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ABSTRACT 

Two finite element programs have been developed which can be used to 

calculate the steady-state stress distributions in axi-symmetric and two-

dimensional bodies subjected to creep. The numerical method adopted is 

based on an iterative procedure in which the elastic material properties 

are up-dated after each iteration until the final steady-state is achieved. 

Solutions have been obtained for a range of circumferentially notched bar 

geometries and different values of stress index, n. For each profile, a 

skeletal point at which the effective stress remained approximately 

constant, independent of n, was observed. This stress has been used to 

characterise the overall behaviour of the notch throat region when steady-

state is achieved relatively early in life. Other geometries have also 

been investigated; these were blunt and sharp double notches under remote 

uniform tension, and compact tension specimens having different circular 

hole sizes machined in their crack plane. 

The finite element steady-state solutions obtained for the notched 

bars investigated made it possible to carry out a detailed theoretical 

analysis to predict the lives of these geometries. The equations defining 

the models in terms of life of notched to unnotched bars and stress 

strength ratios were derived using either a continuum mechanics approach 

or Ashby's and co-workers void growth theory. The state of stress 

parameters required in the calculations were taken from the steady-state 

solutions at the skeletal point. 

In order to check the validity of using the proposed theoretical 

models as a useful design tool, it was necessary to compare them with real 

experimental data. Several creep tests were carried out at 538°C on plain 

and notched bar specimens pulled in tension. The material tested was the 

ductile 2|%Cr l%Mo steel used in the electric power generation industries. 



Other creep data were also collected from the literature on the brittle 

!%Cr ^%Mo 5%V steel and a range of high temperature alloys tested by Davis 

and Manjoine in 1953. The assumptions and limitations associated with 

interpreting the creep data in terms of notched to unnotched life or 

stress strength ratios were discussed and focused on. Finally, it has 

been reported that good agreement was obtained between the proposed models 

and the available creep data. 
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NOMENCLATURE 

: notch throat radius 

: dimensions of triangular element 

: bar radius 

: dimensions of triangular element 

: element dimension matrix 

: element elastic property matrix 

: element dimension matrix 

: grain size 

: Young's modulus 

: effective modulus 

: vector of overall externally applied forces 

: relative stress concentration factor 

: area fraction of holes on grain boundary 

: initial area fraction of holes 

: area fraction of holes at which linkage occurs, taken 

as 0.25 

: area fraction of voids at transition from growth by 

boundary diffusion to power-law creep 

: area fraction of voids at transition from growth by 

surface diffusion to power-law creep 

: centre-to-centre void spacing 

: stress index in creep law 

: pressure 

: notch profile radius 

: internal and external radii of a thick-walled cylinder 

: radius of growing void 

: notch to unnotched stress strength ratio 
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: notch to unnotched time strength ratio 

: nucleation time 

: failure time of a notched specimen 

: failure time of a plain bar specimen 

: time to failure 

: element radial displacement component 

: element axial displacement component 

: parameter that measures the effect of stress state on 

void growth rate 

value of a corresponding to simple tension 

surface free energy 

element area 

overall and element vector of displacement components 

creep constants 

strain to failure 

effective steady-state strain rate 

axial, hoop and radial strains 

principal strains 

convergence tolerance 

Poisson's ratio 

effective stress 

hydrostatic stress 

remote applied stress 

failure stress of a notched specimen 

failure stress of a plain bar specimen 

axial, hoop and radial stresses 

principal stresses 
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$ : dimensionless material quantity which appears in Ashby's 

boundary diffusion model 

ty : dimensionless material quantity which appears in Ashby's 

surface diffusion model 

co : measure of damage in continuum theory of creep damage 
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GENERAL INTRODUCTION 

The design of components for high temperature applications has become 

increasingly important in recent years. In power generation plants, 

nuclear reactors, gas turbines and aircraft frames, there is great 

economic incentive to run key components under conditions of extreme 

temperatures and stresses, consistent with reliability and an adequate 

working life. The economic advantage of obtaining optimum efficiency 

puts great emphasis on refining design methods. In particular, the 

prediction of creep behaviour has been the subject of continuing study. 

Creep can occur over a wide range of stress and temperature conditions, 

but it is at temperatures in excess of 0.5 times the absolute melting 

point of the material that creep deformation or fracture becomes 

predominant in practical applications. Experience has shown that failure 

of components subjected to tri-axial states of stress usually initiates in 

regions of high stress concentration. In order to determine the lives in 

such circumstances, laws governing creep behaviour under multi-axial 

stressing are needed. 

The most frequent method of introducing a three-dimensional state of 

stress into a test piece in the laboratory is to subject circumferentially 

notched bars to an axial tensile load. The constraint of the shank 

produces a state of tri-axial tension in the notch region which depends 

upon the notch geometry and creep properties of the material. Several 

experimental investigations of this kind have revealed that both notch 

strengthening and notch weakening can be observed, depending upon the 

notch dimensions and the material examined. To explain this behaviour, 

a knowledge of how the state of stress parameters across the notch throat 

vary with notch sharpness and material properties are therefore needed. 

Several methods based on slip-line field, approximate plasticity and 



finite element analyses have been suggested in the literature for 

calculating the stress distribution within a notch region. The first two 

methods make use of non-work hardening plasticity solutions and are, 

therefore, only relevant when the stress index, nt approaches infinity. 

This thesis presents a numerical method for determining the steady-state 

stress distribution in two-dimensional and axi-symmetric problems, rapidly, 

for any value of n, without the need for calculating how stress 

redistribution occurs with time. Initially, in the absence of plastic 

deformation on loading, an elastic stress distribution will be obtained. 

As time progresses, stress redistribution will take place due to the high 

sensitivity of creep deformation to stress. 

Results of finite element calculations using the present technique 

and comparisons made with exact, approximate and other finite element 

solutions are reported. The problems considered were a range of notched 

bar geometries pulled in tension and some compact tension specimens having 

different hole sizes machined into their crack plane. Considerable time 

has been spent in developing the appropriate routines for up-dating the 

elastic properties after each iteration using either the Von Mises or 

Tresca criterion, and generating the required finite element grids 

automatically from a small number of geometric parameters. 

The aim of the present investigation, after obtaining the finite 

element solutions, was to propose some theoretical models which can 

explain notch strengthening and weakening. These models were derived 

using either a continuum mechanics or a microstructural approach. The 

review made prior to the mathematical derivation of these models revealed 

that detailed information is required on how the state of stress 

parameters vary with notch sharpness. It is known from previous 

investigations that the steady-state stress distributions in the notched 

region for blunt notches are smooth and, for some values of stress index 



n, reasonably constant. In contrast, for sharp notches, the stress 

distributions tend to have peaks in the region nearer to the notch root. 

However, irrespective of notch shape and value of ft, it has been found 

from the detailed numerical calculations using the present finite element 

technique that a region of approximately constant effective stress is 

obtained which can be used to characterise the notch behaviour. The 

state of stress parameters required in the proposed models were therefore 

taken from this region. 

The experimental part presented in this thesis consists of a series 

of creep tests carried out at 538°C on notched specimens pulled in tension 

and having the same throat diameter as the plain tensile bars. The 

material tested was a ductile 2|%Cr l%Mo steel used in the electric power 

generation industries. The data collected from these tests, together 

with other information available in the literature, were used to check the 

validity of the proposed models in assessing component lifetimes. 



CHAPTER 1 

CONTINUUM CREEP MECHANICS 

1.1 CREEP DEFORMATION OF METALS 

Creep could be defined as the time-dependent part of the deformation 

which accompanies the application of stress to a solid. In general, it 

is described in terms of three different stages, illustrated in Figure 1.1. 

The first stage in which creep occurs at a decreasing rate is called 

primary creep; the second, called the secondary stage, proceeds at a 

nearly constant rate; and the third, or tertiary stage, occurs at an 

increasing rate and terminates in fracture. 

The total strain, e, at any instant of time in a creep test is 

represented as the sum of the instantaneous elastic strain, zq9 and the 

creep strain, e^, which, by nature, is chiefly irrecoverable. The factors 

influencing the creep deformation, are shown in Figure 1.2, and are 

given by the following equation: 

e c = (1 .1 ) 

It is clear from Figure 1.2 that creep deformation accelerates with 

increase in temperature and the applied stress; this causes earlier 

fracture. Design against creep becomes most important above a critical 

temperature, T^ > 0.3T (T^ = melting temperature), even if the applied 

stress or combination of stresses are below the macroscopic yield stress 

of the material. 
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1.2 UNI-AXIAL CREEP DEFORMATION AND RUPTURE ANALYSES 

The phenomenon of creep was observed during the 19th century but 

never explained. Components in steam boilers and furnaces were often 

being replaced by new spares because they deformed. The first scientific 

investigation into this material behaviour was published in 1905 by 

Phillips. He studied the slow stretch of india rubber, glass and metal 

wires when subjected to a constant pull. His work was followed in 1910 

by a more detailed investigation by De Costa Andrade into the creep of 

lead wires. Andrade*s contribution to the subject was of the highest 

value. He introduced the terms primary, secondary and tertiary creep, 

shown in Figure 1.1, and proposed the first creep law as follows: 

where t Q and t are the initial and current lengths of the specimen, 

respectively, and B and k are material constants. Since then, various 

empirical equations have been proposed for the stress, time and temperature 

dependence of creep of metals based on experimental observations 

(Chevenard [1919], and Dickenson [1922]). The steady-state region of the 

creep curve (secondary creep) was studied in great detail. Bailey and 

Norton [1929] suggested the empirical equation that yielded good agreement 

with experimental data for steady creep under low stresses: 

where C and n are material constants. Equation (1.3) is called the power-

law or Norton's creep law. 

Long term rupture tests were the main features of the period 1940 to 

1958. Creep tests lasting up to 100,000 h were carried out on different 

I = l Q (7 + B t 1
^ ) (1.2) 

£ (1.3) 



materials (Prager [1945], Johnson [1951], and Richards [1955]). These 

tests enabled the scientists to establish that when secondary creep 

dominates, the primary creep may be neglected. However, under large 

stresses, and especially at high temperatures, primary creep must be taken 

into account. This, in 1953, led to the publication of the "Theory of 

Total Creep Deformation", or "Total Creep Strain Theory", by Odqvist, which 

included the influence of primary creep. The total creep rate was 

expressed in the form: 

i - i t
 + ^ 

where a , ft , a„ and n are material constants. 0 0 C 

1.2.1 Robinson's Linear Cumulative Damage Rule 

Robinson [1952] proposed a practical solution for estimating 

life under variable conditions of stress or temperature. It is based on 

the assumption that the creep strain is a function of stress, temperature 

and the accumulated creep strain, e^: 

e = i(o,T,e c) (1.5) 

In a tensile creep test, if an applied stress, Oj, is held for 

time , it will produce damage, Vj, which, under steady conditions, is 

proportional to the fraction of total life, t v : 
K1 

V1 = ^L (1.6) 

If the stress is changed to cjg, then the second amount of damage incurred 

is: 
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tn 

h - t r ( 1 - 7 ) 

Assuming that the damage resulting from each loading period is 

independent of all other periods, Robinson's rule should be applicable for 

an unlimited number of variable temperature on stress conditions. The 

total damage, V, for all the periods will then be: 

P = I b^-l " J # U-8) 

\ 0 \ 
At rupture, V = 1. 

The advantage of this method is that it could be used to predict 

rupture times under variable conditions, using steady load rupture data. 

1.2.2 Hoff's Theory of Ductile Creep Rupture 

In 1953, Hoff presented a theory which can predict creep 

failure times of uni-axial test specimens failing by geometrical 

instability or necking. The theory is based on the assumption that the 

initial cross-sectional area, k Q , of the testpiece will shrink to zero 

under a constant load, P. Extending Norton's creep law, equation (1.3), 

to hold for finite deformation and neglecting primary creep, Hoff obtained 

the following expression for secondary creep rate: 

7 dA r ,P,n n Qs 

where A is the cross-sectional area. Equation (1.9) can be integrated, 

assuming A = AQ at t = 0, therefore: 

A n - An = C n f1 t (1 .10) 
o 
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Applying the basic assumption that A^ will decrease to A = 0 in the finite 

time, ft, equation (1.10) becomes: 

t , = = —A- ( l . i i ) 
k r Yl n z. 

L yi cr 4 o 

The stress, a, will increase from its initial value, a Q = P/A^, with time, 

according to the following equation: 

a = a (7 - * ) ~ 1 / n (1.12) 
o ft 

a will become infinite when £ = ft. 

Equation (1.11) represents a straight line with a slope 1/n in 

a log/log plot between ft and ft. 

1.2.3 Kachanov's and Robotnov's Continuum Damage Theory 

An important contribution to creep mechanics was made by 

Kachanov in 1958. He presented a theory of combined ductile and brittle 

creep rupture based on: (a) negligible elastic deformation, (b) creep 

rate, e, at steady-state is dependent on the applied uni-axial stress and 

temperature, and (c) deterioration with time takes place whenever a metal 

is subjected to a state of tensile stress. The deterioration or damage 

represented by the parameter a) increases monotonically from zero at £ - 0 

(damage-free material) to unity at failure; therefore, the strain rate in 

a standard Norton, equation (1.3), is now written as: 

r J
1 

ft = L CT „ (1.13) 
4 (7-co)« 

and the rate of change of m is: 
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R „ m 

& = - 5 - 2 — (1.14) 

(1 -«.)* 

where C, w, q, B, m and fi are material constants in equations (1.13) and 

(1.14). 

Robotnov [1969] generalised these concepts to make predictions 

of creep strain accumulation, local damage and rupture times, assuming 

negligible primary creep, such as: 

1+H-q 
z * ,, t t 1+1 

£ R 
= 1 - [ 1 (1.15) 

K 

and: (7 - a = 7 - £ (1.16) 

where the subscript R refers to rupture. Integrating equation (1.16) 

under the conditions w = 0, t - 0 and oi = 1, t = tg leads to an expression 

for uni-axial rupture time: 

tr, = ^ (1.17) 

^ B o m (7 + *) 

Equation (1.17) corresponds to the linear plots of log a against log 

frequently used to present uni-axial creep data. 

Penny [1974], in his review on the usefulness of an engineering 

approach to creep damage, originated by Kachanov, suggested that the 

inclusion of a damage relationship for use in structural calculations 

presents no conceptual or computational difficulties under uni-axial stress 

conditions. He was able to show that a very good agreement (up to 0.95-t^) 

exists between equation (1.15) and many experimental data of different 

alloys. However, McLean, Dyson and Taplin [1977] showed that this 

agreement is valid only up to for Nimonic 80A. 
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1.3 MULTI-AXIAL STATE OF STRESS 

At an arbitrary point P in a continuum, each Force, vector, T., is 

associated with a unit normal vector, n •. This is illustrated in Figure 

1.3, in which AS is the surface of a small element having P as an interior 

point. The totality of all possible pairs of such vectors, T . and n- 9 at 

P defines the state of stress at that point. Fortunately, it is not 

necessary to specify every pair of stress and normal vectors to completely 

describe the state of stress at a given point. This may be accomplished 

by giving the stress vector on each of three mutually perpendicular planes 

at P. The nine components involved in describing the state of stress 

constitute a second order Cartesian tensor, a . Coordinate transformation 
<Lj 

equations then serve to relate the stress vector on any other plane at the 

point to the given three reference directions. 

The nine components of the stress tensor, a - may be displayed in 

matrix form as follows: 

°11 °12 °13 

'21 

'31 

'22 

32 

'23 

33J 

(1.18) 

Pictorially, the stress tensor component may be displayed with respect 

to the coordinate planes, as shown in Figures 1.4(a) and (b). The 

components perpendicular to the planes are called normal stresses. Those 

acting tangentially to the planes are called shear stresses. 

A particular set of orthogonal planes could be found in which one of 

the normal stresses is a maximum and one is a minimum with respect to the 

rotation of coordinates. These normal stresses are the principal stresses, 

Oj > a2 > cf^. The shear stresses on the principal stress planes are zero. 

Similarly, the planes for normal shear stresses could also be found, where 
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Tj > t2 > x^. However, the normal stresses on the principal shear stress 

planes are not zero. 

The stress space shown in Figure 1.5 has coordinate axes associated 

with the principal stresses. Every point in this space, for example, 

PioyO^fO^), corresponds to a different state of stress. The position 

vector of any such point may be resolved into a component OA along the 

line 0Z, which makes equal angles with the coordinate axes, and a component 

OB in the plane known as the ir-plane which is perpendicular to 02 and 

passes through the origin. The component along 0Z, for which 

~ °2 = °39 r e P r e s e n t s Hydrostatic stress and the component in the 

ir-plane represents the deviator portion of the stress state. The equation 

of the ir-plane is given by: 

°1 + °2 + °3 = 0 (1-19) 

For an isotropic material, the yield condition defines a surface 

called the "yield surface" which is a function of the principal stresses 

defined as follows: 

^(cjj,^,^) = constant (1.20) 

Since the yield conditions are independent of the hydrostatic stress, 

such yield surfaces are general cylinders, having their generators parallel 

to 02. Stress points that lie inside the cylindrical yield surface 

represent elastic stress states; those which lie on the yield surface 

represent incipient plastic stress states. 

In a true view of the ir-plane, looking along 02 towards the origin 0, 

the principal stress axes appear symmetrically placed 120° apart, as shown 

in Figure 1.6. The yield curves proposed by Von Mises and Tresca are 
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also shown; these will be discussed in the next sections. 

1.3.1 The Maximum Shear Stress or Tresca Theory 

As a result of extrusion tests on the flow of soft metals 

through orifices, Tresca concluded that a metal will yield when the 

greatest algebraic difference between the three principal stresses reaches 

a constant critical value. Taking o^ > o^ > a^, the theory may be 

expressed as: 

- °3 " 2 W = ° (1"21) 

The yield locus described by equation (1.21) is a hexagon, as 

shown in Figure 1.6. Only the maximum stress difference has an influence 

upon yielding. 

Experimental work on various materials tested under combined 

tension-torsion or compression-tension suggest that some materials tend to 

approximately follow the Tresca yield function, but none of them showed 

the discontinuity required by the criterion (Morrison [1940,1948], Taylor 

and Quinney [1931], and Rogan and Shelton [1969]). 

1.3.2 The Shear Strain-Energy or Von Mises Theory 

This theory is variously known as Maxwell-Mises or Henckey-Mises 

It states that a material wili yield when the shear strain-energy stored in 

the body reaches a critical value. It is not necessary to stipulate 

> a 2 > a 3 ' a s t * i r e e principal stress differences are involved and 

not just the maximum difference, as in the Tresca theory. It can be 

expressed as: 

(a7 - a £ )
2 + (a2 - a 3 )

2 + (o3 - ) 2 = lE 1 (1.22) 
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The yield locus in the ir-plane, described by equation (1.22), 

is a circle, as shown in Figure 1.6. 

Nadai [1950] has also shown that this combination of principal 

stresses is proportional to the octahedral shear stress, such as: 

Tests carried out on various materials under combined stresses 

(tension, torsion, internal pressure) revealed that most low alloy steels, 

aluminium alloys and copper obey the Von Mises criterion (Siebel [1953], 

Lianis and Ford [1957], Naghdi, Essenberg and Koff [1958], and Holloway 

and Shelton [1979[). Other material, such as cast iron and mild steels, 

showed some deviation from the Von Mises criterion (Cook and Robertson 

[1911], Lode [1926], and Davis [1945]). 

1.3.3 Plasticity Theories and the Phenomenon of Creep 

It has been shown in previous sections that plastic deformation 

in metals takes place if a stress in excess of the yield stress is suddenly 

applied. A strain of a value, say, Zy 9 is instantaneously observed. 

However, if the stress is kept constant, the strain gradually increases 

with time until it approaches a steady value of, say, e 2 (Figure 1.7). 

The value [ej - e 2) the creep strain. 

Metal physicists attribute the deformation of metals, whether 

it is plastic or creep, to dislocation movement in the shear or slip 

planes due to the applied stress. The dislocation movements in purely 

plastic deformation are activated by the applied stress, while under creep 

conditions they are activated by thermal agitation due to the high 

temperature, even if the applied stress is lower than the yield stress of 

the material. This fundamental similarity in the deformation process 
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means that the well-established theories of plasticity are applicable also 

to creep. 

The first satisfactory theory of isotropic tri-axial secondary 

creep behaviour was published in 1935 by Odqvist. He generalised 

Norton's equation (1.3) by employing the Von Mises definition of the 

second stress invariant, a (equation (1.22)), as follows: 

E;; = | C a*" 7 5;; (1.24) 
'-tj 2 <Lj 

where S . • is the tensor for the stress deviator. Odqvist's theory was 
'LJ 

based on two assumptions: 

(a) Incompressibility, i.e. 

+ a22 + a33 " 0 ( 1 " 2 5 ) 

(b) Normality and convexity of preserved surfaces, i.e. 

a = constant (1.26) 

Other equations for multi-axial creep based on similar 

principles have also been proposed by Soderberg [1936], Nadai [1937], and 

Tapsell and Johnson [1940]. These equations showed reasonable agreement 

with the experimental data collected from different tests on different 

materials. 

The experimental work done by Johnson and co-workers [1962] 

also confirmed that plasticity theories are applicable for creep. They 

showed that the primary and secondary creep resistance of a number of pure 
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metals and engineering alloys in uni-axial tension and under complex 

stress systems are identical when these results are analysed using 

plasticity theories. They found that their data were well represented by 

the following equation: 

F = A 71 4[£\ (1.27) 

where ~a and e are the effective stress and strain rate, respectively, A is 

the material constant, and is a time function equal to unity for 

secondary creep. Equation (1.27) is simply a specific form of the 

generally acceptable flow theory of Odqvist (equation (1.24)). 
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1.4 CREEP BEHAVIOUR OF NOTCHED BARS 

Equipment which operates over long periods of time at elevated 

temperatures may suffer excessive deformation or fracture due to creep. 

Since many components experience tri-axial stress as a result of the 

applied loading conditions or local sharp changes in section, the laws 

describing creep behaviour under multi-axial stressing are used in the 

design. Experience has shown that failure often initiates from sites of 

stress concentrations where there is a significant hydrostatic tensile 

stress component. 

The most frequently used method of introducing a three-dimensional 

state of stress into a testpiece in the laboratory is to subject 

circumferentially notched bars to an axial tensile load. The state of 

stress in the notch root can be changed systematically by changing the 

notched section dimensions. This cannot be measured experimentally; 

therefore, scientists have to rely on various analytical techniques which, 

together with the uni-axial and notch bar rupture data, can provide useful 

information for design engineers. 

1.4.1 Notch Rupture Strength 

The results of experimental uni-axial and notched bar creep 

tests are usually interpreted in terms of notch to unnotched lives or 

strength ratios. When time ratios are used in the presentation, the 

following condition is applied: 

n = 7 (1.28) 
a 
un 

t 
Yin 

therefore: = ft (1.29) 
un 

where ft^ is failure time of a notched specimen due to an applied nominal 
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stress, a , on the minimum section, and £ is failure time of a uni-axial 
n an 

specimen under a similar applied stress, cr̂  = a u n ' 

Similarly, when stress ratios are presented, the condition is: 

£ 
= 7 (1.30) 

an 

an 
therefore: — = 5 , (1.31) 

(J 4 an 

where a is the stress on the minimum section of a notched bar that fails n 

in a time £ . and c? is the stress in a uni-axial specimen that fails in no an 

the same time, £ = Figure 1.8(a) illustrates how the time and 

stress ratios are estimated for typical uni-axial and notched data under 

various applied stresses at constant temperature. The materials are said 

to be notch strengthened if S^. and S > 1, but notch sensitive (weakening) 

if S ^ and S < 1, as shown in Figure 1.8(b). 

Previous experimental work has indicated that notch 

strengthening and notch weakening can both be observed, depending upon the 

material and test conditions. 

Davis and Manjoine [1953], Newman, et al. [1953], and Ng, et 

al. [1980], in their experimental investigations on different materials, 

showed that some materials will always notch strengthen with increase in 

constraint, while others will change from notch strengthening to notch 

weakening after a certain amount of constraint. 

1.4.2 Stress Distributions in Circumferentially Notched Bars 

Several methods of calculating the stress distributions within 

a notch region undergoing creep deformation have been proposed in the 

literature. Some methods make use of the non-workhardening plasticity 

solutions and are, therefore, strictly relevant only to values of creep 
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stress index, n <». Other methods use the finite element techniques 

with the appropriate equations describing primary, secondary and tertiary 

creep. 

In 1952, Bridgman suggested an approximate method for 

determining the stress distribution in the necked region of a two-

dimensional sheet and a cylindrical bar pulled in tension by a uniform 

load. Both the stress equation of equilibrium and the general condition 

of plasticity have to be satisfied in the neck. Bridgman's analysis is 

only applicable for notches with low constraint. 

Slip-line field analyses on rigid perfectly-plastic materials 

have been performed on various notched geometries to determine the 

distribution of strain and the constraint factor, P , defined as follows: 

P = 4 (1.32) 
a 

where a^ is the axial throat stress, and a is the equivalent stress. 

The work by Ewing [1967,1968] on plane strain V-notched bars 

with and without fillet radii led to a mathematical expression that could 

be used to calculate the ratio of the throat to bar diameters required to 

achieve localised deformation. Other expressions were also suggested by 

McClintock [1961], and Neimark [1968], based on slip-line field analyses. 

In 1966, Szczepinski, et al., calculated the constraint factor, 

P , for circumferential notches where the radial and the tangential 

components in the minimum section are equal. They also suggested a method 

for determining the critical width for these notches. 

Bates and Santhanam [1978] used a modified form of slip-line 

field solution to calculate the stress distributions ahead of notch tips 

for strain hardening materials. Later, Santhanam and Bates [1979] 

discussed the influence of notch tip geometry on the distribution of 
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stress and strain. They suggested a formula for the maximum principal 

strain in the notch zone and the way it decays throughout the region. 

In the last 20 years, great advances have been made in 

computational techniques and computer power. One numerical technique 

which benefitted from these advances was the finite element method. Many 

scientific research studies have been made to solve and improve the quality 

of solutions of plastic and non-linear problems. 

Sutherland [1970] developed an elastic finite element computer 

code to include non-linearity arising from creep. He obtained solutions 

for plane strain, plane stress and axi-symmetric problems. The technique 

used in the code to converge from the elastic to steady-state creep 

condition was based on Greenbaum and Rubinstein's [1968] incremental 

procedure. 

The first detailed finite element calculations performed to 

obtain steady-state stress distributions in the throat of notched bar 

geometries were made by Hayhurst and co-workers [1977a,b,1978]. They 

produced steady-state solutions in the absence of damage at first, then 

damage was introduced gradually until failure. 

Needleman and Shih [1978] used a finite element method for 

solving plane strain incompressible material deformation problems. The 

problems they considered were a beam in pure bending, thick-walled tube 

subjected to internal pressure, a hole in an infinite plate, and a plane 

strain notched bar in tension. Later, Kumar, German and Shih [1980] 

extended this method to deal with axi-symmetric problems and produced some 

steady-state stress distributions in the throat of a notched bar under 

tensile loading. 

Al-Faddagh, et al. [1982] used a finite element iterative 

procedure for calculating directly the steady-state stress distributions 

in axi-symmetric bodies without the need for obtaining solutions at 
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intermediate time intervals. The solutions obtained for various notched 

bars showed good agreement with Bridgman's approximate plasticity solutions 

and other finite element predictions. 

1.4.3 Steady-State and Rupture Times Under Multi-Axial State of 

Stress 

A number of theories and methods have been proposed in the 

literature for estimating the steady-state and rupture times under multi-

axial state of stress. Provided that the required material coefficients 

and the state of stress components are known, they should, therefore, be 

applicable to notched bars. 

Several studies by Calladine [1963-1967] have demonstrated 

that Hoff's theory of ductile creep rupture (Section 1.2.2) is applicable 

for a wide range of structural problems, such as beams, plates and shells. 

Later, in 1969, Calladine proposed a mathematical formula, which takes 

into consideration multi-axial effects, to estimate the time taken for the 

stress to relax from the initial elastic value to the steady-state. His 

estimates showed a satisfactory level of agreement with other numerical 

predictions of the time to achieve steady-state, made by Marriott and 

Leckie [1964] and Penny [1967]. 

A time-iterative numerical method was used by Hayhurst [1973a] 

to calculate rupture times of plate structures subjected to in-plane 

tension. The effects of stress redistribution due to primary and 

tertiary creep were included in the calculations. 

A generalised method to that of Martin and Leckie [1972] was 

used by Hayhurst [1973b] and Hayhurst and Leckie [1973] to include the 

effects of multi-axial stress rupture. Estimates of rupture times for a 

number of structures were made. They showed satisfactory agreement with 

the experimental predictions by Leckie and Hayhurst [1974]. 
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Hayhurst, Dimmer and Chernuka [1975] carried out some 

numerical calculations using a finite element method to estimate rupture 

lives of plates containing a circular hole subjected to in-plane tension. 

They showed good agreement with the experiments performed on copper and 

aluminium alloys. The same finite element method was used by Hayhurst 

and co-workers [1977a,b,1978] to solve axi-symmetric problems. Estimates 

of steady-state and rupture times were given but never proved 

experimentally. 

Cane [1981] published the results of a research programme 

geared to assess the design and performance of heavy section steam pipe 

welds operating in the creep range. The materials tested were a selection 

of brittle and ductile low alloy steels. The creep and rupture data on 

these materials were used in finite element computations to predict 

failure strains, times and stresses. 
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1.5 CONCLUSIONS 

Continuum mechanics laws, which describe the behaviour of components 

undergoing creep deformation leading to rupture, due to an applied 

uni-axial or multi-axial state of stress, have been discussed in detail. 

The associated equations describing these laws will be used in coming 

chapters in experimental and theoretical analyses. 

The creep behaviour of notched bars under tensile loading were 

discussed in general. In particular, the equations describing notch 

strengthening and weakening in terms of time or stress strength ratios 

were given. These will be used in future analyses to model real 

material data. 
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Figure 1.1: Three stages of creep 

Figure 1.2: Influence of stress and temperature on creep deformation 
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Moment j 

Figure 1.3: State of stress at a point 

Cartesian coordinates Cylindrical coordinates 

Figure 1.4: Stress components 
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Figure 1.5: Stress space associated with principal stress coordinates 

Figure 1.6: Yield curves in the ti-plane 
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Figure 1.7: Plastic and creep strain 

a-

Figure 1.8: Schematic diagrams of notch strengthening and weakening 
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CHAPTER 2 

CREEP RUPTURE BY VOID GROWTH 

2.1 INTRODUCTION 

Creep damage theories are, in general, classified under two headings: 

(a) Engineering creep damage theories. 

(b) Metal science creep damage theories. 

All theories agree in principle that damage is reponsible for the 

acceleration in strain rate observed during tertiary creep and therefore 

causes fracture. The difference is that engineering damage theories use 

a state parameter in the constitutive equations to describe the damage 

process responsible for weakening the material (Chapter 1), while metal 

scientists can identify the damage microscopically. This enables them 

(the metal scientists) to choose the correct stress component in their 

constitutive equations to describe the internal damage accumulation. 

Metal science theories relate intergranular creep fracture to the 

initiation and growth of grain boundary cavities. 
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2.2 GRAIN BOUNDARY SLIDING 

At high temperatures (T > 0.37"^), intercrystalline fractures, or 

fractures that run along grain boundaries, are the rule rather than the 

exception. A metal which at low temperatures fails with a normal 

transcrystalline failure is inclined to fail by a fracture that passes 

along the grain boundaries at elevated temperatures. These 

intercrystalline fractures are closely related to grain boundary shearing 

or sliding. Figure 2.1 illustrates the various ways in which sliding 

could be accommodated (Edwards and Ashby [1979]). Elastic deformation is 

a reversible process; therefore, it has no significant influence on the 

overall deformation mechanisms. The remaining four methods, in which 

sliding can be accommodated, form two distinct failure mechanisms. These 

are diffusion, which is usually responsible for brittle failure, and power-

law creep mechanisms associated with ductile failure. 

Intercrystalline brittle and ductile failure mechanisms differ in the 

way the shear stress along the grain boundary is relaxed (Figure 2.2). 

In a totally brittle failure, the shear stress along the sliding boundary 

is relaxed by causing a high stress concentration zone at the grain corner. 

Because the grains do not deform, then the concentration of stress will 

cause the formation of microcracks and voids which grow until grain 

separation takes place. However, in a totally ductile failure, the stress 

concentration at the end of the boundary is relieved by plastic flow or 

creep. Separation occurs when the cohesive strength of the grain boundary 

can no longer take the stress. A combination of these two mechanisms can 

also cause grain separation. The shear stress is relaxed by the formation 

of voids, mini-cracks and grain deformation. 
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2.3 INTRODUCTION TO THE CONCEPT OF CREEP RUPTURE BY VOID GROWTH 

Before discussing the various growth theories, it is necessary to 

define some basic terms which will be used frequently in the future. The 

schematic diagram drawn by Cocks and Ashby [1980a] represents the simplest 

way of modelling a grain boundary void subjected to the stress field O y 

a2> a3> a s shown in Figure 2.3. The parameter 2Z is the void spacing, d 

the grain size, and 2/l^ is the void diameter. Under the above stress 

field, voids grow by three distinct micromechanisms; these are: 

(a) Power-law creep mechanism. 

(b) Boundary diffusion mechanism. 

(c) Surface diffusion mechanism. 

Figure 2.4 shows the simplest way of representing each mechanism in 

a unit structure. 

Void growth by coupled mechanisms is also possible. They control 

the growth because the volumetric growth rate of a void is dependent upon 

the following parameters: 

V = iii,T,V) (2.1) 

where i is the strain rate, T is the temperature, and 1/ is the current 

volume of a void. One mechanism dominates for a period of time, then a 

switch to another mechanism will dominate until failure. Three types of 

coupled mechanisms can control the growth of voids; these are: 

(a) Coupled boundary diffusion and power-law creep mechanism. 

(b) Coupled surface diffusion and power-law creep mechanism. 

(c) Coupled boundary and surface diffusion mechanism. 
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Figure 2.5 shows a void growing under the influence of a normal 

stress, Oj, for each individual coupled mechanism. 

To visualise how the switch in failure mechanisms can take place, 

Ashby, et al. [1979], Svensson and Dunlop [1980], and Cocks and Ashby 

[1982a], constructed cavity growth mechanism maps for various materials. 

One example of these maps for copper and for a-brass is shown in Figures 

2.6(a) and (b). The diagrams show how the strain rate, stress, 

temperature, and void dimensions can cause a switch from one failure 

mechanism to the other. 

Dyson and Taplin [1976] also showed how dependent the transition is, 

from continuum growth (power-law creep) to diffusion-controlled growth, on 

strain rate, temperature, and void dimensions (Figure 2.7). 



_ 46 _ 

2.4 THEORIES OF RUPTURE RELATED TO THE NUCLEATION AND GROWTH OF VOIDS 

The creep fracture process in metallic materials involves stages of: 

cavity nucleation, growth, interlinkage to form cracks, crack propagation, 

and final fracture. Some of these stages may occupy a small proportion 

of the total creep life and therefore have little influence on the total 

rupture time of the material. Metal scientists, through their 

observations of material behaviour under creep conditions, believe that 

nucleation, growth, interlinkage, and propagation occur simultaneously 

during tertiary creep prior to failure. 

To develop a theory which includes the effects and interactions of 

all these stages is extremely difficult. Therefore, creep life is often 

considered to be dominated by only one or two stages and that the others 

can be neglected. In this section, metal science theories and their 

development will be discussed in detail. 

In 1954, Greenwood, et al., noted that creep rupture is due to the 

growth and coalescence of voids at grain boundaries. They also stated 

that the cavity nucleation at the grain boundaries is predominantly 

dependent on creep strain and that the growth of these cavities is due to 

diffusion. 

Hull and Rimmer [1959] proposed a theory of void growth controlled by 

boundary diffusion. Their equation for void growth is: 

(2.2) oe 

dt 

where y is the surface energy, and: 

2 
(2.3) 

where n., is the hole radius, and 2Z is their spacing. The cross-
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sectional area of voids per unit area parameter ^ is similar to the state 

parameter cu in Kachanov's theory. Other theories and models for diffusion-

controlled void growth were proposed by Speight and Harris [1967], 

Weertman [1974], Speight and Beer [1975], Raj and Ashby [1975], Chuang, et 

al. [1979], and Cocks and Ashby [1982a]. In these theories, expressions 

for the rate of volumetric change of a void are given, based on the 

assumptions: 

(a) Constancy of cavity density. 

(b) Grains do not deform plastically. 

(c) Cavities are a perfect vacancy sink and the normal stress is a 

perfect cavity source. 

(d) The applied load remains constant on each cavitated grain facet. 

The mechanism of void growth by power-law creep was first introduced 

by McClintock [1968] when studying a simple model of a hole growth during 

plastic deformation. His work was followed by many proposed theories for 

void growth by power-law creep (Rice and Tracey [1969], Hellan [1975], 

Dyson and Taplin [1976], Edwards and Ashby [1979], Needleman and Rice 

[1980], and Cocks and Ashby [1980b]). All these theories proposed an 

expression for calculating the rate of radius growth of a void under the 

influence of a remote uniform effective strain rate field, e, such as: 

A = M K I (2.4) 

K is the stress state sensitivity parameter dependent on the particular 

theory adopted. 

It was shown in Section 2.3 that the volumetric growth rate of a void 

is dependent on the three parameters, e, T and (/ (equation (2.1)). This 
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makes it necessary to analyse a model in which voids grow by coupled 

mechanisms. This was done by Beer and Speight [1978], Edwards and Ashby 

[1979], Chuang, et al. [1979], and Cocks and Ashby [1980a,1982a,b]. One 

example of a void growth by a coupled diffusion and power-law creep 

mechanism is shown in Figures 2.8(a) and (b) (Cocks and Ashby [1982a]). 

It shows the damage rate (ffft/(i£) dependence on both the stress and the 

area fraction of holes, ft. The interesting thing about this model is 

the introduction of a transition parameter, ft. The diffusion mechanism 

dominates from the initial area fraction of holes ft to ft and power-law 

creep dominates from ft until fracture. 

Other theories and models are available in the literature which focus 

on the linkage of separately nucleated grain boundary cracks and their 

propagation. 

Lindborg [1968] derived a relationship which gave the fraction of 

cracked grain, P, in terms of the number of micro-cracks, ft, required for 

fracture: 

P = 0.2 ( 2 . 5 ) 

where N is the number of grains. He used this equation to predict 

the percentage of area that had been cracked due to creep prior to 

fracture and compared it with his experiments. Later, Lindborg [1969] 

studied the growth rate of sharp intercrystalline cracks and suggested 

that fracture occurs when one of the cracks reaches a critical size. 

Dyson [1976] proposed a theory in which the rate of diffusive cavity 

growth may be constrained by either the rate of deformation of the 

surrounding material or the rate of supply of vacancies at the adjacent 

grain boundary. He proposed an upper bound strain rate equation, similar 

to Kachanov's equation (1.13), such that: 
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in 
z = b t ^ j (2.6) 

cj 

where A^ is a parameter controlled by strain and can change by continuous 

cavity nucleation. It is expressed as: 

A = K e c K = constant (2.7) 

therefore: e = b 
1 - K e 

(2.8) 

or e = 8 a [1 + nKz\ (2.9) 

and for Kz « 1: z = B on e x p ^ £ (2.10) 

Dyson stated that equation (2.10) can represent the secondary and 

tertiary creep of many materials. 
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2.5 ASHBY'S THEORY OF CREEP RUPTURE BY VOID GROWTH 

In recent years, Ashby and co-workers published a comprehensive theory 

for modelling the growth of voids by mechanisms controlled by grain 

boundary diffusion, by surface diffusion, by power-law creep, and by any 

combination of the two of these (Figures 2.4 and 2.5) (Raj and Ashby 

[1975], Edwards and Ashby [1979], Cocks and Ashby [1980a,b,1982a,b]). The 

theory replaces the classical continuum mechanics damage parameter, u), 

responsible for the acceleration in strain rate during tertiary creep, by 

a new term called the area fraction of holes on grain boundary, 

defined by: 
v 

- q r 

where is the radius of a growing void, and 2z is the centre-to-centre 

void spacing, as shown in Figure 2.3. 

The theory assumes that all voids nucleate at a certain time, in 

which ^ has an initial small value, Voids then start to grow under 

the influence of either stress state or temperature, until ^ reaches a 

critical value, ^ , where failure takes place. According to continuum 

mechanics theories, u = 1 at failure, similarly for this theory ^ should 

therefore equal one at £ = £g. In reality, samples will fail sooner 

because, as ^ approaches one, the true stress on the remaining ligament 

increases rapidly; therefore, either ductile failure, cleavage, or some 

other fast fracture mechanism will cause failure. Ashby's theory adopts 

a critical value, = 0.25, except when there is a non-uniform 

distribution of voids (constrained cavity growth). 

The constitutive law used in Ashby ?s theory for power-law creep is: 

i, - i0 ty" (2.12) 
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where Yl, £ and cr are material constants, and a and e, are the Von Mises 
0 0 * 4 

effective stress and strain rate defined as follows: 

° = ij + ( a 2 - a 3 )
2 + (a 3-a ?)

2|}2 (2.13) 

and: ^ = f| | - ) 2 + ( " + U j - S j ) 2 ! } 1 (2.14) 

The stresses and strains in equations (2.13) and (2.14) are all principal 

values. 

The strain rate at lower stresses is controlled by diffusion across 

or around grains; therefore: 

12 V 52 a TT 
i. » U + -) (2.15) 

4 k T d2 dVv 

where V^ and 6V^ describe the rates of lattice and of grain boundary 

diffusion, Q is the atomic volume, d is the grain size, T is the absolute 

temperature, and k is Boltzmann's constant. 

In the next sections, a summary of Ashby's analysis is given for the 

different mechanisms proposed to model the growth of voids. 

2.5.1 Void Growth by Boundary Diffusion Alone 

When voids grow by boundary diffusion, matter diffuses out of 

the growing void, which remains spherical, and plates onto the grain 

boundary, as shown in Figure 2.4(a). The equations to describe damage 

rate and strain rate are: 

= — , 2 (j.) (2.16) 
e
o dt In (1/{h) °o 

j l < £ m
 2*o a {°-l) (2.17) 
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where <f> is a material property defined as 

2 v b « b q % 

k T I3 lo 
(2.18) 

The constants in equation (2.18) were defined after equation (2.15). 

The time to rupture expression was found by integrating 

equation (2.16) between the following limits: 

" h 

h = 6c 

at 

at 

t = t 

£ = 

(2.19) 

where X • is the initial area fraction of the holes, and £ is the 
n 

nucleation time. The result is: 

* n * t 'o £o 
r- U J ' 2 

- 6 3/2 JL 
in { i ] + 1 

or: * £ + 
0.17 

n ^ a1 
(2.20) 

if X; < 10"
2
 and X. = 0.25. 

The strain to rupture expression was obtained by integrating 

equations (2.16) and (2.17) as a coupled set. The result is: 

= i x 3/2 i a (2.21) 

The nucleation strain, e , must be added to rupture strains which are 

usually small; therefore, rupture times at constant load and stress are 

expected to be almost equal. 
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2.5.2 Void Growth by Surface Diffusion Alone 

When voids grow by surface diffusion, matter flows out of it 

at the equator, causing it to become flatter and more crack-like, as shown 

in Figure 2.4(b). The equations given to describe damage rate and strain 

rate are: , 

. h 
ro dt v - i h ) 3 °° 

d£ 

(2.22) 

1 dr 4 ^a h y4 3 

'o v - h ] 3 d a o °° 

where % is a material property defined as: 

1 s* v a j 
ip = (2.24) 0 /2 k T Z y 2 i '4 0 

where y^ is the surface free energy. The other parameters are similar to 

those in equation (2.18), but are for surface diffusion. 

The time to rupture expression was found by integrating 

equation (2.22) between the limits of equation (2.19). The result is: 

°o 3 

t = £ + £ (-2.) 
ft . , o 1 £ \p 1 0 yo 

* - H ' 3 

or: ft - £ + £ (—) (2.25) 
^ n £ ijj °1 

0 yo 

when ft I s small, and ft = 0.25. 

