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ABSTRACT 

Various branches of Engineering applications 

involve the problem of deciding the physical positioning of 

components and their interconnections which could be classed 

under the general title of 'Layout' problems. The layout 

problems in Precedence type Management Networks, Printed 

Circuit Boards and Pipe routing are considered here followed 

by consideration of the physical contraints to be°observed 

in their solution. 	Finally, together with existing algorithms, 

new and more optimum algorithms are discussed and these are 

presented as interactive graphics systems. 
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TO ERR IS HUMAN - 

But to make a real mess, 

It takes a Computer. 

- Anonymous. 
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1. INTRODUCTION 

As industry takes a further step in the 

direction of automatic design and production, an inter-

active graphics computer system provides a very versatile 

and powerful system for problem solving throughout the 

spectrum of applications in design, draughting, production • 

and quality assurance. This research was primarily aimed 

at the more classical problem of pipe and conduit routing 

in ships. The principles involved in pipe routing, 

considered here in the light of their application to 

ships, buildings and chemical plants, share the layout 

problem with printed circuit boards and management networks. 

Precedence type management networks lend 

themselves relatively easily to simulation in 2 dimensions 

aiding to good pre-planning of a project and an optimum 

flow of information at all levels during the life of the 

project. Management networks were simulated consistent 

with the British Standard 4335 (1972)1  and the result 

provided with a technique for fast data input, analysis, 

interactive modifications and data extraction in a variable 

format for further analysis. An algorithm was developed 

for minimising cross overs in a given network. This was 

used in management networks for clarity and understanding 

and a further application was discovered in optimising cost 

of printed circuit boards by minimising the number of 

conducting wire holes in printed circuit boards. 

Various graph theoretical and branch-and-

bound methods were considered for the automatic layouts 

of printed circuit boards but it was found that no signi-

ficant cost optimisation could be carried out using the 

existing algorithms. The automatic and interactive methods 
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finally implemented for the printed circuit board layouts 

were based on an algorithm which was specially designed 

for this particular application. 

The afore mentioned algorithm when extended 

to 3-dimensional layouts led to the solution of the general 

pipe routing problem. Various constraints on the system 

were considered together with preset priorities for different 

pipes and conduits. Ike  at riff w. _wkich Auas-  used- carried 
out the cost optimisation on the basis of shortest path 

analysis combined with minimisation of bends. 

It is clear that the layout problems involved 

in management networks, printed circuit boards and pipe 

routing can be solved using the same general algorithms 

with special optimisation techniques built - in and these are 

presented as independent graphics systems. 
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2. SYSTEM HARDWARE 

The graphics station in use consisted of 

a PDP 11/45 operating under DOS ( Disk Operating System ), 

a Tectronix-611 graphics display and a Kennedy magtape 

unit together with a Decwriter and a Logabax line printer. 

The main peripheral was a cursor and grid based digitising 

table. The control program used to bring the application 

programs into core for execution was operated from a "menu" 

area on the digitising table. 

"Menu" based systems have become quite popular 

in computer applications to graphics in various fields. Menus 

can be displayed on a screen and then a light pen can be used 

for selecting the operation to be performed. The menu in 

use here was based,on sensing the position of the 'bug' or 

the cursor on the digitising table and deciphering the 

co-ordinates in terms of an application program for carrying 

out a specific function. The digitising table provided a 

good means of conversion of picture data into digital (X,Y) 

co-ordinates. It is thought that the solid state tablet 

offers more in terms, of ease of use and more consistent 

accuracy as compared with the digitising table. 

Work is continuing at Imperial College on 

automatic conversion of mechanical engineering drawing data 

into digital (X,Y) data. 

Three dimensional data input on the digitising 

table is carried out using separate perspective planes, XY, 

YZ and XZ. C Yi in his thesis has covered various aspects 

of this subject. 
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3. GRAPHICS SOFTWARE 

An attempt is made here to describe various 

facets of the graphics software available as concisely as 

possible. 

The philosophy behind the graphics in 2-D 

was that every point would carry (X,Y) co-ordinates together 

with a flagging code indicating the state of the 'beam' or 

the 'pen' in generating the vector XY. 	The same principle 

was extended to 3-D graphics with the vector under 

consideration being XYS. 

Both systems, i.e. 2-D and 3-D, were based on 

an overlay system where a background program was used to 

select the required application program and control being 

returned to the background program once the function of 

the application program had been completed. 	Hence, the 

background program operated in an interminable loop, always 

resident in core, only to relinquish control when an 

application program was requested. 

Though the 'beam' would only have 'on' or 

'off' conditions, i.e. the pen could only be up or down, but 

more than two flagging codes were employed. So the flagging 

codes were not only used to indicate the state of the beam 

but also to identify different types of data. The basic 

applications on the pure graphics could be listed as follows: 

3.1. 	2-D GRAPHICS: 

3.1.1 	Initial Set Up Routine: 

This routine was used to set up grid parameters, 

input and output scales, alphanumerics size etc. 

3.1.2 	Background Digitising Overlay: 

This module was set up to read tabel co-ordinates 

and check for the pen up or down condition. This also provided 

the controlled movement of the cursor and was useful 
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in selecting the particular application programs to be 

executed. 

3.1.3. Symbol Generating Routine: 

This routine was used to generate any 

standard symbols such as circles, rectangles and arcs 

etc. 

3.1.4. Windowing Routine: 

This routine provided the magnification 

facility to be able to concentrate on any fraction of 

the screen and magnifying it to fill the whole screen. 

3.1.5. Alphanumeric Generation Routine: 

This overlay was used to convert alpha- 

-numeric characters into their equivalent screen vectors 

thus making it possible to afford storage of alphanumeric 

data in a more simple and realistic form. 

3.1.6. Various Editing Facilities: 

This suite of programs formed the backbone 

of interaction of the computer and the operator. Facilities 

included deletion of lines, symbols or alphanumerics 

and provided for any correction to input data on-line. 

3.1.7. Find or Locate routines: 

This suite of 3 programs was used to 

aid the operator in determining the 'exact' positions 

of already input points, lines or intersections of lines 

under program control. 

3.1.8. File Manipulation Routines: 

These routines were used for storing picture 

data on disk, copying such files, initialising them and 

displaying already stored files. 

3.2. 3 - D Graphics: 

The 3-D graphics system provides for all 

the facilities mentioned under the 2-D system together 

with the following additional operational routines: 
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3.2.1. Simulated Joy-stick Program: 

This program provided the facility for 

viewing a 3-D perspective picture from any angle in 

3-dimensions and also provided the facility of positive 

or negative 'zoom' effect. 

3.2.2. Solids of Revolution Generator: 

This module made it possible to be able 

to generate a solid of revolution of any profile round 

any axis. 

3.2.3. Perspective Transformation Routine: 

This program was used for conversion of 

3-D picture data into perspective planes i.e. XY, YZ 

and XZ planes,and vice-versa. 

The overall systems described by the above 

mentioned module's provided a very versatile arrangement 

for 2-D and 3-D systems. The application programs could 

be added to either of the systems. The programs that 

took care of management networks and of printed circuit 

boards were added to the 2-D system, whereas the pipe 

routing and the design system was added on to the 3-D 

system. This was'made particularly easy by the modular 

structure of the available systems. 

Further details of the 2-D graphics system 

exist in the works of A. Hamlyn and R. C. Edney whereas 

the 3-D system is covered by C. Yi 
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4. NATURE OF LAYOUT PROBLEMS 

The layout problem is that of deciding 

the positioning of components, whether electronic, 

mechanical or chemical, and their interconnections. 

A combination of factors cause the problem. Firstly 

the increasing complexity of equipment means that 

there are many components to be interconnected. As an 

example, in a powerful computer, there can be 4o,000 

logic gates and upto 25o,000 interconnections. An 

average tower block may contain 3,000 electrical 

conduits or a ship may have a few thousand service 

routes. Secondly, the factors involved in transmission 

require that the routes be as small as possible. These 

include the related flow problem as well as the cost 

optimisation problem. 

For these reasons and others given later 

it has become necessary to employ automatic procedures 

to assist in the design of equipment layout. Each of 

the various aspects of the layout problem may be regarded 

as a constraint to an overall optimisation problem. 

However, it is not always possible to find a useful 

mathematical formulation describing the problem. If one 

is found, it usually takes the form of a function to be 

minimised. 

For instance, in placing n integrated 

circuit modules on a plug-in board, the total inter -  

- connecting conductor length L may be expressed as : 

L = ' i=1 ij =1 C.. 
dP 	 p(i) dp (j ) 



where 
Cij  = Cji  = no. of connections 

between modules i and j. 
and 

dp ( . dp  (j = distance between 
modules i and j. 

One way to minimise this expression would• 
be to evaluate it for every possible module placement. 
There are n: ways of placing n modules on a board; for 
n=24, there are 24! = 612 x 1021  arrangements. Clearly, 
it is out of the question to attempt complete enumeration 
even with the most powerful computers available. 

It might be possible to eliminate many 
of the combinations immediately. For instance, two 
modules with a large wmberof connections might always 
be placed adjacently if it could be shown initially 
that any other positioning would contribute a greater 
amount to the total length than any possible reduction 
caused by the consequent repositioning of other modules. 
However, even large reductions in the nurnb4r of combinations 
would still leave'an enormousnuw,berto be investigated. 

Some aspects of the layout problem cannot 
be formulated in any meaningful way at all - e.g. the 
positioning of a conductor on a printed circuit board. 
Although a conductor path could be described by a sequence 
of adjacent 'cells' by dividing the board into a grid, 
such a description would yield an astronomicalnumber of 
combinations for, say, specifying thenwotrof possible 
postionings for 50 different conductors. Same applies 
to pipes or conduits in 3-dimensional space. Most 
combinations would of course involve crossings and could 
be rejected on that account, but there would still remain 
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an enormous number of feasible solutions, some better than 

others. 

Thus, although layout problems could be 

conceived as combinatorial ones, such an approach would 

be useless in finding solutions. It should, therefore, 

be appreciated that in discussing layout problems, 

remarks concerning feasibility or true optimisation 

are always made in the context of 'practicable' methods. • 

It is always possible to find a placement by enumerating 

all possibilities. 

The problem is not therefore one of 

finding solutions but rather 'ways' of finding solutions. 

Solutions are usually defined as optimum to a given 

procedure and are not true minimum answers. What is 

required is a 'good' answer i.e. one that is satisfactory 

and comes arbitrarily close to a true optimum. This 

will normally require a compromise between computation 

time and the 'quality' of the solution. Different 

algorithms will yield different efficiencies in this 

respect. 

It will be seen that layout problems are not 

of the type in which formulae and mathematical results 

are established by researchers which can be used in turn 

as starting points by new researchers in the field -  

'Developments' are concerned with new and more efficient 

algorithms. Occasionally, these may supersede earlier 

procedures but in many instances have varying advantages 

and disadvantages according to the particular problem and 

constraints applicable in its solution. 
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5. GRAPH THEORY APPLICATIONS. 

Having established in the previous 

chapters that layout problems occur in almost all 

branches of engineering applications and that there 

is a.lot in common in Management Network graphics, 

Printed Circuit Board layouts and Pipe routing, a 

common basis for analysis is not only desirable, it 

becomes necessary. To deal with any problems of 

interconnected components, Graph Theory provides 

many answers in the form of computer oriented 

algorithms. 

The concepts required are quite simple 

and have a characteristic 'yes - no' flavour and for 

the most part require no complicated arithmetical 

operations. The manipulations involved are ideally 

suited to'the use of digital computers and very large 

and complex systems can be investigated efficiently. 

It is often quite simple to build a model for a 

system in terms of graphs. Presently, the techniques 

are used to study networks of telephones, satellites, 

computers, roads, pipe lines, production facilities 

and many other components of technology. The view 

usually taken is 'macroscopic' rather than detailed. 

A 'Graph' is defined as a collection 

of points, called nodes, some of which may be inter-

-connected by lines, called branches. So, a graph can 

be defined as two sets, a set N of nodes and a set B 

of branches. Thus the mathematical notation of graph G 

is 

G = ( N,B ) 

The set B contains certain unordered 



pairs of nodes: those pairs connected by branches. 

For example, 

~F 
This graph has 4 nodes and 3 branches. 

The mathematical notation for this graph is then 

G = (N,B) 

where N = (1,2,3,4) 

and B = ((1,2), (2,3), (1,4)) 

Although a graph will usually be 

represented by a picture, or by some arrays of numbers 

- in a computer, this mathematical notation illustrates 

some important points. For example, it would be 

correct to say ' 

N = (3,2,1,4) 

i.e. the sets of nodes and branches 

are not in any order. Also, the pair of nodes representing 

any branch is un-ordered, so B could be written as 

B = ((3,2), (4,1), (1,2)) 

i.e. there is no particular direction 

associated with a branch, and the term undirected graph 

is sometimes used to emphasize this. In some applications, 

of course, directed graphs with ordered branches would 

have to be considered. 

