approximately 28 kPa . 

Fig. 5.10 Fibre Section wi th bore 

collapse 

Fibre produced at 900 0 C 

and initial stress 

7.65 kPa 

(I nitial bore/outer 0.22) 

Fig. 5.11 

produced 

7.06 kPa 

(Initial 

Fibre section 

at 790 0 C a~ 

initial stress 

bore/outer = 0.22) 
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Figure 5.12 Fibre section produced at 790 0 C and 19.0 kPa initial 

stress 
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The behaviour described above was very surprising. Before 
experiments were begun, it was anticipated that high stress levels 
in the neck would contribute to, rather than prevent, bore 
collapse. The reason for this behaviour may be rooted in the 
rheology of the material. Until recently, it was believed that 
glass in the transition region and above is a Newtonian liquid (i.e. 
the viscosity is independent of stress). This is in direct conflict 
with expectations regarding the material's behaviour based on 

2 

knowledge of its structure. The paradox was resolved by Bartenev 
who showed that glass behaves as a Newtonian liquid only at moderate 
stress levels and above. At low stress levels and temperatures in 
and above the transition region, glass behaves as a visco-elastic 
material (i.e. it undergoes reversible deformations which take time 
to establish themselves and to disappear). Furthermore, the modulus 
of visco-elasticity is very small - about a thousand times smaller 
than the normal elastic stress modulus. The early transition 
between the two states was attributed to the ease of breakdown of 
the polymeric structure into simpler units. 

Thus at low stresses, glass at high temperature can be expected to 
slowly undergo relatively large deformations. In the case of 
capillary tube drawing, the deformation of the bore walls due to 
unbalanced shear may then be quite significant. Thus, as was noted 
at the beginning of the chapter, a deformation which might go 
unnoticed in the preform could have a catastrophic effect on the 
final fibre. At high stresses, such deformation will not occur 
since the glass will behave in a normal, Newtonian-viscous manner. 
This argument agrees with Bartenev's findings in that the boundary 
between viscous and visco-elastic deformation was found to occur at 
about 9.8 kPa for alkali silicate glass in the transition region - a 
value fully compatible with the figures from the experiments 
reported here. 

The temperature dependence of this effect is somewhat complex, since 
the Newtonian-viscous threshold stress increases as temperature is 
raised, but the deviation from purely Newtonian flow is reduced and 
the time taken to reach equilibrium is much increased. It may also 
be that at high temperatures and small sizes surface tension forces 
become more prominent in aiding bore collapse. 
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It was found that ellipticity was stabilised when the problem with 
bore collapse was solved. This was despite the existence of some 
residual bore shrinkage during second stage drawing. It is 
conjectured that the remaining bore shrinkage may be due to other 
effects than those discussed earlier, for example surface tension 
effects, and these may have a different influence on the bore 
ellipticity. 

5.7.2 Fracture Mechanisms 

As might be expected, far more trouble with fracture of the fibre 
was found in stage two than in stage one. The problem was made 
critical by the fact that in order to prevent bore collapse, initial 
stress had to be kept high. Thus the working stress in the neck and 
fibre during the useful drawing period was very high - of the order 
of 150 kPa (tensile). This led to considerable liability to 
cohesive fracture of the fibre at the base of the neck. 

A second source of fracture was due to heat generation within the 
neck. Pulling fibre against viscous resistance in the neck 

> generates heat. Although the total heat generated was small, 
amounting to some five watts at most, this nevertheless was being 
generated within a very small volume in the neck and no doubt raised 
the neck temperature above that of the surrounding hot zone. In 
early experiments this led to thermal runaway of the drawing process 
and either fracture of the fibre or total bore collapse. 

A third source of fracture and weakness in the fibres produced was 
due to partial devitrification of the glass. Reference to figure 
5.11 will show that the fibre shown there, produced at 790° C has 
melted incompletely and that there are small irregularities on its 
surface due to small crystallites that have grown during the drawing 
process. This has occurred because of the slowness of the drawing 
process and the proximity of the pulling temperature to the 
transition region. 
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5.7.3 Fibre Uniformity 

Tests showed that after the problems described earlier had been 
solved, the drawing process produced fibre which was of sufficiently 
good quality and had sufficiently predictable characteristics to be 
used for optical tests. Figure 5.13 shows the result of a test 
carried out to check fibre uniformity from second stage tube 
drawing. It is clear that over lengths of up to 10 cm, the diameter 
of the fibre was stable to about ± 8% with most of the variation 
in diameter being due to a short range sawtooth diameter fluctuation 
superimposed on the long range uniform gradual taper. This sawtooth 
variation was regularly seen and is believed to be the result of 
residual temperature fluctuations within the furnace and was 
regarded as a practical limit with the equipment and method used 
here. 

Within the limits of measurement (y ± 10%), the ratio of bore 
major axis to outer diameter (or fibre major axis) remained constant 
along the fibre length. The bore ellipticity was, however, seen to 
vary significantly along the length of drawn fibre, these variations 
being correlated with variations in the fibre diameter. These 
variations in ellipticity enforced a final direct examination of the 
particular sections of the fibre used in the optical experiments so 
as to more accurately determine the actual bore ellipticity. This 
examination was accomplished by scanning electron microscopy and was 
necessary for comparison between the predicted and observed 
propagation characteristics. 

5.8 Summary of Short Fibre Production Technique 

We have seen that the short fibre production technique can produce 
lengths of hollow elliptical bore tube suitable for optical 
experiments. The standard drawing conditions were very critical for 
second stage drawing to produce the final tubes and were set so 
that, using the equipment and method described, the initial stress 
in the preforms was 49 kPa and the furnace temperature was set to an 
initial value of 780° C. Under these conditions, the elliptical 
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Figure 5.13 Variation of fibre outer diameter with position for a 
typical Pyrex second stage drawn tube 

bores shrank by 20% but did not significantly change in 
ellipticity. Outer diameter ratios between preform and useful fibre 
were typically near 30:1. 

