
COUPLING TO A RECEIVING APERTURE FROM A  

RANDOM MEDIUM AT MILLIMETRIC WAVELENGTHS  

by 

ISMAIL A. MASHHOUR 

A Thesis submitted for the Degree of 

Doctor of Philosophy in the Faculty of Engineering, 

University of London and the Diploma of 

Membership of the Imperial College (DIC) 

Department of Electrical Engineering 

Imperial College of Science and Technology 

Exhibition Road, London, S.W.7 

June, 1979 



In the name of God, Most Gracious, 

Most Merciful 

Praise be to God, who hath guided us to this, 

never could we have found guidance, had it not 

been for the guidance of God 

4 



1 

ABSTRACT  

Some aspects of the interaction between a turbulent clear 

air medium and narrow beam millimetric wave propagation circuits are 

investigated. Theoretical and experimental studies at a propagation 

frequency of 38 GHz are described. 

The solution adopted for the wave equation governing the 

propagation of millimetric waves in a medium with weak refractive index 

inhomogeneities is the Parabolic Equation solution. On application of 

this solution, the propagation medium is shown to be equivalent to a 

spatial and temporal phase-modulation screen. Two types of media are 

considered; the first is one with a square law refractive index vertical 

profile. Estimates are presented for the signal gain or loss due to 

the focussing or defocussing effects of the medium. The second medium 

considered was one interspersed with refractive index inhomogeneities 

or blobs of randomly varying magnitude and size. A rigorous solution 

based on a Huygens' Principle approach provides information on the 

statistics of the amplitude and phase fluctuations and their probability 

distributions at the receiver site, as a function of the system and 

medium parameters. 

The extension of the analysis to a strongly random medium is 

made possible by dividing the medium into a number of regions or slabs, 

each represented by an appropriate phase screen. An angular plane 

wave spectrum approach is used to determine the coherent and incoherent 

powers available at the receiver plane. The propagation of the angular 

power spectrum and its corresponding lateral coherence function, 

through a series of random phase screens, is studied. This approach 

leads to a general transmitter-to-medium-to-receiving aperture 

coupling formula. A system signal-to-noise ratio and efficiency are 



defined in terms of the aperture sizes and the parameters of the random 

medium. 

A description of a 38 GHz, continuous-wave 12 kilometre radio 

link is given, together with the data processing procedures used to 

analyse the data available from an interferometer receiver system. 

Results for the amplitude fluctuations and variations of the cross 

correlation coefficients are presented. Results of the phase difference 

and angle-of-arrival fluctuations are also reported. The response of 

different receiving aperture sizes and the difference in their 

efficiencies and "smoothing" properties are also investigated. 

Some of the results obtained from the analysis and investigations 

carried out may prove to be useful in the efficient design and 

implementation of millimetre wave systems operating under different 

atmospheric conditions. 
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CHAPTER 1  

INTRODUCTION  

Ever increasing demand for radio-wave telecommunications is 

forcing radio system designers to operate at higher and less congested 

portions of the radio-wave spectrum. Nowadays, the maximum frequency of 

commercially available systems-verges on 18 GHz and, very soon, frequencies 

of 30 GHz and above will be in demand. Millimetre wave frequencies are 

not just a necessity because of radio spectrum congestion; they are very 

attractive in their own right. Their attraction is due, amongst other 

things, to their compactness and simplicity of manufacturing of 

millimetre wave sub-systems. The compactness is also obvious in the 

small high gain millimetre wave antennas. 

The areas of utilization of millimetre waves are wide and 

varied. For example, the 36 - 40 GHz has been allocated to fixed line- 

of-sight links, mobile and satellite communications systems(h. 

In spite of the inevitable advent of millimetre wave systems 

and the increased amount of theoretical and experimental investigations 

of the behaviour of such systems, there remains a certain amount of 

misgiving amongst the system engineers when such frequencies are 

mentioned for utilization. The main causes of concern are the atmospheric 

effects on the propagating wave. 

This report investigates both theoretically and experimentally 

some aspects of the atmospheric effects on millimetre wave propagation. 

In the following introductory discussion, the propagation medium with 

its different irregularities will be briefly considered. The system 

parameters which are affected by the medium are then discussed. 

A review of the theoretical approaches utilized in estimating 

the effect of the medium on radio-waves will be presented. The 
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experimental procedures undertaken to assess the theoretical predictions 

and to provide data which may be useful for future systems design will 

also be presented. These will be given together with the data processing 

techniques involved. 

1.1 	The Propagation Medium  

The region of the atmosphere which affects line-of-sight 

millimetre wave propagation is the troposphere. This lowest atmospheric 

shell is characterized by a general decrease of temperature with altitude, 

with a lapse rate of 2°C/Km. Clouds are formed within this shell and 

convection due to wind forces is active. Experiments have indicated 

that the earth's troposphere occupies the space above the earth's surface 

to a height of 10 kilometres(2). 

The meteorological factors which play a dominant role in the 

production of irregularities in the tropospheric propagation medium are 

temperature, humidity and pressure. These factors cause the variation 

of the refractive index across the propagation path, which directly 

affects the velocity of the propagating wave. The C.C.I.R. have adopted 

the following formula for the refractive index n(3):- 

n 1 + 77.6 (p  + 4.8T J 	10-6 

where T is the absolute temperature in degrees Kelvin and e and p are 

the water-vapour pressure and atmospheric pressure in millimetres. 

Therefore, any changes in T, p or e produce a variation in n. 

The order of influence depends largely on the mechanisms involved as 

will be shown later. 

The variations in the refractive index due to the varying 

meteorological factors may basically be divided into two categories 
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according to the temporal scales involved. Long-term, large-scale 

variations, e.g. over a period of a few hours and smaller size, short-

term ones over a period of a few seconds will be considered. 

1.1.1 	Long Term Refractive Index Variations  

The long term refractive index variations are those which 

occur in the vertical profile. These variations, are usually diurnal or 

even monthly variations and they extend over a few tens of kilometres. 

Under normal atmospheric conditions, i.e. over dry inland paths, the 

refractive index decreases linearly with height and hence causes a 

downward tilt of the propagating beam. Such standard refraction 

conditions are accounted for by modifying the earth's radius by a factor 

K and the modified or effective earth's radius is used in the design of 

line-of-sight links(4' 5). The K-factor is a function of the refractive 

index gradient and is defined as follows:- 

K = 
a' = 	1  
a 	

1 + a . a- 
( 1.2) 

where a' and a are the effective and true radii of the earth respectively, 

and h is the height above the ground. 

The refractive index has been found to decrease sharply with 

height for the first few tens of metres and then the gradient becomes 

less negative as the height increases. Hence an exponentially decreasing 

profile is the preferred standard(6). However, under some anomalous 

conditions the refractive index gradient deviates from the standard 

model. These deviations are a function of the underlying terrain and 

prevailing weather conditions. 

Table 1.1 shows the values of K and the refractive index 
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gradient dn/dh for the first 100 metres above the earth's surface for 

various atmospheric conditions(). As shown in Fig. 1.1, the refractive 

index may assume varying vertical profiles which depend on the prevailing 

atmospheric conditions and on the underlying surface. 

The modified earth's radius concept provides a method of 

estimating the linear first order effects of the refractive index 

variations. However, the second and higher order effects due to the 

inversions in the n-profile are not accounted for. These higher order 

variations induce a loss or gain in the signal level due to the de-

focussing or focussing effects of the inversion layers. 

Such refractive index profiles are likely to exist over a long 

period of time, e.g. a few hours. This is due to the fact that the 

mechanisms involved are long term processes, e.g. warm air blowing 

inland over coastal areas in the night-time. Therefore, the profiles 

may be considered to be stationary over a long period of time. 

In Chapter 2 an analysis is undertaken to predict the effects 

of a medium characterized by a square-law refractive index profile on a 

propagating finite beam. The refractive index profile is assumed to be 

constant with time, i.e. a deterministic quantity. This is a reasonable 

assumption according to the above discussion. 

1.1.2 	Short Term Refractive Index Fluctuations  

These fluctuations are the smallest sized ones produced by 

the atmospheric dynamics. They are due to the motion of blobs of 

varying refractive index, with scale sizes ranging from tens of metres 

to about 1 millimetre($). There are two main causes of small-scale 

refractive-index irregularities close to the surface of the earth(9). 

The first acquires its energy from stable air layers moving close to the 

surface of the earth and the irregularities are produced by the stirring 
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TABLE 1.1  

K-FACTORS AND REFRACTIVE INDEX GRADIENT  

VARIATIONS. (AFTER GTE LENKURT MANUAL)  

K  (dn/dh) 	•106 
per Km 

Prevailing Climate Propagation 

5/12 + 220 Low ground humidity, Subrefraction 
1/2 + 157 advection fog over 
2/3 + 	80 cold water, above 

normal low level 
temperature 

1 0 Homogeneous, uniform Straight line ray 

1.25 - 	30 Dry, mountainous Standard refraction 
4/3 - 	40 Typical 	inland. 
1.6 - 	58 Humid, coastal 

2.75 - 100 High ground humidity, Super-refractive, 
m - 157 steam. 	Fog over warm 

water, below normal 
or rapid drop in low 

flat earth prop- 
agation, ducting 

- 1 - 314 level temperatures Ducting, trapping 
-1/2 -470 

Refractive index 

Fig. 1.1 Refractive index vertical profiles 
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action caused by obstacles along the path. The second source of 

turbulence originates from ground sources and the irregularities are 

carried into the surrounding atmosphere by thermal convection. The two 

causes of turbulence will be qualitatively discussed below. 

(a) 	Refractive Index Irregularities Caused by Stirring  

Actions  

Stably stratified layers of air are carried along the 

propagation path, with the wind velocity having a certain profile. 

Usually the wind velocity is lower at ground level and increases with 

height, thus possessing an orderly shearing motion. This motion is made 

disorderly if the laminar flow is obstructed by obstacles, which may be 

man-made, buildings, towers, etc., or natural, e.g. mountainous regions. 

Due to this stirring motion produced by the obstacles, parcels of air 

are carried from one level to another, thus causing temperature and 

hence refractive-index fluctuations amongst the originally stable layers. 

If the ground temperature is lower than the air temperature, then the 

temperature would increase with altitude for the first few metres and 

cool parcels of air would be stirred into the upper warmer layers. 

These air parcels would tend to sink downwards again due to the buoyancy 

forces; the opposite process is also true. 

The size of the broken-down parcels of air depends to a large 

extent on the structure of the obstacles involved and on the temperature 

and wind velocity profiles. Furthermore, these parcels tend to break 

down into smaller eddies as they move from one layer to the next. This 

is due to the combined wind shear and buoyancy forces acting on the air 

parcel. Detailed and quantitative analysis of turbulence due to stirring 

motions may be found in the literature, e.g. Brunt
(10). 
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(b) 	Refractive Index Irregularities Caused by Thermal  

Convection  

Whenever thermal sources are found on the surface, the air 

above the sources is unstably stratified, i.e. becomes turbulent. 

Thermal sources may be man-made or natural. Chimneys, parking lots and 

heated buildings in general are some examples of man-made thermal 

sources. Natural sources occur when the ground is much warmer than the 

air above; an obvious example is desert terrain in the day-time. Generally, 

bare ground absorbing solar energy acts as a thermal source. 

As a result of the presence of thermal sources, bubbles of hot 

air are discharged into the air above. The mechanisms of formation of 

the bubbles vary according to the dynamic and thermal conditions of the 

atmosphere. Eventually the bubbles ascend into the surrounding 

atmosphere under their buoyancy forces. The bubbles have been shown by 

Scorer and Ludlam(11)  and Scorer and Ronne
(12) 

to have a cap which is 

hemispherical in shape. As the bubble ascends, it leaves in its wake 

a trail of relatively cooler air and parts of the bubble are eventually 

eroded and washed in its wake. Thus as the bubbles ascend, they produce 

smaller eddies which circulate freely causing smaller refractive index 

irregularities. 

As the bubbles rise, the temperature difference between the 

core and the surrounding air, namely, the excess temperature, decreases. 

Scorer(9)  has shown that the excess potential temperature AO is 

proportional to z 1/3  where z is the height above the ground. Whilst 

the excess temperature of the bubble decreases with altitude, its size 

increases. The variation of the size and temperature of a bubble as a 

function of altitude is given in Table 1.2, which is after Nicolaides
(13)  

and Wulfson(14)
. 

Therefore, it may be seen that a line-of-sight radio link 
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TABLE 1.2  

Altitude 
(metres) 

Mean Dimension of Bubble 
(metres) 

Mean Temperature Excess 
(deg. 	cent.) 

10 31 0.54 

30 37 0.18 

50 43 0.19 

100 46 0.18 

300 58 0.14 

500 61 0.11 

1000 64 0.10 

encounters larger and less intense irregularities as the distance above 

the ground increases in an environment which contains thermal sources. 

(c) 	Refractive Index Fluctuations due to Humidity Variations  

So far, only the effects of temperature variations on 

refractive index irregularities have been considered. However, it may 

be seen from Equation (1.1) that humidity variations have a greater 

effect on the refractive index at microwave frequencies than temperature 

variations. 

The density of water vapour is 0.62 times that of dry air. 

Hence, if two parcels of air have the same density but different 

humidities, they must have different temperatures. When those parcels 

are disturbed for any reason, the disturbance dies out only when the 

density becomes uniform along a horizontal surface. Therefore, the 

atmosphere is left with a patchy distribution which is only smoothed 

out by molecular diffusion over many hours(9). 

Therefore, in propagation paths over warm water or vegetation, 
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or over water-laden chimney outlets, blobs of different refractive index 

are expected to be distributed in the medium. The prevailing wind 

conditions and hence the size of the blobs determine their effects on a 

propagating beam. Very large blobs which engulf the beam would act as 

lenses which would have a focussing effect, whereas many smaller and 

less intense blobs distributed randomly across the path would have a 

scattering effect. The time variations of the focussing or scattering 

effects is largely dependent on the prevailing wind conditions. 

In conclusion it may be said that the propagation medium 

usually contains refractive index irregularities of one form or another, 

which vary in magnitude and spatial distribution. Anomalous propagation 

conditions are caused by irregular vertical refractive index profiles 

which have a very slow temporal variation, e.g. a few hours. The effect 

of such profiles is to tilt and focus or defocus a propagating beam. 

Other types of irregular transmission media are those which 

contain a random spatial distribution of blobs of varying sizes and 

refractive indexes. The presence of such blobs is caused mainly by 

stirring motion due to obstacles or by thermal convection. It is 

worthwhile noting that both causes of blob-producing mechanisms previously 

discussed are present in an urban environment. The sizes of these blobs 

may vary from tens of metres down to 1 millimetre with the larger blobs 

further away from the surface than the smaller ones. 

The presence of such blobs is likely to have a scattering 

effect on a propagating radio wave with the scattering becoming more 

pronounced as the propagating wave—length decreases. Very large blobs, 

e.g. tens of metres, are likely to have a lens-like effect on a 

propagating beam. 

The rate of fluctuation of the scattered signal may be linked 

to that of the refractive index fluctuations if the blobs are considered 
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to be "frozen" in space and carried along by the wind flow, as 

postulated by Taylor(15). From an analysis of the wave number spectra 

of the turbulence, which has been carried out by Kolmogoroff(16) 
 

and adopting Taylor's "frozen turbulence" hypothesis, the temporal 

spectra of the refractive index fluctuations may be obtained. There 

are also received-signal fluctuations due to internal rearrangements 

of the refractive index with time, as opposed to external whole-body 

shifts. The fluctuation spectra due to the internal mechanisms are 

deduced in this thesis. A detailed analysis of the variation of the 

temporal spectra of the refractive index and signal fluctuations as a 

function of various atmospheric parameters has been carried out by 

Nicolaides(13)
. 

Having briefly considered the propagation medium, some of the 

millimetre-wave system parameters affected by the medium irregularities 

will be discussed in the next section. 

1.2 	System Design Considerations  

Randomly varying refractive index inhomogeneities present in 

the medium cause a fluctuation in the mean value of the propagating 

signal. However, the medium effect most feared by millimetre wave 

system designers is complete loss of signal due to absorption, the 

main causes of which are rain and fog. 

Fig. 1.2 shows the attenuation due to precipitation by rain 

and fog for different frequencies after C.C.I.R(7). It may be seen 

from the figure that an acceptable system's value of 1 db/Km at 40 GHz 

is obtained at a moderate rainfall rate of 4.0 mm/hr, or under 

visibility conditions of 30 metres in fog. Higher rainfall rates may 

be tolerated due to the fact that high intensity rain cells seldom 

cover a propagation path of more than a few kilometres. 
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Frequency, GHz 

Attenuation in fog or 
cloud : 

A. 0.25 mm/hr(drizzle) - 0.01 in/hr 
B.1.Omm/hr(light rain)- 0.04 in/hr 
C. 40 mm/hr(moderate rain)-0.16in/hr 
D. 16 mm/hr(heavy rain ) - 0.64in/hr 
E.100mm/ hr (v heavy rain) - 40 in/ hr 

F. 0.032 gm/m3  (visibility greater than 600m.) 
G. 0.32 gm/m3  (visibility about 120m) 
H. 2.3 gm/rn3  (visibility about 30m ) 

Attenuation In rainfall 
density of: 

*Attn.- dB/mile=1.61 x (Attn. in dB/km ) 

Fig.1-2 Attenuation due to precipitation (after CCIR) 
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Apart from the attenuation effects due to rain and fog, or 

loss of signal due to antenna decoupling caused by variations in the 

refractive index profile, the clear air random medium poses a few 

problems. These are basically due to scattering and atmospheric multi-

path effects caused by the inhomogeneities in the medium. Some of the 

system design parameters affected by clear air turbulence are discussed 

below. 

(a) 	Reliability of a Line-of-Sight Radio Link  

Atmospheric multipath produced by the interaction of rays 

scattered from the random inhomogeneities causes fades in the received 

signal level. The duration and depth of the fades depend on the path 

length and on the nature of the inhomogeneities. Such fades may present 

serious problems if their magnitude and rate of occurrence are such that 

the signal is lost for an unreasonably long period of time. 

Assuming the fades to be Rayleigh distributed, the annual 

outage probability, W, for a certain path is given by(7):- 

W = a . b . (2.5) . 10-6  . f . D3 	10 F/l0 

where: a is a terrain factor, values of which are equal to:- 

4 : for very smooth terrain, including over water 

1 : for average terrain with some roughness 

1/4 : for mountainous, very rough or very dry 

b is an atmospheric factor and is equal to:- 

1/2 : Gulf coast or similar hot, humid areas 

(1.3) 
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1/4 : normal interior temperate or northern 

1/8 : mountainous or very dry 

f is the frequency in GHz 

D is the path length in miles 

F is the fade margin, to the "minimum acceptable" point, in 

decibels 

The above equation takes into consideration atmospheric and 

surface caused multipath. The reliability of the system A is then 

given by:- 

A = (1 - W) . 100 per cent 

Therefore, for a 20 mile, 40 GHz radio link, over average 

terrain and normal interior temperate, i.e. a = 1 and b = 1/4, the 

reliability A for a system with a 40 db fade margin is predicted to be 

99.998%, which corresponds to an average outage time of 10.5 minutes per 

year. 

If higher reliability figures are required to meet stringent 

performance values, or for adverse propagation conditions, therefore, 

diversity must be considered. 

Different forms of diversity may be possibly used, e.g. 

frequency, space, cross polarization or hybrid diversity techniques. 

Probably the most convenient diversity technique for millimetre wave 

propagation is space diversity. This is due to the small antenna sizes 

involved and for the small correlation distances across the receiver 

plane. A spatial diversity improvement factor I has been defined(7)  

as follows:- 
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I = (1 - r2 ) . 10F/10 (1.4) 

where r is the correlation coefficient and F is the fade margin. Hence 

predictions and experimental investigations of the variation of the 

correlation length across the receiver plane, under various atmospheric 

conditions, are necessary for effective planning of spatial diversity 

systems. Results of such experimental investigations are reported in 
Chapter 8 for a 38 GHz radio link. 

(b) 	Medium Scattering Effects on System Signal-to-Noise  

Ratio and Antenna Efficiency  

The fluctuations in the received signal due to the random 

scattering by the medium inhomogeneities is effectively a noise 

contribution by the medifum. This noise is added to the inherent 

receiver noise and could prove to be detrimental in the implementation 

of systems with particularly high signal-to-noise ratio requirements. 

Such systems are becoming increasingly popular to-day and are mainly 

digital data transmission systems, hence a deterioration in the signal-

to-noise ratio is reflected as an increase in the bit-error rate. A 

high band rate data system requires bit-error probabilities less than 10
-7. 

Fig. 1.3 shows the relationship between the bit-error rate 

probability and the signal-to-noise power ratio in decibels for 

different modulation schemes, taken after Garner(17). The curves are 

calculated under the assumption that the noise is Gaussian distributed. 

Atmospherically contributed noise may be "smoothed" out by 

using large aperture size receiving antennas. Such a choice is 

particularly relevant to achieve the bit-error probability requirements 

for high speed data transmission systems. 

The other aspect of beam scattering by small refractive index 
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inhomogeneities is a drop in receiving aperture efficiency. This drop 

is due to the fact that the scattered portions of the incident wave 

correspond to off-axis incident power. Therefore, if the magnitude of 

the scattered power and the random scattering angles are relatively 

large, a large aperture size receiving aperture with a very narrow beam 

would be "insensitive" to off-axis incident energy. Therefore, very 

high gain aperture would have a lower receiving efficiency than the 

wider beam width smaller apertures. Gain degradation on loss of 

efficiency of large apertures in turbulent media has been theoretically 

investigated and some experimental evidence is available(18). A drop 

in aperture efficiency is effectively a drop in the system efficiency, 

which is an important design factor in low power propagation over long 

distances, which is the case for millimetre wave systems. 

Therefore, a proper choice of the transmitting and receiving 

.apertures is necessary to obtain the desired signal-to-noise ratios and 

efficiencies for a millimetre wave system. An analysis of the variation 

of both the signal-to-noise ratio and efficiency as a function of the 

aperture dimensions and the nature of the medium inhomogeneities is 

given in Chapter 5. Results of experimental investigations of the 

variation of the magnitude of the fluctuations and the gains of different 

size receiving apertures are given in Chapter 3. 

(c) 	Angle-of-Arrival Fluctuations  

Large scale size blobs of varying refractive index tend to 

refract narrow beams as a whole. Due to the random motion of the blobs, 

the angle of incidence of the beam at the receiver site would then 

fluctuate about the on-axis direction. Such large scale angle-of-arrival 

fluctuations would cause a fluctuation in the received signal due to the 

off-axis reception by narrow beam receiving antennas. These fluctuations 
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may be decreased by using adaptive reception techniques, where the 

receiving antenna would track the incident beam and adjust its pointing 

angle for maximum reception. Modern designs of antenna arrays facilitate 

the implementation of such adaptive systems due to the electronic beam 

steering techniques used. Adaptive receiving systems using pilot laser 

beams, assuming the medium to be reciprocal, have been considered in 

some detail by Fantē(19). Therefore, under turbulent atmospheric 

conditions with drastic angle-of-arrival fluctuations, costly large 

aperture antennas may be replaced by smaller and cheaper ones arranged 

in a more efficient adaptive array system. 

Implementation of such adaptive receiving systems requires 

detailed knowledge of the magnitude and rate of the angle-of-arrival 

fluctuations. Experimental investigations of the magnitude and rate or 

temporal spectra of the fluctuations have been carried out by means of 

an interferometer receiver, with the results given in Chapter 8. 

Such investigations are also very useful for radio systems 

which are affected by any small variation in the angle-of-arrival caused 

by the atmosphere. An example of such systems is monopulse radar, 

which derives target information by null reception from two or more 

offset apertures(20). Therefore, any slight atmospherically caused 

variation would produce errors in target location or definition. Such 

errors may be accounted for if medium effects are known in detail. 

The theoretical and experimental approaches, applied in this 

thesis, to investigate some of the medium effects on a propagating 

millimetric wave will be discussed below. 

1.3 	Review of Theoretical Approaches  

The purpose of the theoretical investigations carried out in 

the following chapters is to understand, in physical terms, the effects 
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of a random medium on a narrow propagating beam. An attempt has been 

made to formulate some of the relevant system parameters in terms of 

measurable or predictable medium parameters. 

The interaction between the medium and the propagating wave is 

obtained by solving the wave equation in a medium with refractive index 

variations. The solution applied in the investigations is the Parabolic 

Equation (PE) solution, which is an approximate solution. The conditions 

for reducing the scalar wave equation to a parabolic form are:- 

(i) ' The wave length of the propagating wave is small compared to 

the dimensions of the medium inhomogeneities, and, 

(ii) The variations in the refractive index are much smaller than 

unity. 

The solution as described in Chapter 2 is split into two 

parts, the first allowing for diffraction under free space conditions 

and the second neglecting diffraction but taking the refractive index 

variations into account. For narrow beams, the "split-step" solution 

shows that the effect of weak refractive index variations is to 

contribute a phase variation, the characteristics of which are 

determined from the characteristics of the refractive index variations. 

This leads to the notion of collapsing the tenuous medium into a phase 

screen representative of the medium. The PE solution becomes inaccurate 

in media with strong variations in the refractive index. In such cases, 

the path length may be partitioned into several slabs such that the 

refractive index variations may be considered to be weak within each 

slab. Therefore, each slab may be collapsed into an appropriate phase 

screen and the medium is represented by a series of phase screens normal 
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to the direction of propagation. 

Parabolic variations in the refractive index profile are 

treated in Chapter 2. Since atmospheric conditions producing such 

profiles are usually very slow time varying processes, the refractive 

index variations are considered to be deterministic. As previously 

mentioned, the medium is represented by an appropriate phase screen and 

for strong parabolic gradients, multiple phase screens are applied. A 

computer adaptable recursive formula is obtained to calculate the 

waist and radius of curvature of the beam as it propagates through a 

number of phase screens. The amount of focussing or defocussing of the 

diffracting beam is estimated for various gradients. The effects of 

localized regions, with a parabolic gradient, of varying thickness and 

location along the propagation path are also studied. 

A rigorous solution for the on-axis electric field fluctuations 

in a random medium is presented in Chapter 3. The medium statistics 

are defined and the appropriate random phase screen is imposed at the 

transmitter plane. The transmitter aperture field is broken down into 

a set of Huygens' sources and the on-axis random field is then taken 

as the summation of all the elemental fields radiated by the random phase 

modulated Huygens' sources. The percentage field fluctuations observed 

by an on-axis point aperture are obtained in the near and far fields of 

the transmitting aperture, as a function of the transmitter aperture 

size and the medium parameters. Individual second-order statistics and 

distributions of the amplitude and phase fluctuations may be obtained by 

adopting a "Hoyt vector" type of representation of the fluctuating 

field. This is achieved by resolving the fluctuating field into its 

real and imaginary components and then obtaining the statistics of 

their fluctuations. 

Extending the analysis to a strongly random medium, i.e. 
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imposing further phase screens on the propagating wave is not practical 

with a Huygens' Principle approach. This is due to the complexity of 

the equations involved, as will be shown later. Another drawback for 

this rigorous approach is the difficulty in introducing the effects of 

a finite receiving aperture with a finite beam width as opposed to an 

omnidirectional point receiver. 

To overcome the above-mentioned difficulties, an angular 

spectrum approach is then applied to investigate the coupling of a wave 

to a finite receiving aperture after propagation through a strongly 

random medium. Although detailed field statistics are not easily 

obtained by this method, yet its physical significance and ease of 

manipulation make it a very useful analytical tool. 

A brief introduction to the angular plane wave spectrum 

representation of propagating fields is given in Chapter 4. The 

imposition of a random phase screen has the effect of reducing the 

coherent power propagating and introducing an incoherent angular power. 

The magnitude and angular spread of the coherent and incoherent angular 

powers are studied as they propagate through a series of random phase 

screens, representing a strongly random medium. These are obtained as 

a function of the transmitter aperture size and the medium parameters. 

Having obtained the coherent and incoherent angular powers 

available at the receiver plane, the next step is to calculate the 

amount of power coupled to a finite receiving aperture. A general 

transmitter-to-random medium-to-receiving aperture is obtained in 

Chapter 5. The coherent and incoherent coupled powers are obtained 

as a function of the transmitter and receiver aperture sizes and of the 

random medium parameters. A system efficiency and signal-to-noise ratio 

are defined in terms of the system and medium parameters. 

The incorporation of the transmitter aperture size in the 
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analysis seems to be of some importance since most of the analysis 

present in the literature deals with plane wave propagation in a random 

medium. It has been suggested(21)  that there exists "serious deficiencies 

of the general understanding of transmitter effects on scintillation". 

Under some medium conditions, which will be shown in the text, the 

transmitter aperture size has a more dominant effect on the system signal-

to-noise ratio and efficiency, than the receiver aperture size. 

To complement the theoretical analysis and to provide further 

insight into the random atmospheric effects on millimetre wave propagation, 

some experimental investigations have been carried out. 

1.4 	Review of Experimental Investigations  

A 38 GHz (8 millimetre) continuous wave radio link was set up 

over a 12 kilometre path across South London. The main purpose of the 

link was to investigate the medium-induced amplitude and phase distortions 

across the receiver plane. This necessitated the joint construction of 

a variable spacing interferometer receiver system, with amplitude and 

phase difference detectors. Various climatological conditions were 

monitored at the receiver site and a synoptic data record was 

simultaneously available with the signal fluctuations. Detailed 

information for the radio link and the associated systems are given in 

Chapter 6. 

• The amplitude fluctuations available from the dual channel 

detectors and the phase difference information were simultaneously 

recorded for off-line data processing and analysis on a digital computer. 

The data handling and processing techniques used and the relevant 

programs are given in Chapter 7. 

The results presented in Chapter 8 are divided into three 

sections, namely, they are those dealing with amplitude fluctuations, 
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phase difference fluctuations and different aperture size effects. 

The amplitude fluctuations were observed to be very low, e.g. 1%; this 

seems to agree to a large extent with the theoretical predictions based 

on the coupling formula derived in Chapter 5. Measurements of the 

spectra of the amplitude fluctuations seem to agree with those obtained 

from other experimental links over London
(22) 

and with theoretical 

predictions made in the literature. Amplitude cross-correlation 

coefficients were measured at various horizontal and at one vertical 

spacing, under different atmospheric conditions. These were generally 

found to be quite low, i.e. less than 0.5 at spacing larger than 0.8 

metres, which gives some confidence in the design of spatial diversity 

systems with small receiver separations. 

Phase difference measurements were simultaneously carried out 

at various spacings and again, these were also found to be very small, 

e.g. ± 5 degrees. Angle-of-arrival fluctuations were rarely observed 

under the different atmospheric conditions which prevailed over the 

measurement periods. These results were also found to be in agreement 

with those predicted from the phase screen approach. 

Three different aperture sizes were used to investigate the 

variation in reception as a function of the receiver aperture size. 

Experiments were carried out to estimate the aperture smoothing effect, 

i.e. the enhancement of the signal-to-noise ratio due to the larger 

aperture size. The variation in the mean signal level was taken as a 

variation in the aperture efficiency, after taking into account the 

signal level variations due to other factors. The variations in the 

behaviour of the aperture sizes used were negligible, which was 

predicted by the coupling formula, for the aperture sizes under 

consideration. 
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CHAPTER 2  

WAVE PROPAGATION THROUGH A SQUARE LAW MEDIUM  

In this chapter, the randomness of the medium is set aside and 

the effect of a deterministic inhomogeneous medium is investigated. 

Linear vertical gradients of the refractive index are known to cause a 

bending of the propagating wave, which affects the propagation distance 

covered and are accounted for by modifying the earth's radius. 

The second order effects of a quadratic vertical gradient of 

the refractive index on a propagating Gaussian wave are investigated. 

The medium is assumed to be uniform in the lateral y-direction and 

independent of z, the direction of propagation. 

The propagating wave under consideration is one radiated by 

an on-axis aperture with Gaussian amplitude and zero phase distribution, 

i.e. the rays' input to the medium are parallel with a zero launch angle. 

As a consequence of the focussing or defocussing, the spot-size 

or "1/e" waist of the Gaussian beam in the vertical direction, is 

different from that in the case of free space propagation. This may be 

interpreted as a gain or loss induced by the medium. As a result of 

the power concentration, long distance propagation can occur under 

ducting conditions. 

The analytical approach used here is based on the solution of 

the parabolic wave equation, which is an approximate form of the wave 

equation in a medium with small magnitude and large scale-size 

variations in the refractive index. The problem is then reduced to 

that of estimating the focussing or defocussing of a cylindrical wave 

by a medium containing a series of on-axis concave or convex lenses of 

variable focal lengths. 
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2.1 	Examples of Propagation Media with a Parabolic Refractive  

Index Gradient  

2.1.1 	The Exponential Refractive Index Model of the  

Atmosphere  

The vertical gradient of the refractive index has been 

described by many models, each representing an average over some period 

of time for certain geographical locations. 

The basic model is one which assumes a linear decrease of 

refractive index with height. Since the refractive index cannot 

decrease below unity, therefore, an indefinitely decreasing linear 

gradient cannot be a feasible representation. To overcome this problem, 

some authors(6) have recommended a linear decrease to some height, which 

is taken to be 1 kilometre, followed by an exponentially decreasing 

gradient. 

The second model of the atmosphere is the exponential one and 

which has been recommended by the C.C.I.R.(3) and is of the form:- 

n(x) = 1 + ns 
. e- 0.136 x 

where n(x) is the refractive index as a function of the height x measured 

in kilometres. ns is the value of the refractive index at ground level. 

The recommended value for sea level is 289 . 10-6. 

For small values of x, say, less than 1 kilometre, the above 

expression may be expanded in the quadratic form:- 

n(x) = 1 + 289 . 10-6 1 - 0.136 0-3 
x + (0.136 . 10-3)2 x2~ _ 

2 

= 1.000289 - 3.93 . 10-8 x + 2.67 . 10-12 x2 , x is in metres 
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The phase contribution of the different terms of the equation 

may be analysed individually. The zero order term represents a constant 

phase shift to the propagating beam, which is of no consequence. The 

first order term which is equivalent to the linear gradient has the 

effect of bending the propagating wave back towards the ground. This 

effect has been thoroughly investigated, and the concept of an increased 

earth's radius is used to account for the increase in the propagation 

distance. 

The second order term has the effect of a defocussing lens in 

the case of an exponentially decreasing gradient. The medium in this 

case continuously defocusses the beam as it propagates along, with the 

equivalent continuous lens placed normal to the direction of propagation 

and its axis passing through the focal point of the parabola representing 

the refractive index profile. 

The complex combination of simultaneous bending and defocussing 

will not be analysed since this requires a continuous shifting of the 

axis of the continuous lens with respect to the axis of the propagating 

wave. However, the individual effect of defocussing by a continuous 

lens-like medium is investigated. 

Therefore, in addition to the increased distance of propagation 

due to the bending of the beam, there is an accompanying loss due to 

the diffusion of power caused by the continuous defocussing of the 

medium which enhances the continuous spreading due to free-space 

diffraction. 