There are two special situations that might 

arise. First, a node may be connected to itself. This 

corresponds to a branch of the form (a,a), which connects 

node a with itself. 	Such a branch is called a self-loop. 

Second, there may be more than one branch connecting a 

particular pair of nodes. 
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This corresponds to a set B like the 

following: 

B = (.•... (a,b) ,  

Such branches are called multiple- 

branches. 

Nothing has been said about where the nodes 

are to be placed when the graph is drawn or what shape 

lines are used to indicate branches. These decisions 

are determined by system constraints but do not affect 

the identity of the graph being represented. The graph 

shown previously could be re-drawn as:  

If it is possible to draw a graph on a 

plane so that no branches cross, the graph is called 

"planar". 	It often clarifies the picture of a graph if 

it is drawn so as to minimise the number of branch 

crossings. 	This has widespread implications in management 

networks and printed circuit boards. 

On the other hand, it might be a constraint 

to preserve the relative position of the nodes, e.g. steel 

works in a chemical plant, then the branches would represent 

relative distances. 

Thus a graph is thought of abstractly as 

being a set of nodes and a set of branches, and the 

picture is drawn so that it is easy to understand. More 

often than not, the nodes are placed on a regular grid 

and this offers a great deal of advantages as will be 

seen later. 
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As an example of a graph, the collection 

of natural gas from offshore drilling platforms, and 

the transmission of the gas through pipelines to an. 

onshore point, may be considered. Such systems may 

cost millions of pounds and sophisticated techniques have 

been developed for designing them efficiently. 

Sometimes, merely drawing the right graph 

helps a great deal towards solving a problem. The 

problem of collecting garbage in a city provides another 

good example of the application of graph theory. The 

cartographic colouring of maps represents another graph 

theory problem and is usually grouped with "chromatic" 

problems. Nicos Christofides5has done a great deal of 

work in this field. The main application of graph 

theory that interests the layout engineer, however, is 

that of constructing the shortest path connecting two nodes 

in a graph. 

The next problem would be to consider 

"directed" graphs and each branch would have. a direction 

associated with it. This feature would make it possible 

to send something from node i to node j but not in the 

reverse direction. This would obviously find application 

in pipe lines where the direction of flow would be pre-

defined. 

The particular algorithms that have been 

used to solve management network diagrams, printed circuit 

board and pipe layouts are described later and proposed 

algorithms are compared with the graph theoretical 

algorithms. 
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5. 1. ACTIVITY NETWORKS: 

One of the most popular and successful 

applications of networks in operations research is in the 

planning and scheduling of large complicated projects. The 

two best known names in this connection are CPM (Critical 

path methodf and PERT (Program evaluation and review 

technique)' A project is divided into many well-defined 

and non-overlapping individual jobs, called activities. 

Due to technical restrictions, some jobs must be finished 

before others can be started such as putting foundations 

before erecting walls etc. 	In addition to this precedence 

relationship among the activities, each activity also 

requires a certain time, called the duration of the activity. 

Given the list of activities in a project, the list of 

immediate pre-requisites (i.e. predecessors) for each 

activity, and the duration, a weighted graph can be drawn 

to depict the project, as follows: 

Each edge represents an activity, and its 

weight represents the duration of the activity. The 

vertices represent beginnings and endings of activities and 

are called events in the project. An activity (i, j) 

cannot be started before all activities leading to the event 

i have been completed. Each event in the project isa well-

defined vertex. Such a weighted, connected graph representing 

activities in a project is called an activity network. 

Taking an extremely simple example, 

suppose that a project consists- = of six activities, A,B,C,D,E 

and F, with the restriction that A must precede C and D;B 

and D must precede E; and C must precede F. The durations for 

the activities may be taken as 5, 7, 6, 4, 15 and 12 days 

respectively. The activity network of this project is as 

follows: 
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It can be observed that an activity 

network must be acyclic; otherwise, an impossible 

situation would arise in which no activity in the directed 

circuit could be initiated. 
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6. MANAGEMENT NETWORK ANALYSIS 

6.1. GRAPHICS: 

In this section, a computer aided data 

preparation system for Precedence type Management 

Networks is presented containing all the facilities for 

up-dating the Network in its active phase. The network 

data for further project analysis could be transferred 

to a main frame computer on punch cards, magtape or 

paper tape. 

The PM (Project Management) system 

contained modules to perform the following operations 

inter-actively: 

	

6.1.1. 	A'module to create rectangles with the 

option of placing them on a grid. The rectangles would 

identify with "activities". 

	

6.1.2. 	A program to input alphanumeric data at 

pre-defined locations in a selected rectangle. This 

data consisted of activity codes, descriptions of the 

activity in terms 'of resources required and any special 

treatments required, together with the duration of the 

activity. 

	

6.1.3. 	A program to input connecting arrows 

automatically by selecting any two rectangles. The 

arrows would represent "events" connecting various 

activities. 

	

6.1.4. 	A module was required to specify the 

"delay" times on events in order to monitor the flow 

through the network. 
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6.1.5. 	A facility was provided to attain even 

distribution of activities horizontally or vertically 

for the sake of clarity. 	In fact, if the activities 

were placed on a pre-defined grid under program control, 

then this facility was practically redundant. 

6.1.6. 	A program to magnify i.e. "window" any 

specific part of the network was included. In a large 

network, this would be very useful in concentrating only 

on the required part of the network. 

6.1.7. 	Data extraction routines were included for 

further project analysis. This data was directly written 

to the system disk and then could be transferred to any 

device, e.g. papertape, magtape or punch cards. 

- 6.1.8. 	The different editors provided, for 

correction of mistakes in the initial inputting of data 

or for modification of the network during its active phase, 

included: 

	

6.1.8.1. 	An arrow editor to remove any events 

unnecessary to the network or for inputting new events. 

	

6.1.8.2. 	A rectangle editor for activities in a 

network in case any of the activities were redundant. 

	

6.1.8.3. 	An•alphanumerics editor for texts and 

codes which could be removed or new ones added in. 

	

6.1.8.4. 	An editor to move any form of data, 

whether graphic or alphanumeric, in two dimensions. 

The application programs were added to an 

existing modular graphics system which allowed the input 

and editing of drawings within the computer system. 
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Management Systems are usually designed 

to assist Management in their control of planning, 

progress and cost information of production; throughout 

all stages of construction. Various systems exist but 

the one described here would contribute to data preparation 

and extraction from precedence type of activity networks. 

Further analysis on the network is usually carried out on 

a main-frame computer but data preparation is a long and 

tedious process. The PM system is capable of very fast 

and accurate data preparation for such an analysis. It 

can generate data for a medium size network in a matter 

of minutes as compared with manual techniques presently 

in use which can take up to a few weeks for the data 

- preparation and checking and so it represents a vast 

saving in the cost of such procedures. 

One of the core points of the real time 

system is its capability to provide man-machine 

interaction. The user is given maximum possible 

freedom and is not asked to follow a long set of standard 

procedures. Mistakes are quickly spotted and corrected 

by the editors provided. 

The,  use of the mini computer requires that 

a minimum of data is brought into core and this prompted 

the need to process any network file point by point. All 

activities of a network are stored in standard size 

rectangles, and the size is consistent right through any 

network. The master rectangle is treated as a picture 

component or a "macro" and the facility is provided to add 

a master rectangle wherever required. A standard activity 

may contain information of the type indicated below: 



CODE. TREATMENT. 

DESCRIPTION AND TEXT. 

RESOURCES. DURATION. 

DESCRIPTION OF AN ACTIVITY 

WINDOW 
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Various activities are now generated by 

first placing the rectangles wherever required and then 

alphanumerics can be input by just digitising a point 

in any rectangle to identify it and typing the codes 

and.descriptions etc. as required. 

AN EXAMPLE OF A NETWORK CREATED USING 'PM' SYSTEM  

           

           

           

           

           

           

           

           

           

           

           

           

           

    

i 	 

      

          

            

The logical connections representing 

events can be input next by selecting any pair of 

activities and any of the following types of connections: 

1) Finish to start arrow 

2) Finish to finish arrow 

3) Start to start arrow 

After carrying out the above operations, 

a complete network is now ready. It is possible to 

magnify any part of the network to fill up the whole 

screen by placing a window of variable size around the area 

of interest. 

SCREEN FORMAT FOR MAGNIFICATION FACILITY. 



FIRST REFERENCE POINT 

NEW REFERENCE POINT 
_J 

INITIAL PICTURE 

.INTERMEDIATE PICTURE 
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MAGNIFIED PICTURE 

Although it is not always necessary, 

facility exists for placing activities on a grid, the 

size of which is pre-specified. 	It is possible to 

drag any data in two-dimensional space and any 

individual activities or combinations of activities 

may be moved to new locations if so desired. 

After any of these operations, the 

geometrical shapes of the arrows can get distorted, 

though the logical connections do not change. These 

however, for aesthetic reasons and to clarify the picture, 

can be reformed. 



	~ C I 
FINAL PICTURE 
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The old geometrical arrows are deleted and new arrows 

are added to the picture file to maintain an accurate 

graphical description of the network. 

If any of the data in the network file 

needs to be changed, various editors for activities, 

events and text have been designed. So it is possible 

to add as well as subtract activities or parts of 

- activities. 

INITIAL PICTURE 

INTE RMEDIATE ICTURE 

A 	
B 1 

FINAL PICTURE  

IA I 	 Aj B 

AN EXAMPLE OF 'ACTIVITY'  EDITOR 
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AN EXAMPLE OF TEXT EDITOR 

INITIAL PICTURE 

FINAL PICTURE 

To hold large amounts of text related 

to a code, a library is stored on the disk. The code 

can be selected from the screen or just typed in from 

the keyboard and related text of upto 256 alphanumeric 

characters is displayed on the screen. 

TEXT DISPLAYED  

[A 1 	 B  

SELECT CODE A 

 

  

To indicate the continuity of events, in 

case, two arrows cross-over each other, loops are drawn 

to indicate which one of them continues. 

 

INITIAL PICTURE 

2 

  

FINAL PICTURE 

2 

4 ~ ~5 

 

4 

   

1 3 1 

 

3 
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It is sometimes required to add 

delay times on certain events and these are placed • 

at the arrow ends for correct representation. 

General data extraction routine 

works on the final network and transfers logical 

. precedence information onto any selected device 

i.e. paper punch, cards or magtape. 

An algorithm has been developed for 

minimising the number of cross-overs in a project 

network and is described later in Section 6.3. 

The network data, once extracted, can be transferred 

to a mainframe computer and used for Critical Path 

applications or for generating progress reports for 

management control. 

6.2 ALGORITHMS FOR MANAGEMENT NETWORK ANALYSIS: 

A description of the general graphics 

principles involved in the management network analysis 

system is given here. The application programs were 

described in Section 6.1. under the general title of 

graphics for networks. The various mathematical 

concepts were developed on the basis of the ease from 

the user point of view and interaction was considered 

to be the leading criterion. 



-24- 

To generate a rectangle, a horizontal 

rectangle is completely and sufficiently defined by:  

specifying one of its diagonals. Given the points 

(Xl, Yl) and (X2, Y2) as below define 

the rectangle ABCD where the co-ordinates of B are 

given by (Xl, Y2) and those of D as (X2, Yl). 

To locate a given point (X, Y) on 

-a non-uniform grid of size DX, DY, it is important to 

appreciate that X, Y must lie within the grid box as 

defined below by.A, B, C, D. 

(X-DX,Y+DY) B 

 

C (X+DX,Y+DY) 

X 
(X,Y) 

(X-DX,Y-DY) A D (X+DX,Y-DY) 

Then the offsets are calculated from the nearest points 

on the grid and hence the cursor is controlled to move 

on a grid. 
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To place different alphanumeric data 

within a given activity, it would be desirable to set 

up some rules that would be followed. This was 

achieved by taking proportions of the sides of the 

rectangle and then calculating the start and end points 

of alphanumeric data which in this case would always 

be horizontal. The taking of proportions implies 

normalised sides i.e. the size of the rectangle becomes 

immaterial and data retrieving eventually becomes 

relatively simple e.g. if the standard activity is 

taken to contain five codes as follows: 

2 

 

3 
A 	B 

1 

C 

E 
4 

Then side 12 would be sub-divided into 

5 sections and the codes A and B would start at the 

beginning and in the middle of the rectangle respectively. 

