PAGE

The Use of BCL in a List Processing Environment,

By

Richard John William Housden.

University of London

Ingtitute of Computer Science.

INSTHUTE GF - CHPLeR SCENCE
LIBRARY

Thegis submitted for the Degree of Doctor of Philosophy

at the University of London.

October, 1069,

PAGE 2

ABSTRACT

This thesis is primarilly concerned with the design and
implementation of machine independent systems for teaching
generalised list processing techniques, Two systems, LSIX and BCL,
are considered in detail. LSIX is a London version of Knowlton's
16, and BCL is a general purpose data processing language with
special emphagis on the input and output of structured data. The
ugse of BCL here igs as a compiler compiler for LSIX and, in an

extended form, as a list processor in its own right.

Part I, which is largely expository, gives a brief
introduction to list processing, outlines those features of the
classical list processing systems which are pertinent to this report

and describes LSIX and BCL.,

Part 1II deals with the implementation of LSIX in BCL, and
storage allocation and collection, In general, students have
favoured the direct use of BCL as a list processor, The author's
extensions to BCL provide a system in which all 1levels of 1lisgt
processing are possible, It is particularly suitable for teaching,
as the student is able to define his own structures and 1list
processing functions. The facilities available are illustrated by a
number of BCL lisgt processing programs, This thesis has itself been

edited using a BCL list processing program,

Further extensions to BCL are proposed in Part 1III, These

allow the user to define, within his program, new types of

PAGE 3

structured objects, and operations to be performed upon them. The
result is a general purpose language which is capable of handling
data structures of any complexity, is suitable for teaching, and

whose implementation is largely machine independent,

The Appendices give details of programs and computer output.
A preliminary account of some of the work described in this thesis
has already been published in the Computer Journal, The first paper
containing the gist of sections 2,1 and 2.2 is included as Appendix
7 and a further paper, on List Processing in BCL, has been accepted

for publication,

PAGE 4

Acknowle@ggments

I should 1like to express my thanks to my supervisor,
Prof,B, Higman, for his valuable advice and encouragement throughout

this work,

I also wish to thank Prof,R.A. Buckingham and the staff of
the University of London Institute of Computer Science for the
facilities which have been made available to me, In particular I am
grateful to the members of the BCL group for their help during the
early stages of this vork, and to Miss,M, Mozetich for her careful

typing of the thesis,

PAGE 3§

To Susan, Gillian, Jeremy,
Andrew, Clare, Simon,

Sarah and Jonathan.

PROLOGUE

PART I
1.1
1.2
1.3
1.4

PART 1II

2.1
2.3
2.4
2.4-1
2.4.2
2.4.3
2.4.4
2. 40 5
PART III

EPILOGUE

BIBLIOGRAPHY

CONTENTS

LIST PROCESSING
Introduction and notation.
List Processing Languages.
LSIX

BCL

THE IMPLEMENTATION OF LIST PROCESSING SYSTEMS
The Definition of LSIX in BCL,

The Execution of LSIX in BCL,

Storage Allocation and Collection,
List Processing in BCL,

Introduction,

Manipulation of Expressions.

An Example of Automatic Garbage
Collection in BCL.

BCL program to build a tree structured
directory.

The Classical Transportation Problem,

THE IMPLEMENTATION OF DATA STRUCTURES,

PAGE 6

Page

ho)
11
19
24

31
32
54
70
95
95

109

120

127
134

149

169

174

CONTENTS PAGE ¥

APPENDICES
1, A Complete LSIX program 175
2. The Syntax of LSIX defined in BCL. 185
3. BCL routines corresponding to LSIX operations, 102
4. Routines for automatic garbage collection in LSIX, 215
5. Extensions to the BCL compiler, 224
6. Garbage collection - output from a BCL program, 228

7. The definition and implementation of LSIX in BCL 233

PAGE 8

PROLOGUE

PROLOGUE PAGE O

The original intention in the work described in thisg thesis
was to investigate the system requirements (operational and
linguistic) of a medium for teaching generalised 1list processing
techniques- 1i,e, techniques which transcend the uniform node
structure imposed by the classical ligt processing languages., At
the time when it was begun, Knowlton's paper on L6 had recently
appeared, and a first working version of BCL had just become
available, As LO promised all the flexibility required and a field
test of BCLL as a compiler compiler was in order, the programme
appeared to involve implementation of L6 using BCL as a compiler
compiler as a first phase, followed by use of L6 in a year's
teaching, and possibly some iteration on these two steps in the
light of student reaction. In the event, student reaction (and
indeed my own) was to favour direct use of BCL as a list processing
language in its own right, However, this did not become apparent
until the middle of the second year's work, and as a result there is
a sort of non gsequitur in the work reported here, in that after
describing the implementation of L6 in §2.1 to §2.3, in §2.4,
where one would expect a discussion of the pros and cons of LO in
the 1light of experience, instead one finds a discussion of list
processing in BCL, Had the results been known before it was begun,
doubtless the present section §2.4 would have been §2,1; however,
the time spent in implementing 16 has had its value in other
directions, and no further apology seems necessary for the space

devoted to it in what follows,

PART I

List Processing.

PART 1 PAGE 11

List—Processing

§1.1 Introduction

List-processing is a method of storage organisation which
bridges the gap between the one dimensional store of a digital
computer and the multi-dimensional problems of the real world,
Often tables or rectangular arrays of information to be operated
upon by a program are not just amorphous masses of numbers but
involve important structural relationships between the data
elements, During the processing of this information the actual
structure of the data may be changed as well as the values contained
in the structures, Techniques for manipulating such structures were
introduced in 1956 when Newell, Shaw and Simon designed the first
information processing language (IPL 1II) for use in their
investigations of heurigtic problem solving by machine., Research in
this and other areas such as mechanical translation, information
retrieval and operational research generated problems involving a
form of information processing which could not be handled
conveniently in any of the conventional 1languages., Often the
precise form of the data was not known in advance and complex data
structures evolved and were modified dynamically during the
execution of the program. The IPL II system made use of linked data
elements, which were not necessarilly stored in consecutive
locations,

The idea of simple linked lists of information originated in
connection with the design of computers with drum memories, After
executing the instruction in location n, such a computer is usually
not ready to get its next instruction from location n+l because the
drum has already rotated past this point, The most favourable

position for the next instruction depends upon the time taken to

PART I List Processing PAGE 12

execute the current instruction and the machine can operate many
times faster if its instructions are optimally 1located rather than
congecutively, The machine design allows for an extra address field
in each instruction to store a 1link to the next instruction to be
obeyed. Programs for ‘'plus one' address machines, as they are
called, are the earliest examples of linked lists although there is
no hardware provision for dynamic insertion or deletion of
instructions.

Linked memory techniques are now recognised as basic computer
programming tools which can be used in ordinary programming
languages without requiring sophisticated subroutines or
interpretive routines, Much of the work described in this report
has arisen in the course of teaching these techniques to M,Sc,
students and the systems which have been implemented for this
purpose allow the students to get near to the innermost workings of

list-processing programs,

Definition of terms

It is necessary at this point to define several terms and
notations which will be wused frequently in this report, The
information stored in a list or a table consists of sets of nodes or

data blocks (called beads, records or list elements by some

authors)., Each node consists of one or more consecutive computer
words divided into named parts called fields, In the simplest case
a node is just one word of computer memory and has just one field
comprising the whole word. A more interesting example is a node
which represents an element of a sparse matrix, Such a node might

be divided into five fields:

PART I List Processing PAGE 13

ROW COLUMN VALUE COLUMN ROW
INDEX INDEX LINK LINK

Thus each element is a member of both a row list and a column list,
The contents of a field may be an address, a number, alphabetic
information or anything else the programmer may desire, The

address of a node (a link, pointer or reference to that node) is

usually the address of the first word of the node. Linked
structures are built by acquiring new nodes and planting their
addresses in link fields of other nodes in the gtructure,

A field withip a node may be referenced by writing its name
followed by the address of the node enclosed in parentheses, For
example suppose that each node of a simple linked 1list consists of

two fields named SYMBOL and LINK and that a link variable P contains

the address of the first node of the list:

P: > —-—)[0

Then the symbol field of the first node is referred to as SYMBOL(P)
and the link field as LINK(P), Fields in nodes other than the first
may be accessed via the 1link fields of preceding nodes. Thus
SYMBOL({LINK(P)) refers to the symbol field of the node to which
LINK(P) points, i,e, the second node in the list., Note that the
last node in the list has an easily recognisable symbol in its link
field to indicate that this is the end of the 1list, More complex
structures may be built by storing in the symbol fields pointers to

sublists as shown below,

PART I List Processing PAGE 14

o [MESEE

3

In this example SYIBOL(LINK(LINK(Q))) contains a pointer to the
second sublist of the list Q (the list to which Q points),

Note that names have been used for two quite different things:
as variables and as fields, It is meaningless to use a field name
on its own, it chould always bhe followed hy the address of the node
of which the field is a part, The notation used here for roferring
to fields 1is that wused in BCL and is similar to the notation of
LISP, 4An alternative notation is that used din LSIX in which the
address of the node nrecedeszs the namo of the field, Thus if A is a
field name and W a link to a node or data block we refer to field A

of that hlock as VA,

A simple (or linear) 1list is defined as a 1list without
sublists, that is a 1ist of nodes whose only structural reclationship
ie essentially a linear one, Some important examples of simple
lists are those in which ail insertions and deletions take place at
the ends:

A stack is a simple list in which 211 insertions and

deletions take place at one end,
Stacks are mrticularly usecful where a nested structure ic inveolved,
for oxample in arithmetic cxpressions, They occur frequently in

conncetion with rocursive algorithme,

PART I List Processing PAGE 15

A queue isg a simple list in which insertions are made
at one end and deletions at the other,
A deque (or double ended queue) is a simple list in
which insertions and deletions are made at
the two ends.,
Queues and deques occur in simulation models in which objects are
delayed and awaiting service,

The advantages of 1linked storage compared with sequential
allocation are clear when we need to insert a new node or delete a
node in the middle of a list, For example consider the sentence

THE DOG BIT THE MAN
These words could be stored in sequential locations or in a linked

form:

| THE DOG BIT THE MAN

B ——)|DOG BIT s THE ——9|MAN [

Suppose now that we wish to insert extra words to give
THE MAD DOG BIT THE FAT MAN
In the sequential case, some words already in the list must be moved
to make room for the insertions, In a 1long list this is very
inefficient, If linked locations are used then additional items may
be stored in any locations that happen to be available, and

insertions are effected simply by changing a few links,

| | | DOG -——>|BIT THE mx | o

L \

| MAD I FAT

INSTITUTE OF COMPUTER SCIENCE
LIBRARY

PART 1 List Processing PAGE 16

Clearly it is just as easy to delete a node from a linked
list,

One serious disadvantage of linked storage is the time taken
to access nodes other than the first in the 1list, Access to a
random node is gained by linking down from the beginning of the
list, When data is to be accessed at random, sequential allocation
of storage is preferred and the address L[k] of the kth node is

LIo}H(k-1)c where ¢ is the number of words in a node,

Circular Lists

A circular list has the property that its last node links back
to the first instead of storing a terminator in its link field, It
is then possible to access any node in the list, starting at any

point, The following situation is typical:

A T+ —

A circular 1list can be used conveniently as a stack or as a
queue, since a circular list with one pointer to the rear node is
equivalent to a linear list with a pointer to each end,

Some programmers insert a special easily recognisable node
into each circular 1list to mark the beginning and end of the list,
This also has the advantage that the 1list is never empty, The
special node used for this purpose is known as a listhead,
References to a circular list are usually made via the 1list head,
The circular list now becomes

List head

— Tl [h

Pointer

PART I Ligt Processing PAGE 17

List heads are not confined to circular 1lists and can be used as an
'anchor' in any linked ligt, It is sometimes found useful to store
information about a list in its head e,g. the number of nodes on the

list,

Doubly linked lists

For even greater flexibility we can include two links in each

node, to the preceding and the following nodes:

(o] 3 Lo 04 3 a)”’—~\'s v

As in the case of circular 1lists, it is often convenient to include
a list head giving the following typical representation:

List head

/U //// T—F CV TP

If the link fields are named LLINK and RLINK it is clear that if X

is the address of any node in the list then

RLINK(LLINK(X)) = LLINK(RLINK(X)) = X

A doubly linked 1list permits movement backwards and forwards along
the list, Another of its many advantages is the ease with which a
node can be deleted from the 1list, For example the node with

location X may be deleted as follows:

PART I List Processing PAGE 18

Before X
o -
e c e ’e ¢ | »
RLINK(LLINK(X)) :=RLINK(X)
After/,_\ LLINK(RLINK(X)) $=LLINK(X)
/ and the node X is returned
o . o
to the pool of free sgpace.

List structures

A ligt structure is a list in which several fields in a node

may contain cross links to other nodes in the sgtructure,

PART 1 PAGE 19

§1.2 List processing languages

Many 1list processing systems have been developed, both as
independent computer languages and as extensions to existing
languages, to deal with the manipulation of complex data structures.
The most widely used systems have been IPL-V (Newell, Shaw and
Simon, 1959), and LISP (McCarthy, 1059), and more recently SLIP
(Weizenbaum, 1963). Several books have been written about these
systems and we give here only a brief description of those features

which are pertinent to this report.

Storage allocation and collection

An important common feature of list-processing languages is
that storage for data structures is not preassigned but is allocated
dynamically when it is needed. As the pattern of the data, both
structure and contents, evolves, new nodes are acquired and added to
the structure by creating links from the structure to each new node,
This implies some mechanism for allocating nodes as they are
required, Usually this is accomplished by means of a list of

available space (a linked stack) which contains all those blocks

which are not being used, Initially this list contains all storage
locations not occupied by the program, Blocks of store (nodes) are
detached from this for use in building data structures during the
execution of the programn,

Eventually the available space list may be exhausted and the
problem arises of reclaiming any blocks which, after being used,
have become free again, In some systems, notably IPL-V and SLIP, it
is the respongibility of the programmer to return data-blocks to the
available space 1list when they become free, To do this the
programmer mugt keep track of the status of all lists and sublists,

Part of a 1list may be shared with several other 1lists and the

PART 1 List Procossing Languages PAGE 20

structures involved may be so complex that it is difficult to keep
track of them, SLIP deals with this problem by keeping a reference
count in the head of each list., In other gystems such as LISP it is
impossible to keep track of all 1list-cells and no blocks are
returned to the available space 1list until the latter has been
exhausted, Then a 'garbage collection' procedure is initiated which
scans all active 1list structures marking those blocks which are in
use, Blocks which are no longer attached to the aoctive
list-structure will not be marked, When the 1lists have been
scanned, all data blocks are examined and those which are free are
returned to the available space list, At the same time marks are
erased <from the blocks which are s8till in use, as the garbage
collector may be entered several times during the execution of a
program, Details of some algorithmg for automatic garbage

collection are given in §2.4.

IPLY

IPL-V is the assembly code of a hypothetical machine, and,
like most list-processing languages, it is interpreted, not
translated, A node or 1list-word in IPL-V consists of two
address-fields called SYMB and LINK and two 3-bit fields P and Q.
The fields P and Q contain information about the contents of the
fields SYMB and LINK, Usually SYMB contains an IPL symbol and LINK
points to the next node in the 1list, The SYMB field may point to a
subligt, If the LINK field of a node is zero then that node is

taken as the last node in the 1list,

PART 1 List Processing Languages PAGE 21

Programs in LISP are expressed in mathematical functional
notation combined with conditional expressions, The internal
reprosentation of data structures is similar to that in IPL~V in
that each node (or pointer word as it is called in LISP) consists
of two address-size fields called car and cdr, Usually cdr points
to the next node in the list and car points either to a node or to
numbers or strings of characters called atomic symbols, An atomic
symbol is distinguished from other nodes by a special symbol in its

first field.

