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ABSTRACT 

Any plant under automatic control is heavily dependent on 

instrumentation for safe, reliable operation. A sudden fault on a 

measuring instrument, particularly i f used in a control loop, can lead 

to inefficient, unstable or even dangerous operation. 

This project takes as i ts starting point part of an existing pilot 

scale gas separation plant and assumes that a fault can occur on any 

one instrument at any time. The plant is to remain under computer 

implemented 3-term control with occasional small changes in setpoint, 

the problem being to detect and isolate any such fault that should 

occur. 

The part of the plant selected for study comprises a heat exchanger 

and cooler, with measurement of seven liquid temperatures and two 

regulated flow rates. Plant data is used in the development of a 

discrete-time state space model from which a Kalman f i l ter can be 

constructed. 

Under no-fault conditions, a Kalman f i l ter util izing 'r* measurements 

generates an r-dimensional innovation vector with zero mean. A 

subsequent measurement fault causes the expected value of this vector 

to align i tsel f in a fixed direction in r-space that is characteristic 

of the fault. This leads to an algorithm employing a log-likelihood 

ratio test to detect statist ical ly significant departures from zero 

mean and achieving fault isolation by comparing the innovation vector 

direction with a set of reference directions. 

An estimate of fault magnitude can be obtained from the post-fault 

innovations and expressions are derived for the estimation error 

statist ics. I t is shown that a suboptimal f i l ter can in certain cases 

provide improved isolation and estimation. 

Several algorithms are tested with real data, fault examples being 

obtained either by setpoint change or by superimposition of faults on 

to data records. A possible extension to include a level control loop 

is also discussed. 
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( t ime index dropped i f system time i nva r i an t ) 

X2 r . v . Chi-squared random var iab le 

Y F i l t e r t r a n s i t i o n mat r ix 
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CHAPTER 1 

INTRODUCTION 

1.0 Moti va t i on 

One of the most important tasks o f the control room personnel 

on a chemical p lant i s to accurately diagnose and r e c t i f y p lant 

f a i l u res on the basis of instrument readings gathered from 

various parts of the p lan t . The f i r s t l i n e o f defence is 

usual ly the alarm annunciator which gives the a l e r t tha t a 

measured var iab le has moved outside i t s normal l i m i t s . The 

operator must use his deta i led knowledge of the p lant operating 

manual and his own experience to decide j u s t what i s impl ied by 

any p a r t i c u l a r combination o f alarms and ind ica t ions from the 

p l an t , or indeed whether an alarm is spurious. In a modern 

p lant w i th a central contro l panel 2m high and in excess o f 

10m long the simultaneous occurrence of several perhaps seemingly 

unrelated alarms can be bewildering and may tempt the operator 

i n to be l iev ing tha t they are caused by a f a u l t i n the measurement 

system i t s e l f . 

In 1977 a symposium on 'Human Operators and Simulat ion' included 
the resu l ts of an experiment in which two dozen experienced 
operators from the petrochemical indust ry were i nv i t ed to attempt 
diagnosis of a range of simulated p lant f au l t s from the 
ind icat ions on a control panel. The repor t of Marshall and 
Shepherd [ 1 ] concluded tha t there was a disappoint ing lack of 
systematic f a u l t f i nd ing procedures among the operators. D is t rus t 
o f the p lant instrumentat ion was re f lec ted in the fac t tha t many 
operators considered the p robab i l i t y o f instrument f a i l u r e on 
t h e i r own plants so high t h a t , having scanned the alarm l i g h t s , 
they would leave the control room to make a d i r e c t check out on 
the p lan t . 

In recent years, loss prevention has become an important subject 

in i t s own r i g h t . Safety of personnel and the protect ion of 

cap i ta l investment by preventing damage to expensive equipment 

are no less dependent on r e l i a b l e instrumentat ion than the loss 



21 

of saleable product due to i n e f f i c i e n t operat ion. Clear ly a 

comprehensive instrument maintenance programme is ind icated but 

may be d i f f i c u l t to carry out due to a lack of su i tab ly t ra ined 

personnel. 

In June 1978 The Sunday Times [ 2 ] reported tha t ICI at Wi l ton , 

Teeside were los ing instrument a r t i f i c e r s a t an alarming ra te . 

At t ha t time only 230 were employed out o f an ideal t o t a l of 350, 

necessi ta t ing shutdown of some plants and delaying the s ta r t -up 

o f new ones. Many s k i l l e d men had been lured away by large 

sa lar ies in the Middle East and the North Sea and the problem was 

exacerbated by the refusal of the Wil ton c r a f t based unions to 

al low t h e i r members to r e t r a i n as a r t i f i c e r s wi thout substant ia l 

pay increases. In addi t ion the Wil ton men, who had served fou r -

year apprent iceships, would not work alongside Government 

Ski 11 centre t ra inees fresh from t h e i r twelve month courses. 

The need f o r r e l i a b l e instrumentat ion and the d i f f i c u l t i e s i n 

keeping i t r e l i a b l e point towards the d e s i r a b i l i t y of s e l f -

checking in contro l and monitor ing systems. While an ideal 

system could detect and diagnose a f a u l t o f any kind i t i s c lear 

from the foregoing tha t a system capable o f detect ing and 

i s o l a t i n g f a u l t s on the instruments alone i s a useful tool and 

could subs tan t i a l l y increase p lant safety and r e l i a b i l i t y whi le 

reducing the manpower required f o r maintenance. This thesis 

describes the work done in designing and tes t i ng such a system 

f o r par t of an ex i s t i ng p lan t . 

1.1 L i te ra tu re Survey 

The l a s t two decades have.seen a tremendous upsurge in the use 

of computers i n a l l facets o f engineering and the appearance of 

the Kalman f i l t e r i n the ear ly 1960's was wel l timed f o r i t s 

development to run in pa ra l l e l w i th the f a l l i n g cost of computing 

power. Kalman's work has f igured extensively in the design of 

computer based f a u l t detect ion systems, not leas t because the 

innovations sequence generated by the Kalman f i l t e r i s sens i t i ve 

to departures of the system from 'normal ' . F i l t e r i n g cannot 

proceed u n t i l a su i tab le state-space model has been obtained f o r 

the system under observation. This has proved more of a 
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stumbling block in the case of chemical processes than f o r 

aerospace appl icat ions where the dynamics are of ten very wel l 

defined and where the vast ma jo r i t y of successful f i l t e r i n g work 

has been car r ied out . 

For t h i s p ro jec t a survey of the avai lab le l i t e r a t u r e f a l l s i n to 

three sect ions: the Kalman f i l t e r , modell ing and f i l t e r i n g of 

chemical processes and f a u l t detect ion. 

1.1.1 The Kalman F i l t e r 

Since the o r i g i na l papers of Kalman [ 3 ] and Kalman and 

Bucy [ 4 ] hundreds of papers and dozens o f books have 

appeared on the development and appl icat ions of the Kalman 

(or Kalman-Bucy) f i l t e r . This p ro jec t employs the 

s t ra ight forward l i nea r f i l t e r appl ied to a l i nea r i zed 

system: the necessary theory i s adequately covered by 

t ex t books and a handful o f papers as fo l lows . 

Much use i s made o f Jazwinski [ 5 ] ( p a r t i c u l a r l y Chapters 
7 and 8 on l i nea r f i l t e r i n g theory and i t s app l i ca t i ons ) , 
w i th Sage and Melsa [ 6 ] another useful reference. State 
space modell ing i s wel l covered by Kwakernaak and Sivan 
[ 7 ] , which includes d i sc re t i za t i on and, s p e c i f i c a l l y 
f o r appl icat ions in Chemical Engineering, Seinfe ld and 
Lapidus [ 8 ] . 

F i l t e r design necessitates the p r i o r spec i f i ca t i on o f the 

process and measurement noise covariance matrices Q and R 

and the est imat ion e r ro r covariance P(0|0) . The e f f e c t of 

e r ro r in these parameters i s discussed in a paper by 

Bellingham and Lees [ 9 ] , whi le Q and R can, at leas t in 

theory, be estimated by the use o f an a lgor i thm proposed 

by Mehra [10] and subsequently modif ied by Godbole [11 ] . 

The work of Mart in and Stubberud [12] claims to al low 

est imat ion o f unknowns in the matrices required f o r state 

space modell ing fol lowed by est imat ion of Q and R. 

However, by deal ing wi th only a part o f an ex i s t i ng p lan t , 

the model used in t h i s p ro jec t includes several inputs 
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which cannot be con t r o l l ed . These inputs are d i c ta ted by 

condi t ions elsewhere on the p lan t and v i o l a t e the basic 

assumption o f [12] t ha t the inpu t or ' c o n t r o l ' vector can 

be set to zero to a l low the est imat ion to proceed. 

The behaviour o f suboptimal f i l t e r s has received much 

a t t e n t i o n . Jazwinski [ 5 ] covers the use o f f i l t e r s w i th 

constant gain whi le the e f f e c t s o f .suboptimal gain on the 

es t imat ion accuracy i s discussed by Heffes [13 ] and by 

Fr iedland [ 14 ] . Uncertain parameters such as bias can be 

estimated by the use o f augmented f i l t e r s (see [ 5 ],. [ e ] ) 

wh i l e Fr iedland has developed i n [15 ] a bias f i l t e r which 

operates on the innovat ions o f an optimal f i l t e r to co r rec t 

the s t a t e est imates. 

1 .1 .2 Model l ing and f i l t e r i n g o f chemical processes 

While the po ten t i a l o f the Kalman f i l t e r was qu i ck l y 

recognised f o r aerospace app l i ca t i ons , i t s use i n chemical 

engineering problems has been l i m i t e d . On l i n e computers 

are r e l a t i v e l y common on modern chemical p lants but few 

o f these are doing much more than scanning, logging and 

d . d . c . by s imula t ion o f c l ass i ca l 3-term c o n t r o l l e r s . 

Apart from the d i f f i c u l t i e s i n spec i f y ing the s t a t i s t i c s 

Q, R» x (0 |0 ) and P(OJO) (see [ 5 ] f o r d e f i n i t i o n ) chemical 

processes are o f t en extremely d i f f i c u l t to model and can 

give r i s e to sets o f complex d i f f e r e n t i a l equations which 

are not r ead i l y amenable to the r e p e t i t i v e ca lcu la t ions 

en ta i l ed by the f i l t e r . 

Simulat ion work i s f a i r l y wel l represented i n the 

l i t e r a t u r e and a comprehensive se lec t ion i s referenced i n 

C9 ] . Coggan and Noton [16 ] ca r r i ed out s imulat ions on 

two nonl inear systems, a blending process and a furnace. 

These processes were l i n e a r i z e d f o r f i l t e r i n g and the 

f i l t e r Q and R matr ices were matched to the s t a t i s t i c s o f 

the computer generated noise used to obta in simulated data. 

Attempts to obta in a heat t r a n s f e r c o e f f i c i e n t f o r the 

furnace by augmenting the s ta te vector resu l ted in a 

biased est imate despi te var ious mod i f i ca t ions to the f i l t e r . 
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GoTdmann and Sargent [17 ] also simulated two processes, 

a b inary d i s t i l l a t i o n column and an i n d u s t r i a l reac to r . 

For the f i r s t example, as i n [ ie 3, the model used f o r the 

f i l t e r was the. same as t ha t used to generate the data but 

i t was. assumed f o r both processes t h a t there was no 

process no ise , i . e . Q = 0.. The resu l t s ind ica ted t h a t as 

long as the model was accurate the f i l t e r was reasonably 

i n s e n s i t i v e to e r ro rs i n the s t a t i s t i c s R, x (0 I0 ) and 

P(0I0) and t ha t no appreciable degradation was caused by 

f i l t e r i n g data contaminated by non-Gaussian o r 

au tocor re la ted noise. The second example was used to 

i nves t i ga te the e f f e c t s o f model inaccuracy. An important 

conclusion was t h a t there was a l i m i t to the amount by 

which the s t a te vec tor could be augmented to est imate 

parameters such, as biases. As the number o f parameters 

increased convergence became slower and eventua l ly broke 

down as m u l t i p l e solut ions, became, poss ib le . 

In a: f u r t h e r s imula t ion s tudy, J o f f e and Sargent [18 ] 

appl ied optimal c o n t r o l theory t o an ad iaba t i c t u b u l a r 

reac to r t o maximize product y i e l d . I t was shown t h a t good 

cont ro l could be maintained using a con t ro l po l i c y based 

on f i l t e r est imates despi te manipulat ion o f Q over a wide 

range. 

Not s u r p r i s i n g l y studies o f ' r e a l ' systems are mostly 

l i m i t e d to p i l o t scale p lants or labora to ry r i g s . In C19 3, 

Newell and Fisher modelled a p i l o t scale doub le -e f fec t 

evaporator using a modular approach. These bu i l d i ng 

blocks cou ld be l i nked together i n var ious ways to develop 

models o f d i f f e r i n g complexity which were l a t e r used by 

Hamilton, Seborg and Fisher [ 20 ] to t e s t the Kalman f i l t e r 

on the p lan t . In common w i th many chemical p l an t s , the 

measurement noise leve ls on the p i l o t p lan t were qu i te low. 

This can cause, d i f f i c u l t i e s because the Kalman f i l t e r does 

not work wel l w i th extremely low noise l e v e l s , although 

t h e o r e t i c a l l y i t breaks down only i f R = 0. In [20 ] i t i s 

claimed t h a t a r t i f i c i a l measurement noise was added ' i n 

order to provide a more severe t e s t o f the Kalman f i l t e r 1 
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and i t i s unfortunate tha t no comparison was made of 

performance wi th and wi thout added noise. From t h e i r 

resu l ts Hamilton et al advocated tha t Q and R were best 

t reated as tuning parameters selected to improve f i l t e r 

performance. 

Jo and Bankoff [21 ] car r ied out experimental work on the 

polymerizat ion o f v iny l acetate in a small glass reactor . 

They t r i e d out most o f the f i l t e r var iants to be found in 

Chapter 8 o f Jazwinski [ 5 ] and also tested the f i l t e r 

w i th the s ta te vector augmented by d i f f e r e n t numbers of 

var iab les. Some improvement in f i l t e r performance was 

obtained by est imat ing one parameter, but no s i g n i f i c a n t 

change was obtained by adding f u r t he r parameters. Since 

parameter augmentation markedly increased the computational 

load of the f i l t e r i t was concluded tha t each case had to 

be considered on i t s mer i ts : f o r the example in [21 ] the 

best compromise was the augmentation of the one most 

uncertain parameter. 

Jo and Bankoff t r i e d varying Q and R and found that i f Q 

was spec i f ied too small the f i l t e r diverged rap id l y . A 

valuable con t r ibu t ion of [21] was the s imulat ion study 

car r ied out as a comparison. Here measurements were 

generated from the model used f o r the f i l t e r monitor ing the 

real system. I t was found tha t the est imat ion from the 

simulat ion was a considerable improvement over the 

experimental resu l ts despite the f ac t tha t the same Q and 

R were used by the f i l t e r in each case. This i s an 

example of over ly op t im i s t i c f i l t e r i n g resu l ts from a 

s imulat ion study. 

Several f i l t e r var iants were also t r i e d out by L i t c h f i e l d 

e t al [22] on a laboratory chemical reactor whose 

instrumentat ion was designed to be essen t i a l l y no ise- f ree. 

A r t i f i c i a l measurement noise was added to tes t the various 

f i l t e r s and, in agreement wi th [ 1 7 ] , cor re la ted 

measurement noise was found to have minimal e f f e c t on the 

f i l t e r estimates. 
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There are few examples of appl icat ions in indust ry . Wells 

and Wismer [23] used, the Kalman f i l t e r to estimate 

temperature and carbon concentrat ion in a steelmaking 

process, t h e i r work i l l u s t r a t i n g several of the p rac t i ca l 

d i f f i c u l t i e s i n using the f i l t e r f o r real systems. 

Modell ing was hindered by the f ac t tha t the meta l lu rg is ts 

did not agree on the chemical mechanisms dominating the 

process and the delay in sampling and analyzing the waste 

gases made est imat ion very d i f f i c u l t . 

1.1.3 Fault detect ion 

Much data on the f a i l u r e rates of chemical p lant 

instrumentat ion i s c l a s s i f i e d in format ion, but a fee l f o r 

the problem can be gained from papers by Anyakora, Engel 

and Lees [24] and Lees [25 ] . At one p lant ' d e f i n i t e 

f a i l u r e s ' were taken a r b i t r a r i l y as 2% f u l l scale or 

2 deg.C or 0.1 pH. These outnumbered smaller e r r o r s , 

classed as ' i nc iden ts ' , by a fac to r of about 3:1. The 

fo l low ing f a i l u r e rates are taken from [24 ] which averages 

over three plants the f au l t s per instrument per yea r : -

Flow: D i f f e r e n t i a l pressure t ransmi t te r 1.73 

Level: D i f f e r e n t i a l pressure t ransmi t te r 1.71 

Temperature: Resistance thermometer 0.41 

Reference [25] gives informat ion on the types of f a u l t 

encountered. On a resistance thermometer the connections 

may come loose or the resistance bulb and/or thermowell 

may become loose or damaged. D i f f e r e n t i a l pressure 

t ransmi t ters commonly su f f e r from blocked or a i r locked 

pressure connections and the t ransmi t ters themselves may 

freeze up or be damaged by v ib ra t ion or by dr ipp ing water 

or process f l u i d . The data in [24] leads to the conclusion 

tha t instruments out on the p lant are up to four times as 

l i k e l y to f a i l as those located in the control room. 

Detai led coverage of chemical p lant f a u l t detect ion from 

monitoring p lant records is to be found in Himmelblau [26] 

which also introduces s t a t i s t i c a l techniques inc lud ing 

some based on the Kalman f i l t e r . Design methods f o r 
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on- l i ne f a u l t detect ion were reviewed, i n a comprehensive 

1976 survey paper by Wi l l sky [ 2 7 ] , who d iv ided the 

var ious techniques i n t o a number o f categor ies which are 

used here. 

W i l l sky d iv ides the f a i l u r e detect ion problem i n t o three 

tasks - alarm, i s o l a t i o n and es t imat ion . The f i r s t o f 

these i s simply to determine whether or not a f a u l t has 

occurred whi le the second involves the narrowing down o f 

the source o f f a i l u r e t o a p a r t i c u l a r device or group o f 

devices. The est imat ion problem i s t ha t of determinat ion 

o f the ex tent o f f a i l u r e and may al low the continued use 

o f a piece o f equipment a l b e i t i n a degraded mode. 

Wi l l sky also discusses the p r o b a b i l i t i e s o f f a l se alarms 

and. missed detect ions f o r the various techniques and 

po in ts out t ha t one might be more w i l l i n g to t o l e r a t e 

f a l s e alarms i n a h igh ly redundant system con f igu ra t ion 

than in a system wi thou t subs tan t ia l back-up c a p a b i l i t i e s . 

Another important issue i s the t r a d e o f f between the 

usual ly c o n f l i c t i n g requirements o f good f a u l t detec t ion 

proper t ies and acceptable system operat ion under n o - f a i l u r e 

cond i t ions . This i s p a r t i c u l a r l y t rue when a Kalman 

f i l t e r i s being used simultaneously f o r s ta te est imat ion 

f o r cont ro l purposes and f o r f a u l t de tec t ion . 

A t the time o f p u b l i c a t i o n , most o f the con t r ibu t ions 

descr ibed i n W i l l sky 's paper had been a t a t heo re t i ca l 

leve l w i th very few real app l i ca t ions o f techniques. Of 

the nine ' r ea l system' references given i n [ 2 7 ] , e igh t 

cover work i n the aerospace i ndus t r y : chemical 

engineering app l i ca t ions are conspicuous by t h e i r absence. 

In the fo l l ow ing sect ions the various types o f f a i l u r e 

detect ion technique are b r i e f l y reviewed, more d e t a i l 

being given f o r those papers t ha t have appeared since 

Wi l l sky 's survey. W i l l sky 's comment t ha t some techniques 

could be placed i n more than one category i s equal ly t rue 

o f these more recent con t r i bu t i ons . 
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(i) Failure-sensitive filters 

One of the simplest ways of detecting failures using a 

Kalman filter is to monitor the state estimate, based on 
i 

the premise that a sudden change in x reflects a failure. 

The state, vector can also be augmented by failure modes 

such as system- biases which can then be compared with 

their nominal values. These methods may be foiled by the 

'oblivious filter1 problem [s ] where the precomputed 

error covariance P(k[k) and the Kalman gain K(k) become 

very small. The filter effectively relies on old 

measurements and is at best sluggish- in its response to 

new data; at worst it may diverge if the model is 

sufficiently in error. The filter cart be kept sensitive 

to new information by throwing away the older data either 

gradually, as in the exponentially age-weighted filters of 

Fagin [28] and Tarn and Zaborsky [29 ], or in blocks as in 

the limited memory filter of Jazwinski [30]. Another way 

is simply to fix the filter gain as discussed in [5 ]. 

A variation on the theme is a class of failure sensitive 

filters developed initially by Beard [31 ]. His paper is 

concerned with the design, for a linear deterministic 

plant, with feedback, of detector-filters which are 

formulated to respond in a. known way to certain failures. 

Beard showed that for his system an actuator failure or a 

change in a parameter in the dynamic equations of the 

system produced, an error signal in a fixed vector direction. 

For sensor failures the error vector was constrained to lie 

in a two-dimensional invariant plane. Willsky [27] 

describes Beard's later work with Jones on the design of 

filters which are suboptimal from a state estimation point 

of view but which respond to a wide variety of failures. 

The. approach is limited to time-invariant systems. 

(ii) Voting systems 

Voting is a well established method in which a system is 

provided with (at least) three sets of identical instruments. 

For a given measurement the instrument readings are 

compared and if one signal differs markedly from the others 
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then i t i s e l iminated from considerat ion. The method i s 

c l ea r l y expensive from a hardware po in t of view but 

provides f as t detect ion of large f a i l u r e s . Such systems 

may have d i f f i c u l t i e s i n detect ing small bias s h i f t s and 

are vulnerable to power supply or thermal var ia t ions which 

may a f f e c t a l l instruments equal ly . 

Two techniques which hover between t h i s category and the 

next are those of Labarrere et al [32] and Clark e t al 

[33]. The f i r s t of these required only two iden t i ca l 

sensors per measurement, the t h i r d being replaced by an 

estimate obtained from a bank o f Kalman f i l t e r s . The 

technique was appl ied in [32] to a simulated automatic 

landing o f the AIRBUS. 

In [ 3 3 ] , Clark, Fosth and Walton simulated the f l i g h t 

control system f o r a hydro fo i l boat. The form o f the 

de termin is t i c system equations rendered the states 

observable by using any one of the four sensors. Four 

Luenberger observers were run in p a r a l l e l , one f o r each 

sensor, and the state estimates compared in a vot ing 

scheme. Such a method cuts down on hardware redundancy 

and could be used wi th Kalman f i l t e r s f o r s tochast ic 

systems.. I t i s , however, dependent on the system being 

observab le , i f not from ind iv idua l measurements then at 

least from several subsets of the t o t a l number o f 

instruments ava i lab le . 

( i i i ) Mu l t ip le hypothesis f i l t e r - d e t e c t o r s 

In t h i s class o f adaptive est imation and f a i l u r e detect ion 

schemes i t i s hypothesized tha t the system can only be 

operat ing in one o f a f i n i t e number of modes. For f a u l t 

detect ion purposes, a l l bar one o f these would r e f l e c t 

system f a i l u r e s . The technique i s based on i d e n t i f i c a t i o n 

of the hypothesis which gives the c losest f i t to the 

observat ions, a task usual ly achieved by monitor ing the 

innovations generated by a bank of Kalman f i l t e r s - one 

per hypothesis. This gives the condi t ional p robab i l i t y 

tha t each hypothesis is the t rue one. 
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Simulations using this method have been carried out by 

Montgomery and Caglayan [34] for an orbiting space shuttle 

represented by linear equations and the work is 

paralleled for a nonlinear system by Montgomery and 

P r i c e [ 3 5 ] . That the method also has applications in the 

field of adaptive control is demonstrated by its use in 

conjunction with the F-8C digital-fly-by-wire aircraft as 

described by Athans et al in [36 ]. Multiple hypothesis 

methods for estimation, smoothing and prediction have been 

proposed by Athans and Chang [37]. 

Closely related to the work of Athans and Chang is. the 

application of a multiple hypothesis method to fault 

detection in oil pipelines by Digernes [38], The 

requirement was for a system that could readily distinguish 

between actual process failures such as leaks and less 

serious sensor failures and the method was tested by 

simulation using data from the Ekofisk-Teeside pipeline. 

The system required no less than twenty-five parallel 

Kalman filters but could reliably detect, isolate and 

estimate a leak even if it was accompanied by an instrument 

failure on the affected pipeline section. 

Also falling into the 'multiple hypothesis' category are 

methods based on the sequential probability ratio test 

(SPRT) devised by Wald [39] and described in detail by 
Hancock and Wintz [40]. This test compares the logarithm 

of the ratio, of the a posteriori probabilities for two 

modes of operation, 'failed' and 'unfailed', with upper 

and lower thresholds. The test terminates when one of the 

thresholds is crossed and the whole process is repeated. 

For fault detection purposes the SPRT has been used in its 

original form by Newbold and Ho [41 ] and in a modified form 

by Chien and Adams [42]. The latter application was aimed 

at the detection of moderate biases in inertia! navigation 

systems and the SPRT was chosen because it bases its 

decision on the complete sensor measurement history. 

Wald's SPRT does not always respond well to a failure 

occurring in mid test, but the algorithm of Chien and 
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Adams overcomes t h i s by employing a feedback loop and by 

spec i fy ing t ha t a swi tch can only occur i n one d i r e c t i o n , 

i . e . from 'normal1 to ' f a i l e d 1 . 

A f i n a l technique i n t h i s sect ion i s based on the work o f 

Buxbaum and Haddad [43 ] which was motivated by the 

d i f f i c u l t i e s o f using Kalman f i l t e r s i n the face o f 

nonrGaussian process noise. The densi ty o f such noise i s 

approximated in [43 ] by a sum of Gaussian terms and the 

po ten t i a l o f t h i s f o r f a u l t detect ion was recognised by 

W i l l s ky , Deyst and Crawford [ 4 4 ] , [ 4 5 ] . In i t s complete 

form the 'BH' a lgor i thm requires an exponent ia l l y growing 

bank o f f i l t e r s but these references give approximations 

which keep the number o f f i l t e r s constant ye t gave qu i te 

promising r e s u l t s f o r a. simulated i n e r t i a ! system. 

( i v ) Jump process formulat ions 

In t h i s sect ion po ten t ia l f a i l u r e s are modelled as jumps 

character ized by a p r i o r i d i s t r i b u t i o n s which r e f l e c t 

i n i t i a l in format ion concerning f a i l u r e ra tes . Chien [46 ] 

has devised a. method f o r the detec t ion o f a jump or ramp 

i n a gyro bias in which the steady s ta te e f f e c t o f each o f 

these f a u l t s i s determined. A f a i l u r e ra te and a nominal 

bias s ize must be hypothesized in order to compute an 

approximate s tochas t i c d i f f e r e n t i a l equation to which the 

normal-mode f i l t e r res idual i s i npu t . The scheme can only 

be used to detect biases l a rge r than nominal and the use 

o f the steady s ta te e f f e c t o f the f a u l t on the f i l t e r 

res idual may cause an unacceptably long delay to de tec t ion . 

(v) Innovations-based detect ion systems 

This sect ion would appear t o inc lude a l l o f the recent 

work on ' r e a l ' chemical p lants a l though, as in Section 

1 .1 .2 , t h i s i s l i m i t e d almost exc lus i ve l y to p i l o t scale 

p lants and labora tory r i g s . 

I f a Kalman f i l t e r i s operat ing completely i n accordance 

> w i th the theory , then the e r r o r (or res idua l ) sequence i t 

generates i s a zero mean,Gaussian whi te noise sequence w i th 
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known covariance. This sequence, f i r s t ca l led the 

' innovat ions1 by Kai la th [ 4 7 ] , w i l l depart from some or 

a l l of these propert ies i f a part of the f i l t e r 

formulat ion i s (or subsequently becomes) i nco r rec t . 

Innovation monitor ing thus suggests i t s e l f as a method 

f o r f a u l t detect ion bearing in mind tha t the innovations 

can be tested f o r each of the above propert ies using the 

techniques given by Mehra and Peschon [48 ] , 

A simple method f o r detect ing f a u l t s in f low loops was 

tested on a laboratory r i g by Bellingham and Lees [49 ] . 

A r e l a t i v e l y constant system f low/pressure drop 

cha rac te r i s t i c was assumed f o r the valve and a two-

component innovat ion vector was generated by a recursive 

least squares est imator. Fa i r l y large errors were 

detectable by monitor ing the innovations f o r sh i f t ed mean 

using Student's t t es t but could not of ten be i so la ted . 

The resu l ts obtained by Bellingham and Lees f o r a more 

general control loop are presented in [ so ] . Here a s ta te 

space model was derived f o r a laboratory leve l control r i g 

which was held at the same setpoint throughout. The 

algor i thm of Mehra/Godbole [ 1 0 ] , [ n ] was used to estimate 

the noise s t a t i s t i c s , but i t was found that the method 

f a i l e d due to the low level o f measurement noise: 

a r t i f i c i a l noise was added to compensate. Bellingham and 

Lees employed Fr ied!and's bias f i l t e r to estimate 

measurement bias and used e i t he r t h i s estimate or the 

s h i f t in mean of the two component innovat ion vector 

(again v ia the Student t t es t ) to detect and p a r t i a l l y 

i so la te f a u l t s . 

Another simple detect ion method wi th l im i t ed i s o l a t i o n 

capab i l i t y i s the x2 t e s t . This has been tested in 

s imulat ion by Wi l l sky, Deyst and Crawford [44 ] , [45 ] who 

concluded tha t improved i s o l a t i o n might be obtained by 

generating x2 random var iables from ind iv idua l components 

o f the innovation vector . 
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For p lants w i th many interconnected f low and inventory 

measurements an innovat ions based detect ion method was 

presented by Rooney e t al i n 1978' [si ] . The a lgor i thm 

obtained an unbiased minimum variance est imate o f a vector 

o f t rue f lows from measurements on some o f the f lows plus 

mater ia l balances (termed 'pseudo-measurements') a t each 

node. In the steady s ta te each component o f the 

innovat ion vector was tes ted a t each time step by means 

o f the x 2 t e s t before using the associated, measurement to 

update the est imate. This allowed, detect ion o f leaks and 

sensor f a u l t s . 

I t was shown by Newman and Perkins [52 ] t h a t improved 

r e l i a b i l i t y could be obtained by t e s t i n g the whole 

innovat ion vec tor using the x 2 t e s t a t every t ime step 

instead o f by t e s t i n g i n d i v i d u a l components. In [ 52 ] a 

method i s also proposed f o r diagnosing f a u l t s by means o f 

moni tor ing the d i r e c t i o n o f the p o s t - f a u l t innovat ion 

vec tor . Research in t h i s area, i nc lud ing t e s t i n g on the 

same Imperial College p i l o t p lan t t h a t i s the sub ject o f 

t h i s t h e s i s , formed a par t o f Newman's PhD thes is [ 5 3 ] , 

publ ished i n 1982 but not reviewed here. 

The s impler innovat ions based techniques r e l y on the f a c t 

t h a t under normal operat ion the innovat ions are ' sma l l ' 

wh i le under f a u l t condi t ions they become i n some sense 

' l a r g e r ' . There i s however one technique t ha t attempts 

to. maximize the amount o f in fo rmat ion ex t rac ted from the 

innovat ions - the Generalized L i ke l i hood Ratio method, or 

'GLR'. This approach attempts to i s o l a t e d i f f e r e n t f a u l t s 

by using knowledge o f the d i f f e r i n g e f f e c t s t ha t such 

f a i l u r e s have on the system innovat ions. 

Consider a l i n e a r d isc re te - t ime system modelled i n the 

standard state-space form as presented i n [27 ] 

x(k + 1) = ®(k) x (k) + G(k)u(k) + w(k) 

y ( k ) = Hx(k) + v (k) 

(1.1) 

(1.2) 
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The a lgor i thm has to be matched to a p a r t i c u l a r type o f 

f a u l t , such as a jump or step i n the dynamics or i n a 

sensor output . A sensor step (constant measurement bias) 

v occur r ing a t time 8 i s modelled as 

y ( k ) = Hx(k) + v(k) + va k > 0 . . . (1 .3) 

where v i s a vector and <r. i s the u n i t s tep: 
•»j 

' 1 i > j 

0 i < j 
- < 

The l i n e a r i t y o f system and f i l t e r a l low the post f a u l t 

innovat ion y ' ( k ) to be s p l i t i n t o the p a r t y (k ) t ha t would 

have occurred w i thout the f a u l t and the p a r t due to the 

f a u l t v alone 

y ' ( k ) = G{k;8)v + y (k ) . . . (1.4) 

G i s termed the ' f a i l u r e s ignature mat r i x ' because i t 

determines the way i n which the f a u l t propagates through 

the system. I t i s d i f f e r e n t f o r each type o f f a u l t and can 

be precomputed. 

The GLR technique now uses G to est imate the f a u l t vector 

v and the time of occurrence 9. When a new innovat ion i s 

generated the a lgor i thm has to decide between two 

hypotheses, EQ - t h a t there i s no f a u l t ( innovat ion y ( k ) ) 

or Ei - t h a t there i s a f a u l t ( innovat ion Y * ( k ) ) . The 

decis ion i s based, on a. s t a t i s t i c a l t e s t t ha t determines 

whether the innovat ions belong to the H or the 

d i s t r i b u t i o n . I f the two d i s t r i b u t i o n s are exact ly known 

then the l o g - l i k e l i h o o d r a t i o (LLR) t e s t can be used 

(Van Trees [ 5 4 ] ) . i f , however, the parameters governing 

Ei are not known, as v and 8 in t h i s case, i t i s necessary 

to use an extension to the theory which has become known 

as the general ized l i k e l i h o o d r a t i o . The GLR i s def ined by 

am = f m i ) , . . . : . ; Y ( k ) | g 1 , 9 = g ( k ) ; v = v ( k ) ) n 5 ) 
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where the numerator and denominator are respec t i ve l y the 

p r o b a b i l i t y dens i t ies f o r the observed innovat ion h i s t o r y 

given the two hypotheses Bx and h . The. problem t h a t the 

numerator cannot, be obtained unless both $ and v are known 

i s overcome by assuming tha t Ex i s t r u e and ob ta in ing from 

the innovat ions the maximum l i k e l i h o o d estimates f o r e and 

v . I t can be shown tha t v (k ) i s an e x p l i c i t f unc t i on o f 

§(k) and so the procedure f o r the f u l l - b l o w n GLR method 

b a s i c a l l y invo lves maximizing the numerator o f (1 .5) over 

a l l the innovat ions since the commencement o f f i l t e r i n g . 

C lear ly the task o f processing the innovat ions grows 

l i n e a r l y w i th t ime. 

In o rder t o avo id t h i s the est imate o f 9 can be r e s t r i c t e d 

to a moving window 

k - N ^ 9 s k - M . . . (1.6) 

and the re are var ious other s i m p l i f i c a t i o n s such as 

cons t ra in ing the f a u l t vector v t o l i e in one o f a number 

o f possib le f a i l u r e d i r e c t i o n s , i . e . 

v = ad.j . . . (1 .7) 

where a i s a sca la r , or completely spec i f y ing the f a u l t 

v = v . . . ( 1 . 8 ) o 

The algorithms, employing (1.7) and (1.8) are termed, 

respec t ive ly , constrained GLR (CGLR) and s i m p l i f i e d 

GLR (SGLR). A l l va r ian ts normal ly employ the optimal 

Kalman f i l t e r r e s u l t i n g in a non-degraded s ta te est imate 

under n o - f a u l t cond i t ions . 

The GLR technique i s o f course ra ther more complex than 

other innovat ions based techniques, but i t does take f u l l 

account o f the t r ans i en t e f f e c t o f a f a u l t through the 

t ime vary ing s ignature m a t r i x , G. This mat r ix w i l l 

eventua l ly reach a steady value and, i n some app l i ca t ions 

where the t r ans i en t e f f ec t s are l i m i t e d , another possib le 
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s i m p l i f i c a t i o n is to use the steady s ta te signature 

throughout. 

GLR f o r f au l t - de tec t i on f i r s t appeared on the scene in 

the ear ly 19701s, the most general formulat ion of the 

approach being given by Wi l lsky and Jones [ 55 ] , [56 ] , 

These papers describe an algor i thm designed to look f o r 

jumps in s ta te var iables and i l l u s t r a t e the technique by 

a s imulat ion f o r a vehic le subject to sudden jumps of 

unknown magnitude in pos i t ion or v e l o c i t y . An extension 

to the theory allows compensation of the s ta te estimate 

x fo l low ing a f a u l t , making the algor i thm su i tab le f o r 

adaptive f i l t e r i n g . 

Subsequent work has increased the number of d i f f e r e n t 

types of f a u l t which can be i so la ted by the GLR method. 

Liu and Jones [57] describe an app l i ca t ion to the 

s i t ua t i on o f s ta te jumps on a l i nea r mani fo ld, 

i . e . constrained to l i e among a f i xed subset o f s ta tes , 

whi le the d i s j o i n t problem o f using GLR f o r degradation 

in e i t he r process or measurement noise is tackled by 

LiU [58 ]. 

The complexity o f GLR is due in part to the number of 

matr ix inversions required. Under favourable condit ions 

the Kalman f i l t e r i t s e l f can be s i m p l i f i e d by sequential 

processing (Sorenson [59 ] ) and i t i s shown by Chang and 

Dunn [ 6 0 ] , [61 ] tha t i f a sequential f i l t e r i s used in 

conjunction wi th a new recursive form of GLR then the 

requirement f o r matr ix invers ion in the previously known 

GLR algorithms can be reduced or avoided. 

In his PhD thes i s , Pouliezos [62 ] ca r r ied out simulat ions 

on a scalar system to t e s t an innovations based scheme 

p a r t i a l l y r e l i a n t on GLR techniques. D i f f e ren t types o f 

f a u l t a f f e c t the innovation s t a t i s t i c s in d i f f e r e n t ways 

and Pouliezos showed tha t the type of f a u l t could be 

narrowed down by t es t i ng f o r mean, variance and whiteness. 

This p a r t i a l f a u l t i so l a t i on overcomes to some extent the 
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d i f f i c u l t y wi th GLR of having to se lec t the f a i l u r e 

signature matr ix i n accordance wi th a p a r t i c u l a r f a u l t 

type. The algor i thm presented in [62 ] tested the 

innovation s t a t i s t i c s and then switched to f a u l t 

i d e n t i f i c a t i o n v ia GLR using the appropriate f a i l u r e 

signatures. By concentrat ing on a scalar system, 

Pouliezos was able to develop recursive schemes f o r most 

aspects of his work resu l t i ng in a high computational 

e f f i c i e n c y . 

1.2 Problem statement 

I t i s apparent from the l i t e r a t u r e survey tha t many recent 

papers on f a u l t detect ion are t h e o r e t i c a l , although some include 

a simple i l l u s t r a t i v e example. This p ro jec t aims to tack le the 

subject the other way round, s t a r t i n g w i th par t o f an ex i s t i ng 

p lan t and attempting to design f o r i t a su i tab le f a u l t detect ion 

system. I t takes i t s cue from Wi l lsky [27 ] : "At t h i s time most 

o f the work has been at a theore t i ca l level w i th only a few real 

appl icat ions o f techniques. Much work i s ye t to be done in the 

development o f implementable systems complete w i th a va r ie ty o f 

design t r adeo f f s . " 

The cont r ibut ions of Bellingham and Lees, p a r t i c u l a r l y [so] , are 

o f course a step in t h i s d i r ec t i on . This p ro jec t can perhaps be 

viewed as a log ica l extension to t h e i r work in tha t i t considers 

par t o f a real p lant rather than an i so la ted loop b u i l t as a 

laboratory r i g . I t i s however intended tha t rather more 

instruments should be monitored than in [so ] and tha t f a u l t 

detect ion algorithms should be tested at setpoints other than 

those at which they were set up. 

1.2.1 Choice of p lant 

The Department of Chemical Engineering at Imperial College 

has ava i lab le two p i l o t p lan ts , a f r ac t i ona l c r y s t a l l i z a t i o n 

p lant and a gas separation p lan t . The former, which 

separates an aqueous so lu t ion of potassium n i t r a t e and 

sulphate, takes several hours to reach steady s ta te . There 

i s also a tendency f o r some of the pipework to become 

clogged w i th c r y s t a l s , making t h i s p lant appear rather an 



38 

una t t r ac t i ve p ropos i t i on . The other p l a n t , which 

separates a mixture o f Carbon Dioxide and Ni t rogen, i s 

used extens ive ly f o r both undergraduate and graduate work 

and takes less than an hour to reach steady s ta te . This 

appeared much more su i tab le f o r a detai led, study i nvo l v ing 

experimental work and formed the basis f o r the research 

work presented in t h i s t hes i s . 

The f i r s t task was to de l ineate a par t o f the p lant f o r 

f u r t h e r study. This p ro jec t was ca r r ied out under the 

auspices o f the Control Section o f the Department o f 

E l e c t r i c a l Engineering w i th labora to ry f a c i l i t i e s made 

ava i lab le by the Department o f Chemical Engineering. I t 

was not intended t h a t the work should inc lude model l ing 

o f complex chemical react ions and accord ing ly the research 

was conf ined to a par t o f the p lan t i nvo l v i ng purely 

physical processes. This involves no real loss o f 

genera l i t y since much o f the equipment i n a chemical 

p lan t i s necessary purely to ' c o n d i t i o n ' the reac t ing 

substances as regards t h e i r temperature, pressure, f low 

r a t e , e t c . 

The p lan t i s described in Appendix I where Fig A l . l , a 

s i m p l i f i e d Piping and Instrumentat ion Diagram (P.& I . D . ) , 

i s to be found. With regard to instrument f a i l u r e and the 

safe running o f the p l a n t , the most c r i t i c a l loops are 

those given in the tab le accompanying the P.& I .D , i . e . the 

column pressures, the MEA and coo l ing water f low rates and 

the absorber l e v e l . Since model l ing o f e i t h e r column 

involves chemical react ions i t was decided tha t a t t en t i on 

should be focussed on the inst rumentat ion i n the area o f the 

heat exchanger and cooler (Section 'A' o f Fig A l . l ) . I f 

time permi t ted a possib le extension was to inc lude Section 

' B ' , the absorber leve l cont ro l loop. 

1 .2 .2 Faults considered 

Himmelblau [26 ] discusses many f a u l t s associated w i th p lants 

to be found in the chemical i ndus t ry . These f a l l broadly 

i n t o three categor ies: p l a n t , measurement and con t ro l . The 
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f i r s t o f these includes blockages, leaks and mechanical 

f a i l u r e wh i le the second and t h i r d cover the two facets o f 

every cont ro l loop whether manual or automatic. The 

major par t o f the ' c o n t r o l ' category concerns actuator 

f a i l u r e s , i nc lud ing s t i c k i n g or leak ing valves. 

This research i s l i m i t e d to the second category, namely 

f a u l t s i n the measuring instruments whether used merely as 

i nd i ca to rs or incorporated i n to cont ro l loops. There i s 

considerably more to a measurement loop than j u s t the 

measuring element. The Section 'A' ins t rumentat ion 

includes res is tance temperature detectors ( r . t . d . ' s ) , 

o r i f i c e p l a tes , R / I transducers and d i f f e r e n t i a l pressure 

t r ansm i t t e r s , the process var iab les being t ransmi t ted to 

the computer as 4-20 mA analog s igna ls . By the time a 

process va r i ab le becomes ava i lab le to the c . p . u . i t has 

t r a v e l l e d v ia several pieces o f equipment i nc lud ing a 

rea l - t ime i n t e r f a c e and an a n a l o g - t o - d i g i t a l conver ter . 

This p ro j ec t seeks to detect a f a u l t and to i s o l a t e i t 

wherever possib le to a p a r t i c u l a r measurement loop. The 

t r ac ing o f a f a u l t to a ce r ta in ' ins t rument ' i s not 

intended to imply anything f u r t h e r than the i d e n t i f i c a t i o n 

o f the f a u l t y loop and the words ' f a u l t ' and ' f a i l u r e ' are 

used interchangeably. 

Four types o f f a u l t s are considered and these are shown 

diagramrnat ical ly i n F i g . l . Types (a) - (c) can be 

associated w i th any instrument wh i le type (d) i s 

app l icab le only to a temperature loop where a break or 

loose connection in an r . t . d . lead is. i n te rp re ted as a 

high res is tance causing the temperature va r iab le to s t i c k 

a t the top o f the range. In common w i th previous work 

a t t en t i on i s concentrated on ' s tep ' f a u l t s where a sudden 

bias appears on the instrument output . The sharp step i s 

o f course i dea l i zed ; i n p rac t i ce such a f a u l t may be due 

to the formation o f a i r bubbles i n the p ip ing to a pressure 

t ransmi t t e r or associated w i th mechanical damage. 
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1.2.3 Approach to the problem 

The l i t e r a t u r e survey ind ica tes t ha t Kalman f i l t e r s have 

been used in a v a r i e t y o f ways to detect and i s o l a t e 

f a u l t s . I t must be borne in mind tha t some of these 

techniques, notably the m u l t i p l e hypothesis methods and 

GLR, are heav i ly model dependent and tha t a real p lant 

may not be s u f f i c i e n t l y amenable to accurate mathematical 

representat ion. 

Continuing on the theme o f t h i s p ro jec t as a l og i ca l 

extension o f the work o f Bellingham and Lees [so ] i t seems 

reasonable to stay wi th the innovat ions based techniques 

since the innovat ion sequence seems t a i l o r made f o r f a u l t 

detec t ion. The innovat ion vector f o r a model based on 

Section 'A' o f the p lan t (Fig A l . l ) w i l l have more than 
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the two components of [so] and leads to the poss ib i l i ty 
of extracting more information from the innovations than 
just a s h i f t in mean. Several researchers, notably Beard 
[31 ] , have u t i l i zed the di rect i on of the post- faul t 
innovation vector for fau l t ident i f icat ion while the 
steady state innovation direct ion, used by Chien [46] and 
touched upon as a possible s impl i f icat ion of GLR by Wi11 sky 
[27], may well be suitable for the p i l o t plant which is 
designed to run in the steady state for long periods. 

I t would also be possible to estimate instrument biases 
either by augmenting the state vector or by employing 
Friedland's bias f i l t e r [15], but with several instruments 
to choose from i t is d i f f i c u l t to decide which biases 
should be estimated. In any case such augmentation adds 
considerably to the computational load and, with the 
accent on designing an implementable system, such a 
refinement is to be avoided i f at a l l possible. Another 
source of added computational loading is the addition of 
a r t i f i c i a l measurement noise. Clearly an existing plant 
is ' r ea l i s t i c 1 without the addition of such noise 
(cf . [20 ] , [22] and [49]) but the addition of noise to make 
the f i l t e r work at a l l is quite a di f ferent matter and may 
be unavoidable (see e.g. [ 9 ] , [so]) . 

I t was decided that work should concentrate on obtaining 
the simplest ( i . e . lowest order) model possible for 
Section 'A' of the plant, with no state vector augmentation 
and minimal addition of refinements. The only design 
cr i ter ion would be that at the end of the day the model 
should be suitable-for fau l t detection purposes, with 
accurate state estimation a secondary consideration. To 
quote Newell and Fisher [19]: "In engineering applications, 
the value of a model is not usually judged by i t s 
mathematical rigour or the elegance of the derivation but 
rather how well i t f u l f i l l s a specif ic need in comparison 
with other alternatives". 

I t was further decided that a l l modelling work and testing 
of fau l t detection algorithms would be carried out with 
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real p lant data. In order to al low the comparison of 

d i f f e r e n t algorithms under i den t i ca l condit ions the 

p lant data was recorded on paper tape and the algorithms 

tested o f f - l i n e w i th superimposed instrument f a u l t s . 

1.3 Contr ibut ions 

The main contr ibut ions o f t h i s work a re : -

( i ) The development of a new steady state representat ion f o r 

a heat exchanger based on a nonl inear t h r e e - f l u i d model 

and v e r i f i e d wi th real p lant data. 

( i i ) Proof tha t the t h r e e - f l u i d approach becomes mathematically 

i n t rac tab le when appl ied to the t rans ien t case. 

( i i i ) A s i m p l i f i e d approach to t rans ien t heat exchanger 

model l ing, based on p a r t i a l der ivat ives obtained from the 

steady state three f l u i d model and v e r i f i e d wi th real 

p lant data. 

( i v ) Determination of the t rans ien t and steady s ta te e f fec ts 

of input and output step f a u l t s on the Kalman f i l t e r . 

(v) Design o f a suboptimal f i l t e r w i th enhanced f a u l t 
detect ion capab i l i t i es by the manipulation of the constant 
Kalman gain. 

( v i ) Der ivat ion of the expected value and e r ro r covariance of 

the estimate of f a u l t magnitude. 

( v i i ) Testing o f two l o g - l i k e l i h o o d r a t i o (LLR) f a u l t detect ion 

algorithms f o r a 6-s ta te system using real p lant data. 

( v i i i ) Suggestions f o r extension o f the system to include a level 
control loop. 

whi le miscellaneous minor cont r ibut ions inc lude : -

( i x ) A new proof by l i nea r algebra of the equivalence of the 
de termin is t i c observab i l i t y c r i t e r i a of Kalman and 
Rosenbrock. 

(x) Extension to the d iscrete- t ime case of Fr iedland's work on 

the est imat ion e r ro r and innovat ion covariances f o r the 

suboptimal f i l t e r . 
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( x i ) Analysis of fa lse and miss alarm p r o b a b i l i t i e s f o r a 

system wi th one possible f i xed f a u l t and ind ica t ion tha t 

the analysis breaks down when appl ied to the LLR 

algor i thms. 

Claim of o r i g i n a l i t y 

A l l of the work contained w i th in t h i s thesis i s o r i g i na l work 

unless otherwise stated. In p a r t i c u l a r t h i s research was car r ied 

out independently of work on f a u l t detect ion in progress 

concurrent ly in the Department o f Chemical Engineering at Imperial 

College. 



CHAPTER 2 

PLANT MODELLING IN THE STEADY STATE 

In t roduct ion 

The underlying purpose of the pro jec t i s to take a spec i f i c 

p lant and to design, f o r at leas t a part of i t , a system capable 

o f detect ion and i s o l a t i o n of measurement f a u l t s . The 

in t roductory chapter discussed the se lec t ion of a su i tab le p lant 

and del ineated a sect ion o f i t f o r de ta i led study. I f the 

suggested Kalman f i l t e r approach i s to be adopted then the 

i n i t i a l task i s to bu i l d a s tate space model f o r t h i s subsystem. 

The APV Paraflow "Junior" i s a p la te- type heat exchanger 

cons is t ing o f a number o f metal plates clamped together in such 

a way tha t the hot and cold l i qu ids pass in counter f low through 

a l te rnate p la tes . The p i l o t p lant heat exchanger i s b u i l t up 

from 105 of these 258cm2 plates whi le the cooler has only 19. In 

view of the s i m i l a r i t y o f the uni ts i t seems reasonable to 

suppose tha t the same model could be used f o r e i t h e r , simply by 

employing two d i f f e r e n t sets o f physical constants ( c f . the 

modular approach of Newell and Fisher i n [ 1 9 ] ) . 

This chapter takes as a basic process un i t a s ing le counter f low 

heat exchanger and attempts under steady state condit ions to 

re la te the o u t l e t temperatures o f the two l i qu ids to the i n l e t 

temperatures and the f low rates by considerat ion of heat balances. 

Consistent wi th the declared aims of Chapter 1 each model i s 

judged so le ly by i t s a b i l i t y to reproduce the observed plant 

measurements. We s t a r t wi th the simplest model avai lab le making 

no attempt to represent mathematically the t rue physical 

condit ions ins ide the process un i t i t s e l f . Only i f t h i s model 

proves inadequate i s i t re jected in favour of a more complex 

representat ion. 
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2.1 Previous work on p lan t model l ing 

Informat ion on previous work comes from two sources: publ ished 

work on p la te - type heat exchangers and research work on the p i l o t 

p lan t i t s e l f . 

2 .1 .1 The p la te - type heat exchanger 

This type o f heat exchanger has been used i n indus t ry i n 

i t s present form since the 1930's and has many advantages 

over other types o f exchanger, i nc lud ing greater 

compactness and a c c e s s i b i l i t y o f heat t r a n s f e r surfaces 

f o r c leaning purposes (Usher [ 6 3 ] ) . The p la te design 

causes turbulence i n the f l u i d f low a t Reynolds numbers 

as low as 200* r e s u l t i n g i n higher heat t r a n s f e r 

c o e f f i c i e n t s than she l l -and- tube un i t s operat ing at the 

same Reynolds number. (Lawry [ 6 4 ] ) . 

Most publ ished work i s concerned w i th design methods f o r 

determining the number o f p lates necessary to comply w i th 

a ce r ta in process f l u i d temperature s p e c i f i c a t i o n . 

Buonopane e t al [65 ] employ empir ica l methods f o r 

ca l cu la t i ng the convection c o e f f i c i e n t s a t the p la te 

surfaces and also take account o f f low con f igu ra t i on . 