The best means of locating an existing 

rectangle in a network was considered to be defining 

one point anywhere inside it and then carrying out the 

following analysis:- 

(X1,Y1) A 

Point Inside 

X (X,Y) 

C (x2,Y2 ) 

D 

 



B 

Z_# A - - - -  DX-_ -- 

D 

C 

I DY 

0 	 X 
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The condition to extract the correct 

values of (X1, Yl) and (X2, Y2), the necessary and 

sufficient condition would be that 

X1 < X < X2 - Q1 
. and Yl G Y ` Y2 - 0  

The criterion is the intersection sub-set 

- of Ol and 0 above. 

This method of locating rectangles 

provided 	- a means of inputting connecting events 

where the start and finish activities could be located 

and a logical event connection put in automatically. 

To allow for general translation, scaling 

and rotation of picture components or macros, the following 

principles were employed: 

The translation of 

vector P.B to new 

position as vector 

CD may be carried 

out by the following 

calculation: 

XC=XA+DX 

YC=YA+DY 

and so on for all the 

co-ordinates within 

the picture component. 



c) Scaling: 

D 

B 

Y 

0 
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b) Rotation: 

The rotation of a vector from 

AB to AD by an angle 9 is 

XD=XB*COS9 + YB* SING 

YD=YB*COSe - XB* SING 

if the origin is taken to be 

at A. 

The magnification of a vector 

AB to AD, considering the 

origin to be at A, would be 

given by: 
N711 	 XD=XB*SCALE 

A 
0 	 X 	YD=YB*SCALE 

Hence to perform a general translation 

by DX, DY followed by a rotation clockwise through angle 

9 and magnification by a scaling factor M for any 

co-ordinate vector (X,Y) in two-dimensional space would 

be carried out as follows: 

(X,Y) 
(') YN=(Y+DY)M COSe - (X+DX)M SING 

	 This general calculation formed the 

basis of all picture component manipulations. 

The magnification or the windowing 

routine was based on taking proportions of the window 

with respect to the screen size. 

XN=(X+DX)M COS9 + (Y+DY)M SIN9 



WINDOW 

YW
; t ' 	 

SCREEN 

~---- XS 

YS 

i.e. XS = YS M 
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The window 

co-ordinates were 

so constrained 

that XW and 

corresponding YW 

held the same 

ratio as the screen 

dimensions 

XW YW 

and the constant of proportionality thus was the 

magnification factor. • The vector magnification was then 

carried out as described before taking offsets from the 

origin and then multiplying the offset by the scale. 

The co-ordinate manipulations described 

led to the basic graphics package for the management 

networks. One of the leading requirements from the system 

was minimisation of cross-overs of different events, i.e. 

a network which would approach as near as possible to a 

"planar" network. This would provide for graphic clarity 

as well as better visualisation of the different events. 

Various algorithms for the same were considered and are 

described in the next section. 

6.3 MINIMISATION OF CROSS OVERS IN A NETWORK: 

The problem of embedding a graph in a 

plane arises in several fields. 	In engineering, 

discovering whether a given circuit may be laid out in 

a plane is of interest in integrated circuit design. 

In chemistry, determining isomorphism of chemical 

structures may be made much easier if the structures are 

planar. 
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The earliest characterization of planar graphs was 

given by Kuratowsk , who showed that every non-planar 

graph contains a subgraph which upon removal of a 

branch is planar. However, searching for such subgraphs 

may require an amount of time at least proportional to 

n6  where n is the total number of vertices in the graph. 

It is clear that more efficient procedures are needed to 

analyse large graphs. 

Using list-processing and various 

programming tricks, the search time may be shown to be 

proportional to n3. Tarjan
9  has programmed an algorithm 

giving a time bound of n2. Hoperoft and Tarjan have 

proposed, what is considered to be probably the fastest, 

an algorithm which carried out planarity testing in 

n log n steps. . 

The proposed algorithm, in this thesis was, 

developed, not only to check for planarity, but rather 

to find a solution as near to planar as possible. This 
would obviously be the more practical approach. Almost 

all the algorithms published so far indicate how to test 

for planarity but ,the proposed algorithm would provide 

an optimum near-planar solution if it was found that 

the graph could not.be embedded in a plane. 

The basic concepts originated while 

considering management networks. A few examples here 

clarify some of the ideas: 
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If this network in 6.3.1. 

was re-drawn as 

shown in fig.6.3.2., 

obviously the picture 

would be much clearer. 

One fact that becomes 

clear is that the 

vertical offset is 

zero for the planar 

solution i.e. zero 

cross over. 

Now' considering the situation as follows, 

it becomes obvious 

that the problems 

get more complicated 

but it is still 

possible to find a 

planar solution 

which would be as 

in fig 6.3.4. 

A few constraints 

of the system 

deserve a mention 
Fig. 6.3.4. 	here: 

      

      

      

      

      

      

fE 

    

    

Fig. 6.3.3. 

	t1F 1 

	 D 

	 B  

1) The activities are allowed to exchange places with 

each other only vertically. They probably fall on a 

time-scale horizontally. 

2) The logical connections indicating the precedence 

of the activities have to be maintained. 



- 31 - 

3) The graphical shapes of the connecting events have to 

be redrawn every time for the sake of clarity. 

Next, consider a situation where it 

will' not be possible to reach a planar solution. 

9 x-ovzRS 	Fl 6.6.3.5.  
The near-optimum solution of fig 6.3.5 

could be as follows: 
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The problem of finding a solution of 

near-minimum crossovers in a network has wider possibilities. 

Most printed circuit boards use both sides of the board 

and,use copper plated conducting wire holes for transmission 

of signals. Whereas, the signal paths on either side 

can be etched rather inexpensively, the wire holes 

require special procedures for drilling and plating. So 

a method of minimising the conducting wire holes in a 

P.C.B. layout is desirable within the system of constraints 

imposed by shortest path analysis and signal transmission 

times. This also finds applications in the layout of 

pipes and conduits where the bends require special 

treatment and are obviously much more expensive than the 

straight lengths. 

From cost optimisation angle, cost is 

usually a function of path length and the number of cross- 

overs or bends that exist in a layout. 	In this section, 

the minimisation of cross-overs only is considered with 

the direct application to management networks where the 

path lengths hold no physical meaning. Later the 

combination of optimisation of shortest path lengths and 

minimum cross-overs will be considered as applied to 

P.C.B.s and pipe routing. 

6.3.1 PLANARITY SOLUTION: 

The integrated circuit designers have 

endeavoured to answer the following question: Is it 

possible to find procedures which would enable a computer 

to solve efficiently path connection problems inherent 

logical drawing, wiring diagramming, and optimal route 

finding? 
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The following types of problems need 

solving; 

1) To find a path between two points 

so that it crosses the least number of existing paths. 

2) To find a path between two points 

so that it avoids as much as possible preset obstacles 

such as edges. 

3) To find a path between two points 

so that the path is optimal with respect to several 

properties; for example, a path which is not only one 

of those which cross the fewest number of existing paths, 

but, among these, is also one of the shortest. 

Various methods for solving the problem 

_mentioned in 1) are described in this section. 

In processing information consisting of 

patterns, rather 'than numbers or symbols, on a digital 

computer, tve. probtern - be solved is-•  how a computer, 
without sight and hearing, can be made to deal 

competently with situations which appear to require 

co-ordination, insight and perhaps intuition. 



- 34 - 

6.3.1.1 ALGORITHMS: 

Most of the layout problems require 

algorithms; given a network, one may ask if the network has 

a certain property, and an algorithm is to provide the 

answer. 	Since graphs are widely used as models of real 

phenomena, it is important to discover efficient algorithms 

for answering theoretical questions. Hoperoft and Tarjanto  

have presented an algorithm to determine whether a network 

can be embedded, without any crossing edges, in a plane. 

The planarity algorithm may be viewed as an iterative version 

of a recursive method originally proposed by Auslander & Porter 

and correctly formulated by Goldstein. The algorithm uses 

..depth-first search to order the calculations and thereby 

achieve efficiency. Depth first search or back-tracking 

has been widely used for finding solutions to problems in 

combinatorial theory and artificial intelligence. Recently, 

this type of search has been used for solving several 

problems in graph theory, including finding biconnected 

components, finding triconnected components, finding strongly 

connected components, finding dominators and determining 

whether a directed graph is reducible. 

Embedding a network in a plane has several 

applications. 	The design of integrated circuits requires 

knowing when a circuit may be embedded in a plane. The 

importance of the problem is suggested by the number of 

published planarity algorithms. The earliest characterisation 

of planar networks was given by Kuratowski.8 
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6.3.2 PROPOSED ALGORITHM: 

A heuristic approach is taken for 

finding an optimum solution to the minimum cross-over 

problem. The algorithm is based on a simple list 

processing technique and the result in mind is; given a 

management network layout, how to modify the network, 

within a given set of logical constraints, so as to 

achieve minimum cross-overs. This has wider applications 

in the field of layout of printed circuit boards. The 

algorithm attempts to reduce the degree of non-planarity 

in a given network. 

Most layouts, it is expected, would be 

defined in a grid based system, though that in no way is 

-a hinderance to the working of the algorithm. The network 

is reduced to a simple connectivity diagram from which the 

relevant data for, various lists is acquired. The diagram 

is iteratively re-drawn as the end nodes exchange positions 

in 2-D space until a planar or an optimal non-planar 

solution is found. 

6.3.2.1 THE PROBLEM: 

The nature of the problems involved in 

the minimisation of cross overs is directly dependent on 

the need for optimisation. The need exists because the 

minimisation would aid clarity in a network. 	It would also 

help a smoother flow of the network. It provides for the 

ease in management control of a given project and would aid 

a more accurate estimation of the resources required for 

the project. 
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The minimisation problem is further 

defined by the fact that the connected activities are 

constrained to move only vertically because they probably 

lie on a time scale horizontally, e.g. they might comply 

with'a bar chart. The other constraint is that logical 

connections, e.g. finish-to-finish or finish-to-start etc., 

must be maintained. 	Correct graphical representation is 

required. Hence the main requirement for a minimisation 

algorithm would be to exchange positions of activities 

vertically in order to achieve a near-optimum solution. 

The minimisation problem may.then be 

defined as describing a means of exchanging any given 

activities vertically maintaining the connections and 

-the graphics so as to achieve minimum cross overs,given a 

general set of activities connected by a given set of 

events. 

6.3.2.2 THE SOLUTION: 

Assuming that most of the layout would 

be done on a grid, though that in no way is a constraint, 

it is possible to draw a simple connectivity diagram 

indicating the activities as nodes and the events as 

branches. If the start and end nodes of a branch are numbered 

logically in descending order, 

then Fig.A network is fully 

represented by .a list diagram 

as in Fig.B. 

From a connection 

representation of the type 

shown in Fig.B, a list 

processor can be designed 

to obtain a minimum cross over situation. 

Fe(' Sr-e-cq-,:ca-Ct:a-v‘. of (6.i 	rOt.w.- / ~ee 	six ~~ 



I 
1 

2 

 

J 
1 
2 

  

3 	0 3 
Fig.B 

J JPT 
1 2 

2 • 1 2 

3 • 0 3 

Fig.0 
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The constraint put on the system is that Array I 

would represent the fixed components in space whereas 

Array J, where the connections end will be the one which 

could be swapped around for optimisation. 

The data used in lists is extracted in 

the form of a list J of end nodes, a list JPT of pointers 

to J indicating the number of branches terminating at any 

particular node in J and a list I of pointers to the start 

nodes which end at any given J. Hence it is concluded 

that list J will have as many components as there are end 

points, list JPT will have the same number of entries as 

list J, each entry indicating the number of branches and 

list I will have the same number of entries as list J since 

every end point corresponds to a start point. 

As an example, consider 

the connectivity diagram 

of Fig.B. The following 

list can then be extracted: 

The arrows in Fig.C. 

represent the logical 

linkage of the lists. 

List J indicates that 

there are 3 end nodes 

in the diagram. 

List JPT indicates that 2 branches end at node 1, 1 branch 

ends at node 2 and no branches come to node 3. Furthermore, 

list I indicates that the two branches that end at node 1 

start at nodes 1 and 2 and that the branch that ends at 

node 2 started at node 3 and there is no entry for end node 3 

since, as the list JPT indicates, there is no branch connected 

to that node. 
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In fact, the structure of the lists is almost as if the 

connectivity diagram was reversed. The main part of 

the list processor is that everytime an end node is 

swapped in list J, corresponding adjustments are made 

to the lists JPT and I. 

