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ABSTRACT

There are three main sections in this thesis. Section one contains
a detailed literature review of boudins and related structures which are
formed by compression normal or a at high angle to a mechanical layering or
fabric. Section one also contains a summary of the theoretical, experimental

and finite element studies of the formatiion of boudins and related structures.

In section two selected experiments using paraffin wax and plasticine
models which were performed to investigate the initiation and development
of the structures which are formed when a multilayer is compressed at a
high angle to the layering are presented. The structures formed in these
experiments have been classified into four main groups, A, B, C and D, based
on their mechanism of initiation. These groups are A - interlocking pinch-
and- swell structures, B - lenticular 'boudins' formed in thinly layered
media, C - classical boudins in which competent layers are broken by tensile

fracture and D - boudins generated by shear fractures.

Experiments were also performed in which single Tayers containing
pinch-and-swell structures were compressed parallel or sub-parallel to
the Tayer. These experiments show how the wavelength and symmetry of the

folds that develop are governed by the pinch-and-swell structures.

In section three the structures, developed in the experiments described
in section two,are discussed and an attempt is made to relate these structures

to those predicted by the various theories discussed in section one.

It is concluded that although the deformation of geclogical multilayers
when compressed at high angle to the layering is often complex, the

structures that form can generally be explained by the existing theories

for the deformation of single layers, muitilayers and anisotropic media.
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CHAPTER 1

REVIEW OF PREVIOUS WORK ON BOUDINAGE AND RELATED STRUCTURES

1. Introduction

1.1 Nomenclature

The term 'boudinage’ was first introduced by Lohest {1909)
for a peculiar structure in sandstone beds in the Bastogne in Belgium,
when he observed "the sandstone beds were segmented and the segments
separated from each other by quartz veins. Each part is thickened in
the centre and appears in cross-section almost like a barrel. The
tops and bottoms of these barrels are formed by the quartz veins.
Looking at the bedding plane one sees enormous cylinders or boudins side

by side" (fig. 1.1).

Literally 'boudin' means sausage in French and therefore

boudinage s the process of boudin formation.

According to Rast (1956) ever since the term boudinage was
introduced by Lohest (1909), there had been a tendency to apply the
term 'boudin' to any isolated body which had been held to be formed
by the tectonic disruption of any originally more or Tess extensive
layer (McIntyre, 1951). Rast warns that such a wide use is undesirable
because it may obscure the different modes of origin of such bodies

and he proposed that all such bodies be called ‘tectonic inclusion.'

Fig. 1.2 shows the current descriptive terminology for boudins

(Wilson, 1961; A.G. Jones, 1959).



Figure 1.1 The original boudin-
age structures described from the
{.ower Devonian quartzites and
schists, Bastogne. Belgium. A,
C. E. and H: Shale with foliation
clearly independent of stratifica-
tion and without quartz veins. B:
Slightly boudinaged grit (sand-
stone) with numerous veins. D
and G: Boudinaged grit (sand-
stone) with numerous quarlz
veins. F: Stratified schistose
sandstone without foliation but
with thin quartz veins. I: Folded
grit cut by numerous large veins.
(After Lohest. 1910, Fig. 1.
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Figure 1.2 Descriptive terminology in current use for boudins. A after Wilson,
1961, Fig. 34A: B and C after A. G. Jones, 1959, Figs. 23 and 24).



Fig. 1.3
A. Tension joints in amphibolite layer in quartz-feldspar gneiss

from West Greenland.

B. Boudins of amphibolite in heterogeneous gneiss from West

Greenland (thickness of boudins =40cm).

C. Boudins of calcareous sandstone in shale from Trgndelag,

Norway (thickness of boudins =20cm).

D. Pinch-and-swell pegmatites in gneiss from West Greenland

(after Ramberg, 1955).
Fig. 1.4
A. Ruptured and separated amphibolite layers in gneiss.

B. Rectangular boudins of amphibolite in granitic gneiss (thickness

of layers =30cm).
€. Lenticular boudins of amphibolite (altered diabase dykes) in gneiss.

D. Boudins of amphibolitized diabase dykes, about 20 metres thick,
in granodioritic gneiss.

A11 examples come from West Greenland. (after Ramberg, 1955).
Fig. 1.5

A. The ends of two boudins of quartz-feldspar pegmatite in mica
schist from Wind River Mountain, Wyoming, U.S.A. (thickness of

pegmatite about 25cm.)
B. 'Rotated' amphibolite boudins in mica schist from West Greenland.
. C. Barrel-shaped amphibolite boudins in gneiss from West Greenland.
D. 'Rotated'-amphib01ite boudins in granitic gneiss from W.Greenland.

£. Pegmatite boudin in micaceous quartzite from Wind River Mountain,
Wyoming, U.S.A. {scale in cm.)

(after Ramberg, 1955).
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1.2 Sizes, Shapes and Classification of Boudins

Ramberg (1955) points out that most boudins are only exposed
in two-dimensions. Accordingly his description of sizes and shapes
refers chiefly to the sizes and shapes of boudins as exposed in the
two~dimensional erosicn surfaces of rocks.

He concluded that boudins are usually oblong bodies with the
shortest dimension perpendicular to the schistosity in the enclosing
rocks and the longest dimension parallel to schistosity. When a schistosity
is developed in the incompetent beds, however, the cleavage
is generally curved towards the gaps between the boudins (fig. 1.3. B,C).

Pamberg (1955) comments that according to his observation
the range of thickness of boudins is between 1 c¢m and
20 metres. Today it is well known that the range is much
greater,

Often originally rectangular boudins suffer some heterogeneous
ductile deformation as the matrix flows into the neck regions between
the boudins. The local shear stresses developed at the boudin corners
causes the boudins to become barrel shaped. Various amounts of
barreling.are shown in fig. 1.6(i}, extreme barreling produces boudins

with a lenticular geometry.

ahume
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Lenticular boudins are also formed by the necking down of

the boudins before separation (fig. 1.3-B, D).

Sometimes the boudins are formed by shear failure of the relatively
competent layer and not by tensile failure. When this occurs the failure
planes are not normal to the competent layer but make an angle of =60° to

it. Such boudins have been termed 'rhombodhedral' by Stromgard (1973).

Most geologists classify boudinage structures according to
their shapes in profile section normal tc their length. Some of the

commonly found shapes are shown below (fig. 1.6(ii)).
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1. 3 Natural Occurrence

The structure called boudinage by Lohest was observed as
long ago as 1866 by Ramsay and 1889 by Harker. Ramsay may have
observed the structure described by Walis (1937), who notes that
- "in the great quarry of the Ffestiniog and Trawsfymydd fault the
cleavage dips from 45° to 50° northwest, the inclination of the
beds being about 34°% in the same direction and a greenstone dyke runs
through them between the cleavage planes ... bulging and thinning off
in a rapid succession of oval-shaped masses three or four feet in
length. Associated with it are quartz veins occurring principally at
points between the separate bulgings of greenstone”.

Reyner (1892) describes boudinage in the limbs of the anticlines
due to elongation in a down-dip direction. He does not use any special
term for the phenomenon. Lohest shows that the quartz veins of the
Bastogne locality in Belgium contains tourmaline and garnet implying
that they are not of primary origin but of later origin (fig. 1.1,1.7b)

In his geological description of the Tammersfons quadrangle,
Finland {fig. 1.7), Sederholm (1911) shows boudinage but does not
use the term. A granite dyke is broken and pulled apart, the fracture
is filled with quartz which does not penetrate the schist. On the
other hand the schist has a tendency to move into the fracture.

Balk (1927} shows similar structureswhere a norite dyke has been
stretched. The fracturesare, however, not filled with quartz veins but
by the flow of gneiss (fig. 1.7g).

As shown by Holmaquist (1931) veins and dykes frequently
form boudinage structures during subsequent deformation. In Fig. (1.7e)
a skarn layer has been pulled apart and the gaps between the segments are

partially filled with quartz. The surrounding leptites are also
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Fig. 1.7a-Boudinage after Stainier (1907); Fig. b - Boudinage in quartzite {white)

in a fold, cleavage in shale beds is at an angle to bedding, after Lohest (1909);

Fig. ¢ - Schematic drawing of boudinage after Quirke (1923), black vein of quartz;
Fig. d -~ Explanation of thickening of boudins by Tateral compression and release of
elastic deformation, after Quirke (1923); Fig. e - Ladder vein in leptite, dotted
areas are skarn rocks, white are quartz veins, dark are banded leptite, after Holimquist
(1931}; Fig. f - Porphyry dyke is fractured and the schist drawn into the gap which is
filled with quartz, after Sederholm (1911); Fig. g - Norite dyke in gneiss, extended
in the direction of stretching, gaps are filled by gneiss, after Balk (1927); Fig. h =
norite dyke extended and traversed by several apophyses of gneiss, after Balk (1927);
Fig. 1 - stretched belemnite in shale with white partitions filled with calcite, after
A. Heim (1921).



Fig. 1.8

Fig. e.

Fig ¢
“Schematic representation of the boudinage structure at the Taig,
Nor Wick, Unst", after H.H. Read (1934); Fig. b - Quartzite boudins
(dotted) separated by quartz veins in matrix of fine siltstone
after Walls (1937); Fig. ¢ - Quartzite bed in Wissahickon schist
is partitioned into boudins on the 1imb of a fold, after E. Cloos
{1946); Fig. d - Dolomite bed is drawn out in the direction of
elongation in limestone, Howellville quarry, N.E, of Paoli,

Pennsylvania. Fig, e - Boudinage in edgewise conglomerate bed from
flartic area, Lancaster County, Pennsylvania, U.S.A. (after Cloos, 1941).



12

drawn in and help fill the gaps.

Both Corin (1932) and Wegmann (1932) did further studies on the
classical localities of boudinage in Belgium. Wegmann also studied boudins
in granite terrains. They confirm that the quartzite segments or boudins
had general continuity and had no doubt that they were originally portions

of an entire bed of quartzite probably of uniform thickness.

Read (1934) produced a summary of the structure with an excellent
illustration of steeply dipping boudins {fig. 1.8a). Walls (1937)

writes a descriptive record of boudinage structure in Scotland (fig. 1.8b).

Waters and Krauskopf (1941) working in Colville simply Tist
boudinage as one of the structures present without any particular descrip-
tion or illustration. Gault (1948) however does illustrate boudinage in
granodiorite, where inclusions are pulled apart as in the dyke described

by Balk (1927) (fig. 1.7h).

A rather special type of boudinage structure was noted by Cloos
(1941} in the Martic area, Lancaster County, Pennsylvania. A thick bed
of edgewise conglomerate has been broken into almost square blocks. These
were then rotated clockwise so that the longest diagonal is now in the
direction of bedding. There are pegmatites, calcite, or quartz veins
between the blocks and the shale above and below has flowed into the area

between the blocks (fig. 1.8e).

Cloos (1946) further called attention to boudinage with
illustrations (fig. 1.8c) and made an extensive review of early Titerature

on boudinage in 1947,

In his review Cloos (1947) writes that boudins appear to form

independent of composition or kind of materials as long as there



Fig. 1.9 Two types of boudinage structures observed

by Coe, 1959.

is a difference between competency of beds involved and a definite
layering. A dyke in granite, quartzite between shale beds, dolomite
layers between shale or lTimestone, or greenstone betweenvolcanic

ash, all may produce similar structures. (He gives examples for each).
One cf his examples, shown in Fig. 1.8c,is boudinage formed in a
quartzite in schist beds. The quartzite which is between

Wissahickon schist (Cloos 1946) beds is cut by tension fractures

which are perpendicular to bedding and parallel to the fold axis.

These fractures are also normal to the dip of the beds and to elongation
down dip. The edges of the bed at the fractures were rounded off

and the bed appears lenticular in cross section. Cleavage is at a

large angle to bedding and the schist layers have filled the gaps. There
is no doubt that boudinage is here caused by elongation down dip of

the Timb of the fold.
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Cloos {1947) notes that a rather peculiar but excellent example
of boudinage occurs below Great Falls in the Potomac river gorge near
Washington, D.C. Here shaly beds are metamorphosed and have become
more competent than the sandy layers. The beds are completely disrupted
and sandy layers fill the gaps. From Ramberg's and Cloos' discussion
of the occurrence of boudinage it appears that the structure occurs in

all the three types of rocks - sedimentary, igneous and metamorphic.

