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ABSTRACT

Two finite element programs have been developed which can be used to
calculate the steady-state stress distributions in axi-symmetric and two-—-
dimensional bodies subjected to creep. The numerical method adopted is
based on an iterative procedure in which the elastic material properties
are up—-dated after each iteration until the final steady-state is achieved.
Solutions have been obtained for a range of circumferentially notched bar
geometries and different values of stress index, h. For each profile, a
skeletal point at which the effective stress remained approximately
constant, independent of n, was observed. This stress has been used to
characterise the overall behaviour of the notch throat region when steady-
state is achieved relatively early in life. Other geometries have also
been investigated; these were blunt and sharp double notches under remote
uniform tension, and compact tension specimens having different circular
hole sizes machined in their crack plane.

The finite element steady-state solutions obtained for the notched
bars investigated made it possible to carry out a detailed theoretical
analysis to predict the lives of these geometries. The equations defining
the models in terms of life of notched to unnotched bars and stress
strength ratios were derived using either a continuum mechanics approach
or Ashby's and co-workers void growth theory. The state of stress
parameters required in the calculations were taken from the steady-state
solutions at the skeletal point.

In order to check the validity of using the proposed theoretical
models as a useful design tool, it was necessary to compare them with real
experimental data. Several creep tests were carried out at 538°C on plain
and notched bar specimens pulled in tension. The material tested was the

ductile 2i%Cr 17Mo steel used in the electric power generation industries.



Other creep data were also collected from the literature on the brittle
i1%Cr }7Mo ;%V steel and a range of high temperature alloys tested by Davis
and Manjoine in 1953. The assumptions and limitations associated with
interpreting the creep data in terms of notched to unnotched life or
stress strength ratios were discussed and focused on. Finally, it has
been reported that good agreement was obtained between the proposed models

and the available creep data.
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NOMENCLATURE

notch throat radius

dimensions of triangular element

bar radius

dimensions of triangular element

element dimension matrix

element elastic property matrix

element dimension matrix

grain size

Young's modulus

effective modulus

vector of overall externally applied forces
relative stress concentration factor

area fraction of holes on grain boundary
initial area fraction of holes

area fraction of holes at which linkage occurs, taken

as 0.25

-area fraction of voids at transition from growth by

boundary diffusion to power-law creep

area fraction of voids at transition from growth by
surface diffusion to power-law creep

centre-to-centre void spacing

stress index in creep law

pressure

notch profile radius

internal and external radii of a thick-walled cylinder
radius of growing void

notch to unnotched stress strength ratio
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St : notch to unnotched time strength ratio

tn ¢ nucleation time

tno : failure time of a notched specimen

iun : failure time of a plain bar specimen

iR ¢ time to failure

ui ,uj , Wy ¢ element radial displacement component

u% ,wf ,wh : element axial displacement component

o : parameter that measures the effect of stress state on
void growth rate

@, ¢ value of a corresponding to simple tension

Y4 ¢ surface free energy

Am ¢ element area

[8], [6] : overall and element vector of displacement components

éc » 0, : creep constants

€p ¢ strain to failure

E; : effective steady-state strain rate

€29 €592 Epn ¢ axial, hoop and radial strains

€15 €5 €3 ¢ principal strains

A ¢ convergence tolerance

v : Poisson's ratio

a : effective stress

Dy ¢ hydrostatic stress

com : remote applied stress

o, : failure stress of a notched specimen

Tun : failure stress of a plain bar specimen

o : axial, hoop and radial stresses

zz * 988 * T

07 509503 : principal stresses
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dimensionless material quantity which appears in Ashby's
boundary diffusion model
dimensionless material quantity which appears in Ashby's
surface diffusion model

measure of damage in continuum theory of creep damage
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GENERAL INTRODUCTION

The design of components for high temperature applications has become
increasingly important in recent years. In power generation plants,
nuclear reactors, gas turbines and aircraft frames, there is great
economic incentive to run key components under conditions of extreme
temperatures and stresses, consistent with reliability and an adequate
working life. The economic advantage of obtaining optimum efficiency
puts great emphasis on refining design methods. In particular, the
prediction of creep behaviour has been the subject of continuing study.

Creep can occur over a wide range of stress and temperature conditions,
but it is at temperatures in excess of 0.5 times the absolute melting
point of the material that creep deformation or fracture becomes
predominant in practical applications. Experience has shown that failure
of components subjected to tri-axial states of stress usually initiates in
regions of high stress concentration. In order to determine the lives in
such circumstances, laws governing creep behaviour under multi-axial
stressing are needed.

The most frequent method of introducing a three-dimensional state of
stress into a test piece in the laboratory is to subject circumferentially
notched bars to an axial tensile load. The constraint of the shank
produces a state of tri-axial tension in the notch region which depends
upon the notch geometry and creep properfies of the material. Several
experimental investigations of this kind have revealed that both notch
strengthening and notch weakening can be observed, depending upon the
notch dimensions and the material examined. To explain this behaviour,

a knowledge of how the state of stress parameters across the notch throat
vary with notch sharpness and material properties are therefore needed.

Several methods based on slip-line field, approximate plasticity and
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finite element analyses have been suggested in the literature for
calculating the stress distribution within a notch region. The first two
methods make use of non-work hardening plasticity solutions and are,
therefore, only relevant when the stress index, n, approaches infinity.
This thesis presents a numerical method for determining the steady-state
stress distribution in two-dimensional and axi-symmetric problems, rapidly,
for any value of n, without the need for calculating how stress
redistribution occurs with time. Initially, in the absence of plastic
deformation on loading, an elastic stress distribution will be obtained.
As time progresses, stress redistribution will take place due to the high
sensitivity of creep deformation to stress.

Results of finite element calculations using the present technique
and comparisons made with exact, approximate and other finite element
solutions are reported. The problems considered were a range of notched
bar geometries pulled in tension and some compact tension specimens having
different hole sizes machined into their crack plane. Considerable time
has been spent in developing the appropriate routines for up-dating the
elastic properties after each iteration using either the Von Mises or
Tresca criterion, and generating the required finite element grids
automatically from a small number of geometric parameters.

The aim of the present investigation, after obtaining the finite
element solutions, was to propose some theoretical models which can
explain notch strengthening and weakening. These models were derived
using either a continuum mechanics or a microstructural approach. The
review made prior to the mathematical derivation of these models revealed
that detailed information is required on how the state of stress
parameters vary with notch sharpness. It is known from previous
investigations that the steady-state stress distributions in the notched

region for blunt notches are smooth and, for some values of stress index
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n, reasonably constant. In contrast, for sharp notches, the stress
distributions tend to have peaks in the region nearer to the notch root.
However, irrespective of notch shape and value of n, it has been found
from the detailed numerical calculations using the present finite element
technique that a region of approximately constant effective stress is
obtained which can be used to characterise the notch behaviour. The
state of stress parameters required in the proposed models were therefore
taken from this region.

The experimental part presented in this thesis consists of a series
of creep tests carried out at 538°C on notched specimens pulled in tension
and having the same throat diameter as the plain tensile bars. The
material tested was a ductile 21%Cr 1%Mo steel used in the electric power
generation industries. The data collected from these tests, together
with other information available in the literature, were used to check the

validity of the proposed models in assessing component lifetimes.
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CHAPTER 1

CONTINUUM CREEP MECHANICS

1.1 CREEP DEFORMATION OF METALS

Creep could berdefined as the time-dependent part of the deformation
which accompanies the application of stress to a solid. In general, it
is described in terms of three different stages, illustrated in Figure 1.1.
The first stage in which creep occurs at a decreasing rate is called
primary creep; the second, called the secondary stage, proceeds at a
nearly constant rate; and the third, or tertiary stage, occurs at an
increasing rate and terminates in fracture.

The total strain, €, at any instant of time in a creep test is
represented as the sum of the instantaneous elastic strain, €ys and the

creep strain, £,, which, by nature, is chiefly irrecoverable. The factors

c
influencing the creep deformationm, €as are shown in Figure 1.2, and are

given by the following equation:

€ = §le,%,T) (1.1)
It is clear from Figure 1.2 that creep deformation accelerates with

increase in temperature and the applied stress; this causes earlier

fracture. Design against creep becomes most Important above a critical

temperature, 7 _ > O.BTh (Tm = melting temperature), even if the applied

c

stress or combination of stresses are below the macroscopic yield stress

of the material.
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1.2 UNI-AXTAL CREEP DEFORMATION AND RUPTURE ANALYSES

The phenomenon of creep was observed during the 19th century but
never explained. Components in steam boilers and furnaces were often
being replaced by new spares because they deformed. The first scientific
investigation into this material behaviour was published in 1905 by
Phillips. He studied the slow stretch of india rubber, glass and metal
wires when subjected to a constant pull, His work was followed in 1910
by a more detailed investigation by De Costa Andrade into the creep of
lead wires. Andrade's contribution to the subject was of the highest
value. He introduced the terms primary, secondary and tertiary creep,

shown in Figure 1.1, and proposed the first creep law as follows:
¢ o= £ {1+ B 2/3) M (1.2)

where £0 and £ are the initial and current lengths of the specimen,
respectively, and B and k are material constants. Since then, various
empirical equations have been proposed for the stress, time and temperature
dependence of creep of metals based on experimental cobservations

(Chevenard [1919], and Dickenson {1922]). The steady-state region of the
creep curve (secondary creep) was studied in great detail. Bailey and
Norton [1929] suggested the empirical equation that yielded good agreement

with experimental data for steady creep under low stresses:

g = Co" (1.3)
A
where C and n are material constants. Equation (1.3) is called the power-
law or Norton's creep law.
Long term rupture tests were the main features of the period 1940 to

1958, Creep tests lasting up to 100,000 h were carried out on different
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materials (Prager [1945], Johnson [1951], and Richards [1955]). These
tests enabled the scientists to establish that when secondary creep
dominates, the primary creep may be neglected. However, under large
stresses, and especially at high temperatures, primary creep must be taken
into account. This, in 1953, led to the publication of the "Theory of
Total Creep Deformation’, or "Total Creep Strain Theory", by Odqvist, which
included the influence of primary creep. The total creep rate was
expressed in the form:

n
dE d (0’)0 O')n (1.4)

where Tyr no, %% and N are material constants.

1.2.1 Robinson's Linear Cumulative Damage Rule

Robinson [1952] proposed a practical solution for estimating
1ife under variable conditions of stress or temperature. It is based on
the assumption that the creep strain is a function of stress, temperature
and the accumulated creep strain, €.:

c

g = 6(0,T,ec) (1.5)

In a tensile creep test, if an applied stress, aygs is held for
time II, it will produce damage, D], which, under steady conditions, is

proportional to the fraction of total life, IR :
1

D, = — (1.6)
1 tq
!

If the stress is changed to 02, then the second amount of damage incurred

is:
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D, = —+— (1.7)

Assuming that the damage resulting from each loading period is
independent of all other pericds, Robingon's rule should be applicable for
an unlimited number of variable temperature on stress conditions. The
total damage, P, for all the periods will then be:

i
D o= ) (=) (1.8)

R,

A

f dt
i
At rupture, U = 1,

The advantage of this method is that it could be used to predict

rupture times under variable conditions, using steady load rupture data.

1.2.2 Hoff's Theory of Ductile Creep Rupture

In 1953, Hoff presented a theory which can predict creep
failure times of uni-axial test specimens failing by geometrical
instability or necking. The theory is based on the assumption that the
initial cross-—sectional area, Ao’ of the testpiece will shrink to zero
under a comnstant load, P. Extending Norton's creep law, equation (1.3),
to hold for finite deformation and neglecting primary creep, Hoff obtained

the following expression for secondary creep rate:

Ly @

M}
I
[}
>

where A is the cross-~sectional area. Equation (1.9) can be integrated,

assuming A = A at £ = 0, therefore:

0

Ao” -AY = P2 (1.10)
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Applying the basic assumption that Ao will decrease to A = 0 in the finite

time, ih, equation (1.10) becomes:

th = = (1.11)

The stress, o, will increase from its initial value, 9, = P/Ao, with time,
according to the following equation:
o = o (1L (1.12)
] 'th
¢ will become infinite when £ = Ih.
Equation (1.1l) represents a straight line with a slope 7/n in

a log/log plot between €, and Ih.

4

1.2.3 Kachanov's and Robotnov's Continuum Damage Theory

An important contribution to creep mechanics was made by
Kachanov in 1958, He presented a theory of combined ductile and brittle
creep rupture based on: (a) negligible elastic deformation, (b) creep
rate, £, at steady-state is dependent on the applied uni-axial stress and
temperature, and (c) deterloration with time takes place whenever a metal
is subjected to a state of tensile stress. The deterioration or damage
represented by the parameter w increases monotonically from zero at £ = 0
(damage-free material) to unity at failure; therefore, the strain rate in
a standard Worton, equation (1.3), is now written as:

mn
¢ = Lo (1.13)

8 (7 -l

and the rate of change of w is:
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m
5 = LI (1.14)

(1-w)”
where C, n, ¢, B, m and £ are material constants in equations (1.13) and
(1.14).
Robotnov [1969] generalised these concepts to make predictions
of creep strain accumulation, local damage and rupture times, assuming

negligible primary creep, such as:

141~
£ - 1- (1-2L) T* (1.15)
R R
and: (1-w) ™ < r-% (1.16)
where the subscript R refers to rupture. Integrating equation (1.16)

under the conditions w =0, £ =0and w =1, &£ = IR leads to an expression

for uni-axial rupture time:

1
(1 +n)

(1.17)

t, =

B cm

Equation (1.17) corresponds to the linear plots of log ¢ against log iR,
frequently used to present uni-axial creep data.

Penny [1974], in his review on the usefulness of an engineering
approach to creep damage, originated by Kachanov, suggested that the
inclusion of a damage relationship for use in structural calculations
presents no conceptual or computational difficulties under uni-axial stress
conditions. He was able to show that a very good agreement (up to O.QSIR)
exists between equation (1.15) and many experimental data of different
alloys. However, MclLean, Dyson and Taplin [1977] showed that this

agreement is valid only up to O.QIR for Nimonic 80A.
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1.3 MULTI-AXIAL STATE QF STRESS

At an arbitrary point P in a continuum, each Fforce vector, Ti, is
assoclated with a unit normal vector, ni' This 1s illustrated in Figure
1.3, in which AS is the surface of a small element having P as an interior
point. The totality of all possible pairs of such vectors, TL and ni’ at
P defines the state of stress at that point. Fortunately, it is not
necessary to specify every pair of stress and normal vectors to completely
describe the state of stress at a given point. This may be accomplished
by giving the stress vector on each of three mutually perpendicular planes
at P. The nine components involved in describing the state of stress

constitute a second order Cartesian tensor, Coordinate transformation

O;:.
<4
equations then serve to relate the stress vector on any other plane at the

point to the given three reference directions.

The nine components of the stress tensor, , may be displayed in

G'(:j

matrix form as follows:

(1.18)

Q
S.

I

Q
ra
Ty

Q
~
(o)

Q
ra
L™

Pictorially, the stress tensor component may be displayed with respect
to the coordinate planes, as shown in Figures 1l.4(a) and (b). The
components perpendicular to the planes are called normal stresses. Those
acting tangentially to the planes are called shear stresses.

A particular set of orthogonal planes could be found in which one of
the normal stresses is a maximum and one is a minimum with respect to the
rotation of coordinates. These normal stresses are the principal stresses,
ay > G, > Oz. The shear stresses on the principal stress planes are zero.

Similarly, the planes for normal shear stresses could also be found, where
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T > Ty > Tz. However, the normal stresses on the principal shear stress
planes are not zero.

The stress space shown in Figure 1.5 has coordinate axes associated
with the principal stresses. Every point in this space, for example,
P(01’02’03)’ corresﬁonds to a different state of stress. The position
vector of any such point may be resolved intc a component (A along the
line 0Z, which makes equal angles with the coordinate axes, and a component
08 in the plane known as the m-plane which is perpendicular to 0Z and
passes through the origin. The component along 0Z, for which
0y = U, = Uz, Tepresents the hydrostatic stress and the component in the
m-plane represents the deviator portion of the stress state. The equation

of the m-plane is given by:
ay + 9, +ag, = 0 (1.19)

For an isotropic material, the yield condition defines a surface
called the "yield surface" which is a function of the principal stresses

defined as follows:
6(01,02,03) = constant (1.20)

Since the yield conditions are independent of the hydrostatic stress,
such yield surfaces are general cylinders, having their generators parallel
to 0Z. Stress points that lie inside the cylindrical yield surface
represent elastic stress states; those which lie on the yield surface
represent incipient plastic stress states.

In a true view of the m—plane, looking along 0Z towards the origin 0,
the principal stress axes appear symmetrically placed 120° apart, as shown

in Figure 1.6. The yield curves proposed by Von Mises and Tresca are



- 27

also shown; these will be discussed in the next sections.

1.3.1 The Maximum Shear Stress or Tresca Theory

As a result of extrusion tests on the flow of soft metals
through orifices, Tfesca concluded that a metal will yield when the
greatest algebraic difference between the three principal stresses reaches
a constant critical value. Taking 9y > 9 > Ogs the theory may be

expressed as:

g, - 03 = 2t = g (1.21)

The yield locus described by equation (1.21) is a hexagon, as
shown in Figure 1.6. Only the maximum stress difference has an influence
upon yielding.

Experimental work on various materials tested under combined
tension-torsion or compression-tension suggest that some materials tend to
approximately follow the Tresca yield function, but none of them showed
the discontinuity required by the criterion (Morrison [1940,1948], Taylor

and Quinney [1931], and Rogan and Shelton [1969]).

1.3.2 The Shear Strain-Energy or Veon Mises Thecry

This theory is variously known as Maxwell-Mises or Henckey-Mises,
It states that a material will yield when the shear strain-energy stored in
the body reaches a eritical value. It is not necessary to stipulate
a; > Gy > Ogs as all three principal stress differences are involved and
not just the maximum difference, as in the Tresca theory. It can be

expressed as:

(GI"GZ)Z + (02-03)2 + (03-01)2 = 252 (1.22)
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The yield locus in the m-plane, described by equation (1.22),
is a circle, as shown in Figure 1.6.
Nadai [1950] has also shown that this combination of principal

stresses is proportional to the octahedral shear stress, such as:

Nl

T = {(UI-'UZ)Z + {02-0312 + (03-—0112} = %?.E' (1.23)
Tests carried out on various materials under combined stresses
(tension, torsion, intermal pressure) revealed that most low alloy steels,
aluminium alloys and copper obey the Von Mises criterion (Siebel [1953],
Lianis and Ford [1957], Naghdi, Essenberg and Koff [1958], and Holloway
and Shelton [1979{). Other material, such as cast iron and mild steels,

showed some deviation from the Von Mises criterion (Cook and Robertson

[1911], Lode [1926], and Davis [1945]).

1.3.3 Plasticity Theories and the Phenomenon of Creep

It has been shown in previous sections that plastic deformation
in metals takes place if a stress in excess of the yield stress is suddenly
applied. A strain of a wvalue, say, €15 is instantaneously observed.
However, if the stress is kept constant, the strain gradually increases
with time until it approaches a steady value of, say, €g (Figure 1.7).

The value (eI‘-EZ) is the creep strain.

Metal physicists attribute the deformation of metals, whether
it is plastic or creep, to dislocation movement in the shear or slip
planes due to the applied stress. The dislocation movements in purely
plastic deformation are activated by the applied stress, while under creep
conditions they are activated by thermal agitation due to the high
temperature, even if the applied stress 1s lower than the yield stress of

the material. This fundamental similarity in the deformation process
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means that the well-established theories of plasticity are applicable also
to creep.

The first satisfactory theory of isotropic tri-axial secondary
creep behaviour was published in 1935 by Odqvist. He generalised
Norton's equation (1.3) by employing the Von Mises definition of the

second stress invariant, ¢ (equation (1.22)), as follows:

$., = %c 1 s (1.24)

i ° if

where Sif is the tensor for the stress deviator. Odqvist's theory was

based on two assumptions:

(a) Incompressibility, i.e.

M.
+

3 + £ =
1 €99 €33 0 {L.25)
(b) Normality and convexity of preserved surfaces, i.e.

constant {1.26)

Qal
1

Other equations for multi-axial creep based on similar
principles have also been proposed by Soderberg [1936], Nadai [1937], and
Tapsell and Johnson [1940]. These equations showed reasonable agreement
with the experimental data collected from different tests on different
materials,

The experimental work dome by Johnson and co-workers [1962]
alsc confirmed that plasticity theories are applicable for creep. They

showed that the primary and secondary creep resistance of a number of pure
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metals and engineering alloys In uni-axial tension and under complex
stress systems are identical when these results are analysed using

plasticity theories. They found that their data were well represented by

the following equation:

T = AT 42 (1.27)

where o and & are the effective stress and strain rate, respectively, A is
the material constant, and 6(t) is a time function equal to unity for
secondary creep. Equation (1.27) is simply a specific form of the

generally acceptable flow theory of Odqvist (equation (1.24)).
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1.4 CREEP BEHAVIOUR OF NOTCHED BARS

Equipment which operates over long periods of time at elevated
temperatures may suffer excessive deformation or fracture due to creep.
Since many components experience tri-axial stress as a result of the
applied loading con&itions or local sharp changes in section, the laws
describing creep behaviour under multi-axial stressing are used in the
design. Experience has shown that failure often initiates from sites of
stress concentrations where there is a significant hydrostatic tensile
stress component.

The most frequently used method of introducing a three-dimensional
state of stress into a testpiece in the laboratory is to subject
circumferentially notched bars to an axial tensile load. The state of
stress in the notch root can be changed systematically by changing the
notched section dimensions. This cannot be measured experimentally;
therefore, scientists have to rely on various analytical techniques which,
together with the uni-axial and notch bar rupture data, can provide useful

information for design engineers.

1.4.1 Notch Rupture Strength

The results of experimental uni-axial and notched bar creep
tests are usually interpreted in terms of notch to unnotched lives or
strength ratios. When time ratios are used in the presentation, the

following condition is applied:

n
—_— = ] (1.28)
UUJI
tna
therefore: - SI (1.29)
un

where tno is failure time of a notched specimen due to an applied nominal
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stress, Un’ on the minimum section, and tun is failure time of a uni-axial

specimen under a similar applied stress, T = Tun

Similarly, when sgtress ratios are presented, the condition is:

’tno
= - 1 (1.30)
un
UH
therefore: — = 8 (1.31)
a 4
un

where Un is the stress on the minimum section of a notched bar that fails

in 2 time tno’ and ¢ n is the stress in a uni-axial specimen that fails in

u
the same time, £ =% . TPigure 1.8(a) illustrates how the time and

no un
stress ratios are estimated for typical uni-axial and notched data under
various applied stresses at constant temperature. The materials are said
to be notch strengthened if St and Sé > 1, but notch sensitive (weakening)
if St and Sé < 1, as shown in Figure 1.8(b).

Previous experimental work has indicated that notch
strengthening and notch weakening can both be observed, depending upon the
material and test conditions.

Davis and Manjoine [1953], Newman, et al. [1953], and Ng, et
al, [1980], in their experimental investigations on different materials,
showed that some materials will always notch strengthen with increase in

constraint, while others will change from notch strengthening to notch

weakening after a certain amount of constraint.

1.4,2 Stress Distributions in Circumferentially Notched Bars

Several methods of calculating the stress distributions within
a notch region undergoing creep deformation have been proposed in the
literature. Some methods make use of the non-workhardening plasticity

solutions and are, therefore, strictly relevant only to values of creep
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stress index, 1 =+ o, Other methods use the finite element techniques
with the appropriate equations describing primary, secondary and tertiary
creep.

In 1952, Bridgman suggested an approximate method for
determining the stress distribution in the necked region of a two-
dimensional sheet and a cylindrical bar pulled in tension by a uniform
load. Both the stress equation of equilibrium and the general condition
of plasticity have to be satisfied in the neck. Bridgman's analysis is
only applicable for notches with low constraint.

Slip-line field analyses on rigid perfectly-plastic materials
have been performed on various notched geometries to determine the

distribution of strain and the constraint factor, Pc, defined as follows:
g

P, = 2 (1.32)
o .

where c, is the axial throat stress, and o is the equivalent stress.

The work by Ewing [1967,1968] on plane strain V-notched bars
with and without fillet radii led to a mathematical expression that could
be used to calculate the ratio of the throat to bar diameters required to
achieve localised deformation. Other expressions were also suggested by
MeClintoek [1961], and Neimark [1968], based on slip-line field analyses.

In 1966, Szczepinski, et al., calculated the constraint factor,
Pc, for circumferential notches where the radial and the tangential
components in the minimum section are equal. They also suggested a method'
for determining the eritical width for these notches.

Bates and Santhanam [1978] used a modified form of slip-line
field solution to calculate the stress distributions ahead of noteh tips

for strain hardening materials. Later, Santhanam and Bates [1979]

discussed the influence of notch tip geometry on the distribution of
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stress and strain. They suggested a formula for the maximum principal
strain in the notch zone and the way it decays throughout the region.

In the last 20 years, great advances have been made in
computational techniques and computer power. One numerical technique
which benefitted from these advances was the finite element method. Many
scientific research studies have been made to solve and improve the quality
of solutions of plastic and non-linear problems.

Sutherland [1970] developed an elastic finite element computer
code to include non-linearity arising from creep. He obtained solutions
for plane strain, plane stress and axi-symmetric problems. The technique
used in the code to converge from the elastic to steady-state creep
condition was based on Greenbaum and Rubinstein’s [1968] incremental
procedure.

The first detailed finite element calculations performed to
obtain steady-state stress distributions in the throat of notched bar
geometries were made by Hayhurst and co-workers [1977a,b,1978]. They
produced steady-state solutions in the absence of damage at first, then
damage was introduced gradually until failure.

Needleman and Shih [1978] used a finite element method for
solving plane strain incompressible material deformation preoblems, The
problems they considered were a beam in pure bending, thick-walled tube
subjected to internal pressure, a hole in an infinite plate, and a plane
strain notched bar in tension. Later, Kumar, German and Shih [1980]
extended this method to deal with axi-symmetric problems and produced some
steady-state stress distributions in the throat of a notched bar under
tensile lecading.

Al-Faddagh, et al. [1982] used a finite element iterative
procedure for calculating directly the steady-state stress distributions

in axi-symmetric bodies without the need for obtaining sclutions at
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intermediate time interwvals. The solutions obtained for various notched
bars showed good agreement with Bridgman's approximate plasticity solutions

and other finite element predictions.

1.4.3 Steady-State and Rupture Times Under Multi-Axial State of

Stress

A number of theories and methods have been proposed in the
literature for estimating the steady-state and rupture times under multi-
axial state of stress. Provided that the required material coefficients
and the state of stress components are known, they should, therefore, be
applicable to notched bars.

Several studies by Calladine [1963-1967] have demonstrated
that Hoff's theory of ductile creep rupture (Section 1.2.2) is applicable
for a wide range of structural problems, such as beams, plates and shells.
Later, in 1969, Calladine propose& a mathematical formula, which takes
into consideration multi-axial effects, to estimate the time taken for the
stress to relax from the initial‘elastic value to the steady-state. His
estimates showed a satisfactory level of agreement with other numerical
predictions of the time to achieve steady-state, made by Marriott and
Leckie [1964] and Penny [1967].

A time-iterative numerical method was used by Hayhurst [1973a]
to calculate rupture times of plate structures subjected to in-plane
tension. The effects of stress redistribution due to primary and
tertiary creep were included in the calculations.

A generalised method to that of Martin and Leckie [1972] was
used by Hayhurst [1973b] and Hayhurst and Leckie [1973] to include the
effects of multi-axial stress rupture. Estimates of rupture times for a
number of structures were made. They showed satisfactory agreement with

the experimental predictions by Leckie and Hayhurst [1974].
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Havhurst, Dimmer and Chernuka [1975] carried out some
numerical calculations using a finite element method to estimate rupture
lives of plates containing a circular hole subjected to in-plane tension.
They showed good agreement with the experiments performed on copper and
aluminium alloys. The same finite element method was used by Hayhurst
and co-workers [1977a,b,1978] to solve axi-symmetric problems. Estimates
of steady-state and rupture times were given but never proved
experimentally.

Cane [1981] published the results of a research programme
geared to assess the design and performance of heavy section steam pipe
welds operating in the creep range. The materials tested were a selection
of brittle and ductile low alloy steels. The creep and rupture data on
these materials were used in finite element computations to predict

failure strains, times and stresses.
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1.5 CONCLUSIONS

Continuum mechanics laws, which describe the behaviour of components
undergoing creep deformation leading to rupture, due to an applied
uni-axial or multi-axial state of stress, have been discussed in detail.
The associated equations describing these laws will be used in coming
chapters in experimental and theoretical analyses.

The creep behaviour of notched bars under tensile loading were
discussed in general. In particular, the equations describing notch
strengthening and weakening in terms of time or stress strength ratios

were given. These will be used in future analyses to model real

material data.
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CHAPTER 2

CREEP RUPTURE BY VOID GROWTH

2.1 INTRODUCTION

Creep damage theories are, in general, classified under two headings:

(a) Engineering creep damage theories.

(b) Metal sclence creep damage theories.

All theories agree in principle that damage is reponsible for the
acceleration in strain rate observed during tertiary creep and therefore
causes fracpure. The difference is that engineering damage theories use
a state parameter in the constitutive equations to describe the damage
process responsible for weakening the material (Chapter 1), while metal
scientists can identify the damage microscopically. This enables them
(the metal scientists) to choose the correct stress component in thedir
constitutive equations to describe the internal damage accumulation.
Metal science theories relate intergranular creep fracture to the

initiation and growth of grain boundary cavities.
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2.2 GRAIN BOUNDARY SLIDING

At high temperatures (T > 0.3Th), intercrystalline. fractures, or
fractures that run along grain boundaries, are the rule rather than the
exception. A metal which at low temperatures fails with a normal
transcrystalline failure is inclined to fail by a fracture that passes
along the grain boundaries at elevated temperatures. These
intercrystalline fractures are clesely related te grain boundary shearing
or sliding, Figure 2.1 illustrates the various ways in which sliding
could be accommodated (Edwards and Ashby [1979]). Elastic deformation is
a reversible process; therefore, it has no significant influence on the
overall deformation mechanisms. The remaining four methods, in which
sliding can be accommodated, form two distinct failure mechanisms. These
are diffusion, which is usually responsible for brittle failure, and power-
law creep mechanisms associated with ductile failure.

Intercrystalline brittle and ductile failure mechanisms differ in the
way the shear stress along the grain boundary is relaxed (Figure 2.2).

In a totally brittle failure, the shear stress along the sliding boundary
1s relaxed by causing a high stress concentration zone at the grain cormer.
Because the grains do not deform, then the concentration of stress will
cause the formation of miecroeracks and voids which grow until grain
separation takes place. However, in a totally ductile failure, the stress
concentration at the end of the boundary is relieved by plastic flow or
creep. Separation occurs when the cohesive strength of the grain boundary
can no longer take the stress. A combination of these two mechanisms can
also cause grain separation. The shear stress is relaxed by the formation

of voids, mini-cracks and grain deformation.
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2.3 INTRODUCTION TO THE CONCEPT OF CREEFP RUPTURE BY VOID GROWTH

Before discussing the various growth theories, it is necessary to
define some basic terms which will be used frequently in the future. The
schematic diagram drawn by Cocks and Ashby [1980a] represents the simplest
way of modelling a grain boundary vold subjected to the stress field g5
Oys Oz, @S shown in Figure 2.3. The parameter 2f is the void spacing, d
the grain size, and Zlh is the void diameter. Under the above stress

field, voids grow by three distinct micromechanisms; these are:

(a) Power-law creep mechanism.
(b) Boundary diffusion mechanism.

(¢) Surface diffusion mechanism.

Figure 2.4 shows the simplest way of representing each mechanism in
a unit structure.

Void growth by coupled mechanisms is also possible. They control
the growth because the volumetrie growth rate of a void is dependent upon

the following parameters:

Vo= §l&,T,V) (2.1)

where £ is the strain rate, T is the temperature, and { is the current
volume of a void. One mechanism dominates for a period of time, then a
switch to another mechanism will dominate until failure. Three types of

coupled mechanisms can control the growth of voids; these are:

(a) Coupled boundary diffusion and power-law creep mechanism.
(b) Coupled surface diffusion and power-law creep mechanism.

{c) Coupled boundary and surface diffusion mechanism.
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Figure 2.5 shows a void growing under the influence of a normal
stress, Tys for each individual coupled mechanism.

To visualise how the switch in failure mechanisms can take place,
Ashby, et al. [1979], Svensson and Dunlop [1980], and Cocks and Ashby
[1982a], constructea cavity growth mechanism maps for various materials.
One example of these maps for copper and for a-brass is shown In Figures
2.6(a) and (b). The diagrams show how the strain rate, stress,
temperature, and void dimeﬁsions can cause a switch from one failure
mechanism to the other.

Dyson and Taplin [1976] also showed how dependent the transitiom is,
from continuum growth (power-law creep) to diffusion-controlled growth, on

strain rate, temperature, and void dimensions (Figure 2.7).
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2.4 THECRIES OF RUPTURE RELATED TO THE NUCLEATION AND GROWTH OF VOID3

The creep fracture process in metallic materials involves stages of:
cavity nucleation, growth, interlinkage to form cracks, crack propagation,
and final fracture. Some of these stages may occupy a small proportion
of the total creep iife and therefore have little influence on the total
rupture time of the material. Metal scilentists, through their
observations of material behaviour under creep conditions, believe that
nucleation, growth, interlinkage, and propagation occur simultaneously
during tertiary creep prior to failure.