A range of fibres for optical experiments were made in the following 
way. Pyrex capillary tubing of 5 mm outer diameter and bore to 
outer diameter ratio of 0.027 was chosen as the starting material. 
This tubing was given to a professional glass blower, who partially 
remoulded the tube into lengths having ellipticity. These lengths 
were drawn in the furnace described in a first stage process. This 
first stage tube product was then cut into approximately 10 cm 
lengths so as to produce batches of preforms each with a particular 
geometry. Because of the taper involved in the stage one process, a 
large range of preform diameters were produced within each batch, 
but within each batch all preforms had similar geometry. 

Fibres were next produced from these preforms by first choosing an 
approximate desired optical design and selecting the particular 
preform likely to produce fibre of the correct geometry. These 
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preforms were then drawn in a second stage process, examined with 

the aid of an optical microscope, and if suitable were wound onto 

glass cylinders and stored until needed for optical experiments. 

Figure 5.14 shows an optical micrograph of the cross section of one 

of the preforms produced by stage one drawing, while figure 5.15 

shows an electron micrograph of the final fibre produced from that 

preform. 

Fig. 5.14 Cross section of preform from stage one drawing 

Fig. 5.15 Cross section of fibre produced from preform shown In 

fig. 5.14 
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CHAPTER VI 

PRODUCTION AND TESTING OF LIQUID CORED ELLIPTICAL GUIDES 

6.1 Design and Production of Liquid Cored Elliptical Guides 

Elliptically cored fibres were designed to conform to practical 
constraints while testing the AB calculations over the most 
important part of the range of interest. 

To begin, a target ellipticity was chosen and then a suitable 
preform was selected from stage one drawn stock. This selection was 
made on a predictive basis relying on stage two draw-down 
experience. Reliance was placed on the natural taper inherent in 
the drawing process to provide a suitable range of fibre and bore 
diameters for the optical tests. Since control of the drawing 
process was imperfect, it was necessary to examine the resulting 
fibre samples with an optical microscope. Bore ellipticities and 
sizes were estimated for test samples at this stage by optical 
examination of fibre ends further toward the large end of the 

» tapered section. 

Desired index differences were selected to meet two requirements. 
First, that a particular V value should be achieved in the tested 
sample of fibre and, secondly, that birefringence should be 
measurable by the cut-back technique. A liquid of the correct index 
to produce the desired index difference in the fibre was next 
produced by carefully mixing liquids of known index in exact 
proportions. In the final stage of production fibres were filled 
with the mixed liquid. This was accomplished by driving the liquid 
into the fibres under pressure. 

6.1.1 Selection and Handling of Liquids for Fibre Cores 

It was appreciated from the outset that this work would involve 
extensive, close handling of the liquids needed for the fibre 
cores. Commercially available refractive index liquids are toxic 
and unpleasant to work with and so were judged unsuitable for these 
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experiments and alternative liquids were sought. The refractive 
index of a Pyrex sample was measured at 633 nm with the aid of an 
Abbe refTactometer. This yielded a value of 1.4725 ± 2 x 10"1*. 
Accordingly, non-toxic liquids with indices higher than this were 
needed. It was also necessary that they should be mutually miscible 
without chemical change, have low viscosity for easy fibre filling, 
should be relatively clear, reasonably pleasant to work with and not 
be optically active. 

It was found that there are certain organic oils normally used in 
the food, pharmaceutical and cosmetics industries which fulfil these 
requirements. Four oils were chosen as being particularly suitable 
for these experiments and samples were procured. The refractive 
index of each was measured with the Abbe refTactometer and the 
results appear in Table 6.1. 

i 

Oil Refractive index at 633 nm and 20° C 

Anise Oil 1.548 
Ceylonese Cinnamon Oil 1.531 
Palmarose Oil 1.472 
Oil of Rue 1.428 

Table 6.1 Refractive indices of various oils 

To make liquids of desired refractive index, the above liquids were 
mixed. It was at first assumed, and later verified, that there was 
a linear dependence of resultant index on the concentration of one 
liquid within another, i.e. for a mixture of two liquids: 

a = (n
F
 - n

L
) 

U H " "L) 6' 1 
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Here n^ = final index of mixture 
n^ = refractive index of lower index liquid 
n = refractive index of higher index liquid H 
a = fraction of total volume occupied by liquid nu ri 

The mixing was accomplished within calibrated hypodermic syringes 
which were used to extract precise volumes of the oils from their 
storage bottles. Contamination of the storage bottles was avoided 
by changing the disposable hypodermic needles between extractions. 
All mixtures were checked for accuracy of the resultant index by 
means of the Abbe refractometer. It was found that Palmarose and 
Cinnamon oil mixtures were stable over periods of weeks. Optical 
activity of these liquids was checked by passing a polarised laser 
beam through glass vessels containing the liquids, and it was 
confirmed that no significant activity was present. 

6.1.2 Filling the Elliptical Tubes 

Early filling tests relied on surface tension for drawing the liquid 
into the micron scale bores. These tests showed that this method 
was impracticably slow and so a pressure assisted filling technique 
was adopted. A pressure vessel (shown in figure 6.1) was 
constructed to hold the core liquid and the elliptical bore tube. 
One end of the tube was open to the atmosphere while the other was 
sealed beneath the surface of the liquid within the vessel. An 
indium/tin solder was found to be most suitable for sealing the 
fibre in position. The fibre was held in a threaded plug which was 
removed from the main body for insertion, positioning and sealing 
operations. 