In parts of the Monashee Group, Shuswap, British Columbia, Canada,
A.G. Jones (1959) found that there were two sets of approximately perpen-
dicular necklines one parallel and one perpendicular to the linear
structures and fold axes. Carbonate partitions or gaps only occur in
those necklines approximately perpendicular to the regional linear

structures.

Coe (1959) also found two perpendicular sets of barrel shaped
boudins. Fig. 1.9 shows a 45cm thick Tithified slumped siltstone
sheet lying between flaggy siltstones. The slumped siltstone has
boudinaged in two directions, 1ithification must have transformed the
slumped silts into a competent unit. The well-formed and smaller boudins
are elongated normal to the fold axis. The less well-formed boudins

are parallel to the fold axis and exposed on two-dimensional sections.

Fyson (1962) described similar geometrical relationships 1in

South Devon, England.



Rast (1956) suggested that the evolution of the barrel-shaped

boudins involved the following stages:-

(a) The extension of the competent layer accompanied by

plastic deformation or 'necking.'

{b) Ultimate fracture when extension surpasses the plastic
Timit.
(c} Separation of the individual segments and formation of

tectonic inclusions of Tozenge-shaped cross section.

Necking is the process of local thinning (or pinching) when a
layer or a rod undergoes extension as the result of either compression
perpendicular to the layer (of long axis of the rod) or tension parallel
to the layer. Nadai (1950} studied necking in metals (by reviewing a
number of tension tests) and concluded that as soon as necking starts,
the stress field becomes nonuniform. The reduced cross-sectional area
of the rod at the neck means that the tensile stress increases locally.
Deformation therefore continues at this point and becomes more and more
localised as the cross sectional area of the neck decreases. Necking,
initially a ductile deformation, often leads to brittle failure as the
strain rate {associated with the rapid increase in stress value at the

neck} increases.

In metallurgy necking is observed to occur both at right angles

and oblique to the direction of extension. It is found to be dependent

on the ratios of thickness of the bar to the width of the bar. If t/w < /7

the necking is at right angles to the direction of extension, whereas if

t/w > 177 it results in oblique necking, the necks make an angle of 53° -

15



Fig.1l.10 WNecking along an cblique

plane in flat steel bar tested in
tension. (The steel sheet was reduced
in thickness by 20% by cold rolling :

before the tensile test was made. )
(After F. Koerber and E. Siebel,
see Nadai, 1950}

-55% to the axis of extension (fig. 1.10) (Nadai, 1950). The development
of these types of necks indicates that the distribution of stresses and
strains within a rigid material depends on its geometric properties as

well as on the type and direction of the external force.

Wunderlich (1962) showed that even after allowing for compaction
effects, a considerable volume of material must be squeezed from a fold
core during continued compression and flexural-slip folding. He believed
that expulsion of the less competent rocks from a fold core can stretch
the competent units in both the fold flanks and the closures. On the basis
of theoretical and experimental studies Ramberg (1959, p.108) concluded

that boudins normal to the fold-axis can result from pure shear (fig.1.11-B).

On the separation of boudins Coe (1959) suggested that two distinct
types of boudinage can be defined: 1. boudins produced during folding with
their Tength parallel to the fold axis, and 2. perpendicular sets of boudins

arranged perpendicular and parallel to the fold axis.

Ramsay (1967) has shown that strain ellipses can be classified
as one of three main types according to the values of their principal
extensions and that these types fall into three main fields when plotted
on a graph of X, against X, (fig.1.12-a). Considering strain in the plane
of a competent Tlayer, , different types of minor structures will develop
in the layer according to the deformation field in which the strain ellipse
is situated. As shown on the diagram (fig.1.12-a) if the strain state falls
in field 1 (A; > A, > 1), the structures that develop will be entirely of

boudinage as all directions have suffered extension. Wegmann's



Q 3 n
I |
i 1
o 20 n

Fig.1.11-a. ‘incipient' boudinage structure (after
Wundelich, 1962).
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Figure 1.11-bMinor folds and boudinage-like attenua-
tions in a crosscutting vein produced simultaneously
by pure shear under experimental conditions, X =
maximum extension strain: Y= zero strain: Z = maxi-
mum compression. Axes of principal stress coincide
with axes of principal strain {no rotation of coordinate
axes during strain) {After Ramberg, 1959, Fig. 3).
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(L1}

Field 2

Field 3

Fig. 1.12-a The geological structure that may be developed in the three

fields of strain ellipse (after Ramsay, 1967)

chocolate tablet structure will occur in this field. If the strain

ellipse falls on the }ine Ay = 1oneset of boudins is developed
in the layer , and the lengths of the boudins will be normal to
principal axis A1s although this may not be so if fractures or joints

were present before the deformation.

Folding in one direction and boudinage or cross jointing
normal to the fold axis, will be produced by strain states that fall
in field 2 (X, > 1 > X,) because the ellipses in this field will have
an extension along one principal strain direction and contraction along
the other principal strain direction. Strain states which plot along
A1 = 1 produce a single set of folds and those that plot in field 3

{1 > X; > X,) produce folding in more than one direction because all
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directions are contracted.

Ramsay {1967) extended this two dimensicnal strain presentation
to three dimensions and following Ramberg (1959) and Flinn (1962)
considered five main constant volume ellipsoids described by the
parameter k. {fig.1.12-b). He summarized this relation as follows.
Layers in which structures will develop will cut this ellipsoid. The
state of strain on this layer will correspond to the ellipse defined

by the intersection of the layer and the strain ellipsoid.

For the ellipsoids with « > k > 1 (constriction type) ellipse

sections will fall into fields 1 or 2, that is either complex crossing
boudinage or other extension structures, or alternatively, ptygmatic folding

in one direction with boudinage at right angles to the fold axes.

For the ellipsoids with k = 1, ellipse sections all fall into

field 2 or on boundary lines of this field. The dominant structures are
folds with structures indicating extension subperpendicular to the fold axes.
In some special section folds only (XA; = 1) or boudinage only (X, = 1)

will develop.

For the ellipsoids with 1 > k > 0 (flattening types) ellipse

sections will fall in fields 2 or 3, i.e. competent layers will show folding

and boudinage if in field 2, or complex folding in several directions if 1in

field 3.

Following Flinn (1962) and Ramsay (1967), Sanderson (1974)
considers extensional structures during folding, with fofd axis parallel
to Y in the five constant volume ellipsoids (fig. 1.12b,c). He points
out that they need not be developed in a unique direction within a
deformed body, and their location is determined by the relation of the

extended layer to the finite and/or infinitesimal strain ellipsoids. He
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Apparent
stretching lin.

=7-15 k =00

Fig. 1.12b—Equal-area projection of zones of clongation and shortening for five volure standardized
finite strain cllipsoids; showing location of apparent stretching lineations for plancs through V.
Dashed lines are circular sections of strain ellipsbid. {after Sanderson, 1974)
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Fig.1.12-C ——Lqual-arca projection showing the location of boudin long axoes for five difforent strain states, as (ig.L12b(a) based on finite strain model,
(0) based on infinttesimal strain model. Elongation shown by stipplod arcas and dashed lines are eirealar sections of strain ellipsoud.

{after Sanderson,1974)
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recognises the following features.

1. Boudin Tong axis parallel to fold axis can occur in any

strain state, except k = 0.

2. Boudin long axes normal to fold axis implies flattening-type

deformation k' < k < 1, that is, field 3 (fig. 1.12-a).

3. Double boudinage may result from boudinage with Tong axes
normal to fold axis followed by boudinage with long axes parallel to fold

axis. Hence double boudinage also implies k < 1 as in 2.

4. Irregular boudinage may develop by: (a) the layer being parallel
to XY during strain with k = 0 (unlikely to be common during progressive
deformation), or (b) fold axis oblique to Y, in which case there will be a
progressive rotation of active boudin axes (fig.1.12e, f).

Examples of the relationship of boudin long axis and fold axes are shown in

fig. 1.12-d.

22



Boudin

long axis

¢ Fold axis

« Stretching lin,

Fig.1.12-d--Examples of the relationship of boudin long axes from Devonian slates in Cornwall,
FEngland, (@) Boudin fong axes parallel to £y fold axes, Porthleven: (6) Boudin long axes normal to
stretehing hneations, Tintagel: (¢} Boudin long uxes normal to fold axes (£7)), Watergate Bay, New-

quay. (after Sanderson, 1974)



Fig. 1.12-e ldqual arca projection of locus of
bowdin long axes (heavy continuous line) for
planes pas<ing through f. which 1= at 50 to Y.
Right =ide of diagram based o finite strain
model, left <ide oncinfinttesinmal straim model, but
hoth produece smilar result=. Lines of no finite

longitudinal straim (n.f.i=) based on o = 1.00,
b = 2.82, and lines of no inlinitesimal s{rain
(n.i.Ls.) based on & = 0. Apparent stretehing

Jincations are parallel to ff for all planes passing
through f.

Fig. 1.12-f As fig l.12d, but (or pliane stram with
o =hH =2 and KN = 1. Heavy doited e

shows position of :1{&;):\11'111- stretelime himcations,
(after Sanderson, 74)
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1.2 Previous Experimental Work on the formation of Boudinage

1.21 Single-Layer Boudinage

1.211 Rock Analogues

Ramberg (1955) was the first to produce boudins experimentally.

He used putty to simulate the incompetent layer and various kinds of

modelling clay, plasticine and cheese to simulate the competent layer.

Competent sheets with uniform thickness from 2 to 5 mm were used
in each experiment, one competent sheet was placed between incompetent
putty layers, 1 - 5 cm thick. These layered stacks were compressed between
two stiff plates. In most of the experiments, the models were allowed to
expand in two directions. In a few, however, the expansion was restricted
to one direction by performing the experiments in an oblong box. The
models were cut with a razor blade after compression (which lasted a few
minutes), and the cross sections were examined and photographed. In all
the models, the competent layers were either ruptured and formed boudins,
or were locally necked down to form pinch-and-swell structures. In the
most competent types of Tayers (cheese and some types of plasticine)
relatively sharp-edged boudins were formed, whereas in the less competent
layers smooth, lenticular (lozenge-shaped) boudins and pinch-and-swell
structures were formed. Some runs were made with layers of differently
coloured putty, to study details of the flowage pattern in the incompetent
putty. It was found that the putty layer in direct contact with the com-
petent cheese or plasticine sheets was always thicker adjacent to the
boudins than in the regions between the boudins {Fig. 1.14 B-F). Putty
layers further away from the competent sheets were thinner just outside
the boudins than in the regions between them (Fig. 1.15F). This is
because of friction along the boudin surface; the lateral flowage was
small in the layer close to the boudins and greater in layers further away.

This effect is shown even if the layer in contact with boudins is more



ductile than the putty layers further away. However, when the contact

putty layer was a little less ductile than the outer putty layers, the
flowage in the contact layer was very small along the boudins; consequently,
the contact layer wouid neck-down and break completely at the terminations
of the boudins, forming a concentric outer zone or it would thin out to

an almost invisible thickness in regions between the boudins {Fig. 1.14, C,
D, E, F). This happened in spite of the fact that the contact layer (putty)
was too ductile to form boudins on its own. In some runs drag folds formed
close to the ends of the boudins (Fig. 1.15E, F); very similar to folds

found near the ends of natural boudins (Fig. 1.5 E).

The barrel-shape, so characteristic of many natural boudins, was
formed in the more competent plasticine (Fig. 1.13-D). In the less
competent plasticine layers lens-shaped structures formed due to a Tocal

necking down before rupture took place.