To develop a theory which includes the effects and interactions of
all these stages is extremely difficult. Therefore, creep life is often
considered to be dominated by only one or two stages and that the others
can be neglected. In this section, metal scilence theories and their
development will be discussed in detail.

In 1954, Greenwood, et al., noted that creep rupture is due to the
growth and coalescence of woids at grain boundaries. They also stated
that the cavity nucleation at the grain boundaries is predominantly
dependent on creep strain and that the growth of these cavities is due to
diffusion.

Hull and Rimmer [1959] proposed a theory of void growth controlled by

boundary diffusion. Their equation for void growth is:

Eﬁﬁ - [ o __X ‘”] (2.2)
dt &tV
where y is the surface energy, and:
n,2
_h
6h = 2 (2.3)

where nh is the hole radius, and 2£ is their spacing. The craoss-



- 47

sectional area of voids per unit area parameter ﬁh is similar to the state
parameter w in Kachanov's theory. Other theories and models for diffusion-
controlled void growth were proposed by Speight and Harris [1967],

Weertman [1974], Speight and Beer [1975], Raj and Ashby [1975], Chuang, et
al. [1979], and Cocks and Ashby [1982a]. In these theories, expressions
for the rate of volumetric change of a void are given, based on the

assumptions:

(a) Constancy of cavity density.

(b) Grains do not deform plastically.

(c) Cavities are a berfect vacancy sink and the normal stress is a
perfect cavity source.

(d) The applied load remains constant on each cavitated grain facet,

The mechanismlof void growth by power-law creep was first introduced
by MeClintock [1968] when studying a simple model of a hole growth during
plastic deformation. His work was followed by many proposed theories for
void growth by power-law creep (Rice and Tracey [1969], Hellan [1975],
Dyson and Taplin [1976], Edwards and Ashby [1979], Needleman and Rice
[1980], and Cocks and Ashby [1980b}). All these theories proposed an
expreasion for calculating the rate of radius growth of a voild under the

influence of a remote uniform effective strain rate field, €, such as:

A o= nKE (2.4)

K is the stress state sensitivity parameter dependent on the particular
theory adopted.
It was shown in Section 2.3 that the volumetric growth rate of a void

is dependent on the three parameters, €, T and V (equation (2.1)}. This
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makes it necessary to analyse a model in which voids grow by coupled
mechanisms. This was done by Beer and Speight [1978], Edwards and Ashby
[1979]}, Chuang, et al. [1979], and Cocks and Ashby [1980a,1982a,b]. One
example of a void growth by a coupled diffusion and power-law creep
mechanism is shown in Figures 2.8(a) and (b) (Cocks and Ashby [1982al).
It shows the damage rate (dﬁh/dt) dependence on both the stress and the
area fraction of holes, 6h' The interesting thing about this model is
the introduction of a transition parameter, 61. The diffusion mechanism
dominates from the initial area fraction of holes 6i to 6t and power-law
creep dominates from 61 until fracture.

Other theories and models are available in the literature which focus
on the linkage of separately nucleated grain boundary cracks and their
propagation.

Lindborg [1968] derived a relationship which gave the fraction of
cracked grain, P, in terms of the number of micro-cracks, 1, required for

fracture:

P = 0.2 (z—r\?f’ (2.5)

where N is the number of grains. He wused this equation to predict
the percentage of area that had been cracked due to creep prior to
fracture and compared it with his experiments. Later, Lindborg [1969]
studied the growth rate of sharp intercrystalline cracks and suggested
that fracture occurs when one of the cracks reaches a critical size.

Dyson [1976] proposed a thecry in which the rate of diffusive cavity
growth may be ponstrained by either the rate of deformation of the
surrounding material or the rate of supply of vacancies at the adjacent
grain boundary. He proposed an upper bound strain rate equatiomn, similar

to Kachanov's equation (1.13), such that:
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(2.6)

where Ac is a parameter controlled by strain and can change by continuous

cavity nucleation. It is expressed as:

Ac = Ke . K =
. d n
therefore: g = B [T—:—K—E]
. n
or £ = Bog ([1+nKe)
and for Ke << 1: ¢ = Bo" exanE

(2.7)

(2.8)

(2.9

(2.10)

Dyson stated that equation (2.10) can represent the secondary and

textiary creep of many materials.
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2.5 ASHBY'S THEORY OF CREEP RUPTURE BY VOID GROWTH

In recent years, Ashby and co-workers published a comprehensive theory
for modelling the growth of voids by mechanisms controlled by grain
boundary diffusion, by surface diffusion, by power—law creep, and by any
combination of the two of these (Figures 2.4 and 2.5) (Raj and Ashby
{1975], Edwards and Ashby [1979], Cocks and Ashby [1980a,b,1982a,b]). The
theory replaces the classical continuum mechanics damage parameter, w,
responsible for the acceleration in strain rate during tertiary creep, by
a new term called the area fraction of holes on grain boundary, 6h’

defined by:
6h = — (2.11)

where &h is the radius of a growing void, and Zf is the centre-to-centre
void spacing, as shown in Figure 2.3.

The theory assumes that all voids nucleate at a certain time, tn’ in
which ﬁh has an initial small wvalue, éi' Voids then start te grow under
the influence of either stress state or temperature, until 6h reaches a
eritical value, 6c’ where fallure takes place. According to continuum
mechanics theories, w = 1 at failure, similarly for this theory ﬁh should
therefore equal one at £ = IR. In reality, samples will fail sooner
because, as 6h approaches one, the true stress on the remaining ligament
increases rapidly; therefore, either ductile failure, cleavage, or some
other fast fracture mechanism will cause failure. Ashby's theory adopts

a critical value, § = 0.25, except when there is a non-uniform

c
distribution of voids (constrained cavity growth).

The constitutive law used in Ashby's theory for power-law creep is:

Z = ¢ (Gi)” (2.12)
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where 1, éo and g, are material constants, and o and E; are the Von Mises

effective stress and strain rate defined as follows:

al

{% [{o; - 0,12 + (02-03)2 + (03-0112”% (2.13)
and: = {5 (15,5202 4 (- 2,)2 4 (g,- 8,02 (2.14)

The stresses and strains in equations (2.13) and (2.14) are all principal
values.

The strain rate at lower stresses is controlled by diffusion across
or around grains; therefore:
129 2c

) :—.—.-....—_._[14'

4 2
RTd do,,

T &0
b) (2.15)

where Dv and Gﬂb describe the rates of lattice and of grain boundary
diffusion, Q is the atomic volume, d is the grain size, T is the absolute
temperature, and kR is Boltzmann's constant.

In the next sections, a summary of Ashby's analysis is given for the

different mechanisms proposed to model the growth of voids.

2.5.1 Void Growth by Boundary Diffusion Alone

When voids grow by boundary diffusion, matter diffuses out of
the growing void, which remains spherical, and plates onto the grain
boundary, as showm in Figure 2.4(a). The equations to describe damage

rate and strain rate are:

(o3
E;‘““*' S — (El (2.16)
2¢ g
1 de 0 4 1
— g = () (=] (2.17)
£p At n (1/§,) a o,
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where ¢o is a material property defined as:

0 (2.18)

BT E3 o

The constants in equation (2.18) were defined after equation (2.15).
The time to rupture expression was found by integrating

equation (2.16) between the following limits:

8. = 4 at r =
h 4 n (2.19)
= §¢ at =X
where 6i is the initial area fraction of the holes, and In is the
nucleation time. The result is:
2 1 2 1 2], %
=t 4t g 302 [1n (! +—] - 4,302 [m s +—]}—
R no 3,8, Ve ZZ 3 L KZ 3] o
. . 0.17 %
or: »‘CR = »tn + ¢O éo (a] (2.20)

-2 -
if 6i < 107¢ and 6c 0.25.
The strain to rupture expression was obtained by integrating

equations (2.16) and (2.17) as a coupled set. The result is:
AR VP I L
g = 3 4 i 0.2-3 (2.21)
The nucleation strain, €, DUSt be added to rupture strains which are

usually small; therefore, rupture times at constant load and stress are

expected to be almost equal.
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2.5.2 Void Growth by Surface Diffusion Alone

When voids grow by surface diffusion, matter flows out of it
at the equator, causing it to become flatter and more crack-like, as shown

in Figure 2.4(b). The equations given to describe damage rate and strain

rate are: '
d§ N P P
Lb . ok (2.22)
o dt (I—éhja o
i
tde _ PYofn s 1y ) 23
@ 1-4)%de. % (229
] -6h Uo (4]
where ¢o is a material property defined as:
D s o a3
v o= 4 4 ¢ (2.24)

i
0 Y2 LT R Yéz éo

where Yy is the surface free energy. The other parameters are similar to
those in equation (2.18), but are for surface diffusion.
The time to rupture expression was found by Integrating

equation (2.22) between the limits of equation (2.19),. The result is:

1
2 1§,2-64.") o 3

o= Ayt S (Eg-
€ wo 1
1-26. g 3

. - Y
or: tR = In + - {U? (2.25)
0 Yo

when 6i is small, and 5c = 0.25.
Voids growing by surface diffusion contribute almost no strain
as they grow because of their flat crack-like shapes. The times to

rupture at constant load and stress are, therefore, expected to be almost

equal.
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2.5.3 Void Growth by Power-Law Creep Alone

When voids grow by power-law creep alone, the effective stress,
o, determines their rate of expansion. The rest of the matter containing
the voids, shown as the shaded area in Figure 2.4(c), extends at a rate
determined by the net section stress, 57(1-6h]. The equations given to

describe damage rate and strain rate are:

dg 1 =
1% 1 [__!_ (1-4,0] (2" (2.26)
EO CLt a {1_6h)n h ) UO
n 7 -
1 de h|: [ g.R
- = {1+ -1} (=) (2.27)
Soaz { a d {1-5h]" -} %

where o is a parameter that measures the effect of stress state on void

growth rate. It is defined as:
- 1) %yt,-1
a = {sinh - [2 (ﬁ+i] —-lﬁ-]} {(2.28)
g

where o, is the hydrostatic pressure expressed by:

(2.29)

At constant stress, the time to rupture was found by integrating
equation (2.26) between the limits of equation (2.19) and assuming that éi

is small and 6c = 0.25. The result is:

1 %n
tR = Iﬁ * (ni-?f_éo In [(n-+1) éi] ‘E?J (2.30)

At constant load, the expression given for rupture time, using

the same assumption for constant stress, is:
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1 - [(YH’” 6'{:]”./(1’14'”

L _ n/{n+1) on
tpm = [In+1) 4] t, . (=) (2.31)
ne a
o
where G, is the stress at rupture defined by:

C-

: 4
o, = (2.32)

a (1 -yléé-tlj/n

o; is the initial stress. When 6L goes to zero, equation (2.31) reduces

to Hoff's equation (1.11):

IR = (2.33)

The rupture strain was found by adding the term responsible
for the creep in the specimen CtRéA) to that due to the growing voids

{equation (2.21)). The result is:

e = g &, (g—)” + 0.25 (2.34)
(o}

where IR is defined by equation (2.30).

2.5.4 Coupled Boundary Diffusion and Power-Law Creep

A switch from one void growth mechanism to another can take
place if the ;tress field or the temperature vary with time (Figure 2.5(a)).
Figure 2.8(a) shows a plot of the damage rate (equations (2.16) and (2.26))
for boundary diffusion and power-law creep against stress. When the
stress is low, the voids grow by diffusion, but when high they grow by
power—law creep. This also means that when ﬁh is small, the voids grow

by diffusion, and when large they grow by power-law creep, as the plot of

the damage rate against 6& shows (Figure 2.8(b)). In between, voids grow
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by coupling of both mechanisms (full line). The rate of growth by the
coupled mechanism is calculated by simply adding the rates of the two
mechanisms.

The point where the broken lines Intersect in Figures 2.8(a)

and (b) was calculated from equations (2.16) and (2.15). The result is:
o = oty [ g-g] MY (2.35)
0 h 9, o :

Void growth by diffusion dominates from éi to ﬁtb and power-
law creep from 6£b to 6c' The wvalue 5tb is found by solving equation
(2.35). It represents the critical area fraction at which the change of

mechanism occcurs. The definition for 5tb is:

b 1
§.° = (2.36)
x [a {in a - 1)]3/2
where: a = é—iﬂitll-(jiJn (Sg) (2.37)
' E % 9 9y *

The time to rupture was found by combining equations (2.20)

and (2.30) with 6tb inserted. The result is:

=

b
7 3/2

3¢0 éG

1 271 % a 1 %o n
( )+—] -2 + 1 2 (2.38)
o 6Ib 3 U? (H."'I] Eo n [(VH’]) 6tb] "OT

The strain to rupture can be obtained by using equation (2.34),

in which IR is given by equation (2.38).

2.5.5 Coupled Surface Diffusion and Power-Law Creep

Similar to the coupled boundary diffusion and power-law creep
mechanism, surface diffusion dominates from 5£ to 616 and power-law creep

from 61? to 6c (Figure 2.5(b)). Similar trends shown in Figures 2.8(a)
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and (b) can be obtained for this coupled mechanism, but this time equations
(2.22) and (2.26) are plotted. The point at which the dominant mechanism
changes was found by equating these two equations. The result is:

(1~ éh)1+

o a.wn %o
U= : [ -1 (=" (= (2.39)
o 6}12 (1 _ 6h}n+1 :l 0'0

and the critical area fraction at which the change in mechanism occurs is:

(2.40)

8 ————

fn+1) @ 9%

sl o )

The time to rupture was found by combining equations (2.25)

and (2.30) with ﬁif inserted. The result is:

&3 i
+2[{6t)2'6i] (0_03 a n[ 1 ] (Uo)n
0 (n+1) 5;

o+
o~
]

+
n . g (n+l] <
€, ¢0 1

The rupture strain is due to power-law creep only, since the

crack—like voids contribute almost nothing te the strain. The result is:
. a,n
g = H &, (—i) (2.42)
where IR is given by equation (2.41).

2.5.6 Coupled Surface Diffusion and Boundary Diffusion

A different criterion to the other two coupled mechanisms was
adopted for this coupled mechanism. It is based on using two limits of
the driving force which can cause the damage to grow by either surface or
boundary diffusion. When surface diffusion is very rapid, the driving
force will cause the damage to grow by boundary diffusion (equation (2.16)).

However, when surface diffusion is slow, the voids become crack-like and
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therefore grow by surface diffusion only (Figure 2.5(c)}). The damage

rate is given by equation (2.22). The transition occurs when:
o 9 A 1In (1/4,)
150 h | (2.43)
cap 2 /7 (1-4,]

where Gcap 1s the capability stress at the crack tip, defined as:

2y, (1-4,)
o = 2 h (2.44)

h

A= 24 (2.45)
Dy 8

Voilds cannot be considered to grow by alternative mechanisms
in this type of coupled mechanism since both of them are diffusion
mechanisms. However, regimes exist in which one or the other totally
controls void growth. The equations given for damage rate and strain

rate for these regimes are:

!
df AT
L tpoi——h— (2.46)
€ dt 003 n*3
!
H 3
Lde . ? Yo b0 Y (2.47)
€ . 3 %2 )
where #* is the tip radius, defined as:
) 3 (1-4,12 2 V7T o, &y 1n (1/4,) A7}
ho h [1 ; 1 _h h 0]2 -1} (2.48)

2 VT (1/4,) 8, v, (1-4,)3

and ¢a is given previously by equation (2.24).

The time to rupture can then be found by integrating equations
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(2.46) and (2.47) numerically.
The strain to rupture will be due to boundary diffusion alone

and is given by equation (2.21).

2.5.7 Comparisons Between Ashby's Vold Growth Theory and the

Kachanov/Robotnov Continuum Theory of Creep Damage

The theory of Kachanov and Robotnov was discussed previously
in Chapter 1, Section 1.2.3. The general equations for damage rate and
strain rate due to creep were given by equations (1.13) and (1.14). For
the purpose of the present comparisons, the equations are re-written using

the assumption n = g and m = &4 (Penny [1974]); therefore:

g
b (HM Ly

o = o ‘g, T-w (2.49)
. . %1 1 .n
¢ = & [E-—) (+—! (2.50)

0

where éo is a temperéture-dependent rate constant, like éo. Equations
(2.49) and (2.50) can, in their present form, be compared with Ashby's
void growth equations of power-law creep and diffusiomn.

The damage rate and strain rate equations for voids growing by

power-law creep were given in Section 2.5.3 (equations (2.26) and (2.27)).

Ifm=n, éo = £, and 5h is large, then the term -(1-6h) in equation

{2.26) can be neglected. Therefore, it becomes identical to equation
(2.49). However, if 6h is small, then the damage rate equations for the

two theories become:
Ot.m
c’.O

O = &0 ( (2.51)

df,
and: — = ¢ (2.52)
dt
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According to the continuum damage theory, the damage rate (equation (2.51))
is finite, even if there is no damage (w = 0), while Ashby's theory
predicts zero damage rate (non-existent holes do not grow).

The time to rupture can also be compared by integrating the

continuum damage rate (equation (2.49)) between the limits used in Ashby's

power-law creep mechanism (equation {2.19)), assuming m = n and @ = éo.

The result is:
(1-4.), o©
= 2 +—'(‘[_O)n (2.53)
;tR n (n-‘_].) éo 0'1

When 6L is large, equation (2.51) will be identical to the previously

integrated equation (2.30), because:

a 1 % n ”'ﬁi_l % n
n+ 17 €, In [(n+1] &] (0—11 = —— (=" = 0 (2.54)

. g
{n+1) €, 1

The rupture time will, therefore, be the nucleation time, tn' However,
when 6i is small, Ashby's power-law creep equation (2.30) will prediect
much longer lives because the holes, when small, grow more slowly.
Similar differences exist in rupture strains under the same conditions.
Under multi-axial loading conditions, the strain rate and the
damage rate are accelerated in Ashby's power-law creep mechanism by two
new terms which do not appear in the continuum damage theory. These are
the hydrostatic tension which enters through the term o (equation (2.28)),
and the grain size, d.
The boundary diffusion damage rate equation (2.16) can also be
compared with the continuum damage equation (2.49), assuming 6h = 1, which
makes the term 6h£ In (7/6hl = (T-éhl. Equation (2.16), with this

assumption and n = 1 for diffusion, becomes:

h . 00
E = ¢O SO (O__o‘ [mz) (2.55)
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If &, = ¢

0 o s M = 1 and 6h approaches 1, then equations (2.49)

and (2.55) are identical.  But when 6h is much less than 1, the two
equations differ significantly. Equation (2.55) predicts a damage rate
which decreases as damage grows, as shown in Figure 2.8(b}), while the
continuum damage equation (2.49) predicts a steadily increasing damage
rate.

Ashby's strain rate equation for boundary diffusion also
becomes identical to the cpntinuum damage equation (2.50)'when éh is close
to 1 and the holes are randomly distributed, £ = d. This makes the term

1n {1/6h) = (1-6h]; therefore, equation (2.17) becomes:

de _ : (071 ! (2.56)
dat % %o g r-gh .

As before, the two equations differ when 6& is small.
The same conclusion holds for the surface diffusion void
growth mechanism. When éh = 1, it predicts identical results to that of

the continuum mechanics theory but significantly different behaviour when
6h is small.
As a result of the comparisons between Ashby's void growth

theory and the continuum mechanics theory, the following conclusions are

made:

(a) Both theories are approximate.

(b) When 6h or w approach 1, both theories predict identical
behaviour,

{¢) When 6& or w are small, the results diverge significantly.

{d) The physical processes which can lead to fracture due to uni-
axial or multi-axial loading conditions can be explained more

consistently when using Ashby's theory.
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CHAPTER 3

FINITE ELEMENT ANALYSES

3.1 INTRODUCTION

This chapter déscribes a numerical procedure, based on a finite
element method, for calculating directly the steady-state stress
distributions in axi-symmetric and two-dimensional components subjected to
creep without the need to obtain solutions at intermediate time intervals.
An iterative procedure is adopted, in which the elastic material properties
are up-dated after each iteration until the final steady-state solution is
achieved,

Two elastic finite element programs were developed to include this
non-linear numerical method. One was used to solve axi-symmetric problems
and the second to solve two-dimensional plane strain and plane stress
problems. Two techniques for automatic mesh generation were used and

tests for convergence and accuracy were carried out.
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3.2 AXI-SYMMETRIC FINITE ELEMENT FORMULATION FOR SMALL STRAIN LINEAR

ELASTICITY

A detailed elastic finite element analysis for axi-symmetric bodies
is available in Fenner [1975], Zienkiewicz [1977] and Al-Faddagh, et al.
[1982] (Appendix A); In this section, a short summary of the important
linear elasticity equations are listed.

The relationship between stress and strain in terms of constitutive

equations is:

(el = [D] [e] ‘ (3.1}

where [o] and [e] are vectors of stresses and strains. [P] is the elastic

property matrix, defined as:

1 vty )
E* ‘J‘ ! \J* 0
0] = ——— (3.2)
1-v¥2 ¥ 1 i 0
| 0 0 0 11 - v¥)]

where E* and v*, being the Young's modulus and Poisson's ratio, modified

as for plane strain conditions:

*_.E * . vV
E* = — vEo= g (3.3)

To assemble the overall stiffness matrix, [K], for an axi-symmetric

body, the condition for equilibrium must be satisfied, so that:

[K1 [81 = [F] (3.4)

where [8] is the overall vector for displacement components, and [F] is

the overall vector for the externally applied forces.
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3.3 NON-LINEAR FINITE ELEMENT ANALYSES

Many problems of practical consequence exist, in which linearity in
material behaviour is not preserved. An example of this is the phenomena
of creep and plastic deformation, which cause the effective elastic
properties E and v fo vary with time or the local state of strain or stress.

The constitutive relation that describes this phencmenon is:

T = Cotz (3.5)

One numerical approach of solving non-linear problems is to use
equation (3.5) to obtain solutions at a series of time intervals, AX.
The advantage of this approach is that solutions are obtained not only at
the final time required, but also at a number of intermediate times.

A second approach is to treat the elastic properties as variables,
i.e. function of the local state of strain or stress. The solutions
obtained by this method are the initial elastic and the final steady-state

values.

3.3.1 Time Incremental Finite Element Analysis

It is a well-established fact that the main disadvantage of
using this method is the ability to select an optimum time interval during
the calculations.

Zienkiewicz [1977] suggested that choosing a small time
increment can, in many cases, guarantee convergence, This, however, in
situations where complicated solution domains are inwvolved, requires
excessive computing time to achieve fully converged solutiomns. On the
other hand, if the time increment is made too large, the computed solutions
will diverge from their true values,

Greenbaum and Rubinstein [1968] and Sutherland [1970], in
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their finite element creep analysis of plane strain, plane stress and
axi-symmetric bodies, reported that this numerical procedure becomes
unstable when the maximum effective creep strain for a time interval
exceeds the maximum effective strain. This condition limits the maximum
time increment that can be used for any time interval. They suggested
two equations for calculating time intervals. One of them is for the

initial time increment:

no E%"”)

At = (3.6)
0 10" o E

where n, M and C are material constants, T is the temperature, and E is

Young's modulus. The wvalue of n, falls within the following range:

0.04 < N, < 0.1 (3.7)
The second equation they suggested defines the current time
interval:
(8} n

Art = —_— (3.8)
(Aclamax

where n falls within the following range:
0.03 ¢« n ¢ 0.1 (3.9

Experience or a trial-and-error procedure are needed in order to choose
the specific wvalue of n, and n which depends upon the particular problem
investigated.
Hayhurst, Dimmer and Chernuka [1975] used an incremental
finite element method to investigate creep rupture behaviour of uni-axially

loaded tension plates containing a central circular hole. The multi-axial
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creep constitutive law used in the calculations was a Kachanov/Rohotnov
type of equation developed bwv Havhurst [1973a,b], and Leckie and Hayhurst
[1974]. They introduced in the finite element formulation a normalised

time-scale, 1, defined such that:

L n-
T = J' K E 9,

1
L) de (3.10)
where K is a material constant, E is Young's modulus, and 7, is the outer
- m
boundary stress. Hayhurst, et al. [1977a,b] used the condition £(%] = ¢
in a separate investigation of the behaviour of notched circular bars, in
the absence of tertiary creep, to derive the following expression for the

real time to steadv-state, tss:

100 5, 7,41/ ln+1]
P = [—‘} t* (3.11)

E

where t* is the time taken to achieve 1% creep strain in a uwni-axial test

conducted at the stress, o The steady-state solutions were subsequently

0"
used by Havhurst, Leckie and Morrison [1978] in approximate analvses of the
minimum sections of the same notches, which included creep damage or

tertiary creep. The solutions produced used the following approximate

strain rate field equation:

55
dui du{

dit di

)

) 4t (3.12)

. : . 55
where Ui is a generalised displacement and Ui is the steady-~state value.
The constitutive relations used in their calculations for describing damage

in secondary and tertiary creep were:

i b ' 8
= (3.13)
EO B(G/(:j; GO]

where éij/éo is the creep strain rate, W is a material constant, and the
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dimensionless function ¢ is convex, homogeneous of degree one in (Gij/col
and has the value of unity when 0{' is the uni-axial stress, a,- The
w=l-1F .
dimensionless variable t+ represents the current damage of the material and
takes the value zero at £ = 0 and decreases to unity at £ = iR. When
4 = 0, equation (3.13) reduces to the steady-state relationship. As time
progresses, } decreases and éij/éo increases to an infinite magnitude at
Y= 0, The rate of decrease of ¥ depends upon the stress rupture
criterion obeyed by the material. Three criteria were suggested, based
on the experimental results of multi~-axial stress creep rupture tests,

collected by Hayhurst [1972]. These were the maximum principal tensile

stress:

g
b o= - (maxyn (3.14)
b o,

where Tmax is the maximum principal tensile stress, and n is the stress

index in rupture law. The second criterion was the maximum effective

stress, so that:

. o3
v o= - ( max)ﬂ' (3-15)

Yy %

and, finally, for materials which obey mixed criteria, the rate of decrease

of ¢ is:
. A o {(1-A) o n
b o= - [ max 4 m“"] (3.16)
L L
where A is a material constant. The values of ¢ after each time interval
At were then determined from:
lP,t_,.M: = ‘\b’t + w’t at (3.17)

The time increment, AL, was determined from:
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P,
M = - % (3.18)

20 ¢,

where £ refers to the position where ¢ is a maximum.

This mefhod was generalised by Hayhurst, et al. [1977a,b] to
solve axi~symmetric problems. Elastic and steady~state stress
distributions in the throat of various notched bar geometries were
calculated. They were faced with the same problem associated with using
this method to solve complicated solution domains, i.e. excessive computing
time due to the large number of time steps required to achieve fully
converged solutions. Figure 3.1 shows the asymptotic approach of their
solutions to steady-state for a semi-circular and BS V-notch geometries.
It shows that complete stress redistribution in some complex geometries
cannot be achieved.

In 1978, Hayhurst, et al., used the steady-state solutions
obtained by Hayhurst, et al. [1977a,b] in a time incremental finite
element caiculation using the constitutive equation (3.13) for axi-
symmetric bodies. When the rupture condition was satisfied for an
element, i.e. ¢ = 0, the material was assumed to be no longer capable of
transmitting or withstanding force. The elements In their stiffness
matrix corresponding to the failed element were re-evaluated and a new
matrix was formed. They were able Eo show how damage propagates in the
throat of the notched geometries they investigated (Figure 3.2).

Hyde, Webster and Fessler [1980] used an axi-symmetric finite
element method to calculate the elasto-plastic and creep strain
distributions in a hemispherically ended cylindrical pressure vessel with
constant wall thickness. The elasto-plastic solutions were obtained using
an incremental load iterative procedure which 1s of no relevance to the

present method. However, their creep solutions were obtained by using a
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time incremental method applied after each load step. For the simple
geometries they investigated, the number of time steps required to achieve
steady-state were between 20 and 40. In their conclusions, they stated
that, although the computing requirements for these simple geometries were
modest, they could ﬁrove to be prohibitive for components with more
complicated geometries. Similar conclusions were also drawn from an

investigation on axi-symmetric shouldered tube components made by Dawson,

et al. [1981].

3.3.2 Non-Linear Finite Element Analysis Using an Iterative

Procedure

The non-linearity in this approach is introduced through
making the overall stiffness matrix [K] in equation (3.4) variable. A
new condition for equilibrium after each iteration has to be satisfied
until steady-state is reached. This is made possible by making the
elements representing the elastic properties in matrix [K] dependent on
the local state of strain or stress; therefore, equation (3.4) is now

written as follows:

[K{s}] [8] = I[F] (3.19)

When & = 60, the elastic solution is obtained. Convergence to steady-
state is achieved when the displacement components after the successive

iterations differ by only a small amount:

Z¢ {Iﬂqé|+|AVLI}

z, {lugl+ v, 1}

(3.20)

where AUL and AVL are the changes in the computed displacements between
the successive iterations. The tolerance, A, can take values of 1072 to

10"8, depending on the accuracy required. Figure 3.3 illustrates the
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convergence and divergence possibilities in using this method.
Needleman and Shih [1978] used this method to solve plane
strain and plane stress problems. In their analysis, the constitutive

relation they had to satisfy was:

g, = 99 (3.21)

where Sij and Eij are the stress and strain deviators, and ¢ is a potential

function which depends on the second invariant of strain, ¢, such that:

Cn E(nﬂ]/n

¢(E«(.j1 = auF 7 (3.22)
where: € = A € (3.23)
: 3 E;(',j.' '{‘-j .
C and n are material constants. Substituting equation (3.22) into
equation (3.21) gives:
s.. = Legli-nl/n (3.24)

L] 3 44

Equation (3.24) is identical to the general non~linear equation (3.19).
The variable matrix [K(&8}] is equivalent to-%C?lE*T_n]/n, which has to be
re-evaluated after each iteration. The stress deviator, Sij’ represents-
the applied force matrix [F], and €ij the displacement matrix [&].

The above method was modified by Kumar, et al. [1980] to solve
axi-symmetric problems. They examined problems such as axially cracked
cylinders under various applied loading, round bars with an intermal
circular crack subjected to remote uniform tension, and a notched round
bar in tension. The last case study was compared with the time

incremental steady-state solution of Hayhurst and Henderson [1977a]. They
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observed some difference in the axial stress distribution between the two
solutions, but similar trends. Their explanation for this discrepancy
was that the time incremental steady-state solutions would have relaxed to
their values if computation times were extended for a long enocugh time

period.

3.3.3 The Present Non-Linear Finite Element Analysis

The present finife element analysis is based on an iterative
procedure similar to that discussed in Section 3.3.2. The method of
solution in the elastic region is based on using the displacement as the
nodal point variables; therefore, the elastic modulus had to be expressed
as a function of the local state of strain during the successive iterations
needed to achieve steady-state. The Poisson's ratio, v, responsible for
incompressibility was initially made equal to the equivalent elastic value,
say 0.3, and then modified to 0.49 during the non-linear calculation.

The exact value of v = 0.5 cannot be used in solving axi-symmetric problems
by the present method because it will make the overall stiffmess matrix

[K] singular. The constitutive relation used in the present method was:

e = CT gt (3.25)
which may be inverted to give:

B € ,I/n
g = {m]-) (3-26)

An apparent or effective modulus, E', can now be defined, such that:

(3.27)

™m
[}
m|lal
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Substituting in equation (3.26) gives:

E' = .i:(TTC EI A E, (EE)”/”H (3.28)
(o}
where Eo is the effective modulus at some convenient reference strain, €o°
If n = 1, the modulus E' = Eo’ whereas for n > 1, E' will be a function of
the local state of strain. Before calculations can be made, it is
necessary to define the appropriate equivalent stress O and strain .
Either the Von Mises or the Tresca criteria can be used; this will be

discussed in the next section. The general procedure for the present non-

linear analysis is available in Appendix A,
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3.4 AXT-SYMMETRIC NON-LINEAR CALCULATIONS USING VON MISES OR TRESCA

CRITERIA

The Von Mises and Tresca criteria were used separately to calculate
the steady-state stress distributions for varlous axi-symmetric problems.
In this section, the necessary effective stress and strain equations for

each criterion will be given.

(a) Von Mises Criterion

In a polar coordinate system, the effective stress equation is:

g = f% [log, = opp)® + loy, = 0gg)? + logg-0,,1% # 6anz]}% 3.29

and the effective strain equation is:

T = {g-(g 2 4 2 4 ¢ 24 %f

3 'fzz iy 06 iis (3.30)

nz

where zz, A4 and 806 refer to axial, radial and hoop directions,

respectively.

(b) Tresca Criterion

According to Tresca (Section 1.3.2, equation (1.21)), the maximum and
minimum principal stresses have to be identified in order to calculate the
effective stress. The finite element method employed in this work is
based on the coordinate system 2z, #t4h, 68, which is not the principal one.
To transform it to the principal direction, the follawing cubic equation

has to be solved (Ford [1963]):
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3 _ 2 -
s S (Uxx+°yy+czz)

2 2 2 _ - i} _
S lry Ty * T Y%x gy~ yy 9zz " zz Ox!

2 _ 2 _

{ 2} = ¢ (3.31)

+ -
GXX. oy‘y UZZ 2 TJ(g Ty‘Z TZX UX.X. TgZ oy‘lj TZX. o'ZZ Txy
This cubic equation in a real physical situation has three real roots
which are the principal stresses, Ops Tgs Oz of the particular stress
system.

