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ABSTRACT 

A theoretical study of die-entry flow is presented with 

particular emphasis on the experimental rheology of rubber. 

Assuming that the die-entry has a large contraction ratio 

occurring over a short distance or that the flow rates are high, the 

geometry is idealised to one of infinite extent upstream with a 

point or line-efflux downstream. An approximation method is 

advanced which splits the flow field along a streamline into two 

distinct regions; an inner irrotational sink flow occupying most 

of the field and an outer highly sheared self-lubricating layer 

adjacent to the walls. Solutions are obtained with a number of 

constitutive equations for flow through a wedge and a cone. 

Two recently developed machines are used to perform the 

start-up of simple shear and uniaxial extension. It is established 

that the machines measure the shear and elongational stresses 

accurately. Hencky strains in excess of 8 at constant strain rates 

over 100 s * are achieved for two highly filled compounds of Butyl 

and Chloroprene rubbers. In general no steady state is attained. 

It is shown that the time temperature superposition principle 

holds for start-up flows resulting in a family of master curves. 

The elongational stresses are one or two orders of magnitude greater 

than the shear stresses at comparable deformation rates, which is 

the necessary dynamic justification for the approximation method 

above. 
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An exact solution is presented for the slow flow of 

a general linear upper convected viscoelastic fluid through a 

180° wedge. The solution, which is probably an isolated result, 

has radial streamlines. It is used to examine the convergence 

properties of existing perturbation or series solutions, which 

are found to be divergent. An attempt to obtain a series expansion, 

valid close to the origin, reveals some novel mathematical 

difficulties. 
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CHAPTER 1 
INTRODUCTION AND 
BACKGROUND 

This thesis is a study of the die-entry flow of polymers, 

which is a flow through a converging region and plays an important 

role in a number of engineering and rheological situations. 

It features in all injection moulding and extrusion processes 

as well as in capillary rheometry. It also falls into a wider 

group of flows through converging or diverging sections which 

include calendering, film blowing and melt-spinning, to name 

but a few. 

The first chapter contains background material, 

describing previous research into die-entry flows both experimental 

and theoretical. It will be shown how certain avenues of 

theoretical research introduce and require a considerable use of 

rheology as a framework for plausible mathematical modelling of 

the flow. This provides the motivation for a study and 

experimental investigation of aspects of the rheology of certain 

polymers, forming the basis of Chapter 2. The polymers are 

two types of rubber, namely, Butyl and Chloroprene, which are 

used mainly in a compounded form with high proportions of carbon 

black and oil. The principal results obtained are for the 
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stresses in the start-up of simple shear and constant strain 

rate elongational flows. The rates of deformation used in both 

of these experiments are comparable to those observed in 

typical extrusion and injection moulding processes. 

In Chapter 3 an exact solution is presented for the 

slow flow of a general viscoelastic fluid through a 180° 

converging channel or wedge. This result is important for a 

number of reasons, chief of which is that exact solutions for 

such fluids are rare. Another reason is that it should be useful 

as a standard for the checking of numerical computations. Also 

it sheds light on approximation methods for the converging flow 

of slightly elastic, viscous fluids. These methods involve 

small perturbations in some parameter related to a measure of fluid 

elasticity about a slow flow, which is usually the asymptotic 

Newtonian solution. It will be shown that although the perturbations 

are an asymptotic series, they are nevertheless divergent. 

Finally, an attempt is made to extend the exact solution by 

an approximation method valid for highly elastic, viscous fluids. 

Chapter 4 describes a different approach to die-entry 

flows using an approximation scheme which is valid not only for 

converging channels, but also for converging cylinders and annuli. 

The scheme is appropriate for highly elastic, shear-thinning fluids 

and relies on the experimental data from Chapter 2. The prime 

interest is in converging sections either with large contraction 

ratios occuring over short distances or for high flow rates. 

The other extreme, that of small contraction ratios over large 

distances at low flow rates can already be successfully handled 

using a lubrication approximation. 
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Finally, the conclusions of the thesis and possibilities 

for further work are presented in Chapter 5. It is to be hoped 

that the experimental innovations of Chapter 2 and particularly 

the theoretical advances made in Chapters 3 and 4 will lead to 

other fruitful work in this field. 

1.1 Die-Entry Flow - Processing 

Die-entry flow refers to the region of flow between the 

end of the screw, or possibly a ram, in the extruder barrel 

and the die or nozzle. Fig. 1.1 shows a typical configuration 

for a cylindrical die. Many other shapes are possible; wedge 

and annulus dies are particularly common for extrusion processes. 

Fig. 1.1 Typical cylindrical die geometry. 

4 -

The shear rates generated in the die can often be as high as 10 s 

in injection moulding and fast wire-coating dies but the range of 

rates normally expected for die-entry flows is 10-10^s * [1D. 

For most melts inertia effects are negligible or small even at the 

highest rates. However, for some rubber compounds which exhibit 
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a power-law index of less than 0.1 and for polymer solutions, it 

may not be possible to disregard inertia effects. On the other 

hand, heat generation can play a significant role in melt flows, 

whereas for polymer solutions, isothermal conditions are normally 

appropriate. A discussion of these effects will be facilitated 

by way of an example. 

A standard design for an injection nozzle used for 

testing moulding machine performance has the following dimensions 

Cl]; referring to Fig. 1.1, 

D = 2.38mm, D = 15.9mm, L = 25.4mm, 2a = 90°. 
u 

These dimensions are also similar to those of a Davenport Capillary 

Rheometer. Estimates of the influence of inertia and heating 

effects in the die-entry region can be obtained by considering 

the flow in the nozzle, taking D as the characteristic length 

scale. A dimensional analysis can be carried out for the nozzle 

if the lubrication approximation is assumed to hold; i.e. L/D >> 1 

and 8D/8z << 1 in which case the velocity field is one-dimensional 

[2]. 

The relevant melt properties for a polychloroprene rubber 

compound at ambient pressure and a processing temperature of 100°C 

are a reference viscosity y Q at a shear rate y , power-low index 

n, temperature coefficient of viscosity b , density p, specific 

heat C and thermal conductivity k. 



5 - 2 • -1 
y = 1.3x10 N s m at y = 1 s , 
o 

b = 0 . 0 2 K - 1 , p = 1 . 1 7 x l 0 3 k g m ~ 3 , 

k = 0.192 W . 

Two specific choices of the flow rate variables are made 

(i) a standard mass flow rate of 50 g s * 

corresponding to the standard test of 

moulding performance, 

(ii) a mean shear rate of 50 s * corresponding 

to the middle of the normal shear rate 

range of a capillary rheometer. 

Following Pearson [2] characteristic Reynolds, Graetz and 

Nahme-Griffith numbers can be calculated. (It should be pointed 

out that polychloroprene satisfies the no-slip boundary condition 

over a wide shear rate range.) These require, a characteristic 

mean velocity U , shear rate y, stress x and viscosity y. Also a 

characteristic mean extrusion rate k, Wiessenberg and Deborah 

numbers are calculated although their relevance only becomes clear 

later o n . The volumetric flow rate is given by Q , and X is 

relaxation time in seconds. 

(i) (ii) 
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If the relaxation time is taken to be constant, then 

it can be estimated from the data of Chapter 2 to lie within lO-lOOs 

so clearly elastic effects are considerable for a wide flow rate 

range, demonstrated by the high values of the Weissenberg and 

Deborah numbers. If X is taken as the maximum relaxation time 

in steady simple shear flow defined as [3] 

X = 
T - T 
11 22 

2 T 1 2 * 
(1.1) 

in which T n ~ T 2 2 a n < ^ T 1 2 a r e n o r T n a ^ stress difference 

and shear stress, respectively, then the limited data of Chapter 2 

suggests that X decreases with y such that at sufficiently high 

shear rates 



a; ~ i (1.2) 

This behaviour is confirmed for other melts, including LDPE and 

HDPE, by the data of Ide and White [3]. Using this value of X 

would mean that 

Ws = —y = Xy ~ 1 (1.3) 
D 

But the flow through a converging region contains an extensional 

component. Comparing k with y shows that the mean extension 

rate and shear rate are of comparable magnitude. 

The Reynolds numbers are small for both (i) and (ii) 

and slow flow is a valid assumption. The large Graetz numbers 

indicate that heat convection dominates heat conduction except 

near the walls bounding the flow. Again following Pearson [2], 

the ratios of the Nahme-Griffiths to the Graetz number are 0.09(i), 

0.028(ii) which indicates that heat generation is negligible. 

This is because the temperature profile is developing and the mean 

residence times L/U, a factor which is accounted for in Na/Gz, 

are small. An isothermal analysis may be a reasonable first approximation 

[1]. 

Such heating that does occur will be situated near the 

walls bounding the flow. This will give rise to a flow situation 

where a hot low-viscosity layer lubricates a relatively cool core. 

Fenner [1] shows that the combined integrated effects of pressure 

and temperature on the viscosity roughly compensate for each other. 

This is probably too simple in view of the remark above, whereas 

the pressure field is approximately uniform across the flow, 

temperature rises will be non-uniform with the maximum in the 
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temperature profile occuring near the walls. 

1.2 Die-Entry Flow - Experimental 

Since the publication of the now famous photographs by 

Giesekus [4] in 1969 showing large toroidal vortices in the velocity 

field of an aqueous polyacrylamide solution near a sudden 

cylindrical contraction, a large number of investigations into this 

phenomenon have appeared. The basic geometry of the region is 

shown in Fig. 1.2 with recirculating vortices either for a 

cylindrical or wedge contraction. Only half of the flow field 

is shown. Not all melts and polymer solutions exhibit such 

vortices, nor are vortices exhibited for all entrance angles, 2a. 

A definitive study has been given by White and Kondo [5]. Their 

main conclusions are summarised below. 

<L 

i n t e r f a c e 

x,r 

z 

Fig. 1.2 Schematic diagram of streamlines showing 
recirculating flow, either in 2D or 
axially symmetric geometry. 

In a converging cylinder with 180° entrance angle, LDPE, 

PS and PMMA exhibit vortices which for LDPE and PS increase in 



size with increasing flow. The same behaviour is observed 

for certain polymer solutions including polyisobutylene. 

The melts HDPE, PP, PVC and polybutadiene exhibit no vortices. 

The data on entrance angles other than 180°are scarce but for 

LDPE, which displayed the largest vortices for the 180° case, no 

vortices are observed for an entrance angle of 60° at all flow rates 

below melt fracture [6]. In a converging wedge with a 180° 

entrance angle, LDPE, PS exhibit vortices but the other melts 

do not, certain solutions such as polyacrylamide do. LDPE exhibits 

vortices for all entrance angles greater than 80°. In general, 

for the melts and solutions which do not exhibit vortices, the 

streamlines resemble the slow flow of a Newtonian fluid. 

Other researchers such as Han and Drexler [7,8] have 

observed no vortices occuring in wedge flow for PS, PP and HDPE. 

For PS this contradicts the results of White and Kondo [5]. 

However, since Han and Drexler were primarily interested in 

measuring the stresses developed, using a stress birefringence 

technique, their flow rates necessarily could not be large, possibly 

remaining below the rates required for the appearance of vortices. 

Some of the results of their stress measurements are used in 

Chapter 3 for comparison with theoretical predictions. 

Pickup [9] has noted large vortices for wedge flow of a 

Separan solution with entrance angles 2a, of 180° and 120°. Also 

Strauss and Kinast [10] report a vortex flow with backflow along 

the centreline for a polymer solution. This is a different type 

from that normally observed and it may be due to inertial effects. 

A number of workers have made measurements of 

the velocity profiles in converging flow. Of particular interest 

is the velocity of the interface between the recirculating vortex 
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and the core flow. For both a cylindrical and wedge die 

Metzner [11], Pearson and pickup [12], and Cogswell [13] report 

little variation in the velocity across the core region for both 

melts and solutions. In particular, Cogswell has found that the 

boundary velocity is within 10% of the centreline velocity. This 

implies an almost irrotational flow situation in the core leading 

to an almost extensional deformation regime. Cogswell [14] 

has attempted to capitalise on this fact, to produce a uniform 

rate, extensional flow in the melt by using a specially shaped 

tapered die-entry with lubricated walls. The tapered region 

has a shape similar to that of the core flow when vortices are 

present. However, this attempt does not yet appear to be 

successful in producing reliable rheological data on stresses during 

elongational flow. 

Measurements of axial velocity profiles have also been 

made for polymer solutions by Ramamurthy and McAdam [15] and 

Cable and Boger [16,17,18], in the case of a cylindrical die-entry 

and Tan and Tiu [19] for an annular die-entry. Ramamurthy 

and McAdam's work supports the conclusions above of an almost 

flat axial velocity profile, however the other two report some 

variation across the core region. In fact, according to fig.6,7 

of [17] and fig.7 of [18] as examples, the interface boundary 

velocity is given as 0. That this cannot be the case can immediately 

be seen with reference to the photographs of the flow patterns. 

Also on physical grounds, in the absence of stagnation points, 

the only positions of zero velocity which may occur are at the centre 

of the vortex region. 

The centreline velocity v in the converging region 



can be approximated quite well for a cylindrical die by a functional 

relation of the form [17] 

2 2 
v _ = a exp{-3 z } (1.4) 
z c.L. e 

where a cylindrical coordinate system is defined as in Fig. 1.2 

with z = 0 being the position of the exit plane. For a wedge die 

the form is similar [11] 

v = a exp{ 3z} (1.5) 
z c.L. r 

These formulae are only intended for ze[-L,0], 3 is inversely 

proportional to the length of the vortex region, L v (see fig.1.2). 

Finally, in a new initiative to understand the relative 

influence of the shear thinning and the elastic properties of 

viscoelastic fluids several research teams are experimenting 

on the contraction flow of non-shear-thinning elastic polymer 

solutions [20]. Large vortex regions are exhibited by these 

solutions, though this does not mean that vortices are solely 

attributable to elastic effects. Shear-thinning inelastic 

solutions can also exhibit vortices [5]. However, by comparing 

the deformation rates at the onset of vortex flow with measurements 

of the shear modulus in simple shear of the polymer solution, Boger 

concludes [20] that the occurrence of vortices "is associated with 

deformation rate regions in which the normal stresses are not 

quadratic (with shear rate)... or where the shear modulus is 

deformation rate dependent". The relevance of this result to 

theoretical studies of die-entry flow is that analyses based on 

constitutive equations similar to the Upper Converted Maxwell 

Fluid (UCMF), for which the normal stresses are quadratic and the 
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shear modulus is constant, will not give rise to large vortex 

regions [20]. It will be possible to comment further on this 

statement in Chapter 3. 

1.3 Die-Entry Flow - Theoretical 

Theoretical work on die-entry flow tends to be separated 

into analytic and numerical approaches. This thesis is an analytic 

study and is an attempt to extend the analytic approach to 

converging flow problems. For this reason, almost no consideration 

is given to the substantial developments in the numerical field. 

At present most analytic and numerical advances have been made for 

slightly elastic flows. By this is meant, that either the flow 

itself has a small Weissenberg or Deborah number or the constitutive 

equation used is for a slightly elastic fluid. It is to be hoped 

that analytic methods can be adapted to handle situations where 

Weissenberg numbers are of the order of magnitude of the example 

in section 1.1. 

The normal procedure for obtaining solutions for converging 

cones or wedges is to idealise the geometry by considering 

D 
— >> 1 for fixed entrance angle, a (see Fig.1.1) 

By doing this, the upstream and downstream boundary conditions 

are simplified. It is to be expected that solutions for finite 

regions can readily be obtained, once the asymptotic solution has 

been determined, by some sort of matching process, provided the 

relevant boundary conditions are known. 
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Solutions for converging channels 

The exact solution for a Newtonian fluid in an infinite 

converging channel of half-angle a is well known for isothermal, 

incompressible flow and involves radial streamlines [21]. The 

velocity field in a polar coordinate system as in fig.1.3 

is given by 

v = -
r 

f (6) 
v = v = 0 
e z 

(1.6) 

where f is the solution of the mass conservation and dynamic equations 

V.v = 0 (1.7) 

p — v - - V . T T (1.8) 

which satisfies the no-slip boundary conditions on 0 = ±a. The 

momentum flux tensor IT is defined as IT = 6p - y(Vu+(Vu) ) 

Fig. 1.3 Coordinate system for wedge flow. 

For slow flow, f is given by 

f = 2Q(cos26-cos2a) 
sin2a-2acos2a 

in the asymptotic limit, as a 0 where 2Q is the total flux per unit 

width. As noted by Moffatt and Duffy [22] there is a singularity 

for wedge angles of 2a w 257.5 , where the denominator in (1.2) 
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vanishes. They show further that for angles 2a > 257.5°, the inertia 

terms in the dynamic equation (1.8 ) cannot be neglected, but for 

2a < 257.5°, it is valid to do so. In the latter instance a local 

Reynolds number is defined as [22] 

Re~(pQ/y)(a/r) (1.10) 

which can be made initially small for any fixed r by letting a-*0. 

A solution for a power law fluid of the form of (1.6) has also 

been obtained [8,23]. For viscoelastic fluids other than the 

power-law, two approaches have been used to obtain solutions. 

(i) a perturbation expansion [24] in the Weissenberg 

number Ws = — — = ^ for wedges of 

(a sina) b 

infinite upstream extent but with a finite down-

stream exit. 

Characteristic length velocity and stress are defined as b , /Q/b, 

/ 2 

yQ/b . The dimensionless velocity and stress fields V,T, are 

assumed to possess an expansion of the form 

2 
v = v- + Wsv + (Ws) v + ... 

2 (1.11) 

T = X Q + W S T 1 + (WS) T 2 + -

valid for Ws << 1. 

(ii) characteristic length, velocity and stress 

are defined as , /Q/A, y/A. 

A stream function is defined as the solution 

to 

v = V ) (1.12) 
z 



where e is a unit vector in the z-direction. 
z 

A series expansion is assumed for y; and t of the form 

® y ( 6 ) 
«|/(r,6) = J — (1.13) 

n n 

n=0 r 

t (6) 
t = T — (1.14) 

« n 
n=0 r 

It can be shown that the two approaches are identical [24]. 

Solution of the first order terms gives the Newtonian result 

(1.6, 1.9). 

Perturbation or series solutions up to the second order 

term have been obtained for the UCMF by [25,26]. The streamlines 

for the flow which have been computed by StrauB are shown 

approximately,in fig. 1.4 though as noted in [24] the region 

of backflow is probably outside the validity of the procedure. 

Fig. 1.4 Streamlines for slow flow of UCMF (StrauB [25]). 

Neither StrauB nor Black give an indication of the error term 

but it is claimed that the series converge, without adequate proof. 
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This matter is taken up in Chapter 3. The essential point, as 

far as later work in this thesis is concerned is that the streamlines 

close to the centreline as r 0 0, diverge from the centreline as 

the origin is approached. This means that even if backflow does 

not occur, a relative deceleration of the fluid takes place along 

the centreline as r 0. In contrast to this, perturbation 

solutions obtained by Schummer [27] for third and fourth order 

fluids show the reverse behaviour, streamlines converge towards 

the centreline as r -+0. 

Solutions for Flow in a Cone 

A slow flow solution with radial streamlines exists for 

a Newtonian fluid and is due to Harrison [28]. The radial velocity 

is given by 

2 2 
3Q(cos a-cos 6) ,, 

V r = 2 3 2 ( 1 ' 1 5 ) 

2irr (2cos a-3cos a+1) 

and is valid for all angles a. When inertial effects are not 

negligible, vortices occur in the flow. A complete study of the 

series solutions is given by Ackerberg [29], who shows that there is 

backflow along the centreline in the neighbourhood of the origin. 

For viscoelastic materials a perturbation solution has been 

obtained for a third order fluid [5]. The streamlines behave in 

a fashion similar to Schiimmer's solution for the wedge with, a 

concentration of flow along the centreline as r + 0 . 
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Extensional Primary Field 

A different approach to the analysis of converging flow 

has been suggested in two, apparently independent papers [12,30]. 

It relies upon the experimental measurements of the velocity field, 

both in the presence and absence of recirculating vortices, which 

show that a substantial proportion of flow field (see fig.1.5) 

may be approximated by an elongational flow [11-14], Metzner [30] 

considers a local sink flow for a core, whereas Pearson and Pickup 

[12] prefer a local pure shear flow for a wedge. 

— core 

Fig.1.5 Die-entry showing streamlines for core region. 

Further experimental justification for assuming that the core region 

may be approximated by an elongational flow, is afforded by the high 

values of the Trouton ratio N exhibited by many polymer solutions 

r 
and melts [ll], where N t is defined as the ratio of viscosity in 

r 
uniaxial extension and in simple shear 



N 
|el 

'sh 
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( T - T >/ |XL 
11 22 9xi 

T / 8 V l 

12 ' 

at _ 8vj 

Sx^ 8x2 

9x2 

(1.16) 

Typical reported values for polymer solutions are in excess 

- 2 - 1 
of 100,whereas for LDPE, N « 25 for deformation rates 7 x 1 0 -10 s 

T 
r 

[31]. In addition, Metzner [30] notes that the ratio of the primary 

normal stress difference to the shear stress in simple shear can be 

large at high deformation rates. The Extensional Primary Field 

(EPF) approximation follows and merely involves diagonalising the 

stress tensor, x 

T 1 1 
[0] [0] 

x - [0] T 2 2 
[0] (1.17) 

[0] [0] X 3 3 

by neglecting the shear stress X 1 3 ' T23* c o u r s e ' T m u s t 

be defined relative to some non-rotating coordinate system. 

This approximation method has subsequently been used by Cogswell [14], 

Winter et.al. [32] and Pearson and Trottnow [33]. 

The major outstanding mathematical problem is how to treat 

the remainder of the flow region, in particular so that the no-slip 

boundary conditions can be fulfilled. This matter will be dealt 

with in Chapter 4. 

The outstanding experimental requirement is for a comparison 

of stresses in melts undergoing uniaxial extension and simple shear 

deformations at extension rates typically involved in die-entry 

flows. Referring to the grossly simplified example in section 1.1, 
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data is needed for extension rates at least up to 100 s Laun 

and Munstedt[3l] report data for LDPE up to 10 s Ide and White 

[34] up to 1.5s * for PS: these appear to be the highest rates 

in the literature. The time-temperature superposition principle 

could be used to effectively extend the rate range of the existing 

machines, but this has not be done. Data presented in Chapter 2 

shows the form which the principle takes for start-up flows in 

uniaxial extension and simple shear. Stevenson [35] gives data 

for a polyisobutylene-isoprene copolymer (Butyl 035) up to .05s * 

with a Trouton ratio, at this rate, of 5. This rubber is investi-

gated in Chapter 2. Because of the lack of data and also for its 

own sake, two rubber compounds are investigated in Chapter 2, principally 

to determine the stresses involved in uniaxial extension at high 

rates and to compare them with the shear stresses in simple shear. 
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CHAPTER 2 
ASPECTS OF 
RUBBER RHEOLOGY 

The measurement of the rheological properties of polymer 

melts like rubber has a large number of diverse aspects which 

perhaps can be separated into two groups, each with different 

objectives. One objective is to obtain data which are directly 

relevant to the modelling of complex flows which occur in polymer 

engineering and the other is for data which are critical for a deeper 

appreciation of the molecular structure and behaviour of melts. 

