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SUMMARY

This thesis is concerned with the development and
refinement of some aspects of the 'modal testing method!

The basis of the research is a definitive theoretical
description of the two most common models of damped linear
systems (i.e viscous and hysteretic damping). The normal mode
shapes of such systems are generally expressed in complex terms
and experimental observations using the single-point excitation
method tend to confirm this. On the other hand, the normal
modes used in finite element calculations and those derived by
the traditional multi-point excitation method are the real
undamped modes.

The exact relationship between the complex normal modes and
the real undamped modes 1s established and a theoretical study
investigates the relationship between the level of the
"complexity' of the normal modes and the closeness of the
natural frequencies showing that for well-separated natural
frequencies the 'complexity' of the normal modes is very small.
Experimental results from real structures, however, have so far
produced larger values of 'complexity'. It is shown that this
is caused by the nonlinear behaviour of the measured structure
and measuring procedures which give emphasis to this part of
the structures response. A numerical study of some simple
theoretical systems shows the influence of small nonlinearities
on the linearly-derived modal parameters and an experimental
study on a real structure serves as a vehicle on which the
methods developed in this research to tackle nonlinearities are
demonstrated.

Although it is theoretically possible to derive the
complete matrix of the normal modes from measurement of one
column of the mobility matrix, it is usually found that
measurement of more columns is needed. As a result, several
different estimates for the modal parameters are derived, the
quality of each of those sets is then quantified by a 'quality
factor'.

A 'best' consistent set of modal parameters is derived by
an optimization algorithm which makes use of the quality factor
and thus a large amount of measured data is reduced to a set of
parameters which can be used in any further theoretical
calculations,

Finally, an experimental study of a typical air frame
structure demonstrates the single-point excitation
identification metheds developed in this research and a
comparison is made with the experimental results obtained by
the traditional multi~point excitation method .



NOTATION

Ay modal constant of mode r of receptance a
[A] matrix defined by (2-68)

[B] matrix defined by (2-1080)

[C] viscous damping matrix

E error function

{F} complex vector of force amplitudes

{,G} defined by (2-129)

[H] hysteretic damping matrix

[1] unit matrix

J nonlinearity factor

J, nonproportionality factor

[K] stiffness matrix

[K] diagonal modal stiffness matrix
[M] mass matrix

(M] diagonal modal mass matrix

P excitation force amplitude

{P} forcing vector defined by (2-187)
R constant dry friction force
{:Ry} defined by (2-131)

{:S,} defined by (2-132)

Sy quality factor of mode r in mobility Y

U constant linear error defined by (5-1)

v constant logarithmic error defined by (5-1)

{X} complex vector of harmonic displacement amplitudes
Y, mobility (excitation of point j and response at i)

{Y} vector defined by (2-189)



{2} real vector of harmonic displacement amplitudes
a 'slightly varying' amplitude of nonlinear system
a k,+k, defined by (3-33)

a, 'modal mass' as defined by (2-184)

b cubic stiffness coefficient defined by (5-22)
b, 'modal stiffness' as defined by (2-185)

c quadratic viscous damping coefficient defined by
(5-22)

e base of natural logarithm

{f} complex vector of harmonic forces

9, weighting factor for mode r of mobility Y,

h element in the hysteretic damping matrix (H]

h linear viscous damping coefficient

i : counter

j counter

k stiffness or counter

k, modal stiffness

1 counter

m mass

m, modal mass

n counter

P counter

{q} complex vector of generalized displacement

r counter

S, eigenvalue in eigenproblem (2-102)

t time



real part of ﬁi
imaginary part of Ai
displacement

vector defined by {2-97)

receptance (response of point i to input at j)
phase angle defined by (3-45)

proportionality factor

proportionality factor

eigenvalue for mode r

eigenvector of a proportionally-damped system
frequency

natural frequency of mode r

natural frequency of a proportionally-damped system

loss factor of mode r

phase angle defined by (3-45)
generalized loss factor

M loss factor defined by (4-19)
K loss factor defined by (4-18)

eigenvalue of eigenproblem (3-65)

phase angle

phase angle

eigenvector of the charateristic phase lag (2-55)
ratio of critical damping

additional damping defined by Fig. 3-5



{¥},
{3,
{0},

(r@,)

{0}

{8},

complex eigenvector of hysteretically-damped system
real eigenvector of undamped system

mass-normalized eigenvector of
hysteretically-damped system

k'th element in the r'th eigenvector {o}

complex eigenvector of viscously-damped system
modulus of eigenvalue of mode r of a
viscously-damped system

eigenvector in eigenproblem (2-182)
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l. INTRODUCTION.

Measurement of the vibration properties of an aerospace
structure is an essential and integral part of its
development programme. Originally, such tests were made in
order to learn what the wvibration characteristics were;
later, they were sought to guide the development of the
mathematical analysis and currently, they are required to
check theoretical predictions made using finite elements or
other advanced computational techniques. However, the rapid
strides made in recent years by such prediction methods have
not served to eliminate the need for experimental
measurement of vibration properties; rather, they have
tended to increase the demands made on such measurements by
requiring greater accuracy and detail from the results. In
addition, structures of this type are being designed with
ever—-increasing precision in the interest of efficiency and
economy and this trend places particularly high demands on
the dynamicist, requiring of him the prediction of vibration
properties to much greater accuracy then hitherto. Thus, as
theoretical prediction techniques improve, so also must the
corresponding experimental methods in order to meet
increased demands.

Traditionally, the vibration modes of aerospace
structures have been measured by the multi-point excitation
method in which the structure is forced simultanecusly at
several points in such a way that it can only respond by

vibrating in a single mode {undamped normal mode). Once
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identified, each such normal mode can then be compared with
its theoretically-predicted counterpart. This type of test,
although extensively developed, is a slow and costly
procedure. However, once the structure is made to vibrate in
this single mode the modal properties are directly measured
and no further analysis is needed.

The modes identified by this method are the hypothetical
undamped normal modes and not the actual normal modes of the
structure. Usually, it is assumed that the damping matrix
does not couple the equations of motion and, therefore, the
hypothetical undamped modes and the normal modes of the
Structure are regarded as identical. Although these
identified modes (specifically, the natural frequencies and
mode shapes) provide a basis for comparison between theory
and practice, they are quite often not the vibration
chracteristics which are of greatest interest to the
dynamicist., In helicopters, for example, it is the steady
forced vibration levels at various critical positions
resulting from the inevitable forcing generated by the power
unit which are of greatest interest and there are several
stages of analysis between knowledge of (some of) the
vibration modes and predicting the forced vibration

characteristics of the structure.

Coupled with these observations are recent developments
in those vibration measurement techniques often referred to
as ‘impedence' or ‘'‘mobility testing'. The essential feature

of this approach (which differentiates it from the
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aforementioned 'multi-point' or 'pure mode excitation'
method) is that it involves the excitation of the test
structure with just a single input and then extricates the
contributions of the various modes from the total response
which results by suitable analysis of the measured data. In
effect, the central problem - that of determining the
‘vibration modes of a structure from test data - is tackled
in this approach by placing greater emphasis on the analysis
of the measured data and less on the complexities of the
experimental procedure than is the case for a multi-point
excitation approach; a change of emphasis with .significant
effect on the economics of time and money.

This shift of emphasis has resulted directly from marked
improvements in the precision obtainable from vibration
measurement equipment plus the availability of fast and
inexpensive digital computers directly accessible to the

measured data.

The great interest in this field of modal identification
is reflected in the growing number of technical papers
published each year. The concept is not particularly recent
and one of the earliest papers was that of Kennedy and Pancu
(1947) f{a2] which showed how mobility measurements could be
used to identify vibration chracteristics of complex
structures. Since then many papers on all aspects of this
subject have been published; to mention some of the latest
ones: Hamma et. al (1976) [1], Walegrave et. al (1978) [2],

Snoeys et. al (1979) {3], Kortum et. al (1984) {a}, EBEwins
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et. al (1988) [5] and even a paper by Flannelly [s] to
explain the problem of modal analysis to the layman.
Comprehensive lists of references were compiled by Ewins [7]
and Rades [8,9]. The only book to summarize the methods of
modal identification and their application is,

unfortunately, not yet available in English (Rades [t10}).

The work described in this thesis is mainly concerned
with development and refinement of some aspects of the
'mobility testing method'. In addition, a testing procedure
is developed which is applicable to perform the routine
modal testing of helicopters and other similar structures
and also to obtain simultaneously the additional forced
vibration data heeded for a full dynamic analysis of the
structure,

The basis of this research is a definitive theoretical
description of linear systems (chapter 2) with different
models of damping (i.e hysteretic and viscous). The
different mathematical expressions which describe the
behaviour of a system subjected to several forms of external
harmonic excitation are developed and the main differences
between the two models of damping are pointed out, Because
it seemed that there was no clear definition to the basic
term 'mode of vibration' it is defined precisely and some of
its special forms are described.

The normal mode shapes of a real system are generally
described in complex terms. On the other hand, the mode

shapes used in finite elements calculations and those
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derived by multi-point excitation testing are the
hypothetical real undamped normal modes. Practically it is
assumed that the system under test is proportionally-damped
and, therefore, that its normal modes are real and identical
to the undamped normal modes. Experimental observations,
however, do not always justify this assumption and in many
cases it is simply not valid . In order to find the
relationship between the (real) undamped modes and the
(complex) normal modes of a system, a theoretical and
numerical study is made in chapter 3. The main results of
this study are that for most cases encountered in practice,
where the 'complexity' of the experimgntally~derived modes
is small, these modes can be used as egqual to the real
undamped modes in any further calculation. When the modes
are c¢lose, they tend to be more complex and then the error
incprred by this assumption might be greater.

In the course of this study, two new useful parameters
are defined; the 'nonproportionality factor' which
quantifies the degree by which the damping matrix couples
the equations of motion and the 'generalized loss factor'
which gives an overall measure of the damping present in the
system.

The next step in this work is the development of the
necessary measurement and analysis techniques for derivation
of the modal parameters (chapter 4). In this research, we
are mainly interested in the single-pecint excitation method

and two analysis programs have been developed to handle the
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data produced by this method. The first is based on the well
known Kennedy and Pancu method of treating each mode as a
single degree of freedom mode (POLARS) and the second is a
more sophisticated program which analyses a complete
measurement of several modes simultaneously (SIM2). The
inherent limitations of both the experimental and subsequent
analytical procedures are evaluated and demonstrated by
studying a synthesised numerical case.

The main assumption made so far is that the system under
consideration is linear and, subsequently, the modal
identification programs have been developed accordingly.
Real systems, however, do not always behave according to
this convenient mathematical model; quite often they exhibit
nonlinear behaviour which, unless noticed, may lead to an
erroneous identification of the system.

The first part of chapter 5 studies a few theoretical
cases of one-degree-of-freedom nonlinear systems and shows,
in each case, how the presence of the nonlinearity can be
detected by proper examination of the measured data. A
sensitivity study to check the influence of the nonlinearity
on the linearly-identified modal parameters proved that if
not taken into account, it may lead to serious errors in the
final identification of the system.

Because there is an infinite number of theoretical
models to describe nonlinear systems, none of them
adequately, it was decided that the best approach to deal

with nonlinearity in practice is to establish its existence
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and then to try to minimize its effect, rather than to
identify its form in detail.

The second part of chapter 5 is an experimental study to
demonstrate the behaviour of a real structure and the way to
derive its linear modal parameters in the presence of a
nonlinear response. In the course of this study a powerful
parameter was devised - the 'nonlinearity factor'. No real
structure is, even under the most favourable testing
conditions, completely linear, and this parameter gives a
measure of the degree of the nonlinearity and serves as a
useful tool in checking the linearity of measured data under
different excitation conditions.

In chapter 6, a systematic method for performance of a
modal survey is outlined, in which the data are checked for
nonlinearity and noise pollution before the analysis stage
and once they are analysed, the quality of the identifi-
cation of each set of modal parameters is quantified by a
newly-defined 'quality factor'.

Although it is theoretically possible to derive the
complete matrix of the normal mode shapes from the
measurement of one column of the mobility matrix, it is
usually found that measuremept of more columns is necessary
because some modes are not adequately excited and a change
of excitation point improves their response and thus the
subsequent identification.

Once these data are measured and analysed we obtain

several estimates for many of the modal properties of the
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structure which should, theoretically, be identical. Simple
averaging has been used [76] to derive a single set of
consistent parameters but this will not result in the best
estimate because all the identified parameters are taken
equally into account, good and poor alike.

In order to derive a 'best' estimate of the modal
parameters, an overall weighted optimization of all the
experimentally-derived modal parameters is made where the
'quality factor' is used as the weighting factor. By this
method poorly identified modal parameters have less
influence on the final derived results and the large amount
of data collected is reduced to one consistent set of modal
parameters which describes the system 'best'.

Finally, a comprehensive experimental study to demons-
trate the methods déveloped so far was made (chapter 7). A
typical test structure - a helicopter tailcone - was used
as a vehicle on which the appropriate techniques were
evaluated. A full modal test programme using the mobility
approach was made and the measured data were analysed by
three different identification programs; the simple POLARS,
the more advanced SIM2 and a third which assumes a viscous
damping model (PAPA). In addition the tailcone was tested
using the traditional multi-point excitation method thus
providing a direct comparison between the two approaches.
The difference between the final results obtained by each
program is negligible although when checked with synthesised

data there was a marked improvement of the sophisticated
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SIM2 over the simple POLARS.

The conclusion to draw from this result is that there
is, therefore, little point in trying to improve the
analysis algorithm by developing more accurate linear
algorithms but rather, effort should be directed to improve
the measuring techniques to reduce the amount of noise and
nonlinear influence on the data.

However, lightly-damped structures, of which the
fuselage of a helicopter is an example, can be identified
satisfactorily by the single-point excitation method using
the relatively simple polar analysis algorithm and the
identified modal parameters can be used as the undamped

modal parameters in any further theoretical calculation.



-]

2. MATHEMATICAL MODELLING OF A DAMPED LINEAR SYSTEM

2.1 BASIC CONCEPTS.

The traditional route for constructing a mathematical
model of a real system is paved with assumptions of all
kinds; some of these are often well justified while others
may be quite inappropriate in real life.

A related aspect is the problem of terminology. Some
basic phenomena are given different definitions by different
authors and are sometimes used very loosely and quite often,
the same term is used by different investigators to describe
different properties. Perhaps the most overworked term is
'mode of vibration’: one can find in the current literature
a large array of 'modes' such as 'principal', 'classical',
'normal', 'pure’, 'natural', ‘undamped', ‘'damped',
'‘complex', 'damped forced', etc. This situation is a
confusing one and sometimes may lead to misunderstanding
{11]. Accordingly, it is proposed to introduce a strict
definition of this term and to use it throughout this work

in a consistent manner as follows:

Mode of wvibration.

A mode of vibration is a characteristic dynamic
response in which the motion of every point on the
system is a harmonic function of time with the same

{complex) Erequency.

Mode shape.

A mode shape is the time-invariant form of distortion
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the system assumes in a certain mode of vibration.

Normal mode of vibration.

A normal mode is a mode of vibration that can exist
independently of (uncoupled from) other modes of

vibration when the system vibrates freely.

Two closely related terms are the 'natural frequency'

and the 'resonance' which are defined as follows:

Natural frequency,

A natural frequency is a frequency at which the system

vibrates in a normal mode of vibration.

Resonance.
A harmonically forced system is said to be in resonance
when any change, however small, in the excitation

frequency causes a decrease in the response of the

system.

Resonance frequency.

A frequency at which a resonance exists,

The basic assumption concerning the system under
consideration is that it is linear and that its fundamental
properties are time—invariant.

By 'linearity' two basic characteristics are assumed,
namely that (i) the response of the system is additive and

that {(ii) it is homogeneous.
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The first of theseassumptions implies that the response
(output) of the system to the sum of several excitations
(inputs) is equal to the sum of the system responses
(outputs) obtained when each excitation is applied
individually. If the input to the system is denoted by Xj
and the output by Yi (Fig.2-1la} then this property is
illustrated by Fig. 2-1b.

The second assumption means that the response of the
system to the product of some constant and the excitation is
equal to the product of this same constant and the response

generated by the excitation alone (Fig. 2-1lc)

Xy ———— 1 (a)
XXy — = = T+T (p)
ax. R = e oV (C)

Fig. 2-1 Definition of linearity.

By time-invariant it is meant that the system's physical
parameters are constants. In general, a system which is not
time-invariant is assumed to have components whose mass,
stiffness or damping are dependent on factors which are not
included in the model, such as temperature, frequency, etc.

The assumption of linearity 1s well justified according
to much experimental experience as well as theoretical

investigation provided that the amplitude of the response is
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small. In practice, the amplitude is regarded as 'small' as
long as the measured results satisfy some external criterion
for linearity.

The assumption of time-invariance, which must go
together with that of linearity assumption, is usually
justified when performing ground tests, or in many other
practical cases where the investigator has some control over
factors which may viclate this assumption (temperature, for

example).

In the following analysis we assume that a continuous
system can be described by discrete elements such as masses,
springs and dampers. Under this simplifying assumption the
masses are rigid and have no compliance (the ability to
deform under load); the springs are massless and have only
the compliance property and the dampers are massless,
dissipative elements. These assumptions permit us to
represent a continuous system as consisting of n discrete
masses and thus to describe it by an n-degree ¢of freedom
model resulting in a set of n coupled ordinary differential
equations which describe the motion of the masses.

Practically, there are many cases in which it is
impossible to identify discrete masses and springs and there
may not be any valid reason to assume that the masses cannot
deform and the springs have no mass. Furthermore, in many
cases it is not justifiable to describe a continuous system
by a small number of discrete elements and the information

obtained then is far from accurate. In general, a discrete

[
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system can be solved with more ease then a continuous one.
However, the information obtained by using a discrete model
may not be as accurate as the information obtained by
representing the system by a continuous model. If the
discrete model is made finer and finer, by increasing the
the number of degrees of freedom and reducing the size of

the masses, one obtains, in the limit, a continuous system.

There are many mathematical models used to represent
damping, the most widely of which is the linear viscous
dashpot. Another widely used model is structural or
hysteretic damping. However, the assumption that any of
these models accurately describes the actual physical
mechanism in which energy is dissipated in a vibrating
system is only a mathematical convenience, or to put it in
more appropriate words 'Damping is in its very nature an
uncertain and vague phenomenon and such a concept as a

damping matrix should not be taken too seriously.' [i1]

The equation of motion of a multi-degree of freedom
damped linear system subjected to a harmonic excitation is:
(M) {G}+K] {q}+i (H] {q}+[CI {q}={£]} (2-1)
where,
[M] - mass matrix.

stiffness matrix.

[K]

[H] - hysteretic damping matrix.
[C] - viscous damping matrix.

These four matrices are of order nxn and are real and



DG

symmetric, [M] and [K] are positive definite , [H] and [C]
are at least semi-positive definite [14].
{gq} - complex vector of dgeneralized displacéments.
{f} - complex vector of harmonic forces.

In this equation the two most common models of damping
are included, namely hysteretic and viscous. The theoretical
solution of this equation is well established., It is
considered, however, necessary to present a definitive
statement of this problem, both for hysteretic and viscous
damping, to describe some special forms of damping and
forcing and to point out the differences between the
solutions for each type of damping. For each type of damping
" the homogeneous equation of free vibrations is considered
followed by the special case of 'proportional damping'.

For the case of harmonic forced vibrations the force {£}
is expressed as:

(£}={F}e’*® (2-2)
where w is the frequency of harmonic excitation and {F} is,
generally, a complex vector of harmonic amplitudes.

Apart from the general case of constant harmonic
excitation where {F} is complex, two particular cases of
harmonic excitation which are of great practical importance
are described: excitation by a mono-phased harmonic force
where {F} is a real vector and excitation by a single

harmonic force Fk'
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2.2 HYSTERETIC DAMPING

The equation of motion for the hysteretically-damped
system subjected to a constant harmonic forcing is:
(M1 (4} +(K] {q)}+i [H] (q}={P}e " (2-3)
This model of hysteretic damping was introduced to
describe a steady-state harmonic motion only and is not
necessarily valid for the solution for any other type of
excitation [13].
In order to solve equation (2-3) a harmonic solution of
the following form is assumed,
(q)={x}e™*" (2-4)
where {X} is a complex vector of harmonic amplitudes.

Insert (2-4) into (2-3) to give

(~w M)+ [K]+i[H]) (X}={F} (2-5)

2.2.1 FREE VIBRATION

First, the homogeneous eigenproblem is considered where
w'z-is replaced by /112,, giving
(- AZIMI+[R1+i (R]) (¥} 70 (2-6)
This is an eigenproblem where the eigenvalues Af'and the
associated eigenvectors {W}I,are generally complex,
If we write,

i“’i(“i M) (2-7)

A
we may define @, as the 'natural frequency' and 7, as the

'modal loss factor' for the r'th mode.
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Insert into {(2-6} and we obtain
(=af (L+in ) [M]+DR]+i(H]) (W), =0 (2-8)
There exis®ts a non-trivial eigenvector {W}r which
satisfies (2-8) if the left-hand side matrix is singular,
and hence the characteristic equation is:
1132 (L+in ) - (M) LRI+ [H)) 1=0 (2-9)
This eigenvector is unscaled and is determined within a
multiplicative arbitrary constant.
I1f we pre-multiply (2-6) by {W}g_ , then
{‘P}g(-ﬁi[M}+[K]+i[HJ) (v} =0 (2-18)
Assume now another eigenvalue, As (AS*Ar), then
(—Ai[MH[K]-f-i [H]) (¥} =0 (2-11)
The transpose of (2-11) is
{tp}g(—é[m Totkl Teita) T =o (2-12)
and since [M], [K] and [H] are symmetric matrices then
{‘P}g(—ﬁzs[MH[KHi (H])=8 (2-13)
Post-multiply (2-13) by {¥}, and subtract from (2-~14)
(A2-22) (v} L(m] (9} =0 (2-14)
Since AGF ]‘r then
‘_ (w)l(nl (v} =0 (2-15)
inserting (2-15) into (2-14) gives
(¥} CIKI+i[H]) (¥} =0 (2-16)
Relationships (2-15) and (2-16) are referred to as the
'orthogonality conditions'.
Consider now the matrix product
(M1=[w] ~(u] [¥] (2-17)

where [¥] is the matrix of the eigenvectors [W}r.
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Any element which is not on the diagonal of [M] is equal to

{Lff}g{MJ (v}, (2-18)
and it has been shown (2-15) to be equal to zero. Only the
diagonal elements

{W}E,[Ml {w}r : (2-19)
are non-zero {because [M] is a positive definite matrix
[12)) and so it follows that the matrix [M] is a complex
diagonal matrix

(M= [~ m ] (2-28)
and is referred to as the 'modal mass matrix', with the term
m, referred to as the 'modal mass' of the r'th mode.

The same reasoning applies to [K]+i([H] where
[R1=[wiT ((KI1+1(H]) [w] (2-21)
[K] is a complex diagonal matrix referred to as the 'modal
stiffness matrix'

[K]= [~k ~] (2=22)
and kr is referred to as the 'modal stiffness' of the r 'th
mode.

(Because the eigenvectors are determined only to wiéﬁn
arbitrary scalar multipliers the diagonal matrices (K] and
[ﬁ] are determined in the same manner and are thus not

unique for any given system.)

The characteristic equation can be expressed in the
terms of the modal matrices, i.e
|12 (A1 + (K] =0 (2-23)
It is clearly seen that the eigenvector [lP}r uncouples the

general characteristic equation and that
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=3 (2-24)

{W}r is defined therefore, as a 'normal mode shape' of the
system.

However, it should be appreciated that although [K] is a
diagonal matrix neither [W]T[K][W] nor [w]T[Hl[W] is
necessarily diagonal, since

{¥} SIKJ (v} #0 (2-25)
{w}gtmmﬂ (2-26)

because {‘P}r in (2-16) is complex.

2.2.2 THE UNDAMPED SYSTEM

Of particular theoretical interest is the case where the
dambing is assumed to be removed from the system. The
characteristic equation is then reduced to

|~ A2+ K] (=0 (2-27)

For this case the eigenvectors {H}r are all real and the
associated eigenvalues Ai are all real and positive [14].

The real mode shape {H}r is referred to as the "undamped
normal mode'. Thg orthogonality conditions are also
satisfied and the diagonal modal mass and modal stiffness

matrices are both real.
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2.2.3 PROPORTIONALLY DAMPED SYSTEM,

The eigenvectors derived for a damped system are, in
general, complex. However, it may be shown that when the
damping matrix can be expressed as a linear combination of
the mass and stiffness matrices i.e

[Hi=a[K]+p[M] (2~-28)
the eigenvectors are real. Relation (2-28) is referred to as
'proportional damping' and the system is 'proportionally

damped’.

Substituting (2-28) into the characteristic equation
{2-9) leads to
| ID)wl (1419 )~ (1+ie) (M) 7 IK)-111) B1=0 (2-29)
and separating this into real and imaginary parts, we obtain

a pair of characteristic equations which must be satisfied

simultaneously:
w2 (11- M) (K] =0 (2-30)
2 B -1 - -
lwr[I](nr-jgg)- (M} [K]|=0 (2-31)
This set is satisfied by
nr--a+-—-;% (2-32)
The eigenvalues of (2-29) are then given by
2_ . B
Ar_a§g+l(a+73§>1 , (2-33)

Substituting into equation (2-6}) yields
([I1w2-[m1 =V {R]) {w}_=0 (2-34)
T T
which is the eigenproblem of the undamped system with real
eigenvectors {H}r.

