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SUMMARY 

This thesis is concerned with the development and 
refinement of some aspects of the 'modal testing method' 

The basis of the research is a definitive theoretical 
description of the two most common models of damped linear 
systems (i.e viscous and hysteretic damping). The normal mode 
shapes of such systems are generally expressed in complex terms 
and experimental observations using the single-point excitation 
method tend to confirm this. On the other hand, the normal 
modes used in finite element calculations and those derived by 
the traditional multi-point excitation method are the real 
undamped modes. 

The exact relationship between the complex normal modes and 
the real undamped modes is established and a theoretical study 
investigates the relationship between the level of the 
'complexity' of the normal modes and the closeness of the 
natural frequencies showing that for well-separated natural 
frequencies the 'complexity' of the normal modes is very small. 
Experimental results from real structures, however, have so far 
produced larger values of 'complexity'. It is shown that this 
is caused by the nonlinear behaviour of the measured structure 
and measuring procedures which give emphasis to this part of 
the structures response. A numerical study of some simple 
theoretical systems shows the influence of small nonlinearities 
on the linearly-derived modal parameters and an experimental 
study on a real structure serves as a vehicle on which the 
methods developed in this research to tackle nonlinearities are 
demonstrated. 

Although it is theoretically possible to derive the 
complete matrix of the normal modes from measurement of one 
column of the mobility matrix, it is usually found that 
measurement of more columns is needed. As a result, several 
different estimates for the modal parameters are derived, the 
quality of each of those sets is then quantified by a 'quality 
factor'. 

A 'best' consistent set of modal parameters is derived by 
an optimization algorithm which makes use of the quality factor 
and thus a large amount of measured data is reduced to a set of 
parameters which can be used in any further theoretical 
calculations. 

Finally, an experimental study of a typical air frame 
structure demonstrates the single-point excitation 
identification methods developed in this research and a 
comparison is made with the experimental results obtained by 
the traditional multi-point excitation method . 
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NOTATION 

rA, j modal constant of mode r of receptance a.. 

[A] matrix defined by (2-60) 

[B] matrix defined by (2-100) 

[C] viscous damping matrix 

E error function 

{F} complex vector of force amplitudes 

{ r G k } defined by (2-129) 

[H] hysteretic damping matrix 

[I] unit matrix 

J nonlinearity factor 

J n nonproportionality factor 

[K] stiffness matrix 

[K] diagonal modal stiffness matrix 

[M] mass matrix 

[M] diagonal modal mass matrix 

P excitation force amplitude 

{ P } forcing vector defined by (2-107) 

R constant dry friction force 

{ r P k l defined by (2-131) 

( r S k } defined by (2-132) 

rSii quality factor of mode r in mobility Y^ 

u constant linear error defined by (5-1) 

V constant logarithmic error defined by (5-1) 

{X} complex vector of harmonic displacement amplitudes 

Y i j mobility (excitation of point j and response a t i) 

{Y} vector defined by (2-109) 
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{Z} real vector of harmonic displacement amplitudes 

a 'slightly varying 1 amplitude of nonlinear system 

a k 2 + k 1 defined by (3-33) 

ar 'modal mass' as defined by (2-104) 

b cubic stiffness coefficient defined by (5-22) 

b r 'modal stiffness' as defined by (2-105) 

c quadratic viscous damping coefficient defined by 

(5-22) 

e base of natural logarithm 

{f} complex vector of harmonic forces 

rg weighting factor for mode r of mobility Y u 

h jj element in the hysteretic damping matrix [H] 

h linear viscous damping coefficient 

i counter 

j counter 

k stiffness or counter 

k r modal stiffness 

1 counter 

m mass 

m r modal mass 

n counter 

p counter 

{q} complex vector of generalized displacement 

r counter 

sr eigenvalue in eigenproblem (2-102) 

t time 
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u real part of A2
r 

v imaginary part of 

x displacement 

{y} vector defined by 

a-.. 
II 

receptance (response o f point i to input at j) 

a phase angle defined by (3-45) 

a proportionality factor 

proportionality factor 

eigenvalue for mode r 

r . eigenvector of a proportionally-damped system 

CO frequency 

O J r natural frequency of mode r 

<or natural frequency of a proportionally-' damped system 

Vr loss factor of mode r 

phase angle defined by (3-45) 

1 generalized loss factor 

n M M loss factor defined by (4-19) 

K loss factor defined by (4-18) 

Vr eigenvalue of eigenproblem (3-65) 

Pr phase angle 

d phase angle 
* 

eigenvector of the charateristic phase lag (2-55) 

ratio of critical damping 

f l  additional damping defined by Fig. 3-5 

(2-97) 
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{f}r complex eigenvector of hysteretically-damped system 

(n}r real eigenvector of undamped system 

(<P}r mass-normalized eigenvector of 

hysteretically-damped system 

( r<Dk) k'th element in the r'th eigenvector {0} 

{(/>} complex eigenvector of viscously-damped system 

Q r modulus of eigenvalue of mode r of a 

viscously-damped system 

{0} r eigenvector in eigenproblem (2-102) 
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1. INTRODUCTION. 

Measurement of the vibration properties of an aerospace 

structure is an essential and integral part of its 

development programme. Originally, such tests were made in 

order to learn what the vibration characteristics were; 

later, they were sought to guide the development of the 

mathematical analysis and currently, they are required to 

check theoretical predictions made using finite elements or 

other advanced computational techniques. However, the rapid 

strides made in recent years by such prediction methods have 

not served to eliminate the need for experimental 

measurement of vibration properties; rather, they have 

tended to increase the demands made on such measurements by 

requiring greater accuracy and detail from the results. In 

addition, structures of this type are being designed with 

ever-increasing precision in the interest of efficiency and 

economy and this trend places particularly high demands on 

the dynamicist, requiring of him the prediction of vibration 

properties to much greater accuracy then hitherto. Thus, as 

theoretical prediction techniques improve, so also must the 

corresponding experimental methods in order to meet 

increased demands. 

Traditionally, the vibration modes of aerospace 

structures have been measured by the multi-point excitation 

method in which the structure is forced simultaneously at 

several points in such a way that it can only respond by 

vibrating in a single mode (undamped normal mode). Once 
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identified, each such normal mode can then be compared with 

its theoretically-predicted counterpart. This type of test, 

although extensively developed, is a slow and costly 

procedure. However, once the structure is made to vibrate in 

this single mode the modal properties are directly measured 

and no further analysis is needed. 

The modes identified by this method are the hypothetical 

undamped normal modes and not the actual normal modes of the 

structure. Usually, it is assumed that the damping matrix 

does not couple the equations of motion and, therefore, the 

hypothetical undamped modes and the normal modes of the 

structure are regarded as identical. Although these 

identified modes (specifically, the natural frequencies and 

mode shapes) provide a basis for comparison between theory 

and practice, they are quite often not the vibration 

chracteristics which are of greatest interest to the 

dynamicist. In helicopters, for example, it is the steady 

forced vibration levels at various critical positions 

resulting from the inevitable forcing generated by the power 

unit which are of greatest interest and there are several 

stages of analysis between knowledge of (some of) the 

vibration modes and predicting the forced vibration 

characteristics of the structure. 

Coupled with these observations are recent developments 

in those vibration measurement techniques often referred to 

as 'impedence' or 'mobility testing'. The essential feature 

of this approach (which differentiates it from the 
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aforementioned 'multi-point' or 'pure mode excitation' 

method) is that it involves the excitation of the test 

structure with just a single input and then extricates the 

contributions of the various modes from the total response 

which results by suitable analysis of the measured d a t a . In 

effect, the central problem - that of determining the 

vibration modes of a structure from test data - is tackled 

in this approach by placing greater emphasis on the analysis 

of the measured data and less on the complexities of the 

experimental procedure than is the case for a multi-point 

excitation approach; a change of emphasis with .significant 

effect on the economics of time and money. 

t 

This shift of emphasis has resulted directly from marked 

improvements in the precision obtainable from vibration 

measurement equipment plus the availability of fast and 

inexpensive digital computers directly accessible to the 

measured data. 

The great interest in this field of modal identification 

is reflected in the growing number of technical papers 

published each year. The concept is not particularly recent 

and one of the earliest papers was that of Kennedy and Pancu 

(1947) [42] which showed how mobility measurements could be 

used to identify vibration chracteristics of complex 

structures. Since then many papers on all aspects of this 

subject have been published; to mention some of the latest 

ones: Hamma et. al (1976) [ 1 ] , Walegrave et. al (1978) [ 2 ] , 

Snoeys et. al (1979) [3], Kortum et. al (1980) [4], Ewins 
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e t . al (1980) [5] and even a paper by Flannelly [6] to 

explain the problem of modal analysis to the layman. 

Comprehensive lists of references were compiled by Ewins [7] 

and Rades [ 8 , 9 ] . The only book to summarize the methods of 

modal identification and their application is, 

unfortunately, not yet available in English (Rades [ 10]) . 

The work described in this thesis is mainly concerned 

with development and refinement of some aspects of the 

'mobility testing m e t h o d ' . In addition, a testing procedure 

is developed which is applicable to perform the routine 

modal testing of helicopters and other similar structures 

and also to obtain simultaneously the additional forced 

vibration data needed for a full dynamic analysis of the 

structure. 

The basis of this research is a definitive theoretical 

description of linear systems (chapter 2) with different 

models of damping (i.e hysteretic and viscous). The 

different mathematical expressions which describe the 

behaviour of a system subjected to several forms of external 

harmonic excitation are developed and the main differences 

between the two models of damping are pointed out. Because 

it seemed that there was no clear definition to the basic 

term 'mode of vibration' it is defined precisely and some of 

its special forms are described. 

The normal mode shapes of a real system are generally 

described in complex terms. On the other hand, the mode 

shapes used in finite elements calculations and those 
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derived by multi-point excitation testing are the 

hypothetical real undamped normal m o d e s . Practically it is 

assumed that the system under test is proportionally-damped 

and, therefore, that its normal modes are real and identical 

to the undamped normal m o d e s . Experimental observations, 

however, do not always justify this assumption and in many 

cases it is simply not valid . In order to find the 

relationship between the (real) undamped modes and the 

(complex) normal modes of a system, a theoretical and 

numerical study is made in chapter 3. The main results of 

this study are that for most cases encountered in practice, 

where the 'complexity' of the experimentally-derived modes 

is small, these modes can be used as equal to the real 

undamped modes in any further calculation. When the modes 

are close, they tend to be more complex and then the error 

incurred by this assumption might be greater. 

In the course of this study, two new useful parameters 

are defined; the 'nonproportionality factor' which 

quantifies the degree by which the damping matrix couples 

the equations of motion and the 'generalized loss factor' 

which gives an overall measure of the damping present in the 

system. 

The next step in this work is the development of the 

necessary measurement and analysis techniques for derivation 

of the modal parameters (chapter 4). In this research, we 

are mainly interested in the single-point excitation method 

and two analysis programs have been developed to handle the 
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data produced by this m e t h o d . The first is based on the well 

known Kennedy and Pancu method of treating each mode as a 

single degree of freedom mode (POLAR5) and the second is a 

more sophisticated program which analyses a complete 

measurement of several modes simultaneously (SIM2). The 

inherent limitations of both the experimental and subsequent 

analytical procedures are evaluated and demonstrated by 

studying a synthesised numerical case. 

The main assumption made so far is that the system under 

consideration is linear and, subsequently, the modal 

identification programs have been developed accordingly. 

Real systems, however, do not always behave according to 

this convenient mathematical model; quite often they exhibit 

nonlinear behaviour which, unless noticed, may lead to an 

erroneous identification of the system. 

The firsb part of chapter 5 studies a few theoretical 

cases of one-degree-of-freedom nonlinear systems and shows, 

in each case, how the presence of the nonlinearity can be 

detected by proper examination of the measured data. A 

sensitivity study to check the influence of the nonlinearity 

on the linearly-identified modal parameters proved that if 

not taken into account, it may lead to serious errors in the 

final identification of the system. 

Because there is an infinite number of theoretical 

models to describe nonlinear systems,, none of them 

adequately, it was decided that the best approach to deal 

with nonlinearity in practice is to establish its existence 
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and then to try to minimize its effect, rather than to 

identify its form in detail. 

The second part of chapter 5 is an experimental study to 

demonstrate the behaviour of a real structure and the way to 

derive its linear modal parameters in the presence o f a 

nonlinear response. In the course of this study a powerful 

parameter was devised - the 1 nonlinearity factor'. No real 

structure is, even under the most favourable testing 

conditions, completely linear, and this parameter gives a 

measure of the degree of the nonlinearity and serves as a 

useful tool in checking the linearity of measured data under 

different excitation conditions. 

In chapter 6, a systematic method for performance of a 

modal survey is outlined, in which the data are checked for 

nonlinearity and noise pollution before the analysis stage 

and once they are analysed, the quality of the identifi-

cation of each set of modal parameters is quantified by a 

newly-defined 'quality factor'. 

Although it is theoretically possible to derive the 

complete matrix of the normal mode shapes from the 

measurement of o'ne column of the mobility matrix, it is 

usually found that measurement of more columns is necessary 

because some modes are not adequately excited and a change 

of excitation point improves their response and thus the 

subsequent identification. 

Once these data are measured and analysed we obtain 

several estimates for many of the modal properties of the 
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structure which should, theoretically, be identical. Simple 

averaging has been used [76] to derive a single set of 

consistent parameters but this will not result in the best 

estimate because all the identified parameters are taken 

equally into account, good and poor alike. 

In order to derive a 'best' estimate of the modal 

parameters, an overall weighted optimization of all the 

experimentally-derived modal parameters is made where the 

'quality factor' is used as the weighting factor. By this 

method poorly identified modal parameters have less 

influence on' the final derived results and the large amount 

of data collected is reduced to one consistent set of modal 

parameters which describes the system 'best'. 

Finally, a comprehensive experimental study to demons-

trate the methods developed so far was made (chapter 7 ) . A 

typical test structure - a helicopter tailcone - was used 

as a vehicle on which the appropriate techniques were 

evaluated. A full modal test programme using the mobility 

approach was made and the measured data were analysed by 

three different identification programs; the simple P0LAR5, 

the more advanced SIM2 and a third which assumes a viscous 

damping model (PAPA). In addition the tailcone was tested 

using the traditional multi-point excitation method thus 

providing a direct comparison between the two approaches. 

The difference between the final results obtained by each 

program is negligible although when checked with synthesised 

data there was a marked improvement of the sophisticated 
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SIM2 over the simple P0LAR5. 

The conclusion to draw from this result is that there 

is, therefore, little point in trying to improve the 

analysis algorithm by developing more accurate linear 

algorithms but rather, effort should be directed to improve 

the measuring techniques to reduce the amount of noise and 

nonlinear influence on the d a t a . 

However, lightly-damped structures, of which the 

fuselage of a helicopter is an example, can be identified 

satisfactorily by the single-point excitation method using 

the relatively simple polar analysis algorithm and the 

identified modal parameters can be used as the undamped 

modal parameters in any further theoretical calculation. 
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2. MATHEMATICAL MODELLING OF A DAMPED LINEAR SYSTEM 

2.1 BASIC CONCEPTS. 

The traditional route for constructing a mathematical 

model of a real system is paved with assumptions of all 

kinds; some of these are often well justified while others 

may be quite inappropriate in real life. 

A related aspect is the problem of terminology. Some 

basic phenomena are given different definitions by different 

authors and are sometimes used very loosely and quite o f t e n , 

the same term is used by different investigators to describe 

different properties. Perhaps the most overworked term is 

'mode of vibration': one can find in the current literature 

a large array of 'modes' such as 'principal', 'classical', 

'normal', 'pure', 'natural', 'undamped', 'damped', 

'complex', 'damped forced', etc. This situation is a 

confusing one and sometimes may lead to misunderstanding 

[11 ]. Accordingly, it is proposed to introduce a strict 

definition of this term and to use it throughout this work 

in a consistent manner as follows: 

Mode of vibration. 

A mode of vibration is a characteristic dynamic 

response in which the motion of every point on the 

system is a harmonic function of time with the same 

(complex) frequency. 

Mode shape. 

A mode shape is the time-invariant form of distortion 
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the system assumes in a certain mode of vibration. 

Normal mode of vibration. 

A normal mode is a mode of vibration that can exist 

independently of (uncoupled from) other modes of 

vibration when the system vibrates freely. 

Two closely related terms are the 'natural frequency' 

and the 'resonance' which are defined as follows: 

Natural frequency. 

A natural frequency is a frequency at which the system 

vibrates in a normal mode of vibration. 

Resonance. 

A harmonically forced system is said to be in resonance 

when any change, however small, in the excitation 

frequency causes a decrease in the response of the 

system. 

Resonance frequency. 

A frequency at which a resonance exists. 

The basic assumption concerning the system under 

consideration is that it is linear and that its fundamental 

properties are time-invariant. 

By 'linearity' two basic characteristics are assumed, 

namely that (i) the response of the system is additive and 

that (ii) it is homogeneous. 

« 
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The first of these assumptions implies that the response 

(output) of the system to the sum of several excitations 

(inputs) is equal to the sum of the system responses 

(outputs) obtained when each excitation is applied 

individually. If the input to the system is denoted by X-: 

and the output by Y ^ (Fig.2-la) then this property is 

illustrated by Fig. 2-lb. 

The second assumption means that the response of the 

system to the product of some constant and the excitation is 

equal to the product of this same constant and the response 

generated by the excitation alone (Fig. 2-lc) 

x i 

V 2 i 

aX. 
1 

(a) 

V Y i <b) 

a Y i (O) 

Fig. 2-1 Definition of linearity. 

By time-invariant it is meant that the system's physical 

parameters are constants. In general, a system which is not 

time-invariant is assumed to have components whose m a s s , 

stiffness or damping are dependent on factors which are not 

included in the m o d e l , such as temperature, frequency, etc. 

The assumption of linearity is well justified according 

to much experimental experience as well as theoretical 

investigation provided that the amplitude of the response is 
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small. In practice, the amplitude is regarded as 'small' as 

long as the measured results satisfy some external criterion 

for linearity. 

The assumption of time-invariance, which must go 

together with that of linearity assumption, is usually 

justified when performing ground tests, or in many other 

practical cases where the investigator has some control over 

factors which may violate this assumption (temperature, for 

example). 

In the following analysis we assume that a continuous 

system can be described by discrete elements such as m a s s e s , 

springs and dampers. Under this simplifying assumption the 

masses are rigid and have no compliance (the ability to 

deform under load); the springs are massless and have only 

the compliance property and the dampers are massless, 

dissipative elements. These assumptions permit us to 

represent a continuous system as consisting of n discrete 

masses and thus to describe it by an n-degree of freedom 

model resulting in a set of n coupled ordinary differential 

equations which describe the motion of the m a s s e s . 

Practically, there are many cases in which it is 

impossible to identify discrete masses and springs and there 

may not be any valid reason to assume that the masses cannot 

deform and the springs have no m a s s . Furthermore, in many 

cases it is not justifiable to describe a continuous system 

by a small number of discrete elements and the information 

obtained then is far from accurate. In general, a discrete 
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system can be solved with more ease then a continuous one. 

However, the information obtained by using a discrete model 

may not be as accurate as the information obtained by 

representing the system by a continuous m o d e l . If the 

discrete model is made finer and finer, by increasing the 

the number of degrees of freedom and reducing the size of 

the masses, one o b t a i n s , in the limit, a continuous system. 

There are many mathematical models used to represent 

damping, the most widely of which is the linear viscous 

dashpot. Another widely used model is structural or 

hysteretic damping. However, the assumption that any of 

these models accurately describes the actual physical 

mechanism in which energy is dissipated in a vibrating 

system is only a mathematical convenience, or to put it in 

more appropriate words 'Damping is in its very nature an 

uncertain and vague phenomenon and such a concept as a 

damping matrix should not be taken too seriously. 1 [11] 

The equation of motion of a multi-degree of freedom 

damped linear system subjected to a harmonic excitation is: 

[MJ(q}+[Kj{q}+i[H]{q}+[C]{q}={f} (2-1) 

w h e r e , 

[M] - mass matrix. 

[K] - stiffness matrix. 

[HJ - hysteretic damping matrix. 

[CJ - viscous damping matrix. 

These four matrices are of order nxn and are real and 
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symmetric. [M] and [K] are positive definite , [H] and [C] 

are at least semi-positive definite [14] . 

{q} - complex vector of generalized displacements, 

{f} - complex vector of harmonic forces. 

In this equation the two most common models of damping 

are included, namely hysteretic and viscous. The theoretical 

solution of this equation is well established. It is 

considered, however, necessary to present a definitive 

statement of this problem, both for hysteretic and viscous 

damping, to describe some special forms of damping and 

forcing and to point out the differences between the 

solutions for each type of damping. For each type of damping 

the homogeneous equation of free vibrations is considered 

followed by the special case of 'proportional damping'. 

For the case of harmonic forced vibrations the force {f} 

is expressed as: 

[ f } = { F } e i w t (2-2) 

where co is the frequency of harmonic excitation and {F} is, 

generally, a complex vector of harmonic amplitudes. 

Apart from the general case of constant harmonic 

excitation where {F} is complex, two particular cases of 

harmonic excitation which are of great practical importance 

are described: excitation by a mono-phased harmonic force 

where {F} is a real vector and excitation by a single 

harmonic force F, . 
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2.2 HYSTERETIC DAMPING 

The equation of motion for the hysteretically-damped 

system subjected to a constant harmonic forcing is: 

C M ] { q } + [ K ] { q } + i [ H ] { q } = { P } e l w t (2-3) 

This model of hysteretic damping was introduced to 

describe a steady-state harmonic motion only and is not 

necessarily valid for the solution for any other type of 

exci tation [13J . 

In order to solve equation (2-3) a harmonic solution of 

the following form is assumed, 

{ q } = { X } e ± w t (2-4) 

where {X} is a complex vector of harmonic amplitudes. 

Insert (2-4) into (2-3) to give 

(-<xr2[M] + [K]+i [H] ) (X} = {F} (2-5) 

2.2.1 FREE VIBRATION 

First, the homogeneous eigenproblem is considered where 

2 . 2 
co i s replaced by A r , giving 

(-A^[M] + [K]+i[H]) {f} r=0 (2-6) 

2 
This is an eigenproblem where the eigenvalues A r and the 

associated eigenvectors {lF} are generally complex. 

If we write, 

A r = w r ( 1 + i V { 2 ~ 7 ) 

we may define oo as the 'natural frequency' and as the 

'modal loss factor' for the r'th mode. 
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Insert into (2-6) and we obtain 

(-a£(l + iifr) [Mj + [K]+i [H] ) {W) r=0 (2-8) 

There exists a non-trivial eigenvector ( lf} r which 

satisfies (2-8) if the left-hand side matrix is singular, 

and hence the characteristic equation is: 

|[I]««£(l + i TJ )-[M]"l[K]+i[H]) 1=0 (2-9) 
r r 

This eigenvector is unsealed and is determined within a 

multiplicative arbitrary constant. 
m 

If we pre-multiply (2-6) by {<F} , then 
2 ^ 

{ f H ( - A [M] + [K]+i [HJ ) {f} =0 (2-1.0) 
S -L- -L 

Assume now another eigenvalue, A (A *A ), then 
s s J. 

(-A^[M] + [K]+i[H]) {«F}S=0 (2-11) 

The transpose of (2-11) is 

T+[K] T + i [H] T)=0 (2-12) 
s s 

and since (MJ, [KJ and [H] are symmetric matrices then 

m ^ ( - A 2
s [ M j + [K]+i [HJ )=0 (2-13) 

Post-multiply (2-13) by i > } r and subtract from (2-10) 
{w} I m (2-14) 

Since A 4= A then 
& JL 

{ ^ [ M ] W =0 (2-15) 
s r 

inserting (2-15) into (2-10) gives 

M^([K]+i[H]){'I'} if0 (2-16) 

Relationships (2-15) and (2-16) are referred to as the 

'orthogonality conditions'. 

Consider now the matrix product 

[M] = [f] T[MJ [f] (2-17) 

where is the matrix of the eigenvectors [ f ) r . 
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Any element which is not on the diagonal of [M] is equal to 

{f}g[Mj{<F} r (2-18) 

and it has been shown (2-15) to be equal to zero. Only the 

diagonal elements 

{*F}£[M1 f<F}r (2-19) 

are non-zero (because [M] is a positive definite matrix 

[12]) and so i t follows that the matrix [M] is a complex 

diagonal matrix 

[M] = [ - m ] r J (2-20) 

and is referred to as the 'modal mass matrix', with the term 

m ^ referred to as the 'modal mass' of the r'th m o d e . 

The same reasoning applies to [k]+i[H] where 

[k] = [ f ] T ( [ K ] + i [ H J ) O J (2-21) 

[K] is a complex diagonal matrix referred to as the 'modal 

stiffness matrix' 

[KJ = r k r H (2-22) 

and k is referred to as the 'modal stiffness' of the r 'th 
r 

m o d e . 

(Because the eigenvectors are determined only to w i M n 

arbitrary scalar multipliers the diagonal matrices [k] and 

[M] are determined in the same manner and are thus not 

unique for any given system.) 

The characteristic equation can be expressed in the 

terms of the modal matrices, i.e 

|-A^[Mj + [KJ 1=0 (2-23) 

It is clearly seen that the eigenvector {f}^ uncouples the 

general characteristic equation and that 
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2
 k

r 
J r T (2-24) 

r 

{ lP} r is defined therefore, as a "normal mode shape" of the 

system. 

However, it should be appreciated that although [K] is a 

T T 
diagonal matrix neither [f7] [K] [t7] nor [ip] [H] [T7] is 

necessarily diagonal, since 

W g [ K ] (<F}r*0 (2-25) 

{"F} q[H] (2-26) 

because {T7} ~ in (2-16) is complex. 

2.2.2 THE UNDAMPED SYSTEM 

Of particular theoretical interest is the case where the 

damping is assumed to be removed from the system. The 

characteristic equation is then reduced to 

I - A 2 r M ] + [K] 1=0 (2-27) 

For this case the eigenvectors {17} are all real and the 

2 
associated eigenvalues are all real and positive [14] . 

The real mode shape {TT} is referred to as the 'undamped 

normal mode'. The orthogonality conditions are also 

satisfied and the diagonal modal mass and modal stiffness 

matrices are both real. 
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2.2.3 PROPORTIONALLY DAMPED SYSTEM. 

The eigenvectors derived for a damped system a r e , in 

general, complex. However, it may be shown that when the 

damping matrix can be expressed as a linear combination of 

the mass and stiffness matrices i.e 

[Hj = tf[K]+/5[M] (2-28) 

the eigenvectors are real. Relation (2-28) is referred to as 

'proportional damping' and the system is 'proportionally 

damped'. 

Substituting (2-28) into the characteristic equation 

(2-9) leads to 

I [I]o/(l+i77 r)-(l + i<*) [M]"
1 [K] -i [I ] /$ I =0 (2-29) 

and separating this into real and imaginary parts, we obtain 

a pair of characteristic equations which must be satisfied 

simultaneously: 

l ^ [ I ] - [ M ] ~ 1 [K] I = 0 (2-30) 

( n - - A r ) - [M]~ 1 [K] |=0 (2-31) 
r t oj^ 

This set is satisfied by 

V ^ - T J (2-32) 

The eigenvalues of (2-29) are then given by 

Substituting into equation (2-6) yields 

( [I]O> 2-[M]" 1 [K] ) {<f} =0 (2-34) 
r r 

which is the eigenproblem of the undamped system with real 

eigenvectors {n}^. 

Because the eigenvectors are real, it follows from 
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(2-21) that 

{n}g[K]{n} r=0 (2-35) 

{njgtH]{n} r=0 (2-36) 

The real part of each eigenvalue is the natural 

frequency of one mode of the proportionally-damped system; 

the imaginary part determines the associated modal d a m p i n g . 

The eigenvectors and the real part of the eigenvalues are 

independent of the values of the damping matrix [H] or the 

proportionality factors a or /5. 

Equation (2-34) is the equation of the theoretically-

undamped system. The normal mode shapes {!7}r and the natural 

frequencies of a proportionally-damped system o>r a r e , 

therefore, identical to those of the theoretically-undamped 

system. These modes are referred to as the ' proportional 

normal modes'. 

When the damping matrix is proportional to the stiffness 

matrix only (i.e /5=0) the eigenvectors are still real but 

then 

(2-37) 

which means that the modal loss factor is identical for all 

the modes. 

This special form of damping which permits the 

uncoupling of the equation of motion by the undamped normal 

modes is not unique to the case of proportional damping. 

It was shown by Caughey et.al.[is] that there is a 

general condition which is necessary and sufficient to 

uncouple the equation of motion by the undamped normal 
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modes. This condition states that the matrix product 

[MJ" 1[K] and [MJ [HJ must commute, i.e 

([MJ" 1[KJ) ([MJ~ 1[HJ) = ([M]~ 1[HJ) ([MJ~ 1[KJ) (2-3 8) 

The proportional case where [HJ = a[K] +/3[M] clearly satisfies 

this condition. 

2.2.4 EXCITATION BY A GENERAL FORCE VECTOR 

In order to solve equation (2-3) for the general case 

where {F} is a complex v e c t o r , the vector {X} is expressed 

as a linear combination of another set of independent 

vectors such as the eigenvectors, {f} . 
n r 

[X}= ? r [ f } r (2-39) 
r:i 

Substitute into (2-5) and we obtain 

n 
(~0J2{Mj + [KJ+i[Hj) y p } r = { p } (2-40) 

m rn 
Pre-multiply (2-40) by {¥} , to get 

n 
{V}£(-a£[M] + [Kj+i[H]) ^ y « F } r = { y } J { F } (2-41) 

r:i 
or 

[KJ+i[HJ) { « F } r - ^
2 y « F } £[MJ w (2-42) 

Because of the orthogonality conditions (2-15 and 2 - 1 6 ) , all 

the other terms in the summation of (2-41) are equal to 

zero. 

Using the notation introduced in (2-20) and (2-22), we 

may write: 

F r(l< r-a>
2m r) = {'F}^{F} (2-43) 

and then 

* 
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{ ^ { F } 

y = (2-44) 
r k -a) m 

r r 
substitute into (2-39) 

^ W ^ F H f } 
(X}= 3 ^ £ (2-45) 

rTT1 m
r 

rearranging (2-45) using the relationship (2-24), namely 

2
 k
r 2 

A r = — = ^ r ( l + i (2-46) 

we obtain 

{X} = > - 2— —? (2-47) 

r 

As the eigenvector {f7}r is unsealed we may introduce the 

'mass-normalized' eigenvector {cD}^ defined as 

1 
{<D} r=—p— M (2-48) 

V £ 

so that 

V 1 - {O} 
{X}= ) —pT ^ H r— (2-49) 

i - ( ^ ) + i g 

Equation (2-49) is the steady-state response of a hyster-

etically-damped system subjected to harmonic inputs in terms 

of the (complex) mass-normalized normal m o d e s . 
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2.2.5 EXCITATION BY MONO-PHASED FORCES 

For the special case where the vector of force 

amplitudes {F} is real, we can seek a solution of equation-

(2-3) for which the response of the system is all in phase, 

although not necessarily in phase with the force, i.e. 

{ q > - { Z } e 1 ( o , t - f l ) ( 2 - 5 0 ) 

where {Z} is a real vector of unknown amplitudes and 0 is 

an unknown phase lag. 

Substitute (2-50) into (2-3) 

(-^ 2[M] + [K]+i EH]) { Z } e i ( w t " ' 0 ) = [ F } e i ^ t (2-51) 

or 

( - ^ [ M ] + [K]+i[H]) {Z}e ={F} . (2-52) 

Separate equation (2-52) into real and imaginary components, 

[ ( - ^ 2 [ M ] + [K] )Cos0+ [H] Sin0j {Z} = {F} (2-53) 

[ ( - ^ 2 [ M ] + [K] )sin0- [H] Cos 0] {Z } = 0 (2-54) 

Equation (2-54) is a non-standard real homogeneous eigen-

problem where the eigenvalues are 0 a for which there exist 

corresponding eigenvectors { « } s . 

The corresponding force vector is obtained from equation 

(2-53): 

[(-a? [ M ] + [ K ] ) C o s 0 + [ H ] S i n 0 ] { t f } = { F } (2-55) 
o o fc> o 

It should be noted that the eigenvectors {«} and the phase 
s 

lags 0 are functions of the excitation frequency co . 
s 

The harmonic forcing vector {Fje^"^ may be 'tuned' so 

that 0 =90°and then equation (2-54) reduces to 

{-a? [M] + [K] ) {Z } = 0 (2-56) 

which is the equation of the theoretical case of an undamped 
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system having real eigenvectors {n} and natural 
s 

frequencies co . The forcing vector for this case is obtained 
s 

from equation (2-55) 

{F}=[H]{17} (2-57) 
s s 

It is seen that by tuning the amplitudes of the exciting 

forces to produce a real vector (mono-phased) at a certain 

proportion to the damping and at a frequency equal to a 

natural frequency of the theoretically undamped system, the 

response of the system under consideration is mono-phased 

and in quadrature with the forcing vector. The real mode 

shape the system assumes {«} is then identical to the 
s 

corresponding mode shape of the undamped system [FJ) . This 
s 

forced mode is not a normal mode of the system in the strict 

sense and is referred to as 'forced proportional m o d e 1 . 

If the response of the system under this excitation is 

expressed in terms of its normal mode shapes {T7}^,, which are 

complex, then from equation (2-47) we obtain 

w l w i n } ^ 

{ X } = 2 ^ 3 r ^ , -, (2-58) 

It is of interest to examine the particular case of a 

proportionally-damped system where its proportional normal 

mode shapes {U} r are real. 

Equation (2-58) may then be written as 

^ K ] + / 3 [ M } ) { n } 

{x}= > — —z =r [ n } -n < 2 " 5 9 
r : i p 6 0 r J 
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Because of the orthogonality conditions, all the terms in 

this summation where r^s are equal to zero. Equation (2-59) 

may then be written as 

which means that the system vibrates in one mono-phased mode 

only (its s'th proportional normal mode) and that the phase 

between the response and the excitation is a function of d a 

o 

(which is complex). This mono-phased response of the system 

is independent of the excitation frequency, so once the 

proper force vector {F} a is applied to the system, the 

response is in the s'th mono-phased mode at any frequency of 

excitation. The only parameters which change as the 

frequency is changed are the phase between response and 

excitation and the amplitude of the response. 

(This discussion can be generalized for the ordinary 

case of the normal (complex) mode shapes l1!7} . The 
s 

excitation vector {F} is then complex, which means that by 
s 

proper tuning of the amplitudes and phases of the force 

distribution the system can be excited at one normal 

(complex) mode shape. The practical implementation of this 

is very complicated and only one reference to the use of 

this method was found in current literature [16]) . 

The results which have just been presented form the 

basis of the multi-point modal testing method. Once a 

properly tuned mono-phased force vector is applied to the 

s (2-60) 
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s y s t e m , and the response is mono-phase and in quadrature 

with the applied force, the measured response gives the 

proportional normal mode shape of the system directly and is 

identical to the undamped normal mode of the system. The 

excitation frequency is then equal to the natural frequency 

of the undamped system. 

Once the system is v i b r a t i n g in this 'pure' m o d e , a 

check to establish whether the system is proportionally-

damped can be carried out by changing the frequency of 

excitation and noting if there is a change in the m e a s u r e d 

shape of the response. A change indicates that the system is 

not p r o p o r t i o n a l l y - d a m p e d . 

2.2.6 EXCITATION BY A SINGLE FORCE 

From the general e x p r e s s i o n for the response of the 

system to a general harmonic (complex) force vector we can 

extract an expression for the system's response to a single 

harmonic force F ^ . The vector of force a m p l i t u d e s is then: 

{F} = 
0 

0 
k 

(2-61) 

Inserting into (2-49) p r o d u c e s 

{X} 
W F

k
w 
r 

[ l - O 2 ^ " J 
(2-62) 

where is the k'th e l e m e n t in the r'th eigenvector 

{<P}r. From equation (2-62) we can extract the single 
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response x^ due to the single force F k and derive an 

expression for the general receptance (x., . 

n 

(2-63) 

The product (p^j) ( p ^ ) denoted by r A j k 

(2-64) 

and is referred to as the 'r 1th modal constant of 

receptance a j k ' * (2-63) forms the basis of the 

single point modal identification method. From a measured 

set of individual receptance measurements the parameters of 

equation (2-63) can be identified. 
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2.3 VISCOUS DAMPING 

A common type of damper which is widely used to model 

the damping mechanism in a vibrating system is the viscous 

dashpot. equation of motion for a viscously damped system 

subjected to a constant harmonic excitation is: 

[ M ] { q } + [ C ] { q } + [ K ] { q } = { F } e i w t (2-65) 

2.3.1 FREE VIBRATION 

For the case of free vibrations where {F}=0, we assume a 

solution of the form: 

{ q } = { X } e S t (2-66) 

Inserting (2-66) into (2-65) we get 

(s 2[MJ+S[C]+[KJ)(X}=0 (2-67) 

which is a complex eigenproblem where the eigenvalues are 

There are in general 2n eigenvalues, A ^ , and assoc-

iated eigenvectors, which satisfy the characteristic 

equation (2-67). Because they are in general complex, and 

[M] , [KJ and [C] ' are real, they occur in conjugate pairs [17] 

and satisfy the following equation, 

( A 2 [ M ] + A r [ C ] + [K]) {</>}r=0 (2-68) 

The eigenvector { <A) r is unsealed and is determined within a 

multiplicative constant (the order of this vector is n). 

