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A b s t r a c t 

T h i s s t u d y i s concerned w i t h s t e a d y , l a m i n a r , h i g h 

R e y n o l d s number f l o w o f a Newtonian v i s c o u s f l u i d i n a c o l l a p -

s i b l e tube , where the p o s i t i o n o f the tube w a l l i s a f u n c t i o n 

o n l y o f t he p r e s s u r e exe r ted l o c a l l y by t he f l u i d on the w a l l . 

The n o n d i m e n s i o n a l i z e d f l u i d - t u b e sy s tem i s c o n t r o l l e d by t h r e e 

ma in p a r a m e t e r s : the Reyno ld s number o f the incoming f u l l y 

deve loped f l o w , t h e minimum r a d i u s ( o r h a l f - w i d t h ) o f the t ube , 

and the " p r e s s u r e r e s p o n s e " , wh ich c h a r a c t e r i z e s the r e s p o n s e 

o f the w a l l t o a change i n f l u i d p r e s s u r e . R e s t r i c t i o n s a r e 

p l a c e d on t h e s e pa ramete r s so t h a t the s t reamwise l e n g t h 

s c a l e i s l a r g e and, t o the o rde r worked, the p r e s s u r e i s u n i -

form a c r o s s the t u b e . 

For a model tube law - the r e l a t i o n s h i p between the w a l l 

p o s i t i o n and the l o c a l f l u i d p r e s s u r e - the f l o w i n a channe l 

i s i n v e s t i g a t e d i n d e t a i l . S o l u t i o n s a re p r e s e n t e d f o r some 

o f the p o s s i b l e parameter v a l u e s . However, f o r no tube law 

a r e we a b l e to f i n d a complete s o l u t i o n f o r a l l p o s s i b l e v a l u e s 

o f the p r e s s u r e r e s p o n s e . The r e a s o n f o r t h i s i s n o t known 

d e f i n i t e l y , but r e s u l t s f rom o the r s t u d i e s s u g g e s t t h a t pe rhaps 

s t e a d y s o l u t i o n s may n o t e x i s t f o r a t l e a s t some o f t h e s e c a s e s . 

I n g e n e r a l , t he f l o w i n an a x i s y m m e t r i c p i p e i s s i m i l a r t o 

t h a t i n the a n a l o g o u s c h a n n e l . Wh i l e the f l o w i n a n o n a x i -

symmetr ic p i p e - f l u i d sy s tem r e t a i n s a l i n e a r s t r u c t u r e , i t can be 

d i v i d e d i n t o a x i s y m m e t r i c and nonsymmetr ic p a r t s , and i t i s the 

a x i s y m m e t r i c p a r t wh ich de termines the p r e s s u r e and hence the 

w a l l p o s i t i o n . We f i n d s i g n i f i c a n t d i f f e r e n c e s i n the f l o w when 

the p i p e c o l l a p s e i s a " b e n d i n g c o l l a p s e " , w i t h a c o n s t a n t w a l l 

p e r i m e t e r , as opposed t o a " s t r e t c h i n g c o l l a p s e " , which i n v o l v e s 

a change i n p e r i m e t e r . I n a l l c a s e s c o n s i d e r e d the c o l l a p s e i s 

more g r a d u a l w i t h a bend ing c o l l a p s e . 

Our r e s u l t s a r e compared q u a l i t a t i v e l y w i t h some from e x p e r i -

menta l s t u d i e s . I n c e r t a i n r e s p e c t s the r e s u l t s a re c o n s i s t e n t . 
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S e c t i o n 1. I n t r o d u c t i o n 

1 . 1 Genera l background and e q u a t i o n s 

I t i s t hough t t h a t f l u i d dynamica l p r o p e r t i e s , p a r t i c u l a r l y 

the l o c a l b e h a v i o u r o f t he shear s t r e s s , may have i m p o r t a n t p h y s i o -

l o g i c a l i m p l i c a t i o n s f o r f l o w i n the b l o o d v e s s e l s o f a n i m a l s ( see 

Caro e t a l . (1969, 1971) and L i g h t h i l l ( 1 9 7 2 ) ) , and a t t e n t i o n h a s 

been g i v e n r e c e n t l y t o f l o w i n n o n - u n i f o r m tubes under a v a r i e t y o f 

c o n d i t i o n s . Some i d e a o f the range o f p rob lems a t tempted and 

approaches u sed , b o t h t h e o r e t i c a l and e x p e r i m e n t a l , can be o b t a i n e d 

f o r b i omechan i c s i n g e n e r a l , f rom the volume o f Fung et a l . ( 1972 ) , 

and f o r b l o o d f l o w i n p a r t i c u l a r , f rom the volumes o f B e r g e l (1972) , 

Hwang and Norman (1972) , and McDonald (1974) . A comprehens ive i n t r o -

d u c t i o n to the mechan ic s o f the c i r c u l a t i o n i s p r o v i d e d by Caro e t a l . 

( 1978 ) , w h i l e a r ev i ew o f the c l i n i c a l work and many r e l e v a n t r e f e r -

ences a r e c o n t a i n e d i n Charm and K u r l a n d ' s (1974) s t u d y . 

I t i s conven ien t t o d i v i d e the t h e o r e t i c a l a t tempt s a t m o d e l l i n g 

p h y s i o l o g i c a l f l o w . in n o n - u n i f o r m v e s s e l s i n t o two c a t e g o r i e s : f i r s t , 

t h o s e t h a t assume t h a t t he p o s i t i o n o f the v e s s e l w a l l i s known e x -

p l i c i t l y a t any g i v e n t i m e , and second, t h o s e t h a t assume a r e l a t i o n -

s h i p between the p o s i t i o n o r b e h a v i o u r o f the w a l l and the q u a n t i t i e s 

c h a r a c t e r i s i n g the b e h a v i o u r o f the f l u i d , such a s the p r e s s u r e and 

shea r s t r e s s d i s t r i b u t i o n s . A major t a s k i n prob lems o f the second 

t ype i s t o determine the p o s i t i o n o f t he w a l l e x p l i c i t l y . Examples 

o f the f i r s t c a t e g o r y above a re models o f p e r i s t a l t i c pumping, which 

u s u a l l y have a known p u l s a t i l e w a l l d e f o r m a t i o n t r a v e l l i n g t h r o u g h an 

i n f i n i t e tube ( see J a f f r i n and S h a p i r o 1971) , and the a x i s y m m e t r i c 

model o f a v a l v e d p h y s i o l o g i c a l pump deve loped by Uch ida and A o k i 

(1977 ) , which ha s a s e m i - i n f i n i t e p i p e c o n t r a c t i n g o r expand ing w i t h 

the r a d i u s o f the p i p e a known f u n c t i o n v a r y i n g w i t h t ime o n l y . An 

example o f the second c a t e g o r y i s the s t u d y by Schwerdt and C o n s t a n -

t i n e s c o (1976) o f t he f l o w i n an i n i t i a l l y s t r e s s e d e l a s t i c t ube , 

where the f l ow i s g i v e n by a s m a l l p e r t u r b a t i o n to the P o i s e u i l l e f l o w 

and the e l a s t i c w a l l model i s based on a s m a l l d e f o r m a t i o n s h e l l t h e o r y . 

I n a p p l y i n g work complementary to t h a t o f Uch ida and A o k i (1977) t o 

e l a s t i c a l l y c o n s t r a i n e d w a l l s , Secomb (1978) i n c l u d e s both app roaches . 
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The p r e s e n t s t u d y i s concerned w i t h a prob lem o f the second 

t ype above, i n wh ich the w a l l p o s i t i o n i s no t known e x p l i c i t l y . I n 

p a r t i c u l a r , we a re i n t e r e s t e d i n the s t e a d y , h i g h Reyno ld s number 

f l o w i n an i n f i n i t e l y l o n g c o l l a p s i b l e t ube , f o r which the p o s i t i o n 

o f the w a l l ( s ) i s known o n l y a s a f u n c t i o n o f the p r e s s u r e e x e r t e d by 

the f l u i d on the w a l l ( s ) . As a p o i n t o f n o t a t i o n , tube i s used here 

i n a g e n e r a l sense meaning bo th p i p e s and c h a n n e l s , a c o n v e n t i o n 

f o l l o w e d th roughou t t h i s s t u d y . We assume t h a t f a r ups t ream the tube 

ha s a c o n s t a n t c r o s s - s e c t i o n a l a rea and shape, and t h a t t h e r e i s a 

known r e f e r e n c e p r e s s u r e above which the tube t a k e s t h i s r i g i d shape 

and below which the p o s i t i o n o f the w a l l ( s ) can v a r y . A l s o , we assume 

t h a t the " t u b e l a w " , the r e l a t i o n s h i p between the p o s i t i o n o f the 

w a l l ( s ) o r the c r o s s - s e c t i o n a l a r e a and the f l u i d p r e s s u r e , i s a 

c o n t i n u o u s f u n c t i o n . Hence, the change i n p o s i t i o n o f t he w a l l s w i l l 

be c o n t i n u o u s everywhere the f l u i d p r e s s u r e a t t he w a l l s i s c o n t i n u o u s . 

The a s s u m p t i o n s n e c e s s a r y f o r t he u se o f such a tube law and the 

form o f the tube law a re d i s c u s s e d i n S e c t i o n 1.2 be low. 

We w i l l now i n t r o d u c e the b a s i c g o v e r n i n g e q u a t i o n s f o r f l o w i n a 

c o l l a p s i b l e c h a n n e l . The e q u a t i o n s f o r a p i p e a re g i v e n when r e q u i r e d 

i n S e c t i o n 4 . 1 be low. The f l u i d i s assumed to be homogeneous, 

Newton ian , and i n c o m p r e s s i b l e and i t s mot ion t o be l a m i n a r and s t e a d y . 

Let p be the d e n s i t y o f the f l u i d , a be the h a l f w i d t h o f the 

channe l when i n i t s r i g i d ups t ream form, and UQ be a r e p r e s e n t a t i v e 

v e l o c i t y f a r ups t ream. To n o n d i m e n s i o n a l i s e the t w o - d i m e n s i o n a l 

channe l prob lem, the p r e s s u r e i s w r i t t e n as pUQP and the v e l o c i t y a s 

U Q ( U , V ) i n C a r t e s i a n c o o r d i n a t e s ( x , y ) , where ax and ay a re the d i s -

t ance downstream ( p a r a l l e l t o the u n d i s t u r b e d channe l w a l l f a r ups t ream) 

and a c r o s s the channe l r e s p e c t i v e l y . The o r i g i n i s t a k e n as the c e n t r e 

o f the channel a t the p o i n t where the w a l l s f i r s t d e v i a t e from the 

r i g i d ups t ream form (see F i g . 1 . 1 ) . The r e f e r e n c e p r e s s u r e a t which 

t h i s d e v i a t i o n s t a r t s w i l l be t aken to be zero . I f the Reyno ld s num-

ber i s d e f i n e d by 

R = U Q a / v , (1 .1 ) 

where v i s the k i n e m a t i c v i s c o s i t y o f the f l u i d , then the g o v e r n i n g 

s t e a d y N a v i e r - S t o k e s e q u a t i o n s a re 



Figure 1.1. The geometry and coordinate system of a collapsible channel 
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where V = 3 /3x + 3 / 3 y . IVe assume t h a t the p r o p e r t i e s o f the 

upper and lower w a l l s a r e i d e n t i c a l . As a consequence, the f l o w i s 

expected t o be symmetr ic about the x - a x i s , a l t h o u g h t h i s w i l l no t be 

e x p l i c i t l y assumed i n g e n e r a l . I n the p rob lems c o n s i d e r e d i n t h i s 

s t u d y , the r e s t r i c t i o n s p l a c e d on the pa rameter s a re such t h a t the 

t r a n s v e r s e momentum e q u a t i o n a lways i m p l i e s t h a t the p r e s s u r e i s 

independent o f y , and t h u s t h a t the p o s i t i o n s o f the w a l l s can be 

e x p r e s s e d i n the form y = +_ y , where y = y Cp) is I k e g i v e n tube 

law. The boundary c o n d i t i o n s a re t h a t the components o f v e l o c i t y must 

v a n i s h a t the w a l l s and must match to the i ncoming f u l l y deve loped 

P o i s e u i l l e f l o w , t h a t i s , 

u = v = 0 a t y = + y , j — j w' 

u U (y ) and v ^ - 0 a s x - > - ° ° , 

(1.3) 

1 2 
where U (y) = — (1 - y ) . I f i t i s assumed t h a t the f l o w i s symmetr ic 

then the n o - s l i p c o n d i t i o n a t the lower (o r upper) w a l l can be r e p l a c e d 

by 

v = 0 and ^ = 0 a t y = 0. 
3y 

( 1 .3a ) 

Throughout t h i s s t u d y we u s e a tube law o f the form 

y w ( p ) = 1 - e S ( y p ) , (1.4) 

where y > 0 and 0 < e <_ 1 a re nond imens i ona l c o n s t a n t s and S ( t ) i s a 

c o n t i n u o u s monotonic f u n c t i o n such t h a t S ( t ) = 0 when t > 0, S ( t ) > 0 

when t < 0, S ( t ) i s 0 (1 ) when - t i s 0 ( 1 ) , and S ( t ) + 1 as t - « . 

Thus the r i g i d i t y o f the w a l l whenever the p r e s s u r e i s above the 

r e f e r e n c e v a l u e o f zero i s a s s u r e d . The v a l u e o f the parameter y 
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depends on both the e l a s t i c r e sponse o f the w a l l s t o changes i n the 

f l u i d p r e s s u r e and the v e l o c i t y o f the incoming f l o w , a s w i l l be seen 

i n S e c t i o n 1.2 be low. For a g i v e n f u n c t i o n S ( t ) , a l a r g e r v a l u e o f y 

w i l l l e a d t o a f a s t e r r e s p o n s e o f t he channe l w a l l s t o a g i v e n change 

i n the f l u i d p r e s s u r e . For t h i s r e a s o n , a channel f l o w f o r which 

y >> 1, y = 0 ( 1 ) , o r y << 1 w i l l be c a l l e d a f l ow w i t h a " f a s t " , 

" m o d e r a t e " , o r " s l o w " p r e s s u r e r e s p o n s e , r e s p e c t i v e l y . The minimum 

p o s s i b l e h a l f w i d t h o f the channel i s 1 - e. A c c o r d i n g l y , a channe l 

f o r wh ich e << 1, e = 0 ( 1 - c) = 0 ( 1 ) , 0 < 1 - £ « 1 o r e = 1 w i l l 

be c a l l e d a channe l w i t h a " f i n e " , " m o d e r a t e " , " s e v e r e " o r " c o m p l e t e " 

c o l l a p s e , r e s p e c t i v e l y . 

E q u a t i o n s (1 .2 ) - (1 .4 ) form a g e n e r a l prob lem f o r s t e a d y f l o w 

i n a c o l l a p s i b l e c h a n n e l . Our i n t e r e s t i s i n the s t r u c t u r e o f the 

f l u i d dynamics when the Reyno ld s number i s l a r g e , and we assume t h a t 

R » 1 (1 .5 ) 

t h r o u g h o u t t h i s s t u d y . I n a d d i t i o n t o ( 1 . 5 ) , r e s t r i c t i o n s w i l l be 

p l a c e d on the pa rameter s y , e and R i n such a way t h a t , t o the o r d e r 

o f magn i tude c o n s i d e r e d , the p r e s s u r e w i l l a lways be independent o f y . 

So f a r we have no t s p e c i f i e d the l e n g t h s c a l e s t o be u sed . For 

l a m i n a r h i g h Reyno ld s number f l o w i n a tube w i t h a f i x e d c o n s t r i c t i o n , 

t he a p p r o p r i a t e l e n g t h s c a l e s a re o b t a i n e d from the known d imens i on s 

o f t he c o n s t r i c t i o n , and the p r e s s u r e d i s t r i b u t i o n i s de termined 

l a r g e l y by the s i z e , shape and p o s i t i o n o f the c o n s t r i c t i o n ( see 

S m i t h 1976a,b; 1978a; 1979) . I n the p r e s e n t s t u d y we have , i n a 

s e n s e , the o p p o s i t e s i t u a t i o n ; t h a t i s , i t i s the p r e s s u r e d i s t r i b u -

t i o n t h a t de termines the p o s i t i o n o f the w a l l ( s ) , and i t c o u l d be s a i d 

t h a t our major t a s k i s t o f o l l o w downstream the development o f the 

p r e s s u r e from i t s i ncoming P o i s e u i l l e form. A c c o r d i n g l y , we w i l l 

assume t h a t s u f f i c i e n t l y f a r ups t ream the p r e s s u r e g r a d i e n t i s 0 ( R ~ * ) , 

and u s e t h i s a s s u m p t i o n to o b t a i n i n i t i a l l e n g t h s c a l e s f o r any g i v e n 

s i t u a t i o n . 

The form o f the tube law and p r e v i o u s work on f l o w i n c o l l a p s i b l e 

t u b e s a re d i s c u s s e d below i n S e c t i o n s 1.2 and 1.3 r e s p e c t i v e l y . I n 

S e c t i o n 2 we c o n s i d e r c h a n n e l s w i t h a f i n e c o l l a p s e (e << 1 ) , w h i l e 
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S e c t i o n 3 i s concerned m a i n l y w i t h c h a n n e l s w i t h a moderate, s e v e r e , 

o r complete c o l l a p s e (E = 0 ( 1 ) ) . I n S e c t i o n s 3.2 and 3 .3 we s t u d y 

i n d e t a i l a f l u i d - c h a n n e l sy s tem w i t h a moderate p r e s s u r e r e s p o n s e 

(y = 0 ( 1 ) ) and a tube law such t h a t S ( y p ) % ( - y p ) q a s p - «>, where 

q i s a p o s i t i v e c o n s t a n t . For a complete c o l l a p s e (e = 1 ) , we f i n d 

t h a t i f q < 1/2 then the f l ow i s e s s e n t i a l l y v i s c o u s i n c h a r a c t e r 

when - p >> 1, and t h a t the c o l l a p s e extends i n d e f i n i t e l y f a r down-

s t ream i f 0 < q £ 1/3 ( S e c t i o n 3 . 2 ) , but no t i f 1/3 < q < 1/2 ( S e c t i o n 

3 . 3 ) . The p r e s s u r e ha s a s i n g u l a r i t y and y 0 a t a f i n i t e v a l u e o f 
-1 w 

X = R x i f 1/3 < q < 1 /2 . I f q > 1/2 the i n e r t i a l f o r c e s i n the f l u i d 

n e c e s s a r i l y dominate the p r e s s u r e g r a d i e n t a s p - and we a r e 

no t a b l e t o f i n d a s o l u t i o n f o r the l o c a l prob lem w i t h - yp >> 1 

( S e c t i o n 3 . 3 ) . I f q = 1/2 then the i n e r t i a l f o r c e and the p r e s s u r e 

g r a d i e n t i n the f l u i d a re o f the same o r d e r a s p - and y i s found 

t o have a " c r i t i c a l " v a l u e o f 18 such t h a t an a s y m p t o t i c s o l u t i o n f o r 

- p >> 1 i s o b t a i n e d f o r y < 18, and i n a l i m i t sense as y 1 8 - , b u t 

n o t f o r y >18. Compar i son w i t h n u m e r i c a l r e s u l t s , and w i t h r e s u l t s 

f rom o t h e r s t u d i e s , b o t h t h e o r e t i c a l and e x p e r i m e n t a l , s u g g e s t s t h a t 

t h e r e may not be a complete s t e a d y s o l u t i o n f o r the prob lem w i t h q > 1/2 

and y = 0 ( 1 ) , n o r f o r t h a t w i t h q = 1/2 and y >_ 18 ( S e c t i o n s 5 .3 and 5 ) . 

I f the p r e s s u r e re sponse i s s l ow (y << 1 ) , then the f l o w i s v i s -

cous dominated, and the s t reamwise v e l o c i t y s o l u t i o n has a s i m p l e 

p a r a b o l i c form ( S e c t i o n s 2.3 and 3 . 5 ) . An e x c e p t i o n to t h i s can o c c u r 

when yw << 1 ( S e c t i o n 3 . 5 ) . 

I f the p r e s s u r e re sponse i s f a s t (y >> 1; S e c t i o n s 2 . 1 and 3 . 4 ) , 

then immed i a te l y downstream o f the o r i g i n , where the w a l l s f i r s t v a r y 

from y = 1, t h i n v i s c o u s boundary l a y e r s form i n t he f l u i d a d j a c e n t t o 

the w a l l s . I n t h i s r e g i o n the p r e s s u r e i s determined by the f l o w i n 

the w a l l l a y e r s , w h i l e the core f l o w re sponds p a s s i v e l y t o changes i n 

t he w a l l l a y e r s ( S e c t i o n s 2 . 1 and 3 . 4 ) . These boundary l a y e r s have 

a l i n e a r f l o w s t r u c t u r e , and as l o n g as they p e r s i s t and the change i n 

t he channe l w i d t h i s s m a l l (eS << 1) the core f l ow t a k e s the form o f a 

s m a l l i n v i s c i d r o t a t i o n a l p e r t u r b a t i o n to the i ncoming P o i s e u i l l e f l o w . 

I f the p r e s s u r e r e s p o n s e i s f a s t and the c o l l a p s e i s f i n e such t h a t e 
2/3 

i s 0(y ) o r l e s s ( S e c t i o n 2 . 1 ) , then the w a l l l a y e r s expand down-

s t ream u n t i l e v e n t u a l l y t h e i r t h i c k n e s s becomes f i n i t e and they merge 
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w i t h the co re f l o w . The f l o w can then be t r e a t e d s i m p l y as a P o i s e u i l l e 

f l o w p l u s an 0 (e ) v i s c o u s p e r t u r b a t i o n . 

- 2 / 3 
I f e >> y then i t i s n e c e s s a r y t o c o n s i d e r the b e h a v i o u r o f 

- 2 / 3 

S ( y p ) f o r 0 < - up << 1. A p a r t i c u l a r channe l w i t h e >> y i s 

s t u d i e d i n S e c t i o n 3.4 be low. The s o l u t i o n found f o r the l i n e a r v i s -

cous w a l l l a y e r s which form a s the f l o w p a s s e s the o r i g i n has a s i n g u -

l a r i t y , with, the p r e s s u r e t e n d i n g t o i n f i n i t y a t a f i n i t e v a l u e o f 
3 /4 3/2 X 2/3 1/7 

e y R x . I f y " < < e < _ 0 (y~ ) t hen t h i s s i n g u l a r i t y can be 
smoothed out by t a k i n g a s h o r t e r l e n g t h s c a l e l o c a l l y , and we a r e 

-1/2 
a b l e t o complete the s o l u t i o n . However, i f y << e <_ 1 then t h i s 

p rocedure i s u n s u c c e s s f u l , and we do no t f i n d a complete s o l u t i o n f o r 

the prob lem, o n l y the ups t ream s o l u t i o n o f P o i s e u i l l e f l o w and the 

l o c a l s o l u t i o n f o r the f l o w immed ia te l y downstream o f the o r i g i n . 

The e x i s t e n c e o f v i s c o u s w a l l l a y e r s when the p r e s s u r e r e s p o n s e 

i s moderate (y = 0 ( 1 ) ) depends on the v a l u e o f e and the r e g i o n o f the 

channe l under c o n s i d e r a t i o n ; i f the c o l l a p s e i s f i n e (e << 1) then 

no d i s t i n c t boundary l a y e r s form, w h i l e i f the c o l l a p s e i s moderate , 

s eve re o r complete (e = 0 ( 1 ) ) , then i n the r e g i o n downstream o f the 

o r i g i n where 0 < xR * << 1, l i n e a r v i s c o u s w a l l l a y e r s form and the 

change i n t he co re f l o w i s p a s s i v e . These w a l l l a y e r s grow i n t h i c k -

n e s s downstream u n t i l t hey merge w i t h the co re f l o w when xR * i s 0 ( 1 ) . 

When t h i s o c c u r s i t i s no t a p p r o p r i a t e t o s e p a r a t e the f l o w i n t o 

d i s t i n c t r e g i o n s a c r o s s the c h a n n e l . However, i f q = 1 /2 , 0 <_ 1 - e <<1, 

and 0 < 18 - y <<1 then n o n l i n e a r v i s c o u s w a l l l a y e r s form and t h e core 

f l o w becomes e s s e n t i a l l y i n v i s c i d a s p -»• - °° ( S e c t i o n 3 . 3 ) . 

I n S e c t i o n 4 we s t u d y the f l o w i n a model o f a c o l l a p s i b l e p i p e . 

The r e s u l t s f o r a x i s y m m e t r i c p i p e s ( S e c t i o n 4 . 2 ) a re b r o a d l y s i m i l a r 

t o t h o s e f o r the a n a l o g o u s c h a n n e l s , and S e c t i o n 4 i s m a i n l y concerned 

w i t h nonsymmetr ic p i p e s , i . e . g e n u i n e l y t h r e e - d i m e n s i o n a l f l o w s . I n 

g e n e r a l , because o f the a d d i t i o n a l c o m p l e x i t y i n t r o d u c e d by the t h i r d 

v e l o c i t y component and independent v a r i a b l e , the a n a l y s i s i s r e s t r i c t e d 

t o sy s tems i n which the change o f the p i p e w a l l from the ups t ream 

c i r c u l a r c r o s s - s e c t i o n i s s m a l l , a l t h o u g h t h i s does i n c l u d e the i n i t i a l 

s t a g e o f a f i n i t e c o l l a p s e w i t h a f a s t p r e s s u r e r e s p o n s e . However, 

some s i g n i f i c a n t f e a t u r e s o f the f l ow are r e v e a l e d . For a f i n e c o l l a p s e 

the f l o w can u s u a l l y be d i v i d e d i n t o ax i s ymmet r i c and nonsymmetr ic 
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parts, and it is the axisymmetric component of the flow, which is 

identical to the flow in an axisymmetric pipe with the same para-

meter values, which determines the pressure and thus the position of 

the pipe wall. Further, it is predicted that the type of collapse of 

the pipe wall will have a significant effect on the flow. For a 

"bending collapse", in which the internal perimeter of the wall 

remains constant as the pressure varies, we find that the pressure 

is undisturbed from its Poiseuille form, whereas for a "stretching 

collapse", in which the perimeter varies, the pressure deviates from 

the linear Poiseuille form. This is perhaps most important when the 
-2/3 

pressure response is fast and e >> y (Section 4.4), when a 

singularity is found in the pressure for a stretching collapse but 

not for a bending collapse. This singularity is similar to that found 

in the analogous channel flow (Section 3.3). We stress that our 

study concerns a model of a collapsible pipe, and the extension of 

these results to more realistic pipe-fluid systems is by no means 

certain. Of course, the same is true for the channel-fluid systems 

we study. 

A comparison of our results with some from other studies of 

flow in collapsible tubes can be found in Section 5 below. The 

numerical techniques used in this study are given in Appendix 5. 

No evidence is found of any significant upstream influence in 

any of the fluid-tube systems investigated in this study. In con-

trast, an important prediction from the studies by Smith (1976a,b,e; 

1977b; 1978a; 1979) of high Reynolds number flow in tubes with fixed 

constrictions and dilations is that, unless the dimensions of a 

constriction are sufficiently small, significant changes, including 

separation, can occur in the incoming flow ahead, even far ahead, of 

the constriction. There is no inconsistency between our results and 

those of Smith, as a necessary condition for a fixed constriction in 

a tube to have a significant influence upstream of the constriction 

is that the dimensions of the constriction are such that the pressure 

is dependent on y, whereas the restrictions placed on the parameters 

in the present study are such that, to the order worked, the pressure 

is always independent of y. Thus, although we do not assume it, we 

might expect from the results of Smith that there will be no signi-

ficant changes to the flow ahead of the collapse in any of fluid-tube 

systems considered in the present study. 
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1.2 The tube law 

A number of studies have been made of the relationship between 

the cross-sectional area and transmural pressure - the internal pressure 

minus the external pressure - for compliant tubes, some of which we 

will now review. Moreno et al. (1970) have determined experimentally 

the pressure-area relationship for certain dog veins and thin walled 

latex tubes (see Figure 1.2), which are in turn examples of naturally 

occurring and man-made collapsible tubes. The results from Moreno 

et al. can be summarised as follows: 

(i) Both veins and latex tubes have a circular cross-section 

when the transmural pressure is sufficiently far above zero, and both 

lose their circular cross-section when the transmural pressure 

approaches zero. The walls of dog veins and latex tubes are not 

structurally self-supporting, and at zero transmural pressure the 

stresses in the wall result in an approximately oval shape. Near 

zero transmural pressure the change in area and shape with pressure 

is rapid (see Figure 1.3). 

(ii) From flattened to circular cross-sections the perimeter 

of a latex tube remains constant and the change in area comes ex-

clusively from bending of the wall, while an increase in area with a 

circular cross-section comes from stretching of the wall with a 

corresponding increase in the perimeter. Unlike latex tubes, veins 

do not show a distinct two-region behaviour but a combination of bend-

ing and stretching when changing from a circular cross-section. 

Figure 1.4 shows plots of change in area versus change in perimeter 

for a vein and a latex tube. 

(iii) Bending of the walls is either the exclusive or the 

dominant mechanism responsible for changes in cross-sectional area 

of veins and thin-walled latex tubes in the neighbourhood of zero 

transmural pressure. Further, no single modulus of elasticity can 

relate the pressure and the cross-sectional area when bending is pre-

dominant, and it is the product of the Young's modulus and the moment 

of inertia of the wall that is the significant parameter in this 

regime. 

We judge from the above that non-axisymmetric collapses are of 

great practical importance, particularly those of a pipe which has a 
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Figure 1.2. Pressure-area relationships for a segment of 

dog vein and a thin-walled Latex tube. A is the cross-sectional 

area, p^ the transmural pressure, and A = A q at p = 0. (From 

Caro et al. 1978, after Moreno et al. 1970). 

Figure 1.4. Fractional change in perimeter versus fractional 

change in area for a segment of dog vein and a thin-walled Latex 

tube. A is the cross-sectional area, Z the perimeter, and A = A 

and Z = ZQ at zero transmural pressure. (From Caro et al. 1978, 

after Moreno et al. 1970). 
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. E X P E R I M E N T 

. C O M P U T E R S O L U T I O N 

Figure 1.3. Pressure-area relationships and shape 

of tubes near zero transmural pressure. A is the 

cross-sectional area, p the transmural pressure, 

and A = A q at p = 0. (i) For a segment of dog vein. 