Under some inversion conditions, the refractive index increases 

up to some altitude after which the index begins to decrease again. 

This sort of profile gives rise to a negative parabolic gradient. 

Therefore, in this case, the medium focusses the propagating beam which 

counters the free space spreading of the wave. This additional 
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concentration of the beam is equivalent to an increase in the 

available power per unit solid angle and is thus a gain induced by 

the medium. 

The propagation of radio waves under inversion conditions has 

been analysed and discussed by many authors
(4, 20, 23, 24)

_ However, 

the medium induced gain or loss are not readily predictable and no 

numerical adaptations have been developed. 

2.1.2 	Localized Inversions and Large Spherical Inhomogeneities  

In the previous section, the exponential model for the 

refractive index gradient was taken to represent an average propagation 

medium. However, many propagation paths are not necessarily represented 

by an average model since, for most practical situations, the underlying 

surface is not uniform. 

Since the refractivity gradient is a function of the vertical 

distribution of atmospheric temperature, humidity and pressure, therefore, 

any localized variation in any of these parameters will cause a change 

in the refractivity gradient. Localized changes of the different 

parameters may be caused by any number of factors, a discussion of which 

is present in the literature, e.g. Bean and Dutton(25)  and Gossard
(26). 

To cite a few of the possible cases for an urban environment, is 

propagation over relatively warm patches of ground, e.g. parking lots, 

or over sources of hot air and high water vapour content, e.g. outputs 

of large chimneys. 

The effect of the localized inhomogeneities may be to create 

an inversion layer at a very low altitude, e.g. a few tens of metres, 

which possibly lies on the propagation axis of a radio link (Fig. 2.1). 

Examples of different parabolic gradients may be obtained by 

fitting a polynomial to various practically measured refractivity 
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profiles, e.g. over Colorado, USA(25). The refractivity for the first 

80 metres is given by:- 

n(x) = 1.000295 + 5.44 . 10-7 . x - 6.61 . 10-9 . x2 

where x is the height in metres. This indicates a negative parabolic 

gradient for the refractivity profile; the inflection point was at a 

height of 40 metres. 

The width of the localized non-standard region obviously 

depends on the underlying medium. In some cases, the propagation path 

may be divided into two portions, each of different refractivity 	' 

gradients, e.g. on propagation between sea and land or vice versa. 

In other cases, the localized portion may be represented 

ideally by a spherical blob, e.g. in the case of organized thermal cells 

or convective bubbles of hot humid air. The refractivity within the 
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spherical blob may be assumed uniform and different from the surrounding 

atmosphere. It will be shown that this situation is analogously 

represented by a slab of the medium with a different parabolic gradient, 

the magnitude of which depends on the radius of the spherical blob and 

on the difference in the refractivity between the blob and the surrounding 

medium. 

As an example, consider a medium with a temperature of 15°C, 

pressure of 1,000 mbar and a relative humidity of 10%, and a puff of 

saturated hot air at the same atmospheric pressure, but with a temperature 

of 45°C. The difference in refractivity is 320 . 10-6  n-units. 

To simplify the analysis, the centre of the spherical blob 

will be assumed to lie on the propagation axis (Fig. 2.2). 

w 

1  
Fig. 2.2 Focussing effect of a spherical blob 

The position of the localized region with respect to both the 

transmitter and the receiver plays an important part in the amount of 

focussing or defocussing of the diffracting beam, and will be 

investigated for various positions and widths of the localized region 

along the propagation path. 
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2.1.3 	Self-Focussing Optical Fibres  

The application of optical fibres for optical signal communications 

has been enhanced by the introduction of self-focussing fibres. These tend 

to contain the propagating wave and thus decrease the losses due to 

leakage of the diffracting beam from the fibre walls. 

The subject of wave propagation through either a continuous lens-

like medium, or a medium with periodic thin lenses has been studied by 

many researchers. For example, Kogelnik(27)  formulates the laws governing 

the propagation of a light beam in terms of a complex valued beam parameter; 

Tien et al(28)  obtain an equation for the beam radius using a ray optics 

approach, and Marcuse(29)  treats the propagation of a Gaussian beam in a 

lens wave guide and obtains ray transformation matrices. 

In the present treatment, the waist and radius of:curvature of 

a Gaussian beam are traced through a medium with discreet periodic lenses, 

which in the limit, as the separation between them decreases, may be 

considered to be continuous without any significant error. 

It will be shown that for a certain critical value of the 

parabolic gradient, the diffraction of the Gaussian beam is totally over-

come and the beam is periodically focussed as it propagates along the 

guide. It is in this mode that the wave could propagate for very long 

distances through the guide without any leakage. 

2.2 	Application of the Parabolic Equation Solution of the Wave  

Equation to a Tenuous Inhomogeneous Deterministic Medium  

In order to study the effect of a parabolic or square-law 

variation in the refractive index on the properties of a propagating 

Gaussian wave, a diffraction approach will be considered, and is based 

on an approximate solution of the wave equation known as the parabolic 

equation (PE) approximation. 
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The refractive index n, may be written in cartesian co-

ordinates as follows:- 

n(x,y,z,t) = 1 + in(x,y,z,t) 	 (2.1) 

where in(x,y,z,t) is the variation of the refractive index from its 

nominal value of unity, at a time t. 

The scalar electric field E of a quasimonochromatic beam is 

thus determined from the solution of the wave equation:- 

V2E + k 2  (1 + An)2  E - V (V . E) = 0 	 (2.2) 

The last term in the above equation represents depolarization 

effects, which can be shown(19)  to be negligible for microwave frequencies 

and, hence, will be neglected. 

The variations of the refractive index, An, will be considered 

to be much less than unity. This assumption is true for media with 

inherently weak variations, or over small distances of a medium with 

strong variations, such that the departure from a mean or nominal value 

is small. 

In this case, the scalar wave equation reduces to:- 

V2E + k 2  (1 + 2An) E = 0 	 (2.3) 

For the time being, we shall consider the electric field E to 

be propagating essentially in the forward direction along the z-axis. 

The magnitude u of this field is a relatively slowly varying function 

of both position and time due to the variations An (r,t) of the 

refractive index, where r is an abbreviation for (x,y,z) and, therefore:- 
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E (r,t) = u (r,t)  . e-jkz (2.4)  

Substituting in the wave equation, and assuming that the 

longitudinal scale size of the variations is much larger than the wave-

length, i.e.:- 

2 

az2 « 
2k az (2.5)  

The wave equation is thus reduced to a differential equation 

of a parabolic form, which is known in the literature as the parabolic 

equation (PE)  approximation:- 

2 	2 

axe
+a 2 j2k3z+2k2 An . u=o   

Y 
(2.6)  

For simplicity, the two-dimensional form of the parabolic 

equation will be discussed, i.e. uniformity in the y-direction will be 

assumed. However, the same development principles apply in the three-

dimensional case. 

The solution of the parabolic approximate form of the wave 

equation for a diffracting wave in an irregular medium is a difficult 

task. However, to circumvent this difficulty, it has been shown(30) 

that the solution process may basically be split into two parts, by 

means of the so-called "Split-Step Fourier Algorithm". 

The first part is the solution of the parabolic equation for 

a diffracting wave in a medium with no refractive index variations. 

The second step in the overall solution is the further assumption of 

large lateral scale sizes of the irregularities which allows for 

further simplification of the parabolic equation. 
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First, in the absence of refractive index irregularities, the 

scalar electric field in the right half plane z > 0 may be represented 

by a series or spectrum of plane waves. The relationship between the 

electric field distribution E(x,z) and the angular plane wave spectrum 

F(s) being a Fourier transform relationship. (This topic will be 

discussed in more detail in Chapter 4). 

+03 

E(x,z) = 	F(s) 	
a-jk (xs + zC) ds 
	 (2.7) 

-co 

The plane-wave spectrum function F(s) is expressed in terms 

of the angle variable s = sin 0, where e is the angle that each plane-
wave direction makes with the z-axis, and C = cos O. For the case of 

a narrow diffracting beam, e.g. the angular plane-wave spectrum is 

limited within the range Is' < 0.2, i.e. 101 < 12°, then the cosine 

may be approximated by C = 1 - 
2  s

2, and, therefore, the field at a 

plane distance d may be approximately given by:- 

+.0 
( 	l  jkds2  

E(x,d) = e
_ jkd 

I F(s) . e-jkxs . ē 	ds 

-00 

(2.8) 

Substituting the above expression for the electric field in 

the parabolic equation and noting that u is denoted by the integral in 

the above expression:- 

- k2 	s2 . u + k2  . s2  . u + 2k2  . An . u = 0 	(2.9) 

This confirms that the parabolic equation is valid for 

narrowly confined propagating fields in a medium with, no refractive 
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index irregularities, i.e. An = 0. 

The next step in the solution of the parabolic equation in 

an irregular medium is to neglect diffraction and to make the further 

assumption that the lateral scale sizes of the irregularities are much 

larger than the wavelength. In view of this assumption, it is 

reasonable to omit the remaining second order derivatives and, hence, 

the solution of the remaining first order differential equation is:- 

u(x,t;d) = u(x,t;0) . eix,t;d) 
~(  

(2.10) 

where:- 

d 

(1)(x,t;d) = - k 	An(x,z,t) dz 

0 	' 

The above solution indicates that the modification imposed by 

an irregular medium is purely a phase contribution. The electric field 

distribution on a normal observation plane at a distance d is the 

initial field distribution projected forward with its phase modified. 

The characteristics of the phase contribution are determined by the 

characteristics of the refractive index irregularities An(x,z,t) along 

the propagation path. 

Having established the two parts of the solution, first 

allowing for narrow spreading of the wave in a uniform free space medium, 

and the second allowing for the presence of irregularities but suppressing 

diffraction, the two parts of the solution may be combined, and the scalar 

field E at a distance d in a medium with refractive index variations 

An(x,z,t) may be written as:- 
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E(x,t;d) = E0(x;d) . ei(1)(x,t;d) (2.11) 

where Eo(x;d) is the free space field at the observation plane z = d, and 

c(x,t;d) is the phase contribution of the medium given by Equation (2.10). 

Eo(x;d) is the free space field at z = d and is given by the 

Fourier transform relationship of Equation (2.7). By applying the 

convolution theorem to Equation (2.7), it may be shown that the electric 

field is alternatively given by:- 

+0 

E(x;d) - e
-jkd 	

E(x',0) . e j 	
(x - x')2 

dx' 	ej~(x't;d) 	(2.12) 
'Fa 

-o 

which is Fresnel's diffraction formula. 

The procedure to be followed in calculating the field 

distribution after propagation through a medium of refractive index 

irregularities is to divide the total path length involved into regions 

or slabs, each of thickness d. The refractive index variations An within 

each region are then small enough to allow for the application of the 

parabolic equation approximation. 

Having calculated the field distribution at the end of the 

first region at z = d, the process is repeated to calculate the field 

distribution at z = 2d, with the initial field in this case being that 

calculated at z = d. Repeating this procedure for the total number of 

slabs, the field distribution at the final observation plane may be 

observed. 

The above outlined approximate method for the solution of the 

wave equation in an irregular medium was used and proven to be 

satisfactory in such applications, e.g. Tappert and Hardin(31), who 

have applied this technique to obtain algorithms used mainly in under- 
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water acoustic propagation. 

The mathematical simplicity and physical justification 

involved in its application make this method a powerful tool to use. 

The refractive index variations to be considered in this 

chapter are of a deterministic nature and as previously mentioned, are 

of the form n(x) = 1 - px2, where p is the strength of the parabolic 

gradient. Time variations are not considered. 

The aperture electric field distribution will be arbitrarily 

taken as a uniform phase and Gaussian amplitude distribution, with a 

"1/e" waist wo. Therefore, the aperture electric field at z = 0 is:- 

- x2/w2 
o 

E(x,0) = e 

To trace the "1/e" waist point or spot size of the beam 

through the medium, the total path of length L will be divided into n 

slabs or regions, each of thickness d. The contribution of each region 

is to add a phase which is dependent on the refractive index variation 

within the slab, and is given by Equation (2.10). Therefore, the phase 

is given by:- 

d 

J

cp(x;d) = - k 	(1 - px2) dz = - kd + kpx2d 

0 

The procedure is to add the effect of each slab to the 

electric field distribution at the beginning of the slab, and then 

allow the phase modulated field to diffract to the next slab in a free 

space manner. This process will be repeated for n successive slabs. 

The initial field at z = 0 is modified by the phase 

contribution of the slab from z = 0 to z = d. Therefore:- 
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- 2 2 

E(x;0) = e x /wo  . e
+ jkpx2d 

The complex electric field distribution at the next plane, 

z = d is calculated using Fresnel's diffraction formula. Substituting 

for E(x',0) and after some manipulation, the field distribution at 

z = d is:- 

k 	2 
— x2/w2 	— 	2R x  

E(x;d) = C . e 	1 . e 	1  (2.13) 

where:- 

w2  = w2 C2 + (2pd2  - 1) j 
1 	0 	o 

and:- 

R 
1 
= d 

a2  + (2pd2  - 1)2 

0  
a2 + 2pd2 	(2pd2 - 1) 
0 

a = 
Ad 

C is , 	a constant term 
0 

744
2 

0 

The above expression for the "1/e" waist and radius of 

curvature are reduced for free space propagation (i.e. p = 0) to those 

obtained by Siegman
(32). 

At z = d, the effect of the medium from z = d to z = 2d, i.e. 

the phase contribution p(x,d) = kpx2d, is added. Therefore, the modified 

complex electric field distribution at z = d is:- 

x2  
2 

—4  k x2 

E(x;d)I 	= C . e 44
1 . e 	2R1 	ejkpx2d 

phase modified 



a2  + r2pd2 	
R J 

(2pd2  - 1 - 
d J 1 	1 
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This phase modified field distribution is allowed to diffract 

in a free space manner to the plane z = d, and may be shown to be:-  
2 

	

- X 	kx2  

	

w2 	J 2R 
E(x;md) = C. e 	2 . e 	2  

w2 = w2  I (2pd2  - 1 - R 1 2 	a2 
1 

Xd 

and:- 

R = d 
2 

_ 	2 
a2 Í

2pd2-1 -R 1 
1 

To calculate the complex electric field distribution at z = 3d, 

the effect of the medium from z = 2d to 3d is added onto the distribution 

at z = 2d. The modified field is then allowed to diffract to the plane 

z = 3d. 

The above procedure may be shown to produce a recursive 

formula, by which the complex electric field distribution at a distance 

z = m . d may be obtained in terms of the field distribution at a previous 

slab at z = (m - i). d, i.e.:- 

. kx2  
- x2/w2 	J 2R 

E(x;md) = C . e 	m  . e 	m 	 (2.14) 

2 _ = W2 
m-1 
	d 2 	2 wm wm-1 [[2Pd2 1 	

Rm-1 	
+ am-1 



Ad  
am-1 = 	2 

m-1 

and:- 

 

am-1 + 12pd2  - 1 	R  d  
2 

m-1  

 

R
m 
 = d 

  

 

am-1 
+{2pd2  	Rd) [2Pd - 1 	

d
1 

 m-11  	m-1J 

 

    

It is worthwhile noting here that a Gaussian beam propagating 

through a medium with a parabolic refractive index gradient, remains 

Gaussian. However, the "1/e" waist and radius of curvature of the 

modified Gaussian beam are a function of the parabolic gradient p as may 

be seen from the above equations. 

In the previous analysis, the phase effect of each region was 

added to the field distribution at the beginning of the region. However, 

it may easily be shown that adding the phase modification due to each 

region at the end of the region, produces a similar result, except that 

the recursive formulae (2.14) fall back by a slab. Obviously if the 

, regions or slab thickness are very small with respect to the path 

length, the difference is insignificant. 

2.3 	Propagation Through a Continuous Medium with a Parabolic Gradient  

The availability of a recursive formula to determine the spot-

size and the radius of curvature of the Gaussian wave, facilitates the 

computational process. A computer program has been written which 

determines both quantities for varying propagation distances, parabolic 

gradients and slab thicknesses. 

The accuracy of the phase integral method deteriorates for 

increased slab thickness and/or increase in the parabolic gradient. An 
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example of this deterioration may be found in Table 2.1. The waist at 

1,000 metres was calculated for a wavelength of 8 millimetres. The 

true waist at 1,000 metres is assumed to be that obtained by a slab 

thickness of 1 metre. The percentage error is defined as:- 

Percentage error = w
slab - 

w1 
, 100 

1 

where:wslab = waist at 1,000 metres calculated using a slab of 

thickness d metres 

w = waist at 1,000 metres calculated using a slab of 

thickness 1 metre. 

It may be seen from the following table that the accuracy 

decreases as the slab thickness and the parabolic gradient are 

increased. 

Fig. 2.3 shows the variation of the beam spot-size as a 

function of distance for a 12 kilometre path for various negative and 

positive parabolic gradients in a continuous medium. The wavelength 

considered is 8 millimetres, radiated by an aperture with Gaussian 

amplitude distribution with a "1/e" width of 0.3 metres. The slab 

thickness was taken as 10 metres. 

The continuous focussing of the medium concentrates the beam 

in the vertical direction and thus the available electric field per 

unit solid angle is increased, which is equivalent to a gain. 

On the other hand, the defocussing of the medium is equivalent 

to a loss induced by the medium. 

Since the loss or gain are in the vertical direction only, 

and since the Gaussian beam is assumed to be uniform in the lateral and 



TABLE 2.1 

Slab Thickness 
in metres 

d 

%age error Slab Thickness 
in metres 

d 

%age error 

p = 3 	. 	10-8 p = 3 	. 	10-5 p = 3 	. 	10-8  p = 3 	. 	10-5  

1 0 0 40 0 1.51 

2 0 0 50 0 2.35 

4 0 0.01 100 0.01 8.56 

5 0 0.02 125 0.02 11.90 

8 0 0.06 200 0.04 14.86 

10 0 0.09 250 0.06 262.29 

20 0 0.38 500 0.25 

25 0 0.59 1,000 1.01 
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vertical directions. Therefore, the beam cross-section is reduced from 

a circle in the free space case to an ellipse in the square law medium. 

The equivalent gain or loss in the electric field may be 

defined as the ratio of the areas of the ellipse to the free space circle. 

Table 2.2 shows the gain and loss induced by various gradients 

for the 12 kilometre path at a wavelength of 8 millimetres. 

TABLE 2.2  

Parabolic 
Gradient 

Power Gain 
in dbs 

Parabolic 
Gradient 

Power Gain 
in dbs 

+ 3.0 	. 10-10  0.125 - 3.0 . 	10-10  - 	0.124 

+ 3.0 	. 10-9  1.289 - 3.0 . 	10-9  - 	1.216 

+ 3.0 	. 10-8  23.295 - 3.0 . 	10-8  - 	10.121 

Continuous Self-Focussing  

If the parabolic gradient is sufficiently increased, it may 

be shown that the beam may be totally contained by means of continuous 

focussing which completely overcomes the diffraction process. 

Fig. 2.4 shows such a situation for a He-Ne laser of wave-

length 6.328 . 10-7  metres, with a "1/e" aperture size of 5 millimetres. 

Increasing the strength of the parabolic gradient may be seen to 

decrease the dimensions within which the beam may be contained. 

2.4 	Propagation Through Localized Thermals  

As previously mentioned, the localized thermals may be regions 

of different parabolic gradients located within the propagation path. 
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Alternatively, the localized thermals may be due to spherical or 

cylindrical puffs of uniform refractive index within a medium of 

different refractive index. 

Phase Modification Due to Spherical Blobs  

Consider a spherical blob in two-dimensional form, or 

alternatively a cylinder of radius A, with a refractive index n in a 
2 

medium n , as shown below:-
1 

Lz A x d • 

     

     

      

6  

A 
n, 	nz 

z 

The phase change acquired by the propagating wave may be 

calculated according to Equation (2.10):- 

C x,L + d) = 2 C kn6 - kn2  (A - 6)1 

neglecting the linear phase component and substituting IS = x2/2A:- 

2 	(n - n ) 
(p(x,L + d) = k . 	2 	

1 
	. 2  	 = kpx2d , p = 2 . (n2  - ni)/d2  

1 	 d2 

 p is the equivalent parabolic gradient mentioned previously. 

For n - n = 320 . 10-6  n-units, and a radius of 20 metres, therefore, 
2 	1 
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p = 4.0 . 10-7. 

Effect of Varying the Location of the Localized Region  

The presence of a localized parabolic region with a positive 

gradient, will focus the diffracting beam, the amount of focussing 

obviously being proportional to the thickness of the region along the 

direction of propagation, and on the magnitude of the parabolic gradient. 

The amount of focussing is seen to be a function of the 

location of the parabolic medium with respect to both transmitter and 

receiver. This may clearly be seen in Figs. 2.5, 2.6 and 2.7. In all 

three cases, the region was taken to be 200 metres wide, with a gradient 

of 3.0 . 10-7. In Figs. 2.5, 2.6 and 2.7, the regions are situated at 

distances from the transmitter of 200, 6,000 and 10,000 metres 

respectively. 

The gain at a propagation distance of 12 kilometres is seen 

to be greatest for the mid-path location of the parabolic region. 

However, it may be observed that the rate of increase of the waist is 

positive for locations near the transmitter and becomes less so as the 

parabolic region is moved away. At some distance, the waist begins to 

decrease, i.e. focussing overcomes the diffraction process. 

This may be attributed to the fact that the radius of 

curvature of a spherical (or cylindrical) Gaussian wave increases as 

the wave propagates further away. Therefore, the wave tends to become 

plane and, hence, may be focussed more readily by a lens-like region. 

The above qualitative description obviously does not provide 

a means of determining the effects of a lens-like region of varying 

thickness, gradient and position on the spotsize or waist at various 

path lengths. However, the availability of a computational algorithm 

provides an easy means of prediction. 
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In conclusion, it may be seen that a square law medium 

focusses the propagating wave (or defocusses it for a negative gradient). 

This may explain such phenomena as anomalous propagation or signal 

enhancement at certain periods of the day when inversion layers are 

most likely to occur. For example, the refractivity profile discussed 

in Section 2.1.2 was obtained at 0250 hours; the parabolic gradient in 

this case would cause an increase of 2.95 decibels in the electric field 

over a propagation distance of 12 kilometres at a wavelength of 8 

millimetres and a transmitting aperture with a Gaussian amplitude 

distribution with a "1/e" width of 0.3 metres. Such inversion conditions 

are likely to occur over relatively long periods of time, i.e. possibly 

a few hours, and would not appear as signal fluctuations of a random 

nature. 

On the other hand, localized patches with parabolic gradients 

are mainly influenced by prevailing wind conditions, and are more 

likely to produce faster fluctuations. The amount of fluctuations has 

been seen to depend on the location of the parabolic region and the 

strength of the parabolic gradient, which is likely to vary over a 

period of a few seconds. For example, the magnitude of the field 

variations varies for a 20 metre spherical blob with a difference in 

refractive index of 320 . 10-6  n-units from the surrounding atmosphere, 

from 0.07 decibels to 0.43 decibels for distances of 500 metres and 

6,000 metres respectively from the transmitter end, for a radio link as 

described above. 

The application of the split-step Fourier method in the 

solution of the parabolic equation has been seen to be a useful technique 

in determining the effects of a medium with small magnitude, large scale-

size (compared to the wavelength) variations in the refractive index. 

The consequent phase integral results are readily applied in 
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a medium with random variations of the refractive index, as will be 

shown in the following chapters. 
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CHAPTER 3  

STATISTICS OF AN ELECTRIC FIELD PROPAGATING  

THROUGH A MEDIUM WITH WEAK RANDOM  

REFRACTIVE INDEX FLUCTUATIONS  

The purpose of this chapter is to investigate the effects of 

a random medium characterized by uniform and homogeneous spatial 

variations of the refractive index throughout the propagation path. 

The scale sizes of the variations considered are large 

compared to the wavelength involved, and the magnitude of the 

variations about a constant mean value is considered to be small with 

respect to the mean value. Under such conditions, the results obtained 

from the solution of the parabolic equation approximation of the wave 

equation, outlined in Chapter 2, namely, the phase integral solution, 

are applicable to the propagating wave. 

The approach used is based on considering the radiating 

aperture as a set of Huygens' sources. It will be shown that the 

medium may be collapsed into an equivalent phase screen situated at the 

transmitter plane. 

The statistics of the complex on-axis electric field are 

obtained, which give an insight into the individual amplitude and phase 

fluctuations, and into the probability distributions of the random 

field. The dependence of the field fluctuations on the properties of 

the random medium and on the system parameters are outlined. 

3.1 	The Parabolic Equation Solution of the Scalar Wave Equation  

in a Weakly Random Medium  

It has been shown in Chapter 2 that the approximate solution 

of the parabolic equation in a medium with small refractive index 

variations, with scale-sizes much larger than the wavelength, is basically 
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a phase disturbance. The modification in phase due to the medium is 

determined by the characteristics of the refractive index variations 

as shown in Equation (2.10). 

The refractive index variations considered here are of a 

random nature and, therefore, it is necessary to define their statistics. 

3.1.1 	Statistical Description of the Medium  

•The randomness of the medium is attributed to the presence of 

random variations or irregularities in the refractive index, which is 

assumed to be a real quantity. This is a valid assumption at microwave 

frequencies and, hence, absorption is not considered. 

The refractive index fluctuations are assumed to be 

statistically uniform throughout the medium. The refractive index may 

be written in cartesian co-ordinate form as follows:- 

n(x,y,z;t) = <n> + An(x,y,z;t) 	 (3.1) 

where: 	<n> is the expected value of the refractive index which, 

for convenience, will be taken to be unity. 

An is the random fluctuation around the mean value. 

The analysis presented is concerned with the effects of the 

spatial variations of the refractive index and not the temporal ones, 

hence the time dependence will be dropped. Furthermore, the lateral 

spatial fluctuations of the refractive index Ln(x,y) are considered 

to be independent, i.e. Lin(x,y) = in(x) . An(y) and, therefore, to 

make the analysis less cumbersome, the two-dimensional form of the 

fluctuations will be considered, i.e. An = An(x,z). 

The above reduction of the functional form of the refractive 
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index fluctuations does not affect the significance of the analysis 

since, as previously mentioned, the variations are considered to be 

independent and, therefore, it will be seen that their effect may be 

added in the final solution symmetrically. 

Assuming spatial stationarity, the autocorrelation function 

of the refractive index fluctuations is defined as:- 

Rn(E,?) = <An(x,z) . An(x + E, z + c)> = an . rn(E,c) 

where E  and  c  are the lateral and longitudinal separations respectively 

and Qn is the variance of the refractive index fluctuations. rn(E,c) 

is the normalized autocorrelation function. 

The autocorrelation function can have various functional forms 

depending on the nature of the irregular medium. The form chosen in 

this treatment is the Gaussian one, i.e.:- 

rn(E,c) = exp 
E2 - 2 

e e 
0 	0 

(3.2) 

   

The quantities "Eo"  and "c o" are called the scale-sizes of the 

irregularities and can be thought of as the size of an average "blob" or 

irregularity in the lateral and longitudinal directions respectively. 

The Gaussian autocorrelation function has the advantage that 

it enables many results to be evaluated analytically. However, it is 

important to realise that this does not imply that the medium fluctuation 

has Gaussian statistics(33). The form of the probability distributions 

governing n(x,z) and the form of the autocorrelation function are quite 

independent of each other. A function n(x,z) obeying. non-Gaussian 

statistics may or may not have a Gaussian autocorrelation function and 



vice versa. 

3.1.2 	Statistics of the Phase Contribution of the Medium  

Having defined the necessary statistical properties of the 

medium, the resulting random phase contribution will now be studied. 

Consider a bundle of parallel rays propagating as shown in 

Fig. 3.1. Applying the approximate solution of the parabolic equation, 

the rays will suffer a phase change determined by the intervening 

medium. In physical terms, the refractive index blobs may be considered 

to be randomly distributed lenses. 

Fig.- 3.1 Random distribution of refractive index blobs in a propagation 
path 

The phase variation is calculated according to Equation (2.10) 

and is:- 

d 

40)I 	= - k Jn(xz) dz 
. z=d 

0 

(3.3) 
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It may be shown(34)  that the phase autocorrelation function 

at the plane z = d, in terms of the lateral separation , is:- 



63 

+d 

R()(~) 

where: 

= k2 	. 	d 

a2 

. 

is 

j 

-d 

the 

- d . 	Rn(E,
0 	. 	d~ = 	

•
a 	. 	r~(E) 

if, 

of the phase fluctuations. variance 

rfi() is the normalized phase autocorrelation function. 

Substituting for the refractive index autocorrelation function 

in its Gaussian form, the above integral is found to be:- 

_ E2/ 	2 
R(E) 	= k2 	. 	d 	. 	e 	° 

which for d » 	, reduces 

✓~r 

to:- 

~° 	- d°° Qn 

0 

_ E2/E2 
RI5() 	_ VT . 	k2 	. 	d 	. 	Qn 	.° 	. e 	° 

Therefore:- 

a2 = T . k 2 . d . a2 . 
0 

and:- 

(3.4) 

_ E2/E2 
r(15 (E) = e 	° 

which is of the same form as the autocorrelation function assumed for 

the refractive index fluctuations. 

Having defined the random medium and its relevant statistical 

properties, the problem then is to investigate the effect of such a 

medium on a diffracting wave propagating through it. 
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The following analysis will add insight into the manner by 

which the field is coupled from a finite transmitting aperture into a 

random field. The dependence of the field fluctuations on the size of 

the aperture relative to the medium scale sizes will be determined. 

The behaviour of the random complex electric field is investigated in 

the near and far fields of a finite radiating aperture, i.e. the analysis 

is not limited to a plane wave propagation problem. 

3.2 	Random Field Calculations Using Huygens' Principle  

In this section, the statistics of the electric field will be 

obtained using a Huygens' Principle approach. Although this method is 

more complicated than the lateral coherence approach outlined in Chapter 

4, it is worthwhile to pursue due to the more detailed information it 

provides for the field statistics. 

First, the complex field distribution is calculated in a 

plane normal to the propagation direction for a Guassian aperture field 

in a deterministic medium and the randomness is then imposed. 

3.2.1 	Fresnel Field Calculations in a Uniform Medium  

Consider a radiating aperture of finite width, a. The aperture 

field is defined with respect to a lateral co-ordinate system E. This 

field may be assumed to be quantized into a large number of elemental 

sources fi(E). 

The complex electric field distribution resulting from the 

combination of the elemental sources is calculated at the plane z = d 

and at a point p whose x-coordinate is as shown in Fig. 3.2. 

The complex electric field at the observation point p(x,d) 

due to the elemental source fi(E) is linearly polarized, with an x-

component given by
(35):- 
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	,-z 

 

d 

Fig. 3.2 Electric field radiated by an elemental source 

f (E) - jkr 
dEx(x;d) = 	ā 	e 	' . 	cos O. dE 

i 

(3.5) 

Making use of the following approximations, which are the 

Fresnel approximations:- 

(i) 	cos Ai  = 1, which is a good approximation for narrow beam spreads. 

(x - E.) 2  
(ii) ri  = d + 	

2d 

(iii) assume that d is large enough for amplitude variations due to 

ri  changing to be negligible. 

Therefore:- 
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x 

- jkd 	jk 2d 	 -jk 	j k~ 
dEx(x;d) = 	ad . e 	. e 	. YE) . e 	. e 	dE 

and, hence, the value of the electric field at the observation point p 

is the integral over the aperture:- 

+a/2 

j 	-jkd 	 jk 2d 	 3 
kxE 
	

3 kE2 
Ex (x ; d) - 	

Ad
e 	e 	f ( ) 	e 	e 	d 

- a/2 	(3.6) 

A reasonably practical analytical distribution for the aperture 

f (E) is a uniform phase and Gaussian amplitude distribution, which is 

also simple to integrate, i.e.:- 

f() = b exp (- E2/w2) 

where w is the "1/e" width of the radiating aperture field and will be 

taken as the effective aperture size. 

Substituting this aperture field into Equation (3.6) and 

noting that the Gaussian field is a decaying one, so the limits of the 

integration can be taken to be ± co, it may be shown that:- 

_ x2 

wd j 	2R

2 
d 

Ex(x;d) = Cd . e 	. e 

 

(3.7) 

where:- 

       

C 	
- jkd /1j 

b e 	
+ 2d/w2k)  

d = 	. 	
1 + (2d/w2k)2 

 

        

w2 = w . 2 
d 
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Rd =d 	1+ 
f 2k)  

wd  and Rd  are the "1/e" waist and radius of curvature respectively of 

the Gaussian beam at the plane z = d. 

It is worthwhile noting here that the expression for the 

Gaussian field distribution is identical to that obtained in Chapter 2 

for the free space case (Equation (2.13) with p = 0). 

The magnitude of the on-axis field, x = 0, is given by ICdI. 

Therefore:- 

IEx(0;d)1 = b . A •  
1  

4 /11 

 12 + 

 l2dJ 

2 
(3.8) 

3.2.2 	Fresnel Field Calculations in a Random Medium  

As previously mentioned, the effect of the random medium under 

consideration on a propagating bundle of rays is to contribute a random 

phase modulation given by Equation (3.3). Therefore, the elementary 

field at the observation point p(x,d) due to an elementary Huygens' 

source fi(), will be modified by the random phase contribution along 

ri  and, hence, Equation (3.5) becomes:- 

	

f•(E) 	- jkr. 	J4). 
dEx(x;d) = 	

ā . 	
. e 	1 	e 1 	cos 6i  . dE 

1 

with:- 

ri  

4i = - k 	An(x,z) dz 

0 

Therefore:- 
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kx2 4.°34.°3  
j . 

 

Ex(x'd) - 	ad 	
e Jkd 	e

_ 
3 

2d I f(E) . eJ d 
	e 	2d 	eJ~() d 

_CO 
	

(3.9) 

Taking the mean value of the electric field and noting that 

for a Gaussian phase process that(36):- 

-a2 /2 

<e3(1)()> = e 

where:- 

a2 = V k2 	2 
~ O Qn r1 (3.10) 

Substituting for ri by its approximate far field value, 

r. = r - x 	, therefore:-  
1 	r i 

a2 = mr - m. 

and:- 

. k2 . c . 6n 
m _ 	 

2 

After integrating Equation (3.9), the average value of the electric 

field is then:- 

<Ex(x;d)> = Ex(x;d) e
- and. 

e 
axe . e JSx2 

free space 
(3.11) 

  

where: 	Ex(x;d)I 	is that expressed in Equation (3.7). 
free space 



and:- 

a = m/ 2d 
	

=
k.m. w2 

2d2 

3.2.3 	Phase Screen Representation of the Random Medium  

It will be shown in the following discussion that, for all 

practical purposes, the random medium may be substituted by a phase 

screen situated at the transmitter aperture plane. The characteristics 

of the random phase screen are derived from those of the medium. 

Equation (3.11) indicates that the free space field is attenuated 

or reduced uniformly due to the random medium, by the amount exp (- md), 

i.e. exp (- a2/2), which is a well-known result. However, in addition 

to this uniform reduction in magnitude, there is also an average x- 

dependent attenuation given by a, which is a function of m, i.e. of the 

randomness of the medium. Therefore, the Gaussian amplitude distribution 

is altered from its free space value. 