SLIP

Unlike IPL-V and LISP which are autonomous systems, SLIP
consists of a set of subroutines which can be embedded within a
FORTRAN-type language. This therefore has the advantage that the
usual arithmetic <facilities of algebraic languages are readily
available, The internal representation also differs in that a list
structure in SLIP is both circular and doubly linked. Each node
congists of (a) two link fields called the left and right links, (b)
a 2-bit field which identifies the type of the list item and (c) a
full word field which contains the actual item, This item may be a

full data word or a pointer to a sublist,

Need for flexibility

Often the most natural data form for a particular problem
representation is not the same as the basic form used in the list
processing system which has been selected. The three systems
mentioned above allow no flexibility in the type of node set up, A

programmer may wish to build 1linked structures in which the nodes

PART 1 List Processing Languages PAGE 22

are not all of the same size, to partition nodes into fields in
different ways or even to allow some fields to overlap, It is
always possible to represent a data form using the basic nodes

provided by a system, For example in a LISP-like system the five

field node
ROW COLUMN VALUE COLUMN ROW
INDEX INDEX LINK LINK

could be represented by

| | ROW of COLUMN »] VALUE COLUMN| ROW
| | INDEX INDEX LINK LINK

and a doubly linked 1list could be constructed using pairs of nodes:

LEFT RIGHT
LINK | Lk

Data ii;m
However, this is unnecessarilly complicated and pedagogically it is
better to allow a student to define the structure of nodes required
in his program, This thesis is concerned mainly with the design and
implementation of list processing systems for teaching purposes,
Such a system must be gufficiently flexible to demonstrate the
techniques used in list programming in both high 1level functional
languages such as LISP and low 1level languages which allow the user
to get cloge to the innermost workings of his program, The two
systems considered are LSIX, the author's version of the Bell
Telephone Laboratories low-level list processing language L6, and a

system based on BCL, a general purpose data processing language

which is currently being developed under the direction of D,F,Hendry

PART I List Processing lLanguages PAGE 23

at the University of London Institute of Computer Science, Both are
more flexible than most of the popular list processing systems and
allow the programmer to specify nodes of several different gizes and
structuroq,whioh can be used simultaneously in any program, LSIX is
essentially a low-level system whilst BCL is a high-level language
which allows the use anywhere in the program of symbolic assembly
language instructions for the machine concerned.

A number of extensions have been made, by the author, to the BCL
compiler to prqvide a 1list processing system with most of the
advantages of other high and low-level list processors, In the
extended BCL a programmer is able to define and build his own
list processing system, Examples of demonstration programs used
in an M.Sc, course are given in §2.4. Students have been able to
practise list programming without the restrictions imposed by better
known systems, By simulation of LISP, IPL-V and SLIP in ISIX or BCL
the basic operations which underlie their implementation can be

understood,

PART I PAGE 24

§1.3 LSIX

The most important features which distinguish LSIX from other
list processors are the availability of several sizes of storage
blocks and a flexible means of specifying within them fields,
containing data or pointers to other blocks, Data structures are
built by appropriating blocks of various sizes, defining fields
(simultaneously in all blocks) and filling these fields with data
and pointers to other blocks, Available blocks are of lengths 2**n
machine words where n is an integer in the range 0-7. The user may
define up to 36 fields, which have as names single letters or
digits, The fields may overlap and may be redefined several times
during the execution of a program, For example the field named D
may be defined as bits § through 17 of word number 2 of any block,
Any field which is long enough to store an address may contain a
pointer to another block, The contents of a field are interpreted
according to the context in which they are used,

The LSIX system contains 20 basefields called bugs. The
contents of a bug are referred to by naming the bug (a single
letter), If the bug contains a pointer to a block, a particular
field in that block is referred to by concatenating the names of the
bug and the field, For example, WD refers to the D field of the
block to which W pointas. A <field more remotely positioned from the
bug is referred to by concatenating the names of the bug, the
sequence of pointers and the field., Thus if bug X points to a block
whose B field points to a block whose A field points to a block

whoge D field is to be referenced, the latter is called XBAD,

PART I LSIX PAGE 25

ILSIX Instruction format

In general an LSIX instruction consists of an optional label
followed in order by optional tests, optional operations and an
optional transfer of control, An example given by Knowlton is
| L2 IFNONE (XD,E,Y)(XA,E,0) THEN (XD,E,1)(X,P,XA) L2
which says that
| IFNONE of the following is true: that the contents of XD
| equals the contents of Y or that the contents of
| XA equals O,
| THEN perform the following operations: set the contents
| of XD equal to 1, make X point where the current
| contents of XA point and then go to the instruction
[labelled L2 (the same instruction in this case).
| OTHERWISE no operations are to be performed and control

| goes to the next line of coding,

Other conditions are

| IFALL satisfied IF ALL of the elementary tests are
| satisfied,
| IFNALL satisfied IF NOT ALL of the elementary tests

| are satisfied
| IFANY satisfied IF ANY of the elementary tests are
| satisfied,

| IF and NOT are synonymous with IFALL and IFNONE,

The other instruction type is the wunconditional instruction
consisting of a sequence of operations to be performed. A complete
LSIX program and computer output illustrating the diagnostic aids
available is given in Appendix 1, and Appendix 7 includes a complete

1ist of LSIX tests and operations,

PART 1 LSIX PAGE 26

Three pushdown stores are available in the system for saving
field contents, field definitions and for subroutine calls,

The author's main extensions to the original LSIX are the
generalisation which allows blocks of any size and the provision of

an automatic garbage collector,

PART I PAGE 27

§1.4 BCL

BCL is a general purpose data processing language with special
emphasis on the input and output of structured data (Hendry, 1966).
The structure of the data to be transferred is defined by means of a
group or ordered set of objects (elements).

Consider the sequence

| FIELD IS (OSP,,(EITHER 'T,', TIMEFIELD
| OR BUG, (EITHER FLDNAMES OR NIL,)
| OR INTEGER, ', ', IF INTEGER LE 128, READFIELD),

| 0OsP,, OCT:=0, PLANT)

which appears in Section 2,1, The names TIMEFIELD,BUG,FLDNAMES and
READFIELD are the names of groups of objects defined elsewhere in
the program; INTEGER and OCT are previously defined variables of
type A (i.e. they can store an address or an integer), The first
two words, FIELD 1S, indicate that the sabove sequence is a
definition of the name FIELD, That the rest of it is a
parenthesised structure with commas indicates that FIELD is the name
of a group, The commas between the objects denote juxtaposition and
for alternatives the notation EITHER,..OR,..OR.,.. is used., The
objects within a group may be literals or names, Character literals
are enclosed with primes, numeric literals are obvious, also literal
commands such as x $= z, and group denotations, i,e., unnamed groups,
which are enclosed with parentheses, Names which must of course he
defined somewhere, but can be defined passim, may be names of
variables or groups, Group definitions may be recursive, i,e, the
name of a group may appear in its own list of objects,

A group may be encountered either in input mode or in output

mode, When a group is encountered in input mode the next characters

PART 1 BCL PAGE 28

in the input stream are matched with objects in the group. If the
data in the input stream matches the structure defined it is input,
During the matching process any 1literal commands are obeyed and
groups whose names, appear in the list of objects are called, If at
any point the data fails to match the structure defined in the
current branch then control backtracks to the nearest branchpoint
and attempts to match the next alternative, With the exception that
the input stream pointer is reset, any side effects resulting from
the execution of commands in branches which eventually fail to match
are not undone,

Suppose the object 'FIELD' is encountered in input mode and
the next characterSin the input stream are TA4 , a remote field.
These characters are matched with the objects in FIELD, OSP, is a
built-in group which matches any number (including zero) of spaces.
Next we have a literal group consisting of three alternatives which
are tried in order, The next two characters are compared with 'T,';
matching is successful on T but fails on the period so the first
alternative fails and the second is tried, The group named BUG is
entered, It recognises T as the name of a bug or basefield and
plants its address in the object area, The second object in this
branch is itself a 1literal group consisting of a peir of
alternatives, FLDNAMES and NIL, FLDNAMES matches any number of
field names (A and 4 in this case) and plants in the object area the
addregsses of the corresponding field definitions, NIL, is the
system defined null element, After successfully matching A and 4
with the second branch of the literal group the input process
continues with OSP, which again reads any spaces, The variable OCT
is assigned the value zero and the group PLANT is called to plant

the value of OCT in the object area., Thus as a side effect of the

PART 1 BCL PAGE 29

recognition of the remote field TA4 the following sequence of

pointers is planted in the object area,

i I °

) !

l BUG T Definition Definition Terminator
| of field A of field 4

L ey

A second example is the LSIX read-only field called 64. (an
integral power of two terminated by period)., Attempts to match this
with 'T,' and BUG fail, In the third alternative, INTEGER being a
variable of type A, the integer 64 is assigned to it, then the
period is matched, The condition INTEGER < 128 is satisfied so
READFIELD is called to check that the input integer is an integral
power of 2, The final objects are processed as before and the group
READ is completely matched,

When a group is encountered in output mode the process is that
of assembiing characters for output instead of matching characters
for input, By means of conditions alternative objects may be
gsolected for output, Programs are entered in input mode and are
switched to output mode on encountering the special group name O/P
which is followed by a literal group of objects to be output, On
completion of this 1literal group the system reverts to input mode,

That a BCL program is driven by the structure of the data in
the input stream was the main reason for its use as a compiler
compiler for LSIX, Through the experience gained in this work and
as BCL developed after the first version was produced in 1966 it
became clear that BCL itself is suitable for teaching 1list
processing techniques, Many of the basic operations required were

already built into the language, It is possible to define nodes

consisting of any number of <fields which may store numbers,

PART 1 BCL PAGE 30

addresses, or character strings of any length, A student can define
the basic 1list-processing functions and define his own storage
allocation and collection mechanism including an automatic garbage
collector, A number of facilities such as returns from the middle
of a group and the provision of functions with parameters have been
implemented by the author to provide a teaching system within which
all levels of 1list-processing are possible, Details of these
extensions to the BCL compiler are given in Appendix S . The use of
BCL as a list-processor is described in section 2.4 in which BCL
programs are given for the solution of a number of problems
including differentiation of a polynomial expression stored as a
binary tree, a solution of the classical transportation problem
using orthogonal lists and updating =a tree structured file
directory. Groups of commands for automatic garbage collection are

also described,

PART 11

The Implementation of List Processing Systems

PART II PAGE 32

§2.1 The Definition of LSIX in BCL

In this section the syntax of LSIX is defined in BCL,
Embedded in the syntax definitions are commands, including calls to
routines, which are obeyed during the matching of input LSIX source
statements, For the reader who has difficulty in following the
complete definition of I1ISIX and who would prefer at the first
reading to separate the syntax from the semantics, a definition of
the syntax only is given in Appendix 2, The semantic commands
generate a linked list of object code in the object area of the
store, In LSIX the newline character is the instruction terminator
and programs are analysed line by line, Each record in the linked

ligt corresponds to a single LSIX instruction,

Format of object code

The general form of the data to be analysed and the format of
the object code is illustrated by the complete LSIX program given in
Appendix 1, It will be seen from the object 1listing for that
program that each record consists of four halfwords of 1links and
descriptive information, followed by information of variable length
representing elementary tests and operations, A typical record is

that representing line 15 of the program i,e.

BACK IF (XB,L,XDB) THEN (XB,IC,XDB) (X,D) BACK

The object code generated for this instruction is described in

detail below.

PART 11 The Definition of LSIX in BCL PAGE 33

8
"
(%

Remarks

8 description word consisting

of five fields:

(1) the condition type,

3 represents IF;

(2) the number of elementary
tests, 1 in this case;

(3) the number of elementary
operations, 2 in this case;

(4) the type of transfer of
control, 1 represents
normal transfer;

(3) a flag to distinguish
description words from
other information,

Address of next instruction

in sequence, line 16 in this

case,

Address of first elementary

operation in current record,

This field is not used for

unconditional instructions,

The line number (15).

Contents
3 0102017

(o]

[

00112244

00112140

— e S S Gm—n CEET N GEE T R e Gmm G G e SV e AN G SIS ChE S S—
. . S G D GEED S G G TS D ST G S M W S G S GED S = e
D IS T CUER GHm I G RIS GELD SN D S G G G G CHED GENS MR GHE GENS S e

00000170

Words 4-11 contain information representing the test (XB,L,XDB),

I 4 | 00000040 | Test code, 4 represents

| | | 'less than',

Il 5 | 00101234 | Address of bug X,

i 6 | 00100260 | Address of definition of field B,
| I 4 | 00000000 | Zero terminator of the sequence

| | | of addresses representing XB,

|1 8] 00101234 | Address of bug X,

I 9 | 00100320 | Address of definition of field D.
| 10 | 00100260 | Address of definition of field B,
| 11 | 00000000 | Terminator of the sequence

| | I

representing XDB,

The representation of elementary operations is similar to that
for tests but in addition to the operation code the number of
operands also is stored., Thus (XB,IC,XDB) is represented by words
12 to 20 inclusive (see Appendix 1) and (X,D) , which is an
abbreviation for (X,P,XD), is represented in its full form by words
21 to 27, The final word of this record, word 28, contains the
address to which control is transferred after execution of the

elementary operations, i.e., the address of line 15,

PART I1 The Definition of LSIX in BCL PAGE 34

Definition of LSIX

The following program compiles object code, the format of
which was described in the preceding paragraphs. Declarations of
variables and the details of some routines are not included here but
with the aid of the detailed comments on most of the groupg,the
reader should have no difficulty in following the program,

It is convenient to define <first an ‘indefinite' group in
BCL, namely

Misc(?) Is (A COOF,A PLUS1,A PLUS2,A PLUS3,A PLUS4,A PLUS3)

The variables COOF,PLUS1,PILUS2, etc, are defined as type A
i,e, they can store either an address or an integer., Together they
constitute the group named MISC, The query indicates that MISC is
an indefinite group i,e, that any variables declared within it are
allocated relative addresses, or offsets, and not absolute
addresses., Thus COOF is an offset of zero, PLUS1 an offset of one
halfword, PLUS2 two halfwords etc, Wé can think of them as defining

a node consisting of six fields

| COOF PLUS1 | PLUS2 | PLUS3 | PLUS4 PLUSS

As described in Part I, a field name is meaningless on its
own and must always be used as an offgset from some specified base,
Thus if PTR points to the first word of a node COOF(PTR) refers to
the first (half)word of the node, PLUS1(PTR) to the second and so
on, The offsets defined in the group MISC are used frequently in
both the definition which follows, and in routines associated with
the execution of LSIX,

When LSIX was first defined in BCL, labels and GO TO commands

were not available in groups and several operations such as the

PART I1 The Definition of LSIX in BCL PAGE 3§

dictionary search have been implemented recursively to overcome this

problem,

Main program structure

| LSIX IS (INITIALISE, LSIXSTATS)
| LSIXSTATS IS (LINE $= LINE+1,

[(EITHER INSTR

I OR DIRECTIVE

l OR NONMATCH , GARBAGE) , LSIXSTATS)

The routine INITIALISE initialises certain variables, such as the
object area pointer, the dictionary area pointer and storage
locations for bugs and <field definitions, before compilation
commences, An LSIX program is defined as ISIX statements which in
turn are defined recursively as instructions or directives followed
by other statements. In the event of failure to recognise an
instruction or a directive, NONMATCH outputs a suitable message and
GARBAGE skips all characters up to the end of the line, Compilation
of an LSIX program is terminated by the directive '*ENTER', The
variable LINE contains the 1line number, STARTP, which is used
below, contains the object area address of the start of the current

line,

| DIRECTIVE IS (OSP., EITHER '*LSIX', OPTIONS,
| OBJECTP$= STARTP

I OR **ENTER' , LS IXEND)

PART II The Definition of LSIX in BCL PAGE 36

| OPTIONS IS (OSP,,(EITHER 'SOURCE',TRACEDATA
| OR 'LIST!,LISTs=1

| OR UNTRACEDATA),

| (EITHER SEP,OPTIONS

| OR NLS))

| SEP 1Is (osp,, ',',0SP,)

OSP, is a built-in group for matching optional spaces, Other
built-in groups include SP, for a single space, NL, for a newline
and NIL, the null group, The options SOURCE and LIST following the
directive *LSIX ask for source and object 1listings respectively,
*ISIX without any options inhibits source 1listing, TRACEDATA
switches on the data trace 80 giving source listing commencing with
the next line of input and if LIST=1, when ISIXEND is entered at the
end of compilation, then an object 1listing is given in octal before

entering the program at the first instruction,

| INSTR IS (INSTRSTRT, OSP,,
| EITHER CONDNL

| OR UNCONDNL

| OR LABEL, (EITHER CONDNL
| OR UNCONDNL
| OR EOL))

Any instruction may be labelled, The label setting is dealt with by
the group LABEL which is defined below, In LSIX the GO TO <label>
command is specified by the occurence of a label name at the end of
an instruction., Thugs if an LSIX instruction consists only of a

label name that name is to be translated as a 1label reference and

PART II The Definition of ISIX in BCL PAGE 37

not a label setting, The group LABEL deals with this case also,
EOL matches the instruction terminator and plants descriptive

information,

| INSTRSTRT IS (STARTP:=OBJECTP,OBJECTP$=0OBJECTP+2,
| COND$=0,NT$=0,NO$=0,GOTOFIAG?=0,

| PLUS2(STARTP) $=0)

INSTRSTRT assigns to STARTP the address of the first word of the
next record to be constructed in the object area, it advances the
object pointer by four (half)words and initialises the condition
type, number of tests, number of operations, the transfer flag and

word number 2 of the new record.

