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ABSTRACT 

The field of self-tuning has developed due to the need for 

the control of systems, with unknown parameters, that are affected 

by stochastic disturbances. Most of the theory has been centred 

around polynomial controller descriptions based on a system 

considered as an autoregressive moving average process. 

In this thesis the system model is retained to enable an estimation 

of the system parameters to be carried out. However, once these 

estimations are obtained, a state space approach is used to calculate the 

required control action. By use of this scheme a controller has been 

achieved which has different properties,some advantageous, to those 

previously encountered. The resultant recursive control can be cal-

culated simply and is such that it deals with a variable system time delay 

by employing a pole placement technique. With regard to a simple ex-

tension from its primary form, the controller is able to deal with non-

zero external inputs by means of steady state following. 

The self-tuning property of the state space method is proven, and 

from the proof it is shown that both this approach, and certain schemes 

previously employed, are special cases of a more generalised format. 

Subsequently, by taking account of this format, a tuner is suggested 

which incorporates a control input dependent on state feedback used in 

combination with linear output feedback, the state feedback providing 

pole placement and the linear output feedback allowing the variance of the 

system output to be optimized. The addition to the controller is shown 

to affect neither the use of an external input nor the overall self-

tuning property. 
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Observer theory connected with each of the control schemes 

is discussed with a view to the formation of optimal and non-optimal 

observers , and where possible simulations are employed to show the 

nature of the various conditions obtainable. The systems considered 

are, for the most part, single-input-single-output, although the 

extension to the multivariable case is looked at. 

The use of the state space in self-tuning has given rise not 

only to alternative tuner operating techniques, but also to a deeper 

theoretical understanding of self-tuning in general, and this widens 

its field of applications to encompass areas in process control where 

state space theory predominates. 
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PREFACE 

In the past decade two major factors have influenced the theory 

connected with control systems. The ever increasing use of computers 

and more especially minicomputers has pointed the way towards an ex-

pansion in the practical application of control algorithms which take 

account of this method of implementation. More complex theory has 

developed because of the wider handling capabilities thus achieved 

and from this much control system design is now based on a state 

space representation rather than the more classical frequency analysis 

or root locus techniques. 

The field of self-tuning controllers,which has arisen due to 

the improvement in computing power, has nevertheless remained in a 

polynomial system description framework. This thes is is intended to 

extend the field of self-tuning to the state space, where it is 

hoped further developments and increased awareness will result from 

its new. found cohesion with existing modern control procedures. 

The first chapter serves as an explanation of how self-tuning 

has evolved i n its own right from previous adaptive control schemes. 

Basic definitions, used throughout the rest of the text are included, 

and previous, polynomial based, controllers are reviewed. 

The state space formulation is discussed in Chapter 2, and 

the resulting control action compared with that obtained from 

previous methods. Hence it is shown how, as well as arriving at an 

equivalent state space controller, by using other means of reconstructing 

the state, certain advantages over the polynomial forms can be achieved. 
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The properties of the state space controller are discussed 

in Chapter 3, where the proof of the general self-tuning property of 

pole placement type controllers is given as a starting point. 

Included in this chapter is the application of an external reference 

input signal, where it is explained how a state space description can 

be of benefit. 

Chapter 4 is used to provide extensions to the basic state 

space scheme and to show how various plant conditions, e.g. non-

linearities, multivariable design; affect the fundamental assumptions. 

Of significance in this chapter is the section in which linear output 

feedback is employed in combination with state feedback, providing, 

in an output optimization sense, an improved control action under the 

pole placement criterion. 

The underlying filtering and observer theory is considered, as 

a slight diversification, in Chapter 5, where the techniques behind 

the numerous control schemes are discussed. This comparison is, 

of course, only possible by means of the state space representation. 

The thesis is set out in a way such that Chapter 5 may be read after 

Chapter 2 if so desired, with hopefully no loss of continuity, although 

in its present position it also serves as an explanation of certain 

results contained in Chapters 3 and 4. 

In conclusion I would like to express my gratitude and sincere 

appreciation to all those who have helped me in the completion of this 

work. Firstly, and most importantly, I wish to thank my supervisor, 

Professor J.H. Westcott, but I must extend my thanks to include Professor 
o 

P. Antsaklis, Professor K.J. Astrom and Dr. D.W. Clarke, who all took time 
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for useful discussion with me in the earlier stages. 

The helpful comments and suggestions from my fellow research 

students and departmental lecturers will never be forgotten, and 

to this end Dr, A. Voreadis must be singled out for a special mention. 

Without the financial support of the U.K. Science and Engineering 

Research Council I would be heavily in debt, and therefore I 

acknowledge, gratefully, their assistance. 

Finally I wish to thank Mrs. D. Abeysekera for her careful 

typing of the manuscript, which included the correction of my numerous 

spelling mistakes. 
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Glossary of Terms Used 
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0(t) 

Represents Chapter i, Section j 

Represents Chapter i, Section j, subsection k. 

Denotes equation number k in Chapter i, Section j. 

Denotes figure number j in Chapter i. 

The expected value of the function contained 
within the parentheses. 

Discrete time backward shift operator. 

Output and Input signals respectively, in the 
frequency domain. 

Frequency domain transfer function. 

Transport delay (total) 

Sampling period 

Output, Input and disturbance signals respectively, 
at time t in the discrete time domain. 

Integer part of the system time delay. 

Fractional part of the system time delay. 

Polynomials in the backward shift operator. 

Kronecker delta; i = j 6. . = 1 
i j i 1 j + 6.. = 0 
i j 

Spectral Density function. 

Covariance function. 

Autoregressive Moving Average. 

Controlled ARMA. 

Maximum value of k. 

Vector of regressors in parameter estimation 
(at time t), or otherwise a general cost function. 
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0(t) Vector of parameter estimates. (at time t) 

A(.t) Variable forgetting factor. 

n,m,p Denote dimension or number of parameters, n 

often has a subscript, e.g. n^. 

VC0) Maximum Likelihood function. 

e(.t) Prediction error estimate. 
/N -1 /N -1 ^ 
A(z ),B(z ),etc. Polynomials in the backward shift operator 

containing estimated parameters. 

x(t) State vector at time t. 

x(t) Estimate of state vector at time t. 

x(.t) State vector at time t formed using estimated 
parameters. 

A 

x(t) Estimate of x(t). 

Sl,S2,S3,S^ Weighting values in L.Q.G. design 

T 
[ ] Transpose of a matrix, vector or in the limiting 

case a scalar value. T Time domain or matrix containing specified pole 

polynomial parameters. 

t Present time instant. 

F or F(t) State feedback vector. 

x1(t) Modified state estimate. 

W Matrix used in pole placement design. 

0 Null (zero) matrix 

A(t) Reconstruction error at time t. 
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CHAPTER 1 

INTRODUCTION TO SELF TUNING CONTROLLERS 

Adaptive control is a general technique of which self-tuning is 

a special, recently initiated, classification. Hence the purpose of 

the early sections of this chapter is to consider the developments 

in adaptive control that have led to the evolution of self-tuning. 

The need for adaptive control systems is stressed in Sec. 1.1, and in 

order to compare self-tuning with other methods, various adaptive 

control schemes are considered in Sec. 1.2, where the overlap between 

different approaches is also discussed. 

When examining any adaptive system at length, basic definitions, 

concerning the system to be controlled and the structure of 

environmental disturbances affecting the plant, must be given. These 

are outlined in Sec. 1.3, in which system models, particularly relevant 

to the field of self-tuning, are formulated. However, these systems 

are considered to contain parameters which are unknown or slowly varying 

with respect to time, and hence in Sec. 1.4 some identification 

algorithms are mentioned, whereby the system parameters are continually 

estimated such that a controller may be formed from these estimations. 

This controller may be deduced with regard to a specific control objective, 

several of which are discussed in Sec. 1.5, where the various methods 

fundamental to self-tuning are introduced. 

Throughout this chapter reference is given, where possible, 

to applications of the differing techniques, although primarily the 

tendency is more towards the theoretical aspects. 
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1.1 The Necessity for Adaptive Controllers 

The fundamental principles of control theory were formulated 

because of the need to explain practical physical control processes. 

As improvements and refinements were made to the original theory, 

its field of usage diversified to include abstract reasoning and 

theoretical concepts in a mathematical sense. This broadening 

of the subject area paid dividends, as many results and findings from 

other sources, such as mathematics, could be redeployed for its 

development. 

When separated from the real world, however, it becomes 

difficult to measure the success of one achievement in comparison to 

any other, the only reasonable solution being a return to the original 

practical control system. In this work, consideration has been 

taken of the practical implications when applying a particular 

theoretical control idea. 

The driving force behind the development of control theory 

has been the need for improved performance control systems, where 

a satisfactory controller designed using intuitive reasoning is no 

longer deemed appropriate. However, this theory is not enough in 

practical design problems, as a certain amount of knowledge concerning 

the dynamics of the process to be controlled is assumed. This 

knowledge can be difficult to obtain from essentially physical character-

istics or when variations, which may be unforeseen and of large magnitude, 

occur in the plant. Thus a need has arisen for controllers which deal 

with these phenomena : - a gap filled potentially by a class of control 

systems called Adaptive Controllers. 
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Many different Adaptive Controllers are in use at present, 

this is due primarily to the large number of possible measures of 

plant performance. In any specific design project the type of 

Adaptive Controller used is dependent on whichever measure of 

system performance is considered to be most important, although in 

many cases numerous performance indices are used at the same time. 

As may be expected from their large number, Adaptive Controllers 

exhibit several similarities concerning their basic structure. 

Because of this it is possible to split them up into various groupings 

in order to analyse their behaviour, each group containing controllers 

with either a common performance objective or those formulated via 

identical building blocks. The most popular of these are described 

in Sec. 1.3. 

Despite the differences that arise, not only with each other, 

but also with alternative control system forms, Adaptive Controllers have 

a problem in common with all other controllers, namely the determination 

of the parameters used to describe the plant it is wished to control, 

i.e. the problem of parameter identification. This assumes that we 

have at least some apriori knowledge about the structure of the 

mathematical description of the system in which the parameters are 

contained. If this assumption holds, which for the moment is considered 

to be the case, then, by means of the identification exercise, a con-

troller may be formulated, making use of the identified parameters, 

which causes the system to react in the same way, or as near as the 

particular identification technique will allow, as the system would 

have reacted if the same controller had been obtained by using the 

actual system parameters, had they been known. 



- 1 4 -

But, as indicated earlier, in practice the unpredictable nature in 

which the parameters, associated with the plant, vary with respect 

to time, means that the Adaptive Controller must repeat the identifi-

cation process each time the control law is applied such that the 

most recently available information is used. The optimum solution 

obtained using these ideals is however, invariably impossible to 

apply computationally, as the level of performance required is not 

practically possible. Thus suboptimum schemes are used, whereby the 

plant parameters are only estimated, rather than being identified, and 

this leads again to many more adaptive techniques because of the type 

of parameter estimator, of which there are many, chosen. In Sec. 1.4, 

several of these estimators are considered in more detail. 

The ultimate aim of the designer of an adaptive controller is 

that, despite the plant parameter variations that may occur, the desired 

performance of the overall control system is unimpaired. This may 

be carried out in a number of ways. Firstly, when variations in the 

dynamic parameters are of small magnitude and remain around their 

original nominal value, a feedback control law may be applied such that 

the performance of the overall system is relatively unaffected by the 

variations. This is the basis for the theory related to control 

system sensitivity. Secondly, the parameters forming the control 

law can be altered when consideration is taken of the on line measure-

ments of system parameters. Finally, a comparison may be made between 

the actual index of performance and the index of performance which 

has been chosen as the basis for the design procedure. From the 

result of this comparison, the parameters in the feedback control law 

are altered in an attempt to cause the difference to tend to zero. 
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Of the approaches mentioned, the second and third are both adaptive 

controllers, where the problem becomes one of correct choice of 

adaption law, such that the desired performance index is followed, 

despite variations in the plant or its environment. 

The complexity of these controllers is largely dependent on 

their mode of employment, whether it is to be applied in analog or 

digital form. The increasing acceptance of microprocessor based 

control systems has meant that modern control theory, due to its 

application in the field of direct digital control, has recently been 

developed with the possibility if it being applied via a microprocessor 

being considered. This has resulted in many control algorithms 

previously disgarded, or not initially taken up, now being reviewed 

due to the decreasing cost of computing facilities. The continual 

improvements on the hardware side, in respect of computing time and 

capabilities, also mean that algorithms considered too cumbersome now, 

may well be reintroduced due to their simple and efficient operation 

in a few years' time. 

1.2 Adaptive Control Systems 

In the design of high performance -control systems it is often 

the case that an adaptive control scheme is required. Of the many 

approaches carried out, several are considered here. 

1. Early Adaptive Controllers 

In Mishkin and Braun (1961), many of the adaptive controllers 

developed by that time are considered. Most prevalent among these is 

the use of a deterministic system model, where the stability or 

sensitivity of the system in response to environmental disturbances or 

alterations in the values of the system parameters is studied. The 
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controller is designed such that despite the parameter variations, the 

performance of the overall system remains unimpaired. This is done 

by an increase in the feedback gain subject to a maximum possible 

value, above which the closed loop system becomes unstable. Despite 

the use of nonlinearities in the feedback path, which can increase the 

range of system operation, designs based on this principle are only 

useful when small variations occur in the plant parameters. 

Rather than making use of the alterations in the feedback path, 

a manipulation of the forward system gain can be used to retain either 

the closed-loop poles or closed-loop zeros, or even both, in previously 

specified zones, i.e. to ensure stability. This method, where the 

parameters of the system are altered on line in response to a measured 

system performance, brings the techniques mentioned above more in line 

with most of the recent work. In Bryson (1977) the method of forward 

gain tuning is found to operate sufficiently, and is shown in certain 

cases to be a more suitable choice than other more recently developed 

approaches. Of the more recent adaptive controllers, there are perhaps 

two general classifications. In the first of these the controller 

parameters are adjusted in a way dependent on the estimated parameters 

or state variables of the unknown plant. These controllers have come 
o ,, 

to be known under the heading of Self-Tuners, Astrom and Wittenmark 

(1973). In the second method the parameters of the controller are 

adjusted to cause the difference between the actual output of the plant 

and the output of the model of the plant, used as reference, to tend 

asymptotically to zero. No identification or estimation scheme is 

explicitly used in this method which is known as Model Following 

Adaptive Control, Landau (1979). This latter approach will be considered 

in the next subsection. 
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2. Model Reference Adaptive Control 

There are several constituent parts to a Model Reference 

Adaptive control system, the first of these being a reference model, 

which is used to specify the required performance of the system. The 

plant, which is to be controlled, must be adjustable in that it can 

contain variable forward and feedback gain characteristics. It 

is desired that the performance of this plant will follow that of 

the reference model as closely as possible, and to this end the differ-

ence between the reference model and plant outputs or states needs to 

be measured. Finally an adaptation process is formed which reacts to 

the measured error by altering either the plant or a controller in 

accordance with a set pattern. 

The first model reference adaptive systems were those based 

on a policy of local parameteric optimization, where a quadratic 

performance index, dependent on the state or output error, is 

formulated and used to adjust the controller parameters subject to an 

optimization procedure. Of the optimization methods available, those 

of the gradient method, the steepest descent method and the conjugate 

gradient method have been widely used, Landau (1979). The main 

drawback with this procedure in general, however, is the possible lack of 

stability in the overall system. 

The stability problem caused Model Reference systems to be 

designed as though they were primarily and solely a stability problem 

themselves, and from the result a stable adaptive controller could be 

obtained. To meet these needs Lyapunov functions were applied in 

various configurations, Lindorff and Caroll (1973). However, it is 

difficult, in consideration of a particular application, to choose the 
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best adaptive algorithm, for that situation, from those available. 

In fact, the largest possible number of stable controllers is required, 

from which the choice can be made. Because of this the most recent 

model reference adaptive controllers have been designed using hyper-

stability and positivity ideas, Landau (1979). In Narendra and 

Valavani (1979) this latter method is compared with the following. 

3. Stochastic Controllers 

In several controllers the process is identified prior to 

system operation, and the parameters of the controller are then 

computed on-line, Kalman (1958) used a deterministic plant model. 

Although this provided the foundation for adaptive control, distur-

bances in the environment and the system parameters are now usually 

included in a stochastic system model, surveyed in Wittenmark (1975) 

and the varying approaches being compared in Jacobs and Saratchandran 

(1980). Stochastic theory in the form of dynamic programming, in 

which a probability measure is placed on an uncertain random model 

has given a deeper mathematical understanding, and it has been found 

that when a control input is active it will affect the uncertainty in 

the future as well as the present value of the state, this is called 

dual control. 

In Wittenmark (1975) a hierarchical structure was given for 

stochastic adaptive controllers, where both suboptimal and optimal 

dual control schemes were included, the latter being more complex to 

apply. Non-dual schemes were given as certainty equivalence and 

cautious, once again the latter being more complex, although both 

being simpler than the dual schemes. The simplest approach, therefore, 
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is that of certainty equivalence, of which Linear-Quadratic-Gaussian 

controllers are an example, van de Water and Willems (1981). 

However, due to the system parameters remaining unknown in an adaptive 

controller, there is some question as to whether or not the certainty 

equivalence principle is applicable. 

4. Self-Tuning Controllers 

Self-Tuning Control has invoked much recent interest, the initial 
. , o 

work being carried out by Peterka(1970) and Astrom and Wittenmark (1973). 

They concentrated on the object of minimizing the variance of the 

output signal, and although the first self-tuners, based on an implicit 

minimum variance scheme, proved successful in various practical appli-
o .. 

cations, Astrom et al. (1977), many difficulties had to be overcome 

before a more generalised scheme could be adopted. 

Clarke and Gawthrop (1975) proposed a suboptimum control 

method which considered not only the system output, but also the input 

and set point variations. This took the form of a cost function in-

corporating the above values, weighted to meet certain specifications. 

Despite further problems, which have been encountered when using this 

approach, the application of the strategy on microprocessors was 

reported in Clarke and Gawthrop (1979b). 

As an attempt to make the field of self-tuning more acceptable 

to practising engineers, explicit schemes involving pole and pole-zero 
o .. 

techniques have been developed, Wellstead et al. (1979), Astrom and 

Wittenmark (1980). The corresponding multivariable version of the 

pole placement self-tuner being found in Prager and Wellstead (1981). 

The convergence and stability of self-tuners is discussed in 
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Gawthrop (J979) with the relationships between self-tuning and Model 

Reference controllers being considered in Gawthrop (1977) and Egart 

(1978). 

1.3 System Models 

There are many different models used to describe a deterministic 

system. Of these , the transfer function representation is that which 

is most commonly used in industry. From this, by means of classical 

control theory stability margins, compensation techniques and response 

characteristics may be used to improve the performance of the system. 

This work, however, is concerned with the application of digital 

control, and hence the design of Sampled Data systems, based on a z-

transform system description. 

1. Deterministic System Models 

The transfer function of a system is a mathematical description 

of its input to output performance, and in the case of a continuous 

time system, may be given in the s-domain, obtained from the Laplace 

Transform. Consider 

y(s) = G(s)<u(s) ' (1.3.1) 

where G(s) is the time-invariant transfer function, y(s) the system 

output and u(s) the system input. The transfer function may also be 

described as 

-ST B (s) 
G(s) = e 1 — (1.3.2) 

Aj(s) 

where Aj(s) and Bj(s) are polynomials in the s-domain, Tj being the 

overall transport delay. 
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For the purpose of digital control, this continuous time 

signal must be sampled every T^ seconds, and to this end the zero-

order hold is introduced. The sampled signal is now converted into 

a sequence of steps, such that each step assumes the signal level 

at the sampling instant and remains at that level for one complete 

period, until the continuous signal is sampled once more. The 

s-domain representation for the zero-order hold is given by 

, ~STl 

GQCs) = — (1.3.3) s 

From which the discrete-time transfer function between u(t), the 

value of the input signal at time t, and y(t), the system output at 

time t, may then be obtained by taking the z-transform of GQ(S).G(S), 

to give , , 
-k V Z > 

y(t) = z K u(t) (1.3.4) 
Aj(z 1) 

+sT 
where z A e (1.3.5) 

In (1.3.4) k is the system integer time delay, where the 

following hold : (1) k > 1, (2) 0 < T < T and (3) T = T + (l-k)T,. 
- - - j 1 1 

The polynomials in the difference equation being defined by 
. / -lv » t -1 i -2 i n a i 
A,(z ) = a _ + a , z + a „ z +...+a z 1 U 1 2 n al 

-1 f i - l 1 -2 1 l B,(z ) = b f t+ b,z + b_z +...+b z 1 u 1 2 n, 
bl 

(1.3.6) 
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in which z 1 is the backward shift operator, such that z 1 u(t) = u(t-i) . 

However, due to the definition of k given earlier b^ ^ 0 and a^ = 1, 

causing A^(z to be monic. At the present time no restriction is 

placed on the order of the polynomials Aj ( z_1)and Bj(z denoted by 

n and nb1 respectively. 

2. Stochastic Disturbance 

The system is affected by a disturbance, which it is assumed 

can be represented by the following, 

C (z"1) 
ej(t) = — e(t) (1.3.7) 

C2(z_1) 

where (e(t), t = 0, ±1, ±2, ...} is a white noise sequence with zero 

mean and finite variance, such that 

E{e(i)eT(j)} = 5i fl (1.3.8) 

and 6.. is the Kronecker delta, 
i j 

Cj(z S and C2(z are of a similar form to the polynomials 

defined in (1.3.6), and no generality is lost by scaling the distur-

bance such that both of these polynomials are monic. 

An in depth view of stochastic processes can be found in many 

works, e.g. Melsa and Sage (1973), and it is not intended to provide 

such a coverage in this work, although some special cases of the 

Autoregressive Moving Average model (ARMA), given in (1.3.7), will be 

'2 
considered. The first case being when C_(z is unity , which leads 

to 

ej(t) = Cj(z-1)e(t) (1.3.9) 
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the model now being called a moving average process. Conversely, 

when Cj(z is unity 

C2(z"1)e1Ct) = e(t) (1.3.10) 

and the model is termed Autoregressive. 

As the signal e(t) is a white noise sequence, by the Spectral 
o 

factorization theorem, Astrom (1970), it is always possible to describe 

the spectral density of the stationary process ej(t) as 
C1(z"1)C (z) 

$(z) = i ft.z 1 = — j ft (1.3.11) 
i=0 1 C2(z 1)C2(z) 

where = E{e^(t),e^(t+i)}. The process ej(t) therefore has a 

rational spectral density. 

3. The complete Model 

Due to the linearity of the system the superposition principle 

can be employed such that all disturbances acting on the system may be 

portrayed as one single noise, whereby the deterministic model is reform-

ulated to give 

-k B l C r l ) 

y(t) = z K 1 _, u(t) + e (t) CI.3.12) 
Aj(z ') 1 

or by using (1.3.7), 

B (z"1) C (z"1) 
y(t) = z — j u(t) + 1 e(t) (1.3.13) 

Aj (z~') C2(z ') 

From this latter equation, it is readily observed, that the overall 

model may be reconsidered by dividing the numerator polynomials by their 

respective denominators. However, the order of either of the two resultant 
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polynomials will most likely he much higher than any of those in (1.3.13), 

and this is extremely undesireable. By multiplying both sides of 

equation (.1.3.13) by A^(z 1)C2(.z *), and cancelling through by any 

common factors, the following form is arrived at, 

A(z"J)y(t) = z"kB(z"1)uCt) + C(z_1)e(t) 

where the polynomials are redefined as 
-1 -1 -2 

A(z ) = a ^ + a j Z + a^z + 

B(z_1) = bQ + bjz"1 + b 2z" 2 + 

- 1 - 1 - 2 C(Z ) = C Q + CJZ + C £Z + 

-n 
+ a z n a 

+ b z •
nb 

-n 
+ c z n c 

(1.3.14) 

(1.3.15) 

also {y(t) : t e T} and {u(t) : t € T} are sequences of endogenous 

and exogenous variables, respectively, measured at the sampling 

instants. Without loss of generality a^ = c^ = 1 and 

E{u(i)eT(i)} = 0 (1.3.16) 

(1.3.17) 

the polynomials can be increased in order, if this is necessary, such 

By defining n. = max{n ,n, ,n } 1 a b c 

that they contain coefficients up to and including the n^th terms. 

If the original order of a particular polynomial was less than n^, 

the higher order terms are zero; i.e. 
-1 -1 -2 

if A(z ) = 1 + a z + a2z ; and n^ = 4; then a^ = a^ = 0 

The overall system model given by (.1.3.14) is called a Controlled-

Autoregressive-Moving-Average-model (CARMA), and this has been ex-

tensively used in control theory, to a great extent because of its 

simplicity. 
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4 Notes on the CARMA Model 

Although the model (.1.3.14) has been derived using a Single-

Input-Single-Output (SISO) approach, its extension to a multivariable 

system is carried out simply if the constituent polynomials are 

merely converted to polynomial matrices. This multivariable form 

can, however, cause problems when certain control strategies are 

applied, Prager and Wellstead (1981), and this will be looked at in 

depth in Sec. 4.2. 

The use of the SISO model in time varying systems is identical 

to that in the time-invariant case, however, due to the effect of the 

superposition theorem in its formulation, when non-linear systems 

9 are to be considered, measurement noise must be treated as a separate 

entity, as in Gawthrop (1977). The superposition theorem, though, 

allows for the assumption to be made that the C^(z *) and C(z *) 

polynomials, obtained from the canonical forms (1.3.13) and (1.3.14), 

have all their zeros inside or on the unit circle in the z-plane, 

Astrom (1970), and this is an important result in the stability analysis 

of closed-loop systems. If it were not the case that Cj(z *) had 

stable zeros^ then by driving the input to zero, any unstable modes 

of Aj(z *), which were not also unstable modes of Cj(z would not 

appear at the output. 

The stability of the C polynomials is a necessary condition for 

the design of minimum variance controllers, which are based on a 

prediction of the output signal at time t+k, i.e. k-steps ahead of 

the present instant, as the errors inherent in the controller must be 

allowed to decay. The additional assumption, therefore, has to be made, 

t 
The term 'stable zeros' is used to indicate that the roots of a polynomial 
lie inside the unit disc in the z-plane. 
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with this controller, that the polynomial concerned has no zeros on the 

unit circle, in order to remove the problem of critical stability. 

By comparison of (1.3.13) and (.1.3.14), it is apparent that 

iff AjCz"1) = C^Cz"1), then BjCz"1) = B(z-1) and AjCz"1) = A( Z
- 1). 

When Aj(z ^ C^Cz the assumption must be made that Aj(z S = A(z S 

C *(.z S , where C^(z S is monic, and A(z and C^(z *) are relatively 

prime. From this the following equalities are obtained : 

1) BjCz"1) = B(z"1)C31(z"1) and 2) CjCz"1) = CCz"1)-C^z"1)a"1 (z"1 K " 1 (z"1) , 

where B(z and C^Cz must also be relatively prime. 

If these conditions apply, certain properties, set out below, 

relating to B^(z also apply to B(z The first of these is 

the fact that if the fractional time delay, T, becomes equal to 

zero, such that the overall transport delay is equal to an integer 

number of sampling instants, then the order of the Bj(z polynomial 

will fall by unity. In self-tuning, though, because of the 

computing time requirements in formulating the necessary control 

input, a fractional time delay is almost always present, and hence 

1 ^ 0 almost always. 

The second property concerns the steady state gain obtained 

by setting z 1 = 1 in the B(z polynomial, denoted by B(l), this 

is found to be independent of the fractional time delay, which is an 

important property when a costing is placed on the control in 

optimal controller design. The proof of both of these properties 

being given in Appendix 1.1. 

5. State Space Models 

Much theory has developed around the use of a state-space 
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description of linear time-invariant systems, Rosenbrock (1970). 

Where stochastic systems are concerned the state-space model is 

found to be extremely versatile in dealing with disturbances. 

Consider the equations 

x(t+l) = AxCt) + BuCt) + wCt) (1.3.18) 

y(t) = C xCt) + Du(t) + vCt) (1.3.19) 

where (w(t)} and {v(t)} are two uncorrelated, zero-mean, white noise 

sequences with covariances W and V respectively. If there are 

n states , p inputs and m outputs the matrices are of the 

following dimensions, 

A : nxn ; B : nXp; C : mxn ; D : mxp 

where the input and output signals are considered as vectors and the 

constituent matrices are assumed, at this stage, to have no relation-

ship with the polynomials discussed earlier in this section. 

The D matrix, which provides a direct link between the control 

input and the system output, is in many cases equivalent to the 

null matrix, as will be seen later in this work. 

In much of the control theory carried out, the matrices 

above are considered to be known, resulting in problems such as 

the estimation of the state vector, where this is not directly meas-

urable,and. providing a control input which is in some sense optimal. 

However, if it is the case that these matrices are unknown, 

and therefore an identification technique is required, because of 

the high state-space dimension, which may be present, this can prove 

to be computationally inefficient. The problem is exaggerated in 

an Adaptive Control system where an on-line estimation scheme coupled 

with the computation of an up to date control law is necessary. 
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Of the estimation schemes available, though, the Extended Kalman 

filter, in which both states and unknown parameters are estimated 

in a composite state vector, is the most widely used method, and 

this is discussed in section 4 of this chapter. However, this 

estimation technique is itself nonlinear and hence the resulting 

estimates are invariably inaccurate. 

Another approach is to carry out the estimation making use 

of the CARMA model (1.3.14), and to then formulate from the parameter 

estimates obtained, the state-space description. This has the 

advantage of relieving the problems mentioned concerning estimation 

via a state-space model, and yet the state-space theory available 

can be made use of in the design of the controller. The state-

space description obtained from the parameters in the CARMA model is 

discussed at length in Chapter 2, but is given here as 

This general representation may also be obtained from the equations 

(1.3.18) and (1.3.19), where D is the null matrix and the system 

is considered to be linear, such that the superposition theorem 

holds, Goodwin and Payne (1977). 

The use of this model in the multivariable case, which is 

discussed in Sec. 4.2 , usually provides a high dimension state-space, 

although a minimal representation can be obtained by making use of 

other models. 

x(t+l) = Ax(t) + Bu(t) + Ee(t) 

y(t) = Cx(t) + e(t) (1.3.21) 

(1.3.20) 
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1.4 Recursive Estimation for Discrete Time Processes 

1. Introduction 

When carrying out dynamic process identification, the parameters 

of the mathematical model, used to describe the system, are determined. 

A complete identification procedure can prove to be extremely time 

consuming, and hence various recursive parameter identifier algorithms 

are considered. These recursive identifiers are termed real time 

algorithms, as the parameters are estimated during controller 

operation with regard to only a limited supply of the available 

input-output information. This reduces the amount of computation 

necessary and allows for estimates of parameters, whose value varies 

with time, to be continually updated. 

It must be remembered, though, that for reasonable results 

to be achieved with the recursive estimators the nature, i.e. the 

dimensions, of the mathematical model must be well known apriori. 

If a good knowledge of the system, subjected to the identification 

procedure, is not held, the model must be obtained by means of a 

structural identification process based on previous input-output 

details. It will be shown in Sec. 4.4, however, that where a 

self-tuning algorithm is to be used, this model fit can be down-

graded and yet the resultant controller action will remain efficient. 

Many algorithms available for system identification purposes 

were reviewed in Astrom and Eykhoff (1971)., although a more thorough 

approach is given in Goodwin and Payne (.1977). Of the varying 

possible techniques, it has been shown, SGderstrom et al (1974), that 
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overall there is no estimation technique which can he said to be better 

than all others. However, several algorithms have been found 

suitable for use in self-tuning controllers, and for the purpose 

of this section only these will be considered in any detail. The 

theory is extended to include the effects of approximate models and 

the consistency and convergence of the algorithms discussed. 

2. Recursive Least Squares 

Let the process be modelled by 

A(z"1)y(t) = B*(z_1)u(t) (1.4.1) 

where no error term is present, and 
r , n - ( n + k ) 

B (z ) = 3 qZ + 0JZ + ... + 3 +K Z D (1.4.2) 
^ m 

Here k is equal to the maximum value of system integer time delay, m 

This means that only k^ need be prespecified, thus a varying integer 

time delay may be accomodated in this model in so far as k, the actual 

system time delay, does not exceed k . The model may also be des-
m 

cribed, by inclusion of an error term, £(t), as 

y(t) = 0T(t)0(t-l) + e(t) (1.4.3) 

where 0T(t) = [ a j , . . . ^ ;3Q,...,3 k _j] (1.4.4) 
a H) m 

and 0T(t) = [-y(t-l),...,-y(t-n ); u(t-l),...,u(t-n,-k )] (1.4.5) 

a b m 

The least squares method is now based on the minimization of the 

function, 

S(0) = I _ CyCt) - 0TCt)0(t))2 (1.4.6) 
t=t-n 
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where n = max(n , n + k }. Cl.4.7) a b m 

a 

The least squares estimate of 0(t), designated as 0(t), can now be 

calculated by means of the recursive least squares algorithm, 
o Astrom and Wittenmark 0 980), where 

0(t) = 0(t-l) + J(t)0(t) £(t) (1.4.8) 

and J(t) = {[I-K(t)0T(t-l)] J(t-lj}/A(t) (1.4.9) 

in which K(t) = J(t-l)0(t-l)[1 + 0T(t-l) J(t-l)0(t-l) ] • (1.4.10) 

It is known , however, that numerical problems associated 

with the J(t) matrix can lead to instability, and hence an updating 

procedure which contains better numerical stability, such as the UD 

factor update of Bierman (1977, 1981), should be used. 

In the equations ( 1.4. 8-H0) , e(t) is an estimate of the one 

step prediction error, and denotes the difference between the output 

at time t, and the estimated output from the multiplication of 

regressors at time t and parameter estimates at time t-1, the last 

sampling interval. 

The assumption must be made that the initial parameter estimates, 
A 

characterised by 0(0) , and the initial values contained in the error 

covariance matrix, J(0), are known. This assumption is not important 

in itself, as the least squares estimator will generally still operate 

effectively for any initial values, although setting all initial 

parameter estimates to zero can lead to problems on start up. If any 

apriori information, concerning the parameters, is held, though, 

a faster convergence of the estimates can be achieved when this is 

used. 

The major disadvantage of the recursive least squares method 
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is that biased estimates will result where the noise, given as 

e(t) in (J.4.3) is not white. However, its use in self-tuning 

problems has resulted from its computational simplicity, which may 

become an overriding feature in the design of a particular on-line 

process controller. 

The parameter vector, 9(_t), can be shown, under weak conditions, 

to converge to a unique point, around which it is locally stable, 

Goodwin and Payne (1977). It is apparent, however, that the 

parameter vector will converge globally with a probability of one. 

3. Variable Forgetting Factor 

The factor A(t) in Cl-4.9) is named the variable forgetting 

factor and is used for exponential forgetting of past data during 

the least squares process. Although this factor was originally 

chosen to be a constant of value 0.95 2 ^(t) ^0.99 for all t, 

it has been found that where process and measurement noise is 

of similar magnitude to that of interface circuitry, a variable 

forgetting factor must be employed, Fortescue et al (1979). The 

effect of a constant forgetting factor on such a system is to cause 

the parameters in J(t) to become excessive under certain conditions, 
o ,, 

Astrom and Wittenmark (1980). This can lead to large and rapid 

variations in both the output and the parameter estimates. 

There are numerous solutions to the problems associated with 

J(t), Clarke and Gawthrop (1979a). Firstly, by 

use of a suitable 

signal |j(t)| may be retained within the necessary boundary limits. 

Secondly, if |j(t) | or J(.t)0(t) exceeds prespecified bounds, then 

the J(t) update can be discontinued, and finally a specific function 
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of J(t) may be held constant by appropriate variations in A(_t). 