Models made of petrolatum and 'gun grease' which was ‘shot'
into or between compressed layers were built by Bogadov (1947), Kirillova
(1949) and Chertkova (1950) in association with Beloussov (1952).
Compressionlvaried in different parts of the model and allowed the less
‘viscous' layers to flow from places of high to low pressure. Viscous
flow in the ductile layers produced local tensile stresses of sufficient
magnitude to break the brittle layers. Shorter boudins occurred where

the compression across the layer was the larger.
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Fig. 1.13. Sections of compressed 'cakes' of putty and plasticine (scales
in cm.). A, B and C represent a sequence of decreasing competency
of the boudin layer. In A, the boudin layer is cheese, in B,
somewhat 'brittle' plasticine and in C, less competent plasticine.
In D, the putty has been mixed with a Tittle coloured plasticine
to bring out the flowage in the putty during the compression

experiment. {after Ramberg, 1955).

Fig. 1.14. Sections of compressed layered 'cakes' of putty with different
colours simulating bonded incompetent rocks, and plasticine (A,B,C)
or cheese (D,E and F) simulating the competent rock (scale in cm.)
In A, the light grey putty layer in contact with the boudin Tayer
is less viscous than the outer dark grey putty layer. In B, the
contact putty Tayer (dark grey) has the same viscosity as the outer
putty layers. In C, the contact putty layer {dark grey} is more
competent than the outer putty layers. D, E and F same as C with
the exception that cheese was used as the competent layer. (after

Ramberg, 1955).

Fig. 1.15. A. Cataclastically deformed corner of boudin of pegmatite in
mica schist from Wind River Mountain (see fig. 1.5A,E).
B. Quartz fillings between 'unsymmetric' boudins in banded gneiss
from Fosen, Norway.
C. Plane view of putty-plasticine layered 'cake' sometime after
deformation. The straight horizontal lines are cut through the 'cake.'
D and E enlarged details of fig. 1.14D.
F. Cross-section of 3-colour putty - plasticine cake (compare fig. 1.5E}
showing the drag-fold-like structures in the contact layer at the

ends of the boudins. (after Ramberg, 1955).



Fig. 1.13. rcaturesof experimental boudins
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Ramsay (1967) used wooden blocks to simulate a competent

layer. A sheet of wood was cut into a number of strips with
rectangular éross sections, and these were placed side by side in a
ductile material (plasticine or putty) (Fig. 1.]6—a)._-The model was
deformed and the blocks became separated into boudins. The results

of Ramsay's experiments show how the length of the minor axis of the
strain ellipse in the boudin profile section influences the structure
around boudins. Where the length of the minor axis of the strain
ellipse is short (A, = 4.9, X; = 0.2) the surrounding ductile material
flowed into the necks between the boudins (Fig. 1.16-b), but where the
length of the minor axis is long (A, = 4.4, A3 = 0.7) open voids were
developed between the boudins, although the blocks were separated by
the same amount (Fig. 1.16-c). - In naturally deformed boudins solutions
would be drawn into such voids and any material carried in solution

would crystallize.

Ramsay (1967) performed another experiment to investigate the
rotation of boudins. He arranged the layer of wooden blocks within
the ductile material oblique to principal compression direction. It was
observed that although the marker bands in the ductile material rotated,
the markers in the boudins changed very little in orientation. The
angle of rotation of the boudin was always less than that of the matrix
but varied according to the ratio of thickness to length of the cross

section of the boudins.
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Fig. 1.16 A series of experiments to show the type of structure which develops at
boudin necks; (a) undeformed; (b) deformed with Tittle contraction

perpendicular to the markers ; (c) deformed with considerable contraction
perpendicular to the markers. (after Ramsay, 1967)

19N



Fig.

l.16-d

Experimental 'rotated' boudinage. The competent
layer was initially arranged obliquely to the
principal axis of strain and the markers in the
boudinaged layer totated less than that in the

surrounding ductile material (after Ramsay, 1967).




Hossain (1979) also used wooden blocks to model the formation

of ‘en-echelon' structure in stretched belemnites. With progressive
deformation the layer made up of wooden blocks started to rotate towards
the extension direction. However the rate of rotation of the individual

segments was found to be slower than that of the composite layer.

Sowers (1973) performed three types of experiments to verify

his theoretical work on fracture spacing. The first type involved work
on photpelastic gel models. Several ‘'three layer' sandwich models were
flattened in plane strain between appressed 'rigid' platens. The

centre layer was thinner and more competent than the embedding layers.
In some models the interfacial contacts were welded while in others they
were free. The ends of the layers were free of constraint. It was

possible to visually monitor the stress field during the experiment.

The other two types of models were (1} multiple layers of
alternating clay and putty. These were compressed to produce fractures

and boudins, and (2) rock layers. These were stretched in high pressure

testing machines. The experiments using rock layers were abortive because

of technical failures in their jackets.

The photoelastic model experiments were performed under a 15 in.
(38 cm.) clear field Chapman research polariscope which had been equipped
with a motor drive which rotated analyser and polariser simultaneously.
Special laboratory equipment was made (1) to measure the Young's moduli

of gelatin and (2} to cast weak gels.

Homogeneity and optical properties were greatly improved by
homogenising the gel and water in a blender before heating; then the
mixture was heated for two hours at 90°C to improve dispersion of

colloidal partic]es;
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Gelatin gels used were usually composed of 16% gelatin, 16%
glycerin and 68% distilled water by weight. The standard gelatin
gel has a Poisson's ratio of about 0.5 and a Young's modulus of about
2 x 10° dynes/cm?. The agar gel was varied from 1.4% to 2.9%
(Young's modulus for a 2% agar gel is about 3 x 10° dynes/cm?®). The
ratio of modulus of hard to soft layers was about 3:1 but was varied
to as much as 6:1. The models were loaded so that a displacement was
applied normal to the layering at two strain rates, one 15% strain in

5 min. and the other 15% strain in 30 min. (displaced 2 cm in both cases).

Experimental errors caused by friction are appreciably large
in models made from weak gels. They cannot be measured because they
occur on front and rear glass walls and are of opposite signs, so

their optical effects are self-cancelling in this set up.

Description of Model Deformation

Before deformation startsthe stress pattern in the model
is more or less uniform. But as the elastic instability occurs, at
a critical stress, the stress pattern becomes non-uniform. It is
very hard to detect the small stress pattern changes in the agar gel
but as the load is increased the agar gel develops periodic changes
in the internal pattern that correlate directly with fractures which
form almost immediately afterwards One can observe the nearly
simultaneous (fig. 1.18) formation of a set of stress concentrations
and see that they form before fracture starts in photoelastic models.

Stress concentrationsare larger and more closely spaced

in those models with welded contacts than in those with either
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Fig. 1.17-A Strain frame and polariscope showing model set up.
Frame is about 90 cm by 50 cm.

Q
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Fig. 1.17-B Early indication of instability. Small concentric circles
are isochromatic fringes that appear in the gelatin adjacent to agar layer.
These indicators of high stress concentration appear before the fractures
occur. Fractures will appear along dashed lines.

(after sowers, 1973).
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Fig. 1.18 Photoelastic patterns. A. Expt III isochromatics in gelatin
gel prior to failure. Agar layer covered. B. Expt III fracture in agar

layer and weak isochromatic pattern associated with fracture. Pattern
appears before fracture, gelatin layers covered. C. Expt X pattern in
gelatin shows two stages. At left (2), fracture exists in covered agar
layer; at right (n), no visible fracture. D. Expt XI isochromatic pattern
in gelatin in which necking has occurred. Flaws at the surface and in
either layer between necks are stable. Necking is a perturbation of the

entire brittle rod, not unstable growth of randomly located thin places.
{after Sowers, 1972)

unwelded or freely Tubricated interfaces. In some of these
lTubricated interface models instabilities did not seem to develop

and failure occurred on a single fracture in the middle of the

model.

Sowers {1972) noted that "in most models several modes of

fracture occur. Other fracture modes form beside the predicted ones

related to elastic instabilities. Some develop when loads are increased

beyond the load at which the first-formed fractures initiate. These

fractures seem to form without disrupting the stress field geometry until



they migrate into the surrounding gelatin gel. This second fracture set
consists of short fractures and probably forms as the layer is crushed

by compressive stress that exceeds the strength of material.

A third mode of fracturing occurs in a few of the gel experiments
and nearly all the putty experiments. Very small, closely spaced fractures
form on the interface (usually in the outer few millimetres) of the
brittle layer. Fractures are usually less than 1 cm in length and are
separated by only 2 to 3 mm. These tension fractures may be arranged in
an en-echelon pattern along a line of potential failure. In a gel model,
small fractures of this sort formed along the 1ine of potential shear
fracture well within the layer. Fractures close to the surface are
probably controlled by interfacial instability." Because of this multiple
modes of fractures, spacing of fracture at the end of an experiment is

variable.

Of the 63 photoelastic tests Tisted in table 1, 53 were made on
models with welded contacts. Fast deformation (larger loads) produced
more fractures in about half of the tests. Thicknesses of competent
layers varied from 13 to 41 mm. It was found that the spacing interval
(or width of segment) is directly proporticonal to the thickness of the

competent layer for fast strain rate experiments (fig. 1.18-E).

The influence of interfacial shear stress on the formation of the
instability is clearly demonstrated by the fact that tests with free

interfaces or with low frictional contact have few or no fractures.

Results of 10 tests on a 3mm thick clay layer in a matrix of
putty (Table 2) indicates that the fracture spacing to thickness relation-
ships for clay is different to that for gelatin. For the same thickness
of layer the fracture spacing in gelatin is about 10 times greater than in
¢lay. Clay-putty models differ from gelatin models in that 1. the clay-

putty layers have much higher Young's moduli, 2. they have a larger
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Fig. 1.18-E, Plot of thickness of canpetent layer against the
average width of the boudins or segments. Note the linear

relationship between thickness ang width of boudins which

were formed in slow strain rate experiments (see Table 1.1).
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competence contrast between layers and, 3. relative to their Young's
moduli they have very Tow yield strength.

Sowers graphic representation of his experimental results are
shown in figs. 1.19 to 1.21 and these are compared to his theoretically

predicted results which are discussed in section 1.3.



TABLE 1. EXPERIMENTAL RESULTS, GEL MODELS

41

Young's modulus

Thickness
Layer Medium Averzge number Spacing Number
Layer Medivm X 2 (X 10 dynes) of fractures interval of tests Applicd load
A. Welded contacts
40.8 mm 121.8 mm slow 0.42 0.21 21 76 mm 2 1.7 X 106 dynes
- 254 mm 125.7 mm slow 0.42-0.28 0.25-0.21 3.8 55 mm 16 2.2 X 10% dynes
20.6 mm 128.5 mm slow 0.42 0.25 4.2 50 mm 2.4 X 106 dyaes
1.0 mm 135.0 mm slow 0.42 0.25 7.1 IS mm 6 2.9 X 108 dynes
254 mm 125.7 mm fast 0.36-042 0.21-0.25 15.5 40 mm 1i 1.9 X 106 dynes
loading
20.6 mm 128.5 mum fast 0.32-0.36 0.21 5.1 51 mm 12
loading
B. Frictional contacts
21 mm 128 mm 0.4 0.2 5.0 50 mm 1 Fractures appear in
second stage; 2 then
3 fracturcs
15 mm 25 mm 0.4 0.2 1.0 2 Sccond test; rapidly
overioaded layer
shattered
C, Free interfaces—very low [riction
13 mm 135 mm 0.4 0.2 0 3 Water lubricant
7 mm 142 mm 0.4 0.2 o 2
60 mm 120 mm 0.4 0.2 1.0 H
25 mm 120 mm 0.4 0.2 100s Foam lubricant,
. shatter
20 mm - 120 mm 0.4 0.2 0-100s 1 Shattered

TABLE 2. EXPERIMENTAL RESULTS, CLAY MODELS

Clay layer length

Number of fractures

- ) o Fracture Number
Initial Final Major  Secondary interval of tests
A. Clay layers—3 mm thick, clay plasticine embedded in putty
203 mm 254 mm 4.1 20-25/in. 65 mm 3
280 mm 240 mm 4.0 20-25/in. 70 mm I
175 mm 240 mm 3.0 20-25/in. 70 mm 3
B. Clay layers—3 mm thick
203 mm 245 mm 2.0 90 mm 3
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Fig. 1.19.A  Graph of tension versus number of nodes (fracture sites) at

various layer thickness. Critical tension and fracture spacing indicated

for observed values in gelatin-agar model {gelatin E = 0.42 x 10° dynes/cm?;
agar £ = 0.21 x 10° dynes/cm®), length 28cm. Note linear arrangement of three
critical tensions from slow tests at three-layer thickness. Slope differs from
slope of three corresponding computed values. Combined action shear and normal

forces on interface produces minima (critical values).

