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INFLUENCE OF SHEAR LAG ON THE COLLAPSE OF 

WIDE-FLANGE GIRDERS 

by 

Antonio Ressano Garcia Lamas 

ABSTRACT 

The study reported in this thesis deals with an analytical 

investigation into the collapse of wide flanges of box girders 

in a shear lag environment taking into account the effects of plasticity 

and large deflections. 

An analytical model of a simply supported box girder plate assem-

blage was developed to reproduce the most severe shear lag effects under 

point loading at mid-span. 	The numerical solution uses finite differences 

and dynamic relaxation and was calibrated against other proven numerical 

techniques. 

An experimental study of isolated flange plates loaded under simi-

lar shear lag conditions has been programmed to provide data to validate 

the theoretical research and to investigate some problems associated with 

stiffened flanges that have not yet been modelled analytically. A special 

testing rig constructed for this programme is described in the thesis. 

The analytical work involves the identification and study of the 

characteristics of the principal flange modes of failure and the associated 

upper bounds to its capacity. 	A parametric study on unstiffened flanges 

explains in terms of the aspect ratio and the slenderness parameters the 

interaction between these two modes: the failure in shear of the web-flange 

connections, directly associated with the shear lag effects, and the failure 

by inelastic buckling in compression. 	The results can be used to estimate 

the degree of redistribution that can be assumed at collapse. 	The appli- 

cation of these conclusions to stiffened flanges when edge panel buckling 

can be avoided is also investigated. 	The thesis demonstrates that addi- 

tional problems are involved when the edge panels fail in combined shear 

and compression. 	Methods to extend the present solution to account for 

these effects are outlined. 

The conclusions regarding redistribution are compared with 

other proposals. 	A method for approximating the degree of redistribu- 

tion that can be assumed at collapse is proposed and used to interpret 

available experimental results from tests on large scale box girders. 
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CHAPTER 1 

INTRODUCTION 

1.1 	IDENTIFICATION OF PROBLEM AND REVIEW OF PREVIOUS WORK 

The flanges of a beam subjected to bending are normally 

strained in shear across their width. 	In wide flanges these shear 

strains may produce a highly non-uniform distribution of longitudinal 

direct stresses with the maximum values occurring at the web-flange 

junction. 	This shear lag effect makes it impossible to apply 

directly the elementary theory of bending in the calculation of stresses 

and deflections. 	For design purposes, in the linear-elastic range, 

it is normal to use the concept of an effective width over which the 

longitudinal stresses are assumed to be uniformly distributed. 	With 

this device simple bending theory may be used to predict peak stresses 

and/or deflections. 	For stress calculations the effective width can 

be expressed as 

be  = (aav/amax)b 	
1.1 

where aav and  amax 
are the average and the maximum values of the longi-

tudinal stress distribution across a flange of width b, Fig. 1.1. 

The ratio b 
e
/b is usually known as the effective width ratio and thus 

calculated as: 

be/b = a
av/omax  
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Fig. I. 1 Distribution of longitudinal stresses in flange subject to . 

shear lag effects 

For conven1ence in design the term effective width has been 

'associated with other non-uniform stress distributions. It 1S used, 

for example, in the context of compressive plate buckling to express 

the non-uniform stressing due to the development of large deflections. 

The confusion between these two concepts*was discussed by Schade ( 1) . 

Historically the study of this problem can be traced back to 

von Karman ( 2) , through Chawalla and others (3-5) . The 

necessity of considering shear lag effects in design first arose in 

aircraft cons truc tion ( 6 ) ( 7) bu t soon naval archi tec ts ( 1 ) ( 8) and 

civil engineers were also concerned with the same problem. The deter-

mination of effective widths for bridge deck flanges has been the subject 

f 1 
. .. (10-13) o severa 1nvest1gat1ons . 

The extensive study of the shear lag phenomenon in box girder 

bridges conducted by Moffatt and Dowling(13) (14) constitutes, however, 

the major contribution towards the understanding of the effects of the 

various parameters involved. Their design proposals have already 

* the shear lag effective width concept is associated with a first order 
effect while the"buckling effective width"is associated with a second 
order one. 
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influenced several codes of practice*. 	These proposals isolate the 

flange aspect ratio b/Q as the main parameter affecting shear lag, 

while adjustments in effective widths were proposed to allow for other 

parameters such as loading type, amount of stiffening, cross-sectional 

dimensions etc. The application of these results is however limited 

to cases where a linear-elastic approach is valid. 

In many real structures slender, initially distorted flanges 

develop large out-of-plane deflections when compressed thus increasing 

the non-uniformity of the in-plane stress distribution. 	The initial 

distortions can reduce the values of effective width ratios from the 

early stages of loading. 	This was shown by the author in reference (18) 

and is illustrated in Fig. 1.2 for a compression flange of a simply 

supported box girder under a point load at mid-span. 	The variation of 

the elastic effective width ratio with loadingt is greatly influenced by 

the amplitude of the initial imperfect shape indicating that non-linear 

shear lag effects cannot be neglected in slender flanges. 

First in-plane yielding is likely to occur at an earlier stage 

than predicted by neglecting out-of-plane movement. 	Further loading 

eventually produces a redistribution of stresses through plastic action. 

In the context of ultimate load calculations it is necessary to establish 

the extent to which redistribution can take place. 

* 
- Merrison Committee, steel box girder bridges design rules, reference(15). 

- Department of the Environment, Interim rules for design and construction 
of plate girders and rolled section beams in bridges, Tech. Memo, BE 3/76, 
Jan. 1976. 

- ASCE, Recommendations on box girder bridge design. 

- Czechoslovak Standard for Steel Bridges, draft of revised CSN 73205. 

- DnV Rules, Appendix C, DnV, 1977. 

- BS 5400, Part 5, and draft of Part 3, references(17 and 16). 

t see method of presenting results in section 1.3. 
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This problem was first considered for steel box girder bridges 

by the Merrison Committee in their appraisal rules(19). 	In the calcu- 

lation of the collapse limit in stiffened langes it was permitted to 

consider full redistribution* when flange failure was governed by the 

failure of plate panels. 	Such redistribution was not allowed when failure 

was associated with torsional buckling of open-section stiffeners. 	This 

somewhat intuitive limitation was intended to ensure that advantage of 

redistribution was not taken in cases of inadequate post-buckling capa- 

city(20)  . 

Some studies have been made of the interaction between in-plane 

shear lag and out-of-plane buckling action. Bogunovic (21)  was probably 

the first to investigate theoretically the elastic buckling of 

plates in non-uniform compression due to shear lag effects produced in 

plating eccentrically stiffened by open stiffeners with loading uniformly 

distributed along their length. 	The bending deflection of the stiffeners 

was not considered thus reducing the problem to a bifurcation analysis of 

critical loads. 

Later, Maquoi and Massonnet(22)  presented the results of an 

analytical study on the elastic large deflection behaviour of an ortho-

tropic plate panel acting as a compression flange of a double web beam 

subjected to a bending moment distribution produced by point loading. 

The effect of initial imperfections was considered and, as in reference 

(21), Fourier series solutions were used. 	This study was an extension 

of a previous investigation by the same authors(23)  of the ultimate 

capacity of orthotropic flanges in axial compression. 	As material non- 

* full redistribution in the sense that non-uniform compression associated 
with shear lag can be neglected at collapse, and the ultimate effective 
width associated with buckling of a uniformly compressed flange plate 
may be adopted. 

13 
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linearity was not considered the Volmir-Skaloud criterion for the 

collapse of plates in compression was used. 	This assumes that the 

ultimate flange strength is reached when the mean membrane stress along 

the longitudinal edges (adjacent to the webs) is equal to the uniaxial 

yield stress. 	These edges were assumed to be free to pull in. 

It was as a conclusion of this study that Maquoi and Massonnet 

(22)(24) proposed a design method for considering the effects of shear 

lag in the calculation of the ultimate strength of stiffened flanges. 

To explain these proposals it is necessary to introduce the 

extension of the effective width ratio concept, defined in expression (1.2), 

into the non-linear range. 	It will be designated for a flange plate 

cross section by i  defined* by taking not the maximum longitudinal stress, 

but the yield stress, thus: 

11) oav/0 1.3 

Maquoi and Massonnet defined the efficiency of a compression flange panel 

located between two cross stiffeners by the ratio of the average longi-

tudinal stress at the mid-length of the panel and of the yield stress in 

compression, when their collapse criterion is just satisfied. 	It would 

be equivalent to the value of p  at the mid-length section at collapse. 

They proposed that this efficiency could be approximated by multiplying 

the elastic shear lag effective width ratio by the buckling effective 

width factor for the plate in axial compressiont. 	This method will be 

discussed in more detail in Chapter 5, and it will be shown that it leads 

to a too conservative design. 

The consideration of plasticity in the plane stress analysis of 

* see also section 1.3. 

t these authors suggested Faulkner's (25) 
	formula for its calculation. 



15 

plate girders was the basis of a numerical study by Albrecht(26)  using a 

finite element solution. 	Some results of this study concern the deter- 

mination of the ultimate load capacity of simply supported box girders 

under mid-span point loading. 	Analysing these results Albrecht, and 

later Roik 
(27) 

 recognised that plastic flow could produce redistribution 

of longitudinal stresses from the web to the flanges while increasing 

the shear forces on the web. 	As will be shown in Chapter 4 the web 

shear capacity places an upper limit on the flange efficiency (measured 

by 0 which, in a plane-stress context, can be expressed in terms of the 

b/R parameter. 	These authors, however, did not recognise that theore- 

tically, their results should be related to this upper bound expression. 

Their conclusions, therefore, were simply statements of the influence of 

shear stresses on the reduction of effective width ratios for cases with 

high b/A values. 	Albrecht's results will be discussed in more detail 

in section 4.3 since they also provide numerical confirmation of the 

flange failure modes identified in this thesis. 

It is interesting to note that Roik's(27)  and Maquoi and 

Massonnet's(22)  papers were presented at the same conference in 1976, 

both dealing separately with the two non-linear effects (material and 

geometric non-linearities) that must be considered in the study of the 

influence of shear lag on flange collapse. 	These theoretical investi- 

gations had been stimulated by experimental work which had started years 

before at Imperial College. 

Results of this programme of tests related to the shear lag 

problem were presented at the same conference by Dowling, Mciolani and 

Frieze(28). 	The tests were conducted on three pairs of large scale box 

girder models. 	They will be designated by Models 1 and 2, 3 and 4, 
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9 and 10, retaining the notation used in the original paper since these 

tests have been reported elsewhere(29-32). 	The two models of each 

pair had the same cross-sectional dimensions (see Table 6.1) and material 

properties. 	The first model of each pair was tested as a simply supported 

beam under central point load (Fig. 6.1). 	The second models were tested 

under two point loading to produce pure moment over the central region 

so that the flanges in this area could be assumed to be under uniform 

axial stress. 	The effects of shear lag in the first models were then 

studied by comparison of results with the other model in the pair. The 

elastic behaviour of Models 1, 3 and 9 provided a good confirmation of 

the shear lag effects predicted by the elastic finite element approach 

reported in reference (13). 	Comparison of ultimate moment results led 

the authors to conclude that in the first two models the presence of 

shear lag in the flanges had no significant weakening effect on the strength 

of the girder. 

Model 9 was designed with a higher b/2, ratio (Table 6.1) to 

exaerate the shear lag effects. 	Redistribution of stresses in the 

compression flange was also identified. 	Plate buckles developed first 

in the edge panels while the central bay deflected inwards. 	The forma- 

tion of these buckles progressed across the mid-span cross section towards 

the longitudinal central line. 	Unfortunately, partly due to different 

initially deflected shapes, the compression flanges of Models 9 and 10 

failed in different modes; the central bay of Model 9 failed by plate 

compression, while that of Model 10 failed by stiffener outstand com-

pression. The quantification of the shear lag effects in the collapse 

of Model 9 was thus more difficult. 

Observation of the behaviour of this model showed that the 
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strain in the plate approximately followed the elastically predicted 

shear lag distribution almost up to the ultimate load. 	The ratio of 

strains corresponding to o 	/o (see Fig. 1.1) was maintained at 
max min 

all cross sections and for this model was approximately 3 at the mid- 

span. 	This was certainly also verified in the tests on Models I and 3 

where this ratio was approximately 2. 

The authors concluded that for full redistribution to be possible, 

the stiffener/plate combination near the edges would have to sustain 

without significant unloading* a level of compression straining predic-

table by multiplying the strain needed to cause plate panel collapse by 

the elastic ratio of a 	/o On Model 9 this redistribution was max min 

accompanied by local plate buckling, thus causing permanent deformations 

before ultimate capacity was reached. 	Serviceability considerations 

led Dowling et al.((28) and discussion to reference(14)) to propose for 

design an arbitrary limit of 2 on the ratio of o 	/o , with correspond- max min 

ing restrictions on the slenderness of the plate and stiffener outstands. 

Although no point-loaded model failed by. stiffener compression, 

an attempt was made to extend to these cases the conditions for full 

redistribution. 	According to the suggested conditions, the stiffener 

outstands and the plate panels should be capable of being strained to 2.5 

times and 4.0 times the yield strain respectively, without significant 

unloading. 	The authors(28)  further concluded that these restrictions 

can be satisfied by flats with a ds/ts  ratio of 0.4/E/aos  and plate 

panels with maximum slenderness of 2.77✓E/aop. 

These proposals although based only on a small number of experi- 

* for design recommendations "significant unloading" was defined as a 
fall-off in load carrying capacity greater than 10 per cent of the 
maximum load. 



ments were included in the Draft of the British Bridge Code(16)  since 

they correspond to an improved approach in comparison with the earlier 

Merrison Rules' criteria for redistribution. 	They are still restricted 

to placing a limitation on plate geometries for which full redistribution 

may be assumed. 	Outside these limits a greater knowledge of the mecha- 

nism of redistribution would be needed to specify the reduction of col-

lapse effective widths due to shear lag effects. 

To validate the possibility of extending the proposals to cases 

of failure by stiffener compression another box girder (Model 12) was 

purposely designed to induce this mechanism of failure in a point-loading 

test. 	To achieve this, slender stiffeners were used and an outwards 

initial distortion 	(away from the stiffener outstands) was imposed on 

the central panel (Fig. 6.7). 	The same shear lag characteristics of 

Model 9 were retained, namely the b/9 flange aspect ratio and stiffening 

factor a (see Table 6.2). The tests on this model were carried out 

before the Steel Plated Structures Conference, 1976, but were not reported 

in reference (28). 

In 1976, the author joined the Imperial College team working on 

this project and played a major role in the calibration, instrumentation 

and testing of Model 12. 	The behaviour of this model will therefore be 

described in more detail in Chapter 6. 	The observed collapse mode was 

initiated by torsional buckling of the central panel stiffeners.  situated 

at a quarter width of each side of the longitudinal central line. 	Local 

tripping failure of these stiffeners at mid-span was noticed prior to 

the maximum load being attained. 

This very interesting phenomenon was somewhat unexpected. 	In 

Model 10*, although the stiffeners were more stocky, the general mode of 

* loaded to produce pure bending over the central span such that the 
flange could be assumed to be under uniform axial compression. 

18 
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failure also corresponded to stiffener compression and lateral deflections 

were observed at the mid-span in all the stiffeners. 	The higher strain- 

ing of the quarter width stiffener outstands in Model 12 thus had to be 

attributed to some interaction of shear lag effects with this mode of 

failure. 	An analytical explanation of this phenomonon is presented in 

this thesis. 	After testing Model 12, the experimental evidence relating 

to the interaction of flange mechanisms at failure in a shear lag environ-

ment indicated that a fundamental investigation of the problem was needed. 

This was the theme suggested for the research project reported in this 

thesis. 

To the author's knowledge only two works on the subject have, 

however, been presented since then. 	Carlsen, Sgreide and Nordsve(33)  

using a finite element program for large deflection elastic-plastic ana-

lysis of plates, examined the problem of the ultimate load of a stiffened 

compression flange. 	However, plate panel buckling was only approximately 

considered. 	To simulate the shear lag type of loading an axial end 

shortening was applied to isolated simply supported flange panels in 

accordance with the elastic shear lag strain distribution. 	This was 

based on the experimental observations by Dowling et al.(28), that is, 

the strain distributions follow the elastic pattern almost up to collapse. 

The type of loading and the approximations considered were too speculative 

for their conclusions regarding redistribution to influence the understand- 

ing of the failure mechanisms. 	Crisfield(34), also using a finite ele- 

ment approach, analysed the inelastic behaviour of a single box girder 

under point load at mid-span. 	The compression flange was divided into 

three equal panels by two longitudinal stiffeners. 	This study was pre- 

sented in a discussion to reference (33) and the plate characteristics 
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were chosen to induce local panel buckling. 	However, the overall 

dimensions, namely the b/2 flange ratio of 1 to 3, were not chosen to 

enhance shear lag effects. 	Considerable redistribution was achieved 

as should be the case for girders with such dimensions according to the 

results presented in this thesis. 

1.2 	SCOPE OF THE THESIS 

The results of the research reported in this thesis are organized 

in three main chapters. 	Firstly, the basic modes of failure of a com- 

pression flange under a shear lag type of loading are discussed. 

Secondly, the interaction between the mode of failure directly 

associated with shear lag effects and the failure by inelastic buckling 

in compression is investigated. 	This initially involved a parameteric 

study of unstiffened flanges concentrated on the effects of the main 

parameter influencing shear lag, the flange aspect ratio b/Q, and the 

main parameter influencing buckling, the plate slenderness b/t. 	The 

effects of initial imperfections and material properties were also studied. 

The conslusions drawn from this parametric study were tested on stiffened 

flange cases where overall collapse in plate compression was the governing 

buckling mode. 	The results presented were chosen to illustrate the main 

differences associated with orthotropy of form in the context of shear 

lag/buckling interaction. 	Only compression flanges divided into three 

panels by two longitudinal stiffeners were used in this study. The problems 

associated with panel buckling in stiffened flanges were examined in the 

same context but were not treated in detail. 

Finally, an attempt to correlate the general conclusions of the 

parametric study with the experimental information available from the box 

girder models tested at Imperial College is presented. 
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A computer program purposely developed to analyse a complete 

model of a simply supported box girder plate assemblage was used in all 

these studies. 	Limitations in the formulation of the stiffener-plate 

interaction restricted the analysis of stiffened compression flanges 

to only a few cases where panel buckling occurs. 	The program was also 

used in an attempt to numerically explain the failure of Model 12 (intro-

duced in Section 1.1) by stiffener torsional buckling. 

1.2.1 	Analytical Model  

The computer program used throughout this thesis is based on an 

analytical modelling of a box girder plate assemblage where the most 

severe shear lag effects can be reproduced (i.e. by point loading). This 

required a careful modelling of the web-flange connections. 	The com- 

pression flange was assumed to be free from rotational restraint from the 

webs in order to simulate an independence from web buckling. 	Consequently 

out-of-plane bending effects on the webs and•tension flange behaviour were 

eliminated. 	This allows a considerable numerical economy. Plasticity 

effects were considered in all the plates and the modelling of large 

deflections on the compression flange behaviour followed recent numerical 

analysis of isolated plates(35)(36), 

Unstiffened and eccentrically stiffened compression flanges were 

considered. 	The discrete character of the stiffener action in vertical 

bending was taken into account (torsion and lateral bending were neglected). 

The box girder model, Fig. 1.3,was considered simply supported 

and loaded under point load, generally at the mid-span, by applying 

over the web depth either uniformly distributed displacements or shear 

stresses. 	As an alternative a uniformly distributed load over the webs 
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was also allowed for in the program, but this type of load was not con- 

sidered in the thesis. 	Closed and open types of cross sections were 

studied (Fig. 1.4). 

A computer program based on this model was written in Fortran IV. 

Its results were calibrated against other numerical techniques since no 

accurate experimental data was available for this purpose. 

1.2.2 	Design of a Flange Testing Rig  

It was for the reason mentioned above that a programme of experi-

mental tests was proposed for funding to the Department of Transport. 

The aim of this proposal was to provide experimental verification for the 

analytical approach which was being developed. 

A rig was designed by the author in which it will be possible 

to test a series of small scale unstiffened and stiffened flange panels. 

The principal features of the rig are that: 

1. it can be re-used for several ultimate flange tests as the webs 

are constructed from very high yield stgel; 

2. it will apply shear loading to the edge of the flange panels in 

a manner representative of that occurring in actual flanges; 

3. it will allow the flanges to pull in freely and rotate freely 

at their junctions with the webs; 

4. it will allow plates of various aspect ratios and slendernesses 

to be tested under the most severe shear lag loading condition, 

i.e. point loading. 

Details of the rig are shown in Appendix II. Its manufacture 

required highly skilled workmanship under close supervision. 	For this 

reason the work was carried out in the Imperial College Civil Engineering 

workshops and supervised by the author. 	It is now near completion. 

23 



24 

1.3 	SOME DEFINITIONS AND NOTES ON PRESENTATION 

The net compression or tension force at a flange cross section 

can be measured at any stage of loading by the inelastic effective width 

ratio 1p defined for unstiffened flanges in expression (1.3). The ulti-

mate capacity of a flange of a simply supported girder under point load 

at mid-span will then be given by the maximum value of i  at that cross 

section (11) 	) . 
max  

The definition (1.3) of J  is also valid for stiffened flanges if 

o 
av 

is taken as the average longitudinal stress over the plate and the 

stiffener cross sections and by defining a flange equivalent yield stress 

to allow for different materials in the plate and the stiffeners. 	For 

the compression flange these quantities are defined as follows 

aav  = (foy  dA)/Acf 	 1.4 

aocf 	(oopAp + a
osAs)/Acf  1.5 

where a 	and a 	are the yield stresses of the plate and the stiffener 
op 	os 

materials respectively (for the other symbols see the Notation) . 

The geometric stiffening factor a defined as 

a = A /A s p  

expresses the distribution of the total cross-sectional area of the flange 

(Acf) between the plate and the stiffeners 

1  
A 	1 + a Acf 

a  
As 	1 + a 

A
cf 

1 .6 

1 .7 

1.8 

The definition of a can also be extended to account for different material 



properties by introducing an equivalent stiffening factor defined as 

a' = a oo
/o s op 

This enables the distribution of the flange squash load between the plate 

and the stiffeners to be expressed as 

_ 	1  

oopA _ p 	1 +a'  (oocfAcf)  1.10 

oosAs 	1 + a' (oocfAcf)  

These expressions will be used in Chapter 4. 

The behaviour of the flanges under loading will be described in 

all the figures by the variation of iU in relation to the mean longitudinal 

strain 
cm 

along the web-flange connection (non dimensionalised by dividing 

it by the yield strain value). 	This provides a convenient coordinate 

system for comparisons with results of isolated plate behaviour in dis-

placement controlled axial compression (or tension). 

The criteria for choosing dimensions and material properties 

described in section 5.2 were followed, unless specified otherwise, in 

all examples. 
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CHAPTER 2 

THEORETICAL MODEL 

2.1 	CHOICE OF THEORETICAL MODEL 

To accurately reproduce the edge stresses associated with shear 

lag effects on a compression flange it was necessary to model a complete 

unit of a box girder. 	Considerable attention was needed to ensure that 

the web-flange interaction was reproduced correctly. 	Special care was 

taken to represent a point load so that the severe shear lag effects 

that occur under localised loading could be obtained. 

Extensive information was available from a series of tests on 

large scale box girders(32)  and from numerical parametric studies of 

elastic shear lag effects
(13) 

conducted at Imperial College. 	This 

enabled appropriate support and loading conditions to be chosen and 

simplifications in the analytical model to be made. 	Most of these re- 

late to boundary conditions. 	For example, the idea of separating flange 

behaviour from possible complication by web buckling by assuming no rota-

tional compatibility at the common edge arose from a study of earlier 

work. 

This boundary condition was only included, however, after con-

sidering the possibility of mechanically reproducing it in a test rig. 

Such a rig*has been designed by the author, and is being constructed to 

provide controlled experimental data to further validate the theoretical 

research contained within this thesis. 

To 	interpret 	the shear lag effects on the flanges it was 

* see Appendix II 
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necessary to compare them with results for similar plates loaded in 

axial compression. 	Isolated plates could have been analysed using 

available programs(32)(36) but,instead,it was found convenient to 

organize the present program to consider the compression flange sepa- 

rately. 	The appropriate boundary conditions are described in section 

2.5.5. 

To model the behaviour of the compression flange the von Karman 

large deflection equations, as modified by Marguerre(37), to incorporate 

the effects of initial distortions, were used. 	The decision to isolate 

the compression flange from the effects of web buckling led to the assump-

tion that the web and tension flange could be described by plane stress 

equations thus considerably simplifying the numerical solution. 

For the parametric study a further simplification was introduced 

by considering the compression flange as part of an open box, as repre- 

sented in Fig. 1.4 by cross-sections CS2 and CS3. 	This simplification 

was justified by experimenting numerically with both models as described 

later. 

The investigation of shear lag/buckling interaction was first 

conducted on unstiffened flanges, but the action of stiffeners was later 

considered mainly to study the differences associated with orthotropy of 

form. 	The derivation of the plate-stiffener interaction presented in 

this chapter can be considered as a simplified and refined reformulation 

of the ideas contained in a paper by Basu, Djahani and Dowling(38)  for 

studying discretely stiffened plates. 	The stiffener actions on the 

plate are derived as line loads in terms of plate deformations and adap-

ted to be used with finite differences and dynamic relaxation in the 
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method of solution. 	This problem illustrates how this numerical tech- 

nique can be conveniently extended to consider structural discontinuities. 

The material behaviour was assumed to be elastic-perfectly plastic 

yielding according to the von Mises yield criterion. 

Two different options were available to deal with plasticity in 

the compression flange: the multi-layer method and the single-layer approach. 

Both methods were applied successfully to similar plate analysis (using 

finite differences and dynamic relaxation) by Harding
(35) 

and Frieze
(36), 

respectively. 

The multi-layer approach, extensively used in finite-element 

analysis(39)(4o), consists of dividing the plate thickness into layers, 

the yield of each being determined by the von Mises yield criterion. 

After a load increment, stress-strain relationships can be determined at 

each layer using a Prandtl-Reuss flow rule. 	These are integrated through 

the thickness to obtain plate rigidities for use in terms of stress and 

strain resultants for the next increment of loading. 

The single-layer, or 'area' approach, uses a function of the six 

stress resultants and an associated flow rule to assess yield over the 

whole thickness and to directly calculate tangential rigidities. 

Ilyushin's general yield surface derived for shells from the von Mises 

criterion has been the basis of approximate yield functions used with this 

method. 	The method assumes that the plate at a point is either elastic 

or at yield over the whole thickness. 	The intermediate elastic-plastic 

states and the continuous loss of stiffness from the onset of surface 

yielding, in a combination of in-plane and bending strains,are thus neglec- 

ted. 	The unloading from a previous plastic state is also assumed to be 
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a sudden full-thickness elastic process. 