The filling operation for each fibre commenced with preparation of a 
suitable length of chosen fibre. After cutting the inlet end of the 
fibre, great care was taken to prevent blockage of this end. The 
fibre was always fed through the plug by placing the outlet end in 
the reservoir area and pushing the fibre through the plug until it 
protruded from the outer end of the plug. The fibre was then pulled 
through from the outer end of the plug until the inlet end was within 
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Figure 6.1 Pressure vessel 

the reservoir area. This operation was monitored by means of a 
stereo zoom microscope. The reservoir area of the plug, being 

* recessed, served to protect the inlet end of the fibre from 
contamination when the plug was screwed into the main body. 

After the desired core liquid had been introduced into the pressure 
vessel by means of a hypodermic syringe, the vessel was connected to 
a gas supply, as shown in figure 6.2. 

Enough mixed liquid was introduced into the pressurised reservoir to 
cover the inlet end of the fibre with the reservoir held at 
approximately 45° to the vertical, as shown in the above figure. 
This allowed the fibre to be led onto the table of a microscope 
which was in close proximity to the gas system. The microscope was 
used to follow the progress of the filling operation as it was 
happening so that blockages and other irregularities could be 
detected. Obviously it was also possible to detect completion of 
the filling operation using this instrument. The length of fibre to 
be filled normally exceeded the available travel of the microscope 
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Figure 6.2 Filling System 

table. In addition it was not desirable to bend fibres unduly while 
> being filled in case breakage of the fibre occurred at the point 

where it emerged from the sealing plug. For these reasons, the 
microscope body was mounted on a linear frictionless slide which 
allowed the whole operation to be monitored without any danger to 
the fibre. Reservoir pressure was normally set at seven atmospheres 
(105 psi) and this was sufficient to fill about 10 cm of fibre with 
a bore diameter of 2 microns minor axis in about five minutes. 
After filling, the fibre was normally broken at the point where it 
emerged from the sealing plug, which was then drilled clear of 
solder ready for re-use. 

6.2 Optical Tests of Normalised Birefringence 

6.2.1 Equipment 

The optical tests of normalised birefringence were carried out by a 
cut-back technique developed from that employed for solid core 

* fibres, as described in chapter three. Accordingly, the layout of 
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the optical train was very similar to the earlier experiments. The 
arrangement used for the new tests, shown in figure 6.3, embodies 
only two differences from the equipment of chapter three. 

The first major difference is that only short fibre lengths were 
used - less than 10 cm - due to fabrication and uniformity 
constraints. The fibres were supported on microscope slides and 
immersed in benzyl benzoate cladding mode stripping liquid over the 
entire length of support. Only very short lengths of fibre - a few 
millimetres - were allowed to protrude from each end of the 
support. In this way light scattered from the cotes of the fibres 
was prevented from interfering with the measurement, by ensuring 
that very little cladding light was present at the output ends. 
These measures were necessary because these fibres x/ere found to 
scatter guided light strongly, most likely due to interface defects 
and impurities in the core liquids. Such scattering was not of 
Rayleigh character and so suppressed the formation of any beat 
pattern. 

Because much light reached the rear end of the supporting microscope 
i slide, it was necessary to visually check that the collimating lens 

was focused on the fibre end. This was achieved by using the 
adjustable telescope with eyepiece inserted during alignment. For 
polarisation measurements, the eyepiece was removed. Both objective 
lenses were selected for low birefringence, each having a 
retardation of less than two degrees at 633 nm. 

6.2.2 Method 

A number of phase delay measurements were necessary on each of many 
test fibres. However, it was anticipated that the behaviour of 
these fibres would be much simpler than that for the solid core 
fibre in chapter three. Also, because of the large number of 
measurements involved in the liquid core test programme, it was 
important to minimise the time taken for each measurement. In view 
of these two considerations it was decided to simplify the 
measurement technique from that described in chapter three. 
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Figure 6.3 Optical layout for normalised birefringence tests 

It was found that the privileged axes of the fibres could be located 
by iteratively adjusting the input and output polarisers to achieve 
extinction in the absence of the quarter-wave plate. As a check on 
accuracy, the relative orientation of the polarisers for extinction 
was checked beforehand and compared to the new relative orientation 
with the fibre in place. If the two relative orientations disagreed 
by more than a few degrees, the iteration process was repeated. 
This was done because the fibres were known to be reasonably 
uniform, stress free and untwisted so that the privileged axis 
directions at the launch and radiation ends had to be identical. 
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The advantage of this technique was to save time by eliminating the 
necessity of sweeping through a full eighteeen individual extinction 
measurements in order to identify the privileged axes of a length of 
fibre. 

Once the privileged axes had been found, the input polariser was 
rotated to launch light at 45° to the privileged axes. The output 
polariser was then rotated in order to produce minimimum transmitted 
intensity. The new orientation of the analysing polariser was then 
used to set the orientation of a quarter-wave plate introduced after 
the fibre and finally an extinction of the compensated light was 
obtained. The reason for this sequence is explained in 3.1.2. The 
difference, 0, between the penultimate and final orientations of 
the analysing polariser gave the basic retardation angle, 6, in 
the following manner. 

Equation 3.3, the relation between observed intensity ratio and the 
net phase difference between the two privileged waves, is repeated 
here: 

cos 5 = (1 - Q) 
(1 + Q) 3.3 
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But since Q = tan2 0 (see fig. 3.1), 6 = 2 0 by standard 
trigonometric manipulation. Thus the retardation of the sample of 
fibre was immediately derived from the appropriate analyser 
orientations. As a check, the quarter-wave plate and polarisation 
analysing crystal were iteratively adjusted for best extinction and 
the difference in their orientations for the iterated condition was 
ccompared to the difference for the pre-iterated condition. If 
these two results differed by more than a few degrees, the 
measurement was rejected. 