Because the eigenvectors are real, it follows from
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(2-21) that
{H}g[K] {n} =g (2-35)
[H}g[H] (1} ,=9 (2-36)

The real part of each eigenvalue is the natural
frequency of one mode of the proportionally-damped system;
the imaginary part determines the asscociated modal damping.
The eigenvectors and the real part of the eigenvalues are
independent of the values of the damping matrix [H] or the
proportionality factors a or 5.

Equation (2-34) is the equation of the theoretically-
undamped system. The normal mode shapes {H}r and the natural
frequencies of a proportionally-damped system w, are,
therefore, identical to those of ﬁhe theoretically-undamped
system. These modes are referred to as the ' proportional
normal modes'.

When the damping matrix is proportional to the stiffness
matrix only (i.e f=8) the eigenvectors are still real but
then

Ny=a (2-37)
which means that the modal loss factor is identical for all

the modes.

This special form of damping which permits the
uncoupling of the equation of motion by the undamped normal
modes is not unique to the case of proportional damping.

It was shown by Caughey et.al.[t15] that there is a
general condition which is necessary and sufficient to

uncouple the equation of motion by the undamped normal
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modes. This condition states that the matrix product

[M}_1[K] and {M]—1[H] must commute, i.e
([Ml_1[Kl)([MJ_1[H1)=([M]_1[H1)([Ml_1[K]) (2-38)

The proportional case where [H]=a[K]+3[M] clearly satisfies

this condition.

2.2.4 EXCITATION BY A GENERAL FORCE VECTOR

In order to solve equation (2-3) for the general case
where {F} 1s a complex vector, the vector {X} is expressed
as a linear combination of another set of independent

vectors such as the eigenvectors, {W}r.
n

(x}= Z AU (2-39)
Substitute into {2-5) and we obtain
n
(- (M1 +[KI+1H]) K (%} =(F} (2-48)
ra1
Pre-multiply (2-40) by {W}g, to get
T, 2 : - o T _
(v} (=" MU+ (RI+H]) % (%} = (9] () (2-41)
or - "
P (W IOIRI+iH]) {w)_-o® P (9} Jm) (v} s(win(F}  (2-42)

Because of the orthogonality conditions (2-15 and 2-16), all
the other terms in the summation of (2-41) are equal to
zero,

Using the notation introduced in (2-29) and (2-22), we

may write:

Vr(kr-wzmr)={‘{’}£{F} (2-43)

and then
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(v} (F}
Tk -ofm
r r
substitute into (2-39)
D ()L (F} (e,
(X}= . (2-45)
=7 - k,—wnm
- r r

rearranging (2-45) using the relationship (2-24), namely

=ﬁ£=m§”jdq ) (2-46)
we obtailn
{W}E{F}[W}r

.
r=1 mrwi[l‘(f-)z +inr]
T

(2-47)

As the eigenvector {W}r is unscaled we may introduce the

'mass-normalized' eigenvector {(D}r defined as

1

{0} _= fw} (2-48)

r \/Er g .
so that

ﬁ T

. ol {F} {0}
Xp= ) L (2-49)
r=1 wr[l"(ag) +1nr]

Equation {2-49) is the steady-state response of a hyster-
etically-damped system subjected to harmonic inputs in terms

of the (complex) mass~normalized normal modes.
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2.,2.5 EXCITATION BY MONO-PHASED FORCES

For the special case where the vector of force
amplitudes {F} is real, we can seek a solution of equation
(2-3) for which the response of the system is all in phase,
although not necessarily in phase with the force, i.e.

{qy={z}el(@t=0)

{(2-59)
where {Z} is a real vector of unknown amplitudes and ¢ is
an unknown phase lag,

Substitute (2-5@) into (2-3)

(- ]+ K] +1[a]) (2)eT (WTm 0o (pye Tt (2-51)
or
2 . -16
(-o"[M]+[K]+i[H]){Z}e ={F} . (2=-52)
Separate equation (2-52) into real and imaginary components,
[(~«2[M]+[K] JCoso+[H]Sing] {2}={F} (2-53)
[ (-w°[M]+[K] )Sing-[H]Cosa] (2}=0 (2-54)

Equation (2-54) is a non-standard real homogeneous eigen-—
problem where the eigenvalues are 0o for which there exist
corresponding eigenvectors {n}s.
The corresponding force vector is obtained from equation
(2-53):
[ (o [M]+[K])Cos g +[H]Sing 1 {x}_={F}_ (2-55)
It should be noted that the eigenvectors {x}s and the phase
lags 6, are functions of the excitation frequency w.
The harmonic forcing vector {F}eiwt may be 'tuned' so
that BS=9ﬂ"and then equation (2-54) reduces to
(= [M]+(K]) (2}=0 (2~56)

which is the equation of the theoretical case of an undamped
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system having real eigenvectors {H}S and natural
frequencies W . The forcing vector for this case is obtained
from equation (2-55)

{F} _=[H]{m} (2-57)

It is seen that by tuning the amplitudes of the exciting
forces to produce a real vector (mono-phased) at a certain
proportion to the damping and at a frequency equal to a
natural frequency of the theoretically undamped system, the
response of the system under consideration is mono-phased
and in quadrature with the forcing vector. The real mode
shape the system assumes {n}s is then identical to the
corresponding mode shape of the undamped system {H}S. This
forced mode is not a normal mode of the system in the strict
sense and is referred to as 'forced proportional mode',

If the response of the system under this excitation is
expressed in terms of its normal mode shapes {W}r, which are
complex, then from equation (2-47) we obtain

D (Wi}

{X}= >

{¥} (2-58)
Wa 2
r:1 mrwr[l-(zzﬂ +1nr]

T

It is of interest to examine the particular case of a
proportionally~damped system where its proportional normal
mode shapes {H}r are real.

Equation (2-58) may then be written as

T
D {n}_(alR1+p[M}) {11}
(X}= jg: T S

{11} (2-59)
2 w2 .
rz1 mrwr[l-—(-c:};) +lnr] s
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Because of the orthogonality conditions, all the terms in
this summation where r#s are equal to zero. Equation (2-59)

may then be written as

aksﬂgmS

=msw§{}—(£?f +iq§]
3

{X} {H}S=ds{n}s {(2-60)
which means that the system vibrates in one mono-phased mode
only (its s'th proportional normal mode) and that the phase
between the response and the excitation is a function of ds
(which is complex). This mono-phased response of the system
is independent of the excitation frequency, so once the
proper force vector {F}S is applied to the system, the
response is iIn the sfth mono-phased mode at any frequency of
excitation. The only parameters which change as the
frequency is changed are the phase between response and
excitation and the amplitude of the response.

(This discussion can be generalized for the ordinary
case of the normal (complex) mode shapes [W}S. The
excitation vector [F}S is then complex, which means that by
proper tuning of the amplitudes and phases of the force
distribution the system can be excited at one normal
(complex) mode shape. The practical implementation of this
is very complicated and only one reference to the use of

this method was found in current literature [18]).

The results which have just been presented form the
basis of the multi-point modal testing method. Once a

properly tuned mono-phased force vector is applied to the
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system, and the response is mono-phase and in quadrature
with the applied force, the measured response gives the
proportional normal mode shape of the system directly and is
identical to the undamped normal mode of the system. The
excitation frequency is then equal to the natural frequency
of the undamped system.

Once the system is vibrating in this 'pure' mode, a
check to establish whether the system is proportionally-
damped can be carried out by changing the frequency of
excitation and noting if there is a change in the measured
shape of the response. A change indicates that the system is

not proportionally-damped.

2.2.6 EXCITATION BY A SINGLE FORCE

From the general expression for the response of the
system to a general harmonic (complex) force vector we cah
extract an expression for the system's response to a single
harmonic force Fk.-The vector of force amplitudes is then:

g
{Fi= Sk (2-61)

Inserting into (2-49) produces

n
(@) F_{®}
{x}= E B s (2-62)
5 o [1- G i)

o T

where (_®,) is the k'th element in the r'th eigenvector
Tk

{@}r. From equation (2-62) we can extract the single
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response X4 due to the single force F,. and derive an

expression for the general receptance ajk .

-
. - (o) (o)
F, wr[1—<;¥) +in ]

The product (rwj)(rmk) is denoted by rAjk

rAik= p®3) () (2-64)
and is referred to as the "r'th modal constant of
receptance ajk" Equation (2-63) forms the basis of the
single point modal identification method. From a measured
set of individual receptance measurements the parameters of

equation (2-63) can be identified.
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2.3 VISCOUS DAMPING

A common type of damper which is widely used to model
the damping mechanism in a vibrating system is the viscous
dashpot. The equation of motion for a viscously damped system

subjected to a constant harmonic excitation is:

[M] (G3+1C] (&} +[K] {qi={F}et®" (2-65)

2.3.1 FREE VIBRATION

For the case of free vibrations where {F}=0, we assume a
solution of the form:
{qr={x1e°" (2-66)
Inserting (2-66) into(2-65) we get
(52[M1+s[c]+[KJ){X}=0 (2-67)
which is a complex eigenproblem where the eigenvalues are

ﬂr=s. There are in general 2n eigenvalues, A and assoc-

r 7
iated eigenvectors, {¢}r, which satisfy the characteristic
equation (2-67). Because they are in general complex, and
[M], [K] and [C] are real, they occur in conjugate pairs [t7]
and satisfy the following equation,

(AS(M1+2[C1+[K]) {4} =0 (2-68)
The eigenvector {¢}r is unscaled and is determined within a
multiplicative constant {(the order of this vector is n).

To demonstrate the orthogonality properties,

pre-multiply (2-68) by {¢}g then

(01T (AZIM1+ A [CIHIKD) (4} =0 (2-69)
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Assume now another eigenalue A, (A *d,) then
(,1§[M}+As[c1+[f<]){¢}s=ﬁ
The transpose of {(2-78) is
{wgug[mT +JLS[<:]T+[K} =0
Since [M], [K] and [C] are symmetric matrices,
(9} L(ASIMI+ A [CI+[K]) =0
Post-multiply (2-72) by {df}r and subtract from (2-69)
(A5-22) (¥ M1 (9} o+ (A=2) (9Y11CT (4} =0
since ﬂrtis then
(A+A) (9YLIMI{6) +{d}1[CI{H} =0
Multiply equation (2-69) by A, and (2-71) by 4,
(#3T(a_AZMMI+a_A_[Cl1+A_[K]) (4} =0
(9} T(AASIMI+A A [C1+A_[K]) [$} =0
then subtract equation (2-76) from (2~75)
(9} S04 gAL(Ap=Ag) [MI+ (A=) [K]) {6} =0

i A
since r*ﬂs then

T T _
AALOYSIML 09} - {0} K] (¢},=0

Relationships (2-74) and (2-78) are the 'orthogonality

conditions' for a viscously-damped system.

(2-749)

(2-71)

(2-72)

(2-73)

(2-74)

(2-75)

(2-76)

(2=-77)

(2-78)

It is customary to display the eigenvalues Ar in the

form
A=0 (- +i V1-82)
r T r r
where gr is defined as the ratio of critical damping

and Qr is the modulus of the eigenvalue. (Very often

[ 17,22,24] Qr is referred to as the 'undamped natural

frequency' which is a misleading definition. It is the

(2-79)

undamped natural frequency only in the special cases of



2

proportional damping or a one-degree-~of-fredom system. )
Consider the orthogonality relationship where A, and A
are conjugates. i.e.
. 2
ﬂsﬂﬂr(‘§r‘1 l“§r ) (2-88)
and hence
*
(61 =14 1, (2-81)
Inserting (2-8#) and (2-8l) into (2-74) we get
2 3 Imy (o) _+ (671 IC) {4} = 2-8
208 (e 1Ml {el {9 1ICl {4} =0 (2-82)
from which

*.T
T IC19)

20 = (2-83)
T T (o),
Inserting (2-88) and (2-~8l) into (2-78) we get
2, ¥ T ¥ T _ _
QL7 I MI g}~ 19 } LRI {0} =0 (2-84)
from which
> {w*}E[K]{¢}r
Q=g (2-85}
{o }mi{d},
Equations (2-83) and (2~-85) may be expressed as
o _
20§ === (2-86)
r'r m,
and
k
Q§=53 (2-87)
r

where mr, kr and cr are the modal mass, stiffness and

damping respectively.
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2.3.2 PROPORTIONALLY-DAMPED SYSTEM

When the system is proportionally-damped, i.e.
[Cl=a[K}+p[M] (2-88)
the relationship between Q,, and {_may be derived from
expression (2-83)

{9 1L (alKI+BMMI) (o},
20,8..= (2-89)

Ty L),
or
2gr§r=aﬁi+ﬁ {2-94)
from which 5
aQr+ﬁ
eTTTG (2-91)

Inserting expressions (2-8#@) and (2-88) into equation (2-67)
results in the following eigenproblem
(-, M1 +[K1) (9], =0 (2-92)
which is clearly the eigenproblem of the undamped system.
The mode shapes [Iﬂr of the proportionally~-damped
viscous system are, therefore, identical to those of the
undamped system and satisfy the following orthogonality

conditions, namely

(T (M) 7] = =] (2-93)
()T 1K) (1) = [~ ko] (2-94)
T (e] t=rme (2-95)

The natural frequency of the proportiocnally-damped viscous

system is
q_s2
w, = valﬂgr (2-96)

where Qr is equal to the natural frequency of the undamped
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system,

As the proportional damping of the system is increased,
the natural frequency is decreased according to equations
(2-91) and (2-96). The modulus of the eigenvalue Q. is
independent of the amount of damping and the proportionality

factors & and j5.

2.3.3 EXCITATION BY A GENERAL FORCE VECTOR.

The characteristic equation of a viscously—damped system
(2-67) does not constitute a standard eigenvalue equation.
In order to obtain a convenient solution for equation (2-65) we
apply a different approach to the solution of the equation
of motion for free vibrations by using the following
transformation:

Define a new vector {y} of order 2n

q
lyl= y- (2-97)

q

and substitute this into (2-65)
[C : MI{y}+[K : 8]{y}=0 (2-98)

As there are now n equations with 2n unknowns we add the
dummy equation:
[M @ B1{Yy}+10 :-M]l{y}=0 (2-99)

to give a set of 2n equations:

c:M  Tg: o
Cmie= | (P g mi o= Ly)=0 (2-100)
s

M : B t-M

or
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(Al {y}+[B]l{y}=0 (2-181)
Consider now a trial solution of the form {y}={Y}eSt
which yields a standard eigenproblem
(s[A]+[B]) {Y}=0 (2-182)

There are 2n eigenvalues, s and associated eigenvectors,

Inl'
{@k , each satisfying the equation:

(SIIA]+[B]){@}IFO (2-103)
This equation is of similar form to that of the undamped

system and possesses similar orthogonality properties:

(01 Al [0] = [~ 2] (2-154)
EGIT{B][@]=F*br~J (2-185)
and
sl¢;§I ' . (2-196)
r

These eigenvalues and eigenvectors are generally complex

(for underdamped systems) and occur in conjugate pairs [i8].

Consider now the harmonic forced vibrations where the

amplitudes of the harmonic forcing vector {P} are

F
{P}= - (2-197)
g ’n
and the equation of motion is
[A] {¥}+[B}{Y}={P} (2-108)
Assume a solution of the form
X -
{v}= {...} eivt (2-189)
iwX

and that the vector {Y¥} may be expressed as a linear

combination of the 2n linearly independent vectors {8}r
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hence

2n

{Yl= er{(a}r (2-118)

r=1
where }} is an unknown coeffecient.

Substitute this into (2-148) and pre-multiply by {8}?,

giving:
2n 2n
iwiol (a1 ) el sterlal S nlel sterlel  (2-11y)
ra r=

Because of the brthogonality conditions, equation (2-111)
reduces to
P (100} S[A] (6} +(0}L(B]{6},)=(0} (P} (2-112)
T T ™ T T T
or, using the notation introduced in (2-~144) and (2-183), to
7 T
={®}r{P}= {0} (P}

'V

T . .
+ -

1war br ar(lw sr)

(2-113)

The solution of equation (2-198) can thus be written in

the following manner:

X

iwX

(2-114)

i (oL (P} (0},

7 apliw=s.)

Because the eigenvalues and the eigenvectors occur in

conjugate pairs equation (2-114) may be written as:

X D {erlipi{e}, <16 1L(P}{® }
=z + ) — = (2-115)
iwX = ar(iw—sr) =1 ar(iw-sr)

This is the steady-state response of a viscously-damped
system due to harmonic excitation in terms of the 2n modes

{Q}r-
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It has been shown that when the system is proportionally-
damped, the mode shapes are real. For this case expression
(2-~115) is much simpler; we may assume a solution of the

form:

(X}= Zv {1, (2-116)

Insert into equation (2-65) and pre-multiply by {H}
Due to the orthogonality conditions, we get
(—w {1} [M]{H} Lriw{il} [CJ{H} L+ {7} [K]{I‘I} = {1} {F} (2-117)
Because {H}r is a real vector, we can use the notation
introduced in expressions (2-79) and (2-87) to obtain:
{1} 2(F}

vV = (2-118)
T - 2. N
m,(-w +21w9r§r+9r)

Substitute inte (2-116)

(X} Z {1} [F}{n}r Lo
X (2-119)
mer - (G +21(éi)§r]
r xr

Equation (2-119) is the steay-state response of a
proportionally-damped viscous system due to harmonic
excitation, described in terms of its proportional normal

modes, fﬂ}f.

2.3.4 EXCITATION BY MONO-PHASED FORCES

When the harmonic forcing vector {F} is real, we assume
that the response of the system has the same frequency but

with a certain phase lag ¢ relative to the force. 1i.e.
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i(wt-g)

{ai={z}e (2-129)
where {Z} is a real vector of amplitudes.
Substituting (2-12¢) into equation (2-65)
(- [MI+1 [Cl+[K]) {z}e " 0= (F) (2-121)
and separating into real and imaginary parts, we get
(—a?[M]+[K]){Z}CosB+u{C]{Z}Sin9={F} (2-122)
(-w°[M]+[K]) {2}Sing+a(C] {2}Coso=0 (2-123)

Equations (2-122) and {2-123) are similar to equations
(2-53) and (2-54) for the hysteretically-damped system and
may be énalysed in the same way. The forcing vector needed,
in this case, for the response to be in quadrature with the
excitation is

{(F} =wl[C}{m} - (2-124)

The 'forced proportional modes' of a viscously-damped

system are identical to those obtained for the
hysteretically-damped one. Actually, this result is
independent of the model of damping chosen and is valid for
the more general case of equation (2-1). The force
distribution needed then is;

{F}

S (wlCl+ ]} {m} (2-125)
The analysis of the proportionally-damped viscous system

is similar to that for the hysteretic case and all the

conclusions drawn there apply for this case. The real

response of the system is then,

ak +ﬁc .
5 S (2-126)

{z} =
8 2 w 2 LW
msws[l—(;g) +2l(zg)§s]
This result which states that the system can be forced
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to vibrate in a 'forced proportional mode' which is
identical to the undamped normal mode of the system,
regardless of the damping model assumed,is not fully
recognized. Although it was proved by Fraeljs de Veubeke in
1948 [19] and later (1963) emphasised by Bishop and Gladwell
[11] there are some more recent investigators who appear not

to accept these results [20,16]. (see appendix)

2.3.5 EXCITATION BY A SINGLE FORCE

The response of the system to a single harmonic force Fi
can be extracted from the general expression (2-115) by
setting {P} as,

@
Lk

{P}= (2-127)

Using the notation introduced in (2-79), equation (2-115) for

this case is

X L (8,0 10},
o Z ity £+ ---\/1—]

n (.8 ){ }
+ x K (2-128)

(§r+1 (-+ Vi- gr)]

ra

where { @

e} ..

k) is the k'th element in the r'th eigenvector
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Denote,
(.8, )
(G 1= Lk (8}, (2-129)
A
and the equation (2-128) can be written now as:
X T {R }+i(E=) (.5 )
.. =ZE: Qz[% i‘”f QE ﬁff ] P (2-130)
iwX .. -5 +2i(=7)¢
rz1 ““p Qr QI‘ T
where
/ '
(R }=2(} Re{ G }-In{,q } Vi~ §2) (2-131)
{TSK}=2Re{er} (2—132)

Equation (2-13¢) is the response of a viscously~damped
system due to a single force excitation.

From this equation we can extract the single response

xj and derive the general receptance ajk:
X, o (R.. )+ () (LS.
@ =l R’ a8 (2-133)
Jk F 92[ (2 pog e
k4= 1-(57) +21(57) ¢
r T Qr S Q. T

. . .
where (erk) and (rsjk) are the j'th elements in their

respective vectors.
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2.4 CONCLUSIONS,

It appears that there exists no clear definition of one
of the main terms used in modal analysis - the 'mode shape'.
In this chapter, we have tried to define this term precisely
and to point out some of its special forms.

The basic term is the 'normal mode shape' which is
associated with the problem of free vibrations only. A
system possesses n normal modes of vibration which are
independent of each other: i,e. when it vibrates freely in
one of its normal modes there is no transfer of energy to
any other normal mode.

The exact nature of the normal modes revolves around the
form of damping present in the system. For the theoretical
case of an undamped system the normal mode shapes are real
and orthogonal with respect to the system's matrices [M] and
[K]; these are the 'undamped normal modes'.

When the damping has a special form whereby it is
proportional to the stiffness and/or the mass distribution
of the system, the modes are identical to the undamped
normal modes and exhibit the same orthogonality conditions;
these are the 'proportional normal modes'.

If the model assumed for the damping is the hysteretic
one then the natural frequency associated with the propor-
tional normal modes is equal to the natural frequency of the
undamped normal mode, When the damping is assumed to be
viscous, then the natural frequency is a function of the

amount of damping present in the system.
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For the general form of damping, the normal modes are
complex and there is a marked difference between these
properties depending on the model of damping used.

When the damping is hysteretic, the system posseses n
complex normal modes which are orthogonal with respect to
the system's matrices. For the viscous case, there are 2n
complex mode shapes (actually, n conjugate pairs), each of
order 2n. These mode shapes are orthogonal with respect to a
special combination of the system's matrices and each one
describes both a displacement and velocity 'shape' of the

system.

Of considerable practical importance is the case where
the system is excited by a set of mono-phased forcés. It has
been shown that regardless of the form or model assumed for
damping, it is possible, by proper tuning of the amplitudes
of the mono-phased forces, to excite the system into a mode
which is identical to the (real) proportiocnal normal mode;
this is the 'forced proportional mede'. When the damping is
of the more general form, this response is possible only at
a frequency which is equal to the undamped natural frequency
and then it is in quadrature with the excitation. When the
damping is proportional, this response may be obtained at
any frequency but then it is not in guadrature with the

excitation.

There is no point in a comparison between the two models

of damping just presented. A real system is neither hyster-



etically nor viscously-damped; these representations are
just mathematical conveniences and the debate as to which
one is 'better' may never end; each one of them has its own
advantages and drawbacks depending on the particular case.
However, it seems that for the case of harmonic
vibrations the hysteretic model is analytically simpler and,
as will be seen later, it is more amenable to experimental
analysis. As a matter of fact, this model is valid only for
harmonic response. Nevertheless, it is found that the two
models are used almost equally in the field of modal
analysis by different investigators, and when used in

experimental cases they are practically equal,
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3. REAL AND COMPLEX NORMAL MODE SHAPES,

3.1 INTRODUCTION.

It has been shown that the nature of the normal mode
shapes of a system revolves around the form of damping. For
the particular case where the damping is proportional, the
normal modes are real regardless of the amount of damping
present in the system., The addition of nonproportional
elements changes the real normal modes into complex normal
modes. The favourable condition of proportional damping is
not often encountered in practice and experiments suggest the

need to assume complex—-type modes rather than real ones.

A A

Fig. 3-1: Three degree of freedom model of a beam.

A physical interpretation of the concept of a fcomplex
normal mode' can be illustrated by the following simple
example:

Consider the lumped-mass representation of a simply-
supported beam (Fig. 3-1). The first normal mode shape of
this beam may be described graphically (Fig 3-2a). However,
in general not all the points in a normal mode shape
necessarily reach their maximum or minimum position

simultaneously. This 'phase lag' between the times when the
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various points in a mode reach their extreme positions can
be visualized by plotting the magnitude of the relative
amplitude of each of the points in a mode as a rotating
vector (Fig 3-2b). The reason that not all the points reach
their extreme positions simultaneously is due to the fact
that the damping forces are not distributed proportionally
to the inertial and elastic forces in the system.

Mead (23] suggested that the physical interpretatipn of
this phase difference is that there is an energy-carrying
wave through the system trans ferring energy from points where
there is an excess of energy input over energy dissipation,

to areas where there is an excess of dissipation over energy

input.

L

Fig.3-2: Vector representation of a complex normal mode

shape.

The 'complexity' of a normal mode shape may be
guantified by the maximum phase lag withinthe mode, Imax *
This is an arbitrary parameter which might enable us to

decide which normal mode is more complex.

The level of 'complexity' of a normal mode is a function
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of the nonproportionality between the damping matrix and the
stiffness and/or the mass matrix. It is easily shown that
the normal modes are real for proportional systems. However,
for the nonproportional case, therelationship between the
normal modes and the system matrices is only established by
solving the complex eigenproblem (which is basically a
solution of an n-degree complex polynomial) in order to
derive the complex eigenvalues and a solution of a set of
n-1 linear complex equations in order to derive the

(complex) normal modes.