In the case of plane stress:
c = T = 1 = 0 (3.32)
Therefore, the cubic equation is reduced to:

2 ' L. 2] -
S S (oxx + agy) + (dxx Sy Txy ] 0 (3.33)

. = 1 - - 2 2
and: 0;,0, = 7 {(UXX+ny} 7 V(Uxx cy‘y) + 4'l’xy } (3.34)
In the case of plane straim:

Ty = ng = ( but 9,y £ 0 (3.35)
Therefore, the cubic equation (3.31) remains cubic and the roots have to
be found by a very complicated trial-and-error method.
Axi-symmetric problems are solved in this finite element method by
considering a two-dimensional solution domain lying in a radial plane

through the axis ¢f symmetry of the body considered. The hoop component
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of the stress is always normal to the two-dimensional domain. Therefore,
it is justifiable to calculate the three principal stresses

using the following equations:

= T — 2 2
01,9, = 7 {(°m+°zz} ¥ ﬁfu‘t-czz! *+ 4o, } (3.36)

and: O3 = Ogg (3.37)
The maximum and minimum principal stresses can now be identified and the
Tresca effective stress can be calculated.

Similarly, the three principal strains in a polar cocrdinate system

are:

2] _ 2 2
f1:%2 = 7 {(EM+EZZ) * ¢(€M—€ZZ] *enyt (3.38)
and: €3 = €

86

The Tresca effective strain can, therefore, be calculated:

E=%[e -e . ) (3.39)
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3.5 TWO-DIMENSIONAL FINITE ELEMENT ANALYSIS

In this section, the formulation of a finite element analysis for
two-dimensional plane strain or plane stress problems is described. The
necessary equations are formulated in cartesian coordinates (X,4,Z), shown
previously in Figure 1.4(a). A typical triangular finite element lying
in a two-dimensional solution domain is shown in Figure 3.4(a). The
global coordinates for the overall solution domain are X and Y, whereas x
and ¢ are local to the particular element. Figure 3}4(b) shows the
displacements of the typical element which are in the plane of, rafher
than normal to, the solution domain.

The same axi-symmetric finite element formulation for small strain
linear elasticity, discussed in Section 3.2, applies for the two-
dimensional problems. The difference is that the element strain

components are now expressed in terms of nodal point displacements, as

follows:
el = [e,, e, e 1 = 5— (8] [4] (3.40)
XX yy Xy ZAm m '
where: [, = [u, w., w, w, u w ]T (3.41)
m 4 AL 4 P 3 3
and: bi 0 bj 0 bk 0
[B] = 0 a; 0 aj- 0 @, (3.42)
a,i b‘{: a,j. bj ak bk

where [B] is the dimension matrix, and Am is the element area.

The relationship between the element stresses and strains also differ
since the hoop stress component is excluded from the constitutive equations,
therefore:

T

o] = [o,, Sy ny] = [D] [e] (3.43)
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where [P] is the elastic property matrix, defined as:

0 (3.44)
0 0 $(1-v*)

where E* and v* are the Young's modulus and Poisson's ratio, equal for

plane stress to:

E* = E and vEo= oy (3.45)

and for plane strain to:

Bt = & and V' = (3.46)
1-v2 I-v

Similar to the axi-symmetric analysis, plane strain problems for
incompressible material, where v = }, cannot be solved because matrix [D]
will become singular. However, it is possible to obtain solutions when v
is nearly equal to i (Al-Faddagh, et al. [1982]).

The same non-linear analysis discussed in Section 3.3.3 applies for
two-dimensional problems. The only difference is the formulation of the
effective stress and the effective strain equations.

For plane strain and plane stress, the Von Mises effective stress and

strain are:

(3.47)

al
|
raf -
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However, the correct values of E* apd v* {equations (3.45) and (3.46))
have to be chosen according to the type of problem. For plane strain
incompressible problems, the value of v is alsc chosen to be approximately
equal to }.

As previously discussed (Section 3.4), the Tresca criterion can only
be used for plane stress, otherwise the cubic equation (3.31) remains
cubic for plane strain. -

The Tresca effective stress and strain for plane stress is calculated

as follows:

TR

[(cxx-cyyjz + 4Txg2} (3.49)

al
[}
rof —

1
b

€ = % [{Exx-sgglz + sxy?—] (3.50)
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3.6 MESH GENERATION

Solution of the overall linear equations, which is equivalent to
inverting the stiffness matrix [K] in equation (3.4), yields the nodal
point displacements and hence stresses. An important consequence of
using constant strain triangular (CST) finite elements is that the method
of solution can be either a direct elimination type technique or an
iterative technique, such as Gauss—Seidel (Fenner [1975]). The latter
can be particularly useful when dealing with non-linear problems.

In this section, the techniques used for generating meshes of
triangular elements to suit the solution domain of the non-linear problems

considered will be discussed.

3.6.1 Mesh Data in Numerical Form

The main requirement of a finite element mesh is to fit the
shape of the boundary of the solution domain as closely as possible.
Factors such as element size, shape, distribution, and the numbering of
both elements and nodal points also need to be considered.

One way of providing the mesh data required by a finite
element program is to enter them on data cards. A considerable amount of
labour is involved in preparing these data. For any finite element
solution domain, the total number of elements and nodal points has to be
defined, as well as the X and Y coordinates of each triangu;ar element.
The data must, therefore, be carefully checked since mistakes are likely
te be made.

A better alternative would be to have a program to generate
the mesh data from a minimal amount of input data. In the present finite
element analysis, two automatyic mesh generation techniques were used;
these will be discussed in the coming sections.

The data generated using automatic mesh generation programs
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are saved individually in separate data files. These files are then
checked for suitability of element distribution and correct X and ¥
coordinates using the graphics facilities provided by the computer system.
If suitable hard copies or microfilms for each individual data file are
produced, the requifed axi-symmetric or two-dimensional non-linear solutions
are then obtained by calling any of the mistake-free mesh data files by the
main finite element program. The flow chart of this procedure is shown

in Figure 3.5.

3.6.2 Automatic Mesh Generation for Stress Concentration Problems

The listing of this program and the data required to generate
meshes for solving stress concentration problems is available in Fenner
[1975]. This program was used in the present two-dimensional finite
element program only to solve non-linear plane strain and plane stress
problems such as thick-walled cylinder subjected to internal pressure and
a hole in a plate subjected to uniform tension. The procedure followed
to generate the required meshes is shown in Figures 3.6(a) to {(d). Each

individual diagram in this figure is explained as follows:

{a) A square mesh of mainly isosceles triangular elements is
generated using a subroutine listed in Femmer [1975]. The
only input data required is the number of rows and columms.

(b} The coordinates of the basic square mesh are modified to
obtain the required boundary shape and element distribution.
Horizontal rows are modified to form an arc using the

following relation:

N cos @ (3.51)

XL = A gin 8 : Yy



(c)

(d)

3.6.3
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Since elements are to be concentrated near the edge of the
hole and the degree of this concentration is to be varied, a
scale factor, S, 1s introduced to define the radial width of

successive rows of elements as follows:

3 = 2 (3.52)

After this stage, the mesh data could be used as input in the
non~linear solution of a thick-walled cylinder subjected to
internal pressure.

The points adjacent to the ends of the outermost arc are moved
either vertically or horizontally to the edge of the domain
and extra nodal points are added on the top boundary to
complete the required shape of the solutlon domain.

This shape is the end result of the automatic mesh generation
procedure and could be used in solving non-linear stress

concentration problems.

Automatic Mesh Generation for Complicated Boundary Domains

A technique reported by Segerlind [1976] for automatic mesh

generation is discussed in this section. It was used effectively to fit

complicated solution domains from a small number of geometric parameters

in the present non-linear finite element calculations,

The essence of this technique is to divide the solution domain

into several quadrilateral regions, define the coordinates of the mid and

end points of each region, indicate how the separate regions are linked

together, and, finally, state how many rows and columns are required in

each region.

Figure 3.7 shows twc examples of finite element meshes

generated by this technique.
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3.7 TESTS FOR THE AXT-SYMMETRIC FINITE ELEMENT METHOD

The general calculation procedure followed to achieve steady-state in
axi-symmetric bodies and the tests for accuracy carried out on this method
are summarised in Appendix A. In this section, more information on these

tests is presented.

3.7.1 Thick-Walled Cylinder Subjected to Internal Pressure

This case study was chosen because the exact linear elastic
and non-linear creep solutions are available in the literature (Bailey
[1951]). Figure 3.8 shows the finite element mesh used for this example.
The case of R] = ZRZ was considered, where RI and RZ are the internal and
external radii of a thick-walled cylinder subjected to an internal
pressure, P, Figures 3.9 and 3.10(a) and (b) show the finite element
effective, hoop and radial stress distributions calculated for n =1, 2,
3, 9 and 100 using the Von Mises criterion. The exact hoop and radial
stresses given by Bailey [1951] are included in Figures 3.10(a) and (b).

In all cases, the computed stresses for Poisson's ratio equal
to 0.49 agreed with the exact solutions to within 0.3%Z, as shown in
Table 3.1.

This very satisfactory level of agreement was also reported by
Needleman and Shih in 1978, who investipated the same problem but for
complete incompressible materials. Their finite element hoop and radial
stresses, normalised with respect to the effective stress for n = 1, 3 and

100, and the present solutions, are shown in Figures 3.11l(a) and (b).

3.7.2 Comparisons with Bridgman and Other Finite Element Calculations

The present finite element method was used to calculate the
steady-state stress distributions across the throat of circumferentially

notched round tensile bars using the Von Mises criterion. The notch
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dimensions were chosen to enable comparisons to be made with previous
finite element calculations made by Hayhurst, et al. [1977a,b]l, and Kumar,
et al. [1980]. Bridgman's approximate plasticity solutions were also used
in the comparisons. The meshes required In the analysis were generated
using the method diécussed in Section 3.6.3. The diagrams showing the
various ways of calculating steady-state stress distributions for the

different notched geometries are available in Appendix A.

3.7.3 Creep Stress Analysis Using Von Mises or Tresca Criteria

Stress analysis can prove that the steady-state hoop and radial
stress distributions in a thick-walled cylinder subjected to internal
pressure, P, are the same when using either Von Mises or Tresca definitions
of the effective strain and stress in the derivation. Figure 3.12 shows
a schematic diagram representing this problem with an inner and outer
radii of R] and RZ' The boundary conditions for the radial stress, o,,

are:
A= RT , G, = -P : L= RZ s, o, = (0 (3.53)
For secondary creep, the strains in the Z and 8 directions are:

e, = cgmT) [0, - %{084‘0}1}] (3.54)

m
1]

—{n-1) 1
Co [ce ?(cn'?cz)] (3.55)
The condition for equilibrium is:

dcl
Gg = 0, = n— (3.36)
dn



-89 _

and compatibility is:

g, - &, = - A —-— (3.57)

For plane sections to remain plane, dszfdh = 0, and therefore equation

(3.54) led to:

do do, do
Z-%( 8+ 2y - --—(-Ei—l-)-[cz--;-(ce+cn)]g (3.58)
dr dvn  dn o
Assuming bullt-in ends, i.e. e, = 0, gives:
1
g, = 7(00-*cn] (3.59)
do do do
Therefore: -z = %———§-+ %———E (3.60)
dn dr dt
Substituting equations (3.60), (3.57), (3.55) and (3.54) in equation
(3.58) gives:
‘ do, do
3 _ 3 8_" (n-1]) - o
Flog-o,} = Zﬂ-[(dﬂ dﬁ_}+ = (og °:L}% (3.61)
Substituting in equation (3.56) gives:
do da
U P - (3.62)
dn di g

Equation (3.62) cannot be integrated umntil ¢ is defined. Using Tresca's

definition:
g = a4 - Ty
(3.63)
therefore: do = ESE - do
* T
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Equation (3.62) becomes:

do da do. do
LA SO PP B T A SN (3.64)
dn dn dv  dr

The Von Mises definition of o is:

1]

- 2 2 2|?
7 = [Hog-0,12 + log=0,1% + (o, -5, (3.65)
Substituting equation (3.59) in equation (3,65) gives:
-a,l (3.66)

If equation (3.66) is substituted inm equation (3.62), the result will be a
similar equation derived using Tresca's criterion (equation (3.64)).
This indicates that the stress distributions are the same.

This fact was confirmed when a similar mesh geometry to that
shown in Figure 3.8 was used in the finite element program to calculate
the hoop, radial and effective stress distributions using Tresca's
eriterion for n = i, 3 and 100. Identical results were obtained to those

shown previously in Figures 3.9 and 3.10.
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3.8 TESTS FOR THE TWO-DIMENSIONAL FINITE ELEMENT METHOD

The numerical procedure used in this method to achieve steady-state
is similar to that used in the axi-symmetric analysis. In this section,

the case studies chosen to test the accuracy of this method are presented.

3.8.1 Comparison with an Exact Solution

The exact elastic and non-linear solutions presented previously
in Figures 3.9 and 3.10 for a thick-walled cylinder subjected to an
internal pressure were used in this comparison. Plane stress and plane
strain solutions for n =1, 2, 3, 9 and 100 were calculated for a quarter-
segment of a thick-walled tube shown in Figure 3.13. The finite element
mesh was generated using the method described previously in Section 3.6.2.
The uniform internal pressure was represented by two components, Px and Py,

which act on the nodes describing the inner surface of the cylinder. Px

vary from zero at ¢ = %/Z to one at ¢ = 0, and P, from one at ¢ = n/? to

Y
zero at ¢ = 0. The square root of these pressure components has to
always equal one; this represents the wvalue of the applied internal

pressure:

P = VP, +P =1 (3.67)

The hoop and radial stress distributions calculated using this
method for both plane strain and plane stress situations were similar to
those presented in Figures 3.9 and 3.10, Some tabulated results for
n=1, 3 and 100 at ¢ = 0 are listed in Table 3.2. The computed stresses
agreed with the exact solutions to within 0.9%, which is higher than the
0.3% obtained in the axi-symmetric calculations. This is because the
real ¢ in the centroid of the elements in the bottom row is not exactly
equal to zero. Te correct this, the small angle between $ = 0 axis and

the centrold of each element has to be considered. This, however, is not
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necessary for the level of accuracy achieved which is still very

satisfactory.

3.8.2 Hole in an Infinite Plate

The case of a hole in an infinite plate subjected to a uniform
tensile stress was considered. The two-dimensional plane stress
incompressible solutions for n = 1, 3 and 20 were compared with those
calculated by Needleman and Shih [1978]. The mesh used in the present
calculations is shown in Figure 3.14. It was generated using the
technique described in Section 3.4.2 for stress concentration problems.
The elastic and the non-linear normalised axial stress distributions,

calculated by both method agree perfectly, as shown in Figure 3.15.
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3.9 CONCLUSIONS

The conclusions for this chapter are:

Two finite element programs have been developed to calculate the
steady-state stress distributions in axi-symmetric and two-dimensional
bodies. The listing of these programs is available in Appendix B

and Appendix C.

The iterative procedure used in calculating the steady-state stress
distribution directly by means of an effective modulus, E', is
consistent with exact, approximate non-work hardening plasticity

solutions, and other numerical procedures.

The efficient techniques used in generating meshes from a small
number of geometrical parameters makes it possible to use these
programs to calculate the steady-state stress distributions for

complicated solution domains.

These programs can be used to calculate steady-state stress

distributions using either the Von Mises or Tresca criteria.

This method of calculation is not restricted to the assumption of
secondary creep. Provided the variables of stress and time are
separable in the creep law, solutions for primary, secondary and

tertiary creep can be obtained.
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TABLE 3.1

Selective Comparisons Between Exact and Computed Solutions for a

Thick-Walled Cylinder Subjected to Internal Pressure Using

the Mesh Shown in Figure 3.8

n=1
Radius, &/Rz Hoop Stress, GBG/P Radial Stress, Uk&/P

Exact | Computed | # Error Exact Computed | # Error
0.515 1.5914 | 1.592 0.03 -0.9249 | -0.9255 0.065
0.75 0.9259 [ 0.9259 0 -0.2592 | -0.2589 0.115
0.985 0.6767 | 0.6766 0.014 | -0.01 -0.01 0
7/R, n=3
0.515 0.8189 | 0.821 0.256 | -0.9481 | -0.9489 0.084
0.75 0.9583 | 0.9588 0 -0.3599 | -0.3609 0.277
0.985 1.129 1.126 0.265 | -0.0167 | -0.01677 | 0.179
2/R, n = 100
0.515 0.4941 | 0.4953 0.242 | -0.9578 | -0.9585 0.073
0.75 1.0276 | 1.0276 0 -0.4138 | -0.4144 0.145
0.985 1.412 1.409 0.212 | -0.02128 | -0.0213 0.094
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TABLE 3.2

Selective Comparisons Between Exact and Computed Plane Strain and

Plane Stress Sclutions for a Thick—Walled Cylinder Subjected to

Internal Pregsure Using the Mesh Shown in Figure 3.13

n=1
Radius, n/RT Hoop Stress, Uee/P Radial Stress, onn/P
Computed | Exact | % Error | Computed Exact % Error
1.063 1.5425 |[1.5425| 0 -0.864 -0.8632 0.1
1.511 0.9327 ; 0.9345 | 0.193 -0.2556 | -0.2553 0.117
1.892 0.7187 | 0.719 0.043 -0.0395 | -0.03968 | 0.4
JL/RJ n=73
1.063 0.8603 | 0.8534 | 0.808 -0.9033 | -0.909 0.63
1.511 1.0304 {1.0377 | 0.703 -0.3529 | -0.3558 0.815
1.892 1.126 1.1348 | 0.775 -0.0643 | -0.0648 0.77
1/R, n = 100
1.063 0.55 0.5458 | 0.77 -0.9366 | -0.9291 0.807
1.511 1.0479 |1.0532; 0.503 -0.415 -0.4114 0.875
1.892 1.364 1.375 0.806 -0.0836 | -0.083 0.723
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Figure 3.9: Elastic and steady-state effective stress distributions in a
thick-walled cvlinder subjected to internal pressure
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B

Figure 3.12: Schematic diagram of a thick-walled cylinder subjected to
internal pressure, F

Figure 3.13: Finite element mesh of a quarter segment of a thick-walled
cylinder; RZ/RI = 2
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Figure 3.14: Finite element mesh for a quarter segment of a hole in an
infinite plate
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Figure 3.15: Axial stress distributions aleong © = 3.75 for a hele in an
infinite nlate



107 _

CHAPTER 4

FINITE ELEMENT CASE STUDIES FOR COMPLEX GEOMETRIES

4.1 INTRODUCTION

This chapter déscribes in detail the elastic and steady-state finite
element calculations, using the axi-symmetric and the two-dimensional
programs developed in Chapter 3. The axi-symmetric problems considered
were mainly a selection of various notch bar geometries under remote
uniform tension. The elastic and steady-state stress distributioms in
the notched region for different wvalues of creep index, R, are Investigated.
A speclal case was also considered, that is of blunt and sharp double
notches under the same loading conditioms.

The two-dimensional case studies considered were three compact temnsion
specimens containing different circular hole sizes in the crack plane.

The stress concentration factors and the stress distributions for each

geometry were estimated for different values of n.
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4.2 BRIDGMAN'S ANALYSIS

An approximate method of estimating both the stress and strain
distributions when fully plastic conditions are reached in the minimum
gection of a2 necked tensile specimen was first suggested by Bridgman
[1952]. TFinite elément analysis by Hayhurst, et al. [1977a,b] and
Al-Faddagh, et al. [1982], for materials undergoing creep deformatiom,
showed that Bridgman's distributions are applicable for notched bar

geometries with the following reservations:

{(a) The variation in the axial component of the stress across the
throat must be small, i.e. applicable only for blunt notches
{(low tri-axiality).

(b) The creep stress index, #, must be higher than 9.

The assumptions made by Bridgman to derive the final distribution

equations were:

i) The Von Mises condition has to be satisfied.
ii) The plastic deformation in the necked region dominates the
total behaviour of the tensile specimen.

iii) The radial and hoop stresses in the necked region are equal.

Figure 4.1 shows a schematic diagram of the Bridgman stress‘and
strain distributions in the threat of a circular notched bar. The

normalised stress distribution equations, with respect to the nominal

stress, Gnom’ are:
o = n 7ar ‘

hom
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The effective stress distribution equation using Von Mises is:

a . f
nom

The effective plastic strain distribution equation is:

ao
] 2 —
Sp In (a)

where ao and a4 are the initial and current throat radii.

The Bridgman analysis also shows that the effective stress for

different notched geometries is a function only of geometry and o

that:
—_ -1

a 2R a
- = [(I-!--a—} 1n (I+7-§]]

a

(4.2}

(4.3)

(4.4)

such

(4.5)
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4,3 NUMERICAL ESTIMATES FOR NOTCHED BARS

Finite element methods have been used successfully to calculate
steady-state stress distributions in the threat of wvarious notched bar
geometries (Hayhurst, et al. [1977a,b], Kumar, et al. [1980], and
Al-Faddagh, et al. t1982]). In this section, the axi-symmetric program
developed in Chapter 3 was used in a systematic method of calculationm,
where the notch dimensions and the stress index, n, were varied to vary,
accordingly, the tri-axial state of stress and the steady-state stress
distribution in the notched region. The automatic mesh generation
technique discussed in Section 3.6.3 was used to generate the meshes

required for the calculations.

4.3.1 Geometries Considered

Figure 4.2 shows the dimensions and the boundary conditioms
of a finite element mesh representing a typical notched bar solution
domain. In the present calculations, the ratio b/a was kept constant and
the notch radius, R, was varied, therefore changing the ratio a/R. When
afR = 0, the case represents a uni-axial round bar with a diameter equal
to b. As a/R or notch sharpness increases, the tri-axiality in the
notched region increases accordingly. Three groups of notched geometries
were investigated, each having a different b/a ratio. They comsist of a
total number of 23 notches which are listed in Table 4.1.

The reason behind choosing these particular b/a ratios was that
experimental uni-axial and notched rupture data are available on each omne

of them. These are summarised as follows:

(a) For b/a = 1.67, unl-axial and notched rupture data are
available in the literature on the brittle 1%Cr i#Mo 1%V steel

due to the investigation conducted by Ng, Webster and Dyson
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[1980}. The range of notched geometries they investigated
was between a/R = 0 and a/R = 18.

(b) For b/a = 1.46, uni-axial and notched rupture data were made
available due to the experimental investigation conducted by
the preéent author (Chapter 6) on the ductile 2{%Cr 1%Mo steel.
The range of gecmetries investigated was between a/R = 0 and
a/R = 44.7.

(¢) Tor b/a = 1.33, uni-axial and notched rupture data are
available in the literature on a wide range of high temperature
alloys with different grain size, hardness, ductility, and heat
treatment. These data were collected by Dawvis and Manjoine
[1953] for a range of notched geometries having 4/R = 0 to

a/R = 50,

4.3.2 Calculations

The boundary conditions applied in the calculation procedure
for all the notched geometries investigatedrare similar to those presented
in Figure 4.2. A uniform axial stress, oom, was applied at the specimen
remote boundaries. The specimen axis was constrained to move only in a
vertical direction, while the notch throat was prevented from moving
vertically. The finite element mesh distribution for all geometries was
carefully designed, so that it was finest where the stress gradient and
the geometrical changes were greatest. A tolerance, A, of 107° (equation
(3.20)) with 476 elements representing the total solution domain, in which
the notch throat was divided into a row of 28 elements, was found to give
satisfactory accuracy during the whole calculation exercise.

The finite element results for all the notched geometries

representing the three b/a ratios cannot be included in this chapter due
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to the large space they would occupy. However, samples of these results
showing broadly the changes in trends due to the increase in tri-axiality
are summarised in Figures 4.3 to 4.20. Only the stress distributions
across the minimum diameter of the throat region are presented, since this
section is the most‘critically loaded, and may, therefore, be expected to
determine the deformation and fracture characteristics of such samples.
Both Von Mises and Tresca effective strain and stress
definitions were used in the calculations. A value of v = 0.49 was

adopted to avoid making the [D] matrix becoming singular {equation (3.2)).

4.3.3 Discussion
The way in which the sample results were presented for each

b/a ratio investigated was as follows:

(a) Three finite element meshes were first presented for each b/a
ratio. These were a blunt, sharp, and a geometry with a/R
lying between these two extremes (Figures 4.3, 4.9 and 4.15).

(b) The normalised elastic and steady-state effective stress,
EYcOm, across the throat of a blunt and a sharp notched
geometry using the Von Mises criterion are presented in
Figures 4.4, 4.5, 4.10, 4.11, 4.16 and 4.17. TFor b/a = 1.67,
the distributions were for two notched geometries with
a/R = 0.75 and 20. The calculations were made for n = 1, 3,
5, 9 and 16, as shown in Figures 4.4 and 4.5. For b/a = 1.46,
the distributions were for a/R = 1 and 32.5, with values of
n=1, 3,5 and 9 (Figures 4.10 and 4.11). Finally, for
b/a = 1.33, the distributions were for a4/R = 3 and 30, and
values of n = 1, 3, 7 and 12 (Figures 4.16 and 4.17). For

all these geometries, o is always maximum at the notch root
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for all values of #. The magnitude of the maximum effective

stress, O

mex decreases with the increase in 1, and the whole

stress distribution nearly levels out when n > 9. For these
and other notch geometries when # > 1, there is a tendency for
the effective stress distribution to cross at almost the same
value of #/a, implying an approximate point of constant stress,
often called a skeletal point (Penny and Marriott [1971}).
The position of the skeletal point varies between 4/a = 0.6
and 0.95, as shown in Table 4.2 for the three b/a ratios.
For blunt notches, it tends to be nearer to #/a = 0.6, and for
sharp notches nearer to %/a = 5.95. Similar trends were
obzerved when Tresca's criterion was used in the calculations.
The distributions for all values of 1 were parallel to those
when the Von Mises criterion was applied. Examples of this
are shown in Figures 4,10 and 4.11, The maximum difference
between the values of the effective stress at the skeletal
point for the sharp notches is always less than 15%. For
blunt noteches, the difference is nearly negligible (uni-axial).
This is consistent with the plasticity flow rules which show
that, for a material with a uni-axial yield stress, Y, the
difference between the normalised stress, o/Y, and shear
stress, /Y, in pure tension is zero when either the Von Mises
or Tresca criterion is used. However, the difference is about
15.5% (corresponding to the difference between 0.5 and 0.577)
in pure torsion (Johnson and Mellor [19753]).

The presence of a skeletal point may enable the stress
there to be used as a reference stress to characterise the
overall deformation behaviour of the notched bars, provided

sufficient time exists for a steady-state creep stress
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distribution to be achieved,.

The steady-state stress distributions across the throat of two
notched geometries for each b/a ratioc when the Von Mises
criterion was adopted are presented in Figures 4.6, 4.7, 4.12,
4.13, 4.18 and 4.19. In these figures, the normaliéed,
effective, Eycam, axial, UZZ/GOm’ hoop, cee/com, radial,
cnn/cow, and the hydrostatic, cm/com, stresses are plotted for
different notched geometries and values of n. The line marked
with * in these figures refers to the skeletal point position
taken from the graphs of the corresponding effective stress
distributions. As discussed in part (b), the effective stress
distribution is always maximum at the notch root for all

values of n. However, for the axial, hoop, radial and
hydrostatic stresses, the maximum values move from the notch
centre-line, £~ = ¢, for blunt notches, towards the notch root,
i = 4, as the notch sharpness increases. Similar trends were
previously observed by Hayhurst, et al., [1977a,b], Kumar, et
al. [1980], and Al-Faddagh, et al. [1982].

Finally, Figures 4.8, 4.14 and 4.20 show how the state of
stress parameters at the skeletal point vary with the increase
in tri-axiality for the three b/a ratios investigated. The
values of the axfal, effective and hydrostatic stresses at the
skeletal points for each notched geometry of a particularlb/a
ratio are normalised with respect to the nominal stress across
the notch throat, Unom' A fourth ratio of Um/E'is also shown.
The trends these states of stress followed are the same for the
three b/a ratios. The effective and axial stresses are

normalised as Unom/g-and o /d], to show notch strengthening

nom

and weakening for materials in which internal damage
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accumulation rates are dominated either by the effective or
the axial stress (Hayhurst [1972], Leckie and Hayhurst [1974],
and Dyson and McLean [1977]). A tendency for the effective
stress to decrease when either the Von Mises or Tresca
criteribn is adopted, and both the axial and hydrostatic
stresses to increase, is observed when the tri-axiality
inereases (a/R). The ratio Um/a-has been used in plasticity
and power-law creep failure mechanisms to describe the
geometrical tri-axial state of stress (Hancock and Mackenzie
[1976], Needleman and Rice [1980], and Cocks and Ashby [1980bl).
Um/E.is plotted in these figures to be used in the coming
chapters in modelling notched bar behaviour. At a/R =0

(uni-axial), dm/3'= 1/3, and this ratio increases with a/R.
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4.4 CASE STUDY: THE INFLUENCE OF DOUBLE NOTCHES IN ROUND BARS ON THE

STEADY-STATE STRESS DISTRIBUTIONS

Circumferentially notched bar specimens, loaded axially, are
frequently used in laboratories to study the effect of tri-axial stressing
on creep deformation and life time. For physical metallurgists concerned
with understanding the mechanics of high temperature fracture micro-
mechanisms, these geometries are of considerable interest. The
distribution of grain boundary creep damage is usually analysed away from
and near to the fractured surfaces of the notched bars. However, if the
notched region is tco be analysed before fracture, interrupted tests have
to be performed, which means two specimens for each notched geometry have
to be manufactured. More material and testing times are therefore needed.

Loveday and Dyson [1979] suggested that if two accurately
manufactured, circumferential notches are machined in on the specimen,
then creep deformation in the two notched regions should be identical up
to about O.BIR. The weaker notch then will dominate until fracture.

They used this techﬁique to measure the diametral displacement occurring
at one notch throat using a special type of extensometer designed by
Furse and Loveday [1981]. They calculated the current hoop strain using

the measurements, as follows:

£ = (4.6)

where ao and a are the initial and current notch radii, respectively.

The experimental steady-state time and hoop strain rate, Iéé and éee, were
estimated and compared with the theoretical predictions based on Hayhurst,
et al. [1977b] steady-state finite element calculations. The same notched

data were later used by Dyson and Loveday [1980] to study creep fracture

under tri-axial tensile stressing. They used Bridgman's effective stress
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equation (4.5) to calculate the term [(! + 2R/a) 1n (1 +a/2R)]~!, required to
convert the net section stress in the notch, to become equivalent to the
uni-axial stress.

The interesting observation made in reading the literature on double
notches is that thelfinite element calculations and the Bridgman analysis
used predicts the deformation and fracture behaviour of a single notch.
There is no informaticn in the literature teo justify using single notch
analysis in a comparison with double notched experimental data.

In this section, the axi-symmetric program developed in Chapter 3 was
used to calculate the elastic and steady-state stress distributions in a
single and double notched bar geometries. The geometries considered and

the comparisons made are presented in the coming sections.

4.4.1 Geometries Considered

Four double notched round bar geometries were considered;

these were:

(a) British Standard V-notch; a/R = 18.18, b/a = 1.41
(b} Semi-circular notch; a/R = 1.5, b/a = 1.67

1.67, b/a = 1.46

{¢) Blunt notch; a/R

It

(d) Sharp notech; a/R = 13, b/a = 1.46
The BS and semi-circular notches (a) and (b) were considered
because they have been widely used in many analyses to show the difference
in creep behaviour between a sharp and a Bridgman-type notch (Hayhurst, et
al. [19772,1978], Kumar, et al. [1980], and Al-Faddagh, et al. [1982]).
The two other notched geometries (c) and (d) have a similar
b/a ratio to those experimentally creep tested notched geometries

investigated by the present author (Chapter 6). Again, two extreme



-118 _

geometries were considered, a blunt and a sharp notch.

The finite element meshes were generated using the program
discussed previously in Section 3.6.3. Because of symmetry, only a
quarter of the solution domain is considered, as shown in Figures 4.21(a)
and (b). The différence in the boundary conditions applied during the
calculations for a BS double and a single V-notched geometry is shown in
Figures 4.21(b) and {(c). Figures 4.21(d) to (f) show the other geometries

considered, for which the same boundary conditions apply.

4.4.2 Calculations and Discussion of the Results

Calculations have been made for values of 1 = 1 and 9 for all
the geometries investigated. The same wvalue of Uom was applied for the
single and the double notched geometries. The stresses in the minimum
section of the double notched geometries were averaged for the two rows of
elements in that region, the results of which are shown in Figures 4.22 to
4.25 compared with the single notch distributions. It is evident that
the elastic stress distributions were identical for both geometries, For
n =9, the distributions differ slightly for the two blunt notches;
however, the margins are always less then 1% (Figures 4.23 and 4.25). In
the case of the two sharp notches, the error margins near the notch root
where the stresses peak are always less than 2% (Figures 4.22 and 4.24).
These errors are acceptable for two reasons: first, only 24 elements were
used across the throat of the double notched geometries compared with 28
elements for the single notch; this obviously reduces the accuracy. If
28 elements are used in the double notch solution domain, the array lengths
will exceed the 500 limit set in the program. The second reason is to do
with the double notch geometry and the way the boundary conditions are

applied.
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4,5 NUMERICAL ESTIMATES FOR COMPACT TENSION SPECIMENS

In the field of fracture mechanics, it is a well-established
laboratory technique to use compact tension specimens to collect crack
growth data on materials operating under creep conditioms.

