
APPLICATIONS

OF DYNAMIC PROGRAMMING

TO

PROBLEMS OF ROUTING PIPEWORK AND CABLES

S B KAPUR
OEM

B Sc (Eng),A.C.G.I.

Submitted in the partial fulfilment of the Degree of

Doctor of Philosophy of the University of London and

for the Membership of the Diploma of Imperial College

London.

ABSTRACT

Various branches of Engineering applications

involve the problem of deciding the physical positioning of

components and their interconnections which could be classed

under the general title of 'Layout' problems. The layout

problems in Precedence type Management Networks, Printed

Circuit Boards and Pipe routing are considered here followed

by consideration of the physical contraints to be°observed

in their solution. 	Finally, together with existing algorithms,

new and more optimum algorithms are discussed and these are

presented as interactive graphics systems.

ACKNOWLEDGMENTS

Special thanks are due to the British Ship

Research Association, Wallsend Research Station,

Newcastle, for sponsoring most of this work at

Imperial College, London.

I wish to acknowledge with deepest appreciation

the suggestions, counsel and encouragement from

Professor P J Grant, who has been a great source of

inspiration with his never ending enthusiasm throughout

this project. I also wish to thank Dr A Jebb and

Dr C B Besant for their help in obtaining the objectives

of this project.

I am highly grateful to my friends, without

whose help and enthusiasm this project would never have

been successful. 	Special thanks are due to

Mrs Margaret Bradstreet for typing this thesis so

painstakingly.

- SB Kapur.

TO ERR IS HUMAN -

But to make a real mess,

It takes a Computer.

- Anonymous.

1
3

4

4

5

7

10

14

16

16

CONTENTS 	PAGE NO.

Title

Abstract

Acknowledgements

Contents

1. Introduction

2. System-Hardware

3. Graphics Software

3.1. 2-D Graphics

3.2. 3-D Graphics

4. Nature of Layout Problems

5. Graph Theory Applications

5.1. Activity Networks

6. Management Network Analysis

6.1. Graphics

6.2. Algorithms for Management Network Analysis 23

6.3. Minimisation of Crossovers in a Network 	28

6.3.1. Planarity Solution 	32

6.3.1.1. Algorithms 	34

6.3.2. Proposed Algorithm 	35

6.3.2.1. The Problem 	35

6.3.2:2. The Solution 	36

6.3.2.3. The Graphics 	41

6.3.3. Discussion 	 48

7. Printed Circuit Board Layouts 	51

7.1. 2-D and 21/2-D Problems 	 51

7.2. Algorithms 	 53

7.3. Cost Optimisation Criteria 	56

7.3.1.. Branch and Bound Methods 	63

7.3.1.1. Formal Definition of
the Branch and Bound
Technique
	

64

7.3.1.2. Depth - first Search
on a Graph 	69

7.3.1.3. Planarity Testing 	70

7.3.2. Proposed Algorithm 	73

7.3.3. Graphics 	 79

8. Pipe Routing and Design 	 84

8.1. Cost Optimisation in Pipe Layouts 	84

8.2. Mathematics of Pipe Routing 	88

8.2.1. Calculation of Intersection
Co-ordinates 	 88

8.2.2. Calculation of Exact Centre 	(9
Line Point

8.2.3. Calculation of Rotation and 	90
Inclination Angles

8.2.4. Calculation of the Rotation 	91
Matrix

8.2.5. Calculation of the Outer Wall 	914-
of a Pipe

9. Conclusions

Appendix 'A'

Example of Central Graphics System 	10

Appehd,Lx '6'
Sp2Girtca-t69,L. csc tP-e.. .AL Yt n,w~s Lieve'5~.10ed 	102

References 	
u

Bibliography

1

1. INTRODUCTION

As industry takes a further step in the

direction of automatic design and production, an inter-

active graphics computer system provides a very versatile

and powerful system for problem solving throughout the

spectrum of applications in design, draughting, production •

and quality assurance. This research was primarily aimed

at the more classical problem of pipe and conduit routing

in ships. The principles involved in pipe routing,

considered here in the light of their application to

ships, buildings and chemical plants, share the layout

problem with printed circuit boards and management networks.

Precedence type management networks lend

themselves relatively easily to simulation in 2 dimensions

aiding to good pre-planning of a project and an optimum

flow of information at all levels during the life of the

project. Management networks were simulated consistent

with the British Standard 4335 (1972)1 and the result

provided with a technique for fast data input, analysis,

interactive modifications and data extraction in a variable

format for further analysis. An algorithm was developed

for minimising cross overs in a given network. This was

used in management networks for clarity and understanding

and a further application was discovered in optimising cost

of printed circuit boards by minimising the number of

conducting wire holes in printed circuit boards.

Various graph theoretical and branch-and-

bound methods were considered for the automatic layouts

of printed circuit boards but it was found that no signi-

ficant cost optimisation could be carried out using the

existing algorithms. The automatic and interactive methods

2

finally implemented for the printed circuit board layouts

were based on an algorithm which was specially designed

for this particular application.

The afore mentioned algorithm when extended

to 3-dimensional layouts led to the solution of the general

pipe routing problem. Various constraints on the system

were considered together with preset priorities for different

pipes and conduits. Ike at riff w. _wkich Auas- used- carried
out the cost optimisation on the basis of shortest path

analysis combined with minimisation of bends.

It is clear that the layout problems involved

in management networks, printed circuit boards and pipe

routing can be solved using the same general algorithms

with special optimisation techniques built - in and these are

presented as independent graphics systems.

3

2. SYSTEM HARDWARE

The graphics station in use consisted of

a PDP 11/45 operating under DOS (Disk Operating System),

a Tectronix-611 graphics display and a Kennedy magtape

unit together with a Decwriter and a Logabax line printer.

The main peripheral was a cursor and grid based digitising

table. The control program used to bring the application

programs into core for execution was operated from a "menu"

area on the digitising table.

"Menu" based systems have become quite popular

in computer applications to graphics in various fields. Menus

can be displayed on a screen and then a light pen can be used

for selecting the operation to be performed. The menu in

use here was based,on sensing the position of the 'bug' or

the cursor on the digitising table and deciphering the

co-ordinates in terms of an application program for carrying

out a specific function. The digitising table provided a

good means of conversion of picture data into digital (X,Y)

co-ordinates. It is thought that the solid state tablet

offers more in terms, of ease of use and more consistent

accuracy as compared with the digitising table.

Work is continuing at Imperial College on

automatic conversion of mechanical engineering drawing data

into digital (X,Y) data.

Three dimensional data input on the digitising

table is carried out using separate perspective planes, XY,

YZ and XZ. C Yi in his thesis has covered various aspects

of this subject.

4

3. GRAPHICS SOFTWARE

An attempt is made here to describe various

facets of the graphics software available as concisely as

possible.

The philosophy behind the graphics in 2-D

was that every point would carry (X,Y) co-ordinates together

with a flagging code indicating the state of the 'beam' or

the 'pen' in generating the vector XY. 	The same principle

was extended to 3-D graphics with the vector under

consideration being XYS.

Both systems, i.e. 2-D and 3-D, were based on

an overlay system where a background program was used to

select the required application program and control being

returned to the background program once the function of

the application program had been completed. 	Hence, the

background program operated in an interminable loop, always

resident in core, only to relinquish control when an

application program was requested.

Though the 'beam' would only have 'on' or

'off' conditions, i.e. the pen could only be up or down, but

more than two flagging codes were employed. So the flagging

codes were not only used to indicate the state of the beam

but also to identify different types of data. The basic

applications on the pure graphics could be listed as follows:

3.1. 	2-D GRAPHICS:

3.1.1 	Initial Set Up Routine:

This routine was used to set up grid parameters,

input and output scales, alphanumerics size etc.

3.1.2 	Background Digitising Overlay:

This module was set up to read tabel co-ordinates

and check for the pen up or down condition. This also provided

the controlled movement of the cursor and was useful

5

in selecting the particular application programs to be

executed.

3.1.3. Symbol Generating Routine:

This routine was used to generate any

standard symbols such as circles, rectangles and arcs

etc.

3.1.4. Windowing Routine:

This routine provided the magnification

facility to be able to concentrate on any fraction of

the screen and magnifying it to fill the whole screen.

3.1.5. Alphanumeric Generation Routine:

This overlay was used to convert alpha-

-numeric characters into their equivalent screen vectors

thus making it possible to afford storage of alphanumeric

data in a more simple and realistic form.

3.1.6. Various Editing Facilities:

This suite of programs formed the backbone

of interaction of the computer and the operator. Facilities

included deletion of lines, symbols or alphanumerics

and provided for any correction to input data on-line.

3.1.7. Find or Locate routines:

This suite of 3 programs was used to

aid the operator in determining the 'exact' positions

of already input points, lines or intersections of lines

under program control.

3.1.8. File Manipulation Routines:

These routines were used for storing picture

data on disk, copying such files, initialising them and

displaying already stored files.

3.2. 3 - D Graphics:

The 3-D graphics system provides for all

the facilities mentioned under the 2-D system together

with the following additional operational routines:

6

3.2.1. Simulated Joy-stick Program:

This program provided the facility for

viewing a 3-D perspective picture from any angle in

3-dimensions and also provided the facility of positive

or negative 'zoom' effect.

3.2.2. Solids of Revolution Generator:

This module made it possible to be able

to generate a solid of revolution of any profile round

any axis.

3.2.3. Perspective Transformation Routine:

This program was used for conversion of

3-D picture data into perspective planes i.e. XY, YZ

and XZ planes,and vice-versa.

The overall systems described by the above

mentioned module's provided a very versatile arrangement

for 2-D and 3-D systems. The application programs could

be added to either of the systems. The programs that

took care of management networks and of printed circuit

boards were added to the 2-D system, whereas the pipe

routing and the design system was added on to the 3-D

system. This was'made particularly easy by the modular

structure of the available systems.

Further details of the 2-D graphics system

exist in the works of A. Hamlyn and R. C. Edney whereas

the 3-D system is covered by C. Yi

7

4. NATURE OF LAYOUT PROBLEMS

The layout problem is that of deciding

the positioning of components, whether electronic,

mechanical or chemical, and their interconnections.

A combination of factors cause the problem. Firstly

the increasing complexity of equipment means that

there are many components to be interconnected. As an

example, in a powerful computer, there can be 4o,000

logic gates and upto 25o,000 interconnections. An

average tower block may contain 3,000 electrical

conduits or a ship may have a few thousand service

routes. Secondly, the factors involved in transmission

require that the routes be as small as possible. These

include the related flow problem as well as the cost

optimisation problem.

For these reasons and others given later

it has become necessary to employ automatic procedures

to assist in the design of equipment layout. Each of

the various aspects of the layout problem may be regarded

as a constraint to an overall optimisation problem.

However, it is not always possible to find a useful

mathematical formulation describing the problem. If one

is found, it usually takes the form of a function to be

minimised.

For instance, in placing n integrated

circuit modules on a plug-in board, the total inter -

- connecting conductor length L may be expressed as :

L = ' i=1 ij =1 C..
dP 	 p(i) dp (j)

where
Cij = Cji = no. of connections

between modules i and j.
and

dp (. dp (j = distance between
modules i and j.

One way to minimise this expression would•
be to evaluate it for every possible module placement.
There are n: ways of placing n modules on a board; for
n=24, there are 24! = 612 x 1021 arrangements. Clearly,
it is out of the question to attempt complete enumeration
even with the most powerful computers available.

It might be possible to eliminate many
of the combinations immediately. For instance, two
modules with a large wmberof connections might always
be placed adjacently if it could be shown initially
that any other positioning would contribute a greater
amount to the total length than any possible reduction
caused by the consequent repositioning of other modules.
However, even large reductions in the nurnb4r of combinations
would still leave'an enormousnuw,berto be investigated.

Some aspects of the layout problem cannot
be formulated in any meaningful way at all - e.g. the
positioning of a conductor on a printed circuit board.
Although a conductor path could be described by a sequence
of adjacent 'cells' by dividing the board into a grid,
such a description would yield an astronomicalnumber of
combinations for, say, specifying thenwotrof possible
postionings for 50 different conductors. Same applies
to pipes or conduits in 3-dimensional space. Most
combinations would of course involve crossings and could
be rejected on that account, but there would still remain

9

an enormous number of feasible solutions, some better than

others.

Thus, although layout problems could be

conceived as combinatorial ones, such an approach would

be useless in finding solutions. It should, therefore,

be appreciated that in discussing layout problems,

remarks concerning feasibility or true optimisation

are always made in the context of 'practicable' methods. •

It is always possible to find a placement by enumerating

all possibilities.

The problem is not therefore one of

finding solutions but rather 'ways' of finding solutions.

Solutions are usually defined as optimum to a given

procedure and are not true minimum answers. What is

required is a 'good' answer i.e. one that is satisfactory

and comes arbitrarily close to a true optimum. This

will normally require a compromise between computation

time and the 'quality' of the solution. Different

algorithms will yield different efficiencies in this

respect.