The free space lateral phase distribution of the cylindrical 

wave is also altered due to the x-dependent phase shift 8, which is also 

a function of the randomness of the medium. 

To estimate the magnitude of the distortion caused by the 

medium, we shall consider a practical example. For a wavelength X = 8 

millimetres, in a medium with refractive index irregularities with a 

typical longitudinal scale size ~ = 20 metres, and a variance an = 

1 . 10-12 n2-units, which represents a relatively high degree of 

turbulence. The values of a and a for a Gaussian aperture "1/e" width 

w = 0.3 metres, and at a propagation distance d = 1,000 metres, are 

found to be:- 
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m = 1.1 . 10-5 m-1 	, a = 5.7 . 10-9 m-1 and $ = 4.1 . 10-10 m-2 
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Substituting these values in Equation (3.10), it can be 

shown that the average field distribution is hardly affected, i.e. for 

all practical purposes, the x-dependent amplitude reduction and phase 

shift a and B respectively may be neglected. 

Therefore, the average distribution of the complex electric 

field is given by:- 

- a2/2 
<Ex(x;d)> = Ex(x;d) I 	. e 

free space 
(3.12) 

This result is a standard result for the average value of the 

electric field in a random medium. The same result may have been 

obtained by setting ri  = r in Equation (3.10) and collapsing the medium 

into a thin screen characterized by a random phase variation, i.e. a 

random phase screen. 

The phase screen representation of the random medium is a 

commonly used technique. However, previous use has been limited to 

infinite plane waves incident on the screen. A useful discussion on 

the development of the random phase screen approach may be found in 

Fejer's(37)  and Bramley's(38)  works. 

In the following analysis, the phase screen will be assumed 

to be random with a Gaussian phase (I), distribution with zero mean and 

variance a2  given by:- 

a2  = VT . k2  . co  . an . d radian2  (3.13) 

and a normalized lateral autocorrelation function r(1)(u) = exp (- u2/E2),  

u being the lateral separation on the c-axis at the plane z = 0.
0 
 is 

the lateral scale size of the refractive index irregularities and, hence, 



Ex(O,d) = b . 
	

e 
E2/w2 . e jkE2

/2d . eJr(E) dE 

✓Ad 
(3.14) 
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of the phase variations across the screen. 

Variance of the On-Axis Fluctuating Complex Electric Field at  

z=d  

The on-axis electric field is obtained from Equation (3.9) with 

x = 0, and neglecting the constant phase components. Therefore:-

+ 

-o 

The variance 6Ē is given by:- 

= <IEx(O;d) - <Ex(O;d)>I 2> = <IEx(O;d)1 2> - I<Ex(0;d)>I 2 

where:- 

<IEx(O,d)H 2> = <Ex(0,d) . EX(O,d)> 

EX(0,d) is the conjugate of the random complex electric field. 

+. +o 

<Ex(O,d) 	EX(O,d)> = k2 
	

e- 
r2/w2 	

e- 	 Ei/w2 . e+ jkEi/2d.. e- 
jkE2

/2d 

<ejl) , e- jci> . dE . d 
i 

(3.15) 

where E = E + u, and u is a variable lateral separation along the E-
i 

axis. <e3~ . e 3~1 > is the characteristic function of the random phase 

process, with 	= q(E) and (p1 = (1)(E + u). Since q is a Gaussian random 

variable, it has been shown that
(36):- 
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<eJ{4)(0 - w + u)}> = e
- a {1 - r(0(u)} 

which for a2 « 1 reduces to 1 - a'{1 - r
c)
(u)}. 

The approximation that a; « 1 is quite accurate at microwave 

wavelengths even at high degrees of turbulence. For example, for X = 8 

millimetres, c0 10-12  = 20 metres, an = 1 . 	n2-units and a propagation 

distance of 12 kilometres, a' = 0.28 radiant. 

Solving the double integral Equation (3.14) by parts, and for 

a' « 1, it may be shown that:- 

<Ex(0,d) . EX(0,d)> = b2 . 2d . 
(1 - 1) 	

1 	
l A l

2, 

t 

+ t2d~ 

2 

W 

+ 

t + a~ 	
/[v112)2

2
+ (21(d)2 

 w2 	2  

0 

and from Equations (3.8) and (3.12), for a; « 1:- 

I<Ex(0,d)>I2 = 
b2 . 2d (1 

	a;) . 

 

1 

 

   

 

0212 + 
f

2 

 

and, therefore, the variance of the on-axis complex electric field is 

given by:- 

k 	2 	1 

	

aE = b2 • 
2d • 

aq 		
1 2  

+ 	+ 

V2   

lw2J 	w2 • 2  

(3.16) 

1 

0 



2 

 121 2 + 
2 1 

w2 . r2 
0 

	

2 	2 

	

oE 	o(I)  

I<E>t 2 	1 - a2 

r 2,
2  + 

12dl 
2 

(3.17) 
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The above expression for the variance of the on-axis complex 

electric field is accurate to the extent that o' « 1. This expression 
for oĒ holds at distances from the transmitting aperture extending from 

the Fresnel to the far field regions. 

It is interesting to note the far field behaviour of GE, where 

the Rayleigh distance is defined as:- 

2 

d » ~ā 

where A is the effective transmitting aperture size, which in this case 

is w, and, hence, in the far field:- 

W2 
» 

2d 

and the variance oĒ reduces to:- 

0 El 	
= b2 	k_ 

02 	
1  

far field 	' 2d 
	[W2J

1 2 + 	2  

 w2 
0 

3.3 	Effect of System and Medium Parameters on the Field Fluctuations  

A useful and practical quantity to deal with is the percentage 

relative fluctuations with respect to the mean value which, in this case, 

gives an indication of the fluctuations in the on-axis available power. 

This quantity is given by:- 
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The percentage relative fluctuation with respect to the mean 

value of the electric field is the square root of the above ratio. 

The relative field or power fluctuations are seen to be 

dependent on the aperture size w, the propagation distance d, and the 

wavelength X, all of which may be considered to be system parameters. 

The effect of the medium is evident from the dependence on 6, i.e. on 

a2  and co, and on Eo. 

Fig. 3.3 shows the variation of the percentage field fluctuations 

versus the propagation distance. The Fresnel and far field cases are 

shown with the scale sizesand c as variable parameters. 
0 	0 

The variance of the refractive index fluctuations an, is 

constant and is arbitrarily taken to be 1.0 . 10-12  n-units, which 

represents a relatively high degree of turbulence. 

The distance dependence of the variations of the relative field 

or power fluctuations has been previously studied by many authors for 

the case of plane wave propagation. For example, Uscinskii(33), who 

gives the name of scintillation index for the relative power fluctuations. 

In Uscinskii's prediction, the relative fluctuations saturate at a 

large distance from the random phase screen. This is due to the fact 

that the properties of the random phase screen used in his model are 

constant, whereas in this analysis, the variance of the phase of the 

random screen is varying as a function of the propagation distance as 

seen from Equation (3.13). This increase is limited by the condition 

that a(21.) 	1. 

Effect of Transmitter Aperture Size on the Signal Fluctuations  

The effect of increasing the transmitter aperture size on the 

magnitude of the fluctuations will now be studied. Looking at the 

expression (3.17) for the relative signal fluctuations, it may be seen 
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Fig. 3.3 Distance dependence of the percentage fluctuations of the electric field 
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that the relationship between the fluctuations and the aperture size w 

is not a straightforward one. 

Differentiating Equation (3.17) with respect to w, it may be 

seen that the condition for minimum fluctuations is the solution of the 

following equation:- 

ll2 
v3 
	fkl 

- 
v2

•~2dj 
+ v . 1 - 

2 
- 1 = 0 	(3.18) 

0 

where v = w2. 

The optimum aperture size for minimum fluctuations is seen to 

be a function of the wavelength, the propagation distance d and the 

lateral scale size E . 0 
Figs. 3.4a and 3.4b show the variation of the percentage field 

fluctuations as a function of the aperture size w, for propagation 

distances of 12 and 1 kilometres respectively. 

The percentage field fluctuations are seen to decrease 

dramatically when the lateral scale size
0 
is small, i.e. in the order 

of 1 metre. The reduction in the fluctuations becomes less apparent as 

0 
increases. 

An interesting result may be seen on comparing the fluctuations 

for the long and short path lengths. It may be seen that for the 1 

kilometre path, the existence of an optimum aperture size for minimum 

fluctuations is quite obvious and is particularly evident for the 

smaller lateral scale sizes, whereas for the longer path, the optimum 

aperture size is not a very critical one. 

The above phenomenon of an optimum transmitter aperture size, 

which is a function of the above-mentioned parameters, may possibly be 

qualitatively explained in terms of the mechanisms causing the signal 

fluctuations. Two mechanisms are considered, namely, random scattering 
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and random beam wandering. 

Consider first the situation where the path length is relatively 

short, Fig. 3.4b. The fluctuations for a small aperture size may be 

mainly attributed to scattering; as the aperture size is increased, the 

beam width becomes narrower and hence less energy is scattered. The 

fluctuations due to scattering become more pronounced as the scale size 

E increases. 
0 

As the beam width becomes narrower, beam wandering becomes the 

dominant mechanism causing fluctuations. Again, beam wandering becomes 

more pronounced as the scale size is increased. The effects of these 

two mechanisms can be combined qualitatively, as shown in the figure 

below. 

Fluctuation scattering beam wander 

   

Z. 

Aperture size 

The hypothetical curves are seen to intersect at an optimum 

aperture size, which is relatively large, and from Fig. 3.4b, is of 

the order of 3 metres. In this case, the beam width is quite narrow 

and is 0.2 degrees, i.e. beam wandering is quite a possible mechanism 

to cause fluctuations. 

On the other hand, for the larger propagation distance of 12 

kilometres, Fig. 3.4a, both mechanisms probably still apply. However, 

due to the longer path length, the fluctuations due to the scattering 
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process tend to decrease less rapidly as the transmitter size increases 

due to the increased cross-sectional area of the beam at increased 

distances and, hence, more energy is scattered. The fluctuations due 

to beam wandering tend to increase at a smaller rate with increased 

aperture size. This may partially be due to the larger cross-sectional 

area of the beam and, hence, the wandering process is not very critical 

and may also be due to the random nature of the wandering process, which 

possibly tends to integrate over a longer path length, i.e. the beam 

wanders on and off the propagation axis. Therefore, the total effect 

is relatively low. 

The behaviour discussed above is not easily explained 

quantitatively, since the expression for the relative signal fluctuation 

(3.17) does not yield separate information for the scattering and beam 

wandering mechanisms. 

The dependence of the relative field fluctuations on the 

transmitter aperture size is not a surprising one. It will be shown 

later, in Chapter 5, that the efficiency of a receiving aperture is a 

function of the transmitting aperture size. The existence of an 

optimum receiver aperture size large enough to smooth out the 

fluctuations, yet not too large so as to suffer an appreciable loss in 

efficiency, is also discussed there. Reciprocally, one may expect a 

similar behaviour from a transmitting aperture. 

3.4 	Statistics of the Amplitude and Phase of the On-Axis Field  

In this section, the magnitude and statistics of the amplitude 

and phase fluctuations of the electric field will be estimated. Such an 

investigation yields information for the probability distribution of the 

fluctuating electric field. Investigations of this sort have been 

previously carried out
(39, 40) 

for the case of plane wave propagation. 
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In this study the field is investigated, in the Fresnel region 

and beyond, of a finite transmitting aperture. The approach followed is 

that of resolving the random complex electric field into its real and 

imaginary components and the statistics of each obtained individually. 

As mentioned in the previous section, the weakly random medium 

may be replaced by a random phase screen at the radiating aperture 

plane. The effect of the phase screen is to alter randomly the phases 

of the elementary fields radiated by the assumed set of elementary 

Huygen sources. The magnitudes of the fields remain unchanged as they 

pass through the phase screen. 

The resulting total electric field at any observation point is 

thus the combination or sum of the elementary waves in mutual phase 

interference. This situation may be represented on the Argand diagram 

shown in Fig. 3.5. 

Real 

Fig. 3.5 Phasor representation of the scattered field components 

The total electric field is the phasor sum of a large number 

of elementary field components, which, in the case of free-space 

propagation, make up the familiar Cornu Spiral. 

Both the magnitude and phase of the total field change as the 
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observation plane progresses along the direction of propagation, up to 

the Rayleigh distance, beyond which the changes become negligible. 

However, in the presence of a random medium, there is a further addition 

of a random phase contributed by the medium to each elementary field 

component. 

3.4.1 	First and Second Order Statistics of the Real and  

Imaginary Field Components  

The statistics of the real and imaginary components of the 

fluctuating field components will be obtained at an observation point 

p(0,d), i.e. the on-axis point at a propagation distance z = d, this 

being the point of most practical interest and may be considered to be 

the fluctuations observed by a point receiving aperture. 

In the following analysis, the functional dependence of the 

random phase distribution 4(x) on the medium parameters will be 

suppressed for brevity. 

First, the mean values will be evaluated; these may be 

obtained by considering Equation (3.14), with ER  and EI  the real and 

imaginary field components respectively:- 

+. 	rER 	b 	e- 	cos cos Zd - 
L_ 

-CO 

(3.19) 

and:- 

+co 

E= b 	e 2/w2  sin [(:2  - 	d I 	 d (3.20) 

in both cases being the random phase contribution which has been 

assumed to be a Gaussian random variable. Hence:- 
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2 
<eJ$> = e 

~/2 

and:- 

- a2/2 
<cos 0> = e 
	

<sin 0> = 0 	 (3.21) 

Taking the average values of Equations (3.19) and (3.20) and 

using the above values for <cos 0> and <sin 4>, it may be shown using 

standard integrals(41) that:- 

- a2/2 
<E> - 

	e 	. 2 
R 	 $ 

p2+q2+ p 

p2 +q2 

- Q2/2 
b . e 	 'r 

	
cos $ 	W1 tan-1  

✓ād 	41777  (3.22) 

  

and:- 

- a2/2 
. <E> - 	

b 	e 	2 
I 	 $ 

✓ p2 +q2 -
p 

p2 + q2 

   

sin tan {all  
pl 

(3.23) • 

  

4/ p2 + q2 

where in both Equations (3.22) and (3.23) p = 1/w2 and q = k/2d. 

It is apparent that the effect of the random medium is to 

cause a reduction in the mean value of both the real and imaginary 

field components from their free space values. The reduction is equal 

in both cases and is equal to exp C 1/21. A phasor representation 
is shown in the figure below. 
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The resultant <E> is the sum of the average real and 

imaginary field components. The angle of inclination 6 of the resultant 

with respect to the real axis is seen from Equations (3.22) and (3.23) 

to be given by:- 

o = 2. tan-1 (s.] 

 _ .. an
k zI 

 J 
(3.24) 

The ratio of the mean values of the imaginary to the real 

component is given by tan 6. This ratio is unity at d = 0 and becomes 

smaller as d increases. For example, for X = 8 millimetres, w = 0.3 

metres and d = 500 metres, 6 is equal to 2 degrees and hence:- 

<ER> = 30 . <E > 

Next, the variances of the real and imaginary components, 

QR and a2  respectively will be evaluated. By definition:- 

Q2R  = ‹E 
 R
2> - ‹E  >2 	and QI = <EI2> - <E >z 

with ER  and EI  given by Equations (3.19) and (3.20) respectively. 

It can be shown (see Appendix I) that for ori « 1:- 



COS 

2 
7 tan-1 

	

.131 + I 	) 2 (, 	1 1 2 

4 	w 	l 	a 

1 

+ a cos 7 tan 
2 _ 	( k } 2 

 I , + 14)2 
4 	w 	Q 0 

1 

G2 _ b2 	1 
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1 

4/(1;2 - S12 + [2%r (1 - 1 2 „40 j 

1 

/ui.. 	2 + 	
l 

~ 
2 

I 1 + sl 2) 2 
4 	l  0  

— 	La I11 
41 

cos 7 tan -1 	0  

lw SJ 

2d I1 + 1 4} po-
2- tan-1 	0 + 

lw SJ 

a 

cos 

(3.25) 

and: - 

2 	b2 	7raco 	1 aI =Ta" . —2— . 441. 

0 

(3.26) 

where:- 



2 	b2 • iT 	2 
-R + -I = 	TT-. 6

4) 
.  
/[ 112 	 2 

w2 	w2 . p2 
0 
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a = 1 tan-1 
	k/2d  

w2 + 12J 
0 

2 

= 

W2 
+ 
Ī2 

+  
ff 

2 

0 

(3.27) 

and:- 

= 1 2 Li.. _ 1  
w2 	w2 	2 	l/a) 	 2 	2 

50~ 	
• 	

So 

The sum of the variances of the real and imaginary parts is:- 

22 b2 2 1 
aR aI = -a • 7"5(1) 7.3. . 

    

	

A( 	
1 41 

	

1 	" 

cos 
7 
t an

-1 	
0 	a 

— 	. 2 	a~ w  

 

     

  

1 

  

     

 

4/ Le 	
512

+ 1~ 2 11 	la a 
j 

0 

  

   

   

   

2 
It is easy to show that in the far field, i.e. d » 	, the 

above expression is reduced to:- 

which is identical to the expression for the variance of the far field 

complex electric field ai, i.e. in the far field:- 



QR + aI = 6E 

This result is expected, and is expected to hold in the near 

field as well as the far field. However, due to the analytical complexity 

involved, this is difficult to show. 

3.4.2 	Estimates for the Magnitude of the Amplitude and  

Phase Fluctuations 	• 

To obtain the range of variations of the amplitude and phase 

of the random on-axis field, an approach will be used that is similar to 

that applied by Beckmann(40) in the investigation of the scattering of 

plane waves off rough surfaces. The field E will be represented as a 

sum of random real and imaginary phasors as shown in Fig. 3.6. 

y 

86 

Imaginary 

--~ x 
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Fig. 3.6 Real and imaginary components of the electric field 

The real part is considered to have a constant mean value C 

and a fluctuating part r, with variance v i. The imaginary part is a 

zero mean quantity with a fluctuating part i, with variance v2. 

Through knowledge of the relative magnitude of <E>, v i and v2, the 
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magnitude of the amplitude and phase fluctuation and their probability 

distributions may be estimated. 

The situation here is slightly more complex. This is due to 

the fact that the mean value <E> was found to be a rotated phasor, the 

angle of rotation S being a function of the propagation distance and 

given by Equation (3.24). 

To overcame this difficulty, the reference real and imaginary 

axes, x and y respectively, will be continuously rotated by the same 

angle S and, hence, the mean value <E> will always lie on the real x-

axis, i.e.:- 

b 	
- Q/2 

C = <ER> cos S + <E 	sin S = 	. e 
•✓x 	4,17777 

(3.28) 

Fig. 3.7 Electric field representation on a rotating set of axis 
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Under the new ,set of axes, Fig. 3.7, it may be shown that the 

transformed real and imaginary variances v
1 
and v

2 
are given by:-  

v1 = a22 cos2 S + a2 sine S 
	

(3.29) 

v = a2 sine 6 + a2 cos2 S 
	

(3.30) 

where a2 and aĪ are given by Equations (3.25) and (3.26) and 6 by Equation 

(3.24). As the propagation distance d increases from the near field to 

the far field, 6 changes from 45o at d = 0 and, hence, i = r and v1 = v2, 

to zero at d » nw2/a, in this case the fluctuating real part tends to 

zero and the variance of the imaginary part v2 tends to al. 

Fig. 3.8 shows the variation of the ratio
2 
v v 

1 
as the 

propagation distance increases from 0 to 1 kilometres. 

The phase variation of the on-axis electric field i may be 

seen from Fig. 3.6 to be given by:- 

tan ip= ~+r (3.31) 

which, for a large mean value compared to the fluctuating real and 

imaginary component r and i, is approximately given by:- 

Noting that <i> = 0, therefore, the variance of the phase 

fluctuations is given by:- 
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6 	v 

a2 = 
1 
= 2 

C2 C2 

Substituting from Equations (3.25), (3.26) and (3.28), therefore:- 

2 

= 	a~  

sr 
	2 . (1 -c 

V2  

1 i2 

4/ ` 

     

k 1 1 

 

      

      

  

1: 

 

7 tan-1 
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Īw - y12 
+ 

( J 2 
  

f1 - 1 2 4
L 	 CCl 	l 	ae J f w - 16i 

 

    

0 

+ (cos2 S - sine S) . 

 

1 

 

   

2 	Y 
2 

 

4/ w2 S 

(4(..d.) 2 
(
1+ 1 )2 S 4 

0 

     

     

. cos 2. tan-1 + 

 

(3.32) 

     

     

with a, a and y given by Equation (3.27). 

It is seen from Equation (3.32) that the variance of the on-

axis phase fluctuations is a function of the medium parameters 
Eo 

and 

a' which is a function of cn and 
o
, and on the system parameters k, d 

and w. 

Substituting in Equation (3.32) for E o 
= c

o 
= 10 metres, 

a2 = 1.0 . 10-14 n2-units, w = 0.3 metres, A = 8 millimetres and d = 12 
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kilometres, the phase variance is 8.2 degrees, which is a reasonable 

figure as will be seen later from the experimental results. 

The variance of the amplitude fluctuations is approximately 

given by the variance of the fluctuating real component 6R. This 

approximate value is valid as long as the magnitudes of the real and 

imaginary components r and i are much less than the mean value C. 

The probability distribution of the phase fluctuations 4) is a 

function of the probability distribution of the imaginary part i. 

Therefore, for i Gaussian, * is Gaussian distributed. A more detailed 

analysis of the distributions of the amplitude and phase distributions 

for various ratios of the variances of the real and imaginary components 

may be found in Beckmann
(40). 

In this chapter, the detailed statistics of the complex 

electric field have been studied after propagation through a random 

medium. The medium has been assumed to be a weakly random one and, 

hence, the phase integral results of the parabolic equation solution 

have been applied. The phase fluctuations caused by the phase screen 

representation of the medium have been shown to produce amplitude and 

phase fluctuations in the Fresnel region and beyond. The phase 

fluctuations for the on-axis field are seen to decrease progressively 

as the propagation distance increases and the amplitude fluctuations 

are the more dominant ones. 

The elementary field approach gives insight into the effect 

of the different medium and system parameters, and indicates that there 

exists an optimum transmitter aperture size for minimum fluctuations. 

To extend the analysis to a more turbulent medium, the path 

length should be broken into a number of regions or slabs, the medium 

within each slab could then be considered to be weakly random. The 

field at the end of each slab would then be considered as the aperture 
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field for the next slab, and so on. However, the complexity of the 

analysis involved makes this a formidable task. 

Furthermore, the elementary field approach does not easily 

provide information for the lateral field statistics. This information 

is necessary to estimate the response of a finite receiving aperture to 

a randomly distorted wavefront. 

The above drawback, namely, those of propagation through a 

strongly turbulent medium and of defining the lateral statistics of the 

distorted wavefront, are more easily dealt with using a lateral 

coherence angular spectrum approach. This approach is outlined and 

developed in Chapter 4. 
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CHAPTER 4  

ANGULAR POWER SPECTRUM AND COHERENCE PROPERTIES  

OF A PROPAGATING BEAM IN A STRONGLY  

RANDOM MEDIUM  

In this chapter, the lateral statistics of the random field 

will be investigated by means of a coherence function approach. The 

• combined effect of the medium parameters and transmitter aperture size 

on the partial degradation of the lateral coherence will be investigated. 

The power distribution as a function of angle, i.e. the average angular 

power spectrum, is consequently affected and is also investigated. 

The medium under consideration will be assumed to satisfy the 

conditions for which the parabolic equation is applicable. These 

conditions being that the scale sizes of the random irregularities are 

much larger than the wavelength, and that the relative fluctuations of 

the refractive index with respect to the mean value are small. Applying 

the parabolic equation to such a medium has been shown in the previous 

chapter to allow for collapsing the medium into a thin random phase 

screen at the transmitter plane. 

For a strongly turbulent medium, the path length will be 

divided into several regions, each satisfying the condition that the 

magnitude of the refractive index fluctuations is small. Hence each 

region or slab of the medium may be adequately represented by its 

characteristic phase screen. This technique allows for the investigation 

of the continuous degradation of the lateral coherence and continuous 

scattering of the wave as it traverses the consecutive phase screens. 

The analysis is limited to a forward scatter situation and 

it will be shown that a single scatter approximation is a reasonable 

one in view of the relatively very small magnitude of the multiple 

scatter components. 



94 

4.1 	Angular Plane Wave Spectrum and Lateral Coherence Function  

In this section the angular plane wave spectrum will be 

briefly reviewed and its properties for a propagating Gaussian beam 

will be determined. The lateral autocorrelation function and its 

propagation characteristics is also studied. As a start the propagation 

medium will be considered to be free space. The purpose is to outline 

the basic principles involved, which will then be applied to a random 

medium in the following section. 

4.1.1 	Angular Plane Wave Spectrum Representation of an  

Electromagnetic Field  

The underlying concept is that if an electric field distribution 

is known in a planar domain, in terms of a lateral coordinate system, 

then alternatively it may be uniquely defined in an angular domain in 

terms of an angular coordinate system and vice versa. The conversion 

or transformation from one domain to the other is through a Fourier 

transform relationship. 

In other words, a complicated field distribution may be thought 

of as a superposition of plane waves, the magnitude and orientation of 

each being determined in such a way as to reconstruct the existing field 

distribution. 

The above relationship may be put in mathematical notation as 

follows:- 

- jk(Sx+Sy+Cz) 
E (x,y,z) = 	F(S , S) . e 	1 	2 	dS . dS 
x 	 1 	2 	 1 	2 

CO _m 

(4.1) 

where Ex(x,y,z) is the x-component of the electric field at the 

observation point p(x,y,z). SI,  S
2 
 and C are the direction cosines for 



the observation point p. 

S =sine. cos cp 

i.e..- 

S2 + S2 + C2 =1 
1 	2 

S = sin 6 sin (1) 	, 	C= cos e 
2 

The angular power spectrum F(S 
1 
, S

2
) may be obtained through 

the inverse transform of the electric field distribution in the plane 

z = d:- 

+. +. 
F(S 

1 
, S 

2 )I 	
_ 	E(x,y;d) . 

ejk(xS1 + yS2 + Cd) dx dy 
	(4.2) 

z=d 
	~2 

The representation of a propagating field by an angular plane 

wave equation has been shown in principle to be exact(42, 43). This is 

due to the linearity of the wave equation after neglecting the 

depolarization term. Therefore, the superposition of plane waves, each 

95 
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of which is a solution of the wave equation constitutes a valid solution. 

Lalor(44)  has discussed in some detail the conditions under which the 

transformation from a planar to an angular domain, and vice versa, to be 

valid, these being similar to analogous situations found in circuit 

theory. 

The fields obtained from the angular spectrum representation 

(4.1) include plane wave components travelling in directions such that 

S2  + S2  > 1, i.e. the third direction cosine is imaginary. Such fields 
1 	2 

can be shown to be evanescent fields(34), which are rapidly decaying 

and hence are of no practical consequence. 

Angular Spectrum for a Gaussian Aperture Field  

The aperture field to be considered is a uniform phase 

Gaussian amplitude distribution, with a "1/e" width w, which is similar 

to that considered in the previous chapters, i.e.:- 

E(x,y;0) = b exp - (x2  + y2)/w2 	 (4.3) 

Since the above field is a separable quantity, therefore, for 

analytical simplicity, the two-dimensional form, E(x,z) will only be 

considered. In this case, 4) = 0 and S1  = S = sin 6. 

The angular spectrum corresponding to the Gaussian aperture 

field is then determined from Equation (4.1) and may be shown to be:- 

F(S), 	_ VT 	b 	exp 
z = 0 

2 

(4.4) 

It is seen that the angular spectrum is also Gaussian with a 

"1/e" width X/Trw, which is inversely proportional to the Gaussian width 

of the radiating aperture, i.e. a wide aperture radiates a narrow spectrum 
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of plane waves, and vice versa, which is to be expected. 

The electric field distribution at a normal plane z = d may 

be obtained through the transform of the angular spectrum at this plane. 

Therefore:- 

+ 

E(x;d) = j F(S)) 	. e- jk(Sx + Cd) dS 	 (4.5) 
z=0 

As an approximation, it will be assumed that the propagating 

field is confined within a narrow range of angles, i.e. 0 will be 

considered to be small. This small angle approximation is valid at 

microwave frequencies where w » A. For 8 f 12° the direction cosine 

C may be approximated to:- 

2 
C = 	= 1 -c (4.6) 

Substituting for C in Equation (4.5), it may be shown that:- 

E(x;d) _ 

  

. kx2 

b 	x2/wd -3 C 
.e 	.e (4.7) 

  

    

/l _ 
 
- j Ad 

Trw 

  

where:- 

wd = w2 . 1 + ad i2 
~rw j 

Rd = d . r + 
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The above expression for the waist and radius of curvature 

wd  and Rd  respectively for the Gaussian beam at the plane z = d is 

similar to that obtained by solving the parabolic equation in a free 

space medium, Equation (2.13) with p = 0, and also similar to that 

obtained using Huygens' principle, Equation (3.7). 

4.1.2 	Lateral Autocorrelation Function and the Angular 

Power Spectrum for a Gaussian Aperture Field  

The lateral autocorrelation function for a deterministic 

field distribution at the plane z = d is defined in terms of the lateral 

separation 	as follows:- 

4. 

r(;d) = 	E(x;d) . E*(x + ;d) dx 	 (4.8) 

-o 

The term coherence function will be used only for a random 

field distribution, instead of the autocorrelation function. 

Substituting for the aperture field distribution, E(x;0) = 

b exp - x2/w2, therefore:- 

2 
M;0) = b2  . w A  exp 	c 	 (4.9) 

2w

2 

 

which is a Gaussian function with a "1/e" width of A w. For a 

normalized aperture field, i.e.:-

+co 

-o 

IE(x;0)1 2  dx = 1 	and hence b =w ✓ Tr 

Therefore r(;0) = exp (- 2/2w2). 
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To observe the behaviour of the autocorrelation function as it 

propagates in the forward z-direction to the plane z = d, it may be 

shown from Equations (4.7) and (4.8) that:- 

r(;(1) = 	1 + ja exp - E2/2w2  
1777 

(4.10) 

a = Ad/nw2  w2  

It may be seen from Equations (4.9) and (4.10) that the 

magnitude and shape of the autocorrelation function remain unchanged 

as it propagates along the z-direction. However, there is a phase 

shift equal to tan-1  Ad/ww2, which is insignificant since it is a 

uniform phase shift. 

The above result is a realization of the Van-Cittert Zernicke 

theorem(45)  which says that the normalized autocorrelation function of the 

complex wave amplitude over each plane is the same. 

The distribution of power in the angular domain may be 

obtained by Fourier transforming the autocorrelation function(46)
. 

Therefore:- 

IF(S)12 < 	> r( ) 

where IF(S)1 2  is the angular power spectrum. The physical significance 

of IF(S)1 2, S = sin 0, is its relationship with the gain function G(0), 

of an antenna. This relationship has been shown(47)  for a narrow beam 

pattern with the maximum in the 6 = 0 direction to be:- 

G(0) - 2 	IF(S)12 
0 

(4.11) 
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where Z is the plane wave impedance of the medium and Po  is the power 

delivered to the antenna. 

Therefore, for an antenna with a Gaussian aperture field 

distribution, the free space angular power spectrum is given by:- 

IF(S)12 = 
7  .  w2  . b2 

 . exp 	- S2  

x2 	

71 

()2 
(4.12) 

which, as an example, corresponds to a radiation pattern with a three 

decibel beam width of 0.47 degrees for an aperture width 2 w equal to 

0.6 metres at a wavelength of 8 millimetres. 

4.2 	Partial Destruction of the Lateral Coherence Function and the  

Angular Power Spectrum in a Random Medium  

It has been suggested in Chapter 3, and shown to be quite 

accurate, that a weakly random medium may be collapsed into a thin 

random phase screen situated at the transmitter aperture plane. The 

statistics of the random phase variations are obtained from those of 

the refractive index fluctuations as outlined in Section 3.2. 

In this section, the random phase screen approach will be 

applied to observe the effects of the medium on the coherence function 

and, hence, on the corresponding angular power spectrum. The analysis 

will proceed on similar lines as that of Clarke's(34). However, the 

situation here is not limited to the plane wave case and the transmitter 

aperture size is taken into consideration. 

4.2.1 	Propagation of the Coherence Function in a Weakly  

Random Medium  

Due to the presence of the phase screen, the aperture field will 
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be modified by the random phase contribution 4(x), calculated according 

to Equation (3.3). For a random field distribution, the coherence 

function .:is accordingly defined as follows:- 

+co 

r(x1, 	x 
2 
) = <E(x1 ) 	. 	E*(x2 )> dx (4.13) 

-o 

where x and x 	are two points on the phase screen separated by the 
1 2 

distance E. Assuming a homogeneous phase screen, i.e. the first and 

second order statistics of the random phase are independent of the 

position of the arbitrary observation point x . Under this assumption 
1 

r(x , x) is thus only a function of the lateral separation E and, hence, 
1 	2 

the coherence function just after the phase screen at z = 0 is given by:- 

+co 

	

r(E;0) = 	<E0(x) . ej4)(x) . Eo(x + E) 
. e- j(P(x + )> dx 

-o 

The suffix "o" denotes free space values. This notation applies to the 

rest of the analysis. 

Since the aperture field distribution Eo(x) is independent of 

the random phase 4(x), therefore, the above expression is shown 

(Appendix II) to be:- 

r(E0) _ row . <e 
jC(x) - 0(x + )~ 

> 	 (4.14) 

The quantity in the square brackets is the characteristic 

function of the random phase fluctuations evaluated for the parameters 

± 1, viz. Co(- 1, 1, E), and which for a Gaussian phase process has been 

shown to be(36):- 
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J[(x) - ((x + _l _ 	 = 
- a1r - r4,(E~ 

<e 	> = C~ (- 1, 1, ) 	e 	LL 	(4.15) 

a2 and r~(E) are the phase variance and normalized auto-

correlation function respectively and are defined in terms of the 

refractive index fluctuations as shown in Equation (3.4). 

Substituting for the characteristic function in Equation (4.14), 

therefore:- 

- alp - rA(E) 
r(E0) = ro(E) . e 	P = 

= ro(E) . e 
- a 

+ ro(E) . e a(1)
ea~ 	rfi() 

- 1 	(4.16) 

It is seen from Equation (4.16) that the coherence function 

is split into two parts. The first part is independent of the lateral 

scale size and is simply the reduced free space value, whereas the 

second part is a function of the lateral statistics of the phase screen 

rct,(E). 

It has been established in Appendix II that the lateral 

coherence function propagates without change in magnitude or distribution. 

Therefore, in the free space medium following the phase screen, the two 

parts of the coherence function will remain unchanged. 

Since the angular power spectrum is the Fourier transform of 

the coherence function, therefore, any disruption of the coherence 

function indicates a disruption of the angular distribution of the 

radiated power and, hence, the gain function of the antenna is altered. 