The solid line is (A - A q ) / A o = 0.019 tan~ 1[3(p t + .35)] 

- 0.81. (ii) For a thin-walled Latex tube. The solid 

line is ( A - A Q ) / A q = 0.0091 tan" 1 (p + 4.1) - 0.70. 

(From Moreno et al. 1970). 
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constant perimeter. A model of this problem is studied in Section 4. 

The results suggest that the type of collapse, i.e. bending or 

stretching, can have a significant effect on the flow and the 

behaviour of the tube. 

We turn now to the form of the tube law. Taylor and Gerrard 

(1977) have formulated various theoretical pressure-radius relation-

ships for a distended elastic vessel with a circular cross-section, 

i.e. a pure stretching regime. They conclude that theories which 

take account of the thickness of the wall produce a significantly better 

representation than those which treat the wall as a membrane, but also 

that there is little difference between the results of more exact 

theories and those for a thin membrane corrected by a simple thickness 

factor. Their "best simple relationship" shows reasonable agreement 

with experimental results from a rubber pipe. 

Taylor and Gerrard's (1977) work applies only to elastic pipes 

with a circular cross-section and a positive transmural pressure. 

When the transmural pressure is negative the pipe wall buckles and 

opposing walls will eventually come into contact. The analysis of 

Flaherty et al. (1972) suggests that when this happens the tube 

law for an elastic pipe has the similarity form A = k(-p t)~
n, where 

p is the transmural pressure and n > 0 and k are constants. The 

simplest case has n = 2/3 and a"dumb-bell" shaped pipe. Latex tubes 

display this "dumb-bell" shape (see Figure 1.3), and it has been 

verified experimentally that they closely obey this law with n = 2/3 

(Shapiro 1977). Note that this relationship does not give the shape 

of the pipe, merely the area in terms of the pressure. We know of no 

simple theoretical relationship between the cross-sectional area or 

shape of an elastic pipe and the transmural pressure for the inter-

mediate regime in which the pipe is nonsymmetric but the walls are not 

in contact. Flaherty et al. (1977) obtained numerical solutions for 

the similarity problem for this intermediate regime, but did not find 

an explicit relationship between the pressure and area. Earlier, 

Moreno et al. (1970) developed a nonlinear differential equation for 

the pipe shape and hence for the area, but unfortunately could not find 

an analytical solution for it. However, its numerical solution shows 

good agreement with experimental results (see Figure 1.4). Also, 

Moreno et al. found that (A - A)/A = b tan *(p + c) - d, where 
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p is the transmural pressure, b, c and d are constants and 

A q = A(p t = 0), shows close agreement with experimental results 

(Figure 1.4). However, they were unable to find any physical basis 

for the form of this relationship and it must be regarded merely as 

an exercise in curve fitting. 

Using least squares, Rubinow and Keller (1972) produced a 

pressure-radius relationship for a piece of human external iliac 

artery distended by positive transmural pressures, and assumed it 

to be valid for negative transmural pressure as well. Wild et al. 

(1977) used this expression with an adaptation to make it mathemati-

cally consistent. 

Strictly, the discussion above -is concerned with compliant tubes 

that are filled with a stationary fluid and are distended by a trans-

mural pressure that is uniform along the tube. If the fluid is 

viscous and in motion, the pressure is unlikely to be uniform and 

there will be a shearing force from the fluid on the inner wall of 

the tube. Further, in any rigorous analysis it would be necessary to 

consider the effects of the bending stiffness of the wall and the con-

ditions at the outer surface at the wall. In studies of flow in 

collapsible tubes it is commonly assumed that the use of a tube law 

relating the local pressure and the cross-sectional area or shape is 

valid (e.g. Ling and Atabek 1972, Shapiro 1977, Wild et al. 1977, 

Secomb 1978). It may be necessary to place severe restrictions on the 

fluid-tube system to justify this assumption. For example, consider 

an axisymmetric fluid-pipe system with internal pipe radius r w , 

|dr w/dx| << 1, and the pipe wall so thin that a shell theory of elasti-

city can be used. Let T_ and T„ be the circumferential and longitudi-

u % 

nal tensions respectively, p be the transmural pressure, and R^ the 

radius of curvature in the longitudinal plane. If |T^/R | << p then 

T 9 = V w " 

Note that this does not yet imply that r^ is a function of p only. 

Further assumptions are necessary for r w = r^(p ) to hold. For 

example, that T Q >> T 0 or that the longitudinal Poissons ratio is so 
U x, 

small that the effect of T on r is negligible. 
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In general, it is unlikely that the cross-sectional area and 

shape of a pipe will depend on p only unless p is 0(1) or greater, 

|T /R | << |p land |dr w/dx| << 1. If we make the further assumptions 
X/ X> L 

that p > 0, the fluid-pipe system is axisymmetric, there is no longi-

tudinal displacement of the pipe, and the pipe material is isotropic, 

homogeneous, and incompressible, then theoretical pressure-radius 

relationships can be derived. Taylor and Gerrard (1977) present such 

formulae for both thick-and thin-walled pipes, obtained using a linear 

stress-strain relationship for small deformations and a strain-energy-

density function for finite deformations. This system is of some 

practical interest since experimental evidence suggests that, although 

not homogeneous or isotropic, an artery can be regarded as an in-

compressible thick-walled pipe with negligible longitudinal displace-

ment. McDonald (1974) states that the longitudinal motion caused by 

the shear drag on the inner surface of an artery is so small that it 

had not been measured experimentally. Patel and Fry (1966) found that 

the perivascular tethering to the outer surface of an artery acts 

much more to prevent axial motion than radial motion. Patel and 

Vaishnav (1972) report that arteries are essentially incompressible. 

Although a full treatment of the elasticity of an arterial wall 

requires an approach considerably more complex than assuming the 

material to be isotropic and homogeneous, it is felt by Taylor and 

Gerrard (1977) that, because of the difficulties in obtaining necessary 

information, no improvement will result from the use of more refined 

theories. 

For a thin-walled pipe with a negative transmural pressure, Shapiro 

(1977) and Kamm and Shapiro (1979) assert that the effect of the longi-

tudinal tension T^ is roughly equivalent to a change in the trans-

mural pressure by an amount of order - T^/R^, and that if 

|T /R | << |p^| then the use of a local tube law provides a good 

approximation. This tube law must relate p , the cross-sectional area, 

and the local properties of the pipe, including presumably the effects 

of T^ on the pipe circumference and wall thickness. Note that, as 

with p t > 0, assuming |T /R | << |p | does not necessarily imply that 

the cross-sectional area and shape of the pipe are independent of T . 

It would be desirable to include a detailed analysis of the 

elastic behaviour of the tube rather than assume that a tube law can 
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be used. However, this approach has several disadvantages: 

(i) The necessity of specifying the exact nature of the tube, 

which restricts the generality of the analysis. 

(ii) Tubes of interest may be complex in form, e.g. biological 

tubes, and the necessary*information may not be available and may 

be difficult to obtain with sufficient accuracy. 

(iii) The resultant fluid-tube problem is likely to be so complex 

that major simplifications in the assumptions and governing equations 

would be necessary to produce a tractable problem. For example, 

Womersley (1955) and Schwerdt and Constantinesco (1976) use a shell 

theory of elasticity, assuming that the deformations to the wall are 

small, the wall thickness is constant, the flow is axisymmetric, 

and the Navier-Stokes equations can be linearised. 

We are primarily interested in the fluid mechanics of the prob-

lem, and throughout this study we assume that the cross-sectional area 

and shape of the tube are known explicitly as a function of the 

local pressure. We stress that caution is necessary both in using 

this assumption and in interpretation of the results. 

Where the tube law is required explicitly, we will use 

0 p _> 0 
S = (1.6) 

1 - U + ( y p r r q / 2 p < 0 

where y and q are positive non-dimensional constants. This relation-

ship has a similar general form to those derived for certain elastic 

tubes (Taylor and Gerrard, 1977; Flaherty, 1972), and those used in 

other studies of flow in collapsible tubes (e.g. Oates, 1975; Shapiro, 
- - 2 

1977). Writing y = we see that there are three parameters, y, 

q and e, which characterise the elastic response of the tube to changes 
_2 

in the pressure p U Q p , and that, unlike q and e, y is a composite para-

meter and its value depends on both the elastic properties of the 

wall and the characteristic values of the incoming flow. An important 

feature of (1.6) is that dS/dp = 0 at p = 0. This choice was made 

to ensure a smooth transition between the "rigid" and "collapsible" 

sections of the tube (p >_ 0 and p < 0 respectively), and thus eliminate 

any "entrance effects" that might arise from a discontinuous change in 

the slope of the walls where p = 0. Also, such a discontinuous change 

could invalidate the assumption that S is a function of p only. Note 



(i) 

(ii) 

Figure 1.5. The tube law S(yp) = 1 - [1 + ( y p ) 2 ] ~ q / 2 . 

(i) various y with q = 1/2: (a) y = 0.1, (b) y = 0.4, 

(c) y = 1.0, (d) y = 7.5, (e) y = 10.0, (f) y = 100.0. 

(ii) various q with y = 1: (a) q = 0.1, (b) q = .325, 

(c) q = 0.5, (d) q = 0.75, (e) q = 1.0. 
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that if (yp) 2 in (1.6) is replaced by (yp) m, where m > 1, then the 

slope is continuous at p = 0, and an analysis similar to that pre-

sented below could be carried out, with essentially the same results. 

Figure 1.5 shows S(yp) for various values of q and y. 

1.3 Previous work 

Experimental work on flow in collapsible tubes has been con-

ducted on apparatus similar to that shown in Figure 1.6 by a number 

of workers, e.g. Holt (1944, 1953 and 1959), Conrad (1969), Katz et al. 

(1969) and Brower and Scholten (1975). This apparatus is sometimes 

known as a "Starling resistor" and consists of a thin-walled compliant 

pipe (usually Penrose surgical tubing) mounted at its ends on rigid 

piping and contained in a closed chamber. The chamber pressure p 
e 

can be given any chosen value and the inlet and outlet pressures, 

p^ and p 2 in turn, can be controlled independently. A misconception 

common in the experimental literature is that there are three indepen-

dent pressures in this system. In fact, the relevant parameters are 

two independent pressure differences, i.e. two of p^ - p e , p 2 - p e 

and p^ - p 2« The theoretical problem given in Section 4.1 for flow 

in a nonsymmetric collapsible pipe (which is similar to the problem 

for a channel given in Section 1.1) could be compared to an experi-

mental system in which the inlet transmural pressure difference 

(p^ - p^) is such that the slope of the wall is continuous at the 

junction between the rigid and compliant tubes, the reference pressure 

is chosen so that p^ - p g is zero, and the outlet is so far downstream 

that the end effects from the outlet do not significantly affect the 

major part of the collapse. 

For a variety of reasons (see Shapiro 1977), precise interpreta-

tion of the results from the experimental studies mentioned above is 

difficult. There is, however, a commonly observed phenomenon of 

interest to the present study. This is the occurrence of "self-

excited oscillations" in the tube. If the tube is substantially 

collapsed at the outlet, i.e. p - p is large and negative, and the 

mass flow rate Q is sufficiently large, then the fluid-tube system can 

become unstable spontaneously and cannot be regarded as quasi-steady 

(see e.g. Katz et al. 1969). Brower and Scholten (1975) report that 
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Figure 1.6. Experimental apparatus 

chamber 

flow 



"for a given tube, there seems to be a critical flow, characteristic 

only of the collapsible tube, which determines when oscillations are 

initiated". Further, Brower and Scholten propose that this instabi-

lity occurs when the mean fluid velocity in the tube exceeds the 

"phase velocity" (the speed of propagation of a small pressure dis-

turbance along the elastic tube), or more precisely, the low fre-

quency limit of the phase velocity. This proposed connection between 

the phase and fluid velocities and the stability of the fluid-tube 

system has appeared also in recent theoretical studies (see below). 

For any given tube law a larger mass flow rate implies a faster 

pressure response, i.e. a larger value of y, as well as an increased 

Reynolds number. When the appropriate scalings have been adopted, 

it is y, not the Reynolds number, which appears explicitly in the 

problems considered in this study. Accordingly, Brower and Scholten's 

proposals can be restated in the form: for any given tube there is 

a critical value of y, y c say, such that the fluid-tube system will 

become unstable spontaneously when y exceeds y c , and that y i s the 

minimum value of y for which the mean fluid velocity can match the 

phase velocity at any stage of the collapse. 

Although the evidence cannot be regarded as conclusive, Brower 

and Scholten feel that their experimental results are consistent with 

the above hypothesis. The results of the present study are also con-

sistent with this hypothesis, in the sense that for all tubes con-

sidered satisfying (1.4) there exists a value of y, y c say, such that 

both the analytical and numerical methods applied to the problem fail 

to produce a solution for y > y c > In particular, for a tube obeying 

(1.6) with q = 1/2 and e = 1, we find that the mean fluid velocity can 

match the inviscid phase velocity (see below) when y = 18, and we find 

a solution of the steady problem for y < 18, but not for y >_ 18 (see 

Section 3.3). A discussion of our results in connection with Brower 

and Scholten's hypothesis can be found in Section 5 below. 

It appears that these oscillations occur only when the Reynolds 

number is large. Brower and Scholten (1975) report that the oscilla-

tions are initiated when the Reynolds number (calculated on the tube 

radius as in Section 4.1) is in the range 1600 to 4800 approximately, 

while oscillations are not observed when the Reynolds number is small 

(Fung and Sobin 1972) . 



We turn now to theoretical studies of flow in collapsible tubes. 

Rubinow and Keller (1972) assumed that Poiseuille flow is valid 

locally and produced a simple model of steady flow of a viscous fluid 

in a collapsible tube. Under certain conditions this model predicts 

an upper limit for the mass flow Q. This limit was found without con-

sidering the phase velocity. We note that for a collapsible tube a 

high Reynolds number incoming flow is not necessarily incompatible with 

locally valid Poiseuille flow. For example, for a collapsible 

channel we find that if the Reynolds number is large and the pressure 

response slow then the flow is viscous dominated and has a Poiseuille 

form throughout most, if not all, of the collapse (Section 3.5). For 

low Reynolds number flows, Wild et al. (1977) extended the work of 

Rubinow and Keller (1972) to include the minor effects of inertia to 

first order, a non-uniform external pressure distribution, and tubes 

of elliptical cross-section. In a series of papers, Griffiths 

(1969; 1971a; 1971b) considers an inviscid one-dimensional model, and 

finds that the ratio of fluid velocity to phase velocity is an im-

portant parameter concerning the stability of such a system. Later, 

Griffiths (1975a,b) extended this model, studying a steady two-dimen-

sional flow near an elastic constriction. Oates (1975) includes a 

frictional term in the governing equation of a steady one-dimensional 

flow model, and gives a simple stability argument which indicates 

that an inviscid steady one-dimensional flow in a collapsible pipe 

will become unstable if the fluid velocity exceeds the inviscid 

phase velocity. 

The most interesting papers presenting one-dimensional models of 

flow in collapsible tubes are probably those by Shapiro (1977), 

which is concerned with steady flow and draws analogies with flows in 

gas dynamics and open channels with free surfaces, and Kamm and 

Shapiro (1979), which is concerned with unsteady flow, including the 

effects of friction, inflow from tributaries, and various non-uniformi-

ties. We do not intend to comment on these papers in detail, but note 

that an important conclusion is that if, in the absence of special 

conditions (which are not found in our problems), the fluid velocity 

exceeds the phase velocity then steady flow is impossible and flow 

limitation usually occurs, a phenomenon said to be analogous to choking 

in a nozzle in gas dynamics. 
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We stress that caution is necessary when interpreting results from 

the studies discussed above, as their relationship to real fluid flows 

or the Navier-Stokes equation is by no means certain. However, it is 

clear that the ratio of fluid to phase velocity is an important para-

meter for one-dimensional flows, and that this ratio should not be 

ignored when considering more realistic flows. 

We will now briefly outline some of the attempts that have been 

made to find an expression for the phase velocity. By "phase velocity" 

we refer to the speed of propagation of a small disturbance relative 

to the average cross-sectional velocity of the fluid. The velocity 

of the pressure disturbance will be known as the "pulse velocity". 

The phase velocity referred to above is that for a system basically 

at rest, where the only motion is that of the disturbance and the 

pulse and phase velocities are the same. We now consider attempts to 

find the phase velocity of such a system. The original equation is 

the so-called Moens-Korteweg equation 

r E h -N 1/ 2 n -7 N 
C o = W ( 1 ' 7 a ) 

where c q is the dimensional phase velocity, E, h and a are the 

Young's modulus, thickness and internal radius of the tube respec-

tively, and p is the density of the fluid. This expression was ob-

tained by, amongst others, Lamb (1898), who found a second solution 

also, viz. 

c x = [ ] 1 / 2 , (1.7b) 
P X C 1 - A 2 ) 

where p^ and a- are respectively the density and Poisson's ratio of the 

tube material. Note that these formulae apply to thin-walled cylin-

drical elastic tubes which have a uniform stress distribution in the 

tube wall and are filled with a compressible inviscid fluid. They do 

not apply to collapsible tubes which may change shape. If the fluid 

in a tube can be regarded as inviscid and incompressible, the velocity 

of the pulse wave is uniform across the tube, and the non-

dimensional cross-sectional area of the tube is given by A = A(p), 

then the dimensionless phase velocity c is given by 
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c = ( A ^ ) 1 / 2 , ( 1 . 8 ) 

a formula presented by Bramwell and Hill (1922). 

A number of studies have been published concerning the phase 

velocity in fluid-tube systems that are more realistic physically 

than those discussed above. In a linearized analysis of the propa-

gation of infinitesimally small waves in a thin-walled tube, Morgan 

and Kiely (1954) studied the effects on the wave motion of fluid 

viscosity and internal damping in the tube wall. For a similar system, 

Womersley (1955, 1957) studied the effects of a number of factors, 

including wall viscosity and internal viscous damping and elastic 

constraint of the tube wall. Atabek and Lew (1966) examined, again 

in linearized fashion, the problem of an elastic tube with initial 

stressing. Atabek (1968) studied the effect on phase velocity of 

tethering the tube. Cox (1968) considered a thick-walled visco-

elastic tube, and later extended his study to include the effects of 

wall compressibility (Cox 1970). Kresch and Noordergraaf (1969) made 

a simple attempt to include the effects on the phase velocity of a 

change in shape of the tube. However, their results, if correct, are 

difficult to apply as they include a shape factor which was not 

determined exactly. 

The most detailed studies of wave propagation in a compliant tube 

are those of Rubinow and Keller (1971, 1978). They investigated small 

amplitude, axially symmetric waves in thin-walled elastic or visco-

elastic tubes containing a viscous (Rubinow and Keller 1971) or invis-

cid fluid (Rubinow and Keller 1978). They consider both compressible 

and incompressible fluids at all frequencies of propagation. Commonly 

(see e.g. Morgan and Kiely 1954, Womersley 1957), it is assumed that 

the fluid is incompressible and that the waves are long wavelength, 

low frequency waves, assumptions that are usually valid for the flow 

and pressure pulse of blood in mammalian arteries. Each wave solution 

of the equations of motion is called a mode of propagation, and Rubinow 

and Keller found that for each frequency of propagation there are 

infinitely many modes of propagation. However, ail except two 

"tube modes" are acoustic in nature, and are absent when the fluid is 

incompressible. The two tube modes are related to the two solutions 

(c and c above) found by Lamb (1898). Most investigators consider 



only one of the tube modes, that relating to C q . Rubinow and Keller 

(1971) discuss some reasons for this. We merely observe that for a 

thin-walled tube is small and that under appropriate conditions 

c q and c from (1.8) are the same. An important result from Rubinow 

and Keller (1978) is that under certain conditions, e.g. those found 

in the human aorta, the phase velocities from the tube modes are 

close to the inviscid phase velocities c q and c^. Brower and Scholten 

(1975) found that for a collapsible latex tube this result applies 

to the "low frequency limit" of the experimentally determined phase 

velocity, where the inviscid phase velocity is found from (1.8). Thus 

there is some justification for the use of the inviscid phase velocity 

c when considering tubes of practical interest in which the fluid is 

basically at rest. 

We will now consider the phase velocity of a system with a steady 

stream in a compliant tube. Unfortunately, comparatively little work 

has been done on this problem. Morgan and Ferrante (1955) studied a 

thin-walled cylindrical tube using a linear theory of elasticity. 

They found that if the fluid is inviscid and incompressible and the 

steady stream has constant uniform velocity u^, then the phase 

velocity is given by c q (equation 1.7a) and the pulse velocities by 

u^ +_ C q . Also, they found that the form of the steady stream, the 

viscosity of the fluid, and the inertia of the wall can all affect 

the phase and pulse velocities. We have extended some of Morgan and 

Ferrante fs results to a collapsible tube with cross-sectional area 

A = A(p) (Appendix 6). In particular, for an incompressible, inviscid 

fluid with the steady stream given by u^ = constant and the pressure 

by p^ = constant, we have found that the phase velocity is given by 

(1.8) and the pulse velocities by u^ +_ c. Note that the only assump-

tion additional to those of Morgan and Ferrante required here is that 

the disturbance is small compared to u^, and that under appropriate 

conditions this result applies also to inviscid flows in collapsing 

tubes (see Appendix 6). Womersley (1957) considers a tube filled with 

a streaming viscous fluid. His results suggest that under certain con-

ditions the presence of a steady stream can increase the phase velo-

city. 

We found little in the literature on the phase velocity in the 



presence of a steady stream, and none on the problem of most interest 

to us, that of a viscous flow with the fluid and phase velocities of 

the same order. When the phase velocity is required explicitly we 

will use c from (1.8), as this expression can be regarded as approxi-

mately correct under certain conditions, and has the advantage of 

simplicity. 
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Section 2. Channels with a fine collapse 

2.1. Flows with a fast pressure response 

In this section we consider a channel-fluid system in which 

the walls can be displaced by a small distance only and are highly 

responsive to changes in pressure. In particular, we assume that 

0 < e << 1 and 1 << y << R. The tube law suggests the pressure 

scaling p = y ^"P, where P = 0(1), which, since we require the 

pressure gradient to match with the incoming Poiseuille gradient, 

introduces the long streamwise length scaling x = y ^"RX. 

Smith (1976 a,b) has studied the problem of high Reynolds num-

ber flow through constricted tubes in which the constriction is ' 

small, is known explicitly in terms of x, and has slope a where 

R ^ << a << R This restriction ensures that the stream-

wise length scale remains large. For asymmetric flows Smith reports 

large nonlinear effects close to the walls, including a free inter-

action upstream which can eventually lead to separation. For sym-

metric flows, although the flow is affected nonlinearly close to 

the wall, there is no such significant upstream influence until 
-1/3 

the slope of the constriction is increased to 0(R ) and the 

length scale shortened to 0(1). Even then the upstream influence 

is restricted to the core flow, and the wall layer is not affected 

until the constriction is reached. The constriction height must be 

increased to 0(R with x of 0(1) for there to be any significant 

nonlinear upstream response in the wall layer (Smith 1978a). In 

view of Smith's results, it is not surprising that, since the 

scaling on x is large and the collapsible nature of the channel en-

sures that the adjustment of the flow close to the wall remains linear, 

no significant upstream effects are found in the channel-fluid 

systems considered in this section. 
" / 2 

Let us now further restrict y such that 1 << y << e~ ' . We 

propose that the major viscous effects occur in thin wall layers of 
-1/3 

thickness order 5 = y , and that in the channel core the motion 

takes the form of a small inviscid rotational perturbation to the 

Poiseuille flow; viz. 



u = U 0(y) + e5u 1(X,y) + o(e6), 

v = e5~ 2R~ 1v 1(X,y) + o(e6" 2R" 1), 

P = - X + e5 P 1(X,y) + o(e6~ 2). 

(2.1) 

The transverse momentum equation implies that P^ = P^(X) is indepen-

dent of y, and after some manipulation the conservation equations for 

mass and streamwise momentum produce the perturbation solutions 

P X ( X ) ry _ 2 

r o o t1 + v y ) i u
0 ™ u i = -

v 1 = P^CX) u 0(y) | y u~
2
 Cn) dn. 

(2.2) 

Here and below a prime will denote differentiation with respect to 

the relevant variable. It is the wall layer solution (see below) 

which determines the pressure perturbation P^. We see from (2.2) 

that there can be no upstream influence in the core unless it is 

forced by the wall layer, and that (2.1) will match with the incoming 

Poiseuille flow if P^ 0 as X - ». 

For a fixed symmetric constriction the core flow is undisturbed 

if the length scaling remains large (Smith 1976a). This would be 

true here only if P^ were zero, which, as will soon be demonstrated, 

does not hold. We find that P^ is negative, and hence the effect of 

the core perturbation is to concentrate the flow towards the centre 

of the channel. If -P increases downstream then (2.1) will become 
- 1 - 1 

invalid when -P^ is 0(6 e ). 

As y 1 both u^ and v^ remain finite and non-zero. If v = 1 -

then from (2.2) 

u 1 ^ p [in Y + 0(6)] 

v 1 % P» [1 + 0(6)], 

(2.3) 

as y 1-. The solution in the viscous wall layer must match to thes 



slip velocities. In fact we do not obtain a matching for u^. 

However, we note that (2.3) suggests that there will be a minor 

term of 0(e6) in the boundary layer expansion for u. 

The core solution suggests that in the upper viscous wall 

layer 

u = SY - S 2 Y 2 / 2 + EU (X,Y) + O(E), 

v = - E 6 ~
2 R _ 1

V (X,Y) + o(E6"2R"1), 
(2.4) 

with the pressure p as in (2.1). Substitution of (2.4) in the 

Navier-Stokes equations shows that the secondary motion in the 

wall layer is governed by the linearized boundary layer equations. 

That is, u^, v^ and P^ must satisfy 

3u, 
2 

3 u, 

3X 
+ V 1 = " P i + 

3Y 

3u] 

3X~ 3Y 
= 0. 

(2.5) 

In turn the boundary conditions of no slip at the wall, merging of 

(2.4) with (2.1) at the edge of the layer, and matching to the in-

coming Poiseuille flow, are given by 

v x = 0 and u = - S(-X) at Y = 0, 

u^ 0 and v^ - P| as Y 0 0, 

u^ 0 and + 0 as X •> -

(2.6) 

where S(-X) is from the tube law (1.4). 

The linear boundary layer problem defined by (2.5) and (2.6) 

is that of a shear flow along a wall which has a small fixed distur-

bance. The method of solution is basically that used by Smith 

(1976b) for an unsteady tube constriction. As several similar 



problems will be encountered in the present study we will present 

the method in some detail. Applying the Generalised transform 

with respect to X, f*(<j>,Y) = / ^ ( X ^ e 

motion (2.5) become 

—±cf)X 
dX, the equations of 

i<f)Yû * + v * = - ±4>P. 
2 " 

3 u * 
+ 1 

2 
3Y 

3v * 

Wu* 0 . 

(2.7) 

Upon differentiating the momentum equation in (2.7) with respect 

to Y, we find the solution 

3 u 1 * 
= B ($) Ai(aY), 

1/3 

where a = (i<|>) , Ai is the Airy function, and B(cj)) is a function 

to be determined. By setting Y = 0 in the momentum equation we now 

obtain 

B(<|>) = a P */Ai f(0) . (2.8a) 

It follows that the solution of (2.7) which satisfies the outer 

matching condition in (2.6) is 

u x * = - B(<fr) 

V ; L* = i<j>B(<fO 

Ai(an) dn, 

Y roo 
dt 

0 
Ai(an) dn. 

(2.8b) 

The no slip condition at the wall implies that 

P * = 3Ai'(o) S*/a, 

where S* is the Generalised transform of S(-X). 



Since P^* is regular in Im<j> < 0, we see immediately that 

P^ = 0 for X < 0. Hence (2.8) satisfies the upstream matching con-

dition in (2.6). Further, there is no significant upstream in-

fluence in the present problem, and there is a definite point (the 

origin) at which the flow first deviates from the incoming 

Poiseuille flow, and from which numerical techniques can be applied 

if necessary. 

Inverting the transforms in (2.9) produces 

p i = 3 r ( i / 3 ) { ( x " t ) _ 2 / 3 s ( - t } d t * ( 2 - 1 0 ) 

If the skin friction is given by x = - 1 + e6 1-r + o (e<5 where 

t = 3u/3y at y = y , then we find 

3Ai(o) f X fx t ) " 1 / 3 d S ( - t } dt (2 111 
T 1 " Ai'(o)T(2/3) J C X t j dt d t ' C 2 ' l l j 

0 

If S(-t) ^ kt for 0 < t « 1, where n > 0, then (2.10) and (2.11) 

yield 

P 5Ai' Co) r ( n + i : > k X n + 1 / 3 
F 1 L O j r(n+4/3) K X 

_ 3Ai(o) r(n) _ k xn-l/3 
T 1 Ai 1(o) r(n+2/3) 

> ( 2 - 1 2 ) 

for 0 < X << 1. We see from (2.12) that P^ will always be continuous 

at the origin, but if 0 < n < 2/3 then P^ will have infinite slope 

as X 0+, and finite but discontinuous slope at X = 0 if n = 2/3. 

The situation is more complicated for the skin friction perturbation 

x^. If 1/3 < n < 4/3 then t^ is continuous with infinite slope at 

the origin, while if 0 < n < 1/3 then (2.12) predicts t^ will be 

infinite as X -»• 0+. We will not investigate these irregularities in 

the solution further, but will assume that they can be smoothed out 



locally by expanding close to the origin on a shorter length scale, 

as is usually the case in boundary layer flows. 

We turn our attention now to the flow far downstream where 

X >> 1. Suppose that for - up >> 1 

S(up) ~ 1 - K(-up)"N, 

where K is a positive 0(1) constant and N > 0. Then for X >> 1 

S U - KX" N, (2.13) 

and from (2.10) 

P l " 9 7 T W X 1 / 3
 + 0 ( X - N + 1 / 3 ) . (2.14) 

We could now develop a formal asymptotic flow structure valid for 

large X (c.f. equation 3.53 in Section 3.4). However, for our pur-

poses the important feature of this asymptotic behaviour is that since 

1/3 
Pj * X then the wall layer thickness is also proportional to 
1/3 

X . Thus, as X °° the boundary layer thickens until it merges 
_3 

with the core flow when X is 0(6 ) (= 0(u)). Inspection of (2.1) 

reveals that when this occurs both the pressure and core 

velocity perturbations are 0(e). Hence, we will now investigate 

the viscous perturbation to the Poiseuille flow given by 

u = U Q(y) + eu][(X,y) + o(e), 

v = eR" 1v 1(X,y) + o ( e R _ 1 ) , y (2.15a) 

p = - X + eP 1(X,y) + o(e), 

where X = R ^"x. The no slip condition at the walls and mass conser-

vation require 



v, = 0 and u = - 1 at y = + 1, 

> (2.15b) 

fl 
u. dy = 0, 
1 J - 1 

respectively. 