Types of ingtruction

| CONDNL IS (CONDITION,TESTS,
I (EITHER 'THEN®,OPERATNS OR NIL,),

| TRANSFER, EOL)

| UNCONDNL IS ((EITHER °'THEN' OR NIL,), OPERATIONS,

I (EITHER TRANSFER OR NIL,),EOL)

The 1literal 'THEN' which may precede the 1liat of elementary
operations in an unconditional ingtruction is included for

compatibility with the original 1O,

PART I1 The Definition of LSIX in BCL PAGE 38

Types of condition

When a condition is found its type is noted in the variable COND,

| CONDITION IS (EITHER 'IFANY', COND t= 1

| OR *IFNALL', COND 3= 2
I OR 'IFALL', COND 3= 3
| OR 'IFNONE', COND 3= 4
1 OR ‘IF', COND 3= 3
I OR 'NOT', COND 3= 4)

Analysis of tests

TESTS is a series of elementary TESTs defined in the usual manner,
During execution, the conditions IFANY and IFNALL may be satisfied
before all of the elementary tests have been performed, in which
case control is transferred immediately to the first operation., As
each test takes space in the object area and the number of tests is
unknown, when no more tests are found, the address of the first
operation is planted, by TESTSEND, in PILUS2(STARTP) the field
reserved for this purpose by INSTRSTRT, Test codes and operand
types are assigned to K and J resgpectively and at the end of each
test, TESTEND plants the value of K in the object area in a location
reserved by TESTSTRT., TESTEND also keeps a count of the elementary

tests in NT, (note the difference between TESTSEND and TESTEND),

| TESTS IS (OSP.,TEST,EITHER TESTS OR OSP,,TESTSEND)

PART 1II The Definition of LSIX in BCL PAGE 39

| TEST IS ('(',TESTSTRT, FIELD,SEP,

| (EITHER(EITHER ‘E',K:=1

| OR 'N',K3z2

| OR 'G?',K1=3

| OR 'L',K3z4),
| (EITHER '0',J:=2

| OR *H',J:=3

| OR J3=0)

! OR (EITHER '0',K:=§
| OR 'Z',K2=0),

I (EITHER 'D',J:=1

| OR 'HY,J3=3
| OR Jiz4)
| OR 'p*,K3=7 ,J31=0),

This completes the firgt argument and the predicate, Matching
continues with the separator and second argument, SEP is not used
for the next separator as any spaces following the comma are

significant in a 'hollerith' literal.

| osP.,',",(EITHER IF J=0,(EITHER FIELD

| OR DLITERAL)
IF J=1, DLITERAL

IF J=2, OLITERAL

IF J=3, HLITERAL

8 8 8 8

IF J=4, (EITHER FIELD
| OR OLITERAL)),

| ')*, TESTEND)

PART II The Definition of LSIX in BCL PAGE 40

Literal operands and FIELD are defined below,

| TESTSTRT IS (TESTP$=OUBJECTP,OBJECTP$=OBJECTP+ONE)

| TESTEND IS (NT $= NT+1, COOF(TESTP):=K)

| TESTSEND IS (PLUS2(STARTP) $= OBJECTP)

Analysis of operations

In general, operations have either three or four arguments the
second of which is the mnemonic function code but there are two
special cases, (DO, symbol), the subroutine call, and (a,d), an
abbreviation for (a,P,all), with only two arguments, The analysis
of an operation is performed in two passes during the first of which
no object code is planted, On the first scan a shallow analysis
determines the operation code (K) and the number of operands (NA).
The matching process is then deliberately failed by using the group
REJECT, This technique of deliberately failing an alternative is
commonly used in BCL programming as a means of scanning the same
data several times, Information picked up during the shallow
analysis is used in the deep analysis on the second pass, OPSTART
sets K and NA to zero and reserves locations for their final values
which are planted by OPEND when the operation has been matched,

OPEND also keeps a count of the operations in the variable NO,

| REJECT IS (IF 1=0)

| OPERATNS IS (OSP, ,OPERATN,EITHER OPERATNS OR OSP,)

OPERATNS is defined in the wusual way as a series of elementary
operations. In the next group, OPERATN, the first alternative is a

shallow analysis which attempts to match a two argument operation,

PART II The Definition of LSIX in BCL PAGE 41

if it succeeds NA is set to 2 and a deep analysis performed, The

group ARG skips all characters except comma and right bracket,

| OPERATN IS ('(', OPSTART, OSP,,

| (EITHER ARG, SEP, ARG, ')', NA:=2, REJECT

Shallow analysis for two argument operations completed, we go on to

deep analysis of two argument operations if NA=2,

| OR IF NAz=2, (EITHER 'DO',SEP,(EITHER 'STATE',K:=41,NA3=0
| OR 'DUMP',K$=42,NA2=0
i OR SYMBOL,K3$=35,NAs=1
| OR (EITHER FIELD,SEP,REJECT

I OR FIELD, SEP,

| OBJECTP $= OBJECTP - ONE,

| FLDNAMES ,K3$=12)),0sP,,')"

This completes the analysis of two argument operations,
'STATE' and 'DUMP' are gsystem subroutines. SYMBOL is defined below,
Note the special technique for dealing with the operation (a,l\)
which must be expanded to its full form (a,P,a/l) in the object
area. For example (AB,CDE) is an abbreviation for (AB,P,ABCDE),
Thus the field defined by AB muast be matched first as the first
operand and then as the first part of a sequence of addresses
specifying the second operand, This is achieved by first matching
FIELD, planting object code for the first operand as a side effect,
and then failing the match using REJECT, so that in the next
alternative FIELD matches the same sequence of names again and is

followed by SEP, FIELD plants a gero terminator., This is undone by

PART 11 The Definition of LSIX in BCL PAGE 42

stepping back the object pointer by one (half)word
(OBJECTP$=UOBJECTP-ONE), Finally the remaining sequence of names is
matched by FILDNAMES and the operation code set to 12 which
corresponds to the function P,

The next alternative deals with the shallow analysis of
operations having more than two arguments, Note that in the

following analysis NA is set to the number of operands.

| OR ARG, SEP,OPCODE, SEP,ARG, NA $=2, SEP,ARG,NA$=3,
l (EITHER IF K=10,K:=36
| OR IF K=23,K:=36

| OR IF K=35,K$=36),REJECT

This completes the shallow analysis. Certain ambiguities
arising in OPCODE, which deals with the function code and assigns
values to K (operation code) and J (operand type), are removed once
the number of operands is known,. For example, DB with two operands
means 'convert from decimal to binary' but with three operands it is
'‘define field B ', Values of K are then corrected, if necessary,
before going on to the deep analysis, In the deep analysis which
follows, OPCD reads the function code, OCT is a working variable and
PLANT plants the wvalue of OCT in the object area, A table of

operations with the corresponding values of K igs given in Appendix

7

| OR IF K LE 29,FIELD,SEP,OPCD,OSP,,*, "
| ,(EITHER IF K LE 27,
| (EITHER IF J=0, (EITHER FIELD

| OR DLITERAL)

| OR IF J=1, DLITERAL

PART II

| OR

| OR

| OR

The Definition of LSIX in BCL PAGE

OR IF J=2, OLITERAL
OR IF J=3, HLITERAL
OR IF J=4, (EITHER FIELD
OR OLITERAL)
OR IF J=§, FIELD), ')!
OR IF K GT 27,

(EITHER FIELD OR DLITERAL),

(EITHER IF NA=3, ',',

OR

(EITHER IF J=1, DLITERAL

OR IF J=3, HLITERAL
OR IF J=4, (EITHER FIELD

OR OLITERAL))
NIL,), ")!

IF X 1E 31, IF K GT 29,

(EITHER FIELD OR DLITERAL),

* ', 0sP,,0PCD,OSP,, ',* ,

(EITHER IF J=3, PRPUHLIT

OR

OR

FIELD

OLITERAL), ')!

IF K=32,FIELD,SEP,OPCD,SEP,FLDNAME,OCT$=0,PLANT,

(EITHER IF NA=3, ',', (EITHER FIELD

OR

OR DLITERAL)

OsP,), ')°

IF k=33, (EITHER 's' OR 'R', Kiz43),SEP,'FC',

SEP,FIELD, ')', NA:=1

IF K=34, (EITHER 's' OR 'R',K:x=44),SEP,'FD',

SEP,FLDNAME,OCT$=0, PLANT,0SP., *) ' ,NAs=1

IF K=35, SYMBOL,SEP,'DO',SEP,SYMBOL,OSP,,')*

PART II The Definition of ILSIX in BCL PAGE 44

| orR IF k=36, (EITHER FIELD OR DLITERAL),

| SEP, *D' ,FLDNAME ,OCT$=0, PLANT,

| SEP,(EITHER FIELD OR DLITERAL),

I SEP,(EITHER FIELD OR DLITERAL),')?!
| OR IF K=37,('**,OLITERAL,SEP,OPCD,SEP,DLITERAL,

I SEP, '*',OLITERAL), ')

**? followed by octal digits is the LSIX representation of an octal

address in the Atlas computer,

| OR IF k=38,FIELD,SEP,OPCD,SEP,
| (EITHER FIELD OR DLITERAL),
I (EITHER IF NA=3,SEP,FIELD OR NIL,),")*,),

| OPEND)

The efficiency of the group OPERATN could be improved in the
deep analysis (when K is known) by using a switch, with K as control
variable, to select the appropriate branch, so avoiding the tests IF
K=32,IF K=33, etc, However, this facility was not available at the

time of this first implementation,

| OPCODE IS (EITHER OPCD,OPSEARCH,IF K NE 100
| OR 'D?,(EITHER LETTER OR DIGIT),

| K:=36, J:=6)

The second argument of an operation is usually the mnemonic
function code, During the shallow analysis this is read into the
variable OPCD and then 1looked up in a table of operations by

OPSEARCH (a binary search) which returns values of K and J, In the

PART II The Definition of ISIX in BCL PAGE 45

event of failure to find the code in the table K is set to 100, The
code D for field definitions is dealt with separately, The next

gsoction is partly in Atlas Machine Code.

| OPSEARCH IS (WS13z=32, POINTER:=POINTER+WS1, OPSRCH)
| OPSRCH IS (163,ws1,0,0, ¢ Halve Wsi,
| 127,ws1,0,*00000770, $: Clear octal fraction,
I (EITHER IF OPCD=COOF(POINTER),

| OCT$=PLUS1(POINTER),

| 165,3,0CT, *7,

| 125,J,0,0, $: Get J.

| 165,K,0CT, *00000770, 83 Get K.

| OR IF WS1 NE O,

| (EITHER IF OPCD GT CUOF(PoiNTER),
| POINTER$=POINTER+WS1

| OR POINTER$=POINTER-WS1),

| OPSRCH

| OR K$=100))

OPSEARCH starts by setting a POINTER to the middle of an ordered
table of operation codes and the corresponding values of K and J and
then calls OPSRCH which is a recursive binary search, Comments in

BCL are preceded by double colon and terminated by a newline,

PART II The Definition of LSIX in BCL PAGE 46

Types of field

| FIELD IS (OSP,,(EITHER 'T', TIMEFIELD

| OR BUG, (EITHER FLDNAMES OR NIL,)
| OR INTEGER, ', "',

I IF INTEGER LE 128,READFIELD),

| OSP,, OCT$=0, PLANT)

The group FIELD was described in detail in section §1.4.
TIMEFIELD plants the address of the system defined field 'T' in
which time is stored. READFIELD checks that the integer read into
the variable INTEGER is an integral power of 2 and plants the field
address in the object area, The LSIX read-only fields are called

'Tt" '1." '20', '40', eoney '1280'0

| BUG IS (LETTER, BUGADDR)

BUGADDR computes and plants the address of the specified bug,

| FLDNAMES IS (FLDNAME, EITHER FLDNAMES OR NIL,)

| FLDNAME IS ((EITHER LETTER OR DIGIT), FLDADDR)

FLDADDR computes and plants the address of the definition of the

specified field.

| LETTER IS (LTRTEST,LTR)

| DIGIT IS (DGTEST,DGT)

LTRTEST and DGTEST look ahead at the next character in the input

PART 11 The Definition of LSIX in BCL PAGE 47

stream and test if it is a letter or a digit respectively, If it ig)
then the character is input to either LTR or DGT each of which is
defined as a one character variable, These tests leave in OCT a
character value which is used by FLDADDR to determine the address of

the appropriate field definition,

Types of literal

| DLITERAL IS (OSP,,WS1,STCONST,PIANT,

| OCT:=0,PLANT,OSP,)

Decimal literals (positive integers in the range 0,2*%24 -1) are
assigned to the variable WS1, STCONST enters the constant in the
constants table and returns with its address in OCT which is then

planted in the object area by PILANT,

| STCONST IS (CONSTP$=CONSTP+ONE,
I COOF(CONSTP) :=Ws1,

I OCT$=CONSTP)

| OLITERAL IS (OSP,,WS1$z0,COUNT:=8,0DIGITS,STCONST,

| PLANT,OCT$=0,PLANT,OSP,)

Octal integers of not more than eight digits may be assembled and

stored in the constants area. WS1 is a work space,

| op1GITS IS (DIGIT, IF DGT LT 8,
| COUNT $=COUNT-1,ASMBLODGT,
| EITHER IF COUNT GT O, ODIGITS

I OR NIL,)

PART II The Definition of LSIX in BCL PAGE 48

DIGIT inputs a single decimal digit in integer form to the variable
DGT. ASMBLODGT is a group of machine orders which is functionally
equivalent to WS1:=8*WS1+DGT, The group ODIGITS is terminated
either on finding a non octal digit or after reading eight octal

digits,

| HLITERAL IS (WS1:=0,COUNT:z=4,HCHARS,STCONST,PLANT,

| OCT3$=0,PLANT)

HCHARS reads up to four characters (Atlas inner set) not including
newline, comma and right bracket, packs them (right justified) in
the work space WS1 whence they are picked up by STCONST and stored
in the congtants area, The characters comma and right bracket are
acceptable if written as (,) and ()) respectively, otherwise they
may be written in the equiyalont octal form and read by OLITERAL,
The restriction to four characters is removed in the case of the
output operations PRH and PUH using the group PRPUHLIT which deals
with literals to be printed or punched, the length of a character
string for output is 1limited only by the length of a 1line,
Allowable characters are stored, one per (half) word in the constant
area, A typical record for the PRH operation is shown in the object
listing (LINE 2) in Appendix 1, The three operands set up are

| (2) the number of characters to be output,

I (b) the address of the first character,

I and (c) the length of the stored character string,

PRPUHLIT begins by switching to a character set which allows all
characters except comma, close bracket and newline; it then counts
and stores the allowable characters which are input one at a time by

the group CHARS,

PART II The Definition of LSIX in BCL PAGE 49

| PRPUHLIT IS (CHSET$=HCHSET,

| OCT$=CONSTP+ONE, PLANT

| OCT:=0, PLANT,

l CHARS)

| CHARS IS (EITHER CHAR, STCONST,

| COUNT$=COUNT+1,

| CHARS

I OR WS13=COUNT, STCONST, PLANT,
| OCT:=0, PLANT,

I NA$=NA+1)

CHAR inputs a single character and stores it right justified in WS1i,
STCONST stores it in the constants area. When the last allowable
character has been read the character count is stored and its
address planted in the object area. Finally the number of operands