It will be seen that layout problems are not

of the type in which formulae and mathematical results

are established by researchers which can be used in turn

as starting points by new researchers in the field -

'Developments' are concerned with new and more efficient

algorithms. Occasionally, these may supersede earlier

procedures but in many instances have varying advantages

and disadvantages according to the particular problem and

constraints applicable in its solution.

- 10 -

5. GRAPH THEORY APPLICATIONS.

Having established in the previous

chapters that layout problems occur in almost all

branches of engineering applications and that there

is a.lot in common in Management Network graphics,

Printed Circuit Board layouts and Pipe routing, a

common basis for analysis is not only desirable, it

becomes necessary. To deal with any problems of

interconnected components, Graph Theory provides

many answers in the form of computer oriented

algorithms.

The concepts required are quite simple

and have a characteristic 'yes - no' flavour and for

the most part require no complicated arithmetical

operations. The manipulations involved are ideally

suited to'the use of digital computers and very large

and complex systems can be investigated efficiently.

It is often quite simple to build a model for a

system in terms of graphs. Presently, the techniques

are used to study networks of telephones, satellites,

computers, roads, pipe lines, production facilities

and many other components of technology. The view

usually taken is 'macroscopic' rather than detailed.

A 'Graph' is defined as a collection

of points, called nodes, some of which may be inter-

-connected by lines, called branches. So, a graph can

be defined as two sets, a set N of nodes and a set B

of branches. Thus the mathematical notation of graph G

is

G = (N,B)

The set B contains certain unordered

pairs of nodes: those pairs connected by branches.

For example,

~F
This graph has 4 nodes and 3 branches.

The mathematical notation for this graph is then

G = (N,B)

where N = (1,2,3,4)

and B = ((1,2), (2,3), (1,4))

Although a graph will usually be

represented by a picture, or by some arrays of numbers

- in a computer, this mathematical notation illustrates

some important points. For example, it would be

correct to say '

N = (3,2,1,4)

i.e. the sets of nodes and branches

are not in any order. Also, the pair of nodes representing

any branch is un-ordered, so B could be written as

B = ((3,2), (4,1), (1,2))

i.e. there is no particular direction

associated with a branch, and the term undirected graph

is sometimes used to emphasize this. In some applications,

of course, directed graphs with ordered branches would

have to be considered.

There are two special situations that might

arise. First, a node may be connected to itself. This

corresponds to a branch of the form (a,a), which connects

node a with itself. 	Such a branch is called a self-loop.

Second, there may be more than one branch connecting a

particular pair of nodes.

- 12 -

This corresponds to a set B like the

following:

B = (.•... (a,b) ,

Such branches are called multiple-

branches.

Nothing has been said about where the nodes

are to be placed when the graph is drawn or what shape

lines are used to indicate branches. These decisions

are determined by system constraints but do not affect

the identity of the graph being represented. The graph

shown previously could be re-drawn as:

If it is possible to draw a graph on a

plane so that no branches cross, the graph is called

"planar". 	It often clarifies the picture of a graph if

it is drawn so as to minimise the number of branch

crossings. 	This has widespread implications in management

networks and printed circuit boards.

On the other hand, it might be a constraint

to preserve the relative position of the nodes, e.g. steel

works in a chemical plant, then the branches would represent

relative distances.

Thus a graph is thought of abstractly as

being a set of nodes and a set of branches, and the

picture is drawn so that it is easy to understand. More

often than not, the nodes are placed on a regular grid

and this offers a great deal of advantages as will be

seen later.

- 13 -

As an example of a graph, the collection

of natural gas from offshore drilling platforms, and

the transmission of the gas through pipelines to an.

onshore point, may be considered. Such systems may

cost millions of pounds and sophisticated techniques have

been developed for designing them efficiently.

Sometimes, merely drawing the right graph

helps a great deal towards solving a problem. The

problem of collecting garbage in a city provides another

good example of the application of graph theory. The

cartographic colouring of maps represents another graph

theory problem and is usually grouped with "chromatic"

problems. Nicos Christofides5has done a great deal of

work in this field. The main application of graph

theory that interests the layout engineer, however, is

that of constructing the shortest path connecting two nodes

in a graph.

The next problem would be to consider

"directed" graphs and each branch would have. a direction

associated with it. This feature would make it possible

to send something from node i to node j but not in the

reverse direction. This would obviously find application

in pipe lines where the direction of flow would be pre-

defined.

The particular algorithms that have been

used to solve management network diagrams, printed circuit

board and pipe layouts are described later and proposed

algorithms are compared with the graph theoretical

algorithms.

- 14 -

5. 1. ACTIVITY NETWORKS:

One of the most popular and successful

applications of networks in operations research is in the

planning and scheduling of large complicated projects. The

two best known names in this connection are CPM (Critical

path methodf and PERT (Program evaluation and review

technique)' A project is divided into many well-defined

and non-overlapping individual jobs, called activities.

Due to technical restrictions, some jobs must be finished

before others can be started such as putting foundations

before erecting walls etc. 	In addition to this precedence

relationship among the activities, each activity also

requires a certain time, called the duration of the activity.

Given the list of activities in a project, the list of

immediate pre-requisites (i.e. predecessors) for each

activity, and the duration, a weighted graph can be drawn

to depict the project, as follows:

Each edge represents an activity, and its

weight represents the duration of the activity. The

vertices represent beginnings and endings of activities and

are called events in the project. An activity (i, j)

cannot be started before all activities leading to the event

i have been completed. Each event in the project isa well-

defined vertex. Such a weighted, connected graph representing

activities in a project is called an activity network.

Taking an extremely simple example,

suppose that a project consists- = of six activities, A,B,C,D,E

and F, with the restriction that A must precede C and D;B

and D must precede E; and C must precede F. The durations for

the activities may be taken as 5, 7, 6, 4, 15 and 12 days

respectively. The activity network of this project is as

follows:

- 15 -

It can be observed that an activity

network must be acyclic; otherwise, an impossible

situation would arise in which no activity in the directed

circuit could be initiated.

- 16 -

6. MANAGEMENT NETWORK ANALYSIS

6.1. GRAPHICS:

In this section, a computer aided data

preparation system for Precedence type Management

Networks is presented containing all the facilities for

up-dating the Network in its active phase. The network

data for further project analysis could be transferred

to a main frame computer on punch cards, magtape or

paper tape.

The PM (Project Management) system

contained modules to perform the following operations

inter-actively:

	

6.1.1. 	A'module to create rectangles with the

option of placing them on a grid. The rectangles would

identify with "activities".

	

6.1.2. 	A program to input alphanumeric data at

pre-defined locations in a selected rectangle. This

data consisted of activity codes, descriptions of the

activity in terms 'of resources required and any special

treatments required, together with the duration of the

activity.

	

6.1.3. 	A program to input connecting arrows

automatically by selecting any two rectangles. The

arrows would represent "events" connecting various

activities.

	

6.1.4. 	A module was required to specify the

"delay" times on events in order to monitor the flow

through the network.

- 17 -

6.1.5. 	A facility was provided to attain even

distribution of activities horizontally or vertically

for the sake of clarity. 	In fact, if the activities

were placed on a pre-defined grid under program control,

then this facility was practically redundant.

6.1.6. 	A program to magnify i.e. "window" any

specific part of the network was included. In a large

network, this would be very useful in concentrating only

on the required part of the network.

6.1.7. 	Data extraction routines were included for

further project analysis. This data was directly written

to the system disk and then could be transferred to any

device, e.g. papertape, magtape or punch cards.

- 6.1.8. 	The different editors provided, for

correction of mistakes in the initial inputting of data

or for modification of the network during its active phase,

included:

	

6.1.8.1. 	An arrow editor to remove any events

unnecessary to the network or for inputting new events.

	

6.1.8.2. 	A rectangle editor for activities in a

network in case any of the activities were redundant.

	

6.1.8.3. 	An•alphanumerics editor for texts and

codes which could be removed or new ones added in.

	

6.1.8.4. 	An editor to move any form of data,

whether graphic or alphanumeric, in two dimensions.

The application programs were added to an

existing modular graphics system which allowed the input

and editing of drawings within the computer system.

- 18 -

Management Systems are usually designed

to assist Management in their control of planning,

progress and cost information of production; throughout

all stages of construction. Various systems exist but

the one described here would contribute to data preparation

and extraction from precedence type of activity networks.

Further analysis on the network is usually carried out on

a main-frame computer but data preparation is a long and

tedious process. The PM system is capable of very fast

and accurate data preparation for such an analysis. It

can generate data for a medium size network in a matter

of minutes as compared with manual techniques presently

in use which can take up to a few weeks for the data

- preparation and checking and so it represents a vast

saving in the cost of such procedures.

One of the core points of the real time

system is its capability to provide man-machine

interaction. The user is given maximum possible

freedom and is not asked to follow a long set of standard

procedures. Mistakes are quickly spotted and corrected

by the editors provided.

The, use of the mini computer requires that

a minimum of data is brought into core and this prompted

the need to process any network file point by point. All

activities of a network are stored in standard size

rectangles, and the size is consistent right through any

network. The master rectangle is treated as a picture

component or a "macro" and the facility is provided to add

a master rectangle wherever required. A standard activity

may contain information of the type indicated below:

CODE. TREATMENT.

DESCRIPTION AND TEXT.

RESOURCES. DURATION.

DESCRIPTION OF AN ACTIVITY

WINDOW

- 19 -

Various activities are now generated by

first placing the rectangles wherever required and then

alphanumerics can be input by just digitising a point

in any rectangle to identify it and typing the codes

and.descriptions etc. as required.

AN EXAMPLE OF A NETWORK CREATED USING 'PM' SYSTEM

i 	

The logical connections representing

events can be input next by selecting any pair of

activities and any of the following types of connections:

1) Finish to start arrow

2) Finish to finish arrow

3) Start to start arrow

After carrying out the above operations,

a complete network is now ready. It is possible to

magnify any part of the network to fill up the whole

screen by placing a window of variable size around the area

of interest.

SCREEN FORMAT FOR MAGNIFICATION FACILITY.

FIRST REFERENCE POINT

NEW REFERENCE POINT
_J

INITIAL PICTURE

.INTERMEDIATE PICTURE

- 20 -

MAGNIFIED PICTURE

Although it is not always necessary,

facility exists for placing activities on a grid, the

size of which is pre-specified. 	It is possible to

drag any data in two-dimensional space and any

individual activities or combinations of activities

may be moved to new locations if so desired.

After any of these operations, the

geometrical shapes of the arrows can get distorted,

though the logical connections do not change. These

however, for aesthetic reasons and to clarify the picture,

can be reformed.

	~ C I
FINAL PICTURE

- 21 -

The old geometrical arrows are deleted and new arrows

are added to the picture file to maintain an accurate

graphical description of the network.

If any of the data in the network file

needs to be changed, various editors for activities,

events and text have been designed. So it is possible

to add as well as subtract activities or parts of

- activities.

INITIAL PICTURE

INTE RMEDIATE ICTURE

A 	
B 1

FINAL PICTURE

IA I 	 Aj B

AN EXAMPLE OF 'ACTIVITY' EDITOR

- 22 -

AN EXAMPLE OF TEXT EDITOR

INITIAL PICTURE

FINAL PICTURE

To hold large amounts of text related

to a code, a library is stored on the disk. The code

can be selected from the screen or just typed in from

the keyboard and related text of upto 256 alphanumeric

characters is displayed on the screen.

TEXT DISPLAYED

[A 1 	 B

SELECT CODE A

To indicate the continuity of events, in

case, two arrows cross-over each other, loops are drawn

to indicate which one of them continues.

INITIAL PICTURE

2

FINAL PICTURE

2

4 ~ ~5

4

1 3 1

3

- 23 -

It is sometimes required to add

delay times on certain events and these are placed •

at the arrow ends for correct representation.

General data extraction routine

works on the final network and transfers logical

. precedence information onto any selected device

i.e. paper punch, cards or magtape.

An algorithm has been developed for

minimising the number of cross-overs in a project

network and is described later in Section 6.3.

The network data, once extracted, can be transferred

to a mainframe computer and used for Critical Path

applications or for generating progress reports for

management control.

6.2 ALGORITHMS FOR MANAGEMENT NETWORK ANALYSIS:

A description of the general graphics

principles involved in the management network analysis

system is given here. The application programs were

described in Section 6.1. under the general title of

graphics for networks. The various mathematical

concepts were developed on the basis of the ease from

the user point of view and interaction was considered

to be the leading criterion.

-24-

To generate a rectangle, a horizontal

rectangle is completely and sufficiently defined by:

specifying one of its diagonals. Given the points

(Xl, Yl) and (X2, Y2) as below define

the rectangle ABCD where the co-ordinates of B are

given by (Xl, Y2) and those of D as (X2, Yl).

To locate a given point (X, Y) on

-a non-uniform grid of size DX, DY, it is important to

appreciate that X, Y must lie within the grid box as

defined below by.A, B, C, D.

(X-DX,Y+DY) B

C (X+DX,Y+DY)

X
(X,Y)

(X-DX,Y-DY) A D (X+DX,Y-DY)

Then the offsets are calculated from the nearest points

on the grid and hence the cursor is controlled to move

on a grid.

