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ABSTRACT 

This thesis is primarilly concerned with the design and 

implementation of machine independent systems for teaching 

generalised list processing techniques. Two systems, LSIX and BCL, 

are considered in detail. LSIX is a London version of Knowlton's 

L6, and BCL is a general purpose data processing language with 

special emphasis on the input and output of structured data. The 

use of BCL here is as a compiler compiler for LSIX and, in an 

extended form, as a list processor in its own right. 

Part I, which is largely expository, gives a brief 

introduction to list processing, outlines those features of the 

classical list processing systems which are pertinent to this report 

and describes LSIX and BCL. 

Part II deals with the implementation of LSIX in BCL, and 

storage allocation and collection. In general, students have 

favoured the direct use of BCL as a list processor. The author's 

extensions to BCL provide a system in which all levels of list 

processing are possible. It is particularly suitable for teaching, 

as the student is able to define his own structures and list 

processing functions. The facilities available are illustrated by a 

number of BCL list processing programs. This thesis has itself been 

edited using a BCL list processing program. 

Further extensions to BCL are proposed in Part III. These 

allow the user to define, within his program, new types of 
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structured objects, and operations to be performed upon them. The 

result is a general purpose language which is capable of handling 

data structures of any complexity, is suitable for teaching, and 

whose implementation is largely machine independent. 

The Appendices give details of programs and computer output. 

A preliminary account of some of the work described in this thesis 

has already been published in the Computer Journal. The first paper 

containing the gist of sections 2.1 and 2.2 is included as Appendix 

7 and a further paper, on List Processing in BCL, has been accepted 

for publication. 
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The original intention in the work described in this thesis 

was to investigate the system requirements (operational and 

linguistic) of a medium for teaching generalised list processing 

techniques- i.e. techniques which transcend the uniform node 

structure imposed by the classical list processing languages. At 

the time when it was begun, Knowlton's paper on l6 had recently 

appeared, and a first working version of BCL had just become 

available. As l6 promised all the flexibility required and a field 

test of BCL as a compiler compiler was in order, the programme 

appeared to involve implementation of L6 using BCL as a compiler 

compiler as a first phase, followed by use of L6 in a year's 

teaching, and possibly some iteration on these two steps in the 

light of student reaction. In the event, student reaction (and 

indeed my own) was to favour direct use of BCL as a list processing 

language in its own right. However, this did not become apparent 

until the middle of the second year's work, and as a result there is 

a sort of non sequitur in the work reported here, in that after 

describing the implementation of L6 in §2.1 to §2.3, in §2.4, 

where one would expect a discussion of the pros and cons of l6 in 

the light of experience, instead one finds a discussion of list 

processing in BCL. Had the results been known before it was begun, 

doubtless the present section §2.4 would have been §2.1; however, 

the time spent in implementing l6 has had its value in other 

directions, and no further apology seems necessary for the space 

devoted to it in what follows. 



PART IX 

List Processing. 
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List-Processing 

§1.1 Introduction 

List-processing is a method of storage organisation which 

bridges the gap between the one dimensional store of a digital 

computer and the multi-dimensional problems of the real world. 

Often tables or rectangular arrays of information to be operated 

upon by a program are not just amorphous masses of numbers but 

involve important structural relationships between the data 

elements. During the processing of this information the actual 

structure of the data may be changed as well as the values contained 

in the structures. Techniques for manipulating such structures were 

introduced in 195^ when Newell, Shaw and Simon designed the first 

information processing language (IPL II) for use in their 

investigations of heuristic problem solving by machine. Research in 

this and other areas such as mechanical translation, information 

retrieval and operational research generated problems involving a 

form of information processing which could not be handled 

conveniently in any of the conventional languages. Often the 

precise form of the data was not known in advance and complex data 

structures evolved and were modified dynamically during the 

execution of the program. The IPL II system made use of linked data 

elements, which were not necessarilly stored in consecutive 

locations. 

The idea of simple linked lists of information originated in 

connection with the design of computers with drum memories. After 

executing the instruction in location n, such a computer is usually 

not ready to get its next instruction from location n+1 because the 

drum has already rotated past this point. The most favourable 

position for the next instruction depends upon the time taken to 
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execute the current instruction and the machine can operate many 

times faster if its instructions are optimally located rather than 

consecutively. The machine design allows for an extra address field 

in each instruction to store a link to the next instruction to be 

obeyed. Programs for *plus one* address machines, as they are 

called, are the earliest examples of linked lists although there is 

no hardware provision for dynamic insertion or deletion of 

instructions. 

Linked memory techniques are now recognised as basic computer 

programming tools which can be used in ordinary programming 

languages without requiring sophisticated subroutines or 

interpretive routines. Much of the work described in this report 

has arisen in the course of teaching these techniques to M.Sc. 

students and the systems which have been implemented for this 

purpose allow the students to get near to the innermost workings of 

list-processing programs. 

Definition of terms 

It is necessary at this point to define several terms and 

notations which will be used frequently in this report. The 

information stored in a list or a table consists of sets of nodes or 

data blocks (called beads, records or list elements by some 

authors). Each node consists of one or more consecutive computer 

words divided into named parts called fields. In the simplest case 

a node is just one word of computer memory and has just one field 

comprising the whole word. A more interesting example is a node 

which represents an element of a sparse matrix. Such a node might 

be divided into five fields! 
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RON COLUMN VALUE COLUMN RON 
INDEX INDEX LINK LINK 

Thus each element is a member of both a row list and a column list. 

The contents of a field may be an address, a number, alphabetic 

information or anything else the programmer may desire. The 

address of a node (a link, pointer or reference to that node) is 

usually the address of the first word of the node. Linked 

structures are built by acquiring new nodes and planting their 

addresses in link fields of other nodes in the structure. 

A field within a node may be referenced by writing its name 

followed by the address of the node enclosed in parentheses. For 

example suppose that each node of a simple linked list consists of 

two fields named SYMBOL and LINK and that a link variable P contains 

the address of the first node of the list: 

Then the symbol field of the first node is referred to as SYMBOL(P) 

and the link field as LINK(P), Fields in nodes other than the first 

may be accessed via the link fields of preceding nodes. Thus 

SYMBOL(LINK(P» refers to the symbol field of the node to which 

LINK(P) points, i.e. the second node in the list. Note that the 

last node in the list has an easily recognisable symbol in its link 

field to indicate that this is the end of the list. More complex 

structures may be built by storing in the symbol fields pointers to 

sublists as shown below. 
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In this example SYMBOL(LINK(LINK(Q))> contains a pointer to the 

second sublist of the list Q (the list to which Q points). 

Note that names have been used for two quite different things: 

as variables and as fields. It is meaningless to use a field name 

on its own, it should always be followed b3?- the address of the node 

of which the field is a pa.rt. The notation used here for referring 

to fields is that used in BCL and is similar to the notation of 

LISP, An alternative notation is that used in LSIX in which the 

address of the node precedes the name of the field. Thus if A is a 

field name and V»r a link to a node or data block wo refer to field A 

of that block as MA. 

A simple (or linear) list is defined as a list without 

sublists, that is a list of nodes whose only structural relationship 

is essentially a linear one. Some important examples of simple 

lists are those in which all insertions and deletions take place at 

the ends: 

A stack is a simple list in which all insertions and 

deletions take place at one end. 

Stacks are particularly useful where a nested structure is involved, 

for example in arithmetic expressions. They occur frequently in 

connection with recursive algorithms. 
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A queue is a simple list in which insertions are made 

at one end and deletions at the other. 

A deque (or double ended queue) is a simple list in 

which insertions and deletions are made at 

the two ends. 

Queues and deques occur in simulation models in which objects are 

delayed and awaiting service. 

The advantages of linked storage compared with sequential 

allocation are clear when we need to insert a new node or delete a 

node in the middle of a list. For example consider the sentence 

THE DOG BIT THE MAN 

These words could be stored in sequential locations or in a linked 

form: 

THE DOG BIT THE MAN 

THE DOG BIT THE THE DOG BIT THE * MAN 

Suppose now that we wish to insert extra words to give 

THE MAD DOG BIT THE FAT MAN 

In the sequential case, some words already in the list must be moved 

to make room for the insertions. In a long list this is very 

inefficient. If linked locations are used then additional items may 

be stored in any locations that happen to be available, and 

insertions are effected simply by changing a few links. 