The final result of an experimental modal survey using
the single-point excitation method is a set of complex,
mass-normalized normal mode shapes {@}r. However, for
comparison with theoretical studies by finite element
calculations, or with results of a multi-point excitation
test, the (real) proportional normal modes are required,
Apparently, the most direct way to derive these modes is to
calculate the system matrices from the orthogonality
relationship, i.e

M1=(01 T (07"
(k1 =Re ([0)T - ;5.1 10)T) (3-1)
(#1=In( (0] - 421 [0)7)

Once these matrices are calculated, the eigensclution
for the undamped system can be obtained, ﬁsing [M] and [K]
only, and hence the required undamped normal modes can be
determined [24,25L

Un fortunately, this simple method is impractical because
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it requires the knowledge of all the {(n) normal mode shapes
of the system and, generally, experimentally-identified mode
shapes constitute an incomplete set. Using such an
incomplete set in the above scheme results in system
matrices which are incomplete and which have, therefore, no
physical meaning. (They might be called 'pseudo system
matrices')., The inherent limitation of this approach may be
demonstrated by this general example:

For the nxn complete system, there exists a matrix of
mass-normalized eigenvectors [mn]. This matrix is orthogonal
with respect to the mass matrix [Mn], i.e

(0,1 M1 [@,]= (1] (3-2)

Next, the system.may be modelled by p lumped masses [Mp]
where p<n, so that its normal mode shapes are identical to
the first p normal modes of the complete {n} system. For
this system there exists a matrix of mass-normalized
eigenvectors [mp]. This matrix is also orthogenal but-with
respect to the corresponding mass matrix [Mp], i.e

Lo 1 M ] [0 ] =(1] (3-3)

Now, if we truncate the [mn] matrix by taking the first
p eigenvectors and reducing the number of elements in each
eigenvector from n to p, we can create a truncated
(incomplete) square matrix of eigenvectors [@t] which
describes the normal mode shapes of the first p modes.

The truncatedeigenvector matrix {mtl is orthogonal with
respect to the mass matrix [Mp] but because its elements are

mass-normalized with respect to the complete mass matrix
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[Mn], the orthogonality relationship is:

[@y17 [ ] [0y] = [~n— ] (3-4)
where [‘mt._] is the truncated modal mass matrix. {@t] is
related to [db] by [-m -] i.e .

[o4] =[@g) Cmg—]” (3~5)

It is clear that the knowledge of the truncated
(incomplete) eigenvector matrix [@g] does not enable us to
derive the physical mass matrix [Mp] because of the absence
of the diagonal normalizing matrix [*mt__}.

When a system is experimentally-identified, the derived
eigenvectors [@t] are normalized with respect to a mass
matrix {Mn]; calculating the reduced mass matrix [Mp] by
assuming that [‘mt.ﬁ]=[l] produces a pseudo mass matrix

which has no physical meaning.

Much attention has been devoted to this problem
[25,28,29,31] and it is commonly agreed that there is no unigue
solution to it. Nevertheless, many investigators tried to
'solve' it by adding more constraints to the problem and
thus limiting the ~umber of solutions. Thoren [27] solved it
by assuming that P-mt__]=[I] and was satisfied that the
derived system matrices reproduced the original system
response. Ross {26] showed that the system matrices need not
necessarily have a physical meaning so long as they satisfy
some energy constraints and reproduce the eigensolution.
Imregun [30], who investigated the problem of reducing the
size of the matrices representing a system, limited the mass

matrix to be diagonal, and the sum of its elements to be
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equal to the total mass of the system. Gleeson [40] checked
the possibility of using the pseuwdo matrices for prediction
of the effect of.changes in the mass or stiffness of the
system and found that, except for very simple synthesised
cases, the pseuwdo-matrices do not provide satisfactory
results.

Another branch of investigation uses the pseudo mass
matrix as a means for improving theoretical or intuitive
estimates of the physical mass matrix [32,33,34,35].

All these works are restricted to undamped or propor-
tionally-damped systems whose normal modes are real and the
derived pseuwdo mass matrix is, therefore, real as well,
However, when the system is nonproportionally-damped and its
normal modes are complex, the pseudo mass matrix is complex
and cannot be used as such for derivation of the undamped
normal modes,

A simple numerical example illustrates this point:
consider a nonproportionally-damped six degree of freedom

simple system (Fig. 3-3).

T T I

4 4 4 a
B T e R e B o
- I = - = R - B

8 8 8

4

MW

-}~ — B
8

Fig., 3=3: 3ix degree of freedom nonproportional system
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The complete mass matrix of this system is:

The complete set

of it are (expressed

-232% 1

.4182
3244 1
5220
4194 -1
.2328

The reduced (incomplete) set of modes which is created

SO0 O0

—
<

[« e oW B ol

76.276 .4186 -178.838 JS210
1.821 .23189
78.710 .2338 ~=174.308 4178
178,434 -4178
=-1.558 L2321
177.861 5214

~2.802 3224

1.502 2324
76 .8993 5214
2.163 4178

of complex

by modulus

-.325
178.808
178,808

-.221

.742
-178,382

i

ST OO0 00

SOCOoOQOQOQ

mass—-normalized normal modes

and phase in degrees) is:

32481
2317
.4182
8177
L2318
5213

+~0R4 -2319 -.041
-1.5668 4179 -.051
~178.1323 <U21§ =071
178,781 32114 . 104
—~.874 -4180 » 255

. 8568 - 2320 - 2635

by ignoring mode six and removing coordinate x, is:

.3224 1.921 2318
.2339 -174.508 -4178
L2324 176.454 -4179
.5214 ~1.539 L2321
4178 177.661 L9214

The pseudo-mass matrix derived according to (3-1) from

this incomplete set is:

parts)

2448
~4.0410
4.0290
~3.2271
1.7348

L0834 |-4.
-.2314] 8.
LAZBA-5,
-.42801 4.
21072,

0410
0290
0072
0076
<294

178.808
179.608
-. 221

. 742
-17%9,392

-.2314
. 4284
-.6736
. G465
-.3261

.2317
L4182
L4177
L2318

52138

4.0280
-5.0072
5.9734
~-3.89754
Z,213t

-1.5686 4179 -.051
-179.133 5211 -.071
178.791 5211 —-.104
-.974 -4180 . 235
.856 L2320 eicl

4284 ~3.2271 -.4290

-.G736{ 4.0076

-4181 -179.581
5213 -172.596

.2318
«2322
9209
4178

.5213
L2319

ke b
L2322

5208
LA178B

(expressed by real and imaginary

1.78458

.B4G5|-2.22894

9176 |~3.89754 -.8418| 2.2131

-.8418 | 4,1733

.4348 |~1.75684 ~.3958

.7599|-1.7684

1.8847

179.774
1.107
~.501
-.386

-179.686
179.774
1.107
~.501¢

~. 386

2117
-.3261
-4348
~,3958
L2052
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It is clear that no physical meaning can be attributed
to this complex 'mass' matrix and that there is no
resemblance between this matrix and the original (complete)
physical mass matrix.

For comparison purposes with theoretical studies the
(real) proportional normal modes are needed. Experimental
evidence (see chapters 5 and 7) suggests, however, that, if
properly measured and analysed, typical lightly-damped
systems do not exhibit high levels of complexity, We shall
examine therefore, the relationship between the proportional
normal modes and the complex normal modes to find how big is
the difference between them and how sensitive is this
difference to changes in the system's parameters. A
theoretical and numerical study of a simple two degree of
freedom system will enable us to draw some general
conclusions regarding a multi-degree of freedom system and a
numerical study of such a system will demonstrate these more
general results.

As a first step in this study it was found necessary to
define two new useful parameters: the 'nonproportionality

factor' and the 'generalized loss factor'.

3.1.1 NONPROPORTIONALITY FACTOR

It is straightforward to decide whether a system is
proportionally-damped or not by examining the relationship

between the system's matrices. However, once we realize that
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the system is not proportionally-damped, a parameter which
expresses how nonproportional the system is may be defined
as follows:

According to the general condition set by Caughey
(2-38), it is sufficient for the damping matrix [H] to be
proportional to either the stiffness matrix [K] or the mass
matrix [M] so that the system will possess(real) propor-
tional mode shapes.

We will restrict, therefore, our check of the degree of
the nonproportionality of the system to the relationship
between the stiffness matrix [K] and the damping matrix [H].

Let us denote each element in [H] by hi and each

J
element in [K] by kij and plot hij VS, kij (Fig. 3-4). A
straight line, hyy, is fitted through these points so that

the sum of the squares of the deviations from this line is

minimized.

Fig.3~4: Stiffness elements vs. damping elements
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The equation of this line is:
hgy=ap+aqk (3-6)
If the standard error of the fitted line is defined as:
‘T‘ VT"
2 4;‘4%J By g~hgy (kg )]

517 ¢ (3=7)
n

and the standard deviation from the average h is

=
=

2_T=1 =i i -
Sh S (3-8)
n
where _noon
211‘?’
h. .
E= i=1 =1 13 (3_9)
ne
then the nonproportionality factor, Jp s is defined by,
S 2
Jysl- <831) (8£3,,<1) (3-19)
h

For a proportionally-damped system where

[H] =a [K] (3-11)
then
hijzakij (3-12)
and
hsl(kij)=ﬁkij, {3-13)
therefore
2 _ _ -
Ssl-ﬂ and Jn—l (3-14)

For a proprtionally-damped system, J_=1, and as the

n

nonproportionality of the system is increased (by

changing one parameter in the damping matrix, for example)
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Jn gets smaller and smaller.
For a given nonproportional system where

[H] #a[K] (3-15)
we may calculate a certain nonproportionality factor Jn- If
the damping matrix [H] is changed to [Hq] by multiplying it
by a constant &,

[Hy)=4[H] (3-16)
then the standard error Eél and the standard deviation §B

are,

5 =5 s% (3-18)

so that qﬂ maintains its previous value. We see that as long
as the same form of nonproportionality is kept, qn is
independent of the actual values of damping or stiffness

present in the system.

3.1.2 THE GENERALIZED LOSS FACTOR

Because the nonproportionality factor is independent of
" the amount of damping present in the system, an additional
parameter, #, which describes the overall magnitude of the

damping is defined by
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goli L (3-19)

and is referred to as the 'generalized loss factor' of the
system.

It has been shown (par.2.2.1) that the diagonal matrix
of the eigenvalues, [‘l§~J, can be derived from the diagonal

matrices of the modal masses and modal stiffnesses

2] =R (=R (3-20)
or using expressions (2-27) and (2-21)
~a1=w1 T o e e T (ke iR Cel) (3-21)
or
2 <1
(~25-1=1¥] (D] [¥] (3-22)
where
[D] =M1 ([K]+i[H]) (3-23)

It can be shown that for any two matrices [A] and [B]

the traces of the products [A][B] and [B][A] are equal,

namely
tr([A][Bl)=tr([B][A]) (3-24)
Using property (3-24}, we may write
tr(([w]'1 D) [¥])=tr ({[¥] ['4’14) [D])y=tr([D]) (3-25)
and because
n
: 2
tr([D])= ) A (3-26)
or
1 S
e (ol (K145 = ) (w2+inin ) (3-27)

r=t
from which then
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n

Z&u2=tr([M]4 (K]) (3-28)
Fz1 r

n
S muo=tr (1417 1a]) (3-29)
ra1

The generalized loss factor, 7, may be calculated,
therefore, from

tr (M [H])

= (3-30)

tr({M] TV[K])
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3.2 COMPLEX NORMAL MODES OF A TWO-DEGREE. -QF-FREEDOM-SYSTEM

Consider a general hysteretically-damped two-degree - of-
freedom system (Fig. 3~5). Initially, the system is propor-
tionally-damped thus having (real) proportional normal
modes. In order to establish a relationship between the
proportional normal modes and the {complex) normal modes, a
nonproportional damping element, denoted by u, is added to

the left hand damper ak1.

X
14 X2
Ky ke kg
m1 mz
S S .- S R T .

Fig. 3-5: General two-degree -of-freedom system

We may assume, without loss of generality, that
m1=m2=l (3-31)
and then the equation of motion for the system may be

written as:

[l ﬂ][i1
e +
g 1 X o

k. +k, -k kotkota -k, 1 |x
[ 1+ 2§]+ia[ 1tk o 2 | ikl B
-k > k2+k -k2 k2+k X2
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or using a shorter notation

1l @ ac a+u c X4
+ [ +ia [ =0 {(3-33)
g1 c b ¢ b Xo

The characteristic equation of the system is:

X4
X0

[a(l+ia)+iau-ﬁ c(l+ian) ]
=0 {(3-34)
¢(l+ia) b(l+ia)-A
If we denote
A=a+b (3-35)
D=ab—c2 (3-36)
then the quadratic characteristic equation is
ﬂ?—BA+C=G (3-37)
where
B=A(l+ia)+iau (3-38)
C=D(l+ia)2+iaﬂb(l+ia) {3-39)

The eigenvalues, Ans are found by solving egquation

(3-37) i.e

/ 7 o0
A(l+ia)+iau:t\XA2—4D)(l+ia)2+2iap(a~b)(lfia)-a #

A =

r

(3-49)
2

In order to derive the eigenvectors {x},., the following

homogeneous set of linear equations is to be solved

a{l+ia)+iay—lr c(l+ia) ]

X4
=g (3-41)

c(l+ia) b(l+ia)—lr X5
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From this set it is possible to derive only the ratio of

the elements in each eigenvector. We may assume, therefore,

that
x2=l (3-42)
and then
Ar-b(l+ia)
Xq= {(3-43)
c(l+ia)
or

WE(1+17,) -b(1+ia)
X 4= (3-44)
c(1+ia)

The calculation of the complex number x4 may be

described by a vector diagram (Fig. 3-6) in which the angles

are
. =1 = _. =1 - =1
a=tg ‘o ; Tr=tg M. H Po=tg P (3-45)
and
. 2 . _ . _
| s(l+1pr)—wr(1+1nr) b(l+ia) (3-46)
so that
s(l+ip.)
x1=~____-_£L- (3-47)
c{l+ia)

Examination of the vector diagram can give us some clues
as to the 'complexity' of Xy (the 'complexity' is measured
by the angle ér—&; the larger [EP—EI, the more complex is
the normal mode shape).

For a proportionally-damped system (#=48)

n,=a

and therefore



MG, |

REAL

Fig, %~6: Two degree of freedom system - vector diagram for

calculation of the mode shape for close modes

"OL"’
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and then the phase angle of Xqr ér—&, is zero and the mode
shape is real. Once the system becomes nonproportional
(#>8), these simple relationships no longer apply and x,
becomes complex.

When the two vectors b and wi(whose resultant is s),

are of the same order of magnitude i.e
2 1 1a
lwr—bl:ﬂ (3-48)

the phase angle of vector s, £#

ot is very sensitive to any

small difference between & and ﬁr and is

o 7r+(5¢—77r) o
P —X (a#7,) (3-49)
2
and the phase of X4 is
. n—(§+ﬁr) o
PR (@+7,) (3~58)
2

From equation (3-40) we can derive the eigenvalues for

the proportional system (#=8) i.e

a+b:t\ka~b)2+4c2

A= > (1+ia) (3-51)

It is clearly seen that fof az=b and c¢<<a
Ayza(l+ia)=b(l+ia) (3-52)
The physical meaning of this is that the stiffness k2
which couples the tﬁﬁ masses is relatively small and each of
them behaves, therefore, as a one-degree-of-freedom system
with very close natural frequencies.
When this system is made nonproportional, the
eigenvalues are
iau

.11; ]L2ga(l+ia:)+—-§— (3-53)
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so that
PN
1=¢02=a:b (3"54)

From eguation (3-46) it is clear that

P> (3-55)

from which we may conclude that the two elements in the
eigenvector {x}r are of the same order of magnitude but with
a relatively large phase difference (Fig. 3-6).

If the stiffness coupling element kp is increased we get

a whole range of cases for which

| wimbl 40 (3-56)

For these cases, £, is less sensitive to the addition of
nonproportional damping elements and as ko is increased the
spectral distance between the natural fregquencies is
increased (F;g. 3-7) and

&—ﬁr — @ (3=-57)

However, 1f the nonproportionality factor a is
multiplied by a constant then it is clear from equation
{3-53) that the loss factor is multiplied by the same value
and the ‘'complexity' of the system is, therefore,
approximately multiplied by the same constant. We may say,
therefore, that the 'complexity' of the system is in direct
proportion to the overall level of damping {(indicated by the
generalized loss factor). On the other hand, the real part

of each eigenvalue, which describes the natural frequency,

is hardly affected by changes in the damping of the system.

These results can be illustrated by numerical examples

using a system with the following parameters:



IMG.

Fig.3-T7: Two degrec of freedom - vector diagram for calculation

of the mode shape for separate modes

..gj_.—
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w
k,=3-16% N/m ; 1<2=1ca3 N/m i ks=3.05(N/m ; a=.g1

This is a case where the coupling stiffness between the
masses is relatively small and the natural frequencies of
the two normal modes are, therefore, very close (small
spectral distance).

The eigenproblem for this system was solved for
different values of an added nonproportional damping
element, u, and the results are summarized in Table 3-la.

Next, the coupling stiffness element was increased to

k2=7-lﬂ3 N/m
so that the spectral distance between the natural
frequencies was increased. Table 3-1b summarizes the results
of this eigenproblem as a function of #/a (a=k1+k2).

A graphical comparison of these two cases is given in
Fig. 3-8 from which it is clear that:

(i) As the coupling stiffness is increased, the
'‘complexity' of the normal mode shapes becomes less
sensitive to nonproportional damping.

(ii) The natural frequencies are insensitiwe to changes
in the damping matrix but are sensitive to changes in the
stiffness matrix.

(iii) The moduli of the normal mode shapes are changed
as the system becomes more and more nonproportional but this
change is relatively small for large values of nonpropor-
tionality.

(iv) The nonproportionality factor of a system is not by

itself a sufficient indication as to the 'complexity' of the
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mode shapes of that system as the spectral distance also has
a big influence on the results.

These results relate to a simple system for which the
addition of nonproportional damping was confined to one
element. Nevertheless, the results obtained are general (for
any two degrees of freedom system) and remain the same for
any other form of nonproportionality (although the algebraic
expressions involved become far more complicated).

In the following paragraphs they are extended to the

deneral multi-degree of freedom system.

- - X
n wy T, w, 1, p-a -
Hz Hz deg

m[t
.-.':Si
G

0 .010 1.000 27,6790 .0100 33.4810 .0100 C.00C 1.037

2 .018 .T50 27.6820 L0203 33,4786 L0165 2,455 1,036

4| L0261 596 | 27.6908 | .0%05 | 33.4713% | ,0231 | 4.914 | 1.036

) .0342 .520 27.7055 .0407 33.4591 .02587 T.382 1,035

8 L0422 » 4T 27.7263 L0509 | 33.4419 L0362 9.864 1.035

- - - X4
—’.‘t* 1? Jn CU1 771 (.UE 7?2 p- [24 -—x—2
a Hz Hz deg
]
.C10 1.0 27.6670 010 28,5951 .01 c.0 1.280

.0196 676 27.6861 L0244 28,5766 L0170 16.885 | 1.291

.0292 .533 27.74T1 -0354 28.5174 0233 35.094 | 1,342

.0388 .470 27.8566 L0310 28.4104 .0271 55,801 1.517

Dl NMIO

.0484 436 27,9553 0726 28.3133 .0248 | 71.981 2,031

Table 3-1: Two degree cof freedom system - modal parameiters for

cloge modes (6.) and for separate modes (%)
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3.3 EIGENVALUES OF A NONPROPORTIONAL SYSTEM.

The complex eigenvalues of a damped system represent the
natural frequency and the modal loss factor of each normal
mode. It has been shown that for a proportionally-damped
system the natural frequencies are equal to those of an
undamped system and if [H]=a[K] then the modal loss factors
are all identical and equal to a.

In this paragraph we shall investigate the effect of
adding nonproportional damping elements to an otherwise
proportionally—~damped system on the derived eigenvalues (by

compariscn to those for the proportionally-damped system).

Definition of the prcblem:

Consider a proportionally-damped system described by:

[M]fx}+[K]I{x}+i[H] {x}=0 (3-58)
where
[H]=a[K] (3-59)
the eigenvalues of which are
I§_=m§(l+ia) (3-60)

Determine the eigenvalues of the modified system
described by
[M] {%}+[K]} {x}+i([H]+[H]) {x}=0 (3-61)

where [E] is symmetric and at least semi-positive definite.

This problem was investigated extensively for the most
general cases in connection with numerical algorithms used
for the solution of eigenvalue problems ([12].

These general studies were, however, restricted to small
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perturbations, but because the matrices involved in our
problem have some special features such as symmetry and at
least semi-positive definiteness, it is possible to 1lift this
restriction so that the magnitude of [H] is not limited. To
this end, some general theorems are modified for our
particular case and are given here without writing out the
complete proofs, although they can found in references

[14] , [37] and[ag].

Theorem 1:

If we denote the general complex eigenvalue of

(M7 ([R]1+1 ([HI+[E])) (3-62)
by
12=u +iv (3-63)
T r Tr

then the value of the real part, U, is bounded by the
maximum and minimum values of the real positive eigenvalues
of [M]4[K] which are the natural frequencies of the undamped
(or proportionally-damped) system. i.e
ﬁ<m%<ur<ﬁ§ {3-64)
The value of the imaginary part, v,, is bounded by the
non-negative eigenvalues of
(1™ ((HI+ (A (3-65)
If we denote the eigenvalues of (3-65) by Hr then

Og}ﬁinsvrgtmax (3-66)
The bounds of the complex eigenvalues can be
illustrated by a plot in the complex plane (Fig. 3-9). The

eigenvalues lie within the hatched area which is limited by

the extreme natural frequencies of the undamped system, by
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. . =2
VmaX and Rmin and by part of the areas with radii lAnl
and |I$l. The two corners A and B of the hatched area
represent the bounds of the modal loss facﬁor, nr,
B<tg(F,) $M,$ g (Py) (3-67)

When the system is proportionally-damped ([H]}=8), the
eigenvalues lie on the straight line AB which passes through

the origin (Fig. 3-18).

Theorem 2:

If the eigenvalues of {M]q[H] are w;a and the
eigenvalues of [qu[ﬁ] are ?r' then the eigenvalues }}, of
(17 ([H]+(H]) (3-68)
are the eigenvalues mia changed by an amount which lies
between the smallest and greatest of the eigenvalues fé i.e
VP o+orag ¥ Sotat? (3-69)
1 s s 38 n
Because [M] is symmetric and positive definite and [H]
is symmetric and at least semi-positive definite, then
Vr}ﬂ (3-78)
and so
14 wza 3-71
o 2% (3-71)
Figure 3-11 shows bounds for the complex eigenvalues in
relation to the proportional case (where they lie on the
straight line AB). The extreme points A and C of the hatched
area represent the bounds of the modal loss factor. i.e

tg™ lagn <ty (3-72)

Any nonproportional system can be treated as a propor-

tional one with an added nonproportional damping matrix [H]
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Fig. 3-11: Eigenvalues bounds for a nonproportionally
damped system

which is at least semi-positive definite.

We may say, therefore, that the lowest bound of the loss

factors is:

h. .
A) -
n_. =( (k.. # 0) (3-73)
min kij nin ij
and the upper bound
(A‘Lhi ) ( )
1 =/- k..#0 (3~-74)
max kij max 1J

where kij and hi. are elements in the respective matrices

J
[K] and [H].

The bounds of the iImaginary parts of the eigenvalues

change as morenonproportional damping is introduced into the
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system. The bounds of the real parts, which represent the
natural frequencies, are - according to theorem 1 - limited
by the extreme natural frequencies of the undamped system
and remain unchanged because [M] and [K] are unchanged,
Nevertheless, the actual values of the natural freguencies
within this range are changed slightly although it has been
shown in the case of the two-degree -of-freedom system, this
change is negligible in comparison with the change of the

imaginary part of the eigenvalue.
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3.4 COMPLEX EIGENVECTORS OF A MULTI-DEGREE OF FREEDOM

SYSTEM

The relationship between the system matrices and the
eigenvalues and eigenvectors of a multi-degree of freedom
system are very complicated. We know that once the system is
nonproportionally-damped, the eigenvectors become complex
and that the level of complexity is dependent upon the
particular numerical values of the elements in the system
matrices and their relative magnitudes.

The main factor - the nonproportionality of the damping
- cannot be defined in an explicit manner and it is,
therefore, impossible to deduce a general theoretical
relationship between the complexity of the normal mode
shapes and the system matrices., However, we may generalize
the theoretical results obtained for the two degrees of
freedom system, combine them with the theoretical results
derived for the bounds of the eigenvalues of a multi-degree
of freedom system and draw some general conclusions
regarding the complexity of the normal modes of a nonpropor-—
tional multi~-degree of freedom system.

Although it is not possible to support these conclusions
with a rigorous theoretical proof, they can be demonstrated

by numerical studies and supported by experimental results,

A numerical study was carried out on a six degree of
freedom system (Fig. 3-12) and three different configur-

ations were examined.
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(i) The initial parameters of the proportional system

were:

m; =1Kg

k1=4'lﬂ N/m

k2=2-lﬂ N/m

k3=5'lﬂ N/m

(C IR VR SN

k4=l'lﬁ N/m

5N/m

4

k5=4.9‘lﬂ
k6=2.l‘lﬂ

k7=4.95-l@4N/m

N/m

-

ks kg kg
—— 23—

h

hy hy 5

h1=4GﬁN/m
h2=ZGGN/m
h3=5ﬂN/m

h

4
h

=10N/m
3=49N/m
h6=2lﬂ N/m

h7=405N/m

Fig.3-12: Six degree of freedom damped system

This system was tuned by low stiffness coupling between

the masses mz and my and by a slight asymmetry of the other

stiffness elements so that it possessed close natural

frequencies.