Voids growing by surface diffusion contribute almost no strain 

as they grow because of their flat crack-like shapes. The times to 

rupture at constant load and stress are, therefore, expected to be almost 

equal. 
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2.5.3 Void Growth by Power-Law Creep Alone 

When voids grow by power-law creep alone, the effective stress, 

a, determines their rate of expansion. The rest of the matter containing 

the voids, shown as the shaded area in Figure 2.4(c), extends at a rate 

determined by the net section stress, cr/(7-^). The equations given to 

describe damage rate and strain rate are: 

£o dt 

7 dz 

7 
l(7 

{j + — £ 
a d 

- 7 

a j n 
a_ 

l<'-<k>n 
i I 

a 

(2.26) 

(2.27) 

where a is a parameter that measures the effect of stress state on void 

growth rate. It is defined as: 

a = {sinh -
m 

j t t j t -
-l 

(2.28) 

where o m is the hydrostatic pressure expressed by: 

+ °2 + °3 
m (2.29) 

At constant stress, the time to rupture was found by integrating 

equation (2.26) between the limits of equation (2.19) and assuming that ^ 

is small and - 0.25. The result is: c 

- t, + -j—rn—:— In 4 [n+ I) zn y m r j : 

a j 

a 
(2.30) 

At constant load, the expression given for rupture time, using 

the same assumption for constant stress, is: 
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+ n / in/(7) , . l , o»n 
^ - [(n+7) ^ J t n + - (—) (2.31) 

n z a 
o 

where a is the stress at rupture defined by: 

a ( 1 - 1 / n (/ - n z. t ) 4 

a -
(2.32) 

a^ is the initial stress. When ^ goes to zero, equation (2.31) reduces 

to Hoff's equation (1.11): 

V " t t (2-33) 

The rupture strain was found by adding the term responsible 

for the creep in the specimen e t o that due to the growing voids 

(equation (2.21)). The result is: 

where is defined by equation (2.30). 

2.5.4 Coupled Boundary Diffusion and Power-Law Creep 

A switch from one void growth mechanism to another can take 

place if the stress field or the temperature vary with time (Figure 2.5(a)) 

Figure 2.8(a) shows a plot of the damage rate (equations (2.16) and (2.26)) 

for boundary diffusion and power-law creep against stress. When the 

stress is low, the voids grow by diffusion, but when high they grow by 

power-law creep. This also means that when ^ is small, the voids grow 

by diffusion, and when large they grow by power-law creep, as the plot of 

the damage rate against ^ shows (Figure 2.8(b)). In between, voids grow 
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by coupling of both mechanisms (full line). The rate of growth by the 

coupled mechanism is calculated by simply adding the rates of the two 

mechanisms. 

The point where the broken lines intersect in Figures 2.8(a) 

and (b) was calculated from equations (2.16) and (2.15). The result is: 

1 I" i 1 ~ n 
<i> = — In 

a 
f ) f — I — - It - u ] i f ) " ( / ) (2.35) 

Void growth by diffusion dominates from ^ to ^ and power-

b b 
law creep from ^ to jj . The value ^ is found by solving equation 

(2.35). It represents the critical area fraction at which the change of 

mechanism occurs. The definition for ^ is: 

b 

[a. (In a - J)]3/2 
i t

 = ~ T T 7 T (2.36) 

where: a = (EL)n (2.37) 
5 a ® a <7f + 0 0 1 

The time to rupture was found by combining equations (2.20) 
l 

and (2.30) with ^ inserted. The result is: 

" v 
m 3 / 2 

ro o 

l n ' tt ' + l 
1 o a 1 — + -7—l1 \ . ln a , n+1) e 

1 a 

(2.38) 

The strain to rupture can be obtained by using equation (2.34), 

in which is given by equation (2.38). 

2.5.5 Coupled Surface Diffusion and Power-Law Creep 

Similar to the coupled boundary diffusion and power-law creep 

mechanism, surface diffusion dominates from ^ to fi^ and power-law creep 

from to ^ (Figure 2.5(b)). Similar trends shown in Figures 2.8(a) 
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and (b) can be obtained for this coupled mechanism, but this time equations 

(2.22) and (2.26) are plotted. The point at which the dominant mechanism 

changes was found by equating these two equations. The result is: 

1 
n+1 - 1 

— a 3 a , o, 3 
(2.39) 

and the critical area fraction at which the change in mechanism occurs is: 

r a f a a 1,3 

L(n+7) a 
(2.40) 

The time to rupture was found by combining equations (2.25) 

and (2.30) with inserted. The result is: 

£. = £ + 
X N 

2 [ ( X / F - X ; 1 ] a 3 ± —— (_£) + 

e \b 0 yo 1 [n+1) i In 
lin+1) x ^ 

_0j n 

a 
(2.41) 

The rupture strain is due to power-law creep only, since the 

crack-like voids contribute almost nothing to the strain. The result is: 

+ • i a ^ 

0 
(2.42) 

where £g is given by equation (2.41) 

2.5.6 Coupled Surface Diffusion and Boundary Diffusion 

A different criterion to the other two coupled mechanisms was 

adopted for this coupled mechanism. It is based on using two limits of 

the driving force which can cause the damage to grow by either surface or 

boundary diffusion. When surface diffusion is very rapid, the driving 

force will cause the damage to grow by boundary diffusion (equation (2.16)) 

However, when surface diffusion is slow, the voids become crack-like and 



_ 5 8 _ 

therefore grow by surface diffusion only (Figure 2.5(c)). The damage 

rate is given by equation (2.22). The transition occurs when: 

ai 

cap 
= 7.5 + 

9 

2 vf (7-^) 
(2.43) 

where a is the capability stress at the crack tip, defined as: cap 

2 u - 6 h 1 
car) (2.44) 

and A^ is a new dimensionless material property: 

h sb 

(2.45) 

Voids cannot be considered to grow by alternative mechanisms 

in this type of coupled mechanism since both of them are diffusion 

mechanisms. However, regimes exist in which one or the other totally 

controls void growth. The equations given for damage rate and strain 

rate for these regimes are: 

1 - = rp 
7 d h 

&o dt 

7 dz 
I t 

0 a 3 

o 

4 h* v 

U - i h ) da03 

(2.46) 

(2.47) 

where /t is the tip radius, defined as: 

& U/ihl 
{ 1 + 

in u/ik) a0-|] 
- ' } 

(2.48) 

and 4>g is given previously by equation (2.24). 

The time to rupture can then be found by integrating equations 
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(2.46) and (2.47) numerically. 

The strain to rupture will be due to boundary diffusion alone 

and is given by equation (2.21). 

2.5.7 Comparisons Between Ashby's Void Growth Theory and the 

Kachanov/Robotnov Continuum Theory of Creep Damage 

The theory of Kachanov and Robotnov was discussed previously 

in Chapter 1, Section 1.2.3. The general equations for damage rate and 

strain rate due to creep were given by equations (1.13) and (1.14). For 

the purpose of the present comparisons, the equations are re-written using 

the assumption n - q and m = K (Penny [1974]); therefore: 

* = k [ir]m <2-49> 
0 cr I - oj 0 

where is a temperature-dependent rate constant, like iQ. Equations 

(2.49) and (2.50) can, in their present form, be compared with Ashby's 

void growth equations of power-law creep and diffusion. 

The damage rate and strain rate equations for voids growing by 

power-law creep were given in Section 2.5.3 (equations (2.26) and (2.27)). 

If Hi • n, u » i Q and ^ is large, then the term i n equation 

(2.26) can be neglected. Therefore, it becomes identical to equation 

(2.49). However, if ^ is small, then the damage rate equations for the 

two theories become: 
a1 m 

" = % ( 2 , 5 1 ) 

0 

d k 
and: — J 1 = 0 (2.52) 

dt 
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According to the continuum damage theory, the damage rate (equation (2.51)) 

is finite, even if there is no damage (w = 0), while Ashby's theory 

predicts zero damage rate (non-existent holes do not grow). 

The time to rupture can also be compared by integrating the 

continuum damage rate (equation (2.49)) between the limits used in Ashby's 

power-law creep mechanism (equation (2.19)), assuming m = n and J) = ft. 

The result is: 

k - + 7 — r r <2-53) 

[n+1 j e0 1 

When fa- is large, equation (2.51) will be identical to the previously 

integrated equation (2.30), because: 

(n+ 7} ft 
In 

1 
L u + n ft. 

a (7-K-J a 
= _ (_£)" * 0 (2.54) 

a7 (n+7) ft °1 

The rupture time will, therefore, be the nucleation time, ft. However, 

when is small, Ashby's power-law creep equation (2.30) will predict 

much longer lives because the holes, when small, grow more slowly. 

Similar differences exist in rupture strains under the same conditions. 

Under multi-axial loading conditions, the strain rate and the 

damage rate are accelerated in Ashby's power-law creep mechanism by two 

new terms which do not appear in the continuum damage theory. These are 

the hydrostatic tension which enters through the term a (equation (2.28)), 

and the grain size, d. 

The boundary diffusion damage rate equation (2.16) can also be 

compared with the continuum damage equation (2.49), assuming ft - 1, which 
i 

makes the term ft2 In (7/ft) - (7"ft)• Equation (2.16), with this 

assumption and n = 1 for diffusion, becomes: 

dt z ° V 17 ~ h 
(-m (t-v) (2.55) 
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If % = ft ft, m = 1 and ft approaches 1, then equations (2.49) 

and (2.55) are identical. But when ft is much less than 1, the two 

equations differ significantly. Equation (2.55) predicts a damage rate 

which decreases as damage grows, as shown in Figure 2.8(b), while the 

continuum damage equation (2.49) predicts a steadily increasing damage 

rate. 

Ashby's strain rate equation for boundary diffusion also 

becomes identical to the continuum damage equation (2.50) when ft is close 

to 1 and the holes are randomly distributed, Z = d. This makes the term 

In (7/ft) - (7-ft); therefore, equation (2.17) becomes: 

& - 2 § t f t <2-56> 

As before, the two equations differ when ft is small. 

The same conclusion holds for the surface diffusion void 

growth mechanism. When ft - 1, it predicts identical results to that of 

the continuum mechanics theory but significantly different behaviour when 

ft is small. 

As a result of the comparisons between Ashby's void growth 

theory and the continuum mechanics theory, the following conclusions are 

made: 

(a) Both theories are approximate. 

(b) When ft or m approach 1, both theories predict identical 

behaviour. 

(c) When ft or to are small, the results diverge significantly. 

(d) The physical processes which can lead to fracture due to uni-

axial or multi-axial loading conditions can be explained more 

consistently when using Ashby's theory. 
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1. Elasticity 
2. Diffusion 
3. Plasticity or 

creep 
4. Cracks 
5. Voids 

Figure 2.1: Grain boundary sliding 
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Figure 2.2: Brittle and ductile grain boundary sliding 
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Figure 2.3: Voids growing on grain boundaries in a polycrystal subjected 
to local stresses aj, a^ 

t t t t t t t t t 
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Figure 2.4: The three simple mechanisms which limit void growth 
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Figure 2.5: A void growing by: (a) coupled boundary diffusion and power-
law creep; (b) coupled surface diffusion and power-law creep; 
(c) coupled surface diffusion and boundary diffusion 
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Figure 2.6: Void growth mechanism maps 



- 6 6 -

Figure 2.7: Showing the strain rate-dependent transition loci between 
continuum hole growth and diffusion-controlled growth 

a- b -

Figure 2.8: Damage rate as a function of: (a) stress; (b) damage; when 
voids grow by diffusion and power-law creep 
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CHAPTER 3 

FINITE ELEMENT ANALYSES 

3.1 INTRODUCTION 

This chapter describes a numerical procedure, based on a finite 

element method, for calculating directly the steady-state stress 

distributions in axi-symmetric and two-dimensional components subjected to 

creep without the need to obtain solutions at intermediate time intervals. 

An iterative procedure is adopted, in which the elastic material properties 

are up-dated after each iteration until the final steady-state solution is 

achieved. 

Two elastic finite element programs were developed to include this 

non-linear numerical method. One was used to solve axi-symmetric problems 

and the second to solve two-dimensional plane strain and plane stress 

problems. Two techniques for automatic mesh generation were used and 

tests for convergence and accuracy were carried out. 
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3.2 AXI-SYMMETRIC FINITE ELEMENT FORMULATION FOR SMALL STRAIN LINEAR 

ELASTICITY 

A detailed elastic finite element analysis for axi-symmetric bodies 

is available in Fenner [1975], Zienkiewicz [1977] and Al-Faddagh, et al. 

[1982] (Appendix A). In this section, a short summary of the important 

linear elasticity equations are listed. 

The relationship between stress and strain in terms of constitutive 

equations is: 

[a] = [V] [s] (3.1) 

where [a] and [e] are vectors of stresses and strains. [V] is the elastic 

property matrix, defined as: 

m = 

1 - V 
*2 

' 1 V* V* 0 

V* 7 V* 0 

V* 7 V* 0 

_0 0 0 ill -

(3.2) 

where E* and v*, being the Young's modulus and Poisson's ratio, modified 

as for plane strain conditions: 

E* = ; v* = t-JL- (3.3) 
J - v2 ' v 

To assemble the overall stiffness matrix, [K], for an axi-symmetric 

body, the condition for equilibrium must be satisfied, so that: 

[K] [6] = [F] (3.4) 

where [5] is the overall vector for displacement components, and [F] is 

the overall vector for the externally applied forces. 
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3.3 NON-LINEAR FINITE ELEMENT ANALYSES 

Many problems of practical consequence exist, in which linearity in 

material behaviour is not preserved. An example of this is the phenomena 

of creep and plastic deformation, which cause the effective elastic 

properties E and v to vary with time or the local state of strain or stress. 

The constitutive relation that describes this phenomenon is: 

F = C 7 1 £ (3.5) 

One numerical approach of solving non-linear problems is to use 

equation (3.5) to obtain solutions at a series of time intervals, L£. 

The advantage of this approach is that solutions are obtained not only at 

the final time required, but also at a number of intermediate times. 

A second approach is to treat the elastic properties as variables, 

i.e. function of the local state of strain or stress. The solutions 

obtained by this method are the initial elastic and the final steady-state 

values. 

3.3.1 Time Incremental Finite Element Analysis 

It is a well-established fact that the main disadvantage of 

using this method is the ability to select an optimum time interval during 

the calculations. 

Zienkiewicz [1977] suggested that choosing a small time 

increment can, in many cases, guarantee convergence. This, however, in 

situations where complicated solution domains are involved, requires 

excessive computing time to achieve fully converged solutions. On the 

other hand, if the time increment is made too large, the computed solutions 

will diverge from their true values. 

Greenbaum and Rubinstein [1968] and Sutherland [1970], in 



_ 70 _ 

their finite element creep analysis of plane strain, plane stress and 

axi-symmetric bodies, reported that this numerical procedure becomes 

unstable when the maximum effective creep strain for a time interval 

exceeds the maximum effective strain. This condition limits the maximum 

time increment that can be used for any time interval. They suggested 

two equations for calculating time intervals. One of them is for the 

initial time increment: 

% a 
Uo = T T ( 3 ' 6 ) 

0 10MI C E 

where n, M and C are material constants, T is the temperature, and E is 

Young's modulus. The value of n^ falls within the following range: 

0.04 < T)o < O.J (3.7) 

The second equation they suggested defines the current time 

interval: 
(At.) n 

At = ——^ (3.8) 
(Aa/a) ' max 

where n falls within the following range: 

0.03 p 4 0.1 (3.9) 

Experience or a trial-and-error procedure are needed in order to choose 

the specific value of n and ri which depends upon the particular problem 

investigated. 

Hayhurst, Dimmer and Chernuka [1975] used an incremental 

finite element method to investigate creep rupture behaviour of uni-axially 

loaded tension plates containing a central circular hole. The multi-axial 
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creep constitutive law used in the calculations was a Kachanov/Robotnov 

type of equation developed by Hayhurst [1973a,b], and Leckie and Havhurst 

[1974]. They introduced in the finite element formulation a normalised 

time-scale, x, defined such that: 

t 
t = i k e ao

n~' a t ) d.t ( 3 . 1 0 ) 
0 

where k is a material constant, E is Young's modulus, and a i s the outer 

boundary stress. Hayhurst, et al. [1977a,b] used the condition 

<{t) = t" 

in a separate investigation of the behaviour of notched circular bars, in 

the absence of tertiary creep, to derive the following expression for the 

real time to steady-state, £ : 
r 100 o. t.j/oh+j] 

° t* (3.11) 

where t* is the time taken to achieve 1% creep strain in a uni-axial test 

conducted at the stress, a . The steady-state solutions were subsequently 

used by Hayhurst, Leckie and Morrison [1978] in approximate analyses of the 

minimum sections of the same notches, which included creep damage or 

tertiary creep. The solutions produced used the following approximate 

strain rate field equation: 

dU. dil/56 

-c , l 

dt dt 
t) (3.12) 

where % is a generalised displacement and ft44 is the steady-state value. 

The constitutive relations used in their calculations for describing damage 

in secondary and tertiary creep were: 

i • • , -ft , ft * , 
n i . I * (3.13) 

where E--/E is the creep strain rate, ft is a material constant, and the -tf 0 f 
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dimensionless function 0 is convex, homogeneous of degree one in (cr. . /a ) 
u 

and has the value of unity when a. . is the uni-axial stress, a . The 
j xj 0 

6u='-lif j 

dimensionless variable t represents the current damage of the material and 

takes the value zero at £ = 0 and decreases to unity at £ = £g. When 

£ = 0, equation (3.13) reduces to the steady-state relationship. As time 

progresses, 0 decreases and i^/i^ increases to an infinite magnitude at 

0 = 0 . The rate of decrease of 0 depends upon the stress rupture 

criterion obeyed by the material. Three criteria were suggested, based 

on the experimental results of multi-axial stress creep rupture tests, 

collected by Hayhurst [1972]. These were the maximum principal tensile 

stress: 
* = - (3.14) 

f % 

where a is the maximum principal tensile stress, and n is the stress max * r 

index in rupture law. The second criterion was the maximum effective 

stress, so that: _ 

; = . ( ( 3 . i 5 ) 
*0 °0 

and, finally, for materials which obey mixed criteria, the rate of decrease 

of 0 is: 

0 = -
rA a (7 - A] a -max max 

0 a0 0 oa 

(3.16) 

where A is a material constant. The values of 0 after each time interval 

A£ were then determined from: 

The time increment, At, was determined from: 
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A£ (3.18) 

where £ refers to the position where ip is a maximum. 

This method was generalised by Hayhurst, et al. [1977a,b] to 

solve axi-symmetric problems. Elastic and steady-state stress 

distributions in the throat of various notched bar geometries were 

calculated. They were faced with the same problem associated with using 

this method to solve complicated solution domains, i.e. excessive computing 

time due to the large number of time steps required to achieve fully 

converged solutions. Figure 3.1 shows the asymptotic approach of their 

solutions to steady-state for a semi-circular and BS V-notch geometries. 

It shows that complete stress redistribution in some complex geometries 

cannot be achieved. 

In 1978, Hayhurst, et al., used the steady-state solutions 

obtained by Hayhurst, et al. [1977a,b] in a time incremental finite 

element calculation using the constitutive equation (3.13) for axi-

symmetric bodies. When the rupture condition was satisfied for an 

element, i.e. ip ~ 0, the material was assumed to be no longer capable of 

transmitting or withstanding force. The elements in their stiffness 

matrix corresponding to the failed element were re-evaluated and a new 

matrix was formed. They were able to show how damage propagates in the 

throat of the notched geometries they investigated (Figure 3.2). 

Hyde, Webster and Fessler [1980] used an axi-symmetric finite 

element method to calculate the elasto-plastic and creep strain 

distributions in a hemispherically ended cylindrical pressure vessel with 

constant wall thickness. The elasto-plastic solutions were obtained using 

an incremental load iterative procedure which is of no relevance to the 

present method. However, their creep solutions were obtained by using a 
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time incremental method applied after each load step. For the simple 

geometries they investigated, the number of time steps required to achieve 

steady-state were between 20 and 40. In their conclusions, they stated 

that, although the computing requirements for these simple geometries were 

modest, they could prove to be prohibitive for components with more 

complicated geometries. Similar conclusions were also drawn from an 

investigation on axi-symmetric shouldered tube components made by Dawson, 

et al. [1981]. 

3.3.2 Non-Linear Finite Element Analysis Using an Iterative 

Procedure 

The non-linearity in this approach is introduced through 

making the overall stiffness matrix [K] in equation (3.4) variable. A 

new condition for equilibrium after each iteration has to be satisfied 

until steady-state is reached. This is made possible by making the 

elements representing the elastic properties in matrix [K] dependent on 

the local state of strain or stress; therefore, equation (3.4) is now 

written as follows: 

[KU1] [6] = [F] (3.19) 

('Then 6 = the elastic solution is obtained. Convergence to steady-

state is achieved when the displacement components after the successive 

iterations differ by only a small amount: 

z . { | Ati -1 + I A I M } 

— — < X (3.20) 

where A(L and Al^ are the changes in the computed displacements between 

_ A 

the successive iterations. The tolerance, X, can take values of 10 to 

10~"8, depending on the accuracy required. Figure 3.3 illustrates the 
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convergence and divergence possibilities in using this method. 

Needleman and Shih [1978] used this method to solve plane 

strain and plane stress problems. In their analysis, the constitutive 

relation they had to satisfy was: 

= ^ 

where S- • and z - • are the stress and strain deviators, and ^ is a potential "Lj -Lj 

function which depends on the second invariant of strain, e, such that: 

\ _ C n -[n+l)/n f . 
*lezj' ~ tttt e ( 3' 2 2 ) 

_ 2 
where: z = -5- (3.23) 

0 

C and Yl are material constants. Substituting equation (3.22) into 

equation (3.21) gives: 

s = | c 7(1-nl/n { 3 > 2 4 ) 
4.j 0 "lj 

Equation (3.24) is identical to the general non-linear equation (3.19). 

The variable matrix [K(6)] is equivalent to -jCtte^7 ft)/ft which has to be 

re-evaluated after each iteration. The stress deviator, S.., represents 
"lj 

the applied force matrix [F], and e? • the displacement matrix [6]. 
'Lj 

The above method was modified by Kumar, et al. [1980] to solve 

axi-symmetric problems. They examined problems such as axially cracked 

cylinders under various applied loading, round bars with an internal 

circular crack subjected to remote uniform tension, and a notched round 

bar in tension. The last case study was compared with the time 

incremental steady-state solution of Hayhurst and Henderson [1977a]. They 
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observed some difference in the axial stress distribution between the two 

solutions, but similar trends. Their explanation for this discrepancy 

was that the time incremental steady-state solutions would have relaxed to 

their values if computation times were extended for a long enough time 

period. 

3.3.3 The Present Non-Linear Finite Element Analysis 

The present finite element analysis is based on an iterative 

procedure similar to that discussed in Section 3.3.2. The method of 

solution in the elastic region is based on using the displacement as the 

nodal point variables; therefore, the elastic modulus had to be expressed 

as a function of the local state of strain during the successive iterations 

needed to achieve steady-state. The Poisson's ratio, v, responsible for 

incompressibility was initially made equal to the equivalent elastic value, 

say 0.3, and then modified to 0.49 during the non-linear calculation. 

The exact value of v = 0.5 cannot be used in solving axi-symmetric problems 

by the present method because it will make the overall stiffness matrix 

[K] singular. The constitutive relation used in the present method was: 

e = C o 1 &[£) (3.25) 

which may be inverted to give: 

a - i ( 3 - 2 6 ) 

An apparent or effective modulus, E', can now be defined, such that: 

E1 = ± (3.27) 
e 



Substituting in equation (3.26) gives: 

z 

1 
c i u ) 

z 1/n = E h/n)-1 (3.28) 

where is the effective modulus at some convenient reference strain, £ . 0 o 

If Yl = 1, the modulus E' = E Q , whereas for n > 1, E 1 will be a function of 

the local state of strain. Before calculations can be made, it is 

necessary to define the appropriate equivalent stress o and strain e. 

Either the Von Mises or the Tresca criteria can be used; this will be 

discussed in the next section. The general procedure for the present non-

linear analysis is available in Appendix A. 
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3.4 AXI-SYMMETRIC NON-LINEAR CALCULATIONS USING VON MISES OR TRESCA 

CRITERIA 

The Von Mises and Tresca criteria were used separately to calculate 

the steady-state stress distributions for various axi-symmetric problems. 

In this section, the necessary effective stress and strain equations for 

each criterion will be given. 

(a) Von Mises Criterion 

In a polar coordinate system, the effective stress equation is: 

° • l l C ( a
Z z ' a M ) 2 + ' % t - ° e e ) 2 + ' ° e e " a z z ' 2 + <3"29> 

and the effective strain equation is: 

f • {§<ezz2 + ^ 2 + e e e 2 + k z 2 ) / ( 3- 3 0 ) 

where zz, AA and 90 refer to axial, radial and hoop directions, 

respectively. 

(b) Tresca Criterion 

According to Tresca (Section 1.3.2, equation (1.21)), the maximum and 

minimum principal stresses have to be identified in order to calculate the 

effective stress. The finite element method employed in this work is 

based on the coordinate system zz, AA, 00, which is not the principal one. 

To transform it to the principal direction, the following cubic equation 

has to be solved (Ford [1963]): 
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S3 - S2 [o +o +a i 1 xx yy zz 

S (T 2 + t 2 + t 2 _ g a g _ g g ] 1 xy yz zx xx yy yy zz zz xx 

(a a a +2 x x x - a x 2 - a x 2 - cj x 2 ) = 0 ( 3 . 3 1 ) 1 xx yy zz xy yz zx xx yz yy zx zz xy K J 

This cubic equation in a real physical situation has three real roots 

which are the principal stresses, o-j, c^, o^, of the particular stress 

system. 

In the case of plane stress: 

a = x = x = 0 ( 3 . 3 2 ) zz zx yz v ' 

Therefore, the cubic equation is reduced to: 

S 2 - 5 (a + a ) + (a a - x 2 ) = 0 ( 3 . 3 3 ) xx yy xx yy xy K 

and: a, , » 2 = + { { a ^ a ) + V ^ x x " V * + ( 3 > 3 4 ) 

In the case of plane strain: 

• V = " b u t 5 8 0 ( 3 - 3 5 ) 

Therefore, the cubic equation (3.31) remains cubic and the roots have to 

be found by a very complicated trial-and-error method. 

Axi-symmetric problems are solved in this finite element method by 

considering a two-dimensional solution domain lying in a radial plane 

through the axis of symmetry of the body considered. The hoop component 



_ 8 0 _ 

of the stress is always normal to the two-dimensional domain. Therefore, 

it is justifiable to calculate the three principal stresses 

using the following equations: 

' °2 • + a zz1 + n t T + V l < 3- 3 6> 

and: a3 = a Q Q (3.37) 

The maximum and minimum principal stresses can now be identified and the 

Tresca effective stress can be calculated. 

Similarly, the three principal strains in a polar coordinate system 

are: 

= I ^ j u l * € Z Z ] + V U * A - £ Z Z ) 2 + (3.38) 

and: £3 = £ 9 Q 

The Tresca effective strain can, therefore, be calculated: 

e = (e - e . ) (3.39) 
3 max mxn 
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3.5 TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS 

In this section, the formulation of a finite element analysis for 

two-dimensional plane strain or plane stress problems is described. The 

necessary equations are formulated in cartesian coordinates (X,£/,z), shown 

previously in Figure 1.4(a). A typical triangular finite element lying 

in a two-dimensional solution domain is shown in Figure 3.4(a). The 

global coordinates for the overall solution domain are X and whereas X 

and y are local to the particular element. Figure 3.4(b) shows the 

displacements of the typical element which are in the plane of, rather 

than normal to, the solution domain. 

The same axi-symmetric finite element formulation for small strain 

linear elasticity, discussed in Section 3.2, applies for the two-

dimensional problems. The difference is that the element strain 

components are now expressed in terms of nodal point displacements, as 

follows: 

[el = [e e e ] 1 1 L xx yy xt/J 
T - m [ « ] „ (3.40) 

where: [6] m 
mj - l i . u) . u, mji ] 

t 
(3.41) 

and: [6. 
a. 

0 b . 
J 

0 bk on 

[8] = 0 al 
0 

A 
0 ak 

a. l a. 
b. 

a. 
a. 

J 
fa. 
J 

ak bk-

(3.42) 

where [B] is the dimension matrix, and A^ is the element area. 

The relationship between the element stresses and strains also differ 

since the hoop stress component is excluded from the constitutive equations, 

therefore: 
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where [V] is the elastic property matrix, defined as: 

'1 v* 0 

E* 
[V] = — 

V* 7 0 (3 
1 -v*2 

_0 0 \ (7-v*) 

where E* and v* are the Young's modulus and Poisson's ratio, equal for 

plane stress to: 

E* = E and v* = v (3.45) 

and for plane strain to: 

:# _ 

1 - v2 

and ,* -
1 - v (3.46) 

Similar to the axi-symmetric analysis, plane strain problems for 

incompressible material, where v = cannot be solved because matrix [V] 

will become singular. However, it is possible to obtain solutions when v 

is nearly equal to \ (Al-Faddagh, et al. [1982]). 

The same non-linear analysis discussed in Section 3.3.3 applies for 

two-dimensional problems. The only difference is the formulation of the 

effective stress and the effective strain equations. 

For plane strain and plane stress, the Von Mises effective stress and 

strain are: 

a = 

e = 

1 i 2 
7j- I a - a a 
2 v xx — 

+ a 2 + 3 t xx yy yy xy 

_ ; 
2 

2 i 2 a. 2 + 7 2' 
~3 xx zyy Txy [ 

(3.47) 

(3.48) 
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However, the correct values of E* and v* (equations (3.45) and (3 .46)) 

have to be chosen according to the type of problem. For plane strain 

incompressible problems, the value of v is also chosen to be approximately 

equal to \. 

As previously discussed (Section 3 . 4 ) , the Tresca criterion can only 

be used for plane stress, otherwise the cubic equation (3.31) remains 

cubic for plane strain. 

The Tresca effective stress and strain for plane stress is calculated 

as follows: 

i 
r 
2 

( 3 . 4 9 ) 

E 
2 
3 xy 

2 2 
( 3 . 5 0 ) 
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3.6 MESH GENERATION 

Solution of the overall linear equations, which is equivalent to 

inverting the stiffness matrix [X] in equation (3.4), yields the nodal 

point displacements and hence stresses. An important consequence of 

using constant strain triangular (CST) finite elements is that the method 

of solution can be either a direct elimination type technique or an 

iterative technique, such as Gauss-Seidel (Fenner [1975]). The latter 

can be particularly useful when dealing with non-linear problems. 

In this section, the techniques used for generating meshes of 

triangular elements to suit the solution domain of the non-linear problems 

considered will be discussed. 

3.6.1 Mesh Data in Numerical Form 

The main requirement of a finite element mesh is to fit the 

shape of the boundary of the solution domain as closely as possible. 

Factors such as element size, shape, distribution, and the numbering of 

both elements and nodal points also need to be considered. 

One way of providing the mesh data required by a finite 

element program is to enter them on data cards. A considerable amount of 

labour is involved in preparing these data. For any finite element 

solution domain, the total number of elements and nodal points has to be 

defined, as well as the X and V coordinates of each triangular element. 

The data must, therefore, be carefully checked since mistakes are likely 

to be made. 

A better alternative would be to have a program to generate 

the mesh data from a minimal amount of input data. In the present finite 

element analysis, two automat/ic mesh generation techniques were used; 

these will be discussed in the coming sections. 

The data generated using automatic mesh generation programs 
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are saved individually in separate data files. These files are then 

checked for suitability of element distribution and correct X and V 

coordinates using the graphics facilities provided by the computer system. 

If suitable hard copies or microfilms for each individual data file are 

produced, the required axi-symmetric or two-dimensional non-linear solutions 

are then obtained by calling any of the mistake-free mesh data files by the 

main finite element program. The flow chart of this procedure is shown 

in Figure 3.5. 

3.6.2 Automatic Mesh Generation for Stress Concentration Problems 

The listing of this program and the data required to generate 

meshes for solving stress concentration problems is available in Fenner 

[1975]. This program was used in the present two-dimensional finite 

element program only to solve non-linear plane strain and plane stress 

problems such as thick-walled cylinder subjected to internal pressure and 

a hole in a plate subjected to uniform tension. The procedure followed 

to generate the required meshes is shown in Figures 3.6(a) to (d). Each 

individual diagram in this figure is explained as follows: 

(a) A square mesh of mainly isosceles triangular elements is 

generated using a subroutine listed in Fenner [1975]. The 

only input data required is the number of rows and columns. 

(b) The coordinates of the basic square mesh are modified to 

obtain the required boundary shape and element distribution. 

Horizontal rows are modified to form an arc using the 

following relation: 

X . = A sin 0 f V; = A COS 6 (3.51) 
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Since elements are to be concentrated near the edge of the 

hole and the degree of this concentration is to be varied, a 

scale factor, S, is introduced to define the radial width of 

successive rows of elements as follows: 

i 
s = j-^- (3.52) 

After this stage, the mesh data could be used as input in the 

non-linear solution of a thick-walled cylinder subjected to 

internal pressure. 

(c) The points adjacent to the ends of the outermost arc are moved 

either vertically or horizontally to the edge of the domain 

and extra nodal points are added on the top boundary to 

complete the required shape of the solution domain. 

(d) This shape is the end result of the automatic mesh generation 

procedure and could be used in solving non-linear stress 

concentration problems. 

3.6.3 Automatic Mesh Generation for Complicated Boundary Domains 

A technique reported by Segerlind [1976] for automatic mesh 

generation is discussed in this section. It was used effectively to fit 

complicated solution domains from a small number of geometric parameters 

in the present non-linear finite element calculations. 

The essence of this technique is to divide the solution domain 

into several quadrilateral regions, define the coordinates of the mid and 

end points of each region, indicate how the separate regions are linked 

together, and, finally, state how many rows and columns are required in 

each region. Figure 3.7 shows two examples of finite element meshes 

generated by this technique. 
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3.7 TESTS FOR THE AXI-SYMMETRIC FINITE ELEMENT METHOD 

The general calculation procedure followed to achieve steady-state in 

axi-symmetric bodies and the tests for accuracy carried out on this method 

are summarised in Appendix A. In this section, more information on these 

tests is presented. 

3.7.1 Thick-Walled Cylinder Subjected to Internal Pressure 

This case study was chosen because the exact linear elastic 

and non-linear creep solutions are available in the literature (Bailey 

[1951]). Figure 3.8 shows the finite element mesh used for this example. 

The case of Rj = considered, where Rj and R 2
 a r e t* i e internal and 

external radii of a thick-walled cylinder subjected to an internal 

pressure, P. Figures 3.9 and 3.10(a) and (b) show the finite element 

effective, hoop and radial stress distributions calculated for n = 1, 2, 

3, 9 and 100 using the Von Mises criterion. The exact hoop and radial 

stresses given by Bailey [1951] are included in Figures 3.10(a) and (b). 

In all cases, the computed stresses for Poisson's ratio equal 

to 0.49 agreed with the exact solutions to within 0.3%, as shown in 

Table 3.1. 

This very satisfactory level of agreement was also reported by 

Needleman and Shih in 1978, who investigated the same problem but for 

complete incompressible materials. Their finite element hoop and radial 

stresses, normalised with respect to the effective stress for Yl = 1, 3 and 

100, and the present solutions, are shown in Figures 3.11(a) and (b). 

3.7.2 Comparisons with Bridgman and Other Finite Element Calculations 

The present finite element method was used to calculate the 

steady-state stress distributions across the throat of circumferentially 

notched round tensile bars using the Von Mises criterion. The notch 
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dimensions were chosen to enable comparisons to be made with previous 

finite element calculations made by Hayhurst, et al. [1977a,b], and Kumar, 

et al. [1980]. Bridgman's approximate plasticity solutions were also used 

in the comparisons. The meshes required in the analysis were generated 

using the method discussed in Section 3.6.3. The diagrams showing the 

various ways of calculating steady-state stress distributions for the 

different notched geometries are available in Appendix A. 

3.7.3 Creep Stress Analysis Using Von Mises or Tresca Criteria 

Stress analysis can prove that the steady-state hoop and radial 

stress distributions in a thick-walled cylinder subjected to internal 

pressure, P, are the same when using either Von Mises or Tresca definitions 

of the effective strain and stress in the derivation. Figure 3.12 shows 

a schematic diagram representing this problem with an inner and outer 

radii of Rj and R^. The boundary conditions for the radial stress, o^, 

are: 

k = rj , a^ = -P ; h. = r2 , cr̂  = 0 (3.53) 

For secondary creep, the strains in the Z and 9 directions are: 

S z = C o l n - " [pz - * o^l] (3.54) 

- C a'""'1 [o9
 + ( 3 ' 5 5 ) 

The condition for equilibrium is: 

6 * djl 
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and compatibility is: 

e9 " = - fl 
dA 

(3.57) 

For plane sections to remain plane, dz^fdA - 0, and therefore equation 

(3.54) led to: 

d o 1 doa do. 

dA dA dA 

I n - 7) 
Qz " 2[aQ + °A] 

dd 
~3a 

(3.58) 

Assuming built-in ends, i.e. e^ = 0, gives: 

a z = 2 ( ae + a J (3.59) 

Therefore: 
dA 

1 d°B . I d°A 
2 ». 2 dA dA 

(3.60) 

Substituting equations (3.60), (3.57), (3.55) and (3.54) in equation 

(3.58) gives: 

2 {ae " - b 

r doa do 

L dA dA 

9 Ai . [n - 1) , i do 
— ( a e " a ^ da (3.61) 

Substituting in equation (3.56) gives: 

don do„ i 1i 6 + a + (n- 1) j 

dA dA d 

i do 
g0 ' v dJi = 0 (3.62) 

Equation (3.62) cannot be integrated until o is defined, 

definition: 

Using Tresca!s 

therefore: 

a = °Q ' °A 

do doQ do 

(3.63) 

da dA ~3a 
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Equation (3.62) becomes: 

do do do do 
= 0 (3.64) 

dx dx dx dx 

The Von Mises definition of o is: 

_ 1 
i 

(3.65) 

Substituting equation (3.59) in equation (3.65) gives: 

a = — • [ ) (3.66) 

If equation (3.66) is substituted in equation (3.62), the result will be a 

similar equation derived using Tresca's criterion (equation (3.64)). 

This indicates that the stress distributions are the same. 

This fact was confirmed when a similar mesh geometry to that 

shown in Figure 3.8 was used in the finite element program to calculate 

the hoop, radial and effective stress distributions using Tresca's 

criterion for ft = 1, 3 and 100. Identical results were obtained to those 

shown previously in Figures 3.9 and 3.10. 
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3.8 TESTS FOR THE TWO-DIMENSIONAL FINITE ELEMENT METHOD 

The numerical procedure used in this method to achieve steady-state 

is similar to that used in the axi-symmetric analysis. In this section, 

the case studies chosen to test the accuracy of this method are presented. 

3.8.1 Comparison with an Exact Solution 

The exact elastic and non-linear solutions presented previously 

in Figures 3.9 and 3.10 for a thick-walled cylinder subjected to an 

internal pressure were used in this comparison. Plane stress and plane 

strain solutions for yl = 1, 2, 3, 9 and 100 were calculated for a quarter-

segment of a thick-walled tube shown in Figure 3.13. The finite element 

mesh was generated using the method described previously in Section 3.6.2. 

The uniform internal pressure was represented by two components, p^ and p , 

which act on the nodes describing the inner surface of the cylinder. P^ 

vary from zero at 0 = ir/2 to one at 0 = 0, and P from one at 0 = tt/2 to 
y 

zero at 0 = 0. The square root of these pressure components has to 

always equal one; this represents the value of the applied internal 

pressure: 

p = + ? y = 1 (3.67) 

The hoop and radial stress distributions calculated using this 

method for both plane strain and plane stress situations were similar to 

those presented in Figures 3.9 and 3.10. Some tabulated results for 

n = 1, 3 and 100 at 0 = 0 are listed in Table 3.2. The computed stresses 

agreed with the exact solutions to within 0.9%, which is higher than the 

0.3% obtained in the axi-symmetric calculations. This is because the 

real 0 in the centroid of the elements in the bottom row is not exactly 

equal to zero. To correct this, the small angle between 0 = 0 axis and 

the centroid of each element has to be considered. This, however, is not 
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necessary for the level of accuracy achieved which is still very-

satisfactory . 

3.8.2 Hole in an Infinite Plate 

The case of a hole in an infinite plate subjected to a uniform 

tensile stress was considered. The two-dimensional plane stress 

incompressible solutions for yi = 1, 3 and 20 were compared with those 

calculated by Needleman and Shih [1978]. The mesh used in the present 

calculations is shown in Figure 3.14. It was generated using the 

technique described in Section 3.4.2 for stress concentration problems. 

The elastic and the non-linear normalised axial stress distributions, 

calculated by both method agree perfectly, as shown in Figure 3.15. 
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3.9 CONCLUSIONS 

The conclusions for this chapter are: 

1. Two finite element programs have been developed to calculate the 

steady-state stress distributions in axi-symmetric and two-dimensional 

bodies. The listing of these programs is available in Appendix B 

and Appendix C. 

2. The iterative procedure used in calculating the steady-state stress 

distribution directly by means of an effective modulus, E', is 

consistent with exact, approximate non-work hardening plasticity 

solutions, and other numerical procedures. 

3. The efficient techniques used in generating meshes from a small 

number of geometrical parameters makes it possible to use these 

programs to calculate the steady-state stress distributions for 

complicated solution domains. 

4. These programs can be used to calculate steady-state stress 

distributions using either the Von Mises or Tresca criteria. 

5. This method of calculation is not restricted to the assumption of 

secondary creep. Provided the variables of stress and time are 

separable in the creep law, solutions for primary, secondary and 

tertiary creep can be obtained. 
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TABLE 3.1 

Selective Comparisons Between Exact and Computed Solutions for a 

Thick-Walled Cylinder Subjected to Internal Pressure Using 

the Mesh Shown in Figure 3.8 

YL = 1 

Radius, ti/R^ Hoop Stress, Radial Stress, a k „ / P 
fl/l 

Exact Computed % Error Exact Computed % Error 

0 . 5 1 5 1 .5914 1 . 5 9 2 0 . 0 3 - 0 . 9 2 4 9 - 0 . 9 2 5 5 0 . 0 6 5 

0 . 7 5 ' 0 .9259 0 .9259 0 - 0 . 2 5 9 2 - 0 . 2 5 8 9 0 . 1 1 5 

0 . 9 8 5 0 .6767 0 .6766 0 . 0 1 4 - 0 . 0 1 - 0 . 0 1 0 

Yl = 3 

0 . 5 1 5 0 .8189 0 . 8 2 1 0 . 2 5 6 - 0 . 9 4 8 1 - 0 . 9 4 8 9 0 . 0 8 4 

0 . 7 5 0 . 9 5 8 8 0 .9588 0 - 0 . 3 5 9 9 - 0 . 3 6 0 9 0 .277 

0 . 9 8 5 1 . 1 2 9 1 . 1 2 6 0 . 2 6 5 - 0 . 0 1 6 7 - 0 . 0 1 6 7 7 0 . 1 7 9 

Yl = 100 

0 . 5 1 5 0 . 4 9 4 1 0 . 4 9 5 3 0.242 - 0 . 9 5 7 8 - 0 . 9 5 8 5 0 . 0 7 3 

0 . 7 5 1 .0276 1 .0276 0 - 0 . 4 1 3 8 - 0 . 4 1 4 4 0 . 1 4 5 

0 . 9 8 5 1 . 4 1 2 1 .409 0 . 2 1 2 - 0 . 0 2 1 2 8 - 0 . 0 2 1 3 0 . 0 9 4 
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TABLE 3.2 

Selective Comparisons Between Exact and Computed Plane Strain and 

Plane Stress Solutions for a Thick-Walled Cylinder Subjected to 

Internal Pressure Using the Mesh Shown in Figure 3.13 

n = 1 

Radius, A/Rj Hoop Stress, a Q O / P 00 
Radial Stress, a„„/P 

fiJl 

Computed Exact % Error Computed Exact % Error 

1.063 1.5425 1.5425 0 -0.864 -0.8632 0.1 

1.511 0.9327 0.9345 0.193 -0.2556 -0.2553 0.117 

1.892 0.7187 0.719 0.043 -0.0395 -0.03968 0.4 

n = 3 

1.063 0.8603 0.8534 0.808 -0.9033 -0.909 0.63 

1.511 1.0304 1.0377 0.703 -0.3529 -0.3558 0.815 

1.892 1.126 1.1348 0.775 -0.0643 -0.0648 0.77 

V R j n = 100 

1.063 0.55 0.5458 0.77 -0.9366 -0.9291 0.807 

1.511 1.0479 1.0532 0.503 -0.415 -0.4114 0.875 

1.892 1.364 1.375 0.806 -0.0836 -0.083 0.723 
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3 — Convergent 

_ Divergent 

Figure 3.3: Direct iteration 
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X 

Dimensions of the typical element 

Displacement of the typical element 

Figure 3.4: Triangular finite element in a two-dimensional solution 

domain 
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Figure 3.5: Mesh data input flow chart 
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Figure 3.6: Automatic mesh generation for stress concentration problems 
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Figure 3.7: Examples of two finite element meshes generated using the 

method described in Section 3.6.3 
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i 

r 2 = 2r1 

Normalised radial distance, a/R 

Figure 3.9: Elastic and steady-state effective stress distributions in a 
thick-walled cylinder subjected to internal pressure 
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.7 .8 .9 1 

Normalised radial distance, ^/ft 

Figure 3.10: Exact and finite element hoop and radial stress 
distributions for a thick-walled cylinder subjected 

to internal pressure 
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Normalised radial distance, Y/R^ 

Figure 3.11: Finite element solutions for a thick-walled cylinder 
subjected to an internal pressure 
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i 

Figure 3.12: Schematic diagram of 

internal pressure, P 

thick-walled cylinder subjected to 

Figure 3.13: Finite element mesh of a quarter segment of a thick-walled 

cylinder; R^/Rj = 2 
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Figure 3.14: Finite element mesh for a quarter segment of a hole in an 

infinite plate 

• Present calculation 

— Needleman and Shih [1978] 

>8 •6 .4 .2 0 

Normalised distance, a!<X 

Figure 3.15: Axial stress distributions along 6 = 3.75 for a hole in an 
infinite nlate 
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CHAPTER 4 

FINITE ELEMENT CASE STUDIES FOR COMPLEX GEOMETRIES 

4.1 INTRODUCTION 

This chapter describes in detail the elastic and steady-state finite 

element calculations, using the axi-symmetric and the two-dimensional 

programs developed in Chapter 3. The axi-symmetric problems considered 

were mainly a selection of various notch bar geometries under remote 

uniform tension. The elastic and steady-state stress distributions in 

the notched region for different values of creep index, n, are investigated. 