This latter method has been dealt with in detail, by keeping the 

sum of squares of the least squares errors constant by means of 

varying the forgetting factor ACt), Fortescue et al 0979). However, 

to ensure convergence of the algorithm used in this method, trace J(t) 

and thus || J(t) || must always be bounded, Cordero and Mayne (1980), 

and hence the three methods mentioned above are by no means independent. 

A forgetting factor which is much simpler to apply in practice, 

and requires less computation, has been proposed by Wellstead and 

Sanoff (1981), where 

A(t) = Xj(t) X2Ct) (1.4.11) 

Here A^(t) is used as an exponential start up factor, to 

enable the estimator to converge rapidly in the initial tuning 

period. X2(t), meanwhile, is used to consider a specified number 

of points, e.g. 100, of residual magnitude. When the estimations 

are a good fit X2(t) approaches unity, but when the converse is true 

larger residuals result and the value of X2(t) falls. 

This method, which has been found to operate efficiently 

and economically, was studied in depth by Omani (1981), where it was 

not only shown to be similar to that of Cordero and Mayne (1980) 

when certain conditions hold, but also was found to be more stable 

under rapidly varying circumstances. 

4. Recursive Extended Least Squares 

When the disturbance is non white an extension can be made 

to the least squares process to take account of this. 

By redefining (1.4.3) as 
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y(t) = 0T(t)0(t-l) + C C T W ) (1.4.12) 

where C(.z = 1 + c^z 1 + c^z 2 + ... + c_z n (1.4.13) 

n 

and the degree of C(z is assumed to be n^ n* n e w model 

(1.4.12) may now be rearranged to give a similar method to that of least 

squares, such that by extending the parameter and regressor vectors 

to include the terms associated with c^ : i = 1, ... , n, the least 

squares terminology remains adequate. The vectors affected become, 
—T 
9 (t) = [aj,...,an ; Bq,..., B k _J ; C j , . . . , c _ ] (1.4.14) 

a D m n 

-T and 0 (t) = [-y(t-l),...,-y(t-n ); u(t-l) ,... ,u(t-n,-k ); a D m 

£(t-1),...,£(t-n)] (1.4.15) 

Hence the one-step prediction error estimate becomes 
-T ^ 

e(t) = yCt) - 0 (t)Q(t-l) (1.4.16) 

and equations (1.4.8-*10) can be applied to obtain estimates of the 

parameters in the vector 0(t). 

For the convergence of this extended procedure, a unique 

convergence point is only found when : 

1) the polynomial defined by C(z is positive real, 

i.e. Re C(elaJ) > 0 ; 7T <_ U) _< TT 

or 2) the system is an ARMA process. 

Global stability with a probability of one is true iff 

{-2-C(z 1)}[2C(z *)] 1 is positive real, and in this case 

it is generally true that local stability is not a feasible concept. 
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5. Recursive Maximum-Likelihood 

In its recursive form the Maximum-Likelihood method is an 

approximation to its off-line equivalent. One of the first descriptions 

of this method being given by Soderstrom (1973), where the basis 

used was the original off-line approach of Astrom and Bohlin (1966). 

The method is now summarized as follows. 

From (1.4.1) and (1.4.12), the prediction error estimate is 

given by, 

e(t,9) = C~](z~l) {A(z-1)y(t) - B'(z"I)u(t)} (1.4.17) 

such that the calculation of the maximum-likelihood estimates is 

equivalent to minimizing the function v(9), where 

t 

V(9) = { I _ £ (t,9) (1.4.18) 
t=t-n 

Of the many possible approaches to this problem, the most 

applicable involves approximating the function v(0) by a quadratic 

equation via a Taylor series expansion, such that 

£(t,9) = £(t,0) + 0*(t)(0-9) (1.4.19) 

and 0*(t) = |f(t,0) = [c(z_1)] 0T(t) (1.4.20) 

The prediction error estimate may now be calculated from 

the equation 

£(t,0) = [CCz"1)]"1 [A(z"1y(t) - B'(z"1)u(t)] (1.4.21) 

and the recursive algorithm (1.4.8-HO) may be carried out by replacement 

of 0(t) by SjCt). 

The necessary calculations can, however, be simplified by use 

of the expression 

£(t,0) * £(t) = y(t) - 0T(t)0(t-l) (1.4.16a) 
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where C(z ) is replaced by unity in equation 0*4.2J) only, i.e. 

the remainder of the recursive algorithm is unaltered. As a follow 
* -1 

on from this, if CCz ) is replaced By unity in equations O.4.8-+10) 

also, the recursive Maximum-Likelihood method becomes equivalent 

to the recursive least squares approach, showing that the former is 

a general method of which the latter is merely a special case. 

However, Ljung (.1978) discussed the convergence of the prediction 

error identification method, Caines (.1976) , of which Maximum-Likelihood 

is in turn a special case, and by using this even more general class-

ification results were obtained for the consistency problem. 

The approximate Maximum-Likelihood scheme results in a con-

vergence, with probability one, to a local minimum of the likelihood 

function. However, although the convergence point is unique for 

ARMA processes, this is not universally applicable, and as a unique 

convergence point is a necessary condition for global convergence, 

a general condition is not possible. 

An important practical consideration with the recursive 
~ -1 . 

Maximum-Likelihood method is the nature of the C(z ) polynomial in 

(1.4.21). As the parameters of this polynomial are estimations, there 

is a possibility of instability occurring, and hence the prediction 

error estimate may become excessive. If this happens there may be 

a divergence of the parameters in the estimate vector. Therefore, 

this must be avoided by either placing a bound on J(t)0(t)e(t) or by 
/S -1 

reducing the same factor until the C(z ) polynomial is stable. 
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6.. Kalman Filtering Techniques 

The Kalman Filter approach to system estimation, models the 

variations of the parameters with respect to time, by means of stochastic 

difference equations. As a state-space description is used, a Maximum-

Likelihood estimate of the state is found, where the noise is considered 

as a normal distribution. 

The full advantage of this technique is found when the model 

parameters are nonlinear. Numerous methods then become available by 

considering the current estimate as the norm, and linearizing the 

model about this norm. The general heading for this philosophy 

is Extended Kalman Filters, Jazwinski (1970), in which the states 

and parameters of the model are both recursively estimated. This 

type of filter, based on first-order linearization, can be made 

to converge globally, if required, Ljung (1979), and it was shown 

in Panuska (1980) that the recursive Maximum-Likelihood, and hence 

the recursive Extended Least Squares, schemes can be derived from the 

filter equations. 

The states of the system, however, are not necessarily required, 

and thus a simplification of the Kalman Filter results. By regarding 

the system parameters as the states a reduced filter is achieved, and 
o 

in Astrom and Eykhoff (1971), the connection between this reduced 

filter and the previous recursive schemes mentioned is discussed. 

7. Consistency and Convergence 

Although the convergence properties of the various estimators 

have been considered in the preceeding text, to an extent, an in 

depth view can be found in SSderstrom et al 0 9 7 8 ) and Tsypkin et al (1981). 
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It is found that with the recursive Lea,st Squares and recursive 

Maximum-Likelihood methods, a global convergence of the estimates to 

the actual system parameters is not possible, although the actual 

parameters are locally stable, possible, points of convergence. 

The previously mentioned prediction error method of Caines 

(1976) is more complicated than the other approaches, and for this 

reason has not been considered at length, although Ljung (1978) 

proved its convergence with probability one to the set of best app-

roximate models of the system considered. 

Finally, many of the algorithms considered in this section are 

covered in great theoretical depth in Hoist (1977), although for easy 

reference, that of Soderstrom et al (1978) is prefered. 

1.5 Self-tuning 

Self-tuning controllers may be categorised as either implicit 

or explicit. In the implicit scheme the parameters of the system 

are estimated and these estimations are used directly in the form-

ation of the next control input, Fig. 1.1. With explicit self-tuners, 

however, two approaches are considered. The first of these uses the 

parameters estimated from the CARMA model in the calculation of a 

cost function, from which the controller parameters are obtained. 

The second explicit method uses a further assumption that the CARMA 

model disturbance is a white noise process, the parameters estimated 

from this subsidiary model then being used to calculate the final 

controller form, Fig. 1.2. 
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Implicit and explicit self-tuning controllers 

Fig. 1.1 Implicit self-tuning controller (no external input) 

Fig. 1.2 Explicit self-tuning controller (no external input) 



- 4 0 -

1. Minimum-Variance Self-Tuner 

This implicit scheme uses the CARMA model (J.3.14) as its 

basis, this is restated as 

ACz'^yCt) = z~Hiz~l)*tt) + C(.z_1)e(t) (1.5.1) 

where the polynomials are considered to be of order n^. 

It is now required that the cost function (1.5.2) is minimized. 

0 = E {y2(t)} (1.5.2) 

where E{#} denotes the expected value. 

Before proceeding we make the assumption that the parameters 

contained in (1.5.1) are known, hence it is desired to derive a 

control law which minimizes 0 by means of these known parameters. 

Rewriting (1.5.1) as, 

A(z~1)y(.t+k) = B(z_1)u(t) + C(z_1)e(t+k) 

it can be seen that the first output signal which will be affected 

by our choice of control input at time t, is that at time t+k. It 

therefore follows that by a correct selection of the present value, 

at time t, of the control input the variance of the output k-steps 

ahead can be reduced. However, the disturbance contains two dis-

tinctly separate sections. Firstly e(t+l),e(t+2),...,e(t+k); which, 

as they are future values, are unknown, and secondly 

e(t), e(t-l),...,e(t-nj+k); which can be calculated from information 

obtained up to and including that at time t. 

To separate these noise terms, the equality (1.5.3) is postulated, 

C(z_1) = A(.z"1)E(z"1) + z"kG(z_1) (1.5.3) 

where G(.z is of degree and E(.z S is monic and of degree 

k-1. 

Substituting for (1.5.3) in the reformulated version of (1.5.1), 
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A(z J)y(t+kl = R(z~ J)u(t) + G(z" J)eCt) + A U " 1 ^ ^ " 1 )e(t+k) 

and substituting for e(_t) from (1.5.1), using 0-5.3), gives 

y C t + k ) = B(z"1)E(Z'1) u a ) + E C z - l ) e C t + k ) + 6 C £ i ) y ( t ) 

C O ' 1 ) c o " 1 ) 

(1.5.4) 

By squaring both sides of (1.5.4) and taking expected values, 

E{y (t+k)} = E ^B(z~1)E(z~1) . + G(z~1) y(t) 
C O ' 1 ) C(z ]) 

+ E iE(z_1)e(t+k) } 

As the cost function (1.5.2) needs to be minimized, this is done 

simply, with regard to the above equation, by setting the control input 

to be, 

u(t) = " GO" 1 ) y(t) (1.5.5) 
B(z~])E(z"1) 

If expected values are now taken for both sides of the equation 

0.5.4) 

E{y(t+k)} ' B O ' W 1 ) u ( t ) + G ( £ j l ( t ) 

C(z~1) C(z S 

which is identically zero, iff the control input (1.5.5) is applied. 

But the assumption was made earlier that the parameters con-

tained in the CARMA model, (1.5.1), were known, this is now stated as 

not being the case. The parameters of the model must therefore be 

estimated and thence an estimate can be made of the required control 

input (1.5.5) from these parameter estimates. 

For reasons of computational simplicity and problem matching, the 

recursive least squares estimation procedure, discussed in Sec. 1.4 

is employed. This is used to estimate the parameters in the model, 
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y(_t> = z " k{ fKz" J )uU) - ACz"J)yCt)} + e(jt) 0 . 5 . 6 ) 

where £(_t) is a moving average of the noise e(t). Also, the 

polynomials contained in (1.5.6) are defined as, 
k , - K . -1 -m A(z ) = cu + a.z + + a z 

0 1 m 

3(z_1) = BqO+B j z" 1 + ...+ $ zz~ l) 
0.5.7) 

It is shown in Astrom and Wittenmark (1973), that if the 

parameter estimates, contained in (1.5.7), converge, the minimum 

variance control scheme is provided by use of the control input, 

u(t) = - A ( z y(t) (1.5.8) 
B(.z ]) 

although, as all the parameters in the estimation model (1.5.6) 

cannot be uniquely obtained, 3q must be either known or chosen 

prior to controller operation. 

However, for the regulator to converge to the minimum-variance 

case, several factors must be accounted for. Firstly, and perhaps 

most importantly, the integral part of the system time delay, k, 

must be known exactly. This provides for a limiting usage of this 

type of tuner where varying delay systems are encountered. The 

second point concentrates on the dimension of the estimated model, 

and the respective property of self-tuning. If either L = n^+k-1 and 

m > rij-1 or Z >_ n^+k-1 and m = n^-1 the self tuning property 

holds, where A(z S and 8(z *) are overparameterized, though, the 

condition of relative primeness is no longer assumed, and thus common 

factorswill occur. In the converse case, however, when the model 

is of lower order than the plant, the property still holds, and 

moreover it has been found that experimentally the model may be of 
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much lower order than the actual process, unless large variations 

in the output signal occur, and a good control action is provided, 

Astrom 0980). 

A major drawback with the minimum-variance tuner is the 

fact that if the BCz polynomial, defined in (1.5.1), contains 

unstable zeros, instability will most likely occur due to the control-

lers* high sensitivity to variations in the parameters, Astrom (1970). 

Even if the closed loop retains its stability, though, the control 

signal may well be excessive due to the objective of the controller 

being entirely centred on reducing the variance of the output 

signal from the plant. 

Because of the problems mentioned above, various alternative 

methods have been considered, the first of which is looked at 

next. 

2. Generalised Cost Function 

In the previous method the cost function was entirely dependent 

on the system output signal, here a cost function is considered 

which incorporates inputs, outputs and set-points and is due to 

Clarke and Gawthrop (1975). This function is given as 

0(t+k) = P(z~^)y(t+k) + Q(z-1)u(t) - R(z~])w(t) (1.5.9) 

where P(z S , Q(z and R(z are polynomial transfer functions, 

and w(t) is a set-point external input. 
2 

In this instance it is desired to minimize E{0 (t)}, and this 

is done, once again, by setting the predicted value of 0 at time 

t+k as being equal to zero, which can be interpreted as minimizing 
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E{(?(zH)yO:+k)_ -R,Cz V e t ) ) 2 + CQKz-SuCt)) 2} 

where the expected value takes into consideration all information 

up to and including time t. 

By defining, 

-i V z _ 1 ) 
P(z ) = — (1.5.10) 

PDCz-') 

From the combination of (1.5.1) and (1.5.9), we obtain 

0(t+k) = 0y(t+k) + Q(z~l)u(t) - R(z_1)w(t) (1.5.11) 

where 0y(t+k) = y(t) + * i £ h * i £ h u ( t ) (1.5.12) 
C(z"1)PD(z"1) C(z"1) 

and E(z"1)A(z"1) + z"k G ( z ) = C(z"1)P(z"1) (1.5.13) 

P D ( Z " 1 } 

0 denoting the least squares prediction of 0, and P^(z *) and 

PQ(Z are of order p^ and p^ respectively. Also, we have that 

0y(t+k) = P(z_1)y(t+k). 

The actual cost function is thus dependent on its least 

squares prediction plus an error term. 

0(t+k) = 0(t+k) + e(t+k) (1.5.14) 

where 0(t+k) is the prediction of 0(t+k), made by taking into account 

all information available at time t, and may be written 0(t+k/t). 

Therefore, substituting for 0(t+k) from (1.5.11), using (1.5.12) 

0(t+k) = G ( z } y(t) + [C(z"1)Q(z ]) + E(z *)BCz J)]u(.t) 

PD (z-S 

nl 
- I c.0(t+k-i) - C(z"1)R(z"1)w(t) + C(z ])e(t+k) 
i=l L 

(1.5.15) 
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The prediction model may then he obtained in one of several 

forms, different schemes being considered in Clarke and Gawthrop 

0975) and 0972a). 

Here, the following is used : 

/N - ] 
0(t) = G ( 2 } yCt-k) + ECz_1)u(t-k) - H(z_1)w(t-k) +£(t) 

V 2 " 1 ) 
D ( 1.5.16) 

where e(t+k) = E(.z *)£(t+k) 

The control signal is now chosen to set the k-step-ahead 

prediction to zero, and this can be seen from (1.5.15) to be, 

u(t) = (cCz'SQCz *) + E(.z 1)B(z~1)) 
-1 

C(z SR(z 1)w(t) 

y(t) 

v r l ) 

(1.5.17) 

By the use of recursive least squares estimation on the model 

(1.5.16), we require 

1) G(z"]) + G(z~1) 

2) E(z~1) CCz'SQCz" 1) + E(z"1)B(z~1) 

3) H(z _ 1) ^ CCz'SRCz" 1) 
/V — 1 /\ — ] /N — ] 

where G(z ), E(z ) and H(z ) are the estimated polynomials of 

order n^, n̂ , , and n^ respectively. 
As with the minimum-variance self-tuner, one parameter must 

be chosen prior to controller operation. In this case, however, 
-1 . . ~ -1 

as C(z ) is monic, by causing the H(z ) polynomial to be monic 

as well, this problem is removed. 

The polynomials P(jz Q(z and R(.z *) are chosen by the 
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operator, which means that seyeral control characteristics may be 

specified, thus causing this method to be a far more generalised 

approach then the previous case, however, as with the simple minimum-

-variance case, the estimated polynomials can be overspecified. 

For the self-tuning property to hold it is necessary that 

1) ^ ni + 0{R(Z » where (){•} denotes the order of the 

polynomial, 2) n^ _> max[0{C(z~I)Q(.z~I) }, OCeCZ'SbCZ"1) }], 

3) n > n + max[p ,p ]- 1. Although if all three estimated 
CT — 1 1 2 

polynomials are of order greater than the dimensions given, then the 

property does not hold because of factors which are common to all 

three polynomials. 

The closed loop characteristic equation in this generalised 

tuner is given as Q(z ^ACz + P(z *)B(z = 0, and this means 

that if Q(z is of sufficient magnitude, the problem of instability 

due to non-minimum phase systems is removed on condition that the 

open-loop system is stable. 

However, a problem apparent with both types of minimum-variance 

controllers is that the system time delay, k, must be known, due 

to the k-step-ahead prediction procedure. 

This difficulty is overcome by the consideration of the 

following explicit self-tuning algorithms. 

3. Pole Placement 

Due to the problem of the failure to deal with a system time 

delay which could be variable and/or unknown, and the difficulties 

encountered with non-minimum phase behaviour, other approaches have 

been developed. Of these, the pole placement method, Wellstead et al 

(1979b), not only operates efficiently under both of these circumstances, 
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but alSQ provides a smoother control action thus discounting, 

to a large extent, the possibility of saturation effects. In 

this approach the parameters of a system model are estimated, 

these estimations being used in the calculation of the required 

control action. 

The system itself is considered to be governed by the CARMA 

model (1.5.1), and assuming initially that the constituent parameters 

are known, the controller is developed as follows. 

Define the control input as, 

u(t) = G ( Z 1} y(t) (1.5.18) 
D(z"S 

where G(z S is of degree n and D(z *) is monic and of degree n,. 
g <1 

The closed loop pole polynomial may then be obtained by 

substituting this control input into the CARMA model, giving, 

{A(z"1)D(z"1) - z"kB(z"1)G(z"1)}y(t) = C(z"1)D(z"1)e(t) 

(1.5.19) 

It is now required to choose the parameters incorporated in 

this closed-loop pole polynomial, and for this purpose the desired 

polynomial is specified as taking the following form 
-1 - 1 - 2 ~n 

T(z ) = 1 + t.z + t_z + ... + t z Z (1.5.20) 
1 2 n t 

where t^,t^, etc. are chosen prior to operation of the controller. 

Hence, subject to limitations placed on the respective orders of the 

polynomials, D(z S and G(_z *) from (1.5.18) can be calculated from 

the identity 

ACZ'SDCZ"1) - z~kB(,z~1)G(.z~*1) = CCz~1)T(z"1) (1.5.21) 

to give a closed loop form with denominator T(z 

We now consider the self-tuning scheme, where the parameters 
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present in the polynomials A(_z J),BCz C(z J), and thus D(.z *), 

G(z also, are unknown along with the time delay, k. These 

parameters must, therefore, be estimated, a process which is carried 

out using recursive least squares on the model, 

ACz'^yCt) = B'(z_1)uCt) + eCO (1.5.22) 
~ -1 1 - 9 ~ n 

where A(z ) = 1 + a,z + a„z + ... + a z a 
1 2 n. 

a (1.5.23) 
- 1 ^ - 1 A - 2 ~ 

and B (z ) = b z + b z + ... + b ^ . z D m 
0 1 n + k -1 

d m 

also k = max{k}. 
m 

By once again employing the control input (1.5.18), the closed-

loop equation becomes, 

(A(z~1)D(z~1) - B(z"1)G(z"1)}y(t) = D(z_1)e(t) (1.5.24) 

However, in this case, the parameters of the control polynomials, 

D(z and G(z *), must be calculated from, 

M z V 1 ) - B'(z"1)G(z"1) = T(z~1) (1.5.25) 

where T(z J) is defined in (1.5.20). 

For the self-tuning property to hold we require that the parameters 

of D(z and G(z obtained recursively from (1.5.25) will have 

a possible convergence point given by the values obtained by 

solving (1.5.21) offline, had the parameters been known. 

Subject to the parameter estimates, in the model (1.5.22), 

converging it is shown in Wellstead et al (1979b) that as long as 

the following apply, the controller parameters will converge. 

1) n = n + k -1 
d b m 

2) n = n -1 
g a 

3) n < n + n. + k - n 
t a D m c 
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On the above conditions holding, the error sequence, £(_t), will also 

converge to the disturbance, e(t), described in the CARMA model. 

Unless the case occurs that C(z is equal to unity, the 

parameter estimates obtained from (1.5.22) will be biased. This, 

however, accounts for the calculation of the controller polynomials 

from (.1.5.25) being the same as those obtained from (1.5.21), despite 

the disappearance of the C(z polynomial. 

The time delay, k , given in the estimation model (1.5.22), m 

is now defined as the maximum possible value of system integer 

time delay, and thus the robustness of this type of tuner allows 

it to operate as long as the actual time delay is less than or equal 

to its specified maximum value, although the regulation character-

istics are found to deteriorate when the actual time delay is greater 

than the minimum value allowed for. 

Several other methods have been developed on the basis of 
• o 

pole or pole-zero assignment, Wellstead et al (1979a), Astrom and 

Wittenmark (1980), although this invariably results in an increase 

in the necessary computational effort. 

4. Extended Algorithm 

The model is now considered as, 

A(z_1)yCt) = BfCz_1)u(t) + C(z"I)e(t) (1.5.26) 

where the constituent parameters are estimated by means of the re-

cursive Extended Least Squares procedure, although a recursive 

Maximum-Likelihood estimator is also allowable. The controller 

polynomials to be used in (1.5.18) can then be evaluated, at each 

sampling interval, from the identity 
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X C z ^ D C z " 1 ) - B'(z"J)G(.z'*1) = CCZ'STCZ"1) (1.5.27) 

Due to the larger number of parameters estimated, the comput-

ational effort is much increased, although it can be considered 

that the C(.z ) polynomial is specified arbitrarily by the operator, 

thus reducing the estimation required to that of the recursive 

least squares procedure, Wellstead and Sanoff (1981). This tuner 

then contains the original pole placement self-tuner as a special 
^ -1 

case, when C(z ) is set equal to unity. 

5. Explicit Method with Known Time Delay 

The last two approaches operate most efficiently when the 

exact value of the integer part of the system time delay is known, 

the method described here, however, can only operate when this delay 

is known explicitly. 

The estimation model is defined as in (1.5.6), where m = nj-l=-£, 

and hence the recursive least squares procedure can be used to obtain 

the required estimates. With a pole polynomial specified by (1.5.20) 

and the control action by (1.5.18), the parameters of the polynomials 

D(z and G(z ') are obtained from the equation, 

D(z"S + z"kA(z"1)D(z"1) - z"k3(z"1)G(z~1) = P'(z"1)T(z"1) 

(1.5.28) 

where Pf(z is monic and of degree k-1, and T(z *) is of degree 

n^ n^ + k-1; in this case P'(z *) is calculated, along with the 

control polynomials, from the above equation, Wellstead et al (1979a). 

If the parameters of the estimation model (1.5.6) converge, the closed-

loop pole polynomial will be given by T(z 

Apart from the necessity of knowledge about the system time 

delay, this tuner requires extra computational effort to calculate 
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0.5.28) at each sampling interval, although it has been shown> 

Allidina and Hughes (J9.8Q), that if the operator chooses certain 

polynomials in the generalised cost function method, a pole place-

ment scheme similar to that described here can be achieved. 

1.6 Concluding Remarks 

In this chapter various adaptive control techniques have 

been introduced, and from these self-tuning has been selected for 

particular discussion. Therefore different methods in this specific 

field, dependent on the desired control objective, have been considered. 

In all self-tuning controllers an estimation scheme is re-

quired, and as the emphasis has been placed on finding a simple 

recursive controller, implementable on a microprocessor, this 

necessitates an estimator with low computational effort. Hence 

the identification methods used in self-tuning concentrate on 

merely producing estimates of the parameters in a system model. Of 

these methods, that of recursive Least Squares is perhaps the simplest, 

and hence this has led to its widespread usage. However, where a 

greater accuracy or a more rigorous mathematical formulation is des-

ired, other approaches such as Extended Least Squares or Maximum-

-Likelihood estimation are employed, with a resultant increase in 

the number of calculations and thus the time required. 

The first control systems to be given the name Self-Tuners, 

used as their objective the minimization of the system output signal 

variance. They proved to operate efficiently in numerous industrial 

applications, however their scope became limited due to the failure 



- 5 2 -

to deal with non-minimum phase systems and/or variable or unknown 

system time delays. The minimum—variance philosophy was, therefore, 

generalised to account for a costing on the system input as well 

as the output, and this removed, to an extent, the first of the problems. 

The most recent self-tuners have concentrated on the idea 

of pole-placement, which not only deals with non-minimum phase be-

haviour, but can also cope with an unknown time delay. As this 

gives the final method a larger possible field of application, it is this 

latter type of tuner which predominates throughout the following work. 

Finally, a point concerning the convergence of the self-tuning 

systems described in this chapter must be stressed, and this is the 

choice of dimensions for the estimation model, especially when a 

minimum-variance tuner is concerned. However, this will be dealt 

with further in Sec. 4.4. 
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CHAPTER 2 

STATE SPACE CONTROLLERS 

In recent years the analysis of control systems has seen a 

constant shift towards a state space approach. This is often considered 

to be due to an underlying increase in the complexity of a large 

number of systems, which it is required to control. Much theory has 

therefore been developed in terms of optimization and regulation 

techniques by means of a state space framework. 

The majority of self-tuning theory is, however, centred around 

the use of backward shift polynomials in CARMA models. It therefore 

remains for self-tuning to be viewed with regard to the state space, 

not only to reconsider and possibly improve existing algorithms, but 

also to widen the scope of feasible applications to those areas dom-

inated by state space methods. 

Thus the problem arises, firstly to find a suitable state 

space form and then to consider the possibility of improvements and 

extensions to the existing work. Sec.2.1, therefore, introduces 

the field of Linear Quadratic Gaussian control and emphasises the 

development of the basic self-tuning techniques. Possible state 

space formulations are then considered in Sec.2.2, although the most 

useful for self-tuning controllers is dealt with more thoroughly. 

Once a state space model has been chosen an important handicap comes 

to light in that it will, in most cases, be impossible to obtain the 

state vector directly from the process under control. The state 

must, therefore, be reconstructed by making use of the measured 
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input and output variables actually at our disposal, and, hence, 

a state estimation procedure is constructed in Sec. 2.3. 

There are essentially two basic classifications for self-

tuning algorithms, single stage design and pole placement design. 

These are formulated in the state space in Sees. 2.4 and 2.5 respect-

ively. In both cases the state space controller is compared with 

the original polynomial method and the stability of the final closed-

loop form is analysed. Although, by use of the state space, control-

lers are arrived at which carry out the same control operation as in 

the polynomial case, further algorithms, developed solely via the state 

space, are considered and then compared with the original design. 

2.1 Linear Quadratic Gaussian Control 

The solution of the optimal Linear Quadratic Gaussian (LQG) control 

problem has been considered in both the frequency and time domains, 

Astrom (1970). The time domain can, however, be considered in one 

of two ways, either continuous time or discrete time, the latter approach 

being the most appropriate and in fact the simplest when digital con-

trol is decided upon. 
o „ 

Using a time series analysis, Astrom (1970), a control law is 

formulated by means of feedback control from the system output, y(t), 

to the control input, u(t). If there exists a k-step delay between 

input and output, then the control minimizes the predicted quadratic 

loss, k steps ahead of the present time. This theory formed the 

basis of the minimum variance self-tuning regulator, Astrom and 

Wittenmark (.19.73), discussed in Sec. 1.5. However, the minimization 

of the loss predicted other than k steps ahead cannot be accomplished 

with the same control law construction, hence, the need for an 
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extension to the original work. 

When a state-space representation is employed for linear systems, 

Kalman (.1958), the separation theorem can be used, which means, in 

this case, that the observer required for estimation of the state 

vector, obtained from the system parameters, can be made optimal in 

the sense that the reconstruction error is minimized, this is considered 

in detail in Chapter 5. From this state estimate a linear feedback 

control law can be established to satisfy the specific control objective, 

and in order to obtain the correct feedback it is considered that the 

state estimate is in fact the true state and that the system is devoid of 

any disturbances. 

Relationships between the two approaches mentioned have been 

shown to exist, in particular, when considering the unit delay case 

the methods lead to the same control action, Caines (1972), in which the 

general delay case is also discussed. In order that a reasonable 

comparison between the methods may be made, though, it is required 

that the final state space closed loop equations are transformed 

into the time series transfer function form, and therefore the filter 

used to obtain the state estimate must be considered as having achieved 

a steady-state condition, this is the well known Kalman filter. 

2.2 State Space Formulations 

There are numerous possible state space formulations which may 

be obtained from a system described by the CARMA model (.1.3.14). But 

as one of the main objectives in self-tuning is to obtain a comput-

ationally simple control law, only those state space representations 

bearing an essentially trivial relationship to the CARMA model need 
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be considered. With these representations, of which there are 

two of direct relevance here, it is possible to arrive at a form in 

which the parameters included in the state space model are obtained 

directly, or with very little inconvenience, from the CARMA model. 

The difference between the two approaches being the way in which they 

deal with the system time delay, k. 

The delay, k, may be included in the dimension of the state, 

in which case the representation is termed an implicit delay model. 

Conversely, the delay may be taken into account via the control input, 

u(t), in which case the term explicit delay model is used. Due to the 

need for incorporating a variable time delay later in this work, the 

implicit delay model will be used throughout the text, it has, in any 

case, been shown to be the more efficient method of the two, Lam (1980). 

A brief summary of the explicit delay model is, however, given here for 

comparison. 

To avoid confusion, it is felt worth noting that the names 

assigned to the types of state space model considered, implicit and 

explicit, bear no relationship, other than in the actual words used, 

to the implicit and explicit self-tuners discussed in Sec. 1.5. 

1. The explicit state space model 

A state space representation which is equivalent to the CARMA 

model (1.3.14) is, 

(.a) x(.t+l) = PxCt) + Qu(.t-k+J) + R e(t) X 

Cb) yCt) = Hx(.t) + e(t) J (2.2.1) 

where x(t) gives the vector of state variables, and the matrices, P,Q,R 

and H are defined as follows 
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P = 

R = 

c - a n, n, 

c — a 
1 1 

Q 0 

0 -a 

0 

1 -a 

n. 

Y 

ni 

, Q = 

b„ 
0 

j 

T 
H = 

0 

1 J 

(2.2.2) 

The foraulation C2.2.1) is singular in the sense that the system noise 

is a linear combination of the measurement noise. 

The dimension of the state space is given as n^ + 1, where n^ 

is the maximum degree of the polynomials A(z *), B(z *), C(z *). 

However, the term b will only exist where a fractional part of the 
n i 

system time delay is apparent, the integral part being accounted for 

by k. If no fractional time delay is present, therefore, 

b^ = 0 and the representation may be reduced in dimension by unity. 
1 

2. General state-space representation 

This formulation, termed the implicit state-space representation, 

takes the integral delay, k, into the dimension of the state vector. 

The state—space equivalent of (.1.3,14) is in this case, 
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(a) xCt+1) = Px(t) + QuCt) + R e (t) 

(b) y(.t) = HxCt) + eCt) 
( 2 . 2 . 3 ) 

where x(_t) is, once again, the vector of state variables, and 

P = 0 
« 

0 

0 J 

-a n, 

-a 
1 J 

, Q = 

n. 

V (2.2.4) 

R = 
n. 

0 

- a 
1 

- a 

n, 

T 
H = 

The above matrices being similar in composition to those in the implicit 
o ,, 

delay state space model of Astrom (1974). Thus the dimension of 

P is (nj +k)x(nj +k), and Q has (k-1) zeros in its lower rows, whereas 

R has k zeros in its upper rows. Again, if b = 0 , the representation n 
may be reduced in dimension by one, as no fractional time delay is 

present. H is simply a row vector of dimension l*(nj+k), and Q 

and R are column vectors of dimension (nj+k)xl. 

It follows from (2.2.3) that 
-1 -1 

y(t) = HCL-z *P) Qu(t-l) + {l+z^HCl-z^P) R}e(t) 

or -1 
-1 

y(t) = H(I-z P) {Qu(t-l) + R e(t-l)}+e(t) 
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- I , 
-1 

where H(I - z P) is then given as, 

\ -Crij+k-J) 

— n [z 
-1 a (1+a.z +...+a z ) 1 n a 

1 -(xij+k-1) 
[ z ,..,,z ,1] 

A(.z *) 

Furthermore, where b i- 0, it follows that 
nl 

y C t ) = s ' W ) u ( t ) + c c £ l i e C t ) 

A(z~1) ACz"1) 

and hence equation (1.3.14) holds. 

A special case of this general state space representation may 

be considered when the time delay, k, is equal to unity, under this 

condition the latter model is identical to the explicit delay state 

space model. It is this assumption that is made in order to explain 

the meaning of the states selected, and this is shown by a simple 

example, as follows. 

Consider the case where n^ = 2, k = 1, c2 = c^ = 0 and t>2 = 0, 

then the state space representation is 

x(t+l) = [0 - a ^ x(t) + 

1 -a, 

u(t) + -a. 

-a. 

e(t) 

y(t) = [ 0 1 ] xCt) + e(t) 

where x(t+l) = fx (t+1) 

x Ct+1) 
z 

Therefore we have 
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i ) XjCt+1) = ~ a
2

x
2Ct) + ̂ u C t ) - a^e (t) 

ii) x2Ct+l) » XjCt) - a ^ C t ) + bQ u(t) - a^ e(t) 

iii) y (t) = x2Ct) + e(t) 

One solution to these equations, which will be shown later to be the 

optimal solution, see Sec. 5.1, is to denote the state variables as 

i ) XjCt+l) = bj u(.t) - a2 y ( t ) 

ii) x2(t+l) = bgU(t) + bJ u(t-l) - a^y(t) - a2yCt-l) 

The method of obtaining these solutions will now be considered in a 

general framework. 

2.3 State Estimation 

In most situations the system state is not a directly measurable 

quantity, therefore this needs to be estimated from the information 

available. The estimation scheme derived by means of a Kalman filter 

is given simply here, but will be considered in depth in Chapter 5. 

It is beneficial, though, to consider the final requirements for the 

estimator when in use, and it can be seen that by adopting a recursive 

least squares parameter estimation scheme, Sec.1.4, this can be regarded, 

initially, as assuming the C(z *) polynomial to be equal to unity. 