- 25 -

To place different alphanumeric data

within a given activity, it would be desirable to set

up some rules that would be followed. This was

achieved by taking proportions of the sides of the

rectangle and then calculating the start and end points

of alphanumeric data which in this case would always

be horizontal. The taking of proportions implies

normalised sides i.e. the size of the rectangle becomes

immaterial and data retrieving eventually becomes

relatively simple e.g. if the standard activity is

taken to contain five codes as follows:

2

3
A 	B

1

C

E
4

Then side 12 would be sub-divided into

5 sections and the codes A and B would start at the

beginning and in the middle of the rectangle respectively.

The best means of locating an existing

rectangle in a network was considered to be defining

one point anywhere inside it and then carrying out the

following analysis:-

(X1,Y1) A

Point Inside

X (X,Y)

C (x2,Y2)

D

B

Z_# A - - - - DX-_ --

D

C

I DY

0 	 X

- 26 -

The condition to extract the correct

values of (X1, Yl) and (X2, Y2), the necessary and

sufficient condition would be that

X1 < X < X2 - Q1
. and Yl G Y ` Y2 - 0

The criterion is the intersection sub-set

- of Ol and 0 above.

This method of locating rectangles

provided 	- a means of inputting connecting events

where the start and finish activities could be located

and a logical event connection put in automatically.

To allow for general translation, scaling

and rotation of picture components or macros, the following

principles were employed:

The translation of

vector P.B to new

position as vector

CD may be carried

out by the following

calculation:

XC=XA+DX

YC=YA+DY

and so on for all the

co-ordinates within

the picture component.

c) Scaling:

D

B

Y

0

- 27 -

b) Rotation:

The rotation of a vector from

AB to AD by an angle 9 is

XD=XB*COS9 + YB* SING

YD=YB*COSe - XB* SING

if the origin is taken to be

at A.

The magnification of a vector

AB to AD, considering the

origin to be at A, would be

given by:
N711 	 XD=XB*SCALE

A
0 	 X 	YD=YB*SCALE

Hence to perform a general translation

by DX, DY followed by a rotation clockwise through angle

9 and magnification by a scaling factor M for any

co-ordinate vector (X,Y) in two-dimensional space would

be carried out as follows:

(X,Y)
(') YN=(Y+DY)M COSe - (X+DX)M SING

	 This general calculation formed the

basis of all picture component manipulations.

The magnification or the windowing

routine was based on taking proportions of the window

with respect to the screen size.

XN=(X+DX)M COS9 + (Y+DY)M SIN9

WINDOW

YW
; t ' 	

SCREEN

~---- XS

YS

i.e. XS = YS M

- 28 -

The window

co-ordinates were

so constrained

that XW and

corresponding YW

held the same

ratio as the screen

dimensions

XW YW

and the constant of proportionality thus was the

magnification factor. • The vector magnification was then

carried out as described before taking offsets from the

origin and then multiplying the offset by the scale.

The co-ordinate manipulations described

led to the basic graphics package for the management

networks. One of the leading requirements from the system

was minimisation of cross-overs of different events, i.e.

a network which would approach as near as possible to a

"planar" network. This would provide for graphic clarity

as well as better visualisation of the different events.

Various algorithms for the same were considered and are

described in the next section.

6.3 MINIMISATION OF CROSS OVERS IN A NETWORK:

The problem of embedding a graph in a

plane arises in several fields. 	In engineering,

discovering whether a given circuit may be laid out in

a plane is of interest in integrated circuit design.

In chemistry, determining isomorphism of chemical

structures may be made much easier if the structures are

planar.

- 29 -

The earliest characterization of planar graphs was

given by Kuratowsk , who showed that every non-planar

graph contains a subgraph which upon removal of a

branch is planar. However, searching for such subgraphs

may require an amount of time at least proportional to

n6 where n is the total number of vertices in the graph.

It is clear that more efficient procedures are needed to

analyse large graphs.

Using list-processing and various

programming tricks, the search time may be shown to be

proportional to n3. Tarjan
9 has programmed an algorithm

giving a time bound of n2. Hoperoft and Tarjan have

proposed, what is considered to be probably the fastest,

an algorithm which carried out planarity testing in

n log n steps. .

The proposed algorithm, in this thesis was,

developed, not only to check for planarity, but rather

to find a solution as near to planar as possible. This
would obviously be the more practical approach. Almost

all the algorithms published so far indicate how to test

for planarity but ,the proposed algorithm would provide

an optimum near-planar solution if it was found that

the graph could not.be embedded in a plane.

The basic concepts originated while

considering management networks. A few examples here

clarify some of the ideas:

- 30 -

If this network in 6.3.1.

was re-drawn as

shown in fig.6.3.2.,

obviously the picture

would be much clearer.

One fact that becomes

clear is that the

vertical offset is

zero for the planar

solution i.e. zero

cross over.

Now' considering the situation as follows,

it becomes obvious

that the problems

get more complicated

but it is still

possible to find a

planar solution

which would be as

in fig 6.3.4.

A few constraints

of the system

deserve a mention
Fig. 6.3.4. 	here:

fE

Fig. 6.3.3.

	t1F 1

	 D

	 B

1) The activities are allowed to exchange places with

each other only vertically. They probably fall on a

time-scale horizontally.

2) The logical connections indicating the precedence

of the activities have to be maintained.

- 31 -

3) The graphical shapes of the connecting events have to

be redrawn every time for the sake of clarity.

Next, consider a situation where it

will' not be possible to reach a planar solution.

9 x-ovzRS 	Fl 6.6.3.5.
The near-optimum solution of fig 6.3.5

could be as follows:

- 32 -

The problem of finding a solution of

near-minimum crossovers in a network has wider possibilities.

Most printed circuit boards use both sides of the board

and,use copper plated conducting wire holes for transmission

of signals. Whereas, the signal paths on either side

can be etched rather inexpensively, the wire holes

require special procedures for drilling and plating. So

a method of minimising the conducting wire holes in a

P.C.B. layout is desirable within the system of constraints

imposed by shortest path analysis and signal transmission

times. This also finds applications in the layout of

pipes and conduits where the bends require special

treatment and are obviously much more expensive than the

straight lengths.

From cost optimisation angle, cost is

usually a function of path length and the number of cross-

overs or bends that exist in a layout. 	In this section,

the minimisation of cross-overs only is considered with

the direct application to management networks where the

path lengths hold no physical meaning. Later the

combination of optimisation of shortest path lengths and

minimum cross-overs will be considered as applied to

P.C.B.s and pipe routing.

6.3.1 PLANARITY SOLUTION:

The integrated circuit designers have

endeavoured to answer the following question: Is it

possible to find procedures which would enable a computer

to solve efficiently path connection problems inherent

logical drawing, wiring diagramming, and optimal route

finding?

- 33 -

The following types of problems need

solving;

1) To find a path between two points

so that it crosses the least number of existing paths.

2) To find a path between two points

so that it avoids as much as possible preset obstacles

such as edges.

3) To find a path between two points

so that the path is optimal with respect to several

properties; for example, a path which is not only one

of those which cross the fewest number of existing paths,

but, among these, is also one of the shortest.

Various methods for solving the problem

_mentioned in 1) are described in this section.

In processing information consisting of

patterns, rather 'than numbers or symbols, on a digital

computer, tve. probtern - be solved is-• how a computer,
without sight and hearing, can be made to deal

competently with situations which appear to require

co-ordination, insight and perhaps intuition.

- 34 -

6.3.1.1 ALGORITHMS:

Most of the layout problems require

algorithms; given a network, one may ask if the network has

a certain property, and an algorithm is to provide the

answer. 	Since graphs are widely used as models of real

phenomena, it is important to discover efficient algorithms

for answering theoretical questions. Hoperoft and Tarjanto

have presented an algorithm to determine whether a network

can be embedded, without any crossing edges, in a plane.

The planarity algorithm may be viewed as an iterative version

of a recursive method originally proposed by Auslander & Porter

and correctly formulated by Goldstein. The algorithm uses

..depth-first search to order the calculations and thereby

achieve efficiency. Depth first search or back-tracking

has been widely used for finding solutions to problems in

combinatorial theory and artificial intelligence. Recently,

this type of search has been used for solving several

problems in graph theory, including finding biconnected

components, finding triconnected components, finding strongly

connected components, finding dominators and determining

whether a directed graph is reducible.

Embedding a network in a plane has several

applications. 	The design of integrated circuits requires

knowing when a circuit may be embedded in a plane. The

importance of the problem is suggested by the number of

published planarity algorithms. The earliest characterisation

of planar networks was given by Kuratowski.8

- 35 -

6.3.2 PROPOSED ALGORITHM:

A heuristic approach is taken for

finding an optimum solution to the minimum cross-over

problem. The algorithm is based on a simple list

processing technique and the result in mind is; given a

management network layout, how to modify the network,

within a given set of logical constraints, so as to

achieve minimum cross-overs. This has wider applications

in the field of layout of printed circuit boards. The

algorithm attempts to reduce the degree of non-planarity

in a given network.

Most layouts, it is expected, would be

defined in a grid based system, though that in no way is

-a hinderance to the working of the algorithm. The network

is reduced to a simple connectivity diagram from which the

relevant data for, various lists is acquired. The diagram

is iteratively re-drawn as the end nodes exchange positions

in 2-D space until a planar or an optimal non-planar

solution is found.

6.3.2.1 THE PROBLEM:

The nature of the problems involved in

the minimisation of cross overs is directly dependent on

the need for optimisation. The need exists because the

minimisation would aid clarity in a network. 	It would also

help a smoother flow of the network. It provides for the

ease in management control of a given project and would aid

a more accurate estimation of the resources required for

the project.

u 1

C

E I 	

3 F ~

Fig.A.

- 36 -

The minimisation problem is further

defined by the fact that the connected activities are

constrained to move only vertically because they probably

lie on a time scale horizontally, e.g. they might comply

with'a bar chart. The other constraint is that logical

connections, e.g. finish-to-finish or finish-to-start etc.,

must be maintained. 	Correct graphical representation is

required. Hence the main requirement for a minimisation

algorithm would be to exchange positions of activities

vertically in order to achieve a near-optimum solution.

The minimisation problem may.then be

defined as describing a means of exchanging any given

activities vertically maintaining the connections and

-the graphics so as to achieve minimum cross overs,given a

general set of activities connected by a given set of

events.

6.3.2.2 THE SOLUTION:

Assuming that most of the layout would

be done on a grid, though that in no way is a constraint,

it is possible to draw a simple connectivity diagram

indicating the activities as nodes and the events as

branches. If the start and end nodes of a branch are numbered

logically in descending order,

then Fig.A network is fully

represented by .a list diagram

as in Fig.B.

From a connection

representation of the type

shown in Fig.B, a list

processor can be designed

to obtain a minimum cross over situation.

Fe(' Sr-e-cq-,:ca-Ct:a-v‘. of (6.i 	rOt.w.- / ~ee 	six ~~

I
1

2

J
1
2

3 	0 3
Fig.B

J JPT
1 2

2 • 1 2

3 • 0 3

Fig.0

- 37 -

The constraint put on the system is that Array I

would represent the fixed components in space whereas

Array J, where the connections end will be the one which

could be swapped around for optimisation.

The data used in lists is extracted in

the form of a list J of end nodes, a list JPT of pointers

to J indicating the number of branches terminating at any

particular node in J and a list I of pointers to the start

nodes which end at any given J. Hence it is concluded

that list J will have as many components as there are end

points, list JPT will have the same number of entries as

list J, each entry indicating the number of branches and

list I will have the same number of entries as list J since

every end point corresponds to a start point.

As an example, consider

the connectivity diagram

of Fig.B. The following

list can then be extracted:

The arrows in Fig.C.

represent the logical

linkage of the lists.

List J indicates that

there are 3 end nodes

in the diagram.

List JPT indicates that 2 branches end at node 1, 1 branch

ends at node 2 and no branches come to node 3. Furthermore,

list I indicates that the two branches that end at node 1

start at nodes 1 and 2 and that the branch that ends at

node 2 started at node 3 and there is no entry for end node 3

since, as the list JPT indicates, there is no branch connected

to that node.

- 38 -

In fact, the structure of the lists is almost as if the

connectivity diagram was reversed. The main part of

the list processor is that everytime an end node is

swapped in list J, corresponding adjustments are made

to the lists JPT and I.

A cross-over in this case is defined

as a four-bounded condition as explained with reference

to Fig.D. below:

Two counters, K and L are

maintained along the lists

I and J corresponding to a

connectivity diagram. It

is also ensured that K and

L never equal each other,

then a cross over is defined

by the condition that if

I(K), i.e. starting node I
corresponding to counter K,

is greater than I(L) and

If J (K) is less than 3(L), then J(L) has to be greater than

or equal to I(K) and that J(K) has to be lesser than or

equal to I(L), fora cross-over to occur.