Although in this chapter experimental results are presented which 

fit both objectives, they will be used only for the first in 

later chapters. 

The data have been obtained using two recently constructed 

machines at an Avon Rubber Co. research laboratory. The first of 

these is a double cone and plate device which will be referred to as 
• 

the T.M.S. Rheometer after their designers, Turner, Moore and 

Smith. It is specially appropriate for use with rubbers (unvulcanised) 

rather than plastics or polymer solutions and derives much from 

the Standard Mooney Viscometer. The second device, also designed 

by Avon Rubber Co. in collaboration with Dr J. Funt, then of 



- 27 -

Imperial College, London, is a constant strain rate elongation rheometer 

(E.R) which deforms rubber in a uniaxial extension at high rates; 

up to about 100 s This enables stress measurements to be made 

in a regime which corresponds with elongational strain rates observed 

in typical melt flows through converging channels and tubes. 

Since the machines are recent innovations they are described 

in detail. Particular emphasis is placed on comparing their per-

formance with other similar 'established' machines, although in 

the case of the Elongation Rheometer this proved difficult since 

the operating range is presently higher than any yet reported in 

the literature. The main results, presented in section 2.4 are 

those of viscosity and stress growth in the start-up of simple 

shear and uniaxial extension. 

A major preoccupation in obtaining the experimental 

measurements was to ensure that the rubber did not slip on the solid 

surfaces of the rheometers. In sections 2.3 and 2.5 it is demonstrated 

that the attempt was largely successful. This was achieved by a 

careful choice of rubber compounds used in the experiments. However, 

for rubber compounds which exhibit a large degree of slip, some 

correlation of the data for steady shear flows was possible using 

a simple model of the slip mechanism. 

Finally section 2.6 is devoted to fitting the experimental 

data to some simple viscoelastic constitutive equations. As the 

equations are unsophisticated an excellent fit is not expected, but 

it should be possible to describe the behaviour of the rubber compounds 

at least semi-quantitively. 
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2.1 T.M.S. Rheometer 

The T.M.S. Rheometer is described in Turner and Moore [36]. 

The relevant passage is quoted here in full. 

viscometer has advantages in rheological 

testing. The sample has a geometry set by 

the cavity and rotor and the sample can be 

conditioned by shear, prior to measurements 

to eliminate thixotropic effects. It has 

a heavily serrated rotor to eliminate wall 

slip, but in most processing situations the 

interaction between rubber and smooth surfaces 

is more relevant. To have reproducible results 

in such situations it is necessary to have a 

fresh rubber surface coming into contact with 

the rotor and to be able to control pressure. 

The procedure adopted was therefore one used 

for making precision rubber mouldings in the 

factory. A transfer system was built on top 

of the Mooney cavity, according to the layout 

in Fig. 2.1. 

This has the following advantages: 

ii 
The basic configuration of the Mooney 

(i) The pressure in the cavity is controlled by the force 

applied to the injection ram. 

(ii) Fresh rubber surfaces make contact with the rotor and the 

cavity. 
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(iii) The cavity is always closed during filling and maintains 

precise dimensions. 

(iv) A single cylindrical blank is required so results are 

hardly influenced by operator skill 

(v) Pre-warming in the transfer chamber followed by injection 

enables a uniform temperature to be established more rapidly. 

Three rotors were obtained for the machine: 

(a) With 48 radial grooves on each face according to Fig. 2.2 

(b) Ungrooved ground surface (Rockwell C. Min 60) 

(c) Polished surface. 

The faces of the rotor are biconical with an angle of 6° 40* giving 

a shear rate of 0.895 reciprocal seconds at 1 rev/min. The clearance 

between the outer circumference of the rotor and the walls of the 

cavity provides the same shear rate. The cavity is the standard 

Mooney cavity with heavy grooving. This particular machine is 

fitted with a variable speed motor and a gearbox giving a rotor speed 

range of 0.2 to 40 rev/min. It also has the capability of 

measuring recovery, stress relaxation and stress development during 

a 
start-up. 
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injcc tion rom 

transfer chamber 

?'60mrr 

Fig. 2.1 Layout of transfer chamber, 
rotor and test cavity 

Fia. 2.2 Grooved rotor 

To derive an expression for the shear stress component 

in a rubber sample in the T.M.S. Rheometer, the assumption is made 

that the cavity can be considered to be composed of three separate 

regions of flow as indicated in Fig. 2.3: 

(i) a cone and plate flow, rec?ion A , shear stress x, 

(ii) a couette flow, reaion B, shear stress x „ 
r6 

(iii) a 'dead' volume, region C, which is supposed to 

have no effect on the flow. 

It is assumed that there is no slip of the rubber on 

the surfaces of the cavity and rotor. The shear stress, x, , in 
<K' 

region A is approximately constant since the cone angle a is 

sufficiently small, see Walters [37]. In region B there is a 

variation in the shear stress, T of up to 20%. However, the re 
contribution of B to the torque on the rotor is small compared to 



Cavity + Rotor 1 Cavity + Rotor 2 

R = 22.7 22.0 (mm) 

h = 5.29 1.60 (mm) 

R^= 5.16 5.16 (mm) 

a = 6.67 6.00 ( degrees ) 

Fig. 2.3 Cavity and rotor of T.M.S. showing dimensions 
and flow subdivision into regions A,B,C. 

that from A . It is expected that only a small error will result 

from taking T^Q as constant. This is particularly the case for 

cavity and rotor (2) which was modified specifically to reduce the 

couette flow contribution. The cavity and rotor geometry is such 

that the shear stress is the same over the whole of the rotor 

surface, T Q = T, , and is given in terms of the torque T , by 
r t) (pip 

3T ,. 
T r f l = 7 1 2 ( 2 ' 1 } 

2tt (2R -R^+3R h) 

The detailed calculation is given in Appendix 1. 
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2.2 Elongation Rheometer 

The drive and clutch mechanism and heating arrangement 

of the elongation rheometer is drawn schematically in Fig. 2.4, and 

has been considerably simplified for clarity. 

f lywheel 

motor \ 
cH 

\ 

5. 
I T 

tachometer 

clutch 

\ 
fi. 

\ 
3. 

bearing 

4 o 

take-up 

wheel 

- s h a f t 
encoder 

^ h e a t 
insulated 
cavity 

Fig. 2.4 Mechanism of the Elongation Rheometer, 
with position of heat insulated cavity 
indicated. 

Before the start of a test, the electromagnetic clutch is disengaged 

and the flywheel rotates at a fixed angular velocity as controlled 

by the motor and tachometer. At the appropriate moment, the clutch 

is engaged causing the rotation of the take-up wheel, which, being of 

low moment of inertia compared to the flywheel, assumes the same 

angular velocity almost instantaneously. The sample is completely 

encased in the heat insulated cavity which is maintained at a fixed 

temperature by a hot air blower. The temperature variation near 

the inserted sample is ±0.5°C over a range of temperatures 20-140°C. 
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A sample is loaded by attaching it to the take-up wheel, 

passing it round the small grooved wheel fixed to the transducer 

and securing it again on the take-up wheel, see Fig. 2.5. 

Fig. 2.5 Take-up wheel, side and end views, showing 

initial position of rubber filament 

This double cord arrangement has the advantage over a 

single cord as it avoids high stress concentrations at the lower fixed 

end. Observation of filaments at the relatively low extension rates 

of about 1 s confirm that it fails most frequently between points 

A and C and that it deforms uniformly along its free length prior to 

breaking. A t higher rates of extension the deformation of the filament 

is assumed to be uniform on the basis of experimental work by Connelly, 

Garfield and Pearson [38]. They show that for a material with a 

maximum relaxation time A , uniform deformation occurs for extension 
max 

• • 

rates e, such that eX >> 1. Since the filament deformation was 
max 

observed to be uniform at rates of about 1 s it is reasonable to 
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expect it to be uniform at higher rates. 

For the filament extension to occur at a constant rate 

it is required that 

(i) the filament does not slip once it has made 

contact with the take-up wheel 

(ii) there is no slip where the filament is attached 

to the transducer, point C 

(iii) there is only a negligible change in the angular 

velocity of the flywheel during the experiment. 

The validity of (i) and (ii) is examined in later sections both 

theoretically and experimentally. The total change in the angular 

velocity of the flywheel can be calculated using the conservation 

of energy. Let 2D be the work done due to the couple exerted on 

the take-up wheel by the two strands of the filament. Let I = 1.35 kg 

be the moment of inertia of the flywheel. Neglecting the inertia 

of the take-up wheel and the filament, it can easily be shown that 

the ratio of the final to the initial angular velocity of the flywheel 

UJ^/UK is given b y 

"V 2D 12 

1 > - X = (1 f — } (2.2) 
u). 2 _ 
l uo. I 

l F 

A lower bound is required for uo„/u)., which will occur at the lowest 
f l 

temperature and angular velocity used in the experiments. At 60°C 

and with UK = 7s (corresponding to an extension rate of 3.5s S 

experimental results give D ~ 0.043Nm. Evaluating (2.2) for this 

value of D gives UJ^/UK = 0.9994, which is the lower bound. So 

(iii) is valid throughout the operating range. Thus the filament is 

deformed at constant rate e 
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e = 
GJR 

L 
(2.3) 

where u) is the angular velocity of the take-up wheel and R and L 

are as in Fig. 2.5. The machine is presently capable of e in 

the range 1-110 s 

Samples are prepared by extruding a filament of circular 

cross-section, about 3mm in diameter, at 100°C. The filament is 

allowed to relax in an oven at 90°C for 75 minutes. It is cut into 

equal lengths and weighed. An average weight over all samples is 

calculated and any falling outside 5% of the mean are rejected. 

After securing in the apparatus, the samples are allowed about 3 

minutes, depending on the filament thickness, to reach an equilibrium 

temperature. This time was confirmed to be sufficient experimentally. 

Measurements are made during testing by recording the 

value of the force from the piezo-electric transducer at equal 

increments of rotation of the take-up wheel as determined by the 

shaft encoder. The Reynolds number for the flow is given by 

R e = = 0(10~ 3) (2.4) y 

3 —3 6 —2 
for rubbers with density p = 0(10 )kgm , viscosity y = 0(10 )N sm , 

2 - 1 

at the highest extension rate £ = 0(10 )s . Since this is small 

it can be shown that the stress is independent of position throughout 

the free length of the filament. Allowance must be made for the 

expansion of the rubber at elevated temperatures, for an increase 

both in the cross-sectional area and the free length of filament AC. 

The first affects the stress, the second results in a small additional 

length which must first be taken up before the sample is actually 

elongated. The necessary corrections are easily made on the 

basis of a linear expansion coefficient, e, temperature difference AT. 
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The stress t -T is then given in terms of the force F on the 
zz rr 

transducer by 

F (t) 
(x -T ) (t) = — (2.5) 

zz rr 2 

2A q(1+ATe) exp(-et) 

where A^is the initial cross-sectional area and t is the time from 

which the filament becomes taut. 

2.3 Difficulties Encountered with Rubber Testing 

Before presenting the experimental results, it is necessary 

to discuss in detail some of the practical difficulties arising during 

the tests. In some respects many of these were previously recognised 

by Mooney [39], in particular that of irregular melt flow of 

rubber in a cone-and-plate device. In an experiment using two 

colours of rubber in the cavity he observed globules of rubber 

which were formed at high shear rates instead of the laminar spirals 

observed at lower rates. He refers to the globules as 'rheological 

units'. The same behaviour is observed in the T.M.S. Rheometer. 

Other difficulties more peculiar to the work here are considered 

under three headings: 

(i) inhomogeneities in sample and material 

(ii) ageing of rubber stocks 

(iii) slip between rubber and solid surfaces. 

Each of these is discussed separately in what follows. 
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(i) Inhomogeneity of sample 

The inhomogeneities considered here apply to compounded 

rubbers in particular. The molecular weight distribution of the 

polymer is not considered since it is not expected that this varies 

during the tests except when the rubber is subjected to milling, 

and to a slight extent, extrusion. The main concern is with the 

heterogeneous dispersion of carbon black and oil in the rubber 

compound and the possible introduction of air bubbles whilst extruding 

samples for the Elongation Rheometer. 

The first of these does not apply to gum rubbers but 

otherwise arises as the result of any mixing process. The effect of 

shearing deformation on the compounds in the testing machines is 

to generate further mixing and better dispersion of filler and oil 

in the material and generally leads to a lower viscosity. This is 

unavoidable, but can be kept to a minimum throughout the duration of 

an experiment on the T.M.S. Rheometer by frequent changes of rubber 

sample and by taking care not to deform the sample excessively during 

testing. A check is always made on the sample that its properties 

before and after testing are sufficiently similar; e.g. that a 

recording of steady shear stress does not vary by more than 0.5% between 

independent measurements. Shearing deformation is also present during 

production of samples for the Elongation Rheometer. However, it 

was suspected that this had a negligible effect, at least on the 

shear properties. This was confirmed using a Butyl rubber compound 

by measuring flow curves of two samples: one of the samples was first 

extruded as for the production of filaments for the Elongation Rheometer, 

the other had no prior treatment. That which was extruded showed 

a lower viscosity of about 0.5%. 
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Unfortunately one of the compounds used, a Chloroprene 

rubber is more prone to rheological change during testing than 

the others. This possibly represents a high degree of inhomogeneity 

in the material as it comes off the mill. It may also reflect a 

thixotropic effect. By subjecting the Chloroprene compound to 

a large amount of shear work prior to testing,its rheology becomes 

more constant. However, the sheared compound less closely resembles 

the material involved on the production line but it should be possible 

to account for the errors introduced by this process if necessary. 

The second inhomogeneity in the samples, that of air bubbles, is 

easily detected by a close examination of the extrudate for irregu-

larities in the surface which are then immediately excised. 

(ii) Ageing of rubber stocks 

Unvulcanised rubber compounds undergo considerable rheological 

changes over large intervals of time particularly if they contain 

a curing system. Normally, this leads to higher viscosities as a 

result of cross-linking between polymer chains. The effect can be 

reduced by storing the compounds at low temperatures. However, it is 

found for compounds which do not contain curing systems that changes 

still occur; in the case of a butyl compound the viscosity decreased 

with storage time, even though the storage temperature was -1°C. This 

is attributed to a dispersion of the oil, which is still mobile 

at such temperatures, more homgeneously throughout the rubber stock. 

The effects are unavoidable within the constraints of the laboratory 

and requires that all experiments on a particular compound are 

completed over the period of about one month. 
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(iii) Slip between rubber and solid surfaces 

The possibility of 'wall slip' occurring between rubber 

and solid surfaces in the T.M.S. Rheometer has been established 

by Turner and Moore [36] but was expected through the experience 

of Mooney [39]. The degree of wall slip depends both on the rubber 

compound and the physical nature of the solid surface. The phenomenon 

is demonstrated by measuring the torque on different types of rotor 

surface; for example, polished, smooth, or grooved; at various rotor 

speeds (see Fig. 3 of Turner and Moore [36]). Although a number 

of mechanisms have been proposed for the slip effect they are not 

the main concern here. However, in the presence of wall slip, no 

reliable measurements can be made of stresses in shear flow. It is 

held that no slip occurs on the grooved rotor, and that it is 

suitable for rheological measurements. This assertion requires 

justification. 

After tests on a number of compounds it was discovered 

that the chloroprene compound and raw gum Butyl displayed no detectable 

difference between measurements made with the polishedjrotori. These 

are important conclusions which justify the use of the grooved rotor 

in rheological measurements which require the no-slip boundary condition 

on solid surfaces to be satisfied. 

It is expected that slip also occurs in the operation of 

the Elongation Rheometer between the rubber filament and the take-up 

which, as noted in section 2.2. Before any meaningful results can 

be obtained from the E.R. it is essential to determine the likely 

extent of the slip. An experimental study of the problem is presented 

in section 2.5. A theoretical analysis is conducted in what follows. 

When an elastomer slides over another surface it is possible 

that no true sliding takes place [40]; rather, relative motion may proceed 
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through Schallamach waves. In order to make an estimate of the 

frictional force two possibilities are examined. The first is to 

apply the work of Grosch [41] who conducted sliding experiments 

on various rubbers including Butyl. He measured a friction factor 

Ji, defined by 

_ Tangential or Frictional Force _ F_ (2 6) 
^ Normal Force N 

for a flat block of vulcanised rubber sliding over a variety of 

surfaces at various speeds and temperatures. Measurements showed that 

- 2 

H was essentially load independent up to a normal pressure of 5.4kN m 

Typical results from Grosch for a Butyl compound containing 50pph 

of carbon black sliding over a clean abrasive surface show that 

|i lies between 1.0 - 2.5. However, this is not completely satisfactory 

because in the Elongation Rheometer a filament of rubber is used, 

not a block as used by Grosch. Also, if Schallamach waves are 

formed in the filament, then the frictional force depends on the true 

area of contact A. The second possibility is to consider the 

frictional force JF, to depend on a mean frictional stress, S, 

approximately constant for a particular compound, as in Briggs and 

Briscoe [40] 

F = AS (2.7) 

The area of contact A, is determined by solving the Hertz equation 

and is given in Bowden and Tabor [42] by 

2 h 
A = 2L(- Wr (V^-)) (2.8) 

TT E 

where L is the contact length, r the filament radius, Young's Modulus 

6 - 2 
for Butyl rubber E = 10 N m [43], and v = h is Poisson's ratio. 
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The load per unit length W , is given in terras of the tension T , 

and stress by 

M X - T 0 

T t zz rr̂ » 2 , 0 
W = - = - it ( J r (2.9) K

 R 

- 2 

in which R is the take-up wheel radius, R = 5 x 10 m . Thus 

the friction factor 11, as in (2.6) is 

AS 4RS 
^ " Td0 -rr 

l - v
2 

- (T - T )ErR 
zz rr 

(2.10) 

= 2.5 X 10
 4

 S [ - R ( X - T )]
_ l 2
 (2.11) 

zz rr 

in which d9 is a differential element of angle (see Fig. 2.6). 

The minimum value of |J. coincides with the maximum value of 

~ r ( T
z Z " T

r r
n o w necessary to anticipate the experimental 

results of the next section, and progress can only be made if the 

effect of slip is small; an assumption which will be confirmed, 

afterwards. Referring to fig. 2.14 it is clear that the required 

maximum is attained at the limit of upward sweeping curves, i.e. 

close to the maximum of the elongation stress. As an example take 

-1 -2 +• 8 
the curve for e = 105.0 s . At time t = 5 x 10 s , x -x = -T) e = -10 N 

zz rr 

where n + is the stress growth function. The filament radius, for 

-3 
an initial radius of r = 1.5 x 10 m , is 

o 

-It/2 
r = r e 

o 

-4 
= 10 m 

- 6 
Thus L I . = 2 . 5 x 1 0 S. Similarly a maximum value for p. can be 

min 
-4 

calculated from data in Fig. 2.14 and is LI = 2 X 1 0 S. This is a 
^ r m a x 

large variation of two orders of magnitude. The least certain of 
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the two values is u . since the filament radius is small and the 
m m 

frictional forces of such fine filaments is not well known. 

Values for S are given in Briggs and Briscoe [40]. For 

5 - 2 5 - 2 
Butyl rubber S = 2x10 N m , and for Chloroprene S = 7 * 1 0 N m , 

so the estimates for JJ. lie between 0.5 - 40 for Butyl, somewhat 

higher for Chloroprene. This range is somewhat extreme, the 

experimental work of section 2.4 may clarify which value should be 

chosen. It must be added that the measurements of S and JJ. for rubber 

compounds of the type used here, are for vulcanised samples. Perhaps 

understandably, there does not seem to be any data for unvulcanised 

rubbers. It is not clear what effect vulcanisation has on the mean 

frictional stress and the friction factor but the values quoted 

should give a reasonable measure of their orders of magnitude. 

Consider now the mechanics of a rubber filament moving 

over a solid surface subject to a frictional force which will be taken 

as proportional to the load. It is required to solve the conservation 

of mass and stress equilibrium equations. However, because the body 

force on the filament is not immediately obtainable, a force balance 

is taken on a small section of the filament; see Fig. 2.6 

Fig. 2.6 Diagram showing forces on an element of 

the rubber filament situated on the take-up 
wheel. 
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T(0+d0) - T(0) + F = 0 ( 2 . 1 2 ) 

T(0 )d0 - dR = 0 ( 2 . 1 2 ) 

Provided slip occurs F = /idR and 

Jim 
+ piT = 0 (2.14) 

This is the familiar capstan problem [44] which has the following 

solution for the engineering stress a; 

T Q 
a = -— = a (t)e , A the initial filament 

A o o t 
o cross-sectional area. 

(2.15) 

If slip does not occur then the frictional force F in (2.12) 

is unknown. This problem will be dealt with when it arises. The 

stress equilibrium equation for the free length of filament, whose 

parameters are designated by *, merely implies 

A 

a = a (t) (2.16) 
o 

where continuity of tension is satisfied at 0 = 0, A in Fig. 2.5. 

The mass conservation equation relating extension y and 

velocity U may be written as [45] 

y = AQ/A (2.17) 

(-) + - ( - ) = 0 on take-up wheel (2.18) 
Y t R Y 0 

A 

(4) + = 0 on free length ( 2 . 1 9 ) 
Y t y 

in which the velocity is in one direction only i.e. u is the 0 

component and u is the z component. The subscripts denote 

differentiation. The boundary conditions are continity of velocity 
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and extension at 0 = 0 and two fixed ends (2.20-23). The initial 

conditions are that the extension is unity (2.24) and no slip 

occurs on take-up wheel, at time t = 0, (2.25). 

A 

u(L,t) = u(0,t) (2.20) 

A 

Y(t) = y(0,t) (2.21) 

u(u)t+<f>,t) = a)R (2.22) 
A 

u(0,t) = 0 (2.23) 

A 

Y (0) = Y(e,0) = 1 (2.24) 

u (0,0) = u)R (2.25) 

Slip does not occur initially for two physical reasons: 

(i) At elevated temperatures there is always 

some slack in the free filament 

(ii) Even under conditions of no load, there is 

a small adhesive force between rubber 

and solid surface. 

However, because of the mathematical approximations already made, 

in this case, the assumption of slow flow, this last condition (2.25) 

will not generally be satisfiable. This is however of only minor 

importance; but it is discussed in Appendix 2. 