As before, the transverse momentum equation implies that the 

pressure perturbation is independent of y, i.e. that P^ = P^(X). 

One solution of (2.15) is 

(2.16) 

P = - 3X + P , 
1 o* 

where P Q is an arbitrary constant. 

This solution was obtained without considering any initial condi-

tions and, clearly, it does not match with the incoming core flow given by 

(2.1) and (2.2). However, (2.16) is the 0(e) term in the expansion 

of the Poiseuille flow which can exist in a channel of half-width 

1 - e and mass flow equal to that of the present problem. Thus 

(2.16) can be regarded as a solution for (2.15) which is valid far 

downstream in the limit as X
 00

 (and p - °°). It may be that the 

most practical way to obtain a solution of (2.15) consistent with 

(2.1) is to proceed numerically. Alternatively, it may be possible 

to use eigenvalue solutions to effect a matching upstream. In Sec-

tion 2.2 below we study eigenvalue solutions which are 0(e) in mag-

nitude and develop on an 0(R) streamwise length scale. The eigen-

values found are such that the downstream decay of the eigenvalue 

solutions is extremely fast, which suggests that any solution of 

(2.15) will quickly take the form of (2.16). 

"T / 9 

This concludes our study of the problem with y << e . It 

is felt that a broadl-y satisfactory description of the fluid-channel 

system has been provided. 

3/2 
Suppose now that A = ye is of 0(1). As above, we assume 
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that the pressure gradient must match with the incoming Poiseuille 

gradient, and that the pressure is initially of 0(y~'). We propose 

that the core flow is given by an inviscid rotational perturbation 

to the Poiseuille flow, that is 

u = U Q(y) + e ^ U ^ X . y ) + O ( E 3 / 2 ) , 

v = R" 1V 1(X,y) + OCR' 1), 

3/2 f , f 3/2, 
p = e P(X,y) + o(e ), 

> (2.17) 

3/2 

where x = e RX. Note that here we have used £ to scale the variables 

instead of y. Again, the pressure P = P(X) is independent of y. The 

solution for (U^, V^) is obtained directly from (u^, v^) in (2.2) 

by replacing P^ by P + X. Slip velocities, similar to those of 

(2.3), can be obtained by expanding (U^, V^) for 1 - y << 1. 

1/2 
Redefining Y = (1 - y)/c , the flow structure in the upper 

viscous wall layer is given by 

u = E 1 / 2 Y + £Ux(X,Y) + o(E), 

v = - R" 1V 1(X,Y) + o ( R - 1 ) . 

(2.18) 

The governing equations in upper wall layer are, with appropriate 

changes of variable, the linear boundary layer equations (2.5). 

The boundary conditions of no slip at the wall, merging of (2.17) 

and (2.18) at the outer edge of the layer, and matching to the in-

coming Poiseuille flow, are in turn 

V 1 = 0 and \J = - S(AP) at Y = 0, 

U - j Y 2 and V + - (P! + 1 ) as Y 

\5 - j Y 2 and V ^ 0 as X -

1 „ 2 

(2.19) 

Let U^ = U - y Y and P = P - X. Proceeding as above, we find 

that the transform solution for 0, V^ and P is given, with appropriate 

changes of variable, by (2.8). Inverting the transform of 0 at Y = 0 



and applying the no slip condition from (2.19) produces 

- = 3Ai 1 (o) r (2/3) L (X-t)' 1 / 3 ^ d t , (2.20) 

the solution of which determines P, and hence y , in terms of X. 
J w 

Again no significant upstream influence has been found, and 

u = U Q(y) in X < 0. We note that it is the Poiseuille pressure, -X, 

that forces (2.20) to have a nontrivial solution for P = P + X 

in X > 0. More generally, it is the pressure from the Poiseuille 

flow that forces the change in the position of the walls, and 

thus the change in the flow and the pressure itself. 

Writing the skin friction at the upper wall as 

- 1/2 r 1/2, 
t = - 1 + e t 1 + O ( C / ), 

where x = 3u/3y at y = y , we find that 

T = . Ai(o) 

w 

rX 

1 Ai'(o)r(1/3) 
c x _ t ) - 2 / 3 d P £ l d t . ( 2 > 2 1 ) 

0 

Close to the origin the pressure deviation P and skin friction 

perturbation x^ have behaviours similar to those in (2.12), i.e. 

P °= x
1 1
* " ^ and x^ = X

n
 as X 0+. Again it will be assumed 

that an expansion on a shorter length scale can smooth out any 

local irregularity. As before, far downstream where 1 - S << 1 the 
1/3 

boundary layer thickness grows as X , and hence the solution above 

becomes invalid when X is 0(e (= 0(y)). The flow then takes 

the form of (2.15), with (2.16) as the limit solution far downstream 

Figures 2.1 - 2.3 present graphically the solutions for the 

pressure deviation P, the skin friction perturbation x q , and the 
2 -

channel wall deviation S for a channel with S(XP) = 1 - [1 + (AP) ] 

Also shown in Figure 2.1 is the predicted downstream behaviour for P 

when S 1 as X °° (see equation (2.14)). It is noticeable that, 

except for A large and X small, the magnitude of P is small compared 

with that of the Poiseuille pressure - X. For A small, the change 
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Figure 2.1. The pressure deviation P = P + X against X for 

a channel with S(XP) = 1 - [1 + (XP) 2]* 1 7' 4 and X of 0(1): 

(a) X = .1, (b) X = .4, (c) X = 1.0, (d) X = 3.0, (e) X = 10.0, 

(f) P = 9 ^ ^ » f r o m Ike far downstream analysis (see 

equation 2.14). 
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Figure 2.2. Skin friction perturbation x^ against X for 

various X. See Figure 2.1 for details. 

X 

Figure 2.3. Channel deviation S against X for various X. 

See Figure 2.1 for details. 



in P, x^ and S from zero at the origin is gradual and proceeds 

slowly downstream, and the values obtained were found to be con-
-3/2 

sistent with those from the analysis for y << e , as would be 

expected. Also as expected, larger values of X lead to a faster 

change in all dependent variables. For very large values of X, 

e.g. X = 10, the major part of change in the channel width occurs 

close to the origin (Figure 3.3). With the present choice of S, it 
2 5/3 

follows from (2.12) that x^ « X X as X 0+. Hence, although 

t^ and dx^/dX will be continuous at the origin, |x^| should in-

crease rapidly with X if X >> 1 and 0 < XX << 1. As can be seen 

from Figure 2.2, this expected behaviour is realised, and |x^| 

reaches a maximum very close to the origin. The pressure deviation 

P shows a similar concentration of effect close to the origin when 

X >> 1 (this can be seen more clearly by considering dP/dX, whose 

behaviour is very similar to that of x^). Detailed examination of 

the solutions confirmed that they take the predicted form as X 00 

(see equations 2.13 and 2.14). 

-3/2 

The solution obtained earlier for y << e can be derived 

from the solution found for X of 0(1) by expanding for X << 1. 

Also, the flow structure derived for X of 0(1) is suggested by 
2 

letting E tend to 5 in (2.1) and (2.4). Thus, there is a natural 
-3 P 

development between the flow structures for y << e and 

X = y e 3 / 2 of 0(1). 

Clearly, for a fluid-channel system with X >> 1 it will be 

necessary to adopt a shorter streamwise length scaling, and to take 

into account the behaviour of S(yp) for 0 < - yp << 1. This local 

problem arises also in the analysis found in Section 3.4 below for a 

system with E of 0(1) and y >> 1, and it is convenient to leave any 

discussion until then. 
2.2 Flows with a moderate pressure response 

We will now study channel-fluid systems which have a small wall 

variation (e << 1) and a moderate pressure response (y = 0(1)). 

Requiring the pressure gradient to match with the incoming Poiseuille 

gradient introduces the scaling x = RX. The flow is given by a vis-



cous perturbation to the Poiseuille flow, viz. 

if, = iPQ(y) + eif,̂  (X,y) + 0(E ), 

p = - X + eP 1(X,y) + 0(e ), 

Y (2.22) 

1 1 3 

where i|»(X,y) is the stream function and ^ Q(y) = y (y - -j y ) is the 

Poiseuille term. The velocity perturbation is given by 

(u 1,v 1) = O ^ / a y , - B ^ / d X ) . 

The transverse momentum equation implies that P^ = P^(X) is 

independent of y, and substituting (2.22) in the streamwise momentum 

equation produces 

aV dip d5ip 
U o « 3 X 3 7 " U 0 ( y ) ~ 3 X = - P i ( X ) + 7 3 i -

3y 

(2.23) 

From mass conservation, no slip at the walls, and matching with the 

incoming Poiseuille flow in turn, the boundary conditions are 

if,x(X, + 1) = 0, 

Wj 
W (X, + 1) = - S(- yX), 

ij,̂  0 as X - ». 

" (2.24a) 

These boundary conditions admit nonsymmetric solutions. If we re-

quire the flow to be symmetric then the conditions at y = - 1 in 

(2.24) should be replaced by 
? 

3"if, 
ip1 = ^ = 0 at y = 0. (2.24b) 

3y 

We note that our problem here is similar to that defined by 

(2.15a,b) in the previous section. However, since the boundary con-

ditions (2.24a) are X-dependent, (2.16) does not provide a solution 
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for the present problem, although it is the far downstream solution, 

valid in the limit as X 00 and S 1. 

For X < 0 the boundary conditions (2.24b) are homogeneous, 

and one possible solution is ifî  = P^ = 0. However, there are also 

nontrivial eigenvalue solutions, which we will now investigate. 

Suppose that 

00 -a X 
i(»1(X,y) = E f n(y) e n , (2.25) 

n=l 

where the a^ are a sequence of eigenvalues of increasing magnitude, 

the f (y) a r e such that |efn(y)|. << 1, and X includes an implicit 

change of origin. If we substitute (2.25) into (2.23) and differ-

entiate with respect to y, we find that the (y) must satisfy 

4 2 d f d f 
_ I L + a {U (y) + f } = 0. (2.26a) 
, 4 n o w , 2 n 
dy dy 

IVe will consider both symmetric and asymmetric modes, and take as 

boundary conditions 

df 
f n ( - 1 } = "d/" ( - 1 3 = (2.26b) 

Essentially the same problem was studied by Wilson (1969) with 

reference to the entry flow in a channel. The results from Wilson 

of interest here are that the first eigenfunction is even (correspond-

ing to an asymmetric flow), that all eigenvalues found are real and posi-

tive, and that all even eigenvalues are real. The eigenvalues found by 

Wilson were verified using numerical methods, and the first five 

are given in Table 2.1. Numerical experimentation indicated that 

there are no real negative eigenvalues. Certainly none exist be-

tween zero and —1000. Thus it seems reasonable to assume that all 

the eigenvalues are real and positive, and hence that the smallest 

eigenvalue is 43.55. This suggests that any upstream disturbance 

will decay extremely quickly, and that there will be no significant 

upstream influence. It follows that any numerical integration of 



n a 
n 

1 43.35 

2 56.43 

3 146.61 

4 172.56 

5 313.29 

Table 2.1. The eigenvalues a (from Wilson 1969). 
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the governing equations can be started at the origin. 

Returning to the basic problem formed by (2.23) and (2.24), 

it appears that, in general, the solution must be found numerically. 

One exception is when S(yp) can be expressed as a linear sum of 

exponentials. In this case a partial solution, which is closely 

related to the eigenvalue solutions, can be obtained using separation 

of variables. Suppose that S is given by, or can be approximated 

by 

S(p) = j 

0 

N 
1 + E A e 

i n 
n=l 

3n? 

p > 0, 

p < 0, 

(2.27) 

N 
where u has been absorbed into the 3 , E A = - 1.to ensure that 

n , n 1 

n=l 

S is continuous, and the 3 n > 0 do not equal any of the odd eigen-

values. Since y is 0(1), the smallest 3^ must be of 0(1). Consider 

N 

^ = g0(y) + 2 gn(y) e 
n=l 

" B n X 

(2.28) 

For n >_ 1, the g n(y) must satisfy the eigenvalue equation (2.26a) 

with a n replaced by 3^ If we require the flow to be symmetric, 

then from (2.24a,b) the boundary conditions are 

gn(°) = g n C U = o, 

d
2
g. n 

(o) = 0, 
dy 

r* (2.29) 

dg n a (1) = " A , dy n 

for n >_ 0, where A q = 1. Note that no upstream matching condition 

has been specified at this point. The solution for g (y) is found 

to be 



g0(y) - j (y - y 3 ) . 

There are two basic power series solutions for each g (y) that 

are relevant here, viz. 

00 
I , , n 2m 

g n (y) - y S a2m y , 
m = 0 

I L . 3 „ ,n 2m 
g n (y) - y z b y , 

m = 0 

where the coefficients are related by 

2(m + 2)(m + 3)(m + 4) a * + 3 + 

+ B {(m + 2) a11 . - (m - 2) a11 .} = 0 m odd, 
n m+1 m-1 

and 

2 (m + 2) (m + 3) (m + 4) + 

& {(m + 2) b n , - (m = 2) b n _} = 0 m > 3 odd, 
n m-1 m-3 — 

with a11 = a!} = b n = 1 and b* = - 3 /40. 
o 2 o 2 n 

The mass conservation and symmetry conditions are satisfied by 

S n M = cn -

as is the no slip condition if 

A 1 A 11 

II d g n I d g n -1 
c = - A (g (1) (1) - g 1 (1) (1)} 1 , 
n n & n dy n dy 

where n >_ 1. This completes the solution of as given by (2.28). 

Expressing the pressure perturbat ion in the form 

N -8 X 

P (X) = P (X) + Z p n e n , (2.30) 
n=l 



where the p^ are constants, equation (2.23) can now be used to 

obtain 

N 
P (X) 
o 

P. n 
1_ 
2 6 -gj(D). n 'n 

I 

n 

As in Section 2.1, a solution has been found without con-

sidering any initial conditions. This is possible because the par-

tial differential equation (2.23) does not impart its parabolic 

nature to the ordinary differential equation (2.26a), and an arbi-

trary condition cannot be imposed on its solution at an initial 

value of X. In general, ip̂  as given by (2.28) will not be zero 

at the origin, and the solution obtained above is incomplete and 

will not match with the incoming Poiseuille flow. However, any 

further components of the solution must have homogeneous boundary 

conditions, and the extremely rapid decay of the eigenvalue 

solutions found above suggests that the solution given for will 

not show any significant inaccuracy except in the immediate vicinity 

of the origin where X(X̂  is 0(1) or less. We compared the analytical 

solutions for and P^ ((2.28) and (2.30)) with the numerical 

solution of (2.23) and (2.24) (obtained using a standard implicit 

difference scheme) for various S(yp) of the form (2.27). The 

results supported this last conjecture, i.e. that (2.28) and (2.30) 

provide a generally accurate solution. We note that it may be 

possible to use the eigenvalue solutions to effect a matching at the 

origin. However, numerical integration established that the eigen-

functions f n(y)
 a r e not orthogonal, and there is no direct way of 

doing this. We note also that in the limit as X °° downstream, 

(2.28) and (2.30) take the expected form (2.16). 

The solution of (2.23) and (2.24) was found numerically for 

various tube laws of the algebraic form (1.6), as well as for those 

of the form (2.27). As would be expected from the results of 
-3/2 

Section 2.1 for a channel with y << e , the pressure, pressure 

gradient and skin friction perturbations all show a gradual monotoni 
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change from zero at the origin, with the flow perturbation tending 

towards the far downstream form (2.16). This change from zero 

was of course faster with a faster pressure response, i.e. with a 

larger value of y. 

2.3 Flows with a slow pressure response 

Here we consider the channel-fluid system with a small wall 

deviation and a slow pressure response, i.e. e << 1 and y << 1. The 

flow develops very slowly, and the appropriate pressure and stream-

wise length scalings are p = y "̂ P and x = y - 1 R X respectively. The 

motion takes the form of a viscous perturbation to the Poiseuille 

flow, and is given by 

u = U Q(y) + eU^(X,y) + 0(e 2), 

P = - X + eP (X) + 0(e 2), 

where the pressure perturbation P^ is again independent of y. The stream-

wise momentum equation is found to be of the lubrication type, with only 

the pressure gradient and a viscous force dominant. A solution, which 

matches with the incoming flow and satisfies no slip at the walls and 

mass conservation, is 

u1 = i (1 " 3 y 2 ) s (" x )' 

P 1 = " 

X 
S(- t) dt. 

0 

Clearly, this solution takes the expected form (2.16) in the limit as 

X -> °° and S + 1. 

2.4 A collapse which starts far upstream 

In this section we consider a channel in which the wall deviation 

extends far upstream. In particular, we assume that when the pressure 

is large and positive (p >> 1) the wall relationship takes the form 



i - N r - N , 
7 W = 1 - C P + o ( p ) , (2.31) 

-N 

where c and N are positive constants such that cp < < 1 . Since 

far upstream the pressure will be given to leading order by the 

linear Poiseuille pressure, (2.31) implies that for - X >> 1 

y = 1 - c(- X) J w 
-N 

(2.32) 

to first order, where X = R - 1 x . 

The asymptotic analysis for X large and negative is straight-

forward, and we will omit the details and present the results only. 

If N > 1, then, using the stream function the flow is given by 

<KX,y) = <P0(y) + '(-X)~
N il>1(y) + 

-N-l -N-l 
+ C-x) iP2(y) + o((-x) N A ) , 

l-N -N -N 
p = - X + (-X) I Np 1 + (-X) ^p 2 + o((-X) 

(2.33) 

where 

*0M = j (y - jy3) 

is the Poiseuille term, 

c 3 
^ 1(y) = j (y - y ), 

* 2(y) = N c (y) - ^ ( ^ y 
3 

y + 

1 5 1 7 , , 
+
 5

 y +
 35

 y 

p i = " n ^ I and p 2 = 35 

If N < 1 and N / 1/2 then 



<Kx,y) = ^0(y) + C-x)'Ni[>1(y) + 

-2N~ -2N 
(-X) Z > 2 ( y ) + o ((-X) Z I N), 

1-N 1-2N 1-2N, 
p = - X + ( - X ) A p 1 + ( - x r p 2 + o ( ( - X ) A 

(2.34) 

c 3 
where ^ ( y ) = - y (y - 2y ) 

and 
6 c 
N-l 

If N = 1/2 then the term of 0((-X) 
1-2N, 

) in the pressure expansion 

in (2.34) must be replaced by p 2ln(-X), where p 2 = 6c 2. 

In both (2.33) and (2.34) the first perturbation in the ex-

pansion of ip is viscous in nature and is forced by the no slip con-

dition at the walls, as is the second perturbation for N < 1. For 

N > 1, the second perturbation satisfies homogeneous wall conditions 

and is forced by the inertial effects from the first perturbation, 

i.e. it represents the viscous response of the flow to the inertial 

force from (y). Obviously both expansions will include similar 

terms eventually, but their relative importance will depend on the 

value of N. 

If N = 1 then 

<nx,y) = ^ Q(y) + (-X)"
1
 ^ ( y ) + 

(-X)" 2 i 2(y) + o((-X)' 2), 

p = - X + P l ln(-X) + ( - X ) _ 1 p 2 + o((-X) _ 1) 

(2.35) 

where 

7 , , ~ , , , 5 2 c ,11 3 1 5 1 7 , 
* 2(y) = - P 2 V y ) " J

 C 7
 " 24" IT"

 y
 -

 y +
 5

 7
 " 35

 y 

p^ = 3c and P 2
 = - y c ~ 6c 2. 

The second perturbation in (2.35) comes from a balance between 

viscous and inertial forces in the fluid as well as satisfying 



nontrivial conditions at the walls. As might be expected, the 

solution for N = 1 is effectively a combination of the solutions 

for N < 1 and N > 1. 

In the above we have made no assumption about the eventual 

size of the wall displacement, but have assumed simply that far 

upstream the wall deviation is small and is given by (2.31), and 

that the incoming flow is fully developed. It is clear that the 

analysis presented here is valid for both small and finite e. 

Finally, we note that a similar asymptotic analysis can be 

done for a channel with a small wall deviation extending far down-

stream, i.e. for a channel obeying 

y w = 1 - e + D(-p)" M + o((-p) - M), 

where - p >> 1 and D and M are positive constants. 
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Section 3 0 Channels with a finite collapse 

3.1 Introduction 

In Section 3 our main concern is with channel-fluid systems 

with moderate, severe, or complete collapses, i.e. those with 

E = 0(1 - E ) , 0 < 1 - E << 1, and E = 1 respectively, although 

we do consider systems with a fine collapse (e << 1) and a pressure 

response so fast that e y 2 / 3 >> 1 (Section 3.4). 

If the pressure response is moderate ( y = 0(1)), then requir-

ing that the pressure gradient matches with the incoming Poiseuille 

pressure gradient introduces the scalings x = RX and v = R _ 1V(X,y), 

which in turn imply that the governing equations are the nonlinear 

boundary layer equations, that is 

3u , ,, 3u , 3 2 u 
U 3X + V 3 7 = " ? W + 3y2" 

3u 3V n 

3 X + 37 = 

r ( 3 . i ) 

from conservation of momentum and mass respectively. The boundary 

conditions are 

u = V = 0 at y = + y w(p), 

u -> U (y) and V 0 as X - « 
o K J J 

(3.2) 

from no slip at the walls and matching to the incoming Poiseuille 

flow in turn. As usual, we assume that p = 0 at X = 0. No evidence 

is found in Section 3 of any significant upstream adjustment of the 

flow, and in practice we can apply the upstream matching in (3.2) at 

X = 0. 

If the flow is assumed to be symmetric the no slip condition at 

one of the walls can be replaced by a symmetry condition, viz. 

3u 
V = ^ = 0 at y = 0, (3.2a) 

In general we do not assume symmetry. In fact, some nonsymmetric 

local solutions are found (Section 3.3). 
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We assume throughout Section 3 that the tube law is given by 

(1.4) and (1.6), that is 

X w 

1 - e + e (1 + y 2 p 2 r q / 2 

p >_ 0 

p < 0 
(3.3) 

In Section 3.2 we study channel-fluid systems with a severe or 

total collapse, a moderate pressure response and q <_ 1/3, and those 

with a moderate pressure response and moderate collapse. Section 3.3 

concerns systems with a moderate pressure response, a severe or total 

collapse and q > 1/3, Systems with a fast pressure response and 
2/3 

£ y >> 1 are studied in Section 3,4, and those with a slow pressure 

response and £ = 0(1) in Section 3.5. 

3.2 Channel flows with the collapse extending far downstream 

Let us assume first that a complete collapse of the channel is 

possible (e = 1 ) , that the pressure response is moderate (y = 0(1)), 

and that the tube law has the algebraic form (3.3). Close to the 

origin, where 0 < X << 1 and 0 < - yp << 1, the tube law is given by 

y = 1 - 3 . y 2 X
2

+ o (X 2), 

and the core flow takes the form of an inviscid rotational pertur-

bation of the Poiseuille flow, viz. 

u = U Q ( y ) + X 7 / \ ( y ) + o ( X 7 / 3 ) , 

V = + o ( X 4 / 3 ) , ^ (3.6) 

p = - X + P l X
7 / 3

 + o ( X
7 / 3

) , 

where p^ is a constant. The solution of (3.6) is similar in form to 

(2.2), the core solution for e « 1, and provides similar nonzero 

matching conditions close to the walls. 

Adjacent to the channel walls there are thin viscous layers in the 

fluid. These layers, which are essentially the same, have width 0 (X
1
^

3
) 
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and are governed by the linearized boundary layer equations. In 

the upper wall layer the stream function ip takes the form 

1 v2/3 2 l v 3 v 7 / 3 , ,, 
^ = - j X ' c + jXt; - X 7 f ( c ) + o ( X ) , ( o . 7 ) 

-1/3 
where C = (1 - y)X and ip = 0 at y = y . The boundary conditions 

w 1 2 5/3 
are those of no slip at the wall (given by 5 = y qy X ) and 

matching to (3.6) at the outer edge of the wall layer, which requires 

f constant as C 0 0. The third order ordinary differential equa-

tion produced by substituting (3.7) into the streamwise momentum 

equation is similar to (3.55), the governing equation of the linear 

similarity problem studied in Section 3.4 below, and can be solved 

using the same method. Given this solution the boundary conditions 

can then be applied to determine the constant p,, which is « qy . 
5/3 

The skin friction perturbation is « q y 2 X 

Clearly, near the origin there is a fairly smooth change in 

the flow and in the wall position, and the effect of increasing q 

and/or y is to move this change closer to the origin, as might be 

expected. 

The flow structure outlined above will not be valid when X = 0(1), 

or, more precisely, when yp = 0(1) and the walls have moved a finite 

distance into the channel. When this occurs u - U (y) is also 0(1), 

and the governing equations are the full nonlinear boundary layer 

equations (3.1), which apply across the full width of the channel. 

In general, numerical methods must be used with this problem (see 

Appendix 5). 

Further downstream, where - yp >> 1, the tube law (3.3) implies 

that to leading order 

y w = k ( - p ) - q , (3.8) 

where k = y q is 0(1). As conservation of mass requires that the 

average streamv/ise velocity is 0(y the ratio of the pressure 

gradient to the inertial terms in the momentum equation is 
2-1 /q 

0(y w ). Hence, as p - » and y w -> 0 the pressure gradient 

will dominate the inertial terms if q < 1/2 and the inertial terms 

the pressure gradient if q > 1/2. If q = 1/2 then there will be a 

balance between the inertia!^pressure terms as the channel collapses. 



For q < 1/2 there must eventually be a balance between the pressure 
_3 

gradient and the viscous forces in the fluid, which are of 0(y ). 
W ^ jL / 

With an appropriate change of origin this implies that X = 0(y T , 

as y w + 0. It follows that for q < 1/3 the collapse will extend 

indefinitely for downstream, while for q > 1/3 y will tend to zero 

at a finite value (X Q) of X. For the case q = 1/3 it is found that 

the channel will collapse exponentially, i.e. at the fastest rate 

consistent with a collapse extending to infinity. In this section 

we restrict our attention to channels with q <_ 1/3. Those with 

q > 1/3 are considered in Section 3.3 below. 

Suppose first that q < 1/3. As X « the flow is given to 

leading order by the viscous similarity structure 

u = X q / m f ( 0 , 

P = - P 0 x 1 / m 
(3.9) 

rq/m 
, m = 1 - 3q > 0, p Q is a constant to be determined, where C = y X 

and an implicit origin shift (which must be determined numerically) 

has been included. Substitution of (3.9) in the streamwise momentum 

equation produces 

f " + p Q / m = 0. (3.10) 

In turn, no slip at the walls and conservation of mass require 

f = 0 at C = + L — w 

y (3.i i) 
w 

-C 
f ( 0 d? = 2/3, 

w 

where c w = gives the position of the upper wall 

of (3.10) and (3.11) is 

The solution 

f(0 = 2m r o w 
(3.12) 

3 1 /m 
where p Q = (m/k ) . The skin friction is given by 

. - I p H x 2 q / m 

m r o 
(3.13) 
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Again (c.f. Sections 2.1, 2.2), we have found a solution 

without considering any initial conditions. We note, however, that 

the parabolic form of u in (3.9) is consistent with the incoming 

Poiseuille flow. 

The powers of X in the similarity solution depend only on the 

value of q, and as might be expected an increase in q brings, 

with respect to X, a corresponding increase in the order of the 

pressure, velocity and skin friction, and a decrease in the negative 

order of the channel width. As q 1/3 q/m which suggests 

formally an exponential structure when q = 1/3. Unlike the powers 

of X, the coefficients p Q and 5 depend on both q and k. The effect 

on p Q and of varying q depends on the value of k , and an increase 

in q can result in either an increase or decrease in p and c • 
o w 

The effect on p Q and of varying k is simpler. With a faster 

pressure response, i.e. a smaller value of k, there is an increase 

in the value of p and a decrease in the value of C . Thus, taking a 
o w 

smaller value of k (a larger value of y) with the same value of q 

results in an increase in the absolute values of the pressure and skin 

friction, and a decrease in the channel width for a given value of X. 

A larger value of k with the same q has the opposite effect. It should 

be noted that the size of the implicit origin shift is dependent upon 

the values of the parameters q and y and that strictly the values 

obtained cannot be compared at the same value of X. However, examina-

tion of the numerical solution of the problem formed by equations (3.1) 

with (3.2) shows that this description of the effects of changing the 

values of the parameters is valid. That is, an increase in q or y 

steepens the main part of the collapse and shifts it closer to the 

origin, with the opposite effect from decreasing q or y (see Figures 

3.1 - 3.4). This is consistent with the expected faster response of 

the system with larger values of q and/or y. 

With q < 1/3 the complete collapse admitted by taking e as one 

will be achieved only in the limit as X and the analysis above is 

valid far downstream. 

Let us assume now that the collapse is severe but not complete, 

i.e. 0 < 1 - £ < < 1 . Then, on taking the transverse scaling y = E Y, 

it is clear that the analysis given above is valid until Y is 0(1 ). 
W ^ ' 



When this occurs it is appropriate to rescale the problem. Let 

u = (1 - c)" 1 u(X, Y), 

h (3.14) 

P = (1 - e)"1/q PCX), 

where y = (1 - e)Y and x = (1 - RX. To leading order the 

upper wall is given by 

Y w = 1 + e k(-p)" q. (3.15) 

The flow remains viscous in nature throughout the collapse, the 

boundary conditions are the familiar ones of no slip at the walls 

and conservation of mass, and the solution for u is 

which again has a parabolic form. The pressure can be found in terms 

of X from 

In practice the starting point for the integration of (3.16b) must be 

found numerically. It is easily shown that this solution matches 

with the upstream solution of (3.9) and (3.12). Note that a relation-

ship similar to (3.16b) holds upstream where (3.9) is valid. Clearly 

(3.16a,b) takes the expected form far downstream, i.e. undisturbed 

Poiseuille flow in the limit as X « and Y ->-1. For -p >> 1 
w r 

(3.16) can be expanded in negative powers of X » 1. This expansion 

is similar to that given in Section 2.4 for a collapse extending far 

upstream. We omit the details. 

leading order the tube law is given by (3.8), and the necessary 

balance between the viscous force and the pressure gradient in the 

fluid implies that X = 0(ln y ) as y 0. Thus the collapse has an 

exponential form, as predicted. The flow, which is viscous in nature, 

is given by 

(3.16a) 

p f = - Y ; 3 ( p ) . (3.16b) 

Suppose now that q = 1/3 and e = 1. If - yp >> 1 then to 
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- (3.17a) 

where 

g(n) = ^ (k 2 - n
2 ) , (3.17b) 

ax 1 

n = ye , a = , the walls are given by n = +_ n = +_ k, and an w 

implicit origin shift has been included. Again (c.f. q < 1/3 above), 

a smaller value of k (larger y) results in a faster (rate of) collapse, 

and a larger k in a slower collapse. 