The problem of studying the effect of random phase errors, 

which is equivalent to the presence of a random phase screen, on the 

radiation characteristics of an antenna, has been analysed by a number 
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of authors. For example, Ruze(48)  and Jairam(49)  have treated the 

problem and estimated the resulting distortion of the radiation 

pattern. However, no emphasis has been placed on distinguishing 

between the scattered and unscattered power. 

4.2.2 	Angular Power Spectra in a Random Medium  

Since the Fourier transform is a linear one, therefore, the 

splitting of the coherence function, as shown in Equation (4.16), gives 

rise to two angular power spectra, a coherent and an incoherent 

spectrum. The reasons for using the terms coherent and incoherent will 

be shown below. 

The Coherent Angular Power  

This is the Fourier transform of the first part of the 

lateral coherence function and is thus given by:- 

+co 
2 	- 62 

IF(S)1 2 	= I 
	

ro(E) . e 	. 
e3kES  d = e 	. IFo(S)I 2  = 

coherent X2  
-o 

= l<F(S)>I 2 	 (4.17) 

where IFo(S)I 2  is the free space angular power spectrum and noting that:- 

- 02/2 
<E0 
 
(x) . eJ$(x)> = E0(x) . e 

It is seen that the coherent angular power spectrum is the 

expected or average value of the available power. This is similar in 

its directional properties to the free space value. However, the overall 
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magnitude of the different spectral components is reduced by the 

factor (exp - a2). The preservation of the free space directional 

properties leads to the presumption that this portion of the angular 

power does not contain any scattered components and, hence, the term 

coherent angular power. 

From Equations (4.12) and (4.17) and for the particular case 

of a Gaussian transmitted beam, the coherent angular power is given by:- 

- a2  

I <F(S)>I2 - Tr .  w2  .  b2  .  e 	. exp 	- S2  

A2 	1 (x12 
(4.18) 

The Incoherent Angular Power  

This is the power contributed by the randomly scattered field 

components. These components are randomly phase modulated by the 

medium and, hence, the power contribution is incoherent. Since the 

total available angular power is the sum of the mean square angular 

spectrum and the variance of the angular spectrum, therefore, the incoherent 

power is the variance or the fluctuating portion of the angular spectrum. This 

incoherent portion is given by the Fourier transform of the second part 

of the lateral coherence function in Equation (4.16) and, hence:- 

+co 
- 62 

IF(S)I 2 	= VAR [F(S)] = 	r
° 
 (0 . e 	. 

incoherent 	A2  

eop . YE) _ 1 ejkES dE (4.19) 

To evaluate the above- integral, again making the assumption 

that a2  « 1:- 



-- Freespace distribution 
— I (F(s)) I2  [coherent power] 

♦♦ 	— • — VAR CF(s)] (Incoherent power] 

♦ 

Angular power /' 
• 

♦ 

• 

• 

• 
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- a2 
al . e 	. b2  . w2  . Tf 

VAR [F(S)J 	
X2 

 

1 

  

2 
1  + 2w 

r2 
0 

. exp 

 

- S2  

 

(4.20) 

 

f 2 [1 + 222  

 

     

which also has a Gaussian width dependence with a modified waist and 

magnitude. The figure below shows a diagrammatic sketch of the 

distribution of both coherent and incoherent power as a function of the 

angular displacement S. 

s=sin$ 

It may be seen from Equations (4.12), (4.17) and (4.20) that 

the incoherent angular power has a much smaller magnitude than the 

coherent power, the on-axis (S = 0) ratio being:- 

Magnitude of Incoherent Power 

  

62  

1  + 2w2  

0 

(4.21) 
Magnitude of Coherent Power 
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which is a function of the degree of turbulence implied in a', and on 

the aperture dimension w relative to the lateral scale-size Eo. 

The spread of the incoherent or scattered power relative to 

the free space "T/e" beam width, which is the same as the spread of the 

coherent power is:- 

Spread of Incoherent Power 
(4.22) 

Spread of Coherent Power 

which is seen to be independent of the strength of turbulence of the 

medium and is simply a function of w/Eo. 

Therefore, it may be seen that as the aperture size is 

increased, i.e. the beam width becomes narrower, the magnitude of the 

incoherent power relative to the coherent power becomes smaller, and the . 

relative spread of the incoherent power spectrum is wider. The opposite 

is also true, i.e. the wider the beam width, the relatively narrower 

is the scattering angle, and relatively more power is scattered due to 

the increased number of irregularities present in the path of the wider 

beam. 

Fig. 4.1a shows the ratio of the spread of the incoherent to 

coherent powers given by Equation (4.22), as a function of the transmitter 

aperture size w, with the medium scale size Eo  as a parameter. Fig. 4.1b 

shows the ratio of the on-axis magnitude of the incoherent to coherent 

power given by Equation (4.21) given as a percentage, as a function of 

w, with 
0 
as a parameter. The significance of the shown variation of 

relative spectral width and magnitude will be discussed in detail in 

Chapter 5. 
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4.3 	Propagation of the Coherence Function Through a Strongly  

Turbulent Medium  

In the previous section, it was assumed that the coherent 

and incoherent portions of the lateral coherence function propagate 

without change to the observation plane z = d. The incoherent portion 

was calculated under the condition that Q' « 1. This condition is 

easily met for relatively short path lengths or alternatively for weak 

turbulence situations. However, under strong turbulence conditions or 

for non-homogeneous media, for example, the strength of turbulence Q~ 

is not constant throughout the path length, or for varying scale sizes 

of the refractive index irregularities, the previous analysis does not 

accurately represent the effect of the medium on the propagating wave. 

4.3.1 	Multiple Phase Screen Representation of the Medium  

A suitable procedure to overcome the above inadequacies is to 

divide the total path length L into a series of m consecutive homogeneous 

regions or slabs as shown in Fig. 4.2. The magnitude of the turbulence 

within each slab is then considered to be weak and, hence, each slab 

may be collapsed into its characteristic random phase screen, each 

satisfying the condition that o « 1. 

Phase screens. Receiver plane 

x 

Fig. 4.2 Multiple phase screen representation of the random medium 
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The lateral coherence function calculated at z = 0, propagates 

without change to the plane z = d-. The medium from z = d to z = 2d is 

collapsed into a phase screen at z = d+. 

In the following analysis the notations to be used are:- 

ro(E) is the lateral autocorrelation function of the aperture 

field distribution, which for a normalized field distribution is:.- 

ro(E) = exp - (E2/2w2) 

T() is the lateral autocorrelation function of the phase 

screen at z = 0, and is split into two parts - a coherent part Tic(E) 

and an incoherent part Tli(E) as shown in Equation (4.15), which are 

given by:- 

Tic( ) = exp (- a2) 

- a2 

and for a2  « 1, T 	= a2  . r (E) . e 	1  and:-  
1 	li 	1 	1 

T1 (E ) = Tic(E ) + Tli(0 

where a2  is the variance of the random phase distribution across the 

phase screen at z = 0 and r (E) is the Gaussian phase autocovariance 

function. 

Similar notations will be used for the second phase screen at 

z = 2d with the appropriate suffixes, and so on for the rest of the phase 

screens. 

Returning to Fig. 4.2, the coherence function at the plane 



z = d has been shown to be:- 

r(E;d) = r0() • [T)  + Tli(6:1 	
(4.23) 

The precise knowledge of the random complex field distribution 

at z = d is not particularly relevant and for argument's sake, will be 

js (x) 
assumed to be E(x) = a(x) . e 1 	. 

• 

The phase screen at z = d+  representing the region from z = d 

to z = 2d introduces a random phase ¢2(x), the characteristics of which 

are determined by the characteristics of the refractive index fluctuations 

in the second region. Therefore, the field distribution is:- 

j(1) (x) 	js (x) 	jcp (x) 
E1(x;d+) = E1(x,d_ ) . e 2 	= al(x) . e 1 	. e 2  

and hence the coherence function at z = d+  is given by:- 

t0 

r2(E;d+) = <E1 (x;d
+
) . E1 (x + E;d+)> • J.X 

p t010 j
p 
r 	 r 
i(x) - $1(x + Eij 	j[2 ( x) - 4,2 (x + E) 

_ <al(x) . al(x + E) . e 	. e 

-AP 	•cj Y 	 (4.24) 

If the second phase screen at z = d+  is situated at a relatively 

large distance away from the first one at z = 0, i.e. many longitudinal 

correlation lengths 	away, therefore, the phase contributions of the 

first and second phase screens 01 (x) and cp2(x), may be considered to be 

uncorrelated. Since (1)1 (x) and 02(x) are both assumed to be Gaussian 

random variables, therefore, lack of correlation indicates independence(36). 

Hence, the random field distribution E1(x,d) and 02(x) are independent. 

110 
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Therefore, Equation (4.24) may be split as follows:- 

r2( ,d+) = rl(E,d ) . T2(E) = row . T1 W . T2(E) _ 

= r [1() . T2c(E) + Tlc W . T2i(E) + T2c(E) . T li() + To( ) . 

(4.25) 

Corresponding to the four separate coherence functions of 

Equation (4.25), there are four angular power spectra after the second 

phase screen. They are:- 

(I)  

z 

IFI(E)I2 < 	> ro(E) • TIC  (E) T2c(E) - 	w 
A2 a 

1 	2 
P 1 	

a 
 2 

rrwi 

(4.26) 

This angular power is the twice attenuated free space power, 

first from the first phase screen and then from the second phase screen, 

the attenuation factor being exp - (a2  + cr2). The width of the angular 

power spread is obviously similar to the free space value. 

(II)  

IFII(S)I2 < 
	> ro(E) - Tic(E) • T2i() 

b2  
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- (a2 + a2) 

7r.w2 . b2 .a2 . e 	1 	2 
2 - S2 

1 X1 2 	1 + 2w2---] 
mvc 	E2 

2 

. exp (4.27) 
2w2 

E2 
2 

- (a2 + a') 
~r •w2 . b2 . a2 . e 	1 	2 

	1 	. exp 
2w2 
E2 
1 

- S2 

Al 	2w2 2 	1
2 7 ~1Tw J 

1 

1 

(4.28) 

A2 

This angular power corresponds to that reduced by the first 

phase screen and then scattered and reduced by the second phase screen. 

The reduction in magnitude is a function of the phase variance a2 and a2, 

and on the ratio of the transmitting aperture size to the lateral scale 

size of the phase variations across the second phase screen, E2. 

I FIII(S)I2 < 	> ro(E) • T2c(E) . Ti(E) _ 

This angular power is that reduced and scattered by the first 

phase screen and then reduced only without further scattering by the 

second phase screen. The spread of the scattered power is a function 

of the scale size E1, of the first phase screen. 

(IV) 

lFiv(S)I 2 < 	ro() • T l i(E) . T21(E) = 



113 

(a2 + 62 ) 
7T 	w2 	b2 	0.2 	a2 . e 	1 	2 

_ 	1 	2  

. 	2w2 
+ 1 

2 
12 

. exp 

 

- S2 
(4.29) 

  

 

1 	
Al2 
	

[1 + 2W21 

12~ 

     

where:- 

_  g1 g2  
12 	12 + 2 

1 	2 

This part of the angular power spectrum represents that 

portion of the energy which is scattered and reduced by the first screen 

and further scattered and reduced by the second phase screen. The 

magnitude and spread of this angular power are both a function of both 

scale sizes
1 
and g2. Since g12 is always less than gi 

or g2, then 

the spread is always wider than the single scatter terms IFII(S)1 2 and 

IFIII(S)12. 

This part of the angular power may be considered to be the 

first multiple scatter term and its magnitude relative to the reduced 

unscattered component is:- 

Magnitude of Multiple Scatter Term 

 

a2 . 2 

 

 

1 	2 (4.30) 

Magnitude of Unscattered Component 

 

2 1 + 2w 
g2 

12 

For a2 and a2 both « 1, it is seen that the multiple scatter 
2 

component is relatively a very small quantity. The multiple scatter 

term is further reduced by the quantity a2 and so on as it is further 

scattered along the path length. 
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It is easy to see that proceeding along the path, each phase 

screen contributes a coherent and an incoherent part. Finally at the 

output of the m'th phase screen, the lateral coherence function may be 

written as follows:- 

r(E;md+) = r0(E) . [1C(E) + Tli(E)] . [2c(E) + T2i( j .... [mc() + Tmi(61 

(4.31) 

A full expansion of the above expression would give all the 

multiple scattering terms, the single scatter terms of each phase screen, 

and the continuously reduced free space component. The resulting 

expression would be very cumbersome. 

As an approximation, terms which are scattered more than once 

will be neglected, in this case the lateral coherence function at the 

end of the final slab at z = me is:- 

m 	m 
r(E;md+) = ro(E) . 	T. (E) + 	. n Tc.( E) • Tti(E) 	(4.32) [iR 

=1 	2=1 j=1 

where n indicates a product. 

SinceTjc 	) (E) = exp (- o , therefore, the above product is 

merely an addition of the variances of the phases of the individual 

screens. 

The corresponding angular power spectra for the single scatter 

result of Equation (4.32) are the Fourier transforms of the individual 

terms resulting from the expansion of Equation (4.32). 

Normally the medium need not be divided into a large number 

of regions, since it has been previously shown that even for relatively 

strong turbulence a; is much less than unity. However, if the medium is 
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inhomogeneous, then the above approach is useful. 

To appreciate the physical reasoning of the multiple slab 

approach, consider a strongly turbulent medium or alternatively a long 

propagation path such that a; is large. Furthermore, assume the medium 

to be homogeneous, i.e. the scale sizes 	and o and the variance on 

of the refractive index fluctuations are constant throughout the medium. 

Dividing the medium into m slabs, such that 62 « 1 within each slab, 

the lateral coherence function including multiple scatter terms is given 

by: - 

2 	2 	2 

r(,md+) = ro() . 
e- m6~ + e 

mai rm6(I
) 
- 11 (4.33) 

Applying Equation (4.32) for a homogeneous medium, i.e. 

neglecting multiple scatter terms, the lateral coherence function is 

then simply given by:- 

r(;md
+
) = row . 

-ma2 
CI)

- ma 
e 	+ m . U2 . r

(I) 
	. e43 (4.34) 

   

which obviously is a result that may have similarly been obtained for a 

single slab, but replacing 1 by mci, where ma; is not restricted to be 

much less than unity. Hence, this indicates that a strongly turbulent 

medium may be collapsed into a single phase screen with the phase 

variance being that acquired along the total path length. 

This result has been predicted by Bramley(50) and has been 

seen from the above analysis to be valid under conditions of single 

scatter. 
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4.3.2 	Angular Power Spectrum of an Incident Wave with 

Random Amplitude and Phase Distributions  

A wave propagating through a random medium has been seen to 

suffer destruction of its lateral coherence, corresponding to the 

splitting of the angular power incident on a receiver plane into a 

coherent and one or more incoherent components. The lateral statistics 

of the complex wave amplitude are determined through knowledge of the 

lateral coherence function. 

Although the destruction of lateral coherence originates due 

to the random phase only modulation by the phase screen, the amplitude 

distribution is progressively altered from its free space value. This 

may be appreciated by the results of the previous chapter for the on-

axis field fluctuations. Hewish(51)  has calculated the amplitude and 

phase distributions due to a phase screen with sinusoidal variations 

and he has shown that the amplitude distribution is 'progressively 

altered as the wave is observed at consecutive planes. 

The calculation of the individual amplitude and phase lateral 

fluctuations in the receiver plane in this situation is impossible due 

to the random nature of the modulating phase screen. However, if it 

were possible to estimate the magnitude of the amplitude and phase 

fluctuations and their scale sizes across a lateral observation plane, 

it would be possible to determine the relative magnitude and spread of 

the scattered energy. 

Consider an incident wavefront with the following complex 

field distribution:- 

E(x) = A(x) . ei4)(x)  

where A(x) and cp(x) are the random amplitude and phase distributions 
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respectively. 

Assuming a homogeneous distribution for the amplitude and 

phase variations, the coherence function is thus given by:- 

+gw, 

rE(E) _ <A(x) . A(x + E) . di:1)(x) . e- j(I)(x  + 0>  .d x 
-ca 

Assuming that the amplitude and phase fluctuations are 

independent, which is a reasonable assumption based on the analysis of 

Chapter 3, therefore:- 

rE(E) = rA(E) . r(E) (4.35) 

where I'A(E) and rfi() are the amplitude and phase lateral coherence 

functions respectively and:- 

4.0o 

rA(E) _ <A(x) . A(x + )> .c6 
	

(4.36) 

_co 

Noting that the amplitude autocorrelation coefficient rA(E) is 

defined as:- 

rA(E) - <A(x)  . 
 A(x 

o
+ )> -o<A(x)> . <A(x + )>  

A(x) • A(x + E) 
(4.37) 

Assuming spatial stationarity of the first and second degree, 

which again is a reasonable assumption over small separations of the 

order of metres, after a propagation distance of the order of a few 

kilometres, therefore:- 

<A(x)> = <A(x + E)> = m 
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which is the mean value of the amplitude variations and is a function of 

the power radiated and the gain of the transmitting antenna and:- 

GA(x) = 6A(x + E) = oA 

Furthermore, for analytical simplicity, assuming a Gaussian 

autocorrelation function, with a lateral scale size EA, i.e.:- 

rA(E) = exp - E2/qt  

Therefore, from Equations (4.36) and (4.37), the amplitude 

coherence function is given by:- 

_ E2/E2 

rA(E) = m2  + a2A  . e 	
A (4.38) 

Assuming a zero mean phase process, and a Gaussian phase 

autocorrelation function, with a scale size EV 
 the phase lateral 

coherence function is then given by:- 

E2/p2 
a2 	- a2 	62  . e 	° 

r
0 
 (E) = e 	+ e 	e 9  

It will be shown later in the experimental investigations that 

the phase variance a2  is much less than unity, therefore, for a2  « 1:- 

- a2 	_ E2/p2 

r
0 
 (E) =e 	0 + a2  . e 	° 

Substituting for rA(E) and ro(E) in Equation (4.35), the 



F„ (S)1 2 < 	
_ 2/r2 	m2 	a2 	AT 	S2 
 

A2 
	 . ~~ . exp 	 > m2 . a2 . e 	- 
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complex field coherence function is given by:- 

- 

rE(~) =m2 e 
a

m2 a2 e 	
2/

+ aA e  	e

2/Ā

+ 

+ a2 . a2 . exp (4.39) 

  

It is seen that the coherence function is split into four 

parts and, hence, the corresponding angular power spectrum is also split 

into four parts. These will be obtained individually below:- 

(I) 

- a2 	2 

IFI(S) 1 2 < 	> m2 . 
eT = 	
m4 

e- a
T . S(S) 

A2 

where 6(S) is the Dirac-Delta function and the angular power is simply 

the free space power reduced in magnitude by a_ ~. 

(4.41) 

which is the scattered power contributed by the random phase variations. 



- a2 
,T . e 	. oA .

A 	
- S2 

	 . exp 
X 2 

CEA 

a2 
(4.42) 

120. 

- a2 	- 2/ A 

IFIII(S)I2 < 
	> oA 	e 	. e 

This is the scattered power contributed by the random 

amplitude fluctuations and is seen to be independent of the amplitude 

level. This part of the scattered power is much smaller in magnitude 

than that due to the phase fluctuations. 

(IV) 

2(e2A 

	
$ 

+ E2) 

IFIV(S)12 < 
	> oA . o( . exp - -  

2 	
2  

,T . oA . o; . EA 	. E~ 	- S2 _ 	 exp -  
A2 	~ A + 	 1 

I 2 (r2 	r2) 

A . E( 	A 

(4.43) 

This portion of the angular power spectrum represents the 

incoherent or scattered power due to both amplitude and phase fluctuations. 

The spread of this portion is larger than either the amplitude or phase 

scattering components. The magnitude is also much smaller than either 

one. 

The conclusions drawn from the above angular power representations 

is that if amplitude and phase fluctuations are detected in a plane normal 

to the direction of propagation, one can predict the angular power 
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distribution. 

The angular power is seen to consist of four components. The 

magnitude of the phase fluctuations Q2 seems to be the most effective 

parameter in determining the magnitude of the scattered components 

relative to the reduced free space component. 

To summarize the conclusions reached in this chapter, it may 

be said that the random medium degrades the coherence of the propagating 

wave. This has been seen to correspond to the splitting of the angular 

power spectrum into a coherent and incoherent portions. The relative 

magnitude and spread of the two portions have been seen to be a function 

of the transmitter aperture size, the strength of turbulence and the 

scale sizes of the refractive index irregularities. 

The strongly random medium has been represented by a series 

of parallel phase screens; the maximum separation between the screens 

is limited such that the magnitude of the characteristic phase variance 

is much less than unity. On the other hand, the minimum separation is 

limited by the requirement that the phase contribution of one region is 

statistically independent of that of the next region. It has been 

shown that for a homogeneous medium and for single scatter considerations, 

the entire medium may be collapsed into one phase screen, with the phase 

variance being that acquired along the total path length. 

It has also been seen that a wavefront distorted in amplitude 

and phase corresponds to an angular power distribution with a reduced 

free space component and a broader scattered portion. The magnitude of 

the scattered portion relative to the reduced specular component being 

mainly determined by the variance and scale size of the phase fluctuations, 

with the variance of the amplitude fluctuations playing a minor role. 

The incoherent portion of the;angular power spectrum has been 

seen to be equivalent to the variance of the available fluctuating signal. 
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This variance is that which would be sensed by a point receiver which 

has the property of receiving energy from all directions without 

discrimination. However, practical receiving antennas having a finite 

size and consequently a finite beam width and, hence, the amount of 

received power, coherent and incoherent, is a function of the receiver 

aperture size. 

Having studied the behaviour of a finite beam propagating in 

a random medium, the problem then is to investigate the effects of the 

medium induced wavefront distortions and their corresponding angular 

power spectra, on the mechanism of coupling to a finite receiving 

aperture. The next chapter is concerned with the treatment of this 

problem. 
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CHAPTER 5  

TRANSMITTER TO RECEIVER COUPLING  

IN A RANDOM MEDIUM  

In this chapter, the coupling of a randomly distorted wave 

front to a finite receiving aperture is studied. In Chapter 3, the 

fluctuations in the complex field were estimated for an on-axis 

observation point. This corresponds to reception by a point receiver, 

i.e. an isotropic receiver with no angular discrimination. In Chapter 

4, the power fluctuations were estimated using angular power spectrum 

and coherence function considerations. The variance of the power 

incident on the receiver plane has been shown to be the incoherent 

power available. This has been determined relative to the mean or 

incoherent portion. The on-axis ratio, i.e. at S = 0 corresponds to 

the amount of incoherent or noise power relative to the mean power 

received by an aperture sensitive only to the field incident from the 

on-axis direction. 

The practical case of a finite dimension receiving aperture 

with a finite angular response, receiving a partially coherent incident 

beam with a finite angular spread for both the coherent and incoherent 

portions will be developed in the following analysis. 

The analysis is an extension of Brown's free space field 

coupling formula'52). The random medium is represented by a random 

phase screen situated at the transmitter aperture plane. To approach 

a practical representation of the medium, the phase screen and the 

aperture responses will be considered in their three-dimensional form. 

Furthermore, the phase variations across the phase screen will be taken 

to be time varying, with the time variations corresponding to those of 

the medium irregularities. 
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As a consequence of the random medium, the power coupled 

between the transmitting and receiving antennas is reduced from the 

free space value and, hence, the efficiency of the propagation system 

is reduced. At the same time, the random medium introduces a noise 

component into the system and, hence, the signal-to-noise level is 

deteriorated. 

The system efficiency and signal-to-noise ratio will be 

defined and obtained as a function of the system and medium parameters. 

Their variations with the above parameters will be investigated. 

5.1 	Free Space Transmitter-Receiver Power Coupling  

In the previous chapter, the angular power spectrum of the 

field radiated by a transmitting aperture has been shown to be the 

Fourier transform of the lateral autocorrelation function of the 

electric field distribution across the transmitter aperture plane or 

across any plane normal to the direction of propagation. The angular 

power spectrum has also been seen to be directly related to the antenna 

gain function. 

In this section, the power coupled from the angular 

spectrum of incident plane waves onto a receiving aperture will be 

obtained under free space propagation conditions. The dependence of 

the power coupled on the aperture sizes and the propagation distance 

will be investigated. 

The three-dimensional case will be considered and for 

analytical simplicity, the aperture field will be assumed to be separable 

in the x and y lateral direction and, hence, the aperture field is given 

by:- 

E(x, y) = _b . E(x) . E(y) 
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For further analytical simplicity, the example to be studied 

will be concerned with Gaussian aperture field distributions. The 

effective aperture dimensions are taken to be the "1/e" widths of the 

Gaussian distributions in the x and y directions, wTx and wTy respectively. 

Therefore, the transmitter aperture field is given by:- 

-x2 	_Y2 ET(x, y) = bT . exp 2 
. exp 

2 
wTx 	wTy 

(5.1) 

The normalization will again be taken as:- 

+. 

IET(x, Y)I 2 dx dy = 1 

Therefore:- 

_7 	
1 bT 	,~ . 

w
Tx ' WTy 

Similarly, the receiving aperture will be assumed to have an 

equivalent Gaussian aperture field distribution when transmitting given 

by:- 

_ •2 	_ •2 
ER(x', y') = bR . exp 	

2 	
. exp 	

2 

wRx 	Ry 

(5.2) 

where, for a normalized aperture field:- 

✓WRx . WRY 
_ 	1 bR 	,~ . 
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In Equation (5.2) the receiver aperture field is defined in 

terms of the lateral coordinate system in the receiver aperture plane. 

The following analysis will be concerned only with the 

situation of both transmitting and receiving antennas facing each other, 

as shown in Fig. 5.1. Under this condition, it is seen that x' = x, 

y'= - y and z'=L-z. 

5.1.1 	Angular Spectrum Coupling  

To calculate the power coupled from the transmitter to the 

receiver aperture, the analysis will be based on the coupling formula 

produced by Brown(52), where the complex signal coupled from a radiating 

aperture with an angular plane wave spectrum FT  (S 1 
 , S

2
) to a receiving 

aperture with an equivalent angular plane wave spectrum FR(Slr, Ser) is 

U, where U is given by:- 

+o +o 

	

2 	 1 - S2 	- jkLC 

	

U = 2Z 
	

FT(S1, S2) 	FR(Slr, Ser) 	e 	r  . dS1  . dS2  

(5.3) 

where Z is the plane wave impedance in free space. 

The above formula is given as an exact result for the complex 

field coupled to a receiving aperture in the near field of the trans-

mitting aperture. 

In the coordinate system shown in Fig. 5.1, the direction 

cosines of the receiver aperture are given by:- 

Slr = - 
S1  S 	= S2  Cr =C 

Considering narrow plane wave angular spectra, i.e. the 
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dimensions of both transmitting and receiving aperture are many wave-

lengths, which is a very reasonable assumption at microwave frequencies, 

the following approximation may be made for 6 and within ± 15 degrees:- 

1 - S
2 
2 - 1 - sin2 0 . sin2 ~~ 1 ~— - 	cos e 

(5.4) 

and also:- 

(S2 + S2) 
C=1- 

The power coupled to the receiving aperture is obviously 

given by U2. To obtain the complex field and, hence, the power coupled 

using formula (5.3), is relatively simple under free space conditions. 

However, if the field is a random one due to the presence of a random 

medium, the situation is much more difficult due to the lack of 

knowledge of the random field distribution. It has been shown in 

Chapter 4 that, although the random medium varies the complex field 

distribution in a random manner which is impossible to describe in 

detail, the coherence function remains constant for the random wave 

after it passes through the random phase screen at the transmitter plane. 

To make use of this feature of the propagation of the coherence 

function, the calculation of the power coupled to a receiving aperture, 

will proceed from a lateral autocorrelation function point of view for 

the free space case. This will be extended to the random case by 

considering the coherence function. 

Substituting the approximations of Equation (5.4) into the 

coupling formula of Equation (5.3), the complex electric field coupled 

is thus given by:- 
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(S 2  + S 2 j+  
L 1 

	

2 	 2 

	

U = g 
	

FT(S1, S2) . F- S1, S 
2 
 ) . e

-  jk 	1 	2 

— . dS . dS 2  

The conjugate of the complex couoled'field is:-  

+°° +°° 	 + jkL 1 - --— 

+co +co 

(s2 + S 21 2 
2 

U*  _ 	FT(S, S 
2  ) 
	FR( S, S2) 	e . dS. dS 

1 
	2 

Therefore, the power received is given by:-  

!u1 2 = U.0*-  

+m tm +D+0  

a4 j I 

4z2 	

FT(S1, 
S2)  . FT(S1' S2)  . 

FR(-  Si, S2) . 
• 

11) _W _o 

. F*(- S , S ) . e J 	(S1 	S12 ) . e J 	(S2 	
S22) . 

dS . dS . dS'  . dS'  
R 	1 	2 	 1 	2 	1 	2 

(5.5) 

where S'  = S + a and S'  = S + a . a and a are angular displacements. 
1 	1 	1 	2 	2 	2 	1 	2 

To calculate the quantity FT(Si, S2) . FT(S1, S2), since:-  

Pm +m 
+ jk(S x + S y) 

FT(S 1, S2 	
a 

) = 1
2 	

ET(x, y) • e 	1 	2 	. dx . dy 

Therefore:-  

+o +m +o

.J1JJFT(S-1, S2) . FT(S 1, S2) = 14 	ET(x", y")  . ET(x, y) • 

_o _Op _co _o 
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jk(x'S' + y'S' - xS - yS ) 
e 	1 	2 1 2  dx dx' dy dy' 

where x' = x + E  and y = y + n. E  and n are lateral displacements. 

For separable field distributions, the above equation may be 

written as:- 

4. +. +. 4m 
r 

FT(Si, SZ) . F.*T(S1, S 2 ) 
= k 

. 	ET(x + E) • ET(x) • ET(y + n) . ET(y) 

_. 

+ jkQ x 	+ jka y 	+ jkE (S + o ) 	+ jkn (S + a ) 
.e 	1  .e 	2  .e 	1  1  .e 	2 2 dxdyddn 

The above equation may be written in terms of the lateral auto-

correlation functions as follows:- 

+ +co 

FT(Si, S') . FT(S 1, S2) = a
4 
. 	rTx(E, a1 ) • Ty(n, a2) 

_co -o 

+ jkE (S + a ) 	+ jkn (S + a ) 
. e 	 1 	1 	. e 	 2 	2  . dE . dn (5.6) 

where:- 

+00 
jka x 

rTx(E, a) = 	ET(x) . ET(x + E) . e 	1  . dx 

_00 

(5.7) 

and:- 
+co 

J 	

jkQ y 

rTy(n, a2) = 	ET(y) . ET(y + n) . e 	2  . dy 	(5.8) 

_o 
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are the general forms of the lateral autocorrelation of Equation (4.8) and 

are reduced to it when a and a = 0. 
1 	2 

Similar expressions for the receiver autocorrelation functions 

are obtained on the same lines, with the appropriate suffixes. Furthermore, 

assuming symmetry about the z-axis in the x-z receiver plane, therefore:-  

+.. +. 

FR(-  Si, S2) . FR(-  S1, S2) = FR(S-1, S2) . FR(S 1, S2) =14 
	4 f
. 	rRx( E, 61) . 

+ jkE (S + -a ) 	+ jkn (S + a ) 

.rRy
(rt ,a) . e 	1 	1 	e 	2 	2  .d .dn (5.9) 

Therefore, from Equations (5.6) and (5.9), Equation (5.5) may be 

written as follows:-  

I012  = 

X4 
. i  

J 

 rTx(E, 
al)  ® rRx(E, al) 

. rTy(n, a2) ® rRY(n, ad- 
4Z2   

jkLS a 	jkLSa 	j  
kL 

62 	j 
 kL Q2 

. e 	1 1 . e 	2 2 . e 	1 . e 	2  . dS . dS . da . da 
1 	2 	1 	2 

(5.10) 

where 4 denotes a convolution over E and n. 

Therefore, the coupled power may be obtained through knowledge 

of the lateral autocorrelation functions of the complex field distributions 

across the transmitter and receiver planes. 

Example  

As an example, the power coupled between two antennas will be 

calculated for the case of Gaussian amplitude illuminated antennas, the 

aperture field is of the form described in Equations (5.1) and (5.2) for 
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the transmitter and receiver apertures respectively. Therefore:- 

- (x + E)2/0r. 
	- x2/wTx 	 jkclx 

rTx( ,a) = bT 	e 	 e 	. e 	. dx = 

-o 

kc E 
= b 	,~ e- E2/24,, e- j 	A — 

e T ✓  2 

k2a2w2  
8 

Similarly:- 

k6 n 

-
n2/2wT 	

J 

__IL_
rTy(n, Q2) = bT 	e 	Y . e 	. e 

  
 Rx 

- E2/2wRx 	

- j k 	- k2a2w2 8  
/77 

rRx(E, 	 6   ) = bR ✓  2 e 	. e 	. e 

and:- 

ka n 	
k 	 - n2 /2wR 	j ~ 	2~2 

- R

y 

	

rRy(n, a2 ) = bR 	e 	Y . e 	 . e 	. 
8 

k2a2w2 
2 Ty 
8 

(5.11) 

Carrying out the transformation to the angular domain as shown 

in Equation (5.6), therefore, it can be shown that:- 

2 	_ 2 2 2 	- 1 2 2 

FT(S', S') . F1*.(S 	S ) = 	. Tr2 . 
wTx 

. wT . exp 	
k 	

. exp 	
k 

4Ty~2 . 
1 	2 	1 	2 	 Y 

- k2w2 6 S 	- k2w2 a S 	- k2w2 S2 	- k2w2 S2 
.exp 	2 	.exp 	ZY 22 	exp 	2Tx 1 . exp 	2TY 2 

(5.12) 

A similar expression for the receiver equivalent angular spectrum 

may be obtained by replacing wTx and wTy withwRx and wRy respectively and 

bT by bR. 
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Substituting Equation (5.9) for both transmitter and receiver 

angular spectra into Equation (5.5) and carrying out the integration 

with respect to S and S first, then a and a , it may be shown that 
1 	2 	 1 	2 

for normalized aperture fields that:- 

IUI2 

_(zJ

wTx  . w y . wRy
(5.13) 

 / 2(W2 
Tx 

+ 
w2 

) 2  + x2L2 	,! 2  (w2  + wRx) 	2 + A2L2  

For circularly symmetrical antennas, i.e. wTx  - wTy  = WT, and 

wRx  = wRy  = wR, therefore:- 

1u1  = (

,r
)

2 . 	wT .
•

wR 

 • 	
lZ J 72(w2 + w2 N2 + X2L2  

( 	R)  

(5.14) 

The above expression for 1U1 2  may similarly be obtained by 

calculating the coupled complex field and squaring the magnitude. A 

similar result for the coupled power in free space has also been obtained 

by Chu(53). 

5.1.2 	Effect of Aperture Dimensions and Path Length on the  

Free Space Near and Far Field Coupled Power  

Since the complex field coupling formula of Equation (5.3) is 

correct for near and far field calculations, therefore, the expression 

for the power coupled between two Gaussian field apertures, Equation (5.14), 

is also accurate for near and far field calculations for narrow beam 

antennas, i.e. the beam width is limited to approximately ± 15 degrees. 