(NA) is increased by one,

labels, label references

IABREC(?) IS (A DICLINK, 8C NAME, A ADDR, A REFADDR)

LABREC defines a label record which consists of four fields:

| (a) a link to the next label record in the name 1list,
| (b) the label name,

| (c) the object area address of the label,

| and (d) a link to any forward references that occur before

| the label is set,

Here again we use the concept of an indefinite group in BCL to
define the structure of a record which consgists of several fields,
The field names DICLINK, NAME, ADDR and REFADDR, associated with

LABREC, are used as selector functions,

PART II The Definition of ISIX in BCL PAGE 50

FWDREF(?) IS (A LINK, A ADDRESS)

FWDREF defines a forward reference record of two fields the first of
which is a link to the next forward reference for this label and the
second is the object address at which the address is to be planted

when the label is set.

| LABEL IS (IBL, JUNK, SP,, OSP,,

] EITHER NLS, GOTOFLAG:=1, REJECT

| OR IF GOTOFLAG=0, LABELSET
| OR IF LBL = 'DONE', GOTOFLAG:=2
| OR IF LBL = 'FAIL', GOTOFLAG:=3

| OR IF LBL = 'END' , GOTOFLAG:=4

l OR LABELREF)

Any combingtion of alphanumeric characters terminated by a
space is accepted as a label, Only the first eight characters are
significant, these are assigned to the character variable LBL,
Ingignificant characters are skipped by JUNK which is defined below,
A label name followed by newline is interpreted as a reference to a
label, i,e, it represents a transfer of control, and GOTOFLAG is
set, System transfers DONE and FAIL are returns from subroutines

and END is a logical end of the program,

| JUNK IS (EITHER JNK, JUNK OR NIL,)

JNK ig a character variable to which insignificant characters are

assigned,

PART II The Definition of LSIX in BCL PAGE 51

| MATCH IS (EITHER IF CURRENTZO,

| SETUP(LABREC, CURRENT, DICTP),
| DICLINK(CURRENT) := DICP,

l DICP$=CURRENT,

| NAME(CURRENT) s= LBL,

| ADDR(CURRENT) = 0,

I REFADDR(CURRENT) 3= O

| OR IF LBL = NAME(CURRENT)

| OR CURRENT 3= DICLINK(CURRENT), MATCH)

MATCH compares LBL with entries in the labels dictionary. Before
entry the pointer variable CURRENT points to the last entry in the
dictionary, If CURRENT is zero the name in 1IBL is not in the
dictionary so a new label record is set up by the system defined
group SETUP which allocates space from an area pointed to by DICTP
and assigns the address of the new record to CURRENT, The record is
linked on to the labels 1list, in which DICP points to the last
entry, and the label name recorded, Eventually MATCH is terminated

with CURRENT pointing to the record required.

| LABELSET IS (CURRENT 3= DICP, MATCH,

| EITHER IF ADDR(CURRENT) = O,

| ADDR(CURRENT) $= STARTP,

| (EITHER IF REFADDR(CURRENT) = O

| OR NCURRENT 3= REFADDR(CURRENT),
| REFADDR(CURRENT) 3= O,

| PLUGLIST)

| OR O/P('LABEL ', LBL, 'SET TWICE'))

PART II The Definition of ILSIX in BCL PAGE 52

STARTP is the address of the current object code record., When a
label is set any forward references are plugged by PLUGLIST,

NCURRENT is a pointer to a forward reference record,

| PLUGLIST IS (COOF(ADDRESS(NCURRENT))3=STARTP,
| NCURRENT $ =L.INK(NCURRENT) ,
I EITHER IF NCURRENT = O

| OR PLUGLIST)

The following groups deal with label references,

| TRANSFER IS (OSP,, LBL, JUNK,

I EITHER IF LBL = 'DONE', GOTOFLAG!=2

I OR IF LBL = 'FAIL', GOTOFIAG3=3
| OR IF LBL = 'END' , GOTOFLAG:=4
| OR LABELREF, GOTOFLAG3$=1)

| LABELREF IS (CURRENT $= DICP, MATCH,

| OCT := ADDR(CURRENT), PLANT,

| EITHER IF ADDR(CURRENT) = O,

| SETUP(FWDREF, NCURRENT,DICTP),

| LINK(NCURRENT) $ =REFADDR(CURRENT),
| ADDRESS (NCURRENT) $ =OBJECTP,

I REFADDR(CURRENT') $=NCURRENT

i OR NIL,)

If a label has not been set, a record of the forward reference is

'*'SETUP!' and inserted in the pluglist.

PART II The Definition of LSIX in BCL PAGE 53

Subroutines are entered by means of the (DO, symbol) operation where
the symbol is the label, or name, of the entry point, The two
system subroutines 'STATE' and ‘'DUMP' do not use the normal

subroutine entry and return,

| SYMBOL IS (LBL, JUNK,
| EITHER IF LBL = 'STATE', Ki=41, NA:=O
] OR IF IBL = 'DUMP! , K1z=42, NA:=O

I OR IABELREF, OCT$=0, PLANT)

Some miscellaneous groups

| PLANT IS (COOF(OBJECTP) 3= OCT,

| OBJECTP $= OBJECTP + ONE)

Information stored in OCT is planted in the object area by PIANT and
the object pointer is advanced one word,

| EOL Is (OSP,, NL., EITHER EOL OR INSTREND)

An LSIX instruction is terminated by one or more newlines, INSTREND
packs descriptive information - COND, NT, NO and GOTOFLAG, into a
description word which is stored in the first word of the current
object record,

| NLs 1s (OsP,, NL,, EITHER NLS OR NIL,)

NLS is similar to EOL but no information is planted,

| LSIXEND IS (FINISH$=OBJECTP, OBJECTP$=START,

| (EITHER IF LIST=1, OBJECTPRINT

| OR NIL.), INTERPRET)

Compilation is completed and, if requested, an object listing is
output in octal, before the interpreter is entered and execution

commenced,

PART II PAGE 54

§2.2 The execution of an LSIX program

During the analysis and recognition of LSIX source
instructions descriptive information is planted in the object area.
For each source ingstruction thig information includes a description
word, the address of the next description word in sequence, i,e. the
start of the next instruction, the address of the first operation in
the current instruction and the line number, The description word
gives the type of instruction (conditional or unconditional), the
number of tests, the number of operations and the type of transfer
of control (normal transfer, subroutine return) if any. This
information is packed as follows
| Bits 0~2 | Type of instruction | O for unconditional
I I | 1 - IFANY
| | | 2 - IFNALL
| | | 3 - IFALL, IF
| | | 4 - IFNONE, NOT
| Bits 3-8 | Number of Tests lo-63
| Bits 9-14 | Number of Operations | 0 - 63

| Bits 15-20 | Type of Transfer | 0 for no transfer

normal transfer

| | 11

| | | 2 - normal subroutine exit (DONE)

| | | 3 - fail subroutine exit (FAIL)

| | | 4 - logical end of program (END)

For each test and operation is stored the test or operation
code (values of K in Appendix 7) and the addresses of operands, The
outline flow diagram in Fig,II.2.1 describes the operation of the

main interpreter routine which is written in BCL,

PART I1 The Execution of LSIX in BCL PAGE 55

Each operand, whether a base field (bug), remote field or a
constant (decimal, octal or hollerith 1literal), is specified by a
sequence of one or more addresses terminated by a zero., For example

the remote field WAD is represented by the sequence of pointers

| L. I | °

' Lo

| Bug W Definition Definition Terminator

{ of field A of field D

and the basefield X by

I | °

| l

| Bug X Terminator

Congtants are stored in a constants area and referred to by
their addresses,

A field is defined at run time by its word number, left-most
bit and right-most bit, For example the operation (2,06,3,17)
defines field 6 of any data block as bits 3 through 17 of word
number 2, The execution of such an operation results in the setting
up of a field definition, including a 24 bit mask, which is used by
the routines for fetching and storing the contents of fields,
Because of the complete generality of field definitions no attempt
is made to use the few special hardware facilities for handling
special cases, The only special case which might have been worth

detecting is the field which spans the full 24 bits of the word,

PART II The Execution of LSIX in BCL PAGE 56

Three general field handling subroutines FINDFIELD, GETFIELD and
STOREFIELD are used during the execution of fetch and store
operands,

Any field in the data structures may be specified by two
pointers one to the first word of the block containing the field and
the other to the definition of the field concerned. Basefields and
constants are referred to by the first of these pointers and the
second is conventionally zero. The routine FINDFIELD given below
determines, from a sequence of addresses in the object area, the

values of the two pointers specifying an operand,

PART II The Execution of LSIX in BCL PAGE 57

Subroutine to find a field

On entry OBJECTP points to the first of a sequence of
addresses in the object area., The routine is terminated when the
location to which OBJECTP points containg a zero i.,e, when
COOF(OBJECTP) = O, On exit, for a remote field WREG1 points to the
block containing the gpecified field and WREGZ to the definition of
the field; for basefields and constants WREG1 points to the

basefield or constant and WREG2 is zero,

| DEFINE R FINDFIELD

| DO

| WREG2 =0

| WREG1 $= COOF(OBJECTP) Fetch first address,
| OBJECTP 3$= OBJECTP + ONE Advance object pointer by one word,
| IF COOF(OBJECTP) = O GO TO END If next address is zero go to end,
| WREGL $= COOF(WREG1) Get address of block to which bug
points,

| MORE) WREG2 $= COOF(OBJECTP)

| OBJECTP 3=

| IF COOF(OBJECTP) = O GO TO END

| GETFIELD

| GO TO MORE

| END) OBJECTP := OBJECTP + TWO

| RETURN

| END

OBJECTP + ONE

Get address of next field definition,
Advance object pointer,

If next address is zero go to end.
Routine to get contents of field
specified by WREG1 and WREG2,

Advance object pointer to next item
of information (i.e, step over

zero),

PART II The Execution of LSIX in BCL PAGE 58

Subroutine to fetch the contents of a field

The subroutine FINDFIELD calls GETFIELD which is defined
below, GETFIELD fetches the contents of the field which is
specified by the two pointers WREGL and WREG2 in the usual way. On
exit WREG1 contains the contents of the specified field right
justified (not all fields are 24 bits in width) and WREG2 is

unchanged,

| DEFINE R GETFIELD

| DO

| IF WREG2 NE O GO TO REMOTE If not basefield or constant go

| WREG1 $= COOF(WREG1) to remote, otherwise get contents
] RETURN and return.

| REMOTE) WREG1 $= WREGL + WORD(WREG2)

| Address of word containing field,

| WREGL $= COOF(WREG1) Get word including field.,
| WREG3 := MASK(WREGZ2) Get mask from field definition,
| 127,WREG1,WREG3,0 Machine order to get field from word,

| SHIFT 1= 23 - RBIT(WREG2) Determine any right shift required.

| IF SHIFT = 0 GO TO END If right justified go to end,
| 1342,WREG1,SHIFT, O Right justify,
| END) RETURN Return with field in WREG1,

| END

PART II The Execution of LSIX in BCL PAGE 59

Subroutine to store a field

The item to be stored is held in the variable OCT, The field
in which the item is to be stored is specified in the usual way by

WREG1 and WREG2,

| DEFINE R STOREFIELD

| DO

| IF WREG2 NE 0 GO TO REMOTE WREG2 is zero for bagefields,
| IF WREG1 LT BUGBASE GO TO ERROR Protect read only fields,

| COOF(WREG1) = OCT Store item in basefield,

| RETURN

| REMOTE) SHIFT 1= 23-RBIT(WREG2) Determine necessary shift,

| 1343,0CT,SHIFT,O Shift operand into position,
| WREG3 3= MASK(WREG2) Get mask from field definition,
| 127,0CT,WREG3,0 Clear most significant bits if

1 item too long,

| WREG1 := WREGL + WORD(WREG2) Address of word containing field,

] WREGZ2 3= COOF(WREG1) Fetch present contents of word,
| 126,WREG3,0,*77777777 Complement mask.

| 127,WREG2,WREG3,0 Clear field to receive new item,
| 167,WREG2,0CT,0 Write item into specified field.
| COOF(WREGL) := WREG2 Store field.

| END) RETURN

| ERROR) O/P ('ATTEMPTING TO WRITE TO READ FIELD') Error message.,
| RETURN

| END

PART 11 The Execution of ISIX in BCL PAGE 60

The efficiency of LSIX depends largely upon the efficiency of
these three field handling routines which are used for all operands,
It is important to make use of any special hardware facilities which
exist for shifting operands and the LSIX user is encouraged to
define fields which may be handled efficiently by the hardware of
the machine on which the program is to Se run, In his original L6
compiler for the IBM 7090 computer, Knowlton recompiles at run time
the routines to fetch and store operands each time that a field is
defined or redefined, making use of special hardware facilities
where possible, On the Atlas computer the only shift instructions,
apart from the inefficient extra-codes, are the circular shift one
bit right and circular shift gix bits left, For this reason it was
decided to use the same three general field handling routines for
all operands. The facility for defining and redefining general
fields in L6 is the main justification for the interpretive nature

of the Atlas LSIX compiler,

Compilation of an ILSIX program is terminated when the
directive *ENTER is recognised, If the LIST option has been
specified by means of an earlier directive, *LSIX LIST, then the
object program is listed in octal by calling the routine STACKPRINT
(see Appendix 3). A typical object 1listing is shown in the
complete example of an LSIX program in Appendix 1., On entry to the
routine INTERPRET the first operations throw away those parts of the
compiler which are no longer required, the object pointer is

initialised and execution commences.

PART I1I The Execution of LSIX in BCL PAGE 61

The interpreter and associated routines

The operation of the interpreter routine is described in
outline by the flow diagram in Fig.II.2.1. The <following anotated
BCL program is a more detailed specification, In generaljtosts and
operations involve two operands but some involve more than two., The
routines FINDFIELD and GETFIELD described in the previous section
are used to locate and fetch the operands., The address and value of

the first operand are assigned to the variables

} BP1 - pointer to block
| FP1 -~ pointer to field definition (zero for basefields
] and constants)

| and OP1 =~ contains field (fetched only if required)

and the second and third operands are assigned to BP2, FP2, OP2 and
BP3, FP3, OP3 respectively., These values are then ready for use in
the various sets of BCL instructions corresponding to the LSIX tests
and operations,

In addition to the field handling routines already described
several other basic routines are called from the main interpreter
routine, These are described in Appendix 3. The reader is
reminded that routines with parameters were not available in BCL

when this compiler was written,

PART T The ¥xecution of I.SIX in BCT PAGE 62

(‘73 NTE ij)

()

Objiect pointer := Address of next description word
Pick up: description word, address of next
description word in sequence, and the address of
the first operation in the current instruction.

y
Unpack description word;

NT := number of tests;

NO := number of operations;

COND := type of condition (or zero):
GOTOFTAG := tyne of transfer (or zero).

Yes

4
nd first operand
(FINDFIELD)
Get first operand
(GETFIELD)

l

ind second onpcrand
Get second operand

«

Perform specified
test (Switch via K)
lesult = true or

false,
Truc False
Svriteh via COND Switch via COND
£$£g gggg
COND = 1 represents IFANY COMND = 3 represents ITALL,IT
COND = 2 renresents IFNALL COND = . represents IFNOND,NOT
Tic. II.a.l(a). The operation of the Interpreter Routine

(Continued on Page 03)

PART II The Execution of LSIX in BCL PAGE 63

NT ¢= NT - 1 Object pointer :=
address of first
operation (or transfer)

Yes

‘ 1,2
Switch via COND —-——,@

A
®

K := Operation code; NO ¢= NO - 1
NA = Number of
operands,
L Switch via K to
Iocate operands "subroutine to pick up
(FINDFIELD) operands and perform
operation,
> Switch via GOTOFIAG 0 —> T)(:)
4 3 2 1
n Object pointer :=
4 Transfer address,
o Subroutine
e exit
- Subroutine
fail exit
> STOP, end of run,
Fig, 11.2.1(b). The operation of the Interpreter Routine,

(Continued from Page 02)

PART I1I

The Execution of LSIX in BCL

PAGE 64

DEFINE R INTERPRET
DO

121,WR1,0, *1001
1142,WR1,0, (NEXT) 32

NEXT) 1065,0,0,5,0 s

O/P (NL.(2), 'LSIX PROGRAM ENTERED',

NDESCRWD 3= START t
3
GAMMA) OBJECTP := NDESCRWD 8

DESCRWD $= COOF(OBJECTP) ¥

NDESCRWD t= PLUS1(OBJECTP) 31
$s
s
s
¥
e

FIRSTOP $= PLUS2(OBJECTP)

LINE ¢= PLUS3(OBJECTP)

OBJECTP $= OBJECTP + 2 33

$3

Lose routines no longer required.
Space to top of next page.
NL. (2))

Initialise pointer to next
instruction,
Get pointer to next instruction,

Get description word,

Get address of next description
word in sequence,

Got address of first operation in
current instruction (zero for
unconditional instruction),

Get line number,

Advance object pointer to next
item,

¢: The following instructions deal with LSIX tests,

165, NT, DESCRWD, *077 3
IF NT = 0 GO TO ALPHA $:
125, NT, 0,0 3
125,NT, 0,0

165, COND, DESCRWD, *7
125, COND, 0,0 3
BETA1) K 3= COOF(OBJECTP) t §

OBJECTP := OBJECTP + ONE

FINDFIELD L 31
GETFIELD 3
OP1 := WREG1 $:
FINDFIELD 3

Get number of tests,
If unconditional go to operations,

Convert to 21 bit integer.