From a model l ing po in t o f view, i t i s necessary to make 

some assumptions regarding the temperature d i s t r i b u t i o n 

w i t h i n the u n i t . Given f low rates and i n l e t and o u t l e t 

temperatures, the heat t r a n s f e r c o e f f i c i e n t s f o l l ow from 

ca l cu la t i on o f the mean temperature d i f f e rence between 

f l u i d s . Buonopane's work assumes t ha t heat losses to the 

surroundings are n e g l i g i b l e and employs a logar i thmic mean 

temperature d i f fe rence used i n conjunct ion w i th a 

cor rec t ion f a c t o r dependent on f low ra te and con f igu ra t i on . 

2 .1 .2 Previous work on the p i l o t p lan t 

The p i l o t p lan t has been the subject o f several research 

pro jec ts over the years and models f o r many d i f f e r e n t 

purposes have been developed. Palmquist [66 ] u t i l i z e s 

resu l t s from several sources, p a r t i c u l a r l y Albrecht [67 ] 

and. Roberts [ 6 8 ] , to develop a s i m p l i f i e d 21 s t a t e , 
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5 inpu t s ta te space model f o r the whole p l a n t . Palmquist 's 

work i s mainly concerned w i th model order reduct ion and 

uses borrowed p lan t data f o r numerical work. 

As f a r as the heat exchanger un i ts are concerned, 

Palmquist does not consider the actual f low con f igu ra t i on 

but uses a simple 'Tumped parameter1 model. I t must be 

borne i n mind t ha t t h i s p ro jec t , does not s e t out to der ive 

an accurate model f o r a heat exchanger, ra ther to develop 

a model t ha t i s 'good enough' t o use i n conjunct ion w i th 

a Kalman f i l t e r . Palmquist 's approach i s perhaps more 

a t t r a c t i v e than a h igh ly t heo re t i ca l approach i f i t can 

be made to work i n p rac t i ce over a range o f operat ing 

po in t s . 

2 .2 Experimental work f o r model l ing purposes 

I n i t i a l experiments on the p lan t inc luded two runs f o r model l ing 

purposes: 'PLANT2' and 'PLANTS', the p lan t being run i n closed 

loop, f o r these and a l l o ther p ro jec t runs. Only s i x o f the twelve 

con t ro l valves on the p l a n t are shown i n F ig . A l . l (Appendix I ) 

and. o f these a l l except CV702. are incorporated i n t o cont ro l loops. 

Of the remaining s i x , two are not used i n the closed loop 

con f igu ra t i on wh i le f ou r are used i n loops f o r ' u t i l i t y ' f lows: 

Carbon Dioxide and Nitrogen feeds, condenser cool ing water f low 

and steam supply. 

FIB. 2 SCHEMATIC DIAGRAM SHOWING MEASURED VARIABLES FOR RUNS PLANT 2 & 3 
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I t was important to ensure tha t f o r consistency the f i v e main 

loops l i s t e d in Fig. A l . l (Appendix I ) were configured in 

exact ly the same way f o r each p lant run. Sui table values f o r 

the PID algor i thm contro l terms were obtained from the p lant 

l i t e r a t u r e and entered v ia the operator 's console. These values 

were used f o r a l l subsequent p lant runs and can be found in 

Appendix I . 

Readings from f low instruments FX101, FX124 and FX125 were 

ca re fu l l y zeroed before s t a r t i n g up the p l an t , and on reaching 

steady s ta te a simple heat balance was performed on each heat 

exchange un i t on each occasion as a rough check on some of the 

temperature readings. Process var iables from the eleven 

instruments shown i n Fig. 2 were recorded on paper tape. The 

sampling in te rva l was in each case d ic ta ted by the purpose o f 

the experiment, but could not be made a r b i t r a r i l y small due to 

the f i n i t e time taken by the high speed punch to output a group 

o f eleven data po in ts . 

2.2.1 Run 'PLANT2' 

The purpose o f t h i s run was to obtain a steady state data 

record f o r analysis of p lant and measurement noise 

s t a t i s t i c s (see Chapter 4 ) . The p lant was allowed a two 

hour run up before commencement of data logging to ensure 

t ha t a l l temperatures were as steady as possible. For 

s t a t i s t i c a l analysis a data set recorded over approximately 

1000 time steps i s required and a sampling i n te rva l o f 

ten seconds was chosen in order to obtain t h i s number o f 

points i n a reasonable t ime. 

The p lant was set up as shown in Table 1 and the average 

values o f the process var iables of i n t e res t are summarized 

in Table 2. 
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TABLE 1 

CONTROL LOOP 
Control led Variable Setpoint 

Valve Ins t . 
Control led Variable Setpoint 

CV101 FX! 01 Str ipped MEA f low 0.25 kgs"1 

CV104 PX104 Absorber pressure 250 kNm"2 

CV107 PX107 St r ipper pressure 105 kNm"2 

c v n o FX! 24 Cooler c/w f low 0.25 kgs 

CV111 L X l l l Absorber level 0.3 m 

The paper tape ran out a f t e r j u s t over two and a ha l f 

hours so tha t 924 data sets were in f a c t recorded. 

TABLE 2 

Minutes i n to run: 0-5 149-154 0-5 149-154 

FLOW RATE kgs"1 FX! 01 0.25 0.25 FX! 24 0.25 0.25 

TEMPERATURE °C 

TX110 20.0 20.9 TX175 21.69 22.42 

TEMPERATURE °C 
TX172 87.2 87.5 TX176 9.54 10.59 

TEMPERATURE °C 
TX173 101.4 101.6 TX177 23.92 24.72 

TEMPERATURE °C 

TX174 34.7 35.4 Ambient 21.5 21.7 

Exchanger heat balance check: the heat gain by the ' co ld ' 

l i q u i d should be s l i g h t l y lower than the heat loss by the 

' ho t ' l i q u i d due to losses to the atmosphere. 

Cooler: cool ing water gain 15,042W 

st r ipped MEA loss 15,376W 

Heat exchanger: spent MEA gain 68,524W 

str ipped MEA loss 69,768W 
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Cooling water f o r the p lan t comes from a closed loop 

system supplying the whole Chemical Engineering 

labora to ry . As the water i s piped to a cooler on the roof 

o f the bu i l d ing and then returned to the p l a n t , i t s 

temperature i s dependent on the outdoor ambient 

temperature. I f the p i l o t p lan t i s run f o r a per iod o f 

several hours, then the temperature (TX176) o f the water 

suppl ied to the cooler r i ses s l i g h t l y , causing other 

temperatures around the p lan t to increase by a small 

amount. This i s r e f l e c t e d i n the readings obtained, which 

are quoted in Table. 2 as 31 po in t (5 minute) averages 

taken from the beginning and the end o f the PLANT2 run. 

Data i s quoted to the same number o f s i g n i f i c a n t f i gu res 

as obtained from the paper tape record, t h i s vary ing w i th 

the range o f the process va r iab le concerned. PLANT2 data 

used f o r steady s ta te model l ing i s from the beginning of 

the run. 

As the absorber l i q u i d leve l remains constant , the mean 

f low rates measured by FX101 and FX125 should be equal , 

although the l a t t e r w i l l have a higher var iance. Mean 

values ca lcu la ted f o r PLANT2 are 0.250 kgs"1 f o r FX!01 and 

0.230 kgs" 1 , 8% lower, f o r FX!25. This d i f fe rence may be 

due to bias i n one or both o f the measurement loops, but 

any s i g n i f i c a n t departure from the nominal temperature and 

pressure used f o r o r i f i c e p la te design would also be a 

con t r i bu to ry f a c t o r . 

2 .2 .2 Run 'PLANT3' 

I t i s apparent from Fig. 2 tha t each heat exchange system 

has four inputs and two outputs : 

Cooler 

Inputs : 

Str ipped MEA i n l e t temperature TX174 and f low rate FX101. 

Cooling water i n l e t temperature TX176 and f low rate FX!24. 

Outputs: 

Str ipped MEA o u t l e t temperature TXT 10. 

Cooling water o u t l e t temperature TX177. 
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Heat Exchanger 

Inputs: 
Str ipped MEA i n l e t temperature TX173 and f low rate FX101. 

Spent MEA i n l e t temperature TX175 and f low rate FX!25. 

Outputs: 
Str ipped MEA o u t l e t temperature TX174. 

Spent MEA o u t l e t temperature TX172. 

The purpose of run PLANT3 was to invest iga te the dynamics 

of these un i ts by studying responses to step changes in 

the inputs. This l i n e o f study i s pursued in Chapter 3, 

but several points should be noted here: 

( i ) TX174 is an output o f the heat exchanger but i s 

also an input to the cooler . 

( i i ) A l l temperature inputs are d ic ta ted by operat ing 

condit ions elsewhere i n the p lan t and, as a 

consequence, i t i s not possible to change these 

inputs suddenly. Experiment i s thus l im i t ed to 

applying step changes to the f low rates by changing 

the f low setpoints at the operator 's console (see 

Appendix I ) . 

( i i i ) A f t e r an MEA or cool ing water setpo in t change the 

i n i t i a l t rans ien t dies away a f t e r three or four 

minutes. The change in MEA temperature, however, 

propagates slowly through the absorber causing 

temperature d r i f t i n g which may take ha l f an hour to 

s e t t l e down. 

Four step response experiments were car r ied out as 

deta i led in Table 3, using the same contro l loop parameters 

and pressure and level setpoints as f o r PLANT2 (Table 1) . 

The p lant was allowed to return to the steady s ta te a f t e r 

each setpoint change, and each experiment was recorded on 

a separate paper tape using a sampling i n te rva l o f ten 

seconds. These tapes provide data on system t rans ients 

and a fu r the r s i x sets of steady state temperatures. 
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TABLE 3 

Expt No 
(ambient) 

mins 
Total 

mins 
expt. 

Str ipped MEA 
f low setpoint 

Cooler c/w 
f low se tpo in t . Remarks s/s data 

set 

3/E1 0 0 0.2 kgs~1 0.25 kgs"1 Steady 3/1 
2 2 t 0.25 kgs"1 Step MEA 

(21.7°C) 28 28 e - o - t 

3/E2 38 0 0.25 kgs"1 0.25 kgs"1 Steady 3/2 

40 2 + 0.27 kgs"1 Step MEA 
(22.1°C) 52 14 e - o - t 

68 0.27 kgs"1 0.25 kgs"1 Steady 3/3 

f 0.25 kgs"1 f 0.2 kgs" ' r ese t ' 

3/E3 110 0 0.25 kgs"1 0.2 kgs"1 Steady 3/4 
112 2 + 0.25 kgs ' 1 Step c/w 

(22.1°C) 125 15 e - o - t 

3/E4 150 0 0.25 kgs"1 0.25 kgs"1 Steady 3/5 
154 4 + 0.27 kgs"1 Step c/w 

(22.1°C) 166 16 e - o - t 

179 0.25 kgs"1 0.27 kgs"1 Steady 3/6 

e - o - t end of tape. i . e . tape switched o f f to wa i t f o r 

temperatures to s e t t l e down before next experiment. 

c/w cool ing water. 

s/s steady s ta te . 

d i r ec t i on of setpo in t change, new se tpo in t . 

Heat balance check on data set 3/1 

Cooler: cool ing water gain 

s t r ipped MEA loss 

Heat exchanger: spent MEA gain 
st r ipped MEA loss 

11966 W 
12050 W 

55296 W 
55982 W 
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2.2.3 Summary o f steady s ta te data 

Steady s ta te operat ing temperatures from PLANT2 and PLANT3 

are summarized i n Table 4. Process f l u i d temperatures 

quoted f o r PLANT3 are averaged over the periods 

immediately p r i o r to f low ra te se tpo in t changes, w i th the 

exception o f 3/3 and 3/6 which were obtained d i r e c t l y from 

the opera tor ' s console. For steady s ta te model l ing 

purposes coo l ing water and s t r i pped MEA f low rates are 

taken to be equal to t h e i r respect ive se tpo in t values. 

The steady s ta te spent MEA f low ra te i s assumed equal to 

the s t r ipped MEA f low ra te . 

TABLE 4 

run/data se t : 2 3/T 3 / 2 3 / 3 3 / 4 3 / 5 3 / 6 

FX! 01 kgs"1 0 . 2 5 0 . 2 0 . 2 5 0 . 2 7 0 . 2 5 0 . 2 5 0 . 2 5 

FX124 k g s " 1 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 5 0 . 2 0 . 2 5 0 . 2 7 

TX110 • c 2 0 . 0 2 0 . 3 2 2 . 4 2 3 . 3 2 4 . 2 2 1 . 9 2 1 . 3 

TX172 • c 8 7 . 2 8 8 . 6 8 7 . 6 8 7 . 1 8 7 . 8 8 7 . 6 8 7 . 3 

TX173 • c TOT . 4 TOT.6 TOT . 4 1 0 1 . 4 1 0 1 . 4 1 0 1 . 4 1 0 1 . 3 

TX174 • c 3 4 . 7 3 4 . 7 3 6 . 7 3 7 . 6 3 8 . 0 3 6 . 4 3 5 . 9 

TX175 • c 2 1 . 6 9 2 2 . 5 2 2 3 . 5 5 2 4 . 0 2 2 5 . 0 4 2 3 . 1 9 2 2 . 5 7 

TX176 • c 9 . 5 4 1 2 . 9 6 1 2 . 4 8 1 2 . 1 7 1 2 . 1 4 1 1 . 7 6 1 1 . 7 1 

TXT 77 • c 2 3 . 9 2 2 4 . 4 0 2 6 . 2 2 2 7 . 0 0 2 9 . 0 5 2 5 . 6 9 2 4 . 6 6 

Ambient *C 2 1 . 5 2 1 . 7 2 2 . 1 2 2 . 1 2 2 . 1 2 2 . 1 2 2 . 1 

2.3 A simple model 

Palmquist [66] models each heat exchange system as a pa i r o f tank 

reactors w i th temperature averaging. This idea should not be 

confused w i th the more commonly used 'cont inuous ly s t i r r e d tank 

reactor 1 (CSTR) in which i t i s assumed tha t the body of l i q u i d 

i n the reactor i s a t the same temperature as the o u t l e t . 

Palmquist 's reactors could be described as ' p a r t i a l l y s t i r r e d 

tank reactors ' and w i l l henceforth be re fe r red to as PSTR's. The 
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f o l l ow ing assumptions are taken from [66 ] : 

( i ) The mean temperature o f the f l u i d i n a PSTR i s taken to 

be the average o f the i n l e t and o u t l e t temperatures. 

(This i s equiva lent to assuming a l i n e a r temperature 

p r o f i l e between i n l e t and o u t l e t ) . 

( i i ) The ra te o f heat t r a n s f e r between a p a i r o f PSTR's i s 

p ropor t iona l to the d i f fe rence between t h e i r mean 

temperatures. 

( i i i ) The heat loss to the a i r by the heat exchanger i s 

n e g l i g i b l e compared w i t h the heat t r a n s f e r between 

f l u i d s due to the. la rge number o f p la tes . 

( i v ) In the coo le r , only the ' h o t ' MEA loses heat to the a i r , 

a t a ra te propor t iona l to the PSTR temperature excess 

over ambient. 

The. r t d ' s are not loca ted a t equal distances from the process 

u n i t end p lates but no cor rec t ion i s made f o r t h i s : the heat 

losses, from t h e connecting pipework to the a i r are lumped i n 

w i th the losses, from the. exchanger i t s e l f . 

F ig .3 A simple model based on PSTR's 
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The process var iables- and heat, t r a n s f e r paths are shown i n 

F ig . 3 where. 

"TlJK = f l u i d temperature measured by ins t rument TXIJK. 

Fj = s t r i p p e d MEA f low r a t e (£CF X > s e t p o i n t ) 

Fx = spent MEA f l ow ra te ( ^ [ F 1 ] = under s /s cond i t i ons ) 

F 2 = coo le r c/w f low r a t e (£CF2]= s e t p o i n t ) 

2 . 3 . 1 Comparison o f p r e d i c t i o n e r ro r s 

In order to compare, models based on d i f f e r e n t assumptions 

i t i s necessary to in t roduce a cost f u n c t i o n f o r the 

p r e d i c t i o n e r r o r s . Given the ambient temperature, the 

two l i q u i d f l ow rates and one i n p u t o r output temperature 

f o r each* t he model l ing equat ions can genera l l y be 

manipulated to a l low p r e d i c t i o n o f the remaining two 

temperatures (see Fig;. 4 and Tables 5 and 7 ) . 

T,(0) IN HOT FLOW Fi 
OUT 

, OUT 

HOT FLOW Fi 

IN , OUT COLD FLOW F2 
IN 

COLD FLOW F2 

Tj (L) 

T2(L) 

F ig .4 I n l e t / o u t l e t temperatures f o r counter f l ow heat exchanger 

TABLE 5 

COOLER 

T i ( 0 ) TX174 TX(L) TX110 

T 2 ( 0) TX177 T 2 (L ) TX176 

For reasons t h a t w i l l become apparent i n Sect ion 2 . 5 , the 

cost f unc t i on selected, i s based on p r e d i c t i o n o f 

temperatures a t the ' co ld 1 end o f the exchanger. W r i t i n g 

f o r the i t h data s e t : 

(Oi" 
( O i 

TX(L) - Tx(L) 
T2(L) - t (L) 

we de f ine f o r 1n1 data sets the cos t f u n c t i o n : 

n 

\ eTe z: 
1=1 i f(ex)f + (e^J^J 
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2.3.2 A simple cooler model based on a l i nea r temperature 

d i s t r i b u t i o n 

With reference to Fig. 4 and using Palmquist 's assumptions 

( i ) , ( i i ) and ( i v ) a steady s ta te heat balance f o r the 

cooler gives: 

heat loss by MEA = loss to coolant , q + Toss to a i r , q c a 

F l - C p ( T m " Tllo' = + T110 - ( T177 + T17s)> 

+ Kcma « ( T M + T L L 0 ) - T A M B } . . . ( 2 . 1 ) 

heat gain by water = gain from MEA, q 

F
2- Cp( Ti77 " T m } = K c r H T " " + T i i o - ( T i " + T i 7 6 ) > •••V-2) 

where K denotes a heat t rans fe r c o e f f i c i e n t (Uni ts : WK"1) 

Each heat exchange un i t i s of f i xed dimensions and 

so wal l thicknesses and areas can be absorbed in to 

c o e f f i c i e n t . 

subscr ipt ' c £ ' : denotes t rans fe r between cooler l i q u i d s , 

subscr ipt 'cma1: denotes t rans fe r between MEA and a i r . 

Cp denotes spec i f i c heat (a t constant pressure): 

value taken to be 4184 J k g ^ K ^ f o r both MEA and water. 

At t h i s point a decision must be made as to how best to 

obtain and K „ from the ava i lab le data. I f the cost 
cz cma 

funct ion Jx i s to be used f o r model evaluat ion and 

comparison then i t must be calculated f o r each model. 

Furthermore the coe f f i c i en t s should be calculated such 

tha t i s minimized, thus presenting the model i n the 

most favourable l i g h t . 

Study o f equations (2.1) and (2.2) reveals tha t whi le 

ca lcu la t ion o f involves a f a i r degree of manipulat ion, 

any attempt to minimize Jx over K ^ and Kcma i s going to be 

a long and tedious task. While the model may s u i t the 

cooler i t i s possible tha t i t may prove inadequate f o r the 
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heat exchanger i n which case the e f f o r t put i n to 

minimizing Jx i s wasted. Clear ly there i s a case f o r 

est imat ing the coe f f i c i en ts by the simplest means possible 

to get a quick ind ica t ion as to the s u i t a b i l i t y of the 

model. The values can always be re-est imated at a l a t e r 

stage i f j u s t i f i e d . 

I f temperature values are subs t i tu ted from Table 4 then 

equation (2.2) y ie lds d i r e c t l y a l lowing (2.1) to be 

solved f o r Coef f ic ients calculated by t h i s means cma 
are given in Table 6 where the f i n a l estimates are taken 

to be the mean values over the seven data sets. 

TABLE 6 

Run 
^ - 1 
K a W K £ WK"1 

cma Run 
K i W K _ 1 £ WK"1 

cma 

2 1416 57.2 3/4 1347 31.6 

3/1 1357 14.4 3/5 1398 84.6 

3/2 1409 78.6 3/6 1405 98.8 

3/3 1428 76.9 mean 1394 63.2 

The standard deviat ion i s 28 WK"1 in each case. This i s 

reasonable f o r K . (2%) but i s a 45% deviat ion on K . 
cj i v ' cma 

Evaluation of the cost funct ion gives = 0.60 which 

can be thought of as an upper bound f o r the model. 
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.3 A modif ied l i nea r d i s t r i b u t i o n model f o r the cooler 

In accordance wi th Palmquist's assumption ( i v ) , Section 

2.3.2 presupposes tha t only the 'hot 1 MEA, on average 

some 7°C above ambient, loses heat to the a i r . The 

resu l t i ng estimated c o e f f i c i e n t f o r t h i s t r a n s f e r , Kcma5 

has a high standard dev ia t ion , suggesting tha t a 

modi f icat ion to the modell ing assumptions might be 

necessary. The cool ing water temperature i s on average 

around 3°C below ambient and so i t i s reasonable to 

suppose tha t heat i s gained from the a i r . Equation (2.2) 

becomes: 

heat gain by water = gain from MEA, q c ^ + gain from a i r , q a 

" V C p ( T m " T m > = k « H T 1 7 , + T l l ( - ( T l 7 7 + T 1 7 6 ) } 

+ l W T a n , b " i < T i „ + T m » - ( 2 - 3 > 

where K a i s the new ' a i r to water ' heat t rans fe r cwa 
c o e f f i c i e n t . 

I t i s no longer possible to ca lcu la te coe f f i c i en t s f o r 

each data set as the pa i r o f equations (2.1) and (2.3) 

contains three unknowns. Minimizat ion o f Jx i s c l ea r l y 

no easier than i t was in the previous case and cont inuing 

the po l i cy of tak ing the l i n e o f leas t resistance we look 

f o r an a l t e rna t i ve method of obta in ing a quick evaluat ion. 

Estimates can be obtained by de f in ing a new cost func t ion , 

J 2 , and minimizing i t by means of the fo l low ing theorem. 

Theorem 2.1 

Consider the minimizat ion of the quadrat ic funct ion 

V(_x) = p + <g, _x> + i <2i» C2<> 

wi th p e R; x»£ € Rn and C = CT>0 € R n x n (the set o f 

nxn matrices wi th f i n i t e real elements). 
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We require the po in t £ e Rn which minimizes V(x.) on Rn. 

Besides ensuring tha t C i s nonsingular, the condi t ion 

C > 0 implies tha t V(_x) i s s t r i c t l y convex and therefore 

has a unique local minimum and a unique g loba l l y minimizing 

x given by: 

arg min V(x) 

x c Rn 

{ -C _ 1a} 

This is a standard resu l t and may be found i n [69 ] 

Equations (2.1) and (2.3) are of the form 

aKcma + b K a = 9 . . . (2.4) 

dKcwa + b K c * . . . (2.5) 

where 

a = • 0 ( T m + T 1 1 0 ) - Ta m b } 

" = H T m + T l l 0 - (T 1 7 7 + T 1 7 g ) } 

d = {Tamb " i< T i 77 + T m ) } 

g = (Ti7i» " T u o ) 

h = ("^17 7 " "̂"l 76) 

(2.6a) 

(2.6b) 

(2.6d) 

(2.6g) 

(2.6h) 

We now define a p red ic t ion e r ro r f o r the power loss terms 

of (2.4) and (2 .5 ) : g^ and fi. are predicted power losses 

calculated from c o e f f i c i e n t estimates R n9 R , and K 
c V cma cwa. 

and the temperature values from data set * i 1 

( M i = 9 i - 9i = a. Rcn)a + b i - g. 

( M i = fiT " h i = d i Rcwa + b i K i * h i 

The problem is to choose the value o f k = [K c m a Kcwa K ] 

such tha t these errors are minimized in some sense. 
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Defining a new cost funct ion f o r V data sets: 

J2 = ]TH($i)i + (5z)i } 
i = 1 

we require 

j< = arg min 02(Js) 

k £ R3 

- arg min £ H a i K c m a + b i K a - g i } 2
+ H d i K c w a + b . K a - h i } ' 

k £ R i = l 
. . . (2.7) 

The cost funct ion can be wr i t t en in matr ix form as 

J 2 (k ) = p + <a,k> + i<k,Ck> . . . (2.8) 

where, f o r data sets i = l , . . . , n 

P = n 9 2 + i Z h . 2 

i i i 1 

aT Za g Zd h Zb (g + h ) 
i i i i i i i i i i 

C = 

Za 
i i 

Zd 
i i 

Za b 
i i i 

Zb d 
i i i 

and k' = 

Za b 
i i i 

cma 

Zb d 2Zb 
i i i i i 

cwa "cSL 

Clearly C = CT and provided that C > 0, the vector J< that 

minimizes J2( j<)is given by Theorem 2.1 as 

-C a . . . (2.9) 
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Using t h i s method f o r data sets PLANT2, PLANT3/j, j = l 6 

we obta in 
/s 

K. 41.0 cma 41.0 

K — 53.0 cwa 53.0 
/N 

1374 

Evaluat ion o f the 'comparison' cost func t ion f o r these 

c o e f f i c i e n t s gives the value = 0.75. Note t h a t had 

Sections 2 .3 .2 and 2.3.3 ac tua l l y minimized Jx over the 

c o e f f i c i e n t vector k then the l a t t e r would have generated 

a JL value less than or equal to t h a t generated by the 

former because o f the add i t i ona l parameter. As i t i s the 

Jx values are only approximately minimized and the s l i g h t l y 

higher value f o r in t h i s case suggests t ha t the 

mod i f i ca t ion i s u n l i k e l y to b r ing about any great 

improvement. 

2 .3 .4 A simple non l inear model f o r the cooler 

The models described in 2 .3 .2 and 2.3.3 both assume tha t 

the temperature p r o f i l e o f each l i q u i d i s l i n e a r between 

i n l e t and o u t l e t . For the purpose o f ca l cu l a t i ng the mean 

temperature d i f fe rence between f l u i d s ( ' b ' o f equations 

(2.4) and ( 2 . 5 ) ) , a tubu la r heat exchanger i s usual ly 

modelled as a d i s t r i b u t e d system ra ther than as a pa i r o f 

PSTR's. While i t i s t rue tha t the p i l o t p lan t exchangers 

are not o f the tubu la r type there i s no reason why such 

an approach should not be t r i e d . A possible mod i f i ca t ion 

to the approach o f 2 .3 .3 i s to re ta i n the assumption t ha t 

there i s heat t r ans fe r between each cooler f l u i d and the 

a i r , but to add tha t the temperature p r o f i l e is governed 

only by the heat t r a n s f e r between l i q u i d s . The 

d i s t r i b u t e d system theory could then be extended to the 

ca l cu la t i on o f the mean temperature d i f fe rence between 

each l i q u i d and ambient ( i . e . ' a ' and 1d1 o f equations 

(2.4) and (2 .5 ) ) to account f o r losses. 

Expressions are derived i n Appendix I I f o r mean 

temperatures 0 , T and T . Symbols are as shown in 
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Fig. 5 and correspond to the cooler instrumentat ion tag 

numbers given in Table 5. 

Tj(£) * hot fluid temperature at 

Tj(A) = cold fluid temperature at '£' 

8(1) = T x(l) - T 2(l) 

T = mean temperature hot fluid 

T 2 m » mean temperature cold fluid 

9 • mean temperature difference 

I * 0 

Fig.5 Temperature profiles for counter flow heat exchanger 

9(L) - 9(0) e, m 

im 

2m 

In 

1, (0)9(1) - l*i (L)Q(O) - 9m(T1 (0) -T 1 (L) } 

e ( L ) - 9(0) 

T1 (0)8(L) - 1 , (1 )9(0) - 9 m {T 2 (0 ) -T 2 (L ) } 

9(L) - 6(0) 

. (2.10) 

. (2.11) 

. (2.12) 

Equations (2.6a, b & d) are thus replaced by (2.13a,b & d) 

as fo l l ows : 

a = T im " Tamb 

b = 8 m 
d = Tamb " T2m 

. . . (2.13a) 

. . . (2.13b) 

. . . (2.13d) 

I t should be noted tha t f o r runs PLANT2 and PLANT3/j, 

j = 1 , . . . 6 , the value of 8m i s very near ly equal to 1b1 as 

o r i g i n a l l y defined in (2.6b). Values o f 'a ' and ' d1 tend 

to be marginal ly lower ( less than 1°C) than t h e i r 

counterparts defined in (2.6a & d) . The three heat 

t rans fe r coe f f i c i en t s are ca lcu lated i n exact ly the same 

way as in 2.3.3 y i e l d i n g 

cma 65.5 

R cwa = 19.7 WK"1 

A 

K « 
C £ 

1396 
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Evaluation of cost funct ion J x f o r t h i s model i s much 

less s t ra ight forward than f o r the previous two cases 

because TX(L) and T2(L) cannot be obtained e x p l i c i t l y 

in terms o f the other var iab les. Predicted values f o r 

T1(L) and T2(L) are obtained by a graphical technique 

as fo l lows : 

Given F i , F 2 , T i ( 0 ) , T2(0) and T a m b , a computer i s used 

to f i n d , by t r i a l and e r r o r , values o f T x (L) tha t s a t i s f y 

equation (2.4) f o r a range of T2(L) values extending to 

about ha l f a degree on e i t he r side of the measured T2(L) 

value. The ( T ^ L ) , T 2 (L ) } pairs so obtained are p lo t ted 

on graph paper g iv ing a curve o f possible so lu t ions to 

(2 .4 ) . I f the process i s repeated f o r equation (2.5) 

over the same T2(L) range, a second curve can be p l o t t ed , 

the in te rsec t ion of the two curves y i e l d i n g the unique 

TX(L) and T2(L) values tha t simultaneously s a t i s f y (2.4) 

and (2 .5 ) . 

Temperature pred ic t ion by t h i s means leads to a cost 

funct ion value Jx = 0.42, a 30% reduction on the previous 

'bes t ' value o f 0.6 obtained wi th the o r i g i na l (Palmquist) 

assumptions. At t h i s stage no one model stands out as the 

obvious choice: Jx i s only approximately minimized in 

each case and the one wi th the smal lest p red ic t ion e r ro r 

as measured by Jx has the disadvantage tha t i t s s t ruc ture 

makes i t d i f f i c u l t to work w i th . As i t would be desirable 

to use the same model f o r cooler and heat exchanger, the 

choice must in any case be delayed pending evaluat ion o f 

these approaches f o r heat exchanger model l ing. 
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2.3.5 S u i t a b i l i t y of simple methods fo r heat exchanger 

modelling 

Although Palmquist's assumption ( i i i ) (Section 2.3) 
neglects heat t rans fer from the heat exchanger to the a i r , 
the check heat balances show that both cooler and heat 
exchanger lose to atmosphere a s im i la r percentage of the 
heat ac tua l ly t ransferred between f l u i d s . 

Both the hot l i q u i d (st r ipped MEA) and the ' co ld ' l i q u i d 
(spent MEA) are at a higher temperature than the 
surrounding a i r and so i t seems reasonable to suppose that 
each loses heat to the atmosphere. Following a para l le l 
development to that of Section 2.3.3 and re fe r r i ng to 
Fig. 3: 

Stripped MEA heat loss = loss to spent MEA, q x^ 

+ loss to a i r , q s t a 

F 1 - C P ( T 1 7 3 - T1 7 t f ) - K X ,HT 1 7 3 + T m - (T1 7 2 + T 1 7 5 ) } 

+ K s t a { H T 1 7 3 + T 1 7 J - Ta m b} 

. . . (2.14) 

Spent MEA heat gain = gain from str ipped MEA, q x ^ 

" l o s s t 0 air> Spa 
Fl- Cp ( Tm " T175> = KX^{T173 + TI7, " (T172 + T

175)> 

- K spa { HT 1 7 2 + T i7 . ) - Ta m b } 

. . . (2.15) 

where the K - subscripts are 

x i : t rans fer between heat exchanger l i qu ids 
sta : t ransfer between str ipped MEA and a i r 
spa : t ransfer between spent MEA and a i r 

These equations, as (2.1) and (2 .3 ) , are o f the form 

a K s t a + b K x l = g . . . (2.16) 

" d K s p a + b K x * = h • • • (2.17) 
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where 

a = {J(Ti7s + T 1 7 0 " T a m b } 

b = J { T 1 7 3 + T1 7 t f - ( T 1 7 2 + T 1 7 S ) } 

d = {i(T172 + Tl7S) - Tamb} 
9 = F r C p ( T i 7 3 * T i 7 J 

* - F i , C p ( T i 7 7 - T
l 7 6 ) 

Using Theorem 2.1 once again f o r data sets PLANT2, 

PLANT3/j, j = 1 , . . . 6 we obta in 

(2.18a) 

(2.18b) 

(2.T8d) 

(2.18g) 

(2.18h) 

K sta 

K. spa 

K XJl 

13.0 

- 0 . 4 

4933 

WK 
-l 

That there are problems associated w i th t h i s method is 

ev ident from the negative value obtained f o r c o e f f i c i e n t 
Kspa e o s t F u n c t l o n J i c o m e s o u t a t 7 6 a l t h o u g h t h i s 

f i g u r e i s d i s t o r t e d by very large p red i c t i on errors (over 

8°) f o r TX(L) and T2 (L) i n data se t PLANT3/1. Subtract ing 

out the 3/1 e r ro rs s t i l l leaves J j a t 4 .73, very much 

h igher than the value o f 0.75 obtained using the same 

model f o r the coo le r . 

TABLE 7 

HEAT EXCHANGER 

T x (0 ) TX173 TX(L) TX174 

T2( 0) " TX172 T2 (L) TX175 

Turning now to the ' l oga r i thm ic mean' method o f Section 

2 .3 .4 , ' a 1 , 1b1 and ' d ' o f equations (2.13a, b & d) are 

once again redef ined, (2.19d) r e f l e c t i n g the f a c t tha t 

T._ i s now above ambient: 2m 
a 

b = 

d = 

= T - T im amb 

m 
T - T 2m amb 

(2.19a) 

(2.19b) 

(2.19d) 



65 

0 , T, and T are ca lcu la ted from (2.10, 2.11 and 2.12) m im 2m v 

bearing in mind tha t temperatures T ^ O ) , T2 (0) e tc . now 

correspond to the heat exchanger inst rumentat ion tag 

numbers in Table 7. The c o e f f i c i e n t s obtained are: 

(c 

For the seven data sets a v a i l a b l e , s u b s t i t u t i o n o f the 

logar i thmic mean f o r the l i n e a r mean has no e f f e c t on the 

value o f ' b ' . Matr ix 'C' and vector V equation ( 2 . 8 ) , 

are also l i t t l e a l t e red , the maximum d i f f e rence between 

the logar i thmic and the l i n e a r case being a reduct ion o f 
2 

j u s t 1.5% i n Z d . The new K values which minimize cost 
i i 

f unc t i on J 2 (£ ) are , however, not even approximately equal 

to those obtained f o r the l i n e a r model. The physical 

s ign i f i cance o f the negative value f o r i< ^ i s t ha t the 

s t r ipped MEA (mean temperature near ly 70°C) i s tak ing in 

heat from the a i r ! C lear ly there i s now l i t t l e po in t i n 

re -es t imat ing the cooler c o e f f i c i e n t s to minimize J l # 

The numerical i n s t a b i l i t y can be explained by the use o f 

an analogy. The cost func t ion can be thought o f as a very 

shallow dish in the x-y plane w i th the cost J2(j<) p l o t t ed 

in the v e r t i c a l z - d i r e c t i on. For given parameters i n 

equation ( 2 . 8 ) , the lowest po in t on the dish surface 

corresponds to 'optimum' co-ordinates x and y . Small 

changes in matr ix C and vector a o f (2.8) cause the dish 

to t i p up s l i g h t l y and because i t i s so shallow t h i s 

causes the co-ordinates of the lowest po in t on the surface 

o f the d i sh , corresponding to c o e f f i c i e n t estimates K, to 

s h i f t d ramat ica l l y . 

The f a c t t ha t the two process un i ts are phys i ca l l y 

s i m i l a r begs the question as to why the l i n e a r and 

logar i thmic approximations should be reasonably successful 

w i th the cooler but f a i l when appl ied to the heat exchanger. 

The reason i s almost c e r t a i n l y connected w i th the f a c t t ha t 

"sta 

spa 

\<L 

•1341.9 

1907.6 

9637 

WK 
-l 
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these simple models neg lec t the i n f l uence o f the heat 

loss to the a i r i n shaping the f l u i d temperature p r o f i l e s . 

The prime d i f f e rences between the un i t s are the 

temperatures o f the f l u i d s r e l a t i v e to ambient: c l e a r l y 

the. i n f l uence o f the heat loss i s l i k e l y to be s t ronger 

f o r the heat exchanger than f o r the coo le r which operates 

f a i r l y c lose t o the ambient temperature. 

In the f o l l o w i n g development, which i s o r i g i n a l work, the 

exchanger i s remodelled as a f u l l y d i s t r i b u t e d t h r e e - f l u i d 

system in o r d e r t o t r y and take account o f the e f f e c t s o f 

the heat loss on the temperature p r o f i l e f o r each channel 

I t should be noted t h a t t h i s i s not an attempt t o model 

the t rue f low con f i gu ra t i on i ns ide the exchanger, merely 

an at tempt t o f i n d a b e t t e r rep resen ta t ion . 

2.4 A d i s t r i b u t e d steady s t a t e model f o r a counter f low heat exchanger 

F i g . 6 A t h r e e - f l u i d model 

Consider F ig. 6 , i n which the exchanger i s modelled as a hol low 

c y l i n d e r , p e r f e c t l y i nsu la ted from i t s surroundings and d iv ided 

l o n g i t u d i n a l l y i n t o three separate channels. The two f l u i d s pass 

i n counter f low through channels 1 and 2, wh i le channel 3 ca r r i es 

an a i r f low to represent the a i r surrounding the exchanger. This 

" t h r e e - f l u i d " approach was suggested by Kerschenbaum [ 7 0 ] . 

T 2 ( 0 ) FLOW 
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We make the fo l low ing assumptions: 

( i ) F lu id temperatures vary a x i a l l y but are constant along a 

radius. 

( i i ) The a i r f low i s so fas t tha t i t s temperature remains 

constant a t T3 during i t s passage through the exchanger. 

and over the length 65, o f a small element: 

( i i i ) Heat t rans fe r between channels * i 1 and ' j ' through area 

6a. . i s proport ional to the area and to the mean 

temperature d i f fe rence between the channels 

i . e . 6q . . = heat t rans fer from ' i * to ' j ' j 

= U.. 6a-. (T. - T.) 
U H i J 

where U.. i s a heat t rans fe r c o e f f i c i e n t f o r t rans fe r from 
J -2 -1 

' i ' to ' j 1 expressed in Wm K 

but 6a. . = A . . 6£ 
U U i: 

where A^. i s the t o t a l area o f the d i v id ing wal l o f 

length L between channel ' i 1 and channel ' j 1 . U.. and A^-

can be combined in to a .s ing le c o e f f i c i e n t , K . . , expressed 1J 
in WK . 

( c f . equations (2.1 and 2.2) 

hence q . . = K. . (T. - T. ) SSL . . . (2.20) 
i J i J i J ] 

Consider now a steady state heat balance f o r the segmental 

'wedges1 o f f l u i d in channels 1 and 2 between l and 

I + 6£ (Fig. 7) . 
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Fi 
Tx 

51 

Tx 

T, T, 

T2 

61 

T2 

T2 T2 

f2 

F ig .7 Three f l u i d model: temperature and f low conventions 

Channel 1 Channel 2 

Temperature a t I 

Temperature a t & + 5JI 

Temperature drop 

Ti + dT, 
W 

61 T + 
2 

61 

dT, 

T
2 W " 

I 

s r 
61 

dTz 

w 
61 

Flow ra te F, 

Heat loss by element 

Heat losses by conduction 

-F!Cp: 

Channel 1 to 2 

Channel 1 to 3 

dT 
I 

3 1 " 

M 

6H 

-F 2 (counter f low) 

61 PZC
P2 

dTl 
w 

61 
Kia(Ti - T 2 ) ^ 2 to 1 K l 2 ( T 2 -

Ki.(Tr - UESLl 

Equating the heat loss terms: 

dT 1 

w 

61 = KxaCT, - T2)6A + K u ^ - T,)6A . . . (2.21) 

«* = K I a (T 2 - T . j a * + K2,CT2 - T , ) M . . . (2.22) 
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and by re-arranging we obtain a pai r of ordinary d i f f e r e n t i a l 
equations: 

dTi 
H T 

d T
2 z r 

K12 K13 
+ T C TT 1 pi 

1 Ki2 

2 P2 

1 

1 K12 1 K13 
tI + i t t j

2
 + r n r l 

i Pi i Pi 

2 P2 
+ r 

K, 
12 

2 P 2 

K 23 
FIT" 

2 P 2 

1 K 
T - ' 23 

2 T T T 2 P 2 

. (2.23) 

T . . . (2.24) 

These can be expressed in matrix form, w r i t i ng temperatures 
formal ly as funct ions of length 

Ti(») • B T,(A) B T3 
Ta(£)_ - r _ T 2 ( ± " U J.. 

(2.25) 

where T denotes a der iva t ive wi th respect to 'Z' 

and 

B 

K , o + K 
1 2 13 

~ T C 
1 pi 

K 
12 or 

K 
12 

i pi 
K + K 
12 23 

~ T C 
2 p 2 2 p 2 

Since B is a constant mat r ix , the so lut ion to (2.25) is 

TiW 

T z ( Z ) 

B* 
O O ) 
T2(0) 

* B/o \ 
do3 

Providing that B is nonsingular, Je 
Boo 
IT 

1 3 
B(JL) 

= LB-1 e F 

T,(Jl) T,(0) 
T 2(0) 

+ e 
• - . ] 

(2.26) 

leading to 

(2.27) 

where I 2 is a 2 x 2 i d e n t i t y mat r ix , and f i n a l l y 

t.(°> - t3 

T2(0) - T3 
(2.28) 
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Estimation of heat t rans fer coe f f i c ien ts 

I f the flow rates Fx and F2 are known, along wi th coe f f i c ien ts 
K 1 2 , K13 and K23 and temperatures T ^ O ) , T2(0) and T 3 , equation 
(2.28) can be used to predic t the temperatures at end ' L ' . 

. . . (2.29) ~Ti(L)~ 
J 

T,(0) " T3 + Ta 
Tt(L)_ 

e T,(0) " T,_ 

We now define fo r the i t h data set the predic t ion er ror 

"<ei>f 'TX(L) - t,(L) 
T2(L) - T2(L) 

= e 
: T 3 * T , (0)" 

4-
' T , (L ) - T3" 

_T, " T 2 (0 )_ 
i 

i _T2(L) - T3_ 
(2.30) 

so tha t f o r 1n1 data sets we again a r r i ve at the cost funct ion 

_n 
= > . . . (2.31) 

i=l 

Given the f low rates and temperatures, the heat t rans fer 
coe f f i c ien ts can be estimated by f ind ing the values of K 1 2 , K13 

and K23 which minimize ^ ( k ) . This cost func t ion , which here 
arises na tu ra l l y , gives d i r ec t comparison wi th the l i near and 
logar i thmic models. 

2.5.1 A numerical algorithm fo r minimization of Jx(J<) 

Unlike expression (2 .8 ) , (2.31) does not have a closed form 
solut ion fo r the vector k that minimizes J2(Jc), 
necessi tat ing the use of an i t e r a t i v e technique. 

Of the many Numerical Algorithm Group (NAG) routines 
avai lable to computer users at Imperial College, E04JAF is 
described as 'a quasi-Newton algori thm f o r f ind ing the 
minimum of a funct ion F(Xx, X2 . . . X^) subject to f i xed 
upper and lower bounds on independent variables X x , X2 . . .X^ 
using funct ion values on ly . ' The user must supply a 
subroutine to calculate the value of F(X) at any point X. 
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From a s t a r t i n g po in t suppl ied by the user there i s 

generated on the basis of estimates o f the grad ient and 

the curvature o f F(X) a sequence o f f eas ib l e points 

intended to converge to a loca l minimum o f the constrained 

func t i on . 

For the parameter est imat ion covered by the remainder of 

Chapter 2, t h i s a lgor i thm was employed w i th the cons t ra in t 

t ha t the c o e f f i c i e n t s K l 2 , K13 and K23 were estimated w i th 

a lower bound of zero. 

.2 A note on matr ix exponentials 

Cost func t ion J iQ i ) requires evaluat ion o f matr ix 

exponential e® where B i s a 2 x 2 ma t r i x . This can be 

expressed in terms of matr ix B and i t s eigenvalues i n a 

d i r e c t app l i ca t i on o f Coro l la ry 2.14 o f Chen [71 ] , as 

shown in the f o l l ow ing theorem. 

Theorem 2.2 

We def ine the fo l l ow ing funct ions o f X, where X is an 

eigenvalue of B 

Constants c x and c2 are to be found by equating f and g f o r 

d i s t i n c t eigenvalues and by equating t h e i r de r i va t i ves f o r 

repeated eigenvalues of B. 

Case ( i ) : D i s t i n c t eigenvalues 

f (X) 

g(x) 

e X . (2.32) 

. (2.33) c : + c2X 

For X . (2.34) 

. (2.35) 

From (2.34) cL = e
X l - c 2 X i 

and by s u b s t i t u t i o n i n to (2.35) 

. (2.36) 

= eXi - eX2 
X, - x2 

. (2.37) 

. (2.38) 
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From (2.36) 

Ci + M e A i - e X 2 ) 
Xl " X; 

I*! 

leading to c r 
X,eX2 - xyeXi 

= Xi - x2 

. . . (2.39) 

. . . (2.40) 

thus 

X,eX2 - x 9 e X i j + eX* - eX* 
Xj — X2 ^ Xj — X 2 . . . (2.41) 

Case ( i i ) : Repeated eigenvalues 

f (X) = g(X) Cj + c2X = eX . . . (2.42) 

f ' ( X ) = g '(X) c2 = eX . . . (2.43) 

where f ' is the der ivat ive wi th respect to ' X ' . 

Subst i tu t ing from (2.43) in to (2.42) 

cx = (1 - X)eX . . . (2.44) 

and eB = (1 - X)eX I2 + eAB . . . (2.45) 

Note that Theorem 2.2 is va l i d only f o r 2 x 2 matrices. 

.3 Heat exchanger coe f f i c ien ts using ambient a i r temperature 

Approximation techniques f o r modelling performed reasonably 
well on the cooler but Section 2.3.5 saw the f a i l u r e of two 
of these methods f o r heat exchanger modell ing. Of prime 
i n t e res t , therefore, is whether or not the d i s t r i bu ted model 
of Section 2.4 can cope wi th the heat exchanger problem. 

The theory requires the spec i f i ca t ion of the temperature of 
the a i r passing through channel 3. In l i ne wi th assumption 
( i i ) , Section 2.4, th i s temperature is taken to be constant 
along the length of the exchanger, bearing in mind that in 
r e a l i t y th i s is a plate type exchanger wi th complex 
intermingled f low paths. The most obvious choice fo r T3 
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is to use the ambient a i r temperature, measured 

i nc i den ta l l y some 3-4 metres away from the p lan t . 

Taking t h i s and the l i q u i d temperatures from Table 4 and 

using NAG rout ine E04JAF f o r the seven data sets ava i lab le 

we obta in : 
A 

K x* 
"A " 

K 
12 

6133 
A 

Ksta = 
A 

K13 = 0 
A 

Kspa ^23 125.7 

The value o f J ^ f ) i s supplied by rout ine E04JAF as 30.7. 

While lower than the 76.7 of Section 2.3.5 t h i s is c l ea r l y 

s t i l l e n t i r e l y unacceptable. The c o e f f i c i e n t o f zero f o r 

heat t rans fe r from the s t r ipped MEA to the a i r indicates 

tha t t h i s model is s t i l l based on at leas t one incor rec t 

assumption. 

Cooler coe f f i c i en ts using ambient a i r temperature 

Repeating the process of the previous sect ion f o r the 
cooler and again spec i fy ing T3 = T . we obta in : 

A 

K « 

A 

M 1405 

^cma = 
A 

K13 = 77.6 
A 

_Kcwa_ 
A 

K23 — — 10.9 

With a cost funct ion of J ^ R ) of 0.39 t h i s cooler model is 
ac tua l l y marginal ly be t te r than the simple nonlinear model 
of Section 2.3.4 (Jj(J<) = 0.42) . That the d i s t r i bu ted 
model should work wel l w i th the cooler but f a i l w i th the 
heat exchanger suggests tha t the problem l i e s in the heat 
t rans fer to the a i r and, in p a r t i c u l a r , in the way in which 
T3 is spec i f ied . 
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2.6 Modi f ica t ions to assumptions regarding the a i r temperature 

As f a r as the cooler is concerned, the mean l i q u i d temperatures 

are f a i r l y close to ambient and the a i r surrounding the u n i t does 

not warm up appreciably when the p lan t i s running. In cont ras t 

the a i r around the heat exchanger fee ls d i s t i n c t l y warm: a 

thermometer placed a few inches above the u n i t recorded 

temperature increases o f 15-20°C over ambient. This suggests 

t ha t the e f f e c t i v e value o f T3 i s in some way connected w i th the 

l i q u i d temperatures and, a t l eas t f o r the heat exchanger, should 

be considerably higher than the ambient a i r temperature. 

An experiment was t r i e d w i th the heat exchanger data invo lv ing a 

small change to the program used f o r the c o e f f i c i e n t est imat ion 

o f Section 2 .5 .3 . Instead o f opt imiz ing ^ ( k . ) over the three 

c o e f f i c i e n t s K 1 2 , K13 and K 2 3 , a f ou r t h independent va r iab le Tb 

was added, t h i s being a constant bias on T3 such tha t 

( T 3>i = (Tamb)i + Tb: V data sets i . . . (2.46) 

There was no guarantee tha t t h i s would produce a meaningful 

r e s u l t , but i n f a c t E04JAF generated: 

K 1 2 7194 
A A 

841 k = K13 2 841 
A 

_K2 3_ 0 

WK -l 
f . = 40.9°C 

03 

Jx(£) = 8.2 

This r e s u l t i s encouraging: not only does i t represent a 73% 

reduct ion i n J l ( £ ) but also the bias T ^ br ings the a i r 

temperature T3 up to around 62°C. 

For run PLANT2 the l i n e a r mean temperature o f f l u i d 1 i s 68.1°C 

and o f f l u i d 2, 54.5°C. The average o f these temperatures, 

61.3°C, can be thought o f as the mean temperature o f the l i q u i d s 

and hence o f the u n i t as a whole. This r e s u l t suggests tha t the 

a i r in the region o f the exchanger plates is a t the same mean 

temperature as the u n i t i t s e l f and t ha t the e f f e c t i v e value o f T3 

should thus be spec i f i ed as equal to the mean l i q u i d temperature. 
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To tes t th i s assumption fu r the r the c o e f f i c i e n t est imat ion 

program was fu r the r modif ied to ca lcu la te T3 as the l i nea r mean 

of the l i q u i d temperatures f o r each data se t : 

( T 3 ) i = K y O ) + T2(0) + TX(L) + T 2 ( L ) ] . 

V data sets i . . . (2.47) 

This was t r i e d on both heat exchanger and cooler (appropriate 

instrument tag numbers from Tables 7 and 5 respec t i ve ly , data 

from Table 4 ) . 

Heat exchanger 
A 

KL2 6764 
A 

Js 
A 

K13 = 571 WK"1 

A 

> 219 

J ^ K ) = 2 . 1 3 

Cooler 
A 

K
1 2 1366 

£ 
A 

K!3 = 392 WK"1 

A 

K 
23 285 

J X ( K ) = 0 . 1 8 

These f igures represent cost funct ion reductions of 74% and 54% 

fo r heat exchanger and cooler respect ive ly and j u s t i f y f u r t he r 

analysis to derive the t rue mean l i q u i d temperature f o r the 

d i s t r i bu ted model o f Section 2.4. 

2.6.1 Der ivat ion of the mean l i q u i d temperature f o r the 

d i s t r i bu ted model 

The mean l i q u i d temperatures are given by equation (A3.6) 
[Appendix I I I ] : 

lm 

2m 
= B -l 

T,(L) - T1(0) 

T2(L) - T2(0) 
. . . (2.48) 
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The overal l mean l i q u i d temperature, T , is thus given by; 

Ti m 
2m 

(2.49) 

Equating Tm to Tg 

Tm = T = K 1 1] B 
m 3 * 

T I ( L ) - T I ( 0 ) 

T 2 ( L ) - T ( 0 ) 
+ T. (2.50) 

Clearly T3 disappears from th i s equation, but by 

re-arranging (2.28) wi th Z = L 

"T,(L) ' B "TX(0)" 
T2(L) = e T2(0) + (I 2-e B) . . . ( 2 . 5 1 ) 

and subs t i tu t ing in to (2.50) we obtain: 

= 0 [1 1] B" l (e B - I 2 ) 
Ti(°> " T 3 
T
2(°) " T3 

Writ ing \p2l = [1 1] B ' ^ e 6 - I 2 ) we have 

1, (0) - T3 

T2(°> - T3 
= 0 

(2.52) 

(2.53) 

and hence T3 = ip1T1 (0) + ij>2T2(0) 

v 5 ^ 
. . . (2.54) 

2.6.2 An i t e r a t i v e technique fo r coe f f i c i en t estimation 

A problem arises in redef in ing T3 in t h i s way because i t s 
value is now 'dependent on the entr ies of matrix B 
(equation (2 .25) ) , which in turn are dependent on the heat 
t ransfer coe f f i c ien ts that are being estimated. 