Fig. 5.2a shows the power coupled between a transmitting and 

a receiving aperture with Gaussian amplitude distributions with "1/e" 

half widths wT  and wR  respectively. The power coupled in all cases is 

calculated relative to the power coupled between two oren wave guides, 
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situated at the same distance, and hence at a wave length of 8 millimetres 

we have wT  = wR  = 4 millimetres, i.e.:- 

Power Coupled Between wT  and wR  
Relative Gain = 10 . log 

	

	  
Power Coupled Between Two Ogen Waveguides 

The distance between transmitter and receiver in Fig. 5.2a is 

12 kilometres. 

Obviously as the aperture dimension increases in size the 

situation tends to that of calculating the power coupled between apertures 

in the near field of one or both apertures. It may be seen that the 

power coupled seems to saturate, and even slightly decrease for small 

transmitting apertures as the receiving aperture increases in size. As 

the distance between both apertures is increased, as shown in Fig. 5.2b, 

the power coupled is seen to increase for the larger aperture sizes and 

begins to saturate as the distance is increased such that each antenna 

lies in the far field of the other. 

Knowledge of the near field coupled power and its variation 

with distance may provide useful information for measurements carried 

out in the near field of large apertures. This may be done by providing 

a correction factor which is aperture size and distance dependent. 

Having obtained a free space power coupling formula based on 

the knowledge of the lateral autocorrelation function, the next step is 

to examine the effect of a random medium on the coupled power. It has 

been seen in Chapter 4 that the random medium causes a degradation of 

the lateral coherence function and, hence, the angular power spectrum is 

distorted. 

The next section deals with the coupling of the distorted 

angular power spectrum to a finite receiving aperture. 
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5.2 	Transmitter-Receiver Power Coupling Through a Random Medium  

The random medium under consideration is basically that outlined 

in Chapter 3. However, in this analysis the three-dimensional case will 

be considered and in addition to the spatial randomness, temporal 

variations will be incorporated. 

It has been previously shown that the phase autocorrelation 

function is directly related to the refractive index autocorrelation 

function, i.e. in normalized form:- 

r( , n, T) = rn(E, n, T) 

where T is time shift. Assuming that the functional dependence of the 

autocorrelation function is a separable one, therefore_- 

r(1)(E, n, T) = r4)() . rcp(n) . r~(T) 	 (5.15) 

Furthermore, it will be assumed that the medium is stationary 

and, hence, the phase variance a2 is time independent. 

It has been shown for 62 « 1 that the random medium may be 

collapsed into a thin phase screen situated at the transmitter aperture 

plane. The effect of the screen has been seen to split the coherence 

function in the transmitter plane into a coherent and an incoherent part 

and, consequently, the radiated angular power is composed of a coherent 

and an incoherent portion, both of which propagate through what is now a 

free space medium and are coupled to the receiving aperture. 

Due to the randomness of the medium, the power coupled is now 

a random quantity and hence expected values will be dealt with. Therefore, 

from Equation (5.5):- 
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+00 +00 +o +0 

<U . U*> = <1U1 2> - 2 	<FT(Si, 	S 2) . 	F T(S1, 	S 2)> 
4Z2 

+ jkLS a 	+ j kL 
2

+ jkLS a 
. FR(- Si,  SZ 	2 ) . FR(- S1, S) . e 	1 1 .e 	1 . e 	2 2 

kL Q2 

.) -2-
2 

. dS . dS . da . da 
1 	2 	1 	2 

(5.16) 

The quantity in the square brackets is the expected value for 

the angular power spectrum after the phase screen and is obtained from 

knowledge of the lateral coherence function. Hence, for the random 

medium under consideration and adding the temporal dependence, this 

quantity has been shown, Equation (4.16), with a « 1 to be:- 

2 	_ 2 

r(, n, T) = rfree space ' e- ~~ + a . e ~~ . rfi( , n, T) 	(5.17) 

Therefore, substituting in Equation (5.6) and noting that the 

phase autocorrelation function has been assumed to be separable, we get:- 

+0 

	

- e2 	jkE(S + a_) 
<FT(S', S2) . FT(S1, S2)> = 

4 
. e 	

P 	
rTx(E, al ) . e 	1 	1 . dE . 

-o 

+oe 	 +0 
jkn(S + a ) 

. 	rTy(n, 62) . e 	2 	2 . dn + a21, 	r(1)(T) . 	rTx(E, al ) . rcp(E) . 

+oe 

jk (S + ~1 ) 	 jkn(S2 + a ) 
e 	

1 	
. dE . 	rTy(n, a2) . r~(r1) . e 	dn (5.18) 

-o 

The angular power spectrum radiated from the transmitter aperture 



- a2 	+o +o 

a20  . e 	. r,(T ) . a4  {  

4Z2 	

rTx(E, al) . yE) ® rRx(, al) . dSl  . dal  . 
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plane is composed of two parts and, as previously shown, they are the 

coherent portion and the incoherent portion; the first is equivalent to 

a reduced free space component, the second portion is incoherent power with 

a much smaller magnitude and wider spectrum than the reduced free space 

component and has been shown to correspond to the variance of the 

received signal. 

Substituting the two portions of the radiated angular power 

given by Equation (5.18) into the power coupling Equation (5.10), we get 

both the mean power coupled and the temporal co-variance function of the 

coupled signal, which are given by:- 

Mean Power Coupled : I<U>I 2  = 

- a2  

e 	. a4  

4Z2  

+co +co 

If 

rTx(E, al) E rRx(E, al) . dSl  . do-  . 

   

4o +c 

  

rTy(n, a2) ® rRy(n, a2) . dS2  . da2  (5.19) 

   

Co-Variance of the Coupled Signal : COVU CTI = <U*(t) . U(t + T)> - I<U(t)>I 2  = 

4 +. 

rTy(n, a2) . rci)(n) ® rRy(n, a2) . dS2  . da2  

 

(5.20) 

  



2 
I<U>F2 = e aP 	2 

 . 

	wTx • wRx 
' 

wTY • WRY 

2(wTy w6)2 + A2L2  ,/,„2(w2 
  + wRx)  2  + 

x21.2 
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Example  

The example considered here is similar to that taken for the 

free space medium, namely, that of Gaussian amplitude aperture distributions 

as given by Equations (5.1) and (5.2). Furthermore, the phase autocorrelation 

function will be taken as Gaussian with spatial scale sizes
° 
 and no  and a 

temporal scale size T , i.e.:- 
° 

- 2/ 2 	- 7.12/7.1 2 	- T2/T2 

ro(E,  n, T) = ro() . r4)(n) . ro(T) = e 	° . e 	° . e 	0 

(5.21) 

Substituting for the aperture fields in Equation (5.19), it may 

be seen that the mean power coupled is simply the free space power 

coupled reduced by exp - Q' and, hence, the mean power coupled is given by:- 

(5.22) 

and for circularly symmetrical antennas, we get:- 

- 
62G;12 	

w2Tw 22 
I<U>1 2 = e 	. 

 rr2(w2  + w2)2  + x2L2  
(5.23) 

It is worthwhile noting here that the mean coupled power is 

time independent. This is due to the assumption that the medium under 

consideration is a stationary one. 

To obtain the co-variance function of the coupled signal, the phase 

autocorrelation function given by Equation (5.21) is substituted in Equation 

(5.20). Solving this equation it may be shown that:- 
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_ 2

(7-1
2 

COVU(T) = <U*(t) . U(t + T)> - ~<U>C2 = e 
a, 

. a . r~(T) . 
	
. 

mx wRx  my WRY 

(5.24) 

	

where: 	mx = 	
wTx 

2 	
and my - 	

wTy 
2 

1 + 
2wRx

///1 + 

2wTY 

	

r2 	 n2 

	

0 	 0 

It is worthwhile noting here that the frequency power spectrum 

of the coupled signal fluctuations is given by FU(w), where FU(w) < 	 

RU(T) and RU(T) is the temporal autocorrelation function, and is given by:- 

RU(T) = <U*(t) . U(t + T)> = COVU(T) - I<U>1 2 

The variance of the coupled signal is thus given by VAR 
CUl 

, where:- 

VAR [U] = COVU(0) = <U*(t) . U(t)> - I<U>I 2 

and hence for circularly symmetrical antennas, and from Equation (5.24) 

we have:- 

r 	
_ 2 

VAR LU] = e 6~ . a . [1
2 m2 . W2 

R (5.25) 
Ti2(w. + WR) . (m2 + WR) + X2L2 

where:- m2 

	

24 	241 
+ 	1+---] 

	

r2 	n2 

	

0 	• 	0 

W
T T 

f 
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It may be seen from Equation (5.24) that for a separable 

refractive index autocorrelation function and for 6
(I) 
 « 1, the temporal 

characteristics of the coupled signal are identical to those of the medium. 

Hence, the time variations of this portion of the coupled signal are 

relatively very slow. 

It may be seen that the effect of the random medium is to split 

the coupled power into two portions. The first portion is the coherent 

component of the power coupled and for a stationary medium, is a time 

independent quantity. The coherent power coupled is reduced from the 

free space value by exp - a', where a' is a function, among other things, 

of the strength of the medium turbulence. The other portion is the 

variance of the coupled signal and is a time dependent quantity. The 

temporal variation of the coupled power has been seen to be identical to 

the refractive index fluctuations. This is true for the situation when 

the refractive index autocorrelation function is a separable one as 

assumed in Equation (5.15). The variance of the coupled signal given 

in Equation (5.25) is a function of the system parameters, 

i.e. path length and both transmitter and receiver aperture dimensions. 

It is also a function of the medium parameters inherent in Q and the 

lateral scale sizes
0 
 and no - 

The  total power coupled, which is the sum of the squared mean 

and the variance, is less than the free space value and, hence, the free 

space system gain is reduced, i.e. the efficiency drops. Furthermore, 

atmospheric induced noise is introduced in the power coupled. This is 

implied in the variance of the coupled signal and, hence, the system 

signal-to-noise ratio is degraded. 

The next section discusses in physical terms the two consequences 

of coupling a distorted wavefront to a receiving aperture. The dependence 

of the efficiency or gain degradation and the noise power coupled on the 



142 

receiving aperture size and the relationship with the scale size of the 

distortions will be outlined. 

5.3 	Efficiency and Aperture Averaging Effects of Large Receiving  

Aperture Antennas  

In this section, the gain degradation of large aperture 

receiving antennas will be related in physical terms to the scale sizes 

of the wave front distortions from an angular spectrum point of view. 

The aperture averaging property of large aperture antennas will also 

be discussed from the same point of view. 

Both phenomena, aperture averaging and gain degradation, have 

been discussed individually by several authors. However, no attempt has 

been previously made to study both phenomena simultaneously and to 

incorporate the medium scale sizes and the transmitting aperture 

dimensions. It will be seen further on that, under certain turbulence 

conditions, adjusting the system parameters for higher efficiencies 

causes the aperture averaging effect to decrease and, hence, an increase 

in the noise level and vice versa. It will also be seen that turbulence 

conditions which cause a loss in efficiency, simultaneously enhance the 

signal-to-noise level of the system and vice versa. 

5.3.1 	Efficiency of Large Aperture Antennas  

It has been seen in the previous section that if the propagation 

medium is turbulent, the coherence function is distorted which indicates 

that the amplitude and phase of the wave incident at the receiver plane 

vary with respect to time, together with a spatial variation along a 

plane normal to the direction of propagation. When these fluctuations 

increase in magnitude and their correlation distance decreases and is 

comparable in size to the receiving aperture dimensions, the power 

coupled from such a wave front to the aperture is no longer proportional 
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to the area of the receiving aperture, but rather to its square root. 

Hence the apparent loss in power or decrease in efficiency. The scale 

sizes of the wave front distortions are a function of the transmitting 

aperture size and the scale sizes of the medium irregularities. A 

receiving aperture will be considered to be large if the scale sizes of 

the wave front distortions are smaller than the dimensions of the 

aperture. 

Destruction of lateral coherence is equivalent to a broadening 

of the angular spectrum of plane waves incident on the receiver plane. 

The width of the incoherent portion of the angular power spectrum is 

inversely proportional to the scale sizes of the wave front distortions. 

Therefore, from an angular spectrum point of view, the gain 

degradation may be explained by considering the receiving antenna as a 

filter which responds to incident waves from a specified direction and 

the "band" of the filter decreases as the aperture size increases and, 

hence, the wider the angular power spectrum, the less the amount of 

power passing through the narrow band filter. 

Experiments
(18, 54) carried out using different size receiving 

apertures have shown that the difference in power levels is much smaller 

under turbulent conditions than under calm reception conditions. 

Experiments investigating the variation of the relative efficiencies 

of two different size apertures (an 0.3 metre dish and a 35.20 milli-

metre horn) will be described in Chapter 7. 

It has been seen that the efficiency is a function of the 

lateral coherence function. D'Auria and Solimini(55)  have shown that 

the efficiency decreases sharply as the coherence length decreases. 

Barzilai(56)  predicts that introducing an amplitude taper results in a 

lower degradation of gain. This is expected since the effective 
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receiving area decreases with such a taper. D'Auria and Colavito•57• have 

shown that the shape of the lateral coherence function has an effect on 

the efficiency deterioration curves. 

Although much work has been done to predict the loss of 

efficiency of a receiving aperture under turbulent conditions, the bulk 

of the work assumes an incident plane wave whose coherence has been 

deteriorated by the medium, and a coherence function is assumed for the 

incident wave at the receiver plane. Hence, the effect of the transmitter 

aperture size and its interaction with the medium is neglected. Further-

more, the relationship between the assumed coherence function and the 

properties of the random medium is often neglected. In this analysis, 

both the transmitter aperture size and the medium are taken into 

consideration when producing an expression for the efficiency. 

The efficiency of a receiving aperture has been described by 

some authors. For example, D'Auria and Colavito(57) define an efficiency 

which takes into account the fact that the average power received from 

a partially coherent incident wave is not the same as the power received 

from an incident plane wave. An alternative, and practically realizable, 

method for defining and determining the loss in plane wave gain, is 

described by Hall and Misme(54)  who use two antennas simultaneously and 

the gain degradation is defined as the difference between the outputs 

from the two receiving antennas subtracted from the difference of their 

plane wave gains. 

System Efficiency  

In this analysis, the efficiency "c" will be defined as the 

total power coupled between transmitter and receiver with an intervening 

random medium relative to that coupled under free space conditions, i.e.:- 



145 

2
> e = 	U 	. 100 - 	 . 100 

IU12free space 	~ U~ 2free space 

For circularly symmetrical apertures and for the example given 

in the previous section and substituting Equations (5.14), (5.23) and 

(5.25), we get:- 

           

- Q2 

e = e 

  

6 	
R2 

(wT 	2 + wR) + X2L2 

  

. 100 

         

         

  

	

2w2 	2W 	7f2(w2 	w2) (m2 + w2) + x
2 L2 

	

+ T 	1+ T 	T R 	R 

	

E2 	 n2 

	

0 	0 

  

     

           

(5.26) 

with m2 defined As in Equation (5.25). 

It may be seen that the efficiency as described above is a 

function of both system and medium parameters. The efficiency as defined 

is that of the complete propagation circuit, i.e. transmitting antenna, 

medium and receiving antenna. A system efficiency not limited to that 

of the receiving aperture only is possibly more realistic and more 

useful to system designers. 

5.3.2 	Aperture Averaging Effect of Large Receiving Apertures  

A wave propagating through a random medium is no longer a 

uniform plane wave and the wave front incident on the receiver aperture 

plane is a distorted one. When the crinkled wave front impinges on the 

receiving aperture, the aperture contains field components of various 

phases and possibly various amplitudes. The field components may add 

either constructively or destructively. This random addition causes a 

fluctuation in the signal at the feed or focus of the antenna. However, 

as the number of the out-of-phase components collimated in the aperture 

<U>1 2 + VAR CU] 
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increases by increasing the aperture size, and due to their random 

nature, the constructive and destructive additions tend to cancel out. 

Hence the signal level fluctuations are effectively smoothed or averaged 

out. As the medium scale sizes become smaller, the scale size of the 

wave front distortions becomes smaller and a larger number of out-of-

phase field components are present within the aperture. Hence the larger 

aperture averages out the distortions more effectively. 

The same conclusions may be drawn by treating the problem from 

an angular spectrum point of view. Since the angular spread of the 

incoherent or noise portion of the incident power is broader than the 

coherent or the free space component, therefore, a large aperture or 

narrow beam antenna "filters" out the "noisy" part of the signal. As 

the medium scale sizes become smaller, the angular spread of the 

incoherent portion becomes wider and hence less noise energy passes 

through the narrow-band receiver. 

An aperture averaging factor has been defined by Tatarskii(58), 

which compares the fluctuations in the signal received by an aperture of 

a certain dimension, under turbulent conditions, to those received by a 

point aperture over which the incident field is entirely correlated. 

The expression derived under the terms of the above definition is shown 

by Tatarskii to be a function of the radius of the receiving aperture 

and the coherence function in the receiver plane. The aperture averaging 

defined by Tatarskii is not a function of the transmitter aperture size 

and is not an explicit function of the medium parameters, scale size and 

strength of turbulence. 

In this analysis, the averaging effect of the receiving 

aperture will be combined with that of the transmitting aperture size to 

determine a total system averaging factor. This will be defined in 

terms of a signal-to-noise ratio given as a function of the aperture 



sizes and the medium parameters. 

System Signal-to-Noise Ratio  

In this analysis, the system signal-to-noise ratio "S/N" will 

be defined as the ratio of the coherent or non-fluctuating portion of 

the power coupled to the incoherent or noise power coupled, i.e. in 

decibels this ratio is given by:- 

S/N = Log  I<u>12  
VAR Di 

For circularly symmetrical apertures and for the example given 

in the previous section, and substituting Equations (5.23) and (5.25), 

we get:- 
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2w2 	2w21  
1 + 	 + T  1  T  

	

E2 
	rĪ0 	i 2( 	+ w) 	(m2  + w) +A2L2  wTR • 	R  

72 (wT + 4)2  + 	X2L2  
S/N = Log (5.27) 

with m2  defined as in Equation (5.25). 

As for the definition of efficiency, the signal-to-noise ratio 

is that of the complete propagation circuit, i.e. transmitting antenna, 

medium and receiving antenna. This definition of the signal-to-noise 

ratio and its compatibility with the definition of the efficiency possibly 

makes it a useful quantity for system designers. 

In the following section, the effects of the system and medium 

parameters on the efficiency and signal-to-noise ratio as defined in 
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Equations (5.26) and (5.27) respectively, will be investigated. 

5.4 	Effect of System and Medium Parameters on the Efficiency and  

Signal-to-Noise Ratio  

Due to the dependence of the efficiency and the signal-to-noise 

ratio on a large number of system and medium parameters as indicated by 

Equations (5.26) and (5.27) respectively, the investigation will be 

limited to certain fixed conditions, namely, the degree of turbulence 

will be constant throughout, with a value of the variance of the 

refractive index fluctuations taken to be 1 x 10-12  n2-units. The 

longitudinal scale size o  will also be constant at 10 metres. The 

propagation distance will be taken as 12 kilometres throughout the 

investigations. The above values imply that the variance of the phase 

fluctuations across the phase screen is 0.136 radians2  at a wave length 

of 8 millimetres. Furthermore, the lateral scale sizes Ea  and no  will 

be taken to be equal in all cases. Normalization will not be attempted 

due to the varying parameters involved in defining the efficiency and the 

signal-to-noise ratio. Hence their physical significance may be lost in 

the process. 

The investigation then will be conducted for varying scale size 

Eo, and transmitter and receiver aperture dimensions wT  and WR, bearing 

in mind that wT  and wR  are the "1/e" widths of the transmitting and 

receiving antennas. 

5.4.1 	Efficiency and Signal-to-Noise Ratio as a Function of wR  

Figs. 5.3a and 5.3b show the efficiency and signal-to-noise 

ratio versus receiving aperture size wR  for a transmitter aperture size 

wT  = 0.3 metres for varying scale size 
o
. It may be seen that the 

efficiency and signal-to-noise ratio are independent of WT. However, the 
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efficiency increases as
0 
 increases and the signal-to-noise ratio is 

inversely proportional to o. This behaviour may be understood by 

considering Fig. 4.1a where it is seen that the spread of the incoherent 

power relative to the coherent power is insignificant for small trans-

mitting apertures for all scale sizes. Therefore, increasing the 

receiving aperture size and hence narrowing the receiving beam width 

would hardly make any difference. 

Figs. 5.4a and 5.4b show the same situation with wT  = 10 metres. 

Here it is seen that the efficiency remains constant for the small scale 

sizes ( 
o 
= 0.1 metres), whereas it begins to decrease quite rapidly as 

wR  is increased for scale sizes of the order of WT.  As the scale sizes 

increase, the efficiency begins to taper off less rapidly. The above 

situation may be explained again by considering Figs. 4.1a and 4.1b. It 

is seen that although the relative spread of the incoherent power is 

greater for smaller scale sizes, the magnitude of the incoherent portion 

becomes much smaller as the scale size decreases for large wT. As the 

scale size becomes much larger than wT, the relative spread is 

insignificant. However, the magnitude of the scattered power remains 

quite large. 

Therefore, increasing wT  and narrowing the beam width does not 

make any difference for the small scale sizes since the magnitude of the 

incoherent component is very small anyway, whereas for the large scale 

sizes, the relative spread of the incoherent component is insignificant 

and, hence, increasing wT  does not make much difference. In between the 

two extremes the efficiency drops as wT  is increased. 

The behaviour of the signal-to-noise ratio in Fig. 5.4b may be 

understood by following the same reasoning as above. 

An interesting feature is the saturation of the signal-to-noise 

ratio as the receiver aperture size is increased for small scale sizes. 
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This saturation dimension has also been discovered by Fried(59)  and is 

obtained in terms of the phase and log amplitude structure functions. 

Increasing wR  beyond the saturation dimension does not significantly 

increase the signal-to-noise ratio. No attempt will be made here to 

obtain an analytical expression for the saturation dimension. However, 

it may be seen from Fig. 5.4b that for a certain wT, it is a function of 

the lateral scale size. 
0 

5.4.2 	Efficiency and Signal-to-Noise Ratio as a Function  

of wT  

Figs. 5.5a and 5.5b show the efficiency and signal-to-noise 

ratio versus transmitting aperture size wT  for a receiver aperture size 

wR  = 0.01 metres for varying scale size E0. It is interesting to note 

that the efficiency drops down to a minimum value and then rises again. 

The scale size E  is seen to be a critical factor in determining the 
0 

rate of variation of the efficiency. The signal-to-noise ratio follows 

a similar behaviour. However, it is inversely proportional to the scale 

size. 
0 

The above-mentioned behaviour is rather difficult and tedious 

to explain. However, returning to Figs. 4.1a and 4.1b and noting the 

dependence of the spread and magnitude of the incoherent component on 

wT  and Eo, the behaviour of the efficiency and signal-to-noise ratio of 

a small receiving aperture may be understood. The example given for 

wR  = 0.01 metres is chosen because of the broadness of the beam width at 

such a dimension. Hence the receiver's sensitivity to the incoherent 

component and thus the above results are obtained. 

Reception by a larger aperture, makes the receiver insensitive 

to variations in the incoherent component of the incident power. This 

may be seen in Figs. 5.6a and 5.6b where the response observed by a 
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smaller receiving aperture is now "filtered out". 

5.4.3 	Efficiency and Signal-to-Noise Ratio as a Function  
of E 0 

It has been shown that the efficiency and signal-to-noise ratio 

are a function of the scale size E , the efficiency being directly 0 
proportional to the scale size E , whereas the signal-to-noise ratio is 0 
inversely proportional to it. 

Figs. 5.7a and 5.7b show this dependence for various pairs of 

apertures. Fig. 5.7a shows the variation for two pairs of apertures. In 

both cases, wT  is large and is taken to be 5 metres. WR  is taken for 

two extreme cases - a small aperture size wiz  = 0.1 metres and a large 

aperture size WR  = 5 metres. It may be seen that the variation of both 

the efficiency and the signal-to-noise ratio is basically independent of 

WR. 

Fig. 5.7b shows the variation for a small transmitting aperture 

size wT  = 0.1 metres with wR  taken in both extremes. Again, it is seen 

that the efficiency and the signal-to-noise ratio are independent of wg. 

Therefore, from Figs. 5.7a and 5.7b it may be seen that the 

system efficiency and signal-to-noise ratio are much more sensitive to 

variations in the size of the transmitting aperture relative to the 

medium scale size 	than similar variations in the size of the receiving 

aperture. 

5.5 	Conclusions  

In this chapter, Brown's (52)  coupling formula, which allows for 

the calculation of the electric field coupled between finite transmitting 

and receiving apertures, based on the knowledge of their angular plane 

wave spectra, has been extended. The extension provides a power coupling 
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formula in a time varying random medium. The result obtained is based 

on the coherence function and is applicable in the near and far fields 

of the apertures. 

The restrictions imposed in the analysis are that the variance 

of the phase fluctuations contributed by the random medium is small, i.e. 

a2  « 1. This has previously been shown to be a very reasonable 

assumption for microwaves propagating in a turbulent atmosphere. Further-

more, the angular spread of the field radiated by the apertures is 

assumed to be narrow, i.e. confined to approximately ± 15 degrees. Again, 

this is a very reasonable assumption for microwave antennas. 

As a result of the randomness of the medium, the power coupled 

has been found to be split into two portions. A mean value, which for 

a stationary random medium, is time independent. The second portion is 

the co-variance of the coupled signal which is time dependent. The time 

dependence has been found, for 6; « 1 and for a separable phase auto-

correlation function, to be identical to the temporal dependence of the 

medium fluctuations. Hence it is a relatively slowly varying function 

of time. 

A system efficiency and signal-to-noise ratio have been 

defined. These take into account the transmitting and receiving aperture 

dimensions in both lateral directions and the path length. The medium 

parameters are also included in the definition. Hence the efficiency 

of power coupling and the signal-to-noise ratio may be calculated for a 

variety of transmitting and receiving antenna beam shapes, either 

symmetrical or fan shaped beams, in a random medium with varying lateral 

and longitudinal scale sizes. The example considered was for circularly 

symmetrical Gaussian illuminated apertures and a random medium with a 

Gaussian autocorrelation function for the refractive index fluctuations. 

The lateral scale sizes were assumed to be identical. 
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The efficiency and signal-to-noise ratio have been found to be 

two conflicting phenomena, in the sense that a variation of some medium 

parameters which cause a drop in the efficiency tends to enhance the 

signal-to-noise ratio and vice versa. Similarly, the system parameters, 

wT  and WR,  which may be adjusted to enhance the signal-to-noise ratio 

under certain medium conditions are likely to cause a drop in the 

efficiency and vice versa. 

Therefore, there is a certain trade-off for system designers 

in attempting to optimize a propagation circuit for maximum reception 

and minimum noise, the design being adjusted to cater for the most 

critical of the phenomena or adjusted for an optimum value of transmitting 

and receiving aperture sizes under certain medium conditions. 
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CHAPTER 6  

DESCRIPTION OF AN EXPERIMENTAL 38 GHz RADIO LINK 

In this chapter, an experimental 38 GHz continuous wave, 

vertically polarized radio link will be described. The link under 

consideration was installed to obtain practical estimates of the effects 

of an urban environment on a propagating wave at this frequency. The 

effects to be investigated were the spatial and temporal fluctuations 

of both the amplitude and phase of the wavefront incident at the receiver 

plane. This investigation necessitated the installation of an inter-

ferometer type receiver. 

The contents of this chapter are divided into four main 

sections. The first is concerned with the propagation path. The second 

is a description of the C.W. transmitter. The third section deals with 

the description of the interferometer receiver system; the design and 

installation are discussed. The fourth section is a description of the 

meteorological sensors used to monitor the relevant weather parameters. 

It must be noted here that the radio link was planned and the 

main parts of it were designed prior to the author's joining the project. 

Therefore, although a description of the system is undertaken, the 

author's contribution was mainly in the joint installation and calibration 

of the transmitter and receiver. However, the partial design and 

manufacture of a second receiver channel and the design and the 

implementation of a phase difference detector was undertaken by the 

author. 

6.1 	Description of the Propagation Path  

The experimental link was 11.6 kilometres long over South 

London. The transmitter was placed on the BBC transmitter tower at 
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Crystal Palace at the 90 metre level. The receiver was situated in a 

hut on the roof of the Department of Electrical Engineering, Imperial 

College in South Kensington, London. 

Fig. 6.1 shows a plan of the propagation path. It may be noted 

that the path crosses over the River Thames and over two parks. The 

rest of the path is over urban areas. Tall buildings did not exist in 

the vicinity of the line-of-sight axis. Fig. 6.2 shows a profile of 

the propagation path. A photograph of the transmitting tower as seen 

from the receiver site is shown in Fig. 6.3. 

Interference from ground reflections, which give rise to 

multipath effects, may be considered to be very small. This is due to 

the confinement of the radiated energy within a narrow beam. The main 

source of interference comes from rays reflected from the first Fresnel 

ellipse as shown in the figure below. This ellipse results from the 

intersection of the first Fresnel ellipsoid with the ground. 

80m 

From the link geometry, and assuming that hT  and hR  are « L, 

therefore, it may be shown(23)  that the centre of the ellipse lies at 

a distance d from the transmitter where:-  
1 
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Fie.6.3: Transmitter tower as observed from receiver site 
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For X = 8 millimetres, d = 8.28 kilometres. Hence from the 

path geometry, ei  = er  = 88.6 degrees. 

The length of the major axis x is given by:- 
1 

(6.2) 

The length of the minor axis yl  is given by:- 

2hT  . hR  

yl  

 

X  . L 
	
= 6 metres (6.3) 

 

(hi + hR)2 

A . 

Therefore the area of the first Fresnel ellipse may be shown 

to be approximately equal to 2403 m2. 

It may be seen from the map of the propagation path that the 

ellipse lies over an urban area and the reflected rays are thus randomly 

scattered and, hence, would not cause multipath problems. 

6.2 	The Transmitter  

The transmitter circuitry was housed in an insulated weather-

proof box, which was connected to a 1 metre cassagrain antenna. The 

antenna was mounted on a panning frame mounted on the 90 metre level of 
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the tower as shown in Figs. 6.4a and 6.4b. 

The oscillator used was a Plessey GD044 Gunn diode, which 

provided an output power of 10 milliwatts. The frequency and power 

output of the cavity oscillator are a function of the supply voltage and 

the cavity size, which is varied by means of a micrometre type plunger. 

Therefore, to stabilize the frequency and hence the power output, the 

negative d.c. supply voltage was regulated. To overcome variations due 

to temperature changes, the temperature within the box was kept constant 

by means of a variable speed cooling fan, controlled by a temperature 

sensing circuit. The temperature was thus kept constant to within 1°C 

r.m.s. at 40°C. To ensure further stability, the oscillator cavity was 

manufactured from Invar which is an alloy with a very low temperature 

coefficient of linear expansion. 

A block diagram of the transmitter is given in Fig. 6.5. A 

detailed description of the circuitry used may be found in a co-worker's 

report
(60). 

Figs. 6.6 and 6.7 show the E and H plane radiation patterns of 

the transmitter as supplied by the manufacturer (C and S Antennas Ltd.). 

The quoted gain of the antenna was between 50 and 51 decibels at 38 GHz. 

This was reduced by 1.5 ± 0.5 decibels due to the radome. 

The antenna was provided with a telescopic sighting attachment. 

This was used together with the aid of portable radios to align the 

antenna for maximum signal at the receiver site. 

6.3 	The Interferometer Receiver System  

The simplest method to obtain the objectives of the experimental 

investigation was to have a dual channel receiver system, with variable 

spacing. It was found later on that such a set-up was also well suited 

for the investigation of aperture size effects on the coupled signal. 



Fig.6.5 Transmitter block diagram 
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The single channel receiver operating at a local oscillator 

frequency of 37.93 GHz was previously designed to provide stable 

reception. This was achieved by means of phase locking techniques, 

the design considerations of which were carried out and are reported in 

detail(60). 

A second receiver detector and a phase difference meter were 

designed by the author. These were incorporated to complete the dual 

channel interferometer system. These will be discussed in detail in the 

next section. 

6.3.1 	Description of the Dual Channel Receiver  

Figs. 6.8 and 6.9 show the receiver set-up housed in a hut 

on the roof of the Electrical Engineering building. 

Fig. 6.10 shows the block diagram of the receiver. The A.F.C. 

system proved to be very stable over the measurement periods, which 

lasted for 3 - 5 minutes. Perfect "locking" of the receiver was 

carried out before each measurement was made, thus ensuring the accuracy 

of the readings. The signals of interest which were recorded simultaneously 

were the detected field strengths of channels 1 and 2 and the phase 

difference AO. 

In order to compare the signals received from each channel, the 

response of the second channel detector had to be very close to that of 

the first one. 

A block diagram of the second channel detector is shown in 

Fig. 6.11. A detailed circuit diagram is given in Appendix III. 

The calibration curves for both receiving channels are shown 

in Fig. 6.12. These were obtained by varying an identical 120 MHz I.F. 

input supplied by an R.F. signal generator, to both channels. The 

output in decibels is normalized to the maximum value. 
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Fig.  6.8: Interferometer  receiver site 
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It may be seen from the calibration curves that neither 

channel is quite linear. However, this does not affect the accuracy of 

the investigation of temporal fluctuations or cross-correlation 

coefficients. For experiments which required exact similarity and 

linearity of both channels, an R.F. Hewlett-Packard linear detector was 

used alternatively for both channels. These experiments are discussed 

in detail in Chapter 8. 

6.3.2. 	Characteristics of the Different Size Receiving  

Apertures  

Three different size apertures were used to investigate the 

effect of the aperture size on the coupled signal. The largest aperture 

used was an 0.25 metre diameter dish, supplied by C and S Antennas Ltd. 

The smallest one was a 35 x 25 millimetre horn supplied by Flann Ltd. 

The gain of the horn was calculated from its dimensions to be 21.5 

decibels. On this basis, the gain of the dish was measured to be 37.5 ± 

0.5 decibels, the uncertainty being mainly due to the different matching 

properties of the dish and the horn to the wave guide structure 

connected to a Marconi microwave power metre. 

A rectangular horn with a gain of 30 decibels was built to 

provide an intermediate aperture size. The design of the horn was made 

on the basis of the formulae proposed by Braun(61)  for the design of an 

optimum pyramidal horn. The aperture dimensions were calculated to be 

122 x 92 millimetres. The overall dimensions which were calculated to 

give a true gain of 30 decibels, with minimum sidelobes at an operating 

frequency of 38 GHz, are shown in Fig. 6.13. 

Fig. 6.14 shows a pictorial view of the three different 

apertures used in the investigation of the effect of the aperture size 

on the coupled signal. 
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Figs. 6.15, 6.16 and 6.17 show the H-plane radiation patterns 

of 0.25 metre diameter dish, the 122 x 92 millimetres and 35 x 25 

millimetres horns respectively.. The radiation patterns were obtained 

by rotating the aperture under investigation on a calibrated turntable. 