To demonstrate the orthogonality properties, 

m 
pre-multiply (2-68) by {</>} then 

s 
W T (A 2[M]+A. [C] + [K]) =0 (2-69) 

s 4- x p 
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Assume now another eigenalue A_ (A * A ) then S o X 
( A 2 [ M ] + A S [ C ] + [K]) (2-70) 

The transpose of (2-70) is 
m o m m m 

W g U s [MJ +A s[C]-
L+[K]- L)=0 (2-71) 

Since [M] , [K] and [C] are symmetric m a t r i c e s , 

W s ( A 2 [ M ] + A s[C] + [K])=0 (2-72) 

P o s t - m u l t i p l y (2-72) by and subtract from (2-69) 

( A 2 - A 2 ) { [M] { ^ } r + ( A r - A s ) { „ * [ C ] { ^ } r = 0 (2-73) 

since A then 
r s 

( A r + A s ) { ^ [ M ] i<l>}T+{<l>}l[C] { ^ } r = 0 (2-74) 

Multiply equation (2-69) by A o and (2-71) by A 
S T 

W T ( A A 2 [ M ] + A A [C] + A [K]){<!>} =0 (2-75) 
s s r s r s r 

{ ^ } g ( A r A
2 [ M ] + A r A s [ C ] + 3 r [ K ] ) W r = 0 (2-76) 

then subtract equation (2-76) from (2-75) 

{ ^ } g ( A s A r U r - A s ) [M] + ( A s - A r ) [K] ) M r = 0 (2-77) 

since A # A then 
r s 

y s ( « g [ M j {)^} r-{^}g[K] { ^ } r = 0 (2-78) 

R e l a t i o n s h i p s (2-74) and (2-78) are the 'orthogonality 

c o n d i t i o n s ' for a v i s c o u s l y - d a m p e d system. 

It is c u s t o m a r y to display the e i g e n v a l u e s A in the 

form 

where ^ is defined as the ratio of critical damping 

and is the m o d u l u s of the e i g e n v a l u e . (Very often 

[ 17 , 2 2,24] Q ^ is referred to as the 'undamped natural 

frequency' which is a misleading d e f i n i t i o n . It is the 

undamped natural frequency only in the special cases of 
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proportional damping or a one-degree-of-fredom system. ) 

Consider the orthogonality relationship where A and 
jC o 

are conjugates, i.e. 

and hence 

V f l r ( * * r ~ 1 ) (2-80) 

W s = { A r (2-81) 

Inserting (2-80) and (2-81) into (2-74) we get 

from which 

H } r + { < { ^ } r = 0 (2-82) 

2 Q I =— (2-83) 
r r } ^ [ M ] { 0 } r 

Inserting (2-80) and (2-81) into (2-78) we get 

from which 

{^l r=0 (2-84) 

n }^[KJ {M} 
^ - q r - ^ (2-85) 

Equations (2-83) and (2-85) may be expressed as 

and 

2 V r 4 ; <2~86> 

9 k 

Q (2-87) 
r m r 

where m , k and c are the modal mass, stiffness and 
r r r 

damping respectively. 
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2.3.2 PROPORTIONALLY-DAMPED SYSTEM 

When the system is proportionally-damped, i.e. 

[C]=a[K]+jS[M] (2-88) 

the relationship between and £ r m a y be derived from 

expression (2-83) 

2 0 ^ = (2-89) 
r r 

or 

(2-90) 

from which 2 

Inserting expressions (2-80) and (2-88) into equation (2-67) 

results in the following eigenproblem 

(-D 2 [M] + [K] ) {^) r = 0 (2-92) 

which is clearly the eigenproblem of the undamped system. 

The mode shapes {11}^ of the proportionally-damped 

viscous system a r e , therefore, identical to those of the 

undamped system and satisfy the following orthogonality 

conditions, namely 

[n] T [M] [17] = C—mr?—3 (2-93) 

[n] T[K] [n] = [ - k r ^ ] (2-94) 

[n] T [C] [I7]=[-c r^] (2-95) 

The natural frequency of the proportionally-damped viscous 

system is 

where q ^ is equal to the natural frequency of the undamped 
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system. 

As the proportional damping of the system is i n c r e a s e d , 

the natural frequency is decreased according to equations 

(2-91) and (2-96). The modulus of the eigenvalue Q r i s 

independent of the amount of damping and the proportionality 

factors o£ and /$ . 

2.3.3 EXCITATION BY A GENERAL FORCE VECTOR. 

The characteristic equation of a viscously-damped system 

(2-67) does not constitute a standard eigenvalue equation. 

In order to obtain a convenient solution for equation (2-65) we 

apply a different approach to the solution of the equation 

of motion for free vibrations by using the following 

transformation: 

Define a new vector {y} of order 2n 

(2-97) 

and substitute this into (2-65) 

[C : MJ{y}+[K : 0]{y}=0 (2-98) 

As there are now n equations with 2n unknowns we add the 

dummy equation: 

[M : 0 ] { y } + [ 0 s-M]{y}=0 (2-99) 

to give a set of 2n equations: 

0 " 

-M 

fy} = 

"c : M TK : 
— . — (y}+|—: 
_M : 0_ [0 : 

{y} = 0 (2-100; 

or 
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[A]{y}+[B]{y}=0 (2-101) 

st 

Consider now a trial solution of the form {y}={Y}e 

which yields a standard eigenproblem 

(s[A]+[B]){Y}=0 (2-102) 

There are 2n e i g e n v a l u e s , s r , and associated e i g e n v e c t o r s , 

{0}^ , each satisfying the equation: 

(s r[A] + [BJ) { 0 } r = o (2-103) 

This equation is of similar form to that of the undamped 
system and p o s s e s s e s similar orthogonality p r o p e r t i e s 

T, 

and 

[0] [A] [ © ] = [ - a 

[0] T[B] [ 0 ] = [ - b r J 

-b 
s 
r a 

r 

(2-104) 

(2-105) 

, (2-106) 

These eigenvalues and eigenvectors are g e n e r a l l y complex 

(for underdamped systems) and occur in conjugate pairs [is] . 

Consider now the harmonic forced vibrations where the 

a m p l i t u d e s of the harmonic forcing vector {P} are 

F 
[P} = 

0 
(2-107) 

2n 

and the equation of motion is 

[A] {Y} + [B] {Y} = {P} 

Assume a solution of the form 

X 

(2-108) 

iwx 

io>t 
(2-109) 

and that the vector {Y} may be expressed as a linear 

combination of the 2n linearly independent v e c t o r s {0} 
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hence 

2n 

rn 

where y is an unknown coeffecient. 
r 

( 2 - 1 1 0 ) 

T Substitute this into (2-1218) and pre-multiply by {6} , 
s 

giving: 

iWe} T
s[AJ 

. 2n 2n 

^ T F j © } (2-111) 
r- - p - - g* ^ ^ 'X S 

rn m 

Because of the orthogonality conditions, equation (2-111) 

reduces to 
m t . T1 (2-112) { © } r + [ 6 } ^ [ B ] { 0 } r ) = { 0 } ^ { P } 

or, using the notation introduced in (2-104) and (2-105), to 

_{0}£{P}_ {0}p{P} 

r a r(ioj-s r) 
(2-113) 

The solution of equation (2-108) can thus be written in 

the following manner: 

[ X 
i * * * 
iooX 

2n T 

^ i 

{©^ (P>{©} 
(2-114) 

rTT1 a r ( i ^ - S r ) 

Because the eigenvalues and the eigenvectors occur in 

conjugate pairs equation (2-114) may be written as: 

X 

i cox 

^ {0}^{p} {0}^ ^ { e * } l { p } { & * } . 

H H a (i^-s ) tlH a (iw-s ) 
z 

2-115) 

This is the steady-state response of a viscously-damped 

system due to harmonic excitation in terms of the 2n modes 

{0} . r 
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It h a s been shown that when the system is proportionally, 

d a m p e d , the mode shapes are real. For this case expression 

(2-115) is much simpler; we may assume a solution of the 

form: 

n 

{ X } = X / r { n } r (2-116) 
r=i 

Insert into equation (2-65) and pre-multiply by {H}"^. 

Due to the orthogonality c o n d i t i o n s , we get 

y - ^ 2 { n } £ [ M ] { n } r + i H n } £ [ c ] { n } r + { n } £ [ K ] {rr} r={n}£{F} (2-117) 

Because { f O r is a real v e c t o r , we can use the notation 

introduced in expressions (2-79) and (2-87) to obtain: 

{n}^{F} 

V = ^ T (2-118) 

m r(-oj +2i6>O p£ r+fl£) 

Substitute into (2-116) 

{n} ̂ {F} {r/} 

(X}= — X - X (2-119) 

r r 

Equation (2-119) is the steay-state response of a 

proportionally-damped v i s c o u s system due to harmonic 

e x c i t a t i o n , described in terms of its proportional normal 

m o d e s , {rr}^. 

2.3.4 EXCITATION BY M O N O - P H A S E D FORCES 

W h e n the harmonic forcing vector {F} is real, we assume 

that the response of the system has the same frequency but 

with a certain phase lag q relative to the force, i.e. 
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{ q } = { Z } e i ^ t " 0 ) (2-120) 

where {Z} is a real vector of a m p l i t u d e s . 

Substituting (2-120) into equation (2-65) 

(-«£[Mj+i [CJ + [K]) { Z } e ~ 1 0 = { F } (2-121) 

and separating into real and imaginary p a r t s , we g e t 

( - o j 2 [ m ] + [ K ] ) { Z } COS0+<D [C] {Z}Sin0={F} (2-122) 

(-o> 2[M] + [K]) {Z}Sin0+ci>[C] {Z}Cos0=0 (2-123) 

Equations (2-122) and (2-123) are similar to e q u a t i o n s 

(2-53) and (2-54) for the hysteretically-damped system and 

may be analysed in the same w a y . The forcing vector n e e d e d , 

in this c a s e , for the response to be in quadrature with the 

excitation is 

{F} =a)[C] {17} (2-124) 
S o 

The 'forced proportional m o d e s ' of a v i s c o u s l y - d a m p e d 

system are identical to those obtained for the 

hysteretically-damped o n e . A c t u a l l y , this result is 

independent of the model of damping chosen and is valid for 

the more general case of equation (2-1). The force 

distribution needed then is; 

{F} s=(o>[C] + [ H ] ) { n } s (2-125) 

The a n a l y s i s of the proportionally-damped v i s c o u s system 

is similar to that for the hysteretic case and all the 

conclusions drawn there apply for this c a s e . The real 

response of the system is then, 

a k +P>C 
{z} — 2 T (2-126) 

This result which states that the system can be forced 
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to vibrate in a 'forced proportional m o d e 1 which is 

identical to the undamped normal mode of the system, 

regardless of the damping model assumed,is not fully 

r e c o g n i z e d . Although it w a s proved by Fraeijs de Veubeke in 

1948 [19] and later (1963) emphasised by B i s h o p and Gladwell 

[11] there are some more recent investigators who appear not 

to a c c e p t these results [20,16]. (see appendix) 

2.3.5 EXCITATION BY A SINGLE FORCE 

The response of the system to a single harmonic force F k 

can be extracted from the general expression (2-115) by 

setting {P} a s , 

Using the notation introduced in (2-79), equation (2-115) for 

this case is 

0 

(2-127) 

0 

n 

r 

n 
( . X ) {<s>*} (2-128) 

where ( r ® k ) is the k'th e l e m e n t in the r'th eigenvector 

{0} . 
r 
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Denote, 

W 
W - ^ ^ l e } , (2-129) 

and the equation (2-128) can be written now as: 

X 
• • • 

icoX 

n 

- X 
:k (2-130) 

where 

{ A } = 2 ( y e { r G k } - I r a { A } v i - f r> 

{ S, } = 2Re { G, } 
k lr k 

(2-131) 

(2-132) 

Equation (2-130) is the response of a viscously-damped 

system due to a single force excitation. 

From this equation we can extract the single response 

x^ and derive the general receptance 

X. 
(2-133) 

where ( R., ) and ( S., ) are the j ' th elements in their 
r jk r ok 7 J 

respective vectors. 
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2.4 CONCLUSIONS. 

It appears that there exists no clear definition of one 

of the main terms used in modal analysis - the 'mode shape'. 

In this chapter, we have tried to define this term precisely 

and to point out some of its special forms. 

The basic term is the 'normal mode shape' which is 

associated with the problem of free vibrations only. A 

system possesses n normal modes of vibration which are 

independent of each other: i.e. when it vibrates freely in 

one of its normal modes there is no transfer of energy to 

any other normal mode. 

The exact nature of the normal modes revolves around the 

form of damping present in the system. For the theoretical 

case of an undamped system the normal mode shapes are real 

and orthogonal with respect to the system's matrices [M] and 

[K]; these are the 'undamped normal modes'. 

When the damping has a special form whereby it is 

proportional to the stiffness and/or the mass distribution 

of the system, the modes are identical to the undamped 

normal modes and exhibit the same orthogonality conditions; 

these are the 'proportional normal modes'. 

If the model assumed for the damping is the hysteretic 

one then the natural frequency associated with the propor-

tional normal modes is equal to the natural frequency of the 

undamped normal mode. When the damping is assumed to be 

viscous, then the natural frequency is a function of the 

amount of damping present in the system. 
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For the general form of damping, the normal modes are 

complex and there is a marked difference between these 

properties depending on the model of damping used. 

When the damping is hysteretic, the system posseses n 

complex normal modes which are orthogonal with respect to 

the system's matrices. For the viscous c a s e , there are 2n 

complex mode shapes (actually, n conjugate pairs), each of 

order 2n. These mode shapes are orthogonal with respect to a 

special combination of the system's matrices and each one 

describes both a displacement and velocity 'shape' of the 

system. 

Of considerable practical importance is the case where 

the system is excited by a set of mono-phased forces. It has 

been shown that regardless of the form or model assumed for 

damping, it is possible, by proper tuning of the amplitudes 

of the mono-phased forces, to excite the system into a mode 

which is identical to the (real) proportional normal mode; 

this is the 'forced proportional mode'. When the damping is 

of the more general form, this response is possible only at 

a frequency which is equal to the undamped natural frequency 

and then it is in quadrature with the excitation. When the 

damping is proportional, this response may be obtained at 

any frequency but then it is not in quadrature with the 

exci tation. 

There is no point in a comparison between the two models 

of damping just presented. A real system is neither hyster-
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etically nor viscously-damped; these representations are 

just mathematical conveniences and the debate as to which 

one is 'better' may never end; each one of them has its own 

advantages and drawbacks depending on the particular case. 

However, it seems that for the case of harmonic 

vibrations the hysteretic model is analytically simpler a n d , 

as will be seen later, it is more amenable to experimental 

analysis. As a matter of fact, this model is valid only for 

harmonic response. Nevertheless, it is found that the two 

models are used almost equally in the field of modal 

analysis by different investigators, and when used in 

experimental cases they are practically equal. 

* 
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3. REAL AND COMPLEX NORMAL MODE SHAPES. 

3.1 INTRODUCTION. 

It has been shown that the nature of the normal mode 

shapes of a system revolves around the form of damping. For 

the particular case where the damping is proportional, the 

normal modes are real regardless of the amount of damping 

present in the system. The addition of nonproportional 

elements changes the real normal modes into complex normal 

modes. The favourable condition of proportional damping is 

not often encountered in practice and experiments suggest the 

need to assume complex-type modes rather than real ones. 

Fig. 3-1: Three degree of freedom model of a beam. 

A physical interpretation of the concept of a 'complex 

normal mode' can be illustrated by the following simple 

example: 

Consider the lumped-mass representation of a simply-

supported beam (Fig. 3-1) . The first normal mode shape of 

this beam may be described graphically (Fig 3-2a). However, 

in general not all the points in a normal mode shape 

necessarily reach their maximum or minimum position 

simultaneously. This 'phase lag' between the times when the 

X X2 x 3 

1 1 i 
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various points in a mode reach their extreme positions can 

be visualized by plotting the magnitude of the relative 

amplitude of each of the points in a mode as a rotating 

vector (Fig 3-2b). The reason that not all the points reach 

their extreme positions simultaneously is due to the fact 

that the damping forces are not distributed proportionally 

to the inertial and elastic forces in the system. 

Mead [231 suggested that the physical interpretation of 

this phase difference is that there is an energy-carrying 

wave through the system trans ferring energy from points where 

there is an excess of energy input over energy dissipation, 

to areas where there is an excess of dissipation over energy 

input. 

Fig.3-2: Vector representation of a complex normal mode 

shape. 

The 'complexity' of a normal mode shape may be 

quantified by the maximum phase lag withinthe m o d e , q . 
max 

This is an arbitrary parameter which might enable us to 

decide which normal mode is more complex. 

The level of 'complexity' of a normal mode is a function 
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of the nonproportionality between the damping matrix and the 

stiffness and/or the mass m a t r i x . It is easily shown that 

the normal modes are real for proportional systems. However, 

for the nonproportional c a s e , the relationship between the 

normal modes and the system matrices is only established by 

solving the complex eigenproblem (which is basically a 

solution of an n-degree complex polynomial) in order to 

derive the complex eigenvalues and a solution of a set of 

n-1 linear complex equations in order to derive the 

(complex) normal modes. 

The final result of an experimental modal survey using 

the single-point excitation method is a set of complex, 

mass-normalized normal mode shapes {<2>}r. However, for 

comparison with theoretical studies by finite element 

calculations, or with results of a multi-point excitation 

test, the (real) proportional normal modes are required. 

Apparently, the most direct way to derive these modes is to 

calculate the system matrices from the orthogonality 

relationship, i.e 

[K]=Re([(D]iE[- j^j-1) (3-1) 

[ H ] = I m ( [ ( D r T r ^ ] [<D]"1) 

Once these matrices are calculated, the eigensolution 

for the undamped system can be obtained, using [M] and [K] 

only, and hence the required undamped normal modes can be 

determined [24,253. 

Unfortunately, this simple method is impractical because 



it requires the knowledge of all the (n) normal mode shapes 

of the system and, generally, experimentally-identified mode 

shapes constitute an incomplete set. Using such an 

incomplete set in the above scheme results in system 

matrices which are incomplete and which h a v e , therefore, no 

physical meaning. (They might be called ' pseudo system 

matrices'). The inherent limitation of this approach may be 

demonstrated by this general example: 

For the nxn complete system, there exists a matrix of 

mass-normalized eigenvectors [<Dn] . This matrix is orthogonal 

with respect to the mass matrix [ M n ] , i.e 

[ O n l
T [ M n ] [<Pn] = [I] (3-2) 

N e x t , the system, may be modelled by p lumped masses [Mp] 

where p<n, so that its normal mode shapes are identical to 

the first p normal modes of the complete (n) system. For 

this system there exists a matrix of mass-normalized 

eigenvectors [<Dp] . This matrix is also orthogonal but with 

respect to the corresponding mass matrix [Mp], i.e 

[d>p] T[M p] [<D ] = [I] (3-3) 

Now, if we truncate the [d^] matrix by taking the first 

p eigenvectors and reducing the number of elements in each 

eigenvector from n to p, we can create a truncated 

(incomplete) square matrix of eigenvectors [O^] which 

describes the normal mode shapes of the first p modes. 

The truncated eigenvector matrix [d>_(J is orthogonal with 

respect to the mass matrix [M p] but because its elements are 

mass-normalized with respect to the complete mass matrix 



-58-

[1^3, the orthogonality relationship is: 

[<P tj
T [Mp] [0>t] = H m t _ ] (3-4) 

where [— — ] is the truncated modal mass matrix. [<D̂ .] is 

related to [<D ] by [-ntj. ] i.e 
i 

[<Dt] = [<Dp] ] 2 (3-5) 

It is clear that the knowledge of the truncated 

(incomplete) eigenvector matrix [a>-{-] does not enable us to 

derive the physical mass matrix [Mp] because of the absence 

of the diagonal normalizing matrix [— m — ] . 

When a system is experimentally-identified, the derived 

eigenvectors [ip^] are normalized with respect to a mass 

matrix [M n] ; calculating the reduced mass matrix [Mp] by 

assuming that [^m^.— ] = [I] produces a pseudo mass matrix 

which has no physical meaning. 

Much attention has been devoted to this problem 

[25,28,29,31 J and it is commonly agreed that there is no unique 

solution to it. Nevertheless, many investigators tried to 

'solve' it by adding more constraints to the problem and 

thus limiting the >umber of solutions. Thoren [27] solved it 

by assuming that [— —]-[I] and was satisfied that the 

derived system matrices reproduced the original system 

response. Ross [26J showed that the system matrices need not 

necessarily have a physical meaning so long as they satisfy 

some energy constraints and reproduce the eigensolution. 

Imregun [30] , who investigated the problem of reducing the 

size of the matrices representing a system, limited the mass 

matrix to be diagonal, and the sum of its elements to be 
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equal to the total mass of the system. Gleeson [40] checked 

the possibility of using the pseudo matrices for prediction 

of the effect of changes in the mass or stiffness of the 

system and found that, except for very simple synthesised 

cases, the pseudo-matrices do not provide satisfactory 

results. 

Another branch of investigation uses the pseudo mass 

matrix as a means for improving theoretical or intuitive 

estimates of the physical mass matrix [32,33,34,35] . 

All these works are restricted to undamped or propor-

tionally-damped systems whose normal modes are real and the 

derived pseudo mass matrix is, therefore, real as well. 

However, when the system is nonproportionally-damped and its 

normal modes are complex, the pseudo mass matrix is complex 

and cannot be used as such for derivation of the undamped 

normal modes. 

A simple numerical example illustrates this point: 

consider a nonproportionally-damped six degree of freedom 

simple system (Fig. 3-3). 

- * 1 J 2 JFC J<4 J <5 

4 
- v w — 

4 

— M — 
4 

— 

4 

— 

4 
~V\A/— 

1 

— E L — 
8 

1 

— E I — 
8 

1 

— — 

8 

1 1 

8 

4 
-VW~ 

—£3— 
8 

Fig. 5-5: Six degree of freedom nonproportional system 
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The complete mass matrix of this system is: 

1 . 0 0 
o 
o 
o 
o 
o 

o 
1 .00 

o 
o 
o 
o 

o 
0 

,00 
0 
0 
0 

0 
0 
0 

i .00 
0 
0 

0 
0 
0 
Q 

00 
0 

0 
0 
0 
0 
0 

1 .00 

The complete set of complex mass-normalized normal modes 

of it are (expressed by modulus and phase in degrees) is: 

2321 176.276 .4186 -178.858 .5210 - .325 .3211 064 .2319 -.041 .4181 -179 .381 
4182 -2.882 .5224 1.821 .2318 178 .808 .2317 -1 566 .4179 -.031 .3213 -179 .696 
324 4 178.710 .2339 -174.508 .4178 178 .608 .4182 -178 133 .3211 -.071 .2319 179 .774 
3220 1.302 .2324 178.454 .4178 - .221 .4177 178 781 .3211 -.104 .2322 1 .107 
4194 -178.883 .5214 -1.538 .2321 .742 .2319 - 874 .4180 .235 .5209 .301 
2328 2.163 .4178 177.661 .5214 -178 .332 .5215 636 .2320 .285 .4178 - .386 

The reduced (incomplete) set of modes which is created 

by ignoring mode six and removing coordinate x1 is: 

5224 
,2339 
,2324 
,5214 
,4178 

1 .921 
-174.508 
179.454 
-1.559 
177.991 

2319 
,4179 
,4179 
,2321 
,5214 

179.808 
179.909 

- . 2 2 1 
.742 

•179.392 

2317 
4182 
,4177 
,2319 
,5215 

-1.599 
-179.133 
178.791 
-.974 
.959 

.4179 

.521 1 

.521 1 

.4180 

. 2320 

,051 
,071 
, 104 
,255 
,295 

5213 
,2319 

, 5209 
,4178 

•179.999 
179.774 
1 . 107 
-.501 
-.389 

The pseudo-mass matrix derived according to (3-1) from 

this incomplete set is: (expressed by real and imaginary 

parts) 

4. 2449 .0954 -4. 0410 
-4. 0410 -.2314 9. 0290 
4. 0290 .4284 -5. 0072 
-3. 2271 -.4290 4. 0079 
1 7945 .2117 — 2294 

,2314 
,4284 
,8739 
,8495 
,3261 

4.0290 
-5.0072 
5.9734 
-3.9754 
2.2131 

,4284 
,8738 
,9178 
,8418 
,4348 

-3.2271 
4.0078 

-3.9754 
4.1753 
-1.7984 

,4290 
,8485 
,8418 
,7589 
,3958 

1.7945 
-2.2294 
2.2131 
-1.7884 
1.9847 

.2117 
-.3281 
.4348 

-.3958 
.2052 
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It is clear that no physical meaning can be attributed 

to this complex 'mass' matrix and that there is no 

resemblance between this matrix and the original (complete) 

physical mass matrix. 

For comparison purposes with theoretical studies the 

(real) proportional normal modes are needed. Experimental 

evidence (see chapters 5 and 7) suggests, however, that, if 

properly measured and analysed, typical lightly-damped 

systems do not exhibit high levels of complexity. We shall 

examine therefore, the relationship between the proportional 

normal modes and the complex normal modes to find how big is 

the difference between them and how sensitive is this 

difference to changes in the system's parameters. A 

theoretical and numerical, study of a simple two degree of 

freedom system will enable us to draw some general 

conclusions regarding a multi-degree of freedom system and a 

numerical study of such a system will demonstrate these more 

general results. 

As a first step in this study it was found necessary to 

define two new useful parameters: the 'nonproportionality 

factor' and the 'generalized loss factor'. 

3.1.1 NONPROPORTIONALITY FACTOR 

It is straightforward to decide whether a system is 

proportionally-damped or not by examining the relationship 

between the system's matrices. However, once we realize that 
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the system is not proportionally-damped, a parameter which 

expresses how nonproportional the system is may be defined 

as follows: 

According to the general condition set by Caughey 

(2-38), it is sufficient for the damping matrix [H] to be 

proportional to either the stiffness matrix [K] or the mass 

matrix [M] so that the system will possess(real) propor-

tional mode shapes. 

We will restrict, therefore, our check of the degree of 

the nonproportionality of the system to the relationship 

between the stiffness matrix [K] and the damping matrix [H]. 

Let us denote each element in [H] by h^j and each 

element in [K] by k̂ -j and plot h^j v s . k^j (Fig. 3-4). A 

straight line, hs^_, is fitted through these points so that 

the sum of the squares of the deviations from this line is 

minimized. 

Fig.3-4: Stiffness elements v s . damping elements 
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The equation of this line is: 

h s l ~ a 0 + a 1 k (3-6) 

If the standard error of the fitted line is defined as: 
n n 

V ^ 
2 A ^ ( k . . ) ] 

S s l " '
=1
 2

 ( 3
"

7 ) 

n 

and the standard deviation from the average h is 
n n 

o ^ ^ ( h . .-h)2 

sb 2 — ( 3 " 8 ) 

n 
where 

Z , A h . , 
h= 1 = 1 1 3 (3-9) 

then the nonproportionality factor, J n , is defined by, 

/ S s l \ 2 
j n = l - ^ — J (04J n4l) (3-10) 

For a proportionally-damped system where 

[ H ] [ K ] (3-11) 

then 

h i j = a k i o ( 3 " 1 2 ) 

and 

h _ (k. . (3-13) 

therefore 

S s l = 0 a n d J n = 1 (3-14) 

For a proprtionally-damped system, and as the 

nonproportionality of the system is increased (by 

changing one parameter in the damping matrix, for example) 
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J n gets smaller and smaller. 

For a given nonproportional system where 

[H]*"[K] (3-15) 

we may calculate a certain nonproportionality factor J n . If 

the damping matrix [H] is changed to CH^] by multiplying it 

by a constant 8, 

[H 1]=5[H] (3-16) 

.2 
the n the standard error and the standard deviation S k 

are, 

-2 2 2 
S s l -i S a l (3-17) 

-2 2 2 
(3-18) 

so that J maintains its previous value. We see that as long 

as the same form of nonproportionality is kept, J n is 

independent of the actual values of damping or stiffness 

present in the system. 

3.1.2 THE GENERALIZED LOSS FACTOR 

Because the nonproportionality factor is independent of 

the amount of damping present in the system, an additional 

parameter, fj , which describes the overall magnitude of the 

damping is defined by 

* 
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y 2 
Z_J OJ T] 

- rn r r 
1 = — S (3-19) 

I 
rs1 

and is referred to as the 'generalized loss factor' of the 

system. 

It has been shown (par.2.2.1) that the diagonal matrix 

2 
of the eigenvalues, H - y ^ J , can be derived from the diagonal 

matrices of the modal masses and modal stiffnesses 

[ - L ] (3-20) 

or using expressions (2-27) and (2-21) 

= ( [ M ] [f7] )~1( [f] T ([KJ +i [H] ) iwl ) (3-21) 

or 

where 

2 
= [q/] [D] [T7] (3-22) 

CD] = [M]""1([K]+i[H]) (3-23) 

It can be shown that for any two matrices [A] and [B] 

the traces of the products [A][B] and [B][A] are equal, 

namely 

tr([A][B])=tr([B][A]) (3-24) 

Using property (3-24), we may write 

tr ( ( [ y f [D]) [V] ) - tr ( ( [V] [ w f ) [D]) = tr ( [D]) (3-25) 

and because 
n 

tr([D]) = ̂ A 2 (3-26) 
rn 

or 

n 

tr([Mf 1 ([K]+i[H]))= (3-27) 

from which then 
r:i 
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n 

^ ^ = tr([M]"1 [K]) (3-28) 
rn r 

V 3 - 2 -1 
tr([M] [H]) (3-29) 

rn 

The generalized loss factor, ff, may be calculated, 

therefore, from 

tr([M]" 1 [H]) 
rj = ( 3 - 3 0 ) 

tr([M] ~'[K)) 
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3.2 COMPLEX NORMAL MODES OF A TWO-DEGREE, -OF-FREEDOM-SYSTEM 

Consider a general hysteretically-damped t w o - d e g r e e o f -

freedom system (Fig. 3-5). Initially, the system is propor-

tionally-damped thus having (real) proportional normal 

modes. In order to establish a relationship between the 

proportional normal modes and the (complex) normal m o d e s , a 

nonproportional damping element, denoted by /u, is added to 

the left hand damper a k * . 

Fig. 3-5: General two-degree - of-freedom system 

We may assume, without loss of generality, that 

m 1 = m 2 = l (3-31) 

and then the equation of motion for the system may be 

written as: 

11 0] [ x J \ T k , + k 9 -ko "1 f k 1 + k p + ( " - k P M x J 

K M R H K 0 ( 3 " 3 2 ) 

0 1J l x 2J |L - k 2 k^+k^J I - k 2
 k 2 + k 3 J j x 2 
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or using a shorter notation 

1 0 

0 1 

a c 

c b 
+ i a 

a+F c 

c b 

X 1 
x 2 

= 0 (3-33) 

The characteristic equation of the system is 

a (1+ia) +iaiu-A c(l+ia) 

c(l+ia) b(1+ia)-A 
= 0 (3-34) 

If we denote 

A=a+b 

D=ab-c 

then the quadratic characteristic equation is 

A -BA+C=0 

where 

B=A (1+ia;) +ia/u 

2 . 

C=D (1+1 or) + i c t f j . b { l + i a ) 

The eigenvalues, A r , are found by solving equation 

(3-35) 

(3-36) 

(3-37) 

(3-38) 

(3-39) 

(3-37) i.e 

A = 

/ 2 2 
A ( l + i a ) +iaju ±y( A -4D) (1+ia) + 2 i a f j i ( a - b ) ( 1 + i a ) - a p 

(3-40) 
r 2 

In order to derive the eigenvectors { x } r , the following 

homogeneous set of linear equations is to be solved 

a (1+ia) Ap c(l+ict) 

c (1+ia) b (1+ia) -A-
= 0 (3-41) 



-69-

From this set it is possible to derive only the ratio of 

the elements in each eigenvector. We may assume, therefore, 

that 

x 2 = l (3-42) 

and then 

A r - b ( l + i a ) 
x s (3-43) 

c (1+ia;) 

or 

uj (l+irj ) -b (1+ia) 
x-i =— (3-44) 

C(l + iar) 

The calculation of the complex number x>j may be 

described by a vector diagram (Fig. 3-6) in which the angles 

are 
-1 - _ -1 * _ -1 

^ = og _ _ - _ _ 

and 

a = tg ^ ; 1 T = t q n T ; P r = tg P r (3-45) 

s(l+i/> r)=^(l+i^ r) -b(1+ia) (3-46) 

so that 

s(1+i p ) 
x ^ — (3-47) 

C (1+iar) 

Examination of the vector diagram can give us some clues 

as to the 'complexity 1 of x^ (the 'complexity' is measured 

by the angle P^-a; the larger \P , the more complex is 

the normal mode shape). 

For a proportionally-damped system (^=0) 

and therefore 

rj = a 
r 

p = a 



Fig. 5-6: Two degree of freedom system - vector diagram for 

calculation of the mode shape for close modes 



- 7 1 -

and then the phase angle of x ^ , P T - ® , is zero and the mode 

shape is r e a l . Once the system becomes nonproportional 

(/">0) , these simple relationships no longer apply and x^ 

becomes c o m p l e x . 

2 

W h e n the two v e c t o r s b and ^ r ( w h o s e resultant is s ) , 

are of the same order of magnitude i.e 

| Z - b | = 0 (3-48) 

the phase angle of vector s, P'r, is v e r y sensitive to any 

small difference between a and and is 

7 T + ( 5 ' f f ) 

P r ~ — (3-49) 

and the phase of x^ is 

(3-50) 
2 

From equation (3-40) we can derive the e i g e n v a l u e s for 

the proportional system (/"=0) i.e 

/ 1 

a+b ± V ( a - b ) 2 + 4 c 2 

A = (1+ia) (3-51) 

r 2 

It is clearly seen that for a^b and c<<a 

A 1 ^ a ( l + i a ) = b(l+i») (3-52) 

The physical meaning of this is that the stiffness k^ 

which c o u p l e s the two m a s s e s is relatively small and each of 

them b e h a v e s , t h e r e f o r e , as a one-degree-of-freedom system 

with very close natural f r e q u e n c i e s . 

W h e n this system is made n o n p r o p o r t i o n a l , the 

e i g e n v a l u e s are 

+ (3-53) 
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so that 

2 2 
^ = ^ 2 = a = b (3-54) 

From e q u a t i o n (3-46) it is clear that 

P T » a (3-55) 

from which we m a y conclude that the two e l e m e n t s in the 

e i g e n v e c t o r { x } ^ are of the same order of m a g n i t u d e but w i t h 

a r e l a t i v e l y large phase d i f f e r e n c e (Fig. 3 - 6 ) . 

If the s t i f f n e s s coupling e l e m e n t 1<2 is increased we g e t 

a w h o l e range of cases for w h i c h 

|</-b|f0 (3-56) 

For these c a s e s , P.r is less s e n s i t i v e to the a d d i t i o n of 

n o n p r o p o r t i o n a l damping e l e m e n t s and as k£ is increased the 

s p e c t r a l d i s t a n c e between the n a t u r a l f r e q u e n c i e s is 

increased (Fig. 3-7) and 

~*-Pr — 0 (3-57) 

H o w e v e r , if the n o n p r o p o r t i o n a l i t y factor a is 

m u l t i p l i e d by a c o n s t a n t then it is clear from equation 

(3-53) that the loss factor is m u l t i p l i e d by the same value 

and the 'complexity* of the system is, t h e r e f o r e , 

a p p r o x i m a t e l y m u l t i p l i e d by the same c o n s t a n t . We may s a y , 

t h e r e f o r e , that the 'complexity' of the system is in d i r e c t 

p r o p o r t i o n to the o v e r a l l level of damping (indicated by the 

g e n e r a l i z e d loss f a c t o r ) . On the other h a n d , the real part 

of each e i g e n v a l u e , w h i c h d e s c r i b e s the n a t u r a l f r e q u e n c y , 

is h a r d l y a f f e c t e d by c h a n g e s in the damping of the s y s t e m . 