These are considerable disadvantages in comparison with the 

multi-layer method which, if used with a sufficient number of layers, is 

capable of modelling the real behaviour as closely as the theoretical 

yield assumptions allow. 	The multi-layer method, however, requires con- 

siderably more computer storage. 	This was the main reason for utilising 

the single-layer approach in the present research. 

Theoretically this method should overestimate the ultimate capa-

city of plates but results obtained for plates in axial compression using 

the two methods compare satisfactorily (see Fig. 3.18, section 3.5.5). 

This is perhaps due to the fact that although the single-layer approach 

delays the detection of plasticity, in predominantly in-plane loading 

cases the differences should not be very significant. 	It is also pos- 

sible that during the loading history a delayed yielding of some points 

can be compensated by simultaneous elastic (therefore more sudden than 

in reality) unloading of other points previously at yield. 

Crisfield(41)  and Frieze(42)  have documented the use of the 

single layer approach in plate analysis but both authors employ the same 

approximation to Ilyushin's yield surface. 	In the present research 

another more rigorous expression is also used and both are compared for 

some cases. 	A detailed description of the method is presented in 

section 2.4 to allow comments to be made on its limitations. 

Despite the inability to reproduce the transition between fully 

elastic and plastic states, the concept of using a yield surface expressed 

in stress resultants is of such appeal in its simplicity, when compared 

with the multi-layer method, that it suggests that more research should 
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be directed to combining the advantages of the two methods. 	Crisfield(43)  

has already attempted this by using a pseudo hardening parameter to des-

cribe that transition, chosen as an acumulated equivalent plastic curva- 

ture. 	In this way he is able to bring the ultimate capacity of plates 

in axial compression closer to the multi-layer values. 	In so far as 

post-collapse unloading is concerned,however, the stress-strain relations 

inexplicably diverge. 	This discrepancy may be either due to the inaccu- 

racy of the approximate yield surface used or to the choice of the transi- 

tional parameter but the idea is certainly promising. 	In the present 

research the use of a more accurate yield function did not present any 

problems and it is therefore intended to experiment with it in a similar 

form in future work. 

2.2 	PLATE EQUATIONS 

The coordinate systems of axes used for each plate are indicated 

in Fig. 	2.1. 

Only the governing equations for the compression flange are pre- 

sented. 	The plane stress equations can easily be obtained by omitting 

the terms involving bending or out-of-plane quantities in the relevant 

equations. 	The expressions for the strain resultants in terms of mid- 

plane displacements and the equilibrium equations of an element of plate 

(Fig. 2.2) are independent of material properties and can be summarised 

as follows: 

in-plane strains Ex  = eu/ax + 2(aw/ax) 2  + (aw/ax)(awo/x) 

Ey  = av/ay + 10w/ay)2 + (aw/ay)(awo/y) 

Exy= au/ay + av/x + (aw/ax)(aw/ay) + 

+ (aw/ax)(awo/ay) + (aw/ay)(awo/ax) 	2.1 



curvatures Xx  = -a2w/ax2  

Xy  = -a2w/ay2  

x = -a2w/axay 
xy 2.2 
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equilibrium in 
x direction:3Nx/3x + 3Nxy/3y = 0 

y 	" 

 

:3N /3y + aN /ax = 0 
x
y 
 

:32Mx/x2  + 2(32Mx /9)ay) + 32M7/ay2  + 

+ Nx(a2(w + wo)/ax2) + 2Nxy02(w + wo)/axy) + 

+ Ny(a2(w + wo)/3y2) = 0 	2.3 

The sign convention for the stress resultants is indicated in Fig. 2.2 

where positive stresses are represented acting on the plate element. 

In the present study no external lateral loading acting on the plate was 

considered. 

For elastic-plastic treatment of the step-by-step loading, 

finite incremental strain-displacement relationships can be obtained 

from expressions (2.2) by simply subtracting from the current values those 

calculated in the previous load increment. 	For example, the expression 

for the increment of the first strain component is: 

Acx  = au/ax - Du /3x + i(ōw/ax - aw/ax)((aw/ax + aw/x) + 

+ 20w 0/3x)) 	 2.4 

where subscript p designates previous values. 

The strain increments are designated for convenience of presen-

tation, as components of a strain increment (6x1) column vector de. 

Corresponding increments of stress resultants (AN) can be added to the 

previous stresses to obtain the current total stresses involved in the 

It 



33 

equilibrium equations (2.3). 	Using matrix form, the column vector of 

current total stress, N, is. therefore calculated as follows 

N=AN+N 	 2.5 
-P 

The stress—strain relations can be expressed in linear incre-

mental form, for generality, as follows: 

AN = CAc 	 2.6 

C being a (6x6) symmetric matrix of coefficients representing instanta- 

neous or tangential rigidities. 	For elastic loading and unloading this 

matrix reduces to the usual set of plate elastic rigidites: 

Cx 
CI 0 

C1 C 0 I 	0 

0 0 Cxyl 

IDx  D1  0 

0 	D1 D 0 

0 0 DXY 

For an isotropic plate: 

Cx  = C = C1/v = C = Et/(1 — v2) 

C 	= CO —v)/2 = Et/2(1 +v) 
xy 

and 	Dx  = D = D1/v = D = Et3/12(1 —v2) 

D 	= DO —v) = Et3/1 2(I +v) 
xy 

2.8 

The calculation of C depends on the yield assumptions and the 

description of the elastic—plastic behaviour. 	The method followed in 

this study is discussed in section 2.4.3. 

Ce  

2.7 
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2.3 	STIFFENED FLANGES 

Only stiffeners with thin rectangular cross sections were con- 

sidered. 	As referred to before the main purpose of analysing stiffened 

plates was to investigate the effects of orthotropy of form in the con- 

text of shear lag/buckling interaction. 	Consequently, all the flanges 

studied had only a few stiffeners and most were simply divided into three 

panels by two longitudinal stiffeners. 	For these cases neglecting the 

torsional rigidity of the stiffener was compatible with the assumption, 

used throughout this study, of flange edges being free from bending res- 

traints from the webs. 	The effects of the small torsional rigidity of 

these thin stiffeners would in any case be difficult to consider in an 

elastic-plastic treatment and would unnecessarily complicate the program. 

These effects were disregarded by assuming that the stiffeners 

behave as beams connected to the bottom face of the flange by a ficti-

tious "door hinge"imposing compatible axial straining and vertical rota- 

tions. 	Similarly, the resistance to lateral bending of the stiffeners 

in the x-direction, following the u displacements of the plate, was 

neglected. 	The cross sections of these beams can then be assumed to 

remain plane for vertical bending and axial straining. 

Using the above assumptions, the longitudinal strain in the 

stiffener at a distance z from the mid-plane of the plate can be obtained 

from the Marguerre equation for the corresponding strain in a plate layer 

at that depth as: 

ez  = av/ay + Z(9w/ay)2  + (aw/ay)(aw/ay) - za2w/ay2  2.9 

The corresponding stresses can be calculated using a simple elastic per-

fectly plastic stress-strain relation in the following way: 



z ds  

t12 ts  

—
i

t 

T 

(a) interaction line forces 
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(b) actions on deformed element of stiffener 

Fig. 2.3 	Stiffener-plate interaction forces 



G
Z 

= EE 	if 	Ig I < EO 
z 	z 	Z 

or 2.10 

o =±o 	if 	k ~ > E z 0 	z 	0 

The interaction of stiffener and plate can be treated by considering 

longitudinal and vertical line loads acting along the connection at the 

plate mid-plane level as indicated in Fig. 2.3a where the forces per unit 

length are denoted by F and Fz. 

The equilibrium equations for an element of stiffener, as repre-

sented in Fig. 2.3b, if referred to the system of axes centred at the mid- 

plane level, provide expressions for these forces. 	For that purpose the 

axial force N 
s 

at the stiffener cross section and the moment M 
s 
of the 

stresses ozin relation to an axis parallel to the x direction and centred at 

mid-plane level 

t/2 +ds 
N = t f 	o dz 	 2.11 N
s 	st/2 	z 

t/2 +ds 
Ms = ts f 	ozzdz 

t/ 2 
2.12 

Equilibrium of forces along y gives: 

F _ aNs/ ay 	 2.13 

and along z gives 

Ns (a2 (w + wo) / ay2 ) dy + (aT/ y) dy - Fzdy = 0 	2.14 

parallel to the x direction 
Moments about the axis rovide a beam equilibrium equation between T 

and Ms
: 
s 

T = aMs/ay 	 2.15 

36 



By substitution the following expression is obtained: 

FZ  = 92Ms/Dy2  + Ns(a2(w + wo)/ay2) 	 2.16 

This derivation of the plate-stiffener interaction forces can be con-

sidered as a simplified version of the elastic approach(38)  which con-

siders the torsion and lateral bending of the stiffener and consequently 

involves the derivation of two extra corresponding line loads. 	In 

this approach it was assumed that the stiffener cross sections do not 

distort and remain plane and normal to the plate mid-surface along the 

line of intersection. 	Shear strains in the stiffener were also neglected. 

This elastic formulation was extended by Djahani(44)  for the elastic-

plastic analysis of stiffened plates, assuming that the stiffener elastic 

torsional rigidity (warping rigidity was not included) applies throughout 

the loading history. 	This should overestimate somewhat the torsional 

stiffness in the plastic range. 	To consider the complexity of a full 

solution of the coupled compression-bending-twisting problem would seem, 

however, unjustified in the presence of other simplifications that have 

to be introduced, namely, stiffener local buckling effects. 	This was 

also the view of other authors who dealt with similar stiffeners in plate 

analysis(45). 

In comparison, the present simplified model should, therefore, 

lead to a lower bound to Djahani's results for the plate ultimate capacity. 

On the other hand, it must be emphasised again that, in all the flanges 

to which the present analytical model was applied, the torsion of the 

stiffeners was not expected to have a significant effect. 	Some assess- 

ment of the importance of the neglected effects will be made during the 

discussion to the calibration of the numerical program. 
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The presence of the line interaction forces F and Pz, implies 

a discontinuous distribution of the in-plane and transverse shear forces 

on the plate across the stiffener line. 	Theoretically, this would 

require the flange to be subdivided into panel strips between stiffeners, 

with longitudinal common edges on which these line actions would be 

included as boundary conditions. 	However, in the solution described 

later, a discretization based on finite difference technique allows the 

derivation of special equilibrium equations for nodes on the stiffener 

lines, to approximate this discontinuity problem. 

When more interaction components are considered other discon-

tinuities in the corresponding stress resultants should be taken into 

account. 	Basu, Djahani and Dowling(38)  in their approach, however, 

derived equilibrium equations for plate elements over stiffener lines by 

considering these line forces distributed over a finite plate width. 

The method of solution of references(38) and (44) subsequently uses an 

intermediate differential formulation of those equations in terms of dis-

placements which are, in the author's opinion, sqmewhat misleading regard- 

ing the problem of boundary conditions. 	It could be argued that as 

finite difference forms are in any case used for calculating the deriva-

tives there is an implicit 'smearing' of the line forces and consequently 

of the discontinuities. 	However, ignoring these discontinuities, the 

equilibrium equations involve an order of derivatives for which there are 

then, apparently, insufficient boundary conditions. 	The problem of the 

boundary conditions at the end cross section of the stiffened flange is 

discussed in section 2.5.2. 

38 
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2.4 	PLASTICITY 

This section deals with the method adopted to describe the 

elastic-plastic range of the compression flange behaviour. 

The elastic-plastic behaviour of the webs and tension flange 

can again he considered a particular case of the general formulation by 

reducing the general yield function to the terms involving only in-plane 

stress resultants. 	All the other expressions in section 2.4.3 remain 

valid. 

2.4.1 	Ilyushin's Yield Criterion  

In the context of a deformation theory, Ilyushin(46)  studied, 

with the usual thin shell assumptions, the problem of elastic-plastic 

material behaviour in shells of arbitrary geometry. 	Neglecting the 

influence of transverse shear stresses in the yield condition he demon-

strated, apparently for the first time, that a finite relationship bet-

ween the six stress resultants* exists when all layers over the shell 

thickness are sufficiently strained to have yielded according to von Mises 

criterion. 	This can be considered as a full-depth yield condition. 

As pointed out by Crisfield(43)  this would presuppose that in cases where 

membrane action is not predominant, unrealistic large curvatures would 

be required before yield could be established by such a criterion, though 

similar limitations are common to most yield criteria used in limit ana-

lysis. 

The relationship was formulated in parametric form choosing, for 

convenience of the various integrations involved in the calculation of 

* components of the vector N in expression (2.5). 
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the stress resultants, two parameters, A and p. 	These are defined as 

ratios of equivalent strains* at three different depths over the normal 

to the mid-surface: 

A = e2/el p = eo/e1 2.17 

Subscripts 1 and 2 respectively indicate the negative and positive 

faces of the shell and eo  is the minimum value of the equivalent strain 

distribution. 	In some cases this minimum corresponds to a layer within 

the shell thickness (referred to by Ilyushin as bending-dominant cases) 

and for others to a fictitious depth outside the shell (in-plane dominant). 

The physical interpretation of these parameters is, however, not impor-

tant to the study of the yield condition and it is only sufficient to 

point out that by definition they verify the inequalities: 

0 

p 	I 

2.18 

The original Ilyushin yield condition was derived by expressing in terms 

of A and p the following three non-dimensional quadratic forms of the 

stress resultants: 

Q = 
(N2 x

- NXNy  + N2  + 3N2 )/N2 

gm = (M2  - MXMy  + M2  + 3M2 
)/M2 

2.19 

M  Qt 	(NxMx  -'II NxMy  -ZNyMx  + NyMy  + 3NXyMxy)/N  Mo  

where 	N
o 

= a 
0 
t 	and M

0 
= a 

0
t2/4. 

e = ? 1c2 + cx
c + E2  + a E2xy * equivalent strain: 
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Fig 2.4 Ilyushin's yield surface 



Using Ilyushin's notation the parametric expressions are: 

Qt - A 	(12Y2 + ~2) 

Qm — i F (u2(u2 + A2)1,2 + (4p2 + A2) 4,2 + 

+ 2p2AcJ Y — 2p2`YX + 2A(DX + x2) 

Que- A 
2 
 (p2/ 2 + Acp2 + 1124)T+ (DX) 

where 

   

    

A l = I ✓I - 42 ± ✓A2 - 42 1 

A = (1 - A2)/A1 

= A - 1 

ln 1 + ✓I —u2 
+ ln 

A + /X2—p2  

p 	 p 

X = I/1 —p2 ±A✓A2 —p2I 

These auxiliary variables are calculated using the positive sign for 

bending dominant situations and the negative sign for in-plane dominant 

cases. 

Expressions (2.20) represent in the space of the variables Qt, 

Qm and Qtm a surface which is, consequently, a three-dimensional image 

of a yield surface in the space of the six stress resultants. 

Ilyushin studied some properties of this continuous and convex 

surface in the Qt, Qm and Qtm space. 	As Qt and Qm are non-negative 

forms, all the surface is situated in the first quadrant of the coordi-

nate system (Qt,Qm,Qtm) and is symmetric* about Qtm = 0, the positive 
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= 

* values corresponding to A' = 1/A and p' = p/A mirror those for A and p. 
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values corresponding to p 	1. 	Only half the surface needs to be 

examined and a sketch of its shape is given in Fig. 2.4a. 	Most of the 

surface corresponds to bending dominant situations and only a small por-

tion, not touching the coordinate planes, to in-plane dominant ones. 

The two zones are separated by lines where p = A. 

Ilyushin also showed that the surface is limited by lines 

corresponding to p = 0 where 

and 

Qm  = (1  - Qt) 2 

IQ tm I = ( 1 - Qt ) 

2.21a 

2.21b 

The maximum values of Qtm  are attained over these lines and the absolute 

maximum corresponds to a point A (Fig. 2.4) of coordinates (Qt  = 1/3; 

Qm  = 4/9; Qm  = 2/3 V1). 	The projection in the plane Qtm  = 0 of p = 0 is 

represented in Fig. 2.4b, together with the intersection of the surface 

with this plane corresponding to A = 1 and drawn using values given by 

Ilyushin. 

• 

2.4.2 	Approximate Expressions for Ilyushin's Yield Surface  

The parametric form(2.20)of the yield surface is not directly 

usable in practical problems where an explicit expression of the stress 

resultants is required. 	Several approximate expressions for the 'exact' 

surface have been proposed in Qt, Qm  and Qtm  space. 	They have been 

reviewed by Robinson(47)  in a comparative study of their relative accuracy. 

Ilyushin(46)  has pointed out that the straight line joining the 

points B and C, Fig. 2.4b, closely approximates the line A = 1. 	He 

therefore suggested that a good linear approximation to the surface could 

be obtained by considering two planes passing by that straight line and 
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the points where Qtm  has relative maxima (point A in Fig. 2.4). 	Such 

planes are defined by 

Qt + m + 1  IQ tml = 1 	 2.22 

Robinson(47)  has concluded that this approximation is the best of all the 

other linear proposals. 	It has been used with success in several research 

analyses of plates (41,42,44)  and incorporated in the present computer 

program as an optional yield condition. 

As the true surface is convex a considerable part of the linear 

approximation is contained within it. 	This therefore leads to a con- 

servative or 'safe' estimation of yield. 'Unsafe' regions can however be 

found outside the lines AB and AC and the larger differences between the 

surface and the planes, measured along Qtm'  occur over the limiting line 

p = 0 as should also be expected from convexity. 	Using expressions(2.21) 

it is possible to calculate the coordinates Qt  = 0.683 and Qm  = 0.100, 

corresponding to the considerable maximum difference of 0.113. 

Most of the 'unsafe' area lies near or ÿn the in-plane dominant 

region, as can be seen from Fig. 2.4b. 	This contradicts the possibility 

of extending to all in-plane loading analyses of plates the general impres-

sion
(48) 

 that this approximation is conservative. 

Results for plates in compression using this linear surface com- 

pare well with those obtained from a more rigorous approximation. 	This 

agreement could be explained perhaps by assuming that over the whole plate 

safer assessments of yield can be compensated by unsafe ones. 

The approximate yield surface of expression(2.22) does not vary 

smoothly across the straight line Qt  + Qm  = 1 on the plane Qtm  = 0 and 
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this constitutes a major disadvantage for its use with an associated flow 

rule. 	To obviate this problem Crisfield(40)  suggested that the normal 

to the surface over this line and at all points for which IQ
tm

I < 10
_4 

 

should be considered horizontal and directed perpendicularly to Qt + Qm  = 1. 

This suggestion was followed in the present numerical analysis. 

From the non-linear approximations available Robinson(47)  quotes 

two proposed by Ivanov
(49): 

Qt  + 1Qm  + ✓4Qm + Qtm = 1 

4(Q
t  Q

m  - Qt /I) 
Q t 	1Qm 

 

Qt  0.48Qm  + '/` n + Qtm = 

2.23 

1 	2.24 

and concludes that they represent a substantial improvement over the 

linear expression(2.22). Both coincide with Ilyushin's surface over the 

limit corresponding to p = 0 or Qm  = (1- Qt)2, and the second is almost 

'exact' . Robinson compared the accuracy of the various expressions based 

on calculated values of Qt, Qm  and Qtm  using expressions(2.20)over a 

fine mesh of X and p values. Substitution in the first members of the 

various approximations produces results that are either greater than 

unity (the approximation being 'safe') or smaller ('unsafe'). 	From 

Robinson's results it is possible to conclude that: 

0.935 : exp.(2.22) 	1.133 

	

1.000 	exp.(2.23) 	1.096 	 2.25 

	

0.990 	exp.(2.24) 	1.002 

The improved accuracy of the second Ivanov approximation is obvious and 

it was therefore introduced as an option, mainly for checking the use of 
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expression(2.22),in the numerical program. 	Its analytical complexity 

did not present any problem in the numerical treatment but it was cer-

tainly the reason why Haydl and Sherbourne(50)  preferred to use the first 

Ivanov approximation in the limit analysis of circular plates under 

lateral loading. 	The Ivanov surfaces have also the advantage of being 

smooth and differentiable throughout. 

As the numerical solution considers both expressions(2.22)and 

(2.24)they will be designated for convenience as Iluyshin I and Ilyushin II 

respectively. 

2.4.3 	Expressions for Plate Tangential Rigidities  

Using the assumptions of incremental plastic theory, Olszak 

and Sawczuk(S1)  showed that a yield surface for shells of "von Mises 

material" could also be derived in six-dimensional stress resultant 

space. 	The form of the surface would be similar to the one given 

earlier by Ilyushin based on deformation theory, thus clearing doubts 

about the possibility of using it in an incremental plastic analysis. 

From Drucker's postulation(52)  as the Prandtl-Reuss flow law is valid 

for the material, a flow rule associated with that yield criterion can 

be accepted in generalised stress-strain rate space(53). 	This conclu- 

sion had already been arrived at by Onat(54)  for Ilyushin's surface. 

For convenience the yield surface expressed in (2.20) will be 

represented by 

f(Ni) = 0 	i=1, ...,6 	 2.26 

where Ni  are the stress components of vector N defined in equation (2.5). 

The plastic potential flow rule is taken in the form 
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AEp  = 	If, 	 I 3 0 	 2.27 

where Ac is the plastic component of the vector AE of strain resultants; 

y is the unknown flow parameter representing the magnitude of the strain 

rate AEp; and f, is a column vector of components f,i  = of/aNi  

(1=1, ..., 6). 

For perfectly plastic flow the stress increment vector AN must 

remain tangential to the yield surface or 

f,T  AN = 0 	 2.28 

Elastic incremental stress-strain relations can be written using (2.6) 

as 

AN = Ce(AE - AEp) 	 2.29 

Substitution of (2.27) and (2.29) in (2.28) gives 

f,T  Ce  Ac  
Y = 

f T  Ce  f, 

Substituting this expression back into (2.29) and using appropriate 
• 

associativity of matrix multiplication a relation between AN and AE follows: 

2.30 

AN = CeAE 

Ce f, f,T Ce 

  

AE 
f,T  Ce  f,  

2.31 

Hence, the matrix C of tangential rigidities defined in (2.6) can be 

expressed as: 
Ce 

f, f,
T Ce 

C = Ce  

 

2.32 
f T e  , C f, 

The calculation of these rigidites by the direct use of a yield function 

of stress resultants is the fundamental difference between the single 

layer and the multi-layer approaches. 



The use of an approximate expression in place of Ilyushin's 

correct yield function in the above expressions involves a degree of 

error difficult to estimate. 	The flow rule applied to the two-planes 

approximation (Ilyushin I, eq.(2.22)) corresponds to a constant direc-

tion for the normals on each half of the surface and clearly Ivanov's 

expression (Ilyushin II, eq.(2.24)) has an even greater advantage in 

this respect. 

2.5 	BOUNDARY CONDITIONS AND LOADING 

The boundaries of the plates forming the box girder model can 

be divided for convenience of presentation into four categories: 

- fictitious boundaries associated with symmetry simplifications; 

- edges situated at the ends of the box and where the support 

conditions are defined; 

- longitudinal edges between web and flange plates; and finally 

- the web cross sections (in general at mid-span) over which 

vertical point loading is applied. 

In this section the analytical conditions considered at the 

various boundaries are presented with reference to any special numerical 

treatments which are needed. 	These are discussed in detail in Chapter 3. 

A particular approach was also needed to deal with most of the conditions 

in the plastic range. 

The various boundary conditions are summarized in Fig. 2.5 

for a quarter of a closed box for the case of double symmetry. 

2.5.1 	Conditions Along Lines of Symmetry 

Due to longitudinal symmetry of geometry and loading, symmetry 

of behaviour can be assumed for all cases, thus reducing the problem to 
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Fig. 2.5 	Summary of boundary conditions for double symmetry 
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the analysis of half a box girder. 	In most cases symmetry about the 

mid-span cross section can also be considered and only a quarter of the 

box has to be modelled (Fig. 2.5). 

Symmetry can be introduced by assuming in-plane displacements 

and slopes of out-of-plane displacements to be zero across the corres-

ponding sections (represented in Fig. 2.5 by the central lines) and 

shear stress and twisting moment resultants to vanish along them. 

Where mid-span symmetry cannot be assumed, the possible longi-

tudinal rigid-body movement of the beam was prevented by fixing a point 

in the web-compression flange junction in that direction. 	This was 

usually at the point loading section. 

2.5.2 	Conditions at the Supports  

The beam ends were assumed to be closed by diaphragms which 

are infinitely rigid in-plane but with no out-of-plane rigidity. 

This assumption provides an overall support condition equivalent to 

zero vertical displacement of the points on the web edges at those 
• 

sections, together with a local simple support for the compression flange 

plate. 	This corresponds to zero tangential displacements (u = 0) and 

zero direct in-plane stresses (N = 0) at the edges of all the plates 

connected by the diaphragm. 	There are two additional conditions for 

the compression flange, viz. w = 0 and M = 0. 

Along the compression flange edge the kinematic conditions 

correspond to ex  = Xx = 0 and in elastic solutions N = 0 is therefore 

associated with ey  = 0 and similarly M = 0 with x = 0. 

In the plastic range, however, stress increments are dependent on 

allstrain resultants as indicated by expression (2.6). 	Thus increments 
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of c and x would have to be calculated from the zero stress conditions 
y 	y 

( N = M = 0) as follows: 

AEy = 	
C22 (C23Acxy + C250X + C26AXxy) 

2.33 

Axy - 
	C55 (C52ixcy + 

CS3pcxY 
+ C56AXxy) 

where C. are the components of matrix C with C22,C55 	0. The relations 1 
~ 

 

could be further simplified and expressed only in terms of Acxy and 

AXxy but they are sufficient to illustrate the complexity of the boun-

dary conditions in the plastic range. 

In stiffened compression flanges the boundary conditions at 

the end cross sections raise in general problems even in the elastic 

range. 	To achieve the same boundary conditions used for the unstiffened 

plate there must be no longitudinal stresses applied over the whole 

cross section, for the free to pull in condition, and no net moment* 

for the free to rotate condition. 	At the end cross sections the same 

supporting diaphragms used for the unstiffened i;langes are assumed. 

It is then also possible to substitute on the plate edge the condition 

of zero longitudinal stress by Ey = 0, and the zero bending moment con- 

dition by a2w/a2y = 0. 	These two conditions extended to stiffener 

locations ensure zero longitudinal strains (given by expression (2.9)) 

and consequently zero stresses (2.10) at the stiffener end cross sections. 

Hence, the diaphragm assumption makes possible the translation of the 

two stress edge conditions (free to pull-in and free to rotate) into 

displacement conditions (E = 92w/ay2 = 0) which are valid for the whole 

stiffened edge. 