The radiating source in all cases was an open wave guide. The measure-

ments for the two horns were carried out in an anechoic chamber. The 

measurements for the 0.25 metre dish were carried out on the roof to 

provide adequate separation between transmitter and receiver, greater 

than the Rayleigh distance (2a2/X). 

It may be seen from the radiation patterns, that the cross- 

polar patterns are relatively quite high. This prohibited any experimental 

investigation of the medium cross-polarization effects. 

Under clear air conditions, where the reception was exceptionally 

high, an open wave guide was also used as a receiving aperture. 

6.3.3 	Phase Difference Measurements  

One of the main objectives of the'experimental investigation 

was to examine the lateral distortions of the phase at the receiver 

plane. The scale size of the distortions was expected to vary from a 

few centimetres to a few metres. The magnitude of the slowly varying 

phase fluctuations, which are angle-of-arrival fluctuations, was not 

expected to exceed a few tens of degrees. However, provisions had to 

be made to detect any possible large magnitude fluctuations in the 

range of hundreds of degrees. 

The method chosen to measure the phase difference was that 

based on the multiplication of the two signals. One of the advantages 

of this method is that the phase difference between the two 38 GHz 

signals is preserved throughout the I.F. stages. Obviously this is only 

true if the I.F. oscillator source is the same for the mixers of either 
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channel, which is the case for the dual channel receiver previously 

discussed. 

The appropriate I.F. stage for the phase difference measurements 

was the second I.F. stage, i.e. at a frequency of 8 MHz. This was chosen 

for the availability and cheapness of the required components at this 

frequency. 

As mentioned above, the phase detector should be able to 

measure phase differences of a few hundred degrees, linearly at 8 MHz. 

For this to be possible, the I.F. of 8 MHz is divided by a factor of 10 

and the phase difference is measured at 800 KHz. The phase difference 

measured at 800 KHz is thus multiplied by a factor of 10 for 8 MHz. 

This may be seen as follows. 

Consider the two input signals to be of equal and constant 

amplitudes and with a phase shift $, i.e.:- 

V = V . sin wt 	and 	V = V . sin (wt + (10) 
2 

(6.4) 

Dividing the frequency by 10, therefore:- 

V = V . sin wt 
	

and 	V2  = V . sin 
iwt10  (P) 

	
(6.5) 

Multiplying both signals, the output signal Vo  is then:- 

Vo  = V2  . sin (..1-]  . sin [Wt+  ] 
	

(6.6) 

= V2  . cos [..J + filtered out higher frequency components 	(6.7) 

Therefore, a phase detector measuring phase difference values 



180 

of /10, at a frequency of f/10, is in effect measuring phase 

difference values of at a frequency f. 

The principle of operation is basically that of multiplying 

two square waves together. The optional frequency division is obtained 

by a decade counter. The resultant filtered signal is then linearly 

proportional to the phase difference between them. 

A block diagram of the phase difference detector is given in 

Fig. 6.18. A detailed circuit description is given in Appendix IV. 

The detector can measure phase difference fluctuations up to 

a rate of 10 c/s. This has been determined by switching, on and off, 

a phase screen connected to a motor. The detector was found to give its 

full response up to rotational speeds of 10 r.p.s. 

A Hewlett-Packard network analyzer was used to calibrate the 

phase difference detector. This was done by rotating a source signal 

on a turn-table and receiving with two apertures. The fact that the 

network analyzer could only measure phase differences of ± 180 degrees 

was accounted for 

Fig. 6.19 shows the calibration curve for the phase difference 

detector. 

6.3.4 	Installation and Performance of the Interferometer  

Receiver  

At the time of the receiver installation, the transmitter 

output level was 14.7 dbm. The received power level was measured to be 

- 58.8 dbm ± 0.2. 

Theoretically the received power is given by PR  where:- 

PR  = 14.7 + GT  + GR  - Path Loss - Excess Losses 
	

(dbm) 
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where GT  and GR  are the gains of the transmitting and receiving antennas 

respectively. The path loss is calculated to be 145.5 decibels. 

Excess losses are due to water vapour absorption and loss due to the 

glass window of the hut, which was measured to be 3.4 decibels. 

Therefore:- 

PR  = 14.7 + 49 + 37.5 - 145.5 - 3.4 - Water Vapour Loss 

= - 47.7 - Water Vapour Loss 	(dbm) 

Therefore, the difference between the measured and the 

theoretical received powers, is very small. This difference may be 

attributed to the varying water vapour loss, which is in the range of 

1 - 2 decibels and also to the error bounds of the experiment. 

The signal-to-noise ratio was 40 decibels under clear air 

conditions. This figure presents a limit to reception under medium rain 

conditions. Since for a rain rate of 20 mm/hr, the loss in signal has 

been predicted to be(62)  approximately 3.5 dbs/Km for a wave length of 

8 millimetres. 

Physical and Structural Considerations  

The separation between both receiving antennas was varied by 

manually pushing either or both of the receiver mounts shown in Figs. 

6.8 and 6.9. The mixers were then connected to the local oscillator 

box by wave guide sections. Part of the connection was made by semi-

rigid coaxial cables to provide the desired flexibility. 

The receiver mounts were designed to slide on a heavy mounting 

frame. This frame was supported by means of building jacks onto the 

roof of the building through holes in the floor of the hut. Since the 

oscillator box connected to the wave guide sections was also mounted on 
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the frame, therefore, the only connection to the hut was through cables 

connected to the various detectors. Hence any vibration of the hut 

would not affect the physical stability of the system. 

The reason for these extra precautions was that the fluctuations 

observed due to the medium were very small, such that they were comparable 

to those produced by the hut vibrations. However, under strong wind 

conditions, e.g. greater than 20 metres/second, the fluctuations due to 

the vibration of the glass windows were comparatively large. Therefore, 

under such conditions the measurements were unreliable. 

	

6.4 	Meteorological Sensors  

In order to understand the relationship between the medium and 

signal fluctuations, various sensors were used to gather meteorological 

data. Ideally weather conditions should be monitored along the 

propagation path. However, due to practical conditions, the sensors 

were placed at the receiver site. The atmospheric conditions that were 

thought to be of interest and were monitored are:- 

1. Wind velocity. 

2. Wind direction. 

3. Temperature. 

4. Rainfall rate. 

On a few occasions, the refractive index was also measured. 

Following is a brief description of the various sensors which 

the author made use of. 

	

1. 	Wind Velocity  

The wind velocity was manufactured by Prosser Scientific 
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Instruments. It worked on the principle of heat convection. A hot 

(100°C) thermistor placed in a bridge circuit was used to give an 

indication of the amount of cooling and hence the wind velocity. 

2. Wind Direction  

A wind direction indicator was designed by a co-worker
(60)  

Binary coded information of the wind direction was obtained by means of 

a coded disc. The disc was fixed to a freely moving vane. The angular 

resolution was 18 degrees with 0 degrees coinciding with the propagation 

axis. 

3. Temperature  

The design of a simple electronic thermometer was developed 

from a graduation project(63). The sending device was a transistor, 

based on the variation of the emitter-base voltage with temperature. 

The change in voltage, 2 mv/°C, was then amplified and converted into 

binary code. The electronic thermometer was calibrated over a range of 

- 10 to 40 degrees centigrade. 

4. Rainfall Rate  

The rain gauge used was developed and supplied by the Appleton 

Laboratory. The rainfall rate was established by counting the number of 

standard size drops within a certain period of time. The drops formed 

through a capillary tube would interrupt a light beam as they dropped, 

thus producing a pulse which was then registered. 

The data from the above-mentioned sensors was gathered 

sequentially through analogue-to-digital convertors producing a Binary 

Coded Decimal (BCD) output, the implementation of which was carried out 



186 

by a co-worker. The digitized variables were then fed in parallel to 

a data formatter. The formatter, which was developed as a graduation 

project(64), scanned and converted the parallel input BCD data to a 

serial ASC II RS232 standard output. The serial data was then fed to a 

a programmable TEK31 calculator. The programs developed by a co-worker 

produced the mean value and standard deviation of the atmospheric 

variables. 

A refractometer was available from the Appleton Laboratories 

for some periods during the experimental investigation. 

The refractometer had two X-band wave guide cavities, one of 

which was closed and the other open to the surrounding air. The 

variation of the impedance of the open cavity relative to that of the 

closed one then gives an indication of the refractive index of the 

flowing air. 

During measurements, the refractometer was suspended freely 

on a platform 3 metres above the ground. The analogue output of the 

refractometer was then recorded on magnetic tape, which was subsequently 

processed as will be shown in Chapter 7. 
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CHAPTER 7  

DATA PROCESSING : PROCEDURE AND TECHNIQUES  

Introduction  

In this chapter, the handling and analysis of the data 

available from the interferometer will be described. Normally three 

signals were available for analysis, these being the output of the two 

amplitude detectors and the phase difference signal. All three signals 

were available simultaneously in analogue form. 

Since various investigations were to be carried out on the 

signals, therefore, an off-line data processing procedure was preferred 

to an on-line one. Off-line data analysis has the added advantage of 

allowing the application of newly devised analytical techniques at a 

later stage. 

Experience has shown that an efficient and practical data 

acquisition and handling procedure is one which allows for accurate 

storage and simple retrieval of data. Easily accessible data encourages 

to a great extent the analysis of the same set of data in many different 

ways. This enables the analyst to extract as much information as 

possible from the available data. 

The procedure followed by the author may briefly be described 

as follows. The three-channel interferometer data was recorded onto a 

multichannel F.M. tape recorder in analogue form. After accumulating 

a reasonable amount of data, the tapes were played back into a PDP-15 

digital computer, through an analogue-to-digital converter (ADC). The 

digitized data was then stored on computer magnetic tape. The tapes 

were then used as the data base for subsequent analysis and processing. 

Modern computers are geared to handling and storing data in a 

straightforward manner. This was not the case for the PDP-15, which 
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required extensive programming in a low level assembler language to 

produce the desired handling facilities. In spite of the relative 

primitiveness of the PDP-15, it proved to be attractive in other ways. 

This was evident in the presence of a high-resolution ADC with the 

associated multiplexer. Direct plotting facilities on standard paper 

were an added attraction. Also useful were the small-size, high-density 

magnetic Dectapes which were simple to mount. Being a departmental 

computer proved to be particularly useful from the cost and utilization 

point of view. 

Basically, an off-line data analysis procedure may be split 

into three separate and consecutive stages:- 

Data acquisition. 

2. Data handling and storage. 

3. Analytical processing. 

The procedure followed in handling and analysing the 

experimental data is described in detail below, according to the above 

stages. 

7.1 	Data Acquisition  

For practical reasons, the data to be analysed was transmitted 

from the hut on the roof of the Electrical Engineering building to the 

laboratory on the floor below. The 3 analogue channels were transmitted 

via a shielded multipair cable to the F.M. tape recorder in the laboratory. 

As a precaution against noise pick-up en route to the tape recorder, 

each signal was amplified, after removing the mean value, to assure a 

high signal-to-noise ratio. The linear amplifiers used had a variable 

gain of 1, 3, 10 and 20 decibels. As a further precaution, the signals 
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were passed through a low-pass filter before being recorded. The 

filters had a variable 3-decibel cutoff frequency of 1.75 and 3.0 Hz with 

a slope of 4 decibels/octave. 

The tape recorder used was a Racal Store 4 F.M./Digital tape 

recorder. The tape speed used was 3i inches/second, with a band width 

of D.C. to 1,250 Hz. The peak-to-peak percentage flutter was 0.35%. 

The signal-to-noise ratio was 48 decibels. 

The duration of each set of measurements was approximately 5 

minutes. The tape counter and a voice recording were used to determine 

the start and end of each data run. The relevant information was logged 

for reference on playback. 

Fig. 7.1 shows the configuration of the data transmission and 

recording procedure. Fig. 7.2 shows the circuitry of the active low-pass 

filters used. 

7.2 	Data Handling and Storage  

After recording a reasonable amount of data, the tape recorder 

was taken down to the POP-15 computer for subsequent digitization and 

storage. The analogue data was played back via a 3-channel active low-

pass filter with a cutoff frequency of 4 Hz into a multichannel ADC. The 

3 filtered data channels were multiplexed and subsequently digitized. 

The conversion rate was set by an external clock. The procedure is 

shown in the figure below. 
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The ADC used had an 11-bit word plus a sign bit, operating 

between ± 10 volts; this corresponds to a resolution of 5 x 10-4  volts. 

The main disadvantage of the PDP-15 computer is its limited 

core memory. This in effect limits the number of sampled points it can 

store and, consequently, the duration of the signal to be analysed. To 

overcome this difficulty, the analogue data from each channel after 

digitization is made to fill up a block of 256. data words. The three 

blocks corresponding to the three channels are then transferred to the 

disk. The process is then repeated, without loss of incoming data, for 

any required number of 256-word blocks. For a 3-channel sampling rate 

of 30 Hz, a 256-word block corresponds to 25.6 seconds. After the 

required length of data record has been sampled, the 3-channel data 

available on disk may be copied, if requested, onto user specified 

locations on Dectape for further analysis later on. 

The data transfers from the ADC to core to disk and finally 

to Dectape proved to be rather awkward due to the varying bit lengths 

and justification of the words used at each stage. The multiplexing, 

sampling, data transfers, writing and reading off and on disk and 

Dectape had to be written in low level Macro-assembler language
(65),  

due to the relatively unsophisticated operating system of the PDP-15. 

The main interactive program was written in FORTRAN, program 

IAM. The main program utilized three macro-assembler subroutines - 

ADC, READ and DKDT. The program sequence and functions are as follows:- 

Program IAM  

Interactive. Requires sampling frequency, length of data 

record and location of data storage on Dectape for each channel. 

Calculates the mean value and standard deviation for each data channel. 
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Subroutine ADC  

Multiplexes and samples three analogue channels and stores 

the data on disk in block form. 

Subroutine READ  

Reads the stored data blocks off specified disk or Dectape 

locations into core. 

Subroutine DKDT  

Transfers a specified number of data blocks from disk to user 

specified locations on Dectape. 

A flow chart of the programs is shown in Figs. 7.3a and 7.3b. 

The data after storage on Dectapes was available for subsequent 

analysis. Each Dectape has a storage capacity of 512 data blocks each 

consisting of 256 data words. The data analysis was carried out in 

FORTRAN with the data read off Dectape by means of the assembler program 

READ. 

At a later stage of the project, a data link was installed by 

the department between the PDP-15 and the College CDC computer. Thus 

data could be read off Dectape and transmitted to the CDC for analysis. 

However, this data link came after the bulk of the analysis had been 

carried out. 

Fig. 7.4 shows the logging procedures used for cross-referencing. 

the data from tape recorder to Dectape locations. A record of the basic 

statistics of the data, together with the relevant atmospheric and 

system information, was kept for each data run. This classification 

method proved to be a fast and simple way to pick out the interesting 

data records under different conditions. 
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7.3 	Analytical Processing  

The available data was analysed to provide the following 

information:- 

1. Standard deviation, time shifted cross-correlation 

coefficients and temporal plots. 

2. Probability density functions. 

3. Frequency spectra. 

FORTRAN programs were written on the PDP-15 to carry out the 

required analysis. A brief review of the methods used and the structure 

of the programs will be given below. 

1. 	Standard Deviation, Time Shifted Cross-Correlation  

Coefficients and Temporal Plots  

The standard deviation for all three channels, together with 

the three cross-correlation coefficients, between the two amplitudes 

and the phase difference, were calculated as the data was sampled. 

This was done in program IAM and printed out. The cross-correlation 

coefficient rxy  between N pairs of the random variables x and y was 

calculated according to the following formula(66):- 

(7.1) 
rxy N 	N 	1/2 

[-(_x2  - N<x>2) • ( I y2  - N<y>2) 
i=1 	i=1 

• 

N 
x
i 
 y. - N<x> . <y> 

i=1 

Normally the cross-correlation coefficient is a function of 
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the time shift between the two random variables under investigation. 

Under some conditions, the maximum value of the coefficient occurred 

at a non-zero time shift. These conditions are discussed in detail in 

Chapter 8. 

Program SHCOR was written to calculate and plot the cross-

correlation coefficient versus the time shift. The program used two 

main subroutines - READ, which is described above and PLOTTR, which is 

a library plotting routine. 

Temporal plots were obtained for any length of data record, up 

to 128 seconds at a sampling rate of 10 Hz. Therefore, the time-scale 

resolution was variable. 

2. 	Probability Density Functions  

The probability density function was calculated as a high 

resolution histogram. The lower and upper limits for the data values, 

over which the function was to be calculated, are specified by the user. 

Also specified was the number of slots in which the data points were 

counted. An increased number of slots provides a higher resolution. 

.,/'.--. Pali 

Data points // 	\ 

/31 / `\ x 

VI I  XIXIXI XI XI- 	S1ots 

LOWER LIMIT 
	 UPPER LIMIT 

A program DISLOG was written to calculate and plot probability 

density functions. The data was read off Dectape via the assembler 

subroutine READ. The mean value was then removed, with an option for 

taking the logarithmic value of the data. A cumulative probability 
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distribution was also calculated and plotted. 

3. 	Frequency Spectral Analysis  

The spectral analysis was carried out using a College computer-

library, Fast Fourier Transform (FFT) subroutine. The subroutine 

chosen was based on the Cooley-Tukey method of transformation. This 

method provides a relatively fast means of computing the frequency power 

spectra, since it does not require the intermediate computation of the 

autocorrelation function. The library subroutine was trimmed to "fit in" 

the PDP-15 computer without loss of accuracy. 

Because of the digital nature of the time series under 

investigation, and its limited record length, some problems arise in the 

computation of the spectra. These have been discussed in detail in 

several monographs(66, 
67) 

 and papers (68, 69). The possibly serious 

problems which may arise in the present data analysis were considered 

to be aliasing, leakage, d.c. swamping and variation of the spectral 

estimates. 

These problems will be briefly discussed below, together with 

the approaches used to overcome them. 

(a) 	Aliasing  

The aliasing problem arises when the sampling rate is less 

than the maximum frequency present in the signal under consideration. 

Consider a sampling frequency fs; therefore, the folding frequency is 

fs/2. Beyond this folding frequency, the spectrum will repeat itself as 

a mirror image. Hence if a frequency higher than fs/2 is present in 

the data, it will appear in both sides of the mirror spectrum, thus 

giving false spectral estimates(66). The Nyquist criterion to avoid 

aliasing is to have the sampling frequency twice that of the highest 
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frequency component. 

In the data analysis carried out, a sampling frequency of 10 

Hz was used. A 3-channel active low-pass filter cutting off at 4 Hz was 

used before the ADC. 

To further ensure the suppression of higher frequencies, which 

might possibly arise from the digitization or tape-storage process, a 

digital band-stop filter was made available before the Fourier trans-

formation. The stop band of the filter was user defined and was usually 

set at 5 Hz. The development of the digital filter is given in Appendix V. 

The decision to limit the sampling frequency to 5 Hz was made 

after observing the real-time spectrum of the signals on a scope. The 

spectrum was calculated by a saicor spectrum analyzer and was rarely 

observed to exceed 2 Hz. 

(b) 	Leakage  

The problem of leakage is well studied in the literature(66, 69). 

It is due to the fact that the data under investigation is limited in 

duration. This is equivalent to the multiplication of an ideally finite 

data record by a rectangular window in the time domain. Therefore, the 

resultant frequency spectrum is the convolution of the Fourier transforms 

of these functions. Since the Fourier transform of the rectangular 

window is a sinc function, therefore, the calculated spectral components 

are not pure, but contain "sidelobes". The adjacent sidelobes interfere 

with each other, thus creating frequency components which are not present 

in the original time series. 

A reduction of the leakage problem may be achieved by varying 

the data window from the simple rectangular one. The desirable effect 

of the various windows is to reduce the magnitudes of the sidelobes. 

However, other effects are also present, these mainly being a reduction 
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in the main lobe height and a decrease in the frequency resolution(70). 

The window chosen to partially reduce the leakage was a Hamming 

window. The analogue form is:- 

A(t) = 0.08 + 0.46 1 - cos :241- 
	

(7.2) 

where: 	T = the length of the data record. 

t = 1, 2, .... N , N is the number of sampled points. 

The Hamming window causes a reduction in the level of the 

sidelobes of 41.9 decibels. At the same time, the frequency resolution 

of each spectral component is only reduced by 80%
(70)  

(c) d.c. Swamping  

The presence of a high d.c. component or linear trend in the 

data causes the resulting power spectrum to have a large peak at zero 

or very near zero frequencies. Such a peak would over-ride and swamp 

the other spectral components, thus reducing their significance. 

As previously mentioned in Chapter 6, the mean value was 

eliminated by a mean-removal amplifier prior to recording. Any linear 

trends were also removed by this amplifier. In addition to the practical 

removal of the mean value, any residual d.c. component was calculated 

and analytically removed before the Fourier transformation. 

(d) Smoothing of the Spectral Estimates  

The estimate of the power spectral density function produced 

as a straight-forward transform of a single data record is inconsistent
(66). 

The normalized standard error which defines the random portion of the 

estimation error, Er, has been shown to be
(66): 
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2 
Er 	n  (7.3) 

where n is the number of degrees of freedom of the sampling distribution 

of each frequency component of the power spectrum. If the transform is 

calculated from a single data record, n is equal to 2. This is due to 

the fact that the transform is the summation of a real and an imaginary 

part. Substituting in Equation (7.3), Er  is equal to unity. This means 

that the standard deviation of the estimate is as great as the quantity 

being estimated which is unacceptable. Increasing the length of the 

data record does not produce any reduction in Er. 

The smoothing of the estimates and hence a reduction of Er  

may be achieved in two ways(66). The first is to smooth over an 

ensemble of estimates. This is achieved by splitting the data record 

into q segments; the estimates are then calculated for each individual 

record. The magnitude of the final spectral component is taken as the 

average over the q estimates. The second way is to smooth over 

frequency. This is done by averaging the spectral estimates over Q. 

overlapping segments obtained from a single sample record. The two 

methods produce the same reduction in Er  for q = Q. 

It may be shown(66)  that the resulting averaged estimates 

will have n degrees of freedom, with n = 2q. Therefore, the resulting 

Cr is 1 /v, which is the value of the error reduction. 
The first method, namely, the smoothing over an ensemble of 

estimates was used in the calculation of the power spectra. In 

calculating the spectra, the data was read off Dectape in 256 word 

blocks. For a sampling rate of 10 Hz, each block corresponds to a 25.6 

seconds data record. The data was Fourier transformed and the spectral 

estimates were stored in array form; a second data block was then read 

off Dectape and similarly transformed. The process was carried on for 



202 

q blocks and the resulting spectral estimates were continuously 

averaged over q. Usually q was taken to be 5 blocks and, hence, the 

error reduction was 1/4., i.e. 45%. 

The number of segments q may have been taken to be greater 

than 5 for the same overall number of data points, hence each segment 

would have contained a number of data points less than 256. Increasing 

q would result in a higher error reduction. However, decreasing the 

number of data points to be transformed also results in a lower number 

of spectral estimates and, hence, a deterioration in the frequency 

resolution. 

Taking into account the above considerations, the procedure 

followed in calculating the frequency power spectrum is shown in a 

flow chart, Fig. 7.5. 

The averaged spectral estimates were transmitted to the CDC-6600 

College computer for further analysis. Curve fitting routines were 

utilized to calculate the slopes and for band width calculations. 

However, the fitted curves were sometimes observed to be biased towards 

the higher end of the log-frequency spectrum. Therefore, in some cases, 

fake estimates for the slopes were obtained. Therefore, the spectral 

slopes were calculated by observation from log-frequency plots obtained 

from the PDP-15 computer. 

In some cases, the analysis required was quite simple, e.g. 

calculation of the percentage fluctuations of the signals under 

investigation. In such situations, a TEK31 programmable calculator was 

used to sample on-line and calculate the required quantities. 

The following chapter shows the results obtained from the 

experimental link. The results were obtained by means of the above-

described procedures and data processing techniques. 
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CHAPTER 8  

EXPERIMENTAL INVESTIGATION OF THE EFFECTS  

OF AN URBAN ENVIRONMENT ON AN  

8-MILLIMETRE PROPAGATING WAVE  

The results obtained from the 38 GHz interferometer receiver 

will be presented and discussed. The availability of an interferometer 

provided an opportunity to carry out a variety of experiments. These 

were made to examine different aspects and consequences of an incident 

randomized wave-front. The primary objective was to estimate the extent 

of the partial destruction of the lateral coherence across the wave 

front. This may be determined by the magnitude and lateral scale-size 

of the amplitude and phase distortions. 

The results are divided into three sections. The first one 

deals with some aspects of the amplitude fluctuations. The magnitude 

and the frequency spectra are calculated, together with examples of the 

refractive index fluctuations. The lateral correlation is examined as 

a function of the receiver separation. The lateral scale-size of the 

amplitude fluctuations is also estimated from the experimental 

observations. 

The second section is an investigation of the phase difference 

fluctuations. Examples of the magnitude and probability density 

functions of the phase difference fluctuations are given. The presence 

of large scale angle-of-arrival fluctuations is investigated by measuring 

the phase difference at different receiver separations. Spectra of the 

phase difference fluctuations are calculated and compared with those of 

the corresponding amplitude fluctuations. 

Following the investigation of the amplitude and phase 

distortions, the effect of the receiver aperture size is looked into. 

Experiments determining the variation of the aperture averaging effect 
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and the simultaneous gain variations of a comparatively large receiving 

aperture relative to a smaller one are outlined together with the 

relevant results obtained. 

It has been found experimentally that the effect of the medium 

on the propagating wave is almost insignificant from a practical point 

of view. The amplitude and phase difference fluctuations were very 

small under various atmospheric conditions. Therefore, long term 

measurements which would correlate the fluctuations with the different 

atmospheric parameters would be difficult to interpret and are unnecessary 

from a practical point of view. 

Hence the experimental results displayed are for examples of 

short term measurements. These show the range of fluctuations observed 

under various atmospheric conditions. 

8.1 	Investigation of the Amplitude Fluctuations  

8.1.1 	Magnitude of the Amplitude Fluctuations Observed by  

an 0.25 Metre Dish  

In the following analysis the magnitude of the signal 

fluctuations will be determined and measured as a percentage value. This 

is a convenient and practically useful measure of the short term 

fluctuations given as a ratio of the standard deviation to the mean 

value of the signal variations. 

The percentage fluctuations for a particular propagation path may 

be theoretically predicted from the coupling formula obtained in Chapter 5. 

For circularly symmetrical antennas, and assuming an isotropic random medium, 

where the scale-sizes of the refractive index irregularities may be 

considered to be similar in all directions, and equal to ro. The percentage 

power fluctuations may be shown from Equations (5.23) and (5.25) to be:- 
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VAR [UJ 
	 . 100 = 
I<U>j2  

a 	7r2  (w. + 	4) 2 + A2 L2 
	  100 

2wT  Tf2(wT + wR) (m2  + "R) + A2  L2  
1+ 

r2  
0 

(8.1) 

The percentage amplitude fluctuations may be considered to be 

the square root of the above quantity. 

Substituting for WR, wT, A and L by the experimental link 

figures, i.e. WT .= 0.3 metres, wR  = 0.12 metres, .A = 8 millimetres and 

L = 11.6 kilometres. Therefore, the percentage amplitude fluctuations 

as a function of the medium scale-size ro,  and the variance of the 

refractive index fluctuations Qn, is shown in Fig. 8.1. It is seen that 

increasing ro  and/or increasing an causes an increase in the percentage 

fluctuations. The rate of increase is observed to be larger for the 

smaller scale-sizes. 

To determine experimentally the percentage amplitude 

fluctuations, the following setup, shown in Fig. 8.2, was used:- 

120MHz 
amplifier V 

L. O. 

To A.F.C. 

HP. Linear 
detector 

TEKTRONIX 
programmable 

calculator 

Fig. 8.2 Receiver setup for measurement of single-channel amplitude 
fluctuations 
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The receiving antenna which was an 0.25 metre diameter dish 

was clamped in position throughout the experiment to avoid pointing 

errors. The output of the Hewlett-Packard linear detector, which is 

proportional to the amplitude of the 120 megahertz input signal, was 

sampled by a Tektronix programmable calculator. The sampling rate was 

2.0 samples/second and the data record was two minutes long. The 

calculator then calculated the mean value and standard deviation of the 

signal and hence the percentage fluctuations. 

The above setup was used instead of the interferometer system 

detectors, because of the linearity of the Hewlett-Packard detector 

over a much wider range and hence the ratio of the fluctuations to the 

mean value would be more accurate. 

Table 8.1 shows the results of the above experiment which was 

carried out throughout August,. 1978. Shown in the table are the measured 

percentage fluctuations and the prevailing weather conditions. 

The table, which includes some examples of the percentage 

fluctuations observed, indicates that the percentage fluctuations are 

very low, bearing in mind that a 1% fluctuation is equivalent to a 

variation of approximately 0.09 decibels. It is worthwhile noting here 

that the percentage fluctuations give. an indication as to the amount of 

noise contributed by the random medium. 

It may be seen from Table 8.1 that the percentage fluctuations 

increase as the temperature increases; the exact long-term relationship 

is difficult to determine due to the relatively limited period of time 

over which this particular experiment was carried out. However, an 

increase in temperature possibly indicates an increase in the energy of 

the refractive index irregularities, i.e. an increase in 6n and/or an 

increase in their scale-size. An increase in either factor would cause 

an increase in the percentage fluctuations as shown in Fig. 8.1. Under 
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TABLE 8.1  

Date 
and 
Time 

Percentage 
Fluctuations 

Sky Condition 
Temp. 
Degrees 
Cent. 

Wind 
Velocity 

metres/sec 

9/8 
1220 0.72 Cloudy 
1435 1.38 Rain at transmitter only 
1450 2.66 Light rain across total path 

11/8 
1015 0.81 Sun, haze 13 
1225 1.48 Sun, haze 17 
1425 0.98 Sun, haze 22 • 

14/8 
1020 0.59 Sunny and some cloud 13 
1400 0.92 Sunny and some cloud 18 
1545 1.42 Sunny and some cloud 19 8.0 
1715 1.82 Sunny and clear 19 8.0 

15/8 
0715 0.51 Cloudy 10 8.0 
0815 0.44 Cloudy 11 8.0 
0915 0.25 Cloudy 11 4.0 
0930 0.30 Cloudy 11 4.0 
1505 1.15 Sunny and some cloud 17 10.0 

18/8 
0955 2.25 Sun 17 2.5 

1010 1.78 Sun 17 3.0 

1425 1.09 Sun 20 2.5 

22/8 
1120 1.07 Sun, haze 17 

1430 1.80 Cloudy 19 

1730 0.93 Overcast 17 

29/8 
1010 0.93 Cloudy, haze 12 
1300 1.17 Cloudy 12 

1635 0.62 Overcast 14 
1750 0.46 Overcast 14 
1835 0.32 Overcast 14 

30/8 
1530 0.93 Sunny, clear 13 
1630 0.94 Sunny, clear 14 
1730 0.54 Sunny, clear 13 
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light rain conditions, the percentage fluctuations are relatively quite 

high. This is probably due to a large 6121  amd small scale-size of the 

irregularities. However, the coupling formula is intended mainly for 

predictions under clear-air turbulence conditions. 

The percentage fluctuations seem to be at their highest level 

towards early afternoon and to be at their lowest level in the early 

morning and evening. 

It is difficult to determine from this experiment the degree 

of turbulence indicated by on and the scale-size of the irregularities. 

However, previous measurements of 6121  give values in the range of 1.0 . 

10-14  n2-units. Hence, from Fig. 8.1, this indicates that the effective 

scale sizes are predicted to be of the order of 10 metres. 

8.1.2 	Examples of the Frequency Power Spectra of the  

Amplitude and Refractive Index Fluctuations  

In this section, some examples of the frequency power spectra 

of the amplitude fluctuations observed by the 0.25 metre diameter dish 

will be given. The examples shown are chosen such that they span the 

range of the fluctuations observed under various atmospheric conditions. 

First, an example of the relationship between the amplitude and 

refractive index power spectra will be given. 

Relationship Between Amplitude and Refractive Index Power Spectra  

Simultaneous measurements of the refractive index and the 

amplitude fluctuations were carried out for a brief period of time. Figs. 

8.3a and 8.3b show the power spectra of the refractive index and the 

corresponding amplitude fluctuations respectively. The measurements 

were carried out at 1500 hours on August 1, 1978 under partly cloudy and 

mainly sunny conditions. The measured wind speed was 8.3 metres/second, 
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with a normal component of 2.0 metres/second. The air temperature was 

20 degrees Centigrade. The spectra were calculated over a period of 3 

minutes 25 seconds. The variance of the refractive index fluctuations 

was measured to be 1.8 x 10-14  n2-units. The slope of the refractive 

index spectrum may be shown to be approximately - 1.9 (i.e - 5.7/3) 

decibels/Hz. The slope of the amplitude spectrum is approximately - 3.0 

(i.e. - 9/3) decibels/Hz. 

Figs. 8.3c and 8.3d show the power spectra of the refractive 

index and the corresponding amplitude fluctuations respectively. The 

measurements were also carried out on August 1 at 1740 hours under a 

mainly cloudy sky. The spectra were calculated over a period of 2 minutes 

13 seconds. The mean wind speed was 6.4 metres/second, with a normal 

component of 3.5 metres/second. The air temperature was 13.0 degrees 

Centigrade. 	The variance of the refractive index fluctuations had 

dropped to 7.7 x 10-16  n2-units. The slope of the refractive index power 

spectrum may be seen to be approximately - 1.6 (- 4.8/3) decibels/Hz and 

the slope of the amplitude power spectrum is approximately - 2.7 (- 8.1/3) 

decibels/Hz. 

The above observations appear to agree to a certain extent to 

the predictions made by Tatarskii(58), namely, that the slope of the 

frequency power spectrum of the amplitude fluctuations is equal to m + 1, 

where m is the slope of the refractive index fluctuations. 

In the above and following examples, the slopes of the 

frequency power spectra are determined through personal judgement. This 

is due to the fact that the computer programs which have been used to 

fit a third or fourth degree polynomial to the calculated spectra, and 

from which the slope is determined, do not accurately represent the 

calculated spectrum at the higher end of the spectrum. 

Table 8.2 shows some examples of the variation of the frequency 
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TABLE 8.2  

Time Fig. 
Slope 

Sky Cond. 

Mean Wind Vel. 
Temp. 
Deg. 

Decibels/Hz 
Total 
m/sec 

Normal 
m/sec 

Cent. 

0850 8.4a - 3.3 	(- 9.9/3) Sunny 2.5 0.7 20 

1720 8.4b - 3.7 	(- 11.1/3) Calm, hot 5.2 4.3 27 

1115 8.4c - 2.7 	(- 8.1/3) Calm, sunny 6.0 2.0 19 

1020 8.4d - 3.4 	(- 10.2/3) Drizzle, cool 

power spectra of the amplitude fluctuations observed under different 

atmospheric conditions. The slopes indicated in the table are obtained 

from the- figures of the spectra shown in Figs. 8.4a, b, c and d. The 

spectra were all calculated over a period of 2 minutes 13 seconds. 