Fig. 1.19.B  Graph of tension versus number of nodes at various thickness for
only normal forces on interfacial surface; otherwise as in Figure 1.79.A.

(after Sowers, 1973).
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- Figure 1.20.A. Graph of tension versus number of nodes at various thickness,

for only shear forces act on interfacial surface. Other conditions as in

Figure 1.19.A.

Figure 1.20.B. Comparison of critical values computed for three layer model

with those obtained for the stiff layer alone. Conditions as in Figure 1.19.A.

(after Sowers, 1973}.
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number of nodes {fracture sites}. No critical tensions

occur in unwelded case.  (after Sowers, 1973).
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dyhes/cmz; putty E assumed to be negligible (after Sowers 1973).
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Stromgard (1973) used cellulose acetate and benzylalcohol as
competent layers and in another model he used the photoelastic prdperties of
gelatin to study the change in the stress distribution caused by the develop-

ment of tension fractures in the competent layers (fig. 1.22-a&b) respectively.

Because of the relatively high tensile strength of the competent
layer material the 'fracture' had to be produced by cutting, before deformation
started, in both models. Before fracturing, the maximum tensile stress,
g1, along the x-axis has its maximum value in the middle of the competent
layer A (point P in fig. 1.22-b). After fracturing, tension is
maximum a certain distance from the fracture (i.e. at point Q
fig. 1.22-b-B). A comparison of the isochromatic and isoclinic patterns
before and after fracturing showed that the fracture only measurably
influences the stress distribution within a limited area. The
fracture caused the value of ¢y to decrease along the line R-R
(fig. 1.22-b-B).

Variations in Young's modulus ratio did not significantly
change the size of domains of reduced tensile stress in the models
(highest modulus ratio approximately 4).

The gelatin model consists of a competent gelatin inclusion
in an incompetent gelatin surrounding. First the isochromatics and
isoclinics of the loaded model in the unfractured state were studied,
and then a central tension fracture was cut at £ (fig. 1.23-A) and
the new stress distribution examined.

The orientation of the principal compressive stress in
the model deviated at most 10° from the x- and y-directions. A _
simplified picture of the calculated shear-stress distribution inside

the competent layer or boudin after fracturing is shown in fig. 1.23B.



Fig. 1.22.a. Stressdistribution at boudinage initiation; isochromatics; cellulose acetate + benzylalcohol
model; Young’s modulusratio k ~ 3. (after Stromgard, 1973)

Fig. 1.23.C shows the approximate variations in the magnitude of
the principal stresses o; and o; along the horizontal axis of symmetry in
the model (CDE fig. 1.23.a). After fracturing, points of maximum value of o,
are located approximately in the middle of the segments (H). The maximum value
of o, is slightly lower than before fracturing (fig. 1.23.C). The values of
o; in the competent layer were found to be higher along the horizontal
contacts than along the horizontal line of symmetry. At mid-width in a
segment, however, this difference in the value of o; is high if width/

thickness ratio of segment is small.

Stage after the boudins have separated

For models with small differences in competency, the directions
of op and 03 in both the boudins and the surrounding deviate little from
the directions of applied stresses. The maximum shear stress is concentrated

at the ends of the boudins. Fig. 1.24 shows the distribution of maximum
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Fig.1.22-b Trajectories of maximum compressive stress in a photoelastic model; 4 = competent layer of
ccllulose acetate + benzylalcohol; B = incompetent layers of the same material. A. Before formation of
a fracture in the competent layer. B. After formation of fracture; the isochromatic pattern is shown in

fig.1.22a.
(after Stromgard, 1973).
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Fig.1.23 Boudinage in gelatine model. A. Loading of model, k=E 4 /Eg=2.3. B. Simplified representation of
the distribution of maximum shear stress after fracturing. C. Principal stress along section CDE before
fracturing (solid line) and after fracturing (broken line). (after Stromgard, 1973).

shear stress calculated from the model .in fig. 1.23.D. The Tnax is
T

maximum between the boudins. The value of _mgx

at this point was found
to increase with increasing modulus ratio k. ¥he value of O3 = 0Oy at
the same point presumably increases with k, because of a supporting
effect of the boudins, which reduces the vertical compression in

the area between the boudins. The stiffer the boudins the stronger

is the supporting effect. The fact that the values of B and Tyt

i~
o



Fig. 1.23-D Stress distribution for two separated boudins; isochromatics; gelatin model; k=2.3, P,=—0.15 bar,
E4=1.9 bar, Ep=0.8 bar, F 4=0.025 bar/fringe and Fg=0.013 bar/fringe. An n-th order fringe corresponds
to -rmax=—n-0.17Py in the surrounding material (4), and to Tmax=—”‘0-09Py in the boudin material
(B)Figl-24a gives the distribution of 7, x after correction for the initial thermal stresses.

(after Stromgard, 1973)

both increase with k implies that oymust increase more rapidly with

k than 3. From this relationship it can be inferred, that values
_ (97 +05+03) (97 +0q)
of o and mean stress 0 = 3 = T will both be

algebraically high at high k-value. (Magnitudes of op and 03 could not
be determined accurately for the models because of the errors involved
in subtraction of initial thermal stresses and errors of graphical
integration process. The main feature of the distribution of principal
stresses are shown, however in fig. 1.24-a).

Models with different distances between boudins revealed that
the values of Tmax and op in the central part of a boudin decrease with
increasing separation of the boudins if Toading is constant.

Following Frochts{1966) work of photo-elastic methods,

Sen and Mukherjee (1975) calculated the strain distribution inside an

elliptical shaped boudin under normal progressive stress.( see Sen and

Mukherjee (1975) fig, 1, Plates 1 and 2, pages 192-96).
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Fig. 1.24-bTrajectories of maximum compressive stress around two rigid boudins

(after Stromgard, 1973).



1.212 Real Rock Analogues

Griggs and Handin (1960) extended concentric rock cylinders
under high pressure to simulate boudinage. In these tests the
inner core was relatively more brittle (dolomite, for example) than
the enclosing rock (e.g. Timestone). The ends of the composite specimen
were restrained so that total extension of both cylinders was the
same, although the Tongitudinal strain varied widely in different
parts of the specimen. The inner core was ruptured in one or more
places, and individual pieces were engulfed by the influx of the ductile
matrix into the cracks. Sometimes the inner core fractured into
several more or less equant blocks along either shear or extension
fractures that usually terminated against the outer cylinder without
crossing it. Fractures often opened and the ductile material penetrated
the openings. As the tests were done on dry rocks, fracture formation
could not involve hydraulic mechanisms. Where deformation was brittle,
more or less triangular and rhombohedral blocks were formed, within
which permanent deformation was negligible and lengthening took place

by separations of these blocks (fig. 1.26).

Paterson and Weiss (1968) used Nelligan phyllite which has

an average grain size of about 0.07 mm and consists essentially of
chlorite and sericite with variable but minor amounts of disseminated
quartz, commonly in tabular grains. The grains of all these minerals
have their long dimensions in almost perfectly parallel preferred
orientation, defining a regular and strongly platy foliation. Additional

quartz occurs locally in variable amounts and in various ways, e.g. as
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QUARTZ LAYERS

(after Patterson and Vleiss, 1968)
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In one particular experiment in which compression was parallel
to the foliation a massive quartz véin (oblique to the foliation)
developed extension fracture subperpendicular to the vein. Prior to
this fracturing the vein was locally rotated into a position approxi-
mately normal to the principal compression by the development of a
kink band, fig. 1.2%a. When this occurred pinch-and-swell structure
formed in the vein and these then separated into discrete rhombic or

lens-shaped boudins.

Gay and Jaeger (1975) compressed relatively long cylinders of

rock (25 - 27mm length and 5 - 7mm diameter) in a matrix of crushed

rock to loads of 4.5 MN. Composite cylindrical specimens (diameter

75 - 85mm and 25mm in height) were prepared by pouring crushed marble to
make a layer of matrix into a thick-walled rubber jacket, placing the
cylinder to be boudinaged in the centre of the jacket and then pouring

an equal amount of matrix on top(fig. 1.27-b).

\ '_ 25mm

75mm

Fig. 1.27-b. Diagramatic representation of the composite cylindrical

specimen.

The material used for the matrix was crushed Wombeyan marble but in
one test adamellite was used. The rock types used for the preparation
of the competent cylinders (in order of increasing strength) were:

Woodline shale, Carrara marble, Solenhofen limestone and Rangar oolitic
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limestone. The specimens were placed between steel plates and compressed

uniaxially at a standard controlled rate in a large testing machine.

During the deformation the unconsolidated matrix was compacted
and the central competent cylinders thinned and boudinaged. From their
experiments Gay and Jaeger (1975) found the response of cylinders to
the deforming forces was very strongly controlled by their ductility.
The very ductile Woodline shale flattened and elongated. The inter-
mediate cylinders thinned and formed boudins of one type or another.
The Teast ductile specimen, Rangari oolitic limestone underwent signifi-
cant necking by collapse along 60° to 70O normal faults but hardly

deformed internally.

From their experimental results they drew the following conclusions

on the mechanisms of boudinage formation

(1) Initial effect of the axial compression is to flatten and elongate
the specimen homogeneously. (2) A region of necking develops normally \
in the centre of the specimen where the applied pressure is greatest
and barrelling at the ends of the specimen develop. The mechanism of
necking, in all specimens, is due to collapse of material along a pair
of conjugate normal faults to form a small graben-like structure. These
shear faults then either cut through the specimen or coalesce with exten-
sion fractures or shear fractures initiated from the opposite side to
form a curved fracture. In this way the cylinder is separated into
boudins. The final stage is the physical separations of the boudins.
In all specimens the matrix flowed into the opening low-pressure area
between boudins.

Gay and Jaeger pointed out that the result of their work is

different from those of previous writers (namely Ramberg, 1955; Ramsay,

1967; and Stromgard, 1973). These writers have considered extension
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fracturing to be the main mechanism for boudin initiation. Gay and
Jaeger's result, however, does not support this idea; instead, it
shows that necking by collapse along shear fractures occurs first.
Griggs and Handin (1960) and Paterson and Weiss (1968) who also used
rocks as the model materials in their experiments also emphasized the

importance of shear fracturing.

Gay and Jaeger (1975) warn that their experimental results should
not be used to re-interpret all occurrences of natural boudinage
because they are only directly applicable to specialized geological

situations in which boudinage takes place under cataclastic conditions.



Fig.1.28-a . Interlocking pinch-and-swell structures (internal boudins) and normal kink-bands developed
in a model , as a result of compression normal to the layering.

1.22 Hultilayer Boudinage (Experimental)

1

Cobbold et al. (1971) compressed a lubricated plasticine multilayer
to investigate the combined effect of degree of anisotropy and orientation
of coinpression direction on:the structures that form when compression normal to
layering occurs. A stack of Tubricated plasticine layers were compressed
normal to the layering in a box with hand-operated pistons. They produced

interlocking pinch-and-swell structures and normal kink bands (fig.1.28-a).