If the collapse is severe (0 < 1 - e « 1) rather than complete, 

then the analysis above is valid while Y = e » 1 -e . It is 
W W 

necessary to rescale the problem when Y^ is 0(1 - e ). Although X is 

0(ln(l - e)) when this happens, both the pressure p and the pressure 
_3 

gradient dp/dX are then of 0((1 -e) ) and it is not appropriate to 

adopt a new streamwise length scale. The analysis for y^ of 0(1 - e ) 

proceeds as for q > 1/3 above, and the solution is given by (3.14) 

and (3.16a,b) with a suitable change of origin. 

The governing equations (3.1) - (3.3) were solved numerically (see 

Appendix 5) for various q with e = y = 1 . The results are shown in 

Figure 3.4. The solutions given above for - yp >> 1 are not shown, as 

the numerical and analytical solutions are graphically indistinguish-

able for values of X greater than about two. However, we note that 

for q = 1/3 the pressure, pressure gradient and skin friction curves 

take the predicted form, i.e. on a logarithmic scale the curves are 

straight lines except in the region of the origin. 

When both the final channel width and the pressure response are 

moderate, i.e. e , 1 - e and y are 0(1), then the flow close to the 

origin is given by (3.6), and a far downstream analysis as a pertur-

bation of Poiseuille flow is possible (c.f. Section 2.3). However, 

over the main part of the collapse the solution must be found numeri-

cally. The results for various values of y with fixed e and q, various 

q with fixed e and y and various e with fixed y and q are shown 

in Figures 3.1 - 3.3 respectively. 

ax f . 
u = e g(n), 

p = - e 
3 ax 
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X 

(ii) Pressure gradient dp/dX 

Figure 3.1. Results against distance for a channel with 

£ = 1/2, q = 1/2 and varying y: (a) y = .1, (b) y = .4, 

(c) y = l.o, (d) y = 3.0, (e) y = 10.0. 
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(iii) Upper wall skin friction x 

(iv) Channel half-width y . 

Figure 3.1 (cont.) . 
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X 

X 

Figure 3.2. Results against distance for a channel with 

e = 1/2, y = 1 and various q: (a) q = .1, (b) q = .3, 

(c) q = .5, (d) q = .75, (e) q = 1.0. 
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(iv) Channel half-width y . 

Figure 3.2 (cont.). 



10 20 

Figure 3.3. Results against distance for a channel with 

q = 1/2, y = 1, and various e: (a) e = .1, (b) e = 1/3, 

(c) e = 1 / 2 , (d) e = 2 / 3 , (e) e = . 9 , (f) e = 1 . 0 . 
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Figure 3.1 (cont.) . 



0 X 10 20 

Figure 3.4. Results against distance for a channel with 

e = y = 1 and various q. The asymptotic solutions for -p >> 1 

are graphically identical. (a) q = .1, (b) q = . 2, 

(c) q = 1/3, (d) q = .4, (e) q = 1/2. 
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x 

(iii) Upper wall skin friction T (on a logarithmic scale). 

X 

(iv) Channel half-width y . 
J w 

Figure 3.4 (cont.). 
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X 

(ii) Pressure gradient dp/dX (on a logarithmic scale). 

Figure 3.5. Results against distance for a channel with 

e = 1, q = 1/2 and various y. The asymptotic solutions for 

- yp >> 1 are graphically identical. (a) y = .1, (b) y = .4, 

(c) y = 1.0, (d) y = 3.0, (e) y = 10.0. 
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X 

(iv) Channel half-width y . 
J
 w 

Figure 3.5 (cont.). 



It is seen from Figures 3.1 and 3.2 that when the collapse 

is moderate the effect on the solution of the value of q and y is 

qualitatively similar. We could in a sense regard q = 1/2 and y = 1 

as intermediate values below which the collapse proceeds relatively 

slowly downstream, and above which the main part of the collapse 

occurs close to the origin and there is a sharp change in the 

pressure gradient, the channel width and the skin friction in this 

region. 

Clearly, for y >> 1 it will be necessary to investigate the 

flow structure close to the origin on a streamwise length scaling 

shorter than 0(R). This will be done in Section 3.4 below. We 

note that even with the larger values of q and y the pressure 

gradient and skin friction tend monotonically towards their res-
-3 -2 

pective downstream limit values of -(1 -e ) and -(1 -e ) 

This also appears to hold for a severe collapse with moderate 

pressure response, as can be seen from Figure 3.3. 

3.3 Channels which collapse at a finite distance downstream 

Let us assume now that a complete collapse is possible ( e = 1 ) , 

that the pressure response is moderate (y = 0(1)), and that the tube 

law has the algebraic form (3.3) with 1/3 < q < 1/2. As with q <_ 1/3, 

close to the origin the flow is given by (3.6). We know from Section 

3.2 above that further downstream, where the tube law takes the form 

(3.8), the pressure gradient will dominate the inertial forces in the 

fluid as the channel collapses, and that the channel width tends to 

zero at a finite value X of X = R _ 1 x . That is, as y 0 the flow 
o w 

is viscous dominated and acts as if there is a sink at X = X . For 
o 

0 < Xq - X << 1 the flow has a self-similar structure, viz. 

u = (Xq - X) q / mg(n) and p = p o(X Q - X)1/m, where n = y(XQ - X)q/m, 
m = 1 - 3q < 0, p Q = (- m/k 3) 1 / m , g ( n ) = - (p Q/m)(n

2 - n 2 ) , and the 

tube law has the local form n = nw where nw = ^Pq"^ (c.f. equations 

3.9 and 3.12). The pressure gradient is p ' = - where y w is 

given by (3.8). Integrating, 

X - X 1 = [ ( - p / - 3 * - C - P ) 1 " 3 1 1 ] , 

where X < X^ and p = p 1 at X = X ^ It follows that 
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-3/q -, -r 
x0 - X1 + b * r c- p / • ( 3 - 1 7 c> 

Rubinow and Keller (1972) assumed that Poiseuille flow is valid 

locally and produced a simple model of steady flow in a collapsible 

tube. Their model predicts that as the outlet transmural pressure 

tends to infinity the mass flow tends to an upper limit, a result 

which depends on the existence of a certain integral. For our 

present problem this integral is 

0 

y~ w
3 (P) d p = 

0 

y~ w
3 (P) d p 

_3 
y w (p) d p , 

-00 p ^ _00 

which exists if q > 1/3. In effect, Rubinow and Keller assume that 

a complete collapse to a given point (the outlet) is possible and 

calculate the mass flow consistent with this collapse. For our 

problem, this is equivalent to assuming that q > 1/3, X , X^, and p^ 

are known, and hence calculate y from (3.17c). In contrast, we 

assume a particular mass flow in a given tube, i.e. values of y and 

q, and calculate the point (X ) the channel will collapse to. 

Figure 3.5 displays graphically the effect on the solution of 

varying y with q = 1/2 and e = 1, and Figure 3.4 the effect of vary-

ing q with fixed y and e = 1. The effect of varying y with fixed q 

and e = 1 is qualitatively the same for 1/3 < q < 1/2 as for q = 1/2, 

and we see from Figures 3.4 and 3.5 that, as for q ^ 1/3, an increase 

in q or y steepens the main part of the collapse and shifts it closer, 

to the origin. We note also that the slope of the channel walls tends 

to zero as X X - . It is easily shown that the flow structure given 

above remains mathematically valid until the limit as X -»• X- is reached, 

Clearly, our model must, in some physical sense, break down before this 

limit is reached. 

If the collapse is severe rather than complete, i.e. 0 < 1 -e << 1, 

then the analysis continues as for q < 1/3 (Section 3.2) with similar 

results. Figure 3.6 shows the channel half width against X, as ob-

tained from the numerical solution of (3.1) - (3.3) with e = .99, y = 1 

and q = .4. Also shown are the theoretical results for the main part 

of the collapse, and for far downstream where (3.15) and (3.16) imply 

Y = 1 + e kX~ q + 0(X~ 2 cl). We see from Figure 3.6 that there is an ex-
w y ° 

cellent agreement between the numerical and theoretical solutions. 
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Figure 3.6. Half-width y^ against distance for a channel 

with q = .4, y = 1 and e = .99. From (a) Numerical solution 

of the full problem (equations 3 . 1 - 3 . 3 ) , (b) Similarity 
- 4 

solution valid when y ^ k(-p) ' , (c) Far downstream 

analysis with y 'v e + kX ' . 
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Further, a numerical solution for far downstream based on (3.15) 

and (3.16) is indistinguishable from the full numerical solution 

to at least three significant figures. 

Suppose now that q = 1/2, y = 0(1) and e = 1. As we shall 

see, q = 1/2 is a "critical" value in the sense that it is the largest 

value of q for which a complete steady solution has been found for 

the problem with e = 1. Further, it appears possible that there may 

be no steady solution for the problem with q > 1/2, y = 0(1) a n d e = 1. 

Also, with q = 1/2 there is an upper limit on the pressure response 

of y < 18 for which a steady solution of the form we assume exists 

(see below). 

Again, the flow close to the origin is given by (3.6). It 

was shown in Section 3.2 that when q = 1/2 the inertial force and 

the pressure gradient are of the same order of magnitude when the 

tube law takes the form (3.8). Assuming a balance with the viscous 

force implies that y is 0(X - X) for some finite X as X - X 0+. r yw ^ o J o o 
Making the transformation 

ip = ( 2 p 0 )
1 / 4 f ( 0 , 

p = - p 0 ( X 0 - X ) - 2 , 

(3.18) 

1/4 -1 

for the stream function and the pressure, where C = (2p Q) - X) 

the streamwise momentum equation becomes 

g" + 1 - g 2 = 0, (3.19) 

where g = f' gives the streamwise velocity component in the similarity 

1/4 

solution. The wall relationship has the local form = k(2/p Q) 

Conservation of mass and no slip at the walls require 
^w 2 -1/4 

gCO dc = 4 ( 2 p J ' 

= 0 at c = + C — ^ w ' 

(3.20) 

in turn. 
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Equation (3.19) is similar to that for flow between nonparallel 

plane walls, first studied by Jeffery (1915) and Hamel (1917), with 

comprehensive treatments given by Rosenhead (1940) and Millsaps and 

Pohlhausen (1953). Jeffery-Hamel flows are not in general unique. 

In fact, there is an infinite number of solutions, although the number 

that are valid can be restricted severely under certain conditions 

(see Fraenkel 1962). The Jeffery-Hamel solutions can be found in 

terms of elliptic integrals. There is also an infinite number of 

solutions of the present problem, as will now be shown, following 

Whitham (1963). Equation (3.19) can be integrated to give 

i Cg'2 ) - g - J g3 = g0 - J Z3
0, (3.21) 

where g Q is a value of g for which g' = 0. A more convenient form 

of (3.21) is 

\ (g')2 - j (g0 - g)(a - g)(g - b) = 0, (3.22) 

where a = j[-gQ + (12 - 3 g 2 ) 1 / 2 ] 

and b = - \ [g Q + (12 - 3 g 2 ) 1 / 2 ] 

are the other two solutions of g' = 0. If a,b and g Q are all real, 

then let b <_ g Q <_ a, otherwise let b be the single real solution of 

g' = 0. 

Consider a particle of unit mass moving along a straight line 

with g(C) its distance from the origin at time C. Equation (3.22) is 

the energy equation for a motion in which the potential energy of the 

particle is given by 

V(g) = - j (gQ - g)(a - g)(g - b) 

and the total energy is zero. V(g) must be negative throughout the 

motion, and the particle must start at g = 0 at C = -C and return 

to g = 0 at C = C . From inspection of the graph of V(g) (Figure 3.7), 

we see that the maximum possible value of g Q is unity, that the par-

ticle will never reach the point g = a unless g = a = 1, and that 

there are two basic motions, a completely forward motion, which can 



Figure 3.7. The energy function V(g): (i) has g Q = 0, a = /3 and b = - /3, (ii) has 
g = a = 1 and b = - 2, and (iii) has g = 2/3, a = (6/2 - l)/5 and b = (6/2 + l)/5. o o 
All curves with 0 < g < 1 lie between (i) and (ii), and unless 0 < g < 1 either 

°o — o — 
V(o) > 0 or V(g) < 0 for all g > 0. 

cn 
CD 
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exist if 0 < g <_ 1, and a completely reversed motion with g <_ 0, 
which can exist if b - /3. In the former, the particle starts 
at g = 0, moves to gQ and then returns to g = 0, and in the latter 
moves from g = 0 to b and returns to g = 0. Clearly, the flow 
corresponding to the second basic motion cannot satisfy mass con-
servation. However, if 0 < gQ <_ 1 there may be a number of compo-
site motions, in which the particle reaches both gQ and b, such that 
the corresponding flow, which will have regions of both forward and 
reversed flow, can satisfy conservation of mass. We will show later 
that at least one such composite flow can be constructed, and hence 
that our problem does not have a unique solution. 

Before doing this, let us examine the completely forward flow 
outlined above. This flow is symmetric (as is the completely re-
versed flow) and the velocity is monotonic in the upper and lower 
halves of the channel. Thus the no slip condition at the lower wall 
can be replaced by the symmetry condition g'(0) = 0, which is auto-
matically satisfied as g(0) = gQ in (3.22). In the upper half of the 
channel gf is negative, and (3.22) and the no slip condition imply 
that 

c - ? -
w 2 

dt 

0 
/(go-t)(a-t)(t-b) 

(3.23) 

At c = 0 this gives 

k(2/po) 1/4 = 4 
fg. 

dt (3.24) 
0 V(g0-t)(a-t)(t-b) 

which with the condition from conservation of mass, 
r s n 

J ^ 
-1/4 _ y3 

2 
tdt 

0 /(go-t)(a-t)(t-b) 
(3.25) 

determines the values of gQ and pQ for a given value of the known 
parameter k. In practice, it proves easier to take a particular 
value of g and determine the values of k and p consistent with this o ro 
g . In turn (3.24) and (3.25) can be written as 
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E = (6/a)1/2 F(S,y) (3.24a) w 

and 

i(2p )"1/4 = (6/a)1/2(g - a)H (6,Y
2,y) + aE , (3.25a) o o o w 

where F and n are respectively the elliptic integrals of the first and 
third kind, as defined by Gradshteyn and Ryzhik (1965). Here 

a = a - b, Y 2 = (gQ - b)/(a - b) and sin 2 6= g Q / ( Y 2 a ) . 

It was shown above that g < 1 . We will now examine in detail & o — 
the solution when g is close to unity. It can be shown that if 

'o 
1 „ , ,2 . 1 

1 - gQ « 1 then F(6,y) * - y In (1 - gQ) and n ( S , Y
z , Y ) j In (1 - gQ) 

It follows from (3.24a) and (3.25a) that ^ - 7J l n C1 - g0)"* 00 a n d 

k k Q as gQ 1-, where kQ = -j^-. The behaviour of g, and of the 
constants g , p , and E , as k k can be deduced directly from the o o w' o 
momentum equation (3.19) and conservation of mass. Equation (3.19), 
the monoticity of g in 0 <_E ? , and >> 1 imply that, to leading 
order, 

g = 1 (3.26) 

in the core where n = C,r - E >> 1. Further, the next term in the 
w ' 

expansion of g in the core must be exponentially small in . Likewise 
1 - gQ must be exponentially small. If, for n of 0(1), i.e. close to 
the wall, we write g(E) as g(n), then g(n) must satisfy (3.19) and the 
boundary conditions g(0) = 0 (no slip at the wall) and g 1 as n 00 

(matching to the core flow). This Falkner-Skan problem is the same as 
that arising in the flow in a converging channel with intersecting 
plane walls, first studied by Pohlhausen (1921). The solution, 
from Jones and Watson (1963), is 

g(n) = 3 tanh2 (n + n//2) - 2, (3.27) 

where n = tanh"1 /2/3 = 1.146216. 
o 

Conservation of mass and (3.26) imply that 



3/2k - (162p ) 1 / 4 (1 - g) dn = 1, (3.28) 

0 

-1/4 and that c = (162p ) to leading order, 
w o 

This suggests that for £ large we expand pQ and k as 

k = k + k,c + . ..., 
= TZT Z ~4 + "5 + 

^o 162 w ol w 

r (3.29) 

1/4 
Equation (3.28) and the wall relationship = k(2/pQ) , which must 
hold exactly, can be used to determine the k^ and in (3.29). In 
particular, we find that kQ =1/3/2 (as above), k^ = 1 - /j, and 

2 / 2 , 

p = -jf (1 - /2/3). There is an implicit assumption here that higher 
order terms in the boundary layer expansion are insignificant to the 
orders calculated in (3.29). It is easily shown that if g is expanded 
in terms of t 1 then the leading order term is given by (3.27) and 
that the values of k Q, k^ and are as given. Hence, we conclude 
that there is no serious omission at the present order of working. 

Figure (3.8) shows the values of g and C against y as calculated 
o w from (3.24) and (3.25) (see Appendix 5 for the method). Also shown are the theoretical values of y against c obtained from the first two w 

terms in the expansion for k in (3.29). Agreement is excellent in the 
region for which 1 - gQ is small, i.e. for y > 13 approximately. 

Some important features of the local behaviour of the flow and 
the channel can now be deduced. The tube law implies that 

-1 /2 

yw = k pQ (X - X) locally, and hence that the slope of the channel 
walls will become infinite as y ^ 18 and p 0. This was confirmed 
by solving the full problem (equations 3.1 - 3.3) numerically for 
various y with e = 1 and q = 1/2 (see Figure 3.5(iv)). Also confirmed 
(Figure 3.5) was the predicted linear relationship between y and X w 
as y 0, and that, as expected, XQ is smaller with larger y. Figure 
3.9 displays the shape of the velocity profile for various y,as deter-
mined from (3.23). Clearly, g(C) takes the predicted mainly inviscid 
form as y ^ 18-. By expanding for 0 < gQ « 1 in (3.24) and (3.25), it 
can be shown that gQ 0 and pQ ->• 00 as y -> 0. It follows, as might be 
expected and as is clearly displayed in the results from the numerical 



Figure 3.8. Coefficients of the asymptotic solution for 
-yp >> 1 with e = 1 and q = 1/2. 
(i) y against c (a) from (3.24) and (3.25), (b) from the w 
first two terms of (3.29), (ii) gQ against y (from (3.24) 
and (3.25)). 
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Figure 3.9. Velocity profiles for q = 1/2, e = 1, and 
various y, where gg = g/gQ and Es = 
(a) y = .1, (h) y = 4.0, (c) y = 10.0, (d) y = 15.0, 
(e) y = 17.0. 



75 

solution (Fig. 3.5), that locally the slope of the channel wall 
tends to zero as y 0. The ratio of the inertial terms to the pres-

2 
sure gradient in the streamwise momentum equation is of 0(gQ ). Thus, 
the flow will become viscous in nature as y 0, and the velocity 
profile should be parabolic in form for small y. That this occurs 
is evident from Figure 3.9. In fact, the velocity profile is close 
to the parabolic profile for y <_ 1 approximately. This is not sur-

2 

prising as gQ i .1 for y = 1. The problem with y << 1 is considered 
in more detail in Section 3.5 below. 

So far we have found a numerical solution of (3.19) and (3.20) 
valid for y < 18, and a limit solution valid as y 18. That the 
completely forward flow considered above cannot provide a solution 
of (3.19) and (3.20) for y > 18 is evident immediately from (3.24) 
and (3.25). Since gQ < 1 then k(2/pQ)1/4 > y(2po)"1/4, which im-
plies that y < 18. As will be shown soon, this restriction on y holds 
for composite flows as well, and indeed there is no solution of the 
form (3.18) for y >_ 18. We see from (3.29) that 

kl C % — (3.30) 
w k - k 

o 

as y 18. Since k, > 0 , k must be greater than k for £ to be 
1 & o w 

positive. Thus the limit solution is valid only as p ^ 18 from below, 
and strictly we do not have a solution for y = 18. An attempt, 
basically unsuccessful, was made to find an alternative limit structure 
valid for y = 18 (see Appendix 1). 

Conservation of mass requires that uy^= i-, where u is the mean 
fluid velocity, which suggests that u is 0(y Assuming this and a 
balance between the viscous and inertial forces in the fluid when 
y^ << 1 introduces y = 0(XQ -X). It appears therefore that a local 
steady solution balancing these forces as y 0 should have the w 
similarity form (3.18) regardless of the exact value of y. This in 
turn suggests that there is no local steady solution with this balance 
of forces for y >_18. Alternatively, we could assume that the inertial 
forces dominate the viscous forces as y^ 0. With this assumption 
the governing equations are given locally by 
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U 3X + V 37= " P 

3u 3V 
3 X + 37 = 0 -

r (3.3i) 

Following Cole and Aroesty (1968), the solution of (3.31) downstream 
of a given point X = X* is 

i> 
y = { u*2(t) + 2 [p* - pCX)]> ' 1 / 2 dt, (3.32) 

0 

where u*(y) and p* are respectively the streamwise velocity and 
pressure at X = X*, and ij; = 0 at y = 0. As p - (3.32) implies 

1 -1/2 

that y w ^ ("P^ » a n d hence that this solution is valid only for 
y = 18. Thus we are led tentatively to the conclusion that there is 
no essentially inviscid solution for y > 18, or, more strictly, unless 
|18 - y| << 1. We note that the leading order term in the expansion of 
(3.32) for p/p* >> 1 gives exactly the inviscid core part of the limit 
solution studied above. Further, mass conservation implies that such 
an essentially inviscid uniform flow can arise only if |l8 - y| << 1 
( s e e Section 5 ) 

A detailed comparison showed that there is excellent agreement 
between the numerical solution of the full problem (equations 3.1 - 3.3) 
with q = 1/2, e = 1, and y of 0(1), and the values obtained from the 
solution of the local problem (equations 3.18 - 3.20), and it is clear 
that the similarity solution provides a valid local description of the 
flow for y of 0(1). However, a complete numerical solution of the full 
problem could not be obtained by the method used (see Appendix 5) for 
y greater than about 13, a value of y consistent with 1 - g0

<<: 1 (see 
Figure 3.8) and g(?) approaching the limit form discussed above. 

For y > 18 we have neither an analytical self-similar solution 
of the local problem nor a complete numerical solution of the full 
problem. There are two possible explanations of this: first, a 
steady solution exists but our present methods are inadequate; second, 
no steady solution exists for the problem as formulated above. If a 
steady solution exists for y > 18, then our results indicate that 
while the viscous force in the fluid must be important at leading 
order, the solution cannot have the similarity form (3.18) which 
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arises naturally from assuming that the inertial and viscous 
forces are of the same order. This, and the consistency between the 
numerical and analytical results, lend support to the second explana-
tion above, i.e. that there is no solution of (3.1 - 3.3) with e = 1, 
q = 1/2, y > 18 and y <<1. 

If indeed there is no steady solution of this particular problem, 
then a basic assumption used in formulating the problem must be in-
valid. One possibility is that a shorter streamwise length scale is 
necessary, and another that significant upstream effects have been 
ignored. These points are considered, with respect to the problem 
with y >> 1, in Section 3.4 below, and we will not pursue them here, 
but note merely that neither appears to provide any reasonable ex-
planation of our failure to find a full solution for y >_ 18. A 
further possibility is that the channel-fluid system with e = 1 and 
q = 1/2 is necessarily unsteady if y ^ 1 8 , i.e. that there is no 
complete steady solution on any streamwise length scale. Some ex-
perimental and theoretical evidence supports this last possibility. 
In particular, there is evidence that this fluid-channel system 
will spontaneously destabilize if y >_ 18. This is discussed in 
Section 5 below. 

We wish now to examine another solution of (3.19) that can satis-
fy (3.20). Consider a symmetric flow with one region of reversed 
flow centred on the midpoint of the channel. Proceeding as before, 
we find that 

C w 

0 fg 5 0 
I(t) dt + 2 I(t) dt, (3.33) 

0 

_1 j j 

where I(t) = V3/2 {(t - b) (grt - t) (a - t)} Here g is the maxi-
mum value attained by g and b = g(0) < 0 . We see from Figure 3.7 / 1/4 that -2 <_ b <_ -/3. The mass flow in the channel is given by 2(2pQ) ' Q 
where 

•0 

q = tl(t) dt + 2 
°o 

tl(t) dt. (3.34) 
0 

Conservation of mass will be satisfied if 

Q • i c *o ) " 1 / 4 " (3.35) 
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Clearly, we require Q to be positive. Numerical experimentation 
showed that Q > 0 i f - 2 < b < b , where b 4 - 1.9845. It follows 

— — o o 

that this solution of (3.19) can provide a valid solution for our 
local problem. However, since 0 < gQ <_ 1 and b < 0 then Q < c , 
which implies that y < 18 in this case also. It was found that 
r « as y -»- 18- and that b->b - as y 0. Thus the restrictions w o 
on y are the same here as for the completely forward flow studied 
previously. Proceeding as above, we find that as y 18- the solu-
tion tends to a limit form given by (3.26), (3.27), and a reversed 
jet at the centre of the channel. The velocity profile of this 
centre jet is given by g(c) from (3.27) with n = 0. Expansions 
of k and pQ in powers of £ >> 1 can be made. They have the same 
leading order terms as those in (3.29). 

Generalising, we can construct a solution of (3.19) which 
satisfies no slip at the walls and has an arbitrary finite number 
of regions of reversed flow, including possibly reversed flow adja-
cent to either or both of the walls. Such a solution will have a 
limit form of g = 1 over most of the channel and the appropriate 
number of reversed jets interspersed across the channel. Clearly mass 
conservation can be satisfied by this limit form. Hence there is a 
range of gQ < 1 for which this generalised solution can satisfy 
(3.20). Expansions of k and pQ for >> 1, similar to (3.29), can 
be made. The expansion for k would imply that 

t a* 1 
W F I T o 

as y -»• 18, where kj > 0 and k| / k^ (c.f. equation 3.30). Requiring 
0 < < 00 implies that y < 18, as above. More formally, for any 
particular solution of (3.19) and (3.20) we can construct expressions 
of the form of (3.33) and (3.34), which with (3.35) imply that y < 18. 
We conclude therefore that if y >_ 18 then there is no local solution 
with the similarity form (3.18). We note that, in common with our 
problem, a solution of the Jeffery-Hamel problem does not exist for all 
values of the parameters (Rosenhead 1940) . 

On comparing values from the numerical solution of the full prob-
lem (equations 3.1 - 3.3) with those from the local solution given 
by the completely forward flow (equations 3.23 - 3.25), we found 
excellent agreement. Further, there was no evidence in the numerical 
solution of the full problem of the concavities or reversals in the 
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flow field which must occur with any other solution of (3.19). 
Accordingly, we conclude that, when it exists, the correct simi-
larity solution is that given by the completely forward flow. 

The analysis for a severe collapse (0 < 1 - e << 1) with 
q = 1/2 and y = 0(1) is easily deduced from the above and the 
results of Section 3.2. 

Finally in this section we study the channel with q > 1/2, 
e = 1 and y = 0(1). A s y 0 the inertial terms in the momentum 
equation will dominate the pressure gradient, and the local prob-
lem does not appear to be well posed, in the sense the positions of 
the walls (and therefore the boundary conditions) depend on the 
pressure but the pressure gradient does not'appear in the leading 
order governing equations. If we assume a balance between the viscous 
and inertial forces, then, as with q = 1/2, y^ is 0(Xq - X), and it 
can be shown, using a dynamical argument similar to that found above, 
that there is no similarity solution for the local problem which can 
satisfy both no slip at the walls and conservation mass. Alternative-
ly, if it is assumed that the flow is inertia dominated, then the 
solution takes the form u(X,y) = A(X)V(X,y), where A(X) is to be 
determined. It follows that the flow must be nonsymmetric unless 
there is a concavity in the flow field at y = 0, and unless V(X,y) 
is unidirectional there must be reversed flow over part of the 
channel. Although concavities have been reported for flows through 
constricted tubes (Smith 1979, Deshpande et al. 1976, Forrester and 
Young 1970), there is no evidence in the numerical solutions of the 
full problem, as far as they could be obtained, for any such occur-
rence here. A larger value of q is expected to force a faster res-
ponse from the system, and, considering the flow structure for q <_ 1/2, 
it is natural to assume that p « (X - X)~n, where nq < 1. This 
implies that u « (X - X)~nq as X X - which suggests that A(X) = 
= (X - X) n q and a self-similar flow structure for which there is no 

o ' 

solution. The numerical procedure applied to the full problem (equa-
tions 3.1 - 3.3) diverged when the walls moved a finite distance into 
the channel, i.e. no complete numerical solution was found. It is 
possible that no complete steady solution exists (c.f. q = 1/2, with 
y >_ 18 above). This possibility is discussed briefly in Section 5 
below. 
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As for a complete collapse ( e = 1), we could not find a full 
solution for the channel-fluid system with a severe collapse 
(0 < 1 - e « 1), q > 1/2 and y of 0(1). 

3.4 Channel flows with a fast pressure response 

The basic problem we study in this section is that of a channel 
obeying (3.3) with a fast pressure response, a total collapse pos-
sible, and q of 0(1). That is, unless otherwise stated we assume 
that 

q = 0(1), e = 1 

1 « y 2 « R. 

Later in this section we investigate the effects of q « 1 and/or 
e / 1. The upper limit on y in (3.39) ensures that the pressure 
remains independent of y. 

If 0 < - yp << 1, then from (3.3) the position of the upper 
wall is given by 

1 2 2 4 4 y w = 1 - j q u p + 0(y4 p*) . (3.40) 

We propose that as the flow passes the origin thin viscous layers 
form adjacent to the walls, and that it is the flow in these boun-
dary layers that determines the pressure, and thus the position of 
the walls, while the core flow responds passively to changes in the 
boundary layers (c.f. \il/z e < 0(1), Section 2.1). The boundary 
layers have, at least initially, a linear flow structure. Let 

3 - - -1/2 
x = 6 RX and y = 1 - 5Y, where 6 = y . To match with the in-
coming Poiseuille pressure gradient, the pressure scaling must be 

3 p = 6 P. At this stage the pressure will be uniform across the 
3 

channel if 6 R >> 1. The necessity for the tighter restriction 
4 5 R >> 1 will become apparent later in the analysis. With these 
scalings the flow structure in the boundary layer adjacent to the 
upper wall is given by 

- (3.39) 



u = 6Y + 6 2 U (X, Y) + o(S2), 

v = - R'1 v 1 (X, Y) + oCR'1), 
b ( 3 . 4 1 ) 

and to leading order the equations of motion reduce to the linearised 
boundary layer equations, viz. 