It may be seen from the above examples that a variety of slopes 

may be observed under different atmospheric conditions. This is probably 

attributed to the various slopes of the spectra of the refractive index 

fluctuations under the prevailing atmospheric conditions. However, the 

slopes observed are close to approximately - 8/3 which agrees with 

similar measurements carried out in the summer of 1976 over London at a 

frequency of 36 GHz(22' 71)
. 
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8.1.3 	Measurement of the Cross-Correlation of the  

Amplitude Fluctuations  

It has been previously shown (Chapter 4) that the lateral 

coherence function of a wave propagating through a random medium is 

partially destroyed. This indicates that the spatial amplitude and 

phase distribution of the electric field incident on the receiver plane 

normal to the direction of propagation are distorted from their free 

space value. In this section, the emphasis will be on the experimental 

investigation of the distortion of the amplitude distribution across the 

receiver plane by means of the interferometer system. 

Due to the random nature of the medium irregularities, the 

scale-sizes of the amplitude distortions will vary randomly. It is 

expected that there is a distribution of lateral scale-sizes involved, 

with a certain amount of distortion associated with each scale-size. 

However, there probably exists a dominant scale-size which is determined 

by the distribution and strength of the medium scale-sizes. The figure 

below shows a hypothetical visualization of the distorted amplitude 

distribution across the receiver plane. 

l 

The results shown and discussed in this section are for the 

variation of the cross-correlation coefficient for the amplitude received 
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by two laterally spaced receivers. The variation of the correlation 

coefficient is investigated for different receiver separations E  and 

for different weather conditions and, hence, different medium and 

amplitude distortion scale-sizes. 

The cross-correlation coefficient is calculated for the two 

received signals as a function of a time shift between the signals as 

shown below. 

Channel 1 

Channel 2 

Amplitude 
	 Time 

-t 	 +t 

It must be noted here that the variation of the cross-

correlation coefficient as a function of the time shift yields first-

hand information for the temporal scale-sizes involved and not the 

spatial scale-sizes. The spatial scale-sizes may be deduced through 

knowledge of the wind velocity as will be shown later. Thus for 

relatively rapid temporal variations, the cross-correlation coefficient 

is expected to rapidly decrease as the time shift increases, whereas 

for slow variations, the decrease is expected to be relatively small 

as the time shift is increased. 

Calculating the cross-correlation coefficient as a function 

of the time shift makes it possible to detect the maximum coefficient. 

This maximum is not necessarily obtained at a zero time shift. This may 
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be explained by considering Taylor's hypothesis of "frozen turbulence"
(15), 

i.e. the refractive index inhomogeneities are "frozen in" and are carried 

along by the wind. The only motion of interest in this case is the 

transverse one. 

Hence assuming Taylor's hypothesis, the field observed at a 

point x and at a time t, on the interferometer axis, is the same as the 

field observed at a point (x + vn  T) at a time (t + T) where vn  is the 

average wind velocity component normal to the propagation path. 

Therefore, for two receivers separated by a distance E and 

assuming Taylor's hypothesis to be valid, the maximum cross-correlation 

coefficient occurs after a time shift Tm  where Tm  = /vn. 

Variation of the Cross-Correlation Coefficient with Receiver  

Separation  

The results shown below are some examples of a number of 

experiments carried out in which the correlation coefficient was 

calculated at two different receiver separations, namely, at 0.8 and 

3.0 metres. The antennas used were 0.25 metre dishes. The examples 

chosen are for some of the cases where the coefficient decreases 

appreciably with increased separation. 

Figs. 8.5a and 8.5b show the cross-correlation coefficient 

versus time shift for receiver separations of 0.8 and 3.0 metres 

respectively. The time of the data records was 1045 hours and 1130 

hours for the 0.8 and 3.0 metre separations respectively. 

The relevant atmospheric conditions may be seen in Table 8.3. 

The cross-correlation coefficients observed were 0.91 at Tm  = 

0.2 seconds and 0.48 at Tm  = 0.5 seconds at receiver separations of 0.8 

and 3.0 metres respectively. Hence the lateral amplitude correlation 

length for this particular measurement is less than 3.0 metres. It is 



TABLE 8.3  

Figure 
Duration 
of Record 
seconds 

Sky Condition 
AiroCemp. 

Mean Wind 
Velocity 
m/sec 

Normal 
Wind Comp. 
m/sec 

8.5a and 8.5b 

8.6a and 8.6b 

8.7a and 8.7b 

25.6 

25.6 

25.6 

Calm and sunny 

Sunny with cloud 

Sunny and haze 

19.0 

20.0 

19.0 

6.2 

5.0 

3.2 

3.9 

0.4 

1.4 
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interesting to note that if Taylor's hypothesis is assumed to be valid, 

the normal wind velocity vn  would have to be 4.0 metres/second to produce 

a value of Tm  = 0.2 seconds for a receiver separation of 0.8 metres and 

6.0 metres/second to produce a value of Tm  = 0.5 seconds for a receiver 

separation of 3.0 metres. The mean value of the cross-wind component was 

measured at the time of the experiment and had a value of 3.9 metres/ 

second. Therefore, Taylor's hypothesis may be considered to be valid 

bearing in mind that the fluctuations in the wind velocity had a measured 

standard deviation of 0.4 metres/second. 

Similarly it may be seen from Figs. 8.6a and 8.6b and 8.7a and 

8.7b that the cross-correlation coefficient is relatively quite high, 

0.85 and 0.84 respectively at a receiver separation of 0.8 metres. The 

coefficient is again seen in both cases to be almost insignificant at a 

separation of 3.0 metres. It may also be seen that Taylor's hypothesis 

is not obviously valid due to the relatively high wind velocities 

theoretically required to produce the observed Tm. However, the 

possibility of short term variations in the wind velocity and direction 

occurring over the duration of the measurements must be taken into account. 

It must be emphasized here that the examples shown do not 

represent the general trend observed for the variation of the cross-

correlation coefficient with receiver separation, since in many cases the 

cross-correlation coefficient was quite low, i.e. less than 0.5, at a 

separation of 0.8 metres. 
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8.1.4 	Estimation of the Effective Lateral Scale-Size of  

the Amplitude Fluctuations  

The lateral scale-size of the amplitude fluctuations may be 

determined by investigating the variation of the cross-correlation 

coefficient as a function of a time shift between the two received 

signals. The effective lateral scale-size may be determined by 

considering the dominant periodicity in the cross-correlation coefficient 

versus time shift plot St as shown in the figure below. Assuming 

Taylor's hypothesis to be valid as it has been shown to be occasionally 

true, and for a cross-wind velocity vn, the dominant lateral scale-size 

Eo  is then given by:- 

Eo 	vn  . St (8.2) 

Figs. 8.8a, b, c and d show the cross-correlation coefficient 

plotted versus the time shift for various atmospheric conditions. The 

receiver spacing was 3.0 metres for all the cases shown. 

Fig. 8.8a shows the situation for a cloudy and hot day (24°C) 

with a wind velocity of 3.5 m/sec and a normal component of 3.0 m/sec. 

It may be seen from Fig. 8.8a that St is approximately equal to 8.0 
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seconds. Hence from Equation (8.2) the dominant scale-size 0 
 is 

approximately equal to 24.0 metres. 

Fig. 8.8b shows the situation for a hot (23°C) calm period, 

with a wind velocity of 0.6 m/sec and a normal component of 0.5 m/sec. 

St is seen to be approximately 6.0 seconds. Hence 	is approximately 

equal to 12.0 metres. 

Fig. 8.8c shows the situation for a relatively cool period 

(16°C) with some cloud and a wind velocity of 8.0 m/sec with a cross-

wind velocity component of 3.0 m/sec. St is approximately equal to 

2.5 seconds. Hence E  is approximately equal to 7.5 metres. 
0 

The dominant scale-size 0 
under light rain conditions may 

be seen to be quite small as is evident from Fig. 8.8d, where St is 

seen to be approximately 1.0 second with a cross-wind velocity component 

of approximately 1.0 m/sec. Eo  is then approximately equal to 1.0 metres. 

Comparison of the Vertical and Horizontal Lateral Scale- 

Sizes of the Amplitude Fluctuations  

An estimate of the vertical scale-sizes may be obtained using 

the same method as detailed above, with the interferometer placed in a 

vertical position. The antennas used in this case were the two 35.25 

mm horns. The separation between both antennas was 0.7 metres. 

Figs. 8.9a and 8;9b show the cross-correlation coefficient 

plotted versus the time shift for a vertical and a horizontal inter-

ferometer respectively. The horizontal measurements were carried out 

using the 50 millimetre horns at a separation of 0.8 metres. There 

was a two-hour difference between both data records. However, the 

atmospheric conditions were quite  similar with sun and some cloud with 

a moderate breeze. 

It may be seen from Figs. 8.9a and 8.9b that the periodicity 
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in both cases is quite similar with a value of at approximately equal 

to 3.0 seconds. Hence for this particular period of time, it may be 

seen that the horizontal and vertical scale-sizes are of the same order 

of magnitude. 

8.2 	Investigation of the Phase Difference Fluctuations  

One of the main purposes of the interferometer receiver 

system was to estimate the extent of the distortion of the free-space 

phase distribution across the receiver plane and induced by the random 

medium. The phase difference measured between both receivers situated 

along the x-axis and separated by a distance E is a direct means of 

obtaining the phase structure function D
4)
(E), which is defined as:- 

D.4) (E) = <[(x) - cp(x + E)2> (8.3) 

To predict the behaviour of D4,(E) and its variation as a 

function of the medium parameters, the phase screen approach discussed 

in Chapter 3 will be considered. It was previously shown that the 

medium may be collapsed into a thin phase screen situated at the trans-

mitter site which gives rise to amplitude and phase fluctuations in the 

receiver plane. Since we are only concerned with the phase fluctuations 

at the moment, therefore, to facilitate the estimation of the phase 

structure function, the phase screen will be assumed to be situated at 

the receiver plane. The parameters of the phase screen will be 

considered to be equivalent to those determined in Chapter 3. Therefore, 

D
4)
(E) is given by:- 

D~(E) = <[i(x)2> + <[;(x   + J2> - 2<cp(x) . 11)(x + E)> 
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Since the phase process is a zero mean one and for a homogeneous 

medium, therefore:- 

D (E) = 2a L1 - rfi( )j 	 (8.4) 

Hence for a Gaussian refractive index autocorrelation function 

with a scale-size Eo and for a2 defined as in Equation (3.4), the phase 

structure function which is equivalent to the variance of the phase 

difference fluctuations is given by:- 

E2/ 2 

yE)=al~=2F.an.k2 .L.~ 1 -e ° (8.5) 

Fig. 8.10 shows the variation of ao as a function of the 

receiver separation E, with the medium scale-size Eo as a variable 

parameter. The value of the variance of the refractive index fluctuations 

an is taken as 5.0 x 10-14 n2-units. The longitudinal scale-size~o is 

taken to be equal to the lateral one Eo. The curves shown are calculated 

for an 11.6 kilometre path and a wavelength of 8 millimetres. 

For small scale-sizes, less than the receiver separation, and 

hence the autocorrelation function rco(E) becomes negligibly small, ao 

increases to a steady value of ✓2 acil. As the scale-size is increased 

beyond the receiver separation, the phase difference fluctuations may 

be considered to be angle-of-arrival fluctuations, where the angle-of-

arrival y is shown in the figure below. 

y = sin 
-1 [{(x) - ~(x + )}1 -sin-1 (k 	1 k . 	 l ) J 

(8.6) 

For small values of Ac, y is approximately given by:- 
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(8.7) 

Y 

'p (x ) 

Incident wavefront 

tp(x+C ) 

.64 
.Y 

and hence:- 

Q2 
- 	1 	. Q2  

Y 	(k . E)2 
	'$ 

For a wave length of 8 millimetres, i.e. k = 785, the fluctuations 

in the angle-of-arrival may be seen to be very small. 

Fig. 8.11 shows the variation of Qo  as a function of the medium 

scale-size E, with the receiver spacing as a variable parameter. It is 

interesting to note that a certain crop  measured at a fixed receiver 

separation may possibly arise from two different scale-sizes. This 

ambiguity is more apparent at the larger receiver separations. However, 

this ambiguity may be resolved by carrying the measurements out at different 

separations. 
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8.2.1 	Magnitude of the Phase Difference Fluctuations  

Under Different Atmospheric Conditions  

In this section, some examples of the phase difference 

fluctuations will be given together with their probability density 

functions. The examples are chosen such that they cover a cross-

section of the observed fluctuations. The receiving antennas in the 

examples shown were the 0.25 metre diameter dishes. The receiver 

separation was fixed at 3.0 metres. 

The relevant atmospheric conditions pertaining to the examples 

shown are given in Table 8.4 together with the cross-correlation 

coefficient between the amplitude and phase-difference fluctuations to 

give an indication of angle-of-arrival effects on the amplitude 

variations. 

It may be seen from the following figures that the phase 

difference fluctuations range from ± 1 degree to ± 30 degrees, which 

was the highest observed fluctuation. Due to the apparent lack of 

correlation of 
o 

with the measured atmospheric parameter, the under-

lying mechanism mainly affecting the fluctuations is not readily 

obvious. 

However, the scale-sizes of the distortions in the incident 

wave front may be deduced from the predicted curves in Figs. 8.10 and 

8.11. This may be done by estimating the variance of the refractive 

index fluctuations Qn and by noting the variation of 
ooh 

with receiver 

separation. From the various observations made, it may be predicted 

that the effective scale-sizes.  range from less than 0.5 metres to 

approximately 10 metres. However, no definite conclusion can be made 

due to the unknown variations in Qn which were not monitored during 

the period of the experiment. 

An interesting phase difference fluctuation which was observed 



TABLE 8.4  

Time of a
0 
Deg. 

rA~ 
Acp 

Figure 
 

Sky Condition 
 

Wind Velocity 
m/sec 

Temp. 

C 
Total Normal 

8.12 

8.13 

8.14 

8.15 

18.50 

16.00 

08.50 

10.20 

0.28 

3.54 

6.60 

0.92 

- 0.16 

0.12 

0.95 

0.03 

Sunny and clear 

Sunny 

Sunny 

Drizzle 

3.7 

4.3 

2.5 

1.3 

4.3 

0.7 

20 

26 

20 
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at 0850 hours is shown in Fig. 8.14. Measurements made within a short 

period of time at a smaller separation (0.8 metres) and resulting in a 

much smaller 
a0 

(1.6 versus 6.6 degrees), confirmed the presence of 

large scale angle-of-arrival fluctuations. This is further confirmed 

by the high cross-correlation coefficient (0.95) with the amplitude 

fluctuations. The other measurements shown have not displayed any of 

the angle-of-arrival effects mentioned above... 

The probability density functions are all seen to be quite 

symmetrical. For small scale-size phase distortions as confirmed by 

non-decreasing 6o  at smaller separations, it may be assumed that the 

individual phase fluctuations at each receiving aperture are uncorrelated. 

Hence in those situations which are shown in Figs. 8.12, 8.13 and 8.15, 

the probability density function of the phase fluctuations is likely to 

be equivalent to those of the phase difference fluctuations. The 

probability density functions appear to be quite close to a Gaussian 

distribution. This is in agreement to the prediction made in Chapter 3, 

Section 3.4.2, where the phase fluctuations due to a Gaussian refractive 

index autocorrelation function were predicted to be Gaussian distributed. 
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8.2.2 	Investigating the Presence of Large Scale Angle-of- 

Arrival Fluctuations  

In order to determine the lateral scale-size of the phase 

distortions of the wave incident at the receiver site, the phase 

difference was measured at different separations within a short period 

of time. Fig. 8.16 shows the results for the variation of 
o 	

as a 

function of receiver separations. Points joined by straight lines were 

measured within a period of ten to fifteen minutes, which was the time 

taken to separate both receivers and to restabilize the receiver for 

accurate measurements. 

It may be seen from the examples shown that for the majority 

of the observed cases, a
4 

does not appreciably increase as the receiver 

separation is increased. This indicates that the dominant lateral scale-

size of the phase variations is probably less than the largest receiver 

separation, i.e. 3 metres. 

An interesting case, which was discussed in the previous 

section, is shown where o
0 
 increases from 1.6 degrees at a separation 

of 0.8 metres to 6.6 degrees at a separation of 3.0 metres. The 

presence of large scale phase variations is probable for this particular 

case, due to the high correlation coefficient measured between the 

amplitude and phase fluctuations (0.95). Hence the effect of the angle-

of-arrival fluctuations on the amplitude fluctuations is quite evident. 

For the other sets of phase difference measurements, the cross-correlation 

coefficient was negligible. 

A series of experiments devised to detect the effect of angle-

of-arrival fluctuations, however minute, on the amplitude fluctuations 

were then conducted. The experiment consisted of using two relatively 

narrow beam receiving apertures (the 0.25 metre diameter dishes with a 

beam width of ± 2.5 degrees) pointing off their main axis. Therefore, 
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in effect the interferometer was used as a monopulse system. The 

antennas were misaligned in such a manner that a variation of one degree 

in the angle-of-arrival y would produce a 10 decibel change in the 

received power. 

•r-- Direction of incidence 

1 
1 
1 
1 
1 
1 

1 

1 

/ 
► 
/ 

I 

II  
I 

\ 
∎  
\ 

\ 

I  

I  

I 
/ 

/ 
I 

I 
I 
I Receiver gain 

function 

. 	With the interferometer system set as shown above, the 

amplitude of the received signal would be very sensitive to fluctuations 

in the angle-of-arrival -. Therefore, for any effective angle-of-

arrival fluctuations, the amplitudes received by both off-axis receivers 

would be negatively correlated. However, the results obtained do not 

show such negative correlation even on long term fluctuations.. This 

seems to indicate that the angle-of-arrival effects on amplitude 

fluctuation are extremely rare, even for accidently misaligned antennas. 
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8.2.3 	Examples of the Frequency Power Spectra of the  

Phase Difference Fluctuations  

The examples of the frequency power spectra of the, phase 

difference fluctuations are shown in Figs. 8.17a, b, c and d. The 

phase difference fluctuations under consideration were measured at a 

receiver separation of 3.0 metres; the apertures used were the two 

0.25 metres diameter dish. 

The spectra shown here were calculated for the phase 

difference fluctuations measured simultaneously with the amplitude 

fluctuations. The corresponding amplitude spectra are shown in the 

same order in Figs. 8.4a, b, c and d. Hence the relevant atmospheric 

conditions are shown in Table 8.2. 

The phase difference spectra have been predicted
(58) 

to have 

two distinct slopes. The first slope being - m + 1, and second - (m + 1) 

where m is the slope of the spectra of the corresponding refractive index 

fluctuations. Hence the difference between both slopes is predicted to 

be 2 and the slope of the higher portion of the spectra is predicted to 

be equivalent to that of the corresponding amplitude fluctuations. The 

break point between both slopes is predicted to be at some frequency 

greater than vn/Ea, where vn  is the mean value of the prevailing normal 

wind component and
0 
 is the separation between both receiving apertures. 

It may be seen that the slopes of the spectra of the phase-

difference fluctuations are - 3.4 (- 10.2/3), - 3.7 (- 11.1/3), 

- 3.2 (- 9.6/3) and - 3.1 (- 9.3/3) decibels/Hz for Figs. 8.17a, b, c 

and d respectively. The corresponding slopes of the amplitude spectra 

as previously shown are - 3.3 (- 9.9/3), - 3.7 (- 11.1/3), - 2.7 (- 8.1/3) 

and - 3.4 (- 10.2/3) decibels/Hz respectively. It may be seen that both 

slopes are indeed very close which agrees with the theoretical 

predictions. However, the existence of two distinct slopes for the 
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phase difference spectra are not obvious enough to make any confident 

comments. However, the spectrum shown in Fig. 8.4b does show two 

distinct slopes, the first being - 1.7 (- 5.1/3) and second is - 3.7 

(- 11.1/3) decibels/Hz. The difference between both slopes is 2 which 

is in perfect agreement with the theoretical prediction. However, the 

break point between both slopes is approximately at a frequency of 0.5 

Hz. Noting that vn  was 4.3 metres/second and hence the theoretically 

predicted break point is 4.3/3 = 1.43 Hz, therefore, there is some 

disagreement with the theoretical prediction. 

It is interesting to note that the steepest slope, - 3.7 (- 11.1/3), 

shown in Fig. 8.17a corresponds to the largest phase difference 

fluctuation shown in Fig. 8.14. The width of this spectrum is also the 

narrowest one. This indicates that the scale-sizes involved are 

considerably larger than in the other examples shown and, hence, the 

corresponding angle-of-arrival effects previously discussed. 

Comparison of the Vertical and Horizontal Phase Difference  

Fluctuations  

For a brief period of time, on July 27, 1978, the phase-

difference fluctuations wer measured for vertical and horizontal receiver 

separations. The apertures used were the two 35.25 mm horns. The 

antenna separation was 0.7 metres in both cases. The prevailing weather 

conditions were sun and some cloud with a moderate breeze. 

Figs. 8.18a and 8.18c show the probability density function 

and the frequency power spectrum of the phase-difference fluctuations 

respectively for the vertical separation measured at 1800 hours. The 

standard deviation was found to be 0.95 degrees. Figs. 8.18b and 8.18d 

show the same quantities measured for a horizontal separation 20 minutes 

later. The standard deviation in this case was 1.41 degrees. 



POWER SPECTRA OF THE PHASE DIFFERENCE FLUCTUATIONS 
0 

-10 	t 	 -10 . 

.0 
v 	

-3.4 ` 	 -3.2 ~% 
o 	 1 	 a) 

-20 	
%
) 	 -20 
1 

t 

0.1 1.0 

Fig.8.17c 

Fig.8.17d 

Fig.8.17a 

Fig.8.17b 

Hz 



Fig. 8.18b 

1• 1 1 1 
1.0 

is 	III 

1.0 
Normalized P.D.F 

VERTICAL REC. SEP a  O.7m 

Fig. 8.18a 

-5.0 

1.0 
Normalized PD.1= 

HORIZONTAL REC.SEP=O.7m 

Degrees 

—10 

—20 

0.1 	 1.0 
1 1 1 1 1 II 1 I l  1 1 1 I 1  I I o il s es 

Hz 

—0 

0.1 
1 4 1 1 1 1 1 1 i 	1 1 1 

Hz 

—5.0 	 5.0 

Degrees 

—o 

—10 

—20 

5.0 



246 

It may be seen from the close similarity of both the 

probability density functions and the frequency power spectra and 

bearing in mind the possible non-stationarity of the phase difference 

fluctuations over a period of 20 minutes, that under typical atmospheric 

conditions, the structure of the phase distortions is more or less 

similar in the vertical and horizontal directions. 

8.3 	Investigating the Response of Different Size Apertures Under  

Turbulent Conditions  

It has been shown in Chapter 5 that increasing the receiving 

aperture size possibly causes an increase in the system signal-to-noise 

ratio and a decrease in the system efficiency. The possibility arises 

under certain previously discussed turbulence conditions with large 

transmitting aperture sizes. 

An experiment was conducted using different size receiving 

apertures, to investigate the variation of the system signal-to-noise 

ratio and efficiency as a function of the receiving aperture size under 

different turbulent conditions. Another aspect investigated separately 

was the difference in the power spectra of the amplitude fluctuations 

observed by different apertures. 

Following is a brief description of the experimental procedure 

carried out to simultaneously investigate the variation of the relative 

efficiency and signal-to-noise ratio observed by two receiving apertures. 

8.3.1 	A Practical Method to Investigate the Relative  

Variation in Efficiency and Signal-to-Noise Ratio  

An experimental investigation of the absolute drop in free 

space gain and hence the loss of efficiency of a receiving aperture is 

impossible. This is due to the long-term variations in the level of the 
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incident signal, either due to long-term medium variation, or long-

term variations in the transmitter and local oscillator power levels. 

The possible reduction in gain being of the order of a fraction of one 

decibel adds to the complexity of the problem. Similarly a measure of 

the absolute signal-to-noise ratio is practically impossible. 

The method proposed is to compare the mean values of the signals 

observed by two different size apertures within a short period of time 

and hence obtain a value for the relative efficiency and observe its 

variation under different atmospheric conditions. Similarly a ratio of 

the percentage fluctuations observed by the two apertures gives an 

indication of the variation of the system signal-to-noise ratio as a 

function of receiver aperture size under different atmospheric conditions-. 

The experimental setup is shown below in Fig. 8.19. The 

apertures used were the 0.25 metre diameter dish and the 35.25 mm 

rectangular horn. Both antennas were clamped to the test rig, thus errors 

resulting from misalignment which give rise to variations in the mean 

signal level are eliminated. 
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The I.F. signal from each channel was monitored for a period 

of two minutes by means of a Hewlett-Packard linear detector. The 

detector output was sampled at a rate of two samples per second and 

fed into an A/D convertor then into a Tektronix programmable calculator 

which calculated the mean and variance of the signal. After the two 

minute period, the detector was switched instantaneously to the next 

channel for a similar period of time. A two minute sampling period per 

measurement was chosen so that the first and second order statistics of 

the incident fieldei, may be assumed to be more or less constant during 

both measurements. 

The detector output voltage is v
is 2 

where the suffix 1 refers 

to the first channel with the 0.25 m dish, and the suffix 2 refers to 

the second channel with the 35.25 mm horn antenna. 

The random incident field ei  may be presumed to consist of a 

small incoherent part together with a reduced free-space coherent 

portion. The magnitude and angular spread of the incoherent portion 

are assumed to be constant over both data records. For equal mixer 

gains g and the linear detector response factor a held constant, it 

follows from the considerations of Section 5.3.1 on antenna efficiency, 

that the ratio of the averages of the sequential outputs from the 

detector is given ideally by:- 

<v > 	n . G 
V  _ 	1 - 	1 	1 

<v> 	n . G 
2 	2 	2 

(8.8) 

where: 	v 	is the output of the linear detector for channels 1 and 2. 
1, 2 

nl, 2 is the aperture efficiency for the dish and horn. 

G 	is the free-space gain of the dish and horn. 
1, 2 

Hence V2  is a measure of the ratio of the effective gains of 
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the two apertures and is thus a measure of the relative efficiencies. 

Therefore, any variation in V2, under different atmospheric conditions, 

could indicate'a variation in the efficiency of one aperture with 

respect to the efficiency of the other aperture. 

As defined above, V is independent of long-term variations 

in the signal level due to variations in either oscillator output. 

Short-term variations of the order of a few minutes over which each set 

of measurements were carried out, have not occurred during laboratory 

tests for either the transmitter or receiver local oscillator. 

The criterion for the relative variations of the signal-to-

noise ratio under different atmospheric conditions, will be taken as 

the ratio of the percentage amplitude fluctuations observed by the dish 

to those observed by the horn. Assuming this ratio to be R, therefore:- 

	

aE 	6E 	6E 	<E >  
R = 

 -<75-    < > a 1  • < 	2> 

	

1 	2 	E 	1 2 

(8.9) 

Therefore, values of R < 1 indicate that the signal-to-noise 

ratio of the system with the dish as the receiving aperture are higher 

than that with the horn as the receiving aperture. The opposite is true 

for value of R > 1. In the latter case, there is no receiver aperture 

averaging and the percentage amplitude fluctuations tend to increase as 

the receiver aperture size is increased. 

8.3.2 	Results for the Relative Efficiency and Signal-to- 

Noise Ratio Experiments  

Fig. 8.20 shows the variation of relative gain and signal-to-

noise ratios of the apertures used. The relative gain is given by 20 

log (V) where V is defined in Equation (8.8). The free space difference 
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in gain between the 0.25 metre dish and the 35.25 mm horn is approximately 

15 decibels. However, mismatch, cable losses and different I.F. 

amplifier gains probably reduce the gain difference. It must be 

emphasized that the main concern in this experiment is to observe the 

variation in the gain difference, and not the absolute value. Hence a 

relative drop in the gain difference under different atmospheric 

conditions, indicates that the efficiency of the larger aperture has 

dropped relative to the smaller one and vice versa. 

The relative signal-to-noise ratio is given by log (R) with 

R defined by Equation (8.9). Hence value of log (R) > 0 indicate that 

the larger aperture produces more percentage fluctuations, i.e. less 

signal-to-noise, than the smaller one and vice versa. 

The results shown are for observations over a four-day period. 

The data points for each day are joined by solid lines. The times of 

the observation and the sky condition are indicated along the horizontal 

axis. 

It may be seen that 50% of the observation show a positive 

signal-to-noise ratio and 50% have a negative one. Therefore, it may 

be safely concluded that on the average, the 0.25 metre dish does not 

exhibit any smoothing properties in comparison to the 35.25 mm horn. 

Similarly the variation of the gain difference appears to be 

random and uncorrelated to the variation in the signal-to-noise ratio. 

The variation of the difference in gain may possibly be attributed to 

the non-stationarity of the received signal. Hence it may also be 

concluded that the efficiency of the larger aperture is more or less 

similar to that of the smaller one. 

The above conclusion seems to agree with the theoretical 

predictions made in Chapter 5 where it may be seen from Figs. 5.3a and 

5.3b that for a relatively small transmitting aperture (a 1.0 metre 
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diameter dish), the variation of the receiving aperture size has no 

effect on the system efficiency and signal-to-noise ratio. 

The above results also agree with the predictions of Tatarskii
(58)  

and Fant6(19)  which show that the averaging effect of an 0.25 metre dish 

are negligible, whatever the degree of turbulence. 

8.3.3 	Effect of the Receiver Aperture Size on the Spectral  

Characteristics of the Amplitude Fluctuations  

Another aspect of the coupling of a perturbed wave front to 

different size receiving apertures is the variation of the spectral 

characteristics of the amplitude fluctuations. The dependence of the 

spectral characteristics on the aperture size may be understood by a 

brief but intuitive interpretation of the refractive index wave number 

energy spectrum. Shown below is a sketch of the energy spectrum as 

proposed by Kolmogoroff(72)  where energy is drawn as a function of the 

wave number k, where k = 27r/2, and 2. is the scale size of the refractive-

index irregularities. The suffixes i and o refer to the inner and outer 

scale sizes respectively. 

Wave number energy spectrum for the refractive index fluctuations 
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The shape of the energy spectrum varies according to the 

amount of energy introduced and hence dissipated. It might be worthwhile 

to note here that the magnitude and rate of energy introduced is quite 

different from the magnitude and rate of its dissipation, i.e. energy 

is introduced in large quantities at a slow rate and is dissipated in 

smaller packets at a faster rate. The reason for this has been shown to 

be(9)  that energy in the atmosphere is introduced mainly by wind shear 

and convective heating from the ground. These may be assumed to be 

slowly varying processes. In physical terms, the energy dissipation 

process may be explained by the fact that the smaller eddies are formed 

by the motion of the larger ones and energy is transferred from one scale-

size to the next and is finally dissipated by a repetition of this 

process several times. The shape and behaviour of the tail of the 

energy spectrum, i.e. in the dissipation region, is not fully understood. 

However, it is generally known to fall more rapidly in this region. Thus 

the inner or smaller scale-sizes attributed to the dissipation region are 

likely to vary quite rapidly for small variations in the dissipation 

mechanism. Therefore, it may be assumed that although the smaller scale-

sizes in the order of millimetres contain far less energy than the 

larger ones, their rate of fluctuation is much faster. 

The relatively rapid rate of fluctuations of the small medium 

scale-sizes is, in turn, reflected in the presence of relatively fast, 

small scale-size amplitude fluctuations. However, due to the small 

energy content of the small medium scale-sizes, the magnitude of the 

rapidly varying small scale-size amplitude fluctuations is likely to be 

much smaller than the slowly varying large scale-sizes. 

In situations where rapidly varying small scale-sizes are 

present, a large receiving aperture would tend to "filter" out the rapid 

fluctuations. Hence the aperture averaging effect is exhibited. 
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Therefore, it may be assumed that in the situations where a large 

aperture would average out the amplitude fluctuations, it is likely 

that the corresponding frequency power spectrum would contain less high 

frequency spectral components than that corresponding to a smaller 

receiving aperture. 

Figs. 8.21a and 8.21b show the power spectra of the amplitude 

fluctuations observed simultaneously by an 0.25 metre diameter dish and 

an open waveguide (4.0 millimetres across) respectively. The receivers 

were 3.0 metres apart and the measurements were carried out on a calm 

and clear day. It may easily be seen that the signal received by the 

open waveguide contains higher spectral components. Similarly, Figs. 

8.21c and 8.21d show the power spectra of the amplitude fluctuations 

observed simultaneously by an 0.25 metre dish and a 35.25 mm horn 

respectively. The measurements were carried out under light rain 

conditions and, hence, small medium and amplitude variation scale- 

sizes are likely to occur. Again it may also be seen that the signal 

received by the smaller aperture contains higher frequency components. 

An interesting result that may be drawn from the above experiments 

is the dependence of the frequency content and hence the slope of the 

power spectrum on the size of the receiving aperture used. Therefore, 

under certain atmospheric conditions, care must be taken in determining 

the slope of the power spectrum. This becomes especially important as 

the aperture size is much larger than the scale-sizes involved. For this 

particular experiment, the difference in the spectral content of the 

signals received by the different apertures used was negligible except 

on rare occasions. 

8.4 	Summary and Conclusions  

The various examples shown in this chapter and the analysis 
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carried out indicate that the short-term amplitude fluctuations are 

very small. The maximum fluctuations occurred on clear days with light 

to moderate winds and under light rain conditions. There is some evidence 

of diurnal variations with fluctuations increasing at mid-day and 

decreasing in the early morning or evening. The small fluctuation level, 

generally found to be in the region of 1% relative to the mean value, is 

probably attributed to the small variations of the refractive index. For 

the brief periods where the refractive index was measured, the variance 

Qn has been observed to be of the order of 1.0 x 10-14  n2-units. Since 

the effective scale-sizes of the refractive index irregularities lie 

within the region of 	, where L = 11.6 kilometres and X = 8 millimetres, 

hence AT = 9.6 metres. Therefore, the percentage fluctuations 

predicted by the coupling Equation (8.1) and shown in Fig. 8.1 are quite 

close to the observed fluctuation levels. 

On investigating the lateral distribution of the amplitude 

fluctuations, Taylor's "frozen turbulence" hypothesis has been shown to 

a certain extent to be valid. This is particularly obvious when the 

cross-wind velocity is steady over the observation period. Based on the 

validity of this hypothesis, the dominant lateral scale-sizes of the 

amplitude fluctuations have been shown to be of the order of ten to 

thirty metres, whereas under slight rain conditions, the dominant scale-

size is approximately 1 metre. 

Although the amplitude variations lateral scale-sizes are 

relatively large on clear days, the lateral correlation distance is quite 

small, which is the distance at which the amplitude cross-correlation 

coefficient is larger than, say, 0.6 and has been rarely found to 

exceed 3.0 metres. This is due to the smaller scale-size crinkles 

superimposed on the larger scale-sizes, thus effectively decreasing the 

measured cross-correlation coefficient. Hence the measured lateral 
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correlation lengths are different from the theoretically predicted ones(19). 