THE r» DOG BIT THE t» MAN 

jk. 
MAD FAT 

INSTITUTE OF COMPUTER SCIENCE 
LIBRARY 
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Clearly it is just as easy to delete a node from a linked 

list. 

One serious disadvantage of linked storage is the time taken 

to access nodes other than the first in the list. Access to a 

random node is gained by linking down from the beginning of the 

list. When data is to be accessed at random, sequential allocation 

of storage is preferred and the address L[k] of the kth node is 

LfO]+(k-l)c where c is the number of words in a node. 

Circular Lists 

A circular list has the property that its last node links back 

to the first instead of storing a terminator in its link field. It 

is then possible to access any node in the list, starting at any 

point. The following situation is typical: 

A circular list can be used conveniently as a stack or as a 

queue, since a circular list with one pointer to the rear node is 

equivalent to a linear list with a pointer to each end. 

Some programmers insert a special easily recognisable node 

into each circular list to mark the beginning and end of the list. 

This also has the advantage that the list is never empty. The 

special node used for this purpose is known as a listhead. 

References to a circular list are usually made via the list head. 

The circular list now becomes 

List head 
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List heads are not confined to circular lists and can be used as an 

'anchor* in any linked list. It is sometimes found useful to store 

information about a list in its head e.g. the number of nodes on the 

list. 

Doubly linked lists 

For even greater flexibility we can include two links in each 

node, to the preceding and the following nodes: 

As in the case of circular lists, it is often convenient to include 

a list head giving the following typical representation: 

List head 

If the link fields are named LLINK and RLINK it is clear that if X 

is the address of any node in the list then 

RLINK(LLINK(X)) = LLINK(RLINK(X)) r X 

A doubly linked list permits movement backwards and forwards along 

the list. Another of its many advantages is the ease with which a 

node can be deleted from the list. For example the node with 

location X may be deleted as follows: 
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Before X 

RLINK(LLINK(X)) :=RLINK(X) 

LLINK ( RLINK (X) ) 3 =LL INK(X) 

and the node X is returned 

to the pool of free space. 

List structures 

A list structure is a list in which several fields in a node 

may contain cross links to other nodes in the structure. 
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§1.2 List processing languages 

Many list processing systems have been developed, both as 

independent computer languages and as extensions to existing 

languages, to deal with the manipulation of complex data structures. 

The most widely used systems have been IPL-V (Newell, Shaw and 

Simon, 1959), and LISP (McCarthy, 1959), and more recently SLIP 

(Weisenbaum, 1963). Several books have been written about these 

systems and we give here only a brief description of those features 

which are pertinent to this report. 

Storage allocation and collection 

An important common feature of list-processing languages is 

that storage for data structures is not preassigned but is allocated 

dynamically when it is needed. As the pattern of the data, both 

structure and contents, evolves, new nodes are acquired and added to 

the structure by creating links from the structure to each new node. 

This implies some mechanism for allocating nodes as they are 

required. Usually this is accomplished by means of a list of 

available space (a linked stack) which contains all those blocks 

which are not being used. Initially this list contains all storage 

locations not occupied by the program. Blocks of store (nodes) are 

detached from this for use in building data structures during the 

execution of the program. 

Eventually the available space list may be exhausted and the 

problem arises of reclaiming any blocks which, after being used, 

have become free again. In some systems, notably IPL-V and SLIP, it 

is the responsibility of the programmer to return data-blocks to the 

available space list when they become free. To do this the 

programmer must keep track of the status of all lists and sublists. 

Part of a list may be shared with several other lists and the 
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structures involved may be so complex that it is difficult to keep 

track of them. SLIP deals with this problem by keeping a reference 

count in the head of each list. In other systems such as LISP it is 

impossible to keep track of all list-cells and no blocks are 

returned to the available space list until the latter has been 

exhausted. Then a 9garbage collection9 procedure is initiated which 

scans all active list structures marking those blocks which are in 

use. Blocks which are no longer attached to the active 

list-structure will not be marked. When the lists have been 

scanned, all data blocks are examined and those which are free are 

returned to the available space list. At the same time marks are 

erased from the blocks which are still in use, as the garbage 

collector may be entered several times during the execution of a 

program. Details of some algorithms for automatic garbage 

collection are given in §2.4. 

IPL-V 

IPL-V is the assembly code of a hypothetical machine, and, 

like most list-processing languages, it is interpreted, not 

translated. A node or list-word in IPL-V consists of two 

address-fields called SYMB and LINK and two 3-bit fields P and Q. 

The fields P and Q contain information about the contents of the 

fields SYMB and LINK. Usually SYMB contains an IPL symbol and LINK 

points to the next node in the list. The SYMB field may point to a 

sublist. If the LINK field of a node is zero then that node is 

taken as the last node in the list. 
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LISP 

Programs in LISP are expressed in mathematical functional 

notation combined with conditional egressions. The internal 

representation of data structures is similar to that in IPL-V in 

that each node (or pointer word as it is called in LISP ) consists 

of two address-size fields called car and cdr. Usually cdr points 

to the next node in the list and car points either to a node or to 

numbers or strings of characters called atomic symbols. An atomic 

symbol is distinguished from other nodes by a special symbol in its 

first field. 

SLIP 

Unlike IPL-V and LISP which are autonomous systems, SLIP 

consists of a set of subroutines which can be embedded within a 

FORTRAN-type language. This therefore has the advantage that the 

usual arithmetic facilities of algebraic languages are readily 

available. The internal representation also differs in that a list 

structure in SLIP is both circular and doubly linked. Each node 

consists of (a) two link fields called the left and right links, (b) 

a 2-bit field which identifies the type of the list item and (c) a 

full word field which contains the actual item. This item may be a 

full data word or a pointer to a sublist. 

Need for flexibility 

Often the most natural data form for a particular problem 

representation is not the same as the basic form used in the list 

processing system which has been selected. The three systems 

mentioned above allow no flexibility in the type of node set up. A 

programmer may wish to build linked structures in which the nodes 
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are not all of the same size, to partition nodes into fields in 

different ways or even to allow some fields to overlap. It is 

always possible to represent a data form using the basic nodes 

provided by a system. For example in a LISP-like system the five 

field node 

ROW COLUMN VALUE COLUMN ROW 
INDEX INDEX 

I 
LINK LINK 

could be represented by 

and a doubly linked list could be constructed using pairs of nodesS 

LEFT 
LINK 

RIGHT 
LINK 

LEFT 
LINK 

RIGHT 
LINK 

> f 
Data item 

However, this is unnecessarilly complicated and pedagogically it is 

better to allow a student to define the structure of nodes required 

in his program. This thesis is concerned mainly with the design and 

implementation of list processing systems for teaching purposes. 

Such a system must be sufficiently flexible to demonstrate the 

techniques used in list programming in both high level functional 

languages such as LISP and low level languages which allow the user 

to get close to the innermost workings of his program. The two 

systems considered are LSIX, the author's version of the Bell 

Telephone Laboratories low-level list processing language L6, and a 

system based on BCL, a general purpose data processing language 

which is currently being developed under the direction of D.F.Hendry 
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at the University of London Institute of Computer Science. Both are 

more flexible than most of the popular list processing systems and 

allow the programmer to specify nodes of several different sixes and 

struetures^ which can be used simultaneously in any program. LSIX is 

essentially a low-level system whilst BCL is a high-level language 

which allows the use anywhere in the program of symbolic assembly 

language instructions for the machine concerned. 