Having found the net retardation of the fibre sample, the length of 
the sample was measured and the fibre was cut back for a further 
measurement. Cutting back was achieved by sandwiching the fibre 
between two microscope cover slips and breaking off the unwanted, 
protruding fibre section against one slip. This technique minimised 
any bending of the retained section of fibre and was necessary 
because bending of the fibre tended to expel liquid from the bore 
near the fibre end. This in turn was undesirable because it would 
have caused launching difficulties, led to instability in the 
optical retardation measurement and uncertainty in the length 
measurement. 

The number of retardation measurements made on a particular sample 
of fibre was not uniform. Fibres with different specific retardance 
required different numbers of measurements to establish their 
absolute retardation versus length relations, as explained later. 

When measurements were complete, remaining lengths of the samples 
were cleaned and were examined by scanning electron microscopy 
(SEM), in addition to any available samples of fibre from 
immediately adjacent parts of the fibre from which the tested sample 
was taken. This was done to measure the exact dimensions of the 
fibre samples. It was mentioned earlier that optical microscope 
measurements of the fibre dimensions were originally taken further 
toward the large end of the taper only as a guide for sample design. 
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Preparation of the specimens for SEM examination was carried out as 
follows: The fibres were cleaved from the experimental sample in 
1 cm lengths and were glued to specimen stubs with araldite. The 
specimens were then ultrasonically cleaned in baths of isopropyl 
alcohol and toluene for five minutes each and then were 
ultrasonically rinsed in absolute alcohol for a further five 
minutes. Drying was carried out in a vacuum chamber at ambient 
temperature. Finally the specimens were sputter coated with gold to 
a thickness of ten Angstroms. 

6.2.3 Limitations of Method 

The measurement method described above was determined partly by time 
constraints and equipment availability. In addition, the nature of 
the fibre samples did not allow more elaborate techniques to be 
used. It was very difficult to quantify the errors involved in the 
technique, particularly as these varied from fibre to fibre. The 
most significant errors were thought to be due to limitations to the 
determination of the index differences of the fibres. Errors here 
would affect the calculations of both V and A8„. Such errors 

N 
would have different effects on each fibre sample depending on the 

i index difference of that sample. 

In general it appeared that the most reliable results were available 
from those samples employing the highest index differences. For 
good stability of the phase measurements, it was necessary to 

• • • • • 3 • 

maintain the index difference above 7 x 10 . However, it was 
simultaneously also necessary that the beat length of any sample 
should be greater than 3.6 cm in order to render the results 
interpretable in terms of absolute retardation. A further limit was 
imposed by cladding light preventing measurements on fibre samples 
less than 1 cm in length. 

The major disadvantage of the measurement method employed was that 
the retardation measurements were relative in nature and not 
absolute. Retardation values were in principle distributed about 
integer multiples of 180° retardation. This allowed room for 
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subjective consideration to influence the results and so ideally all 
samples should have been measured at length intervals very much less 
than a beat length. This would have allowed a straightforward 
derivation of the sample's birefringence. However, practical 
constraints did not allow this in all cases and it was then 
necessary to take many measurements of retardation over several beat 
lengths and to use graphical display of the possible values of 
absolute retardation to identify a best fit straight line to the 
experimental points. The best and worst examples of such results so 
obtained are shown in figures 6.4 and 6.5 respectively. 

Two final limitations on the method should be noted here. So far, 
it has been tacitly assumed that the refractive index of Pyrex in 
fibre form is identical to the bulk value. This was confirmed to be 
approximately true for most fibre samples when checked by the 
immersion method. However, two drawing runs produced fibres of 
different index which had to be measured from the fibre samples 
themselves. This was accomplished using the Abbe refractometer to 
an accuracy of ± 3 x 10 . The second limitation also relates 
to the accuracy of the index difference. The liquids used were all 
sensitive to temperature, changing their refractive index in a 
similar way as temperature varied. Experiments were carried out 
while constantly monitoring the ambient temperature to prevent 
errors due to temperature fluctuations. 

6.2.4 Results 

The results of the birefringence measurement experiments are 
detailed in table 6.2 and are shown graphically in figure 6.6. It 
is clear that despite variable errors, the effect of large 
ellipticity is to greatly increase the normalised birefringence of 
the fibres. In addition, the three results in figure 6.6 labelled 
51 A, B and C clearly confirm the correct peaking behaviour of the 
ABkt curves as V is varied. 



Fibre 
No. 

SEM Results Refractive Index Measurements V Birefringence Measurement 

Theoretical 
Computed A3^ 
at same V 

Fibre 
No. 

Minor 
axis core 
diameter, 
2b, (ym) 

Ellipticity 
a 
b 

Core 
Liquid 
Index 
nl 

Clad 
Index 

n2 

An 

= ni-n2 
Specific 
Retardation 

(°/cm) 

A 3 n 
Theoretical 
Computed A3^ 
at same V 

44 0.77 1.30 1.4827 1.4725 0.0102 0.66 25 0.042 < 0.01 

45B 1.82 1.41 1.4918 1.4725 0.0193 2.16 165 0.078 0.091 

45C 1.60 1.36 1.4790 1.4725 0.0065 1.10 3.9 0.029 0.074 

45D 2.10 1.32 1.4800 1.4725 0.0075 1.55 29 0.092 0.091 

45E 1.60 1.38 1.4870 1.4725 0.0145 1.64 131 0.110 0.103 

50C 1.72 2.95 1.4783 1.4730 0.0053 1.07 75 0.353 0. 298 

51A 1.94 2.99 1.4779 1.4749 0.0030 0.91 11 0. 216 0.260 

5 IB 1.50 2.99 1.4849 1.4749 0.0100 1.30 180 0. 316 0.286 

51C 1.82 2.99 1.4856 1.4749 0.0107 1.62 122 0.196 0.234 

I 
I—' 

I 

Table 6.2 Results of the measurements made on fibre samples for birefringence tests 
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V 