* about a line of rotation 



To impose a fully fixed condition for the stiffened plate end 

cross section would also present no special difficulty. 	However, a 

combination of applied longitudinal stresses with a free rotation con-

dition seems difficult to model with the present eccentric stiffener 

formulation. 	Supposing, for example, that it was intended to apply 

an axial compressive load with no eccentricity in relation to the plate 

mid-plane level. 	At the plate edge this corresponds again to zero 

applied bending moment (My  = 0) which would still be equivalent to 

32w/ay 2  = 0. Where the stiffeners are located this edge condition 

would not be sufficient. 	It should also be required that at the stif- 

fener and cross section the moment of the applied stresses should be 

zero in relation to the plate mid-plane level, that is Ms  = 0 (expres-

sion (2.12)). However, the basic assumption that the stiffener cross 

sections remain plane implies that the longitudinal membrane strain 

now existent at the plate over the stiffener position is transmitted 

to the whole stiffener cross section. 	At this section, the zero curva- 

ture only ensures that the longitudinal strains and the corresponding 

stresses* vary uniformly over the stiffener depth, but they would not 

have a zero Ms  moment. 	This condition seems therefore impossible to 

enforce without violating compatibility. 	These boundary condition 

problems were not discussed in references (38) and (44). 	They are of 

a similar nature to those encountered in finite element analysis where 

over boundaries equilibrium and compatibility cannot always be assured 

simultaneously. 

Numerically, when a discretising technique is used, it is 

possible to simulate the condition of zero net moment in relation to 

* Due to Poisson effects and different Young's modulus the stresses on 
the stiffener end cross section would be different from the longitu-
dinal stresses on the plate. 
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the plate mid-plane level by assuming zero values of Ns  and Ms, at 

the stiffener end cross section, independently of the compatibility 

assumptions. 	This solution was, in fact, investigated and adopted for 

studying isolated stiffened flanges in axial compression (section3.5.4). For 

these cases the loading was applied by longitudinally displacing the 

plate end cross sections which were assumed to remain straight. 

Experimentally, in tests of isolated stiffened panels, the end 

cross sections are usually welded to relatively stocky stiffeners(55). 

In axial loading a simple support condition is in general achieved by 

applying the load to these end stiffeners at an assumed neutral axis 

level and allowing rotation about the loading line. 	Basically this 

corresponds to assuming at the stiffened panel and cross sections a 

distribution of longitudinal stresses such that its overall moment about 

that line is zero. 	There is a difference between this free rotation 

condition and the one that was discussed above for the present numeri- 

cal study. 	In fact, the torsional and lateral bending rigidities of 

the end stiffeners of such test panels can provide, during the loading 

history, some local clamping to the plate edge and some redistribution 

of longitudinal stresses. 	This can be achieved while respecting the 

overall zero moment condition. 	In the case of the load level coinciding 

with the plate mid-plane it would thus be possible to imagine that at 

the stiffener end cross sections some longitudinal stresses can exist. 

On tests of stiffened cylinders under axial compression(56)  a 

different approach has been attempted to model the condition of free 

rotation at the end edges. 	It consists in tapering the stiffeners near 

the ends and supporting the plate edge in a circular groove on the 

loading blocks, thus allowing it to rotate freely. 	This is perhaps a 
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closer physical interpretation of what was assumed in the present ana-

lytical solution. 

It can be argued that the difference between the two ways of 

achieving the free rotation, which have been discussed, reduces to some 

end effects with little influence on the overall panel behaviour. 

However, when local panel buckling occurs near the loaded ends inducing 

overall collapse, there is scope for justifying some more refinement of 

boundary conditions. 	For comparison with test results, it would there- 

fore be interesting to be able to model numerically the stiffened plate 

support condition where realistic end stiffening exists. 	This is not 

possible with the present numerical solution and the influence of assum-

ing at the stiffener end cross sections that Ms  = 0 is discussed in 

Section 3.5.4. 

The stiffened plate boundary conditions should also be analysed 

from the point of view of the plate-stiffener interaction which was 

formulated in terms of the line forces Fy  and Fz  (expressions (2.13) and 

(2.16)). 	Here again, the assumption of end diaphragms is useful. 	In 

terms of stiffener equilibrium considered as a beam the vertical reactions 

to the distributed load Fz  can be assumed to be provided by the diaphragm 

at the ends, although these reactions are not calculated in the solution 

process. 	These line loads correspond, as discussed before, to di- 

continuities in the plate in-plane and transverse shear forces. 	For 

plate equilibrium at an end which is free to pull in, the value of F 

should vanish. 	Similarly, when this section is supposed to be simply 

supported the continuous zero value for the plate curvatures along the 

end edge indicates that the transverse shear force Qx* must also 

* Q
x 
 = -D(D3w/ax3  + D3w/axay2) 
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vanish along y = 0 (Fig. 2.1). 	Therefore Fz  should also be zero at 

this end section. 	These two conditions cannot be guaranteed in the 

present formulation and the stiffener ends correspond most probably to 

plate singularity points. 	To prove this suggestion would involve an 

investigation beyond the aims of this thesis. 	It should however be 

recalled that in plane-stress problems of load diffusion from a stiffe-

ner to a plate medium the ends of the stiffener correspond in general 

to plate singularities(57)(58)
. 

As will be shown in the next chapter, the numerical solution 

method which was used does not require the calculation or assumption of 

end values for these two line loads. 	The effects of the singularities, 

if any, do not seem to influence the results and no high stress con-

centration was detected numerically in the plate around the ends of the 

stiffeners. 

2.5.3 	Conditions at Plate Junctions  

Interaction of plate edges was treated in the following manner: 

1. At all longitudinal web edges compatibility of longitudinal 

displacements and continuity of the shear stress flow was 

assumed. 

2. The edges of the compression flange were made to deflect to 

follow the vertical displacements of the web. 

3. The edges of the flanges were assumed free to pull in and the 

compression flange edges free to rotate. 

The numerical handling of the web-flange interactions presented 

some difficulty, particularly for those aspects concerned with longi- 

tudinal compatibility and equilibrium. 	The accurate modelling of these 
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conditions is obviously essential to the study of the shear lag problem. 

This led to the derivation of a special equation of equilibrium for an 

'edge' element (Fig. 3.6), with finite dimensions, to calculate the 

longitudinal displacements on the edge without having to make assump- 

tions regarding the variation of shear flow across it. 	This variation 

can be very rapid at some points due to shear lag and web deep-beam 

effects. 	This technique is similar to the one used for the nodes 

over the stiffener lines, mentioned before, and is also capable of 

dealing with any distribution of longitudinal stresses across the edge 

including discontinuities. 	Pronounced differences between values of 

N on the web and on the flange can occur on the common edge. 	This 

occurs not only in the elastic range, due to different thicknesses and 

boundary conditions, but mainly due to plastic flow of stresses if the 

plates are made of different materials. 	This will be also discussed 

in detail later. 

The same approach could be used to ensure compatibility of 

vertical displacements on the web-compression flange connection, by 

considering the vertical equilibrium of 'edge elements'. 	Instead, as 

in reference (59), this condition was indirectly introduced by calcu- 

lating these displacements on the web taking into account any external 

load distributed over its edge and the flange reaction (Vx=aMx/x + 2DMxy/y). 

The corresponding deflection is then imposed on the compression flange 

boundary. 	This process, compared with the former, proved to have a 

more stabilising effect on the flange behaviour for the application of 

the dynamic relaxation technique. 	The disadvantage is that it relies 

heavily on the use of fictitious node values to express in finite diffe-

rence form the flange reaction and its effects on the web. These approxi- 
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mations are perfectly acceptable since the shear lag effects are not 

too dependent on the accuracy of modelling the flange boundary deflec-

tions. 

Once it was established that the compression flange ultimate 

capacity was not influenced by the type of cross section (see Chapter 5), 

girders with an open section (CS2 and CS3 in Fig. 1.4) were used in 

some cases, for economy of numerical computation. 

In the open stocky tension flanges shear lag can be neglected 

and the longitudinal stresses can be assumed to be uniformly distributed 

over the width. 	Compatibility of axial straining (c ) of the web- 

flange junction is then sufficient to calculate the total axial force 

on the flange as: 

Ntf 	z  Atf Etf cy  

where IA tf  is the cross-sectional area of one flange plate. 	Plasticity 

was introduced by limiting the absolute value of this force to a maximum 

corresponding to uniaxial yield stress. 

From equilibrium considerations used in normal beam theory the 

shear stress on the web edge can be expressed as: 

Nxy  = -9Ntf /ay 2.35 

With the other boundary condition at this edge being the same as before 

(Nx  = 0), the web analysis involves only web variables. 	This considerably 

reduces the computing time. 

2.5.4 	Point Loading Idealisation 

As mentioned in the introduction, to follow the post-buckling 

behaviour, an incremental displacement controlled loading was used. 

2.34 



The point loading (for most cases at mid-span) was modelled by applying 

uniform vertical displacements over the depth of each web. 	In physical 

terms this corresponds to assuming that an interior infinitely rigid 

diaphragm exists at that section. 	As observed by Dowling(29)  experi- 

mentally and later proved theoretically by Wittrick(60), this gives rise 

to a singularity at the point of the web-flange junction. 

In box girder bridges the point load generally corresponds to 

support cross sections where load bearing diaphragms are located. The 

present approach is therefore a more realistic representation of actual 

loading than, for example, the application of a displacement at a single 

point down the web as in reference (26). 	Both ideas were tested numeri- 

cally with the present computer program and it was found that a localised 

displacement induces an even more severe singularity and, through dissi-

pation of the concentrated stress, tends to smooth the overall bending 

moment distribution around that section. 	This clouds the effects of 

the point loading on shear lag. 

To comment on the singularity problem it is useful to refer 

to Williams'(61)  results for the analysis of a plate corner. Williams 

has shown that at a right angle corner unbounded stresses may occur if 

one edge is restrained (normal and tangential displacements being fixed) 

and the other free. 	If vertical displacements are imposed in a symmetric 

beam the web-flange junctions at the mid-span cross section represent 

plate corners in similar conditions. 	Assuming the plates to have no 

flexural rigidity Wittrick(60)  subsequently concluded that the singularity 

problem was inherent to interior diaphragms since around them the stress 

distributions have in general a symmetric component. 	The situation is 

different at an end diaphragm where theoretically there should be no 

singularity. 
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In the present analysis, the bending of the compression flange 

produces vertical reactions on the web and, therefore, the theoretical 

assumptions which eliminate the singularity at the end cross section are 

not totally fulfilled. However, it is always possible to imagine that 

at the support the concentrated plate reaction is absorbed in the rigid 

end diaphragm and to assume numerically a zero vertical stress on the 

web to avoid any stress concentration. 

Wittrick concluded that the possibility of a singularity at 

a stress concentration point is sufficient to cause divergence in any 

finite element solution,while attempting to study the concentration by 

mesh refinements. 	The same conclusion applies to the use of the 

finite difference method in the present numerical program as will be 

discussed later (section3.5.3). 

The effect of the singularities on the web is indirectly trans-

mitted to the flanges even if they are not connected to the fictitious 

diaphragm as the adopted boundary conditions indicate. 	However, this 

'separation' must help to moderate the propagation of the local high 

straining, and it was found numerically that this has only a very loca- 

lised effect on the stress distributions 	In practice, these effects 

are diffused by yielding of the material and should not have any overall 

significance since they happen in the context of displacement controlled 

loading. 	They were therefore accepted in ultimate load calculation 

even in cases where the webs are theoretically assumed to remain elastic. 

On the other hand, for some elastic calculations, for example 

of shear lag effective width ratios, the singularity would completely 

confuse the results for the loaded cross section. 	Following reference 

(13) the point loading was therefore modelled, for these cases, by 
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applying uniformly distributed shear stresses over the depth of the web. 

For numerical reasons, however, this loading was only introduced in 

cases of symmetry about the loaded cross section. 

The presence of the singularities was recognised by Dowling(29)  

during the series of box girder tests conducted at Imperial College. 

The first models (Models 1 and 3) under point loading included a load 

bearing diaphragm at the centre. 	In Model 3, for example, the stress 

concentration at the web-diaphragm-tension flange junction was noticeable 

in the early stages of loading and later became very pronounced to the 

extent of producing necking and cracking of the flange. 	In later simi- 

lar tests(30)  (Models 9 and 12) to avoid this problem the full-width 

diaphragms were replaced by tapered stiffeners on the webs through 

which the load was applied (Figs. 6.2 	and 	6.3). 

2.5.5 	Boundary Conditions for an Isolated Flange in Compression  

The computer program developed for the analysis of box girders 

was adapted to study the compression flange in isolation. 	As previously 

mentioned, the purpose of this option was to provide results for a plate 

under axial end compression to compare with those obtained for a shear 

lag type of loading. 	Therefore, only the boundary conditions associated 

with the loading and the overall deflection of the longitudinal edges, 

whose effect was neglected, were changed. 	The flange was assumed to 

be simply supported at its four edges and loaded by applied uniform 

axial displacement (v = constant) of the end cross-sections. 	The longi- 

tudinal edges were assumed to be free from shear stresses. 	The end 

cross-sections remained straight but all the other boundary conditions 

were unchanged namely, the restrained tangential displacement (u = 0). 

For the reasons already discussed, to restrain in-plane displacements at 



this end edge and to free the adjacent one introduces a singularity at 

the corner. 	In all numerical results thiscorneiconsequently yields 

at a very early stage but such stress concentration does not affect 

the overall behaviour in strain controlled loading. 

For stiffened flanges, problems with the boundary conditions 

at the end cross sections arise. 	These were discussed in detail in 

Section 2.5.2. 
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CHAPTER 3 

NUMERICAL SOLUTION 

3.1 	INTRODUCTION 

Finite differences (FD) and dynamic relaxation (DR) have been 

successfully applied to large deflection elastic-plastic analyses of iso-

lated plate panels (references (35) and (36)) and thin walled box-column 

plate assemblages(59). The combination of these two techniques has proved 

to date to be faster and less demanding in computer storage than finite 

element solutions. With FD and DR it is also possible to follow special 

variations of displacements or stresses, either by using non-uniform meshes 

of by simply choosing appropriate interpolating functions. Thus the solu-

tion technique can be improved by examining the initial results. This is 

advantageous when the objective is to develop an economic computer program 

for a parametric study. The approximations involved can also be directly 

assessed and the accuracy can be increased by a simple physical under-

standing of the problem. 

■ 

The usual FD and DR technique for isolated plate analysis had to be 

extended to consider in the context of box girder plate assemblages three 

specific problems: 

- the plate connections 

- the stiffener action 

- the point loading stress distributions at the cross section 

to which it is applied. 

These problems involve rapid variations and discontinuities of 

stress distributions which cannot be easily considered by usual finite 

difference techniques. They are discussed in section 3.3 and the proposed 

method for their solution is detailed in Appendix I. The method was deve-

loped to avoid reducing excessively the mesh sizes near these zones, or 
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making inaccurate approximations of the difficult stress distributions. 

For the shear lag study the problem of modelling the web-flange connections 

is obviously very important. The proposed method of solution was checked 

against available finite element elastic solutions. 

The other plate boundary conditions did not present any problems 

in the elastic range and fictitious nodes were used when necessary. In the 

plastic range the boundary conditions had to be treated in the manner of 

reference (36) as mentioned in the previous chapter. The numerical treat-

ment of the plasticity condition and the stress-strain relations in the 

inelastic range presented some problems associated with the finite diffe- 

rence mesh arrangement and the incremental loading. 	The solutions to 

these problems are presented in section 3.4. 

A computer program was specially designed for the parametric study. 

Certain results of this program were compared with other numerical solutions 

some of which have been experimentally verified. The calibration of the 

program was organised to separately study the different aspects of modelling 

the box girder since no comparable analysis of full elastic-plastic/buckling 

behaviour was available. 

3.2 	DISCRETIZATION TECHNIQUES 

3.2.1 	General Formulation  

To establish the displaced configuration of each plate under load-

ing, the variation of each displacement component (u,v and w) was assumed to 

be described by a set of values taken over a nodal mesh. The meshes for each 

component need not coincide and can be chosen in the most convenient way for 

the purpose of defining the respective field. This is the principle of inter-

lacing meshes used to improve the accuracy of the finite difference solution. 

The distributions of stress resultants can be similarly treated 

and in general defined over another six nodal meshes. These distributions 
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need not be smooth and may have sharp variations requiring a careful 

choice of node positions. 

For the constitutive relations, generalised strains have robe cal-

culated at all stress nodes either directly or by interpolation of the 

strain distributions over neighbouring nodes. In principle, strain dis-

tributions can be defined over other sets of nodes but it is convenient 

to make stress and strain meshes coincide. 

For the present solution interlacing rectangular uniform meshes 

were chosen based on other plate analyses(35)(36).  The relative position 

of the various meshes is presented in Fig. 3.1. The spacing inthe y-direction 

was assumed to be the same for all plates. 

A uniform mesh restricts the choice of boundary nodes and requires 

some experimentation to find the best location of nodes over the boundaries. 

Some boundary conditions were easy to consider in this respect. For 

example, considerations of longitudinal symmetry suggested that N 	M xy, xy  

and u nodes should be placed over the flange longitudinal central line. 

However, to accurately calculate the net longitudinal force at the point 

loading cross section, Ny  nodes were positioned over this section, even in 

the case of models with double symmetry. 	This choice also has the advantage 

of placing on the web a line of vertical displacement nodes over the point 

loading cross section for the application of displacement controlled loading. 

On the other hand, such a mesh arrangement does not allow a direct modelling 

of the point loading by applied uniform shear stresses over the web depth 

(see section 	3.5.1). For convenience in the treatment of the stress 

variations across the web-flange junctions and stiffener positions these 

lines were also made to coincide with the N nodal lines. 
y 

Values of the plate-stiffener interaction line forces F and FZ  

were calculated over v and w nodes respectively. 	For these calculations 

equations (2.13) and (2.16) were written in finite difference form using 



66 

i-1 	i 	i+1 

i-1 	I 	i 
- •-•• • --411* • - - — 

j 1 o I o I 

—r u 
4 
• w, Nx,Ny,Mx,My 
o Nxy) Mxy 

j+1 - • -> • -i • - - - 
I 	I 	I  

Fig. 3.2 	Position of node vi'j on the interlacing mesh 
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Fig. 3.3 	Stresses with longitudinal component acting on 'finite 

element' of plate centred at node v1'3 
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values of the stiffener internal forces Ns  and Ms  defined at cross sections 

over N
Y 
 plate nodes. 

The calculation of Ns  and Ms  required a further discretization 

consisting of dividing the stiffener depth into horizontal layers. At 

each layer the longitudinal strain and stress are given by expressions (2.9) 

and (2.10). The integrations involved in the definition of Ns  and Ms  are 

substituted by appropriate summations of corresponding quantities for each 

layer. This is necessary to trace the spread of plasticity in the stiffener. 

To study the compression flange in isolation the mesh arrangement 

described in Fig. 3.1 was retained. 	Axial compression was applied by 

resorting to fictitious v nodal displacements at the end cross sections. 

Once the mesh arrangement is established, local equilibrium in 

each direction can be defined over corresponding displacement nodes by 

expressing equations (2.3) in finite difference terms using adjacent stress 

nodal values. For example, on the vl'3  node of Fig. 3.2 the equation for 

equilibrium in the y direction takes the form: 

(Ni'j+1 - Ny'3)/Ay  + (N1'3 - NI-1,j)/Ax = 0 	3.1 

where central finite differences are used due to the convenient disposi-

tion of the various nodes in the interlacing mesh. 

This equation can also be interpreted as representing, under 

certain conditions, the equilibrium of the forces applied to a rectangular 

plate 'finite element' centred at the displacement node v1'3  and with 

boundaries over adjacent lines of N
Y 
 and Nxy  nodes. 	Such an element 

is represented in Fig. 3.3. 	The distributed loads acting on the boun- 

daries which contribute to the equilibrium in the y-direction are the 

plate stress resultants N
Y 
 and N. 	This equilibrium can be expressed 

as follows: 
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f 	N - 	J N + 	f N 	- 	f 	N = 0 	3.2 
side j+1 	side j y 	side i xy 

	
side i-1 xy 

If the stress distributions are such that their average value over each 

side can be represented by the nodal values then equation (3.2), after 

dividing by the element area, is equivalent to (3.1). 	This analogy 

suggested a way of dealing with equilibrium conditions along web-flange 

junctions, stiffener lines and the point loading cross section. 	This 

is described in the next sections. 

Dynamic relaxation was used to assist in the solution of the 

non-linear set of equilibrium equations described above as these can be 

considered as relations between nodal displacements. 

3.2.2 	Equilibrium along Plate Junctions  

The flow of shear stresses across the web-flange common edges 

can vary and includes a point of contraflecture. 	Thus, making an 

accurate interpolation of its distribution over the chosen mesh arrange- 

ment is difficult. 	In general, the longitudinal stresses N also differ 

between the web and flanges. 	This is worsened where different materials 

are used for the webs and the flanges. 	For example, in the case where 

the web is assumed to have a much higher yield stress than the flange, 

the web may then still be elastic whilst yielding of the flange edge is 

accompanied by a flow of stresses under constant equivalent stress. 

This tends to increase the shear at the expense of the longitudinal stress 

component. 	In a strain controlled loading this can be reduced to very 

small values. 	To illustrate this problem typical stress distributions 

over a box cross section are represented in Figs 3.4 and 3.5. 
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For these reasons, it was found convenient to consider 'finite 

elements' of the plate connection as shown in Fig. 3.6 for the web- 

compression flange junction. 	The elements are centred over a v node 

and have an unfolded width chosen, for convenience, to be equal to the 

web mesh spacing in the x direction. 	It is thus possible to use a wider 

transverse mesh on the web than on the flanges as outlined in Appendix I. 

k Ay 	k  

Fig. 3.6 	'Finite element' of web-flange connection 

Following the analogy mentioned in section 3.2.1 the same 

approach as used for deriving equation (3.2) can be followed for studying 

the equilibrium of one of these elements in the y-direction. 	For this 

purpose all the stresses acting on the element with a longitudinal com- 

ponent must be considered and integrated. 	The method of deriving the 

corresponding equilibrium equation is described in Appendix I. 
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It is assumed that the resulting equation (I.2) can represent 

both the compatibility of longitudinal displacements and the continuity 

of the shear stress flow across the web-flange junction. 	Any other way 

of introducing these conditions in the solution process would have to rely 

on an approximation for the variation of the shear flow. 	This would be 

difficult and would involve greater inaccuracies than the proposed method 

in which interpolations are considered only over well definable stress 

distributions. 

Apart from invoking the analogy described earlier, no attempt 

is made to justify this method. 	Comparisons are however made later with 

other rigorous numerical techniques to show that it produces good results. 

Vertical equilibrium equations for similar angle elements were 

also derived to implement the compatibility of vertical displacements at 

the web-flange junction but, as discussed in section 2.5.3, another 

approach was found to be more convenient. 

The method just described could also be applied to deal with the 

compatibility of rotation in welded web-flange connections. 	This prob- 

lem presents special difficulties(59)  when fictitious nodes are used. 

An equation of rotational equilibrium of an element of the plate connec-

tion could then similarly incorporate both conditions of equilibrium of 

moments and compatibility of rotation. 

3.2.3 	Equilibrium along Stiffener Lines  

Figure 3.7 shows possible distributions of longitudinal and 

shear stresses on a stiffened plate in axial compression. 	The plate- 

stiffener interaction line force F (defined in (2.13)) produces the 

shear discontinuity and the simultaneous cusping of longitudinal stresses 



with a local shear lag effect. 

To calculate the longitudinal displacements v along the stif-

fener line, the equilibrium in the y direction of a finite element of 

plate centred over a v node (Fig. 3.8), can be considered in the same 

manner as described before. 

The stresses acting over the element which contribute to the 

equilibrium are the shear stresses defined at nodal values over the 

longitudinal edges and the cusping longitudinal stresses on the trans- 

verse sides. 	These are obtained by interpolating the longitudinal 

stress distributions over appropriate N nodes. 	The action of the 

stiffener on the plate element can be replaced by the line force F. 

The derivation of the equilibrium expression is given in Appendix I. 

The vertical equilibrium at stiffener positions could also be 

studied considering finite elements of the plate centred over w nodes. 

This would enable the discontinuity in Qx  across the stiffener line to 

be taken into account (with the corresponding cusping of the Mx  moment 

distribution as discussed in section 2.3). 	However, since the present 

stiffener formulation already neglects the discontinuity in the Mx  dis-

tribution that exists due to the stiffener torsion, this refinement was 

not introduced. 	The vertical equilibrium over the stiffener position 

was thus treated following reference (38). 	In this approach the FZ  

interaction line force is assumed to be uniformly distributed over a 

width of plate equal to tx. 	It is then included as a lateral load in 

the normal equilibrium equations written for the w nodes over the 

stiffener. 
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Fig. 3.7 	Stiffened flange in axial compression. Example of stress 

distributions over cross section at distance 218 from mid-length 
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Fig. 3.8 	'Finite element' of plate over stiffener line 
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3.2.4 	Equilibrium over the Point Loading Cross Section  

On the compression flange the chosen mesh arrangement (Fig. 3.1) 

has u and w nodes over the point loading cross section. 	For most cases 

this section coincides with the mid-span and symmetry can be assumed. 

Thus, by using appropriate boundary conditions only one quarter of the 

box need be analysed (see Fig. 2.5). 	Since the symmetry conditions 

are not directly associated with displacements or stresses defined at 

nodes u and w, fictitious symmetric or anti-symmetric nodal values have 

to be introduced. 	These are required to calculate over the section the 

u and w displacements and all the stress components except those assumed 

to vanish due to their anti-symmetric distribution (Nxy  and Mxy). 

The shear lag effect, associated with the point loading condi-

tion, produces not only a very high longitudinal stress peak but also 

sharp variations of Nx  due to the symmetry and Poisson effect. 	The 

assumption of Nx  being zero on the flange along the web-flange connection 

further complicates the distribution of these stresses near the web. 

Figure 3.9 illustrates the typical shape of these distributions in the 

elastic regime. 

The peaks and cusping of in-plane stresses are particularly 

pronounced in the elastic range for cases of loading by uniform vertical 

displacements over the depth of the web. 	This is due to the singularity 

discussed in section 2.5.4. 	Yielding of the material smoothes the peak 

of the longitudinal stresses. 	However,over a mid-span cross section, 

shear 
the zero/ymmetry condition allows a combination of Nx  and N stresses 
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Fig. 3.9 	In-plane stresses on compression flange due to point loading 

such that N can exceed uniaxial yield stress (see Fig. 3.5). 