The basic technique used is that every

element of list J is swapped "sequentially" with every

other element of list J, the corresponding modifications

made to JPT and I, and unless the new number of

intersections is less than before the swap, the lists

are swapped back to the original status. So if there

are n components in the list J, this involves n(n-1) number

of computations but since the data structure is very simple
and the check for intersections is a single statement, the

algorithm provides very fast computation.

- 39 -

Considering some of the algorithms

in the literature, which take, just for planarity testing,

computations proportional to n2 and higher powers of n,

the proposed algorithm is much faster. As stated before,

the real advantage lies in leaving a minimal cross-over

situation if the planarity test failed. The algorithm

works even faster in reality because searching is terminated

as soon as a planar graph is found. 	It is expected that

for most networks, to reach planarity, the average number

of computations required would be of the order of

2
The solution as found using the proposed

algorithm for the connections depicted in Fig.D. was as

shown in Fig.E. below:

The main points to note

about the solution are:

a) the encircled nodes

represent the end points

which have moved from

their previous position.

b) the minisation may be

seen as decreasing the

vertical offset of any

1 . 	,s•
2 . 	~. 0
3
	3
4 	4
5 - 	5

6•
	

0

7• 	
Fig.E.

given branch between its starting and end nodes.

c) the solution for this particular case was planar, i.e.

The final number of intersections = 0.

d) the planar solution was found in 20 steps of 'swapping'

instead of n(n-1), i.e. 42 steps for a 7 node network.

-40-

The speed of the algorithm cannot be

increased by reducing the processing, i.e. for example,

an alternative approach to the algorithm might have been

to proceed to a succeeding node everytime a positive swap

was done to obtain a new minimwn. This could reduce the

number of computations far below the stated value of n(n-1).

Enough special cases could be thought up where this approach

would not lead to the required optimisation.

In its application, the algorithm would

be applied to "column-pairs" of activity networks to make

as thorough a search for minimum cross overs as possible.

The search could be carried out by traversing the network

from left to right or from right to left or both. This

process does imply its own disadvantages.

During processing, the algorithm would

proceed along a minimisation curve as illustrated in Fig.A.

Main disadvantage of the sequential

processing as proposed is that, taking the Fig.A. as an

example, during processing, the algorithm might arrive at

a false minimum such as A, try another iteration represented

by An and give up. Obviously, the solution is not an optimum

one because the real solution is at stage B.

- 41 -

The requirement is that A should be translated into

Br, i.e. over the top of the curve. This could be

easily done by making the system interactive since the

human eye is a very good judge of patterns. The other

automatic alternative is to take the nodes in pairs

and swap as node-pairs to try to achieve a minimum.

Once the algorithm reaches on or below point B, it will

definitely get to B which in this case is the real

optimum solution.

Great advantage could be taken of an

interactive system in such an optimisation algorithm.

Drastic changes can be carried out to the layout very

quickly interactively and the new data thus could be

J fed to the algorithm for retrial and a better solution.

The main advantage of the algorithm is that planar

solution would terminate any further trial and greatly

aid the speed of execution of the algorithm.

6.3.2.3 THE GRAPHICS:

The graphics application to the interactive

graphics system 'PM' could be broken down into two parts:

1) Conversion of activity precedency

diagram into linked lists consisting of start and end points

of connecting events.

The next step woixld be to carry out the

minimisation based on these lists.

2) The conversion of the optimised

lists has to be reflected into the diagram. So the

activities, as represented by nodes in the lists, are

translated vertically into their new positions with

cross overs minimised.

1) Conversion of precedence network into linked lists:

For a network of activities and events,

the principles involved can be illustrated by taking the

following diagram as an example:

An imaginary window may be placed around

two concurrent columns of inter connected activities.

Considering the horizontal flow of the network, the window

could travel towards the right going down through various

sets of columns of activities. To extract the three

lists as already described, consider a diagram of the following

type within the imaginary window: .

- 43 -

The data structure in which the

activities and events were stored on the disk file within

the computer system were in order in which they were

generated. Hence the order was not compatible with the

ordering of the lists. 	So the first thing to do was

to extract the start and end co-ordinates of all arrows

as two variable size arrays, in the order in which they

were generated.

Start points 	End points

Xl, Yl 	 X3, Y3

X2, Y2 	 Xl, Yl

X3, Y3 	 X2, Y2

The suffices reflect the order in which

-the lists would be required. Hence, a "sort" was carried

out on the arrays thus formed of start and end points,

independently for'both the arrays. The algorithm used

for this sort may be defined as follows:

* Scan the array and extract the

largest element of the array.

* Store this quantity away. 	Initialise

this element to the smallest possible number.

* Scan the array in a loop according

to the steps defined above.

However, there is a special case caused

by two machine input start points being in exactly the

same position. The same applies to end points as well.

- 44 -

This is best illustrated by the following

diagram:

The y co-ordinate for both the arrows is

exactly the same and the algorithm fails when it carries

out a "greater than" comparison. The technique used to

get over this problem was to use "perturbation". This

process may be described as going through the array,

before. submitting it to "sort", looking for any elements

which may be exactly equal and adding a small quantity

like 10
-10

 mmto it. This would ensure that no two elements

would ever be equāl during array processing for ordering.

Also, the graphics displays would not be affected because

such a small quantity as 10-1 mm would be impossible to

detect. Hence perturbation technique was of. great use and

combined with ordered lists formed the basis of minimisation

algorithm.

SO, after the perturbation first and then

the ordering, the following lists could be extracted:

End points

Xl, Yl Qi

X2, Y2 2O

X3, Y3 30

Start points

O1 X1, Yl

02 X2, Y2

3O X3, Y3

- 45 -

The start and end co-ordinate lists now

could, be submitted directly to the minimisation algorithm:

J 	JPT 	IPT

1 	a- 1 	¢2

	

' 1 	so - 3 2

t 	t
End points No of arrows Start points

The final output from the proposed

algorithm would be:

IPT

	 1 	0

	

_2 	0

	

3 	pl

1

	

Final 	Initial
End points No of arrows Start points Start points

So, the final lists achieved with the

pointers leading from the end points to the start points

lead to what is a network with minimum cross-overs. As

far as the graphics display is concerned, this is done

"backwards" i.e. in fact, the start points remain fixed

and the end points are swapped around in "Move Rectangles"

mode.

The arrow that was connected to the

start point marked by suffix 2, i.e. X2, Y2 would have its

end point moved to the end point related to the start point

marked by suffix 1. The final result would look like:

3 0-

JPT

. 1 1

2 z"1

3 1

- 46 -

Final 	Initial
Start points 	End points 	End points

xi, Yl 	P X'1, Y'l 	(X3, Y3)

0 	X2, Y2 	P- X'2, Y'2 	(Xl, Yl)

0 	X3, Y3 	 X'3, Y'3 	(X2, Y2)

The translation in graphics terms is

easily carried out by calculating offsets in the X and Y

directions:

e.g. 	DX = X3 - X1'

DY = Y3 - Y1'

This would lead to the correct placement of the activity as it

"should" be connected to the preceding activity marked by

Xl, Yl.

The final graphics display could be easily

extracted now from the final lists. 	Hence the solution is:

2 	3

FIG. C.

- 47 -

However, there are special cases to

be considered. The main problem arises in splitting of

the arrows vertically as shown below diagrammatically:

FIG. B.

Fig A. indicates the correct positioning of events where

no "false" crossover is caused whereas in Fig B. two

crossovers are caused by the reverse position. Herein

comes the other application of graph theory where the

vertical subdivision of the event has to be a "descending"

order to avoid any "false" crossovers.

Another fact that is

clarified from the Fig C.

is that the space between

activities should be

divided up into the number

of events and then vertical

layout may be done in the

descending order, but

that the activities can

then be compressed together.

- 48 -

Certain columns from the grid on which the events are

•placed can be taken away without affecting the overall

picture. 	Fig.C. illustrates this where the columns lD
and 02 can be dispensed with without any loss of clarity

or any adverse effect on the layout of the network.

6.3.3 DISCUSSION:

Various minimisation algorithms were

considered in this section, in connection with their

specialised application to the minimisation of crossovers

in Precedence Type Management Networks. Compared with the

existing algorithms, a minimisation algorithm was proposed

which had the following main advantages:

1. It was particularly suitable for
the interactive real time system, as in this case, the

user would always have full control of the progress of

the algorithm and the computer would aid the design

process.

2. The algorithm was very suitable for

the type of co-ordinate data that formed the basis of

the graphical picture for the network system.

3. Another advantage of the algorithm,

by the very nature of linked lists that it uses, the

processes involved in converting the co-ordinate data

structure into linked list data structure and vice-versa

were relatively easy.

4. The correlations of the lists with

the pointers helped general physical appreciation of the

events connecting various activities.

- 49 -

5. The list processor required for

the minimisation was simple to comprehend. 	Since most

of the processing was done in core, small amounts of

disk I/O were required within -the computer system, and

this reduced processing time considerably.

6. Since the algorithm was in

generalised list data structure, it could easily find

applications in other fields of engineering like

minimisation of conducting wire holes in Printed Circuit

Boards and the same for number of bends in Pipe Layout

Problems. 	Some of these applications would be considered

in greater detail later.

The main disadvantage of the system was

.considered to be slightly larger number of iterations required

to reach the solution as compared with some of the algorithms

described in the literature. This was more than

compensated by the fact that the algorithm provided 0...

"measure" of the degree of non-planarity which other methods

did not. Furthermore, since the computations were

straight conditional directives, although large in number,

were very fast and hence it did not really affect the overall

performance. Combined with various other advantages mentioned

above, the algorithm was found to be very effective for the

minimisation of crossovers in management network diagrams.

Having successfully generated the

management network diagrams and extracted the relevant

precedence information for further analysis, the next step

was to improve the quality of the graphical displays by

minimising the crossovers in the network. 	Since, so far,

only the two-dimensional layout problem had been considered,

the time had come to generalise the layout further.

- 50 -

Double sided Printed Circuit Boards, such as those used

in modern electronic equipment and sophisticated

computers, posed what may be loosely termed as the

21-dimensional layout problem: Not only do the printed
circuit boards have conductors running on both sides of

the board, the conductors are also allowed to "cross over"

from one side to the other.

The conductor paths are usually drawn

on a board and then 'etched' into position but the crossovers

or the 'conducting wire holes' require more expensive

processes. 	The holes have to be drilled in and then

plated on the inside to provide for conduction. Having

already solved the general problem of minimisation of

crossovers in layouts, it was considered viable to stretch

the algorithm to 22-dimension cost optimisation of printed
circuit boards as described in the next chapter.

- 51 -

7. PRINTED CIRCUIT BOARD LAYOUTS

7.1 2-D AND 21-D PROBLEMS:

There are two dimensional layout

problems which can be clearly defined within the biaxial

co-ordinate system (X,Y) and these can be usefully solved

in relation to engineering problems such as management

networks, single sided printed circuit boards or layouts

of various shapes within a given area such as layouts of

rooms in a building or layouts of roads or train lines or

aircraft routes. 	Such problems can be classified in

various classes and solutions exist for most of these

problems, either in Graph Theory or in Classical

Mathematics.

The three dimensional problems are slightly

different in nature but they lend themselves to a co-ordinate

system of (X, Y, Z) and probably reflect more of the

general engineering applications. The major layout

problems in this field relate to pipe layout problems

in big buildings, chemical plants or ships. 	These

problems will be considered in more detail in Chapter 8.

A special class of problems arises in

layouts, which though lends itself to (X, Y) co-ordinate

system but cannot be fully defined without interaction of

various planes. For example, take a pipe layout of a

multi-storey building. If various floors are considered

independent of each other, the layout problem can be reduced

to two dimensions but for the interaction between different

floors.

- 52 -

Fig A indicates how the

3-dimensional problem

can be split up into

parts and solved as a

2-dimensional problem.

This, however, becomes

difficult as the problem

grows in size and

complexity such as• major

pipe layouts in modern

chemical plants etc.

A simpler problem and more suitable for

'layer' analysis is the one that would define the layout

of a double sided printed circuit board with conductors

on either side connected by conducting holes drilled

through the board or in some cases, by making 'flyover'

connections.

Thus, the 21-dimensional layout problem

may be defined as the problem associated with finding paths

between a given set of nodes subject to a set of

optimisation conditions. The nodes would completely lie

within a number of plane surfaces forming parallel or

unparallel layers depending on the application.

- 53

7.2 ALGORITHMS:

The algorithms described in this chapter

are the outcome of an endeavour to answer the following

question: Is it possible to find procedures which could

enable a computer to solve efficiently path-connection

problems inherent in logical drawing, wiring diagraming

and optimal route finding? The results are highly

encouraging. The problem further breaks down into the

following subsets:

1. To find a path between two points

so that it crosses the least number of existing paths.

This problem has already been considered in Chapter 6 and

solutions proposed.

2. To find a path between two points so

that it avoids as much as possible preset obstacles such as

edges. This part of the problem has wide implications.

3. To find a path between two points

so that the path is optimal with respect to several

properties; for example, a path which is not only one of

those which cross the fewest number of existing paths, but

among these, is also one of the shortest.