The program based on NAG rout ine E04JAF requires a user 
supplied i n i t i a l estimate of the coe f f i c ien ts along wi th 
the l i q u i d f low ra tes, the four l i q u i d i n l e t and ou t l e t 
temperatures and a value fo r T to calculate optimum values 
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for K 1 2, K13 and K23. Only then can i t use these 

estimated coefficients to arrive at a value for T3 via 

equation (2.54). Clearly the user must also supply an 

init ial estimate for T3 to start the estimation process. 

This could be done by calculating T3 from the init ial 

estimates for the heat transfer coefficients, but i t is 

easier to use the linear mean as defined by equation (2.47). 

This results in the iterative estimation technique shown 

as a flow diagram in Fig. 8. 

No analysis has been done to prove that this iterative 

procedure will cause the estimates to converge to optimum 

values. Because of this, rather than incorporating a 

stopping condition as implied in Fig. 8, a program was 

written to print out (T3)., i = 1,... 7, K 1 2, K l g and K23 

and the cost function at each iteration. At each iteration, 

routine E04JAF outputs an ' IFAIL1 parameter which indicates 

the degree of confidence as to whether the point found is 

actually a minimum. 

IFAIL Remarks 

0 Preferred value: point found is a minimum. 

3 Conditions for minimum not all met but no 

5 

6 

7 

8 

> 

lower point found: unsatisfactory. 

Some doubt as to whether point found is a 

minimum. Degree of confidence decreases as 

IFAIL increases. IFAIL = 5: reasonable 

estimate, IFAIL = 8: unlikely to be a 

minimum. 

The value of this parameter was also printed out along 
with the above. 



FIG. 8 FLOW DIAGRAM FOR ITERATIVE ESTIMATION TECHNIQUE 
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2.6.3 Heat exchanger coefficients using modified air temperature 

The iterative estimation program was run with the seven 

data sets, printing out Rvalues to one decimal place and 
/S 

cost function ^ ( k ) to six decimal places. 

The coefficient estimates became steady after 22 iterations 
A 

and any reduction in Jx(J<) after this point was less than 

0.0001. The IFAIL parameter was however erratic, jumping 

around from 3 to 7 or 8. This casts some doubt on the 

results, but continuation of the run over a total of 46 

iterations brought no better value than IFAIL = 7. 

I f the estimation is judged by the prediction error cost 

function alone, the algorithm produced the lowest figure 

to date, J^R) = 0.38. 

The coefficient estimates were 

K 1 2 
A 

K 1 3 
A. 

K 2 3 

6528.5 

435.4 

283.6 

WK 
-l 

2.6.4 Cooler coefficients using modified air temperature 

The algorithm performance was better on the cooler and the 

coefficient estimates became steady after only 11 iterations 

The IFAIL parameter was again erratic but jumped only from 

zero to 5, 6 or 7. The value of zero at iteration 11 
A 

implies that Jj(J<) at this point is a true minimum. The 

coefficients were estimated at: 

R. '1 2 
A 

K13 
A 

K 2 3 

1348.5 

524.7 

417.8 

WK -l 

with a cost function value of J1(k) = 

lowest to date. 
0.14, again the 
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2.7 Use of model to predict output temperatures 

The effective a ir temperature T3 can be expressed in terms of 

T^O) and T2(0) as in equation (2.54). In conjunction with 
equation (2.29) this allows prediction of T1(L) and T2(L) from 

the l iquid flow rates and the temperatures Tx (0) and T 2 ( 0 ) . AS 

this model concerns a counter flow exchanger with inputs at 

opposite ends, some manipulation is required to enable outputs 

TI (L) and T 2 ( 0 ) to be predicted from inputs T A ( 0 ) , T 2(L), and 

F2 (or F x ) . 

For I = L equation (2.28) can be written 

+ ( I 2 - eB) 
"T,(L)" = eB "T,(0)" 
_T»(L). J 2 (0 )_ 

1 3 

T 3 

... (2.55) 

and from (2.52) and (2.54) 

1[1 1] B-'le6 - I2} V O ) 
T2(0) 

(2.56) 

where a = i{j1 + ip2 

Substituting for T3 in (2.55) 

'Ti(L)" 
.T,(L)_ 

or 

eB - Itf-i,} 

TJL) 
T 2 ( L ) 

M 

1 1 
1 1 

V O ) 
T 2 ( 0 ) 

.-1 "T,(0)" 
_T.(0)_ 

(2.57) 

(2.58) 

where 

M = 
u u 2 2 

3 - 1/oB. 
a {e°-T } 1 1 

1 1 

Multiplying out equation (2.58) gives 

V L ) = vx, + 

T2(L) = u 2 1 T,(0) + u 2 2 T2(0) 

(2.59) 

(2.60) 
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and by re-arranging (2.60) 

Ta(0) = J - T (L) - ^ 1 , ( 0 ) ^22 ... (2.61) 

and substituting for TJO) in (2.59) 

T2(L) = i I 
_ U12 ̂ 21 

22 P22 
(2.62) 

we obtain an expression for the output temperatures in terms of the 

input temperatures and flow rates: 

TX(L)" 1 

T2(0) ^22 
1̂1 ^22 ~ ̂ 12 ̂ 21 12 

-U 21 

Ti(0) 
T2(L) 

(2.63) 

Matrix M is calculated from the coefficient set of Section 2.6.3 

for the heat exchanger and from that of Section 2.6.4 for the 

cooler. I f (2.63) is used for each steady state data set the 

results, including prediction errors, are as given in Tables 8 

and 9. 

TABLE 8 

C 0 0 L E R 

RUN TX(L) ti(L) T - T T2(0) T2(0) 
SK 
T - T 

PLANT2 20.0 19.95 - .05 23.92 23.81 - .11 
PLANT3/1 20.3 20.08 - .28 24.40 24.26 - .14 

3/2 22.4 22.50 + .10 26.22 26.22 0 

3/3 23.3 23.44 + .14 27.00 26.96 - .04 

3/4 24.2 24.00 - .20 29.05 29.03 - .02 

3/5 21.9 21.95 + .05 25.69 25.73 + .04 

3/6 21.3 21.38 + .08 24.66 24.71 + .05 
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TABLE 9 

H E A T E X C H-A N G E R 

RUN TX(L) t,(L) 
A 

T - T T2(0) 
Ay 

T2(0) 
Ay 

T - T 

PLANT2 34.7 35.12 + .42 87.2 87.23 + .03 

PLANT3/1 34.7 34.74 + .04 88.6 88.65 + .05 

3/2 36.7 36.66 - .04 87.6 87.53 - .07 

• 3/3 37.6 37.53 - .07 87.1 87.17 + .07 

3/4 38.0 37.91 - .09 87.8 87.83 + .03 

3/5 36.4 36.36 - .04 87.6 87.47 - .13 

3/6 35.9 35.84 - .06 87.3 87.30 0 

2.8 Sensitivity of the model to errors in the input data 

A system model is of limited use i f small errors in the input 

data cause disproportionately large errors in the output. A 

program based on equation (2.63) was used to check the variation 

in the predicted outputs for small increases in individual input 

variables. 

For run PLANT2 the nominal inputs (Table 4) are: 

Cooler T2(0) = 3 4 . 7 0 C / T 2 ( L ) = 9 .54°C/F 1 = F 2 = 0.25kgs-1 

Heat exchanger Tx(0) = 101.4°C/T2(L) = 21.69°c/F1 = Fx = 0.25kgs_1 

Table 10 gives the model-predicted change in each output variable 

when one of the input variables is altered, the other inputs 

remaining at their nominal values. Note that for the heat 

exchanger i t is assumed that Fx = Fx in the steady state, and so 

these input variables are altered at the same time. 

TABLE 10 

COOLER HEAT EXCHANGER 

Change in input Atx(L) At2(0) Change in input At r(L) At2(0) 

Tx(0) + 5% + 3.6% + 4.1% Tx(0) + 5% + 2.4% + 4.8% 
T2(L) + 5% + 1.4% + 0.9% Tx(0) + 5% + 2.6% + 0.2% 
Fx + 5% + 2.4% + 1.0% F1,F1 + 5% + 0.9% - 0.3% 
F2 + 5% - 1.1% - 2.0% 
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Clearly the predicted output temperatures are more sensitive to 

some input errors than others, but in general a given percentage 

error in the input produces an output error of similar order. 

2.9 Summary 

Steady state data from two plant runs has been extensively 

analyzed in this chapter. Two similar process units were 

i n i t i a l l y represented as pairs of PSTR's,an approach which gave 

reasonable results with the cooler but failed when applied to the 

heat exchanger. 

This necessitated a more detailed analysis involving the 

modelling of each unit as a fu l ly distributed 'three f lu id ' 

system. Expressions were derived for the temperature 

distributions of the 'hot ' and 'cold ' flows, and i t was shown 

that the effective temperature of the air surrounding the heat 

exchanger could be approximated by substitution of the mean liquid 

temperature. An iterative technique was devised to estimate heat 

transfer coefficients for the two units, but the heat exchanger 

caused some diff iculty in that the NAG routine was not fu l ly 

confident that i t had found a true minimum of the cost function. 

This i s offset by the abi l i ty of the model to produce good 

estimates of the output temperatures when supplied with the input 

temperatures and flow rates. I t should also be noted that the 
/N ^ 

ratio of K12 for the heat exchanger to K12 for the cooler, about 

5 : 1, i s consistent with the ratio of the numbers of plates and 

hence the areas available for heat transfer between fluids. 

In the l ight of experience with the three f lu id model i t seems 

l ikely that the earlier approaches assuming a linear or 

logarithmic temperature distribution could have been improved for 

heat exchanger modelling by using an effective air temperature in 

place of the true ambient. The three f luid model i s however a 

neat, effective and easily handled solution to the steady state 

modelling problem and seems unlikely to be bettered for this 

application by any other model employing a similar number of 

parameters. 

The development and testing with real data of a distributed three 

f luid model for a plate type heat exchanger i s an original 

contribution. 
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CHAPTER 3 

MODELLING OF SYSTEM TRANSIENTS 

0 Introduction 

Investigation of transients by applying flow rate step changes 

was outlined in Section 2.2.2. The system responses obtained from 

run PLANT3 are presented in this chapter and an attempt is made to 

extend the three-fluid analysis to deal with the transient case. 

A state space model requires the derivation of a system of f i r s t 

order o.d.e 's containing time derivatives only. The most obvious 

approach is to return to the method of Section 2.4, writing 

instantaneous heat balances in terms of partial derivatives with 

respect to length and time. I t is shown, however, that the 

equations so obtained cannot be solved by conventional Laplace 

Transform techniques, necessitating a different approach to the 

modelling problem. 

The remainder of Chapter 3 covers the development of a 'semi-

lumped1 model for prediction of transient behaviour. The steady 

state distributed model i s used to predict the settled out effect 

of an input change, while the transient i t se l f i s modelled by 

returning to the assumption that the l iquid channels behave as 

stirred tanks. Although relatively straightforward, this chapter 

i s original work in so far as i t i s based on an original approach 

to heat exchanger modelling. 

1 Instantaneous heat balances for the three f lu id model 

Consider Fig. 9 which shows a small 

element in the jth channel of the 

three f luid model. I f the cross 

sectional area is Sj then for an 

element of length <5£ the volume 

is given by 

6V. = S.6A 
J J 

Fig.9 
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and i f the jth channel carries f lu id of density p. then the mass j 
of f luid contained in the elemental volume is 

6m. = p.S.6£ 
J J J 

Writing flow rates as functions of time and temperatures Tx and 

T2 as functions of length and time, the instantaneous heat 

balances are: 

(PlSl5i)Cpl{3l4|+l}= -Fl(t)Cpl{Mgiii}6^ 

- K 1 2 ^ [T 1 (A , t ) -T 2 U, t ) ] - K , ^ [ T I ( A , t ) - T , ( t ) ] ... (3.1) 

arid 

( P 2 S ^ ) C p 2 { ^ - } = F 2 ( t ) C p 2 { ^ I M l } 6 , 

- K i z ^ ^ C M K ^ . t ) ] - K 23^[T 2 (£,t ) -T 3 ( t ) ] ... (3.2) 

Note that T3 is assumed to be constant over the length of the 

exchanger and is therefore a function of time only. 

Dividing through by (6JI/L) and noting that P -̂S-L = m., the mass 
j J J 

of f luid in the jth channel 

- Kia[Ti(Jt,t)-Ta(A,t)] - K13[T1(X.,t)-T3(t)] ... (3.3) 

- K i 2 [T2( i . t ) -T i (t ,t ) ] - K 2 3 [T 2 ( * , t ) -T 3 ( t ) ] ... (3.4) 

Attempted solution of heat balance equations 

A ful l solution to the heat balance equations (3.3) and (3.4) 

would yield a pair of equations of the form of (3.5) and (3.6). 

T J L . t ) = Fj-(Tj(0,t), T 2 (L,t), Fj ( t ) , F 2 ( t ) , t j - ... (3.5) 

T2(0,t) = F 2 ^ T i ( 0 , t ) , T 2 (L,t), Fj ( t ) , F 2 ( t ) , t } ... (3.6) 
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From these i t would be possible to predict the transient 

behaviour of output temperatures Tx(L,t) and T2(0,t) for any time 

function of the input temperatures or the flow rates. 

Further, a pair of equations of the form of (3.7) and (3.8) could 

be obtained to model the system dynamics. By considering the 

output temperatures to be the states of the system (see Chapter 4) 

such a pair of o.d.e's would be suitable for state space modelling. 

d T l i t , t } = ^ { T ^ O . t ) .T^L.t) ,T2(0,t) ,T2(L,t) .F^t ) ,F2( t) , t } 

... (3.7) 

D T ? ^ , T : ) = FF2FL(0.t)>TL(Lft)FT2(0,t)FT2(Lit),F1(t),F2(t)>t} 

... (3.8) 

I t is shown in Appendix IV that by the use of certain 

substitutions and by defining a Laplace Transform with respect to 

the time variable, equations (3.3) and (3.4) reduce to matrix-

vector equation (3.9) where the derivative is with respect to 

t(£,s) = (sT + B) t(£,s) - W(s )e^ 9 + k ( s ) t 3 ( s ) ... (3.9) 

where jt(£,s) = < £ j i t { l , t ) } and 2 x 2 matrix W(s) and 2 x 1 vectors 

_0 and _k(s) are independent of ' 

The solution to this equation is given as equation (A4.14) in 

Appendix IV. I t is rather messy and includes one term that 

cannot be inverted to the time domain. 

Matrix T, defined in Appendix IV as 

can also be written T = T = • - f i 

m, 
2 

-T ri 

r2 

where t . is the residence time of the f luid in channel 'j'. 
• sJ 

£ 
Equation (A4.14) contains the term e^ sT + At f i r s t glance i t 

would appear that 

(sT + Bjr e .e ... (3.10) 
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where e ^ F ( s ) l H(t - T^)F(t - t£) 

and H(t - x) is the Heaviside unit step function. 

Indeed this appears reasonable from a physical standpoint. 

Substituting (£ = L) in (3.10), the f i r s t term would imply that a 

temperature change at £ = 0 does not manifest i t se l f at £ = L 

until T seconds later, i.e. until the liquid has passed through 

the exchanger. 

Unfortunately Stephenson [72] informs us that (3.10) holds only 

i f the two matrices commute, i.e. 

e(A+B) = ^ only i f AB = BA ... (3.11) 

Clearly the opposite signs of the (1,1) and (2,2) entries of 

matrix T ensure that i t cannot commute with B as defined in (2.25) 

Equation (3.10) does not hold and the inverse L.T. of this 

exponential term is not defined. 

As a consequence the solution to (3.9) cannot be inverted to the 

time domain to give a solution corresponding to equations (3.5) 

and (3.6). Any attempt to obtain equations of the form of (3.7) 

and (3.8) is also thwarted by the same underlying problem. 

An alternative approach to the modelling of transients 

I f equations corresponding to (3.5) and (3.6) could have been 

obtained then for a step change in any one input variable, the 

output variable change would have been given as a function of 

time by an expression similar, in essence, to (3.12) 

A o u tpu t^ = 
A output 
A input 

x input step size x [j ~ C(t)] 

Jss ... (3.12) 

Here the f i r s t term on the right hand side is the steady state 

change in the output variable per unit change in the input 

variable, i.e. the change in output that remains when all the 

transients have died away. The term c(t) represents a transient 

term which tends to zero as t + «>. 
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Equation (3.12) expresses the required result in a very simple 

form but i f the f i r s t and third terms on the right hand side can 

be approximated in some way then i t does provide the basis for an 

alternative approach to modelling. 

I f the system nonlinearity is not too severe (see 3.3.1) then the 

f i r s t term on the r.h.s. of equation (3.12) can be regarded as a 

partial derivative with respect to a single input variable. This 

could be evaluated under the operating conditions existing 

immediately prior to the change in input. 

For a real plant the third term, which includes the function c(t), 

i s very complex and representing i t mathematically is a tradeoff 

between number of parameters and goodness of f i t . The diff iculties 

of Section 3.2 mean that an approximation cannot be obtained via 

the three fluid model and an alternative must be sought. This i s 

further discussed in Section 3.5.3. 

3.3.1 Linearization about the operating point 

The data for Fig.10 was calculated from equation (2.63) for 

the steady state data set PLANT3/4. All of the inputs were 

held at their nominal values except for the cooling water 

flow rate which was varied over the range 0.15-0.29 kgs" . 

This graph, which is typical, shows that the nonlinearity 

is not too severe for a linear approximation to be used for 

small jumps in liquid flow rate. 

In Section 3.4 partial derivatives are found for each 

input/output pair directly from the steady state results of 

Chapter 2. The transient i t se l f is then modelled in 

Section 3.5 by using curves drawn from recorded plant data 

to obtain an approximation to the term c(t). 

3.4 Steady state partial derivatives 

In Chapter 2 a single model structure was adopted for use with 

either cooler or heat exchanger. As a result the partial 

derivative analysis need be performed only once, as derivative 

values for either unit can be obtained by substitution of suitable 

parameter values. Section 3.4.1 deals with derivatives with 

respect to input temperature while the lengthier analysis to 

obtain flow rate derivatives is covered in Section 3.4.2. 
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3.4.1 Changes in input temperature 

Equations (2.62) and (2.61) related output temperatures 

to those at the inputs as follows: 

T (L) ... (3.13) Tx(L) = ^11^22-^12^21 T,(0) + Tx(L) = y 2 2 
T,(0) + 

± 2 2 _ 

T2(0) = U2 2 
y o j + 1 

± 2 2 _ 
T,(L) ... (3.14) 

where y. . i s dependent on both f lu id flow rates and on the ' vJ 
heat transfer coefficients. 

At constant flow the partial derivatives required are thus 

given by: 

3T,(L) 
TT7TUI 

3T2(0) 

u y y v 1 2 - 12 21 
y 2 2 

2 1 
2̂2 

3T4(L) 

aTTHT 

9T2(0) 

TOT 

12 1 22 

22 

.. (3.15) 

3.4.2 Changes in flow rate 

Equations (3.13) and (3.14) can be written 

T-x(L) = 5 ix t I ( 0 ) + C1 2T2(L) 

Ta(0) - 5 a i T l ( 0 ) + S 2 2T 2 (L) 

... (3.16) 

... (3.17) 

At constant input temperature the partial derivatives with 

respect to flow rate F. are thus given by 
J 

= 3 ^ 1 , ( 0 ) + g F
i l T 2 ( L ) j - 1,2 ... (3.18) 

3 3 3 

i r ~ = Ti(0) + 3 = 1 , 2 ••• <3-19> 
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The terms u were defined as elements of the 2 x 2 matrix mn 
M in equation (2.58). We define E as the 2 x 2 matrix 

whose elements are i = 1,2, k = 1,2. Since each 

element is a function of umn, m = 1,2, n = 1,2, i t 

follows that the flow derivatives of M must be calculated 

before the flow derivatives of E can be found. 

Differentiating (2.58) we obtain 

B 3 "Wii ̂ 12" 3 e - B ' V - I J 

recalling that a =• i|;1 + \p2 = [1 1] B"1(eB - I 2 ) 

1 1 
1 1 

j = 1,2 ... (3.20) 

1 
1 

Clearly even the calculation of the flow derivative of M 

must be preceded by calculation of flow derivatives of 

several terms involving matrices. Simplifying the approach 

as much as possible we write (3.20) in the form: 

M = [e* - ! ( . » - . , ,« ] (3.21) 

where (1) from (2.52) if>2] = [1 1] B (eD - I ) 

and ( i i ) 
\(j1 \p2 

Thus, differentiating (3.21) and defining 

7, 1 u = (i2 = A, a a 

ip2 -ip2 

3M 
3 

3eB g r x 1 r \ 11 3a 
J J 

(3.22) 

j = 1,2 
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D 
Theorem 2.2 allows calculation of e from the expression 

E = c 1 i 2 + C 2 B (3.23) 

where cx -_ X ^ 2 - X 2e X l 
c„ = 

kXi . aX 2 

Xi - X2
 9 2 Xj ~ X2 

and \ l 9 X2 are the eigenvalues of B (assumed distinct). 

Flow derivatives are calculated in the following order: 

( i ) Calculate and (Xi - X2) 
J J 3Fd 

( i i ) Use results of ( i ) to calculate and 

( i i i ) Use results of ( i i ) to calculate |ji- and 

3B ( iv) Calculate and use this and the results of ( i i ) dr . 
8eB 

to calculate 
3 j 

(v) Use 4 f~ , |H- and | 5 - to calculate and hence 
3hj 3hj 3l"j j 

3 iHk 

W 

In the following analysis the two f lu id flow rates are 

termed Fx and F 2 . For the heat exchanger read F2 = Fx 

( i ) Flow derivatives of the eigenvalues of B 

The characterist ic equation of B i s 

A(X) = 

= X + 

\ . Kt 2 + Ki 3 

Kl 2 

kl 3 Ki 2d*K2 3 

- Kl 2 

1 „ k i 2 + Ki3 
F2Cn9 2 p2 

(3.24) 

^ + Ki2 -(Ki 2+Ki3)(Ki 24-K 2 3) 
hll_2CplC;p2 

(3.25) 
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The eigenvalues are given by 

= - i y - H ) 1 ' ^ i = 1,2 ... (3.26) 

where y = Kl 2 + Ki 3 Kl 2 + K23 
" F T " 
2 p2 

and z = y - 4 Ki2 " (K12 + Ki3)(Ki2 + K13) 
ff c nc' 

1 2 pi p2 
Kl 2 + Kl 3 Ki 2 + K 2 3 
— F T — F T ri°pl 2 p2 

n 2 4Ki 2 
F l F 2 C n l C n 2 

From (3.26) Xi - X2 

pi p; 

(3.27) 

and by differentiating with respect to flow rate F. «j 
8X 1 - - i J y - r-n1' 17"^ dz i = 1,2 j = 1,2 

= ' ^ h ' ( ' 1 ) 1 2 (X i - X 2 ) I f t ••• ( 3 - 2 8 ) 

The required results follow by differentiating 1y1 and 'z 1 

with respect to the two flow rates and substituting into 

(3.28) 

i = 1,2 

Ki2+K13 
C F 2 

L- p l 1 J 

Kl2+Kl3 , Kl2+K 23 
" F T " F T 

2Ki 

1 pi 2 P2 _ 
2 

Kl 2+KI3 
F 2C 

F 2 F C C ri r2uprp2 
L ... (3.29) 

8X 

8h2 

i = 1,2 

Kl2+K23 

C F 2 

L P 2 2 

4 I"" W I T T 1 
Kl 2+Kl3 , Kl2+K23 Kl2+K23 

2'P2J F22Cp2 

2Ki 
F 1 F 2 C D 1C 

1 ... 
pi pa 

(3.30) 

also 

8 kl2+kl3 , Kx 2+K23 
F I C P 1 

2Ki 

F C 2 p2 
2+kl3 

F 2C r l pi 

(3.31) 
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K12+K13 Ki2+K23 
r* m T r* A 
f" lLpi TIT " 2up2 

Ki2+^23 
Fh2 C 2 p 2 

2Ki 2 
Cpi^p2 (3.32) 

( i i ) Flow derivatives of exponential coefficients ' C i ' and ' c 2 

From (3.23) c, * . h S ^ j L b s b -
A l ~ A 2 

Derivatives are obtained directly 

3Cl (Xi-Xz^Uie^-Aze^} - l \ i - e t X z - \ z e X l } ^ r ( \ i ' \ z ) 

^ (Xi - X2)2 
W7 

(Xi - x2) 

j = 1,2 

s imilarly 

and|Ff = 

c„ = e X l - eX z 

Ai - A2 

e 1 

Ai - A2 
j = 1 ,2 

(3.33) 

(3.34) 

( i i i ) Flow derivatives of 1U1 and ' a ' 

Ufi Vzl = [1 1] B ' 1 {eB - I 2 > 

-1 
and from (3.23) = [1 1 ] B ) I 2 + c2B} 

-1 
= [1 1] { ( c r l ) B + c 2 I 2 } 

(3.35) 

(3.36) 

Now 

B-1-
det B 

K12 + K23 F T — 
2 p2 
2 FTU 
P2 

A 1 P1 

+ (3.37) 
K l 2 + 3 

P1 
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where det B = " ( K i g + + K z 3 ) 
1 2 pi p2 

leading to 

1 
[ 1 B - ( V D i s h r 

and by writing 

2 K i _ 2K12+K13 
P2Cp2 T F T 1 P1 

n i = (2K1a+K9fl) Cp i 

1̂2 ~(Ki2fK13)(K12+K23) 
and 

n2 = (2Ki2+Ki3)Cp2 
^12 ~(Ki2+K13)(K12+K23) 

Dl>i W = [(ci-l)niFx +c2 -(ci-l)n2F2+c2] 
>1 ^ 2 

But from (3.21) U = 

and the required flow derivatives are 
3U 
3F7 

3U 
3F7 

n , ( c , - 1 ) + V , § t + f t 

M V U + V i f t + f t + f f 

^ i f ^ + f t " V c , - ^ - ^ F a f t + f f 

+ f t 

§ - = M V D M V , - ^ j f i ^ 

and 

(3.38) 

(3.39) 

(3.40) 

... (3.41) 

Also a = + = (cx-l)Qn1F1 - Q2F2] + 2C2 ... (3.42) 

so that 

... (3.43) 

... (3.44) 
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Flow derivatives of B and e 
B 

Flow derivatives of matrix B are obtained directly from 

the definition of B in equation (2.25) 

Hence 

9B 

aFT 

Ki2+Ki3 Ki2 
T T . — 
h i V V 

0 

and 3B 
W7 

0 

Ki 2 
F 2Cn 

2 P 2 

... (3.45) 

0 

K12+K23 

" F 2C 

2 P 2 

... (3.46) 
Now e = c 2 I 2 + C2B, and taking the derivative with respect 

to F . 
J 

.B. 3 He ] Bcjl j + c oo — ^ B j = i 2 
aFT 9 23T7 3F7 j 

3B , 3c, 

j 9 F j 2 J " J 

Flow derivative of M and hence of ~ 

(3.47) 

3M Once stages ( i ) - ( iv) have been completed, is 

calculated from equation (3.22). 8 

This furnishes and j = 1,2 
3Fj 9IF- 3FT-

By comparing (3.13) and (3.14) with (3.16) and (3.17) 

52I 5 22 

^ 1 2 2 " ̂  1 2̂  2 1 ^12 
y 2 2 y22 

1 
H77 ^22 

(3.48) 

The required flow derivatives of output temperatures 

Ti(L) and T2(0) are thus given by substituting for the 

derivatives of in (3.13) and (3.14). 
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3T,(L) _ J 3Fj 
3 Vi 1 _ 22 

3Fj 

3U21 9y12"| 9U22 
,yi23Fj +y213Fj J -Wi2W2i3Fi 

22 
•TJO) 

+ < 

2 K 2 2 
y * *3Fj - U l 2 3F j 

2 2 
^ T2(L) ... (3.49) 

j = 1,2 

H2i£l = 3FJ 
^21 ay 

-y22"§Fj f U213F3 
22 

^22 r i ( 0 )" 
aFi 

2 u22 

^T2(L)..(3.50) 

j = 1,2 

Transient Modelling 

This section sets out to model the cooler and heat exchanger f lu id 

temperature responses to step changes in either cooling water or 

MEA flow rate. The ideas formulated in this section are further 

developed in Chapter 4 with the aim of generating o.d.e ' s of the 

form of (3.7) and (3.8) for state space modelling. Approximations 

are used to cut down the number of time constants used to model 

the system dynamics, thus yielding a low order model which i s 

re lat ively easy to handle. 

Although for f i l t e r development the plant i s to be modelled as a 

stochastic system with noisy measurements, i t i s typical of many 

plants in the process industry in that i t exhibits very low noise 

levels. Most variables of interest in th i s section of the plant 

are generally quite smooth functions of time and permit the analysis 

to be carried out in a deterministic sett ing. 

Each flow jump was timed to fa l l just after a sampling instant. 

This was done by entering the setpoint change at the operator 's 

console (see Appendix I ) and pressing the 'execute' button 

immediately after the high speed punch had output a set of 

measurements. After an i n i t i a l transient last ing from three to 

four minutes, any such change in flow rate causes temperature 

dr i f t ing around the plant that may take half an hour to settle 

down. In the short term, however, input temperatures governed by 

conditions elsewhere in the plant may be considered steady so that 

the transients obtained are in response to step changes in flow 

input only. 
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3.5.1 Step changes in the cooling water flow rate 

From the experimental work of run PLANT3 i t would appear 

that on a change in setpoint the response of control 

valve CV110 and hence of the cooler c/w flow rate 

approximates to a simple exponential. The flow rate 

setpoint change is i t se l f a true step function and the 

actual flow rate change may be thought of as the output 

of a f i r s t order delay to which the setpoint is input. 

With the proportional and integral control terms set at 

the values given in Appendix I , additional experiments 

were carried out on the FX124/CV110 control loop with the 

flow rate recorded on tape at a 2 second sampling interval. 

Assuming the flow measurement loop time constant to be 

negligible in comparison with the valve delay, the time 

constant for the cooling water flow rate change was found 

to vary between 7 and 10 seconds irrespective of step size. 

The shape of the leading edge could not be improved by 

adjustment of the proportional gain. 

3.5.2 Step changes in the MEA flow rate 

As explained in Appendix I , although i t is the stripped 

MEA flow rate that is held to a setpoint, any change in 

' flow F l propagates through the absorber so that after a 

delay there is a corresponding jump in spent MEA flow rate 

It follows that for the heat exchanger i t is not 

possible to obtain experimentally the response to a step 

change in F1 in isolation. 

MEA flow characteristics are dependent on two control loops, 

FX101/CV101 and LXl l l/CVin. Typical experimental results 

are shown in Fig.11 for which the control terms were as 

given in Appendix I. Changes in Fx are approximately 

exponential and, with a time constant of around 3 seconds, 

valve CV101 has a rather faster response than CV110 

controlling the cooling water flow. This is due to the 

fact that in common with CV111 but unlike CV110, valve 

CV101 is fitted with a booster. 
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The transport delay introduced by the absorber was found 

to depend mainly on the flow at the time of the flow 

setpoint change. The delay is diff icult to estimate from 

Fig. 11 because of the extremely noisy Fx readings, but i t 

is clear that at Fx = 0.25 kgs"1 the delay is about 

40 seconds for a 0.05 kgs"1 step in either direction; 

varying the step size did not have a marked effect. At 

Fl = 0.25 kgs"1 there is less liquid hold up in the 

absorber column and flow rate changes take longer to 

propagate; about 45 seconds in this example. Measurements 

of Fx (FX!25) were found to be extremely noisy at all 

times with a standard deviation of 0.01 - 0.02 kgs"1 

compared with 0.001 - 0.003 kgs"1 for Fx (FX101). The noise 

precludes accurate determination of a time constant for 

the change in following a step change in Fx and, in any 

case, the flow-time curves for Fx were not found to be 

reliably repeatable under identical experimental conditions. 

3.5.3 Reduction of the number of time constants 

From the outset the aim has been to build a model suitable 

for an implementable fault detection system. The 

computational load imposed by the Kalman f i l te r rises 

dramatically with increasing model order and so the 

emphasis must be on the derivation of a low order model. 

This is balanced by the need to obtain a 'reasonable' 

approximation to the function c(t) of Section 3.3. In this 

section methods are discussed for the approximation of c(t) 

by f i r s t and second order exponentials. 

The response of a delay of order 'n ' to a step input can be 

represented by an nth order o.d.e. In state space form 

this would be replaced by a system of 1n' f i r s t order 

o.d.e.'s or, equivalently, V system states would be 

required. Clearly the number of time constants must be 

kept to a minimum by neglecting or lumping together the 

many secondary effects that exist on a real plant. For flow 

rate setpoint step changes applied to the process units in 

question, the three main sources of delay are the control 

valves, the system dynamics and the measuring devices, all 

of which must be considered separately for each channel. 
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Valve delays were discussed In Sections 3.5.1 and 3.5.2 and 

clearly cannot be neglected. Section 3.5.4 includes 

discussion of a method for avoiding the introduction of a 

valve time constant by assuming the existence of a 

f ictit ious zero-order hold condition. 

The transients obtained from run PLANT3 indicate that some 

responses, particularly those connected with the heat 

exchanger, approximate to second order delays. In these 

cases the two time constants required can conveniently be 

classified as system and measurement delays. I t is 

important to realise that two time constants are used 

simply because this would appear to be the lowest number 

required to adequately represent certain responses. By 

labelling them 'system1 and 'measurement' time constants 

we have identified the dominant delay in each case but must 

not lose sight of the fact that these terms are 'catch-alls ' 

for unmodelled secondary effects. 

The 'system' time constant represents the thermal inertia of 

the system itsel f and includes the delays in changing the 

temperature of the process fluid in each channel, the 

exchanger metalwork and the pipework between the exchanger 

and the rtd ' s . The heat exchanger has five times the 

capacity and metalwork of the cooler and so we would expect 

the effects of the system dynamics to be more in evidence 

with the former than with the latter. I t is assumed that 

the delay parameter is constant with flow rate and that all 

second and higher order effects can be neglected. 

The 'measurement' time constant represents the thermal and 

electrical delays in the measurement loop and includes the 

delay in transferring heat to the thermowell, the thermal 

inertia of the thermowell and of the resistance bulb i tself 

plus any delays introduced by other devices in the loop such 

as the R/I converter. The coefficient of heat transfer 

between process f luid and thermowell varies sl ightly with 

fluid flow rate, but i t is assumed that over a limited flow 

range this and the other delays can be approximated by a 

single,constant delay parameter. All second and higher 

order effects are again neglected. 
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3.5.4 Effect on the cooler of a step change'in cooling water 

flow rate 

Fig. 12 shows the results of applying cooling water flow 

step changes of +0.05 kgs"1 (experiment 3/E3) and +0.02kgs~l 

(3/E4) as l isted in Table 3. Note that the 'end' 

temperature symbols now carry the additional suffix 'c1 

for 'cooler' (e.g. TC2(0) to distinguish them from similar 

symbols used for the heat exchanger which will carry the 

suffix ' x ' . TX174 can be referred to as Tcx(0) or T x l(L) 

depending on context. 

The 3/E3 traces for temperatures T (L) and T (0) L1 U2 
approximate to f i r s t order exponentials and the curves are 

well defined for t > 20 seconds allowing graphical 

estimation of time constants. These were found to be: 
for TC1(L) Tx = 36s 

TC2(0) T2 = 45s 

The process fluid capacity of the cooler is given on the 

plant drawings as "1 pint" implying that at a flow rate of 

Fx = 0.25 kgs"1 the residence time is about 2 seconds. The 

transient response of a platinum resistance thermometer is 

very fast, but this short time constant will always be 

swamped in practice by the thermal delay introduced by the 

thermowell. The short residence time implies that the 

cooler dynamics are virtually instantaneous in comparison 

with the thermal lags due to the measurement loops. For 

the cooler the responses are effectively f i r s t order, with 

'measurement' time constants Tx and x2 and 'system' time 

constants zero. 

For each output temperature a true step function (the flow 

setpoint) is effectively applied to a system comprising two 

f i r s t order delays in series. Delay 'a ' is valve CV110 

with xa about 10 seconds, 'b ' is thermal lag xx or x2 and 

the system 'gain' is partial derivative 3T (•)/3F2. With 
A 

T^ rather longer than i t is easily shown that the 

theoretical response to the input step approximates to a 

simple exponential with time constant T^ but delayed by 
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seconds. Assuming that the flow setpoint was altered at 

t = 0, inspection of Fig. 12 reveals that neither 

temperature i s affected until approximately t = 10 seconds 

( s r O * but then each changes exponentially, with time 

constant Tx or T2, in accordance with the theory. 

In Chapter 4 the continuous-time framework of this chapter 

gives way to a discrete-time model consistent with the 

discrete nature of the measurements available to the 

computer system. A basic assumption of such a 

transformation is that system inputs remain constant 

between sampling instants ('zera-order hold ' ) , a condition 

clearly not satisfied, by F2 immediately following a 

setpoint change. Rather than using the fTow measurement 

FX!24- i t would be possible to constrain each setpoint 

change to occur immediately pr ior to a sampling instant 

and to model the cooling water flow by passing the flow 

setpoint through a f i r s t order delay with time constant r_. 

However, by introducing a f ict i t ious zero-order hold 

condition the inclusion of T, in the model can be avoided. 

Setpoint 2 

I I I I t I I I I lc-1 k k + 1 k + 2 k + 3 k + 4 k + 5 k + 6 k + 7 
Time, Sample number 

F1g.13 Flow setpoint change showing actual and inferred flow rates 

Suppose that F2 i s at setpoint ' 1 ' (Fig. 13). I f a 

setpoint change is timed to fal l just after sampling 

instant 'k 1 then a discrete time model assumes that 

F2 = F2(k) for k ^ t < k+1, even though by t = k+1 the 

actual flow F 2 ( t ) is two thirds of the way to i ts new value 

at s.p. ' 2 ' . At 'k+1' the computer 'sees' a value F2(k+1) 

which i t interprets as a step of height {F2(k+1)-F2(k)} 

occurring at t = k+1. Further steps of diminishing size 
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occur at k+2., k+3, etc, until F2 has become steady at 

s.p.2. The cooler can thus be modelled by representing 

channels 1 and 2 as f i r s t order delays with time constants 

Tx and T2 and applying inputs F2(n) at discrete times 

n = ... k-1, k, k+1 ... etc. 

By using sampled values of F2,a setpoint change at t=0 is 

applied to the model in stages starting at t = 10 seconds. 

This takes advantage of the fact that r a is approximately 

equal to the sampling interval and means that the modelled 

temperatures do not begin to change until t = 10, as 

required. The effect of this modification is to cause the 

modelled transients, shown dashed in Fig.12, to lag 

s l ight ly behind the true responses. These curves are quite 

a reasonable f i t to the experimental data, the 0.3°C 

discrepancy in the settled out value of TC1(L) in 3/E3 

being due to linearization error as i s apparent from Fig.10. 

3.5.5 Effect on the cooler of a step change in MEA flow rate 

The effect of changing the MEA setpoint is summarized by 

Fig. 14 in which instantaneous cooler dynamics are assumed. 

In this section the actual f luid temperature whose measured 

value i s TXlxx is denoted by 'Tlxx1. 

T174 

Fig.14 Block schematic showing how a step change in F, affects 

temperatures throughout the heat exchanger/cooler subsystem 
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The 'measurement' time constant, due primarily to the 

thermowell, affects every temperature measurement on the 

plant and must be evaluated for each of the process unit 

output temperatures. For the cooler the system time 

constant is negligible and the step responses of TX110 and 

TX177 readily allow extraction of measurement time 

constants TJ and T2. This section shows how time constant 

T^, associated with TX174, can be obtained by considering 

the effect on the cooler of a change in MEA flow rate. 

The system time constant for the heat exchanger cannot be 

neglected: the response of TX174 to an MEA flow step is 

second order. The measurement time constant cannot 

therefore be obtained directly from this response without 

prior knowledge of r 3 , the system time constant for the 

stripped MEA channel of the heat exchanger. A measurement 

time constant could be obtained by removing TX174 (both 

rtd and thermowell) from the plant and testing the assembly 

in isolation by using water baths at different temperatures. 

The result of such an experiment could however be misleading 

because the water bath cannot reproduce the actual plant 

conditions, particularly with regard to heat transfer 

between fluid and thermowell. This method is in any case 

not necessary because there is a way of obtaining the 

required value from existing PLANT3 data. 

Recall that TX174 is an output from the heat exchanger 

CTx l(L): as well as an input to the cooler [T x(0)]. An 

MEA flow rate step causes a transient in the heat exchanger 

which in turn gives rise to a transient in TX174. The 

cooler is thus affected by simultaneous changes in two 

inputs, the MEA flow rate Fx and the (stripped) MEA inlet 

temperature T (0). I f the changes in the cooler output 
V X 

temperatures due to each cause are separated out then that 

due to the change in T c l(0) alone allows to be 

estimated as follows. 

A 'small ' step change AFX causes a steady state change of 

AT (0) in T (0) which is measured by TX174. The overall 
U * I* X 

cooler output temperature changes are thus given by: 



107 

aTca(°) - AT
Ci<°> + ^ ^ aF: <3"52> 

Because of system nonlinearity, equations (3.51) and (3.52) 

give good but not exact agreement between predicted and 

observed overall changes in temperature. All available 

plant data was processed to find the data set in which the 

actual and predicted values from either equation were 

closest. In every case (3.52) gave better prediction than 

(3.51) and a data set from run PLANT7 (described in 

Chapter 6) was selected. A jump of +0.05 kgs" in Fx 

resulted in an observed ATc2(0) of +2.1°C. AT174 was 

+0.75°C resulting in a 0.46° predicted r i se in T c 2(0) and 

th i s , coupled with a predicted 1.75° r i se due'to the flow 

jump i t s e l f , gave an overall predicted temperature change of 

+2.21°C. 

The estimation procedure is laid out in Fig. 15 and makes 

use of the fact that the actual f lu id temperature T and the 

observed value TX are related by the equation 

v r = " T ; T X + ••• < 3 - 5 3 ' 
m m 

where Tm i s the measurement time constant, m 

Hence the actual temperature can be estimated from 

T = + TX ... (3.54) 

or, i f both T and TX are known, t can be estimated: m 

Tm = (dTX/dt) ( 3 ' 5 5 ) 

The smoothing of TX177 in Step 1 ensures a smooth curve from 

Step 2, which uses (3.54) to obtain an estimate of TT77 from 

TX177 via rm = T2 = 45 sees. Having isolated that part of 
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Fig. 15 Method of obtaining an approximation to T, Data: PLANT7 
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the change in T177 that is due to the change in T174 only, 

the latter can be calculated as in Step 4. In Step 5 

values are obtained at a particular point for T174 and 

TX174, enabling TM { i . e . T J to be estimated from (3.55). 

53.1 - 4.99 „ A n c 
13/160 * 4 0 s 

For 0 s t < 50 s the curve for T174 produced in Step 4 

represents the actual f lu id temperature response to a step 

change in F 1 only. Without the corresponding Fx jump at 

t - 50 s the temperature would eventually r i se by 7.1° to 

55.8°C, since AFx = +0.05 kgs" and 3Tx l(L)/aF1 = 

+ 142.2 Kskg" at this operating point. While the cooler 

can be considered to exhibit instantaneous dynamics, the 

heat exchanger contains five times as much process f lu id 

and five times as many plates. From the leading edge of 

the Step 4 curve i t is apparent that the r i se in T174 i s 

governed by a time constant T3 of approximately 22 seconds, 

which can be thought of as representing the delay in 

heating the process f lu id and exchanger metalwork. 

3.5.6 Flow rates as model inputs 

In section 3.5.3, problems concerning the timing of cooling 

water flow step changes for modelling were circumvented by 

assuming that the sampled flow inputs were generated by a 

zero-order hold. 

While selecting a part of the plant for study, data from a 

preliminary run PLANT! was run through a f i l t e r based on 

equations derived by Palmquist [663. These experiments 

showed that the zero-order hold assumption worked well with 

F ^FX IOU values, but that the high variance of the F : 

values caused instab i l i ty in the estimates i f the readings 

from FX125 were used as model inputs. 

Following an MEA flow setpoint change, the step in Fx is of 

the same magnitude as the step in F x . For discrete time 

modelling, Fl jumps can therefore be approximated by storing 
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values for an integral number of time steps and re-using 

them in place of the measured F1 values. 

3.5.7 Effect on the heat exchanger of a step change in MEA flow 

rate 

The section of Fig. 14 that deals with the heat exchanger 

can now be redrawn as Fig. 16 to include output TX 2(0) and 

to show the constants that remain to be estimated. 

Fig.16 Block schematic showing heat exchanger model with F, flow 

input replaced by stored F, input 

All available data was again processed to find the data 

sets giving the closest agreement between experiment and 

equations (3.56) and (3.57) predicting overall temperature 

change: 

«»«•> • • - o.«) 

«x,<°> • . . . . ( 3 . " . 

bearing in mind that AFX = aFx. Data sets from PLANT3/E1 

and from PLANT7 were selected and transients are plotted 

in Fig. 17. 
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Fig.17 Effect on the heat exchanger of a step change in MEA 

flow rate Data: PLANT3 & PLANT7 
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Having estimated T3 and the flow response of TX174 is 

completely modelled by estimating the art i f ic ia l delay ni 

associated with the stored value CF^a replacing Fa. 

Experiment shows that with a step change in Fj occurring 

at t = 0, TX174 begins to change at about t = 10 and TX172 

at about t = 20 (see Fig. 17). The delay of one sampling 

period relating to TX174 is handled by applying the zero 

order hold assumption to C F 1 a s with the cooling water 

jumps in section 3.5.4. An estimate for nx is obtained by 

finding the value wx for which curve (3.58) best f i t s the 

experimental curve from the PLANT3/E1 data. 

ATX174 = AF 1 [ l+v 3e" t / T 3 - v ^ e " * ^ ] 

+ AF1H(t-w1A) | ] + v y ( t - w i A ) ^ 3 . ^ e ( t - w 1 A ) / T ^ 

... (3.58) 

where VA = T3/(T1+ - T 3 ) VH = TTT/(RLF - X 3 ) 

H(t-x) is the Heaviside step function 

and A is the sampling period, here 10 seconds. 

A value of 4 for wx gave the 'modelled' curve for TX174 in 

Fig. 17. This was found to be a closer f i t than w = 3 or 5, 

hence nx = 4A = 40 seconds. 

The change in TX172 occurs about 20 seconds after an F l 

step change. This is conveniently about 10 seconds, or one 

sampling period, after the change in TX174. This delay can 

be handled by using as the third flow input in Fig. 16 not 

CF i l l as in reality but EFx ]3 such that [F1]3(k) = 

EF 1 ] 1 (k- l ) , i.e. n2 = 10 seconds. 

The final stage is to estimate T5, T6 and n3, thus enabling 

the flow response of TX172 to be modelled. I t is not 

possible to separate the effects of these constants and 

approximations can only be obtained by finding a set of 

values for which curve (3.59) is a reasonable f i t to the 

experimental curve from the PLANT7 data of Fig. 17. 
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ATX172 = A F ^ v ^ s . v g e " t / T « ] 

+ AF1H(t-w3A)[l+v5e-(t-w3A)/^.V6e(t-w3A)/Ts] 

... (3.59) 

where v5 = T 5 / ( T 6 - T 5 ) vg = T S / ( T 5 - x5) 

H(t-x) arid A as in (3.58) and n3 = w3A 

An attempt was made to find sets of values for x 5 , T6 and 

w3 by tr ia l and error, but in practice i t proved impossible 

to obtain a unique set of estimates from the PLANT7 data 

alone. Extending the analysis to TX172 flow responses from 

experiments PLANT3/E1 and PLANT8 (see Chapter 6) also 

fai led to give consistent results. Eventually the values 

T5 = 12s T6 = 100s and n 3 = 50s 

were selected. These values were chosen because they are 

of the same order as the 'system' and 'measurement' time 

constants x3 and r k for TX174 and because when substituted 

into equation (3.59) they gave a reasonable approximation 

to the PLANT7 data as shown by the 'modelled transient ' of 

Fig. 17. 

Constants for transient modelling 

The nine constants obtained in section 3.5 are thus as follows: 

Constant Value,s Description 

Tl 36 Measurement delay for TX110 
T2 45 Measurement delay for TX177 

22 System delay for T174 

^ 40 Measurement delay for TX174 

TS 12 System delay for Tl72 

T6 100 Measurement delay for TX172 

40 Flow input delay, i .e. [F 1 ] 2 (k)=[F 1 ] 1 (k-4) 

"2 10 Flow input delay, i .e. [F 1 ] 3 (k )= [F 1 ] 1 (k - l ) 

"3 50 Flow input delay, i .e. [F1] l +(k)=[F1] (k-5) 
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3.7 Summary 

I t has been shown in this chapter that the steady state analysis 

of the three f luid model performed in Chapter 2 cannot be 

extended to the transient case. A simple equation that is 

representative of the full solution can, however, be used to 

model the system by considering i t as a series of steady state 

gains together with time delays governed by system and measurement 

time constants. 

The main theoretical contribution of this chapter is the 

derivation of partial derivatives for the process unit output 

temperatures with respect to flow and temperature input variables. 

_ A model that is new for this particular plant is developed around 

six time constants, four of which can be individually estimated 

in a logical sequence. The extremely noisy Fx spent MEA flow 

input is dispensed with, the measured Fx input at each time 1k1 

being stored and used four times at k, k + 1 , k + 4 and k + 5. 

The lumping of so many transient effects into the two 'system1 

and. 'measurement' time constants i s of course a vast 

oversimplification. This is balanced by the small number of 

parameters required to represent the system in this way, which 

will in the next chapter give rise to a low order model and a 

Kalman f i l te r with modest computational requirements. The model 

must be judged solely by i t s performance when incorporated into 

a fault detection algorithm in Chapter 6. 

In common with the work of Chapter 2, all the results of this 

chapter are based on real data from experimental work on the 

pilot plant. 
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CHAPTER 4 

FILTER DESIGN AND SIMPLE FAULT DETECTION 

4.0 Introduction 

This chapter moulds the work of the previous two chapters into a 

s ix state discrete-time linear model suitable for Kalman f i l ter ing 

and restates the fault detection problem in detail. Proceeding 

along similar lines to Bellingham and Lees [9 ], [so] this is 

followed by an attempt at identification of the measurement noise 

covariance and optimal Kalman gain using Godbole's modification 

[11 ] of the algorithm of Mehra [10 ]. 

Similar diff icult ies to those discussed in [9 ] and [so] are 

experienced with the algorithm but the decision i s taken not to 

add art i f ic ia l measurement noise. Innovations generated by 

running real plant data through a Kalman f i l te r are tested for 

normality by means of the Kolmogorov-Smirnov test and the chapter 

concludes with some simple examples to examine by simulation the 

feas ib i l i ty of some ideas for fault detection algorithms. 

4.1 The continuous-time state space model 

The f i r s t stage in f i l te r design i s to obtain a model in the 

standard state space form (see, for example, Chapter 1 of 

Kwakernaak and Si van [ 7 ]). Rather than using absolute values of 

process variables we employ 'perturbation variables' in order to 

make use of the equations of Chapter 3 which relate changes in 

flow and temperature. When the plant has reached steady state, 

the variables of interest at this 'stable operating point' can be 

taken as the nominal values for calculation of perturbation 

variables. For regulated flow rates the base value is the setpoint, 

while temperatures can be averaged over a number of data points. 

Perturbation variables are simply deviations from the nominal 

values at the selected stable operating point. Suppose at this 

point the cooling water outlet temperature is TX177. At any 

subsequent time ' t ' the perturbation variable associated with 

TX177, which turns out to be state variable x 2, i s defined as: 

x 2(t) = TX177(t) - TX177 
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The states of the system arise naturally as those (perturbation) 

variables whose rates of change can be expressed in terms of 

other plant variables by means of f i r s t order o.d.e 's. The 

measurements of the cooler outlet temperatures are related to 

flow and temperature changes via single measurement time constants 

and are included as x t and x2. The step responses of the heat 

exchanger outlet temperatures are second order and intermediate 

variables must be introduced to sp l i t these into pairs of f i r s t 

order o.d.e 's. This is done by including the measured outlet 

temperatures as states x^ and x6 and relating these to the actual 

l iquid outlet temperatures via the measurement time constants. By 

definition these 'actual ' temperatures cannot be measured but they 

can s t i l l be included as states and are designated x3 and x5. 

These are in turn related to flow and temperature changes via the 

system time constants. The state variables (x), inputs (u) and 

outputs (y) used for f i l te r design are summarized in Table 11. 

TABLE 11 

STATE SYMBOL PROCESS 
VARIABLE OUTPUT INPUT SYMBOL PROCESS 

VARIABLE 

Xl t c l ( L ) TXT 10 yi C^il i FX! 01 

x2 TX177 U 2 FX101 delayed n1 

X 3 TI 74 -
U FX! 24 

x* J V ° > TX174 y3 V 0 ) TX173 
U5 TX175 

X 5 
- TT 72 -

U S tcJU 
TX176 

X6 TX172 y* U 7 [ f x ] 3 FX!01 delayed n2 

u8 CfiT- FX!01 delayed n3 

4.1.1 Form of equations 

For a system with a f i r s t order step response, the state 

x, is related via time constant T. either to one other 
a J 

state xb, as in equation (4.1), or to an ' input ' u(t), as 

in equation (4.2). Note that a. = 1/T. in each case. 
J J 

* a ( t ) = - a j x a ( t ) + a j x b ( t ) ••• 

x a(t) = -ctjXa(t) + a j u( t ) ... (4.2) 

The term u(t) may include a number of different inputs 

and/or other states. 
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4.1.2 Cooler output temperatures TX110 and TX177 

Since the cooler dynamics are assumed to be instantaneous 

the actual output temperatures vary with input flow and 

temperature as follows (assuming a linear system): 

ATMO(t) 

ATI74(t) 

Note the appearance in these equations of state x3. This 

i s the actual outlet temperature of the stripped MEA from 

the heat exchanger but i s also t c l ( 0 ) which i s a cooler 

input. Clearly i t i s the actual temperature x3 which i s 

input to the cooler rather than i t s measured value x^: 

the two coincide only in the steady state. 