Fig. 6.6 Results of the optical tests of normalised birefringence 
for various fibres with liquid elliptical cores 
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The magnitude of A0N agrees well with theory for results 45D, B 
and E in particular, but the other results are clearly less 
accurate. It has been explained above that various errors in the 
simple measurements were not easily quantified but it should be 
noted that there is no discernible bias in the measured values of 
A0„ in comparison to the theoretically calculated results. When N 
these results are considered alone, this allows us to place some 
confidence in the computed results, but falls short of a high 
accuracy confirmation of the exact results of theoretical 
predictions. However, when the results of the tests on solid core 
fibres described in chapter four are also considered, it is apparent 
that the shift in V for peak AB remarked upon in that chapter is 
due to the nature of the solid core fibres tested. The liquid core 
fibres do not show any clear shift in the A0^ curves along the V 
axis. 

With encouragement from these results, it was decided to test using 
the liquid core fibres the variation of AB with An for a fixed 
fibre geometry. 

6.3 Optical Test of the Variation of AB with An 

6.3.1 Equipment and Method 

It had been noted that the refractive index of the core liquid in a 
fibre sample was temperature dependent. This is the key 
characteristic which made the experiment described in this section 
possible. The fibre identified in the preceding section as 51B was 
heated in the apparatus shown in figure 6.7 and was allowed to cool 
back to room temperature. During the beating and cooling 
operations, which were very slow, readings of phase difference were 
made on the light emerging from the fibre. These were obtained by 
the technique described in section 6.2. 

The heat source was manually controlled by connecting the soldering 
iron to the mains through a Variac autotransformer. The glass wool 
acted as thermal insulation and prevented air convection from 
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cooling the surface of the glass slide and fibre below the 
temperature measured by the thermcouple. The large metal block 
which transmitted heat to the slide served as a comparatively large 
thermal mass to prevent temperature fluctuations during the 
experiment. 

Figure 6.7 Arrangement for heating test fibre 

In order to know the index difference of the fibre at different 
temperatures, it was necessary to measure the temperature dependence 
of the refractive index of the core liquid. This was achieved by 
placing a sample of a similar liquid mixture in the Abbe 
refTactometer (Anise oil + Palmarose oil) and employing the integral 
water jacket to vary the temperature over the necessary range. The 
results of this preliminary experiment are shown in figure 6.8. 

The gradient of this graph gives an index change of -4.3 x 10"** 
per degree Celsius rise in temperature. 

6.3.2 Results 

The experiment was constrained by similar working limitations and 
errors to those described in section 6.2.3. The measured values are 
displayed in table 6.3 and compared with a theoretical line in 
figure 6.9. The value at 19.4° C in the table is taken from an 
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Temperature (° C) 

Figure 6.8 Variation of refractive index of Anise/Palmarose Oil 
mixture with temperature 

extrapolation of the A8 measurement for this fibre and the 
refractive index at this temperature is taken as the reference from 

• which all other index differences are calculated. 

In figure 6.9, the points are the measurements of table 6.3 while 
the line is calculated from theory, as described below. 

Clearly, A<j) = A8.H where I = fibre length (2.8 cm in this 
experiment). Hence, using formulae 4.30 and 4.32: 

A(j) = £A B n 360 (An) 2 

~ 6.1 o 

Here A(j) is expressed in degrees. Calculations were made by using 
the calculated An from table 6.3 to establish V at that An. 
AB was then recovered from the theoretical curves and the N 
expression 6.1 was evaluated. Agreement between the calculated and 
theoretical results is seen from figure 6.9 to be reasonably good 
over the range and is clearly consistent with the axiom that AB is 
proportional to (An)2. 
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Figure 6.9 Comparison of theoretical and measured phase shifts 

Temperature 
(° C) 

Calculated 
An 

Phase Shift 
A 4> (deg) 

18.8 0.0102 454 
19.3 0.0100 454 
19.4 0.0100 504 
19.6 0.0099 432 
21.2 0.0092 417 
21. 3 0.0091 384 
22.5 0.0086 313 
23.8 0.0081 305 
26. 9 0.0068 218 
30.1 0.0054 168 

Table 6.3 Results of phase shift measurement v. temperature 
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6.3.3 Corroboration of AB^ Result 

The temperature cycling technique presented here provides an 
alternative means of establishing absolute phase delay within a 
fibre. As the fire cools, the index difference increases from a low 
value, raising the phase delay above 7T radians. Checking the 
number of cycles produced until the desired V value is reached 
provides an absolute measure of the total phase shift between the 
two fundamental modes. If we regard AB^ as an unknown in 
formula 6.1 and now enter the measured A<|>, we have an independent 
means of checking AB^ with reduced error near the middle of the 
An range. Reference to figure 6.9 shows that the phase delays in 
the region of An = 8 x 10"3 can be accepted with reasonable 
confidence of their accuracy. When An = 8 x 10"3, V = 1.15 for 
fibre 51B, and using formula 6.1 we find that ABjq must be 0.285 
to produce the observed phase shift. This result is labelled 51BT 
where it is plotted on figure 6.6 for comparison with the cutback 
measurements. The agreement is reasonably good for this point, but 
it was not possible to reliably cycle the fibre over a large range 
of V to recover the full AB„ curve. Further measurements of 

N 

this type were not made because of practical problems in taking 
measurements during the temperature cycle. 

6.4 Conclusions 

This thesis has proposed the use of elliptically cored fibres for 
polarisation maintenance. Early work with single mode fibre not 
specifically designed for this purpose (detailed in chapter two) led 
to this proposal. A detailed consideration of the theoretical 
aspects of polarisation change has shown that even isotropic ideal 
single mode fibre is not suitable for maintaining polarisation under 
bad environmental conditions. As a first step in the development of 
the elliptically cored polarisation maintaining fibre, effort was 
directed at predicting and measuring the propagation constants for 
elliptical guides. 
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The results given in this chapter show that reasonable confidence 
can be placed in the calculations of normalised AB for the 
elliptical core fibre when the core is a liquid. The range for 
which this has been demonstrated covers index differences up to 
about 2 x 10~2, ellipticities up to 3 and V values up to 2.2, 
depending on ellipticity. 