It was expected,

therefore,

that the addition

of small nonproportional damping elements anywhere in the

system should produce very complex normal modes.

The eigenvalues and eigenvectors were computed for the

proportional case and next, the value of of the damper hy
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was increased by adding to it more damping #. The eigen-
problem was then solved for various values of #/h1 and the
results for the first four modes are summarized in

Table 3-2.

The natural frequencies of the first and second modes
are well-separated but those of the third and forth modes
are very close. It is clear that as the system is made
increasingly nonproportional, the two close mode shapes
become more and more complex, whereas the complexity of the
first two mode shapes is, and remains, very small,

Examination of the moduli of the mode shapes reveals a
correlation between the complexity of the mode shape and the
magnitude of the change in the moduli compared with the
proportional case. The moduli of the first two mode shapes
hardly change but the moduli of some elements in the two
close medes change by a factor of almost two times. The
natural frequencies of all these modes are hardly affected

at all.

{(ii) Next, the stiffness coupling between 95 and m4 was
increased in order to separate the close modes. The
stiffness k4 and damping h4 were increased by a factor of
ten to

k4=104N/m : h4=lﬂﬂN/m

The value of the damper h, was varied in the same manner

as for the previous case with the results as summarized in

Table 3-3.

We see that now the natural frequencies of all modes are
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1
«w=3,139 211,303 =21.125% =21,295 ar=9,139 =18.935 =21.137 =26,028
12,0100 =,0100 =,0100 =.0100 1 =.0100 =,0100 =,0100 =,0100
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=,0196 =,0114 =,0154 = 0117 =,0116 =,0141 =,013%4 =,0106
.0804 -1,308 *| 0931 ~. 994 JI%93 4,717 .2053 -140.7771 L0802 ~-1.540 | 2487 ~1.730 « 2751 J134 ] 1427 - 235
. a 2279 ~.50% | .2560  ~.147 | .7813  -5.745 | .4323 -1%9.73} .838 2 |-xz 358 ) .elé2 -.03 f 3827 234 -2373 L.114
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140 11,30 21.152 21,272
=3.14 2 0 504 = 5 = '; =9,140 =18,940 =21,137 =26,028
L0131 12% =, (21 012
=.013 =012% 211 = =,0151 =,0181 =,0169 =,0112
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] .383 | (4591 -.389 | 1998 -~128.38s | .3403  174.749 e 004 | .2840 178,450 | .2281 -174.863 | .4489 -,212 0
L2170 428 | L2474 =320 | L4143 23,493 | .@320 -4.833 L2173 .128 | .s780 -178.091 | .4213 -1.610 | .2349 179,400 a
.0283 .438 | .o921 -.305 | .198% 43,7643 | .4100 -6.772 10794 .13 | 2544 -177.95L | .297% -1.452 | 1419 179.453 i
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0147 0;41 0202 0122 =9, 141 =18,946 =21,136 =26.,028
=, -, =. =,
=,0147 =,0222 =,0203% =,0118
L0802 =3.917 | .0930 177.015 | .4155 -4,532 | 1420 =-11%,.932 10801 =3.477. |..2884 ~3.203 | .27s2 -38a ] .1427 ~.708
2274 ~1.510 | ,25%9 179.493 | .880% “1.747 | .2999% -112.730 594 6 2273 -1.070 |[-.6185  -2.422 | .%84t 3.383 | .2380 3.333
.602 & L8477 =414 | 4478 -179.183 | .3743 175.040 | .140% 4%.248 8847 028 | L2437 4,308 | 2430 174.770 | .433% -179.991
5856 573 6509 -, 582 J119T 103,799 L3472 178.%91 v S56S 125 .2860 177.94% | .2290 -175.309 | .4488 -.3t¢
L2171 639 | L2478 - 477 } 3043 53.530 | .9794 -2.780 (2174 91 | 8798 -177.143 | Ls213 -2.422 | 2349 179,399
0783 655 0921 - 487 VT £3.97% LAT%Q -2,727 0784 204 2872 ~174.93% 2975 ~2.184 1419 179.480
=9,142 =11.305 =21.180 =21,255 9.142 18.954 21,136 26.02
= = - =
=,0162 =,0155 =.03%68 =.0117 . . . -023
=.,0162 =,0261 =,0238 =.0124
.0800 -5.217 | 0929 174,022 | .at00 -3.435 L1048 -107.0%5& +Q799 -4.431 3111 ~4.933 » 2771 L5021 .1427 .45
,2274  -2,009 | .25%¢ 179,323 | .2494 048 | 2217 -102.7s% 537 8 2271 =1.423 | (5168 ~3.245 | .5888 4.492 1 2384 4,435
47 ] LEETS -.5%1 | 4804 -178.915 | .3707 174.%28 | .1047 50.581 Yy ,035 | L2454 5.498 | .243s 173.014 | .4%38 -179.988
L6660 761 | 4586 =775 | 0908 -20.708 | .2s09 179.94% Y] 146 | L2041 177.282 | .2303 -173.771| .4480 - 425
2172 B49 J2ATA -, 4327 L2259 72,070 LA489 -1,132 2174 +254 25817 ~=174.204 L4212 ~3.242 2349 179,199
<0784 <867 0920 -, 409 +1081 7E,.892 4179 ~1.091 L0754 274 v2582 -173.927 2974 -2.924 1419 129.308

Table 3-2: Modes shapes (modulus and phase Table 3-3: Mode shapes (modulud and phase in degrees)

for case (ii) (separate modes)

in degrees)

for case (i) (close modes)
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the damping has a very small effect,

not only on the natural

frequencies, but also on the complexity of the mode shapes.

(iii) The aim of the third study was to assess the

influence of the overall level of damping on the complexity

of the modes of a nonproportional system., To this end, a

proportional system with well-separated modes was chosen,

with the following parameters;

mi=lKg

I

A

k:i==].g DL/IR

The natural frequencies and

proportional case are:

G2.0576 57.3832
« 2578 000 +A5565 190,000
+ 4545 180.000 5187 000
+3307 000 <1327 130.000
.5i7  180.000 +3478 180.000
234678 + 000 LO507 + 000

+1327 180,000 £ 578

180.000

49.7732

5507
1327
5187
+ 2578
+ 4545
+3478

180,000
+ 000
+ 000
140.000
180.000
000

»
I

Ili=].EBDL/m

(i=1,6)

normal mode shapes for the

39.5938

5187
JAs78
22578
15507
1327
A543

000
« 000
180,000
194 .,00¢
18440,000
000

T 14,1664

1327
2570
3478
+ASAS
9187
5507

2000

e Q00

« 000
+ 000
000
+ 000

Next, the damping distributiuon in the system was

27.6233

3678
« 3507
A5G4S
A7
12578
5107

changed by increasing gradually the damper hg and reducing

the magnitudes ocf other dampers without changing the overall
level of damping (the generalized loss factor was kept

constant while the nonproporticnality of the system was

increased) .

In this way,
tional case of uniform distribution to the maximum

nonproportional case whereby all the damping was

the damping was changed from the propor-

concentrated at one point (h6). This process was repeated

+ 000
« 000
+ 000
» 00

180,000
189,000
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for four different constant levels of generalized loss
factor (%i=.81 + .88).

To demonstrate the results of this process, we choose
one typical normal mode (mode 4) and one element in this
mode (No. 3). The changes, relative to the proportional
normal mode, in the natural frequency, modulus and phase of
( @ ) as a function of the nonproportionality factor, J

43 n’

and the generalized loss factor, 7, are plotted in Figures
3-13 &+ 3-15,

The first indication from these plots is that the
pattern of the change in each plot for different levels of
generalized loss factor 1is very similar and we may conclude
that for a given nonproportionality the ievel of complexity,
the change in the modulus of the mode shape and the change
cf the natural frequency are in direct proportion to the
level of damping present in the system. The higher is the
value of the generalized loss factor, the bigger is the
change in each of these parameters. |

As the nonproportionality of the system is increased the
mode shape becomes more and mﬁre complex and we see that the
change of the modulus is in direct proportion to the
complexity of the mode; the larger is the phase deviation of
the mode from the proportional one, the larger is the change
in the modulus relative to the modulus of the proportional

mode., The same conclusions apply for the natural frequency,
although the actual numerical change here is a very small
percentage and for levels of 7 smaller then .04 it is

negligible.
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3.5 CONCLUSIONS.

It is appropriate here to draw some general conclusions
regarding the (complex) normal modes of a nonproportionally
damped system.

(i) Once a proportionally-damped system is changed into
a nonproportionally.damped one, the real normal mode shapes
change into complex normal mode shapes. The complexity of
these modes depends on the level of the nonproportionality
of the damping; the larger is the value of the nonpropor-
tionality factor, the more complex the mode shapes become.
However, the complexity is also very sensitive to the
closeness of the natural frequencies of neighbouring modes;
the closer they are, the more complex the mode shapes are
for the same level of nonproportionality.

{(ii) The more complex the normal mode shape becomes, the
bigger is the change in its modulus relative to the
corresponding modulus derived for the proportionally damped
system.

(iii) The natural frequencies are relatively insensitive
to changes in the damping, but they are very sensitive to
changes in the stiffness of the system.

(iv) The sensitivity of the normal mode shapes to-
changes in the damping is increased as the generalized loss

factor of the system is increased.

The practical meaning of these conclusions is that for

lightly-damped systems with well-separated natural
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frequencies the moduli of the experimentally derived mode
shapes can be regarded as a very good approximation to the
undamped mode shapes of the system. However, in any
situation where two modes are very close, they are more
prone to be complex and, therefore, less confidence can be
put in this approximation. In any case, practically it is
usually more difficult to identify the modal parameters of
close modes [39] and the identified normal mode shapes are
expected to be less accurate t+han those for the
well-separated modes.

As a rule of thumb, we may say that for values of modal
loss factors which are smaller then .83 and mode shape phase
angles smaller then 38°, the moduli of experimentally-
determined complex normal mode shapes can be used as the
undamped mode shapes in any further calculatién.

The experimentally-derived natural fregquencies can be
used in any case, regardless of the level of damping or
complexity of the mode shapes, as a very close approximation
toe the undamped natural frequencies of the system,

For a given system, addition to or change in the
distribution of damping has no significant influence on the
natural frequencies. However, addition or cancentration of
damping in a few points in the system reduces the level of
response and makes the mode shapes more complex. On the
other hand, reduction in the level of damping reduces the
level of complexity and the response gets closer to the

response of a proportionally-damped system.
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4. MODAL IDENTIFICATION METHODS

4.1 INTRODUCTION

In a recent survey of modal vibration test and analysis
techniques [#1] conducted in the U.S.A, it was found that the
single—point sine and the multi-peoint sine techniques are
the most widely used (out of 16 different techniques) and
that they provide the most accurate data and the largest
number of valid modes

These two methods are well-established and have been used
by investigators for quite a long time now, 0Of these
two, the single-point sine is the simplest from the
exXperimental point of view: the test piece is excited at a
single point by a sine input force and the response is
measured at various points on it. From these data the modal
parameters may be derived using either the well known
Kennedy and Pancu method [42] or a straight-forward curve
fitting algorithm.

The multi-point sine method is theoretically very
simple: by exciting the structure at several points with
properly tuned force inputs, it can be made to vibrate in a
mode which is identical to any one of its proportional
normal modes. Experimentally, however, this method is more
complicated because in order to find the correct force
distribution a very sophisticated experimental procedure is
needed.

There are thus two marked differences between the two
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methods:

(i) The single-point excitation method requires
relatively simple experimentai equipment but needs a
comprehensive analysis facility in order to derive
satisfactory results. On the other hand, the multi-point
excitation method requires complicated hardware but once the
structure is forced to vibrate in a proporticnal forced
mode, its mode shape and natural frequency are readily
available with little further analysis.

(ii) The modal parameters derived by each of these two
methods are not the same. For the generally-damped system,
the single—-point method derives the properties of the normal
modes and the multi-point method the properties the system
would possess if the damping were removed (undamped system).
Only for the particular case where the system is
proportionally damped do both methods derive the same modal
parameters.

Each of these methods has its advantages and drawbacks
and the decision as to which of them to use is dependent on
the particular circumstances . However, probably the best
choice (where money is no object) is to use both of them,
like the MOSKAB system {a3].

For the experimental stages of this research, both
techniques have been used;

(i) The ¢ Jle~point method using an automated mobility
measuring routine MOB3 [44 and the two analysis programs

POLARS [45] {(which derives the modal parametrs from analysis
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of the Nyquist plots) and SIM2 [46] (which derives them by
simple curve fitting).

(ii) The multi-point excitation method using the MAMA
system which was loaned to the Dynamics Section by the Royal
Aircraft Establishment, Farnborough.

In this chapter these methods are described in some
detail and a numerical study demonstrates the differences
between the two identification methods used to analyse the

data acquired by the single-point excitation method.
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4.2 DERIVATION OF MODAL PARAMETERS FROM POLAR PLOTS

The identification of the system's modal parameters
using a stepped-sine single excitation is based on equation

(2-63} s namely

s
= rAjk - ik
*™ 5= Oy, (4-1)
= wr(l-ﬁr+1nr) T=1 wr
where
w
ﬁr—;; (4-2)
First, consider one element, 38, in the above summation
2. .
1 (1=B5) -1ing
Og= R N B (4-3)
l—ﬁs+1nS (1—bS) +WS
It can be shown that
) T2 1 2 |
(Re (84)) +(Img(88)+§;;) -(55;) (4-4)

When plotted in the complex plane this is the equation

of a circle whose center is displaced downwards on the
imaginary axis by a distance of E%— and whose diameter DS

g
is: (Fig. 4-1a)

D (4-5)

1
s US

At the point where the circle intersects the imaginary

A,
axis Bg=1. Multiplying &, by the complex number ﬁ—%k causes

oW

A, S
the circle to scale its diameter by lE_%El and to rotate

w
S

about the origin by an angle of t% equal to the phase of

SAjk; o is referred to as ‘the modal phase angle'

(Fig. 4-1b)
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Fig.4-1: One degree of freedom - construction of the modal

circle

4.2.1 NATURAL FREQUENCY

The phase angle, ¢ of 58 is
S

- 1
¢_=tg 1( 2 ) (4-6)
8 1—ﬁ2
8
Consider now the rate of change of 9, as function of ﬁg,

do 7
S= S (4-7)

2

2- 2,2
apy (1-p5)“+n%

This quantity reaches a maximum (as a function of ﬁs) when

d ,de
——(—g) =0 (4-8)
ap \dp’ |
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i.e when

s

2
da /3o An_p (po-1)
( ) LI v (4-9)
dﬁS dBS S)

2.7
((1=52) +7m
This occurs when
B=1 or when w=w : (4-19)

Inserting into (4-7) we get:

(dms) 1 (dcos 1

- or =T-—- (4—'11)
dﬁz Y dwz w7
sl%=1 8 w=u% g's

The meaning of this result is that at the point where
the rate of change of q%, as function of wz, reaches a
maximum, as function of w, the frequency is equal to the

natural frequency, w of this mode.

SI

Consider now the rate of change of ¢y as a function of 1%

do 25 "M
5_ 2828 5 (4-12)
dﬁs (1-58) + 4

The maximum rate of change of this gquantity as a

function of ﬁs occurs when

d (d@s)
—_ =0 (4-13)
dﬁs dﬁs

i.e when
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d ,de_. 3&4—2ﬁ2—(1+n2)
( s)= S S 5° g (4-14)
2.2, ,2:2
dpgd g ((1-85) “+19)

By solving the quadratic equaticon in ﬁg we get
1
1+ \/4+3n§ <
B= | ————— (4-15)
3
(only positive values of ﬁs are considered)
For values of US which are smaller than .l; the values
of ﬁs at which the rate of change of 0y is maximum, are
i%(l.ﬁ@lz (4-16)

We may write, therefore

do. 2 . do 2
( S) = or (———ﬂ) S (4-17)
dﬂ) _ T’s dw _ n w

3 BS—“i W= 8 8

The error incurredby this approximation is .@6% for
WS=.1 and gets smaller as 1, gets smaller.

The practical meaning of this result is that the maximum
rate, as a function of frequency , at which the locus
sweeps around the periphery of the circle is obtained when

Wi
=]

4.2.2 LOSS FACTOR

The modal loss factor, ns' can be calculated from

equation (4-17)
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de (4-18)
wé( )
=)
or by the more general expression derived from the circle

geometry (Fig. 4-2).[24)

g
tg%¢1=*-"2

A —w

K

tglo =
92992 T=w
s

from which we get

2 2

cu2— w1 1

nS-— 2 ’ 1 1
ws tq —2—902+tg§§01

(4-19)

where w4 and w, are two points on the circle (w1\ws and
ab)u%) and o, and 9 are the corresponding angles measured
from the diameter that passes through the natural frequency.
(Throughout this work the first of these two loss factors
will be referred to as the K loss factor and the latter as

the M loss factor)

Img

Pig, 4-2: Derivation of the loss factor
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4.2.3 MODAL CONSTANT

The modulus of the complex modal constant sAjk is

calculated from the diameter of the circle Dy the loss

factor Mg and the natural frequency w

2 .
‘sAjk|=Dswsns (4-20)}

3

The phase of the modal constant, O r is derived by
observing ‘the amount of rotation of the circle about the
origin, this being determined by the location of the natural

frequency.

B

Fig., 4-%: Effect of neighbouring modes on the modal circle

Now, if we assume that the value of each term in the
summation (4-1) for r#s is unchanged as the frequency is
changed in the vicinity of Wer then the whole qircle is
bodily displaced from the origin without affecting its shape
(Fig. 4-3) and the modal parameters derived by examining the

geometry of the circle are, therefore, unaffected.

The final plot, made of several modes, is illustrated in
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Fig. 4-4 and shows how the response around each resonance
approximates to that of a single mode, thus allowing the

individual identification of each mode.

Me

— T~

1r§

Fig. 4~4: Typical nulti-degree of freedom polar plot

:+2.4 RESIDUAL TERMS

In practice, only a limited number of a structure's
modes will be measured in a finite range of frequencies
('the range of interest'), the other modés which lie out of
this range at lower and higher frequencies being unobserved.
The assumption that the contribution to the response in the
neighbourhocod of a certain mode from all modes except the

one under analysis is constant, may be extended to consider
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the contribution of groups of modes, which are ocutside the

range of interest, to the total response.

Expression {(4-1) may be written as:

3k Zr gk Zg_g_l_c T Jk (4-

=i+ fah+l ‘U
Where the range of interest includes the modes r=1+1

h. In this case, we may write for the summation of modes

r=1+1
w <L w (4-
r
and therefore
. A, L - A, R
Sy ety
— w2 T wl Wl
r
For the summation of modes r=h+1 + n we may write
UJ>>(U ' (4-
T
and therefore
D
rehe rh+11‘“ W

The constants Rm and R, are referred to as 'mass
residual’' and 'stiffness residual' respectively.

If we denote the total response calculated after
identifying the modal parameters of all the modes in the
range of interest by t%(w) and the measured response due
all the modes of the system by am‘w), then

R

_ m
a’m(w) = afc(w) +'-—2+R (4-

k

or
R
m
;—2+Rk {4

In order to derive Rm'and Rk’ the responses at two

a‘m( w) - Ofc(w) =

21)

22)

23)

24)

25)

to

26)

-27)
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frequency points, at least, are needed (w1 and “2)' thus

Jo o

o (w )-('(w1) 2 Ry
1 (4-28)
o (wz) afc(wz) -?'FRK
or, using matrix notation 2
-
a (w,)—a (w,) w 1R
m' 1 ct 171 2 12 m (4-29)
aplwpd=a lwd) (@07 1]|Ry
from which
-2 -1
R @ 1 @ (wy) = (wy}
m|_ 12 m** cv1 (4-39)
Rk w2 1 a:m(wg) -, (wg)
or
(R,,, =Ll {da}, - (4-31)

Theoretically, any two responses are sufficient for the
derivation of {R}. However,as these responses are obtained
experimentally, they contain errors which can affect
seriously the values of {R} obtained by this simple method.

One way to overcome this problem is to increase the
number of points (p for example) used for ;his process which
is effectively a least-squares error estimation of the
vector {R}.

Equation (4-29) is then

(2} j=(01  o(R}, (4-32)
In order to solve this system for {R} the pseudo-inverse
approach is employed, Both sides of equation (4-32) are

multiplied by [Q]g , thus,

T =T -
alg, jtaal g=to17, fal (R} (4-33)
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or
{A}2x1={§]2,2{R}2x1 (4-34)
from which
—rA1 =] ~
where
_ T
taky =l plaaly (4-36)
(B3], ,=[0] 5. [0 (4-37)
2x 2 2:p px2

It is then necessary to decide how many (and which)
response points should be used in this calculation. As this
is a statistical process, as many response points as
possible should be used but in practice, this principle
cannot be applied too literally.

Experience suggests that use of all available response
points is unsatisfactory as the results are distorted by the
numerically large data around the resonances. Conversely the
anti-resonance regions are considerably affected by the
residual terms and using only the anti-resonace points does
improve the derived results. However, the anti-resonance
response most often contain a high degree of error because
the measured response signal is very low and is affected by
the noise of the measuring system, and the derived results
are thus, still liable to be unsatisfactory.

Between these two extremes there is an optimum set of
response points which produces the best estimate of the

residual terms; a maximum receptance level is set and only
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those points below this level are included in the
calculation. In this way, the influence of the
near-resonance points can be reduced. If the results are
still unsatisfactory, this level can be reset and a new
estimate of {R} derived until satisfactory values are
achieved.

Fig., 4-5 illustrates an experimentally-measured mobility
curve together with two theoretically-derived curves; one of
which is obtained using the modal constants plus the
residual terms, while the other is generated omitting the
residual terms. The straight line AB is the constant
stiffness level which sets the maximum value of the points
included in the calculation of the residual terms,

(All through this thesis the dotted curve represents the
experimentally~-measured data where each dot is the measured
response at a certain frequency. The so0lid line represents

the theoretically-regenerated curve.)

4.2.5 COMPUTER ALGORITHM POLARS

Identification of the modal parameters of a single mode
consists of the following steps:

() Calculation of the diameter and coordinates of the
best fit circle through a number of experimentally-measured
points near a resonance.

(ii) Location of the point on the modal circle where the
angular spacing for equally-spaced frequency points is a

maximum, giving the natural frequency and the modal phase
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angle.

(iii) Calculation of the modal loss factor using either
of the two methods described in par. 4.2.2.

(iv) Determination of the modulus of the complex modal
constant from the diameter of the circle, the natural
frequency and the loss factor.

This process is repeated for all the modes in the range
of interest and once the modal parameters for all the modes
are identified, the residual terms are calculated.

The above procedure was implemented in a computer
algorithm (POLARS5) and is currently used in the Dynamics

Section [45,44] .

woRiLITY A
(TB)

-138.

30.00 - LOG FREG. (HZ) 500.00

Fig. 4=5: Curve-fitting measured data; (a) without residual

terms and (b) including residual terms
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4.3 DERIVATION OF THE MODAL PARAMETERS BY CURVE-FITTING

The basic assumption on which the previous modal
identification method is based is that over a small range of
frequencies near each resonance, the contribution to the
total response from all the other modes, except the one
under consideration, is constant. This assumption is
justified in the case of well separated modes, but when two
adjacent modes are very close it may lead to significant
errors and practically, the modes are insufficiently
separated to permit the fitting of a simple circle to one
node at a time.

For cases of this latter kind a different approach is
employed using a least squares error curve-fitting to the
complete measured response. The concept of analysing one
mode at a time is still kept, but instead of regarding the
contribution from other modes as constant, it is treated as
a function of the frequency and an iteration is made around
all the modes to be analysed.

The algorithm for this simultaneous mode curve-fitting
starts by making an initial guess of the modal parameters
and the minimization of the fit error is done separately for
each mode assuming at that time that the initial guess of
the modal parameters for the other modes is correct.

If we denote the measured response by ., and the
contribution of the s'th mode to the total response by @

Sl’
then,
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n

A
& (w)=a(w)- )  ——imdt (4-38)
rr;swr(l—ﬁr+1nr)
and if a, is its theoretical value, i.e
A
@ (w)= ML (4-39)

2 2. .

ws (1 ﬁs-l-l HS)

the algorithm seeks %o minimize the error E

E=;Ej(as—ash (4-49)
=1

By using a least squares error curve fitting process,
taking into account p points around the natural frequency
W the modal parameters for mode s which minimize
expression (4-40) are derived. This process is repeated for
the next mode but using the newly derived modal parameters

for mode s.
The minimization process is done using the algorithm

suggested by Gaukroger et.al [47] i.e

. 2
K - JE
*/ -Bkaﬂ (4-41)
a z k.
ki Fﬂaklgka
where ki is the parameter to be determined and akj are the

increments to be added to the initial estimate [46].

Because we do not take into account all the structure's
modes, but only a finite number, N, we must resort, in this
case, to the previous assumption and use the concept of
residual terms whiéh reflects the contribution of all the
modes outside the range of measurement to the total

response. Expression (4-38) takes, therefore, the form
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N
— A. R
—_ N, r ik m
T =a - /- + =+ (4-42)
s~ % ér:f“’i(l"ﬁi'*'i’?r) 7Ry
r£s

Before starting the process of curve fitting the best
estimate at that time for the residual terms is calculated,
using the initial guess for the modal parameters. Then,
these modal parameters are corrected mode by mode until
satisfactory values are achieved.