Morzeria [1979] carried out creep cracking tests on a low alloy steel
at 565°C using compact tension specimens with notches of various
sharpnesses. The reason behind introducing these notches was to examine
the dependence of the initiation and propagation rate of a creep crack on
the root radius. His conclusions were that the initial cracking rate
decreases with increase in hole size.

Webster and Nikbin [1981] used the boundary integral equation method
(BIE) to estimate the effective elastic stress concentration factor (SCF)
at the edge of the hole for three of Morzeria's compact tension geometries.
Their results showed that the elastic SCF is highly sensitive to notch
sharﬁness. For materials where the crack initiation time is smaller than
the redistribution time (mainly brittle materials) due to creep, they
showed that the initial crack growth rate is highly sensitive to the
elastic SCF. However, for ductile materials, the redistribution time is
expected to be much shorter tham crack initiation time; therefore, the
steady-state SCF at the edge of the hole has to be used in the
calculations. For this reason, the two-dimensional finite element program
developed in Chapter 3 was used to calculate the steady-state stress

distributions for the geometries Webster and Nikbin investigated.

4.5.1 Compact Tension Geometries

The main dimension of a compact tension specimen is shown in
Figure 4.26. Three geometries were considered in the finite element
analysis with ratios of d/w = 0.2, 0.133 and 0.066, The dimension W was

kept constant and the notch sharpness was increased by decreasing d.
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Becaﬁse of symmetry, only half of the geometry was considered as a solution
domain. The finite element mesh generation program discussed in Section
3.6.3 was used to generate the required meshes, shown for the three
geometries in Figure 4,27. Experimentation with progressively finer grid
sizes has shown tha£ satisfactory accuracy is achieved with approximately
480 elements and the crack line divided into a row of 28 elements. The
stress was applied on four elements representing a segment of a circle
similar in profile to the loading pins in the real specimen. This was

found to be adequate to produce the required solutions.

4.5.2 Estimates of the Nominal Stress, ¢

nom

The definition of the stress concentration factor is:

SCE = Local sthess 4.7)
“nom

The nominal stress for the compact tension specimen consists
of the tensile stress on the net section, Tps added to the bending stress,

Ops 38 shown in Figure 4.26(b). The equation for each one of them is:

N F
% T B w-a (4.8)
and: % 3F (w+a) (4.9)
B (w-a)2

where F is the applied force, and B is the specimen thickness. Both w and

4 are shown in Figure 4.26. The nominal stress, Com® is therefore:

F {dw+ 2a)
B (w-a)?

g = 04 ¥ oy {(4.10)

The SCF can then be calculated using equation (4.7).
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4.5.3 Calculations and Discussion of the Results

Elastic and steady-state calculations were made for each of
the three compact tension geometries for values of n =1, 3 and 9. The
normalised axial stress distributions, Ggy/cnom’ in the crack line region
for each geometry afe summarised in Figures 4.28 to 4.30. Finally, the
SCF at the edge of the hole for each geometry and N are presented in
Figure 4.31.

The calculations were performed, assuming plane stress
conditions and incompressible material behaviour, i.e. v = 0.5. The Von
Mises criterion was adopted and a tolerance, A = 10_5, for all the
calculations. Several elastic computer runs were performed for each
geometry to find the optimum over-relaxation factor used in the Gauss-
Seidel iterative method adopted in the program to solve the linear
simultaneous equations (Fenner [1975]). The values were found to vary
between 1.94 and 1.98, depending on the geometry.

The normalised axial stress distributions shown in Figures
4.28 to 4.30 for © = 1 have similar trends for all three geometries. The
maximum is always near the hole edge; however, it increases in value with
the increase in hole sharpness. For values of n > 1, the stress
redistributes and the maximum tends to move away from the hole edge. The
trends observed are similar for all geometries, Initially, at time zero
on first loading, and in the absence of plastic deformation, the stress
distribution is elastic. As creep takes place, regions of high stress
shed load onto the lower stress regions because of the high sensitivity to
stress of creep deformation. The extent of the stress redistribution
that takes place in order to achieve steady-state conditions Increases
with increase in the value of n.

The elastic and steady-state SCF are presented in Figure 4.31

for the three compact tension geometries. The elastic SCF is compared
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with Webster and Nikbin's [1981] BIE predictions which shows identical
trends and values to the present calculations. For values of n > 1, the
SCF becomes less sensitive to the notch sharpness, therefore making crack

initiation much more difficult.
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4.6 CONCLUSIONS

Calculations have been made for a range of circumferential notch
geometries and values of n to determine the steady-state stress
distributions across the notch throat region using an axi-~symmetric finite
element program devéloped and tested in Chapter 3.

A skeletal point at which the effective stress remained constant,
independent of 1, was observed for each notch dimension investigated.

The value of the effective stress at the skeletal point can be used as a
reference stress to characterise the overall deformation behaviour of the
notched bars, excluding situations where a dominating crack can cause a
premature failure and when steady-state is not achieved.

The variation of the effective, axial and hydrostatic stresses at the
skeletal point as notch sharpness increases were plotted for three b/a
ratios. Similar trends were observed which could be used in continuum
mechanics and microstructural models to explain notch strengthening and
weakening.

Finite element calculations have been performed to investigate the
influence of having two notches in a round bar on the stress distributions.
The results showed satisfactory agreement with the single notch finite
element predictions. These findings make it justifiable to use either
single or double notch solutions in further theoretical studies on creep
behaviour of notched bars.

Three compact tension specimens with different notch sharpnesses were
investigated using the two-dimensional finite element program developed in
Chapter 3.  Elastic and steady-state axial stress distributions and
stress concentration.factors were estimated. The results showed that for

ductile materials, crack initiation is not sensitive to notch sharpness.
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TABLE 4.1

The Finite Element Notched Geometries Investigated

b/a a/R
1.67 10.75 (1.5 2 4 6.66 10 15 20 - -
1.46 | 0.5 1 1.67 2.6 5 8.125|111.818 | 13 |16.25| 32.5
1.33 1 3 6 13.125 30 - - - - -
TABLE 4.2
Effective Stress Values at the Skeletal Point When
the Von Mises Criterion is Adopted
b/fa = 1.67 b/a = 1.46 b/fa = 1.33
a/R | k/a* 9 om! 9F a/R njax 9 om’ O a/R nlax Spom’ O
0.7510.68 1.2 0.5 0.645 1.1¢9 1 0.6 1.195
1.5 | 0.675 1.35 1 0.65 1.242 3 0.765 1.384
2 0.685 1.435 1.67 0.73 1.352 6 0.833 1.468
4 0.7653 1.56 2.6 0.755 1.443 13.125 | 0.87 1.508
6.66 | 0.818 1.665 5 0.81 1.553 30 0.91 1.539
10 0.85 1.737 8.125 | 0.84 1.606
15 0.87 1.788 11.818 { 0.86 1.608
20 0.895 1.79 13 0.873 1.618
16.25 | 0.895 1.621
32.5 0.93 1.624

* Position of the skeletal point
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Figure 4.2: A typical notched bar solution domain
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Figure 4.4: Effective stress distribution at steadv-state across the
throat of a notch with b/a = 1.67 and a/R = 0.75
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Figure 4.6: Stress distribution at steady-state across the throat of a
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NS
NSNS

—9gl

a_a/R=1 b_a/r = 13.125 C— a/R = 30

Figure 4.15: A selection of finite element meshes for the notch geometries with b/a = 1.33



— 137 _

s o Y T ] I I } ¥ ] !
o b
-‘_‘-
o 2.9 at nfa = 1
w n
0
o
o]
o 2}
Q
=4
-'-i o
o
w
)
u
W L
[1}]
)
o
) »
-
©
E
o
(=]
=
1
5 i 1 | i ] 1 | 1 | i i
0 .2 t4 .6 08 1

0

Normalised effective stress, U/OG

Normalised radial distance, 4/a
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Figure 4.17: Effective stress distribution at steady-state across the
throat of a notch with b/a = 1.33 and a/R = 30
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Figure 4.22: Stress distribution at steady-state across the throat of
a single and double semi-circular notch with b/a = 1.67,
a/R = 1.5 and for n = 1 and 9
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Figure 4.23: Stress distribution at steadv-state across the throat of a
single and double BS V-notch with b/a = 1.41, a/R = 18.18

and for ¥ = 1 and 9
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Figure 4.24: Stress distributions at steady-state across the throat of
a single and double notched bar specimen with b/a = 1.46,
a/R = 1.67 and for n = 9
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a/R = 13 and for n = 9



~144 _

\
—_———— N

area (crack-
plane)

|
|
|
|
|
I
J S P

Q _ Three-dimensional view of a compact tension specimen

AF
TF
N H
|

N . ["- Direct stress

~ = Bending stress
d N 8

4

;——————’X

Fy

b _ Direct and bending stress distribution in ligament section of
a compact tension specimen

(v —_—

Figure 4.26: Compact tension specimen



145 _

g
= e
/
; !
I A== pi
(a) /W= 0.2
]
: |
(b) d/W = 0.133
>
\\\[\\\/\\\d/
d

‘ =

(c) d/v=0.066

Figure 4.27: Finite element meshes and their boundary conditions for
compact tension specimens



Normalised axial stress, ©

g /o
’ gg/ seni

Normalised axial stress

N

-h

— 146 _

1 1 1 | L 1 L {

«35

Figure 4.28:

.4 .45

Normalised distance, x/W

Axial stress distribution at steady-state across the crack
plane for a compact tension specimen with d/ty = 0.2

T 1 1 T I I T ] i
-
d/W -.33
-~
1 -
5 L 1 1 I | L ! Il ]
35 -4 .45
Mormalised distance, x/(U
Figure 4.29: Axial stress distribution at steady-state across the crack

plane for a compact tension specimen with d/W = 0.133



fa
If Hem

-

Y

Normalised axial stress, o

Stress concentration factor

—147 _

w

d”W -.066 i

N

5 i ! 1 i l i L L 1
35 o4 «45
x/t
Figure 4.30: Axial stress distribution at steady-state across the crack
plane for a compact tension specimen with d/lf = 0.066
] F T L) l ] ¥ 3 T [ 1 i ] 1
4 r- —
e
B n=1 7]
.\
2 ]
n=3
- —_— o
n=9
0 l 1 ! L | 1 1 s 1 | 1 I 1 1
'05 01 .15 .2
d/

Figure 4.31: Stress concentration factor of compact tension specimen
with different notch sharpness



—148 _

CHAPTER 5

CONTINUUM MECHANTCS AND MICROSTRUCTURAL PREDICTIONS

OF NOTCH BAR BEHAVIOUR

5.1 INTRODUCTION

Continuum mechanics and microstructural laws describing the behaviour
of components undergoing creep deformation which terminates in fracture
were presented in Chapters 1 and 2. These laws can be used effectively
to provide useful design information for an unlimited number of materials
under different lcading conditions.

In this chapter, the finite element predictions of state of stress
parameters in the throat of the notched bar geometries investigated in
Chapter 4 are used in continuum mechanics and microstructural appreoaches
to predict the lives of these geometries, The analysis is based on the
assumption that the stresses at the skeletal point determine the overall
behaviour of these notched bars, provided that steady-state is achieved
relatively early in life.. An approximate method for calculating steady-
state time scales in structures is also presented, based on the assumpticn

that the maximum stress determines the overall structure behaviour.
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5.2 AN APPROXIMATE METHOD FOR ESTIMATING THE GREATEST STRESS IN

STRUCTURES SUBJECTED TO CREE?Y

Calladine [1963-1967] used an approximate method for interpolating
for the greatest stress in structures between the limits n = 1 and k + =,
which corresponds to linear elastic and perfectly plastic materials,
respectively. He investigated a wide range of problems such as beams,
shells, plates, rotating discs, ete. The maximum effective stress for
any valpe of n was normalised with respect to its corresponding elastic
value. This new term was called the "relative stress concentration

factor":

g -
F = _EEELEZE (5.1)

0max,n=1

A series of graphs showing the variation of F with m = 1/n were presented.

These can be used to provide rapid design estimates of G

for any valu
max ¥ lue

of n, therefore pointing out the areas where local failure is possible.

5.2.1 Application to Notch Bar Geometries

The finite element effactive stress distributions for the
notched geometries investigated in Chapter 4 can now be used to produce a
series of figures similar to those presented by Calladine. The effective

stress is always a maximum at the notch root; therefore:

0 —
F = max, =1 (5.2)

k 9,
where k is the elastic effective stress concentration factor. For each
b/a ratio, a graph of F against 7/n is plotted as shown in Figures 5.1 to

5.3. The figures indicate that o

ax decreases with increase in n in an

approximately linear fashion for a fixed notch geometry. The decrease is

greatest for the sharpest notches. Comparison is also made in Figures 5.1
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to 5.3 with the Bridgman prediction of the effective stress across a notch
throat for a rigid plastic material having i = =, The Bridgman analysis
gives a constant effective stress since it is only dependent on the applied

oo
stress, 0, , and the notch geometry dimensions. Equation (4.5) can now

o

be written as:

@

_ _ (b/a)2 o,
= .7 = (5.3)
{(1+2R/a) In {1 +a/2R}}

The values of F determined from this equation are shown on the vertical
axes of Figures 5.1 to 5.3. The Bridgman equation predicts higher wvalues
than those from the computer calculations. This is due to the fact that
the Bridgman analysis results in lower values of Spn and %46 than the
computer estimates, and hence a greater effective stress.

Conservative estimates of F, using Bridgman's prediction for
n = = as a reference point, are possible,. The dotted lines in Figures

5.1 to 5.3 are drawn by combining equations (5.2) and (5.3), thus giving

the following linear relation between F and n:

{1+1/n) (b/a)?

F o= R (T+2R7al Tn (T ¥ &/2R] (5.4)

+

1
n

Equation (5.4) gives good agreement with computer estimates for sharp
notches, but increasingly conservative predictions for progressively

blunter notches.

5.2.2 Approximate Time Scales for Stress Redistribution Due to Creep

A simple approximate formula has been proposed by Calladine
[1969] to estimate the time taken for the stress to relax from its initial
elastic to a final steady-state. The time scale is expressed in terms of

the time taken for creep strain to become equal to a certain multiple of
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the elastic strain in a constant stress creep test, The assumption used
in the analysis was that the overall behaviour of a structure under creep
conditions is dominated by the redistribution of the peak stress.

For materials in which the creep strain rate is proportional to

the nth power of stress (equation (3.5)), Calladine showed that:

-

_ 1 9% "7
CnkE O4s U0y,

where £ is Young's modulus, and E;A is the effective stress at steady-

state, Using the assumption that o

max dominates the overall behaviour

and the time taken for stress relaxation to be 90% complete, equation

(5.5) becomes:
2,3

CntE Tmax

(5.8)

6“:55) {n-1]

For n typically in the range 5 to 10, it can be shown from
equation (5.6) that the time to steady-state, Izé, is approached when the
maximum equivalent creep strain, Eﬁax’ is between, respectively, about }
and ! of the corresponding maximum elastic strain.

The iterative finite element method used in Chapter 4 to
calculate the steady-state stress distributions for the various notch bar
geometries cannct predict the time taken to achieve steady-state.
However, Calladine's approximate equation (5.6) and the values of F in
Figures 5.1 to 5.3 can be used as a useful design tool to predict notch

behaviour, provided that stress redistribution is achieved rapidly. This

will be discussed in more detail in Chapter 6.
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5.3 CONTINUUM MECHANICS APPROACH TO PREDICT NOTCH STRENGTHENING AND

WEAKENING

In this section, the steady-state finite element predictions of the
state of stress parameters summarised in Chapter 4 (Figures 4.8, 4.14 and
4.20) for the varioﬁs notch geometries investigated are used to predict
notch strengthening and weakening (illustrated and discussed in Section
1.4.1) from a continuum mechanics approach.

Following the laws of plasticity under multi-axial stresses, it has
generally been found that when shear processes predominate, the deformation
rate under creep conditions is dictated by the effective stress, E;
otherwise known as the second invariant stress. Those materials whose
rupture lives are functions of ¢ only exhibit little or no éracking,
except in regions adjacent to the fracture. It has alsoc been found that
the rupture lives of some materials are functions of the maximum principal
tensile stress, G175 only. They exhibit spatially homogeneocus grain
boundary cracking which gradually accumulates during tertiary creep
(Johnson, et al. [1962], Hayhurst [1972], and Cane [1980]).

Two continuum mechanics models can now be proposed to predict mnotch
strengthening and weakening, based on the assumption that creep rupture
under multi-axial conditions is either controlled by deformation which is

dependent on E-only, or by crack propagation dictated by 97

5.3.1 Calculations

Starting from the secondary creep equation:
T o=t (élqn , 5.7

the rupture time for a uni-axial specimen subjected to a constant stress,

Gg2 is:
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N (5.8)

&+
[}
Om-l mn

where éo is the minimum creep rate which corresponds to the applied stress,

ag_.
o

For a2 notched specimen, the rupture time is:

ne

)
1l
Qm1z?

g
(4" (5.9)
o

here, 9 is equivalent to the nominal stress across the notch throat, % om

The time-strength ratio, given previously by equation (1.29)
for a constant ductility model, i.e. similar failure strains for uni-

axial and notched specimens, is therefore:

t

E
Q

g
= (- (5.10)
un a

&+

Equation (5.10) is wvalid for materials whose rupture lives are controlled
by . However, for materials where the principal stress, Ops controls

failure, the above equation becomes:

| &+
=
S

g
- ( nom]n (5.11)
°1

la)

Ui

Similarly, when the stress-strength ratio is used in a constant

ductility model, the result for a ¢ material is:

<
o]

L = 2 (5.12)
tun o
o c

and for a a4 material: no. _Tom (5.13)
%un %
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Calculations were made to evaluate the strength ratios, using
equations {5.10) to (5.13), and the Bridgman estimates (equation (4.5)) of

g. The values of Gnom/a-and o /c] were taken at the skeletal point

nom
from the finite element predictions given in Chapter 4, when the Von Mises
criterion was adopted. The results are presented in Figures 5.4 to 5.6

in terms of time and stress-strength ratios, plotted against notch

sharpness, a/R.

5.3.2 Discussion

The time-strength ratio for materials in which G controls the
deformation and rupture during creep are presented in Figure 5.4 for the
notched geometries with b/a = 1.46. Equation (5.10) was used to calculate
the constant ductility lines shown for m =1, 3, 5, 7 and 9. It is shown
in Figure 5.4 that the time-strength ratio for o materials always predict
notch strengthening which increases as n increases, The trends these
predictions follow are similar. They all start from inO/tun = 1 and
increase asymptotically with notch sharpness, a/R. Also shown in Figure
5.4 are the Bridgman predictions for notch strengthening using equation
(4.5). They are consistent with the continuum mechanics predictions for
blunt notches but overestimate the time-strength ratio as the notch
sharpness increases. It must be noted that for each notch geometry, the
term cnom/a-used in equation (5.10) is constant and independent of n since
it represents the value of the effective stress at the skeletal point.
For b/a = 1.46, the values were given previously in Figure 4.14.

Similarly, for materials where 9y is responsible for failure,
the time-strength ratio for b/a = 1.46 is plotted for different values of
n and notch sharpness, a/R, in Figure 5.5. The results always predict
notch weakening. The values of © /U] used in the calculations were

noem

read at the effective stress skeletal point. Although a skeletal point
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for the steady-state axial stress distribution was not reported in the
conclusions of Chapter 4, a zone, where the axial stress is nearly
independent of n, exists at the position of the effective stress skeletal
point. These wvalues of Unom/UT with some adjustments can therefore te
used as a referenceraxial stress. The notch weakening predictions shown
in Figure 5.5 for all values of n follow the same trends. They all start
from tno/tun = 1 and decrease asymptotically with the increase in notch
sharpness.

Finally, Figure 5.6 shows the stress-strength ratios for ¢ and
o, materials and for the three b/a notch ratios investigated in Chapter 4.
Equations (5.12) and (5.13), which are independent of H, were used in the
calculations. Two master curves were estimated far each b/a ratio; one
predicts notch strengthening for o materials, and the second notch
weakening for Oy materials. An upper notch strengthening for each b/a
ratio is also shown in Figure 5.6. It is due to gross section creep
caused by the notch constraint and represented by (b/a]z. The maximum
value of a/R for which full constraint can be maintained was estimated to
be 1.5 for b/a = 1.33, 1.55 for b/a = 1.46 and 1.85 for b/a = 1.67

(Neimark [1968]).



-156 _

5.4 MICROSTRUCTURAL APPROACH TO PREDICT NOTCH STRENGTHENING AND WEAKENING

Ashby's theory of creep rupture by void growth is used in this section
to predict both notch strengthening and weakening. A detailed analysis
of this theory was previously given in Chapter 2 (Section 2.5). The
required information concerning the state of stress parameters, which
appear in most of Ashby's equations, are taken from the detailed finite
element calculations performed and presented in Chapter 4. In
particular, the information available on the notch geometries with
b/a = 1.46 were used in the analysis. The calculation procedure should
also be applicable for the notch geometries with the other b/a ratios.

Two assumptions were made during these calculations:

(a) Nucleation time, tn’ is negligible.
(b) Steady-state is achieved relatively early in 1life, otherwise
the finite element predictions of the state of stress

parameters cannot be used in the calculations.

5.4.1 Diffusion Models

For boundary diffusion, the approximate expression for rupture

time was given by equation (2.19). Assuming tn = 0 leads to:

a
ty = f'? (2) (5.14)
o o 1
¢O is a material property defined by equation (2.18). Therefore, it
should be constant for uni-axial and multi-axial states of stress. ' For

uni-axial tension, o, = I1s which leads to a time-strength ratio derived

o

from equation (5.14) for boundary diffusion:
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= (5.15)

The above equation Is similar to the continuum mechanics equation (5.11)
for n = 1, It pre&icts notch weakening as shown in Figure 5.5 for the
notch geometries with b/a = 1.46.

For surface diffusion, the rupture time equation (2.25), when

tn = 0, becomes:

1—26. G. 3
ty = —k (E:E) (5.16)
e, b, 1

Similarly, a time-strength ratio can be derived from equation (5.16) for

surface diffusion:

&+

1o

heo

‘tU.H.

(5.17)

Equation (5.17) also predicts notch weakening, as shown in Figure 5.5 for
the notch geometries with b/a = 1.46 and when n = 3.

The effect of varying ¢G and ¢o in equations (5.14) and (5.16)
on rupture time, expressed as tRéo’ for uni-axial and notch bar specimens
with b/a = 1.46 are shown in Figure 5.7 when # = 9. For boundary
diffusion, tRéo is plotted against a/R, which corresponds to the finite

element predictions of ¢ /61 for a particular notched geometry for a

nom
range of ¢O values of 0.1 to 5x107%, as shown in Figure 5.7. The lines
are parallel and always predict notch weakening. However, rupture times
increase when ¢o decreases. For surface diffusion, one valid assumption

that can be made is that 6i < (.01, therefore making tRéo in equaticn

(5.16) dependent on ¥, and (00/0113 only, so that:

tp &, = N (g—) (5.18)
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Similar notch weakening trends are observed to those of boundary diffusion
when wo 1s varied in equation (5.18), as those shown in Figure 5.7.

When the stress is used to model notch strengthening ratios
for both boundary and surface diffusion, equations (5.14) and (5.186)
simply become equivélent to the continuum mechanics equation (5.13) which

predicts notch weakening as shown previously in Figure 5.6.

5.4.2 Power-Law Creep Models

A new parameter, o, defined by equation (2.30), appeared in
Ashby's equations of damage rate and strain rate when voids grow by power-
law creep alone. It is dependent on state of stress through the ratio
dm/E-(where Oy is the hydrostatic stress component}. Graphs of a as the
tri-axiality is increased (@/R) are plotted in Figure 5.8 for different
values of n and for notch geometries with b/a = 1.46. The ratio Um/a'is
taken at the effective skeletal stress point, since it is nearly constant
and independent of W at that position for all the notch geometries
investigated. The graphs of o shown in Figure 5.8 decrease sharply from
the initial uni-axial value e, . They become less sensitive to n for
values of h > 7,

The rupture strain equation (2.34) for a uni-axial state of

stress, and when tn = 0, reduces to:

. £
= + B
€p IR €, 0.2 a (5.19)
éo is the secondary creep rate; therefore, according to equation (5.19),
the strain-time curve for a constant stress test is represented by a long
line with a slope éo and a small upturn in the end, respresenting the
tertiary stage and dictated by the value 0.2£/d. TFor constant load tests,

the matter is different since the current stress has to be updated using
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equation (2.31). Figure 5.9 shows a schematic diagram of strain-time
behaviour of a uni-axial specimen failing by power-law creep under constant
load and constant stress conditions.

The rupture time equation (2.31) for constant load, when
ﬁi << 1, reduces to.equation (2.33). Substituting éé by SR/ZR in

equation (2.33), the following linear relation is derived:

/tR

;;I = ey (5.20)
where IRL and ZR are rupture times at constant load and constant stress,
respectively. The lines calculated for different values of n are shown
in Figure 5.10. They indicate that for large values of n and high
ductilities, the difference increases between the rupture times of
specimens tested under constant load and constant stress.

An expression for the time—strength ratio can be derived from
the general rupture time equation (2.30) for constant stress. For uni-

axial tension and assuming tn = 0, it reduces to:

%o !

{n+1) éo

and for a multi-axial state of stress, it remains the same, excluding tn'
If 6£ is assumed to remain constant under both uni-axial and multi-axial
conditions, then an expression for time-strength ratios could be derived

from equations (5.21) and (2.30), as follows:

| &4
=
S

c)—VIOI’YI n
- (o,

(E‘L) (5.22)
0

o4

g

a, refers to the uni-axial wvalue. Equation (5.22) is plotted in Figure

5.11 for different values of n and for notch geometries with b/a = 1.46.
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Both notch strengthening and weakening are predicted by this model. For
values of 1 < 5, equation (5.22) prediets notch weakening, but when A > 5
it predicts the notch strengthening ratioc which drops in value beyond a
critical a/R. For these particular notch geometries and n values, the
drop in strength stérted at a/R = 2 to 7.

If 6L is assumed to vary as the tri-axiality is increased,
then rupture time, éo'tR’ in equation (2.30) becomes dependent on R, notch
sharpness a/R, and éi' Therefore, a series of curves, having different
6L values, can be plotted for each value of n. These are shown in Figure
5.12 for n = 3 and 9 and 6£ values of 1072 to 107'%. For n = 3, the
model predicts notch weakening for all 6£ values, but for N = 9 it predicts
notch strengthening time ratio which drops after a certain amount of
constraint, approximately constant for these geometries and equal to
a/R = 8.

The drop in ductility due to the increase in tri-~axiality can
be shown when the rupture strain equation (2.34) is used in the following
analysis, Assuming 0,22/d to be negligible and substituting equation

(2.30) (tR) into equation (2.34) results:

_ a 1
ER = ﬂ”'? 1n [-(mm—] (5.23)

The above equation is plotted in Figure 5.13 for a range of 5L = 1072 to
10-10 and for n = 9. The a/R is related to €p through the parameter «.
All the curves follow the same trend, i.e. £p decreases asymptotically
from an initial uni-axial value as a/R increases. The difference between
the maximum and the minimum £p is always an order of magnitude. To make
the notch bar ductility €p remain constant and always equal to the uni-
axial €p> 6i has to change by about eight orders of magnitude, as -

illustrated in Figure 5.13 by the horizontal constant ductility line for
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the case of €p = 30%.
The rupture strain equation (2.34) can also be used to show
the influence of ductility on rupture time expressed as éo‘tR' Assuming

0.22/d to be negligible, equation (2.34) reduces to:

a
nom) n

E, Ly = ep | (5.24)
Assuming that ductility is constant at failure for uni-axial and notch bar
specimens, a series of curves can be drawn using equation (5.24), as shown
in Figure 5.14. The trends are similar for all curves; they all predict
notch strengthening. Rupture times increase with the increase in
ductility.

Finally, three types of stress strength ratios are shown in
Figure 5.15. The mathematical expressions were derived from the rupture
time equation (2.30), with the assumption that tn = 0, For uni-axial
tension, equation (2.30) reduces to equation (5.21). If 6£ is assumed to
remain constant under uni-axial and multi-axial states of stress, then é
relation for stress strength ratio can be derived from equations (2.30)

and (5.21) as follows:

g
ho _ (E"-‘—)””—_ﬁ’— (5.25)
[s)

un a

Using the definition of the notch rupture strength (equation (1.31)), when

tno = Iun = 1, the result is:

1/n “nom

S, = (=)

— (5.26)
A ao -

here, the ratic Unom/a_is taken at the skeletal point.

The rupture time equation (2.30) can be written in terms of
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the rupture strain, such that:
ty = = | 9" (5.27)

The assumption made in equation (5.27) is 0.2£/d is negligible. Assuming
constant rupture strain for uni-axial and multi-axial specimens gives an
expression for stress strength ratio identical to that reached by the

continuum mechanics approach, i.e.

o
8§ = nom (5.28)

o

Cocks [1980] derived an expression for stress strength ratio,
based also on equation (2.30) and for in = 0, He used a constraint
parameter, N, which defines the stress state on the minimum section of a
notched bar as follows:

(5.29)

a2

where o, and ¢ are the slip line field predictions of the average axial
stress and the equivalent stress in the minimum section of a notched bar..

Cocks' final expression was:

7.0~ 1
S N sinh EgL%jf%%%}] n
s = N TR (5.30)
stah [2(=7777) (N -]

Equations (5.26), (5.28) and (5.30) are plotted in Figure 5.15.
Equation (5.28) gave similar predictions to the continuum mechanics
approach when €2 is constant. Equation (5.26) predicts notch strengthening
for n » 5 which drops in value around about @/R = 8 for these particular
notched bar geometries. For values of n < 5, notch weakening is predicted,

excluding the case when N = 4 for which both notech strengthening and
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weakening are observed. Cocks equation (5.30), based on values of
N = cnom/a-at the skeletal point, always predicts upper bounds to the
strength ratio calculated by equation (5.27), and similar in trends to the

continuum mechanics prediction for n > 3.
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5.5 GENERAL DISCUSSION

The assumption used to derive the continuum mechanics equations (5.10) to

(5.13), defining the time and stress strength ratio, was that the final ductility

remainsconstant,evgnwhentheratiocmfgincreasesduetotheincreasein
constraint. This assumption is physically invalid, since it has been observed
and reported in the literature that ductility drops with the increase in tri-
axiality (Dyson and Loveday [1980], Hancock, et al, [1976], Mackenzie, et al.
{1977]). The equations mentioned, therefore, will always predict upper
strengthening bounds when ois adopted, or lower weakening bounds if expressed
intermsofod. It is expected that real material datawill depart from the
theoretical bound after a certain amount of constraint.

The diffusion models proposed by equations (5.15) and (5.17) are

totally dependent on the ratio o /0]. which is equal to unity for uni-

nom
axial tension and always less than one for notched bar specimens, as the
steady-state finite element stress distributions show (Hayhurst, et al.
[1977a,b], Al-Faddagh, et al. [1982]). It is therefore expected that
diffusion models predict notch weakening.

Two main assumpfions were used to derive the notch rupture strength
ratios when voids grow by power-law creep. These were 6i varies with the
increase in tri-axiality or remains constant. - The assumption that 6£ is
variable means that small and large voids nucleate initially in which

large voids start to grow under the influence of the applied stress,

therefore dictating the deformation and rupture response. As the

hydrostatic component begins to increase and the effective stress decreases

due to the increase in tri-axiality, smaller voids are activated and, in
turn, start to influence the deformation and rupture behaviour. The area

fraction of holes was given previously by equation (2.l11l) as:

éh = - (5.31)
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Therefore, it is expected that éh may vary by an order of magnitude if the
difference in void size is between 2 and 4. However, if the difference is
10, then ﬁh varies by two orders of magnitude, which is the difference
between the neighbouring curves plotted in Figure 5,12, The attraction

of using the assumpfion '6£ is constant' is that the state of stress is
well represented in the time-strength ratio through the parameters a/ao

and cnom/a; as well as the material creep index, H. Therefore, both notch
strengthening and weakening can be predicted by the proposed model.

Uni-axial or notched bar specimens are expected to fail by diffusion

if the following condition is satisfied:
IR d (by diffusion] < tR L by power-Law chreep) (5.32)
H ?

Using the rupture time equations (2.20) and (2,30} for boundary diffusion
and power-law creep, the following expression is derived:
IR,PL _ o =R (Uo n o1

L (5.33)
1, d 0.17 5 %

where the suffixes PL and d refer to power-law and boundary diffusion,
respectively., If the ratio given by equation (5.33) is greater than one,
then failure is diffusion contreolled, but 1if it 1s less than one, then
failure will be power-law creep controlled. For uni-axial tension, equation
(5.33) reduces to:

R,pL _ %0 cR 5.34)

R, d 0.17

The above equation Indicates that ¢0 €2 has to be greater than 0.17 in
order to make a uni-axial specimen to fail by diffusion. This 1s very
unlikely since er for most materials varies between 0.5 and 0.0l, and ¢o

is usually less than 1. However, for high degrees of tri-axiality, the



-166 _

ratio {ao/E)“ and (UI/UG’ become significant and always greater than 1, so
that failure by diffusion becomes possible.
If rupture time due to power-law creep and, say, boundary diffusion

are assumed to be equal, then the following equation can be derived:

C €p O
G_’ - _éE (2" (5.35)
1 0 ¢
0.17 b T £3
where: CT = W (5.36)

The finite element predictions at the skeletal peint gives:

o; = CZ Syom (5.37)
Substituting equation (5.37) into equation (5.2) and using the stress

strength ratio definition given by equation (1.31) gives:

s = L = (5.38)

where éé is the secondary creep rate,. Equation (5.38) indicates that

weakening 1is likely to occur at low strain rates and large ratios,

UT/UYlom.
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5.6 CONCLUSIONS

An approximate method has been presented for estimating time-scales
for stress redistribution due to creep. The method is based on the
assumption that the maximum stress in gtructures determines the overall
behaviour. It is épplicable to notch bar geometries. Therefore, it can
be used to provide useful design predictions of notch behaviour.