This assumption was, in fact, made in the example of the preceding 

section. 

Thus, taking c = c2 = ,., = c^ = 0, 
c 

RT = [0 , . , . , 0 , -a ,...,-al (2.3.1) n l 

Also, in the matrices P,Q and H (2.2.4), becomes n where, 

n = max{n , n, } 
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An estimate, 3(t), of the state at time t is now required, and this 

can be obtained by considering the formulation 02,2.3). 

Rewriting (2,2.3b) as 

e(.t) - yCt) - HgCt) 

where the state is replaced by its estimate. Then by substitution of 

this into (2.2.3a), 

x(t+l) = (P - RH)x(t) + QuGt) + R y(t) 

and setting P = P - RH we have 

(I - z_1p)x(t) = z JQ uCO + z _ 1R y(t). 

The estimated state therefore becomes 

x(t) = z [I - z !P] {Q u(t) + R y(t)} (2.3.2) 

The majority of the computational effort involved in obtaining 

this estimate of the state thus appears to be in finding the 

inverse of (I - z *P). 

But P = P - RH, where 

' 0 0 ^ 

RH = 
0 . 

0 0 
I -a 
0 

• 0 -a 

n 

as Cj = c2 = c = 0. n c 

Therefore, 

P-RH = P = 

V 

(2.3.3) 

' 0 1 0 
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Hence , 

(I-z_1P) = 

1 . 0 

-1 -z . 

0 . 

' .0 

•z"1 1 

(2.3.4) 

which gives 

(I-z P) =P z= 

1 0 

-1 

-(n+k-1) 

• • 

-1 
' . 0 

1 

(2.3.5) 

A more detailed approach, where C(z has non-zero parameters, leads 

to a much greater computational requirement, although it may be easily 

constructed, Lam (1979). 

Hence, 

£(t) = P*{Qu(t) + Ry(t)} (2.3.6) 

and this is the steady-state value of the expected state vector. 

So, we have 
b z"' n 

b . z + b z n-1 n 

* 
P Q = 

z k(b +b z_1+...+b z~n) u 1 n 

(2,3.7) 
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and also, 

* P R -1 

T_ 

•a z n 

- 1 - 2 -n -a.z -a„z - ... -a z 1 . 2 n 

(2.3.8) 

Thus, this formulation gives an estimate of the entire state vector 

at time t, and it can now be seen how the states used in the example 

of Sec. 2.2 were obtained. 
th 

By use of (2.3.7) and (2.3.8) the (n+k) state at time t is 

given by, 
x n + kCt) = z~kB(z SuCt) - A(z-1)y(t) + y(t) 

Also, from (2.2.3), 

Hg(t) = y(t) - e(t) 

and as H = [0,...,0,1] 

x n + kCt) = y(t) - e (t) 

Equating (2.3.9) and (2.3.10) the following is obtained, 

y(t) - e(t) = z"kB(z~1)u(t) - A(z"!)y(t) + y(t) 

Hence 

A(z-1)y(t) = z"kB(z *)u(t) + e(t) 
-1 which is the original CARMA model, where C(z ) = 1. 

(2.3.9) 

(2.3.10) 

(2.3.11) 
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2.4 Single Stage Cost Function Design 

J. Using the state-space model 

The control input, u(.t) , is to be chosen at each time instant 

such that the cost function 0(u) is minimized, where 

k-l+t 
0(u) = I (xTCt+l)S3(t+J)xCt+l) + uTCt)S2(.t)u(.t)} + xT(t+k)S1x(t+k) 

t=t 
(2.4.1) 

and x(t) is the solution of the linear stochastic equations given 

by (2.2.3). 

This is known as the discrete-time Linear-Optimal Regulator 

problem, Kwakernaak and Sivan (1972), in which S^ is non-negative 

definite and S2(t) and S3(t+1) are both positive definite during 

the time interval under consideration. Further, the assumption 
T 2 is made that u (t)S2(t)u(t) may be written as S2u (t), because of the 

scalar nature of u(t). The optimal control input, derived by state 

feedback, is defined as being, 

u(t) = F(t)x(t) (2.4.2) 

where x(t) is the state vector, F = [f,,...,f , ], and thus - 1 n+k 
{f.:i=1,...,n+k} must be chosen such that 

1 -1 
F(t) = -(S2+QTV(t+l)Q) QTV(t+l)P (2.4.3) 

where the matrices (V(i): i=t,t+1,...,t+k-1}satisfy the matrix Riccati 

equation, 

V(t) = PTV(t+J) [P+QFCt)J + S 3 (.2.4.4) 

and V(t+k) » S (2.4.5) 

From (2.4.3) it can be seen that F(.t) is calculated by use of V(t+1) 

and from (2.4.4), V(t) by use of F(t) and V(t+1). Therefore F(t) 
th and V(t) are both obtained from the k iteration of the Riccati equation, 
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working in a backwards fashion with (.2.4,3) being evaluated prior 

to (2.4.4) at each step. 

The assumption is now made that, 

S = S = 1 3 

Q 0 

0 0 

0 1 } 

(2.4.6) 

and using (2.4.5), V(t+k) is also equal to the above. 
T. As Q V(t+k)P = 0 

then F(t+k-1) = 0 

But V(t+k-1) = fO 

, unless k = 1 

, under the same condition. 

0 

0 0 

0 1 

0 -a 

-a 

i '-a. 

By continual back substitution it follows that, 
-1 -1 F(t) = (b0+S2b0 ) [0,...,0,l,fn+1,...,fn+k] (2.4.7) 

which contains n-1 leading zeros, and where 

QTV(t+l)P = b 2 

The feedback factors f , , . . . , f , are found to be such that 
n+1 n+k. 

f . = - a . - a . ,f -...-a,f . , n+i i l-l n+1 1 n+i-1 (2.4.8) 

which means that they are identical to the parameters contained in 

the solution of the identity (1.5.3), when C(_z = unity. 

Rewriting this identity for completeness, 

1 = ACz'^ECz"1) + z^GCz"*1) (2.4.9) 



- 66 -

where i) e. = f . ; i = 1,...,k-l 
x n+1 

i i } s0 = f n * 

where E(z is of degree k-1 and G(z *) is of degree n-1. 

( 2 . 4 . 1 0 ) 

But the control input (2.4.2) employed the feedback parameter 

vector, F(t), with a known, or measurable state. When the latter 

must be estimated, however, the control input must be redefined as, 

u(t) = F(t)xCt) (2.4.11) 

where x(t) is an estimate of the state vector obtained in Sec.2.3, and 

F(t) is obtained as set out above. 

2. Comparison with the polynomial model 

The generalised cost function is discussed in Sec. 1.5, and 

from this the following is obtained, 

0(u) = E{y2Ct+k) + S^u(t) } (2.4.12) 

where this is the expected value at time t, w(t) being zero, 

P(z~*) = 1 and Q(z_1) = 

The control input is found by applying (1.5.17) to be, 

u (t) = 1 : r- {-G(z 1 )y (t)} (2.4.13) 
S^C(z"1) + E(z )B(.z ') 

The case considered thus far, makes the assumption that C(z *) = 1, 

and therefore a comparison of the polynomial and state space 

controllers is given here with that assumption retained. 

Lemma 2.1 

With C(z *) = unity, the polynomial and state space generalised 

minimum-variance controllers are similar. The only difference 
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tli 
occurring because of the (n+k) state at time t. However, where a det-

erministic rather than stochastic case is concerned, subject 

to suitable choice of S^ and S^, the controllers are identical. 

Proof: by induction. 

Example 2:1; n = 2, k = 2. 

The polynomial controller is then given by (.2.4.13) to be 

u(t) = 
-GCz"1) 

S^ + E(z"1)B(.z"1) 
y(.t) 

where E(z *) = 1 + ejZ 1 ; B(.z *) = bg+bjZ 1 + b2z 2, 

G(z_1) = gQ + g j z""1 and C(z"!) = 1. 

The state space controller is obtained from (2.3.6), (2.4.7) and 

(2.4.10,11) as 

-b 
u(t) = 0 

V b o 

[0 1 . g 0] -1 b2z 

, - 1 , - 2 bjZ +b2z 

-1 ,, -1 , -2 z (bQ+bjZ +b2z ) 

- 2 - 1 - 2 
z (.b̂ +b j z +b2z ) 

u(t) + 

-1 
-a2z 
-1 -2 'V "V 

yit) 

and thus, 

l(S2/b0+b0) + (b]+e1b0)z"1+<b2+e1b1+g0b0)z"2 + (e]b2+g0bl)z"3+g0b2z"4}u(t) 

-J -1 -2 
= (-gjZ + Sq ^ j Z +a2z )}y(t) 

where = - a ^ 

The uCt) coefficient can now be rearranged to give 
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S 
+ ECz"J)R(.z"J) + g z " V i f V 

a a 

By replacing S^/h^ by S^, and adding and subtracting 

g^yCt) to the right hand side 

{S^ + E(.z"J)BCz"J)}u(j:) = - G C T ^ y C t ) + g g U C z ' S y C O - z'Vz" 1)u(t)} 

-1 -k -1 
From the CARMA. model, A(.z )y(.t) - z B(z )u(t) = e(t), due to the 

definition of C(z *) in this example. Therefore, in the deterministic 

case the state space controller is equivalent to the polynomial controller 
iff s- = s2/b0. 

Also the (n+k)tl1 state, which in this example is the 4tl:i state, 

is given by, 
-k -1 -1 

x n + k(t) = z B(z )u(t) - A(z )y(t) + y(t). 

or x
n+k ( t ) = y ( t ) " 

and this was shown in (2.3.10). 

Hence if a modification is carried out on the estimation of the 
th 

state vector, such that only the (n+k) state is altered, a new state 

estimator will be found such that the state space controller is 

identical to the polynomial controller for both stochastic and 

deterministic problems. 

Defining the new state as 

g'(t) = gCt) + HT(y(t) - Hx(t) ) (2.4.14) 

or g'(t) = SCt) + HTeCt) 

where H = [ 0,.,,Q,1] 
th which merely removes e(t). firom the (n+k) state. 

The form given for the state (2.4.14) is very important in 

self-tuning, as it forms the basis of many self-tuning techniques. 
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It is discussed to a much greater extent in Chapter 5, but here a few 

points relating to it are mentioned. Firstly, the state estimation 

initially formulated was dependent on values of input and output 

signal up to and including those at time t-1, for the state estimated 
th at time t. In rearranging the state, the contents of the (n+k) 

state have, in effect, been replaced by the present value of the 

output signal. Hence, we can write 

S(t) = £(t/t-l) } 
(2.4.15) 

and x'(t)= x(t/t). j 

This means that no equality can exist, in a stochastic control system, 

between the polynomial single stage controller and the state space 

version using the state &(t), because in the polynomial case, unless 

gg = 0, the present value of control input, u(t), is dependent on the 

present value of output signal, y(t). This can be seen from (2.4.13) 

and the definition of the G(z polynomial. 

Also, from the feedback equation (2.4.13), the value S^ leads 

to the generalised minimum-variance controller. If S2 = S2 = 0, 

then the original minimum-variance controller is arrived at, with 

its respective feedback equation given by (1.5.5). Hence the 

relationships obtained between the polynomial and state space con-

trollers based on a single stage cost function design, also apply 

to the special case of the minimum-variance self-tuner. 

The comparison of polynomial and state-space controllers has 

been carried out with the assumption, C(z *) = 1. The case for 

a general C(z is far more cumbersome to analyse, although for 

continuity the following Lemma is given. 
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Lemma 2,2 

For a generalised minimum-variance tuner the state space 

controller is equivalent to the polynomial controller, subject 

to the following conditions, 

i) S^ and Sĵ  are suitably chosen, as in Lemma 2.1. 

ii) The estimated state is modified such that if x1(t) 

is the state vector employed, 

g'(t) = g(t) + HT{yCt) - Hx(t)} (2.4.16) 

where PHT = R. i.e. H = [0,...,0,c ,...,c,,l] n l c 

Proof: by induction, example given in Appendix 2.1. 

It can be seen from (.2.4.16), that in the case when C(z 

is unity, this reduces to (.2.4.14). 

The analysis carried out in this section considers a single 

stage k step ahead cost function, requiring k iterations of 

the Matrix Riccati equation (2.4.4). This, however, can be 

generalised to a 1+N stage cost function, where N is the 

extra number of stages. The number of iterations of the Riccati 

equation required to deal with the multistage fixed horizon case 

increases, though, to N+k. No advantage is achieved by using the 

extra stages in the minimum-variance controller, as the feedback 

gain, F(t), remains unchanged whatever the number of stages considered. 

But in the generalised minimum variance case a difference is 

apparent, and therefore it remains with the system designer to choose 

that which is most appropriate. 
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3. Stability of the single stage controller 

The stability of the single stage control law can be considered 

as follows.. 
-j -1 " n

c 
When C(z ) =1 + c^z + ... + c^ z , the control input 

c 
is found from the equation, 

-GCz"1) 
u(t) = y(t) 

s^ccz"1) + ECz'SBCZ"1) 

where S^ = S2/bQ. 

Substituting for u(t) from this equation into the general 

CARMA model (1.3.14) leads to 

{S^A(z"1)C(z"1) + A(z"I)E(z"1)B(z"1) + z"kB(z"1)G(z"1)}y(t) 

= C(z~1){S^C(z"1) + E(z"1)B(z"1)}e(t) (2.4.17) 

-k -1 
Using the identity (1.5.3) to substitute for z G(z ) in the above, 

the closed loop poles are obtained from the polynomial, 

C(z"1HS^A(z"1) + B(z"1)} 

which is equated to zero to obtain the characteristic roots. 

When S2 =0, we return to the original minimum-variance controller, 

whose closed loop poles are therefore given by C(z *)B(z S, and thus 

even if C(z *) has all its roots inside the unit circle, if B(z *) 

is unstable, i.e. a non-minimum phase system, there will be unstable 

poles in the closed loop equation. In the generalised case, however, 

this can possibly be avoided due to the bias on closed loop poles 

attributed to the choice of S^. 

There are, though, at least k. poles which cannot be varied. 

As the state space is of dimension n +k, where C(z is non-unity, 
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there will he n^+k closed loop poles given by the feedback control alone. 

The value k does not appear in the poles given hy the control, i.e. 

;2 S'A(jz + B(z thus there are k poles at the origin of the z-plane. 

From the state space viewpoint, the C(.z term in the character-

istic equation is provided by the state estimation procedure, see 

Appendix 2.1. Therefore, the closed loop poles of the overall system 

are, because of the separation theorem, those due to the state estimation 

coupled with those due to the feedback control law. 

4. Self-tuning single stage controller 

The formulations for the single stage control design have been 

obtained as though the system parameters were known. Now, however, 

the fact that they must be estimated by means of one of the recursive 

schemes, discussed in Sec. 1.4, is considered. 

The state estimation carried out in Sec. 2.3, assumed C(z = 1, 

and so the recursive least squares procedure is most appropriate as 

a continuation of this. If a parameter estimation technique were 

employed, whereby the parameters of the C(z polynomial, or their 

equivalent, are also estimated, e.g. extended least squares, the 

calculation of the estimate of the state vector becomes far more 

complicated, as can be seen from Appendix 2.1. 

By using the least squares method, though, only the maximum 

possible value of the integer time delay k, needs to be selected, and 

the state space model chosen allows for this. 

Specifying the recursive least squares model as, 

ACz_1)yCt) =Bl(z"1)uCt) + £(.t) (2.4.18) 
A -J ~ n 

where A(z ) = 1 + a^z + ... + a z 
A A -1 * -2 U a - ^ V V (2.4. 19) B'(z )= b z + b z + ... + b . ,z b 111 

0 1 n, +k -1 b m 
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and the maximum value of system integer time delay, k >1. Although m — 
where the actual delay k < k , several estimated coefficients; m 
A A b . ,.«.,b . .; are equal to zero. Hence when k = k , none of 
^b m ^ 
these zero estimates occur. 

Nevertheless, in a true state space model obtained from the 

estimate the aforementioned terms must be included to account for 

any k up to and including k , Therefore, considering (2.2.4), 
m 

matrix Q becomes 
Aiyi A A 

i - v <2-4-2°) 
• m /s such that, when k = k , and this is known, dim(Q) = (n+k ) x 1, so m b m 

we have 

Q T = +K - I ' - ' - ' V ! ' 0 " - " 0 ! (2.4.21) 
d m 

where the latter (k-1) terms are zero. 
A 

The Q matrix now becomes similar to Q in (2.2.4), except 

that the parameters above are estimates. 

In the single stage cost function analysis considered via the 

state space in the previous subsections, the system integer time delay 

has been assumed known, and hence by applying recursive least squares 
/s 

estimation with a known k, and using Q as given by (2.4.21), a 

self-tuning operation can be performed which is identical to that 

carried out in the polynomial case, subject to the estimated state 

used being £(t/t) and not &(t/t-l) 

The overall algorithm via the state space may be summarized 

as 

1) Estimate system model parameters by recursive least squares 

estimation.. 

2) Form state space representation from the estimated 

parameters. 
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3) Calculate state estimation, using information available 

up to the present time instant. 

4) Calculate state feedback from the matrix Riccati equation. 

5) Obtain the control input signal, 

6.) Repeat, 

At first glance it appears that Step 2 need not be calculated during 

the actual implementation cycle, as to provide the required control 

input this need not be known. But in the method discussed in this 

section, the Riccati equation in Step 4 uses certain of the matrices 

contained in the state space model, and hence Step 2 must be included. 

2.5 Pole Placement Design 

Most recent self-tuning techniques have concentrated more on 
o ,, 

pole, Wellstead et al (1979b), or pole-zero, Astrom and Wittenmark 

(1980), placement approaches. This has brought self-tuning more in 

line with model reference adaptive control, yet its separate identity 

remains. 

In this section a pole placement design will be formulated, 

Warwick (1981a), which provides a different control action to that 

obtained via a polynomial approach, Wellstead et al (1979b). However, 

by reformulating the state estimation, it is shown how the two methods 

can be made to give identical controllers. 

1 State space construction 

It is considered, firstly, that the system parameters are known, 

and C(z *) = 1, The state estimation is then formed, as in Sec.2.3. 

We now require a control law such that the closed loop poles are 
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assigned to previously specified positions. 

Using the state feedback, 

uCt) = Fx(t) (2.5.1) 

where x(t) is the estimate of the state vector and F = [f,,...,f , 1 , 1 n+k ' 
the parameters {f_.: i = 1,,,. ,n+k}must be assigned such that the closed 

loop poles are given by a preselected polynomial, 

-1 -1 ~n 

T(.z ) = 1 + tjZ + ... + t^ z C (2.5.2) 

Substituting (2.5.1) into (2.2.3(a)) gives 

xCt+1) = (,P+QF)gCt) + Re(t) (2.5.3) 

Let F = P + QF, then 
- 1 - 1 -x(t) = z (X-z F) R e (t) 

and substituting this into (2.2.3(b)) means that, 
-1 -1 - 1 

y(t) = {z H(I-z F) R-+l}e(t) (2.5.4) 

Hence the closed loop poles are given in the state space by the 
determinant of (I~z *F) 

Thus {f^: i = l,...,n+k} must be such that 

det(I-z"*1F) = T (z~ 1) 

where T(z S is defined in (2.5.2) 
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Now 

J-z b. f, n J -z~]b f. . n 2 -z_1b f . n n+k 

(I-z^F) = 

(k-1) 

zeros 

-z^O+b , 0 n-1 1 

-z_1b f n-2 J 

0 

J - Z _ 1 V l f 2 

"Z_lci+6n-2f2) 

"Z"lbn-3f2 

- Z " ' b 0 f 2 

o: 

o . . . . o 

•z'Vb ,f .-a) 
n-k n+k n 

•z"!(b.f: , -a.) J n+k i7 

' -1 V 
1+a^z -1 

(2.5.5) 

such that 0 j n and i-j = k 

By taking the determinant of the above matrix, we can write 

T = WFT - R' (2.5.6) 

or FT = W~1(T+R*) 

where the following definitions are made. F is given in (2.5.1) and 

Rf in (2.2.4) in which n. is replaced by n as c. = = ...=c =0. 
l I z n 

Thus R' = lim {R>, for all i. 
c.-Kl 1 

The matrix T in (2.5,6) is specified as, 
t T • ' ' 
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which means that up to (n+k) poles may be specified in this model, 

although if n < n + k, 

t . = ... = t _ = t .. = 0 n+k n +2 n +1 t t 

This limitation on the degree of the closed loop pole polynomial is 

discussed further in Chapter 3, where a further restriction is 

placed on its maximimum value for the purpose of self-tuning. The 

integer denotes the number of poles specified, although if a number 

of these poles are chosen to be at the origin of the z-plane, then 

that number of trailing coefficients of the T(z polynomial will 

be zero. 

The W matrix relating the closed loop polynomial to the 

feedback terms is easily constructed as follows. 

Referring back to (2.5.6) 
Let W = Wj + w 2 + W3 (2.5.7) 

where {W^ : i = 1,2,3} are matrices of dimension (n+k) x (n+k), when 

a fractional part is present in the system time delay, such that 

(n+k +6-2) 
zeros 

W1 " 

-b n 

-b 

-b s n 

(2.5.8) 

(k-1)zeros 

(k-1)zeros 
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In equation (2.5.8), k is the integer time delay and the 

Kronecker delta used to signify the presence of a fractional time 

delay, i.e. 

= 1 if a fractional delay is present, whereas 

6^ = 0 if this is not the case. 

The overall dimension is thus reduced to (n+k-1) x(n+k-1) 

where there is no fractional delay. 

(5f+k-l) f 0 i 0 1 0 > 

zeros I 

w 2 = 
i 

0 1 
1 V 0 
1 0 , i 

0 , 
t 

0 k zeros 
(2.5.9) 

(<5f+k-l) 
zeros 

k zeros 

and W^ is defined as being 

(a b 

w 2 = 

n n-(k+l) 

a h, n J 

I n 0 

a b n 1 a b^ n 0 

a • bt. ,. , i i-Ck+J) . . . aibQ 

\ + 2 b 0 
a.b ... a, a, b i 0 k+2 0 k-:+l 0 

(2.5.10) 
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All terms on the perimeter of W^ are repeated diagonally (bottom left 

to top right). But these terms must be added to an term (*) at 

each elemental position, where k+1 i n and t <_ j < i-(k+l), t 

being the coefficient of the b term in the diagonal repetition 

However, where j ̂  £+1, further terms must also be added 

to that position as follows, 

diagonal term = 

secondary term = a.b. 
i- J 

terms to be added = a. ,b. + 
i+l j + ai+j-lb£+l 

Hence each element in the matrix anc* thus W^, is readily 

obtained. 

To show a case of W by example, consider n = 5, k=l, 5 =0. 

Then 

W2 -

a5b3 a5b2 " a5b. a5b0 0 

a5b2 a4b2+a5bl a4bl+a5b0 a4b0 0 

a5bl a4bl+a5b0 a3bl+a4b0 a3b0 0 

a5b0 a4b0 a b 3 0 ah 2 0 0 

0 0 0 0 0 

(2.5.11) 

The final matrix required in the formulation of W is W^, and this is 

built up of horizontal, vertical and diagonal elements, such that when 

these cross they must be added together. This can be seen from the 

definition of W^, given by, 
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where 

and 

also 

and 

-a n n -a, b~ 1 n 

-a b~ 1 n-1 

0 

a b~ , -a b~ , n n n n-1 

(2.5.12) 

•A 0B_ . . X 2 n 

•a b^, 1 n 

0 . 

a b^ 1 n-1 -a]b 

•ab N 

q zeros 

q zeros 
k' = q + 6 - 2 

q = max {k,2} 

qk 0 when q ^ k ] 

^ 1 when q = k 

n = n + 6 - 1 

(2.5.13) 

(2.5.14) 

(2.5.15) 

(2.5.16) 
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The highest coefficient of an 'a' term is n, as stated in (2,5.12), 

except for the case when k + < 2, i.e. when k = 1, - 0. 

Under these conditions the highest coefficient of an faT term is (n-1). 

Again, all terms on the perimeter of are repeated diagonally 

(bottom left to top right) in a similar fashion to those of W2» 

such that W is equal to its transpose. 

To show a case of W by example, consider n = 2, k = 2, <5 =1. 

Then, 

w3 = 

-a b 
2 2 

-a,b2 

-a2b2 

—a b —a b 
1 2 2 1 

-a b 1 1 

-a,b2 

"a ibo 

0 0 0 

(2.5.17) 

The overall W matrix may now be obtained by means of the expression 

(2.5.7), an example of which is set out below. However, to calculate 

the state feedback vector F, W must be inverted (2.5.6), and this 

presents the major computational requirement in the state space method. 

For the example of obtaining W, the previous case of n = 2, 

k = 2, d^ = 1 , will be used, such that with W^ given by (2.5.17) , 

wi -

0 

0 

-b, 

-b. 

0 

-b, 

-h. 

-h. 

-b 

- b , 
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and W^ = null matrix (4x4) 

Hence, 

W = 

-a2b2 

-a,b2 

-a2b2 

" ' j W l 

-b -a b 2 1 1 

-b. -b 

-a,b2 

V a i b i 

•braibo 

-b. 

-b 2 
-b 

-b. 

2. Comparison with the polynomial case 

The pole placement method, carried out using the polynomial 

form for controller design, was considered in Sec.1.5. We wish to 

compare this with the state space controller, which has now been 

developed. 

The polynomial control law defines the control input as, 

D(z~1)u(t) = G(z_1)y(t) (2.5.18) 

where D(z and G(z *) are polynomials calculated from the identity, 

A(z"1)D(z"1)-z"kB(z"1)G(z"1) = C(z"1)T(z"1) (2.5.19) 

The state space method, however, defines the control input, as in 

(2.5.1), where the state feedback parameters are obtained from, 

det(I-z_1F) = T(z_1) (2.5.20) 

and F = P + QF. 

The state estimate (2.3.6), though, was achieved with C(z S 

assumed to be unity. Thus for an initial comparison of the controllers 

to be made, this assumption must be carried over to the identity (2.5.19). 

The following Lemma is then obtained. 
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Lemma 2.3 

With C(z = unity, the polynomial and state space pole placement 

controllers are similar. The only difference occurs due to the 
th 

(n+k) state at time t. Where a deterministic system model is 

considered, though, the controllers are identical. 

Proof: by induction, example given in Appendix 2.2. 
The difference between the controllers therefore arises from the 

th 
definition of the (.n+k) state, given in (2.3.10) as xn+k(t) = y(t) - e(t) 

The system disturbance, e(t), thus becomes an 'extra' term, as the 
th 

(n+k) state required for equality of the controllers is, 
Xn+k(t) " y ( t ) 

The state estimate can, therefore, be remodelled to obtain the estimation 

procedure necessary for an equivalent form to the polynomial pole 

placement scheme. Denoting this new state estimate as x'(t), it may 

be found from the original estimate, x(t), by 

x'(t) = x(t) + HT{y(t) - Hx(t)}. 

where H = [0,...,0,1] . 

This new state estimate, x'(t) obtained for the pole placement 

controller, is identical to that formulated previously in the generalised 

minimum variance case (2.4.14), and thus it has been shown that in 

the case C(z *) = 1, the polynomial pole placement and generalised 

minimum variance controllers make use, effectively, of the same state 

estimator. The only difference between these controllers, therefore, 

arises from the calculation of the feedback control terms required to 

achieve the desired control objective. 
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The question now may be asked as to how the state space 

and polynomial pole placement controllers are related when a general 

C(z disturbance polynomial is considered, and whether or not 

this relationship is the same as that which was found in the general-

ised minimum-variance case. For this reason the following Lemma 

is introduced. 

Lemma 2.4 

The polynomial and state space pole placement controllers 

are equivalent iff the estimated state vector, used in the state space 

method, is considered to be, 

x'(t) = gCt) + HT{yCt) - Hx(t)} 

where H = [0,«..,Q,c >«.«, c,,l]. 
n 1 c 

Proof: by induction, example in Appendix 2.3. 

As a result of Lemma 2.4 we have that, if the polynomial pole 

placement controller is to be considered from a state space viewpoint, 

then the estimated state employed must be considered as being x1(t) 

rather than g(t). The use of the estimate g1(t) by both the pole placement 

and generalised minimum variance controllers gives an important underlying 

similarity between them, not evident when the state space is neglected. 

It is, therefore, possible to carry out the operations of either of 

the above controllers by means of a state space description, although 

this, naturally, only results in a control action identical to that 

obtained with the polynomial approach. 

It has been shown, however, that from the state space description 

a controller can be formed which, uses as its basis an estimate of the 

state vector given as £(t)* Tbe required design procedure, e.g. pole 

placement, can, therefore, be calculated, and an essentially different 
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control action will result, if this type of state estimate is used. 

3. Stability of the controller 

The stability of the pole placement controller is viewed 

with the inclusion of a general C(z polynomial. In the pole-

placement, as opposed to minimum variance, case it is the closed loop 

poles which are being operated upon directly, and hence an analysis 

becomes simpler. The closed loop pole polynomial is chosen such that 

the identity (2.5.19) is satisfied. This is repeated here as, 

A(z"1)D(z"1) - z"kB(z"*J)G(z~1) = CCz'STCz"1) (2.5.19) 

where D(z *) and G(z *) are polynomials required for the control input, 

whose parameters are chosen such that the above equality holds. The 

closed loop poles are therefore selected such that the characteristic 

equation is described by, 

C(z"1)T(z"1) (2.5.21) 

where T(z S is the polynomial selected by the designer prior to 

controller operation. If the equality (2.5.19) holds therefore, this 

particular controller does not suffer from the effects on stability 

caused by a nonminimum phase process, as was the case with minimum 

variance type control laws. For stability of the overall system, 

though, the disturbance polynomial, C(z *), must still contain roots 

which lie, without exception, within the unit circle of the z-plane. 

If this is so, and the roots of T(z are chosen to lie within the 

same bounds, then the closed loop system will be stable. 

The only problems associated with stability occur when the 

parameters of the system model are estimated. The required control 

law is then obtained from these estimations, as will be discussed 
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in the next subsection, and hence if the parameter estimates 

are not identical to the parameters themselves, the closed loop roots 

will not be given exactly by (2,5.2:1). This point is, in fact, of 

little consequence when (a) the estimates are reasonably close to their 

true values, and/or (b) when the roots of C(z *) and T(z lie well 

into the unit disc. On the contrary, though, the problem is emphasised 

to a greater extent when a model is chosen which allows for a variable 
A _ j 

integer time delay, k , as the estimates of the B1(z ) polynomial, 

found in Sec. 1.5, which incorporates the time delay, will be 

purposefully biased away from the actual parameters in the system's 

B(z 1) polynomial. 

4. Self-tuning pole placement controllers 

It was considered at the commencement of this section that the 

system parameters were known, and the pole placement control laws which 

followed were obtained with that in mind. Now, however, the 

practical case is looked at, whereby a system model is formulated and 

the parameters contained in this system model are estimated. 

The simplest self-tuning algorithm is obtained by using the 

recursive least squares estimation procedure, where a model is given 

for the estimation process as, 

A(z"Sy(t) = B'(z"l)u(t) + e(t) (2.4.18) 

The nature of the estimation procedure, and its effect on the 

state space description was discussed in Sec. 2.4(4), although 
^ -1 

a further comment must be made here concerning the B'(z ) polynomial. 

This is redefined here as being, 
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BT (z~1) =b0z"1 + b z " 2
+ ... +fi z"n ^2-5-22) 

n-1 

and n = + k. . (2.5.23) 

It must, nevertheless, be remembered that b_. in no way means that 

this is an estimate of the actual system parameter, b^, it is merely 

an estimate of the parameter in the system model used for recursive 

least squares estimation. 

From the state space description (2.2.3) the matrix Q now 

becomes 

QT = [fi. > ... , b 1 (2.5.24) 
n-1 ° 

The maximum possible value of the system integer time delay, k, is 

given by k , and the self-tuner will operate as long as k < k . m — m 
The preceding view of pole placement via the state space, however, 

has regarded k as being known, whereas now the delay is included as 

a further unknown. It may be the case, though, that despite the fact 

that the delay is unknown, it will remain within strict bounds, such 

that a minimum value is also apparent. Let k . be the minimum 
m m possible value of k, then 

1 < k . < k < k = k . (2.5.25) — min — — max m 

If we consider that the value of k is taken account of in the calculation 

of the W matrix, Sec. 2.5(1), then the matrix is directly applicable 

to the estimated parameter model, subject to the following : 

1) bo + \ . m m 

2) b b u n k -1+n max 

3) The overall state space dimension = (n+k )x(n+k ) max max 
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Hence f . -+ f . n+k n+k max 

and in general, 

4) wherever k appears with n (i.e. n+k) :k k max 
5) wherever k appears without n (i.e. k-l):k -+ k . . 

min 

Obviously, if a minimum value of time delay can be specified, better 

tuner performance will result, although no generality is lost by 

setting k . = I, min 
The overall scheme for the pole placement state space self-

tuner is now given in steps, as a breakdown of its algorithmic 

construction. 

1) Estimate model parameters using the recursive least 

squares estimation procedure. 

2) Obtain an 'estimate' of the state estimate, x(t). 

3) Calculate the state feedback vector by means of the 

W matrix. 

4) Evaluate the new control input. 

5) Repeat. 

Several points worth mentioning arise from the overall algorithm. 

Firstly, in step 2 the estimate of the state vector is now calculated 

by using the estimated model parameters, and hence this is called 
A 

an estimate of the state estimate and will be denoted later by x(t). 

This state vector can be formed in step 2 without consideration of 

the actual state space model because the parameters included in the 

vector are obtained directly from the estimated ARMA model. This also 

applies to the calculation of the state feedback vector, and hence in 

the pole placement method the state space model itself need not be 
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constructed when an on line procedure is in operation. 

This is the converse of the generalised minimum variance case, where 

certain matrices included in the state space model were required due 

to the calculation of the matrix Riccati equation. 

Secondly, it can occur that, due to the estimation process, the 

first column and row of the W matrix may contain almost zero values 

in every position, and hence problems would arise in the inversion of 

the matrix if this situation was allowable. These almost zero values 

occur because the first column and row can contain the estimated 
A 

term b as a common factor, and thus if this tends to zero the 
n-1 4 

dimension of both the W matrix and the state estimate must be reduced 

in value by unity. The first state being, in this case, dependent 

only on the term-b_ , and hence will be almost zero if b_ is almost 
n-1 n-1 

zero. This poses no problem, however, as in the Gaussian elimination 

method, used for the inversion of the W matrix, the maximum value 

in each column must be obtained. If, in the first column, the 

maximum value does not meet a previously specified lower limit, then 

this column is merely ignored with regard to the inversion process, 

and the elimination continues with the next column. 

Finally, the algorithm given above can be used to carry out 

the equivalent of the polynomial pole placement self-tuner merely by 

altering the state estimate obtained in Step 2, by use of (2.4. 14) 

given as, 

i'(t) = §(t) + HT(y(t) - Hx(t)). 

where H = JO,,,.,0,1]. 
—T T The state estimate formed by using H instead of H is not 
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-T required here, as the parameters c c included in H are J n c 
considered to he zero in the model used for recursive least squares 

estimation, 

5. Simulation study 

The simulation considered employs a nonminimum phase discrete 

time system with white noise being of zero mean and variance = 0.11. 

Recursive Least Squares estimation was carried out using the Bierman 

UD filter, Bierman (1977), and the variable forgetting factor, due 

to Fortescue et al (1979), with a window of 500 samples. 

The closed loop pole polynomial, T(z *), is chosen to be unity. 