A cross-over in this case is defined 

as a four-bounded condition as explained with reference 

to Fig.D. below: 

Two counters, K and L are 

maintained along the lists 

I and J corresponding to a 

connectivity diagram. It 

is also ensured that K and 

L never equal each other, 

then a cross over is defined 

by the condition that if 

I(K), i.e. starting node I 
corresponding to counter K, 

is greater than I(L) and 

If J (K) is less than 3(L), then J(L) has to be greater than 

or equal to I(K) and that J(K) has to be lesser than or 

equal to I(L), fora cross-over to occur. 

The basic technique used is that every 

element of list J is swapped "sequentially" with every 

other element of list J, the corresponding modifications 

made to JPT and I, and unless the new number of 

intersections is less than before the swap, the lists 

are swapped back to the original status. So if there 

are n components in the list J, this involves n(n-1) number 

of computations but since the data structure is very simple 
and the check for intersections is a single statement, the 

algorithm provides very fast computation. 
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Considering some of the algorithms 

in the literature, which take, just for planarity testing, 

computations proportional to n2 and higher powers of n, 

the proposed algorithm is much faster. As stated before, 

the real advantage lies in leaving a minimal cross-over 

situation if the planarity test failed. The algorithm 

works even faster in reality because searching is terminated 

as soon as a planar graph is found. 	It is expected that 

for most networks, to reach planarity, the average number 

of computations required would be of the order of 

2 
The solution as found using the proposed 

algorithm for the connections depicted in Fig.D. was as 

shown in Fig.E. below: 

The main points to note 

about the solution are: 

a) the encircled nodes 

represent the end points 

which have moved from 

their previous position. 

b) the minisation may be 

seen as decreasing the 

vertical offset of any 

1 . 	,s• 
2 . 	~. 0 
3 
	3 
4 	4 
5 - 	5 

6• 
	

0 

7• 	 
Fig.E. 

given branch between its starting and end nodes. 

c) the solution for this particular case was planar, i.e. 

The final number of intersections = 0. 

d) the planar solution was found in 20 steps of 'swapping' 

instead of n(n-1), i.e. 42 steps for a 7 node network. 
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The speed of the algorithm cannot be 

increased by reducing the processing, i.e. for example, 

an alternative approach to the algorithm might have been 

to proceed to a succeeding node everytime a positive swap 

was done to obtain a new minimwn. This could reduce the 

number of computations far below the stated value of n(n-1). 

Enough special cases could be thought up where this approach 

would not lead to the required optimisation. 

In its application, the algorithm would 

be applied to "column-pairs" of activity networks to make 

as thorough a search for minimum cross overs as possible. 

The search could be carried out by traversing the network 

from left to right or from right to left or both. This 

process does imply its own disadvantages. 

During processing, the algorithm would 

proceed along a minimisation curve as illustrated in Fig.A. 

Main disadvantage of the sequential 

processing as proposed is that, taking the Fig.A. as an 

example, during processing, the algorithm might arrive at 

a false minimum such as A, try another iteration represented 

by An and give up. Obviously, the solution is not an optimum 

one because the real solution is at stage B. 
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The requirement is that A should be translated into 

Br, i.e. over the top of the curve. This could be 

easily done by making the system interactive since the 

human eye is a very good judge of patterns. The other 

automatic alternative is to take the nodes in pairs 

and swap as node-pairs to try to achieve a minimum. 

Once the algorithm reaches on or below point B, it will 

definitely get to B which in this case is the real 

optimum solution. 

Great advantage could be taken of an 

interactive system in such an optimisation algorithm. 

Drastic changes can be carried out to the layout very 

quickly interactively and the new data thus could be 

J fed to the algorithm for retrial and a better solution. 

The main advantage of the algorithm is that planar 

solution would terminate any further trial and greatly 

aid the speed of execution of the algorithm. 

6.3.2.3 THE GRAPHICS: 

The graphics application to the interactive 

graphics system 'PM' could be broken down into two parts: 

1) Conversion of activity precedency 

diagram into linked lists consisting of start and end points 

of connecting events. 

The next step woixld be to carry out the 

minimisation based on these lists. 



2) The conversion of the optimised 

lists has to be reflected into the diagram. So the 

activities, as represented by nodes in the lists, are 

translated vertically into their new positions with 

cross overs minimised. 

1) Conversion of precedence network into linked lists: 

For a network of activities and events, 

the principles involved can be illustrated by taking the 

following diagram as an example: 

An imaginary window may be placed around 

two concurrent columns of inter connected activities. 

Considering the horizontal flow of the network, the window 

could travel towards the right going down through various 

sets of columns of activities. To extract the three 

lists as already described, consider a diagram of the following 

type within the imaginary window: . 
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The data structure in which the 

activities and events were stored on the disk file within 

the computer system were in order in which they were 

generated. Hence the order was not compatible with the 

ordering of the lists. 	So the first thing to do was 

to extract the start and end co-ordinates of all arrows 

as two variable size arrays, in the order in which they 

were generated. 

Start points 	End points  

Xl, Yl 	 X3, Y3 

X2, Y2 	 Xl, Yl 

X3, Y3 	 X2, Y2 

The suffices reflect the order in which 

-the lists would be required. Hence, a "sort" was carried 

out on the arrays thus formed of start and end points, 

independently for'both the arrays. The algorithm used 

for this sort may be defined as follows: 

* Scan the array and extract the 

largest element of the array. 

* Store this quantity away. 	Initialise 

this element to the smallest possible number. 

* Scan the array in a loop according 

to the steps defined above. 

However, there is a special case caused 

by two machine input start points being in exactly the 

same position. The same applies to end points as well. 
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This is best illustrated by the following 

diagram: 

The y co-ordinate for both the arrows is 

exactly the same and the algorithm fails when it carries 

out a "greater than" comparison. The technique used to 

get over this problem was to use "perturbation". This 

process may be described as going through the array, 

before. submitting it to "sort", looking for any elements 

which may be exactly equal and adding a small quantity 

like 10
-10 

 mmto it. This would ensure that no two elements 

would ever be equāl during array processing for ordering. 

Also, the graphics displays would not be affected because 

such a small quantity as 10-1  mm would be impossible to 

detect. Hence perturbation technique was of.  great use and 

combined with ordered lists formed the basis of minimisation 

algorithm. 

SO, after the perturbation first and then 

the ordering, the following lists could be extracted: 



End points  

Xl, Yl Qi 

X2, Y2 2O 

X3, Y3 30 

Start points  

O1 X1, Yl 

02 X2, Y2 

3O X3, Y3 
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The start and end co-ordinate lists now 

could, be submitted directly to the minimisation algorithm: 

J 	JPT 	IPT 

1 	a- 1 	¢2 

	

' 1 	so - 3 2 

t 	t 
End points No of arrows Start points  

The final output from the proposed 

algorithm would be: 

IPT 

	 1 	0 

	

_2 	0 

	

3 	pl 

1 

	

Final 	Initial 
End points No of arrows Start points Start points  

So, the final lists achieved with the 

pointers leading from the end points to the start points 

lead to what is a network with minimum cross-overs. As 

far as the graphics display is concerned, this is done 

"backwards" i.e. in fact, the start points remain fixed 

and the end points are swapped around in "Move Rectangles" 

mode. 

The arrow that was connected to the 

start point marked by suffix 2, i.e. X2, Y2 would have its 

end point moved to the end point related to the start point 

marked by suffix 1. The final result would look like: 

3 0-  

JPT 

. 1 1 

2 z"1 

3 1 
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Final 	Initial 
Start points 	End points 	End points  

xi, Yl 	P X'1, Y'l 	(X3, Y3) 

0 	X2, Y2 	P- X'2, Y'2 	(Xl, Yl) 

0 	X3, Y3 	 X'3, Y'3 	(X2, Y2) 

The translation in graphics terms is 

easily carried out by calculating offsets in the X and Y 

directions: 

e.g. 	DX = X3 - X1' 

DY = Y3 - Y1' 

This would lead to the correct placement of the activity as it 

"should" be connected to the preceding activity marked by 

Xl, Yl. 

The final graphics display could be easily 

extracted now from the final lists. 	Hence the solution is: 
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However, there are special cases to 

be considered. The main problem arises in splitting of 

the arrows vertically as shown below diagrammatically: 

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                          

                    

                    

                    

                    

           

FIG. B. 

     

                          

Fig A. indicates the correct positioning of events where 

no "false" crossover is caused whereas in Fig B. two 

crossovers are caused by the reverse position. Herein 

comes the other application of graph theory where the 

vertical subdivision of the event has to be a "descending" 

order to avoid any "false" crossovers. 

Another fact that is 

clarified from the Fig C. 

is that the space between 

activities should be 

divided up into the number 

of events and then vertical 

layout may be done in the 

descending order, but 

that the activities can 

then be compressed together. 
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Certain columns from the grid on which the events are 

•placed can be taken away without affecting the overall 

picture. 	Fig.C. illustrates this where the columns lD 
and 02 can be dispensed with without any loss of clarity 

or any adverse effect on the layout of the network. 

6.3.3 DISCUSSION: 

Various minimisation algorithms were 

considered in this section, in connection with their 

specialised application to the minimisation of crossovers 

in Precedence Type Management Networks. Compared with the 

existing algorithms, a minimisation algorithm was proposed 

which had the following main advantages: 

1. It was particularly suitable for 
the interactive real time system, as in this case, the 

user would always have full control of the progress of 

the algorithm and the computer would aid the design 

process. 

2. The algorithm was very suitable for 

the type of co-ordinate data that formed the basis of 

the graphical picture for the network system. 

3. Another advantage of the algorithm, 

by the very nature of linked lists that it uses, the 

processes involved in converting the co-ordinate data 

structure into linked list data structure and vice-versa 

were relatively easy. 

4. The correlations of the lists with 

the pointers helped general physical appreciation of the 

events connecting various activities. 
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5. The list processor required for 

the minimisation was simple to comprehend. 	Since most 

of the processing was done in core, small amounts of 

disk I/O were required within -the computer system, and 

this reduced processing time considerably. 

6. Since the algorithm was in 

generalised list data structure, it could easily find 

applications in other fields of engineering like 

minimisation of conducting wire holes in Printed Circuit 

Boards and the same for number of bends in Pipe Layout 

Problems. 	Some of these applications would be considered 

in greater detail later. 

The main disadvantage of the system was 

.considered to be slightly larger number of iterations required 

to reach the solution as compared with some of the algorithms 

described in the literature. This was more than 

compensated by the fact that the algorithm provided 0... 

"measure" of the degree of non-planarity which other methods 

did not. Furthermore, since the computations were 

straight conditional directives, although large in number, 

were very fast and hence it did not really affect the overall 

performance. Combined with various other advantages mentioned 

above, the algorithm was found to be very effective for the 

minimisation of crossovers in management network diagrams. 

Having successfully generated the 

management network diagrams and extracted the relevant 

precedence information for further analysis, the next step 

was to improve the quality of the graphical displays by 

minimising the crossovers in the network. 	Since, so far, 

only the two-dimensional layout problem had been considered, 

the time had come to generalise the layout further. 
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Double sided Printed Circuit Boards, such as those used 

in modern electronic equipment and sophisticated 

computers, posed what may be loosely termed as the 

21-dimensional layout problem: Not only do the printed 
circuit boards have conductors running on both sides of 

the board, the conductors are also allowed to "cross over" 

from one side to the other. 

The conductor paths are usually drawn 

on a board and then 'etched' into position but the crossovers 

or the 'conducting wire holes' require more expensive 

processes. 	The holes have to be drilled in and then 

plated on the inside to provide for conduction. Having 

already solved the general problem of minimisation of 

crossovers in layouts, it was considered viable to stretch 

the algorithm to 22-dimension cost optimisation of printed 
circuit boards as described in the next chapter. 



- 51 - 

7. PRINTED CIRCUIT BOARD LAYOUTS  

7.1 2-D AND 21-D PROBLEMS: 

There are two dimensional layout 

problems which can be clearly defined within the biaxial 

co-ordinate system (X,Y) and these can be usefully solved 

in relation to engineering problems such as management 

networks, single sided printed circuit boards or layouts 

of various shapes within a given area such as layouts of 

rooms in a building or layouts of roads or train lines or 

aircraft routes. 	Such problems can be classified in 

various classes and solutions exist for most of these 

problems, either in Graph Theory or in Classical 

Mathematics. 

The three dimensional problems are slightly 

different in nature but they lend themselves to a co-ordinate 

system of (X, Y, Z) and probably reflect more of the 

general engineering applications. The major layout 

problems in this field relate to pipe layout problems 

in big buildings, chemical plants or ships. 	These 

problems will be considered in more detail in Chapter 8. 

A special class of problems arises in 

layouts, which though lends itself to (X, Y) co-ordinate 

system but cannot be fully defined without interaction of 

various planes. For example, take a pipe layout of a 

multi-storey building. If various floors are considered 

independent of each other, the layout problem can be reduced 

to two dimensions but for the interaction between different 

floors. 
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Fig A indicates how the 

3-dimensional problem 

can be split up into 

parts and solved as a 

2-dimensional problem. 