Continuum mechanics and void growth analyses have been used to
provide some theoretical models to predict notch strengthening and
weakening in round bars subjected to creep. The influence of state of
stress parameters, ductility, and area fraction of holes were analysed and
discussed.

It was found that continuum mechanics models predict upper notch
strengthening bounds for o materials and lower notch weakening bounds for
gy materials, when the assumption that ductility remains consfant for uni-
axial and multi-axial states of stress is used.

The diffusion models proposed always predict notch weakening and are

totally dependent on the ratio o /crI raised to the power 1 or 3.

nom

Several power-law creep models have been proposed for estimating
rupture times and notch strength ratios. These models were derived using
either rupture time or rupture strain equations with the assumptions that
area fraction of holes, 6i’ varies with the inerease in tri-axiality or
remains constant. Another assumption was also used, that is ductility
remains constant when notch constraint is increased. 1t was shown,
however, that for this assumption to remain valid, 5£ has to decrease from
an initial uni-axial value by about eight orders of magnitude when a/R

increases to about 32. Both notch strengthening and weakening were

observed when the proposed power-law creep models were adopted.
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CHAPTER 6

EXPERIMENTAL INVESTIGATIONS

6.1 INTRODUCTION

This chapter describes in detail the experimental investigations
carried out on the 2i{%Cr 1%Mo steel used in the electric power generation
industries. Basic creep data were obtained at 538°C on uni-axial and
notched bar specimens which had the same throat diameter as the plain
tenéile bars. The results were analysed and compared with those obtained
by Ng, Webster and Dyson [1980] on two casts, named as 4F and 10G, of the

brittle {%Cr 1Mo 1%V steel.
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6.2 MATERTALS AND SPECIMEN GEOMETRIES

6.2.1 Creep Resistant Steels

As power-law creep is largely a matter of movement of
dislocations, any form of obstacle used for blocking dislocations will
reduce creep. Many of the obstacles used to give room temperature
strength do not remain effective at high temperatures. For example, in
heat-treated plain carbon steels, martensite breaks down on tempering, the
carbide becomes legs dispersed, and the material becomes softer. At
higher temperatures, the carbide dissolves in the austenite, therefore
producing a poor creep resistant structure.

In low alloy steels containing strong carbide~forming elements,
such as chromium, tungsten, vanadium and molybdenum, the carbides remain
in a finely dispersed condition to much higher temperatures, therefore
giving satisfactory creep resistant properties up to about 550°C and

possibly higher temperatures for some high alloy steels.

6.2.2 Materials and Their Heat-Treatments

Both the 247%Cr 17Mo and i%Cr %Mo }7%V steels are used
predominantly in the power generation industry, in pressure vessels, steam
chests and numerous items of turbine components and associated pipeworks,
all operatiﬁg in the creep range. The compositions of both materials are
given in Table 6.1.

The heat-treatments carried out on each material prior to
creep tests were as follows: for the 2iCM steel, the material was first
annealed for 15 hours at 960°C, then furnace-cooled, normalised for
12 hours at 960°C, then fan-assisted cooled, tempered for 12 hours at 700°C,
then furnace-cooled, and finally stress relieved for 36 hours at 690°C,
then furnace-cooled. The result of this heat-treatment was a fine grain

mixed bainite and ferrite structure with grain size of 8 to 33 um.
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For the §CMV steel, the heat-treatments carried out on the two
casts, creep tested by Ng, et al. [1980] at 565°C, were as follows: a
25 mm thick slice was removed from the side of a cast block and
subsequently austenitised for half an hour at 1250°C, quenched in o0il,
tempered for 24 hours at 680°C, and finally air-cooled. It resulted in
a tempered martensitic structure with a prior austenite grain size of
200 to 300 um. A representative microstructure of each material is shown

in Figure 6.1.

6.2.3 Specimens

Two types of specimen were used in the high temperature creep
tests carried out on the 2}CM steel. These were uni-axial plain bar and
round notched bar specimens. Both types of specimen were machined from a
cast block approximately 300 mm square and 100 mm thick. The main
dimensions of the plain bar specimens were 38 mm gauge length and 6.5 mm
diameter, as shown in Figure 6.2(a).

All notched bar specimens had a shank diameter 2b = 9.5 mm and
a notch throat diameter Z2a = 6.5 mm, giving a constant b/a ratio of 1l.46.
The only geometrical variable was the notch root radius, R. This was
decreased from R = 6.5 mm for a blunt notch to R = 00,0727 mm for a sharp
notch. The main dimensions of a typical notched bar specimen are shown
in Figure 6.2(b). Some specimens had two notches separated by a centre-
to-centre distance of 10 mm, as shown in Figure 6.2(c). Some of these
were used after the test in simple optical metallography. The
circumferential notches of different geometries were machined accurately
into the gauge length using specially contoured cutting tools, excluding
the case for tﬁe very sharp notch with a/R = 44,7, where the notch was
machined by spark errosion. Dimensional details of all the specimens

made can be found in Table 6.2, Samples of notched bar specimens before
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and after creep testing are shown in Figure 6.3, for specimens having

single and double notches machined into their gauge lengths.
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6.3 EQUIPMENT

Two types of creep machine were used to obtain the data on the 2}CM
steel. One type is the standard constant load creep machine in which
some uni-axial and all notched bar specimens were creep tested at 538°C.
The second type was a modified creep machine (Figure 6.4), in which
constant stress conditions are approximated by removing weights from the
loading rod to compensate for the reduction in cross-sectional area with
extension. Several uni-axial creep tests were carried out, using the

constant stress creep machine.

6.3.1 Standard Creep Machine

Three dead-lcad creep machines were used during the course of
the experiments, each having a lever ratic of 10:1 and a specially designed
cylindrical furnace which provides the high temperature environment around
the tested specimen. Each machine had two Nimonic 90 pull rods with a
loading capacity of 10,000 1lbs. Two shackles, also made from WNimonic 90,
were connected to the pull rods, in which the plain bar specimens were
clamped in position by a horizontal pin through each shackle. Specially
designed clamps with internal M12 metric threads were connected to the
shackles when the notched bar specimens with threaded ends were tested.
These clamps were also made of Nimonic 90.

The three-zone electrical furnace was able to slide on a
vertical guide rod. It was usually kept in its upmost position during the
mounting of the specimens and other attachments (Figure 6.4(b)) and was
then slid into position surrounding the specimen. The temperature was
automatically controlled by a three~zone temperature controller, utilising
resistance thermometers implanted in the furnace wall. The temperature
controller produced a region of uniform temperature in its central =zone.

During creep tests, temperatures were monitored using three
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Chromel-Alumel thermocouples {type MA) equally spaced along the gauge
length and firmly attached by heat resistant cords.

The test piece length extension was measured by a single LVDT
{linear variable differential transformer), clamped centrally between
aluminium plates attacﬁéd to the end of Nimonic 75 extensometer legs.

The LVDT had a maximum sensitivity of 10 mV output for each 0.2 mm travel
of the armature and a total diéplacement range of #51 mm. Strain
measurements for all the creep tests were made on a Rikadenki chart
recorder with a full scale setting of 10 mV to give a resolution of

0.38 mm.

A portable loading device was used to contrel the initial
loading rate. It consisted of two screw-type jacks linked together and
driven by a variable speed de motor. This loading arrangement was used
in all tests to prevent shock loading of the specimen.

Prior to creep testing, each specimen was partially loaded to
check alignment and ensure that the extensometer system was working

properly.

6.3.2 Constant Stress Creep Machine

A standard creep machine was modified and used by Cox [1981]
to investigate the uni-axial creep properties of a nickel base alloy at
high temperatures and constant stress conditions. The modifications
involve adding two separate mechanisms to the standard creep machine.
One mechanism consisted of a lever-mounted jockey compensating arrangement,
shown in Figure 6.4(a). A screw rod is driven by a dc motor coupled to a
commutator transmitter driven by a Honeywell recorder pen drive motor
which was recording the creep strain. This gave a linear movement of the
jockey, and hence a reduction in specimen load, directly proportional to

the axial creep strain. Thus, a continual load compensation was made
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while the specimen was deforming uniformly. The linear relation between
the axial creep strain and load compensation is only valid before the
onset of necking.

The second modification consisted of adding an automatic
lever-levelling sysfem, shown in Figure 6.4(b), to overcome the problem
arising when high ductilities (approximately 30%) cause a change in lever
level, therefore altering the effective lever ratio (nominally 10:1).

This mechanism used a ! hp dec motor, activated by a micro-switch mounted
close to the rear of the lever arm on the top platform, which drove the
worm and pinion arrangement to relevel the lever arm. There was no shock

loading from the motor and the lever arm was kept horizontal to within 2°.
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6.4 EXPERIMENTAL PROCEDURE

Before setting up the specimen iIn any of the creep machines described
in the previous section, preliminary measurements of the specimen
dimensions were made to an accuracy of 0,005 mm using a x50 magnification
projection shadowgraph to ensure that the dimensions were within an
acceptable tolerance.

The universal joints and associated linkages prior to creep testing
were checked for proper fitting and freedom of movement. The parts in
the high temperature zone were coated with an antl-seizure compound
(Copaslip) to prevent welding of mating parts during the test. Next, the
loading lever was balanced using a counterweight on the front of the lever
to ensure that the load exerted on the specimen is a true function of the
weights placed at the back of the lever (10:1).

The specimen was then installed and the three thermocouples tied to
the gauge length using heat resistant cords. The extensometry and
transducer mechanisms were then attached and the transducer circuit set to
give the requisite value of strain for 10 mV output. A load-extension
test was then carried out using a Bryans X-Y recorder where an instant
assessment could be made of the alignment of the specimen.

The furnace was then lowered sc that the specimen was in the centre
in both the axial and longitudinal directions. The ends were lightly
packed to a depth of no more than 2 cm with Kaowool ceramic fibre, and the
load-extension test was repeated to ensure that the extensometry was still
moving freely.

The furnace was switched on with a deadweight stress in the specimen
of 1.8 MPa to keep the universal joints and extensometry aligned. A
24 hour scak was allowed to fully stabilise the specimen, grips and
extensometry temperature.

The required load was applied using a motorised jack which lowers the
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weights onto the rear loading pan gradually. For the duration of the
test, the output from the LVDT transducer and the thermocouples were
continually recorded.

On failure of the test specimen, the falling action of the lever arm
activates a micro-switch which switches off power to the furnace and hour
meter. When the furnace had cooled, the specimen was extracted and
labelled for future microstructural investigations.

The test procedure was similar when the constant stress machine was
used. The only difference was that both the wounted jockey compensation
mechanism and the automatic lever levelling system had to be adjusted and

switched on before loading.
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6.5 RESULTS

Creep tests were carried out on the 2}CM steel at 538°C +*1°C. The
test temperature is of practical relevance and corresponds to approximately
O.STE. In this section, the results of these tests and those carried out

on the }%Cr i%Mo 1%V steel by Ng, et al. [1980] are presented.

6.5.1 Uni-Axial Constant Load Creep Tests

Creep tests on plain bar specimens were carried out using
three standard creep machines described in Section 6.3.1. The loads were
chosen to give stresses on the initial cross-sectional area of the
specimen in the range of 200 to 125 MPa which gave rupture lives between
approximately 10 and 900 hours. The results of these tests are summarised
in Table 6.3 and the strain-time curves are shown in Figures 6.5 and 6.6.

The creep curves for all the specimens exhibited short primary
and secondary regions, but a relatively long and very pronounced tertiary
region, A slight increase in both the creep ductility, from about 40%
ﬁo 487%, and the reduction in area, from about 837% to 90%, is observed as
the applied stress decreases. This can only be explained in terms of
(a) decreasing cavity spacing with increasing stress, and/or (b) true

tertiary being caused by mechanical instability which is n-dependent.

6.5.2 Uni-Axial Constant Stress Creep Tests

Constant stress creep tests were carried out on plain bar
specimens using the modified creep machine described in Section 6.3.2.
The applied stress in each test was kept constant by reducing the load as
the creep strain accumulates, using the constant stress compensation
mechanism. The assumption used to calibrate the jockey movement with the
specimen axial strain was that all the creep deformation is ﬁlastic strain

and a constant volume condition exists.
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Stresses in the range of 220 to 125 MPa were applied which
gave rupture lives between approximately 20 and 4000 hours. The results
of these tests are summarised in Table 6.4 and the strain-time curves are
shown in Figures 6.7 and 6.8. Small primary and tertiary regions, and a
very pronounced secéndary region, are observed in all the creep curves.

A slight increase in creep ductility from about 40% to 487 as the applied
stress decreases is again observed. However, the reduction in area

remained nearly constant at about 88.5% for all stresses,

6.5.3 Notched Bar Creep Tests

Notched specimens, having the same throat diameter as the
plain specimens, were machined to give a constant b/a ratio and al/R
between 0.5 and 44.7, as shown previously in Table 6.2. These specimens
were creep tested in the ordinary dead-load creep machines described in
Section 6.3.1. The loads were selected to give constant nominal stress

levels across the notch throat, g of 200 and 175 MPa. Axial

nom?
elongations were measured continuously along the gauge length of all the
samples and were converted to nominal strains by dividing by the initial
notch height, ﬂo. The strains due to the reduction in area were also
calculated using the shadowgraph measurements of the initial and rupture
throat diameters, Zao and 2a. The results of these tests are listed in
Table 6.5 for Crom = 200 and 175 MPa. It is observed that the nominal
strains due to the axial elongation have no significant pattern; however,
the strains due to the reduction in area dropped from a uni-axial constant
stress value of about 89% to about 67%Z as the notch sharpness increased.
The lives of the notched bars, IR’ have been plotted in
Figure 6.9 for all a/R values and the two nominal stresses. For blunt

notches, the lives increase progressively for both stress levels as notch

sharpness (a/R) increases. For sharp notches, there is a tendency for
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the lives to decrease and then remain approximately constant with further
inerease in a/R. The rupture times when a/R = 0 (uni-axial) were taken
from the plain bar constant stress results given in Table 6.4, with the

applied stress equal to 200 and 175 MPa, respectively.

6.5.4 Cumulative Damage Notched Bar Creep Tests

Four creep tests were conducted on notched bars, in which the
nominal stress was changed from 200 to 175 MPa and vice versa to examine
Robinson's linear cumulative damage rule discussed in Chapter 1, Section

1.2.1, and defined by the following equation:
L
P o= X (6.1}

where P = 1 at rupture. Two of the specimens tested had blunt notches
with @/R = 1.67; the other two had sharp notches with a/R = 13, The
results of these tests are listed in Table 6.6. The sum
((I?/IRT)'+(£2/iR2)} is shown to be equal to approximately 1, which
suggests that Robinson's 1life fraction rule is valid for this material

within the small stress range investigated.

6.5.5 Experimental Data on the }%Cr 1%Mo iZV Steel

Ng, Webster and Dyson [1980] carried out some creep tests on
two blocks, labelled as 4F and 10G, of the i{CMV steel used for high
temperature applications in steam power generation equipment. They creep
tested in tension a number of plain bar and notched bar specimens at a
temperature of 565°C. The loads for the plain bar specimens were chosen
to give stresses in the range 220 to 400 MPa and rupture lives between
about 5 and 430 hours, as shown in Table 6.7. The loads on the notched

specimens were selected to give a nominal stress of 300 MPa across the
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notch throat. The notched bar data for blocks 4F and 10G are listed in

Table 6.8.

6.5.6 Optical Metallography

After fracture, some notched specimens of the 2}CM and }CMV
steels were slit longitudinally to within 0.1 mm of the gauge length
centre-line, polished and etched for examination by optical microscopy.

They were:

(a) A double notched specimen with a/R = 1.67 of the 2lCM steel.
The photographs shown in Figure 6.10 are of the notch which
has not failed after the creep test.

(b) A double notched specimen with a/R = 13 of the 2iCM steel.
The photographs shown in Figure 6.11 are of the complete

section of the specimen, showing the two notches.

i

(c) A notched specimen with a/R = 0.297 (10GA7) of the }CMV steel,
as shown in Figure 6.12.

1.961 (10GAl) of the ICMV steel,

(d) A notched specimen with a/R

as shown in Figure 6.13.
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6.6 DATA ANALYSIS AND DISCUSSION

6.6.1 Uni-Axial Data

The uni-axial constant load and constant stress creep curves
for the 21CM steel exhibit primary, secondary and tertiary regioms.
However, the overall behaviour of this material under constant lecad is
dominated by a long tertiary region, while under constant stress, it is
dominated by a long secondary region, as shown in Figures 6.5 to 6.8.

The common way of presenting uni-axial creep data is to plot
log/log graphs of the minimum creep rate against time and stress against
time. The best fits for each set of data for the 2{CM and ICMV steels
are shown in Figures 6.14 to 6.17. The secondary creep material
coefficients for each material were evaluated from the log éé-log iR

graphs (Figures 6.14 and 6.16) and were found to have the following values:

(g) For the 21CM steel:

. n
€, = Co
swhere:
¢ = 2.5156x10725 1/[MPa]’m
{(6.2)
and: n = 9,77

(b} For the JCMV steel:

where:
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C = 2.2x10°%6 1/[MPal™m
(6.3)

and: n = 16.66

In the logarithmic stress—time graph for the 2iCM steel
{(Figure 6.15), the experimental constant load and constant stress rupture
times are presented and compared with some theoretical predictioms. The
theoretical rupture times under constant stress were calculated using
Norton's equation for secondary creep rate (equation (1.3)) with the
assumption that the nominal stress remains constant throughout the test.

The result is:

SR -6

The above equation represents an upper bound for rupture times under
constant stress, as shown in Figure 6.15. Under constant load, Hoff's
equation (1.11), derived in Chapter 1, Section 1.2.2, was used to
calculate the rupture times. The analysis is based on the assumption
that the initial cross-sectional area, Ao, of the test piece will shrink
to zero under a constant applied load, P, without any change in volume.
The result is:

£, = : (6.5)

The above equation is only wvalid for ductile materials failing by necking
and not by internal damage. It represents an upper theoretical bound, as
shown in Figure 6.15. The ratio between the predicted rupture times
under constant stress and load can simply be found by dividing equation

(6.4) by equation (6.5). The result is:
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—T = ne (6.6)

A similar linear expression to equation (6.6) was previously reached in
Chapter 5, Section 5.4.2 (equation (5.20)), from Ashby's equatioms for
rupture times under constant stress and constant load for materials failing
by power-law creep alone. The assumption used was that the initial area
fraction of voids, ﬁi, is very small (5£ << 1), and therefore negligible.
The experimental and theoretical predictions of the rupture
times under constant stress and constant load and their ratios are
summarised in Table 6.9. It is observed that the theoretical predictions
always over—estimate the experimental rupture times; however, the ratios

IR/IRL are approximately constant.

6.6.2 Notched Bar Data

The notch rupture lives versus notch sharpmess (a/R) for the
21CM steel specimens were previously presented in Figure 6.9. The results
for the two noﬁinal stresses of 200 and 175 MPa indicate that, no matter
how severe the notch sharpness is, this material will not exhibit notch
weakening. The condition is that the geometrical ratio b/a remains
constant for all specimens and equal to 1.46. This can be observed
clearly when the data are presented in terms of time strength ratio
Ino/tun’ as shown in Figure 6.18. The time strength ratio for

Oom = 200 MPa increases from a uni-axial value of 1 to a2 maximum value

of about 45, as d/R increases from zero to about 6. With further increase
in notch sharpness, the strength ratio drops to about 40 and remains
constant for all values of a/R > 10. However, when the nominal stress is

175 MPa, it is observed from the few data points shown in Figure 6.18 that

the strength for the sharp notch with a/R = 13 has dropped to about 22,
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indicating that for the 2{CM steel the data are strain rate sensitive.
The uni-axial rupture time, tun’ used to normalise the data in Figure 6.18,
is equivalent to either 46 or 170 hours. These times correspond to an
applied constant stress of either 200 or 175 MPa, respectively.

The daté published by Ng, Webster and Dyson [1980] on the
1CMV steel showed an overall behaviour different from that of the 2}CM
steel. Block 10G exhibits only notch strengthening, while block 4F

always showed notch weakening when the time strength ratio, inO/I is

un’®
plotted against notch sharpness, a/R, as shown in Figure 6.19. The uni-~
axial rupture time used to normalise the notch data is equivalent to

41 hours at Com = 300 MPa, as shown previously in Figure 6.17. The
maximum notch strengthening for the 10G block is about 6 which corresponds
to a notch sharpness of about 1.5, No data are available for wvalues of
a/R > 2 and a/R < 17, therefore it is assumed that the strength will drep
in the way shown in Figure 6.19 to about 1.02 when a/R = 17. Block 4F
exhibited hardly any notch strengthening and the lowest time strength

ratio for the sharpest notch is about 0.5. The uni-axial rupture time

used to normalise the data is also 41 hours.

6.6.3 Metallurgical Observations

The fracture characteristics of the 21CM and }JCMV steels were
investigated using simple optical metallegraphy. The results of these
investigations were reported in Section 6.5.6, Figures 6.10 to 6.13.

A fibrous type of failure is observed in the fractured surfaces of the
21CM steel, while the }CMV steel shows a clear intergranular type of
failure.

In the case of the 2iCM steel, grains in the vicinity of the
fractured surfaces deformed considerably before failure. No damage in

terms of voids or microcracks can be observed away from the fractured
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surface of the sharp notch investigated (Figure 6.11). The longitudinal
section of the second unfractured blunt and sharp notches, shown in
Figures 6.10 and 6.11, shows no evidence of voiding or severe deformation
relatively early in life for these geometries. Machining inaccuracy or
initial internal daﬁage could be blamed for this, since it was expected
that both notches were to deform simultanecusly until about 0.5 to 0.8 of
the total rupture time and then one notch will dominate the overall
behaviour until failure.

The fractured surfaces of the blunt and sharp notches of the
1CMV steel, shown in Figures 6.12 and 6.13, show a distinct intergranular
type of failure which coincides with the low ductility reported during the
creep tests (less than 1%) (Tables 6.7 and 6.3).

Some attempts were made to use transmission electron
microscopy for higher magnifications which can lead to quantitative
measurements of voids and their approximate initial sizes in both
materiais. The lack of superior polishing equipment and the expertise

required for these types of magnifications terminated these attempts.
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6.7 CONCLUSIONS

Creep tests at 538°C have been carried out on plain and notched bar
specimens pulled in tension. The material tested was the 21%Cr 17Mo
steel, Some plain bar specimens were creep tested under constant stress
conditions using a modified dead-load creep machine. Other creep data on
the brittle }%Cr }%Mo 1%V steel, available in the literature, were also
given for the purpose of comparison.

Simple analysis on the uni-axial data revealed that the secondary

creep coefficients are as follows:

(a) n=19.77 and C = 2.5156 x 10725 1/[MPa]™h for the 21%Cr 1%Mo
steel.
(b) n =16.66 and C = 2.2x 10746 1/[MPa]™h for the }%Cr }ZMo 4%V

steel.

Theoretical estimates of uni-axial rupture times under constant load
and constant stress conditions were given for the 2iCM steel. They
always predicted higher rupture times than the experimental values, and
are therefore considered as upper bounds.

The notched bar data on the 2{CM steel showed that no matter how
severe the notch sharpmess is, this material will always notch strengthen.
The results have been discussed and compared with the notch data on the
JCMV steel which exhibits both notch stremgthening and weakening.

Cumulative damage creep tests have been carried out on some notched
bar specimens made of 2iCM steel, between two nominal stress levels of
200 and 175 MPa and vice versa. The rupture times were analysed using
Robinson's 1ife fractionm rule which was found to be valid for this

material when the stresses fluctuate between the above two nominal stresses.



TABLE 6.1

Chemical Compositions of Materials

(a) 2}%Cr 1%Mo steel
% Weight
C S5i Mn S P Ni Cr Mo Al Zr Ti Cu Sn

0.12 {0.34| 0.59| 0.005{0.015{0.19¢2.4}1.0)0.02]0.01| 0.034|0.07] 0.01 |
I\
O
o

(b)  }%Cr 7o L%V steel !

% Weight

Cast C Mn Mo v Cu Sn Al Ce T1 Zr Cr s P si Ni Nb Co As Sb
4F 0.11 | 0.36] 0.42310.2210,07]0.005|0,019|0.002 | 0,005 0.0011{0.37;0.012]0.012| 0.29¢} 0.05| 0.005]| 0.01 0.011 | 0.0015
106 | 0.08 1 0.37)10.691|0.33]0.06|0.005|0.005]0.025) 0.005] 0.002]| 0.42 | 0.013} 0.012} 0.48| 0.05] 0.008] 0,012 | 0.011 | 0.0025
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TABLE 6.2

Dimensions of the Circumferentially Notched Bar Specimens

Za R 26 £ G
a/R ¢
(mm) (mm) (mm) (mm) (mm)
0.5 6.55 13.1 9.57 8.206 25.41
1.0 6.517 6.517 9.52 5.705 25.4
1.0 6.515 6.515 9.52 5.705 25.395
1.67 6.49 3.892 9.485 3.77 25.4
1.67 6.5 3.892 9.5 3.77 25.415
1.67% 6.5 3.892 9.5 3.77 25.41
2.6 6.482 2.49 9.473 2.49 25.398
4,0625% 6.475 1.594 9.46 1.6 25.395
5.0 6.5024 1.3 9.503 1.334 25.41
6.5 6.48 0.995 9.47 1.0 25.411
9.285% 6.481 0.696 9.47 2.45 25.4
13.0%* 6.55 0.504 9.572 2.54 25.398
13.0% 6.495 0.5 9.492 2.53 25.398
13.0 6.497 0.5 9.495 2.53 25.398
21.66% 6.52 0.301 9.52 2.57 25.41
44 T* 6.48 0.145 9.47 0.145 25.4

* The specimen has two notches




TABLE 6.3

Uni-Axial Constant Load Creep Test Results at 538°C for the 2}%Cr 17Mo Steel

F-——N

_— do ﬂo Stress d £ 'tR . . £ - P.O . . clc'2 -d2 éé
(om) | (m) | ) | () | (em) | (k) Ry, d 2 (1/h)
18 6.502 37.85 200 2.54 54.35 8.5 43.6 84.7 .05 x 1073
11 6.515 37.84 198 2.635 533.55 .93 41.5 83.6 .1x1073
14 6.55 37.88 185 2.524 55.6 33.25 47.7 85.1 .59 x 1073
10 6.525 37.57 168 2.35 55.14 52.92 46.6 87.0 .8x1073
13 6.515 37.86 152 2.27 55.9 186.2 47.65 87.7 .09 x 1074
15 6.55 37.81 141 2.11 35.82 425.26 47.63 89.7 J77 x 107
12 6.55 37.87 125 1.994 56.0 875.0 47.87 90.7 .03 x 107"
¢ -

AU



TABLE 6.4

Uni-Axial Constant Stress Creep Test Results at 538°C for the 2}%Cr 17Mo Steel

- 2 _ A2 ]
do f,o Stress Jockey Load d £ 'tR . £ ﬂo . do d €,
Number ﬁER = /oeR =

(mm) (mm) (MPa) (V) (mm} (mm) (h) Eo d02 (1/h)
9 6.5024 38.1 220 5.67 2.26 53.15 22.4 39.5 87.9 1.367 x 1072
8 6.5024 37.95 200 5.255 2.221 53.47 46.9 40,9 88.3 7.07 <1073
2 6.527 37.9 175 4.717 2.153 55.5 148.7 46.3 89.1 2.15x 1073
4 6.517 37.81 160 4,15 2.155 55.63 414.3 47.15 89.0 7.16 x107"
7 6.517 37.88 125 3.25 2,15 55.91 4233.0 47.6 89.1 9.6 x 1072

Y

—E0T T



TABLE 6.5

Notched Bar Creep Test Results at 538°C for the 2{%Cr 1%Mo Steel

%om = 200 MPa

no
1 2 b4 2a %a £-1 a2-q?
(h) (mm) (mm) (mm) (mm) £, a?
1.0 639.4 5.705 8.357 6.517 2.87 46,5 80.6
1.67 779.8 3.77 5.487 6.49 2.96 45.56 79.33
1.67% 850.8 3.77 5.442 6.5 2.944 44,36 79.48
2.6 1064.5 2.49 4,504 6.482 3.01 80.88 78.4
4.0625% 1533.2 1.6 2.979 6.475 3.057 86.19 77.7
5.0% 1860,5 1.334 2.745 6.5024 3.08 105.8 77.56
6.5 2262.0 1.0 1.86 6.48 3.12 86.0 76.81
9,285% 1779.0 2.45 4.0915 6.481 3.34 67.0 73.4
13. 1885.2 2.53 4.296 6.495 3.395 69.8 72.67
13.0% 1738.1 2.54 4.32 6.55 3.43 70.1 72.57
21.66%* 1872.1 2.57 3.998 6.52 3.403 55.58 72.7
L 7% 1960.4 0.145 0.3175 6.48 3.68 118.9 67.75
Unom = 175 MPa
0.5 595.12 8.206 10.75 6.55 2.781 31.0 81.97
1.0 1146.5 5.705 8.152 6.515 2.83 42.9 81.13
1.67 1788.4 3.77 5.447 6.5 2.906 44.5 80.0
13.0% 3799.4 2.53 4.74 6.495 3.485 87.33 71.2

* The specimen had two notches

0T
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TABLE 6.6

Cumulative Damage Notched Bar Creep Tests at

538°C for the 2i7%Cr 17Mo Steel

ar | Tnomp | Snom, % | t, t, )
(MPa) (MPa) (h) (h)

1.67 200 175 840 1800 420 939 1.021

1.67 175 200 1800 840 900 434 1.016

13.0 200 175 1800 3800 900 1892 0.998

13.0 175 200 3800 1900 1900 940. 0.995




TABLE 6.7

Uni-Axial Constant Load Creep Test Results at 565°C for the 37%Cr 37Mo }7%V Steel

Block 4F Block 10G
Stress £ 2-1 £ Stress ¥y £-L )
Number R Z2e, = 4 Number R %ER = 0 4
(MPa) (h) JEO (1/h) (MPa) (h) 1’—0 (1/h)
4F8 375 4.31 4.2 5.17 x 107! 10G4 350 6.1 2.79 .34 x 1071
4F7 350 13.086 1.18 3.71x 1072 10G2 300 47.0 1.29 .67 % 1073
4F1 300 39.2 0.3 2.85x 10'-3 10G6 275 135.0 0.417 .09 x 10"3
4F5 275 87.46 0.312 1.23x 10_3 10G3 250 187.5 0.39 42 x 10_1*
4F3 246 131.0 0.17 5.83x 10_L+ 10GS5 240 325.9 0.234 5% 10""
4F4 226 428.9 0.245 2.18 % 10"1' 10GL 229 300.0 0.24 .13 x 107"

~90¢ "~



TABLE 6.8

Notched Bar Creep Test Results at 565°C for the 1%Cr 37ZMo l%V Steel

Com = 300 MPa, uni-axial IR = 41 hours, and b/a = 1.67
Block 4F “ Block 10G
R 1
Number a/R %ER* Number a/R %ER*
(h) (h)
4F1J 0.29 43.0 0.084 10GA5 0.0 63.4 0.625
4F1K 0.72 30.1 0.0925 10GA7 0.297 215.7 0.17
4F1C 1.0 24.85 0.052 10GA3 0.974 240.45 0.09
4F1B 1.49 24.0 0.032 10GA2 1.541 239.9 0.02
4F1E 2.0 13.2 0.05 10GAl 1.961 185.5 0.074
4F1F 18.0 23.2 0.15 10GA8 17.0 49.4 0.056

* Measured over the specimen gauge length

T L0C



TABLE 6.9

Experimental and Theoretical Predictions of Rupture Times for the 21CM Steel

(Material constant, n = 9.77)

‘-2 Experimental Theoretical
Stress éé . _ ~ % L n Ls
(MPa) (1/h) R e, " R tolty" ® R /1"
(h) (h) (h) (h)

220 1.367 x 1072 39.5 22.4 - - 28.9 - -
200 7.07 x 1073 40.9 46.9 9.5 4.93 57.85 14.5 4.0
175 2,15% 1073 46.3 148.7 36.0 4.13 215.3 47.6 4.52
160 7.16 x107* 47.15 414.3 95.0 4,36 658.5 142.9 4.6
125 9.6 % 107> 47.6 4233.0 | 875.0 4.83 4958.0 1066.2 4,65

* Constant stress data

t Equation (6.4): &

R=

ER/éA

§ Equation (6.5): z:RL =1/(n éé)

1 Equation (6.6): IR/IRL = nep

- 80¢ "
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Figure 6.1:Microstructure of ;(a)2}%Cr 1%Mo steel ;(b)i%Cr 3%Mo }%V steel .