Thus, 

t = t = ... = t = 0 1 2 n t 
This choice of pole polynomial allows theoretical signal variances 

to be calculated with relative ease , such that they may be compared 

with the actual values obtained. Both the original polynomial, Wellstead 

et al (1979b), and the state space, Sec.2.5(1), tuning algorithms were 

applied, with the state estimation procedure being that discussed in 

Sec.2.3. The results obtained from the two types of self-tuner are 

considered in detail, where the system is given as 

(1 - 1.2Z-1 + 0.6z~2 + 0.2z~3)y(t) 

= z~k(l+1.4z_1)u(t) + (1-0.6z~] +0.1z~2)e(t) (2.5.26) 

e(t) being the white noise sequence. 

The simulation was carried out over a total of 5000 time intervals, 

and until the 2500tb of these the time delay k remained at unity, 

for the remaining intervals it was increased to two. 
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The state space model formed, which contains the estimates 

obtained from the recursive least squares procedure is thus, 

x(t+J) = 

0 0 -a. 

-a. 

- a , 

-Ct) + 

0 

u(t) + -a. 

-a. 

e(t)' (2.5.27) 

y(t) = [ 0 0 l]x(.t) + e(t) 
A 

where a. and b. are the model estimates i I 
From the system description (2.5.26), n = 3, n, = 1 and k =2. a b m 

Therefore n = max{n ,n, } = 3, from which it follows that the dimension a b 
of the state vector is (n+k )xl = 5x1. However as b = b_ = 0, the 

m n 3 
dimension is reduced to 4x1 due to the first state being zero. 

This reduction, though, causes the second state to become equal 

to zero, as b = b_ = 0 also. Hence , finally the dimension of the n— 1 z 
state vector is reduced to 3x1. in the model. 

The feedback matrix, W , is then given as , 
A A A A A A A A A ^ 

"a2b2+a3bl " a i V a 3 b 0 ~b2 

W = —a b +a b 12 3 0 

-b. 

"V ai bl + a2 b0 

-b 

-b 

-b. 

(2.5.28) 

giving rise to tne feedback terms fj, f^ and f^ acting upon the state 

vector obtained from, 

x(t) = 

b2z 
- -1 ^ -2 b j z +b2z 

A _ J A A —3 
bQz +blz" +b2z 

u(t) + 
" V 

-1 - 2 -a.z -a„z -a_z -3 
y(t) 

(2.5.29) 
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In the polynomial controller, the control la,w is given hy, 

(J * d1z"1+d2z"2)uCt) = Cg0+g]z"J+g2z~2)y(t) C2.5.3G) 

where these parameters are obtained as the solution to the equation, 

ACz'^DCz"1) ~ B'GTSGCZ^) = TCz"1) (2.5.31) 

i. 2a , . ̂  ^ -2 o -3 in which, A(z ) = 1 + a^z + a2z + a^z 

Si /- 0 - 1 0 - 2 and B'(z )- b^z + b^z + b2z 
(2.5.32) 

Figures 2.1(a) and (h) show the convergence of the polynomial feedback 

parameter, although in 2.1(h) g is not shown. Figures 2.2(a) and (b) 

show the variation of the state feedback parameters during the simulation. 

In both cases the dotted lines designate the parameter values to which 

the estimates should converge. However, in the state space case 

these convergence points can only be obtained by taking account of the 
^ A 

steady values of the a^, b̂  etc. parameters. This point is considered 

further in chapter 3. 

Figure 2.3 shows the disturbance, e(t), affecting the system 

and figures 2.4(a) and (b) show the difference between this noise signal 

and the estimation error, e(t), obtained from the least squares estimation 

procedure. This difference generally tends to zero, although on start 

up and after the change in time delay it requires several sampling 

instants to settle down to its more usual position. It has been 

shown, Wellstead et al (1979b) that for self-tuning to occur, in the 

polynomial case, the error term e(t) becomes equal to e(t), i.e. 

e(t) - e(t) 0. This is discussed with a view to the state space 

approach in Sec,3.1, 

In Figures 2.4-6,(a) gives the polynomial controller response, 

whereas (b) shows that of the state space controller. Figure 2.5 
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showing the system output and Fig. 2.6 the input. 

The asymptotic variances of various signals were obtained 

by calculations from the signals themselves, and these are given 

in the following table. The terms in parentheses are the respective 

theoretical values calculated from the actual system parameters. 

Table 2.1 

Signal type Variance before 
change in the time 

delay 

Variance after 
change in time 

delay 

Figure 

Polynomial Controller 

Output 0.1298(0.1284) 0.1602(0.1575) 2.5(a) 

Input 0.1224 0.0116 2.6(a) 

e(t)-e(t) 0.001 1 0.0097 2.4(a) 

State Space Controller 

Output 0.1513(0.1517) 0.1537(0.1554) 2.5(b) 

Input 0.0028 0.0048 2.6(b) 

e (t)-e(t) 0.0004 0.0040 2.4(b) 

From the values obtained it is shown clearly that, for the example 

used in the simulation, the polynomial self-tuner has much better 

output regulation characteristics than the state space method before 

the change in time delay, yet once the time delay has been increased, 

a considerable increase in the output variance is apparent. 
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The state space tuner, however, gives a relatively poor output 

regulation before the time delay change, but the alteration in the 

value of variance caused by the change in time delay is much lower. 

This smoother transition tends to eliminate 'spikes' in the output 

signal, of the mode found in the polynomial case, Fig.2.5(a). 

These 'spikes' also appear in the polynomial control input, 

Fig.2.6(a), and this raises the question of saturation effects in an 

actual system, as opposed to a simulated one. Rapidly varying and 

often excessively large input signals are held to be one of the major 

disadvantages of the minimum variance type tuners, and therefore the 

lighter control action employed by the state space method, throughout 

the simulation, Fig.2.6(b), is a desirable feature in tuning controllers. 

Both methods used in the example, though, offer the advantage of 

dealing readily with nonminimum phase plant characteristics. Due to 

the possibility of instability the same cannot be said of the minimum 

variance type tuners, which also have problems in coping with variable 

system time delays. 

2.6 Concluding Remarks 

The feedback vector, F(t), obtained from the matrix Riccati 

equation (2.4.4), is unaffected in value by the choice of C(z *) = unity. 

In fact if F(t) is found such that u(t) is an optimal control in terms 

of the stochastic linear regulator problem, then the same control is 

also optimal in the deterministic case, Davis (1977). The feedback, 

F(t), obtained from (2.4.7) will be calculated, if the system parameters 

are known, to be the same whether the system is considered to have a 
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disturbance or not, and therefore is not dependent on C(z S. The 

addition of a disturbance is accounted for in the calculation of the 

state estimate, and hence in the control input. However, the equality 

(2.4.9) is only of use when a stochastic system is considered, thus the 

assumption C(z *) = 1, although having no direct affect on F(t), will 

have an effect on the parameter equalities (2.4.10) when C(z ') ̂  1, i.e. 

at least one of c., c ,...,c is non-zero, in which case the general 1 L n c 
expression (1.5.4) must be employed. 

In the single stage cost function design, the self-tuning 

algorithm was considered in the state space with the estimation of the 

state vector employing all information up to and including the present 

time, thus giving an overall control action equivalent to that of the 

polynomial controller. In addition, the system time delay, k, was 

considered to be known, whereas the state space model and the parameter 

estimator allow for a variable k. Therefore, if a state space single 

stage control law with variable k and using the state estimation 

discussed in Sec. 2.3 is employed, a different, but no longer optimal, 

control action will be achieved. 

The single stage design required a modified estimated state 

vector, xf(t), and this was also shown to be the case, Sec.2.5, when a 

pole placement procedure was considered, where equivalence with the 

polynomial case was necessary. There are, however, many state estimator 

configurations which can be used, but not all of these have the polynomial 

C(.z ') as a denominator. With this as the observer polynomial the 

regulator equations are much simplified, a characteristic shared by controllers 

using the x(t) estimate, and this leads to one of the main advantages of 

self-tuners. 
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The use of the state space, as opposed to polynomial, design 

procedure for the pole placement self-tuner results in a distinct 

reduction in computational effort, despite the fact that a state space 

framework must be built up from a polynomial system model. This is 

largely due to the inversion of the W matrix, which by means of 

Gaussian elimination, needs far fewer calculations than its equivalent 

in the polynomial case. 
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CHAPTER 3 

PROPERTIES OF STATE-SPACE SELF-TUNERS 

Having established the basis for the use of state-space 

definitions in self-tuning algorithms, it is a consequence that in 

this chapter some of the properties of this method are discussed. 

Primarily, the self-tuning property of state-space self-tuners is 

established in Sec. 3.1, by a generalisation of the proof attached 

to polynomial type tuners. This leads to a larger number of possible 

schemes, all of which hold with the self-tuning property, although 

they provide different controller actions. 

In Sec. 3.2, the possibility of tuning, rather than preselecting, 

the closed loop poles is considered. By this means the variance 

of the output signal can be lessened by only a slight increase in 

computational effort when the system model is of low dimension. A 

simulation study is included in this particular section, whereby 

the output variance of a nonminimum phase process obtained using 

tuned poles is compared with that encountered when the poles have 

been chosen prior to controller start up. 

The effect of an external input on the closed loop system, 

under the operation of a state space controller, is introduced in 

Sec. 3.3. This is done initially from a pole placement viewpoint, 

although a comparison is made between this type of set-point following 

and various methods previously developed with a polynomial framework. 

Several modes of connection of the external input to the state space 

system are considered and numerous simulations are carried out to 

assess the response of the process to a change in reference input. 
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3.1 Self-Tuning Property 

1. Introduction 

The fundamental assumption, obtained originally from implicit 

self-tuning theory, is that for self-tuning to occur, the control 

input obtained from the estimated system model converges to the 

value which would be obtained if the actual system parameters were 

known. Because of this only a limited number of control strategies 

are found to be applicable. In this section a general rule is 

formed, whereby the self-tuning property of pole placement self-tuners 

is obtained. The previous strategies of the original pole placement, 

Wellstead et al (1979b), and the state space method, Sec. 2.5, are 

shown to be special cases of this. 

The self-tuning property for these controllers was first 

discussed in Wellstead et al (1979b), with further comments being 

made in Allidina and Hughes (1980). Now, however the properties 

of the state space controller developed in Sec. 2.5 must be con-

sidered, and this is done by generalising the original proof to account 

for a larger number of controller parameters. In subsection 2, 

the order of the numerator and denominator of the control input 

polynomial transfer function are both increased by unity to allow 

for the extended version. The general property for the convergence 

of this modified controller is then discussed in subsection 3, the 

relationship between the state space and polynomial forms being con-

sidered further in subsection 4. 
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2. Self-tuner formulation 

The unknown continuous-time system is modelled in discrete 

time form as 

where 

A(z_1)y(t) = z"kBCz_1)u(t) + C(z_1)e(t) 
» / 1\ , ""i 3. A(z ) = l + a , z +...+a z 1 n a 

-1 -1 _nK B(z ) = b + b,z + ...+ b z U 1 n, D 
- 1 - 1 ~ n 

C(z ) = 1 + c,z + . . . + C z c 
1 n c 

(3.1.1) 

(3.1.2) 

-1 and z is the backward shift operator, k _> 1 and b^ ^ 0 by definition, 

{y(t):teT}and {u(t):teT} are sequences of output and input variables 

respectively, measured at the sampling instants, and 

{e(t):t=0,±l,±2,...} is a zero-mean white noise sequence with finite 

variance, such that 

E{e(i)eT(j)}= 6..ft (3.1.3) 

where E{*} signifies the expected value and is the Kronecker delta. 

where 

The control input is chosen to be, 

D(z_1)u(t) = G(z"1)y(t) 

D(z 1) = 1 +d,z 1 + ... +d z d 
1 nd 

- 1 - 1 G(z ) = gQ + gjZ + ...+ gn z s 

g 

(3.1.4) 

(3.1.5) 

and n = n, + k; n = n . d b g a 

By substituting (3.1.4) into (3.1.1) the closed loop equation 

is given by 

[A(z"1)D(z"1) - z"kB(z"1)G(z"1)]y(t) = C(z-1)D(z"1)e(t) 
(3.1.6) 
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In the pole placement technique it is now necessary to specify 

the required closed loop pole polynomial, and this is defined as 

being 
1 -1 ~n 

T(z ) = 1 + t, z + ... + t z t (3.1.7) 1 n 
t 

where the constituent parameters {t^:i=l,...n^} are chosen to meet the 

selected pole positions. 

The control polynomials, D(z and G(z can now be found 

from the equation, 

A(z"1)D(z"1) - z~kB(z"1)G(z"1) = CCz"1)T(z~l) (3.1.8) 

which is derived from the closed loop equation (3.1.6). 

However, the system parameters are unknown, and hence the 

system model must be estimated by means of the recursive least 

squares procedure operating on 
A(z"1)y(t) = Bf(z"I)u(t) + e(t) (3.1.9) 
/n _ | ~n > 

where A(z ) = 1 + a z + ... + a z 
_( + k ) (3-1.10) 

A ^ J A J A 2 A b 
B'(z" ) = b0z" + b,z" • ... + b ,Z 

b 

Once again the control input (3.1.4) may be employed, although the 

closed loop equation now becomes, 

[A(z"1)D(z"1) - B'(z"1)G(z"1)]y(t) = D(z"1)e(t) (3.1.11) 

However, to arrive at the specified closed loop pole polynomial form, 

the parameters of D(z and G(z must be calculated from the identity, 

A(z"1)D(z"1) - B'(z~1)G(z~1) = T(z~1) (3.1.12) 
where T(z S is defined in (3.1.7). 

For the self-tuning property to hold it is now required that 

the parameters of D(z S and G(z S obtained recursively from 
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equation (3.1.12) have a possible convergence point at the values 

obtained by solving (3.1.8) off line, subject to the convergence 

of the parameters in the least-squares estimate model (3.1.9). 

The properties of the least squares process can then be applied 

with regard to, 

i) E{y(t-i),eCt)} 

ii) E{u(t-j),£(t)} 
(3.1.13) 

for i = l,2,...,n and j = 1,2,.. 

The closed-loop equation is given, from equations (3.1.11) 

and (3.1.12) by 

T(z_1)yCt) = D(z"1)e(t) (3.1.14) 

and iff e(t) e(t) as t 00 

T(z_1)y(t) = DCz"1)e(t) (3.1.15) 

which is the closed loop form obtained from (3.1.6) and (3.1.8). 

3. General convergence property 

The requirement is that the parameters of the D(z and 

G(z polynomials obtained recursively from (3.1.12) can converge 

to those obtained from (3.1.8), and that on convergence e(t) = e(t). 

Let n^ = n^ + n^ + k. 
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Then defining a matrix, X, as 

X = 
n 

n+k b 

1 .dl 

0 . . 

g 0. 
0 . • 

0 . . . . 0 n d. 

. ' 0 1 d 

Jn 0 g 

•o S, 

"d n 

' 0 

n 

(3.1.16) 

where X is of dimension n^ x n^ and is almost always of full 

rank, Warwick (1981b). 

We also define a sequence {w(t):teT} where w(t) is obtained 

from, 

(a) y(t) = D(z"1)w(t) 

or (b) e(t) = T(z"1)w(t) 
(3.1.17) 

-1 where it must be remembered that the order of the T(z ) polynomial, 

n , is such that t 
n t - n X ~ n c (3.1.18) 

which is necessary for the identity (3.1.8) to have equality. However, 

n^ may be limited further by the dimension of the state space, and 

this possibility is considered in subsection 4. 

From (3.1.17) we obtain, 

X[RweU),...,Rw£(nA)] = 0 

where R (i) = E{w(t-i),e(t)} we 
thus R (i) = 0 for i = 1,...,n, we X 

(3.1.19) 

(3.1.20) 

(3.1.21) 
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However, by use of (3.1.6) and (3.1.14), 

[A(z"1)D(z"1) - z"kB(z"1)G(z"1)]e(t) = C(z"1)T(z"1)e(t) . 

(3.1.22) 

Both sides of this equation must then be multiplied by w(t-(n^+l)), 

and expected values taken. From the result, by means of (3.1.21) 

and (3.1.17a) the following arises, 

R (n.+1) = 0 . (3.1.23) w£ A 

The same result is also found when both sides of (3.1.22) are 

multiplied by w(t-(n^+2)), and by continuing this process for all 

j in w(t-(n-^+j)), where j 1, it follows that 

R (i) = 0 for all i > 1 . (3.1.24) 
we = 

It is also apparent that e(t) is a white process, as from (3.1.17b), 

R (i) = R ( i ) + t.R (i+1) + ... + t R (i+n ) (3.1.25) ee we l we n^ we t 

and by use of (3.1.24) all terms on the right hand side of (3.1.25) 

are identically zero. 

This means that by consideration of (3.1.22), 

e(t) = e(t). (3.1.26) 

(3.1.27) 

4. Convergence applied to state-space representation 

The state-space description is defined as being, 

(a) x(t+l) = Px(t) + Qu(t) + Re(t) 

(b) y(t) = Hx(t) + e(t) 

where the constituent matrices are given in Sec. 2.2(2), and the 

state vector is of dimension (n+k)xl. 

The estimation of the state is then calculated from, 
- 1 - 1 -

x(t) = z [I-z P] (Qu(t) + Ry(t) } (3.1.28) 
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where P = P - RH 

and using the control input, 

u(t) = Fx(t) (3.1.29) 

where F = [fj,...,f^ , and is obtained by solving the equation, 

FT = W*"1 (T+R* ) (3.1.30) 

in which T and W are defined in Sec. 2.5, and 

RT = [0,... ,0,-a ,...,-aJT . (3.1.31) 
nl 1 

By substituting for the control input (3.1.29) into the 

state equations (3.1.27), the closed loop equation is given by 
-1 -1-

y(t) = [z H(I-z F) R+l]e(t) (3.1.32) 

where F = P + QF. 

Here the parameters in the matrix F are found by solving the 

equation, 

det(I-z_1F) = T(z~1) (3.1.33) 

where T(z *) is the operator selected pole polynomial defined in 

(3.1.7). 

In this state-space mode, however, a further restriction is 

placed on the maximum possible value of n^, the order of the 

T(z *) polynomial. In (3.1.18) nt < n^"nc> where n-̂  = n^+n^+k. 

For (3.1.33) to be compact, though, cannot be of a higher order 

than the dimension of the state-space. This state-space dimension 

is given here as n+k, where n. = max{n ,n, ,n }, so that if t is 
1 1 a d c defined to be 

I = min{(n.-n ),Cn +k)} (3.1.34) A c 1 
then n < I . (3.1.35) t — 

By means of the definitions given for the state-space represen-

tation we now wish to show that by using the state-space description, 
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the closed loop transfer function is identical to that obtained 

from the generalised polynomial case. With this as a starting 

point it can then be proved that the generalised self-tuning property 

obtained is equally applicable to the state space self-tuning controller, 

For equivalence of closed loop forms it therefore remains 

to be shown that (3.1.15) is the same as (3.1.32), and that the 

control input obtained via the state space description, and given by 
-1 -1- -1 -1-{1-z F[I-z P] Q}u(t) =z ^[1-z P] Ry(t) (3.1.36) 

from (3.1.27), (3.1.28) and (3.1.29); is equivalent to the polynomial 

control input (3.1.4). 

Breaking down (3.1.36) for analysis, we have 

P = P-RH = 

.0 

0 

-c n, 

-c 

(3.1.37) 

P,R and H being defined in (2.2.4) 

Hence, it follows that 

(l-z_1P) = 

1 b 0 
-1 • 

-z 
0 * 

0 
' 1 

0 "-z -1 

0 
-1 z . c 
-1 
z C2 

l+z^c 1 

(3.1.38) 

which gives 

Det(I-z~1P) = C(z S (3.1.39) 
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Lemma 3.1 : 

{1+Hz_1(I-z"1]?) R}T(z"1)= {1-Fz_1(I-z_1P) Q}C(z"1) =D(z _ 1) 

iff Det(l-z_1 F) = T(z"1) 

Proof: can be shown by induction 

As an example a simple 2x2 system is considered, where the 

following hold; n = n =2, k = n, = 1; a c b 
then 

(I-FZ'V-Z'P) Q}.C(z V 1 + z"1(c1-b1fI-bQf2) 

+z-2(c2-b1c1f1+b0c2f1-blf2) 

and {1+HZ*"1 (I-z"~ ̂ F) R} = ! r - {l+z'^c.-b f -b f ) 
Det(I-z F) l 1 l U Z 

+z"2(c2-b1c1f1+b0c2f1-blf2)} 

When Det(I-z ^F) = T(z the Lemma is proved. 

It follows that; D (z"1) = l+z"1 (Cj-bjf j - b ^ ) + z~2 

(c2"biclfl + b0 C2 fr bl f2 ) 

Also from (3.1.36) and (3.1.4) it is necessary that 

{z^Fd-z"1!?) R}.C(z""1) = G(Z_1) (3.1.40) 

and by re-using the example employed in the proof of Lemma 3.1 

GCz"1) = z - ' C c ^ - a ^ + c ^ - a , ^ ) + z ^ a ^ f , - a c,f , - a ^ ) . 

The representations obtained here for D(z *) and G(z *) lead to a 

direct comparison with the theoretical generalised polynomial defin-

ition (3.1.5). 

For the same example the order of the above polynomials is 

n = n +k = 2 = n = n . d b a g 
Therefore, we have from the polynomial description 

-1 -1 -2 
i) D(z ) = 1 +djZ + d2z 

, ... -1. ^ -1 -2 and 11) G(z ) = gQ + g}z + g2z 
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But from the state space example the two polynomials may be rewritten 

in the form. 

i) DCz"1) = 1 + djz"1 + d2z"2 

. -K -1 -2 
n ) G(z ) = gjZ + g£z 

This means that although the D(z ) polynomial is directly of an 

identical form, the state space representation causes the g^ parameter 

to be zero. As an explanation of this, it must be remembered that 

the state reconstruction incorporated in the design is only 

dependent on values of the output sequence {y(t)} up to and including 

time t-1, and not inclusive of time t. 

Lemma 3.1 thus shows that the control law employed in the state 

space is identical to the polynomial control law (3.1.4), in its 

generalised form, and the closed loop state space transfer function is 

identical to that obtained in (3.1.15). 

It, therefore, must now be shown that solving (3.1.33) is iden-

tical to solving (3.1.8), and this is considered in the following 

Lemma. 

Lemma 3.2 : 

Det(I-z_1F) = A(Z-!) - z-Vz" 1) = ^z"1) 
C(z~l) C(z"1) 

Proof of Lemma 3.2 is once more carried out simply by means of an 

inductive process. 

Using the same example, as was used in the proof of Lemma 3.1, for 

continuity, 

Det(I-z_1F) = 1 + z"1(arb
0
f2"blfl)+Z"2(Vaiblfrblf2+a2b0fl) 

and for Lemma 3.1 to hold, this is equal to T(z 
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Using the results obtained for the control law polynomials, 

C ' V 1 ) {A(.z"1)DU"1)-z"kB(z"1)G(z"1)}= 1 + ^ V ^ W l * 

+z-2(.a2-a1b1ffb1f2+a2b0f1) = TCz"1) 

Hence Lemma 3.2 is proved, and the state feedback terms f ̂ ,f^ can be 

calculated without consideration of Cj,c2- This independence 

of calculated feedback terms from the parameters of the C(z 

polynomial is not apparent in the polynomial method itself, where 

dj, d2> gg, gj and g2 are directly related to Cj, c2 from (3.1.8). 

It has been shown, therefore, that the self-tuning property 

applies to the state space description. Thus the nature of the 

state space representation containing the estimated model parameters 

must now be reviewed. The state space formulation being given by, 
A A A 

(a) x(t+l) = Px(t) + Qu(t) + Re(t) 

(b) y(t) = Hx(t) + e(t) 
(3.1.41) 

where 
r0 0 ' ' V k -i | m 
1 . 

0 0 
A 

P = 
0 . A -a . n 

A 

; Q = 
A 

• • . ' • '0 • bl 
A • • 
bl 
A 

0 . 0 • 1 
. bo J 

(3.1.42) 

R = [o,..., o, -a , ... , - a ] 
n 1 

and k is the maximum possible value of the system integer time delay, k, m 
The estimated state vector, formed by use of the model estimates 

is then given as, 
-1 A A (3.1.43) x(t) = z_1[I-z JP] {Qu(.t) + Ry(t)} 
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/N ^ 
where P = P - RH. 

The state feedback vector is once more obtained from (3.1.30), 

although we have 
A 

R' = [0, ... ,0, -a , ... , - 2 ] = R (3.1.44) 
n 1 

Lemmas 3.1 and 3.2. both hold with the estimated parameter 

matrices, and as C(z S is equal to unity, from Lemma 3.2, 

DetCl-z^F) = A(z"1)D(z"1) - B' (z"1)G(z"1) = T(z_1) (3.1.45) 
A 

where F = P + QF (3.1.46) 
- 1 - - 1 

Thus, calculating Det(I-z F) = T(z ) is equivalent to calculating 

(3.1.12). 

It has been shown that as the parameter estimates converge, 

the control obtained by calculating the polynomials D(z *) and 

G(z from (3.1.12) has a possible convergence point at the poly-

nomials obtained from an off line calculation of (3.1.8). Hence, 
-1- -1 

the calculation of F by means of Det(l-z F) = T(z ) gives 

equivalent values for the parameters of D(z S and G(z S which 

can converge to those obtained via Det(I-z 'F) = T(z *). 

Therefore, on condition that the model estimates converge, 
A A 

the control obtained recursively by using u(t) = Fx(t) can converge 
to that obtained from the offline solution of u(t) = Fx(t) in the 
case when the system parameters are known. Thus, although the system 

parameters are not known, the control calculated via the state space, 

from the estimated model parameters, can converge to the required 

control format. 

It can be seen from the equations for calculating the closed 

loop pole polynomial, in the state space, that the state feedback 
A vectors F and F are obtained without directly employing any 
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parameters contained in the C(z ) polynomial, i.e. Cj, c^, etc. . 
A - 1 A -1 It follows that as the parameters o f A(z ) and B'(z ) do not 

converge, respectively, to those of A(z and B(.z *); unless 
A 

c, = c = ... = c = 0, so F does not converge to F as the 1 2 n c 
estimates converge. The asymptotic values of F can, therefore, 

only be calculated, if required, by consideration of the asymptotic 
A A 

values of the model estimates, a^, b^, etc. . This apparent anomaly 
is eradicated, though, by the estimated state vector obtained using the 

A 
parameter estimates, x(t) , not converging to the estimated state 

vector found from the actual system parameters, x(t). In contrast 
A 

to this, the overall factor Fx(.t) , does have a convergence point, as 

has been shown, at Fx(t), and hence the control input is able to con-

verge to that calculated offline if the model parameters, a^, b^, ĉ  

etc., were known. 

5. Notes on convergence property 

It is apparent from (3.1.5) that the constituent parameters of 

the polynomials D(z and G(z S cannot be calculated explicitly by 

consideration of only (3.1.8) or (3.1.12), as there exist unknowns 

but only n^ equations. The various self-tuning methods formulated 

cope with this problem in a number of ways. In the polynomial type 

tuner, Wellstead et al (1979b), n, and n are both reduced, in order, 
d g 

by unity, resulting in unknowns and n^-1 equations. Hence, 

with this restriction enforced, only one solution is possible for 

each parameter of D(z *) and G(z at each recursive instant. This 

solution, though, suffers from an advance side-effect, in that from 

(3.1.18) the maximum number of closed loop poles, n , that may be placed, 
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are reduced by one. By considering this method from a different 

viewpoint, the equivalent is arrived at by, effectively, specifying 

d as being equal to zero. Then, by the nature of the problem, 
Ud 
g is also equal to zero, and thus we have reduced the number of n g 
unknowns from n̂ +J to by a reduction of one in the number of 

equations. 

The state space method, Warwick (1981a), has the effect of making 

gg equal to zero, as mentioned in Sec. 3.1(4), in its equivalent 

polynomial type tuner. The number of unknowns is, by this means, 

reduced from to n^, with the total number of equations, n^, 

remaining unaffected. This method, then, also gives rise to a 

unique solution for all parameters of D(z *) and G(z S at each 

iteration, although in this case the maximum number of closed loop 

poles available for placement, n^, is not affected. 

3.2 Self-Assigning Poles 

1. Introduction 

Self-tuning controllers based on pole placement principles provide 

a more robust approach when compared to those based on minimum variance 

techniques. However, the price paid for this robustness is a small 

loss in the regulation characteristics. When regulation is of prime 

importance, as opposed to the system* s response to an external input 

signal, it may be decided that the closed loop pole positions are 

required to be dependent on the positions necessary to produce the 

minimum possible variance in the output signal from the unknown 

process. 
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Assuming the estimates of the parameters in the system model 
A 

converge, the state feedback factors f^ will also converge to steady 

values, Sec. 3.1. Thus, as the output signal variance can be 

calculated, theoretically, by use of these estimates, in addition 

to the previously chosen closed loop poles, it is therefore possible, 

by correct choice of these poles, to minimize the variance. 

As one assumes no apriori knowledge of the system parameters 

when carrying out self-tuning, no apriori calculation can he carried 

out such that this minimization occurs. Thus it is necessary 

to consider the possible use of a cost function, which is equivalent 

to the value of 'relative1 output variance, this being minimized by 

the correct choice of poles at the sampling instants. 

2. Single pole assignment 

The total number of poles that may be assigned is limited 

by the dimensions of the state, Sec. 3.1, but a further limitation 

becomes apparent when a self-assigning pole technique is used. It 

is required that the amount of computation necessary for the overall 

self-tuning algorithm is kept as small as possible. The placement 

of poles with respect to a cost functional merely adds to the total 

computational effort. It will be shown that with low order systems 

a single pole can be placed optimally with very little extra com-

putational burden, and that there is, in fact, no real necessity for 
+ 

the placement of more than one pole. 

We now consider the form of the closed loop equation obtained by 

using state-space methods, such that a choice c£ pole position may be 

made. The closed loop equation is given from (3.1.32) as, 
t 
Simulated examples have shown that the increased computation necessary for 
a larger number of poles outweighs the improved performance obtained. 
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- 1 - 1 -
y(t) = [z H(I-z F) R + Ue(t) ( 3 . 2 . 1 ) 

where F = P + QF . 

This may be rewritten by making use of the identity; 

Det(I-z_1F) = Ttz"1), as 

yCt) = 
-1 -1- -1 1 
z H{adj(X-z F)}R + T(.Z ) 

TCz"1) 
eCt) (3.2.2) 

where T(z *) is the pole polynomial defined in (3.1.7). 

Here, however, we do not wish to specify t^, t^ etc., as 

exact numerical quantities, but rather as algebraic expressions, 

relating them to the system model parameters. Although, as only 

one pole is being adjusted, all other poles will be considered to 

reside at the origin of the z-plane. Thus the pole polynomial becomes, 

(3.2.3) m, , -1 
T(z ) = 1 + t j z 

irrespective of the value of n^, as long as n^ > 1. 

The nature of the cost functional it is required to minimize 

is now considered by reformulating (3.2.2) as follows, 
- 1 - 2 y(t) = CI + hjZ +h2z + ... )e(t) 

or y(t) = i v i=0 1 
-l e(t) (3.2.4) 

where {h^:i = 0} = 1 , and {h^:i 1} are dependent on the tj 

coefficient of the T(z polynomial. 

Hence, 

{Var [y (t) ] } = (l2+h2+ h2 + ... ) {Var[e(.t) J} 

2 2 2 or Relative Variance = R.V, =1 + hj + h2 + .... (3.2.5) 
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and thus R.V. is the cost function which it is desired to minimize, 

where the minimum value is defined as, 

R.V. = min{R.V.} 

and tj = {tj : R.V. = R/V. , iff R/V. exists} (3.2.6) 

From (3.2.4) and (_3.2.2) we obtain 

1+V" 1 + + £n,Z~n +tlZ_1 

.1 V " = 

1=0 1 + t j z 

where n1 is the dimension of the state space. 

2 2 2 <-t„'-y-ltl+-"<-,>n,"1V?,"1>2 

Then R.V. = r+Z~+ (•£.,-•£, t ) +• • •+ n " ' 1 

...(3.2.7) 

where || t̂  }| < 1 for convergence of the series used in obtaining 

(3.2.7). This corresponds to the assigned pole remaining within 

the unit circle in the z-plane; i.e. the pole polynomial must 

remain stable. As n' is known, this being a dimension of the 

model, and not necessarily that of the process under control, t 

can be found such R.V. = R.V. . Thus it is required that 
t , n'-l 2 

9 o _ 2 .t+.-.C-l)11 "^.t ) 
5 7 T - l2+£2+(£2-£1t1) + ...+ n n -1 1 1 1 

Example: n'=2 ; R,V. = 

But the minimum value of R.V. cannot be obtained by direct partial 

differentiation of R.V. with respect to tj, as £ ; i _> 2 depend on F, 
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which in turn depends on t̂  from (3.1.33). Thus t^ etc. must 

be obtained in terms of a^, b^, t̂  etc. before minimization is 

calculated. From the example, we obtain : 

- bo - bi 
t = _ or t - — . 

bl b0 

Hence a choice of optimal pole positions is achieved. To retain 

stability, however, we must employ 

min{b ,b } 
h = 

maxCbgjbj} 

which means that as the T(z *) polynomial is always stable, no 

cancellation of unstable zeros will occur. 

The value of the pole, tj, can now be expressed in terms of 

the estimated system model parameters obtained from recursive least 
A 

squares estimation. In this example tj is given by, 
A A 

£ min{b ,b } 
tl = 

1 A A maxib^bj} 

Thus, the overall self-tuning algorithm, incorporating the self-

assigning pole may be written as 

1) Estimate system model parameters via recursive least 

squares estimation. 

2) Calculate the state vector using these estimated values. 
A 

3) Obtain tj 

4) Compute state feedback vector from estimated parameters 
A 

and t j. 

5) Apply new input signal from u(t) = Fx(t). 

6) Repeat. 
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3. Simulation study 

Consider the process described by the transfer function, 

C• oz ~ST 
6.35 e G ( s ) • S+J 

where x is the transport delay, and the sampling interval is 

given as T. Then, if x » 0.4 sees, and T = 0.5 sees, the system 

may be regarded in the z-plane as being 

ACz'SyCt) = BCz'Vct) + C(.z~1)e(t) 

and C(z )e(t) is the system disturbance. The polynomials in the dis-

crete time equation are obtained from the transfer function, G(s), 

as 

A(z_1) = 1-0.6065 z"1 

B(z_1) = 0.6043 z"1 + 1.8942 z"2 
-1 -1 -2 

and we define C(z ) = 1 - 0.4 z + 0.03 z . 

with {e(t) : t = 0, ±1, ±2, ...} a zero-mean, white noise sequence of 

variance = 0.11. Thus the system is nonminimum phase. 

The simulation was operated over a period of 5000 sampling in-

stants , equivalent to 2,500 sees., using the state space pole placement 

method derived in sec. 2.5(1). The self-assigning pole technique 

was used during one run, and its regulation characteristics were 

compared with the same simulation using poles chosen explicitly prior 

to commencement of the run. 

The output variances obtained are given in the following table. 
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Table 3.1 

'l 
Asymptotic 
Var{y(t)} 

Theoretical 
Var{y(t)} 

0.0 0.1177 0.1166 

-0.8 0.1246 0.1228 

-0.2 0.1183 0.1169 

0.6 0.1179 0.1166 

S.A.P. 0.1172 0.1163 

where S.A.P. ̂  Self-Assigning Pole. 

The optimum pole position for minimizing the output variance is 

calculated as 

tj = bQ/b = 0.3190 
A 

and tj approached this value asymptotically during the simulation. 