From their experimental results and theoretical analysis, which will
be discussed in section 1.51, Cobbcld et al. (1971) coricluded that in an
anisotropic continuum compressed normal or at high angle to the layering
the degree of anisotroiy plays an important role in determining the types
of structure that may form. Low degree of anisotropy produces interlocking
pinch-and-swell structures (internai boudins) and in a high degree of

anisotropy normal kink bands are formed.
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Following Cobbold et al. (1971), Woldekidan (1975) produced
similar structures by compressing a stack of lubricated layers of
plasticine (models with and without competence contrast) normal to
the layering. In most of the models with a competence contrast
(fig. 1.28-c) tension fractures appeared first in the competent
individual layers, followed by high angled (26 << 900) shear fractures
which cut across many of the Tayers. The few interlocking pinch-and-
swell structures that formed were destroyed as the shear fractures
propagated and became 'shear zones.' Similar structures were formed
in the models without competence contrast between adjacent layers
(fig. 1.28-b). In these models, however, only a few isolated individual
layers (fig. 1.28-b(i)) were ruptured (after necking) by tension fracture.
This occurred as the discrete shear fracture appeared. Many of the
major shear fractures which cut across many of the layers became 'shear

zones' after about 25-30% shortening.



Fig. 1.28-b  Shear fractures, shear zones and normal kink bands
developed in a model consisting of identical layers compressed

normal to the layering.

Fig. 1.28-c  Similar structures develop in a model made up of
relatively competent (light) and incompetent (dark) Tayers. Note

in this case the competent layers have ruptured by tension fractures.
Note also the conjugate sets of shear zones and kink bands give the

appearance of interlocking pinch-and-swell.




1.3 THEORETICAL ( WORK ON SINGLE LAYER BOUDINAGE)

Ever since Lohest (1909) introduced the term 'boudin' many authors
have tried to give an adequate explanation or theory for the development
of boudinaged structures. Lohest established that the segments or boudin
were originally portions of the entire quartzite bed. He also confirmed
that the quartz veins that filled the gaps between the boudins were of
secondary origin not primarily diagenetic structures as had been

suggested by Renard (1909).

Quirk (1923) ascribed the barrel-shaped boudins to compression
parallel to the bedding plane and the modification of their form by
elastic reaction to release of load. Quirk's idea was rejected by
Wegmann (1932) and Corin (1932). Wegmann shows how the barrel-shaped
" boudins may be deformed into entirely disconnected lenticular 'pebbles’
in extremely mobile areas (fig. 1.29-a). They agree that the formation
of boudinage is due to stretching or elongation of a competent between
incompetent beds. Cloos (1947) elaborates on the ideas of Wegmann and

Corin but basically agrees with them.

Most geologists now agree that boudinage structures are produced
during compression normal or at a high angle to rock layering. Further-
more, according to Stromgard (1973) most geologists agree with Ramberg
(1955), that compensating elongation parallel to Tayering causes
competent layers to break into segments or boudins and that boudins

gradually separate during progressive deformation (fig. 1.29-b).

Goguel (1946) first applied mechanical principles to the problem

of boudinage. From geological observation he decided that the 'plastic'
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flow of weaker members of a geological sequence controlled the deformation

of the whole sequence, including markedly stronger layers. He used

Prandtl's solution for the 'plastic' flow between two appressed rigid



‘Fig.1.20-a Boudinage after WEGMANN [1932]:(a)
Classical stage (Lohest, Read); (b) Beds of dif-
fering resistance;(c) Boudinage in granitized
terranes; (d) The ends of (c) are almost entire-
ly turned in;(e) Final stage withoug pegmatiza-

tion; (f) Far advanced stage from highly mobi-
lized terrane
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Fig.1.29-b—Successive steps during formation of
boudinage structures. .1, state prior o compres-
sion. The black Taver in the middle is the compe-
tent body on ecither side of which incompetent
hodies exist (vertically lined regions). Compressive
stress is transmitted by means of two stiff sheets
(black). B, compression has started, the plastic
flowage in the incompetent layvers is indicated by
the distortion of the originally vertical lines, Ar-
rows in the competent black laver indicate tensile
stress, C, a more advanced step than 8. Competent
laver is now ruptured in the middte where tension
was greatest. The network in the incompetent
laver indicates pattern of flowage. This network
i3 not a further evolution of the deformed network
in B, but rather the evolution of an imaginary
rectangular network not shown in 5. Horizontal
arrow s show tensile stressesin the competent taver.
D, stage more advanced than ¢ Competent
Fnver has ruptured at 1w o new places. The pattern
of the network indicatesplastic' lowage in the in-
competent lavers during evolution fromn ¢ to 1))
Neain, the deformed netaork i 12 4- supposed 1o
have developed from o rectanaular imasinary net
work not shown in ( (after Ramberg, 1955, and
reviewed by Sowers, 1973).
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platens to obtain the displacement and flow velocity fields that

might develop in the 'plastic' layers. The large blocks of adjacent
layers were supposed to assume the role of the rigid platens of
Prandtl's model that were displaced towards one another in a direction
normal to bedding with uniform velocity and displacement. The stronger
layer was acted on by tensile stress produced by the shear forces at
the interfaces. These interfacial forces were supposed to be caused

by viscous flow of the weak material, and were calculated from well-
known formulas for viscous drag. By calculating strain energy Goguel

was able to calculate the lengths of boudins that would form.

In Ramberg's (1955) mathematical study of boudinage he assumed
(1) the deformation of the incompetent rock layers occurred by viscous
flow and (2) the competent layer deformed elastically before rupture.
Based on these assumptions Ramberg derived the following equation for
extension parallel to the layer in one direction. The tensile stress

in the centre of the competent layer is given by

Z.
- _ _1 _
So = . (PO P1) (1.7)
Cc
where So = tensile stress at centre

Zi and ZC = thickness of incompetent and competent layers respectively.

(PO - P1)+-pressure difference (Po at centre of the block and P,

at the end}

The pressure difference during the formation of boudins can be

limited by the condition

Z
-P) > l-~£—Ss Kg/cm? (1.2)

o 10 27
.i
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Fig. 1.29-c. A competent layer enclosed in a matrix of incompetent

rock (after Ramberg, 1955).

Fig. 1. 29-d. Ramberg's boudinage model with extension in
more than one direction.



and the rate of compression

Z3
8 _ 1 (P, - P) (1.3)
ot 2%6u
where SS = tensile stress
p = viscosity coefficient of incompetent layer
2 = width of competent layer (see fig. 1.29-c)

/7
From these three equations one can find the tensile stress in

the boudin Tayer and rate of compression provided the pressure difference
and thicknesses of layers are known. In order to determine the rate of

compression it is essential to know the viscosity of the materials.

Sowers (1973), however, is critical of the assumptions made by
Ramberg. He suggests that the ductile flow in Ramberg's experiments
and in his own experiments is plastic rather than viscous. He points
out that in the experiments of Griggs and Handin (1960) 1little or no
viscous flow occurred, yet fractures and boudins were formed. In their
specimens neither the amount of flow nor the flow field matches that
required by Ramberg's viscous flow model. Ramberg's assumption that
the 'platens' remain straight and rigid up to the moment of necking
is not always valid in natural rock deformation. Sowers accepts the
quantitative relations developed by Ramberg but considers that the
simple viscous model leads to large errors when calculating the viscous
drag forces. If natural flow is indeed viscous it is very slow and
the coefficient of viscosity is very large. Therefore, the drag forces,

calculated by Ramberg become unrealistic for thick viscous layers.



Ramberg arrives at the following stress equations applicable to a

boudinage model with extension in more than one direction(fig. 1.27-d).

Zi(Po - P)
o =z (3+m?E—— (22 - r2) (1.4)
Z 4%
o
and
14 (P =Py
TEgT —————;—L— (3 +m)g? - (1 + 3m)r?| (1.5)
C 2
where r = distance from centre (of cylinder)
2 = radius of circular disc
m = Poisson's ratio of of competent layer
ZC = thickness of competent layer
Z. = thickness of incompetent layer

o and T = radial and tangential tensile stresses respectively.

According to equations (1.4) and (1.5) one would expect radial
fissures to form first, originating in the centre and spreading to the
circumference. This did not generally occur in Ramberg's experiments,
probably because the analysis is based on the assumption that the
materials are perfectly homogeneous and elastic and are unable to
yield plastically. Release of stress by plastic yielding of the
competent sheet during the deformation would inhibit the formation of

the radial fissures.

Sowers (1973) reviewed the quantitative theoretical work on
fracture spacing and boudinage of both metallurgical work done on

rods and experiments performed on rocks-

Based on the theory of incremental deformation of Biot (1965) he

g%
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developed a theory that explains fracture spacing without requiring
large viscous flow. His theory provides a simple way of understanding
the role of initial tension and anisotropy in the physics of the defor-
mation of layers. Sowers' approach in developing an explanation to
fracture spacing differs from previous theories of Ramberg (1955) and

Beloussov (1964) in the following ways.

(1) A variation is made in the shape of the entire competent

layer (as opposed to the variation of a diameter of a rod.)

(2) Instability is introduced by means of a sinusoidal pertur- !
bation of the interfacial forces. Such perturbances may result l
in various unstable configurations similar to those which Biot (1965)
has described in buckling (both single Tayer and internal) where the
shape of the 'brittle' Tlayer changes while the outer margins of thick
embedding ductile layers do not change. Under other conditions the
outer layers may change into shapes that are concentric to the inner
ones. Another possibility which Biot points out is that the interfaces |
become unstable and wrinkle into folds that die out exponentially away

from the interface.

In adopting Biot's (1965) theory of internal instability Sowers
assumed that if the layers are thin relative to their length the Tayered
material may be considered to approximate to a continuous anisotropic
material. The basic theory is greatly simplified by using this assumption,
but as shown by Biot (1965, p. 216), it is not a necessary one. The
other assumption is that the material has orthotropic or orthorhombic
symmetry, one axis of symmetry is normal to 'bedding' and the others lie

in the bedding plane.

Biot (1965, pp. 182-259) has discussed buckling of Tayered media.
The general theory of tensional instability that was developed by Sowers

(1973) is substantially the same although the difference in sign of the
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axial pre-stress alters the effect of moduli in some important relation-
ships which determine stability. Internal instability occurs in either
anisotropic or layered media, in the latter case layers must be alter-

natively elastically hard and soft but not of too large contrast.

The case considered by Sowers is that of plane strain deformation
in which the ends of the layers are subjected to uniform tensile stress.
The upper and lower surfaces are confined between effectively rigid walls but
are in perfectly free contact with them (Fig. 1.30A,B). For further
simplification Biot assumes homogeneity and incompressibility of the
entire domain. Individual layers may be either isotropic or orthotropic.
Instability develops if the material is anisotropic to incremental

stresses even if it is isotropic to prestress.

Based on the above assumptions and considerations Sowers arrived

at the following equations:-

(Q + %)3“'*’ + 2(2N - Q) %y (Q - %& =0 (1.6)

ax* ax2ay? oy
where N and Q are the normal & shear elastic moduli for anisotropic materials;

T is the tensile stress and ¢ is the displacement function that describes

permitted deformation. It is defined as follows:-

u:EQ’V:8_¢
ay X

This equation can be solved for ¢ to get a complete elastic
solution, as Biot notes, the characteristic equation then becomes
g + 2mg2 + k%2 =0 (1.7)

where £ is the ratio of wave length in the x and y direction respectively.
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Fig. 1.30 A. Internal instability of layered media. Under action of
external tension outer margins of rectangular domain are deformed to
produce longer, narrower rectangular body shown. Inside the body the
central stiff layer has deformed into a pinch and swell structure because
of the growth of a sinusoidal perturbation. B. Necking instability of
entire domain. Top and bottom soft layer as well as inner stiff layers

are deformed. (3fter Sowers, 1973).

.
2N - Q , U7

m = , k° =
Q-5 PR
7 Q-7

Real roots of & occur when
(case 1) m > 0, k < 0 or equivalently T > 2Q, Q > 2N
(case 2) m < 0, m®* > k? > 0 or equivalently T < 2Q, Q > 2N and

2N - Q[ > |Q - 5.

Case 1 occurs only if the brittle, higher modulus layer is much
thinner than the embedding medium, otherwise the applied tension would

exceed the strength of the material before onset of instability.

Case 2 may give rise to 'shear instability', related probably to

the development of ductile fracture in necked rods.