A special case was also considered, that is of blunt and sharp double 

notches under the same loading conditions. 

The two-dimensional case studies considered were three compact tension 

specimens containing different circular hole sizes in the crack plane. 

The stress concentration factors and the stress distributions for each 

geometry were estimated for different values of n. 
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4.2 BRIDGMAN 1S ANALYSIS 

An approximate method of estimating both the stress and strain 

distributions when fully plastic conditions are reached in the minimum 

section of a necked tensile specimen was first suggested by Bridgman 

[1952]. Finite element analysis by Hayhurst, et al. [1977a,b] and 

Al-Faddagh, et al. [1982], for materials undergoing creep deformation, 

showed that Bridgman's distributions are applicable for notched bar 

geometries with the following reservations: 

(a) The variation in the axial component of the stress across the 

throat must be small, i.e. applicable only for blunt notches 

(low tri-axiality). 

(b) The creep stress index, n, must be higher than 9. 

The assumptions made by Bridgman to derive the final distribution 

equations were: 

i) The Von Mises condition has to be satisfied, 

ii) The plastic deformation in the necked region dominates the 

total behaviour of the tensile specimen. 

iii) The radial and hoop stresses in the necked region are equal. 

Figure 4.1 shows a schematic diagram of the Bridgman stress and 

strain distributions in the throat of a circular notched bar. The 

normalised stress distribution equations, with respect to the nominal 

stress, a nom are: 

a zz a2 + 2 a R - n2 

2 aR 1 + In ( (4. 
a, nom 
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hjl 

nom 

99 

nom 
= In 

i a 2 + 2 a r - n 2 

[ 2ar (4.2) 

The effective stress distribution equation using Von Mises is: 

= 1 
nom 

The effective plastic strain distribution equation is: 

(4.3) 

£ p = 2 In 
a 

a 
(4.4) 

where a. and a are the initial and current throat radii. o 

The Bridgman analysis also shows that the effective stress for 

different notched geometries is a function only of geometry and o such 

that: 

nom 

-1 
(4.5) 
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4.3 NUMERICAL ESTIMATES FOR NOTCHED BARS 

Finite element methods have been used successfully to calculate 

steady-state stress distributions in the throat of various notched bar 

geometries (Hayhurst, et al. [1977a,b], Kumar, et al. [1980], and 

Al-Faddagh, et al. [1982]). In this section, the axi-symmetric program 

developed in Chapter 3 was used in a systematic method of calculation, 

where the notch dimensions and the stress index, n, were varied to vary, 

accordingly, the tri-axial state of stress and the steady-state stress 

distribution in the notched region. The automatic mesh generation 

technique discussed in Section 3.6.3 was used to generate the meshes 

required for the calculations. 

4.3.1 Geometries Considered 

Figure 4.2 shows the dimensions and the boundary conditions 

of a finite element mesh representing a typical notched bar solution 

domain. In the present calculations, the ratio b/d was kept constant and 

the notch radius, R, was varied, therefore changing the ratio a/R. When 

a/R = 0, the case represents a uni-axial round bar with a diameter equal 

to fa. As a/R or notch sharpness increases, the tri-axiality in the 

notched region increases accordingly. Three groups of notched geometries 

were investigated, each having a different fa/a ratio. They consist of a 

total number of 23 notches which are listed in Table 4.1. 

The reason behind choosing these particular fa/a ratios was that 

experimental uni-axial and notched rupture data are available on each one 

of them. These are summarised as follows: 

(a) For fa/a = 1.67, uni-axial and notched rupture data are 

available in the literature on the brittle |%Cr £%Mo J%V steel 

due to the investigation conducted by Ng, Webster and Dyson 
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[1980]. The range of notched geometries they investigated 

was between a/R = 0 and a/R = 18. 

(b) For b/a = 1.46, uni-axial and notched rupture data were made 

available due to the experimental investigation conducted by 

the present author (Chapter 6) on the ductile 2[%Cr l%Mo steel. 

The range of geometries investigated was between a/R = 0 and 

a/R = 44.7. 

(c) For b/a = 1.33, uni-axial and notched rupture data are 

available in the literature on a wide range of high temperature 

alloys with different grain size, hardness, ductility, and heat 

treatment. These data were collected by Davis and Manjoine 

[1953] for a range of notched geometries having a/R = 0 to 

a/R = 50. 

4.3.2 Calculations 

The boundary conditions applied in the calculation procedure 

for all the notched geometries investigated are similar to those presented 

00 

in Figure 4.2. A uniform axial stress, o Q , was applied at the specimen 

remote boundaries. The specimen axis was constrained to move only in a 

vertical direction, while the notch throat was prevented from moving 

vertically. The finite element mesh distribution for all geometries was 

carefully designed, so that it was finest where the stress gradient and 

the geometrical changes were greatest. A tolerance, X, of 10~ 5 (equation 

(3.20)) with 476 elements representing the total solution domain, in which 

the notch throat was divided into a row of 28 elements, was found to give 

satisfactory accuracy during the whole calculation exercise. 

The finite element results for all the notched geometries 

representing the three b/a ratios cannot be included in this chapter due 
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to the large space they would occupy. However, samples of these results 

showing broadly the changes in trends due to the increase in tri-axiality 

are summarised in Figures 4.3 to 4.20. Only the stress distributions 

across the minimum diameter of the throat region are presented, since this 

section is the most critically loaded, and may, therefore, be expected to 

determine the deformation and fracture characteristics of such samples. 

Both Von Mises and Tresca effective strain and stress 

definitions were used in the calculations. A value of v = 0.49 was 

adopted to avoid making the [V] matrix becoming singular (equation (3.2)). 

4.3.3 Discussion 

The way in which the sample results were presented for each 

b/a ratio investigated was as follows: 

(a) Three finite element meshes were first presented for each b/a 

ratio. These were a blunt, sharp, and a geometry with a/R 

lying between these two extremes (Figures 4.3, 4.9 and 4.15). 

(b) The normalised elastic and steady-state effective stress, 
—/ 00 

a/a 0 , across the throat of a blunt and a sharp notched 

geometry using the Von Mises criterion are presented in 

Figures 4.4, 4.5, 4.10, 4.11, 4.16 and 4.17. For b/a. = 1.67, 

the distributions were for two notched geometries with 

a/R = 0.75 and 20. The calculations were made for n = 1, 3, 

5, 9 and 16, as shown in Figures 4.4 and 4.5. For b/a = 1.46, 

the distributions were for a/R = 1 and 32.5, with values of 

n = 1, 3, 5 and 9 (Figures 4.10 and 4.11). Finally, for 

b/a = 1.33, the distributions were for a/R = 3 and 30, and 

values of n = 1, 3, 7 and 12 (Figures 4.16 and 4.17). For 

all these geometries, a is always maximum at the notch root 
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for all values of Yl. The magnitude of the maximum effective 

stress, a , decreases with the increase in n, and the whole max 

stress distribution nearly levels out when Yl > 9. For these 

and other notch geometries when Yl > 1, there is a tendency for 

the effective stress distribution to cross at almost the same 

value of fifa, implying an approximate point of constant stress, 

often called a skeletal point (Penny and Marriott [1971]). 

The position of the skeletal point varies between tifa = 0.6 

and 0.95, as shown in Table 4.2 for the three b/a ratios. 

For blunt notches, it tends to be nearer to Si/a = 0.6, and for 

sharp notches nearer to H./a = 0.95. Similar trends were 

observed when Treses's criterion was used in the calculations. 

The distributions for all values of Yl were parallel to those 

when the Von Mises criterion was applied. Examples of this 

are shown in Figures 4.10 and 4.11. The maximum difference 

between the values of the effective stress at the skeletal 

point for the sharp notches is always less than 15%. For 

blunt notches, the difference is nearly negligible (uni-axial). 

This is consistent with the plasticity flow rules which show 

that, for a material with a uni-axial yield stress, V, the 

difference between the normalised stress, o/V 9 and shear 

stress, t/V, in pure tension is zero when either the Von Mises 

or Tresca criterion is used. However, the difference is about 

15.5% (corresponding to the difference between 0.5 and 0.577) 

in pure torsion (Johnson and Mellor [1975]). 

The presence of a skeletal point may enable the stress 

there to be used as a reference stress to characterise the 

overall deformation behaviour of the notched bars, provided 

sufficient time exists for a steady-state creep stress 
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distribution to be achieved. 

The steady-state stress distributions across the throat of two 

notched geometries for each b/a ratio when the Von Mises 

criterion was adopted are presented in Figures 4.6, 4.7, 4.12, 

4.13, 4.18 and 4.19. In these figures, the normalised, 

. oo . 00 . 00 
effective, a/cr , axial, a /cr , hoop, crQO/cr , radial, 

0 Z Z 0 OtJ 0 

a ^ . / , and the hydrostatic, cr/a , stresses are nlotted for xx o mo 

different notched geometries and values of ft. The line marked 

with * in these figures refers to the skeletal point position 

taken from the graphs of the corresponding effective stress 

distributions. As discussed in part (b), the effective stress 

distribution is always maximum at the notch root for all 

values of ft. However, for the axial, hoop, radial and 

hydrostatic stresses, the maximum values move from the notch 

centre-line, X = 0, for blunt notches, towards the notch root, 

X = a, as the notch sharpness increases. Similar trends were 

previously observed by Hayhurst, et al. [1977a,b], Kumar, et 

al. [1980], and Al-Faddagh, et al. [1982]. 

Finally, Figures 4.8, 4.14 and 4.20 show how the state of 

stress parameters at the skeletal point vary with the increase 

in tri-axiality for the three b/a ratios investigated. The 

values of the axial, effective and hydrostatic stresses at the 

skeletal points for each notched geometry of a particular b/a 

ratio are normalised with respect to the nominal stress across 

the notch throat, a . A fourth ratio of a /a is also shown. ' nom m 

The trends these states of stress followed are the same for the 

three b/a ratios. The effective and axial stresses are 

normalised as a /a and a „ /a,, to show notch strengthening 
ftom nom ] 

and weakening for materials in which internal damage 
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accumulation rates are dominated either by the effective or 

the axial stress (Hayhurst [1972], Leckie and Hayhurst [1974], 

and Dyson and McLean [1977]). A tendency for the effective 

stress to decrease when either the Von Mises or Tresca 

criterion is adopted, and both the axial and hydrostatic 

stresses to increase, is observed when the tri-axiality 

increases (a/R). The ratio a / a has been used in plasticity 

and power-law creep failure mechanisms to describe the 

geometrical tri-axial state of stress (Hancock and Mackenzie 

[1976], Needleman and Rice [1980], and Cocks and Ashby [1980b]). 

a /a is plotted in these figures to be used in the coming 

chapters in modelling notched bar behaviour. At a/R = 0 

(uni-axial), a /a = 1/3, and this ratio increases with a/R. 
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4.4 CASE STUDY: THE INFLUENCE OF DOUBLE NOTCHES IN ROUND BARS ON THE 

STEADY-STATE STRESS DISTRIBUTIONS 

Circumferentially notched bar specimens, loaded axially, are 

frequently used in laboratories to study the effect of tri-axial stressing 

on creep deformation and life time. For physical metallurgists concerned 

with understanding the mechanics of high temperature fracture micro-

mechanisms, these geometries are of considerable interest. The 

distribution of grain boundary creep damage is usually analysed away from 

and near to the fractured surfaces of the notched bars. However, if the 

notched region is to be analysed before fracture, interrupted tests have 

to be performed, which means two specimens for each notched geometry have 

to be manufactured. More material and testing times are therefore needed. 

Loveday and Dyson [1979] suggested that if two accurately 

manufactured, circumferential notches are machined in on the specimen, 

then creep deformation in the two notched regions should be identical up 

to about 0.8<£g. The weaker notch then will dominate until fracture. 

They used this technique to measure the diametral displacement occurring 

at one notch throat using a special type of extensometer designed by 

Furse and Loveday [1981]. They calculated the current hoop strain using 

the measurements, as follows: 

a - a 
eee " < 4- 6> 

% 
where a a n d a are the initial and current notch radii, respectively. 

The experimental steady-state time and hoop strain rate, £ t . and were 
4o 0 0 

estimated and compared with the theoretical predictions based on Hayhurst, 

et al. [1977b] steady-state finite element calculations. The same notched 

data were later used by Dyson and Loveday [1980] to study creep fracture 

under tri-axial tensile stressing. They used Bridgman's effective stress 
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equation (4.5) to calculate the term [(7 + lRfa) In (7 + 0./2R)]"1, required to 

convert the net section stress in the notch, to become equivalent to the 

uni-axial stress. 

The interesting observation made in reading the literature on double 

notches is that the finite element calculations and the Bridgman analysis 

used predicts the deformation and fracture behaviour of a single notch. 

There is no information in the literature to justify using single notch 

analysis in a comparison with double notched experimental data. 

In this section, the axi-symmetric program developed in Chapter 3 was 

used to calculate the elastic and steady-state stress distributions in a 

single and double notched bar geometries. The geometries considered and 

the comparisons made are presented in the coming sections. 

4.4.1 Geometries Considered 

Four double notched round bar geometries were considered; 

these were: 

(a) British Standard V-notch; a/R = 18.18, b/a = 1.41 

(b) Semi-circular notch; a/R = 1.5, b/a = 1.67 

(c) Blunt notch; a/R = 1.67, b/a = 1.46 

(d) Sharp notch; a/R = 13, b/a = 1.46 

The BS and semi-circular notches (a) and (b) were considered 

because they have been widely used in many analyses to show the difference 

in creep behaviour between a sharp and a Bridgman-type notch (Hayhurst, et 

al. [1977a,1978], Kumar, et al. [1980], and Al-Faddagh, et al. [1982]). 

The two other notched geometries (c) and (d) have a similar 

b/a ratio to those experimentally creep tested notched geometries 

investigated by the present author (Chapter 6). Again, two extreme 
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geometries were considered, a blunt and a sharp notch. 

The finite element meshes were generated using the program 

discussed previously in Section 3.6.3. Because of symmetry, only a 

quarter of the solution domain is considered, as shown in Figures 4.21(a) 

and (b). The difference in the boundary conditions applied during the 

calculations for a BS double and a single V-notched geometry is shown in 

Figures 4.21(b) and (c). Figures 4.21(d) to (f) show the other geometries 

considered, for which the same boundary conditions apply. 

4.4.2 Calculations and Discussion of the Results 

Calculations have been made for values of n = 1 and 9 for all 

the geometries investigated. The same value of o^* was applied for the 

single and the double notched geometries. The stresses in the minimum 

section of the double notched geometries were averaged for the two rows of 

elements in that region, the results of which are shown in Figures 4.22 to 

4.25 compared with the single notch distributions. It is evident that 

the elastic stress distributions were identical for both geometries. For 

n = 9, the distributions differ slightly for the two blunt notches; 

however, the margins are always less then 1% (Figures 4.23 and 4.25). In 

the case of the two sharp notches, the error margins near the notch root 

where the stresses peak are always less than 2% (Figures 4.22 and 4.24). 

These errors are acceptable for two reasons: first, only 24 elements were 

used across the throat of the double notched geometries compared with 28 

elements for the single notch; this obviously reduces the accuracy. If 

28 elements are used in the double notch solution domain, the array lengths 

will exceed the 500 limit set in the program. The second reason is to do 

with the double notch geometry and the way the boundary conditions are 

applied. 
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4.5 NUMERICAL ESTIMATES FOR COMPACT TENSION SPECIMENS 

In the field of fracture mechanics, it is a well-established 

laboratory technique to use compact tension specimens to collect crack 

growth data on materials operating under creep conditions. 

Morzeria [1979] carried out creep cracking tests on a low alloy steel 

at 565°C using compact tension specimens with notches of various 

sharpnesses. The reason behind introducing these notches was to examine 

the dependence of the initiation and propagation rate of a creep crack on 

the root radius. His conclusions were that the initial cracking rate 

decreases with increase in hole size. 

Webster and Nikbin [1981] used the boundary integral equation method 

(BIE) to estimate the effective elastic stress concentration factor (SCF) 

at the edge of the hole for three of Morzeria's compact tension geometries. 

Their results showed that the elastic SCF is highly sensitive to notch 

sharpness. For materials where the crack initiation time is smaller than 

the redistribution time (mainly brittle materials) due to creep, they 

showed that the initial crack growth rate is highly sensitive to the 

elastic SCF. However, for ductile materials, the redistribution time is 

expected to be much shorter than crack initiation time; therefore, the 

steady-state SCF at the edge of the hole has to be used in the 

calculations. For this reason, the two-dimensional finite element program 

developed in Chapter 3 was used to calculate the steady-state stress 

distributions for the geometries Webster and Nikbin investigated. 

4.5.1 Compact Tension Geometries 

The main dimension of a compact tension specimen is shown in 

Figure 4.26. Three geometries were considered in the finite element 

analysis with ratios of d/u) = 0.2, 0.133 and 0.066. The dimension W was 

kept constant and the notch sharpness was increased by decreasing d. 
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Because of symmetry, only half of the geometry was considered as a solution 

domain. The finite element mesh generation program discussed in Section 

3.6.3 was used to generate the required meshes, shown for the three 

geometries in Figure 4.27. Experimentation with progressively finer grid 

sizes has shown that satisfactory accuracy is achieved with approximately 

480 elements and the crack line divided into a row of 28 elements. The 

stress was applied on four elements representing a segment of a circle 

similar in profile to the loading pins in the real specimen. This was 

found to be adequate to produce the required solutions. 

4.5.2 Estimates of the Nominal Stress, g 

The definition of the stress concentration factor is: 

_ local 6&IQA& 
o 

nom 

The nominal stress for the compact tension specimen consists 

of the tensile stress on the net section, o^, added to the bending stress, 

<7g, as shown in Figure 4.26(b). The equation for each one of them is: 

°t =
 B (J- a) (4'8) 

and: a, = KJELA (4.9) 
D
 B (to - a)

2 

where F is the applied force, and B is the specimen thickness. Both to and 

a are shown in Figure 4.26. The nominal stress, a ^ . is therefore: 
0 nom 

F (4to + 2a) n = a . + a, = (4.10) nom 8 

The SCF can then be calculated using equation (4.7). 
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4.5.3 Calculations and Discussion of the Results 

Elastic and steady-state calculations were made for each of 

the three compact tension geometries for values of n = 1, 3 and 9. The 

normalised axial stress distributions, a . Jo „ , in the crack line region 
' yy nom9 & 

for each geometry are summarised in Figures 4.28 to 4.30. Finally, the 

SCF at the edge of the hole for each geometry and n are presented in 

Figure 4.31. 

The calculations were performed, assuming plane stress 

conditions and incompressible material behaviour, i.e. v = 0.5. The Von 

Mises criterion was adopted and a tolerance, X = 10~ 5, for all the 

calculations. Several elastic computer runs were performed for each 

geometry to find the optimum over-relaxation factor used in the Gauss-

Seidel iterative method adopted in the program to solve the linear 

simultaneous equations (Fenner [1975]). The values were found to vary 

between 1.94 and 1.98, depending on the geometry. 

The normalised axial stress distributions shown in Figures 

4.28 to 4.30 for Kl = 1 have similar trends for all three geometries. The 

maximum is always near the hole edge; however, it increases in value with 

the increase in hole sharpness. For values of Kl > 1, the stress 

redistributes and the maximum tends to move away from the hole edge. The 

trends observed are similar for all geometries. Initially, at time zero 

on first loading, and in the absence of plastic deformation, the stress 

distribution is elastic. As creep takes place, regions of high stress 

shed load onto the lower stress regions because of the high sensitivity to 

stress of creep deformation. The extent of the stress redistribution 

that takes place in order to achieve steady-state conditions increases 

with increase in the value of Kl. 

The elastic and steady-state SCF are presented in Figure 4.31 

for the three compact tension geometries. The elastic SCF is compared 
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with Webster and Nikbin's [1981] BIE predictions which shows identical 

trends and values to the present calculations. For values of n > 1, the 

SCF becomes less sensitive to the notch sharpness, therefore making crack 

initiation much more difficult. 
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4.6 CONCLUSIONS 

Calculations have been made for a range of circumferential notch 

geometries and values of n to determine the steady-state stress 

distributions across the notch throat region using an axi-symmetric finite 

element program developed and tested in Chapter 3. 

A skeletal point at which the effective stress remained constant, 

independent of n, was observed for each notch dimension investigated. 

The value of the effective stress at the skeletal point can be used as a 

reference stress to characterise the overall deformation behaviour of the 

notched bars, excluding situations where a dominating crack can cause a 

premature failure and when steady-state is not achieved. 

The variation of the effective, axial and hydrostatic stresses at the 

skeletal point as notch sharpness increases were plotted for three b/d 

ratios. Similar trends were observed which could be used in continuum 

mechanics and microstructural models to explain notch strengthening and 

weakening. 

Finite element calculations have been performed to investigate the 

influence of having two notches in a round bar on the stress distributions. 

The results showed satisfactory agreement with the single notch finite 

element predictions. These findings make it justifiable to use either 

single or double notch solutions in further theoretical studies on creep 

behaviour of notched bars. 

Three compact tension specimens with different notch sharpnesses were 

investigated using the two-dimensional finite element program developed in 

Chapter 3. . Elastic and steady-state axial stress distributions and 

stress concentration factors were estimated. The results showed that for 

ductile materials, crack initiation is not sensitive to notch sharpness. 
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TABLE 4.1 

The Finite Element Notched Geometries Investigated 

fa/a a/R 

1.67 0.75 1.5 2 4 6.66 10 15 20 - -

1.46 0.5 1 1.67 2.6 5 8.125 11.818 13 16.25 32.5 

1.33 1 3 6 13.125 30 - - - - -

TABLE 4.2 

Effective Stress Values at the Skeletal Point When 

the Von Mises Criterion is Adopted 

fa/a = 1 .67 fa/a = 1. 46 fa/a = 1. 33 

a/R A/a* a /a* 
nom' 

a/R x/a* a /a* 
nom 

a/R x/a* a fa* 
nom' 

0.75 0.68 1.2 0.5 0.645 1.19 1 0.6 1.195 
1.5 0.675 1.35 1 0.65 1.242 3 0.765 1.384 
2 0.685 1.435 1.67 0.73 1.352 6 0.833 1.468 
4 0.765 1.56 2.6 0.755 1.443 13.125 0.87 1.508 

6.66 0.818 1.665 5 0.81 1.553 30 0.91 1.539 
10 0.85 1.737 8.125 0.84 1.606 
15 0.87 1.788 11.818 0.86 1.608 
20 0.895 1.79 13 0.873 1.618 

16.25 0.895 1.621 
32.5 0.93 1.624 

* Position of the skeletal point 
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Figure 4.1: Bridgman stress and strain distributions 

Figure 4.2: A typical notched bar solution domain 



a . a/R = 0.75 b - a/R = a c - a/ r = 

Figure 4.3: A selection of finite element meshes for the notch geometries with b/a = 

20 

1.67 
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2.5 -

Figure 4.4 

.4 .6 .8 1 
Normalised radial distance, Ala. 

Effective stress distribution at steady-state across the 
throat of a notch with fa/a = 1.67 and a/R = 0.75 

Figure 4.5: Effective stress distribution at steady-state across the 
throat of a notch with b/a = 1.67 and a/R = 20 
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Normalised radial distance, A/a 

e 4.6: Stress distribution at steady-state across the throat of a 
notch with b/a = 1.67, a/R = 0.75 and for n = 16 
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Normalised radial distance, A/d 

Figure 4.7: Stress distribution at steady-state across the throat of a 
notch with b/a = 1.67, a/R = 20 and for n = 16 



2.55 at a/R = 0 
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F i g u r e 4.8: D e p e n d e n c e of the s t a t e of stress p a r a m e t e r s at the s k e l e t a l 

p o i n t on n o t c h s h a r p n e s s for the n o t c h e d g e o m e t r i e s w i t h 

b/a = 1.67 and for n = 16 



b - a/R = 5 

A s e l e c t i o n of f i n i t e e l e m e n t m e s h e s for the n o t c h 

q__ a/R = 32.5 

g e o m e t r i e s w i t h b/a = 1.46 
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Figure 4.10: Effective stress distribution at steady-state across the 

throat of a notch with b/a = 1.46 and a/R = 1 

l 1 r 
6.9 at A./a = 1 

Von Mises 

Tresca 

_l 
• 6 .8 

Normalised radial distance, A/d 

Figure 4.11: Effective stress distribution at steady-state across the 

throat of a notch with b/a = 1.46 and a/R = 32.5 
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N o r m a l i s e d r a d i a l d i s t a n c e , x / a 

F i g u r e 4 . 1 2 : S t r e s s d i s t r i b u t i o n at steady state a c r o s s the throat of a 

n o t c h w i t h b/a = 1 . 4 6 , a/R = 1 and for n = 9 
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F i g u r e 4.13: S t r e s s d i s t r i b u t i o n at s t e a d y - s t a t e across the throat of a 

n o t c h w i t h b/a = 1 . 4 6 , a/R = 3 2 . 5 and for n = 9 
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F i g u r e 4 . 1 4 : D e p e n d e n c e of the state of s t r e s s p a r a m e t e r s at the s k e l e t a l 

point on n o t c h s h a r p n e s s for the notched g e o m e t r i e s w i t h 

b/a = 1.46 and for n = 9 



b - a / R = 13.125 C - a/R = 30 

s e l e c t i o n of f i n i t e e l e m e n t m e s h e s for the n o t c h g e o m e t r i e s w i t h b/a = 1.33 
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Figure 4.16: Effective stress distribution at steady-state across the 

throat of a notch with b/a = 1.33 and a/R = 3 

n 

1 1 r 

7.9 at x/a = 1 

3.1 at x/a = 1 

0 .2 a .6 .8 i 
Normalised radial distance, x/a 

Figure 4.17: Effective stress distribution at steady-state across the 

throat of a notch with b/a = 1.33 and a/R = 30 
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a/R = 3 

Figure 4.18: Stress distribution at steady-state across the throat of a 

notch with b/a = 1.33, a/R = 3 and for n = 7 and 12 
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a/R=30 

Normalised radial distance, A/a 

Figure 4.19: Stress distribution at steady-state across the throat of a 
notch with b/a = 1.33, a/R = 30 and for n = 7 and 12 
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a/r 

Figure 4.20: Dependence of the state of stress parameters at the skeletal 

point on notch sharpness for the notched geometries with 

b/a = 1.33 and for n = 7 



..... -- 21 b ----I~ 

(a) A specimen with two 
notches 

(d) Semi-circular 
notch, a/R = 1.5, 
b/a = 1.67 
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'It ., 

(b) BS V-notch 

(e) A notch with 
aiR 1.67, 
b/a = 1.46 

-~- ------------- -

(c) Single BS V-notch, 
aiR = 18.18, bla = 1.41 

(f) A notch with 
aiR 3, 
bla = 1.46 

Figure 4.21: Finite element meshes and their boundary conditions for 
round bars with two not ches machined into their gauge 
1 en Q th 

.-~~- -~~ ~~~ --~~~ 
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Normalised radial distance, A/a 

Figure 4.22: Stress distribution at steady-state across the throat of 

a single and double semi-circular notch with b/a = 1.67, 

a/R = 1.5 and for n = 1 and 9 

Figure 4.23: Stress distribution at steady-state across the throat of a 
sing]e and double BS V-notch with b/a = 1.41, a/R = 18.18 
and for » 7 = 1 and 9 
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Figure 4.24: Stress distributions at steady-state across the throat of 

a single and double notched bar specimen with b/a = 1.46, 

a/R = 1.67 and for n = 9 

Figure 4.25: Stress distributions at steady-state across the throat of 
a single and double notched bar specimen with b/a = 1.46, 
a/R = 13 and for n = 9 



_ 144 _ 

3 _ Three-dimensional view of a compact tension specimen 

F i g u r e 4.26: C o m p a c t tension specimen 



_ 145 _ 

(b) dl/W = 0 . 1 3 3 

(c) cf/W = 0 . 0 6 6 

F i g u r e 4.27: F i n i t e e l e m e n t m e s h e s and their b o u n d a r y c o n d i t i o n s for 

c o m p a c t t e n s i o n s p e c i m e n s 
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Normalised distance, X./W 

Figure 4.28: Axial stress distribution at steady-state across the crack 

plane for a compact tension specimen with d/W = 0 . 2 

Normalised distance, x/W 

Figure 4.29: Axial stress distribution at steady-state across the crack 

plane for a compact tension specimen with d/W = 0.133 
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x/U' 

Figure 4.30: Axial stress distribution at steady-state across the crack 
plane for a compact tension specimen with d/l'J = 0.066 

d/(0 

Figure 4.31: Stress concentration factor of compact tension specimen 
with different notch sharpness 
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CHAPTER 5 

CONTINUUM MECHANICS AND MICROSTRUCTURAL PREDICTIONS 

OF NOTCH BAR BEHAVIOUR 

5.1 INTRODUCTION 

Continuum mechanics and microstruetural laws describing the behaviour 

of components undergoing creep deformation which terminates in fracture 

were presented in Chapters 1 and 2. These laws can be used effectively 

to provide useful design information for an unlimited number of materials 

under different loading conditions. 

In this chapter, the finite element predictions of state of stress 

parameters in the throat of the notched bar geometries investigated in 

Chapter 4 are used in continuum mechanics and microstructural approaches 

to predict the lives of these geometries. The analysis is based on the 

assumption that the stresses at the skeletal point determine the overall 

behaviour of these notched bars, provided that steady-state is achieved 

relatively early in life. An approximate method for calculating steady-

state time scales in structures is also presented, based on the assumption 

that the maximum stress determines the overall structure behaviour. 
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5.2 AN APPROXIMATE METHOD FOR ESTIMATING THE GREATEST STRESS IN 

STRUCTURES SUBJECTED TO CREEP 

Calladine [1963-1967] used an approximate method for interpolating 

for the greatest stress in structures between the limits ft = 1 and n -»-

which corresponds to linear elastic and perfectly plastic materials, 

respectively. He investigated a wide range of problems such as beams, 

shells, plates, rotating discs, etc. The maximum effective stress for 

any value of ft was normalised with respect to its corresponding elastic 

value. This new term was called the "relative stress concentration 

factor": _ 

F = (5.1) 

°max.,n=l 

A series of graphs showing the variation of F with m = 1/n were presented. 

These can be used to provide rapid design estimates of a
m a x for any value 

of ft, therefore pointing out the areas where local failure is possible. 

5.2.1 Application to Notch Bar Geometries 

The finite element effective stress distributions for the 

notched geometries investigated in Chapter 4 can now be used to produce a 

series of figures similar to those presented by Calladine. The effective 

stress is always a maximum at the notch root; therefore: 

F = "»«.""* ( 5 > 2 ) 

where k is the elastic effective stress concentration factor. For each 

b/a ratio, a graph of F against 1/ft is plotted as shown in Figures 5.1 to 

5.3. The figures indicate that decreases with increase in ft in an 

approximately linear fashion for a fixed notch geometry. The decrease is 

greatest for the sharpest notches. Comparison is also made in Figures 5.1 
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to 5.3 with the Bridgman prediction of the effective stress across a notch 

throat for a rigid plastic material having ft = The Bridgman analysis 

gives a constant effective stress since it is only dependent on the applied 

oo 

stress, a Q , and the notch geometry dimensions. Equation (4.5) can now 

be written as: 

• (fa/a)2 o * 
a = amax = (5'3) 

m a X {(7 + 2R/a) In (7 +a/2R)} 

The values of F determined from this equation are shown on the vertical 

axes of Figures 5.1 to 5.3. The Bridgman equation predicts higher values 

than those from the computer calculations. This is due to the fact that 

the Bridgman analysis results in lower values of a., and a Q Q than the 
njl u o 

computer estimates, and hence a greater effective stress. 

Conservative estimates of f, using Bridgman's prediction for 

ft = <» as a reference point, are possible. The dotted lines in Figures 

5.1 to 5.3 are drawn by combining equations (5.2) and (5.3), thus giving 

the following linear relation between f and ft: 

F - 1
 + (7 + 7/ft) lb/a) 2  

h
 " ft k (7 + 2R/a) In (7 + a/2R)

 ( 5
'

4 ) 

Equation (5.4) gives good agreement with computer estimates for sharp 

notches, but increasingly conservative predictions for progressively 

blunter notches. 

5.2.2 Approximate Time Scales for Stress Redistribution Due to Creep 

A simple approximate formula has been proposed by Calladine 

[1969] to estimate the time taken for the stress to relax from its initial 

elastic to a final steady-state. The time scale is expressed in terms of 

the time taken for creep strain to become equal to a certain multiple of 
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the elastic strain in a constant stress creep test. The assumption used 

in the analysis was that the overall behaviour of a structure under creep 

conditions is dominated by the redistribution of the peak stress. 

For materials in which the creep strain rate is proportional to 

the Kith power of stress (equation (3.5)), Calladine showed that: 

AU) =  1 i n In - ) (5.5) 

where E is Young's modulus, and a. . is the effective stress at Steady-
's <6 

state. Using the assumption that G
m a x dominates the overall behaviour 

and the time taken for stress relaxation to be 90% complete, equation 

(5.5) becomes: 

max 

For Kl typically in the range 5 to 10, it can be shown from 

equation (5.6) that the time to steady-state, £.., is approached when the 

maximum equivalent creep strain, e
m C L ) C> is between, respectively, about { 

and £ of the corresponding maximum elastic strain. 

The iterative finite element method used in Chapter 4 to 

calculate the steady-state stress distributions for the various notch bar 

geometries cannot predict the time taken to achieve steady-state. 

However, Calladine's approximate equation (5.6) and the values of F in 

Figures 5.1 to 5.3 can be used as a useful design tool to predict notch 

behaviour, provided that stress redistribution is achieved rapidly. This 

will be discussed in more detail in Chapter 6. 
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5.3 CONTINUUM MECHANICS APPROACH TO PREDICT NOTCH STRENGTHENING AND 

WEAKENING 

In this section, the steady-state finite element predictions of the 

state of stress parameters summarised in Chapter 4 (Figures 4.8, 4.14 and 

4.20) for the various notch geometries investigated are used to predict 

notch strengthening and weakening (illustrated and discussed in Section 

1.4.1) from a continuum mechanics approach. 

Following the laws of plasticity under multi-axial stresses, it has 

generally been found that when shear processes predominate, the deformation 

rate under creep conditions is dictated by the effective stress, a, 

otherwise known as the second invariant stress. Those materials whose 

rupture lives are functions of a only exhibit little or no cracking, 

except in regions adjacent to the fracture. It has also been found that 

the rupture lives of some materials are functions of the maximum principal 

tensile stress, o-j, only. They exhibit spatially homogeneous grain 

boundary cracking which gradually accumulates during tertiary creep 

(Johnson, et al. [1962], Hayhurst [1972], and Cane [1980]). 

Two continuum mechanics models can now be proposed to predict notch 

strengthening and weakening, based on the assumption that creep rupture 

under multi-axial conditions is either controlled by deformation which is 

dependent on a only, or by crack propagation dictated by (Jj. 

5.3.1 Calculations 

Starting from the secondary creep equation: 

t. = e n (5.7) 4 0 o 0 

the rupture time for a uni-axial specimen subjected to a constant stress, 

v i s : 
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*«n • r (5-8) 

o 

where is the minimum creep rate which corresponds to the applied stress, 

v 

For a notched specimen, the rupture time is: 

0 o 

here, a Q is equivalent to the nominal stress across the notch throat, ° n o m' 

The time-strength ratio, given previously by equation (1.29) 

for a constant ductility model, i.e. similar failure strains for uni-

axial and notched specimens, is therefore: 

= (+2E)'1 (5.io) 
an a 

Equation (5.10) is valid for materials whose rupture lives are controlled 

by a. However, for materials where the principal stress, Oj, controls 

failure, the above equation becomes: 

k n 

Similarly, when the stress-strength ratio is used in a constant 

ductility model, the result for a a material is: 

= SM (5.i2) 
an a 

a anom 
and for a a, material: = (5.13) 

7 cr o 1 an 7 
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Calculations were made to evaluate the strength ratios, using 

equations (5.10) to (5.13), and the Bridgman estimates (equation (4.5)) of 

a. The values of a / a and ° n o m/
aj were taken at the skeletal point 

from the finite element*predictions given in Chapter 4, when the Von Mises 

criterion was adopted. The results are presented in Figures 5.4 to 5.6 

in terms of time and stress-strength ratios, plotted against notch 

sharpness, a/R. 

5.3.2 Discussion 

The time-strength ratio for materials in which cr controls the 

deformation and rupture during creep are presented in Figure 5.4 for the 

notched geometries with b/a = 1.46. Equation (5.10) was used to calculate 

the constant ductility lines shown for n = 1, 3, 5, 7 and 9. It is shown 

in Figure 5.4 that the time-strength ratio for a materials always predict 

notch strengthening which increases as n increases. The trends these 

predictions follow are similar. They all start from X-yio^un ~ 1 a n c* 

increase asymptotically with notch sharpness, a/R. Also shown in Figure 

5.4 are the Bridgman predictions for notch strengthening using equation 

(4.5). They are consistent with the continuum mechanics predictions for 

blunt notches but overestimate the time-strength ratio as the notch 

sharpness increases. It must be noted that for each notch geometry, the 

term ° n o m /
a used in equation (5.10) is constant and independent of Yl since 

it represents the value of the effective stress at the skeletal point. 

For b/a = 1.46, the values were given previously in Figure 4.14. 

Similarly, for materials where Oj is responsible for failure, 

the time-strength ratio for b/a = 1.46 is plotted for different values of 

n and notch sharpness, a/R, in Figure 5.5. The results always predict 

notch weakening. The values of a
n o m/

a-j used in the calculations were 

read at the effective stress skeletal point. Although a skeletal point 
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for the steady-state axial stress distribution was not reported in the 

conclusions of Chapter 4, a zone, where the axial stress is nearly 

independent of nt exists at the position of the effective stress skeletal 

point. These values of a /a, with some adjustments can therefore be 
nom I 

used as a reference axial stress. The notch weakening predictions shown 

in Figure 5.5 for all values of n follow the same trends. They all start 

from t,nJt,,n = 1 and decrease asymptotically with the increase in notch no an  J  

sharpness. 

Finally, Figure 5.6 shows the stress-strength ratios for a and 

Oj materials and for the three b/a. notch ratios investigated in Chapter 4. 

Equations (5.12) and (5.13), which are independent of n, were used in the 

calculations. Two master curves were estimated for each b/a ratio; one 

predicts notch strengthening for a materials, and the second notch 

weakening for cfj materials. An upper notch strengthening for each b/a 

ratio is also shown in Figure 5.6. It is due to gross section creep 

caused by the notch constraint and represented by [b/a) 2. 
The maximum 

value of a/R for which full constraint can be maintained was estimated to 

be 1.5 for b/a = 1.33, 1.55 for b/a = 1.46 and 1.85 for b/a = 1.67 

(Neimark [1968]). 



_ 1 5 6 -

5.4 MICROSTRUCTURAL APPROACH TO PREDICT NOTCH STRENGTHENING AND WEAKENING 

Ashby's theory of creep rupture by void growth is used in this section 

to predict both notch strengthening and weakening. A detailed analysis 

of this theory was previously given in Chapter 2 (Section 2.5). The 

required information concerning the state of stress parameters, which 

appear in most of Ashby fs equations, are taken from the detailed finite 

element calculations performed and presented in Chapter 4. In 

particular, the information available on the notch geometries with 

b/a. = 1.46 were used in the analysis. The calculation procedure should 

also be applicable for the notch geometries with the other b/a. ratios. 

Two assumptions were made during these calculations: 

(a) Nucleation time, £ , is negligible. 

(b) Steady-state is achieved relatively early in life, otherwise 

the finite element predictions of the state of stress 

parameters cannot be used in the calculations. 

5.4.1 Diffusion Models 

For boundary diffusion, the approximate expression for rupture 

time was given by equation (2.19). Assuming £ = 0 leads to: 

is a material property defined by equation (2.18). Therefore, it 

should be constant for uni-axial and multi-axial states of stress. ' For 

uni-axial tension, o Q = cjj, which leads to a time-strength ratio derived 

from equation (5.14) for boundary diffusion: 

(5.14) 
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£ a no _ nom f . 
4. — ip) z o . un 1 

The above equation is similar to the continuum mechanics equation (5.11) 

for n - 1. It predicts notch weakening as shown in Figure 5.5 for the 

notch geometries with b/a = 1.46. 

For surface diffusion, the rupture time equation (2.25), when 

£ = 0, becomes: 

7 " H - o n 3 

ft * ± (-̂ -1 (5.16) 

k k 1 
0 0 

Similarly, a time-strength ratio can be derived from equation (5.16) for 

surface diffusion: 

= ( I 2 2 V (5.17) 
z ct. 

un / 

Equation (5.17) also predicts notch weakening, as shown in Figure 5.5 for 

the notch geometries with b/a = 1.46 and when n = 3. 

The effect of varying ft and ft in equations (5.14) and (5.16) 

on rupture time, expressed as ftft> f°r uni-axial and notch bar specimens 

with b/a = 1.46 are shown in Figure 5.7 when n = 9. For boundary 

diffusion, ft ft is plotted against a/R, which corresponds to the finite 

element predictions of a
nom^°-j f°r a particular notched geometry for a 

range of ft values of 0.1 to 5x10~ft as shown in Figure 5.7. The lines 

are parallel and always predict notch weakening. However, rupture times 

increase when ft decreases. For surface diffusion, one valid assumption 

that can be made is that fa > < 0.01, therefore making ft e in equation 
z k 0 

(5.16) dependent on ft and (ft/oj)3 only, so that: 

&n * t~ [7t} 3 ( 5' 1 8 ) 
k 0 m o . y0 i 
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Similar notch weakening trends are observed to those of boundary diffusion 

when 0 is varied in equation (5.18), as those shown in Figure 5.7. 

for both boundary and surface diffusion, equations (5.14) and (5.16) 

simply become equivalent to the continuum mechanics equation (5.13) which 

predicts notch weakening as shown previously in Figure 5.6. 

5.4.2 Power-Law Creep Models 

A new parameter, a, defined by equation (2.30), appeared in 

Ashby's equations of damage rate and strain rate when voids grow by power-

law creep alone. It is dependent on state of stress through the ratio 

CTtt/a ( w b e r e d s t b e hydrost^ic stress component) . Graphs of a as the 

tri-axiality is increased (a/R) are plotted in Figure 5.8 for different 

values of n and for notch geometries with b/a = 1.46. The ratio <4 /a is 

taken at the effective skeletal stress point, since it is nearly constant 

and independent of n at that position for all the notch geometries 

investigated. The graphs of a shown in Figure 5.8 decrease sharply from 

the initial uni-axial value a . They become less sensitive to n for 

values of n > 1. 