It remains to specify a constitutive equation. Before 

this is done, a measure of the elastic effects present in the flow 

are afforded by calculating the Deborah Number, De, 

„ Characteristic time of fluid Xe 
De = = 

Characteristic duration of flow Oi y 
max 

(2.26) 
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Typical values of A,e and the maximum Hencky strain In v are 
max 

1 o 
A = 12.5s, £ = 50s , In Y = 5 : thus De = 0(10^). 

max 

Because of the high value of De, it is expected that an 

elastic constitutive equation is appropriate. This is carried out 

in what follows. 

The constitutive equation for a general elastic solid 

may be written 

a = a(Y) (2.27) 

Using (2.15) and (2.27) the mass conservation equations (2.18-19) 

can be integrated to obtain expressions for the velocity 

A A 

u = z Y t (2.28) 

A 

Y 

R '°a 

u = - -2-+ 7,p(t) (2.29) 
^ o 

for some function i(j satisfying the kinematic condition (2.22). 

Differentiation with respect to time, t, is denoted by . Satisfying 

(2.22) yields 

• • 

„ = £. X l M ) { . R foj (2.30) 
H 0 Q Y (u)t+<{), t) |I a o 

A A 

Satisfying continity of Y/U Y/U at 0 = 0, z = L (2.20-21) yields 

a differential equation for CTq: 

Y t 
Ra t n .. Ra 

= ° + T(0/t) r' ° } (? i n 
L(j.aQ Y (u)t+<J>,t) 1 6

 ~ Lp.oQ
 1

 ' 

in which use has been made of E = U J R / L . Slip ceases when 
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that is when 
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(2.32) 
9 = 0 

= £ 

= 0 
(2.33) 

From (2.30) and (2.31) it can be seen that (2.33) is satisfied when 

R a 

Ljia 
= e (2.34) 

and that slip ceases simultaneously for all 6. 

A typical plot of experimental measurements of a Q against 

time for Butyl CI is shown in Fig. 2.7. Only the initial part 

of the curve is included but it shows the extent of the elastic part 

of the flow, up to the maximum in OQ. Thereafter viscous effects 

are strictly not negligible. 

From the graph and equation (2.34) it is readily shown 

-3 

for example, that slip ceases after a time t = 3x10 s if JJ. is taken 

as unity. This point is marked in Fig. 2.7 and it lies well within 

the elastic regime. Since the total strain achieved in the experiment 

was about 8 only a small part of the experiment involves slip,provided 

once slip ceases it does not recur. This is now considered. 



- 47 -

—1 —1 

AS 

4 5 6 7 8 
time(ms) 

0 t n s 01 •05 06 0 7 08 09 -1 time(s) 

Fig. 2.7 Engineering stress against time for Butyl CI 
compound; extension rate 105 s 1 at 100°C. 
Cessation of slip occurs^ for )!=1 at t = t

n s -
Also shown is a plot of 0 Q/(a oe) as a function 
of time, curve A and the time to no slip as a function 
of p. for a linear elastic solid, curve B. 

Intuitively, for an elastic solid, the tension is constant following 

a solid particle. Mathematically this is expressed as 

8o ^ 8a _ 
8 T + * 86 " ° 

(2.35) 

with the solution 

o = a (t-6/co) for t-e/a) > t 
o ns 

-|i(0-u)(t-t )) 
ns 

= a (t ) e for t-6/u> < t 
o

v
 ns ns 

(2.36) 

(2.37) 

where t is the time when slip ceases and a has the same meaning 
ns ° 

as in (2.15). Slip does n o t r e c u r i f 

8a 86 
< j.10 (2.38) 

which is equivalent to 
o < L[ie (2.39) 
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Since a is a decreasing function of t within the elastic regime 

(see Fig. 2.1), the no slip condition (2.39) is clearly satisfied. 

It can also be shown (see Appendix 2) that for a viscoelastic fluid 

with relaxation time X, slip does not occur when viscous effects 

become important if 

^ > 1 (2.40) 
R 

This is a sufficient condition only. Because of the high relaxation 

time of rubbers and the high extension rates used in the experiment 

this relation is satisfied. 

To calculate the time to cessation of slip theoretically, 

it is necessary to assume a specific form of the constitutive 

equation (2.27). For strains close to unity, elastic behaviour is 

suitably modelled by the equation [46] 

a = G(y-y~ 2) (2.41) 

and for y - 1 << 1, linear behaviour is obtained: 

a = G(y-l) (2.42) 

A slight overestimate of the time to no slip results from the use 

of (2.42) rather than (2.41), but it is negligible as y 1. A 

solution to (2.31) is derived for the linear elastic solid (2.42) 

in Appendix 2. Essentially, the function o it) is determined. 

The time to no slip, t , is obtained from (A2.5) using the condition 

for no slip in (A2.8); thus 

R
 -, r 1 / -fiir/2, uL . -1 

t = ln{e (y-hl)-ye ^ } , y = ( • - 1) 
ns

 2
 R 

(2.43) 
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Since equation (2.34) holds when slip ceases, t can be plotted 
•' • 

against a /(a e) = Lp/R = 2jx, which has been done in fig. 2.7, 
o o 

Curve B. It appears that Curves A and B do not intersect though 

they both have the same asymptote as y -> 1, t 0, which suggests 

that the friction factor is very large and that slip does not occur. 

2.4 Results 

The first results to be presented concern an essential 

checking of the data obtained from the two rheometers as far as that 

is possible. As Dealy [47] remarks, it is important with new 

machines to establish that the required property is being measured 

correctly. This proves to be difficult with the Elongation Rheometer 

since it covers a range of constant strain rates of 1-110 s 

At the time of the experimentation the author was not aware of any 

machine with a comparable range. However, a machine belonging 

to Loughborough University with a maximum strain rate of 1 s * 

was used in the hope that it would be possible to 'butt' the data. 

Checks for the T.M.S. Rheometer were much easier to achieve and 

the results show that it compares well with a Davenport Capillary 

Rheometer and the Rheometrics Mechanical Spectrometer. 

Having established the validity of the Rheometers, the main 

experimental results are presented for two types of rubber, 

namely poly(chloroprene) and poly(isobutene-co-isoprene) which will 

be referred to as Chloroprene and Butyl rubber, respectively. The 

Chloroprene rubber is used as a fully formulated unvulcanised compound 

with the following constituents: 
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Component parts per hundred 

poly(chloroprene)gum 100 

carbon black 16.67 

calcium carbonate 58 

paraffin oil 6.3 

curing system 

Details of the curing system are not given, but it is 

in any case only a small component, probably with little influence 

on the properties of the unvulcanised compound. 

The Butyl rubber is used both as a raw gum and as a semi-

formulated compound with the constituents: 

Component parts per hundred (quantity) 

poly(isobutene-co-isoprene) 100 

carbon black 71 

zinc oxide 3.5 

stearic acid 1 

paraffin oil 27 

This compound contains no curing system which makes it easier to use 

than the Chloroprene compound but still changes its properties over 

long periods of storage time. (A reference to this is made later 

in the experimental results). 

2.4.1 Checking the rheometer data 

Turner and Moore [36] compared the data obtained from the 

T.M.S. Rheometer and a Davenport Capillary Rheometer for the steady 
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shear flow of a non-wall slip compound B-O-A (B6138) at 100°C. 

Both the grooved and smooth rotors were used for the T.M.S. 

measurements confirming that the material exhibited no slip in the 

shear rate range investigated. A 30 x 2mm die was used for the 

Davenport measurements. Fig. 2.8 shows a replot of their results 

of stress against true shear rate at the wall. The agreement is 

good with less than 5% error where they overlap. Also shown in Fig. 2.8 

Fig. 2.8 Comparison of steady state shear stress 

measurements on the B-O-A compound: T.M.S. 
Rheometer Davenport Capillary Rheometer 
and on the Butyl compound, shear stress using 
the T.M.S. • compared with oscillatory data 
from the R.M.S. •; Cox-Merz rule has been used. 

are measurements on the Butyl compound using the T.M.S. and a 

Rheometrics Spectrometer. The latter results were obtained inde-

pendently: courtesy of Dr J. Funt, then of Rheometrics Inc. As only 

the oscillatory data from the R.M.S. was acceptable (the Butyl 

compound appears to be too stiff or elastic to be contained properly 

within the R.M.S device under conditions of steady shear) the Cox-Merz 
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rule [48] is used for comparison with the steady shear data from 

the T.M.S. The agreement is remarkable, though the result is not as 

strong as it would be if data from the same experiment were compared. 

For rubbers which exhibit wall-slip, see fig. 2.9 for 

a typical plot of the results, it is possible to compare the data 

from the T.M.S. and Davenport by using a simple model of the slip 

mechanism. The model has been used for calculations on tube flow 

by Uhland [49]. An extension of the basic idea is now considered. 

Fig. 2.9 Shear stress as a function of apparent shear 
rate from measurements on EPDM using the grooved 
and ground rotors of T.M.S. and Davenport 

Rheometer ( ) Prediction of (2.44) using 
experimental data ( ). 

It is assumed that a thin, low viscosity layer can develop between 

a sufficiently smooth metal surface and the bulk of the rubber. 

Neither the layer thickness nor the rheology is specifically known. 

However, it is further assumed that the total flow is viscometric 

in both layers and that a power-law model is a suitable description 
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of the viscosity. One further assumption is that the relative 

thickness of the lubricating layer to the bulk rubber layer depends 

only on the local shear stress. This provides a means of comparing 

the flow in a cylindrical die with that in a cone and plate. The 

detailed calculation is carried out in Appendix 3. The final result 

relating the apparent shear rate in the capillary y^ to the shear rate 

in the T.M.S. using the grooved rotor "Yg r o o v e (j and the apparent shear 

rate using the ground rotor y is 
ground 

y = 4{Y - ^n+l y } (2 44) 
A ground 3n+l grooved 

where the shear stress is the same for each y and n is the 

power-law index. In Fig. 2.9 the capillary rheometer data is compared 

with the prediction in (2.44) with excellent agreement except at the 

shear stress where the curves from the ground and grooved rotors 

approach an intersection. Here the predicted curve suggests an 

instability in the capillary results, similar in form to many other 

results in the literature e.g. Uhland [49], which does not, in fact, 

occur. It may be that slip is occurring on the grooved rotor at 

the higher stresses, but presently the explanation is not clear. Even 

still, it is intended that fig. 2.9 is seen as a further confirmation 

of the accuracy of the results from the TMS Rheometer and that 

it should prove a useful tool for the study of the wall-slip 

phenomenon. 

As already mentioned at the beginning of section 2.4, veri-

fication of the results from the Elongation Rheometer is less 

straightforward. Also after the experiments were completed, a fault 

in the construction of the Loughborough machine was discovered, which 

invalidated the data through most of the strain rate range; only 
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the uppermost range up to 1 s * seemed unaffected by the fault. 

Rather than repeat the experiments, just the data obtained at 1 s 

is used for comparison with the Elongation Rheometer: Instead 

of plotting the data at a constant strain rate it is plotted in 

fig. 2.10 at a constant strain et (and temperature). The 

Fig. 2.10 Elongational stress as a function of 
strain rate for butyl compound: 
A 60°C, et = 1.0; • 80°C, et = 1.0; 
O 100°C, et = 1.0; • 80°C, et = 0.5; 
• 100°C, et = 0.5. Loughborough data 
are the points at a strain rate of 1 s 

material used is the Butyl compound. As can be seen from the figure, 

the Loughborough data consistently lies on straight lines through 

each set of points over a wide range of strain and at different 

temperatures. This is some confirmation of the Elongation Rheometer 

results. 

It will prove more relevant to consider the linear viscoelastic 

behaviour of the rubbers for a confirmation of the results. As is 

well known, at small rates of deformation, and/or small strains 

the start-up flows of viscoelastic fluids in simple shear and uniaxial 

extension should be related by a factor of 3. This will be checked 

when the main results are presented later in this section. 



- 55 -

2.4.2 Main results 

The viscosity is defined as a function of shear rate by 

[48] 

(2.45) 

Viscosity data are shown in Fig. 2.11 for both Butyl 

and Chloroprene rubbers. The time-temperature superposition principle 

necessary to extrapolate the data to obtain the viscosity at limitingly 

small shear rates, n . This is an unfortunate consequence of the 

large relaxation times of rubbers. There is not much significance 

in the fact that the viscosity of the Butyl gum is higher than that 

of the Butyl compound, since a considerable reduction in the molecular 

weight takes place in the mixing process. The effects of ageing 

can be clearly seen from the figure. There is a interval of about 

six months between the two Butyl compound curves. The later measurements, 

Butyl C II, have both a lower viscosity and different high shear rate 

slopes. This demonstrates the care necessary in planning 

experiments. 

normal stress difference in shear flow but one such measurement 

using the Rheometrics Mechanical Spectrometer has been made inde-

pendently for the Butyl compound. This is shown together with the shear 

stress in Fig. 2.12. At low shear rates, the normal stress curve 

has a greater slope than the shear stress, but at higher rates the 

slope decreases more rapidly. The shear stress is greater than the 

normal stress for all shear rates. This is in contrast to the 

measurements of Vinogradov et. al. [50] on a polyisobutylene gum 

(T-T.S.P) has been used for the more extensive data. It is 

The T.M.S. Rheometer cannot be used to measure the first 
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Butyl Compound CII V, plotted as reduced viscosity 
vs. reduced shear rate, reference temperature 100°=373K. 
(Data for Butyl gum rubber, courtesy A.C Bickley). 
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where at a shear rate of about 1 s (at 100°C) the two stress 

curves intersect and at higher values of shear rate, the normal 

stress is significantly higher than the shear stress. In fact 

2 
they find that N. a x A . 

1 r0 

The time-temperature shift factor a T is shown as a function 

of temperature in fig. 2.13 for the Butyl CI compound. The glass 

transition temperature is 202K [43] and the reference temperature 

is 373K. The data points can be fitted either to the WLF equation 

or an Arhenius equation; both these are shown in the figure where 

* *T " <-ei6 - J i f ^ T « « > 

a T = 1.864 x io" 8 exp{6.641 x 10 3/T> (Arhenius). 

The graph shows that at the normal processing temperatures 

of 80 C-140 C the viscosity changes quite rapidly with temperature; 

the viscosity changing by a factor of two for a temperature 

difference of 15°C. 

Measurements of stress during the start-up of elongation 

and simple shear flow for the Butyl compound are shown in figs. 

2.14-2.16 over a range of temperatures 60°C, 80°C and 100°C. The 

results are plotted in terms of the stress growth function n
+
 [48] 

and is defined in the two different deformation modes below. 

In uniaxial extension 

(T -x ) + rl ^ zz rr 
n _ (e ,t) = -el 

e 

and in simple shear 

x 

n* (Y,t) = - — (2.46) 
sh • 

Y 
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The obvious dependence on temperature has been suppressed amongst 

the list of variables. 

The start-up curves in elongation occupy the upper portion 

of each graph and the data points are designated by squares, 

whereas the shear curves are denoted by circles. The elongation 

results are averaged values over a series of up to 8 separate 

samples. The standard deviation was small, implying an excellent 

reproducibility, and, in terms of a percentage of the actual 

values of n + , rarely exceeded 1%. At the highest elongation rates, 

Hencky strains in excess of 8 were often obtained but no true 

steady state was achieved; though in some cases, most notably 

at 60°C, relatively long plateaus appeared. After reaching a maximum 

the stress decreased with time until failure occurred. This behaviour 

is reminiscent of the recent results obtained by Raible & Meissner [51] 

with LDPE where again steady state conditions do not appear, but 

only a maximum in the stress. At the lower rates such large 

strains of 8 were not achieved because the filaments were more 

susceptible to ductile failure. This could probably be improved 

with a higher quality of sample preparation by injection moulding 

rather than extrusion, but such a development does not seem presently 

to be justified, quite apart from the difficulty of moulding long (up 

to 45 cm) thin filaments. 

The measurements of stress in simple shear start-up were 

also highly reproducible. The curves show the usual characteristics 

of polymer melts. As the temperature is decreased and the rate increases 

a local maximum appears in the curves before finally approaching 

the steady state. However, at still lower temperatures or higher 

rates a second local extremum appears, which although not particularly 

pronounced, is clearly evident. The phenomenon of stress undershoot 
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has been observed for polymer solutions [48] but not previously 

for melts. 

Both sets of curves, in elongation and in shear, exhibit 

a linear viscoelastic envelope, see in particular fig. 2.14. 

From linear viscoelastic theory, it is expected that the 

envelopes are simply related, but from a theoretical point of view, 

it is not yet clear whether the linear viscoelastic behaviour is 

reached in the limit of small deformations or small deformation 

rates or both. The experimental work of Phillipoff [52] however, 

resolves the question. He conducted large amplitude oscillatory 

simple shear flow experiments to determine whether linear visco-

elasticity was approached in the limit of small amplitudes or small 

oscillatory frequencies. He determined that small amplitudes are 

the essential requirement for linearity. Referring now to start-up 

experiments,this corresponds to small values of strain et or yt. 

Thus even at the highest rates, the curves should form part of the 

linear viscoelastic envelope at small enough times. It is a simple 

result from linear viscoelastic theory to show that 

"el " 3 4 - 0 (2.47) 

et 0 

The results in Figs. 2.14-16 confirm this relation very well, except 

for the upper part of the envelopes at 80°C and 100°C. Here the 

elongation curves corresponding to the lowest strain rates 'dip' 

a little towards the shear curves. However, as will be demonstrated 

in section 2.5, at the higher temperatures and lower rates slip does 

occur to a small, though not negligible, extent. This would account 

for lower stress values being recorded. 

Similar results have been obtained at one temperature of 
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100°C for the Chloroprene rubber, fig. 2.17. All previous remarks 

carry over to this rubber with one exception. Even at the highest 

shear rates there is hardly any perceptible stress overshoot. There 

seems to be a much greater contrast in the shear as opposed to 

the elongation start-up behaviour of the two rubbers. 

The time-temperature superposition principle has already 

been used in the construction of the viscosity curves and is a 

well-used technique for other properties such as relaxation 

behaviour or the shear modulus. However, each of these applications 

results in a single master curve. The T-T.S.P. should also apply 

to start-up behaviour, but a whole family of master curves would 

be the result. The principle is basically a transform applied to 

the time scale and therefore to any parameter which explicitly involves 

either a time or a strain rate. So the three parameters involved 

+ • 
in start-up flows ri ,y or e, and t are transformed as follows: 

+ +/ n n / a T 

y a.pY 

t t/a T 

where a T is the shift factor with values as in Fig. 2.13 for the 

Butyl CI compound. 

The transform may be applied to figs. 2.14-2.16 by shifting 

the axes relative to each other by the amount a^(T) provided that it 

is also realised that the values of the rates change by the same 

factor. This process is shown in fig.2.18 where the graphs have 

been photocopied onto transparencies and then displaced relative 

to each other by the required amount. As can be seen this 

works excellently, with a highly consistent family of curves produced. 
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The viscoelastic envelopes are maintained and in a number of instances, 

corresponding curves overlap very closely. 

This technique results in increasing the strain rate 

range by a factor of 10 at any one particular temperature, so that 

if the reference temperature is chosen as 100°C, the strain rate 

ranges are 1-1000 s * in elongation and 0.15-180 s * in shear. 

2.5 Modifications to the Elongation Rheometer for an 

Experimental Study of Slip 

In section 2.3 an attempt was made to deal with the problem 

of slip of the rubber filament over the take-up wheel from a 

theoretical point of view. A more direct answer to the problem 

may lie in an experimental study. The idea is to increase the 

frictional force between the take-up wheel and the filament by 

constructing a take-up wheel with a deeply grooved rim of half angle 

a = 12° as shown in fig. 2.19. The sample rests in the groove and 

the coefficient of friction is increased by a factor of 1/sina - 5. 

Ideally, the depth of the groove should vary with angular position 

so that as the filament is wound up its distance from the axis of 

rotation of the take-up wheel is constant. However, this would 

introduce severe machining problems and a small correction is made to 

the data instead. The distance, or effective radius R depends 
ef f 

on the filament thickness at any position and the extent to which the 

filament has been deformed by the shape of the groove. Fig. 2.20 

shows the geometry of a cross-section of the filament and groove. 
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Fig. 2.19 Design drawing of grooved take-up wheel. Dimensions in (mm) 
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Fig. 2.20 Cross-section of geometry of filament in 
groove of take-up wheel. 

When the filament is removed from the groove after extension at 

some particular temperature and rate, it recovers to a circular 

cross-section. R __ is taken as the lowest point of contact of the 
ef f • 

filament and the groove. By conducting a number of filament 

extensions at two temperatures, 60°C and 100°C and various strain 

rates and subsequently measuring the distance, a, (see fig. 2.20) 

and the recovered filament diameter d^,it is possible to estimate 

R
e f f In fact, a and d^ did not vary within experimental accuracy 

either with temperature or strain rate. Table 2.1 presents 

average results of a,d^, the expected value of d^ based on the 

assumption of no slip,ana the estimate of R ^ at various angular 

positions on the take-up wheel. The contact point at time t = 0 

is designated 0°. 
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Angle (°) 0 45 90 135 180 225 270 

Depth of top 

or rubber, a(min) 0 . 1.45 3.1 4.2 5.1 5.85 7.5 

Filament 

diameter, 3.25 2.75 2.1 1.8 1.55 1.2 1.0 
d^ (mm) 

No slip filament 
diameter, 

d =d e ~ 9 / 4 3.25 2.7 2.2 1.8 1.5 1.2 1.0 
f o 

Effective 
Radius, 
R __ (mm) 54.9 54.0 52.7 51.5 50 50 50 

Table 2.1: Data for parameters in figure 2.20,both 
measured and calculated, the factor 1/4 
in the fourth line arises from geometrical 
arguments. 

The manner of calculating is indicated in fig. 2.20. 

The deformed filament has a cross-sectional area, a^, known from d^ 

a i = J d f
2 (2.48) 

An upper bound for the area a2/ available for the filament is the 

area of the sector of radius 8.0-a 

a 2 = i k ( 8-°- a ) 2 ( 2 - 4 9 ) 

The unoccupied area is
 a
2 ~

a
\

 c a n
 ke g i

v e n a s
 the area of the 

segment of radius R - 50. Thus 
ef f 
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R .. = 50 + { — (a^-a.)} (2.50) 
eff 7i 2 1 

The values of R _ as a function of 6 are plotted in fig. 2.21. 

Using linear regression, the angle corresponding to R f = R = 50 mm 

is calculated to be 170° or 3.0 radians. The approximate 

functional form of R is 
eff 

R ~ 50 + (5.2-1.730) 6 < 3 radians (2.51) 
eff 

= R 0 > 3 radians 

angle 
Fig. 2.21 Effective radius R as a function of angle 

ei £ 
0. Linear regression used to fit curve. 