4. Convergence and stability 

When employing the single pole self-assigning principle the con-

vergence of the estimated system model parameters is of utmost import-

ance. Iff these converge, then the estimated state vector will 

converge, as it contains only parameters also present in the estimated 

system model. This is also true of the single pole, calculated as 

described in Sec. 3.2(2), and hence this can converge to the true value 
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tj required to obtain the minimum value of relative output variance. 

Finally, as the value of the assigned pole converges to a steady 

position, so the state feedback vector will converge, as was proven 

in Sec. 3.1. Thus the overall self-tuning algorithm will cause the 

overall control input response obtained to have a possible convergence 

point at the required optimum value. Hence, although the convergence 

of the overall control response may be slower, though this is not 

necessarily true, the property of convergence remains unaffected by 

the use of the self-assigning pole technique. 

The stability of the closed loop transfer function is assured 

in the steady state when the magnitude of the assigned pole is bounded 

to be less than unity, and this is also applicable to the case where 

closed loop poles are specifically chosen prior to tuner operation. 

Thus the overall system stability remains unchanged by the use of the 

self-assigning pole technique, provided all poles are bounded to be 

stable themselves. A limit is placed on the solution to the single 

self-assigned pole, however, in that it mist remain as a real value, 

although where more than one pole is employed, complex pole pairs are 

acceptable. 

5. Minimization of Relative Variance 

It can be seen from (3.2.7) that the dimension of the state-space, 

n , has a great effect on the nature of the minimization techniques 

which may be used. By considering this equation to be , 

j=0 i=l 
I1. (3.2.8) l 

i=l J 
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then R.V. is minimized with respect to t^. But the degree of 

(3.2.8), in regard to the highest order of t , is equal to n'-l, 
. . . 2 

with a minimum in order of two due to the (1-t^) term. Thus problems 

can arise in obtaining the minimum value of R.V. when n* is large. 

For n' = 2 a typical plot, is shown in Fig. 3.1, of R.V. against 

the variation of tj. When t̂  = ± 1, i.e. critical stability points, 
. . 2 R.V. becomes infinite, once again because of the (1-tj) term. The 

minimum value of R.V., R.V., is given when tj = tj, which is retained 

within the bounds - 1 < t < + 1. However, R.V. can, theoretically 

be lower in value than this when tj is outside the unit disc, as in 

the case of t* . But, two problems arising in this instance, dis-

count the usage of such a closed loop pole. Not only is the closed 

loop transfer function unstable, but the series used in obtaining R.V. 

in (3.2.8) does not converge when || t̂  || > 1. R.V. , therefore, becomes 

the only mathematically and physically possible optimum value of R.V.. 

Where n* 4, the solution of (3.2.8) can become far more complicated, 

a typical plot for nf = 4 being given by Fig. 3.2. Although the 

value of R.V. increases to infinity when [| tj || approaches unity, 

between these values there may well be more than one minimum value of 

R.V. . The local minimum obtained with t is not, in the figure, 
sl 

a global minima, and thus a more complex algorithm is required to enable 

the true R.V. value, given when t, = t, , to be found. 1 b 
However, the use of a global minimizing technique may well 

defeat the property of computational simplicity, which is always a 

necessary criterion in self-tuning controllers. Moreover, unless a 

simple method for a particular application can be found, we must consider 

that the feature of self-assigning poles is only useful for low order 
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Fig. 3.1. Typical curve of R.V. against one pole, for nT 

Fig. 3.2. Typical curve of R.V. against a single pole,for 
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system models. This does not limit its field of usage to a great 

extent, though, as it is often the case that a high order system 

may be successfully controlled by means of a low order model 
o .. because of the characteristics attributed to self-tuners, Astrom (1980). 

3.3 Response to an External Input Signal 

1. Introduction 

It has been considered thus far that no external input is 

present in the system configuration, and hence the problem has 

remained one of reducing the effect of disturbances on the system 

output, i.e. output regulation to a zero mean. But now the poss-

ibility of there being a reference input, in addition to the control 

input will be taken into account. This reference input will be 

regarded as a signal which changes relatively infrequently with res-

pect to time, as is the case with the majority of processes under 

controller action. It must be remembered, however, that the self-

tuning philosophy requires a complete algorithm which retains a com-

putational simplicity and is therefore suitable for recursive controller 

design and implementation. 

2. General controller configuration 

The pole assignment format allows for a simple and efficient 

means of set-point following, such that in the steady state the 

process output will be forced to comply with the reference input 

signal. There are, however, several schemes, dependent on how and 

where the external input is applied, which can lead to steady-state 

output following. We will therefore provide, initially, a general 
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scheme, and show how various alternative methods may be derived by 

using this as a starting point. 

The overall control plan Is given in Fig. 3.3, where the set-

point is considered as a supplementary input, such that the actual 

system input becomes, 

u(t) = FS(t) + SvCt) (3.3.1) 

where v(t) is the external, scalar, reference input. 

The definition of S is dependent oh the final closed-loop 

form, as will be seen shortly. 

The estimated state vector, 3(t), is characterised by the 

state equations, 

(a) g(t+l) = P&(t) + Qu(t) + Re(t) 

(b) y (t) = H2(t) + eCt) 
(3.3.2) 

Substituting for the input, u(t), in the above equations, from 

(a) we obtain 
- 1 - 1 -

x(t) = z J(I-Z F) [QSv(t) + Re(.t)] 

where F = P + QF . 

Thus, when (3.3.2(b)) is considered, the closed-loop equation 

is found to be, 
-1 -1- -1 -1 -1-

y(t) = Hz (I-z F) QSv(t) + [1 + Hz (I-z F) Rle(t) 
(3.3.3) 

This can be regarded as, 

y(t) = yv(t) + ye(t) C3.3.4) 

where y^-b) = set-point output. 

y^(t) = Regulator output. 

Such that when v(_t) = 0, i.e. no external input is present, the set-

point output, y^Ct) is also zero, and the system output, y(t) , is 

merely the regulator output as has been considered to be the case 
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prior to this section. Where v(t) ^ 0 and is of a constant value, 

the variance of the system output is regarded as being with respect 

to a mean value of y^(t), and not a zero mean as has been the case. 

The external input feedforward gain, S, does not appear in 

the expression for the regulator output, ye(t), and therefore the 

effect of the choice of S on the system output may be viewed 

solely by inspection of the set-point output, y (t). This is re-

written as, 

y (t) = Hz"1 a d j g - z ' W y ( t ) 
V Det(I-z F) 

where the denominator is given by the solution to the standard 

state space pole placement identity, 

Det(I-z-1F) = T(z~1) (3.3.6) 

T(z *) being the closed loop pole polynomial chosen prior to con-

troller operation. 

The numerator of (3.3.5) is simplified by the following 

Lemma. 

Lemma 3.3 : 

Hz"1 adj(I-z_1F)Q = z"kB(z"1) 

Proof: given in Appendix 3.1. 

Therefore (3.3.5) can be considered as, 

yv(t) = 2 ^ J )' S vCt) (3.3.7) 
T(z~]) 

Here all the zeros of the B(.z ) polynomial are also zeros of the 

closed loop transfer function between the external input and its 

respective output. However, to ensure zero steady-state error between 
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YvCt) and v(t), we require that in the steady-state y (t) = v(t), 

which is achieved iff S = Sq, where 

s n = l ^ (3.3.8) 
BCD 

in which T(J) and B(J) are obtained by replacing z by unity in 

the polynomials T(.z S and B(z respectively. 

There are, though, several possible definitions of S 

dependent on the specific requirements of the controller, several 

examples of which are given here. 

Example 1: If the B(z *) polynomial can be defined as 

B(z *) = B (z S b (Z *), where B (z contains all its zeros s u s 

within the unit circle and B^(z *) is the polynomial representing 

all the unstable zeros of B(z *). 

Thus S is defined as 

S = Sn . S(z"1)/B(z"1) u s 

such that S, which remains stable, replaces the stable zeros 

of B(z S by those of S(z which may be chosen by the operator, 

where 
1 -1 "n 

S(z ) = s +s z + ... + s n z s (3.3.9) u 1 s 

The zero steady state error property is retained by the inclusion 

of Sq , which must be adjusted accordingly, to account for S(D« 

Example 2: Replacement of closed-loop poles. 

The closed-loop poles may be replaced by correct choice of S, 

such that although the output y Ct) is affected, the original regulator 

problem, characterised by ye(t), remains unaltered. In this case S 
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S = S Q . TCz'S/SCz" 1) (3.3.10) 

where S^ is unity and T(z *) is known, as this has been specifically 

chosen. Thus y (t), from (3.3.7), now becomes 

. . z _ kB(z" 1) . S n , . y (t) = 0 v(t) v 
S(z _ 1) 

and the closed loop response to the external input, v(t), is dependent 

on the newly chosen polynomial, S(z The use of this definition 

of S is shown to be a distinct advantage in the following example. 

Example 3 : Choice of poles in a SOMI process. 

Where the process under control is Single Output Multi-Input 

(SOMI) in nature, the overall system output may be described by, 

P 
y(t) 8 I 7 (t) + y (t) (3.3.11) 

i=l i 

where p defines the number of external inputs present, and y (t) 
i 

is defined as, 
-k -1 z B(z )S 

y v (t) = i V iCt) (3.3.12) 
1 K z " 1 ) 

The feedforward factor for each input, S^, can now be chosen as, 

S. = S Q . T(z"1)/S.(z-1) (3.3.13) 
i 

where T(z *) is common to all inputs, and S^ = S^(l)/B(l). 
j i 

Also S^(z ) is the closed loop pole polynomial required to achieve 
th 

a particular system response to the i input. So, finally the 

regulation characteristics of the output y(t) are specified by the 

chosen polynomial T(z *), whereas the response of y(t) to each of the 

inputs is dependent on their respective pole polynomials, S^(z '), 
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which are also selected prior to controller operation. 

3. Self-tuning with a set-point 

The complete controller algorithm, which accounts for variations 

in an external input signal, is a simple extension to the self-tuning 

format described previously. The additional computing necessary 

in this instance, however, is the calculation of the feedforward 
a 

gain S, denoted by S when this is obtained recursively as follows. 

By the use of recursive least squares estimation, (3.3.7) becomes, 
A . * 

, V BT(z ) . S , . yvCt) = — - - v (t) 
TCz"1) 

A A 

where S = T(l)/B'(l) to achieve zero steady state error, i.e. to 

normalise y (t). 
A 

Thus S is calculated at each sample period by summing 
-1 

the coefficients contained in the B'(z ) polynomial and dividing 

the total into T(l), which will have been calculated prior to start 

up. This means that the extra computation necessary for the in-

corporation of a set-point, where only a normalisation is required, 

amounts to (n^+k -1) additions and one multiplication (division). 
A 

For convergence of S it is required that, 

1) the parameters in the estimated system model converge to 

steady values -

2) T(z has no roots at or near z = +1. 

The first of these is necessary to obtain a direct convergence 
A ^ A -1 -k -1 of S, although S will not converge to S unless B'(z ) z B(z ), 

which may not occur due to the bias in the least squares estimate. 
A 

On convergence, though, S remains the correct value needed to normalise 

yvCt>. 
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The second condition ensures T(l) is not equal to zero, as if 

this were the case S would have to be set to zero, i.e. external 

input removed, to ensure y (t) 00 • 
v 

4. Simulated examples 

The example discussed in Sec. 3.2(_3) is reconsidered, where 

the system is described by 

A(z~1 )y (t) = z~kB (z~1 )u(.t) + CCz'SeCt) 

and A(z~1) = 1 - 0.6065 z"1 

B(z-1) = 0.6043 + 1.8942- z"1 

C(z-1) = 1 - 0 . 4 z"1 + 0.03 z~2 

the integer time delay k being equal to unity. 

The state estimate is formulated as described in Sec. 2.3, from 

the estimated model parameters, and the zero-mean white noise sequence has 

a variance = 0.11. 

The system was simulated with the controller operating over 

5000 time intervals with the external input, v(t), varying from +5.0 

to - 5.0 in a square wave with a frequency of 200 samples. As 

each sample period is taken to be 0.5 sees., the frequency of the 

input is therefore 0.01 Hertz. 

Figures 3.4(a) and (b) show v(t) and the system input, u(t), 

for the first 1000 time steps (500 sees.), Figs. 3.4(c) and (d) 

meanwhile show the system output, y(t), obtained when in (c) T(z *) = 1 

and (d) T(z *) is obtained by the self assigning pole process discussed 

in Sec. 3.2. . It is noticeable that in the figures concerning the 

output, values are obtained as steady state limits, that are not equ-

ivalent to the reference input, v(t). This is designed to show that 
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A 

when S = 1, i.e. v(t) is connected directly, such that 

u(t) = F$(t) + v(t) . the effect on the system output magnitude can 

be hazardous. 

In Figs, 3.5, 3.6 and 3.7 a section of the output response 

signal is considered in depth over a relatively short time period, 

such that the transient response can he more readily studied. 

Figs.3.5 and 3.6 showing the effect of the choice of pole polynomial 

on the system output, when this has not been normalised, ranging from 

an overdamped response in Fig. 3.6(c) to an underdamped response 

in 3.6(b). With this non-normalised output it can be seen in 

Fig.3.6(d) that where a pole approaches z = +1, the steady-state value 

of y(t) becomes large in magnitude. 

Fig.3.7 shows the normalised output response, and here it is 

observed that the regulator output, achieved in the steady-state, 

is of a similar magnitude, whichever pole polynomial is in operation 

and hence whichever feedforward gain factor is being used. 

The theoretical steady state values for each pole polynomial, 

and their corresponding figures are given in Table 3.2, where 
-1 -1 -2 

T(z ) = 1 + tjZ + t^z is the specified closed loop pole polynomial 
and SAP = Self Assigning Pole. 
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Table 3.2 

C2 Closed Loop 
Poles 

Steady State Output 
y (t) V 

Figs. 
3. 

0 0 0,0 12.4925 4(c),5(b) 
7(b) 

SAP 0 +0.3190,0 9.4710 4(d),5(a) 
7(a) 

-0.2 0.01 +0.1,+Q.1 15.4228 5(c) 

-0.2 0 +0.2,0 15.6156 5(d) 

0.6 0. 1 -0.3±j0.3148 7.3485 6(a),7(d) 

0.6 0 -0.6,0 7.8078 6(b) 

-0.8 0. 1 +0.6449,+0.1550 41.6417 6(c) | 

-0.8 0 +0.8,0 62.4625 6(d),7(c) 

5. Variations on the set-point definition 

By considering the reference input to be connected elsewhere in 
the controller circuitry , variations in the basic equations obtained 
in Sec. 3.3(2) can be achieved. In Fig. 3.8 the set-point is summed 
with the state estimate, rather than with the control input, as was 
done in Fig. 3.3. The state estimate is an (n^+k)xl vector, therefore 
the feedforward gain S' must necessarily also be of this form. The 
definition is thus made that, 

s' = [ v - - - ' s
v k - i ] 8

0
 (3-3-14) 

where S_ is a common factor to all S. : i = 0,...,n +k-l. 0 l 1 
The system input becomes, in this instance, 

u(t) = F[£(t) + S1v(t)] (3.3.15) 

and by substitution into the state equations(3.3.2), the closed loop 
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Fig. 3.8. Variation on controller design with External Input 
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form is given by 
-1 -j- -j -j- -1 

y(t) = Hz. CI-z F) QFS • v(.t) + [I + Hz (I-z F) R]e(_t) (3.3.16) 

From (3.3.4), YeCt) is of the same form as in the case previously 

considered, although now YvCt) contains a further factor, F, in its 
transfer function. Hence iff 

nj+k 
go j f.s.., = 1 

and (.b) S 0 = TC1)/B(J) 

(3.3.17) 

the two methods arrive at identical, normalised, closed loop transfer 

functions. The simplest solution to (3.3.17(a)) is obtained by 

setting = f ̂  1 and = 0 ; i , i = l,...,Uj+k}. This 

method can, in fact, be regarded as a special case of the general 

method described in Sec. 3.3(2), where the feedforward gain S = FS*. 

However, the effect of using the form in Fig. 3.8 gives rise 

to what can be considered as a modified state estimation scheme which 

is fed back to provide the next control input, (3.3.15). As 
* / \ . . —1 
x.\,t)are polynomials in z , so S. j can also be regarded as polynomials 

of the same type, and this leads to a wide choice of set-point transfer 

functions 
6. Comparison with polynomial case 

For polynomial based self-tuners the control input is assumed 

to be of the form, 

D(z_1)u(t) = G(z"J)y(t) (3.3.18) 

where D(z and G(z *) ate of degree Oi^+k-1) andCn^-1) respectively. 

Various representations of the reference input are shown in Figs.3.10-

3.14, where y(t) is considered to be a direct feedback from the system 

output. In all cases the transfer function of the feedback from y(t)to 
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u(t) is of the form (3.3.18), the differences between the diagrams 

arising merely from the nature of the introduction of v(t), the ref-

erence input. The set-point will, therefore, have no effect on the 

transfer function between the disturbance, e(.t), and the output, y(t). 

Thus y (t) in (.3.3.4) will, as in Sec. 3.3(2), remain unchanged, and 

for the purpose of this exercise will be neglected, and that part of 

the output, y^(t), determined by v(.t) will be considered. In the 

deterministic case, therefore, the open-loop transfer function is 

given by 

A(z~1)y(t) = z"kB(z"1)u(t) (3.3.18) 

Using the control input of Fig.3.10, given by 

D(z_1)u(t) = G(z"1)y(t) + Sv(t) (3.3.19) 

The closed-loop form is obtained as, 

[A(z"1)D(z"1) - z~kB(z"1)G(z"1)]y(t) = z"kB(z_1)Sv(t) 

(3.3.20) 

But in the polynomial case, the identity used to obtain D(z *) and 

G(z was constructed as, 

A(z"1)D(z"1) - z"kB(z"1)G(z"1) = C(z"1)T(z~1) (3.3.21) 

Hence, if no pole cancellation is required, S must be chosen as, 

S = T(1)C(1)/B(1) (3.3.22) 

to provide a normalised output. But this means that we need to know 

the coefficients of the C(z S polynomial, a requirement additional to 

those needed in the state-space form. In Wellstead and Sanoff (1981) 

the C(z *) polynomial is estimated using the extended least squares 

method, whereas in Clarke and Gawthrop (J975) it is considered that 

S = S(z"*1) and the parameters of this new polynomial are included in 

the estimation scheme. 
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In the polynomial method, Fig.3.10, of incorporating a set-point, 

therefore, the computational effort is much increased to allow for a 

normalisation process to occur. 

The control input, Fig.3.11, may be written as 

D C z ' V c t ) = DCz'^SvCt) + G(z~*)y(t) + v(t) (3.3.23) 

which leads to the closed loop equation 

[A(z"1)D(z"1) - z"kBCz"1)G(.z"1)]y(t) = z"kB(z_1)[l + D(z~1)S]v(t) 

(3.3.24) 

Hence, when the identity (3.3.21) is used, the problem of the C(z *) 

polynomial is once more apparent, and further, the transient response 

to a change in reference input may be affected in a retrograde manner. 

The value of S required for output normalisation is given 

now as, 

S - [CU)T(l) - B(1)]/BC1)DC1) (3.3.25) 

which requires more calculations than has been the case. 

The format defined by Fig.3.12 provides a control input. 

D(z"1)u(t) = [D(z~1)S+G(z~1)]v(t) + G(z-1)y(t) (3.3.26) 

with a respective closed loop transfer function of, 

[A(z"1)D(z~1) - z"kB(z"1)G(z~l)]y(t) = z~kB(z"1) [D(z_1)S + G(z_1)]u(t) 

(3.3.27) 

A special case now arises when A(z contains a pole at z = +1, i.e. 

the polynomial contains a (1-z S term,then selecting S as being 

zero, normalisation will occur, Wellstead et al (1979b). A similar 

event arises in the controller of Fig. 3.13 where the closed loop 

equation is 

[A(.z"1)D(z"1) - z"kB(z""1)G(z"1)]y(t) = z"kB(z""1)G(z"1)SvCt) (3.3.28) 
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Here, when an integrator term is contained in the A(z ) polynomial, 

such that A(l) = 0, by setting S to unity zero steady state error 

is obtained between reference input and output, y^(t). Otherwise, 

setting S to be 

S = Sq/GCz^1) (3.3.29) 

where SQ= C(l)T(l) /BCl)G(l) (3.3.30) 

will remove the transient effects caused by G(z *). 

The final configuration, Fig 3.14, gives 

D(z"1) u(t) = D(.z~1)Sv(t) + G(z"1)y(t) (3.3.31) 

which provides a closed loop form, 

[A(z"1)D(z~1) -z"kB(.z-1)G(z"1)]y(t) = z""kB(z"1)D(z"1)Sv(t) (3.3.32) 

and from this normalisation is carried out by using 

S Q = C(.l)T( 1) /B(1 )D(1) (3.3.33) 

All the polynomial controls mentioned, therefore, provide zero steady-

state error by use of C(l). The polynomial form equivalent to that 

used in the state-space method of Sec. 3.3(2), can, however, be 

derived from the control input^ 

D'(z"1) G(z_1) 
u(t) r u(t) + - p - y U ) + Sv(t) (3.3.34) 

C(z ') C(z ') 

where D*(z"1) = D(z_1) - C(z_1) (3.3.35) 

which is obtained from (3.3.1), see Appendix 3.2, where it is shown 

that the final closed loop equation is 

[A(z_1)D(z_1) - z~*kBCz""1)G(.z"1) ]y(t) = z"kBCz"1)CCz""1)Sv(t) (3.3.36) 

and if the identity (.3,3.21) is used, this becomes 

T(z"1)y(.t) = z"kB (z_1)Sv(t) 

which is the final form given by the state space control law (3.3.7). 
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Fig. 3.13 
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Unfortunately, unless CCz is estimated by means of an enlarged 

estimation scheme, such as extended least squares, the control input 

(3.3.34) cannot be arrived at by means of a polynomial approach. 

By setting C(z *) = 1, as in recursive least squares, the control 

input returns to that of Fig.3.JO, which resulted in C(z *) appearing 

in the closed loop transfer function. 

7. Regulator with non-zero set-point 

In the deterministic case, the system can be modelled by (3.3.18), 

which has a state space equivalent as, 

(a) x(t+l) = Px(t) + Qu(t) 1 

(3.3.37) 
(b) y (t) = Hx(.t) 

when a set-point input is applied it is required that the output of the 

system will be given by y, and hence the error between the actual 

output and this reference value can be described as 

Wy(t) = y - y(.t) 

By similar reasoning, there is also a system input, u, which will 

achieve the desired output, and thus we have also, 

Wu(t) = u - u(t) 

and Wx(t) = x - x(t) 

where x is the required state vector, from which 

x = Px + Qu 

and y = Hx 

as x(t) = x(t+l), etc. 

Thus by substituting for y(t), u(_t) and x(..t) in (3.3.37)the state 

equations may be written as 
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GO Wx(t+1) = P WxCt) + Q Wu(.t) 

Cb) WyCt) = H Wx(jt) J (3.3.38) 

Similarily, defining the control input from these 'new' state 

equations as 

Wu(t) = F Wx(t) (3.3.39) 

A cost function associated with (3.3.38) can be formulated as 

00 

0(Wu) = I {WyT(t+l)S Wy(t+1) + WuT(t)S Wu(.t)} (3.3.40) 
t=t z 

such that, when this is minimized by correct choice of Wu(t), the 

system is moved optimally from any initial condition to the required 

reference input (set-point). 

By substituting for Wu(t) and Wx(t) in (3.3.39), the actual 

system control input becomes, 

u(t) = Fx(t) - Fx + u (3.3. 41) 

where the constant values u and x̂  are necessary to retain the 

system at the set-point, and hence we need to find these values to 

provide an appropriate controller action. If the control input 

(3.3.41) is now coupled with the original state equations (3.3.37), 

the overall closed loop equation is obtained as, 

-1- ~l -1 - -
y(t) = H(I-z F) Q z {u-Fx) (3.3.42) 

where F = P + QF (3.3.43) 

From (3.3.42) we define 
-1 -1- -1 

G (z ) = H(I-z F) Q z (3.3.44) c Then zero error will occur in the steady state iff 

{u-Fx} = G~"1 ( 1) y (3.3.45) — c 
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where y is the reference output value. 

The overall control input to the system therefore becomes, 

from (3.3.41), 

u(t) = Fx(t) + G"1 Cl)y (3.3.46) 

and this is identical, in form, to the control input used in 

(3.3.1), where S = G ^ U ) and v(.t) = y. 

3.4 Concluding Remarks 

In this chapter the self-tuning property has been shown to apply 

to the state space self-tuners developed in Sec. 2.5, and further 

modes of operation of this type of self-tuning controller 

have been considered. 

Where a robust controller is required specifically for the 

purpose of minimizing the variance of the system, ' s output signal, 

the self-assigning pole scheme .reduces the discrepancy in the value 

of output variance apparent when the pole placement method is compared 

with minimum-variance strategies. This is of great benefit, as, 

if the closed loop poles are chosen, to be constant numerical values, 

prior to controller operation, certain pole positions can cause 

higher output variance values. This can be seen in Table 3.1. 

In sec. 3.3 an external input was included in the state space 

format. When this is considered as a set-point which varies rel-

atively infrequently, the computation necessary to ensure that the error 

between the desired output and the actual output is minimized in the 

steady state, is negligible. A contributory factor to this is the 

independence of the transfer functions dependent on disturbance and set-

point respectively. 
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However, in the state space method discussed, the C(z 

polynomial is not apparent in the closed loop form of either transfer 

function, a characteristic not attributable to most polynomial type 

tuners, where no cancellation of this particular polynomial occurs 

in the set-point case. 

A common factor between the different tuners, though, is the 

appearance of the system open loop polynomial, B(z in the 

numerator of the set-point transfer function. This means that if 

the process is non-minimum phase, this property will be retained in 

the closed loop form. Any attempt to cancel the unstable zeros of 

B(z by correct choice of reference input feedforward characteris-

tics, will result in unstable poles between the reference input and 

the final control input, and these are not desirable. However, 

where a system contains an inherent direct gain factor, this may be 

considered as a scaling of all parameters in the B(z polynomial, 

and hence will be compensated for by an appropriate division, on the 

same scale, in the set-point feedforward gain, thus ensuring 

that the steady state following characteristics of the tuner are not 

impaired. 
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CHAPTER 4 

EXTENSIONS TO THE FORMULATION 

Self-tuning controllers have been introduced and their application 

by means of a state space framework discussed. This chapter is 

used to extend the basic assumptions made, by way of building on 

special properties, covered in the last chapter, attributable to 

these state space self-tuners. 

In Sec. 4.1, linear output feedback (X.o.f.) is combined with 

the original state feedback, by making use of the extra degree of free-

dom allowable from the self-tuning property. As the parameter associated 

with the Z.o.f. cannot be calculated, without further alterations being 

made, from the pole placement criterion, it can either be selected 

apriori or tuned on line for optimization purposes, the pole placement 

being carried out by the state feedback parameters alone. Because 

of problems arising due to matrix, rather than scalar variable, 

multiplication techniques, self-tuning for multivariable systems has, 

to the present, only received a limited coverage. Some of these problems 

are discussed in Sec. 4.2, where the use of multivariable state space 

self-tuners is considered. Some of the explanation is, however, carried 

out by means of the equivalent polynomial form for ease of explanation. 

Section 4.3. briefly describes self-tuning control of non-linear 

processes, although as this may, to a certain extent, be regarded as 

an incorrect choice of model for the estimation procedure, the effects 

of under and over specified models are reviewed in Sec. 4.4. 
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4.1 State Space Self-Tuning With Linear Output Feedback 

1. Introduction 

The majority of self-tuning techniques are based on either pole 

placement or optimization control objectives. In this section a 

self-tuner is proposed, whereby the control input is dependent not 

only on state feedback but also linear output feedback (£.o.f.), and 

by this means a pole placement scheme is augmented with optimal features. 

In the state space approach considered thus far, the reconstruction 

of the state vector is obtained by using information from measurements 

of the system's input and output signals. The optimal reconstruction 

employed, however, does not include the present value of output variable, 

y(.t), although this is available. Therefore it will be considered 

that this output signal is fedback in combination with the usual 

state feedback, and hence will have a further parameter associated 

with it. This new parameter can then either be selected off line, 

as in the case of the required closed loop poles, or be tuned on line, 

Warwick and Westcott (1982), as is done with the state feedback 

parameters. Both cases will be looked at, and their effect on the 

closed loop zeros of the overall transfer function will be investigated. 

The application of an external set-point input has been discussed 

in Sec. 3.3, and here the effect that the additional feedback has on 

the set-point transfer function is, therefore, included in subsection 

3. Finally in subs. 6 numerous simulations are carried out to show 

the complete self-tuner operating on both a nonminimum phase process, 

and a process where the integral time delay can vary. The pole 
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polynomial is also altered between simulations in order to show its 

effect on the linear output feedback parameter. 

2. The application of linear output feedback 

Let the unknown system be described in the state space repres-

entation as , 

(a) xCt+1) = Px(t) + Qu(t) + Re(t) 

Cb) y (t) = Hx(t) + e(t) j 
(4.1.1) 

where the matrices P, Q, R and H are defined in Sec. 2.2(2). The 

estimate of the state vector is, therefore, found to be, 
- 1 - 1 -

get) = z '[I-z *P] (QuCt) + Ry(t)} (4.1.2) 

where P = P - RH . 

It can be seen that due to the z 1 term on the right hand side 

of (4.1.2), the present value of output variable, y(t), does not 

appear in the state estimate. The opportunity therefore arises 

to set the control input, u(t), as a combination of both state and 

output feedback. It was shown in Warwick (1981a) that by modifying 

the state along with the addition of a scalar multiple of the present 

output signal, the control equation of Wellstead et al (1979b) could 

be achieved. But in Sec. 3.1, both this latter case, and the procedure 

described in Sec. 2.5(_1) using solely state feedback, were shown to be special 

cases of a more generalised approach. We now wish to make further 

use of this generalised case to improve on the system response to 

the controller used. Thus the control input is now defined as, 

u(t) = F&Ct) + Gy(t) (4.1.3) 
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where G is a scalar linear output feedback parameter. On sub-

stitution of ( 4 . 1 . 3 ) into the state equations (4.1.1), based on 

the estimated state form, the following expression for the closed 

loop form is obtained. 
-1 -1- -1 -l- -1 

[1-Hz (I-z F) QGjyCt) = fl + Hz (I-z F) R]e(t) (4.1.4) 

where F = P + QF. 

In this instance, it is still required that the closed loop 

pole polynomial obtained from (4.1.4) be calculated such that its 

constituent parameters are equal to those found in the specified pole 

polynomial, T(z *), which is defined in (3.1.7). Hence these parameters 

are obtained from, 

det(I-z_1F) - Hz"1 adj(I-z"1F)QG = T(z_1) (4.1.5) 

Hbwever, if (n^+k) is the dimension of the state space, where k is 

the integer part of the system time delay and n, = max{n ,n, ,n } then 
l a b c 

(4.1.5) leads to (nj+k) equations with (nj+k+1) unknowns, the 'extra' 

unknown parameter being G. If G is specified prior to tuner operation, 

though, this problem is eliminated, an example of which is the use of 

state feedback only, by setting G to zero. 

Equation (4.1.5) is easily simplified for calculation purposes 

by use of the expression 

Hz"1adj(I-z"1F)Q = z"kB(z_1) (4.1.6) 

where equality was shown in Lemma 3.3, and the polynomial B(z is 

defined in the system CARMA model (3.1.1). 

The state feedback parameters fj,...,fn + k contained in F may 

then be calculated from the equation, 

detd-z" 1?) - z"kB(z"1)G = T(z_1) (4.1.7) 
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(4.1.9) 

by applying the state feedback of (_4.1.3), with G specifically chosen. 

However, before considering the reasons for a particular choice of para-

meter G, the self-tuning aspects of the algorithm will be discussed. 

The feedback terms obtained from (4.1.7) are the values calculated 

with regard to the true system parameters, whereas the control input 

actually entails the use of the parameters found in the estimated system 

model employed in the recursive least squares estimation procedure. 

This is given by, 

ACz'SyCt) = BfCz_1)u(t) + eCt) (4.1.8) 

where the polynomials are defined in (.3.1.10), and this is 

represented in its equivalent state space form as, 

(a) x(.t+l) = Px(t) + Qu(t) + Re(t) 

(b) yCt) = Hx(t) + £ (t) 

. a a a 

the matrices P, Q and R containing the estimated model parameters 

being defined in (3.1.42). 

By a similar definition to that of (4.1.3), the actual control 

input provided is given as, 

u(t) = F§(t) + GyCt) (4.1.10) 

where, from (4.1.2), 
A 1 j A — 1 x(t) = z [I-z" P] (Qu(t) + Ry(t)} (4.1.11) 
A A A 

P = P - RH 
A A A 

and F = [f., ..,f ,] l n 

in which n1 is the dimension of the state space. 

The control input (4.1.10) can now be substituted into the 

state equations (.4.1.9) to obtain the closed loop form, 

[l-Hz~1(I-z"1F)"1QG]y(t) = [1+Hz" 1(I-z" lR]e(t) (4.1.12) 
A 
A. A A A 

where F = P + QF. 
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The state feedback factors can, therefore, be evaluated 

recursively, at each sampling instant, from 

detU-z F) - Hz adjCI-z F)QG = T(z ) 

which, by use of Lemma 3.3, can be rewritten as 

detU-z""1!) - BfCz-1)G = T(z~1) 

The numerator of (4.1.12) being found to be 

Ca) detCL-z"1]?) + Hz~*adj (I-z_1F)R 
_ 1 1 ^ 1 i a ^ 

or (b) T(z~ ) + B'(z )G + Hz adj(I-z~ F)R j 

(4.1.13) 

(4.1.14) 

(4.1.15) 

by use of (4.1.14). 

Hence the linear output feedback parameter, G , will affect 

the closed loop zeros, such that by defining 
_i -1 c /v a ~ ~ -n' 

Hz adj(I-z F)R = 1 +A,z + A0z + ... + A fz (4.1.16) 
l z n 

the numerator of (4.1.12) is obtained via (4.1.15b) as 

1 + z_1(t +bnG+A.) + z"2(t + b G + A J + ... + z"n'(t T+b , .G+A ,) 1 0 1 2 1 2 n n-1 n 
(4.1.17) 

This means that although G was specified such that a unique solution 

to (4.1.14) can be obtained, the value of G will affect the position 

of the closed loop zeros, and therefore the variance of the output 
th signal. No zero cancellation will occur unless the n' term of 

(4.1.17) is set equal to zero, and as b , , and A . are quantities n-1 n 
which vary, due to parameter uncertainty in the estimation process, 

an exact cancellation is only a purely theoretical possibility. The 

actual choice of value for G remains, at this stage, a completely 

arbitrary selection, dependent on a required function, examples of 

which are pure state feedback (G = 0), noise filtering or to provide 

a bias on closed loop zeros. For any specific choice of G, it was 

shown in Sec.3.1 that the self-tuning property is not impaired, and 
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thus £ (t) -»• e(t) as t -*• « 

3. Steady-state set-point following 

When the external input applied to the system is no longer equal 

to zero, the regulation problem becomes one of controlling the 

variance of the output signal about a reference mean rather than a 

zero mean. This was considered in detail in Sec. 3.3 with regard to 
o .. 

the state space controller using purely state feedback. In Astrom 

and Wittenmark (1980) a deterministic system was employed, whereas 

when changes in the external input occur relatively infrequently in 

a stochastic environment, Wellstead et al (1979b), by use of an 

integrator in the feedback path and by correct choice of feedforward 

gain, removed problems associated with the C(z polynomial mentioned 

in Sec. 3.4. However, this problem does not occur in the state 

space controller and thus the same approach is taken here as was 

done in Sec. 3.3. The control input, with linear output feedback 

included, may be described as 

u(t) = Fx(t) + Gy(t) + Sv(t) (4.1.18) 

where x(t) is the estimated state vector and v(t) the external input. 