A number of extensions have been made, by the author, to the BCL 

compiler to provide a list processing system with most of the 

advantages of other high and low-level list processors. In the 

extended BCL a programmer is able to define and build his own 

list processing system. Examples of demonstration programs used 

in an M.Sc. course are given in §2.4. Students have been able to 

practise list programming without the restrictions imposed by better 

known systems. By simulation of LISP, IPL-V and SLIP in LSIX or BCL 

the basic operations which underlie their implementation can be 

understood. 
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§1.3 LSIX 

The most important features which distinguish LSIX from other 

list processors are the availability of several sizes of storage 

blocks and a flexible means of specifying within them fields, 

containing data or pointers to other blocks* Data structures are 

built by appropriating blocks of various sizes, defining fields 

(simultaneously in all blocks) and filling these fields with data 

and pointers to other blocks* Available blocks are of lengths 2**n 

machine words where n is an integer in the range 0-7* The user may 

define up to 36 fields, which have as names single letters or 

digits* The fields may overlap and may be redefined several times 

during the execution of a program. For example the field named D 

may be defined as bits 5 through 17 of word number 2 of any block* 

Any field which is long enough to store an address may contain a 

pointer to another block* The contents of a field are interpreted 

according to the context in which they are used* 

The LSIX system contains 26 basefields called bugs. The 

contents of a bug are referred to by naming the bug (a single 

letter). If the bug contains a pointer to a block, a particular 

field in that block is referred to by concatenating the names of the 

bug and the field. For example, WD refers to the D field of the 

block to which W points. A field more remotely positioned from the 

bug is referred to by concatenating the names of the bug, the 

sequence of pointers and the field. Thus if bug X points to a block 

whose B field points to a block whose A field points to a block 

whose D field is to be referenced, the latter is called XBAD. 
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LSIX Instruction format 

In general an LSIX instruction consists of an optional label 

followed in order by optional tests, optional operations and an 

optional transfer of control. An example given by Knawlton is 

I L2 IFNONE (XD,E,Y)(XA,E,0) THEN (XD,E,l)(X,P,XA) L2 

which says that 

I IFNONE of the following is true: that the contents of XD 

I equals the contents of Y or that the contents of 

I XA equals 0, 

I THEN perform the following operations: set the contents 

I of XD equal to 1, make X point where the current 

I contents of XA. point and then go to the instruction 

I labelled L2 (the same instruction in this case). 

I OTHERWISE no operations are to be performed and control 

I goes to the next line of coding. 

Other conditions are 

I IFALL satisfied IF ALL of the elementary tests are 

I satisfied, 

I IFNALL satisfied IF NOT ALL of the elementary tests 

I are satisfied 

I IFANY satisfied IF ANY of the elementary tests are 

I satisfied. 

I IF and NOT are synonymous with IFALL and IFNONE. 

The other instruction type is the unconditional instruction 

consisting of a sequence of operations to be performed. A complete 

LSIX program and computer output illustrating the diagnostic aids 

available is given in Appendix lp and Appendix 7 includes a complete 

list of LSIX tests and operations. 
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Three pushdown stores are available in the system for saving 

field contents, field definitions and for subroutine calls. 

The author*s main extensions to the original LSIX are the 

generalisation which allows blocks of any size and the provision of 

an automatic garbage collector. 
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§1.4 BCL 

BCL is a general purpose data processing language with special 

emphasis on the input and output of structured data (Hendry, 1966). 

The structure of the data to be transferred is defined by means of a 

group or ordered set of objects (elements). 

Consider the sequence 

I FIELD IS (OSP.,(EITHER •T.*, TIMEFIELD 

I OR BUG,(EITHER FLDNAMES OR NIL.) 

I OR INTEGER,».', IF INTEGER LE 128, READFIELD), 

| OSP., OCTtro, PLANT) 

which appears in Section 2.1. The names TIMEFIELD,BUG,FLDNAMES and 

READFIELD are the names of groups of objects defined elsewhere in 

the program; INTEGER and OCT are previously defined variables of 

type A (i.e. they can store an address or an integer). The first 

two words, FIELD IS, indicate that the above sequence is a 

definition of the name FIELD. That the rest of it is a 

parenthesised structure with commas indicates that FIELD is the name 

of a group. The commas between the objects denote juxtaposition and 

for alternatives the notation EITHER...OR...OR,.. is used. The 

objects within a group may be literals or names. Character literals 

are enclosed with primes, numeric literals are obvious, also literal 

commands such as x J= z, and group denotations, i.e. unnamed groups, 

which are enclosed with parentheses. Names which must of course be 

defined somewhere, but can be defined passim, may be names of 

variables or groups. Group definitions may be recursive, i.e. the 

name of a group may appear in its own list of objects. 

A group may be encountered either in input mode or in output 

mode. When a group is encountered in input mode the next characters 
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in the input stream are matched with objects in the group. If the 

data in the input stream matches the structure defined it is input. 

During the matching process any literal commands are obeyed and 

groups whose names, appear in the list of objects are called. If at 

any point the data fails to match the structure defined in the 

current branch then control backtracks to the nearest branchpoint 

and attempts to match the next alternative. With the exception that 

the input stream pointer is reset, any side effects resulting from 

the execution of commands in branches which eventually fail to match 

are not undone. 

Suppose the object 'FIELD* is encountered in input mode and 

the next charactexS in the input stream are TA4 , a remote field. 

These characters are matched with the objects in FIELD. OSP. is a 

built-in group which matches any number (including zero) of spaces. 

Next we have a literal group consisting of three alternatives which 

are tried in order. The next two characters are compared with 'T. 

matching is successful on T but fails on the period so the first 

alternative fails and the second is tried. The group named BUG is 

entered. It recognises T as the name of a bug or basefield and 

plants its address in the object area, The second object in this 

branch is itself a literal group consisting of a pair of 

alternatives, FLDNAMES and NIL. FIDNAMES matches any number of 

field names (A and 4 in this case) and plants in the object area the 

addresses of the corresponding field definitions. NIL. is the 

system defined null element. After successfully matching A and 4 

with the second branch of the literal group the input process 

continues with OSP. which again reads any spaces. The variable OCT 

is assigned the value zero and the group PLANT is called to plant 

the value of OCT in the object area. Thus as a side effect of the 
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recognition of the remote field TA4 the following sequence of 

pointers is planted in the object area. 

0 

1 f f ' t 

| BUG T Definition Definition Terminator 
I of field A of field 4 

A second example is the LSIX read-only field called 64. (an 

integral power of two terminated by period). Attempts to match this 

with 9T. 9 and BUG fail. In the third alternative, INTEGER being a 

variable of type A, the integer 64 is assigned to it, then the 

period is matched. The condition INTEGER < 128 is satisfied so 

READFIELD is called to check that the input integer is an integral 

power of 2. The final objects are processed as before and the group 

READ is completely matched. 

When a group is encountered in output mode the process is that 

of assembling characters for output instead of matching characters 

for input. By means of conditions alternative objects may be 

selected for output. Programs are entered in input mode and are 

switched to output mode on encountering the special group name 0/P 

which is followed by a literal group of objects to be output. On 

completion of this literal group the system reverts to input mode. 

That a BCL program is driven by the structure of the data in 

the input stream was the main reason for its use as a compiler 

compiler for LSIX. Through the experience gained in this work and 

as BCL developed after the first version was produced in 1966 it 

became clear that BCL itself is suitable for teaching list 

processing techniques. Many of the basic operations required were 

already built into the language. It is possible to define nodes 

consisting of any number of fields which may store numbers, 
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addresses, or character strings of any length. A student can define 

the basic list-processing functions and define his own storage 

allocation and collection mechanism including an automatic garbage 

collector. A number of facilities such as returns from the middle 

of a group and the provision of functions with parameters have been 

implemented by the author to provide a teaching system within which 

all levels of list-processing are possible. Details of these 

extensions to the BCL compiler are given in Appendix S • The use of 

BCL as a list-processor is described in section 2*4 in which BCL 

programs are given for the solution of a number of problems 

including differentiation of a polynomial expression stored as a 

binary tree, a solution of the classical transportation problem 

using orthogonal lists and updating a tree structured file 

directory. Groups of commands for automatic garbage collection are 

also described. 



PART IX 

The Implementation of List Processing Systems 
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§2.1 The Definition of LSIX in BCL 

In this section the syntax of LSIX is defined in BCL. 

Embedded in the syntax definitions are commands, including calls to 

routines, which are obeyed during the matching of input LSIX source 

statements. For the reader who has difficulty in following the 

complete definition of LSIX and who would prefer at the first 

reading to separate the syntax from the semantics, a definition of 

the syntax only is given in Appendix 2* The semantic commands 

generate a linked list of object code in the object area of the 

store. In LSIX the newline character is the instruction terminator 

and programs are analysed line by line. Each record in the linked 

list corresponds to a single LSIX instruction. 