These results can be illustrated by n u m e r i c a l e x a m p l e s 

using a system with the following p a r a m e t e r s : 



i 
-j 

i 

Pig.3-7: Two degree of freedom - vector diagram for calculation 

of the mode shape for separate modes 
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k 1=3-l0
4" N/m ; k 2 = 1 0

5 N / m ; k 5 = 3 . 0 5 ^ / m ; a = .01 

T h i s is a case w h e r e the c o u p l i n g s t i f f n e s s b e t w e e n the 

m a s s e s is r e l a t i v e l y small and the natural f r e q u e n c i e s of 

the two normal m o d e s a r e , t h e r e f o r e , v e r y close (small 

spectral d i s t a n c e ) . 

The e i g e n p r o b l e m for this system w a s solved for 

d i f f e r e n t v a l u e s of an added n o n p r o p o r t i o n a l d a m p i n g 

e l e m e n t , ju, and the r e s u l t s are s u m m a r i z e d in T a b l e 3 - l a . 

N e x t , the c o u p l i n g s t i f f n e s s e l e m e n t w a s i n c r e a s e d to 

k 2 = 7 - 1 0
5 N / m 

so that the spectral d i s t a n c e b e t w e e n the natural 

f r e q u e n c i e s w a s i n c r e a s e d . Table 3 - l b s u m m a r i z e s the results 

of this e i g e n p r o b l e m a s a function of /"/a 

A g r a p h i c a l c o m p a r i s o n of these two cases is g i v e n in 

F i g . 3-8 from w h i c h it is clear that: 

(i) A s the c o u p l i n g s t i f f n e s s is i n c r e a s e d , the 

' c o m p l e x i t y ' of the normal mode s h a p e s b e c o m e s less 

s e n s i t i v e to n o n p r o p o r t i o n a l d a m p i n g . 

(ii) The natural f r e q u e n c i e s are i n s e n s i t i v e to c h a n g e s 

in the d a m p i n g m a t r i x but are s e n s i t i v e to c h a n g e s in the 

s t i f f n e s s m a t r i x . 

(iii) The moduli of the normal mode shapes are c h a n g e d 

as the system b e c o m e s more and more n o n p r o p o r t i o n a l but this 

change is r e l a t i v e l y small for large v a l u e s of n o n p r o p o r -

tionali t y . 

(iv) The n o n p r o p o r t i o n a l i t y factor of a system is not by 

itself a s u f f i c i e n t i n d i c a t i o n as to the ' c o m p l e x i t y ' of the 



- 7 5 -

Fig. 3-8: Two degree of freedom system; close vs. separate 

modes as function of added nonproportional damping 

element. (a) relative change of moduli 

(b) complexity of the modes 

(c) nonproportionalty factor 
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m o d e s h a p e s of that system a s the spectral d i s t a n c e a l s o h a s 

a big influence on the r e s u l t s . 

These r e s u l t s relate to a simple system for which the 

a d d i t i o n of n o n p r o p o r t i o n a l damping w a s c o n f i n e d to one 

e l e m e n t . N e v e r t h e l e s s , the r e s u l t s o b t a i n e d are g e n e r a l (for 

a n y two d e g r e e s of freedom system) and r e m a i n the same for 

a n y other form of n o n p r o p o r t i o n a l i t y (although the a l g e b r a i c 

e x p r e s s i o n s involved become far more c o m p l i c a t e d ) . 

In the f o l l o w i n g p a r a g r a p h s they are e x t e n d e d to the 

g e n e r a l m u l t i - d e g r e e of f r e e d o m s y s t e m . 

IL 
a 

1 J n 
Hz 

% o,2 

Hz 
% p - a 

deg 

Xi 
x2 

0 .010 1.000 27.6790 .0100 33.4810 .0100 O.OOC 1.037 

2 .018 .750 27.6820 .0203 33.4786 .0165 2.455 1.036 

4 .0261 .596 27.6908 .0305 33.4713 .0231 4.914 1.036 

6 .0342 .520 27.7055 .0407 33.4591 .0297 7.382 1.035 

8 .0422 .477 27.7263 .0509 • 33.4419 .0362 9.864 1.035 

IL V J n 
a J2 

p - a Xi 
x2 

Hz Hz deg 

0 .010 1.0 27.6670 .010 28.5951 .01 0.0 1 .280 

2 .0196 .676 27.6861 .0244 28.5766 .0170 16.885 1.291 

4 .0292 .533 27.7471 .0354 28.5174 .0233 35.094 1.342 

6 .0388 .470 27.8566 .0510 28.4104 .0271 55.801 1.517 

8 .0484 .436 27.9553 .0726 28.3133 .0248 71.981 2.031 

Table 3-1: Two degree of freedom system - modal parameters for 

close modes (&) and for separate modes (b) 
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3.3 EIGENVALUES OF A N O N P R O P O R T I O N A L S Y S T E M . 

The complex eigenvalues of a damped system represent the 

natural frequency and the modal loss factor of each normal 

m o d e . It h a s been shown that for a proportionally-damped 

system the natural frequencies are equal to those of an 

undamped system and if [H]=<*[k] then the modal loss f a c t o r s 

are all identical and equal to a . 

In this paragraph we shall investigate the effect of 

adding nonproportional damping elements to an otherwise 

proportionally-damped system on the derived e i g e n v a l u e s (by 

comparison to those for the p r o p o r t i o n a l l y - d a m p e d s y s t e m ) . 

D e f i n i t i o n of the problem: 

Consider a p r o p o r t i o n a l l y - d a m p e d system described by: 

[M]{x}+[K]{x}+i[H]{x} — 0 (3-58) 

where 

[H] =<*[ K] (3-59) 

the eigenvalues of which are 

A 2 = ^ 2 ( l + i a) (3-60) 

Determine the eigenvalues of the modified system 

described by 

[M]{x}+[K]{x}+i([H]+[H]){x}=0 (3-61) 

where [H] is symmetric and a t least semi-positive d e f i n i t e . 

This problem was investigated extensively for the most 

general c a s e s in connection with numerical a l g o r i t h m s used 

for the solution of eigenvalue problems [12] . 

These general studies w e r e , h o w e v e r , restricted to small 
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perturbations# but because the m a t r i c e s involved in our 

problem have some special features such as symmetry and at 

least semi-positive d e f i n i t e n e s s , it is possible to lift this 

restriction so that the magnitude of [H] is not l i m i t e d . To 

this e n d , some general theorems are modified for our 

particular case and are given here without writing out the 

complete proofs, although they can found in references 

[14] , [37] and [38]. 

Theorem 1: 

If we denote the general complex eigenvalue of 

[M]"1 ([K] + i([H] + [H])) (3-62) 

by 

A r = u r + i v r ( 3 ~ 6 3 ) 

then the value of the real p a r t , u^,, is bounded by the 

maximum and minimum values of the real positive e i g e n v a l u e s 

of [M] [K] which are the natural frequencies of the undamped 

(or proportionally-damped) system, i.e 

2 2 
0 < ^ < u r < ^ n (3-64) 

The value of the imaginary p a r t , v r , is bounded by the 
non-negative e i g e n v a l u e s of 

[M]"
1
 ([H] + [H] ) (3-65) 

If we denote the eigenvalues of (3-65) by V' then 

0 4 V , <<v ^ y (3-66) min x max ^ O D ; 

The bounds of the complex eigenvalues can be 

illustrated by a plot in the complex plane (Fig. 3 - 9 ) . The 

e i g e n v a l u e s lie w i t h i n the hatched area which is limited by 

the extreme natural frequencies of the undamped s y s t e m , by 
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_2 
and F . and by part of the areas with radii |A I 

IIlcLJL ILL_LI1 x l 

_2 

and |A>jl. The two corners A and B of the hatched area 

represent the bounds of the modal loss f a c t o r , ^ , 

0«tg( P 0 ) ^
r / r ^ t g ( P 1 ) (3-67) 

W h e n the system is proportionally-damped ([H]=0), the 

eigenvalues lie on the straight line AB which passes through 

the origin (Fig. 3 - 1 0 ) . 

Theorem 2: 

-1 2 

If the eigenvalues of [M] [H] are w a n d the 

eigenvalues of [M]^ [H] are F^, then the eigenvalues y , of 

[Mf 1 ([H] + [H]) (3-68) 
2 

are the eigenvalues w a changed by an a m o u n t which lies 
between the smallest and g r e a t e s t of the eigenvalues V i.e 

r 

f + u j 2 a ^ y 4uj Za+V (3-69) 

1 S S S 11 

Because [M] is symmetric and positive definite and [H] 

is symmetric and at least semi-positive d e f i n i t e , then 

P r > 0 (3-70) 

and so 

y s >
m
l

a
 ( 3 - 7 d 

Figure 3-11 shows bounds for the complex eigenvalues in 

relation to the proportional case (where they lie on the 

straight line A B ) . The extreme points A and C of the hatched 

area represent the bounds of the modal loss f a c t o r , i.e 

tg"'
1
^s<

r
/r^tgAl (3-72) 

Any nonproportional system can be treated as 

tional one with an added nonproportional damping 

a propor-

matrix [H] 



-80-

Fig. 5-9: Bounds of complex eigenvalues 

Fig. 5-10: Eigenvalues bounds for a proportionally-damped 

system 
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Fig. 5-11: Eigenvalues hounds for a nonproportionally 

damped system 

which is a t least semi-positive d e f i n i t e . 

We may s a y , therefore, that the lowest bound of the loss 

factors is: 

V • ^ T ^ (k- • * 0) (3-73) 
m i n V i j / m i n 1 3 

and the upper bound 

(3-74) 

where k. . and h . . are e l e m e n t s in the respective m a t r i c e s 
J -(-J 

[K] and [H]. 

The b o u n d s of the imaginary parts of the e i g e n v a l u e s 

change as m o r e n o n p r o p o r t i o n a l damping is introduced into the 
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s y s t e m . The b o u n d s of the real p a r t s , which r e p r e s e n t the 

natural f r e q u e n c i e s , are - a c c o r d i n g to theorem 1 - limited 

by the extreme natural f r e q u e n c i e s of the u n d a m p e d system 

and remain u n c h a n g e d because [M] and [K] are u n c h a n g e d . 

N e v e r t h e l e s s , the a c t u a l v a l u e s of the natural f r e q u e n c i e s 

w i t h i n this range are c h a n g e d s l i g h t l y a l t h o u g h it h a s been 

s h o w n in the case of the t w o - d e g r e e - o f - f r e e d o m s y s t e m , this 

c h a n g e is n e g l i g i b l e in c o m p a r i s o n w i t h the c h a n g e of the 

i m a g i n a r y p a r t of the e i g e n v a l u e . 
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3.4 C O M P L E X E I G E N V E C T O R S OF A M U L T I - D E G R E E OF F R E E D O M 

S Y S T E M 

The r e l a t i o n s h i p b e t w e e n the system m a t r i c e s and the 

e i g e n v a l u e s and e i g e n v e c t o r s of a m u l t i - d e g r e e of freedom 

system are very c o m p l i c a t e d . W e know that once the system is 

n o n p r o p o r t i o n a l l y - d a m p e d , the e i g e n v e c t o r s b e c o m e complex 

and that the level of c o m p l e x i t y is d e p e n d e n t u p o n the 

p a r t i c u l a r n u m e r i c a l v a l u e s of the e l e m e n t s in the system 

m a t r i c e s and their relative m a g n i t u d e s . 

The m a i n factor - the n o n p r o p o r t i o n a l i t y of the damping 

- c a n n o t be defined in an e x p l i c i t m a n n e r and it is, 

t h e r e f o r e , i m p o s s i b l e to deduce a general t h e o r e t i c a l 

r e l a t i o n s h i p b e t w e e n the c o m p l e x i t y of the n o r m a l mode 

s h a p e s and the system m a t r i c e s . H o w e v e r , we m a y g e n e r a l i z e 

the t h e o r e t i c a l r e s u l t s o b t a i n e d for the two d e g r e e s of 

f r e e d o m s y s t e m , c o m b i n e them with the theoretical results 

d e r i v e d for the b o u n d s of the e i g e n v a l u e s of a m u l t i - d e g r e e 

of f r e e d o m system and draw some g e n e r a l c o n c l u s i o n s 

r e g a r d i n g the c o m p l e x i t y of the normal m o d e s of a n o n p r o p o r -

tional m u l t i - d e g r e e of freedom s y s t e m . 

A l t h o u g h it is n o t possible to s u p p o r t these c o n c l u s i o n s 

w i t h a r i g o r o u s t h e o r e t i c a l p r o o f , they can be d e m o n s t r a t e d 

by n u m e r i c a l s t u d i e s and s u p p o r t e d by e x p e r i m e n t a l r e s u l t s . 

A n u m e r i c a l study w a s c a r r i e d out on a six d e g r e e of 

freedom system (Fig. 3-12) and three d i f f e r e n t c o n f i g u r -

a t i o n s w e r e e x a m i n e d . 
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(i) The initial parameters of the proportional system 

were: 

k-j =4- 10^N/m • h^ =400N/m 

k 2 = 2 - 1 0 ^ N / m • 

f 
h 2 = 2 0 0 N / m 

k^=5•10^N/m } h^=50N/m 

k^ = l • 1 0 5 N / m ! h^=10N/m 

k^ = 4.9 • 10^N/m } h^=49N/m 

kg = 2.1- 10^*N/m / hg = 210 N/m 

^ = 4 . 0 5 - 10^N/m } hrj =405N/m 

-7-yvv— 

—s— 

\J2 i*; 

2 
-\m/— 

—12— 

3 
h w - h 

k4 
h-wvh 

—si— 
h. 

5 

"im— -\mr— 
k7 

-wv— 

—£3— 
h-

Fig.3-12: Six degree of freedom damped system 

This system was tuned by low stiffness coupling b e t w e e n 

the masses m^ and m^ and by a slight a s y m m e t r y of the other 

stiffness e l e m e n t s so that it possessed close natural 

f r e q u e n c i e s . It was e x p e c t e d , therefore, that the a d d i t i o n 

of small nonproportional damping elements anywhere in the 

system should produce v e r y complex normal m o d e s . 

The e i g e n v a l u e s and eigenvectors were computed for the 

proportional case and n e x t , the value of of the damper h-| 
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w a s increased by a d d i n g to it more damping p . The e i g e n -

p r o b l e m w a s then solved for v a r i o u s v a l u e s of P/h^ and the 

r e s u l t s for the first four m o d e s are s u m m a r i z e d in 

T a b l e 3 - 2 . 

The natural f r e q u e n c i e s of the first and second m o d e s 

are w e l l - s e p a r a t e d b u t those of the third and forth m o d e s 

are v e r y c l o s e . It is clear that a s the system is made 

i n c r e a s i n g l y n o n p r o p o r t i o n a l , the two close m o d e shapes 

b e c o m e more and m o r e c o m p l e x , w h e r e a s the c o m p l e x i t y of the 

f i r s t two mode s h a p e s is, and r e m a i n s , very s m a l l . 

E x a m i n a t i o n of the moduli of the mode s h a p e s reveals a 

c o r r e l a t i o n b e t w e e n the c o m p l e x i t y of the mode shape and the 

m a g n i t u d e of the c h a n g e in the m o d u l i compared w i t h the 

p r o p o r t i o n a l c a s e . The moduli of the first two mode shapes 

h a r d l y change b u t the moduli of some e l e m e n t s in the two 

c l o s e m o d e s change by a factor of a l m o s t two t i m e s . The 

n a t u r a l f r e q u e n c i e s of all these m o d e s are h a r d l y a f f e c t e d 

a t a l l . 

(ii) N e x t , the s t i f f n e s s c o u p l i n g b e t w e e n n^ and m ^ w a s 

i n c r e a s e d in order to separate the close m o d e s . The 

s t i f f n e s s k^ and d a m p i n g h ^ w e r e increased by a factor of 

ten to 

k ^ = 1 0 ^ N / m : h ^ = 1 0 0 N / m 

The value of the damper h^ w a s varied in the same m a n n e r 

a s for the p r e v i o u s case with the results a s s u m m a r i z e d in 

Table 3 - 3 . 

We see that now the natural f r e q u e n c i e s of all m o d e s are 



J N 
M 
h 1 

mode 1 mode 2 mode 3 mode 4 

OJ =9 .139 3 11.303 =21 .125 s 21.295 

0100 = .0100 =.0100 = .0100 

.0804 .000 .0932 180.000 .3421 .000 .2039 180.000 
1..00 n .2280 .000 .2360 180.000 .7230 .000 .4291 180.000 

VJ .6679 .000 .6491 180.000 .2982 180 000 .2063 .000 
.6650 .000 .6593 .000 .1604 180 000 .3104 180.000 
.2169 .000 .2477 .000 .4443 - OOO .7181 .000 
.0783 .000 .0921 .000 .2126 - 000 .3459 .000 

=9 .139 3 11.303 =21 .133 = 21.289 

= . 0196 = .0114 =.0154 = .0117 

.0804 -l .308 • .0931 -.996 .3593 -6 .717 .2053 -160.777 
Q7Q .2279 - .303 .2560 -.169 .7613 -3 763 .4323 -139.731 

• OJJ 2 .6679 - .138 .6492 .274 .3130 172 340 .2067 16.862 
.6631 .192 .6393 179.803 .1630 -137 034 .3245 174.778 
.2169 .214 .2476 179.840 .4466 19 177 .7332 -6.269 
.0783 219 .0921 179.847 .2138 19 302 .3637 -6.228 

=9 .140 3 11.304 =21 .152 = 21.272 

0131 3 .0127 =.0217 = .0126 

.0803 -2 .613 .0931 178.009 .4038 -7 831 .1913 -136.096 
- .2278 -1 008 .2559 179.662 .8335 -5 967 .4034 -133.986 

. 690 4 .6678 - 276 .6494 -179.433 .3397 171 219 .1903 38.646 
.6633 383 .6591 -.389 .1338 -128 366 .3603 174.749 
.2170 .428 .2476 -.320 .4143 43 693 .8520 -6.833 
.0783 438 .0921 -.303 .1983 43 963 .4100 -6.772 

=9 .141 3 11.304 =21 .169 = 21.260 

0147 3 .0141 =.0292 = .0122 

.0802 -3 917 .0930 177.013 .4133 -4. 332 .1420 -113.932 

.602 
.2276 -1 310 .2559 179.493 .8805 -1. 747 .2999 -112.730 

.602 6 .6677 - 414 .6498 -179.183 .3743 173. 060 .1409 33.248 
.6636 373 .6389 -.582 .1193 -103. 799 .3672 178.391 
.2171 639 .2475 -.479 .3063 63. 330 .8794 -2.780 
.0783 653 .0921 -.437 .1469 63. 975 .4230 -2.727 

=9 .142 - 3 11.305 =21 .180 = 21.255 

0162 = .0155 =.0368 = .0117 

.0800 -3 217 .0929 176.022 .4100 -3. 636 .1048 -107.056 

.547 8 
.2274 _2 009 .2539 179.323 .8694 048 .2217 -102.761 

.547 8 .6673 531 .6304 -178.913 .3707 176. 328 .1047 60.381 
.6660 761 .6586 -.773 .0908 -90. 708 .3609 179.945 
.2172 849 .2474 -.637 .2235 72 070 .8689 -1.132 
.0784 869 .0920 -.609 .1081 72. 692 .4179 -1.091 

Table 3-2; Modes shapes (modulus and pbase 

for case (i) (close modes) 

in degre es) 

J N 
h 1 

mode 1 mode 2 mode 3 mode 4 

a, =9 .139 = 18.935 =21. 137 =26 .028 

0100 = .0100 =.0100 =.0100 

.0803 .000 .2688 .400 .2730 .000 .1427 000 
1.00 Q .2276 .000 .6162 .000 .3824 000 .2372 000 

.6666 .000 .2613 .000 .2423 180 000 .6535 180. 000 

.6663 .000 .2860 180.000 .2273 180 000 .6489 000 

.2173 .000 .5767 180.000 .6213 000 .2349 180. 000 

.0784 .000 .2358 180.000 .2976 000 .1420 180. 000 

=9 .139 s 18.937 =21. 137 =26 .028 

= . 0116 = .0141 =.0134 =.0106 

.0802 -l .160 . 2687 -1.730 .2731 .134 . 1427 236 
o .2275 - 338 .6162 -.803 .3829 i 134 .2373 l . 114 

. 020 c .6666 009 .2616 1.430 .2423 178 260 .6535 -179. 997 
.6664 .042 .2860 179.326 .2275 -178 428 .6489 106 
.2173 .064 .3771 -179.044 .6214 - 804 .2349 179. 800 
.0784 .069 .2560 -178.974 .2973 725 .1419 179. 827 

=9 .140 = 18.940 =21. 137 =26 .028 

= , 0131 = .0181 =.0169 =.0112 

.686 
.0802 -2 .320 .2687 -3.463 .2753 .264 .1427 - 472 

.686 4 .2274 - 714 .6163 -1.609 .5841 2 263 .2376 2 225 4 
.6666 018 .2624 2.889 .2426 176 .518 .6335 -179 994 
.6664 084 .2860 178.630 .2281 -176 863 .6488 - 212 
.2173 128 

! .5780 -178.091 .6213 -1 610 .2349 179 600 
.0784 .138 .2364 -177.951 .2975 -1 452 .1419 179 653 

=9 .141 _ 18.946 =21. 136 =26 .028 

= . 0147 = .0222 =.0203 =.0118 
.0801 -3 477 .2686 -3.203 .2762 388 .1427 708 

.594 6 .2273 -1 070 .6165 -2.422 .5861 3. 383 .2380 3. 333 
.6667 026 .2637 4.308 .2430 174 770 .6333 -179 991 
.6663 125 . 2860 177.969 .2290 -175 309 .6488 - 319 
J2174 191 .3793 -177.143 .6213 —2 422 .2349 179 399 
.0784 206 .2372 -176.935 .2973 -2 184 .1419 179 480 

=9 .142 _ 18.954 =21. 136 =26.029 

SB. 0162 = .0261 =.0238 =.0124 
.0799 -4 631 .2683 -6.933 .2771 .302 .1427 - .945 

.537 8 .2271 -1 423 .6168 -3.245 .3888 4 .492 .2386 4 .435 .537 8 
.6667 035 .2636 5.698 .2436 173 .016 .6336 -179 988 
.6663 166 .2861 177.282 .2303 -173 .771 .6488 - .425 
.2174 234 .5817 -176.204 .6212 -3 242 .2349 179 199 
.0784 274 .2382 -173.927 .2974 —2 924 .1419 179 306 

Table 3-3: Mode shapes (modulud and phase in degrees) 

for case (ii) (separate modes) 
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w e l l - s e p a r a t e d , and an increase in the n o n p r o p o r t i o n a l i t y of 

the damping has a very small e f f e c t , not only on the natural 

f r e q u e n c i e s , but also on the c o m p l e x i t y of the mode s h a p e s . 

(iii) The aim of the third study w a s to assess the 

influence of the overall level of damping on the c o m p l e x i t y 

of the m o d e s of a nonproportional s y s t e m . To this e n d , a 

proportional system with w e l l - s e p a r a t e d m o d e s w a s c h o s e n , 

with the following parameters; 

4 

m^=lKg ; k ± = 1 0 ^ N / m ; h i = 1 0 0 N / m (i=l,6) 

The natural frequencies and normal mode shapes for the 

proportional case are: 

63.0576 37.3632 49.7732 39.6958 14.1664 2 7' 
. 2578 .000 .4545 180.000 .5507 180.000 .5187 .000 .1327 . 000 .3478 .000 
. 4545 180.000 .5187 .000 .1327 .000 .3478 .000 .2578 .000 .5507 .000 
.5507 .000 .1327 180.000 .5187 .000 .2578 180.000 .3478 .000 .4545 .000 
.5187 •180.000 .3478 180.000 .2578 180.000 .5507 180.000 .4545 .000 .1327 ,000 
.3478 .000 .5507 .000 .4545 180.000 .1327 180.000 .5187 .000 .2578 180.000 
. 1327 180.000 .2578 180.000 .3478 .000 .4545 .000 .5507 .000 .5187 180.000 

N e x t , the damping d i s t r i b u t i u o n in the system was 

changed by increasing g r a d u a l l y the damper h g and reducing 

the m a g n i t u d e s of other d a m p e r s w i t h o u t changing the overall 

level of damping (the generalized loss factor was kept 

c o n s t a n t w h i l e the n o n p r o p o r t i o n a l i t y of the system was 

i n c r e a s e d ) . 

In this w a y , the damping w a s changed from the propor-

tional case of uniform d i s t r i b u t i o n to the maximum 

nonproportional case w h e r e b y all the damping w a s 

concentrated at one point (h.,-) . This process w a s repeated 
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for four d i f f e r e n t c o n s t a n t l e v e l s of g e n e r a l i z e d loss 

factor (r? = .01 + .08) . 

To d e m o n s t r a t e the results of this p r o c e s s , we c h o o s e 

one typical normal mode (mode 4) and one e l e m e n t in this 

m o d e (No. 3). The c h a n g e s , relative to the p r o p o r t i o n a l 

normal m o d e , in the natural f r e q u e n c y , m o d u l u s and phase of 

( .d> ) a s a f u n c t i o n of the n o n p r o p o r t i o n a l i t y f a c t o r , J ^ , 
4 3

 11 

and the g e n e r a l i z e d loss f a c t o r , rfr are plotted in F i g u r e s 

3-13 f 3 - 1 5 . 

The first i n d i c a t i o n from these plots is that the 

p a t t e r n of the c h a n g e in each p l o t for d i f f e r e n t l e v e l s of 

g e n e r a l i z e d loss factor is v e r y similar and we m a y c o n c l u d e 

that for a given n o n p r o p o r t i o n a l i t y the level of c o m p l e x i t y , 

the c h a n g e in the m o d u l u s of the mode shape and the c h a n g e 

of the natural f r e q u e n c y are in d i r e c t p r o p o r t i o n to the 

level of damping p r e s e n t in the s y s t e m . The h i g h e r is the 

v a l u e of the g e n e r a l i z e d loss f a c t o r , the b i g g e r is the 

c h a n g e in each of these p a r a m e t e r s . 

As the n o n p r o p o r t i o n a l i t y of the system is i n c r e a s e d the 

mode shape b e c o m e s more and m o r e complex and we see that the 

c h a n g e of the m o d u l u s is in d i r e c t p r o p o r t i o n to the 

c o m p l e x i t y of the m o d e ; the larger is the phase d e v i a t i o n of 

the mode from the p r o p o r t i o n a l o n e , the larger is the change 

in the m o d u l u s r e l a t i v e to the m o d u l u s of the p r o p o r t i o n a l 

m o d e . The same c o n c l u s i o n s a p p l y for the natural f r e q u e n c y , 

a l t h o u g h the a c t u a l numerical c h a n g e here is a v e r y small 

p e r c e n t a g e and for l e v e l s of V smaller then .04 it is 

n e g l i g i b l e . 
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Pig. 3-13: Relative change of natural frequency of mode 4 

Pig. 3-14: Phase of (a®-*) as function of J and fj 
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Pig. 3-15: Relative change of the modulus of („<lO as 
—

 v 4 3 7 

function of J^ and . (<P| is the modulus of 

the proportional system and h<p= |<D~ <p. |) 
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3.5 C O N C L U S I O N S . 

It is a p p r o p r i a t e here to draw some g e n e r a l c o n c l u s i o n s 

regarding the (complex) n o r m a l m o d e s of a n o n p r o p o r t i o n a l l y 

d a m p e d s y s t e m . 

(i) Once a p r o p o r t i o n a l l y - d a m p e d system is changed into 

a n o n p r o p o r t i o n a l l y - d a m p e d o n e , the real n o r m a l mode s h a p e s 

c h a n g e into c o m p l e x n o r m a l m o d e s h a p e s . The c o m p l e x i t y of 

these m o d e s d e p e n d s on the level of the n o n p r o p o r t i o n a l i t y 

of the d a m p i n g ; the larger is the value of the n o n p r o p o r -

t i o n a l i t y f a c t o r , the m o r e c o m p l e x the mode s h a p e s b e c o m e . 

H o w e v e r , the c o m p l e x i t y is also very s e n s i t i v e to the 

c l o s e n e s s of the n a t u r a l f r e q u e n c i e s of n e i g h b o u r i n g m o d e s ; 

the closer they a r e , the m o r e c o m p l e x the m o d e shapes are 

for the same l e v e l of n o n p r o p o r t i o n a l i t y . 

(ii) The m o r e complex the normal m o d e shape b e c o m e s , the 

bigger is the c h a n g e in its m o d u l u s relative to the 

c o r r e s p o n d i n g m o d u l u s derived for the p r o p o r t i o n a l l y d a m p e d 

s y s t e m . 

(iii) The n a t u r a l f r e q u e n c i e s are relatively i n s e n s i t i v e 

to c h a n g e s in the d a m p i n g , but they are very s e n s i t i v e to 

c h a n g e s in the s t i f f n e s s of the s y s t e m . 

(iv) The s e n s i t i v i t y of the normal mode s h a p e s to-

c h a n g e s in the d a m p i n g is increased as the g e n e r a l i z e d loss 

factor of the system is i n c r e a s e d . 

The p r a c t i c a l meaning of these c o n c l u s i o n s is that for 

l i g h t l y - d a m p e d s y s t e m s with w e l l - s e p a r a t e d n a t u r a l 
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f r e q u e n c i e s the m o d u l i of the e x p e r i m e n t a l l y d e r i v e d mode 

s h a p e s can be regarded as a v e r y good a p p r o x i m a t i o n to the 

undamped mode s h a p e s of the s y s t e m . H o w e v e r , in any 

s i t u a t i o n w h e r e two m o d e s are v e r y c l o s e , they are more 

p r o n e to be complex a n d , t h e r e f o r e , less c o n f i d e n c e can be 

put in this a p p r o x i m a t i o n . In any c a s e , p r a c t i c a l l y it is 

u s u a l l y more d i f f i c u l t to identify the modal p a r a m e t e r s of 

close m o d e s [39] and the identified normal mode s h a p e s are 

expected to be less accurate than those for the 

w e l l - s e p a r a t e d m o d e s . 

As a rule of t h u m b , we m a y say that for v a l u e s of modal 

loss factors w h i c h are smaller then .03 and m o d e shape phase 

a n g l e s smaller then 30°, the m o d u l i of e x p e r i m e n t a l l y -

d e t e r m i n e d complex n o r m a l m o d e s h a p e s can be used as the 

u n d a m p e d mode shapes in any further c a l c u l a t i o n . 

The e x p e r i m e n t a l l y - d e r i v e d n a t u r a l f r e q u e n c i e s can be 

used in any c a s e , regardless of the level of damping or 

c o m p l e x i t y of the m o d e s h a p e s , as a very close a p p r o x i m a t i o n 

to the undamped n a t u r a l f r e q u e n c i e s of the s y s t e m . 

For a given s y s t e m , a d d i t i o n to or change in the 

d i s t r i b u t i o n of d a m p i n g has no s i g n i f i c a n t i n f l u e n c e on the 

n a t u r a l f r e q u e n c i e s . H o w e v e r , a d d i t i o n or c o n c e n t r a t i o n of 

d a m p i n g in a few p o i n t s in the system reduces the level of 

r e s p o n s e and m a k e s the mode shapes more c o m p l e x . On the 

other h a n d , r e d u c t i o n in the level of damping reduces the 

level of c o m p l e x i t y and the response gets closer to the 

response of a p r o p o r t i o n a l l y - d a m p e d s y s t e m . 
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4 . M O D A L IDENTIFICATION M E T H O D S 

4.1 INTRODUCTION 

In a recent survey of m o d a l v i b r a t i o n test and a n a l y s i s 

t e c h n i q u e s [41] c o n d u c t e d in the U . S . A , it was found that the 

s i n g l e - p o i n t sine and the m u l t i - p o i n t sine t e c h n i q u e s are 

the m o s t widely used (out of 16 d i f f e r e n t techniques) and 

that they p r o v i d e the m o s t a c c u r a t e data and the l a r g e s t 

number of valid m o d e s 

T h e s e two m e t h o d s are w e l l - e s t a b l i s h e d and h a v e been used 

by i n v e s t i g a t o r s for q u i t e a long time now. Of these 

t w o , the s i n g l e - p o i n t sine is the s i m p l e s t from the 

e x p e r i m e n t a l point of v i e w : the test piece is excited at a 

single point by a sine input force and the response is 

m e a s u r e d at v a r i o u s p o i n t s on i t . From these data the m o d a l 

p a r a m e t e r s m a y be d e r i v e d using either the w e l l known 

Kennedy and Pancu m e t h o d [42] or a s t r a i g h t - f o r w a r d curve 

fitting a l g o r i t h m . 

The m u l t i - p o i n t sine m e t h o d is t h e o r e t i c a l l y v e r y 

simple: by exciting the s t r u c t u r e at several points with 

p r o p e r l y tuned force i n p u t s , it can be made to v i b r a t e in a 

m o d e w h i c h is identical to any one of its p r o p o r t i o n a l 

normal m o d e s . E x p e r i m e n t a l l y , h o w e v e r , this m e t h o d is more 

c o m p l i c a t e d b e c a u s e in order to find the c o r r e c t force 

d i s t r i b u t i o n a very s o p h i s t i c a t e d e x p e r i m e n t a l p r o c e d u r e is 

n e e d e d . 

There are thus two marked d i f f e r e n c e s between the two 
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m e t h o d s : 

(i) The s i n g l e - p o i n t e x c i t a t i o n m e t h o d requires 

relatively simple e x p e r i m e n t a l e q u i p m e n t but needs a 

c o m p r e h e n s i v e a n a l y s i s facility in order to d e r i v e 

s a t i s f a c t o r y r e s u l t s . On the other h a n d , the m u l t i - p o i n t 

e x c i t a t i o n m e t h o d requires c o m p l i c a t e d h a r d w a r e but once the 

s t r u c t u r e is forced to v i b r a t e in a p r o p o r t i o n a l forced 

m o d e , its m o d e shape and natural frequency are readily 

a v a i l a b l e w i t h little further a n a l y s i s . 

(ii) The m o d a l p a r a m e t e r s derived by each of these two 

m e t h o d s are not the s a m e . For the g e n e r a l l y - d a m p e d s y s t e m , 

the s i n g l e - p o i n t m e t h o d d e r i v e s the p r o p e r t i e s of the n o r m a l 

m o d e s and the m u l t i - p o i n t m e t h o d the p r o p e r t i e s the system 

would p o s s e s s if the d a m p i n g were removed (undamped s y s t e m ) . 

Only for the p a r t i c u l a r case where the system is 

p r o p o r t i o n a l l y damped do both m e t h o d s derive the same m o d a l 

p a r a m e t e r s . 

Each of these m e t h o d s has its a d v a n t a g e s and d r a w b a c k s 

and the d e c i s i o n as to w h i c h of them to use is d e p e n d e n t on 

the p a r t i c u l a r c i r c u m s t a n c e s . H o w e v e r , p r o b a b l y the best 

c h o i c e (where money is no object) is to use both of t h e m , 

like the MOI^LAB system [43]. 

For the e x p e r i m e n t a l s t a g e s of this r e s e a r c h , both 

t e c h n i q u e s h a v e been used; 

(i) The s gle-point m e t h o d using an automated m o b i l i t y 

m e a s u r i n g routine M0B3 [44] and the two a n a l y s i s p r o g r a m s 

POLAR5 [45] (which d e r i v e s the modal parametrs from a n a l y s i s 



of the N y q u i s t plots) and SIM2 [46] (which d e r i v e s them by 

simple c u r v e f i t t i n g ) . 

(ii) The m u l t i - p o i n t e x c i t a t i o n m e t h o d using the M A M A 

system w h i c h was loaned to the D y n a m i c s Section by the Royal 

A i r c r a f t E s t a b l i s h m e n t , F a r n b o r o u g h . 

In this chapter t h e s e m e t h o d s are d e s c r i b e d in some 

detail and a n u m e r i c a l s t u d y d e m o n s t r a t e s the d i f f e r e n c e s 

between the two i d e n t i f i c a t i o n m e t h o d s used to a n a l y s e the 

data a c q u i r e d by the s i n g l e - p o i n t e x c i t a t i o n m e t h o d . 
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4.2 DERIVATION OF MODAL PARAMETERS FROM POLAR PLOTS 

The identification of the system's modal parameters 

using a stepped-sine single excitation is based on equation 

(2-6 3), namely 

where 

v 7 < 4 " 2 > 
r 

First, consider one e l e m e n t , 8 , in the above summation 
s 

1 (l-^j-ir? 