It has been shown in earlier chapters through measurements on fibres 
with solid elliptical cores that similar magnitudes of birefringence 
can be expected from such fibres, but that performance of these is 
more variable and may be subject to more subtle effects. 

Confirmation of the cut-off conditions for elliptically cored fibres 
remains undemonstrated. This is an important area for future work, 
particularly as there has been some dispute concerning these in the 
literature. (For example, see chapter four, reference 17.) 

On the basis of experience gained during the experiments described 
in this thesis, it is strongly recommended that any further work on 
elliptically cored fibres should not be made using the liquid core, 
approach. Although performance adequate for checking the 

i propagation constants was secured in these experiments, problems 
with non-uniformity, fragility and limited length prevent these 
fibres from being used for more subtle measurements. In addition, 
the liquid core approach is slow to give results. Apart from these 
considerations, it is very likely that the more subtle 
characteristics of elliptically cored fibres (e.g. dispersion, 
depolarisation performance) will depend crucially on the material 
properties of the fibres. Since only solid core fibres would have 
any application, it is important that it is such fibres which are 
used for future performance tests. 



APPENDIX I Measured and calculated results pertaining to the polarisation performance of a 

length of single mode double crucible drawn fibre 
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X 

These figures relate to sections 3.1.5 and 3.2 
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Figure 1.1 Variation of C with z 

Figure 1.2 Variation of S with z 

Figure 1.3 Variation of y with z 
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APPENDIX II 
DESCRIPTION OF THE COMPUTER PROGRAM FOR 

CALCULATING AB FOR ELLIPTICALLY CORED FIBRES 

( i) Main Program 

This reads in the fibre refractive indices RI1 (core index) and RI2 
(cladding index) and the ratio of the major/minor core ellipse axes, 
R. Subroutines are then called to solve the normalised propagation 
constants of the two orthogonally polarised fundamental modes, 
BETANO and BETANE, for a range of V from 3.4 down to 0.3 in 
increments of 0.1. This range is reduced if the program cannot 
establish the propagation constants to a specified accuracy 
mentioned later. For each V value the difference, DELBN, between 
BETANO and BETANE is calculated and printed out together with error 
parameters, ANSE, ANSO, for the two propagation constants. 

(ii) Subroutine ELLIPSE 

The purpose of this subroutine is to calculate BETANE and BETANO. 

First, a trial value for B is calculated assuming a circular fibre 
of radius equal to the semi-minor axis of the core ellipse. This is 
calculated using the Gloge approximation. Since the elliptical core 
has more high index material than the circular fibre, the true 
results for both BETANO and BETANE must be lower than this value 
(i.e. light travels more slowly in the elliptical fibre). 

The first trial value for B is substituted into the characteristic 
equation (reproduced in the FUNCTION subprogram) and the right hand 
side (which should be zero for correct B) is calculated first for 
the even mode (specified by MTYPE=1). If the value of the right 
hand side is non-zero, the current value of B is stored, then U is 
lowered, lowering B in turn. The calculation is then repeated and 
the new value of B is stored. This process continues until a sign 
change occurs in the right hand side of the characteristic equation. 
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The last two guesses for 3 are then stored as P and Q to act as 
limits for an iterative search for the 'exact1 3 value which is 
the true root of the characteristic equation. The iterative search 
is controlled by a library routine available from the operating 
system. On the Imperial College CDC Cyber 174 machine, the routine 
C05ACF from the NAG library was used. The end point for the 
computation is set by the standard parameter ACC, which stops the 
search when the right hand side of the characteristic equation is 
less than or equal to ACC. This produces BETANE. 

The whole computation is then repeated with the expressions in the 
FUNCTION subprogram appropriate to the odd mode - selected by 
MTYPE=2 - finally yielding BETANO. 

(iii) FUNCTION F (RR) 

This subprogram begins by specifying values for the relevant Mathieu 
functions (taken from tables). These values are used as reference 
values from which the NAG library routine E05ADF calculates 
interpolated values to meet the required arguments for the given 
case. For values of argument less than one, an alternative 
calculation of the relevant Mathieu function is made based on a 
series expression taken from "Theory and application of Mathieu 
Functions" by N. W. McLachlan (Clarendon Press, Oxford, 1947). 

(iv) Subroutines BESJ and BESK 

These subroutines return values of the J and K Bessel functions for 
the ranges of argument and order specified in the comment blocks at 
the beginning of the respective routines. 

(v) Subroutines INUE, 10 

These subroutines give the values of the Bessel I and I & o n 
functions. These routines, together with the BESJ and BESK 
routines, are based on routines available from the IBM program 
library. 
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1. 00 G00 06 SUBROUTINE dE3J(X,N,5J,Q,IER) 

PURPOSE 
COMPUTE THE J BESSEL FUNCTION FOR A GIVEN ARGUMENT AND ORDER 

USAGE 
UALl. BESJtX, N,BJ,D,iER) 

DESCRIPTION OF PARAMETERS 
Y - T H " NPR.IIMFNT OF T H F I B F ^ R . N FUNPTTrnj 
N -THE ORDER OF THE J BESSEL FUNCTION 
GJ -THE RESULTANT J 3ESSEL FUNCTION 