Various existing algorithms are considered

and a new, more practical one perhaps, is proposed. In

processing information consisting of patterns, rather than

numbers or symbols, on a digital computer, the computer,

without sight and hearing, has to be made to deal competently

with situations which appear to require co-ordination,

insight and intuition. The problem is to find efficient

procedures which, if followed by the machine, would lead

to an optimal solution. With sufficient care, it is

possible to make a problem such as this unambiguous. In

most cases, however, it would be too great a struggle just

to present the problem in a way that is completely and

consistently stated.

- 54 -

Within this class of problems is the

shortest-path problem on which there have been earlier

definitive algorithms for finding shortest paths by

Dantzig; Ford and Fulkerson12and Moore125
The layout problem for pipes and printed

circuit boards has the following important points in

common:

1. The paths have to be as short as

possible. In pipes, pipe lengths contribute directly to

the total cost, the cost is, in fact, linearly proportional

to the pipe lengths. In printed circuit boards, however,

it is not so much the cost that is related to the lengths,

but the fact that signals could be delayed or weakened by

long conductors.

2. The number of bends have to be

minimum. 	In pipes, certain bends have to be heat bent

or need special processing and cost a lot of money.

Similarly, conducting wire holes in printed circuit boards

are expensive.

3. The paths usually have a certain order

of priority. 	In pipes,- some pipes may be made of more

expensive material than others and so it would be important

in selecting the priority levels. Similarly, conductors

may have ordering in terms of layouts.

4. There is the criterion of obstacles

in the path. Some pipes would have to go through

prespecified ducts or others may have obstacles or no-go areas

before the pipes can be laid out, for example, in a building,

pipes would be restricted to going through the walls and they

could not go through the rooms. Similar conditions would

apply to conductor paths where conductors would not be

altcwt d to touch.

Def inition of the TV,inefield"

T. minefield is: thcf area fo-z.bicsin for the path

firtinc1 	i.e. a sLep ma,A- 	iinih itJn the

mi a)zeT.I.

2. The minefield can have any shape or size.

3. The minefield is only effective on a given plane.
Pathfinding can continue normally on any other plane.

4, 	The path can he around a minefield or under/over

it in a different plane.

- 55 -

5. The cost minimisation, the main

criterion of an algorithm for layouts, would be a

consequence of the interaction between the above

limitations specified together with any other constraints

placed on an individual application.

The following problem is "proposed"

which combines the above constraints and will eventually

lead to a practical optimisation algorithm for path

layouts:

1. Consider a man in a mine-field

with a fixed step-length.

2. He is only allowed to travel

along X or Y axis.

3. He has to traverse a given number

of paths joining any two nodes except that he has to

traverse some paths before others.

'4. Obviously, he is not allowed to

step into the mine-field which will explode 	He is,

however, allowed to take flying jumps or dig underground

holes to take him distances multiples of his step-length.

5. He has to keep to the shortest

possible path and satisfy the above conditions. He is to

avoid taking jumps or digging in relation to a

factor, "the optimisation factor", in preference to taking

slightly longer paths.

6. The above problem simulates any

layout problem whether it be printed circuit board layout

in 21 dimensions or a 3-dimensional pipe layout.

- 56 -

7.3. COST OPTIMISATION CRITERIA:

A large number of optimisation problems

are mathematically equivalent to finding shortest paths in

a graph. 	Consequently, shortest path algorithms have been

worked over more thoroughly than any other algorithm in

graph theory. Some of the proposed algorithms are better

than others, some are more suited for a particular structure

than others, and some are only minor variations of earlier

algorithms. For a good comparative study of various shortest

path algorithms, a survey paper by Dreyfus can be recommended.

There are different types of shortest path

problems. Most frequently encountered among these are the

following:

vertices.

vertices.

to all others.

1. Shortest path between two specified

2. Shortest paths between all pairs of

3. Shortest paths from a specified vertex

4. Shortest path between specified vertices

that passes through specified vertices.

5. The second, third and so on shortest

paths.

In the worst case, type 1 is identical

to type 3, because in the process of finding the shortest

path from a specified vertex to another specified vertex,

the shortest paths to all other vertices may have to be

determined.

- 57 -

The problem of finding the shortest path

from a specified vertex's' to another specified vertex t', can

be stated as follows:

A graph G of n vertices is described by

an n by n matrix D ='E dij], where

dij = length of the path from vertex i

to vertex j ; dij > 0,

dii = Q

dij = OC, if there is no path from i so j.

In_ general, dij y-i.- dj.i, and the triangle

inequality need not be satisfied, i.e. dij + djk may be less

than dik. 	In fact, if the triangle inequality is satisfied

for every i,j and k, the problem would be trivial because

the direct path (x,y) would be the shortest path from vertex x

to vertex y.

The distance of a directed path P is

defined as the sum of the lengths that make up P. The

problem is to find the shortest possible path and its length

from a starting vertex 'sito a terminal vertex 't'. 	Among

several algorithms that have been proposed for the shortest

path between a vertex pair, perhaps the most efficient one

is due to Dijkstra ilf-

Dijkstra's algorithm labels the vertices

of the given graph. At each stage in the algorithm, some

vertices have permanent labels and other temporary labels.

The algorithm begins by assigning a permanent label 0 to the
starting vertex s, and a temporary labelcC to the remaining

n-1 vertices. 	From then on, in each iteration, another

vertex gets a permanent label, according to the following

rules:

58 -

1. Every vertex j that is not yet

permanently labelled gets a new temporary label whose.

value is given by

Min [Old label of j, (Old label of i+dij)]

Where i is the latest vertex permanently

labelled, in the previous iteration, and dij is the direct

distance between vertices i and j. 	If i and j are not

joined by an edge, then dij

2. The smallest value among all the

temporary labels is found, and this becomes the permanent

label of the corresponding vertex. 	In case of 'a tie,

select either one for permanent labelling.

Steps 1 and 2 are repeated alternately

until the destination vertex t gets a permanent label.

The first vertex to get a permanent label is at a distance

zero from s. The second vertex to be permanently labelled,

out of the remaining n-1 vertices, is the vertex closest to

s. 	From the remaining n-2 vertices, the next one to be

permanently labelled is the second closest vertex to s. And

so on. The permanent label of each vertex is the shortest

distance of that vertex from s. This statement can be

proved by induction.

As an illustration of Dijkstra's procedure,

the distance from vertex B to G in the following diagram may

be found:

- 59 -

Let a vector of length 7 indicate the

temporary and permanent 1abe1$ of the vertices as the

solution is discovered. The permanent labels will be

shown enclosed in a square, and the most recently assigned

perman~nt label in the vector is indicated by a tick. The

labelling proceeds as follows:

ABC
v'

oC [Q] oC

D

7 [Q] 1 OC

7 [Q] ITJ oC

V'"

4 [Q] (jJ oc

4 [Q] [!J oc

m [QJ OJ 14

v
00 1m rn 14

GJ @J ill 12

00 [QJ OJ 12

L1J [Q] OJ 12

12

E F G

DC OC OC

oC DC oC

DC DC oC

5 4 OC

v
5 GiJ ex::

5 ill 11

5 rn 11

[!] 11

.../'
W II] 11

7

: Starting vertex
B is labelled O.

: All successors of B
get labelled.

: Smallest" label
becomes permanent

: Successors of C
get labelled

: Destination vertex
gets permanently
labelled •

...... -_._-._ -.... _--- .~-~.-- .. -----.~-.-.-~--~---- ... - ~- ---.---.-...-.-.---~ --¥'-. _. __ ._--... -----...... , -- .. - _ .. _---. - .. ---.... ---.-... "',..--...; .. -...-~ '-.-:"',... ... ~----. ".

Read D,n,s,t
LABEL+ eo
LA&EL Cs) + ~
VEC -

V ECT (5) ~- 1

, 4-

• No

YES

I LP.BEL(1)40'Z l

'NO

oft..-LABEL (1)
r O

YEs

P40

vECT6)=1 NO 	z< d~ tLABEL(i)

•res

yes

PRINT
LABEL(t)

- 60 -

The algorithm described does not

actually list the shortest path from the starting vertex

to the terminal vertex; it only gives the shortest distance.

The shortest path can be constructed by working backwards -

from the terminal vertex such that the path goes through

that predecessor whose label differs exactly by the length

of the connecting edge. (A tie indicates more than one

shortest paths). Alternatively, the shortest path can

be determined by keeping a record of the vertices from

which each vertex was labelled permanently.

In this algorithm, if labelling was

continued until every vertex got a permanent label, the

shortest paths from starting vertex s to all other vertices

Could be found. A binary vector VECT of order n could

be maintained to indicate whether a label was permanent or

temporary. A flowchart of the algorithm follows:

- 61 -

A short distance tree for the case under

consideration would take the following form:

Some conclusions may be drawn from the

above diagram, e.g. the shortest path from B to G was

7 units long and went through B-C-E-G. In this algorithm,

_as more vertices acquire permanent labels, the number of

additions and comparisons needed to modify the temporary

labels continues to decrease. 	In the case where every

vertex gets permanently labelled, n(n-l)/2 additions and

2n(n-1) comparisons are needed. 	Thus the computational

time is proportional to n2. The main disadvantage of the

algorithm is that if some of the distances are negative,

the algorithm will not work. Negative distances in a

network may represent costs and the positive ones profits.

The reason for the failure is that once a vertex has been

permanently labelled, its label cannot be altered. .Shortest

path algorithms have, however, been proposed that will solve

this problem, provided the sum of all dij around every

circuit is positive 	The computation time of the existing

algorithm that can handle negative dij is n3 and not n2.

X-

See 2eSe.('ex4.c.es SEC±~ert .

- 62 -

It was suggested by Nicholson5that

carrying the shortest path algorithm from both ends s and t

would improve the speed. Dreyfus, however, has shown that

the double-ended procedure would improve the efficiency

only in certain types of graphs.

- 63 -

7.3.1 BRANCH AND BOUND METHODS:

Branch-and-bound methods use the concepts

of trees, logic trees, and bounds to solve combinatorial

problems. The method is a powerful alternative to

exhaustive enumeration on a computer, since the time and

storage requirements for exhaustive enumeration increase

exponentially with the number of variables, and even large

and fast machines can only handle very small problems.

The name 'Branch and Bound' comes from the particular

approach used by Little, et.a117 in their attempt to solve

the famous operations research problem of the travelling

salesman.

Branch and Bound methods use "search

trees", each node of which represents a class of possible

solutions to the problem. The union of all the pending

nodes represents the class of all possible solutions. A

cost is computed for each pending node. The cost bounds

induce an ordering of desirability on the pending nodes,

which determines the branching in subsequent steps. The

algorithm stops when it is not possible to generate any new

node, or a feasible ,solution with associated cost less than

the lower bounds of the pending nodes has been found.

- 64 -

7.3.1.1 FORMAL DEFINITION OF THE BRANCH AND BOUND TECHNIQUEI

"Let S = [°"-jJ be the set of possible

solutions to a problem P of interest. Let ISI , the modulus

of S be a finite number and f be a function defined on the

elements o'-j of subsets of S. The solution to be found is

o•* E S which minimises the function f, and is feasible i.e.

satisfies a set of conditions [C3 ".

Suppose the problem has a property which.
(i-1)

allows for making a partition firof a subset Solm...p of S

(i) 	(i) 	(i)
Tr = C Solm...pl, Solm...p2,....,Solm...pq ,..] 1

q) 1 	(11.1)

where the subsets are defined by:

Solm...pk 4 0 	, 	K=1,2,...,q 	(11.2)

with the initial condition
1

So = S

A search tree may be built as follows.
(1)

Each node bears the name of a subset Solm...pk of solutions

of P. .The set of level i indices olm...pk indicates a path

from the node to which they belong to the root of the tree.

(

- 65 -

SEARCH TREE FOR PROBLEM P

(Each partition contains r subsets; p indicates pending nodes)
(4

In the above diagram, node Solar is at

level 4 and the path to the root of the tree is
(4) 	(3) 	(2) 	(1)
Solar, Soll, Sol, So

- 66 -

A closed node in the search is a node

that can no longer be partitioned, i.e. cannot have followers.

A pending node is one which is not closed. For example,

in the above figure, So(1), Sol(2) are closed and Sollr(4) is

pending.

Since each subset corresponding to each

node is partitioned into two or more non-empty subsets, the

modulus of the subsets is monotonically decreasing along a •

branch of the search tree, i.e.
(4) 	(3) 	(1)•

ISolar I K ISolli < ... K SO I =

,̀SI is finite, so we will eventually reach

a level at which one of the pending nodes Sd11...pq contains

ōnly one element of S, i.e., contains a solution to P. This

is a terminal node.

The problem is to get the minimal solution

pes* by enumerating as few nodes as possible. 	To do so, at

each node, over the subset assigned to the node, an upper and

lower bound for function f must be calculated.

The strategy consists of branching from

the pending node having the least lower bound. 	In other

words, one uses a property inherent in the nature of the

problem to make a partition of the most promising pending

node. For a terminal node, the upper and lower bounds

collapse to the value of f for the solution assigned to this

node. 	The search is ended when a node contains a feasible

solution, the value of which is less than the smallest value

of the lower bounds of the pending vertices.