Format of object code 

The general form of the data to be analysed and the format of 

the object code is illustrated by the complete LSIX program given in 

Appendix 1. It will be seen from the object listing for that 

program that each record consists of four halfwords of links and 

descriptive information, followed by information of variable length 

representing elementary tests and operations. A typical record is 

that representing line 15 of the program i.e. 

BACK IF (XB,L,XDB) THEN (XB,IC,XDB) (X,D) BACK 

The object code generated for this instruction is described in 

detail below. 
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Word 
0 

Contents 
3 oi 02 ol 7 

00112244 

00112140 

00000170 

Remarks 
a description word consisting 
of five fields! 
(1) the condition type, 

3 represents IF; 
(2) the number of elementary 

tests, 1 in this case; 
(3) the number of elementary 

operations, 2 in this case; 
(4) the type of transfer of 

control, 1 represents 
normal transfer; 

(5) a flag to distinguish 
description words from 
other information. 

Address of next instruction 
in sequence, line l6 in this 
case. 
Address of first elementary 
operation in current record. 
This field is not used for 
unconditional instructions. 
The line number (15). 

Words 4-II contain information representing the test (XB,L,XDB). 

4 1 
1 

00000040 

5 1 00101234 
6 1 00100260 
7 1 • 00000000 

8 I 00101234 
9 1 00100320 

10 I 00100260 
11 1 

I 
00000000 

Test code, 4 represents 
'less than'. 
Address of bug X. 
Address of definition of field B. 
Zero terminator of the sequence 
of addresses representing XB. 
Address of bug X. 
Address of definition of field D. 
Address of definition of field B. 
Terminator of the sequence 
representing XDB, 

The representation of elementary operations is similar to that 

for tests but in addition to the operation code the number of 

operands also is stored. Thus (XB,IC,XDB) is represented by words 

12 to 20 inclusive (see Appendix 1) and (X,D) , which is an 

abbreviation for (X,P,XD), is represented in its full form by words 

21 to 27* The final word of this record, word 28, contains the 

address to which control is transferred after execution of the 

elementary operations, i.e. the address of line 15* 
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Definition of LSIX 

The following program compiles object code, the format of 

which was described in the preceding paragraphs. Declarations of 

variables and the details of some routines are not included here but 

with the aid of the detailed comments on most of the groups.the 

reader should have no difficulty in following the program. 

It is convenient to define first an 'indefinite* group in 

BCL, namely 

MISC<?) IS (A CGOF,A PLUSl,A PLUS2,A PLUS3,A PLUS4,A PLUS5) 

The variables C00F,PLUS1,PLUS2, etc, are defined as type A 

i.e. they can store either an address or an integer. Together they 

constitute the group named MISC. The query indicates that MISC is 
a n indefinite group i.e. that any variables declared within it are 

allocated relative addresses, or offsets, and not absolute 

addresses. Thus COOF is an offset of zero, PLUS1 an offset of one 

halfword, PLUS2 two halfwords etc. We can think of them as defining 

a node consisting of six fields 

COOF PLUS1 PIUS 2 PLUS3 PLUS4 PLUS5 

As described in Part I, a field name is meaningless on its 

own and must always be used as an offset from some specified base. 

Thus if PTR points to the first word of a node COOF(PTR) refers to 

the first (half)word of the node, PLUS1(PTR) to the second and so 

on. The offsets defined in the group MISC are used frequently in 

both the definition which follows, and in routines associated with 

the execution of LSIX. 

When LSIX was first defined in BCL, labels and GO TO commands 

were not available in groups and several operations such as the 
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dictionary search have been implemented recursively to overcame this 

problem. 

Main program structure 

I LSIX IS (INITIALISE, LSIXSTATS) 

| LSIXSTATS IS (LINE :r LINE+1, 

I (EITHER INSTR 

| OR DIRECTIVE 

I OR NQNMATCH, GARBAGE), IS IXSTATS) 

The routine INITIALISE initialises certain variables, such as the 

object area pointer, the dictionary area pointer and storage 

locations for bugs and field definitions, before compilation 

commences. An LSIX program is defined as LSIX statements which in 

turn are defined recursively as instructions or directives followed 

by other statements. In the event of failure to recognise an 

instruction or a directive, NONMATCH outputs a suitable message and 

GARBAGE skips all characters up to the end of the line. Compilation 

of an LSIX program is terminated by the directive ••ENTER*. The 

variable LINE contains the line number. STARTP, which is used 

below, contains the object area address of the start of the current 

line. 

| DIRECTIVE IS ( OSP., EITHER ••LSIX*, OPTIONS, 

| OBJECTPts STARTP 

| OR *•ENTER*,LSIXEND) 
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OPTIONS IS ( OSP.,(EITHER •SOURCE',TRACEDATA 

OR 'LIST*,LISTlsl 

OR UNTRACEDATA), 

(EITHER SEP, OPTIONS 

OR NLS)) 

SEP IS ( OSP., ,,t,OSP.) 

OSP. is a built-in group for matching optional spaces. Other 

built-in groups include SP. for a single space, NL. for a newline 

and NIL. the null group. The options SOURCE and LIST following the 

directive *LSIX ask for source and object listings respectively. 

•LSIX without any options inhibits source listing. TRACEDATA 

switches on the data trace so giving source listing commencing with 

the next line of input and if LISTsl, when IBIXEND is entered at the 

end of compilation, then an object listing is given in octal before 

entering the program at the first instruction. 

I INSTR IS (INSTRSTRT, OSP., 

| EITHER CQNDNL 

I OR UNCONDNL 

I OR LABEL,(EITHER CONDNL 

| OR UNCONDNL 

| OR EOL» 

Any instruction may be labelled. The label setting is dealt with by 

the group LABEL which is defined below. In LSIX the GO TO <label> 

command is specified by the occurence of a label name at the end of 

an instruction. Thus if an LSIX instruction consists only of a 

label name that name is to be translated as a label reference and 
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not a label setting. The group LABEL deals with this case also. 

EOL matches the instruction terminator and plants descriptive 

information. 

I INSTRSTRT IS (STARTPI =OBJECTP, C3BJECTP5 =OBJECTP+2, 

I cc»NDs=o,NT:=o,NOs=o,GcrraFiAG:=o, 

I PLUS2(STARTP)1=0) 

INSTRSTRT assigns to STARTP the address of the first word of the 

next record to be constructed in the object area, it advances the 

object pointer by four (half)words and initialises the condition 

type, number of tests, number of operations, the transfer flag and 

word number 2 of the new record. 

Types of instruction 

I CONDNL IS (CONDITION,TESTS, 

| (EITHER * THEN * , OPERA TNS OR NIL.), 

| TRANSFER, EOL) 

I UNCONDNL IS ((EITHER 'THEN* OR NIL.), OPERATIONS, 

I (EITHER TRANSFER OR NIL.),EOL) 

The literal 'THEN* which may precede the list of elementary 

operations in an unconditional instruction is included for 

compatibility with the original l6. 
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Types of condition 

When a condition is found its type is noted in the variable COND, 

CONDITION IS (EITHER 'IFANY*, CQND is 1 

OR 'IFNALL', COND 2= 2 

OR *IFALL*, COND is 3 

OR •IFNONE', COND is 4 

OR 'IF', COND IS 3 

OR 'NOT', CQND js 4) 

Analysis of tests 

TESTS is a series of elementary TESTs defined in the usual manner. 