5 = = 1 o | (4-3) 
b 1-/3 + i r/ (1-B ) +V 

r
s s

 x
 s 

It can be shown that 

1 1 
(Re(5 s) )

2 + ( I m g U g ) + — ) 2 = ( — ) 2 (4-4) 
s s 

When plotted in the complex plane this is the equation 

of a circle whose center is displaced downwards on the 

1 
imaginary axis by a distance of r-*— and whose diameter D 

2 v s s 
is: (Fig. 4-la) 

1 
D =— (4-5) 

s
 ^s 

At the point where the circle intersects the imaginary 

2 
axis /*g=l. Multiplying S s by the complex number ^ ffi causes 

CO 
3 

ls Aikl 
the circle to scale its diameter by g— and to rotate 

CO 
s 

about the origin by an angle of 6 equal to the phase of 
s 

A . : o is referred to as 'the modal phase angle' 

s 3k s 
(Fig. 4-lb) 
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Img 

\ A 
\ 

sAjk 
...2 

Re 

*a> 

to% 

<b> 

F i g . 4 - 1 : One degree of freedom - c o n s t r u c t i o n of the m o d a l 

ci rcle 

4.2.1 N A T U R A L FREQUENCY 

The phase a n g l e , p of S is 
s s 

P =tg s ^ 
-1/ ^s 

(4-6) 

C o n s i d e r now the rate of change of p_ as function of IT, 
s s 

d p V, 
2 2 2 2 (4-7) 

This q u a n t i t y reaches a m a x i m u m (as a function of [i ) w h e n 
s 

d /dp 
= 0 (4-8) 
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i.e when 

(4-9) 

This occurs when 

£ =1 or when 
o 

Inserting into (4-7) we get: 

OJ = oJ s (4-10) 

or 

s 

(4-11) 

The meaning of this result is that at the point w h e r e 

2 
the rate of change of <p . as function of , reaches a 

o 

m a x i m u m , as function of a?, the frequency is equal to the 

natural f r e q u e n c y , a> , of this m o d e . 
s 

Consider now the rate of change of </> as a function of /L 
d o 

2~2—2" 

^ s M s * 

(4-12) 

s 

The m a x i m u m rate of change of this quantity as a 

function of occurs w h e n 
s 

(4-13) 

i.e when 
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b b -=0 (4-14) / _ s ' 

I / 2 2 2 2 
D V ( ( 1 " / 5 s ) 

2 
By solving the quadratic equation in fl we get 

1 
(4-15) 

V 

(only positive values of /J are considered) 
S 

For values of V which are smaller than -1? the v a l u e s 
s 

of /$ at which the rate of change of <p is m a x i m u m , are 
s s 

/3 <1.0012 (4-16) 
s 

We may w r i t e , therefore 

dtp \ 2 . /d m 
— J or a ) s (4-17) 

d/3 /„ , ŝ ^ d c o / V co 
S P =1 S s 

s s 

The error incurred by this approximation is .06% for 

^ =.1 and gets smaller as rj gets s m a l l e r . 
s s 

The practical meaning of this result is that the maximum 

rate, as a function of frequency at which the locus 

sweeps around the periphery of the circle is obtained when 

OO^-OO • 
S 

4.2.2 LOSS FACTOR 

The modal loss f a c t o r , rj , can be calculated from 
s 

equation (4-17) 
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rj = . 
S 

d 

(4-18) 

(JU—OJ 
or by the more general expression derived from the circle 

geometry (Fig. 4-2) . [24] 

la 

i 1 — CL> . 

from which we get 
S 

2 2 
to - C O . 

ti - r,. i 
s 2 

(4-19) 

where and to^ are two points on the circle and 

w ̂  uj ) and a), and <pn are the corresponding angles measured 

2 s \ 2 

from the diameter that passes through the natural f r e q u e n c y . 

(Throughout this work the first of these two loss factors 

will be referred to as the K loss factor and the latter as 

the M loss factor) 

t 
Img 

* \ Re 

es v - ^ l 

/ v t t - 1 / 9 \ / 
/

 2
 \ / 

2 

F i g . 4-2: D e r i v a t i o n of the loss factor 
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4.2.3 MODAL CONSTANT 

The modulus of the complex modal constant is 

calculated from the diameter of the circle D_, the loss 
s 

factor rj and the n a t u r a l frequency a>0 
o o 

l s
ajkl= ds"'s'' s < 4 " 2 0 ) 

The phase of the modal c o n s t a n t , q , is derived by 

observing the amount of rotation of the circle about the 

o r i g i n , this being determined by the location of the natural 

frequency. 

N o w , if we assume that the value of each term in the 

summation (4-1) for r#s is unchanged as the frequency is 

changed in the vicinity of ^ , then the whole circle is 
s 

bodily displaced from the origin without affecting its shape 

(Fig. 4-3) and the modal parameters derived by examining the 

geometry of the circle a r e , t h e r e f o r e , u n a f f e c t e d . 

The final p l o t , made of several m o d e s , is illustrated in 
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F i g . 4-4 and shows how the response around each resonance 

a p p r o x i m a t e s to that of a single m o d e , thus allowing the 

i n d i v i d u a l i d e n t i f i c a t i o n of each m o d e . 

Fig. 4-4: Typical multi-degree of freedom polar plot 

,.2.4 R E S I D U A L T E R M S 

In p r a c t i c e , only a limited number of a s t r u c t u r e ' s 

m o d e s w i l l be m e a s u r e d in a finite range of f r e q u e n c i e s 

('the range of i n t e r e s t ' ) , the other modes w h i c h lie out of 

this range at lower and higher frequencies being u n o b s e r v e d . 

The a s s u m p t i o n that the c o n t r i b u t i o n to the response in the 

n e i g h b o u r h o o d of a certain m o d e from all m o d e s e x c e p t the 

one under a n a l y s i s is c o n s t a n t , m a y be extended to consider 

IMG 
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the c o n t r i b u t i o n of g r o u p s of m o d e s , w h i c h are o u t s i d e the 

range of i n t e r e s t , to the total r e s p o n s e . 

Expression (4-1) may be w r i t t e n as: 

h
 A 

" = (4-21) 
r-1 p r-i+1 r-h+1 

W h e r e the range of interest includes the m o d e s r=l+1 -r 

h . In this c a s e , we may w r i t e for the s u m m a t i o n of m o d e s 

r= 1-rl 

and therefore 

<< <o (4-22) 
r 

r-1 to r ' 1 

r 
For the s u m m a t i o n of m o d e s r=h+1 f n we m a y w r i t e 

to >>co (4-24) 
r 

and therefore 

r-h+1 r>h+ i 1 w
r \ 

The c o n s t a n t s and R, are referred to as 'mass 

m k 

r e s i d u a l ' and 'stiffness r e s i d u a l ' r e s p e c t i v e l y . 

If we d e n o t e the total response c a l c u l a t e d after 

identifying the m o d a l p a r a m e t e r s of all the m o d e s in the 

range of interest by a. («>) and the measured r e s p o n s e due to 

all the m o d e s of the system by t then 
P 

a m { w ) s : (4-26) 

or 

a m { u j ) ~ a c ( ^ ) = ^ f + R k (4-27) 

In order to d e r i v e R and R , , the responses at two 
m k' r 
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frequency p o i n t s , at least, are needed and ) , thus 

a •R 
m k 

\ 
"2 

o r , using matrix notation 

(4-28) 

a ( - a ( oj. ) 
m 1 c 1' 

- 2 

V 1 
1 m 

r 
k 

(4-29) 

from which 

r 
m 

r 
k 

1 

- 2 _ 

1^2 

-1 

or 

V t u 1 ) " a c ( l°1 ) 

(4-30) 

(4-31) 

T h e o r e t i c a l l y , any two responses are sufficient for the 

derivation of {R}. However,as these responses are obtained 

e x p e r i m e n t a l l y , they contain errors which can affect 

seriously the values of {R} obtained by this simple m e t h o d . 

One way to overcome this problem is to increase the 

number of points (p for example) used for this process which 

is effectively a least-squares error estimation of the 

vector {R}. 

Equation (4-29) is then 

t 4 a
v l = ^ p , 2

{ r }
2 « 1 <

4
"

3 2
> 

In order to solve this system for {R} the pseudo-inverse 

approach is e m p l o y e d . Both sides of equation (4-32) are 

m u l t i p l i e d by [Q] t 
2 x p 

thus, 

[Q] 
T 

[Q] 0 { r } 2x p px1 2xp px2 2^1 
(4-33) 
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or 

(4-34) 

from which 

(4-35) 

where 

(4-36) 

[ o ] 2 x 2 = m 2 < p [ d ] p j c 2 (4-37) 

It is then necessary to decide how many (and which) 

response points should be used in this c a l c u l a t i o n . As this 

is a statistical p r o c e s s , as many response points as 

possible should be used but in p r a c t i c e , this principle 

cannot be applied too l i t e r a l l y . 

Experience suggests that use of all available response 

points is unsatisfactory as the results are distorted by the 

numerically large data around the resonances. Conversely the 

anti-resonance regions are considerably affected by the 

residual terms and using only the anti-resonace points does 

improve the derived results. H o w e v e r , the anti-resonance 

response m o s t often contain a high degree of error because 

the measured response signal is very low and is affected by 

the noise of the measuring s y s t e m , and the derived results 

are t h u s , still liable to be u n s a t i s f a c t o r y . 

Between these two extremes there is an optimum set of 

response points which produces the best estimate of the 

residual terms; a maximum receptance level is set and only 



-106-

those points below this level are included in the 

c a l c u l a t i o n . In this w a y , the influence of the 

n e a r - r e s o n a n c e points can be r e d u c e d . If the r e s u l t s are 

still u n s a t i s f a c t o r y , this level can be reset and a new 

e s t i m a t e of {R} d e r i v e d until s a t i s f a c t o r y v a l u e s are 

a c h i e v e d . 

F i g . 4-5 i l l u s t r a t e s an e x p e r i m e n t a l l y - m e a s u r e d m o b i l i t y 

curve together w i t h two t h e o r e t i c a l l y - d e r i v e d c u r v e s ; one of 

w h i c h is obtained using the m o d a l c o n s t a n t s plus the 

residual t e r m s , w h i l e the other is g e n e r a t e d omitting the 

residual t e r m s . The straight line AB is the c o n s t a n t 

s t i f f n e s s level w h i c h sets the m a x i m u m value of the points 

included in the c a l c u l a t i o n of the residual t e r m s . 

(All through this thesis the d o t t e d curve r e p r e s e n t s the 

e x p e r i m e n t a l l y - m e a s u r e d data w h e r e each dot is the m e a s u r e d 

response at a c e r t a i n f r e q u e n c y . The solid line represents 

the t h e o r e t i c a l l y - r e g e n e r a t e d c u r v e . ) 

4.2.5 C O M P U T E R A L G O R I T H M P0LAR5 

I d e n t i f i c a t i o n of the m o d a l p a r a m e t e r s of a single m o d e 

c o n s i s t s of the following steps: 

(i) C a l c u l a t i o n of the d i a m e t e r and c o o r d i n a t e s of the 

best fit circle t h r o u g h a number of e x p e r i m e n t a l l y - m e a s u r e d 

p o i n t s near a r e s o n a n c e . 

(ii) Location of the point on the m o d a l c i r c l e w h e r e the 

a n g u l a r spacing for e q u a l l y - s p a c e d frequency p o i n t s is a 

m a x i m u m , giving the n a t u r a l f r e q u e n c y and the m o d a l phase 
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a n g l e . 

(iii) C a l c u l a t i o n of the m o d a l loss factor using either 

of the two m e t h o d s d e s c r i b e d in p a r . 4 . 2 . 2 . 

(iv) D e t e r m i n a t i o n of the m o d u l u s of the c o m p l e x m o d a l 

c o n s t a n t from the d i a m e t e r of the c i r c l e , the n a t u r a l 

frequency and the loss f a c t o r . 

This p r o c e s s is repeated for all the m o d e s in the range 

of interest and once the m o d a l p a r a m e t e r s for all the m o d e s 

are i d e n t i f i e d , the residual terms are c a l c u l a t e d . 

The a b o v e procedure w a s implemented in a c o m p u t e r 

a l g o r i t h m (POLAR5) and is c u r r e n t l y used in the D y n a m i c s 

Section [45,44] . 

Fig. 4-5: Curve-fitting measured data; (a) without residual 

terms and (b) including residual terms 
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4.3 D E R I V A T I O N OF THE M O D A L P A R A M E T E R S BY C U R V E - F I T T I N G 

The basic a s s u m p t i o n on w h i c h the p r e v i o u s m o d a l 

i d e n t i f i c a t i o n method is based is that over a small range of 

f r e q u e n c i e s near each r e s o n a n c e , the c o n t r i b u t i o n to the 

total response from all the other m o d e s , e x c e p t the one 

under c o n s i d e r a t i o n , is c o n s t a n t . This a s s u m p t i o n is 

justified in the case of w e l l separated m o d e s , but w h e n two 

a d j a c e n t m o d e s are very c l o s e it may lead to s i g n i f i c a n t 

errors and p r a c t i c a l l y , the m o d e s are i n s u f f i c i e n t l y 

separated to permit the fitting of a simple circle to one 

mode at a t i m e . 

For c a s e s of this latter kind a d i f f e r e n t approach is 

employed using a least s q u a r e s error c u r v e - f i t t i n g to the 

c o m p l e t e m e a s u r e d r e s p o n s e . The c o n c e p t of analysing one 

m o d e at a time is still k e p t , but instead of regarding the 

c o n t r i b u t i o n from other m o d e s as c o n s t a n t , it is treated as 

a function of the frequency and an iteration is m a d e around 

all the m o d e s to be a n a l y s e d . 

The a l g o r i t h m for this s i m u l t a n e o u s m o d e c u r v e - f i t t i n g 

starts by m a k i n g an initial g u e s s of the m o d a l p a r a m e t e r s 

and the m i n i m i z a t i o n of the fit error is done s e p a r a t e l y for 

each m o d e a s s u m i n g at that time that the initial g u e s s of 

the m o d a l p a r a m e t e r s for the other m o d e s is c o r r e c t . 

If we d e n o t e the m e a s u r e d response by (x and the 

c o n t r i b u t i o n of the s'th m o d e to the total response by a , 

t h e n , 
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(4-38) 

and if ac is its t h e o r e t i c a l v a l u e , i.e 

(4-39) 

the a l g o r i t h m seeks to m i n i m i z e the error E 
P 

-z (4-40) 

By using a least s q u a r e s error curve fitting p r o c e s s , 

taking into a c c o u n t p p o i n t s around the n a t u r a l frequency 

co , the m o d a l parameters for m o d e s which m i n i m i z e 
s r 

e x p r e s s i o n (4-40) are d e r i v e d . This p r o c e s s is repeated for 

the next m o d e but using the n e w l y derived m o d a l p a r a m e t e r s 

for mode s . 

The m i n i m i z a t i o n p r o c e s s is done using the a l g o r i t h m 

s u g g e s t e d by G a u k r o g e r et.al [47] i.e 

w h e r e k ^ is the parameter to be d e t e r m i n e d and 8k^ are the 

i n c r e m e n t s to be added to the initial e s t i m a t e [46] . 

Because we do not take into a c c o u n t all the s t r u c t u r e ' s 

m o d e s , but only a finite n u m b e r , N , we m u s t r e s o r t , in this 

c a s e , to the p r e v i o u s a s s u m p t i o n and use the c o n c e p t of 

r e s i d u a l terms w h i c h r e f l e c t s the c o n t r i b u t i o n of all the 

m o d e s o u t s i d e the range of m e a s u r e m e n t to the total 

r e s p o n s e . E x p r e s s i o n (4-38) t a k e s , t h e r e f o r e , the form 

2 
<9e d E 

(4-41) 
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N A 

^ ^ R ) 2 R I K — + - F + R K < 4 - 4 2 > 
- m U a t i l - f i l + i T , ) k 

Before starting the process of curve fitting the best 

estimate at that time for the residual terms is c a l c u l a t e d , 

using the initial guess for the modal p a r a m e t e r s . T h e n , 

these modal parameters are corrected mode by mode until 

satisfactory v a l u e s are a c h i e v e d . 

A computer program (SIM2) using this algorithm was 

w r i t t e n and is currently used [44] in the Dynamics Section 

w h e n the modal parameters derived by POLAR5 are 

u n s a t i s f a c t o r y ; these modal parameters are used as the 

initial estimates required at the beginning of SIM2. 

A similar approach to the modal identification is 

employed by the computer program PAPA used at the RAE but 

assuming a viscously damped model [47] . 
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4.4 N U M E R I C A L STUDY 

It was expected that the m o d a l p a r a m e t e r s derived by the 

c u r v e - f i t t i n g a l g o r i t h m SIM2 would be more a c c u r a t e then 

t h o s e d e r i v e d by the N y q u i s t p l o t analysis a l g o r i t h m P O L A R 5 , 

e s p e c i a l l y for cases of close m o d e s . 

In order to a s s e s s the r e s p e c t i v e c a p a b i l i t i e s of the 

p r o g r a m s SIM2 and P 0 L A R 5 , a c o m p a r a t i v e n u m e r i c a l study w a s 

m a d e by a n a l y s i n g data w h e r e two of the m o d e s w e r e well 

separated and two w e r e very c l o s e . 
<0 

The s y n t h e s i s e d data p o i n t s w e r e produced using the 

m o d a l p a r a m e t e r s listed in Table 4 - 1 . 

mode 

DjO. (Hz) 
<7r 

(1/Hg) (deg) 

1 77.20 0.007 6.27E-4 -179.2 

2 141.3 0.016 7.83E-3 7.9 

3 145.5 0.014 3.30E-3 1.0 

4 182.6 0.016 0.0480 -10.0 

Residual mass (1/Kg) = -0.016- i7.08E-1 

Residual stiff.(m/R) = -3.45E-8 + i1.5E-8 

Table 4-1; M o d a l p a r a m e t e r s for s y n t h e s i s e d data 

A further a s s e s s m e n t of the sensitivity of the 

a l g o r i t h m s to random e r r o r s in the data was m a d e when data 

w e r e g e n e r a t e d with the same m o d a l p a r a m e t e r s b u t with the 

i n t r o d u c t i o n of random errors (4% and up to 8%) 

The c o m p l e t e set of results is summarized in Table 4-2 



— 1 1 2— 

mode 

no. 

resonanc 

(HZ) 

se f req. 
* 

loss f actor 
% 

modal cor 

••/Kg 

istant 

% 
phas 

(deg) 

;e 

% 

1 
P 

S 

77.20 

77.20 

0. 

0. 

0.0070 

0.0070 

0. 

0. 

6.302E-4 

6.270E-4 

0.51 

0. 

-179.21 

-179.20 

0.01 

0. 

2 
P 

S 

141.3 

141.3 

0. 

0. 

0.0156 

0.0160 

2.5 

0. 

7.324E-3 

7.830E-3 

6.46 

0. 

11.41 

7.86 

1.79 

0. 

3 
P 

S 

145.6 

145.5 

0.07 

0. 

0,0132 

0.0140 

5.71 

0. 

2.658E-3 

3.300E-3 

19.45 

0. 

-19.03 

1.00 

1'1.13 

0. 

4 
P 

S 

182.6 

182.6 

0. 

0. 

0.0160 

0.0160 

0. 

0. 

0.0479 

0.0480 

0.21 

0. 

-10.80 

-10.00 

0.44 

0. 

Residual Mass (1/Kg) 

Real % Img. % 

Residual S t i f f ness (m/U) 

Real % Img. % 

P -0.0157 1.88 -3.933E-4 44.45 -3.409E-8 1.99 1.510E-8 5.68 

S -0.0160 0. -7.080E-4 0. -3.450E-8 0. 1.590E-8 0. 

mode 

no. 

resonanc 

(Hz) 

e f req. 
% 

loss f actor 

% 
modal con 

I/ Kg 
stant 

% 

phas 

(deg) % 

1 
P 77.20 0. 0.0068 1.71 5.955E-4 5.02 -179.06 0.08 

1 
S 77.20 0. 0.0069 0.07 6.118E-4 2.42 -179.20 0. 

2 
P 141.2 0.08 0.0163 1.88 7.666E-3 2.09 20.53 7.4 

2 
S 141.3 0. 0.0160 0. 7.723E-3 1.37 8.54 0.38 

3 
P 145.6 0.07 0.0124 11.43 2.319E-3 30.00 -13.23 7.91 

3 
S 145.5 0. 0.0138 1.43 3.196E-3 3.15 0.54 0.24 

4 
P 182.7 0.05 0.0168 5.00 0.0520 8.33 -15.27 2.91 

4 
S 182.6 0. 0.0159 0.63 0.0468 2.5 -10.26 0.14 

Residual Mass (1/Kg) 

Real % Img. % 

Residual S t i f f r 

: Real % 

less (m/N) 

Img. % 

P -0.0155 3.13 —4.390E-4 38.00 -3.587E-8 3.77 1.743E-8 9.26 

S -0.0154 3.75 -6.615E-4 6.75 -3.298E-8 4.41 1.508E-8 5.16 

mode 

no. 

resonan 

(Hz) 

re f req. 

% 
loss fac to r 

% 
modal cor 

I /Kg 

istant 

% 

phas 

(deg) 

e 

% 

1 
P 77.12 0.1 0.0067 3.53 5.748E-4 12.63 -145.69 18.62 

1 
S 77.20 0. 0.0069 0.21 5.973E-4 4.74 -178.48 0.02 

2 
P 141.3 0. 0.0149 6.94 6.662E-3 14.92 5.84 1.12 

2 
S 141.3 0. 0.0158 1.25 7.482E-3 4.44 7.47 0.22 

3 
P 145.6 0.03 0.0129 7.86 2.444E-3 25.94 -12.88 7.71 

3 s 145.5 0. 0.0138 1.43 3.150E-3 4.55 0.55 0.25 

4 
p 182.7 0.05 0.0160 0. 0.0463 3.54 -11.86 1.03 

4 s 182.6 0. 0.0160 0. 0.0463 3.54 -9.54 0.24 

Resi 

Real 

dual Mas 

% 
s (1/Kg) 

Img. % 
Residual S t i f f ness (m/N) 

Real % Img. % 
P -0.0150 6.25 3.994E-4 156.41 -2.911E-8 15.62 1.514E-8 4.78 

S -0.0154 3.75 -6.615E-4 6.75 -3.298E-8 4.41 1.507E-8 5.22 

Table 4-2; Synthesised data - derived modal parameters 

and their relative errors for (a) 0%, (b) 4% and (c) 8% 

random errors in the data 
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A c o m p a r i s o n of the m o d a l p a r a m e t e r s d e r i v e d by the two 

p r o g r a m s c l e a r l y d e m o n s t r a t e s the l i m i t a t i o n s of the s i n g l e 

m o d e a n a l y s i s m e t h o d w h e n the m o d e s are v e r y c l o s e . For all 

levels of random e r r o r , the error in the i d e n t i f i c a t i o n of 

the natural f r e q u e n c i e s is n e g l i g i b l e , r e g a r d l e s s of the 

c l o s e n e s s of the m o d e s . For all the other m o d a l p a r a m e t e r s , 

h o w e v e r , there is a c o n s i d e r a b l e error in t h o s e identified 

by P0LAR5 and a s i g n i f i c a n t r e d u c t i o n in this error when the 

data are further analysed by S I M 2 . F u r t h e r m o r e , POLAR5 

p r o v e s to be m o r e s e n s i t i v e to random errors in the data by 

c o m p a r i s o n w i t h S I M 2 . 

The usual m e t h o d of c o m p a r i n g measured data and the 

t h e o r e t i c a l l y - r e g e n e r a t e d c u r v e is to draw both of them on 

the same plot and examine the c l o s e n e s s of the f i t . This 

m e t h o d , which is w i d e l y u s e d , is very s u b j e c t i v e and d e p e n d s 

h e a v i l y on the format chosen for the p l o t . The v i s u a l 

c o m p a r i s o n of the ' e x p e r i m e n t a l l y ' g e n e r a t e d data and the 

c u r v e s identified by the two p r o g r a m s d e m o n s t r a t e s this 

p o i n t . 

Presenting the m e a s u r e d data on a log m o b i l i t y v s . log 

frequency p l o t is c o n v e n i e n t and very i n f o r m a t i v e for the 

e n g i n e e r who is interested in the resonances and the 

a n t i - r e s o n a n c e s as w e l l . H o w e v e r , this p r e s e n t a t i o n d o e s not 

p r o v i d e any i n f o r m a t i o n about the phase shift and because 

the resonance peaks are s o m e w h a t 'compressed' the quality of 

the data in these important a r e a s is not readily o b v i o u s . 

The c o m p a r i s o n w i t h the identified curve e m p h a s i s e s , 
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Fig. 4-6: Curve-fitting for the three levels of random 

error on a log mobility scale 

freq.chz) 300.00 

Fig. 4-7: Curve-fitting on a linear receptance scale 
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t h e r e f o r e , the q u a l i t y of the fit at off r e s o n a n c e a r e a s 

w h e r e the actual n u m e r i c a l v a l u e s are relatively small and 

they tend to m i n i m i z e , v i s u a l l y , the n u m e r i c a l l y larger 

e r r o r s at the r e s o n a n c e s . C h e c k i n g F i g . 4 - 6 , it s e e m s , 

t h e r e f o r e , that all three d e r i v e d c u r v e s fit e q u a l l y w e l l 

the four r e s o n a n c e s . 

Presenting the data on a linear receptance scale 

(Fig. 4-7) e m p h a s i s e s the r e s o n a n c e s but c o m p l e t e l y 

a t t e n u a t e s the a n t i - r e s o n a n c e s ; but the phase i n f o r m a t i o n is 

still u n a v a i l a b l e . 

The third o p t i o n for p r e s e n t a t i o n of the data is the 

polar plot of r e c e p t a n c e ; this p r e s e n t a t i o n is v e r y 

i n f o r m a t i v e as to the quality of the data a r o u n d r e s o n a n c e s 

and g i v e s some idea as to the d e g r e e of influence b e t w e e n 

two close m o d e s (and, as w i l l be shown l a t e r , to the 

l i n e a r i t y p r o p e r t i e s of the d a t a ) . Presenting the results in 

the polar plane s h o w s m o r e c l e a r l y the quality of the fit at 

r e s o n a n c e s and the d i f f e r e n c e b e t w e e n the P0LAR5 and SIM2 

d e r i v e d parameters is e v i d e n t (Figures 4-8 f 4 - 1 2 ) . 
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T1P 

Fig. 4-8: 0% random error - curve fit by POLAR5 

t2
3 

Fig. 4-9: 4% random error - cnrve fit by POLAR5 
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T3P 

Fig. 4-10: 8% random error - curve fit "by P0LAR5 

T2B 

Img 
Re 

\\ 

3 ^ \ \ 

Fig. 4-11: 4% random error - curve fit by P0LAR5 and SIM2 

of second and third modes 



-118-

T3P 

Fig. 4-12: 8% random error - curve fit "by POLAR5 and. SIM2 

of the forth mode 
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4 . 5 MULTI-POINT EXCITATION METHOD 

A w ide l y used modal i d e n t i f i c a t i o n techn ique , e s p e c i a l l y 

i n the f i x e d wing a i r c r a f t i n du s t r y , i s the mu l t i - po i n t 

e x c i t a t i o n method. The t h e o r e t i c a l b a s i s for t h i s method was 

l a i d by F r a e i j s de Veubeke [19] (see chapter 2) who showed 

tha t a system w i th a f i n i t e number of degrees of freedom and 

w i th e i t h e r v i s cous or h y s t e r e t i c damping can be e x c i t ed by 

a s e t of p rope r l y tuned mono-phased fo r ces a t a n a t u r a l 

frequency of the undamped system to v i b r a t e i n a mode which 

i s i d e n t i c a l to the undamped normal mode of the system (a 

forced p ropor t iona l mode). 

The p r a c t i c a l implementat ion of t h i s method i s r a the r 

compl icated ; the two main problems which conf ront the user 

are the need to f i nd the requ i red number of shake r s ' and how 

to f i nd most e f f i c i e n t l y the co r r e c t l e v e l s of fo r ce 

d i s t r i b u t i o n to e x c i t e a 'pu re ' mode. 

These problems were d i s cussed t h e o r e t i c a l l y by many 

i n v e s t i g a t o r s [48,49] and there are some d i f f e r e n t p r a c t i c a l 

methods fo r the implementat ion of t h i s t h e o r e t i c a l l y s imple 

technique [43,50,51] . 

I t should be pointed ou t , however, tha t un les s the 

system i s p r opo r t i ona l l y damped ( o r , more g e n e r a l l y , the 

damping ma t r i x does not couple the undamped normal modes) 

the n a t u r a l f requenc ies and the ( r e a l ) mode shapes measured 

by t h i s method are not i d e n t i c a l l y the na t u r a l f r equenc ies 

and normal (complex) mode shapes of the a c tua l system but 

r a the r the modal parameters of a f i c t i t i o u s undamped system. 
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The c o m m o n t e c h n i q u e for d e r i v i n g the loss factor is to 

switch off the e x c i t e r s and record the t r a n s i e n t r e s p o n s e 

from w h i c h it can be simply c a l c u l a t e d . (This m e t h o d is 

s o m e t i m e s referred to as 'purity check of excited m o d e ' ) . A 

p r o p o r t i o n a l l y - d a m p e d system w i l l v i b r a t e in the n a t u r a l 

frequency of this m o d e but in a g e n e r a l l y - d a m p e d s y s t e m , 

'beating' o c c u r s in the t r a n s i e n t response w h i c h m e a n s that 

the excited (real) m o d e is not a true normal m o d e of the 

s y s t e m . In this c a s e , there is no unique loss factor w h i c h 

can be a s s o c i a t e d w i t h the excited m o d e . In p r a c t i c e , m o s t 

of the i n v e s t i g a t o r s using this t e c h n i q u e assume a priori 

that the system is p r o p o r t i o n a l l y - d a m p e d : an a s s u m p t i o n 

w h i c h m a y not a l w a y s be j u s t i f i e d . 

In the e x p e r i m e n t a l part of this research a m u l t i - p o i n t 

e x c i t a t i o n system was used: the M a n u a l M u l t i - p o i n t A p p a r a t u s 

(MAMA) d e v e l o p e d and b u i l t at the RAE [52] . This system is 

able to c o n t r o l up to five shakers w h i c h apply s i n u s o i d a l 

m o n o - p h a s e d force i n p u t s to the s t r u c t u r e . The e x c i t a t i o n 

frequency is c o n t r o l l e d a u t o m a t i c a l l y so that a q u a d r a t u r e 

r e l a t i o n s h i p e x i s t s b e t w e e n the force input of one exciter 

and the d i s p l a c e m e n t response at a point on the s t r u c t u r e . 

The force d i s t r i b u t i o n is tuned m a n u a l l y so as to o b t a i n a 

q u a d r a t u r e r e l a t i o n s h i p b e t w e e n the force inputs of the 

remaining four e x c i t e r s and the d i s p l a c e m e n t response at 

four p o i n t s on the s t r u c t u r e . Once this c o n d i t i o n is 

r e a c h e d , the mode s h a p e is simply m e a s u r e d on the s t r u c t u r e . 
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5. THE E F F E C T OF N O N L I N E A R I T I E S 

5.1 I N T R O D U C T I O N 

The f u n d a m e n t a l a s s u m p t i o n on w h i c h our m a t h e m a t i c a l 

model is based is that the system under c o n s i d e r a t i o n 

b e h a v e s in a linear w a y . 

It is e x p e c t e d that real s y s t e m s will be to a lesser or 

greater e x t e n t n o n l i n e a r , but p r a c t i c a l e x p e r i e n c e s u g g e s t s 

that g i v e n the right c o n d i t i o n s , their nonlinear c o m p o n e n t 

is g e n e r a l l y n e g l i g i b l e . H o w e v e r , as more a c c u r a t e and more 

powerful e q u i p m e n t for m e a s u r e m e n t and a n a l y s i s is 

a v a i l a b l e , and c o n s e q u e n t l y there is a d e m a n d for better and 

more a c c u r a t e results from m o d a l s u r v e y s , it is r e a l i z e d 

that often the nonlinear c o m p o n e n t is no longer n e g l i g i b l e 

and m u s t be a c c o u n t e d f o r . 

This m a y be done in two ways: (i) by i d e n t i f y i n g the 

sources of the n o n l i n e a r i t y in the system and trying to 

e l i m i n a t e or m i n i m i z e their e f f e c t or (ii) by c h a n g i n g the 

test c o n d i t i o n s so as to m i n i m i z e the nonlinear b e h a v i o u r of 

the system 

In a n y c a s e , a n a l y s i n g a system for w h i c h the l i n e a r i t y 

a s s u m p t i o n c a n n o t be fully justified leads to i n a c c u r a t e and 

m i s l e a d i n g r e s u l t s . Using these results in further 

c o m p u t a t i o n s can give rise to even greater e r r o r s and r e s u l t 

in a final model w h i c h does not describe the system 

adequa t e l y . 

The m a t h e m a t i c a l m o d e l l i n g of nonlinear v i b r a t i o n s 
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encountered i n p r a c t i c e r equ i r e s the s o l u t i on of non l inea r 

d i f f e r e n t i a l equat ions . The most common types of 

n o n l i n e a r i t i e s are cubic s t i f f n e s s and dry (coulomb) 

f r i c t i o n damping. The equat ions of these system are we l l 

known and have been s tud ied by many i n v e s t i g a t o r s and the 

t h e o r e t i c a l techniques fo r ana l y s i ng them are we l l 

e s t ab l i s hed [53,54,55,56] . Far l e s s i n v e s t i g a t i o n has been 

devoted to the problem of i d e n t i f y i n g r e a l non l inear 

systems, probably for the obvious reason tha t a c t ua l 

n on l i n e a r i t y of r e a l systems i s much more compl icated than 

the r e l a t i v e l y s imple mathematical models a v a i l a b l e [57,61] . 

The i n f l uence of cubic s t i f f n e s s on the Nyquist p lo t was 

examined by Newman [59] and White [58] and both showed tha t 

the angular spacing of the po in t s i s d i s t o r t e d . White 

i d e n t i f i e d the sys tem's parameters using t r a n s i e n t 

techniques and compared h i s t h e o r e t i c a l p r ed i c t i on s w i th 

exper imenta l r e s u l t s from a s imple s t r u c t u r e . More r e c e n t l y , 

Tomlinson [60,62] has i n ve s t i ga t ed the e f f e c t of dry f r i c t i o n 

on the Nyquist p lo t and presented a method, based on the 

in-phase and quadrature power d i s s i pa t ed when a normal mode 

i s e x c i t e d , by which the non l inea r f r i c t i o n fo rce and the 

h y s t e r e t i c damping are i d e n t i f i e d . The exper imenta l 

v a l i d a t i o n of t h i s technique i s r e s t r i c t e d to a very s imple 

l abora to ry dev ice designed to behave according to the 

t h e o r e t i c a l model. 

The approach employed i n t h i s research towards the 

problem of n o n l i n e a r i t i e s i n the measured response i s 
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similar to that exercised t o w a r d s the problem of n o i s e 

p o l l u t i o n of the m e a s u r e d s i g n a l . A c c o r d i n g l y , we shall 

t r e a t the e f f e c t of n o n l i n e a r i t i e s as a m e a s u r e m e n t error 

s u p e r i m p o s e d on the 'true' linear r e s p o n s e a t t e m p t i n g to 

identify its e x i s t e n c e rather than its type and thus 

to m i n i m i z e its e f f e c t . 

It seems u n l i k e l y that a n a l y s i s of s i m p l e n o n l i n e a r 

s y s t e m s w i l l ever cover the real nonlinear response of a 

m u l t i - d e g r e e of freedom s y s t e m . H o w e v e r , in order to 

u n d e r s t a n d how a w e a k l y n o n l i n e a r system b e h a v e s and to g a i n 

some insight into the s e n s i t i v i t y of the linear modal 

i d e n t i f i c a t i o n t e c h n i q u e , a simple o n e - d e g r e e - o f - f r e e d o m 

w e a k n o n l i n e a r o s c i l l a t o r is investigated in some d e t a i l . 

The behaviour of a real system is rather c o m p l i c a t e d and it 

seems impossible to d e s c r i b e it p r e c i s e l y by an a n a l y t i c a l 

m o d e l . To g e t nearer to this g o a l a m a t h e m a t i c a l l y - s i m p l e 

n o n l i n e a r c o m p o n e n t is assumed and added to the linear 

e q u a t i o n of m o t i o n . The u n d e r l y i n g a s s u m p t i o n in this 

p r o c e s s is that the n o n l i n e a r c o m p o n e n t is small enough that 

the new e q u a t i o n can be solved a n a l y t i c a l l y by an 

a p p r o x i m a t e m e t h o d . 