As the capacity of the flanges is measured by the longitudinal 

net compression or tension force over the point loading cross section, 

an accurate calculation of stresses over this section is required. This 

was attempted by reverting to the 'finite element' technique to express 

the equilibrium on both flanges around this section. 	Since irregularities 

in the stress distributions are quite localised, it was found sufficient 

to apply this refinement only to the derivation of equilibrium equations 

in the x-direction for u nodes over the section (see Appendix I). 

Over the web the applied vertical displacement loading corresponds 
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to a line where displacements are completely defined. 	Hence, no special 

treatment of equilibrium conditions was required. 

3.3 	DYNAIIC RELAXATION 

Dynamic relaxation is particularly suitable for the solution 

of non-linear structural problems and is usually associated with a finite 

difference formulation of the governing equations. 	A detailed descrip- 

tion of the DR technique will not be given here since it is adequately 

documented elsewhere (36)(62-66). 	Essentially, however, the method 

consists of transforming the 'static' equilibrium equations into equa-

tions of 'motion' by adding terms involving viscous damping (proportional 

to velocity) and inertia (acceleration). 	The application of a load 

increment is assumed to alter equilibrium and activate the motion of the 

structure. 	The solution proceeds as a step-by-step integration in time 

of the equations of 'motion', expanded in finite difference form in time. 

The 'static' governing equilibrium equations are, in finite difference 

form, highly non-linear expressions of the nodal displacements but 
• 

are linear in time in terms of displacements. 

The process is basically a substitution technique: previous 

out-of-balance forces (expressed by the 'static' expressions) are used 

to calculate velocities and displacements. 	From these new out-of-balance 

forces can be calculated for the next time increment. 	The technique is 

easily programmable since the full solution matrix is never formed and 

the various sets of equations are kept separate and invoked at different 

time instants: 

1. 	invoke displacement boundary conditions in which loading incre- 

ment conditions can be incorporated; 

2. 	calculate strains from strain-displacements expressions; 
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3. calculate stresses from constitutive relations; 

4. invoke stress boundary conditions; 

5. calculate out-of-balance forces; 

6. calculate velocities and new displacements; 

7. repeat sequence until convergence is reached. 

For stress applied loading the sequence would start at step 4. 

It is the use of the governing equations in separated forms that 

makes it easy and advantageous to express equilibrium along particular 

lines or boundaries in the way described in section 3.2. 

The solution technique is similar to following the 'physical' 

oscillations of the various nodal points after the sudden application of 

a load increment to a structure which is originally in a state of equili-

brium. 

The method involves the choice of three sets of parameters: the 

damping factors, the time increments and the material densities. 	If 

damping factors are chosen to be near critical values, the oscillations 

converge to the steady state solution. 

Using the fictitious densities and unit time increment techniques 

proposed by Cassell(65)  and discussed for plate analysis in reference (36) 

the convergence depends only on the estimation of appropriate damping 

factors. 	In the present problem the optimization of these factors was 

particularly laborious. 	It involved the adjustment for each box girder 

case of two factors for the web, two for the tension flange, three for 

the compression flange and, in the presence of stiffeners, two additional 

ones for the plate nodes on the stiffener lines. 
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During the parametric studies it was frequently possible, for 

changes in dimensions, to adjust the damping factors from one case to 

another by extrapolation. 	However, for no obvious reason, some cases 

presented difficulties of convergence requiring an independent adjustment 

of factors. 	A possible explanation may be related to the fact, pointed 

out by Chaplin(68), that damping in analogous physical oscillations could 

only be critically chosen in each plate for one mode of vibration, usually 

the fundamental one. 	Therefore, in a plate assemblage some interaction 

of modes not critically damped could produce general instability. 

For each loading increment it was found that very rapid and 

large initial vertical oscillations of the web had a destabilising 

effect on the compression flange. 	To assist convergence an artifice 

suggested by Frieze and Dowling(59) was used. 	This consists in not 

implementing for the first DR cycles the compatibility of the vertical 

displacements at the web-flange connection. 	A similar approach was used 

to improve convergence in the case of stiffened flanges by considering 

the interaction forces F and Fz  as being gradually applied to the flange 

plate. 	Convergence was controlled by checking the nodal velocities. 

For each load increment, within the DR sequence only increments 

of stress and strain are calculated. 	However, the equilibrium equations 

were kept in terms of total stress resultants. 	This introduces an auto- 

matic correction of any out-of-balance forces remaining from the previous 

load increment. 

After each loading increment, tangential rigidities are recal- 

culated and total stresses and displacements stored. 	For the next 

increment a linear extrapolation of the previous displaced configuration 

was taken as a starting approximation to the final solution to reduce 

the number of iterative cycles. 
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3.4 	NUMERICAL TREATMENT OF PLASTIC BEHAVIOUR 

To determine when a node reaches yield, the value of the yield 

function (Ilyushin I (2.22) or Ilyushin 11(2.24)) has to be examined 

after each loading increment. 	If yielding is detected the rigidities 

are modified according to expression (2.32) for the next increment. 

The sign of the flow parameter y (defined in (2.27)) is checked there-

after to monitor any unloading in which case the elastic rigidities (2.7) 

are restored. 	The numerical handling of these aspects involves consi- 

deration of the discretization technique and the loading incrementation. 

3.4.1 	Problems Associated with the Finite Difference Mesh  

The interlacing mesh arrangement (Fig. 3.1), although very 

useful for the finite difference formulation, introduces a considerable 

complication in the application of the single-layer method described in 

Chapter 2. 	This is due to the fact that at each node of the mesh only 

certain stress components are calculated but, to assess yield, the full 

state of stress has to be known. 	For the web this problem was solved 

by averaging the missing stress value using surrounding node values. For 

the flanges, in particular for the compression flange, special interpolat-

ing subroutines were designed. 

Here again, the variation of the stress distributions associated 

with the web-flange connections, the stiffener lines and the point loading 

cross section were taken into account. 

The present numerical solution is not however yet capable of 

accurately dealing with the plate yielding at the stiffener position. 

As mentioned before, the discontinuity of shear stresses on the plate 

across the stiffener lines should theoretically be treated by separately 

considering the two plate panels meeting over the stiffener. 	This treat- 
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ment would allow, in the plastic range, the two plate panels to have 

different rigidities at their couuuon edge since there they have different 

states of stress. 	However, the present numerical model only considers 

one line of plate nodes over the stiffener and only one state of stress 

can be defined at these nodes for the yield condition. This was achieved 

by averaging the shear discontinuity. 

The 'finite element' method described before for dealing with 

the equilibrium condition at the web-flange connection was derived mainly 

to avoid making assumptions regarding the shape of the shear stress 

distribution across this line. 	It was found to be successful for solving 

this problem during the DR sequence. 	However, after convergence is 

achieved for a load increment, it is still necessary to accurately define 

the value of the shear stress at the flange edge. 

Assuming good convergence is achieved after each load increment 

this stress was calculated from the condition of equilibrium of a strip 

of flange between two consecutive transversal lines of Ny  nodes (lines j 

and j+1 in Fig.3.10). 	The net compression forces over these two lines 

can be calculated by numerically integrating the longitudinal stress 

distributions. 

A good approximation for the value of the shear stress resultant 

on the edge over the j line of shear nodes is: 

b/2 
NXy  = 	f (Ny+l - Ny)dx/Ay  

3.3 

The interpolating refinements mentioned before could be afforded 

in terms of computer time since they are only used once for each loading 

increment. 	However, for strains, a similar problem arises within each 

cycle of the DR sequence. As for the stresses these are also calculated 
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Fig. 3.10 	Equilibrium of a strip of flange between consecutive 

transverse nodal lines 

over two different nodal meshes. 	After the onsetof yield, the full 

state of straining is required at each stress node but only simple 

averaging techniques were used to calculate the missing strains. 	This 

is not only justifiable in terms of computer time but also because the 

strain distributions are much more regular than the stress distributions. 

3.4.2 	Problems Associated with Load Incrementation 

The problem of assuming convenient dimensions for the finite 

loading steps required particular attention. 	The detection of plasti- 

city at each node had to be determined accurately to avoid 'perforation' 

of the yield surface, since there is already a delayed accessment of first 

yield using the single-layer method. 	That is, the 'perforation' 

of the yield surface must be well controlled. 

Once a node becomes plastic, the size of the next increment still 



has to be small,even if the rigidities are calculated correctly, to 

obtain a flow of stresses tangential to the yield surface. 	This is 

necessary to ensure that after a finite loading increment the state of 

stress remains close to the yield surface. 

For each box girder case, a preliminary study enabled a general 

idea of the loads related to first yielding and to the spreading of plas- 

ticity to be obtained. 	The loading was then organized to have only a 

very small number of nodes yielding at each increment. 

A technique has been proposed by Zienkiewicz(69)  for considering 

points where the yield surface is 'perforated' in a change from an elastic 

to a plastic state. 	It consists of automatically subdividing the load- 

ing increment effects and has been used mainly in finite element analysis 

to consider larger load steps(40). 	It was, however, decided to dispense 

with this refinement by keeping the size of the increments small and 

correcting the stresses after each increment to bring the state of stress 

back to the yield surface. 	This also consequently avoids accumulation 

of errors.  

Supposing that after an increment the value of the yield func-

tion represented by f* is greater than unity, the correction mentioned 

above can then be approached in two ways: 

A simple method consists of multiplying each stress resultant 

by the inverse square root of f* (to take into account the 

quadratic form of the function) . 	This method is equivalent to 

correcting the state of stress along the line of its position 

vector (Fig. 3.11) 
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N2 Position in stress space 
0 - before load increment 
0' - after load increment 
0; - corrected by first method 
0' - corrected by second method 

NI 

Fig. 3.11 	Methods for correcting 'perforation' of the yield surface 

2. 	The state of stress can, instead, be corrected along the normal 

to the yield surface (see reference 059)). 	Representing the 

difference of f* to unity by Lf, each stress component Ni  

should be corrected by the following quantity 

3f/3N. 

AN. = —Af 	6  

G (af/aNi)2 
i=1 

This is equivalent to reducing each stress proportionally to its 

contribution to the value of f. 	That is, higher stress com- 

ponents would be more severely modified which seems a more sensible 

approach. 	However, to apply this second method of correction 

involves considerably more computer storage since the corrective 

quantities (3.4) have to be previously calculated and stored 

due to the stress averaging required for the interlacing mesh. 

Although the two methods of correction could give different 

results, in particular when using the Ilyushin I yield surface (two—plane 

approximation), it was found that differences in overall results were not 

significant provided that the loading incrementation was well controlled. 

The first method was therefore preferred and used in the parametric study. 

3.4 
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The numerical treatment of these corrections to the 'perforation' 

of the yield surface presents a problem associated with the use of the 

interlacing mesh. 	At each node of this mesh only stress components 

that are calculated directly can be corrected. 	Therefore, at some nodes, 

the value of the yield function calculated after applying the corrections 

can be smaller than unity. 	In the flanges, this frequently occurs at 

the nodes connected to the webs. 	This is due to the fact that the state 

of stress at these nodes depends greatly on the shear transmitted by the 

web, and corrections on flange nodes have no effect over these stresses. 

The yielded state of each node after a step load had therefore to be 

recorded before making the correction. 

It must finally be mentioned that, although these corrections 

partially destroy equilibrium, this is reestablished in the DR loop of the 

next increment as the equilibrium equations consider total stresses. 

3.5 	PROGRAM CALIBRATION AND MESH SIZE STUDY 

A computer program was written in Fortran IV based on the numeri- 

cal solution described before. 	The extensive study of the verification 

and calibration of the program is reported in this section. 	In the 

absence of suitable experimental data comparisons with results from 

other numerical techniques served as the main basis for these studies. 

Most of the examples selected to illustrate the various aspects 

refer to unstiffened flanges but the same general conclusions from the 

calibration study can be drawn for stiffened cases. 

For choosing appropriate mesh sizes for these cases, considera-

tion must be given to the number of mesh nodes used across the flange 

width between stiffener positions to model plate panel buckling. 
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3.5.1 	Comparison with Finite Element Elastic Solutions  

The numerical method of solution (FD and DR) has been well cali-

brated in the analysis of isolated unstiffened plates in shear(35)  and 

compression(36), but it remained to be shown that it could also be used 

in the solution of box girder plate assemblages. 	The efficiency of 

the discretization technique described previously for modelling the point 

loading shear lag effects was investigated by comparing with the results 

presented by Moffatt and Dowling(13)  for elastic shear lag effective 

width ratios based on a finite element program. 

As stated previously, the modelling of the point load by apply-

ing uniform vertical displacements over the web depth involves singu- 

larities at the web-flange junction. 	The definition of an elastic 

effective width ratio at the loaded cross-sections (expression (1.2)) 

would be meaningless in the presence of these singularities. 	This led 

Moffatt and Dowling to consider the point load by applying uniform shear 

stresses over the web. 	To use their results for a comparison, the 

same loading was introduced in the present computer program as an alterna- 

tive for cases with symmetry about the mid-span loaded section. 	This 

was achieved by considering a line of fictitious shear nodes on the web 

in the mesh arrangement shown in Fig. 3.1. 

The loading was applied by ensuring that the average of the 

shear stresses at the internal and the fictitious nodes was equal to the 

applied stress. 

The finite element program developed by Moffatt for the shear 

lag study was based on an element with good shear characteristics and 

the need for a longitudinally refined mesh near the point loading cross 
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section was reported(13). 	In the parametric study conducted in reference 

(13) it was possible to use only one element over the web depth whereas 

in the present finite difference formulation several mesh nodes had to 

be considered. 	This is a consequence of using the proposed method for 

solving the web-flange connection described before. 	It requires the 

web vertical mesh size to be greater but close to the one used trans- 

versely on the flanges. 	This enhances the deep beam effects in compari- 

son with the finite element approach thus increasing the shear lag 

gradients. 	Another difference between the two approaches refers to the 

compatibility of rotation at the web-flange connection assumed in the 

finite element model. 	However,this should not greatly affect the com- 

parison for very small deflections. 	Good agreement was generally found 

to exist between both results. 

This is illustrated by a mesh size study of a b/Q= 1 box girder under 

uniform shear stresses applied over the web at mid-span. The elastic 

effective width ratios obtained at the loaded cross section by increasing 

the number of longitudinal mesh nodes are plotted in Fig. 3.12. 	They 

can be seen to converge to the corresponding value given in reference (13). 

According to the authors, the ratios were calculated by taking 

as a reference stress the longitudinal stress at the web 
(amax 

in 

expression (1.2)). 

These results show that the present numerical method is conver-

gent and also indicate that the modelling of the web-flange connection 

closely resembles solutions that have been calibrated against experimental 

results. 

That same program(13)  was also used to apply uniform displacements 
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Fig. 3.12 	Elastic effective width ratio at mid-span (b/2 = 1; point load). 

Mesh size study 

over the web at mid-section on a finite element mesh as recommended in 

reference (13). 	This was compared with the present finite difference 

solution calculated over a typical mesh. 	The stress distributions 

obtained in this case in the presence of the singularities compare 

quite well as shown in Fig. 3.13. 	The two mesh arrangements are repre- 

sented in the same figure. The good agreement further indicates that 

an acceptable degree of accuracy can be achieved by the present solution 

with reasonable mesh sizes, like those used in the parametric study, with 

the advantage of a considerable economy in computer time. 	This is 

important since the refined non-uniform meshes recommended by Moffatt 

and Dowling for the study of elastic shear lag effects cannot be repre-

sented in the present solution. 

3.5.2 	Spreading of Plasticity in the Presence of Shear Straining  

In a girder under applied uniform displacements if the webs are 

assumed to remain elastic, the longitudinal edges of the flanges are 

17 
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effectively loaded under a controlled shear strain. 	Consequently, the 

shear stresses along a flange edge can increase after yield has spread 

over the whole edge. 	This is achieved by plastic flow of stresses 

under constant equivalent stress with a simultaneous reduction of the 

other stress components. 	These shear stresses should nowhere exceed 

the value corresponding to von Mises yield stress in pure shear (a0/Vi) 

but errors must be expected due to the discrete nature of the numerical 

approach. 

However, acceptable results can still be obtained with practical 

mesh sizes. 	This is illustrated in Fig. 3.14 where the distributions 

of shear and longitudinal stresses on the edge of the tension flange of 

a b/Q. = 1 box are represented up to an average edge strain of 1.5 times 

yield strain. 
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3.5.3 	Effects of the Singularities and Mesh Size Study  

The presence of the singularities at mid-span at the web-flange 

junction, discussed in section 2.5.4, is detected numerically by the 

continuously increasing peak stress values when the mesh sizes are 

refined. 	However, the effects of these stress concentrations on the 

overall stress distributions are very localised. 	Figure 3.15 shows 

the variation of elastic longitudinal stresses across the flange mid-

section and quarter-length section for two different mesh sizes. Although 

at the mid-span the peak stress value is relatively higher in the smaller 

mesh, away from this point the differences are negligible as. might be 

expected. 

Confidence in the use of this type of loading was confirmed 

when it was established that once yielding occurs near the stress con- 

centration point the effects of the singularity are further diffused. 

This is illustrated by the small effect that a mesh refinement beyond 

a certain size, has on the ultimate strength of the flanges - see Fig. 3.16. 

3.5.4 	Influence of Simplified Assumptions for Stiffener Formulation  

The principal simplifications introduced in the formulation of 

the plate-stiffener interaction are expressed in the "door hinge" type 

of connection between the two elements which was assumed while neglecting 

the effects of the torsion and the lateral bending of the stiffeners. 

Another important aspect in the treatment of the stiffeners refers to 

the end boundary conditions that were adopted in the present theoretical 

model. 	They were justified in detail in section 2.5.2 and correspond 

to assuming numerically that the stresses at the stiffener end cross 

sections are zero (i.e. Ns  = Ms  = 0) to simulate a stiffened plate edge 

simply supported and loaded (in axial compression cases) at the plate 

mid-plane level. 
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To assess the effects of these assumptions two different plates 

were analysed in compression using the present program and another 

(70) 
developed by Webb 	for 	an extensive study of stiffened plates. 

This is based on a stiffener formulation which follows more closely 

Djahani's(44)  approach i.e. considering the effects of the elastic 

torsional rigidity and the lateral bending of the stiffeners. 	It uses 

the same FD and DR method of solution allowing a close comparison since 

the same mesh sizes can be chosen. 

The dimensions of the first plate (Fig. 3.17) were selected to 

correspond to a case in which there is predominance of overall buckling 

in the collapse mode. 	The load is applied by displacing axially the 

plate end cross sections while keeping them straight and tangentially 

restrained (u = 0). 	At these sections, to compare with Webb's 

results, the longitudinal strain calculated at plate level over the 

stiffeners was firstly assumed to be transmitted to the whole stiffener 

cross section and the axial stresses were calculated accordingly. This 

corresponds (see section 2.5.2) to assuming that, although the curvature 

2w/Dye is zero, there are external forces Ns  and bending moments Ms  

(expressions (2.11) and (2.12)) 
	

at 	the stiffener end cross 

sections. 	The results obtained by introducing this approach in the 

present program show, as expected, a lower ultimate load compared with 

the solution(70)  in which the stiffener torsional rigidity and lateral 

bending are considered. 	The small differences between the two solutions 

(represented by the two upper curves in Fig. 3.17) indicate that it is 

valid to neglect these effects in the case of stiffeners of rectangular 

cross section. 

If these solutions are compared with the results obtained 
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assuming Ns  = Ms  = 0 at the stiffener end cross sections, the differences 

in behaviour are substantial. 	This approach corresponds to always 

maintaining the applied axial load at the plate level whereas, in the 

first cases, this level is not controlled and varies with loading history. 

However, as overall buckling is in this case predominant, the mode of 

failure is not changed by the presence of the bending moments Ms. 

In the other stiffened plate used for a similar comparison the 

cross sectional dimensions (Fig. 3.18) were chosen to increase the stif- 

fener bending rigidity and the plate slenderness. 	When Ns  and Ms  are 

not assumed to vanish at the stiffener ends the collapse mode is associated 

with small deflections of the stiffeners and the plate panels buckle into 

nine alternate upwards and downwards bows. 	The effects of the stiffener 

torsional rigidity should be more important in this case and this is 

reflected in a bigger difference between ultimate strengths obtained 

using 	Webb's(70)  and the present formulation i.e. 0.685 and 0.635, 

respectively. 	In this case however, to assume Ns  = Ms  = 0 at the stif- 

fener end cross sections changes the mode of collapse. 	This assumption 

increases the influence of the overall buckling mode component and the 

collapse is associated with the formation of plastic hinges on the stif- 

feners at the mid-length cross sections. 	The ultimate strength is 

drastically reduced to 0.459 which corresponds to a difference of 33% 

between the two extreme solutions. 	As discussed in section 2.5.2 the 

results obtained maintaining Ns  and Ms  always zero at the ends of the 

stiffeners should be considered as lower bounds to the flange strength. 

They seem however to be more reliable for comparing with the behaviour 

of flanges under the shear lag effects which are effectively loaded 

along the longitudinal edges at plate level on the assemblage of flange 

and webs. 
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3.5.5 	Comparison Between Different Assumptions in the Plasticity  

Formulation  

The differences between the single-layer and the multi-layer 

approaches for considering plasticity effects are illustrated in Fig. 

3.19 for a plate in axial compress ion. 	This case has already served 

for comparison between different numerical solutions, finite elements 

and FD, obtained respectively by Crisfield(40)  and Harding(35). The 

single-layer solutions produce, as discussed in section 2.1 higher 

ultimate strengths and more pronounced peaks due to a delayed deteriora-

tion of stiffness since detection of surface yielding is not possible. 

For the same reason, the unloading path obtained from this approach is 

also more abrupt but an acceptably good agreement can be obtained. 

The two approximations to Ilyushin's yield surface designated 

in section 2.4.2 by Ilyushin I (expression (2.22)) and II (2.24) were 

tested on the same unstiffened plate in axial compression and on com- 

pression flanges of point loaded box girders. 	The results of these 

tests are illustrated in Figs. 3.20 and 3.21. .Some small differences 

on the average stress-strain curves were noticed but for all the cases 

tested the values of ultimate strengths were not significantly changed. 

In the case of the plate in axial compression (Fig. 3.20) the 

post-ultimate strength unloading is less pronounced using Ilyushin II. 

This seems to indicate, as suggested in section 2.4.3, that the main 

differences in the use of the two approximations should be found in the 

calculation of tangential rigidities rather than in the assessment of 

first yield. 	The better agreement of the Ilyushin II unloading path 

with multi-layer solutions (see Fig. 3.19) confirms the more reliable 

characteristics of this yield function. 	However,the differences in 
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the unloading paths in Fig. 3.21 might suggest the reverse conclusion 

but, as they are so small they should not be considered for this 

appraisal. 

Although Ilyushin II should be more reliable, it was mainly 

utilised as a checking on the use of the Iluyshin I function which was 

the first to be considered in the program. 	This one was also the yield 

criterion more experimented with in previous'plate analysis
(40)(42). 
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CHAPTER 4  

FLANGE MODES OF FAILURE 

4.1 	RELEVANCE TO LIMIT STATE DESIGN 

It was pointed out in the Introduction that the elastic per-

formance of a flange in a shear lag context is generally confined to a 

reduced level of loading. 	The high stress concentrations near the 

web-flange connection at a point loading cross section induce early 

yielding around these regions. 	To define a serviceability limit state 

as the attainment of first yield would be in general a too severe 

requirement. 	Dowling et al.(28)  identified a criterion for dispensing 

with the yield condition at service loads in stiffened flanges under 

shear lag effects. 	This referred to the development of permanent defor- 

mations in the components near the web-flange junctions. 	The servicea- 

bility aspects of the flange behaviour under load are not covered in 

this thesis which is mainly concerned with the conditions related to the 

collapse limit state. 	However, the information provided later may be 

used by code drafters to help with the formulation of suitable procedures 

to deal with that limit state. 

In the simply supported model under mid-span point loading, the 

overall collapse mode is associated with the ultimate moment of resis- 

tance of the loaded cross section. 	Whatever assumptions are made 

regarding the behaviour of the individual plate components, it is normal 

to expect that some redistribution of longitudinal stresses within the 

cross section will take place. 	This process normally involves the 

mobilisation of the capacity of the flanges to resist bending while the 
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webs are mobilised to carry shear. 	Theoretically, such redistribution 

can continue until either the compression flange or the webs ultimate 

strengths are reached. 	These capacities can be obtained separately but 

must be combined for equilibrium in assessing the girder ultimate load. 

Compatibility of deformation of the plate components at collapse has to 

be verified. Interaction between the web and the flange modes of failure 

must also be taken into account. 	This interaction can be expected to 

alter the carrying capacity of the individual plates if these latter 

strengths are estimated on the basis of commonly used boundary conditions. 

A common approach used to calculate the collapse limit state of 

box girders(15)  consists of assuming that the bending moments are ulti-

mately resisted by the flanges and the webs are designed to carry shear 

alone. To use the ultimate capacities of the flanges and webs in such 

an approach is 	appropriate when they approximately correspond to the 

same collapse load. However, it is mainly in these cases that safeguards 

against web-flange buckling interaction have to be considered. 

As discussed in Chapter 2, the theoretical model was simplified 

to separate the flange behaviour from web buckling. 	This is reflected 

in the modelling of the web-flange connection and in the description of 

the web behaviour. 	The analytical model does not allow consideration 

of the out-of-plane deflections of the web and the ultimate capacity of 

these components is thus only associated with in-plane yielding. 	The 

interaction between web and flange modes of failure was therefore investi-

gated within these limitations. 

The present research was, however, focussed on the behaviour of 

the flanges rather than that of the girder as a whole. 	By assuming that 

the web material has a high yield stress, or indeed is very much thicker 

than the flange, it is possible to model situations where the web shear 
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capacity does not place any restriction on the maximum longitudinal force 

the flanges can resist. 	The flange ultimate capacity obtained in this 

way can be directly used in the calculation of the maximum moment of 

resistance. 	The use of the design approach described in the third 

paragraph, in any case,neglects the web contribution to bending strength. 

Depending on the relative strengths of the two components this can be 

a very conservative approach and thus requires careful consideration in 

cases where the web's contribution to bending strength may be large. 

The ultimate capacity of the flanges will be measured by the 

maximum value of the inelastic effective width ratio tp at mid-span 

(expression (1.3)). 	When studying a flange (under no limitations 

imposed by the web strength), redistribution of the longitudinal stresses 

takes place, beyond the elastic limit, within the cross sections of the 

flanges. 	This corresponds to a reduction in the non-uniformity of the 

elastic shear lag stress distributions through material yielding. The 

degree of redistribution achieved in this mechanism at collapse can be 

estimated by comparing the maximum value attained by ip  with the inelas-

tic buckling effective width of the flange plate in axial compression. 