I s I

- 67 -

The solution proposed to the "Man in

the minefield" problem is a more practical approach to the

"Branch and Bound" technique and the function evaluated at

every node is related to the length of the path and the

number of bends involved.

Several examples of branch and bound

methods exist in the literature to emphasise the fact that

branch and bound is not one method but a class of methods.

The classical Travelling Salesman problem may be taken as

an example:

"A travelling salesman, starting in one

city, wishes to visit each of n-1 cities once and only once

and return to the start. In what order should he visit the

cities to minimise the total distance travelled?"

'A feasible solution to the problem is a

Hamiltonian Cycle which contains every vertex. One of

these solutions was total enumeration by Berge.18 A more

sophisticated version of this solution has been put forward

by Eastman 49

A slightly more complex and a bit more

heurestic approach was proposed by Little et al.7 Many

combinatorial problems that arise in engineering or management

may be formulated either as integer programming problems; or

in the context of decision making as pseudo-Boolean problems.

Land and Doig have proposed a branch and bound solution for

the related optimisation problem. The program described by
21

Benayoun et.al. for mixed integer programming can handle

several thousand constraints and a few hundred discrete

variables. (It was written for a CDC 6600). 	Branch and

bound is a structural method containing the seeds of many

possible generalisations.

- 68 -

The travelling salesman problem

illustrates the compromises between the length of

computations at each node (sub-optimisation) and the number

of nodes of the search tree that have to be generated in

order to obtain an optimal solution. 	It is also important

to understand the structure of a particular problem before

designing a branch and bound scheme to solve it. 	If the

structure is poorly understood, this may lead to prohibitive

amount of data to be stored.

Heuristic methods differ from the branch

and bound algorithms in the sense that one is not sure of

having the optimal solution at the end of the search, only

a 'good' solution. 	Heuristic searches have been tried on

mathematical models as well as real life problems.

Sometimes this is the only way to obtain a solution.

Heuristic criteria are often used to accelerate the branch

and bound procedure. 	In the last few years, many applications

have been reported in the literature where branch and bound

techniques were applied successfully: synthesis of integrated

process design; computer aided synthesis of chemical plants;

ordering of recycle calculations; project scheduling; modular

design; generation oif NAND structures 22

- 69 -

7.3.1.2 DEPTH-FIRST SEARCH ON A GRAPH:

Depth-first search is a powerful

technique of systematically traversing the edges of a

given graph such that every edge is traversed exactly

once and each vertex is visited at least once.

Depth-first search or back-tracking on a graph was first

formalised and used by Hoperoft and Tarjan and was

subsequently studied by TarjanP To answer questions of

separability, planarity and the like, every edge and

every vertex would have to be examined at least once.

There are two ways of scanning or searching the edges

of a graph:

1) Once at vertex v, all edges incident

on v could be examined and then the adjacent vertex w

could be considered. At w, all edges incident on w

could be scanned. This method of considering each

vertex in turn is referred to as Breadth-first search.

2) An opposite approach is, instead of

scanning every edge incident on vertex v, move to an

adjacent vertex w, a vertex not visited before, as soon

as possible, leaving v with possibly unexplored edges for

the time being. In other words, a walk is traced through

the graph going on to a new vertex whenever possible.

This method of traversing the graph, called the Depth-first

search, has been found to be very useful in simplifying

graph-theoretic algorithms. 	.

- 70 -

7.3.1.3 PLANARITY TESTING:

The problem of determining whether or

not a given graph is planar, is an important one. The

planarity characterisations of Kuratowski,, Whitney or

MacLane, although theoretically elegant, are unsuitable

for testing by a computer. They are difficult to implement;

besides, if a graph is planar, these methods do not yield

a plane representation, which is often what is needed. It

has been shown, for example, that if Kuratowski's character-

isation is used to test planarity of an n-vertex graph

_ 	(nj5), the computation time is at least proportional to n6.

In recent years, many algorithms for

planarity testing have been proposed and programmed on

computers. Most of these methods employ the map construction

approach, which works as follows:

A planar subgraph is first selected and mapped on a plane.

Then gradually, the remaining edges are added on, such that

no crossings occur. 	If the reconstruction succeeds, the

graph is obviously planar, and a plane representation has been

achieved. The only difficult part of such an algorithm is

that in the early stages of adding edges, there may be choices

available, i.e. ambiguity in placement of edges. 	A wrong

choice made earlier may later prevent addition of an edge,

even if the graph is planar. Two mappings of graph represent

this problem as follows:

- 71 -

TWO-MAPPINGS OF A GRAPH.

The two mappings represent the problem

-in the map-construction method of planarity testing, and

different methods have been devised to solve it. One such

algorithm is due to Bruno, Steiglitz and Weinberg ?5
Probably the most efficient algorithm is the one suggested

by Hoperoft and Tarjan:° To solve the problem of ambiguity,

the following two options are available:

1) Continue adding paths to the basic planar

circuit till no path can be added. Then backtrack to

explore the alternative choices.

2) Continue to look at different paths but

not add them to the basic circuit, till it is found which face

a path must be placed in, or it is,ascertained that it

does not matter which face the path is placed in.

- 72 -

Some algorithms use approach 1, but

Hoperoft and Tarjan have used approach 2 and have shown

that their algorithm is more efficient because of it.

The basis of their algorithm is a list processing

technique.

- 73 -

7.3.2 PROPOSED ALGORITHM:

The following set of rules provides the

solution to the above defined "Man in the Mine-field".

problem:-

1. The man would travel, i.e. take

steps only in accordance with a fixed 2-co-ordinate axes,

i.e. for the example shown, he may only

go to B or C from any

given position A.

This would define a

grid of the size AB.

For simplicity, the grid may be assumed

to be square, 	i.e. AB = AC. This would be provide for

linearity in the problem, i.e.

Distance travelled along an axis

=(Number of steps) X(step length).

2. The man would consistently take

steps along the dominant axis from his start to the

destination point. The new dominant axis will be worked

out after every step.

This rule may be described graphically

as:
The path traced by the

man to get from A to

B will be A,Al,A2,A3,

A4,A5,A6,A7,B. Since

at A the dominant

direction of travel

would be along the

X-axis. This would

hold good until the

man got to A5. From AS to B, both X and Y directions have

equal dominance.

	 Pritz,J4k '6

Y

A B

- 74 -

A "preferred" direction has to be chosen which in this

case was taken to be the X-direction. Same condition

was applied at A6.

3. Within the structure of the rules

defined above, the man would have traced the shortest

"possible" path. Obviously the shortest path would be

the straight line joining A and B but the grid based

solution provides many other advantages as seen later.

If the offsets ABx and ABy are taken

into consideration:

By Pythagoras AB = (ABx2 + ABy2)

The actual path length, however, is

= ABx + ABy

Proportion of extra path length = (ABx + ABy)-(ABx2 + ABy2)

(ABx2 + ABy2)1/2

= ABx + ABy

(ABx2 + ABy2
)2

For minimisation of the extra path length,

ABx + ABy - i = o

(ABx2 + ABy2)2

i.e. ABx + ABy = (ABx + ABy)

i.e. Either ABx = 0'

or ABy = 0

This leads to the conclusion that the above

rule would actually lead to the shortest path when the path

to be traced is horizontal or vertical.

4. To travel along a given number of

paths,. 	--- 	the man may be made to traverse

the paths in the order in which they were indicated to him.

This may be graphically seen as follows:

Say the order in which

the start and end

points are indicated

is A,B and C,D. So

the man would have

to traverse AB first.

The solution is

suggested as in the

diagram.

5. The interaction of the paths has been

carefully avoided in the above example but in fact, the

first path is an 'obstacle' to the second path. Following

is a detailed analysis of the obstacle interaction and how

the solution would vary depending on the priority in which

they might be traversed.

First take the case where path AB is

traversed before the path CD. Traversing the path AB is no

	 problem and is a

I i
I A'] , 	.
+- - 	\ - -, - - L - ~. 	--1 --

	

- - ~- - ~ 	- t- - -
/ 	I 	I

straight forward

calculation of checking

the dominance and taking

the steps . Tile pro totem arises

when the man gets to

point C2 following the

dominant axis.

\l

0

	

IClo_i 	_

	

-

GS ,C9 I 	I
1 /C21

- 75 -

•

- 76 -

At this stage, y-axis is the dominant

axis and the direction of travel is upwards but the path

found for AB poses an obstacle.. So the man has to step

back to C2 after having attempted to travel in the

'correct' direction. 	Instead, he is forced to take a

step in the minor or' non-dominant direction.

When the man gets to C4 which is directly

below B, there is no more distance to travel in the

x-direction but he still cannot travel directly upwards

to get to point D. Two solutions can be taken into

consideration here:

1) The man takes a jump from C4 to C8

or digs a tunnel to get from C4 to C8. The points that

.lie on the path found for AB represent mines or walls.

Then he can travel straight up to D.

.2) The other alternative depends on

the "risk" or the "cost" of taking jumps or digging

tunnels. He may be allowed to travel on in the 'negative-

dominant' direction of C4 to C5 depending on this "risk

factor". From C5 he continues to strive to get to D in

the shortest distance possible. The number of steps that

he is allowed to take depends on the relative risk of taking

jumps to tracing a longer path. This risk factor defines

the "optimisation factor".*

• The solution suggested in I) above is

the "21D layer" solution and that in 2) is the "planar"

solution. The decision as to which solution is the "better"

of the two depends upon the optimisation factor.

coli- or MAKtn - A HOLE
*- OPTiMISP-CIONt PAC TOR... =

coSi OP TAKu*1C~ A ST EP

- 77 -

•

If the path CD was laid out before the

path AB, i.e. their priorities were reversed, the solution

might be different. Considering the original set of

co-ordinates again; the path along CD would be traced by

travelling along

the dominant direction

and taking steps along

the grid. As described

before, there will

again be two options

for tracing the path AB

i.e. one to take a long

- -) - B- 1-- 	route around D or the

other one to take a

bridge to maintain

the shortest path.

6. The above possibilities cater for both

printed circuit boards which is a 2h-D problem and for pipes

in 3-D. 	In both cases, "priorities" are attached to certain

paths.

In printed circuit boards, the time taken
for a signal to travel path can be critical. Also different

combinations of paths may create 'inductance' problems.

Hence it becomes necessary to lay some paths before others

and different solutions may be found as described.

-.78 -

However, in pipe layouts the priorities

may be assigned to routes for different reasons. For

example, in a chemical plant, the material cost of certain

pipes may be very high and so it may be decided to lay

them but before any of the others for cost optimisation

reasons.

The constraints imposed by the above two

cases are taken care of in the design of the proposed

algorithm. The actual implementation and the graphics

of the application of the proposed algorithm to the PCB

layout in 21-D is discussed in the next section,.

- 79 -

7.3.3. GRAPHICS:

The branch-and-bound detailed programming

technique had a lot in common with commercial plotter software.

In a controlling program for the pen of a plotter, fastest

speeds would be achieved if the pen travelled the shortest

possible paths between different points. The pen-up and

pen-down conditions would correspond to start and end points

of a path on the printed circuit boards. The major difference,

however, was in the handling of obstacles or existing paths

on a printed circuit board which would not exist on a plotter.

Existing lines on a plot obviously do not present any

obstruction to the drawing of new lines. The technique for

programming could, however, be divided up into two independent

approaches:

1. Fully-automatic approach: This could

be used in a batch processing environment on a large computer.

2. On-line Interactive approach: This

would be ideal in a mini computer graphics environment and the

operator could interact with the algorithm to produce

optimal solutions. 	The intuitive and pattern recognition

qualities of the operator would help the algorithm achieve

a better solution than a fully-automatic one.

Both the approaches are considered in detail

and the main similarities and differences are pointed out in

the following sections:

-80-

1. Fully-automatic layout technique:

To find a path from point A (X1,Yl) to

B (X2,Y2), the only assumption made is

Ce
that both A and Bion a grid. 	If the grid is equatly 	ce , in X o..d Yi

(et the grid size be GR. 	The following calculation may then

be carried out:

DOMX =
GR

DOMY = DY
GR

Now if DOMX DOMY, the condition would

be that the dominant,direction is along the X-axis.

A few properties of the above calculation, without the need

for pattern recognition, are:

a) The grid was assumed to be ¢qut-space& only

for convenience, in fact, the grid sizes along X and Y axes

could be different without affecting the processing as long

as the step length in each direction was equal to the grid

size in that direction. 	Thus normalised calculations could

be carried out independent of the grid.

DX

- 81 -

Having decided upon the direction of

dominance, a step equal to the grid size could be taken in

that direction from the start point. 	So the point found

would be C, whose'co-ordinates would be (X1+GR,Y1).

The check would have to be carried out to

see if the procedure had arrived at the end point B. This

condition would only be satisfied if both the offsets in

X and Y directions between B and C would be zero.

i.e. If 	Xl+GR = X2

and 	Yl = Y2 •

If this condition is not satisfied, in
other words, if the end of the path has not been reached, the

condition to check next is that the point reached does not lie

in an inaccessible area. This can be checked by using a search

routine to see if the new co-ordinates lie on an existing grid

node, i.e. one which already has a branch beginning or ending

on it. 	There is no possibility of crossing over an existing

path since the step length has already been fixed by the grid

size.