The n o n l i n e a r i t y of the system d e m o n s t r a t e s its p r e s e n c e 

w h e n e x c i t a t i o n c o n d i t i o n s are changed by p r o d u c i n g a 

d i s p r o p o r t i o n a t e c h a n g e in the measured r e s p o n s e . A 

p a r a m e t e r w h i c h gives some m e a s u r e as to the m a g n i t u d e of 

the n o n l i n e a r i t y relative to a linear system - the 

n o n l i n e a r i t y factor - is first d e f i n e d . T h e n , the influence 
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of small n o n l i n e a r i t i e s on the shape of the polar plot and 

on the s u b s e q u e n t linear m o d a l i d e n t i f i c a t i o n process are 

i n v e s t i g a t e d . To this end four d i f f e r e n t types of 

n o n l i n e a r i t y are e x a m i n e d : (i) d r y f r i c t i o n , (ii) cubic 

s t i f f n e s s , (iii) quadratic v i s c o u s damping and (iv) a 

c o m b i n a t i o n of dry friction and q u a d r a t i c v i s c o u s d a m p i n g . 

T h e o r e t i c a l data for d i f f e r e n t c o n d i t i o n s are g e n e r a t e d 

and then s u b j e c t e d to a n a l y s i s by a linear m o d a l 

i d e n t i f i c a t i o n a l g o r i t h m (POLAR 5 ) . The d e r i v e d m o d a l 

p a r a m e t e r s are presented and as the exact linear p a r a m e t e r s 

of the system are known a p r i o r i , the influence of the 

n o n l i n e a r i t y p r e s e n t in the system on the i d e n t i f i c a t i o n 

p r o c e s s can be e v a l u a t e d in d e t a i l . 

F i n a l l y , an e x p e r i m e n t a l study w h i c h d e m o n s t r a t e s the 

practical problem created by real n o n l i n e a r i t i e s is 

p r e s e n t e d . 
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5.2 THE N O N L I N E A R I T Y F A C T O R . 

M e a s u r e d m o b i l i t y data from real s y s t e m s are polluted by 

m a n y e r r o r s r e s u l t i n g in bad e s t i m a t e s of the system 

p a r a m e t e r s . T h e s e e r r o r s m a y be g r o u p e d into two c a t e g o r i e s : 

v a r i a n c e and b i a s . 

The v a r i a n c e part of the e r r o r is due to random 

d e v i a t i o n s from the 'true' v a l u e and is e s s e n t i a l l y G a u s s i a n 

in d i s t r i b u t i o n . S t a t i s t i c a l l y , t h e r e f o r e , if s u f f i c i e n t 

s a m p l e s are e v a l u a t e d , such random e r r o r s will be a v e r a g e d 

out and the m e a s u r e d e s t i m a t e will c l o s e l y a p p r o x i m a t e the 

'true' value w i t h a high d e g r e e of c o n f i d e n c e . 

The bias e r r o r , on the other h a n d , does not u s u a l l y 

d i m i n i s h as a r e s u l t of taking more s a m p l e s , a s it is due to 

a system c h a r a c t e r i s t i c or m e a s u r e m e n t p r o c e d u r e which 

r e s u l t s in an i n c o r r e c t e s t i m a t e . W i t h this type of error it 

is v i t a l to know its form or source in order to be able to 

reduce its e f f e c t on the m e a s u r e d d a t a . 

N o n l i n e a r i t y of the system p r o d u c e s a b i a s e r r o r . 

N o n l i n e a r i t i e s w i l l g e n e r a l l y shift energy from one 

f r e q u e n c y to m a n y new f r e q u e n c i e s in a v e r y c o m p l i c a t e d w a y . 

The r e s u l t will be a d e v i a t i o n of the m e a s u r e d response a t 

the e x c i t a t i o n f r e q u e n c y from the 'true' linear response a t 

this f r e q u e n c y . 

For the random e x c i t a t i o n m e t h o d of m e a s u r i n g m o b i l i t y 

d a t a , there e x i s t s a v a l u e w h i c h serves as a m e a s u r e of the 

d e g r e e of noise c o n t a m i n a t i o n in the m e a s u r e m e n t - the 
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c o h e r e n c e f u n c t i o n . This d e s c r i b e s the d i v i s i o n of o u t p u t 

power into c o h e r e n t and i n c o h e r e n t parts with r e s p e c t to the 

i n p u t . If the m e a s u r e m e n t c o n t a i n s bias error due to 

n o n l i n e a r i t i e s of the system then the c o h e r e n c e function 

d o e s not improve and will r e a c h , as the number of s a m p l e s is 

i n c r e a s e d , a m a x i m u m of less then 1 at each f r e q u e n c y . 

A factor similar to the c o h e r e n c e f u n c t i o n m a y be 

defined for the s t e a d y - s t a t e h a r m o n i c e x c i t a t i o n m e t h o d w i t h 

single input and o u t p u t . It is referred to a s the 

' n o n l i n e a r i t y f a c t o r ' . 

x 

Let us a s s u m e , for the sake of this t h e o r e t i c a l 

d i s c u s i o n , that we know the 'true' linear response of the 

system and can d e n o t e it by ^(o/) . F u r t h e r m o r e , suppose that 

we m a n a g e to m e a s u r e the e x a c t linear r e s p o n s e of the system 

a («>) . If we p l o t this ' m e a s u r e d ' response v s . the 'true* 

response a t v a r i o u s (but c o r r e s p o n d i n g ) f r e q u e n c i e s , the 

p o i n t s w i l l all lie on a s t r a i g h t line which p a s s e s through 

the origin and w h i c h has an i n c l i n a t i o n of 45° (Fig. 5 - 1 ) . 

a i {to) 

F i g . 5-1: 'True' v s . ' m e a s u r e d ' linear r e s p o n s e . 
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In p r a c t i c e , h o w e v e r , the m e a s u r e d r e s p o n s e , a , w i l l 

not be identical to the 'true' linear r e s p o n s e , a . Their 

d e v i a t i o n , due to n o n l i n e a r i t i e s m a y be d e s c r i b e d by two b i a s 

e r r o r s , n a m e l y the c o n s t a n t linear e r r o r , V , and the 

c o n s t a n t l o g a r i t h m i c e r r o r , U . i.e 

a (oj) = U « (OJ) + V (5-1) 
m l 

If we a s s u m e that the l o g a r i t h m i c error is equal to zero 

(i.e. l o g ( U ) = 0 , U=l) and if we p l o t on a linear scale ^ and 

or^ v s . f r e q u e n c y ou (Fig. 5-2a) then the d e v i a t i o n of a m from 

^ h a s a c o n s t a n t w i d t h V . If we plot v s . ^ (Fig. 5-2b) 

then the p o i n t s w i l l lie on a s t r a i g h t line w h i c h has an 

i n c l i n a t i o n of 45° but which d o e s not pass t h r o u g h the 

o r i g i n . 

If we next a s s u m e that the linear e r r o r , V , is zero and 

if we plot on a l o g a r i t h m i c scale a and a^ v s . f r e q u e n c y 

(Fig. 5-3a) then the d e v i a t i o n of log(a ) from log(a^) has a 

c o n s t a n t w i d t h , l o g ( U ) . If we now plot a v s . a (Fig. 5-3b) 
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then the p o i n t s w i l l lie on a s t r a i g h t line w h i c h p a s s e s 

through the origin but with an i n c l i n a t i o n w h i c h is equal to 

t g ~ 1 ( U ) . 

The c o m b i n e d e f f e c t of these two errors w h e n d i s p l a y e d 

as v s . a ^ is a set of p o i n t s w h i c h lie on a s t r a i g h t 

-1 

l i n e . This l i n e , y has an i n c l i n a t i o n of tg (U) and 

i n t e r s e c t s the a a x i s at V (Fig. 5 - 4 ) . 

F i g . 5-4; v s . ^ for both bias e r r o r s . 
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The degree of d e v i a t i o n of this l i n e , Y s]_, from the 

s t r a i g h t line w h i c h p a s s e s through the origin and has a 45° 

i n c l i n a t i o n , Y r f , (the reference line) gives an i n d i c a t i o n 

to the a m o u n t of b i a s error p r e s e n t in the s y s t e m . 

In f a c t , the n o n l i n e a r i t y b i a s e r r o r s are f u n c t i o n s of 

the a m p l i t u d e , P , and f r e q u e n c y , ^ , of the e x c i t a t i o n . Thus 

a
m(^)=U(P ro,)a 1(«,)+V(P f«o) (5-2) 

w h i c h m e a n s that the d e v i a t i o n of the measured r e s p o n s e , a m , 

from the 'true' linear one is more complex than we have 

a s s u m e d so far. In this c a s e , if we plot a v s . a. the 
m 1 

p o i n t s w i l l not l i e , a n y l o n g e r , on a straight l i n e . 

A theoretical nonlinear response (cubic stiffness) to a 

c o n s t a n t level of h a r m o n i c e x c i t a t i o n is given in F i g . 5 - 5 . 

When t h i s response, a , i s p lo t ted v s . the t rue l i n e a r 
m 

r e s p o n s e , a , it is o b v i o u s that the points do not lie on a 

s t r a i g h t line (Fig. 5 - 5 b ) . 

log a 

(a) (b) 

F i g . 5-5: a
m v s . for a theoretical nonlinear response 
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In this case the degree of deviation of these points 

from the reference line y r £ gives an indication to the 

amount of nonlinearity present in the system. T h i s can be 

quantified in the following way: 

Let the 'true' response be w r i t t e n as x ( ^ ) and the 

nonlinear response as y ( ^ ) (or as x. and y. ) 

Fig. 3-6: Calculation of the nonlinearity factor. 

A plot of y^ v s . x^ for corresponding frequency points 

(n points) is shown in F i g . 5 - 6 . A straight l i n e , , is 

fitted through these points such that the sum of the squares 

of the deviations from it shall be a m i n i m u m . Because x 
i 

represents the 'exact' response the deviations are measured 

along the y^ a x i s . 

The equation of the straight line yg-^ is 

y s i
= s b + a i x ( 5 _ 3 ) 
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w h e r e 
n n 

1q— i / x t > y4- / / x t yn L D (5-4) 
1:1 i :1 1:1 in 

n n 

a
1 [ 

' i=i in in 

n n n 

n 

D = i n 2 > i - ( i > i ) 2 r ( 5 _ 6 > 

1=1 i: i 

By d e f i n i t i o n , the s t r a i g h t line yQalways p a s s e s 

through the 'center of g r a v i t y ' of the points (x,y) w h e r e 

n n 

y 4 5 > a n d ( 5 ~ 7 ) 

in i : i 

The standard error of the fitted line is defined as; 

n n 

s s l 4 y ^ ( y i - y s l ) 2 4 X [ y i " ( a 0 + a 1 x i ) f ( 5 " 8 ) 

V i = i 

and the standard d e v i a t i o n from the a v e r a g e y is 

n 

in 

The ' n o n l i n e a r i t y f a c t o r ' - w h i c h is a m e a s u r e of the 

d e v i a t i o n of ys-^ from the reference line y r ^ - is a 

c o m b i n a t i o n of three v a l u e s , n a m e l y (i) the g e n e r a l linear 

b i a s , (ii) the g e n e r a l l o g a r i t h m i c b i a s and (iii) the degree 

of c o r r e l a t i o n of the p o i n t s to the s t r a i g h t line y s ^ . 

(i) The general linear bias is denoted by S q and the 

d i m e n s i o n l e s s factor J>| w h i c h e x p r e s s e s its relative 
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magnitude is defined as: 

2 for 0 (5-10) 

or 

a o 
f o r a ( Z 0 (5-11) 

for a ^ 0 the range of J^ is 

0 ^ J ^ l (5-12) 

For zero linear bias error (ag=0) J i = l and as the error 

gets l a r g e r , J^ gets smaller and s m a l l e r . 

(ii) The general logarithmic bias is denoted by a^ and 

the d i m e n s i o n l e s s factor J 2 which expresses its relative 

deviation from 1 is defined as: 

\9 ' fl 
J 9 r 1- (5-13) 

2 71 
x 

where 

^ = t g ~ 1 ( a 1 ) (5-14) 

for a-j ̂  0 the range of J2 is 

0 (5-15) 

For zero logarithmic bias error (a^=l) J 2 =1 and as the 

error gets l a r g e r , J 2 gets smaller and smaller. 

(iii) The degree of correlation of the points to a 

straight line is expressed by the dimensionless factor J^ 

which is defined as: 

J 3 3 1 - ( ^ i y ) 2 ( 5 " 1 6 ) 

The range of J ^ is always 
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0 « J 3 < 1 (5-17) 

For p e r f e c t c o r r e l a t i o n J 3 = l w h i c h m e a n s that the b i a s 

e r r o r s are not a f u n c t i o n of the f r e q u e n c y w and the 

e x c i t a t i o n P (or that P is kept c o n s t a n t ) . J^ g e t s smaller 

as there is less and less c o r r e l a t i o n b e t w e e n the p o i n t s and 

the fitted line . (see a p p e n d i x ) 

The n o n l i n e a r i t y f a c t o r is defined a s 

j s j ^ - j ^ (5-18) 

A s the r e s p o n s e s , a , are complex n u m b e r s , this p r o c e d u r e 

m u s t be a p p l i e d twice; once when x^ and y^ are the m o d u l i of 

the response and once w h e n they are the c o r r e s p o n d i n g 

p h a s e s . For each case a n o n l i n e a r i t y factor is c a l c u l a t e d , 

J m for the m o d u l i and J for the p h a s e s . An o v e r a l l 

n o n l i n e a r i t y factor m a y be defined as: 

J = (Jm- J p (5-19) 

and its range is (Fig. 5-7) 

0 ,<J S<1 (5-20) 

W h e n J = l , the m e a s u r e d response is purely linear and as 

J g e t s smaller, the data are less and less l i n e a r . 

The p l o t of y^ v s . x^ is referred to as the 'J p l o t ' and 

the n o n l i n e a r i t y factor a s the 'J f a c t o r 1 . 

* 
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F i g . 5-7: The range of the J factor (for a 1 > 0 ) 

The p r e c e d i n g a n a l y s i s a s s u m e s bias errors o n l y and that 

they are due to n o n l i n e a r i t i e s w i t h i n the s y s t e m . H o w e v e r , 

this m e t h o d can be a p p l i e d in order to d e t e c t the level of 

random e r r o r s as w e l l . T h i s can be done by c a l c u l a t i n g the J 

factor for two sets of data m e a s u r e d twice over the same 

f r e q u e n c y range w h i l e m a i n t a i n i n g the same level of 

e x c i t a t i o n and i n t e g r a t i o n time (which is special to the 

sine e x c i t a t i o n m e t h o d ) . The e f f e c t of integration time on 

the level of random e r r o r s in the m e a s u r e m e n t s can a l s o be 

c h e c k e d by c a l c u l a t i n g the J factor for the same m e a s u r e m e n t 

taken a t d i f f e r e n t i n t e g r a t i o n t i m e s . 

An a d d i t i o n a l l i n e a r i t y check can be made by c a l c u l a t i n g 

the J factor for two c o r r e s p o n d i n g transfer m e a s u r e m e n t s 

w h i c h s h o u l d , t h e o r e t i c a l l y , be identical 

For those c a s e s w h e r e none of the sets of data used in 

the p r o c e s s of the c a l c u l a t i o n of the J factor can be 

a s s u m e d a s 'exact' the d e v i a t i o n used in the d e r i v a t i o n of 
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y g l should be c a l c u l a t e d p e r p e n d i c u l a r to the s t r a i g h t l i n e , 

but as the a r i t h m e t i c involved is rather c o m p l i c a t e d we 

c h o o s e either the x or y d i r e c t i o n for the deviation,, 

realizing that the price paid for the simpler m a t h e m a t i c s is 

a s a c r i f i c e in the a c c u r a c y of the b e s t fit of the l i n e . The 

c h o i c e b e t w e e n the x and y d i r e c t i o n s is made in favour of 

that d i r e c t i o n in w h i c h the larger standard d e v i a t i o n is 

f o u n d . A c t u a l l y , this p r o c e d u r e is e m p l o y e d for the 

c a l c u l a t i o n of the ' n o n l i n e a r i t y f a c t o r ' a s , p r a c t i c a l l y , 

the 'true' linear r e s p o n s e , a^, is not a v a i l a b l e to u s . 

Instead we decide which of the m e a s u r e d r e s p o n s e s m a y serve 

a s the 'best' 'true' linear r e s p o n s e . ( The w a y in w h i c h this 

response is c h o s e n w i l l be d e s c r i b e d in a later stage.) 

5.2.1 L I N E A R I T Y CHECK VIA C A L C U L A T I O N OF THE M LOSS F A C T O R . 

In order to c a l c u l a t e the J f a c t o r , a reference set of 

data is n e e d e d . H o w e v e r , in m a n y p r a c t i c a l c a s e s only one 

single m e a s u r e m e n t is a v a i l a b l e so that it is i m p o s s i b l e to 

c a l c u l a t e the J f a c t o r . 

A d i f f e r e n t , though less p o w e r f u l , check for identifying 

the e x i s t e n c e of n o n l i n e a r b e h a v i o u r from a single set of 

data m a y be made by e x a m i n i n g d i f f e r e n t c a l c u l a t e d v a l u e s of 

the M loss f a c t o r . 

The e x p r e s s i o n for the M loss factor is d e r i v e d from the 

g e o m e t r y of the N y q u i s t plot (Fig. 5-8) i.e 
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2 2 
n 1 . 1 

M Oif ' t g i ^ + t g i ^ 

F i g . 5-8: C a l c u l a t i o n of the M loss f a c t o r . 

For a linear set of data the derived loss factor for any 

two frequency points ^ and <^2 will be the same as long as 

U J 2 ^ O J °  a n d  O J o 

H o w e v e r , as the presence of small nonlinearities in the 

system m u s t cause some change in the geometry of the N y q u i s t 

p l o t , then the M loss factor derived using different 

c o m b i n a t i o n s of frequency points will be different for each 

c o m b i n a t i o n . Checking the values derived for the M loss 

factor as a function of z W = ( - ) where o j ^ - = ~ m a y , at 

m o s t , give some indication as to the nature of the 

nonlinearity or, at l e a s t , to its e x i s t e n c e . 
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5.3 G E N E R A L EQUATION OF A W E A K L Y N O N L I N E A R SYSTEM 

In order to g e t some better i n s i g h t as to the i n f l u e n c e 

of small n o n l i n e a r i t i e s on the linear modal i d e n t i f i c a t i o n 

p r o c e s s , a theoretical o n e - d e g r e e - o f - f r e e d o m n o n l i n e a r 

system is e x a m i n e d in d e t a i l . 

The g e n e r a l e q u a t i o n w h i c h m a y d e s c r i b e such a system 

subjected to harmonic e x c i t a t i o n i s , 

x + 2 h x + c x I x I +Rr~7 _+ a )ox (1+bx 2 ) —Pcos<x/t (5-22) 
|x| 

where 

x - h a r m o n i c d i s p l a c e m e n t , [m] 

P - a m p l i t u d e of h a r m o n i c e x c i t i n g f o r c e . [N/Kg] 
-1 

M - f r e q u e n c y of exciting f o r c e , [sec ] 

h - linear v i s c o u s damping c o e f f i c i e n t , [sec ] 

-1 

c - q u a d r a t i c v i s c o u s damping c o e f f i c i e n t , [m 3 

R - c o n s t a n t dry f r i c t i o n f o r c e . [N/KgJ 

natural f r e q u e n c y of linear s y s t e m , [sec ] 
_2 

b - cubic s t i f f n e s s c o e f f e c i e n t . [m j 

This e q u a t i o n is solved for some particular c a s e s of 

n o n l i n e a r i t y using the m e t h o d of e q u i v a l e n t l i n e a r i z a t i o n . 

5.3.1 THE M E T H O D OF E Q U I V A L E N T L I N E A R I Z A T I O N . 

A c o n v e n i e n t m e t h o d for deriving a s a t i s f a c t o r y 

a p p r o x i m a t e solution to e q u a t i o n (5-22) is the m e t h o d of 

e q u i v a l e n t l i n e a r i z a t i o n [55j which states: 

The a m p l i t u d e and phase of the periodic v i b r a t i o n of a 

w e a k l y n o n l i n e a r o s c i l l a t o r i.e 
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x+ef ( x ) e g (x) =Pcoscct (5-23) 

w h e r e f(x) and g(x) are odd f u n c t i o n s , in the n e i g h b o u r h o o d 

of the r e s o n a n c e , are equal to the a m p l i t u d e and phase of 

the steady state v i b r a t i o n of the linear o s c i l l a t o r with the 

g o v e r n i n g e q u a t i o n 

x+2h(a) x+^o (a) x=Pcosuit (5-24) 

w h o s e c o e f f i c i e n t s h(a) and ^ ( a ) are chosen in such a w a y 

that the s o l u t i o n of these two e q u a t i o n s differ by terms of 

second or higher order in e. 

A s a first a p p r o x i m a t i o n , we a s s u m e that the s o l u t i o n to 

e q u a t i o n (5-23) is 

x=a • cos (cot+6) (5-25) 

w h e r e a and 6 are 'slightly v a r y i n g ' a m p l i t u d e and phase 

r e s p e c t i v e l y . T h i s solution is the first h a r m o n i c which is 

a c t u a l l y m e a s u r e d on a real s y s t e m . 

The e x p r e s s i o n that d e s c r i b e s the system's response (or 

the 'resonance curve') is, 

2 2 2 - 2 2 
a (cu -n7o) + (2a,ah) =P (5-26) 

S o l v i n g this e q u a t i o n gives the v a l u e of a as a function of 

the driving f r e q u e n c y u>. The phase is then d e t e r m i n e d from 

; (5-27) 
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where, 

1 271 
h (a) =o _ _ I f(w 0asinff)sinor do-

t- 71 COqCX J 
0 

2 1 r27t 

^ o ( a ) = w o + leg (acoscr)coscrdcr 

ti a j 
o 

where o is an integration variable. 



-140 ~ 

5.4 N U M E R I C A L STUDY 

The e q u a t i o n of m o t i o n of a nonlinear o s c i l l a t o r d o e s 

not lend itself e a s i l y to a n a l y t i c a l s t u d y . T h e r e f o r e , a 

n u m e r i c a l study of some p a r t i c u l a r c a s e s of e q u a t i o n (5-22) 

w a s c a r r i e d o u t . 

A p r o g r a m was f i r s t used (NL1) to g e n e r a t e s y n t h e s i s e d 

data for a g i v e n set of system p a r a m e t e r s . In order to 

d e t e c t the e f f e c t of the nonlinear c o m p o n e n t , d i f f e r e n t sets 

of data were g e n e r a t e d w h i l e only one parameter w a s c h a n g e d 

a t a t i m e . The influence of two p a r a m e t e r s w a s e x a m i n e d ; the 

level of n o n l i n e a r i t y and the m a g n i t u d e of the e x c i t i n g 

f o r c e . 

The g e n e r a t e d data w e r e d i s p l a y e d in three formats 

(i) log m o d u l u s (mobility) v s . f r e q u e n c y , (ii) phase v s . 

f r e q u e n c y and (iii) r e s p o n s e locus in the polar plane (the 

N y q u i s t p l o t ) . T h u s , a v i s u a l check enabled us to i d e n t i f y 

the w a y in w h i c h the small n o n l i n e a r i t y a f f e c t s the response 

of the linear s y s t e m . 

N e x t , the data were a n a l y s e d using a linear m o d a l 

i d e n t i f i c a t i o n program (P0LAR5). The v a r i a t i o n in the 

d e r i v e d m o d a l p a r a m e t e r s gave us some q u a n t i t a t i v e m e a s u r e 

as to the s e n s i t i v i t y of the linear modal i d e n t i f i c a t i o n 

a l g o r i t h m to small n o n l i n e a r i t i e s in the a n a l y s e d d a t a . 

F i n a l l y , the change in the derived M loss factor as 

f u n c t i o n of w a s e x a m i n e d . 
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5.4.1 DRY FRICTION 

The e q u a t i o n of motion of an oscillator with both dry 

friction and linear v i s c o u s damping is, 

x 2 
x+2hx+Rr-r-r+% x=Pcos^t ( 5-30) 

| X | 

By applying the method of e q u i v a l e n t l i n e a r i z a t i o n , an 

equation is derived for the resonance c u r v e , i.e 

2 2 2 
a) - coQ v 2, ,2cSh.Q. oj 2 
( P

 Q )a + ( — = 1 ( 5 ~ 3 1 ) 

The phase is obtained from 

s i n ^ S ^ a h C O S 0 = | ( 6 > 2 - 4 ) (5-32) 

p ">0 P ° 
where 

>0 (5-33) 

This an approximate solution which is sufficiently 

accurate only in the neighbourhood of the r e s o n a n c e . The 

underlying simplifying h y p o t h e s i s is that R is small enough 

for the m o t i o n to proceed w i t h o u t p a u s e s . The maximum 

magnitude of R at any frequency is limited by: 

R<aco 2 (5-34) 

Sets of data were generated for two cases; (i) main-

taining a c o n s t a n t e x c i t a t i o n force and changing the 

See ref 75 for detailed analysis of each nonlinear case. 
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amount of friction force R , (ii) keeping the friction force 

constant and changing the level of e x c i t a t i o n . 

Plots of mobility and phase for case (i) are shown in 

F i g . 5 - 9 . It is clearly seen that an increase in the level 

of friction reduces the level of the r e s p o n s e , as e x p e c t e d , 

and increases the phase difference between the real and 

imaginary p a r t s of it. 

-i. 
P«1 N/Kg 

"•••. 0 / 

KOBlUTf • .-•' .••'* . • ' . • • • " 

1Q81 

**max 

-21. 

9.50 FREO.CH2J 10.50 

0. P-1 N/Kg 

• ^ • • h . 

PHftSE 
^max ii-. I a ® a x 

-180. 

9.80 FfiEO. CHZ3 10.20 

F i g . 5-9: mobility (a) and phase (b) for varying levels of 

dry f r i c t i o n . 
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H o w e v e r , the shape of each individual c u r v e , w h e n e x a m i n e d 

s e p a r a t e l y , d o e s not r e f l e c t the presence of dry f r i c t i o n . 

The c o r r e s p o n d i n g N y q u i s t plots (Fig. 5-10) reveal 

i m m e d i a t e l y the e x i s t e n c e of the n o n l i n e a r i t y ; it is v e r y 

clear that the c i r c u l a r shape of the plot for the linear 

case (R=0) is g r a d u a l l y t r a n s f o r m e d into an 'egg s h a p e ' a s 

f r i c t i o n in the system is i n c r e a s e d . A v i s u a l e x a m i n a t i o n of 

these 'egg s h a p e d ' p l o t s shows that there is no d i s t o r t i o n 

in the a n g u l a r spacing of e q u a l l y - s p a c e d f r e q u e n c y p o i n t s 

and that the natural f r e q u e n c y of the system is still a t the 

p o i n t w h e r e the angular spacing is m a x i m u m and the real part 

of the response is z e r o . 

F i g . 5-10: N y q u i s t p l o t s for varying l e v e l s of dry f r i c t i o n . 

The r e s u l t s of a linear m o d a l i d e n t i f i c a t i o n of these 

data is s u m m a r i z e d in T a b l e 5 - 1 . 

Because dry f r i c t i o n has only an e f f e c t on the m o d u l u s 

and the phase of the r e s p o n s e and does not a f f e c t the 

P=1 N/Zg 
IMG 

R 
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angular spacing of the response p o i n t s , the natural 

frequency and the modal phase angle are identified c o r r e c t l y 

regardless of the level of d a m p i n g . On the other h a n d , the 

modal c o n s t a n t and the modal loss factor are distorted 

severely and for low levels of damping (R=0.2 N / K g ) , the 

error in the modal constant is about 2 5 % . The identified 

modal loss factor does not reflect the linear loss factor 

because dry friction acts a s an additional damping in the 

s y s t e m . 

R 

N/Kg 

Ui 

Hz 

1 A 

m/N 

e 
deg 

J 

.2 9.9995 
(Z) .0230 

(M) .0229 

.7424 

.7411 
.03 .603 

.4 9.9995 
(Z) .0275 

(M) .0267 

.4555 

.4425 
-1.33 .313 

.5 10.0115 
(Z) .0320 

(MK03O3 

.3391 

.3210 
-11.25 .199 

linear 10.0 .020 1.0 0.0 1 .0 

Table 5-1: Dry friction - modal parameters for varying 

levels of friction. 

The M loss factor, w a s calculated for different 

c o m b i n a t i o n s of frequency p o i n t s and F i g . 5-11 shows the 

variation in the derived results as a function of Aoj 

{Auj=^2 w h e r e = u b ) • It is seen that the v a r i a t i o n 

is very small for low levels of friction and as the friction 

is increased there is a decrease in the calculated M loss 

factor as At^is increased. 
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n, •M 
P=1 N/Kg 

.030 

,025 -

,020 
5 25 4-5 65 85 105 

Aco'10""5 (Hz) r3 

F i g . 5-11: V a r i a t i o n of the M loss factor a s f u n c t i o n of A<*> 

for varying l e v e l s of dry f r i c t i o n . 

(ii) A second set of f r e q u e n c y r e s p o n s e s was g e n e r a t e d 

for a c o n s t a n t level of f r i c t i o n and v a r y i n g levels of 

e x c i t a t i o n . 

F i g u r e s 5-12 and 5 - 1 3 d e s c r i b e the m o b i l i t y , phase and 

N y q u i s t p l o t s for these s e t s . It is seen that the g e n e r a l 

shape of all the c u r v e s is similar to those of the p r e v i o u s 

c a s e . It is a l s o noticed that as the level of e x c i t a t i o n is 

increased the response g e t s closer to the linear o n e . The 

l i n e a r i t y check by c a l c u l a t i n g d i f f e r e n t M loss f a c t o r s 

(Fig. 5-14) p r o d u c e s the same p a t t e r n . A full set of r e s u l t s 

of a linear m o d a l i d e n t i f i c a t i o n a l g o r i t h m is s u m m a r i z e d in 

Table 5 - 2 . 
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6 

4 \ , p 
R - 0 . 4 N / K g 

. . . . ^ J r f m a x 

! ! • 
' • • • : ! i 

' " ! I, 

' " ! : : • • =: 
•Miiax 

?.S$ FRED. CH2) 10.28 

Fig. 5-12: Mobility & phase plots for varying levels 

of excitation. 

R - 0 . 4 N / K g 
IMG REr-C. nM 

\ % x 
. 0 3 0 -

l ' f ( 1 J m \ : ••• 
. 0 2 5 -

. • \ . 0 2 0 . 

s i o • ' max 45 65 85 105 

Fig. 5 - H : as function of A Fig. 5-15: Nyquist plots for 

varying levels of excitation for varying levels of excitation 
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p 

N/Kg 

u> 
Hz 

n A 

m/H 
9 

dag 

J 

1 9.9955 
(K) .0274 

(M) .0271 

.4518 

.4469 
1.72 .313 

2 9.9980 
(K) .0230 

(M) .0229 

.7345 

.7323 
1.22 .598 

4 9.9993 
(X) .0217 

(M) .0217 

.8949 

.8949 
.43 .779 

6 9.9990 
(X) .0209 

(M) .0209 

.9157 

.9157 
.68 .847 

linear 10.0 .020 1.0 0.0 1.0 

T a b l e 5-2: D r y f r i c t i o n - modal p a r a m e t e r s for v a r y i n g 

levels of e x c i t a t i o n . 

We m a y c o n c l u d e that the e f f e c t of an increase in the 

e x c i t a t i o n level is e q u i v a l e n t to reduction in the level of 

dry f r i c t i o n and in p r a c t i c a l c a s e s , w h e n it is s u s p e c t e d 

that dry f r i c t i o n m a y a f f e c t the m e a s u r e d r e s u l t s , it is 

possible to reduce its e f f e c t by raising the level of 

exci t a t i o n . 

W h e n o n l y one set of m e a s u r e d data is a v a i l a b l e , the 

only form of d i s p l a y w h i c h m i g h t indicate the presence of dry 

f r i c t i o n is the N y q u i s t p l o t - the e x p e c t e d c i r c u l a r shape 

is then d i s t o r t e d into 'egg s h a p e ' . A s the M loss factor is 

r e l a t i v e l y i n s e n s i t i v e to c h a n g e s in A w it c a n n o t serve as a 

good i n d i c a t i o n for the e x i s t e n c e of dry f r i c t i o n 

n o n l i n e a r i t y . 
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5.4.2 CUBIC STIFFNESS 

The forced vibration of an oscillator with linear 

v i s c o u s damping and cubic stiffness is governed by the 

equation: 

2 2 
x + 2 h x + ^ 0 x (1+bx ) —Pcos6u»t (5-35) 

which is also known as the generalized Duffing's equation 

with d a m p i n g . This equation has been studied by many 

investigators (i.e [54J) but so far exact solutions are known 

only for particular values of a>o, b and P. 

By applying the method of equivalent l i n e a r i z a t i o n , we 

can derive an equation for the resonance curve: 

2 2 3 2 2 2 2 2 
(cj0-uj +2j-bcu0a ) +4h ^ =( - j (5-36) 

and the corresponding p h a s e s , 

-2a>ha a 2 2 3 , 2 2, / r 
s i n 0 =— ^— ; cos0=p (u>0-oj + | b w 0 a ) (5-37) 

The resonance curve described by equation (5-36) 

exhibits a w e l l - k n o w n phenomenon: for small levels of cubic 

stiffness and c o n s t a n t excitation force the curve 

(Fig. 5-15) tends to lean slightly (curve a ) . Above a 

certain level of cubic stiffness there seems to exist 

(curve b) three simultaneous d i f f e r e n t levels of response 

a m p l i t u d e s within a certain region of excitation 

f r e q u e n c i e s . P r a c t i c a l l y , this multiple response cannot 

exist and in a real system when the exciting frequency is 

increased gradually the response curve follows path OAC and 
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then 'jumps' to p o i n t D . If the f r e q u e n c y is d e c r e a s e d 

g r a d u a l l y the response follows path FDB and then 'jumps' to 

p o i n t A . W e see c l e a r l y that the b r a n c h CB is p r a c t i c a l l y 

F i g . 5 - 1 5 : Typical response of a system with c u b i c 

sti f f n e s s . 

u n a t t a i n a b l e . The b e h a v i o u r just d e s c r i b e d a p p l i e s for 

p o s i t i v e v a l u e of b and is referred to as 'cubic h a r d e n i n g 

s t i f f n e s s ' . W h e n b < 0 , the system b e h a v e s in a similar manner 

but then the curve l e a n s b a c k w a r d s . T h i s system is referred 

to as having 'cubic softening s t i f f n e s s ' . 

Sets of s y n t h e s i s e d data were g e n e r a t e d for three cases: 

(i) C o n s t a n t level of e x c i t a t i o n and varying l e v e l s of 

h a r d e n i n g c u b i c s t i f f n e s s . 

(ii) c o n s t a n t level of e x c i t a t i o n and varying l e v e l s of 

softening cubic s t i f f n e s s . 

(iii) C o n s t a n t h a r d e n i n g cubic s t i f f n e s s and v a r y i n g l e v e l s 

of e x c i t a t i o n . 

The m o b i l i t y and phase plots for case (i) are g i v e n in 

F i g . 5 - 1 6 . It is c l e a r l y noticed that as cubic s t i f f n e s s in 
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Fig. 5-16: Mobility (a) and, phase (b) plots for varying 

levels of hardening cubic stiffness. 
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Fig. 5-17: Nyquist plots for varying levels of hardening 

cubic stiffness 
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the system is increased the m o b i l i t y curve l e a n s forward 

w i t h o u t changing the level of the r e s p o n s e . T h e r e is a l s o a 

d i s t i n c t c h a n g e in the phase plot which is no longer 

s y m m e t r i c a l a s for the linear s y s t e m . E x a m i n a t i o n of the 

c o r r e s p o n d i n g family of N y q u i s t plots ( F i g . 5-17) i n d i c a t e s 

t h a t there is no a p p a r e n t c h a n g e in the c i r c u l a r shape of 

the plot a n d , as a l s o noticed in the m o b i l i t y c u r v e , no 

c h a n g e in the m a g n i t u d e of the r e s p o n s e . A c l o s e r l o o k , 

h o w e v e r , r e v e a l s that the a n g u l a r spacing of the points is 

c h a n g e d : as the cubic s t i f f n e s s is i n c r e a s e d , the m a x i m u m 

spacing m o v e s in a c l o c k w i s e d i r e c t i o n . 