The rupture strain equation (2.34) for a uni-axial state of 

stress, and when £ - 0, reduces to: 
' m ' 

e^ is the secondary creep rate; therefore, according to equation (5.19), 

the strain-time curve for a constant stress test is represented by a long 

line with a slope k and a small upturn in the end, respresenting the 

tertiary stage and dictated by the value 0.2Z/d. For constant load tests, 

the matter is different since the current stress has to be updated using 

When the stress is used to model notch strengthening ratios 

(5.19) 
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equation (2.31). Figure 5.9 shows a schematic diagram of strain-time 

behaviour of a uni-axial specimen failing by power-law creep under constant 

load and constant stress conditions. 

The rupture time equation (2.31) for constant load, when 

<< 1, reduces to equation (2.33). Substituting e^ by 

equation (2.33), the following linear relation is derived: 

= n z R (5.20) 

where and £g are rupture times at constant load and constant stress, 

respectively. The lines calculated for different values of Yl are shown 

in Figure 5.10. They indicate that for large values of Yl and high 

ductilities, the difference increases between the rupture times of 

specimens tested under constant load and constant stress. 

An expression for the time-strength ratio can be derived from 

the general rupture time equation (2.30) for constant stress. For uni-

axial tension and assuming £ = 0, it reduces to: 

= l n ln+ i) i ( 5' 2 1 ) 

^ (n+1) e0 lli +n fiyj 

and for a multi-axial state of stress, it remains the same, excluding £ . 

If ^ is assumed to remain constant under both uni-axial and multi-axial 

conditions, then an expression for time-strength ratios could be derived 

from equations (5.21) and (2.30), as follows: 

. (jl] (5.22) 
£ a — a n o a 

refers to the uni-axial value. Equation (5.22) is plotted in Figure 

5.11 for different values of Yl and for notch geometries with b/a = 1.46. 
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Both notch strengthening and weakening are predicted by this model. For 

values of n < 5, equation (5.22) predicts notch weakening, but when n > 5 

it predicts the notch strengthening ratio which drops in value beyond a 

critical a/R. For these particular notch geometries and n values, the 

drop in strength started at a/R = 2 to 7. 

If X . is assumed to vary as the tri-axiality is increased, 

then rupture time, e tV9 in equation (2.30) becomes dependent on ft, notch 
0 K 

sharpness a/R, and X-. Therefore, a series of curves, having different 

(J. values, can be plotted for each value of ft. These are shown in Figure 

5.12 for n = 3 and 9 and values of 10" 2 to 10" 1 0. For n - 3, the 

model predicts notch weakening for all X . values, but for ft = 9 it predicts 

notch strengthening time ratio which drops after a certain amount of 

constraint, approximately constant for these geometries and equal to 

a/R = 8. 

The drop in ductility due to the increase in tri-axiality can 

be shown when the rupture strain equation (2.34) is used in the following 

analysis. Assuming 0.2t/d to be negligible and substituting equation 

(2.30) C£g) i n t o equation (2.34) results: 

e R " J n T I J l n 

1 
Lin* 7) 6 A 

(5.23) 

The above equation is plotted in Figure 5.13 for a range of X'
 =
 10~

2
 to 

10~
1 0
 and for Yl = 9. The a/R is related to Eg through the parameter a. 

All the curves follow the same trend, i.e. Eg decreases asymptotically 

from an initial uni-axial value as a/R increases. The difference between 

the maximum and the minimum Eg is always an order of magnitude. To make 

the notch bar ductility Eg remain constant and always equal to the uni-

axial £«, • has to change by about eight orders of magnitude, as 

K A, 

illustrated in Figure 5.13 by the horizontal constant ductility line for 
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the case of = 30%. 

The rupture strain equation (2.34) can also be used to show 

the influence of ductility on rupture time expressed as ft ft* Assuming 

O.Zl/d to be negligible, equation (2.34) reduces to: 

. + ,°nom]n 
h = er h h ( 5' 2 4 ) 

a 

Assuming that ductility is constant at failure for uni-axial and notch bar 

specimens, a series of curves can be drawn using equation (5.24), as shown 

in Figure 5.14. The trends are similar for all curves; they all predict 

notch strengthening. Rupture times increase with the increase in 

ductility. 

Finally, three types of stress strength ratios are shown in 

Figure 5.15. The mathematical expressions were derived from the rupture 

time equation (2.30), with the assumption that £ - 0. For uni-axial 

tension, equation (2.30) reduces to equation (5.21). If ft is assumed to 

remain constant under uni-axial and multi-axial states of stress, then a 

relation for stress strength ratio can be derived from equations (2.30) 

and (5.21) as follows: 

m j_o_j 7/n ( 5 2 5 ) 

an ao a 

Using the definition of the notch rupture strength (equation (1.31)), when 

£ = £ = 1, the result is: no un ' 

= { j l ) j / n % m 
4 a — o a 

here, the ratio is taken at the skeletal point. ' nom 

The rupture time equation (2.30) can be written in terms of 
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the rupture strain, such that: 

ZR ,ao,n 
o o 

The assumption made in equation (5.27) is 0.2Z/d is negligible. Assuming 

constant rupture strain for uni-axial and multi-axial specimens gives an 

expression for stress strength ratio identical to that reached by the 

continuum mechanics approach, i.e. 

s = 5 m ( 5 . 2 8 ) 

4 — 

Cocks [1980] derived an expression for stress strength ratio, 

based also on equation (2.30) and for £ = 0 . He used a constraint 
Kl 

parameter, W, which defines the stress state on the minimum section of a 

notched bar as follows: 
°n 

N = — (5.29) 

where a^ and a are the slip line field predictions of the average axial 

stress and the equivalent stress in the minimum section of a notched bar. • 

Cocks
1
 final expression was: 

. . rzin-l/2,1 1 
sinh h-l f/JJ 

s4 = n „ 1/2 9 ( 5- 3 0 ) 

Equations (5.26), (5.28) and (5.30) are plotted in Figure 5.15. 

Equation (5.28) gave similar predictions to the continuum mechanics 

approach when e^ is constant. Equation (5.26) predicts notch strengthening 

for Kl ̂  5 which drops in value around about a/R = 8 for these particular 

notched bar geometries. For values of Kl < 5, notch weakening is predicted, 

excluding the case when Kl = 4 for which both notch strengthening and 
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weakening are observed. Cocks equation (5.30), based on values of 

N = a
n o m /

a a t the skeletal point, always predicts upper bounds to the 

strength ratio calculated by equation (5.27), and similar in trends to the 

continuum mechanics prediction for n > 3. 
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5.5 GENERAL DISCUSSION 

The assumption used to derive the continuum mechanics equations (5.10) to 

(5.13) , defining the time and stress strength ratio, was that the final ductility 

remains constant, even when the ratio o /a increases due to the increase in 
m 

constraint. This assumption is physically invalid, since it has been observed 

and reported in the literature that ductility drops with the increase in tri-

axiality (Dyson and Loveday [1980], Hancock, et al. [1976], Mackenzie, et al. 

[1977]) . The equations mentioned, therefore, will always predict upper 

strengthening bounds when a is adopted, or lower weakening bounds if expressed 

in terms of a^ . It is expected that real material data will depart from the 

theoretical bound after a certain amount of constraint. 

The diffusion models proposed by equations (5.15) and (5.17) are 

totally dependent on the ratio a
n o m/°i which is equal to unity for uni-

axial tension and always less than one for notched bar specimens, as the 

steady-state finite element stress distributions show (Hayhurst, et al. 

[1977a,b], Al-Faddagh, et al. [1982]). It is therefore expected that 

diffusion models predict notch weakening. 

Two main assumptions were used to derive the notch rupture strength 

ratios when voids grow by power-law creep. These were varies with the 

increase in tri-axiality or remains constant. • The assumption that fi. is 

variable means that small and large voids nucleate initially in which 

large voids start to grow under the influence of the applied stress, 

therefore dictating the deformation and rupture response. As the 

hydrostatic component begins to increase and the effective stress decreases 

due to the increase in tri-axiality, smaller voids are activated and, in 

turn, start to influence the deformation and rupture behaviour. The area 

fraction of holes was given previously by equation (2.11) as: 

% 
k - -t- <5-31> 

i2 
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Therefore, it is expected that ft may vary by an order of magnitude if the 

difference in void size is between 2 and 4. However, if the difference is 

10, then ft varies by two orders of magnitude, which is the difference 

between the neighbouring curves plotted in Figure 5.12. The attraction 

of using the assumption 'ft is constant' is that the state of stress is 

well represented in the time-strength ratio through the parameters a/ft 

and cr /a, as well as the material creep index, ft. Therefore, both notch ftOttl 

strengthening and weakening can be predicted by the proposed model. 

Uni-axial or notched bar specimens are expected to fail by diffusion 

if the following condition is satisfied: 

ft ^ (by dzfafamzon] < ft ^ (by pow&i-law cAe,o.p) (5.32) 

Using the rupture time equations (2.20) and (2.30) for boundary diffusion 

and power-law creep, the following expression is derived: 

v l = ^ (% }ft ( 5 - 3 3 ) 

% d 0.17 o °o 

where the suffixes PL and d refer to power-law and boundary diffusion, 

respectively. If the ratio given by equation (5.33) is greater than one, 

then failure is diffusion controlled, but if it is less than one, then 

failure will be power-law creep controlled. For uni-axial tension, equation 

(5.33) reduces to: 

= ^ (5.34) 
% d 0.17 

The above equation indicates that ft has to be greater than 0.17 in 

order to make a uni-axial specimen to fail by diffusion. This is very 

unlikely since z^ for most materials varies between 0.5 and 0.01, and ft 

is usually less than 1. However, for high degrees of tri-axiality, the 
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"""* fl 

ratio [aQ/a] and (^7/%) become significant and always greater than 1, so 

that failure by diffusion becomes possible. 

If rupture time due to power-law creep and, say, boundary diffusion 

are assumed to be equal, then the following equation can be derived: 

C1 _ fR .a
0]n 

ft " 1 o o 
(5.35) 

. r 0.17 k T I 3
 f . 

where: C ? = ( 5 ' 3 6 ) 

The finite element predictions at the skeletal point gives: 

- c2%on, < 5 " 3 7 > 

Substituting equation (5.37) into equation (5.2) and using the stress 

strength ratio definition given by equation (1.31) gives: 

C1 ft 1 
S. = p— T— — (5.38) 

4 2 R °un 

where e, is the secondary creep rate. Equation (5.38) indicates that 

weakening is likely to occur at low strain rates and large ratios, 

°l/onom' 
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5.6 CONCLUSIONS 

An approximate method has been presented for estimating time-scales 

for stress redistribution due to creep. The method is based on the 

assumption that the maximum stress in structures determines the overall 

behaviour. It is applicable to notch bar geometries. Therefore, it can 

be used to provide useful design predictions of notch behaviour. 

Continuum mechanics and void growth analyses have been used to 

provide some theoretical models to predict notch strengthening and 

weakening in round bars subjected to creep. The influence of state of 

stress parameters, ductility, and area fraction of holes were analysed and 

discussed. 

It was found that continuum mechanics models predict upper notch 

strengthening bounds for a materials and lower notch weakening bounds for 

Oj materials, when the assumption that ductility remains constant for uni-

axial and multi-axial states of stress is used. 

The diffusion models proposed always predict notch weakening and are 

totally dependent on the ratio a
n o m /

a j raised to the power 1 or 3. 

Several power-law creep models have been proposed for estimating 

rupture times and notch strength ratios. These models were derived using 

either rupture time or rupture strain equations with the assumptions that 

area fraction of holes, varies with the increase in tri-axiality or 

remains constant. Another assumption was also used, that is ductility 

remains constant when notch constraint is increased. It was shown, 

however, that for this assumption to remain valid, has to decrease from 

an initial uni-axial value by about eight orders of magnitude when 0./R 

increases to about 32. Both notch strengthening and weakening were 

observed when the proposed power-law creep models were adopted. 
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Figure 5.1: Relative maximum stress concentration factor, F, as a function 

of 7/n for notched geometries with b/a = 1.67 

0 .2 ,4 .6 .8 1 

m = 1/n 

Figure 5.2: Relative maximum stress concentration factor, F, as a function 

of J/,; for notched geometries with b/a = 1.46 
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m = j/n 

F i g u r e 5.3: R e l a t i v e m a x i m u m s t r e s s c o n c e n t r a t i o n f a c t o r , F, as a f u n c t i o n 

of J/n for n o t c h e d g e o m e t r i e s w i t h b/a = 1.33 
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Figure 5.4: C o n t i n u u m m e c h a n i c s n o t c h e d to u n n o t c h e d life ratio p r e d i c t i o n s 

for a r a n g e of n o t c h e d bar g e o m e t r i e s w i t h b/a = 1 . 4 6 , u s i n g 

e q u a t i o n (5.10) 
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Figure 5.5: Continuum mechanics notched to unnotched life ratio predictions 

for a range of notched bar geometries with b/a = 1.46, using 

equation (5.11) 
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a/r 

Figure 5.6: Continuum mechanics notched to unnotched rupture strength ratio 

predictions for a range of notched bar geometries . 
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Figure 5.7: Dependence of runture times on the dimensionless diffusion 

material quantities, ^ and for a range of notched 

geometries with b/a = 1.46 
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a/r 

Figure 5.8: Dependence of the stress state parameter, a , on notch sharpness, 

a/R, for a range of notched bar geometries with b/a = 1.46 
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Figure 5.9: Schematic diagram showing the uni-axial strain-time expected 

behaviour of a specimen failing by power-law creep 

f-R 

Figure 5.10: Dependence of rupture time ratios of uni-axial specimens 

tested under constant stress or constant load on ductility 

and a 
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Figure 5.11: Microstructural predictions of the notched to unnotched life 
ratios for a range of notched bar geometries with b/a = 1.46 
and when X* i-s assumed constant (equation (5.22)) 
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a/r 

Figure 5.13: Dependence of rupture strains on {) • for a range of notched 

bar geometries with b/a = 1.46 and when n = 9 
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Figure 5.14: Dependence of rupture times on ductility for a range of notched 

bar geometries with b/a = 1.46 and when n = 9 
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Figure 5.15: Notched to unnotched stress strength ratios for a range of 

notched bar geometries with b/a = 1.46 using equations (5.26), 

(5.2S) and (5.30) 



_ 181 _ 

CHAPTER 6 

EXPERIMENTAL INVESTIGATIONS 

6.1 INTRODUCTION 

This chapter describes in detail the experimental investigations 

carried out on the 2|%Cr l%Mo steel used in the electric power generation 

industries. Basic creep data were obtained at 538°C on uni-axial and 

notched bar specimens which had the same throat diameter as the plain 

tensile bars. The results were analysed and compared with those obtained 

by Ng, Webster and Dyson [1980] on two casts, named as 4F and 10G, of the 

brittle £%Cr £%Mo £%V steel. 
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6.2 MATERIALS AND SPECIMEN GEOMETRIES 

6.2.1 Creep Resistant Steels 

As power-law creep is largely a matter of movement of 

dislocations, any form of obstacle used for blocking dislocations will 

reduce creep. Many of the obstacles used to give room temperature 

strength do not remain effective at high temperatures. For example, in 

heat-treated plain carbon steels, martensite breaks down on tempering, the 

carbide becomes less dispersed, and the material becomes softer. At 

higher temperatures, the carbide dissolves in the austenite, therefore 

producing a poor creep resistant structure. 

In low alloy steels containing strong carbide-forming elements, 

such as chromium, tungsten, vanadium and molybdenum, the carbides remain 

in a finely dispersed condition to much higher temperatures, therefore 

giving satisfactory creep resistant properties up to about 550°C and 

possibly higher temperatures for some high alloy steels. 

6.2.2 Materials and Their Heat-Treatments 

Both the 2|%Cr IZMo and £%Cr |%Mo |%V steels are used 

predominantly in the power generation industry, in pressure vessels, steam 

chests and numerous items of turbine components and associated pipeworks, 

all operating in the creep range. The compositions of both materials are 

given in Table 6.1. 

The heat-treatments carried out on each material prior to 

creep tests were as follows: for the 2jCM steel, the material was first 

annealed for 15 hours at 960°C, then furnace-cooled, normalised for 

12 hours at 960°C, then fan-assisted cooled, tempered for 12 hours at 700°C, 

then furnace-cooled, and finally stress relieved for 36 hours at 690°C, 

then furnace-cooled. The result of this heat-treatment was a fine grain 

mixed bainite and ferrite structure with grain size of 8 to 33 ym. 
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For the |CMV steel, the heat-treatments carried out on the two 

casts, creep tested by Ng, et al. [1980] at 565°C, were as follows: a 

25 mm thick slice was removed from the side of a cast block and 

subsequently austenitised for half an hour at 1250°C, quenched in oil, 

tempered for 24 hours at 680°C, and finally air-cooled. It resulted in 

a tempered martensitic structure with a prior austenite grain size of 

200 to 300 ym. A representative microstructure of each material is shown 

in Figure 6.1. 

6.2.3 Specimens 

Two types of specimen were used in the high temperature creep 

tests carried out on the 2|CM steel. These were uni-axial plain bar and 

round notched bar specimens. Both types of specimen were machined from a 

cast block approximately 300 mm square and 100 mm thick. The main 

dimensions of the plain bar specimens were 38 mm gauge length and 6.5 mm 

diameter, as shown in Figure 6.2(a). 

All notched bar specimens had a shank diameter 2b = 9.5 mm and 

a notch throat diameter 2a = 6.5 ram, giving a constant b/a. ratio of 1.46. 

The only geometrical variable was the notch root radius, R. This was 

decreased from R = 6.5 mm for a blunt notch to R =.0.0727 mm for a sharp 

notch. The main dimensions of a typical notched bar specimen are shown 

in Figure 6.2(b). Some specimens had two notches separated by a centre-

to-centre distance of 10 mm, as shown in Figure 6.2(c). Some of these 

were used after the test in simple optical metallography. The 

circumferential notches of different geometries were machined accurately 

into the gauge length using specially contoured cutting tools, excluding 

the case for the very sharp notch with 0./R = 44.7, where the notch was 

machined by spark errosion. Dimensional details of all the specimens 

made can be found in Table 6.2. Samples of notched bar specimens before 
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and after creep testing are shown in Figure 6.3, for specimens having 

single and double notches machined into their gauge lengths. 
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6.3 EQUIPMENT 

Two types of creep machine were used to obtain the data on the 25CM 

steel. One type is the standard constant load creep machine in which 

some uni-axial and all notched bar specimens were creep tested at 538°C. 

The second type was a modified creep machine (Figure 6.4), in which 

constant stress conditions are approximated by removing weights from the 

loading rod to compensate for the reduction in cross-sectional area with 

extension. Several uni-axial creep tests were carried out, using the 

constant stress creep machine. 

6.3.1 Standard Creep Machine 

Three dead-load creep machines were used during the course of 

the experiments, each having a lever ratio of 10:1 and a specially designed 

cylindrical furnace which provides the high temperature environment around 

the tested specimen. Each machine had two Nimonic 90 pull rods with a 

loading capacity of 10,000 lbs. Two shackles, also made from Nimonic 90, 

were connected to the pull rods, in which the plain bar specimens were 

clamped in position by a horizontal pin through each shackle. Specially 

designed clamps with internal M12 metric threads were connected to the 

shackles when the notched bar specimens with threaded ends were tested. 

These clamps were also made of Nimonic 90. 

The three-zone electrical furnace was able to slide on a 

vertical guide rod. It was usually kept in its upmost position during the 

mounting of the specimens and other attachments (Figure 6.4(b)) and was 

then slid into position surrounding the specimen. The temperature was 

automatically controlled by a three-zone temperature controller, utilising 

resistance thermometers implanted in the furnace wall. The temperature 

controller produced a region of uniform temperature in its central zone. 

During creep tests, temperatures were monitored using three 
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Chromel-Alumel thermocouples (type MA) equally spaced along the gauge 

length and firmly attached by heat resistant cords. 

The test piece length extension was measured by a single LVDT 

(linear variable differential transformer), clamped centrally between 

aluminium plates attached to the end of Nimonic 75 extensometer legs. 

The LVDT had a maximum sensitivity of 10 mV output for each 0.2 mm travel 

of the armature and a total displacement range of ±51 mm. Strain 

measurements for all the creep tests were made on a Rikadenki chart 

recorder with a full scale setting of 10 mV to give a resolution of 

0.38 mm. 

A portable loading device was used to control the initial 

loading rate. It consisted of two screw-type jacks linked together and 

driven by a variable speed dc motor. This loading arrangement was used 

in all tests to prevent shock loading of the specimen. 

Prior to creep testing, each specimen was partially loaded to 

check alignment and ensure that the extensometer system was working 

properly. 

6.3.2 Constant Stress Creep Machine 

A standard creep machine was modified and used by Cox [1981] 

to investigate the uni-axial creep properties of a nickel base alloy at 

high temperatures and constant stress conditions. The modifications 

involve adding two separate mechanisms to the standard creep machine. 

One mechanism consisted of a lever-mounted jockey compensating arrangement, 

shown in Figure 6.4(a). A screw rod is driven by a dc motor coupled to a 

commutator transmitter driven by a Honeywell recorder pen drive motor 

which was recording the creep strain. This gave a linear movement of the 

jockey, and hence a reduction in specimen load, directly proportional to 

the axial creep strain. Thus, a continual load compensation was made 
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while the specimen was deforming uniformly. The linear relation between 

the axial creep strain and load compensation is only valid before the 

onset of necking. 

The second modification consisted of adding an automatic 

lever-levelling system, shown in Figure 6.4(b), to overcome the problem 

arising when high ductilities (approximately 30%) cause a change in lever 

level, therefore altering the effective lever ratio (nominally 10:1). 

This mechanism used a J hp dc motor, activated by a micro-switch mounted 

close to the rear of the lever arm on the top platform, which drove the 

worm and pinion arrangement to relevel the lever arm. There was no shock 

loading from the motor and the lever arm was kept horizontal to within ±2°. 
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6.4 EXPERIMENTAL PROCEDURE 

Before setting up the specimen in any of the creep machines described 

in the previous section, preliminary measurements of the specimen 

dimensions were made to an accuracy of 0.005 mm using a x50 magnification 

projection shadowgraph to ensure that the dimensions were within an 

acceptable tolerance. 

The universal joints and associated linkages prior to creep testing 

were checked for proper fitting and freedom of movement. The parts in 

the high temperature zone were coated with an anti-seizure compound 

(Copaslip) to prevent welding of mating parts during the test. Next, the 

loading lever was balanced using a counterweight on the front of the lever 

to ensure that the load exerted on the specimen is a true function of the 

weights placed at the back of the lever (10:1). 

The specimen was then installed and the three thermocouples tied to 

the gauge length using heat resistant cords. The extensometry and 

transducer mechanisms were then attached and the transducer circuit set to 

give the requisite value of strain for 10 mV output. A load-extension 

test was then carried out using a Bryans X-Y recorder where an instant 

assessment could be made of the alignment of the specimen. 

The furnace was then lowered so that the specimen was in the centre 

in both the axial and longitudinal directions. The ends were lightly 

packed to a depth of no more than 2 cm with Kaowool ceramic fibre, and the 

load-extension test was repeated to ensure that the extensometry was still 

moving freely. 

The furnace was switched on with a deadweight stress in the specimen 

of 1.8 MPa to keep the universal joints and extensometry aligned. A 

24 hour soak was allowed to fully stabilise the specimen, grips and 

extensometry temperature. 

The required load was applied using a motorised jack which lowers the 
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weights onto the rear loading pan gradually. For the duration of the 

test, the output from the LVDT transducer and the thermocouples were 

continually recorded. 

On failure of the test specimen, the falling action of the lever arm 

activates a micro-switch which switches off power to the furnace and hour 

meter. When the furnace had cooled, the specimen was extracted and 

labelled for future microstructural investigations. 

The test procedure was similar when the constant stress machine was 

used. The only difference was that both the mounted jockey compensation 

mechanism and the automatic lever levelling system had to be adjusted and 

switched on before loading. 
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6.5 RESULTS 

Creep tests were carried out on the 2£CM steel at 538°C ±1°C. The 

test temperature is of practical relevance and corresponds to approximately 

0.5T . In this section, the results of these tests and those carried out m 

on the |%Cr £%Mo £%V steel by Ng, et al. [1980] are presented. 

6.5.1 Uni-Axial Constant Load Creep Tests 

Creep tests on plain bar specimens were carried out using 

three standard creep machines described in Section 6.3.1. The loads were 

chosen to give stresses on the initial cross-sectional area of the 

specimen in the range of 200 to 125 MPa which gave rupture lives between 

approximately 10 and 900 hours. The results of these tests are summarised 

in Table 6.3 and the strain-time curves are shown in Figures 6.5 and 6.6. 

The creep curves for all the specimens exhibited short primary 

and secondary regions, but a relatively long and very pronounced tertiary 

region. A slight increase in both the creep ductility, from about 40% 

to 48%, and the reduction in area, from about 83% to 90%, is observed as 

the applied stress decreases. This can only be explained in terms of 

(a) decreasing cavity spacing with increasing stress, and/or (b) true 

tertiary being caused by mechanical instability which is ft-dependent. 

6.5.2 Uni-Axial Constant Stress Creep Tests 

Constant stress creep tests were carried out on plain bar 

specimens using the modified creep machine described in Section 6.3.2. 

The applied stress in each test was kept constant by reducing the load as 

the creep strain accumulates, using the constant stress compensation 

mechanism. The assumption used to calibrate the jockey movement with the 

specimen axial strain was that all the creep deformation is plastic strain 

and a constant volume condition exists. 



_ 191 _ 

Stresses in the range of 220 to 125 MPa were applied which 

gave rupture lives between approximately 20 and 4000 hours. The results 

of these tests are summarised in Table 6.4 and the strain-time curves are 

shown in Figures 6.7 and 6.8. Small primary and tertiary regions, and a 

very pronounced secondary region, are observed in all the creep curves. 

A slight increase in creep ductility from about 40% to 48% as the applied 

stress decreases is again observed. However, the reduction in area 

remained nearly constant at about 88.5% for all stresses. 

6.5.3 Notched Bar Creep Tests 

Notched specimens, having the same throat diameter as the 

plain specimens, were machined to give a constant b/a ratio and a/R 

between 0.5 and 44.7, as shown previously in Table 6.2. These specimens 

were creep tested in the ordinary dead-load creep machines described in 

Section 6.3.1. The loads were selected to give constant nominal stress 

levels across the notch throat, ci , of 200 and 175 MPa. Axial 
nom 

elongations were measured continuously along the gauge length of all the 

samples and were converted to nominal strains by dividing by the initial 

notch height, . The strains due to the reduction in area were also 

calculated using the shadowgraph measurements of the initial and rupture 

throat diameters, 2a.Q and 2a. The results of these tests are listed in 

Table 6.5 for a ^ = 200 and 175 MPa. It is observed that the nominal 
YlOttl 

strains due to the axial elongation have no significant pattern; however, 

the strains due to the reduction in area dropped from a uni-axial constant 

stress value of about 89% to about 67% as the notch sharpness increased. 

Figure 6.9 for all a/R values and the two nominal stresses. For blunt 

notches, the lives increase progressively for both stress levels as notch 

sharpness (a/R) increases. For sharp notches, there is a tendency for 

The lives of the notched bars have been plotted in 



_ 192 _ 

the lives to decrease and then remain approximately constant with further 

increase in a/R. The rupture times when a/R = 0 (uni-axial) were taken 

from the plain bar constant stress results given in Table 6.4, with the 

applied stress equal to 200 and 175 MPa, respectively. 

6.5.4 Cumulative Damage Notched Bar Creep Tests 

Four creep tests were conducted on notched bars, in which the 

nominal stress was changed from 200 to 175 MPa and vice versa to examine 

Robinson's linear cumulative damage rule discussed in Chapter 1, Section 

1.2.1, and defined by the following equation: 

V = (6.1) 

a, 

where V = 1 at rupture. Two of the specimens tested had blunt notches 

with a/R = 1.67; the other two had sharp notches with a/R = 13. The 

results of these tests are listed in Table 6.6. The sum 

((ft/ft ) + H is shown to be equal to approximately 1, which 

suggests that Robinson's life fraction rule is valid for this material 

within the small stress range investigated. 

6.5.5 Experimental Data on the |%Cr |%Mo j%V Steel 

Ng, Webster and Dyson [1980] carried out some creep tests on 

two blocks, labelled as 4F and 10G, of the |CMV steel used for high 

temperature applications in steam power generation equipment. They creep 

tested in tension a number of plain bar and notched bar specimens at a 

temperature of 565°C. The loads for the plain bar specimens were chosen 

to give stresses in the range 220 to 400 MPa and rupture lives between 

about 5 and 430 hours, as shown in Table 6.7. The loads on the notched 

specimens were selected to give a nominal stress of 300 MPa across the 
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notch throat. The notched bar data for blocks 4F and 10G are listed in 

Table 6.8. 

6.5.6 Optical Metallography 

After fracture, some notched specimens of the 2;CM and 5CMV 

steels were slit longitudinally to within 0.1 mm of the gauge length 

centre-line, polished and etched for examination by optical microscopy. 

They were: 

(a) A double notched specimen with a/R = 1.67 of the 2$CM steel. 

The photographs shown in Figure 6.10 are of the notch which 

has not failed after the creep test. 

(b) A double notched specimen with a/R = 13 of the 2|CM steel. 

The photographs shown in Figure 6.11 are of the complete 

section of the specimen, showing the two notches. 

(c) A notched specimen with a/R = 0.297 (10GA7) of the ^CMV steel, 

as shown in Figure 6.12. 

(d) A notched specimen with a/R = 1.961 (10GA1) of the ^CMV steel, 

as shown in Figure 6.13. 
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6.6 DATA ANALYSIS AND DISCUSSION 

6.6.1 Uni-Axial Data 

The uni-axial constant load and constant stress creep curves 

for the 2|CM steel exhibit primary, secondary and tertiary regions. 

However, the overall behaviour of this material under constant load is 

dominated by a long tertiary region, while under constant stress, it is 

dominated by a long secondary region, as shown in Figures 6.5 to 6.8. 

The common way of presenting uni-axial creep data is to plot 

log/log graphs of the minimum creep rate against time and stress against 

time. The best fits for each set of data for the 2|CM and ^CMV steels 

are shown in Figures 6.14 to 6.17. The secondary creep material 

coefficients for each material were evaluated from the log - log t^ 

graphs (Figures 6.14 and 6.16) and were found to have the following values: 

(a) For the 2\CM steel: 

p n € — c o 4 

•where: 

C = 2.5156x10" 2 5 l/[MPa]nh 

(6.2) 

and: n = 9.77 

(b) For the ^CMV steel: 

p n e. = C o 
4 

where: 
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C = 2.2 xKT 1* 6 l/[MPa]\ 

(6.3) 

and: n = 16.66 

In the logarithmic stress-time graph for the 2]CM steel 

(Figure 6.15), the experimental constant load and constant stress rupture 

times are presented and compared with some theoretical predictions. The 

theoretical rupture times under constant stress were calculated using 

Norton's equation for secondary creep rate (equation (1.3)) with the 

assumption that the nominal stress remains constant throughout the test. 

The result is: 

£» = / (6.4) 

The above equation represents an upper bound for rupture times under 

constant stress, as shown in Figure 6.15. Under constant load, Hoff's 

equation (1.11), derived in Chapter 1, Section 1.2.2, was used to 

calculate the rupture times. The analysis is based on the assumption 

that the initial cross-sectional area, A , of the test piece will shrink 

to zero under a constant applied load, F, without any change in volume. 

The result is: 

V • T r V ( 6 - 5 ) 

-6 

The above equation is only valid for ductile materials failing by necking 

and not by internal damage. It represents an upper theoretical bound, as 

shown in Figure 6.15. The ratio between the predicted rupture times 

under constant stress and load can simply be found by dividing equation 

(6.4) by equation (6.5). The result is: 
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(6.6) 

A similar linear expression to equation (6.6) was previously reached in 

Chapter 5, Section 5.4.2 (equation (5.20)), from Ashby's equations for 

rupture times under constant stress and constant load for materials failing 

by power-law creep alone. The assumption used was that the initial area 

fraction of voids, fa., is very small (ft « 1), and therefore negligible. 

times under constant stress and constant load and their ratios are 

summarised in Table 6.9. It is observed that the theoretical predictions 

always over-estimate the experimental rupture times; however, the ratios 

6.6.2 Notched Bar Data 

The notch rupture lives versus notch sharpness (a/R) for the 

2|CM steel specimens were previously presented in Figure 6.9. The results 

for the two nominal stresses of 200 and 175 MPa indicate that, no matter 

how severe the notch sharpness is, this material will not exhibit notch 

weakening. The condition is that the geometrical ratio b/a remains 

constant for all specimens and equal to 1.46. This can be observed 

clearly when the data are presented in terms of time strength ratio 

ft0/ftn> as shown in Figure 6.18. The time strength ratio for 

of about 45, as a/R increases from zero to about 6. With further increase 

in notch sharpness, the strength ratio drops to about 40 and remains 

constant for all values of a/R > 10. However, when the nominal stress is 

175 MPa, it is observed from the few data points shown in Figure 6.18 that 

the strength for the sharp notch with a/R = 13 has dropped to about 22, 

The experimental and theoretical predictions of the rupture 

a nom = 200 MPa increases from a uni-axial value of 1 to a maximum value 
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indicating that for the 2|CM steel the data are strain rate sensitive. 

The uni-axial rupture time, £ u n> used to normalise the data in Figure 6.18, 

is equivalent to either 46 or 170 hours. These times correspond to an 

applied constant stress of either 200 or 175 MPa, respectively. 

The data published by Ng, Webster and Dyson [1980] on the 

|CMV steel showed an overall behaviour different from that of the 2|CM 

steel. Block 10G exhibits only notch strengthening, while block 4F 

always showed notch weakening when the time strength ratio, ^yiq^ulYI* d s 

plotted against notch sharpness, a/R, as shown in Figure 6.19. The uni-

axial rupture time used to normalise the notch data is equivalent to 

41 hours at a
n o m

 = 300 MPa, as shown previously in Figure 6.17. The 

maximum notch strengthening for the 10G block is about 6 which corresponds 

to a notch sharpness of about 1.5. No data are available for values of 

a/R > 2 and a/R < 17, therefore it is assumed that the strength will drop 

in the way shown in Figure 6.19 to about 1.02 when a/R — 17. Block 4F 

exhibited hardly any notch strengthening and the lowest time strength 

ratio for the sharpest notch is about 0.5. The uni-axial rupture time 

used to normalise the data is also 41 hours. 

6.6.3 Metallurgical Observations 

The fracture characteristics of the 2£CM and ^CMV steels were 

investigated using simple optical metallography. The results of these 

investigations were reported in Section 6.5.6, Figures 6.10 to 6.13. 

A fibrous type of failure is observed in the fractured surfaces of the 

2jCM steel, while the ^CMV steel shows a clear intergranular type of 

failure. 

In the case of the 2jCM steel, grains in the vicinity of the 

fractured surfaces deformed considerably before failure. No damage in 

terms of voids or microcracks can be observed away from the fractured 
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surface of the sharp notch investigated (Figure 6.11). The longitudinal 

section of the second unfractured blunt and sharp notches, shown in 

Figures 6.10 and 6.11, shows no evidence of voiding or severe deformation 

relatively early in life for these geometries. Machining inaccuracy or 

initial internal damage could be blamed for this, since it was expected 

that both notches were to deform simultaneously until about 0.5 to 0.8 of 

the total rupture time and then one notch will dominate the overall 

behaviour until failure. 

The fractured surfaces of the blunt and sharp notches of the 

|CMV steel, shown in Figures 6.12 and 6.13, show a distinct intergranular 

type of failure which coincides with the low ductility reported during the 

creep tests (less than 1%) (Tables 6.7 and 6.8). 

Some attempts were made to use transmission electron 

microscopy for higher magnifications which can lead to quantitative 

measurements of voids and their approximate initial sizes in both 

materials. The lack of superior polishing equipment and the expertise 

required for these types of magnifications terminated these attempts. 



_ 199 _ 

6.7 CONCLUSIONS 

Creep tests at 538°C have been carried out on plain and notched bar 

specimens pulled in tension. The material tested was the 2|%Cr l%Mo 

steel. Some plain bar specimens were creep tested under constant stress 

conditions using a modified dead-load creep machine. Other creep data on 

the brittle £%Cr £%Mo |%V steel, available in the literature, were also 

given for the purpose of comparison. 

Simple analysis on the uni-axial data revealed that the secondary 

creep coefficients are as follows: 

(a) n = 9.77 and C = 2.5156 x 10" 2 5 l/[MPa]\ for the 2|%Cr l%Mo 

steel. 

(b) n = 16.66 and C = 2.2 x lO" 4 6 l/[MPa]\ for the ^%Cr £%Mo 

steel. 

Theoretical estimates of uni-axial rupture times under constant load 

and constant stress conditions were given for the 2|CM steel. They 

always predicted higher rupture times than the experimental values, and 

are therefore considered as upper bounds. 

The notched bar data on the 2|CM steel showed that no matter how 

severe the notch sharpness is, this material will always notch strengthen. 

The results have been discussed and compared with the notch data on the 

^CMV steel which exhibits both notch strengthening and weakening. 

Cumulative damage creep tests have been carried out on some notched 

bar specimens made of 2;CM steel, between two nominal stress levels of 

200 and 175 MPa and vice versa. The rupture times were analysed using 

Robinson's life fraction rule which was found to be valid for this 

material when the stresses fluctuate between the above two nominal stresses. 



TABLE 6.1 

Chemical Compositions of Materials 

(a) 2[%Cr l%Mo steel 

% Weight 

C Si Mn S P Ni Cr Mo Al Zr Ti Cu Sn 

0.12 0.34 0.59 0.005 0.015 0.19 2.4 1.0 0.02 0.01 0.034 0.07 0.01 

(b) ^%Cr ^%Mo |%V steel 

% Weight 

Cast C Mn Mo V Cu Sn Al Ce Ti Zr Cr S P Si Ni Nb Co As Sb 

4F 0.11 0.36 0.42 0.22 0.07 0.005 0.019 0.002 0.005 0.001 0.37 0.012 0.012 0.29 0.05 0.005 0.01 0.011 0.0015 

10G 0.08 0.37 0.69 0.33 0.06 0.005 0.005 0.025 0.005 0.002 0.42 0.013 0.012 0.48 0.05 0.008 0.012 0.011 0.0025 
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TABLE 6.2 

Dimensions of the Circumferentially Notched Bar Specimens 

la ZR 2b G 
a/R 0 

(mm) (mm) (mm) (mm) (mm) 

0.5 6.55 13.1 9.57 8.206 25.41 

1.0 6.517 6.517 9.52 5.705 25.4 
1.0 6.515 6.515 9.52 5.705 25.395 

1.67 6.49 3.892 9.485 3.77 25.4 

1.67 6.5 3.892 9.5 3.77 25.415 

1.67* 6.5 3.892 9.5 3.77 25.41 

2.6 6.482 2.49 9.473 2.49 25.398 

4.0625* 6.475 1.594 9.46 1.6 25.395 
5.0 6.5024 1.3 9.503 1.334 25.41 

6.5 6.48 0.995 9.47 1.0 25.411 

9.285* 6.481 0.696 9.47 2.45 25.4 

13.0* 6.55 0.504 9.572 2.54 25.398 
13.0* 6.495 0.5 9.492 2.53 25.398 

13.0 6.497 0.5 9.495 2.53 25.398 

21.66* 6.52 0.301 9.52 2.57 25.41 

44.7* 6.48 0.145 9.47 0.145 25.4 

* The specimen has two notches 



TABLE 6.1 

Uni-Axial Constant Load Creep Test Results at 538°C for the 2|%Cr l%Mo Steel 

Number 
d 0 Stress d I I - I d 2 -d2 

°-r - o 
(mm) (mm) (MPa) (mm) (mm) (h) 

0 1? 
Lo 

K d 2 
0 (1/h) 

18 6.502 37.85 200 2.54 54.35 8.5 43.6 84.7 8.05 x10~ 3 

11 6.515 37.84 198 2.635 53.55 9.93 41.5 83.6 9.1x10" 3 

14 6.55 37.88 185 2.524 55.6 33.25 47.7 85.1 2.59 x l(T3 

10 6.525 37.57 168 2.35 55.14 52.92 46.6 87.0 1.8 x10~ 3 

13 6.515 37.86 152 2.27 55.9 186.2 47.65 87.7 5.09 x 1 0 _ H 

15 6.55 37.81 141 2.11 55.82 425.26 47.63 89.7 1.77 x 10"4 

12 6.55 37.87 125 1.994 56.0 875.0 47.87 90.7 1.03 x l o - 4 



TABLE 6.1 

Uni-Axial Constant Stress Creep Test Results at 538°C for the 2|%Cr l%Mo Steel 

Number 
'o 

Stress Jockey Load d I 
-
 0 

d 2 - d2 

Number 
(mm) (mm) (MPa) (N) (mm) (mm) (h) K I K d 2 

0 (1/h) 

9 6.5024 38.1 220 5.67 2.26 53.15 22.4 39.5 87.9 1.367 x10" 2 

8 6.5024 37.95 200 5.255 2.221 53.47 46.9 40.9 88.3 7.07 x10" 3 

2 6.527 37.9 175 4.77 2.153 55.5 148.7 46.3 89.1 2.15 x10" 3 

4 6.517 37.81 160 4.15 2.155 55.63 414.3 47.15 89.0 7.16 x10" 4 

7 6.517 37.88 125 3.25 2.15 55.91 4233.0 47.6 89.1 9.6 x10" 5 



TABLE 6.1 

Notched Bar Creep Test Results at 538°C for the 2|%Cr l%Mo Steel 

a = 200 MPa nom 

a/R 

(h) (mm) 

I 

(mm) 

2 % 
(mm) 

2a 

(mm) 

I-I 
%e =

 0 
0 T? 