Unstable solutions occur in a stretched anisotropic domain when
tension along layers exceeds a certain critical value. For this
condition to occur in nature the material must have the strength to
support the required critical applied stress; otherwise unstable stress

conditions will never come into existence before fracture occurs.

~¥

=



Biot (1965) considered another solution to equation (1.6)

fy)

¢ = ==L sin 2x for what he called surface instability.
22
L 2
3 w3 e o g (1.8a)
ay* dy?

where £ = wave number.
This equation has solutions of the type
f = expm‘y where B is the solution of the characteristic equation
BY - 2mp? + k% = 0 (1.8b)
If B were equal to i£ equation (1.8b) would be equal to equation
(1.7) except for the sign of the second term.

With f = cieB‘Qy and for the condition f = 0 when y = -», unstable

solutions occur if

(case 1) T < 2Q orm > 0;

Q <2Nor K2 >0

(case 2) T >2Qorm<O0

m?2 < k? <0or Q < 2N

|2 - q| < |0 - 5]

These are exactly the conditions excluded from internal instability.
Case 1 should occur easily and frequently in nature but would not affect
thick layers because the stress dies out exponentially away from the
interface. Surface instability is favoured by low ratios of N:Q or in

deformations where large normal strains occur relative to shear strain.



Assume f = C; cosh Blzy + C, cosh ley sin X (1.8c)
where B is a solution for the characteristic equation (1.8b).

If different boundary conditions are chosen from those for internal
instability then different structures may result. For example, if
deflection of the layer boundaries are permitted layer instability
(fig. 1.30-B) may develop. Layer instability occurs for the same
conditions of T, Q and N as for surface instability. In this case the
solution does not contain the exponential decay term in y, and the entire
layered sequence becomes unstable, the rectangular outer form changing

to pinch-and-swell shape.

As yet N, Q and other moduli have not been measured for rocks under
tension. This difficulty limits the use of these theoretical methods
and precludes the likelihood of obtaining a closed form solution in this

way, hence Sowers (1973) turns to strain energy methods.



-3
X

Strain Energy Methods

Sowers (1973) reviewed Biot's (1965) general strain energy methods
of incremental deformations and applied it to the problem of fracture spacing. Biot
equation for the total incremental strain energy per unit area, AV, within

the domain is

AV = 2Me% + 2Le% + T ,3v,2 (1.9a)
XX 7 (%)

Xy

where T is the tension (S;; - Sz2), M and L are modulii (M = N-T, L, the
slide modulus, is Q-T) and e is strain. Equation (1.9a) states that the
incremental strain eﬁergy (related to incremental stresses) and the work
done by the tension in lengthening the body equal the total incremental

strain energy.

According to Sowers the total incremental strain energy potential for
the entire body is obtained by integrating AV over the entire area (which
is of unit thickness). Because this general equation (1.9a) for potential
energy expresses the instability condition, its solutions provide the stress
field needed to Tocate the high stress concentrations believed to Tocalize

fracture.

Using sinusoidal displacement fields in AV, following Biot (1965, p.204)

the characteristic equation for internal instability can be obtained
LEY + 2(2M-L)g2 + L + T =0 (1.9b)
which is identical to equation (1.7).

According to Sowers equation (1.9b) identifies the variational principle

with the internal instability condition.

After Sowers had analysed the possible development of fracture in an
anisotropic material using Biot's (1965) general strain energy methods, he
turned to the classical strain energy methods to test this hypothesis and

developed a fracture spacing theory independent of the more exact theory of



Biot. This is outlined below.

The incremental strain energy stored in a system (AV) is equal to the
work done by the external forces for the incremental deformation (AW)

(Timoshenko and Goodier, 1970).
AV - AW =0 (1.10a)

Both AV and AW must be calculated to use this principle (1.10a). This

equation can be used to find the critical tension, T, for elastic instability.

Sowers (1972) considered a three-layer sandwich in which the stiffer

layer is embedded between two less competent layers (fig..30<).

/}’ﬁ(\ AT 1 I
E, 1 ‘ SLELL

E| N ' b ¥
E» t2 -: E

P S8 30 2N ‘f%
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Figl.30c. Layered domain for
which theory has been developed.
E, >E, t; <t,. The central layer Fig..30d. Load distribution on stiffer layer.

is the stiffer one.
(after Sowers, 1973)

He calculated the strain energy associated with deformations caused

by assuming sinusoidally distributed stresses on the surface of the stiffer

iayer (fig. 1.30d). The second order part of the incremental strain energy

for an element of the beam (stiffer layer) is given by Timoshenko and Goodier
(1970) as

1 i 1
AV = ?E(Oi + 02) - (%oxoy + 50 T;y) (1.10b)
and the total incremental strain energy for the domain as a whole is

c

QI —~
Bg*?){ {‘—E 0% + %) - fo0, + 1o X}dd (1.10¢)



where & is the length of the Tlayer, c is constant.

The Tayer is loaded on top and bottom surfaces sinusoidally (fig.l.30d)

so that the boundary conditions are:-

y = +C; Txy = 0, oy = =Bsinax

y = =C; Txy = 0; cy = =Asinox

The maximum amplitude of the applied forces are A and B, and o = 1T
L

where n is an integer equal to the number of half waves and % is the length

of the layer.

Stresses can be determined by using the Airy stress function ¢ in the

biharmonic equation
¢ = sinax (c, coshay + cpsinhay + csycoshay + cyysinhay) (1.10d)

For the embedding incompetent medium (matrix) the stored strain energy

can be calculated using elastic solution obtained by Biot (1937)
¢ = Eﬁ sinaxe ™ (1 + ay) (1.10e)
a

Once the stress components have been determined the strain energy can

be calculated using equation (1.10c).

Consider now the work done by the external forces during incremental
deformation. In order to calculate the work done by the external forces
Sowers assumed that the surface forces cause a sinusoidal deflection of
amp]itude,-%, where E is the Young's modulus of the stiffer layer. By
finding the change in length, A2, of the stiffer layer by the sinusoidal

surface loading and multiplying by the tension, T, work, W can be obtained

W = TAR (1.11a)



Sowers (1973, p.41) discussed various ways of computing AL and
considers, after introducing several approximations that the external work,

W, can be written as

20 2
_ Bn?w

W= T (1.11b)
where n is the wave number and 8! is the amplitude of the sinusoidal pertur-

bation.

Using equation (1.11b) to calculate the work means that all terms in
the equation of virtual work depend on the square of the amplitude; therefore
the equation (1.10a) becomes independent of the deflection and a critical T
can be found. By varying the wave number, n, of the sinusoidal perturbation,

the lTeast value of the tension, T, for each perturbation can be computed.

Comparison of Theoretical and Experimental Results

Sowers calculated the fracture spacing using the strain energy methods
described above and compared the calculated spacings of areas of high stress
concentration (i.e. nodal points) with the spacing observed in the experi-
ments. These comparisons are represented graphically (fig. 1.19 - 1.21).

To find the number of nodes which occur at the lowest possible tension (T),
called the critical tension, he plotted T against nodal points (n) for various
layer thicknesses (fig. 1.19-A). The curve for each thickness represents the
boundary for the stability of the rectangular form of the competent layer at

that thickness.

By plotting tension against number of nodes (fracture sites) at
various layer thickness for only normal surface forces (fig. 1.19-B) and
for only shear forces on interfacial surface (fig. 1.20-A), the physical
nature of the instability is brought out. In the first graph (fig. 1.19B)
the number of nodes increases nearly linearly with tension, but in the

latter ones (fig. 1.19-A) the nodes are inversely related to the tension.

These results show generally that nodal points (fracture sites) are
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more frequent in thin layers than in thick ones, other things being

equal. This relationship is not linear in models. In calculated tensions
shown on Figs. 1.19-A and 1.20-B, critical tension in thin layers are
higher than in thick. Fig. 1.20-B shows comparison of critical values

of tension calculated from the theory and those measured in the experiments.
Althouah off-set from one another the theoretical curve and the experiment
derived curve are parallel and the difference between,theoretical and

experimental results is not large.

The critical tension values calculated from the three-layer model and
those obtained for the stiff layer alone is shown in fig. 1.20-B. The figure
shows the effect of interfacial slip on the development of instability.

It is clear that shear stress plays an important role in the formation of

the instability. As shown on Fig. 1.21-A, which is a plot of tension against
thfckness for various constant number of nodes (n) for both welded and friction-
less contacts, the tension on the unwelded interfaces is nearly uniform for

all 'nodal points', which contrasts sharply with the variation in tension

on welded interfaces. This compares well with experimental results. In
experiments with Tubricated interfaces, that is, experiments in which negli-
gible shear stress can devé]op along the interface either one fracture occurs

at the centre of the layer or none form. It is concluded that a single
centrally located stress concentration develops and remains stable as the

load increases.

From his computation Sowers (1973) found that the effects of the vari-
ation of thickness of the embedding layers are most important in thin layers.
For example, the critical tension for a 5mm layer sandwiched between two
5mm layers is about half the value of that for two 50mm layers. This is
because as the stress dies out exponentially away from the interface in the

embedding medium, effects of thickness are most important in thin layers.

As shown in fig. 1.21-B the elastic strain energy fracture spacing



theory does not seem to describe fracture spacing developed experimentally

in clay. This is because clay is not an elastic material.

From the study of the dependence of critical stress and fracture
spacing on the ratio of moduli of the two materials, Sowers (1972) concluded

fractures are more widely spaced for large competence contrast in material.



Smith (1975) pointed out the disadvantages of the Euler beam

buckling theory in the analytical study of folding in layered rocks;
(1) it is Timited to long wavelengths and hence a large viscosity

ratio; (2) it obscures the driving mechanism of the instability; (3)
it fails to describe structures such as boudinage. Smith turned to

the methods of linear hydrodynamic stability theory. The approach is

as follows:- (a) A basic flow is found that is a possible state of
motion for the mechanical system. This basic flow is represented by

an exact solution to the governing equations and boundary conditions.
(b) It is then determined whether the basic flow is a stable or un-
stable state of motion. If small disturbance (which are always present
in practice) grow, the basic state becomes unstable. A flow is stable
if all disturbances decay, Teaving the system in its basic state of
flow. In the case of amplifying disturbances the basic flow cannot
exist for long and will not be found in nature. The flow associated

with the disturbance will eventually dominate.

In his mathematical study of folding, boudinage and mullion for-

mation, Smith (1975) made the following physical assumptions:

(1) The materials are assumed to be Newtonian, incompressible, homo-
geneous, and isotropic, that is, shear dependent viscosity, normal
stress effects, and elasticity are not considered. (2) The geometry
analysed is the simplest that retains the phenomena of folding and
boudinage. (3) The background applied stress must be planar, with
principal directions either perpendicular to or parallel to the bed.
(4) The perturbation velocities and interface deflections are assumed

to be small. The analysis is meant to describe only the early stages

of growth of an instability.

79
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Fig. 1.31-A. Diagram of model problem, showing a thin layer between
two thick layers of different material, all squeezing out from between

two smooth rigid plates slowly moving together.

#1 h(x)
]-Lz hT(X)
= = U5 ¢t — y:O

Fig. 1.31-B. Diagram illustrating nomenclature used for describing inter-
face position. H/2 is distance from middle of layer to mean interface

position; h(x) is local displacement of interface from its mean position.

Referring to Fig. 1.31-B, the interface position hT can be

represented as hT = iLJ"/2 + h(x) (1.12)

The rate of change of the interface position can be written in

terms of the velocity field:-

ah. ah
[ _ __I_ + v
it & [-u 5 } yth (1.13)

Now if the velocity field is represented as the sum of the basic

flow plus a small disturbance U and v,

(1.14)

<
1
ot
+

<2 <2



where u is the velocity parallel to x

v is the velocity parallel to y

The strain in the x and y direction is obtained by differentiating

uand v, x and y

e - .dg = .V*

Yo T dx D
(1.15)

*

‘v" = -d—v- - .V_

dy D

where U = U'x and V = V'y
Substituting equation (1.12), (1.14) and (1.15) into (1.13)

Using the above assumptions Smith arrived at the following equation:-

} (1.16)
X JH/2h(x) |

LA R Y7 I T LR T (VL
3t ot L 3% [
kinematic dynamic
distortion distortion

Considering only the dynamic distortion Smith arrived at the

following equation:-
- 13 o (1.17)

i.e. the growing rate of the amplitude (a) for a

particular sinusoidal disturbance on the interface.