D e s p i t e these clear c h a n g e s in the p l o t s , w h e n one 

e x a m i n e s a single p l o t , e s p e c i a l l y as part of a m u l t i - d e g r e e 

of freedom s y s t e m , the e x i s t e n c e of n o n l i n e a r stiffness is 

n o t so i m m e d i a t e l y o b v i o u s , b e c a u s e there is no w a y to 

d i s t i n g u i s h it from a response of a n o n p r o p o r t i o n a l l y - d a m p e d 

s y s t e m . T h i s fact is d e m o n s t r a t e d w h e n these sets of data 

a r e a n a l y s e d by a linear i d e n t i f i c a t i o n a l g o r i t h m 

TJ 
N Hz 

f 4 

m/H 

9 

deg 

J 

5 10.0060 
(2) .0200 

(M) .0200 

.9990 

.9979 
-3.74 .995 

40 10.0433 
(2) .0189 

(M) .0193 

.9524 

.9712 
-23.22 .363 

SO 10.0755 
(2) .0165 

(M) .0176 

.8350 

.8918 
-36.29 .577 

120 10.1018 
(2) .0134 

(M) .0155 

.6827 

.7921 
+44.92 .306 

160 10.1238 
(2) .0100 

(M) .0132 

.5110 

.6728 
-50.02 .125 

200 10.1433 
(2) .0065 

(M) .0116 

.3355 

.5940 
-52.53 .036 

0.0 10.0 .020 1.0 0.0 1.0 

Table 5-3: Hardening cubic stiffness - modal parameters for 

varying b and constant excitation force. 
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Because the a n g u l a r spacing of the p o i n t s is d i s t o r t e d 

the identified m o d a l phase a n g l e is g r e a t l y in error and a s 

a c o n s e q u e n c e , all the other m o d a l p a r a m e t e r s are w r o n g l y 

i d e n t i f i e d . W h e n a single set of data is a n a l y s e d in this 

m a n n e r , there is no clear i n d i c a t i o n of the n o n l i n e a r i t y and 

the final c o n c l u s i o n m a y as w e l l be that the a n a l y s e d m o d e 

is a complex o n e . H o w e v e r , c a l c u l a t i o n of the M loss f a c t o r , 

for d i f f e r e n t v a l u e s of (Fig. 5-18) e x h i b i t s a 

d i s t i n c t p a t t e r n ; as the cubic s t i f f n e s s is i n c r e a s e d the 

v a l u e of b e c o m e s i n c r e a s i n g l y sensitive to c h a n g e s in Aw. 

The c a l c u l a t e d v a l u e for any level of cubic s t i f f n e s s is 

a l w a y s lower then the c o r r e c t o n e . We m a y say that the o n l y 

m e a n s of c h e c k i n g for cubic s t i f f n e s s n o n l i n e a r i t y in a 

single curve is by c a l c u l a t i o n of the M loss factor as 

f u n c t i o n of A<^. 

5 25 45 65 35 105 

Aw-IO"*3 (Hz) 

Fig. 5-18: Variation in M loss factor as function of Aw 

for varying levels of hardening cubic stiffness 
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Figure 5-19 shows the m o b i l i t y , phase and N y q u i s t p l o t s 

for a softening cubic s t i f f n e s s s y s t e m . It is n o t i c e d 

c l e a r l y that this case is an e x a c t mirror image of the 

c o r r e s p o n d i n g h a r d e n i n g cubic s t i f f n e s s c a s e . A s the 

softening cubic s t i f f n e s s is i n c r e a s e d , the m o b i l i t y c u r v e 

l e a n s further and further b a c k w a r d s and the m a x i m u m a n g u l a r 

spacing m o v e s in an a n t i c l o c k w i s e d i r e c t i o n . 

The l i n e a r l y - i d e n t i f i e d m o d a l p a r a m e t e r s (Table 5-4) are 

a l s o d i s t o r t e d ; the v a l u e s of the natural f r e q u e n c i e s are 

lower then for the linear case and the modal phase angle is 

c h a n g e d in the o p p o s i t e d i r e c t i o n to that of the h a r d e n i n g 

c u b i c s t i f f n e s s c a s e . 

b 

m-1 
to 

Hz 
n A 

m/N 
9 

deg 

J 

-40 9.9548 
( x ) . 0 1 9 0 

(M) .0193 

.9431 

.9589 
24.68 .856 

-80 9.9215 
( X ) .0165 

(M) .0175 

.8109 

.8641 
38.39 .555 

-160 9.8715 
( X ) .0092 

(M) .0131 

.4465 

.6367 
51.93 .097 

linear 10.0 .020 1.0 0.0 1.0 

T a b l e 5-4: S o f t e n i n g cubic s t i f f n e s s - modal p a r a m e t e r s for 

v a r y i n g b and c o n s t a n t e x c i t a t i o n f o r c e . 

The v a r i a t i o n in the M loss factor a s f u n c t i o n of Ato, 

h o w e v e r , does not change its. d i r e c t i o n ; as the softening 

c u b i c s t i f f n e s s is i n c r e a s e d , its value b e c o m e s m o r e and 

more sensitive to c h a n g e s in z W . 
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P»1 N/Kg 

-40 

-80/f- • 
-160 

âax 

FREO. (HZ) 

IMC IMC 

b—40 nf 2 

IMG 

b—80 m"2 b—160 m~2 (C) 

Fig. 5-19; Mobility (a), phase (b) and Nyquist (c) plots 

for varying levels of softening cubic stiffness 
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.015 -

Aw-10"3 (Hz) 

F i g . 5-20: V a r i a t i o n of the M loss factor as f u n c t i o n of A w 

for v a r y i n g l e v e l s of s o f t e n i n g cubic s t i f f n e s s . 

For the third c a s e , w h e r e the h a r d e n i n g cubic s t i f f n e s s 

is kept c o n s t a n t and the level of e x c i t a t i o n force is 

i n c r e a s e d , the b e h a v i o u r of the system (Fig. 5-21) h a s the 

same p a t t e r n as for the case of increase in the level of the 

h a r d e n i n g cubic s t i f f n e s . The d i s t o r t i o n of the l i n e a r l y 

identified m o d a l p a r a m e t e r s is similar (Table 5-5) and the 

s e n s i t i v i t y of the M l o s s factor to c h a n g e s in Aw is 

i n c r e a s e d as the e x c i t a t i o n level is increased (Fig. 5-22) 

It h a s been c l e a r l y shown that a d d i t i o n of a small cubic 

s t i f f n e s s n o n l i n e a r i t y severely a f f e c t s the linear r e s p o n s e 

of the system in the v i c i n i t y of a resonance a n d , 
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MCBIlITf 
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Fig. 5-21: Mobility (a), phase (b) and Nyquist (o) plots 

for varying levels of excitation 
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5 25 45 65 85 105 

Aw-10"3 (Hz) 

Fig. 5-22: Variation of M loss factor as function of 

for varying levels of excitation 

p 

N/Kg 

Ui 

Hz 
V A 

m/N 

e 

deg 

J 

.2 10.0015 
(K) .0201 

(M) .0201 

1.007 

1.007 
-.93 .988 

1.4 10.0748 
(K) .0166 

(M) .0175 

, .8411 

.8893 
-36.43 • .589 

2.0 10.1238 
(K) .0100 

(M) .0133 

.5126 

.6819 
-49.98 .125 

linear 10.0 .020 1.0 0.0 1.0 

Table 5-5: Hardening cubic stiffness - modal parameters for 

varying levels of excitation force 
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c o n s e q u e n t l y , a l l the i d e n t i f i e d m o d a l p a r a m e t e r s are 

d i s t o r t e d , the m o d a l phase a n g l e suffering the m o s t . 

We see t h a t , for a given s y s t e m , the e f f e c t of an 

increase in the level of e x c i t a t i o n is e q u i v a l e n t to an 

increase of the level of c u b i c s t i f f n e s s . The p r a c t i c a l 

c o n c l u s i o n that we m a y draw from this r e s u l t is that in 

o r d e r to m i n i m i z e the e f f e c t of cubic s t i f f n e s s 

n o n l i n e a r i t i e s we should drive the test s t r u c t u r e a t the 

l o w e s t possible level of e x c i t a t i o n w h i c h can still p r o v i d e 

a c c e p t a b l e m e a s u r e d d a t a . 

W h e n only one set of m e a s u r e d data is a v a i l a b l e it is 

i m p o s s i b l e to d e t e c t the p r e s e n c e of cubic s t i f f n e s s 

n o n l i n e a r i t y by v i s u a l e x a m i n a t i o n of a n y of the 

c o n v e n t i o n a l plots; the only m e a n s to this end is the 

c a l c u l a t i o n of the M loss factor as a function of A w , as 

this c h a n g e s v e r y rapidly w h e n the level of cubic s t i f f n e s s 

is i n c r e a s e d . 
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5 . 4 . 3 Q U A D R A T I C V I S C O U S D A M P I N G 

W h e n the flow of the l i q u i d in a v i s c o u s h y d r a u l i c 

d a m p e r is t u r b u l e n t rather t h % n l a m i n a r , the d a m p i n g of the 

c o m p o n e n t m a y be d e s c r i b e d b y q u a d r a t i c v i s c o u s d a m p i n g . T h e 

e q u a t i o n of m o t i o n for such a s y s t e m under the a c t i o n of a 

s i m p l e h a r m o n i c e x c i t a t i o n is: 

. . . 2 

X + c x | X | + cu0x=Pcoscut (5-38) 

The r e s o n a n c e c u r v e and p h a s e a r e d e r i v e d b y the 

a p p l i c a t i o n of the m e t h o d of e q u i v a l e n t l i n e a r i z a t i o n i.e 

2 
-8ccun^a a 2 2 

s m 0 = ^ ^ p — ; c o s 0 = p ) (5-40) 

If we r e m o v e the n o n l i n e a r c o m p o n e n t f r o m e q u a t i o n 

(5-38) the l i n e a r e q u a t i o n is u n d a m p e d and the c o m p a r i s o n 

b e t w e e n the c a s e s is n o t s i m p l e . N e v e r t h e l e s s , by c h a n g i n g 

the q u a d r a t i c d a m p i n g c o e f f e c i e n t and the f o r c e level w e a r e 

a b l e to d e m o n s t r a t e the i n f l u e n c e of the n o n l i n e a r i t y on the 

a n a l y s i s p r o c e s s . 

The m o b i l i t y , p h a s e and N y q u i s t p l o t s for t h e s e two 

c a s e s are s h o w n in F i g u r e s 5 - 2 3 a n d 5 - 2 4 . It is n o t i c e d t h a t 

a s the l e v e l of q u a d r a t i c viscous^ d a m p i n g is i n c r e a s e d , the 

a m p l i t u d e of the r e s p o n s e is d e c r e a s e d w i t h o u t a f f e c t i n g the 

p o s i t i o n of the r e s o n a n c e p o i n t . The N y q u i s t p l o t , h o w e v e r , 

is s e v e r e l y d i s t o r t e d into a n 'apple s h a p e ' b u t , s t i l l , 

w i t h o u t s i g n i f i c a n t l y a f f e c t i n g the a n g u l a r s p a c i n g of the 

poi n t s . 
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Fig. 5-23: Mobility (a), phase (b) and. Nyquist (c) plots for 

varying levels of quadratic viscous damping 
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Fig. 5-25: Quadratic viscous damping - variation in M loss 

factor for varying levels of excitation (a) and 

for varying levels of damping (b) 
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It is c l e a r from these p l o t s t h a t an i n c r e a s e in the 

l e v e l of e x c i t a t i o n is e q u i v a l e n t to an i n c r e a s e in the 

l e v e l of q u a d r a t i c d a m p i n g w h i c h m e a n s in p r a c t i c e that b y 

m a i n t a i n i n g a l o w l e v e l of e x c i t a t i o n , the m e a s u r e d data of 

a real s y s t e m a r e l e a s t a f f e c t e d b y the n o n l i n e a r i t y . 

W h e n o n l y a s i n g l e c u r v e is a v a i l a b l e the n o n l i n e a r i t y 

is r e a d i l y d e t e c t e d from the d i s t o r t i o n of the N y q u i s t p l o t . 

The c h e c k for n o n l i n e a r i t y b y c a l c u l a t i n g the M l o s s f a c t o r 

a s f u n c t i o n of A w is n o t i n f o r m a t i v e in this r e s p e c t 

(Fig. 5-25) . 

5 . 4 . 3 . 1 Q U A D R A T I C V I S C O U S D A M P I N G P L U S DRY F R I C T I O N . 

W h e n d r y f r i c t i o n is a d d e d to the p r e v i o u s s y s t e m the 

g o v e r n i n g e q u a t i o n is: 

x + c x |x| +R~j-+^oX=Pcosa,t (5-41) 

The r e s o n a n c e c u r v e and the p h a s e are d e r i v e d by u s a g e 

of the m e t h o d of e q u i v a l e n t l i n e a r i z a t i o n , i.e 

(|) 2 lu$-J- ) 2 + 2 - l = 0 (5-42) 

2 
. „ - 8 c W n w a n W 

s i n 0 = ~Z70 

(5-43) 

„ a , 2 2, 
C O S 0 = p ( w 0 - w ) 

w h e r e , 

0 (5-44) 

T h i s s y s t e m w a s e x a m i n e d for two c a s e s : (i) v a r y i n g 

l e v e l s of d r y f r i c t i o n and (ii) v a r y i n g l e v e l s of e x c i t a t i o n 

f o r c e . The m o b i l i t y , p h a s e a n d N y q u i s t p l o t s for these a r e 
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Fig. 5-26: Quadratic viscous damping + dry friction'- modulus, 

phase and Nyquist plots for varying levels of excitation 
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Fig. 5-27: Quadratic viscous damping + dry friction - modulus, 

phase and Nyquist plots for varying levels of dry friction 
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g i v e n in Figures 5-26 and 5 - 2 7 . The c h a n g e s in the m o b i l i t y 

and phase plots are similar to those of the previous s y s t e m . 

The N y q u i s t p l o t , h o w e v e r , is d i s t o r t e d in a s o m e w h a t 

d i f f e r e n t w a y ; as the level of dry friction is i n c r e a s e d , 

the ' a p p l e - s h a p e d ' polar plot c h a n g e s g r a d u a l l y into an 

' e g g - s h a p e d ' form o r , as the level of e x c i t a t i o n is 

i n c r e a s e d , it c h a n g e s from ' e g g - s h a p e d ' to ' a p p l e - s h a p e d ' . 

In both c a s e s , this c h a n g e passes through a perfect c i r c u l a r 

shape and in any c a s e , w h e n examining a single c u r v e , 

d i s t o r t i o n from the c i r c u l a r shape is not easily d e t e c t e d . 

In p r a c t i c e , m i n i m i z i n g the nonlinear influence is v e r y 

d i f f i c u l t to a c h i e v e b e c a u s e of the opposing d e m a n d s on the 

forcing level; in order to m i n i m i z e the e f f e c t of dry 

f r i c t i o n , the e x c i t a t i o n level h a s to be i n c r e a s e d : on the 

other h a n d , the e f f e c t of the q u a d r a t i c v i s c o u s damping is 

then i n c r e a s e d . 
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5.5 E X P E R I M E N T A L S T U D Y . 

It is a c c e p t e d that these simple types of n o n l i n e a r i t y 

c a n n o t fully r e p r e s e n t the b e h a v i o u r of real s t r u c t u r e s . The 

n o n l i n e a r i t y of a p r a c t i c a l s t r u c t u r e is more c o m p l i c a t e d 

and a t m o s t can be d e s c r i b e d a s some c o m b i n a t i o n of these 

simple t y p e s . 

H o w e v e r , e x a m i n a t i o n of its m e a s u r e d r e s p o n s e s can g i v e 

us some i n d i c a t i o n a s to the types or the d o m i n a n t type of 

its n o n l i n e a r i t y and by a p p l i c a t i o n of the c o n c l u s i o n s 

d e r i v e d from the p r e v i o u s n u m e r i c a l s t u d y , we can m i n i m i z e 

their e f f e c t on the m e a s u r e d r e s u l t s and the m o d a l data 

e x t r a c t e d from t h e m . 

To this e n d , a mini m o d a l s u r v e y w a s p e r f o r m e d on a real 

s t r u c t u r e w h e r e special a t t e n t i o n w a s paid to the n o n l i n e a r 

a s p e c t s of its b e h a v i o u r , its e f f e c t on the d e r i v e d r e s u l t s 

and on w a y s to reduce its i n f l u e n c e . 

The structure tested w a s d e s i g n e d to c o n t a i n many of the 

f e a t u r e s c o m m o n in h e l i c o p t e r c o n s t r u c t i o n w h i c h give rise 

to p r o b l e m s and u n c e r t a i n t i e s in the theoretical m o d e l l i n g 

s t a g e , such as r i v e t t e d j o i n t s , a s y m m e t r y , s t i f f e n i n g r i b s , 

h o n e y c o m b sandwich p a n e l s , h e a v y m a s s e s m o u n t e d on 

r e l a t i v e l y f l e x i b l e c o m p o n e n t s e t c . The c o m p l e t e structure 

is shown in F i g . 5 - 2 8 . It is made of a lxlm stiffened base 

p l a t e , a t t a c h e d a t e i g h t p o i n t s to the 'rigid' floor base of 

the l a b o r a t o r y , s u p p o r t i n g a s q u a r e - s e c t i o n e d (although n o t 

symmetrical) tower some 1.3m tall. On top of this tower w a s 

m o u n t e d a h e a v y m a s s on three p o i n t p i n - s u p p o r t e d m o u n t s . 



Fig. 5-28: The structure used for the studies of 

nonlinearities 
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One c o m p l e t e side of the tower s e c t i o n c o n s i s t e d of a 

l i g h t - w e i g h t h o n e y c o m b sandwich p a n e l . The tower is 

d e s c r i b e d s c h e m a t i c a l l y in F i g . 5-29 showing the point w h e r e 

the e x c i t a t i o n force was a p p l i e d (point 12 d i r e c t i o n x ) . The 

a c c e l e r a t i o n w a s m e a s u r e d a t all the five p o i n t s indicated 

a n d in the same d i r e c t i o n . 

The first s t e p in this s u r v e y w a s a standard m o b i l i t y 

m e a s u r e m e n t w h e r e force and a c c e l e r a t i o n l e v e l s were a l l o w e d 

to v a r y t h r o u g h o u t the f r e q u e n c y range (optimal level 

c o n t r o l ) . The data were then a n a l y s e d by SIM2 but the 

r e s u l t s were u n s a t i s f a c t o r y ; a l t h o u g h p r e s e n t i n g no a p p a r e n t 

d i f f i c u l t y , the identified m o d a l phase a n g l e s implied that 

the normal mode s h a p e s of the tower were v e r y complex but 

the complete c u r v e fit showed large d i s c r e p e n c i e s b e t w e e n 

m e a s u r e d m o b i l i t y and r e g e n e r a t e d curve (Fig. 5 - 3 0 ) . 

This d i s c r e p e n c y between a n a l y s i s and m e a s u r e m e n t w a s 

a t t r i b u t e d to n o n l i n e a r b e h a v i o u r of the s t r u c t u r e and a set 

of detailed m e a s u r e m e n t s w e r e made to v e r i f y this 

c o n c l u s i o n . To this e n d , all the m o b i l i t y m e a s u r e m e n t s w e r e 

m a d e w h i l s t m a i n t a i n i n g a c o n s t a n t level of e x c i t a t i o n force 

(force level c o n t r o l ) . T y p i c a l r e s u l t s for m o d e 1 and 3 for 

p o i n t m o b i l i t y Y are shown in F i g u r e s 5-31 and 5 - 3 2 . The 
1 2 

n o n l i n e a r b e h a v i o u r of the tower is v e r y c l e a r : as the 

e x c i t a t i o n level is i n c r e a s e d , the m o b i l i t y c u r v e s tend to 

lean b a c k w a r d s and there is a d r o p in the level of response 

a m p l i t u d e . F r o m the N y q u i s t p l o t s we see that there is no 

s i g n i f i c a n t d i s t o r t i o n in the c i r c u l a r shape of the plot but 
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Fig. 5-29: Schematic view of the measured tower 

«7Xl2 

Fig. 5-30: Measured (optimal control) vs. identified curve 

for mobility Y 9 Q , 9 
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Fig. 5-51: Mobility (a) and Nyquist (b) 

plots for point measurement Y^ 2 under 

constant levels of excitation (mode 1) 
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Fig.5-52: Mobility (a) and Nyquist (b) 

plots for point measurement Y^ ̂ under 

constant levels of excitation (mode 5) 
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the a n g u l a r spacing of the p o i n t s is changed and the m a x i m u m 

spacing tends to m o v e in a c o u n t e r c l o c k w i s e d i r e c t i o n . From 

these c u r v e s we m a y s a y , at this s t a g e , that the d o m i n a n t 

type of n o n l i n e a r i t y of the tower m a y be r e p r e s e n t e d by a 

s o f t e n i n g cubic s t i f f n e s s . 

Each curve in these two sets of data was a n a l y s e d by 

P 0 L A R 5 and the i d e n t i f i e d modal p a r a m e t e r s are g i v e n in 

T a b l e 5 - 7 . (For c a l c u l a t i o n of the n o n l i n e a r i t y f a c t o r , J n , 

the m o b i l i t y of the l o w e s t e x c i t a t i o n level w a s taken a s the 

datum response.) 

E x a m i n a t i o n of these results r e v e a l s some v e r y clear 

trends; as the e x c i t a t i o n level is increased: 

(i) The i d e n t i f i e d natural f r e q u e n c y d e c r e a s e s . 

(ii) The v a r i a t i o n of the modal loss factor is r e l a t i v e l y 

small and a p p e a r s to be r a n d o m . 

(iii) T h e r e is a r e d u c t i o n in the m o d u l u s of the m o d a l 

c o n s t a n t and hence a c o r r e s p o n d i n g reduction in the m o d u l u s 

of the mode s h a p e . 

(iv) The m o s t s i g n i f i c a n t change is in the m o d a l phase angle 

and c o n s e q u e n t l y the identified n o r m a l mode shape b e c o m e s 

i n c r e a s i n g l y c o m p l e x . 

A n e x a m p l e of the c i r c l e - f i t t i n g process and the 

l o c a t i o n of the n a t u r a l frequency for two e x c i t a t i o n levels 

is s h o w n in F i g . 5 - 3 3 . The c h a n g e of the angular spacing and 

h e n c e d e r i v a t i o n of a greater m o d a l phase a n g l e as the 

e x c i t a t i o n level is increased is v e r y c l e a r . 

A t this stage we are able to c o n c l u d e that in order to 
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p 

volts Hz 

'1 1A12,12 

1 /Kg 

1*12,12 

deg 

J1 1*12 

.05 32.92 .0139 .0150 -177.69' - .1225 11 .15" 

.1 32.75 .0142 .0145 -168.08' .617 .1204 I5.96" 

.2 32.57 .0143 .0136 -154.89' .167 .1166 |12.55' 

.4 32.25 .0135 • .0115 -110.83' .001 .1072 134.58* 

P 

volts 

otrr 
3 

Hz 

'3 3A12,12 

1/Kg 10~ 

3*12,12 
! deg 

J3 3*12 

.05 78.82 .0077 5.167 -150.87' - .0719 114.56' 

.1 78.60 .0070 4.286 -141.08' .559 .0655 119.46' 

.2 78.32 .0062 3.399 -128.17' .237 .0583 125.91' 

.4 77.98 .0064 3.295 -135.77' .060 .0574 122.11' 

.6 77.69 .0070 3.382 -134.26" .000 .0582 122.87' 

.8 77.51 .0068 3.058 -140.00' .000 .0553 I 20.00' 

Table 3-7: Identified modal parameters,of modes 1 and 3 

for point mobility 71 o as fuction of excitation 

r .<D 
1 r 2<t>r 3 r »<D 

4 r 

12 .122 |.53" .0384 [8.24' .0673 1-1.12" .0206 17.19* 

14 .145 1-1.93' .0412 113.72' .0415 1-1.42' . 1 4 4 5 1174.02' 

01 .189 | .35* .0341 1-6.11* .0722 1-1.43' .223 1-7.96" 

29 .243 1.55' .0594 12.64" .257 1-177.18' .585 1172.33 

28 .209 | .80* .0592 111.60' .179 1-1.55" .674 I-7.03* 

Table 5-9: Complete set of identified normal mode shapes 

of the tower 
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Fig. 5-55: Modal circles for mode 3 of point mobility Y 

for different levels of excitation 

mode 
W-J. 

Hz 

n r rA29,12 

1/Kg 

r029,12 
deg 

rS29,12 
% 

1 32.88 .0136 . .0296 -181.08 4-2 

2 34.94 .0120 2.28-103 169.12 15.8 

3 78.72 .0074 .0173 1.69 8.0 

4 103.36 .0141 .0120 -.482 1.5 
Resid-
-ues 

Rm (1/Kg) I m O/Kg) Rk (m/N) I k (m/N) 
Resid-
-ues 

3.38 • 1 o'3 -1.89-103 
-1.77'10° 1.72-10

-8 

Table 5-8: Identified modal parameters for mobility Ypg ^ 2 
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m i n i m i z e the influence of the n o n l i n e a r i t y of the tower on 

the m e a s u r e m e n t it m u s t be treated a s having a s o f t e n i n g 

cubic s t i f f n e s s n o n l i n e a r i t y . T h u s , r e d u c t i o n of the 

e x c i t a t i o n force to the m i n i m u m p r a c t i c a l level w a s e x p e c t e d 

to produce the 'best* linear response and so the tower w a s 

m e a s u r e d a t the l o w e s t e x c i t a t i o n level possible and the 

m o b i l i t y c u r v e s w e r e a g a i n a n a l y s e d by S I M 2 . A typical 

result is shown in F i g . 5-34 and T a b l e 5-8 and c o m p a r e d w i t h 

the initial curve fit (Fig. 5-30) the i m p r o v e m e n t is 

r e m a r k a b l e . 

A set of normal m o d e s h a p e s resulting from this a n a l y s i s 

is g i v e n in Table 5-9 w h e r e it is c l e a r l y noticed that the 

normal mode shapes have a v e r y small phase angle and we m a y 

a t t r i b u t e this to m e a s u r e m e n t and a n a l y s i s errors rather 

then to a n o n p r o p o r t i o n a l damping of the t o w e r . 

F i n a l l y , The M loss factor for d i f f e r e n t levels of 

e x c i t a t i o n as a function of Atu w a s c a l c u l a t e d . (Fig. 5 - 3 5 ) . 

E x a m i n a t i o n of each c u r v e i d e n t i f i e s c l e a r l y the e x i s t e n c e 

of the c u b i c s t i f f n e s s n o n l i n e a r i t y of the tower and we see 

that even a t the l o w e s t level of e x c i t a t i o n there is still a 

small n o n l i n e a r i n f l u e n c e . 
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Fig. 5-34: Measured vs. identified curves for mobility Y o n , 0 —-—— _____ d y 9 \ d 
for optimal level of excitation 
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Ao) (Hz) 

Fig. 5-35: Variation of M loss factor as function of for 

varying levels of excitation for point mobility ' 

Y 1 2 , 1 2 ( m o d e 5) 
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5.6 C O N C L U S I O N S . 

It has been shown that small n o n l i n e a r i t i e s can a f f e c t 

the m o d a l i d e n t i f i c a t i o n a n a l y s i s of m e a s u r e d m o b i l i t y data 

if the a n a l y s i s a l g o r i t h m a s s u m e s a linear behaviour in the 

resonance r e g i o n s . 

Some s i m p l e types of t h e o r e t i c a l n o n l i n e a r i t i e s w e r e 

examined and from these we are able to d r a w some p r a c t i c a l 

c o n c l u s i o n s : 

(i) The e x i s t e n c e of each type of n o n l i n e a r i t y m a y be 

d e t e c t e d by a d i f f e r e n t form; some cause a d i s t o r t i o n in the 

c i r c u l a r shape of the N y q u i s t plot around resonance w h i l e 

another d i s t o r t s the a n g u l a r spacing w i t h o u t affecting the 

c i r c u l a r shape or the d i a m e t e r of the c i r c l e . In any c a s e , a 

set of m e a s u r e m e n t s taken at d i f f e r e n t but c o n s t a n t 

e x c i t a t i o n levels i m m e d i a t e l y reveals the e x s i t a n c e of 

n o n l i n e a r i t y . 

(ii) In order to m i n i m i z e the influence of the 

n o n l i n e a r i t y on the m e a s u r e d m o b i l i t y , the e x c i t a t i o n l e v e l 

m u s t either be increased or d e c r e a s e d according to the 

d o m i n a n t type of the n o n l i n e a r i t y . In order to reduce the 

influence of cubic s t i f f n e s s , the force level has to be 

r e d u c e d , on the other h a n d , for dry friction it has to be 

i n c r e a s e d . W h e n a system p o s s e s e s these two types it m a y be 

d i f f i c u l t to m i n i m i z e their e f f e c t on the m e a s u r e m e n t 

b e c a u s e of these opposing i n f l u e n c e s . 

(iii) The n o n l i n e a r i t y factor g i v e s a very good 

i n d i c a t i o n of the level of n o n l i n e a r i t y . (i.e in c a s e s of 
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s y n t h e s i s e d d a t a ) . For p r a c t i c a l c a s e s we m u s t choose one 

set of data a s the 'best' linear and use it as a b a s i s for 

c a l c u l a t i o n of the n o n l i n e a r i t y factor of other 

m e a s u r e m e n t s . 

(iv) W h e n only one set of m e a s u r e m e n t s is a v a i l a b l e for 

a system w i t h c u b i c s t i f f n e s s n o n l i n e a r i t y , the p r e s e n c e of 

it c a n n o t be detected by e x a m i n i n g the standard p l o t s . 

H o w e v e r , it is possible to i d e n t i f y such an e f f e c t by 

e x a m i n a t i o n of the v a r i a t i o n of the M loss factor as 

f u n c t i o n of A w , T h i s check is only p r a c t i c a l for cubic 

s t i f f n e s s n o n l i n e a r i t y b e c a u s e for other types (e.g dry 

friction) the v a r i a t i o n is n e g l i g i b l e . A c o n s t a n t M loss 

factor as f u n c t i o n of Aco d o e s n o t , t h e r e f o r e , n e c e s s a r i l y 

m e a n that the system is l i n e a r . H o w e v e r , some types of 

n o n l i n e a r i t y are not d e t e c t a b l e from any form of plot nor 

from e x a m i n a t i o n of the M loss factor c h e c k . The only w a y to 

reveal their e x i s t e n c e is by a set of d i f f e r e n t c o n s t a n t 

force e x c i t a t i o n t e s t s . 
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6, DERIVATION OF CONSISTENT MODAL PARAMETERS FROM SEVERAL 

SINGLE POINT EXCITATION T E S T S . 

6.1 I N T R O D U C T I O N . 

It has been shown (chapter 2) that the modal c o n s t a n t of 

the r'th mode of receptance j , r^ij ' l s defined as the 

product of the two m a s s - n o r m a l i z e d eigenvector elements 
-1- J 

and i . e 

r A i j - W W < 6 _ 1 ) 

For each m o d e , a modal constant matrix [A] can be 
r 

constructed from 

[A] r={(P} r{d)}^ (6-2) 

From expression (6-1) it is clear that 

A..= A . . (6-3) 
r 13 r 31 

which means that the modal constant matrix of mode r is 

s y m m e t r i c . This property is referred to as 'reciprocity' and 

it derives directly from the assumption of linear behaviour 

of the s y s t e m . H o w e v e r , experience has shown that for m o s t 

practical c a s e s this reciprocity condition is not m e t 

p r e c i s e l y , for a number of reasons. 

The accuracy of the modal constants derived from 

experimental data depends heavily upon the quality of the 

m e a s u r e m e n t s made and upon the particular character of the 

frequency response function a n a l y s e d . One of the key factors 

which influences the results is the choice of the response 

and excitation points. If either the excitation or the 

response point happens to lie on (or very close to) a n o d a l 
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point of a p a r t i c u l a r m o d e , then the response of that m o d e 

will barely appear in the m e a s u r e d frequency response 

f u n c t i o n , if at a l l . S i m i l a r l y , it m a y be i m p o s s i b l e to 

excite c e r t a i n m o d e s a d e q u a t e l y from a single p o i n t , 

e s p e c i a l l y on large s t r u c t u r e s . 

A second factor to i n f l u e n c e the a n a l y s i s results is the 

character of the m e a s u r e d f r e q u e n c y response f u n c t i o n . High 

m o d a l d e n s i t y (many m o d e s p r e s e n t w i t h i n a c e r t a i n a n a l y s i s 

b a n d w i d t h ) , c l o s e m o d e s , or the local d o m i n a n c e of a s i n g l e 

mode which o b s c u r e s or a f f e c t s the m e a s u r e m e n t all m a k e the 

i d e n t i f i c a t i o n of certain m o d e s d i f f i c u l t and i n a c c u r a t e 

w h e n analysed by a s i n g l e - m o d e - a t - a - t i m e i d e n t i f i c a t i o n 

method (POLAR5 for e x a m p l e ) . T h e y also a f f e c t the m o r e 

c o m p l e t e i d e n t i f i c a t i o n p r o c e d u r e u n d e r t a k e n by a 

s i m u l t a n e o u s m o d e fitting m e t h o d (SIM2 for e x a m p l e ) . 

It has been shown that the presence of small 

n o n l i n e a r i t i e s in the system m a y , under c e r t a i n c o n d i t i o n s , 

seriously a f f e c t the identified r e s u l t s . It has also been 

shown by T o m l i n s o n [64] that w h e n exciting a s t r u c t u r e using 

an e l e c t r o - d y n a m i c s h a k e r , the input force is d i s t o r t e d , 

e s p e c i a l l y in the resonance r e g i o n s , due to n o n l i n e a r i t i e s 

in the s h a k e r . 

The c u m u l a t i v e e f f e c t of all these factors is a 

d i s t o r t i o n of the s y m m e t r i c form of the identified m o d a l 

c o n s t a n t m a t r i c e s a n d , as a r e s u l t , the r e c i p r o c i t y 

c o n d i t i o n is not f u l f i l l e d . Thus w h e n m e a s u r i n g several 

c o l u m n s of the frequency response matrix and deriving the 
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c o m p l e t e e i g e n v e c t o r m a t r i x from each c o l u m n , it is u s u a l l y 

found that these d e r i v e d m a t r i c e s are not i d e n t i c a l , as they 

should be according to t h e o r y . F u r t h e r m o r e , the n a t u r a l 

f r e q u e n c i e s and the m o d a l loss f a c t o r s of the v a r i o u s m o d e s 

are g e n e r a l l y n o t found to be i d e n t i c a l when d e r i v e d from 

two frequency r e s p o n s e s of a g i v e n s y s t e m . 

In this c h a p t e r , a s y s t e m a t i c m e t h o d is p r e s e n t e d for an 

a s s e s s m e n t of the q u a l i t y of m e a s u r e d data a n d , once the 

m o d a l p a r a m e t e r s are d e r i v e d , a q u a n t i t y which d e s c r i b e s the 

q u a l i t y of these results is d e v i s e d . F i n a l l y , a m e t h o d for 

d e r i v i n g a c o n s i s t e n t set of m o d a l parameters is d e v e l o p e d . 
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6.2 M E T H O D S FOR E V A L U A T I N G M O D A L T E S T R E S U L T S . 

A s the a c c u r a c y of the e x p e r i m e n t a l l y - i d e n t i f i e d m o d a l 

p a r a m e t e r s d e p e n d s h e a v i l y on the q u a l i t y of the f r e q u e n c y 

response data a n a l y s e d , it is d e s i r a b l e to have some 

q u a n t i t a t i v e m e a n s of e v a l u a t i n g the q u a l i t y of the data and 

of e x a m i n i n g the m o d a l c h a r a c t e r of the p a r t i c u l a r function 

in q u e s t i o n before starting the p r o c e s s of m o d a l 

i d e n t i f i c a t i o n . 

Once the m o d a l a n a l y s i s of a f r e q u e n c y r e s p o n s e function 

is c o m p l e t e d , it is useful to m e a s u r e the c o n f i d e n c e that 

can be placed in each of the d e r i v e d modal p a r a m e t e r s . The 

u s u a l m e t h o d for this p r o c e s s is to plot the m e a s u r e d data 

and the t h e o r e t i c a l l y - g e n e r a t e d c u r v e and to a s s e s s v i s u a l l y 

the c l o s e n e s s of the two. Such a m e t h o d is v e r y s u b j e c t i v e 

and d e p e n d s on the scale and the format of the p l o t . This 

q u e s t i o n of c o n f i d e n c e b e c o m e s e s p e c i a l l y i m p o r t a n t w h e n we 

h a v e more than one set of p a r a m e t e r s for the same m o d e . 

S i m p l e a v e r a g i n g m a y lead us to s i g n i f i c a n t e r r o r s as some 

of the r e s u l t s w i l l have b e e n d e r i v e d using 'poor' data and 

c o n s e q u e n t l y they are l i k e l y to be 'poor' as w e l l . Thus 

there is a need for an o b j e c t i v e w e i g h t i n g or q u a l i t y factor 

to be a s s i g n e d to each identified set of m o d a l p a r a m e t e r s . 

6 . 2 . 1 A S S E S S M E N T OF THE QUALITY OF M E A S U R E D D A T A . 