For this, the buckling load was computed using the same numerical pro-

gram to consider the compression flange in isolation, simply supported 

at the four edges and loaded by axially displacing the end edges while 

keeping them straight. 	Strain control along the longitudinal edges is 

lost in this analysis of plates in isolation, in contrast with the situa- 

tion relating to the same edges in a box girder assemblage. 	This should 

result in a more pronounced post-ultimate unloading of isolated slender 

plates in comparison with the behaviour of similar flanges of box 

girders. 	This has been experimentally verified by Dowling et al.(28) 
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when testing box girders in a pure bending moment situation. 	However, 

the purpose of the numerical analysis of isolated flanges is only to 

compare ultimate capacities and in these values the influence of the 

unloaded edge conditions is small. 

So far, the two types of stress redistribution discussed 

refer to the ultimate bending resistance of the critical cross section 

and occur within it. 	These are the only possible mechanisms of redis- 

tribution which are studied with the present simplified model. 

Redistribution processes associated with web buckling are not included 

but should be studied in any subsequent extension of this research. 

In the case of girders with continuity over more than two 

supports, redistribution of overall bending moments is posible due to 

plastic hinge deformations at critical cross-sections.. This must 

also affect the simple mechanisms of stress redistribution investigated 

in this thesis and possibly invalidate the extrapolation of the results 

obtained for simply supported girders to cases where continuity exists.. 

In the elastic regime it is often accepted that each portion 

of a girder between adjacent sections of zero moment can be treated as 

an equivalent simply supported beam. 	The possibility of using this 

approach to evaluate the elastic shear lag effects over continuous 

girders was investigated by Moffatt and Dowling(13)
. 	

These authors 

suggested that, in cases of statically 	indeterminate girders, the 

distribution of overall bending moments can be done on the basis of a 

fully effective width. 	Based on results for simple bending moment 

distributions they proposed formulae for calculating effective width 

ratios over the various parts of the continuous girder. 

In the context of ultimate limit state it will be shown, for 



the simply supported girder case, that the flange ultimate strength 

depends on the geometric parameter b/Q. 	Assuming that the cross- 

sectional ultimate moment of resistance can be calculated on the basis 

of the flange strength alone, this dependence indicates that, when full 

redistribution is not possible, the moment of resistance is not solely 

dependent on cross-sectional properties. 	Therefore, the application 

of the general theory of plastic hinge mechanisms to the failure of 

continuous box girders is a complex problem. 

4.2 	UPPER BOUNDS TO FLANGE ULTIMATE STRENGTH 

In the following sections some possible modes of failure of 

symmetric compression flanges of girders under point load are identi- 

fied. 	Corresponding upper bounds to their capacity are also estimated. 

4.2.1 	Flange Capacity Limited by Web Shear Strength  

The main external forces acting on the flanges considered in 

isolation, Fig. 4.1a, are the shear stresses transmitted by the webs. 

To consider only these stresses corresponds to neglecting in the analy-

tical model the vertical supporting reactions at the four compression 

flange edges and, in a real structure, the rotational and in-plane res-

traints in the connections to the webs and end diaphragms. 

The total longitudinal in-plane force on the flanges at any 

cross section must be in equilibrium with these stresses. 	For half a 

box beam the resultant of the shear stresses at each edge (the shear 

flow) can be represented by Tf, Fig. 4.1b. 	Using expressions (1.3-5) 

longitudinal equilibrium of the compression flange gives 

= 2T
f/oocfAcf 
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Fig. 4.1 	Flange equilibrium 

This indicates that the flange strength is limited by the maximum 

shear flow that can be transmitted through the longitudinal edges. The 

shear flow in turn is limited either by the web shear strength or the 

shear capacity of the flange edge. 

In the present model the ultimate strengths of the web and of 

the tension flange are governed by plane elastic-plastic considerations. 

Generally, the initial state of stress along the longitudinal edges of 

both the web and the flanges includes all stress components. 	After the 

onset of plasticity in displacement controlled loading cases plastic 

flow of these stresses under constant equivalent stress will increase 

the shear at the expense of the other components. 	Considering the 

web edge an upper bound to the value of Tf can be identified correspond-

ing to von Mises yield stresses in pure shear along the entire edge i.e. 



T  < f n-  2 

Hence, for the compression flange 

a 	t2, 
OW 	 

4) < 	`' 	 4.3 
IT crocfAcf 

The squash load of the whole flange 
(aocfAcf) 

 can be expressed in terms 

of the plate contribution using equation (1.10). 	Substituting this 

expression, inequality (4.3) can be conveniently presented in terms of 

the shear lag parameter b/t and the equivalent stiffening factor a', 

(1.9) as follows 

11) 
1 

crow  1  tw 1 
iy crop  1+a' t b/t 

4.4 

For plate, stiffeners and web of the same material (a ow =  aop and a' ='a) 

expression (4.4) takes the simplified form: 

1 1 tw 1 
1+a t b/z 4.5 

For equilibrium of half a web panel considered in isolation, Fig. 4.1b, 

the shear flow Tf  must be in equilibrium with the shear force Tw  and 

the bending moment M at the mid-span cross section. 	The upper bound 

on Tf  given by expression (4.2), also corresponds to a maximum yield 

shear value for Tw  if M is assumed to vanish under plastic redistribution 

of stresses. 	In the cases where the flange capacity is limited by the 

web strength, it is appropriate to calculate the ultimate moment of 

resistance on the flange contribution alone using the following expression 

a t ow w 
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Fig 4.2 Flange capacity limited by web shear strength (a = 0 ) 
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For a fixed ratio of thicknesses and a value of a, the upper 

bounds to the flange capacity, given by the right hand side of inequality 

(4.5), are hyperbolic functions of b/Q,. 	These are illustrated in Fig. 

4.2 for unstiffened flanges (a = 0) and for the tw/t ratios correspond-

ing to the various flange plate slendernesses (b/t) considered in the 

parametric study. 	It should be noted for later reference that b/t = 100 

corresponds to tw/t = 1, for the dimensions selected for the numerical 

examples (see section 5.2). Similar curves could be traced, for example, 

by fixing tw/t and considering different values of a. 

The significane of these upper bounds will be discussed in 

section 4.3 together with numerical examples to help interpret their 

practical applications. 

It is reasonable to expect that similar expressions may be 

derived for an upper bound to the flange capacity when allowance is made 

for web buckling. 	From tension field theory the web ultimate shear 

capacity is dependent on the flange properties but an upper bound esti-

mate should always be possible. 

4.2.2 	Flange Capacity Limited by Flange Shear Strength 

Another upper limit on Tf  is given by a similar plastic maxi- 

mum shear capacity of the flange edge. 	If this is to govern, and the 

influence of bending effects is neglected, this capacity can be assumed 

to correspond to von Mises yield stress in pure shear along the edge of 

the flange. 	Then, 

eop tQ,  

110 

Tf  < — 2  4.7 

Substituting in (4.1) gives 



111 

oop 	t9.  

aocfAcf 

Again, expression (1.10) can be used to relate the flange squash load 

to the plate squash load to obtain after simplification: 

1 	1 	1 
< 73 1+a' b/2 

The value of the plate thickness does not appear in this inequality 

which is also independent of material properties if the plate and stif- 

feners are made of the same material, that is, a' = a. 	In this case, 

1P 
1 	1 	1 

< 73= 1+a bit 
4.10 

This expression of the new upper bound to the values of tp is again rep- 

resented by a hyperbolic function of b/Q. 	This coincides with the func- 

tion derived from expression (4.5) when the web and the flange plate have 

the same thickness. 	For such cases the curves of Fig. 4.3 represent 

both upper bounds (those given by (4.5)and(4.10)). 	Among the unstiffened 

flanges used as examples this happens for the case of b/t = 100 as referred 

to before. 	For the other slendernesses studied twit < 1 and consequently 

they correspond to cases where the flange capacity is limited by the 

web shear strength. 

No reference was made in the derivation of these upper bounds 

to the effects of residual stresses. 	If the residual stresses can be 

assumed not to involve shear stressing of the flange edges, their pre-

sence near these edges (where they are normally tensile) should not affect 

the possibility of ultimately reaching yield stress in pure shear along 

1P 4.8 

4.9 
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them. 	Thus, the theoretical maximum values of 4) derived above should 

still apply. 	No investigation of the validity of this suggestion was 

however attempted and the effects of residual stresses were not consi-

dered. 

It was mentioned for the web in the previous section that out-

of-plane deflections can be expected to reduce its maximum shear capacity 

in comparison with the assumed yield value. 	Similarly, in a real 

stiffened flange, the capacity of the plate panels adjacent to the edge 

to transmit shear must be reduced by buckling interaction. 	This should 

depend on the panel slenderness, the rotational restraint from the web 

and the torsional rigidity of the nearest stiffeners. The present 

numerical model does not consider these rotational effects and is thus 

not specially suited for investigating the shear capacity of slender 

edge panels. 	However, a few examples will be presented which show a 

considerable reduction in flange strength compared with the values pre- 

dicted by the present upper bounds. 	This must be caused by the reduced 

capacity of the flange edge panels to transmit shear due to buckling. 

This ultimate capacity is reached by a combination of shear and varying 

compression along the length of the panels. 

4.2.3 	Flange Capacity Limited by Flange Compression Strength  

Another obvious upper bound is the full squash load of the 

flange, i.e. 

' 5 1 	 4.11 
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It intersects the hyperbolas of expression (4.10) at b/9 = 0.577 (or 

1/Ii) if a = 0; b/2 = 0.462 if a = 0.25 and b/Q = 0.385 for a = 0.5 

(see Fig. 4.3). 	This shows that the maximum efficiency of even a very 

stocky flange can never be attained for aspect ratios b/Q greater than 

the values quoted. 	Many real stiffened flanges have values of a (or a') 

greater than 0.5 which means that the limitation imposed by the edge 

shear strength may occur for realistic flange sizes. 

The development of out-of-plane deflections in a real flange 

influences its maximum compressive strength. 	Thus it is necessary to 

consider, a more severe upper limit associated with collapse in inelastic 

buckling rather than the squash load. 	The presence of residual stresses 

must certainly now influence the value of this limit but, as stated 

before, these were not considered in the present research. 

4.3 	INFLUENCE OF THE UPPER BOUNDS ON FLANGE BEHAVIOUR 

4.3.1 	Numerical Examples  

The upper bounds to the flange capacity were derived from 

plane-stress considerations regarding the shear strength of the web-

flange connection and theoretical conditions of plastic stress flow. 

Under displacement controlled point loading, these conditions can be 

numerically reproduced. 	The influence of these upper limits can be 

illustrated with a few examples. 

The first examples chosen refer to a closed box girder with 

b/2, = 1 and unstiffened flange plates (a = 0) with b/t = 60. 	The 

choice of dimensions followed the general criteria described in Section 

5.2. 

For this slenderness tw/t = 0.774 and, for web and flanges of 



0.7 

0.6 
upper bound given by expression (4 . 10 ) 

tension flange 

Cow >' Co tf 

0.5 
compression flange 
Cow " Co cf 

0.3 

0.4 

upper bound (4.5 ) 
compression flange 
Cow = 00  cf 

ī 

a = o 
b/I = 1 
b/t = 60 
Wo max = 6/200 

0.2 

0.1 

I 	I 	I 	I 	I 	I 	I 	I 	1 
0.2 	0.4 	0.6 	0.8 	1.0 	1.2 	1.4 	1.6 	1.8 

Em/  Eo 

Fig 4.4 Influence of upper bounds on flange behaviour 

L 



0.5 

°ow » °ocf 

0.4 

0.3 

0.2 

(X.= 0 
b/ I= 1.0 

bit=100 

wo max = b/ 200 

0.1 

I 	I 	I 	I 	I 	I 	I 	I 	1 
0.2 	0-4 	0.6 	0.8 	1.0 	1.2 	1.4 	1.6 	1.8 

EmCo 

Fig 4.5 	Influence of upper bounds on flange behaviour 



117 

the same material, the web shear strength should govern. 	According 

to expression (4.5) ui < 0.447 (see Fig. 4.2). 

By assuming the web material to have a very high yield stress 

(aow » aocf or  aotf) the influence of the two upper bounds can be 

reversed and the flange edge strength made to govern as in expression 

(4.10) . In this case u < 0.577. 

When aow » co tf the tension flange (plane-stress analysis) 

shows (Fig. 4.4) that a maximum tension force closely approximating 

the theoretical upper bound value is reached. 	The mesh size and the 

other approximations inherent in the discretization technique described 

in Chapter 3 are responsible for i  values exceeding somewhat the value 

of 0.577. 	This was discussed before since this example has already been 

used to illustrate in section 3.5 the modelling of the flow of stresses 

along the web-flange edges in high shear straining. 

The compression flange behaviour is represented in the same 

figure with two different assumptions for the web material: aow » aocf  

and aow - aocf. 
	In the first case the upper limit of 0.577 is not 

attained due to some buckling interaction. 	In the second case, the 

web shear strength restricts the flange capacity from reaching the maxi-

mum compression that the flange's own characteristics would allow and 

this is traduced in a completely different flange behaviour. 	The 

values of u  do not now exceed the 0.447 theoretical maximum. 	Beyond 

the maximum strength the values of u  reduce considerably. 	This is due 

to the straining of the longitudinal edge being accompanied by a very 

rapid increase of vertical displacements of the web-flange connection 

following plastic 	deformation of the web. 

These deflections induce flange buckling at a much lower mean edge strain 



than in the previous case thus causing the fall-off of ty values. 

The same effect is illustrated in Fig. 4.5 for a bit = 100 

flange. 	For this slenderness the expression for the upper bounds 

(4.5) coincides with (4.10) if aow = aocf since tw  = t. 	This means 

that the ultimate capacity should theoretically be the same in this 

case as when aow  » a°cf. 
	Figure 4.5 indicates that this prediction 

is followed. 	The different post-peak behaviour is explained by the 

above interpretation of the plastic deflections when the web yields. 

4.3.2 	Discussion of Albrecht's Results  

The numerical examples quoted indicate that the theoretical 

upper bounds derived in section 4.2 correspond to maximum flange capa-

cities which should be reproducible in numerical plane stress analyses. 

The displacement controlled loading used in the present model plays an 

important role in ensuring that the plastic flow of stresses, required 

for mobilising that capacity, takes place. 

It is therefore interesting to compare these conclusions with 

the results of the finite element plane stress study of closed box 

girders conducted by Albrecht(26)  and mentioned in the Introduction. 
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This was part of a numerical research into the problem of effective 

widths of wide flange girders taking account of plasticity effects, and 

seems to be the only other numerical investigation whose results can be 

used for comparison. 

Albrecht's model was also simply supported and had the general 

impractical dimensions indicated in Fig. 4.6*. 	It was loaded by apply- 

ing vertical displacements to a node at half the web depth at mid-span. 

As discussed in section 2.5.4 this loading clouds the shear lag point 

loading effects on the flange but plastic flow of stresses, increasing 

the shear capacity of the web beyond a fully yielded depth at mid-span, 

was also reported. 	This was referred to by Roik(27)  in a discussion 

of these results. 

Depending on the dimensions, the collapse of preliminary 
capacity 

examples corresponded to either full sheaVEeing reached over the whole 

web depth or to fully yielded flange cross-sections. 	The ratio b/R. 

was identified as the parameter controlling the mode of collapse. For 

higher values of b/2, the shearing of the web governed the failure. In 

these cases parts of the mid-span flange cross section remained elastic. 

However, the type of loading and the characteristics of the finite 

elements used produced in-plane Nx  stresses at the plate edges of the 

web-flange connection which were out of equilibrium. 	These spurious 

stresses contributed to the reduction of the shear capacity of these 

edges thus masking the possibility of expressing the flange capacity in 

terms of a maximum yield shear flow along them. 	The corresponding 

upper bounds to this capacity derived in expressions(4.5) and (4.10) 

were thus not explicitly recognised. 
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Albrecht defined effective width (designated by bm) as the part 

of the flange width which, if used in the normal expression of the cross-

sectional plastic moment, would give the calculated ultimate moment of 

resistance. 	That is, 

Mult 	o (b mt + dtw/2)d 4.12 

From the numerical results, obtained by keeping Q constant (t = 10000 mm) 

and changing b, a variation of bm with b/2 was proposed in the form of 

Fig. 4.7. 	Although the definition of bm expresses the reduction of 

Fig. 4.7 	Comparison of present approach with results from reference (26) 
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plastic moment due to the shear lag type of loading, it exaggerates its 

effects on the flange since the web contribution is assumed to be 

unaltered. 	The effective width is thus made to depend on the depth of 

the web. 	This seems inconsistent with the numerical evidence for large 

values of b/!t indicating that almost full redistribution of longitudinal 

stresses from the web to the flanges was possible. 

In the context of the upper bounds to the flange capacity dis-

cussed in this chapter these are cases where the web contribution can 

be neglected and the ultimate moment of resistance calculated in terms 

of ''max 
according to expression (4.6). 	In the present case the value 

of Vpmax 
should be given by the right hand side of expression (4.10) . 

Albrecht's results can be correlated with this approach by 

comparing the values obtained by using both expressions of Mult 
 divided, 

for convenience, by aobtd. 	That is,comparing 

Mult/oobdt = bm/b + d/2b 

with 

M
ult/ao 

 td = max  

By graphically adding to Albrecht's results for bm/b (Fig. 4.7) the 

values of d/2b, calculated for each b/2 (from the given t and d values), 

it is possible to see that the values of expression (4.13) are consis-

tently below the corresponding 4)max 
values and are on the 'safer' side. 

The reason for this more conservative estimation should however be 

attributed to numerical problems, referred to before, rather than to any 

deliberate assumption. 

4.13 

4.14 

Although the upper bounds to the flange capacity, given by 

(4.5) and (4.10), are derived from intuitive equilibrium considerations, 



their existence and practical significance were not noticed by these 

earlier researchers
(26)(27). 	

A further confirmation that the shear 

capacity of the web-flange connection was not identified by these 

authors as limiting the flange efficiency arises from an attempt by 

Albrecht to study the influence of the web thickness on the girder 

strength. 	For b/Q. = 0.2 two different thicknesses (tw  = 10t and tw  = 0. 1 t) 

were experimented with while keeping the other dimensions(Fig. 4.6) 

constant. 

A statement that in the first case the ultimate load was not 

altered while in the second it was considerably reduced, was the only 

observation provided. 	If the mechanism of failure had been understood 

fully, the explanation tendered within this section,by the use of expres-

sion (4.5), would have been presented. 

4.4 	FLANGE COLLAPSE MODES 

4.4.1 	Unstiffened Flanges  

The significance of the upper bounds discussed before was 

easily identified for unstiffened flanges. 	The shear capacity of the 

loaded edges was seen to impose, for certain values of b/Q, a limitation 

on the flange effectiveness. 	The other limitation to be considered 

corresponds to the compressive capacity in inelastic buckling. 	A dif- 

ferent collapse mode is associated with each one of these upper bounds. 

The analysis of two cases showing distinctly different modes 

of failure will illustrate this statement and provide a means of inter- 

preting later the results of the parametric study. 	The behaviour of 

two compression flanges of open cross section girders, with the same 

slenderness b/t = 60 but different b/!C ratios (1 and 0.5 respectively) 
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is represented in Figs. 4.8 and 4.9. 	The webs were assumed to remain 

elastic during the loading history thus making the flange failure only 

dependent on flange characteristics. 	In both cases the initial imper- 

fections had a half-sine wave shape transversely and longitudinally with 

the amplitude of b/200. 

In both figures 4.8 and 4.9 the spread of plasticity and the 

distribution of the longitudinal stresses at the mid-span cross section 

are indicated at various strain levels. 	The development of the central 

deflection is also shown. 

Due to the more pronounced shear lag effects in the first case, 

b/Q. = 1, the edge yields before any significantly large deflections 

occur and at an average compression level at mid-span well below the 

collapse load in axial compression. 	For this comparison the behaviour 

of the same plate in compression is also shown in Fig. 4.8. 	A charac- 

teristic of this flange mode of failure is the plateau corresponding 

. to the ultimate load explained by the theoretically infinite ductility 

assumed for the material. 	This load 
(pmax)  is very near the upper 

limit in plane-stress behaviour of 0.577 (or 1//5) predicted by expres-

sion (4.10) . 

In the second case, Fig. 4.9, significant parts of the edge 

remain elastic providing load paths through which shear stresses can be 

transmitted from the web to the central zone. 	This continues until 

the level of average compression in this area approaches the buckling 

load under uniform compression, obtained for the previous case, and the 

full plate width becomes plastic. 

The ultimate capacity (iPmax)  is smaller than the compressive 

strength of a square isolated panel due to partial interaction of 
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shear lag effects. 	However, the more rapid unloading in comparison 

with the bit = 1 flange, shows. the characteristic influence in this 

mode of failure of inelastic-buckling. 	The variation with load of 

the distribution of longitudinal stresses at mid-span demonstrates, in 

both Figs. 4.8 and 4.9, how the capacity of the compression flange is 

mobilised to a different extent in each mode of failure. 	The b/R, = 0.5 

example was difficult to compare with the behaviour of a similar isolated 

plate in compression. 	In fact, the preferred buckling mode shape of a 

plate in compression is, for this aspect ratio, longitudinally anti- 

symmetric about the mid-length cross section. 	In the flange, the given 

imperfection shape, although not producing the most severe effects*, 

induces inelastic buckling in a symmetric mode approximately with the 

same shape. 	This is convenient for comparison with the b/R, = 1 flange. 

4.4.2 	Stiffened Flanges 

In cases where panel or stiffener buckling do not occur in the 

flange failure the same two simple collapse modes illustrated for 

unstiffened flanges can be identified. 	They correspond to the predomi- 

nant edge failure in shear or to the overall buckling in axial compression 

with the stiffeners deflecting downwards. 	Again the first mode is 

associated with the upper bound given by expression (4.10) and the 

second depends on the column slenderness (£/r) of the stiffener and 

combined plate width (Fig. 5.1). However, the presence of the stiffeners 

increases the shear lag effects and the edge failure in shear becomes 

the predominant collapse mode for smaller values of b/t than in the case 

of unstiffened flanges. 

* see section 5.3. 
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The examples chosen to illustrate this aspect refer to flanges 

simply divided into three equal panels by two longitudinal stiffeners 

made of the same material as the plate (a' = a) and having a stiffening 

factor a = 0.25. 	Elastic webs of open cross sections were also adopted. 

Some preliminary numerical experiments showed that it was sufficient to 

adopt b'/t = 40 to ensure that no premature panel buckling took place. 

The value of t/r = 40 was chosen to determine the cross-sectional 

dimensions (see section 5.2). 	For overall initial distortions half-sine 

wave shapes were assumed to occur in both directions having a maximum 

amplitude of b/200. 

The behaviour of stiffened flanges having the above characteris-

tics and values of b/1C of 1 and 0.5 are represented in Figs. 4.10 and 

4.11 respectively. 	The same presentation which was used for unstiffened 

flanges shows that in the first case the spread of plasticity along the 

longitudinal edge corresponds to a mode of failure similar to the case 

of Fig. 4.8. 	A more pronounced shear lag effect associated with the 

orthotropy of form (a > 0) would indicate, according to expression (4.10), 

a maximum capacity of 0.462 (see also Fig. 4.3). 	The values of i  closely 

approximate this limit and no fall-off in the carrying capacity is shown. 

This is similar to the behaviour of the tension flange of Fig. 4.4 indicat-

ing that the increase of shear stresses at the edges (under plastic 

flow) takes place in the absence of large deflections. 	As in the case 

of Fig. 4.8 the maximum capacity is much smaller than that of the same 

stiffened plate in axial compression whose behaviour is also represented 

in Fig. 4.10. 

In the b/2 = 0.5 case (Fig. 4.11) plasticity also spreads along 

the whole edge before maximum capacity is reached. 	This capacity is 

close to the ultimate strength in axial compression OPb= 0.78) of the 
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square panel with the same cross section (Fig. 4.10). 	Collapse occurs 

with the mid-span cross section almost fully yielded. 	The unloading is 

more pronounced than that of the plate in compression. 	This can be 

explained in terms of the upper bounds of Fig. 4.3. 	For a = 0.25 the 

intersection of the upper bound corresponding to the edge in shear 

(expression 4.5) and the bound corresponding to the compressive strength 

occurs for b/2 = 0.59. 	The value of b/2 = 0.5 is thus very close to 

this critical value for which the two modes of failure should theoretically 

produce the same ultimate capacity. 	The interaction between the two 

modes is greater in this zone, as was confirmed in the parametric study 

(section 5.5.3) thus causing the post-peak fall-off in the flange capacity. 

If, instead of avoiding the interaction of panel buckling, 

more slender panels are assumed, the buckling of the edge panels should 

reduce their capacity to transmit shear, as discussed in section 4.2.2. 

This is illustrated by two examples of flanges with the same cross-sectional 

dimensions and again different aspect ratios (b/2 = 1 and 0.5). 	They 

were chosen to have only three panels, with b'/t = 60, 	2,/r = 40, 

and a stiffening factor of 0.25 for comparison with the b r it = 40 cases 

presented before. The initial distortions were assumed to have the same 

shape as in the previous cases (half-sine waves in both directions) with 

maximum amplitude also given by b/200. 	Elastic webs of open cross 

sections were again adopted. 	The behaviours of these flanges are 

represented in Fig. 4.12 together with the behaviour of the b/2 = 1 flange 

plate in axial compression. 

The capacity of the b/2 = 1 flange is reduced below the upper 

bound value of 0.462 which so closely predicted the ultimate strength of 

the b'/t = 40 case with the same aspect ratio. 	The mode of failure is 
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now associated with the formation of large panel buckles. 	In the edge 

panels the direction of these buckles is slightly inclined in relation 

to the longitudinal line since they are produced under a combination of 

shear and compression straining. 	The buckled shape is shown in Fig. 

4.I3a together with that of the same plate in compression, Fig. 4.13b. 

While in the flange the shear loading produces larger and deeper buckles 

in the edge panels, in the plate in compression the buckles concentrate 

near the loaded ends. 

In the b/i = 1 flange behaviour, the gentle unloading beyond 

ultimate load is still characteristic of a predominance of the edge 

shearing mode of failure in contrast with what would be expected from a 

more rapid unloading of the slender panels in compression. 	However, 

the flange maximum capacity corresponds to a transverse distribution of 

compressive stresses at mid-span whose average over the edge panels is 

approximately equal to the buckling stress of a b/t = 60 plate in compres-

sion. 

In the b/Q = 0.5 flange, 	downwards buckles form first in 

the edge panels at mid-span followed by the development of alternate 

buckles (upwards) along the edge and in the central panel. 	While the 

buckles propagate the deflections in the first buckle grow considerably. 