During execution, the conditions IFANY and IFNALL may be satisfied 

before all of the elementary tests have been performed, in which 

case control is transferred immediately to the first operation. As 

each test takes space in the object area and the number of tests is 

unknown, when no more tests are found, the address of the first 

operation is planted, by TESTSEND, in PLUS2(STARTP) the field 

reserved for this purpose by INSTRSTRT. Test codes and operand 

types are assigned to K and J respectively and at the end of each 

test, TESTEND plants the value of K in the object area in a location 

reserved by TESTSTRT. TESTEND also keeps a count of the elementary 

tests in NT, (note the difference between TESTSEND and TESTEND). 

| TESTS IS (OSP.,TEST,EITHER TESTS OR OSP.,TESTSEND) 
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TEST IS ( * ( *,TESTSTRT, FIELD,SEP, 

(EITHER(EITHER *E , ,K2=1 

OR , N , , K : = 2 

OR , G» ,K : =3 

OR • l ' , k : = 4 ) , 

(EITHER • 0 * , J |=2 

OR • H * , j : = 3 

OR J : =O ) 

OR (EITHER *0» ,K :=5 

OR , Z * , K : = 6 ) , 

(EITHER »D , , JX=1 

OR •H*,J1=3 

OR JJ=4> 

OR •pf,K:=7 ,J:=o), 

This completes the first argument and the predicate. Matching 

continues with the separator and second argument. SEP is not used 

for the next separator as any spaces following the comma are 

significant in a •hollerith* literal. 

OSP . , » , • , ( E ITHER IF J=0,(EITHER FIELD 

OR DLITERAL) 

OR IF J=L, DLITERAL 

OR IF J=2, OLITERAL 

OR IF J=3 , HLITERAL 

OR IF J=4, (EITHER FIELD 

OR OLITERAL)), 

*) ' ,TESTEND) 
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Literal operands and FIELD are defined below. 

| TESTSTRT IS ( TESTPt =OBJECTP, OBJECTPJ =OBJECTP+ClNE) 

I TESTEND IS ( NT 1= NT+1, COOF(TESTP):=K) 

| TESTSEND IS ( PUJS2(STARTP) := OBJECTP) 

Analysis of operations 

In general, operations have either three or four arguments the 

second of which is the mnemonic function code but there are two 

special cases, (DO, symbol), the subroutine call, and (a, A), an 

abbreviation for (a,P,aA ), with only two arguments. The analysis 

of an operation is performed in two passes during the first of which 

no object code is planted. On the first scan a shallow analysis 

determines the operation code (K) and the number of operands (NA). 

The matching process is then deliberately failed by using the group 

REJECT. This technique of deliberately failing an alternative is 

commonly used in BCL programming as a means of scanning the same 

data several times. Information picked up during the shallow 

analysis is used in the deep analysis on the second pass. OPSTART 

sets K and NA to zero and reserves locations for their final values 

which are planted by OPEND when the operation has been matched. 

OPEND also keeps a count of the operations in the variable NO. 

| REJECT IS (IF 1=0) 

| OPERATNS IS (OSP. ,0PERATN, EITHER OPERATNS OR OS P.) 

QPERATNS is defined in the usual way as a series of elementary 

operations. In the next group, OPERATN, the first alternative is a 

shallow analysis which attempts to match a two argument operation, 
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if it succeeds NA is set to 2 and a deep analysis performed. The 

group ARG skips all characters except comma and right bracket. 

| OPERATN IS ('(', OPSTART, OSP., 

| (EITHER ARG, SEP, ARG, ')', NAJ22, REJECT 

Shallow analysis for two argument operations completed, we go on to 

deep analysis of two argument operations if NAs2. 

•R IF NA=2, (EITHER 'DO*,SEP,(EITHER •STATE*,K:=4l,NA:=0 

OR 'DUMP*,KI=42,NA1=0 

OR SYMBOL,K!=35,NAS=1 

OR (EITHER FIELD,SEP,REJECT 

OR FIELD, SEP, 

QBJECTP != QBJECTP - ONE, 

FLDNAMES,K:=12» ,OSP., •) • 

This completes the analysis of two argument operations. 

'STATE' and 'DUMP* are system subroutines. SYMBOL is defined below. 

Note the special technique for dealing with the operation (a, A ) 

which must be expanded to its full form (a,P,aA) in the object 

area. For example (AB,CDE) is an abbreviation for (AB,P,ABCDE). 

Thus the field defined by AB must be matched first as the first 

operand and then as the first part of a sequence of addresses 

specifying the second operand. This is achieved by first matching 

FIELD, planting object code for the first operand as a side effect, 

and then failing the match using REJECT, so that in the next 

alternative FIELD matches the same sequence of names again and is 

followed by SEP. FIELD plants a aero terminator. This is undone by 
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stepping back the object pointer by one (half)word 

(OBJECTP:=OBJECTP-ONE). Finally the remaining sequence of names is 

matched by FLDNAMES and the operation code set to 12 which 

corresponds to the function P. 

The next alternative deals with the shallow analysis of 

operations having more than two arguments. Note that in the 

following analysis NA is set to the number of operands. 

| OR ARG,SEP,OPCODE, SEP,ARG,NA:=2,SEP,ARG,NAl=3, 

| (EITHER IF K=10,K:=36 

I OR IF K=23,KI=36 

| OR IF K=35,K5=36),REJECT 

This completes the shallow analysis. Certain ambiguities 

arising in OPCODE, which deals with the function code and assigns 

values to K (operation code) and J (operand type), are removed once 

the number of operands is known. For example, DB with two operands 

means 'convert from decimal to binary* but with three operands it is 

'define field B '. Values of K are then corrected, if necessary, 

before going on to the deep analysis. In the deep analysis which 

follows, OPCD reads the function code, OCT is a working variable and 

PLANT plants the value of OCT in the object area. A table of 

operations with the corresponding values of K is given in Appendix 

7* 

| OR IF K LE 29, FIELD,SEP,OPCD,OSP.,», * 

I ,(EITHER IF K LE 27, 

| (EITHER IF JsO, (EITHER FIELD 

| OR DLITERAL) 

| OR IF J=l, DLITERAL 
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OR IF J=2, OLITERAL 

OR IF J=3, HLITERAL 

OR IF J=4, (EITHER FIEID 

OR OLITERAL) 

OR IF J=5, FIELD), •)* 

OR IF K GT 27, 

(EITHER FIEID OR DLITERAL), 

(EITHER IF NA-3, •,« , 

(EITHER IF J=l, DLITERAL 

OR IF J=3, HLITERAL 

OR IF J34, (EITHER FIELD 

OR OLITERAL)) 

OR NIL.), *)' 

OR IF K LE 31, IF K GT 29, 

(EITHER FIEID QR DLITERAL), 

• , • ,OSP. ,OPCD,OSP. , , 

(EITHER IF J=3, PRPUHLIT 

OR FIEID 

OR OLITERAL), *)• 

OR IF K=32,FIEID,SEP,OPCD,SEP,FIDNAME,0CT|=0,PLANT, 

(EITHER IF NA=3, (EITHER FIEID 

OR DLITERAL) 

OR OSP.), »)• 

OR IF KS33, (EITHER 'S* OR »R', KJS43),SEP, •FC*, 

SEP,FIELD, *)», NAjsl 

OR IF K=34, (EITHER ,S» OR *R*,K:=44),SEP, 'FD*, 

SEP fFLDNAME, OCT 130, PLANT, OSP., •) * ,NA:=1 

OR IF KS35, SYMBOL,SEP, ,D0*,SEP,SYMBOL,OSP., *) * 
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I OR IF K=36, (EITHER FIELD OR DLITERAL), 

I SEP, 'D*,FLDNAME,OCT 1=0,PLANT, 

I SEP,(EITHER FIELD OR DLITERAL), 

I SEP,(EITHER FIELD OR DLITERAL),')' 

| OR IF E=37,(,*f,OLITERAL,SEP,OPCD,SEP,DLITERAL, 

I SEP,,OLITERAL),•)• 

»*» followed by octal digits is the LSIX representation of an octal 

address in the Atlas computer. 

| OR IF K2=38,FIELD,SEP,OPCD,SEP, 

| (EITHER FIELD OR DLITERAL), 

| (EITHER IF NAS3,SEP,FIELD OR NIL.),•)',), 

| OPEND) 

The efficiency of the group OPERATN could be improved in the 

deep analysis (when K is known) by using a switch, with K as control 

variable, to select the appropriate branch, so avoiding the tests IF 

K=32,IF K=33, etc. However, this facility was not available at the 

time of this first implementation. 

I OPCODE IS (EITHER OPCD,OPSEARCH, IF K NE 100 

| OR 'D',(EITHER LETTER OR DIGIT), 

| K!=36, Jjs6) 

The second argument of an operation is usually the mnemonic 

function code. During the shallow analysis this is read into the 

variable OPCD and then looked up in a table of operations by 

OPSEARCH (a binary search) which returns values of K and J. In the 
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event of failure to find the code in the table K is set to 100. The 

code D for field definitions is dealt with separately. The next 

section is partly in Atlas Machine Code. 