If the apparent strain rate £, and stress o , = -(t -T )_ c A A zz rr A 

are calculated on the normal basis using equations (2.3) and (2.5) 

then two corrections should be made to obtain the actual values £ and 

o. These are 

R
 ff 

( ± ) '€ = ^A R~ ' a t 6 = 2'eAt (2.52) 

(ii) cs(e,t) =
 e x

p { e A 

t R 

- 1)dt} (2.53) 
K 

O 

in which the term inside the exponential function is a correction to 

the Hencky strain. To obtain the actual stress at the apparent 

strain rate, a necessary adjustment to enable a direct comparison with 
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data from the flat take-up wheel, a third correction is made by 

expanding a in a Taylor series 

(iii) o(e A,t) = a(£,t) - e A ( - e f f - 1) (2.54) 
9e 

Throughout (i)-(iii), R f f O ) = R f f ( 2 c t). 

Using the expression obtained for (2.51), the error 

in the strain rate has a maximum of about 10% at t = 0, and e 

linearly approaches the measured value e a s the strain tends to 

• • 

1.5. For strains greater than 1.5, e = e . The situation is a 

little more complicated for a(e A,t). The derivative in (2.54) 

can be calculated from the data once it is represented in a form 

similar to that in fig. 2.10. Otherwise a simple integration gives the 

result 
• 

• • • • • Srr 5 t-
a(e_,t) = a (e ,t) exp(€ t (5.2-1.73e t) /50) - e A — ( ' J ' ti£Al 

A A A A A A . * 50 
de 

e t < 1.5 
A 

= a (e ,t)exp(0.078) e_t > 1.5 
H n 

(2.55) 

The experimental results of a comparison of the grooved 

and flat take-up wheels at 60°C and 100°C, and at various strain rates, 

using the Butyl CII compound, are shown in Fig. 2.22. The corrections 

(i)-(iii) have been made to the grooved data, and in the main, only 

the corrected data are shown in the figure. However at the lowest 

rates of each temperature the original data are indicated, except 

where their inclusion would confuse the graph. The strain axis of 

the graph is the actual value of the strain in each experiment if 

no slip occurs. For the flat take-up wheel the strain is et 
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01 -1 1 strain 10 

Fig. 2.22 Comparison of start-up data from flat and grooved 
take-up wheels, material Butyl CII: • flat; 
0 original, o corrected grooved take-up wheel data 
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and for the grooved take-up wheel it is e t (55.2-1.736^)/50 

and £ t(1.078) 
A 

As can be seen in fig. 2.22 the differences between the two types 

of data are negligible except at the lowest rate of 1.68 s at 

the lower temperature. Therefore, slip is practically non-existent 

in the experiment, since a significant increase in the factor 

controlling slip,the friction factor, causes no difference in the 

results. The one exception can be explained in terms of it representing 

a tendency to less elastic behaviour and consequently a lower 

interfacial shear strength. 

The 

reason for the slip in the -linear viscoelastic envelope, 

mentioned in section 2.4, is now clear and is justifiably attributed 

to a slight slippage. A correction to the data of figs.2.15 

and 2.16 could be made on the basis of the results here. However, 

at this stage little would be gained. 

2.6 Data Fitting to a Naive Rheological Model 

A large number of rheological models have been proposed 

in the literature, many of which are exceedingly complex. However, 

because it is desired to achieve analytic solutions to flow problems, 

a naive model is used, which contains only a few unknown constants. 

The term naive was coined by Petrie [53] when he carefully considered 

the problem of which model to choose for dynamical calculations. 

Clearly the model should describe some of the main features of visco-

elastic behaviour yet simultaneously be mathematically tractable. 

Petrie's choices for a naive model containing three parameters are 

e n t < 1.5 
A 

e t > 1.5 
A 
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(i) Jeffreys model, either in corotational or upper 

convected formalism, with constants 

(ii) Non-affine Maxwell model,which incorporates 

both the corotational and upper-convected derivatives, 

with constants r)Q/^/ a* 

It is necessary to make qualifications about (i) and (ii) 

as there are certain common kinematics for which the naive models are 

unsuitable . Choice (i) in the corotational formalism is inadequate 

for extensional deformations because in the start-up of uniaxial 

extension the model does not exhibit strain hardening. In the upper 

convected formalism the Jeffreys model has a constant viscosity in 

steady simple shear and is therefore unsuitable for shearing flows. 

simple shear and at sufficiently high shear rates (and a ^ 1), the 

shear stress decreases with increasing shear rate, [53]. This 

effectively rules out its use in shear. 

It is possible to obtain a naive model which is suitable 

both in the start-up of uniaxial extension and at high shear rates 

by modifying (ii) to include an infinite discrete relaxation 

spectrum. The model is defined in (2.56-2.60). 

Choice (ii) has the well-known defect that in steady 

In an integral reprsentation the stress T is given by 

t 

1 
M(t-t')(I-EE T)dt f 

(2.56) T 
a 

— 00 

where E is a strain tensor which is the solution to 

E(t',t') = I (2.57) 
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a+1 a —1 T 
with A = (Vu) + ^ (Vu) (2.58) 

The non-affine parameter a is such that a=l corresponds to the 

Upper Convected and a=0 to the Corotational formalism. 

The definition, so far, is similar to that in a number of 

recent papers [54-56] except that in these publications an error 

has been made, in defining t, by an omission of the factor 1/a in 

(2.56). This leads to the curious, false result that in simple shear 

flow, all stress components vanish identically when a=0. 

The Memory Function, M , is taken to have the form 

M(t-t') = I exp[-(t-t')/X, ] (2.59) 
k K 

k 

and the parameters n, ,X are related by the empirical equations 
•K X 

n X . 
' \ m ^ ' k - 1-2,3,... (2.60) 

k k 

which were first given in Spriggs [57]. 

four. 

Thus the total number of unknown parameters n Q,X,a,a is 

It can now be shown that in the start-up of uniaxial 

extension the stress growth function n + is given by 

n a 0 -(k a-2aeX)t/X -(k°+aeX )t/X 
+ _ y ô  , Jk ze e ^ 

^elon , . „, . ,, a . a • . , a ~ •, , a •, 
k=l Z(a) (k -2acX)(k +aeX) k -2aeX k +aeX 

(2.61) 

and in start-up of simple shear 



- 79 -
tk 

'sh Z (a) I t 
k=l 

, 2a 2. ,2*2 
k +(1-a )A y 

{ 1 + e 
BAy 

L k a 
sin0yt -cosByt 

(2.62) 

} } 

with 

oo 
2 ^ r 1 

= (1-a ) and Z(a)= > — 4-J m 
k-1 k 

(2.63) 

The linear viscoelastic behaviour, or limit, ru . is given in shear 
lim 

by 

+ Tl 

lin,sh Z(a) I k " a d -

tk 

A 

a 

k=l 

(2.64) 

Finally the viscosity in simple shear is 

o v 
n Z (a) 1 

i < , 2a , •. 2 k-1 k +(BAy) 
(2.65) 

It can be shown further that a rapidly converging expansion for 

small 8Ay is given by 

H = i (SAy) I 
1 

z ( a ) k=i k a ( k 2 a
+ ( B A ; )

2 ) 
(2.66) 

and an asymptotic expansion for large (3Ay by 

Z (a) 
M B A y ) 

(1/a)-1 

^ 2a sin ((a+1) ir/2a) 
(2.67) 

Equation (2.67) shows the model has a power-law behaviour in steady 

simple shear with a slope 1/a -1 at large shear rates. 

Turning now to the fitting of the data, equation (2.64) is 

i 
used to determine r\ and A whilst (2.67) is used for a and B = (1-a) 

o 

This ensures that linear viscoelastic behaviour is well described 

and that at high shear rates the model gives the correct power-law 
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Fig. 2.23 Reduced viscosity vs. reduced shear rate for Butyl CI 
and data fitting 

Fig. 2.24 Recuced stress growth function vs. reduced time 
for Butyl CI and data fitting 



- 81 -

dependence in simple shear. The parameters for the Butyl CI and 

Chloroprene compounds are in Table 2.2. 

Rubber Butyl CI Chloroprene 

Parameter n 1.05><106N sm~ 2 2. 0 1 0 6 N S m ~
2 

o 

X 12.5s 60s 

a .95 .98 

a 7.7 5.0 

Table 2.2: Parameters for the generalised non-affine 
Maxwell model 

NB: a - very large. 

The results from the model and experiment for Butyl CI are 

compared in fig. 2.23 which shows viscosity curves and in fig. 2.24 

which shows the stress growth functions at selected rates from those 

available in figs. 2.14-2.16. The T-T.S.P. has been used with 

reference temperature 100°C. From these figures it can be seen that 

(i) the power-law region is well described but the 

transition to low shear rates is not. 

(ii) the linear viscoelastic envelopes coincide. 

(iii) the model stress growth function values in uniaxial 

extension lie considerably above the experimental 

results. 

Further to (i) it must be noted that the Careau and Ellis 

viscosity equations [48] do not describe the viscosity of Butyl CI 

much better than equation (2.65), they all suffer the same deficiency 
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of too rapid a transition from the flat 'zero shear rate' plateau 

to the 'power-law region'. The model does not describe the 

start-up of simple shear very well. Although it has stress-overshoot, 

there are also many subsequent oscillations which are too severe, 

even giving rise to negative values of the stress growth function. 

A closer fit to the extension data in fig. 2.24 at the 

expense of a worse fit to the viscosity in fig. 2.23, can be achieved 

by a different choice of the non-affine paramter a. By taking 

a=0.59 the model generates the second set of curves in fig.2.24. 

The data is fitted well at high rates but rather poorly at the lower 

rates. 
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CHAPTER 3 
AN EXACT SOLUTION 
FOR WEDGE FLOW 

+ 

General solutions are known for the slow flow of a 

Newtonian and a "power-law" fluid in a wedge of arbitrary half-angle 

a (a ̂  TT/2) which involve radial streamlines [8,21]. The velocity 

field is given in cylindrical coordinates by (see Fig. 3.1) 

Fig. 3.1 Geometry and coordinate system of the 
flow problem. 

f (9) _ ,, .. 
v , v . = v = 0 (3.1) 
r r 0 z 

for an calculable function, f, satisfying the boundary conditions, 

An exact solution for the wedge flow of a Upper Convected General 

T 
Part of this Chapter has recently been published, see Appendix 4 
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Linear Viscoelastic Fluid (UCGLV-EF) involving the kinematics 

(3.1) is obtained for a = ir/2 but not otherwise. This solution is 

given below together with a discussion of its characteristics and 

a comparison with the experimental data of Han [73. 

3.1 The Exact Solution 

At the outset no restriction is placed on the wedge 

half-angle, a. Stress and velocity fields are required which 

satisfy the equations of mass conservation (3.2) and stress 

i 

equilibrium (3.3, 3.4) the relevant constitutive equation (3.5) 

and the boundary conditions (3.6) for incompressible, steady slow 

flow. 

V.v = 0 (3.2) 

V.tt = 0 (3.3) 

TT = p6 + T (3.4) 

T = M(s)Yj-0j(s)ds (3.5) 

v E 0 on solid boundaries, i.e. 0= ±a (3.6) 

Equation (3.5) is the constitutive equation for the UCGLV-EF [48]. 

A cylindrical coordinate system (r,0,z) is chosen as in Fig. 3.1 

with the z-axis coincident with the slit at the apex of the wedge. 

The assumed kinematics satisfying the mass conservation (3.2) are 

as in (3.1). 

The strain tensor, Y[g]' is readily calculated to be 
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[0] 

2 2 
2fs f' s f's 
2 2 2 2 

r r (r +2fs) r +2fs 

f's 

r 2+2fs 

2fs 

r 2+2fs 

Combining equations (3.3-3.5) yields 

(3.7) 

Vp = - / M (s) V. Y ^ q - j (s) ds (3.8) 

which upon substitution of Y^QJ gives two partial differential equations 

for the isotropic stress, p; 

{ £ - " / M(s,t 

2 2 2 2 2 
4f s +f' s +r f"s 

9 r 0 r 3(r 2+2fs) 
•}ds (3.9) 

2f's | f - - J M(s) 2 
8 0 0 r +2fs 

ds (3.10) 

These are integrated to obtain 

oo 2 

p = - / M(s)tfn(l + f j - (2fs + ^ f ^ - H d s + f. (0) 
' 2 f 4f « ^ 2f 1 
O r 2r 

= - J M(s)£n(r 2+2fs)ds + f (r) 

(3.11) 

(3.12) 

where f^ and f 2 are arbitrary functions of their arguments. For the 

two expressions for p to be identical the following must be satisfied 

V 0 ) = Pc 
(3.13) 

f2(r) = / M(s) In r 2 d s + / M(s) ^ ds + p^ (3.14) 
0 0 r ° ° 
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4 f 2 + f ' 2 = 4Kf (3.15) 
2 

V f" 
h + h ~ = l (3.16) 

for some constants K , p ^ . The general solution of (3.15, 3.16) is 

f(9) = K COS 2(9+K 1) (3.17) 

where K^ is an arbitrary constant which, because of symmetry, may 

be set to zero. To satisfy the boundary conditions f must be zero 

for some values of 9. Clearly the only possibility is 0 = ±TT/2. 

Thus a solution is obtained for a 180° wedge and no other. The 

pressure distribution and the stress tensor, T , are given by 

« 2 
f ../ XR o /« 2KS COS 9X KS N . . 

p = - J M(s)[£n 1+ ~ ) ]ds + p (3.18) J
 n 2 2 
0 r r 

= 2K / 
M(s) s 
2 2 

0 r +2Kscos 9 

,, 2KS% 
•cos 9.(1+ —=-) 

-sin9cos9 

-sin9cos9 

2. 
cos 9 ds 

(3.19) 

A local Deborah Number can be defined for this flow as 

2A Kcos 9 -1 
De = - = £ , say. (3.20) 

Fig. 3.2 shows streamlines and lines of constant De for this flow. 

Notice that 
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Fig. 3.2 Sketch of lines of constant local Deborah 
Number ( ) and streamines ( > ) . 
Deborah Number increases as the origin is 
approached. 

(i) the kinematics of the flow are identical to those of the 

corresponding flow of a Newtonian fluid; 

(ii) the value of De on the solid boundaries is 0; 

(iii) the stress and strain tensors, X and "YJ-Q-J/ vanish 

identically on the boundaries. 

By taking a particular form of the Memory Function, M , 

explicit values of T and p can be calculated. As an illustration, let 

M ( s ) = exp(- f ) (3.21) 

A A 

which represents a Maxwell fluid. The stress tensor and pressure 

become 
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T = 
2nK 

\ 

-1+sin 0H(C) 

-sin6cos0H(C) 

0 

-sin6cos0H(£) 0 

cos 0H(£) 0 

0 

n r AK £ . . -I 
P = ~ + P c 

r 

(3.22) 

(3.23) 

where p ^ is an arbitrary constant, and E^ is the exponential 

integral function [58]. The function H(£) is given by 

H ( 0 =^(1- e ^ U ) ) (3.24) 

and is shown in Fig. 3.3. The stress tensor x , for the Newtonian 
N 

25 0 

Fig. 3.3 Graph of the function H(£) showing the 
asymptotic limit of 1 as £ 00 

solution is obtained in the limit as De 0, or £ in which case, 

H 1. if ratios are taken between corresponding components of x and 

x^ for the normal stress difference and the shear stress the following 

are obtained: 

x -x 
rr 96 

x -x 
N N n n 
rr 00 

= (1-H(£)(sin 20-cos 20))/2cos 20 (3.25) 



- 89 -

= H ( £ ) , 9 f 0 , ±TT/2 (3.26) 

\ e 

Clearly, on any streamline apart from the solid boundary the shear 

stress tends to 0 as the origin is approached and the normal 

stress difference ratio tends to a range of values in [^,1] depending 

on the angle of approach. The values of h and 1 correspond to the 

centre line and solid boundary, respectively. 

The Power Requirement Pr necessary to pump the Maxwell 

fluid from an infinite sink to some finite sized exit at r=rQ 

is [24] 

t t / 2 

Pr = 2 f ( p+T )v r 
J  r rr r 
0 

d9 (3.27) 

r = r o 

An evaluation of this integral for an arbitrary r^ can only be 

achieved numerically. However, two asymptotic relations as r^ 

and 3 T q 0 can readily be obtained. The prime interest in using 

these relations is the relative magnitudes of the power requirement 

for a Newtonian fluid Pr and a Maxwell fluid Pr, . 
N M 

As TQ 00 it is immediately clear from the fact that the 

Maxwell solution tends to the Newtonian solution as De 0, that 

Pr Pr . 
M N 

At the other extreme a simple calculation reveals that 

2 

\ Pr = y (3.28) 
V ° T I K 2 M 2 

2 

\ Pr - * (3.29) 
V ° nK 2 N 
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ThusPr PrXT/2 as Further to this, numerical 
M N 0 

calculation of the integral in (3.27) for various values of r^ ^ 0 

suggest that Pr _ ̂  Pr„ for all r n . Such a result was already 
M N U 

suspected by Black and Denn [24] from calculations on their 

perturbation solution. As they also remark, the"effect of elasticity 

on the flow does not conform to the usual interpretation. Instead 

of an increase, there is a decrease in the power requirement for a 

Maxwell fluid. 

An analytic solution has also been obtained for the Oldroyd 

Fluid B. This fluid has a memory function representation given 

by 

\ 2 -s/A. 

M(s) = {(1- + 2 A x A 2 6 (t-t') } (3.30) 
A1 1 

as defined in [48] which when substituted into (3.5) leads to 

a stress tensor of the form 

x 2 n „ x 2 r - s / a I * n n A f 
T ( 1 - x Y ' J 

e Yrn-i ds (3.31) 
[0] 

1 * 0 

For the flow considered here the rate of strain tensor Y ^ ^ i
s 

/ cos
2
0 cos0sin0 

;
( 1 )

= 1
2 fl . fl 2 I

 ( 3
"

3 2 > 

r \ c o s 0 s m 0 -cos f 

After a simple calculation the stress tensor is obtained as 

T _ 2riK / I cos
2
 0 cos9sine\ ^ ^ / l-sin

2
eH sin9cos0H 

r
2
 \

 A
1 I cos0sin0 -cos

2
0 /

 A
1 \ sin0cos0H -cos

2
0H 

(3.33) 
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and the pressure 

2 cos29 
P = " 1 7 2"~ n K + 

1 r 

1 - i f - f - e V 
r 1 

(3.34) 

From these expressions it can be seen that the Newtonian solution is 

retrieved when 

(i) 
= 1 

(ii) De 0 

and that as De -> ® the expressions become 

x -
2nK 

I X 2 2 
+ 1 - — sin 0 

A1 

+ T— cosQsinQ 
A i 

X2 X2 2 
-— cos0sin0 T— cos I 
A 1 A 1 

(3.35) 

nK 2 2nK 2 q 

r T C O S 9 
r 1 r 

(3.36) 

The interesting point in the high Deborah number limit for the Oldroyd 

B fluid is that close to the origin the flow does not become solely a 

second Newtonian flow. There is also a contribution to the stress 

and pressure fields from the Maxwell element, indicated by the presence 

of terms not involving This belies the normally accepted 

behaviour of the Oldroyd B fluid, also known as the Upper Convected 

Jeffreys Fluid, as given, for example by Petrie [59]; the 'initial 

response' or high Deborah limit may not be just that of a 'liquid' 

it may also include elements of 'solid' behaviour. 
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3.2 Brief Investigation of the Possibility of Further solutions 

Having obtained a solution for the flow in a converging 

channel of such a simple kinematic nature, an attempt was made to obtain 

further solutions by changing the geometry of the flow to a cone 

or by changing the type of viscoelastic fluid. Two examples are 

given below of the failure to obtain such solutions for the wedge 

flow of a corotational GLV-EF defined on page 339 of [48] and the 

convergent cone flow of an upper convected GLV-EF. These negative 

results suggest that the solution of section 3.1 is isolated and does 

not belong to a family of such solutions with simple kinematics. 

Corotational GLV-EF in wedge 

Assuming the kinematics are given by (2.6) the corotating 

strain rate tensor is calculated as 

r = 
2 2f s, 

r (1+ — 

f cosB(s) + f 1 sinB(s) 

f sinB(s) - f' cosB (s) 

0 

f sinB(s) - f'cosB(s) 

-f cosB(s) - f'sinB(s) 0 

0 01 

f • 2f 
where 8(s) = £n(l + - j - ) 

(3.37) 

After substitution of f in the stress equilibrium equation 

(3.3). the resulting expressions are not integrable in a closed form. 

3 2 
However, if —ĵ r- is calculated from the r and 9 components of 

drd 9 

(3.3) the resulting expressions should be identical. As can be 

verified after a lengthy calculation they are not equal for any 

function, f, except trivially for f a constant. 
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Upper convected GLV-EF in converging cone 

Let the kinematics be given by a non-zero radial component 

of the velocity 

- l^L n 
v = - — v n = v, = 0 
r 2 0 (J> 

(3.38) 

which satisfies the mass conservation equation (3.2). It is readily 

shown that the strain tensor is given by 

„ 4/3 __ -2/3 .,2 2 -2/3 
1 n 4- 3 f s ^ M 4. 3 f s t f s M 4- 3 f s ^ f 

1-(1 + — ) - ( i + _ ) ( 1 + — ) — 
r r r r r 

[0] 

3fs ~ 2 / 3 f s 
(1 + ̂ j-) 

r r 

, / 4 3fs. 
1-(1 + —3-) 

r 

-2/3 

0 ! . ( 1 + 3 ^ , - 2 / 3 

(3.39) 

Substitution of (3.39) into the momentum conservation equation produces 

three expressions for the derivatives of the pressure, which upon 

integration results in three expressions for p to be satisfied simultane-

ously 

P = 

°° 2 2 1/3 
, fl ^ f»« fl Ifc fl -3fe ' 

- / M ( s ) { 2 % ) + 2 ~ Jf - Jf c o t e - ( l + (1 + % ) ) } (1 + ^ f ) ds 

0 
'3f 

+ f (0) 
1 

1/3 

P = - 2 / M(s) (1 + ^y-) ds+f2 (r) 

(3.40) 

(3.41) 

P = f 3(r,0) (3.42) 

where are arbitrary functions of their arguments 
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However/ these equations are incompatible and because of 

the term involving 

r 

in (3.40), no such p exists except trivially for f a constant. 

3.3 Comparison with Experiment 

Han and Drexler have published results of experimental 

measurements of stress in a 180° wedge using a birefringence technique. 