—-210_

ww
~N
o0 =
[3,]
N
00}
N
15.8
[*"15 75*'

¥

|

J12.95 2 6.53 7.95
12.7 | 7.92
a—
Dimensions in _mm
a=-3.25
b-4.75
N
1
1
&Z9.75 —» | P ——
1_&
I gos5—> | =
i
T ’ |
a n © o
s?_) R / N ™ ~
tl== b
i B12.04—> . I
-
l
|
!
(D | !
b_ C—
Figure 6.2: Dimensions of the plain tensile and circumferentially notched

bar specimens



05

dﬂ- }‘ﬂiﬁ

)




HTNT T

\\,'\}\\'\u‘tulﬂ‘ -

b_ From top to bottom a/R-0.5, §, 21.66

Figure 6.3:A selection of notched bar specimen ;(a)Untested ;(b)Tested .






Figure 6.4.General view of constant stress creep machine ,
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Figure 610:Longitudinal section of unfractured notch of a 2}%Cr 1%Mo double
notched round bar specimen with b/a=1_46 and a/R=1.67 .



Figure 6.10:Longitudinal section of unfractured notch of a 239%Cr 1%Mo double
notched round bar specimen with b/a=1.46 and a/R=1.67 ,
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Figure 6.11:Longitudinal section of a double notched 2}%Cr 1%Mo round bar
with b/a=1.46 and a/R=13 .
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Figure 6.11: Longitudinal section of a double notched 2}%Cr 19Mo round bar
with b/a=1.46 and a/R=13 .
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Figure 612:Longitudinal section of a fractured 3%Cr %Mo 1%V notched bar

specimen with a/R=0.297 and b/a=1.67
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Figure 612:longitudinal section of a fractured }%Cr %Mo 1%V notched bar

specimen with a/R=0.297 and b/a=1.67 .
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Figure613.Longitudinal section of a fractured 3%Cr 3%Mo g3
1%V notched bar specimen with b/a=1.67 and
a/R=1,961 .
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Figure613.Longitudinal section of a fractured i%Cr %Mo 3- &

1%V notched bar specimen with b/a=1.67 and

a/R=1.961 .
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CHAPTER 7

APPLICATION OF CREEP RUPTURE MODELS

TO EXPERIMENTAL DATA

7.1 INTRODUCTION

The continuum mechanics and void growth models derived in Chapter 5
to predict notch strengthening and weakening are applied in this chapter
to the experimental data presented in Chapter 6 on the 2i{%Cr 1%Mo and
1%Cr 1ZMo 1%V steels. Some data available in the literature on a range
of high temperature alloys tested by Davis and Manjoine [1953] are also

used in these applications.
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7.2 ESTIMATES OF STRESS REDISTRIBUTION TIMES DUE TO CREEP

Rupture time predictions, based on steady-state analysis, are expected
to be valid only if the stresses redistribute relatively early in life.
The theoretical notch strengthening and weakening models proposed in
Chapter 5 were all based on the steady-state finite element predictions at
the skeletal point, given in Chapter 4. The numerical approach used in
the calculations cannot determine the time taken to reach steady-state.
However, an approximate method has been proposed in Section 5.2.2 for
calculating stress redistribution times due to creep, based on the
assumption that the overall behaviour of structures is dominated by the
redistribution of the peak stress (Calladine [1969]). This approach has
been used in this section to estimate steady-state times for various
notched bar geometries using the experimental data given in the previous
chapter on both the 2!CM and iCMV steels. Comparisons between
Calladine's approximate time-scale predictions and computed times to
steady-state, based on Hayhurst, et al.'s [1977a,b] incremental finite

element calculations, are also given.

7.2.1 Analysis

A general expression for calculating the time taken for stress
relaxation to be 907 complete was derived previously in Section 5.2.2 for
structures in which Eﬁax dominates the overall behaviour during creep

deformation. The constitutive creep law used was:
& = C " Glt) (7.1)

and for secondary creep, the result was:

flt. ] = 2.3 (7.2)
4 CnEg T
max




- 229 _

The steady-state finite element calculations performed in Chapter 4 on
various notched bar geometries showed that the effective stress is always

a maximum at the notch root and equivalent to:

a}z

= Fko = Fh Yom ‘D

max o (7.3)

Q

where F is the relative stress concentration factor based on the effective
stress values at the notch root (equation (5.1)), kR is the elastic
effective stress concentration factor, onom is the nominal stress across
the minimum section of the notched bar specimen, and @ and b are the notch

throat and bar radii as before. Substituting equation (7.3) into

equation (7.2) gives:

§le,) = .5 (7.4)

CnElFho, (a/b) 27 R-T]

For materials in which the maximum principal stress, o; s
max

controls failure (Johnson, et al. [1962], Hayhurst [1972], Cane[1980]),

equation (7.2) can now be written as:

gl ] = 2.3(’,[_17 (7.5)

Cnt a,
max

Although a skeletal point for the steady-state stress
distributions given in Chapter 4 for various notched geometries was not
reported, a zone where the axial stress is nearly independent of N exists
at the position of the effective stress skeletal stress. Using the
skeletal values of o;/oom as a reference stress that controls failure in

maximum principal stress materials, equation (7.5) can now be written as:

P+ _ &3
'}(-L ) = , E *(ﬂ.']‘) (7.6)
1
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From the finite element prediction:

¥ _ *
o] = (Kn onom) (7.7)

where Kn varies with the notch sharpness, as shown previously in Figure

5.6. Substituting equation (7.7) into equation (7.6) results in:
2
) = ek o T -
n nom

A similar equation to (7.8) can be derived when the maximum axial stress,
o , 1s used in the calculations. The only difference is that the term

max
(K o }* in equation (7.8) is replaced by (K o ) which, in this

n nom n npom max

case, is dependent on n and has a different position to that of the
skeletal effective stress, as shown by the stress distributions in
Appendix A and Chapter 4.

The time incremental finite element method adopted by
Hayhurst, et al. [1977a,b] to calculate the steady-state stress
distributions across the throat of various notched geometries (Section
3.3.1) differs from the present finite element method by its ability to

predict times to steady-state. A normalised time-scale, T s Was set to

allow the stresses to redistribute from the elastic to steady-state, such

as:

t
1t = [CE oo("'” G(¢) dt (7.9)

0

where C and n are material constants, E is Young's modulus, o, is the

applied stress and equal to GnOﬂl(a/b)z’ and G(t) is a general function

of time. For secondary creep, equation (7.5) gives:
Téb
§(£,) = - = (7.10)
8 CE (o la/b)23T]
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The ratio between Hayhurst's and Calladine's estimates of

steady-state times for notched geometries in which Eﬁax dominates the

overall behaviour can be found by dividing equation (7.10) by equation

(7.4). The result is:

“tb)Haghth _n
8% cantadine 13

(F et T) o (7.11)

44

7.2.2 Results
Comparisons have been made between Calladine's approximate
estimates of steady-state times for o and 94 materials (equations (7.4)
and (7.8)), and Hayhurst's finite element predictions (equation (7.11))
using available information on four different notched bar geometries.
The two materials used in the investigations were the 21CM and }CMV steels

for which C, n and € are known (Chapter 6). The values of max/oom’ which

is also equal to Fk, and Kno, (the maximum value in this case) needed

iom
in Calladine's equations, were taken from the stress distributions
calculated by the present finite element method (Chapter 4). The

dimensionless time to stationary state, T,,, required in equation (7.10)

£t
SRS )

was taken from Hayhurst, et al. [1977a,b], and T versus N diagrams of

84
the geometries investigated. The 3CMV has an " value of 16.66 which is
outside the range of these diagrams (n = 0 to 10), therefore Ti4 for this
material was found by linear extrapolation. The results of these
comparisons are listed in Table 7.1. It is observed that the times
predicted by Hayhurst are always greater than those of Calladine by
between 2 and 9 orders of magnitude.

Calculations have also been made to predict steady-state times

for the notch rupture data available on the 2iCM and }CMV steels (Chapter

6), using Calladine's approximate method. The results of these
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calculations are listed in Table 7.2 for both materials. The value of

Fk, which is also equal to Eycn , used to calculate 6{t6) in equation

om
(7.4) was taken from the finite element solutions (Chapter 4) at both the
maximum and the skeletal effective stress points. Results of some
calculations, using equation (7.8), for materials in which the skeletal
c;/co°° controls creep deformation and rupture are also listed in Table 7.2.
Calladine's theoretical predictions suggest, when compared with the 2iCM
steel notch rupture data, that steady-states have been achieved relatively
early in life when both o and 9 controls failure (the latter being too
conservative). However, for the 3CMV steel when either the maximum or
the skeletal 6700“ are used in the calculations, steady-state has not been
achieved. This implies that creep failure for this material is

controlled by o7 or a combination of both 9y and E—(Hayhurst, et al.

[1978], Cane [1980]).

7.2.3 Discussion
When creep rupture is the prime design consideration,

Calladine's approximate approach for calculating the stress redistribution
times seems appropriate to check the validity of using steady-state
conditions to predict rupture in complex structures. For the material
in question, the uni-axial creep coefficients required in the analysis are
easy to find. This leaves the only unknown to be the state of stress
parameter which controls creep deformation and rupture (E/coco or GT/COM).
These parameters are very difficult to measure experimentally, especially
in complex geometries, therefore they have to be found analytically. For
notched bar geometries, the Bridgman analysis given in Section 4.2 can be
used to estimate the required state of stress parameters for fully plastic
conditions; i.e. n = «, The other alternative is to use the finite

element method to calculate the steady-state stress distributions for any
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value of n.

The results of several calculations performed on various
notched bar geometries were previously given in Chapter 4. This section
focuses the attention on two types of diagram which can be used as a useful
design tool. Firstly, the relative stress concentration factor, F, versus
1/n diagrams (Figures 5.1 to 5.3). If Ehax controls creep deformation
and failure, F, in Calladine's equation (7.4) becomes as easy to find for
the appropriate value of n as the elastic stress concentration factors, K,
usually presented in charts in any standard design book. The second type
of diagram is one which shows the change in the state of stress parameters
at the skeletal point with increase in notch sharpness, a@/R (Figures 4.8,
4.14 and 4.20). In this case, the parameters of interest are the skeletal
o and ;.

Hayhurst's predictions of the stress redistribution times
listed in Table 7.2 show that notches manufactured from ductile materials
have shorter times to stationary-state than those manufactured from brittle
materials. They also suggest that stress redistribution is never complete
except for the BS V-notch manufactured from the 2}CM steel. The stress
redistribution time for this notch, according to Hayhurst, is 300 hours
which is also questionable because, if n is taken to be 9 and not 9.77,
then the time to stationary-state will be approximately 10* hours, which
is outside the experimental rupture time.

Calladine's estimates of the stress redistribution times
listed in Table 7.2 were based on either ¢ (maximum and skeletal) or ;-
The results show that for the ductile 2i{CM steel, the predictions are more
realistic when o is used in the calculations. When 9y is used, the
results are too conservative. However, for the brittle jCMV steel,
Calladine's estimates suggest that the creep behaviour of this material
is dominated by the axial stress, o1 When o is used in the calculations,

complete stress redistribution is not achieved.
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7.3 INTERPRETATION OF NOTCH RUPTURE DATA

Notch rupture data are usually interpreted and presented in terms of
notched to unnotched lives or stress strength ratios. The conditions
applied when time or strength ratios are used in the presentation were
previously given and discussed in Chapter 1, Section 1.4.1. In this
section, the implications of applying these conditions to experimental
creep data are discussed.

One of the most extensive experimental investigations undertaken on a
series of materials to collect uni-axial and notch rupture data was carried
out by Davis and Manjoine in 1953. They creep tested in tension a number
of uni-axial and notched bar specimens with different notch profiles under
a constant temperature and various nominal stresses. The results of
their investigation were presented in several logarithmic stress versus
rupture time diagrams. It is observed that the uni~axial and the notch
rupture data for some of the materials investigated are parallel to each
other but in most cases they are not. The c—tR lines of the notched
specimens diverge from the uni-axial line with no systematic trends.

This author believes that this point should have been taken into
consideration when McLean, et al. [1977] and Cocks [1980] compared the
Davis and Manjoine data, plotted in terms of notch rupture strength, with
their proposed theoretical bounds and models. The schematic diagrams in
Figure 7.1 explain why. If the uni-axial and notched data lines are
parallel, as shown in Figure 7.1(a), then the notched to unnotched time
or stress strength ratios will be the same at any reference rupture time
or stress (the horizontal and vertical lines). However, the values of
these ratios become very sensitive to the position of the reference time
or stress when the data lines are not parallel (Figure 7.1(b) and (c)).
If the data lines do not cross over at any applied nominal stress (which

is very likely), then the position at which the switch from notch
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strengthening to notch weakening takes place remains the same. At
different reference times or stresses, the numerical value of the notched

to unnotched ratios will be the only variable (Figure 7.1(d)).
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7.4 APPLICATION OF THE PROPOSED NOTCH STRENGTHENING AND WEAKENING MODELS

TO CREEP DATA

In Chapter 5, several theoretical models have been proposed, based on
either continuum mechanics or microstructural approaches, to predict notch
strengthening and weakening. In this section, these models are applied
to the experimental creep data available on the 2}%Cr 1%Mo and
i%ZCr }7%Mo 1%V steels (Chapter 6) and also to the Davis and Manjoine [1953]
data. The assumptions associated with using either the time or stress
strength ratios to present and compare these data with the proposed models

are fully discussed.

7.4.1 Summary of Analytical Expressions of the Models

The steps which have been followed in applying the proposed
continuum mechanics and microstructural models, discussed in detail in
Chapter 5, to the experimental data are summarised in this section. The
first step is to present the equations describing these models in terms of
normalised rupture time, IRéo. The continuum mechanics approach for

materials in which the effective stress controls failure (equation (5.9))

gives:
%nom,n
tp €, = ep (=) (7.12)
g
and for o4 materials, the result is:
0]
. nom, 7
th e, = ep | 5, ) (7.13)
where Opom = %o in equation (5.9), and éo is the minimum creep rate which

corresponds to the applied nominal stress, Snom*

From Ashby's theory of creep rupture by void growth, equation

(5.14) for boundary diffusion becomes:
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g
e = 917, ¢ o (7.14)
‘Yo 7
and for surface diffusion, equation (5.16), when §; < 0.01 gives:
1 ,%nom, 3
+ S PR SUTIN ]
in €, = v L P (7.15)

For materials in which voids grow by power-law creep, the general constant
stress rupture time equation (2.30), when the nucleation time, £_= O,
re

reduces to:

(7.16)

. a 1 “nom,n
tR EO = (Vl"”) 1In [(Vl"']) 6'(‘—] { ]

(0]

and when the rupture strain equation (2.34) for power-law creep is used,
with the assumption that the term 0.2£/d is negligible, the result is
identical to the continuum mechanics equation (7.12) for o materials.
Equations describing the theoretical models in terms of time
strength ratios were also derived in Chapter 5. The continuum mechanics

constant ductility models for either o or 9y materials are:

'tno Gnom n
0 o (7.17)
un a
tVlO Gnom n

and: — = } (7.18)
£ o
un 1

If the Bridgman values of oncm/a_(equation (4.5)) are used in

equation (7.17), the result is:

(fﬁﬁ) a "
1 R

[H +%§J 1n (7 +
un

Bridgman (7.19)
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Ashby's theory for materials in which voids grow by boundary

diffusion (Section 5.4.1) gave:

= (7.20)

Equation (7.20) is similar to the continuum mechanics equation (7.18) when
n=1,

For surface diffusion, the result was:

(7.21)

When 6£ was assumed to remain constant under both uni-axial and multi-

axial conditions, the power-law creep expression was:

(7.22)

no [éL) (Uﬁfmln
un _ o [of

Similar expressions to the continuum mechanics equation (7.17)
can be derived from the reduced power-law rupture strain equation (5.24),
assuming that ductility at failure is constant for both uni-axial and
notched bar specimens.

When the stress strength ratios are used to model notch
strengthening and weakening, the continuum mechanics approach for either

0 or o, materials gave:

a g
— = = (7.23)
un g
a g
and: . _fom (7.24)
g a
un 1

The Bridgman values of © Om/a-were previously derived in Section 4.2 as:

n
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[i‘ _ nom _ (1+E) 1n 11 #%) (7.25)
o _'Baidgman ~ ~ — a V7R :
un

Ashby's theory for materials in which voids grow by either
boundary diffusion or surface diffusion gave a similar expression to that
of equation (7.24). However, for materials in which voids grow by power-
law alone, three equations were given. The first equation was derived
from the constant stress rupture time equation (2.30) with the assumption

that 6( is constant. The result was:

s = (_()_L_)T/Vl ®nom

4
% o

(7.26)

The second equation was derived using the assumption that the rupture
strain is constant for uni-axial and multi-axial specimens. The results
gave an identical expression to that of the continuum mechanics for ]

materials (equation (7.23)). The third expression given was that derived

by Cocks [1980]:

2.n-1
sinh Eg(%j;f)] 1/n

S = N (7.27)
p.) ] n- 2
sinh [2(3 (N-3)]
where: N = cn/a' (7.28)

%, and o are the slip-line field predictions of the average axial and
equivalent stress in the minimum section of a notched bar.

Before applying these models to the experimental data, it is
necessary to summarise the assumptions used in their derivation. They

were:

(a) Nucleation time is negligible.
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(b) Failure mechanisms are controlled by void growth only with
no intervention due to mechanical instability (necking).

(¢) Either the strain to failure or 54 remain constant.

Finally, it has to be pointed out that only one curve of time
or stress strength ratio versus constraint for a particular value of n can
be predicted. This implies that the logarithmic notched and uni-axial

stress—-time lines are assumed to be parallel (Figure 7.1(a)).

7.4.2 The 2{%Cr 17%Mo Steel Creep Data

In this section, the proposed models are applied to the
experimental data available on the 2}7%Cr 17Mo steel (Chapter 6, Tables
6.3 to 6.5). The first step followed was to plot the experimental
rupture times, expressed in terms of tRéG, versus constraint, as shown in
Figure 7.2. Three models were also plotted in the same figure; these
were the continuum mechanics (equation (7.12)), boundary diffusion
(equation (7.14)), and power-law creep (equation (7.16)) models. The
stress index, n, for this material was approximated to 9 and the uni-axial
rupture strain, € used in equation (7.12) was taken from Table 6.4 as
equivalent to approximately 407 at ¢ = 200 MPa. The state of stress

nom

parameters required in the calculation, such as cnom/a; /01 and a,

onom
were taken from the finite element predictions for the notched geometries
with b/a = 1.46 (Figures 4.14 and 5.8). Estimates of the material
property, ¢G, which appear in the boundary diffusion equation (7.14) are
given in Table 7.3. The material coefficients used to calculate ¢0
(equation (2.18)) were given by Dyson [1982] at 565°C, which is slightly
higher than the creep test temperature of 538°C. No information could be

obtained in order to calculate the surface diffusion material parameter,

y_, required in equation (7.15), and this model was therefore excluded.
(#)
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It is observed from Figure 7.2 that the uni-axial and all the
notched bar specimens have failed by power-law creep and not by diffusion.
This is indicated by the fact that the boundary diffusion model always
predicts longer lives than were measured in practice. It is also observed
that the continuum mechanics constant ductility model represented by
equation (7.12) over-estimates the experimental lives for a/R > 3.0. The
power-law creep model gave a good fit to the rupture times of the specimens
with high constraint with 6( = 5x107%. The uni-axial ductility predicted
using this value of 6i in equation (5.23) is equal to 157%, which is much
higher than the measured ductility of 907 (Table 6.4, Som = 200 MPa).

It has been stated in Section 7.4.1 that Ashby's model for
uni-axial behaviour is only applicable prior to the onset of necking.
Therefore, the difference between the experimental and predicted
ductilities indicates that plastic instability was the final cause of
failure, and not creep. If the material is allowed to deform uniformly,
then the uni-axial rupture time is expected to be much higher than the
experimentally measured value. This is illustrated in Figure 7.3 for the
plain bar specimen tested at a constant stress of 200 MPa. The predicted
rupture time, i&n’ using the experimental secondary creep rate which
corresponds to 200 MPa and a ductility of 1577% is about 225 hours. This
predicted time is about 4.85 higher than that measured experimentally.

Finally, the proposed models expressed in terms of notched to
unnotched lives and stress strength ratios are shown plotted against the
experimental data in Figures 7.4 to 7.6. In Figure 7.4, the measured
uni-axial rupture time, equivalent to 46 hours, was used to normalise the
experimental data. It is observed that both the Bridgman and the
constant ductility models (equation (7.17)) agree with the experimental
data up to approximately a/R = 3. This is expected since the Bridgman

analysis is only valid for blunt notches of small constraint and the
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continuum mechanics constant ductility model does not take into account
any drop in ductility due to increase in tri-axiality with increase in
notch sharpness. These two models can therefore be regarded as upper
bounds. The estimates of tno/tun shown in Figure 7.4 when 6L was assumed
constant (equation (7.22)) are about 4 or 5 times smaller than the
experimental ratios. This is approximately the same difference as
between the predicted uni-axial rupture time and that measured
experimentally (Figure 7.3). When the true uni-axial rupture time,

t&n = 225 hours, was therefore used in Figure 7.5, the constant 6i model
fits the normalised data almost perfectly. Similar trends are observed

when the data are plotted in terms of stress strength ratios using the

corrected uni-axial rupture time (t&n), as shown in Figure 7.6.

7.4.3 The 4%Cr }{%Mo }%V Steel Creep Data

Two blocks of this material, labelled as 10G and 4F, were
creep tested in 1980 by Ng, Webster and Dyson at 565°C. The information
made available by their research was previously listed and discussed in
Chapter 6, Tables 6.7 and 6.8. Metallurgical investigations on fractured
surfaces of some notched specimens revealed that a clear intergranular
type of failure was the cause of fracture. It also showed that damage
in the form of small cracks and voids was observed around the area of the
fractured surfaces (Figures 6.12 and 6.13), which is expected from a
material in which the uni-axial ductility, measured over the gauge length,
is between approximately 4% and 0.2%.

It is evident from the metallurgical observations and the
absence of necking in all plain bar specimens that damage accumulation and
not plastic instability was the cause of failure. For this material, no
information could be obtained in order to calculate the boundary or surface

diffusion parameters, ¢_and ¢ _. Therefore, it was not possible to plot
o

0
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the data in terms of the normalised time, I? EG, in order to assess whether
the formation and linkage of voids was caused by power-law creep or by
diffusion. However, there is a clear indication that the models in which
the axial component 9 is the dominant parameter gave a reasonable fit to
some of the data when plotted in terms of notched to unnotched life
strength ratios (Figure 7.7). It is observed from this figure that the
continuum mechanics, boundary and surface diffusion models all predict
notch weakening which is consistent with the 4F material behaviour. The
only difference between these three models is the power to which the

normalised axial component o /01 is raised (n = 1, 3 or 16). It is

nom
also observed that the constant ductility and constant §; models gave a
good fit up to about a/R = 0.5 for the 10G material which was more ductile

than the 4F material. However, no agreement with any of the models is

obtained for the sharpest notches for the 10G material.

7.4.4 Davis and Manjoine's [1953] Creep Data

The uni-axial and notched rupture data reported by Davis and
Manjoine in 1953 on a range of high temperature alloys with different
grain size, hardness, ductility and heat-treatment have been used by
several investigators to provide some understanding of notch behaviour.
The creep data on four different alloys are shown plotted in Figure 7.8 as
a ratio of 1000 hours notched to unnotched rupture strength. Previous
models proposed by McLean, et al. [1977] and Cocks [1980], together with
the continuum mechanics and microstructural models suggested by the present
author are also given in the same figure. McLean, et al. [1977] used the
Bridgman equation (7.2) which gave good agreement with the initial notch
strengthening behaviour of three of the four alloys. They also suggested
two bounds to notch strengthening dictated by the geometrical ratio, b/a.

The first was an upper bound due to the onset of gross section creep caused
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by the notch constraint (b/a)2 and the second was a lower bound due to the
loss of localised deformation caused by the ratio b/a being insufficient
to sustain constraint beyond a critical value of 1/a. These two bounds
are shown in Figure 7.8 as two horizontal lines.

Cocks [1980] used equation (7.27) with n = 9 to model the
behaviour of alloy A. He suggested that the deviation between his model
and the experimental data in the region of high constraint was probably
due to the drop in failure strains which can cause a drop in stress
redistribution times.

In Figure 7.8, the present models of constant ductility,
constant 6£, diffusion and continuum mechanics for 01 materials are shown
plotted as a function of constraint. The state of stress parameters,

such as onom/a; o /oI and a, were taken from the finite element

nom
predictions given in Chapter 4 for the notched geometries with b/a = 1.33.
The stress index for alloys A and B were approximated to n = 7 and D and
Cton=12. It is observed that the constant ductility line gave an
excellent fit to alloy A data and the onom/01 model (diffusion and
continuum mechanics for oy materials) can be regarded as a good lower
bound. It must be noted that the data presented in this figure were
normalised with respect to the constant load and not constant stress uni-
axial line, due to the lack of information on the latter. It is
therefore expected that the experimental data on alloy D, which has
approximately the same ductility and n values as the 21%Cr 17Mo steel,
will drop by a factor of 1.2 to 1.3 if the true uni-axial rupture life is
used. This is the factor required to bring the data line nearer to the
constant 6£ line shown in Figure 7.8 for n = 12. The other alloys are
less ductile than alloy D. Therefore, it is expected that the effects of

plastic instability have a smaller influence on the measured uni-axial

rupture lives. Nevertheless, a factor of up to 1.1 will bring the data



~ 245 _

of alloys C and B nearer to the ¢ /01 model and improve the fit of the

nom

blunt notched data of alloy A with the constant 6i line for n = 7.



~ 246 .

7.5 GENERAL COMMENTS ON THE PROPOSED MODELS

It was necessary, before applying the proposed models to the
experimental data, to check the validity of using the state of stress
parameters at the skeletal point to predict rupture times. The results,
based on Calladine's approximate time-scale predictions, showed that
stress redistribution was achieved relatively early in life for all the
notched geometries investigated. If these predictions were opposite to
those which have been already reported in Section 7.2, i.e. no stress
redistribution was achieved early in 1life, then the theoretical lifetime
predictions would have been invalid.

A factor which has been highlighted prior to the application of the
proposed models to experimental data is the importance of having an
efficient method for estimating the required state of stress parameters in
the notch throat. The limitation of the approximate plasticity solutions,
such as the Bridgman method, makes the present rapid finite element method
very attractive in providing the necessary information.

The good agreement between the proposed models and the experimental
data suggest that the assumption that nucleation time is negligible is not
a bad approximation. However, the results point out very strongly that
if plastic instability causes early failure, then this factor has to be
taken into consideration. The proposed microstructural models using the
assumption that ductility is constant seem to provide a useful fit to the
data in the region of low constraint. It is believed that the deviation
of this model from the data is due to the drop in ductility as the
constraint increases. The best fit observed between any of the proposed
models and the experimental data was obtained using the constant 6L lines.
The strength of this model lies in its ability to include both the
increase in the hydrostatic and the decrease in the effective stress

components as the constraint increases, through the state of stress
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parameter o which is also dependent on n. However, if plastic
instability intervenes, then this model will under-estimate the measured

strength ratios.
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7.6 CONCLUSIONS

Estimates of stress redistribution times due to creep have been given
for a range of notch geometries using Calladine's approximate method and
the Hayhurst finite element predictions. Comparison with the experimental
lifetimes of some of these geometries indicate that stress redistribution
can be achieved, provided that the right stresses are used in the
calculations. The results also confirm the validity of using the state
of stress parameters at the skeletal point to predict notch bar behaviour
and their lifetimes.

The continuum mechanics and microstructural models derived in
Chapter 5 have been applied to several experimental creep data, some of
which are reported in Chapter 6 and the others in the literature. The
model in which the ductility is assumed constant provides a good fit to
the data in the region of low constraint. It was found that for
materials which fail by damage accumulation and not plastic instability,
agreement is obtained with the models which predict notch weakening only
through the normalised axial component raised to the power 1, 3 or n.
The best fit was provided by the model which assumes 6L remains constant
with increase in constraint if the effects of plastic instability were

taken into consideration.



TABLE 7.1

Estimates of Steady-State Times for Some Notched Bar Geometries

(a) 2{%Cr 1%Mo steel: n = 9.77, C = 2.5156x1072%, o = 200 MPa, E = 152 GPa
B L Calladine 6”’/.&) (h) Hayhurst éffté) Experimental
Notch b/a afR Omaxlco 9, /a Tos R
max — (h)
max o (h)
max
Semi-circular notch | 1.67 1.5 2.1 3.05 2 x1072 0.49 0.18 27.8 -
BS V-notch 1.41 | 18.18 1.5 3.05 4.2 0.48 9.3x1073 300.0 = 1800
Deep notch, DN1 1.9 2.0 2.5 4.15 1.1x1072 1.02 0.11 147.0 -
Deep notch, DN2 2.25| 5.0 3.2 5.8 4 %1073 2.27 0.12 1040.0 -

“6vC



(b)

$%Cr 37Mo 17V steel:

TABLE 7.1 (continued)

= = -46
n=16.66 C=2.2x10 %, om

= 300 MPa, E = 176 GPa

_ Calladine 6(16) (h) Hayhurst 6(1:;5) Experlitmental
Notch b/a a/R cmaxloo 7, /o LI R
max 5 s (h) (h)
max 1
max
_ -y -5 24 (4F)

Semi-circular notch | 1.67 1.5 2.05 3.18 7x10 437.0 0.434 2.76 x 10 240 (10G)
BS V-notch 1.41 | 18.18 2.4 3.1 2.0 0.176 | 3.13x 1073 3.93x107° -
Deep notch, DN1 1.9 2.0 2.45 4.2 2x107"* | 1536.0 0.316 4.48 x 1076 -
Deep notch, DN2 2.25| 5.0 2.8 5.9 4x107% | 3.8 x 10" 0.31 1.79x 1078 -

—08¢C "~
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TABLE 7.2

Estimates of Steady-State Times for Two Low Alloy Steel Notched Specimens

(a) 2}%Cr 17Mo steel: b/a = 1.46, n = 9.77
cnom = 200 MPa
a/R * *
— ;o | —y © * © 5{'té}max 6(t£’ S(téll Experimental
0max/°o o /°o °1/°o t, (h)
(h) (h) (h) R
0.0 2.136 2.136 2.136 0.041 0.041 | 0.041 46.9
1.0 1.75 1.72 2.24 0.233 0.272 | 0.0173 639.4
1.67 1.69 1.58 2.23 0.317 0.572 | 0.018 779.8
2.6 1.62 1.48 2.225 0.459 1.015 | 0.0279 1064.5
5.0 1.625 1.375 2.42 0.447 1.936 | 0.0133 1860.5
8.125 1.65 1.33 2.44 0.39 2.592 | 0.01 -
13.0 1.8 1.32 2.625 0.182 2.77 0.0065 1885.2
21.66 - 1.318 - - 2.8 - 187.0
32.5 1.45 1.315 2.8 1.215 2.86 0.0037 -
44,7 - 1.31 - - 2.96 - 1960.4
a/R Opom = 175 MPa
0.0 2.136 2.136 2.136 0.131 0.131 | 0.131 148.7
1.0 1.75 1.72 2.24 0.753 0.876 | 0.055 1146.5
1.67 1.69 1.58 2.23 1.023 1.846 | 0.058 1788.4
13.0 1.8 1.32 2.625 0.588 8.93 0.021 3799.4
(b) 4%Cr i7%Mo 1%V steel: b/a = 1.67, n = 16. s 0, om =300 MPa
£ * %+ | Experimental
- ;o | —y © * © 5(&5)max 6(13) 5[15 1 X, (h)
a/R |o. /o o /o or/o R
max’ ~o 0 1" "0 (h) (h) (h)
4F 10G
0.0 2.78 2.78 2.78 3.43 3.43 3.43 41.0 41.0
0.75 2.35 2.35 2.77 50.86 50.86 3.63 30.1 -
1.5 2.15 2.1 2.9 206.4 299.0 1.76 24.0 | 239.9
2.0 1.95 1.9 2.92 960.8 1446.5 1.585 | 13.2 | 185.5
17.0 - - - - - - - 49.4
18.0 - - - - - - 23.2 -
20.0 1.9 1.55 3.27 1446.5 3.5x10% | 0.266 - -
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TABLE 7.3

Estimates of the Material Property ¢, for the 21%Cr 1%Mo Steel at 565°C

The equation for ¢O is:

ZDbébQGO

€K
Q
I

LT3 %o

where (source: Dyson [1982]):

Ub = 4.4x10"1% n2/s
8 = 5x10710 p
Q = 1.7x10729 p3
R = 1.4x10723 J/K
£ = 10 um
o, = 2x10% Pa
The test conditions were:
o, = 2x108 pa , ¢, = 7.07x1073 1/h = 1.964x107° 1/s
and
o, = 1.75x 108 Pa , g, = 2.1x1073 1/h = 5.83x1077 1/s

The calculations gave:

6.5x1073 at 2x108 Pa

-
"

1.92x10"% at 1.75x108 Pa

and: ¢
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 CONCLUSIONS

The object of the work presented in this thesis was to investigate
the influence of state of stress on creep failure. The procedure
followed in order to fulfil these objectives was to think of a possible
method in which the state of stress can be systematically varied and then
investigate their influence on the prediction of component lifetimes.
Previous experimental and theoretical investigations have shown that by
changing the notch profile in round bars pulled in tension, the state of
stress parameters in the throat will vary accordingly. The research
procedure after adopting this method branched into the following main

lines:

(a) To develop an efficient numerical technique based on the finite
element method in order to assess how the state of stress
parameters vary in the throat with notch shape.