Get condition (1,2,3 OR 4).
Covert to 21 bit integer,
Get test code,

Increment object pointer,
Locate first operand,

Get first operand.

Save operand in OP1,

Locate second operand,

PART II The Execution of LSIX in BCL PAGE 65

GETFIELD

OP2 $= WREG1

GOTOE, N, G, L, 0, 2, PVIAK

E) IF OP1 = OP2 GO TO TRUE
GO TO FALSE

N) IF OP1 = OP2 GO TO FALSE
GO TO TRUE

G) IF OP1 GT OP2 GO TO TRUE
GO TO FALSE

L) IF OP1 LT OP2 GO TO TRUE
GO TO FALSE

0) 127, OP1, OP2, O
GO TO E

z) 167, ori, OP2, O
GO TO E

P) GO TO E

TRUE) RESULT3=1
GO TO CONDSPLT

FALSE)RESULT$=0

$: Get second operand,

$¢ Save second operand in OP2,

$¢ Switch via testcode,

t: If operands equal go to true
$? otherwise false,

t: If equal go to false

t¢t otherwise true,

¢t If greater than, go to true
¢: otherwise false,

3 If less than, go to true

¢? otherwise false,

$¢ OP1 := OP1 and OP2 and test
$: equality for test 'one' bits.
$: OP1 3= OP1 or OP2 and test

$: equality for test 'zero'! bits,

¢: Test equality of pointers,

$: Go to switch via condition,

CONDSPLT) GO TO ANY,NALL,ALL,NONE VIA COND $: Switch,

ANY) IF RESULT =0 GO TO BETA
OBJECTP 3= FIRSTOP

GO TO ALPHA

NALL) IF RESULT NE O GO TO BETA

OBJECTP $= FIRSTOP
GO TO ALPHA
ALL) IF RESULT NE O GO TO BETA

GO TO GAMMA

12 If false go on to next test,
t: If true, get address of first
t: operation and go to it,

tt If true go on to next test,

t: if false, go to operations.,

t: If true go to next test
$¢: otherwise go to next instruction

$: in sequence,

PART II The Execution of LSIX in BCL PAGE 66

NONE) IF RESULT NE O GO TO GAMMA :: If true go to next instruction,
BETA) NT $= NT-1 $: Decrease number of tests,
IF NT NE O GO TO BETA1l $t If more tests go to next test,

IF COND LE 2 GO TO GAMMA t: if ANY or NALL go to next
$¢ instruction,

t: The following instructions deal with LSIX operations,
ALPHA) 165,NO,DESCRWD, 00077 $: Get number of operations
3¢ from description word.
125,N0,0,0 $: Convert to 21-bit integer.
125,N0,0,0
125,N0,0,0
MOREOPS) IF NO = 0 GO TO NOOPS 3: If no more operations,
K := COOF(OBJECTP) $: Get operation code K,
NA := PLUS1(OBJECTP) tt Get number of operands,
OBJECTP 3= OBJECTP + 1 t: Advance object pointer,

IF NA = O GO TO OPSPLIT :: If no operands

FINDFIELD $: Find first operand.
BP1 = WREG1 t: Save address pointers,,
FP1 3= WREG2

IF K GE 25 GO TO GETOP1 :: Get first operand only if
IF K LT 9 GO TO GETOP1 :: necessary.

GO TO SKIPOP1

GETOP1) GETFIELD $t Fetch first operand
OP1 := WREG1 3¢ Save first operand.
SKIPOP1) NA $= NA-1 tt Decrease number of operands,

IF NA = 0 GO TO OPSPLIT $: If no more operands,
FINDFIELD 3¢ Find second operand,
BP2 := WREG1 3¢ Save address,

FP2 := WREG2

PART II The Execution of LSIX in BCL PAGE 67

GETFIELD $: Get second operand,
0OP2 = WREG1L $: Save second operand,
NA = NA-1 $: Decrease number of operands,

IF NA = O GO TO OPSPLIT :: If no more operands.

IF K = 38 GO TO GT ¢t Third operand of GT operation
t1$ is special,

FINDFIELD ¢$ Find third operand,

BP3 := WREG1L $t Save address,

FP3 $= WREG2

GETFIELD $: Get third operand,

OP3 := WREG1L

3: The operands are now ready for use in the various sets of
¢¢ instructions corresponding to the LSIX operations, The
¢$ appropriate instructions are entered by means of a switch

$? using the operation code K as control wvariable,

OPSPLIT)IF K LE 44 GO TO OPSPLIT1

OPERR) O/P (NL.,'ILLEGAL FUNCTION IN LSIX OPERATION' ,NL,)
STATEPRINT $¢ Output state of system,
0/P (NL.(2), 'JOB TERMINATED')

STOP $: Error halt,

OPSPLIT1) GO TO IC,ADD,SUB,MPY,DIV,OR,AND,XOR,C,DP,
EQ,OPP,10,LZ,RO,RZ,0S,2S,BZ,ZB,
BD,BD, DB,DB,OP,FR,IN,L,R,PR,
PU, PL, SFC, SFD, DO, D, S, GT,OPERR, OPERR,

STATE,DUMP,RFC,RFD VIA K

PART II The Execution of LSIX in BCL PAGE 68

¢¢ Control has now been transferred to the set of instructions
$¢ for the operation specified by K, Details of these instructions
t: are given in Appendix 3. After execution of these instructions

:: control is returned to OPRTN.,

OPRTN) NO := -1 s: Decrease number of operations.

(0)25

(1]
u
o

¢$¢ Reset working variables to zero,

0oP2

oo
1]
(=)

L 44
i
o

OP3

BP1

[1]
1
o

BP2 = O

BP3 3

1
]

FP1 := O
FP2 3= O
FP3 3= O

GO TO MOREQPS $: Go back to execute any further
t$ operations,

:¢ When all operations have bheen obeyed control is transferred
2: in one of several ways according to the transfer code stored
¢t in the description word, The following instructions deal

¢: with the transfer of control,

NOOPS) 165 , GOTOFLAG , DESCRWD, 7 Get transfer code (0,1,2,3 or 4).

IF GOTOFIAG = 0 GO TO GAMMA If no transfer go to next
ingtruction in sequence
otherwise switch via GOTOFLAG

e 08 80
28 80 oo

GO TO FLAG1,DONE,FAIL,FLAG4 VIA GOTOFIAG
FLAG1)NDESCRWD := COOF(OBJECTP) t: Get transfer address.

GO TO GAMMA ¢: Continue with instruction
$¢ specified.

PART I1

The Execution of ILSIX in BCL

PAGE

t$: The following instructions deal with subroutine returns,

DONE)

FAIL)

SUBP t= SUBP-3

SUBL $= SUBL~-1
OBJECTP $= COOF(SUBP)
NDESCRWD $= PLUS1(SUBP)
DESCRWD := PLUS2(SUBP)
NO t= PLUS3(SUBP)

LINE := PLUS5(SUBP)

GO TO OPRIN

SUBP t= SUBP-3
SUBL $= SUBL~1
NDESCRWD 3= PLUS4(SUBP)

GO TO GAMMA

L

33

°
L]

3

32
s
32

33

3

3¢

s

32
3

Pop-up subroutine stack,

Decrease subroutine level
number,
Restore object pointer,

Restore address of next
description word,
Restore description word,

Restore number of remaining
operations.
Restore line number,

Normal operation return,

Pop-up subroutine stack,

Decrease subroutine level
nlmber .
Goet 'fail' transfer address,

Continue with specified
instruction,

3¢ End of subroutine return instructions,

FLAG4) 0/P(NL,,'END OF PROGRAM')

STOP

END

33

LR

logical end of program,

End of interpreter routine,

69

The storage allocation routines which are called by the interpreter

routine are described in section §2.3 and routines for other

LSIX operations are given in Appendix 3 .

PART 11 PAGE %0

§2.3 Storage allocation and collection in LSIX

In this section we describe several variations on a method for
organiging the free space allocator in LSIX, Routines for setting
up the free space lists, getting new blocks, returning blocks which
are no longer required and automatic garbage collection are
described,

An important feature of LSIX is the availability of several
different sizes of blocks which may be linked together by pointers
stored in fields which the programmer himself defines, Any field
which is of address length may contain a pointer and the contents of
a field are interpreted according to the context in which they are
used, Consequently it is difficult to collect garbage automatically
as the system does not know which fields contain pointers and the
respongibility for freeing blocks which are no 1longer in wuse is
usually left to the programmer, A garbage collector which has been
written for the Atlas LSIX is described in this section,

The available blocks in LSIX are in general of size 2**n words
where n is an integer in the range 0-7., The choice of block size
being an integral power of two, blocks are easily halved to form
smaller blocks (called mates) and when two consecutive blocks are
free simultaneously they could be recombined to form a larger block;
better, when two mates are free they may be recombined., The free
space is organised as a number of separate simple lists, one for
each size of block, On being freed, a block is returned to the
appropriate 1list, When a block is asked for there are three

possibilitiest

PART 1I Storage Allocation and Collection PAGE 71

| (a) the appropriate list is not empty in which case a block
| is immediately available;

| (b) the list is empty but a larger block exists on another
| list and this can be split to provide a block of the

| required size;

| and (c) the list is empty and there are no larger blocks

| available for splitting.

In the 1latter case all is not lost, It is possible that smaller
blocks in contiguous parts of the store are free simultaneously and

can be recombined to provide a block of the required size.

In the Atlas LSIX implementation, the list head of each free
space 1list consists of four fields, each being 24 bits long,

containing the following information:

| field 1: Pointer to the first block in the ligt (0 if empty),
| field 2: The size of the data blocks on this list,
| field 3¢ log (size) i.e, a 3 bit integer in the range 0-7.

| field 4: The potential number of blocks of this size.

The potential number of blocks of any size is the number of blocks
on the 1list plus the number of blocks that could be obtained by
splitting all 1larger blocks down to this size, The fields
containing the potential numbers of blocks are the read-only fields
called 1. ,2. ,4.,~ - =, 128, in LSIX, The size of any block which
is in use must be available to the system for use in the free block
and duplicate block operations and log2(size) provides a very

compact form of storage,

PART II Storage Allocation and Collection PAGE 72

The 1list heads of the eight free space lists occupy consecutive
storage locations and may be accessed (by the system) via the link
variable FREEHDR, a constant pointer to the list head of 1-blocks.
Each free space list is a simple linked list terminated by a zero
link,

Fig, I2.3.1 shows how the free space lists are stored.

| Listheads.

| FREEHDR ——

v

| size: 1

I log2(size): 0

] 1.8
| ——

| sizet 2

| log2(size):l

| 2.8

\r

I sizes 4

| log2(size):2

| 4e3

Fig, 11'3°1

PART I1I Storage Allocation and Collection PAGE 73

The four LSIX operations which affect the state of the free
space lists are: Set up Storage (SS), Get a block (GT), Free a block

(FR) and Duplicate a block (DP),

Set up Storqgg

One of the first operations in any LSIX program is to set up a
list of free space using the set up store operation which has the
form

(s1,58,d,s2)

where d is the size of block to be set up and sl and s2 are the
addresses of the beginning and end of the storage area to be linked
in blocks of the specified size, For example the operation
(*20000000,5§,8,*20040000) causes 2048 words of Atlas store (i.e,
4096 LSIX words) to be linked together in blocks of size 8 (24 bit)
words, The specified value of d need not be an integral power of 2
but the size of block actually set up is the smallest integral power
of 2 which is greater than or equal to d, It is intended that in a
future version of the compiler the user may specify and actually get
any size of block between 1 and 128 (24 bit)words.

When setting up storage the appropriate free space listhead is
located by a routine FINDLIST which, starting with the listhead for
1-blocks, searches for the first listhead for which the block size
is not less than d and returns with a pointer to that listhead and
with the value of d corrected, The addresses sl and s2 specified by
the user are interpreted as relative addresses and the list storage
area always starts at the octal address *20000000, This
implementation differs from the original L6 in that'set up storé
operations may be executed several times during the running of a

program, so setting up additional linked space, and the end of the

PART 11 Storage Allocation and Collection PAGE 74

appropriate free space 1list must be found before new blocks are
linked on, Details of the S§ and other storage organisation

routines are given at the end of this section,

Get Block
There are two forms of the get block operationg

| (al,GT,cd) and (al,GT,cd,a2)

- Got a block of the size specified by cd and plant its address in
the field al., After getting the block, assign to the field a2 (if
this is specified) the previous contents of the field al, The GET
routine uses FINDLIST to locate the appropriate free space list,
Thus the size specified may be any integer in the range 1-128 but
the size of block actually allocated is at present an integral power
of 2, If the free space list located is not empty, then a block of
the required size is detached, otherwise the potential number of
blocks of this size is examined, If the potential number is not
zero then a larger block exists and the routine SUBDIVIDE is called
to split the firgt available larger block, In the event of the
potential number being zero the routine RECOMBINE is called to
search for gmaller blocks which being free simultaneously may be
recombined to give a block of the required size., Whenever RECOMBINE
is entered it searches all free space 1lists from the 1-blocks
upwards performing all of the recombinations possible up to the
maximum size that has been set up by the program, After this, if
the potential number of blocks of the required size is still zero
then the program is abandoned, It is not possible to relocate

smaller blocks in an attempt to recombine,

PART II Storage Allocation and Collection PAGE 75

Duplicate Block

The duplicate block operation (a,DP,c) gets a new block (using
GET) of the same size as that to which field ¢ points and assigns
its address to field a, It then copies the given block word for

word into the new block,

Free Block

The operations (al,FR,0) and (al,FR,a2) are used to free the block
to which <field al points, i.e. to return the block to the
appropriate free space list, The contents of field a2 are assigned
to field al but if a2 is not specified al is set to zero,

Neither the Duplicate block nor the Free block operations
specify the size of block involved, For this reason the system must
keep a note of the sizes of all data blocks which are in use, A
convenient place to store the size is in the data-block itself,
Bits 21-23 of word O of every block are reserved for the system, 1In
these three bits the size of the block is stored in the form
log2(size), Later in this section we describe briefly another Atlas
implementation of LSIX in which the whole of word O is made
available to the user and the size is stored in a separate part of
the store, When a block is freed or duplicated the actual size is
found from log2(size) using a routine FINDSIZE which searches the
free space list heads for log2(size) starting with the 1-block list
head and locates the required free space list at the same time,

¥Vhenever the state of the free space lists is changed by one
of the LSIX operations described above the potential numbers of
blocks must be updated, This is performed by the routine UPDTNDOT,
Details of this and other storage organisation routines are given

below,

PART II Storage Allocation and Collection PAGE %76

DEFINE R FINDLIST

t: The input to this routine is the size of a block, The output
$: is a POINTER to the appropriate list and the corrected size,

FL1)

DO
POINTER t= FREEHDR - 2 $3 Initialise pointer,
POINTER $= POINTER + 2 $s Point to next list.