K I 
0 

a 2 - a2 

V - 0 

° eR ~ 2 
ao 

1.0 
1.67 
1.67* 
2.6 
4.0625* 
5.0* 
6.5 
9.285* 

13.0 
13.0* 
21.66* 
44.7* 

639.4 
779.8 
850.8 

1064.5 
1533.2 
1860.5 
2262.0 
1779.0 
1885.2 
1738.1 
1872.1 
1960.4 

5.705 
3.77 
3.77 
2.49 
1.6 
1.334 
1.0 
2.45 
2.53 
2.54 
2.57 
0.145 

8.357 
5.487 
5.442 
4.504 
2.979 
2.745 
1.86 
4.0915 
4.296 
4.32 
3.998 
0.3175 

6.517 
6.49 
6.5 
6.482 
6.475 
6.5024 
6.48 
6.481 
6.495 
6.55 
6.52 
6.48 

2.87 
2.96 
2.944 
3.01 
3.057 
3.08 
3.12 
3.34 
3.395 
3.43 
3.403 
3.68 

46.5 
45.56 
44.36 
80.88 
86.19 

105.8 
86.0 
67.0 
69.8 
70.1 
55.58 

118.9 

80.6 
79.33 
79.48 
78.4 
77.7 
77.56 
76.81 
73.4 
72.67 
72.57 
72.7 
67.75 

a ^ = 175 MPa 
nom 

0.5 
1.0 
1.67 

13.0* 

595.12 
1146.5 
1788.4 
3799.4 

8.206 
5.705 
3.77 
2.53 

10.75 
8.152 
5.447 
4.74 

6.55 
6.515 
6.5 
6.495 

2.781 
2.83 
2.906 
3.485 

31.0 
42.9 
44.5 
87.33 

81.97 
81.13 
80.0 
71.2 

i 
ro 
0 

1 

* The specimen had two notches 
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TABLE 6.6 

Cumulative Damage Notched Bar Creep Tests at 

538°C for the 2g%Cr l%Mo Steel 

a/R 
°nomj ft 

2 ft ft V 
(MPa) (MPa) (h) (h) 

ft 

1.67 200 175 840 1800 420 939 1.021 

1.67 175 200 1800 840 900 434 1.016 

13.0 200 175 1800 3800 900 1892 0.998 

13.0 175 200 3800 1900 1900 940.5 0.995 



TABLE 6.1 

Uni-Axial Constant Load Creep Test Results at 565°C for the |%Mo |%V Steel 

Block 4F Block 10G 

Number 
Stress 

(MPa) (h) 

l - l 
0 o 

i 

^4 

(l/h) 
Number 

Stress 

(MPa) (h) 

a o 

i 
0 

(l/h) 

4F8 375 4.31 4.2 5.17 x 10"1 10G4 350 6.1 2.79 2.34 x10" 1 

4F7 350 13.06 1.18 3.71x 10~2 

10G2 300 47.0 1.29 9.67 x10~ 3 

4F1 300 39.2 0.3 2.85 x10" 3 10G6 275 135.0 0.417 1.09 x10" 3 

4F5 275 87.46 0.312 1.23 x 10"3 
10G3 250 187.5 0.39 8.42 x10~ U 

4F3 246 131.0 0.17 5.83 xio~ 4 

10G5 240 325.9 0.234 2.5 x10" 4 

4F4 226 428.9 0.245 2.18 xio~ 4 
10G1 229 300.0 0.24 3.13 x10~ 4 

i 
10 
0 
0) 
1 



TABLE 6.1 

Notched Bar Creep Test Results at 565°C for the j%Cr |%V Steel 

°nom = 3 0 0 ' u n i " a x i a l ft = 41 hours, and b/a = 1.67 

Block 4F Block 10G 

Number a/R ft 

(h) 
I e * o£r 

Number a/R ft 

(h) 

9 c * 

R 

4F1J 0.29 43.0 0.084 10GA5 0.0 63.4 0.625 

4F1K 0.72 30.1 0.0925 10GA7 0.297 215.7 0.17 

4F1C 1.0 24.85 0.052 10GA3 0.974 240.45 0.09 

4F1B 1.49 24.0 0.032 10GA2 1.541 239.9 0.02 

4F1E 2.0 13.2 0.05 10GA1 1.961 185.5 0.074 

4F1F 18.0 23.2 0.15 10GA8 17.0 49.4 0.056 

* Measured over the specimen gauge length 



TABLE 6.1 

Experimental and Theoretical Predictions of Rupture Times for the 2|CM Steel 

(Material constant, n = 9.77) 

Stress 

(MPa) (1/h) 

I-I 
o^ 4. _ 0 

I 
0 

Experimental Theoretical 
Stress 

(MPa) (1/h) 

I-I 
o^ 4. _ 0 

I 
0 

V 
(h) 

t L 

R 

(h) 

t + 

R 

(h) 

V 
(h) 

£ /£ L V 

220 1.367 x 10"2 39.5 22.4 - - 28.9 - -

200 7.07 x10" 3 
40.9 46.9 9.5 4.93 57.85 14.5 4.0 

175 2.15 x10~ 3 
46.3 148.7 36.0 4.13 215.3 47.6 4.52 

160 7.16 x10" 4 
47.15 414.3 95.0 4.36 658.5 142.9 4.6 

125 9.6 x10" 5 47.6 4233.0 875.0 4.83 4958.0 1066.2 4.65 

* Constant stress data 

t Equation (6.4): £g = 

§ Equation (6.5): £ R
L = 1/lneJ 

11 Equation (6.6): £v/£j~ = n 
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b . - i - x c r ± x M o J - y . V x 1 0 9 
2 2 4 

Figure 6.1:Microstructure of ;(a)2J%Cr 19SMo steel ;(b)i7cCr tfuto \%v steel 
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I - 1 
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37-85 
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b_ c _ 

Figure 6.2: Dimensions of the plain tensile and circumferentially notched 
bar specimens 





a . From top to bottom a / R z 1 , 1 3 , 4 4 . 7 

b- From top to bottom a / R r 0.5, 5 ,21-66 

Figure 6-3:A selection of notched bar specimen ;(a)Untested ;(b)Tested „ 
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Figure6.4.General view of constant stress creep machine 0 
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Figure 6.5: Uni-axial constant load strain-time c reep curves at 538°C for some 2!%Cr l %Mo steel specimens 

_ _ J 
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Figure 6.6: Uni-axial constant stress strain-time creep curves at 538°C for some 2|%Cr l%Mo steel specimens 



Time (hours) 

Figure 6.7: Uni-axial constant stress strain-time creep curves at 538°C for some 2|%Cr l%Mo steel specimens 



T i m e (hours) 

Figure 6.8: Uni-axial constant stress strain-time creep curves at 538°C for some 2|%Cr l%Mo steel specimens 



F i g u r e 6.9: R u p t u r e life v e r s u s notch s h a r p n e s s for the 2|%Cr l%Mo steel s p e c i m e n s tested at 538°C 
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b/a: 1.46 
a / R : 1.67 

X l l 

Area . A 

X 48 

Figure6.10:Longitudinal section of unfractured notch of a 2\°/cr l%Mo double 

notched round bar specimen with b/a=l„46 and a/R=l„67 a 



b/a: 1.46 
a/R 1.67 

Area . A 

Figure6.10:Longitudinal section of unfractured notch of a 2}fCr l'JMo double 

notched round bar specimen with b/a=l_46 and a/R=1.67 . 
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X l l 

b/a : l .46 
a /R : 13 

X48 Area . A 

Figure 6.11:Longitudinal section of a double notched 2|<?Cr llhto round bar 

with b/a=1.46 and a/R=13 . 



X l l 

b/a : 1.46 
a /R : 13 

Area . A X48 

Figure 6.11: Longitudinal section of a double notched 2|%Cr l^Mo round bar 
with b/a=1.46 and a/R=13 „ 
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A H 

b/a: 1.67 
a/R :0.297 

M S M 

X30 

Area. A xl48 Area. B xl28 

Area. C xl28 

Figure6.12:Longitudinal section of a fractured ^Mo J%V notched bar 

specimen with a/R=0.297 and b/a=l„67 



Area. B xl28 

b/a: 1.67 
a/R =0.297 

Area. A xl48 

Area. C xl28 

Figure 6.12:Longitudinal section of a fractured $%Cr ¥%Mo J%V notched bar 

specimen with a/R=CL297 and b/a=l„67 
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b/a: 1.67 
a/R: 1.961 x 30 

Area . A 

xl28 

Area . B 

u m 

T . j , 

w, 
'A 

XV' 

xl28 

Figure6.13.Longitudinal section of a fractured $%Cr i^Mo 
1%V notched bar specimen with b/a=1.67 and 
a/R=l„961 „ 



b/a : 1.67 
a/R: 1.961 x 30 

Area. A 

xl28 

SEIV 
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0 
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m 
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Figure6.13.Longitudinal section of a fractured +(&fc> 
1%V notched bar specimen with b/a=1.67 and 
a/R=l.961 . 

•a 
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Figure 6.14: S e c o n d a r y creep rate as a function of s t r e s s for the 2$%Cr l%Mo steel tested at 538°C 



6.15: E x p e r i m e n t a l and t h e o r e t i c a l s t r e s s - r u p t u r e time curves for the 2{%Cr l%Mo steel tested at 538°C 



• 4F 

* 10G 

S e c o n d a r y creep r a t e , 

Figure 6.16: S e c o n d a r y creep rate as a function of stress for the ^%Cr i%Mo }%V steel tested at 565 



R u p t u r e time (hours) 

F i g u r e 6.17: S t r e s s - r u p t u r e time curve for the k%Cr £%Mo J%V steel tested at 565°C 
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- / 
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/ 

• a = 200 M P a , t = 46 h nom ' un 

* = t = 170 h nom ' un 

0 10 20 30 40 50 
a/r 

Figure 6 . 1 8 : D e p e n d e n c e of n o t c h e d to u n n o t c h e d time s t r e n g t h r a t i o s on 

n o t c h shape for the 2}%Cr l%Mo steel 

F i g u r e 6 . 1 9 : D e p e n d e n c e of n o t c h e d to unnotched time strength r a t i o s on 

n o t c h shape for the ]%Cr 3%Mo }%V steel 
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C H A P T E R 7 

APPLICATION OF CREEP RUPTURE M O D E L S 

TO E X P E R I M E N T A L D A T A 

7.1 I N T R O D U C T I O N 

The c o n t i n u u m m e c h a n i c s and void growth m o d e l s derived in C h a p t e r 5 

to predict n o t c h strengthening and w e a k e n i n g are applied in this c h a p t e r 

to the e x p e r i m e n t a l data p r e s e n t e d in Chapter 6 on the 2}%Cr l%Mo and 

£%Cr \7oMo 1%V s t e e l s . S o m e data available in the literature on a range 

of high t e m p e r a t u r e alloys tested b y Davis and M a n j o i n e [1953] a r e also 

used in these a p p l i c a t i o n s . 
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7.2 ESTIMATES OF STRESS R E D I S T R I B U T I O N TIMES DUE TO CREEP 

R u p t u r e time p r e d i c t i o n s , based on steady-state a n a l y s i s , are expected 

to be valid only if the stresses r e d i s t r i b u t e r e l a t i v e l y early in l i f e . 

T h e t h e o r e t i c a l n o t c h strengthening and w e a k e n i n g m o d e l s proposed in 

Chapter 5 w e r e a l l based on the steady-state finite element p r e d i c t i o n s at 

the skeletal p o i n t , given in C h a p t e r 4 . The n u m e r i c a l approach used in 

the calculations cannot d e t e r m i n e the time taken to reach s t e a d y - s t a t e . 

H o w e v e r , an a p p r o x i m a t e method has been proposed in Section 5.2.2 for 

calculating stress r e d i s t r i b u t i o n times due to c r e e p , based on the 

a s s u m p t i o n that the o v e r a l l b e h a v i o u r of structures is dominated by the 

redistribution of the peak stress (Calladine [1969]). This a p p r o a c h has 

been used in this section to e s t i m a t e s t e a d y - s t a t e times for v a r i o u s 

notched bar g e o m e t r i e s using the e x p e r i m e n t a l data given in the p r e v i o u s 

chapter on b o t h the 2{CM and jCMV s t e e l s . C o m p a r i s o n s b e t w e e n 

C a l l a d i n e ' s a p p r o x i m a t e time-scale p r e d i c t i o n s and computed times to 

s t e a d y - s t a t e , b a s e d on H a y h u r s t , et al.'s [1977a,b] i n c r e m e n t a l finite 

element c a l c u l a t i o n s , are also g i v e n . 

7.2.1 A n a l y s i s 

A general expression for calculating the time taken for stress 

relaxation to be 90% complet e w a s derived p r e v i o u s l y in Section 5.2.2 for 

structures in w h i c h a d o m i n a t e s the o v e r a l l b e h a v i o u r during creep 

max & r 

d e f o r m a t i o n . The c o n s t i t u t i v e creep law used w a s : 

e = C c G U ) 
—n 

(7.1) 

and for secondary c r e e p , the result was: 

2.3 
(7.2) 

C n E o max 
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The s t e a d y - s t a t e finite element calculations performed in Chapter 4 on 

various n o t c h e d bar geometries showed that the e f f e c t i v e stress is always 

a m a x i m u m at the notch root and equivalent to: 

w h e r e F is the relative stress concentration factor based on the e f f e c t i v e 

stress v a l u e s at the n o t c h root (equation (5.1)), k is the elastic 

effective stress concentration f a c t o r , a , is the n o m i n a l stress across 
nom 

the m i n i m u m section of the n o t c h e d bar s p e c i m e n , and a and b are the n o t c h 

throat and bar radii as b e f o r e . Substituting equation (7.3) into 

equation (7.2) gives: 

iU.) - — ^ ^ (7.4) 
C n B t F k °nom lft/612]' ' 

For m a t e r i a l s in w h i c h the m a x i m u m p r i n c i p a l stress, a . , 
max 

controls failure (Johnson, et a l . [1962], H a y h u r s t [1972], C a n e [ 1 9 8 0 ] ) , 

equation (7.2) can n o w be w r i t t e n as: 

" . f ' x n - l i < 7 " 5 > 

C N E OJ 

max 

A l t h o u g h a skeletal point for the s t e a d y - s t a t e stress 

d i s t r i b u t i o n s given in Chapter 4 for various notched geometries w a s not 

r e p o r t e d , a zone w h e r e the a x i a l stress is nearly independent of n exists 

at the p o s i t i o n of the effective stress skeletal s t r e s s . Using the 

Jfc / 00 

skeletal v a l u e s of a y ° 0
 a s a r e f e r e n c e stress that controls f a i l u r e in 

m a x i m u m p r i n c i p a l stress m a t e r i a l s , equation (7.5) can n o w be w r i t t e n as: 

C n t o-j 
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From the finite element prediction: 

= K°noJ* <7'7> 

w h e r e K ^ v a r i e s w i t h the n o t c h s h a r p n e s s , as shown p r e v i o u s l y in F i g u r e 

5 . 6 . Substituting equation (7.7) into equation (7.6) r e s u l t s in: 

i U . ) = — rz-yr (7.8) 
4 C n E [K a ] * U " ? ) 

L n nom1 

A similar equation to (7.8) can be derived w h e n the m a x i m u m a x i a l s t r e s s , 

o-j , is used in the c a l c u l a t i o n s . The o n l y d i f f e r e n c e is that the term 

max 
( K n ° n o m i n ecJnat±on ( 7 ' 8 > i s replaced by ( K

n ° n 0 J m a x w h i c h , in this 

c a s e , is d e p e n d e n t on n and has a d i f f e r e n t p o s i t i o n to that of the 

s k e l e t a l e f f e c t i v e s t r e s s , as shown by the stress d i s t r i b u t i o n s in 

A p p e n d i x A and Chapter 4 . 

T h e time i n c r e m e n t a l finite element method adopted by 

H a y h u r s t , et a l . [1977a,b] to calculate the steady-state stress 

d i s t r i b u t i o n s across the throat of v a r i o u s notched geometries (Section 

3.3.1) d i f f e r s from the p r e s e n t finite element m e t h o d b y its a b i l i t y to 

predict times to s t e a d y - s t a t e . A n o r m a l i s e d t i m e - s c a l e , x , w a s set to 

allow the stresses to r e d i s t r i b u t e from the elastic to s t e a d y - s t a t e , such 

as: 

x = / C E oo
[n'1] GU) d£ (7.9) 

0 

w h e r e C and n are m a t e r i a l c o n s t a n t s , E is Y o u n g ' s m o d u l u s , a i s the 

applied stress and e q u a l to a m ( a / b ) 2 , and G[£] is a general function 

of t i m e . For s e c o n d a r y c r e e p , equation (7.5) gives: 

rf'v " , („.)! (7.10) 
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T h e r a t i o b e t w e e n H a y h u r s t f s and C a l l a d i n e ' s e s t i m a t e s of 

s t e a d y - s t a t e t i m e s for n o t c h e d g e o m e t r i e s in w h i c h a
m a x d o m i n a t e s the 

o v e r a l l b e h a v i o u r c a n b e found b y d i v i d i n g e q u a t i o n (7.10) b y e q u a t i o n 

( 7 . 4 ) . T h e r e s u l t is: 

^kkaykuaat yi TV ,An-1) , , . . . 
7 T T 1 = 7 7 [ F L x (7.11) 

CaUa&iYKL Z ' 3 44 

7 . 2 . 2 R e s u l t s 

C o m p a r i s o n s h a v e b e e n m a d e b e t w e e n C a l l a d i n e ' s a p p r o x i m a t e 

e s t i m a t e s of s t e a d y - s t a t e t i m e s for a and o-j m a t e r i a l s ( e q u a t i o n s (7.4) 

and ( 7 . 8 ) ) , and H a y h u r s t ' s f i n i t e e l e m e n t p r e d i c t i o n s ( e q u a t i o n ( 7 . 1 1 ) ) 

u s i n g a v a i l a b l e i n f o r m a t i o n on four d i f f e r e n t n o t c h e d b a r g e o m e t r i e s . 

T h e two m a t e r i a l s u s e d in t h e i n v e s t i g a t i o n s w e r e the 2 | C M and ^CMV s t e e l s 

T- — . co 

for w h i c h C , Yl and c a r e k n o w n (Chapter 6 ) . T h e v a l u e s of °mCix_/°0 » w h i c h 

is a l s o e q u a l to Ffe, and (the m a x i m u m v a l u e in this c a s e ) n e e d e d 

in C a l l a d i n e ' s e q u a t i o n s , w e r e t a k e n f r o m the s t r e s s d i s t r i b u t i o n s 

c a l c u l a t e d b y the p r e s e n t f i n i t e e l e m e n t m e t h o d (Chapter 4 ) . T h e 

d i m e n s i o n l e s s t i m e to s t a t i o n a r y s t a t e , r e q u i r e d in e q u a t i o n (7.10) 

w a s t a k e n f r o m H a y h u r s t , et a l . [ 1 9 7 7 a , b ] , and x ^ v e r s u s Yl d i a g r a m s of 

the g e o m e t r i e s i n v e s t i g a t e d . T h e ICMV h a s an Yl v a l u e of 1 6 . 6 6 w h i c h is 

o u t s i d e the r a n g e of t h e s e d i a g r a m s (Yl = 0 to 1 0 ) , t h e r e f o r e T f o r this 

m a t e r i a l w a s found b y l i n e a r e x t r a p o l a t i o n . T h e r e s u l t s of t h e s e 

c o m p a r i s o n s a r e l i s t e d in T a b l e 7 . 1 . It is o b s e r v e d t h a t the t i m e s 

p r e d i c t e d b y H a y h u r s t a r e a l w a y s g r e a t e r than t h o s e of C a l l a d i n e b y 

b e t w e e n 2 and 9 o r d e r s of m a g n i t u d e . 

C a l c u l a t i o n s h a v e a l s o b e e n m a d e to p r e d i c t s t e a d y - s t a t e t i m e s 

for t h e n o t c h r u p t u r e d a t a a v a i l a b l e o n the 2 | C M and '^CMV s t e e l s (Chapter 

6 ) , u s i n g C a l l a d i n e ' s a p p r o x i m a t e m e t h o d . T h e r e s u l t s of t h e s e 
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calculations are listed in Table 7.2 for both materials. The value of 

F k , w h i c h is also equal to a/a ^ , used to calculate f U ^ J in equation 

nom 4 

(7.4) was taken from the finite element solutions (Chapter 4) at both the 

maximum and the skeletal effective stress points. Results of some 

calculations, using equation (7.8), for materials in which the skeletal 
* / 0 0 

aj/a^ controls creep deformation and rupture are also listed in Table 7.2. 

Calladine's theoretical predictions suggest, when compared with the 2|CM 

steel notch rupture data, that steady-states have been achieved relatively 

early in life when both a and Oj controls failure (the latter being too 
conservative). However, for the 5CMV steel when either the maximum or 

—/ 00 

the skeletal a/a^ are used in the calculations, steady-state has not been 

achieved. This implies that creep failure for this material is 

controlled by o-j or a combination of both Oj and a (Hayhurst, et al. 

[1978], Cane [1980]). 

7.2.3 Discussion 

When creep rupture is the prime design consideration, 

Calladine's approximate approach for calculating the stress redistribution 

times seems appropriate to check the validity of using steady-state 

conditions to predict rupture in complex structures. For the material 

in question, the uni-axial creep coefficients required in the analysis are 

easy to find. This leaves the only unknown to be the state of stress 
— / 0 0 / 

parameter which controls creep deformation and rupture (<?/â  or a ) • 

These parameters are very difficult to measure experimentally, especially 

in complex geometries, therefore they have to be found analytically. For 

notched bar geometries, the Bridgman analysis given in Section 4.2 can be 

used to estimate the required state of stress parameters for fully plastic 

conditions; i.e. n - 00. The other alternative is to use the finite 

element method to calculate the steady-state stress distributions for any 
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value of n. 

The results of several calculations performed on various 

notched bar geometries were previously given in Chapter 4. This section 

focuses the attention on two types of diagram which can be used as a useful 

design tool. Firstly, the relative stress concentration factor, F, versus 

1/n diagrams (Figures 5.1 to 5.3). If amax_ controls creep deformation 

and failure, F, in Calladine's equation (7.4) becomes as easy to find for 

the appropriate value of ft as the elastic stress concentration factors, K, 

usually presented in charts in any standard design book. The second type 

of diagram is one which shows the change in the state of stress parameters 

at the skeletal point with increase in notch sharpness, a/R (Figures 4.8, 

4.14 and 4.20). In this case, the parameters of interest are the skeletal 

a and a^. 

HayhurstTs predictions of the stress redistribution times 

listed in Table 7.2 show that notches manufactured from ductile materials 

have shorter times to stationary-state than those manufactured from brittle 

materials. They also suggest that stress redistribution is never complete 

except for the BS V-notch manufactured from the 2|CM steel. The stress 

redistribution time for this notch, according to Hayhurst, is 300 hours 

which is also questionable because, if ft is taken to be 9 and not 9.77, 

then the time to stationary-state will be approximately 104 hours, which 

is outside the experimental rupture time. 

Calladine's estimates of the stress redistribution times 

listed in Table 7.2 were based on either a (maximum and skeletal) or Oj. 

The results show that for the ductile 2|CM steel, the predictions are more 

realistic when a is used in the calculations. When a-j is used, the 

results are too conservative. However, for the brittle |CMV steel, 

Calladine's estimates suggest that the creep behaviour of this material 

is dominated by the axial stress, o-j . When a is used in the calculations, 

complete stress redistribution is not achieved. 
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7.3 INTERPRETATION OF NOTCH RUPTURE D A T A 

N o t c h rupture data are usually interpreted and presented in terms of 

n o t c h e d to unnotched lives or stress strength r a t i o s . The conditions 

applied when time or strength ratios are used in the p r e s e n t a t i o n w e r e 

p r e v i o u s l y given and discussed in Chapter 1 , Section 1 . 4 . 1 . In this 

s e c t i o n , the i m p l i c a t i o n s of applying these conditions to experimental 

creep data are d i s c u s s e d . 

One of the m o s t extensive e x p e r i m e n t a l investigations undertaken on a 

series of m a t e r i a l s to collect u n i - a x i a l and n o t c h r u p t u r e data w a s carried 

out by D a v i s and M a n j o i n e in 1 9 5 3 . T h e y creep tested in tension a n u m b e r 

of u n i - a x i a l and n o t c h e d bar specimens w i t h different n o t c h profiles under 

a constant t e m p e r a t u r e and v a r i o u s n o m i n a l s t r e s s e s . The results of 

their investigation w e r e presented in several logarithmic stress v e r s u s 

r u p t u r e time d i a g r a m s . It is observed that the u n i - a x i a l and the n o t c h 

r u p t u r e data for some of the m a t e r i a l s investigated are p a r a l l e l to each 

other but in most cases they are n o t . The cr-ft lines of the notched 

specimens diverge from the u n i - a x i a l line w i t h no systematic t r e n d s . 

T h i s author b e l i e v e s that this point should have been taken into 

c o n s i d e r a t i o n w h e n M c L e a n , et a l . [1977] and Cocks [1980] compared the 

D a v i s and M a n j o i n e d a t a , plotted in terms of n o t c h r u p t u r e s t r e n g t h , w i t h 

their proposed t h e o r e t i c a l bounds and m o d e l s . T h e schematic diagrams in 

F i g u r e 7.1 explain w h y . If the u n i - a x i a l and n o t c h e d data lines are 

p a r a l l e l , as shown in F i g u r e 7 . 1 ( a ) , then the n o t c h e d to unnotched time 

or stress strength ratios w i l l be the same at any r e f e r e n c e rupture time 

or stress (the h o r i z o n t a l and v e r t i c a l l i n e s ) . H o w e v e r , the values of 

these ratios b e c o m e v e r y sensitive to the position of the reference time 

or stress w h e n the data lines are not p a r a l l e l (Figure 7.1(b) and (c)). 

If the data lines do n o t cross over at any applied n o m i n a l stress (which 

is v e r y l i k e l y ) , then the position at w h i c h the switch from n o t c h 
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strengthening to n o t c h w e a k e n i n g takes place r e m a i n s the s a m e . At 

different r e f e r e n c e times or s t r e s s e s , the n u m e r i c a l v a l u e of the notched 

to unnotched ratios w i l l be the only v a r i a b l e (Figure 7 . 1 ( d ) ) . 
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7.4 A P P L I C A T I O N OF THE PROPOSED NOTCH STRENGTHENING AND W E A K E N I N G M O D E L S 

TO CREEP D A T A 

In Chapter 5 , several t h e o r e t i c a l m o d e l s h a v e been p r o p o s e d , based on 

either c o n t i n u u m m e c h a n i c s or m i c r o s t r u c t u r a l a p p r o a c h e s , to predict n o t c h 

strengthening and w e a k e n i n g . In this s e c t i o n , these m o d e l s are applied 

to the e x p e r i m e n t a l creep data available on the 2|%Cr l%Mo and 

£%Cr !%Mo |%V steels (Chapter 6) and also to the D a v i s and M a n j o i n e [1953] 

d a t a . The a s s u m p t i o n s associated w i t h using either the time or stress 

strength ratios to present and compare these data w i t h the proposed m o d e l s 

are fully d i s c u s s e d . 

7.4.1 Summary of A n a l y t i c a l E x p r e s s i o n s of the M o d e l s 

T h e steps w h i c h h a v e been followed in applying the proposed 

continuum m e c h a n i c s and m i c r o s t r u c t u r a l m o d e l s , discussed in d e t a i l in 

Chapter 5 , to the e x p e r i m e n t a l data are summarised in this s e c t i o n . The 

first step is to present the equations describing these models in terms of 

n o r m a l i s e d r u p t u r e t i m e , % . The continuum m e c h a n i c s approach for 

m a t e r i a l s in w h i c h the e f f e c t i v e stress controls failure (equation (5.9)) 

gives: 

+ • Anom.n 
ft eo = eR ) 

and for o^ m a t e r i a l s , the result is: 

ft ft = ft [ — ] ( 7 ' 1 3 ) 

w h e r e a = a in equation (5.9), and i is the m i n i m u m creep rate w h i c h nom o n o 

c o r r e s p o n d s to the applied n o m i n a l s t r e s s , O
n o r r j -

F r o m A s h b y ' s theory of creep r u p t u r e by void g r o w t h , equation 

(5.14) for b o u n d a r y d i f f u s i o n b e c o m e s : 
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0.17 , nom, 
yo 1 

(7.14) 

and for surface diffusion, equation (5.16), when A: < 0.01 gives: 

1 0 q 
+ . I , nom,6 

(7.15) 

For materials in which voids grow by power-law creep, the general constant 

stress rupture time equation (2.30), when the nucleation time, = 0 , 

reduces to: 

h ko j n t l j In n+1) Ai. 
nom<n 

(7.16) 

and when the rupture strain equation (2.34) for power-law creep is u s e d , 

with the assumption that the term 0 . 2 Z / d is negligible, the result is 

identical to the continuum mechanics equation (7.12) for a m a t e r i a l s . 

Equations describing the theoretical models in terms of time 

strength ratios were also derived in Chapter 5. The continuum mechanics 

constant ductility models for either a or cry materials are: 

no 
£ 'un 

nomyn 
(7.17) 

and: 
'no 

un 

nomxn 
(7.18) 

If the Bridgman values of o /a (equation (4.5)) are used in 

equation (7.17), the result is: 

(J™.) 
£ BAtdqman un 3 

i + —i 
a. 

In 1 +—) 
2R 

(7.19) 
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Ashby's theory for materials in which voids grow by boundary 

diffusion (Section 5.4.1) gave: 

= 3 m (7.20) 
un °J 

Equation (7.20) is similar to the continuum mechanics equation (7.18) when 

n = 1. 

For surface diffusion, the result was: 

m = {jm)3 (7.2i) 
Z a. un 1 

When ^ was assumed to remain constant under both uni-axial and multi-

axial conditions, the power-law creep expression was: 

/no . (JL) 
Z a — un o a 

Similar expressions to the continuum mechanics equation (7.17) 

can be derived from the reduced power-law rupture strain equation (5.24), 

assuming that ductility at failure is constant for both uni-axial and 

notched bar specimens. 

When the stress strength ratios are used to model notch 

strengthening and weakening, the continuum mechanics approach for either 

a or Oj materials gave: 

= a-m (7.23) a — un a 

a a n nom . . and: = — — (7.24) 
a a. un I 

The Bridgman values of ° n o m/ a were previously derived in Section 4.2 as: 
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a a n \ nom 
BsUdgman 7 + f ) m (7.25) 

A s h b y ' s theory for m a t e r i a l s in w h i c h v o i d s grow by either 

b o u n d a r y d i f f u s i o n or surface d i f f u s i o n gave a similar expression to that 

of equation (7.24). H o w e v e r , for m a t e r i a l s in w h i c h v o i d s grow b y power-

law a l o n e , three equations w e r e g i v e n . The first equation was derived 

from the constant stress rupture time equation (2.30) w i t h the a s s u m p t i o n 

that ft is c o n s t a n t . The result w a s : 

_ ( J L,r / n V m ( ? 2 6 ) 

* a o 

The second equation was derived using the assumption that the r u p t u r e 

strain is constant for u n i - a x i a l and m u l t i - a x i a l s p e c i m e n s . The results 

gave an i d e n t i c a l expression to that of the continuum m e c h a n i c s for a 

m a t e r i a l s (equation (7.23)). The third expression given was that derived 

b y Cocks [1980]: 

s i n h ^Trrin il In 
ft = N { 9 . J ( 7 ' 2 7 ) 

sinh [ 2 ( ^ 4 ) ( N - j ) ] 

w h e r e : N = a /a (7.28) 
n 

ft and a are the slip-line field p r e d i c t i o n s of the a v e r a g e a x i a l and 

e q u i v a l e n t stress in the m i n i m u m section of a notched b a r . 

B e f o r e applying these m o d e l s to the e x p e r i m e n t a l d a t a , it is 

n e c e s s a r y to s u m m a r i s e the a s s u m p t i o n s used in their d e r i v a t i o n . T h e y 

w e r e : 

(a) N u c l e a t i o n time is n e g l i g i b l e . 
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(b) F a i l u r e m e c h a n i s m s are controlled by void growth only w i t h 

no intervention d u e to m e c h a n i c a l instability (necking). 

(c) E i t h e r the strain to failure or ^ remain c o n s t a n t . 

F i n a l l y , it has to b e pointed out that only one curve of time 

or stress strength ratio versus constraint for a p a r t i c u l a r v a l u e of Yl can 

be p r e d i c t e d . This implies that the logarithmic notched and u n i - a x i a l 

s t r e s s - t i m e lines are assumed to b e p a r a l l e l (Figure 7 . 1 ( a ) ) . 

7.4.2 The 2j%Cr l%Mo Steel Creep Data 

In this s e c t i o n , the proposed m o d e l s are applied to the 

e x p e r i m e n t a l data a v a i l a b l e on the 2|%Cr l%Mo steel (Chapter 6 , T a b l e s 

6.3 to 6 . 5 ) . T h e first step followed w a s to plot the e x p e r i m e n t a l 

r u p t u r e t i m e s , expressed in terms of , versus c o n s t r a i n t , as shown in 

F i g u r e 7 . 2 . T h r e e m o d e l s w e r e also plotted in the same figure; these 

w e r e the c o n t i n u u m m e c h a n i c s (equation (7.12)), b o u n d a r y d i f f u s i o n 

(equation (7.14)), and p o w e r - l a w creep (equation (7.16)) m o d e l s . T h e 

stress i n d e x , n , for this m a t e r i a l w a s approximated to 9 and the u n i - a x i a l 

r u p t u r e s t r a i n , e ^ , used in equation (7.12) was taken from T a b l e 6.4 as 

e q u i v a l e n t to a p p r o x i m a t e l y 40% at a = 200 M P a . The state of stress 
nom 

p a r a m e t e r s required in the c a l c u l a t i o n , such as °nom/°> °nom^°l and a* 

w e r e taken from the finite element p r e d i c t i o n s for the notched g e o m e t r i e s 

w i t h b/a = 1.46 (Figures 4.14 and 5 . 8 ) . E s t i m a t e s of the m a t e r i a l 

p r o p e r t y , <j> , w h i c h appear in the b o u n d a r y diffusion equation (7.14) are 

given in T a b l e 7 . 3 . The m a t e r i a l coefficients used to calculate 4>Q 

(equation (2.18)) w e r e given by D y s o n [1982] at 565°C, w h i c h is slightly 

h i g h e r than the creep test temperature of 538°C. No informatio n could b e 

obtained in order to c a l c u l a t e the surface d i f f u s i o n m a t e r i a l p a r a m e t e r , 

\p , required in equation (7.15), and this m o d e l w a s therefore e x c l u d e d . 



_ 241 _ 

It is observed from Figure 7.2 that the u n i - a x i a l arid all the 

n o t c h e d bar specimens have failed by p o w e r - l a w creep and not by d i f f u s i o n . 

This is indicated by the fact that the boundary d i f f u s i o n m o d e l always 

predicts longer lives than w e r e m e a s u r e d in p r a c t i c e . It is also observed 

that the continuum m e c h a n i c s constant d u c t i l i t y m o d e l represented by 

equation (7.12) o v e r - e s t i m a t e s the e x p e r i m e n t a l lives for d/R > 3 . 0 . The 

p o w e r - l a w creep m o d e l gave a good fit to the rupture times of the specimens 

w i t h high constraint w i t h fi^ = 5 * 1 0 " " 6 . The u n i - a x i a l ductility predicted 

using this v a l u e of fi- in equation (5.23) is equal to 1 5 7 % , w h i c h is m u c h 

higher than the m e a s u r e d ductility of 90% (Table 6 . 4 , o = 200 M P a ) . 

It has been stated in Section 7.4.1 that A s h b y ' s m o d e l for 

u n i - a x i a l b e h a v i o u r is only a p p l i c a b l e prior to the onset of n e c k i n g . 

T h e r e f o r e , the d i f f e r e n c e b e t w e e n the e x p e r i m e n t a l and predicted 

d u c t i l i t i e s indicates that plastic instability w a s the final cause of 

f a i l u r e , and not c r e e p . If the m a t e r i a l is allowed to d e f o r m u n i f o r m l y , 

then the u n i - a x i a l rupture time is expected to be m u c h higher than the 

e x p e r i m e n t a l l y m e a s u r e d v a l u e . This is illustrated in F i g u r e 7.3 for the 

plain bar specimen tested at a constant stress of 200 M P a . T h e predicted 

rupture t i m e , using the e x p e r i m e n t a l secondary creep rate w h i c h 

c o r r e s p o n d s to 200 MPa and a ductility of 157% is about 225 h o u r s . This 

predicted time is about 4.85 h i g h e r than that m e a s u r e d e x p e r i m e n t a l l y . 

F i n a l l y , the proposed m o d e l s expressed in terms of n o t c h e d to 

unnotched lives and stress strength ratios are shown plotted against the 

e x p e r i m e n t a l data in F i g u r e s 7.4 to 7 . 6 . In F i g u r e 7 . 4 , the m e a s u r e d 

u n i - a x i a l r u p t u r e t i m e , equivalent to 46 h o u r s , w a s used to n o r m a l i s e the 

e x p e r i m e n t a l d a t a . It is observed that both the Bridgman and the 

constant d u c t i l i t y m o d e l s (equation (7.17)) agree w i t h the e x p e r i m e n t a l 

data up to a p p r o x i m a t e l y a/R = 3 . This is expected since the Bridgman 

analysis is only valid for blunt notches of small constraint and the 
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continuum m e c h a n i c s constant d u c t i l i t y m o d e l does not take into a c c o u n t 

any drop in d u c t i l i t y due to increase in tri-axiality with increase in 

n o t c h s h a r p n e s s . T h e s e two m o d e l s can therefore be regarded as upper 

b o u n d s . The estimates of £ /£ shown in F i g u r e 7.4 w h e n ft w a s assumed 
no un a, 

constant (equation (7.22)) are about 4 or 5 times smaller than the 

e x p e r i m e n t a l r a t i o s . This is a p p r o x i m a t e l y the same d i f f e r e n c e as 

b e t w e e n the predicted u n i - a x i a l r u p t u r e time and that m e a s u r e d 

e x p e r i m e n t a l l y (Figure 7 . 3 ) . W h e n the true u n i - a x i a l rupture t i m e , 

£ ' = 225 h o u r s , was therefore used in F i g u r e 7 . 5 , the constant ft m o d e l un a, 

fits the n o r m a l i s e d data almost p e r f e c t l y . Similar trends are observed 

w h e n the data are plotted in terms of stress strength ratios using the 

corrected u n i - a x i a l rupture time (Z' ), as shown in F i g u r e 7.6. 

7.4.3 T h e ^%Cr ^%Mo j%V Steel Creep Data 

Two b l o c k s of this m a t e r i a l , labelled as 10G and 4 F , w e r e 

creep tested in 1980 b y N g , W e b s t e r and D y s o n at 565°C. The information 

m a d e a v a i l a b l e b y their r e s e a r c h w a s p r e v i o u s l y listed and discussed in 

C h a p t e r 6 , Tables 6.7 and 6 . 8 . M e t a l l u r g i c a l i n v e s t i g a t i o n s on fractured 

surfaces of some notched specimens revealed that a clear intergranular 

type of failure w a s the c a u s e of f r a c t u r e . It also showed that d a m a g e 

in the form of small cracks and v o i d s w a s observed around the area of the 

fractured surfaces (Figures 6.12 and 6 . 1 3 ) , w h i c h is expected from a 

m a t e r i a l in w h i c h the u n i - a x i a l d u c t i l i t y , m e a s u r e d over the gauge l e n g t h , 

is b e t w e e n a p p r o x i m a t e l y 4% and 0 . 2 % . 

It is evident from the m e t a l l u r g i c a l o b s e r v a t i o n s and the 

a b s e n c e of necking in all plain bar specimens that d a m a g e a c c u m u l a t i o n and 

n o t p l a s t i c i n s t a b i l i t y w a s the cause of f a i l u r e . For this m a t e r i a l , no 

i n f o r m a t i o n could b e obtained in order to calculate the b o u n d a r y or surface 

d i f f u s i o n p a r a m e t e r s , ft and ip . T h e r e f o r e , it w a s n o t p o s s i b l e to plot 



_ 243 _ 

the data in terms of the normalised time, in order to assess whether 

the formation and linkage of voids was caused by power-law creep or by 

diffusion. However, there is a clear indication that the models in which 

the axial component Oj is the dominant parameter gave a reasonable fit to 

some of the data when plotted in terms of notched to unnotched life 

strength ratios (Figure 7.7). It is observed from this figure that the 

continuum mechanics, boundary and surface diffusion models all predict 

notch weakening which is consistent with the 4F material behaviour. The 

only difference between these three models is the power to which the 

normalised axial component °nom/°i Is raised (ft = 1, 3 or 16). It is 

also observed that the constant ductility and constant ^ - models gave a 

good fit up to about a/R = 0.5 for the 10G material which was more ductile 

than the 4F material. However, no agreement with any of the models is 

obtained for the sharpest notches for the 10G material. 

7.4.4 Davis and Manjoine's [1953] Creep Data 

The uni-axial and notched rupture data reported by Davis and 

Manjoine in 1953 on a range of high temperature alloys with different 

grain size, hardness, ductility and heat-treatment have been used by 

several investigators to provide some understanding of notch behaviour. 

The creep data on four different alloys are shown plotted in Figure 7.8 as 

a ratio of 1000 hours notched to unnotched rupture strength. Previous 

models proposed by McLean, et al. [1977] and Cocks [1980], together with 

the continuum mechanics and microstructural models suggested by the present 

author are also given in the same figure. McLean, et al. [1977] used the 

Bridgman equation (7.2) which gave good agreement with the initial notch 

strengthening behaviour of three of the four alloys. They also suggested 

two bounds to notch strengthening dictated by the geometrical ratio, b/a. 

The first was an upper bound due to the onset of gross section creep caused 
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by the notch constraint (b/a)2- and the second was a lower bound due to the 

loss of localised deformation caused by the ratio b/a being insufficient 

to sustain constraint beyond a critical value of A fa.. These two bounds 

are shown in Figure 7.8 as two horizontal lines. 

Cocks [1980] used equation (7.27) with n - 9 to model the 

behaviour of alloy A. He suggested that the deviation between his model 

and the experimental data in the region of high constraint was probably 

due to the drop in failure strains which can cause a drop in stress 

redistribution times. 

In Figure 7.8, the present models of constant ductility, 

constant diffusion and continuum mechanics for o-j materials are shown 

plotted as a function of constraint. The state of stress parameters, 

such as a /o, a „ /a, and a, were taken from the finite element 
no ITT not71 / 

predictions given in Chapter 4 for the notched geometries with b/a = 1.33. 

The stress index for alloys A and B were approximated to n = 7 and D and 

C to n = 12. It is observed that the constant ductility line gave an 

excellent fit to alloy A data and the a /a, model (diffusion and 
nom I 

continuum mechanics for o-j materials) can be regarded as a good lower 

bound. It must be noted that the data presented in this figure were 

normalised with respect to the constant load and not constant stress uni-

axial line, due to the lack of information on the latter. It is 

therefore expected that the experimental data on alloy D, which has 

approximately the same ductility and n values as the 2|%Cr l%Mo steel, 

will drop by a factor of 1.2 to 1.3 if the true uni-axial rupture life is 

used. This is the factor required to bring the data line nearer to the 

constant fi^ line shown in Figure 7.8 for n = 12. The other alloys are 

less ductile than alloy D. Therefore, it is expected that the effects of 

plastic instability have a smaller influence on the measured uni-axial 

rupture lives. Nevertheless, a factor of up to 1.1 will bring the data 



_ 2 4 5 _ 

of alloys C and B n e a r e r to the cr^^/oj m o d e l and improve the fit of the 

blunt notched data of alloy A w i t h the constant A- line for n = 7. 
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7.5 G E N E R A L COMMENTS ON THE PROPOSED M O D E L S 

It w a s n e c e s s a r y , b e f o r e applying the proposed models to the 

e x p e r i m e n t a l d a t a , to check the validity of using the state of stress 

p a r a m e t e r s at the skeletal point to predict rupture times. T h e r e s u l t s , 

based on C a l l a d i n e ' s a p p r o x i m a t e time-scale p r e d i c t i o n s , showed that 

stress r e d i s t r i b u t i o n w a s achieved r e l a t i v e l y early in life for a l l the 

notched g e o m e t r i e s i n v e s t i g a t e d . If these p r e d i c t i o n s w e r e o p p o s i t e to 

those w h i c h h a v e been a l r e a d y reported in Section 7 . 2 , i . e . n o stress 

r e d i s t r i b u t i o n was achieved early in l i f e , then the theoretical l i f etime 

p r e d i c t i o n s would have been i n v a l i d . 

A factor w h i c h has b e e n highlighted prior to the a p p l i c a t i o n of the 

proposed m o d e l s to e x p e r i m e n t a l data is the importance of h a v i n g an 

efficient method for e s t i m a t i n g the required state of stress p a r a m e t e r s in 

the n o t c h t h r o a t . The l i m i t a t i o n of the a p p r o x i m a t e p l a s t i c i t y s o l u t i o n s , 

such as the Bridgman m e t h o d , m a k e s the p r e s e n t rapid finite e l e m e n t method 

v e r y a t t r a c t i v e in p r o v i d i n g the n e c e s s a r y i n f o r m a t i o n . 

T h e good agreement b e t w e e n the proposed m o d e l s and the e x p e r i m e n t a l 

data s u g g e s t that the a s s u m p t i o n that n u c l e a t i o n time is n e g l i g i b l e is not 

a b a d a p p r o x i m a t i o n . H o w e v e r , the results point out v e r y strongly that 

if p l a s t i c instability causes early f a i l u r e , then this factor h a s to be 

taken into c o n s i d e r a t i o n . The proposed m i c r o s t r u e t u r a l m o d e l s u s i n g the 

a s s u m p t i o n that d u c t i l i t y is constant seem to provide a u s e f u l fit to the 

data in the region of low c o n s t r a i n t . It is believed that the d e v i a t i o n 

of this m o d e l from the data is due to the drop in ductility as the 

c o n s t r a i n t i n c r e a s e s . The best fit observed b e t w e e n any of the proposed 

m o d e l s and the e x p e r i m e n t a l data was obtained using the constant A ^ l i n e s . 

The s t r e n g t h of this m o d e l lies in its a b i l i t y to include both the 

i n c r e a s e in the h y d r o s t a t i c and the d e c r e a s e in the effective stress 

c o m p o n e n t s as the constraint i n c r e a s e s , through the state of stress 
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p a r a m e t e r a w h i c h is also dependent on ft. H o w e v e r , if p l a s t i c 

i n s t a b i l i t y i n t e r v e n e s , then this m o d e l w i l l u n d e r - e s t i m a t e the m e a s u r e d 

strength r a t i o s . 
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7.6 CONCLUSIONS 

Estimates of stress r e d i s t r i b u t i o n times due to creep have been given 

for a range of n o t c h geometries u s i n g C a l l a d i n e T s a p p r o x i m a t e method and 

the Hayhurst finite element p r e d i c t i o n s . Comparison w i t h the e x p e r i m e n t a l 

l i f e t i m e s of some of these geometries indicate that stress r e d i s t r i b u t i o n 

can be a c h i e v e d , p r o v i d e d that the right stresses are used in the 

c a l c u l a t i o n s . T h e r e s u l t s also confirm the validity of using the state 

of stress p a r a m e t e r s at the skeletal p o i n t to predict n o t c h bar b e h a v i o u r 

and their l i f e t i m e s . 