This, however, becomes 

difficult as the problem 

grows in size and 

complexity such as• major 

pipe layouts in modern 

chemical plants etc. 

A simpler problem and more suitable for 

'layer' analysis is the one that would define the layout 

of a double sided printed circuit board with conductors 

on either side connected by conducting holes drilled 

through the board or in some cases, by making 'flyover' 

connections. 

Thus, the 21-dimensional layout problem 

may be defined as the problem associated with finding paths 

between a given set of nodes subject to a set of 

optimisation conditions. The nodes would completely lie 

within a number of plane surfaces forming parallel or 

unparallel layers depending on the application. 
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7.2 ALGORITHMS: 

The algorithms described in this chapter 

are the outcome of an endeavour to answer the following 

question: Is it possible to find procedures which could 

enable a computer to solve efficiently path-connection 

problems inherent in logical drawing, wiring diagraming 

and optimal route finding? The results are highly 

encouraging. The problem further breaks down into the 

following subsets: 

1. To find a path between two points 

so that it crosses the least number of existing paths. 

This problem has already been considered in Chapter 6 and 

solutions proposed. 

2. To find a path between two points so 

that it avoids as much as possible preset obstacles such as 

edges. This part of the problem has wide implications. 

3. To find a path between two points 

so that the path is optimal with respect to several 

properties; for example, a path which is not only one of 

those which cross the fewest number of existing paths, but 

among these, is also one of the shortest. 

Various existing algorithms are considered 

and a new, more practical one perhaps, is proposed. In 

processing information consisting of patterns, rather than 

numbers or symbols, on a digital computer, the computer, 

without sight and hearing, has to be made to deal competently 

with situations which appear to require co-ordination, 

insight and intuition. The problem is to find efficient 

procedures which, if followed by the machine, would lead 

to an optimal solution. With sufficient care, it is 

possible to make a problem such as this unambiguous. In 

most cases, however, it would be too great a struggle just 

to present the problem in a way that is completely and 

consistently stated. 
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Within this class of problems is the 

shortest-path problem on which there have been earlier 

definitive algorithms for finding shortest paths by 

Dantzig; Ford and Fulkerson12and Moore125  
The layout problem for pipes and printed 

circuit boards has the following important points in 

common: 

1. The paths have to be as short as 

possible. In pipes, pipe lengths contribute directly to 

the total cost, the cost is, in fact, linearly proportional 

to the pipe lengths. In printed circuit boards, however, 

it is not so much the cost that is related to the lengths, 

but the fact that signals could be delayed or weakened by 

long conductors. 

2. The number of bends have to be 

minimum. 	In pipes, certain bends have to be heat bent 

or need special processing and cost a lot of money. 

Similarly, conducting wire holes in printed circuit boards 

are expensive. 

3. The paths usually have a certain order 

of priority. 	In pipes,- some pipes may be made of more 

expensive material than others and so it would be important 

in selecting the priority levels. Similarly, conductors 

may have ordering in terms of layouts. 

4. There is the criterion of obstacles 

in the path. Some pipes would have to go through 

prespecified ducts or others may have obstacles or no-go areas 

before the pipes can be laid out, for example, in a building, 

pipes would be restricted to going through the walls and they 

could not go through the rooms. Similar conditions would 

apply to conductor paths where conductors would not be 

altcwt d to touch. 



Def inition of the TV,inefield" 

T. minefield is: thcf area fo-z.bicsin for the path 

firtinc1 	i.e. a sLep ma,A- 	iinih itJn the 

mi a)zeT.I. 

2. The minefield can have any shape or size. 

3. The minefield is only effective on a given plane. 
Pathfinding can continue normally on any other plane. 

4, 	The path can he around a minefield or under/over 

it in a different plane. 
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5. The cost minimisation, the main 

criterion of an algorithm for layouts, would be a 

consequence of the interaction between the above 

limitations specified together with any other constraints 

placed on an individual application. 

The following problem is "proposed" 

which combines the above constraints and will eventually 

lead to a practical optimisation algorithm for path 

layouts: 

1. Consider a man in a mine-field 

with a fixed step-length. 

2. He is only allowed to travel 

along X or Y axis. 

3. He has to traverse a given number 

of paths joining any two nodes except that he has to 

traverse some paths before others. 

'4. Obviously, he is not allowed to 

step into the mine-field which will explode 	He is, 

however, allowed to take flying jumps or dig underground 

holes to take him distances multiples of his step-length. 

5. He has to keep to the shortest 

possible path and satisfy the above conditions. He is to 

avoid taking jumps or digging in relation to a 

factor, "the optimisation factor", in preference to taking 

slightly longer paths. 

6. The above problem simulates any 

layout problem whether it be printed circuit board layout 

in 21 dimensions or a 3-dimensional pipe layout. 
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7.3. COST OPTIMISATION CRITERIA: 

A large number of optimisation problems 

are mathematically equivalent to finding shortest paths in 

a graph. 	Consequently, shortest path algorithms have been 

worked over more thoroughly than any other algorithm in 

graph theory. Some of the proposed algorithms are better 

than others, some are more suited for a particular structure 

than others, and some are only minor variations of earlier 

algorithms. For a good comparative study of various shortest 

path algorithms, a survey paper by Dreyfus can be recommended. 

There are different types of shortest path 

problems. Most frequently encountered among these are the 

following: 

vertices. 

vertices. 

to all others. 

1. Shortest path between two specified 

2. Shortest paths between all pairs of 

3. Shortest paths from a specified vertex 

4. Shortest path between specified vertices 

that passes through specified vertices. 

5. The second, third and so on shortest 

paths. 

In the worst case,  type 1 is identical 

to type 3, because in the process of finding the shortest 

path from a specified vertex to another specified vertex, 

the shortest paths to all other vertices may have to be 

determined. 
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The problem of finding the shortest path 

from a specified vertex's' to another specified vertex t', can 

be stated as follows: 

A graph G of n vertices is described by 

an n by n matrix D ='E dij], where 

dij = length of the path from vertex i 

to vertex j ; dij > 0, 

dii = Q 

dij = OC, if there is no path from i so j. 

In_ general, dij y-i.- dj.i, and the triangle 

inequality need not be satisfied, i.e. dij + djk may be less 

than dik. 	In fact, if the triangle inequality is satisfied 

for every i,j and k, the problem would be trivial because 

the direct path (x,y) would be the shortest path from vertex x 

to vertex y. 

The distance of a directed path P is 

defined as the sum of the lengths that make up P. The 

problem is to find the shortest possible path and its length 

from a starting vertex 'sito a terminal vertex 't'. 	Among 

several algorithms that have been proposed for the shortest 

path between a vertex pair, perhaps the most efficient one 

is due to Dijkstra ilf-  

Dijkstra's algorithm labels the vertices 

of the given graph. At each stage in the algorithm, some 

vertices have permanent labels and other temporary labels. 

The algorithm begins by assigning a permanent label 0 to the 
starting vertex s, and a temporary labelcC to the remaining 

n-1 vertices. 	From then on, in each iteration, another 

vertex gets a permanent label, according to the following 

rules: 
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1. Every vertex j that is not yet 

permanently labelled gets a new temporary label whose. 

value is given by 

Min [Old label of j, (Old label of i+dij) ] 

Where i is the latest vertex permanently 

labelled, in the previous iteration, and dij is the direct 

distance between vertices i and j. 	If i and j are not 

joined by an edge, then dij 

2. The smallest value among all the 

temporary labels is found, and this becomes the permanent 

label of the corresponding vertex. 	In case of 'a tie, 

select either one for permanent labelling. 

Steps 1 and 2 are repeated alternately 

until the destination vertex t gets a permanent label. 

The first vertex to get a permanent label is at a distance 

zero from s. The second vertex to be permanently labelled, 

out of the remaining n-1 vertices, is the vertex closest to 

s. 	From the remaining n-2 vertices, the next one to be 

permanently labelled is the second closest vertex to s. And 

so on. The permanent label of each vertex is the shortest 

distance of that vertex from s. This statement can be 

proved by induction. 

As an illustration of Dijkstra's procedure, 

the distance from vertex B to G in the following diagram may 

be found: 
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Let a vector of length 7 indicate the 

temporary and permanent 1abe1$ of the vertices as the 

solution is discovered. The permanent labels will be 

shown enclosed in a square, and the most recently assigned 

perman~nt label in the vector is indicated by a tick. The 

labelling proceeds as follows: 

ABC 
v' 

oC [Q] oC 

D 

7 [Q] 1 OC 

7 [Q] ITJ oC 

V'" 

4 [Q] (jJ oc 

4 [Q] [!J oc 

m [QJ OJ 14 

v 
00 1m rn 14 

GJ @J ill 12 

00 [QJ OJ 12 

L1J [Q] OJ 12 

12 

E F G 

DC OC OC 

oC DC oC 

DC DC oC 

5 4 OC 

v 
5 GiJ ex:: 

5 ill 11 

5 rn 11 

[!] 11 

.../' 
W II] 11 

7 

: Starting vertex 
B is labelled O. 

: All successors of B 
get labelled. 

: Smallest" label 
becomes permanent 

: Successors of C 
get labelled 

: Destination vertex 
gets permanently 
labelled • 

...... -_._-._ ...... -.... _--- .~-~.-- .. -----.~-.-.-~--~---- ... - ...... ~- ---.---.-...-.-.---~ .... --¥'-. _. __ ._--... -----...... , -- .. - ..... _ .. _---. - .. ---.... ---.-... "',..--...; .. -...-~ ....... '-.-:"',... ... ~----. ". ..... 
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The algorithm described does not 

actually list the shortest path from the starting vertex 

to the terminal vertex; it only gives the shortest distance. 

The shortest path can be constructed by working backwards - 

from the terminal vertex such that the path goes through 

that predecessor whose label differs exactly by the length 

of the connecting edge. (A tie indicates more than one 

shortest paths). Alternatively, the shortest path can 

be determined by keeping a record of the vertices from 

which each vertex was labelled permanently. 

In this algorithm, if labelling was 

continued until every vertex got a permanent label, the 

shortest paths from starting vertex s to all other vertices 

Could be found. A binary vector VECT of order n could 

be maintained to indicate whether a label was permanent or 

temporary. A flowchart of the algorithm follows: 
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A short distance tree for the case under 

consideration would take the following form: 

Some conclusions may be drawn from the 

above diagram, e.g. the shortest path from B to G was 

7 units long and went through B-C-E-G. In this algorithm, 

_as more vertices acquire permanent labels, the number of 

additions and comparisons needed to modify the temporary 

labels continues to decrease. 	In the case where every 

vertex gets permanently labelled, n(n-l)/2 additions and 

2n(n-1) comparisons are needed. 	Thus the computational 

time is proportional to n2. The main disadvantage of the 

algorithm is that if some of the distances are negative, 

the algorithm will not work. Negative distances in a 

network may represent costs and the positive ones profits. 

The reason for the failure is that once a vertex has been 

permanently labelled, its label cannot be altered. .Shortest 

path algorithms have, however, been proposed that will solve 

this problem, provided the sum of all dij around every 

circuit is positive 	The computation time of the existing 

algorithm that can handle negative dij is n3 and not n2. 

X- 

 

See 2eSe.('ex4.c.es SEC±~ert . 
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It was suggested by Nicholson5that 

carrying the shortest path algorithm from both ends s and t 

would improve the speed. Dreyfus, however, has shown that 

the double-ended procedure would improve the efficiency 

only in certain types of graphs. 
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7.3.1 BRANCH AND BOUND METHODS: 

Branch-and-bound methods use the concepts 

of trees, logic trees, and bounds to solve combinatorial 

problems. The method is a powerful alternative to 

exhaustive enumeration on a computer, since the time and 

storage requirements for exhaustive enumeration increase 

exponentially with the number of variables, and even large 

and fast machines can only handle very small problems. 

The name 'Branch and Bound' comes from the particular 

approach used by Little, et.a117  in their attempt to solve 

the famous operations research problem of the travelling 

salesman. 

Branch and Bound methods use "search 

trees", each node of which represents a class of possible 

solutions to the problem. The union of all the pending 

nodes represents the class of all possible solutions. A 

cost is computed for each pending node. The cost bounds 

induce an ordering of desirability on the pending nodes, 

which determines the branching in subsequent steps. The 

algorithm stops when it is not possible to generate any new 

node, or a feasible ,solution with associated cost less than 

the lower bounds of the pending nodes has been found. 
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7.3.1.1 FORMAL DEFINITION OF THE BRANCH AND BOUND TECHNIQUEI 

"Let S = [°"-jJ be the set of possible 

solutions to a problem P of interest. Let ISI , the modulus 

of S be a finite number and f be a function defined on the 

elements o'-j of subsets of S. The solution to be found is 

o•*  E S which minimises the function f, and is feasible i.e. 

satisfies a set of conditions [C3 ". 