D -REQUIRED ACCURACY 
IER -RE3ULTAN1 ERROR CODE 

I 6;:= C NU EimiOR 
IER=! N IS NcGATIVE 
1EN= 2 X IS ZERO OK NEGATIVE 
II R= 3 REQUIRED ACCURACY NTT OBTAINCD _ „„„ „ 
lEi;=4 i\ ANGE OF N COMPAi.EL TO X NOT COPP.ECT (SEE REMARKS) 

REMARKS 
M MUST BE GKEATEK THAN DR EQUAL TO ZERO. OUT IT MUST BE 
20+10*X-X**2/3 FOR X LCSS THAN ON EQUAL TO 15 
y0*X/2 FOR X GREATER THAN 15 

METHOD 
RECURRENCE RELATION TECHNIQUE U> 

-> OOOOOOB 
3. OQGGOOB 
'J • Q000U2B 10 
5. 0 0 10 u 4 B 
o . 0 000070 20 7. 0 000120 30 
a . 0 J u 'J 11B 
j. u J (j'J 1 6 u 33 

10. 0 0 0 0 208 n . 0 0 U 0 2 2 B 31 
- i J 31026B 32 
13. 0 u u u 3 4 0 
1-f. !] 3 U 0 3 5 B 34 
15. 0 0 GO -.20 36 
16. 0 010 46B 33 
I 7. ;)0*l 4C a 
11. 0 000 d3B tO 
l'J. OOuO-JtB 

20 . 
21. 22. 2 S • 
24. 
25. | 

QOCO-jpB 
oooobo.n 
JJC0b3B 
0 0 J J BR» 0 
000071b 
0000770 

B J-0.0 
I F ( N) 10 , 20 ,20 
I EP.= 1 
Rc. TURN 
IF (X)3Q,33,31 
I ER = 2 
RETURN 
DJ= 1. 0 
R E T U KN 

G0T036 

1C^=4 
R.TUPH 
IFk=0 
B P R E V = 0 . 0 

COMPUTE STARTING VALUE OF M 

IF (X-*. 0) 53,LB, 60 
50 MA=IFIX (X + 6.0) 

3 o TO 7 0 
60 M* = IFIX (1.4*X*60.Q/X) 
70 Mj=N*IFIX(X)/4*2 

HZERO = MAXO (MA,HB) 



r 

27. 
030102B 
Q00103D 

C QOUlloB 
2). OOOlloB 
3j . "J 0 u 117 B 

li 0 u 1 2C 3 * . 0 Ou123B 110 33, 0 3 0125 0 110 
34. j j 0127 B 123 

0 9 u 1 i 'J o 130 
3j. 0 3 0 litB 37 . 0001-4B 
38. G 3 u 14 5 a 
3 J. 00 C151B 
9 « d 3 u 1 j 1B 41. 0 0 0152 D 
42. u 3 b 1 56 B 1 hO 
43. fOu1613 150 
t'» • 0 0 G1u4 B 
45. 0 0 G1 o5 B 160 
46. b G G 17 6 B 
47. (• 01 2C ID 
i>). U 3 u 2 G 2 D 170 
40. 000205B 180 
J: . : b o 21 i i) 

o * uJl23 . I - •. 0 0 3 2 29 0 ISO 
13. (10 0 2 2 ̂  n 

ISO 

54. U Q 5 225 0 2b 0 >5. 0JC231B 
1. OOOOOOB 
2. 0Q0UU0B 

SET UPPER LIMIT OF h 

M:iAX = uTEGT 
D01SOM=HZ£RO,I1HAX,3 
SET F (M) iF (M-l I 

F;il = l .QE-28 
FM = Q. 0-
A l_PHA = 0 . 0 IF (M-(M/2I •2)120. 110,120 
JT = -1 
3 0 TO 130 
J T = 1 
M 2 = M-2 0*lb0K=l,h2 
M<=M-K 
UMK = 2.0*FlOAT(MK) »FM1/X-FM 
F M=P Ml 
F 11 = ti.IK 
IF(MK-N-1)150,140,150 
Bj = ntiK 
JT = -JT 
S = 1 *JT 
ALPhA=ALPHA*BMK*S 
UMK=2.0*FM1/X-FM 
IF(N)100,17J,18 0 
J J = UMK 
AI.PhA=ALPHA*BMK 
ii J = I1J/ALPHA 
IF ( A jS (i. J - JRP.IV) -AdS(Q*8J)) 200,201,190 
J r- f\L V =3 J 
1 ieR = 3 
\l I Ur.N 2 NO 

ON -O-

SUBROUTINE QESK(X,N,BK,IER) 
DIMENSION T (12) 

SUBROUTINE BE5K 
PURPOSE 

COMPUTE TME K BESSEL FUNCTION FOR A GIVEN ARGUMENT 
JS AGE 

CALL BESK(X,N,BK,IER) 

DESCRIPTION OF PARAMETERS 
X -THE ARGUMENT OF THE K BESSFL FUNCTION 
N -THE ORDER OF THE < BESSEL FUNCTION 
6K -THE RESULTANT K BESSEL FUNCTION 
IER -RESULTANT ERROR CODE 

IER= 0 NO ERROR 
1EK=1 N IS NEGATIVE 
IER= 2 X IS ZERO OR NEGATIVE 
IER=3 X.GT.170, MACHINE RANGE EXCEEDED 
IER=4 BK.GT.10*»70 



3 . 0 0 0 0 b 0 D 
4 . 0 0 0 0 1 , 0 
5 . O O u O l o Q 10 
6 . J O'OO 201) 

10 
7 . 0 Ouu 2 3 0 1 1 
3 . u 0 b 0 2 5 S 1 2 
9 . 0 0 0 0 2 7 0 

1 0 . 0 0 0 0 3 2 9 2 0 
.0 9 LO .36 0 2 1 < > — - • 0 G C 0 3 7 o 

1 3 . b 0 0 0 , 2 Q 2 2 
1 4 . 0 0 6 0 , 3 0 
1 5 . 0 j * d 4 6 B 2 5 
1 6 . 0 9 9 0 5 5 d 

2 5 
1 7 . OGGOpbO 
18 . 0 0 Q 0 b 3 B 
1 9 . 0 ] 0 0 6 4 a 
2 9 . 0 J G 0 6 7 B 2 5 
2 1 . 0 0 G 1 1 3 3 

REMARKS 
iM MUST Q£ GREATER THAN DR EQUAL TO ZERO 

METHOD 
COMPUTES ZCRO ORDER AND FIRE? ORDER EESSEL FUNCTIONS USING 
SERIES APPROXIMATIONS AND THEN COilPUTES N TH OROER FUNCTION 
USING RECURRENCE RELATION. 