- 82 -

If the point does lie on an existing path,

the step is traced back to the original one, otherwise the

new point is stored away and path finding continued from

this as the old point. 	However, if the point does lie on an

existing path and has been traced back, the next step is to

swap the dominances of X and Y axes. 	Therefore, if the step

was initially taken in the X axis, and retracted, the new step

is taken along the Y-axis. 	If the same happens again, i.e.

the new point still lies on an existing path, the step is

traced back.

Depending upon the optimisation factor

already input, the path can go back towards its origin.

However, given an optimisation factor of 1, i.e. conducting

wire holes cost the same as a unit path length, the decision

made is to go through the plane onto the other side. In

pipe routing, this would be equivalent to a pipe bend and the

path could be traced along a different axis.

However, if the new point does not lie on an

already existing path, it can be stored as the next valid

point on the path and the search continued till the path from

start to end has been fully traced.

2. On Line Interactive approach:

The basic needs of the graphics system for

the inter-active approach would be almost identical to the

fully automatic approach. The main•advantage of this

technique is that an operator can "help" the algorithm along

to achieve, perhaps, a better solution than the fully

automatic approach.

- 83 -

The usefulness of this technique is that,

effectively, it provides for a continuously variable '

optimisation factor, i.e. the operator would always have

the choice whether to select a conducting wire hole or a

longer path. The path finding search would be carried out

in the same way as before except that when a new point lay

on an existing path, the operator would be able to choose

whether to retract on the already found path, i.e. take a

longer route or to go across to the other plane or layer.

It may then be concluded that fairly

simple graphics overlays are required to use the proposed

algorithm for path finding application to Printed Circuit

Board layouts.

- 84 -

8. PIPE ROUTING AND DESIGN

•8.1. COST OPTIMISATION IN PIPE LAYOUTS:

In all engineering design problems, the

final problem is always the cost evaluation. A good design

would have to be optimum with respect to development and

production costs. 	Some of the basic requirements of such

a cost analysis are considered here as applied to pipe

routing.

1. Pipe Length:

Different types of pipes cost different

sums of money. Pipe cost per unit length would be a single

largest contributory factor to the cost. The basic pipe cost

would then depend upon the following factors:

a) Material of the pipe.

b) Diameter of the pipe.

c) Wall thickness.

d) Stock Quantities.

e) Handling Costs.

Information about pipe lengths could be held

as cost per unit length of the pipe (say £ C/meter). This could be

held as a data file within a computer system. All pipe lengths

would be calculated in metres (PL metres) as

PL = 	J (X2-X1)2 + (Y2-Y1)2 + (Z2-Z1)2

Then the total cost of a pipe system would be

TC = 	Cl * PL1 + C2 * PL2 +
n

Cn PLn

vt= t

-85-

2. Machine Time:

Every pipe, once its length has been

calculated, will go through a standard machining process

which might consist of:

a) Retrieving pipe from store.

b) Pipe cleaning.

c) Measure the length and saw.

d) Pipe bending.

e) Welding.

f) Finishing processes.

A rough cost estimate is required for all

the above processes and cost may be assigned to:

Feed 	(£ CF/m)

Rotation 	(£ CR/degree)

Bending 	(£ CB/degree)

These costs would be worked out for every

pipe and added to give a total cost for machining time

(£ CM/pipe).

3. Heat Treatments:

This cost may be split into two parts:

a) If a pipe requires heat treatment before

installation, this must be assigned a cost, say £ CHP/m, and

taken into account. 	For most pipes, this cost would be zero.

b) A pipe may have to be heat bent because of

radii involved in connection with pipe diameter and wall

thickness. This cost may be proportional to the degree of

bending required or may in fact be independent of the actual

bending angle.

- 86 -

For this simplified analysis, we may assume that all heat

bends cost the same money, say £ CHB/number of bends or

if it is important to take into account the bending angle,

then consider the cost of heat treatment per degree,

£ CHT/degree and multiply by bending angle BA.

Total heat treatment cost may be calculated as:

£CH = £CHP * PL + £CHB * NB

+ £CHT * BA

This cost will be added to the total cost of

the designed pipe.

4. Cable Radii:

There may be costs directly proportional to

the cable radii depending on what type of cables are required.

One factor may be £ CC/m i.e. cost of cable as a function of

its diameter. The other cost may be dependent on the type

of insulation required, say £ CI/m. 	For a conduit length PL,

the cost due to different cable radii may be calculated as:

£CCR = ECC * PL + £Cī * PL

This again has to be added to the total cost

for minimum cost conduit to be designed.

5. Diameter/Bending Radii Relationships:

It is assumed that small diameter pipes can

be bent to almost any radius, whereas, there would be a limit

on how small a radius a large pipe can be bent to. Say the

pipe diameter is PD and the bending radius is BR, then the

ratio PD/BR may have an upper limit, UL.

So PD 	UL for satisfactory bends.
BR

- 87 -

There may be costs associated with this,

e.g. a pipe may have to be redesigned to satisfy the above

criterion.

So if PD = PBR 	(Pipe Bend Ratio),
BR

the cost £CPDB = £CPBR * PBR.

This cost would not be significant in

most pipes.

6. Flange Joints:

Various types of flanges are in use and each

has a different cost associated with it. 	These costs would

be held as data files within the computer system. 	The cost

of every flange, £CF multiplied by the number of flanges NF

would be added to the total cost of a pipe in the form of cost

of flange joints:

£CFJ = £CF * NF.

Similar criterion would hold for pipe

junctions. 	The total cost of the final pipe system would

be thus calculated and minimised.

88

8.2 M7\THFNATICS OF PIPE ROUTING

8.2.1 CALCULATION OF INTERSECTION CO-ORDINATES

This section shows ho-eJ the intersection co-

ordinates are calculated between two pipe lengths A and B.

PQ is perpendicular to A and B. Vectors a,

b are the vectors from the origin to A and B respectively

and p and ca are unit vectors in the direction of pipes AC

and BD. Since PQ is perpendicular to p and a

a + X2 - (b + u a) = x. 02 x a.) 	(1)

where A and p are constants of proportionality.

To eliminate p, take the dot product of (1)

with ca, x (2 x a). This leads to:

a.qx (2xa) - b.cax (2xg)

+ Ap. (a x p x q) = 0 	(2)

(a-b).gxpxca

p.9xpxr
	P = a + AE

(a - b) .p x q x p
and 	Ia = 	Q = b + pa

1 =

F

- 89 -

The point of intersection is taken to be P

or Q depending on the properties of the pipe lengths AC or

BD whether the pipe length AC or BD is regarded as the more

significant (or the one currently under study).

8.2.2 CALCULATION OF EXACT CENTRE LINE POINT

During the detailing stage of the program,

the 3-D co-ordinates of the digitised position of the

fitting F are calculated. However, this point may not lie

mathematically on the line defined to be the centre line of

the pipe AB. Hence the base of the normal N from the point

to the centre line needs to be calculated.

Since FN is perpendicular,

n = a + Xp 	 (1)

where N is the constant of proportionality.

Also, (f - n).E = 0 since. they are perpendicular.

f . 2 = a.p x ap
e

(f - a) . b

P2

+0

- 90 -

This leads to the normal as, from (1)

n = a +
P2

8.2.3 CALCULATION OF ROTATION AND INCLINATION ANGLES

It is necessary when detailing branches to

calculate the rotation (8) and inclination (0) angles. The

direction cosines of the pipe length AB are known as (1,m,n).

The end co-ordinates of the branch are known as P and the

position of the branch on the pipe centreline is known as

Q.

AB = (l,m,n)

Sine 1,m,n are the direction cosines,

12 + m2 + n2 = 1

Let IABI = a

QP = (h,i,j) as the direction cosines.

Lot IQPI = k

2

- 91 -

AB 	QI' 	lh ± im + in Then cos e: = 	- IABI(QPI 	ak

and 	0 = 90 - a. gives the inclination angle.

The angle 0 is found by determining the

direction cosines of the normals to the planes AQS and AQP.

AQS is by definition the vertical plane through AB.

Hence the normal to AQS implies,

AB x QS (0,0,1)

and the direction cosines are (0,0,1).

The normal to AQP gives

cos 0 = QP x AQ

This physically means that- the zero rotation..

angle is along the z-axis.

8.2.4 CALCULATION OF THE ROTATION IATRIX

The problem is to define the rotation matrix

necessary to re-orientate the pipe such that the first pipe

length (OA) is parallel to the x axis and the next length

(AP) is in the xy plane. Referring to the diagram below,

this means that the direction cosines of OA, PN and a line

perpendicular to the plane OPN, relative to the original

axes need to be known.

U

- 92 --

The co-ordinates of A(x1,y1,zi) and

P(x2,y2,z2) are given. If i, j, k are unit vectors along

x, y, z respectively,

OA = x1.i + vl j + z1k = r

Also (r (= ixi + y2 + zi = r

. The direction cosines of OA are

x l ~f 1 z 1
r' r' r

Since PN is perpendicular to ON,

PN . ON = 0 by definition of scalar product.

Also ON = X.OA by constant of proportionality.

S . (Xr) = 0

or 	(x1X - x2) x1 + (yl~~ - y2) yl + (z1A - z2) z1 = 0

A
x1x2 -I y1y2 + z1z2

Let xlx2 + y1y2 + z1z2 = t2

Then A =
t2
2
r

Thus the direction cosines of PN are

(xl?' - x2) 2+(y1A --y2) 2+(z1X - z2) 2

'1 	y2

J(xix - x2) 2+(y1A -- y) 2 + (z1X - z2) 2
 zl - z2

2 /(xl?' - x2)
2

(yl ?,-y2)2 •I-(z1' z2)

or

xlt2 - x2r
2 	

ylt2 -- y2r 	zlt2 - z2r`

Ir 2 (r2s2 - t4) ' J r2 (r2 s2 -- tn) 	.1r2 	(r
2 s2 - t4)

The direction cosines of the normal to plane

OPN, plane through OA and OP, are given by

OP x OA = 0 by definition of cross product.

(xli + y,j + zlk) x (x2i + y2-j + z2k) = 0
or

xly24 x j+ xlz2 i x k+ ylx2 j x i + ylz2 j x k

+ zlx2 k x i+ zly2 k x j= 0

(y1z2 - zly2) i + (z1x2 - z2x1) 7 + (x1y2 - x2y1)1` = 0

If f = ylz2 • zly2

g = zlx2 - z2xl

h = xly2 -- x2yl

Then the direction cosines of the normal are:

f 	
1
^g 	 h

f 2 + g2 + h2 ' ,/f2 + g2 + hJ ' 'f2 + g2 + h
2

. Hence the elements of the required rotation matrix are:
xl 	yl 	zl
r 	 r 	 r

x
1
t2 - x2r2 	ylt2 - ~~2r2 	zlt2 - z2r2

ff /r2 (r2s - t4) ~r (r2sl
- t4) 	\'r.2 (r2s2 - t4)

f 	g 	h

Jf 2 + g2 + h2 f + q2 + h2
	2

+ g2 + h2

where r,s,t, f-,q and h are fully known.

- 94 -

8.2 .5 CALCULATION OF THE OUTER WALL OF A PIPE

Once the rotation and inclination angles

(0,0) have been determined either by selection or calculation,

it is necessary to calculate the co-ordinates of the mark (U)

which must be made on the outside of the pipe. It is

sufficient to find this centreline point of the feature to

be placed on the outside of the pipe.

The outside radius of the pipe (r) is known

as well as the direction cosines of the pipe length PQ, the
G'•

co-ordinates4a point P(x1,y1,z1) on the pipe, and the co-

ordinates of the feature on the centreline of the pipe

Q(x2,y2,x2) .

Let 1, m, n be the direction cosines of PQ.

for the plane PQS Lo pass through (xtro,zt) to make it

verLi.cal, the direction ratios of the normal to this plane

are

n, o, - 1. 	Let b2 = 12 + n2.
n 	1

Then the direction cosines are - b, o,

Also OT - OQ = TQ

= (x3 - x2)1 + (y3 - y2)1 + (z3 - z2

The direction cosines of TQ are

(x3 - x2) 	(y3 - y7) 	(z3 - z2)

r 	r 	r

where

r2 = (x3 - x2)
2
 + (y3 - y2) 2 + (z3 - z7) 2

Now the angle between the line TQ and the

plane PQS is the complement of the angle between the line

and the normal to the plane,

By dot product,

cos 0= 	r 	• b - 	r

> 3 - x2 	n 	z3
-

z2 	1

To determine T (x3,y3,z3) uniquely, another

condition is required. This is the condition that TO is

perpendicular to PQ or

TQ . PQ = 0 taking the scalar product.