2 
3 u 3 u 

Y _ + V l = - P . + — 
3X 

3U1 n + = 0 . 
3X 3Y 

The tube law becomes 

3Y 

(3.42) 

w 

0 P > 0, 

P < 0, 

(3.43) 

and the boundary conditions are 

v, = 0 and u. = - Y 1 1 w at Y = 0, 

1 v 2 v 
u^ - — Y as Y 00 , 

u^ 0 as X -> -

(3.44) 

from no slip at the wall, and matching to Poiseuille flow at the outer 
edge of the layer and upstream in turn. 

The transform solution of this boundary layer problem can be 
found using the method applied to a similar problem in Section 2.1. 

Again, no evidence is found for any significant upstream influence 
Thus there is a definite starting point, X = 0, for the change in the 
flow from the incoming Poiseuille flow. The pressure downstream of 
the origin is given by the solution of the integro-differential 
equation 



q P 2 _ 
2 

- l 
3Ai 1 (0) T (2/3) (X - t)"l/3 d p d t + | x 2 / 3 } . 

(3.45) 

The skin friction perturbation is given by the solution of (3.45) 
and 

_ -Ai(0) f 
1 " r(j)Ai' (0) J 

(X - t)"2/3 ^ - d t + 3X1/3}, (3.46) 

where X > 0 and t = 3u/8y (y =y^) = -1 + 6-r̂  + o(5). As Y •><» 

vx <u - (p» + 1), 

which provides a matching condition for the core flow at the outer 
-2/3 

edge of the wall layer. As for the fine collapse with e = 0(y ) 
(Section 2.1), it is the matching of u^ to the second order term from 
the Poiseuille flow at the outer edge of the layer that forces the 

-2/3 
inclusion of the X term in (3.45), and thus ensures a nontrivial 
solution for the pressure. 

Before discussing the behaviour of the wall solution in detail, 
it is convenient to present the core solution. The core flow takes 
the form of an inviscid rotational perturbation to the Poiseuille 

-2/3 
flow (c.f. e << y , Section 2.1) and is given by 

u = UQ(y) + 63axCX,y) + o(63) 

v = R'^CX.y) + o(R_1), 
(3.47) 

where 

• - t n 7 t { 1 + " o W i W 

ry 
= (P' + l)Uo(y) 

- 2 

y 
Uo"2(t) dt}, 

y (3.47a) 
(t) dt. 

Note that (u^, v^) = 0 for X < 0. By expanding (3.47a) for 1 - y << 1 
it can be shown that (u,v) match to the boundary layer solution as 
y 1. Also the behaviour of u as y 1 suggests that the next term 

3 in the boundary layer expansion is of 0(5 In 5). 
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/N 2 ^ 

Applying the transformations P = aP and X = j aX, where 
a = (f)1/2 [- qAi'(0)r(|)]"3/4, to (3.45) produces 

"2 - P = 
X 

rv _ i-T- 1/^ 
0 d t 

(X - t)"1/3 ^ - d t + X 2 / 3. (3.48) 

Close to the origin (0 < X << 1) the pressure is given by the 
series 

P = yQX + y ^ 7 7 3 + 0 (X 1 1 / 3), (3.49) 

3 2 
where y = - 2/3, y^ = - y y /B(7/3, 2/3) etc., and B(m,n) is the 
Beta function as defined by Abramowitz and Stegun (1965) . The first 
term in (3.49) comes from the Poiseuille flow, and the others from 
the balance of the integral term with -P in (3.48). Numerical methods 
(see Appendix 5) are necessary to obtain a full solution of (3.48). 
This solution is shown in Figure 3.10, as is P from (3.49). Clearly 
P has a singularity at a finite value X (- 1.047) of X. Assuming 

a o that P can be written as 
A A A 1 / 7 A A 
P = - X1(Xo - X)"1/>5 + P^X), (3.50) 

A A 1 / 7 A A A A 

where (Xq - X) ' P^X) 0 as X X the integral in (3.48) can be 
written as 

" ^ I^X) + I2(X), 

where I^(X) = (X - t)"1/3(X - t)"4/3 dt and 
0 ° 

I2(X) = 
"X /\ -| j -y dP ^ /\ 

(X - t) 7 dt. Clearly, as Xq X the 
® 2 * -2/3 leading order term from must balance with - ^(X - X) , the 

leading order term from - P . Let A = X - X << 1. If 8 is chosen 
such that 0 >> A then 

J* (X - t ) - 1 / 3 c x - tr 4 / 3dt = - 1 L 2 / 3 • | Air5/4 -
X-6 0 5 

+ f e"2/3 - | a g - 5 / 3
 + t l a 2 e - 8 ^ 3 • ...., 

and 
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X 

Figure 3.10. The pressure in a channel with a fast 
pressure response. 
From (a) the numerical solution of (3.48), (b) the 
series for X << 1 (equation 3.49), (c) the asymptotic expan-
sion for Xq - X << 1 (equation 3.50), and (d) the numerical 
solution of the full problem (equations 3.1 - 3.3) with e = 1, 
q = 1/2, and y = 100. 
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o"(x - t ) " 1 7 3 ^ - t)-4/3dt . A - ^ B ( f , 2) 

. | e " 2 / 3
 + | A 8 - 5 / 3 - j L A 2 9 - 8 / 3 

which imply that 

~ -2/3 2 2 -2/3 4. ~ ^ -3/3 

I^X) = (Xo - X) j ) - fx + f (Xo - X)X
 b / b

 + 

hence that 

We could not find a solution or a leading order term for P^ 
directly from (3.48). However, by a process similar to the above, it 
can be shown that there are no terms of order Am In A or Am in the 

1 1 expansion for P, where < m < This suggests that I- is bounded ^ O J z 
as X X . o 

We will now investigate the flow structure as X Xq-, where 
X = aX . If the stream function ip is zero at y = y • then o o J

 J\i 

rp = -<52Y2/2 - 63^1(X, Y) + o (63) (3.52) 

in the viscous layer adjacent to the upper wall. A similarity solution 
for ip can be obtained from the expansions 

iP1 = (Xo - X)"1/3 f 0( c) + (Xo - X)fx(?) + o(Xo - X) 

p = _ Po(Xo - X)-1/3 - P ^ - X) + o(Xo - X) 
> (3.53) 

where E = Y(X - X)"1/3, P = - 9~ 1 / 3 T(h and P. is a constant. This o o q 3 1 
value for Pq was obtained from (3.51), but it can also be found from 
the solution for f (£), as will be shown below. The OCX - X) terms 

o o 

in (3.53) are required by the matching to Poiseuille flow at the outer 
edge of the layer, and it has been assumed that they are the second 
order terms in the expansions. This matching implies that P^ = 1, 
and hence from (3.50) that 
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px (x) = - I (X - X) + o ( X o - X) (3.54) 

From (3.42), f Q ( 0 must satisfy 

fin _ I c 2 f«» _ I C£» + I £ = _ I P o 3 o 3 o 3 o 3 o (3.55a) 

The boundary conditions 

fo(0) = 0, 

f o ( 0 ) = - f P
2 , 

£'0 M = o, 

- (3.55b) 

come from if; = 0 at the wall, no slip at the wall and matching to the 
core flow in turn. 

A particular solution of (3.55a) is f = - P , and f = l, is one 
solution of the homogeneous equation. Taking f = Cgfc), h = dg/d^ 
and s = £ 3, the homogeneous form of (3.55a) becomes 

9sh'' + (15 - s)h« - h = 0 

where the prime now denotes differentiation with respect to s. The 
method of integral transforms (Burkill 1975) can be used to deter-
mine h(s). Taking h = ebiS <J>(w) dw, we find that if c is chosen 
such that 

[ e * s (1 - 9u)) a) <J>] = 0, 

then 

ci> (uj) = (1 - 9cd) -1/3 

The paths c^ ( - 00 < oj <_ —) and c2(- 00 < w <_ 0) provide two 
independent solutions for h. The solution from c^, which can be 
found explicitly, must be excluded as it grows exponentially in s 
as s Hence the solution for f is 

o 
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f(£) = - P + a£ + be- dt 
o 

(1 + 9w)~1/3 exp(- U3t3)da) (3.56) 
0 

where a and b are arbitrary constants and the bar denotes the finite 
part of the integral. To leading order the integral in (3.56) is 

_2 

proportional to £ as £ 00. Thus a must be zero to satisfy the 
outer matching condition from (3.55b). When £ << 1 

-• (1 + 9co)"1/3 exp(- 03 £3) du3= 9~ 1 / 3 T(|) £ ~2 + 0(1) 

and 
0 

4 dt 
£ 

-1/3 3 (1 + 9u3) exp(- 03t ) do3 
0 

= 9" 1 / 3 T(|) £"1 - 9" 2 / 3 r2(|) + 0(£). 

Therefore, the boundary conditions at the wall are satisfied by 
2 -1/3 2 

taking b = 2/q and Pq = — 9 As required, this is the 
value of Pq implied by (3.51). 

The solution for P obtained numerically from the integral 
equation (3.48) is displayed in Figure 3.10. Also shown in Figure 
3.10 are the values of P obtained from the first six terms of the 
Taylor series for X small (equation 3.49), from the first two terms 

A A A 

of the expansion of P as X Xq (equations 3.50 and 3.54), and 
from the numerical solution of the full problem (equations 3.1 - 3.3) 
with e = 1, q = 1/3 and y = 100. The value of Xq used here is 1.047, 
a value obtained from the numerical solution of (3.48). As can be 
seen from Figure 3.10, the values for the pressure obtained from the 

series for X << 1 and the asymptotic structure as X -»- X -
show excellent agreement with the solution of the integral equation 
(3.48), as do the values obtained from the solution of the full 
problem. Thus it appears that the flow structure given above pro-
vides a valid description of the flow as it passes the origin and 
the channel begins to collapse. 

Immediately downstream of the origin, where 0 < X << 1 and (3.49) 
is valid, a similarity solution for the perturbation to the flow in 
the upper wall layer can be obtained. Here, to leading order, 



88 

ux + j Y 2 « X2, P + X « X 7 / 3, tx * X 5 / 3, Y w = j 6qX2, and the 

boundary layer thickness is Hence, as the flow passes the 
origin the change from the Poiseuille flow, and of the wall from 
y = 1 (?w = 0), is fairly smooth, with the wall layers increasing 
in thickness downstream. Note that the leading term in Y repre-
sents the effect on the wall position of the Poiseuille pressure, 
and that the leading terms in u^ and P are from the Poiseuille flow 
while the lower order terms are forced by the nontrivial change in 
the wall position. Thus, in 0 < X « 1 the changes in the flow and 
the wall positions are initiated and driven by the pressure from the 
Poiseuille flow. 

When X and X - X are both 0(1) numerical methods must be used 
o v 

to complete the solution. 

When 0 < X - X << 1, the leading term in the expansion for u 
0 2 is the first term forced by the nontrivial Y , and in (3.45) the P 

term, which gives the change in the wall position, dominates the 
X2^3 term from the Poiseuille flow. Thus, in 0 < X - X << 1 the 

o 

interaction between the change in the flow and the change in the wall 
position dominates the change forced by the Poiseuille flow and the 
collapse is self-sustaining. The singularity in the solution arises 

2 
naturally from the dominance of this interaction: if the P term 
in (3.45) balances with the integral term as P - then 
P (X - X)"1/3 as X X - follows directly. To leading order 
t^ « (X - X) 1 as X X It follows that the asymptotic flow 
structure becomes invalid when X - X = 0(6). This suggests that an 

4 -0(6 R) streamwise length scaling be adopted close to Xq in an attempt 
to smooth out the singularity. 

Before doing this, we consider the effects on the solution of 
altering the parameters. The value of the pressure response y has 
a direct effect on the length scalings but not on the solution as 
such. If y is increased, the streamwise length scaling is decreased, 
the boundary layers are concentrated closer to the walls, and 
magnitude of the core perturbation is smaller. Decreasing y has 
the opposite effect. Unlike that of y, the value of q has a direct 
effect on the solution, but not on the length scalings. In parti-

-3/4 
cular, a is proportional to q . Thus, if q is increased then X 
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is decreased, and if q is decreased X is increased. We see n o 
therefore that increasing the value of q or y has the expected 
effect of moving the collapse closer to the origin, with the oppo-
site effect from decreasing these values. The direct dependence 
on q of the solution to the boundary layer problem could be re-

2 -1/4 -1/2 moved by taking 6 as (qy ) instead of y . This would be 
2 appropriate if q >> 1 or q << 1. If 1 << qy << R and 

q r 0(1) then the structure of the flow immediately downstream of 
the origin will be similar to that given above for q = 0(1). 

We will now investigate the flow for Xq - X = 0(6). If 
x = S4RX + 6 5 R X q , Y = 1 - S4/3y, p = 6 8 / 3P and ij, = - 6 8 / 3 i J then 
the governing equations in the viscous layer adjacent to the upper 
wall are 

~ ~ ~ ~ - .2" 8u 8u nl 8 u u — + v — = _ p » + — -

8X 8z 8z 

8X 8 2 

- (3.57) 

where the Prandtl transformation Y = z + f. P2(X) has been applied, 
u = dip/dz and v = - dip/dX. The boundary conditions are 

u = v = 0 at z = 0, 

~ « q 22 u ^ z + | P asz->oo, 
(3.58) 

from no slip at the wall and matching to the Poiseuille flow at the 
outer edge of the layer. We note the nonlinearity of outer condition 
on u, which arises from the form of the tube law. Also, far upstream 
the solution of (3.57) and (3.58) must match with the asymptotic flow 
structure for Xq - X << 1 given above. This upstream condition is 
satisfied (see Appendix 2). The core flow takes the form of an in-
viscid rotational perturbation to the Poiseuille flow, i.e. 

8/3 -u = U (y) +0(6 ), and is given by (3.47a) with P + X replaced by P, 

Let us now seek an asymptotic solution of (3.57) and (3.58) 
valid as P - 00. Suppose that P « Xn as X where n > 0. Then 
the necessary balance between the terms in the momentum equation 

2. / 2 requires that n >_ 1/6. With n = zX the flow is given by 
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7 ~ n + l / 2 , 
ip = x F(n) + o(x ), 

P = PQXn + 0(Xn), 

where F(r\) must satisfy the Falkner-Skan equation 

F'11 + (n + j) FF" - 2nF|2 = 0. (3.59) 

If n > 1/6 the boundary conditions, from (3.58), are 

F(0) = F' (0) = 0, 

F'(co) = 3. p2 
2 o 

(3.60) 

Clearly, the boundary conditions are not consistent with the 
Falkner-Skan equation, and there is no non-trivial solution for F when 
n > 1/6. Suppose now that n = 1/6. The condition at infinity in 
(3.60) must be replaced by 

Ff + n + y P 2 as n (3.60a) 

On differentiating (3.59) it is seen that 

F (t)d(t) ] F''1 = a exp[- — 2 ^ 
0 

where a is an unknown constant. Equation (3.59) and the boundary con-
ditions imply that both Ffl,(0) and F'l!(<») must be zero, which is 
possible only if a is zero, that is F1'' = 0. It follows that 
when n = 1/6 there is no solution for F such that P is non-zero. 

o 

Further, it can be shown that there are no satisfactory solutions of 
the Falkner-Skan problems with P = (Xq - X)"n, Xn In X, or (XQ-X) In (XQ-X), 
nor is there any linearised similarity solution for (3.57) and (3.58) 
such that P 

Our inability to find a suitable asymptotic structure does not, 
of course, imply that one does not exist. However, if a nonlinear 

~2 

structure exists as P then u = P , and it follows that the 
pressure gradient will not appear in the leading order momentum equa-
tion. Thus, as the boundary conditions are pressure dependent, it 
seems possible that the boundary layer problem (equations 3.57 and 3.58) 
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is not well posed for - P >> 1. We note the similarity to the problem 
with a moderate pressure response and q > 1/2 (Section 3.3), when, 
again, we could not find a solution. 

A finite difference method of computation was applied to the 
non-linear boundary layer problem formed by (3.S7) and (3.58) (see 
Appendix 5 for details). Upstream, where |p| << 1, the numerical 
solution showed the expected behaviour. That is, P was proportional to 

~ -1/3 ~ ~ 
(X - X) , where X is a constant and X - X >> 1. However, when P o o o 
approached 0(1) the numerical process failed to converge. Variation of 
the grid size, including changing to a non-uniform grid, had no sub-
stantial effect on the results. Close examination revealed that the 
process had become unstable with an oscillatory type of divergence. 
Further, attempts to find a solution of the full problem (equations 
3.1 - 3.3) using numerical methods were unsuccessful when y was suffi-
ciently large. As can be seen from Table 3.1, yc> the value of y at 
which the numerical process fails, depends on the value of q (and of e, 
though it is assumed here that E = 1). These values are approximate, 
and were obtained by trial and error. As expected, the effect of 
increasing q (or e) is to decrease yc. 

The methods used above have been consistently unsuccessful in 
completing the solution of the problem defined by (3.1) - (3.3) and (3.39). 
If a solution of the form proposed above exists then the perturbation to 
Poiseuille flow in the core must be 0(1) when p is 0(y"*), since both 
1 - y and y are then finite. In the region of the singularity, 
where the flow in the upper wall layer is controlled by (3.57), u - U (y) 
must be proportional to p in the core if the flow is to be symmetric. 
This suggests that u - U (y) will be 0(y when p is 0(y~"'"), and hence 
that there is a basic contradition between the behaviour of core flow 
as proposed above, and that required by the tube law. However, if it is 
assumed that the flow is not significantly disturbed until the pressure 
falls below zero then the flow structure given above arises naturally. 
Also, an analysis along these lines is suggested by the results for a 
fine collapse with a fast pressure response such that sy 2 7 3 is large 
(Section 2.1). In fact, this approach is successful for a channel with 

y" 2 7 3 « E ^0(y" 1 7 2) (see below). 

A possibility worth considering is that the flow is altered sig-
nificantly ahead of the collapse, although no evidence of this has been 
found so far. 
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It was shown in Section 2.2 that small exponential disturbances 
to the Poiseuille flow can occur far ahead of the collapse on an 0(R) 
streamwise length scale, but also that they decay rapidly downstream. 
Similar exponential disturbances to the flow upstream of the collapse 
were investigated on 0(BR) streamwise length scalings, with 3 >> 1 
and R 1 << 3 << 1. Again no solutions that could lead to significant 
changes in the flow were found. 

If x is assumed to be 0(1), then the pressure cannot be taken to 
be independent of y. It is known that in a tube with a fixed constric-
tion significant changes to the flow can occur ahead of the constriction 
if its dimensions are such that the pressure will not be uniform 
across the tube (see Smith 1976a,b,e; 1977b; 1978a; 1979). In parti-
cular, Smith (1979) has found two possible solutions for the flow 
ahead of a symmetric constriction in a pipe of radius a when the 
height and length of the constriction are both 0(a). In the first 
solution, Poiseuille flow continues undisturbed until the constriction 
is reached, while in the second separation occurs a distance 
0.087 a In R + 0(a) ahead of the constriction. A similar result holds 
for the analogous channel flow. The mechanism for the viscous up-
stream separation is based on an extension of Kirchhoff (1869) free 
streamline theory, which has been shown (Sychev 1972, Smith 1977a) to 
provide a rational basis for the description of high Reynolds number 
flows past bluff bodies in external flows. It is felt that such an 
upstream separation is unlikely to occur in the steady flow problems 
that the present study is concerned with. There are several reasons 
for this belief: first, such a separation requires a strong adverse 
pressure gradient close to the wall in the region of separation, 
whereas there must be a favourable pressure gradient at the wall in 
order for our tubes to collapse; second, the pressure is constant 
along the free streamline, which implies that a separated flow must 
remain separated, with a favourable pressure gradient in the region 
between the wall and the free streamline, or that the flow reattaches 
at a point where the tube has its original shape (i.e. y = +_ 1 for a 
channel). Suppose now that the collapse is severe, not complete, i.e. 
0 < 1 - s << 1. Then, if the flow remains steady, we expect that the 
tube will eventually collapse to its minimum width, and that the flow 
will again take a Poiseuille form far downstream. This appears to 
contradict a permanently detached free streamline, and indicates that 
a steady flow with an upstream separation must reattach ahead of the 
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main collapse. Thus the results of Smith's (1979) study of flow in 
constricted tubes suggest that if the flow remains steady and signifi-
cant changes occur ahead of the collapse, then the resultant flow 
pattern must be extremely complicated. 

Another possibility worth considering is that there is no steady 
solution to the basic problem studied in this section, and that the 
flow in a tube obeying (3.3) and (3.39) will spontaneously destabilise. 
Support for this hypothesis can be found in a number of theoretical 
and experimental studies (see Section 1.3). This will be discussed 
further in Section 5 below. 

Suppose now that the collapse is fine, q is 0(1), and 

y~ 2 / 3 « e « y"1/2. (3.62) 

The flow structure in the region where 0 < -yp << 1 can be obtained 
2 -1/4 

from (3.41) and (3.47) above by replacing 6 by 6 = (ey ) through-
out. When - p becomes 0(y ) this solution fails as S(yp) cannot be 
expanded in powers of - yp << 1. However, the skin friction pertur-
bation is still small compared with one, and the general structure of 
the flow remains the same, i.e. a linear structure in the wall layers 
and a passive irrotational perturbation to the Poiseuille flow in the 
core. The wall layers retain their linear structure and grow in 
thickness downstream until eventually they merge with the mainstream. 
When this occurs the flow takes the form of an 0(e) viscous perturba-
tion to the Poiseuille flow, developing on an 0(R) streamwise length 

2/3 
scale (c.f. y e <_0(1), Section 2.1). 

A complete solution of the present problem can be obtained using 
the techniques found in Section 2.1. We omit the details, but make 
some comments about the behaviour of the flow. As occurred with e = 1, 
immediately downstream of the origin the change in the wall positions 
is initiated and driven by the pressure change from the Poiseuille 
flow. Again, this is followed by a self-sustained collapse, in which 
the interaction between the change in the flow and'the movement of the 
walls is dominant. This interaction results in an extremely fast 
change in the pressure and in S(yp) which is terminated when S 
approaches one. In the limit far downstream the flow again takes a 
Poiseuille form. As might be expected, the behaviour of the present 
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fluid-channel system is similar to that found for the system with 
3/2 

A = ye large (Section 2.1). Note that the flow structure outlined 
above for a channel satisfying (3.62) can be regarded as a natural 
development from the structure found for A = 0(1), in the sense that 
the former can be obtained from the latter by expanding for large A. 

Suppose now that 

e = K y" 1 / 2 (3.63) 

where K is an 0(1) constant. Again, the flow immediately downstream 
of the origin has a linear structure, obtained from (3.41) and (3.47) 
by replacing 6 by However, K = 0(1) implies that the skin 
friction perturbation and - yp become 0(1) simultaneously, and hence 
that the flow in the viscous wall layers is nonlinear in form when 
p = 0(y"1). If x = y"3/2Rx, y = 1 - y"1/2[y + KS(p)], p = y_1p(x) 

A A A A 

and ip = - y *Kx,y), then (^,p) must satisfy the nonlinear boundary 
layer equations, and the boundary conditions 

7T = ^ = 0 at y = 0, 
y 

3l|| ^ -A /A rr y + KS(p) as y -> «. 
d v 

(3.64) 

Also, rp and p must match to the incoming flow. It is easily shown 
that a satisfactory matching of ($,p) to the downstream asymptotic 
behaviour of (3.41) can be achieved (c.f. Appendix 2). If K << 1 a 
linearized solution can be obtained analytically. As expected, this 
solution is essentially that described above for e satisfying (3.62). 
If K >_ 0(1) numerical methods of solution are necessary (see Appendix 
5). Let us assume that S(p) has the standard form (1.6), with q = 4. 
The values obtained for p(x), T = 3u/3y and S(p) with K = 1 are shown 
graphically in Figure 3.11. For the problem with K = 0(1) we can 
distinguish at least three distinct stages in the development of the 
flow in the wall layers. First, there is a slow upstream development 
with the boundary layer taking a linear form. Next, the boundary 
layer becomes nonlinear, and there is a rapid adjustment to the flow, 
with the major part of the wall collapse occurring over a relatively 
short distance. In this region the magnitude of both the skin 
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Figure 3.11(i). Pressure p against distance £ for a channel with S(p) = 1 - (1 + p ) , 
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y >> 1 and K = ey = 1 . A change in origin for £ is included here. From (a) the 
numerical solution of the boundary layer problem, and (b) the downstream analysis for 
- p » 1, which gives p = P d + pQ (S + * d) 1 / 3, where pd = -.397 and = .767. 
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Figure 3.11 (ii). Skin friction t against distance £ for a channel with K = 1 
(see Figure 3.11 (i)). The values are from the numerical solution of the boundary-
layer problem. 
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Figure 3.11 (iii). Wall displacement S(p) against distance x for a channel with 
K = 1 (see Figure 3.11 (i)). The values are from the numerical solution of the 
boundary layer problem. 
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friction x and the pressure gradient increase rapidly, peak and then 
begin to fall. Finally, as the flow proceeds downstream the boundary 
layer again becomes linear in form, with a relatively gradual de-
crease in the skin friction and increase in the pressure gradient, 
both tending asymptotically towards zero. An asymptotic flow struc-

-1/3 - 1 - 2 -1/3 ture with p « x and ip - j- y x can be developed for the 
A A A 1 / J A 

downstream region where 1 - S << 1. If p ̂  p^x as x •> ® then it 
can be shown (c.f. the problem defined by (3.53) - (3.55a,b)) that 

p 0 = - K 3 5 / 3 / r 2 ( l / 3 ) . 

Note that this result is valid for K of all magnitudes, not just 0(1). 

Using the above value of p Q and a suitable change in origin, a 
comparison was made between the asymptotic and numerical pressure 
solutions for the problem with K = 1. Agreement was excellent for 
large x (x > 20), and as can be seen from Figure 3.11, agreement was 
good for moderate values of x (5 < x < 20). 

The rapid changes in the flow and the wall position which occur 
with K = 1 suggest that it may be necessary to adopt a shorter stream-
wise length scale for the problem with K large. However, this would 
lead to an analysis for K >> 1 essentially the same as that given above 
for the problem with e = 1 and y >> 1, a problem for which we could not 
find a complete solution. As might be expected from the difficulties 
encountered with e = 1 and y >> 1, the numerical process failed to 
converge when applied to the present boundary layer problem with values 
of K substantially greater than one, e.g. for K = 5. As before, 
altering the grid did not noticeably improve convergence. No reason 
is known for the failure of the numerical method with large K, nor is 
it known whether a solution exists. We note the natural development 

-1/3 -1/2 -1/2 between the flow structures for e << y , e = 0(y ) and y ' < < £ < _ 

Suppose now that e = 1, y >> 1 and q << 1. In this case the 
behaviour of the flow depends greatly on the relative order of y and q. 

_2 For example, if q « y , then the expansion of y for - yp << 1 
W ^ 

(equation 3.40) implies that the initial response of the tube to the 
_2 changing pressure is slow, whereas if q >> yi , then the initial respons 

- 2 

is fast. Further, if q << y , then immediately downstream of the 
origin the flow is viscous in nature and does not have separate wall 
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_ 2 layers, while if q » p then the perturbation to the Poiseuille 
flow in the core is inviscid, and viscous wall layers form when the 
flow passes the origin. We will not investigate the flow for q << 1 
in detail, but will comment on some points of particular interest. 

: q << 
2,-1/3 

-2/3 -1/2 
If p « q « y , then (3.41) and (3.47) are valid if 6 is replaced 
by 5 = (qy ) , and the wall layers retain their linear structure 

-1/2 
when -yp becomes 0(1). If q = 0(y ) then the boundary layer 

- 1 - 1 / 2 structure becomes nonlinear when p becomes 0(y ). If 1 << q << y 
then there is a region in which the flow structure in the wall layers 

2 2 is nonlinear and S « qy p . Hence we do not have a full solution for 
-1/2 

the case with 1 << q << y . Nor do we have a numerical solution for 
the full problem (equations 3.1 - 3.3 with 3.39). In fact the approxi-
mate values found for y c (the upper limit on y for convergence of 
the numerical process used for the full problem) for small q are consistent 

- 1/2 
with qyc =0(1) (see Table 3.1). This suggests that the difficulties en-
countered in numerically solving the full problem and the nonlinear 
boundary layer problem (equations 3.57 and 3.58) may be connected. 
It is stressed that the values obtained for y c are approximate, and 
that further investigation is required to confirm or refute this pro-
posed relationship between q and yc, and any connection between the 
failure of the full and boundary layer problems to converge. 

The flow in a channel that can collapse completely must adjust in 
such a way that u - UQ(y) is 0(1) when 1 - y becomes 0(1). In Appen-
dix 3 we investigate a channel with the tube law 

1 p >_ 0 
(3.65) 

p(t)dt]"q p < 0 
y w = 2 

[1 - ^ qR 
0 

where 1 << y 2 << R and q = 0(1). A solution of the form proposed 
above for a channel obeying (3.3) and (3.39) is considered, again on 

-3/2 
an 0(y R) streamwise length scale in the region of the origin. It 
is shown that the flow can develop in such a way that p and 1 - y 
become 0(1) simultaneously. That is, with (3.65) the flow can adjust 
so that the core flow becomes nonlinear as the collapse becomes finite. 
An outline of a complete solution is given in Appendix 3. 



- 1/2 
q yc f c quc 

.5 18.0 12 1.7 

.4 29.5 25 2.0 

. 3 45.6 50 2.1 

.2 76.4 120 2.2 

.1 167.0 450 2.1 

Table 3.1. Critical values of y for a channel obeying 
A 

(3.3) with e = 1; y obtained from equation (5.2) and 
y by numerical experimentation. 
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3.5 Channel flows with a slow pressure response 

Suppose that the collapse is moderate and the pressure res-
ponse slow, that is e = 0(1 - e) and y >>1. It follows that the 
flow is viscous in nature, the pressure is independent of y to leading 
order, ai 
given by 
order, and with x = y ^Rx and p = y *p(x) the streamwise velocity is 

u(x,y) = | y w
 _ 3(y w

2 - y 2) (3.66) 

where yw = yw (p) and p is determined by 

- x = 
P 3 

£(t) dt. (3.67) 
0 w 

Clearly, this solution takes the expected Poiseuille form in the 
limit far downstream as x -> °° and y 1 - e. 