They consider the shear stress and normal stress difference in a 

rectangular Cartesian co-ordinate system. Hence the results of section 

3.1 must be converted to x -x and x from x - T n n and x 
xx yy xy rr 0 0 r0 

to enable a comparison to be made. They also use a different sign 

convention in their definition of x from that used in (3.4); therefore 

let s = - x. The transformation required is readily calculated as 

s -s = (x -x..)cos28-2x Asin29 
xx yy rr 00 r0 

s = - x ncos28-
1j (X -x ) sin20 

xy r0 rr 00 

(3.43) 

in which the y-axis corresponds to 0 = 0. For the purposes of comparison 

the stresses for a Maxwell Fluid are used as in (3.22). Substitution 

of x —x_ _ and x in (3.43) obtains 
rr 90 r0 

s -s = - (cos29+H(£) cos49) 
xx yy 2 

s = (sin29+H(£)sin49) 
X Y r 

(3.44) 

Finally, all variables are written in a dimensionless form 
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x = X(2AK) y = Y(2AK) 

(3.45) 

s -s 
xx yy 

s = —- S 
xy A XY 

Figs. 3.4 and 3.5 show curves of constant S -S and S respectively 
XX YY XY 

for half of the stress field; the line x = 0 is a line of symmetry, 

since S -S is an even function of 0 and S is an odd function of 
XX YY XY 

0. The x-axis corresponds to a solid boundary and the origin to 

the position of the sink. Values of the dimensionless stresses are 

indicated alongside each curve. Also shown in figs. 3.4 and 3.5 

are the corresponding constant stress curves for a Newtonian fluid 

obtained by setting H identically unity in equations (3.44). The 

main features of the two sets of curves are similar. The greatest 

differences occur near the origin and close to the Y axis or the 

centreline of the flow field. Figs. 3.6 and 3.7 show replotted 

versions of figs. 13 and 14 of Han and Drexler [7] for a polystyrene 

melt, Dow Chemical Styron 686. In Figs. 3.6 and 3.7 the fluid exits 

via a parallel-sided channel as indicated by the line drawn at 

X = 0.192. Again only half the stress field is shown. In order to draw 

these curves in the dimensionless variables of (3.45) values of n and A 

were estimated from viscometric flow data for the melt Styron 686 as 

reported in [60]. Both parameters were taken as the limiting values 

at vanishing shear rate: 

n = n n = 3 x 10 5 poise 
0 

= 2.5 sees 

where N 1 is the normal stress difference in steady shear flow. 
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Fig. 3.4 Graph of curves of constant S -S , theoretical 
XX Y Y 

values 
( ) Maxwell Fluid 
( ) Newtonian Fluid 
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Fig. 3.5 Graph of curves of constant S , theoretical values 
AI 

( ) Maxwell Fluid 
( ) Newtonian Fluid 
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Fig. 3.6 Graph of curves of constant s
x £

s
Y y ' e x P e r i m e n t a l 

values for a polystyrene melt. 
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Fig. 3.7 Graph of curves of constant S , experimental values 
for a polystyrene melt. 
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Fig. 3.8 Graph of curves of constant S
X X -

S
Y Y ' experimental 

values for a HDPE melt. 

Fig. 3.9 Graph of curves of constant S , experimental values 

for a HDPE melt. 
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Qualitatively, the agreement between the theoretical and 

experimental curves in Figs. 3.4-3.7 is good and the values of the 

stresses are of the same order of magnitude. In fact, the theoretical 

results predict stresses approximately a factor of 3 larger 

than the reported experimental values. A quantitative comparison, 

however, is of limited value primarily because of the finite width 

of the exit used for the experimental results and the inadequacy 

of any model of the UCGLV-EF type in describing observed melt 

behaviour. Good qualitative agreement is also achieved with the 

experimental results for two other melts, high density polyethylene 

and polypropylene, as reported in Han and Drexler [ 7 ]. Figs. 3.8 

and 3.9 show replotted versions of their figs. 11 and 12 for 

a HDPE melt with tIQ = 2 x 10 poise and X = 50 sees. The scaling 

on the axes is different from that of figs. 3.4-3.7 but a comparison 

is not difficult. Clearly the dimensionless stresses involved in 

the flow of HDPE are an order of magnitude greater than those for PS 

and the experimental stresses for HDPE are a factor of about 3 larger 

than the theoretical predictions. 

3.4 Discussion 

The exact solution obtained in section 3.1 can be used 

to study the convergence or otherwise of the series solution obtained 

by Strauss [25] and the equivalent perturbation solution of Black [24], 

as discussed in Chapter 1. These solutions are inverse coordinate 

or indirect expansions which, according to Van Dyke [61] are usually 

asymptotic diverging series. To facilitate further discussion, 

the dimensionless variables of section 3.3 are introduced; 
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S = - x r = (2AK) _ ? 2r t = t/A 
n 

P = - P v = ( v . V = (2XK)\ (3.46) 
ri 2K 

where -K/r is the centreline velocity as r 0 0. 

Using the new variables, the set of equations governing 

the motion become 

V.v = 0 (3.47) 

V.ii7 = 0 (3.48) 

TT = P6 + S (3.49) 

S + S = - [ V v + ( V v ) T ] = - y (3.50) 

where 

Jq rp 
s = — + v.VS - S.V v - ( V v ) .S (3.51) 

in which the constitutive equation for the Maxwell fluid has been 

written in its differential form. Because the superfix is cumbersome 

it is omitted in what follows with the understanding that all 

variables are to be treated as dimensionless. 

Define a stream function ty (r,0) identically satisfying 

(3.47) by 

%
 =

 ^ r ^r
 =
 "

V
0

 ( 3
'

5 2 ) 

Because of the symmetry and the normalisation of the velocity field 

the boundary conditions on <fj are 
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tp(r,a) = (->p(r,-a) =) = ^ 

tp(r,6) = - v(r,-0) 

tf/ (r,ct) = tpg (r ,-a) = 0 (3.53) 

By expanding the exact solution (3.22,3.23) in powers of 1/r, Strauss' 

result for the special case of a = ir/2 is retrieved for slow flow. 

However this necessarily involves expanding the term as £ 

This is given in [58] as 

U ) ~ 1 - 1/5 + 2/C 2 - ... + (" 1 }. i ! + 
S 1 

(3.54) 

which clearly diverges as i 00 given any value of This means 

that (1.14) which is the form of Strauss* solution is an asymptotic 

diverging series and is* valid only far from the origin or close 

to the solid boundaries. In fact the error after n terms in the 

expansion (1.14) can be shown to be 

N Y ( 9 ) % - I , ( 9 \ 
1 2n+2 } 

r 

an expression similar in form to the local Deborah number defined in 

(3.20). Therefore, serious doubt is cast on the meaning of fig.1.4 

and Strauss* figs. 7-10 [25] which show recirculating streamlines 

not far from the origin and in the centre of the flow field where, it 

has just been shown, an indirect expansion is invalid. 

A direct expansion may be the solution to this difficulty. 

The direct expansion for A = TT/2 is available from the exact solution. 

The stream function has only the first order term 

V = V q(8) (3.55) 

whilst the stress depends upon the expansion of the function H(£) 
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for small H defined in (3.24) 

H = S + S 2(y + Z 3(y -1+lnZ) + 0 
e e 

(3.56) 

where y ~ 0.577 is Eulers constant [58]. 
e 

2 2 

In terms of the dimensionless variables, £ = r /cos 0. Using (3.56) 

the direct expansion of the stress tensor in (3.22) suitably non-

dimensionalised is 

2 2 2 2 2 2 2 
S r r = - 1/r + tan 9 + r tan 0sec 9(y e+£nr -£ncos 9) +.. 

2 2 2 2 
S _ = - tan9-r tan9sec 9(y +lnr -£ncos 9) + ... 
ro e 

2 2 2 2 
Snn = 1 + r sec 0(y +lnr -£ncos 0) + 
00 'e 

(3.57) 

These expansions suggest that for a ={= TT/2 and 2a < 257.5° a series 

solution is attempted with the form 

2 4 „ 
q» = tpQ + r tp̂  + r (t|>2£nr +tp3) + ... 

2 2 
S = a /r + a. + r (a„£nr + a_) + ... 
rr 0 1 2 3 

S r Q = b Q / r
2 + + r 2 ( b 2 £ n r + b 3 ) + ... ( 3 ' 5 8 ) 

2 2 
S 0 e = c Q / r + c 1 + r (c2-Cnr + c^) + ... 

where the coefficients oj./a./b./C. are functions of 0 only. The 
i l l i 

series is substituted into (3.51) and the curl of (3.48) i.e. V x V, 

with the sole boundary condition that ip^(0) are odd functions. The 

solutions for the coefficients are obtained by equating like powers 

of r, and are given below up to the third term. 

a Q = constant (3.59) 

k>Q = c Q = 0 (3.60) 

<"0 
is undetermined. 

a^ = -q-b 1 q a constant (3.61) 
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[9a 0 - 4a0«|;1-2(p0(q+l)]/(2tp0') 

+ 1 

<p̂  is undetermined. 

a 2 = 

2 V V 2 t " 0 " V 2 

^0 

b 2 = " 

4 a 0 v 2 

2 V 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

c 2 = ' 

'0 

q 1^ o'sin40 
tp = + 

8a 
0 

q^ a constant 

v o ' ( 0 ) 

(3.66) 

t iv 
^ sin4(6-t){ip0 -2<p0" -

8<p0(t) 

3 W |
 3 V " 

2 V 

dt evaluated at t 

(3.67) 

The undetermined functions arise from degeneracies in the sets of four 

simultaneous equations for each order. Such a situation is completely 

unexpected particularly since it is known what tpg and tp̂  are from the 

exact solution. It would appear that the direct expansion for a = TT/2 as 

in (3.57) is not completely retrievable although as can be verified, 

the form is consistent with (3.59-3.67). The reason for this 

arbitrariness is not clear, though it may have something to do with the 

differential formulation of the constitutive equation. 

The direct expansion, although it may have an infinite 

radius of convergence, becomes increasingly inaccurate as the wall is 

approached since b ^ , i p ^ etc. involve inverse powers of ^Q1
-

If tpQ1. satisfies the no-slip boundary condition then tp^1 (a) = 0, 

otherwise the solution is inaccurate close to the wall even for <PQ'-
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However assuming that the first order terms have the correct 

r dependence (they have for a = TT/2 and there is no reason to assume 

otherwise for a = TT/2) then IPG(0) must be accurate as the first term 

for most of the flow field, because it determines the flux, which 

must be independent of r. It is not essential that ipg satisfies 

the no-slip boundary condition but it should be valid within a 

region bounded by 

2 
— = 1/D D a constant. (3.68) 

Again this has a form similar to the local Deborah Number of (3.20). 

Also, consideration of the exact solution shows that along the centre-

2 
line (0=0) T a 1/r for all values of r. These two observations 

rr 

are the basis of the following conjecture. 

Conjecture 

Part I. The first terms of the direct and indirect 

expansions of stream functions ^Q/^Q respectively 

are to be matched on the curve of minimum error 

of the indirect expansion. Thus 

V 0 ) 

V o(9> = ^ ( 0 ) on —^ = D + 0 (3.69) 
r 

Part II. The stress component T ^ along the 

2 

centreline is proportional to 1/r for all re[0,°°) 

A sketch of the curve in Part I is shown in Fig. 3.10 



Fig. 3.10 Sketch of the matching region. 

Since the curve passes through all values of 0 between ±a, 

Part I implies that 

v 0(e) = Y 0(6) (3.70) 

Part II will enable some of the arbitrary constants a^, q and q^ 

to be determined. 

In fact the additional information from the conjecture 

gives a^ and 
'0 

2Q sin a 
0 K sin2a-2acos2a 

_ Q sin29-26cos2a 
^0 4K sin2a-2acos2a 

(3.72) 

(3.72) 

Also using (3.61) evaluated on the centreline and Part II it is found 

that tpj'(O) = 0 but otherwise tp̂  remains undetermined. Of course 

explicit formulas for a 2 ' C 2 ' ̂ 2 ke worked out but it would 

not achieve much until the second order terms are determined. 
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CHAPTER 4 
APPROXIMATION METHOD 
FOR CONE & WEDGE FLOW 

The limitations of indirect (coordinate) expansions for the 

solution of flows through converging wedges have been discussed in 

Chapter 3. The situation for flow in cones will be similar. There 

is a considerable difference in the flow field obtained from an 

indirect expansion of a Maxwell fluid and a third of fourth order fluid 

(see section 1.2). In addition to this, there seem to be subtle 

mathematical difficulties to be overcome before direct expansions 

become useful (see section 3.4). For these reasons a different 

approach is explored in this Chapter which uses the Extensional Primary 

Field approximation as a starting point. In fact, it turns out 

that the EPF is a type of direct expansion in which only the first 

term is used but which is specified beforehand. 

The kinematical justification for the EPF is from experimental 

observation of die-entry flows, the main features of which are 

described in section 1.2. Provided that the flow remains slow, 

a condition satisfied except for high fluxes of polymer solutions, 

then most of the flow field in the converging region has radial 

streamlines, i.e. v^ << almost everywhere. More important, most 

of the outflow comes from the central portion of the flow whether 

recirculating vortices are formed or not. This means that the 
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2 
velocity field is proportional to 1/r or 1/r for a wedge or cone, 

in which the coordinate systems are polar or spherical, respectively. 

Furthermore, there is considerable evidence that over most of a 

central cone region there is little variation in the magnitude of 

the velocity across the cone region. 

Consider now the whole flow field which is illustrated 

schematically in fig. 4.1, Part a) shows flow towards the apex of 

a cone or wedge with half angle 8 . If the radial velocity component 

is smooth as in part b) (i), then r ^ v ^ / 3 9 is of the same order of 

magnitude as dv^/dr over most of the flow region, and so neither 

simple shear flow, nor irrotational flow are suitable approximations. 

If however, a cone region, where there is little radial variation in 

v , is assumed to arise so that 3v /3r >> r * 3v /3 9, then there must 
r r r 

also be a strongly sheared self-lubricating layer close to the wall 

with r *3v /30 » 3v r/3r,as in part (b) (ii). Thus the flow 

may be approximated by a simple shear flow within < J © J < 9 , and 

an irrotational, sink flow within 0 < |©| < 8 . (The velocity 

profile in part (b) (ii) should not be taken as invariable, as it 

is possible that recirculation occurs in the layer implying a positive 

radial velocity in the neighbourhood of the wall). In this manner, 

the no-slip boundary condition at the wall can be satisfied. 
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Fig. 4.1 (a) Geometry of converging wedge or cone of half 
a n g l e © with polar coordinates (r,0). A - core 
region; B - self-lubricating region. 0 (r) refers 
to position of interface between lubricating and 
core regions. (b) Radial velocity component profiles 
as functions of 0(at some given r): (i) smooth 
profile with no lubrication; (ii) kinked profile 
with sharp change in shear rate ^ v r at 0=0.^ (r) , 
indicating lubrication effect. r 30 

The dynamic justification for the EPF, or eauivalently, for the core region, 

has been discussed in section 1.3 in terms of the Trouton ratio, N T > > 1 . 
r 

The assumed kinematics for the extended model require a stronger 

condition for dynamic consistency. Roughly, it is required that the 

extensional stresses at a particular strain rate are much greater than 

the shear stresses at a shear rate possibly an order of magnitude 

greater than the strain rate. In crude terms this is 

N t >> 1/(0-0 ) » 2/TT (4.1) 
r 

Data for the stresses in uniaxial extension of two rubber compounds 

have been given in Chapter 2. Although extremely high strains were 

recorded, no steady state was reached, which means that a viscosity 

in uniaxial extension cannot be measured and the Trouton ratio intrin-

sically has no meaning. However, a measure of the stress likely in 
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extensional flow is given by the maximum stress achieved in the 

experiment. in turn, this will be taken as a measure of the 

stresses achieved in the sink flows occurring in the cone region. 

For the shear layer, the stress involved either in the 

start-up of simple shear, or at steady values, can be taken as 

representative. From the experimental data shown in figs. 2.14-2.17 

and particularly fig. 2.18, it can be seen that the extensional stresses 

are one or two orders of magnitude greater than the shear stresses 

at comparable deformation rates. This represents sufficient dynamical 

justification. 

To a first approximation the interface 6 separating the 

flow field will be treated as a streamline, i.e. there is no inter-

change between fluid undergoing simple shear and fluid undergoing 

sink flow. In sections 4.1 and 4.2 explicit calculations are 

presented in which the fluid in the cone is described by a UCMF 

(Upper Convected Maxwell Fluid) and the fluid in the shear layer by 

the Ellis Viscosity Equation. Such a model where the two regions 

are not linked by the same constitutive equation will be termed a 

Two-Fluid Model (2FM). In section 4.3, the same calculations are 

done this time for the naive rheological model of section 2.6. Here 

the two regions are linked by the same constitutive equation. Such 

a model will be termed a Two-Zone Model (2ZM). The 2ZM does not rely 

upon 0 being a streamline and so should open up possibilities of 

calculating higher order terms in the approximation method. 

The term 2FM, is only meant to imply that different rheological aspects 

of what may well be one single fluid are being considered. 
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4.1 Wedge Flow 

The equations of continuity and stress equilibrium with 

respect to a polar coordinate system for steady, planar flow in a 

wedge (r,9), with corresponding velocity components (u,v) are 

r fr ( r u ) + r f ? = 0 

7 f 7 C r ( T r r - T 9 6 ) : l + 7 T
r e

 + + W " ° ( 4 ' 3 ) 

r 

The boundary conditions for no slip at the wall, i.e. at 9 = ±6 

require 

u(r,±6) = v(r,±0) = 0 (4.5) 

In the steady state, the flux per unit width 2Q, of fluid crossing every 

section of the wedge must be the same, namely 

0 
Q = / rudr (4.6) 

0 

The convention chosen is that the flux in the converging direction is 

negative. 

The flow is now separated by an interface 9^ defined at 9=9 . 

At this stage of the approximation 9^ is considered to be constant, 

locally and at most slowly varying with radial distance; thus it is 

required that 

3 6 i 
r r « 1 (4.7) 

d r 

The flow within the region J B J < B i s assumed to be a sink flow, 

locally, with a velocity field satisfying the continuity equation (4.2) 
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given by 

K 
u = _ - , V = 0 K a constant (4.8) 

r 

Quantitites designated by '*1 refer to the cone but will only be used 

where possible confusion with the shear layer may arise. The formal 

boundary conditions at the interface are the continuity of velocity 

and the normal and tangential tractions. Neglecting the possible 

slight curvature of 0 , these are 

As 

u = u, (v = v) (4.9) 

P + *ee = P + Tee ( 4 - 1 0 ) 

T = T (4.11) 
r0 r0 

all evaluated at 0= 8 T . Because the core is a sink flow, T _ will 
I r0 

vanish identically. However, it is to be expected that x^g \ 0. 

So to the first approximation (4.11) will not be satisfied. However, 

a measure of the accuracy of the method is provided by the ratio of 

the tractions in (4.10) and (4.11). Thus it will be desirable for 

c = HE®. 
I>?+Tee 

T r e 

e=e i
 , P + T * 9 

« 1 (4.12) 

0=0, 

Since 0 is a streamline there is an extra kinematic condition on the 

flux which is sufficient to determine a unique solution. If the flux 

in the cone is 2q and the flux in the shear layer is 2Q, then 

A A 

Q = Q + Q, Q,Q are constant (4.13) 

Q = -K0 (4.14) 
C© 

Q = J = ru dr (4.15) 
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The effect of the cone flow on the shear layer will be shown to be 

A A 

through 3 ( p + T a o ) / 3 r determined at the interface from (4.10), and DO 

also through the radial velocity of the interface, -K/r. 

A A 

The expression 3(p + T_ 0)/3r for the UCMF, equations (3.5) 
0 o 

and (3.21) can be calculated, first by evaluating the strain tensor 

for the line sink kinematics of (4.8): 

[0] 

\ 

2KS 
2 

r 

0 

0 

u + ^ r 1 o 
r 

0 s = t=t' 

(4.16) 

The stress tensor follows by integration of (3.5) 

rr 

09 

H 

^ (l-£e 5E U > ) 

(4.17) 

in which all other stress tensor components vanish, £ = r /(2AK) 

is a dimensionless local Deborah Number and ji is the viscosity constant 

equivalent to r) in (3.21). The required expression is 

3 , \ A \ 2)iKAp* 
37 99 3 " A p 

where Ap* = + (3+2£) Z^er'E^ ( O 

(4.18) 

(4.19) 

A graph of Ap* as a function of E, 
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Ap* 

P" —"" 

0 8 I 10 

Fig. 4.2 Graph Ap* defined in (4.19) as a function of B, 

is shown in fig. 4.2 with the asymptotes, A p * ~ 2 . 0 , 1.0 for large, 

small Since Ap* does not vary substantially with a suitable 

order of magnitude for Ap defined in (4.18) is 

A p = d/dr ( P + T 0 6 ) = O ( ^ ) 
e=el r 

(4.20) 

The shear layer equations may be found from the continuity and stress 

equilibrium equations (4.2-4.4) once a new variable B = ©-9 (which 

measures the angle from the wall to a variable point)is introduced. 

The transformed equations are 

1 8 , ^ 1 9 v n 
r 37 ( r u ) " 7 3 6 = 0 (4.21) 

7 f 7 C r ( T r r - T 9 9 ) ] " F I b T r 9 + l 7 ( P + T 9 9 ) = ° ( 4 ' 2 2 ) 

"2 k l r T r e ' " 7 3? ( P + T e e > = 0 

r 
(4.23) 

Let x = 6-9 , so that rx is the thickness of the shear layer and 

assume the usual order of magnitude for lubrication theory, i.e. 

x « 1 
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ru/K = 0(1), r 13/86 = 0(l/rx) and 3/3r = 0(l/r) 

According to the usual theory it is expected that v=0(Kx/r). 

If v is larger than this, then retaining the dominant term in the 

continuity equation (4.21) gives 3v/3$ = 0 and the boundary conditions 

at the wall cannot be satisfied except trivially for v = 0 (in 

which case 3v/33 is not the dominant term.) 

The largest term in the strain rate tensor y is 

;re = 7 f ? = ^ < 4 - 2 4 > 
xr 

It is now appropriate to specify a constitutive equation for the 

stress T. Assume a power-law type dependence with 

n m 
Tre = - q l \ e l ' T r r - T e e = - p | ^ r e l ( 4 ' 2 5 ) 

Using (4.24) to give an order of magnitude of (4.25), the order of 

the terms in equations (4.22-4.23) in order of appearance are 

m n 
P / K x q , K x UK oox ~ ( — ) / — (—2~) , equation (4.22) 

r x r x r 

and 

q ^ K ^ equation (4.23) 
r 2 xr 

xr 

The shear stress terra dominates the normal stress term in (4.22) 

provided 

n-m 

a < — ) » 1 (4.26) 
xr 

For the Butyl CI rubber n ~ m and q/p = 0(1). This is also the 

case for a number of melts including HDPE, PP and PS [60]. 
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In addition n=m at high shear rates is a feature of the White-Metzner 

Model which was developed specifically to model the shear stress and 

the normal stress difference in simple shear flow [3 ]. Their model 

is confirmed by data for LDPE and HDPE. 