(b) To conduct a series of experimental creep tests on plain and
notched bar specimens made of a material of practical relevance.
The results of the experimental investigation would provide a
knowledge of some material creep coefficients and lifetimes
needed in the analysis.

(c) To use the finite element predictions of the state of stress
parameters in the notch throat in some theoretical models to

predict the lifetimes of the notched specimens.

Prior to presenting any theoretical or experimental results, a

detailed literature review of continuum mechanics and microstructural laws
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which describe the behaviour of components undergoing creep deformation

were given in Chapters 1 and 2. In particular, attention was focused on

the Ashby and co-workers theory for modelling the growth of voids by

mechanisms controlled by diffusion, power-law creep and by any

combination of these two.

Discussions of (a) were given in Chapters 3 and 4, (b) in Chapter 6,

and (c¢) in Chapters 5 and 7. The conclusions reached were as follows:

(1)

(ii)

(iii)

(iv)

Two finite element programs have been developed and used
successfully to calculate the steady-state stress distributions
in axi-symmetric and two-dimensional bodies subjected to creep.
The iterative numerical method adopted in which the elastic
material properties are up-dated after each iteration until the
final steady-state is achieved, have been found to be economical
in terms of cost and accurate in comparison with exact and other
finite element solutions.

Solutions have been obtained for a range of circumferentially-
notched bar geometries and different values of stress index, 1.
Other geometries have also been investigated; these were blunt
and sharp double notches under remote uniform tension, and
compact tension specimens with different hole sizes machined
into their crack plane.

It has been found that for all the notch geometries investigated
and for values of n > 1, a skeletal point at which the

effective stress remained constant, independent of n, was
observed.

Several theoretical models have been derived using either a
continuum mechanics approach or Ashby's void growth theory to

predict notched bar behaviour. These models were used in a
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detailed calculation using hypothetical material constants,
ductilities and area fraction of holes. The state of stress
parameters required in these calculations were taken from the
finite element prediction at the skeletal point. It was found
that if the ductility is assumed constant, the models always
predict notch strengthening for o materials and notch weakening
for 9 materials. When the area fraction of holes was assumed
constant, both notch strengthening and weakening can be predicted,
depending on the value of n and the tri-axial state of stress.

(v) Creep tests at 538°C have been carried out on several plain and
notched bar specimens pulled in tension. The material tested
was the 21%Cr 1%Mo steel used in the electric power generation
industries. The creep data obtained have been analysed and
compared with the brittle }%Cr 17%Mo l%V steel. It has been
found that no matter how severe the notch sharpness is, the
21%Cr 1%7Mo steel will always notch strengthen.

(vi) Some indication of the time taken to reach the steady-state
conditions have been included using Calladine's approximate
method and the creep coefficients obtained in the experimental
part of this investigation. The approximate time-scale
predictions based on the state of stress parameters at the
skeletal point showed that rapid stress redistribution is
achieved.

(vii) The continuum mechanics and microstructﬁral models have been
applied to the experimental data obtained on the 2}%Cr 1%Mo
steel and other creep data available in the literature. It has
been found that a constant ductility model gave a good fit to
the data in the region of low constraint. If the material

notch weakens, i.e. fails by damage accumulation and not by
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necking, then the diffusion models provided a good fit to these
type of data, with the continuum mechanics model for 9 materials
being the lower weakening bound. It has also been found that

if the material fails by plastic instability, then the proposed
model which assumes 6L constant gave an excellent fit to the

data, provided a corrected and not a measured lifetime is used.
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8.2 RECOMMENDATIONS

In a research programme of this scope, it is inevitable that all

aspects of the problem could not have been covered. During the course of

the investigation and the writing of this thesis, a number of suggestions

have arisen which could lead to further work. Some of these are now
offered:
(1) Modify the present finite element method so that solutions at

(2)

(3)

(4)

intermediate time steps can be estimated, together with the
final stress redistribution time. This involves adding
routines which calculate an optimum time step and over-
relaxation factor after each iteration. Extra arrays may be
required to store the previous, new and the calculated strains
and stresses. Prior to this, a suitable time function has to
be chosen.

There are some grounds for improving the performance of the
present finite element method if, for example, quadratic types
of elements are used instead of the present constant strain
triangular elements. This means that accurate estimates of the
stress distributions in the presence of very sharp notches or
cracks could be made possible. This suggestion requires some
time to be spent in adopting a new method for storing and
solving the dimension and stiffness matrices, respectively.

The influence of anisotropy in material properties is another
possibility which can be incorporated into the present finite
element method. This involves adding some logic statements to
modify the homogeneous material properties after each iteration.
Quantitative measurements of voids and their growth rate in the

present material could be made using, possibly, electron
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microscopy techniques. This means a series of interrupted tests
at successive times prior to failure to determine the
development of damage throughout life. In this way, the

assumptions of the microstructural models can be checked.
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The paper describes a procedure, based on a finite element method, for calculating directly the steady-state stress
distribution in circumferentially notched bars subjected to creep without the need for obtaining solutions at
intermediate time intervals. Good agreement is obtained with relevant approximate plasticity solutions and with
numerical calculations which approach the steady-state over a period of time from the initial elastic stress
distribution. Also, the procedure is equally applicable to primary, secondary, and tertiary creep, provided the
variables of stress and time are separable in the creep law.

Results obtained for a range of notch geometries and values of the stress index, n, are reported. It is found for each
profile that a region of approximately constant effective stress, , independent of n, is obtained which can be used to
characterise the overall behaviour of the notch throat region when a steady-state is reached sufficiently early in life.
An approximate method for estimating the maximum equivalent steady-state stress across the notch throat is also
presented which does not require a computer solution.

1 INTRODUCTION

Failure by excessive creep deformation or fracture is an
important design consideration in structures required to
operate at elevated temperatures over long periods of
time. Often these components are subjected to triaxial
states of stress resulting from the applied loading or
sharp changes in section. In order to determine useful
component lives in such circumstances, laws governing
creep behaviour under multi-axial stressing are needed
M@)t.

A uniform state of triaxial stress is difficult to produce
in laboratory experiments. The most frequent method of
introducing a three-dimensional state of stress into a test
piece is to subject circumferentially notched bars to an
axial tensile load. The constraint of the shank produces a
state of triaxial tension in the notch region which
depends upon the notch geometry and creep properties
of the material. In tests carried out by a number of
investigators (3}~5), both notch strengthening and notch
weakening have been observed, depending upon the
notch dimensions and material examined. Some
knowledge of the stress distribution across the notch
throat is needed if this behaviour is to be explained.

The stress distribution within a notch region can be
determined in a number of ways, depending upon the
assumptions made. Initially, in the absence of plastic
deformation on loading, an elastic stress distribution will
be obtained. As time progresses, stress redistribution will
take place due to the high sensitivity of creep
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deformation to stress. When secondary creep dominates,
creep strain rate can often be written in the form

§=Céo" (1)

where C and n are constants at constant temperature,
and & and ¢ are the corresponding equivalent stress and
creep strain rates appropriate to multiaxial states of
stress. Several calculations, relevant to circumferentially
notched bars, have been made using finite element
techniques and equation (1) (6){11). An incremental
procedure is adopted and solutions obtained by iteration
for successive time intervals. These are, however, often
expensive and time-consuming to produce. The
calculations, nevertheless, show that frequently a
steady-state (or stationary) stress distribution is achieved
across the notch throat after a sufficiently long period of
time. If this stress distribution occurs early enough in the
specimen life, it may be possible to use it to characterise
the test piece behaviour.

Several methods of determining steady-state stress
distributions directly have been proposed (12)«17). Most
(12)«15) make use of non-work hardening plasticity
solutions and are, therefore, strictly only relevant to
values of n— oc. This paper presents a numerical
method for determining the steady-state stress
distribution in axisymmetric problems, rapidly, for any
value of n, without the need for calculating how stress
redistribution occurs with time. Results are included for
a range of values of n and notch geometries, and
comparisons made with the incremental time step
solutions of Hayhurst and co-workers (811). An
approximate procedure for providing conservative
estimates of the maximum steady-state equivalent stress,
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Gmax» 0 the notch throat is outlined. Also, some
indication of the time taken to reach a steady-state is
included.

1.1 Notation

a Notch throat radius

a;, a;, a,  Dimensions of a triangular element
Bar radius

b;, b;, b,  Dimensions of a triangular element

[B] Element dimension matrix

C Material constant in creep law

C, -+ C¢ Displacement coefficients

[D] Element elastic property matrix

[d] Element dimension matrix

E Young’s modulus

F Relative stress concentration factor

[F] Vector of overall externally applied forces

[K] Overall stiffness matrix

k Elastic effective stress concentration factor

[k],, Element stiffness matrix

n Stress index in creep law

P Pressure

R, R, Notch profile radius, element radial
coordinate

Ry, R, Internal and external radii

Element radial distance from the axis of
symmetry
j» 4 Element radial displacement component

w;, w;, w,  Element axial displacement component

A, Element area

[6], [6],, Overall and element vector of displacement
components

& & Strain, effective strain

§é Creep strain rate, effective creep strain rate

v Poisson’s ratio

o, G Stress, effective stress

b2 Total potential energy

/ Convergence tolerance

Subscripts

zz, 66, rr Refer to axial, hoop and radial directions

m Refers to triangular element m

ss Refers to steady-state

oo Refers to remote boundary

0 Refers to initial or reference conditions

2 AXI-SYMMETRIC FINITE ELEMENT ANALYSIS

Axi-symmetric problems can be solved by considering a
two-dimensional solution domain lying in a radial plane
through the axis of symmetry of the body concerned, as
shown in Fig. 1. The solution procedure adopted is first
to calculate the elastic stress and strain distributions.
These are then modified with the aid of equation (1). To
obtain the steady-state stress distribution, it is assumed
that elastic strains are negligible compared with the
creep strains so that equation (1) can be used to
determine total strains.

2.1 Finite element formulation for small strain linear
elasticity

Figure 1 shows a typical triangular finite element,
numbered m, in the axial-radial plane, r and z being local
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Fig. 1. Triangular finite element in a radial plane of an axisymmetric
body

coordinates parallel to the global coordinates R and Z.
The element has three nodes, numbered i, j, and k,
located at its corners. Although more sophisticated
higher-order elements are often to be preferred for
linearly elastic problems, simple triangular elements offer
a number of advantages for non-linear problems.

The radial and axial displacement components are
assumed to vary linearly over the typical element, so that

u=C,+Cyr+Csyz 2)
W=C4+C5T+C6Z (3)

where the six constants may be found in terms of the six
nodal point displacements from
1

C,=u; [C,C]T= A [d][uiujuk]T @)
Ci=w; [Cs Ce]T = Ei\ [d][w; W Wk]T (5)
where
blbbl_l
Il = [“ia;ak_l

and A, =Xa,b; —a;b,) is the area of the element.
Hence, most of the non-zero strains are constant over the
element and

cu w
Er=—=0C, ==«
or 2 b P
cu éw
e,,=5+—_r=C3+C5 (6)
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Although the hoop strain does vary over the element, it is
reasonable to assume it to be constant (18) to give

u u
= e A=

Egp = RR. (7

where @ and R,, are the mean values over the element of
the radial displacement and radial distance from the axis
of symmetry

i =Yu+uj+u); R,=XR +R;+R)

Combining equations (4)«7), the element strain
components can be expressed in terms of nodal point
displacements by

[€] = (s ooty ]” = 51 [BICO), ®)

where

(61 = [uywiu;wuw, 1"

and
b; 0 b; 0 b, 0’
[B] = 0 g 0 g 0  aq
2A,/3R,, 0 2A,/3R, 0 2A,/3R, O
a; b; a; b; a b,

The relationship between element stresses and strains
can be derived from Hooke's law as

[n] = [GVF ﬁ:: U{'P‘GFT] I = [D][lj (9)
where the elastic property matrix is given by

1 v y* 0

_ E* V¥ 1 ¥ 0
[D] T — p*2 p¥ X 1 0
0 0 0 ¥l—v%

E* and v* being the Young's modulus and Poisson’s
ratio modified as for plane strain conditions (18)
E v

* . L
E_I—\':' ! 1 —v

Equilibrium conditions for the entire mesh of elements
can be obtained by requiring the total potential energy,
7, to be stationary for small changes in the displacements
(18). Hence

dy =2y R,A,[0]" d[e] - [F1"d[6]1=0 (10)

where [d] is a vector containing all the nodal point
displacement components, while [F] contains the
corresponding forces, uniformly distributed around the
circumferences through the nodes at which they are
applied. Introducing equations (8) and (9), this result
becomes

R
21 Y. 72~ [BI'[DI[BI[8], = 3. [K1.[61.,
= [K][S] = [F] (1

where the [k],, are element stiffness matrices, which are
assembled to form the overall stiffness matrix, [K].
Solution of the overall linear equations, which is
equivalent to inverting this matrix, yields the nodal point
displacements and hence stresses. An important
consequence of using constant strain triangular (CST)

JOURNAL OF STRAIN ANALYSIS VOL 17 NO 3 1982 © |MechE 1982

finite elements is that the method of solution can be
either a direct elimination type technique, which is the
approach most commonly used in finite element
methods, or an iterative technique such as Gauss-Seidel.
The latter can be particularly useful when dealing with
non-linear problems.

2.2 Treatment of non-linear problems

Non-linearities in material behaviour, such as creep and
plastic deformation, which cause the effective elastic
properties E and v to vary with, for example, time or the
local state of strain, can be dealt with in different ways.
One approach is to solve a series of linear problems
corresponding to small increments of the relevant
independent variable, such as time or loading. For
example, in the present context, equation (1) can be used
to obtain solutions at a series of time intervals, At. An
advantage of this approach is that solutions are obtained
not only at the final time required but also at a number
of intermediate times. This is the procedure adopted in
references (6)~(11). The main disadvantage is that if the
time increment, Atr, is made too large, the computed
solutions will diverge from their true values. On the other
hand. if At is made very small, the amount of computing
required becomes excessive as a large number of
complete solutions of linear equations in the form of
equation (11) are required.

A second approach, and the one which is used here, is
to treat the elastic properties as variables, thereby
making the [D] matrix for each element, its stiffness
matrix, and the overall stiffness matrix into variables.
Thus, equation (11) is no longer linear. Nevertheless, it is
possible to solve it using the iterative Gauss—Seidel
technique, provided the elastic properties and stiffness
matrices are up-dated during the iterative process.
Although the amount of computing involved in a typical
non-linear solution of this type is more than that
required for the corresponding linear solution, it is
generally only greater by a factor of some two or three.
Therefore, this non-linear stiffness approach is more
economical than the incremental time step approach,
and it is generally much easier to ensure correct
convergence of the solution. On the other hand, the
many intermediate solutions associated with the
incremental approach are not available, the partially
converged results of intermediate iterations having no
physical significance.

A difficulty is experienced with the present finite
element formulation when the material concerned is
incompressible. Setting v = 4+ makes the element [D]
matrix singular. Although a complete reformulation of
the method can overcome this difficulty, at least for the
types of physical problems considered here, it is adequate
to use a value of v=1049. It is close enough to
incompressibility to avoid significant errors, while at the
same time avoiding the numerical instabilities associated
with values much closer to 0.5.

Since the present finite element formulation uses
displacement as the nodal point variables, the elastic
modulus needs to be expressed as a function of the local
state of strain. Using the constitutive equation (1),
therefore. the strain at time ¢ is given by

&= Cé"t (12)
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which may be inverted to give

g (“ \1l/n
a=(&) (13)
An apparent or effective modulus, E’, can now be defined
such that

E' =g/t

Substituting in equation (13) gives

2 1/n

F = (E) = E [Ez) "~ (14)
where E, is the effective modulus at some convenient
reference strain, ¢,. Setting n =1 gives a constant
modulus E’' = E,_, whereas for n > 1, E’ will be a function
of strain. Before calculations can be made, it is necessary
to define the appropriate equivalent stress ¢ and strain &.
In this presentation, the Von Mises criterion has been
adopted throughout, giving

-~

1/2
R ) (13

An advantage of using CST elements is that the
strains, and hence € and E’, are constant over each ele-
ment. The general procedure for the non-linear analysis
can be summarized in the following steps.

(1) Taking v and E’ to be constant everywhere initially,
and equal to, say, 0.3 and E,, the overall stiffness
matrix (K] is assembled using equation (11).

(i1) The elastic strains and stresses are calculated using
the Gauss—Seidel iterative technique.

(iii) New moduli E’, which will vary from element to
element, are computed using equation (14) and (15)
and a modified [K] matrix is reassembled with
v = 0.49.

(iv) A few cycles of Gauss—Seidel iteration are carried
out. These may be termed inner iterations.

(v) From the partially converged displacement
solutions, new moduli E’ are determined as in (iii).

(vi) Steps (ili)«{v) are repeated until satisfactory
convergence is achieved. These repetitions may be
termed outer iterations.

Convergence is achieved when the displacements
computed after successive outer iterations differ by only
a small amount

Zi{lAuil'*“Al‘i‘} =%
Yillwl+Ivity

where the summations are carried out over all the nodes
in the mesh, and Au, and Av; are the changes in the
computed displacements between successive outer
iterations. The small tolerance, 4, was taken as 1078, a
value which was found to give very satisfactory
convergence. The choice of the number of inner
iterations performed in step (iv) has an important
bearing on the cost of computation: making this number
too small results in unnecessarily frequent up-dating of
[K], while making it too large results in unnecessarily
complete convergence of the solutions to the linearised
equations between each modification of [K]. A series of
tests showed that, at least for the types of problems

(16)
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considered here, about four inner iterations for each
outer iteration was the best choice. The number of outer
iterations required for convergence depends on both the
level of mesh refinement and the magnitude of the
exponent n, and increases with the number of elements
and with the value of n.

2.3 Comparison with an exact solution

In order to test the finite element method, an example
was chosen where the exact linear elastic and non-linear
creep solutions are known. This was the case of a
thick-walled cylinder subjected to an internal pressure, P.
If R, and R, are the internal and external radii of the
cylinder, the distributions of hoop and radial stresses for
plane strain conditions are given by (19)

P R\ (2 R,\*"
700 = T Z(R,JR)™" {<R_z> *(E”)(T,) }

(17)

P {!"R:']SnA(RI‘)Zn]
R

— ———l = (Rl/Rz)z/n )\—; ’!> (18)

where r is the radial coordinate measured from the axis
of symmetry. For the linear elastic case of n = 1, these
reduce to the familiar Lamé equations.

Figure 2 shows the finite element mesh used for this
example, consisting of 34 right-angled triangles arranged
in a radial row. The case of R, = 2R, was treated. The
displacement constraints allowed the nodes to move only
in the radial direction, thereby imposing the required
plane strain condition. Results were obtained for n = 1,
2,3,9, and 100. In all cases, the computed stresses agreed
with the above analytical solutions to within 0.3 per cent.
This very satisfactory level of agreement is similar to that
achieved by Needleman and Shih (16), who treated the
equivalent problem of a thick-walled cylinder
undergoing power-law hardening plastic deformation,
although in their finite element computations complete
incompressibility was assumed. Provided the stress
dependence of creep and plastic deformation can be
written in the same form as equation (1), the stress
distributions indicated by equations (17) and (18) will be
representative of both plastically deforming and creeping
tubes. Although the analysis presented here has been
applied to creep situations, equations (14) and (15) could
equally well be used to determine stress distributions for
power-law hardening plastic deformation when the

g, =

\

Fig. 2. Simple finite element mesh for thick-walled cylinder problem:
Ry/R; =2
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plastic strains are large compared with the elastic strains. extrapolation from solutions obtained over a large
Similarly, attention need not be restricted to secondary number of time intervals. In addition, comparisons are
creep deformation provided the creep law can be written made with an approximate analytical solution by
in the form Bridgman (9) for a rigid—plastic material having n = oo.
= =n
&= Ca'F(n) (19) 3 NUMERICAL ESTIMATES FOR NOTCHED BARS
where F(t) is an appropriate time function which can Since a selection of notch geometries needing broadly
describe primary, secondary, and tertiary creep as appro- similar finite element mesh distributions were to be
priate. In this case, equation (13) becomes modified to examined, it was worth seeking a method of generating
5 ™ 1 the required grid automatically from a small number
= ={ £ } (20) of geometric parameters. A similar technique to that
CF() reported by Segerlind (20) was used and found to be
satisfactory.

but E’ can still be written, from equation (14), as

E = E,(¢/g,)\m=1 3.1 Mesh design

Typical finite element mesh distributions for three notch

The only restrictions, therefore, on a steady-state stress profiles corresponding to those investigated by Hayhurst
distribution being achieved for a given geometry and et al. (13)(14) are shown in Fig. 3. The automatic mesh
applied loading condition, are that the creep strains must generation routine developed enabled each cross-section
be large in relation to the elastic strains, and the to be divided into regions and the mesh size to be graded
variables of stress and time be separable. It does not so that it was finest where the stress gradient and
matter whether the material is undergoing primary, geometrical changes were greatest. Care was taken to
secondary, or tertiary creep, the same steady-state stress ensure that triangles having obtuse angles were avoided,
distribution will be achieved, provided each stage of the ideal shape being an equilateral triangle (18).
creep can be described by the same value of n. If a Experimentation with progressively finer grid sizes has
different n is needed for each stage, then a true shown that satisfactory accuracy is achieved with
steady-state will not be achieved unless one stage approximately 450-500 elements and the notch throat
dominates. divided into a row of 28 elements, as shown in Fig. 3.

In the next section, the numerical technique outlined

above is used to calculate the steady-state stress 32 Calculations

distribution across the throat of circumferentially Calculations have been made for valuesofn=1, 3, 5, 9,
notched round tensile bars. Some of the notch and 20, and 17 notch dimensions. Figure 3 shows a
dimensions have been chosen to enable comparisons to representative range of the notch shapes investigated. In
be made with previous (9)(10) finite element calculations all instances, a uniform axial stress, °, was applied at
which established this stress distribution by the specimen remote boundaries, as illustrated in

o X
2 1K
g \(1
RIS
R PERRE
| 2S5SsS
.
(b) (<)

Fig. 3. Finite element meshes and their boundary conditions for the notch geometries: (a) Semi-circular notch; a/R = 1.5, b/a = 1.67; (b) British
Standard V-notch; a/R = 18.18, b/a = 1.41;(c) Deep notch;a/R = 2,b/a = 1.9
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Fig. 3(b). Also, the specimen axis was constrained to
move only in a vertical direction while the notch throat
was prevented from moving vertically, again as indicated
in Fig. 3(b).

The stress components in each element were
calculated for each value of n by the procedure
previously described. The results of all the calculations
are summarized in Figs 4-12 and compared with
previous work (9)(10)(15)(17) where appropriate. Only
stress distributions across the minimum diameter of the
throat region have been presented, since this section is
the most critically loaded, and may, therefore, be
expected to determine the deformation and fracture
characteristics of such samples.

4 DISCUSSION

Stress distributions have been presented in some detail in
Figs 4-9 for the notch geometries shown in Fig. 3 for
comparison with previous calculations made on these
notch dimensions (9)(10)(15)(17). Figures 4-6 show data
for a rather blunt semi-circular notch having b/a = 1.67
and a/R = 1.5 (Fig. 3(a)); Fig. 4 compares the relative
axial stress distributions, ¢,,/6>, across the notch throat
forn=1,3,5,and 9. The n = 1 solution corresponds to
the elastic distribution. It is clear, for this geometry, that
as n increases, the maximum axial stress moves from the
notch root, r = a, towards the specimen centre line,
r=0. The results show good agreement with the
steady-state solutions of Kumar et al. (17) made for an
incompressible material having v = 0.5. The adoption,
therefore, of v = 0.49 in the present calculations to avoid

Present calculation .
—— Kumar et al. (17)

——— Bridgman, n= = (15) Hn=1

Normalized axial stress, o../0,

0 0-2 0-4 0-6 0-8 1-0
Normalized radial distance, r/a

Fig. 4. Axial stress distribution at steady state across the throat of a
semi-circular notch(a/R = 1.5)
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matrix [D] becoming singular (equation (9)) would seem
to be acceptable. Initially, at time zero on first loading,
and in the absence of plastic deformation, the stress
distribution will be elastic. As creep takes place, regions
of high stress shed load onto the lower stress regions
because of the high sensitivity to stress of creep
deformation. The extent of the stress redistribution that
takes place in order to achieve the steady-state condition
increases with increase in the value of n (Fig. 4).

Figure 5 presents data for all the stress components for
the extreme values of n = 1 and 20 used. Figure 6 shows
the corresponding results for intermediate values of
n = 3 and 9. The same trends are observed for the radial,
g,,, and hoop, o4, stress components as were observed
in Fig. 4 for the axial stress. As n increases, load is
redistributed from the notch root region, r = q, towards
the specimen axis, r = 0, to compensate for the relative
amounts of creep strain accumulated in each region.
Comparisons of the axial stresses for n = 9 and 20 with
the Bridgman (15) rigid plastic solution (n = o0) in Figs §
and 6 shows close agreement, indicating that the
Bridgman approximation can be used to determine ¢,,
with reasonable precision for n > 9. The Bridgman
solution gives o,, = 04 and under-estimates both these
stresses for all values of n.

Comparison is also made in Fig. 5 with the
steady-state solutions obtained asymptotically by
Hayhurst et al. (9) from incremented time-step

5t ——— Present calculation

—— Havhurst er al.(9)

——— Bridgman, n= = (15)

Normalized stress, g,/ 0%

0 0-2 0-4 0-6 0-8 1-0
Normalized radial distance, r/a

Fig. 5. Stress distribution at steady state across the throat of a
semi-circular notch(a'R = 1.5)forn=landn = 20
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4+ Present calculation

——— Bridgman, n = =(15)

o
o

Normalized stress, /o

0 0-2 0-4 0-6 0-8 1-0
Normalized radial distance, r/a

Fig. 6. Stress distribution at steady state across the throat of a
semi-circular notch (a/r = 1.5forn =3andn = 9)

computations. Generally, closer agreement is obtained
between the two finite element calculations than with the
Bridgman approximation. The axial stress distribution of
Hayhurst et al. (9) is between the elastic and steady-state
solutions for n = 20 of the present solutions, suggesting
that a true steady-state had possibly not quite been
achieved from the Hayhurst et al. (9) calculations.
Figures 7 and 8 show the corresponding steady-state
stress distributions across the throat of a British
Standard V-notch specimen (Fig. 3(b)). Figure 7 presents
the data for the n = 1 (elastic) and n = 3 cases, whereas
Fig. 8 shows results for n = 5 and 20. Although there are
detailed differences between the sharp notch and blunt
notch situations, the same general features are apparent.
The highest axial and hoop elastic stresses are again at
the notch root. However, unlike the blunt notch case, as
n increases for the sharp notch, the maximum values of
o.. and 6, remain close to the notch root, even for
n = 20. Figure 7 also shows the predictions of the
incremental time-step approach of Hayhurst et al. (9).
who indicate the same qualitative trends. Greater
quantitative differences are apparent than were obtained
with the blunt notch geometry (Fig. 5), suggesting that
the incremental approach may not have achieved a true
steady-state. This is consistent with the comments of
Hayhurst et al. (9) that correspondingly longer times are
required to achieve complete stress redistribution for the
British Standard V-notch geometry than for the
semi-circular notch. Although comparisons have been
shown for only one value of n(=3) with Hayhurst et al.
(9), similar differences were noted at all values of n.
Figure 9 shows corresponding results for a specimen
having a deep, relatively blunt notch with b/a = 1.9 and
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8-4atrja=1
}

Present calculation

—— Hayhurst er al.(9)

e
I

- LS
Normalized stress, a;;/9,

2
I

L)
S

) ; |
0 0-2 0-4 06 0-8 1-0
Normalized radial distance, r/a

Fig. 7. Stress distribution at steady state across the throat of a BS
V-notchforn=1andn=3

-
tad

[

Normalized stress, o,/9
[

0 0-2 0-4 0-6 0-8 1-0
Normalized radial distance, r/a

Fig. 8. Stress distribution at steady state across the throat of a BS
V-notchforn = 5and n =20
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7-0atr/a=1
1}
s ——— Present calculation
-~——- Hayhursi er ¢ (10)
«==—«~ Bridgman, n==(15) /

p— /

oo
)

Normalized stress, a;;/a;

1

0 0-2 0-4 0-6 0-8 1-0

Normalized radial distance, r/a

Fig. 9. Stress distribution at steady state across the throat of a notch
witha/R = 2andforn=1andn =9

a/R =2 (Fig. 3(c)). Results for n = 1 (elastic) and n =9
only are presented, since intermediate features to those
observed on the previous two geometries were obtained.
Comparisons with the Bridgman (15) and Hayhurst et al.
(10) solutions indicate similar agreement to those
reported for the semi-circular notch (Fig. 5). For the deep
notch geometry, an approximately uniform state of stress
is achieved in the region r < 0.4a at steady-state.

It is apparent from Figs 4-9 that the present rapid
method of estimating the steady-state stress distribution
directly by means of an effective modulus, E’, is
consistent with the other methods (9)10)(11)(17) of
determining this stress distribution. It has the
appreciable attraction over the incremental time-step
approach that solutions at intermediate time intervals
need not be calculated. It is also not necessary, with this
approach, to postulate an equation of state for creep
since it has not been necessary to write equation (19) in
incremental form. Consequently, provided equation (19)
gives a satisfactory description of primary, secondary,
and/or tertiary creep, the same steady-state stress
distribution will be obtained for a given notch geometry
and value of n, irrespective of whether, for example, the
time-hardening or strain-hardening equations of state for
creep (2) were adopted. For a creep law of the form of
equation (19), therefore, the choice of a particular
equation of state will only affect how the steady-state
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Normalized effective stress, /e’
33 X
o
O LA

! | 1 {
0 0:2 0-4 0-6 0-8 1-0
Normalized radial distance, r/a

Fig. 10. Effective stress distribution at steady state across the throat of
a semi-circular notch (a/R = 1.5)

stresses are achieved and not their final distribution. This
could have useful design implications.

The creep analysis used assumes that the deformation
behaviour of a component subjected to a complex state
of stress is governed by an effective (or equivalent) stress
criterion. The Von Mises or Tresca definitions could
have been used. In the present paper, the Von Mises
criterion was applied and Figs 10 and 11 show the
distributions of the normalized effective stress, o/0>,

7-2atr/a=1
A
n=1

._ ,»
U.’O‘,

Normalized elfective stress,

| L 1 |
0 0-2 0-4 06 0-8 1-0
Normalized radial distance, r/a

Fig. 11. Effective stress distribution at steady state across the throat of
a BS V-notch
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STRESS DISTRIBUTIONS IN CIRCUMFERENTIALLY NOTCHED BARS

across the notch throat for the semi-circular and V-notch
specimens, respectively, for n=1, 3, 5, 9, and 20. For
both geometries, the effective stress is a maximum at the
notch root for all values of n. The magnitude of the maxi-
mum effective stress, 6,,,, decreases with increase in n,
and the whole stress distribution levels out. For both
geometries for n > 3, there is a tendency for the stress
distributions to cross at almost the same value of r/a,
implying an approximate point of constant stress, often
called a skeletal point (2). For the semi-circular notch,
the skeletal point occurs at about r/a = 0.65 and for the
sharp V-notch at r/a = 0.85. For the other notch geom-
etries, it occurred at an intermediate radius. The presence
of a skeletal point may enable the stress there to be used
as a reference stress to characterise the overall defor-
mation behaviour of the notched bars. Such an approach
will only be relevant, however, provided an approximate
steady-state stress distribution is achieved relatively
early in life and the high local stresses close to the notch
root (particularly in the sharp notch samples) do not
cause premature failure.

The results of further computations made by the
present technique to evaluate &,,,, for notch dimensions
having values of b/a of 1.67 and 1.46, and notch root
profiles ranging from a/R of 0.5-16.25, are summarized
in Fig. 12. This figure presents the maximum effective
stress normalized with respect to its corresponding
elastic value, that is

6“1;1!
F= E;T (21)

where k is the elastic effective stress concentration factor.
For all the geometries, the maximum effective stress
always occurred at the notch root. The figure indicates
that ¢,, decreases with increase in n in an
approximately linear fashion for a fixed notch geometry
when plotted against 1/n. The decrease is greatest for the
sharpest notches (that is, those with the largest values of
a/R). Similar trends have been observed previously by
Calladine (21) for other types of components undergoing
a variety of loading conditions involving bending, plane
stress and plane strain situations. It is apparent that
graphs of the form of Figs 12(a) and 12(b) can be used to
provide rapid estimates of the maximum steady-state
effective stress, 6,.,,, for any value of n in notched bars.
Depending upon the factors governing the mode of
fracture, this stress may then be used to investigate the
risk of failure locally.