IF PLUS1(POINTER) LT SIZE GO TO FL $3 If list not yet found,
SIZE 3= PLUS1(POINTER) $: Correct the size,
RETURN

END

DEFINE R FINDSIZE

$t The input to this routine is LOGSIZE, the output is SIZE and a
$3 POINTER to the appropriate list,

FS)

DO
POINTER := FREEHDR - 2 $: Initialise,
POINTER $= POINTER + 2 t: Point to next list,

IF PLUS2(POINTER) LT LOGSIZE GO TO FS $: If not found,
SIZE 3= PLUS1(POINTER) $: Get size,
RETURN

END

DEFINE R UPDTNDOT

t: The value of WR2, set before entry, is the change in potential
¢ ¢ number,

DO
WR1 := POINTER $: Copy pointer,

UPDT) PLUS3(WR1) 3= PLUS3(WR1) + WR2 $: Update potential number,
IF WR1 = FREEHDR GO TO END $: If finished.
124,WR2,WR2,0 $: Double WR2,

WR1 $= WR1 - 2 i¢ Point to next list,
GO TO UPDT
END) RETURN

END

PART II Storage Allocation and Collection PAGE 77

DEFINE R SETUPSTORE

DO
SIZE 3= OP2 3¢ Get size of block,
FINDLIST t: Locate list for given

IF MAXSIZE GE SIZE GO TO SKIP t: blocksize,

MAXSIZE 3= SIZE 33 Note maximum size of block
$: setup,
SKIP) 124,SIZE,SIZE,0 $: Convert size to 22 bit
$: integer, i.e, to unit of
124,S8I1ZE,SI1ZE,O tt halfwords of Atlas store,
WS1 3= POINTER $¢ Point to appropriate free

33 space list, POINTER was set
$: by FINDLIST,
LINKBL1) IF COOF(WS1) = O GO TO LINKBL2 :: If end of list

WSl 3= COOF(WS1) $: Step down list,
GO TO LINKBL1

LINKBL2) COOF(WS1) := ENDLIST $: ENDLIST points to next block
: to be set up, initialised
t: before entry to program,

TOBELNKD $= OP3 - OP1 $: 82 ~ s1 gives amount to be
st linked,
ENDLIST 3= ENDLIST + TOBELNKD $$ Advance ENDLIST,
COUNT = 0 $$ Initialise count,
LINKNEXT) WS1 := COOF(WsS1) ¢t Point to next new data block,
COUNT $= COUNT + 1 $: Count new block,
COOF(WS1) $= WS1 + SIZE t: Plant link to next new block.,

IF COOF(WS1) LT ENDLIST GO TO LINKNEXT

COOF(WS1) 3= O $¢ If finished, terminate list,
WR2 3= COUNT 3t Set parameter for UPDTNDOT,
UPDTNDOT 2: Update potential numbers of
RETURN ¢: blocks,

END

PART 11

CLEAR)

END)

Storage Allocation and Collection

DEFINE R GET

DO

SIZE := OP2

FINDLIST

OP3 := OP1

LOGSIZE 3= PLUS2(POINTER)
GETBLOCK

COOF(WS1) 1= 0

WS1 = Ws1 + ONE
122,SIZE,0,0.1

IF SIZE GT O GO TO CLEAR
COOF(OCT) := LOGSIZE

IF NA = O GO TO END

FINDFIELD

OCT 3= OP3

STOREFIELD

RETURN

32

LR

32

33

t 4

$:

32

83

2

L

PAGE %8

Get block size,

Locate list, correct size,
Save present contents of a
Get log2(size).

Get block,

Clear block to gero.

Record size in block,
If previous pointer not
to be saved,

Find field in which to

store previous pointer,

Store previous contents

of pointer to new block,

PART 11 Storage Allocation and Collection PAGE 79

DEFINE R GETBLOCK
t: This routine is called from GET and from DUPLICATE,
t¢ On entry POINTER points to the appropriate free space list and SIZE
¢t contains the size.
DO
IF COOF(POINTER) NE O GO TO GTBLOCK :: If list not empty, get
$: block,
IF PLUS3(POINTER) GT O GO TO SPLIT :: If potential number > O,
RECOMBINE t$: Attempt recombination,
IF COOF(POINTER) NE O GO TO GTBLOCK :: Try again,
IF PLUS3(POINTER) GT O GO TO SPLIT
0/P(NL, , '"FREE SPACE EXHAUSTED JOB TERMINATED')
STOP ¢t Stop if space exhausted,

SPLIT) SUBDIVIDE $: Call routine to split

$: larger blocks,

GTBLOCK) WsS1 = COOQF(POINTER) ¢ Point to block,
COOF(POINTER) 3= COOF(WS1) $: Detach block from list,
OCT = WS1 ¢¢ Address in OCT,
STOREIN1 3$: Store address of block,
WRZ = 0-1 t: Set WR2 for UPDTNDOT,
UPDTNDOT s: Update potential

$ ¢ numbers,

RETURN

END

PART I1I

NEXT)

HALVE)

END)

Storagg»Allocation and Collection

PAGE &0

DEFINE R SUBDIVIDE

DO

POINTER $= POINTER + 2

IF COOF(POINTER) = O GO TO NEXT

WS1 $= COOF(POINTER)

COOF(POINTER) $= COOF(WS1)

PLUS3(POINTER) := PLUS3(POINTER)-1

IF PLUS1(POINTER) = SIZE GO TO END

POINTER := POINTER - 2
COOF(POINTER) := Ws1
COOF(WS1) := 0

Ws2 3= PLUS1(POINTER)
124,Ws2,WS2,0
124,Ws2,Ws2,0

Ws1 $= WS1 + WS2

GO TO HALVE

COOF(WS1) $= COOF(POINTER)
COOF(POINTER) := WS1
RETURN

END

t
33

*
L]

L3
3

3

3
34

33
LR

Examine list of next
larger blocks,

If empty, try next,

Detach first block,
Adjust potential number,

If required size.

t Step back to list of next

smaller block size,

Link first half block to
current list,
Get current block size,

Convert to address units,

Point to second half of
block,

Link second half on to
list,

PART II Storage Allocation and Collection PAGE 81

DEFINE R RECOMBINE
s This routine starts with the list of free 1-blocks and for each
$s block searches the list for its mate, If its mate is found the
t: two blocks are recombined and transferred to the list of next
t$: larger blocks, The process continues for each list in fturn until

t3 the maximum size of block is reached,

DO
WS3 3= FREEHDR $: Start with 1-blocks,
NEXTLIST) WS1 t1= WS3 3 Point to next listhead,

WS3 1= WS3 + 2

IF PLUS1(WS1) GE MAXSIZE GO TO END :: If finished,

CSIZE 3= PLUS1(Ws1) $: Get current size,
124,CS1ZE,CSIZE,O $: Convert size to address
$¢ units,
124,CSIZE,CSIZE,O
WS2 3= Ws1i $¢ Initialise working
¢ ¢ pointer,

NEXTBLOCK) IF COOF(WS2) = O GO TO NEXTLIST 3t If list finished,
WR1 $= COOQF(WS2) $: Address of next block.
126,WR1,CSIZE,0 $: Address of mate,

WR2 $= COOF(WS2) ¢ Initialise working
¢: pointer,

TESTMATE) IF COOF(WR2)zO GO TO NOMATE ¢: If no mate in list,
IF WR1 = COOF(WR2) GO TO MATE $: If mate found,
WR2 3= COOF(WR2) $: Step down list,

GO TO TESTMATE

PART 11

Storage Allocation and Collection PAGE

NOMATE) WS2 $= COOF(WS2)

MATE)

END)

COPY)

GO TO NEXTBLOCK
167,WR1,CS1ZE,0
126,WR1,CS1ZE,0

COOF(WR2) 3= COOF(COOF(WR2))
COOF(WS2) 3= COOF(COOF(WS2))
COOF(WR1) 3= COOF(WS3)
COOF(WS3) := WR1

PLUS3(WS3) $= PLUS3(WS3) + 1
GO TO NEXTBLOCK

RETURN

END

DEFINE R DUPLICATE
DO

LOGSIZE $= COOF(OP2)
127,L0GS1ZE,0,0.7
FINDSIZE

GETBLOCK

COOF(WS1) := COOF(OP2)
WS1 3= WSl + ONE

0P2 := OP2 + ONE
122,S1ZE,0,0.1

IF SIZE GT O GO TO COPY
RETURN

END

t R

LR

R

st

tt Point to next block,

$: Address of recombined
$: block.,

t¢: Detach two halves from

$s current list,

: Link recombined block
$: into next list,
$: Increase potential

¢ number,

Get log2(size) of block,

locate list, get size,

82

Get block, WS1 points to it,

COPY block,

If not finished,

PART 11 StorgggﬁAllocation and Collection PAGE

DEFINE R FRBLOCK

DO

LOGSIZE 3= COOF(OP1)
127,LOGSIZE,0,0.7
FINDSIZE

COOF(OP1) 3= COOF(POINTER)

COOF(POINTER) := OP1

OoCT := OP2

STOREIN1

LR

2

11

3

32

Get log2(size).

lLocate free space list.

Link block on to free

space list,

Assign specified value to

field al,

PART II Storage Allocation and Collection PAGE 84

Improvements to the LSIX storage allocator

Suppose that a 2-block is requested when the smallest blocks
available are 16~blocks then the routine SUBDIVIDE splits the first
available 16~block into two 8-blocks the <first of which is added to
the 8~block free space list and the second is halved again to give
two 4-blocks the second of these is then halved giving a block of

the required size, Fig.H}.3.2 shows the result of the subdivision,

| 16-block

| 8- block B 0 use
| 4~ block { o frex

| 2- block

Fig, ©'3-2

The two halves formed when a block is subdivided are called
mates. When a block and its mate are free simultaneously they can
either be recombined immediately or recombination can be deferred
for as long as possible, that is until a block is required and the
potential number of blocks of the required size is zero., Whenever
the recombination is attempted, the process as defined by the
routine RECOMBINE is very inefficient, This is mainly because it is
necessary to search a free space 1list for the mate, Deferring
recombination of blocks 1leads to fragmentation of the available
store; larger blocks may be split unnecessarily when smaller blocks
could have been recombined, On the other hand immediate
recombination may result in several otherwise unnecessary calls on

the routine SUBDIVIDE,

PART II Storage Allocation and Collection PAGE 85

Given the address and size of any block it is a trivial matter
to determine the address of its mate, the address of the mate of a
block of gsize n is obtained by complementing the n-bit of the given
address, Once the mate is located there are two problems: how do we
know if it is free and if free, how can it be detached quickly from
the free space list., Only 1 bit is required to indicate that a
block is free or in use, A convenient choice is the sgign bit of

word O of any block,

Part of word O is already reserved for the system to store
log2(size), the sign bit is easily tested and perhaps most important
of all, word O of any free block contains a link to the next block
on the free space list and as no address is negative we set the sign
bit to 1 for blocks which are in use and to 0 for free blocks . The
used/free bit also provides an additional safeguard in that we can
now check that the user does not attempt to free a block which is
already free, The second problem, efficient deletion of random
blocks from a free space list, can be solved only by keeping doubly
linked free space lists, An Atlas address occupies 24 bits (i.e,
one LSIX word) therefore it is not possible to store both a forward
and a backward 1link in a 1-block. A second version of the storage
allocator has been written in which the free space lists are doubly
linked and no 1-blocks are allowed, As 4 bits of word O have
already been reserved for the system there is little wuse for
1-blocks anyway. In this version recombination takes place as soon
as two mates are free simultaneously., Only minor modifications are
necessary for the SETUPSTORE and GET routines, The revised FRBLOCK
routine is described below., Fig, II.3.,3 shows the linkages in the

free space lists for the revised storage allocator,

PART II Storage Allocation and Collection PAGE 86

| List head

v

NG A

size

log2(size)

n,

Fig, 11.3.3

If WR1 points to a block on a free space list, that block can

be deleted by means of the following commands:

& d

| COOF(PLUS1(WR1)) := COOF(WR1)
i IF COOF(WR1) = 0 GO TO LASTBL t$: If last block on list,
| PLUS1(COOF(WR1)) := PLUS1(WR1)

| LASTBL)

The special treatment of the last block on a 1list could be avoided
by enlarging the list head to include a backward pointer also, and
using doubly linked circular lists,

There is one further detail to check before two mates can be
recombined, Suppose that an 8-block is split to provide a 4-block
and two 2-blocks, and that at some later stage the state of the

8-block is as shown in Fig. I1.3.4.

2-block Ll ———— free
2~block oo . _ . .=—4————1in use
4~block L 4 in use

Fig, 11.3.4

PART II Storage Allocation and Collection PAGE &7

If the used 4-block then becomes Ifree again before the
2~block, when the gign bit of word O of the mate is checked it
indicates that the mate is free., Clearly we must also check the
size of the mate, Even for <free blocks then, the size must be
immediately available, We know that the least significant octal
digit of an Atlas whole word address is always zero so these three
bits in word O can be used to store log2(size) just as they are for

blocks which are in use,

Routine to free a block and recombine it with its mate if possible!

DEFINE R FRBLOCK

[DO

| OCT := OP2

| STOREIN1 $: Assign new value of a2 to al,
| Wsi $= COOF(OP1) 3¢ Get first word of block.,

| IF WS1 LT O GO TO NOTFREE ¢ If not already free.

| O/P(NL,, '"ATTEMPTING TO FREE A BLOCK WHICH IS ALREADY FREE')

| STATEPRINT $: Output state of system,
| RETURN

| NOTFREE) 165,L0GSIZE,WS1,0,7 $: Get log2(size).

| FINDSIZE $s Locate free gpace list,

| t: find size.

| WR2 = 1

| UPDTNDOT $: Update potential numbers,
| TRYMATE) IF SIZE= MAXSIZE GO TO LINKON

¢: If maximum size then no
$: recombination,

PART II Storage Allocation and Collection PAGE 88

| 124,S1ZE,SIZE,0 t: Convert size to address units,
| 124,81ZE,SIZE,0

| wsi = oP1

| 126,Ws1,SIZE,0 $: Address of mate,

I WS2 3= COOF(WS1)

[127,WS2,0,*40000007 t: Get sign bit and log2(size).
i IF WS2 = LOGSIZE GO TO MATE 3: If mate free.

| LINKON) WSi:= COOF(POINTER)

| 167,ws1,L0GSIZE,O $: Record log(size).

| COOF(POINTER) = OP1 $: Forward links.

| COOF(OP1) 3= Ws1

| PLUS1(OP1) := POINTER $: Backward links,

| IF WS1 = LOGSIZE GO TO END $: If end of list,

| PLUS1(WS1) 3= OP1

| END) RETURN

| MATE) COOF(PLUS1(WS1)) := COOF(WS1) t: Extract block,

I IF COOF(WS1) = LOGSIZE GO TO LASTBLOCK

| t: If last block on list,
| PLUS1(COOF(WS1)) := PLUS1(WS1)

| LASTBLOCK) 167,0P1,SIZE,0

| 126,0pr1,SIZE,0 t: OP1 points to

$¢ recombined block,
| POINTER := POINTER + 2 t$¢ Point to next list,
| SIZE = PLUS1(POINTER) 1t Get new size,

| LOGSIZE 3= PLUS2(POINTER) $: Get new log2(size).

| PLUS3(POINTER) ¢=PLUS3(POINTER) + 1

] t1 Increase potential number,
| GO TO TRYMATE $¢ Go to try next mate,

| END $¢ End of FRBLOCK,

PART II Storage Allocation and Collection PAGE 89

A third version of the storage allocator.