Suppose the problem has a property which. 
(i-1) 

allows for making a partition firof a subset Solm...p of S 

(i) 	(i) 	(i) 
Tr = C Solm...pl, Solm...p2,....,Solm...pq ,..] 1  

q ) 1 	(11.1) 

where the subsets are defined by: 

Solm...pk 4 0 	, 	K=1,2,...,q 	(11.2) 

with the initial condition 
1 

So = S 

A search tree may be built as follows. 
(1) 

Each node bears the name of a subset Solm...pk of solutions 

of P. .The set of level i indices olm...pk indicates a path 

from the node to which they belong to the root of the tree. 

( 
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SEARCH TREE FOR PROBLEM P 

(Each partition contains r subsets; p indicates pending nodes) 
(4 

In the above diagram, node Solar is at 

level 4 and the path to the root of the tree is 
(4) 	(3) 	(2) 	(1) 
Solar, Soll, Sol, So 
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A closed node in the search is a node 

that can no longer be partitioned, i.e. cannot have followers. 

A pending node is one which is not closed. For example, 

in the above figure, So(1), Sol(2)  are closed and Sollr(4)  is 

pending. 

Since each subset corresponding to each 

node is partitioned into two or more non-empty subsets, the 

modulus of the subsets is monotonically  decreasing along a • 

branch of the search tree, i.e. 
(4) 	(3) 	(1)• 

ISolar I K ISolli < ... K SO I = 

,̀SI is finite, so we will eventually reach 

a level at which one of the pending nodes Sd11...pq contains 

ōnly one element of S, i.e., contains a solution to P. This 

is a terminal node. 

The problem is to get the minimal solution 

pes* by enumerating as few nodes as possible. 	To do so, at 

each node, over the subset assigned to the node, an upper and 

lower bound for function f must be calculated. 

The strategy consists of branching from 

the pending node having the least lower bound. 	In other 

words, one uses a property inherent in the nature of the 

problem to make a partition of the most promising pending 

node. For a terminal node, the upper and lower bounds 

collapse to the value of f for the solution assigned to this 

node. 	The search is ended when a node contains a feasible 

solution, the value of which is  less than the smallest value 

of the lower bounds of the pending vertices. 

I s I 
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The solution proposed to the "Man in 

the minefield" problem is a more practical approach to the 

"Branch and Bound" technique and the function evaluated at 

every node is related to the length of the path and the 

number of bends involved. 

Several examples of branch and bound 

methods exist in the literature to emphasise the fact that 

branch and bound is not one method but a class of methods. 

The classical Travelling Salesman problem may be taken as 

an example: 

"A travelling salesman, starting in one 

city, wishes to visit each of n-1 cities once and only once 

and return to the start. In what order should he visit the 

cities to minimise the total distance travelled?" 

'A feasible solution to the problem is a 

Hamiltonian Cycle which contains every vertex. One of 

these solutions was total enumeration by Berge.18  A more 

sophisticated version of this solution has been put forward 

by Eastman 49 

A slightly more complex and a bit more 

heurestic approach was proposed by Little et al.7  Many 

combinatorial problems that arise in engineering or management 

may be formulated either as integer programming problems; or 

in the context of decision making as pseudo-Boolean problems. 

Land and Doig have proposed a branch and bound solution for 

the related optimisation problem. The program described by 
21 

Benayoun et.al. for mixed integer programming can handle 

several thousand constraints and a few hundred discrete 

variables. (It was written for a CDC 6600). 	Branch and 

bound is a structural method containing the seeds of many 

possible generalisations. 
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The travelling salesman problem 

illustrates the compromises between the length of 

computations at each node (sub-optimisation) and the number 

of nodes of the search tree that have to be generated in 

order to obtain an optimal solution. 	It is also important 

to understand the structure of a particular problem before 

designing a branch and bound scheme to solve it. 	If the 

structure is poorly understood, this may lead to prohibitive 

amount of data to be stored. 

Heuristic methods differ from the branch 

and bound algorithms in the sense that one is not sure of 

having the optimal solution at the end of the search, only 

a 'good' solution. 	Heuristic searches have been tried on 

mathematical models as well as real life problems. 

Sometimes this is the only way to obtain a solution. 

Heuristic criteria are often used to accelerate the branch 

and bound procedure. 	In the last few years, many applications 

have been reported in the literature where branch and bound 

techniques were applied successfully: synthesis of integrated 

process design; computer aided synthesis of chemical plants; 

ordering of recycle calculations; project scheduling; modular 

design; generation oif NAND structures 22 
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7.3.1.2 DEPTH-FIRST SEARCH ON A GRAPH: 

Depth-first search is a powerful 

technique of systematically traversing the edges of a 

given graph such that every edge is traversed exactly 

once and each vertex is visited at least once. 

Depth-first search or back-tracking on a graph was first 

formalised and used by Hoperoft and Tarjan and was 

subsequently studied by TarjanP To answer questions of 

separability, planarity and the like, every edge and 

every vertex would have to be examined at least once. 

There are two ways of scanning or searching the edges 

of a graph: 

1) Once at vertex v, all edges incident 

on v could be examined and then the adjacent vertex w 

could be considered. At w, all edges incident on w 

could be scanned. This method of considering each 

vertex in turn is referred to as Breadth-first search. 

2) An opposite approach is, instead of 

scanning every edge incident on vertex v, move to an 

adjacent vertex w, a vertex not visited before, as soon 

as possible, leaving v with possibly unexplored edges for 

the time being. In other words, a walk is traced through 

the graph going on to a new vertex whenever possible. 

This method of traversing the graph, called the Depth-first 

search, has been found to be very useful in simplifying 

graph-theoretic algorithms. 	. 
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7.3.1.3 PLANARITY TESTING: 

The problem of determining whether or 

not a given graph is planar, is an important one. The 

planarity characterisations of Kuratowski,, Whitney or 

MacLane, although theoretically elegant, are unsuitable 

for testing by a computer. They are difficult to implement; 

besides, if a graph is planar, these methods do not yield 

a plane representation, which is often what is needed. It 

has been shown, for example, that if Kuratowski's character- 

isation is used to test planarity of an n-vertex graph 

_ 	(nj5), the computation time is at least proportional to n6. 

In recent years, many algorithms for 

planarity testing have been proposed and programmed on 

computers. Most of these methods employ the map construction 

approach, which works as follows: 

A planar subgraph is first selected and mapped on a plane. 

Then gradually, the remaining edges are added on, such that 

no crossings occur. 	If the reconstruction succeeds, the 

graph is obviously planar, and a plane representation has been 

achieved. The only difficult part of such an algorithm is 

that in the early stages of adding edges, there may be choices 

available, i.e. ambiguity in placement of edges. 	A wrong 

choice made earlier may later prevent addition of an edge, 

even if the graph is planar. Two mappings of graph represent 

this problem as follows: 
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TWO-MAPPINGS OF A GRAPH. 

The two mappings represent the problem 

-in the map-construction method of planarity testing, and 

different methods have been devised to solve it. One such 

algorithm is due to Bruno, Steiglitz and Weinberg ?5  
Probably the most efficient algorithm is the one suggested 

by Hoperoft and Tarjan:°  To solve the problem of ambiguity, 

the following two options are available: 

1) Continue adding paths to the basic planar 

circuit till no path can be added. Then backtrack to 

explore the alternative choices. 

2) Continue to look at different paths but 

not add them to the basic circuit, till it is found which face 

a path must be placed in, or it is,ascertained that it 

does not matter which face the path is placed in. 
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Some algorithms use approach 1, but 

Hoperoft and Tarjan have used approach 2 and have shown 

that their algorithm is more efficient because of it. 

The basis of their algorithm is a list processing 

technique. 
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7.3.2 PROPOSED ALGORITHM: 

The following set of rules provides the 

solution to the above defined "Man in the Mine-field". 

problem:- 

1. The man would travel, i.e. take 

steps only in accordance with a fixed 2-co-ordinate axes, 

i.e. for the example shown, he may only 

go to B or C from any 

given position A. 

This would define a 

grid of the size AB. 

For simplicity, the grid may be assumed 

to be square, 	i.e. AB = AC. This would be provide for 

linearity in the problem, i.e. 

Distance travelled along an axis 

=(Number of steps) X(step length). 

2. The man would consistently take 

steps along the dominant axis from his start to the 

destination point. The new dominant axis will be worked 

out after every step. 

This rule may be described graphically 

as: 
The path traced by the 

man to get from A to 

B will be A,Al,A2,A3, 

A4,A5,A6,A7,B. Since 

at A the dominant 

direction of travel 

would be along the 

X-axis. This would 

hold good until the 

man got to A5. From AS to B, both X and Y directions have 

equal dominance. 

	 Pritz,J4k '6 

Y 

  

A B 
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A "preferred" direction has to be chosen which in this 

case was taken to be the X-direction. Same condition 

was applied at A6. 

3. Within the structure of the rules 

defined above, the man would have traced the shortest 

"possible" path. Obviously the shortest path would be 

the straight line joining A and B but the grid based 

solution provides many other advantages as seen later. 

If the offsets ABx and ABy are taken 

into consideration: 

By Pythagoras AB = (ABx2  + ABy2 ) 

The actual path length, however, is 

= ABx + ABy 

Proportion of extra path length = (ABx + ABy)-(ABx2  + ABy2 ) 

(ABx2  + ABy2 )1/2 

= ABx + ABy 

(ABx2  + ABy2
)2  

For minimisation of the extra path length, 

ABx + ABy - i  = o  

(ABx2  + ABy2)2  

i.e. ABx + ABy = (ABx + ABy) 

i.e. Either ABx = 0' 

or ABy = 0 

This leads to the conclusion that the above 

rule would actually lead to the shortest path when the path 

to be traced is horizontal or vertical. 



4. To travel along a given number of 

paths,. 	--- 	the man may be made to traverse 

the paths in the order in which they were indicated to him. 

This may be graphically seen as follows: 

Say the order in which 

the start and end 

points are indicated 

is A,B and C,D. So 

the man would have 

to traverse AB first. 

The solution is 

suggested as in the 

diagram. 

5. The interaction of the paths has been 

carefully avoided in the above example but in fact, the 

first path is an 'obstacle' to the second path. Following 

is a detailed analysis of the obstacle interaction and how 

the solution would vary depending on the priority in which 

they might be traversed. 

First take the case where path AB is 

traversed before the path CD. Traversing the path AB is no 

	  problem and is a 

I i 
I A' ] , 	. 
+- - 	\ - -, - - L - ~. 	--1 -- 

	

- - ~-  - ~ 	- t- - -  
/ 	I 	I 

straight forward 

calculation of checking 

the dominance and taking 

the steps . Tile pro totem arises 

when the man gets to 

point C2 following the 

dominant axis. 

\l 

0 
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-
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At this stage, y-axis is the dominant 

axis and the direction of travel is upwards but the path 

found for AB poses an obstacle.. So the man has to step 

back to C2 after having attempted to travel in the 

'correct' direction. 	Instead, he is forced to take a 

step in the minor or' non-dominant direction. 

When the man gets to C4 which is directly 

below B, there is no more distance to travel in the 

x-direction but he still cannot travel directly upwards 

to get to point D. Two solutions can be taken into 

consideration here: 

1) The man takes a jump from C4 to C8 

or digs a tunnel to get from C4 to C8. The points that 

.lie on the path found for AB represent mines or walls. 

Then he can travel straight up to D. 

.2) The other alternative depends on 

the "risk" or the "cost" of taking jumps or digging 

tunnels. He may be allowed to travel on in the 'negative-

dominant' direction of C4 to C5 depending on this "risk 

factor". From C5 he continues to strive to get to D in 

the shortest distance possible. The number of steps that 

he is allowed to take depends on the relative risk of taking 

jumps to tracing a longer path. This risk factor defines 

the "optimisation factor".* 

• The solution suggested in I) above is 

the "21D layer" solution and that in 2) is the "planar" 

solution. The decision as to which solution is the "better" 

of the two depends upon the optimisation factor. 

coli- or MAKtn - A HOLE 
*- OPTiMISP-CIONt PAC TOR... = 

 

coSi OP TAKu*1C~ A ST EP 
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If the path CD was laid out before the 

path AB, i.e. their priorities were reversed, the solution 

might be different. Considering the original set of 

co-ordinates again; the path along CD would be traced by 

travelling along 

the dominant direction 

and taking steps along 

the grid. As described 

before, there will 

again be two options 

for tracing the path AB 

i.e. one to take a long 

- -) -  B- 1--  	route around D or the 

other one to take a 

bridge to maintain 

the shortest path. 