If e <<1 then the solution given in Section 1.2 for a channel 
with a fine collapse and slow pressure response is obtained as the 
0(e) term in the expansion of (3.66) and (3.67), as would be expected. 

Suppose now that the collapse is total (e = 1) and that yw is 
given by (3.3). Then (3.67) implies that to leading order p = x11 as 
x 0° if q < 1/3, p = (x - x)n as x x - if q > 1/3, and that 
p -»- - oo exponentially in x if q = 1/3. Here n = 1/(1 - 3q) and xq is 
finite. Hence, if q <_ 1/3 the collapse extends indefinitely far down-
stream, while if q > 1/3 then yw 0 at a finite value of x. An 
asymptotic structure for the flow as p - °° c an be obtained directly 
from (3.66) and (3.67). For q < 1/2, this asymptotic structure is 
essentially that found for the flow as p - ® when y = 0(1) (Sections 
3.2 and 3.3). If 1/3 < q <_ 1/2 then to leading order the flow 
remains viscous in nature throughout the collapse, and the asymptotic 
structure for x - x << 1 is mathematically valid for all such x < x . 

o J o 

It appears then that at least one of the assumptions made in formula-
ting our model must become invalid as y 0 if 1/3 < q <_ 1/2. If 
q > 1/2 then the viscous and inertial forces in the streamwise 
direction and the pressure gradient are all of the same order when 
x q - x = 0 ( y ( 2 q I t necessary to reformulate the 
problem. 
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Let m = q/(2q - 1) > 0. Taking x = ymRx + y Y ~ vmy> 

u = y mu(x,y), v = y mR *v(x,y), and p = y~^mp(x) in the region of 
the singularity, the governing equations for (u,v,p) are the non-
linear boundary layer equations. The boundary conditions are those 
of no slip at the walls, given by y = +_ y w where y w = (-p) and 
matching upstream to the asymptotic flow structure for xq - x << 1. 
It follows from the results of the problem with y = 0(1), q > 1/2 
and e = 1 (Section 3.3) that we do not have an asymptotic solution for 
this local problem as p - nor a numerical solution for - p >> 1. 
Thus, with a channel obeying (3.3), we do not have a complete solution 
for any value of y if q > 1/2. 

If the collapse is severe, then (3.66) and (3.67) are valid 
throughout the collapse if q <_ 1/2, or if 1 - e is 0(ym) or greater 
when q > 1/2. If 0 < 1 - e << y m and q > 1/2, then, again, we 
encounter the nonlinear problem with y w « (-p) and do not have a 
complete solution for the problem. 
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Section 4. Pipe flow 

4.1 The governing equations 

In this section we study a model of flow in collapsible pipes. 
We assume that the motion of the fluid-pipe system is steady, that 
the Reynolds number is large, and that far upstream the pipe has a 
circular cross-section and the flow is fully developed Poiseuille flow. 
Let (x,r,8) be standard nondimensional cylindrical coordinates, with 
associated velocity components (u,v,w). In the problems studied in 
this section, the restrictions placed on the parameters are such that 
the radial and azimuthal momentum equations always imply that the 
pressure p = p(x) is independent of r and 9. It follows that the 
governing equations are the streamwise momentum and vorticity equations 
and the continuity equation. In turn these are 

u 

u 

3u 
3x + V 

3u 
3r 

w 3u 
+
 R 30 - p'(x) + R _ 1 V 2 U , 

+ V 
3ft w 3ft 8 u o ft + 3x 3x + V 3r + r 30 

8 u o ft + 3x 

3u 3w 1 3u 3v - 1 2 = R V^ft, 
* (4.1) 

3r 3x r 30 3x 
- 1 2 = R V^ft, 

3u 3v v 1_ 3w 
3x + 3r + r + r 30 " 

V 2 = " 3r' 

3 w w 3v 
3r + r r 30 

1_ 3 1 32 

r 3 r 
+ 

P 30 

is the streamwise component of vorticity, 
3 2 

+ and R is Reynolds number based on the 
d X 

radius of the pipe far upstream where its cross-section is circular. 

As with the channels considered above, it is supposed that the 
cross-sectional area of the pipe depends on the local pressure only. 
Thus, if the wall is given by r = r^ then r = r (p,0) . Except in 
Section 4.3, where the collapse extends indefinitely far upstream, we 
assume that r = 1 for p >_ 0, and that p = 0 at x = 0 (c.f. the 
channels studied above). 

The boundary conditions are 

u = v = w = 0 a t r = r , 
W' 

u U (r), v 0 and w 0 as x -o 

> (4.2) 
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1 2 
where UQ(r) = (1 - r ) is the incoming Poiseuille velocity profile. 
Also, we require the solution to be bounded in r < r . No evidence 
is found for any significant upstream influence in any of the problems 
considered below. Thus it would be sufficient to apply the upstream 
matching to the Poiseuille flow in (4.2) at the point where the wall 
first varies from r = 1; that is, except in Section 4.3, at x = 0. 

An initial scaling on x is obtained by matching the pressure 
gradient to the incoming Poiseuille pressure gradient, as was done 
for channel flows above. When the collapse is nonsymmetric the order 
of the azimuthal velocity w, like that of v, can be fixed by mass 
conservation. Alternatively, the order of w, or of v, could be fixed 
by assuming a balance of terms in the streamwise vorticity equation. 
However, for the fluid-pipe systems studied below it can be shown that 
there are no valid solutions of the problems generated by assuming a 
vorticity balance. Thus, all the terms in the continuity equations 
must be of the same order. 

The behaviour of collapsible pipes was discussed in Section 1.2, 
and nonsymmetric collapses were felt to be of most practical impor-
tance. Also, we wish to study (as a first step) a problem that is 
mathematically tractable. Accordingly, we assume that r is given by 

r v = 1 - e S(yp) f(9) , (4.3) 

where e, S and f are such that r describes a non-intersecting curve 
for all p, S(yp) = 0 for p >_ 0 and S is monotonic decreasing for p < 0, 
With no loss of generality it may be assumed that f(9) is 0(1) or less 
for all 9, and is 0(1) for at least one value of 9. Where an explicit 
form of S is required, (1.6) will be used. 

The perimeter P^(x) of the tube is given by 
•2ir 

Pt(x) = { r 2 + (dr /d9)2} 1 / 2 d9. w 

A collapse for which P maintains its upstream value of 2tt will be 
called a bending collapse, and one for which P varies from 2TT a 
stretching collapse. As will be seen below, the behaviour of the 
fluid-pipe system for a bending collapse is considerably different 



from that for a stretching collapse. In a region where |eS(yp)f(9)| << 
for all 0, a collapse will be a bending collapse to 0(e) if 

(•2tt 
f(0) d0 = 0, 

J 0 

which is also the condition that the cross-sectional area remains 
constant to 0(e). 

4.2 Axisymmetric pipe flow 

An axisymmetric collapse is essentially a "pure stretching" 
collapse with f(0) in (4.3) set identically equal to one. The govern-
ing equations are the continuity and streamwise momentum equations 
obtained from (4.1) by suppressing all 0 dependence. 

In general, the analysis for axisymmetric pipe flow is analogous 
to that given above for symmetric channel flow, as are the results 
of this analysis. However, there is one major exception to this. 
Consider a pipe obeying (4.3) with f(9) = 1 and S given by (1.6). If 
the pressure response is moderate, q = 0(1), and the collapse is total 
then to leading order r^ = k(-p) ^ when - yp >> 1, where k = is 
0(1). It follows that if q = 1/4 then the inertial forces in the 
streamwise direction and the pressure gradient will be of the same 
order when - yp >> 1. If q < 1/4 then the fluid motion will be 
essentially viscous in character when - yp >> 1, while if q > 1/4 then 
the inertial forces must dominate the pressure gradient as p - 00. 
No solution has been found for a pipe with q > 1/4. If q < 1/4 the 
necessary balance between the pressure gradient and viscous force in 
the direction of flow implies that p « as X ->• where 
X = R If q = 1/4 a balance of the viscous, inertial and pressure 
terms in the moment equation implies that p - « exponentially in X 
as X -»• «. Thus, for q <_ 1/4 the collapse of a pipe will extend indefi 
nitely far downstream. There are both similarities and 
differences between • (axi)symmetric pipe and channel flows. 
If - p >> 1 then the ratio of inertial forces to the pressure 
gradient is proportional to (-p) m, where m = 1 - 2q 

for a channel and 1 - 4q for a pipe. No solution has been found for 
a channel or a pipe with m < 0 . If 0 <_ m < 1 then the collapse of a 
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pipe extends indefinitely far downstream, i.e. r 0 as X ». For 
a channel, it has been shown (Section 3.3) that y 0 as X ^ X - if ' 'w o 
0 < m < 1/3, where X = X (q) is finite, and that y 0 as X °° — o o J w 
if 1/3 <_ m < 1. 

The flow structure for a pipe with 0 < q < 1/4 is similar to that 
for a channel with 0 < q < 1/3. We omit the details. Suppose now that 
q = 1/4. The flow has an exponential self-similar structure, viz. 

* = ( 4 a ) f ( c ) , 

-4ax 
p = - e , 

(4.5) 

1/2 ax 
where i{;(x,r) is the stream function, r, = (4a) re and a is a con-
stant to be determined. With (4.5) the momentum equation in (4.1) 
becomes 

g " + g '/C + 1 - t g2 = 0, (4.6) 

where g = f1/? gives the streamwise velocity component. The tube law 
takes the local form 

C = k(4a) w 
1/2 

-1/4 
where k = y • The boundary conditions are that g is regular in 
C < c , and that 

w 

w 
CgU)dC = a/4, 

0 

(4.7) 

from no slip at the wall and conservation of mass respectively. 

Unfortunately, equation (4.6) cannot be integrated directly, and 
an analysis similar to that given in Section 3.3 for equation (3.19) 
(arising in the study of a channel with q = 1/2) is not possible. 
However, we can show that a solution of (4.6) and (4.7) can exist only 
if y < 128, and that, if a solution exists when 0 < 128 - y << 1, 
then the flow must be essentially uniform across the pipe, the viscous 
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effects being restricted to thin layers. This flow structure for 
0 < 128 - y << 1 is of course the analogue of that for a channel with 
q = 1/2 and 0 < 18 - y « 1. 

From (4.6) we see that any turning point at which g > /2 must be 
a minimum. Hence, if g and g' are continuous and g > /2 at any point, 
then either g is monotonic or g > /2 at all points. Thus /2 is the 
maximum possible value that g can take if no slip at the wall is to 
be satisfied and the solution is to be smooth. It follows that 

WEg(E) dE < E2//2, and hence from (4.7) that mass conservation can 
J 0 

-1/4 
be satisfied only if k > k , where k Q = (128) ; that is, if y < 128. 
Further, if k - k << 1 then /2 - g << 1 over most of the tube ' o & 

(0 < E < E ). Thus, as y 128- any solution of (4.6) and (4.7) must 
have an essentially inviscid uniform mainstream with a viscous boundary 
layer adjacent to the wall. Note that this limit structure may not 
be unique. In particular, regions of reversed flow, similar to those 
described in Section 3.3 for a channel with q = 1/2 and 0 < 18 - y <<1, 
may be possible. This limit structure is discussed briefly with refe-
rence to experimental results in Section 5 below. 

4.5 A nonsymmetric collapse extending far upstream 

The analysis below is similar to that of Section 2.4 concerning 
a channel collapse that extends indefinitely far upstream. As 
several significant features of nonsymmetric flow in collapsible pipes 
are illustrated by this analysis, it is presented in some detail. 
Assume that far upstream, where p >> 1, the tube law takes the form 

r w = 1 - f(9)p"N +o (p"N), (4.8) 

where N > 0. Thus, if - X >> 1 

r = 1 - f(9)|X|~N +o (|X|~N), (4.8a) 

where X = R ^x. The fluid motion, which takes the form of a viscous 
perturbation to the Poiseuille flow, is given by 
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u = UQ(r) + |X|"N u (r,9) + o (|x|~N), 

v = R"1 [ I X I ^ 1
 Vl(r,0) +0(|X|-N-1)], 

w = R"1 [|xr N _ 1
 Wl(r,8) + oClxl^"1)], 

V | V | 1 - N , I V I L - N , p = - X + |X| p + o(|X| ), 

(4.9) 

1-N if N / 1. Here p^ is a constant. If N = 1 then the |x| p^ term 
in the pressure expansion must be replaced by p^ In |X|. With (4.9) 
the equations of motion yield 

* ux = (N - l)p r 

V2<|> = 0, 

3 v l V 1 1 3 w l n 
N ul + 3 ^ + T + r W = ' 

y ( 4 . i o ) 

where <(> = 3w]/3r + w1/r - (1/r) 3v1/30 and V2 = 32/3r2 + (l/r)3/3r + 
2 2 2 

+ (1/r )3 /30 . In turn these are the momentum, vorticity and con-
tinuity equations. The boundary conditions are 

V1 = wi = 0 a n d u1 = - j f(0) at r = 1, 

2tt r 1 
d0 

0 J 0 
ru^dr = 0, 

(4.11) 

from no-slip at the wall and conservation of mass, respectively. Also we 
require the velocity components to be regular throughout the pipe 
(0 £ r < 1). 

Given f(0), the solution of (4.10) satisfying (4.11) can be 
obtained by taking Fourier components and solving the resulting system 
of ordinary differential equations. Suppose that to first order the 
pipe takes the shape of an ellipse of small eccentricity; that is 

f(0) = a + b cos 20. (4.12) 
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Note that if a = 0, the collapse is a bending collapse and if b = 0 
it is a pure stretching collapse. 

The solution of (4.10) - (4.12) is 

a ri o b 2 u^ = y (1 - 2r ) - j t cos 20, 

vx = - ̂  (r - r 3) - ~ ( r - r 5) cos 20, 

Nb f 3, w^ = — (r - r ) sin 20, 

4a 
pi = " t t t 

(4.13) 

We see from (4.13) that the secondary motion is divided into 
independent axisymmetric and nonsymmetric parts, and that it is the 
axisymmetric part of the motion that determines the pressure pertur-
bation. If the collapse is a bending collapse, which implies that 
the cross-sectional area of the pipe is constant for|l - rj << 1, then-
the secondary motion does not have a symmetric part, and to first order 
the pressure is not disturbed, i.e. it takes the linear Poiseuille 
form. As will be seen below, this result is common to all the solu-
tions we find for nonsymmetric problems with |l - r | << 1. 

Consider the secondary flow in a cross-sectional plane. If 
a > 0 the axisymmetric part of v is directed towards the centre of 
the pipe. The nonsymmetric part of the flow is away from the regions 
in which the nonsymmetric component of the radius decreases into 
regions in which it increases, with no flow across lines of symmetry 
of the nonsymmetric part of f(0) (see Figure 4.1). If f(9) takes a 
form different to that of (4.12) then this result applies to any 
Fourier component of f(0) and its associated velocity components. 
Thus the secondary motion is essentially a simple flow which compen-
sates for the change in shape of the pipe. In Section 4.4 below a 

3/2 similar result is found for a nonsymmetric collapse with ye <_ 0(1). 



Figure 4.1. Direction of the secondary velocity when 
the cross-section of the pipe is an ellipse of small 
eccentricity and the collapse is a bending collapse: 
obtained from (4.13) with a set to zero. 
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4.4 Non-symmetric pipe flows with a fast pressure response 

We begin by studying the flow in a pipe with a fast pressure 
response and a small change in radius. In particular, we assume that 

3/2 1 << y << R and that X = ye is 0(1). The flow structure is 
similar to that for the analogous channel flow (Section 2.1). The 

3/2 core flow takes the form of an inviscid 0(e ) perturbation to the 
1/2 

Poiseuille flow, and a viscous layer of thickness 0(e ) forms 
immediately adjacent to the wall. Again, it is the flow in this viscous 
wall layer which determines the pressure. The flow can, as in Section 
4.3, be separated into an axisymmetric part and a nonsymmetric part, 
and again, it is the axisymmetric part that determines the pressure. 

In the viscous wall layer we propose that the flow is given by 

u = j S y + 6 2
 U]> (X,y,0) + o (<52) 

v = 

w = 

P = 

- R"1 v1(X,y,9) + o(R'1), 

6'1R"1w1(X,y,0) + o(6"1R"1), 

63P(X) + o(53), 

(4.14) 

3 1/2 
where x = 6 RX, r = 1 - 6y and <5 = e . We note that mass conser-
vation requires that the azimuthal velocity in (4.14) be much larger 
than the radial velocity, and that the predominant change in the flow 
occurs in the axial directions. 

Applying (4.14) to (4.1) produces the balances 

1 3 u1 1 
2* y ~3X~ + T V1 

32u 

J-rL m 3 " 3y 1 2 7 3y 

dy 

) = 0, 

1 1_ 
2 ' 

3y 
aw. 3 u i 3 v i - i n + + ^r-— = 0, ax ay ae 

(4.15) 

from the momentum, vorticity, and continuity equations in turn. The 
boundary conditions are 



v = w = 0 and = - j S(AP) f(9) at y = 0, 

1 2 
U1 " 4 y a s y 

1 2 v^ 0, w^ 0 and u^ - y as X -

(4.16) 

from no-slip at the wall, matching to the core flow, and matching to 
the incoming Poiseuille flow respectively. 

The transform solution of this linear boundary layer problem can 
be found by a method similar to that used by Smith (1976c) in a study 
of flow in a curved pipe. Let w* (s,y,9) = f°° w (X,y,9) e~lsXdX, the 

1 —00 _[_ 

generalised transform with respect to s. Then, from the vorticity 
equation in (4.15), 

wj = B(s,9)/(ay), (4.17) 

1 1/3 
where a = (0 + — is) has a branch cut along the positive imaginary 
s-axis, B(s,9) is a function to be determined, 

Z(t ) = Ai(t) dB rB 

0 Ai2(B) 
Ai(y) dy, 

and Ai is the Airy function. Let u^ = u^ + y /4 and P = P + X. Then 
(4.17) and continuity and momentum equations in (4.15) give 

u * = C(s,9) 
ry 

Ai (at) dt - is 39 (ay) (4.18) 

and 

v* = - 2isP* + G(s,0) ( 2aAi'(ay) -

- lsy 
y 

Ai (at) } i ii 
a 393 

y (4.19) 

where the * denotes a transformed variable and C(s,9) is a function 
to be determined. As oC(I) - t 1 as t u* satisfies the match-
ing to the core flow at the outer edge of the layer, that is uj 0 
as y With (4.19), the condition that v^ vanishes at the wall 
becomes 
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- 2isP* + 2aAi' (0) C(s,0) - ̂  |f- = 0 . (4.20) 

We now take the Fourier expansions 

= fq(X,y) + n| 2 [fln (X,y) cos n0 + f 2 n ( X , y ) sin n8], 

v x = g 0 ( X , y ) + n | x t g l n ( X , y ) cos ne + g2n(X,y) sin n9 ], ( 4' 2 1 ) 

wx = h (X ,y ) + n| x [hln(X,y) cos n0 + h2n(X,y) sin n9 ], 

and 

B(s,0) = Bq(S) + n| 1 [Bln(s)cos n0 + B2n(s)sin n9 ], (4.22) 

with a similar expansion for C(s,9), and expand the shape function 
f(9) as 

f(9) = a + E.(a. cos n0 + a_ sin n0). (4.23) 
o n=l In 2n ^ 

Immediately, we see from (4.20) that 

C (s) = — P*. (4.24) 
0 aAi'(O) 

With (4.23), the no-slip condition for u^ in (4.16) becomes 

fo(X,0) = - i aQ S(AP), 

fjn(X,0) = - | a j n S(AP), j = 1,2; n = 1,2,... 
(4.25) 

which, with (4.18) and (4.24) yields 

a _2/3 rX 
0 S(AP) = 2 
2 ' ' 3T(2/3)Ai'(0) (X - t)"1/3 dt + 

0 d t 

3 2/3, (4.26) 
2 

The pressure distribution can now be determined from the integro-
differential equation (4.26). We see that, as with a collapse exten-
ding indefinitely far upstream (Section 3.3), the axisymmetric parts 
of the fluid motion and the collapse determine the pressure, and 



that if the collapse is a bending collapse (aQ = 0), then to leading 
order the pressure maintains its incoming Poiseuille form (P = -X) 
while (4.26) is valid. For a stretching collapse, numerical 
methods must be used to solve (4.26) (see Appendix 5 below). The 
behaviour of the pressure is similar to that for the analogous 
channel flow, details of which are given in Section 2.1. 

With the pressure determined, S(XP) can be regarded as a known 
function of X, and the Fourier coefficients are then given by 

k (4.27) 

from (4.18), (4.20) and (4.25). As will be shown below, we require 

C. (s) = a a. S* (s), jn^ J 2 jn K J' 

- |-a3a2nAi'(0) S* (s), 

b 2 n ^ - a3 Ai»(0) S*(s), n In v 

B (s) = 0 
o (4.27a) 

for the core and boundary layer flows to be consistent. This com-
pletes the transform solution of the boundary layer problem formed 
by (4.15) and (4.16). We note that no evidence was found above 
for any significant upstream influence, as might be expected from 
the results for channels (Sections 2 and 3). 

We find from the transform solution that 

f. (X,y) a, - a. y_1I(X), 

gQ(X) - - 2 (P'(X) + 1), 

V 0 0 ' 

^ ~ n" a2n y"1 I ' m . 

j = 1,2; n = 1,2,... 

(4.28) 

as y where 
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K X ) = - j (3/2) 2/3 
r (2/3) 

(X - t ) -2/3 S(AP(t)) dt . (4.29) 
0 

It remains to be verified that the core flow can act passively and 
be consistent with the motion at the outer edge of the wall layer. 
We propose that in the core there is an inviscid perturbation to the 
Poiseuille flow. In particular, we take 

u = U (r) + 63U (X,r,9) + o (63), 

v = R"1 V(X,r,9) + o (R_1), 

w = R_1W(X,r,9) + o(R_1). 

(4.30) 

It is seen from (4.14) and (4.30) that the radial velocity has 
constant order throughout the pipe while the azimuthal velocity is 
much greater in the viscous wall layer than in the core. The wall 
layer therefore has a jetlike structure. This facet of the boundary 
layer can occur also in nonsymmetric pipe flows when the wall is fixed 
(see Smith 1976 c,d,e). 

With (4.30) the governing equations (4.1) give 

a n U + Uf V = - P» - 1, o 3X o ' 

u i i + u» — = o 
o 3X o ax u> 

ax + ar + r + r 30 

(4.31) 

where <J> = Rft. These are in turn the moment, vorticity and continuity 
equations. The -1 term in the momentum equation represents the 
viscous effect of the Poiseuille flow. The boundary conditions are 
that the flow is regular throughout the pipe, matches to the incoming 
Poiseuille flow, and matches to (4.28) as r 1-. 

Taking Fourier series of the form 

(X,r,0)= UQ(X,r) + n| 1 [Uln(X,r)cos n0 + U2n(X,r)sin n0] 
(4.32) 

and so on, we find that 
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= - i H 7 r { 1 + 

VQ(X,r) = (P» + 1) 

WQ(X,r) = 0 , 

U (r)U'(r) rr o o 

U (r) 

0 U (t) 
o 

dt 
0 IT(t) 

dt} , 

f (4.33) 

is the axisymmetric solution of (4.31) that is regular, matches to 
the incoming flow, and is consistent with the motion at the edge of 
the wall layer. The trivial solution is the only regular solution 
for WQ. Hence consistency with the boundary layer flow requires 
Bq(S) = 0 and hQ = 0. For a bending collapse P = - X and C q(S) = 0, 
and it follows that U , V , f and g are all zero; that is, the 

o o ' o 6 o ' 

axisymmetric part of the secondary flow is trivial, as occurred in 
the problem of Section 4.3. For a stretching collapse UQ in (4.33) 
is 0(1) when 1 - r << 1, which suggests that there must be a nontrivial 

3 
term of 0(6 ) in the expansion for u in the wall layer. 

Let us now separate the variables such that 
U. (X,r) = a. A. (X) F. (r), jn jn jn ' jnv 7 

V. (X,r) 
j n v ' J 

Wln(X,r) 

a. A! (X)G. (r), jn jn jn^ 

a 2 n A 2 n W H l n W > 

j = 1,2; n = 1,2, 

(4.34) 

We require (4.34) to be consistent with (4.28) as r 1-, which 
suggests that 

A l n m = A2n ( X ) = " (4.35) 

where I(X) is given by (4.29). Equations (4.34), (4.35) and the 
governing equations (4.51) imply that 



f l n w 

G 2 n W = G n ( r ) , 

I T ( r ) 
F. (r) = - , G (r), 2n U fr) n 

o 

-H 2 n(r) =I{(rG n(r))' - r ^ GJr}}, 
o 

h ( 4 . 3 6 ) 

n = 1,2,..., 

and that the G^(r) must satisfy 

r2U (r)G " + rU (r)G ' + [(1 - n2)U (r) + r2]G = 0. o n ; n oK J J n 

The bounded series solution for G^(r) in ascending powers of 
r is 

G (r) = b . Zn d . r nK J n k=0 nk 
2k+n-l (4.37) 

where d = 1 and the d . are determined by no nk J 

k(n + k)dnk - [k(n + k) - (n + 2k)]dnk_1 = 0 (4.38) 

for k 1. By Weierstrass' test (see e.g. Knopp 1956, p.132) this 
series is convergent at r = 1 and hence is convergent for all r <_ 1. 
Finally, (4.34) will be consistent with (4.28) at the outer edge of 
the wall layer if G (1) = 1. Thus taking 

b = 1/. E„ d . n k=0 nk (4.39) 

completes the solution. 

In turn the axial and azimuthal shear stresses can be written as 

T = " J ~ 5 x l + ° ( 6 ) ' 

- 2 - 1 - 1 
t = - 6 T q + o ( 5 ; R a ) , 

where t. = (3u./3y) and = (3w /3y) . It follows from (4.18) l l y-u u l y-u 
and (4.19) that 



T 1 

X
 ( x . t)-l/3 dS[XP(t)] d t > 

0 
X ,-1/3 d2S[XP(t)1 ^ (X - t) 1

 9
 1 dt. 

0 d t Z 

(4.40) 

Suppose that p is continuous and S = (-yp)m for 0 <_ - yp << 1, 
where m > 0. Then, at the origin where p = 0, S is continuous but 
has infinite slope if m < 1. Assume that the collapse is a bending 
collapse. Then for 0 £ X « 1, P = - X, S « Xm, and from (4.40), 
x.. « Xm and xQ Xm~4//3. Thus at the origin, the axial shear 
i o 

stress is continuous if m > 1/3, but x^ has infinite slope if m < 4/3. 
The azimuthal shear stress is more sensitive at X = 0 where xQ is 
infinite if m < 4/3 and is continuous with infinite slope if m < 7/3. 
Assume now that the collapse is a stretching collapse. The behaviour 
of pressure and the axial shear stress in 0 <_ X << 1 is similar to 
that for the analogous channel flow (Section 2.1). Working to leading 
order, if m > 2/3 then for 0 < X « 1, P = - X and hence S, x. and xQ 

— 1 9 
are the same as for a bending collapse. If m < 2/3 and 0 <_ X << 1, 

£ it follows from (4.26) that P - X , where I = l/3(l-m), and from 
(4.40) that x, « x^2"1"1) and xQ « x^ 5 m _ 4 : ). Therefore, P, S, x. and x 

i y i 

have infinite slope at the origin if m < 2/3, and x^ is infinite at 
X = 0 if m < 1/2. Also, the expressions obtained for the core flow 
may not be continuous at the origin. If m < 2/3 then, for both stretch 
ing and bending collapses, I(X) is continuous but 11(X) is infinite 
at X = 0, where I(X) is defined by (4.29). Therefore, the nonsym-
metric component of the radial velocity and the azimuthal velocity, 
as given by (4.30) - (4.39), will be discontinuous at the origin if 
m < 2/3. Further, with a bending collapse the symmetric part of the 
radial velocity will be infinite at X = 0 if m < 2/3. We will not 
investigate further, but 

assume that as the pressure has been deter-
mined and is continuous these local irregularities can be smoothed 
out by an examination on a shorter length scale close to the origin, 
as is usually the case with boundary layer flows. 

Consider now a bending collapse. It follows from (4.28) that 
at the edge of the wall layer 

v = - R"1!' (X)f(9) 
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to leading order. It can be shown that I'(X) > 0 for X > 0. Hence, 
there is a mass flow out of the wall layer in the regions where the 
tube radius has decreased, and a flow into the layer where the radius 
has increased. Moreover, it can be shown that this result applies 
to any particular Fourier component of the collapse and its associated 
velocity components, and to the nonsymmetric part of the collapse and 
motion if the collapse is a stretching collapse (c.f. Section 4.3). 

Far downstream, where 1 - S << 1, we see from (4.26) and (4.40) 
that P + X « X1//3, T. « X ' 1 ^ , and T q « x"4//3 as X It follows 

1 1/3 that the wall layer has thickness X for large X, and that where 
X = 0(6 it merges with the coreflow. In this region x is of 0(R), 
u - U (r) = 0(e), and p = 0(1). As R'^x 00 the flow tends to a limit 
form in which the radial and azimuthal velocities are zero to leading 
order, u - U (r) is 0(e) and is independent of x, and the 0(eR 

0 - 1 

perturbation of p + R x is linear in x. This limit flow is given in 
Section 4.5 below. We note the similarities between the analogous 
pipe and channel flows far downstream (See Section 2.1). 

Suppose that a =0(1) and la. I << 1 for all the a. . Then to o v 1 jn1 jn 
leading order the secondary flow is independent of 0, and is given by 
the axisymmetric part of the solution given above. If |a | << 1 and 
at least one of is order 0(1), then working to leading order, 
P = - X and the secondary motion is that for a bending collapse, as 
given above. 

For X << 1 the problem is similar to that for a channel with 
-3/2 

1 << y << e (see Section 2.1). To leading order, the pressure 
is - R "̂x, and the linear boundary layer problem formed is that of 
shear flow impinging on a fixed nonsymmetric disturbance of the wall. 
The solution of this problem is straightforward, and the behaviour 
of the flow can be deduced directly from the results for a channel 
(Section 2.1) and a nonsymmetric pipe with X = 0(1) given above. 