T h e c o n t i n u u m m e c h a n i c s and m i c r o s t r u c t u r a l m o d e l s derived in 

Chapter 5 h a v e been applied to s e v e r a l experimental creep d a t a , some of 

w h i c h are reported in C h a p t e r 6 and the others in the l i t e r a t u r e . The 

m o d e l in w h i c h the d u c t i l i t y is assumed constant p r o v i d e s a good fit to 

the data in the r e g i o n of low c o n s t r a i n t . It w a s found that for 

m a t e r i a l s w h i c h fail b y d a m a g e a c c u m u l a t i o n and n o t p l a s t i c i n s t a b i l i t y , 

a g r e e m e n t is obtained w i t h the m o d e l s w h i c h predict n o t c h w e a k e n i n g only 

through the n o r m a l i s e d a x i a l component raised to the p o w e r 1 , 3 or ft. 

The best fit w a s p r o v i d e d b y the m o d e l w h i c h assumes ft remains constant 

w i t h increase in c o n s t r a i n t if the effects of plastic i n s t a b i l i t y w e r e 

taken into c o n s i d e r a t i o n . 



TABLE 7.1 

Estimates of Steady-State Times for Some Notched Bar Geometries 

(a) 2|%Cr l%Mo steel: n = 9.77, C = 2 . 5 1 5 6 x 1 Q - 2 5 , g = 200 M P a , E = 152 GPa 

Notch b/a a/R 
— 00 
a /a max o 

00 
/ o o max 

T 4 4 

Calladine i [ t \ (h) 
-4 Hayhurst 

(h) 

Experimental 

(h) 

Notch b/a a/R 
— 00 
a /a max o 

00 
/ o o max 

T 4 4 

a 
max °1 

max 

Hayhurst 

(h) 

Experimental 

(h) 

Semi-circular notch 1.67 1.5 2.1 3.05 2 x 1 0 - 2 
0.49 0.18 27.8 -

BS V-notch 1.41 18.18 1.5 3.05 4.2 0.48 9.3 x 1 0 "
3 

300.0 = 1800 

Deep n o t c h , DN1 1.9 2.0 2.5 4.15 1 . 1 x 1 0 " 2 

1.02 0.11 147.0 -

Deep n o t c h , DN2 2.25 5.0 3.2 5.8 4 x 1 0
- 3 

2.27 0.12 1040.0 -

to 

(O 



TABLE 7.1 (continued) 

(b) |%Cr l%Mo |%V steel: ft = 1 6 . 66, C = 2 . 2 x i ( T 4 6 , o = 300 M P a , E = 176 GPa 

Notch b/a a/R 
— . 00 
a /a 

max o 
oo 

h o max ft* 

Calladine ft* J (h) 
-6 H a y h u r s t ft ft) 

(h) 

E x p e r i m e n t a l 

ft 

(h) 

Notch b/a a/R 
— . 00 
a /a 

max o 
oo 

h o max ft* 
a max °1 

max 

H a y h u r s t ft ft) 

(h) 

E x p e r i m e n t a l 

ft 

(h) 

Semi-circular notch 1.67 1.5 2.05 3.18 7 x 1 0 " 4 437.0 0.434 2.76 x 1 0 ~ 5 24 (4F) 

240 (10G) 

BS V-notch 1.41 18.18 2.4 3.1 2.0 0.176 3.13 x 1 0 ~ 3 3.93 x 1 0 ~ 6 
-

Deep n o t c h , DN1 1.9 2.0 2.45 4.2 2 x 1 0 ~ 4 1536.0 0.316 4.48 x 1 0 " 6 
-

Deep n o t c h , DN2 2.25 5.0 2.8 5.9 4 x 1 0 " 5 3.8 x 1 0 4 
0.31 1.79 x 1 0 ~ 8 

-
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TABLE 7.2 

Estimates of S t e a d y - S t a t e Times for Two L o w A l l o y Steel N o t c h e d Specimens 

(a) 2£%Cr l%Mo steel: b/a = 1 . 4 6 , n = 9.77 

a = 200 nom MP a 

a/R 
— 00 
a /a 

max o 
/ 0 0 

a hQ * / 0 0 
°1/oo 

(h) 

w 

(h) 
(h) 

E x p e r i m e n t a l 

*R ( h ) 

0.0 2.136 2.136 2.136 0.041 0.041 0.041 46.9 

1.0 1.75 1.72 2.24 0.233 0.272 0.0173 639.4 

1.67 1.69 1.58 2.23 0.317 0.572 0.018 779.8 

2.6 1.62 1.48 2.225 0.459 1.015 0.0279 1064.5 

5.0 1.625 1.375 2.42 0.447 1.936 0.0133 1860.5 

8.125 1.65 1.33 2.44 0.39 2.592 0.01 -

13.0 1.8 1.32 2.625 0.182 2.77 0.0065 1885.2 

21.66 - 1.318 - - 2.8 - 187.0 

32.5 1.45 1.315 2.8 1.215 2.86 0.0037 -

44.7 - 1 . 3 1 - - 2.96 - 1960.4 

a/R a = 175 
nom 

MP a 

0.0 2.136 2.136 2.136 0.131 0.131 0.131 148.7 

1.0 1.75 1.72 2.24 0.753 0.876 0.055 1146.5 

1.67 1.69 1.58 2.23 1.023 1.846 0.058 1788.4 

13.0 1.8 1.32 2.625 0.588 8.93 0.021 3799.4 

(b) ^%Cr ^%Mo |%V steel: b/a = 1 . 6 7 , n = 1 6 . , o = 300 M P a 

a/R 
— . oo 
a /a max o 

—* / 0 0 

a / a 0 
* / 0 0 

°1/ao 
Lax 

(h) 

w 

(h) (b) 

E x p e r i m e n t a l 

h ( h ) a/R 
— . oo 
a /a max o 

—* / 0 0 

a / a 0 
* / 0 0 

°1/ao 
Lax 

(h) 

w 

(h) (b) 
4F 10G 

0.0 2.78 2.78 2.78 3.43 3.43 3.43 41.0 41.0 
0.75 2.35 2.35 2.77 50.86 50.86 3.63 30.1 -

1.5 2.15 2.1 2.9 206.4 299.0 1.76 24.0 239.9 
2.0 1.95 1.9 2.92 960.8 1446.5 1.585 13.2 185.5 

17.0 - - - - - - - 49.4 
18.0 - - - - - - 23.2 -

20.0 1.9 1.55 3.27 1446.5 3.5 x 1 0 4 
0.266 - -
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TABLE 7.3 

Estimates of the Material Property ft for the 2|%Cr l%Mo Steel at 565°C 

The equation for ft is: 

yo 

2 V, 6, ft a 
O D 0 

k T I3 eo 

where (source: Dyson [1982]): 

h - 4.4 x10"14 m2/s 

k - 5 x10"10 m 

n 1.7 x l(T29 m3 

k = 1.4x 10"23 J/K 

I « 10 ym 

ao = 2 x108 Pa 

The test conditions were: 

a = 2 x 108 Pa , £ = 
0 * 0 

7.07 x10~3 1/h = 1.964 x 10"6 1/s 

and: 

a = 1.75 x 108 Pa , zn 
0 9 0 

= 2.1x10~3 1/h = 5.83x10"7 1/s 

The calculations gave: 

<i = 6.5 xlO"*3 at 2 x 108 
r0 

Pa 

and: <J> 1.92 x 10~4 at 1.75 x 108 r0 Pa 



_ 253 _ 

d -

Figure 7.1: The different ways of interpreting creep data 
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a/R 

Figure 7.2: Application of the proposed models in terms of rupture time, 
e £ v , to the 21 %Cr l%Mo steel data 
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Figure 7.3: Comparison between the experimentally measured and the true rupture time for a 

uni-axial specimen creep tested at 538°C under a constant stress of 200 MPa 



Figure 7.4: A p p l i c a t i o n of the proposed m o d e l s in terms of notched to u n n o t c h e d l i f e t i m e s to the 2£%Cr l%Mo 

steel data u s i n g the e x p e r i m e n t a l l y measured u n i - a x i a l r u p t u r e t i m e , t 



F i g u r e 7.5: A p p l i c a t i o n of the proposed m o d e l s in terms of notched to u n n o t c h e d l i f e t i m e s to the 2[%Cr l%Mo 

steel data u s i n g the true u n i - a x i a l r u p t u r e t i m e , V 



Figure 7.6: A p p l i c a t i o n of the p r o p o s e d m o d e l s in terms of stress strength r a t i o s to the 2[%Cr l%Mo s t e e l data 



Figure 7.7: A p p l i c a t i o n of the p r o p o s e d m o d e l s in terms of notched to u n n o t c h e d l i f e t i m e s to the 

\%Cr ^%Mo |%V steel data 
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Figure 7.8: A p p l i c a t i o n of the p r o p o s e d and other m o d e l s in terms of stress s t r e n g t h ratios to D a v i s and M a n j o i n e ' s 

[1953] creep data 
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CHAPTER 8 

C O N C L U S I O N S AND R E C O M M E N D A T I O N S 

8.1 C O N C L U S I O N S 

The object of the w o r k presented in this thesis was to i n v e s t i g a t e 

the i n f l u e n c e of state of stress on creep f a i l u r e . T h e p r o c e d u r e 

followed in order to fulfil these o b j e c t i v e s was to think of a p o s s i b l e 

m e t h o d in w h i c h the state of stress can b e systematically v a r i e d and then 

i n v e s t i g a t e their i n f l u e n c e on the p r e d i c t i o n of c o m p o n e n t l i f e t i m e s . 

P r e v i o u s e x p e r i m e n t a l and t h e o r e t i c a l i n v e s t i g a t i o n s h a v e shown that by 

changing the n o t c h p r o f i l e in round bars pulled in t e n s i o n , the state of 

stress p a r a m e t e r s in the throat w i l l v a r y a c c o r d i n g l y . The r e s e a r c h 

p r o c e d u r e after adopting this m e t h o d b r a n c h e d into the following m a i n 

lines: 

(a) To develop an efficient n u m e r i c a l technique based on the finite 

element m e t h o d in order to assess how the state of stress 

p a r a m e t e r s v a r y in the throat w i t h n o t c h s h a p e . 

(b) To conduct a series of e x p e r i m e n t a l creep tests on plain and 

n o t c h e d bar specimens m a d e of a m a t e r i a l of p r a c t i c a l r e l e v a n c e . 

T h e results of the e x p e r i m e n t a l investigation w o u l d p r o v i d e a 

k n o w l e d g e of some m a t e r i a l creep coefficients and lifetimes 

n e e d e d in the a n a l y s i s . 

(c) To use the finite element p r e d i c t i o n s of the state of stress 

p a r a m e t e r s in the n o t c h throat in some t h e o r e t i c a l m o d e l s to 

p r e d i c t the lifetimes of the n o t c h e d s p e c i m e n s . 

Prior to p r e s e n t i n g any t h e o r e t i c a l or e x p e r i m e n t a l r e s u l t s , a 

d e t a i l e d l i t e r a t u r e review of c o n t i n u u m m e c h a n i c s and m i c r o s t r u c t u r a l laws 
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which describe the behaviour of components undergoing creep deformation 

were given in Chapters 1 and 2. In particular, attention was focused on 

the Ashby and co-workers theory for modelling the growth of voids by 

mechanisms controlled by diffusion, power-law creep and by any 

combination of these two. 

Discussions of (a) were given in Chapters 3 and 4, (b) in Chapter 6, 

and (c) in Chapters 5 and 7. The conclusions reached were as follows: 

(i) Two finite element programs h a v e been developed and used 

successfully to calculate the steady-state stress d i s t r i b u t i o n s 

in a x i - s y m m e t r i c and t w o - d i m e n s i o n a l b o d i e s subjected to c r e e p . 

The iterative n u m e r i c a l m e t h o d adopted in w h i c h the elastic 

m a t e r i a l p r o p e r t i e s are up-dated after each iteration u n t i l the 

final steady-state is a c h i e v e d , have been found to be e c o n o m i c a l 

in terms of cost and a c c u r a t e in comparison w i t h exact and other 

finite element s o l u t i o n s . 

(ii) Solutions have been obtained for a range of circumferentially-

notched bar geometries and different values of stress index, n . 

Other geometries have also been investigated; these were blunt 

and sharp double notches under remote uniform tension, and 

compact tension specimens with different hole sizes machined 

into their crack plane, 

(iii) It has been found that for all the notch geometries investigated 

and for values of n > 1, a skeletal point at which the 

effective stress remained constant, independent of n, was 

observed. 

(iv) Several theoretical models have been derived using either a 

continuum mechanics approach or Ashby's void growth theory to 

predict notched bar behaviour. These models were used in a 
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detailed calculation using h y p o t h e t i c a l m a t e r i a l c o n s t a n t s , 

d u c t i l i t i e s and area fraction of h o l e s . The state of stress 

p a r a m e t e r s required in these calculations w e r e taken from the 

finite element p r e d i c t i o n at the skeletal p o i n t . It was found 

that if the ductility is assumed c o n s t a n t , the m o d e l s always 

p r e d i c t n o t c h strengthening for a m a t e r i a l s and n o t c h w e a k e n i n g 

for Qy m a t e r i a l s . W h e n the area fraction of holes w a s assumed 

c o n s t a n t , both notch strengthening and w e a k e n i n g can be p r e d i c t e d , 

d e p e n d i n g on the v a l u e of n and the t r i - a x i a l state of s t r e s s , 

(v) Creep tests at 538°C h a v e b e e n carried out on several plain and 

n o t c h e d bar specimens pulled in t e n s i o n . T h e m a t e r i a l tested 

was the 2|%Cr l%Mo steel used in the e l e c t r i c power generation 

i n d u s t r i e s . The creep data obtained h a v e b e e n analysed and 

compared w i t h the b r i t t l e ^%Cr [%V s t e e l . It h a s b e e n 

found that no matter h o w severe the n o t c h sharpness i s , the 

2}%Cr l%Mo steel w i l l always n o t c h s t r e n g t h e n , 

(vi) Some i n d i c a t i o n of the time taken to r e a c h the steady-state 

c o n d i t i o n s h a v e been included using C a l l a d i n e ' s a p p r o x i m a t e 

m e t h o d and the creep coefficients obtained in the e x p e r i m e n t a l 

part of this i n v e s t i g a t i o n . The a p p r o x i m a t e time-scale 

p r e d i c t i o n s based on the state of stress p a r a m e t e r s at the 

skeletal p o i n t showed that rapid stress r e d i s t r i b u t i o n is 

a c h i e v e d . 

(vii) The c o n t i n u u m m e c h a n i c s and m i c r o s t r u c t u r a l m o d e l s h a v e b e e n 

applied to the e x p e r i m e n t a l data obtained on the 2£%Cr l%Mo 

steel and other creep data available in the l i t e r a t u r e . It h a s 

been found that a constant ductility m o d e l gave a good fit to 

the data in the region of low c o n s t r a i n t . If the m a t e r i a l 

n o t c h w e a k e n s , i . e . fails b y damage a c c u m u l a t i o n and not b y 
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n e c k i n g , then the d i f f u s i o n m o d e l s provided a good fit to these 

type of d a t a , w i t h the continuum m e c h a n i c s m o d e l for o-j m a t e r i a l s 

being the lower w e a k e n i n g b o u n d . It has also been found that 

if the m a t e r i a l fails by plastic i n s t a b i l i t y , then the p r o p o s e d 

m o d e l w h i c h assumes ft constant gave an excellent fit to the 

d a t a , provided a corrected and not a m e a s u r e d lifetime is u s e d . 
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8.2 RECOMMENDATIONS 

In a research programme of this scope, it is inevitable that all 

aspects of the problem could not have been covered. During the course of 

the investigation and the writing of this thesis, a number of suggestions 

have arisen which could lead to further work. Some of these are now 

offered: 

(1) Modify the present finite element method so that solutions at 

intermediate time steps can be estimated, together with the 

final stress redistribution time. This involves adding 

routines which calculate an optimum time step and over-

relaxation factor after each iteration. Extra arrays may be 

required to store the previous, new and the calculated strains 

and stresses. Prior to this, a suitable time function has to 

be chosen. 

(2) There are some grounds for improving the performance of the 

present finite element method if, for example, quadratic types 

of elements are used instead of the present constant strain 

triangular elements. This means that accurate estimates of the 

stress distributions in the presence of very sharp notches or 

cracks could be made possible. This suggestion requires some 

time to be spent in adopting a new method for storing and 

solving the dimension and stiffness matrices, respectively. 

(3) The influence of anisotropy in material properties is another 

possibility which can be incorporated into the present finite 

element method. This involves adding some logic statements to 

modify the homogeneous material properties after each iteration. 

(4) Quantitative measurements of voids and their growth rate in the 

present material could be made using, possibly, electron 
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m i c r o s c o p y t e c h n i q u e s . This means a series of interrupted tests 

at successive times prior to failure to determine the 

d e v e l o p m e n t of damage throughout l i f e . In this w a y , the 

a s s u m p t i o n s of the m i c r o s t r u c t u r a l m o d e l s can be c h e c k e d . 
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STEADY-STATE STRESS 
DISTRIBUTIONS IN 
CIRCUMFERENTIALLY 
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The paper describes a procedure, based on a finite element method, for calculating directly the steady-state stress 
distribution in circumferentially notched bars subjected to creep without the need for obtaining solutions at 
intermediate time intervals. Good agreement is obtained with relevant approximate plasticity solutions and with 
numerical calculations which approach the steady-state over a period of time from the initial elastic stress 
distribution. Also, the procedure is equally applicable to primary, secondary, and tertiary creep, provided the 
variables of stress and time are separable in the creep law. 

Results obtained for a range of notch geometries and values of the stress index, n, are reported. It is found for each 
profile that a region of approximately constant effective stress, d, independent of n, is obtained which can be used to 
characterise the overall behaviour of the notch throat region when a steady-state is reached sufficiently early in life. 
An approximate method for estimating the maximum equivalent steady-state stress across the notch throat is also 
presented which does not require a computer solution. 

1 INTRODUCTION 
Failure by excessive creep deformation or fracture is an 
important design consideration in structures required to 
operate at elevated temperatures over long periods of 
time. Often these components are subjected to triaxial 
states of stress resulting from the applied loading or 
sharp changes in section. In order to determine useful 
component lives in such circumstances, laws governing 
creep behaviour under multi-axial stressing are needed 
(l)(2)t-

A uniform state of triaxial stress is difficult to produce 
in laboratory experiments. The most frequent method of 
introducing a three-dimensional state of stress into a test 
piece is to subject circumferentially notched bars to an 
axial tensile load. The constraint of the shank produces a 
state of triaxial tension in the notch region which 
depends upon the notch geometry and creep properties 
of the material. In tests carried out by a number of 
investigators (3H5), both notch strengthening and notch 
weakening have been observed, depending upon the 
notch dimensions and material examined. Some 
knowledge of the stress distribution across the notch 
throat is needed if this behaviour is to be explained. 

The stress distribution within a notch region can be 
determined in a number of ways, depending upon the 
assumptions made. Initially, in the absence of plastic 
deformation on loading, an elastic stress distribution will 
be obtained. As time progresses, stress redistribution will 
take place due to the high sensitivity of creep 

The MS. of this paper was received at the Institution on 5th October 1981 and 
accepted for publication on 18th January 1982. 

+ References are given in the Appendix. 
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deformation to stress. When secondary creep dominates, 
creep strain rate can often be written in the form 

I = Co" (1) 

where C and n are constants at constant temperature, 
and d and e are the corresponding equivalent stress and 
creep strain rates appropriate to multiaxial states of 
stress. Several calculations, relevant to circumferentially 
notched bars, have been made using finite element 
techniques and equation (1) (6H11). An incremental 
procedure is adopted and solutions obtained by iteration 
for successive time intervals. These are, however, often 
expensive and time-consuming to produce. The 
calculations, nevertheless, show that frequently a 
steady-state (or stationary) stress distribution is achieved 
across the notch throat after a sufficiently long period of 
time. If this stress distribution occurs early enough in the 
specimen life, it may be possible to use it to characterise 
the test piece behaviour. 

Several methods of determining steady-state stress 
distributions directly have been proposed (12H17). Most 
(12H15) make use of non-work hardening plasticity 
solutions and are, therefore, strictly only relevant to 
values of n—*cc. This paper presents a numerical 
method for determining the steady-state stress 
distribution in axisymmetric problems, rapidly, for any 
value of n, without the need for calculating how stress 
redistribution occurs with time. Results are included for 
a range of values of n and notch geometries, and 
comparisons made with the incremental time step 
solutions of Hayhurst and co-workers (8H11). An 
approximate procedure for providing conservative 
estimates of the maximum steady-state equivalent stress, 
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dmax, in the notch throat is outlined. Also, some 
indication of the time taken to reach a steady-state is 
included. 

1.1 Notation 
a Notch throat radius 
ait dj, Dimensions of a triangular element 
b Bar radius 
bi, bj, K Dimensions of a triangular element 
[B] Element dimension matrix 
C Material constant in creep law 
c, ••• c 6 Displacement coefficients 
[ D ] Element elastic property matrix 
[d] Element dimension matrix 
£ Young's modulus 
F Relative stress concentration factor 
[F] Vector of overall externally applied forces 
[K] Overall stiffness matrix 
k Elastic effective stress concentration factor 
IXL Element stiffness matrix 
n Stress index in creep law 
P Pressure 
F, Rm Notch profile radius, element radial 

coordinate 
Rly R2 Internal and external radii 
Ri, Rj , Rk Element radial distance from the axis of 

symmetry 
Hi, UJ, "t Element radial displacement component 
W,-, WJ.. , wk Element axial displacement component 
Am Element area 
isi Overall and element vector of displacement 

components 
£, £ Strain, effective strain 
£, £ Creep strain rate, effective creep strain rate 
V Poisson's ratio 
a, d Stress, effective stress 
X Total potential energy 
7. Convergence tolerance 

Subscripts 
zz, 99, rr 
m 
ss 
oo 
o 

Refer to axial, hoop and radial directions 
Refers to triangular element m 
Refers to steady-state 
Refers to remote boundary 
Refers to initial or reference conditions 

2 AXI-SYMMETRIC FINITE ELEMENT ANALYSIS 
Axi-symmetric problems can be solved by considering a 
two-dimensional solution domain lying in a radial plane 
through the axis of symmetry of the body concerned, as 
shown in Fig. 1. The solution procedure adopted is first 
to calculate the elastic stress and strain distributions. 
These are then modified with the aid of equation (1). To 
obtain the steady-state stress distribution, it is assumed 
that elastic strains are negligible compared with the 
creep strains so that equation (1) can be used to 
determine total strains. 

2.1 Finite element formulation for small strain linear 
elasticity 

Figure 1 shows a typical triangular finite element, 
numbered m, in the axial-radial plane, r and z being local 

Fig. 1. Triangular finite element in a radial plane of an axisymmetric 
body 

coordinates parallel to the global coordinates R and Z. 
The element has three nodes, numbered i, j, and k, 
located at its corners. Although more sophisticated 
higher-order elements are often to be preferred for 
linearly elastic problems, simple triangular elements offer 
a number of advantages for non-linear problems. 

The radial and axial displacement components are 
assumed to vary linearly over the typical element, so that 

u = C t + C 2 r + C 3 : 

w = C4 + C5 r + C6z 
(2) 

(3) 

where the six constants may be found in terms of the six 
nodal point displacements from 

Cx = m,; [ C 2 C 3 ] r = — [ d ] [ u , u ; u j r 

Q = w,; [C5 C 6 ] r = — [d] (>,• wj wk] 

(4) 

(5) 

where 

[d] = 
bi bj 
fliflj-aJ 

and Am = %(akbj — ajbk) is the area of the element. 
Hence, most of the non-zero strains are constant over the 
element and 

dr 
dw _ 

Ez: ~ ~dz = ' 
du dw _ _ 

er2 = — + — = C 3 + C 5 cz cr 3 3 (6) 
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Although the hoop strain does vary over the element, it is 
reasonable to assume it to be constant (18) to give 

u _u_ 
£ e e = r^Tm 

(7) 

where u and rm are the mean values over the element of 
the radial displacement and radial distance from the axis 
of symmetry 

a = fa + "j + "J; rm = &ri + r j + rk) 

Combining equations (4H7), the element strain 
components can be expressed in terms of nodal point 
displacements by 

[e] = Er2]
T = r r f f l r a 2A„ (8) 

where 

[<5]« = [u.H.UjWjUk wky 
and 

r b i 0 bj 0 bk 0 " 
[B] = 

0 ai 0 0 ak [B] = 2Am/3 Rm 0 2Am/3Rm 
j 0 2Am/3Rm 0 

<*i bi aj bj M 
The relationship between element stresses and strains 

can be derived from Hooke's law as 

where the elastic property matrix is given by 

1 v* v* 0 

(9) 

[ D ] = 
1 - v*2 

1 

0 0 0 i<l — V * ) . 

e* and v* being the Young's modulus and Poisson's 
ratio modified as for plane strain conditions (18) 

e _ v 
e* = 

1 - v- 1 - v 

Equilibrium conditions for the entire mesh of elements 
can be obtained by requiring the total potential energy, 
X, to be stationary for small changes in the displacements 
(18). Hence 

dX = 2n X Rm&m[o]T dlE] - [FT d\S] = 0 (10) 

where [d] is a vector containing all the nodal point 
displacement components, while [F] contains the 
corresponding forces, uniformly distributed around the 
circumferences through the nodes at which they are 
applied. Introducing equations (8) and (9), this result 
becomes 

2* X zr- £B]T[D][B][<5]m = X [k]m[<5], 
m m 

= [K][<5] = i f ] (ID 

where the [k]m are element stiffness matrices, which are 
assembled to form the overall stiffness matrix, [K], 
Solution of the overall linear equations, which is 
equivalent to inverting this matrix, yields the nodal point 
displacements and hence stresses. An important 
consequence of using constant strain triangular (CST) 

finite elements is that the method of solution can be 
either a direct elimination type technique, which is the 
approach most commonly used in finite element 
methods, or an iterative technique such as Gauss-Seidel. 
The latter can be particularly useful when dealing with 
non-linear problems. 

2.2 Treatment of non-linear problems 
Non-linearities in material behaviour, such as creep and 
plastic deformation, which cause the effective elastic 
properties e and v to vary with, for example, time or the 
local state of strain, can be dealt with in different ways. 
One approach is to solve a series of linear problems 
corresponding to small increments of the relevant 
independent variable, such as time or loading. For 
example, in the present context, equation (1) can be used 
to obtain solutions at a series of time intervals, At. An 
advantage of this approach is that solutions are obtained 
not only at the final time required but also at a number 
of intermediate times. This is the procedure adopted in 
references (6)-(ll). The main disadvantage is that if the 
time increment, Ar, is made too large, the computed 
solutions will diverge from their true values. On the other 
hand, if Ar is made very small, the amount of computing 
required becomes excessive as a large number of 
complete solutions of linear equations in the form of 
equation (11) are required. 

A second approach, and the one which is used here, is 
to treat the elastic properties as variables, thereby 
making the [ D ] matrix for each element, its stiffness 
matrix, and the overall stiffness matrix into variables. 
Thus, equation (11) is no longer linear. Nevertheless, it is 
possible to solve it using the iterative Gauss-Seidel 
technique, provided the elastic properties and stiffness 
matrices are up-dated during the iterative process. 
Although the amount of computing involved in a typical 
non-linear solution of this type is more than that 
required for the corresponding linear solution, it is 
generally only greater by a factor of some two or three. 
Therefore, this non-linear stiffness approach is more 
economical than the incremental time step approach, 
and it is generally much easier to ensure correct 
convergence of the solution. On the other hand, the 
many intermediate solutions associated with the 
incremental approach are not available, the partially 
converged results of intermediate iterations having no 
physical significance. 

A difficulty is experienced with the present finite 
element formulation when the material concerned is 
incompressible. Setting v = \ makes the element [ D ] 
matrix singular. Although a complete reformulation of 
the method can overcome this difficulty, at least for the 
types of physical problems considered here, it is adequate 
to use a value of v = 0.49. It is close enough to 
incompressibility to avoid significant errors, while at the 
same time avoiding the numerical instabilities associated 
with values much closer to 0.5. 

Since the present finite element formulation uses 
displacement as the nodal point variables, the elastic 
modulus needs to be expressed as a function of the local 
state of strain. Using the constitutive equation (1), 
therefore, the strain at time t is given by 

£ = ccni (12) 
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which may be inverted to give 

a = 
Ct (13) 

An apparent or effective modulus, £', can now be defined 
such that 

e = a/l 

Substituting in equation (13) gives 

(14) 

where E0 is the effective modulus at some convenient 
reference strain, e0. Setting n = 1 gives a constant 
modulus e = £ 0 , whereas for n > 1, e' will be a function 
of strain. Before calculations can be made, it is necessary 
to define the appropriate equivalent stress d and strain I. 
In this presentation, the Von Mises criterion has been 
adopted throughout, giving 

e = 
3 ' rr + £*2 + Egg + jErz) 

1/2 
(15) 

An advantage of using CST elements is that the 
strains, and hence £ and £', are constant over each ele-
ment. The general procedure for the non-linear analysis 
can be summarized in the following steps. 

(i) Taking v and £' to be constant everywhere initially, 
and equal to, say, 0.3 and £„, the overall stiffness 
matrix (K] is assembled using equation (11). 

(ii) The elastic strains and stresses are calculated using 
the Gauss-Seidel iterative technique. 

(iii) New moduli £', which will vary from element to 
element, are computed using equation (14) and (15) 
and a modified [K] matrix is reassembled with 
v = 0.49. 

(iv) A few cycles of Gauss-Seidel iteration are carried 
out. These may be termed inner iterations. 

(v) From the partially converged displacement 
solutions, new moduli £' are determined as in (iii). 

(vi) Steps (iiiHv) are repeated until satisfactory 
convergence is achieved. These repetitions may be 
termed outer iterations. 

Convergence is achieved when the displacements 
computed after successive outer iterations differ by only 
a small amount 

£ f {!Au,| + |Ar, |} 

L {l«il + lv,i} 
< / (16) 

where the summations are carried out over all the nodes 
in the mesh, and Au, and Avf are the changes in the 
computed displacements between successive outer 
iterations. The small tolerance, A, was taken as 10 ~6, a 
value which was found to give very satisfactory 
convergence. The choice of the number of inner 
iterations performed in step (iv) has an important 
bearing on the cost of computation: making this number 
too small results in unnecessarily frequent up-dating of 
[K], while making it too large results in unnecessarily 
complete convergence of the solutions to the linearised 
equations between each modification of [K]. A series of 
tests showed that, at least for the types of problems 

considered here, about four inner iterations for each 
outer iteration was the best choice. The number of outer 
iterations required for convergence depends on both the 
level of mesh refinement and the magnitude of the 
exponent n, and increases with the number of elements 
and with the value of n. 

2.3 Comparison with an exact solution 
In order to test the finite element method, an example 
was chosen where the exact linear elastic and non-linear 
creep solutions are known. This was the case of a 
thick-walled cylinder subjected to an internal pressure, p. 
If rx and r2 are the internal and external radii of the 
cylinder, the distributions of hoop and radial stresses for 
plane strain conditions are given by (19) 

' - ' i - j t / r j > " {(J) +(«_1)(t 

G„ = ~ 1 -(RJR,)21"^ r 

(17) 

(18) 

where r is the radial coordinate measured from the axis 
of symmetry. For the linear elastic case of n = 1, these 
reduce to the familiar Lame equations. 

Figure 2 shows the finite element mesh used for this 
example, consisting of 34 right-angled triangles arranged 
in a radial row. The case of r2 = 2rx was treated. The 
displacement constraints allowed the nodes to move only 
in the radial direction, thereby imposing the required 
plane strain condition. Results were obtained for n = 1, 
2, 3, 9, and 100. In all cases, the computed stresses agreed 
with the above analytical solutions to within 0.3 per cent. 
This very satisfactory level of agreement is similar to that 
achieved by Needleman and Shih (16), who treated the 
equivalent problem of a thick-walled cylinder 
undergoing power-law hardening plastic deformation, 
although in their finite element computations complete 
incompressibility was assumed. Provided the stress 
dependence of creep and plastic deformation can be 
written in the same form as equation (1), the stress 
distributions indicated by equations (17) and (18) will be 
representative of both plastically deforming and creeping 
tubes. Although the analysis presented here has been 
applied to creep situations, equations (14) and (15) could 
equally well be used to determine stress distributions for 
power-law hardening plastic deformation when the 

Fig. 2. Simple finite element mesh for thick-walled cylinder problem: 
r2/r, =2 
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plastic strains are large compared with the elastic strains. 
Similarly, attention need not be restricted to secondary 
creep deformation provided the creep law can be written 
in the form 

I = CanF(t) (19) 

where F(t) is an appropriate time function which can 
describe primary, secondary, and tertiary creep as appro-
priate. In this case, equation (13) becomes modified to 

H c F W } " " (20) 

but E' can still be written, from equation (14), as 

£' = e0(e/e0y
i'">-1 

The only restrictions, therefore, on a steady-state stress 
distribution being achieved for a given geometry and 
applied loading condition, are that the creep strains must 
be large in relation to the elastic strains, and the 
variables of stress and time be separable. It does not 
matter whether the material is undergoing primary, 
secondary, or tertiary creep, the same steady-state stress 
distribution will be achieved, provided each stage of 
creep can be described by the same value of n. If a 
different n is needed for each stage, then a true 
steady-state will not be achieved unless one stage 
dominates. 

In the next section, the numerical technique outlined 
above is used to calculate the steady-state stress 
distribution across the throat of circumferentially 
notched round tensile bars. Some of the notch 
dimensions have been chosen to enable comparisons to 
be made with previous (9)(10) finite element calculations 
which established this stress distribution by 

extrapolation from solutions obtained over a large 
number of time intervals. In addition, comparisons are 
made with an approximate analytical solution by 
Bridgman (9) for a rigid-plastic material having n = oo. 

3 NUMERICAL ESTIMATES FOR NOTCHED BARS 
Since a selection of notch geometries needing broadly 
similar finite element mesh distributions were to be 
examined, it was worth seeking a method of generating 
the required grid automatically from a small number 
of geometric parameters. A similar technique to that 
reported by Segerlind (20) was used and found to be 
satisfactory. 

3.1 Mesh design 
Typical finite element mesh distributions for three notch 
profiles corresponding to those investigated by Hayhurst 
et al. (13)(14) are shown in Fig. 3. The automatic mesh 
generation routine developed enabled each cross-section 
to be divided into regions and the mesh size to be graded 
so that it was finest where the stress gradient and 
geometrical changes were greatest. Care was taken to 
ensure that triangles having obtuse angles were avoided, 
the ideal shape being an equilateral triangle (18). 
Experimentation with progressively finer grid sizes has 
shown that satisfactory accuracy is achieved with 
approximately 450-500 elements and the notch throat 
divided into a row of 28 elements, as shown in Fig. 3. 

3.2 Calculations 
Calculations have been made for values of n = 1, 3, 5, 9, 
and 20, and 17 notch dimensions. Figure 3 shows a 
representative range of the notch shapes investigated. In 
all instances, a uniform axial stress, <r®, was applied at 
the specimen remote boundaries, as illustrated in 

Fig. 3. Finite element meshes and their boundary conditions for the notch geometries: (a) Semi-circular notch; a/R = 1.5, b/a = 1.67; (b) British 
Standard V-notch;o/ /? = 18.18, b/a = 1.41 ;(c) Deep notch; a/R = 2, b/a = 1.9 
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Fig. 3(b). Also, the specimen axis was constrained to 
move only in a vertical direction while the notch throat 
was prevented from moving vertically, again as indicated 
in Fig. 3(b). 

The stress components in each element were 
calculated for each value of n by the procedure 
previously described. The results of all the calculations 
are summarized in Figs 4 -12 and compared with 
previous work (9)(10)(15)(17) where appropriate. Only 
stress distributions across the minimum diameter of the 
throat region have been presented, since this section is 
the most critically loaded, and may, therefore, be 
expected to determine the deformation and fracture 
characteristics of such samples. 

4 DISCUSSION 
Stress distributions have been presented in some detail in 
Figs 4 - 9 for the notch geometries shown in Fig. 3 for 
comparison with previous calculations made on these 
notch dimensions (9)(10)(15)(17). Figures 4 - 6 show data 
for a rather blunt semi-circular notch having b/a = 1.67 
and a/R = 1.5 (Fig. 3(a)); Fig. 4 compares the relative 
axial stress distributions, o z J a f , across the notch throat 
for n = 1, 3, 5, and 9. The n = 1 solution corresponds to 
the elastic distribution. It is clear, for this geometry, that 
as n increases, the maximum axial stress moves from the 
notch root, r = a, towards the specimen centre line, 
r = 0. The results show good agreement with the 
steady-state solutions of Kumar et al. (17) made for an 
incompressible material having v = 0.5. The adoption, 
therefore, of v = 0.49 in the present calculations to avoid 

matrix [ D ] becoming singular (equation (9)) would seem 
to be acceptable. Initially, at time zero on first loading, 
and in the absence of plastic deformation, the stress 
distribution will be elastic. As creep takes place, regions 
of high stress shed load onto the lower stress regions 
because of the high sensitivity to stress of creep 
deformation. The extent of the stress redistribution that 
takes place in order to achieve the steady-state condition 
increases with increase in the value of n (Fig. 4). 

Figure 5 presents data for all the stress components for 
the extreme values of n = 1 and 20 used. Figure 6 shows 
the corresponding results for intermediate values of 
n = 3 and 9. The same trends are observed for the radial, 
<7rr, and hoop, a 0 0 , stress components as were observed 
in Fig. 4 for the axial stress. As n increases, load is 
redistributed from the notch root region, r = a, towards 
the specimen axis, r = 0, to compensate for the relative 
amounts of creep strain accumulated in each region. 
Comparisons of the axial stresses for n — 9 and 20 with 
the Bridgman (15) rigid plastic solution (n = oo) in Figs 5 
and 6 shows close agreement, indicating that the 
Bridgman approximation can be used to determine a z z 

with reasonable precision for n > 9. The Bridgman 
solution gives arr = a0g and under-estimates both these 
stresses for all values of n. 

Comparison is also made in Fig. 5 with the 
steady-state solutions obtained asymptotically by 
Hayhurst et al. (9) from incremented time-step 

Normalized radial distance, r/a Normalized radial distance, r/a 

Fig. 4. Axial stress distribution at steady state across the throat of a Fig. 5. Stress distribution at steady state across the throat of a 
semi-circular notch (a/R = 1.5) semi-circular notch (a/R = 1.5) for n = 1 and n = 20 
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Fig. 6. Stress distribution at steady state across the throat of a 
semi-circular notch (a/r = 1.5 for n = 3 and n — 9) 

computations. Generally, closer agreement is obtained 
between the two finite element calculations than with the 
Bridgman approximation. The axial stress distribution of 
Hayhurst et al. (9) is between the elastic and steady-state 
solutions for n = 20 of the present solutions, suggesting 
that a true steady-state had possibly not quite been 
achieved from the Hayhurst et al. (9) calculations. 

Figures 7 and 8 show the corresponding steady-state 
stress distributions across the throat of a British 
Standard V-notch specimen (Fig. 3(b)). Figure 7 presents 
the data for the n = 1 (elastic) and n = 3 cases, whereas 
Fig. 8 shows results for n = 5 and 20. Although there are 
detailed differences between the sharp notch and blunt 
notch situations, the same general features are apparent. 
The highest axial and hoop elastic stresses are again at 
the notch root. However, unlike the blunt notch case, as 
n increases for the sharp notch, the maximum values of 
<j:: and a e e remain close to the notch root, even for 
n = 20. Figure 7 also shows the predictions of the 
incremental time-step approach of Hayhurst et al. (9). 
who indicate the same qualitative trends. Greater 
quantitative differences are apparent than were obtained 
with the blunt notch geometry (Fig. 5), suggesting that 
the incremental approach may not have achieved a true 
steady-state. This is consistent with the comments of 
Hayhurst et al. (9) that correspondingly longer times are 
required to achieve complete stress redistribution for the 
British Standard V-notch geometry than for the 
semi-circular notch. Although comparisons have been 
shown for only one value of n( = 3) with Hayhurst et al. 
(9), similar differences were noted at all values of n. 

Figure 9 shows corresponding results for a specimen 
having a deep, relatively blunt notch with b/a = 1.9 and 

8-4 at r/a= I 

Normalized radial distance, r/a 

Fig. 7. Stress distribution at steady state across the throat of a BS 
V-notch for n — 1 and n = 3 

Normalized radial distance, r/a 

Fig. 8. Stress distribution at steady state across the throat of a BS 
V-notch for n = 5 and n = 20 
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7 - 0 a! r/a= I 
4 

Fig. 9. Stress distribution at steady state across the throat of a notch 
with a/R = 2 and for n = 1 and n = 9 

a/R = 2 (Fig. 3(c)). Results for n = 1 (elastic) and n = 9 
only are presented, since intermediate features to those 
observed on the previous two geometries were obtained. 
Comparisons with the Bridgman (15) and Hayhurst et al. 
( 1 0 ) solutions indicate similar agreement to those 
reported for the semi-circular notch (Fig. 5). For the deep 
notch geometry, an approximately uniform state of stress 
is achieved in the region r < 0.4a at steady-state. 

It is apparent from Figs 4 -9 that the present rapid 
method of estimating the steady-state stress distribution 
directly by means of an effective modulus, £', is 
consistent with the other methods (9X10)(11)(17) of 
determining this stress distribution. It has the 
appreciable attraction over the incremental time-step 
approach that solutions at intermediate time intervals 
need not be calculated. It is also not necessary, with this 
approach, to postulate an equation of state for creep 
since it has not been necessary to write equation (19) in 
incremental form. Consequently, provided equation (19) 
gives a satisfactory description of primary, secondary, 
and/or tertiary creep, the same steady-state stress 
distribution will be obtained for a given notch geometry 
and value of n, irrespective of whether, for example, the 
time-hardening or strain-hardening equations of state for 
creep (2) were adopted. For a creep law of the form of 
equation (19), therefore, the choice of a particular 
equation of state will only affect how the steady-state 

FENNER AND G. A. WEBSTER 

Normalized radial distance, r/a 

Fig. 10. Effective stress distribution at steady state across the throat of 
a semi-circular notch {a/R = 1.5) 

stresses are achieved and not their final distribution. This 
could have useful design implications. 

The creep analysis used assumes that the deformation 
behaviour of a component subjected to a complex state 
of stress is governed by an effective (or equivalent) stress 
criterion. The Von Mises or Tresca definitions could 
have been used. In the present paper, the Von Mises 
criterion was applied and Figs 10 and 11 show the 
distributions of the normalized effective stress, a/a®, 

7 - 2 at r/a= 1 

Normalized radial distance, r/a 
Fig. 11. Effective stress distribution at steady state across the throat of 

a BS V-notch 
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across the notch throat for the semi-circular and V-notch 
specimens, respectively, for n = 1, 3, 5, 9, and 20. For 
both geometries, the effective stress is a maximum at the 
notch root for all values of n. The magnitude of the maxi-
mum effective stress, dm a x , decreases with increase in n, 
and the whole stress distribution levels out. For both 
geometries for n > 3, there is a tendency for the stress 
distributions to cross at almost the same value of r/a, 
implying an approximate point of constant stress, often 
called a skeletal point (2). For the semi-circular notch, 
the skeletal point occurs at about r/a = 0.65 and for the 
sharp V-notch at r/a = 0.85. For the other notch geom-
etries, it occurred at an intermediate radius. The presence 
of a skeletal point may enable the stress there to be used 
as a reference stress to characterise the overall defor-
mation behaviour of the notched bars. Such an approach 
will only be relevant, however, provided an approximate 
steady-state stress distribution is achieved relatively 
early in life and the high local stresses close to the notch 
root (particularly in the sharp notch samples) do not 
cause premature failure. 