A further disadvantage of the present storage allocation and
bookkeeping method is that four bits of word zero are not available
to the user, This seriously 1limits the usefulness of 2-blocks as
word 1 is then the only possible link field and only 20 bits of word
O are available for the s8torage of other information, It is not
possible to simulate LISP-like systems using 2-blocks as two link
fields are required for this, At present the Atlas LSIX system is
used mainly for teaching purposes and it is important to be able to
manipulate LISP-like lists, To facilitate this the four bhits which
are reserved for the system have been mapped into another area of
the store, Each 48 bits of list storage is mapped into 6 bits, All
6 bits are zero unless the 48 bits constitute the first 43 bits of a

data block, In this case the bits are allocated as follows:

| bit

| 1 used/free marker — 1 if block is in use;
| 2 available for use in automatic garbage

] 3 } collection version to be described later;
l 4

| 5 log2(size) of data block,

[6

This representation of 48 bits by 6 bits is very convenient as
computation of the map address involves only a right shift of 3
binary places and addition of a base address. 6-bit patterns are
eagily manipulated on Atlas., The efficiency of this system with
regard to space depends very largely upon the block size used, If a
large number of 2-blocks are used there might be an overall saving

in space,

PART II Storage Allocation and Collection PAGE QO

The availability of blocks of general size

The advantages in restricting the available sizes of blocks to
an integral power of two are obvious, The size, which must be
readily available to the system, may be stored compectly and blocks
are eagsily split to form smaller blocks or recombined with their
mates when larger blocks are required. However, these advantages
favour the implementor and not the general user. In the system
described above, the user may specify any size of block between 2
and 128 words and is not aware of the fact that the sizes actually
allocated are integral powers of two, A system which allocates any

size of block between 2 and 128 words is not difficult to implement,

There are good reasons for organising the free space lists as
before, The actual size would again be stored in word O, but now
occupying eight bits, With so much of the first word reserved for
the system there is little use for a 1-block and it is proposed that
block sizes should be a multiple of two, Thus if a block of Q words
is requested a 10-block is allocated., For this purpose the system
requires a 16-block of which it immediately returns the first four
words to the 4-block 1list, the next two to the 2-block 1list and
allocates the 1last 10 words to the user, The immediate return of
the first few unwanted words is effected by subtracting 9 from 16 to
give (00000111) in binary from which it is clear that the unwanted

parts are a 4-block and 2-block, the final bit being ignored,

The size of a block also determines the manner in which it is
freed, Thus for the 10-block allocated above we have the size

(00001010) in bina.ry%md starting with the right most 1 bit we return
i

PART II Storage Allocation and Collection PAGE O1

first a 2-block and then an 8-block., If immediate recombination is
possible then the fragmentation of store which is inherent in this
generalisation is to a certain extent counteracted, Immediate
recombination implies doubly 1linked free space. If the list heads
also contain two pointers then there is some advantage in using
circular free space lists, for then any odd blocks which are
returned immediately in the allocation process may be linked to one
gide of the list head and allocations made from the other, This
increases the likelihood that the odd blocks are free and available

for recombination when their mates become free again,

An automatic ggrb@gp collector for LSIX

The ma jor problem which arises when attempting to reclaim part
of a 1list gtructure is that of knowing which data blocks are no
longer needed, A number of solutions have been proposed, The first
of these by Newell Simon and Shaw places the responsibility on the
programmer, This language, IPL-V, includes instructions for erasing
lists, In LSIX we have the equivalent free block instruction, A
second solution is that used in SLIP in which a reference count is
kept in the head of every 1list, For each additional reference to a
list or part of a ligst the reference count in the list head is
increased by one, It is always possible to gain access to the list
head from any part of a list structure as SLIP is a symmetric list
procesgsor i,e, it uses doubly linked lists, However, the process of
linking back to the list head is time consuming, There is the
additional disadvantage that while any part of a list is shared by
the other lists which are not free it is not possible to reclaim any

of the list cells on that list, The third solution is that proposed

PART I1I Storage Allocation and Collection PAGE 02

by McCarthy in which no cells are reclaimed until all of the free
space is exhausted, Then a garbage collection routine is entered
which scans all list structures which are in use and marks the data
blocks attached to the lists., When the lists have all been scanned
the whole of the list area is scanned again, Blocks which are not
marked are free and may be reclaimed, At the same time the marks
are erased from the blocks which are in use, so that the garbage
collection routine may be reentered as often as necessary during the

execution of a progran,

The basic problem in McCarthy's method is that of scanning the
lists, In general the lisgts will be branched and every branch must
be traced, The natural way to process a list is by recursion but a
recursive routine requires an indefinite amount of store., As the
garbage collector is entered only when all, or nearly all, of the
storage space has been exhausted it is most unlikely that sufficient
storage will be awailable for a recursive garbage collector. An
ingenious solution to this problem has been proposed by Schorr and
Waite (1967). They describe a garbage collector for the WISP
language (Wilkes, 1964) which uses only three registers for
temporary storage, The process described is capable of scanning any
l1ist structure, however complex it may be., A slightly modified
version has been used to collect garbage in a BCL program which
processes binary trees (see section 2.4) and the Atlas LSIX garbage
collector is a further extension of that described by Schorr and
Waite,

The flexibility which LSIX provides in both the definition and

the use of fields is one of its major advantages, It igs this

PART II Storage Allocation and Collection PAGE 03

flexibility which mekes it difficult to collect garbage
automatically, Any field which is of address length or longer may
be used to store a link, and the contents of a field are interpreted
according to the context in which they are used, At the time of
storing a 1link the nature of the operand is known to the system,
egpecially if the user is willing to preserve the semantic
difference between the copy <field and copy pointer operations
although even this is not absolutely necessary., In the Atlas LSIX,
the only fields which can possibly contain an (Atlas) address are
full 24~bit fields., When a link is stored we require an extra bit,
outside the 24 bit word, to record the fact that the word contains a
pointer, Now in the mapping version of LSIX, the reader may
remember that of the 6 bits representing each 48-bit block of list
storage 2 bits were unused, These provide our two pointer flags for
the possible address fields in the 48 bit block. Using these the

system can keep a record of all links in the list structures.

For the basefields (bugs) there are no pointer flags. Any bug
whose contents could possibly be an address in the list space is
assumed to point to a list, Other pointers to 1lists may be stored
temporarilly on the system's field contents stack, These pointers
algso must be taken into account by the garbage collector, The
system first scans all list structures to which bugs point and then
any lists pointed to from the field contents stack marking those 48
bit blocks which are in use ., When all accessible blocks have been
marked the whole of the list area is scanned again; any free blocks
are collected up as 8-~blocks, 4-blocks and 2-blocks; marks are
erased from those blocks which are in use and £finally, if the

maximum size of block set up by the program is greater than eight,

PART II Storage Allocation and Collection PAGE 94

the 8-blocks are recombined with their mates, if free, until blocks

of the maximum size have been reconstituted,

In ISIX, as in other list-processing systems, it is usual to
access the fields of a block via a pointer to the head or first word
of the block, This is not the only way in which a field may be
accessed, In particular, suppose that the game set of operations is
to be applied successively to each word of a block, Each time round
the loop it 1is necessary either to increase the word number in the
field definition by redefining the field or to increment the block
pointer gso that it advances word by word through the block., The
latter method is the more efficient as redefinition of a field is a
lengthy process. However, the garbage collector becomes very
complicated if blocks may be accessed by means of pointers to words
other than the first, The LSIX user is advised that at all times
there must be a pointer to the first word of every block which is in
use as the garbage collector ignores pointers to words other than
the first, In almost all cases, on completion of a loop in which a
block pointer is incremented, the user will want to restore the
pointer to its initial value so a copy will have been saved either

on the field contents stack or in another field,

BCL routines for scanning list structures and for collecting

the unmarked blocks are described in Appendix 4.

PART II List Processing in BCL PAGE 95

§2.4 List Processing in BCL

So far we have been concerned mainly with the use of BCL to
implement LSIX, In this section we consider the use of BCL itself
as a list processor, The basic operations in any compiler compiler
include facilities for manipulating strings of input symbols and BCL
is no exception, Through experience gained in the use of BCL as a
compiler compiler for LSIX, it became clear that with a number of
extensions BCL could be used as a high level symbol manipulation
language having many of the <facilities which are available in LISP,
Also, through the use of symbolic machine orders for the machine
concerned, BCL provides the same flexibility as low-level systems
such as LSIX, with the possibility of manipulating bit patterns,
The BCL List Processing system is particularly suitable for teaching
as the student is able to define and build his own list processor
using blocks of several different sizes which are defined by the
program, Standard functions for manipulating list structures are
easily defined by the user, A number of demonstration programs
which have been used on a computer science course for M,SC, students
are described below.

The version of BCL used in thisg section is that defined by the
Atlas BCL compiler dated August 1968 which is a further development
of the compiler used to implement LSIX, One of the most useful
additions is the provision of 1labels and GO TO commands within
groups of elements, Iabels are defined only in the group and branch
in which they are set and just as it is illegal to jump jnto a DO
loop in FORTRAN, so also in BCL jumps into an alternative are not
allowed, neither are jumps out of an alternative although the latter

restriction is a temporary one,

PART II List Processing in BCL PAGE 96

To provide a list processing system based on this version of
BCL the author has added functions and groups with parameters, The
parameters implemented at present are of type A only (storing an
address or an address length integer) and are called by value,
Character variables of up to four characters in length may be used
a8 actual parameters as there is no type check. Examples given in
this section show that even this small subset of parameters provides
a very powerful system, General parameters of any type with calls
by name, reference or value will eventually be implemented in BCL
and will improve the system still further. Functions have been
added through the implementation of an EXIT statement which can have
one actual parameter being the value to be returned, EXIT
statements can be used in any 1level of alternative within a group
and are effectively a RETURN or jump out of a group to the calling
point., When an EXIT is used in a branch within a group then a stack
of pointers must be unwound as in the case of a transfer out of a
block in Algol. A more detailed description of these extensions to

the BCL compiler is given in Appendix 5.

In the first example (see Table II.4.1) the LISP function CONS
and the predicates EQ and NULL are defined in BCL; CAR and CDR are
represented by HEAD and TAIL , and the complete program shows how
functiongs such as APPEND, UNION and INTERSECTION are defined
recursively, The program in Table II,4.1 shows how the principles
developed in this section can be used in a system which requires
simple linked ligts in which the nodes (pointer words in LISP)
consist of two address-size fields named HEAD and TAIL, More
complex structures in which the head field may contain a link to a

gsublist will be discussed later. The tail of the last node in a

PART 11 List Processing in BCL PAGE 9y

DECLVAR IS (A FREE, A COUNT, A WS, A RESULT,A P,A Q,A R)
PWORD(?) IS (A HEAD,A TAIL)
INITFREE IS (121,FREE,O0,*20000000)

SETUPFREE(A COUNT) IS (TAIL(FREE) = o,
AGAIN: SETUP(PWORD,WS,FREE),
TAIL(FREE) = WS,
COUNT = COUNT - 1,
IF COUNT GT 1 GO TO AGAIN)

CONS(A X,A Y) IS (EITHER IF FREE = O,
0/P(NL, , "FREE SPACE EXHAUSTED',NL,),STOP
OR WS=FREE,
FREE=TAIL(FREE),
HEAD(WS)=X,
TAIL(WS)=Y,
EXIT(WS))

NULL(A X) IS (IF X = 0)
EQ(A X,AY) IS (IF X = Y)

PRINTLIST(A X) IS (PRINT: IF X = 0 GO TO END,
WS = HEAD(X), O/P(WS,sP.(2)),
X = TAIL(X), GO TO PRINT,
END: O/P(NL.))

APPEND(A X,A Y) IS (EITHER NULL(X),EXIT(Y)
OR EXIT(CONS (HEAD(X) ,APPEND(TAIL(X),Y))))

MEMBER(A X,A Y) IS ((EITHER NULL(Y),RESULT = O
OR EQ(X,HEAD(Y)), RESULT = 1
OR MEMBER(X,TAIL(Y))), IF RESULT =1)

UNION(A X,A Y) IS (EITHER NULL(X),EXIT(Y)
OR MEMBER(HEAD(X),Y), EXIT(UNION(TAIL(X),Y))
OR EXIT(CONS (HEAD(X) ,UNION(TAIL(X),Y))))

INTERSECTIONCA X,A Y) IS (EITHER NULL(X), EXIT(0)
OR MEMBER(HEAD(X),Y),
EXIT(CONS(HEAD(X),
INTERSECTION(TAIL(X),Y)))
OR EXIT(INTERSECTION(TAIL(TAIL(X),Y))))

Table 1I.4.1 (a) Program defining some List Processing functions.

PART II List Processing in BCL

PAGE 08

LISTPROGRAM IS (INITFREE, SETUPFREE(40),

P=CONSs (2, CONS(4,CONS(6,0))),

O/P(NL., 'LIST P '), PRINTLIST(P),

Q=CONs(4, CONS(6,CONS(8,0))),

O/P(NL., 'LIST Q '), PRINTLIST(Q),

R=APPEND(P,Q),

O/P(NL,., 'LIST P WITH LIST Q APPENDED '),

PRINTLIST(R),

R=UNION(P,Q),

O/P(NL, , *UNION OF LISTS P AND Q '),

PRINTLIST(R),

R=INTERSECTION(P,Q),

O/P(NL, , "INTERSECTION OF LISTS P AND Q '),

PRINTLIST(R),

STOP)

*ENTER(O/P(NL, , 'LIST PROGRAM TEST ',NL,(2)),LISTPROGRAM)

Table II.4.1 (b) A simple program using the functions defined above.

LIST PROGRAM TEST

LISTP2 4 6

LISTQ 4 6 8

LIST P WITH LIST Q APPENDED 2 4 6 4 6 8
UNION OF LISTS PANDQ 2 4 6 8

INTERSECTION OF LISTS P AND Q 4 6

Table I1.4.2 Output from the program in Table I1.4.1 (b).

PART II List Processing in BCL PAGE 99

list contains an easily recognizable symbol, zero in this case,

which serves as a terminator,

Declaration of variables, nodes and fields

In the first line of the program in Table II.4.1 a number of
variables to be used in the program are declared as type A and may
therefore be either link wvariables storing an address or integer
variables, They are also declared jointly to constitute the group
DECLVAR,

Congider the next definition

PWORD(?) IS (A HEAD, A TAIL),

This says that PWORD (or pointer word in LISP) is a structure (or
datagroup) consisting of two fields HEAD and TAIL each of type A
(address). The query indicates that HEAD and TAIL are selector
functions and not variable names, Thus HEAD refers to the first
halfword and TAIL to the second halfword of a structure (an address
occupies one half-word on Atlas)., BCL is very free in mixing
elements of different type in a group; in this work we prefer to
distinguish fairly sharply between data—-groups and command-groups
(alias routines),

The nodes within a list may be referenced either directly by
means of a 1link variable containing the address of the node or
indirectly through the 1link field of another node. The fields
within a node are referenced by writing the name of the field
followed by the name of a pointer or link wvariable in parentheses,
Thusg if the link variable P points to a node, the head field of that
node is referred to as HEAD(P) and the tail field as TAIL(P), If P
points to the first node of a 1linked list, as in Fig, II.4.1, then

nodes other than the first may be accessed via the pointers in the

PART II List Processing in BCL PAGE 100

TAIL fields., For example HEAD(TAIL(P)) refers to the head field of
the node to which TAIL(P) points, i.e, to the head field of the
second node of the list, Similarly TAIL(TAIL(P)) refers to the tail

field of the s€comd node of the 1list P (the list to which P points).
{3131
131,

(3T

Fig, I11.4.1 Examples of linked lists,

The field HEAD(HEAD(TAIL(Q))) refers to the head of the first cell
of the second sublist of the list Q, Note that a field name is
meaningless if used on its own; it must always be used with a
pointer or link wvariable, The 'functions' HEAD and TAIL enable us

to dissect any 1list structure however complex it may be,

Groups of commands, functions

Lists are constructed by getting new nodes and planting in them
links to other nodes., Nodes which are available for constructing
linked lists are usually stored as a linked list of free space, In
Table II.4.1 the 1link variable FREE points to such a list of free
space which is set up by calling the group of commands SETUPFREE,

The function CONS gets a node from this list and plants wvalues in

PART II List Processing in BCL PAGE 101

its head and tail fields. Note the method of branching used in this
function, EITHER the free space list is empty, in which case the
program is terminated (no garbage collector is defined in this
gsimple program) OR the first node is unlinked from the free space
ligt and the wvalues of X and Y are written into the head and tail
fields respectively, Finally the command EXIT causes a return,
bringing with it the value of the link variable WS, so that the
value of the function CONS is a pointer to a new node, A group of
commands is called by writing its name followed by a list of zero or
more actual parameters enclosed with parantheses and separated by

commae s,

If TOP is a link variable which points to the top node of a
stack then the value of the variable A may be stacked by means of
the statement

TOP = CONS(A,TOP)

This statement is equivalent to the following sequences

| IF FREE NE O GO TO GETNOUDE,

| 0/P(NL,, 'FREE SPACE EXHAUSTED'), STOP,
l GETNODE: WS = FREE,

I FREE = TAIL(FREE),

| TAIL(WS) = TOP,

| HEAD(WS) = A,

| TOP = WS,

Fig. II1.4.2 shows the state of the stack and the free space list at

various stages during the execution of these statements,

PART II List Processing in BCL PAGE 102

FREE—-—,I | ,’ S

e EE

(a) Before entering CONS.