+ ••• (4-3) 

- 3 V ° } u ( t ) +
 3Tca(0) u ( t ) + 3TC2(0) u ( t ) 

c * 

A f i r s t order o.d.e. for x : is obtained by substituting 

ATI10(t) from equation (4.3) for u(t) in (4.2). That for 

x2 i s s imilar ly obtained by substitution of AT174(t) from 

equation (4.4). 

4.1.3 Heat exchanger output temperatures TX174 and TX172 

The results of Chapter 3 indicate that the responses of 

the actual heat exchanger outlet temperatures to step 

changes in MEA flow, rate are governed by system time 

constants T3 and T5. In practice i t i s not possible to 

obtain responses to step changes in in let temperature but 

i t i s assumed here that these responses would be governed 

by the same time constants. The actual f lu id temperatures 

vary with flow inputs u1$ u 2 , u7 and u8 and temperature 

inputs u^ and u5 as shown in Fig.16. The effects of the 

appropriate inputs are substituted for u(t) in equation 

(4.2) to obtain ordinary differential equations (4.5) and 

(4.6) for x3 and x$. 
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i , ( t ) = -a,x,(t) + a i | » I | ^ l . u 1 ( t ) 

i , ( t ) = -a 5x 5 ( t ) + a s | % ^ - . u 2 ( t ) 

+ | T ^ . U s ( t ) + U ^ 0 I . U 3 ( t ) j ... (4.6) 

The measured temperatures x^ and x6 are related to the actual 

temperatures x3 and x5 by using equation (4.1). 

M t ) = -a^x„(t) + a^x3(t) ... (4.7) 

* 6 ( t ) = + a 6 x s ( t ) ... (4.8) 

4.1.4 The model in matrix form 

The differential equations for XJ, j = 1,... 6 can now be 

expressed in the form 

x(t) = Acx(t) + Bcu(t) ... (4.9) 

y(t) = Ccx(t) ... (4.10) 

where the state vector x(t) = [xx x2 x3 x^ x5 x 6 ] ( t ) T 

input vector u(t) = [ux u2 u3 u^ u5 u6 u7 u 8 ] (t ) T 

and output vector y(t) = [yx y2 y3 )T 

The subscript ' c ' emphasizes that {Ac, Bc, Cc> is a 

continuous time system. 
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Matrices Ac, Bc and Cc are as follows. Note that a- = 1/T-, j = 1,...6. 

'System' Matrix Ar 

-a-a 

-a 
2 

-a 3 

a6 

' Input ' Matrix B c 

a 3 Th( l) x 3 M L ) ai 3FX 9F 2 

a 3 V 0 ) a 3 V 0 ) 3TC,(0) a2 3F2 2aTC2(L) 

3Tx,(L) 3 3Tx,(Ll a 3 M L ! a 3Txi(L) a3 3Fx 3TX1(0) 

3 8Tx,(0+ 3Tx,(0) , 3TXl(L) ** 3FX 3TXl(0) S3TX2(L) P5 3Fi 
1 1 ( 1 1 
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'Observation' Matrix Cc 

The observations are the measured output temperatures x I f x 2 , x^ 

and x6. (The 'actual ' temperatures x3 and x5 cannot be observed 

directly). 

"l 0 0 0 0 o" 
c 0 1 0 0 0 0 
° 0 0 0 1 0 0 

0 0 0 0 0 1 

Consistent with the comments made in Section 3.5, the model has 

been developed in a deterministic setting. System and measurement 

noise levels are discussed in Sections 4.5 and 4.6. 

4.2 Conversion to an 'equivalent discrete-time system' 

The continuous-time model must now be converted to an equivalent 

discrete-time form to provide a basis for a discrete-time Kalman 

f i l te r to operate on sampled plant data. The development followed 

here is identical to that to be found in Chapter 6 of Kwakernaak 

& Sivan [ 7 ] and is based on the 'zero-order hold' principle. I t 

is assumed that after an input is sampled the value of that input 

stays constant until the next sample is taken. This is only 

s t r ict ly true i f inputs are altered only at sampling instants, 

but in Chapter 3 i t was seen that the assumption of a zero-order 

hold condition could be advantageous in modelling the effects of 

flow input changes. The approach in [7 ] assumes that all inputs 

comply with the zero hold condition, not only the flow inputs 

already considered. 

Instabil ity of . f i l ter estimates, characterized by bias and high 

error variance, can be caused by applying the zero-order hold 

assumption to inputs that in reality change appreciably between 

samples. Use of FX125 for F (see Section 3.5.5) is a prime 

example of this problem and the rates of change of u^CTXUB], 

ue[TX175] and uc[TX176] must now be considered. 
5 D 

As a rule, TX173, the temperature of the stripped MEA from the 

reboiler is fa i r ly steady, although s l ight instabi l i ty may occur 

i f too much steam is used. Being in a closed loop, the cooling 
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water input temperature to the cooler, TX176, does rise a l i t t le 

over a long run but the rate of change, about 1 degree C per hour, 

is insufficient to cause problems. TX175, the temperature of the 

MEA leaving the absorber, does drift following a setpoint 

change but quite slowly as rapid fluctuations are smoothed out by 

the absorber packing. The steady nature of these temperatures 

implies that the zero-order hold assumption is a reasonable 

approximation and a further consequence is that the effects of 

the input measurement time constants can be safely neglected. 

4.2.1 Choice of sampling period 

In control problems, such as that of Newell and Fisher [73], 

the degree of control improves as the sampling period is 

reduced and the discrete time equations become a better 

approximation to the continuous time system. In the 

present application the choice of sampling period does not 

affect the running of the plant and can be made entirely to 

suit the fault detection algorithm. For detection purposes 

there are two reasons for making the sampling period as 

short as possible. An instrument fault occurring just 

after a sampling instant cannot be detected at the very 

earliest until the next sample is collected. The detection 

system may also need several samples exhibiting the fault 

to make a reliable diagnosis and the higher the sampling 

rate the shorter the time in which this is achieved. 

I f the data were to be processed in real time then the 

minimum sampling period would be dictated by the time taken 

by the computer to complete all the necessary calculations 

on each set of data. Algorithms run in real time by 

Newman [53] on the. pi lot plant with its relatively limited 

computing fac i l i t ies needed, for example, a sampling period 

of over a minute. 

The research for this project was, however, done by 

recording plant data on paper tape and later simulating 

faults on a larger computer. The minimum sampling period 

is in this case dictated by the time taken by the tape punch 

to output all the required points. Due regard must also be 

paid to the time constants employed in the model; a time 
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constant that is negligible in comparison with the 

sampling period is effectively instantaneous and may permit 

model order reduction (see e.g. Marshall [74]). 

The modelling work of Chapter 3 suggests that, in the 

present case, the sampling period must divide exactly into 

10 seconds in order to store the FX!01 readings for Fx by 

nx (40s), n2 (10s) and n3 (50s) to obtain inputs u 2, u7 and 

u8. With time constants ranging from 12-100 seconds a 

sampling period of 10 seconds, as used for runs PLANT2 and 

PLANT3, was adopted. 

4.2.2 The discrete-time system matrix, $ 

From [7 ], the discrete-time system matrix is the transition 

matrix defined for the time period between sample k and 

sample k + 1. 

The new matrix will be denoted by i t being understood 

that this i s defined over the length of the sampling period. 

From Section 4.1.4 and equation (4.11) matrix $ is 

calculated as shown in Fig. 18. 

4.2.3 The discrete-time input matrix, G 

The input matrix now follows using equation (4.13) also 

from [ 7 ] 

•(tk+1. V = eAcA .. (4.11) 

where A = t k + l - t k sample period .. (4.12) 

G .. (4.13) 

Evaluating the integral for nonsingular A( c 
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G = A c
- 1 [e A c A - I 6 ] B C ( 4 . 1 5 ) 

The evaluation of G is 'straightforward but tedious1 and 

the result i s given in Fig.19, where 

= (1 - e"aJA) j = 1, ..., 6 ... (4.16) 

4.2.4 The discrete-time observation matrix, H 

For the special case where the sampling period for inputs 

equals the sampling period for outputs and the sampling 

instants coincide, the continuous-time matrix Cc is unchanged 

in the discrete-time case, i.e. 

"l 0 0 0 0 (f 
0 1 0 0 0 0 

H = 0 0 0 1 0 0 
0 0 0 0 0 1_ 

The fault detection problem in detail 

Having arrived at a model with eight inputs, s ix states and four 

outputs ( i.e. measurements) the possible instrumentation faults 

can be l isted. 

Four fault types were considered in Chapter 1 and il lustrated in 

Fig. 1. These were 

(a) Step in instrument output (a constant bias) 

(b) Jump in instrument output (a ' sp ike ' ) 

(c) Ramp in instrument output (gradually increasing bias) 

(d) Instrument output full scale (break in r.t.d. lead) 

4.3.1 Output faults 

Biases of any of the above types can occur in four different 

fault 'd i rect ions ' , each related to a single instrument in 

measurement vector y = [y3 y 2 y3 y k ] T 
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"o" V "o" 
ZfO) 0 Lf( 2) 7T2 Z F ( 3 ) 0 Y F ( 4 ) 0 

(TX1T0) 0 (TX177) 0 (TX174) (TX172) 0 
a 0 0 

(4.17a,b,c,d) 

The magnitude,, time of occurrence and duration of IT. depends. j 
on which of the fault types (a) - (d) i s under consideration.-

.2 Input faults where input i s controlled at a setpoint 

Flow rate inputs FX101 (MEA) and FXT24 (cooling water) are 

both held to setpoints (see Appendix I ) . Assume that one 

of these i s at setpoint 1. I f the flow measuring 

instrument output should suddenly exhibit a constant bias 

+AF, the control system interprets th is as. an error of +AF 

in the flow control loop and reduces the actual flow by AF 

so that the instrument output i s again at setpoint.. 

Because of this the input signal to the fault detection 

systenr departs orrly briefly from normal, and after a short 

time does not reflect the fact that the setpoint i s now AF 

lower than setpoint 1. Meanwhile the actual flow is AF 

less than the. flow value being used by the model, which 

predicts output temperatures in l ine with the original 

flow (setpoint 1). On comparison with the model predictions, 

the output temperatures being received from the plant look 

as i f they are in error by the amount they would change i f 

the fTow rate were decreased by AF (assuming l inearity). 

Faults in the. MEA and. cooling water flow measurement loops 

therefore Took l ike multiple rtd biases and are accordingly 

c lass i f ied as. 'output' rather than ' input ' faults. 

Note that a bias in FX101 affects inputs u x , u2, u7 and u8 

while a bias in FX!24 affects input u3 only. The steady 

state fault directions ) for a bias in FX101 and y^(6) 

for a bias in FX124 are thus as follows: 
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y f (5) = 

aFT^ 3Tc i (0 ) l bf; /_ 
AF, 

i w y . + iLoiki 

3FX J 

aFi 

AF, 

AF, 

(4.18) 

y f ( 6 ) = 

E M L I AF: 

0 

0 

where the comments regarding 

ttj in Section 4.3.1 apply 

also to AF: and AF2 

... (4.19) 

4.3.3 Other input faults 

Five of the eight components of the input vector are flow 

rates and are included in Section 4.3.2. Any of the four 

bias types can occur in the instruments measuring inputs 

u^, u5 and u6. 

u f ( l ) = [0 0 0 0 0 0 0 ] T (TX173) ... (4.20) 

u f(2) = • [0 0 0 0 u2 0 0 0 ] T (TX175) ... (4.21) 

u f(3) = [0 0 0 0 0 u3 0 0 ] T (TX176) ... (4.22) 

where u i s u2 and u3 are specified in the same way as the 

biases 7%- in Section 4.3.1. 
J 

4.3.4 Fault simulation 

Faults y f ( l ) - (4) and u^(l) - (3) cause no physical changes 

to the system and can therefore be simulated by superimposing 

faults onto recorded plant data. For these fault directions 

i t is thus possible to investigate the detection of all four 

fault types. A fault y f (5) or (6) on a flow measuring 
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instrument, however, causes a change in a setpoint. These 

faults can only be studied by physically altering the 

setpoint while the plant is running, and as a consequence 

only faults of type (a) can be investigated for these two 

instruments. 

The problem can now be precisely defined: to design a 

fault detection system which can detect that one of the 

above faults has occurred, which can isolate the fault 

provided that i t is a fault on an individual instrument and 

which under favourable circumstances can estimate the 

magnitude of the fault. 

4.4 The Kalman Fi lter equations 

The f i l ter s employed are based on a time-invariant linear 

stochastic model in the standard state space form. 

x(k + 1) = $x(k) + Gu(k) + w(k) ... (4.23) 

y(k) = Hx(k) + v(k) ... (4.24) 

where x(k) and w(k) are n-vectors, u(k) i s an m-vector and y(k) 

and v(k) are r-vectors, all at sampling instant 'k 1 . 

' u' is a known input and w ( 'process ' or 'system'- noise) and 

v ('measurement' noise) are zero-mean, independent, white 

Gaussian sequences with covariances defined by 

£[w(k)wT(j)] = Q5kj £-[v(k)vT(j)] = R6kj 

...(4.25a,b) 

where 6kj. is the Kronecker delta. 

The optimal f i l te r is then described by the following steps. The 

notation is that of Will sky [27], except for the input matrix 

where 1B1 is replaced by 1G'. x(kIj) denotes the estimate of 

x at time ' k ' using information received up to and including 

time ' j ' . Recall also that $ = $(k + 1, k) 
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(1) Store current estimate and estimation error covariance 

x(k]k) P(klk) 

(2) Predict state at k + 1 

x(k + 1 |k) = $ x(kjk) + Gu(k) ... (4.26) 

(3) Predict error covariance at k + 1 

P(k + 1 Ik) = $P(klk)$T + Q ... (4.27) 

(4) Compute innovation covariance 

V(k + 1) = HP(k + l]k)HT + R ... (4.28) 

(5) Compute Kalman Gain 

K(k + 1) = P(k + 1lk)HTV_1(k + 1) (4.29) 

(6) Calculate innovation 

y ( k + l ) = y(k + 1) - Hx(k + 1|k) ... (4.30) 

(7) Update state estimate 

x(k + I lk + 1) = x(k + I lk ) + K(k + l)y(k + 1) 
... (4.31) 

(8) Update estimation error covariance 

P(k + I lk + 1) = CI-K(k + 1)H3P(k + l|k)[I-K(k + 1)H]T 

+ K(k + 1)RKT(k + 1 ) ... (4.32) 

(9) Set k = k + 1 and return to step (1). 

Filtering prerequisites 

Prerequisites for f i ltering are concerned with the stabil ity of 

the system and of the f i l ter . The system itself is seen to be 

stable from physical considerations; the input temperatures and 

flows must remain bounded and i t is not possible for the four 

temperatures chosen as states to become unbounded. Mathematically, 

system stabil ity could be guaranteed by demonstrating that the 

eigenvalues of the system matrix Ac all l ie in the left hand half 
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plane or equivalently that those of the discrete-time system 

matrix, l ie inside the unit disc. 

The original work of Kalman and Bucy [4 ] indicates that for 

uniform asymptotic stabil ity of the optimal f i l ter certain 

conditions must be satisfied. In addition to bounding the norms 

of the system matrix and the noise covariance matrices the system 

must be both uniformly completely observable and uniformly 

completely controllable (see, for example, Jazwinski [ 5 ] for 

definitions of these terms). 

Of prime interest for fault detection purposes is the concept of 

observability. This can be approached from several different 

angles: uniform complete observability as defined by Jazwinski, 

for example, implies stochastic observability as defined by 

Aoki [75], Furthermore, checking for uniform complete 

observability requires knowledge of the measurement noise 

covariance matrix R, at this stage unknown. 

Having modelled a specific plant we are now in a position to see 

i f there are any aspects of this particular system which can be 

exploited for fault detection purposes. One possibil ity is that 

we may be able to run two or more f i l ters in parallel, each 

uti l izing different subsets of the available instrumentation 

(cf Clark et al t 3 3 ! ) . The options open to us are determined by 

system observability but we have seen that this issue is not as 

clear cut as i t might be. In the system under consideration, 

however, there is a good case for looking only at the 

deterministic observability, which simplifies matters considerably. 

I t is easily proved (and intuitively obvious) that a system which 

is unobservable in a deterministic sense cannot be observable in 

any stochastic sense. Deterministic observability criteria can 

therefore be used to weed out those instrument subsets which 

render the system unobservable. For the subsets which remain, the 

deterministic check obviously cannot guarantee stochastic 

observability, but is a fair ly reliable guide. The noise levels 

on the process plant are very low and i f the system is observable 

in a deterministic sense then i t seems unlikely that i t will 

become unobservable in the presence of a small amount of noise. 

For constant coefficient systems the uniformity requirement is 

always satisfied. As a test for (uniform) complete observability 



131 

of such systems, Kalman [76] introduced the 'observability 

matrix', defined for any n-state, r-(noise free) measurement 

system as 

m 

m 
n-i 

(4.33) 

This is an n x nr matrix and the system is observable i f r 0 has 

full rank, i.e. rank(r0) = n. It i s , of course, only necessary 

to compute sufficient rows to obtain n that are linearly 

independent, but in cases where n is large this may be tedious. 

A second test, equivalent to the above and proposed by 

Rosenbrock [77] is to check that the (n + r) x n matrix 

s.I - $ n 
H 

... (4.34) 

has full rank for all eigenvalues of i.e. rank(R0) = n V s-j. 

The system is observable i f there are no eigenvectors of $ in 

the null space of H. 

Here (Fig.18) the eigenvalues of $ are displayed on the diagonal. 

I f the eigenvectors for eigenvalues Xi - X6 are written as the 

columns of matrix T we have, designating non-zero values by ' x ' 

"*1 0 1 
0 1 X 

0 0 X 
T 0 0 X 

0 0 0 
0 0 0 

With direct state measurements, Rosenbrock's method enables us to 

see at a glance which combinations of measurements result in 

system observability. Clearly i f we retain the four measurements 

on states x l s x2, x,̂  and x6, then no eigenvector fal l s in N(H) and 

0 0 0 

0 0 0 

0 0 0 

1 0 0 

0 1 0 

0 X 1 

... (4.35) 
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the system is observable. Observability is lost, however, i f any 

one of these measurements is dropped; i f , for example Xj is not 

measured then the f i r s t column of T e Thus, in this case, 

"the only feasible f i l ter is one employing all the available 

measurements. 

Rosenbrock proves that the RQ criterion implies complete 

observability by making use of the fact that the matrices 

(si - H) are 'relatively right prime'. I t is also possible, 

however, to prove that the RQ criterion is equivalent to Kalman's 

criterion based on the rank of rQ: see Appendix V. This proof, 

an original contribution, uses linear algebra and does not 

introduce the concept of relative primeness of matrices. 

4.6 Identification of variances 

Implementation of the optimal Kalman f i l ter requires an exact 

knowledge of the process noise covariance matrix Q and the 

measurement noise covariance matrix R. These are usually unknown 

in practice, the gas separation plant being no exception. 

Identification of Q and R can be carried out using a method 

developed by Mehra [10]. The basic algorithm requires batch 

processing of data and works only in the case in which the form 

of Q is known and the number of unknown elements in Q is less 

than n x r where n is the dimension of the state vector and r 

the dimension of the measurement vector. Q is required for 

computation of the Kalman gain (equations 4.27 to 4.29), but a 

modification also given in Mehra's paper allows direct estimation 

of R and the steady state optimal gain KQp by an iterative 

technique which is used here. Mehra's method does not allow for 

the case where the system and measurement noises have non-zero 

mean caused by unknown biases particularly in measuring instruments. 

Although these can cause the method to fail the difficulty can be 

overcome by using a modification proposed by Godbole [11 ]. 
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4.6.1 Initial estimates for Q and R 

System equation (4.23) includes process noise w(k) but 

assumes that u(k) is known exactly. In practice u has to 

be measured and is subject to measurement noise, i.e. 

um(k) = u(k) + n(k) ... (4.36) 

where um(k) is the measured input and n(k) is a zero-mean 

white Gaussion sequence that is assumed to be independent 

of w and v. Now 

x(k+l) = $x(k) + Gu(k) + w(k) ... (4.23) 

= $x(k) + G[um(k)-n(k)] + w(k) ... (4.37) 

= $x(k) + Gum(k) + w(k) ... (4.38) 

where w(k) = w(k) - Gn(k) ... (4.39) 

we have also 

E[w(k)wT(j)] = E[(w(k)-Gn(k))(w(j)-Gn(j) ) T ] , . . (4.40) 

= Q + GSG = Q ... (4.41) 

where E[n(k)nT(j)] = S6kj ... (4.42) 

We now require init ial estimates of R and, to obtain Q, Q 
and S. 

Approximate plant noise levels can be gauged with the aid 

of steady state data from the 2\ hour run PLANT2 (see 2.2.1) 

Four outputs and three inputs are temperatures and can 

reasonably be expected to be subject to similar degrees of 

measurement noise. TX176 is the temperature least affected 

by plant influences and over the f i r s t 6.2/3 minutes (40 

samples) of the PLANT2 record its mean is 9.54° with a 

variance of approximately 3 x 1 0 . There is no reason to 

suspect any correlation between noise sequences on different 

measurements and so the init ial estimate for R is taken to 

be 

R(0) = r with r = 3.0 x 10_lf ... (4.43) 
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This value of ' r ' can also be used as the init ial estimate 

for the variance of the measurement noise on input 

temperatures u^, u5 and u6. For flow measurements FX!01 

(u,, u2, u7 and u8) and FX124 (u3) the f i r s t 40 samples of 

PLANT2 yielded variances of 5.0 x 10"6 and 1.0 x 10"6 

respectively. I t is not possible to tell how much of this 

variance is due to actual ripple in the flow rate and how 

much to true measurement noise, and so we assume for the 

init ial estimate that is all due to the latter, giving 

S(0) = diag {5 5 1 300 300 300 5 5} x 10"6 

... (4.44) 

Note that although the measured value of F, is used four 

times, the covariance matrix S is s t i l l a diagonal matrix. 

This is because S is defined at time 1k1 and the four 

entries are recorded at different sampling instants. Thus, 

provided that the measurement noise on FX101 is a white 

noise sequence, the noise samples at time 1k1 on each of 

the four are uncorrected. The repeated, use of F, does, 

however, violate the assumption that n(k) is a white vector 

sequence. This would require that £Tn(k)nT(j)] = Sd^. 

(cf. 4.25 a & b). Clearly there is correlation between the 

measurement noise sequences on u,, u2, u7 and u8 for j>k 

and from a purely theoretical viewpoint the Kalman f i l ter 

equations do not hold. Consider however the simulation work 

carried out on a model of a dist i l lat ion column by Goldmann 

and Sargent [ n ] . They showed that autocorrelated 

measurement noise did not degrade the f i l ter performance 

for their example. While not corresponding exactly to 

their case, our problem is closely related and in the light 

of the findings of [17] i t was decided that the correlation 

present could be safely neglected. 

The process noise covariance matrix Q cannot be reliably 

estimated directly from the process data and any init ial 

value Q(o) is at best a 'guesstimate'. System output TX177 

(x , y ) has a variance over the f i r s t 40 samples of PLANT2 
- 3 

of about 3.3 x 10 . Assuming that the actual flow and 

temperature inputs to the cooler are steady, then this figure 
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represents the process noise associated with x2 plus the 

measurement noise associated with y 2 . The latter is 

already supposed to have a variance of about 3 x 1 0 and 

so the process noise variance must be of the order of 

3 x 10"3. Since all four outputs are temperatures an 

in i t ia l value for matrix Q is 

Q(0) = q.I^ with q = 3 x 10"3 ... (4.45) 

Note that there, is no theoretical just if ication for taking 

Q(0) to be diagonal; this simply reflects the lack of 

knowledge concerning the nature of the process noise. 

4.6.2 The steady state Kalman gain 

The procedure for calculation of the optimal Kalman gain 

K(k) and the estimation error covariance P(k|k) is given 

by equations (4.27, 4.28, 4.29 and 4.32). After a certain 

number of time steps both K(k) and P(k|k) will reach steady 

state values independent of the choice of P(0l0). As these 

matrices depend only on the model and not on the actual 

observations their behaviour can be studied off l ine. 

A program PDERIV, written to calculate the partial 

derivatives obtained in Chapter 3, was run with the stable 

operating point values given for run PLANT2 in Table 2. 

Matrices $ and G were then calculated using the expressions 

given in Figs 18 and 19 respectively and Q calculated from 

equation (4.41) using Q(Q) from (4.45) and S(0) from (4.44). 

Replacing Q by Q in equation (4.27) and using R(0) from 

(4.43) in (4.28) and (4.32), program FILCALC was run to 

investigate the behaviour of K(k) and P(k}k) for various 

values of P(0|0). 

The choice of the latter, which reflects the uncertainty in 

the 

in it ia l state estimate x(0l0), was not found to 

influence greatly the number of iterations taken to reach a 

steady Kalman gain. Even working to seven decimal places 

the gain was found to become steady after about ten 

time steps for any P ( o l o ) . G and steady state values for 

K(k) and P(k|k) are given for the PLANT2 operating point in 
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System matrix, $ 

0.758 
0.801 

0.080 
0.06,6 
0.635 
0.176 0.779 

0.435 
0.064 0.905 

Input matrix, G 

12.311 -4.548 0.004 0.017 0.142 -2.401 
7.115 -7.754 0.004 0.019 0.086 -2.679 

51.393 0.062 0.304 -42.638 
6.349 0.008 0.038 -5.267 

69.535 0.465 0.101 -82.934 
3.817 0.026 0.006 -4.553 

Steady state Kalman gain, K ^ 

KGAINX 

0. 929 0.010 0.012 0 .000 
0. 010 0.921 0.009 0 .000 
0. 851 0.587 0.960 0 .000 
0. 012 0.009 0.932 0 .000 
0. 000 0.000 0.001 1 .305 
0. 000 0.000 0.000 0 .926 

Steady state estimation error covariance, P(kjk) 

0.0003 
0.0000 
0.0003 
0.0000 
0.0000 
0.0000 

0.0000 
0.0003 
0.0002 
0.0000 
0.0000 
0.0000 

0.0003 
0.0002 
0.0231 
0.0003 
0.0000 
0.0000 

0.0000 
0.0000 
0.0003 
0.0003 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 
0.0000 
0.0675 
0.0004 

0.0000 
0.0000 
0.0000 
0.0000 
0.0004 
0.0003 

Fig.20 Discrete-time model, steady state Kalman gain and estimation 

error covariance at the PLANT2 operating point 
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Fig. 20. Note that this steady state gain is not the 

optimal steady state gain, K because Q and R are 

imprecisely known. Note also that the estimation error 

variances for states x3 and x5 are much higher than those 

for the other states which are directly measured. 

4.6.3 Testing for optimality 

I f the f i l ter is optimal, the innovation sequence generated, 

by equation (4.30) is a zero mean Gaussian white noise. I f 

the model is correct and all measuring devices are unbiased 

then any departure from these properties is caused by 

erroneous values of Q and R, and hence K. 

For j = 0 the autocorrelation function C. = Ely(i)yT(i-j)] 

is the predicted innovation covariance V given by equation 

(4.28). Like K and P(k]k) this too reaches a steady state 

value. For the optimal f i l ter C. = 0 for non-zero ' lag1 

«j 

number 1j4 but with incorrect Q and R the innovation 

sequence becomes non-white, a property that can be detected 

by statistical means. 

The C. 's can be estimated from a batch of N samples by j 
N 

ej = TT S y( i)yT(i • ••• (4-46> 
i=j 

The diagonal entries of the C. 's give information regarding 
j 

the whiteness of each component in the innovation vector. 
Normalized autocorrelation coefficients for these entries 
can be obtained from 

fto = T ^ r 1 ••• <4-47> 
L°oJmm 

If the innovations are white then the coefficients p are, 

like the Ĉ .1 s, asymptotically independent and normal with 

zero mean and covariance (1/N). For each m, pmj-, j = 1,2... 

can be regarded as samples from the same normal distribution 

and therefore the 95% confidence limits for p j > 0 
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are ±(1.96//lT). The batch size N should be stat i s t ica l ly 

signif icant, i .e. N - 1000, and the autocorrelation 

function evaluated for lags up to about j = 40. 

4.6.4 Mehra's estimation algorithm 

Mehra's algorithm is given without proof (see Mehra [10]). 

Bellingham and Lees [9 ], [so] found that the algorithm 

would not work on real data without the modification of 

Godbole [11 ] and accordingly this is included as step (5). 

The algorithm requires that both system and f i l t e r have 

reached steady state conditions and run PLANT2 was designed 

for this purpose, consisting of 924 data points. The in i t i a l 

estimate of the gain,Kx, which i s given as K s s in Fig. 20, 

corresponds to noise covariances Q(0), R(0) and S(0). 

®P1 i s the steady state a posteriori error covariance 

P(k|k) and PHT i s the estimate of PHT. 

Program KALF02 

Subtracts stable operating point values from PLANT2 data to 

obtain perturbation variables. Uses constant gain in 

place of equations (4.27, 4.28, 4.29 and 4.32). In it ia l 

state estimates all taken as zero. Set i = 1 . 

(1) Read in PLANT2 data. Read gain K-j from f i l e KGAINX. 

(2) Run f i l te r . Discard f i r s t 10 innovations to allow for 

transients, then write remaining 913 4-component 

innovation vectors to f i l e RESLT. 

Program WHITE 

(3) Read in RESLT and check all four components for . 

whiteness. 

I f all components white, K^ i s optimal. STOP. 

I f some components non-white, K-j i s suboptimal. 

Proceed to (4). 
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Program MEHRA 

(4) Read KGAINX. Read RESLT and ca lcu la te innovat ion 

mean. 

(5) Subtract mean from innovat ions (Godbole's 

mod i f i ca t i on ) . 

(6) Calculate C and C. , j = 1, . . . n from (4 .46) . 
^ j 

Here V , the number o f s ta tes , i s 6. 
(7) Use K1 from KGAINX w i t h H and $ to c a l c u l a t e A 

M 

H$( I - K-j H) $ 

A 

_HE$(I - K. jH)]n" l<^ 

(8) Find the general ized inverse of A, A* 

A ( A ^ ' V 

(9) Estimate PHT from 

K te o + A1 

(10) Estimate R from 
A 
R = C - HPH o 

(11) Calculate AKn- > c o r r e c t i o n to K-j from 

Ci 

AK. A7 .1 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

(12) Set K i + 1 = K-j + AK i 

and overwr i te data f i l e KGAINX w i th new value 

(4.52) 

(4.53) 

(13) Set i = i + 1 and r e t u r n to step (1 ) . 

The a lgor i thm whitens the innovat ions a t each i t e r a t i o n 

u n t i l the t e s t in step (3) i s passed. 
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4.6.5 Estimation of R and Kop f o r run PLANT2 

The algor i thm was run using raw PLANT2 data and the i n i t i a l 

Kalman gain, K, , given in F ig . 20. For the innovat ion 

sequence to be white at step 3 not more than 5% o f the 

normalized autocor re la t ion coe f f i c i en t s must l i e outside 

the band ±(1.96/vTT) or ±0.0649. Coef f i c ien ts were 

calculated f o r lag numbers up to 40 as suggested by 

Mehra [10] , i . e . 5% = 2. 

At i t e r a t i o n 1 : Points outside band at step 3. 

seq 1 : 10 seq 2 : 9 seq 3 : 7 seq 4 : 5 

Innovations non-white : K, i s suboptimal 

AK, = 

•0.251 
0.076 

•0.349 
0.170 
3.773 

•0.173 

0.445 
-0.031 
3.475 

-0.380 
18.961 
-0.844 

0.102 
0.074 
•0.632 
0.112 
0.263 
•0.035 

and the diagonal en t r ies of R 

-0.002 
0.015 

-1.099 
0.257 

-3.550 
0.276 

(4.54) 

r . . s j = 1 , . . 4 = {0.0003 -0.0004 -0.0005 -0.0005} 
J J 

(4.55) 

Note the very large correct ions to some ent r ies in the AK, 

matr ix and the negative covariances obtained f o r three 

components o f the measurement noise 1 v 1 . 

At i t e r a t i o n 10 : Points outside band at step 3. 

seq 1 

K i o + AK,Q = K, , -

seq 2 : 9 seq 3 : 6 
0.561 0.598 0.160 
0.152 0.829 0.068 
0.792 3.252 -0.411 
0.066 -0.152 1.167 
0.217 21.374 -2.851 
0.025 -1.094 0.276 

and the diagonal ent r ies of R 

seq 4 
-0.081~ 
-0.040 
-0.012 
-0.092 
-6.444 
1.213 

. . . ( 4 . 5 6 ) 

r j j , j = 1 , . . . 4 = {0.0041 0.00002 -0.00032 -0.00097} 

. . . ( 4 . 5 7 ) 
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A f t e r ten i t e r a t i o n s i t i s c lear tha t the a lgor i thm has 

f a i l e d . The estimated 'op t ima l ' Kalman gain bears no 

resemblance to the o r i g i n a l but the large ' co r rec t i ons ' 

have not resu l ted i n any marked whitening of the innovat ions. 

Furthermore the estimated R matr ix contains two phys ica l l y 

unrea l isab le negative var iances. 

I t was j u s t possib le t ha t the f a i l u r e was caused by the 

f a c t t ha t there i s a s l i g h t d r i f t i n temperature over the 

924 points of run PLANT2 due to a s l i g h t r i s e in the cool ing 

water i n l e t temperature. To t e s t t h i s theory the change i n 

expected value o f each va r i ab le from the beginning to the 

end o f the run was est imated. The d r i f t s , assumed to be 

propor t iona l to t ime, were subtracted from each temperature 

record to generate data set PLANT2X. 

The a lgor i thm was run again using PLANT2X data and i n i t i a l 

Kalman gain K x . The performance was no be t te r w i t h t h i s 

doctored data and the comments on the f i r s t run apply 

equal ly here. 

A more l i k e l y reason f o r the a lgor i thm 's f a i l u r e i s t ha t 

the process and measurement noises, as r e f l e c t e d by the 

temperature measurements, are not Gaussian. The noise 

sequences may wel l be Gaussian in r e a l i t y but they are a t 

a very low leve l on t h i s p a r t i c u l a r p l a n t , and the s ta te 

measurements i n degrees are rounded o f f to j u s t one decimal 

place (two f o r TX177). The continuous Gaussian d i s t r i b u t i o n 

w i l l be e f f e c t i v e l y replaced by a d i s t r i b u t i o n in which 

perhaps only two or three d i sc re te temperature values can 

occur. 

Exact ly the same problem was reported by Bellingham and 

Lees [ 9 ] , [ so ] who overcame the d i f f i c u l t y by adding 

computer generated Gaussian whi te noise to t h e i r 

measurements. This was t r i e d in order to conf i rm the source 

of the problem and to check the operat ion of the computer 

programs. 
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A NAG rou t i ne was used to generate 3696 points from a 

N(0,0.3) d i s t r i b u t i o n . The f i r s t 924 were added to the y x 

readings from PLANT2X, the second to y 2 and so on to 

produce a t h i r d data set PLNT2XX. Program FILCALC, used to 

obta in the matr ices o f F ig .20 , was re- run w i th the o r i g i n a l 

Q(0) and S(0) but w i th R(0) = 0.0091,,. These gave a new 

i n i t i a l steady s ta te Kalman gain which was used w i th 

PLNT2XX to run Mehra's a lgor i thm f o r a t h i r d t ime. 

The r e s u l t s , which are summarized i n Table 12, show how 

much more successfu l ly the a lgor i thm i s able to whiten the 

innovat ions and a r r i v e a t a r e a l i s t i c est imate f o r R. The 

diagonal en t r i es o f the l a t t e r are c lose to the variances 

o f the a r t i f i c i a l noise added, bearing in mind tha t the 

o r i g i n a l noise i s s t i l l present . 

TABLE 12 

I t n . Coef fs . outs ide band Estimated R 

No. 1 2 3 4 
A 

r i i 
A 

r 2 2 
A 

3 
A 

1 3 3 0 6 .094 .092 .085 .072 

2 3 3 0 4 .093 .091 .085 .075 

3 3 2 0 4 .093 .091 .086 .075 

4 3 2 0 4 .093 .091 .086 .075 

4 .6 .6 A r t i f i c i a l measurement noise : to add or not to add? 

White, Gaussian innovat ions w i th covariance equal to t h a t 

predic ted by equation (4.28) i nd i ca te f i l t e r o p t i m a l i t y . I t 

i s c lear from the experimental work t ha t w i th the nature and 

low leve l of the p lant noise in t h i s case, any f i l t e r 

designed to work on the raw data w i l l be suboptimal. 

I t must be decided a t t h i s po in t whether there i s a case f o r 

adding a r t i f i c a l measurement noise. Bellingham and Lees 

[ 9 ] , [ so ] added noise to obta in a r e l i a b l e est imate of Kop 

v ia Mehra's a lgor i thm. L i t c h f i e l d et al [22] designed 

t h e i r inst rumentat ion to be " e s s e n t i a l l y noise f r e e " , then 

added Gaussian noise to t e s t several f i l t e r s , whi le 

Hamilton e t al [20] added a r t i f i c i a l measurement noise " to 
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provide a more severe t e s t " of the f i l t e r considering the 

" r e l a t i v e l y low" p lant noise leve ls . 

By adding such noise i t i s possible to mask the t rue plant 

noise and to obtain a good approximation to an optimal 

f i l t e r . For s ta te est imat ion there are advantages in t h i s 

because some credence is given to the computed est imat ion 

e r ro r covariance, P (k j k ) . The f i l t e r faces a s t i f f e r t e s t 

i n instances where noise is not added and the operat ion is 

outside the condit ions l a i d down in the theory. 

Three considerat ions t i p the balance in favour of using the 

raw data. F i r s t l y , i f the f i l t e r i s to be used f o r f a u l t 

^detec t ion and not f o r s ta te est imat ion the r e l i a b i l i t y of 

P(kIk) i s i r r e l e v a n t . What i s more important i s whether 

the innovations s t i l l convey informat ion on the nature of 

any f a u l t s present and whether t h e i r s t a t i s t i c a l nature 

allows t h i s informat ion to be extracted. Secondly, having 

to add a r t i f i c i a l noise decreases the computational 

e f f i c i ency o f a f i l t e r i n g a lgor i thm and t h i r d l y the 

decision ensures tha t a d i f f e r e n t d i rec t i on is taken from 

tha t fo l lowed by Bellingham and Lees resu l t i ng in a more 

o r i g i na l piece o f research i n to f a u l t detect ion on a real 

process p lan t . 

Innovation s t a t i s t i c s f o r a suboptimal f i l t e r 

This sect ion examines the s t a t i s t i c a l nature o f the innovation 

sequence generated by running the raw PLANT2 data through a 

f i l t e r w i th a constant Kalman gain KGAINX (F ig . 20). The sequence, 

shown to be non-white a t the f i r s t i t e r a t i o n of Mehra's a lgor i thm 

a t the beginning of Section 4 .6 .5 , was tested f o r mean, covariance 

and d i s t r i b u t i o n . 

The sample mean (913 4-vectors) was found to be 

ECy] = {-0.0131 -0.0400 0.0225 -0.0082}7 

which i s close to zero. The variance o f each component can be 
compared wi th i t s theore t i ca l steady s ta te variance given by the 
program generating the matrices of F ig. 20: 
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Theoret ica l v ^ . i = 1,4 (0.0045 0.0039 0.0046 0.0040} 

Actual 5 t rY T l i n -> 1 = M (0.0036 0.0016 0.0032 0.0045} 

A program was w r i t t e n t o generate the d i s t r i b u t i o n func t ions 

F n ( x ) f o r each component o f the innovat ion vec to r . When p l o t t ed 

these were found to be approximately Gaussian and were f u r t h e r 

inves t iga ted by means o f the Kolmogorov-Smirnov (K-S) s t a t i s t i c 

(see* f o r example, Lindgren [78 ] ) . 

This s t a t i s t i c i s " d i s t r i b u t i o n - f r e e " , i . e . i t can be used to 

t e s t a. given sample d i s t r i b u t i o n func t i on F n ( x ) against the " n u l l " 

o r E hypothesis t h a t the samples are drawn from any given 

d i s t r i b u t i o n func t i on F (x ) . The K-S s t a t i s t i c , D n , i s based on 

the numerical d i f ference: between the actual and the HQ 
d i s t r i b u t i o n s and is. def ined by 

D = sup. | F (x) - F(x) | . . . (4.58) 
x 

Irr t h i s one-sample t w o - t a i l e d t e s t Dn i s compared w i th a 

thresho ld ,so t h a t i f F n ( x ) and F(x) d i f f e r by too much the Hq 

hypothesis i s re jec ted a t a given leve l o f s i gn i f i cance . 

The sample d i s t r i b u t i o n f o r each component o f the innovat ion 

v e c t o r was tes ted against the Eq hypothesis t h a t i t was a Gaussian 

d i s t r i b u t i o n - w i t h the sample mean and var iance. An attempt was 

made in each case to reduce the K-S s t a t i s t i c by keeping the mean 

constant b u t r a l t e r i n g the var iance o f the d i s t r i b u t i o n . The 
o 

computational work was ca r r i ed out by Well ings [79] using a 

program developed by him as a pa r t o f h is PhD thes is and employing 

the " l a rge sample" thresholds f o r Dn given by White, Yeats and 

Skipworth [so J. The second component o f the innovat ion vector was 

found to be the c loses t f i t to the Gaussian d i s t r i b u t i o n and the 

f o u r t h component the wors t . These two examples are p l o t t ed i n 

F ig . 21. 

As a f u r t h e r i n d i c a t i o n o f the shape of the actual d i s t r i b u t i o n s 

obta ined, c o e f f i c i e n t s of skewness (vx) and kur tos is (v2) were 

ca lcu la ted (see, f o r example, Wether i l l [ 8 1 ] ) . 
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These are def ined by 

. _ g [x - yi]3 = ffCx - _ 3 
1 ' {ELX - P]2}3/2 2 (SIX - Y]2}2 

(where u = £Cx3) . . . (4.59 a,b) 

and are both zero f o r the normal d i s t r i b u t i o n . Coe f f i c i en t v^ i s 

def ined only f o r d i s t r i b u t i o n s tha t are symmetrical and unimodal 

and should there fore be ca lcu la ted a f t e r a check on skewness has 

been made. Results obtained are summarized in Table 13 and show 

tha t only sequence 4 i s markedly non-Gaussian, e x h i b i t i n g a f a i r 

degree o f l e p t o - k u r t o s i s . 

TABLE 13 

seq. mean std.devn. var . Vl v2 

1 -0.0131 0.0596 0.0036 0.0194 0.4830 

2 -0.0400 0.0399 0.0016 0.1592 0.0205 

3 0.0225 0.0566 0.0032 -0.0399 2.0485 

4 -0.0082 0.0670 0.0045 -0.3708 5.5915 

seq. H mean 
0 

H s.devn. 
0 

Dn r e s u l t o f t e s t 

1 -0.0131 0.0596 0.0325 Hq accepted 
1 -0.0131 0.055 0.0234 HO accepted 
2 -0.0400 0.0399 0.0166 HO accepted 

2 -0.0400 0.04 0.0164 HQ accepted 

3 0.0225 0.0566 0.0520 HO re jec ted a t 2% s . l . 

3 0.0225 0.049 0.0305 HO accepted 
4 -0.0082 0.0670 0.1456 HO re jec ted a t 1% s . l . 
4 -0.0082 0.0420 0.0575 Eq re jec ted at 1 % s . l . 

4.8 An idea f o r an innovat ions based f a u l t detect ion a lgor i thm 

The work of Beard and Jones (see Wi l l sky [27 ] ) on the design o f 

detector f i l t e r s f o r l i n e a r t ime - i nva r i an t systems was examined 

b r i e f l y i n the in t roduc to ry chapter. Rather than designing a 

f i l t e r f o r accurate s ta te est imat ion they sought to accentuate the 

e f f ec t s of ce r t a i n f a i l u r e s in the f i l t e r r es i dua l . By su i tab le 

choice o f f i l t e r ga in , p a r t i c u l a r f a i l u r e modes could be made to 

manifest themselves as res iduals which remained in a f i xed 

d i r e c t i o n or plane. 
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The o r i g i n a l work was ca r r ied out i n a de te rm in i s t i c s e t t i n g , and 

the question a r ises as to whether a s i m i l a r method could be used 

f o r a s tochast ic t ime - i nva r i an t system. The remainder of t h i s 

chapter looks a t the f e a s i b i l i t y of t h i s idea. 

4 .8 .1 The innovat ion d i r e c t i o n 

Under normal opera t ion , the expected value o f the 

r-d imensional innovat ion vector i s a nu l l vec to r , i . e S ty ] 

i s a po in t a t the o r i g i n of r -space. I f a f a u l t occurs 

so tha t i n some way equations (4.23) and (4.24) no longer 

accurate ly model the process, there w i l l be a change i n the 

expected value t ha t i s dependent on the type and magnitude 

o f the f a u l t . 

The innovat ions can be monitored f o r t h i s s h i f t i n mean by 

the use o f the Student t t e s t , g i v ing r i s e to the detec t ion 

a lgor i thm used by Bellingham and Lees [49] , [ 50 ] . This 

does no t , however, make use o f the f a c t t ha t the post f a u l t 

innovat ion may po in t in a c h a r a c t e r i s t i c d i r e c t i o n i n 

r -space. I f the l i k e l y f a u l t sources are reasonably few and 

i f each source dr ives the innovat ion i n a unique d i r e c t i o n , 

then f a u l t i s o l a t i o n may be possib le by t es t i ng the 

innovat ions against each of these ' re fe rence ' d i rec t i ons in 

t u rn . 

4.9 Innovat ion moni tor ing 

S t a t i s t i c a l means f o r innovat ion moni tor ing i n the l i t e r a t u r e are 

developed on the assumption tha t the innovat ions are generated by 

optimal f i l t e r s and are there fore Gaussian. As experiment has 

shown tha t near-Gaussian innovat ions can be obtained by f i l t e r i n g 

p lant data even when the f i l t e r i s known to be suboptimal, these 

techniques can be appl ied w i th some confidence. 

Le t t i ng Hq be the hypothesis tha t system operat ion i s normal, each 

of the 'q1 l i k e l y f a u l t sources gives r i s e to hypothesis # . , 

i = 1, q tha t the f a u l t i s due to source ' i ' . For each f a u l t 

source i t is possible to calculate reference vector d., the value 

of EZy] for a unit step fault from source ' i 1 . For simplicity we 

will assume for the remainder of this chapter that d. is constant. 
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Under no - fau l t condi t ions the p robab i l i t y densi ty of y (k ) forms 

a symmetrical pat tern around the o r i g t n of r -space. The 

occurrence of a f a u l t from source M ' d i s t o r t s t h i s pat tern so 

that a ' lobe ' of increased p robab i l i t y extends along d.j. The 

a lgor i thm must decide whether a given innovat ion y (k ) belongs to 

the symmetrical d i s t r i b u t i o n ( impl ies Ho) or an asymmetrical 

di s t r i b u t i o n ( imp! i es H^). 

Vector y (k) w i l l have a component pjd-j along each d i r ec t i on dj 

which can be found from Lemma 4.1. For each d i r ec t i on d j , 

i = 1, q, the value pj can be thought of as the most l i k e l y 

magnitude f o r a f a u l t from source ' i ' . 

Lemma 4.1 

iy|cos e 

IYI • |d-j| COS 9 = YTdj 

ytdj 
Fig.22 

P i d i 

P i l d i 

Pi 

Every y (k ) w i l l i n general have a f i n i t e p f o r a l l values of ' i 1 

whether or not a f a u l t ex i s t s . These p values w i l l general ly be 
'smal l ' under no f a u l t cond i t ions , but one or more w i l l increase 
in magnitude i f there i s a f a u l t . Three t e s t s , each assuming 
Gaussian innovat ions, are proposed f o r monitor ing purposes. 

4.9.1 The X2 t e s t 
2 

In i t s simplest form the x or weighted sum-squared residual 
(WSSR) t es t is very much a detect ion only method and r e l i e s 
on the increase in innovat ion magnitude under f a u l t 
cond i t ions. The detect ion c r i t e r i o n i s : 

k 
v i £? 

= > r T ( j )V- 1 ( j )YCj ) S1 e . . . (4.60) 
Z . E 

j=k-N+l 
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where H1 i s a composite ' f a u l t ' hypothesis. I f the system 

operat ion i s c o r r e c t l y given by equations [4.23) and [4,24) 

then A(k) i s a chi-squared random va r iab le w i th Nr degrees 

o f freedom, where r = dim ( y ) . 

Wi l l sky, Deyst and Crawford [ 4 4 ] , [45 ] found tha t improved 

f a u l t de tec t ion and i s o l a t i o n performance could be obtained 

by generat ing ' r ' y 2 r . v . ' s , one from each component of the 

innovat ion vector y , and comparing these i n d i v i d u a l l y w i th 

thresholds e j , i = 1, r 

k 

i . e . ^ ( k ) = Yj U ) / V i i ( j ) i = 1, r . . . ( 4 . 6 1 ) 
j=k-N+l 

Note t ha t the "window length" N and the threshold e are 

design parameters and tha t under steady s ta te cond i t i ons , 

V(k) i s a constant ma t r i x . 

4 .9 .2 The l o g - l i k e l i h o o d r a t i o (LLR) t e s t 

'Smal l ' p values in a l l reference d i rec t i ons d-j w i l l be 

generated by Lemma 4.1 even under normal cond i t ions . A t e s t 

i s requi red to decide whether the impl ied s h i f t i n mean i n 

any p a r t i c u l a r d i r e c t i o n i s s t a t i s t i c a l l y s i g n i f i c a n t f o r a 

given innovat ion vector y ( k ) . 

The ca l cu la t i on of p f o r each d j f i x e s the mean of y (k ) f o r 

hypothesis Hi a t p-jd-j. The choice of hypothesis now rests 

on deciding whether y (k ) belongs to a populat ion w i th zero 

mean (HQ) or mean pid- j , i = 1, q ( H i ) . 

Given the d i s t r i b u t i o n funct ions of y under two hypotheses 

H and H l , Van Trees [ 5 4 ] def ines the l i k e l i h o o d r a t i o A(y) 
o 

as 

f V | £ ( V I ) 

O 
and a l i k e l i h o o d r a t i o t e s t w i th threshold ii 

E i 
A(Y) < h . . . (4.62b) 

H 
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Because the na tu ra l l oga r i t hm i s a monotonic f unc t i on and 

both sides o f (4.62b) are p o s i t i v e , an equ iva len t t e s t i s 

the l o g - l i k e l i h o o d r a t i o (LLR) t e s t 

j£nA(y) < in n = n . . . (4.63) 
H 

0 

The p r o b a b i l i t y dens i ty f o r r -d imens iona l Gaussian Y w i t h 

mean m and non-s ingu la r covar iance mat r i x V i s given by 

f j y ) = r J i n . exp { - i (T -m) T V" 1 ( y -m) . . . (4.64) 
Y 2tt | V | ' 

g i v i n g r i s e to the LLR s t a t i s t i c 

H' 

JWA(y) = Y T V _ 1y " cy-p ID 1-)TV"1(y-pid.) . . . ( 4 . 6 5 ) 
O 

For each innova t ion the s t a t i s t i c should be ca l cu la ted f o r 

a l l d i r e c t i o n s ' i ' , w i t h each 11r being t e s t e d , i n p r i n c i p l e , 

aga ins t the same th resho ld . I t i s , however, q u i t e poss ib le 

t h a t the r a t i o s generated from Y(k) may exceed the th resho ld 

f o r more than one ' i 1 va lue , i n which case the t e s t f a i l s 

t o completely i s o l a t e the f a u l t . The unce r ta in t y can be 

reduced by employing some o ther p o l i c y i n the case where 

more than one f a u l t hypothesis i s s i g n i f i c a n t aga ins t H . 
o 

One p o s s i b i l i t y i s to declare the ' i ' value generat ing the 

maximum value o f £nA(y) to be the f a u l t d i r e c t i o n . This i s 

f u r t h e r discussed i n Chapter 6. 

4 .9 .3 A note on alarm thresho lds 

I f the innovat ion mean corresponding to each hypothesis 

were known exac t l y ( imp ly ing a f i x e d f a u l t s i ze ) then a 

s u i t a b l e value f o r ri could be determined from s t a t i s t i c a l 

theory f o r any des i red s i g n i f i c a n c e l e v e l . The means i n 

equat ion (4.65) have, however, been est imated from Lemma 

4 .1 . The proposed LLR t e s t i s s t r i c t l y speaking a form o f 

the General ized L i ke l i hood Rat io (GLR) t e s t , i n which the 

parameters governing f ( y | H . ) are est imated assuming jy. to 

be t r u e . I t i s shown i n Chapter 5 t h a t t h i s makes the 

c a l c u l a t i o n o f s u i t a b l e thresholds very d i f f i c u l t . In t h i s 

case q i s perhaps best considered a design parameter to 

avoid mis leading f a l s e alarms a t the expense o f s e n s i t i v i t y . 
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4.9.4 The recurs ive cond i t iona l p r o b a b i l i t y (RCP) t e s t 

I n t u i t i v e l y , a possib le shortcoming o f the LLR t e s t i s t ha t 

i t considers on ly the evidence provided by a s ing le 

innovat ion y(k),4 i . e . at t ime (k) the t e s t i s not 

in f luenced by i t s dec is ion a t time ( k - 1 ) . 