I OPSEARCH IS (WSlt=32, POINTER: =POINTER+WSI, OPSRCH) 

| OPSRCH IS <163,WS1,0,0, II Halve WSL. 

I i27,WSi,0,*00000770, :: Clear octal fraction. 

I (EITHER IF 0PCD=C00F(POINTER), 

I OCTTSPLUSI(POINTER), 

I I65,J,0CT,*7, 

I 125,J,0,0, :: Get J. 

I I65,K,OCT,*OOOOO77O,:: Get K. 

| OR IF WSL NE 0, 

I (EITHER IF OPCD GT COOF(POINTER), 

| POINTER: =POINTER+WSi 

| OR POINTER: =POINTER-WSl), 

| OPSRCH 

I OR KI=100)) 

OPSEARCH starts by setting a POINTER to the middle of an ordered 

table of operation codes and the corresponding values of K and J and 

then calls OPSRCH which is a recursive binary search. Comments in 

BCL are preceded by double colon and terminated by a newline. 
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Types of field 

| FIELD IS (OSP.,(EITHER *T», TIMEFIELD 

| OR BUG,(EITHER FLDNAMES OR NIL.) 

| OR INTEGER,*.*, 

I IF INTEGER LE 128,READFIELD), 

| OSP., OCTJSO, PLANT) 

The group FIELD was described in detail in section §1.4. 

TIMEFIELD plants the address of the system defined field *T* in 

which time is stored. READFIELD checks that the integer read into 

the variable INTEGER is an integral power of 2 and plants the field 

address in the object area. The LSIX read-only fields are called 

»T • »1 • * *A 1 M28 • 

I BUG IS (LETTER, BUGADDR) 

BUGADDR computes and plants the address of the specified bug. 

| FLDNAMES IS (FLDNAME, EITHER FLDNAMES OR NIL.) 

| FLDNAME IS ((EITHER LETTER OR DIGIT), FLDADDR) 

FLDADDR computes and plants the address of the definition of the 

specified field. 

| LETTER IS (LTRTEST,LTR) 

I DIGIT IS (DGTEST,DGT) 

LTRTEST and DGTEST look ahead at the next character in the input 
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stream and test if it is a letter or a digit respectively. If it is 

then the character is input to either LTR or DGT each of which is 

defined as a one character variable. These tests leave in OCT a 

character value which is used by FLDADDR to determine the address of 

the appropriate field definition. 

Types of literal 

I DLITERAL IS (OSP. ,WS1,STC0NST,PIANT, 

| OCTJ=0,PLANT,OSP.) 

Decimal literals (positive integers in the range 0,2**24 

assigned to the variable WS1. STCQNST enters the constant 

constants table and returns with its address in OCT which 

planted in the object area by PIANT. 

I STCONST IS (CONSTPSSCONSTP+QNE, 

I C00F(C0NSTP):=WS1, 

I OCT:=CC*NSTP) 

I OLITERAL IS (OSP. fWSl:s0,C0UNT:s8,0DIGITStSTC0NST, 

| PLANT,0CT:=0,PIANT,OSP.) 

Octal integers of not more than eight digits may be assembled and 

stored in the constants area. WS1 is a work space. 

I QDIGITS IS (DIGIT, IF DGT LT 8, 

| COUNT I=CCJUNT-1, ASMBLODGT, 

| EITHER IF COUNT GT 0, ODIGITS 

I OR NIL.) 

-1) are 

in the 

is then 
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DIGIT inputs a single decimal digit in integer form to the variable 

DGT. ASMBLODGT is a group of machine orders which is functionally 

equivalent to WSlj=8*WSl+DGT. The group ODIGITS is terminated 

either on finding a non octal digit or after reading eight octal 

digits. 

I HLITERAL IS (WSl J SO, COUNTX 24,HCHARS, STCQNST, PLANT, 

I 0CT|=0, PLANT) 

HCHARS reads up to four characters (Atlas inner set) not including 

newline, comma and right bracket, packs them (right justified) in 

the work space WSl whence they are picked up by STCONST and stored 

in the constants area. The characters comma and right bracket are 

acceptable if written as (,) and ()) respectively, otherwise they 

may be written in the equivalent octal form and read by OLITERAL. 

The restriction to four characters is removed in the case of the 

output operations PRH and PUH using the group PRPUHLIT which deals 

with literals to be printed or punched, the length of a character 

string for output is limited only by the length of a line. 

Allowable characters are stored, one per (half) word in the constant 

area. A typical record for the PRH operation is shown in the object 

listing (LINE 2) in Appendix 1. The three operands set up are 

I (a) the number of characters to be output, 

I (b) the address of the first character, 

I and (c) the length of the stored character string. 

PRPUHLIT begins by switching to a character set which allows all 

characters except comma, close bracket and newline; it then counts 

and stores the allowable characters which are input one at a time by 

the group CHARS. 
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PRPUHLIT IS (CHSET1 sHCHSET, 

OCT:=CONSTP+CJNE, PLANT 

OCT I SO, PIANT, 

CHARS) 

CHARS IS (EITHER CHAR, STCONST, 

COUNT: sCOUNT+1, 

CHARS 

OR WSlJ SCOUNT,STCONST,PLANT, 

OCT:SO, PLANT, 

NA:sNA+l ) 

CHAR inputs a single character and stores it right justified in WSl. 

STCONST stores it in the constants area. When the last allowable 

character has been read the character count is stored and its 

address planted in the object area. Finally the number of operands 

(NA) is increased by one. 

Labels, label references 

LABREC(?) IS (A DI CLINK, 8C NAME, A ADDR, A REFADDR) 

LABREC defines a label record which consists of four fields: 

(a) a link to the next label record in the name list, 

(b) the label name, 

(c) the object area address of the label, 

and (d) a link to any forward references that occur before 

the label is set. 

Here again we use the concept of an indefinite group in BCL to 

define the structure of a record which consists of several fields. 

The field names DICLINK, NAME, ADDR and REFADDR, associated with 

LABREC, are used as selector functions. 
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iWDREF(?) IS (A LINK, A ADDRESS) 

PWDREF defines a forward reference record of two fields the first of 

which is a link to the next forward reference for this label and the 

second is the object address at which the address is to be planted 

when the label is set. 

| LABEL IS (UBL, JUNK, SP., OSP., 

I EITHER NLS, GOTOFLAGisi, REJECT 

I OR IF GOTOFLAGSO, LABELS ET 

I OR IF LBL s 'DONE', GOTOFLAG:=2 

| OR IF LBL z 'FAIL', GOTOFLAG:=3 

I OR IF LBL r 'END' , GOTOFLAGxr^. 

| OR LABELREF) 

Any combination of alphanumeric characters terminated by a 

space is accepted as a label. Only the first eight characters are 

significant, these are assigned to the character variable LBL. 

Insignificant characters are skipped by JUNK which is defined below. 

A label name followed by newline is interpreted as a reference to a 

label, i.e. it represents a transfer of control, and GOTOFLAG is 

set. System transfers DONE and FAIL are returns from subroutines 

and END is a logical end of the program. 

| JUNK IS (EITHER JNK, JUNK OR NIL.) 

JNK is a character variable to which insignificant characters are 

assigned. 
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I MATCH IS (EITHER IF CURRENTao, 

I SETUP(LABREC,CURRENT,DICTP), 

I DICLINK(CURRENT) := DICP, 

I DICP JsCURRENT, 

I NAME(CURRENT) t= LBL, 

I ADDR(CURRENT) X= O, 

| REFADDR(CURRENT) 1= O 

I OR IF LBL = NAME(CURRENT) 

| OR CURRENT S= DICLINK(CURRENT), MATCH) 

MATCH compares LBL with entries in the labels dictionary. Before 

entry the pointer variable CURRENT points to the last entry in the 

dictionary. If CURRENT is zero the name in LBL is not in the 

dictionary so a new label record is set up by the system defined 

group SETUP which allocates space from an area pointed to by DICTP 

and assigns the address of the new record to CURRENT, The record is 

linked on to the labels list, in which DICP points to the last 

entry, and the label name recorded. Eventually MATCH is terminated 

with CURRENT pointing to the record required, 

I LABELSET IS (CURRENT DICP, MATCH, 

| EITHER IF ADDR(CURRENT) = 0, 

| ADDR(CURRENT) := STARTP, 

| (EITHER IF REFADDR( CURRENT) = 0 

| OR NCURRENT != REFADDR(CURRENT), 

| REFADDR(CURRENT) := 0, 

| PLUGL1ST) 

| DR 0/P('LABEL IBL, 'SET 1WICE')) 
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STARTP is the address of the current object code record. When a 

label is set any forward references are plugged by PLUGLIST. 