The spectra of the amplitude fluctuations appear to be closely 

related to those of the refractive index fluctuations, with the slopes 

behaving as theoretically predicted. However, no obvious relationship 

has been observed between the amplitude spectral slopes and the prevailing 

atmospheric conditions. 

Brief measurements of vertical and horizontal spectra and cross-

correlation coefficients of the amplitude fluctuations have been carried 

out. These indicate that the lateral amplitude distortions are quite 

similar across the vertical and horizontal directions, at least over a 

separation of 0.7 metres. 

The phase difference fluctuations have also been found to be 

very small, i.e. normally within ± 10 degrees, although phase difference 

fluctuations as low as ± 1 degree and as high as ± 30 degrees have been 

observed, the latter occurring under calm and warm weather conditions. 

Light rain has not been found to have an increased effect on the phase 

difference fluctuation, e.g. ± 7 degrees peak-to-peak fluctuations. 

Measurements have also been made to detect the variation of 

the standard deviation of the phase difference fluctuation 
Go 

 as a 

function of the receiver separation. These have shown that for the 

majority of the cases observed, Go  does not appreciably increase as 

the separation increases. Hence large scale angle-of-arrival fluctuations 

are rare. Thus the cross-correlation coefficient between amplitude and 

phase difference fluctuations has been found to be negligible. Except 

.in the cases where 
a4 

increases with the receiver separation and the 

fluctuations are quite large, the cross-correlation coefficient has 

been found to be quite large. 

Therefore, under typical weather conditions, the lateral scale-

size of the phase fluctuations is less than the largest receiver 
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separation, i.e. less than 3.0 metres. 

Calculations of the phase difference spectra show that the 

slopes are very close to those of the corresponding amplitude 

fluctuations, which again is in agreement with the theoretical 

predictions(58)
. 

Similarity between vertical and horizontal phase difference 

measurements at antenna separations of 0.7 metres has been observed. 

This leads to the assumption that the structure of the phase distortions 

across the vertical and horizontal directions are quite similar. 

Measurements were carried out to examine the differences in 

response between two different-size receiving apertures. The results 

indicate that the 0.25 metres diameter does not consistently exhibit an 

averaging effect when compared to a smaller 35.25 mm aperture. 

Simultaneous measurements of the gain difference variations did not show 

any correlation with the relative aperture averaging factor and were 

quite random in nature. Hence a variation in the relative efficiency of 

both receiving apertures was not evident. The similarity of the relative 

efficiencies and aperture averaging factors of both apertures is also 

predicted by the coupling formula in Chapter 5. 

Frequency power spectra of the amplitude fluctuations of 

different receiving aperture sizes have usually been found to be similar. 

However, there is some variation under situations where the effective 

medium scale-sizes are very small. In such cases, the spectra obtained 

from a smaller aperture contain higher frequency components. Hence the 

spectral slopes under such conditions may be dependent on the receiver 

aperture size. 



259 

CHAPTER 9  

CONCLUSIONS  

Some aspects of the propagation of radio waves with a finite 

angular spread through a medium with refractive index variations have 

been studied both theoretically and experimentally. A summary and a 

brief review of the conclusions drawn from the theoretical and 

experimental investigations is given below. This is followed by some 

suggestions for future investigations. 

9.1 	Summary and Conclusions of the Theoretical Investigations  

The effects of two different types of refractive index 

variations within the propagation medium have been studied. The medium 

first considered was one characterised by a square-law variation in 

the refractive index vertical profile across all or part of the path 

length. The approximate solution considered for the wave equation in 

a medium with weak large-scale refractive-index variations is the so-

called Parabolic Equation solution, which has been shown to allow for 

the representation of the random medium by a random phase-screen. 

For long path lengths with strong refractive index variations, or for 

media with localised variations, the path length is divided into a 

number of regions, each represented by its characteristic phase screen. 

A computer-adaptable recursive formula has been obtained to 

determine the width and radius of curvature of a Gaussian beam propagating 

through a number of consecutive phase screens representing a medium with 

a square-law variation in the refractive index vertical profile. The 

induced signal gain or loss due to the focussing or defocussing effects 

of the continuous lens-like medium have been predicted. For example, 

a refractive index profile with a parabolic gradient of + 3.. 10-9  is 
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predicted to produce an increase of 1.3 decibels in the signal level. 

Large spherical blobs of varying refractive index have been shown to be 

approximately represented by a region with a square-law refractive 

index profile. The effect of the position of isolated lens-like regions 

with respect to the transmitter and receiver aperture planes has also 

been studied. For the particular example of an 8 millimetre, 12 kilo-

metre path, the mid-path location of a square-law region has been found 

to have the maximum focussing effect. 

The other type of propagation medium considered was one inter-

spersed with refractive index blobs of randomly varying magnitude and 

scale-size. In this case the medium is also represented by a random 

phase-modulating screen. The depth of modulation and lateral scale-

sizes of the phase screen are determined by the characteristics of the 

medium. Substituting the transmitter aperture field by a set of 

elementary Huygens sources and superimposing a characteristic random 

phase modulation, provided detailed statistics for the fluctuating on-

axis near and far-fields. These statistics were obtained as a function 

of the system and medium parameters. An optimum transmitter aperture 

size has been observed, where the on-axis field fluctuations are at a 

minimum. This transmitter aperture-averaging effect is probably due 

to the presence of two fluctuation-causing mechanisms, namely, 

scattering and beam wandering. 

An investigation of the variances of the real and imaginary 

components of the random on-axis electric field, provides information 

required to determine the probability density function of the 

fluctuating electric field. 

It has been found that close to the transmitter aperture 

plane, the variances of the real and imaginary components, v and v 
2 

respectively are equal. As the propagation distance d, increases, it 
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has been found that v becomes much larger than v as shown in the 
2 	 1 

figure below:- 

(E> 
, mow ■•••  

1 

V2 

Near field Far field 

------- Curves of constant probability 

Therefore, under the assumption that the random component r 

lies equally probably between 0 and 27r, the probability density function 

of E as shown above has a Rice-Nakagami distribution(73, 74, 753. The 

relationship between <E>, v
1 
 and v

2 
 has been determined, Sections 3.4.1 

and 3.4.2, for various system and medium parameters. Curves of the 

probability density function as a function of <E>, v and v may be 
2 

found in Beckmann
(40)  

The above analysis also yields information for the phase 

fluctuations of the on-axis field. Since the mean value of the random 

field has been found in practice to be much larger than the fluctuating 

real and imaginary components, therefore, the phase fluctuations may 

be considered to be approximately Gaussian distributed with a zero mean 

value. The magnitude of the phase fluctuations has been found to be 

very small, e.g. ± 8 degrees under moderate turbulence conditions, and 

over a path length of 12 kilometres. This prediction has been found to 
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be in agreement with the experimentally observed phase fluctuations. 

An angular-spectrum lateral-coherence function approach was 

used to investigate the problem of beam propagation through a strongly 

random medium. The propagation of the coherent and incoherent portions 

of the lateral coherence function through a series of random phase 

screens was investigated. For a homogeneous medium, and considering 

single-scattered field components only, it. has been shown that the 

effects of the multiple phase screens may be combined into one phase 

screen, the phase contribution of which is the summation of the phase 

contributions of the individual phase screens. 

The coupling of the coherent and incoherent angular powers to 

a finite receiving aperture was calculated. Thus a general transmitter-

to-medium-to-receiving-aperture coupling formula was obtained as a 

function of the system and medium parameters. A system efficiency and 

signal-to-noise ratio have also been defined in terms of the above 

parameters. Investigation of the interaction of the transmitter and 

receiver apertures with the refractive index blobs has produced some 

interesting predictions. For example, increasing the receiver aperture 

size for relatively small transmitter apertures does not provide an 

increase in the system-signal-to-noise-ratio , neither does it affect 

the efficiency. However, under certain atmospheric conditions, outlined 

in Section 5.4, and for large receiving apertures, an increase in the 

transmitter aperture is predicted to result in a drop in the overall 

system efficiency of up to 11%, whereas the signal-to-noise ratio is 

increased by approximately 2 decibels as shown in Figs. 5.6a and 5.6b. 

Such an increase in the signal-to-noise ratio is predicted to provide 

an improvement in the bit-error probability for digital transmission 

systems by a factor of 100 as shown in Fig. 1.3. 

The coupling formula has been tested to a limited degree by 
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the data available from the 12 kilometre experimental link. The 

experimentally observed fluctuations have been found to agree with 

those predicted by the coupling formula. However, lack of detailed 

knowledge of the medium characteristics makes it difficult to make any 

confident assessment. 

The availability of a general coupling formula should prove 

to be useful in the optimum design of radio systems and a prediction of 

their performance. A particularly useful application is for earth-

satellite communication systems. The earth's atmosphere may 

appropriately be represented by a phase-changing screen. The necessity 

for optimizing the aperture sizes for maximum reception, i.e. higher 

efficiency, and for minimum noise, i.e. higher signal-to-noise ratio, 

is obvious due to the weight limitations and long distances involved. 

Since the formula is not limited to circularly symmetrical antennas, 

therefore, different beam shapes may be considered, e.g. elliptical or 

fan-shaped beams, which are quite common in satellite communication 

systems. 

The results obtained from the different analytical models 

summarised above may be applied to predict the performance of wave 

propagation in a medium with refractive index variations. The condition 

for the application of the results obtained is that the wavelength of 

the propagating wave must be smaller than the scale-size of the medium 

irregularities. This is the case for underwater sound propagation 

systems, where ducting due to a square-law velocity profile is quite 

common, and propagation of optical beams through the atmosphere or any 

medium with refractive index variations. 

9.2 	Summary and Conclusions of the Experimental Investigations  

Atmospheric effects on an 8 mm continuous-wave narrow-beam 
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signal propagating over an urban environment for 12 kilometres have been 

experimentally investigated. An interferometer receiver system was 

set-up to monitor the amplitude and phase-difference fluctuations under 

different atmospheric conditions. An off-line data recording and 

processing procedure was developed to analyse the radio-link data in a 

number of different ways and to extract as much information as possible 

from the available data. 

The magnitude of the amplitude fluctuations was observed to 

be very low, e.g. 1% to 2%, with the maximum fluctuations occurring at 

mid-day. For such a range of fluctuation levels and under moderate 

turbulence conditions in a homogeneous medium, the scale-sizes predicted 

by the coupling formula lie in the range of 10 metres. Such a value of . 

predicted medium scale-sizes agrees with that deduced from a 36 GHz, 4 

kilometre link over Central London(76). 

Measurements of the amplitude cross-correlation coefficients 

indicate that the correlation distance'is quite small. This is the 

distance beyond which the cross-correlation coefficient is less than 

say 0.6 and for the majority of the observations was less than 3.0 

metres. The dominant lateral scale-size of the amplitude distortions 

across the receiver plane was found to lie in the range of 10 metres. 

However, the lack of correlation is due to the smaller scale-size 

crinkles superimposed on the larger lateral amplitude distortions. 

These crinkles are caused by the medium inner scale-sizes, which have 

been predicted to be of the order of 0.1 m, whereas the outer scale-

sizes are predicted to be of the order of 10 to 30 metres over Central 

London(76). Therefore, the medium scale-sizes are of the same order of 

magnitude as the scale-sizes of the lateral amplitude distortions. This 

has also been predicted by a computer simulation model developed by 

Inggs
(60). 
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The magnitude of the phase difference fluctuations has been 

found to be quite small, e.g. ± 10 degrees, peak-to-peak, at a 

receiver separation of 3 metres. The maximum fluctuations have been 

found to occur on calm clear days, with minimal fluctuations observed 

on overcast days. Similar results with the same order of magnitude of 

the phase fluctuations have been observed over a 3.2 mm, 19 kilometre 

link(77). 

The spectra of the phase difference and amplitude fluctuations 

have been found to be closely related, which is in agreement with the 

theoretical predictions. 

Phase difference measurements at various receiver separations 

within a short period of time have shown that for the majority of the 

observations, the phase structure constant does not appreciably increase 

with increased receiver separation. Therefore, it may be deduced that 

large-scale angle-of-arrival fluctuations do not occur for such a radio-

link. Hence for the majority of the cases, the scale-size of the 

lateral phase distortions is less than the maximum receiver separation, 

i.e. less than 3.0 metres. 

Experiments using different-size receiving apertures have 

shown that a 0.25 m diameter dish does not exhibit any obvious 

averaging properties or loss in efficiency when compared to a 35.25 mm 

horn. This is in agreement with the predictions obtained from the 

coupling formula derived in Chapter 5. 

The tails of the spectra of the amplitude fluctuations has 

been observed, in some cases, to be a function of the receiver aperture 

size. This is due to the presence of small scale-size crinkles in the 

incident wavefront, which are probably smaller than the relatively 

large aperture under consideration and hence are smoothed out. 

The experimental data produced by the experimental link should 
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add confidence to millimetre-wave radio system designers. The major 

cause for concern at such a frequency band is absorption due to 

precipitation. This has been observed to cause a total loss in the 

signal, 40 decibels, at rain rates exceeding say 20 mm/hour. 

Signal fluctuations under clear air conditions have been 

found to be very small. However, an increase in the system reliability 

may be achieved by using spatial diversity techniques. Suitable 

receiver separations for such systems have been found to be of the 

order of 3 metres, which is a convenient separation. Experimental 

evidence, though admittedly scanty, has shown that the structure of 

the wave-front distortions are more or less similar in the vertical 

and horizontal directions. Therefore, provided that the propagation 

axis is elevated sufficiently above the ground and narrow-beam apertures 

are used, thus greatly reducing surface-caused multipath fluctuations, 

horizontal or vertical spatial diversity should produce equivalent 

results. 

Signal fluctuations due to angle-of-arrival fluctuations should 

not pose any serious problems. This is particularly true for terrestrial 

links. The use of relatively large and cumbersome antennas is not 

necessary to obtain a high signal-to-noise ratio. Small horn-type 

antennas have been seen to produce a comparable signal-to-noise ratio. 

Therefore, in situations where the fade-margin is not a crucial factor, 

horn antennas are perfectly adequate, especially for portable radio-

systems operating under clear air conditions. 

9.3 	Suggestions for Future Research and Investigations  

The investigations reported in this thesis may possibly lead 

to further developments in the understanding of the adverse effects of 

a random medium on propagating beam. Some of the points which may be 
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taken up and which could prove to be useful in communcations systems 

design, are briefly discussed below. 

Detailed statistics of the fluctuations of the field, 

radiated by a finite aperture, have been determined at an on-axis 

observation point. However, the response of a non-linear receiving 

device to such a fluctuating field remains to be investigated. Cable(78)  

has investigated this problem for underwater sound, and has obtained 

expressions for the n'th moment of a randomly scattered field. These 

expressions have been obtained under the assumption of plane-wave 

propagation and could be extended in conjunction with the Huygens source 

approach developed in Chapter 3, to incorporate the practical case of 

narrow diffracting beams. 

The Huygens-Parabolic Equation approach that has been applied 

to study the field fluctuations at an on-axis point may, in principle, 

be used to determine the field fluctuations at different points across 

an observation plane. Hence the lateral distribution of the random 

amplitude and phase of the electric field may be estimated. The 

dominant fluctuation-causing mechanism, i.e. beam wandering or 

scattering, may be determined through the knowledge of the lateral 

field distribution. Such knowledge is useful if compensation systems 

such as beam-steering aperture arrays are to be considered. 

The different aspects of signal coupling to a receiving 

aperture have been studied for the particular example of Gaussian 

aperture field distributions. The variations of the signal-to-noise 

ratio and system efficiency should be investigated for arbitrary 

aperture field distributions. Since the coupling formula, Equation (5.10), 

was obtained in a three-dimensional form, the behaviour of non-symmetrical 

beams, e.g. elliptical or fan-shaped, in a medium with non-isotropic 

irregularities, may also be studied. 
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Predictions for the performance of radio systems are more 

readily appreciated if based on experimental evidence. The greatest 

potential for millimetre wave radio systems is wide-band, high-bit-

rate digital transmission. Hence experiments have been carried out to 

assess the performance of such systems. For example, variations of 

the bit error rate versus channel signal-to-noise ratio were obtained 

in 1968 for a 40 GHz, 32 kilometre system with a data rate of 50 Mb/sec 

and using a digital phase shift keying modulation scheme(79). Nowadays 

much higher data rates are contemplated, e.g. 274, 176 Mb/sec(80)  and 

using various modulation schemes, which may be drastically affected by 

atmospheric scattering. An example of such a modulation scheme is 

direct amplitude modulation or On-Off keying which is popular due to 

its simplicity and available hardware at millimetre wave frequencies. 

Pulse propagation systems are also widely used in radar and sonar 

detection systems. The scattering effects of the medium on the shape 

of a propagating pulse have been theoretically investigated to some 

extent by Uscinskii(33). 

The variation of the efficiency and smoothing characteristics 

of large apertures may be accurately investigated by using large array 

antennas. Large and small apertures may thus be realised from the same 

array by using appropriate feed arrangements. Hence simultaneously 

received signals by different size apertures may be compared. 

Propagation over varying types of terrain and under different 

atmospheric conditions should be carried out. This is necessary since 

results obtained over urban or country terrains in northern climates 

probably would not resemble results obtained under more adverse 

propagation conditions. Experiments over desert terrains or in humid 

coastal areas should be performed to provide the necessary information 

for the rapidly increasing intercontinental communication networks. 
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The availability of relatively cheap and powerful micro-

processors should prove to be very useful in the analysis and handling 

of available experimental data. Microprocessors may also be used in 

the control of various experimental settings, such as aperture 

dimensions determined by appropriate array feeds, or bit-rate settings 

in digital transmission systems. 
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APPENDIX I  

DETERMINATION OF THE VARIANCES OF THE REAL AND  

• IMAGINARY COMPONENTS OF A RANDOM COMPLEX ELECTRIC  

FIELD IN THE FRESNEL REGION  

To determine the variance of the real and imaginary field 

components, ER  and EI  respectively, where they are given by:-

+0. 

ER  - b 
	

e 	
2/w2 

 . cos 	- - - dE 
1/7 

-o 

+m 

EI  = _ b 	e 2/w2 . sin 	dE (I.2)  

First the variance of the real component aR will be determined:- 

QR = <ER2> - <ER>2  (I.3)  

where:- 

+0. +0 

-RE2 

 

ER = 	e 	
21" 

. e- ' /w2 . cos 	k- - 	. cos 	
II 

dE . dEi  

(I.4)  

where E1  = E + u, and u is a variable separation along the c-axis with 

= 0(E) and 01 = 0(E + u). 

Since 0(E) and gE + u) are both assumed to be zero mean 

Gaussian random variables, therefore, their sum Os  and difference 0d  are 

both Gaussian random variables with zero mean:- 
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(Ps = CO + (P( + u) 

(f)d = (1)(E) - (P
( + u) 

Therefore, for cps and (pd 
Gaussian:- 

J~ 	- 
0.2 

/2 	J~ 	- 6
~ /2 

<e s> = e 	
s 	

and 	<e d> = e 	
d 

(I.7)  

where o2 and cr2 are the variances of the sum and difference phases 
(Ps 	(I'd 

respectively and are given by:- 

c1 =<[(E)+~(E + u 2> 
s 	 1 

(I.8)  

and:- 

Q = <[(E) - 4(E + u~2> 
d 

for:- 

1(d -a$( +u) =ci 

and:- 

<C ) . CE + u)> = 6 . yu) 	 (I.10) 

where r(I)(u) is the normalized phase autocovariance function and has 

previously been assumed to be Gaussian and of the form:- 
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- u2/r2 
r(1)(u) = e 	° 

Therefore:- 

= 2o1 ii: + r(uij (I.12) 

and:- 

= 2cs C - r(u~ 	 (I.13) 

Substituting Equations (I.12) and (I.13) in Equation (I.7) and using De 

Moivres formula, therefore:- 

- c 
1 + r

(I)
(u 

1 <cos(cps)> = <cos [i(0  + ~( + u)I> = e  (I.14) 

and:- 

- 6 11 	r,(u )1 
<cos(q)d)> _ <cos C(E) - ~( + u)j> = e 	l-- 	`` (I.15)  

Expanding Equations (I.14) and (I.15) and for Q; « 1, the following 

expressions are obtained:- 

<cos q(E) . cos gE + u)> = 1 - 

<cos gE) . sin gE + u)> = 0 

<sin gE) . cos 4(E + u)> = 0 

 

(I.16)  
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<sin 4)(E) . sin 4)(E + u)> = a'. r (u) (I.16)  

(Continued) 

Therefore, Equation (I.4), after the appropriate expansions 

and substitutions from Equation (I,.6) gives:- 

2 = b 2 
ER 	 I

[1.R
+I (I.17)  

 

where:- 

• 

+00 	 +oe 

I 	= (1 - Q2) 	
e- 22/w2 	

cos 	e- 2Eu/w2 . e- 

u2/w2 

CO 	 _o 

. cos .(E+u)2 .du.dE 

1R 	$ 

(I.18) 

and:- 

+. 	 +.0 	 - LW+ ~21 .u2 
2  

I 	= a2 	e- 2E2/w2 . sin 
k2T 	e- 2 u/w 	

e 
l o 

2R 

-00 	 -00 

. sin 2 (E + u)2 du . dE 
	

(I.19) 

Using a standard integral(41) and after performing some 

algebraic manipulations, I , after the double integration, becomes:-

1R 

I 	
(1 	0) . 

1 	
~ 

R 	
2 	 2 

cost 	tan-1 (;6-11 

_ 

(I.20) 



2 1 
cos 	tan

-1 
2 	

Y2 	( k)2
. 

4 1W2 ~J + ) 

1 
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Similarly, the integral (I.19) for r(1) = exp(- u2/E0) yields:- 

	

2 	IT 	1 

	

I2R
- Q~ 	4~ . 

7ā I 1 	+ 	1 4, 

1 tan-1 	 0 + a 1   	cos 

	

2 	Y 2 	1 k )
2 

( 	
1 ~ 2 2 _ Y

l2 - 1 	11 + 	40) 	-- 	 `•W2 	SJ 

	

4 w 	R 0 
(I.21) 

where:- 

a = 1 tan-1 
	k/2d  

lw2 + 2) 

0 

1 + 1 2 
[w2 E2

0 

11 12  1 + 1 Y = 2 w w2. r2 

k 1 

IW12

1

2a") 
	2 J 0 

Therefore: - 

(1.22) 

oR 	
1 = 	(1 	+ 12 ) _ <ER>2 

R 2R 
(I.23) 
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However, from Equation (3.22) and for a; « 1, it may be seen 

that:- 

b2 <ER>2 = 	
I1R 

(I.24)  

Therefore, the variance of the real component is given by:- 

a2 = b2 	I R - a' 2R 
(I.25)  

where I 	is given by Equation (I.21). 
2R 

Similarly for the variance of the imaginary component and after 

some manipulations:- 

b2 
aI 

11 
= 	(I 	+ I2 ) - <EI>2 

Aa 
I 	I 

(I.26)  

where I 	is found to be for a2 « 1:-  
II 	11) 

 

(1 - a) 	
r 	
2 

(va] 

2 sine 
{1 
 tan-1 k2 

1W2
) + 
	

- 

(I.27)  

 

and I 	is given by:- 
2I 

I 	=a2 	71. 
	1 

2I 	7 4~ 

1 

	

l 2 	12 	
(.21.(ay  

(l 1412 

4 	
w 	~ ° 

11 	1 4J 

cos -2- tan 	° 	a + 



276 

+ 1  

4 

12 	_4 2 
l 	2 	i3, 

+ ((k 	2  
Vai w 

A. 1 1 _   ]- GU ` 	ark J 

cos 1  tan-1  	° + a 
(1 + 1 2 	 1 _Y 
l k) 	-- 	lw2 0 - 

R 
0 

(I.28)  

where a, 8 and y are given in Equation (I.22). 

From Equation (3.23) it may be seen that:- 

2 
b2 

<E 	b2  _ 	. 
I 1 

(I.29)  

and, therefore, the variance of the imaginary component of the random 

complex electric field is given by:- 

62 = b2 	I d 
21 

with I 	given by Equation (I.28). 
2 I 

(I.30)  
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APPENDIX II  

PROPAGATION OF THE LATERAL COHERENCE FUNCTION  

BEYOND A RANDOM PHASE SCREEN  

The concept of collapsing the random medium into a characteristic 

phase screen situated at the transmitter plane has been discussed in 

Chapter 3. The effect of such a screen on the propagation characteristics 

of the lateral coherence function will be discussed below. 

The two-dimensional case will be considered with an aperture 

field distribution Eo(x). The random contribution by the phase screen 

will be taken as (1(x). Therefore, the field distribution just after the 

phase screen is E(x) where:- 

E(x) = d(x) . r(x) 	 (II.1) 

d(x) is the deterministic part and is by definition Eo(x). 

r(x) is the random part of the electric field and is equal to ei4)(x). 

The angular spectrum radiated is thus given by Equation (4.2):-

+m 

F(S) = 	j d(x') . r(x') . ejkx'S dx' 	 (II.2) 

and: - 

+co 

F*(S) = 	d*(x) . r*(x) . e- jkxS dx 

_o 

Thus the angular power spectrum is given by:- 
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+0P +m 

IF(S)1 2 = 
X2
.. 	d(x') . d*(x) . r(x') . r*(x) 	

e~k(x' - x)S 	
dx' . dx 

where x' - x is a variable lateral separation which will be taken as E, 

i.e. E = x' - xeand, hence, the mean angular power spectrum is given by:- 
+co +. 

<IF(S)1 2> = 1 
 

x2 	
d(x + E) 	d*(x) 	<r(x + ) r*(x)> 	

e~k~S 	
d 	dx 

(II.5) 

If the random process r(x) is stationary, i.e. independent of 

position and hence is a function of E only, therefore:- 

rr(E) = <r(x + E) . r*(x)> 

where rr(E) is the lateral autocorrelation function of the random part of 

the field and is a function of E only. 

Therefore, substituting in Equation (II.5):- 

+o +ar 

<IF(X)1 2> = 
a2 
. 	d*(x) . d(x + E) . rr(E) . 

ejkES 
. dE . dx (II.7) 

The lateral autocorrelation function of the deterministic part 

of the electric field is given by rd(E) where:-

+o 

rd(E) = j d*(x) . d(x + E) dx 	 (II.8) 

Therefore Equation (II.7) reduces to:- 
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+. 
<IF(S)1 2> = 

2 	
r(E) . eikES . dE 

x2 

where:- 

r(E) = rd(E) •.rr(E) 	 (ii.10) 

r(E) is the lateral coherence function of the randomly phase modulated 

aperture field. 

According to the Van Cittert-Zernike theorem(46), the mean 

angular power spectrum is the Fourier transform of the lateral coherence 

function, i.e.:- 

<IF(S)12> < 	> r(E) 

and by inverting:- 

+.  

r() = ā .. 	<IF(S)12> . e- jkgS . dS 

-o 

The angular spectrum F(S) at a distance L from the transmitter 

plane is given by:- 

F(S)1
= F(S)I 	. e-  jkLC 

z=L 	z=0 

i.e:- 



IF(S)1 	= IF(S)l 
z = L 	z=0 

and hence the lateral coherence function over the new plane at z = L is:-

+c 

r(E;L) = ā • 	<IF(S)12>l 	• e- 3kES  . dS = r(E;0) 	(11.13) 
z = L 

-o 

Therefore, the lateral coherence function propagates in the 

forward direction without change. 

280 
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APPENDIX III  

LINEAR FIELD STRENGTH DETECTOR 

To complement the dual channel receiver, a second field 

detector was built. The circuit diagrams of the detector-amplifier module 

are shown in Figs. III.1 and III.2. The 120 MHz first I.F. is mixed with 

a 128 MHz local oscillator output, producing an 8 MHz second IF signal. 

The mixer used was a Hewlett-Packard 5082-9200 single balanced printed 

circuit mixer with a common RF/IF port. The 8 MHz second IF is obtained 

through a tunable low-pass filter. This is then amplified by an MC1350P 

variable gain IF amplifier, with a 500 KHz bandwidth. 

The detector used was an envelope detector, SG1402. The field 

strength was obtained from the product of the 8 MHz variable amplitude 

signal and a limited version of it. The limited signal was obtained 

from a CA3043 high gain limiter/amplifier. The limited output was also 

used as a constant amplitude output to the phase difference detector. 

This output was first converted to TTL form. 

The balanced field strength signal obtained from the  envelope 

detector was then amplified to a suitable recording level by a d.c. 

amplifier. 
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Fig.111.1 2nd. I.F. mixer and amplifier 



10n 
8MHz►-I 	 

lOnf 

1K 

11.4V 

10K 
	Nlh 	 5 

0•1j1 

	.•8MHz TTL 
To phase difference detector 

LIMITER 	 ENVELOPE DETECTOR 	 D.C. AMPLIFIER 
+15V 	 - 	+15V 

10n 	436 	 1K 	 150K 

1On 1 

10K 
	N1h 	 

90K 

I ZEROJ 
OV 

	Nth 	 

+15V 

LM741 

    

   

	 Detector 
output 

   

-15V 

 

-15V 
220K 
	100 

-12V 
50K 
	

O.1µ. 

+15V 
1K 

10K 

1.5KLO.1ii 
m -15V TIT 

Fig.111.2 Field strength detector 

trr 

43K 

4 
LM71o 11• 
3 	6 

10n 



284 

APPENDIX IV  

PHASE DIFFERENCE DETECTOR  

The principle used to obtain the phase difference was that of 

a product detector. As previously mentioned, a frequency division by 

10 was used to obtain an extended range of ± 900°. Since the signals 

were in TTL form, -the division was obtained by an SN7490A decade counter. 

The multiplier used was an MC1595 linear multiplier. The 

response of the mutiplier as a function of the phase difference between 

the two input signals was of the form:- 

90° 	180° 	Otp 

Operating 	Phase difference 
range 

To obtain a range of ± 90°  (± 900°) with zero output at 

zero degrees, a phase shift of 90°  was imposed on the first channel. 

An additional phase shift was also required to offset any constant 

system phase shifts between the two received signals. This offset was 

provided by an externally variable pulse width monostable. The procedure 

may be understood from the figure shown below. 

The offset circuit provides a phase shift of 90°  + 0, where 0 

may be varied from 0°  to 180°. After the phase offsetting, two mono-

stables provided precise 50% duty cycle pulses to the multiplier inputs. 

M
ul

t i
pl

ie
r  

ou
tp

ut
,  v

o  
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Variable range 

e  
Offset 
monostabie  

Trigger 

Ch.1.  

      

      

   

90° 

  

       

       

Ch.2.  

      

      

        

The multiplier was linearized and stabilized by a resistor 

network. The output was filtered and then amplified to a suitable 

level for meter display and recording. 

Figs. IV.1 and IV.2 show the detailed circuitry of the phase-

difference detector described above. 
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APPENDIX V  

DIGITAL NOTCH FILTER  

The necessity of a digital filter basically arises in the 

processing of digitized data. The analogue-to-digital conversion and 

subsequent mass storage may introduce a level of noise. The only 

method available to filter out such noise is through the use of a 

digital filter. A digital filter may also be used to test the properties 

of a signal after eliminating undesired frequency components. For 

example, two signals may be correlated in their low frequency fluctuations 

only, hence a removal of the higher frequency components is necessary to 

extract such a trend and vice versa. 

Thus the availability of a. band-stop notch filter was thought 

to be convenient in processing the link data on the PDP-15 computer. 

The synthesis of the filter used was based on one designed by 

Constantinides(81). The basic properties of the filter may be outlined 

as follows:- 

1. Second-order notch filter. 

2. Recursive. 

3. Adjustable notch frequency, wo. 

The transfer function in the z-domain is given by:- 

Output of the z-transform - V (z-1)  
	 -G  

Input of the z-transform 	U (z-1 ) 

(z-1 ) =  

z
-2 

- 2 cos w
o 

T z
-1 

+ 1 
(V.1) 

(1 -k) z
-2 

- 2 cos w
o 

T z
-1 

+ (1 + k) 
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where wo  is the variable notch angular frequency. 

The response of the filter may be schematically shown as 

follows:- 

N 
C 
0 
c.  
tn 
(1) L 
L 
CD 

VL 
W1 Wo W2 	 Tc I T 

angular frequency 

• T is the sampling period = 1/fs, fs  is the sampling frequency. 

w and w2  are the 3 db Tower and upper angular frequencies 

respectively. 

2 	w2  - wl 
k= 1+coswo T 

• tan —2— T (V.2)  

and:- 

cos wo  T = 

cos[
w - w 
-a-2-1 T 

(V.3)  
w -w 

cos 	
1 T 

Therefore, it may be seen from Equations (V.1), (V.2) and (V.3). 

that the filter has a variable notch frequency wo  and a variable 3 db 

band width (w
z 
 - w 

i
). The band width is defined by defining either the 

upper or lower 3 db frequency. 

Inverting the z-transform, Equation (V.1), and transferring 

the variables, the filter recursive formula is thus given by:- 
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vn = -1~ 
C n 

- 2 cos wo T un-1 + un-2 + 2 cos wo T vn_1 - (1 - k) vn_2J 

(V.4) 

where vn and un are the n'th output and input data points respectively. 

A subroutine BSF has been written on the basis of the recursive 

formula (V.4). This subroutine has been tested by applying it to 

oscillator produced frequencies and looking at the plotted temporal output. 
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C 	***** DIGITAL NOTCH FILTER PROGRAM ***** 
C 
C 	S: INPUT-OUTPUT ARRAY (256 POINTS) 
C 	FO: NOTCH FREQUENCY 
C 	NF:3*SAMPLING FREQUENCY 
C 	BW:HALH THE 3-DB BANDWIDTH 

SUBROUTINE BSF(S,FO,NF,BW) 
DIMENSION S(258),P(258) 
PI=4.0*ATAN'(1.0) 
WO=2.0*PI*FO 
FMAX=FLOAT(NF)/3.0 
T=1.0/(FMAX) 

100 	FORMAT(F8.4) 
F2=FO+BW 
W2=2.0*PI*F2 
TAN= CSIN(W2*T/2.0)) /(COS(W2*T/2.0) ) 
TAN=ABS(TAN) 
C=(1.0-COS(WO* T))/((1.O+COS(WO* T))*TAN) 
B=ATAN(C) 
W1=2.0*B/T 
F1=W1/(2.0*PI) 
WRITE(5, 1) F1 

1 	FORMAT(3X,'LOWER 3DB. FREQ. IS: ',FS.4) 
A=SIN(T*(W2-W1)/2.0)/COS(T*(W2-W1)/2.0) 
A1=1.0/(1.0+A) 
A2=1.0-A 
P(1)=0.0 
P(2)=0.0 
D03I=1,256 
P(I+2)=A1*(S(I)-2.0*COS(WO* T)*S(I+1)+S(I+2)) 
1+2.0*COS(WO* T)*A1*P(I+1)-A2*A1*P(I) 

3 	CONTINUE 
5 	FORMAT(3X,'S= ',F8.4,4X,'P= ',F8.4) 

D041=3,258 
L=I -2 

4 	S(L)=P(I) 
RETURN 
END 
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