Consider Bayes' theorem fo r V mutual ly exc lus ive events 

B 1 , . . . B n , o f which some one must occur i n a given t r i a l , 

and A which i s any event f o r which P(A)*0 (see, f o r example, 

Alder & Roessler [ 8 2 ] ) . The cond i t iona l p r o b a b i l i t y P(B^. 1 A) 

f o r any B^ given tha t A has occurred i s given by 

P(B..1A) = ^P(AlB-j)P(B-j) _ ( 4 6 6 ) 

P(A|B.)P(B.) 

1=1 

I f the B . ' s are replaced by hypotheses 5 . , i = 0 , 1 , . . . . q , 

and A by y then (4.66) i s d i r e c t l y app l icab le to the 

problem of f i nd i ng the cond i t iona l p r o b a b i l i t y t ha t each 

hypothesis i s ' t r u e ' , given the innovat ion y ( k ) . Equation 

(4.66) can be made recurs ive by modi fy ing the P(#.) terms 

to P ( iT j l k - l ) where the l a t t e r i s the p r o b a b i l i t y t ha t 

i s t rue given a l l in format ion up to and inc lud ing t ime 

( k - 1 ) . 

To s t a r t o f f , a p r i o r i p r o b a b i l i t i e s must be used: 

P ( # . ) , i = 0,1 q, must sum to 1 and could be chosen such 

tha t P ( £ o ) » P ( £ . ) , i = 1, q. P r o b a b i l i t y P ( ^ l k ) i s 

then given f o r each i by the recurs ion 

P ( S. | k ) = f ( Y ( k ) U j ) P ( g i l k - l ) _ ( 4 - f i 7 ) 

J ] f ( Y ( k ) l 5 j ) P ( f f j ! k - l ) 

j=o 

where the p r o b a b i l i t y dens i t ies f ( Y l # ) are as given in 

(4 .64) . This method gives the r e l a t i v e p r o b a b i l i t i e s of 

each hypothesis being the t rue one and enables a decis ion 

to be reached over several innovat ions. 
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4.10 A s i m p l i f i e d f i l t e r 

In order to assess the f e a s i b i l i t y of these ideas by s imulat ion 

we now construct a s i m p l i f i e d f i l t e r based on the p i l o t p lan t . 

The f u l l model is described by the equations: 

where $ and G are as shown in Figs.18 and 19. For a f e a s i b i l i t y 

study we can cut down on computational e f f o r t by employing a 

reduced order model. This i s obtained by increasing the sampling 

period A u n t i l i t i s subs tan t i a l l y longer than the p lant time 

constants T.-T_ and by const ra in ing f low setpo in t changes to 
A 6 

occur a t sampling instants on ly . I f A i s set a t 240 seconds then, 

neglect ing long term temperature d r i f t i n g , the e f f e c t of a change 

in input a t sample 'k1 w i l l have reached steady s ta te by 'k + 1 ' . 

There i s now no need to model t rans ients and x3 and x5 can be 

dropped leaving four states which are d i r e c t l y measurable. 

Furthermore, i f the MEA f low setpo in t (Fx) i s changed then the 

associated step change in occurs wel l before the next 

observation so tha t inputs u l s u 2 , u7 and u8 can be combined i n to 

a s ing le MEA f low inpu t . To a good approximation, equations 

(4.68) and (4.69) become: 

where G i s now a 4x5 matr ix of steady s ta te gains, $ has 

disappeared because i t approximates to a nu l l matr ix and H has 

become a 4x4 i d e n t i t y mat r ix . The output vector ' y ' i s a 4x1 

vector o f noisy measurements on the four s ta tes. These and the 

f i v e components of the input vector are per turbat ion var iables 

associated wi th the instruments as fo l lows : 

y T = cyi y 2 y 3 y ^ = ' etxiio txi77 txi74 txi72] 
uT = [u x u2 u3 u 5 ] = [FX101 FX124 TX173 TX175 TX176] 

The p a r t i a l der ivat ives required f o r evaluat ion o f G are again 

obtained from program PDERIV. These are ca lcu lated at the stable 

operat ing po in t given below, which is from an actual p lant run. 

TX110 = 24.2 °C TX172 = 87.8°C TX173 = 101.4°C 
TX177 = 29.05°C FX101 = 0.25 kgs"! TX175 = 25.04°C 
TX174 = 38.0 °C FX124 = 0.2 kgs" TX176 = 12.14°C 

x(k + 1) = <fx(k) + Gu(k) + w(k) 

y (k ) = Hx(k) + v(k) 

(4.68) 

(4.69) 

x(k + 1) = Gu(k) + w(k) 
y (k ) = x(k) + v(k) 

(4.70) 

(4.71) 
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As the sampling in te rva l increases, G becomes independent of a 
and i s given f o r t h i s operat ing point by 

" 50.311 -28.524 .077 .382 

G = 34.536 -50.005 .110 .544 

22.968 .169 .832 

-22.709 .822 .178 

Turning now to the f i l t e r , steps (3 ) , ( 4 ) , (5) and (8) (Sections 

4.4 and 4.6.1) s imp l i f y to constant terms as a consequence o f 

the fac t tha t $ is now a nu l l mat r ix : 

(3) P(k + l [ k ) = Q . . . (4.73) 

(4) V(k) = Q + R . . . (4.74) 

(5) K(k) = Q(Q + R f 1 . . . (4.75) 

(8) P(k)k) = ( I - K)Q . . . (4.76) 

Under normal operation the innovations are seen to have zero mean 

and constant covariance ( Q + R ) . We now consider the e f fec ts on 

these innovations o f two simple step f au l t s to determine the 

associated reference vectors 1 d^ 1 , defined in Section 4.9. The 

innovation biases are not formal ly derived here because a f u l l 

reference vector analysis i s car r ied out in Chapter 5. 

4.10.1 Output f a u l t 

Suppose a constant step f a u l t l b l appears on the 

measurement system between samples *k1 and 'k + 1 ' , i . e : 

y(k + 1) = x(k + 1) + v(k + 1) + b . . . (4.77) 

For the s i m p l i f i e d system the bias i s mirrored by the 
innovat ions, i . e : 

£TY( j ) ] = b V j -a k + 1 

Taking as an example f a u l t d i rec t i on y ^ ( l ) (Section 4 . 3 . 1 ) , 

the reference vector is the innovat ion bias resu l t i ng from 

a un i t step f a u l t i n temperature measurement TXT 10 

i . e : d, = b = [1 0 0 0 ] T . . . (4.78) 

Note tha t d, is defined f o r a pos i t i ve un i t s tep, i . e : +1°C. 

541 

346 (4.72) 
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4.10.2 Input f a u l t 

Suppose a constant step f a u l t a appears on an i npu t 

measurement between samples 1k - I 1 and 1 k 1 , i . e : 

um (k) = u(k) + . n ( k ) + a . . . (4.79) 

The f i l t e r uses the erroneous measurement a t step ( 2 ) : 

x(k + I l k ) = Gu(k) + Ga . . . (4.80) 

lead ing to 

ELy(j)l = -Ga VJ ^ k + 1 

Taking as an example f a u l t d i r e c t i o n u^(2) (Sect ion 4 . 3 . 3 ) , 

the reference vec to r i s the innovat ion bias r e s u l t i n g 

f rom a u n i t step f a u l t i n temperature measurement TX175. 

i . e : d8 = -Ga = [ - 0 . 3 8 2 -0.544 -0.832 - 0 . 1 7 8 ] 7 

. . . (4.81) 

Note t h a t TX175 i s u^ f o r the s i m p l i f i e d f i l t e r and t h a t 

the +1°C f a u l t p icks out the negat ive o f the f o u r t h column 

o f G. The reference vec to r associated w i t h t h i s inst rument 

i s numbered 1 d a
1 f o r consistency w i t h l a t e r work. 

The innovat ion covariance i s una f fec ted by step f a u l t s i n 

e i t h e r i npu t o r output measurements. 

4 .10.3 System s imu la t i on 

For s imu la t ion purposes u(k) was taken to be i d e n t i c a l l y 

zero so t h a t the system was d r i ven by zero mean whi te 

noise w(k) on l y . White noise sequences a t r e a l i s t i c l eve l s 

were computer generated as f o l l o w s : 

( i ) Sequence w(k) 4 -d imens iona l , zero mean, Q = 0.00091^ 

( i i ) Sequence v (k ) 4 -d imens iona l , zero mean, R = 0.000414 

( i i i ) Sequence n(k) 5 -d imens iona l , zero mean w i t h 

S = diag [ 4 1 400 400 400] x 10"6 

These sequences were then used to create new data f i l e s as 

f o l l o w s : 

( i v ) F i l e o f actua l s t a t e s . With u(k) = 0 \/k, these are 

given by equat ion (4 .70 ) : x ( k + l ) = w(k) 
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(v) F i l e 'OBSERVE' containing noisy measurements of the 
actual states obtained via equation (4 .71) , i . e . 
y (k ) = x(k) + v (k ) . 

( v i ) F i le 'CONTROL' containing apparent inputs . With 
u(k) = 0 Vk, these are given by equation (4 .36) : 
um(k) = n(k) 

Input and output fau l t s could then be simulated by adding 
su i tab le biases to selected instruments i n f i l e s CONTROL 
and OBSERVE respect ive ly . A l l f i l e s were 100 time steps 
i n length. 

4.10.4 Fault s imulat ion and f i l t e r i n g 

F i l t e r construct ion was great ly s i m p l i f i e d f o r th i s example 

because the Kalman gain K, given i n equation (4 .75) , did 

not have to be recalculated at every time step. For each 

experiment a f a u l t was superimposed onto e i t h e r CONTROL 

or OBSERVE before running both f i l e s through the f i l t e r to 

generate an innovat ion f i l e 'RESID'. The data f i l e could 

then be analyzed using the proposed tests and the resul ts 

compared. Examples are given i n Fig. 23. 

(a) x2 t es t 

With no f au l t s superimposed, s ing le component x2 r . v . ' s 
were generated using equation (4.61) wi th N = 3. For 
three degrees o f freedom, 99% of these values should be 
less than 11.35; the maximum was i n fac t found to be 11.03. 

With the alarm threshold set at 11.35, Example 1 shows a 

+1°C step f a u l t on TX110 occurr ing between k = 50 and 

k = 51. As expected from Section 4.10.1 th i s a f fec ts 

£ j ( k ) only and is detected at k = 5 1 . Example 2 shows a 

+1°C step f a u l t on TX175 occurr ing between k = 9 and k = 10. 

The f a u l t mainly a f fects &3(k) but,as expected f o r an input 

f a u l t , matr ix G d i s t r i bu tes the e f f e c t and a l l four x2 

r . v . ' s exceed the alarm threshold. Detection is delayed 

u n t i l k = 11 because y(10) is unaffected. 

These resul ts ind icate that i n p r i nc ip l e the x2 t es t can 
d i f f e r e n t i a t e between input and output fau l t s and can 
i so la te the l a t t e r . This is based on the premise tha t a 
f a u l t on y . a f fec ts £-(k) only whereas an input f a u l t 
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a f fec ts more than one o f the $ , . (k ) 's . Example 2 shows tha t 

t h i s may not always work i n p rac t i ce : a very small f a u l t on 

TX175 might dr ive only £ 3 (k) over the alarm threshold which 

would be mis interpreted as a f a u l t on y3 (TX175). 

The X2 t es t cannot i so la te input f a u l t s and more sophis t icated 

methods are required. 

(b) LLR tes t 
This t e s t was f i r s t t r i e d on undoctored data to ascer ta in the 

normal level of the 11r s t a t i s t i c and to set the alarm 

threshold. For every innovat ion, £nA(y) was calculated f o r 

each of the f i v e hypothesized input f a u l t s using reference 

vectors such as (4.81) together wi th Lemma 4.1 and equation 

(4.65) . The maximum 11r, which never exceeded 5.2, was 

pr in ted out at each time step together wi th the corresponding 

f a u l t hypothesis. Each f a i l u r e d i rec t i on was found to 

generate the maximum value wi th about the same frequency, as 

might be expected f o r a zero mean innovat ion sequence. 

For the second run, a +1°C step f a u l t on TX175 was in jec ted 

between k = 50 and k = 51. The alarm threshold was set a t 

10.0 but as can be seen from Example 3, &nA(y) f o r i = 4 

leapt to around 400 a t k = 52. The l l r ' s f o r some o f the 

other d i rec t ions also exceeded 10.0 but a l l were neg l i g i b l e 

in comparison wi th the value f o r Fig. 23 also shows 

the estimate of f a u l t magnitude: p r i o r to k = 52 Hq i s 

declared t rue and p.., i = 1 , . . . 5 are not def ined. The f a u l t 

i s detected at k = 52 whereupon Lemma 4.1 estimates the 

f a u l t to w i th in 10% of the correct value. 

(c) RCP tes t 

This t es t was also used to look f o r f a u l t s on input 

measurements and the a p r i o r i f a i l u r e p robab i l i t i e s f o r use 

wi th equation (4.67) were i n i t i a l l y set at 

P(Hq) = 0.975 P(H.) = 0.005, i = 1 , . . . 5 

Under no - f au l t condi t ions, P(HQ) f e l l to zero a f t e r about 

28 time steps and by k = 48 the algor i thm had locked onto a 

non-existent f a u l t in u 3 , i . e . P(#3) = 1.0. A f te r t h i s the 

algor i thm was ob l iv ious to f a u l t s introduced on any other 

instrument. Changing the a p r i o r i p robab i l i t i e s d id not cure 

the problem but merely postponed the i nev i tab le . 
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Better resu l ts were obtained by modifying equation (4.67) 

to u t i l i s e the a p r i o r i p r o b a b i l i t i e s a t every step, 

although t h i s negates the argument given in Section 4.9.4 

about reaching a 'considered' decision over several 

innovat ions. The modif ied algor i thm was used to detect the 

same TX175 f a u l t as i n Example 3. As shown in Example 4 i t 

succeeded, wi th P ( ^ ) jumping from near zero to 1.0 a t 

k = 52. As the RCP tes t also uses Lemma 4 .1 , the estimate 

of f a u l t magnitude is the same as tha t supplied by LLR. 

4.11 Summary 

A s ix s tate d iscrete- t ime l i nea r s tate space model has been derived 

f o r the heat exchanger/cooler subsystem and a set of possible 

f a u l t s was defined f o r f u r the r study. The standard Kalman f i l t e r 

equations were presented and system obse rvab i l i t y , inc lud ing a new 

proof o f equivalence between two tes ts f o r de termin is t i c 

obse rvab i l i t y , was discussed. 

I d e n t i f i c a t i o n o f noise s t a t i s t i c s was attempted via Mehra's 

a lgor i thm but was unsuccessful due to the low noise levels on t h i s 

p a r t i c u l a r p lan t . The decision was taken not to add a r t i f i c i a l 

measurement noise but i t was shown by means of the Kolmogorov-

Smirnov t e s t t ha t the f i l t e r innovations were s t i l l approximately 

Gaussian. 

A method f o r simultaneous f a u l t detec t ion, i s o l a t i o n and 

approximate est imat ion was proposed as a development o f techniques 

used by Beard and Jones f o r de te rmin is t i c systems. Two algorithms 

based on t h i s p r i nc i p l e were tested f o r f e a s i b i l i t y using a simple 

example and were compared wi th the wel l known x2 t e s t . 

For the LLR a lgor i thm, f a u l t decisions were based on ind iv idua l 
innovations whi le the RCP algor i thm was designed in an attempt to 
reach a considered decision over several innovat ions. Rather than 
improving matters the l a t t e r a lgor i thm proved unstable, showing a 
marked tendency to generate a fa lse alarm whi le becoming 
insens i t i ve to new data. Both the LLR algor i thm and a modif ied 
version o f the RCP algor i thm performed well under ideal 
s imulat ion condi t ions. 
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CHAPTER 5 

THEORETICAL ASPECTS OF FAULT DETECTION 
\ 

5.0 In t roduc t ion 

The idea o f moni tor ing the innovat ion d i r e c t i o n and magnitude 

f o r f a u l t detect ion purposes i s i n i t s e l f not new. Wi11 sky [27 ] 

describes the work of Beard and Jones on cont inuous-t ime 

de te rm in i s t i c systems and suggests how noise might be taken 

i n t o account i n ce r ta in simple cases. The work covered by t h i s 

chapter is o r i g i n a l i n t ha t i t p a r a l l e l s the de te rm in i s t i c case 

by assuming from the outset t ha t the system i s s tochas t ic and 

tha t innovat ions are to be generated by a d i sc re te - t ime Kalman 

f i l t e r . Chapter 6 car r ies the work a stage f u r t h e r than Beard 

and Jones by applying the theory to a real system and t es t i ng 

algor i thms w i th real data. 

I n i t i a l l y the Kalman f i l t e r i s analyzed f o r the general case to 

determine the e f f ec t s on the innovat ions o f step f a u l t s on 

input and output measurements. This leads to the p o s s i b i l i t y 

o f using suboptimal f i l t e r s w i th enhanced f a u l t de tec t ion 

proper t ies but ra ises important questions regarding degradation 

of performance, s t a b i l i t y and divergence of est imates. 

As w i t h any f a u l t de tec t ion a lgor i thm the p o s s i b i l i t y of f a l se 

alarms and i nco r rec t f a u l t i s o l a t i o n decisions must be s tud ied. 

Since the algor i thms of Chapter 4 also c la im, v ia Lemma 4 .1 , to 

provide an approximation to the f a u l t magnitude i t i s also 

necessary to look at the accuracy t ha t might be expected of t h i s 

est imate. 

5.1 The Kalman F i l t e r 

The standard equations f o r the t ime - i nva r i an t l i n e a r d i sc re te -

time f i l t e r are presented i n Section 4.4 but are repeated here 

f o r ease of reference. 
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x (k+ l I k ) = $x(k [k) + Gu(k) . . (5.1) 

P(k+ l |k ) = $P(k|k)$T + Q . . (5.2) 

V(k+1) HP(k+l1k)HT + R (5.3) 

K(k+1) P(k+1[k)HT V"1(k+1) . . (5.4) 

y ( k+ l ) y ( k+ l ) - Hx(k+l |k) (5.5) 

x (k+ l lk+1) = x ( k + l | k ) + K(k+ l )y (k+ l ) . . (5.6) 

P (k+ l | k+ l ) = [ l - K ( k + l ) H ] P ( k + l | k ) [ l - K ( k + l )H] T 

+ K(k+l)RKT(k+l) . . (5.7) 

5.1.1 The f i l t e r t r a n s i t i o n ma t r i x , Y 

Consider the case where the f i l t e r has reached steady-

s ta te , i . e . K(k+1) = K(k) = K. Equations ( 5 . 1 ) , (5.5) 

and (5.6) can be combined to give 

x(k+l Ik+1) = ( I -KH)$x(k |k) + (I-KH)Gu(k) + Ky(k+1) 

(5.8) 

or 

x(k+l I k+1) = Hfx(klk) + (I-KH)Gu(k) + Ky(k+1) . . . (5.9) 

where ¥ = ( I - KH)$ i s the f i l t e r t r a n s i t i o n mat r i x . 

Note tha t the f i l t e r i s s table i f f a l l the eigenvalues 

o f ¥ l i e ins ide the un i t d i sc . 

The e f f e c t of sudden bias on the Kalman F i l t e r 

In t h i s sect ion the e f f e c t on the f i l t e r of a sudden step bias 

on an output or input measurement i s to be determined. Although 

t h i s analysis requires the Kalman gain K(k) a t each step i t does 

not consider the way i n which the gain i s computed and therefore 

does not imply tha t the f i l t e r i s necessar i ly opt imal . Neither 

i s i t assumed tha t the system was f ree of measurement bias before 

the step bias under considerat ion; the analysis deals only w i th 

the e f f e c t o f a 'new' step which i s assumed to occur i n the 

i n te rva l 9 - 1 < k < 9. 

Variables a f fec ted by the f a u l t are shown primed, e.g. Y ' ( 9 ) . 

Each i s expressed as a func t ion of the var iab le tha t would have 
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occurred wi th no f a u l t , shown unprimed, plus a term due to the 

f a u l t alone. 

I t w i l l be shown tha t the p o s t - f a u l t innovat ions and s ta te 

estimates can be expressed i n terms o f the n o - f a u l t var iab les 

plus the f a u l t v e c t o r ] ) p remu l t i p l i ed by a bias mat r ix S, i . e . 

Y' (k) = Y(k) + B(Y;k)b . . . (8.10) 

x ' ( k | k ) = x ( k i k ) + B(x ;k )b 

S imi la r bias matr ices are used in the analys is of GLR detec t ion 

algor i thms (see, f o r example, Wi l l sky and Jones [ 5 5 ] ) but they 

are presented i n a d i f f e r e n t way and termed ' f a i l u r e s ignature 

ma t r i ces ' . Theorems 5.1 and 5.3 are o r i g i n a l work having been 

der ived from f i r s t p r i n c i p l e s . Theorems 5.2 and 5.4 are o r i g i n a l 

extensions. 

Theorem 5.1 Step bias i n the y vector 

The instrument step i s modelled as 

y (k ) = Hx(k) + v(k) + bak>Q . . . (5.12) 

r= 0; k < 9 
where b i s the f a u l t vector and a. Q< 

k , e 1= 1; k > 9 

At the end o f time step k = 9 -1 , x ( 0 - l | 0 - l ) i s s tored. 

Time step 9 

Pred ic t s ta te : x ( 9 | 9 - l ) = $ x ( 9 - l | 0 - 1 ) + Gum(0-1) . . . (5.13) 

Output contains b ias , _b, i . e . y1 (0) = y (9) + _b . . . (5.14) 
Innovat ion: Y r (9 ) = y ' ( 9 ) - Hx(0|9-1) 

= Y(e) + b (5.15) 
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State estimate update: 

x ' ( e l e ) = x ( e l e - i ) + K (e )y , (e ) 

= x ( e l e - l ) + K(9) [y (e) + b ] 

but x (e le ) = x (9 |9 -1 ) + K(9)y(9) 

i . e . x1(918) = x (e |e ) + K(8)b . . . (5.16) 

Innovat ion bias S y(Y;8 )b = J) ide'- 5
y ( Y ; e ) = I 

State estimate bias B y ( x ;9 )b = K(0)b i . e . B y ( x ; 9 ) = K(9) 

The ' y ' s u f f i x ca r r i ed by B y ind ica tes t ha t i t re fe rs to a step 

in the ' y ' vec tor . 

Store x 1 (918) 

Time step 8 + 1 

Pred ic t s t a te : x ' f e + l l e ) = $ x ' ( 9 | 9 ) + Gum(9) 

= $x(919) + $K(9)b + Gum(9) 

= x(9+l19) + $K(9)b 

which can be w r i t t e n = x (9+ l | 9 ) + $.Sy(x;0)_b . . . (5.17) 

Innovat ion: y ' ( 9 + l ) = y ' ( 9 + l ) - Hx1 (9+119) 

= y(9+1) + b - H [x (9+ l |9 ) + <DSy(x;9)b] 

= y (9+ l ) + [ l r - H$F y (x ;8) ]b . . . (5.18) 

i . e . S y (y ;0+1) = [ l r - H$S y (x ;9) ] 

State est imate update: 

x , ( 9 + l | 9 + l ) = x ' (9+1 |9 ) + K ( 9 + l ) y l ( 9 + l ) 

= x(9+l19) + <DFy(x;9)b + K ( 0 + l ) [ y ( 9 + l ) - { I r - H $ S y ( x ; 9 ) } b ] 

= x(9+l |0+1) + $£ y (x ;9 )b + K ( 0 + l ) { I r - H $ F y ( x ; 0 ) } b 

x(9+l19+1) + 5 y ( x ; 0 + l ) b . . . (5.19) 

where F y (x ;9+1) = $B y (x ;9) + K ( 9 + l ) { I p - H$By(x;0)} 

= $S y (x;9) + K(0+1)5 y (y ;0+l ) . . . (5.20) 
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Clear ly the propagation o f the bias through the f i l t e r i s now 

given by the fo l l ow ing recurs ions: 

B y ( x ; 9-1) 

B y (y ; j + l ) 

5 y ( x ; j + l ) 

= 0 

= [ l r - H $ s ( x ; j ) ] 

$ S y ( x ; j ) + K ( j + l ) B y ( y ; j + l ) 
•Vj^Q-'l 

Innovat ion bias 

State estimate bias 

S y ( Y ; j ) b 

s y ( x ; j ) b 

(5.21) 

(5.22) 

(5.23) 

Lemma 5.1 I f the f i l t e r i s s t ab l e , the matr ix [ I n - Y] is 

non-s ingu lar . 

The equation 

s l n - = 0 

i s s a t i s f i e d by values o f 1s1 which are eigenvalues o f Y. The 

f i l t e r i s s tab le so a l l eigenvalues l i e w i t h i n the u n i t d i s c , 

i . e . ' V i s not an eigenvalue, and hence 

I - * 0 and [ I - Y] n n 
- l 

e x i s t s . 

Theorem 5.2 S e t t l i n g out of the ' y 1 bias e f f e c t . 

Theorem 5.1 can be f u r t h e r developed i f we assume tha t the 

Kalman gain i s constant , i . e . K ( j ) = K V j . This could be 

engineered by using a constant K from the outset or by assuming 

t ha t no f a u l t s occur u n t i l the f i l t e r has reached a steady 

s ta te . 

Vj>0-1 

Equations (5.21-3) now become: 

BY(X; 9-1) = 0 

3 y (Y ; j + l ) = I r - H$S y (x ; j ) 

s y ( x ; j + l ) = $ s y ( x ; j ) + Ks y (y ; j+1) 

From (5.25) and (5.26) 

S y ( x ; j + l ) = $ S y ( x ; j ) + K [ l r - H $ B y ( x : j ) ] 

= K + ( I n - K H ) M y ( x ; j ) 

= K + T B y ( x ; j ) 

(5.24) 

(5.25) 

(5.26) 

(5.27) 
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By applying (5.27) repeatedly to the i n i t i a l cond i t ion ( 5 . 2 4 ) , 

j 

2 y ( x ; 9+j) = ^ ^ ^ • • • ( 5 - 2 8 ) 
m=o 

where = I n 

This i s a geometric ser ies and can be summated to 1N' terms 

B y ( x ; e+N) = [ I ^ ] " 1 CIn -¥N ]K . . . (5.29) 

The existence o f [ I - Y ] " 1 i s guaranteed by Lemma 5.1. 

Furthermore, w i th a s tab le f i l t e r a l l eigenvalues o f Y l i e 

w i t h i n the u n i t d isc and so 

l im(YN ) 0 

and the bias mat r ix assumes a steady s ta te value given by 

y x ) = CIn - . . . (5.30) 

The s teady-s ta te innovat ion bias mat r ix fo l lows d i r e c t l y from 

t h i s together w i th (5 .25) : 

B y ( y ) = I r - H « I n - Y ] " l K . . . (5.31) 

I 

The process can now be repeated f o r a step bias on an input 

measurement. 

Theorem 5.3 Step bias i n the 1u1 vector 

The instrument step i s modelled as: 

x ( k+ l ) = $x(k) + S[um(k) + b.a k Q ] + w(k) . . . (5.32) 

where J) and a k 0 are def ined as f o r Theorem 5.1. Measurement 

u„ (9) i s the f i r s t to contain the f a u l t which there fore a f f e c t s mv
 ' 

the estimate at step 9 + 1 . 

At the end o f time step k = 9, x (0 |0) i s s tored. 
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Time step 8 + 1 

Pred ic t s t a t e : x ' (8+118) = $x (6 le ) + G[um(Q) + b ] 

= x(9+118) + Gb (5.33) 

Innovat ion: Y ' ( 9 + l ) = y ( 9 + l ) - Hx'(9+119) 

= Y(8+l ) - HGb (5.34) 

i . e . Bu(Y;9+1) = -HG 

State est imate update: 

X'(9+119+1) = x'(9+119) + K(9+1)Y'(8+1) 

= x (9+ l |9+1) + [ l n - K(9+l)H]Gb . . . (5.35) 

i . e . 5 u ( x ; 8 + l ) = [ l n - K(9+1)H]G 

Store x'(8+119+1) 

Time step 8 + 2 

Pred ic t s t a t e : x'(9+219+1) = <S>x' (9+119+1) + G[um(Q+"I) + b ] 

x(9+216+1) + B ( x ; 9 + l ) b + Gb 

(5.36) 

Innovat ion: y 1 (8+2) = y(9+2) - Hx'(9+218+1) 

= Y(9+2) - H$F ( x ; 8 + l ) b - HGb 

(5.37) 

State est imate update: 

x'(8+219+2) = x'(9+219+1) + K(9+2)Y'(9+2) 

= x(9+219+2) + [ i - K(8+2)H][G + $B u ( x ;9+ l ) ] b 

(5.38) 
u 

leading to the recurs ions : 

S „ ( x ; 8 ) = 0 (5.39) 

(5.40) 

(5.41) 

5U(Y,J+1) 

5 u ( x , j + l ) 
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Theorem 5.4 S e t t l i n g out of the V bias e f f e c t . 

With constant K, equations (5.40 and 5.41) become 

S u ( Y ; j + l ) = "HG - H$S u (x ; j ) . . . (5.42) 

S u ( x ; j +1 ) = (In-KH)CG + « B u ( x s j ) ] . . . (5.43) 

By apply ing (5.43) repeatedly to the i n i t i a l cond i t ion (5.39) 

j 

5 u ( x ; e + j ) = ^ ^ ( I ^ K H J G . . . (5.44) 

m=o 

and summating to N terms 

Bu(x,9+N) = (In-KH)G . . . (5.45) 

As N 4. oo t h i s approaches a steady s ta te value 

B u ( x ) = [ I n - Y ] " 1 ( I n - KH)G . . . (5.46) 

The steady s ta te innovat ion bias matr ix fo l lows d i r e c t l y from 
t h i s together w i th (5 .42) : 

B u ( y ) = -H[G + - Y l f 1 ( I - KH)G] . . . (5.47) 

I 
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3 The e f f e c t of jumps ( 'bad data p o i n t s ' ) 

Bad data points are not uncommon i n i n d u s t r i a l p lants where 

' sp ikes ' may occur on measured var iab les from time to t ime due 

to electromagnet ic i n te r fe rence . A sudden measurement jump may 

a f f e c t only a s i ng le sample and can then be modelled as a step 

a t k = 9 fo l lowed by a step i n the opposite sense a t k = 9 + 1. 

C lear ly i f the f i l t e r i s s tab le the e f f e c t on both the s ta te 

est imate and the innovat ions w i l l eventua l ly d ie away to zero. 

Whether or not the spike w i l l be picked up by a f a u l t de tec t ion 

a lgor i thm w i l l depend on the magnitude and ra te of decay o f i t s 

e f f e c t on the innovat ions t ha t f o l l o w . This type of f a u l t i s 

studied exper imenta l ly i n Chapter 6. 

4 A scalar example 

The p o s s i b i l i t y of using a constant , perhaps suboptimal Kalman 

gain has already been mooted. The e f f e c t t h i s would have on the 

steady s ta te bias matr ices o f Theorems 5.2 and 5.4 i s more 

r e a d i l y understood w i th the a id o f a computer s imula t ion based 

on a scalar example. 

Consider the system 

x(k + 1) = 4>x(k) + gu(k) + w(k) . . . (5.48) 

y ( k ) = hx(k) + v (k) . . . (5.49) 

w i th h = g = 1.0 q = £[wwT] = 1 . 0 

<p = 0 . 4 r = F [ V V t ] = 0 . 2 

Taking u(k) to be i d e n t i c a l l y zero f o r a l l k , Gaussian process 

and measurement noise f i l e s QNOISE and RNOISE, each conta in ing 

1000 data po in t s , were generated by using computer NAG rou t ines . 

QNOISE was then run through the model (5.48) to generate a f i l e 

of states to which was added RNOISE to create an observat ion f i l e . 

The observations were used i n conjunct ion w i th constant gain 

f i l t e r s which u t i l i z e d f i l t e r equations (5 .1 , 5.5 and 5.6) on ly . 

The e f f e c t s o f a l t e r i n g K over a wide range were noted. 
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Fig.24 Innovation variance and bias matrices as functions of K 

for a scalar example 
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By using equations (5 .2 , 5 .3 , 5.4 and 5.7) i t i s c lear tha t the 

steady state a pos te r io r i e r ro r covariance 1p1 i s the so lu t ion 

of 

p = P<A + i . e . p = 0.168 . . . (5.50) 
P4 + q + r 

The optimal steady s ta te Kalman gain i s therefore given by 

2 

K = Pf * q = 0.837 . . . (5.51) 
p<j> + q + r 

The e f f e c t of K on the innovat ion variance i s p lo t ted in Fig 24. 

As might be expected, t h i s variance is a t a minimum at around 

the optimal value of K. This i s of course also t rue of the 

e r ro r variance 1p1 . 

Also shown in Fig 24 as funct ions of K are bias matrices (here 

scalars) calculated from equations (5.31) and (5 .47) , i . e . 

V Y ) = h { 9 + ••• (5-52) 

flu<Y> = I 1 " } • • • <5 -5 3> 

Two points from Fig 24 should be noted: 

( i ) As K approaches zero the e f f e c t on the s ta te estimate of a 

step in y also approaches zero. 

( i i ) As K decreases the e f f e c t on the innovations of a step i n 

e i the r y or u i s increased. 

This example i l l u s t r a t e s several important po in ts . 

5.4.1 The ob l iv ious f i l t e r 

When the f u l l f i l t e r i n g equations (5.1) to (5.7) are used, 

covariance matrices Q and R must be spec i f ied . Although 

Q is defined as the process noise covariance i t can be 

manipulated to r e f l e c t the accuracy of the model (see 
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Hamilton et al [20] for discussion). A Q that is 'low' 

compared with R implies a somewhat higher degree of 

confidence in the model than in the measurements and will 

result in a 'small1 steady state Kalman gain. Conversely 

the use of a (constant) small gain implies a low Q (and/or 

a relatively high R). 

A f i l ter using a small gain relies almost completely on 

the model to produce estimates. I f there are substantial 

unmodelled phenomena then the f i l ter may diverge and 

become useless as a state estimator because i t is 

oblivious to the new information i t receives. Techniques 

for keeping the f i l ter sensitive to new data include 

several in which P(k|k), and hence K(k), are prevented 

from becoming too small (see Fagin [28] and Tarn and 

Zaborsky [29]). Fixing the gain at a suitable value has 

already been mentioned and is discussed briefly by 

Jazwinski [ 5 ]. 

The designer of fault detection systems seeks a quick 

response to sudden measurement biases: Kerr [83] 

considered an augmented f i l ter in which certain failure 

modes were included as state variables. With a small 

gain, note ( i ) indicates that a sudden measurement bias 

will have minimal effect on the state estimate and may go 

undetected. 

5.4.2 The innovation bias matrix 

Decreasing K is clearly undesirable for fault detection 

methods relying on state estimation. Note ( i i ) , however, 

suggests that such a decrease could improve the sensitivity 

of an innovations based detection algorithm, particularly 

as such a move would appear to amplify the effect of step 

biases in both input and output measurements. This is 

explained as follows: 

A 'small ' K implies that Q i s 'low' relative to R and 

hence that the model is more reliable than the 

measurements. 
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At a step bias in y : The f i l t e r t rus ts the model rather 

than the observat ions, y . I t therefore doesn't l e t the 

change in y inf luence the estimates and s y ( x ) stays smal l . 

Because the estimates do not fo l low the change in the 

observat ions, the second term in equation (5.5) i s l e f t 

behind by the f i r s t and the innovat ion bias 5 y (Y) i s 

high. 

At a step bias i n u: The f i l t e r considers model equation 

(5.1) to be r e l i a b l e and so makes f u l l use of the incor rec t 

u values, a l t e r i n g the estimate accordingly: # u (x ) i s 

large. The second term in (5.5) i s now incor rec t whi le 

the observations y are unaffected: 5 (y) i s high also. 

5.4.3 The ava i lab le range of K 

Another point raised by t h i s example i s the range of K 

values tha t can be obtained by manipulation of q and r . 

For s t a b i l i t y , ip must l i e i n the range -1 < if> < + 1 so 

tha t K i s constrained to -1 .5 < K < +3.5 

For the scalar case K is dependent on the r a t i o q / r . This 

r a t i o must l i e i n the range 0 < q / r < °° so tha t f o r an 

optimal f i l t e r K must l i e i n the range 0 < K < + 1. 

Evident ly there are ranges o f K values 

-1 .5 < K < 0.0 and 1.0 <; K < 3.5 

f o r which the f i l t e r i s stable but which could not be 
obtained by speci fy ing the q / r r a t i o . 

5.4.4 Summary 

The scalar example indicates tha t in general a ' smal l ' 

Kalman gain increases the e f f e c t of a f a u l t on the 

innovat ions, be i t an input or an output f a u l t . A 

suboptimal gain also has the e f f e c t of increasing the 

innovat ion and est imat ion e r ro r (co)variances. Sui table 

Kalman gains can be obtained by speci fy ing f i c t i t i o u s Q 

and R matr ices, but such an approach precludes the use of 

other K values f o r which the eigenvalues o f ip l i e w i t h i n 
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the u n i t disc but which cannot be obtained from any 

combination of Q and R. Such gains are therefore not 

representat ive of phys ica l l y rea l i sab le systems but may 

yet produce stable and possibly useful f i l t e r s . 
I 

5.5 Discussion on the LLR algor i thm of Sections 4.8 & 4.9.2 

Consider a step f a u l t constrained to occur in one of the nine 

hypothesized f a i l u r e d i rec t ions given in Section 4.3. Theorems 

5.1 and 5.3 give f o r each d i r ec t i on the t r a j e c t o r y of the expected 

value of the innovation vector i n r-space f o r k > 9, where 6 i s 

the time of the f i r s t pos t - f au l t sample. These theorems can be 

used to obtain a cha rac te r i s t i c innovat ion t ime-pat tern f o r each 

f a i l u r e d i r ec t i on . For a set of innovat ions, y ( j ) . . . y ( j+N) , 

which i s believed to r e f l e c t an instrument f a u l t , a detect ion 

algor i thm could be constructed from the fo l low ing heu r i s t i c 

argument. 

S tar t ing wi th the f i r s t innovat ion in the se t , we assume tha t a 

f a u l t has j u s t occurred, i . e . tha t 0 = j . We compare innovations 

y(j) ... y( j+N) wi th the cha rac te r i s t i c pat tern fo r d i rec t i on 1, 

then go on to do exact ly the same f o r d i rec t ions 2 to 9. The next 

step i s to drop y ( j ) and to assume tha t 9 = j +1 , t h i s time 

comparing innovations y ( j + l ) . . . y( j+N) wi th the cha rac te r i s t i c 

patterns f o r d i rec t ions 1 to 9. The process is repeated by 

dropping the oldest innovat ion a t each step, the f i n a l check 

being to compare j u s t y( j+N) wi th the cha rac te r i s t i c y(e) f o r 

each f a i l u r e d i r ec t i on . 

We have now checked a l l the innovations f o r the p o s s i b i l i t y that a 
f a u l t i n one of the nine hypothesized d i rec t ions has occurred at 
some stage during the monitored time span. The next step i s to 
estimate from a l l these comparisons f i r s t l y the time at which 
the f a u l t , i f any, was most l i k e l y to have occurred and secondly 
the f a i l u r e d i rec t i on in which i t was most l i k e l y to have occurred. 
Having reached the decision tha t the innovations r e f l e c t a 
pa r t i cu l a r f a u l t at a pa r t i cu l a r t ime, the f i n a l task i s to decide 
by means of a su i tab le s t a t i s t i c a l t es t whether the innovations 
have departed s u f f i c i e n t l y from normal to j u s t i f y the declarat ion 
of the estimated ( i . e . the most l i k e l y ) f a u l t as ' t r u e ' . 
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Such a method i s c l ea r l y very complex but what we have in f ac t 

j u s t described i s , i n essence, the CGLR algor i thm mentioned 

b r i e f l y in Section 1 .1 .3 (v ) . We now discuss the LLR technique 

proposed i n Chapter 4, h igh l i gh t i ng the areas in which the 

algor i thm could be designed to make substant ia l savings in 

computational e f f o r t i n comparison wi th CGLR. 

The (C)GLR formulat ion allows the use of a t ime-varying Kalman 

gain because the innovat ion t ime-patterns are e f f e c t i v e l y 

calculated on- l ine as required. I f , as already suggested, we 

employ a constant Kalman gain, then the e f f e c t on the innovations 

of a step f a u l t asymptot ica l ly approaches a constant bias and 

could be precomputed. By going a stage f u r t he r and neglect ing 

the t rans ients a l together we can reduce the storage requirements 

to j u s t the steady state reference vectors d. , i = 1, . . . 9 , 

which can be obtained from Theorems 5.2 and 5.4. 

From the discussion on the previous page i t i s c lear tha t i f the 

f u l l blown CGLR algor i thm is run continuously then the l i n e a r l y 

growing innovation set impl ies a s i m i l a r l y increasing work-load. 

This is the area in which the LLR method can make the greatest 

computational savings over CGLR, although i t remains to be seen 

whether t h i s i s accompanied by unacceptable l i m i t a t i o n s in 

performance. LLR does not optimize 0 at a l l and estimates the 

f a u l t magnitude from a s ing le innovat ion v ia Lemma 4.1. 

A d i r e c t consequence of t h i s one-sample est imat ion i s tha t the 

l og - l i ke l i hood r a t i o (11r) can only be calculated from one sample, 

which removes the need to store past innovat ions. The 11r i s 

normally evaluated over a number of innovations which, under the 

f a u l t hypothesis, are viewed as observations on a random process 

characterized by some f a u l t parameter. This parameter need not be 

constant but any time va r i a t i on must be accounted f o r . By using 

Lemma 4 .1 , however, the innovation bias is re-est imated at every 

innovation f o r each f a i l u r e d i r ec t i on . Furthermore, the use of 

steady state reference vectors precludes cor rec t ion fo r t rans ients 

and means tha t the innovations cannot be strung together f o r the 

purposes of l og - l i ke l i hood r a t i o ca l cu la t i on . 

We therefore propose to implement an LLR-based algor i thm 

employing steady state reference vectors f o r use wi th Lemma 4.1 

and working in conjunct ion wi th a constant gain f i l t e r . 
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5.6 The manipulat ion o f K 

Sect ion 5.4 showed t h a t , i n p r i n c i p l e a t least,we are f ree to 

spec i fy a constant gain K in any way we choose. Before studying 

the possib le i l l e f f ec t s we examine the advantages tha t might 

accrue from the use of a constant suboptimal gain. 

Faul t i s o l a t i o n i s l i m i t e d by the separat ion o f the steady s ta te 

reference vectors i n r -space. I f two are close together then the 

a lgor i thm may not be able to d i s t i ngu i sh between the two f a u l t 

sources. The d i s t r i b u t i o n o f the reference vectors i n space i s , 

however, governed by the choice o f gain and so i t may be possib le 

to move such vectors apart by manipulat ion o f K. 

Another danger i s t ha t i f on occurrence o f a ce r ta i n f a u U the 

innovat ion vector swings w i l d l y i n r-space then i t may pass close 

to the reference vectors f o r other f a u l t s , causing, a t l eas t 

i n i t i a l l y , a misleading diagnosis. A lso, i f the innovat ion 

magnitude f l uc tua tes r a p i d l y or dies away very q u i c k l y , then t h i s 

w i l l l i m i t the accuracy o f the est imat ion o f the f a u l t magnitude 

v ia Lemma 4.1 . 

To summarize, the optimal K f o r t h i s type of a lgor i thm i s t h a t 

which ensures a strong innovat ion response whi le min imiz ing . the 

magnitude v a r i a t i o n and r o t a t i o n o f the post f a u l t innovat ions 

r e l a t i v e to the reference vec to rs , which must themselves be 

evenly d i s t r i b u t e d i n r -space. 

5.7 Degradation o f f i l t e r performance 

Having estab l ished tha t there may be considerable advantage i n 

manipulat ing K f o r f a u l t detect ion purposes, i t now becomes 

necessary to study the possib le disadvantages o f such a step. 

5 .7.1 Increases i n e r ro r and innovat ion covariances 

This p ro jec t has moved away from s ta te es t imat ion towards 

a f i l t e r designed so le l y f o r f a u l t de tec t ion purposes. 

With t h i s i n mind the loss o f est imat ion accuracy, 

r e f l e c t e d by the est imat ion e r ro r covariance P ( k | k ) , i s 

of secondary importance provided tha t i t remains at a 

' reasonable' leve l - see Section 5 .7 .2 . 
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A suboptimal K* however, increases the innovat ion 

covariance: an excessive increase could make i t very 

d i f f i c u l t to ex t rac t meaningful f a u l t in format ion from 

the innovat ions* The degradation o f the e r r o r and 

innovat ion covariances. are c lose ly re la ted since the 

l a t t e r i s derived, from the a p r i o r i e r r o r covariance i n 

equation ( 5 .3 ) . 

I n Chapter 7 o f [ 5 I , Jazwinski der ives recurs ions f o r 

Pa (k+T|k) and P a ( k | k ) » the ' a c t u a l ' es t imat ion e r r o r 

covariances, f o r a suboptimal. f i l t e r . The actual 

degradation i n performance, P s ( k | k ) , could be ca lcu la ted 

by subtract ing: the optimal and actual covariances, i . e . 

Ps(k|Ie) - P a ( k | k ) - P(k |k) . . . (5.54) 

For t he constant gain case and where the optimal steady 

s t a t e innovation- covariance i s known, the steady s ta te 

Ps can be. ca lcu la ted d i r e c t l y f o r any Kalman gain K from 

(5 .55) . 

Ps = CI - KaH]P+CI - KaH]T + AVAT . . . (5.55) 

where Ka = actual (constant) Kalman ga in used 

P+ = $p $T 

s s 

A = Ka - K where K i s the optimal s /s gain 

V = opt imal s /s innovat ion covariance 

The corresponding increase i n innovat ion covar iance, V s , 

i s g i ven by 

Vs = HPSmT • • • ( 5 - 5 6 ) 

Equat ions(5.55) and (5 .56) are o r i g i n a l extensions o f the 

work o f Fr iedland [14 ] who der ived a s i m i l a r r e s u l t f o r 

the continuous t ime case. The proof i s given i n 

Appendix VI . 
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.2 F i l t e r divergence 

The manipu la t ion and poss ib le ' r educ t i on ' o f K b r i ng w i t h 

them the danger o f f i l t e r d ivergence. Consider the Kalman 

f i l t e r i n g equat ions (5 .1) to ( 5 . 7 ) . I f t he model G, H} 

i s p rec ise and Q, R are c o r r e c t l y s p e c i f i e d then the ac tua l 

es t ima t ion e r r o r covar iance obta ined w i l l be i n c lose 

agreement w i t h t h a t p red ic ted by equat ion ( 5 . 7 ) . F i l t e r 

divergence is caused by inaccuracies, i n mode l l i ng , w i t h 

overconf idence i n the model o f t e n a. c o n t r i b u t o r y f a c t o r . 

Under c e r t a i n circumstances,, p a r t i c u l a r l y i n problems o f 

nav iga t ion i n near ly c i r c u l a r o rb i t s . , i t has been found 

t h a t the actua l es t ima t i on e r ro r s increase w i t h t i m e and 

the f i l t e r d iverges . 

F i t zge ra ld . [84 ] defines, t r u e ( o r 'mathemat ica l ' ) d ivergence, 

i n which the-mean square e r ro r s can a c t u a l l y be shown t o 

approach i n f i n i t y w i t h i nc reas ing t ime , and apparent ( o r 

' p r a c t i c a l ' ) d ivergence where the steady s t a t e e r r o r s are 

bounded, bu t are t o a la rge f o r the est imates to be. u s e f u l . 

F i t z g e r a l d shows f o r t h e cont inuous- t ime case t h a t i f Ac 

and C are p r e c i s e l y spec i f ied , then , except under one 

p a r t i c u l a r system c o n d i t i o n , t r u e divergence cannot occur 

however smal l P (and hence K) are al lowed t o become. I f 

$ were known exac t l y then F i t z g e r a l d ' s theory could 

perhaps be extended to show t h a t a s i m i l a r r e s u l t e x i s t s 

f o r the d i s c r e t e - t i m e case, w i t h a view, t o showing t h a t a 

s t a b l e f i l t e r based on the p i l o t p l a n t model w i l l not 

e x h i b i t t r u e d ivergence whatever the value o f K used. 

T h i s , however, would not guarantee immunity from apparent 

d ivergence. The p i l o t p l a n t model i s known to be 

approximate, not on ly because i t was obta ined by 

l i n e a r i z a t i o n but also, because o f the ra the r crude 

es t ima t ion o f t ime constants and t r a n s p o r t delays i n 

Chapter 3. Apparent divergence can be detected on ly by 

s imu la t i on and i n the circumstances the a d d i t i o n a l 

ana lys is requ i red to even a t tempt to prove t h a t t r u e 

divergence w i l l not take place i s not j u s t i f i e d . 
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Both Jazwinski C 5 ] and F i tzgera ld [84 ] discuss the 

addi t ion of f i c t i t i o u s process noise ( i . e . spec i fy ing 

Q larger than i t s t rue value) in order to prevent 

divergence i n cer ta in cases. In the l i g h t of t h i s i t 

must be borne in mind tha t i f there i s any l i ke l i hood of 

f i l t e r divergence wi th the p i l o t p lant model then the 

suggested reduct ion of K can only exaggerate i t . Clear ly 

the p o s s i b i l i t y requires inves t iga t ion by extensive and 

prolonged s imulat ion. 

5.8 Incorrect decis ion p robab i l i t i e s f o r LLR algori thms 

In common wi th Section 4 .9 , t h i s analysis is based on hypothesis 

t es t i ng v ia a s ing le innovat ion. For a system wi th two or more 

possible f a u l t s there are three categories o f incor rec t decis ion 

f o r which p r o b a b i l i t i e s can be def ined. Using the notat ion o f 

Section 4.9: 

H t rue o 

H- t rue 

We def ine 

5.8.1 Geometric i n te rp re ta t i on 

Each of these p robab i l i t i e s can be re la ted to the 

p robab i l i t y o f f i nd ing an innovat ion in a given region 

o f r-space. Consider Fig 25(a) i n which, f o r a two 

dimensional example, there are two possible f a u l t 

d i rec t ions dx and d 2 . Using Lemma 4.1 and expression 

(4.65) f o r d i rec t i on d l s
 1 cea' i s a contour of constant 

l og - l i ke l i hood r a t i o and an innovat ion f a l l i n g i n area l\1 

w i l l be declared as s i g n i f i c a n t when tes t i ng against 

algor i thm declares û  fa lse alarm 

fa lgo r i t hm declares HQ miss alarm 

[a lgo r i t hm declares cross-detect ion 

D p robab i l i t y of correct decis ion 

F p robab i l i t y o f fa lse alarm 

M p robab i l i t y o f miss alarm 

X p robab i l i t y of cross-detect ion 

u p robab i l i t y of non-def in i te decision 
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Fig.25 Two dimensional example for false alarm, miss alarm and cross-detection probabilties 
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S im i l a r l y an innovat ion f a l l i n g i n A2 w i l l be declared 

s i g n i f i c a n t when test ing. \ against flo. Low magnitude 

innovations f a l l in area A0 and are not s i g n i f i c a n t f o r 

e i t he r f a u l t hypothesis. J i s 'not A ' , i . e . the whole 

o f 2-space except f o r A. 

Hq t rue 

P F = P r ( Y € A , u A 2 | ^ ) 

PD = P r ( Y e A Q U 0 ) 

area to r i g h t o f 'ced' 

area to l e f t o f 'bea' 

There is uncer ta in ty i f Y £ A,nA2 , i . e . Y i s s i g n i f i c a n t 

f o r both Hi and fl2 against flQ. For Hi t r u e : 

Py = Pr(Y e ALnA2l EL) 

Should Y € A1nAz, i t i s possible to reduce the p o s s i b i l i t y 

o f uncer ta inty by t es t i ng fl2 against fli f o r the same 

innovat ion. An innovat ion f a l l i n g in the area bounded by 

'ged' has y s i g n i f i c a n t f o r both Hi and Hz. The second 

t e s t shows tha t Y i s s i g n i f i c a n t f o r HX against fl2,and fli 

i s declared. For fl, t rue t h i s extends the. area 

corresponding to PQ so tha t 

PD ' = Pr(y € A / l f l , ) PD ' > PD 

Uncertainty then ex is ts only i f Y € A12 (where A 1 2c(A,nA 2 ) , 

shown speckled in the diagram): Y is s i g n i f i c a n t f o r both 

HI and HZ against flQ but not s i g n i f i c a n t f o r fli against fl2 

or v ice versa. Px and Py are revised as fo l lows f o r flx t r ue : 

P x ' = Pr(Y e A 2 ' | fl,) P x ' > Px 

P U ' = P R ( Y E A I 2 ^ I ) P U ' < PU 

Note tha t P., i s reduced at the expense of increasing PY. 

fl, t rue 

PM = A 0 I H ) 

PD = Pr(Y £ JQnJ2\Bi) 

Px = Pr(y £ 1 fl,) 
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5.8.2 P robab i l i t i es f o r a completely spec i f ied f a u l t 

To begin w i t h , consider the two dimensional system shown 

in Fig 25(b) f o r which there is one completely spec i f ied 

f a u l t ( f l j which dr ives £[Y] instantaneously to m = [2 - 5 ] T , 

For t h i s example y = [y1 y 2 ] t where y19y2 are j o i n t l y 

normal random var iables wi th co r re la t i on c o e f f i c i e n t 0.5 

and covariance 

V = (5.57) 
1 MSI 

MSI 2 

The s o l i d e l l i pses shown in the diagram are contours of 

constant p r o b a b i l i t y densi ty f(ylsy2) under ^ and HL. 