It follows that by substitution of (4.1.18) into the estimated 

state form of (4.1.1a), the state is given by 

g(t) = z~1(I-z~1F)"1{QGy(t) + QSv(t) + Re(t)} (4.1.19) 

Therefore, by inclusion of (4.1.1b) the output sequence is obtained 

as, 

y(t) = Hz"1(I-z~1F)~1{QGy(t) + QSv(t) + Re(t)} +e(t) 

and hence the final closed loop form is 
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[l-Hz"1(.I-z"1F)"1QG]yCt) = [ 1 +Hz"1 Cl-z"1]?) ]R]e(t) 

+ Hz"1(I-z"IF)~1QSv(t) (4.1.20) 

The terms e(t) and v(t) therefore retain independent transfer 

function numerators, and the common denominator is once again equated 

to the previously selected pole polynomial, T(z *), by calculating the 

state feedback parameters from (4.1.5). 

By use of (4.1.6) the closed loop form may then be written as, 

T(z_1)y(t) = [det(I-z_1F) + Hz_1adj(I-z_1F)R]e(t) 

+ z~kB(z_1)Sv(t) (4.1.21) 

The final equation is the overall transfer function, inclusive 

of external input and linear output feedback, for the state space 

controller. 

Removing the external input, by setting S or v(t) to zero, 

gives a closed loop equation (4.1.4), whereas removal of the t.o.f. 

parameter, G = 0, leads to the form (3.3.3). However, where both 

are present the equivalent closed loop form, obtained when the 

estimated system model (4.1.8) is employed, must now be considered. 

By replacing matrices and polynomials in (4.1.21) by their estimated 

counterparts, we have 

T(z"1)y(t) = det[(I-z~1F) + Hz_1adj(I-z~1F)R]e(t) 

+ B'(z"1)Sv(t) (4.1.22) 

where the matrices containing the estimated parameters were specified 
A 

in Sec, 4.1(2), and the state feedback parameters contained within F 

are evaluated by means of (4.1.14). 

It is apparent that, as in Sec.3.3, the compensator, S, can 

be chosen to provide any required steady state signal gain between 

the external input and system output. To achieve direct input steady 
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state tracking, the scalar term 

S = T(l)/B' (1) (4.1.23) 

is calculated at each iteration by summing the terms in the estimated 
^ -1 
B'(z ) polynomial and multiplying the reciprocal of this by the off 

line summation of the terms in the closed loop pole polynomial, 

T(z The calculation of S is therefore not dependent on the 

t.o.f. parameter, G, and thus is not affected by this particular 

modification to the state feedback. 

4. Optimization by selection of the £.o.f. parameter 

In Sec.4.1(2) it was stated that as the linear output feedback 

parameter, G , appears in the numerator of the closed loop 

transfer function, it directly affects the value of output variance 

obtained. This being the case, it is now required that G be chosen 

such that the variance of the system output is either reduced from 

its value when state feedback alone is employed or, better still, 

that it is minimized with respect to all possible values of G. 

However, without prior knowledge of the system parameters it is 

difficult to choose a G before controller start up, such that 

minimization occurs. It therefore remains to cause the output variance 

to be minimized by adapting the value of G whilst the tuner is in 

operation. 

The relative output variance is obtained by dividing (4.1.17), 

the closed loop numerator, by the closed loop denominator, T(z *), 

and subsequently summing the terms in the resultant polynomial. By 

defining H(z *) to be the resultant closed loop polynomial, it follows 

that, 
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y(t) = H(z"J)e(t) C4.1.24) 

oa — 1 _ — i 
where H(z ) = 1 + £ h- z (4.1.25) 

i=l 1 

from which the relative output variance is obtained as, 
oo 

R.V. = 1 + I h? (4.1.26) 
i=l 1 

The summation of this series is found easily with respect to the 
a -1 -j 

parameters of B1(z ), T(z ), etc., but computationally this becomes 

an inefficient procedure to repeat at each iteration. The actual 

value of relative output variance is, in fact, not required, and this 

can be shown by consideration of the requirements for G, the necessary 

condition being, 

G* = arg.min{R.V.;R.V. = 1 + £ h?, G e S} (4.1.27) 
G i=l 1 

where G, a scalar real, is a constituent part of each h^. 

All terms are independently squared, therefore the R.V. is 
* 

given as a linear quadratic equation in G. Hence G can be found 

by obtaining the standard quadratic solution from, 

R.V. - 1 = 0 (4.1.27a) 

But as the number of tu terms present is much greater than the number 

of G's, of which there is one only, the solution to the quadratic 
* equation necessarily gives rise to an imaginary G , such that 

G* = g, + jg2 (4.1.28) 
-* * 

where G is the G which would be obtained, using j-notation, if an 

imaginary root was feasible. However, no phase deviation is allowable, 

due to the scalar real nature of G, thus 

g* = gj (4.1.29) 
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* # where G is merely the real part of G , 
* Thus to obtain G by a process inclusive of (4.1.26) at each 

iteration would be, as mentioned previously, extremely time consuming , 
* 

and is not needed, as G may be defined prior to tuner operation as 

a combination of model estimates and closed loop pole polynomial 

coefficients. 
* 

Note. 4.1: on G and G , 

G is the value of G obtained as an exact solution to (4.1.27a) 

If it were computationally possible to apply this value of G then, 

as R.V. = 1, a minimum-variance self-tuner, with Var{y(t)} = Var{e(t)} 

would have been formulated. But G must be a scalar quantity, and 

therefore it is not possible to apply the imaginary part of 
-* * 

G . Only when g^ = 0 does G = G and a minimum variance self-tuner is 

obtained. This possibility is, however, almost always lost by the use 

of the pole placement approach to self-tuning. 

5. Self-tuning with an adaptive Z.o.f. parameter 

The overall self-tuning algorithm, inclusive of adaptive Z.o.f 

parameter, G, may be described as 

STEP 1) Estimate model parameters, via recursive least squares 

procedure, from system input and output readings. 

2) Obtain state reconstruction using the estimated model 

parameters. 
a -k . s'e 

3) Calculate G , as an estimate of G . 
A 

4) Evaluate state feedback vector F. 
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5) Formulate the new input signal. 

6) Repeat. 

Step 4 is the extra insertion into the algorithm, and hence it is 

necessary that the computational requirements of this step remain 
a* * 

small. Here G is the value of G obtained from the model estimates 

rather than from the actual system parameters. It will be shown 
-k 

shortly that G can converge to G , but firstly an example will be 

considered such that the number of calculations involved in evaluating 
a* 
G may be determined. 

Example 4.1: For a three dimensional state space system model, 

G = 
<G, J , X A - 1 + G 2 ( i 0 V i - 2 + J , W + W i + 

1=1 i=2 l^j 
2 1 

{ G i I b i + 2G2 \ V i + 1 + 2 W 2 } 
i=0 1=0 

(4.1.30) 

where the following parameter definitions are made, 

a) 

b) 

c) 

g1 = c1+t2} " 
g 2 = -tjCi+tj) + t 2(t 1 +t 3) 

g3 = -t2(i+t2) + tjct,^) 

(4.1.31) 

and a) 

b) 

c) 

x1 = "*1 
A A 

X2 = -a 2 -Ca3b0-a1b2)f1 - ( a 2 b 0 - a i b i ) f 2 

X3 = -a -(a3£ra2b2)f1 -(a3v*1
f i2 ) J2 

(4.1.32) 

The values of Ĝ, : i = 1,2,3; however, may be calculated prior to 

start up of the controller, once the pole polynomial has been specified, 
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and therefore do not have to he recalculated at each iteration. In 

the equivalent two dimensional case, b2»2 a n d fc3 a 1 1 b e c o m e equal to 
A 

zero, and thus it follows that A^ is also equal to zero. The 

equation used to obtain G is therefore reduced to two G^ terms in 

both numerator and denominator. A general form for G in an r 

dimensional model, where m > 1 and is a finite integer, can be formulated 

by a simple extrapolation of (4.1.30), but this leads to abbreviation 

difficulties, and hence the use of an example is preferred. 
a* 

The convergence of G found from (4.1.30) is discussed via the 

following lemmas. 
Lemma 4.1 

The state feedback parameters f. f are independent of G , 1 m-1 
* and G is also independent of f , where it is assumed that m is the 

dimension of the state space. 
* 

Proof: If G is dependent on f , then f^ must appear in at least 

one X.. The A.'s are formed as the result of pre- and post-1 1 
multiplication of the adjoint of (I-z *F) in (4.1.16), with system 

parameters substituted, such that 

Hz 1adj(I-z 1F)R = 1 + A,z 1 + A0z 2 + ... + A z m. j 1 2 m 

Because of the pre-multiplication of this adjoint by H, where 

H = [0,... ,0,1 ], only the m*1 row of the adjoint remains. Hence, by the 

definition of the adjoint of a matrix, no terms occupying positions 

in the m t b column of a matrix will appear in the m t b row of its adjoint, 
th 

unless they also appear in a position other than in the m column. 

From the definition of F, F = P + QF, all terms involving f will 



- 1 6 2 -

th appear in only the m column of (1-z F) , therefore no such terms 
- 1 - . * 

will appear in H adj(I-z F), leaving G independent of f . 

The independence of the parameters fj fm_j follows from this, 

as G may be replaced in (4.1.5) by its respective function in 
f. + f . 1 m-1 

Lemma 4.2 

The convergence of the state feedback parameters is not affected 

by the adaptive nature of G. 

Proof: In Sec.3.1 it was proven that for 'any' set value of G, 

subject to the model estimates converging, the feedback parameters f^ 
A A -A 

can converge. As, from Lemma 4.1, f. -*• f . do not depend on G, 
1 m— 1 

the fact that G is adaptive cannot affect their convergence. But 
a ^ /s 
G is calculated by means of f f and no account is taken 1 m-1 

. A. A 
. A 

of f , thus if f + f , converge then G will do likewise, unless m 1 m— 1 
A 

the denominator of G ->• 0 which is not possible in practice. The one 

remaining parameter, f , must therefore also converge, as every factor m 

upon which it is dependent has converged. 

6. Example and simulations 

Consider the system described by, 

(l-z_1 +0.25z"2)y(t) = (z' ]+\.3z~ 2) u(t)+(l-0.4z_1)e(t) (4.1.33) 

where e(t) is a white noise sequence of variance = 0 . 1 . Using a 

pole polynomial, T(z *) equal to unity, and the control law given in 

(4.1.10), the diagram of Fig.4.1 shows how the theoretical output 

variance is related to a change in the linear output feedback parameter, 
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G. Dotted lines show the output variance obtained when solely state 

feedback is employed, i.e. G is zero. The minimum value of relative 

output variance is found to be 1.1073 when G = -0.3404, this compares 

to a relative output variance obtained via the original polynomial 

method, Wellstead et al 0979b), of 1.1716. 

Simulation 1: During these simulations the variable forgetting 

factor proposed by Wellstead and Sanoff (1981) was employed, 

with an initial start up value of 0.94 and a window of 100 samples 

(t=100). In the first simulation the system given in the above 

example was considered with T(.z set out at unity. Fig.4.2 

shows the convergence of the linear output feedback parameter 

and Fig.4.3 the system output, y(t). It can be seen that 

suitable convergence is obtained, under these conditions, within 1000 

time intervals, and hence this remained as the number of periods 

investigated for the remaining simulations. 

Simulation 2: The same process (4.1.33) was considered, although 

in this case the pole polynomial was chosen to be, 

T(z_1) = 1 + 0.5z-1 (4.1.34) 

Fig.4.4, then gives the convergence of the £.o.f. parameter, 

where the dotted line indicates the value of G obtained when 

the problem is calculated with known system parameters, i.e. 
* 

G = G , and this is the hoped for convergence value of G. 

- 2 

Simulation 3: The final u(t) parameter, i.e. 1.3z , is omitted from 

the system given in the example (4.1.33), and the effect of a 

change in pure system time delay is examined. 



Fig. 4.6. System Output, Simulation 3 

— • Time — 

1 

Change in time ^J 
delay J 

Fig. 4.8. e(t)-e(t), Simulation 3. 
Time — 
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During the first 500 time periods the process is described by, 

O - z ^ + O ^ S z ^ y C t ) = z - 1 uC t ) + C l-0 . 4 z _ 1 ) eC t ) ( 4 . 1 . 35 ) 

th 

After the 500 time instant this changes to, 

(_l-z~1+0.25z"2)y(t) = z~2u(t) + (l-O^z'^eCt) (4.1.36) 

The model, from which the estimated parameter values are 

obtained, remains constant, although in this case the model 

parameters readjust after the change in time delay has occurred. 

With the pole polynomial, once again, set to unity, Fig.4.5 

shows the value of the £.o.f. parameter throughout the simulation, 

and it is noticeable that convergence is slower after the time 

delay alteration. In the system output > Fig. 4.6, large 

spikes appear after the change, a phenomenon which was seen 

in the original polynomial simulations carried out in Sec.2.5(5). 

By setting G equal to zero, Fig.4.7, the spikes are removed, 

although a larger output variance results. 

The difference between the system disturbance, e(t), and the 

model error, e(t), is given in Fig.4.8. This should tend 

to zero due to the property exhibited by self-tuners that 

e(t) e(t) as t 

Simulation 4: The closed loop pole polynomial is selected to be 

that of (4.1.34), and simulation 3 is repeated with this singular 

difference. The convergence of the Z.o.f. parameter, Fig.4.9, 

is again shown to be weaker after the time delay change, and 

this is combined with a larger value of e(t) - eCt), Fig.4.10. 



Fig. 4.9 Convergence of L.O.F. Parameter, Simulation 4 

5CjO 
l 
Time — ^ 

Fig. 4.10. e(t) - e(t), Simulation 4. 

Fig. 4.11, Variable Forgetting Factor 
Simulation 1. 
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The asymptotic output variances for the preceding simulations 

are given in the following table; where (a) denotes the value before 

the change in time delay and (h) the value after the change. 

Table 4.1: 

Simulation 
* 

G 
Output Variance 

(O.V) 
O.V. with 
purely state 
feedback 

1 -0.3404 0.1107 0.1419 

2 -0.4097 0.1079 0.1389 

3(a) -0.6 0. 1 0.1360 

3(b) -0.35 0.1360 0.1482 

4(a) -0.6 0. 1 0.1480 

4(b) -0.35 0.1360 0.1523 

In 3(a) and 4(a) of table 4.1, the output variance is equal to the 

variance of the system disturbance, e(t), i.e. minimum-variance self-

tuning has been applied. This is a special case when the system 

B(z polynomial is of order unity, allowing the Z.o.f. parameter 

to converge to G . 
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4.2 Multivariahle Controller Design 

1. Introduction 

Minimum-variance type controllers were employed with multivariable sys-

tems in Borisson 0975), and many of the properties that are apparent 

in the SISO version also hold in the MIMO case. Unfortunately some 

of these are disadvantageous, such as the problems associated with 

nonminimum phase systems and the acute sensitivity shown when 

alterations in system time delay occur. The system time delay, 

k, provides a further limitation in the usage of this class of regulator 

in multivariable control systems, as a basic requirement is that all 

control loops have identical k values. The number of practical 

situations where this is the case are relatively few and hence the 

pole placement approach, which allows for inputs with varying integer 

time delay values, has been developed, Prager and Wellstead (1981). 

This type of algorithm provides a more robust control action, which 

deals with non-minimum phase systems, although extra computational effort 

is required and the regulation characteristics are suboptimal. 

In this section the minimum variance type tuners will be reviewed, 

the progression to the pole placement case discussed, and finally the 

state space approach to multivariable self-tuning controllers will be 

introduced. 

2. Minimum-variance controllers 

The process is modelled by the equation, 

A(z~l)v(t) = z""kB(z_1)uCt) + C(z"1)B(t) (4.2.1) 



- 1 7 0 -

where (y(t) : teT} and (u(t) : teT}are vectors of dimension mxl denoting 

the system output and input sequences respectively. 

{e(.t) : t = 0, ±1, ±2,... } is a vector sequence, also of dimension 

mxl, which is assumed to be zero-mean with a covariance equal to ft. 

The matrix polynomials in the above equation are defined as, 
-1 1 ~n 

ACz ) = An + A.z +...+A z a (A.2.2) U 1 n a 

where B(z and C(z are defined in a similar fashion, being of 

degree n^ and n^ respectively, although it will be considered that 

all polynomials are of degree nj, where n^ is the maximum degree 

contained by the three polynomials. If a particular polynomial 

is of degree less than n(, its higher order, not apparent, matrices 

are defined to be the null matrix. 

In general A^, B^, CL are of dimension m><m, where i = 0,...,nj 

and AQ, CQ are the unit matrix such that A(z and C(z S are monic 

polynomial matrices. In the minimum variance case it will be considered 

that all control loops have identical integer time delays, thus k is 

common to all m inputs. 

The matrix polynomial identity, 

C(z_1) = A(z_1)E(z~1) + z"kG(z_1) (A.2.3) 

in which E(z is monic and of degree k-1, and G(z is of degree 

nj-l,is used to obtain the solution for the control law polynomials 

E(z and G(z S , which are required for the control input found 

as follows. 

The system output vector is predicted k steps ahead of the 

present time to be, 
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E{y(t+k)} = y(t+k) - ECz_1)e(t+k) (4.2.4) 

and E{y(t+k)} = C _ 1 (z"1) [B(z_1 )E(z"1)u(t) + G(z_1)y(t)] (4.2.5) 

Thus, if it is required that the expected value of the system output 

vector is zero at time t+k, the control input must necessarily be, 

u(t) = -B"1(z"1)G(z"1)E"1(z"1)y(t) (4.2.6) 

where E(z and G(z *) are obtained from (4.2.3). 

Hence y(t+k) = E(z"1)e(t+k) (4.2.7) 

or y(t) = e(t) + E ^ t - l ) + ... +Ek_je(t-k+l). 

Therefore the final control input (4.2.6) minimizes E{y (t) £y(t)}; 

I being a positive definite symmetric matrix. If the matrix polynomials 

defined in (4.2.1) are now assumed to be unknown, they may be estimated 

recursively, on line by means of the recursive least squares procedure. 

The application of this estimation scheme to the SISO minimum variance 

case was reviewed in Sec.1.5(1), and the same principles hold here, 

although rather than an estimation of model parameters taking place, 

the mxm model parameter matrices must now be estimated. Thus, where 

once one parameter was estimated, this is replaced by an mxm matrix 

of parameters. The extension of self-tuning to deal with multivariable 

systems therefore introduces a large increase in the necessary computing 

time. 

Many of the properties associated with the SISO minimum-variance 

self-tuning controller carry through to the MIMO case. It has been 

shown that the control law (4.2.6) and the identity (4.2.3) are of the 

same form, and this is also true of the stability analysis. Denoting 

the determinant of the matrix polynomial, b(z by |b(Z *)!, then for 

stability of the multivariable self-tuning algorithm it is a requirement 
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that neither |B(z nor |C(z have any unstable roots. 

Hence the dependence of operation of the minimum variance controller 

on the minimum phase behaviour of the plant. 

As in the SISO case a detuned minimum variance controller 

may be formulated by placing a costing on the control input as well 

as the system output. 

We will, therefore, consider the function; 
T T 

E{y (t+k)(t+k)+u (t)yu(t)}, which must be minimized, by considering 

Y to be, like £ , a positive definite symmetric matrix. 

By partial differentiation of the above function with respect 

to u(t); the required control input is found to be, 

u(t) = - Y " ^ E{y(t+k)} (4.2.8) 

where E{*} denotes the expected value. 

However, from (4.2.4) this may be rewritten as, 

u(t) = -Y-1BQ£[y(t+k) - E(z~1)e(t+k)]. 

By use of (4.2.1) it follows that, 

u(t) = -y"1BQl[y(t+k)-E(z"1)c"1(z"1)A(z"1)y(t+k)+E(z"1)c"1(z"1) 

B(z-1)u(t)] 

Hence, 

[E(z"1)c"1(z"1)B(z"1) + r 1BQ TY]u(t) = [E(z"1)c"1(z"1)A(z"1)-I]y(t+k) 

and therefore, if the identity (4.2.3) is employed, 

[B(z-1) + C(z"1)E"1(z"1)r1BQTy]u(t) = -G(z"1)E"1(z"l)y(t) 

. . . (4.2.9) 

where £ and y can be chosen by the system operator. 
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3 Pole placement controller 

Assuming the process to be modelled by (4.2.1), the control 

law is defined as, 

uCt) = GCz~1)D'1Cz"1)z(t) (4.2.10) 

where D(z is a monic matrix polynomial of degree n^+k-1, G(z 

is of degree n - 1 , and both are of the form (4.2.2). 

By substitution of (4.2.10) into (4.2.1) the closed loop equation 

for the system with this control law applied is found to be, 

[A(z"]) - z"kB(z~1)G(z"1)D"1(z"1)]y(t) = C(z"1)e(t) (4.2.11) 

or [ACZ'SdCZ'1) - z"kb(z"1)G(z"1)]d"1(z~1)y(t) = C(z_1)e(t). 

We now wish to choose the closed-loop poles of the overall system,and 

by defining T(z *) to be monic and of the same form as (4.2.2), these 

poles are obtained as the solution to Jt(Z s|which may be chosen 

prior to application of the control law. 

Therefore using the identity, 

[A(z_1)D(z-1) - z"kB(z"1)G(z~1)] = C(z~1)T(z"1) (4.2.12) 

such that the matrices of the polynomials used in the control input 

equation (4.2.10), D(z S and G(z may be evaluated from this, the 

closed loop system now becomes, 

T(z"1)D_1(z"1)y(t) = e(t) 

where a cancellation of the C(z matrix polynomial occurs. 

The closed loop form may be rewritten as, 

£(t) = D(z"I)T_1(z"1)e(t) (4.2.13) 

and thus a condition of relative primeness must exist between 

D(z *) and T(z *), which is almost always true. 
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Although this method has the advantage, as in the SISO case, over 

minimum-variance multivariable controllers, in its non-sensitivity 

to non minimum phase plant, the major advantage is its ability to deal 

with systems in which a different integer time delay can be associated with 

each input. The number of multivariable processes that contain uniform 

delays, k, is extremely small, Borisson (1975), and this greatly limits 

the field of application for minimum-variance type MIMO controllers, 

The use of the recursive least squares estimation scheme, when 

the system matrices (4.2.1) are unknown, is carried out in a similar 

fashion to that in the SISO problem, which was dealt with in Sec.1.5(3)• 

Once again, though, where previously single parameters were estimated, 

these are now replaced by matrices of dimension mxm, all of whose para-

meters must be estimated. The self-tuning property of the overall 

algorithm then holds, Prager and Wellstead (1981), provided the maximum 

value of integer time delay, k, in any loop, does not overshoot the 

maximum value specified, k , which now becomes the maximum possible 
m 

value connected with any input. 

4. State-space controller 

The process is considered to be modelled by use of (4.2.1) in 

the CARMA form. A state space approach, similar to that used for 

SISO systems may now be defined as, 

x(t+1) = Px(t) + Qu(t) + Re(t) 

y(t) = Hx(t) + e(t) 
(4.2.14) 
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where, 

r 

P = 

i * 

(0 . 

. 0 

-A n. 

~A, 
-a. 

B 

, Q = B

o 

0 

. • J 
( 4 . 2 . 15 ) 

R = 
C -An, 
n 1 1 

C f A l 

h = 

where n, = max{n ,n, ,n } , and as each matrix A,, B,, C, etc. is of 1 a b c 1 1 1 
dimension mxm, the overall dimension of the matrix P is 

(nj+k)m x (nj+k)m. The matrices I and 0, the identity and null 
T 

matrices, are necessarily of dimens.ion mx m and Q, R and H are of 

dimension (nj+k)mxm. {u(t) : teT} and (y(t) : teT} are mxl vector 

input and output sequences respectively and the state, x(t), is now of 

dimension (nj+k)mxl such that the number of states is increased in the 

MIMO case, from the SISO system, by a factor m. 

The simplest method of analysis for the multivariable state 

space controller is by a simple extrapolation to the SISO model. It 

was shown (2.3.6) that for a SISO system the estimate of the state 

vector is given by, 
-i- -i 

(4.2.16) 
x(t) = (Ij-z"^)"1 z"1[Qu(t) + Ry(t) ] 
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where now the original equation has been extended to cover the 

multivariable case. is the identity matrix of dimension 

(n^+k)m x (rij+k)m and here C(z S is considered to be equal to the 

mxm unit matrix I. As P = P - RH, the estimate may be rewritten, 

B z"1 
"1 

B z '+B z 2 
nl nl 

x ( t ) = 

-k -1 -n. 
z (B_+z B+...+B z ) ^ 0 1 n. ' 

u(t) + -A z 
nl 

-1 

. - 1 A - 2 -A.z -A0z -...-A z 1 2 n j 
-n. 

y ( t ) 

Although where C(z is regarded in its general form, 
(4.2.17) 

(Ij-z *P) = 

-z" 1! 

0 -1 

-1 z c n 
-1 z c. 

-1 -z I I+z c 1 j 

(4.2.18) 

This leads to a more complicated expression for x(t), as in the SISO 

case, and although this is not of direct importance in this section 

the estimate is nevertheless rewritten in the form of (4.2.17) in 
-1- -1 

Appendix 4.1, where (I^_z P) is obtained. 

However, where a recursive least squares procedure is employed 

the state may be reconstructed from the equivalent of (4.2.17), and thus 
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C(z is considered as the unit matrix. 

The control input is defined as, 

u(t) = Fx(t) (4.2.19) 

where F, the state feedback matrix, now contains m x (nj+k)m parameters. 

By substitution of (4.2.19) into the equations (4.2.14) the 

closed loop equation is therefore, 

lit) = [I + Hz"1(I1-z"1F)~1R]e(t) (4.2.20) 

where F = P + QF. 

This final form is similar to (4.1.4) in the S1S0 case, but 

be cause of the properties of the matrix multiplication procedures 

now involved, especially in finding the inverse of I - z *F, any 

attempt to assign the closed loop poles directly from the above equation 

is not feasible. 

For a simpler approach to the multivariable pole placement 

problem in a state space framework we will make use of the separation 

principle, where the estimation of the state vector and the calculation 

of the controller action may be derived without consideration of their 

counterpart calculation. As the state estimate has already been 

dealt with our attention is now focussed on the determination of the 

controller action by means of the selection of closed loop poles. 

The deterministic system is now considered where, 

x(t+l) = Px(t) + Qu(t) 

lit) = Hx(t) 
(4.2.21) 

where the matrices are as defined in (4.2.15). 

If the control input is chosen to be (4.2.19), the matrix of 

dynamics of the feedback system is F. Thus the required closed 

loop poles may be found by the correct choice of F in the matrix 
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Ij-z ^F. However the present state space formulation, with matrices 

defined in (4.2.15), is not a canonical form. In the SISO case the 

canonical form of reconstructability was employed, and thus here we 

will obtain the multivariable canonical form of reconstructability 

before proceeding with the pole placement. Defining a matrix L, 

as that which is required in order to obtain a reconstructability can-

onical form, then 

P R = L_1PL, Q r = L - 1Q, H r = HL (4.2.22) 

and x^(t) = L _ 1 x(t) (4.2.23) 

To give an equivalent version of (4.2.21) in the required form as, 

x.Ct+1) = PR x_(t) + Q_ u(t) 
R ^ R (4.2.24) 

y(t) = H R x R ( t ) j 

Now however the state vector is not equivalent to that previously 

estimated, thus if the state feedback parameter matrix F is found 

from the form (4.2.24) the control input is then given by, 

u(t) = FxR(t) = FL_1x(t) (4.2.25) 

The method used to obtain the correct matrix L is set out in many 

works, e.g. Strejc (1981), the solution to this problem being stated 

as the (nj+k)m x ( n i+k)m matrix^ 
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L = L -1 1 0 . . . 0 i q . . . 0 
0 0 

0 1 0 . . 0 

0 . . . 0 

1 
0 . . . 0 1 

0 
• • 0 . . . . 0 

1 
0 
2 ± ± ± 2 _) 
0 . . . 0 
0 1 0.. 0 

0. . . .0 
4 

jo . . . 0 1 
•i. 
i-
lo 

!' 
lo . . . 0 

0 
_ji_0..̂ 0_0_ 

0 1 0 ..0 
1 
4 
lo . . . 0 

0 . . 0 1 

(4 .2 .26 ) 

Hence L is symmetric. 

This new state space form can now be regarded as having matrices 

with the following structure, 

0 . . . 0) (4 .2 .27 ) hr = 0 . . . 0 1 0 . . . 0 
0 0 0 . . . 0 1 

0 . 

PR = Co 

1 

0 

0 

0 

0 

. . 0 0 . . . . 0 . . , 0 . . 0 1 

-a 

0 
0 
11 
n 

1 -a 11 

-a 

-a; 

1 _ l 
0 
0 
21 
1 

21 

, 0 
0 
-a12 

n 

0...0 -a, 

. ..|0 . . . 0 
lm -a n 

0. . 0 -a m 

-a 
0 mm 

••0 1 -a mm 

(4 .2 .28 ) 
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where the A(z matrix polynomial is redefined such that each element 

is of the form, 

A. = l 
1 1 lm 

ml a. i 
mm a. i 

(4.2.29) 

where i = 1,...,n . For i = 0 , A. is the unit matrix which can be a 0 

derived as a special case of (4.2.29). 

The new state space formulation may therefore be directly obtained 

from the parameters in the CARMA model. This is also true of the state 

estimate x^t), where although we now have x^t) = Lx(t), as L contains 

only zeros and ones, this can be regarded merely as altering the positions 

of the state estimates in the state vector, no multiplications take place. 

Many methods then exist for obtaining the necessary closed loop 

pole polynomial form. The calculation of the state feedback parameters 

is much simplified by transforming the state equations into a 

controllable canonical form, although this leads to a more complicated 

expression for the associated state vector. The 'best' method, in some 

sense, is the topic for further research and thus will not be dealt with 

further here. Defining the specified closed loop matrix polynomial as 

T(z 1), where, 
-1 -1 ~n 

T(z ) = I + T z" + ... + T z t 
1 n t 

and each T. = l T? 0 . . l 
0 • 

(4.2.30) 

(4.2.31) 
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Then TCz"1) = ' t V 1 ) 0 

t^cz"1) 0 -0 

Thus to obtain the necessary closed loop form, 

(ij-z 1f)"1 = x . 1 . -1. T (z ). 

0 

0...! 0 

-1 
0 

T1 ( z~"1) 1 

1 tmcz-1) 0 . . . 0 

v. . 0 
o..;.:o tm(z~1) 

. . . (4.2.32) 

where X is the residual adjoint matrix,and substituting for this in 

the closed loop equation (4.2.20), 

y(t) = [I + z"1YT_1(z"1)]e(t) 

leads to, 

where Y is obtained from HXR. 

Thus 

which produces the necessary pole polynomial matrix. 

y(t) = [T(z *) + z - 1Y] T ~ \ z *)e(t) (4.2.33) 
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4.3 Nonlinear Systems Control 

1. Introduction 

The basic model employed in this thes is, where SXSO models are 
o 

concerned, has regarded the system to be linear, Astrom (1970). 

Because of this, the superposition theorem holds and thus the model, 

whether state space or polynomial, is much simplified due to the system 

and measurement disturbances being thought of as one and the same. In 

practice though nonlinearities, in the process to be controlled, may 

occur and in this case a self-tuning algorithm cannot be directly 

implemented, although minor nonlinear effects can, in fact, be dealt 

with due to the incorporation of an on-line recursive parameter estimator. 

Where nonlinearities are much stronger, especially around the 

point of operation of the self-tuner, this must be accounted for by 

use of either a more responsive estimation scheme,Wittenmark (1979), 

or by including nonlinearities in the system model, Anbumani et al (1981). 

It is generally true, though, that if a nonlinear model is used, many 

of the properties attributable to self-tuning controllers will no longer 

apply, and furthermore the formulation of a control law which is suitable 

for use with the model can become extremely complicated. As in the 

case of linear systems, the final control scheme must be computationally 

simple enough to be deployed on a microprocessor in an iterative procedure, 

and this limits the encroachment into nonlinear theory to a large extent. 

The two methods mentioned will be discussed in this section with 

emphasis placed on their effects on the state space description. 
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2. Dual estimation method 

Kalman filtering estimation techniques, introduced in Sec.1.4, 

provide a good estimation scheme for a system with parameters which 

remain constant or vary slowly with respect to time. Where variations 

are rapid and/or more frequent, the basic estimator may not respond 

swiftly enough, thus a further 'rough' estimator is appended. The 

purpose of this second estimator is to choose the best model, from a 

given set of possible models, such that the primary estimation procedure 

may be carried out by using this best form. 
o .. 

The standard Kalman filter equations, Astrom and Eykhoff (1971), 

whereby the 'states' in the filter are thought of as being the unknown 

system parameters, can however be adjusted, with a restriction of one 

possible model, by the inclusion of a variable forgetting factor, which 

decreases to counteract a low Kalman gain value. The problem arises, 

though, that when the model itself is a poor fit, the forgetting factor 

will remain at a relatively low magnitude and therefore the parameter 

estimates, obtained from the estimation scheme, may be poor. 

Thus, prior to controller operation a set of possible models, 

which is considered to be known, is specified such that the estimator 

operates as follows. 

The process is described by the equation, 

A(z-1)y(t) = z"kB(z_1)u(t) + C(z_1)e(t) (4.3.1) 

where A(z is monic, and C(z *) is defined initially to be unity. 

The parameters contained in the respective polynomials A(z S and 

B(z are now time varying and it is assumed that the parameter vector 

(state) is defined as, 
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0T(t) = [a (t),a (t),...,a (t) , bn(t),b (t),...,b (t)] 
na ^ 

( 4 . 3 . 2 ) 

where a^t), a^Ct) ,.. . ,bg(t) ,b (t) ,..., are the parameters of the 

respective polynomials in (4.3.1) which are of order n^ and n^. 

This parameter vector is then estimated by means of the primary estimator, 
A 

to obtain 9(t) at each sampling period. 

The set of possible 9 at time t is now introduced as 

{9^ : i = 1,...,N}. Having taken input and output signal samples up 

to and including those at time t it is therefore possible to test 

the residuals obtained for each particular incorporation. Schemes 

for carrying this out include a Bayesian probabilistic rule or for easier 

computation the maximization of a log likelihood function. Both 

methods need to incorporate an updated window, such that only the 

most recent sampled values are considered, the actual window size being 

dependent on how fast the system parameters are likely to vary. 

At each iteration of this rough estimator, the best 9^ obtained 

is fed through to form the framework for 0 in the next primary estimator 

calculation. If the 9^ fed forward remains constant over a large 

time period this means that the primary estimator is able to cope 

with the parameter variations and hence the system nonlinearities are 

not as severe as was expected. The effect of this estimaticpn scheme 

on the state space controller model is to change the dimension of the 

state space accordingly, although as this is dependent on 
A 

max{na,n^} rather than n^+n^, as is the case with 0 , no change in dim-

ension will take place if min{na,n^} is affected by a new 0^ unless 

min{na,n^} = max{na,n^} . 
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One distinct advantage of this type of estimation procedure 

is that where the process is redefined, by internal alterations, the 

controller need not be reformulated, as the rough estimator will 

allow for this permanent change. 

3. Nonlinear model control 

The inclusion of nonlinearities into the system under control 

have been limited, to date, to minimum variance controllers, the 

state space equivalent of which having been formulated in Sec.2.4 as 

a special case of the class of self-tuners in which a weighting is 

placed on the control input as well as the system output. 