NCURRENT is a pointer to a forward reference record. 

| PLUGLIST IS ( COOF(ADDRESS (NCURRENT) ):=STARTP, 

I NCURRENT J=LINK(NCURRENT), 

I EITHER IF NCURRENT = 0 

I OR PLUGLIST) 

The following groups deal with label references. 

I TRANSFER IS (OSP., LBL, JUNK, 

| EITHER IF LBL = 'DONE * , G0T0FIAGX=2 

| OR IF LBL = 'FAIL', GOTOFIAGl=3 

I OR IF LBL = 'END' , GOTOFLAGJ=4 

I OR LABELREF, GOTOFIAGtSl) 

| LABELREF IS (CURRENT J= DICP, MATCH, 

| OCT := ADDR(CURRENT), PLANT, 

| EITHER IF ADDR(CURRENT) = 0, 

| SETUP(FWDREF, NCURRENT, DICTP), 

| LINK (NCURRENT) t rREFADDR ( CURRENT ), 

| ADDRESS(NCURRENT)jrOBJECTP, 

| REFADDR( CURRENT) ISNCURRENT 

| OR NIL.) 

If a label has not been set, a record of the forward reference is 

•SETUP' and inserted in the pluglist. 
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Subroutines are entered by means of the (D0f symbol) operation where 

the symbol is the label, or name, of the entry point. The two 

system subroutines 'STATE' and 'DUMP* do not use the normal 

subroutine entry and return. 

| SYMBOL IS (IBL, JUNK, 

I EITHER IF IBL = 'STATE', KJS4I, NAS=0 

I OR IF IBL = 'DUMP' , Kl=42, NA2=0 

I OR IABELREF, OCT 1=0, PLANT) 

Some miscellaneous groups 

| PLANT IS (COOF(OBJECTP) 5= OCT, 

| QBJECTP IS QBJECTP + ONE) 

Information stored in OCT is planted in the object area by PIANT and 

the object pointer is advanced one word. 

I EOL IS (OSP., NL., EITHER EOL OR INSTREND) 

An LSIX instruction is terminated by one or more newlines. INSTREND 

packs descriptive information - CQND, NT, NO and GOTOFLAG, into a 

description word which is stored in the first word of the current 

object record. 

I NLS IS (OSP., NL., EITHER NLS OR NIL.) 

NLS is similar to EOL but no information is planted. 

I LSIXEND IS (FINISHlsOBJECTP, OBJECTPSSSTART, 

I (EITHER IF LISTtel, OBJECTPRINT 

| OR NIL.), INTERPRET) 

Compilation is completed and, if requested, an object listing is 

output in octal, before the interpreter is entered and execution 

commenced. 
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§2.2 The execution of an LSIX program 

During the analysis and recognition of LSIX source 

instructions descriptive information is planted in the object area. 

For each source instruction this information includes a description 

word, the address of the next description word in sequence, i.e. the 

start of the next instruction, the address of the first operation in 

the current instruction and the line number. The description word 

gives the type of instruction (conditional or unconditional), the 

number of tests, the number of operations and the type of transfer 

of control (normal transfer, subroutine return) if any. This 

information is packed as follows 

Bits 0-2 Type of instruction 0 for unconditional 

1 - IFANY 

2 - IFNALL 

3 - IFALL, IF 

4 - IFNONE, NOT 

Bits 3-8 Number of Tests 0 - 6 3 

Bits 9-14 Number of Operations 0 - 6 3 

Bits 15-20 Type of Transfer 0 for no transfer 

1 - normal transfer 

2 - normal subroutine exit (DONE) 

3 - fail subroutine exit (FAIL) 

4 - logical end of program (END) 

For each test and operation is stored the test or operation 

code (values of K in Appendix 7) a n d t h e addresses of operands. The 

outline flow diagram in Fig.II.2.1 describes the operation of the 

main interpreter routine which is written in BCL. 
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Each operand, whether a base field (bug), remote field or a 

constant (decimal, octal or hollerith literal), is specified by a 

sequence of one or more addresses terminated by a zero. For example 

the remote field WAD is represented by the sequence of pointers 

Y 
Bug W Definition 

of field A 

Definition 

of field D 

Terminator 

and the basefield X by 

I 
Y 

I Bug X Terminator 

Constants are stored in a constants area and referred to by 

their addresses. 

A field is defined at run time by its word number, left-most 

bit and right-most bit. For example the operation (2,d6,3,17) 

defines field 6 of any data block as bits 3 through 17 of word 

number 2. The execution of such an operation results in the setting 

up of a field definition, including a 24 bit mask, which is used by 

the routines for fetching and storing the contents of fields. 

Because of the complete generality of field definitions no attempt 

is made to use the few special hardware facilities for handling 

special cases. The only special case which might have been worth 

detecting is the field which spans the full 24 bits of the word. 



PART II Storage Allocation and Collection PAGE 56 

Three general field handling subroutines FINDFIELD, GETFIELD and 

STOREFIELD are used during the execution of fetch and store 

operands* 

Any field in the data structures may be specified by two 

pointers one to the first word of the block containing the field and 

the other to the definition of the field concerned. Basefields and 

constants are referred to by the first of these pointers and the 

second is conventionally zero* The routine FINDFIELD given below 

determines, from a sequence of addresses in the object area, the 

values of the two pointers specifying an operand. 
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Subroutine to find a field 

On entry OBJECTP points to the first of a sequence of 

addresses in the object area. The routine is terminated when the 

location to which OBJECTP points contains a zero i.e. when 

COOF(OBJECTP) = 0 . On exit, for a remote field WREG1 points to the 

block containing the specified field and WREG2 to the definition of 

the field* for basefields and constants WREGl points to the 

basefield or constant and WREG2 is zero. 

| DEFINE R FINDFIELD 

I DO 

| WREG2 := 0 

I WREGl J= COOF(QBJECTP) 

| OBJECTP i= OBJECTP + ONE 

I IF COOF(QBJECTP) s 0 GO TO END 

| WREGl JS COOF(WREGl) 

| MORE) WREG2 J= COOF(OBJECTP) 

| OBJECTP 1= OBJECTP + ONE 

I IF C00F(QBJECTP) = 0 GO TO END 

I GETFIELD 

| GO TO MORE 

| END) OBJECTP S = OBJECTP + TWO 

| RETURN 

I END 

Fetch first address. 

Advance object pointer by one word. 

If next address is zero go to end. 

Get address of block to which bug 

points. 

Get address of next field definition. 

Advance object pointer. 

If next address is zero go to end. 

Routine to get contents of field 

specified by WREGl and WREG2. 

Advance object pointer to next item 

of information (i.e. step over 

zero). 
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Subroutine to fetch the contents of a field 

PAGE 58 

The subroutine FINDFIELD calls GETFIEID which is defined 

below. GETFIELD fetches the contents of the field which is 

specified by the two pointers WREG1 and WREG2 in the usual way. On 

exit WREG1 contains the contents of the specified field right 

justified (not all fields are 24 bits in width) and WREG2 is 

unchanged. 

| DEFINE R GETFIELD 

I DO 

| IF WREG2 NE O GO TO REMOTE If not basefield or constant go 

| WREG1 l= COOF(WREGl) to remote, otherwise get contents 

| RETURN and return. 

I REMOTE) WREGl J= WREGl + WORD(WREG2) 

Address of word containing field. 

Get word including field. 

Get mask from field definition. 

Machine order to get field from word. 

Determine any right shift required. 

If right justified go to end. 

Right justify. 