R =+ 1/4(AT,,/u'E) T,, = stress difference (tension)
When the thin layer has a larger viscosity than the surroundings

(i.e. m > 1), and the compression is perpendicular to the bed

(aU/ax > 0); the conditions are those normally associated with boudinage.

The growth rate of the disturbances can be simplified by defining

the normalized growth rate as

e(B, m) = E(8, m)/%% =<§(g}755 m -1 | (1.18)

where 8 = wave number, m = %&
1
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This function (1.18) has an extremum(maximum) em at Bm for each
m, (fig. 1.31-C). It is the disturbance of this wave number, gm, that

will grow most rapidly and eventually dominate the flow. The value

c 5 H
m is directly related to the dominant wavelength Ay = 32
am
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Fig. 1.31-C. Plot of normalized dynamic growth rate (see equation |.I8)
versus nondimensional disturbance wavenumber. Curves shown are
those for which one material is five times as viscous as the other.
These growth rates are result of secondary flow only, not basic flow.

(after Smith, 1975).
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-0.81 ’
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Figure 1.31-D. Plot of maximum normalized dynamic growth rate versus

viscosity ratio. These growth rates are result of secondary flow only.

(after Smith, 1975).



The maximum growth rate at each m is plotted in Fig. 1.31-D.

According to Smith (1975) the sign of AT,,; is the crucial factor which
determines whether a pinch-and-swell or foldlike disturbance grows.
The secondary flows produced by AT;; and a wavy interface are shown in
fig. 1.31-E. Note in the diagrams that the vertical velocity at the

interface amplifies the existing interface shape.

CASES 4 ) ]
161 i i e
~— ) S L SO S
PINCH AND SWELL, ATy >0
T VR T TN
CASES
man —t } : p——t—t-
W

h A >~ ~—
FOLDING, AT,,<O0

Fig. 1.31-E. Qualitative sketch of secondary flow associated with
growing disturbance. Vertical velocities near interfaces are such as
to further deform interface, which in turn will produce even stronger

secondary flow (after Smith, 1975).

From his theoretical analysis, Smith (1975) arrived at the
following conclusions. The kinematic and dynamic effects co-operate
in the formation of regular folding and mullion formation, but they
compete in the formation of inverse folding and pinch-and-swell
structure. Therefore, for boudinage the dynamic growth rate Y4 is less
than 1 regardless of the viscosity ratio, m. The theory predicts that
the kinematic flattening of the background compression (Yk) will be
-1 and that the stress-induced secondary flow produces a positive

normalized growth rate where Y4 < 1. Thus the total growth rate

>
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FOLD - STRONG DYNAMIC BOUDINS - DYNAMIC GROWTH
GROWTMH ABOUT BALANCED BY KINE-
MATIC DECAY
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INVERSE FOLD - VERY WEAK MULLIONS - WEAK DYNAMIC
DYNaANMIC GROWTH SWAMPED GROWTH AIDED BY KINEMATIC
BY KINEMATIC DECAY GROWTH

Fig. 1.32 - a. Four cases of dynamic instability on single layer
for linear viscous materials.

(after Smith, 1975)

FOLDING STRAIN-RATE SOFT-
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Fig. 1.32-b. Diagram summarizing the four single-layer shearing in-
stabilities and the effect on each of the non-linear viscous (specifi-

cally strain-rate softening) behaviours.



Y =yt vy is always negative. This means that although the distur-
bance amplitude may grow relative to the layer thickness (which is
decreasing), it will decay in absolute terms. It follows then that
pinch-and-swell structure will not grow in absolute terms in a linear
viscous (Newtonian) material. Although the theory may have the correct
qualitative description of the growth mechanism (fig. 1.32-a) it does
not provide adequate explanation for the observed pinch-and-swell

structures.

As mentioned above Smith's (1975) analysis of pinch-and-swell
structures formation leads to the conclusion that the growth rate of
boudins in Tinear viscous materials will be very slow. He subsequently
(1977) extended the analysis to incorporate non-linear viscous materials

(fig. 1.33-a).

b ey
——

i —

/-1-1(®), n1(®)
y=H/2 g

y=-H/2 .
(@), ny (®)

Fig. 1.33-a. Geometry and dimensions of the single layer non-linear
viscous system. Also shown the positive sense for the basic strain

rate (E;;). (drawn from Smith, 1977).

One type of non-linear viscous material Smith (1977) considered
was a power law material. The exponent n is found to be the ratie of

two viscosities p and n.

- H 1.19
n == ( )

154
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where u is the viscosity appropriate for basic strain rate E,, and
perturbation simple shear and n is the effective viscosity for pertur-
bation normal shear (see fig. 1.33-c). If the fluid is not a power

law material, n is simply the ratio S,/S; at the point E,, in fig.1.33-b.

In this latter case, n will depend on the basic rate of strain E,,.

Smith obtained the following results. The dynamic growth rates
of the instability G (calculated from the eigen value problem, Smith

1977, page 320) can be normalized defining the normalized growth rate
Yq 35

- ]

The normalized growth rate Y4 is associated physically with the
deformation of the interfaces by the secondary (i.e. perturbation)

flow.

The normalized growth rate y is obtained by adding the normalized

dynamic (yd) and kinematic (yk) growth rates.

The total normalized growth rate is

Y =Ygty (1.21)
and as Yy = -1, vy = Yq ~ 1.

It is found (except for strongly strain softening materials) that
the family of instabi]ities that develops falls readily into four
(see fig. 1.32) on the basis of whether the perturbation is symmetric ;
or anti-symmetric and on whether viscosity ratio, m is greater or less

than 1. That is,

for foldlike instability

for pinch-and-swell instability

ul S < L (fig. 1.32-b).
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Fig. 1.33-b. Plot of normal stress versus normal strain rate for a
typical strain rate sdftening material. The values of stress T;; and
strain rate E,, that characterize the basic state are shown. Slopes
Si1, Sz and S; represent the effective viscosity for (1) small pertur-
bations about a state of rest, (2) small tangential strain rates about
the basic state, and (3) small normal strain rates about the basic

state, (drawn from Smith, 1977).

772/
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LAYER
Tq1tp //
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SURROUNDINGS
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Fig. 1.33-c.Flow laws for the layer and surroundings. At the basic strain
rate E;; two slopes (for each material) are relevant to fold initiation:

u - the viscosity appropriate for the basic state E;; and perturbation
simple shear, and n - the effective viscosity for perturbation normal shear.
The ratio u/n=n, is the effective power law for the material (after Smi th,

1979).
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Smith's (1977) theory indicates that symmetric pinch-and-swell

instability occurs when the compression is perpendicular to the

bedding (xd > 1). The growth rate has a maximum, for a particular combin-

tion of material properties (i.e.

m, ny, ny) at the dominant wavelength

Am of the pinch-and-swell structure. Am normalized relative to the

layer thickness is shown in fig. 1.34-a and the corresponding maximum

normalized dynamic growth rates yd(km; m; ni, np) are shown in fig. 1.34-b.

Useful asymptotic expressions for the dominant wavelength (Am) and \

(Am) valid for large m values are

A nl/6
“mo= 3.46 2 4
H n;@
and yd(km) n,
100

A/H 10

ny=20 ny=100
ny=1 np=100

i 1 1 \

ny=l ny=20

! 10 100
m= po/py

1000

100.0 100
ny=20 np =100
ng=1 n,=100
/~n|=20 n2=20
20
10.0 ny=1 np=20
5
Y
g ny=1 ns=5
1.0 !
\—n1=20 np =1
Ln‘=5 l'|2=1
0.1 | | |
| 10 100 1000 10000
m=pp/py

(1.22)

(1.23)

Fig. 1.34-a. Dominant normalised

wavelength (Am/H) for folding and
boudinage is plotted against viscosity5
ratio (m) for various values of the
effective power-law exponents n, and

n2. Only strain-rate softening
materials (n>1) are shown (after

Smith, 1977).

Fig. 1.34-b. Normalized dynamic
growth rate (ya) for boudinage is
plotted versus viscosity ratio (m)
for various values of the exponents
ny and n,. Only strain-rate softening
materials (n>1) are shown. To obtain

the total growth rate (y), 1.0 must

be subtracted from these yy (after Smith, 1977).



From equations (1.22) and (1.23) and figures 1.34-a and 1.34-b

Smith (1977) noted the following:

1. Strain-rate softening behaviour in the layer (n, > 1) decreases
the dominant wavelength, whereas similar behaviour in the surroundings

1 1
(n; > 1) increases it. When the quantity n{i/ggg is small, the dominant

wavelength is nearly independent of m (A/H = 4) until m is large.

2. The maximum growth rate is increased by strain-rate softening
behaviour of either the layer or the surroundings or both. At large
viscosity ratios, however, only n, matters. For example, if the com-
petent Tayer has an effective power-law exponent (n,) of 20 and m is
greater than 100 or so, then Yq ® 20 and y = Yq - 1 = 19. Thus every
1% extension of the layer is accompanied by 19% growth in the disturb-
ance amplitude. Using the logarithmic relationship, eqn. (1.24)

shows that

amplitude (1.24)

=
=
1]
=)
(1)
[o)
1

marker line

(ww]
]

A thousandfold increase in disturbance amplitude could be caused by

a %6-= 1.44, that is, a 44% stretching of the layer and its surrounding.

This example shows for a moderately non-linear viscous layer Y4
is large enough to overcome the kinematic decay and still provide for
strong growth. In other words,'the very existence of flow boudinage

is evidence that the rock has behaved in a non-Tinear viscous way.

L)

(9]
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Fig. 1.34-c. The ratio of the dominant wavelength (A,) to the layer
thickness (H) is plotted against the v1scos1ty rat1o % for various
values of n; and n,. At large m, X,/H increases as m in agreement
with classical buckling theory. When n, is large the curves cluster
between xd/H = 4 and 6.

Fig. 1.34-d. The dominant wavelength data of figure 1.34-c replotted

as a parameter map with ny = 1. The ratio A /H resulting from any parti-
cular combination of m and n, is indicated. "When m>n,(low and to the
right) X,/H depends on the material properties in agreement with classical
buckling™ theory while when n,>m, Ad/H approaches four and is nearly
independent of the material properties. (after Smith, 1979).



In the strongly non-linear viscous limit the dominant wave-
length (xd) and associated growth rate for pinch-and-swell (which

Smith calls boudinage) become (Smith, 1979) -

d=4; y=mn, (1.25)

where n; is the power law for the matrix. He predicts that the domi-
nant wavelength (but not the growth rate) of folding and pinch-and-
swell in strongly non-linear viscous layer units are equal. One im-
portant difference is that pinch-and-swell requires non-linear viscous
behaviour for growth. A large fraction of the observed cases of flow

pinch-and-swell structures should have 4 <-§ < 6 (fig. 1.34, C, D).
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Fig.1.35-aVorticity and velocity distributions near a small deflection on the upper interface
of a more-viscous layer during extension. The vorticity in the layer is dominant. The ori-
ginal deflection is attenuated, and deflection geometry tends towards symmetry about

the layer midplane. (after Fullagar, 198C)

H,

Ho

Fe

Fig.1.35-b“Cross-over” during extension of a more viscous layer; as deflection geometry
tends towards symmetry, a point is reached at which vorticity in the layer no longer

dominates the flow. (after Fullagar, 1980)

Fullagar (1980) suggests that for slow plane flow of an infinite

two-dimensional layer of incompressible Newtonian fluid sandwiched
between infinite viscous media of the same density, vorticity (the curl

of velocity) is a potentially valuable interpretational aid, being

simply related both to velocity (via the Biot-Savart law) and to pressure
(via the equations of motion). It provides a link between dynamics

and kinematics.
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Fig.1.35-c. Vorticity and velocity distributions characteristic of amplification and nucleation
of pinch-and-swell during extension of a more-viscous layer. The vorticity in the media is
dominant, as per (128). Vorticity at each interface is conducive to local amplification and
nucleation, but there is destructive interference between vorticity at the upper and lower
interfaces. (after Fullagar, 1980).