By using the linear system description (4.3.1), the input u(t) 

is now considered to be obtained as, 

u(t) = UQ + u,u(t) + U2u2(t) + ... + HN£N(t) (4.3.3) 

where u(t) is the actual control input to the plant. Rewriting the 

above equation as, 

u(t) = Uu(.t) (4.3.4) 

the overall system may be modelled by, 

ACz'SyCt) = z"kB(.z"1)I^(t) + C(z"1)e(t) (4.3.5) 

where the usual definitions (see(1.3.14) for example) apply to the 

constituent polynomials. 

The estimation model is then extended to include the larger 

number of parameter estimates, such that the final control law for 

the minimum-variance case is obtained from (1.5.5) as, 

E(z~1)B(z"1)yu(t) = - G(z"1)y(t) (4.3.6) 

where E(z *) and G(z S are evaluated from the identity, 
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C(z = ACz'SeCz"1) + z kGCz - 1) (4.3.7) 

Thus the final control input, u(t) , is given (4.3.6) as a polynomial 

of order N, and this necessitates the inclusion of a root extraction 

algorithm before the control can be applied, and thus N is limited to 

an odd value such that at least one real root is assured. 

This method of dealing with nonlinearities is, at present, 

limited to use with minimum-variance tuners, although set-point 

inputs can be allowed for. Despite the fact that minimum-variance 

control can be obtained via the state space, the advantages of the 

latter approach lie more in the pole placement field, and therefore the 

employment of such a nonlinear technique via the state space will lead 

to no foreseeable improvement. 

4.4. Ill-Defined System Models 

This section briefly considers the effect of either under or 

over specification of the system order. When the model, to be used for 

estimation and control purposes, is decided upon, the order of the 

model, and thus the dimension of the state space, is usually assumed 

to be equal to the order of the process to be controlled. But this 

may well not be the case, especially if little knowledge concerning 

the process is available. This can be remedied to an extent by the use 

of a two level estimator, discussed in the preceding section, whereby 

the higher level decides upon the model order and the lower level 

estimates the parameters within that bound. But this provides extra 

computation and as only a finite number of apriori models may be chosen 

from, the actual process order may still fall outside these available 

models. Thus consideration must be taken of the effects of using 
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a model of different order to that of the process itself. 

The problem of employing a model which is much simpler than 

the actual process, an underspecified model, has been found to affect 
o ,, 

the control provided to only a very limited extent, Astrom (1980). 

Even when the model is several orders lower than the process, 

because of the self-tuning action, the range over which closed loop 

stability is highly dependent on a correct model choice is very small. 

This is, of course, a large bonus for self-tuning controllers, due to 

the requirement for a simple computational algorithm which necessarily 

results from a simple model structure. Significantly, in the case of 

pole placement state space self-tuners, the use of linear output 

feedback, Sec.4.1, introduces a negligible amount of extra computation 

when low order models are used, provided that this order is large 

enough to encompass the specified pole polynomial. 

Overspecification of the model order is generally the rule, rather 

than the exception, in identification procedures, where it is assumed 

that the model chosen to be used for the system parameter estimation 

is sufficient to allow for the actual parameters to be estimated. The 

excess estimates then tend to zero, which means that it is only the 

control law itself which may be affected under these circumstances. 

The major problem lies in the inversion, by whatever means, of a coe-

fficient matrix, e.g. the W matrix in Sec. 2.5. Where a column and 

row of a matrix have as their maximum coefficient a factor tending to 

zero, a lower bound must be included such that when this is violated 

by the maximum coefficient the order of the matrix is reduced by unity. 

This is of special importance when a variable integer time delay k is 
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allowed for in pole placement self-tuners by the selection of k max 
If the actual time delay of the process is less than k , max 

-1 
(k^^-k) higher order parameters of the B' (z polynomial will tend 

to zero, and thus a reduction in the dimension of the state space 

may be necessary. 

4.5 Concluding Remarks 

For high order system models the use of linear output feedback, 
* 

and hence the calculation of G can prove to be computationally inefficient, 

but for relatively low order models the extra computational requirements 

are minimal in relation to the total necessary in the entire algorithm. 

This increase in computing time is, however, rewarded by a much improved 

value of output variance when compared to that obtained if state 

feedback alone is used. One of the advantages of the state feedback 

method was that output spikes, occurring when changes in process integer 

time delay appear, are non existent. This is lost when Z.o.f. is used, 

although the magnitude of the spikes may be reduced by the use of a more 

active variable forgetting factor. In fact, the variable forgetting 

factor employed in the simulations of Sec.4.1(6) was of the type pro-

posed by Wellstead and Sanoff (1981), as this was found to be comput-

ationally far less time consuming than that of the stochastic version 

of Cordero and Ihyne (1981), although an equivalent factor can result, 

Omani (1981). 

Ultimately, though, the best overall performance would be 

achieved by the use of Z.o.f. under steady conditions, in combination 

with state feedback, and a cessation of the £.o.f. content when either 
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a change in time delay occurs or if the model estimates vary rapidly. 

The problem than arises, however, of detecting changes in the system 

parameters, although the variable forgetting factor, which decreases 

rapidly due to a large estimation error, provides one possible 

measurement. 

The problems found in the extention of state space self-tuning 

to multivariable control systems are centred around the non-commutative 

property when the multiplication of constituent matrices occurs. 

However, if a suitable state form, i.e. reconstructibility canonical 

form, is obtained, this problem is then removed. There still remain 

several possible ways of obtaining the state feedback parameters via 

the model described, and this remains as the subject for further research 

to discover the benefits or detractions of each particular approach. 

The state equations used as a starting point for the multivariable 

case were merely an extension to those employed in the SISO problem, 

and other representations must therefore not be discounted. One 

such possibility is the formulation of the state vector by a stacking 

of past input and output signal values, although this method really 

represents another way of writing the polynomial equations in matrix 

form, and hence has not been dealt with in this section. 

Due to the use of a simple linear model as a basis for self-

tuning controllers, the incorporation of a system which is actually 

non linear has not, to the present, been considered in great detail. 

Using a two-level estimator, Sec.4.3(2), has no effect on the final 

model type, merely on the number of parameters it must incorporate. 

Finally, as models, may be employed in self-tuning controllers, 

which are much simpler than the actual process under control, the 
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overall computational effort remains small, and hence suitable for 

real-time microprocessor implementation. As far as model overspecific-

ation is concerned, cancelling modes in the open loop system transfer 

function can lead to an estimation procedure which appears to be over-

specified, even though theoretically it is not. Where the cancelling 

mode lies within the unit circle of the z-plane, stability of the overall 

closed loop system is not impaired, although unstable, uncontrollable 

modes can give problems, dependent on the type of control action selected. 
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CHAPTER 5 

FILTERING AND OBSERVER THEORY 

Most of the work in. the previous chapters has been concerned 

principally with the formulation of the desired control law, the 

system state being regarded as known or, at worst, it may be estimated. 

However, where a state estimation scheme was discussed, Sec.2.3, the 

underlying filtering techniques used were glossed over simply by 

looking at the problem as one of back substitution in the state 

equations. 

In this chapter it is intended to reconsider the estimation 

scheme employed and by doing so to investigate the type of observer 

necessary to obtain the estimate from system output and control 

input values. The observer form used is standard, Kwakernaak and Sivan 

(1972), and defines the basis of other filtering configurations, Vathsal 

(1980), Warwick (1982). From this starting point the estimator is 

found, as if the parameters of the system were known, such that in its 

final format the oberver is considered optimal in the sense that the 

mean square error in state reconstruction is minimized. 

In Sec.5.1, the optimal observer, also known as the Kalman-

Bucy filter, is found by using only past values of input and output 

signals. This provides the state estimate of Sec.2.3, which was later 

used in self-tuning, specifically pole placement, design. A modified 

estimate is then looked at in Sec.5.2 by including the present value 

of output signal in the observer equations. However, the optimal 
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observer found by this approach is not the one used in other self-

tuning systems, and hence in Sec.5.3, a modified non-optimal observer 

is obtained, which meets the necessary requirement. 

The stability and reconstruction error properties of each 

of the observer forms are discussed, and the possibility of obtaining 

the modified forms from the original estimate of Sec.5.1 is shown. 

5.1 State Reconstruction for the Primary Model 

1. Observer formulation 

The state estimation procedure, formulated in Sec.2.3, used 

simple back substitution by means of the state equations in order 

to arrive at its final form. Here the underlying observer theory 

connected with such an estimation scheme is discussed. 

The state equationsare given in the discrete time by: 

(a) x(t+l) = Px(t) + Qu(t) + Re(t) 

(b) y (t) = Hx(t)+e(t) J (5.1.1) 

where the constituent matrices, for this particular case, are defined 

in sec. 2.2(2), and R e(t) is the state excitation or process noise, 

whereas e(t) is the the measurement noise. Hence, as the process 

noise is a linear combination of the measurement noise, the process 

is singular. 

If the system in (5.1.1) is regarded to be of order n, where 

n is redefined for this chapter, then a full-order observer for the 

system, is obtained from the n-dimensional equation, 

x(t+l) = Px(t) + Qu(t) + K[y(t)-Hx(t)] (5.1.2) 
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on condition that x(tQ) = x(tQ), from which it follows that x(t) = x(t); 

t _> t for all u(t), t >_ tQ; Kwakernaak and Sivan (1972). 

Previously, Sec. 2.3, it was shown that by setting K = R 

we obtain, 

- 1 - - 1 

x(t+l) = [I-z P] (Ry(t) + Qu(t)} (5.1.3) 
where P = P - RH. /r , (5.1.4) 

This is now examined from a filtering point of view by con-

sidering the discrepancy between (5.1.1) and (5.1.2). If the 

state, x(t), and the reconstructed state, x(t), are identical, these 

equations are the same. But where they differ it is necessary that 

some measure of the error between them is taken. 

Let this error between the state vectors, known as the re-

construction error, be A(t), when the error is considered at time 

t, and thus 

A(t) = x(t) - x(t) (5.1.5) 

Then, from (5.1.1a) and (5.1.2), 

A(t+1) = PA(t) + Re(t) -Ky(t) - KHx(t) 

and using (5.1.lb), 

A(t+1) = [P - KH]A(t) + [R -K]e(t). (5.1.6) 

Thus the error is defined by a linear stochastic difference 

equation, the mean value of which is given by, 

E{A(t+l)} = [P -KH]E{A(t)> (5.1.7) 

where E{*} denotes the expected value, which we wish to be zero in the 

case of A(t), i.e. E{A(t)} = 0. (5.1.7a) 

The following definitions are then made. 
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(a) E{Re(t) T T , a (t)R } = RftR 

(b) E{Re(t) , eT(t) } = Rft 

(c) E{e(t), T T e (t)R } T = ftR 

(d) E{e(t), eT(t) } = ft 

( 5 . 1 . 8 ) 

We can now proceed in the investigation of the reconstruction error variance, 

denoted by 0(t), at time t, and defined by, 

0(t) = E(Mt) - E{A(t)}) (A(t) - E{A(t)})T (5.1.9) 

and using (5.1.7a) 

0(t) = E{A(t), AT(t)} (5.1.9a) 

By substitution of (5.1.6) into this equation, 

0Ct+l) = E{ (P-KH) A( t) + (R-K)e(t)H(P-KH)A(t)+(R-K)e(t)}T (5.1.1C 

or 0(t+l) = E{(P-KH)A (t) + (R-K)e(t)}{AT(t)(P-KH)T + eT(t)(R-K)T } 

which may be expanded such that, 

0(t+l) = E{(P-KH)A(t) AT(t)(P-KH)T} + E{Re(t)eT(t)RT} 

-E{Ke(t)eT(t)RT} - E{Re(t),eT(t)KT} 

+E{Ke(t), eT(t)KT} (5.1.11) 

all other terms being equal to zero. 

By rewriting (5.1.11) in terms of the identities (5.1.8), we 

have 

0(t+l) = (P-KH)0(t)(P-KH)T + RftRT - KftRT - RftKT + KftKT (5.1.12) 

It is now desired to make a choice of the unknown K in order that 

(5.1.12) is in some sense optimal. As this error has zero mean it 

is therefore left to select K such that the reconstruction error 

variance is minimized. This is known as the optimal observer problem. 

Rearranging (5.1.12), 

0(t+l) = P0(t)PT + RftRT - [Rft + P0(t)HT]KT 

-K[ftRT + H0(t)PT] + K[ft+ H0(t)HT]KT 
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and completing the squares leads to 

0(t+l) = P0(t)PT + RftRT - [Rft + P0(t)HT][ft + H0(t)HT]x 

[ftRT + H0(.t)PT] + (K - [Rft + P0(t)HT][ft + H0(t)HT] } X 
-1 T 

[ft+ H0(t)HT]{K -[ftRT + H0(t)PT]T[ft + H0(t)HT] } 

(5.1.13) 

Thus if 0(t+l) = min{0(t+l)} and K = K to give 0(t+l), from (5.1.13), 
K 

K = [Rft + P0(t)HT][ft + H0(t)HT] (5.1.14) 

and it follows that, 

t)PT + RftRT - K[ftRT + H0(t)PT] 
(5.1.15) 

or 0(t+l) = [P - KH]0(t)PT + [R - K]ftRT 

T 

where [ft + H0(t)H ] is non-singular, and therefore invertible for this 

to hold. 

In its present form (5.1.14) does not present a simple equation 

from which K may be evaluated. But if the steady-state filter format 

is desired, the sequence of error covariance matrices (0(t)} converge 

to the null (zero) matrix as t 00. For this to occur, however, the 

C(z S polynomial, whose parameters are present in the R matrix, must 

contain all stable zeros, Caines (1972), the reason for this will 

become clear shortly. 

With the limitation that 0(t) 0 as t 00, (5.1.14) is much 

simplified to, 

K = R (5.1.16) 

which means that if K in (5.1.2) is set equal to R, the form 

becomes that of a steady state optimal observer. 

By using the value of K = K throughout, (5.1.15) reduces to, 

0(t+l) = [P - RH]0(t)PT (5.1.17) 
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The final filter equation being in 'Kalman-Bucy' form, and is the minimum 
o .. 

mean square linear estimator, Astrom (1970), such that (5.1.2) may now 

be written as, 

x(t+l) = [P -RH]£(t) + Qu(t) + Ry(.t) (5.1.18) 

which is equivalent to (5.1.3). 

2. Observer stability 

The stability of the observer, (5.1.18) is determined by the 

relationship between A(t) and A(t+1), which gives, among other things, 

its speed of response. 

By considering the deterministic case of (5.1.6), 

A(t+1) = [P - KH]A(t) (5.1.19) 

and it is required that A(t) 0 as t 00 for any A(tg), on condition 

that the observer is asymptotically stable. The characteristic values 

of [P - KH] are called the observer poles, such that by making K very 

large a rapid reconstruction error convergence to zero is achieved, 

although the filter then becomes far more sensitive to measurement 

error. Hence the optimal filter choice for K, K, found in (5.1.14), 

which trades off between the two cases. 

In order to investigate the observer poles, consider the three 

dimensional system where , 

K = H = [0 0 1] ; P = 0 0 -a. 

1 0 -a. 

0 1 -a. 

It follows that P-KH= f 0 0 -(a 3 + k 3)' 
1 0 -(a2+k2) 
0 1 - ( a ^ k ^ J 
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from which the characteristic equation is given by the determinant 

of 

z 0 

-1 z 

0 -1 

Ca3+k3) 1 

( W 
z+Uj+kj) ; 

which is 

z + (aj+k^z + (a2+k2)z + Ca
3+k3> 

In the optimal case, when K = K = R, we have that, 

k. = c. - a. ; i = 1,2,3. 
l l i 

Thus the observer poles are found from the equation, 
3 2 z + CjZ + c2z + c 3 = 0. 

Hence these poles are governed completely by the C(z polynomial, 

which must be stable for the sequence (0(t)} to converge to zero as 

t -*• 00. 

3. Stability during parameter estimation 

As the observer poles are also those of the C(z polynomial, 

this has direct relevance to the type of parameter estimation procedure 

carried out. Where the recursive least squares method is employed, it 

is assumed that the C(z polynomial is equal to unity, i.e. 

C1 = c2 = ••• = cn = 

c 

Thus the characteristic equation becomes, under these conditions 
n ' n z = 0 . 

Therefore, all the observer poles may now be regarded as lying at the 

origin of the z-plane. 
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Hence, every initial value of reconstruction error is reduced 

to zero in a maximum of n1steps, where n' is the state space dimension 

(given as three in the previous example). It follows that the 

observer becomes what is known as a dead-beat observer under the 

condition of recursive least squares parameter estimation. 

5.2 Modified State Reconstruction : Part I, Optimal Observer 

1. Estimator formulation 

Although the values of output and input at time t, y(t) and 

u(t), respectively, were introduced into the observer equation (5.1.2), 

because of the delay operator in (5.1.3), the state estimate at time t 

is only dependent on the terms u(t-l), u(t-2),...,y(t-1),y(t-2),... . 

Hence x(t) may be written x(t/t-l), i.e. the estimate of the state 

at time t, dependent on conditions up to and including those at time 

t-1. 

Thus a controller obtained by employing this state estimate, 

provides a feedback loop in which y(t), although available, is not apparent. 

It was shown in Chap.ter 2 that several polynomial self-tuners use the 

equivalent of a state estimate form in which y(t) appears, and this 

alternative method was derived as a modification to the state estimate 

(5.1.3). 

In this section an observer in which the next output value appears 

will be derived from first principles. The full order observer equation 

is now, however, 

x(t+l) = [I - KH][Pg(.t) + Qu(t) ] + Ky(t+1) (5.2.1) 

where x(t) = x(.t/t) . 
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Substituting for this state estimate in the state equations (5.1.1), 

the reconstruction error is 

A(t+1) = [I - KH]PA(t) + [I - KH]Re(t) - Ke(t+1) (5.2.2) 

in which A(t) = x(t) - x(t). 

Once more the variance of this reconstruction error may be obtained 

from, 

0(t) = E{A(t) , AT(t)} 

as 0(t+l) = [P - KHP]0Ct)[P - KHP]T 

+[I - KH]RftRT[I - KH]T + KftKT 

-[I - KH]RftKT - KftRT[I - KH]T . 

To simplify this somewhat, into a form from which it will be possible 

to obtain K = K, the following definition is made. 

Let y(t+l) = P0(t)PT + RftRT (5.2.3) 

Then it follows that, 

0(t+l) = y(t+l) - [y(t+l)HT + Rft][HyT(t+l) + ^R T] X 

rr* m rji 1 
[Hy(t+1)H + HRft + ftR H + ft] 

+{K - [y(t+l)HT + Rft][Hy(t+1)HT + HRft + ftRTHT + ft] >x 

[Hy(t+1)HT + HRft + ftRTHT + ft]x 
T -1 rn m m m T 

{K - [Hy(t+0 + ftR ] [Hy(t+1)H + HRft + ftR H + ft] } 

Thus the minimum value of 0(t+l) is found when, 
T Qp »T1 qi ^ 

K = K = [y(t+l)H + Rft] [Hy(t+1)H + HRft + ftR H + ft] (5.2.4) 

and hence , 

0(t+l) = y(t+l) - K[Hy(t+l) + ftRT] 

or 0(t+l) = [I - KH]y(t+l) - KftRT (5.2.5) 

where 0(t) = min{0(t)}. 
K 



- 200. -

The steady-state filter is now required, such that 0(t) 0 

as t 0°, and by substituting for 0(.t) = 0 in (5.2.3) we obtain 

Y(t+1) = RftRT 

_ T T T T T T ^ from which, K = [RR H + R][HRR H + HR + R H + 1] 

considering an n dimensional system, 
T T 2 T T HRR^H = (Cj - a|) ; HR = R H = (c " a ) 

thus [HRRTHT + HR + R TH T + 1 ] = (1 - a} + C ]) 2 = E"2 

also R [ R V + 1 ] = R(1 - a^ + Cj ) = RE 

Therefore, in general, K = RE 1 (5.2.6) 

The steady-state optimal observer for this modified state 

estimator can now be written as, 

x(t+l) = [I - RHE"1][Px(t) + Qu(t)] + RE_1y(t+l) (5.2.7) 
* — 1 and defining, P = [I - RHE ]P, the estimate becomes 

x(t) = [I - z~!P*] {[I - RHE~1]Qu(t-1) + RE_1y(t)} (5.2.8) 

which is in the same form as (5.1.3), although in this case the 

estimator at time t contains the present output value, y(t). 

2. Estimator equation 

In Sec. 2.3, the state estimate &(.t/t-l) was found in terms of 

parameters of the estimated A(z and B(z polynomials, C(z having 

been set equal to unity due to the use of a recursive least squares 

procedure. It is now desired to find a similar form for x(t/t). 

Consider the three dimensional case, where 



- 2Q1 -

P = 0 0 -a. 

1 0 -a, 

0 1 -a 

; R' = -a 3 ) ; H 1 0 ; Q = 

-a. 

-a 

where Rf is the R vector in which all the parameters of the C(z 

polynomial have been set to zero. 

Then, from (5.2.8), 

x(t) = 1 

(z+A(z"1)(l-z)} < bl + b2 Z _ 1 

u ^ , -1 . -2 
0 + V + V 

u(t-l) + 

-a. 
-1 

-a2-a3z 

- 1 - 2 
" W " a3 Z 

yCt) + (1-z"1) 

(a3bQ-a1b2) + z~1(a3b1-a2b2) K(t-l) 

( a 2 V a l b l ) + " " ' ^ V ^ V 

(5.2.9) 

a/ " D , -1 -2 -3 where A(z ) = 1 + a^z + a2z + a3z 

For the full calculation of x(.t) from (5.2.8), see Appendix 5.1. 

The expression (5.2.9) is similar to that for x(t/t-l), see 

Sec. 2.3, the differences being (a) y(t) is now included instead of y(t-l), 

(b) the denominator is no longer unity, (c) an extra vector operator 

on u(t-l) has appeared. 

Both estimators, though, may be written in the form, 

x(t) = (det)"1[Mu(t-l) + Ny(t)] (5.2.10) 

such that for any n-dimensional system, if M and N are found for 

x(t/t) : 
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N = 

" a 2 " 

—a —a z 
1 2 

-1 

-a 
n 

•a -a z n-1 n 
-1 

-a z n 
-n+2 

-a z n 
-n+1 

(5.2.11) 

and M = M + M 
1 z 

where, ^ 

M, = 

1 

n-1 
-1 b +b z n-2 n-1 

u , lU -n+2 D, + +b . z n-1 

bn+b z~1 + +b ,z'n+1 

u l n-1 

(5.2.12) 

(5.2.13) 

and, 

M 2 = (1-z"1) 

-1 
( a n V a i b n - l } + 2 ^ n V V n - P + •• 

( a 2 V a i b l ) + Z " 1 ( a 3 V a i V 

+ z"n+2(a b 0+a b )} n n-2 n-1 n-1 1 

+ Z " n + 2 ( a n V a i b n - l } 

(5.2.14) 

However, as this latter matrix is not a direct stacked vector as 

in the previous cases, an example for a five dimensional system is obtained 

as 
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M„ = (1-z"1) 

( a5 b
0" ai b4 ) + Z " 1 ( a 5 b r a 2 b 4 } + Z" 2 ( a5 b2" a3 b4 } + z" 3< a

5
b
3" a4 b4 ) 

C a4 b0' ai b3 ) + Z " 1 C a 4 b r a 2 b 3 } + Z" 2 c a4 b2" a3 b3 } + Z ~ 3 ( a 5 b 2 ~ a 3 V 

Ca3b0-a]b2) + z"1Ca3b1-a2b2) + z ' ^ b j - a ^ ) + z ' ^ b , - a ^ ) 

( a 2 V a i b l } + Z " l ( a 3 V a i b 2 } + Z " 2 ( a 4 V a l b 3 ) + Z ~ 3 ( a 5 b 0 " a l V 

0 

The general rule for building up M^ can be stated as follows. If 

every term in each row with a common delay operator forms a subcolumn, 

such that in the example above there are four subcolumns, then by starting 

from any term in the lowest non-zero row, to obtain the term in the row 

above which remains in the same subcolumn, i.e. has the same delay 

index, unity must be added to the lowest index in either parameter 

multiplication, until the right hand term has identical indices. If 

this latter case is apparent, unity is added to the b^ index in the right 

hand term and to the a^ index in the left hand parameter multiplication. 

e.g. if we have a.b. - a. the term in the row above is, 4 1 l+l 3 
a.b. . - a.l0b_, unless i+1 = 3, in which case the term in the row above 4 l+l 1+2 3 
is a„b. - a. ,b,, for subcolumn 3« 5 i l+l 4' 

The final form of (5.2.10) for x(t/t) will now be compared with 

that for the state estimate x(t/t-l). By defining, 
-7 _ 

x(t/t-l) = (det) [Mu(t-l) + Ny(t)] (5.2.15) 

the following equalities arise : 
-1 1) det = 1 : det = z + (l-z)A(z ). 

2) M = Mj (or M = M where M 2 is the null matrix). 

3) N = z _ 1N 

Because of the difference between the determinants given in 
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equality (.1), a simple calculation of the state estimate at time t 

from the general form of (5.2.10) is not as obvious as that obtained 

from (5.2.15). However the estimator x(.t/t) may be rewritten as, 

{z+(l-z)A(z"1)}x(t/t) = Mu(t-l) + Ny(t) (5.2.16) 
-1 * -1 where det(I-z P ) = z + (l-z)A(z ). 

This method of obtaining the state implies that past values of &(t/t) 

are required, a feature which is not desirable because of problems due 

to unknown initial stsfe values. The control input form (5.2.17) is 

therefore introduced, such that 

n 
u(t) = F2(t/t) = I f.£.(t/t) (5.2.17) 

i= 1 1 1 

for an n-dimensional state vector. 

" I 
Let x(t/t) = {z + (l-z)A(z )} x'(t/t) (5.2.18) 

then (z + (l-z)A(z"1)}u(t) = Fx'(t/t) (5.2.19) 

which follows from the scalar nature of the determinant. 

From (5.2.19) by expansion of the determinant, 

(l-a.)u(t) = (a -a,)u(t-l)+...+(a -a ,)u(t-n+l) - a u(t-n) 1 2 1 n n-1 n 

n 
+ I f.x!(t/t) (5.2.20) 
i=l 

or by setting £"(t/t) = (l-aj)"1^'(t/t) 

u(t) = (1-a ) *{(a -a.)u(t-l)+...+(a -a ,)u(t-n+l)-a u(t-n)} 1 2 1 n n— 1 n 

+ I f.xV(t/t). 
i=l 

Thus the control law defined by (5.2.17) maybe formed from, 

u(t) = Lu(t-l) + Fx"(t/t) (5.2.21) 

or u(t) = (L + FM')u(t-l) + FN'y(t) (5.2.22) 
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i- T f \ \ r i — . ~n+2 -1 -n+1 -i where L = (1-a.) {a +a„z + — + a z -a -a.z -...-a z } 1 2 3 n 1 2 n 
-1 -1 

M' = (1-aj) M and N1 = (1-aj) N. 

The stability of this particular control law is obviously 

dependent on the term (1-a ), which it must be remembered is only 

obtained in the case when C(z S = 1, e.g. when using recursive least 

squares estimation. Thus iff the estimate a^ tends to unity, the state 

estimate, and hence the final control form, will become unstable. 

Calculations to obtain the control input for a general 

C(z polynomial are far more complicated, and in practice not necessary 

as (a) the actual online evaluations only involve those terms included 

in (5.2.22) when a recursive least squares procedure is employed, and 

(b) the stability of the observer may be investigated by means of its 

characteristic equation. 

3. Observer stability 

From the definition of the reconstruction error (5.2.2), the 

characteristic equation is obtained from the matrix[I-KH]P, where the 

optimal observer poles are found if K = K = RE I 

Returning to the three dimensional example, 

[I-KH]P = r 0 
-k3 a i k 3 _ a 3 

1 
" k2 

a,k2-a2 

0 >-k, a l V a 1 

and thus the characteristic equation is given from the determinant of, 
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-1 

0 

z+k. 

k r * 

a,-a, k,, 
3 1 3 

V a i k 2 

z+araiki 

Hence the observer poles are obtained as the solution to 
3 2 

z + z Caj+^-ajkj) + z ( a ^ a ^ + k ^ + ( a ^ a ^ ) = 0. 

If the Kalman gain K, used to obtain minimum reconstruction error variance, 

denoted by K, is employed, we have 

k . " 
V a i 

1 _ v c i 

k2 " 

C 2 ' a 2 
J-a 

k 3 = 
C3~ a3 

'-a.+Cl 

and therefore, 

3 2 z (1-a^+cj) + z Caj-a +c2) + z(a2-a3+c3) + a 3 = 0 

or A(z) - z{A(z) - C(z)} = 0 

Hence the stability of the optimal observer is highly dependent on the 

E term, where E = 1-a^+Cj, such that in the case 1 - aj + cj = 0» a n 

observer pole will appear at infinity, irrespective of the remaining 

terms in the A(z and C(z polynomials. 

The observer stability now depends on conditions other than 

the C(z polynomial, and thus stability can no longer be ensured 

by the assumption thatC(z is stable. As stability of the overall 

controller is an important factor in self-tuning, we are left with the 

option that if it is desired to form a state estimate using the present 

output value, y(t), we must consider a non-optimal observer, that 

is nevertheless stable, provided C(z is stable. 
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5.3 Modified State Reconstruction : Part II Non-Optimal Observer 

1. Introduction 

The optimal value of K, given as K, found in the previous 

section led to an observer in which the variance of the reconstruction 

error tended to zero in the steady-state only when the observer 

polynomial was stable. But by using a non-optimal value of K, so that 

a stable observer is formed, will have a detrimental effect on the pro-

perties of the reconstruction error. In Sec. 5.1 an optimal and stable 

estimator was achieved, subject to C(z being stable, although the 

present value of output signal was not included. In this section the 

observer polynomial will be chosen to be C(z and the effect this 

choice has on the Kalman gain, K, and the reconstruction error, A(t), 

will be discussed. 

2. Characteristic equation 

To arrive at a characteristic equation equivalent to that 

achieved in Sec. 5.1, two equalities are necessary. Firstly, by 

considering the C(z S polynomial to be unity, as when recursive least 

squares is employed for parameter estimation, the characteristic equation 

must have all its poles at the origin of the z-plane, thus leading to 

a dead-beat observer. Secondly, when a general C(z polynomial is 

included, the observer must be such that its characteristic equation 

can be regarded as being the C(z polynomial itself. 

Extrapolating from the characteristic equation arrived at in 

Section 5.2, in its general form this may be written as, 
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n 

z n
+ I (U-k.)a. + k. .}z 

i=l 1 1 1 + 1 
n-i Proof of Equation ( 3 . 3 . 3 4 ) 

for an n-dimensional system, although this leads to a filter term 

which will be dealt with shortly. 

Setting (5.3.1) to be equal to C(z), where 

n 
C(z) = z n + I c z 

i= 1 1 

n-i (5.3.2) 

we have that 

or 

(1-k )a. + k. . = c. 
r l l+l I 

k. . = c. - a.-(l-k.) where i = 1 , — , n. 
l+l l + l 

(5.3.3) 

By redimensioning the state space description to (n+1) from n, (5.3.3) 

may be described as, 

PK = R (5.3.4) 

and using the case n = 3 as an example, this is 

0 

-a, 

~a, 

r k 1 4 0 

k3 c 3-a 3 

k2 V a 2 

• k l - . V a i , 

from which P is singular, and therefore not invertible, which means 

that (5.3.4) leads to n+1 unknowns, k^ , with only n equations. 

An extra equation is obtained by remembering that iff C(z = uni 

we desire the observer to have all its poles at the origin. Thus, from 

(5.3.3), 

k^+J = -a^(l-kj) for i = 1 , — , n 

and this is satisfied when k. = 1, thus k . = c. such that (5.3.3) 
1 l+l l 

holds in general. 
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Hence the overall state-space dimension must he at least of 

order unity more than the degree of the C(z polynomial to allow 

for the term. In Sec. 2.2(2) this was defined as being the case, 

and further the dimension is such that it will be at least k more than 

the order of the C(z polynomial, where k > 1 is the system integer 

time delay. Therefore, when k > 1 further Kalman filter terms, 

will be present for i > n, but these will all be equal to zero as c. = 0 

for i > n. 

In its final form, 

K T = [0,...,0,Cn ,...,Cl,l] (5.3.5) 
c 

and when c. = 0 : i = l,...,n . l c 
T K = H 

where H was defined in Sec.2.2(2) 

3. Properties of non-optimal observer 

Having defined the non-optimal, but stable, observer, this will 

now be compared with the observer defined in Sec.5.1. Thus if the 

estimated state vector of this modified observer is denoted by x'(t), 

at time t, the following theorem is given 

Theorem 5.1 

The State Reconstruction, 

g*(t+l) = [I - K2H][Pg'(t) + Qu(t)] + K2y(t+1) 

where PK2 = R 

can be calculated from the state reconstruction, 

g(t+l) = Pg(t) + Qu(t) + Kj[y(t) - Hx(t)] 

where K^ = R 
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by means of the equation, 

g'Ct) = xCt) + HT[yCt) - Hg(t)] 
-T 

where H = K^ 

Proof: 

Multiplying both sides of the x* (_t) state equation by the matrix P, 

Px'(t+1) = [P - RH] [Px1 (t) + QuCt)] + RyCt+1) 

It follows that by adding Qu(t) to both sides, 

[I - z~'1P][Px*(t) + Qu(t)] = Qu(t) + Ry(t) 

where P = P - RH. 
-1- " l 

Thus, as g(t) = [I - z P] [Qu(t-l) + Ry(.t-1)] 

Px'(t) + Qu(t) = x(t+l) . 

Substituting for this back into the x1(t) state equation 
x'(t) = [ I - K2H]x(t) + K2y(t) 

or x'(t) = x(t) + HT[y(t) - Hx(t)] 
-T 

when H = K 2 Q.E.D. 

It was shown in Chapter 2, Lemmas 2.2 and 2.4, that the final 

form for this modified state reconstruction, x*(t), was that used in 

the equivalent of the self-tuning controllers based on polynomial 

principles for either generalized minimum variance or pole placement objectives. 

Thus the polynomial self-tuners of Clarke and Gawthrop (1975) and Wellstead 

et al (1979b) use, when a state space format is considered, a non-optimal 

observer, which is nevertheless stable subject to the C(z *) polynomial 

being stable. However, as the observer is non-optimal the variance 

of the reconstruction error must be non-zero, its exact value being 

considered in the next subsection. 
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4. Reconstruction error variance 

The general expression for the variance of the reconstruction 

error was given in Sec. 5.2 as, 

0(t+l) = [I - KH]P0Ct)PT[I - KH]T + [I - KH]RftRT[I - KH]T 

+ KftKT - [I - KH]RftKT - KftRT[I - KH]T 

and using K from (5.3.5), 

[I-KH] = 

1 0 

0 

' 0 

1 

. 0 

. 0 

0 

-c n . c 

-c, 

Thus 
f . 
U 

[I-KH]P = 

0 ' 

0 

1 

0 

-c n 

-c 

-a c 1 n 

"a l C na"1 "ai>a 

a i c r a 2 

The terms incorporating the disturbance variance, ft, can be rewritten as, 

ft[R - (1 +c 1-a J)K][R- (l+Cj-a^K]1 

where the factor E = (1 + c^ - a^) will affect the variance of the 

reconstruction error via this secondary term unless, as in the optimal 

case of Sec. 5.2, K = RE_1 = K. 

Hence, although a stable observer is obtained by means of K in 

(5.3.5), the reconstruction error variance is now strongly dependent 

on the factor E, and significantly if E = 0. 
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0(t+l) = [I-KH]P0(t)PT[I-KH]T + RftRT 

and therefore the variance will diverge such that 0(t) 00 as t 00. 