Speci fy ing an 11r threshold o f n = 2 we can draw a contour 

f o r which ri i s constant at t h i s value. I t s equat ion, 

given by (A7.2), Appendix V I I i s 

5.024yx - 4.276y2 = 16.72 

which i s a s t r a i g h t l i n e orthogonal to 

V"\n = [5.024 -4.276]1". From Section 5 .8 .1 , Pp i s the 

p robab i l i t y tha t under ^ an innovat ion l i e s below the 

constant 11r contour, whi le PM i s the p r o b a b i l i t y t ha t 

under Ex an innovat ion l i e s above i t . In general the l i r 

contour i s not pa ra l l e l to a co-ordinate axis and the 

var iables must be transformed i n order to evaluate the 

required p r o b a b i l i t i e s . Rotat ing the problem r e l a t i v e to 

the ex i s t i ng axes u n t i l V~lm is al igned in the +YX 

d i r ec t i on we obtain the s i t u a t i o n shown in dashed l ines 

in Fig 25(b). Label l ing the transformed var iables Y,m 

and V the required values are obtained by considering the 

marginal densi ty of Yx alone using tables f o r the standard 

normal d i s t r i b u t i o n . 

Pp = P r ( V Y J ^ ) = 1 - $(y1/a1) 

PM = P r ( V Y j t f j = 1 - $((mx - Y j / a j 

Using the resu l t s o f Appendix V I I 

VX1
2 = 0.722 ( i . e . = 0.85) 

= 2.49 m1 = 4.76 



181 

Recal l ing the d e f i n i t i o n o f £nA.(Y) from (4.65) we have 

P- = Pr(Y s. t . £nA(Y) > n U J = 1 - $(2.93) = 0.0018 r o 

PM = Pr(Y s . t . £nA(Y) > n l ^ ) = 1 - $(2.67) = 0.0039 

3 P r o b a b i l i t i e s f o r a f a u l t i n a spec i f i ed d i r e c t i o n 

Fig 25(c) represents, the s i t u a t i o n i n which two poss ib le 

f a u l t s , EX and S^, d r i ve the innovat ions i n d i r ec t i ons dx 

and d2 r e s p e c t i v e l y . As i n Sect ion 4 . 9 , vectors 

dx = [2 - 5 ] T and d2 = [ - 3 - 3 ] r are. reference vectors 

r e l a t i n g to step f a u l t s o f u n i t magnitude. We f i r s t 

consider the problem o f t e s t i n g a s i ng le innovat ion v i a 

expression (4.65) t o decide between ^ (STY] - £ ) and 

^( f fCYJ = p1 [2. - 5 ] r ) . At the 11 r th resho ld we have, i n 

general 

y v ' y - (y - p a l v 1 ! y - pxd,) = n (5.58) 

S u b s t i t u t i n g f o r px from Lemma 4.1 

YTY*Ld1 
YTd! 

<xT<x 
* I 

Y rd d 1 V 1 d l + Jn . . . ( 5 . 5 9 ) 

Unl ike the previous case t h i s i s not a hyperplane but a 

curved sur face i n r dimensions. We can i nves t i ga te f u r t h e r 

f o r t h i s two dimensional example by s u b s t i t u t i n g f o r 

d x , . V and n- Wr i t i ng Y = Cyx y 2 ] t and l e t t i n g n = 2 as 

before we obta in from (5.59) 

228.52y l
2 - 662.2lYly2 227.17y2

2 - 841 = 0 . . . ( 5 . 6 0 ) 

This i s o f the form ax + 2hxy + by2 + c = 0 w i th 

h 2 - ab > 0 and i s there fo re a hyperbola as shown i n 

Fig 25(c ) . Innovations f a l l i n g ins ide the shaded area 

w i l l be declared as those f a l l i n g outs ide as E1. I t 

i s the f a c t t h a t px can be p o s i t i v e or negative f o r 

d i r e c t i o n d, t h a t constra ins the zl area to a waisted band 1 o 
symmetrical about the o r i g i n . C lear ly f o r the same 11r 

thresho ld as i n Section 5 .8 .2 (n = 2) Pp i s increased but 

c a l c u l a t i o n o f actual p r o b a b i l i t i e s is. a complex problem 
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even i n the two dimensional case. The above analysis 

repeated f o r E2 would y i e l d a second ' E0 ' band 

superimposed on the f i r s t and f u r t h e r increas ing Pp. 

5 .8 .4 Discussion 

When a f a u l t occurs i n one o f the an t i c ipa ted d i r e c t i o n s , 

the quest ion o f whether the f a u l t w i l l be c o r r e c t l y 

detected i s f u r t h e r complicated by the t r ans i en t nature o f 

the bias superimposed on the innovat ions. This means tha t 

i n the Section 5.8.1 expressions f o r P^, PQ and P^ which 

are def ined 'g iven H x ' , the hypothesis H changes at each 

time step unt i l , i t eventua l ly reaches a steady mean a l igned 

w i th vector d : these p r o b a b i l i t i e s are there fore 

d i f f e r e n t a t each time step. 

I t i s the t ime-vary ing nature o f each f a u l t hypothesis H. 

tha t d ic ta tes the use o f a s i ng l e innovat ion f o r hypothesis 

t e s t i n g . In order to use a 'moving window' .of innovat ions 

to increase P^ and reduce P^ and P x each innovat ion must be 

t rea ted as an independent observat ion on a random process 

whose s t a t i s t i c a l time var ia t ions are inc luded in the 11 r 

ca l cu la t i on* A number o f innovat ions could be used f o r the 

example o f Sect ion 5.8.2 where the word ' ins tantaneous ly ' i s 

inc luded to imply tha t there is no t r a n s i e n t : E l i s constant. 

In the l i g h t o f the f a i l u r e under s imu la t ion (Sect ion 

4.10.4) o f the RCP a lgor i thm as o r i g i n a l l y spec i f i ed in 

Section 4 . 9 . 4 , i t may be an advantage tha t the decis ion 

based on each innovat ion is unaffected by any previous 

decis ion. 

5.8.5 Minimum angle versus maximum l l r 

The discussion i n Section 5.6 gives the impression tha t 

the reference vector nearest to the current innovat ion 

w i l l be the one, i f any, to be declared as the t rue f a u l t 

d i r e c t i o n . While t h i s is t rue in the ma jo r i t y o f cases i t 

i s not always the case as is ind ica ted by the fo l l ow ing 

example i l l u s t r a t e d i n F ig .25 (c ) . 
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Consider the innovat ion Y = [ - 1 - 4 ] T . 

Y and d. i s given by 

" d / Y 

The angle 8 between 

8 = cos 
dj l lYl 

We have d , = [ 2 - 5 ] T and d2 = [ - 3 - 3 ] T . For d , the angle 

i s 35.8° and f o r d 2 , 30.97°, i . e . the innovat ion i s c loser 

to d 2 . Lemma 4.1' gives p, = 0.621 and p2 = 0.833. With 

V from (5.57) the l l r ' s are ca lcu la ted from (4.65) as 

f o l l ows : 

For dL Jin A. (Y) = 8.228 - 5.340 = 2.888 

For d 2 JlnA(Y) = 8.228 - 6.607 = 1.621 

I f n = 2 as before then i s s i g n i f i c a n t against HQ but R^ 

i s no t . In t h i s case the f a u l t d i r e c t i o n w i th the h igher 

11 r i s no t the d i r e c t i o n nearer the innovat ion i n r -space. 

The innovat ion d i s t r i b u t i o n under ^ has a greater dens i ty 

along d 2 than along dL as i l l u s t r a t e d by the e l l i p s e o f 

constant dens i ty i n Fig 25 (c ) . The component o f Y l y i n g 

along d 2 needs to be s u b s t a n t i a l l y l a rge r than tha t along 

d, to achieve the same leve l o f s i gn i f i cance over the HQ 

hypothesis. I t fo l lows t ha t a pure ly geometric 

i n t e r p r e t a t i o n o f r esu l t s should be t rea ted w i th cau t ion , 

p a r t i c u l a r l y i f the 1 r ' innovat ion variances do not have 

s i m i l a r values.. 

Accuracy o f f a u l t magnitude est imat ion v ia Lemma 4.1 

Consider the accuracy o f est imat ion from a s ing le innovat ion . In 

Lemma 4.1 the f a u l t magnitude p^ i s est imated as the value t ha t 

makes p.d^ the orthogonal p ro jec t i on o f y onto a vector a l igned 

w i th d . . The value o f p obtained i s c l e a r l y a l eas t squares 

est imate (LSE). 

The est imate p^ can also be viewed as the value which maximizes 

the p r o b a b i l i t y densi ty (4.64) o f the innovat ion under the 

hypothes i s t ha t i t s mean m l i e s along d^. The value obtained by 

t h i s means i s the Maximum L ike l ihood Estimate (MLE) and i s c l e a r l y 
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the same as the LSE. This i s on ly t r u e because the innova t ion 

vec to r has a (mu l t i )no rma l d i s t r i b u t i o n . 

The accuracy o f the est imate i s again a f f e c t e d by the t r a n s i e n t s 

assoc ia ted w i t h the p o s t - f a u l t i nnova t i on . Reference vec to r d. 

i s def ined as t he steady s t a t e b i a s superimposed on the n o - f a u l t 

innovat ions due to a u n i t step f a u l t . Let the ac tua l innova t ion 

bias due to a u n i t step f a u l t be f » where f^ tends to d. w i t h 

each succeeding t ime s tep . I f Y0 i s the n o - f a u l t i nnova t ion then 

on the occurrence o f a step f a u l t o f magnitude p.j* the observed 

innova t ion i s g iven by 

Y 
- <>i*fi * 

(5.61) 

By Lemma 4.1 we est imate the f a u l t magnitude as 

Y rdj 

d . T d . i l 

Hence. p.. - p. • - CPi*fi •+ Y0]Tdi 

d . T d . 
i i 

= P-
d . T d . 

1 i 

- p . 

- 1 
d / d . 

(5.62) 

(5.63) 

(5.64) 

Taking expectat ions and r e c a l l i n g t h a t STYJ = 0 we f i n d t h a t 

E Z p . - P l * ] = p . 
f i T d j 
d ^ d i 

- 1 (5.65) 

C lea r l y the es t imate i s i n i t i a l l y biased but the bias dies away to 

zero as the e f f e c t o f the f a u l t on the innovat ions becomes steady. 

The e r r o r var iance i s obta ined from (5.64) and ( 5 . 6 5 ) , r e c a l l i n g 

t h a t ECFFTL = V 

var C P i - p . * ] = d iTVdi 

i l 
(5.66) 
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5.10 Summary 

The main con t r ibu t ion of t h i s chapter i s the analysis of the 

Kalman f i l t e r to derive reference vectors f o r f a u l t detect ion 

purposes. A scalar example was used to show how the e f fec ts of 

f a u l t s on the innovations could be ampl i f ied by the use of a 

suboptimal Kalman gain. 

The degradation of f i l t e r performance wi th a suboptimal gain 

was examined and the p o s s i b i l i t y of divergence discussed. With 

the 'exact ' model f o r the p i l o t p lant unknown, t rue divergence 

cannot be ruled out but even i f i t could then t h i s would not 

preclude apparent divergence. I t was decided tha t the 

divergence problem could be studied only by s imulat ion. 

The problem of ca lcu la t ing incor rec t decision p r o b a b i l i t i e s was 

examined. I t was shown tha t values could be obtained i f the 

possible f a u l t s were completely spec i f ied but tha t e x p l i c i t 

so lut ions could not be obtained f o r the LLR algor i thm proposed 

in Chapter 4. F i na l l y i t was shown that the f a u l t magnitude 

estimate furnished by Lemma 4.1 i s asymptot ica l ly unbiased 

and an expression was derived f o r the e r ro r variance. 
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CHAPTER 6 

IMPLEMENTATION OF FAULT DETECTION ALGORITHMS 

6.0 In t roduct ion 

Two innovations-based algor i thms, LLR and RCP, were proposed i n 

Chapter 4. Each o f these estimated a f a u l t magnitude f o r every 

hypothesized f a i l u r e d i rec t ion but d i f f e red in the method used 

to process the current innovat ion vector to ar r ive at a f i n a l 

decision. In Chapter 5 the Kalman f i l t e r was analyzed to obtain 

expressions f o r the reference vectors required f o r the 

implementation o f these algorithms on a real p lan t . I t was also 

shown tha t a lgor i thm s e n s i t i v i t y could possibly be improved by 

employing a suboptimal Kalman gain. 

In t h i s chapter these algorithms are implemented and tested by 
s imulat ion wi th real data and t h e i r performance i s compared wi th 
tha t of the simpler x2 t e s t . Detection thresholds f o r the LLR 
algorithms are ar r ived at empi r ica l l y due to the d i f f i c u l t i e s 
experienced in carry ing out a f u l l analysis f o r Pp and Pg. Also 
studied are the e f fec ts of various constant suboptimal gains on 
l og - l i ke l i hood ra t i o levels during normal operat ion and on the 
d i s t r i b u t i o n of the reference vectors i n r-space. The remainder 
of the chapter is devoted to the presentat ion o f resu l ts from 
numerous f a u l t s imulat ions. At tent ion is focussed on constant 
step type fau l t s but examples of the other f a u l t types given in 
Chapter 1 are included. 

6.1 Experimental work f o r a lgor i thm tes t i ng 

To obtain data f o r f a u l t s imulat ion and tes t ing o f a lgor i thms, 
two fu r the r p i l o t p lant runs 'PLANT7' and 'PLANT8' were car r ied 
out. The p lant was set up wi th control loops and proport ional 
and in tegra l control terms iden t i ca l to those used fo r PLANT2 
and PLANT3 (Section 2 .2 ) . The eleven process variables shown in 
Fig.2 were again recorded on paper tape at ten second i n te rva l s . 
There were, however, important di f ferences between these runs, 
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car r ied out during Ju l y , and those of Chapter 2 which were 

completed during the preceding w in te r . 

Reporting of apparent discrepancies i n instrument readings, 

p a r t i c u l a r l y temperature, pressure and f low measurements, i s 

l i k e l y to be higher during the winter months when the p lant i s 

heavi ly used f o r undergraduate work. No such er rors had come 

to l i g h t when data sets PLANT2 and PLANT3 were recorded, t h i s 

being borne out by the sa t i s fac to ry check heat balances on the 

exchangers. 

While se t t i ng up the p lant f o r the new runs the f low loop 

outputs were again ca re fu l l y zeroed, i . e . the analog signals a t 

the computer real time in te r face were checked under no-f low 

condi t ions. This i s , however, no guarantee tha t the f low 

readings w i l l not be biased due to small bubbles i n the 

connecting pipes, and the amount of bias w i l l almost ce r t a i n l y 

be d i f f e r e n t from tha t p reva i l i ng e ight months prev ious ly . 

Temperature loops also have a tendency to d r i f t , which may go 

unnoticed during the summer months when the few research students 

working on the p lan t are un l i ke l y to be monitor ing the many 

temperature var iables required f o r t h i s p ro jec t . 

The time of year was found to have a marked e f f e c t on p lant 

temperatures i n general, not so much due to the laboratory 

ambient temperature, which only var ied by a few degrees, as to 

the cool ing water temperature. The cooler i n l e t temperature 

(TX176), around 10°C in w in te r , was found to r i s e to 18-20°C in 

the summer months. This made f o r an increase of 15-20°C in 

some steady s ta te temperatures, notably TX174, TX175 and TX177, 

between PLANT2 and PLANT7/8 under i den t i ca l f low condi t ions. 

I t i s normal pract ice when tes t i ng a new algor i thm to carry out 

s imulat ion work on ' i d e a l ' data so tha t any changes to the data 

can be s t r i c t l y con t ro l led and t h e i r e f fec ts on the algor i thm 

noted. Data sets PLANT7 and PLANT8 do not al low t h i s luxury: 

the algorithms are faced wi th the s t i f f e r t es t of being designed 

from one set of p lant data and then being expected to work on 

the p lant under d i f f e r e n t operat ing condit ions w i th unknown 
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errors in the data. The new f igures can at leas t be considered 

as typ ica l of an i ndus t r i a l type p lant and are ce r t a i n l y l i k e l y 

to show up any lack of robustness in the algori thms under t e s t . 

With the p lant running in the steady s ta te , the purpose of each 

run was to apply three separate changes in se tpo in t : MEA f low 

(FX101), cooler c/w f low (FX124) and absorber leve l (LX111). 

6.1.1 Runs 'PLANT7' and 'PLANTS' 

These are summarized in Tables 14 and 15 respec t ive ly . 

The layout and abbreviat ions are the same as f o r Table 3 

(Chapter 2) . 

TABLE 14: PLANT7 

Data 
Point mins Str ipped MEA 

f low setpo in t 
Cooler c/w 
f low setpo in t 

Absorber 
level setpo in t Remarks 

0 0 0.2 kgs"1 0.2 kgs"1 0.1m Steady 

290 48 + 0.25 kgs"1 Step MEA 

515 86 + 0.25 kgs"1 Step c/w 

540 90 Computer 'crashed' and was res tar ted e - o - t 

0 95 0.25 kgs"1 0.25 kgs"1 0.1m new tape 

43 102 + 0.15m step level 

94 111 e - o - t 

TABLE 15: PLANT8 

Data 
Point mins Str ipped MEA 

f low setpo in t 
Cooler c/w 
f low setpo in t 

Absorber 
level setpo in t Remarks 

0 0 0.22 kgs"1 0.2 kgs"1 0.12m Steady 

34 5 + 0.25 kgs"1 Step MEA 

192 32 + 0.25 kgs ' 1 Step c/w 

347 58 + 0.15m Step level 

479 80 e - o - t 
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The process var iab les o f i n t e r e s t are summarized in 

Table 16 i n which values quoted a t a p a r t i c u l a r data 

po in t are averaged over the preceding f i v e samples. 

TABLE 16 

PLANT'X':data pt 7:289 7:514 7:540 8:33 8:191 8:346 

FX101 kgs"1 0.2 0.25 0.25 0.22 0.25 0.25 

FX!24 kgs"1 0.2 0.2 0.25 0.2 0.2 0.25 

TX110 °C 29.7 31.9 30.2 35.4 36.1 32.4 

TX172 °C 91.7 90.2 90.2 93.7 92.3 91.7 

TX173 °C 104.8 104.0 104.1 104.1 103.6 103.5 

TX174- °C 48.7 48.6 48.5 57.4 56.2 53.7 

TX175 °C 37.08 35.66 35.58 47.76 45.70 42.35 

TX176 °C 18.10 18.24 18.19 20.21 19.54 18.94 

TX177 °C 38.65 40.30 37.36 46.02 46.05 40.66 

Ambient °C 25.0 25.0 25.0 23.0 23.0 23.0 

6 .1 .2 Discussion 

Had i t been possib le to car ry out a f u l l fa lse /miss alarm 

analysis f o r the LLR a lgor i thm, alarm thresholds could 

have been ca lcu la ted from the innovat ion s t a t i s t i c s f o r 

a l l hypothesized f a i l u r e d i rec t i ons to obta in reasonable 

values f o r Pp, P^ and P^. These would have been based on 

the Hq hypothesis t ha t the innovat ions have zero mean. 

In p r a c t i c e , instrument bias and l i n e a r i z a t i o n er rors 

ensure t ha t the innovat ion mean i s never exact ly zero 

even under normal running cond i t ions . That the PLANT7 

and PLANT8 data contains bias i s apparent from a check 

heat balance on the coo ler . For each set o f f i gu res 

given in Table 16 the heat gain by the cool ing water i s 

greater than the heat loss by the spent MEA. 

I t i s l i k e l y tha t thresholds a r r i ved at by a t heo re t i ca l 

approach would ac tua l l y make the a lgor i thm oversens i t i ve 
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i n p rac t i ce . With a ten second sampling r a t e , a fa lse 

alarm p r o b a b i l i t y as low as 0.1% s t i l l impl ies a fa l se 

alarm once every three hours. On an i n d u s t r i a l p l a n t , 

a f a u l t detect ion system generat ing fa lse alarms any 

more o f ten than, say, once a month (perhaps once every 

few months) would soon be d i s t rus ted by operat ing 

personnel. In the author 's experience even a 

conventional annunciator w i l l be ignored i f the setpo in ts 

are such tha t the system alarms when operator i n te rven t i on 

is not absolute ly necessary. On t h i s bas is , su i t ab le 

alarm thresholds f o r a real system should be obtained by 

prolonged moni tor ing of the innovat ions generated by 

f i l t e r i n g 'normal 'data . I t i s b e t t e r f o r the system to 

react r e l i a b l y to f a u l t s o f a s i g n i f i c a n t s ize and to 

ignore very small f a u l t s ra ther than to alarm at the 

s l i g h t e s t disturbance. 

For an i n s t a l l a t i o n such as the p i l o t p lan t which might 

be subjected to occasional small changes i n se tpo i n t , a 

detect ion a lgor i thm should be able to cope w i thou t 

requ i r i ng major adjustment at every se tpo in t change. I t 

was shown i n Chapter 2 tha t Section A ( F i g . A l . l ) o f t h i s 

p a r t i c u l a r p lan t i s not s t rong ly nonl inear . An 

a lgor i thm based on a f i l t e r designed f o r use at a 

p a r t i c u l a r operat ing po in t might therefore be expected 

to work at ( f l ow) setpo in ts s l i g h t l y above or below 

nominal. The accuracy o f the model has a d i r e c t bearing 

on t h i s . At a se tpo in t change, the eventual value o f each 

s ta te i s governed by the p a r t i a l der iva t ives o f Chapter 3. 

I f these are inaccurate or i f the se tpo in t change i s so 

large tha t the l i n e a r i z a t i o n i s no longer v a l i d then the 

innovations f o l l ow ing the change w i l l be biased and a 

f a u l t may be reg is te red . The time constants d i c ta te only 

the t r a j e c t o r i e s of the states between i n i t i a l and f i n a l 

values. Inaccuracies in these have an e f f e c t immediately 

a f t e r a se tpo in t change or input disturbance which could 

we l l r e s u l t i n a f a u l t being declared during the t rans ien t 

f o l l ow ing such a change. I f , on the other hand, the alarm 

thresholds are set s u f f i c i e n t l y high to suppress a fa lse 
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alarm dur ing the t r ans ien t then the a lgor i thm may be 

i nsens i t i ve to f a u l t s occurr ing dur ing periods o f 

running in the steady s t a te . 

Alarm thresholds are covered in Section 6 . 5 . 3 . 

PLANT7 and PLANT8 were designed to t e s t the a b i l i t y o f 

a lgor i thms to avoid g i v i ng f a l se alarms dur ing se tpo in t 

change t rans ien ts and dur ing steady s ta te running away 

from the nominal operat ing po i n t . The leve l se tpo in t 

changes were included to a l low extension o f the system 

to include Section B (Fig A l . l ) but t ime d id not permit 

t h i s work to be ca r r i ed out - see 'suggestions f o r 

f u r t h e r work ' . I t was decided tha t a l l the ava i l ab le 

p lan t data should be used to decide on alarm thresho lds . 

Fol lowing analys is o f the PLANT7 and PLANT8 data, 

thresholds could obviously be chosen so tha t a lgor i thms 

using these data sets would never generate f a l se alarms. 

This i s a s l i g h t disadvantage i n t h a t no idea i s gained 

o f the f a l se alarm p r o b a b i l i t y t ha t might be obtained in 

p rac t i ce . This would requ i re very much more recorded 

data than was ac tua l l y obtained f o r use w i th t h i s p r o j e c t . 

6.2 Programs f o r Kalman f i l t e r i n g 

Two i d e n t i c a l l y s t ruc tu red programs, KALF07 and KALF08, were 

w r i t t e n to f i l t e r data from PLANT7 and PLANT8 respec t i ve l y . 

KALFQ7 i s described here along w i th programs PDERIV and FILCALC 

which are requi red f o r f i l t e r design (see also Section 4 . 6 . 2 ) . 

6 .2 .1 Program PDERIV 

PDERIV i s w r i t t e n around the resu l t s of Chapter 3. The 

program accepts steady s ta te values o f inputs FX!01, 

FX!24, TX173, TX174, TX175 and TX176 and generates 

p a r t i a l de r i va t i ves f o r each output w i th respect to the 

re levant f l o w and temperature inpu ts . A t yp i ca l p r i n t ou t 

from PDERIV f o r data set PLANT7 is given over lea f . Note 

that 'D» = a, 'FT' = Fa and 'TCl(O)' = T c l ( 0 ) etc. 
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STABLE OPERATING POINT/LINEARIZATION POINT: 

MONOETHANOLAMINE FLOW 

COOLING WATER FLOW 

COOLER INPUTS 

FT = 0.200 KG/S 

F2 = 0.200 KG/S 

TCI(0) = 49.6 TC2(L) = 17.75 DEG.C 

HEAT EXCHANGER INPUTS TX1(0) = 103.8 TX2(L) = 38.40 DEG.C 

GRADIENT MATRIX: 

DTC1(L)/DF1 DTC1(L)/DF2 DTC2(0)/DF1 DTC2(0)/DF2 

DTC1(L)/DTC1(0) DTC1(L)/DTC2(L) DTC2(0)/DTC1(0) DTC2(0)/DTC2(L) 

DTX1(L)/DF1 DTX1(L)/DFT DTX2(0)/DF1 DTX2(0)/DFT 

DTX1(L)/DTX1(0) DTX1(L)/DTX2(L) DTX2(0)/DTX1(0) DTX2(0)/DTX2(L) 

62.267 -34.868 36.499 -62.988 

.372- .628 .607 .393 

142.198 -125.367 132.794 -149.436 

.154 .846 .836 .164 

6.2.2 Program FILCALC 

FILCALC uses the output from PDERIV and Figs 18 and 19 

to ca lcu la te $ and G. From a user supplied P(0|0) i t 

then cycles through f i l t e r steps (1, 3-5 and 8; 

Section 4.4) u n t i l a steady s ta te Kalman gain i s reached 

f o r the system {$ , G, H, Q, R, S}. FILCALC can also be 

used to produce a suboptimal steady s ta te gain by 

manipulation of the notse covariance matr ices. 

6.2.3 Program KALF07 (and KALF08) 

KALF07 was w r i t t e n to accept two input data f i l e s , 

PLANT7 and KGAIN. F i l e KGAIN contains a constant Kalman 

gain which has e i t he r been generated by FILCALC or has 

been spec i f ied f o r f a u l t detect ion purposes by some other 

means. Having processed PLANT7 using KGAIN, KALF07 

outputs data f i l e s RESLT1 (s ta te estimates) and RESLT2 

( innovat ions) . The program s t ruc tu re is as f o l l o w s : -

(a) Set the ope ra t i ng / l i nea r i za t i on point ( i . e . set the 

temperatures and flows to t h e i r actual values at the 

s t a r t of PLANT7). 

(b) Set the p a r t i a l der ivat ives (obtained from PDERIV). 
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(c) Set time constants t x - x6 (Section 3 .6 ) . 

(d) Calculate $ and G from Figs 18 and 19 respect ive ly . 

(e) Read plant data from PLANT7. 

( f ) L inear ize data by subt ract ing the values (a) f o r 

a l l data po in ts . 

(g) Read Kalman gain from KGAIN . 

(h) F i l t e r data w i th x(010) = 0 

(1) Write data to f i l e s RESLT1 and RESLT2. 

Reference vectors f o r LLR and RCP algori thms 

The e f fec ts o f a f a u l t on the innovat ion vector were analyzed 

i n Chapter 5 to obtain bias matrices B ( Y ; j ) and B ( Y ; j ) . I t 
Jr u 

was shown tha t these could be s i m p l i f i e d to obtain ' s e t t l e d out ' 

matrices 5 (Y) and s u (Y ) . 

6.3.1 Matr ix FMAT 

In Section 5.5 i t was decided tha t the se t t l ed out 

reference vectors should be used f o r f a u l t detect ion 

purposes. The bias matr ix i s defined such tha t f o r a 

step f a u l t b the actual innovat ion bias $y i s given by 

B y = B y( Y)b for output step fault 'b>' ... (6.1a) 

= Su(Y)b for input step fault 'b' ... (6.1b) 

The reference vector d. f o r f a u l t d i r ec t i on ' i ' was 

defined in Section 4.9 as the bias vector resu l t i ng from 

a pos i t i ve step f a u l t o f u n i t magnitude in d i r ec t i on ' i ' . 

Referr ing back to Section 4 .3 , nine f a i l u r e d i rec t ions 

are def ined. For output f a u l t s y ^ ( l ) to y^(4) a step 

f a u l t of un i t magnitude i s given by se t t i ng it. , i = 1 , . . . 4 

to ' V from the ' f a u l t t ime' e onwards in equations 

(4.17a-d). S i m i l a r l y , f o r input f a u l t s u ^ ( l ) - £ ^ ( 3 ) , 

U j , j = 1 , . . . 3 is set to ' V in equations (4.20 - 4 .22) . 

In the case of the remaining two output f a u l t s y^(5) and 

y.p(6) the f l ow steps AFX and AF2 must be set to ' 1 ' i n 

equations (4.18) and (4.19) respect ive ly . 
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Fai lure d i rec t ions d . , i = 1 , . . . 9 can now be defined 

as y f ( l ) - Yf(6)> i i f O ) ~ J£f(3 ) . We n o w construct a 

( 4 x 9 ) matr ix FMAT whose columns are the reference 

vectors obtained from un i t step f au l t s as described in 

the preceding paragraph, i . e . 

FMAT = y " Y ) [ y f O ) •• • ? f ( 6 ) ] 5 u M [ u f ( l ) . . . u f ( 3 ) 

... (6.2) 
as in ' y f ( l ) ' impl ies a step where the add i t ion o f a 

f a u l t of un i t magnitude. 

Since y f ( l ) - y^(4) p ick out the four columns of (4 x 4) 

matr ix B (Y) and Q f(1) - u f ( 3 ) the 4 th , 5th and 6th 

columns of (4 x 8) matr ix #U(Y) we can w r i t e 

FMAT = *y(r> F
y ( ^ ) [ l f ( 5 ) ' 2 f ( 6 ) ] | c o l s 4 > 5 * 6 o f 

(6.3) 

6.3.2 Reference vector magnitude 

I t was shown in Section 5.4.2 tha t a Kalman gain 

corresponding to a Q tha t is set a r t i f i c i a l l y low 

r e l a t i v e to R could ampl i fy the e f f e c t o f a step bias 

on the innovat ions. This approach is a f i r s t step 

towards choosing a constant suboptimal gain s p e c i f i c a l l y 

f o r f a u l t detect ion purposes. 

Experiments were car r ied out using as a basis f o r PDERIV 

var iables corresponding to the steady s ta te operat ing 

point at the beginning o f run PLANT2. Three sets of 

covariance matrices were used wi th FILCALC, which was 

run u n t i l a steady Kalman gain was obtained f o r each set . 

A new program, BIASCL1, was w r i t t e n to ca lcu la te matr ix 

FMAT from equations (5 .31) , (5.47) and (6 .3 ) . 

Q, R and S were var ied as fo l lows : 
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Set I : Q, R and S spec i f ied as in (4 .45) , (4.43) and 

(4.44) respect ive ly . These were the o r i g i na l 

'guesstimates' f o r the p lant noise levels and 

w i l l henceforth be re fer red to as 'ONA' ( ' o r i g i n a l 

noise assumptions'). As shown i n Section 4.7 the 

predicted and actual innovat ion s t a t i s t i c s 

obtained by using ONA covariances were of the 

same order. The gain computed from t h i s Q, R and 

S i s probably s u f f i c i e n t l y close to the optimal 

value to be used as a benchmark f o r comparison 

w i th algorithms based on suboptimal gains. 

Sets I I and I I I : 

S = 0. The only reasoning behind t h i s i s tha t i t 

s imp l i f i e s the s t ruc ture of the resu l t i ng steady 

s ta te Kalman gain. I t i s wel l known tha t i f both 

Q and R are o f the form q l and r l (q, r scalars) 

then the Kalman gain obtained depends only on the 

q / r r a t i o . Two d i f f e r e n t ra t i os were t r i e d , each 

wi th q « r . 

Set I I : q / r = 0.01, generating gain 1KGAINY'. 

Set I I I : q / r = 0.001, generating gain 'KGAINZ'. 

The s/s gain KGAINX corresponding to ONA was given in 

Fig 20, whi le tha t f o r Set I I i s given below 

0.002 

0.002 

0.004 

0.028 

0.001 

0.047_ 

An i d e n t i f i e r i s added to FMAT to ind ica te the gain and 

setpoint used f o r ca l cu la t i on : 

FMATX = gain KGAINX (~ ONA) wi th PLANT2 data 

FN!ATY2 = gain KGAINY (~ Set I I ) w i th PLANT2 data 

KGAINY = 

0.023 0. 001 

0.001 0. 027 

0.002 0. 001 
0.002 0. 002 
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FMATX 

" 0.229 -0.017 -0.030 -0.000 -9.898 3.637 -0.010 -0.048 -0.127 

-0.025 0.200 -0.025 -0.000 -4.826 7.322 -0.009 -0.045 -0.072 

-0.063 -0.036 0.171 -0.000 0.172 -2.586 -0.022 -0.107 0.053 

0.000 -0.000 -0.000 0.088 2.087 -0.000 -0.072 -0.016 0.000 

FMATY2 

" 0.932 -0.003 -0.007 0 -45.187 17.376 -0.064 -0.314 -0.545 

-0.003 0.902 -0.007 0 -29.529 35.053 -0.066 -0.327 -0.389 

-0.007 -0.007 0.905 0 -21.118 -0.394 -0.152 -0.748 0.007 

0 0 0 0.692 16.392 0 -0.569 -0.123 0 

As expected the magnitude of d , , i = 1 , . . . 9 i s higher f o r FMAT 

generated from KGAINY than from KGAINX. The degree o f 

' a m p l i f i c a t i o n ' can indeed be ca lcu la ted by comparing the 

magnitudes of the d , ' s f o r the three gains f o r each ' i ' value 

(Table 17). 

TABLE 17 

i I d j l M i l MilKGAINY M i l M i l KGAINZ 7o Inc . i (KGAINX) (KGAINY) |di|KGAINX KGAINZ |d i |KGAINX KGAINZ/Y 

1 0.239 0.932 3.90 0.992 4.15 6.4 

2 0.204 0.902 4.42 0.988 4.84 9.5 

3 0.175 0.905 5.17 0.988 5.65 9.3 

4 0.088 0.692 7.86 0.916 10.41 32.4 

5 11.209 60.237 5.37 66.535 5.94 10.6 

6 8.575 39.125 4.56 42.691 4.98 9.2 

7 0.076 0.596 7.84 0.778 10.24 30.6 
8 0.127 0.883 6.95 0.974 7.67 10.4 
9 0.155 0.670 '4.32 0.721 4.65 7.6 

6 .3 .3 Reference vector separat ion i n r-space 

That reference vectors w i th a small angle between them 

can cause reso lu t i on problems was mentioned in 

Section 5.6. The a m p l i f i c a t i o n produced by using a gain 

corresponding to a low q / r r a t i o w i l l not be o f much use 

i f i t has the e f f e c t o f moving any o f the reference 

vectors s i g n i f i c a n t l y c loser together i n r -space. 
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Program BIASCU was extended to ca lcu la te the angles 

between a l l the reference vectors i n FDIREC. Defining 

9.jj as the angle between d. and d j we have 

0 . • = cos 
' j 

d i T d j 
T W 

(6.4) 

BIASCL1 produced resu l ts as fo l l ows : 

ANGLES BETWEEN FAULT DIRECTION VECTORS (DEGREES) 

KGAINX 

i 9 8 7 6 5 4 3 

1 34.3 84.2 88.1 66.5 36.2 90.0 66.0 
2 63.4 80.4 86.8 31.2 69.4 90.0 72.7 
3 57.6 44.7 76.2 60.8 76.9 90.0 
4 90.0 82.9 19.4 90.0 79.3 
5 21.9 63.3 89.0 41.7 
6 32.2 78.0 86.0 
7 86.4 63.5 
8 79.2 

2 
82.3 

KGAINY 

i 9 8 7 6 5 4 3 

1 35.7 69.6 84.0 63.8 41.8 90.0 89.1 
2 54.7 68.7 83.7 26.5 61.0 90.0 89.1 
3 88.8 32.7 75.3 88.8 70.1 90.0 
4 90.0 82.0 17.4 90.0 74.2 
5 26.9 45.0 88.0 39.8 
6 28.1 61.2 81.7 
7 81.4 64.6 
8 60.3 

2 

89.6 

KGAINZ 

i 9 8 7 6 5 4 3 
1 36.4 69.6 84.9 64.2 43.5 90.0 89.9 
2 53.7 68.1 84.6 25.8 60.7 90.0 89.8 
3 89.8 32.7 77.6 89.8 69.3 90.0 
4 90.0 80.4 14.5 90.0 71.0 
5 28.9 47.1 82.6 40.8 
6 27.9 60.8 82.9 
7 82.7 65.8 
8 59.9 

2 
89.9 
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The ideal d i s t r i b u t i o n would be f o r a l l vectors d^ to be 

orthogonal but c l ea r l y t h i s i s not possible wi th nine 

reference vectors i n 4-space and the best tha t can be 

hoped f o r i s an 'even' d i s t r i b u t i o n . D i rect iona l pairs 

( 5 ,9 ) , ( 6 ,9 ) , (2,6) and espec ia l ly (4,7) give the 

greatest cause f o r concern w i th KGAINX. Reducing the 

q / r r a t i o improves the f i r s t o f these but reduces the 

other three, although not dramat ica l ly . A lower q / r 

r a t i o does improve the angles between pairs (3 ,9 ) , (3,6) 

and (1 ,3 ) . 

6 .3.4 Discussion 

Although the angle tables give an idea o f the f au l t s 

tha t are l i k e l y to be d i f f i c u l t to d i s t i ngu i sh , the 

actual angle below which reso lu t ion i s un l i ke l y i s 

re la ted to the d i s t r i b u t i o n o f the innovations under 

no - fau l t cond i t ions , i . e . to the innovat ion covariance. 

Further , the use o f a low q / r r a t i o to ampl i fy the 

e f f e c t o f a f a u l t on the innovations ( ' s i g n a l ' ) also 

has the e f f e c t o f increasing the innovat ion covariance 

( ' n o i s e ' ) . The alarm thresholds w i l l have to be 

increased, and i f the e f f e c t i v e signal to noise r a t i o 

i s not ac tua l l y improved then there i s no advantage in 

using KGAINY or KGAINZ. The optimum gain f o r f a u l t 

detect ion purposes can be determined only by s imulat ion. 

6.4 The innovat ion covariance 

Both the LLR a lgor i thm, summarized by expression (4.65) and 

the RCP algor i thm (4.67) require the innovat ion covariance 

matr ix V. Innovation s t a t i s t i c s f o r the three constant gains 

of Section 6.3.2 were estimated from innovations generated by 

KALF02 from PLANT2 data, t h i s set being the only one ava i lab le 

containing s u f f i c i e n t steady s ta te data points to give 

reasonable estimates f o r V. 

I t has already been suggested (6.3.2) tha t the ONA f i l t e r i s 

f a i r l y close to the opt imal . FILCALC was used to generate the 

theore t i ca l steady s ta te innovat ion covariance f o r comparison 

wi th the actual value. Results were obtained as fo l lows: 
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Theoret ical V f o r KGAINX at PLANT2 operat ing po in t 

0.0045 

0.0007 

0.0008 

0.0000 

0.0007 

0.0039 

0.0006 
0.0000 

0.0008 

0.0006 

0.0046 

0.0000 

0.0000 

0.0000 

0.0000 

0.0040 

Actual V f o r KGAINX/PLANT2 data 

0.0036 

0.0015 

0.0012 

0.0003 

0.0015 

0.0016 

0.0009 

0.0003 

0.0012 

0.0009 

0.0032 

0.0017 

0.0003 

0.0003 

0.0017 

0.0045 

Actual V f o r KGAINY/PLANT2 data 

0.0086 

0.0058 

0.0071 

0.0039 

0.0058 

0.0055 

0.0061 
0.0037 

0.0071 

0.0061 

0.0126 

0.0082 

0.0039 

0.0037 

0.0082 

0.0109 

Actual V f o r KGAINZ/PLANT2 data 

0.0090 

0.0062 

0.0075 

0.0041 

0.0062 

0.0058 

0.0065 

0.0040 

0.0075 

0.0065 

0.0133 

0.0087 

0.0041 

0.0040 

0.0087 

0.0117 

Note tha t as in Section 6.3 there i s very l i t t l e d i f fe rence 

between resu l ts using KGAINY and resu l ts using KGAINZ. Note 

also tha t whi le f i l t e r i n g PLANT2 data hardly const i tu tes the 

'extensive and prolonged s imulat ion1 prescribed in Section 

5 .7 .2 , no tendency f o r the f i l t e r to diverge was noted even 

when using the very low q / r gain KGAINZ. 

6.5 LLR algor i thm design 

We are now in a pos i t ion to f i n a l i s e design parameters f o r an 

algor i thm based on the LLR t e s t . As discussed in Section 6.1.2 

these parameters were obtained by using a l l the ava i lab le p lant 
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data, the PLANT8 record being cut short at data point 346 to 

exclude the unmodelled level setpo in t change. 

The three programs KALF02, 07 and 08 were used to generate 

innovations from PLANT2, 7 and 8 respect ive ly fo r analys is . 

Each run requires three input matr ices: the constant Kalman 

gain, the f a u l t d i r ec t i on matr ix FMAT and the innovation 

covariance. 

TABLE 18 

Data se t : PLANT2 PLANT7 PLANT8 

Noise: ONA 
Reference d i rec t ions 
Innovation covariance 

KGAINX 
FMATX 
VX 

KGAINX7 
FMATX7 

VX 

KGAINX8 
FMATX8 

VX 

Noise: Set I I 
Reference d i rec t ions 
Innovation covariance 

KGAINY 
FMATY2 
VY 

KGAINY 
FMATY7 

VY 

KGAINY 
FMATY8 

VY 

Noise: Set I I I 
Reference d i rec t ions 
Innovation covariance 

KGAINZ 
FMATZ2 
VZ 

KGAINZ 
FMATZ7 

VZ 

KGAINZ 
FMATZ8 

VZ 

Kalman gain 

This i s ca lcu lated from FILCALC and requires the operat ing 

po in t ( l i n e a r i z a t i o n po in t ) f o r the p lant data set in question 

in order to obtain der ivat ives from PDERIV. Under ONA the 

gains were ca lcu lated i n d i v i d u a l l y f o r each p lant run but under 

Sets I I and I I I the gains were found to vary l i t t l e w i th change 

in setpo in t and KGAINY and KGAINZ (PLANT2 setpo in t ) were used 

throughout. 

Matr ix FMAT 

Reference vectors were calculated i n d i v i d u a l l y f o r each o f the 

nine combinations o f gain and p lant operat ing po in t . 

Innovation covariances 

The ' ac tua l ' covariances estimated from PLANT2 data were used 
throughout. 

Nine runs were car r ied out using the p lant data and input 
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matrices as defined in Table 18. For the f i r s t run KALF02 

was set up to f i l te r the PLANT2 data using gain KGAINX. The 

innovations were then analyzed using a second program, INVEC, 

which util ized KGAINX, FMATX and VX to calculate the minimum 

angle (Section 5.8.5) and maximum 11 r for each innovation 

generated by KALF02. The remaining eight runs were carried out 

in a similar fashion as per Table 18. 

6.5.1 A note on divergence 

In the course of these experiments the low q/r gain 

KGAINZ was used with PLANT7 and PLANT8 data. Even after 

a setpoint change with the f i l te r working away from i ts 

design operating point, there was absolutely no tendency 

for the f i l te r to diverge. While this i s not conclusive 

evidence the indications are that in this particular case 

i t is safe to use the suboptimal gains suggested. 

6.5.2 Maximum 11 r versus minimum angle 

INVEC was used to test in practice the frequency of 

occurrence of the situation discussed in Section 5.8.5. 

The program was used to count the number of times that 

for a given innovation the failure direction giving rise 

to the maximum 11r was not the same direction as that 

lying closest in 4-space to the innovation vector under 

test. The number of these 'mismatches', given in 

Table 19 where NDP is the total number of data points, 

is rather higher than might be expected. This i s due to 

the asymmetry of the innovation distribution (variation 

in diagonal terms of VX, VY, VZ) and underlines the 

comments made in Section 5.8.5 regarding purely geometric 

interpretation of results. 

TABLE 19 

Data set (NDP) PLANT2 (913) PLANT7 (540) PLANT8 (346) 

Noise: ONA 278 (30%) 148 (27%) 50 (14%) 

Noise: Set I I 278 (30%) 123 (23%) 19 (6%) 

Noise: Set I I I 274 (30%) 134 (25%) 19 (6%) 
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6.5.3 LLR test thresholds 

As discussed in Section 6.1.2 the alarm thresholds are 

the most crit ical design parameters for the LLR algorithm. 

The most important point to be established is whether 

the l l r ' s increase during transients due to poor 

modelling. I f this is the case then i t might pay 

to 'switch off ' the detector for a while following an 

intentional setpoint change. 

The data from the nine runs of Table 18 was used to 

obtain a set of thresholds corresponding to each of the 

three sets of noise assumptions (Section 6.3.2). In each 

of Tables 20-22, column A gives for each of the nine 

hypothesized failure directions the data set, data point 

and value of the maximum 11 r . An asterisk indicates 

that the value was recorded during a transient (defined 

as the f i r s t four minutes after a setpoint change). I f 

the value in the f i r s t column occurred during a 

transient then the second column gives the highest 11r 

not during a transient. Should the value in column A 

be from PLANT2 (no transients) then column B gives the 

highest 11r from PLANT7 or 8 whether during a transient 

or not. Column C gives the highest 11 r from PLANT2 i f 

not already recorded in column A. 

From the tables i t is apparent that the maximum 11r 

values for no more than half of the failure directions 

occur during transients. What is also apparent i s that 

with the exception of Table 20 directions 4 and 7, none 

of the maximum l l r ' s occur in PLANT2 or prior to the 

f i r s t setpoint change in either PLANT7 or PLANT8. This 

implies that inaccuracy of the model and/or system 

nonlinearity have a marked effect on l l r ' s occurring 

under no-fault conditions when working away from the 

design operating point. 

Clearly, from the values given in Column C of Tables 21 

and 22, an LLR algorithm designed to work at a single 

operating point could ut i l ize lower l i r thresholds and 
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TABLE 20 - Noise: ONA 

Fault Column A Column B Column C 

1 8-209 * 54.6 7-450 52.9 2-149 16.7 

2 7-296 • 50.9 7-465 47.7 2-701 15.5 

3 7-494 57.8 2-105 18.3 

4 2-276 53.2 8-134 30.9 

5 7-453 39.1 2-606 21.0 

6 7-294 * 35.2 8-342 26.0 2-400 16.8 

7 2-277 39.4 8-181 26.2 

8 7-412 35.3 2-861 16.8 

9 7-494 49.6 2-606 21.3 

TABLE 21 - Noise: Set I I 

Fault Column A Column B Column C 

1 7-527 * 372.8 8-72 201.7 2-826 21.8 

2 7-297 * 260.3 8-67 89.1 2-830 52.0 

3 7-511 180.2 2-105 37.6 

4 7-304 • 160.0 8-290 38.9 2-276 30.5 

5 7-377 125.0 2-276 25.1 

6 7-296 * 160.8 8-344 131.5 2-830 58.1 

7 7-304 * 107.8 8-290 31.9 2-276 24.5 

8 7-413 109.1 2-600 20.6 

9 7-347 176.5 2-607 41.1 

TABLE 22 - Noise: Set I I I 

Fault Column A Column B Column C 

1 7-308 * 405.3 8-72 .218.2 2-826 23.4 

2 7-297 * 267.9 8-67 99.3 2-830 57.6 

3 7-511 194.1 2-106 41.1 

4 7-304 • 192.9 8-290 41.0 2-276 25.0 

5 7-377 123.5 2-276 26.4 

6 7-296 • 164.6 8-344 148.9 2-830 63.0 

7 7-304 * 142.7 8-290 35.5 2-276 21.4 

8 7-413 115.5 2-600 21.5 

9 7-347 187.7 2-607 45.0 
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would be more sensitive. The price of making the 

algorithm oblivious to small setpoint changes i s to make 

i t less sensitive to small faults. 

As was found in Sections 6.3.3 and 6.4 there is l i t t l e 

difference between the results of Table 21 (KGAINY) and 

Table 22 (KGAINZ). The maximum l l r ' s almost all occur 

at the same points in the data records. The amount of 

work necessary to run a simulation example will be 

apparent from Section 6.8 and i t was decided at this 

juncture that rather than running each example with 

KGAINY and KGAINZ i t was better to concentrate on one 

of these and to run more examples. KGAINY was selected 

because, despite the comments in Section 6.5.1, the q/r 

ratio is lower for KGAINZ and, of the two, this i s the 

more l ikely to lead ultimately to divergence. 

Alarm thresholds were selected for ONA and Set I I by 

raising the maximum 11 r (Column A Tables 20,21) by about 

20% in each case. Values are given in Table 23. The 

thresholds are different for each direction because of 

bias in the innovations due to instrument bias, inaccuracy 

of the model and system nonlinearity 

TABLE 23 - ALARM THRESHOLDS 

Fault Noise:ONA Noise:Set I I Fault Noise:ONA Noise:Set I I 

1 66 450 6 42 193 

2 61 312 7 47 130 

3 70 216 8 43 131 

4 64 1-92 9 60 212 

5 47 150 

6.5.4 Reduction of Py 

As discussed in Section 5.8.1, i f a particular 

innovation generates an 11 r that is significant 

(ilnA(Y)>n) for more than one failure direction then the 

algorithm arrives at a 'non-definite' decision with 

probability Py. This probability can be reduced by 



205 

comparing the l l r ' s obtained for the different 

^ - s i gn i f i cant directions. 

In this case the following intuitive argument is 

proposed. Faults El and Hz have thresholds m and n2 

respectively. At a particular innovation we have 

[JlnA(Y)]1 > t\1 but also C£nA(y)]2 > n 2. Suppose 

C J t n A ( y ) > [JlnA(Y)]2: 

I f E£nA(Y)]x - [£nA(Y)]2 > nx declare Ex true 

I f [AnA(Y)]1 - CAnA(Y)]2 * nx declare 'uncertain' 

The reasoning for this i s that to be 'definite ' a fault 

should be at least as significant over other 

HQ-significant directions as i t i s i t se l f over the EQ 

hypothesis. The feas ib i l i ty of this in practice was 

tested by simulation rather than by repeating the analysis 

of Section 6.5.3. 

6.5.5 Program LOGLRAT 

The above named fault detection program was written to 

implement the LLR algorithm. For each time step there 

are five possible outcomes which are printed out as 

follows for data point 271: 

DPT LLR S SIG DIRECTIONS VS H(0) D QL FLTEST FLT/ALT 

Definitely no fault 

271 32 N 

Probably a fault 

271 65 N 9.1 

0 (1 MAX) 

0 PR PS 9 

Definite fault (no alternatives) 

271 107 Y 3 1.217 16.8 

Definite fault (alternatives not significant) 

271 98 Y 3.0 4.0 3 1.172 31.2 

Non-definite decision (alternatives are significant) 

271 82 Y 9.1 8.1 2.0 3 PR (.977) PS 9,8 

To save time and paper the program prints out detection 

decisions only in the region of interest - just before 

and just after the simulated fault. The second column 

contains the maximum log-likelihood ratio (MAXL, in 
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direction JPOS) over all nine reference directions. 

Whether or not i t exceeds the threshold versus Hq for 

direction JPOS i s indicated by Y or N (YES or NO) in 

col. 3. I f NO then JPOS is set to zero. The fourth 

section indicates the other failure directions ( i f any) 

for which the 11 r exceeds the corresponding threshold. 

To reduce the probability of uncertainty these l l r ' s are 

compared with MAXL as in Section 6.5.4. These other 

# -s ignif icant directions are l isted in descending order 

of l l r magnitude from a vector in which ' . 0 ' is added to 

those directions which are not signif icant against MAXL 

and ' . 1 ' to those which are. Column 'D' i s the decision 

JPOS, i.e. ' 0 ' = no fau l t , ' 3 ' = fault in direction 3. 

QL is a qualif ier: i f left blank then 1D1 i s a definite 

decision but i f MAXL i s not s ignif icant against all other 

^ - s i gn i f i cant directions (i.e. some other direction(s) 

followed by ' . 1 ' in col.4) then the decision under D is 

only 'probable', hence 'PR' in column QL. Column FLTEST 

gives the estimated magnitude of the fault in direction 

JPOS via Lemma 4.1 - in brackets i f QL = PR. I f JPOS = 0 

then this column gives in brackets the direction having 

the maximum 11 r versus h. For a definite non-zero fault o 
the final column FLT/ALT gives the angle in degrees 

between the current innovation and the reference vector 

for direction JPOS. For 'probable' faults this column 

contains the other 'possible ' directions, i.e. those 

followed by a ' . 1 ' in col.4,in decreasing order of 11 r 

magnitude. The program also counts the total number of 

definite and probable decisions for each failure direction. 