A computer program (SIM2) using this algorithm was
written and is currently used [44] in the Dynamics Section
when the modal parameters derived by POLARS are
unsatisfactory; these modal parameters are used as the
initial estimates required at the beginning of SIM2.

A similar approach to the modal identification is
employed by the computer program PAPA used at the RAE but

assuming a viscously damped model [47].
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4.4 NUMERICAL STUDY

It was expected that the modal parameters derived by the
curve-£fitting algorithm SIM2 would be more accurate then
those derived by the Nyquist plot analysis algorithm POLARS,
especially for cases of close modes,

In order to assess the respective capabilities of the
programs SIM2 and POLARS5, a comparative numerical study was
made by analysing data where two of the modes were well

separated and two were very close.

*

The synthesised data points were produced using the

modal parameters listed in Table 4-1.

mode ey a1, I*\!r 8,_,
np. (BEz) (1/kg) (deg)
1 77.20 0.007 6, 27E=4 -179.2
2 141,53 0.016 7.83E=3 7.9
3 145,5 0.014 3, 30E=3 1.0
4 182.6 0,016 0.0480 -10.0

Residual mass (1/Kg) = -0.016- 17,08E-1

Residual stiff.(m/N) = =3,45E-8 + 11,5E-8

Table 4-1: Modal parameters for synthesised data

A further assessment of the sensitivity of the
algorithms to random errors in the data was made when data
were generated with the same modal parameters but with the
introduction of random errors (4% and up to 8%)

The complete set of results is summarized in Table 4-2.
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mode raschance [req. loas factor modal constant phase
e, (Hz) % % Hikg | % (deg) | %
] P 77.'20 0. 0,0070 a. 6.302E-4 0.51 | ~179,21 .01
s 77.20 0. 0.007% 0, 6.270E-4 0. =-179.20 a.
’ P 141.3 0. 0,0156 2,5 7.324§~3 6.46 11.41 1.79
3 | 141.3 o, 0.0160 0. 7.B30E-3 0. 7.86 0.
3 P | 145.6 0.67 | 0,013%2 5,71 | 2.658E-3 | 19.45 =19.03 | 11,13 a
g 145.5 G, 0.0140 Q, 3.300E=-3 0. 1,00 0.
® 182.6 Q. 0,0160 0. 0.0479 0.2% -10,80 0.44
' <] 182.6 Q. 0.0160 0, G. 0480 0. =-10.00 0.
Residual Masa S1/Kg) Residual Stiffness (w/H)
Real % Ing. % Real % Img, %
P }0.0157 1.88 | -3.933E-4 44,45 | -3,409E-8 1,93 | 1.510E-8 5.68
5 |0.0160 o, =7.080E~-4 Q. =%, 450E=8 a. 1.590E=-8 Qa
mode resonance freq, loas factor modal constant phase
no. (Hz) % % 1/ Kg % (deg} %
P T7.20 0. 90,0068 1.71 5.955E~4 5.02 -179.06 0.08
! s 17,20 Q. 0.0069 0.07 €.118BE-4 2.42 =17%.20 [o N
P 141,2 c,08 | 0.0163 1,88 | 7.666E-3 2.09 20,53 T.4
2 3 |141.3 0. 0.0160 a. T.T23E=% 1.57 B.54 0,38
P [ 145.6 0.07 | 0.0124 11,43 2.73198-3 | 30.00 ~13.2% T.9 b
3 3 145.5 a, 0.0138 1.43 %.156E-3 3.15 0.54 0.24
P 182.7 0,05 § 0,0168 5.00 |0.0520 8,33 =-15.27 2.9
4 s 182.6 0. 0.01%9 0.63 | 0.0468 2.5 -10,26 0.14
Residual Masa {1/Kg) Residual Stiffnesa {(m/N)

Real % img. % F Real % Tmg. %
;0.0155 3.1% | -4.390E-4 | 38.00 | -3.587E-8 3.77  [1.743E-8 9.26
-0.0154 3.75 | ~6.615E-4 €.75 | -3.298E~-8 4.41 1.508E-8 5.16

mode rescnance freq. loss factor modal eonatant phase
no. {ne) % % 7Kg % {deg) %
3 77.12 0.1 0.0067 3.53 5. T488=4 12.63 =145.69 18.62
! 8 77.20 0. 0.0069 0.21 5.973E-4 4.74 | =178.48 0.02
Pl 141.3% 0. 0,0149 6,94 6,E62E=-3 14.92 5.684 1.12
2 s | t41.3 0. 0,038 1.25 | 7.482E-3 4.44 T.47 0.22
P | 145.6 0.03 | 0.0129 T.86 | 2.444F-3 { 25.94 =-12.88 7.1
PS5 | o Jo.otm| 15| 315053 | 4055 0.55 | 0.25 ¢
P t82.7 0.05 1 0.0160 0. 0.0463 3.54 -11,86 1.03
4 S t 182.6 0. 0,0%60 0. 0.0463 3.54 =-9.54 .24
Residual Mass (1/Kg)’ Residual Stiffneas (m/N)

Real % Img. % Real % Img, %

P lo.o1s0 | s.25 | 3.994B-4 |156.41 [-2.9118-2 | 15.62 | 1.514m-8 | 4.78
FO.0154 3,75 | =6.615E-4 6,75 |«3.298E-8 .41 1.507E=-8 5.22

Table 4-2: Synthesised data ~ derived modal parameters

and their rclative errors for (a) 0%, (b) 4% and (c) 8%

random errors in the data
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A comparison of the modal parameters derived by the two
programs clearly demonstrates the limitations of the single
mode analysis method when the modes are very close., For all
levels of random error, the error in the identification of
the natural frequencies is negligible, regardless of the
closeness of the modes. For all the other modal parameters,
however, there is a considerable error in those identified
by POLARS and a significant reduction in this error when the
data are further analysed by SIM2. Furthermore, POLARS
proves to be more sensitive to random errors in the data by
comparison with SIMZ.

The usual method of comparing measured data and the
theoretically-regenerated curve is to draw both of them on
the same plot and examine the closeness of the £it. This
method, which is widely used, is very subjective and depends
heavily on the format chosen for the plot. The wvisual
comparison of the 'experimentally' generated data and the
curves identified by the two programs demonstrates this
point.

Presenting the measured data on a log mobility vs. log
frequency plot is convenient and very informative for the
engineer who is interested in the resonances and the
anti-resonances as well. However, this presentation does not
provide any information about the phase shift and because
the resonance peaks are somewhat ‘'compressed' the quality of
the data in these important areas is not readily obvious.

The comparison with the identified curve emphasises,
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-48.

HOBILITY
(DB)

-138.

30.00 LOG FREQ. (HZ) 300, 28

Fig. 4-6: Curve-fitting for the three levels of random

error on a log mobility scale

Linear Receptance
-

.20 FREQ. (H2) " 208,68

Fig. 4=7: Curve-fitting on a linesar receptance scale
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therefore, the quality of the fit at off resonance areas
where the actual numerical values are relatively small and
they tend to minimize, visually, the numerically larger
errors at the resonances., Checking Fig. 4-6, it seems,
therefore, that all three derived curves fit equally well
the four resonances.

Presenting the data on a linear receptance scale
(Fig. 4-7) emphasises the resonances but completely
attenuates the anti-resonances; but the phase information is
still unavailable.

The third option for presentation of the data is the
polar plot of receptance; this presentation is very
informative as to the quality of the data around resonances
and gives some idea as to the degree of influence between
two close modes (and, as will be shown later, to the
linearity properties of the data). Presenting the results in
the polar plane shows more clearly the quality of the fit at
resonances and the difference between the POLARS and SIM2

derived parameters is evident (Figures 4-8 + 4-12).
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TipP

Img |

Fig. 4-8: 0% random error — curve fit by POLARS

Img

Fig. 4-9: 4% random error - curve fit by POLARS
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Img

Fig. 4-10: 8% random error - curve fit by POLARS

Img

Fig, 4-11: 4% random error - curve fit by POLARS and SIM2

of sezond and third modes
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img

\

Fig. 4-12: 8% random error - curve fit by POLARS and SIMZ2

of the forth mode
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4.5 MULTI-POINT EXCITATION METHOD

A widely used modal identification technique, especially
in the fixed wing aircraft industry, is the multi-point
excitation method. The thecoretical basis for this method was
laid by Fraeijs de Veubeke [t9] (see chapter 2) who showed
that a system with a finite number of degrees of freedom and
with either viscous or hysteretic damping can be excited by
a set of properly tuned mono-phased forces at a natural
frequency of the undamped system to vibrate in a mode which
is identical to the undamped normal mode ¢of the system (a
forced proportional mode).

The practical implementation of this method is rather
complicated; the two main problems which confront the user
‘are the need to find the required number of shakers'and how
to find most efficiently the correct level; of force
distribution to excite a 'pure' mode.

These problems were discussed theoretically by many
investigators [48,49] and there are some different practical
methods for the implementation of this theoretically simple
technique [a43,50,51].

It should be pointed out, however, that unless the
system is proportionally damped {or, more generally, the
damping matrix does not couple the undamped normal modes)
the natural frequencies and the (real) mode shapes measured
by this method are not identically the natural fregquencies
and normal (complex) mode shapes of the actual system but

rather the modal parameters of a fictitious undamped system.
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The common technique for deriving the loss factor is to
switch off the exciters and record the transient response
from which it can be simply calculated. (This method is
sometimes refefred to as 'purity check of excited mode'). A
proportionally-damped system will vibrate in the natural
frequency of this mode but in a generally-damped system,
'beating' occurs in the transient response which means that
the excited {real) mode is not a true normal mode of the
system. In this case, there is no unique loss factor which
can be associated with the excited mode, In practice, most
of the investigators using this technique assume a priori
that the system is proportionally-damped: an assumption
which may not always be justified.

In the experimental part of this research a multi-point
excitation system was used: the Manual Multi-point Apparatus
(MAMA) dewveloped and built at the RAE ({s2]1. This system is
able to control up to five shakers which apply sinusoidal
mono-phased force inputs to the structure. The excitation
frequency is controlled automatically so that a quadrature
relationship exists between the force input of one exciter
and the displacement response at a point on the structure.
The force distribution is tuned manually so as to obtain a
quadrature relationship between the force inputs of the
remaining four exciters and the displacement response at
four points on the structure., Once this condition is

reached, the mode shape is simply measured on the structure.
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5, THE EFFECT OF NONLINEARITIES

5.1 INTRODUCTION

The fundamental assumption on which our mathematical
model is based is that the system under consideration
behaves in a linear way.

It is expected that real systems will be to a lesser or
greater extent nonlinear, but practical experience suggests
that given the right conditions, their nonlinear component
is generally negligible. However, as more accurate and more
powerful equipment for measurement and analysis is
available, and consequently there is a demand for better and
more accurate results from modal surveys, it is realized
that often the nonlinear component is no longer negligible
and must be accounted for.

This may be done in two ways: (i) by identifying the
sources of the nonlinearity in the system and trying to
eliminate or minimize their effect or (ii) by changing the
test conditions so as to minimize the nonlinear behaviour of
the system

In any case, analysing a system for which the linearity
assumption cannot be fully justified leads to inaccurate and
misleading results. Using these results in further
computations can give rise to even greater errors and result
in a final model which does not describe the system

adequately.

The mathematical modelling of nonlinear vibratlions
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encountered in practice requires the solution of nonlinear
differential equations. The most common types of
nonlinearities are cubic stiffness and dry (coulomb)
friction damping. The equations of these system are well
known and have been studied by many investigators and the
theoretical techniques for analysing them are well
established [5354,555] . Far less investigation has been
devoted to the problem of identifying real nonlinear
systems, probably for the obvious reason that actual
nonlinearity of real systems is much more complicated than
the relatively simple mathematical models available [57,61] .
The influence of cubic stiffness on the Nyguist plot was
examined by Newman ([59) and White [58] and both showed that
the angular spacing of the points is distorted. White
identified the system's parameters using transient
techniques and compared his theoretical predictions with
experimental results from a simple structure. More recently,
Tomlinson [e6062] has investigated the effect of dry friction
on the Nyquist plot and presented a method, based on the
in-phase and quadrature power dissipated when a normal mode
is excited, by which the nonlinear friction force and the
hysteretic damping are identified. The experimental
validation of this technique is restricted to a very simple
laboratory device designed to behave according to the

theoretical model.

The approach employed in this research towards the

problem of nonlinearities in the measured response is
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similar to that exercised towards the problem of noise
pollution of the measured signal. Accordingly, we shall
treat the effect of nonlinearitiesas a measurement error
superimposed on the ‘true' linear response attempting to
identify its existence rather than its type and thus

to minimize its effect.

It seems unlikely that analysis of simple nonlinear
systems will ever cover the real nonlinear response of a
multi-degree of freedom system. However, in order to
understand how a weakly nonlinear system behaves and to gain
some insight into the sensitivity of the linear modal
identification technique, a simple one-degree-of-freedom
weak nonlinear oscillator is investigated in some detail.
The behaviour of a real system is rather complicated and it
seems impossible to describe it precisely by an analytical
model. To get nearer to this goal a mathematically-simple
nonlinear component is assumed and added to the linear
equation of motion. The underlying assumption in this
process is that the nonlinear component is small enough that
the new equation can be solved analytically by an
approximate method.

The nonlinearity of the system demonstrates its presence
when excitation conditions are changed by producing a
disproportionate change in the measured response. A
parameter which gives some measure as to the magnitude of
the nonlinearity relative to a linear system - the

nonlinearity factor - is first defined. Then, the influence
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of small nonlinearities on the shape of the polar plot and
on the subsequent ;inear modal identification process are
investigated. To this end four different types of
nonlinearity are examined: (i) dry friction, (ii) cubic
stiffness, (iii) quadratic viscous damping and (iv) a
combination of dry friction and gquadratic viscous damping.

Theoretical data for different conditions are generated
and then subjected to analysis by a linear modal
identification algorithm (POLAR 5). The derived modal
parameters are presented and as the exact linear parameters
of the system are known a priori, the influence of the
nonlinearity present in the system on the identification
process can be evaluated in detail,

Finally, an experimental study which demonstrates the
practical problem created by real nonlinearities is

presented.
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5.2 THE NONLINEARITY FACTOR.

Measured mobility data from real systems are polluted by
many errors resulting in bad estimates of the system
parameters. These errors may be dgrouped into two categories:
variance and bias.

The variance part of the error is due to random
deviations from the 'true' value and is essentially Gaussian
in distribution. Statistically, therefore, if sufficient
samples are evaluated, such random errors will be averaged
out and the measured estimate will closely approximate the
'true' value with a high degree of confidence.

The bias error, on the other hand, does not usually
diminish as a result of taking more samples, as it is due to
a system characteristic or measurement procedure which
results in an incorrect estimate. With this type of error it
is vital to know its form or source in order to be able to

reduce its effect on the measured data.

Nonlinearity of the system produces a bias error.
Nonlinearities will generally shift energy from one
frequency to many new frequencies in a very complicated way.
The result will be a deviation ¢f the measured response at
the excitation frequency from the 'true' linear response at
this frequency.

For the random excitation method of measuring mobility
data, there exists a wvalue which serves as a measure of the

degree of noise contamination in the measurement - the
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coherence function. This describes the division of output
power into coherent and incoherent parts with respect to the
input. If the measurement contains bias error due to
nonlinearities of the system then the coherence function
does not improve and will reach, as the number of samples is
increased, a maximum of less then 1 at each frequency.

A factor similar to the coherence function may be
defined for the steady-state harmonic excitation method with
single input and output. It is referred to as the

‘nonlinearity factor'.

~

Let us assume, for the sake of this theoretical
discusion, that we Know the '"true' linear response of the
system and can denote it by @7(w)}. Furthermore, suppose that
we manage to measure the exact linear response of the system
am(w). If we plot this '"measured' response vs. the 'true'
response at various (but corresponding) frequencies, the
points will all lie on a straight line which passes thréugh

the origin and which has an inclination of 45 (Fig. 5-1}.

]

am(w)

wa

w3

al ()

Fig. 5-1: 'True' vs. 'measured' linear response.
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In practice, however, the measured response, aﬁ' will

not be identical to the 'true' linear response, «a Their

1
deviation, due to nonlinearitiegmay be described by two bias
errors, namely the constant linear error, V, and the
constant logarithmic error, U. i.e
am(w)=Uai(m)+V (5-1)
If we assume that the logarithmic error is equal to zero
(i.e. log(U)=0@, U=1l) and if we plot on a linear scale @, and
@y VS, frequency « (Fig. 5-2a) then the deviation of a  from

@y has a constant width V. If we plot a_ vs. aq (Fig. 5-2b)

m
then the points will lie on a straight line which has an
inclination of 45 but which does not pass through the

origin.

(a) (b)

Fig. 5-2: %, vs. * for a constant linear bilas.

If we next assume that the linear error, V, is zero and
if we plot on a logarithmic scale a and @y VS. frequency
{Fig. 5-3a) then the deviation of log(am) from log(al) has a

constant width, log(U). If we now plot am VS. al (Fig. 5-3b)
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then the points will lie on a straight line which passes
through the origin but with an inclination which is equal to

tg—q(U).

tog & ]

W

(a) (b)

Fig. 5-3: ¢y, vs. @1 for a constant logarithmic bias,

The combined effect of these two errors when displayed
as a, vs. ay is a set of points which lie on a straight
. . . . . . -1
line. This line, Ygir has an inclination of tg (U) and

intersects the X axis at v (Fig. 5-4).

vrf
Y51

tgtu

Fig. 5-4; a, vs. @ for both bias errors.
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The degree of deviation of this line, Yo r from the
straight line which passes through the origin and has a 45
inclination, Yofr {the reference line) gives an indication

to the amount of bias error present in the system.

In fact, the nonlinearity bias errors are functions of

the amplitude,‘P, and frequency, », of the excitation. Thus
(W) =U(P,w)¥q (w) +V (P, w) (5-2)

which means that the deviation of the measured response, ap,
from the 'true' linear one is more complex than we have
assumed so far. In this case, if we plot @ VS. ag the
points will not lie, any longer, on a straight line.

A theoretical nonlinear response (cubic stiffness) to a
constant level of harmonic excitation is given in Fig. 5-5.
When this response, a s is plotted vs. the true linear

response, «a it is obviocus that the points do not lie on a

l’
straight line (Fig. 5-5b}.

log a

(a) (b}

Fig. 5-5: ap vs. @7 for a theoretical nonlinear response,
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In this case the degree of deviation of these points
from the reference line Yy gives an indication to the
amount of nonlinearity present in the system. This can be
quantified in the following way:

Let the 'true' response be written as x(wi} and the

nonlinear response as y(wi) {or as Xs and yi)

X

Fig, 5-6: Calculation of the nonlinearity factor.

A plot of Yy VS. x5 for corresponding frequency points
(n points) is shown in Fig. 5-6. A straight line, yél' is
fitted through these points such that the sum of the squares
of the deviations from it shall be a minimum. Because X,

i
represents the 'exact' response the deviations are measured

along the Yj axis.

The equation of the straight line Yeq is

Yo1 T3 tay X (5-3)
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where
n o n n_ n
ao=[ E X3 E yi—jg:xi Exiyi]D {5-4)
=1t = i=1 i

n

n n
SR DEDIE AL
i=1 iz1

i1
~ o & o
p=[n) xi-S x| (5-6)
i=1 i=1

By definition, the straight line Yai always passes

through the 'center of gravity' of the points (%,¥) where

n 1 n

—_ = '

Y=ﬁ:E:Yi and x=ﬁ:E:xi (5=-7)
i=1

iz

The standard error of the fitted line is defined as;

n
2 1 2 1 : 2
Ss:L‘ﬁ,Z(Yi‘Ysl) =ﬁz[yi‘(ao+a1xi) ) (5-8)
121, iz1
and the standard deviation from the average ¥ is
21 . 2
Sﬁzﬁ:E:(yi—?) (5-9}
iz
The 'nonlinearity factor' - which is a measure of the

deviation of Yaq from the reference line Yop — 1S a
combination of three values, namely (i) the general linear
bias, (ii) the general logarithmic bias and (iii) the degree

of correlation of the points to the straight line Y1~

(i} The general linear bias is denoted by ag and the

dimensionless factor J; which expresses its relative
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magnitude is defined as:

20
3,31~ for agy ¢ (5-18)
or
20
J1§1+m for aO\< "] {5-11)

for a12 @ the range of Jq is
b £J4&1 ' (5-12)
For zero linear bias error (ao=®) J1=l and as the error

gets larger, J1 gets smaller and smaller.

(ii) The general logarithmic bias is denoted by a, and

the dimensionless factor J2 which expresses its relative

deviation from 1 is defined as:

lo- 7l
JpEl-— {5-13)
T
where 3
<p=tg'1 (ay) (5-14)
for a,» @ the range of Js is
g I, <1 (5-15)

For zero logarithmic bias error (a1=l) J2=l and as the

error gets larger, J2 gets smaller and smaller.

(iii) The degree of correlation of the points to a

straight line is expressed by the dimensionless factor J

3

S z
Jfl—(-—é%—) (5-16)
y

which is defined as:

The range of J5 is always
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7] $J3 <1 (5-17)
For perfect correlation J3=1 which means that the bias
errors are not a function of the frequency « and the
excitation P (or that P is kept constant). J3 gets smaller
as there is less and less correlation between the points and
the fitted line Yy - {see appendix)
The nonlinearity factor is defined as
JEJ,]-JZ-J3 (5-18)
As the responses, «, are complex numbers, this procedure
must be applied twice; once when X5 and y; are the moduli of
the response and once when they are the corresponding
phases. For each case a nonlinearity factor is calculated,
J for the moduli and J_ for the phases. An overall

m P
nonlinearity factor may be defined as:

kR
= . = -
J = (JIIl Jﬁ ) (5-19)
and its range is (Fig. 5-7)
A £J «£1 {5-28)

When J=1, the measured response is purely linear and as
J gets smaller, the data are less and less linear.
The plot of Y; VSe X is referred to as the 'J plot' and

the nonlinearity factor as the 'J factor',
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% J:0
i ////
J= 0 )

Xy
J‘zo}—- 90

J‘:.‘l J;:O

Jz1

951

Fig. 5-7: The range of the J factor (for a,>0)

The preceding analysis assumes bias errors only and that
they are due to nonlinearities within the system. However,
this method can be applied in order to detect the level of
random errors as well. This can be done by calculating the J
factor for two sets of data measured twice over the same
frequency range while maintaining the same level of
excitation and integration time (which is special to the
sine excitation method). The effect of integration time on
the level of random errors in the measurements can also be
checked by calculating the J factor for the same measurement
taken at different integration times.

An additional linearity check can be made by calculating
the J factor for two corresponding transfer measurements
which should, theoretically, be identical

For those cases where none of the sets of data used in
the process of the calculation of the J factor can be

assumed as 'exact' the deviation used in the derivation of
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Yg1 should be calculated perpendicular to the straight line,
but as the arithmetic involved is rather complicated we
choose either the x or y direction for the deviation,.
realizing that the price paid for the simpler mathematics is
a sacrifice in the accuracy of the best fit of the line. The
choice between the x and y directions is made in favour of
that direction in which the larger standard deviation is
found. Actually, this procedure is employed for the
calculation of the 'nonlinearity factor' as, practically,
the 'true' linear response, aq, is not available to us.
Instead we decide which of the measured responses may serve
as the 'best' 'true' linear response. (The way in which this

response is chosen will be described in a later stage.)

5.2.1 LINEARITY CHECK VIA CALCULATION OF THE M LOSS FACTOR.

In order to calculate the J factor, a reference set of
data is needed. However, in many practical cases only one
single measurement is available so that it is impossible to
calculate the J factor.

A different, though less powerful, check for identifying
the existence of nonlinear behaviour from a single set of
data may be made by examining different calculated values of
the M loss factor.

The expression for the M loss factor is derived from the

geometry of the Nygquist plot (Fig. 5-8) i.e
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2
1. 1
tgze +te30,

(5-21)

el

REAL

Pig. 5-8: Calculation of the M loss factor.

For a linear set of data the derived loss factor for any
two frequency points wy and ws will be the same as long as
wz?,wo and w,]\( wy,

However, as the presence of small nonlinearities in the
system must cause some change in the geometry of the Nyquist
plot, then the M loss factor derived using different
combinations of frequency points will be different for each
combination. Checking the values derived for the M loss
factor as a function of Aw=(ué—uﬁ} where ué-ub=ub—w1 may, at

most, give some indication as to the nature of the

nonlinearity or, at least, to its existence.
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5.3 GENERAL EQUATION OF A WEAKLY NONLINEAR SYSTEM

In order to get scome better insight as to the influence
of small nonlinearities on the linear modal identification
process, a theoretical one-degree-of-freedom nonlinear
system is examined in detail.

The general equation which may describe such a system

subjected to harmonic excitation is,

§+2hk+cklkI+RT§T+aﬁx(l+bx2)=PCOSwt {5-22)
where

X - harmonic displacement. {m]

P - amplitude of harmonic exciting force. [N/Kg]

w - frequency of exciting force. [sec—1]

h - linear viscous damping coefficient. [sec_1]

c - quadratic viscous damping coefficient. [m_T}
R — constant dry friction force. [N/Kg]

» - natural frequency of linear system, [sec"Tl

b - cubic stiffness coeffecient. {m—z]

This equation is solved for some particular cases of

nonlinearity using the method of equivalent linearization.