This can be seen from a simple example, using a two dimensional 

system where only c^ and a^ are non-zero, subject to E = 0, thus 

a i • 1 + c i 

and 

[I-KH]P = 

RR 

By defining 0 

C1 a c 1 1 

0 0 

0 0 

0 Ccrai 

0 , 

03. V 

It follows that, 

0( t+ l ) = c j { 0 j ( t ) a j 0 3 ( t ) + a Z 0 4 ( t ) - a j 0 2 ( t ) } 0 

C j-a j ) 

and as 0^(t) = = ^ r o m t b e P r e v + o u s iteration. 

0(t+1) = c~{0j(t) + aZ04(t)} 

nCcj-a j ) 

using a^ = 1 + cj 

0(t+l) = fcj{0,(t) + U+cpft} 0 1 

ft 

Therefore 0j (t) + 00 as t + » subject to Cj £ 0; and (t) is equal 

to the disturbance variance for all t > 0. 
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5 .4 Concluding Remarks 

It has been shown in this chapter that the state estimation 

procedure employed for the controller of Sec. 2.5(1), incorporates 

an optimal observer, which, as its characteristic equation can be regarded 

as the C(z *) polynomial, can also be considered as being stable. How-

ever, this was formulated from past values of system input and output 

signals, the present output value not being included. 

By modifying the estimator to include y(t), the optimal observer 

produced shows a great dependence, in its stability, on actual system 

parameters, via the factor 1 + c^ ~ aj> anc* thus it is n o t a suitable 

choice for a final filter form. Therefore, in Sec. 5.3, a non-optimal 

observer was discussed, its characteristic equation being, once more, 

equivalent to the C(z *) polynomial, and hence stable. This was, via 

theorem 5.1, shown to be the form of observer used when self-tuning is 

carried out by the state-space equivalent of the original polynomial 

controllers. But, by the theorem of duality, see for example Strejc 

(1981), the problem of optimal state estimation and the problem of 

optimal control result in the same form of Riccati equation. Thus, 

in the case of minimum variance self-tuners, an optimal control law is 

combined with a non-optimal state estimator to provide overall controller 

action, and duality does not therefore hold between the estimation and 

control. 

The variance of the reconstruction error, which was considered 

to be zero, for all t, in Sec. 5.1., has at best a value greater than 

zero in the modified estimate of Sec. 5.3 when operating on a stochastic 

process. Under certain conditions this can, in fact, tend to infinity, 

although where a recursive least squares estimation procedure is used, and 

hence c = 0 : i = 1,.. ., n ; a finite value will result, i c 
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CHAPTER 6 

CONCLUSIONS 

Throughout this text conclusions have been drawn at the end 

of each chapter concerning the work discussed in that respective 

category. 

In this chapter, however, the main points from the above sections 

will be stressed along with general comments concerning the overall 

topic of self-tuning via the state-space and areas of this in which 

further work is either foreseen and/or is regarded as being useful. 

Due to the requirement for computational simplicity, parameter 

estimation has been carried out in all simulations, and has been 

accounted for in the theory, by the recursive least squares procedure. 

In the first chapter this scheme was considered along with other 

techniques, which, although they are applicable, add to the total 

time necessary, at each sampling interval, for the calculation of the 

overall control law. In many possible fields of application for 

self-tuning, e.g. Automotive Engineering, the constraint placed on 

the time taken for each control law evaluation can be critical, hence 

the need for a simple, but efficient, recursive estimation technique. 

The use of the state-space approach in self-tuning not only 

provides a further insight into the previous theoretical work, but 

can also lead to several advantages over the polynomial based tuners. 

One of these is the reduction in computational requirements needed 

to calculate the desired feedback parameters. Obviously, if an 

identical control law is formulated by means of its respective state-

space and polynomial forms, then, with regard to the estimated 
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parameters, the number of essential calculations must also be 

identical. But when this must be done on a computer the equality 

disappears. This can best be seen by considering the pole placement 

objective, where, in the state-space method the matrix W must be 

inverted, Sec. 2.5(1), and this is equivalent in dimension to the size 

of the state space, max{na>n^+k} , in the polynomial method, however, 

the matrix to be inverted is of dimension n +n +k-l, i.e. n +n +1. 
a b d g 

Thus, unless special notice is taken of the positions of zeros occurring 

in the latter matrix, which can only be applicable for that particular 

model, the state-space scheme will, computationally, be shorter, as 

long as neither n^ nor n^+k is of value unity. Further, if the model 

is altered in any way, the inversion routine for the polynomial method 

must be respectively altered, the state-space inversion routine only 

needing to be altered if the dimension of the state-space is directly 

affected. This reduction in computational effort allows for the 

calculations necessary to formulate an estimate of the state vector, 

where the actual value is not available. 

A second advantage of the state-space scheme over the polynomial 

case was shown in the simulations of Sec. 2.5(5), in which a change 

in the integer part of the process time delay occurred half-way through 

the simulation run. This had no discernable immediate effect on the 

state-space tuner, but the polynomial tuner produced large spikes in 

the control input signal which consequently affected the system output. 

Large and rapid control input variations, one of the major disadvantages 

of minimum-variance tuners, can cause saturation effects and hence 

there is the possibility of loss of control for several sampling 

periods in practical systems, therefore variations of this nature are 
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not desired. This state of panic in the control input, found in the 

polynomial controller, when faced with a change in system integer time 

delay, manifested itself again in the linear output feedback self-

tuner of Chapter 4, and hence is attributable to the use of the 

present value of output signal, y(t), in forming the control input, u(t). 

Two points of note arise from this. Firstly, by employing a 

more responsive variable forgetting factor, the input and, hence, 

output spikes can be reduced in magnitude, as the recursive estimator 

responds more swiftly to the effective change in system parameters. 

This, however, results in a fall off in the value of output variance 

achieved, and thus robustness is gained at the expense of overall 

performance achievement. Secondly, the use of the present output 

value in the control input calculation, whether in the polynomial 

controller, Wellstead et al (1979b), or in the state-space controller 

with linear output feedback, Warwick and Westcott (1982), itself is 

a trade off towards better performance at the expense of robustness. 

In several instances in the text it was found necessary to re-

vert from the state-space to a polynomial form for either explanatory 

or theoretical purposes. One example of this is the proof of the 

self-tuning property, Sec.3.1, where this was carried out by means 

of the polynomial form, the state-space method then being shown 

to be an equiyalent representation, and thus the proof for the state-

space model was arrived at. The ease of conversion from one form to 

the other being largely due to the state-space model chosen in 

Sec. 2.2(2). 

Another instance of the use of the polynomial form was in the 

explanation of multivariable state-space self-tuning. Although 
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this was dealt with only briefly, because of the non-commutative 

property applicable to the majority of the constituent matrices, 

the state-space final form removes itself to such an extent from 

the original multivariable CARMA model, that it becomes extremely 

tedious to detect exactly what controller action is being provided. 

Further, the whole area of multivariable self-tuning theory is 

rapidly expanding in its own right, as will be mentioned later, 

and to have delved any deeper into this topic would have diversified 

greatly from the scope on which this work is based. 

The state-space approach to self-tuning presents no problems 

in the incorporation of an external input signal, provided this 

is regarded as a set-point which changes, in a step mode, relatively 

infrequently. It was shown in Sec. 3.3. that the additional 

computation necessary to normalize the process output, such that in 

the steady-state it is equivalent to the set-point value, is negligible 

in comparison with the total requirements. The inclusion of an 

external input also has no deterimental effect on the use of self -

tuning with linear output feedback, Sec. 4.1(3), which was devised 

to reduce the variance of the process output signal. It was 

found from the simulations of chapter 4 that by using £.o.f. the tuner 

becomes less robust to rapid changes in the system parameters, 

specifically in the form of time delay excursions, but despite this 

setbhck the output variance achieved is better than either the 

polynomial case of Wellstead et al (1979b) or when state-space 

feedback alone is used, Warwick (1981a). This performance 

improvement, however, is gained at the expense of an increase in the 

number of calculations, although, once again, this is negligible in 
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comparison with the total when low order system models are employed. 

The choice of closed loop polynomial, in the pole placement 

method, will affect the variance of the output signal, and hence the 

possibility of using poles which tune themselves to provide an 

improved variance value was discussed in Sec. 3.2. For low order 

models this proved to be practically useful, as was shown in later 

simulations, although as the object of pole placement is really 

to define the response of the system output to a change in set-

point value, this is lost with Self-Assigning Poles (SAP). A 

preferred scheme would be to use the SAP technique in the steady-state, 

but return to a pre-assigned pole polynomial if and when a change in 

set-point occurs, the main difficulty being how and when to judge 

that the steady-state has once more been arrived at, i.e. for what 

length of time should the specified pole polynomial be used after 

each set-point change. 

In Chapter 5 the observers used in the various schemes were 

considered. It was found that where the present output value was 

not included in the state estimate, and therefore not in the present 

control input, the optimal observer found was that employed in the 

state-space method developed in Sec. 2.5(1). However, when this 

output value, y(t), was included in the state estimate, such as in 

the equivalent state-space forms of Clarke and Gawthrop (1975) and 

Wellstead et al (1979b), a non-optimal observer was arrived at. 

Both observers were, however, found to be stable, on condition that 

the noise polynomial, C(z is stable. 

This text has concentrated on the theory of state-space 

self-tuning controllers including simulation studies, where possible, 
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to show the various tuners under operating conditions. Nevertheless, 

this does not take into account the irrational events that occur 

in a practical situation. It is hoped that further research resulting 

from this work will be connected with the implementation of the 

algorithms developed, in an industrial environment. The backbone 

of the applications being provided by a microprocessor rather than a 

computer, and to this end computational simplicity has, it is hoped, 

been stressed throughout the text. The majority of self-tuning 

applications have, to date, been connected with the Chemical Industry, 

in which conditions are relatively favourable. But other areas must 

be considered, e.g. Automotive Engineering, machine tools, etc., where, 

although a direct usage of self-tuning may be limited because of factors 

such as excess noise, nevertheless a more robust, rather than performance 

oriented, algorithm may prove invaluable. This robustness can be 

regarded as an important point in the control of non-linear plant, 

which was briefly considered in Sec. 4.3, where a self-tuner providing a 

control action of some sort, in the presence of continual changes in 

parameter values, is more favourable than a tuner which provides 

excellent steady-state control, but goes unstable or provides spurious 

control signals in the event of parameter alterations. The state-

space pole placement controller, Sec. 2.5(1), was shown by simulation 

to be more robust than its predecessors and therefore more fitted for 

control of the above. 

As with other pole placement methods, the need to only specify 

the maximum possible system integer time delay, although providing 

for a more versatile tuner, leads to a gap in mathematical theory. 

Most stability and/or convergence theory connected with self-tuning 
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has, to the present time, been concerned with system models in 

which the time delay, k, is assumed to be known exactly. Although 

a proof of the self-tuning property for a model with variable k was 

given in Sec. 3.1, this only shows that, assuming certain conditions 

hold, one of which is the convergence of the model estimates, the 

required control law is a possible convergence point for the overall 

algorithm. Simulations imply that the control law parameters do 

converge to their desired values, but simulations are not mathematical 

proofs. Thus further work is necessary to investigate the conditions 

under which convergence to the correct values does occur, and the effect 

that this has on the stability of the closed-loop system during the 

period in which convergence takes place. Unfortunately in adaptive 

control this is invariably impossible, and therefore it is most likely 

that mathematical proofs must concentrate on stability and convergence 

regions, rather than exact values. 

Numerous applications involve multivariable processes, and 

although Single-Input-Multi-Output(SlMO) and Single-Output-Multi-Input 

(SOMI) can often be regarded as essentially SISO systems, the MIMO case 

leads to various problems not encountered in SISO self-tuners. 

With reference to the state-space approach, the number of models, 

equivalent to the CARMA model, from which to choose is far greater 

with a MIMO model, the advantages of each particular representation 

not having been considered extensively in the relevant control liter-

ature. Hence much work remains to be done in the area of multivariable 

theory across the whole field of self-tuning, not least of these 

being that related to state-space multivariable self-tuning. 

The filtering equations obtained in Chapter 5 use , when required 
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for self-tuning, an observer characteristic equation which is given 

by the disturbance polynomial, C(z However, it was shown that 

the optimal observer, when y(t) is included in the state estimation 

identity, is not of this form. Unfortunately it proves to be im-

practical due to its dubious stability features. Nevertheless, the 

consideration of the use of other observer polynomials must not be entirely 

discounted , for example that used if the state-space self-tuner 

with linear output feedback is considered as being simply a form of 

modified state feedback. Thus the possibility of other observer 

forms, although they must be non-optimal, remains to be researched 

at length with regard to the effect on the self-tuning property the 

use of an alternative form will have. 

Finally, now that self-tuning controllers have been developed 

by means of the state space, rather than polynomial methods, the 

numerous fields in control systems in which the vast majority of 

both theoretical and practical work is carried out by use of the state-

space become viable for the investigation of the applicability of 

self-tuning to that particular area. One example being decentra-

lized control, where, although attempts have been made to employ 

a polynomial approach, state-space theory predominates. The link 

between self-tuning and decentralized control appears immediate, 

as tentative steps, Davison (1978), have already been made from 

the latter topic towards the field of tuning regulators. 
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APPENDICES 

Appendix 1.1 

Independence of B(z polynomial from fractional system time delay 

when the steady-state condition applies. 

From (1.2.2) the open loop transfer function is given by 

-ST B (s) 
6(s) = e 1 -i 

Aj(s) 

By factoring Aj(s) into its corresponding distinct roots, G(s) may 

be rewritten as, 

-ST. M 3-
G(s) = e i (A.1.1.1) 

i=1 s+a. 
L 

where m is the order of the Aj(s) polynomial, subject to the order of 

theBj(s) polynomial being less than m. The z-transform of GQ(S)G(S) 

is then found, where GQ(S), the zero-order hold, is defined in (1.2.3), 

this gives 

G(z ) = z = z 2 r^pf (A. 1.1.2) 
A,(z"') i = 1 (1-e 1 "z"1) 

where T^ is the sampling interval. 

To obtain the actual parameters of the equation (A.1.1.2) the following 

conditions apply. 
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-a.6 
O B . { l - e 1 } 

1 
3. -a.T a.T 

2 ) B2i " 57 e t e 1 " n 

1 

3) = T - T 

( A . 1 . 1 . 3 ) 

T being the fractional part of the system time delay.If this 

fractional part falls to zero, so 82£ = 0 f°r a H + > which means that 

the order of Bj(z falls by unity, from which it follows that B(z 

defined in Sec. 1.2, also has its order reduced by unity. 

For the steady-state forward gain characteristic we require B(l), 

where z is set to unity. The numerator for each i can now be 

described as + where 

8. -a.T 
y + y = 5 7 ( I - e 1 l> i 

(A.1.1.4) 

which is independent of the fractional time delay, T . As the denominator 

of (A.1.1.2) is also independent of T, it follows that B (1) must 

necessarily be independent of x. 
-1 Returning to the definition of B(z ) in Sec. 1.2, the C^ polynomial 

has no dependence on the fractional part of the time delay, therefore 

B(l) must be independent of the same factor. 

Q.E.D. 
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A p p e n d i x 4.1 

Proof of Lemma 2.2 : 

Using the example with n = 2, k = 2 where n = 2 also, then c 
A/ " D , -1 "2 C(z ) = 1 + CjZ +c2z 

and the polynomial control input is given by, 

u(t) = 
-GCz"1) 

S^C(z_1) + ECz'SBCz"1) 
y(t) 

The corresponding input for the state-space controller is, 

u(t) = F(t)x(t) 

It then follows from (2.3.2) that 

-1 " I- -1 

u(t) = F(t)z (I-z P) (Qu(t) + Ry(t)} 
where P = P-RH = 

0 0 

0 0 

0 0 

0 —c, 

1 -c 

and I-z"1? = 

-z 

0 

0 

-1 

0 

1 

-z -1 c2z -1 

- 1 , - 1 - z 1+CjZ 

Hence (I-z !P) 
-1 

C(z ]) 
C(z"1) 

z"1C(z"1) C(z"1) 

0 

0 

-1 -2 —i — ] -i 
z (1+CjZ ) z (1+CjZ ) 1 +c^z ~ C2 Z 

0 

0 

-1 

-3 - 2 -1 



-r 2 2 5 -

F(t) is obtained from (2.4.7) as, 

-b 
f(t) = 0 

S2+b0 

[0 
" a i a l " a2 ] 

Thus, F(t) (i-z""1]?} 
-1 -b 

0 

C(z-1)CS2+b2) 
[f? f? f1 f'l L 1 2 3 4 

— 1 —2 -3 2 —1 —2 —3 
in which fj = z +z (Cj-a ) + 2 ^c2~a2+ai~alCl^ = Z + z el + Z s0* 

-1 - 2 -1 . -2 
f'2 = 1+z (Cj-aj) + z (c2-ajC +aj-a2) = 1 + z e{+z gQ 

- 1 2 -1 f! = —a +z (a —a —a c ) = —a +z (s —c ) 3 1 v 1 2 11 1 2 

and -» 2 -1 
£4 = a i " a2 a i C 2 Z = Sn " co + a , c , + a , c o 2 

-1 
1 1 1 2 

where e^ and g^ are calculated from the identity (1.5.3). 

From the example definition : Q = ̂  t>2 ; R = r 0 

C 2 _ a 2 
c -a 

1 1 

Therefore, CCz"1)(S2+b2)u(t) = -bQ{Cf}b2+fJbj+f^bQ)u(t-1) 

+(f^[c2-a2]+f»[cl-al])y(t-l)} 

S 

Thus: [C(z_1) ^ + bQ + z-'cb^b^j-ajb^ + . ^ ( b j + b j e , ^ ) 

—3 —4 — 1 2 + z ( b
2
e
1
+ b

1 S 0 ) + 2 g0
b
2^u(t:) = tz" {a, (a9-c9+alcl-al) + (a9c1-a9a1)} P 2 2 11 1 2 1 2 1 

- z 2(g Qa 2) ]y(.t) . 
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A p p e n d i x 4.1 

Proof of Lemma 2.3 by induction. 

Consider the example where n ^ = 2 , n^ = 1, k = 2 and C(z = 1. 

In the polynomial pole-placement tuner, the control input is given 

by the expression, 

D(z~1) u(t) = GCz'SyCt) 

where 

i) D(z~1) = 1 + djz_1+d2z"2 

. . > . - k - 1 li) G(z ) = gQ + gjZ 

as n = n -1 and n, = n, + k - 1. g a d b 

The coefficients of the D(z and G(z ) polynomials are then calculated 

from the expression, 

ACZ'SDCZ"1) - z'kB(z"1)G(z"1) = T(z_1)C(z_1) 
m / -1. , -1 -2 where T(z ) = 1 + t z + t2z 

Thus; 

0 0 

1 ~b. 

a2 al "bl " b0 

0 -b v 

Y a l ' 

d 2 V 8 2 

S0 
0 

• S J . 0 j 

It follows that; d = t - a^ 

d = 1 {(a b b -a b2)(t -a ) + b2Ct -a )} 2 A v 2 0 1 1 \ J K 1 V 1 2 2 

80 = I {( a
2
b j - + a , a

2 V ^ r a i ) + ( a l b r a 2 b 0 ) ( t 2 - a 2 ) } 

81 = I { ( a 2 b 0 - a 1 a 2 b 1 ) ( t 1 - a 1 ) + a ^ C t ^ ) } 
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Hence [C(z_1) + ECz'^BCz"1) + z"kBCz"1)gn]u(t) 

-1 -i -2 
= [-gj z + S 0 ^ a i Z + a2Z 

and this gives a similar relationship to that obtained in the proof 

o f Lemma 2.1. 

Assuming S^ = ^/BQ* w e have 

[C(z"Ss^ + E(z"1)BCz*l)]uCt) - ~G(z_1 )y(t) + ggUCz" 1 )y(t) - z~kB(z_1) u(t) } 

-1 _ j _ j 
In this case, however, A(z )y(t) - z B(z )u(t) = C(z )e(t), and 
gg acts on all the states; i.e. fj , f 2 etc. all contain a g^ term, 

1 th 

whereas when C(z ) = 1, g^ only acts on the (n+k) state. 

It is now required that gQ^(z ^)e(t) is subtracted from the right 

hand side of the above equation, and this is equivalent to adding 

ggC(z *)e(t) to the state vector, as F(t) contains a negation. 

We have f J (g^" 3) ,f * ( g ^ 2 ) ,f' (g^" 1) ,f * (gQ) 

Where f|(*) implies that contains that specific term . 
ttl ttl Therefore we must add e(t) to the (n+k) state, c^e(t) to the (n+k-1) 

state, etc. Such that when multiplied by the respective g^ terms, 

ggC(z ^)e(t) will have been subtracted from the control equation. 

Defining the new state as, 

x*(t) = x(t) + HTe(t) 

then H = [0 c 2 C| 1] in this example. 

Although, in the general case: 

H = [ 0,...,0,c ,...,Cj,l] 
c 

where H contains n+k-l-n leading zeros. 
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2 2 where A = b^ - a^b^b^ + a^b^ 

In the state-space representation, the following matrices are defined 

P = 10 0 0 I-: 0 = lb 1 ; F = [fj f f ] / 

0 0 0 ' ' 5 Q = 
M 

1 0 
" a 2 b o 

0 1 0 
> 

and x(t) = 
V 

z~\bQ+b{z~ ]) 

z " 2 ( b o + b i z _ 1 ) 

u(t) + 

-1 
-a 2z 

- 1 - 2 -a j z -a2z 

y(t) 

where the coefficients of the matrix F are obtained from the expression; 

F T = W~"1 (T+R1) 

in which T T = [0 t£ tj], R , T = [ 0 -a„ -a,] 

and W = ' -«2b, -a, b ] 
- b < 

" a i b . _ b r a i b o -bo 

"bl " b o 0 J 

Therefore, = j i ' ^ ^ t - a ^ + bn(t0-a0)} 
0N 2 T 

f 2 = A { ( al bl " a 2 b 0 ) ( t r a l ) " bl ( t2" a2 ) } 

f 3 = i { ( a 2 b i + a i a
2 V a i b i ) ( t r a i ) + ( a

l
b r a 2 b o ) v a 2 ) } 

The control input can now be formed from; u(t) = Fx(t). 

Thus: {1 - Cf1
b
1+f2b())z"1 - Cf2b1+f3bo)z ^ f ^ j Z J}u(t) - 2 -3-

= - t f f j W i ^ " 1 + f
3

a 2 z ~ 2 } y C t ) 
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and from this the following equalities arise; 

o f . b , • f 2 b 0 - -d, 

i o f2b, - -d2 

i i i ) f2a2 = - g j 

iv) f 3 = gQ 

By transferring the state space control law into the polynomial 

mode, we arrive at 

(1+diz"l+d2z"2)u(t) = (g0+gjZ-I)y(t) + g0{z"kB(z"1)u(t) - ACz""1 )y(t)} 

Thus the control laws derived via polynomial and state space techniques 

are identical iff; 

z~kB(z~1)u(t) - A(z_1)y(t) = 0 

This only occurs when e(t) = 0, i.e. in a deterministic system model. 
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A p p e n d i x 4.1 

Proof of Lemma 2.4 

- k . Using the example of Appendix 2.2; where now C(z ) is regarded 

as, 

C (z 1) = 1 + Cjz"1 + C 2z" 2. 

The polynomial control law parameters are obtained from: 

1 0 0 0 
a l 1 " b 0 ° 

a 2 a l " b l " b 0 

0 a 2 0 -b 

1 

d l t i + c r a i 

d 2 = 
t 2 + t 1 C 1 + c 2~ a 2 

8 0 t 2 C l + t l C 2 

8 ! t 2 c 2 

where D(z = 1 + djZ 1 + d 2z 2 and G(z *) = g Q + gjZ_1 were defined 

in Appendix 2.2. 

In this case, though, dj = tj + cj ~ ai 

d 2 = i { b l ( t 2 + t l c l + c 2 " a 2 " a l t l " a l c l + a l } 

" b 0 b l ( t 2 C l + t\C2 ~ V l " a 2 c l + a l a 2 ) + V 2 C 2 } 

g 0 = l { ( a l b l " a 2 b O ) ( t 2 + t l C l + C2 " a 2 • a l t l " a l c l + a l } 

" b l ( t 2 c l + C l c 2 " V l " a 2 c 1 + a l a 2 ) + b O t 2 C 2 } 

g l = I { a 2 b l ( t 2 + V l + C2 " a 2 " V l " a l C l + a l } 

" a 2 b O ( t 2 C l +  tl c2 " a 2 t l " a 2 C l + a l a 2 ) + ( a l b 0 " b l ) t : 2 c 2 } 

2 2 
where A = b j - a j bgb j + a 2

b 0 * 
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When the state space formulation is considered, it is found that the 

C(z polynomial does not affect the values given in Appendix 2.2 for 

the state feedback parameters f^, i = 1, 2, 3; as the vector Rf is not 

replaced by R, which contains the parameters of the C(z polynomial. 

The only part of the state space pole placement technique affected, 

therefore, is the estimation of the state vector, which may now be described 

as: 

x(t) = 1 

C(z_1) 
CCz"1) 0 

z 1(1+CjZ 1) 1+CjZ 1 

- 2 -1 

0 
R 

b i u(t-l)+ 0 

-1 

-c2z 

1 
> 

b0 

0 

c2-a2 

C l " a l 

y(t-

This may however, be rewritten to give 

C(z_1)x(t) = 

-1 -2 -3 
bjZ + b jCjZ + bjC^z 

V ~ 2 + bi ci z" 3 + v " 1 + Vi 2"" 2 

-3 -2 
bjZ + bQz 

u(t) 

0 

-1 -1 -2 , -2 
c2z - a2z - a2 cl z al c2 Z 

-2 -2 -1 -1 
c2z - a2z + c^z - a^z 

y(t) 

and substituting for x(t) into the expression, u(t) = Fx(t), where F is 

defined in Appendix 2.2. 

{! + z - y - f j b , - f 2b 0 ) + z-' (c 2 - f jb jC , - £2b0c, - f3b0- f 2 b , ) 

—3 — 1 
+ z (- fjb1c2 - f 2

bi ci " f 3b ]) ̂  u(t) = (f 2°2 " f2 a2 + f3°l ~ f 3 a P 

+ z (f2ajC2 - f2
a2cl + f3 c2 " 

- 2 
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The following equalities then arise: 

I) C1 - fl bl - f2 b0 = dl 

II) c 2 - fjbjCj - f 2b, + f,b 0c 2 = d 2 

III) f 2c 2 - f 2 a 2 + f3cj + F2 cl al + fl c2 al = g 

IV) f 3 + f2c, + f,c2 = g Q 

V) f 2 a l C 2 + f 3 C 2 + fl a2°2 = ° 
Hence, the control law obtained from the state space formulation 

can be considered as 

DCz""1 )u(t) =G(z" 1)y(t)+ g0{z"kB(z"1)u(t) -k(z~l)y(t)} 

or D(z_1)u(t) =G(z" 1)y(t) - gQC(z"1 )e(t) . 

For equality of the controllers therefore, the SQC(Z ')e(t) term 

must be zero, which is true in the deterministic case. By modifying 

the state reconstruction technique, to include this extra term, the poly-

nomial pole placement controller can be constructed via the state space. 

The new estimator required (see Appendix 2.1) is thus 

x'(t) = x(t) + H T {y(t) - Hx(t)} 

where H = [0,...,0,c ,...,c ,1]. 



^ 2 3 3 -

A p p e n d i x 3 . 1 

Proof of Lemma 3.3: H z V d j C l - z_1F)Q = z~kB(z_1) 

A simple inductive example is given, from which a generalized proof 

may be extrapolated, although this becomes extremely monotonous and illegible 

In this example: n^ = 2, n ^ = 2 , k = 2 . 

Then: P = 0 0 0 0 ; Q- b2 
T 

; H = 0 JT ; F = 
f . 

1 0 0 0 bi 0 f2 
0 1 0 ~a2 bo 0 f3 
0 0 1 0 1 

k 4 
,f4 

from which F = P + QF = b2f, b2 f2 b2 f3 b2 f4 
1 + bl fl bl f2 V 3 

b. f4 

V l 1 + b0 f2 b0 f3 bO f4" a2 
0 0 1 "al 

It follows that (I - z _ 1F) = 1 " z " , V i 
-z- ]b2 f2 " Z " l b 2 f 3 

-z'b+bjfj) l-z'1b]f2 -z 1l»1f3 

0 -z 
-1 

" z" l b2 f4 

~ z" l bl f4 
z" 1 ( a2" b0 f4 ) 

1+a^"1 

As H = [0 0 0 1] we need only consider the fourth row of adj ( I - z *F) 

such that: 

H adj (I - z"1?) = CTTj, ir2, tt3, t^] 

where: iTj = z""2bQf + z"3(l + bjfj + bQf ) 

TT2 = z"2(l + b 0f 2) - z- 3b o f l 

- 1 - 2 - 3 
TT3 = z - z (b j f 2 + b2f j ) - z b2f 2 
w 4 - 1 - z ' L b . f , . b 0 f 3 + b 2 f ] ) - z~2(b,f3 + b2f > - r ' \ f 
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Thus H adj (I - z 1F)Q = z _ 1h + z ' V + z~3b„ 
u 1 A 

and z"]H adj (I - z_1F)Q = z~ kB(z H) 
-1 -1 -9 where B(z ) = b + b.z + b0z 
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Appendix 3^2 

P r o o f o f E q u a t i o n ( 3 . 3 . 3 4 ) 

In the state-space controller the input is defined by, 

u(t) = Fx(t) + S v(t) (A. 3.2.1) 

where v(t) is the reference input. 

In section 3.1, Lemma 3.1, it was shown that the control input 
m A 

used in the state space form, u(t) = Fx(t), is equivalent, in the polynomial 

case, to 

» S £ b u ( t ) = G O r [ > y ( t ) (A.3.2.2) 
C(z !) CCz"1) 

or by defining D'Cz"1) = DCz"1) - C(z _ 1) 

D'Cz"1) , . ̂  G(z _ 1) , . u(t) u(t) + — — f y(t) 
CCz"1) CCz'1) 

A 
where the right hand side of this equation is equivalent to Ex(t). 

Hence (A.3.2.1) can be rewritten as: 

u(t) = - P , ( Z . 1 ) u(t) + y(t) + S v(t) 
C(z ') CCz"1) 

or DCz"1) u(t) = G(z _ 1) y(t) + CCz'^S v(t) (A.3.2.3) 

and substituting this into the standard deterministic system equation, 

ACz"1) y(t) = z^BCz" 1) u(t) 

the closed-loop equation is obtained as 

ACz'1) y(t) = Z " k B ( 2 " l ) G ( 2 " 1 ) y(t) + ..(t) 
D(z ) DCz"1) 

or [ACz"1 )D(Z"1 ) - z~kB(z"1 )G (z"1) 3 y(t) = z^BCz" 1 )C(z_1)S v(t) 
-k 

By using the identity AD - z BG = CT, the closed loop equation becomes: 

( t ) = z^BCz"1 )S v(t) 
TCz"1) 

as in the state space formulation. 



- 2 3 6 -

A p p e n d i x 4 . 1 

-1 The state estimate in a multivariable system for a general C(z ) 

matrix polynomial. 

The estimated state vector is written as, 

1 
x(t) = (I - z 1P)"1 z"1 CQu(t) + Ry(t)] (A.4.1.1) 

where (Ij - z ^P) = 0. 

-z"1! * 

zr'c n 

'I z _ 1C 2 

• -1 -1 
-z I I+z C 

k null matrices 

(A.4.1.2) 

Thus: 

<i - r ' p r ' - i c t z - 1 ) ! " 1 

k null matrices 

C z-'c , 

zc 

z 2C" Z . L 2'-

z n~ lC' , . zC'n-1 % n-1 
0 % 

2 ^n+k-* 

'n+k-1 

(A.4.1.3) 
-(n+k-1)C, 

z 1 

-(n+k-2)-
Z . LA 

z"'c n+k-1 

'n+k 

in which |c(z is the determinant of the matrix polynomial C(z '), and 

i) C \ = |C(z 1)|{C.+1|c(z",)| 1 - 1} -Is i-l 

ii) C i = j C(z 1)\{I + C j z I + ...+Ci- z ^ 1;}C '(z"1) -1 -(i-l), -1,-1 
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from which, as C ± = C , = = C . = 0 it follows that n+1 n+2 n+k 
Gn+1 = Gn+2 " - Gn+k a n d Gn+1 = I ^ ^ K 1 + ' . ^ z V c " 1 (z"1) 
or Cn+J = |C(z_1)jI. 

Thus C' = |cCz"!) K C J.1|c(z"1)rI - 1} and hence, C' = C' , = 
11 1 n+l 1 1 n n+1 

" C'n+k-l " 
Therefore these coefficents are not shown on the overall matrix. 

The final state estimator form may now be obtained from (A.4.1.1) 
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A p p e n d i x 5 . 1 

Evaluation of the optimal state estimate 2c(t/t) for a three 

dimensional example, the estimate being given as, 

x'(t/t) = [I - z~ l?*l~ ]{tl ~ RHE_1]Qu(t-l) + RE-1y(t)} 

(A.5.1.1) 

and P* = E 0 

1 -a 

-a. 

-a. 

-a, 

where E = 1 ~ aj and C(z = unity. 

It follows that: 

[I-z" 1P*>E" 1 0 ~a j) 

z"1 (a j -1) 

0 

-1 
-z a. 

-z 
-1 

-1 
z a. 

/, ^ _1 "I 
(1 -a j ) -z a2 z a 2 

(l-aj)+z 

thus det (I - z - 1P*) = (I-a ){(l-a ) + (aj-a^z 1 + (a2~a3)z 2 + a 3z" 3} 

or det (I - z - 1P*) = (1 - aj){z + (1 - z)A(z_1)} 

also adj (I - z _ 1P*) = (1-a^ . , , -1 -2 -1 -2 
(l-a1) + (a1~a2)z +a2z a3z -a3z -a3z 

-1 

, , , -1 -2 
(l-a^Jz +a^z 

- 2 

/i \ -1 -1 -2 (l-aj)+a^z -a^z 
-1 

(l-a^-a^ 1_a3z2 

Therefore, the (l-a^) term, common to both adjoint and determinant, will 

cancel to simplify the final expression. 
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We also have: 

[I - RHE 1]Q = E"1 
( l-a,)b2 + a3b0 

(l-a1)b] + a2bQ 

from which: 

adj(I-z"1P*)[I-RHE"1]Q = b ? + {(a.b -a1b0)+z~1(a_b -a_b0)}(1-z"1) -1 
3 0 1 2 
-1 

3 1 2 2' 
-1 

b, + b2z ^ { ( a ^g-a j bp+z 1(a3b0-a1b2)}(l-z~1) 

, ^ , -1 ^ -2 
0 + V 2Z 

and adj(I-z *P*)RE 1 -a. 
-1 

-a2-a3z 

- 1 - 2 
-aj-a2z -a3z 

(A.5.1.2) 

(A.5.1.3) 

Substituting for the above in (A.5.1.1) the f ina l estimator form i s : 

x(t/t) = 
(z+(l-z)A(z"1)} 

r 
-a. 

-1 
-a2-a3z 

- 1 - 2 
"al ~ a2 z " a

3
Z 

y(t)+z 
-1 

bj+b2z 
-1 

- 1 - 2 
b0+bjZ +b2z 

u(t) 

+z"1(l-z l ) f(a3b0-a]b2)+z 1 ( a
3

b
1-a 2b 2 ) 

(a2b0-a1b1)+z"1(a3b0-a1b2) 

u(t) 
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