6.6 The RCP algorithm 

A program named HYPOVEC was written to implement the RCP 

algorithm proposed in Section 4.9.4 and also as subsequently 

modified in Section 4.10.4. Several experiments were carried 

out using innovations generated by KALF02 from PLANT2 data and 

constant (ONA) gain KGAINX. Table 24 shows that the 

probabilities P(^-lk-l) were reset to their a priori values 

every W time steps, and gives the percentages of correct (u ) 

and incorrect ( a , i = 1,...9) decisions over 913 innovations. 
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From the table i t is clear that the algorithm is totally 

unsuitable for the application due to the unacceptably high Pp. 

As an experiment the innovations from KALF02 were demeaned to 

see i f this made any difference. For W = 2 and P(#Q) = 0.91 

the probability of a false alarm was reduced only to 11.8%. 

This method of fault detection was pursued no further. 

TABLE 24 

A priori probabilities reset Decisions as percentage 

P( ) , i=l».. .9 every(W) fij ,i=l ,...9 

0.91 0.01 5 15.5 84.5 

0.91 0.01 4 28.6 71.4 

0.91 0.01 3 45.3 54.7 

0.91 0.01 2 67.0 33.0 

0.991 0.001 2 90.0 10.0 

0.91 0.01 1 88.0 12.0 

0.991 0.001 1 97.2 2.8 

0.9955 0.0005 1 97.9 2.1 

2 
The x test 

The LLR algorithm requires very much more computation than the 
2 

X test and should reflect this with a marked improvement in 
performance. To check on this simulations were carried out 

2 
using the modified x test of equation ( 4 . 6 1 ) , with separate 

X2 random variables generated from each of the four components 

of the innovation vector. 

In C 4 4], C 4 5] Will sky, Deyst and Crawford util ized a window 

length (N) of 3 and an alarm threshold (e) of 10.5. From tables 

for the X2 distribution this corresponds to Pp ~ 0.015. These 

parameters were used in program CHISQUA, i n i t i a l l y written to 

analyze innovations generated by KALF02 from PLANT2 data and 

constant (ONA) gain KGAINX. 

Using as v^., i = 1,...4 the diagonal terms from VX (Section 6.4), 

the number of times (k) exceeded 10.5 is given in Table 25. 

For innovation component 4 this threshold was exceeded in 6% of 

cases, rather more than the expected 1.5%. Recall from Fig 21, 
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however, that component 4 had the worst approximation to a 

Gaussian distribution and that, with a window of three, a 

Marge1 innovation affects the x 2 r.v. for three time steps 

running. In order to de-sensitize the x 2 test, as for LLR in 

Section 6.5.3, either the thresholds have to be increased or 

the variances can be increased to keep all four thresholds at 

10.5. Selecting the latter method, the f ict i t ious variances 

required to give no false alarms with the PLANT2 data are given 

in the last column of Table 25. 

TABLE 25 

i v i i max £.(k) ^.(k) > 10.5 var.for no alarms 

1 0.0035 18.06 7 (0.75%) 0.0065 

2 0.0016 28.18 4 (0.44%) 0.0045 

3 0.0032 19.90 13 (1.42%) 0.0065 

4 0.0045 23.11 56 (6.13%) 0.01 

Program CHISQUA was then tried with innovations from KALF07 

(with PLANT7 data and ONA gain KGAINX7) and from KALF08 (PLANT8, 

KGAINX8). The values obtained for (k) were found to be larger 

than those from the PLANT2 data, particularly following the 

f i r s t setpoint change in each data set. This is primarily due 

to the fact that the innovation mean, although near zero, is 

never exactly so and changes with change in operating point 

because of instrument bias and system nonlinearity . As with 

the 11r thresholds i t was found necessary to increase the 

variances s t i l l further to prevent false alarms when monitoring 

innovations from PLANT7 and 8. Again using all the available 

data the parameters f inal ly selected for the x 2 test were as 

follows: 

e., 1 = 1,...4 = 10.5 N = 3 

v.., i = 1,...4 = 0.0204, 0.0126, 0.0152, 0.0130 

6.8 Fault simulation 

Faults y f ( l ) - y f (4) and _uf(l) - jJf(3), defined in Section 4.3, 

have no effect on system operation and can therefore be 

simulated at will for-any of the four fault types (a) - (d) in 

Fig 1. An ' ideal ' step fault of +2°C on say TX110 between 
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PLANT7 data points 346 and 347 is simulated by adding 2.0 to 

every TX110 reading for k £ 347 in the PLANT7 record before the 

data i s processed by KALF07. 

Fig.26 Effective flow signals following a step fault 

Faults y^(5) and y^(6) are flow faults and cause changes in 

setpoint. These are simulated by changing the setpoint in the 

opposite sense to the fault required (see 4.3.2) and then 

subtracting the setpoint change from the flow readings. This 

is illustrated by Fig 26 where the MEA flow setpoint is 

increased by 0.03 kgs - 1 immediately following k = 33 thus 

simulating a step fault of -0.03 kgs"1 at 33 < k < 34 . I f 

the setpoint change were caused by a step fault then the flow 

reading seen by the control system would be as shown by the 

solid lines in Fig 26. Equations (4.18) and (4.19) neglect the 

small 'k ick ' in the flow reading and assume that the affected 

temperatures reach their steady state values instantaneously. 

The analysis of Chapter 5 also assumes ' ideal ' step faults 

whereas in reality these temperatures undergo a transient as 

described in Chapter 3. 

The aim of the simulations was to compare the performances of 

three algorithms 
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(a) The x2 test 

(b) LLR algorithm with ONA gain 

(c) LLR algorithm with Set I I gain 

The steps required for every example were as follows. These 

are given for a fault on PLANT7 but the method is the same for 

any plant record. Detection decisions were printed out only 

in the region of the fault, but the total numbers of decisions 

were recorded by type. 

( i ) Edit KALF07 to read in PLANT7 and then to modify 

the data to simulate the required fault as already 

described. 

( i i ) Run KALF07 with gain KGAINX7 and store innovation 

f i le . 

( i i i ) Set up CHISQUA with the parameters given at the 

end of Section 6.7 and run with the innovations 

from step ( i i ) . 

(iv) Set up LOGLRAT with FMATX7, VX and the thresholds 

in the 'ONA' columns of Table 23. Run with the 

innovations from step ( i i ) . 

(v) Re-run KALF07 with the same fault but now with gain 

KGAINY7. Store innovation f i le. 

(vi) Set up LOGLRAT with FMATY7, VY and the thresholds 

in the 'Set I I ' columns of Table 23. Re-run with 

the innovations from step (v). 

6.9 Simulation examples 

A comprehensive simulation programme was carried out on the 

data from PLANT7 and PLANT8. PLANT2 was not used for fault 

simulation because this would not have tested the algorithms 

away from the nominal plant operating point. Attention was 

concentrated on step faults with f i fty faults simulated. To 

this were added nine jump faults, four 'break in rtd lead' 

faults and three ramps making a total of s ixty-six examples. 

Some step faults were investigated for KGAINY only and KALF07 

and KALF08 were run 129 times in al l . 
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TABLE 26 

i Fault Instrument i Fault Instrument 

1 y f O ) TX110 6 Z f (6) FX124 

2 y f (2) TX177 7 I f W TX173 

3 y f (3) TX174 8 u f(5) TX175 

4 y f(4) TX172 9 u f(6) TX176 

5 y f(5) FX! 01 

Step faults in directions 5 and 6 (Table 26) were limited to 

the four setpoint changes in PLANT7 and PLANT8. Faults in 

directions 1-4 and 7-9 were then investigated during a transient 

by injecting steps of +1° and +2° for each at data point 294 in 

PLANT7. Small faults (down to 0.25°) were investigated for one 

input (9) and one output (3) at PLANT7 data point 490 (steady 

state). A number of random step faults was obtained for PLANT8 

by using NAG routine G05DAF to generate random data points 

between 5 and 336, random directions 1-9 (excluding 5 and 6) 

and random magnitude between 0.5 and 5.0. These were then signed 

alternately positive and negative and the f i r s t 'small' fault 

(magnitude < 1.5°) and the f i r s t ' large' fault (magnitude > 3.0°) 

were selected for each failure direction. 

Jump faults were simulated for directions 1-4 and 7-9 using the 

random ' large' faults already used as step faults. Two 

experiments were tried with jump faults on different instruments 

at successive data points. The detection of breaks in rtd leads 

was investigated for one output (3) and all three inputs (7-9). 

Finally, ramps of +0.3 deg.C/min (i.e. +0.05 deg.C per data 

point) were tried for directions 1, 8 and 9 to determine the 

fault level at which each algorithm would correctly diagnose 

the fault. 

Presentation of results 

For step faults in each failure direction the f i r s t task is to 

compare the detection capabilities of the LLR algorithms with 
2 

that of the X test. Selected results are presented in tabular 

form, where &-(k), i = 1,...4 are the X2 r . v ' s generated from 



212 

the four components of the innovation vector. For the X2 test: 

«T => > 10.5 

'0 ' => £.(k) <; 10.5 

while for the LLR variants the figure given is the failure 

direction ' j ' , j = 1,...9, as decided by each algorithm. I f 

the direction given is 'probable' (see Section 6.5.5) then the 

number is shown primed, e.g. 5 ' . Each fault is described as, 

for example: 

+1° fault at dp 294 (PLANT7 - 247 dp to eor) 

This gives the fault magnitude and the f i r s t data point for 

which the instrument becomes faulty. The note in brackets gives 

the data set on which the fault was superimposed and the number 

of data points containing the fault that occur up to the end 

of the data set (eor = end of record). By adding up the non-zero 

decisions given under 'TOTALS' in each table i t can be seen 

whether the fault had a continuous effect on the innovations 

right up to the end of the data set or whether the effect was 

short lived or intermittent. Totals 4(58)4'(3) signify that the 

algorithm recorded a definite "Direction 4" 58 times and a 

probable "4 " 3 times. Total &i(5) signifies that component 

^ ( k ) was " 1 " 5 times. In each table the data point in the 

second column is the f i r s t to contain the fault. 

The second task is to compare the estimation capabilities of 

the two LLR algorithms. These results, usually for larger 

faults, are given in graphical form. In order to be able to 

plot faults occurring at different times on the same axes, the 

f i r s t data point to contain the fault is labelled ' 6 ' . x 2 test 

results for 'break in rtd lead' and ramp faults are presented 

graphically to facil itate comparison with the LLR algorithm 

responses. 

6.9.1 Step faults 

Direction 1: TX110 - Stripped MEA output from cooler 

The X2 test gave some response to faults down to 1°, the 

smallest tried. For fault levels up to 2° only innovation 
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component 1 was affected but for levels above 3° both 

components 1 and 3 crossed the alarm threshold. For 

1(a), a +1° fault at dp 294 (PLANT7 - 247 dp to eor): 

k 1(a) 
CO cn CVJ <n CM cn CM 

co in cn -»-p— CM LO TOTALS +1 ° 

M k ) 
LLR(ONA) 
LLR(Setll) 

0 
0 
0 

1 
1' 
5 

1 
0 
5 

1 
0 
5 

0 
0 
0 

0 
0 
0 

£i(3) others (0) 
l ' ( l ) 
5 (3) 

whereas for 1(b), a +2° fault at the same point: 

k 1(b) 
CO CT» CM cn CM 

00 cn CM 
CT» U cn-Mi CM C 

5 r̂. 3 o 3 CO CO TOTALS +2° 

LLR(ONA) 
LLR(Setll) 

0 
0 

1 
1 

9' 
1' 

9' 
11 

0 
1' 

0 
1 

0 
' 0 

0 
1' 

0 
0 

0 
. 1 

0 
1 

0 
1 

1(58) 1'(3) 9(2) 
1(208)1'(13) 

Here £i(k) registered a '1 ' at 294 which continued almost 

uninterrupted to eor. LLR(Set I I ) clearly has a stronger 

response in Table 27b. 

Fig.27 LLR response to failures in Direction 1 (TX110) 



Compare the estimation accuracy for this +2° fault (1(b)) 

- Fig 27 - with those obtained for faults l(c)+5° also at 

dp 294 (PLANT7) and l(d)-3.17° at dp 238 (PLANT8). 

Clearly all the estimates are biased but the LLR (Set I I ) 

figures exhibit a lower estimation error variance. 

Below 2°, LLR (Set I I ) has a stronger response than 

LLR (ONA) but tends to confuse the fault source with 

directions 5 and 9. Above 2° both LLR variants detect 

correctly but LLR (Set I I ) has a s l ight edge because of 

its 'smoother1 estimates. 

Direction 2: TX177 - cooling water output from cooler 

At a 1* fault level the x 2 test response was stronger 

than that for a similar fault in direction 1. For all 

faults tried up to +4.66° the response was almost always 

limited to £2(k) although £x(k) and £3(k) occasionally 

registered a ' 1 ' . Up to 2° the LLR response was 

unpredictable as can be seen by comparing the results for 

faults 2(a) -2* at dp 199 (PLANT8 - 148 dp to eor) and 

2(b) +2* at dp 294 (PLANT7 - 247 dp to eor): 

k 2(a) 
00 CTi cn cn LO O CVJ 

o i— CVJ TOTALS -2° 

LLR(ONA) 
LLR(Setll) 

0 
0 

2 
6' 

2' 
6' 

6' 
6' 

2' 
6' 

2' 
6' 

2' 
2' 

2' 
2' 

2' 
2' 

2' 
2' 

2' 
2' 

6 
6' 

6' 
6' 

2(3)2'(90)6(1)61(54) 
2(1)2'(91) 6'(56) 

k 2(b) 
CO cn OJ cn 

CVJ 
o o 
CO 

LO O CO TOTALS +2° 

LLR(ONA) 
LLR(Setll) 

0 
0 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2 
2 

2(240)2'(7) 
2(247) 

A -1.49* fault behaved similarly to Table 28 while fault 

2(c) +1* at dp 294 (PLANT7) was diagnosed quite well at 

least by LLR (Set I I ) . Fig 28 shows the estimates obtained 

from faults 2(b), 2(c) and fault 2(d) +4.66° at dp 98 

(PLANT8). 

Below 2°, LLR (Set I I ) is sometimes better than LLR(ONA) 

but both are l ikely to confuse the fault source with 

direction 6. Above 2° both are reliable with LLR (Set I I ) 
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again providing smoother estimates. The estimates from 

all Direction 2 examples were found to be almost unbiased. 

Fig.28 LLR response to failures in Direction 2 (TX177) 

Direction 3: TX174 - Stripped MEA between heat exchanger 
and cooler 

Very small faults down to +0.25° were tried in 

Direction 3 but the x 2 t e s t s t i l l detected these, albeit 

with a slight delay. The effects of faults in this 

direction were confined almost exclusively to £3(k) with 

very occasional 1 's on Jl^k). LLR (Set I I ) managed to 

pick up fault 3(a) +0.25° at dp 490 (PLANT7 - 51 dp to 

eor) and a +0.5° fault at the same point, but missed a 

-0.75° fault (elsewhere) completely. In the range l°-2° 

LLR (Set I I ) was much better than LLR (ONA); Table 31 

shows 3(b), a +1° fault also at dp 490 (PLANT7): 

k 3(a,b) 
<y> 
CO 

o 
CTl 

un cr> o 
LO TOTALS +0.25°,+!° 

Mk) 0 0 0 0 0 1 1 1 0 1 0 0 1 M 5 ) others (0) 
LLR(ONA) 0 3 0 0 0 0 0 0 0 0 0 0 0 3(1) 
LLR(Setll) 0 3' 3' 3 3 3' 3' 3 3 3 0 0 0 3(8) 3 '(6) 

LLR(ONA) 0 3 9' 0 0 3' 0 3' 0 3' 0 0 0 11139(lea.)3' (7)9' (2) 
LLR(Setll) 0 3 3 3 3 3 3 3 3 3 3 3 3 3(30)3'(21) 
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Fig.29 LLR response to failures in Direction 3 (TX174) 

Fig 29 shows that unlike Directions 1 and 2 the mean 

value of jthe estimate is not the same for the two LLR 

variants. While LLR (ONA) becomes as reliable as 

LLR (Set I I ) for faults over 2° the estimation accuracy 

of the latter is superior for all the Direction 3 

examples. 

Direction 4: TX172 - Spent MEA output from heat exchanger 

Direction 4 faults were reliably detected by the x2 test 

down to +0.96*, the response always limited to ^ ( k ) only. 

Neither LLR algorithm performed very well: LLR (ONA) 

responded very weakly to all faults up to +3.97° while 

below 2* LLR (Set I I ) failed to detect. At 2° and above 

the LLR (Set I I ) response was stronger but there was a 

marked tendency to confuse the fault source with 

Direction 7. Tables 32 and 33 show faults 4(a) +2° at 

dp 294 (PLANT7 - 247 dp to eor) and 4(b) +3.97° at 

dp 40 (PLANT8 - 307 dp to eor). 

k 4(a) 
CO cr> CM cn 

CM 
o 
CO TOTALS +2° 

M k ) 0 1 1 1 0 0 0 0 0 5,1,(35) others (0) 
LLR(ONA) 0 4 0 0 0 0 0 0 0 4(1) 
LLR(Setll) 0 4' 7' 7' 7' 7' 7' 0 0 4*(1)5(3)5'(7)7(125)7'(67) 

k 4(b) CD CO o I*-. TOTALS +3.97° 

LLR(ONA) 0 4 0 0 0 0 0 0 0 4(1)4*(7)7(1)7'(1) 
LLR(Setll) 0 4 4 4 4* 4* 4* 4* 4* 4(3)4*(263)7*(41) 
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Fig.30 LLR response to a failure in Direction 4 (TX172) 

LLR(Set I I ) estimates are illustrated in Fig 30 for 

fault 4(b). 

Direction 5: FX!01 - MEA flow rate 

MEA flow measurement faults were characterized by a 

strong x2 test response on components ^ ( k ) and £2(k). 

LLR (Set I I ) was much more positive than LLR (ONA) in 

detecting these faults particularly the -0.03 kgs - 1 fault 

on PLANT8. Recalling that a +X setpoint change is used 

to simulate a step fault of -X, Tables 34 and 35 and 

Fig 31 il lustrate faults 5(a) -0.03 kgs"1 at dp 34 

(PLANT8 - 307 dp to eor) and 5(b) -0.05 kgs"1 at dp 290 

(PLANT7 - 251 dp to eor). 

CO 

co <c 

k 5(a) CO CO CO co 
CO 

CO CO CM TOTALS -0.03 kgs"1 

m k ) 0 0 0 1 1 1 1 1 1 1 (305) 5,3(3) 
SLzW 0 0 0 1 1 1 1 1 1 1 *2(70) m l ) 
LLR(ONA) 0 0 0 5 0 5 5' 9' 5 5' 5(33) 5 '(9) 9'(13) 
LLR(Setll) 0 0 0 0 0 5 5 5 5 5' 5(163) 51(146) 

LT) CO 
LiJ 

k 5(b) 
CD OO CM 

o cn 
CM 

CM 
<Ti CM cn 

CM 
CO cn 
CM TOTALS -0.05 kgs ' 1 

LLR(ONA) 
LLR(Setll) 

0 
0 

0 
0 

8' 
0 

8 
5 

5 
5 

5 
5 

5 
5 

5' 
5 

9' 
5 

5" 
5 

5(8)5' (232)88' (lea.)9' (8) 
5(249) 
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Fig.31 LLR response to failures in Direction 5 (FX!01) 

Note the delay in detection and the transients in the 

estimation due to the use of steady state temperature 

changes. 

Direction 6: FX!24 - Cooling water flow rate 

All components except for &u(k) were strongly affected 

by cooling water flow rate measurement faults. The two 

LLR variants behaved similarly but LLR (Set I I ) was more 

likely to confuse the fault source with Direction 9. 

Tables 36 and 37 and Fig 32 i l lustrate faults 

6(a) -0.05 kgs"1 at dp 515 (PLANT7 - 26 dp to eor) and 

6(b) -0.05 kgs_1at dp 192 (PLANT8 - 155 dp to eor). 

LO CO 
QJ 
CO <c 

CO 

co < 

k 6(b) 5 O J en CO o 
CVJ TOTALS -O.OSkgs"1 

LLR(0NA 0 0 6 6 6 6 6 6 6 6 6 6(154) 
LLR(Setll) 0 0 6* 6' 6 6 6 6 6 6 6 6(152)6'(2) 

k 6(a) 
•a-
LO 

LO 
LO 

LO 
in OJ LO TOTALS -0.05kgs"1 

Mk) Mk) 0 0 1 1 1 1 1 1 1 1 1 M25) M25) 
Mk) 0 0 0 0 1 1 1 1 1 1 1 (23) ^ ( 0 ) 
LLR(ONA) 0 0 6 6 6 6 6' 6 6 6 6 6(21)6'(4) 
LLR(Setll) 0 0 9' 9' 9 9' 9' 9' 6' 6 6 6(18)6'9(l.ea.)9' (5) 
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Fig.32 LLR response to failures in Direction 6 (FX124) 

Note again the delay in detection and the marked 

transients on the LLR (Set I I ) results. The 2 data point 

delay in £3(k) changing to '1 ' occurred in both examples 

and may be a useful characteristic to aid fault isolation 

by means of the x 2 test. After the in it ia l transients, 

LLR (Set I I ) produces a lower variance estimate than 

LLR (ONA) in both Direction 5 and Direction 6. 

Direction 7: TX173 - Stripped MEA input to heat exchanger 

The x 2 test missed a +0.8° fault but just picked up a 

step of 1°. Fault levels over 2° were detected although 

not strongly, the effect usually being confined to ^ ( k ) 

as for Direction 4 faults. LLR (ONA) failed to detect 

. any faults at all while a fault of -3.52° was the only 

one detected at all satisfactorily by LLR (Set I I ) . 

Tables 38 and 39 include faults 7(a) +2° at dp 294 

(PLANT7 - 247 dp to eor) and 7(b) -3.52° at dp 298 

(PLANT8 - 49 dp to eor). Fault 7(b) is illustrated by 

Fig 33. 

The LLR (Set I I ) delay to detection is about minutes 

for each of these examples and Fig 33 shows that the 

estimation bias decays slowly. 
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00 co 

co <t 

cd co 
lu 
OO < 
f— 

k 7(b) CD cm 
00 
CD cm o co 

00 o co TOTALS -3.52° 

LLR(ONA) 
LLR(Setll) 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
7 

0 
7 

no failures detected 
7(9) 7'(31) 

k 7(a) 
co cd cm cd cm 

o o co 
co o co o co TOTALS +2° 

m k ) 0 0 0 0 0 0 0 1 1 1 1 1 &i(2) Z h ( Z 5 ) others(0) 
LLR(ONA) 0 0 0 0 0 0 0 0 0 0 0 0 no failures detected 
LLR(Setll) 0 0 0 0 0 0 0' 0' 0' 0' 4' 4' 4'(232) 

Fig.33 LLR response to a failure in Direction 7 (TX173) 

Direction 8: TX175 - Spent MEA input to heat exchanger 

Faults between 1 and 2° were picked up by the x2 test on 
only. At -3.57° however the effect was restricted 

to £3(k) and a +5° fault influenced all components 
except for Both LLR variants were incapable of 
detecting faults up to 2° but were able to cope with 
faults 8(a) -3.57° at dp 150 (PLANT7 - 247 dp to eor) and 
8(b) +5° at dp 294 (PLANT7 - 247 dp to eor). These faults 
are illustrated by Tables 40 and 41 and by Fig 34. 

k 8(a) cd o 
LO 

co 
in LO o ao TOTALS -3.57° 

LLR(ONA) 0 0 0 0 8 8 8 8 8' 8 3'(45)8(55)8'(94) 
LLR(Setll) 0 0 0 0 0 8 8' 8' 8 8 8(148) 8'(45) 

k 8(b) co cd cm cd cm cd cm 
cd cd cm o co TOTALS +5° 

LLR(ONA) 
LLR(Setll) 

0 
0 

0 
0 

0 
0 

0* 
0 

8 
0 

8 
0 

oo oo 

0 
8 

0 
8 oo

 oo
 

0 
8 

0 
8 

8(194) 
8(242) 
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Fig.34 LLR response to failures in Direction 8 (TX175) 

Note again the delay to detection (c30-45s) and the slowly 

decaying bias on the LLR (Set I I ) estimate. Once settled 

however the latter estimate exhibits a far lower error 

variance. 

Direction 9: TX176 - Cooling water input to cooler 

The x 2 test response to a Direction 9 fault was variable 

but usually characterized by a strong response on £i(k) 

and a weaker response on £3(k). This test picked up 

faults of +0.25°, +0.5° and +1.0° but missed two faults 

at -1.38° and -1.6° which were also missed or cross-

detected by the LLR algorithms. At +3.72° all components 

except for £,,(k) were affected. Neither LLR variant was 

very convincing for faults below 2° as is shown by 

faults 9(a) +0.5° at dp 490 (PLANT7 - 51 dp to eor) and 

9(b) +1.0° (at the same point) in Tables 42 and 43. 

k 9(a) 
CD 00 o CD CD o LO TOTALS +0.5° 

LLR(ONA) 0 0 0' 0 0 3' 0 0 0 0 0 0 0 1 ( 1 ) 31 (1) 
LLR(Setll) 0 0 0 0 0 9' 9' 9' 9' 9' 9* 9 0' 11(9) 9(2) 9'(16) 
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CO 

LU 

CO <c k-

k 9(b) 
cn CO o 

<T> cn o 
LO TOTALS +1° 

&i(k) 0 0 1 1 1 1 1 1 1 1 1 1 1 m 4 7 ) m 0 ) 
As(k) 0 0 0 0 0 1 1 1 0 1 0 0 1 m 9 ) m o ) 
LLR(ONA) 0 0 9' 0 0 9' 9' 0' 0 9' 0' 0 0' 1(5)1'(5)5(1)9'(9) 
LLR(Setll) 0 0 9' 9' 9' 9' 9' 9' 9' 9' 9' 9' 9' 11(20)9*(27) 

Fig 35 il lustrates faults 9(c) +2° at 290 (PLANT7 -

251 dp to eor and coincident with cooling water flow rate 

step'change) and 9(d) +3.72° at dp 329 (PLANT8 - 18 dp to 

eor). 

Fig.35 LLR response to failures in Direction 9 (TX176) 

The pattern is very similar to those of Figs 33 and 34. 

6.9.2 Jump faults 

Table 44 gives the results obtained for jump faults in 

each direction except for 5 and 6 (Flow rate faults). 

The faults are random and their effect on each algorithm 

is shown over three data points. Jumps in directions 7 

and 8 were missed by all methods. 

The LLR (ONA) response is characterized by a large fault 

declared in the same sense as the actual jump followed by 

a sl ightly smaller one in the opposite sense. LLR (Set I I ) 

produces for Directions 1-4 a much more accurate estimate 

at the affected data point only. 

With LLR (Set I I ) i t would appear that an output jump 

fault significantly affects only a single innovation 

whereas for LLR (ONA) at least two are affected. To 
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TABLE 44 

Fault X 2 - test LLR(ONA) LLR(Set I I ) 

D Mag d.p. Arfk) M k ) £3(k) M k ) Dec Est Dec Est 

1 -3.17° 238 1 0 0 0 1 -13.48 1 -4.14 

239 1 0 1 0 1 8.43 0 -

240 1 0 1 0 0 - 0 -

2 +4.66° 98 0 1 0 0 2 22.84 2 5.25 

99 0 1 0 0 2 -16.81 0 -

100 0 1 1 0 0 - • 0 -

3 -4.34° 169 0 0 1 0 3 -22.99 3 -4.76 

170 0 0 1 0 3 19.56 0 -

171 0 0 1 0 0 - 0 -

4 +3.97° 40 0 0 0 1 4 42.71 4 5.40 

41 0 0 0 1 4 -38.67 0 -

42 0 0 0 1 0 - 0 -

7 -3.52° 299 0 0 0 0 0 - 0 -

300 0 0 0 0 0 - 0 -

301 0 0 0 0 0 - 0 -

8 -3.57° 151 0 0 0 0 0 - 0 -

152 0 0 0 0 0 - 0 -

153 0 0 0 0 0 - 0 -

9 +3.72° 330 1 1 0 0 9' 4.99 9 2.02 

331 1 1 - 0 0 0 - 9 1.73 

332 1 1 0 0 0 - 9 1.73 

For directions 1-4 the three data points are 9 (the point containing 

the fault), 6 + 1 and 9 + 2. For directions 6-9 the points are 9 + 1, 

9 + 2 and 9 +3 as an input jump at 9 has no effect on Y(e). For the 

LLR variants the algorithm decisions and estimates are given in columns 

8-11. All faults were superimposed on the PLANT8 data record. 
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examine this further two multiple jump experiments were 

performed again on PLANT8 data. The results are given 

in Table 45. 

Expt 1: 5° jump in Direction 1 at dp 98, 5° in 2 at 

dp 99,... 5° in 9 at dp 104 

Expt 2: 5° jump in Direction 9 at dp 98, 5° in 8 at 

dp 99,... 5° in 1 at dp 104 

While neither variant can cope with the input jumps (7-9), 

LLR (Set I I ) is shown to be superior to LLR (ONA) with 

regard both to discrimination between output jumps and to 

the estimation of the magnitudes thereof. 

TABLE 45 

EXPT 1 EXPT 2 

dp D LLR(ONA) LLR(Setll) D LLR(ONA) LLR(Setll) dp D Dec Est Dec Est D Dec Est Dec Est 

98 1 1 19.84 1 4.88 9 0 0 _ 
99 2 2 24.80 2 5.62 8 5' 0.05 0' -

100 3 6 - 0.28 3 5.56 7 0 - 0' -

101 4 4 54.53 4 7.30 4 4 52.79 4 7.03 
102 7 4 -48.45 0 - 3 3 25.78 3 4.99 
103 8 0 - 0 - 2 2 26.35 2 5.20 
104 9 0 - 0 - 1 2 -19.61 1 4.37 
105 0 5' 0.06 5' 0.02 0 1 -14.95 0 -

106 0 0 - 5 0.018 0 1' - 1.10 0 -

6.9.3 'Break in rtd lead' faults 

This type of fault was simulated for one output (2) and 

for all three inputs (7-9). I f an rtd lead breaks, the 

infinite resistance is seen by the measurement loop as a 

constant temperature at the top end of the range: 120°C 

for Direction 7 and 50°C for Directions 2, 8 and 9. The 

fault looks almost exactly the same as a step fault and 

whether or not i t will be detected depends on how close 

the temperature was to the top of the range at the time 

of the break. All simulations were on PLANT8 data, 

details as given in Table 46. 
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TABLE 46 

D RTD Break 
at dp 

Process var 
at break °C Range °C Effective Step °C 

2 TX177 48 47.48 50.0 + 2.52 
7 TX173 300 103.4 120.0 +16.6 
8 TX175 300 43.28 50.0 + 6.72 
9 TX176 300 19.06 50.0 +30.94 

These examples are illustrated in Fig 35. As far as the 

X2 test is concerned only the breaks in Directions 2 

and 8 follow the pattern obtained from the step fault 

examples. The response to a break in Direction 7 is the 

only example in which all four x2 components were 

affected, and previous examples in Direction 9 affected 

^ ( k ) and Jl3(k) only. 

The LLR algorithms had l i t t le difficulty in isolating the 

faults although both were hesitant about the break in 

rtd TX173. LLR (ONA) recorded a definite ' 7 ' at dp 301 

but thereafter 83% of decisions were 7-probable. 

LLR (Set I I ) declared 4-probable twice at dp 302 and 303, 

followed by 7-probable at 304 and 305 before reaching a 

firm decision in favour of Direction 7. Fig 35 shows the 

usual slow decay in the estimation bias exhibited by 

LLR (Set I I ) for input faults. 

6.9.4 Ramp faults 

Ramps of +0.05°C/dp (0.3°C/min) were tried for output 

TX110 (Dl) and inputs TX175 and TX176 (D8,9). Each ramp 

was superimposed on PLANT7 data starting from zero at 

dp 299. This was to make use of the longest possible 

steady state data set free from setpoint changes (the 

next was a c/w flow change at dp 515) that was also away 

from the nominal operating/linearization point. 

Table 47 compares the response expected from the step 

fault examples with that actually obtained from the ramp 

fault examples which are illustrated in Figs 36, 37 and 

38. Note that the X2 test responds similarly to all 
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â
u/zyrs p rv/q 

® 

te
s

t 

0£+
 

07* 

O
H

f 

oo* 

OtfG 

off€ 

O
LE 

o 9€ 

o6€ 

o-k-

OG6" 

o7c 



229 

L
-

f.r
t 

<
n+

 

oi-tr 

00-p 

OIC 

o££ 

olt 

PS£ 

O
-trZ 

0 ££ 

O Z£ 

O
I£ 

o NO
 

u\ 
R

g
.

3
9 



230 

three ramps, i.e. (k) followed by &3(k) then £2(k). 

Variable ^ ( k ) remains unaffected. 

TABLE 47 

D X2-test LLR(0 NA) LLR(Set I I ) D 
Expected Actual Expected Actual Expected Actual 

1 sl°C First 1.6° 
Cont. 1.9° 

<2° weak 
>2° good 

Reliable 
>1.5-2° 

<2°x5'9* 
>2° good 

Reliable 
>1.8° 

8 <1 °C First 0.4° 
Cont. 0.8° 

<2° miss 
>2° good 

Reliable 
>3.5-4° 

<2° miss 
>2° good 

Reliable 
>2.9° 

9 <;0.25°C 
possible 

First 0.4° 
Cont. 0.8° 

<2° poor 
>2° good 

Reliable 
>1-1.5° 

<2° poor 
>2° good 

Reliable 
£0.9° 

The table shows the 'ramp' results to be fa i r ly consistent 

with the 'step' results except for the LLR algorithms in 

Direction 8. The x 2 test is consistently the f i r s t to 

detect the fault and LLR (Set I I ) is as good i f not better 

than LLR (ONA) in each case. 

6.9.5 Summary of results 

On the basis of the simple example of Section 4.10 i t was 

originally envisaged that the X2 test would be able to 

separate input and output faults and to isolate the actual 

measurement loop in the case of an output fault only. 

Each fault direction ' i ' , i = 1,...4 was to affect ^-(k) 

only whereas input faults would affect 'more than one' of 

the • (k ) ' s . The structure of matrices FMATX and FMATY2 

(Section 6.3.2) is sufficiently close to the equivalent 

matrix for the simp.le example to promote expectation of a 

degree of success in practice. 

The examples show the technique to have been reasonably 

successful for faults in Directions 2, 3 and 4 but small 

faults in Direction 7 also tended to affect J^(k) only, 

rendering indistinguishable faults in Directions 4 and 7. 

Faults in Directions 6, 8 and 9 and larger faults in 

Direction 1 all tended to affect (k), £2(k) and J£3(k). 
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Flow faults were distinguishable only by virtue of the 

fact that unlike cooling water flow faults (D6), MEA flow 

faults (D5) affected £x(k) and Jl2(k) only. 

The x 2 test never detected any fault later than the 

LLR algorithms and was often earlier. Its isolation 

capabilities are clearly limited but i t has some value as 

a detection only technique. 

With the LLR algorithms i t is important to retain a sense 

of proportion with regard to fault magnitude. Both 

variants were capable of excellent isolation for step 

faults over 2* for Directions 1-4 and 9, and of 

approximately 3.5* for Directions 7 and 8. In real terms 

these faults are very small and apart from chemical 

reactions requiring crit ical temperatures, could probably 

be tolerated by a good many process plants. 

Both variants were happier with output faults than input 

faults whose effects are more distributed. LLR (Set I I ) 

was noticeably better than LLR (ONA) for faults in 

Directions 2, 3, 5 and 7 but had a s l ight ly higher 

tendency to cross-detect on smaller faults. The overall 

impression gained was that where LLR (ONA) tended to 

dither, LLR (Set I I ) was much more decisive as shown,for 

example, by Tables 31 and 35. A second advantage of 

LLR (Set I I ) was in the reduction in estimation error 

variance. While the innovation bias precludes unbiased 

estimates the error variance is seen to be reduced in 

every case particularly for faults in Directions 3 (Fig 29), 

5 & 6 (Figs 31 and 32) and 8 & 9 (Figs 34 and 35). 

Although classed as 'multiple output fau l t s ' , flow faults 

are really input faults and share with Directions 7-9 a 

slow decay in estimation bias with the LLR (Set I I ) 

algorithm. This s l ight disadvantage with latter is 

outweighed by the much smoother estimates once the transient 

has died away. Table 44 shows LLR (Set I I ) to be vastly 

superior to LLR (ONA) in the estimation of jump faults 
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although neither can cope with a jump in Directions 7 

or 8. 

6.10 Summary of Chapter 

In this chapter the modelling work of Chapters 2-4 and the 

theoretical work of Chapter 5 were brought together to test the 

ideas by simulation with real plant data. Fault reference 

vectors were calculated and incorporated into two designs for 

log-likelihood ratio' based algorithms, the second employing a 

suboptimal Kalman gain which i t was hoped would lead to improved 

performance. While attempting to obtain a suitable design for 

a recursive conditional probability algorithm i t was found that 

this approach was far too unstable for use with real data. 

Alarm thresholds were obtained empirically for use with the 

LLR and x 2 algorithms and a comprehensive simulation programme 

carried out. The examples showed that the x 2 test, while 

useful for detection purposes, was not particularly good at 

fault isolation. The LLR algorithms were very much better and 

both variants were capable of quite good fault isolation and 

estimation. The algorithm employing a suboptimal gain was shown 

to be a substantial improvement in many cases. 
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CHAPTER 7 

CONCLUSION 

7.0 Introduction 

The purpose of this concluding chapter is fourfold. Firstly the 

LLR algorithms are subjected to computer analysis in order to 

explain their behaviour in selected examples from the simulations 

of Chapter 6. This is followed by the conclusions that can be 

drawn from the project and a look at the extent to which the 

declared aims have been achieved. The third section steps back 

from this particular application to examine the LLR algorithm in 

the perspective of fault detection algorithms in general and the 

chapter ends with suggestions for further work. 

7.1 Computer analysis 

This section includes step responses, estimation and cross-

detection. 

7.1.1 Step responses 

The theoretical response of an LLR algorithm to a step 

fault of unit magnitude in direction l V is given by 

evaluating over the region of interest. Using the 

notation of Section 5.9, the post fault F[y] = f. so that 

f Td.-
flCp-.] = \ 1 by Lemma 4.1 ... (7.1) 

dn-Tdj 

By(y;e+N) and Bu(y;0+N) can be calculated by computer from 

Theorems 5.1 and 5.3 for the.two gains KGAINX and KGAINY 

to obtain f. vectors for LLR (ONA) and LLR (Set I I ) 

respectively. 

The above approach generates f. vectors resulting from a 

true step fault applied at time 0. For Directions 5 and 6 

however, Fig 26 shows that the error in the flow rate 

measurement is apparent for a few seconds only. While the 

fault i tse l f can be considered a true step at 0, the 

algorithms actually detect i t via the apparent biases 
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induced in the output temperature measurements. These 

biases are zero at 9 and undergo transients similar to 

those shown in Figs 12, 15 and 17. For a step fault in 

Direction 5 (MEA) the theoretical responses of TX174 and 

TX172 are obtained from equations (3.58) and (3.59) 

respectively while the responses of TX110 and TX177 follow 

as in Section 3.5.4. A cooling water flow rate fault (D6) 

affects TX110 and TX177 only, these approximating to 

simple exponentials as covered in Section 3.5.3. 

By assuming that a flow fault occurs immediately prior to 

sample 9 and neglecting the flow rate transient shown in 

Fig 26, flow rate f. vectors can be obtained as follows. 

Each affected temperature measurement is represented by a 

series of small step changes at successive sampling 

instants (cf curve (3) in Fig 13). For Direction " i 1 

the cumulative effect on the innovations is calculated for 

these small steps using the f . ' s already calculated. 

These effects are summated for i = 1,...4 to obtain the 

effective f . ' s for D5 and 6 for each LLR variant. 

Figs 40 and 41 show the theoretical responses to step 

faults of +1°C in each Direction except for 5 and 6 which 

are for faults of - Ikgs " . The in it ia l setpoint (PLANT7 

or 8) at which the f. vectors were calculated is given in 

each case. The curves serve to explain a number of the 

Chapter 6 simulation results: the LLR (ONA) response to 

a fault in Direction 3 is seen clearly in the curve for 

+4.34° in Fig 29 while Figs 31 and 32 show the expected 

responses to flow rate faults. In every case LLR (Set I I ) 

i s seen to take rather longer than LLR (ONA) to reach a 

steady unbiased estimate. 

For Directions 1-4, LLR (ONA) dramatically overestimates 

the fault magnitude at sample 9, the f i r s t exhibiting the 

fault, but the estimate drops sharply at k = 9 + 1. The 

LLR (Set I I ) response for these Directions is nearer the 

ideal, which explains the difference in response to a 
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jump fault which is effectively two step faults in 

opposite senses applied at successive sampling instants. 

2 Delay to detection 

Some of the step responses have the appearance of a step 

input passed through a f i r s t or second order delay. The 

former are straightforward and the latter can be 

approximated by simple exponentials i f these are timed 

to start at some point after fault time 9. Examples are 

given in Table 48 where T i s the time constant. 

TABLE 48 

D LLR(ONA) LLR(Setll) D 
T S start(sees) T S start(sees) 

6 40 9 

7 8 9 + 10 72 9 + 10 

8 10 9 + 6 40 9 + 20 

9 35 9 

These approximations could be useful in attempting to 

estimate the actual fault time 9 from estimates which 

clearly form part of an exponential curve (see Figs 33, 

34) but where a delay to detection has occurred. 

Conversely the sequence of expected post-fault innovations 

f. could be used with equation (4.65) and Lemma 4.1 to 

estimate for a step fault of given magnitude the point at 

which the 11r s tat i s t ic would exceed the threshold n.. 

3 Estimation error variance 

Quality of estimation i s characterized by two parameters: 

bias and error variance. In Section 5.9 i t was shown that 

Lemma 4.1 guarantees an asymptotically unbiased estimate 

from unbiased innovations and that the error variance can 

be obtained via equation (5.66). 

Substitution into (5.66) of covariance matrices VX and VY 

(Section 6.4) together with the reference vectors d. for 

the two LLR variants indicates that the error variance 
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will always be higher for LLR (Set I I ) than for LLR (ONA). 

For Direction 1, LLR (ONA) produces a theoretical error 

variance of 0.0026 compared with 0.0085 for LLR (Set I I ) , 

while for Direction 9 the figures are 0.0034 and 0.0129 

respectively. These variances correspond to standard 

deviations of the order of 0.1*C, quite small on an 

estimate of one degree or more. 

This level of error variance would hardly show up on a 

graph drawn to the scale of Figs 27 to 35 but the 

simulation results depart from the theory on three counts. 

F i rst ly the innovations do not have zero mean which gives 

rise to bias in the estimates. Secondly both LLR variants 

show a higher error variance than anticipated and thirdly 

the LLR (ONA) estimates tend to exhibit a much higher 

error variance than those generated by LLR (Set I I ) . 

These points can be examined more closely with the aid of 

Fig 42 which i l lustrates step fault 1(d), Section 6.9.1, 

which i s a -3.17°C fault on TX110 (Direction 1) 

superimposed on data set PLANT8 at d.p.238. This example 

is also shown in Fig 27. 

Fig 42 shows temperature TX110 drift ing slowly downwards 

following the cooling water step change at d.p.192 

(Section 6.1.1). This is on a large scale to emphasize 

changes of 0.1 - 0.2°C and the s l ight disturbance around 

d.p.255. From the top the traces are the four innovation 

components generated by a f i l t e r ut i l iz ing KGAINX (i.e. for 

LLR (ONA)), TX110 i t se l f , the LLR (ONA) and LLR (Set I I ) 

estimates and the innovations corresponding to KGAINY (for 

LLR (Set I I ) ) . Under no-fault conditions, LLR (Set I I ) 

exhibits the greater innovation bias because this algorithm 

magnifies the steady state effect of instrument bias on 

the innovations. The estimates prior to d.p.238 (shown 

pecked) indicate the p values obtained by processing the 

no-fault innovations via Lemma 4.1. These estimates are 

suppressed by the 11 r threshold comparison which declares 
% s true' during this period. After d.p.238 each 
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Fig.42 Analysis of Example 1(d), a -3.17°C step fault in Direction 1 

(TX110) at d.p. 238 (PLANT8) 
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estimate is broken down into three components: the 

clear area corresponding to an unbiased estimate of the 

-3.17* fault i t se l f , the shaded area caused by 

innovation bias and the sol id area due to reference 

vector transients. 

The key to error variance is sensit iv ity to the 

innovations. Because of the crude modelling and the-fact 

that TXT 10 only measures to one place of decimals, small 

changes in TX110 are seen as negative-going step faults 

and are clearly picked up by KGAINX innovation components 

YI and Y3 and by KGAINY innovation component Yx. The 

LLR (ONA) estimate relies primarily on yx but to some 

extent on Y2 and Y3 as can be seen by l ining up the 

disturbances in the appropriate traces. The LLR (Set I I ) 

estimate relies almost exclusively on yx and follows i t 

variations faithful ly. 

The theoretical comparison of error variance for the two 

algorithms fa i l s because i t does not take into account 

unmodelled disturbances: VX and VY were after all 

estimated from the comparatively smooth steady state data 

of run PLANT2. The downfall of LLR (ONA) comes with the 

dramatic overshoot of the estimate on each sample that 

contains a new fault: the algorithm magnifies every 

unmodelled disturbance in at least two of the four 

innovation components. 

7.1.4 Cross-detection 

In Section 5.8.5 it.was shown by counterexample that 

maximum 11r and minimum angle were not necessarily 

equivalent cr iter ia for fault isolation decisions. Despite 

this i t was s t i l l fe lt , at least before any simulation 

work had been carried out, that study of the variation in 

angle between q and d. before reaching steady state could 

be a useful guide to algorithm performance as hinted in 

Section 5.6. A computer program was written to calculate 

the angle between the theoretical post-fault innovation 

bias f_- and the reference vector d., to which i t tends, for 
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each failure direction ' i 1 . This showed that while 

LLR (Set I I ) reference vectors rotated no more than 5° 

in r-space before coming to rest in Direction d^, 

LLR (ONA) vectors tended to swing four or five times as 

much over the f i r s t few time steps. 

For a definite fault in Direction ' i 1 , program LOGLRAT 

(Section 6.5.5) printed out the angle between the current 

innovation vector and reference vector d.. Large faults 

tended to produce small angles, less than 10°, but with 

smaller faults a definite decision could surprisingly 

s t i l l be made with the innovation vector up to 60° away 

from the reference vector. 

This result did not bode well for the success of the 

transient analysis. A fault in Direction 'A1 might be 

detected correctly in one example only to be cross-

detected as Direction 'B1 in a second and Direction 'C ' 

in a third. I f a fault in Direction 'A ' was cross-detected 

as Direction ' B1 there was no guarantee that a fault in 

Direction 'B1 would be confused with Direction 'A ' as 

might have been expected. None of the transient cross-

detections experienced was in fact sufficiently consistent 

to be sat isfactori ly explained by transient analysis of 

the f-j/d^ angle. 

I t was shown in Section 5.8.1 that Py, the probability of 

uncertainty in making a fault isolation decision, could 

be reduced at the expense of increasing P x , the probability 

of cross-detection. From the simulations certain examples 

such as 4(a)/LLR (Set I I ) were classic cases of cross-

detection: here a fault in Direction 4 was confused with 

Direction 7. In every case such as th is, the 11 r for the 

correct fault source was also significant against HQ but 

was not sufficiently large when compared with , the 
j 

declared fault direction, to make the algorithm declare 

the fault as j-probable instead of j-definite. The 

number of occurrences of this type was far outweighed by 

the number of examples in which the Section 5.8.1 

modification enabled the correct decision to be reached. 
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For almost every fault over 1° there were at least two, 

and sometimes four or five ^ - s i gn i f i cant directions. 

Without the modification both LLR algorithms would have 

declared almost every fault as 'probable'. 

7.1.5 Performance stat ist ics 

The large number of simulation examples carried out enables 

the two LLR algorithms to be compared on a statist ical 

basis. Table 49 shows that the two variants are comparable 

with regard to the number of miss alarms and that each i s 

more l ikely to miss an input fault than an output fault. 

TABLE 49 - MISS ALARMS 

D 1 2 3 4 5 6 7 8 9 TOT 

ONA 4 3 2 9 
Setl l 1 1 1 3 1 7 

For each example the data points between 6 and the end-of-

record can be divided into three categories: correct 

decision, cross-detection and miss. These are totalled for 

all examples and the results given in Tables 50-53. The 

f i r s t two tables give respectively the percentage of 0 ' s 

declared after a fault and the percentage of correct 

decisions. Each i s based on nearly 8000 post-fault data 

points with definite and probable decisions not 

differentiated. 

TABLE 50 - PERCENTAGE '0 ' DECISIONS 

D 1 2 3 '4 5 6 7 8 9 o/a 

ONA 57.2 7.4 30.0 98.8 45.7 1.1 100.0 65.6 46.6 53.9 
Setll 43.7 0 0.1 53.0 1.1 1.1 54.8 61.4 33.3 32.3 

TABLE 51 - PERCENTAGE CORRECT DECISIONS 

D 1 2 3 4 5 6 7 8 9 o/a 

ONA 41.0 73.7 63.1 1.0 50.0 98.9 0.0 30.4 45.5 40.3 
Setll 55.6 83.5 99.5 24.5 98.9 95.6 6.4 38.6 58.6 57.6 
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In both respects LLR (Set I I ) shows a distinct 

improvement over LLR (ONA) with the single exception of 

Direction 6. 

I t i s interesting to note how the non-zero decisions are 

distributed between correct decisions and cross-

detections. Tables 52 and 53 give the percentages of 

non-zero decisions for Directions 1-9 following a fault 

in the direction given in column 1. Despite the failure 

of the transient analysis of the f-./d- angle in explaining 

TABLE 52 - DISTRIBUTION OF NON-ZERO DECISIONS FOR LLR(ONA) 

D 1 2 3 4 5 6 7 8 9 

1 95.8 0.8 3.4 
2 4.6 79.7 15.7 
3 1.4 90.1 0.4 8.1 
4 84.6 15.4 
5 92.1 0.3 0.7 6.9 
6 100 
7 0 
8 11.6 88.4 
9 9.4 0.3 5.1 85.2 

TABLE 53 - DISTRIBUTION OF NON-ZERO DECISIONS FOR LLR(SetH) 

D 1 2 3 4 5 6 7 8 9 

1 98.8 1.2 
2 0.4 83.5 16.1 
3 99.6 0.4 
4 52.1 2.5 45.4 
5 TOO 
6 96.6 3.4 
7 0.4 85.6 14.0 
8 100 
9 11.9 0.4 87.7 

transient cross-detection, the steady state angles between 

reference vectors do have a bearing on the overall numbers 

of cross-detection decisions. Referring back to the angle 

tables of Section 6.3.3 the smallest angles were between 

Directions (5,9), (6,9), (2,6) and especially (4,7). Use 

of KGAINY improved only the f i r s t of these and i t can be 

seen from Tables 52 and 53 that the percentages of 
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incorrect decisions between the Directions in each of 

these pairs increases with decreasing angle. There is a 

definite correlation between large numbers of cross-

detections and small angles between reference directions, 

the best example being the confusion between Directions 4 

and 7. Calculation of these angles is therefore justified 

and, as a rule of thumb, reference directions less than 

about 35° apart in r-space may give rise to cross-

detection problems for this particular application. 

7.2 Conclusions 

In evaluating this thesis as a contribution to the field of 

fault detection, consideration should be given to the form the 

thesis might have taken had the work been approached from a 

purely theoretical viewpoint. The ideas formulated at the end 

of Chapter 4 could perhaps have been developed more formally 

than was done in Chapter 5, but the project would almost 

certainly have ended with computer simulation of a simple 

example. Supposing that the plant in Section 'A ' of Fig Al.l 

were chosen for this example, is i t possible that the model 

chosen for simulation purposes would have resembled that 

developed in Chapters 2-4 of this thesis? Not only is this most 

unlikely, but also the ' ideal ' nature of computer generated 

Gaussian noise, the unbiased measurements and the lack of 

linearization errors would almost certainly have led to a set of 

consistent and extremely promising results. 

As shown by Jo and Bankoff [21], simulation studies of Kalman 

f i ltering may easily lead to overoptimistic conclusions. 

Willsky [27] points out that most fault detection work has been 

at a theoretical level with much work remaining in the 

development of implementable systems. This project is the 

antithesis of the purely theoretical approach, starting with the 

practical problem of designing an implementable fault detection 

system for Section 'A ' of the plant illustrated in Fig Al.l and 

testing i t with real rather than simulated data. 

The computational effort required to run a Kalman f i l ter rises 

dramatically with increasing numbers of states and with the 



245 

accent on designing an implementable system the f i r s t requisite 

was to build a model with as few states as possible. The 

original intention was to employ a simple model based on the work 

of Palmquist [66] but i t soon became, apparent that this approach 

was inadequate for use with real data. I t was not envisaged at 

the outset that so much effort would be required to develop a 

suitable model but the end result is a thesis fa l l ing neatly into 

two halves: Chapters 2 and 3 on modelling, Chapters 5 and 6 on 

fault detection with Chapter 4 as a bridge between the two. 