5.3.1 THE METHOD OF EQUIVALENT LINEARIZATION.

A convenient method for deriving a satisfactory
approximate solution to equation (5-22) is the method of
equivalent linearization ({55 which states:

The amplitude and phase of the periodic vibration of a

weakly nonlinear oscillator i.e
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Xt+ef(X)+w,X+eg(x)=Pcoswt (5-23)
where f(x) and g(x) are odd functions, in the neighbourhood
of the resonance, are equal to the amplitude and phase of
the steady state vibration of the linear oscillator with the

governing equation

i+25(a)x+w§(a)x=PCOSwt (5-24)
whose coefficients h(a) and @W,(a) are chosen in such a way
that the solution of these two equations differ by terms of

second or higher order in e.

As a first approximation, we assume that the solution to

equation (5-23) is

X=a-cos{wt+d) {5-25)
where a and 6 are 'slightly varying' amplitude and phase
respectively. This solution is the first harmonic which is
~actually measured on a real system.

The expression that describes the system's response (or

the 'resonance curve') is,

az(wz—w§)+(2wa5) 2-p? (5-26)

Solving this equation gives the value of a as a function of

the driving frequency «. The phase is then determined from

cosé=

= 2 s
sine:zgﬂghiél ; ahb(%)-“'] (5-27)
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where,

27T

B(a)=2;%;§-j f(w,asino)sinoe do
0

o 27
Qo(a)=“h+géfffg(aCOSU)cosadU
0

where o is an integration variable.

(5-28)

(5-29)
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5.4 NUMERICAL STUDY

The equation of motion of a nonlinear oscillator does
not lend itself easily to analytical study. Therefore, a
numerical study of some particular cases of equation (5-22)
was carried out.

A program was first used (NL1l) to generate synthesised
data for a given set of system parameters. In order to
detect the effect of the nonlinear component, different sets
of data were generated while only one parameter was changed
at a time. The influence of two parameters was examined; the
level of nonlinearity and the magnitude of the exciting
force.

The generated data were displayed in three formats,

(1) log modulus (mobility) vs. freguency, (ii) phase vs.
frequency and (iii) response locus in the polar plane (the
Nyquist plot). Thus, a visual check enabled us to identify
the way in which the small nonlinearity affects the response
of the linear system.

Next, the data were analysed using a linear modal
identification program (POLARS5). The variation in the
derived modal parameters gave us some quantitative measure
as to the sensitivity of the linear modal identification
algorithm to small nonlinearities in the analysed data.

Finally, the change in the derived M loss factor as

function of wo=w, Was examined.
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5.4.1 DRY FRICTION

The equation of motion of an oscillator with both dry

friction and linear viscous damping is,

: 2
)"(+2h$<+RE}.§-T+“’o x=Pcoswt (5-38)

By applying the method of equivalent linearization, an

L] - - * -
equation is derived for the resonance curve, i.e

2 2 2
W= 2, 2wha w - _
(——)a"+ (- +wod? 1 (5-31)
The phase is obtained from
. ~2wah w a, 2 2
sing= _—d;% ; COSB“ﬁ(w—fub) (5-32)
where
_AR
=25 »9 (5-33)

This an approximate solution which is sufficiently
accurate only in the neighbourhood of the resonance. The
underlying simplifying hypothesis is that R is small enough
for the motion to proceed without pauses. The maximum
magnitude of R at any frequency is limited by:

R<aw? (5-34)

Sets of data were generated for two cases; (i) main-

taining a constant excitation force and changing the

* :
See ref 75 for detailed analysig of each nonlinear cage.
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amount of friction force R, (ii) keeping the friction force
constant and changing the level of excitation.

Plots of mobility and phase for case (i) are shown in
Fig. 5-9. It is clearly seen that an increase in the level
of friction reduces the level of the response, as expected,
and increases the phase difference between the real and

imaginary parts of it.

Pwl N/Xg

MBILITY

(08) (a)

9.59 FREQ. (HZ) 19.50

|8 Pmt N/Kg

elttenl,,

(b}

5.60 RED, 1) 18.28

Fig. 5-9: mobility (a}) and phase (b) for varying levels of

dry friction.
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However, the shape of each individual curve, when examined
separately, does not reflect the presence of dry friction.
The corresponding Nyquist plots (Fig. 5-10) reveal

immediately the existence of the nonlinearity; it is very
clear that the circular shape of the plot for the linear
case (R=G) is gradually transformed into an 'egyg shape' as
friction in the system is increased., A visual examination of
these 'egg shaped' plots shows that there is no distortion
in the angular spacing of equally-spaced frequency points
and that the natural frequency of the system is still at the
point where the angular spacing is maximum and the real part

cf the response iIs zero.

Fig. 5-1¢: Nygquist plots for varying levels of dry friction.

The results of a linear modal identification of these
data is summarized in Table 5-1.
Because dry friction has only an effect on the modulus

and the phase of the response and does not affect the
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angular spacing of the response points, the natural
frequency and the modal phase angle are identified correctly
regardless of the level of damping. On the other hand, the
modal constant and the modal loss factor are distorted
severely and for low levels of damping (R=#.2 N/Kg), the
error in the modal constant is about 25%. The identified
modal loss factor does not reflect the linear loss factor
because dry friction acts as an additional damping in the

system.

R w 7 A 7} J
N/%g Hz m/N deg
(x) .o0230 L7424
.2 9.9993 .03 . 503
(M) .0229 7411
(x) .027% 4555
WA 9.9995 =-1.33 313
(M) 0267 L4425
(X) .0320 + 3391
.5 10,0115 ~11.2% .159
(M) .0303 . 3210
linea 10.0 .020 1.0 0.0 1.0

Table 5-1: Dry friction - modal parameters for varying

levels of friction.

The M loss factor, WM, was calculated for different
combinations of frequency points and Fig. 5-11 shows the
variation in the derived results as a function of Aw
(Aw=w2-w1 where wo —ay, =W, —wy ). It is seen that the variation
is very small for low levels of friction and as the friction
is increased there is a decrease in the calculated M loss

factor as Aw is increased.
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P'—-‘! N/Kg

030 4

025 4

.020 v e
5 25 45 65 85 105

As-1077 (Hz)

Fig. 5-11: Variation of the M loss factor as function of Aw

for varying levels of dry friction.

(ii) A second set of frequency responses was generated

for a constant level of friction and varying levels of

excitation.

Figures 5-12 and 5-13 describe the mobility, phase and
Nyquist plots for these sets. It is seen that the general
shape of all the curves is similar to those of the previous
case. It is also noticed that as the level of excitation is
increased the response gets closer to the linear one. The
linearity check by calculating different M loss factors
(Fig. 5-14) produces the same pattern. A full set of results
of a linear modal identification algorithm is summarized in

Table 5-2.
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R=0.4 N/Xg

Pma.x

HBILITY
(03]
=19, -t’ — " 4 . "
7.58 FREQ. (H) 14.58
2.
R=0,4 N/Xg
PHASE L
.;i; /
Pnax B
-188, ) ) .
?.60 FREQ. (M2} 0.2

Fig., 5=~12: Mobility & phase plots for varying levels

of excitation,

RwO.4 N/Eg

v

-030 4 R=0.4 N/Kg
.25 4

6

. . .020 / Pma.x

&o 5 25 45 65 85 105
810" (Hz)
Fig., 5-13: Nyquist plots for Fig. 5=14: 7y as function of Aw

varying levels of excitation for varying levels of excitation
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P w . A o J
N/Eg Hz o/N dag
(B) .0274 | .4518
1 9,9955 1,72 .313

(M) .0271 4489

(E) .c230 | .7345 '
2 9.9980 ] 1,22 598
(M) .cz229 | L7323

(K} .c217 | .8949
4 9.9993 43 -TIS
(M) ,0217 | .8949

(X) .0209 | .9157
6 9,5990C .68 847
{M) .0209 9157

linear | 10.0 Q20 1.0 Q.0 1.0

Table 5-2: Dry friction - modal parameters for varying

levels of excitation.

We may conclude that the effect of an increase in the
excitation level is equivalent to reduction in the level of
dry friction and in practical cases, when it is suspected
that dry friction may affect the measured results, it is
possible to reduce its effect by raising the level of
excitation.

When only one set of measured data is available, the
onlf form of display which might indicate the presence of dry
friction is the Nyquist plot - the expected circular shape
is then distorted into 'egg shape'. As the M loss factor is
relatively insensitive to changes in Aw it cannot serve as a
good indication for the existence of dry friction

nonlinearity.
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5.4.2 CUBIC STIFFNESS

The forced vibration of an oscillator with linear
viscous damping and cubic stiffness is governed by the
eguation:

§+2h2+w§x(l+bx2)=Pcoswt (5-35)
which is also known as the generalized puffing's equation
with damping. This equation has been studied by many
investigators (i.e [54]) but so far exact solutions are known
only for particular values of @ b and P.

By applying the method of equivalent linearization, we

can derive an equation for the resonance curve:

2
(wg—w2+§bw%a2)2+4h2w2=(2) (5-36)
and the corresponding phases,
. ~2wha 2 2 2_2
sing= T : COSB=%(wO—uJ+2bwoa } (5—37)

The resonance curve described by equation (5-36)
exhibits a well-known phenomenon: for small levels of cubic
stiffness and constant excitation force the curve
(Fig. 5-15) tends to lean slightly (curve a). Above a
certain level of cubic stiffness there seems to exist
(curve b) three simultaneous different levels of response
amplitudes within a certain région of excitation
frequencies. Practically, this multiple response cannot
exist and in a real system when the exciting fregquency is

increased gradually the response curve follows path 0AC and
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then 'jumps' to peoint D. If the frequency is decreased
gradually the response follows path FDB and then 'jumps' to

point A, We see clearly that the branch CB is practically
]

"\

o

L

e

[£3]

Fig. 5-15: Typical response of a system with cubic

stiffness.

unattainable, The-behaviour just described applies for
positive value of b and is referred to as 'cubic hardening
stiffness', When b<#, the system behaves in a similar manner
but then the curve leans backwards. This system is referred

to as having 'cubic softening stiffness'.

Sets of synthesised data were generated for three cases:
(i) Constant level of excitation and varying levels of
hardening cubic stiffness.
(ii) constant level of excitation and varying levels of
softening cubic stiffness.
(iii) Constant hardening cubic stiffness and varying levels
of excitation.

The mobility and phase plots for case (i} are given in

Fig. 5-16. It is clearly noticed that as cubic stiffness in



-150—-

P=1 N/Kg R SRR R S R Y PR TR

(a)

MOBIL{TY L
[m} .:'-.:-:' Tt e e L,

7.60 FRED. {H2) 10.28

P=1 N/Kg

PHASE {b)

-188,

*
+

7.60 FREQ. (HZ) 18.20

Fig, 5-16: Mobility (a) and phase (b) plots for varying

levels of hardening cubic stiffness.
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Fig. 5=17: Nyquist plots for varying levels of hardening

cubic stiffness
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the system is increased the mobility curve leans forward
withoutchanging the level of the response. There is also a
distinct change in the phase plot which is no longer
symmetrical as for the linear system. Examination of the
corresponding family of Nyquist plots ( Fig. 5-17) indicates
that there is no apparent change in the circular shape of
the plot and, as also noticed in the mobility curve, no
change in the magnitude of the response. A closer look,
however, reveals that the angular spacing of the points is
changed: as the cubic stiffness is increased, the maximum
spacing moves in a clockwise direction.

Despite these clear changes in the plots, when one
examines a single plot, especially as part of a multi-degree
of freedom system, the existence of nonlinear stiffness is
not so immediately obvious, because there is no way to
distinguish it from a response of anonproportionally-damped
system. This fact is demonstrated when these sets of data
are analysed by a linear identification algorithm

{Table 5-3}.

b [ n A F'] J
2 Ha n/Y deg
{x) .0200 9990
5 10,0080 =3.74 -995
(¥) 0200 L9979
043 (X) .018% 9524 23.22 563
40 10,0433 =23, .
(M} .019% 9712
(g) .01865 8350
80 10,0755 ~36.29 | .577
(M) L0176 _.8918
(Zy 0134 6827
120 | 10.1018 =44,92 | 306
(M) 0155 L7921
(K} .0100 .5110
160 | 10.1238 =~50.02 { .125
() 0132 .6728
(E) 0085 . 3355
200 | 10.1433 -52.53 | .036
(M) 0116 <5940
0.0 [ 10.0 ,020 1.0 0.0 1.0

Table 5-3: Hardening cubic stiffness - modal parameters for

varying b and constant excitation force,.
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Because the angular spacing of the points is distorted
the identified modal phase angle is greatly in error and as
a conseguence, all the other modal parameters are wrongly
identified. When a single set of data is analysed in this
manner, there is no clear indication of the nonlinearity and
the final conclusion may as well be that the analysed mode
is a complex one. However, calculation of the M loss factor,
Ty for different values of Aw (Fig., 5-18) exhibits a
distinct pattern; as the cubic stiffness is increased the
value of UM becomes increasingly sensitive to changes in Aw.
The calculated value for any level of cubic stiffness is
always lower then the correct one. We may say that the.only
means of checking for cubic stiffness nonlinearity in a
single curve is by calculation of the M loss factor as

function of Aw,

.15 4

fe1 N/Kg

.00%

5 25 45 65 as 105
w102 (Hz)

Fig. 5=-18: Variation in M loss factor as function of Aw

for varying levels of hardening cubic stiffness
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Figure 5-19 shows the mobility, phase and Nyquist plots
for a scoftening cubic stiffness system. It is noticed
clearly that this case is an exact mirror image of the
corresponding hardening cubic stiffness case. As the
softening cubic stiffness is increased, the mobility curve
leans further and further backwards and the maximum angular
spacing moves in an anticlockwise direction.

The linearly-identified modal parameters (Table 5-4) are
also distorted; the values of the natural frequencies are
lower then for the linear case and the modal phase angle is

changed in the opposite direction to that of the hardening

cubic stiffness case.

b w 7 A P J
m-1 Hz n/N deg

(R} .0190 L9431

=40 9,9548 24.68 | .&56
(M) .0193 . 5589
() 0165 .8109

-80 9,9215 : 38,39 | .555
(M) .0175 . 8641
(E) .0092 . 4465

-160 9.8715 51,93 | .097
(M) 0131 L6387

finear| 10.0 .020 1.0 0.0 1,0

Table 5-4: Softening cubic stiffness - modal parameters for

varying b and constantexcitation force.

The variation in the M loss factor as function of Aw,
however, does not change its direction; as the softening
cubic stiffness is increased, its value becomes more and

more sensitive to changes in Aw.
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Fig. 5~19; Mobility (a), phase (b) and Nyquist (c¢) plots

for varying levels of softening cubic stiffness
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010
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: A 1072 (Hz)

Fig. 5-2#: Variation of the M loss factor as function of Aw

for varying levels of softening cubic stiffness.

For the third case, where the hardening cubic stiffness
is kept constant and the level of excitation force is
increased, the behaviour of the system (Fig. 5-21) has the
same pattern as for the case of increase in the level of the
hardening cubic stiffnes, The distortion of the linearly
identified modal parameters is similar {Table 5-5) and the
sensitivity of the M loss factor to changes in Aw is

increased as the excitation level is increased (Fig. 5-22)

It has been clearly shown that addition of a small cubic
stiffness nonlinearity severely affects the linear response

of the system in the vicinity of a resonance and,
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Fig. 5=21: Mobility (a), phase (D) and Nyquist (c) plots

for varying levels of excitation

(e)



’ ~158—

I'I“
.2
.020 J
1.4
.015
2,0
{ Pms.x
b=40 m~2
.010 -

5 25 45 65 85 105
Mwe10™7 (Hz)

Fig, b-22: Variation of M logs factor as function of Aw

for varying levels of excitation

P w 7 A 8 J
W/Eg Hz /N deg
‘ (x) .0201 1.Q007
.2 10.0015 '-93 -988

(M) .0201 | 1.007

(K) .0166 | .84%1
1.4 } 10,0748 -36.43 | .589
(M) 0175 | .8893

() .c100 | .5126
2.0 | 10,1238 ~49,98 .125
(1) .0133 6819

linear | 10.0 .020 1.0 0.0 1.0

Table 5-5: Hardening cubic stiffness - modal parameters for

varying levels of excitation force
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consequently, all the identified modal parameters are
distorted, the modal phase angle suffering the most.

We see that, for a given system, the effect of an
increase in the level of excitation is equivalent to an
increase of the level of cubic stiffhess. The practical
conclusion that we may draw from this résult is that in
order to minimize the effect of cubic stiffness

nonlinearities we should drive the test structure at the

lowest possible level of excitation which can still provide

acceptable measured data.
When only one set of measured data is available it is
impossible to detect the presence of cubic stiffness
nonlinearity by visual examination of any of the
.conventional plots; the only means to this end is the

calculation of the M loss factor as a function of Aw, as

this changes very rapidly when the level of cubic stiffness

is increased.



~160—

5.4.3 QUADRATIC VISCOUS DAMPING

When the flow of the liguid in a viscous hydraulic
damper is turbulent rather thqn laminar, the damping of the
component may be described by quadratic viscous damping. The
equation of motion for such a system under the action of a
simple harmonic excitation is:

i+ci]k]+u§x=Pc05wt (5-38)

The resonance curve and phase are derived by the

application of the method of equivalent linearization i.e

o 2 wa? P\°
( wi=w) +(8—c‘§‘;;—a) =(37> (5-39)
~8C wywa a 2 2
sin9=-—*3%?—— : cosp=g (wo—w ) (5-48)

If we remove the nonlinear component from equation
(5-38) the linear equatioﬂ is undamped and the comparison
between the cases is not simple. Nevertheless, by changing
the quadratic damping coeffecient and the force level we are
able to demonstrate the influence of the nonlinearity on the

analysis process.

The mobility, phase and Nyquist plots for these two
cases are shown in Figures 5-23 and 5-24. It is noticed that
as the level of quadratic viscous damping is increased, the
amplitude of the response is decreased without affecting the
position of the resonance point. The Nyquist plot, however,
is severely distorted into an fapple shape' but, still,
without significantly affecting the angular spacing of the

points.
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Fig., 5-23%: Mobility (2), phase (D) and Nyquist (c) plots for
varying levels of gquadratic viscous damping
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Fig. 5-24: Mobility (a), phase (b) and Nyquist (c¢) plots for
varying levels of excitation and constant guadratic
viscous damping
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It is clear from these plots that an increase in the
level of excitation is equivalent to an increase in the
level of quadratic damping which means in practice that by
maintaining a low level of excitation, the measured data of
a real system are least affected by the nonlinearity.

When only a single curve is available the nonlinearity
is readily detected from the distortion of the Nyquist plot.
The check for nonlinearity by calculating the M loss factor
as function of Aw is not informative in this respect

(Fig. 5-25).

5.4.3.1 QUADRATIC VISCOUS DAMPING PLUS DRY FRICTION.

When dry friction is added to the previous system the

governing equation is:
X

2— —
|X|+wox—Pc03wt (5-41)

Z+cx |x| +R
The resonance curve and the phase are derived by usage

of the method of equivalent linearization, i.e

- 2
a,2 2 2,2 8Cwgwa. w2 - _
(F)° (w5 —u) "+ (52E=—+02) “-1=0 (5-42)

. 2
sing=20ugeld g

SAP 0
{5-43)
cosa=%(w§-u?)
where,
a=48s 4 (5-44)

7P

This system was examined for two cases: (i) varying
levels of dry friction and (ii) varying levels of excitation

force. The mobility, phase and Nyquist plots for these are
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Fig. 5-26: Quadratic viscous damping + dry frictionm - modulus,
phase and Nyguist plots for varying levels of excitation
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Fig. 5-27: Quadratic viscous damping + dry friction - modulus,
phase and Nyquist plots for varying levels of dry friction
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given in Figures 5-26 and 5~27. The changes in the mobility
and phase plots are similar to those of the previous system.
The Nyquist plot, however, is distorted in a somewhat
different way; as the level of dry friction is increased,
the 'apple-shaped' polar plot changes gradually into an
'egg-shaped' form or, as the level of excitation is
increased, it changes from 'egg-shaped' to 'apple-shaped'.
In both cases, this change passes through a perfect circular
shape and in any case, when examining a single curve,
distortion from the circular shape is not easily detected.
In practice, minimizing the nonlinear influence is very
difficult to achieve because of the opposing demands on the
forcing level; in order to minimize the effect of dry
friction, the excitation level has to be increased: on the
other hand, the effect of the quadratic viscous damping is

then increased.
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5.5 EXPERIMENTAL STUDY.

It is accepted that these simple types of nonlinearity
cannot fully represent the behaviour of real structures. The
nonlinearity of a practical structure is more complicated
and at most can be described as some combination of these
simple types.

However, examination of its measured responses can give
us some indication as to the types or the dominant type of
its nonlinearity and by application of the conclusions
derived from the previous numerical study, we can minimize
their effect on the measured results and the modal data
extracted from them.

To this end, a mini modal survey was performed on a real
structure where special attention was paid to the nonlinear
aspects of its behaviour, its effect on the derived results
and on ways to reduce its influence.

The structure tested was designed to contain many of the
features common in helicopter construction which give rise
to problems and uncertainties in the theoretical modelling
stage, such as rivetted joints , asymmetry, stiffening ribs,
honeycomb sandwich panels, heavy masses mounted on
relatively flexible components etc. The complete structure
is shown in Fig. 5-28, It is made of a lxlm stiffened base
plate, attached at eight points to the 'rigid' floor base of
the-laboratory, supporting a square-sectioned (although not
symmetrical) tower some 1.3m tall. On top of this tower was

mounted a heavy mass on three point pin-supported mounts.
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Fig. 5-28: The structure used for the studies of

nonlinearities
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One complete side of the tower section consisted of a
light-weight honeycomb sandwich panel. The tower is
described schematically in Fig. 5-~29 showing the point where
the excitation force was applied (point 12 direction x}. The
acceleration was measured at all the five points indicated

and in the same direction.

The first step in this survey was a standard mobility
measurement where force and acceleration levels were allowed
to vary throughout the frequency range (optimal level
control). The data were then analysed by SIM2 but the
results were unsatisfactory; although presenting no apparent
difficulty, the identified modal phase angles implied that
the normal mode shapes of the tower were very complex but
the complete curve £it showed large discrepencies between
measured mobility and regenerated curve (Fig. 5-38).

This discrepency between analysis and measurement was
attributed to nonlinear behaviour of the structure and a set
of detailed measurements were made to verify this
conclusion. To this end, all the mobility measurements were
made whilst maintaining a constant level of excitation force
{force level control). Typical results for mode 1 and 3 for
point mobility Y12 are shown in Figures 5-31 and 5-32. The
nonlinear behaviour of the tower is very clear: as the
excitation level is increased, the mobility curves tend to
lean backwards and there is a drop in the level of response
amplitude. From the Nyguist plots we see that there is no

significant distortion in the circular shape of the plot but
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the angular spacing of the points is changed and the maximum
spacing tends to move in a counterclockwise direction. From
these curves we may say, at this stage, that the dominant
type of nonlinearity of the tower may be represented by a
softening cubic stiffness,

Each curve in these two sets of data was analysed by
POLARS5 and the identified modal parameters are dgiven in
Table 5-7. (For calculation of the nonlinearity factor, Jn'
the mobility of the lowest excitation level was taken as the
datum response.)

Examination of these results reveals some very clear
trends; as the excitation level is increased:

(i) The identified natural frequency decreases.

{ii) The variation of the modal loss factor is relatively
small and appears to be random.

(iii) There is a reduction in the modulus of the modal
constant and hence a corresponding reduction in the modulus
of the mode shape.

{iv) The most significant change is in the modal phase angle
and consequently the identified normal mode shape becomes
increasingly complex.

An example of the circle-fitting process and the
location of the natural frequency for two excitation levels
isshoﬁn in Fig. 5-33. The change of the angular spacing and
hence derivation of a greater modal phase angle as the
excitation-level is increased is very clear.

At this stage we are able to conclude that in order to
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P 1 M 182,12 | 1%12,12 91 1®12
volts Hz 1/Xg deg
.05 32,92 L0139 .0150 -177.69" - L1225 1,15
.1 32,75 .0142 £0145 -168.08" | .617 .1204 |5.96
.2 | 32.57 | .0143 | .0136 | <-154.89' | .167 | .1166 [12.55
.4 32.25 L0135 |- ,0115 -110.83" | .00 L1072 34,58
F w3 3 2,12 | 3%12,12 I5 3%
volts Bz 1/Kg 1071 deg
.05 | 78.82 L0077 5.167 -150,87" - L0719 |14.56
o1 78.60 .0070 4,286 -141.08" | .559 0655 [19.46
.2 78.32 .0062 3.399 -128,17"] .237 .0583 |25.91
4 77.98 .0064 2,295 -135,77" | 060 0574 22,11
.6 T7.89 .0070 3,382 -134,26 | .000 .0582 22,87
.8 77.51 .00&8 3.058 =140,00" | .C00 .0553 [20.00

Table 5=7: Identified modal parameters of modes 1 and 3

for point mobility ¥, as fuction of excitation

T 1% 2% 3% 4%

12 22 |53 .0384 [8.24' L0673 |-1.12" 0206 |7.19

14 45 |-1.95 ) L0412 (13,72 L0415 |-1.42° | 1445 [174.07
01 .189 .35 0341 |[=6.11 | .0722 |=-1.43 .223  |=7.96"
29 243 .55 .0594 |2.64° .257  |=177.18°] .585  [172.33
28 209 |.80" 0592 [11,60 | .179 |-1.55" 674 [=7.0

Table 5=9: Complete set of identified normal mode shapes
of the tower
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iMG

Fig., 5-33: Modal circles for mode 3 of point mobility ¥,,

for different levels of excitation

wp e | rheg,12 rf29,12 RS29,12
mode Hz 1/%g deg %
1 32,88 0136 | L0296 | -181.08 4.2

2 34,94 .0120 | 2.28-10"| 169.12 15.8
3 78,72 L0074 | L0173 | 1.69 8.0
4 10%.36 L0141 | L0120 | -.482 1.5

Resgid-

ges  Lom (1/kg) | I, (1/Xg)| R, (m/¥) | I, (m/N)
3,58.10° -1.89-161 -1.77.16% 1.72.10°

mable 5-8: Identified modal parameters for mobility Y29 12
b ]
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minimize the influence of the nonlinearity of the tower on
the measurement it must be treated as having a softening
cubic stiffness nonlinearity. Thus, reduction of the
excitation force to the minimum practical level was expected
to produce the 'best' linear response and so the tower was
measured at the lowest excitation level possible and the
mobility curves were again analysed by SIM2. A typical
result is shown in Fig. 5-34 and Table 5-8 and compared with
the initial curve fit (Fig. 5-30) the improvement is

remarkable.