The q u a l i t y of the e x p e r i m e n t a l l y - d e r i v e d modal 

p a r a m e t e r s is d i r e c t l y related to the quality of the 
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m e a s u r e d d a t a . The a n a l y s i s p r o g r a m a s s u m e s a linear 

b e h a v i o u r and a c e r t a i n model for the d a m p i n g , both of w h i c h 

are only c o n v e n i e n t a p p r o x i m a t i o n s to the 'true' b e h a v i o u r 

of the s t r u c t u r e . F u r t h e r m o r e , an inherent f e a t u r e in a n y 

e x p e r i m e n t a l p r o c e s s is the p o l l u t i o n of the m e a s u r e d data 

by random e r r o r s . It is i m p o r t a n t , t h e r e f o r e , to check the 

data a t the a c q u i s i t i o n stage for s i g n i f i c a n t d e v i a t i o n s 

from the a s s u m e d m o d e l a n d , w h e r e p o s s i b l e , to improve their 

q u a l i t y . 

Standard p r o c e d u r e s for c o r r e c t m e a s u r e m e n t r o u t i n e s 

are w e l l e s t a b l i s h e d and d e s c r i b e d by Ewins [65,66] , Silva 

[67], C a r u z o [68], G l e e s o n [69] and m a n y o t h e r s . H o w e v e r , there 

are some fine d e t a i l s which m a y s e r i o u s l y influence the 

q u a l i t y of the data and the following systematic a p p r o a c h 

p r o v i d e s a tool for checking the e x p e r i m e n t a l l a y o u t , the 

structure and the m e a s u r i n g system and for i d e n t i f y i n g 

s o u r c e s of p o l l u t i o n to the m e a s u r e d d a t a . 

(i) Initial s e l e c t i o n of e x c i t a t i o n and response p o i n t s 

on the s t r u c t u r e . T h e s e points are chosen a c c o r d i n g to 

e n g i n e e r i n g j u d g e m e n t and a c c e s s i b i l i t y to the n e c e s s a r y 

i n s t r u m e n t a t i o n . 

For a point m e a s u r e m e n t , the a c c e l e r o m e t e r and force 

gauge are supposed to be located a t the same p o i n t on the 

s t r u c t u r e . U s u a l l y , this is a c h i e v e d by m o u n t i n g them on the 

o p p o s i t e sides of a p a n e l , but v e r y often this a r r a n g e m e n t 

is not p r a c t i c a l and they are then mounted as c l o s e as 

p o s s i b l e to each other on the same side of the s t r u c t u r e . 
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From a s t r i c t point of v i e w , this a r r a n g e m e n t r e c o r d s a 

transfer r e s p o n s e , But the p r a c t i c a l a p p r o a c h a s s u m e s 

that its d e v i a t i o n from the e x a c t p o i n t m e a s u r e m e n t is 

n e g l i g i b l e , i.e 

a. . = a. . = a. . 
ID 11 DD 

It is w o r t h w h i l e c h e c k i n g the v a l i d i t y of this 

a s s u m p t i o n by m e a s u r i n g the transfer response to p o i n t k 

from p o i n t i and j and c o m p a r i n g and a I f this 

a s s u m p t i o n is valid then these two transfer m e a s u r e m e n t s 

should be p r a c t i c a l l y i d e n t i c a l , i.e 

a. i = a., 
lk jk 

(ii) I n i t i a l l y , a c o a r s e sweep of the f r e q u e n c y range of 

i n t e r e s t is p e r f o r m e d and the m a i n m o d e s in this range are 

i d e n t i f i e d . A t this p o i n t it is p o s s i b l e to i d e n t i f y 

e x c i t a t i o n and response p o i n t s w h i c h are poorly located (i.e 

close to a node of a c e r t a i n m o d e ) , and where p o s s i b l e , to 

c h a n g e their p o s i t i o n . N o i s e g e n e r a t e d by loose parts in the 

s t r u c t u r e (e.g c a b l e s , p i p e s , h i n g e s , g e a r , etc.) can be 

d e t e c t e d and e l i m i n a t e d t o o . It is sometimes p o s s i b l e to 

improve the q u a l i t y of the data a c q u i r e d a t this stage quite 

c o n s i d e r a b l y , just by m o v i n g a m e a s u r e m e n t p o i n t by a small 

a m o u n t . 

(iii) Once all the e x c i t a t i o n and response p o i n t s on the 

s t r u c t u r e have b e e n c h o s e n and the operator h a s some general 

idea of the dynamic b e h a v i o u r of the s t r u c t u r e , a fine sweep 

a r o u n d the r e s o n a n c e s in the f r e q u e n c y range of i n t e r e s t is 

p e r f o r m e d . 
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(iv) Plotting these m e a s u r e m e n t s on a polar plot u s u a l l y 

r e v e a l s the q u a l i t y of the data in the resonance r e g i o n s . A 

d i s t o r t i o n of the b a s i c a l l y - c i r c u l a r shape of the p l o t or a 

d i s t o r t i o n in the a n g u l a r spacing of the points m a y give 

some e a r l y i n d i c a t i o n to the n o n l i n e a r behaviour of the 

s t r u c t u r e and enable the operator to d e c i d e w h i c h m o d e to 

c h e c k v e r y t h o r o u g h l y , or to r e m e a s u r e . 

(v) In order to e s t a b l i s h the d e g r e e of n o n l i n e a r i t y of 

the s t r u c t u r e , several m e a s u r e m e n t s over the same f r e q u e n c y 

range should be p e r f o r m e d a t d i f f e r e n t levels of c o n s t a n t 

e x c i t a t i o n force. The level of e x c i t a t i o n force s t a r t s a t 

the l o w e s t practical level possible (where the level of 

noise is still a c c e p t a b l e ) and i n c r e a s e s to the m a x i m u m 

w h i c h can be m a i n t a i n e d by the i n s t r u m e n t a t i o n (where the 

signals are not clipped) or the s t r u c t u r e . A set of 

n o n l i n e a r i t y factors m a y be c a l c u l a t e d where the data 

c o l l e c t e d a t the l o w e s t e x c i t a t i o n level are taken as the 

'linear' r e s p o n s e . The rate of c h a n g e of the n o n l i n e a r i t y 

factor as a function of the i n c r e a s e in the exci .ation level 

g i v e s the operator an i n d i c a t i o n of the e x t e n t of the 

n o n l i n e a r i t y of the w h o l e system (structure and m e a s u r i n g 

i n s t r u m e n t a t i o n ) . A set of polar p l o t s of these m e a s u r e m e n t s 

can o f t e n give an i n d i c a t i o n as to the d o m i n a n t form of 

n o n l i n e a r i t y . 

C a l c u l a t i o n of the n o n l i n e a r i t y factor of a . , relative 
J 

to a., p r o d u c e s more i n f o r m a t i o n w h i c h enables the operator 

to a s s e s s the q u a l i t y of, the data c o l l e c t e d . 
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(vi) A t this stage the o p e r a t o r should make h i s d e c i s i o n 

regarding the q u a l i t y of the d a t a , bearing in mind the 

a c c u r a c y he d e m a n d s from the i d e n t i f i e d modal p a r a m e t e r s . In 

extreme c a s e s , w h e r e the data prove to be v e r y b a d , the 

o p e r a t o r m a y decide n o t to proceed with the a n a l y s i s , 

c h o o s i n g instead to try to locate the c a u s e s for the poor 

q u a l i t y of these data and to r e p e a t the whole p r o c e s s of 

m e a s u r e m e n t . In a n y c a s e , the i n t e r p r e t a t i o n of the 

n o n l i n e a r i t y f a c t o r s is u l t i m a t e l y l e f t to the e x p e r i e n c e 

and j u d g e m e n t of the o p e r a t o r . 

6.2.2 A S S E S S M E N T OF THE QUALITY OF IDENTIFIED M O D A L 

P A R A M E T E R S . 

Once a set of m o d a l p a r a m e t e r s for a c e r t a i n mode have 

been i d e n t i f i e d , the q u a l i t y of this i d e n t i f i c a t i o n can be 

a s s e s s e d by c a l c u l a t i n g the n o r m a l i z e d standard error of the 

fit b e t w e e n m e a s u r e d p o i n t s and the theoretical curve 

(Fig. 6 - 1 ) . I 
Img (a . . ) 

F i g . 6-1: Error of the fitted curve 
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The standard error is calculated for each mode over the 

frequency range used for identification of this m o d e . If we 

denote the measured response by a ^ {co) and the fitted 

response by a^ (co) i.e 

m 
\ 

°t (">= > ,2r, , i +.T"l'Rk <6"4) 

where R m and R ^ are the residual mass and residual stiffness 

respectively and m is the number of modes analysed for this 

particular frequency response function. 

The error of the fit, E (co) , at any individual frequency 

is defined as: 

E { a > ) = \ < x t { a > ) - a m { c o ) | (6-5) 

and the quality f a c t o r , f°r the mode r of receptance 

or. . is defined as: 

" JL 
2 

S. . — (6-6) 
r 1 3 I A. 

O? 71 

r r 

where p is the number of points used for identi fication of 

2 
this m o d e . The normalizing factor, l rA^^ I / ) / is the 

diameter of the circle that fits best through these points 

on a N y q u i s t plot. 

W h e n several a t t e m p t s to identify the modal parameters 

of a certain mode are m a d e , either with the same 

identification program or by different m e t h o d s , the quality 

of these attempts can be evaluated by comparing the quality 

factors calculated for each derived set of modal p a r a m e t e r s . 
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The smaller is the value of r s i j r t h e b e t t e r is the q u a l i t y 

of the fit a n d , h e n c e , the g r e a t e r is the c o n f i d e n c e w h i c h 

can be placed in this set of r e s u l t s . 



-191 ~ 

6.3 CALCULATION OF THE OPTIMAL M O D A L P A R A M E T E R S . 

By measuring one column or row in the frequency response 

function matrix using the single-point excitation t e c h n i q u e , 

it is possible to derive the complete matrix of the normal 

mode shapes, [<r>] n x m # where n is the number of c o o r d i n a t e s 

used to define the motion of the system and m is the number 

of modes in the measured frequency range, (usually n>m) 

By definition (equation 6 - 1 ) , the modal c o n s t a n t of the 

point m e a s u r e m e n t is 

r * i i - - W 2 < 6 ~ 7 > 

from which we may derive 

i 
0. =( A.-)

2
 (6-8) 

r I n
y 

and then all the other elements in the normal mode matrix 

are obtained using 
A. 

0 = — r i f l, (6-9) 
r ^ , r r ^ 

\ 7r ii 

It is usually found that the normal mode shape m a t r i c e s 

derived from d i f f e r e n t measured columns of the frequency 

response function are not identical and in m a n y cases it is 

not possible to identify all the terms because some elements 

in the modal c o n s t a n t matrix c o l u m n are missing due to low 

s i g n a l s , often as a result of poor choice of excitation or 

response points. If the missing element is the modal c o n s t a n t 

of the point m e a s u r e m e n t A., then it is impossible to 
r n 

identify the mass-normalized mode shape elements 0 . even 
r 3 

though the modal constants of the transfer m e a s u r e m e n t s , 

are a v a i l a b l e , because the process hinges on knowledge 
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The above m e t h o d has been shown for the h y s t e r e t i c 

d a m p i n g model o n l y but it w a s shown by G a u k r o g e r and C o p l e y 

[36] that the same procedure a p p l i e s for the v i s c o u s l y d a m p e d 

s y s t e m . 

F o r each c o l u m n i d e n t i f i e d , d i f f e r e n t e s t i m a t e s of the 

n a t u r a l f r e q u e n c y and loss factor are derived for each mode 

(n e s t i m a t e s for each m o d e ) . T h e s e two modal p a r a m e t e r s 

d e r i v e d by a n a l y s i n g each r e c e p t a n c e a., are d e n o t e d by w . . 
-L J _L _L J 

for the natural f r e q u e n c y and rj. .for the loss f a c t o r , and 
-L J- J 

for each mode they comprise two m a t r i c e s [<*>] and [»?J the 

size of which is nxN w h e r e N is the number of m e a s u r e d 

c o l u m n s in the r e c e p t a n c e m a t r i x . 

6 . 3 . 1 D E R I V A T I O N OF THE 'BEST' ESTIMATE OF THE N A T U R A L 

F R E Q U E N C Y A N D LOSS F A C T O R . 

The 'best' e s t i m a t e s of n a t u r a l frequency and loss 

f a c t o r for each m o d e are o b t a i n e d by a process of a v e r a g i n g , 

using the q u a l i t y f a c t o r , S . a s a w e i g h t i n g p a r a m e t e r . 
-1- -1- j 

The v a r i a b l e to be m a n i p u l a t e d is denoted by X. . 
r 7 r 

(representing e i t h e r .or -r^iX w e i g h t i n g a t t a c h e d 
-L. -J- J Am Am J 

to it by a . . w h e r e 1 r 1,1 

(6-10) 

F i r s t , the w e i g h t e d m e a n , ^X _., of the e l e m e n t s of c o l u m n 

j is c a l c u l a t e d 
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r x j " 
(6-11) 

4=1 * * and the weighted standard deviation of X . , S- is defined 

by 

* 

r s r 

* 

1 
(6-12) 

The final estimate is calculated by averaging all the N 
* 

derived means r X - . 
j 

The full w e i g h t e d m e a n , X r , is 

N * * 

X—<*— H— 

I < r g 3 ) 

(6-13) 

where the weighting factor is defined as 

k2 * 1 
\ ST 

The standard d e v i a t i o n , S , of the full mean is 

(6-14) 

S r = 
£ W

 [
r

x
r V 

I ( rg*) 
(6-15) 

6.3.2 DERIVATION OF THE OPTIMIZED NORMAL MODE S H A P E S . 

W h e n more than one column of the frequency response 

matrix is a v a i l a b l e , an improved estimate of the normal mode 

shapes can be o b t a i n e d . Richardson and Kniskern [70] 

suggested an algorithm for this purpose - it contains some 
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a r b i t r a r y rules and is based on the authors e x p e r i e n c e and 

i n t u i t i o n w i t h o u t setting any c r i t e r i a for the d e r i v e d 

r e s u l t s . Goyder [71,72] d e v e l o p e d an a l g o r i t h m w h i c h fits 

s i m u l t a n e o u s l y all the m e a s u r e d f r e q u e n c y r e s p o n s e f u n c t i o n s 

and thus d e r i v e s one c o n s i s t e n t set of modal p a r a m e t e r s . 

By using the following a l g o r i t h m , it is p o s s i b l e to 

o b t a i n a c o n s i s t e n t normal mode m a t r i x , to d e r i v e v a l u e s in 

this matrix w h i c h are not a l w a y s a v a i l a b l e by the one c o l u m n 

a t a time m e t h o d and to reduce the overall error in the 

e s t i m a t e of the m o d a l p a r a m e t e r s . 

A t the p r e v i o u s stage the 'best* e s t i m a t e s for the 

natural f r e q u e n c i e s , and loss f a c t o r s , have been 

d e r i v e d and since the diameter of the fitted m o d a l c i r c l e , 

2 

I A. . |/(to v ) f is a c o n s t a n t g e o m e t r i c a l p r o p e r t y , there is 

no j u s t i f i c a t i o n to a c c e p t an a d j u s t m e n t in its v a l u e and a 

proper a d j u s t m e n t in the modal c o n s t a n t A . . m u s t be m a d e . 
•L -I- J 

T h u s , in order to make the modal c o n s t a n t e s t i m a t e s 

c o n s i s t e n t with the 'best' v a l u e s of the natural f r e q u e n c y 

and loss f a c t o r , a new adjusted v a l u e , A. ., is c a l c u l a t e d 
r 13 

from 

T h e n , mode by m o d e , the a l g o r i t h m searches for the 

v a l u e s of the e l e m e n t s in the normal mode shape {<2>}r w h i c h 

m i n i m i z e the error f u n c t i o n , E r , g i v e n by 

n n 

(r(I)j) | 2 ( r g i j } ; (r=l,2..m) (6-1 
i : i j=i 

2 -

(6-16) 
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T h i s error f u n c t i o n is m i n i m i z e d for each m o d e 

s e p a r a t e l y using all the a d j u s t e d m o d a l c o n s t a n t s a v a i l a b l e . 

For m i s s i n g e l e m e n t s in the m o d a l c o n s t a n t m a t r i x the 

w e i g h t i n g factor g . . is taken a s equal to z e r o , so that 
i i j 

they are excluded from the p r o c e s s . I n order to s t a r t this 

a l g o r i t h m , an initial g u e s s of the v a l u e s of the e l e m e n t s of 

the v e c t o r {<!>}r m u s t be provided and these i n i t i a l v a l u e s 

are o b t a i n e d using the w e a k e r a l g o r i t h m s u g g e s t e d by 

R i c h a r d s o n et.al.[70]. 

A s the modal c o n s t a n t s A . . and the normal m o d e shapes 
J 

,<2>-, are complex t e r m s , the o p t i m i z a t i o n p r o c e s s h a s to 
j 

e v a l u a t e 2xn v a r i a b l e s . This is u n d e r t a k e n in two stages: 

(i) the v a l u e s of the phases are k e p t c o n s t a n t and the 

m o d u l i of r<D^ to m i n i m i z e E r are f o u n d , (ii) these moduli 

are k e p t c o n s t a n t and the p h a s e s to minimize E r are found, 

and so on until the c h a n g e in the v a l u e of E r from one 

i t e r a t i o n to the n e x t is less then a p r e s c r i b e d v a l u e . 

It should be a p p r e c i a t e d , h o w e v e r , that the o p t i m i z e d 

m o d a l p a r a m e t e r s d e r i v e d by this m e t h o d are o n l y a result of 

a s t a t i s t i c a l p r o c e s s and as more redundant data are 

a v a i l a b l e the better is the e s t i m a t e of these p a r a m e t e r s . In 

a n y c a s e , by this m e t h o d , an e n o r m o u s a m o u n t of m e a s u r e d and 

a n a l y s e d i n f o r m a t i o n is reduced into a single c o n s i s t e n t set 

of p a r a m e t e r s w h i c h d e s c r i b e the m e a s u r e d s t r u c t u r e 'best
1 

and can be c o n v e n i e n t l y used in a n y further t h e o r e t i c a l 

calcula t i o n s . 
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1 . E X P E R I M E N T A L STUDY 

A c o m p r e h e n s i v e e x p e r i m e n t a l study of a typical 

a e r o s p a c e s t r u c t u r e was performed as part of this r e s e a r c h , 

the aims of which were: 

(i) to investigate the p r o b l e m s c o m m o n l y e n c o u n t e r e d in 

p r a c t i c e w h e n using the s i n g l e - p o i n t e x c i t a t i o n m e t h o d . 

(ii) to d e m o n s t r a t e the use of the m e t h o d s d e s c r i b e d in 

the p r e v i o u s c h a p t e r s ; 

(iii) to c o m p a r e d i f f e r e n t m e t h o d s of m o d a l 

i d e n t i f i c a t i o n w h e n used on real s t r u c t u r e s . 

7.1 T E S T P I E C E A N D M E A S U R E M E N T S Y S T E M 

The s t r u c t u r e used for this study was a t a i l c o n e of a 

h e l i c o p t e r (Westland Lynx) (Fig. 7 - 1 ) . This t a i l c o n e , w h i c h 

has a mass of a b o u t 80 Kg and is about 2.6m l o n g , is a bare 

s t r u c t u r a l frame containing some e l e c t r i c a l c a b l e s and 

h y d r a u l i c p i p e s . The tailcone was suspended by two nylon 

ropes attached to its two e n d s . V a r i o u s types of s u s p e n s i o n 

s y s t e m s were tried including steel c a b l e s , rubber s t r a p s , 

n y l o n r o p e s , etc and the system w h i c h showed the m i n i m u m 

influence on the m e a s u r e d data in our range of interest 

(30-300 Hz) - i.e nylon ropes - w a s c h o s e n . 

The m e a s u r e m e n t s on the t a i l c o n e were p e r f o r m e d using 

the 1191 c o m p u t e r - c o n t r o l l e d system of the D y n a m i c s S e c t i o n 

at the Imperial C o l l e g e . The c o m p o n e n t s of this system are 

d e s c r i b e d in F i g . 7 - 2 . The system is controlled by a 
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PDPll/34 m i n i - c o m p u t e r and the m e a s u r e m e n t s w e r e m a d e using 

the p r o g r a m M 0 B 3 , d e v e l o p e d for this p r o j e c t . 

F i g . 7 - 1 : T a i l c o n e and response p o i n t s 

At f i r s t , the t a i l c o n e was excited at a single p o i n t and 

the response was m e a s u r e d at eight points along the tail 

(points 0-7 in F i g . 7 - 1 ) . This p r o c e s s was repeated four 

t i m e s , each time using a d i f f e r e n t e x c i t a t i o n p o i n t , so that 

a total of 32 f r e q u e n c y response functions were o b t a i n e d 

(Table 7 - 1 ) . The m o d a l p a r a m e t e r s were e x t r a c t e d from each 

of these m e a s u r e d response f u n c t i o n s using the m o d a l 

i d e n t i f i c a t i o n p r o g r a m s P 0 L A R 5 , SIM2 and P A P A . 

In a d d i t i o n , the t a i l c o n e was measured using the 

m u l t i - p o i n t e x c i t a t i o n system M A M A , where the a p p r o p r i a t e 

modal p a r a m e t e r s are d i r e c t l y read from the system once 

proper tuning of the exciting forces is a c h i e v e d . 

The v i b r a t i o n c h a r a c t e r i s t i c s of the tailcone w e r e 

m e a s u r e d over a one d e c a d e f r e q u e n c y range (30-300 Hz) and 

w i t h i n this range interest was focused on the first four 

m o d e s . This g r o u p of m o d e s p r o v i d e s a good example of 

typical p r o b l e m s e n c o u n t e r e d in p r a c t i c e . The first mode 
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(around 77 Hz) is l i g h t l y damped and w e l l - s e p a r a t e d from the 

next two m o d e s (around 141 and 145 H z ) , w h i c h , in t u r n , are 

m o d e r a t e l y damped and v e r y close to each o t h e r . The last 

mode (around 183 Hz) is m o d e r a t e l y d a m p e d and w e l l - s e p a r a t e d 

from its n e i g h b o u r i n g m o d e s . 

F i g . 7 - 2 : The m e a s u r e m e n t system 

B e c a u s e four c o l u m n s of the m o b i l i t y m a t r i x w e r e 

measured and b e c a u s e some of our e x c i t a t i o n and response 

p o i n t s w e r e located c l o s e to nodal p o i n t s of c e r t a i n m o d e s , 

the m e a s u r e d data c o l l e c t e d c o n t a i n many of the p r o b l e m s 

common to the single p o i n t e x c i t a t i o n m e t h o d . 

F i g u r e s 7-3 f 7 - 5 show typical e x a m p l e s of the n a t u r e of 

the m e a s u r e d d a t a ; in e x p e r i m e n t a l m o b i l i t y p l o t Y 2 4 , the 
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Y 7 7 T
7 6 Y

7 4 
x 7 2 

Y 67 
Y 66 Y 64 

Y 62 

Y
5 7 Y 56 T 54 

Y 52 

Y
4 7 Y 46 

Y 44 Y 42 

X 5 7 X
5 6 Y

5 4 
x 5 2 

X 2 7 Y 26 Y 24 
X 2 2 

Y 17 
Y 16 Y 1.4 

x 1 2 

Y 07 Y 06 Y 04 
Y 02 

Table 7-1: The measured mobility matrix 
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Fig. 7-3: Mobility plot of Y ^ 
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two c l o s e m o d e s and the low response of the first m o d e are 

c l e a r l y s e e n , this latter because p o i n t 4 is close to a node 

of this m o d e . In e x p e r i m e n t a l m o b i l i t y p l o t Y 7 7 , one of the 

close m o d e s is d o m i n a n t and the other one is h a r d l y n o t i c e d . 

In b o t h c a s e s the v e r y s m a l l m o d e s above 200 Hz are m a i n l y 

due to p i p e s and c a b l e s left in the t a i l c o n e . A c a r e f u l 

check of this range i n d i c a t e d that these m o d e s are h i g h l y 

n o n l i n e a r and depend h e a v i l y on the level of e x c i t a t i o n . 

H o w e v e r , they are not g e n u i n e m o d e s of the s t r u c t u r e and 

their influence on the o v e r a l l response is m i n i m a l . 

7.1.1 A S S E S S M E N T OF L I N E A R I T Y 

B e f o r e starting the m o d a l i d e n t i f i c a t i o n p r o c e s s , the 

m e a s u r e d m o b i l i t y data w e r e tested for n o n l i n e a r i t y 

according to the p r o c e d u r e outlined in 6 . 2 . 1 . The t a i l c o n e 

was excited at a c e r t a i n m o d e , m a i n t a i n i n g the lowest 

c o n s t a n t a m p l i t u d e of e x c i t a t i o n force possible (F m i n ) . Then 

the m e a s u r e m e n t was repeated for the same frequency range 

but under the h i g h e s t c o n s t a n t a m p l i t u d e of e x c i t a t i o n force 

p r a c t i c a b l e ( F m a x ) . Using the first set of data as the 

'best' linear response of the t a i l c o n e , the n o n l i n e a r i t y 

factor was c a l c u l a t e d . F i g u r e s 7-6 and 7-7 illustrate two 

typical n o n l i n e a r i t y c h e c k s for mode 1 and mode 4 using 

m o b i l i t y Y 4 2 . In these two cases the s t r u c t u r e was also 

m e a s u r e d at some i n t e r m e d i a t e a m p l i t u d e s of c o n s t a n t forcing 

l e v e l s . The n o n l i n e a r i t y factor for these checks are 

s u m m a r i z e d in Tables 7 - 2 and 7-3 and a typical J plot for 
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excitation 
level (v) ' Jm J P J 

0.6 0.831 0.832 0.831 
1.0 0.776 0.774 0.775 
1.4 0.641 0.537 0.606 

Table 7-2: Nonlinearity factor for mode 1 of 

(reference level is F . =.2v) 
a m m 

a 
42 

excitation 
level (v) Jm jp J 

0.05 .945 .964 .954 

0.07 .859 0.971 0.913 

0.10 0.798 0.956 .873 

0.20 0.733 0.863 0.795 

Table 7-3: Nonlinearity factor for mode 4 of <* 

(reference level is F . =.02v) 
a m m — 

42 

a 4 2 Fmin 
• - • / 

/ysi 

/ 
y co; 

<y - F 
r max 

Fig. 7-8: Linearity check (J plot) of mode 1 for <* 42 
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the fi rst m o d e of Y 4 2 is s h o w e n in F i g . 7 - 8 . 

An a d d i t i o n a l linearity check was m a d e by c o m p a r i n g two 

reciprocal transfer m o b i l i t i e s ( Y 4 2 and Y 2 4 ) over the w h o l e 

frequency range (Fig 7 - 9 ) . 

E x a m i n a t i o n of the n o n l i n e a r i t y factors for these c h e c k s 

shows that the d e g r e e of n o n l i n e a r i t y of the t a i l c o n e in the 

range of i n t e r e s t is not s i g n i f i c a n t and that if the 

e x c i t a t i o n levels are kept b e l o w the m a x i m u m level w h i c h is 

p r a c t i c a b l e w i t h our e q u i p m e n t , the m e a s u r e d data can be 

treated as l i n e a r . The m a i n reason for the good linear 

behaviour of the tailcone m a y be a t t r i b u t e d to the w a y it 

was s u s p e n d e d ; w i t h 'free f r e e ' s u s p e n s i o n high levels of 

forcing are needed in order to induce large d e f l e c t i o n s in 

the s t r u c t u r e (which are u s u a l l y responsible for marked 

n o n l i n e a r b e h a v i o u r ) . T h e s e required levels were beyond the 

range our e q u i p m e n t could m a i n t a i n . 

a. 24 

Fig. 7-9: Linearity check of a A n and a, 
42 24 
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7.2 S I N G L E - P O I N T E X C I T A T I O N M O D A L I D E N T I F I C A T I O N 

The m o d a l p a r a m e t e r s for the 32 m e a s u r e d frequency 

response f u n c t i o n s were identified using three d i f f e r e n t 

i d e n t i f i c a t i o n p r o g r a m s : 

(i) P 0 L A R 5 (P) - a o n e - m o d e - a t - a - t i m e i d e n t i f i c a t i o n 

r o u t i n e . 

(ii) SIM2 (S) - a s i m u l t a n e o u s m o d a l i d e n t i f i c a t i o n 

r o u t i n e . 

(iii) P A P A (PP) - a s i m u l t a n e o u s m o d e i d e n t i f i c a t i o n 

r o u t i n e . 

The first two routines a s s u m e a h y s t e r e t i c damping m o d e l 

and the last one assumes a v i s c o u s damping m o d e l (see 

a p p e n d i x ) . 

Two typical sets of results are s u m m a r i z e d in T a b l e s 7-4 

and 7 - 5 . B e c a u s e the second and the third m o d e s are v e r y 

c l o s e , and in some m e a s u r e m e n t s one of them was d o m i n a n t , it 

was s o m e t i m e s impossible to identify the other mode (mode 3, 

for e x a m p l e , in T a b l e 7 - 5 ) . The results provided by PAPA did 

not include residual terms or quality f a c t o r . In g e n e r a l , it 

is noticed that the q u a l i t y of SIM's results is better than 

P O L A R ' s , e s p e c i a l l y for the two close m o d e s . (A c o m p l e t e set 

of results is given in ref[73]) 

W h e n p r e s e n t i n g the results on a log m o b i l i t y vs 

frequency p l o t , the d i f f e r e n c e between the results obtained 

by the three p r o g r a m s is e f f e c t i v e l y i n d i s t i n g u i s h a b l e (only 

true around resonances in this c a s e , as there are no 

residual terms included for PAPA's r e s u l t s ) . 
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y z i y j z 

8 
i 

u v 
Cllzl 

V 
Ar 

( i / K g l 
er 

[ d e g j % 
m 
0 
1 lUl l 

V 
Ar 

[1/Kgl 
er 

( d e g ] % 

P 77. f 6 . 0 0 7 5 . 3 9 3 E - 0 2 - 6 3 1 0 . 5 F 7 7 . 2 8 . 0 0 7 4 . 2 0 9 E - 0 2 - 1 6 . 9 1 6 . 0 

l S 77.09 . 0 0 7 7 . 4 1 5 E - 0 2 - 1 0 1 . 5 i 3 7 7 . 1 9 . 0 0 6 5 • 2 1 1 E - 0 2 - 2 . 3 1 0 . 9 

PP 77.12 . 0 0 7 4 • 4 0 7 E - 0 2 - 7 6 PP 7 7 . 2 3 . 0 0 6 3 0 6 E - 0 2 - 1 1 . 8 

P 1 4 1 . 3 0 . 0 1 5 5 . 2 8 2 E - 0 1 5 . 0 2 . 4 P 1 4 1 . 3 0 . 0 1 4 3 . 1 9 0 E - 0 1 4 . 5 3 . 1 

2 S 1 4 1 . 3 0 . 0 1 4 8 • 2 7 0 E - 0 1 3 . 5 1 . 0 2 3 1 4 1 . 3 0 . 0 1 5 5 . 2 0 3 E - 0 1 3 . 6 . 9 

PP 1 4 1 . 4 0 . 0 1 5 0 . 2 7 S E - 0 I - 3 . 3 PP 1 4 1 . 4 0 . 0 1 6 0 . 2 1 3 E - 0 1 - 2 . 5 

P P 1 4 5 . 4 0 . 0 1 3 9 .590EH12 - 1 0 . 7 7 . 4 

1 s 3 S 1 4 5 . 3 0 . 0 1 1 6 • 4 9 5 E - 0 2 - . 2 2 . 9 

PP 1 4 5 . 5 0 . 0 1 5 6 . 3 3 0 E - 0 2 - 2 2 . 5 PP 1 4 5 . 3 0 . 0 1 2 9 . 6 0 3 E - 0 2 - 3 . 6 

p 1 0 2 . 4 0 . 0 1 6 4 . 1 0 3 E 4 0 0 - 8 . 5 5 . 0 P 1 8 2 . 4 0 . 0 1 5 1 . 9 8 4 E - 0 1 - 5 . 4 5 . 0 

4 s 1 0 2 . 5 0 . 0 1 6 5 . 1 0 2 E + 0 0 —9 . 2 4 . 6 4 3 1 8 2 . 5 0 . 0 1 5 2 • 9 7 5 E - 0 1 - 8 . 1 3 . 9 

PP 1 8 2 . 5 0 . 0 1 6 8 . 1 0 5 E 4 0 0 - B . 7 PP 1 8 2 . 5 0 . 0 1 5 5 • 1 0 1 E 1 0 0 - 7 . 4 

( 1 / K g J -U O/Sg] « k [-/Mj I * (n/»J [1/KgJ • I - f i / M ( o / H j Ik C»/"J 

P - . 0 2 1 3 1 . 8 5 7 B - 3 3 . 3 2 3 E - 7 - 3 . 5 9 0 B - 0 P - . 0 2 1 6 1 .134ES-3 3 . 1 5 1 B - 8 - 1 . 7 1 8 1 5 - 9 

s - . 0 2 1 0 2 . 8 7 8 B - 3 3 . 2 7 7 E - 7 - 6 . 0 1 2 E - 8 S - . 0 2 2 8 1 . 3 5 2 E - 3 3 . 7 8 4 B - 8 3 .188E—11 

Table 7-4: Derived modal parameters Table 7-5: Derived modal parameters 

for mobility Y ? 0 for mobility 

A typical e x a m p l e of a fitted c u r v e as d e r i v e d by SIM2 both 

in l o g a r i t h m i c and polar f o r m a t s is given in F i g . 7 - 1 0 . 

(taken from the c o m p l e t e set reported in r e f . [73]). 

H o w e v e r , w h e n these results are p r e s e n t e d on a n y q u i s t 

p l o t , the d i f f e r e n c e s between them are m u c h c l e a r e r and in 

many cases a v i s u a l check can tell which set of results fits 

the e x p e r i m e n t a l data b e s t . An example to i l l u s t r a t e this 

p o i n t is g i v e n in F i g . 7-11; w h e n p r e s e n t i n g the results in 

this f o r m a t , it was noticed that the modal p a r a m e t e r s of 

small m o d e s w e r e identified r e l a t i v e l y p o o r l y by PAPA 

(Fig. 7 - 1 2 ) . 

E x a m i n a t i o n of the c o m p l e t e set of results indicates 

that as the q u a l i t y of the i d e n t i f i c a t i o n i m p r o v e s , the 

v a l u e s of the m o d a l phase a n g l e s are reduced thus indicating 
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Y24 

Fig. 7-10: Mobility and polar plots of measured and 

fitted curve (SIM2) of receptance a 0 A 
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Fig. 7-11: Polar plot of a ^ and the theoretical curves 

derived by P0LAR5 and PAPA 
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Fig. 7-12: Theoretically derived curves for mode 1 

of <xA£ by P0LAR5 and PAPA (detail from Fig. 7-11) 
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that the true 'complexity' of the n o r m a l mode s h a p e s of the 

t a i l c o n e is very small and i n d e e d , is smaller than is first 

indicated by the p r e l i m i n a r y m o d a l a n a l y s i s . 

7.2.1 D E R I V A T I O N OF N O R M A L MODE S H A P E S 

As the four c o l u m n s in the f r e q u e n c y response f u n c t i o n 

m a t r i x w e r e m e a s u r e d and i d e n t i f i e d , it was p o s s i b l e to 

d e r i v e four e s t i m a t e s for the normal m o d e shape 

(eigenvector) m a t r i x , one estimate d e r i v e d from each c o l u m n 

in the m o d a l c o n s t a n t m a t r i x . 

A set of m o d a l c o n s t a n t m a t r i c e s for the four m o d e s (one 

matrix for each mode) as d e r i v e d by SIM2 is g i v e n in 

T a b l e 7 - 6 . It is clear that the m a t r i c e s are not s y m m e t r i c 

a n d , t h e r e f o r e , that the normal mode shapes d e r i v e d from 

each c o l u m n are not identical (as they should be a c c o r d i n g 

to t h e o r y ) . An e x a m p l e of the four d i f f e r e n t normal m o d e 

s h a p e s of mode 1 are g i v e n in Table 7-7 and a m o d u l u s plot 

of these s h a p e s is g i v e n in F i g . 7-13 (The c o m p l e t e set is 

given in r e f . [73] ) . 

It should be noted that the n o r m a l mode s h a p e s are m a s s 

n o r m a l i z e d and are thus scaled a b s o l u t e q u a n t i t i e s the unit 

of w h i c h is (1/Kg)~ 2 . 

It m a y also be noticed that the phase angles of the 

normal m o d e shape e l e m e n t s are either very close to 0° or to 

180°. It is e x p e c t e d , t h e r e f o r e , that the moduli of the 

(complex) normal mode s h a p e s are p r a c t i c a l l y equal to the 

m o d u l i of the (real) m o d e shapes of the h y p o t h e t i c a l 
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EXCITATION AT POINT NO. 