The results of further computations made by the 
present technique to evaluate <7max for notch dimensions 
having values of b/a of 1.67 and 1.46, and notch root 
profiles ranging from a/R of 0.5-16.25, are summarized 
in Fig. 12. This figure presents the maximum effective 
stress normalized with respect to its corresponding 
elastic value, that is 

F = 
hot 

(21) 

where k is the elastic effective stress concentration factor. 
For all the geometries, the maximum effective stress 
always occurred at the notch root. The figure indicates 
that <rmax decreases with increase in n in an 
approximately linear fashion for a fixed notch geometry 
when plotted against 1 /n. The decrease is greatest for the 
sharpest notches (that is, those with the largest values of 
a/R). Similar trends have been observed previously by 
Calladine (21) for other types of components undergoing 
a variety of loading conditions involving bending, plane 
stress and plane strain situations. It is apparent that 
graphs of the form of Figs 12(a) and 12(b) can be used to 
provide rapid estimates of the maximum steady-state 
effective stress, am a x , for any value of n in notched bars. 
Depending upon the factors governing the mode of 
fracture, this stress may then be used to investigate the 
risk of failure locally. 

Comparison is also made in Fig. 12 with the Bridgman 
(15) prediction of the effective stress across a notch throat 
for a rigid plastic material having n = oo. The Bridgman 
analysis gives a constant effective stress across the notch 
throat of 

o = ffm„ = 
{b/a)2al 

{(1 + 2R/a) In (1 + a/2R)} 
(22) 

The values of F determined from this equation are shown 
on the vertical axes of Figs 12(a) and 12(b). The equation 
gives somewhat higher values than those predicted from 
the computer calculations. This is due to the fact that the 
Bridgman analysis results in lower values of orr and o e e 

than the computer estimates, and hence a greater 
effective stress. Nevertheless, conservative estimates of F 

Fig. 12. Relative maximum stress concentration factor, F, as a function 
of 1/n for (a) b/a = 1.67, and (b) b/a = 1.46 

by this approach are possible by making reference to the 
dotted lines in Fig. 12 which are drawn through the 
Bridgman solutions for n = oo. By combining equations 
(21) and (22) 

1 (1 - \/n\b/a)2 

n k( 1 + 2R/a) In (1 + a/2R) ' 

For sharp notches, this expression gives good agreement 
with computer estimates, even though the stress 
distributions are very different (see, for example, Fig. 8) 
to those predicted by the Bridgman analysis. For 
progressively blunter notches, the equation gives 
increasingly conservative predictions. 
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Before it is possible to know whether predictions of 
component behaviour based on a steady-state stress 
distribution are justified, it is necessary to establish the 
time taken to reach this stress distribution. Lifetimes 
based on a steady-state analysis can only be expected to 
be reliable if this stress distribution is achieved rapidly. 

Since the present numerical approach calculates the 
steady-state stress distribution directly, the time taken to 
reach this state is not determined. An approximate 
procedure has, however, been proposed by Calladine (22) 
for giving realistic estimates. For a material which creeps 
according to equation (19), Calladine shows that the time 
taken for the siress to relax from its initial elastic value, 
a 0 , to some value, a, is approximately 

m = 
i 

CnEd 
In ~ 

d - <7„ 
(24) 

where dss is the effective stress at the steady-state. 
Comparisons with numerical calculations have shown 
that satisfactory estimates of the time to achieve a 
steady-state, rss, can be obtained from equation (24) by 
calculating the time taken for stress relaxation to be 90 
per cent complete, and by substituting cfmax for dss so that 

fkss) = 
2.3 

CnEd 
(25) 

Use of this equation with the procedures presented here 
will, therefore, indicate whether the adoption of a 
steady-state stress distribution for characterising 
component behaviour and predicting creep lives is 
acceptable. 

For n typically in the range 5-10, it can be shown from 
equation (25) that the time to steady-state, tss, is 
approached when the maximum equivalent creep strain, 
amax, is between, respectively, about j and £ of the 
corresponding maximum elastic strain. It is not 
necessary, therefore, to assume in the analysis that the 
creep strain is large everywhere compared to the elastic 
strain for an approximate steady-state stress distribution 
to be achieved. 

5 CONCLUSIONS 
A finite element iterative procedure has been presented 
for calculating steady-state stress distributions in 
axi-symmetric bodies subjected to creep. It has been 
shown to be economical in terms of computing costs and 
to give results which indicate satisfactory agreement with 
approximate non-work hardening plasticity solutions 
and numerical procedures which approach steady-state 
incrementally from a series of solutions at successively 
longer times. 

It has been found that the method proposed is not 
restricted to the assumption of secondary creep. 
Provided the variables of stress and time are separable in 
the creep law, the same steady-state stress distribution is 
obtained, for a given creep stress index, n, for primary, 
secondary, and tertiary creep. It is also shown that this 
stress distribution is not dependent upon the choice of an 
equation of state for creep. 

Calculations have been made for a range of 
circumferential notch geometries and values of n to 
determine the steady-state effective stress across the 
notch throat region. A skeletal point at which the stress 

remained approximately constant, independent of n, was 
observed for each notch dimension. In all cases, the 
maximum effective stress occurred at the notch root. 
Some indication of the time taken to reach the 
steady-state condition has also been included and used 
to indicate when these stresses may be used to provide 
acceptable approximate predictions of notched bar 
behaviour and lifetimes. 
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P R O G R A M A X I S Y M (INPUT, O U T P U T , T A P E 1 , T A P E 2 , T A P £ 5 = I N P U T , T A P E 6 = O U T P U T ) 

C 

C A X I - S Y M M E T R I C F I N I T E E L E M E N T P R O G R A M F O R S O L V I N G E L A S T I C A N D 

C N O N - L I N E A R P R O B L E M S . 

C 

D I M E N S I O N N O B (43) 

C O M M O N N E L , NNP,X( 330), Y( 3 0 3 ) , A l (500), AJ( 530) ,AK( 5 0 0 ) , B I (500), 

1 B J ( 5 0 0 ) , B K ( 5 0 0 ) , AREA( 500) ,NPI(500) ,NPJ(500) ,NPK(530) ,NXPT,NYPT, 

2 M O U T , N B P , N P B ( 4 0 ) , X A X I S , R B A R ( 5 0 0 ) , O K X X ( 3 0 0 , 9 ) , O K X Y ( 3 3 3 , 9 ) , 

3 O K Y X ( 3 0 O , 9 ) , O K Y Y ( 3 0 3 , 9 ) , U ( 3 3 3 ) , V ( 3 3 0 ) ,FX(303) ,FY(300), 

4 F X M Q D ( 3 0 0 ) , F Y M G D ( 3 Q 3 ) / S F X X ( 3 0 0 ) , S F X Y ( 3 0 0 ) , S F Y X ( 3 3 0 ) , S F Y Y ( 3 3 3 ) , 

5 NPA(30O,9),NAP(300),NMA.T, E( 5 ) , N U (5),ALPHA(5), RHO(5) ,MATM(500), 

6 D E L T A T ( 5 0 0 ) , X B A R ( 5 0 0 ) , Y B A R ( 5 0 0 ) , S U ( 5 0 0 ) , S V ( 5 0 3 ) , E X , P Y , 

7 N C C N D ( 4 3 ) , T A N G ( 4 3 ) , U P R E S ( 4 3 ) , V P R E S ( 4 3 ) , N B C 3 P 

C 

REAL NU 
C 

D I M E N S I O N T I T L E ( 6 ) , B ( 4 , 6 ) , D ( 4 , 4 ) , B T D ( 6 , 4 ) , E S T I F F ( 6 , 6 ) , I J K ( 3 ) , 

1 E T ( 4 ) , T H E T A M ( 6 ) 

D A T A B L A N K / 10H / 

C 

C INPUT T H E P R O B L E M T I T L E A N D T Y P E - S T O P IF B L A N K C A R D E N C O U N T E R E D . 

1 R E A D ( 5 , 5 1 ) T I T L E 

51 F O R M A T ( 6 A 1 0 ) 

I F ( T I T L E ( 1 ) . E Q . B L A N K ) S T O P 

W R I T E ( 6 , 6 1 ) T I T L E 

61 F O R M A T ( 5 4 H 0 C S T F I N I T E E L E M E O T S O L U T I O N F O R AXI-SY'-METRIC P R O B L E M 

1 // 6 A 1 0 ) 

C 

C INPUT O R G E N E R A T E T H E M E S H DATA, M A T E R I A L P R O P E R T I E S , T E M P E R A T U R E 

C C H A N G E S A N D B O D Y F O R C E S . 

C A L L M E S H 1 

C A L L M O D I F Y 

C A L L A X I S 

C A L L M A T L S 

C A L L T E M P S 

C A L L BODYF 

C 

C C O M P U T E T H E E L E M E N T G E O M E T R I E S . 

D O 2 14=1, N E L 

I=NPI(M) 

J = N P J ( M ) 

K = N P K ( M ) 

A I ( M ) = - X ( J ) + X ( K ) 

A J ( M ) = - X ( K ) + X ( I ) 

A K ( M ) = - X ( I ) + X ( J ) 

Bl(M)=Y( J ) - Y ( K ) 

B J ( M ) = Y ( K ) - Y ( I ) 

b k ( m ) = y ( i ) - y ( j ) 

A R E A ( M ) = 0 . 5* (AK(M) *BJ(M) - A J ( M ) *BK(M)) 

IF(AREA(M) .GT.0.) G O T O 2 

W R I T E ( 6 , 6 2 ) M 

62 F O R M A T (15H0ELEMENT N U M B E R , 15, 25H H A S N E G A T I V E A R E A - S T O P ) 

S T O P 

2 C O N T I N U E 

C 

C O U T P U T T H E M E S H D A T A . 

C A L L M S H O U T 

C 

C INPUT T H E R E Q U I R E D N U M B E R O F O U T E R I T E R A T I O N S . 
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READ(5,52) NITER 
52 FORMAT(13) 

DO 201 IITER=1,NITER 
C SET INITIAL VALUES OF STIFFNESSES, EXTERNAL FORCES AND UNKNOWNS. 

DO 4 IROW=L,NNP 
DO 3 IC=1,9 
OKXX(IRQW,IC)=0. 
OKXY(IRQW,IC)=0. 
OKYX(IRCW, IC)=0. 
OKYY( IRDW, IC) =0. 

3 NPA( IRQW, IC) =0 
NPA(LROW,L)=IRCW 
FXMQD (IRCXV) =3. 
F¥MOD(L RQW)=0. 
IF(IITER.GT.I) GO TO 4 
U(IRQW)=0. 
V(IRDW)=0. 

4 CONTINUE 
C 
C Î DDIFY MATERIAL PROPERTIES FOR (AXI-SYMMETRIC) PLANE STRAIN. 

IF(IITER.GT.L) GO TO 6 
DO 5 MAT=1, NMAT 
E(MAT)=E(MAT)/(1.-NU(MAT)* * 2) 

5 NU(MAT)=NU(MAT)/(1.-NU(MAT)) 
C 
C SET UP THE OVERALL ASSEMBLY LOOP. 
6 DO 19 M=1,NEL 

C 
C STORE THE ELEMENT NODE NUMBERS IN ORDER IN ARRAY IJK. 

IJK(1)=NPI(M) 
I JK( 2) =NPJ (M) 
IJK (3) =NPK (M) 

C 
C COMPUTE THE BODY FORCE COMPONENTS ON EACH NODE OF TOE ELEMENT. 

GXM=XBAR(M) *AREA( M)/3. *RBAR( M) 
GYM=YBAR( M) *AREA( M) /3. *RBAR( M) 

C 
C FORM THE ELEMENT DIMENSION MATRIX. 

DO 7 IRE=1,3 
DO 7 ICE=1,6 

7 B(IRE,ICE)=0. 
B(I,I)=BI(M) 
B(1,3)=3J(M) 
B( L, 5)=3K(M) 
B( 2, 2)=AI(M) 
B(2,4)=AJ(M) 
B(2,6)=AK(M) 
FACT=2.*AREA(M)/(3.*RBAR(M)) 
DO 8 ICE=1,6 
IF(M0D(ICE,2).EQ.L) B(3,ICE)=FACT 
IF(MQD(ICE,2).EQ.0) B(4,ICE)=B(1,ICE-1) 

3 IF(M0D(ICE,2).EQ.L) B(4,ICE)=B(2,ICE+1) 
C FORI THE ELASTIC PROPERTY MATRIX. 

DO 9 IRE=1,4 
DO 9 ICE=1,4 

9 D(IRE,ICE)=0. 
MAT=MATM(M) 
EFACT=1. 
IF( IITER.GT. 1) CALL NONLIN (M, EFACT, IITER) 
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IF(IITSR.GT.l) N U ( M A T ) = 3 . 9 5 

S U ( M ) = E F A C T 

F A C T = E F A C T * E(MAT)/( 1 . - N U ( M A T ) * *2) 

D O 91 IREf=1/ 3 

D O 91 ICE=1,3 

D ( I R E , I C E ) = 1 . 

IF(IRE.NE.ICE) D ( I R E , I C E ) = N U ( M A T ) 

91 D ( I R E , I C E ) = D ( I R E , I C E ) * F A C T 

D ( 4 , 4 ) = F A C T * 0 . 5 * ( 1 . - N U ( M A T ) ) 

C 

C M U L T I P L Y T H E T R A N S P O S E O F M A T R I X B B Y M A T R I X D . 

DO 10 IRE=1,6 

D O 13 ICE=1,4 

B T D ( I R E , I C E ) = 3 . 

DO 10 ISUM=1,4 

13 3 T D ( l R E , ICE) = B T D ( I R E , ICE)+B( ISUM, IRE) *D( I S U M , ICE) 

C 

C F O R M T H E T H E R M A L S T R A I N A N D T H E R M A L F O R C E V E C T O R S . 

E T (1) = A L P H A ( M A T ) * D E L T A T (M) 

E T ( 2 ) = E T ( 1 ) 

E T (3)=ET (1) 

E T ( 4 ) = 0 . 

DO 12 IRE=1,6 

S U M = 3 . 

D O 11 13114=1,4 

11 SUM=SUM+BTD( I R E , ISUM) * S T ( I S U M ) 

12 T H S T A M ( I R E ) = 0 . 5 * S U M * R B A R ( M ) 

C 

C F O R M T H E E L E M E N T S T I F F N E S S M A T R I X . 

DO 14 IRS=1,6 

D O 14 ICE=1,6 

S U M = 3 . 

DO 13 ISUM=1,4 

13 SLM=SUM-H3TD( IRE, ISUM) *B( I S U M , ICE) 

14 ESTIFF( IRE, I C E ) = 0 . 2 5 * S U M / A R E A ( M ) *RBAR(M) 

C 

C A D D E L E M E N T S T I F F N E S S T O O V E R A L L S T I F F N E S S . 

D O IS IRE=1,3 

D O 13 IC£=1,3 

IRQW=I J K (IRE) 

ICOL=I J K (ICE) 

C 

C S T O R E S T I F F N E S S C O E F F I C I E N T S IN R E C T A N G U L A R FORM OF O V E R A L L M A T R I C E S . 

D O 15 1 0 1 , 9 

I F ( N P A ( I R C W , I C ) .EQ.ICOL) G O TO 17 

I F ( N P A ( I R Q W , IC) .EQ.0) GO T O 16 

15 C O N T I N U E 

W R I T E ( 6 , 6 3 ) IRON 

63 F O R M A T ( 5 H 0 N O D E , 15, 3SH H A S M O R E T H A N 8 A D J A C E N T L O D E S - S T O P ) 

S T O P 

16 NPA( IRQW, IC) = I C O L 

N A P ( I R Q W ) = I C 

17 0KXX( I R O W , IC)=OKXX( I R O W , IC) +ESTIFF( 2 * I R E - 1 , 2*ICE-1) 

O K X Y (IROW, IC) = O K X Y (IRQW, IC) + E S T I F F (2 *IRE-1,2 *ICE) 

OKYX( I R O W , IC) =OKYX( IRON, IC) +ESTIFF( 2 * I R E , 2*ICE-1) 

18 0 K Y Y ( I R 0 W , IC) = O K Y Y ( I R Q W , I C ) + E S T I F F ( 2 * I R E , 2*ICE) 

C 

C A S S E M B L E TLiE E X T E R N A L F O R C E S O N T H E N O D E S . 

D O 19 IRE=1,3 

I R O N = I J K ( l R E ) 



_ 291 -

F X M O D (IROW) = F X M O D (IROW) +GXM+THETAM( 2*IRE-1) 

19 FYi40D (IRCW)=FYMQD (IROW) +GYM+THETAM( 2* IRE) 

C C O M P U T E T H E S E L F - F L E X I B I L I T Y S U 3 M A T R I C E S . 

DO 20 1=1,NNP 

D E N G M = O K X X ( I , l ) * O K Y Y ( I , l ) - O K X Y ( I , l)*OKYX(I,1) 

S F X X ( 1 ) = O K Y Y ( 1 , 1 ) / D E N O M 

S F X Y ( I ) = - O K X Y ( 1 , 1 ) / D E N O M 

SFYX( I )=-OI\YX( 1,1) / D E N O M 

20 SFYY( I )=OKXX (1,1) / D E N O M 

C 

C A P P L Y T H E B O U N D A R Y C O N D I T I O N S . 

C A L L B C S ( I I T E R ) 

C 

C S O L V E T H E L I N E A R E Q U A T I O N S . 

C A L L SOLVE2 (I ITER) 

C O U T P U T T H E R E Q U I R E D R E S U L T S . 

C 

C A L L O U T P U T (I I T E R , N I T E R ) 

201 C O N T I N U E 

G O T O 1 

E N D 

S U B R O U T I N E M E S H 1 

C 

C S U B P R O G R A M T O R E A D O R G E N E R A T E A M E S H O F T R I A N G U L A R F I N I T E E L E M E N T S . 

C T H I S V E R S I O N R E A D S IN T H E N E C E S S A R Y D A T A . 

C 

C O M M O N N E L , N N P , X ( 3 0 0 ) , Y ( 3 0 0 ) , A I ( 5 3 0 ) , A J ( 5 0 0 ) , A K ( 5 0 0 ) , B I ( 5 0 0 ) , 

1 B J ( 5 0 0 ) , B K ( 5 0 0 ) , A R E A ( 5 3 0 ) , N P I ( 5 3 0 ) , N P J ( 5 0 0 ) ,NPK(500) ,NXPT,NYPT, 

2 M O U T , N B P , N P B ( 4 0 ) , X A X I S , R B A R ( 5 0 0 ) , O K X X ( 3 3 3 , 9 ) , O K X Y ( 3 3 0 , 9 ) , 

3 O K Y X ( 3 0 0 , 9 ) , O K Y Y ( 3 3 3 , 9 ) , U ( 3 3 0 ) , V ( 3 3 0 ) , F X ( 3 3 0 ) , F Y ( 3 O 0 ) , 

4 F X M Q D ( 3 0 0 ) , F Y M O D ( 3 3 0 ) , S F X X ( 3 3 0 ) , S F X Y ( 3 3 3 ) , S F Y X ( 3 3 0 ) , S F Y Y ( 3 3 0 ) , 

5 NPA(300,9),NAP(300),NMAT,E(5),NU(5),ALPHA(5),ft*0(5),MATM(500), 

6 D E L T A T ( 5 0 0 ) , X B A R ( 5 0 0 ) , Y B A R ( 5 0 0 ) , S U ( 5 3 0 ) , S V ( 5 0 0 ) , P X , P Y , 

7 N C Q N D ( 4 3 ) , T A N G ( 4 3 ) , U P R E S ( 4 3 ) , V P R E S (43),MBC3P 

R E A L N U 

C 

R E A D ( 1 , 51) N N P , N E L , M O U T 

51 F 0 R M A T ( 3 I 5 ) 

C 

READ(1,52) (I,X(I),Y(I),N=1,NNP) 

52 FORMAT( 15, 2 E 1 5 . 5 ) 

C 

READ( 1, 53) (M, NPI (M) ,NPJ(M) , N P K ( M ) , 17=1, M E L ) 

53 F O R M A T ( 4 1 5 ) 

R E T U R N 

E N D 

S U B R O U T I N E M A T L S 

C 

C S U B P R O G R A M F O R D E F I N I N G T H E M A T E R I A L PROPERTIES OF T H E E L E M E N T S . 

C 

C O M M O N N E L , N N P , X ( 3 3 3 ) , Y( 3 0 3 ) , A l ( 5 0 0 ) , A J ( 5 3 3 ) , A K ( 5 0 0 ) , B I ( 5 3 0 ) , 

1 BJ (503), BK( 5 0 3 ) , AREA( 5 3 0 ) , N P I (530), NPJ (503), N P K (500), N X P T , N Y P T , 

2 M O U T , N B P , N P B ( 4 3 ) ,XAXI3, R B A R ( 5 3 0 ) , O K X X ( 3 3 0 , 9 ) , O K X Y ( 3 3 3 , 9 ) , 

3 O K Y X ( 3 0 0 , 9 ) , O K Y Y ( 3 0 0 , 9 ) , U ( 3 0 0 ) , V ( 3 3 0 ) , F X ( 3 0 0 ) , F Y ( 3 0 0 ) , 

4 F X M O D ( 3 3 0 ) , F Y M O D ( 3 3 0 ) , S F X X ( 3 0 0 ) , S F X Y ( 3 0 0 ) , S F Y X ( 3 3 0 ) , S F Y Y ( 3 3 0 ) , 

5 N P A ( 3 3 0 , 9 ) , N A P ( 3 3 0 ) , N M A T , E ( 5 ) , N U ( 5 ) , A L P H A ( 5 ) , R H O ( 5 ) , M A T M ( 5 3 0 ) , 

6 D E L T A T ( 5 0 3 ) , X B A R ( 5 3 0 ) , Y B A R ( 5 0 0 ) , S U ( 5 0 0 ) , S V ( 5 0 0 ) , P X , P Y , 
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7 MCQND(40) ,TANG(43) ,UPRES(43),VPRES(40) ,NBC3P 

C 
REAL L4U 

G 
C INPUT T H E M A T E R I A L PROPERTIES - MAXIMUM 5 DIFFERENT MATERIALS. 

READ(5, 51) N M A T 

51 FORMAT ( 15) 

IF(NMAT.LE.5) G O T O 1 

WRITE(6,61) N M A T 

61 FORMAT(28HUTOO M A N Y M A T E R I A L S - N M A T =,15) 

STOP 

1 READ(5,52) (MAT,E(MAT),NU(MAT),ALPHA(MAT),RIO(MAT),N=1,NMAT) 

52 F0RMAT(I5,4E15.5) 

WRITE (6, 62) (MAT, E (MAT) ,NU( M A T ) , A L P H A ( MAT), RIO (MAT), M A T = 1 , NMAT) 

62 FORIAT(20H3MATERIAL PROPERTIES // 

1 50x4 M A T L E LIU A L P H A RID / 

2 (IX, 15, E12.4,F8.3, 2E12.4)) 

C 

C DEFINE T H E M A T E R I A L F O R EACH E L E M E N T . 

C THIS VERSION A S S U M E S A L L ELEMENTS A R E OF FIRST M A T E R I A L . 

DO 2 M = 1 , N E L 

2 ivlATM(M)=l 

RETURN 

E N D 

SUBROUTINE A X I S 

C 

C SUBPROGRAM T O DEFINE THE POSITION OF THE A X I S OF SYMMETRY AND M E A N 

C RADIUS FROM THIS A X I S OF EACH E L E M E N T . 

C 

COMMON NEL,NNP,X(330) ,Y(330) ,AI(530) ,AJ(533) ,AK(500) ,BI(500), 

1 BJ(500) ,BK(530),AREA(500) ,NPI(500) ,NPJ(500) ,NPK(500), NXPT, NYPT, 

2 MCUT,NBP,NPB(40),XAXIS,RBAR(500),OKXX(300,9),OKXY(300,9), 

3 OKYX(300,9),OKYY(300,9),U(330),V(300),FX(300),FY(300), 

4 FXMOD(330),FYMOD(300),SFXX(330),SFXY(300),SFYX(330),SFYY(300), 

5 N P A ( 3 0 0 , 9 ) , N A P ( 3 3 0 ) , N M A T , E (5),NU(5), ALPHA(5), RIO(5),MATM( 500), 
6 DELTAT(500) ,XBAR(500), Y B A R ( 5 0 0 ) , SU(530), SV(500), PX, PY, 

7 N C O N D (40), TANG (40), UPRES (43), V P R E S ( 40), NBC3P 

C 

REAL N U 

C 

C INPUT THE X - C Q O R D I N A T E OF THE A X I S OF SYMMETRY. 

READ(5,51) X A X I S 

51 FORMAT(F10.0) 

C 

C DEFINE T H E M E A N RADII OF THE ELEMENTS. 

DO 1 M = 1 , N E L 

I=NPI(M) 

J=NPJ(M) 

K=NPK(M) 

1 RBAR(M) = (X(l)+X(J)+X(K))/3.-XAXIS 

RETURN 

END 

SUBROUTINE TE-1PS 

CCMEJON N E L , N N P , X( 330), Y( 330), A l (503), AJ(503), AK( 530), 3 1 (530), 

1 BJ(503),BK(530), AREA(533),NPI(530),NPJ(530),NPK(500),NXPT, NYPT, 

2 MOUT, N B P , NPB(40),XAXIS, R3AR(530),OKXX(300, 9),OKXY(333,9), 

3 OKYX(333,9) ,OKYY(333,9) ,U(330) ,V(330) ,FX(303) ,FY(330), 

4 FXMOD(330) ,FYMOD(300),SFXX(333),SFXY(300),SFYX(303), SFYY(300), 

5 NPA( 330, 9), NAP( 300), NMAT, E( 5), NU (5), A L P H A ( 5 ) , RIO(5),MATM( 530), 

6 DELTAT(530) ,XBAR(500), Y B A R ( 5 3 0 ) , SU(500), SV(530), PX, PY, 
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7 N C Q N D ( 4 0 ) ,TANG(43) ,UPRES(40),VPRES(43) ,NBC3P 

c 
R E A L N U 

C 

C S U B P R O G R A M F O R D E F I N I N G M E A N T E M P E R A T U R E C H A N G E S F O R T H E E L E M E N T S . 

C T H I S V E R S I O N R E A D S A N D A S S I G N S A U N I F O R M C H A N G E . 

C 

R E A D ( 5 , 51) T E M P 

51 F O R M A T ( F 1 0 . 0 ) 

D O 1 14=1, N E L 

1 D E L T A T (M) = T E M P 

R E T U R N 

E N D 

S U B R O U T I N E BODYF 

C 

C S U B P R O G R A M F O R D E F I N I N G T H E B O D Y F O R C E C O M P O N E N T S (PER U N I T V O L U M E ) 

C F O R T H E E L E M E N T S . 

C T H I S V E R S I O N A S S U M E S G R A V I T Y A C T S IN T H E N E G A T I V E Y - D I R E C T I O N . 

C 

C O M M O N N E L , N N P , X ( 3 0 0 ) ,Y(330) ,Al(503) f A J ( 5 0 0 ) ,AK(503) ,BI(530), 

1 B J ( 5 0 0 ) ,BK(533),AREA(500) ,NPI(503) ,NPJ(503) ,NPK(533) ,NXPT,NYPT, 

2 M O U T , N B P , N P B ( 4 0 ) , X A X I S , R B A R ( 5 3 0 ) ,OKXX(303,9) ,OKXY(330,9), 

3 O K Y X ( 3 0 0 , 9 ) ,OKYY(300,9) ,U(300) ,V(300) ,FX(300) ,FY(330), 

4 FXMOD(300),FYMOD(330),SFXX(330),SFXY(333),SFYX(300),SFYY(3'30), 

5 N P A ( 3 0 0 , 9 ) ,NAP(300) ,NMAT, E ( 5 ) ,NU(5) ,ALPHA(5), FHO(5) ,MATM(500), 

6 DELTAT( 500),XBAR( 5 3 0 ) , YBAR( 5 0 0 ) , S U ( 5 0 0 ) , S V ( 5 3 3 ) , PX, PY, 

7 N C O N D ( 4 0 ) , T A N G ( 4 3 ) , U P R E S ( 4 3 ) , V P R E S ( 4 3 ) , N B C 3 P 

C 

R E A L N U 

C 

DO 1 M = l , N E L 

X B A R ( M ) = 3 . 

M A T = M A T M ( M ) 

1 Y E A R (M) = - R H O (MAT) 

R E T U R N 

E N D 

S U B R O U T I N E M S H O U T 

C 

C S U B P R O G R A M T O W R I T E OUT T H E M E S H D A T A . 

C 

C O M M O N N E L , N N P , X ( 3 3 3 ) ,Y(330),AI(503) ,AJ(533) ,AK(530) ,BI(530), 

1 B J ( 5 3 0 ) , BK( 5 3 3 ) ,AREA( 5 3 0 ) , NPI (530), NPJ (533), N P K ( 5 0 0 ) , N X P T , N Y P T , 

2 M O U T , E B P , N P B ( 4 3 ) , X A X I S , R B A R ( 5 3 3 ) , O K X X ( 3 3 3 , 9 ) , O K X Y ( 3 0 3 , 9 ) , 

3 O K Y X ( 3 0 3 , 9 ) , O K Y Y ( 3 0 0 , 9 ) , U ( 3 3 3 ) , V ( 3 3 3 ) , F X ( 3 3 3 ) , F Y ( 3 3 3 ) , 

4 F X M O D ( 3 3 3 ) , F Y M O D ( 3 3 0 ) , S F X X ( 3 3 0 ) , S F X Y ( 3 0 3 ) , S F Y X ( 3 3 3 ) , S F Y Y ( 3 3 0 ) , 

5 N P A ( 3 3 3 , 9 ) , N A P ( 3 3 3 ) , N M A T , E ( 5 ) , N U ( 5 ) , A L P H A ( 5 ) , R H O ( 5 ) , M A T M ( 5 0 0 ) , 

6 D E L T A T (500), X B A R (500), Y B A R (530), SU (500), SV (500), PX, FT, 

7 N C O N D ( 4 3 ) , T A N G ( 4 3 ) , U P R E S ( 4 3 ) , V P R E S ( 4 3 ) , N 3 C 3 P 

R E A L N U 

C 

I F ( M X T T . E Q . 0 ) REHJRi.Nl 

C 

C OUTPUT T H E N U M B E R OF E L E M E N T S A N D N O D E S , A N D T H E NODE C O - O R D I N A T E S . 

W R I T E ( 6 , 6 1 ) N E L , N N P , (I,X(l),Y(l),I=l,NNP) 

61 F O R 4 A T (2OH0GEOMETRIC D A T A F O R T H E M E S H // 

1 1 0 X , 21H N U M B E R O F E L E M E N T S = , 14 // 

2 13X, 25H N U M B E R OF N O D A L P O I N T S = , 14 // 

3 25H N O D A L P O I N T C O - O R D I N A T E S // 



_ 2 9 4 _ 

4 72H I X Y I X Y I 
5 X Y / (3(1X,15,2F9.4))) 

C OUTPUT X-CQORDINATE OF AXIS OF SYMMETRY. 
WRITE(6,63) XAXIS 

63 FORMAT(/// 39H X-COORDINATE OF THE AXIS OF SYMMETRY =,E12.4) 
C 
C OUTPUT THE ELEMENT NODE Al© MATERIAL NUMBERS, AREAS, TE-iPERATURE 
C CHANGES, BODY FORCE COtlPONENTS AID MEAN RADII. 

WRITE (6,62) (M, NPI (M) , NPJ (M) , NPK (M) , MATM(M) , AREA( M) , DELTAT (M) , 
1 XBAR(M) ,YBAR(M) ,RBAR(M) ,M=1,NEL) 

62 FORMAT (13H0ZLETENT DATA // 8411 M I J K MAT AREA 
1 DELTAT XBAR YEAR RADIUS / 
2 (IX,415,13,5E12.4)) 
RETURN 
END 
SUBROUTINE BCS(IITER) 

C 
C SUBPROGRAM TO APPLY THE BOUNDARY CONDITIONS. 
C 

COMMON NSL, NNP, X(330), Y( 300), Al(530), AJ(503), AK( 500), BI (500), 
1 3J(533),BK(500),AREA(530),NPI(530),NPJ(533),NPK(533),NXPT,NYPT, 
2 MOUT, NBP, NPB(43),XAXIS, RBAR(500),OKXX(300, 9), OKXY( 300, 9), 
3 OKYX(333,9),OKYY(300,9),U(300),V(333) ,FX(330) ,FY(300), 
4 FXMOD(300) ,FYMOD(300),SFXX(303),SFXY(300),SFYX(330),SFYY(333), 
5 NPA(300,9),NAP(330),NMAT, E(5) ,NU(5) ,ALP1IA(5), RHO(5) ,MATM(5O0), 
6 DELTAT(500),XBAR(500), YBAR(500), SU(530), SV(500), PX, PY, 
7 NCOND( 43), TANG (43), UPRES (43), VPRES (40), NBC3P 

C 
REAL NU 

C 
IF(IITER.GT.I) GO TO 4 
DO 1 1=1,NNP 
FX(I)=3. 

1 FY(I)=0. 
C 
C INPUT THE NUMBERS OF SETS OF DATA FOR EACH TYPE OF BOUNDARY CONDITION 

READ (5,51) NBC1P , N3C2F, NBC3P 
51 FORMAT(1415) 

C 
C INPUT AND APPLY POINT FORCE (PER RADIAN) DATA. 

1F(NBC1P.EQ.0) GO TO 2 
READ(5,52) (l,FX(l),FY(I),N=1,NBC1P) 

52 FORMAT(3(14,2F10.0)) 
C 
C INPUT AND APPLY DISTRIBUTED FORCE DATA. 
2 IF(NBC2F.EQ.3) GO TO 4 

DO 3 IF=1,NBC2F 
READ(5,52) NBP,PX,PY 
READ(5,51) (NP3(N),N=1,N3P) 
NS=NBP-I 
DO 3 IS=1,NS 
I1=NPB(IS) 
I2=NPB(IS+1) 
R=0. 5* (X(II)+X( 12))-XAXIS 
SIDE=SQRT((X(I1)-X(I2))**2+(Y(Il)-Y(l2))**2) 
FXM=3.5*PX*SIDE*R 
FX(I1)=FX(II)+FXM 
FX(I2)=FX(I2)+FXM 
FYM=3.5*PY*SIDE*R 
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F Y (II)=FY(II)+FYM 

3 F Y ( I 2 ) = F Y ( I 2 ) + F Y M 

C 
C D E F I N E F I N A L M O D I F I E D E X T E R N A L F O R C E S ON T H E N O D E S . 

4 D O 5 1 = 1 , N N P 

F X M Q D ( I ) = F X M G D ( I ) + F X ( I ) 

5 F Y M Q D ( I )=FYMQD( I )+FY( I) 

C INPUT A N D A P P L Y T H E R E S T R A I N E D N O D E D A T A . 

I F ( I I T E R . G T . 1 ) GO T O 15 

R E A D ( 5 , 5 3 ) ( N P B ( N ) , N C O N D ( N ) , T A N G ( N ) , U P R E S ( N ) , V P R E S ( N ) , N = 1 , N B C 3 P ) 

53 FOR vlAT(2(I4,12, 3FL3.0)) 

15 D O 10 N = 1 , N B C 3 P 

I=NP3(N) 

I F ( N C a © ( N ) - l ) 8 , 7 , 6 

C 

C L O D E R E S T R A I N E D T O M O V E IN D I R E C T I O N W H O S E SLOPE IS GIVEN B Y T A N G . 

6 S F X X ( I ) = ( S F X X ( I ) * S F Y Y ( I ) - S F X Y ( I ) * S F Y X ( I ) ) / 

1 ( S F X X ( I ) * T A N G ( N ) * * 2 - ( S F X Y ( I ) + S F Y X ( I ) ) * T A N G ( N ) + S F Y Y ( I ) ) 

SFXY(I )=SFXX( I) * T A N 3 (N) 

S F Y X ( I ) = S F X Y ( l ) 

SFYY(I)=SFXY( I) *TANG(N) 

G O T O 10 

C 

C NODE R E S T R A I N E D T O M O V E IN Y - D I R E C T I O N O N L Y . 

7 S F Y Y ( I ) = S F Y Y ( I ) - S F Y X ( I ) * S F X Y ( l ) / S F X X ( I ) 

G O T O 9 

C 

C N O D A L P O I N T D I S P L A C E M E N T S P R E S C R I B E D . 

8 S F Y Y ( I ) = 3 . 

U ( I ) = U P R E S ( N ) 

V ( I ) = V P R E S ( N ) 

9 S F X X ( I ) = 3 . 

S F X Y ( I ) = 3 . 

S F Y X ( I ) = 3 . 

10 C O N T I N U E 

R E T U R N 

E N D 

S U B R O U T I N E S O L V E 2 (I ITER) 

C S U B P R O G R A M F O R SOLVING B Y G A U S S - S E I D E L M E T H O D T H E L I N E A R E Q U A T I O N S 

C O B T A I N E D F R O M THE F I N I T E ELEilENT F O R M U L A T I O N O F B I HARMONIC P R O B L E M S . 

C 

C C M 4 Q N N E L , N N P , X ( 3 3 0 ) , Y ( 3 3 3 ) , A l (533), AJ( 533), A K ( 5 0 3 ) , B I ( 5 3 3 ) , 

1 B J ( 5 0 0 ) , B K ( 5 0 0 ) , A R E A ( 5 3 3 ) , N P I ( 5 3 0 ) , N P J ( 5 3 0 ) , N P K ( 5 3 3 ) , N X P T , N Y P T , 

2 M C U T , N B P , N P B ( 4 3 ) , X A X I S , RBAR( 5 3 3 ) , O K X X ( 3 3 3 , 9 ) , O K X Y (333,9), 

3 O K Y X ( 3 J 0 , 9 ) , O K Y Y ( 3 0 3 , 9 ) , U ( 3 3 0 ) , V ( 3 3 3 ) , F X ( 3 3 3 ) , F Y ( 3 0 0 ) , 

4 F X M O D ( 3 3 0 ) , F Y M O D ( 3 3 3 ) , S F X X ( 3 3 3 ) , S F X Y ( 3 0 0 ) , S F Y X ( 3 3 3 ) , S F Y Y ( 3 3 3 ) , 

5 N P A ( 3 3 3 , 9 ) , N A P ( 3 3 3 ) , M M A T , E ( 5 ) , N U ( 5 ) , A L P H A ( 5 ) , R H O ( 5 ) , M A T M ( 5 3 0 ) , 

6 DELTAT( 503),XBAR( 5 3 3 ) , YBAR( 5 3 0 ) , SU( 5 3 0 ) , 5V( 5 3 0 ) , P X , PY, 

7 N C O N D ( 4 Q ) , T A N G ( 4 3 ) , U P R E S ( 4 3 ) , V P R E S ( 4 3 ) , N B C 3 P 

C 

R E A L N U 

C 

N P E Q N = N N P 

C 

I F ( I I T E R . G T . I ) G O T O 6 

C INPUT T H E S O L U T I O N P A R A M E T E R S . 

READ(5, 51) N C Y C L E , IFREQ, O R E L A X , I D L E R 

51 F O R 4 A T ( 2 I 5 , 2 F 1 0 . 3 ) 
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W R I T E ( 6 , 6 1 ) O R E L A X 

61 FOR-AT(48tiOSOLUTION O F E Q U A T I O N S B Y G A U S S - S E I D E L ITERATION // 

1 25H O V E R - R E L A X A T I O N F A C T O R = , F 6 . 3 ) 

C SET U P ITERATION L O O P . 

IF(IFREQ.NE.0) W R I T E ( 6 , 6 2 ) 

62 F O R M A T (21H I T E R E R R O R ) 

C 

C INPUT T H E R E Q U I R E D N U M B E R OF I N N E R I T E R A T I O N S . 

IF(IITER.EQ.I) G O T O 6 

R E A D ( 5 , 5 2 ) N O I I 

52 F O R M A T ( 1 3 ) 

6 D O 20 K=l,tJOII 

D O 3 I T E R = 1 , N C Y C L E 

S U M D O . 

S L M D D = 0 . 

C 

C O B T A I N N E W ESTIMATE F O R E A C H U N K N O W N IN T U R N . 

DO 2 IROW=l, N P E Q N 

IF( SFXX( IRCW)+SFYY( IRQW) .EQ.0.) G O TO 2 

S U M X = F X M Q D (IROW) 

S U M Y = F Y M O D (IROW) 

I C M A X = & A P ( I R O W ) 

D O 1 I C = 1 , I C M A X 

ICOLr=NPA( IROW, IC) 

S UMX=S U 1 X - O K X X (IROW, IC) *U (I C O L ) - O K X Y (IROW, IC) *V(ICOL) 

1 S U M Y = S U M Y - O K Y X ( I R Q W , IC)* U ( I C O L ) - O K Y Y ( I R O W , IC)*V(lCOL) 

D E L U = S F X X ( I R O N ) * 3 U M X + 3 F X Y ( I R O W ) * S U M Y 

D E L V = S F Y X ( I R Q W ) * S L M X + S F Y Y ( I R C W ) * S U M Y 

S U M D D = S U M D D + A 3 S (DELU) + A B S (DELV) 

U (IRCW) = U (IRQW) M O RELAX* D E L U 

V( IROW) = V (IROW) + Q R E L A X * D E L V 

SIMD=SU'11X-ABS (U (IROW)) +-ABS (V (IROW)) 

2 C O N T I N U E 

C 

C T E S T F O R C O N V E R G E N C E . 

E R R Q R = S U M D D / S U M D 

I F ( E R R O R . L T . T O L E R ) GO TO 4 
t 

C OUTPUT P R O G R E S S INFORMATION E V E R Y IFREQ C Y C L E S , U N L E S S I F R E Q = 0 . 

IF( I F R E Q . E Q . 0 ) G O T O 3 

I F ( M O D ( I T E R , IFREQ) .EQ.0) W R I I E ( 6 , 6 3 ) ITER, E R R O R 

63 F O R M A T ( I X , 15, E15.4) 

3 C O N T I N U E 

C 

C N O R M A L E X I T F R O M ITERATION L O O P I N D I C A T E S F A I L U R E TO C O N V E R G E . 

W R I T E ( 6 , 64) N C Y C L E 

64 F O R M A T ( 2 1 H 3 N O C O N V E R G E N C E A F T E R , 15,7:1 C Y C L E S ) 

R E T U R N 

C 

C OUTPUT N U M B E R OF ITERATIONS A N D T O L E R A N C E F O R C O N V E R G E D S O L U T I O N . 

4 W R I T E ( 6 , 65) T O L E R , ITER 

65 F O R M A T ( 3 3 H 0 I T E R A T I O N C O N V E R G E D TO A TOLERANCE O F , El2.4, 

1 6 H A F T E R , 15, 7x1 C Y C L E S ) 
r> 

20 C O N T I N U E 

R E T U R N 

E N D 

S U B R O U T I N E OUTPUT( I ITER, N I T E R ) 
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C S U B P R O G R A M T O O U T P U T T H E F I N A L R E S U L T S . 

C T H I S PROGRAM IS O N L Y A P P L I C A B L E F O R N O T C H E D BAR G E O M E T R I E S U N D E R 

C R E M O T S T R E S S . IT H A S B E E N D E S I G N E D T O PRINT T H E RESULTS IN T H E 

C NOTCli T H R O A T R E A G I O N O N L Y . 

C 

D I M E N S I O N N O B ( 4 0 ) 

C O M C I M N E L , N N P , X ( 3 3 3 ) , Y ( 3 0 0 ) , A l ( 5 3 3 ) , A J ( 5 3 0 ) , A K ( 5 3 3 ) , B I ( 5 0 0 ) , 

1 B J ( 5 0 0 ) , B K ( 5 0 3 ) , A R E A ( 5 0 0 ) , N P I ( 5 0 0 ) , N P J ( 5 0 0 ) , N P K ( 5 3 0 ) , N X P T , N Y P T , 

2 M O U T , N B P , N P B ( 4 0 ) , X A X I S , R B A R ( 5 0 3 ) , O K X X ( 3 3 0 , 9 ) , O K X Y ( 3 3 0 , 9 ) , 

3 O K Y X ( 3 3 3 , 9 ) , O K Y Y ( 3 3 3 , 9 ) , U ( 3 O 3 ) , V ( 3 0 0 ) , F X ( 3 3 0 ) , F Y ( 3 3 3 ) , 

4 F X M O D ( 3 3 0 ) , FYMOD( 3 3 0 ) , S F X X ( 3 3 3 ) , SFXY (333), SFYX( 3 0 0 ) , S F Y Y ( 3 3 0 ) , 

5 N P A ( 3 3 0 , 9 ) , N A P ( 3 3 0 ) , N M A T , E ( 5 ) , N U ( 5 ) , A L P H A ( 5 ) , K H O ( 5 ) , M A I M (500), 

6 DELTAT( 533) ,XBAR( 5 3 0 ) , YBAR( 5 3 3 ) , S U ( 5 3 0 ) , S V ( 5 3 3 ) , PX, PY, 

7 N C O N D ( 4 0 ) , T A N G ( 4 3 ) , U P R E S ( 4 3 ) , V P R E S ( 4 3 ) , N B C 3 P 

C 

R E A L N U 

C 

I F ( I I T E R . G T . 1 ) G O T O 6 

C O U T P U T T H E D I S P L A C E M E N T B O U N D A R Y C O N D I T I O N S . 