A set of normal mode shapes resulting from this analysis
is given in Table 5-9 where it is clearly noticed that the
normal mode shapes have a very small phase angle and we may
attribute this to measurement and analysis errors rather
then to a nonproportional damping of the tower.

Finally, The M loss factor for different levels of
excitation as a function of A« was calculated. (Fig. 5-35).
Examination of each curve identifies clearly the existence
of the cubic stiffness nonlinearity of the tower and we see
that even at the lowest level of excitation there is still a

small nonlinear influence.
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5.6 CONCLUSIONS,

It has been shown that small nonlinearities can affect
the modal identification analysis of measured mobility data
if the analysis algorithm assumes a linear behaviour in the
resonance reglions.

Some simple types of theoretical nonlinearities were
examined and from these we are able to draw some practical
conclusions:

{i) The existence of each type of nonlinearity may be
detected by a different form; some cause a distortion in the
circular shape of the Nyquist plot around resonance while
another distorts the angular spacing without affecting the
circular shape or the diameter of the circle. In any case, a
set of measurements taken at different but constant
excitation levels immediately reveals the exsitance of
nonlinearity.

{ii) In order to minimize the influence of the
nonlinearity on the measured mobility, the excitation level
must either be increased or decreased according to the
dominant type of the nonlinearity. In order to reduce the
influence of cubic stiffness, the force level has to be
reduced, on the other hand, for dry friction it has to be
increased. When a system posseses these two types it may be
difficult to minimize their effect on the measurement
because of these opposing influences.,

(iii) The nonlinearity factor gives a very good

indication of the level of nonlinearity. (i.e in cases of
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synthesised data). For practical cases we must choose one
set of data as the 'best' linear and use it as a basis for
calculation of the nonlinearity factor of other
measurements.,

(iv) When only one set of measurements is available for
a system with cubic stiffness nonlinearity, the presence of
it cannot be detected by examining the standard plots.
However, it is possible to identify such an effect by
examination of the variation of the M loss factor as
function of 4w, This check is only practical for cubic
stiffness nonlinearity because for other types (e.g dry
friction) the variation is negligible. A constant M loss
factor as function of Aw does not, therefore, necessarily
mean that the system is linear. However, some types of
nonlinearity are not detectable from any form of plot nor
from examination of the M loss factor check. The only way to
reveal their existence is by a set of different constant

force excitation tests.
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6. DERIVATION OF CONSISTENT MODAL PARAMETERS FROM SEVERAL

SINGLE POINT EXCITATION TESTS.

6.1 INTRODUCTION.

It has been shown (chapter 2) that the modal constant of
the r*th mode of receptance aij' rAij' is defined as the
product of the two mass-normalized eigenvector elements rmj
and rwi i.e |

rAij=(r(‘Di) (rmj) (6-1)
For each mode, a modal constant matrix [A]r can be
constructed from
- T -
[A] ={0} [0}, (6-2)
From expression (6-1) it is clear that
P17
which means that the modal constant matrix of mode r is

(6-3)

symmetric. This property is referred to as 'reciprocity' and
it derives directly from the assumption of linear behaviour
of the system. However, experience has shown that for most
practical cases this reciprocity condition is not met
precisely, for a number of reasons.

The accuracy of the modal constants derived from
experimental data depends heavily upon the guality of the
measurements made and upon the particular character of the
freguency response function analysed. One of the key factors
which influences the results is the choice of the response

and excitation points. If either the excitation or the

response point happens to lie on (or very close to) a nodal
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point of a particular mode, then the response of that mode
will barely appear in the measured frequency response
function, if at all, Similarly, it may be impossible to
excite certain modes adequately from a single point,
especially on large structures.

A second factor to influence the analysis results is the
character of the measured frequency response function. High
modal density (many modes present within a certain analysis
bandwidth), close modes, or the local dominance of a single
mode which obscures or affects the measurement all make the
identification of certain modes difficult and inaccurate
when analysed by a single-mode—-at—a-time identification
method (POLARS5 for example). They also affect the more
complete identification procedure undertaken by a
Simultaneous mode fitting method ({SIMZ for example}.

It has been shown that the presence of small
nonlinearities in the system may, under certain conditions,
seriously affect the identified results. It has also been
shown by Tomlinson [64 that when exciting a structure using
an electro—-dynamic shaker, the input force is distorted,
especially in the resonance regions, due to nonlinearities
in the shaker.

The cumulative effect of all these factors is a
distortion of the symmetric form of the identified modal
constant matrices and, as a result, the reciprocity
condition is not fulfilled. Thus when measuring several

columns of the frequency response matrix and deriving the
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complete eigenvector matrix from each column, it is usually
found that these derived matrices are not identical, as they
should be according to theory. Furthermore, the natural
frequencies and the modal loss factors of the various modes
are generally not found to be identical when derived from
two frequency responses of a given system.

In this chapter, a systematic method is presented for an
assessment of the quality of measured data and, once the
modal parameters are derived, a quantity which describes the
quality of these results is devised. Finally, a method for

deriving a consistent set of modal parameters is developed.
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6.2 METHODS FOR EVALUATING MODAL TEST RESULTS.

As the accuracy of the experimentally-identified modal
parameters depends heavily on the gquality of the frequency
response data analysed, it is desirable to have some
quantitative means of evaluating the quality of the data and
of examining the modal character of the particular function
in qguestion before starting the process of modal
identification.

Once the modal analysis of a frequency response function
is completed, it is useful to measure the confidence that
can be placed in each of the derived modal parameters. The
usual method for this process is to plot the measured data
and the theoretically-generated curve and to assess visually
the closeness of the two. Such a method is very subjective
and depends on the scale and the format of the plet. This
question of confidence becomes especially important when we
have more than one set of parameters for the same mode.
Simple averaging may lead us to significant errors as some
of the results will have been derived using 'poor' data and
consequently they are likely to be 'poor' as well. Thus
there is a need for an objective weighting or quality factor

. to be assigned to each identified set of modal parameters.

6.2.1 ASSESSMENT OF THE QUALITY OF MEASURED DATA.

The quality of the experimentally-derived modal

parameters is directly related to the quality of the
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measured data. The analysis program assumes a linear
behaviour and a certain model for the damping, both of which
are only convenient approximations to the 'true' behaviour
of the structure., Furthermore, an inherent feature in any
eXperimental process is the pollution of the measured data
by random errors. It is important, therefore, to check the
data at the acquisition stage for significant deviations
from the assumed model and, where possible, to improve their
quality.

Standard procedures for correct measurement routines
are well established and described by Ewins ({es,66i, Silva
[67] , Caruzo [68], Gleeson [69) and many others. However, there
are some fine details which may seriously influence the
guality of the data and the following systematic approach
provides a tecol for checking the experimental layout, the
structure and the measuring system and for identifying
sources of pollution to the measured data.

(i} Initial selection of excitation and response points
on the structure. These points are chosen according to
engineering judgement and accessibility to the necessary
instrumentation.

For a point measurement, the accelerometer and force
gauge are supposed to be located at the same point on the
structure. Usually, this is achieved by mounting them on the
opposite sides of a panel, but very often this arrangement
is not practical and they are then mounted as close as

possible to each other on the same side of the structure.
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From a strict point of view, this arrangement records a

transfer response, but the practical approach assumes

a, .

ijs
that its deviation from the exact point measurement is
negligible, i.e

s
11

I

33
It is worthwhile checking the validity of this

. .
1

assumption by measuring the transfer response to point k
from point i and j and comparing aik and ajk' If this
assumption is valid then these two transfer measurements
should be practically identical, i.e
“1x= %k

(ii) Initially, a coarse sweep of the frequency range of
interest is performed and the main modes in this range are
identified. At this point it is possible to identify
excitation and response points which are poorly located (i.e
close to a node of a3 certain mode), and where possible, to
change their position. Noise generated by loose parts in the
structure (e.g cables, pipes, hinges, gear, etc.) can be
detected and eliminated too. It is sometimes possible to
improve the quality of the data acquired at this stage quite
considerably, just by moving a measurement point by a small
amount.

(iii) Once all the excitation and response points on the
structure have been chosen and the operator has some general
idea of the dynamic behaviour of the structure, a fine sweep

around the resonances in the frequency range of interest is

performed.



~187-

(iv) Plotting these measurements on a polar plot usually
reveals the quality of the data in the resonance regions. A
distortion of the basically-circular shape of the plot or a
distortion in the angular spacing of the points may give
some early indication to the nenlinear behaviour of the
structure and enable the operator to decide which mode to
check very thoroughly, or to remeasure,

{v) In order to establish the degree of nonlinearity of
the structure, several measurements over the same frequency
range should be performed at different levels of constant
excitation force. The level of excitation force starts at
the lowest practical level possible (where the level of
noise is still acceptable) and increases to the maximum
which can be mainfained by the instrumentation (where the

signals are not clipped) or the structure. A set of
nonlinearity factors may be calculated where the data
collected at the lowest excitation level are taken as the
'linear' response. The rate of change of the nonlinearity
factor as a function of the increase in the exci .ation level
gives the operator an indication of the extent of the
nonlinearity of the whole system (structure and measuring
instrumentation). A set of polar plots of these measurements
can often give an indication as to the dominant form of
nonlinearity.

Calculation of the nonlinearity factor of «.. relative

14

to aji produces more information which enables the operator

to assess the quality of the data collected.
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(vi) At this stage the operator should make his decision
regarding the quality of the data, bearing in mind the
accuracy he demands from the identified modal parameters. In
extreme cases, where the data prove to be very bad, the
operator may decide not to proceed with the analysis,
choosing instead to try to locate the causes for the poor
quality of these data and to repeat the whole process of
measurement. In any case, the interpretation of the
nonlinearity factors is ultimately left to the experience

and judgement of the operator.

6.2.2 ASSESSMENT OF THE QUALITY OF IDENTIFIED MODAL

PARAMETERS.

Once a set of modal parameters for a certain mode have
been identified, the quality of this identification can be
assessed by calculating the normalized standard error of the
fit between measured points and the theoretical curve

(Fign 6_'1)-

lmMam

// Re(ar,)

Fig. 6-1: Error of the fitted curve
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The standard error is calculated for each mode over the
frequency range used for identification of this mode. If we
denote the measured response by %n(w) and the fitted

response by aﬁ(w} i.e

m
) Z ]
a‘t (w) = 5

w2,
T r[l-(;;)+17)r]

+5§+3k (6-4)

where Rm'and R, are the residual mass and residual stiffness
respectively and m is the number of modes analysed for this
particular frequency response function,
The error of the fit, E(w), at any individual frequency
is defined as:
E () =] @y (@) -ap (@) | (6-5)

and the quality factor, for the mode r of receptance

o1

aij is defined as:

1 < 2];
_‘L—) 2 [Ew, )17

roij " |

(66}

where p is the number of points used for identificationof

this mode. The normalizing factor, I/(winr), is the

erij
diameter of the circ;e that fits best through these points
on a Nygquist plot.
When several attempts to identify the modal parameters
of a certain mode are made, either with the same
identi fication Program or by different methods, the quality

of these attempts can be evaluated by comparing the quality

factors calculated for each derived set of modal parameters,
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The smaller is the value of 813, the better is the quality
of the fit and, hence, the greater is the confidence which

can be placed in this set of results.
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6.3 CALCULATION OF THE OPTIMAL MODAL PARAMETERS.

By measuring one column or row in the freguency response
function matrix using the single-point excitation technique,
it is possible to derive the complete matrix of the normal

mode shapes, [®] where n is the number of coordinates

nxm’
used to define the motion of the system and m is the number
of modes in the measured frequency range. (usually n>m)

By definition {(equation 6-1), the modal constant of the

point measurement is

2
rAi = p?Ps) (6-7)

from which we may derive
1
, = .. )% 6-8
r¢1 (rAll) ( )
and then all the other elements in the normal mode matrix

are obtained using
0,=—Ioki (6-9)
T3 AL
Vrotid
It is usually found that the normal mode shape matrices
derived from different measured columns of the frequency
response function are not identical and in many cases it is
not possible to identify all the terms because some elements
in the modal constant matrix column are missing due to low
signals, often as a result of poor choice of excitation or
response points., If the missing element is the modal constant
of the point measurement rAii then it is impossible to
identify the mass-normalized mode shape elements rmj even

though the modal constants of the transfer measurements,

rAij' are available, because the process hinges on knowledge



-192—

The above method has been shown for the hysteretic
damping model only but it was shown by Gaukroger and Copley
{36) that the same procedure applies for the viscously damped
system.

For each column identified, different estimates of the
natural frequency and loss factor are derived for each mode
{n estimates for each mode). These two modal parameters
derived by analysing each receptance aij are denoted by _w,

rij

for the natural frequency and . for the loss factor, and

r"ig
for each mode they comprise two matrices [adr and [W]r the
size of which is nxN where N is the number of measured

columns in the receptance matrix .

6.3.1 DERIVATION OF THE 'BEST' ESTIMATE OF THE NATURAL

FREQUENCY AND LOSS FACTOR.

The 'best'! estimates of natural frequency and loss
factor for each mode are obtained by a process of averaging,

using the quality factor, as a weighting parameter.

5147

The variable to be manipulated is denoted by rxij

{(representing either rwijor rqih and the weighting attached

to it by rgij where
2

[ _
rgij'( > ) (6-10)
r°ij

*
First, the weighted mean, rxj’ of the elements of column

j is calculated
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* _Z 79 Q) (erJ)

X (6-11)
rJ
2
* * .
and the weighted standard dev1at10n of rxj, rSj is defined
by
2 (95 1) (K = X0l
* £
rSj= - T 11 r ij o l_ (6=12)

2 (95 §)

The final estimate is calculated by averaging all the N

*
derived means rxj.
The full weighted mean, ir' is
m 2<r9 ) x;)
Xr' (6=13)
Z(rg)

where the weighting factor is defined as

The standard deviation, §r, of the full mean is

' N * % = o2y
—_ [ I’ZW (rgj) [rxn xr] ]2 (6_15)
T

S =
jﬂf (%)

6.3.2 DERIVATION OF THE OPTIMIZED NORMAL MODE SHAPES.

When more than one column of the frequency response
matrix is available, an improved estimate of the normal mode
shapes can be obtained. Richardson and Kniskern [70]

suggested an algorithm for this purpose - it contains some
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arbitrary rules and is based on the authors experience and
intuition without setting any criteria for the derived
results. Goyder ({71,72] developed an algorithm which fits
simultaneously all the measured fredquency response functions
and thus derives one consistent set of modal parameters.

By using the following algorithm, it is possible to
obtain a consistent normal mode matrix, to derive values in
this matrix which are not always available by the one column
at a time method and to reduce the overall error in the
- estimate of the modal parameters.

At the previous stage the 'best' estimates for the
natural frequencies, @,, and loss factors, ﬁr' have been
derived and since the diameter of the fitted modal circle,

rAijl/(wgnr)' is a constant geometrical property, there is

no justification to accept an adjustment in its value and a

proper adjustment in the modal constant _A must be made.

rij
Thus, in order to make the modal constant estimates
consistent with the 'best' values of the natural frequency

and loss factor, a new adjusted value, rgij' is calculated

from
2

wrﬁr
A, .=_A. (——) (6-16)
rijrij\ 2
“pTly
Then, mode by mode, the algorithm searches for the
values of the elements in the normal mode shape {(D}r which

minimize the error function, E given by

rl

n__n
- 5 |
Ef:zz::E:ITAij—(TQi)(r¢j) (rgij) ;7 (r=1,2,.m) (6-17)

izt =1
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This error function is minimized for each mode
separately using all the adjusted modal constants available.
For missing elementsin the modal constant matrix the

weighting factor 9 is taken as equal to zero, so that

ij
they are excluded from the process. In order to start this
algorithm, an initial guess of the values of the elements of
the vector {@}r must be provided and these initial values
are obtained using the weaker algorithm suggested by
Richardson et.al. [70].

As the modal constants _A

P13 and the normal mode shapes

rmj, are complex terms, the optimization process has to
evaluate 2xn variables. This is undertaken in two stages:
(i) the values of the phases are kept constant and the
moduli of r®j to minimize B, are found, (ii) these moduli
are Kept constant and the phases to minimize Er are found,
and so on until the change in the value of Er from one
iteration to the next is less then a prescribed value.

It should be appreciated, however, that the optimized
modal parameters derived by this method are only a result of
a statistical process and as more redundant data are
available the better is the estimate of these parameters. In
any case, by this method, an encormous amount of measured and
analysed information is reduced into a single consistent set
of parameters which describe the measured structure 'best’

and can be conveniently used in any further theoretical

calculations.
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7. EXPERIMENTAL STUDY

A comprehensive experimental study of a typical
aerospace structure was performed as part of this research,
the aims of which were:

(i) to investigate the problems commonly encountered in
practice when using the single-point excitation method.

(ii) to demonstrate the use of the methods described in
the previous chapters;

(iii) to compare different methods of modal

identification when used on real structures.

7.1 TESTPIECE AND MEASUREMENT SYSTEM

The structure used for this study was a tailcone of a
helicopter (Westland Lynx) (Fig. 7-1). This tailcone, which
has a mass of about 87 Kg and is about 2.6m long, is a bare
structural frame containing some electrical cables and
hydraulic pipes. The tailcone was suspended by two nylon
ropes attached to its two ends. Various types of suspension
systems were tried including steel cables, rubber straps,
nylon ropes, etc and the system which showed the minimum
influence on the measured data in our range of interest
(38-30@ Hz) - i.e nylon ropes - was chosen.

The measurements on the tailcone were performed using
the 1191 computer-controlled system of the Dynamics Section
at the Imperial College. The components of this system are

described in Fig. 7-2. The system is controlled by a
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PDP11/34 mini-computer and the measurements were made using

the program MOB3, developed for this project.

T W . :
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Fig. 7-1: Tailcone and response points

At first, the tailcone was excited at a single point and
the response was measured at eight points along the tail
(points 0-7 in Fig. 7-1). This process was repeated four
times, =ach time using a different excitation point, so that
a total of 32 frequency response functions were obtained
{Table 7-1}). The modal parameters were extracted from each
of these measured response functions using the modal
identification programs POLARS, SIM2 and PAPA.

In addition, the tailcone was measured using the
multi-point excitation system MAMA, where the appropriate
modal parameters are directly read from the system once
proper tuning of the exciting forces is achieved.

The vibration characteristics of the tailcone were
measured over a one decade frequency range (36-390 Hz) and
within this range interest was foéused on the first four
modes. This group of modes provides a good example of

typical problems encountered in practice. The first mode
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(around 77 Hz) is lightly damped and well-separated from the
next two modes {around 141 and 145 Hz), which, in turn, are
moderately damped and very close to each other. The last

mode (around 183 Hz) is moderately damped and well-separated

from its neighbouring modes.

X-Y line
plotter printer
PDP 11 oscilator power hake
, - - amp. - S r
computer P
v foree
analyser - SCOP. ' trangducer
N x
* [
) J zccelerometer
X X
} X
Y channel «— charge jwe—
DU selector amp. v

Fig. 7-2: The measurement system

Because four columns of the mobility matrix were
measured and because some of our excitation and response
points were located close to nodal points of certain modes,
the measured data collected contain many of the problems
common to the single point excitation method.

Figures 7-3 + 7-5 show typical examples of the nature of

the measured data; in experimental mobility pleot Y,,, the
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two close modes and the low response of the first mode are
clearly seen, this latter because point 4 is close to a node
of this mode. In experimental mobility plot Y,;, one of the
close modes is dominant and the other one is hardly noticed.
In both cases the very small modes above 290 Hz are mainly
due to pipes and cables left in the tailcone. A careful
check of this range indicated that these modes are highly
nonlinear and depend heavily on the level of excitation.
However, they are not genuine modes of the structure and

their influence on the overall response is minimal.

7.1.1 ASSESSMENT OF LINEARITY

Before starting the modal identification process, the
measured mobility data were tested for nonlinearity
according to the procedure outlined in 6.2.1. The tailcone
was excited at a certain mode, maintaining the lowest
constant amplitude of excitation force possible (F.,., ). Then
the measurement was repeated for the same frequency range
but under the highest constant amplitude of excitation force
practicable (F,,,). Using the first set of data as the
'best' linear response of the tailcone, the nonlinearity
factor was calculated. Figures 7-6 and 7-7 illustrate two
typical nonlinearity checks for mode 1 and mode 4 using
mobility ¥,, . In these two cases the structure was also
measured at some intermediate amplitudes of constant forcing
levels. The nonlinearity factor for these checks are

summarized in Tables 7-2 and 7-3 and a typical J plot for
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excitation :
level {(v) o J, J
0.6 1 0.831 0.832 0.831
1.0 0.776 0.774 0.775
1.4 0.641 0.537 0.606
Table 7=2: Nonlinearity factor for mode 1 of a42‘
(reference level is Emin=.2v)
excitation
level (v) In Jo J
0.05 .945 .964 .954
0.07 .859 0.971 0.913
0.10 0.798 0.956 .873
0.20 0.733 0.863 0.795

Table 7-%: Nonlinearity factor for mode 4 of %o

(reference level is Fmin=.02v)

(l_!,‘\. Fmax

Fig, 7-8: Linearity check (J plot) of mode 1 for P
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the first mode of Y,, is showen in Fig. 7-8.

An additional linearity check was made by comparing two
reciprocal transfer mobilities (Y,, and Y?4) over the whole
frequency range (Fig 7-9).

Examination of the nonlinearity factors for these checks
shows that the degree of nonlinearity of the tailcone in the
range of interest is not significant and that if the
excitation levels are kept below the maximum level which is
practicable with our equipment, the measured data can be
treated as linear. The main reason for the good linear
behaviour 0of the tailcone may be attributed to the way it
was suspended; with 'free free' suspension high levels of
forcing are needed in order to induce large deflections in
the structure (which are usually responsible for marked
nonlinear behaviour). These required levels were beyond the

range our equipment could maintain.

24

J_+ .89

J -.98

J -,98

Xya

Fig, 7-9: Linearity check of 032 and @
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7.2 SINGLE-POINT EXCITATION MODAL IDENTIFICATION

The modal parameters for the 32 measured frequency
response functions were identified using three different

identification programs:

(i} POLARS (P) - a one-mode-at-a-time identification
routine.

(ii) SIM2 (S) - a simultaneous modal identification
routine.

(iii) PAPA (PP) - a simultaneous mode identification
routine.

The first two routines assume a hysteretic damping model
and the last one assumes a viscous damping model (see
appendix) .

Two typical sets of results are summarized in Tables 7-4
and 7-5. Because the second and the third modes are very
close, and in some measurements one of them was dominant, it
was sometimes impossible to identify the other mode (mode 3,
for example, in Table 7-5). The results provided by PAPA did
not include residual terms or guality factor. In general, it
is noticed that the quality of SIM's results is better than
POLAR's, especially for the two close modes. (A complete set
of results is given in ref[r3])

When presenting the results on a log mobility vs
frequency plot, the difference between the results obtained
by the three programs is effectively indistinguishable (only
true around resonances in this case, as there are no

residual terms included for PAPA's results).
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F {141.30 0155 +282E-01 5.0 2.4 P 141.30 +0LA3 190E-01 4.5 3.1

2 8 | 141.30 <0148 +270E-01 3.5 1.0 2 3 141.30 20155 +203E-01 st 5
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3 5 k] 8 145.350 0154 »yAPTE-02 -2 2.7
PP | 14%.50 0154 «3I30E-02 ~22.5 FE | 145.30 «0129 +AOIE-O2 -3.4

F | 162,40 L0164 | +tOIELGO -8.3% 5.0 P | 182,40 0151 | .984E-01 -5.4 5.0

4] 8| 1w2.50 JO1AS | JLO2E400 -9.2 4,6 4| 5| 182,50 SO152 | L973E-01 ~8.1 1.9
PP | 1HZ.50 .0188 +10ZE400 -8.7 PP | 182.50 »0155 1+ 101E400 =7.4

R U/kg)fEe D75} |Roe fam} | Iy (o/u] R [178e}| L (1/58] { R [mr8} | Ty [mrw)

p|-.0213 1.837B.3 | 3.3238.7 }-3.590R-8 p|-.0218 1.1548=3 | 3.151E-8 | -1.T16E-9

5§ --0210 2,878E~3 | 3.277B-7 |} -6.012B-8 5 |-.0228 1,3528-3 | 3.784E-8 |3.188E-11

Table 7-4: Derived modal parameters Table 7-5: Derived modal parameters
for moblility Y22 for mobility ¥

32

A typical example of a fitted curve as derived by SIM2 both
in logarithmic and polar formats is given in Fig. 7-10.
{taken from the complete set reported in ref. ({73]).