In any case, provide m-n<l it will always be possible to 

choose x small enough so that (4.26) is satisfied in some region not 

including the origin. As the origin is approached, the normal 

stress difference may have to be taken into consideration. However, 

what follows it will be assumed that the shear stress terms 

dominate. Written in terms of (r,9), (4.22) becomes upon retaining 

the largest terms: 

h ( P + t80' + 7 l e Tre - 0 ( 4 - 2 7 ) 

Of the terms in (4.23), only tne normal stress term is significant 

when n < 1. Therefore in the variables (r,0)f 

7 I ? l p + T e 8 > " 0 ( 4 - 2 8 ) 

and p+T_ 0 does not vary across the shear layer but is determined 
o o 

at the interface. 

For consistency the terms in (4.27) must have the same 

order of magnitude. Thus 
1 

I 2 1-n \ 1+n 

x = o[(?)(Y") )J (4.29) 

If n = 1 and writing q = ja, equation (4.28) is obtained only if 

<< 1 (4.30) 

" h 

and the consistency relation (4.29) is x = 0(|-i/M-) << 1, a stronger 

requirement than (4.30). The 2FM with a Newtonian shear layer is 
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a possible model for wedge flow of a melt in at least two particular 

cases. 

(i) The melt contains a low molecular weight phase which 

is sufficiently mobile to migrate to the surface 

at the wall to form a lubricating layer. Rubber 

compounds exhibiting wall slip, particularly EPDM 

and Nitrile compounds [36] and polymers such as 

HDPE [49] and PVC are examples of such materials. 

(ii) The die-entry is lubricated by an external agent of 

low viscosity which is pumped into the region adjacent 

to the wall. Winter et.al. [32] have used this 

technique in an experiment intended to achieve pure 

extensional motions in the entry region, although 

Caswell [unpublished] disputes the possibility of 

achieving such motions for 0 </< 1. 

Otherwise if the melt is the same material in both regions then the 

zero shear rate viscosities will be identical, P. = JLX- However as 

discussed in the example of section 1.1 temperature rises may occur 

at sufficiently high flux in the die-entry. Most of the temperature 

variation occurs in a thin layer either adjacent or very close to 

the wall. In such cases, it should be possible to contain the 

temperature layer within the shear layer, which would lower the 

effective viscosity jj.. As can be seen from fig. 2.13 for Butyl CI 

a temperature rise of about 15°C causes the viscosity ja to be halved 

with a corresponding decrease in So to this level of approximation 

temperature rises increase the suitability of the 2FM. This conclusion 

is valid for all values of n. 
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Rather than using a Power-Law model, a solution of (4.27) 

is obtained for the Ellis model given by [48] for the viscosity TI 

t . a-1 
H . - 1 + I-H0I (4.31) 
n ' s ' 

where s and a are constants; a is equivalent to 1/n in equation 

(4.25). This model has both a Newtonian constant viscosity region 

at low shear rates and a power law region at high shear rates. 

An expression for the shear rate y „ is obtained from (4.24) and 
r0 

(4.31) and (2.45) 

The shear stress results from an integration of (4.27) 

T Q = -rQAp - K x(r) (4.33) 

where K^(r) is a function satisfying the boundary conditions, 

Let 

T = -rAp9 - K (4.34) 

be the shear stress at the interface and 

x = - rAp© - K, (4.35) 
w 1 

be the shear stress at the wall. Then since Ap < 0, 

t < T w , T < 0 (4.36) 

Before calculating the velocity u, it is necessary to distinguish 

two possibilities. 
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Case I, backflow does not occur in the shear layer, 

in which case 

x < 0 
w 

and T^q < 0 everywhere within the shear 

layer. 

Case II, backflow does occur, in which case 

x > 0 
w 

and t^q = 0 for some 0e(6 ,9]. 

For Case I, substitution of T^q in (4.33) into (4.32) gives 

= jj (rApe+K^ (l+(rApe+K 1)
a~ 1/s° t~ 1) (4.37) 

Integrating to obtain u satisfying the boundary condition (4.5) gives 

u = - - i - {^[(rApQ+K ) 2-(rAp6+K ) 2]+ — _ [ (rAp€M-K ) a + 1 - ( r A P 9 + K ) a + 1 ] } 
(a+l)s a 

(4.38) 

Let £ =
 T

W ~
T

1 = -rApx (4.39) 

a n d A Ck rAp©+K x x 
k = —r = — = y— > 0 (4.40) 

-rApx T —T L 
* I w 

It can easily be shown that the boundary condition (4.9) requires 

that k satisfies 

KApjj. 2 f , . 1 1
 r, ot+1 /, ( 1 a + l n l ,, 

— — = xC {-k-^-t- —— (-) [k - k + 1 ]} 4.41 
r a+1 s 

The flux Q , is calculated from (4.15) as 

^ = - - i + ^ < * a + 2 - « - > a + 2 > 1> 

(4.42) 
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and the interface shear stress x is 

x = (1+k)rApx (4.43) 

In principle, it is possible to obtain x and k from (4.41, 4.42) 

once Q and Q are given. 

The corresponding results for Case II can be shown to be 

KApu. 2 r . . 1 *,.a+l / 4 ..a+l,i . .. 
— — = xC + — t (-) (] -(1-3) )} (4.44) 
r a+1 s 

^ - - c W i + ^ r . ^ V 1 - & H " 2 + < I - 3 > " 2 > » 
(4.45) 

T = (l-j)rApx (4.46) 

where j is defined as 

x x w w 
j = - r = -k = < 1 (4.47) 

C T -X 
w I 

since x -x > x > 0 . 
w I w 

The asymptotic behaviour of x and k and therefore x for 

large and small values of £/s is readily obtained. 

For large c/s, corresponding either to small £ 

or a Power-Law fluid, eliminating x and £/s from (4.41,4.42) and 

(4.44, 4.45) 

, a+1 ,, a+2 ,, ,,a+2, 
ft „ . k + ) / ( a + 2 ) Case I (4.48) 
K k a + 1 - ( k + l )

a + 1 

.a+1 , .a+2 ,, ..a+2. 
~ - J case II (4.49) 

.a+1 ,« ..a+1 
J -(1-j) 

as c/s 00 

The critical value of Q/K signifying the transition between Case I 

and II is given when k = -j=0; thus (Q/K) . = -l/(a+2). 
crit 
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A graph of k as a function of Q/K, for various values of a 

is shown in fig. 4.3. The asymptote as Q/K ® is clearly k=-j h, 

and by using the binomial theorem it can be shown that the asymptote 

as k 00 is Q/K ~ -h. (When Q/K < -h no meaningful solution is 

obtained since it requires x < 0). The important conclusion to be 

drawn as far as the question of uniqueness is concerned is that k is 

a single-valued function of Q/K. 

0-5 

-0-5 

11 '11 \ 1 1 1 
11 \2 U I a = 8 

i 1 1 1 

\ \ \ I k > 0 

\ \ \ I no reverse 

\ \ \ I 
flow 

\ \ \ l Q/K > 0 

\ \ \ \ net outflow 

c Q ^ ^ ^ J L -

minimum ^ ^ • — _ _ _ • — -

1 1 1 1 1 1 1 1 

-0-5 Q/K 05 

Fig. 4.3 Graph of k as a function of Q/K as given in (4.48) 
and (4.49) 

In terms of k, x and T are given by 

(2Ap ) a ji jiK 
Case I 

(4.50) 

a+1 2 a-1 
(i sr . . .a+1 a+1.-1 

(2Ap*? r ) M +<i-j) ) 
p ^ PK 

Case II 

(4.51) 
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2 a-1 1 

UK .. . *2 ja sr . a + 2 (1+k) 
x ~ - H j (4 (a+1) Ap ± , ) _ _ _ _ _ 

r ja j-tK ((1+k) -k ) 

Case I (4.52) 

1 
AK ... 4 X A *2 JJ, .sr"." ..a+1 .a+1 -1 a+2 .. 

- ~ (4(a+l)Ap x ) ((1-D) -3 ) ) d - j ) 

2 a-1 

11 jlK 

Case II (4.53) 

as C/s « 

where the asymptote of Ap as £ 0, which corresponds to C/s-+ 00 / has 

been used in place of Ap itself. 

For small £/s, corresponding either to £ °° or to a Newtonian 

fluid in the shear layer the equations for Case I and II are identical. 

So from (4.41-4.47) 

k£2_±_V6 ^ e / a ^ ( 4 > 5 4 ) 

with the explicit solution for k 

k = - (Q/K + 1/3)/(2Q/K+1) (4.55) 

This expression for k is used to obtain x and x 
I 

x 3 ~ (2Q/K + 1) (4.56) 
jlAp 

2 
T z ~ - ^ (48Ap* M/jI) 1 / 3 (Q/K + 2/3) (1+2Q/K)" 2 7 3 

r 

as c/s 0 (4.57) 

Because it is required that x is finite, thus eliminating the 

possibility of 1+2Q/K 0, the thickness of the shear layer being 

small depends essentially on )j./(! being small as suggested 

previously using order of magnitude arguments. 
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For reasonable internal consistency of the approximation 

method the expression in (4.12) is evaluated. The normal traction 

p+Tgg at the interface is calculated from (4.18) by a straightforward 

integration with Ap* replaced by its asymptotic value as £/s 0. 

2 
Clearly p+x ~ M K / r in this limit, thus the internal consistency 

08 

parameter 

(48) 1 / 3(Ap*) 2 / 3(Q/K+2/3) (1+2Q/K)" 2 7 3 

£ 
as c/s 0 (4.58) 

The approximation is therefore, reasonably accurate or 

internally consistent either for a Newtonian fluid in the shear layer 

or for an Ellis fluid far from the origin when |i/)j. << 1. This is 

precisely the condition for x << 1. (That Q/K should approach -2/3 

is in admissable since then x would be negative). 

• 

From the expression (4.58) for x and the graph of Ap in 

fig. 4.2, it can be seen that if shear thinning does not occur, the 

* 
relative thickness of the shear layer, x/6, increases as Ap decreases 

and that the maximum variation x /x . = (0.5) ~ 1.3. 
max min 

It has been shown that the 2FM is a reasonable method when 

a true lubricating agent exists between the main body of the melt 

and the wall, but when this is not the case i.e. JJ=JJ. the 2FM 

breaks down upstream (r . This means that it is not possible to 

determine Q and consequently x and k from the upstream conditions. 

So far in the analysis Q, the flux in the shear layer, has been treated 

as an arbitrary constant, but in view of the above remarks it might be 

desirable to involve some principle, preferably physical, which enables 

Q to be determined from the downstream flow. Returning to the original 

argument for the 2FM, it was stated that the elongational stress 

should be much greater than the shear stress, so that the interface 
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boundary condition on the shear stress (4.11) is insignificant 

compared to that for the normal traction (4.10). This can now 

be made stronger by requiring that the value of Q should be such that 

the interface shear stress is a minimum. In terms of the accuracy 

parameter C, C should be a minimum with respect to k in the limit 

as c/s 

From (4.52) and (4.53) and the asymptotic value of p+x Q 
9 0 

calculated from (4.18) 

1 
.2 2 a-1 a+2 ,, . % 

c ~ (4(a+l)Ap H. (5£_, , —iiiSL 1 

H »K [ (1+k) -| k| j a + 2 

as c/s « (4.59) 

for Case I and II with keC-^, 0 0) . It can be shown numerically 

that the minimum in C lies on the envelope of the set of curves 

in fig. 4.3, as indicated. For all values of a in the range of 

interest, Q/K is negative (a net inflow in the shear layer) and the 

wall shear stress x^ is positive indicating that backflow occurs with 

the velocity being positive adjacent to the wall. 

The upstream flow field can be calculated using an indirect 

expansion by perturbing about Newtonian flow, the first term of which 

determines the flux Q. This is matched to the downstream 2FM 

through Q. Successive terms in the indirect expansion can only 

be matched once higher order terms are calculated downstream. However 

there is sufficient information to map out the essential features 

of the whole flow field. Before doing this, further examination of 

(4.54), apart from the value of k , shows that 

2 H l L 
C = a + 2 as e/s + « (4.60) 

( I K 
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Since a > 1 for a shear thinning fluid, (4.60) confirms the order of 

magnitude arguments which suggested that the shear stresses become 

negligible in their influence on the cone flow as the origin is 

approached. 

To give an example of the flow field expected for the 2FM, 

the data of the example in Chapter 1 are used for the physical 

dimensions and typical flow rates. This is supplemented with rheological 

data from Chapter 2. The parameters for the Ellis fluid are given 

in Table 4.1; ji and a are the same as for the naive rheological model 

of section 2.6 and s is chosen to fit the power-law region 

- 2 - 2 
Ellis fluid parameters |j.(Ns m ) s (Nm ) a 

Butyl CI 1.05xl0 6 4.4xl0 4 7.7 
6 4 

Chloroprene 2x10 7x10 5.0 

Table 4.1 Ellis fluid parameters for rubber compounds 

a-1 

The asymptotic form of x, (C/s) and C are calculated for the mean 

velocities U at the exit of the converging region. 

(i) (ii) 

U 9.6m s" 1 > 0.12m s" 1 

K=tL r cos45° 1. 6 x l 0 " 2 m 2 s _ 1 2 . O x 1 0 ~ 4 m 2 s _ 1 

0 0 

k -0.41 -0.41 

x 2.2 r 44r 

, / ,a-1 „ „„ -4.1 „ „ -5 -4.1 
(C/s) 0.33r 4x10 r 

1.4 1.4 
C 2.4 r 48r 

-4 2 - 1 -6 2 -1 
Q -6.4x10 m s -8.0x10 m s 

Q -1.3x10 2 m 2 s 1 -1.6xl0~ 4m 2s 1 

Table 4.2 2FM parameters for Butyl CI for flow in wedge 

at mean velocities similar to Chapter 1: r 

is measured in meters, r Q = 1.7xl0~ 3m. 
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The values of r n and r. as defined in fig. 4.1 are 
0 1 

r„ = 1.7*10 _ 3m r 
1 

Using the expression in Table 4.2 the angle subtended by the shear 

layer at r^ is x « 5° for flow rate (ii) and C » 0.09. So even at 

the relatively low flow rate of (ii), the shear layer extends back 

along the whole of the converging region. In this case the upstream 

flow will be a fully developed channel flow. A sketch of the 

streamlines is shown in fig. 4.4. The thickness of the shear layer 

is somewhat exaggerated. 

The flux through the shear layer is small compared to that through 

the core. Thus the interface streamline, when traced back upstream 

and downstream is very close to the wall. The core streamlines show a 

slight curvature due to the influence of the curvature of 0 . 

F i g . 4.4 Sketch of streamlines in converging region 
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4.2 Cone Flow 

The analysis for two fluid flow in a cone follows that for 

flow in a wedge. For this reason the method will not be described 

in such detail as in section 4.1 except where variations occur. 

The equations of continuity and stress equilibrium with 

respect to a spherical coordinate system for steady axisymmetric 

flow (r,d,<f>) and velocity components (u,v,w) are 

1 3 . 2 1 3v cote n 
72 3 7 ( r u ) + 7 30 V = ° ( 4 ' 6 1 ) 

1 3 r 2, . , 3 , cote 
T 37 C r ( T r r - T e e ) ] + 37 ( p + Tee ) + " Tre 
r 

+ i | _ T fl+Is£lii = o 
r 30 r 6 r 

(4.62) 

1 8 / 3 % . 1 3 . . cote _ 
^ " T 37 ( r T r 0 + 7 30 ( P + T 0 0 ) T 0 0 - ° ( 4 - 6 3 ) 

r 

! • ( P + T M > • ° ( 4 - 6 4 ) 

The boundary conditions are 

u(r,±Q) = v(r,±0) = 0 (4.65) 

and the flux Q is given by 

© 2 

Q = 2TT/ r u dr (4.66) 
0 

For an extensional flow field in the cone, the core velocity is of 

the form 

A . J . * * 

u = 2" ,v = w = 0 (4.67) 

r 

Again a Maxwell Fluid is taken for the inner region with an 

constitutive equation in the integral upper converted formalism as 
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defined in (3.5) and (3.21). 

The strain tensor Yj-g-j calculated from the velocity field 

(4.67) to be 

[0] 

/ 3Ks 4 / 3 

I 1) 
r 

!_ (3*L + 1 ) "
2 / 3 

r 

r 

Evaluation of the stress tensor components follows 

(4.68) 

t „ „ = £ { i - r 4 / V r ( 7 / 3 , ? ) > 
rr 

(4.69) 

; 9 9 = ^ ^ = X {l-e 2 / 3e er(l/3,C>> (4.70) 

T = T = T = 0 
re rcf> Q<$> 

(4.71) 

in which T(a,£) is the incomplete gamma function [58] and £ = r /(3AK) 

is a dimensionless local Deborah Number or radial distance. In order 

to enable a complete order of magnitude evaluation of the shear layer 

equations, the normal traction gradient is calculated 

9 A 1 8 r V v -I 2iiAp 
A p = 87 < P + T e e ) = - 2 87 C r ( T r r - T e e ) ] = " T r z T 

r 

A p . J L { ( _ I r 4 / 3
+ i r 1 / 3 - 4 ?

2 / 3 - 3 €
5 / 3 > A ( l / 3 , 5 ) 

A r y o 

+ 2 + 3 c - f r 1 } 

(4.72) 

Asymptotic expansions for large and small £ are obtained 

Ap ~ Y r ' ~ O F r as £ -> 
Ar£ 4 s 

r 
(4.73) 



and Ap 
8 n n i / 3 ) _ 

9Ar£ 
4/3 
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u K 4 / V / 3 

as £ -»- 0 (4.74) 

Thus Ap shows a character in conical different from that in wedge 

* 

flow. A graph of Ap is shown in fig. 4.5. Although far from the 

origin the behaviour is similar to the wedge, i.e. it conforms 

to the Newtonian asymptote, at the origin it has a singularity. 

5 

4 

3 

2 

1 

0 

p* 

Fig. 4.5 Graph of Ap (£) defined in (4.72) 

It is now shown, using an order of magnitude for a power-1 

fluid similar to that in section 4.1, how to obtain the shear layer 

equations. Introduce, th variable 6 = © - 6 and transform equations 

(4.61-4.63) to 

1 3 t 2 A 1 cot(Q-B) n 

T 8 7 ( r u ) - 7 9B + — 7 v = 0 ( 4 - 7 5 ) 

r 

1 3 , - 2 . , cot (9-3) 
"2 3 7 L r rr~ T66 3 7 60 + 7 T r 0 " 
r 

i f r T fl+ IfiS^ii = 0 ,4.76) 
r 3B rd r 

1 3 , 3 1 3 . , cot(B-B) 

T 37 ( r T r 0 - 7 3? ( P + T 0 0 ) + — 7 T 0 0 = 0 

r 
(4.77) 
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Assume the following orders of magnitude 

© - 0 = x << 1 

r 2 u / K = 0(1), r _ 1 3 / 8 B = O ( ^ ) , 3/3r = 0(l/r) 

v = 0(Kx/r 2), T r Q = 0 (q ( — n ) 
xr 

K ra 

T r r ~ T 6 0 a n d T 9 6 " T M = ° < P ( ~ ' ' Y Y xr 

The second normal stress difference x. n-x,,,is chosen to 
08 99 

have the same order of magnitude as the first x on the basis 
rr 00 

of the limited experimental results available. Han [62] reports that 

for a wide range of polymer melts x_ Q-x,, varies between -0.1 and bo <p(p 

-0.7 of x —x__. 
rr 00 

The shear stress term r * 3(x „)/30 will dominate over the 
r0 

normal stress terms in (4.76) provided 

K n - m 

-3-(— T) » 1 (4.78) 
xp 3 

xr 
which is similar to the condition (4.26) and will be assumed to be 

valid. The normal stress term r * 3(p+x Q Q)/30 will dominate the other 
00 

terms provided 

A 4 1-n 
^ (—r-) » 1 as r + » (4.79) 
q J 

xr 

~ 4/3-n 1/3 -1+n 
and X x » as r 0 (4.80) 

q 3 
r 

Thus, far from the origin where the flow field must be 
A 

Newtonian, the 2FM is valid if fj./fi >> 1; the same condition as for 

the wedge. At the other extreme, close to the origin the 2FM is valid 

at least for all values of n < 1 which is slightly different from the 

wedge result. 
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So to first order the pressure does not vary across the 

shear layer. For consistency it is expected that x will have 

the order of magnitude 

1 

3 1-n 1+n 

x = 0 ( 2 (^rr) ) as r « (4.81) 
K 

^ J _ 
3 4/3-n n+1 

x = 0 ( 7 ^ 7 3 (Y~) ) as r 0 (4.82) 
|iX 

Retaining the largest terms the shear layer equations become 

when written in terms of (r,0) 

h ( p + Tee ) + 7 f ? T r e 2 0 < 4" 8 3 ) 

The shear stress is to be determined using the Ellis model (4.31) 

and a shear rate y given by 

1 3 U / „ O/tN 

Y r 9 = 7 39 < 4 " 8 4 ) 

The boundary conditions at the interface 0 = 0^ are 

u = u (4.85) 

P + ;
0 0

 = P + T
0 0

 ( 4
'

8 6 ) 

and the fluxes Q,Q in the cone and shear layer are 

r© 
„ 2 

Q = 2irr u d0 (4.87) 

Q = -2TTK0t (4.88) 
I 

Noting the strong similarity between the equations for cone 

and wedge flow the equations for the flux and the shear stress at 

the boundary of the shear layer are readily obtained for both Case I 

and II corresponding to negative and positive T . They are given by, 
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^ = - f - ! - i + * a + 1 + ^ < * a + 2 - < - > a + 2 n > 
2-rrr 

Case I (4.89) 

= - x^ {]/2 - 1/6 + - H " (D +(1-3) >]} 

Case II (4.90) 

where k is a solution of 

= xC 2t-k-!/2 + - 1 - (^•)°~ 1[k a + 1-(k+l) a + 1]} (4.91) 
* a+1 s 

r 

Case I 

= x C
2 { j - l / 2 + jjij- ( i ) a " 1 [ j a + 1 - ( l - j ) a + 1 ] } (4.92) 

Case II 

and t = (1+k)rApx Case I (4.93) 

= (l-j)rApx Case II (4.94) 

in which T , Z,, k, j have the same meaning as in section 4.1. 