Comparison is also made in Fig. 12 with the Bridgman
(15) prediction of the effective stress across a notch throat
for a rigid plastic material having n = co. The Bridgman
analysis gives a constant effective stress across the notch
throat of

(b/a)ios
{(1 + 2R/a) In (1 + a/2R)}

(22)

a = 6.!!‘.2'. =

The values of F determined from this equation are shown
on the vertical axes of Figs 12(a) and 12(b). The equation
gives somewhat higher values than those predicted from
the computer calculations. This is due to the fact that the
Bridgman analysis results in lower values of ¢,, and a4
than the computer estimates, and hence a greater
effective stress. Nevertheless, conservative estimates of F
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Fig. 12. Relative maximum stress concentration factor, F, as a function
of 1/nfor (a) b/a = 1.67,and (b) b/a = 1.46

by this approach are possible by making reference to the
dotted lines in Fig. 12 which are drawn through the
Bridgman solutions for n = oc. By combining equations
(21) and (22)

_ 1 (1—1nybap

“n " k(1 +2Rja)In (I + a/2R) )
For sharp notches, this expression gives good agreement
with computer estimates, even though the stress
distributions are very different (see, for example, Fig. 8)
to those predicted by the Bridgman analysis. For
progressively blunter notches, the equation gives
increasingly conservative predictions.
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Before it is possible to know whether predictions of
component behaviour based on a steady-state stress
distribution are justified, it is necessary to establish the
time taken to reach this stress distribution. Lifetimes
based on a steady-state analysis can only be expected to
be reliable if this stress distribution is achieved rapidly.

Since the present numerical approach calculates the
steady-state stress distribution directly, the time taken to
reach this state is not determined. An approximate
procedure has, however, been proposed by Calladine (22)
for giving realistic estimates. For a material which creeps
according to equation (19), Calladine shows that the time
taken for the siress to relax from its initial elastic value,
g,,to some value, &, is approximately

F(t) L (r - () (24)

= ={n—1) =
CnEq: 0 — 0.

where 6, is the effective stress at the steady-state.
Comparisons with numerical calculations have shown
that satisfactory estimates of the time to achieve a
steady-state, ., can be obtained from equation (24) by
calculating the time taken for stress relaxation to be 90
per cent complete, and by substituting 6,,,, for &, so that

23
" CnEgy."

max

max

Ft,) 25)
Use of this equation with the procedures presented here
will, therefore, indicate whether the adoption of a
steady-state stress distribution for characterising
component behaviour and predicting creep lives is
acceptable.

For n typically in the range 5-10, it can be shown from
equation (25) that the time to steady-state, t., is
approached when the maximum equivalent creep strain,
€max» 1S between, respectively, about { and % of the
corresponding maximum elastic strain. It is not
necessary, therefore, to assume in the analysis that the
creep strain is large everywhere compared to the elastic
strain for an approximate steady-state stress distribution
to be achieved.

5 CONCLLUSIONS

A finite element iterative procedure has been presented
for calculating steady-siate stress distributions in
axi-symmetric bodies subjected to creep. It has been
shown to be economical in terms of computing costs and
to give results which indicate satisfactory agreement with
approximate non-work hardening plasticity solutions
and numerical procedures which approach steady-state
incrementally from a series of solutions at successively
longer times.

It has been found that the method proposed is not
restricted to the assumption of secondary creep.
Provided the variables of stress and time are separable in
the creep law, the same steady-state stress distribution is
obtained, for a given creep stress index, n, for primary,
secondary, and tertiary creep. It is also shown that this
stress distribution is not dependent upon the choice of an
equation of state for creep.

Calculations have been made for a range of
circumferential notch geometries and values of n to
determine the steady-state effective stress across the
notch throat region. A skeletal point at which the stress

132

remained approximately constant, independent ot n, was
observed for each notch dimension. In all cases, the
maximum effective stress occurred at the notch root.
Some indication of the time taken to reach the
steady-state condition has also been included and used
to indicate when these stresses may be used to provide
acceptable approximate predictions of notched bar
behaviour and lifetimes.

APPENDIX

REFERENCES

(I) F. K. G. ODQVIST, Mathematical theory of creep and creep rup-

ture, 1966 (Oxford Mathematical Monographs).

(2) PENNY, R. K. and MARRIOT, D. L., Design for creep, 1971

{McGraw-Hill, London).

DAVIS, E. A. and MANJOINE, 1. J,, ‘Effect of notch geometry on

rupture strength at elevated temperatures’, ASTM STP 128,

(1953) 67.

NEWMAN, D. P, JONES, M. H, and BROWN, W. F,

‘Time-temperature dependence of the notch effect and influence of

notch depth in stress rupture tests on a Cr—-Mo-V steel’, Proc.

ASTM, 1953,53, 677-689.

(5) NG, S. E, WEBSTER, G. A, and DYSON, B. F., ‘Notch

weakening and strengthening in creep of 4Cr.4Mo 4V steel’, in

Advances in fracture research (ed. D. Francois et al.), 1980

(Pergamon Press, Oxford/New York).

GREENBAUM, G. A. and RUBENSTEIN, M. F. ‘Creep

analysis of axisvmmetric bodies using finite elements’, Nucl. Engng

Design, 1968, 7, 379-397.

SUTHERLAND, W. H,, ‘AXICRP-Finite element computer code

for creep analysis of plane stress, plane strain and axisymmetric

bodies’, Nucl. Engng Design, 1970, 11, 269-285.

HAYHURST, D. R, DIMMER, P. R.,and CHERNUKA, M. W,

‘Estimates of the creep rupture lifetime of structures using finite

element method’, J. Mech. Phys Solids, 1975. 23, 335-355.

HAYHURST, D. R. and HENDERSON, J. T,, ‘Creep stress

redistribution in notched bars’, Int. J. mech. Sci., 1977. 19,

133-146.

(10) HAYHURST, D. R, LECKIE, F. A, and HENDERSON, J. T,
‘Design of notched bars for creep rupture testing under triaxial
stresses’, Int. J. mech. Sci., 1977, 19, 147-159.

(11) HAYHURST, D. R, LECKIE, F. A, and MORRISON, C. J,,
‘Continuum damage study of notch strengthening and weakening
in creep rupture’, Proc. R. Soc. Lond., 1978, A360, 243-264.

(12) SCZCZEPINSKI, W, DIETRICH, L., DRESCHER, E. and
MIASTKOWSKI, J., ‘Plastic flow of axially-symmetric notched
bars pulled in tension’, Int. J. Solids Structures, 1966, 2, 543-554.

(13) NEIMARK, J. E, ‘The fully plastic, plane strain tension of
notched bar’, J. appl. Mech., 1968, 35, 111-116.

(14) SANTHANAM, A. T, and BATES, R. C,, ‘The influence of
notch-tip geometry on the distribution of stress and strain’. Mat.
Sci. Engng, 1979, 41, 243-250.

(15) BRIDGMAN, P. W., Studies in large plastic flow and fracture,
1952 (McGraw-Hill, New York).

(16) NEEDLEMAN, A. and SHIH, C. F., ‘Finite element method for
plane strain deformation of incompressible solids’, Comp. Meths
appl. mech. Engng, 1978, 15, 223-240.

(17) KUMAR, V., GERMAN, M. A, and SHIH, C. F,, ‘Estimation
technique for the prediction of elastic-plastic fracture of structural
components of nuclear systems’, Contract RP123-1, 1 June 1980,
for Electric Power Research Institute, Palo Alto, California 94303,
USA.

(18) FENNER, R. T., Finite element methods for engineers, 1975
(Macmillan, London).

(19) BAILEY, R. W, ‘Creep relationships and their application to
pipes, tubes and cylindrical parts under internal pressure’, Proc.
Instn mech. Engrs, 1951, 164, 425-447.

(20) SEGERLIND, L. J., Applied finite element analysis, 1976 (Wiley,
New York).

(21) CALLADINE, C. R, ‘A rapid method for estimating the greatest
stress in a structure subjected to creep’, Proc. Instn mech. Engrs,
1964, 178, 198-206.

(22) CALLADINE, C. R, ‘Time-scales for redistribution of stress in
creep of structures’, Proc. R. Soc. Lond., 1969. A309. 363-375.

3

4

6

7

8

9

-

JOURNAL OF STRAIN ANALYSIS VOL 17 NO 3 1982 @ IMechE 1982



- 287,

APPENDIX B

LISTING OF THE AXI-SYMMETRIC FINITE ELEMENT PROGRAM

USED FOR SOLVING ELASTIC AND NON-LINEAR PROBLEMS
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PROGRAM AXISYM(INPUT,OQUTPUT, TAPEL, TAPE2, TAPES=INPUT, TAPE6=0OUTPUT)

AXI-SYMMETRIC FINITE ELEMENT PROGRAM FOR SOLVING ELASTIC AND
HON-LINEAR PRrOBLEMS.

PHeNONS!

DIMENSION NOB(49)

COMON INEL, NNP, X(399) ,Y(333) ,AI1(590),a3(573) ,AK(529) ,BI(533),
BJ(5083),BK(539), AREA(539) ,NPI(520),NPJI(533),NPK(533) , NXPT, NYPT,
MOUT, NBP, NPB(43) , XAXIS, RBAR(523) , OKXX (3233, 9) ,0KXY(323,9),
OKYX(339,9),0KYY(333,9),U(333),V(333) ,FX(333) ,FY(329),
FXMOD(399) , FYMOD(303) , SFXX(333) , SFXY(393), SFYX(3393) ,SFYY(323),
NPA(333,9),NAP(3399) , NMAT, E(5) ,:U(5) ,ALPHA(S5) , RIO(5) ,MATIA(537),
DELTAT(533) , XBAR(533) , YBAR(530),SU(533),SV(522) , PX, PY,
HCOND(43) , TANG(49) , UPRES(43) , VPRES (43 ) , NBC3P

NOoOn b wN e

REAL NU

DIMENSION TITLE(6),B(4,6),D(4,4),BTD(6,4),ESTIFF(6,6),IJK(3),
1 ET(4), THETAM(6)
DATA BLANK / 104 /

c
C INPUT THE PROBLEM TITLE AND TYPE - STOP IF BLANK CARD ELICOUNTERED.
1 READ(5,51) TITLE
51 FORVMAT(6Al0)
IF(TITLE(1l) .EQ.BLANK) STGP
WRITE(6,61) TITLE
61l  FORMAT(54HOCST FINITE ELEMENT SOLUTION FOR AXI-SYMMETRIC PROBLEM
1 // 6Al0)

C INPUT OR GENERATE THE MESH DATA, MATERIAL PROPERTIES, TEMPERATURE
C CiHANGES AND BOLY FORCES.

CALL MESH1

CALL MODIFY

CALL AXIS

CALL MATLS

CALL TIPS

CALL BODYF

C CO4PUTE THE ELEMENT GEQMETRIES.
DO 2 M=1,NEL
I=NPI(M)
J=NPJ (M)
K=NPK (M)
AIL(M)=-X(J)+X(K)
AT (M)=-X(K)+X(I)
AK(M)=-X(I)+X(J)
BIL(M)=Y(J)-Y(K)
BI(M)=Y(K)-Y(I)
BK(M)=Y(1)-Y(J)
AREA(M)=37.5* (AK(M) *BI (M) -AJ (M) *BK())
IF(AREA(M) .GT.J.) GO TO 2
WRITE(6,62) M
62 FORMAT(15HOELEMENT WUMBER, I5,254 HAS NEGATIVE AREA - STOP)
STCOP
2 CONTINUE

C OurpuT THE MESH DATA.
CALL MSHOUT

C INPUTI THE REQUIRED NUMBER OF OUTER ITERATIONS.
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READ(5,52) NITER
52  FURMAT(13)
DO 201 IITER=1,NITER
C SET INITIAL VALUES OF STIFFNESSES, EXTERNAL FORCES AND UNKNOWNS.
DO 4 IROW=1,NNP
Do 3 1C=1,9
OKXX (IROW, IC)=d.
OKXY (IROW, IC)=0.
OKYX (IR, IC)=0.
OKYY (IROW, IC)=3.
3 NPA(IROW, IC)=0
NPA(IROW, 1)=IROW
FXMOD( IROW)=3.
FY 10D ( IROW)=d.
IF(IITER.GT.1) GO TO 4
U(IROW)=0.
V(IROW)=J.
4 COWTINUE
C
C MODIFY MATERIAL PROPERTIES FOR (AXI-SYMMETRIC) PLANE STRAIN.
IF(IITER.GT.1) GO TO 6
DO 5 MAT=1, NMAT
E(MAT)=E{MAT)/(1.-NU(MAT)**2)
5 NU(MAT )=NU(MAT)/(1.-NU(MAT))

C SET UP TiE OVERALL ASSEMBLY LOOP.
6 DO 19 M=1,NEL

C
C STORE THE ELEMENT NODE NUMBERS IN ORDER Il ARRAY IJK.
IJK(1)=NPI(M)
IJK(2)=NPJ(M)
IJK(3)=NPK(M)
C

C CQ4PUTE THE BODY FORCE COMPONENTS O EACH NODE OF THE ELSEMENT.
GXM=XBAR(M) *AREA (M) /3. *RBAR (M)
GYM=YBAR (M) *AREA({M) /3. *RBAR(M)

C FORM THE ELEMENT DIMENSION MATRIX.
DO 7 IRE=1,3
DO 7 ICE=1,6
7 B(IRE, ICE)=J.
B(1,1)=BI(M)
B(ll 3)=BJ(M)
B(1, 5)=BK(M)
B(2,2)=AI(M)
B(2,4)=a3(11)
FACT=2.*AREA(M)/(3.*RRAR(M))
DO 8 ICE=1,6
IF(MOD(iCE,2) .EQ.1) B(3, ICE)=FACT
1IF(MOD(ICE, 2) -EQ.9) B(4, ICE)=B(1, ICE-1)
3 IF(MOD(ICE,2) .EQ.1) B(4, ICE)=B(2,ICE+l)

C FORY THE ELASTIC PROPERTY MATRIX.
DO 9 IRE-1,4
DO 9 ICE=1,4
9 D(IRE, ICE)=0.
MAT=MATM(M)
EFACT=1.
IF(IITER.GT.1) CALL NOMLIN (M, EFACT, IITER)
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IF(IITER.GT.1) NU(MAT)=3.95
SU(M)=EFACT
FACT=EFACT*E(MAT)/(1.-NU(MAT)**2)
DO 91 IRE~1,3

DO 91 ICE=1,3

D(IRE, ICE)=1.

IF(IRE.NE.ICE) D(IRE, ICE)=NU(MAT)
D(IRE, ICE)=D(IRE, ICE)*FACT
D(4,4)=FACT*3.5*%(1.-NU(MAT))

C MULTIPLY THE TRANSPOSE OF MATRIX B BY MATRIX D.

10
C

DO 10 IRE=1, 6

DO 19 ICE=1,4

BTD(IRE, ICE)=3.

DO 12 Isu+t=l, 4

BTD(IRE, ICE)=BTD(IRE, ICE)+B(ISUM, IRE)*D(ISUM, ICE)

C FORM TiE THERIAL STRAIN AND THERMAL FORCE VECTORS.

11
12
c

ET(1)=ALP{A(MAT) *DELTAT (M)
ET(2)=ET(1)

ET(3)=ET(1)

ET(4)=J.

DO 12 IRE-L,6

sM=J.

DO 11 ISu#=l,4
SW=SUHBTD(IRE, ISUM) *ST (ISUM)
THETAM( IRE)=0.5*SU4*RBAR (M)

C FORM THE ELEMENT STIFFNESS MATRIX.

13
14
c

DO 14 IRE=1,6

DO 14 ICE=1,6

sd=3.

DO 13 IS, 4

SUWM=SUM+BTD( IRE, ISUM) *B( ISUM, ICE)
ESTIFF(IRE, ICE)=3.25*5M/AREA(M) *RBAR(M)

C ADD ELLMENT STIFFNESS TO OVERALL STIFFNESS.

C
c

15
63
16
17

18
C

DO 18 IRE-], 3
DO 18 ICE=1,3
IROW=IJK(IRE)
ICOL=IJK(ICE)

STORE STIFFNESS COEFFICIENTS It RECTANGULAR FORM OF OVERALL MATRICES.

DO 15 1c=1,9

IF(NPA(IROW, IC) .EQ.ICOL) GO TO 17

IF(NPA(IROW, IC) .EQ.J) GO TO 16

CONTINUE

WRITE(6,63) IROW

FORMAT ( 5HINODE, 15, 381 HAS MORE THAN 8 ADJACENT IODES - STOP)
STOP

NPA(IROW, IC)=ICOL

NAP(IROW)=IC

OKXX( IROW, IC)=OKXX(IRJW, IC)+ESTIFF(2*IRE-1, 2*ICE-1)
OKXY ( IROW, IC)=OKXY(IROW, IC)+ESTIFF(2*IRE-1,2*ICE)
OKYX( IROW, IC)=OKYX(IRXW, IC)+ESTIFF(2*IRE, 2*ICE-1)
OKYY ( IROW, IC)=0KYY(IROW, IC)+ESTIFF(2*IRE, 2*ICE)

C ASSIMBLE THE EXTERNAL FORCES ON THE NODES.

DO 19 IRE=1,3
IROV=IJK(IRE)
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FX:40D ( IROW) =FxX40D ( IROW) +GXM+THETAM( 2*IRE-1)
19  FYMOD(IROW)=FYMOD( IROW) +GYM+THETAM(2*IRE)

C COMPUIE THE SELF-FLEXIBILITY SUBMATRICES.
DO 23 I=1,NNP
DENQM=OKXX (I, 1) *OKYY(I,1)-OKXY(I,1)*OKYX(I,1)
SFXX({1)=0KYY(I,1)/DENOM
SFXY (I)=-OKXY(I,1)/DENOM
SFYX(I)=-OKYX(I,1)/DENOM

20  SFYY(I)=OKXX(I,1l)/DENOM

C APPLY THE BOUNDARY CONDITIONS.
CALL BCS(IITER)

nn

SOLVE THE LINEAR EQUATIONS.
CALL SOLVE2(IITER)

OUTPUT THE REQUIRED RESULTS.

(OO P

CALL OUTPUT(IITER,NITER)
2J1 CONWTINUE

GO To 1

END

SUBROUTINE MESH1

SUBPROGRAM TO READ OR GENERATE A MESi OF TRIANGULAR FINITE ELEMENTS.
THIS VERSION RZADS IN THE NECESSARY DATA.

nnNnnan

CCMMOWN NEL, NNP, X(303),Y(3208) ,AI(533) ,A3(520) ,AK(533) ,BI(539),
BJ(593),BK(593),AREA(533) ,NPI (533) ,NPJ(593) , NPK(523) , NXPT, NYPT,
MOUT, NBP, NPB(4J) , XAXIS, RRAR(593) , OKXX (333, 9) ,OKXY (323,9),
OKYX(333,9),0KYY(333,9),0(333),Vv(333),FX(329) ,FY(330),
FXMOD(333) , FYMOD(3390) , SFXX(393) , SFXY(333), SFYX(333), SFYY(333),
NPA(3332,9),NAP(393), NMAT, E(5),NU(5) ,ALPHA(5) , RHO(5) ,MATM(52%) ,
DELTAT(59@) , XBAR(539) , YBAR(539) , SU(523),SV(533) , PX, PY,
NCOND(43) , TANG(43) ,UPRES(4J) , VPRES (43) , NBC3P

NoO Vb W

(®]

REAL. NU

(@]

READ(1,51) NP, NEL, MOUT
51 FORMAT(315)

READ(1,52) (I,X(I),Y(I),N=1,NNP)
52  FORMAT(IS,2E15.5)

READ(1,53) (M,NPI(M),NPJ(M),NPK(M),t=1, EL)
53 FORMAT(415)

RETURN

END

SUBROUTINE MATLS

SUBPROGRAM FOR DEFINING THE MATERIAL PROPZRTIES OF TtHE ELEMENTS.

nnaon

CaMON NEL, MNP, X(328),Y(333),A1(520) ,AJ3(533) ,AK(593) ,BI(533),
BJ(533),BK(593),AREA(530) ,NPI (539),NPJ(533),NPK (509) , 1 IXPT, NYPT,
MOUT, N3P, NP3(43) ,XAX1S, RBAR(533) , OKXX(333,9) ,0KXY (339, 9),
OKYX(333,9),0KYY(333,9),U(333),V(339),FX(393) ,FY(323),
FXMOD(333) , FYMOD(339) , SFXX(393) , SFXY(300) , SFYX(379),SFYY(333),
NPA(390,9),NAP(333) ,NMAT, E(5) ,NU(5) ,ALPHA(S5) , RIO(5) ,MATM(529),
DELTAT(503) ,XBAR(533) , YBAR(533) , Su(503) ,sv(592) , PX, PY,

(o) IV I S VO I O



C

C
c

51

ol

1

52

62

cC
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7 WCOND(43),TANG(4J),UPRES(4J),VPRES(40),NBC3P

REAL NU

INPUT TilE2 MATERIAL PROPERTIES - MAXIMUA 5 DIFFERENT MATERIALS.

READ(5,51) NMAT

FORMAT(15)

IF(MMAT.LE.5) GO TO 1

WRITE(6,61) !BMAT

FORMAT(28HJITOO MANY MATERIALS - NMAT =, I5)

STOP

READ(S,52) (MAT,E(MAT),NU(MAT),ALP:IA(MAT), RHO(MAT), N=1, XMAT)
FORMAT(I5,4E15.5)

WRITE(6,62) (MAT, E(MAT),NU(MAT),ALP:A(MAT), RHO(MAT) ,MAT=1, NMAT)
FORMAT( 2Jii3MATERIAL PROPERTIES //

1 504 MATL E NU ALPAA RO /
2 (1x,15,E12.4,F8.3,2E12.4))

C DZFINE THE MATERIAL FOR EACH ELEMENT.

C

[oNeNPNS

C

2

31

NSNound wN -

TIIS VERSION ASSUMES ALL ELEMENTS ARE OF FIRST MATERIAL.

DO 2 MF1,NEL
MATM(M)=1

RETURN

END

SUBROUTINE AXIS

SUBPROGRAM TO DEFINE THE POSITION OF THE AXIS OF SYMMETRY AND MEAN
RADIUS FRO4 THIS AXIS OF EACH ELEMENT.

coMMON NEL, MNP, X(333),Y(3292) ,A1(533),A3(533) ,AK(533) ,BI(573),
BJ(509),BK(533),AREA(593) , NPI (533) ,NPJ(533) ,NPK(533) , NXPT, NYPT,
MOUT, NBP, NPB(49) ,XAXIS, RBAR(537) , OKXX(323,9) ,0KXY (339, 9),
OKYX(323,9),0KYY(330,9),U(339),V(323) ,FX(333) ,FY(330),
FXrMCD(323) , FYMOD(393) , SFXX(339) , SFXY(333) , SFYX(333), SFYY(323),
NPA(330,9),NaP(333) ,NMAT, E(5) ,NU(5),ALPHA(5) , RIO(5) ,MATM(5293) ,
DELTAT(599) ,XBAR(530), YBAR(53d),SuU(523),sv(523),PX, PY,
NCOND(43) , TANG( 49 ) , UPRES(43) ,VPRES(43) , MNBC3P

REAL, NU

INPUT THE X-COORDINATE OF THZ AXIS OF SYMMETRY.

READ(5,51) XAXIS
FORMAT(F10.0)

C DCLFINE THE MEAN RADII OF THE ELEMENTS.

Do 1 M=1,NEL

I=NPI(M)

J=HPJI (M)

K=:PK ( M)

RBAR(M)=(X(I)+X(J)+X(K))/3.-XAXIS

RETURN

END

SUBROUTINE TEMPS

COMMON NZEL, NNP, X(329),Y(333) ,A1(593),AJ(533),AK(533),BI1(593),
BJ(592),BK(53J),AREA(593) ,NPI (593 ) ,NPJ(533) ,NPK(533) ,1IXPT, NYPT,
MOUT, NBP, NPB( 49 ), XAXIS, RBAR(520) , OKXX (323, 9) ,0KXY (323,9),
OKYX(333,9),0KYY(339,9),U(323),Vv(333) ,FX(333),FY(333),
FXOD(330) , FYMOD(333) , SFXX(339) , SFXY(339), SFYX(333), SFYY(339),
NPA(330,9),MAP(399) ,IMAT, E(5) ,NU(5) ,ALPHA(5) , RIO(5) ,MATM(533),
DELTAT(523) ,XBAR(530), YBAR(533) ,SU(523),sv(539) , PX, PY,

o d wN -
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NCOND(49) , TANG(43) ,UPRES(4J) , VPRES(43) , :BC3P

REAL, NU

SUBPROGRAM FOR DEFINING MEAN TEMPERATURE CHANGES FOR THE ELEMENTS.
THIS VERSION READS AND ASSIGNS A UNIFORM CHANGE.

READ(5,51) TEJP
FORMAT(F1J.0)

DO 1 =1, LHEL
DELTAT(M)=TEMP
RETURN

EKD

SUBROUTINE BODYF

SUBPROGRAM FOR DEFINING THE BODY FORCE CQMPONENTS (PER UNIT VOLUME)
FOR THE ELEMENTS.

THIS VERSION ASSUMES GRAVITY ACTS IN THE NEGATIVE Y-DIRECTION.

CO-MON NEL, NNP, X(333),Y(332),AI1(533),A3(503) ,AK(533) ,BI(503),

1 BJ(503),BK(533),AREA(533),NPI(533),NPJ(533),NPK(533) , NXPT, NYPT,
2 MOUT, NBP, NP3(49) ,XAXIS, RBAR(593) , OKXX (303, 9),0KXY (333, 9),

3 OKYX(329,9),0KYY(339,9),0(3309),V(309),FX(333),FY(390),

4 FXMOD(393),FYMOD(339),SFXX(333),SFXY(3323), SFYX(330), SFYY(329),
5 NPA(309,9),NAP(323),NMAT, E(5),NU(5),ALPHA(5), RIO(5),MATM(533),
6 DELTAT(590),XBAR(520), YBAR(533),SU(503),SV(593), PX, PY,

7 NCOID(40),TANG(43),UPRES(43),VPRES(49) ,NBC3P

REAL NU

DO 1 M=1,NEL

XBAR(M)=3.

MAT=MATM(M)

YRAR(M)=-RiiO(MAT)

RETURN

END

SUBROUTILIE MSHOUT

SUBPROGRAM TO WRITE OUT TilE MES: DATA.

CaMON NEL, MNP, X(339),Y(320),AI1(539),A3(533) ,AK(533) ,BI1(533),

NSOk wN e

BJ(599),BK(522) ,AREA(533) ,NPI (533),NPJ(523) ,NPK(533) , NXPT, NYPT,
MOUT, NBP, NPB(43) ,XAXIS, RBAR(533) , 0KXX (3233, 9) ,0KXY (333, 9),
OKYX(323,9),0KYY(333,9),U(323),v(333),FxX(323),FY(323),

FX0D (323) , FYMOD(3233) , SFXX(339) , SFXY (339) , SFYX(393),SFYY(333),
NPA(324,9),NAP(333) ,MMAT, E(5),MU(5), ALPHA(S) , RHO(5) ,MATM(523) ,
DELTAT(599) ,XBAR(523), YBAR(533) ,SU(503),Sv(533) , BX, PY,
NCOND(43) , TANG(40) , UPRES(43) , VPRES(43) , NBC3P

REAL NU

IF(MJUT.EQ.d) REIURN

OUTPUT THE NUMBER OF ELEMENTS AND NODES, AND THE NODE CO-ORDINATES.
WRITE(6,61) NEL,NNP, (I,X(I),Y(I),I=1,:INP)

1
2
3

FOR/AT ( 28HUGEQMETRIC DATA FOR TLE MESH //

10X, 21H SJUMBER OF ELEMENTS =,14 //
13X, 2511 NUMBER OF WODAL POINTS =,14 //
254 NODAL POILT CO-ORDINATES //
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72 I X Y I X Y I
X Y / (3(1X,15,2F9.4)))

(SN

C QUTPUT X-CCOORDIMATE OF AXIS OF SYMMETRY.
WRITE(6,63) XAXIS
63  FORMAT(/// 394 X~-COORDINATE OF T.E AXIS OF SYMMETRY =,El12.4)

C
C CUTPUT THE ELEMENT NODE AND MATERIAL NUMBERS, AREAS, TE-PERATURE
C CHANGES, BODY FORCE CQMPOLENTS AND MEAN RADII.

WRITE(6,62) (8,NPI(M),NPJ(M),NPK(M),MATH(M) ,AREA(M) , DELTAT(M) ,

1 XBAR(M) , YBAR(M) , RBAR(M) ,M=1, NEL)
62  FORYMAT(13HOZLEMENT DATA // 34ii M I J K MAT AREA
1 DELTAT XBAR YBAR RADIUS /
2 (1X,415,13,5E12.4))
RETURN
END
SUBROUTINE BCS(IITER)
C
C SUBPROGRAM TO APPLY THE BOUNDARY CONDITIONS.
C
CadMON NEL, MNP, X(329),Y(339) ,A1(503),AJ(593) ,AK(533),BI(593),
1 BJ(533),BK(530),AREA(539),NPI(527),NPJ(523) ,NPK(533) , NXPT, NYPT,
2 MUUT, NBP, NPB(43) ,XAXIS, RBAR(533) ,0KXX(333,9),0KXY(333,9),
3 OKYX(3Y3,9),0KYY(330,9),U(323),V(323),FX(333),FY(399),
4 FxXMOD(323),FYMOD(333),SFXX(393), SFXY(399), SFYX(333),SFYY(339),
5 NPA(302,9),MNaP(320),NNAT,E(5),NJ(5),ALPHA(S5), RHO(5) ,MATM(523),
6 DELTAT(523),XBAR(533),YBAR(593),sU(593),SVv(593),PX, PY,
7 NCOWD(43), TANG(49) ,UPRES(43),VPRES(43), NBC3P
C
REAL NU
C
IF(IITER.GT.1) GO TO 4
DO 1 I=1,hNP
FX(I1)=3.
1 FY(1)=3.
C
C INPUT THE NUMBERS OF SETS OF DATA FOR EACH TYPE OF BOUNDARY CONDITIOW

READ(5,51) NBC1P, NBC2F, NBC3P
51 FORMAT(1415)
C
C INPUT AND APPLY POINT FORCE (PZR RADIAN) DATA.
IF(NBC1P.EQ.Q) GO TO 2
READ(5,52) (I,FX(I),FY(1),N=1,NBClP)
52 FORMAT(3(14,2F13.3))
C
C INPUT AND APPLY DISTRIBUTED FORCE DATA.
2 IF(NBC2F.EQ.d) GO TO 4
DU 3 IF=1,NBC2F
READ(5,52) NBP,PX,PY
READ(5,51) (NP3(N),i=1, NBP)
N3=NBP-1
DO 3 1Is=1,NS
I1=NPB(IS)
I2=NPB(IS+1)
R=3.5*(X(I1)+X(I12))-XAXIS
SIDE=SORT((X(I1)=-X(I2))**2+(Y(I1)=Y(I2))**2)
FXM=J.5*PX*SIDE*R
FX(I1)=FX£(Il)+FxXM
FX(I2)=FX(I2)+FxM
FYM=3.5*PY*SIDE*R
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FY(I1)=FY(Il)+FYH
FY(I2)=FY(I2)+FYM

C DEFINE FINAL MODIFIED EXTERNAL FORCES ON THE MNODES.
4

~

5

DO 5 I=1,XNNP
FXMOD (I)=FxMCC(I)+FX(I)
FYMCD(I)=FYMOD(I)+FY(I)

C INPUT AND APPLY THE RESTRAINED INODE DATA.

C
C

C

53
15

IF(IITER.GT.1) GO TO 15

READ(5,53) (WPB(N),NCOND(N), TANG(N) ,UPRES(N),VPRES(N),N=1, NBC3P)
FORMAT(2(I4,12,3F13.0))

DO 10 N=1,NBC3P

I=NPB(N)

IF(NCQWD(N)-1) 8,7,6

NODE RESTRAINED TO MOVE IN DIRECTION WiOSE SLOPE IS GIVEN BY TANG.

6

SFXX(I)=(SFXX(IL)*SFYY(I)=-SFXY(I)*SFYX(1))/

1 (SFXX(I)*TANG(N)**2-(SFXY(I)+SFYX(I))*TANG(N)+SFYY(I))

SFXY (1)=SFXX(I)*TANG(N)
SFYX(I)=SFXY(I)
SFYY(I)=SFXY(I)*TANG(N)
GO TO 19

C NODE RESTRAINED TO MOVE IN Y-DIRECTION OulLY.

C
C

OO0

7

8

1J

SFYY(I)=SFYY(I)-SFYX(I)*SFXY(I)/SFXX(I)
GO TO 9

NODAL POINT DISPLACEMENTS PRESCRIBED.

SFYY(I)=3.

U(I)=UPRES(IN)
V(I)=VPRES(N)

SFXX(I)=3.

SFXY(I)=3.

SFYX(I)=3.

CONTINUE

RETURN

END

SUBROUTINE SOLVE2(IITER)

SUBPROGRAM FOR SOLVING BY GAUSS-SEIDEL METHOD TiE LINEAR EQUATIONS

OBTAINED FRO4 THE FINITE ELEMENT FORMULATION OF BIHARMONIC PROBLEMS.

51

CCrioN MNEL, MNP, X(3233),Y(333) ,A1(593) ,A3(539) ,AK(587),BI(533),
BJ(530),BK(533) ,AREA(533) ,NPI (539) ,NPJ(530) ,1iPK(533) , NXPT, LIYPT,
MOUT, NBP, NPB(43) ,XAXIS, RBAR(533) 