2 4 6 7 

Mode 1 

.00384 -.27 

.00347 -.07 

.00413 -1.00 

.00211 -2.35 

.00033 -177.97 

.00377 179.09 

.00584 179.49 

.00394 179.94 

00047 174 37 
00042 178 44 
00032 179 83 
00027 174 45 
00009 23 54 
00045 -4 01 
00078 -10 82 
00087 - 45 

.00734 178.77 

.00494 -178.32 

.00524 179.20 

.00232 177.97 

.00048 -.49 

.00424 -1.19 

.00432 -.24 

.00739 -1.34 

00829 178, ,70 
00730 -179, ,78 
00577 -178, ,89 
00240 -178, ,73 
00097 -7, .33 
,00484 —, ,19 
00778 ,51 
,00853 ,73 

Mode 2 

01140 2 .98 .00351 3.45 .00849 -177. 89 .01090 154.41 
02440 3 .29 .00810 .42 .01910 144. 43 .02280 173.55 
02700 3 .52 .00834 .32 .01850 -178. 40 .02570 -173.40 
02030 3 .40 .00542 .38 — — — — 
00859 1 .31 — — — — 

01988 -174.58 .00829 1. 07 
02780 -174 .30 — — .02070 -1. 73 

Mode 3 

— -1 

.00330 1 .27 
— .01040 - .01 .01820 .49 .02340 3 70 

.00495 - 23 .02080 -1 .34 .03440 14 .08 .04440 18 75 

.00940 n 42 .03200 .24 .04110 2 .32 .04320 4 16 

.01340 13 38 .05120 .27 .09430 -5 .47 .10480 -3 15 

.01880 1 .43 .04210 1 .24 .11240 -8 .72 .13830 -4 .77 
_. 02240 1 12 .04740 2 .41 .12780 -1 .59 .14390 -11 49 

Mode 4 

".02240 -9 93 .01550 -12 .39 .00858 173 .74 .01470 170 03 
.07310 -9 14 .04830 -9 .44 .02700 174 .48 .04990 173 04 
.10200 -9 23 .04400 -10 .35 .03740 175 .24 .04480 171 34 
.09730 -8 05 .04540 -7 .41 .03420 172 .49 .04540 173 17 
.04420 -8 42 .04570 -8 .44 .02520 173 .40 .04120 173 47 
.01050 -4 11 .00479 -9 .07 .00477 148 .43 .00493 -167 10 
.03340 173 05 .02410 174 .43 .01520 .'23 .02830 7 23 
.04290 174 18 .03940 173 .30 .02490 -3 .37 .04360 28 

Table 7-6; Modal constant matrices derived by SIM2 

(modulus (1/Kg) and phase in degrees) 

Excitation at point: 

2 4 6 7 

0 9 0 4 9 . 2 3 7 O 7 C 8 5 164 6 0 . 0 9 2 5 9 1 7 8 89 . 0 8 9 7 7 J. 7 8 , 3 2 
0 (3005 . 4 3 . 0 6 5 4 3 1 6 6 6 7 . 0 3 7 3 7 - 1 7 8 20 . 0 3 1 1 9 1 7 9 84 
0 6 4 3 8 - . 5 0 . 0 5 4 8 0 1 6 3 0 3 . 0 6 5 9 5 1 7 9 32 . 0 6 2 4 4 - 1 7 9 2 7 
0 3 2 8 0 - 1 . 0 5 . 0 2 3 0 9 164 9 3 . 0 2 9 2 5 1 7 8 . 0 2 3 1 3 - 1 7 9 11 
0 0 9 1 9 - 1 7 7 . 4 9 . 0 0 9 4 7 11 7 7 . 0 0 8 5 1 - . 5 7 . 0 1 0 4 6 - 7 . 7 0 
0 5 9 5 3 1 7 9 . 5 9 . 0 4 7 6 1 - 1 7 7 8 . 0 5 3 3 3 - 1 . 0 7 . 0 5 2 6 3 - . 5 6 
0 9 0 6 8 - 1 7 9 . 8 1 . 0 8 2 3 5 — 2 2 5 ? . 0 7 9 4 8 - . 1 2 . 0 8 4 2 1 - . 8 3 
0 9 2 6 5 - 1 7 9 . 5 6 . 0 9 1 6 6 - 1 2 p p . 0 9 2 9 5 - 1 nn 

. 0 9 2 3 7 . 3 3 
— mm 

Table 7-7; Mode shapes (modulus (1/Kg) 2 and phase in degrees) 

of mode 1 as derived from each column of the modal constant 

matrix (SIM2) 
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Fig. 7-13: Mode 1 - four estimates for the normal 

mode shape derived by SIM2 
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undamped s y s t e m . 

7.2.2 D E R I V A T I O N OF THE O P T I M A L M O D A L P A R A M E T E R S 

The e s t i m a t e s of the m o d a l p a r a m e t e r s o b t a i n e d from each 

column of the m o b i l i t y m a t r i x were not c o n s i s t e n t ; in o t h e r 

w o r d s , e x c i t a t i o n at p o i n t i produced s l i g h t l y d i f f e r e n t 

m o d e s to e x c i t a t i o n at p o i n t j . In order to d e r i v e a 'best 1 

set of c o n s i s t e n t modal p a r a m e t e r s , the m e t h o d d e s c r i b e d in 

6.3 was applied to the m e a s u r e d d a t a . 

The 'best* v a l u e s for the natural f r e q u e n c i e s and m o d a l 

loss factors w e r e deduced by a p r o c e s s of w e i g h t e d a v e r a g i n g 

and the r e s u l t s are given in T a b l e 7-8 for each 

i d e n t i f i c a t i o n p r o g r a m . It is noticed that the d i f f e r e n c e s 

b e t w e e n the best e s t i m a t e s from each i d e n t i f i c a t i o n p r o g r a m 

are very s m a l l a n d , p r a c t i c a l l y , it does not matter w h i c h 

set of v a l u e s is used in further c a l c u l a t i o n . 

The 'best' normal mode s h a p e s were d e r i v e d by a 

s p e c i a l l y d e v e l o p e d o p t i m i z a t i o n program (OPMOD) [74] and are 

g i v e n in T a b l e 7-9 for each of the three a n a l y s i s p r o g r a m s . 

It is, once a g a i n , noticed that the c o m p l e x i t y of the 

d e r i v e d c o n s i s t e n t set of m o d e shapes is v e r y s m a l l . A 

g r a p h i c a l r e p r e s e n t a t i o n o f ' o n e of these sets of results 

(mode 1, m o d u l u s only) is a l s o illustrated in F i g . 7 - 1 4 , 

again taken from the c o m p l e t e set included in r e f . [74]. 
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mode 

no. 
w r ± e 

v 1 e 

1 

POLAR 2 

4 

77.20 
141.33 
145.04 
182.77 

• 021 
.023 
.042 
.051 

.0067 
• 0162 
.0133 
• 0137 

.00024 
•00019 
•00010 
•00025 

1 
SIM 2 

3 
4 

77.12 
141.38 
144.90 
182.68 

.026 

.021 

.025 
• 029 

• 0076 
.0158 
.0133 
.0145 

.00014 
•00015 
.00026 
.00016 

1 

PAPA 3 
4 

77.15 
141.42 
145.04 
182.63 

.011 

.031 

.031 

.030 

.0076 

.0153 
• 0132 
.0158 

.00004 

.00012 
•00023 
•00024 

Table 7-8: Weighted average and tolerance of natural 

frequencies and loss factors for the three analysis programs 

m 
0 
d 
e S I M P O L A R P A P A 

1 

.09020 178.305 

.08553 -178.609 

.06517 -130.000 

.02866 179.270 

.00859 -1,298 

.05414 -.834 

.08117 -.302 

.09213 .230 

.09096 -179.083 

.08413 -173.388 

.06229 -179.963 
,02836 178.481 
.00742 -4.515 
,05329 - .091 
•08467 -.329 
.09426 -.118 

.08911 130.000 
,08502 130.000 
•06462 -179.746 
.03026 179.606 
.00887 15.677 
.05149 -2.717 
,08045 -1.798 
,09382 -.370 

2 

.07099 .911 

.15893 .427 

.16466 2 .321 

.12316 1.283 

.05151 -.326 
0 89.966 

.11358 -179.440 
,16481 -177.898 

,07115 1.141 
.15587 1.911 
,16820 2.170 
.11296 2.350 
.04963 .667 

0 89,986 
.12821 -175.733 
.18289 172.505 

,07171 -173.617 
.15763 -176.172 
.16474 -130.000 

0 -82.203 
.04286 -180.000 
.04053 4.039 
.11772 -1.698 
.16333 -.286 

3 

0 0.0 
.01868 -.803 
.05692 2.443 
.11680 -2.350 
.17667 3.196 
.28521 -2.758 
,34108 -.984 
,37452 -1.156 

0 0.0 
.01150 -32.790 
,05607 5,801 
.11267 9,680 
,18364 -.064 
,27622 -2.046 
•33053 -4.420 
.37954 -.245 

0 0.0 
.02176 9 .061 
.05584 2.245 
.10926 2.466 
,17744 1.699 
,27720 1,302 
.33686 -2.772 
.38260 -2.305 

4 

.07213 -7.222 
,23355 -4.841 
.31331 -6.630 
.30936 -5.147 
,20464 -4.967 
,03273 1.439 
,12158 -179.413 
,20731 -180.000 

.06216 -15.547 

.20410 -9.730 

.31609 -4.092 
,30978 -4.870 
.20113 -6.338 
.02803 -10.733 
.11451 -180.000 
.19737 -130.000 

.07.531 -1.968 
,23260 -4,232 

-4.534 
'.31356 -4.307 
,21271 -5.391 
,03594 3.316 
.11669 -180.000 
,^1518 -180.000 

i 

Table 7-9: Optimized normal mode shapes (modulus (1/Kg)~ 2 

and phase in degrees) for the three analysis programs 
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Fig. 7-14: Optimized normal mode shapes of model 

for the three analysis programs 

« 
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7.3 M U L T I - P O I N T E X C I T A T I O N M O D A L I D E N T I F I C A T I O N 

In addition to the s i n g l e - p o i n t e x c i t a t i o n t e s t s , a 

m o d a l i d e n t i f i c a t i o n of the t a i l c o n e was made usijng a 

m u l t i - p o i n t e x c i t a t i o n a p p r o a c h . 

By this method the tailcone was excited s i m u l t a n e o u s l y 

w i t h four shakers at d i f f e r e n t p o i n t s on the s t r u c t u r e (at 

p o s i t i o n s 2 , 4 , 6 , and 7; F i g . 7 - 1 ) , w h i l e the a c c e l e r a t i o n 

response was m e a s u r e d at all eight p o i n t s of i n t e r e s t . At 

each n a t u r a l f r e q u e n c y the s h a k e r s w e r e tuned so that the 

input forces and the responses of the tailcone were in 

q u a d r a t u r e . W h e n this c o n d i t i o n was r e a c h e d , the level of 

the a c c e l e r a t i o n at each point was m e a s u r e d thus p r o v i d i n g 

the forced p r o p o r t i o n a l mode shape c o r r e s p o n d i n g to this 

m o d e . T a b l e 7-10 s u m m a r i z e s these m o d e shapes for the first 

four m o d e s . The 'natural f r e q u e n c y ' (corresponding to the 

natural frequency of the undamped system) is read d i r e c t l y 

from the control u n i t . 

If the system is assumed to be n o n p r o p o r t i o n a l l y - d a m p e d , 

then there is no unique m o d a l loss factor a s s o c i a t e d with 

each forced p r o p o r t i o n a l m o d e . H o w e v e r , because we knew a 

p r i o r i that the c o m p l e x i t y of the normal mode s h a p e s was 

very s m a l l , it was r e a s o n a b l e to a s s u m e that the t a i l c o n e was 

p r o p o r t i o n a l l y d a m p e d and thus p o s s e s s i n g one m o d a l loss 

factor for each forced p r o p o r t i o n a l m o d e . 

T h i s loss factor was c a l c u l a t e d by the h a l f - p o w e r method 

w h e r e b y the tailcone was excited at two f r e q u e n c i e s and 

co2) one below and one above the natural f r e q u e n c y (cor) where 
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mode cor (Hz) 

1 77.16 (77.12) .0077 (.0076) 

2 141.24 (141.38) .0144 (.0158) 

3 144.30 (144.90) .0152 (.0133) 

4 181.40 (182.68) .0166 (.0145) 

Table 7-11: Natural frequencies and loss factors 

derived by the multi-point excitation method. 

(In brackets, the optimized values derived by SIM2) 

M O D E 

1 2 3 4 

0 .0938 .0642 .0093 .0719 

1 .0873 .1419 .0339 .2396 

2 .0566 .1526 .0722 .2875 

5 .0291 .1071 .1292 .3234 

4 -.0091 .0385 .1959 .2156 

5 -.0556 -.0589 .2761 .0335 

6 -.0760 -.1392 .3296 -.1198 

7 -.0957 -.1820 .3741 -.2060 

Table 7-10: The forced proportional modes as derived 

by the multi-point excitation method (unsealed) 
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the p h a s e d i f f e r e n c e s b e t w e e n input and response w a s 45° and 

then using 

T a b l e 7 - 1 1 s u m m a r i z e s the first four n a t u r a l f r e q u e n c i e s 

and the c o r r e s p o n d i n g m o d a l loss factors d e r i v e d by this 

m e t h o d . 

We see that the d i f f e r e n c e s b e t w e e n the r e s u l t s obtained 

by this m e t h o d and those from the s i n g l e - p o i n t e x c i t a t i o n 

m e t h o d are n e g l i g i b l e . A g r a p h i c a l r e p r e s e n t a t i o n 

(Fig. 7 - 1 5 ) of the mode shapes in c o m p a r i s o n to those 

d e r i v e d by SIM2 i n d i c a t e s t h a t , p r a c t i c a l l y , both results 

are i d e n t i c a l . 
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Fig. 7-15: Forced proportional mode shapes vs. normal mode 

shapes derived by SIM2 (the har represents the spread of 

the estimates derived by SIM2) for (a) mode 1, (b) mode 2, 

(c) mode 3 and (d) mode 4. 



- 2 2 0 -

c 

d 



- 2 2 1 -

7.4 C O N C L U S I O N S 

This e x p e r i m e n t a l study served as a v a l u a b l e e x a m p l e for 

e v a l u a t i o n of the m e t h o d s d e v e l o p e d in this w o r k . 

E x a m i n a t i o n of the results d e r i v e d at the v a r i o u s s t a g e s of 

this study leads us to the following c o n c l u s i o n s : 

(i) W h e n using the s i n g l e - p o i n t e x c i t a t i o n m e t h o d it is 

p o s s i b l e (and d e s i r a b l e with c o m p l e t e engineering 

s t r u c t u r e s ) to check the t e s t p i e c e for n o n l i n e a r b e h a v i o u r 

and it is u s u a l l y p o s s i b l e to c h a n g e the testing c o n d i t i o n s 

so that the n o n l i n e a r influence on the measured data is 

removed or m i n i m i z e d . The s y s t e m a t i c method d e v e l o p e d in 

this work f a c i l i t a t e s this p r o c e s s and enables us to acquire 

a 'best' linear m o d e l of the s t r u c t u r e . 

W i t h the m u l t i - p o i n t e x c i t a t i o n method it is not 

f e a s i b l e to d e t e c t n o n l i n e a r b e h a v i o u r and in s e v e r e cases 

of n o n l i n e a r i t y it is impossible to reach the q u a d r a t u r e 

r e l a t i o n s h i p b e t w e e n input and r e s p o n s e . 

(ii) W h e n an i d e n t i f i c a t i o n p r o g r a m is d e v e l o p e d its 

p e r f o r m a n c e is u s u a l l y checked by analysing s y n t h e s i s e d 

' e x p e r i m e n t a l ' data (i.e data from a linear s y s t e m polluted 

w i t h random errors) . It is found that when the a l g o r i t h m is 

i m p r o v e d , the r e s u l t s obtained using synthesised data 

improve as w e l l . H o w e v e r , such a m a r k e d i m p r o v e m e n t is not 

o b s e r v e d when a n a l y s i n g real e x p e r i m e n t a l d a t a . T h i s is 

b e c a u s e real data c o n t a i n s y s t e m a t i c errors due to 

n o n l i n e a r i t i e s of the structure as w e l l as random errors 

from m e a s u r e m e n t . T h u s , there is often little p o i n t in 
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trying to improve the a n a l y s i s p r o g r a m by d e v e l o p i n g more 

refined linear a l g o r i t h m s as the results do no j u s t i f y it. 

F u r t h e r m o r e , the o p t i m i z e d mode s h a p e s derived from the 

m o d a l c o n s t a n t m a t r i c e s obtained using d i f f e r e n t a n a l y s i s 

p r o g r a m s in this study w e r e very c l o s e , further supporting 

the p r e v i o u s c o n c l u s i o n that there is no reason to improve 

the linear i d e n t i f i c a t i o n a l g o r i t h m . 

(iii) The m o d a l p h a s e angle is the p a r a m e t e r w h i c h is 

u s u a l l y the m o s t s e v e r l y d i s t o r t e d w h e n the a n a l y s e d data is 

n o n l i n e a r or when the m o d e s are v e r y c l o s e . T h i s d i s t o r t i o n 

tends to indicate that the normal mode shapes are 

s i g n i f i c a n t l y c o m p l e x , but when the data are a c q u i r e d in a 

very c a r e f u l m a n n e r (i.e m i n i m i z i n g the influence of the 

n o n l i n e a r i t i e s ) or when more p r e c i s e a l g o r i t h m s are used to 

a n a l y s e close m o d e s , we u s u a l l y find that the d e r i v e d normal 

mode s h a p e s are a l m o s t r e a l . 

A c o m p a r i s o n with the (real) forced p r o p o r t i o n a l mode 

s h a p e s d e r i v e d by the m u l t i - p o i n t e x c i t a t i o n m e t h o d suggestd 

t h a t , p r a c t i c a l l y , the complex n o r m a l modes d e r i v e d by the 

s i n g l e - p o i n t method m a y be regarded as the u n d a m p e d normal 

m o d e s of the s t r u c t u r e and can be used as such in any 

further c o m p u t a t i o n . 

H o w e v e r , w h e n a c o m p l e t e s t r u c t u r e like a h e l i c o p t e r is 

m e a s u r e d it is harder to m i n i m i z e the nonlinear influences 

and to reduce the level of random errors and the g e n e r a l 

q u a l i t y of the acquired data is , t h e r e f o r e , not as good as 

for the t a i l c o n e . In this c a s e , some caution should be taken 
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when assuming that the d e r i v e d complex n o r m a l m o d e s are 

equal to the undamped o n e s . 
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8 . C O N C L U D I N G R E M A R K S 

The results obtained t h r o u g h o u t this work h a v e a l r e a d y 

b e e n d i s c u s s e d and detailed c o n c l u s i o n s g i v e n at the end of 

each c h a p t e r . A brief s u m m a r y of these c o n c l u s i o n s is n o w 

m a d e as a review of the entire p r o j e c t . 

8.1 T H E O R E T I C A L B A S I S 

A n a l y s i s of m e a s u r e d data in order to e x t r a c t m o d a l 

p a r a m e t e r s is e f f e c t i v e l y a p r o c e s s of ' l i n e a r i z a t i o n 1 in 

which a s i m p l e linear m o d e l is c o n s t r u c t e d to r e p r e s e n t an 

actual s t r u c t u r e w h i c h w i l l , in g e n e r a l , be far m o r e 

c o m p l e x . 

A w i d e l y - u s e d theoretical linear m o d e l is the lumped 

m a s s system with c o n s t a n t m a s s , s t i f f n e s s and damping 

e l e m e n t s . The solution of the e i g e n p r o b l e m for this type of 

system is r e l a t i v e l y s i m p l e ; for a p r o p o r t i o n a l l y d a m p e d 

system the d e r i v e d e i g e n v e c t o r s for either the 

h y s t e r e t i c a l l y - o r the v i s c o u s l y - d a m p e d system are identical 

and are e x p r e s s e d in real t e r m s . G e n e r a l l y , h o w e v e r , the 

e i g e n v e c t o r s are expressed in complex terms and then the 

a n a l y s i s of the h y s t e r e t i c m o d e l is simpler than that for 

the v i s c o u s one and is m o r e a m e n a b l e to a n a l y s i s of 

e x p e r i m e n t a l d a t a . 

Because there seems to be some c o n f u s i o n in the 

d e f i n i t i o n of the term 'normal m o d e s h a p e ' , this has b e e n 

defined in a c o n s i s t e n t m a n n e r and some of its special forms 

4 
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have been pointed o u t . It h a s also been shown that the m o d e 

shapes d e r i v e d by the m u l t i - p o i n t e x c i t a t i o n m e t h o d are 

always real and are identical to the normal m o d e s of the 

p r o p o r t i o n a l l y - d a m p e d system regardless of the form or type 

of the damping present in the s t r u c t u r e . 

E x p e r i m e n t a l o b s e r v a t i o n s have shown that quite o f t e n 

the derived normal m o d e s are c o m p l e x . On the other h a n d , the 

m o d e s h a p e s needed for c o m p a r i s o n with t h e o r e t i c a l 

p r e d i c t i o n s or with m u l t i - p o i n t e x c i t a t i o n results are the 

real p r o p o r t i o n a l normal m o d e s . A t h e o r e t i c a l and n u m e r i c a l 

study i n d i c a t e s that for m o d e r a t e l y - d a m p e d systems with 

separated n a t u r a l f r e q u e n c i e s , the (real) p r o p o r t i o n a l 

normal m o d e s and the (complex) normal m o d e s are 

a p p r o x i m a t e l y i d e n t i c a l , but as the level of damping is 

increased or as two natural frequencies g e t c l o s e r , the 

normal m o d e s become m o r e complex and then this a p p r o x i m a t i o n 

m u s t be applied with g r e a t e r c a u t i o n . 

As the c o m p l e x i t y of the normal m o d e s h i n g e s on the 

r e l a t i o n s h i p b e t w e e n the damping and s t i f f n e s s m a t r i c e s a 

s t a t i s t i c a l p a r a m e t e r - 'the n o n p r o p o r t i o n a l i t y f a c t o r ' - h a s 

b e e n d e v i s e d in order to q u a n t i f y the level of the 

n o n p r o p o r t i o n a l i t y of a t h e o r e t i c a l m o d e l and thus to enable 

a c o m p a r i s o n to be m a d e b e t w e e n d i f f e r e n t l y damped 

t h e o r e t i c a l s y s t e m s . 
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8.2 P R A C T I C A L B A S I S 

8.2.1 I D E N T I F I C A T I O N A L G O R I T H M S 

In order to extract the m o d a l p a r a m e t e r s from m e a s u r e d 

d a t a , two i d e n t i f i c a t i o n a l g o r i t h m s have b e e n d e v e l o p e d : 

(i) a r e l a t i v e l y s i m p l e one w h i c h a s s u m e s that the 

response at each r e s o n a n c e is d o m i n a t e d by that of a one-

d e g r e e - o f - f r e e d o m system and d e r i v e s the m o d a l p a r a m e t e r s 

from a n a l y s i s of the polar p l o t ; and 

(ii) a m o r e advanced one which takes into a c c o u n t the 

response of the structure at all the m e a s u r e d r e s o n a n c e s and 

c u r v e - f i t s the e x p e r i m e n t a l data s i m u l t a n e o u s l y for all the 

m o d e s . 

The second algorithm proved to be superior when a s s e s s e d 

with t h e o r e t i c a l l y - g e n e r a t e d d a t a , e s p e c i a l l y for d i f f i c u l t 

c a s e s of close natural f r e q u e n c i e s w h i c h were poorly 

identified by the first a l g o r i t h m . 

8.2.2 E F F E C T OF N O N L I N E A R I T I E S 

E x p e r i m e n t a l e v i d e n c e has suggested that m a n y of the 

derived normal m o d e s of p r a c t i c a l s t r u c t u r e s are m o r e 

complex than expected by t h e o r y , even for cases of 

w e l l - s e p a r a t e d m o d e s . As this trend could not be s i m u l a t e d 

t h e o r e t i c a l l y it was felt that the cause for the d i s c r e p e n c y 

m i g h t lay in inadequate m e a s u r e m e n t or a n a l y s i s p r o c e d u r e s 

w h i c h could be affected by s l i g h t n o n l i n e a r i t i e s of the 
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s t r u c t u r e . A t h e o r e t i c a l study of several s y n t h e s i s e d one. 

d e g r e e - o f - f r e e d o m n o n l i n e a r s y s t e m s has proved that when 

analysed with linear m o d a l i d e n t i f i c a t i o n a l g o r i t h m s , the 

d e r i v e d m o d a l p a r a m e t e r s are p o o r l y i d e n t i f i e d , even for 

small amounts of n o n l i n e a r i t y . An e x p e r i m e n t a l s t u d y on a 

real structure supported these c o n c l u s i o n s . 

8.2.3 F I N A L DATA R E D U C T I O N 

The latter results indicate that in order to d e r i v e the 

linear p r o p e r t i e s of a real system m u c h m o r e a t t e n t i o n 

should be given to the data a c q u i s i t i o n p r o c e s s . A 

s y s t e m a t i c m e t h o d for this p r o c e s s has been outlined and 

several useful tools have been d e v i s e d in order to 

f a c i l i t a t e its a p p l i c a t i o n . 

(i) A 'nonlinearity f a c t o r ' , w h i c h enables the 

investigator to a s s e s s the level of n o n l i n e a r i t y of the 

m e a s u r e d d a t a , and once the data are a n a l y s e d ; 

(ii) the 'quality f a c t o r ' w h i c h d e s c r i b e s the a c c u r a c y 

of the i d e n t i f i c a t i o n of each set of the d e r i v e d m o d a l 

p a r a m e t e r s and f i n a l l y , 

(iii) the 'generalized loss f a c t o r ' which g i v e s an 

o v e r a l l m e a s u r e of the amount of damping p r e s e n t in the 
« 

s y s t e m . 

A l t h o u g h it is t h e o r e t i c a l l y p o s s i b l e to d e r i v e the 

c o m p l e t e m o b i l i t y m a t r i x (as well as the natural f r e q u e n c y 

and m o d e shape m a t r i c e s ) from m e a s u r e m e n t of one column of 

this m a t r i x , it is found in p r a c t i c e that m e a s u r e m e n t of 
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m o r e c o l u m n s is u s u a l l y n e c e s s a r y . The r e d u n d a n t data thus 

obtained are used to improve the q u a l i t y of the d e r i v e d 

m o d a l p a r a m e t e r s by applying a n e w l y - d e v e l o p e d o p t i m i z a t i o n 

technique which employs the q u a l i t y factor as a w e i g h t i n g 

p a r a m e t e r . The end result of this p r o c e s s is the r e d u c t i o n 

of a very l a r g e a m o u n t of data to produce a single 

c o n s i s t e n t set of m o d a l p a r a m e t e r s which d e s c r i b e the system 

'best'. 

8.3 E X P E R I M E N T A L STUDY 

F i n a l l y , a c o m p r e h e n s i v e e x p e r i m e n t a l study on a t y p i c a l 

a e r o s p a c e s t r u c t u r e d e m o n s t r a t e d some of the common p r o b l e m s 

encountered and the m e t h o d s d e v e l o p e d in this research in 

s t r u c t u r e . It h a s been found that when real data are 

a n a l y s e d , the d i f f e r e n c e b e t w e e n the final results d e r i v e d 

by the v a r i o u s i d e n t i f i c a t i o n a l g o r i t h m s is n e g l i g i b l e and 

the marked s u p e r i o r i t y of the m o r e sophisticated 

curve-fitting m e t h o d s when checked with s y n t h e s i s e d data is 

n o t achieved w i t h real d a t a . This is p r o b a b l y due to the 

fact that real data are never e n t i r e l y l i n e a r ; they a r e 

polluted with m e a s u r e m e n t e r r o r s to which the i d e n t i f i c a t i o n 

a l g o r i t h m s are sensitive. 

D e r i v a t i o n of the undamped m o d e shapes by the 

m u l t i - p o i n t e x c i t a t i o n m e t h o d has proved that p r a c t i c a l l y 

they are equal to the m o d u l i of the complex normal m o d e 

order to d e r i v e a s a t i s f a c t o r y m o d a l real 
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shapes derived by the s i n g l e - p o i n t e x c i t a t i o n m e t h o d . This 

r e s u l t s u p p o r t s the theoretical c o n c l u s i o n that for 

separated m o d e s the c o m p l e x i t y of the normal m o d e s is v e r y 

small and is p r a c t i c a l l y n e g l i g i b l e . 

The d e r i v a t i o n of the real p r o p o r t i o n a l normal m o d e s 

from the e x p e r i m e n t a l l y - i d e n t i f i e d complex n o r m a l m o d e s 

could not be d o n e e x a c t l y b e c a u s e the m o d a l p a r a m e t e r s 

d e r i v e d from e x p e r i m e n t a l data always c o m p r i s e an i n c o m p l e t e 

s e t . H o w e v e r , in the light of the theoretical and 

e x p e r i m e n t a l work d e s c r i b e d in this thesis we m a y say that 

for m o s t p r a c t i c a l cases of separated m o d e s the m o d u l i of 

the complex n o r m a l m o d e s m a y be used as a v e r y good 

a p p r o x i m a t i o n to the real p r o p o r t i o n a l m o d e s . 

8.4 S U G G E S T I O N S FOR FURTHER R E S E A R C H 

The theoretical part of the m o d a l i d e n t i f i c a t i o n m e t h o d 

is w e l l - e s t a b l i s h e d ; the p r a c t i c a l aspects of i t , h o w e v e r , 

p r o v i d e a fertile field for further topices for r e s e a r c h . 

As it has b e e n shown that one of the m a i n c a u s e s for 

b a d l y identified m o d a l p a r a m e t e r s is the d e v i a t i o n of real 

system from linear b e h a v i o u r , it is suggested that further 

research should be devoted to this a s p e c t , m a i n l y in 

d e v e l o p i n g m e t h o d s for i d e n t i f i c a t i o n of the type of 

n o n l i n e a r i t y . Some work in this d i r e c t i o n has been done by 

T o m l i n s o n [s2] for simple c a s e s of d r y f r i c t i o n , but m o r e 

c o m p r e h e n s i v e research to include m o r e types of n o n l i n e a r i t y 
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is n e e d e d . As a first step in this d i r e c t i o n , an a l g o r i t h m 

to g e n e r a t e synthesised m u l t i - d e g r e e - o f - f r e e d o m n o n l i n e a r 

data has to be d e v e l o p e d . Such data m a y s e r v e as an 

a d d i t i o n a l tool to check the s e n s i t i v i t y of l i n e a r m o d a l 

i d e n t i f i c a t i o n a l g o r i t h m s to n o n l i n e a r i t i e s . 

In p a r a l l e l , e f f o r t should be devoted to improve 

m e a s u r i n g t e c h n i q u e s to e n a b l e the investigator to a c q u i r e 

e r r o r - f r e e data and to have m o r e control on the n o n l i n e a r 

c o m p o n e n t m e a s u r e d . 

F i n a l l y , further research is needed for c a s e s of close 

m o d e s at higher f r e q u e n c i e s w h e r e the modal d e n s i t y is high 

and the existing i d e n t i f i c a t i o n a l g o r i t h m s p r o v e to be 

i n a d e q u a t e . 
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1 0 . A P P E N D I C E S . 

A P P E N D I X 10.1 

A NOTE ON 'FORCED P R O P O R T I O N A L M O D E ' V S . 'NORMAL M O D E ' 

" T h e r e f o r e , with s i n g l e - f r e q u e n c y , in-phase d r i v e and 

r e s p o n s e , it is not p o s s i b l e to e x c i t e a pure mode of a 

n o n p r o p o r t i o n a l l y d a m p e d s y s t e m . The e x p e r i m e n t e r who is 

required to run a m o d a l s u r v e y on a n o n p r o p o r t i o n a l l y damped 

system but who is limited to any of the t e c h n i q u e s based on 

in-phase d r i v e and response in q u a d r a t u r e for i d e n t i f i c a t i o n 

of a n a t u r a l mode is being asked to do the impossible." 

(E. S l o a n e and B . M c K e e v e r ; Modal Survey T e c h n i q u e s and 

T h e o r y . S A E ' p a p e r n o . 7 5 1 0 6 7 , page 2979) 

This c a t e g o r i c a l s t a t e m e n t taken from this very long 

p a p e r is a good e x a m p l e of the c o n f u s i o n w h i c h can arise 

from the a m b i g u i t y in the d e f i n i t i o n of the term 'mode'. The 

a u t h o r s of this paper failed to recognize the d i f f e r e n c e 

between the 'forced p r o p o r t i o n a l m o d e ' and the 'normal m o d e ' 

of the s y s t e m . This led them to an u n n e c e s s a r y n u m e r i c a l 

example of a two d e g r e e s of freedom system in order to 

d e m o n s t r a t e that the normal m o d e s of a n o n p r o p o r t i o n a l l y 

damped system are c o m p l e x and not identical to the (real) 

undamped or p r o p o r t i o n a l normal m o d e s . 

T h e y assumed that the 'forced p r o p o r t i o n a l m o d e s ' and 

the 'normal m o d e s ' are identical (they refer to them as 

'pure m o d e s ' ) and j u s t i f i a b l y proved that they were n o t . 

They also failed to u n d e r s t a n d that the m u l t i - p o i n t 
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e x c i t a t i o n m e t h o d excites the system in a real mode (forced 

p r o p o r t i o n a l mode) which is a l w a y s identical to the (real) 

undamped n o r m a l mode r e g a r d l e s s of the m o d e l assumed for 

damping (If the damping is p r o p o r t i o n a l this can be done at 

any f r e q u e n c y . For n o n p r o p o r t i o n a l l y damped systems this 

m o d e can be excited at the n a t u r a l f r e q u e n c y of the u n d a m p e d 

system.) 

Following their a n a l y s i s they d e v e l o p e d a c o m p l i c a t e d 

m e t h o d identical to the m u l t i - p o i n t e x c i t a t i o n method but 

w h i c h has the c a p a b i l i t y of tuning the p h a s e of the force as 

w e l l as the a m p l i t u d e and thus excite the system in a 

(complex) normal m o d e , w h i c h is not the g o a l of the 

' t r a d i t i o n a l ' m u l t i - p o i n t e x c i t a t i o n m e t h o d . 
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10,2 VISCOUS AND HYSTERETIC DAMPING- APPROXIMATE RELATION 

The basic equation of motion for the harmonic forced 

vibration of a viscously damped system is: 

[m] {q} + [cj {q} + [kj { q } = { F } e i o j t  
(10-1) 

The general term derived for receptance a is: 

where £ r is the modal critical damping ratio for the 

r'th mode. 

This term differs from the corresponding hysteretic 

damping case in the frequency dependence of the numerator, 

However, when performing a modal analysis, this expression 

may be approximated to: 

(10-2) 

n 
r A j k 

(10-3) 

where ^ A ^ is the modal constant, as in the hysteretic case: 

and its phase is: 

r Ajk 
2 

r R j k 
r Sjk 

(10-4) 

(10-5) 

The critical damping ratio may be related to the 

hysteretic loss factor , 

7 =2 { 
3? (10-6) 
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10.3 THE RANGE OF THE NONLINEARITY FACTOR 

: a«+ a, x 

Fig 10-1: Calculation of the nonproportionality factor 

(i) Range of J^ 

If a^=0 then we get from (5-4) and (5-5) that 

a 0 = Y (10-7) 

and therefore 

J^ =0 

If a Q = 0 then from (5-10) we obtain that 

j 1 = 1 

The range of J^ for a ^ O is therefore 

0 c J 1 1 

(10-8) 

(10-9) 

(10-10) 
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(ii) Range of J^ 

For a ^ O we get from (5-14) that 

04 Q 4 (10-11 ) 

and therefore 

0 J 9 ^ 1 (10-12) 

(iii) Range of J^ 

In order to show that 0 << J^ <<: 1 we shall prove that 

y s i 

« 2 < q 2 

b s l x b y (10-13) 

was derived for the minimum sum of deviations 

along the y axis, E m i n 

Emin= t ( y i - a 0 ~ a 1 X i ) 2 ( 1 ° " U ) 

q2 
si is hy definition (5-8) 

n S s l = E m i n (10-15) 

from which follows that for any other straight line, y 

and therefore 

n s | ^ e m i n (10-16) 

s | ^ S s l (10-17) 

from which follows that J^is always 

0 < j ^ 1 (10-18) 

The range of the nonproportionality factor J where 

J2- J^ (10-19) 

is therefore (Eig, 10-2) 

0 £ J ^ 1 (10-19) 

for a 1 ^ 0. 
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Fig. 10-2: The range of the J factor (for ^ 0) 