The asymptote for small £/s is identical to the wedge but 

* 

with Q/K in (4.54-4.57) replaced by Q/(27TK) (once Ap has been defined 

for the cone) . However the asymptote may correspond either to £ -*• 0 0, 

or to a Newtonian fluid throughout the shear layer (s . As for 
/s 

the wedge, as £ the 2FM is valid only when n/ji >> 1. But for 

* -1 
s 00 and close to the origin Ap has a singularity according to £ 

* 

Using the asymptote of Ap (4.74) and the definition of Ap (4.72) 

the equations for x and T corresponding to (4.56) and (4.57) are 

x 3 ~ ^ ( 1 / 3 ) O A K ) 1 / 3 M (J> ( 4 . 9 5 ) 

3r * TTK 
H 

2/3 1/3 
T I ~ " t | r T(l/3) ( 3 X K ) 1 / 3 ] (48 fe + 2/3) (1 + 

r r n n 71 

(4.96) 
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as £/s -> 0 

but with s 00 

and £ 00 

The interface angle 6 approaches 0 as r 0. The accuracy parameter 

C can be evaluated once p + x n Q is calculated from (4.74). Close 
o b 

to the origin 

4/3 
, „ 2jmr (1/3) (3XK) - , . Q_. 

p + x ~ as r 0 (4.97) 
6 9 9Xr 

and 

4/3 
C = O(r ) as r + 0 (4.98) 

This confirms the validity of the 2FM for a Newtonian shear 

layer sufficiently close to the origin. 

The asymptote for large C/s, corresponding to a Power-Law 

fluid, is similar to the wedge provided the correct asymptotic value 
* 

of Ap is used. Figure 4.3 with Q/K replaced by Q/(2TTK) is the 

graph of the parameter k. Again the value of Q/(2TTK) minimising 

the interface shear stress x lies on the envelope in fig. 4.3. 

The asymptotic results corresponding to (4.50-4.53) for x and x are 

2+a a+1 p. , s r 3 . a ^/....a+l i. ia+1, 1 „ _ n T T 
x — — ( ) ((1+k) - k ) Case I & II 

* (11 A A 1 1 

(2Ap ) ji UK 
(4.99) 

,a, iXA * 2 I1 ,sr 3 " . a+11 | a+1. . a+2 
x T ~ Hr- (4 (a+1) Ap ^ (-—) ((1+k) - k )) I J 

r (i ^ 

Case I&II (4.100) 

1/3 
with Ap ~ ^ r 

* 4r (1/3) (3XK) 

as £/s °° 

and the accuracy or internal consistency parameter 
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a-1 a 
3 a+2 3 3(a+2) 

flK 

The calculations for the example flow field of section 

4.1 are repeated for the cone. The parameters are given below in 

Table 4.3 for the rubber compound Butyl CI. The flows 

(i) (ii) 

U 9.6 m s" 1 0.12 m s" 1 

K=U(r 0cos45°) 2 1.4xl0~ 5m 3s~ 1 1 . 7 x l 0 ~ 7 m 3 s _ 1 

k -0.41 -0.41 

x 1 . 9 x l 0 3 r 2 * 9 1 . 3 x l 0 5 r 2 * 9 

/ / v a-1 , „ -3 -14 4 0 4.27 -14 
(C/s) 1.2x10 r 1.2x10 r 

3 2 9 5 2 9 
C 4.4x10 r 3.1x10 r 

Q -3.5xl0~ 6m 3s~ 1 - 4 . 3 x l 0 ~ 8 m 3 s _ 1 

Q -6.9xl0~ 5m 3s~ 1 -8.4xl0~ 7m 3s~ 1 

Table 4.3 2FM parameters for Butyl CI, for flow in an injection 
nozzle at mean velocities similar to those 
in example of section 1.1; r is measured in 
meters, r Q = 1.7xi0" 3m 

in a wedge and the cone are not completely similar; the large £/s 

asymptote depends on the fluid relaxation time X, in the case of the 

cone flow, whereas the wedge flow is independent of X. Because the 

relaxation time calculated from experimental data in section 2.6 

was determined through the linear viscoelastic behaviour of Butyl CI, 

it is valid to use that value here; i.e. take X = 12.5s. As in section 

_2 

4.1 consider the size of x which is a maximum at r=r^ = 1 . 1 x 1 0 m. 

Using the expression in table 4.3 for the flow (ii) x « 1 6° 
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The corresponding value of the accuracy or internal consistency 

parameter is C ~ .65. So the shear layer is considerably thicker, 

for cone flow as opposed to wedge flow, and C is somewhat larger 

too. 

The value of (£/s) a * at r=r^ is 3*10^ 4 so that the shear 

layer is essentially a power-law fluid extending the length of 

the converging region. The streamlines for the flow field are 

similar to those sketched in fig. 4.4 and in this case the thickness 

of the shear layer is not exaggerated. 

4.3 Towards a Two Zone Model 

It has been shown in the previous two sections that the 

Two Fluid Model is mathematically consistent. A modification can be 

made to the physical conception of the problem by considering 

the flow field to consist of only one fluid, but which exists in 

two distinct deformation regions or zones. Part of the fluid 

undergoes an irrotational deformation the other part a shearing 

deformation as in the 2FM. The one fluid model is termed a Two Zone 

Model(2ZM). Of course, if the flow field actually contains a second 

distinct phase as in forced lubrication, wall slip, and the situation 

of a relatively cool cone being lubricated by a hot shear layer, 

then a 2ZM is inappropriate. 

Since there is only one fluid present, the 2ZM requires 

only one constitutive equation to be specified. If the method of 

sections 4.1 and 4.2 is to be applicable then the constitutive 

equation must be highly shear-thinning and exhibit high stresses in 

extensional flows. The naive rheological model of section 2.6 satisfies 
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these requirements provided the non-affine parameter a ^ 1. 

To a first approximation, the interface between the two 

zones is treated as a streamline. 

The upstream behaviour of the converging flow field will 

be similar to that of the 2FM and can be determined by perturbing 

around the Newtonian solution. The aim of the analysis in this 

section is to determine the asymptotic downstream behaviour,i.e. 

close to the origin. 

Flow in the Shear Zone 

The naive rheological model possesses a power-law region 

at high shear rates. The shear stress is determined using the 

asymptotic expansion (2.67) and is given for both cone and wedge 

flows (provided the coordinate system is suitably identified) by 

/ 0 , x 1 / a - l I • (1/a 
V ( 3 X ) lyre' 

x - - — (4.102) 
r9 ~ 2aZ(a) sin( (a+l)ir/2a) ' 

A similar expression can be obtained for the first normal stress 

difference for simple shear flow valid at high shear rates 

. ... . 1/a-l|• |1/a 

V r
 ff(BX) | y

rel BX, ...... 
rr Tee = Z(a) asin(Tr/2a) 2 ' 

Clearly X . and T - T _ 0 have the same dependence on the shear 
rU rr ob 

rate. The order of magnitude inequalities (4.26) and (4.78) are 

satisfied, ensuring that the shear stress terms dominate the normal stress 

difference terms in the shear layer equations. 

The Ellis model and the naive rheological model have the 

same high shear rate, power-law region if 
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s = _£ r n l " - 1 ( 4 io4) 
& fll L 9 7. f n l c i n f 1 

Ji = Hq (4.105) 

With these assignations the shear layer parameters x, T , Q/K, are 

given by equations identical to the corresponding equations in 

sections 4.1 and 4.2 for large C/2. 

For a complete evaluation of the shear layer it only remains 
• 

to determine Ap from the core zone. 

Flow -in a Core Zone - Wedge 

In wedge flow the core zone is a line sink with the kinematics 

of (4.8), for which the rate of strain tensor defined in (2.58) 

is in 2-D 

A = °) (4.106) 
r 0 -a 

The solution of (2.57) for the strain tensor E is 

a/2 
E - (1 + 
rr 2 

r 

2Ks " a / 2 

Eee = ( 1 + 2 ) ' s = t " t ' (4.107) 
r 

with all other components of E being zero. The stress tensor 

defined by (2.56) is given as an integral by 

oo a 

T = - f M (s) [ 1- ( 1+ ^ p ) ]ds 
r r n 

oo r - a (4.108) 

T 0 0 = 1 / M(s)[l-(1 + ^ f ) "jds 
0 r 

All other components of x vanish identically. 
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The stress at small values of r depends strongly on the value 

• 

of a, and so therefore do Ap and Ap . (At this stage the analysis 

could be continued in the style of a 2FM by leaving M(s) unspecified 

as there should be enough information in (4.108) to determine the 

asymptotic dependence of Ap for small r.) With M given by (2.59) 

the non-zero stress tensor components become 

. 00 n. S. 
x = - I ~ U - S . ~ a e 1r(l+a/C.)) (4.109) 
rr a L . X. I i 

a=i l 

T e e - r \ r "r'l-a.s.)) 
1=1 1 

in which the r\. and X. are given by (2.50) and = ~. . 
1 i 1 T A . K 

1 
The quantity Ap is obtained from (4.109) as 

1 3 2n KAp* 
Ap = - - f - r ( x -t ) = (4.110) 

r 3r rr 99 3 
r 

n. 
J _ I [ G U ^ J - G t - a , ^ ) ] (4.111) 
ar i i 

where G(a,Z±) = C (2a-l) £ " ^ S ^ ^ i l e ^ ( l + a , ^ ) 

Unfortunately, it does not seem possible to express the infinite 

summation in (4.111) in terms of a finite number of known functions 

So Ap would have to be evaluated numerically to obtain an estimate 

* 

of the asymptotic behaviour of Ap the summation is truncated to 

include only the first term. It can be shown that as £ 0 

ic 1 
Ap ~ (2-1/a)5 " a a ^ h,0 

~ 2 r ( 3 / 2 ) £
3 / 2

 a = h (4.113) 

2££n£ a = 0 

2 , 
in which £ = r /2XK. 
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For the rubber compounds in Chapter 2, 1 > a > h and 

so the first of the asymptotes applies (Should values of a < h 
* 

arise, then Ap < 0 which would necessitate a change in the 

analysis in the shear layer.) 

Calculations can be carried out for the cone and for different 

rheological models but it is probably more important at this stage 

to investigate how higher terms in the approximation method for the 

2FM and 2ZM might be generated. 



- 141 -

CHAPTER 5 
CONCLUSION 

The work presented in Chapters 2 to 4 covers a wide 

range of subject matter, from experimental rheology to non-Newtonian 

fluid mechanics, in an attempt to achieve a better understanding 

of die-entry flow. Progress has been made in certain areas and the 

main conclusions are drawn in this Chapter. It will also be 

appropriate to make a number of pertinent comments here. 

Great care has been taken to ensure that the rheological 

measuring devices, the T.M.S. Rheometer and the Elongation Rheometer, 

give accurate information about shear stress in simple shear 

and the first normal stress difference in uniaxial extension. 

The machines are eminently suitable for stiff polymers, such as 

filled rubber compounds, it has been shown that unintentional slip 

between the rubber and the solid walls can be prevented, by suitable 

design of the bounding surfaces. The T.M.S. Rheometer appears to 

be the first adequately designed machine of its kind available for 

commercial use. The Elongation Rheometer allows experimentation 

at substantially greater extension rates than was previously 

possible. 

The experimental results show that two highly filled rubber 

compounds, Butyl and Chloroprene, exhibit an extensional stress in 

uniaxial extension one or two orders of magnitude greater than the 



- 142 -

shear stress and the first normal stress difference (the latter has 

been established for Butyl rubber only) in simple shear at corresponding 

rates of deformation. By performing the start-up of uniaxial 

extension and simple shear over a range of temperatures it has been 

demonstrated that the Time-Temperature Superposition Principle applies 

to these flows producing a family of master curves. Application 

of the T-T.S.P. provides a means of extending the deformation rate 

range of available apparatus. At certain rates of extension, Hencky 

strains in excess of 8 have been achieved with the Butyl CI compound. 

In general, a state of steady stress is not attained: the stress 

reaches a maximum then declines. 

An exact solution for the slow flow of a general linear 

viscoelastic fluid with radial streamlines through a 180° wedge 

has been obtained. Attempts to achieve solutions with the same 

radial streamlines but in a cone, or with a different constitutive 

equation in a wedge, proved unsuccessful. It is suspected therefore, 

that the exact solution is unique amongst fluids with memory integral 

constitutive equations. However, examination of the perturbation 

solutions of Schdmmer [27] for the wedge flow of 3rd and 4th order 

fluids shows that radial streamlines are obtained for a 180° wedge. 

In the light of the discovery of Chapter 3, this suggests that an 

exact solution with radial streamlines may exist for such fluids, 

though this has not been obV-ained. 

By an investigation of the convergence properties of the 

asymptotic expansion of the exact solution, it was shown that the 

existing perturbation and series solutions are invalid close to the 

origin. The same is likely to be true for axisymmetric converging 

flows. Direct expansions are necessary in the neighbourhood of the 

origin, though the result of such an exercise in section 3.4 indicates 
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that the task is a complex one. If the arbitrary functions arising 

in the direct expansion for a UCMF result from stating the constitutive 

equation in a differential rather than an integral form, then it 

is possible that a solution to the problem may be achieved by 

evaluating the strain tensor YJ-Q-J > f°r a n arbitrary velocity field, 

as a Taylor Series about a position fixed in space. However, this 

is a difficult problem, unlike the evaluation of YJ-Q-J about present 

time which happens to result in a series of Rivlin-Erickson tensors 

[48]. 

A Conjecture has been advanced in order to determine the 

first arbitrary function which occurs in the direct expansion of 

the stream function. If the Conjecture is correct, then there 

are no substantial vortices in the wedge flow of an UCMF for any wedge 

angle. This would substantiate the observation of Boger [9] quoted 

in section 1.2, that vortices will not occur for a UCMF because its 

normal stresses in simple shear are quadratic at all shear rates. 

An approximation method, the Two Fluid or Two Zone Model, 

for the solution of flows in converging wedges and cones has been 

put forward. The Model is mathematically consistent and a number of 

solutions have been obtained. Dynamical consistency for two rubber 

compounds was established using the experimental results of Chapter 2. 

There are a number of points in relation to the Model which require 

further investigation. One of these which was not discussed in 

Chapter 4 is how the downstream boundary conditions may be satisfied. 

The manner in which this could be done is described in Pearson and 

Trottnow [33] for die-entry flow into a short capillary. Their entry-

flow is that of a sink ( u . ^ / O ) which undergoes a sudden velocity 
o <p 

rearrangement at the capillary entrance. The extension of this idea to 
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the 2FM is straightfoward. 

The 2FM and 2Zd are applicable to a wide variety of possible 

die-entry flows, including the situations where lubricating agents 

are present or where a thermal boundary layer arises. The Models 

can easily be extended to flow in a converging annulus. The philosophy 

of the Models should also be suitable for other flows in which high 

extensions occur, as in callendering, for example. A wide range 

of polymers not just the two rubbers investigated in Chapter 2 is 

acceptable for the Model. 

Although recirculating vortices arise in the Model shear 

layer next to the walls and extend throughout the length of the 

die-entry, they are not of the 'thickness' observed in the experimental 

flows of certain polymers such as LDPE. Indeed the assumptions 

of the Model rely on the shear layer being thin. Velocity measurements 

of the recirculating regions indicate that the deformation rates are 

small except in the neighbourhood of the core [9]. So, most of the 

vortex could be modelled as a Newtonian fluid. An improvement to the 

Model for fluids which exhibit large entrance vortices could be 

achieved by splitting the flow field into three regions: a core 

and a shear layer as presently and thirdly a Newtonian vortex. . The 

shear layer would act as a thin transition layer from the core to the 

vortex. 

Finally, a comment about the physical stability of the 2FM» 

It is well known that a number of polymers exhibit a critical shear 

rate above which the flow may become unstable (see for example [49,63]); 

though there is some dependence on the flow geometry. In particular, 

Vinogradov et. al. L63] showed experimentally that the instabilities 

in entrance flow occur at points of highest stress concentration; 

for example, at the join between an entrance region and a parallel 
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duct such as a capillary. The shearing deformation in the 2FM 

occurs in a thin region and not across the whole field and is therefore 

concentrated there. Thus if a critical shear rate is exceeded, it 

will occur at the thinnest point of the shear layer which happens 

to be at the downstream exit. It could easily arise that a critical 

shear rate is exceeded in the entrance region but simultaneously 

(and after substantial stress relaxation) not be attained far downstream 

in a capillary or other parallel-sided duct. 
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APPENDICES 

Al. Calculation of shear stress on rotor surface 

Let the applied torque be T . 

Since the shear stress is effectively constant over the 

whole rotor surface it is readily integrated. Separating the 

integration into the three surfaces of the rotor 

(i) top cone 

! = 2Tr J <rx Jrdr 
0 

2tt 3 
~T~ T Q R 

3 r9 

(Al.l) 

(ii) middle cylinder 

T 2 = 2 x r Q UR h (A1.2) 

(iii) bottom frustrum 

R 2 
T_ = x . f 2ur dr 
3 r6

 J
_ 

- 2TL T ( R 3 _ R
 3 ) 

~ 3
 T

r 0
( R R

1
 ) 

Thus with T = £ T . , equation (2.1) is obtained,i.e, 
1 1 

(A1.3) 

3T 

r 0 2ir(2R 3-R 1
3+3R 2h) 

(A1.4) 
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A 2 . Miscellaneous calculations in the analysis of slip 

on take-up wheel 

Complete solution for a linear elastic solid 

The constitutive equation for a linear elastic solid is 

a = G(y-l), G a constant (A2.1) 

Let a_=a/G, then eliminating y from (2.31) using (A2.1) gives 

2o R 2 o ^ + 1
 r . % n 

+ ; , Le -J 

(A2.2) 

o ^ + l M-LO^ a^exp (-ji (ajt+<f>)) +1 [iLa^ 

Write s = exp[-|J. (oot+<J>) ], y = a-., K = —— 
U J-IL 

.. d d 
then = — - = — llsuj - — 

dt ds 

Thus (A2.2) becomes 

2 • 
p.u)sy{ys+l + K (y+1) (1-s) } + (y+1) e = 0 (A2.3) 

which is of the form of Abel's equation of the second kind. 

Integration follows after inversion considering y as the independent 

variable and s the dependent variable (the equation becomes a Bernoulli 

equation 

= _2^s2 (yzY!£z£> _ 2\is ii±!£±Y!S> ( a 2 . 4 ) 
Y (y+1) (y+l) 

The solution of (A2.4) satisfying the initial condition (2.24), which is 

equivalent to a_(0) = 0, is written in the variables a n and t as 
—0 —U 

exp[|i (u)t+<J>) ] = expCji (<J>+LOQ / ( ( O ^ + L ) R ) ) ] ( O ^ + L ) - A ^ 

(A1.4) 

Equation (A2.5) is an implicit equation for a^(t). 
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Slip ceases when (2.34) holds, so the quantity - • is evaluated from (A2.5) WOQC 

exp[)i (<}>+ (L/R) OQ/ (0^+1) ) 3 (00+1) -OQ 

expCp (<f>+ (L/R) o^/ (a^+1)) ] ( o ^ (L/R) g^/ (Og+1)) -o^ 

(A2.6) 

JiLO 

= 1 if and only if „ ,~°l_1 , = 1 (A2.7) R ( £ 0
+ 1 ) 

Solving (A2.7) for OQ 

% = ( ^ - 1) \ ^ f 1 (A2.8) 

Since o_Q ̂  0 for a physically meaningful situation, (A2.8) implies 

that slip ceases if and only if n > R/L (R/L = h for the take-up 

wheel.) 

Admissability of the no-slip initial condition 

The no-slip initial condition (2.25) is physically realistic 

but it is possibly mathematically inadmissable because of the 

approximation to slow flow and the implicit assumption of the motion 

starting impulsively. 

Consider equation (2.30) which is the solution for the 

velocity u of the filament on the take-up wheel in terras of the 

strain y(9/t) and the time-dependent component of the engineering 

stress a Q ( t ) . Taking the limit of u as t 0 and using the initial 

condition (2.24) 

lim u(8,t) = u)R (A2.9) 
t->0 

as required. 
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However, consider the solution (A2.5) obtained for 

a linear elastic solid. The solution was chosen to satisfy 

the initial condition (2.24). The velocity at 0 - 0 can be calculated 

from (A2.5) by evaluating (Ly /y) or equivalently for a linear 
t 8—0 

elastic solid L O Q / ( O Q + 1 ) . The resulting expression is complicated 

and as only the limit as t ->• 0 is required intermediatory results 

are not stated. It can be shown that 

t-0 V 1 (l+2(j)e -1 

which equals u)R only when (J> = 0 (<J> is given by the initial position 

of the fixed point B on the take-up wheel). 

Condition for non-recurrence of slip when viscous effects 
are important 

Viscous effects are introduced into the model by allowing 

relaxation of stress to occur through a relaxation time A. Consider 

times greater than t and whether slip recurs at 8 = 0. Since the 

stress relaxation in the free length of the filament is independent 

of position, it can be incorporated into ^ ( t ) as in (2.16). 

On the take-up wheel, since t > t the filament adheres and the r ns 

strain remains constant following an element of the filament. This 

means that stress relaxation depends on the time 8/u) , that the 

filament element has been in contact with the take-up wheel and is 

incorporated into (2.36) by multiplying by a factor of exp(-9/(Acjo)) . 

Thus 

a = o.U-e/uOexpf-r--) for t-9/u> > t (A2.ll) 
0 Au) ns 
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However, consider the solution (A2.5) obtained for 

a linear elastic solid. The solution was chosen to satisfy 

the initial condition (2.24). The velocity at 0 - 0 can be calculated 

from (A2.5) by evaluating (Ly / y ) a _ n or equivalently for a linear 
t o—U 

elastic solid L0Q/(0Q+1). The resulting expression is complicated 

and as only the limit as t ^ 0 is required intermediatory results 

are not stated. It can be shown that 

La,. <J> 
L I M _ Z 0 . H S . L S — ( A 2 . 1 0 ) 

t - + 0 V " 1 < 1 + 2 ( 1 ) e * - l 

which equals u)R only when (f> = 0 (<J> is given by the initial position 

of the fixed point B on the take-up wheel). 

Condition for non-recurrence of slip when viscous effects 
are important 

Viscous effects are introduced into the model by allowing 

relaxation of stress to occur through a relaxation time X. Consider 

times greater than t and whether slip recurs at 0 = 0. Since the 
ns 

stress relaxation in the free length of the filament is independent 

of position, it can be incorporated into 0Q(t) as in (2.16). 

On the take-up wheel, since t > t the filament adheres and the r ns 

strain remains constant following an element of the filament. This 

means that stress relaxation depends on the time 0/u) , that the 

filament element has been in contact with the take-up wheel and is 

incorporated into (2.36) by multiplying by a factor of exp(-0/(XUJ) ) . 