I t cannot be overemphasized that the f i r s t half of this thesis is 

not intended to be an attempt, either to produce a very accurate 

model or to consider and model all physical aspects of the system. 

In either case many more parameters would be required and many 

other effects taken into account. I t i s , however, worth 

reiterating the observation from [19] that ' I n engineering 

applications, the value of a model i s not usually judged by i t s 

mathematical rigour or the elegance of the derivation but rather 

how well i t f u l f i l l s a specific need in comparison with other 

alternatives. ' 

A poor model requires less effort to produce but the cost is 

measured in terms of loss of isolation capability and sensit iv ity. 

Suppose the system operation i s stable at the nominal linearization 

point, i.e. the point at which the model matrices $ and G have 

been evaluated. I f there i s a change in setpoint then there i s 

a transient phase, lasting some four minutes, followed by a period 

of quasi-steady state operation, in reality a slow dr i f t to a new 

stable operating point. Model predictions of the trajectories 

during the transient and the new level at which each variable 

stabilizes are governed by both <£> and G. Inaccuracy in either 

matrix leads to discrepancies between the modelled and actual 

trajectories, biased innovations and increase in log-likelihood 

ratio during the transient. This in turn means that the 11r 

threshold above which a. fault is declared must be set higher to 

avoid false alarms during the transient, thus reducing sensit ivity. 

Note that many of the maximum l l r ' s identified in Section 6.5.3 

occurred during transients. 
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I t is implied throughout that when the algorithm is f i r s t set 

up, the f i l t e r is based on a model whose matrices are evaluated 

at the stable operating point at which the plant i s operating at 

that time. Recall that due to nonlinearity the partial 

derivatives required to evaluate $ and G are dependent on the 

operating point. While the plant remains at this in i t ia l 

operating point, any instrument bias already present has no 

effect because i t is effectively subtracted out by the 

linearization procedure. Note that none of the Chapter 6 

examples were of faults occurring before the f i r s t setpoint 

change on either PLANT7 or PLANT8. This would have been almost 

as potentially unreliable a guide to performance as the use of 

computer simulated data. I f there is any inherent instrument 

bias then the operating point about which the system is 

linearized i s not the true operating point, giving rise to 

errors in the partial derivatives and model inaccuracy. 

Linearization error cannot be removed without resorting to some 

form of nonlinear f i l ter ing: as soon as a change in setpoint 

occurs the linearization error and the modelling errors give rise 

to an innovation bias which may drive the log-likelihood ratios 

higher than those experienced during transients. This results in 

even higher thresholds and further loss of sensit iv ity. 

Isolation i s effected by comparison of the orientation in r-space 

of the post-fault innovation vector with that of a reference 

vector. I f innovation bias already exists then the resultant 

post-fault innovation will deviate from the reference direction 

by an amount dependent on the magnitude and direction of the 

existing bias and may result in uncertainty or cross-detection. 

The time spent in developing a 'reasonably' accurate steady state 

model is therefore seen to be necessary. Clearly i t is also 

important to ensure that measurement loops introduce l i t t l e or 

no bias at the commencement of f i l ter ing. 

The optimal Kalman f i l te r requires the specification of an 

a priori error covariance P(0|0) which is usually chosen fa i r ly 

conservatively. This results in a Kalman gain whose elements 

decrease in magnitude over the f i r s t few time steps so that the 

gain lends more weight to the f i r s t few innovations to correct 

any error in the a priori state estimate x(010). Constant gain 
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f i l ter s dispense with this refinement but this does not matter 

in the present application where, by linearizing at the in i t ia l 

stable operating point, all states are assumed to be i n i t i a l l y 

zero. Chapter 5 goes to some lengths to 'throw off the shackles' 

of having either to design a f i l t e r to conform to some physically 

realisable system or to try to obtain reliable state estimates. 

Once these constraints are discarded the system can be designed 

purely for fault detection purposes. 

Fault detection is essentially a decoupling problem. The f i r s t 

f i l t e r , designed around the 'original noise assumptions' and 

used for LLR (ONA), can be considered close enough to optimal to 

assume that i t at least gives a guide to the way an optimal 

f i l t e r would behave. With this f i l t e r the effect of any fault i s 

distributed over the four innovation vector components. Isolation 

i s enhanced i f faults can be decoupled, i.e. i f two faults can be 

constrained to affect non-overlapping sets of innovation 

components then the reference vectors for these faults will be 

orthogonal. Clearly nine faults cannot be totally decoupled using 

only four innovation components but KGAINY, derived from the 

Set I I noise assumptions, succeeded in decoupling the effects of 

output faults y F ( l ) - (4). Having paved the way to unrestricted 

manipulation of the Kalman gain for fault detection purposes, no 

method was found to take full advantage of this. KGAINY is s t i l l 

based, on physically realisable noise covariance matrices but i s 

at least a step in the right direction. 

The. question of divergence has been discussed but i t cannot be 

categorically stated that there exists no Kalman gain that would 

eventually cause divergence with this system despite giving rise 

to a stable f i l t e r transition matrix Another weakness of the 

LLR algorithms i s the setting of alarm thresholds. I t was in an 

attempt to avoid having to specify these that the unsuccessful 

RCP algorithm was proposed. Having shown in Section 5.8.3 that 

i t is extremely d i f f icult to set thresholds to give desired 

values for PM, Pp etc, i t is envisaged that suitable thresholds 

could only be obtained in practice by monitoring over a period 

of time the log-likelihood ratios generated for each failure 

direction under normal operation. I t i s probable that the 

thresholds would be pushed higher than those given in Table 23 
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and that the algorithms would become less sensitive as a result. 

The algorithm design does not appear to be particularly well 

suited to the detection of input faults except for flow faults 

which are treated and detected as i f they were output faults. 

Input faults have very l i t t le effect on the innovations when 

using KGAINX (Table 17), while LLR (Set I I ) , which uses KGAINY, 

exhibits an overdamped response to an input step, again causing 

problems. 

In conclusion, this project has shown that the selected portion 

of the C02/N2 separation plant can be modelled using six states 

only and with sufficient accuracy to permit i ts use with a log-

likelihood ratio technique for fault detection. Two LLR 

algorithms were designed and tested with real plant data in 

comparison with a simple x 2 method. Although the latter showed 

some promise as a detector, the LLR algorithms provided in 

addition fair ly reliable fault isolation and estimation. While 

no one design was suitable for all types of fault the suboptimal 

LLR (Set I I ) was found to perform consistently better than the 

approximately optimal LLR (ONA). 

The main limitations of the technique are that i t can be used 

only for instrumentation faults, i t cannot handle multiple faults 

and i t is restricted to time-invariant systems. 

7.3 The LLR algorithm in perspective 

Although Willsky 's survey paper [27] divides fault detection 

methods into a number of basic types, many algorithms use similar 

ideas and could be placed.in more than one category. The LLR 

algorithms presented in this thesis have much in common with 

other fault detection techniques employing Kalman f i l ters and 

this section serves to highlight the differences and similarities. 

Modification of a f i l ter to enhance its fault detection 

caoabilities almost inevitably leads to degradation of the state 

estimates. I f a system required estimates for control purposes 

i t would be necessary to use a separate optimal f i l ter to provide 

these in addition to the suboptimal f i l ter used with an algorithm 



249 

such as LLR (Set I I ) . 

The only f i l ter ing described by Will sky as being tailored 

specifically to fault detection at the expense of reliable state 

estimation is. that of Beard and Jones (see Willsky [27], Beard 

[31]). From their work on continuous-time deterministic systems 

comes the idea of monitoring the innovation direction to identify 

the fault or at least to narrow i t down to a small number of 

poss ib i l i t ies. 

The unsuccessful RCP algorithm (Section 4.9.4) was derived from 

Bayes1 theorem,but the idea of using the theorem in this way was 

culled from the multiple hypothesis technique of Buxbaum and 

Haddad [43] (see also Willsky, Deyst and Crawford [ 4 4 ] , [ 4 5 ] ) . 

These last two references include work on the x 2 test which was 

used in this project for comparison. This method is the simplest 

of the schemes fa l l ing into Will sky ' s "innovation based detection 

systems", a category which includes the LLR algorithms presented 

in this thesis and the GLR techniques to which they are related. 

The (log-) likelihood, ratio is defined in Van Trees [54] as a 

means of attributing a sequence of observations to one of a pair 

of distributions whose parameters are based on hypotheses # and 

Hq. I f the parameters cannot be estimated until the correct 

hypothesis is known then the generalized likelihood ratio (GLR) 

• must be used. The 'LLR' algorithms do require estimation of the 

fault magnitude (i.e. by assuming H. true, i * 0) before the 

log-likelihood ratio can be calculated. Although this technically 

qualifies them as 'GLR' algorithms the name 'GLR' has deliberately 

not been used to avoid confusion with the GLR algorithms described 

by Willsky [27] and by Willsky and Jones [55], [56]. These 

algorithms were discussed in the introductory chapter and so i t is 

only necessary to give here a comparison of the salient points of 

GLR and LLR (Set I I ) . Table 54 i s based on input and output 

measurement faults only; the word ' f i l t e r ' refers to the part of 

the algorithm which generates the innovations and 'detector' to 

the part which monitors the innovations for fault detection 

purposes. 

While LLR (Set I I ) borrows some ideas, particularly from CGLR, i t 

i s clearly a distinct algorithm and, for a system which does not 
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TABLE 54 

GLR LLR(Set I I ) 

1. Type of f i l t e r Optimal Kalman Suboptimal Kalman 

2. Fault isolation 
and estimation 

Yes Yes subject to (3) 

3. Constraints on type 
of fault for which 
algorithm can be 
used 

Full GLR:unconstrained 

Fault l ies in 
di recti on d., i =1,... q 

3. Constraints on type 
of fault for which 
algorithm can be 
used 

CGLR: fault l ies in 
direction d. , i= l , . . .q 

Fault l ies in 
di recti on d., i =1,... q 

3. Constraints on type 
of fault for which 
algorithm can be 
used 

SGLR: fault exactly 
specified 

Fault l ies in 
di recti on d., i =1,... q 

4. Looks at full 
transient effect of 
fault on innovations 

Full GLR: yes. 
Simplified version 
looks at transient 
inside moving window 
of innovations 

No: only at a single 
innovation and at the 
steady state effect 
of the fault 

5. A single detector 
can be used to look 
for faults in both 
input and output 
measurements 

No: would require 
separate detectors 
with 1u1 and 'y 1 

failure signature 
matri ces 

Yes: the V and ' y ' 
failure signatures 
are effectively 
combined into FMAT 

6. A single detector 
can be used for 
either step or jump 
faults on a given 
type of measurement 

No: would require 
separate 'step' and 
'jump' failure 
signature matrices 

Yes: single innovation 
monitoring ignores 
differing transient 
effects of step and 
jump faults 

7. Innovation storage 
requirements 

Full GLR stores all 
innovations since 
start of f i l ter ing. 
Simplified version 
stores all innovations 
from start of window 
to present 

No storage required 

8. Comparisons with 
likelihood ratio 
threshold at time k 

One One for each of the 
1q1 hypothesized 
failure directions 

9. Estimation of the 
time of occurrence 
of the fault 

MLE requiring linear 
combination of all 
stored innovations 

Not estimated as such: 
fault assumed to occur 
when alarm threshold 
crossed by any £nA(y) 

10. Estimation of the 
fault magnitude 

MLE which i s an 
explicit function of 
time estimate 8 

Least squares estimate 
from single innovation 
(equivalent to MLE) 

11. Provides optimal 
estimate of x under 
no-fault conditions 

Yes No: would require 
optimal f i l t e r running 
in parallel 

12. Adaptive state 
estimation 

Yes: extension to 
algorithm available 

Not at present, but 
detector output could 
be used to update 
parallel optimal 
f i l te r (see Sec.7.4) 
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require state estimates, offers several advantages. LLR involves 

less computational effort than GLR, requires no storage of 

innovations and can detect, isolate and estimate both step and 

jump faults on both outputs and to some extent inputs without the 

need for additional detectors. 

The f i r s t half of this project was developed along similar lines 

to the contribution of Bellingham and Lees [so ],although the 

modelling is somewhat cruder than theirs and includes six states 

and four observations against two of each in [so]. Selection of a 

part of the pilot plant has the advantage that the LLR algorithms 

were tested on something approaching an industrial plant rather 

than an isolated laboratory r ig and the inclusion of input 

measurement faults i s an unusual feature in any published work on 

fault detection. The path followed in this thesis diverges from 

that of Bellingham and Lees following the failure of the Mehra/ 

Godbole algorithm [10], [11 ] due to low plant noise levels: they 

added art i f ic ia l measurement noise in an attempt to develop an 

optimal f i l te r . Neither LLR variant makes any attempt to measure 

or compensate for bias, while Bellingham and Lees used Friedland's 

technique [15] to reduce innovation bias and to provide another 

fault indication, the bias estimate. 

Another important difference in the testing of algorithms is that 

in [so] the plant was always run at the setpoint at which the 

model was derived, something specifically avoided in this project. 

Bellingham and Lees suggest that no-fault innovation means and/or 

bias values could be stored at selected setpoints for retrieval 

when necessary. This may well be possible on a small isolated 

rig,but experience on the pilpt plant suggests that where heat 

transfer is involved results are not sufficiently repeatable to 

make this a practical proposition. In this situation i t may be 

better to use a robust algorithm which will work over a range 

of setpoints in the presence of small but variable bias. 

7.4 Suggestions for further work 

While the thesis is fa i r ly evenly divided between plant modelling 

and fault detection, most of the areas where extension i s possible 

fall into the second category: there is l i t t l e that can be done 
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to improve the work covered by Chapters 2 and 3 without making 

the model more complex by the introduction of more parameters. 

The numerical methods of Chapter 2 leave something to be desired 

and work could be done on calculating and perhaps improving the 

accuracy of parameter estimation. The validity of the assumption 

that the l iquid temperatures are independent of the actual 

ambient temperature could also be investigated more thoroughly, 

although this i s not easy to arrange in practice. A useful 

addition would be determination of the range of flow rates either 

side of setpoint over which the linearization holds good. 

The logical next step in modelling is the extension of the section 

of plant covered by the detection system to include Section 1B1 

of F ig.Al . l , i.e. the level control loop at the base of the 

absorber. In isolation Section 1B1 resembles the laboratory rig 

of Bellingham and Lees [so] but differs in that advantage can be 

taken of the interaction between this loop and Section 'A ' of the 

plant (F ig.Al. l ) . Run PLANT8 included a level setpoint change 

(Table 15) and the resulting changes in temperature are shown in 

Fig.43. FX101, the flow rate of stripped MEA into the absorber, 

is unaffected by a level setpoint change; to make level LX111 

rise some liquid is held back by partial closure for a few 

seconds of valve CV111 which i s reflected by a dip in the 

recorded spent MEA flow rate FX!25. In this case i t will not be 

possible for modelling purposes to substitute a delayed version 

of FX!01 for the noisy FX125 measurement because FX101 remains at 

setpoint. The approach that suggests i t se l f is to derive an 

idealized FX!25 from the LX111 measurement i t se l f . Level faults 

could be treated and detected as output temperature faults in 

much the same way as for FX!01 and FX!24, except that here the 

effect on the temperatures-is only temporary as shown by Fig.43. 

I t may well not be possible to manipulate the Kalman gain for 

complete control over the orientation of the fault reference 

vectors in r-space, except perhaps in certain special cases such 

as full state measurement (cf. the example given by Will sky in 

[27] from the work of Beard and Jones). The ideal is to gain 

sufficient control over the reference vectors to be able to 

separate out those between which fault isolation is considered 
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the most important, i f necessary 'bunching up' the remainder. 

There i s no reason why several f i l ters employing constant gains 

with different isolation properties could not be run in parallel. 

This is not as computationally expensive as i t sounds, because 

the use of a constant gain eliminates f i l te r steps (3), (4) and 

(8) in Section 4.4 and saves a matrix inversion at step (5). 

The tradeoff between sensit iv ity and cross-detection could be 

further investigated: i t may pay to set certain alarm thresholds 

higher to avoid declaring a fault unless i t i s large enough to 

ensure correct isolation. The method of comparing log-likelihood 

ratios, when more than one i * 0 is s ignificant against ^ could 

also be reviewed. The intuitive approach in Section 6.5.4 was 

to declare a definite fault in direction 1j 1 only i f the l i r 

for H- was in excess of that for fi. by at least as much as i t was 
j * 

in excess of the ^ f l ^ threshold. 

Perhaps new thresholds should be set for 11r tests on each pair 

of ^ - s i gn i f i can t hypotheses when this situation arises. Another 

possibi l ity to improve sensit ivity i s to suppress the larger 

log-likelihood ratios that occur during transients following 

setpoint changes,thus allowing lower thresholds to be used during 

periods of steady operation. This approach has a precedent in 

vibration monitoring systems often used in industry to protect 

large rotating machines. A higher threshold is used for a 

specified time during start-up to avoid spurious alarm or trip 

out. 

Both estimation accuracy and isolation capability are reduced by 

the presence of bias in the innovations. While in practice 

measurement loop bias should be kept at a minimum by a 

comprehensive maintenance programme and regular instrument 

recalibration, the LLR algorithm would be improved by greater 

robustness in the presence of such bias. This can only be done 

at the expense of increased computational effort and might be 

tackled either by augmenting the state vector or by re-linearizing 

about the new operating point after a change in setpoint. To 

judge the efficiency of the LLR algorithm in terms of performance 

against computation time and storage, i t would be instructive to 
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compare its performance with the CGLR algorithm both in its full 

and simplified forms. Note that the computational requirements 

of LLR could be reduced by employing a simpler technique, such 

as the x2 test, to give an alarm on the occurrence of a fault 

and to trigger off the llr-based detector. 

Subjects closely allied to fault detection are compensation and 

system re-organization. Ideally, having identified and estimated 

the fault, the detector should then be able to reset i t se l f so 

that i t can look for subsequent faults. In the case of the LLR 

algorithm, a new fault estimate is generated from every 

innovation. The technique would require some modification to 

enable the steady state effect of the fault to be subtracted out 

of the innovations to bring the mean back to (near) zero. 

Mention was made in Section 7.3 of the provision of optimal state 

estimates and the fact that with LLR (Set I I ) an optimal f i l ter 

would have to be run in parallel i f estimates were required for 

control purposes. The parallel f i l te r would be entirely separate 

and could be based on a higher order model of the plant, perhaps 

with the inclusion of some of the f i l ter 'adjustments' which 

abound in the literature. In this case i t would be interesting 

to see whether the use of a GLR or LLR detector in conjunction 

with the optimal f i l ter was more efficient than the combined use 

of an optimal f i l ter for state estimation and a parallel lower 

order suboptimal f i l ter coupled to an LLR detector. In either 

case the detector output could be used to compensate for the 

effects of the fault on the optimal f i l ter state estimates, a 

method for achieving this being given by Willsky and Jones [55]. 

System re-organization may be possible in some instances i f 

certain instruments become unreliable. In the case of the pilot 

plant, measurement of the flow rate of cooling water to the 

cooler (FX!24) is a good example. This flow rate is normally 

controlled by the loop CV110/FX124, but i f FX!24 were to fail 

the loop could be reconfigured by modifying the existing LLR 

algorithm to maintain at a setpoint the stripped MEA outlet 

temperature, TX110. On some plants i t may be possible to use a 

state estimate as a substitute measurement. This could not 



256 

however be done on the subsequent failure of TX110 even though 

i t is a system state (xx) because, as shown in Section 4.5, 

this would result in the system becoming unobservable. 
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APPENDIX I 

A BRIEF DESCRIPTION OF THE PLANT 

A1.0 Introduction 1 

Chemical solvent processes for gas sweetening involve the use of 

either alkanolamines or of alkaline salt solutions. In Ammonia 

synthesis-gas purification, for example, removal of Carbon 

Dioxide is required. Hydrogen Sulphide being absent, [85] 

proposes as a suitable choice of solvent an aqueous solution of 

monoethanolamine (MEA). First developed in the 1920's, processes 

ut i l iz ing MEA are widely used in industry on account of the 

relatively low plant investment required, low solvent costs and 

ease of reclamation [86]. Serious corrosion problems at high MEA 

concentrations, as discussed in [87] , have been largely overcome 

by the addition of the corrosion inhibitor "Amine Guard", 

developed by Union Carbide [88], [89], 

Al. 1 Plant Operation 

The pilot plant removes Carbon Dioxide from a Nitrogen stream 

by counter-current absorption in a 10% aqueous solution of 

monoeth ano1 ami ne, HO.CH 2.CH 2.NH 2. 

As shown diagrammatically in Fig. A l . l , the gas mixture, 

containing up to 10% C02, is introduced near the base of an 

absorption column packed with ceramic 'pall rings' and operating 
- 2 0 

at about 250 kNm . MEA, at about 35 C, percolates down through 

the packing to a pool at the base, removing the Carbon Dioxide by 

chemisorption so that almost pure Nitrogen issues from the top 

where i t is passed to a cyclone for removal of spray. 

The Carbon Dioxide dissolved in the 'spent' MEA is released by 

reduction of pressure and boiling in a stripper column containing 

twenty sieve plates. The MEA passes through a counter flow heat 

exchanger to enter the column a few plates from the top via a 

flash valve. Steam and vapour from the reboiler system constantly 

bubble through the plates liberating much of the dissolved gas 

from the solvent. Now containing about half as much Carbon 

Dioxide as before, 'stripped' MEA at over 100 C is pumped from 
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the bottom of the reboiler. The liquid must be cooled before 

re-use, this being done in two stages by f i r s t using i t to 

preheat the incoming spent MEA and then by passing i t through a 

cooler on its way back to the absorber. 

This particular plant can be run in the 'closed loop' 

configuration shown in Fig. A l . l , in which case both gases are 

recycled. The seal water required by positive displacement type 

compressors P-192 and P-193 is pumped out with .the gases and is 

drained off by a separation tank. 

Pressure in the absorber, PX104, is maintained at setpoint by 

allowing a small amount of Nitrogen to bleed to atmosphere via 

CV104, also limiting the build-up of impurities. The stripper 

pressure, PX107, is regulated by control valve CV107 which acts 

as a variable 'short circuit ' across compressor P-193. Valve 

CV102, performing a similar function on compressor P-192, is 

usually left set at 50% open. 

An interesting control problem arises in maintaining a steady 

flow of MEA around the figure-of-eight path indicated by heavy 

lines in Fig. Al. l . It is important that the level of the pool 

at the base of the absorber is kept within limits: too high and 

the MEA will run back down the gas inlet pipe; too low and the 

pressure at the inlet of compressor P-191 may fall below the 

required net positive suction head resulting in cavitation. 

There is considerable liquid hold up in the absorber due to the 

packing, which introduces a flow-dependent transport delay 

measurable in tens of seconds. This prohibits the regulation of 

level by manipulation of .flow FX101 into the absorber due to the 

delayed effect of any control action. Absorber level LX111 must 

therefore be controlled by using CV111 to regulate the amount of 

spent MEA pumped out of the absorber. 

Having thus constrained liquid transfer from absorber to stripper, 

attention can be focussed on the return of stripped MEA from 

stripper to absorber. In maintaining the absorber level at 

setpoint, the spent MEA flow rate FX125 fluctuates sl ightly 

resulting in a varying rate of liquid build-up at the stripper 
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base. I f CV101 is used to control the stripper level, this 

varying MEA input will be reflected in larger variations in the 

spent MEA flow rate out of the stripper. The effect will 

propagate around the system resulting in instabil ity. 

In practice CV101 is incorporated into a second control loop to 

regulate stripped MEA flow rate FX101, using the reservoir of 

MEA in the reboiler and stripper as a buffer and allowing its 

level to fluctuate sl ightly. 

Al.2 Instrumentation 

I t should be noted that Fig Al.l does not show all control 

loops and includes only the instrumentation of interest for this 

particular project. The plant in fact carries a variety of 

conventional instruments typical of the process industry, 

allowing a wide range of experiments to be carried out. 

The Fisher control valves are of the equal percentage type with 

1, 2 or 3 flutes and all flow rates required for this project are 

measured by means of orifice plates. The latter are used in 

conjunction with pressure to current convertors as are the 

differential pressure cells used for level measurement. 

Temperatures are measured by platinum resistance thermometers 

from which voltage signals are obtained by bridge circuits. 

The accuracy of an orifice plate drops off s l ightly with wear, 

but a loop accuracy of around ±2% might be expected, compared 

with about ±1% for a level measurement loop. 

Al.3 Computer System 

The system, described in greater detail in [90], is built around 

a Honeywell DDP 516 computer with 32K of core and a 1M fixed head 

disk back-up. Peripherals include an operator's console, an ASR 

teletype for program manipulation and a VDU, while a second 

teletype and a high speed paper tape punch are provided for data 

logging. 
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AT.3.1 Computer Control of Plant 

To create simple control loops based on a discrete time 

3-term (RID) algorithm, a process variable is assigned 

to each control valve using the operator's console from 

which proportional gain, integral time and, i f required, 

derivative time can also be specified. The console is 

also used to enter the loop setpoint. For loops with a 

short response time a setpoint alteration can be used to 

obtain a good approximation to a step change in a 

regulated variable. 

Electrical signals from the plant reach the computer via 

a real time interface which sequentially scans the 

inputs. For critical variables, such as absorber level 

or pressure, the scanning interval is set to half a 

second, while a temperature not used in a control loop 

may only be scanned every 32 seconds. 

For each loop the computer uses the velocity form of the 

PID algorithm (see Smith [9i]) to arrive at a control 

signal. This is transmitted via a standard 4-20 mA loop 

to a current/pneumatic pressure convertor which drives 

the valve. 

Al.3.2 Recording of Process Variables 

Process variables can be recorded on paper or paper tape 

by the use of a logging routine. For monitoring purposes, 

instrument readings can be printed out every few minutes 

by the ASR teletype, but for recording of transients 

requiring sampling intervals of a few seconds this is 

clearly impracticable. The high speed punch allows data 

to be recorded on tape at a much higher rate and in a 

form suitable for direct loading onto another computer 

for subsequent off-line data analysis. 

This faci l i ty was used in conjunction with this project 

to create permanent data f i les on the college computer 

system from real plant runs recorded on tape. The 

performance of various fault detection algorithms could 
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then be compared under absolutely identical plant 

conditions. 

Al.3.3 Operation in the steady state 

Steady state operation is reached an hour or so after 

start up of the plant. I f liquid temperatures such as 

TX110, TX174, TX175 and TX177 are printed out every few 

minutes on the ASR, this helps to determine the point at 

which the plant has settled down sufficiently for 

experimental work to begin. 

Typical setpoints for process variables are: 

Stripped MEA flow rate 

Absorber pressure 

Stripper pressure 

Cooler c/w 

Absorber MEA level 

CV101/FX101 

CV104/PX104 

CV107/PX107 

CY110/FX124 

c v i n / L x m 

0.15-0.35 kgs 

250 kNm~2 

105 kNm"2 

0.1-0.3 kgs 

0.2-0.3 m 

-l 

Derivative terms are not normally used with these loops 

but typical values of the proportional and integral terms, 

Kp and Kj, for the PID algorithm are given below. It 

should be noted that each value includes a normalization 

factor for the controlled variable based on the range of 

the measuring instrument. The terms do not therefore 

correspond directly to those of Section 6.9 in Smith 

and are quoted primarily for the benefit of future 

researchers at Imperial College. 

Controlled variable Kp K I 
FX101 0.5 0.2 
PX104 20.0 2.0 
PX107 5.0 0.2 
FX124 1.0 0.2 
LX111 30.0 0.9 

These settings were used as standard for all experimental 

work covered by this thesis. 
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APPENDIX III 

MEAN TEMPERATURE CALCULATION FOR 

A COUNTER-FLOW HEAT EXCHANGER 

Tx(£) » hot fluid temperature at 

T2(£) » cold fluid temperature at 'I' 

9(1) ' T j d ) - T,(Z) 

T = mean temperature hot fluid 1m 
T « » mean temperature cold fluid zm 
9 * mean temperature difference 

I » 0 

F1g.A2.1 Temperature profiles for counter flow heat exchanger 

Assuming no losses to the a i r , the total heat transfer, Qh, between 

the two fluids i s governed by the mean temperature difference, em, 

between them.. Clearly 6m = T m - T , the difference between the 
j m im 2m 

mean temperatures of the fluids themselves. 

The total heat transfer, can.be written in three ways: 

Qh = K i2 0
m (A2.1) 

Qh - F i C p l { T i ( 0 ) - T X ( L ) } ... (A2.2) 

% = F 2C p 2 {T 2 ( 0 ) - T 2 ( L ) } ... (A2.3) 

where K12 i s the heat transfer coefficient between the f luids. 

(A2.1) and (A2.2) can be combined to give 

_ T 1(0)-T 2(0)- {T 1(L)-T 2(L)} 
Q h TC7 ^ 

= e(Q)-e(L) 
qh 

... (A2.4a) 

... (A2.4b) 
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Now define 0 ( J I ) = T , ( J l ) - T 2 ( J l ) and consider the heat transfer across 

a small element of the exchanger, length 6JI. With reference to 

Fig. A2.1, 5T , 6T2 and F2 are all in the negative sense giving rise 

to three equations for heat transfer SQ^: 

6Qh = K129(a)6A 
(A2.5) 

-f.cp^t, 

5gh = F
2Cp26t2 

60 = 6T, - 6T2 = -6Q, 1 1 
t t t ~ " n r 

1 pi 2 P2 

(A2.6) 

'(A2.7) 

(A2.8) 

Substituting from (A2.4b) for the term in square brackets 

5Q 
60 = - ^ ( 0 ( 0 ) - 0(L)} (A2.9) 

and from (A2.5) for 6Qh 

60 K12 {9(0) - 9(L)> 9(A) 6JI 
' tt 

(A2.10) 

Integrating over the length of the exchanger and re-arranging 

Q . K {6(L) - 9 0)} 
g h " 12 „ re(L)l (A2.ll) 

B u t Q h = K120m (A2.1) 

/. e e(L) - 9(0) 
m 

J i n 
reTL 
0(0 

(A2.12) 

This is a standard result and may be found in Simonson [92] 
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Equation (A2.TI) allows substitution forQ^in (A2.10) leading to an 

expression for the distribution of e(£) with distance along the 

exchanger: 

60 = 9(£) ^ £n ettj (A2.13) 

dG 
e w j- £n re< f 

Le< !o). 4 
d£ ... (A2.14) 

£n 9 (£ 
m 

£n 
era ... (A2.15) 

8(£ 
era 

re(L)l 
Le(0)J (A2.16) 

and re-arranging 

0(£) 0(0) 
fei 
Lei M . 

(A2.17) 

This result can now be used to derive the temperature distributions 

and hence the mean temperatures of fluids 1 and 2. 

Combining (A2.5) and (A2.6) 

PT _ k128(£) 61 j - - -r-p 6£ 
' t" ... (A2.18) 

and substituting for 0(£) from (A2.17) 

6TX 
K12e(0) 
F ! C

D 1
L Le(0)J 6£ ... (A2.19) 
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tx(a) - tx(0) " j O l w j 
(A2.20) 

tx(a) = m 0 ) + — renr^ 
fic

pian 
m 

i -
m 

The mean value of ^(5,) is found by a second integration 

(A2.21) 

tim " ti(°) + 
' 1 2 

l f l v n 3 5 
m 

i - b(l 
w •dA (A2.22) 

and by using (A2.12) 

= 1,(0) + '12 
flcpl*n m 

r n ( e ( 0 ) " em} ... (A2.23) 

(A2.1) and (A2.2) combine to give 

' 1 2 T,(0) - T,(L) 
9. m 

... (A2.24) 

and by substitution into (A2.23) and simplification using (A2.12) 

Ln, = L ( 0 ) + I ^ {9(0) - 9m} ... (A2.25) 

Hence T - ti(0)9(l) - 1,(1)6(0) - 6 {T,(0) - t^l)} 
H e n c e 'im e(l) - 9(0) ••• (a2-26) 
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By definition T2[n = Tln) - 9m 

T . 1,(0)9(1) - T ^ D e W - 9m {T2(0) - T2(L)} 
an 6 ( L ) - 9 ( 0 ) 
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APPENDIX III 

STEADY STATE MEAN LIQUID TEMPERATURES 

FOR THE THREE-FLUID HEAT EXCHANGER MODEL 

Expression (2.28), here renumbered (A3.1), gives the temperature 

distributions of the liquids within the three f luid heat exchanger 

model. From this equation an expression for the steady state mean 

liquid temperatures can be derived. 

The temperature distributions are given by: 

TXU) 

V * ) 

v o ) " t3 

v ° ) - t3 
... (A3.1) 

A3.1 Mean liquid temperatures 

From (A3.1) 

T im _ 
t _ 2m_ 

•l g£ 
e dZ 

0 

v ° ) " t3 

v ° ) - t3 
(A3.2) 

which leads, for nonsingular B, to 

T im 

2m 
B" l[eB - I ] 

VO) - T3 

t2(0) - t3 

(A3.3) 

But by writing Z = L in (A3.1) 

t,(°) - ta 
T2(0) - T3 

and substituting in (A3.3) 

t. im 
2m 

B 
-l 

\ ( L f 

-

- T (O)" 
m mm 

T 
1 + 3 

- T2(0) ,t3_ 

(A3.4) 

(a3.5) 



Writing T i(L) - 1^(0). = A ^ i = 1,2 

[Ax A2]T 

[t, t m]t t !m 2m —m 

and [t3 t3]t = t3 

We have the result 

T = B -1A + T, — (A3 —m — —3 

The mean temperature excess over effective ambient temperature T3 i 

therefore simply given by 

^ixs = b ' a ( a 3 

where T = fT m - T3 T9m - T 1 -mxs [_ 1m 3 m̂ 3j 

and the mean temperature difference between liquids, 9m = Tj - T2m 

by 

9m = [1 -1]B_1A ... (A3 
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APPENDIX III 

ANALYSIS OF TRANSIENTS USING 

THE THREE-FLUID MODEL 

The method employed for this analysis is essentially that of 

Section 3.6.6 "Frequency response of a heat exchanger" in Seinfeld & 

Lapidus [ s ]. 

Re-arranging instantaneous heat balance equations (3.3) and (3.4), we 

obtain 

+ (K12
 + K13)Tl(£,t) 

... (A4.1) 

... (A4.2) 

Note that i f the time derivatives are set to zero, these equations 

reduce to steady state equations (2.23) and (2.24). 

Suppose that each variable is now perturbed by a small amount (lower 

case letter) from its steady state value (upper case letter) such that 

tj = tj w + (jl't) j = 1 , 2 ( a 4* 3 a) 

F-ft) = F + fj (t) j = 1,2 ... (A4.3b) 

T,(t) = T3 + t , ( t ) ... (A4.3c) 

- K12T2(£,t) - K13T3(t) + = 0 

F2(t)C„,L p2 + Kj 2Tx(£,t) 
(£,t) 

+(K12+K23)T2(£,t) + K23T3(t) - m2Cp2 , g t 
3T2(£,t) = 0 
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Substituting from equations (A4.3) into (A4.1) and (A4.2) and 

subtracting steady state equations (2.23) and (2.24): 

< F . + M t ) } C p i L { ^ * i + i M j l l l } - P i C p i L g l + (K 1 2 + K 1 3 ) t l ( * , t ) 

- K I 2 t 2 ( * , t ) - K 1 3t 3 (t) + m.Cp^ 3 t l ^ , t ) } » = 0 ... (A4.4) 

M * > • - F2Cp2L + K 1 2 t l ( * , t ) 

" ( K
1 2

+ K
2 3 ) + K„ t , ( t ) - ^ = 0 ... (A4.5) 

Dividing through by LF.C j = 1,2 and neglecting terms 
vJ r vl 

J' = 1 , 2 f o r s m a 1 1 Perturbations in F^, j = 1,2 

1 pi 

... (A4.6) 

J ^ z ( Z 9 t ) \ ( d l z ( Z ) \ f 2 ( t ) 1 K12 ] (K +K23) 
\—§2—; + r F2cp2 

1 K2 3 t m . m2 J 3 t 2 ( £ , t ) \ _ 
3 I ( 2 i ^ j 

In order to obtain equations in terms of perturbation variable 
derivatives only, dT.(£)/d£, j = 1,2 can be eliminated by 

\j 
differentiating equation (2.28) with respect to 

i .e. 
T,(l) 
T2(A) 

1 ®c T,(0) - T3 

T2(0) - I 3 

... (A4.8) 
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Substituting from (A4.8)into (A4.6/7)and recalling the definition of 

matrix B from equation (2.25), we obtain in matrix-vector form: 

at^A.t ) > : ( t ) 
1 ° t jBe - V 

T2(0) - T3_ 
3t2(A,t) 

+ 

f 2 ( t ) 

1 ° t jBe - V 
T2(0) - T3_ 

35, L J 

t,(A.t) 

t 2(A,t) 

• i 

k13 

2 3 
F C 2 p 2 

t, (t ) + 1 
m2 
ft 

3M5,,t) 
— d l — 

3t,(jl,t) 
= 0 ... (A4.9) 

Defining the Laplace Transform with respect to time such that 

d j i H U t ) } y (a.s) 

sy (a,s) - y (5,,0) 

we transform equation (A4.9) to give 

d t jU . s ) f l ( s ) 
da Fi 

+ 

dt 2 U, s ) 
d5, 

f 2 ( s ) 
I T — 

t,(0) " t3 

T2(0) - T3 
i * 

i . d . s ) 

t 2 ( i , s ) 

4 

k13 

2 P 2 

t , ( s ) m2 

"it 

stj(5,,s) - t jU.O) 

st2(jl,s) - t ,U ,0 ) 
= 0 ... (A4.10) 
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Using the following substitutions 

mi 

m2 

ft 

W(s) 

m s ) 

m s ) 
"f7~ 

k.Cs) = 
1 
r 

k13 
f t t 1 pi 

k 2 3 
F T

-

2 p 2 

and 
T,(0> - T3 

T2(0) - T3 

and taking the simplest case in which the system is in the steady 

state before any perturbation occurs so that 

t1(£,0) t,(A,0) ... (A4.ll) 

equation (4.10) reduces to 

= ^st+b) 
^(a.s) 

t 2 (£,s ) 

bf-
- W(s)e 8 + J<(s)t3(s) ... (A4.12) 

By defining _t(£,s) = Ctx(J£,s) t 2 (£ , s ) ] this can also be written 

Bf 
I (£,s) = 1 (ST + B) t (£,s) - W(s)e^0 + k(s)t 3 (s) ... (A4.13) 

where t denotes the derivative with respect to length 
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Equation (A4.13) has the solution 

Z 

t(Z9s) = e ( s T + B ) U { t ( 0 , s ) - L(sT + B ) _ 1 k ( s ) t 3 ( s ) | 

- L(sT + B)" 1 k(s)t 3 (s) 

Z 

- e.(sT + B ) U [XxZ2 - X2Zx] W(s)0 

- X2Z1W(s)0.eXl£ ' + X1Z2W(s)0.eX2jl 

Z 

- e ( s T + B ) U [Zx - Z 2] W(s)£ 0 

+ ziw ( s ) B 0.exl* - z2w(S)b ... (a4.14) 

where A, and X2 are the eigenvalues of matrix B/L and 

Zl = i = [ X l 1 2 • (ST + B>r]~l 

z> = n W ? 2 " (sT + B)r]"1 
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APPENDIX III 

PROOF OF EQUIVALENCE OF TWO TESTS 

FOR (UNIFORM) COMPLETE OBSERVABILITY 

Consider the n-dimensional constant coefficient deterministic system 

x(k + 1) 

y(k) 

<S>x(k) 

Hx(k) 

Gu(k) (A5.1) 

(A5.2) 

Kalman [76] introduced a test whereby (uniform) complete observability 

for the system (A5.1, A5.2) is guaranteed i f the matrix rQ has full 

rank where 

H 

m 

M 
n-i 

... (A5.3) 

A second test proposed by Rosenbrock [77] requires that matrix RQ has 

full rank for all s., where 

s.i l n ... (A5.4) 

Clearly (S.JLN = (D for all eigenvalue/eigenvector pairs ( S . , K . ) 

of matrix <f>. Those values of s. for which k. e ^(H) so that 

rank (Rq) < n are the unobservable modes of system (H,$). 

Equivalence is demonstrated by showing 

(a) that rank (RQ) < n => 

(b) that rank (r ) < n => 

rank (r ) < n 

3 a value of s^ for 

which rank (RQ) < n 
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Part (a) is t r iv ia l : 

I f R does not have full rank then 3 a non-zero vector k, an o — 

eigenvector of <f> associated with eigenvalue X, such that 

"XI -
k = 0 

H 
Now consider r k: $jk = Xjk and so o— — — 

r k 0— 

H 
H$ 

Hk 
XHk 
X2Hk 

H$ n-i xn-xhk 

but Hk = 0 r k 0— = 0 

k is non-zero and so IV does not have full rank. I — o 

Part (b) is less straightforward and is an original contribution: 

The aim is to show that i f VQ does not have full rank then at least one 
eigenvalue of $ has an associated eigenvector lying in 

I f rank (rQ) < n, 3 a non-zero vector y s.t. r ^ = £ 

the 1 n1 n-vectors v^ ... £ ^(H). 

Now tf(H) has dimension q(sn-i). Note that i f q = n then the problem 

is t r i v ia l ; i f q = 0 then both rQ and Rq have full rank. 

Let tf(H) be spanned by the 1q1 linearly independent n-vectors o)x ... 
The vectors y_> i = can be written as linear combinations 

of the a).!s as follows: 
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v = ^llhl + ••• + ^qsq (a5-5) (1> 

= s21h1 + ^22^2 ••• + ( i i ) 

= 5nlwx + sn2<£2 ... + ^ ••• ( n ) 

where coefficients . are scalars. 
' J 

Premultiply the r.h.s. of equation ( i) by $ and equate to the r.h.s. 

of equation ( i i ) . Similarly premultiply the r.h.s. of ( i i ) and equate 

to the r.h.s. of ( i i i ) . Continuing the process yields the n-1 

equations: (A5.6) ( i) ... (n-1). 

(A5.6) 
5ii£i + ^12^2 + sic£q = c21o)l + z22<±2 +...52q£2q (1) 

i» cr + , a +...+ E » cr = E a) + F w +.. ... (n-1) i—i sn- i 2—2 n-i 3^q ni—i n2—2 ncpq v ' 

where = £ j , i = 1,...q. 

These n-1 equations are consistent and can be solved for the (maximum) 

n-1 'unknowns' a.. Each a. can then be expressed as a linear 

combination of the oi-'s, i.e:' 

£j = >, i = l , . . .q ... (A5.7) 

We now attempt to construct an eigenvector of $ using a linear 

combination of u - ' s , thus ensuring i t l ies in tf(H). Assume 3 an 

eigenvector k s.t. 

K = TTjOJJ + IT 20J2 + ... + TTqOJq ... (A5.8) 

We need to show that at least one solution exists for scalar 

coefficients TT1 IR̂  such that K is an eigenvector. 
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Premultiplying by $ we obtain 

$k = tlĵ o), + tr2$a)„ + ... + tt $u) 
— i — i . —2 q -q 

= tt.a, + it a + ... + 
i—i 2—2 q-q 

... (A5.9) 

... (A5.10) 

Now S i ••• Sn a r e known in terms of w ... w and so we can wri -m te 

$K = Tr^iLojj.. .oiq} + n'2L2{a)1.. .a^} + ... + ^ ^ { u ^ . . .a^} ... (A5.ll) 

Re -arranging, and using .̂{n̂  ... tt̂ } to represent a linear functi on 
of scalars tt̂  

$k = c jitt j . . .tt joij + Gz{it1.. .it }oj2 + ... + g {tî  ... 7t ••• (a5.12) 
h m h h 

I f k i s to be an eigenvalue of $ then i t must obey the relation 
$k = AlC. 

Now Ak = A(tt 0) + tt 0) + ... + 7t_c0_) — x i—i 2—2 q—q' ... (A5.13) 

and by equating coefficients of i 
(A5.13) we obtain: 

^i^i ••• y 

= l , . . .q between (A5.12) and 

Att, 

g2{it1 ... ttq} Att, ... (A5.14) 

ff
q
{iri ••• y Air 

(A5.14) can be written in matrix form where W is a q x q matrix 

tt2 

tt, 

tt, 
... (A5.15) 

tt tt 
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Now W must have at least one eigenvalue and hence at least one 

eigenvector. There is thus at least one solution for 7rx ... in 

equation (A5.8), such that k is an eigenvector of Hence there is 

at least one eigenvector of $ e #(H). 

I f rank (rQ) < n then tf(H) contains at least one eigenvector of $ 

rank (RQ) < n for at least one value of s.. 

Part (b) of the proof can be followed more easily with the aid of a 

simple example. Equation numbers AX are repeated as A'X. 

Suppose $ 

1 2 0 

0 1 0 
0 0 2 

and H = [0 1 0] 

Then 

0 1 0 
0 1 0 
0 1 0 

which clearly does not have full rank 

We must show that this implies that 3 an eigenvector of $ € 

Rank (r ) < n 3 a non-zero v that satisfies r_v = 0, for instance 
U U 1 ™ — 

v = [3 0 5] t 

Dim N[H) = q = 2. Select any two linearly independent vectors u and 
a)2 that span N{H), such as 

= [2 0 3]T Hi [1 0 2] t and go2 

Since r ^ = 0, v, ... ^""S/ are all in N(H) and can thus be 

represented as linear combinations of GO, and GO . 
—1 —2 

Thus 

$v 

<J> v 

hi + h2 

3 

0 
10 

3 

0 
20 

lloij 

31a)j 

4h2 

14o)2 

... (A15.5) (i) 

( i i) 

(iii) 
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Premultiplying the r.h.s. of ( i ) and ( i i ) by equating to the r.h.s. 

of ( i i ) and ( i i i ) respectively and writing = ax and $oj2 = a2 

£l + —2 

1 lax - 4a, 

1 l03x 4oj. —2 

Solution ax = ^ { a ^ , ^ } 

a2 = ĝlajjjajj} 

31 a) - 14a) 2 

5a)x - 2a)2 
6a>, - 2a)„ .—1 —2 

... (A15.6) (1) 

( i i ) 

... (A'5.7) ( i ) 

( i i ) 

We now attempt to construct k, an eigenvalue of from a linear 

combination of oj.'s. Such a k, 
in N(H) since the o^ 's span N{H) 

combination of w - ' s . Such a k, i f i t can be shown to exist, would l ie 

tt.o), + tr0a)„ 1—1 2—2 ... (a15^8) 

We must find at least one solution for TTJ, tt2 such that $k = Xk 

$k + 7t2£2 (A15.10) 

(A15.11) 

(A'5.12) 

= TT1(5o)1 - 2to2) + 1^(60^ - 2O)2) 

and re-arranging 

$k = gjfitj »tt2}u)1 + g2{irl ,tt2}o)2 
= (5ttj + bitgjwj + (-2tt1 - 2ir9)o)9 

Since we want k to be an eigenvector i t must satisfy 

$k = Xk = X7r,a), + Xtt a) ... (A15.13) — — 1—1 2—2 v ' 

and equating coefficients of we obtain (A'5.15) and (A'5.16) 

sttj + 6tt2 = xitj 

—2TT x - 2TT2 = XTT2 

For X = 1 

i.e. W = 
5 6 

- 2 - 2 

_ 
"-3" 

X = = 2 
_Tr2_ 2 

which has distinct 

eigenvalues 1 and 2 

2 

-1 

In this case there are two eigenvectors of $ e N(H) 

£1 = + and k2 = 2a)j - u)2 
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APPENDIX III 

ESTIMATION ERROR AND INNOVATION COVARIANCES 

FOR A SUBOPTIMAL FILTER 

I f the optimal steady state innovation covariance is known then the 

degradation P$ in the estimation error covariance matrix can be 

calculated directly for any Kalman gain K. 

Assuming that the f i l te r has reached a steady state and that we are 

using a constant suboptimal gain Ka, we use the following notation 

for Lemma A6.1 and Theorem A6.1. 

P(k|k) = P(k-l|k-l) = P 

P(k|k-1) = P+ 

V(k) = V 

Lemma A6.1 

From (5.4) K = p V v " 1 

=> KV = P+Ht 

but from (5.3) 

transposing 

or 

Subscript ' a ' denotes 'actual' 

Subscript ' s ' denotes 'degradation' 

No subscript indicates 'optimal' 

v = HP+ht + R (A6.1) 

K[HP+Ht + R] = P+Ht 

[HP+Ht + R]Kt = HP+ 

[HP+H + R]Kt - HP+ = 0 (A6.2) 

i 

Theorem A6.1 Calculation of Ps 

This theorem is an original extension of the work of Friedland [14 ] 

who derived a similar result for the continuous-time case. 

Consider the time invariant system 

x(k + 1) = $x(k) + w(k) ... (A6.3) 

y(k) = Hx(k) + v(k) ... (A6.4) 
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This i s a similar system to (4.23, 4.24) except that i t is driven by 

white noise only. The input 1u1 makes no difference to the result 

and there is no loss of generality by omitting i t . 

Now write K = K + A, i.e. A is the difference between actual and a 
optimal gains 

pa = p + ps 

V - V + Vs 

From Jazwinski [5 ] 
Pa

+ = p+ + Ps
+ = $Pa$T + Q 

but P+ = $P$T + Q 

and subtracting: P$
+ = $PS$T ... (A6.5) 

Also from [5 ] 

Pa = P + P = [I-K H]{P++P +}[I-K H]t + K RK T a s a s a a a 

= [I-K HHP +[I-K H]t a s a 

+ [I-KH]P+[I-KH]t + KRKt 

- AHP+[I-KH:t + ARKt 

- [I-KH]P+[AH]T + KRAt 

+ AHP+[AH]T + ARAt . . . (A6.6) 

but P = [I-KH]P+[I-KH]t + KRKt 

and subtracting: Pe = [I-KaH]P *[I-K H]T 
s a s a 

- AHP+[I-KH]T + ARKt 

-[I-KH]P+[AH]t + KRAt 

+ AHP+[AH]t + ARAt . . . (A6.7) 

The terms in the second row combine to give 

A{[HP+Ht + R]Kt - HP+} = 0 by Lemma A6.1 

The terms in the third row of (A6.7) add to the transpose of this 

and cancel out also. This leaves 

Pe = [I-K H]Pe+[I-K H]t + A[HP+Ht + R]At . . . (A6.8) s a s a 
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and from (A6.1) and (A6.8) 

p = [I-K H]P +[I-K H]t + AVAT ... (6.9) 
s a s a 

i 

Corollary Calculation of V$ 

Va = HP_Ht + R 
a a 

i.e. V + Ve = H[P + P 1H t + R s s 

but V = HPHt + R from (A6.1) 

and subtracting Vs = HPSHT ... (A6.10) 

i 

For the scalar system of Section 5.4, K = 0.837 and v = 1.227 

Taking K = 2.0, A = 1.163 and from (A6.5) and (A6.9), pc = 1.976 
a 5 

Hence, from (A6.10), v = 0.316 so that va = 1.227 + 0.316 = 1.543 
s a 

which agrees closely with the value obtained by computer simulation 

(Fig 24 - Chapter 5). 



284 

APPENDIX III 

TRANSFORMED VARIABLES FOR THE DETERMINATION OF 

FALSE AND MISS ALARM PROBABILITIES FOR COMPLETELY SPECIFIED FAULTS 

This appendix, which is original work, should be read in conjunction 

with Fig 25(b). Consider the problem of testing a single innovation 

T = , Y 2 , . . . Y R ] T via expression (4.65) to decide between 

#0(£[Y] = 0) and ^(ETYl = m). At the 11r threshold we have, from 

(4.65) 

Y W - ( Y - M ) T V " L ( Y - M ) = N 

Y V S T I = + N ) 

(A7.1) 

(A7.2) 

This contour of constant l l r is an (r-1) dimensional hyperplane 

orthogonal to V" m. Let A be the orthogonal matrix which rotates 

V-1m so that i t l ies in the +YX direction. We define 

m = Am and Y = A Y 

hence V = E [ Y Y T ] = A V A T 

and T 1 = A V - 1 A t by the orthogonality of A 

The regions on either side of the contour now depend only on the 
marginal density f^ (y,) obtained by integrating out the remaining 

ri 
(r-1) r . v . ' s (Papoulis [93]). We have 

= T 7 T - e " ( Y l " . . . (A7.3) 

l / 2 

where = (vx ) and m1 is the f i r s t component of m 
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-l 
Normalizing V m we. have, by definition 

V~xm 

|vlm| 

1 y 1 
- AT 

y 
0 0 

V"lm 

iv^ml 
(A7.4) 

Thus 

v l x = [ l 0]AVAT 

|V"\n|2 [ V 1£[1 [2 

In terms of transformed variables, (A7.2) becomes 

y T ^ = J(mTV~lm + n) 

(A7.5) 

(A7.6) 

y , the value of y at which the transformed constant LLR contour l i 
crosses the y axis, is obtained by setting y equal to zero in (A7.6). 

[Yl o] r'm = J t m T 1 ^ + n) 

Yx[ l o]A V"Lm = i{m'\l'1m + n) 

Hence, from (A7.4) 

(A7.7) 

(A7.8) 

1 " iv^ml 

We require also m1 = [l o] Am 

(A7.9) 

(A7.10) 

and, again from (A7.4) 

m, m v m 
|V"xm| 

(A7.ll) 
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