FREE

\ 4

WS —

TOP ————> 3 ,‘ Aj__,L

(b) After executing FREE = TAIL(FREE).

\'4

rd >

(ec) APter leaving the CONS #unction,

FIG, I1.4.2 The state of the Stack and Free Space list at
various stages during the execution of CONS(A,TOP),

PART 1I List Processing in BCL PAGE 103

Returning to the remaining groups of commands in Table II.4.1,
NULL(X) tests if the 1list X is empty by testing if pointer X is
zero. FQ(X,Y) tests two symbols for equality and PRINTLIST(X)
prints the elements of the simple linked list X ,

The groups APPEND, MEMBER, UNION and INTERSECTION are more
interesting, They are the BCL versions of the functions of the same
names defined in the LISP 1,5 Programmer's Manual (McCarthy et al.,
1965). Each of these groups is defined recursively and also uses
previously defined groups. They are included to demonstrate the
functional aspects of the system, The arguments of APPEND are both
lists and the function constructs a new 1list which is the second
list appended to a copy of the first without changing either of the
original lists,

MEMBER is a predicate, It tests if the symbol X is a member
of the list Y, EITHER Y is an empty list in which case the result
is false, a fact which is recorded by setting RESULT to zero, OR X
equals the head element of Y and RESULT is set to 1, OR MEMBER is
called recursively to test if X is a member of the 1list TAIL(Y),
Eventually either X is found on list ¥ and RESULT = 1 or the end of
list Y is reached without finding X, and RESULT = O, MEMBER is
finally 'matched® or ‘'failed' by the condition IF RESULT = 1, The
effect of this will become clearer when we consider the group UNION
which calls MEMBER,

A simpler definition of MEMBER which uses IF Y NE O, the

equivalent of NOT(NULL(Y)), is

| MEMBER(A X,A Y) IS (IF Y NE 0, EITHER EQ(X,HEAD(Y))

I OR MEMBER(X,TAIL(Y)))

PART II List Processing in BCL PAGE 104

UNION constructs a 1list which is the union of its two
arguments, Inside the group UNION, EITHER 1list X is empty in which
case the result is list Y, OR if the first element of list X is a
member of list Y the result is the union of the two lists TAIL(X)
and Y, If the first element of list X is not a member of 1list Y
then MEMBER(HEAD(X),Y) is failed by its final condition, IF RESULT =
1, and the third alternative of UNION is entered giving the result

that UNION(X,Y) is CONS(HEAD(X), UNION(TAIL(X),Y)).

The vaIue of the function INTERSECTION is the intersection
of two lists, The use of these functions clearly demonstrates the
power of the system, Actual parameters of a function may themselves

involve further calls on functions to any depth,

In Table 1I,4.,1(b), LISTPROGRAM is a group of commands to test
the system which has been defined. It begins by calling INITFREE
which initialises the start of free space)(the only command in this
group is a symbolic machine order to assign to the variable FREE the
octal address 20000000), and then SETUPFREE to set up a linked list
of free space, It next constructs two simple lists P and Q and
calls in turn APPEND, UNION and INTERSECTION with P and Q as actual
parameters, The results are output after each statement and the
test program then STOPs. Fig, I1.4.3 shows the 1lists constructed,
Note that the results of APPEND and UNION share the nodes of the

original list Q,

Following the directive *ENTER is a command to output on a
newline (NL,) a title followed by two newlines bhefore entering the
group LISTPROGRAM, The actual computer output for this simple test

program is shown in Table II.4.2.

PART II List Processing in BCL PAGE 105

UNION of P and Q — 2|

Copy of P with Q APPENDED —3 32 3 4 6] '|

INTERSECTION of P and @ —3) 4| — 6]o |

Fig, 11.4.3 Results of APPEND(P,Q),UNION(P,Q) and INTERSECTION(P,Q).

Input, Output and Storage of Atoms

Consider the declarations (A INTEGER, 8C CHARVAR), The
Iirst of these declares INTEGER to be of type A; it can therefore
gstore an address or an integer, The second declares CHARVAR to be a
character variable which can store up to eight six-bit characters
left justified in a 48-bit field. The appearance of variable names
in the 1list of elements of a group which is entered in input or

output mode causes values of the specified type to be transferred.

PART 171 List Processing in BCL PAGE 106

For example provided that the next characters in the input stream
are of the appropriate type, the occurrence of INTEGER causes input
of an integer to the variable INTEGER, If there are no digits in
the input stream the transfer fails, Similarly CHARVAR causes the
transfer of up to eight alphanumeric characters, The transfér is
terminated either after eight such characters have been input or on
finding a character which does not belong to the appropriate
character set (digits and letters), If after reading at least one
letter or digit an unacceptable character occurs before the eighth
character is read, then the transfer is terminated and the remainder
of the 48-bit field is filled with space characters, Variables to
store more than eight characters may be declared and it is possible

to input as atoms character strings of any length,

Once input an atom must be stored either in list space or in
separate atom gpace, Storage in list space restricts character
strings to four characters as the head field of a list-cell is only

24 bits,

Atomic symbols may be stored in separate atom space by setting

up atom records defined as followss

| Atom Flag Atom type Atom length Atom symbol

| -1 Oor 1or 2 1, 2 or more

where the atom types O, 1 and 2 represent integer, real and
character strings respectively, and the 1length is 1 for integers, 2

for real numbers and is variable for character strings,

PART II List Processing in BCL PAGE 107

Thus for an integer atom we define the record

IATOM(?) IS (A FLAG, A TYPE, A LENGTH, A ISYMBOL)
and for character strings of up to 8 alphanumeric characters

CATOM(?) IS (A FLAG, A TYPE, A LENGTH, 8C CSYMBOL)
Real numbers are not yet implemented in the BCL prototype compiler
used for this work but the record for a real atom might be

RATOM(?) IS (A FLAG, A TYPE, A LENGTH, R RSYMBOL)

To store the atom which is input, a new atom record is set
up using the BCL command

SETUP (Recordname, Pointer, Pointer to Atomspace)
where the record name is either IATOM, CATOM or RATOM, pointer is a
variable which points to the record after it has been set up and the
pointer to atom space indicates the next available space (in
congecutive store locations) for atoms, Thus to read and store an
integer atom and return with a pointer to its record in atom space

we define the group

i IREAD IS (INTEGER,
| SETUP(IATOM, WS, ATOMSPACE),

I FLAG(WS)

-1,

| TYPE(WS)

H

Oi
| LENGTH(WS) = 1,
| ISYMBOL(WS) = INTEGER,

| EXIT(WS))

PART II List Processing in BCL PAGE 108

The first <field of any atom record is a negative flag to
indicate that the record is that of an atom, Thus the predicate
ATOM(X) which is true if X is null or if X points to an atom is

defined by

| ATOM(A X) IS (EITHER NULL(X)

| OR IF FIAG (X) LT 0)

If the head field of a node contains a pointer to a sublist
it is necessary to distinguish it from atoms, The predicate ATOM
defined above is suitable for this when atoms are stored in separate
atomspace., If atoms are to be stored in the head field of a node
then a bit must be reserved to distinguish between atoms and
pointers to sublists, So that the full head field may be available
for storing atoms it is convenient to extend our definition of PWORD
to include a third field which stores a flag describing the contents
of the head field, We now have

PWORD(?) IS (A FLAG, A HEAD, A TAIL) .

If the field named FIAG is zero for atoms and one for sublists then

the predicate ATOM is redefined as

| ATOM(A X) IS (EITHER IF FLAG(X)=0

I OR IF HEAD(X)=0) .

PART II List Processing in BCL PAGE 109

§2.4.2 Manipulation of Algebraic Expressions.

The following program may be used to read polynomial
expressions, store them as binary trees, output them in forward
Polish notation, reverse Polish notation and in the normal infix
form, and finally to differentiate such a polynomial with respect to
a single variable and output its derivative after some
simplification,

Groups of commands to input an expression are given in Table

I1.4.3. These use the syntax defined by

<constant> 3= <integer>

<variable> $3= <name>

<primary> $2= <constant> | <variable> | (<expression>)
<gecondary $3= <primary> ** <constant> | <primary>
<term> $t= <term> * <gecondary> |

<term> / <secondary> | <secondary>

<expression> 3= <expression> + <term> |

<expression> - <term> | <term>

The nodes set up are three-field nodes of the form

| LLINK SYMBOL RLINK

If the symbol field contains an arithmetic operator the link
fields point to the two operands involved, Constants and variable
names are stored in the symbol fields of nodes of which both link

fields are zero,

PART 1I List Processing in BCL PAGE 110

*BCL SOURCE
DECLVAR IS (A LISTSPACE,A POINTER,A INTEGER,A X,A OP,A WS,
A PLUS,A MINUS,A MULT,A DIV,A EXPNT,A VARX,A WS1,
A WS2,2C INAME)
NODE(?) IS (A LLINK, A SYMBOL,A RLINK)
CONS(A X,A Y,A Z) IS (SETUP(NODE,POINTER,LISTSPACE),
LLINK(POINTER)=X,
SYMBOL(POINTER)=Y,
RLINK(POINTER)=Z,
EXIT(POINTER))
VARIABLE IS (OSP, ,INAME,OSP,,EXIT(CONS(0,INAME,0)))
CONSTANT IS (OSP, ,INTEGER,OSP, ,EXIT(CONS(O, INTEGER,0)))

PRIMARY IS ((EITHER X = CONSTANT

OR X = VARIABLE
OR '(',X=EXPRESSION,*)*),EXIT(X))
SECONDARY IS (X=PRIMARY,EITHER '#*' K EXIT(CONS(X,'**',CONSTANT))
OR EXIT(X))

TERM IS (X=SECONDARY, MORE: (EITHER '/',0P='/'
OR '*’,OP-':'*'
OR EXIT(X)),
X=CONS (X,0P, SECONDARY) ,

GO TO MORE)

EXPRESSION IS (X=TERM,MORE: (EITHER '+',0P='+'
OR -t op='-!
OR EXIT(X)),
X=CONS (X, 0P, TERM),
GO TO MORE)

Table II.4.3. Groups of Commands to Input an Expression,

The expression
3
| (2x + 1) - 6x
is punched as

| (2 X+ 1) **x3 - 6 * X

and the effect of the statement X=EXPRESSION is to assign to X a
pointer to a binary tree representing the input expression as shown

in Fig. 1104040

PART II List Processing in BCL PAGE 111

Fig, I11.4.4 Tree representation of (2x + 1)**3 - 6x,

PART 11 List Processing in BCL PAGE 112

PRINT(A X,A LASTOP,A OP) IS (EITHER IF X=0
OR IF LLINK(X)=0,IF RLINK(X)=o0,
(EITHER IF SYMBOL(X) GT O,
WS=SYMBOL(X), O/P(WS)

OR INAME=SYMBOL(X),
O/P(INAME))
OR OP=SYMBOL(X),

(EITHER IF LASTOP=EXPNT
OR (EITHER IF LASTOP=MULT
OR IF LASTOP=D1V),
(EITHER IF OP=PLUS
OR IF OP=MINUS)),
o/P('("),PRINT(LLINK(X),0OP),
INAME=OP,0/P(INAME),
PRINT(RLINK(X),QOP) ,0/P(*)")
OR PRINT(LLINK(X),OP) , INAME=OP,
O/P(INAME),PRINT(RLINK(X),0P))

NODEPRINT(A X) IS (EITHER IF LLINK(X)=0,IF RLINK(X)=O,
IF SYMBOL(X) GT 0,WS=SYMBOL(X),
0/P(Ws,sP, (2))
OR INAME=SYMBOL(X) ,0/P(INAME))

PREPRINT(A X) IS (EITHER IF X=0
OR NODEPRINT(X),
PREPRINT(LLINK(X)),PREPRINT(RLINK(X)))

ENDPRINT(A X) IS (EITHER IF X=0
OR ENDPRINT(LLINK(X)),
ENDPRINT(RLINK(X)) ,NODEPRINT(X))

POSTPRINT(A X) IS (EITHER IF X=0
OR POSTPRINT(LLINK(X)),
NODEPRINT(X) , POSTPRINT(RLINK(X)))

Table 11,4.4. Groups of commands to output the information

gstored in a tree,

PART II List Processing in BCL PAGE 113

Commands to output the elements of a tree are given in Table
I1.4.4. PREPRINT outputs the expression in forward Polish notation,
ENDPRINT in reverse Polish notation and POSTPRINT in infix form
without parentheses, The terms PREorder, POSTorder and ENDorder are
those defined and used by Knuth (1968), PRINT inserts parentheses
in the infix form to remove any ambiguities, Typical results for

the tree in Fig. II.4.4 are

Forward Polishg - *x 4+ *x 2 X 1 3 * 6 X
Reverse Polish: 2 X * 1 4+ 3 ** 6 X * -
Infix without bracketss 2 * X + 1 ** 3 - 6 =*x X
Infix with brackets: (2 = X + 1) ** 3 - 6 * X

These different orders of output are obtained simply by
traversing the tree in different orders. PREPRINT first visits the
root then the left subtree and finally the right subtree, The group
NODEPRINT is machine dependent and requires further comment. This
group first tests if the node contains a constant or a variable name
by testing the 1link fields, If both 1links are zero and if the
contents of the symbol field are negative then the node contains a
variable name which is output in character form by first
transferring it to a character variable, INAME in this example, A
positive value in the symbol field is the value of an integer which
is first transferred to a variable of type A and then output, Nodes
whose link fields are not zero store arithmetic operators which are

output as characters after being assigned to a character variable,

(The reader may have noticed that PRINT, which incidentally does not

use NODEPRINT, appears to have three formal parameters, X, LASTOP

PART II List Processing in BCL PAGE 114

and OP, whereas when it 1is called only two actual parameters are
specified, The system as implemented at present does not check that
the number of actual parameters is equal to the number of formal
parameters nor dogg it provide for local variables and as the
parameters are called by value this provides a convenient trick by

which to introduce the latter,)

The function DIFF(X) (see Table II.4.5) uses the basic rules of
differentiation to construct a tree representing the derivative of
the expression to which the 1link variable X points, Note that the
variable OP is a 1local variable and not a formal parameter, No

gimplification is performed within this group and the result of

Y = DIFF(X) is shown in Fig., II.4.5.

DIFF(A X,A OP) IS (EITHER IF X=0,EXIT(0)
OR IF LLINK(X)=0,IF RLINK(X)=O,
(EITHER IF SYMBOL(X)=VARX,EXIT(CONS(0,1,0))
OR EXIT(0))
OR (EITHER IF SYMBOL(X)=PLUS,OP='+?
OR IF SYMBOL(X)=MINUS,OP='-'),
EXIT(CONS(DIFF(LLINK(X)),0P,DIFF(RLINK(X))))
OR IF SYMBOL(X)=MULT ,
EXIT(CONS(CONS(LLINK(X), ***,DIFF(RLINK(X))),'+"'
,CONS(DIFF(LLINK(X)), **',RLINK(X))))
OR IF SYMBOL(X)=DI1V,
EXIT(CONS(CONS (CONS (RLINK(X), '** ,DIFF(LLINK(X))),"-',
CONS(LLINK(X), **',DIFF(RLINK(X)))),
'/' CONS(RLINK(X), '**' CONS(0,2,0))))
OR IF SYMBOL(X)=EXPNT,
EXIT(CONS(RLINK(X), ***,CONS(DIFF(LLINK(X)), '**,
CONS(LLINK(X), ***?' CONS(RLINK(X),'-',CONS(0,1,0)))))))

Table 11,4.5. Commands to differentiate a simple polynomial

expression with respect to a single variable,.

PART II Ligt Processing in BCL PAGE 115

Fig, 11.4.5. Derivative of (2x + 1)**3 - 6x before simplification.

PART I1 List Processing in BCL PAGE 116

The group 'EQUAL' used below tests two trees for equality,
IATOM(A X) IS (IF LLINK(X)=0,IF RLINK(X)=0,IF SYMBOL(X) GT 0 <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>