During extension the flow is driven by relatively weak pressure
gradients, although pinch-and-swell structure does nucleate, destructive
interference between the vorticity in the two media precludes the devel-

opment of classical boudins.
Fullagar (1980) arrived at the following conclusions:-

For long-wavelength asymmetrical deflections (fig. 1.35-a), the
magnitude of the vorticity at the interface is always greater in the

layer than in the matrix, as long as yg > u; or u,.
[Wo | >> |W,y| (1.26).
where W is the vorticity defined by W = Vx-Uy, Wo in the Tlayer and W,

in the matrix superscripts x and y are used to denote partial derivations.

Near a small symmetrical deflection of long wavelength, the
magnitude of the vorticity is greater in the matrix than the layer, as

long as po > u; or u, (fig. 1.35-b)
[Wi] > [Wo (1.27-a)

or

Wy | > |Wo] (1.27-b)
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Continuity of tangential (sgn) traction is expressed by:-

sgn(Wo - Wy) = sgn|(T-ry)T| (1.28-a)
sgn(Wo - W) = sgn|(1-r,)T| (1.28-b)
where r; =y, r, = u,
Ho o
T =2y sin 26
vy = an externally imposed strain rate

inclination of the surface of the layer (fig. 1.35-a).

D
1]

Considering the layer in fig. 1.35-a, the primary tangential
tractions (T) at A and B must be negative and positive respectively
and from 1.26 and 1.28-a, it follows that Wo(A) is negative and W, (B)
is positive. Application of the Biot-Savarat Law shows downward motion
at the crest of the deflection and at all points directly beneath.
At this stage the perturbation flow is controlled by the vorticity
at the upper interface. Very soon the vorticity at the lower interface
counteracts the effect of that at the upper, vorticity being positive
at C and negative at D (fig. 1.35-b). This is considered to mark a

transition or 'cross-over.'

After the cross-over the magnitude of the vorticity is greater in

the matrices than in the layer (1.28). W;(A) and W,(B) are positive

and negative respectively while W,(C) and W,(D) are negative & positive respect-

ively (fig. 1.35-c). The equivalent perturbation velocity distribution
(arrows in fig. 1.35-c) causes amplification and nucleation of pinch-

and-swell eventually.
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1.4 Finite Element Method

Stephansson and Berner (1971) were the first geologists to use

the finite-element method to produce boudinage structure. Because

of symmetry, they considered one-fourth of the boudin concerned. An
analysis of deformation of an elastic boudin shows the development of
the barrel shape so characteristic of many natural boudins (fig. 1.37-A,
B). The precipitation of minerals observed in nature in the gaps
between boudins can be accounted for by the mean stress disturbation
deduced from the analysis (fig. 1.36, 1.37, C, D). It can be seen

that at both ends of the boudin an area of low pressure forms. Con-
sequently the most mobile constituents in the rock (CO,, Si0,) will
migrate from the surroundings towards these low pressure areas. The
chemical analysis made by Berglund and Ekstrom (1974), using sphalerite
as a geobarometer (based on the varying content of FeS in sphalerite)
from different parts of a boudin on a specimen from the Udden mine,
North Sweden, confirms the mean stress variation shown on fig. 1.37-D.
The natural boudin they analysed is of amphibolite in a matrix domi-
nated by pyrite (fig. 1.38-A). The content of FeS in sphalerite from

different parts of the boudin is shown in fig. 1.38-B.

Fig. 1.36 The mean steess distribution in a theorcetical
boudinage after Stephansson & Berner (1971). The
pressure is recalculated to kg/cm® (after Berglund and

Ekstrom, 1974).
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They argue that the different content of FeS in different parts
of the boudin corresponds to differences in stress values and that the
variations match well the variations in the mean stress in a theoretical

boudinage structure (fig. 1.38-C).

Following Wilson (1963) and Stephansson and Berner (1971), and
Selkman (1978) investigated the relationship of stress distribution
and mineral distribution of boudinage from the Udine Mine, using the
finite-element method. A boudinage from the Udine Mine area has been
examined in detail (fig. 1.38-a) with regard to its mineral distri-
bution, chemical variations (Berglund and Ekstrom, 1974) and grain-
size distribution (fig. 1.39-b compare with 1.38-B). In his programmes,
Selkman assumed elastic or plastic material properties. During one
iterative step, each nodal point is displaced and this displacement
provides the basis for calculation of normal stress, principal stress
and shear stress at the centre of each element. At a later stage, plain
strain is maintained, which creates a possibility of calculating the

Choos 0 ). The models can be carried through several

mean stress o =( 3
iterations, in such a way that the nodal points, after one iteration,

set up new points for the next iteration.

This programme indicates that the stress distribution around the
boudin is compatible with the mineral distribution around the boudin
from the Udden Mine. His investigation also shows that there is a
direct relationship between grain size and stress distribution (compare

fig. 1.39-b and 1.40).
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Fig. 1.38-A Amplitude boudinage investigated by Berglund
and Ekstrom (1974)

x15.2

X
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Fig. 1.38-B The distribution of large sulphide grains. The positions

of analysed sphalerite grains are shown by crosses.
The content of FeS in these sphalerite is also given
(after Berglund and Ekstrom (1974))
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Fig.1.39-b. Natural boudinage from the Udden Mine and its grain-size distribution. Lines are
drawn between areas with equal amounts of grains. (after Selkman, 1978).
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1.5 Multilayer Boudinage

Although a number of geologists have worked theoretically and
experimentally on the origin and development of boudinage in single
layers, very little work has been done on multilayers. Fullagar (1980)
when considering single layer boudinage, considered two different incom-
petent layers as matrix, even so the model is still essentially a competent

single Tayer between two different incompetent layers.

The reason multilayers have received such scant attention may be that
they are too complex to be easily analysed mathematically. Alternatively,
it may be that geologists consider the single layer analysis capable of

explaining boudinage development in multilayers.
1.5.1 Theoretical

Cobbold, Cosgrove and Summers (1971) used Biot's (1965) theory of
deformation of a homogeneous, anisotropic material to account for the
buckling of multilayers. They considered the behaviour of a multilayer in

terms of its average or bulk properties, instead of the properties of the

individual layers.
They adopted Biot's (1965b) theory of deformation of a homogeneous,

anisotropic material and arrived at the following equations.

A single equation for the displacement function, ¢

s Y i
(Q_AE)"_Q+2(2N_Q:,3¢—_+(Q+P—)M =0 (1.29a)
2 ax‘# ’ 82x2dy2 2 ayu

where N and Q are compressive and shear moduli respectively
P = (S22 - S11) and S;; and S,, are the initial stresses within the
material.

For an isotropic material, N and Q are equal, but for an orthotropic
material N and Q are different. "The material behaves with one modulus (N)

if subjected to an increment of compression and a different modulus (Q) if

101
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subjected to an increment of shear. Because of this modulus difference,
the material is anisotropic; but it is also homogeneous because there are
no discontinuities and there is no variation in properties from point to

point", noted Cobbold et al. (1971).

The initial stresses within a material affect the response to incremental
applied boundary forces which are related to incremental strains within the

material by the moduli M and L, given by:

M

N+ P/a

L=q+"/2

In terms of the moduli M and L, equation 1.29a becomes:

Qi ool alta
(L-P) —% + 2(M-L) —— + L —% (1.29-b)
ax* ox23y? ay*

The general solution of homogeneous partial differential equations
such as (1.29-b) is (Green, 1951)
¢ = fi(x + &1y) + fa(x - Eay) + Fa(x + £2y) + fu(x - Eay) (1.29-c)

where &,, &, are arbitrary constants and f,, f, f; & f4 are any arbitrary

functions.

Biot (1965, p. 193) shows that real values of &, &, exist in the

following cases:

case 1: M/L > }; P/L >1 (1.29-d)
case 2: M/L < %; 1>P/L >4.M/L(1-M/L)

case 3: M/L < i; P/L > 1.

Substitution of eg. 1.29c into e.g. 1.29b gives an expression relating
the critical stress difference, P, with the moduli M and L and the parameters

g, and £,, at the onset of instability.
LE* + 2(2M-1)&E? + (L-P) = O (1.29-e)

Expression (1.29e) is shown graphically in fig. 1.41, where the
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critical stress difference is plotted as the non-dimensional ratio P/L
against modulus ratio M/L. Cobbold et al. (1971) called the three unstable
stress fields (fig. 1.41), which correspond to the three cases of eq. 1.29-d,

type 1, type 2 and type 3 instability.

It is assumed that the orthotropic material has rectangular boundaries
which remain undeflected throughout the deformation and that there are no
shear stresses at these boundaries. Because of these assumptions the most
significant displacements occur towards the central part of an unstable
body, and for this reason, the instability is internal. With the above

‘ assumptions, the conditions to be satisfied for type 1 instability are those

of case 1 (1.29-d) M/L > &; P/L > 1.

A solution of equation 1.29-b which satisfies the .assumed boundary

conditions and gives periodic displacements is:

-1C {cos &(x-gy) + cos & (x+&y)}

¢

or ¢ = -C cosgx.cos&ly (1.29-f)
where C and % are arbitrary constants.

The displacements u and v are:

u=29. - _CeEcosaxsinEly
. oy
- 09 _ :
v = 22 = Cgsingxcos&ly (1.29-9)
X

Each of the displacement vectors u and v, varies sinusoidally 1in

magnitude, with wavelength wx and Ny’ along the coordinate directions, where:

Wy

= I (]

-3 wy = 2% 5o that, for this displacement pattern:
3

E = W
x/wy

The displacement pattern of equation 1.29-f is that associated with the

internal buckling of a homogeneous anisotropic material.
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For a type 2 instability the conditions to be satisfied are

(case 2, eqn. 1.29-d):
M/L < &5 1 >P/L > 4M/L(1-M/L).
There is a single value for £ at the critical value of the initial

stress difference,

P
c

AM/L(L-M):

g, = (1-2m/L)}

associated with this value of & there are characteristic directions, the

angle 6. between these directions and the y-axis is given by

tan 6 = *£
2C

These characteristic directions are oblique to the y-direction, in
contrast with type 1 instability, where the characteristic directions for a
minimal initial stress are parallel to the y-direction.These oblique
characteristic directions are considered to be associated with the
development of kink-bands.

Thé combined effeéts of degree of anisotropy and orientation of
compression direction on the form of finite internal structures which may
develop in a statistically homogeneous rock is summarized in fig. 1.42.
The theoretical forms of interlocking pinch-and-swell structures were ob-
tained by superimposing the displacement field (eqn. 1.29-f) for type 1
instability on a set of passive marker lines, which initially were normal
to the compression direction. An example of experimentally produced (by
Cobbold et al., 1971) interlocking pinch-and-swell structures (internal

boudins) have already been shown in fig. 1.28-a.
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Fig.1l.41. S table and unstable values of the initial stress
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line represents the critical stress P , of equation
1.29-c. (After Cobbold et al, 1971)
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F16.L.42.Some possible modes of expression of ‘‘buckling”’ instabilities in materials
with different anisotropy (M/r) and at different angles (6) to the maximum com-
pression direction. (After Cosgrove,1976)
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Stromgard (1973) is one of the few geologists to consider a

multilayer boudinage model. His model takes account of the influence

of viscosity contrast, thickness ratio of the layers and magnitude

and orientation of external forces. All layers are viscous (or elastic) )
and the model is subjected to layer-parallel and layer perpendicular

external stresses. Each layer is assumed to deform homogeneously ;
until it ruptures. This assumption is valid if layer-thicknesses I
are small compared to the dimensions of the model. Stromgard

does not take into account the effect of ‘'necking’.
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