However, when these results are presented on a nyquist
plot, the differences between them are much clearer and in
many cases a visual check can tell which set of results fits
the experimental data best. An example to illustrate this
point is given in Fig. 7-11; when presenting the results in
this format, it was noticed that the modal parameters of
small modes were identified relatively poorly by PAPA
(Fig. 7-12).

Examination of the complete set of results indicates
that as the guality of the identification improves, the

values of the modal phase angles are reduced thus indicafing
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Fig. 7-10: Mobility and polar plots of measured and
fitted curve (SIM2) of receptance a
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Fig, 7-11: Polar plot of e and the theoretical curves
derived by POLARS and PAPA
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Fig, 7=12: Theoretically derived curves for mode 1
of % by POLARS and PAPA (detail from Fig. 7-11)
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that the true 'complexity' of the normal mode shapes of the
tailcone is very small and indeed, is smaller than is first

indicated by the preliminary modal analysis.

7.2.1 DERIVATION OF NORMAL MODE SHAPES

As the four columns in the frequency response function
matrix were measured and identified, it was possible to
derive four estimates for the normal mode shape
(eigenvector) matrix, one estimate derived from each column
in the modal constant matrix.

A set of modal constant matrices for the four modes {(one
matrix for each mode) as derived by SIM2 is given in
Table 7-6. It is clear that the matrices are not symmetric
and, therefore, that the normal mode shapes derived ffom
each column are not identical {(as they should be according
to theory). An example of the four different normal mode
shapes of mode 1 are given in Table 7-7 and a modulus plot
of these shapes is given in Fig. 7-13 (The complete set is
given in ref. [73]).

It should be noted that the normal mode shapes are mass
normalized and are thus scaled absolute quantities the unit
of which is (l/Kg)_%.

It may also be noticed that the phase angles of the
normal mode shape elements are either very close to g° or to
184° . It is expected, therefore, that the modull of the
(complex) normal mode shapes are practically equal to the

moduli of the (real) mode shapes of the hypothetical
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EXCITATION AT POINT KO,

2 [ ki
Mode 1
2088 0
-
Q0%B4 -.27 | 00067 174.37 ] .00736 178.77 |.00829 178.7C]
+ 00547 -.07 | ,00042 178.34 | .00694 -178.32 | .00750 -179,78
+00413  -1,00 | ,00032 179,835 | ,00524 179.20 |.00%7?7 ~178.89
+0021t  =2.3%5 | ,00027 174.45 | .00232 177.97 [.002460 -178.73
+00053 -177.9% | ,00007 23.%54 | .00048 -.4% | .00097 =7.33
+00377 179.0% | 00045 =6.01 | 00424  ~1,19 |,00484 -19
L00584 179,69 | .00078 -10.82 | ,00632 -.24 | .00778 -.51
+00594 179.94 | ,00087 -.4%5 | ,0073% ~1,34 | .00853 75
Mode 2
01140 2.98 | ,003%1 3.65 | (00869 =177.87 | .0109C 156,41
+025640 3.29 | .00B10 +42 1 ,01910 146.43 |,02780 173.35
+02700 3.52 | ,00834 .32 ,01850 =-178.40 | .02570 ~173,40
+02030 3.40 | 00542 .38 _— — - -
.00859 1.31 —_— — — -_ - —_
01988 -176.58 | - — ! .o082¢ 1.07 | — -
L2780 =174,.30 — — 02070  =4.75 | — —_
Mode 3
—_ — +00330 L2721 — — —_ _—
—_— —_ 101040 -,01] .01820 «49 | .02340 3.70
+ 00495 .23 | ,02080 =1.34] .03440 14.08 | .04440 18,75
00950 2,62 | 03200 ~2.24% .08110 2.32 | .04320 4.14
01340 15,38 | ,0%120 W27 09430 ~%,47 | ,10680 -3.1%
.01880 1.43 | ,06210 1.24 | +11240 =8.72 | .413830 ~4.77
+A2240 1.12 1 ,05740 2,61 | 12780  ~1,57 | .14390 -11.49
Mode 4
<02250  -9.9% | 01550 =-12,39 ] ,00858 173.73 |.01470 170,03
+07310  =9.14 | ,04830 ~9,56 | .02700 174,48 |,04990 173,04
+10200  =9.23 | ,06400 =10.35 | ,03780 175.26 |.04480 171.34
«09750 -8.05 | ,08540 =7.41 | ,03420 172.4% |.04540 173.17
06420  =8.42 | ,04570 -B.64 | L0520 173.40 |.04120 173,47
201050 -4.1t | .00479 -9.07 | .00477 168.43 |.004%3 -147.10
+QIT40 173,05 [ ,02410 174.465 | 01520 723 | 02850 7.73
«06290 174,18 | ,03940 173,301 102350 -3.37 |.04380 -2.28

Table 7-6; Modal constant matrices derived by SIM?

(modulus (1/Kg) and phase in degrees)

2
L0F0&9 -1
08005 A3
.04438 -.50
L03280 -1.05

L.00819 =177,47
05853 179,39
09068 -179.81
09245 —179.56

Table 7-7; Mode shapes (modulus

Excitation at point:

4
LO70BS 184,50
JO06543 185,67
05480 149.08
L02309 144,840
LOQRAT7 11.77
04761 -~17.78
.0823% ~-22.5%9
09168 -12.27

SOP2T9
08737
06579
02905
00051
05333
07948
07295

08277
08119
05244
L0201G
01046
Q3283
Q8421
LOF237

178.3%0
179,84
-179.27
-179.11
~7.70
-58
-.83
433

u
(1/Kg)~° and phase in degreesg)

of mode 1 as derived from each column of the modal constant

matrix (SIM2)
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Fig, 7-13: Mode 1 - four estimates for the normal
mode shape derived by SIM2
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undamped system.

7.2.2 DERIVATION QOF THE OPTIMAL MODAL PARAMETERS

The estimates of the modal parameters obtained from each
column of the mobility matrix were not consistent; in other
words, excitation at point i produced slightly different
modes to excitation at point j. In order to derive a 'best’
set of consistent modal parameters, the method described in
6.3 was applied to the measured data.

The 'best' values for the natural frequencies and modal
loss factors were deduced by a process of weighted averaging
and the results are given in Table 7-8 for each
identification program. It is noticed that the differences
between the best estimates from each identification program
are very small and, practically, it does not matter which
set of values 1s used in further calculation.

The 'best' normal mode shapes were derived by a
specially developed optimization program (OPMOD) [M]'and are
given in Table 7-9 for each of the three analysis programs.
It is, once again, noticed that the complexity of the
derived consistent set of mode shapes is very small. A
graphical representation of one of these sets of results
(mode 1, modulus only) is also illustrated in Fig. 7-14,

again taken from the complete set included in ref. [74].
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mode @, + € _
no. [=z] nooi €

1 77.20 .021 + 0047 .00024
TAR 2 141.33 .023 +Q142 +00019
PO 3 145.04 042 +0133 00019
4 182.77 031 10137 + Q00025
i 77.12 +Q26 + Q076 + 00014
IIM 2 141,38 .021 0158 200015
3 144.90 025 +0133 + 00024
4 182,48 .029 20145 . 00016
1 77.15 +011 Q074 + Q0004
PATA 2 141,42 +031 +Q133 Q0012
3 145.04 +031 +0132 Q0023
4 182.43 030 +01358 +00024

Table 7-8: Weighted average and tolerance of natural
frequencies and loss factors for the three analysis programs

m
Q
e SIM POILAR PATA
L 09020 179,805 | .0909% -179.083 | .08911 180,000
.83553 ~178,409 | .08413 -173.388 | .08%02 180,000
L06517 -180.000 | .06229 -179.943 | +06442 -17%.744
T} 02846 179.270 | .0283s 178,481 | .03028 179,606
. 00859 ~i.298 | .00742 -4,51%5 | 00887 1:.677
L05414° -.834 05329 -.0%91 05149 -3,717
L0B117 ~.302 | .08347 -.329 | .08045 -1.798
.09218 .230 | .09426 -,118 | .o09382 -.370
911 | 07115 1.141 | .0o7171 ~173.4617
'52233 .3;7 .15587 1.911 | .15753 -174.172
. 2,32 , 14820 2,170 | .14474 -180.000
16446 2.321 189000
2| 12316 1.283 | .1129& 2,350 0 82.2
L05151 -, 828 + 04743 887 04286 ~180.000
0 89,9464 ) 89,984 | .04053 4.03%
8 ©  -179.440 | .12821 -175.732 | ,11772 -1.,4%8
.11858 17 3 L.678
14481 -177.898 | .18289 172.50% | .14333 .2
) 0.0 ) 0.0 0 0.0
.01848 -.803 | .011%0 =32.790 1 ,02174 9,041
L (05492 2,443 | 05607 5.801 § .05594 2,245
3 1 .11480 -2,850 [ 11287 9,480 | ,10924 2,466
J17667 3.19% | 18354 -.084 | ,17744 1.4%9
.28521 ~2.758 | ,27422 -2,048 | 2772 1.302
+34108 -+ 784 » 33058 -4.420 . 334846 -2, 77D
.37452 -1.158 | 37954 -.245 | 38250 ~2,305
L072 ~7,222 | .08214 -15.547 | .07531 -1.948
.ggzég -4,841 | .20410 -9.730 | ,23240 -4,232
L3133 ~4.530 | +31409 -4.092 | ,32224 -4,534
41 ,3093s ~-5.147 | .30978 -3.870 | .31356 —4-831
V20464 -4,947 .20113 -4.338 .21271 -Saglé
L 03273 1,439 02803 ©=10.733 03594 g.ooo
L12158 -179.413 | .11451 ~180.000 L11849 ~180, 00
L 20731 -180.000 | .19737 -180,000 ,21518 ~180.0

' i
Table 7-9: Optimized normal mode shapes (modulus (1/Kg)~ =
and phase in degrees) for the three analysis programs
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Fig, 7=14: Optimized normal mode shapes of mode?

for the three analysis programs
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7.3 MULTI-POINT EXCITATION MODAL IDENTIFICATION

In addition to the single-point excitation tests, a
modal identification of the tailcone was made using a
multi-point excitation approach.

By this method the tailcone was excited simultaneously
with four shakers at different points on the structure (at
pesitions 2,4,6, and 7; Fig. 7-1), while the acceleration
response was measured at all eight points of interest. At
each natural fregquency the shakers were tuned so that the
input forces and the responses of the tailcone were in
quadrature. When this condition was reached, the leQel of
the acceleration at each point was measured thus providing
the forced proportional mode shape corresponding to this
mode. Table 7-1@ summarizes these mode shapes for the first
four modes. The 'natural frequency' (corresponding to the
natural frequency of the undamped system) is read directly
from the control unit.

If the system is assumed to be nonproportionally-damped,
then there is no unigque modal loss factor associated with
each forced proportional mede. However, because we knew a
priori that the complexity of the normal mode shapes was
very small, it was reasonable to assume that the tailcone was
proportionally damped and thus possessing one modal loss
factor for each forced proportional mode.

This loss factor was calculated by the half-power method
whereby the tailcone was excited at two frequencies {w, and

w,) one below and one above the natural frequency (w, ) where
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mode uw, (Hz) 1,
1 77.16 (77.12) L0077 (.0076)
2 141,24 (141.38) L0144 (.0158)
3 144,30 (144,90) 0152 (,0133)
4 181.40 (182,68) L0166 (.0145)

Table 7-11: Natural frequencies and loss factors
derived by the multi-point execitation method.
(In brackets, the optimized values derived by SIM2)

MODE
1 2 3 4
0 .0938 L0642 .009% .0719
1 .0873 .1419 .0339 .2396
2 .0566 1526 .0722 . 2875
z| 3 .0291 1071 L1292 . 3234
: 4 | -.0091 .0385 . 1959 .2156
5 | -.0556 ~.0589 . 2761 .0335
6 | -.0760 -.13%92 . 3296 -.1198
7 | -.0957 -.1820 L3741 -.2060

Table 7-10: The forced proportional modes as derived

by the multi-point excitation method (unscaled)
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the phase differences between input and response was 45° and

then using

Table 7-11 summarizes the first four natural fredquencies
and the corresponding modal loss factors derived by this
method.

We see that the differences between the results obtained
by this method and those from the single-point excitation
method are negligible. A graphical representation
(Fig. 7-15) of the mode shapes in comparison to those
derived by SIMZ2 indicates that, practically, both results

are identical.
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Fig. 7-15: Forced proportional mode Shapes ve, normal mede
shapes derived by SIM2 (the bar represents the spread of
the estimates derived by SIM2) for (a) mode 1, (b) mode 2,

(c) mode 3 and (d) mode 4,
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7.4 CONCLUSIONS

This experimental study served as a valuable example for
~evaluation of the methods developed in this work.
Examination of the results derived at the various stages of
this study leads us to the following conclusions:

(i) When using the single-point excitation pmethod it is
possible (and desirable with complete engineering
structures) to check the testpiece for nonlinear behaviour
and it is usually possible to change the testing conditions
so that the nonlinear influence onh the measured data is
removed or minimized. The systematic method developed in
this work facilitates this process and enables us to acquire
a 'best' linear model of the structure.

With the multi-point excitation methéd it is not
feasible to detect nonlinear behaviour and in severe cases
of nonlinearity it is impossible to reach the quadrature
relationship between input and response.

(ii) When an identification program is developed its
performance is usually checked by analysing synthesised
'experimental' data (i.e data from a linear system polluted
with random errors). It is found that when the algorithm is
improved, the results obtained using synthesised data
improve as well. However, such a marked improvement is not
observed when analysing real experimental data. This is
because real data contaln systematic errors due to
nonlinearities of the structure as well as random errors

from measurement. Thus, there is often little point in



trying to improve the analysis program by developing more
refined linear algorithms as the results do no justify it.
Furthermore, the optimized mode shapes derived from the
modal constant matrices obtained using different analysis
programs in this study were very close, further supporting
the previous conclusion that there is no reason to improve
the linear identification algorithm.

{iii) The modal phase angle is the parameter which is
usually the most severly distorted when the analysed data is
nonlinear or when the modes are very close. This distortion
tends to indicate that the normal mode shapes are
significantly complex, but when the data are acquired in a
very careful manner {(i.e minimizing the influence of the
nonlinearities) or when more precise algorithms are used to
analyse close modes, we usually f£ind that the derived normal
mode shapes are almost real.

A compérison with the (real) forced proportional mode
shapes derived by the multi-point excitation method suggestd
that, practically, the complex normal modes derived by the
single-point method may be regarded as the undamped normal
modes of the structure and can be used as such in any
further computation.

However, when a complete structure like a helicopter is
measured it is harder to minimize the nonlinear influences
and to reduce the level of random errors and the general
quality of the acquired data is , therefore, not as good as

for the tallcone. In this case, some caution should be taken
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‘when assuming that the derived complex normal mocdes are

equal to the undamped ones.
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8. CONCLUDING REMARKS

The results obtained throughout this work have already
been discussed and detailed conclusions given at the end of
each chapter. A brief summary of these conclusions is now

made as a review of the entire project.

8.1 THEORETICAL BASIS

Analysis of measured data in order to extract modal
parameters is effectively a process of ‘linearization' in
which a simple linear model is constructed to represent an
actual structure which will, in general, be far more
complex.

A widely-used theoretiéal linear model is the lumped
mass system with constant mass, stiffness and damping
elements. The solution of the eigenproblem for this type of
system is relatively simple; for a proportionally damped
system the derived eigenvectors for either the
hysteretically-or the viscously-damped system are identical
and are expressed in real terms. Generally, however, the
eigenvectors are expressed in complex terms and then the
analysis of the hysteretic model is simpler than that for
the viscous one and is more amenable to analysis of
experimental data.

Because there seems to be some confusion in the
definition of the term 'normal mode shape', this has been

defined in a consistent manner and some of its special forms
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have been pointed out. It has also been shown that the mode
shapes derived by the multi-point excitation method are
always real and are identical to the normal modes of the
proporticnally-damped system regardless of the form or type
of the damping present in the structure.

Experimental observations have shown that quite often
the derived normal modes are complex. On the other hand, the
mode shapes needed for comparison with theoretical
predictions or with multi-point excitation results are the
real proportional normal modes. A theoretical and numerical
study indicates that for moderately-damped systems with
separated natural frequencies, the (real) proportional
normal modes and the (complex) normal modes are
approximately identical, but as the level of damping is
increased or as two natural frequencies get closer, the
normal modes become more complex and then this approximation
must be applied with greater caution.

As the complexity of the normal modes hinges on the
relationship between the damping and stiffness matrices a
statistical parameter - 'the nonproportionality factor'-has
been devised in order to quantify the level of the
nonproportionality of a theoretical model and thus to enable
a compariéon to be made between differently damped

theoretical systems.
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8.2 PRACTICAL BASIS

8.2.1 IDENTIFICATION ALGORITHMS

In order to extract the modal parameters from measured
data, two identification algorithms have been developed:

(i) a relatively simplé one which assumes that the
response at each resonance is dominated by that of a cne-
degree-of-freedom system and derives the modal parameters
from analysis of the polar plot; and

(ii) a more advanced one which takes into account the
response of the structure at all the measured resonances and
curve-fits the experimental data simultanecusly for all the
modes.

The second algorithm proved to be superior when assessed
with theoretically-generated data, especially for difficult
cases_of close natural frequencies which were poorly

identified by the first algorithm.

8.2.2 EFFECT QF NONLINEARITIES

Experimental evidence has suggested that many of the
derived normal modes of practical structures are more
complex than expected by theory, even for cases of
well-separated modes. As this trend could not be simulated
theoretically it was felt that the cause for the discrepency
might lay in inadequate measurement or analysis procedures

which could be affected by slight nonlinearities of the
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structure. A theoretical study of several synthesised one-
degree-of-freedom nonlinear systems has proved that when
analysed with linear modal identification algorithms, the
derived modal parameters are poorly identified, even for
small amounts of nonlinearity. An experimental study on a

real structure supported these conclusions.

8.2.3 FINAL DATA REDUCTION

The latter results indicate that in order to derive the
linear properties of a real system much more attention
should be given to the data acquisition process. A
systematic method for this process has been outlined and
several useful tools have been devised in order to
facilitate its application.

(i) A 'nonlinearity factor', which enables the
inveétigator to assess the level of nonlinearity of the
measured data, and once the data are analysed;

(ii) the '"quality factor' which describes the accuracy
of the identification of each set of the derived modal
parameters and finally,

(iii) the 'generalized loss factor' which gives an
overall measure of the amouqF of damping present in the
system.

Although it is theoretically possible to derive the
complete mobility matrix (as well as the natural frequency
and mode shape matrices) from measurement of one column of

this matrix, it is found in practice that measurement of
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more columns is usually necessary. The redundant data thus
obtained are used to improve the quality of the derived
modal parameters by applying a newly-developed optimization
technique which employs the quality factor as a weighting
parameter. The end result of this process is the reduction
of a very large amount of data to produce a single
consistent set of modal parameters which describe the system

'best’'.

8.3 EXPERIMENTAL STUDY

Finally, a comprehensive experimental study on a typical
aerospace structure demonstrated some of the common problems
encountered and the methods developed in this research in
order to derive a satisfactory modal identificatioﬁ&é real
structure. It has been found that when real data are
analysed, the difference between the final results derived
by the various identification algorithms is negligible and
the marked superiority of the more sophisticated
curve~fitting methods when checked withsynthesised data is
not achieved with real data. This is probably due to the
fact that real data are never entirely linear; they are
polluted with measurement errors to which the identification
algorithms are sensitive,

Derivation of the undamped mode shapes by the
multi-point excitation method has proved that practically

they are equal to the moduli of the complex normal mode
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shapes derived by the single-point excitation method. This
result supports the theoretical conclusion that for
separated modes the complexity of the normal modes is very
small and is practically negligible.

The derivation of the real proporticonal normal modes
from the experimentally-identified complex normal modes
could not be done exactly because the modal parameters
derived from experimental data always comprise an incomplete
set. However, in the light of the theoretical and
experimental work described in this thesis we may say that
for most practical cases of separated modes the moduli of
the complex normal modes may be used as a very good

approximation to the real proportional modes.

8.4 SUGGESTIONS FOR FURTHER RESEARCH

The theoretical part of the modal identification method
is well-established; the practical aspects of it, however,
provide a fertile field for further topices for research.

As it has been shown that one of the main causes for
badly identified modal parameters is the deviation of real
system from linear behaviour, it is suggested that further
research should be devoted to this aspect, mainly in
developing methods for identification of the type of
nonlinearity. Some work in this direction has been done by
Tomlinson 2] for simple cases of dry friction, but more

comprehensive research to include more types of nonlinearity
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is needed. As a first step in this direction, an algorithm
to generate synthesised multi-degree-cf-freedom nonlinear
data has to be developed. Such data may serve as an
additional tool to check the sensitivity of linear modal
identification algorithms to nonlinearities.

In parallel, effort should be devoted to improve
measuring techniques to enable the investigator to acquire
error-free data and to have more control on the nonlinear
component measured.

Finally, further research is needed for cases of close
modes at higher frequencies where the modal density is high
and the existing identification algorithms prove to be

inadequate,
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19. APPENDICES.

APPENDIX 18.1

A NOTE ON 'FORCED PROPORTIONAL MODE' VS. 'NORMAL MODE'

"Therefore, with single-frequency, in-phase drive and
response, it is not possible to execite a pure mode of a
nonproportionally damped system. The experimenter who is
required to run a modal survey on a nonproportionally damped
system but who is limited to any of the techniques based on
in-phase drive and response in quadrature for identification
of a natural mode is being asked to do the impossible.”

(E. Sloane and B. McKeever; Modal Survey Technigques and
Theory. SAE- paper no. 751067, page 2979)

This categorical statement taken from this very long
paper is a good example of the confusion which can arise
from the ambiguity in the definition of the term 'mode'. The
authors of this paper failed to recognize the difference
between the 'forced proportional mode' and the 'normal mode'
of the system. This led them to an unnecessary numerical
example of a two degrees of freedom system in order to
demonstrate that the normal modes of a nonproportionally
damped system are complex and not identical to the (real)
undamped or proportional normal modes.

They assumed that the 'forced proportional modes' and
the 'normal modes' are identical (they refer to them as
'pure modes') and justifiably proved that they were not.

They also failed to understand that the multi-point
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excitation method excites the system in a real mode (forced
proportional mode) which is always identical to the (real)
undamped normal mode regardless of the model assumed for
dampiﬁg (If the damping is proportional this can be done at
any frequency. For nonproporticnally damped systems this
mode can be excited at the natural frequency of the undamped
system.)

Following their analysis they developed a complicated
method identical to the multi-point excitation method but
which has the capability of tuning the phase of the force as
well as the amplitude and thus excite the system in a
(complex) normal mode, which is not the goal of the

'traditional' multi-point excitation method.
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10,2 VISCOUS AND HYSTERETIC DAMPING APPROXIMATE RELATION

The basic equation of motion for the harmonic forced

vibration of a viscously damped system is:
(] (§}+[Cl {q}+(K] (q}=(F}el®® (10-1)

The general term derived for receptance ajk ilg:
n ., W
N _ Z (I'Rjk)+1 (?j’;) (I‘Sjk)
- a1 v2i g ]
21
= r Qr Q. rr
where ¢, is the modal critical damping ratio for the
r'th mecde,

(10-2)

This term differs from the corresponding hysteretic
damping case in the frequency dependence of the numerator.
However, when performing a modal analysis, this expressiocn
may be approximated to:

a A.
Yk T Z§22[1_(£’_)2r+ili{(_~_).)§ ] (10-3)
. r !% T

2

where _A.. is the modal constant, as in the hysteretic casge:

T ik
2 2 2
rAjkl ;erjkl . rsjki (10-4)
and its phase is:
S .
_e—1fr dk -
pO3=te (;Eig) (10-5)

The critical damping ratio {, may be related to the

hysteretic loss factor T s

(10-6)
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10.3 THE RANGE OF THE NONLINEARITY FACTOR

'Vsl ap+ X

Fig 10-1: Calculation of the nonproportionality factor

(i) Range of J4

If a,=0 then we get from (5-4) and (5-5) that
aq=Y (10-7)
and therefore
J4=0 (10-8)
If ay=0 then from (5-10) we obtain that
7,=1 (10-9)
The range of J1 for a120 is therefore

0 g« Jy< 1 (10=-10)
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(ii) Range of I

For a,20 we get from (5-14) +that
0o g nf2 (10=-11)
and therefore

0< J, <1 (10-12)

(iii) Range of Iz

(10-13)
Vg1 wWas derived for the minimum sum of deviations

along the y axis, E

min
- 2
Brin= 2. (F3=8g=a4%;) (10-14)
52
sl 1is by definition (5-8)
n52 =h
81 min (10-15)

from which follows that for any other straight line, ¥

z
nSy;zEmin (10-16)
and therefore
2 2
52255 (10-17)

from which follows that Jgis always

<1 (10-18)

The range of the nonproportionality factor J where
is therefore (Fig, 10-2)
0<Jg1 (10-19)

for a2 0.
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J=0 — Jzo

J1:1 J2=0
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Jit1

45"
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X

Fig. 10=2: The range of the J factor (for 842 0)