6. The above possibilities cater for both 

printed circuit boards which is a 2h-D problem and for pipes 

in 3-D. 	In both cases, "priorities" are attached to certain 

paths. 

In printed circuit boards, the time taken 
for a signal to travel path can be critical. Also different 

combinations of paths may create 'inductance' problems. 

Hence it becomes necessary to lay some paths before others 

and different solutions may be found as described. 
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However, in pipe layouts the priorities 

may be assigned to routes for different reasons. For 

example, in a chemical plant, the material cost of certain 

pipes may be very high and so it may be decided to lay 

them but before any of the others for cost optimisation 

reasons. 

The constraints imposed by the above two 

cases are taken care of in the design of the proposed 

algorithm. The actual implementation and the graphics 

of the application of the proposed algorithm to the PCB 

layout in 21-D is discussed in the next section,. 
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7.3.3. GRAPHICS: 

The branch-and-bound detailed programming 

technique had a lot in common with commercial plotter software. 

In a controlling program for the pen of a plotter, fastest 

speeds would be achieved if the pen travelled the shortest 

possible paths between different points. The pen-up and 

pen-down conditions would correspond to start and end points 

of a path on the printed circuit boards. The major difference, 

however, was in the handling of obstacles or existing paths 

on a printed circuit board which would not exist on a plotter. 

Existing lines on a plot obviously do not present any 

obstruction to the drawing of new lines. The technique for 

programming could, however, be divided up into two independent 

approaches: 

1. Fully-automatic approach: This could 

be used in a batch processing environment on a large computer. 

2. On-line Interactive approach: This 

would be ideal in a mini computer graphics environment and the 

operator could interact with the algorithm to produce 

optimal solutions. 	The intuitive and pattern recognition 

qualities of the operator would help the algorithm achieve 

a better solution than a fully-automatic one. 

Both the approaches are considered in detail 

and the main similarities and differences are pointed out in 

the following sections: 
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1. Fully-automatic layout technique: 

To find a path from point A (X1,Yl) to 

B (X2,Y2), the only assumption made is 

Ce 
that both A and Bion a grid. 	If the grid is equatly 	ce , in X o..d Yi  

(et the grid size be GR. 	The following calculation may then 

be carried out: 

DOMX = 
GR 

DOMY = DY 
GR 

Now if DOMX DOMY, the condition would 

be that the dominant,direction is along the X-axis. 

A few properties of the above calculation, without the need 

for pattern recognition, are: 

a) The grid was assumed to be ¢qut-space& only 

for convenience, in fact, the grid sizes along X and Y axes 

could be different without affecting the processing as long 

as the step length in each direction was equal to the grid 

size in that direction. 	Thus normalised calculations could 

be carried out independent of the grid. 

DX 
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Having decided upon the direction of 

dominance, a step equal to the grid size could be taken in 

that direction from the start point. 	So the point found 

would be C, whose'co-ordinates would be (X1+GR,Y1). 

The check would have to be carried out to 

see if the procedure had arrived at the end point B. This 

condition would only be satisfied if both the offsets in 

X and Y directions between B and C would be zero. 

i.e. If 	Xl+GR = X2 

and 	Yl = Y2 • 

If this condition is not satisfied, in 
other words, if the end of the path has not been reached, the 

condition to check next is that the point reached does not lie 

in an inaccessible area. This can be checked by using a search 

routine to see if the new co-ordinates lie on an existing grid 

node, i.e. one which already has a branch beginning or ending 

on it. 	There is no possibility of crossing over an existing 

path since the step length has already been fixed by the grid 

size. 
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If the point does lie on an existing path, 

the step is traced back to the original one, otherwise the 

new point is stored away and path finding continued from 

this as the old point. 	However, if the point does lie on an 

existing path and has been traced back, the next step is to 

swap the dominances of X and Y axes. 	Therefore, if the step 

was initially taken in the X axis, and retracted, the new step 

is taken along the Y-axis. 	If the same happens again, i.e. 

the new point still lies on an existing path, the step is 

traced back. 

Depending upon the optimisation factor 

already input, the path can go back towards its origin. 

However, given an optimisation factor of 1, i.e. conducting 

wire holes cost the same as a unit path length, the decision 

made is to go through the plane onto the other side. In 

pipe routing, this would be equivalent to a pipe bend and the 

path could be traced along a different axis. 

However, if the new point does not lie on an 

already existing path, it can be stored as the next valid 

point on the path and the search continued till the path from 

start to end has been fully traced. 

2. On Line Interactive approach: 

The basic needs of the graphics system for 

the inter-active approach would be almost identical to the 

fully automatic approach. The main•advantage of this 

technique is that an operator can "help" the algorithm along 

to achieve, perhaps, a better solution than the fully 

automatic approach. 
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The usefulness of this technique is that, 

effectively, it provides for a continuously variable ' 

optimisation factor, i.e. the operator would always have 

the choice whether to select a conducting wire hole or a 

longer path. The path finding search would be carried out 

in the same way as before except that when a new point lay 

on an existing path, the operator would be able to choose 

whether to retract on the already found path, i.e. take a 

longer route or to go across to the other plane or layer. 

It may then be concluded that fairly 

simple graphics overlays are required to use the proposed 

algorithm for path finding application to Printed Circuit 

Board layouts. 
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8. PIPE ROUTING AND DESIGN 

•8.1. COST OPTIMISATION IN PIPE LAYOUTS: 

In all engineering design problems, the 

final problem is always the cost evaluation. A good design 

would have to be optimum with respect to development and 

production costs. 	Some of the basic requirements of such 

a cost analysis are considered here as applied to pipe 

routing. 

1. Pipe Length: 

Different types of pipes cost different 

sums of money. Pipe cost per unit length would be a single 

largest contributory factor to the cost. The basic pipe cost 

would then depend upon the following factors: 

a) Material of the pipe. 

b) Diameter of the pipe. 

c) Wall thickness. 

d) Stock Quantities. 

e) Handling Costs. 

Information about pipe lengths could be held 

as cost per unit length of the pipe (say £ C/meter). This could be 

held as a data file within a computer system. All pipe lengths 

would be calculated in metres (PL metres) as 

PL = 	J (X2-X1)2  + (Y2-Y1)2  + (Z2-Z1)2  

Then the total cost of a pipe system would be 

TC = 	Cl * PL1 + C2 * PL2 + .... 
n 

Cn  PLn  

vt= t 
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2. Machine Time: 

Every pipe, once its length has been 

calculated, will go through a standard machining process 

which might consist of: 

a) Retrieving pipe from store. 

b) Pipe cleaning. 

c) Measure the length and saw. 

d) Pipe bending. 

e) Welding. 

f) Finishing processes. 

A rough cost estimate is required for all 

the above processes and cost may be assigned to: 

Feed 	(£ CF/m) 

Rotation 	(£ CR/degree) 

Bending 	(£ CB/degree) 

These costs would be worked out for every 

pipe and added to give a total cost for machining time 

(£ CM/pipe). 

3. Heat Treatments: 

This cost may be split into two parts: 

a) If a pipe requires heat treatment before 

installation, this must be assigned a cost, say £ CHP/m, and 

taken into account. 	For most pipes, this cost would be zero. 

b) A pipe may have to be heat bent because of 

radii involved in connection with pipe diameter and wall 

thickness. This cost may be proportional to the degree of 

bending required or may in fact be independent of the actual 

bending angle. 
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For this simplified analysis, we may assume that all heat 

bends cost the same money, say £ CHB/number of bends or 

if it is important to take into account the bending angle, 

then consider the cost of heat treatment per degree, 

£ CHT/degree and multiply by bending angle BA. 

Total heat treatment cost may be calculated as: 

£CH = £CHP * PL + £CHB * NB 

+ £CHT * BA 

This cost will be added to the total cost of 

the designed pipe. 

4. Cable Radii: 

There may be costs directly proportional to 

the cable radii depending on what type of cables are required. 

One factor may be £ CC/m i.e. cost of cable as a function of 

its diameter. The other cost may be dependent on the type 

of insulation required, say £ CI/m. 	For a conduit length PL, 

the cost due to different cable radii may be calculated as: 

£CCR = ECC * PL + £Cī * PL 

This again has to be added to the total cost 

for minimum cost conduit to be designed. 

5. Diameter/Bending Radii Relationships: 

It is assumed that small diameter pipes can 

be bent to almost any radius, whereas, there would be a limit 

on how small a radius a large pipe can be bent to. Say the 

pipe diameter is PD and the bending radius is BR, then the 

ratio PD/BR may have an upper limit, UL. 

So PD 	UL for satisfactory bends. 
BR 
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There may be costs associated with this, 

e.g. a pipe may have to be redesigned to satisfy the above 

criterion. 

So if PD = PBR 	(Pipe Bend Ratio), 
BR 

the cost £CPDB = £CPBR * PBR. 

This cost would not be significant in 

most pipes. 

6. Flange Joints: 

Various types of flanges are in use and each 

has a different cost associated with it. 	These costs would 

be held as data files within the computer system. 	The cost 

of every flange, £CF multiplied by the number of flanges NF 

would be added to the total cost of a pipe in the form of cost 

of flange joints: 

£CFJ = £CF * NF. 

Similar criterion would hold for pipe 

junctions. 	The total cost of the final pipe system would 

be thus calculated and minimised. 
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8.2 M7\THFNATICS OF PIPE ROUTING  

8.2.1 CALCULATION OF INTERSECTION CO-ORDINATES 

This section shows ho-eJ the intersection co-

ordinates are calculated between two pipe lengths A and B. 

PQ is perpendicular to A and B. Vectors a, 

b are the vectors from the origin to A and B respectively 

and p and ca are unit vectors in the direction of pipes AC 

and BD. Since PQ is perpendicular to p and a 

a + X2 - (b + u a) = x. 02  x a.) 	(1) 

where A and p are constants of proportionality. 

To eliminate p, take the dot product of (1) 

with ca, x (2 x a). This leads to: 

a.qx (2xa) -  b.cax (2xg) 

+ Ap. (a x  p  x q) = 0 	(2) 

(a-b).gxpxca 

p.9xpxr 
	P = a + AE 

(a - b) .p x  q x p 
and 	Ia =  	Q = b + pa 

1 = 



F 

- 89 - 

The point of intersection is taken to be P 

or Q depending on the properties of the pipe lengths AC or 

BD whether the pipe length AC or BD is regarded as the more 

significant (or the one currently under study). 

8.2.2 CALCULATION OF EXACT CENTRE LINE POINT 

During the detailing stage of the program, 

the 3-D co-ordinates of the digitised position of the 

fitting F are calculated. However, this point may not lie 

mathematically on the line defined to be the centre line of 

the pipe AB. Hence the base of the normal N from the point 

to the centre line needs to be calculated. 

Since FN is perpendicular, 

n = a + Xp 	 (1) 

where N is the constant of proportionality. 

Also, (f - n).E = 0 since. they are perpendicular. 

f . 2 = a.p x ap
e  

(f - a) . b 

P2 
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This leads to the normal as, from (1) 

n = a + 
P2  

8.2.3 CALCULATION OF ROTATION AND INCLINATION ANGLES 

It is necessary when detailing branches to 

calculate the rotation (8) and inclination (0) angles. The 

direction cosines of the pipe length AB are known as (1,m,n). 

The end co-ordinates of the branch are known as P and the 

position of the branch on the pipe centreline is known as 

Q. 

AB = (l,m,n) 

Sine 1,m,n are the direction cosines, 

12  + m2  + n2  = 1 

Let IABI = a 

QP = (h,i,j) as the direction cosines. 

Lot IQPI = k 

2 
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AB 	QI' 	lh  ± im + in Then cos e: =  	- IABI(QPI 	ak 

and 	0 = 90 - a. gives the inclination angle. 

The angle 0 is found by determining the 

direction cosines of the normals to the planes AQS and AQP. 

AQS is by definition the vertical plane through AB. 

Hence the normal to AQS implies, 

AB x QS (0,0,1) 

and the direction cosines are (0,0,1). 

The normal to AQP gives 

cos 0 = QP x AQ 

This physically means that-  the zero rotation.. 

angle is along the z-axis. 

8.2.4 CALCULATION OF THE ROTATION IATRIX 

The problem is to define the rotation matrix 

necessary to re-orientate the pipe such that the first pipe 

length (OA) is parallel to the x axis and the next length 

(AP) is in the xy plane. Referring to the diagram below, 

this means that the direction cosines of OA, PN and a line 

perpendicular to the plane OPN, relative to the original 

axes need to be known. 