0 K = 0 . 0 
1F(N)10,11,11 
1 LR=1 
RETURN 

C .c 
22. i 

0 3 0115 Q 
C 

2 7 

23. 0 0 01508 
24. 0001538 28 
25. 0001566 

28 
c 
c 
c 

26. 0 0 01606 «• 2 9 

27. 0 0 02130 
28 0 002)70 39 
2 9 . 0002220 2 9 . c 

c 
c 

3 ) . 0 0 0 2 2 4 6 31 
< 1 . 0 0 Q 2 3 5 d 

3? . 0 0 0 2 - 3 0 
J > • j ' j j ^ G n 32 
i • r, j c i ' i o u 

0 G 0 2 a 3 3 
•3 b u 0 u 2 -j 5 0 35 
37 • 9 Of 2 6 31) 3 4 
3 j . ) o * 2 b 5 o 

rf Turn 
IF<X-17Q.0)22,22,21 
_ l R = 3 
R E T U R N I-:r=O 
IF(X-1. 0) 36,36,25 
A=EXP(-X) 
d = l . Q / X 
C = SORT ((!) 
T(1)=D :026L=2,12 T(L)=T(L-1)*6 
1 r (N-1) 27,2'J, 27 

COMPUTE KO USING POLYNOMIAL APPROXIMATION 

2 7 C C = A M 1 . 2 5 33141-0.156664 2*1 (1) 4-C . 0 3.3 111 28*T C 2) - 0 . 09119095*T C 3) 
£•"3.1 3H,59 6 * T U ) - 0.2299350*1 (5) +0 .M?'J24 10*1 ( 6) -0 .52-4 7277*T (7) 
F.ti '0 091 39 3 33*T(12)f»" 6' i , i # r ( 9' + C * 2 1 d n 5 1 3 * T * ~ J 6 6 6 0 9 7 7 * T { 1 1 * 
IF(N)2J,28 ,29 
3K = C0 
RETURN 

COMPUTE K1 USING POLYNOMIAL APPROXIMATION 
Cl=A*(1.2533141*0.4699927*1(l)-0.i-4 3d58."3*T < 2)+0 . 1230427*T < 3 ) 

£- 0. 17 35L3 2 * T U ) *0 .2d4 761 8»T ( 5)-0 534342*1 (6) +0 . 62333 31*T ( 7) 
t9)-Q.253l3O4:»T{10)+O.078a0 00l*T(U) 

£-u.0103242*T(12))*C 
1FIN-1) 20, 30, 31 
3K»Cl 
RETURN 
FROM K0,K1 COMPUTE KN USING RECURRENCE RELATION 

D035J = 2 »N „ i 
SJ=2.0* (FLOAT (J)-1.0)*(C1/X) *C0 
IF lCj-1.0E70) 33,33,32 
i. =4 
G O TO34 

RETURN 

cr> Ln 
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1. 0 3 0 0 0 0 0 
2. oooooon 
3. 0 6*0000 
4. oooocia 1 
5. 0 01 0 0 4 o 
6. 0 0 0 0 0 5 Q 
7 . ooooiin 2 
8 . 0 0 0 U 14 B 
9. 3 0 0014B 

10 . 0 0 0015 B 
11. 000016B 
12. 00 00171) 3 
13. 000024b 
IT. 0 0 0 0 2oB 
15 . 000030B 
16. OOuO 3'SB 
17. 0000 34b 
18. 000035B 
1). QQC036B 
20. 0 3 C0 37n n • 
<- -t 000041b 
22. 0 0 00H2B 
23. 0 0 00 47ft 4 
24. 0 0 0 0 5 2 B 

0JU055B 
5 

25. 
0 0 0 0 5 2 B 
0JU055B 6 

2J. OOOOoOU 7 
27. 0 0 0Oo5 B 
28. 0 u b 0 7 2 B 
2 J. 0 J 0 0 7 36 
30 . 000074B 
31. 0000750 8 
32. GOulOOU 
33. 0 0 010 7 d 
34. 0 0 0114 B 9 
35. 000122B 10 
36. 0001260 

SUBROUTINE INUE<X,N,ZI,RI) 
DIMENSION RI (10 0) iF(N)io,iu,i 
FN=N*N 
Ql = X/F;l 
IF <AUS(X)-5.E-4)6,6,2 
AG-1. 
A 1 = 0 . 66=0. 31=1. 
FI = FN 
FI=FI+2. 
AN=FI/AOS(X) 
A=Ah»Al*A0 
B = AN*B1*B 0 
A 0 = A1 
d 6 = L 1 
A 1 = A D 1 = B D b = Q1 
Q1=A/B 
IF(ABS((Q1-QO)/Ql)-1•£-6)4,4,3 
I F (X) 6 , 6, 6 
Sir

111 

Q 1 = X /(FN *X*Q1) 
RI(K)=Q1 
FN=FN-2. 
K = K-1 
IF(K)8,8,7 
FI = Z I 
0391=1.N 
F I = FI*RI(I) 
RI < I)=FI 
RETURN ENO 

I 
CK 
I 