W R I T E ( 6 , 61) (MP3(IB),NCOMD(lB) ,TANG(IB) ,IB=1,NBC3P) 

61 FORMAT(33iI0DISPLACEMEMT B O U N D A R Y C O N D I T I O N S // 

1 63H N O D E C Q N D T A N G N O D E C O N D T A N G N O D E C O ® 

2 T A N G / (3(IX,14,15,F10.4))) 

C 

C O U T P U T T H E N O D A L P O I N T F O R C E S A N D D I S P L A C E M E N T S . 

W R I T E (6, 62) d , F X ( I ) , F Y d ) , F X M C D ( l ) , E Y M O D ( l ) , U d ) , V ( l ) , I = l , N N P ) 

62 FORMAT(371I0NODAL P O I N T F O R C E S A N D D I S P L A C E M E N T S // 

1 78d N O D E F X F Y F X M O D F Y M O D 

2 U V / (IX, 15,6E12.4)) 

C 

C C O M P U T E A N D O U T P U T T H E E L E M E N T S T R A I N A N D S T R E S S C O M P O N E N T S . 

W R I T E ( 6 , 6 3 ) 

63 F O R M A T (114H0 M E X X £ Y Y E H P E X Y 

1 E T S I G X X S I G Y Y S I G 3 P S I G X Y ) 

C 

C INPUT T H E N O T C H T H R O A T R A D U I S , A ,AND T H E A P P L I E D R E M I T S T R E S S , P U T . 

R E A D ( 5 , 5 1 ) A , P N T 

51 F O R M A T (2F13.0) 

6 N X B = 3 

T I N Y = 0 . 0 3 0 1 

D O 3 1 = 1 , N N P 

I F ( Y ( l ) .GT.TINY) G O T O 3 

N X B = N X B + 1 

N 0 3 ( N X B ) = I 

3 C O N T I N U E 

D O 1 M = 1 , N E L 

D O 4 K = 1 , N X B 

I F ( N P I ( M ) . E Q . N 0 3 ( K ) ) G O T O 2 

I F ( N P J ( M ) . E Q . M O B ( K ) ) G O T O 2 

IF(NPK(M) .EQ.MOB(K)) G O T O 2 

4 C O N T I N U E 

G O T O 1 

2 I=NPI(M) 

J = N P J ( M ) 

K = N P K (M) 

E X X = 3 . 5 * ( B I ( M ) * U ( I ) +BJ(M)*U( J ) +BK(M) *U(I<)) /AREA(M) 

E Y Y = 0 . 5 * ( A I ( M ) * V ( I ) + A J ( M ) * V ( J ) + A K ( M ) * V ( K ) ) / A R E A ( M ) 

EiIP=(U(I )+U(J)+U(K)) / ( 3 . * R B A R ( M ) ) 

E X Y = 3 . 5 * ( A I ( M ) * U ( I ) + B I ( M ) * V ( I ) + A J ( M ) * U ( J ) + B J ( M ) * V ( J ) + A K ( M ) * U ( K ) 

1 +BK(M) * V ( K ) ) / A R E A ( M ) 
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MAT=MA3M(M) 
ET=ALPHA( MAT) *DELTAT (M) 
FACT=SU(M)* E(MAT)/(1.-NU(MAT)** 2) 
S IGXX=F ACT * (EXX-ET+NU (MAT) * (EYY-ET) +NU (MAT) * (EHP-ET)) 
SIGXX=5IGXX/PNT 
SIGYY=FACT*(NU(MAT)*(EXX-ET)+EYY-ET+NU(MAT)*(EHP-ET)) 
SIGYY=SIGYY/PNT 
SIGHP=FACT*(NU(MAT)*(EXX-ET)+NU(MAT)*(EYY-ET)+EHP-ET) 
SIGHP=SIGHP/PNT 
SIGXY=FACT*3.5*(1.-NU(MAT))*EXY 
S IGXY=3 IGXY/ PNT 
SIGEFSC=3QRT (. 5* ((SIGYY-SIGXX)**2+(SIGXX-SIGHP)**2+(SIGHP-SIGYY)** 
12+6.*SIGXY**2)) 
RN=-RBAR(M) /A 
SIH= ( SIGXX+S IGYY+SIGHP) / 3. 
WRITE(6, 64 )M, EXX, EYY, EHP, SIH, SIGEFEC, SIGXX, SIGYY, SIGHP, SIGXY 
IF( IITER. LT. NITER) GO TO 1 
WRITE(2, 65 )RN, SIGXX, SIGYY, SIGHP, SIGEFEC 

1 CONTINUE 
64 F O R M A T ( I X , 1 5 , 9 E 1 2 . 4 ) 

65 F O R M A T (5F12.4) 

R E T U R N 

E N D 

SUBROUTIiNE NONLIN (M, EFACT, IITER) 

SUBPROGRAM TO COMPUTE THE NONLINEAR MODULUS OF AN ELEMENT 

Ca-1MQN N E L , N N P , X ( 3 3 0 ) ,Y(330),Al(500), A J ( 5 0 0 ) ,AK(530) ,BI(500), 

1 BJ(533),BK(533),AREA( 533),NPI(533),NPJ(500),NPK(533),NXPT,NYPT, 
2 MOJT, NBP, NPB (43), XAXIS, RBAR( 533), OKXX (330, 9), OKXY (330,9), 
3 O K Y X ( 3 0 3 , 9 ) , Q K Y Y ( 3 0 0 , 9 ) , U ( 3 3 0 ) , V ( 3 3 0 ) , F X ( 3 0 3 ) , F Y ( 3 0 0 ) , 

4 FXMOD(330),FYMOD(303),SFXX(300),SFXY(300),SFYX(303),SFYY(300), 
5 NPA( 333, 9 ) , N A P ( 3 0 3 ) , N M A T , E ( 5 ) , N U (5), ALPHA( 5 ) , F H O ( 5 ) , MATM( 5 3 3 ) , 

6 D E L T A T ( 5 0 0 ) , X B A R ( 5 0 3 ) , Y B A R ( 5 3 3 ) , S U ( 5 0 3 ) , S V ( 5 3 0 ) , P X , P Y , 

7 N C O N D ( 4 3 ) , T A N G ( 4 0 ) ,UPRES(40) ,VPRES(43) ,L>IBC3P 

R E A L N U 

TOPUT THE REQUIRED CREEP INDEX, N 
IF(IITER.GT.2) GO TO 1 
READ(5,51) EN 

51 F0RMAT(I3) 
1 I=NPI(M) 

J=NPJ(M) 
K=NPK(M) 
E X X = 0 . 5* (BI (M) *U(I )+BJ(M) *U( J ) + B K ( M ) *U(K)) /AREA(M) 

E Y Y = 0 . 5 * ( A l ( M ) * V ( I )+AJ(M) *V( J ) + A K ( M ) *V(K)) /AREA(M) 

E H P = ( U ( I ) + U ( J ) + U ( K ) ) / ( 3 . * R B A R ( M ) ) 

E X Y = 3 . 5*(Al(M) * U ( I ) + 3 1 (M)*V(I) +AJ(M) * U ( J ) + B J ( M ) *V( J ) + A K ( M ) *U(K) 

1 + B K ( M ) * V ( K ) ) / A R E A ( M ) 

ESTRAILnJ=SQRT ((2. / 3.) * ( E X X * * 2 + E Y Y * * 2 + E H P * * 2 + . 5*EXY**2)) 

E F A C T = E S T R A I N * * ((1.-EN)/ EN) 

R E T U R N 

ELD 
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A P P E N D I X C 

L I S T I N G OF THE T W O - D I M E N S I O N A L FINITE ELEMENT P R O G R A M 

U S E D FOR SOLVING ELASTIC AND N O N - L I N E A R PROBLEMS 

OF THE P L A N E STRAIN O R PLANE STRESS TYPE 
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P R O G R A M NPLAIN( INPUT, O U T P U T , T A P E 1 , T A P E 2 , T A P E 5 = I N P U T , T A P E 6 = O U T P U T ) 

C 
C T W O - D I M E N S I O N A L F I N I T E E L E M E N T PROGRAM FOR S O L V I N G E L A S T I C A N D 

C N O N - L I N E A R PLAIN S T R A I N O R P L A I N S T R E S S P R O B L E M S . 

C 

D I M E N S I O N N O B ( 4 3 ) 

D I M E N S I O N T I T L E ( 6 ) , B ( 3 , 6 ) , D ( 3 , 3 ) , B T D ( 6 , 3 ) , E S T I F F ( 6 , 6 ) , 

1 I J K ( 3 ) , E T ( 3 ) , T H E T A M ( 6 ) 

C O M M O N N E L , N N P , X( 3 3 3 ) , Y( 3 3 3 ) , A l (533), AJ (533), AK( 5 3 3 ) , B I (503), 

1 B J ( 5 0 0 ) , B K ( 5 0 0 ) , A R E A ( 5 3 0 ) , N P I ( 5 3 3 ) , N R J ( 5 3 0 ) , N P K ( 5 3 0 ) , 

2 M O U T , N B P , N P B ( 4 3 ) , X A X I S , R B A R ( 5 0 3 ) ,OKXX(300,9) , O K X Y ( 3 3 3 , 9 ) , 

3 O K Y X ( 3 0 0 , 9 ) , O K Y Y ( 3 0 0 , 9 ) ,U(330) ,V(330),FX(300) ,FY(333), 

4 F X M C D ( 3 0 3 ) , F Y M C D ( 3 3 0 ) , S F X X ( 3 0 3 ) , S F X Y ( 3 3 0 ) , S F Y X ( 3 3 3 ) ,SFYY(303), 

5 NPA( 300, 9 ) , N A P ( 3 3 0 ) , N M A T , E ( 5 ) ,NU(5), ALPHA( 5 ) , RIO(5) ,MATM( 5 0 0 ) , 

6 D E L T A T ( 5 3 0 ) , X B A R ( 5 3 0 ) , Y B A R ( 5 0 3 ) , P X , P Y , S U ( 5 3 0 ) , 

7 N C O N D ( 4 3 ) , T A N G ( 4 3 ) , U P R E 5 ( 4 3 ) , V P R E S ( 4 0 ) , N B C 3 P 

C 

R E A L N U 

C 

D A T A B L A N K , STRESS, S T R A I N / 1321 , 6 H S T R E S S , 6 H S T R A I N / 

C 

C INPUT TtlE PROBLEM T I T L E A N D T Y P E - S T O P IF B L A N K C A R D E N C O U N T E R E D . 

1 R E A D ( 5 , 5 1 ) T I T L E , C A S E 

51 F O R M A T (6A13, A 6 ) 

I F ( T I T L E ( 1 ) . E Q . B L A N K ) S T O P 

W R I T E ( 6 , 6 1 ) C A S E , T I T L E 

61 F O R M A T ( 3 9 H 0 C S T F I N I T E E L E M E N T S O L U T I O N F O R P L A N E ,A6,8H P R O B L E M 

1 // 6 A 1 0 ) 

C 

C INPUT O R G E N E R A T E T H E M E S H D A T A , M A T E R I A L PROPERTIES, T E M P E R A T U R E 

C C H A N G E S A N D B O D Y F O R C E S . 

C A L L M E S H 1 

C A L L M A T L S 

C A L L T E M P S 

C A L L B O D Y F 

C 

C C O M P U T E T H E E L E M E N T G E O M E T R I E S . 

DO 2 M = l , N E L 

I=NPI(M) 

J = N P J (M) 

K = N P K ( M ) 

A I ( M ) = - X ( J ) + X ( K ) 

A J ( M ) = - X ( K ) + X ( I ) 

A K ( M ) = - X ( I ) + X ( J ) 

B I ( M ) = Y ( J ) - Y ( K ) 

B J ( M ) = Y ( K ) - Y ( I ) 

B K ( M ) = Y ( I ) - Y ( J ) 

AREA( M) - 3 . 5* (AK( M) * BJ (M) -AJ (M) * B K (M) ) 

IF(AREA(M) .CJT.3.) G O T O 2 

'WRITE(6, 62) M 

62 F O R M A T ( 1 5 H 3 E L E M E N T N U M B E R , 15, 25H H A S N E G A T I V E A R E A - S T O P ) 

S T O P 

2 C O N T I N U E 

C 

C INPUT T H E R E Q U I R E D N U M B E R OF O U T E R I T E R A T I O N S . 

R E A D ( 5 , 5 2 ) N I T E R 

52 F0R*1AT(I3) 

D O 231 IITER=1, N I T E R 

C S E T I N I T I A L V A L U E S OF S T I F F N E S S E S , E X T E R N A L F O R C E S A N D U N K N O W N S . 

DO 4 IRCW=1,NNP 
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DO 3 LOL,9 
OKXX(IRCW,IC)=J. 
OKXY( IRGW, IC) =3. 
OKYX(IROW,IC)=0. 
OKYY( IROW, IC)=3. 

3 NPA(IRCW,IC)=3 
NPA(IRLW,I)=IROW 
FXI4CD (IROW) =•. 
FYMOD (IRCW) =3. 
IF(IITER.GT.1) GO TO 4 
U(LR0W)=3. 
V(IROW)=3. 

4 CONTINUE 
C 
C MODIFY MATERIAL PROPERTIES IF CASE IS OLE OF PLANE STRAIN. 

IF(IITER.GT.1) GO TO 6 
IF(CASE.EQ.STRESS) GO TO 6 
DO 5 MAT=1,NMAT 
E(MAT)=E(MAT)/(1.-NU(MAT)* * 2) 
ALPHA( MAT) =ALPHA( MAT) * (1. +NU (MAT)) 

5 NU(MAT)=NU(MAT)/(1.-NU(MAT)) 
C 
C SET UP THE OVERALL ASSEMBLY LOOP. 
6 DO 19 M=L,NEL 
C 
C STORE THE ELEMENT NODE NUMBERS IN ORDER IN ARRAY IJK. 

IJK(1)=NPI(M) 
IJK (2) =NPJ (M) 
IJK (3) =NPK (M) 

C 
C CA-IPUTE THE BODY FORCE COMPONENTS ON EACH NODE OF THE ELEMENT. 

GXM=XBAR( M) *AREA( M) /3. 
GYM=YBAR (M) *AREA( M)/3. 

C 
C FORM IKE ELEMENT DIMENSION MATRIX. 

DO 7 IRE=1,2 
DO 7 ICE=1,6 

7 B(IRE,ICE)=3. 
B(1,1)=BI(M) 
B(L, 3)=3J(M) 
B(1,5)=BK(M) 
B(2,2)=AI(M) 
B(2,4)=AJ(M) 
B(2,6)=AK(M) 
DO 8 ICE=1,6 
IF(MOD(ICE,2).EQ.3) B(3,ICE)=B(1,ICE-1) 

3 IF(M0D(ICE,2).EQ.L) B(3,ICE)=B(2,ICE+1) 
C 
C FORM THE ELASTIC PROPERTY MATRIX. 

DO 9 IRE=1, 3 
DO 9 ICE=1, 3 

9 D (IRE, ICE) =3. 
MAT=MAIM(M) 
EFACT=1. 
IF(IITER.GT.I) CALL NONLIN(M,EFACT) 
IF(IITER.GT.I) NU(MAT) =3.5 
FACT=EF ACT* E (MAT) / (1. -NU (MAT) * * 2) 
SU(M) =EFACT 
D(1,1)=FACT 
D(2,2)=FACT 
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D(1,2)=FACT*NU(MAT) 
D(2,1)=D(1,2) 
D(3,3)=FACT*0.5*(1.-NU(MAT)) 

C 
C MULTIPLY THE TRANSPOSE OF MATRIX B BY MATRIX D. 

DO 10 IRE=1,6 
DO 10 ICE=1, 3 
BTD( IRE, ICE) =0. 
DO 10 ISUM=1,3 

10 BTD(IRE, ICE) =BTD(IRE, ICE)+B( ISUM, IRE)*D(ISUM, ICE) 
C 
C FORM THE THERMAL STRAIN AND THERMAL FORCE VECTORS. 

ET (1) = ALPHA ( MAT) *DELTAT (M) 
ET(2)=ET(1) 
ET(3)=3. 
DO 12 IRE=1,6 
SUM=O. 
DO 11 ISUV1=1, 3 

11 SUM=SUM+BTD(IRE, ISUM) *ST(ISUM) 
12 THETAM(IRE)=0.5 *SUM 
C 
C FORT THE ELEMENT STIFFNESS MATRIX. 

DO 14 IRE=1,6 
DO 14 ICE=1,6 
SUM=0. 
DO 13 ISUM=1,3 

13 SUM=SUM+3TD (IRE, ISUM) * B( ISUM, ICE) 
14 ESTIFF( IRE, ICE) =0.25*SUM/AREA( M) 
C 
C ADD ELEMENT STIFFNESS TO OVERALL STIFRNIESS. 

DO 18 IRE=1, 3 
DO 18 ICE=1, 3 
IRCW=IJK (IRE) 
ICOL=IJK (ICE) 

C 
C STORE STIFFNESS COEFFICIENTS IN RECTANGULAR FORT OF OVERALL MATRICES. 

DO 15 IC=1,9 
IF(NPA(IRQW, IC) .EQ.ICOL) GO TO 17 
IF(NPA(IRQW, IC) .EQ.0) GO TO 16 

15 CONTINUE 
WRITE(6,63) IRON 

63 FORMAT(5H0NDDE, 15,38H HAS MORE THAN 3 ADJACENT NODES - STOP) 
STOP 

16 NPA( IRON, IC) =1 COL 
NAP(IROW)=IC 

17 0KXX(IRQW, IC)=QKXX(IROW, IC)+ESTIFF(2*IRE-1, 2*ICE-1) 
OKXY(IRCW, IC) =QKXY( IRCW, IC)+ESTIFF( 2*IRE-1, 2*ICE) 
0KYX( IROW, IC)=OKYX( IRCW, IC) +ESTIFF( 2*IRE, 2*ICE-1) 

18 OI\YY(LRQW, IC) =OI<YY(IRQW, IC)+ESTIFF(2*IRE, 2*ICE) 
C 
C ASSEMBLE THE EXTERNAL FORCES ON THE NODES. 

DO 19 IRE=1,3 
IRCW=IJK(IRE) 
FXMOD (IRQW) =FXMOD (IRCW) +GXLT+THETAM( 2*IRE-1) 

19 FYMOD (IROW) =FYMOD (IRQW) +GYM+THETAM( 2 * IRE) 
C 
C CATPUTE THE SELF-FLEXIBILITY SU3MATRICES. 

DO 20 1=1,NNP 
DENGM=OKXX( 1,1) *OKYY( 1,1) -OKXY( 1,1) *OI<YX( 1,1) 
SFXX (I) =OKYY (1,1) /DENOM 
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SFXY(I)=-OKXY(1,1)/DENOM 
SFYX (I) =-GKYX( 1,1) /DENOM 

23 SFYY(L)=OKXX(I,L)/DENOM 
APPLY THE BOUNDARY CONDITIONS. 

CALL BCS(IITER) 
SOLVE THE LINEAR EQUATIONS. 

CALL SOLVE2 (I ITER) 
OUTPUT THE REQUIRED RESULTS. 

CALL OUTPUT (I ITER) 
231 CONTINUE 

GO TO 1 
END 
SUBROUTINE MESH1 
COMMON NEL,NNP,X(333),Y(330),AI(503),AJ(533),AK(530),BI(530), 
1 BJ(530),BK(503),AREA(503),NPI(503),NPJ(500),NPK(533), 
2 MOUT,NBP,NPB(43) ,XAXIS, R3AR(533) ,OKXX(303,9) ,OKXY(333,9), 
3 OKYX(330,9),OKYY(303,9),U(330),V(330),FX(33O),FY(330), 
4 FXMOD(300),FYMOD(300),SFXX(300),SFXY(300),SFYX(300),SFYY(303), 
5 NPA( 333, 9), NAP( 330), M4A.T, E( 5), NU(5), ALPHA(5), RIO (5),MATM( 530), 
6 DELTAT(500) ,XBAR(500), YBAR( 500), PX, PY, SU(533), 
7 NCGND(43),TANG(43),UPRES(43),VPRES(43),NBC3P 
REAL NU 

SUBPROGRAM TO READ DATA FROM TAPE1 . 
READ(1, 51) NNP, NEL,MOUT 

51 F0RMAT(3I5) 
READ(1,52) (I,X(I),Y(I),N=1,NNP) 

52 FOR4A.T(15, 2E15.5) 
READ( 1, 53) (M, NPI (M),NPJ(M) ,NPK(M),N=1,NEL) 

53 FORMAT(415) 
RETURN 
END 
SUBROUTINE MATLS 
CG4MGN NEL,NNP,X(303),Y(333),AL(530),AJ(500),AK(500),BI(533), 
1 BJ(530),BK(500),AREA(500),NPI(503),NPJ(533),NPK(533), 
2 MGUT,NBP,NP3(43),XAXIS,RBAR(530),OKXX(300,9),OKXY(300,9), 
3 OKYX(330,9),OKYY(333,9),U(303),V(330),FX(330),FY(333), 
4 FXMGD(303),FYMOD(330),SFXX(330),SFXY(330),SFYX(330),SFYY(300), 
5 NPA(300, 9) ,NAP(330), LNMAT, E(5) ,NU(5), ALPHA (5), RHO(5) ,MATM(503), 
6 DELTAT(530),XBAR(530), YBAR( 500), PX, PY, SU(530), 
7 NCQND(43),TANG(43),UPRES(43),VPRES(43),NBC3P 
REAL NU 

SUBPROGRAM FOR DEFINING THE MATERIAL PROPERTIES OF THE ELEMENTS. 
INPUT THE MATERIAL PROPERTIES - MAXIMUM 5 DIFFERENT MATERIALS. 

READ(5,51) NMAT 
51 FORMAT( 15) 

IF(NMAT.LE.5) 30 TO 1 
WRITE(6, 61) NMAT 

61 FORI'LAT(23H0TOO MANY MATERIALS - IJIMAT =,15) 
STOP 

1 R£AD(5, 52) (MAT,E(MAT) ,NU(MAT) ,ALPHA(MAT) ,RIO(MAT) ,21=1,NMAT) 
52 FORMAT(15, 4E15.5) 

WRITE(6, 62) (MAT,E(MAT) ,NU(MAT), ALPHA(I4AT), RHO(MAT) ,MAT=1,NMAT) 
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62 FORMAT(23H0MATERIAL PROPERTIES // 
1 50H MAIL E NU ALRIA RHO / 
2 (1X,I5,E12.4,F8.3,2E12.4)) 

C 
C DEFINE 'THE MATERIAL FOR EACH ELEMENT. 
C THIS VERSION ASSUMES ALL ELEMENTS ARE OF FIRST MATERIAL. 

DO 2 M=1,NEL 
2 MATM(M)=1 

RETURN 
END 
SUBROUTINE TEMPS 
COMMON NEL, NNP, X( 330), Y( 333), AL (533), AJ(500), AK( 530), BI (530), 
1 BJ(500),BK(500),AREA(533),NPI(500),NPJ(500),NPK(503), 
2 MOOT, NBP, NPB(43), XAXIS, RBAR( 533), OKXX(330,9), OKXY(303, 9), 
3 OKYX(330,9),OKYY(333,9) ,U(303) ,V(333) ,FX(333) ,FY(300), 
4 FXMOD (303), FYMOD (303), SFXX (300), SFXY(330), SFYX(300), SFYY(330), 
5 NPA(330, 9) ,NAP(300) ,NMAT,E(5) ,NU(5) ,ALPHA(5) ,RIO(5) ,MATM(503), 
6 DELTAT(503),XBAR(530), YBAR( 53-3), PX, PY, SU(530), 
7 NCQND(43),TANG(43),UPRES(43),VPRES(43),NBC3P 

C 
REAL NU 

C 
C SUBPROGRAM FOR DEFINING MEAN TEMPERATURE CHANGES FOR THE ELEMENTS. 
C THIS VERSION READS AND ASSIGNS A UNIFORM CHANGE. 

READ(5,51) TEMP 
51 FOR-1AT (F10.3) 

DO 1 M=1,NEL 
1 DELTAT (M) =TEMP 

RETURN 
END 
SUBROUTINE BODYF 
COMMON NEL,NNP,X(303), Y( 330),AL (500),AJ(503),AK(503),31(530), 
1 BJ(530) ,BK(530) ,AREA(530) ,NPI (500) ,NRJ(503) ,NFK(500), 
2 MOUT,NBP,NP3(43),XAXIS,RBAR( 500),OKXX(330,9),OKXY(303,9), 
3 OKYX(330,9),OKYY(330,9),U(303),V(300),FX(300),FY(333), 
4 FXMOD(330),FYMOD(300),SFXX(330),SFXY(330),SFYX(330),SFYY(330), 
5 NPA(330,9),NAP(330) ,NMAT,E(5) ,NU(5), ALPHA(5), RHO(5),MATM( 533), 
6 DELTAT(500),XBAR(530),YBAR(533),PX,PY,SU(530), 
7 NCQND(43),TANG(43),UPRES(43),VPRES(43),NBC3P 

C 
REAL NU 

C 
C SUBPROGRAM FOR DEFINING THE BODY FORCE COMPONENTS (PER UNIT VOLUME) 
C FOR THE ELEMENTS. 
C THIS VERSION ASSUMES GRAVITY ACTS IN THE NEGATIVE Y-DIRECTION. 

DO 1 MF=1,NEL 
XBAR(M) =J. 
MAT=MATM(M) 

1 YEAR (M) =-RHO (MAT) 
RETURN 
END 
SUBROUTINE DCS (I ITER) 
COMMON NEL, NNP,X(303), Y(333), AL (503), AJ( 533), AK(503), BI (533), 
1 BJ(533),BK(530),AREA(533),NPI(530),NPJ(500),NPK(530), 
2 MOUT,NBP,NP3(43),XAXIS,RBAR(503),OKXX(333, 9),OKXY(333,9), 
3 OKYX(303,9),OKYY(333,9),U(300),V(330),FX(303),FY(300), 
4 FXMOD(303), FYMOD(300), SFXX(300), SFXY( 300), SFYX( 303), SFYY( 330), 
5 NPA (303,9), NAP (330), NMAT,E(5),NU(5), ALPT LA (5), RHO (5), MATM (533), 
6 DELTAT(530),XBAR(500), YBAR(593),PX,PY,SU(533), 
7 NCOND(43),TANG(43),UPRES(40),VPRES(43),NBC3P 
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C 

R E A L N U 

C S U B P R O G R A M T O A P P L Y T H E B O U N D A R Y C O N D I T I O N S . 

IF (IITER.GT.1) GO T O 4 

D O 1 1 = 1 , N N P 

F X ( l ) = 0 . 

1 F Y ( I ) = 0 . 

C 

C INPUT T H E N U M B E R S O F SETS OF D A T A F O R E A C H T Y P E O F B O U N D A R Y CONDITION— 

READ(5 f 51) N B C 1 P , N B C 2 F , N B C 3 P 

51 F O R M A T ( 1 4 1 5 ) 

C 

C INPUT A N D A P P L Y P O I N T F O R C E D A T A . 

I F ( N B C 1 P . E Q . 3 ) G O T O 2 

R E A D ( 5 , 52) (l,FX(l) ,FY(I) ,N=1,NBC1P) 

52 F0R«1AT(3 (14, 2F10.0)) 

C 

C INPUT A I D A P P L Y D I S T R I B U T E D F O R C E D A T A . 

2 I F ( N B C 2 F . E Q . 0 ) GO T O 4 

D O 3 I F = 1 , N B C 2 F 

R E A D ( 5 , 52) N B P , FX,PY 

R E A D ( 5 , 5 1 ) (NPB(N),N=1,NBP) 

N S = N B P - 1 

D O 3 I S = 1 , N S 

I 1 = N P B ( I S ) 

I2=NPB( I S + 1 ) 

S I D E = S Q R T ( ( X ( l l ) - X ( I 2 ) ) * * 2 + ( Y ( l l ) - Y ( l 2 ) ) * * 2 ) 

F X M = 0 . 5 * P X * S I D E 

F X ( I l ) = F X ( l l ) + F X M 

E X ( I 2 ) = F X ( I 2 ) + F X M 

F Y M = 3 . 5 * P Y * 3 I D E 

F Y ( I 1 ) = F Y ( I 1 ) + F Y M 

3 F Y ( I 2 ) = F Y ( I 2 ) + F Y M 

C D E F I N E F I N A L M O D I F I E D E X T E R N A L F O R C E S ON T H E N O D E S . 

4 D O 5 1 = 1 , N N P 

FXMOD(I)=FXMOD(I)+FX(I) 
5 F Y M C D ( l ) = F Y M O D ( l ) + F Y ( I ) 

C 

C INPUT A N D A P P L Y T H E R E S T R A I N E D N O D E D A T A . 

I F ( I I T E R . G T . l ) G O 'TO 15 

R E A D ( 5 , 53) (NPB(N) ,NCOND(N) ,TANG(N) ,UPRES(N) , V P R E S ( N ) , N = 1 , N B C 3 P ) 

53 F O R M A T ( 2 ( I 4 , 1 2 , 3 F 1 0 . 0 ) ) 

15 D O 10 N = 1 , N B C 3 P 

I = N P B ( N ) 

I F ( N C C N D ( N ) - 1 ) 8,7,6 
f 
C N O D E R E S T R A I N E D 'TO M O V E IN D I R E C T I O N W H O S E S L O P E IS G I V E N B Y T A N G . 

6 S F X X ( l ) = ( S F X X ( I ) * S F Y Y ( I ) - S F X Y ( I ) * S F Y X ( I ) ) / 

1 ( S F X X ( I ) * T A N G ( N ) * * 2 - ( S F X Y ( I ) + S F Y X ( I ) ) * T A N G ( N ) + S F Y Y ( I ) ) 

S F X Y ( I ) = 3 F X X ( I ) * T A N G ( N ) 

S F Y X ( l ) = S F X Y ( l ) 

S F Y Y (I) = S F X Y (I) *TANG (N) 

G O T O 10 

C 

C N O D E R E S T R A I N E D T O M O V E IN Y - D I R E C T I O N O N L Y . 

7 S F Y Y ( I ) = S F Y Y ( I ) - S F Y X ( I ) * S F X Y ( I ) / S F X X ( l ) 

G O T O 9 

C 
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C N O D A L P O I N T D I S P L A C E M E N T S P R E S C R I B E D . 

8 S F Y Y ( I ) = 3 . 

U ( I ) = U P R E S ( N ) 

V ( I ) = V P R E S ( N ) 

9 5 F X X ( I ) = 0 . 

S F X Y ( I ) = 3 . 

S F Y X ( I ) = 0 . 

10 C O N T I N U E 

R E T U R N 

E t © 

S U B R O U T I N E S 0 L V E 2 ( I I T E R ) 

C a - M O N N E L , N N P , X ( 3 0 O ) / Y ( 3 O O ) , A I ( 5 0 0 ) , A J ( 5 3 0 ) / A K ( 5 0 O ) , B I ( 5 O 0 ) , 

1 B J ( 5 3 3 ) , B K ( 5 0 0 ) , A R E A ( 5 0 0 ) , N P I ( 5 0 0 ) , N P J ( 5 0 0 ) , N F K ( 5 3 0 ) , 

2 M O U T , N B P , N P B ( 4 0 ) , X A X I S , RBAR( 5 0 3 ) , OKXX( 3 3 3 , 9 ) , OI<XY( 3 0 3 , 9 ) , 

3 O K Y X ( 3 3 0 , 9 ) , O K Y Y ( 3 3 3 , 9 ) , U ( 3 3 0 ) , V ( 3 3 0 ) , F X ( 3 0 3 ) , F Y ( 3 3 0 ) , 

4 F X M O D ( 3 0 0 ) , F Y M O D ( 3 3 3 ) , S F X X ( 3 3 0 ) , S F X Y ( 3 3 3 ) , S F Y X ( 3 3 3 ) , S E Y Y ( 3 0 0 ) , 

5 NPA( 3 3 3 , 9 ) , N A P ( 3 3 0 ) , F M A T , E ( 5 ) , N U ( 5 ) , A L P H A (5), R I O ( 5 ) , M A T M ( 5 3 0 ) , 

6 D E L T A T ( 5 0 3 ) , X B A R ( 5 0 0 ) , Y R A R ( 5 3 3 ) , P X , P Y , S U ( 5 3 3 ) , 

7 N C a © ( 4 0 ) , T A N G ( 4 3 ) , U P R E S ( 4 3 ) , V P R E S ( 4 3 ) , N 3 C 3 P 

C 

R E A L N U 

C 

C S U B P R O G R A M F O R S O L V I N G B Y G A U 3 S - S E I D E L M E T H O D T H E L I N E A R E Q U A T I O N S 

C O B T A I N E D FROt-l 'THE F I N I T E E L E M E N T F O R M U L A T I O N O F B I H A F M O U I C P R O B L E M S . 

NPEQN—NNP 

IF( I I T E R . G T . 1) G O T O 6 

C 

C I N P U T T H E S O L U T I O N P A R A M E T E R S . 

R E A D ( 5 , 51) N C Y C L D , I F R E Q , O R E I A X , T O L E R 

51 FORMAT( 2 1 5 , 2 F 1 0 . 0 ) 

W R I T E ( 6 , 6 1 ) O R E I A X 

61 F O R M A T ( 4 3 H 3 S O L U T I O N O F E Q U A T I O N S B Y G A U S S - S E I D E L I T E R A T I O N // 

1 2 5 H O V E R - R E L A X A T I O N F A C T O R = , F 6 . 3 ) 

C 

C S E T UP I T E R A T I O N L O O P . 

I F ( I F R E Q . L E . 0 ) W R I T E ( 6 , 6 2 ) 

6 2 F O R M A T (21H I T E R E R R O R ) 

C 

C I N P U T T H E R E Q U I R E D N U M B E R O F I N N E R I T E R A T I O N S . 

R E A D ( 5 , 5 2 ) N O I I 

6 D O 23 K = 1 , N O I I 

D O 3 I T E R = 1 , N C Y C L E 

SUMD=3. 
S114DD=0. 

C 

C O B T A I N N E W E S T I M A T E F O R E A C H U N K N O W N IN T U R N . 

D O 2 I R 0 W = 1 , N P £ Q N 

I F ( S F X X ( I R C W ) + S F Y Y ( I R O W ) .EQ.3.) G O T O 2 

S U M X = F X M Q D (IRON) 

S U M Y = F Y M O D ( I R O N ) 

I C M A X = N A P ( I R O W ) 

D O 1 I C = 1 , I C M A X 

ICOL=NPA( I R O N , IC) 

S (JMX=SUIvIX—OKXX ( I R O W , IC) *U (I C O L ) - O K X Y (IROW, IC) *V( I C O L ) 

1 S U M Y = S U M Y - O K Y X ( I R C W , IC) * U (ICOL) - O K Y Y ( I R O N , IC) * V ( I C O L ) 

D E L U = S F X X ( I R G W ) * S U M X + S F X Y (IRON) * S U M Y 

D E L V = S F Y X (IROW) * 3 U M X + S F Y Y (IROW) * S I M Y 

S U M D D = S U M D D + A B S (DELU) + A B S (DELV) 

U (IRJW) = U (I R O W ) + O R E L A X * D E L U 

V ( I R C M ) =V (IRON) + O R E L A X * D E L V 
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SUMD=SUMl>+ABS(U(IROW)) +ABS(V( IROW)) 

2 C O N T I N U E 

C 

C T E S T F O R C O N V E R G E N C E . 

E R R Q R f S U M D D / S U M D 

I F ( E R R O R . L T . T O L E R ) G O T O 4 
r' 

C O U T P U T P R O G R E S S INFORMATION E V E R Y I F R E Q C Y C L E S , U N L E S S I F R E Q = 3 . 

IF(IFREQ.EQ.O) G O T O 3 

IF (MOD (ITER, IFREQ) .EQ.0) WRITE (6,63) ITER, ERROR 
63 F G R M A T ( 1 X , 1 5 , E 1 5 . 4 ) 

3 C O N T I N U E 

C 

C N O R M A L E X I T F R O M ITERATION L O O P I N D I C A T E S F A I L U R E T O C O N V E R G E . 

W R I T E ( 6 , 6 4 ) N C Y C L E 

64 F O R M A T (21H3NO C O N V E R G E N C E A F T E R , 1 5 , 7 H C Y C L E S ) 

RETURN 
C 

C O U T P U T N U M B E R OF ITERATIONS A N D T O L E R A N C E F O R C O N V E R G E D S O L U T I O N . 

4 W R I T E (6,65) T O L E R , I T E R 

65 F O R M A T ( 3 S H 3 I T E R A T I O N C O N V E R G E D T O A T O L E R A N C E O F , E l 2 . 4 , 

1 6Ii A F T E R , 15, 7H C Y C I £ S ) 

20 C O N T I N U E 

RETURN 

E N D 

S U B R O U T I N E O U T P U T (I ITER) 

D I M E N S I O N N O B ( 4 3 ) 

C O M M O N N E L , N N P , X( 3 3 0 ) , Y( 3 3 0 ) , A l (533), A J ( 5 0 3 ) , A K ( 5 3 3 ) , B I (533), 

1 B J ( 5 3 0 ) ,BK(503) ,AR£A(533) f N P I ( 5 3 0 ) ,NPJ(533) ,NPK(533), 

2 M O U T , N B P , N P B ( 4 3 ) , X A X I S , RBAR( 5 3 0 ) , O K X X (333,9), O K X Y (333, 9 ) , 

3 O K Y X ( 3 0 0 , 9 ) , 0 K Y Y ( 3 3 3 , 9 ) , U ( 3 3 3 ) , V ( 3 3 3 ) , F X ( 3 3 3 ) , F Y ( 3 3 3 ) , 

4 F X M C D ( 3 3 0 ) , F Y M O D ( 3 3 3 ) , SFXX( 3 3 3 ) , SFXY( 333), S F Y X ( 3 3 3 ) , SFYY( 3 0 3 ) , 

5 N P A ( 3 0 3 , 9 ) , N A P ( 3 3 3 ) , L M A T , E( 5 ) , N U ( 5 ) , ALPHA( 5 ) , RHO (5),MATM( 503), 

6 D E L T A T ( 5 0 0 ) , X B A R ( 5 3 3 ) , Y B A R ( 5 3 3 ) , F X , P Y , S U ( 5 3 3 ) , 

7 N C O N D ( 4 3 ) , T A N G ( 4 3 ) , U P R E S ( 4 3 ) , V P R E S ( 4 3 ) , N 3 C 3 P 

C 

R E A L N U 

C 

C S U B P R O G R A M T O O U T P U T T H E F I N A L R E S U L T S . 

IF(IITER.GT.l) GO TO 6 
C OUTPUT THE DISPLACEMENT BOUNDARY CaOITIONS. 

W R I T E ( 6 , 6 1 ) ( N P B ( I B ) , N C O N D ( I B ) , G A N G ( I B ) , I B = 1 , N B C 3 P ) 

61 F O R M A T (3 3 H O D IS P L A C E M E N T B O U N D A R Y C O N D I T I O N S // 

1 6 0 H N O D E C Q N D T A N G N O D E C C N D T A N G N O D E C O N D 

2 T A N G / (3(IX,14,15,F13.4))) 

C 

C O U T P U T T I E N O D A L P O I N T F O R C E S A N D D I S P L A C E M E N T S . 

W R I T E (6, 62) (I,FX(I),FY(I) ,FXMOD(l) ,FYUOD(l) ,U(l),V(l) ,1=1, N N P ) 

62 F O R M A T ( 3 7 H 3 N O D A L P O I N T F O R C E S A N D D I S P L A C E M E N T S // 

1 73H N O D E F X F Y F X M C D F Y M O D 

2 U V / (IX,15,6E12.4)) 

C 

C C O M P U T E A N D O U T P U T T H E E L E M E N T S T R A I N A i d S T R E S S C O M P O N E N T S . 

W R I T E ( 6 , 6 3 ) 

63 F O R M A T (93H0 M EXX E Y Y E X Y E T 

1 S I G X X S I G Y Y S I G X Y ) 

6 N X B = 3 

T I N Y = 3 . 0 0 3 1 

D O 3 1=1,NNP 

I F ( Y ( I ) . G T . T I N Y ) GO T O 3 



_ 3 0 8 -

NXB=NXB+1 
NOB(NXB)=I 

3 CONTINUE 
DO 1 M=1,NEL 
DO 4 K=1,NXB 
IF(NPI(M) .EQ.N03(K)) GO TO 2 
IF(NPJ (M) . BQ. NOB (K ) ) GO TO 2 
IF(NPK(M) .EQ.NOB(K)) GO TO 2 

4 CONTINUE 
GO TO 1 

2 I=NP1(M) 
J=NPJ(M) 
K=NPK(M) 
EXX=0. 5*(B1 (M) *J(I)+BJ(M)*U(J)+BK(M) *U (K)) /AREA(M) 
EYY=3. 5* (AL (M) *V (I )+AJ (M) *V (J) +AK(M) *V (K)) / AREA(M) 
EXY=A.5*(AL(M)*U(L)+BI(M)*V(L)+AJ(M)*U(J)+BJ(M)*V(J)+AK(M)*U(K) 
1 +BK(M)*V(K))/AREA(M) 
MAT=MATM(M) 
ET=AL£VIA( MAT) *DELTAT (M) 
FACT—SU(M)*E(MAT)/(1.-NU(MAT)* * 2) 
GIGXX=FACT*((EXX-ET) +LJU(MAT)*(EYY-ET)) 
5IGYY=FAGT* (NU (MAT) * (EXX-ET) + (EYY-E1')) 
SICXY=FACT*0. 5* (1. -NU (MAT)) *EXY 
3IGZFC=SQRT(31GXX**2.+SIGYY**2.-SIGXX*3IGYY+3.*5IGXY**2.) 
WR1TE(6,64) M,EXX, LYY, EXY, SIGEFC,SIGXX,SIGYY,SIGXY 

1 CONTINUE 
64 FORMAT (IX,15,7E12.4) 

RETURN 
END 
SUBROUTINE NONLIN (M, EFACT) 
COMMON NEL, NNP, X( 333), Y( 303), AL (530), AJ(533), AK( 533), BI (533), 
1 BJ (533), BK( 530), AREA( 533), NPI (533), NPJ (533), NPK(533), 
2 MUUT, NBP, NPB( 43),XAXIS, RBAR( 533), OKXX( 333, 9) , OKXY(333, 9), 
3 OKYX(30J,9),OKYY(333,9),U(303),V(330),FX(300),FY(333), 
4 FXMUD(330), FYMQD( 333), SFXX(333), SFXY(333), SFYX( 333), SFYY( 333), 
5 NPA(333, 9),NAP(333),NMAT, E(5),NU(5), ALPHA (5), RHO( 5) ,MATM( 533), 
6 DELTAT(530),XBAR( 533), YBAR( 533), FX, F/, SU(503), 
7 NCOND(43),TANG(43),UPRES(43), VPRES(43),NBC3P 
REAL NU 

C SUBPROGRAM TO COMPUTE TRIE NONLINEAR MODULUS OF AN ELEMENT 
C 
C INPUT TIIE REQUIRED CREEP INDEX, N . 

LF( I ITER. CTT. 2) GO TO 1 
READ(5,51) EN 

51 F0RMAT(I3) 
1 I=NPI (M) 

J=NPJ(M) 
K=NPK (M) 
EXX=3. 5* (BI (M) *U(I )+BJ(M) *U (J) +BK(M) *U(K)) /AREA( M) 
EYY=3. 5* (AL ( M) *V (I) +AJ (11) *V (J) +AK(M) *V (K)) /AREA( M) 
EXY=3. 5* (AL (M) *U(I )+BI (M) *V( I )+AJ(M) *U(J)+BJ(M) *V( J)+AK(M) *U(K) 
1 +3K (M) *V(K)) /AREA( M) 
ESTRAIN=SQRT( (2./3.)*(EXX**2. +EYY**2. +3. 5*EXY**2. )) 

w 

EFACT=ESTRAIN**( (1./E20-1.) 
RETURN 
END 