How ever, ultimate capacity is reached with extensive parts of the edge 

panels still undistorted. 	The buckled shape of this flange is also 

shown in Fig. 4.13c. 	Perhaps more clear' than in the previous case 

is the inclined direction of the second buckle in the edge panel due to 

the shear component. 

The value of 11)max is still much smaller than that of the square 

flange in axial compression. 	In this case, the average compression in 
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the edge panels reaches the value of the buckling stress of a b/t = 60 

plate panel before the central panel is fully mobilised and before the 

flange ultimate capacity is attained. 	With subsequent straining a 

process of unloading of the edge panels takes place. 

It is possible that the behaviour of the b/R, = 1 case could 

still be understood in terms of the upper bounds used in the previous 

cases if the bound derived from the edge plastic shear strength was con-

veniently reduced to correspond to the new inelastic buckling capacity 

of the edge panels in shear. 	However, the behaviour of the second 	case 

(b/2. = 0.5) indicates that the interaction of panel buckling may alter, 

in some cases, the simple pattern of interaction identified before between 

the modes of failure corresponding to those upper bounds: the edge failure 

in shear and the overall buckling mode. 	The interaction of these two 

modes may be insufficient to interpret the behaviour of such cases and 

would thus have to be combined with an assessment of the reduction of 

the flange compressive strength, to take account of post-buckling unloading 

of edge components in the shear lag environment: 

It was the experimental observation in Model 9 (see section 

6.3.2) of a behaviour similar to that of the b/2 = 0.5 case, which led 

to the identification in reference (28), as discussed in the Introduction, 

of the relevance of the post-ultimate strength of the edge plate panels 

and stiffeners in the context of full stress redistribution. 	This 

problem was not investigated within this thesis. 
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CHAPTER 5 

PARAMETRIC STUDY 

5.1 	INTRODUCTION 

The main purpose of this study was to understand the inter-

action between the two principal modes of failure identified in 

Section 4.4. 	It was based on the analysis of unstiffened flanges and 

was thus concentrated on the effects of the main parameter influencing 

shear lag, the flange aspect ratio b/k, and the main parameter influenc-

ing buckling, the plate slenderness b/t. To reduce the number of the 

other parameters involved a few criteria regarding the fixing of 

dimensions were adopted. 

The possibility of the webs failing plastically in shear is of 

limited interest for the purposes of this study and was removed by 

assuming them to be made of a very high yield steel. 	Thus a flange 

failure depending only on flange characteristics.could be studied and 

the only upper bound to be considered is that given by expression (4.9). 

However, a further assumption for stiffened flanges was that a' = a 

thus making expression (4.10) the relevant one. 

A further numerical simplification was introduced by consider-

ing only girders with open cross sections of types CS2 and CS3, Fig. 1.4. 

The difference in behaviour between open and closed sections was investi-

gated and no difference in the ultimate behaviour of the compression 

flanges was found for the several cases considered. 	This can be illus- 

trated for a b/2 = 1 case by comparing the behaviour of the same com-

pression flange (a ow »  aocf
) in a closed and an open cross section 

1 33 
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girder in Figs. 4.4 and 4.8 respectively. 	This, together with the 

fact that for b/t = 100 cases (Fig. 4.5) the same ultimate capacity 

was obtained for different web materials, shows that although the 

maximum flange strength is controlled by the total shear stress applied 

along the edges it is not very sensitive to changes in its distribution. 

The parametric study of unstiffened flanges was preceded by 

an investigation of the effects of initial imperfections and their 

most weakening shape, together with a study of the influence of material 

properties. 	These investigations were restricted to a few cases and 

the observations, although interesting, are insufficient to come to any 

firm conclusions regarding the shape of initial imperfections having 

the most weakening influence. 

The numerical results of the parametric study are presented in 

terms of ultimate strength against the b/!. parameter for the three values 

of b/t studied (40, 60 and 100). 	The form of the curves obtained promp- 

ted the author to attempt to present the results for design purposes 

using a format based on an analogy with column strength curves. 

The conclusions regarding the interaction between the shear 

lag and buckling effects are compared with Maquoi and Massonnet's
(22)  

proposal for design rules. 	They were also tested on stiffened flange 

cases where only overall buckling interacted with shear lag effects. 

5.2 	CRITERIA USED TO SELECT DIMENSIONS AND MATERIAL PROPERTIES 

FOR NUMERICAL EXAMPLES 

To maintain some relation between all the cases studied and to 

reduce the number of intervening parameters the same moment of inertia 

and ratios of cross-sectional area of each flange and the combined area 
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of the webs (Acf/AJ  and Atf/A w)were assumed, unless otherwise specified. 

As found by Moffatt and Dowling(13), these ratios are relatively minor 

parameters influencing the elastic shear lag effects on the flanges at 

the point-loaded cross sections. 	They were assumed to be equal to 

unity in this study for all three cross-sections (Fig. 1.4). 

To enable the same moment of inertia to be assumed throughout, 

the cross-sectional dimensions of the webs were kept constant with the 

following values (Fig. 1.3): 

d = 900mm ; tw  = 18mm 	 5.1 

Thus, the cross-sectional areas are 

Acf 	Atf
w = 32400 mm2 	 5.2 

In the case of stiffened flanges this only approximately maintains the 

cross-sectional moment of inertia. 

To fix the value of the flange cross-sectional area establishes 

a relation between the width and thickness of an unstiffened flange, 

that is,Acf  = bt. 	These dimensions are then adtomatically determined 

once a value for the slenderness parameter b/t is assumed. 	Consequently, 

for each value of b/Q required, the length R, has to be calculated from 

the value of the width b. 

The buckling mode of stiffened flanges associated with an 

inwards deflection of the flange (positive bending of the stiffeners) 

is governed by two main geometric parameters: the slenderness of the 

plate panels b'/t, and the column slenderness R/r of the stiffener and 

associated plate width taken as the full panel width b' (Fig. 5.1) . 

The local buckling of the stiffener outstand is dependent on the depth-

thickness ratio ds/ts. 
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Fig. 5.1 	Stiffener and associated plate width 

Given a, b'/t and the number of plate panels or stiffeners, 

it is possible to calculate from expressions (1.7) and (1.8) the panel 

dimensions b' and t, the total width b and the cross-sectional area of 

each stiffener. 	As before t has to be determined from the value of b 

for each value of b/2.. 

The actual dimensions of the stiffener cross section are then 

calculated by either fixing a value for t/r or for ds/ts. 	In the 

examples presented in this thesis 2./r was generally selected as the 

given parameter and ds and is adjusted accordingly. 	This led in some 

cases to unrealistic values for ds/ts but, as the present analytical 

model is not suitable for studying the modes of failure associated with 

stiffener torsional buckling, this was considered to be acceptable. 

All the box girder plate components were assumed to be made of a very 

ductile mild steel with the same Poisson's ratio and Young's modulus: 

v = 0.3 ; 	E = 205800 N/mm2 	 5.3 

In stiffened flanges, unless specified otherwise, the same material was 

assumed for the plate and the stiffeners thus making the equivalent 

stiffening factor a' (defined in (1.9)) equal to a. 	The same uniaxial 
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yield stress was used in most of the examples corresponding to a steel 

characterised by 

00  = 235 N/mm2 	or 	= 0.0338 	5.4 

To meet the assumption that the webs remain elastic a very high value 

(ten times the above value) was assigned to the yield stress. 

5.3 	EFFECTS AND CHOICE OF INITIAL GEOMETRIC IMPERFECTIONS 

The influence of varying the amplitude of the geometric imper- 

fection on the buckling mode of failure was studied at first. 	The 

results showed that, as in isolated plates in compression, larger 

initial deflections produce, in general, lower and less pronounced 

peaks in the stress-strain curves. 	This is illustrated in Fig. 5.2 

where the behaviour of a b/9. = 1 slender flange is represented for 

different amplitudes of a double half-sine wave imperfection. 

The associated problem of determining the initial shape that 

produces the biggest weakening effect was more difficult to study mainly 

due to the lack of information on elastic buckling mode shapes for the 

shear lag type of loading. 

In the present problem, the net compression force peaks at the 

point load position. 	For unstiffened plates initial distortions which 

included a downward bow in this zone proved to be more weakening than 

initial shapes of the same form as the preferred buckling modes under 

uniform compression. For example, for b/2. = 0.5 an imperfection with 

two longitudinal waves with the shape of the critical mode in axial 

compression,and thus antisymmetric in relation to the mid-span section, 

produced a collapse load eight per cent higher than a symmetric imper-

fection with three half waves. This is shown on Fig. 5.3. 
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Fig 5.2 Effect of varying the amplitude of the initial imperfections 
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Fig. 5.3 	Effects of different shape of initial imperfections in the 

behaviour of a b/2 = 0.5 flange (elastic webs) 



CASE I 

was the same in all cases and equal to b/200. 

I= 2b 

CASE II 

The same transverse half-sine wave shape was used with various 

shapes in the longitudinal direction. 	These were obtained for cases 

with symmetry about mid-span by combining, in different proportions, 

one and three half-sine waves. 	In the antisymmetric case two half- 

sine waves were used. 	The longitudinal profiles of these shapes are 

shown in Fig. 5.4. 	The maximum amplitude of the downward bow (w 	) 
omax  

140 

  

I- 	
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CASE III CASE IV 

    

b/200 

      

Fig. 5.4 	Longitudinal profiles of initial imperfections assumed for 
a b/2 = 0.5 flange 

The development of the longitudinal profile of the central 

line with loading is shown in Fig. 5.5 for all the cases. 	The deflec- 

tions shown are measured from a cylindrical surface generated by the 

deflected line of the web-flange connection. These profiles illustrate 

how buckling in different modes is influenced by the shape of the 

initial imperfection. 

By comparing the profiles of Case I and Case IV, for example, 

it is possible to understand why the ultimate compressive force at mid- 

span is higher in the latter. 	In this case,a nodal line, corresponding 

in the profiles to the point of contraflecture, acts like a transverse 

stiffener to the most compressed central zone, thus reinforcing it 

against buckling. 
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Fig 5-5 	Developn-,ent of deflections with loading for 

different shapes of initial imperfections. 

Longitudinal profiles of central line(b/1.0.5; bit =1C0) 
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For Case II, the plate buckles from an initial three wave 

shape into a one wave form. 	In this case there is some delay in the 

development of large deflections which explains, perhaps, the attain- 

ment of a higher peak load than in Case I. 	Case III proves to be the 

'weakest'. 

These observations seem to suggest that for this type of load-

ing an imperfection whose shape weakens the central most stressed zone, 

by having a downward bow at the centre while leaving the flange ends 

sufficiently flat, would have the most weakening effects. 	Such a 

shape would provide 'strong' load paths from the ends of the web-flange 

connections, which remain elastic,to the central zone. 

When these suggestions were published recently(71), Wang drew 

the author's attention to an earlier paper(72) in which he had studied 

numerically (using the finite differences technique) the elastic buck-

ling of flat plates under compressive forces uniformly distributed 

across the width but varying axially as shown in Fig. 5.6. 

1_L_1 	_1_L  I  
~ 	 e 

b 

it 
	

( 
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Fig. 5.6 	Stress distributions in flange assumed in reference (72) 
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A - A 

The assumed stress distributions were selected to represent 

the situation of a flange of a box girder under point load at mid-span 

neglecting shear lag effects. 	Little information is given in reference 

(72) about the buckling mode shapes obtained but they are said to pre-

sent a pronounced wave at the centre with relatively 'flat' zones near 

the ends (see example in Fig. 5.7). 	This provides some corroboration 

A (' 

Fig. 5.7 	Example of buckling mode shape obtained for a b/Q = 1/6 

flange loaded as in Fig. 5.6 (longitudinal profile along 

central line*) 

of the suggestions about the most weakening imperfection made above. 

This problem however deserves more attention than was given in the 

present, limited, investigation. 

Eventually, a shape with three equal half-waves (Case III) was 

adopted in the parametric study for the initial imperfections of flanges 

with b/R. 	0.5. 	For aspect ratios between 0.5 and 1.0 either the shape 

of Case I or Case II was used, depending on which produced the lowest 
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value 
ofmax' 	

For consistency, the maximum amplitude of the central 

bow was kept constant with a value given by b/200. 	This decision is 

linked to recent recommendations on tolerances in plated structures(73). 

This choice corresponds to assuming that the ratio womax 
/t is 

proportional to the plate slenderness b/t, or to the non-dimensional 

slenderness* R (as the same material properties were assumed for all 

the plates). 	For correlating the results in a study of the influence 

of material properties, the proportionality between 
womax 

/t and R 

proved to be a convenient way of describing the effects of initial dis- 

tortions. 

For all the stiffened flanges used in the parametric study the 

overall shape of the initial distortion consisted of one half-sine wave 

in both directions. 	The maximum amplitude of this'dishing' was also 

taken as b/200. 	That is, no transverse modulation of this overall 

sinusoidal distortion, corresponding to plate panel deflection between 

stiffeners, was assumed. 

Such imperfections are perhaps too severe, compared to normal 

tolerances, since they correspond,when three equal plate panels are assumed, 

to a stiffener longitudinal deflection which varies between Z/230 for 

b/2, = I to 9/690 for b/9 = 1/3. 	However, as these flanges were only 

considered in a very restricted investigation the assumptions are again 

considered to be acceptable. 

5.4 	INFLUENCE OF MATERIAL PROPERTIES 

The upper bound to the capacity of an unstiffened flange when 

it is governed by the shear strength of the longitudinal edges is given 

* defined in expression (5.5) 
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by expression (4.10). This expression is independent of the plate 

slenderness and material properties. 	On the other hand, the inelastic 

buckling of isolated unstiffened plates is governed by the non-dimensional 

plate slenderness S, when account of material properties is taken in 

the comparison of different cases. 	This parameter is defined as 

S = (b/t)v/oo/E 	 5.5 

This suggests that by keeping R constant it may be possible to obtain 

the same values of 
max in flanges with the same aspect ratio b/R. but 

with different values of b/t. 	This would eliminate the need for con- 

sidering the influence of different materials and thus allow the para-

metric study to be conducted on the bases of the b/R, and b/t parameters 

only, and allow the same yield stresses to be used throughout. 	This 

possibility was investigated and proved to be acceptable by comparing 

the behaviour of flanges with b/t = 60 as considered in the parametric 

study (i.e. with fo/E = 0.0338), with flanges with b/t = 100 and a 

yield stress reduced in order to produce the same value of (3, i.e. 

S = 2.028. 

As described before,the nondimensional amplitude of the initial 

distortions (w 
omax /t) was assumed for the parametric study to be pro- 

portional to the slenderness b/t or to S. 	Based on this criterion 

the ratio 
womax 

/t was maintained equal to the one used in the b/t = 60 

case i.e. 
womax 

/t = 0.3. 

The results of this study are shown in Fig. 5.8 for two values 

of the b/2 ratio (1 and. 1 /3) . 	In both cases the agreement between the 

behaviour of the two flanges with different materials is very good. 

This suggests that the shear lag effects are at least relatively inde- 
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Fig 5-8 Study of material properties. Comparison between flanges 

with different dimensions but same non-dimensional slenderness((=2.028) 
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pendent of material properties. 	These only need to be considered on 

the failure component associated with inelastic buckling. 	These 

results also suggest that, in the presence of shear lag, the buckling 

mode component in the flange collapse can be treated in the same way 

as the inelastic buckling of isolated plates in compression i.e. its 

influence for different grades of material can be related to the factor s. 

As suggested in section 4.2 it is probable that the residual 

stresses also have their main effects associated only to this buckling 

mode of failure. 	These effects could then be incorporated in the 

study by simply allowing for an appropriate reduction in the upper bound 

corresponding to inelastic buckling calculated from studies of isolated 

plates. 

5.5 	SUMMARY OF PARAMETRIC STUDY RESULTS 

5.5.1 	Unstiffened Flanges  

The results of varying the main parameters are summarised in 

Fig. 5.9 where the maximum values of i  are plotted against b/2 for the three 

values of slenderness ratio. 	Some more results are needed to clarify 

the shape of the curves obtained for each slenderness for small values 

of b/!t. 

The plotted points suggest that these curves would have initial 

values of 
Amax 

close to buckling effective width ratios such as those 

proposed by Winter(74)  for plates in axial uniform compression*. For 

larger values of b/Ý, these curves seem to merge into the upper bound 

line given by expression (4.10). 	In between these two zones the inter- 

action of the two modes of failure referred to before is clear. 

* given by tpb  = 1.9/s - 0.9/132. 
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Fig 5.9 Parametric study results 
Unstiffened compression flanges ( Jai/E =0.0338) 
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The existence of an initial plateau, though not well defined, 

indicates that for smaller values of b/9 full redistribution can be 

assumed and that the flange strength is governed by inelastic buckling 

considerations. 	The size of this plateau seems relatively smaller for 

more slender plates, indicating that interaction with the shear lag 

mode of failure starts 'earlier' for these flanges. 

The convergence of results to the upper bound line and the 

merging of the curves also needs clarifying since it is associated with 

the difficult modelling of plastic flow around the longitudinal edges 

under high shear straining. 	In this zone, however, the predominance 

of the mode of failure associated with the shear strength of the edges 

shows the flange capacity given by the maximum shear flow these edges 

can transmit. 

Although the detection of the two modes of failure was possible 

since the early stages of this research project(75)  the identification 

of the associated upper bounds was fundamental to an understanding and 

proper interpretation of the results. 

The shapes of the curves are dependent on the initial distortions 

assumed in the study but the effects of the imperfections should be com-

parable for all the various slendernesses and some correlation between 

the three curves must exist. 

The similarity of the curves of Fig. 5.9 with column strengh-

slenderness curves suggests a way of presenting results i.e. by use of 

Perry-Robertson type curves. 	This was attempted employing the follow- 

ing quantities: 

bit* _ (b/R)/(1/Vi 'Ub) 
	

5.6 

and 	" 	= ''max /fib 
	 5.7 



bit=100 1/ (1)/1*) 

bit= 60 

1-0 
bit=40 

	 Numerical results 
--- — Expression( 5.8 ) 

 

1.0 

 

bit*  
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Fig. 5.10 	Unstiffened flanges. Curve fitting to numerical results 
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where 
lPb 

is the value of the inelastic buckling effective width ratio i.e. 

the value of 
'pmax 

 corresponding to the apparent plateau for each b/t. 

If the results are presented in this new system of coordinates 

the curves are of the form indicated in Fig. 5.10. 	Although more 

results are needed to define these curves accurately an attempt was 

made to formulate an empirical expression to fit them. 	This expression 

is 

(b/t* 	*)(1-e) = n(b 	/Q*) 

where 

= 6(b/2,* - b/R.Q) for b/2,* > b/!CD 

or 

0 	for b/Q,* < b/t* 

with 6 a parameter to be adjusted for the various slendernesses and 

b/t* representing the size of a possible initial plateau. 

fitting exercise produced the parameters, 

b/i* = 0.45 - 2.5 x 10-3  b/t 

and 

6 = 2 x 10-5  (b/t)2  

A curve 

5.10 

The corresponding curves are also presented in Fig. 5.10. They show 

that this approach can represent well the results of the parametric study 

for small values of b/9* (the more significant ones) . 	Although all 

relevant parameters were considered in expressions (5.8-5.10) these are 

rather complicated. 	It would probably be sufficient for design purposes 

to take advantage of the reduced system of coordinates and propose a 

lower bound curve. 	This could be used to estimate the amount of redis- 

tribution that can be assumed in a flange given the inelastic buckling 

load and the aspect ratio. 

5.8 

5.9 
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5.5.2 	Comparison with Maquoi and Massonnet's Proposal  

The Maquoi and Massonne t's(22)proposal to derive collapse 

effective width ratios by multiplying shear lag and inelastic buckling 

effective width ratios produces over conservative results. 	This is 

shown 	in Fig. 5.9 where such values* for plates with b/t = 60 have 

been compared with the present results, and may be seen to bear little 

resemblance. 	Their proposal seems therefore to be unacceptable. 

5.5.3 	Stiffened Flanges  

The conclusions from the study of unstiffened flanges, regard-

ing the explanation of the interaction of modes of failure in terms of 

corresponding upper bounds to flange capacity, were also tested for 

simple stiffened flangest. 

For slenderness b'/t = 40 panel buckling was not expected to 

be predominant and an illustration of the influence of the upper bound 

(4.10) when a = 0.25 is presented in Fig. 5.11 for two different stif- 

fener rigidities, i.e. Q/r = 40 and 80. 	The influence of the stiffeners 

and the corresponding increase of the shear lag effect can be seen in 

the convergence of results to the theoretical upper limit as predicted 

when deriving expression (4.10). 	The different values of the eventual 

plateaux can be explained by the influence of 9/r on the overall buckling 

strength. 	These values can be compared in the same figure with the 

inelastic buckling effective width ratio of a b/Q = 1 and Q,/r = 40 plate 

in axial compression obtained from Fig. 4.10.The pattern of interaction 

* obtained by multiplying elastic shear lag effective width ratios, given 
for example in reference (14), by the inelastic buckling effective width 
ratio, i.e. the value of 1Pmax corresponding to the plateau (4)b) . 

t with only three plate panels. 
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Fig 5.11 Interaction between shear lag and 

overall buckling in stiffened flanges 



154 

between the overall buckling mode and the failure by exhausting the 

edges shear capacity is thus similar to the one found for unstiffened 

flanges.. However, the b/9. zone where interaction between these modes takes place 

seems 	more reduced than in the cases of unstiffened plates. 



CHAPTER 6 

REAPPRAISAL OF SOME TEST RESULTS ON LARGE SCALE MODEL BOX GIRDERS 

6.1 	GENERAL DESCRIPTION OF TESTING PROCEDURES 

The major part of the programme of tests on large scale steel 

box girders conducted at Imperial College between 1971 and 1976 was 

initiated by the Merrison Committee of Inquiry. As described briefly 

in Chapter 1, three box girder models (Models 1, 3 and 9) were designed 

to investigate the effects of shear lag and tested as simply supported 

beams under mid-span point loading. 	To study the influence of shear 

and shear lag their behaviour was compared with that of other models 

(Models 2, 4 and 10) with the same cross-sectional dimensions but loaded 

with a two-point loading system to generate a pure bending moment con- 

dition over their length. 	The flanges of the first models could then 

be compared with similar flange plates in approximately uniform axial 

loading for quantitative assessment of shear lag effects. 	The overall 
• 

and cross-sectional dimensions of these models are summarised in Table 6.1 

where the material properties are also given. 

In the point loaded Model 9, the ratio b/Q was increased to 

exaggerate the shear lag effects. 	The flange collapsed deflecting down- 

wards (plate panels in compression), while in the failure of the companion 

Model 10 (loaded in pure bending) the flange buckled by compression of 

the stiffeners outstand, deflecting upwards. 	It was thus difficult to 

compare, as intended, the behaviour of the two flanges. 	Another model 

(Model 12) was later designed to induce, under point loading condition, 

the same mode of failure as in Model 10 although the local slenderness 
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Table 6.1 	Principal dimensions of models and properties of materials 

:Lodel 

1'u' dimensions, 	in 

Cross section of model 
 Component sizes and material properties 

U 
o 

Component 	Nominal size, 	in 	t* , 	in 	tonf/sq.in 	tonf/sq.in 

1 

CF 	3/16 	0.195 	16.0 	13000 

TF 	3/16 	0.195 	16.0 	13000 

W 	1/8 	0.133 	17.7 	13900 

LS 	2 x 5/8 x 3/16 L 	- 	21.3 	13000 

TS 	3. 	2 	x 1/4 	L 	- 	20.3 	12600 

D 	1/4 	- 	16.5 	12900 

I- 	L 	> 	> 
4 	cc 	y 

J 	L TF 

	

r' 
	1 

7 	r
=31 f_ 	t 

11 N= 5 
-r.

13 

43 

2 

CF 	3/16 	0.192 	19.3 	13500 

TF 	3/16 	0.192 	19.3 	13500 

W 	1/8 	0.133 	13.7 	14000 

LS 	2.5/8.3/16  L 	- 	17.9 	12400 

TS 	3x 	2 	x 1/4 	L 	- 	20.1 	12700 

J 	CF 	L 

,, 	 L 

TF 
r- 	r- 

. 
-t~ 	1 ~=31 
-0-11 8=5 

18 

4. 

43 

3 

CF 	3/16 	0.198 	14.3 	13400 -  

TF 	3/16 	0.195 	14.0 	13500 

W 	3/16 	0.196 	13.2 	13900 

LS(CF)LS(W) 	2 x 5/8 x 3/16 L 	- 	18.6 	12900 

LS(TF) 	2x 1/4 Flat 	- 	19.7 	12900 

TS 	4 x 2? 	x 1 /4 	L 	- 	19.7 	13400 

1 	
CF

,,,J ̀  

" r 
' 	r 

IF 

18C.,31 
f 	

N=3 

18 

48 	k 
4. 

6 

-s ,,, 

CF 	3/16 	0.198 	14.3 	13400 

TF 	3/16 	0.195 	14.0 	13500 

W 	3/16 	0.196 	18.2 	13900 

LS(CF)LS(W) 	2 x 5/8 x 3/16 L 	- 	18.6 	12900 

LS(TF)LS(W) 	2x1/4 Plate 	- 	19.7 	13400 

TS 	4x 24 	x 1/4 	L 	- 	19.7 	13000 

D 	1/4 	0.258 	19.4 	13500 

L.LL , 
' 	CF 	r 

TF 
j__“, " " ' 

18 
I r=31 
N 	5 

18 

 40 

g 

CF 	3/16 	0.192 	21.6 	13300 

TF 	1/4 	0.268 	20.4 	13900 

14 	1/2 	0.500 	18.0 	13500 

LS 	21 x 5/16 Fist 	0.312 	18.5 	13300 

TS 	5 	x 3 	x 3/8 	L 	- 	18.7 	13200 

t 	F 	t 	t 	I 	F 	F 	I 	T-'t 
CP 

TF 

I'_ 62 
18=3 

'36 

96 

10 

I 
	r 	F 	F 

	I 
	T • CF 	3/16 	0.194 	21.7 	13400 

TF 	1/4 	0.242 	22.0 	13700 

W 	1/2 	0.500 	18.0 	13500 

LS 	2,1x 5/16 Flat 	0.312 	18.5 	13300 

TS 	5 	x 	3•3/8 	L 	- 	18.7 	13200 

CF 

TF 

j 	I=52 
I 	N=3 
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I 
96  

12 

a 

Component 	Nemi~ial size,mm 	tk, mm 	N/mm2 	N/mm2 

CF 	5 	4.90 	396.3 	202500 

LS 	80 x 3.5 	80.64.3.33 	238.9 	202050 

TF 	6 	6.15 	339.8 	211590 

1J 	12.5 	12.01 	328.8 	201570 

IIFF 	FFF 	FFF 	Ft 	Fi 	T'-TI CP 

4"
T F 

1=1575 
N= 3 

19'a 

f 
2430 

TF Tension flange CF Cotnpross Lon 	flange LS (TF) L.,n;itud1 	al. sri [Loner on compress ton fl'Inge 

W Web LS Longitudinal stiffener IS(TF) Longitudinal stiffener on tension flange 

D Diaphragm 
TS Transverse stiffener LS(U) Longitudinal stiffener on web 

it Length of bays 

N 	Number of bays along span cf model 

t* Measured thickness 



Ring stiffeners 

N 

_100 ton hydraulic 
jacks to each web 

These longitudinal stiffeners 
were omitted on Model 1 

Cylindrical rocker 
on roller bearing 
under each web 
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Diaphragm 	Longitudinal stiffeners 
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----{---- 

Centre reaction 
provided by floor 
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Hydraulic jacks 
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Cylindrical bearing pads 

(a) POINT LOAD RIG, MODELS 1 & 3 

bracing frame Ring stiffeners 

bracing 
(-frame 

Loading arm 

(b) POINT LOAD RIG, MODELS 9& 12 

Model Loading arm 

• 
30x12x ē'plates 	 Jacks 
(with pin-joints at each 	 
end) linking loading arm 
to reaction beam on 	 i/i//ir///i/ 	//7ii 	/i//;/, 
laboratory floor 

(c) PURE MOMENT RIG, MODEL 10 
( MODELS 2 & 4 SIMILAR ) 

Fig 6.1 Test rigs for models 

Jacks 

7- 9"  
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Fig 6.2 Model 9: Cross-section and Details of Loading Lugs 
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Fig 6.3 Model 12. Cross-section and Details of Loading Lugs 
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was greatly increased. 	A b/J% ratio similar to that of Model 9 was 

chosen. 	This model was designed using metric plate thicknesses for 

which reason its dimensions, also in Table 6.1, are given in millimetres. 