For A >> 1 the solution immediately downstream of the origin can 
be obtained by expanding S(yp) for 0 <_ - yp << 1 and applying the 
method used above for X = 0(1). If S is given by (1.6) then this 
procedure yields the integro-differential equation 



1 ~2 2 2 / 5 

4 ao q P 3T(2/3)Ai'(0) 
0 

(X-t)-1/3 ^-dt • |x 2 / 3 }, (4.41) 

3" 3 ~ 2 -1/4 where p = P, x = 6 ^ R X and = (ey ) . It is assumed here that 

3 
R >> 1. Equation (4.41) is similar to (3.45), the equation which 

determines the pressure immediately downstream of the origin for a 
channel with S given by (1.6), E = 1 and y » 1. It follows from the 
analysis of (3.45) in Section 3.4 that, if the collapse is a stretch-
ing collapse, then P will have a singularity at some X = X , where 

„ _i/3 - 0 
X is finite, and that P « (X - X) ' when 0 < X - X << 1. 
o o o 

-1/2 
Assume now that e >> y , the collapse is a stretching collapse 
4 

and 6^ R >> 1. The behaviour of the flow immediately downstream of 
the origin can be deduced from the results for a channel (Section 3.4) 
and for a nonsymmetric pipe with X = 0(1) given above. When 
Xq - X = 0(6^) the perturbation to the axial skin friction will be 
0(1), and the flow structure in the wall layer will not be linear in 
form. The flow in the boundary layer for X - X = 0(5 ) is given by 

u = d ^ 3 0(X, Z,0) + o ^ 4 7 3 ) , 

v = - 6 1 " 4 7 3 R " 1 (V(X,Z,.e) + q P P ' f ( 9 ) 0 + 

+ | P2f(0)W} + o(61"4/3R'1), 

w = 61"8/3r"1W(X,Z,0) + O(5 1" 8 / 3R" 1), 

(4.42) 

3 where p = P(X), x = <51"RXq + d^RX, and Z = - ̂  Pf(0) + 6 "'"(1 -

For Xq - X =0(6^) the core flow is given by 

-4/3 

u = UQ(r) + fi^^CX.r^) + O(6 1
8 / 3), 

, " 4 / 3R _ 1V 
1 1 

-4/3_-l. v = ' R V1 (X,r,0) + o(6. ^ R 

w = 61"4/,5R"1W1(X,r,9) + o (5 " ^ V " 1 ) . 

(4.43) 

With (4.42) the governing equations (4.1) reduce to 



V 3U + 1 *** = - P» + 3
2U o 

3X 3Z 30 3Z 

o 3 2 f f + V 
2-

3 1 
n + W 

2-3 IV 
3X3Z 3Z 303Z 

3U 3W 3U 3W 3 3iv 
3X 3Z 

+ 
3Z 3X -3 ' 

3Z 

30 — + 3V + 3W 
= 0. 

3X 3Z 36 

k (4.44) 

The flow in the core is controlled by 

a 0 i 
u

0 ~ r + V V1 • - p ' ' 3X 
W, 

U M + u • — = 0, 
0 3X ° 3X 

3 U 1 3 V 1 V 1 1 3 W 1 „ 
+ - + + — — = 0, 

3X 3r r r 30 

(4.45) 

4/3 
w h e r e 0. = ' Rft. 

The equations in (4.44) and (4.45) are in turn the momentum, vorticity, 
and continuity equations. The boundary conditions are that the velo-
city vanishes at the wall, and that (4.42) and (4.43) match at the 
outer edge of the wall layer. These require 

0 = V = W = 0 at Z = 0, 

0 ~ j (Z + j qP2f(e)) as Z + -
> (4.46) 

Also, (4.42) and (4.43) must be consistent with the incoming flow; 
that is, for - X >> 1 they must be consistent with the asymptotic 
flow structure that can be obtained for X - X << 1. It can be 

o 

shown, with an analysis similar to that found in Appendix 2, that 
this initial condition is satisfied. 

It is not known whether a solution exists for the boundary layer 
probl em defined by (4.45) and (4.46). Some asymptotic flow structures 
for P -»• - «) are considered in Appendix 4. It is shown that the match-
ing condition at the outer edge of the layer does not permit a 
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satisfactory solution to the similarity problem with P « (X - X) n, 
where n > 0 and Xq is finite, nor to the problem with P « Xn, where 
n > 0 but n / 1/6. If P = X^7^ as X «, then the boundary conditions 
are consistent with the governing equations, and a solution of the 
similarity problem may exist if f(0) - a is 0(1), but not if 
|f(0) - aQ| « 1. 

1/3 3 
Assume now that ey >> 1, 6 R » 1, and the collapse is a 

bending collapse. The solution of (4.41) is P = - X, and the pertur-bation to the axial shear is proportional to X 5/3 for X » 1. It 
follows that the flow in the boundary layer becomes nonlinear in form 
where X is 0(6. -3/5 ). In this region 

4/5. u = 61
4/5U(X,Y,0) + 0 ( 6 ^ ) , 

-4/5 _l 
v = - 6 R (V(X,Y,0) + qpp'f(0)U + 

+ iqp2f'(0)W} + O(6 1' 4 7 5R' 1), 

w = 61"8/5R"1W(X,Y,0) + O(6 1" 8 7 5R" 1), 

(4.47) 

in the wall layer, and 

u = UQ(r) + fi^U^X^e) + o(61
875), 

v = 6 1~ 4 7 5 (X,Y,0) + O(6 1' 4 7 5R" 1), 

w = 5 1" 4 7 5 (X,Y,0) + O(6 1
_ 4 / 5R" 1), 

(4.48) 

12/5 " 
in the core, where x = 6 RX, Y = - — qp f(0) +6. 

"2 
2 

-4/5 (1-r), and 

p = 6. 12/5 p(X). With appropriate changes of variable and P? set to 
zero, the governing equations in the wall layer and the core are 
given by (4.44) and (4.45) respectively. The boundary conditions of 
no slip at the wall and consistency between (4.47) and (4.48) at the 
edge of the layer require 

U = V = W = 0 a t Y = 0, 

j {Y + j q p2f(0)} as Y ^ 
>• (4.49) 



Also, (4.47) and (4.48) must be consistent with the incoming flow, 
that is as X 0+ they must match with the asymptotic flow structure 
that can be obtained for X->°°. If p = - X for X << 1, then it can 
be shown (c.f. Appendix 2) that this upstream matching will be satis-
fied. 

It is not known whether a solution exists for the coupled problem 
defined by (4.47) - (4.49). However, the problem does not appear to 
be well posed, in the sense that the boundary conditions (4.49) are 
pressure dependent but the pressure gradient does not appear in the 
leading order streamwise momentum equations generated by (4.47) and 
(4.48). Also, it follows from the analysis of Appendix 4 that there is 
no satisfactory asymptotic flow structure with p = X as X which 
suggests that if a steady solution exists then, unlike all other fine 
bending collapses considered in this study, the pressure must deviate 
from its Poiseuille form in a region in which |l - r | << 1. 

Suppose now that the collapse is a stretching collapse, and 

y~ 2 / 3 « e « y" 1 / 2 « 1. (4.50) 

The perturbation to the axial shear stress is still small where p is 
0(y , and the flow in the wall layer retains its linear form until 
the boundary layer merges with the core flow far downstream, where the 
flow is given by an 0(e) perturbation to the Poiseuille flow on an 
0(R) streamwise length scale. A full solution can be obtained for the 
problem satisfying (4.50). The method of solution, and the basic 
development of the flow, is similar to that outlined in Section 3.4 
for the analogous channel flow. 

1 / 2 

If the collapse is a stretching collapse and cy ' - 0(1), then 
the flow in the boundary layer becomes non-linear in form simultaneous-
ly with p becoming 0(y . A solution has not been found for the non-
linear problem which governs the flow in the wall layer when p is 
0(y . We note that numerical techniques are necessary at this stage. 

Consider a bending collapse with 

y" 2 / 3 « e « y" 1 / 3 « 1. (4.51) 

In this case the flow in the wall layer retains a linear structure 



until far downstream where the boundary layer merges with the 
mainstream. A complete solution can be obtained for this problem. 
The details will be omitted, but an outline of the solution will be 
given. Immediately downstream of the origin (4.41) is valid and the 
pressure is given by P = - X. Thus if p is 0(y , x = yR 
is 0(1). In this region, in the wall layer 

1 -l/3~ ~ ~ . 1 -2/3-2 , -2/3, r. c o, u = j ]i z + eu^(x,0,z) - j P 2 + o(y ), (4.52) 

where z = y1 3(1 - r), and in the core u - UQ(r) = OCy - 1^^). The 
boundary conditions of no slip at the wall and matching to the core 
flow require 

u 1 = - j q S(p) at z = 0, 

0 as z > 
(4.53) 

where p = yp. The solution for (4.52) subject to (4.53) can be 
found using the techniques given above. The linear boundary layer 
equations imply that zx is 0(1) for x >> 1. From (4.53), u is 

-2/3"2 
0(1) for x >> 1, and it follows that eu1 and y z are of the same 

3/2 
order if x is 0(e y). In this region the wall layer has thickness 

1/2 
0(e ) and axial velocity component is given by 
u = | e 1 / 2 y + eU1(x,y,6) + o(e), (4.54) 

-1/2 " -3/2 -1 where y = e (1 - r) and x = e R x. In the core u - U (r) = 
3/2 ~ 0 

= 0(e ). The boundary conditions for. U are 

= - j q f(0) at y = 0, 

U^ Ai - ̂  y 2 as y 
(4 ..55) 

As the flow proceeds downstream the boundary layer continues to ex-
"-1/3 ~ -3/2 pand, with yx = 0(1), until x is 0(e ), where it merges with 

the mainstream. The final stage in the development of the flow 
takes the form of an 0(e) perturbation to the Poiseuille flow on an 0 
streamwise length scale. 
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For a pipe with q << 1 the main features of the collapse and 
the flow can be deduced directly from the above and the results of 
Section 3.4. 

In the present section we have studied a model of a pipe which 
collapses nonsymmetrically and has a fast pressure response. A 
summary of our results will now be given. Within the present assump-
tions no evidence was found for any upstream influence, and the flow 
retained its incoming Poiseuille form until the origin, where the 
wall first varies from a circular cross-section. Immediately down-
stream of the origin a boundary layer forms adjacent to the wall. 
As for a channel (see Sections 2.1 and 3.4), it is the flow in the 
wall layer that determines the pressure, and hence the position of 
the walls, while the core flow responds passively to the changes in 
the wall layer. The flow in the wall layer has a linear structure 
initially, but may become nonlinear at some point further downstream. 
Whether or not this occurs depends on the relative orders of the 
parameters y and e. Solutions have been obtained for the linear 
boundary layer problems, but not for the nonlinear problems, which, 
we suggest, may well be worthy of further study. The radial velocity 
is of the same order in the wall layer and the core, but the azimuthal 
velocity is much larger in the wall layer than the core. Thus, if a 
boundary layer exists, then the flow has a jetlike form close to the 
wall. Similar jetlike flow structures can occur in high Reynolds 
number flows in pipes with fixed nonsymmetric walls, as can a passive 
core flow (Smith, 1976c, d, e). In regions where the flow in the 
wall layer takes a linear form the motion can be separated into 
symmetric and nonsymmetric parts, and it is the symmetric part of the 
motion that determines the pressure, and hence controls the develop-
ment of the flow and the collapse, while the nonsymmetric part of the 
motion responds passively. The type of collapse has a major influence. 
If the collapse is a stretching collapse, then as far as could be 
determined the changes in the pressure and the flow are similar to 
those for a channel with a fast pressure response (see Sections 2.1 
and 3.4). With a bending collapse, as far as could be determined, the 
pressure is given by p = -R ^x throughout the collapse, and the 
collapse is in all cases more gradual than that for a stretching 
collapse with the same parameter values. It is stressed that care 
must be taken in applying any of the above results, as their extension 



to pipes with more realistic pressure-area-shape relationships (see 
e.g. Moreno et al. 1970) is by no means certain. 

Finally, we note that the analysis for a symmetric collapse 
with a fast pressure response can be obtained from the above by 
setting f(9) equal to one. 

4.5 Nonsymmetric pipe flows with a slow pressure response 

Suppose that the pressure response is slow (y >> 1). Taking 
x = y~*RX, p = y~*P(X), v = yR~*V, w = yR the streamwise momen-
tum equation reduces to 

3r r 3 r r 2 39 

The boundary conditions are 

u = 0 at r = r (P), 
w 

2 it rtw 
de u(r, 9 ,X)rdr = , 

0 J o 8 

u U (r) and P ->• - x as X + -
o 

(4.57) 

from no slip at the wall, conservation of mass, and matching to the 
incoming Poiseuille flow in turn. Also it is required that the 
solution be regular throughout the pipe. 

The series solution of (4.56) that is bounded at r = 0 is 

u = i r2P' + A (X) + 4 o 

f, (A, (X) cos n9 + A0 (X) sin n0> r11, (4.58) n=l In 2n 

where A , A, and A^ are functions to be determined. It is clear o In 2n 
that, in general, no further analytic progress can be made and that 
numerical techniques are now necessary. However, (4.58) does imply 
that u = UQ(r), where r = 1, and hence that there is no upstream 
influence, as expected. 

If e is small the flow takes the form of a viscous 0(c) pertur-
bation to the Poiseuille flow, for which a solution can be found. 



The radial velocities are both of 0(eyR ), and the axial velocity 
and the pressure are given by 

u = UQ(r) + eU^(r,8,X) + 0 ( 0 , 

P = - X + eP1(X) + 0(e) 
(4.59) 

The governing equation for (U^P^) is (4.56). From (4.57), the 
boundary conditions are 

Ux = - j S(-X)f(e) at r = 1, 

2tt [1 
de 

o
 Jo 

U^ (r,9,X) r dr = 0, 

U^ = 0 as X -

> (4.60) 

The solution of this problem is 

Ul = \ S(-X){ ao(l - 2r2) -

n X, (a. cos n0 + a^ sin n0)r }, n=l In 2n 

P = - 4 a 
1 o 

S(-t) dt, 

(4.61) 

where a , a... and a0 are the coefficients of (4.23), the Fourier o in 2tl 
expansion of f(0). As expected, aQ = 0 implies that P^ = 0. Far 
downstream where 1 - S << 1, U^ is independent of X to leading order, 
and P. - 4 a X as X -»- ». In the limit solution referred to in 1 ° 2/3 Section 4.4 above, for the problem with ey = 0(1) and e << 1. 
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Section 5. Comparison with experimental results 

Perhaps the most notable feature of the results presented above 
is the consistent and unexplained failure to find a complete range of 
solutions for the tubes studied. In particular, we could not find a 

1/2 
complete solution for any tube with qey >> 1 and tube law given 
by (1.6) with (1.4) or (4.3). 

In Section 1.3 we discussed the phenomenon of "self-excited 
oscillations" in collapsible tubes, and the possibility of these 
oscillations being initiated when the mean fluid velocity matches 
the phase velocity. With respect to our formulation, it was proposed 
by Brower and Scholten (1975) that 

(i) for any given tube there is a critical value of y, y c say, 
such that the fluid-tube system will spontaneously destabilize for 
u i v 

(ii) y c is the minimum value of y for which the mean fluid 
velocity can match the phase velocity at any stage of the collapse. 
Here the mean is taken over a cross-section. 

We wish now to examine our results with respect to (i) and (ii) 
above. First, we note that the quasi-steady analysis of Oates (1975) 
suggests that a necessary condition for the mechanical stability of a 
system with an inviscid fluid with constant velocity and pressure is 
that the fluid velocity u be less than the phase velocity c, where c 
is given by (1.8). In Appendix 6 we find that for this system a 
small disturbance will propagate both upstream and downstream if u < c, 
but downstream only if u > c. Thus the ability of the system to dis-
perse the energy of a small disturbance will be considerably restricted 
if u > c, a factor which could possibly be significant in destabilizing 
the system. Of course, the applicability of these results to more 
realistic fluid-tube systems is by no means certain. 

It is shown in Appendix 6 that a one-dimensional inviscid flow 
can exist in a collapsing tube with tube law A = A(p) only if A has 
the form 

A(p) = (k - 2p/Q2)"1/2, (5.1) 



0 where A is the cross-sectional area of the tube, k = 1/A (p = 0) and 
Q = Au is the constant mass flow rate. Further, for such a flow the 
fluid velocity must match the phase velocity c given by (1.8). Con-
sider now the channel studied in Section 3.3 with e = 1 and S(yp) 
given by (1.6) with q = 1/2. The asymptotic solution found for this 
problem for - yp >> 1 is valid for y < 18 only. No solution was 
found for - yp of 0(1) or greater with y >_ 18. As y 18- and p -> - « 
the leading order term of the asymptotic solution takes the form of 
an inviscid uniform core flow with the viscous effects restricted to 
thin layers adjacent to the walls. To leading order (5.1) and the tube 
law (3.3) will match for - p » 1 if y = 18, q = 1/2 and e = 1. With 
the results from Appendix 6 this implies that the inviscid core 
velocity obtained for 0 < 18 - y << 1 must be equal to the phase 
velocity c. It is easily shown from (1.8), (3.18) and (3.26) that 
this is true. Moreover, it can be shown that the mean fluid velocity 
u = Q/2yw will be less than c throughout the collapse if and only if 
y < 18. Thus our results for this problem are consistent with (i) and 
(ii) in that a complete steady solution was found for y < 18 but 
not for y >_ 18, and that y = 18 is the minimum value of y for which u 
can equal c at any stage of the collapse, albeit in the limit as p -»• - °° 
It is stressed that we have not proved that a complete steady solution 
does not exist for y >_ 18, nor that (i) and (ii) are valid. However, 
the above does suggest that (i) and (ii) are valid for this problem, 
and that the addition of a time dependence and/or a stability analysis 
of the solution may be a profitable extension to the present theory. 

In general, the results given in this study for channels obeying 
(1.4) and (1.6) are consistent with (i) in the sense that for any 
particular channel, i.e. values of q and e, there is a y c such that 
for y >_ y c the analytic approach does not provide a complete solution 
and the numerical process fails to converge at some stage of the 
collapse. 

As noted in Section 1.3, we do not have an expression for the 
phase velocity when the flow is viscous and the phase and mean fluid 
velocities are of the same order. This prevents any general compari-
son between proposal (ii) and our results. However, Brower and 
Scholten (1975) suggest that the inviscid phase velocity given by (1.8) 
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can be used to predict the onset of instabilities in the system, 
that is, that y is the minimum value of y for which u = c. For a c 
channel with e = 1 and q < 1/2 we find that u < c throughout the 
collapse if and only if y < yc where 

pc = - q) 1"^! - 2q)1-1/2. (5.2) 
u q 

Values of y^ and y c (an approximate upper limit on y for the conver-
gence of the numerical process applied to equations 3.1 - 3.3 with 

A 
e = 1) are given in table 3.1. For small q we see that y - y is 

-I _ 2 c c 
large, and that while y « q it appears that y q = 0(1). Clearly, 

c c 
for this problem u/c < 1 is not a necessary condition for the exis-
tence of a steady solution. Although the existence of a steady 
solution does not imply that the system is stable for y^ < y < y^, 
this result suggests that the condition of the mean fluid velocity 
u matching the inviscid phase velocity c may not accurately predict 
the onset of oscillations in a fluid-tube system if the flow is viscous. 

For a channel with e = 1 and q > 1/2, u/c will eventually 
exceed one regardless of the value of y. In fact, u/c » as p > - co. 
If c simply provides an estimate of the phase velocity accurate to 
order of magnitude, then statements (i) and (ii) would suggest that a 
complete steady solution would not exist for any channel with e = 1 
and q > 1/2. Our results are consistent with this, i.e. a complete 
solution has not been found for y >> 1, y = 0(1) or y << 1 (Sections 
3.4, 3.3 and 3.5 respectively) for this problem. 

The analytical results for axisymmetric pipe-fluid systems 
(Section 4.2) are consistent with (i) and (ii) in a manner similar 
to channel-fluid systems as discussed above. In particular, with 

-1/2 
- yp >> 1 and A (- yp) to leading order, the asymptotic flow 
structure suggested by mass conservation can have a valid solution 
only if y < 128, and for 0 < 128 - y << 1 this structure must 
have an essentially inviscid uniform core velocity for the fluid, 
with the major viscous effects restricted to thin layers. It is 
easily shown that the tube law for this problem is consistent with 
(5.1) if y = 128 and - yp >> 1, and that the inviscid core velocity 
for 0 < 128 - y << 1 will match with the inviscid phase velocity in 
the limit as p + -
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For nonsymmetric pipe-fluid systems numerical work is 
necessary before any general comparison with (i) and (ii) can be 

1/2 

made. However, we note that if qey >> 1 and the collapse is a 
stretching collapse with 0 < |f(6) - aQl <<: then the leading 
order problem is simply the- analogous axisymmetric problem, for which 
no satisfactory solution has been found (Section 4.4). 

In conclusion, we have found a general consistency between our 
results and statement (i) above, and also that the ratio of mean fluid 
velocity to phase velocity is an important parameter for at least 
some of our tube-fluid systems (c.f. one-dimensional flows, see 
Section 1.3). The larger question of the validity of (i) and (ii) 
requires an expression for the phase velocity for viscous flows with • 
the phase and fluid velocities of the same order (which we do not 
have), the inclusion of time dependence in the analysis, and/or 
a rigorous analysis of the stability of the system under considera-
tion, all of which are beyond the scope of the present study. 
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Appendix 1 

Consider a channel with tube law 

2 2 -1/4 
yw = (1 + y p^) p < 0, (Al.l) 

and the incoming flow such that the pressure response is moderate. 
This fluid-channel system was studied in Section 3.3, where it was 
shown that p - 00 and y 0 as R ^x = X X for some finite X . 

r ' w o o 
A self-similar flow structure was investigated for 0 < X - X << 1. 
A solution for this structure was found for y < 18 only. As 
y -»- 18- this solution approaches a limit form (equations 3.18, 3.26 
and 3.27), which has an essentially inviscid uniform core flow with 
the major viscous effects restricted to thin layers adjacent to the 
walls. No solution, either analytical or numerical, was found for 
- yp >> 1 and y >_ 18. Here we will try to construct an alternative 
essentially inviscid asymptotic flow structure. 

If the core flow is essentially inviscid and uniform with 
leading order velocity u = u(X), then the balance between the in-
ertial force and the pressure gradient in the fluid implies that 

1/2 
u 'v (-2p) as p - To leading order the mass flow is given by 

1/2 2uy , and thus by 2(2/y) as p - 00. Conservation of mass requires w 
that the mass flow is 2/3, and hence that y = 18 to leading order. 
Thus, the asymptotic flow structures we consider below cannot exist 
unless |18 - y| << 1. Note that y = 18 is consistent with the results 
of Appendix 6, in particular with (A6.5). 

Assume that 0 < X << 1, where X = Xq - X. We expand the pressure 
in the form 

P = - P Q X ~ 2 n - P l X + o(X"£), (A1.2) 

where p > 0 and p, are constants, n > 0 and Z < 2n. If it is assumed r o
 rl „ 

that the wall layers have thickness « X , where m > n, then the neces-
sary balance of forces in the viscous layers requires that 

n = 2m - 1, (A1.3) 

which implies that 
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j < m < 1 (Al .4) 

since m > n > 0. Let 

y = yXn - zXm, (A1.5) 

- 1 / 2 
where y = (ypQ) • Substitution of (A1.2) into (Al.l) produces 

Jn 1 P1 ;-£+2n 1 r r 2 :5n A 
yw = y X " 2 Y p ~ ~ 4 Y ^ X + 

which with (A1.3) - (A1.5) implies that 

| £ m < 1 (Al .6) 

Z = 3n - m, (Al. 7) 

and that the position of the upper wall is given by z = z^, where 

1 P 1 
z = =r y — (Al .8) w 2 p v J 

if 5/9 < m < 1, and 

z
w = z ^ r + ^ ( l , p o r 2 1 ( A 1 - 9 ) 

r o 

if m = 5/9. 

At the upper wall, where z - z is 0(1), the stream function ip 
w 

can be expanded as 

ip = | - Xm"n (2po)1/2 ctF (y) + o (Xm_n), (Al. 10) 

where y = a 4(z - z ) and a = (m - n)~ 1 / 2 (2po)-1^4. The controlling 
equation for F(y) is the Falkner-Skan equation 

F' ' ' - FF" + 3(1 - F'2) = 0, (Al .11) 

where 3 = n/(m-n) > 0. The boundary conditions are 



F(0) = F'(0) = 0, 

F'O) = 1. 
(A1.12) 

From Jones and Watson (1963), a solution for F(Y) exists for 
all 6 >0 and there is a unique solution such that 

0 < F' < 1 (A1.13) 

for 0 < Y < It seems desirable on physical grounds to require 
that (A1.13) be satisfied. The condition F'(«>) = 1 implies that 

F(Y) = Y + d + q(Y) as Y (A1.14) 

where d is a constant and |q(Y)| << Y. Hence, when Y is large (Al.ll) 
approximates to 

q'' - (Y + d)q' - 2Bq = 0. 

From Jones and Watson (1963) 

q'(Y) ^ A(Y + d) - 2 6 as Y ->• 

where A is a constant which must be non-zero if the boundary condition 
at infinity is to be satisfied smoothly. Hence 

q' (Y) 'v AY"2B as Y 

or more precisely as Y/d which suggests that for large Y we con-
sider a power series for F(Y) such that 

1 - F'(Y) ^ AY~2B as Y ^ oo, (A1.15) 

where A is a non-zero constant. 

We will now investigate whether the core and boundary layer flows 
can be matched successfully for any value of m. First, let us assume 
that 
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- < m < 1. 

This implies that 1/2 < 3 < «. It follows from (A1.15) that 

F(Y) ^ Y + D as Y -> 

where 

D = [1 - F'(Y)] dY 
0 

gives the boundary layer thickness. Hence 

i> ̂  j - X m" n(2p o) 1 / 2 {z - z w + a D} (A1.16) 

as z -> Let 

il> = (2p0)1/2 {t + X ^ C t ) + o (Xm_n) } (A1.17) 

in the core, where t = yX~n. It is easily shown that 

1 P 1 

r o 

where k is a constant to be determined. From (A1.5) 

t = y - zXm~n, (A1.18) 

which leads to k = -aD if (A1.16) and (A1.17) are to be consistent 
at the edge of the upper wall layer. However, if (A1.13) is satisfied 
then the solution for F(Y) is unique, and it follows that the matching 
of (A1.17) to the flow in the lower viscous layer requires k = aD. 
Also, (A1.13) implies D > 0, and hence there is no solution of the 
problem with 3/4 < m < 1 such that (A1.13) is satisfied in both the 
upper and the lower wall layers-. 

Assume now that 

m = 3/5, 



and hence that 6= 1/2. From (Al.15) 

F(Y) y + A In Y as Y <=°, (Al. 19) 

which with (Al.10) gives 

ip * 4 - X 2 / 5 (2p ) 1 / 2 {z - z + aA In z} (A1.20) 3 ro w 7 

as z Substitution of z from (Al .18) in (A1.20) suggests that in 
the core 

ip = (2p0)1/2 {t + X2/5(ln XDf^t) + 

X 2 / 5 f2(t) + o(X2/5)}, 

the solution for which is found to be 

f^(t) = k, ^ ^ arbitrary, 

where k is a constant. It follows that for m = 3/5 there is no 
solution that has A non-zero and satisfies (A1.13) in both the upper * 
and lower wall layers (c.f. 3/5 < m < 1 above). 

Suppose now that 

5/9 < m < 3/5, 

that is, 1/4 < 8 < 1/2. Expanding F(Y) in a power series for 
large Y yields 

F(Y) 'v Y + c Y 1' 2 3 + dl + c 2Y 1 - 4 3 + d 2Y" 4 3 as Y (A1.21) 

where c^ and d^ are independent constants, 

I 2 (1 - 2 8 ) (1 + 2 8 ) 
2 " 2 1 1 - 4 8 

(Al.22) 
and d 2 = (1 - 28) d . 

From (Al.10) and (A1.21) 



1 3m-nro ,1/2 , 2$ 1-23 , ^ 43 1-43 \p ^ — - X (2p ) ' {z - z + c,a z + ad, + c.a z D ro w 1 1 2 

+ a 2 6 [ad2 - (1 - 23) c z ] z~23 } (A1.23) 

as z «. Substitution of z from (A1.18) in (A1.23) suggests that 

ip = (2p0)1/2 {t + X 2 n fQ(t) + X ^ f ^ t ) + 

+ X 4 n f2(t) + X m + n f3(t) + o(Xm+n)} (Al.24) 

in the core. From the governing equations it can be shown that f (t) 
is arbitrary, 

f l ( t ) = 7 (pl/po)l: + k' (Al. 25) 

where k is a constant, 

f » = f f »' - i f '2, (Al. 26) 2 o o 2 o ' y 

and with (A1.25) that 

V - I < P i / P o H t f o " - £ o ' } + k f o " - <A1-27> 

If the solution applies in both the upper and lower wall layers, 
then k = d ^ = 0 (c.f. 3 / 5 < m < l above) and hence d 2 = 0. Matching 
(A1.23) and (A1.24) requires that 

fQ(t) * - C;L a2B(y- t) 1" 2 3 (Al. 28) 

as t y-. Equations (A1.22) and (A1.26) - (A1.28) imply that 

f 2 ( t3 ^ " c2a z X 

f3(t) ^ c1a2B(l - 23)zw z~2BX~2n, 

as t y-. Therefore, if d^ = 0 and f (t) is any function satisfying 



(A1.28) then to the order investigated the core and upper wall 
layer flows are consistent. Similarly, it can be shown that if 

f o ( t ) * c 1 a 2 3 ( y + t ) 1 " 2 3 

as t + y ->0+, then the core and lower wall layer flows are consistent, 

Thus, if the unique solution for F(Y) satisfying (A1.12) and 
(A1.13) has d^ = 0 for any 6 in the range 1/4 < 3 < 1/2, then a 
solution to the problem may exist for that value of 3. Unfortunate-
ly, it is not known if d^ = 0 for any such 3. 