U 
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The co-ordinates of A(x1,y1,zi ) and 

P(x2,y2,z2) are given. If i, j, k are unit vectors along 

x, y, z respectively, 

OA = x1.i + vl j + z1k = r 

Also (r ( = ixi + y2 + zi = r 

. The direction cosines of OA are 

x l ~f 1 z 1 
r' r' r 

Since PN is perpendicular to ON, 

PN . ON = 0 by definition of scalar product. 

Also ON = X.OA by constant of proportionality. 

S . (Xr) = 0 

or 	(x1X - x2) x1 + (yl~~ - y2) yl + (z1A - z2) z1 = 0 

A 
x1x2 -I y1y2 + z1z2 

Let xlx2 + y1y2 + z1z2 = t2 

Then A = 
t2
2 
r 

Thus the direction cosines of PN are 

(xl?' - x2) 2+(y1A --y2) 2+(z1X - z2) 2 

'1 	y2  

J(xix - x2 ) 2+(y1A -- y) 2 + (z1X - z2) 2 
 zl - z2 

2 /(xl?' - x2)
2

(yl ?,-y2)2 •I-(z1' z2) 



or 

xlt2 - x2r
2 	

ylt2 -- y2r 	zlt2 - z2r` 

Ir 2 (r2s2 - t4) ' J r2 (r2 s2 -- tn) 	.1r2 	(r
2 s2 - t4) 

The direction cosines of the normal to plane 

OPN, plane through OA and OP, are given by 

OP x OA = 0 by definition of cross product. 

(xli + y,j + zlk) x (x2i + y2-j + z2k) = 0 
or 

xly24 x j+ xlz2 i x k+ ylx2 j x i + ylz2 j x k 

+ zlx2 k x i+ zly2 k x j= 0 

(y1z2 - zly2) i + (z1x2 - z2x1) 7 + (x1y2 - x2y1)1` = 0 

If f = ylz2 • zly2 

g = zlx2 - z2xl 

h = xly2 -- x2yl 

Then the direction cosines of the normal are: 

f 	
1
^g 	 h  

f 2 + g2 + h2 ' ,/f2 + g2 + hJ ' 'f2 + g2 + h
2 

. Hence the elements of the required rotation matrix are: 
xl 	yl 	zl 
r 	 r 	 r 

x
1 
t2 - x2r2 	ylt2 - ~~2r2 	zlt2 - z2r2 

ff /r2 (r2s - t4 ) ~r (r2sl 
- t4) 	\'r.2 (r2s2 - t4) 

f 	g 	h  

Jf 2 + g2 + h2 f + q2 + h2 
	2 

+ g2 + h2 

where r,s,t, f-,q and h are fully known. 
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8.2 .5 CALCULATION OF THE OUTER WALL OF A PIPE 

Once the rotation and inclination angles 

(0,0) have been determined either by selection or calculation, 

it is necessary to calculate the co-ordinates of the mark (U) 

which must be made on the outside of the pipe. It is 

sufficient to find this centreline point of the feature to 

be placed on the outside of the pipe. 

The outside radius of the pipe (r) is known 

as well as the direction cosines of the pipe length PQ, the 
G'• 

co-ordinates4a point P(x1,y1,z1) on the pipe, and the co-

ordinates of the feature on the centreline of the pipe 

Q(x2,y2,x2) . 

Let 1, m, n be the direction cosines of PQ. 

for the plane PQS Lo pass through (xtro,zt) to make it 

verLi.cal, the direction ratios of the normal to this plane 

are 



n, o, - 1. 	Let b2  = 12  + n2. 
n 	1 

Then the direction cosines are - b, o,   

Also OT - OQ = TQ 

= (x3  - x2)1  + (y3  - y2)1 + (z3  - z2  

The direction cosines of TQ are 

(x3  - x2) 	(y3  - y7) 	(z3  - z2) 

r 	r 	r 

where 

r2  = (x3  - x2) 
2 
 + (y3  - y2) 2  + (z3  - z7) 2  

Now the angle between the line TQ and the 

plane PQS is the complement of the angle between the line 

and the normal to the plane, 

By dot product, 

cos 0= 	r 	• b - 	r 

> 3  - x2 	n 	z3 
- 

z2 	1 

To determine T (x3,y3,z3) uniquely, another 

condition is required. This is the condition that TO is 

perpendicular to PQ or 

TQ . PQ = 0 taking the scalar product. 

1(x3  - x2) + m(y3-  y2) + n(z3  - z2) = 0 	(3) 

From (1) , (2) and (3) , 

T is fully known as, 

āb (lm sind + an cos) x3  = x2  i  

y3 = y2 - 
rb sind 

z3  = z2  + ab (nm sinO - al cos0) 

where 	a = 12  + m2  + n- 

)k 

(1) 

(2 ) 

or 



Now the direction cosines of TU are 

x4 - 	 Yn 	Y3 	z4 
	L3 

ITUI 	ITUI 	ITUI 

but 

I TU I = /(x4 — x3)  2 + (Y4  - y3)2 + (z4  - z3)  2 

= r tan0 

and TU is parallel to PQ, therefore their direction cosines 

are equal. 

Hence 

x4  - x3  

r tan0 	ā 
74 - Y3 _ m 
r tanC4 	a 

z 4 
	 3 _ n 

r tan0 — a 

Co-ordinates of U are known as 

x =
r1 tan 0 

a 3 

_ r m tan 0 
Y4 a 1- Y3 

7 

4 
= r n tan 0 + 	z, 

a 
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9. CONCLUSIONS: 

Computer applications to general 

layout problems constituted the main flow of this thesis. 

An overwhelmingly large number of engineering layout 

problems, which actually exist in 3-dimensions, can be 

meaningfully translated into 2-dimensional or layer 

problems. 	The two major applications considered were: 

1. Data preparation of Precedence 

type Management Networks. 

2. Path finding in Printed Circuit 

Board Layouts. 

Specialised and original algorithms 

-were 4ttvetored to overcome two main problems of optimisation. 
The first one was a computer orientated algorithm to minimise 

the number of branch cross-overs in a given network. 

List-processing 	techniques were employed 

to achieve planar solutions. 	This led to the basis of 

optimisation in Management Networks. 	Similar problems 

existed in the field of Printed Circuit Board Layouts. 

The more useful solution to the optimisation 

problem in Printed Circuit Boards could only be achieved if 

the minimisation of cross-overs was combined with a shortest 

path finding algorithm. This provided for the definition 

of the Man in the Minefield problem, the solution of which 

led to the overall optimisation. Various Branch and Bound 

techniques, cud. - ___ Planarity testing algorithms were 

considered but it was concluded that the proposed algorithms 

were more suited to the practical problems in handy  .rLck - 

for 	implementation on a digital computer. 
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The system was developed as a real-time 

system, so the operator-machine interaction carried a high 

priority at all levels; from design through to implementation 

stages. Thorough Mathematical analysis of the pipe-routing 

and the linked design problem was carried out and it is 

recommended that this be installed as a satellite of a major 

3-Dimensional Graphics System. 

FUTURE WORK 

This section describes the recommended 

research which would act as a continuation in the following 

three areas: 

(1) Management Network Analysis 

The algorithm described works well in 

an inter-active environment but is limited in its scope by 

the size of the networks that can be handled. This algo-

rithm can be automated fully by simulating the existing 

techniques of data extraction and manipulation. First of 

all, an overall analysis can be done and a mai.rix containing 

the picture data can be  set up. Then areas in the network 

which contain the largest number of crossovers can be 

concentrated upon. 

This new technique should be implemented 

on the London University's CDC computers because of their 

larger storage capacity. The matrix properties can be 

analysed further and a new algorithm can be devised to work 

on this matrix to achieve fast and automatic optimisation 

in large networks. The means of transferring data from the 

PDP to the CDC is available using magnetic tape. The new 

algorithm for achieving minimum crossover situation in the 

matrix solution is expected to be an upper triangular matrix 

with unity along the diagonal of the matrix. 

The data interchange between the con-

nectivity diagram and the matrix representation can be 

easily achieved and it is expected that the matrix algo-

rithm will provide a fast and efficient solution to the 

problem of minimising c.rossovers in large management net-
works. 



(2) Printed Circuit Board Layouts 

The routing algorithm described in this 

thesis had a disadvantage arising out of the lack of pre-

paration of the input data before submitting it to the 

algorithm. It would be possible to carry out an initial 

analysis of the start and end points of the different paths 

to be found together with the priorities assigned to them. 

Core tables could be formed including such data. 

The core table would be a 3-element list 

indicating all the paths to be found, Every element of this 

list could then be examined individually to check whether 

or not a planar solution existed for a given set. Different 

paths could then be mapped leading to an optimum path lay-

out. Clash or crossover situations could be easily analysed 

using the core table and an overall function (i.e. cost) 

could be minimised. 

Further work needs to be done on the  

final layout of the paths as found by the algorithm. A 

post-processor should be developed which would examine every 

path in turn and check for self-loops of the type occurring 

in the figure on page 77. The post-processing algorithm 

should be able to remove any anomalies caused by the 

dominance-driven nature of the existing algorithm. There 

is further scope here for designing an efficient new algo-

rithm,which would calculate the planar and non-planar costs 

for any given path and compare them to obtain an optimal 

solution. 

(3) General 3-Dimensional Routing 

The future work required for the routing 

algorithm for 2-dimensions also applies to that in 3-

dimensional routing. Many more design constraints can be 

combined together with routing in 3-dimensional analysis. 

During pipe routing, it should be possible to find multiple 

paths because of the 3-dimensional nature of the problem. 

Each solution can then be examined further by applying the 

design criteria. For example, if the pipe contains. a 

fluid, then wall friction analysis should be  done to 



calculate the overall pressure drop in a pipe. If the 

pipe is an electrical conduit, then the voltage drop along 

the conduit should be calculated. Therefore, a path found 

using the routing algorithm should only be accepted if it 

also meets the pre-specified design criteria. 

The way in which this can be achieved 

could be as follows. Submit the co-ordinates of the path 
to be found to the routing algorithm, which also takes care 
of the existing obstacles. Then, if the path found does 

not satisfy the design criteria, it should itself be flagged 

as a temporary obstacle and re-submitted to the path finding 

algorithm. This process should be repeated until a satis-

factory path is found, which also meets the design criteria. 

Before the submission of the next set of co-ordinates to 

the path finding algorithm, the paths flagged as temporary 

obstacles should be removed. This method would combine an 

optimisation based upon design and routing. 

There is further scope for developing 

an algorithm which would carry out grouping analysis on 

different paths in 3-dimensions. Again the technique of 
re-defining certain paths as temporary obstacles could be 
used to group together certain types of pipes e.g. electrical 

conduits could be grouped separately from fuel pipes. 

The above mentioned future work is an 

expansion of the algorithms described in this thesis. 

The reader should be able to think of other applications 

where these algorithms could be usefully employed in 

minimising other functions. 
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APPENDIX B 

This appendix contains definitive specification 

of the two algorithms: 

(a) Activity Network Algorithm. 
(b) Routing Algorithm. 

(a) ACTIVITY NETWORK ALOGORITIIM 

1. The network is reduced to a simple connectivity diagram. 

The start and end points of an event are redefined from 
(xlyl) and (x2,y2) to 1 and 2 respectively. 

2. Lists containing start and end points are extracted in 

an ascending order. 

3. The lists are used to examine the number of existing 
cross overs. 

4. The number of cross overs is examined as every end 

point exhanges position with all the others sequentially. 

5. Whenever a lower number of cross overs is achieved, 

the end point is fixed. 

6. In the list representation, this leads to a minimum 

cross over situation. 

7. The final lists are transferred back to the activity 

network by moving the activities, using the connectivity 

diagram. 

(b) ROUTING ALGORITHM 

1. To find a path from a start point to an end point, it 

is assumed that both the points lie on a grid. 

2. The dominant direction along the path is calculated. 

3. A step equal to the grid size is taken from the start 

point along the dominant direction. 

4. A check is made to see if the new point is the end 
point. 
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5. If the end point is reached, then the procedure stops. 

Otherwise, it is checked that the new point does not lie in 

a forbidden area. 

6. If the point is not forbidden, thera the path finding 

continues till the end. 

7. If the point does lie in a forbidden area, then the 

step is traced back to the previous point. A step is then 

taken along the non-dominant direction. 

8. The already specified checks are made. If this step 

is unsuccessful, then the path is made to go through to the 

other plane and path finding continued on the other side, 

when cost factor is unity.* 

9. If, however, the step was successful, then path find-

ing is continued normally till the end point is reached. 

*For a cost factor of n, the algorithm attempts n steps 
before going to the other plane. 
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