The author played an active part in the testing and analysis of results 

of Model 12. 

The loading systems used in the tests are represented in Fig. 

6.1. 	In Models 1 and 3 a central load bearing diaphragm was used 

producing the high stress concentrations at the web-flange connection 

referred to in section 2.5.4. 	This was avoided in Models 9 and 12 by 

using tapered loading stiffeners to apply the point loads to the webs 

(Figs. 6.2 and 6.3). 	This explains the differences between the two 

point loading rigs represented in Fig. 6.1. 

6.2 	BASIS FOR REAPPRAISAL OF EXPERIMENTAL DATA 

An interpretation of the experimental results from this series 

of tests based on the theoretical predictions of flange behaviour, 

obtained as a conclusion of the present study, is undertaken in this 

chapter. 	Only the aspects of the models' behaviour that were considered 

relevant for this reappraisal of test evidence are mentioned. Attention 

will be focussed on Models 9 and 12 where, because of the geometries, 

shear lag effects are more pronounced. 	More details of construction 

and testing can be found in references (29-32,76). 

It was reported by Moolani(32)  that by comparing the ultimate 

moments of the models in each pair (1 and 2, 3 and 4, 9 and 10) there 

was no evidence of significant weakening in flange strength caused by 

shear lag. 	It was also found that the experimental results agreed 

satisfactorily with theoretical predictions of flange capacity in 



uniform compression, obtained using an inelastic beam-column theory 

developed for the analysis of box girder flanges
(32). 	

The conclusion 

was that full redistribution had taken place in all the three models 

tested under point .load. 

Web failure was not a premature limitation to the mobilisation 

of the full capacity of the flanges. 	Even in Model 1, where preliminary 

tests indicated the need to strengthen the web against buckling, after 

this was done, the collapse occurred as a combination of compression 

flange and web failure near mid-span. 	Some interaction may have 

reduced the individual ultimate capacities of these components but the 

web alone did not govern the mode of collapse. 	In Model 9, yielding 

of the webs near the mid-span region occurred before ultimate load was 

reached. 	On the basis of the numerical research on the application of 

the upper bounds to the flange capacity (section 4.2) this again should 

not have limited the possibility of achieving the full flange capacity. 

To comment on the behaviour of the models in the context of 

these upper bounds, the values of the a, a' and.b/Q parameters were 

calculated as were the slenderness of the plate panels and the stiffener 

parametres i/r and ds/ts  (see Table 6.2). 

It was shown in Chapter 5 that by representing the upper bounds 

to the flange capacity in the i  and b/Q coordinate system (corresponding 

to the edge shear strength and the strength in axial compression), it 

is possible to assess, in certain conditions, if redistribution can be 

achieved. 	This is done by locating the flange (by its value of b/Q) 

in the region limited by the upper bounds. 	If the value of b/2. is 

much smaller than the one corresponding to the intersection of the two 

upper bounds (defined in expression (5.6) as b/9,*) full redistribution 
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Table 6.2 

Model 
No. a a' b/9 b'/t Q,/r ds/ts max 

b/Q* 

1 0.197 0.262 0.256 48.8 53.9 - 0.654 0.700 

3 0.437 0.405 0.256 24. 44.7 - - - 

9 0.424 0.363 0.509 49.3 75.4 8.8 0.663 0.639 

12 0.440 0.265 0.509 24.5 66.0 23.8 
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may be possible. 	If b/A, is greater than b/k* then the edge shear 

strength governs the flange capacity. 	For values of b/k near b/k* 

the possibility of interaction between the two modes may reduce the 

flange capacity corresponding to either of the two upper bounds. 	To 

estimate this reduction the representation of the upper bounds in the 

system of reduced coordinates used in Fig. 5.10 may be useful. 

The reliability of this approach depends on the confidence that 

can be placed on the derivation of the upper bounds and on the possibility 

of assuming an appropriate transition curve to assess interaction. 

For Models 1 and 9 the compressive strength of the stiffened 

panels was calculated analytically by Moolani(32)  and the corresponding 

values of 
ipmax 

are given in Table 6.2 . 	Assuming for all 

cases that the upper bounds corresponding to the edge shear capacity 

can be calculated neglecting the effects of buckling of the edge panels, 

expression (4.9) can be used to obtain for these two cases the b/k* 

values (Table 6.2). 

It would have been interesting to use the present numerical solu-

tion to calculate the compressive strength of the flange of Model 9 for 

comparison (those of models 1 and 3 do not have flat type stiffeners), 

and that of Model 12. 	However, the number of stiffeners in the flanges 

is greater than the maximum of six that can be treated in the program 

to date. 

6.3 	INTERPRETATION OF TEST RESULTS 

6.3.1 	Models 1 and 3  

In the case of Model 1 the aspect ratio b/k is sufficiently 

smaller (0.256, see Table 6.2) than the b/k* value (0.700) to be possible 
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to predict that the shear lag effects should not have noticeably reduced 

the flange capacity. 	This difference is enough to accommodate any 

reduction in the upper bound corresponding to the edge shear failure 

due to buckling. 	The fact that a diaphragm existed at mid-span which 

could prevent the development of overall large deflections, thus reducing 

even more the risk of any possible interaction of this mode of failure 

with the inelastic buckling mode, makes such a prediction more reliable. 

Given the characteristics of Model 3, the compressive strength 

of its flange should be higher than that of Model 1. 	On the other hand 

the equivalent stiffening factor was substantially higher (0.405) . Both 

these factors reduce the b/Z* value. 	However, even for 
Amax 

- 1.0 the 

b/P* correspondent to a' = 0.405 is 0.411 which is still 1.6 times the 

value of b/Q. 	As the possibility of edge panel buckling was reduced 

in this case (due to the use of stocky plate panels), it should make it 

possible to predict,perhaps with even more confidence that the full 

flange strength was mobilised at collapse. 	These simple criteria are 

thus sufficient to explain the experimental resfilts which showed that full 

redistribution was achieved. 

6.3.2 	Model 9  

To apply the same method to Model 9, the value of b/R, = 0.509 

should now be compared with b/2.* = 0.639 (Table 6.2). 	Although b/R. 

is still smaller than b/9*, the difference between the two is smaller 

than in the previous cases, indicating that interaction of the two modes 

of failure was more likely to have reduced the flange ultimate capacity 

in this box. 	However, this does not seem to have been the case judging 

from the conclusions of the experiments(32) 
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Some characteristics of 	the 	behaviour of this model 

may be useful to the understanding of these conclusions. 	The initial 

imperfect shape of the compression flange included an upwards bow of 

the central bay. 	Although the column slenderness of the stiffeners 

and associated plate was high (75.4) they had a stocky cross section. 

Up to near collapse the central stiffeners were observed to deflect 

upwards without buckling. 

This could explain why the effects of overall large deflections 

may also have been avoided during redistribution and interaction between 

the modes of failure again reduced. 	This effect was demonstrated in 

the study of the influence of the shape of imperfections in the collapse 

of a b/1? = 0.5 flange (section 5.3). 	There, an imperfection producing 

a stiffening effect at mid-span (case IV, Fig. 5.4) could reduce the 

mode interaction and increase the flange capacity. 

It should also be emphasised that in stiffened flanges the 

interaction between these modes seems to be less pronounced 

than that found for unstiffened flanges. 	This.is a conclusion that 

can be inferred from the results of Fig. 5.11. 

Another aspect of the behaviour of this model deserves comment. 

This refers to the pattern of development of panel buckles noticed before 

collapse. 	After a preliminary test (Test 9A, Fig. 6.4) collapse was 

reached at a centre point load of 440 tonf (Test 9B, Fig. 6.4), with 

all the stiffeners in the central bay deflecting inwards. 	Extensive 

yielding across the flange in the mid-span region was observed. 

The mechanism of stress redistribution was initiated by the 

formation of buckles at the edge panels at mid-span. 	This could be 

expected from the value of panel slenderness of nearly 50. 	The for- 
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mation of these buckles progressed across the flange towards the 

centre and along the edges (Fig. 6.5). 	This phenomenon can be 

explained by the close proximity of the two upper bound values for the 

flange capacity mentioned above. 	A similar propagation of buckles was 

obtained numerically in the example of Fig. 4.13c, where they form 

earlier in the edge panels and increase in depth before those in the 

central panel develop. 

The significance of the post-ultimate strength behaviour of 

the edge plate panels in the context of redistribution was identified 

in reference (28). 	This was based on the observations made in rela- 

tion to Model 9 that after buckling of the edge panels they had to 

continue to sustain considerable straining without substantial unloading, 

while the capacity of the central .  ones was being mobilised. 	The rele- 

vance of these conditions to full redistribution is clear and was dis- 

cussed in section 4.4.2 in relation to the example of Fig. 4.13c. 	The 

process of redistribution is also governed by the total shear flow which 

the edge panels can transmit and in a sufficiently long beam a fall-off 

in the carrying capacity of the edge panels at mid-span does not stop 

the process of mobilisation of the central zone. 

It was already stated that the characteristics of Model 9 

indicate that this shear flow did not limit the full flange capacity 

to be reached. 	This is confirmed by the fact that extensive parts 

of the longitudinal edges remained elastic up to collapse. 	On 

the other hand, even if due to the relatively high panel slenderness 
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the shear strength of the edge panels was reduced by buckling action and 

the corresponding upper bound lowered, this strength should still be 

sufficient to mobilise the central part of the flange. 	This is due to 

the fact that interaction with overall buckling was avoided. 

The full yielding of the unstiffened tension flange over the 

mid-span cross section noticed(32)  at the maximum sustained load is 

also predictable in terms of the upper bounds to the capacity of the 

flange (Chapter 4) . 

The aspect ratio b/2 of the flange (0.509- Table 6.2) is 

just smaller than the critical value of 0.577 (expression 4.10) beyond 

which the edge shear strength would also limit the reaching of maximum 

yield tension force. 	Although the maximum strength of the compression 

flange was much smaller than the full plastic 	capacity 

of the tension flange, the ultimate bending moment of resistance at mid- 

span is not reached until both strengths are exhausted. 	This corres- 

ponds to the mechanism of redistribution of longitudinal stresses within 

the cross section at collapse discussed in section 4.1. It occurs because the 

shear strength of the 	webs 	is not a limiting factor.These continued 

to carry more shear beyond the load which produced a fully yielded mid-

span cross section as has been proved numerically to be possible. 

6.3.3 	Model 12 

The general characteristics of this model are given in Tables 

6.1 and 6.2. 	It was designed to study shear lag effects in a flange 

collapsing by failure of the stiffeners in compression. 	This model had 

approximately the same aspect ratio b/k and the same geometric 

stiffening factor a as Model 9. 	However, as the stiffener material 
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had a lower yield stress 	the equivalent stiffening factor a' was 

smaller than the Model 9 value. 	On the other hand providing the mode 

of failure was similar to that of Model 9 the flange strength should 

have been greater, and these two factors combined produce approximately 

the same value for b/Q*. 	Had Model 12 failed by plate compression 

the reduction of ultimate flange capacity by shear lag effects would 

thus be even smaller than that found in Model 9. To induce the required 

mode of failure a greater number of stiffeners with more slender cross 

sections was used and the slenderness of the plate panels was thus 

lowered (Fig. 6.3 and Table 6.2). 	This reduced the risk of any prema- 

ture panel buckling. 

At the same time the compression flange was fabricated with a 

distorted shape containing an upwards bow in the central bay and a 

downwards deflection in the end bays. 	These imperfections were measured 

accurately with the help of a theodolite and are presented in Figs. 6.7 

and 6.8 referring to the grid indicated in Fig. 6.6. 

After some preliminary tests to chart the elastic response 

(Tests 12A and B) the model was loaded to collapse (Test 12C). 	The 

general behaviour is summarised in the load-deflection curves of Fig. 

6.9. 	Details of testing are to be published in a special report(76)  and 

are omitted in this discussion. 

At a central point load of about 4440 kN, the stiffeners F, G 

and H situated to one side of the box at about the quarter width failed 

by sudden tripping near the mid-span cross section. 	This is signalled 

in the load-deflection curve by a drop in the carrying capacity of the 

model and the situation obtained at that stage is shown in photographs 

(Fig. 6.10). 	A view of the flange underside taken at that load level 
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from points close to the west end side transverse stiffener is shown. 

The local buckles of those stiffeners can be identified by the displaced 

position of the targets that were fixed to the tips of the outstands. 

After equilibrium was reestablished the loading was increased again and 

a similar failure of stiffeners N, 0 and P located at the other quarter 

width soon followed (at about 4540 kN) . 	This is shown in photographs 

(Fig. 6.11) taken from points closer to the east side transverse stiffener 

which can be seen in the photographs. 

After more loading was applied local buckles were noticed on 

stiffeners B and T (adjacent to the webs) at the ends of the central 

bay near the connections to the transverse stiffeners. 	This was followed 

by similar failures of stiffeners C, D, Q and S. 	The load at which 

this occurred was not accurately recorded but photographs taken at 

4640 kN already show this failure on stiffeners B and T. 	By now 

stiffeners E and I on one side of the longitudinal central line and M 

on the other had also failed by tripping near mid-span. 	Soon afterwards, 

at approximately 4800 kN, the bracing frame at the end where the jacking 

was applied failed and the testing was stopped. 	At that stage the 

pattern of buckles on the stiffener outstands had not altered and stiffe-

ners J, K and L appeared to remain straight and R showed a pronounced 

overall lateral deflection. 	After unloading permanent deformations were 

visible in all the stiffeners that had buckled at mid-span and in the 

stiffeners adjacent to the webs (B and T). 

The final collapse was achieved in a later loading test (Test 

12D) after appropriate reinforcement was provided_to the end bracing 

frames. 	The ultimate load was accompanied by an overall buckling of 

(76)  the central bay deflecting upwards , 



The somewhat unexpected first failure of the quarter-width 

stiffeners in Test 12C is a very interesting feature of the behaviour 

of this model. 	In Model 10, which was loaded to produce uniform com- 

pression in the flange, the general buckling mode was of a similar 

nature i.e. compression of the stiffener outstands(with the central 

bay panel deflecting upwards). 	However, the stiffeners failed almost 

all at the same time with a smooth lateral deflection at mid-span. It 

appears therefore, that the difference in behaviour is associated with 

the interaction of shear lag effects with this buckling failure mode. 

By examining the growth of deflections in the compression 

flange during Test 12C, using the longitudinal and transverse profiles 

in Fig. 6.12 and 6.13, it is possible to see that the stiffeners near 

the webs followed the overall deflection of the girder. 	However, at 

some stage the stiffeners whichfailed first (F, G and H) started deflect- 

ing upwards. 	This upwards movement increased with loading and was 

quite pronounced atthe load that caused their failure. 	The transverse 

profiles of Fig. 6.13 show that stiffeners N, 0•and P followed closely 

the web deflections until the others failed and suddenly deflected 

upwards in the same manner. 	The profiles also show that simultaneously 

the stiffeners adjacent to the webs had increased downwards deflections. 

During Test 12C the central stiffeners maintained a deflected shape 

that followed the overall bending of the webs. 

The variations of longitudinal strains on the plate over the 

stiffener lines and at the tip of the stiffener outstands at mid-span 

are shown in Fig. 6.14. 	These indicate an initial bending of all the 

stiffeners following the overall deflection and a reversal of this 

bending pattern in the stiffeners that failed by tripping at mid-span. 
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The average compression straining across the width follows a shear lag 

type of distribution. 

From this evidence alone a first interpretation of the failure 

mode can be proposed. The distribution of average straining across the 

width due to overall bending peaks near the webs and has a minimum value 

at the centre due to shear lag. 	On this strain distribution are super- 

imposed bending strains varying over the depth of the stiffeners caused 

by the webs deflecting downwards. 	The stiffeners tend to develop ten- 

sile strains at their tips. 	These deflections are reduced towards the 

centre and would therefore produce an anticlastic distortion of the 

central bay panel i.e. a type of"bending lag"occurs. 	If due to the 

shape of initial imperfections a tendency to deflect upwards is intro-

duced, the resulting distribution of bending strains in the stiffener 

outstands could produce tensile straining near the webs and compressive 

strains at the centre. 	These strains superimposed on the average shear 

lag type of strain distribution can produce maximum compression in the 

tips of stiffeners away from the webs or the centre line. 

This could also explain why, in a shear lag type of environment, the 

stiffeners near the webs develop bending moments at the connection to 

the transverse stiffeners producing high compressive strains on the tip 

of the outstands which fail, like those of Model 12, at their ends. 

These moments correspond to the restraint imposed by the transverse 

stiffeners and adjacent longitudinally stiffened bays to the rotation of 

the ends necessary to follow the downwards pulling action of the webs. 

The transverse profile of the initial deflections at mid-span 

shows a small peak nearly over the F, G and H stiffeners(Fig.6.8). However, 

at first examination this does not indicate why only these stiffeners 
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reversed the initial trend to deflect downwards and why they subsequently 

buckled upwards following the sign of their initial bow. 	It might 

also be of interest to record that at the quarter width stiffeners 

compressive residual stresses were measured after erection (Fig. 6.16) 

and these may have contributed to the earlier failure of these stiffeners. 

However, these stresses also occur in the central stiffeners and 

thus could not have been responsible for the reversal 	of 

deflections. 

The reversing of deflections and change of sign in the corres-

ponding strains is perhaps more clear in the representation of the varia-

tion of strains over the depth of the stiffeners used in Fig. 6.15. 

The superposition of the two systems of strains mentioned above is evi- 

dent. 	Up to a point load of 4240 kN the overall deflection is reflected 

by the regular pattern of bending strains. 	The anticlastic curvature 

of the panel is indicated by the decrease of the bending component 

(bending downwards) from the webs towards the centre. 

An attempt to interpret numerically the behaviour of this flange 

was made using the program developed for the present research. 	As the 

program can only consider to date up to seven plate panels,the dimensions 

of the numerical model (Fig.6.17) were adjusted to maintain within this 

constraint the principal characteristics of Model 12. That is, the same 

values for the governing parameters a, a', b/Q, b'/t and t/r (see Table 

6.2) were used. 	The material properties of the various components 

were retained and the real thicknesses of the flanges and web plates 

were also used. 	Consequently, the width of the flange of the numerical 

model corresponds to seven panels of the real flange, and the total 

length and cross-sectional dimensions of the stiffeners (ds  and ts) were 
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calculated to obtain the same values for a, b/Z and k/r. 	The value of 

ds/ts  cannot be simultaneously controlled and therefore a smaller value 

was used in the numerical model than that employed in Model 12. However, 

as stiffener local buckling cannot be treated in the present numerical 

solution this should not affect the exercise. 	As the deflections of 

the webs were found to have an important influence on the flange behaviour, 

the depth of the webs was reduced to produce comparable overall bending 

rigidities between theoretical and experimental model (i.e. to obtain 

approximately the same value for the ratio I/2.2, where I is the cross-

sectional moment of inertia). 

web 

7 equal divisions = 841 • 9 mm 

   

1 +4.90 

 

    

 

2446 x 1232 

    

12.01 

  

510 

6.15 

    

     

I 
l = 1654 

Fig. 6.17 	Dimensions for numerical simulation of Model 12 



To simulate the effects of the transverse stiffeners the shape 

of the initial deflections was assumed to have three equal half sine 

waves in the longitudinal direction. 

The program was used to study the effects of initial imperfections 

with different profiles on the flange behaviour. The results obtained by vary-

ing the maximum amplitude of these profiles showed that if its value was 

taken to be proportional to the initial distortions measured in Model 12, 

the overall deflection of the girder was sufficient to reverse the initial 

deflection over the central 'bay' after a small level of loading. This 

was mainly due to the transverse bending rigidity of the modelled flange 

being relatively higher (only seven plate panels) than that of the real 

structure. 	This reversal was noted in Model 9 which also had small 

upwards initial distortions over the central bay but failed by a down- 

wards deflection of this panel. 	By exaggerating the amplitude of the 

upwards distortions it was possible, however, to make the numerical model 

deflect in this direction. 	This is shown in Fig. 6.18a where a trans- 

verse profile with a half sine-wave shape was used. 	In this case1 the 

flange maintained an almost horizontal transverse profile at the third-

length cross sections, thus indicating that the effects of the transverse 

stiffeners had been satisfactorily modelled. 	In the same figure the 

strains in the stiffeners are plotted against the flange capacity 

measured by the inelastic effective width ratio 4. 	As expected from 

the shape of the deflections, the average strain follows a shear lag 

distribution and the bending components (measured by the difference in 

the strains near the plate and at the tip of the outstands) increase 

from the web towards the centre. 	The deflection of the web 

reduces the bending strains in the adjacent stiffener. 	This pattern 

of strains in the stiffeners is relatively easy to produce to 

188 



show the interaction between shear lag effects and buckling by compres-

sion of these stiffener outstands (panel deflecting upwards). 

The results of superimposing on the one half—sine wave shape 

of the transverse profile different proportions of a five half-sine wave 

profile are presented in Figs. 6.18b and 6.18c. 	This component 

enhanced the downwards deflections in the stiffeners adjacent to the 

webs and at the same time activated the upwards movement of the second 

stiffeners (at quarter—width). 	In both cases the influence of the 

imposed web deflection was to eventually reverse the upwards movement 

induced by the shape of the initial distortion in the central zone. 

This is partially due to the approximation used to model the transverse 

stiffeners but is also due to the high transverse bending rigidity as 

mentioned above. 

When this occurs the results can no longer be used because at 

the third—length sections downwards deflections also take place thus 

'removing' the simulated'transverse stiffeners'. However, this is only 

initiated at load levels beyond 'I) = 0.35 and before that level the strain 

variations may still be useful to explain the behaviour of Model 12. 

It was not possible in any of the cases investigated to produce a signi-

ficant downwards initial bending movement following the deflection of 

the webs as was noticed in Model 12. 	However, in both the cases of 

Figs. 6.18b and 6.18c it was possible to model the downwards deflection 

of the stiffener adjacent to the web(which increases without affecting 

the upwards movement of the second stiffener) and to produce in the 

central stiffeners a reversal of the deflection earlier than in the 

quarter—width stiffener(this is more clearly shown in Fig. 3.18c). The 

average strain in the stiffener adjacent to the web is reduced in these 
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cases from what it should be if caused only by shear lag,because of a 

tension component developing due to large deflections. 

With the exception of the central stiffeners the pattern of 

strains obtained in these approximate numerical experiments provides 

additional evidence to reinforce the explanation for the behaviour of 

Model 12 which was proposed earlier. 	Thus the fact that the stiffeners 

at the quarter-width were the first to reverse the trend to follow the 

downwards web deflections can be understood. 	It is related to the 

fact that at the quarter-widths the shear lag average compression was 

sufficient to counteract the downwards pull produced by the webs, whereas 

in the centre, although the web effects were smaller the level of compres-

sion was not capable of activating the tendency introduced by the initial 

imperfections. 

In unstiffened flanges it was also found that an upwards initial 

distortion over the centre could be reversed by the girder overall 

deflections. 	This also depended on the amplitude of the distortions 

and on the ratio of plate transverse rigidity to main girder rigidity. 

However, from the numerical observations made in relation to Model 12,it 

is possible to conclude that in stiffened flanges the interaction of 

shear lag with buckling by compression of the stiffener outstands is 

highly dependent on those factors and on the shape of the initial dis- 

tortions. 	In the case of a stiffened flange of course, the transverse 

rigidity is greatly enhanced by the presence of any transverse stiffeners. 

An important characteristic of this interaction is that failure can be 

initiated at a point of the most heavily stressed flange cross section 

other than one adjacent to the web or at the centre of the panel. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 	CONCLUSIONS 

(1) The analytical model andits solution developed for the research 

work reported in this thesis has proved to be suitable for the study of 

the combined effects of shear lag and material and geometric nonlineari-

ties in the behaviour of wide flanges such as those used in box girders. 

The simplified formulation of the discrete stiffener-plate interaction 

was sufficient to investigate the differences associated with orthotropy 

of form in the context of shear lag/buckling interaction. 	In this res- 

pect the aims of the project have been accomplished. 

(2) Two distinct collapse modes have been identified for unstiffened 

compression flanges of simply supported box beams with point loading at 

mid-span. 	For long narrow flanges the full compressive strength of the 

flange may be reached at the centre; but for short wide flanges the 
• 

flange strength may be governed by the shear capacity of the web-flange 

junction. 	Over a range of medium flange aspect ratios interaction of 

the two collapse modes must be considered. 

(3) Simple upper bound expressions have been presented which reflect 

the limitations placed on flange strength by web and flange in-plane 

shear capacity. 

(4) A study of the influence of material properties on unstiffened 

flanges has shown that the mode of failure associated with the shear 

capacity of the web-flange connection is independent of such properties. 

This mode of failure is governed by the aspect ratio b/2. 	The study 
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showed that the influence of these properties on the collapse mode 

associated with inelastic buckling in compression can be incorporated 

in the non—dimensional slenderness parameter S as used for isolated 

plates. 	The interaction of the two modes of failure can be studied 

for unstiffened flanges on the basis of these two parametres. 