Finally, let us assume that 

m = 5/9, 

which gives 3 = 1/4. The power series for large Y has the form 

F(Y) 'v Y + c 1Y 1 / 2 - j c 1
2 In Y as Y «,, 

where c^ = 2A. Hence 

1 24/9 ,1/2 , 1/2 1/2 il> * j - X (2po) {z - z w + cxa z -

3 2 3 2 - r c. a In z + r c. a In a } (A1.29) 
o 1 o 1 

as z If in the core 

ip = (2po)1/2 (t + X 2 / 9 f (t) + X4/9(ln X)f (t) + 

+ X 4 / 9 f (t) + o(X4/9) , (A1.30) 

~ - l / 9 

where t = yX , then f (t) is arbitrary, 

fx(t) = k where k is a constant, and 
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1 P 1 1 2 f *(t) = t — + f f " " T f 
2 2 p o o 2 o 

Consistency between (A1.29) and (A1.30) requires that 

* - 1 / 2 f . 1 / 2 • fQ(t) ^ c^a (y - t) 

as t + «, which implies that 

f 2 ( t ) ^ r ^ f v - ^ + k i 

as t -»• where k1 is a constant. Thus, the matching of the core 
3 2 and upper wall layer flows requires k = - — c a In a and 

1 2 1 8 1 
k = - a c^ . However, if the flow in the lower wall layer is 
identical to that in the upper wall, then the matching to the core 

1 2 
flow will require k = a c^ . It follows that there is no solution 
to the problem with m = 5/9 such that (A1.13) is satisfied in both 
the wall layers. 

In summary, it appears that no satisfactory flow structure of 
the type considered here can exist unless 5/9 < m < 3/5. Further, 
it is not known whether a solution exists for the problem even with 
5/9 < m < 3/5. 



Appendix 2 

The non-linear boundary layer problem posed by 

3Y 
r (a2-1) 

3U 3V _ 
8X + 3Y 

and the boundary conditions 

u = v = 0 at Y = 0, 

U a, Y + j q P2 as Y 
(A2.2) 

arose in the study of a channel with a complete collapse and a 
fast pressure response (equations (3.57) and (3.58), Section 3.4). 
We will now consider the behaviour of the flow far upstream. In 
particular, we wish to show that the solution for - X << 1 is con-
sistent with the incoming flow; that is, with (3.53). If it is 
assumed that for - X >> 1 P can be expanded as 

P = - Pq(- X)n - Px (- X)m + ..., (A2.3) 

where P , P^ etc. are constants, then the necessary balance of 
terms in (A2.1) and (A2.2) implies that n = - 1/3, m = - 4/3 and 
that the stream function ip will have the form 

4 = I ( - x ) 2 / Y + ( - X ) - 1 / 3 F o ( n ) + 

+ C-XD"
4 / 3

F 1CnD + ... (A2.4) 

-1/3 
where n = Y(-X) ' . Substitution of (A2.3) and (A2.4) into (A2.1) 
and (A2.2) yields the governing equations 

F " » - I n 2 F " - y n F ' + i F = - i- P , o 3 o 3 o ^ o 3 o (A2.5a) 

1 2 4 4 
F '•' _ — n f '' - — nF ' + — F = 1 3 1 1 3 n 1 3 1 

4 2 2 1 
- 5- P. + T (F ') - ± F F a 1 3 o 3 o o (A2.5b) 



and the boundary conditions 

Fo(0) = Fo'(0) = 0, 
>• (A2.6a) 

00 

F 1 C O ) = F ^ C O ) = 0 

> (A2.6b) 
F, 1 ->• qP P, as ii ̂  co. 

o 1 

If we write 

F 0(n) = f 0Cn) + I q P o
2 n , (A2.7) 

then f (n) must also satisfy (A2.5a). The boundary conditions (A2.6a) 
become 

f («) = 0. 
o v J J 

This problem for f (n) is identical to that for the leading order 
term of (3.53); that is, with the problem posed by (3.55) and 
(3.56). Therefore, the upstream matching will be satisfied by (A2.3) 
and (A2.4). 

Unfortunately, we could not find a solution for F^ (n) . However, 
we note that the boundary conditions (A2.6a) and (A2.6b) are consistent 
with the governing equation (A2.5b), which indicates that a solution 
for F. (n) may exist. 

f (0) = 0 
o J 

f o'(0) - - t q P, o 
2 

V (A2.8) 



Appendix 3 

Consider a channel with the tube law 

y w = 1 
(1 -

f x 

qR P(t) 
J 0 

dt) 

p >. 0, 

p < 0 
(A3.1) 

where 1 << y << R and p = 0 at x = 0. The channel described by 
(A3.1) is one for which, at a given point where p < 0, it is the 
total force from the pressure on the channel walls between the 
origin and that point, rather than the local pressure, which deter-
mines the position of the walls. The inclusion of the Reynolds 
number in (A3.1) ensures that the initial response of the flow and 
the channel is similar to that found in Section 3.4 when (3.3) with 
(3.39) was used, i.e. in both cases linear viscous wall layers, 

-3/2 
with thickness 0(y R), form immediately downstream of the origin. 
However, with (A3.1) there is not a singularity in the pressure in 
this initial stage, and the change to a nonlinear boundary layer 
structure is smooth and does not entail a change of scale for x or 
1 - y. Again, the restriction on y ensures that the pressure is 
independent of y. 

Clearly, the transform technique given in Section 2.1 can be 
applied here when the boundary layer has a linear flow structure. 
We omit the details and proceed directly to the nonlinear boundary 
layer problem that arises at the upper wall. The stream function 
and pressure can be written as 

IP = | - 6 2 T(X,Y), 

P = 6 PCX), 

(A3.2) 

3 1/2 where x = 6 RX, y = 1 - 6Y, 5 = y , and ip = 1/3 at the upper wall 
To leading order the tube law becomes 

'X 
Y = -w P(t) dt. (A3.3) 

0 

If the Prandtl transformation Y = z + Y^ is applied then (U,V) = 



3 

= (3¥/3z,3T/3X) and P must satisfy the nonlinear boundary layer 
equations and the boundary conditions 

U = V = 0 a t z = 0 , 

P = 0 and U = z at X = 0, 

-X 
u z - P dt as z °° for X > 0. 

0 

b (A3.4) 

This nonlinear boundary layer problem is essentially the prob-
lem for the lower deck of a triple deck structure (see Stewartson 
and Williams 1969, 1973; Stewartson 1970). The solution applicable 
here is the one given by Stewartson (1970) which has the pressure 
falling downstream and the flow remaining attached to the wall. 
This solution has a singularity at a finite value of X, Xq say, but 
is felt to be stable about a basic unique form. If X - X << 1 

- 2 - 1 0 

then P « (XQ - X) , U = (X - X) and the boundary layer thickness 
is proportional to Xq - X. An interesting point is that this solution 
was obtained by Stewartson (1970) for the boundary layer flow near 
a convex corner where there is an inviscid external mainstream, 
whereas here it applies to a boundary layer flow round a concave 
corner where the mainstream is viscous and contained. When X - X = 

o 

= 0(6) the pressure, velocity in the boundary layer, and 1 - y are 
all of 0(1). Thus the problem must be reformulated in the region of 

4 the singularity on an 0(5 R) streamwise length scale. 

When the tube law is given by (A3.3) the core flow takes the 
familiar form of an inviscid rotational perturbation to the Poiseuille 
flow which responds passively to changes in the boundary layer (see, 
for example, Sections 2.1 and 3.4). If in the core 

u = UQ(y) + 6 2 U^ (X,y) + o(62), 

then U. « P. It follows that u - U (y) becomes 0(1) when X - X = 0(6); 
1 o O v ^ J 

that is, when the walls have moved a finite distance into the channel. 
Thus the proposed boundary layer and core flows are consistent with 
the behaviour of the tube law (A3.1), unlike those proposed for a 
channel obeying (3.3) (see Section 3.4). 



We will now consider the flow in the region of the singularity. 
In this region the core flow is basically inviscid, with the major 
viscous effects occurring adjacent to the channel walls in boundary 
layers of thickness 0(62). If x = S4RX + 63RXq and v = 5~4R-1V(X,y) 
then (u,V,p(X)) must satisfy the continuity equation and inviscid 
streamwise momentum equation. Following Cole and Aroesty (1968), 
the solution to the core problem downstream of a given point X = X* 
is 

y = ^ 2 - - 1 / 2 
{u* (t) + 2(p* - p(X))} dt, (A3.5) 

0 

where u*(t) = u(X*,t), p* = p(X*), and the stream-function is taken 
to be zero at y = 0. The tube law (A3.1) becomes 

- 1 r X 
y = (1 - q J w v n p(t) dt)"q, (A3.6) 

where strictly the integration is from x = 0 to X. As y = y^ when 
\p = 1/3 the pressure downstream of X* can theoretically be found 
from (A3.5) and (A3.6). Thus, we see that once the walls have moved 
a finite distance into the channel it is the core flow, not the 
boundary layer flow, that determines the pressure to leading order. 
Further, in this region the boundary layer flow must adjust to match 
with the core flow, instead of the core flow responding to changes 
in the boundary layer, as occurs upstream of the singularity. 

Equations (A3.5) and (A3.6) imply that if q < 1/2 then to 
leading order p « Xn as X <=°, where n = 2q/(l-2q). If q > 1/2 then 
p cc (Xq - X)n as X -> X where Xq is finite. If q = 1/2 then 
p - 00 exponentially in X. Thus, the value of q determines whether 
there is a singularity in the solution as y 0, with a collapse to 
a finite value of X, or whether the collapse extends indefinitely 
far upstream. In this respect the flow structure is similar to that 
given in Section 3.3 for a channel with a moderate pressure response 
and (3.3) as tube law. A formal asymptotic flow structure can now 
be constructed for - p >> 1. This would consist of an essentially 

2 
inviscid uniform mainstream, with boundary layers of thickness 0(5 ) 
adjacent to the walls (c.f. Appendix 1). 
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Appendix 4 

Consider the three-dimensional boundary layer problem formed 
by the equations 

„ y 3U + „ 3U = . p - m • 
3X 3Y 38 1 J , v 2 

<3 Y 

3X3Y 3Y' 303Y 

3U_ 3W 3U 3W 
3X 3Y + 3Y 3X 

3U 3V 3W 
3X + 3Y + 30 

33W 
3 

3Y 

(A4.1) 

and the boundary conditions 

U = V = W = 0 at Y = 0, 

U 4 {Y 4 qP2f(0)} as Y 

U + y Y, P-+0 as X + -

> (A4.2) 

The problem defined by (A4.1) and (A4.2) arose in the study of a 
nonsymmetric pipe with a fast pressure response (Section 4.4). 
Here we investigate possible asymptotic flow structures for - P >> 1. 
Suppose that P a Xn as X + where n > 0. The necessary balance of 
terms in the governing equations (A4.1) requires n >_ 1/6, and suggests 
the self-similar flow structure 

U = X 2 n F(n,0) + o(X2n), 

v = x~^"G(n,0) + o ( x C 2 n _ i : ) / 2 ) , 

IV = x 2 n _ 1 H(n,0) + 0 ( x 2 n _ 1 ) , 

(A4.3) 

P = P QX n + o(Xn), 

where n = YX^ 2 n _ 1^ 2. Substituting (A4.3) into (A4.1) produces the 



governing equations 

1 C2 2n-l „ c 3F _ 3F u 3F 32F 2 n F + _ n F __ + G __ + H _ = _ , 
3ri 

c 3 r r o 2n-l 3H . _ 32H u 32H F ^ [ (2n-l)H + _ n ^ ] + G + H — • 
3n 
3 

...... 3F 3 H - 2nF ^ + (2n-l) H ^ = — , 

0 _ 2n-l 3F 3G 3H 2nF + — = — n ^ — = 0. 
2 3r| 3ri 38 

(A4.4) 

These equations are in turn the momentum, vorticity, and continuity 
equations. If n > 1/6 the boundary conditions (A4.5) become 

F = G = H = 0 a t n = 0 

F -> j q P q
2 f (9) as n « 

(A4.5) 

With (A4.5), the momentum and continuity equations of (A4.4) imply 
that 

n n r. 2 f (0) . 
H " 2 q P0 f^TeJ a s n 08• ( A - 6 ) 

Clearly, there must be at least one value of 0 such that f'(0) = 0 
but f(8) / 0. Thus, (A4.6) implies that a solution of (A4.4) and 
(A4.5) cannot be bounded for all 9 as n -><*». 

In a manner similar to the above, it can be shown that there is 
no bounded solution for the asymptotic structure implied by 
p « (X - X) n, where n > 0, X is finite, and X < X . r v o 0 o 

Suppose now that n = 1/6. The boundary conditions (A4.2) 
become 

F = G = H = 0 a t n = 0 , 

1 1 2 F 'v j (p + j q PQ f(0) > as n + 00. 
(A4.7) 

Consider the expansions 



F = \ n + J q p
0

2 + n _ 1 

G = nG^e) + Go(e) + n - l 

H = 

G _ 1 ( 6 ) + ..., r (A4.8) 

- 1 
H o ( 0 ) + n H_ 1(0) + 

where n >> 1. Substitution of (A4.8) into (A4.4) yields 

Giw = - hq p 0 2 f ( 6 ) > 

G o ( 0 ^ = ^ { q P o 2 f ( 9 ) } 2 ' 

H (0) = 0 . 
o 

(A4.9) 

Thus if n = 1/6, the matching condition at the edge of the layer 
is consistent with the governing equations, and does not imply an 
infinite azimuthal velocity. Note that this does not imply that a 
satisfactory solution exists for the problem with n = 1/6, merely 
that one might exist. Although the analogous problem for a channel 
is similar in this respect, it has been shown that it has no satis-
factory solution (see Section 3.4). If 

|f(0) - a | « 1 for all 0 

and a is 0(1), then to leading order the problem posed by 
(A4.4) and (A4.5) or (A4.7) reduces to a two-dimensional 
problem. It follows from the results of Section 3.4 that if the 
collapse is predominantly symmetric, then there is no solution to the 

1 / 6 

similarity problem with P X as P -»• - 00. We were unable to 
establish the existence or nonexistence of a solution for the asymp-
totic problem with n = 1/6 and a maximum value of |f(0) - a Q| of 
0(1). 

In summary, no satisfactory asymptotic flow structure exists 
such that P * (X - X)"n or P = X n as P + - «, where n > 0, with 

o 1 / 6 
the possible exception of P = X when |f(0) - aQI has a maximum 
value of 0(1). 
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Appendix 5. Numerical Methods 

The boundary layer equations 

The method used in the present study to solve the nonlinear 
boundary layer equations is essentially that found in Smith (1974) and 
used by Eagles and Smith (1980). Consider first a channel with fixed 
nonuniform walls that are symmetric about y = 0 and have a rate of 
change with respect to the axial distance x of 0(R-1), where R >> 1 
is the Reynolds number of the flow in the channel. Taking x = RX, 
the equations of motion for the fluid reduce to the nonlinear boun-
dary layer equations (3.1). If we now take y = Yh(X), where h(X) 
is the half-width of the channel, and write the stream function ip as 

ip = G(X,Y), (A5.1) 

then the boundary layer equations (3.1) reduce to the following 
system of three first order equations: 

C(X,Y) = | | , 

E(X,Y) = 3C_ 3Y ' 

F [ c § + i r c 2 = P 'QO 
3G 
3X 

3E_ 
3Y 

(A5.2) 

Suppose that there is no significant upstream influence and 
h(X) = 1 for X < 0 . Then 

G(0,Y) = |(Y - | Y3), 

C(0,Y) = I (1 - Y2), 

E(0,Y) = - Y, 

P(0) = 0. 

(A5.3) 

The boundary conditions are 



1 4 9 

G(X, + 1) = 1 
+ 3 

y. 

C(x, + l) = o, 

(A5.4) 

from conservation of mass and no slip at the walls respectively. If 
it is assumed that the flow is symmetric, then (A5.4) can be replaced 
by 

G(X,0) = C(X,1) = E(X,0) = 0, 

G(X,1) = | . 

(A5.5) 

We adopt the rectangular network X^ = i6X, Y_. = j<5Y, where N5Y = 1, 
i 0, - N <_ j N and i, j and N are integers. The values of G, C 
and E at (X^, Y_.) will be denoted by G^, Ĉ " and E^ respectively, and 
that of p(X^) by p 1. In the manner of Smith (1974), the three first 
order equations in (A5.2) can be approximated by three first order 
difference equations which have second order accuracy. These 
difference equations are centred on the midpoints (X^ Yj • 
Suppose that for a particular i the G^"~\etc. are known. For con-
venience we will write G. for Ĝ ", etc. If G?11̂  is the n-th approxi-

3 3 3 
mation to G., we write the (n+l)th approximation as 

(n+l) (n) + (n) 
3 3 3 (A5.6) 

with similar expressions for the other dependent variables. The 
boundary conditions (A5.4) become 

= «G
C
2

5
 = « C <

n )
 = 5 C

C
"

}
 = 0, N - N N -N ' (A5.7) 

and those of (A5.5) become 

6 G <
n ) = 6G™ = SC^ = 6E£° = 0 . (AS. 8) 

The finite difference analogue to equations (A5.2) can be linearised 
by neglecting all terms involving S2. The linear'system so obtained 



and the boundary conditions (A5.7) or (A5.8), can be assembled into 
a single matrix equation 

Ax = b. (A5.9) 

If the flow is assumed symmetric and (A5.8) is used, then A is 
a (3N+4) by (3N+4) matrix, and x and b^are (3N+4) element vectors. 
For any particular n, A and b are known, and x is the vector formed 
by the unknowns; that is, by <5p^ and the SG^11^ SC?n) and 6E?n) 

1 3 

The difference equations, the construction of A, b_ and 3C, and the 
method of solution of (A5.9) can all be found in Smith (1974). We 
omit the details here. 

An iterative scheme can now be defined. Let 

(0) _ i-1 dp_ 

G(0) = G i - r c(0) = c(i-l) E(0) _ Ei-1 
3 j ' 3 3 ' j 3 ' 

>- (A5.10) 

where (^0 • = ^P* ^ ~ P^ ^)/<$X. Assuming convergence, approxi-
i i 

mate values for p and the Ĝ ., etc., can be found to any required 
tolerance by repeatedly solving (A5.9) and applying (A5.6). Note that 
the coefficient matrix A and the vector b̂  must be recalculated for 
each iteration. 

In the above we have assumed that h is known explicitly in 
terms of X. Suppose that h = h(p) is known as a function of p 
instead of X. The iterative scheme described above can be used for 
this problem by applying 

h[ n + 1 ) = h(p ( n + 1 )), (A5.ll) 

and 

i-1/2 2 Ln n j 5 

dh> (n+l) v, (n+1) _ hi-l 
(A5.12) 
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after each iteration. However, a more efficient scheme can be 
obtained by utilising explicitly the pressure dependence of the 
tube law. Equations (5.12) and 

h{ n + 1 ) = h(p(n)) • 6p ( n ) g ( p W ) + 0((6p(n))2) (AS.13) 

can be applied directly to the difference form of the governing 
equations (A5.2). This modification changes the coefficient of 

in the linearised difference equations, and hence alters the 
matrix A. Comparisons indicated that with the usual tolerance of 

_7 
10 , the scheme implied by (A5.13) required four to eight fewer 
iterations for convergence than the scheme implied by (A5.ll), a 
significant reduction. 

The scheme derived from (A5.12) and (A5.13) was used in calcu-
lating all the relevant numerical solutions presented in this study. 
Usually, the flow was assumed to be symmetric, and (A5.8) was used 
for the boundary conditions. The grid size was varied to suit the 
particular problem. With the pressure response y small, 5X = .1 and 
N = 50 were adequate. For y = 0(1), 6X = .01 and N = 100 were 
commonly used. With y » 1, the collapse is driven by the boundary 
layer flow (see Sections 2.1, 3.4), and to increase the accuracy 
near the walls, while keeping the number of equations to a manageable 

2 
size, the coordinate transformation Y = 2z - z was adopted. With 
this transformation the grid used was X. = i6X and z. = jSz, where 

J J _4 _5 
NSz = 1. For large y, 50 or 100 say, 6X was taken as 10 or 10 , 
and N as 200 or 400, depending on the problem. In general, 12 or 
less iterations were required at each step for convergence to a 

_7 
tolerance of 10 . Usually, if more than about 40 iterations were 
required, then convergence would not be achieved. 

Smith (1974) applies the above method of solving the boundary 
layer equations to the problem of flow near a discontinuity in wall 
conditions, and concludes that it is reasonably fast, stable and 
accurate. In as far as solutions were found, our experience supports 
this conclusion. In particular, we note the excellent agreement 
between the numerical and analytical solutions for a range of prob-
lems (see Figures 3.4 - 3.6 and 3.10). 



Consider now the nonlinear boundary layer problem posed by 
equations (3.57) and (3.58). This problem arose in the study of a 
channel obeying (3.3) with e = 1, q = 0(1) and u >> 1. With appro-
priate changes of variable, the governing equations (3.57) reduce 
to (A5.2) with h set to one. The boundary conditions (3.58) become 

C = G = 0 at Y = 0, 

1 2 C ^ Y + y q p as Y + 

E + 1 as Y + 

(A5.14) 

and the initial conditions are 

G + j Y 2 , C + Y, E + 1 and p + 0 as X + - «. (A5.15) 

The grid used for this problem is X^ = Xq + i6X, Y. = j6Y, where 
-X and NSY = Y are large. With notation as above, the linearised 

o 00 

discrete form of the boundary conditions (A5.14) is 

6G Cn) = fic(n) = 

S E ^ = 0. 

o 

(n) _ 

= 0, 

= Ym + I q ( p ^ ) 2
 + q P

( n ) « p M (A5.16) 

The initial conditions (A5.15) can be approximated by 

G° = y(l + '3Y ) Y 2 - y 0 Y3, j 2 j 6 j 

C° = (1 + 3 Y )Y. - y 3 Y2, 
3  0 0 J 2 2 

E. = 1 + BY 
3 
o 

P = V„> 

BY 

> (A5.17) 

where 3 = q (p /Y^) and pQ is small and negative. This form was 
chosen because it is consistent with the definitions of G, C and E, 
with the boundary conditions (A5.14), and to leading order with the 
initial conditions (A5.15). 



Clearly, an iterative scheme similar to that described above 
can be defined using (A5.16), (A5.17), and the linearised discrete 
form of (A5.12). The numerical solution obtained from this scheme 

_7 
with 6X = .1, N = 200, Y = 2 0 and a tolerance of 10 showed the 

00 -1/3 
expected behaviour for - p << 1, that is p « (X + Xg) for some 
constant XQ such that X + Xc >> 1 (see Section 3.4). However, this 

S 1 2 iterative procedure failed to converge when ^ qp became 0(1). Exami 
nation of successive iterations revealed that, at some point as 
1 2 

y qp approached 0(1), the numerical process became divergent in an 
oscillatory manner. The point at which this occurred was basically 
insensitive to changes in any combination of SX, 6Y, and Y^ . How-
ever, changing q tended to change the value of p at which the pro-

1 2 cess diverged such that ? qp remained roughly constant. Using the 
2 

coordinate transformation Y = Z to increase the accuracy near the 
wall made no significant difference to the results. To conclude, 
the iterative scheme described here did not provide a full numeri-
cal solution to the problem posed by equations (3.57) and (3.58). 
We do not know whether a solution exists. 

A similar iterative can be defined for the problem with the non-
linear boundary layer equations and (3.46) as boundary conditions. 

Other numerical methods 

Consider the integro-differential equation 
;X 

S(AP) = K{ (X - t ) -
1 / 3

 £ d t + f x
2 / 3

} , (A5.18) 
0 d t 2 

where K and A are constants and X > 0. Equations (3.45), (4.26) and 
(4.41) are of the form (A5.18), as are (2.20) and (3.48) with suitabl 
transformations. Let X^ = jAX, where AX << 1 and j > 0 is integer. 
Then 

P - P. 
= 5- +0(AX 2). (A5.19) 

A j +1/2 AX 

Therefore 
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V t r 1 ' 3 & d t . 
J 

- P j + 1 " P j I {(X - X ) 2 / 3 - cx - x ) 2 / 3 } • 
AX J J 

+ 0((AX)3), (A5.20) 

where i > j. Applying (A5.20) to (AS.18) produces 

2 
P. = AX {y - 1} (A5.21) 

1 (Axr/J> 

and for i > 1 

p. 2 ( A X ) 1 ' 3
 + p , 2 / 3 ^ _ 

l 3 K l l-l 

- Jl) (P. - P.^) [(i - j + 1) 2 / 3 - (i - j)2/3], (A5.22) 

assuming that Pq = 0. The direct iteration scheme defined by (A5.21) 
and (A5.22) was used to solve (2.20), and could be used for (4.26). 

2 
With (3.45) and (4.41), S(AP) « (AP) and the resulting quadratic 
equations for P^ and P^ can be solved directly. A step length of 
AX = 10 3 was found to be adequate for all the S(AP) considered in 
the present study. 

Consider now the integral 

1(g) = 
0 {(g0-t)(a-t)(t-b)}1/2 

d t (A5.23) 

where a = \ [-gQ + (12 - 3g2)1/2], b = - \ [gQ + (12 - 3 g ^ / 2 ] , 

0 < gQ < 1, and 0 < g <_ g . This integral arose in the analysis for 
a channel with a complete collapse and a moderate pressure response 
(equations 3.23 and 3.24, Section 3.2). The integrand has a singu-

2 
larity at gQ, which can be removed by the transformation t = g - y 
However, a gQ as g -»• 1, and to increase the accuracy of the 
numerical evaluation of (A5.23) for 1 - gQ small, we use the trans-
formation 



t = g 0 - nn (A5.24) 

with n >_ 2. Applying (A5.24) to (A5.23) produces 

K g ) = n 
(n-2)/2 , 

n d n 

a(g) {(nn+a-gQ)(go-rT-b)} n , ' 1/2 

where a(g) = (gQ - g)*7n and 8 = Simpson's rule was used 
to evaluate 1(g) numerically from (A5.25). For 1 - g of 0(1), 
n = 2 and 201 points were used. For 1 - g « 1, n = 6 and 501 
points were found to be adequate for values of 1 - g as small as 
1 0 " 7 . 

In a similar manner, the integral in equation (3.25) was 
evaluated using the transformation (A5.24) and Simpson's rule. 
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Appendix 6. The Flow and Phase Velocity of an Inviscid Fluid in a 
Collapsible Tube 

a) A tube with a constant steady stream 

In dimensionless form, the equations of motion of an inviscid, 
incompressible fluid in a collapsible tube are 

3u 3u — + u — 
at ax 

ap 
ax 

3 A a r\-\ r, 
at + ax ( A u ) = 

> (A6.1) 

where the fluid motion is assumed uniform across the tube, x and t are 
the axial and time coordinates, u(x,t) is the velocity, p(x,t) the 
pressure, and A(p) the cross-sectional area. A steady solution of 
(A6.1) is u = u^, p = p^, where u^ and p^ are constants. We will 
now investigate the propagation of small pressure waves superposed 
on this steady stream. Consider 

u = u. + 5u e 
l 

in(x-ct) 

p = p. + 6p e in(x-ct) 
I (A6.2) 

where <5p and 5u are constants such that |6p| = 0(Su) << |u |, c is the 
pulse velocity, and u = n Re (c) is the constant angular frequency 
of the disturbance. Substituting (A6.2) into (A6.1) produces 

6p = 6u(c - u^), 

dA 
6 p ( u i " c ) dp^ i^ + 5 u = 0> 

(A6.3) 

which yields 

c = ui 1 c 0 ( pi^ (A6.4) 

1/2 

where cQ(p) = [A(p) dp/dA(p)] is the inviscid phase velocity for a 
system at rest. Thus, for a system with constant fluid velocity, 
there is simply a superposition of the phase velocity for a system 
at rest on the fluid velocity of the steady stream, a result which 
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applies also to an elastic tube (see Morgan and Ferrante 1955). 

We see from (A6.4) that if 0 < u. < c then we have a "for-' — 1 0 

ward travelling" wave which propagates downstream and a "backward 
travelling" wave which propagates upstream, while if CQ< U^ we 
have two forward travelling waves. If u^ = cq then (A6.4) gives 
c = 2Cq and C = 0 . It is worth remembering that (A6.4) does not 
give exact values for the pulse velocity, merely values correct to 
0(<5u). Inspection of the governing equations indicates that if 
u. - c = 0(5u) then the solutions for c are c = 2c + 0(6u) and 
1 0 o v 

c = 0(6u). Thus in all cases the phase velocity is given to 
leading order by c (p.). We note that if u. > c or u. - c = & J O r l ' 1 — 0 1 o 

= 0(5u) then the ability of the system to disperse the energy of 
the disturbances is considerably restricted. 
b) A tube with a non-constant steady stream 

For a steady system (A6.1) reduces to 

du .. 2 dA , _ 
_ (A . u _ ) = o. 

Thus the possible solutions for u are u = constant and u = 
= c (p). We now assume that p is not constant. Therefore, u = 
= +_ c . Mass conservation requires Au = Q, where Q is a constant 
Hence 

the solution of which is 

A(p) = (B - 2p/Q2)"1/2, (A6.5) 

2 

where B = 1/A (p = 0 ) is a constant. Thus we see that a non-constant 
one-dimensional steady flow of an inviscid, incompressible fluid can 
exist in a collapsible tube only if the tube law has the form of 
(A6.5), and that in such a system the fluid velocity must necessarily 
match the inviscid phase velocity of a system at rest. 



Consider a steady system with u = cQ(p) a nd p(x) non-constant. 
The phase and pulse velocities of this system cannot be assumed 
constant. If a small pressure disturbance travelling with velocity 
c(x) is at position x = xq at time t = t , then it will be at posi-
tion x at time t where 

t - t = 
o 

dn 
c(n) ' 

Accordingly, we study travelling waves of the form 

u = C Q ( X ) + Au(x) e iu)f (x,t) 

P = P i( x) + Ap(x) e itof (x,t) 
> (A6.6) 

where f(x,t) = dn 
c(n) - t, CQ (X) = c0(P±D ̂  u = 0(cQ), 

p = O(p^), and a) and A << 1 are constants. We make the further 
assumptions that Q = 0(1) and that the flow develops slowly in x, 
i.e. that x = 0(a), where a >> 1. Then if 03 satisfies 

and 
c << 03a << c/A 

c << 03a << c /A, 
o o ' 

(A6.7) 

substitution of (A6.6) into (A6.1) produces 

u [c - C Q ( X ) ] = p, 

dA -p [c - C Q ( X)] ^ ( P j ) + uA(pi) = 0, 
(A6.8) 

which have solutions 

c = 0 and c = 2c (x). 
o (A6.9) 

Clearly c = 0 violates (A6.7). Equation (A6.7) and the results 
from (a) above suggest that the next step would be to study the 



problem with c = 0(ACq). However, we will not investigate further, 
but note that the phase velocity is given to leading order by 
c (p.) even if a nontrivial solution for c of OfAc ) exists, 
o 1 o 
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