Thus 

a = a_ (t-0/aj) exp(-—) for t-0/u) > t (A2.ll) 
0 Xu) ns 
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Slip does not recur at 9 = 0 if (2.38) is satisfied, which for (A2.ll) 

becomes 

• • 

(X ^ + 1) < Xu)H = Y " (A2.12) 

It is not intended that the condition (A2.12) should be 

applicable for times t such that 0 < t _ t
n s

 < < c 1 because the rubber 

has been assumed to be elastic in the neighbourhood of t=t . From 
ns 

the graph of the experimental measurement of the engineering stress 

fig.2.7, it can be seen that stress relaxation is particularly 

important for times when a^ < 0. In this case, (A2.12) is satisfied 

at least when 

Le_ Xpi > 1 (A2.13) 
R 

However, the implication of (A2.12) for an analysis which assumed 

viscoelasticity of the rubber for all times t, is that the time to 

no slip t would be only slightly increased for a large enough 

relaxation time X. 

A3. Wall slip analysis in T.M.S. and Davenport Capillary Rheometers 

Flow in the T.M.S. Eheometer 

The lubricating layer is formed on the face of the smooth 

rotor which is either ground or polished, as is shown in fig.A3.1. 

Let the interface between the layer and the bulk of the rubber have 

an angular velocity fi^ and relative thickness 4>—<J>s. Since the 

flow is viscometric , ^ and <j>s are constant functions of position. 
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bulk rubber 

lubricating 
layer 

< 3 

Fig. A3.1 Upper cone and plate in T.M.S. 

Rheometer with position of lubricating 

layer indicated. 

The angle of the gap between the cone and the plate <}>, is small so 

that the shear stress x, , is approximately constant throughout 

the gap, and the shear rate is constant, though not identical, in 

each of the two layers. It is necessary to satisfy no-slip boundary 

conditions on the walls and continuity of velocity across the inter-

face. 

Assume both the bulk rubber and the lubricating layer 

can be described by a Power-Law equation, then 

• I n •I s 
(i) bulk rubber, inner field, T , = m(y ) , Y = ~r~ 

<f>v <f>s 

(A3.1) 

Q-Q 
,•0 q -0 s 

( n ) lubricating fluid, outer field, P w ) Y = 

(A3.2) 

The subscripts (f>rtp are dropped in what follows. 

The constants m,n are determined from the data for the grooved rotor 

(see fig. 2.9). The other constants, Q g , <J>s, p and q are unknown. 

Assume a functional form for the ground rotor data in fig.2.9 

that 

x = a (-) 
9 

(A1.4) 
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for known constants 

Using the fact that the shear stress is constant for any given fi^ 

fi n fi-ft q 
(A3.4) 

It follows that 

T i/q T i/B 
( - ) - (-) _p « 

l / q 1/n 

(i) " ( L) 
p m 

(A3.5) 

which relates <J> to the other parameters. 

Flow in Davenport Capillary Rheometer 

lubricating layer 

bulk rubber 

Fig. A3.2 Lubricating layer and bulk rubber 

in flow through a capillary 

I 0 
Let v and v be the inner and outer velocity fields; 

z z 

laminar flow is assumed, so v =v n 5 0. Let the inner flow of bulk 
r 6 

rubber have a radius R 1 and letthe outer flow of lubricating fluid 

be situated in re(R1,R] as in fig. A3.2. It is required to satisfy 

continuity of velocity and stress across the interface and the no-slip 

boundary condition on the wall. The solutions for the velocity fields 

obtained from the dynamic equations, and satisfying the boundary 

conditions and using the constitutive relations (A3.1, A3.2) are 
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_ x R' 1/n 1/n+l t 1 / q 1/q+l 
v = T7-T, 11-<!.> > + <— > T A T * 1 ' ^ > 
z mR 1/n+l R' p 1/q+l R 

(A3.6) 

v ° T R 1 / q R r 1 / q + 1 

z = > rrix > ( A 3 - 7 ) 
p 1 /q+ l R 

in which x is the shear stress at the wall. 
R 

The total flux Q can be calculated to be: 

ni l/q+3 R l l/n+3 

3 X R 1 / q > T R 1 / n 

Q = irR { (-£) * + <-*) — } 
p l/q+3 ra l/n+3 

(A3.8) 

Relating the two flows 

The flows in a capillary and a cone-plate device can 

be related by expanding <J>s/4> a n <3 Q as Taylor Series. 

A Taylor Series expansion about <J>s/<J>=l is 

<j> 1/q 1/6 1/n . . . _ 
s „ ,p. , T. ,x. t rhigher order terms 

T ~ = 1 -(„) ( ) " (~) } + { . , , ,1/cn (J) q R m in (p/x) A / 4 } 

(A3.9) 

The expansion is valid for 

lb = Y = Tir > > 1 

p <P-<PS 

that is for a thin lubricating layer with a low viscosity relative 

to the bulk rubber. 

Let the flows in the T.M.S. and Capillary Rheometers be 

compared at the same values of the shear stress; the shear stress 

in the gap is equated with the shear stress at the wall of the 

capillary 

x = x R (A3.10) 
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It is reasonable to suppose that the relative thickness of 

the lubricating layer depends solely on the shear stress at 

a solid surface, thus when (A3.10) is true 

r • ^s 
- = — ( A 3 . l l ) 

Consider evaluating a Taylor Series for Q . Using (A3.9), (A3.10) 

and (A3.ll) an expression is obtained for the term R ' / R in (A3.8) 

l/q+3 1/q 1/0 1/n 2/q 

( V > = 1 - (l/q+3) (2) {(-) - (-) } + 0<<£) ) 
R x a m x 

(A3.12) 

The results in fig. 2.9 for the capillary rheometer are plotted in 

terms of an apparent shear rate y^; 

4 0 
= (A3.13) 

TTR 

which is readily written as a Taylor Series using (A3.8) and (A3.12) 

,, n 1/n 1/n 1/q Y. - 4 { < V / B - A + } + {h.o.t. in (E) } A a m 3n+l m T 

(A3.14) 

This can immediately be rewritten in terms of shear rates 

(with the understanding that they are evaluated at the same value of 

shear stress) as 

2n+l • D 
y = 4(y - - t t t Y (A3.15) 
A ground 3n+l grooved T 

When the lubricating layer is not formed, a = m , 0 = n and the Rabinowitsch 

Correction is retrieved, i.e. 

• 4n • 
Y, = rr Y , (A3.16) 
'A 3n+l grooved 
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A4. Published Paper 

Part of Chapter 3 was recently published [64] and a copy of 

the paper is included here. 
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AN FXACT SOLUTION FOR THE SLOW FLOW O F A G E N E R A L 
LINEAR VISCOFLASTIC FLUID T H R O U G H A SLIT 

A.M. 11 I ' L L 

Ih-partim nt of Cht'micul F.nnin erring and Chcmicul 'l\'clinolo^y, Imperial College of 
Srii'tu i' and Tt'chnolofiy, London, .Sll '7 tGt. Britain) 
i Keceht'd January Hi. 1981 ) 

Summary 

An exact solution for th»* low Reynolds Number How of an upper con-
vected general linear viscoelastic fluid through a slit is presented. The solution, 
which is believed to be isolated, involves radial streamlines. Two of the more 
obvious possible fur ther solution , for converging How are shown to fail. A 
comparison with exper imental results of stress-birefringence measurements 
shows a good qualitative agreement with a special case of the exact solution. 

The theoretical work of Strauss is examined. A particular case of his result 
is retrieved in a manner which gives new informat ion about its general validity. 

1. In t roduc t ion 

General solutions are known for the slow flow of a Newtonian and a 
"power-law -" fluid in a wedge of arbitrary half-angle a (a < 7T/2) which 
involves radial streamlines [1,2]. The velocity field is given in cylindrical coor-

i' iu. 1. ( ' . comet ry a n d c o o r d i n a t e s y s t e m of t h e f l o w p r o b l e m . 

(>37 7-02.">7 81 0 0 0 0 0 0 0 0 / 8 0 2 . T ) 0 Q 1 9 8 1 Elsevier S c i e n t i f i c P u b l i s h i n g C o m p a n y 
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dinates by (see Fig. 1) 

vr=-f(0)lr, v0 = t»z = 0 (1.1) 
for an arbi trary func t ion , f, sat isfying the bounda ry condi t ions . An exact 
solut ion for the wedge f low of an Upper Convected General Linear Yisco-
Elastic Fluid (UCGLV-EF) involving the k inemat ics (1.1) is ob ta ined for 
a = 7t/2 bu t no t otherwise. This solution is given below, together with a dis-
cussion of its characterist ics and a compar ison with the exper imenta l da ta of 
Han and Drexler [ 3 ) . 

2. The Exact Solut ion 

The geometry of the problem is shown in Fig. 1. At the outset no restric-
tion is placed on the wedge half-angle, a . Stress and velocity fields are required 
which satisfy the equa t ions of mass conservat ion (2.1) and stress equil ibrium 
(2.2, 2.3) , the relevant const i tut ive equa t ion (2.4) and the bounda ry condi-
t ions (2.5) for incompressible, steady slow f low. 

V • v = 0 , (2.1) 

V • * = 0 , C2.2) 

r - p6 + t , (2..')) 

t = f A/(s)Y [ 0 , (s) ds , 12.4'. 
b 

v ^ 0 on solid boundar ies , i.e. 0 = t a . (2.TV) 

Equa t ion (2.1) is the const i tut ive equai ton for the UC'GLY-EF [ 1 ,f>]. A 
cylindrical coord ina te system (r, 0, z) is chosen as in Fig. 1. with the r-axis 
coincident with the slit at the apex of the wedge. The assumed kinematics 
sat isfying the mass conservation eqn. (2.1) are wri t ten as 

i>r = -f(0)/r, vn = vz = 0 , I2.H) 

where f is an arbi t rary func t ion of 0 to be de te rmined . The strain tensor . 
7[oii i s readily calculated to be 

" _2/s r v _ _fs_ J 
,.2 rl ( rl + 2 f s ) r2 + 2fH | 

i , 1 

lo 0 o J 
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Combining eqns. (2.2—2.4) yields 

Vp = -/' M(s) V - Y [ 0 , ( s ) d s , (2.8) 
o 

which upon substitution of 7 l 0 ] gives two partial differential equations for 
the isotropic stress, p: 

To' f ^ r ^ ' 
0 ' 

These are integrated to obtain 

.,.2 

„ = - f MM m(i • f )U - *(f) -V - • + tm. 
o * ' 

(2.11) 

/.' - /' .U(s) ln( r! + 2/s) ds + f.,(r) . (2.12) 
0 

when' /, and / 2 are arbitr;u-y functions of their arguments. For the two 
expressions fo r / ; to be identical, the following must be satisfied 

/,("> --•/). , (2.13) 

/".,( n -- f M(s) In r2 cLs + /' M{s){sK/r2) ds + p„ , (2.14) 
o o 

-ir + / - i/v/. (2.15) 

h + -J-tf /')- — /"'/4A = 1 , (2.16) 

for some constants K, p „. The general solution of (2.15—2.16) is 

f((l) = K cos~(t) + Kx) , (2.17) 

where /\ , is an arbitrary constant which, without loss of generality, may be 
set to zero. To satisfy the boundary conditions, f must be zero for some 
values of 0. Clearly the only possibilities are 0 = ±tt/2. Thus a solution is ob-
tained for a 90' wedge and no other. The pressure distribution and the stress 
tensor, r . are given by 

: / 2/v's cos2 0 \ Ks 
p= - I Mis) in(l + J d s + p ^ . (2.IS) 
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= 2K f 
A/(s)s 

r2 + 2Ks cos20 

-cos2tf(l 

—sin 0 cos 0 

—sin 0 cos 0 

cos2'1 

10 0 

A /oca/ Deborah Number can be defined for this flow as 

I)p = 2XK cos 2 0/r 2 = say . 

o ; 

0 ' ds . (2.19) 

oj 

(2.20) 

Figure 2 shows streamlines and lines of constant Dc for this flow. Notice 
that: 

(i) the kinematics of the flow an1 identical to those of ;he corresponding 
flow of a Newtonian fluid; 

(ii) the value of Dc on the solid boundaries is 0; 
(iii) the stress and strain tensors, T and Y|o|. vanish identically on the 

boundaries. 
By taking a particular form of the Memory Function, M, explicit valuer of 

T and p can be calculated. As an illustration, let 

-V(s) = r)/X2 exp( -s /A) , |2.21 i 

which represents a Maxwell fluid. The stress tensor and pressure b e c o m e 

r ~ \ + sin2()II(t) - s i n 0 cos />//(£) 0 ^ 

2rjK T = — , —sin 0 cos 0 //(.-) cos-0//(£) r- i 
0 0 

0 

OJ 

2 . 2 2 ) 

0 = 0 

9="/2 
Fig. 2. S k e t c h of l ines of cons t an t local D e b o r a h N u m b e r ( ) and s t reaml i 
( — — ) . D e b o r a h N u m b e r increases as t he or iqin is a p p r o a c h e d . 
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SO !0 0 15 0 20 0 25 0 

Kit;. 3. Cii' iph of tin- f u n c t i o n / / ( ? ) s h o w i n g the a s y m p t o t i c l imit of 1 as £ 

A i 
+ />.., (2.23) 

where p . is an arbitrary constant, and Et is the exponential integral function. 
The function //(£) is given by 

-^oxp(t) ZitS)) (2.21) 

and is shown in Fig. 3. The stress tensor r v for the Newtonian solution is ob-
tained in the limit as Dc * 0, or £ - in which case / / • 1. If ratios are taken 
between corresponding components of r and r v for the normal stress differ-
ence and the shear stress, the following are obtained: 

>rr ~ T " - = (1 -//(t)(sin2l) — cos20))/2 cos20 , (2.25) 
' . V , . " " ~ . \ . . „ 

r r , ' r V r , - / / ( t ) , 0 0, ±tt/2 . (2.2G) 

Clearly, on any streamline apart from the solid boundary, the shear stress 
tends to 0 as the origin is approached and the normal stress difference ratio 
tends to a range of values in [ ^ , 1 ] depending on the angle of approach. The 
values of }t and 1 correspond to the centre line and solid boundary, respec-
tively. An analytic solution has also been obtained for the Oldroyd Fluid li. 

3. Brief investigation of the possibility of fur ther solutions 

Having obtained a solution for the flow in a converging channel of such a 
simple kinematic nature, an a t tempt was made to obtain fur ther solutions by 
changing the geometry of the flow to a cone or by changing the type of vis-
coelastic fluid. Two examples are given below of the failure to obtain such 
solution- for the wedge flow of a corotational GLV-EF defined on page 339 
of [ 4] and the convergent cone flow of an upper convected GLV-EF. These 
negative results ^ugg'^t that the solution of Section 2 is isolated and does 
not iu-li.nu to a family of such solutions with simple kinematics. 
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Corotational GLV-EF in wedge 

Assuming the kinematics are given by (2.(5) the c<'rotating strain-rate 
tensor is calculated as 

f cos /J(.s-) + f sin P(s) f sin p(s) - f cos 0 ̂  

f sin /3(.s) — f' cos p(s) -f cos 0(s) - /" sin p(s) 0 , 

lO 0 0 J 
r~(l + 2/s/rn 

where (t(s) = f'!2f\\n(\ + 2AY'"2)]. (3.1) 

After substitution of F in the momentum conservation cqn. (2.2), the result-
ing expressions are not integrable in a closed form. However, if ?2p!J)rD0 is 
calculated from the r and 0 components of (2.2), the resulting expressions 
should lie identical. As can lie verified after a lengthy calculation, they are 
not equal for any function, f, except trivially for/"a constant. 

I'ppcr convected GLV-EF in converging conc 

Let the kinematics be given by a non-zero radial component of the velocity 

i'r = —f{0 )/r2 = t \ = 0 (3.2) 

which satisfies the mass conservation equation (2.1). It is readily shown that 
the strain tensor is given by 

0 0 1 (l + "I
s
) " 

I \ r _ 

(3.3) 
Substitution of (3.3) into the momentum conservation equation produces 
three expressions for the derivatives of the pressure, which upon integration 
results in three expressions for p to be satisfied simultaneously 

n-f _(l )(l + pj(l • f 
0 

+ M 0 ) , (•'•4) 

( 3f t \ 1 / 3 

A/(.s')(l ds + f.Jr), (3.5) 

P = f3(r.O), (3.fii 

P = ~ 2 J 
o 
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wlwrl' ll' l'2, l3 arc mbilrary functions of their arguments. However, these 
(\quat iot1s are incompatible and because of the term involving 

(1 + J(.-;/,.:1)'10 

in ( J .·l). no SUd11' (' \.ists ('xccpt trivially for;" a ('()Jl stunt. 

-.I:. Comp;.u-ison with ('xIH.' riment. 

fLIll and nrl'xkr l1;l\,(' pUhlislH'd rl' sulls of ('xJH'rinwnLal rnCltSUfcments of 
stress in a IRO° wedge llsing a birefringence tE'cl1niqu(' . They consider the 
~ h ('m' stress ::md normal stress difference in a rectan gular Cartesian coordin3te 
s )" :--t ('n1. rIPlW(' til(' result s of St'ction 2 must bE' convertl'c\ to Tx.\ - T~. )' and 
T , \ from T,.r - TO /l ancl T,.u to cl1ahlp a comparison to 1)(' mnde. They also LI SP 

a d i UCl"l'n t sign conve n tion in their definition of T from that us('cl in (2.3): 

tilt'rt'fore ll'l s = -- r. Till' transformation requifl'J is l"('adily calculaLt'd as 

So' - s y ." = (Trr - T Oil ) cos 20 - 2T;.() sin 2() 

s" \ :::: - 1,.1) cos 20 -- j-(Tr ,. - Tou ) sin 2U 

(-Ll) 

in \\ hich Uw y-axis corresponds Lo 0 = O. F u r the purposes of comparison the 
"trl'SSl'S fur a .'\ 1 a...x \VeIl Fluid are us(·d as in (2.22) . SubsliLuLion of T rr -- T li ll 

~ til( I '/ /) i n l ' 1. 1) 0 h t~1 ins 

S \.\ s) y = - ('2711':: / r'.!)(cos 2() + 11(0 cos ·to ) , 

s 
.(. 

/ 
/ 

/ 

___ ..L.. 

10 

7l 
/ I 

/ I 
II ! 

15 
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Finally, all variables are written in a dimensionless form 

x = X(2\K)112, y = Y(2\K)1'2, 

Sx* -Syy = (r}/\)(Sxx - Syy) , sxy = (r?/X) S.w . 
(4.3) 

Figures 4 and 5 show curves of constant S.v.v ~ Syy and S V v respectively 
for half of the stress field; the line .v = 0 is a line of symmetry, since SA-.v — Syv 
is an even function of 0 and S,\y is a n funct ion of 0. The .v-axis corre-
sponds to a solid boundary and the origin to the position of the sink. Values 
of the dimensionless stresses are indicated alongside each curve. Figure 6 and 
7 show replotted versions of Figs. 13 and 14 of Han and Drexler [3] for a poly 
styrene melt, Dow Chemical Styron 686. In Figs. 6 and 7 the fluid exits via 
a parallel-sided channel as indicated by the line drawn at .t = 0.192. Again 
only half the stress field is shown. In order to draw these curves in the dimen-
sionless variables of (4.3), values of tj and X were estimated from viscometric 
flow data for the melt Styron 686 as reported in [5]. Both parameters were 
taken as the limiting values at vanishing shear rate: 

V = Vo = 3 X 10r> poise , 

X = Inn —rr,— = 2.5 sees , 
7-o2 7

277o 

where A/̂  is the normal stress difference in steady shear flow. 
Qualitatively, the agreement between the theoretical and experimental 

curves in Figs. 4—7 is good and the values of the stresses are of the same 
order of magnitude. In fact, the theoretical results predict stresses approxim-
ately a factor of 3 larger than the reported experimental values. A quantita-

0 I m 0 5 x 10 15 

Fig. 6. G r a p h of cu rves of c o n s t a n t S , Y X ~~Syy\ e x p e r i m e n t a l . 

Fig. 7. G r a p h o f cu rves of c o n s t a n t S X y \ e x p e r i m e n t a l . 



- 167 -

333 

tive comparison, however, is of limited value primarily because of the finite 
width of the exit used for the experimental results and the inadequacy of any 
model of the UCGLV-EF type in describing observed melt behaviour. Good 
qualitative agreement is also achieved with the experimental results for two 
other melts, high density polyethylene and polypropylene, as reported in I Ian 
anil Drexler [3]. 

5. Discussion 

Previous at tempts to obtain solutions for the wedge flow of an Upper Con-
vected Maxwell Fluid include that of Strauss [6], who obtains a series solu-
tion in terms of decreasing powers of r of the form: 

( r , 0) = £ 
tn(0) 

/1 — 0 >' 

c - T a'l(l)) c - T b n ( 0 ) Q ( 5 J ) 

Zirr - —J „ , - LJ , 
,1-0 I n = 0 " ri = 0 ' 

where 0 is a stream function and 5 the stress tensor. Using the results of 
Section 2, his result is retrieved by expanding (2.22) in powers of 1/r for the 
special case of a = 7r/2 and slow flow. However, the expansion is an asymp-
totic diverging series for the stresses S r r , Sr0, S,to because of the terms involv-
ing oxp(£) I'-i(^). This suggests that (5.1) is an asymptotic diverging series ' 
expansion for all values of a , certainly for u = 7t/2, and is valid only far from 
the origin. Therefore, serious doubt is cast on the meaning of Strauss' Figs. 
7—10 which show streamlines for wedge flow at various values of a , at low 
Reynolds Number, and the position of a separation point in the flow field. 
Perhaps what is required is a series solution in ascending powers of r to ob-
tain information about the flow near the origin. 

5. Conclusions 

Although the results of Section 3 in no way constitute a proof, it seems 
likely that the solution in Section 2 is an isolated result. However, it is useful 
as an indication of the magnitude of the stress involved in wedge flow. The 
most remarkable characteristic of the solution is that, following any stream-
line towards the origin, the magnitudes of the normal stress difference and 
the shear stress become increasingly smaller than the corresponding values for 
a Newtonian fluid of similar viscosity, 77. 
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Notat ion 

I)c local Deborah Number 
Kx exponential integral function as defined in [7] 
f arbitrary funct ion specifying velocity field 
II particular funct ion defined in (2.24) 
K arbitrary constant 
M memory funct ion 
p isotropic stress or pressure 
s t ime difference between present and past lime 
S dimensionless stress tensor 
v velocity vector 
X, Ydimensionless cartesian coordinates 
a wedge half-angle 
P particular funct ion defined in (3.1) 
-yjo] strain tensor in upper convected formalism 
y deformat ion rate or strain rate tensor 
5 identity tensor 
77 fluid viscosity 
X fluid relaxation time 
n momen tum flux tensor 
r stress tensor 
Tv stress tensor for Newtonian fluid 

£ auxiliary symbol designating the inverse of the Deborah Number 
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