1(x3 - x2) + m(y3- y2) + n(z3 - z2) = 0 	(3)

From (1) , (2) and (3) ,

T is fully known as,

āb (lm sind + an cos) x3 = x2 i

y3 = y2 -
rb sind

z3 = z2 + ab (nm sinO - al cos0)

where 	a = 12 + m2 + n-

)k

(1)

(2)

or

Now the direction cosines of TU are

x4 - 	 Yn 	Y3 	z4
	L3

ITUI 	ITUI 	ITUI

but

I TU I = /(x4 — x3) 2 + (Y4 - y3)2 + (z4 - z3) 2

= r tan0

and TU is parallel to PQ, therefore their direction cosines

are equal.

Hence

x4 - x3

r tan0 	ā
74 - Y3 _ m
r tanC4 	a

z 4
	 3 _ n

r tan0 — a

Co-ordinates of U are known as

x =
r1 tan 0

a 3

_ r m tan 0
Y4 a 1- Y3

7

4
= r n tan 0 + 	z,

a

- 97 -

9. CONCLUSIONS:

Computer applications to general

layout problems constituted the main flow of this thesis.

An overwhelmingly large number of engineering layout

problems, which actually exist in 3-dimensions, can be

meaningfully translated into 2-dimensional or layer

problems. 	The two major applications considered were:

1. Data preparation of Precedence

type Management Networks.

2. Path finding in Printed Circuit

Board Layouts.

Specialised and original algorithms

-were 4ttvetored to overcome two main problems of optimisation.
The first one was a computer orientated algorithm to minimise

the number of branch cross-overs in a given network.

List-processing 	techniques were employed

to achieve planar solutions. 	This led to the basis of

optimisation in Management Networks. 	Similar problems

existed in the field of Printed Circuit Board Layouts.

The more useful solution to the optimisation

problem in Printed Circuit Boards could only be achieved if

the minimisation of cross-overs was combined with a shortest

path finding algorithm. This provided for the definition

of the Man in the Minefield problem, the solution of which

led to the overall optimisation. Various Branch and Bound

techniques, cud. - ___ Planarity testing algorithms were

considered but it was concluded that the proposed algorithms

were more suited to the practical problems in handy .rLck -

for 	implementation on a digital computer.

•

The system was developed as a real-time

system, so the operator-machine interaction carried a high

priority at all levels; from design through to implementation

stages. Thorough Mathematical analysis of the pipe-routing

and the linked design problem was carried out and it is

recommended that this be installed as a satellite of a major

3-Dimensional Graphics System.

FUTURE WORK

This section describes the recommended

research which would act as a continuation in the following

three areas:

(1) Management Network Analysis

The algorithm described works well in

an inter-active environment but is limited in its scope by

the size of the networks that can be handled. This algo-

rithm can be automated fully by simulating the existing

techniques of data extraction and manipulation. First of

all, an overall analysis can be done and a mai.rix containing

the picture data can be set up. Then areas in the network

which contain the largest number of crossovers can be

concentrated upon.

This new technique should be implemented

on the London University's CDC computers because of their

larger storage capacity. The matrix properties can be

analysed further and a new algorithm can be devised to work

on this matrix to achieve fast and automatic optimisation

in large networks. The means of transferring data from the

PDP to the CDC is available using magnetic tape. The new

algorithm for achieving minimum crossover situation in the

matrix solution is expected to be an upper triangular matrix

with unity along the diagonal of the matrix.

The data interchange between the con-

nectivity diagram and the matrix representation can be

easily achieved and it is expected that the matrix algo-

rithm will provide a fast and efficient solution to the

problem of minimising c.rossovers in large management net-
works.

(2) Printed Circuit Board Layouts

The routing algorithm described in this

thesis had a disadvantage arising out of the lack of pre-

paration of the input data before submitting it to the

algorithm. It would be possible to carry out an initial

analysis of the start and end points of the different paths

to be found together with the priorities assigned to them.

Core tables could be formed including such data.

The core table would be a 3-element list

indicating all the paths to be found, Every element of this

list could then be examined individually to check whether

or not a planar solution existed for a given set. Different

paths could then be mapped leading to an optimum path lay-

out. Clash or crossover situations could be easily analysed

using the core table and an overall function (i.e. cost)

could be minimised.

Further work needs to be done on the

final layout of the paths as found by the algorithm. A

post-processor should be developed which would examine every

path in turn and check for self-loops of the type occurring

in the figure on page 77. The post-processing algorithm

should be able to remove any anomalies caused by the

dominance-driven nature of the existing algorithm. There

is further scope here for designing an efficient new algo-

rithm,which would calculate the planar and non-planar costs

for any given path and compare them to obtain an optimal

solution.

(3) General 3-Dimensional Routing

The future work required for the routing

algorithm for 2-dimensions also applies to that in 3-

dimensional routing. Many more design constraints can be

combined together with routing in 3-dimensional analysis.

During pipe routing, it should be possible to find multiple

paths because of the 3-dimensional nature of the problem.

Each solution can then be examined further by applying the

design criteria. For example, if the pipe contains. a

fluid, then wall friction analysis should be done to

calculate the overall pressure drop in a pipe. If the

pipe is an electrical conduit, then the voltage drop along

the conduit should be calculated. Therefore, a path found

using the routing algorithm should only be accepted if it

also meets the pre-specified design criteria.

The way in which this can be achieved

could be as follows. Submit the co-ordinates of the path
to be found to the routing algorithm, which also takes care
of the existing obstacles. Then, if the path found does

not satisfy the design criteria, it should itself be flagged

as a temporary obstacle and re-submitted to the path finding

algorithm. This process should be repeated until a satis-

factory path is found, which also meets the design criteria.

Before the submission of the next set of co-ordinates to

the path finding algorithm, the paths flagged as temporary

obstacles should be removed. This method would combine an

optimisation based upon design and routing.

There is further scope for developing

an algorithm which would carry out grouping analysis on

different paths in 3-dimensions. Again the technique of
re-defining certain paths as temporary obstacles could be
used to group together certain types of pipes e.g. electrical

conduits could be grouped separately from fuel pipes.

The above mentioned future work is an

expansion of the algorithms described in this thesis.

The reader should be able to think of other applications

where these algorithms could be usefully employed in

minimising other functions.

EDIT
FIND

CURVE FIT

'PLOT

ARCHIVE

HATCH

SYMBOLS: 	ARCS
CIRCLES

FILLETS
DIMENSION

ALPHANUMERICS

RECTANGLES

ELLIPSES

DOUBLE LINE

DISPLAY

'WINDOW

i,TORK

SPACE

- 101 -

APPENDIX 'A'

EXAMPLE OF CENTRAL GRAPHICS SYSTEM:

'POINT 	CONTINUOUS

CONVENTION:

-► AFFECTED BY

AFFECTS

- (02.-

APPENDIX B

This appendix contains definitive specification

of the two algorithms:

(a) Activity Network Algorithm.
(b) Routing Algorithm.

(a) ACTIVITY NETWORK ALOGORITIIM

1. The network is reduced to a simple connectivity diagram.

The start and end points of an event are redefined from
(xlyl) and (x2,y2) to 1 and 2 respectively.

2. Lists containing start and end points are extracted in

an ascending order.

3. The lists are used to examine the number of existing
cross overs.

4. The number of cross overs is examined as every end

point exhanges position with all the others sequentially.

5. Whenever a lower number of cross overs is achieved,

the end point is fixed.

6. In the list representation, this leads to a minimum

cross over situation.

7. The final lists are transferred back to the activity

network by moving the activities, using the connectivity

diagram.

(b) ROUTING ALGORITHM

1. To find a path from a start point to an end point, it

is assumed that both the points lie on a grid.

2. The dominant direction along the path is calculated.

3. A step equal to the grid size is taken from the start

point along the dominant direction.

4. A check is made to see if the new point is the end
point.

-103 -

5. If the end point is reached, then the procedure stops.

Otherwise, it is checked that the new point does not lie in

a forbidden area.

6. If the point is not forbidden, thera the path finding

continues till the end.

7. If the point does lie in a forbidden area, then the

step is traced back to the previous point. A step is then

taken along the non-dominant direction.

8. The already specified checks are made. If this step

is unsuccessful, then the path is made to go through to the

other plane and path finding continued on the other side,

when cost factor is unity.*

9. If, however, the step was successful, then path find-

ing is continued normally till the end point is reached.

*For a cost factor of n, the algorithm attempts n steps
before going to the other plane.

REFERENCES

1. British Standard 4335: 1972
"Project Network Techniques"

.British Standards Institution

2. YI, C.

"The Use of Computer Aided Design Techniques in

Dynamic Graphical Simulation".

Ph.D. Thesis, University -of London (1977)

3. HAMLYN, A.

"The Application of C.A.D. Techniques to Building

Engineering Design".

Ph.D. Thesis, University of London (1974)

4. EDNEY, F.C.

"An Application of Computer Aided Design Techniques
to Mechanical Engineering".

Ph.D. Thesis, University of London (1977)

5. CHRISTOFIDES, N.

"An Algorithm for the Chromatic Number of a Graph".

Imperial College Management Science Section

Report No. 69/15 (1969)

6. MODER, J.J. and PHILLIPS, C.R.

"Project Management with CPM and PERT".

Van Nostrand Reinhold Company, New York (1970)

7. BATTERSBY, A.

"Network Analysis for Planning and Scheduling".

MacMillan & Co., (1970)

8. DEO, N.

"Graph Theory with Applications to Engineering and

Computer Science".

PRENTICE-HALL, INC. Englewood Cliffs, N.J.

PP 90-93 (1974)

9. TARJAN, R.

"An Efficient Planarity Algorithm".

Computer Science Department, Report No. CS-244-71.

Stanford University (1971)

10. HOPCROFT, J.E. and TARJAN, R.

"Planarity Testing in Vlog V Steps".

Journal of the Association for Computing Machinery

Vol.21, No.4. PP 549-568. (1974)

11. DANTZIG, G.B.

"All Shortest Routes in a Graph".

Proceedings of.the International Symposium on Graph

Theory, Rome, Italy. 	Published by Dunod Editeur,

Paris (1966)

12. FORD, R and FULKERSON, D.R.

"Flow in Networks".

Princeton University Press. (1962)

13. MOORE, E.F.

"The Shortest Path through a Maze".

Proc. Int. Symp. on Theory of Switching. (1957)

14. DIJKSTRA, E.W.

"A Note on Two Problems in Connection with Graphs".

Numerische Math, Voll. PP 269-271. (1959)

15. NICHOLSON, T.A.J.

"Finding the Shortest Route Between Two Points in a

Network".

The Computer Journal, Vo1.9. PP 275-288. (1966)

16. DREYFUS, S.E.

"An Appraisal of Some Shortest Path Algorithms".

J. Operations Research, Vol.17 No.3 PP 395-412 (1969)

17. LITTLE, J.D.C. et.al.

"An Algorithm for the Travelling Salesman Problem".

Operations Research. Vol.11 No.6 PP 972-989 (1963)

18. BERGE, C.

"The Theory of Graphs and its Applications".

London: Methuen (1962)

19. EASTMAN, W.L.

"A Solution to the Travelling Salesman Problem".

American Summer Meeting Econometrics Soc. (1958)

20. LAND, A.H. and DOIG, A.

"Automatic Method for Solving Discrete Programming

Problems".

Econometrics. Vol 28 PP 497 (1960)

21. BEN/YOUN) J. H. et. at.

~. Opzra.tu 	lyse . 1 S No. S pp 40l-4-3$ ' , 969 .

22. DAVIDSON, E.S.

"An Algorithm for NAND Decomposition Under Network

Constraints".

IEEE Trans. Comput. Vo1.12 PP 1098 (1969).

23, WHITNEY, H.

"Planar Graphs".

Fund. Math. Vo1.21 PP 73-84 (1933)

24. MaCLANE, S.

"A Combinational Condition for Planar Graphs".

Fund. Math. Vol.28 PP 22-32 (1937)

25. BRUNO, J., STEIGLITZ, K. and WEINBERG, L.

"A New Planarity Test Based on 3 - Connectivity".

IEEE Trans. on Circuit Theory. Vol.CT-17 May (1970)

BIBLIOGRAPHY

The books and papers in the following bibliography

are wholly or partly related to the subjects covered in

this thesis.

1. BESANT, C.B. et al

"CADMAC - A Fully Interactive Computer Aided Design

System".

Computer Aided Design, Vol.4, No.2 (1972)

2. HENLEY, E.J. and WILLIAMS, R.A.

"Graph Theory in Modern Engineering".

Academic Press (1973)

3. STEIGLITZ, K.

"An Introduction to Discrete Systems"

John Wiley & Sons, Inc. (1974)

4. KNUTH, D.E.

"The Art of Computer Programming; Vol.1 -

Fundamental Algorithms".

Addison-Wesley (1968)

5. DEO, N.

"Graph Theory with Applications to Engineering

and Computer Science".

Prentice-Hall (1974)

6. MASSEY, B.S.

"Mechanics of Fluids".

Van Nostrand (1970)

7. 	BESANT, C.B. et al

"The Use of Computer Aided Design Techniques in

Printed Circuit Layouts".

CAD Vol.5 (1973)

8. 	The Concise Oxford Dictionary.