(5) Curves have been presented for a range of initially distorted 

unstiffened flange plates of varying slendernesses which can be used 

to establish effective widths needed in design calculations of the ulti- 

mate limit state of such beams. 	These effective widths account both 

for the effects of shear lag and inelastic buckling. 

(6) Although the research was not concerned with serviceability 

limits, these curves, if used together with results for elastic shear 

lag effective width ratios, can serve to estimate the degrees of yielding 

associated with the attainment of maximum capacity. 	It should then be 

possible to establish what degree of redistribution can be adopted, 

based on an acceptable level of permanent set. 

(7) One possible way of presenting design curves for flange ultimate 

capacity using a Perry type expression and taking advantage of the upper 

bound expressions has been outlined, although it should be possible to 

establish a simpler design approach. 

(8) The simple expedient of using an effective width ratio based on 

the product of shear lag and buckling effective width ratios has been 

shown to be unduly conservative. 

(9) Results have also been presented for the case of a stiffened 

flange with varying stiffener slendernesses in which overall buckling 

of the stiffened flange may also be a limiting collapse mode. 	The way 

in which shear lag influences collapse has been demonstrated. 
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(10) It has been shown that a condition for full redistribution in 

stiffened flanges is associated with the inelastic buckling capacity of 

the edge panels to transmit shear. 	This condition must be considered 

in conjunction with the need(28)  for the stiffener/plate combination 

near the edges to sustain without significant unloading (see section 1.1) 

a high level of compression straining. 

(11) For cases where buckling of the edge panels does not reduce 

their shear strength a method for predicting the possibility of full 

redistribution has been proposed. 	This followed the observation of the 

characteristics of the interaction between the overall buckling mode of 

failure and the shear failure of the flange edge. 	It consists of examin- 

ing the position of the flange (as represented by its b/2 ratio) in 

maximum capacity/aspect ratio space in relation to the upper bounds 

corresponding to these two modes of failure. 

(12) The method summarised in (11) has been used to reappraise the 

results of box girder tests carried out previously at Imperial College. 

(13) The techniques developed have also been used to interpret the 

results of a large scale model, reported here for the first time, which 

was tested by the author and his colleagues. 

(14) The work within this thesis has been used to check and modify 

the proposed rules for inelastic shear lag effects in the draft Steel 

Bridge Code, BS5400, Part 3. 

(15) Another longer term experimental programme(see Appendix II) has 

been designed by the author to provide further checks on the findings of 

this thesis. All the equipment and test specimens are ready for testing at 
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the time of submission of this thesis. 	The provision of this informa- 

tion should enable other interested research workers to devise comple-

mentary tests. 

7.2 	FUTURE WORK 

(1) The limitations of the analytical model used in the present 

research have been outlined in detail in the description of the various 

aspects of its formulation. 	These refer in particular to neglecting 

large deflection effects in the behaviour of the webs which were assumed 

to be disconnected from the flange regarding compatibility of rotations 

and in-plane transverse restraints. 	These effects need to be considered 

in the investigation of web-flange buckling interaction to study stress 

redistribution between web and flanges in shear lag situations. 	It was 

suggested that these effects may be included in the study of the flange 

ultimate capacity by an appropriate reduction of the upper bounds corres- 

ponding to the shear strength of the web-flange connections. 	This 

requires confirmation. 	 • 

(2) The stiffener formulation is not yet capable of considering 

stiffener tripping and modes of failure where this occurs were not 

studied. 	The method of dealing with 	rotational boundary conditions at 

the ends of a stiffened plate in compression, which were found to be 

very important, needs to be improved for comparison with different test- 

ing procedures. 	Some numerical aspects related to the consideration of 

the discrete effects of stiffeners also need improvement since at present 

only a limited number of stiffeners can be assumed and these are insuf- 

ficent to model real flanges. 	The possibility of considering the effects 

of transverse stiffeners must also be included in the numerical modelling 

of the box girder flanges. 
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(3) The elastic-plastic effects of the torsional rigidity and 

lateral bending of stiffeners and of the rotational and in-plane 

restraints from the web need to be considered in the study of the capacity 

of edge panels to transmit shear. 	This will enable the limitation 

imposed on stiffened flange capacity by the edge shear mechanism of failure 

to be quantified. 	The consideration of those boundary restraints in the 

edge panels will facilitate the study of the influence;on the process 

of stress redistribution,of the reduction in the carrying capacity of 

the more strained edge plate panels and stiffeners when they prematurely 

buckle in a shear lag environment. 	This limitation to the possibility 

of full redistribution was not investigated in this research. 	For these 

studies the rig that has been designed and constructed for testing flange 

plates with accurately simulated boundary conditions will be of great use. 

(4) The problem of residual stresses was not covered in the present 

work and needs to be investigated. 	A suggestion was made regarding the 

inclusion of their effects on the mode of failure associated with in-

elastic buckling in compression, but this is a speculative suggestion 

that requires to be properly substantiated. 

(5) Although conclusions regarding the influence of initial distor-

tions and the general characteristics of the most weakening initial shape 

were derived, this problem requires a more systematic investigation to 

enable a more clear understanding of the problem of preferred buckling 

mode shapes in a shear lag environment. 

(6) More research is needed to extend the conclusions regarding stress 

redistribution obtained for simply supported beams to continuous girders. 

The organisation of this research could follow, as a guide line,the steps 



taken by Moffatt and Dowling(13)  in the treatment of elastic shear lag 

effects in these structures. 	An obvious first step towards that 

extension must be the study of flange failure in non-symmetric point 

loading cases. 
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Latin and Greek Symbols 

total cross-sectional area of compression flange 

including stiffeners and of tension flange, respectively 

cross-sectional area of the two box webs 

cross-sectional area of plate component of a stiffened 

flange 

total cross-sectional area of flange stiffeners 

width of flange measured between webs 

width of plate panels measured between stiffeners 

elastic effective width of flange 

depth of web 

depth of a stiffener 

Young's modulus 

plate-stiffener interaction line forces 

yield function in stress resultant space 

(f (Ni) , Ni  = 1, ... , 6) 

length of simply supported box girder or isolated plate 

ultimate bending moment of a box girder cross section 

in-plane and flexural components of vector of generalised 

total stress resultants (N) 

ith component of vector of generalised total stress 

resultants 

resultant of axial stresses at a stiffener cross section 

and moment of these stresses in relation to an axis 

parallel to x direction and centred at plate mid-plane 

level 

• 

Q t' ~m' Q tm non-dimensional quadratic forms of stress resultants 

used in the definition of the yield function (expressions 

2.19) 



Ex,Ey,Exy, 

Xx,Xy  X
xy  

eo  

X0-1 U 

Qx,Qy  

r 

Tf  

t 

t 
w  

t 
s  

u,v,w 

transverse shear forces 

radius of gyration of stiffener cross section and 

associated plate of width b' (Fig. 5.1) 

total flow of shear stresses over half length of a 

web—flange connection 

thickness of flange plate 

thickness of web plate 

thickness of a stiffener 

displacement components. in x,y and z directions, of a 

point in the plate mid—plane initially at a position 

defined by x,y and z = wo(x,y) 
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x,y,z 	coordinate directions 

V x 	
Kirchoff transverse shear forces at 

plate edge parallel to y—direction 

wo 	function of x and y defining plate initially imperfect 

shape 

womax 	
maximum amplitude of initial shape wo(x,y) 

Ax, Ay 	finite differences mesh spacing in x and y directions 

a 	geometric stiffening factor (a = As/Ap) 

a 	equivalent stiffening factor (a' = as /a  ) op 

non—dimensional plate slenderness (s = (bit) ,:,:/7. ) 

Y 	flow parameter or plastic strain multiplier 

0 
av  

in—plane and curvature components of vector of generalised 

strains 

yield strain (EQ  = oo/E) 

parameters used in definition of Ilyushin's yield 

criterion (expressions 2.17 and 2.20) 

Poisson's ratio 

average of longitudinal stresses over flange cross 

section (expression 1.4) 
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o ,o 	maximum and minimum values of longitudinal stresses 
max min 

over flange cross section 

0o 	uniaxial yield stress 

°ocf 	
equivalent yield stress of compression flange 

(expression 1.5) 

°otf 	
yield stress of tension flange plate 

o 0p 
	 " stiffened flange plate 

0 

	

	 " stiffeners  
os 

0 o 	
" web plates 

inelastic effective width ratio of flange cross 

section (expression 1. 3) 

inelastic buckling effective width ratio 

maximum value of i measuring flange ultimate capacity 

~max~~'b 

 

(expression 5.7) 

Subscripts  

cf 	compression flange 

tf 	tension flange 

w 	web 

s 	stiffener 

quantity related to flange plate or a value calculated 

in a previous load increment 

in-plane directions 

shear and twist directions 

quantity measured at distance z from plate mid-plane 

Superscripts  

position in finite differences mesh arrangement in 

x and y direction 

4) 

11'max 

p 

x,y 

xy 

z 
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e 	elastic 

p 	plastic 

Matrices and Vectors 

C 

Ce  

f, 

N,AN 

c, Ac 

matrix of elastic-plastic plate tangential rigidities 

matrix of elastic plate rigidities 

column vector of partial derivatives of yield function 

in relation to total generalised stress resultants 

column vectors of total and incremental generalised 

stress resultants 

column vectors of total and incremental generalised 

strain resultants 

Abbreviations 

FD 
	

finite differences 

DR 
	

dynamic relaxation 

Symbols not mentioned within this list are defiged in the text. 



APPENDIX 

NUMERICAL TREATMENT OF EQUILIBRIUM  

ALONG SPECIAL NODAL LINES 

I.1 	LONGITUDINAL EQUILIBRIUM ALONG WEB-FLANGE CONNECTIONS 

The 'finite element' approach to this problem was described 

in Section 3.2.2. 	A typical distribution of stresses with a longitu- 

dinal component acting on the sides of the element of Fig. 3.6 is 

shown in Fig. I.1 where the element is represented unfolded in a plan 

view. 	This refers to the connection of the web to the compression 

flange but the treatment of the connection to the tension flange is 

identical. 	For convenience the web-flange line is designated by the 

ith nodal line and the other longitudinal nodal lines are referred to 

accordingly. 

The average of the shear stresses acting on each longitudinal 

side is assumed to be approximated by the mid-side value. 	On the left 

hand side this is given by the first internal web shear node value 

Ni-1'j. 	At the right hand side the mid-side value can be calculated 
xyw 

by a second order polynomial interpolation over the first three shear 

nodes on the jth line of the compression flange (Nij, N 1'j  and N
iy2, j).

xy 	xy 

 is a consequence of using an element extending equally in the 

transverse direction over the web and the flange. 	This was chosen for 

convenience of damping,in the DR process, the 	corresponding equation 

of motion as a web equation without having to resort to a more compli- 

cated assessment of the damping factors and fictitious densities. 	It 

requires mesh spacings in the x-direction such that 
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Fig. 1.1 
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• Ny nodes 
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Stress components acting in the longitudinal direction on 

element of web-flange connection 
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Fig. 11.2 Stress components and stiffener force acting in the 

longitudinal direction on element of plate over 

stiffener line 
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Axw  > Ax
cf 	

and 	Axw  > Ax
tf  

1.1 

To apply equation 3.2 to express the equilibrium of the element in the 

y-direction the longitudinal stresses acting on the transverse sides 

have to be integrated. 	For this purpose, the variation of N over 

these sides can also be described on each plate by polynomial approxima-

tions using the first three N nodes on the left and right of the common 

edge. 

After expanding equation 3.2 and dividing by AxwAy, the longi-

tudinal equilibrium of the 'finite element' can be expressed by: 

24 Y 1E 
[al ( Ni'j+1  _Ni,j) + a2(Ny+1'j+1 _Ny+1'J) - a3(Ny+2,j+1  -Ny+2,J)) 

+ 241Q  (8(N ' 	- NlWj) + 5(Nil,j+] -Ni-],j)  _ (NlW2,j+1 _ N
l2

,
,)) Y 	Y 	Y 	 Y

W 	
Yw 	Y 	 YW  

+  1 (a4Ni,j + a5Ni+1,j + a6Ni+2,j - Ni-1,j) = 0 	I.2 
Ax 	xy 	xy 	xy 	xyw 

where 	a l  = 2 a72  - 	a7  + 12 

a2  = -a72  + 6a7  

a3 = - 2  a72  + 2  a7 

a4  =  a8 - 	a8  + I 

I a5  = -  a8 + a8  

1 	2 	1 
a6 = g 	

_ 
a8 	4 a8 

a7  = Axw/Ax 	a8  = Axw/Ax - 1 

1.2 	LONGITUDINAL EQUILIBRIUM ALONG STIFFENER LINES 

The 'finite element' used for this case is represented in 

Fig. 3.8. 	As for the equilibrium at the web-flange connection the 

relevant stresses acting on the element are represented in Fig. 1.2. 

The element is centred at a v node over the stiffener line. 



The average of the shear stresses on each longitudinal side 

is assumed to be given by values at the shear nodes 	situated over 

the sides. 	The same applies to the longitudinal line force F
Y 
repre- 

senting the action of the stiffener on the element whose value calcu-

lated at the v node is designated by Fy'J. 

The same approach used to integrate the longitudinal stresses in I.1 

over each half of the transverse sides is used in this case with the 

advantage that now all the sides coincide with nodal lines. 

Expanding again equation 3.2 and dividing by AxAy the equilibrium 

equation to use for the calculation of v displacements over the stiffener 

lines follows: 

~16(Ny'
j+1 	+ 5(N

y+1,J+1 
_N

Y+I ~ j) + 5(Ny-1'j+1 
24AY 

 

- (Ni+2'j+1 - Ni+2,j) 
- (N

i-2,j+1
-N

i-2,j
) Y 	Y 	Y 	Y 

+ 	(N1 '.j - Ni-1 j + F''3) = 0 	 1.3 
.x xy xy 	y 

I.3 	TRANSVERSE EQUILIBRIUM OVER THE POINT LOADING CROSS SECTION 

The 'finite elements' used in this case are centred at the 

u1'J nodes located over this section. 	This approach for expressing 

equilibrium by taking into account cuspings of in-plane stresses due to 

the point loading effects, was restricted to cases where lōngitudinal 

symmetry about this section was assumed. 	The elements thus lie half 

within the quarter of the box being analysed and the other half is 

'fictitious'. 
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Fig. I.3 	Stresses acting in the transverse direction on finite element 

of plate over mid-span cross section 

The stresses now contributing to the equilibrium in the x-direc-

tion are the Nx  stresses over the longitudinal sides which are symmetric 

in relation to the mid-span central line, and the shear stresses at the 

transverse sides which have an antisymmetric distribution. 	The effects 

of the shear stresses cancel and the integration of the Nx  stresses using 

the same technique as described in I.1 and I.2 is much simplified. It 

only involves values at the mid-span cross section and the values over the 

two previous j lines. The equilibrium equation to be used for the u1'3  

nodes is, therefore, as follows: 

12Dx 	 x 
	+ N1'3) + 5(N

i+I,j-1 _ NH,j-1) 	(NX+I,j-2 _ NX,j-2)) =0 

1.4 



APPENDIX II 

FLANGE TESTING RIG 

II.1 	GENERAL 

An experimental programme of tests has been proposed to vali- 

date the theoretical appraisal discussed in this thesis. 	The author 

has been responsible for the design of a rig that will be used in the 

near future.for tests on isolated flange plates. 

The main features of this rig were outlined in the Introduction 

and this Appendix serves to discuss the same in more detail. 

II.2 	CONCEPTION OF RIG 

It is proposed to use the rig for the testing of small scale 

mild steel flange plates of 2 and 4 mm thickness. 	Point loading will 

be applied to simulate the most severe shear lag effects developed in 

box girders. 

This loading arrangement could best be achieved by applying 

the load to the webs of a modelled box girder of open cross section. 

To avoid yielding and buckling the webs are to be made of stocky sec-

tions of very high strength steel. 

The need to separate the flanges from rotational and in-plane 

restraints from the webs followed as a consequence of utilising stocky 

webs. 	This had the additional advantage of corresponding to the boun- 

dary conditions assumed in the analytical model and of ensuring that the 

webs could be re-used whilst the flange plates were replaceable. 

The web-flange connection should accordingly impose compati-

bility of longitudinal displacements while allowing the flange edge to 
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be free to rotate and pull-in. 	This required a discrete type of web- 

flange connection as opposed to a continuous one. 

11.3 	FLANGE PLATE AND LOADING WEB ASSEMBLY 

The loading of the flange plate edge is achieved through a 

series of pins (Fig. II.1). 	These are regularly spaced on each face 

of the plate. 

VIEW A 

Fig II. 1 	Discrete application of edge loading 

Spherical bearings are located on the pins and these are 

caused to engage on teeth machined in the upper beam of the loading web 

(Fig. 11.2 and detail Fig. 11.3). 	When the web deflects under load 

these are compressed longitudinally towards the mid-span cross section. 

The bearings are positioned symmetrically in relation to the plate mid-

plane and the applied loads should have a resultant at that level. To 



upper beam of 
loading we assembly 

teeth 

lc) /supporting stif fener 

holes for plate 
holding fingers 

r 	{ 

/• 1 

/ 	Ne; pate el 
lca.•ng wet orsemt,:, - loading web assembly 

1 	/ I 	f 	I 

	

i 	1 	I 
lover beam of 

loading stiffener 

U © u J J ® O ® OO ® 0 1 -575 ;, 1.752 4, 1752 { 1.752 4, 1.752 	1 555 ~, - 	1 	- 1  
'- 	I 	

_ 	_ 
I 

adjustable 
wedges rl~\_1375P 

lugs for holding fingers 
' 	I 

15.270 
	

1- 
25.045 

/\ 

12.050T 

..Y

▪ -

1 

- 
11.400 

WEB ELEVATION (inside view) 

Note dimensions in inches 

) 

FigII2 	Detail of elevation of loading web assembly 



-395 . •685 _ 	
f 

machined pin 

'—spherical bearing bearing tooth 
machined pin 

wedge 

\upper beam 
reduced section of 	of loading web 
welded -on flange plate edge 

welded- on 
flange plate 
edge 

\\\ 

Section C-C 

note : All dimensions in mm  

VIEW A 

Fig II.3 Details of upper beam of loading webs at teeth 0 and 

.574 433 

6mmc 4mm 
•236' 

Holes in upper beam ' 
of loading web to locate 
fingers for vertical support 
of flange plate edge 
( see f 	6 ) 

pin O pin 

1 686 

e•4998 	 d •3748 
5002 L 	 / f 3752  

FLANGE P_47E 

~•v 	
l 	

VIE.. 4 

"\ slots for location 
col rollers of 1•c'ding 

arm fir•.arr, 



. J2 	 n n n n 6 fl Ill A n ÇT1 if I rh 
irs 	Li  Llo Ui y4Iyutiu 

	

® 	 ® ® 
A 

	

6 6 	rh 	rh thfl fl 11 fl fl fL J1 

  

Section :.:. 

00  

t 	t 	 t  
IC pins 	(.) •500"dia.x.574• 

Longitudinal maraging steel pinned edge to be welded to test flanges 

Fig 114 	Detail of loading pins and 

flange edge 

0 

tii pins t 	375"dia 



note : all dimensions in inches 

•930 

•748 

•900 

ro0,-"P-04 
~ 	 1'270 

Pala 
 

adjustable wedge 
locking nut~L~ 

•3125 

•059 

sphericalbearing for pins 1-5 

spherical bearing for other pins 

•524 	•433 

.335 	.375 

web tooth 

teeth 1-5 

i 

AA 

•355 
fi 

1.690 

•635 

Fig II'5 Detail of wed ge.—Plan view 



r 

fl.tea ua~er 

1-3rnm ¢ roller 

 • 
t I Crnr  

I 	if 
~ 	I 

cdj..stable lower 
f inger 

DETAIL OF FINGER 

-r" I 	 
10m.rn 

pia•. 

eccentric pin for 
vertical adjustment 
of lo,er finger 

fixed upper finger 

adjustable lower 
finger 

V 

upper beam of 

web assembly 

web of neb 

assembly 

lower beam of 
/ 	web assembly 

/ / _ 

pivot of 
holding arms 

SECTION AA 

ci 

 • 



avoid stress concentrations and localised yielding at the connection of 

the pins to the plate the pins and the flange edge were machined from 

the same length of maraging steel*. 	The resulting strips (represented 

in Fig. 11.4) are to be welded to the edges of the mild steel flange 

specimens. 	It will thus be possible to stress relieve the plate after 

welding and subsequently treat the whole at the aging temperature of 

the maraging steel to harden the edges which can be re-used. 

This loading arrangement depends on specially designed and 

fabricated doubly spherical bearings. 	A pilot study was made to ensure 

that the bearings would behave satisfactorily under the unusual type of 

point contact load. The double spherical surface (a sphere inside a 

sphere) is necessary to mechanically allow simultaneous rotation of the 

pinned edge (around a longitudinal line at plate mid-plane level) with 

in-plane transverse movement. 

Due to the maraging steel welded flange edge strip it is 

expected that there will be some restraint to complete freedom to pull-

in. These effects may be significant after the onset of plasticity at 

the edge of the plate but will have to be calibrated and allowed for. 

To ensure initial contact of the bearings with the teeth of the upper 

beam of the web assembly, wedged packing pieces are inserted in broached 

square grooves between the bearings and the teeth. 	These wedges are 

adjustable and can be locked when in position. 	They were made of 

hardened silver steel (Fig. 11.5). 	For the broaching of the inclined 

grooves a special jig had to be designed. 

The web flange mechanical connection does not provide vertical 

support to the edges of the plate. 	Longitudinally, this is supplied by 

'holding arms' (Fig. 11.6) located between the pins. 	These arms are 
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hinged at the bottom of the web assembly to allow free to pull-in 

movement of the plate edge. 	Two 'fingers' connected to these arms pass 

through holes in the wall of the upper beam of the web assembly to hold 

the plate edge between cylindrical rollers. 	These rollers are located 

in cylindrical slots machined on both faces of the flange plate edges 

(see detail Fig. II.6). 	The top finger is fixed to the arm and the 

lower one pivots independently. 	The rotation of the arm allows free to 

pull-in transverse displacement of the plate edge whilst the independent 

rotation of the lower finger accommodates edge rotations. 	The pivot 

around which this lower finger can rotate (Fig. 11.6) is eccentrically 

machined to allow initial vertical adjustment during assemblage. When 

the roller is in contact with the plate the pivot position is locked. 

The drilling of holes in the arm pieces for the hinged connections and 

for the rollers was accurately controlled using a drilling jig. 

At the ends of the model the flange plates will be connected by 

welding to mild steel flexible diaphragms bolted to stiffeners on the 

web. 	This will provide vertical support and approximate the theoretical 

boundary conditions assumed at the supports in the analytical model. 

That is, tangential restraint, free rotation and free to pull-in dis-

placement conditions. 

11.4 	MATERIALS AND FABRICATION OF LOADING WEB ASSEMBLIES 

From numerical evidence it was found that the webs should be 

able to impose on the edges at the centre of the flange plates longi- 

tudinal strains 4-5 times the yield strain of mild steel. 	In the 

search for a suitable material for the webs, machineability and control 

of distortions after heat treatment had to be considered. 	Maraging 

steel meets all these requirements having a Young's modulus conveniently 
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lower than mild steel. 	In the anealed state (soft state) it can be 

machined and requires low temperatures (480°C) in the hardening (aging) 

process. 	Though not presenting any yield stress plateau it is suffi- 

ciently extensible before rupture to avoid danger of brittle failure. 

Maraging steel of G110 type was chosen in a compromise between strength 

and economy. 	Its main mechanical characteristics are: 

Young's modulus 	= 186 	kN/mm2  

2% proof stress 	= 	1.770 	" 

Tensile strength 	= 	1.850 

Poisson's ratio 	= 	0.3 

The web assembly shown in Fig. II.2 was fabricated by welding to a 

thick plate two blocks of approximately square cross section. 	These 

sections were welded together at the Welding Institute using an argon- 

arc process. 	To avoid post-welding distortions a rigid frame for 

clamping was built to hold the pieces in position. 	Very little distor- 

tion was found after welding apart from a small lateral bowing, almost 

longitudinally symmetric, in both webs. 	All the subsequent machining was 

conducted with the webs laying flat clamped to this frame, with the frame 

in turn fixed to the machine bed. 	The lateral bowing of the webs being 

longitudinally symmetric can be corrected by the diaphragm bracing plates 

which will be used to keep the webs in position in the testing rig. 

These plates are to be bolted to stiffeners welded to the webs at the 

support locations. 	The top blocks on the webs were accurately machined 

to house the teeth that transmit the shear lag type of loading to the 

plate edge bearings. 	The bottom blocks act as tension flanges to lower, 

as much as possible, the location of the neutral axis of the assemblage. 

The length of the webs, and consequently the maximum length of the plates 
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to be tested, was chosen so that they could be machined in the longer 

machine bed available in the Departmental Workshop. 	The cross-sectional 

dimensions resulted from a compromise to obtain a flexural modulus such 

that in the shorter spans the high strains required at the level of the 

testing plates could be generated with safe point loads. 

II.5 	LOADING ARRANGEMENTS 

Point loads are to be applied through strong loading stiffeners 

at the mid-span of the loading web assemblies. 	These stiffeners were 

cut around the pieces of the web assembly to give them continuity and 

welded to the whole (see Fig. II.2). 

The webs can be supported at three different symmetric positions 

for testing plates of different lengths. 	The supports are also made of 

maraging steel. 	They support the webs through pins with axes located 

for stability at approximately the level of the web neutral axis. 	These 

were designed with rockers to allow rotation and free longitudinal dis-

placement (Fig. 11.7). 

The loading system (Fig. 11.8) is self-equilibrated. 	Hydraulic 

jacks with a capacity of 800 kN/web will be used. 	These jacks will be 

located between the bottōm flange of reaction beams. which support the 

webs, and 	'saddle' rings (Fig. II.9) which are pinned to the web 

loading stiffeners. 

The loading arrangement of the saddle rings is shown in Fig. II.10. 

The saddles are constrained to move vertically by adjustable bearings 

fixed to the webs of the supporting beams. 	They are also connected to 

each other transversely for additional stability. 	The reaction beams 

are braced by transverse supporting girders which provide at the same time 
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Fig 118 Sketch of loading system 

the packing height necessary to accommodate the depth of the loading 

saddle rings. 

The distance between the reaction beams can be varied accord- 

ing to the width of the plates to be tested. 	The webs are simultaneously 

moved by using bracing diaphragm plates of different lengths. 

Details of the fabrication and the safety frame to avoid longi-

tudinal differential movement of the webs are omitted in this brief 

description and this frame is not represented in the figures. 
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