Return with field in WREGl. 

END 

WREGl 5= COOF (WREGl) 

WREG3 S= MASK(WREG2) 

127, WREGl ,WREG3,0 

SHIFT J= 23 - RBIT(WREG2) 

IF SHIFT S 0 GO TO END 

1342,WREGl,SHIFT, 0 

END) RETURN 
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Subroutine to Btore a field 

The item to be stored is held in the variable OCT. The field 

in which the item is to be stored is specified in the usual way by 

WREGl and WREG2. 

DEFINE R STOREFIELD 

DO 

IF WREG2 NE 0 GO TO REMOTE 

IF WREGl LT BUGBASE GO TO ERROR 

COOF (WREGl) != OCT 

RETURN 

REMOTE) SHIFT := 23~RBIT(WREG2) 

1343, OCT, SHIFT, 0 

WREG3 MASK(WREG2) 

l27,OCT,WREG3,0 

WREGl := WREGl + WORD(WREG2) 

WREG2 COOF (WREGl) 

126,WREG3,0,*77777777 

127,WREG2, WREG3,0 

l67,WREG2,OCT,0 

COOF (WREGl) WREG2 

END) RETURN 

ERROR) O/P ('ATTEMPTING TO WRITE 

RETURN 

END 

WREG2 is zero for basefields. 

Protect read only fields. 

Store item in basefield. 

Determine necessary shift. 

Shift operand into position. 

Get mask from field definition. 

Clear most significant bits if 

item too long. 

Address of word containing field. 

Fetch present contents of word. 

Complement mask. 

Clear field to receive new item. 

Write item into specified field. 

Store field. 

TO READ FIELD') Error message. 
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The efficiency of LSIX depends largely upon the efficiency of 

these three field handling routines which are used for all operands. 

It is important to make use of any special hardware facilities which 

exist for shifting operands and the LSIX user is encouraged to 

define fields which may be handled efficiently by the hardware of 

the machine on which the program is to be run* In his original l6 

compiler for the IBM 7°9° computer, Knowlton recompiles at run time 

the routines to fetch and store operands each time that a field is 

defined or redefined, making use of special hardware facilities 

where possible. On the Atlas computer the only shift instructions, 

apart from the inefficient extra-codes, are the circular shift one 

bit right and circular shift six bits left. For this reason it was 

decided to use the same three general field handling routines for 

all operands. The facility for defining and redefining general 

fields in L6 is the main justification for the interpretive nature 

of the Atlas LSIX compiler. 

Compilation of an LSIX program is terminated when the 

directive *ENTER is recognised. If the LIST option has been 

specified by means of an earlier directive, *LSIX LIST, then the 

object program is listed in octal by calling the routine STACKPRINT 

(see Appendix 3 ). A typical object listing is shown in the 

complete example of an LSIX program in Appendix 1. On entry to the 

routine INTERPRET the first operations throw away those parts of the 

compiler which are no longer required, the object pointer is 

initialised and execution commences. 
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The interpreter and associated routines 

PAGE 1252 

The operation of the interpreter routine is described in 

outline by the flow diagram in Fig. 11.2.1. The following anotated 

BCL program is a more detailed specification. In general^tests and 

operations involve two operands but some involve more than two. The 

routines FINDFIELD and GETFIELD described in the previous section 

are used to locate and fetch the operands. The address and value of 

the first operand are assigned to the variables 

I BP1 - pointer to block 

| FP1 - pointer to field definition (zero for basefields 

I and constants) 

I and OPl - contains field (fetched only if required) 

and the second and third operands are assigned to BP2f FP2, 0P2 and 

BF3, FP3, OP3 respectively. These values are then ready for use in 

the various sets of BCL instructions corresponding to the LSIX tests 

and operations. 

In addition to the field handling routines already described 

several other basic routines are called from the main interpreter 

routine. These are described in Appendix 3* The reader is 

reminded that routines with parameters were not available in BCL 

when this compiler was written. 
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COND x 1 represents IFANY 
COND = 2 represents IFNAIJ 

COED r 3 represents IFALL,IF 
can) = 4 represents IFNONE,NOT 

Nr. 11.3..1(a). The operation of the Interpreter Routine 

(Continued on Page 63) 
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N'r : = NT - 1 

o 

K : = Opera tion code; 
NA : = Number of 

operands. 

locate operands 
( FINDFIELD ) 

Switch via GOTOFIAG 

4 3 2 1 

Object pointer := 
addres of fir t 

NO := NO - 1 

via K to 
~ __________ ~ subroutine to pick up 

operands and perform 
operation . 

O~~------------~r---~W 

Subroutine 
exit 

Subro tine 
fail exit 

STOP, en of r n. 

Fig . II •• 1( b ). The 0 oration of the Interpreter Routine . 

( Continue from Page 62) 
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DEFINE R INTERPRET 

DO 

121 ,WRl ,0, *1001 

II42,WR1,0,(NEXT) :: Lose routines no longer required. 

NEXT) 1065,0,0,5,0 It Space to top of next page. 

O/P (NL.(2), *LSIX PROGRAM ENTERED1, NL.(2)) 

NDESCKWD is START t : Initialise pointer to next 
I: instruction. 

GAMMA) QBJECTP := NDESCRWD :: Get pointer to next instruction. 

DESCRWD is COOF(QBJECTP) 11 Get description word. 
NDESCRWD 1= PLUS1(OBJECTP) 

FIRSTOP js PLUS2(OBJECTP) 

LINE 5= PLUS3(0BJECTP) 

OBJECTP is OBJECTP + 2 

It Get address of next description 
It word in sequence. 
It Get address of first operation in 
It current instruction (zero for 
It unconditional instruction). 
12 Get line number. 

11 Advance object pointer to next 
11 item. 

II The following instructions deal with LSIX tests. 

165, NT, DESCEND, *077 2J 

IF NT s o GO TO ALPHA I: 

125, NT, 0,0 It 

125,NT, 0,0 

I 6 5 , COND, DESCKWD, *7 II 

125, COND, 0,0 It 

BETA1) K is C00F(QBJECTP) II 

OBJECTP IS QBJECTP + ONE 2l 

FINDFIELD 11 

GETFIELD 12 

0P1 IS WREG1 I: 

FINDFIELD 11 

Get number of tests. 

If unconditional go to operations. 

Convert to 21 bit integer. 

Get condition (1,2,3 011 4)« 

Covert to 21 bit integer. 

Get test code. 

Increment object pointer. 

Locate first operand. 

Get first operand. 

Save operand in 0P1. 

Locate second operand. 
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GETFIELD 

OP2 1= WREGl 

S: Get second operand. 

:: Save second operand in OP2. 

GO TO E, N, G, L, O, Z, P VIA K 

E) IF OP1 = OP2 GO TO TRUE 

GO TO FALSE 

N) IF OP1 s OP2 GO TO FALSE 

GO TO TRUE 

G) IF OP1 GT OP2 GO TO TRUE 

GO TO FALSE 

L) IF OP1 LT OP2 GO TO TRUE 

GO TO FALSE 

O) 127, o p L 0P2, O 

GO TO E 

Z) I67, OP1, OP2, O 

GO TO E 

P) GO TO E 

TRUE) RESULTjrl 

GO TO CGNDSPLT 

FALSE) RESULT 1=0 

CONDSPLT) GO TO ANY, NALL, ALL, NONE VIA CQND 

I Switch via testcode. 

: If operands equal go to true 

: otherwise false. 

: If equal go to false 

: otherwise true. 

: If greater than, go to true 

: otherwise false. 

: If less than, go to true 

: otherwise false. 

: DPI :s 0P1 and 0P2 and test 

: equality for test 'one* bits. 

: 0P1 ss 0P1 or 0P2 and test 

: equality for test 'zero' bits. 

: Test equality of pointers. 

X: Go to switch via condition. 

:x Switch. 

ANY) IF RESULT =0 GO TO BETA 

OBJECTP J= FIRSTOP 

GO TO ALPHA 

XX If false go on to next test. 

I: If true, get address of first 

X: operation and go to it. 

NALL) IF RESULT NE 0 GO TO BETA :l If true go on to next test. 

OBJECTP is FIRSTOP :: if false, go to operations. 

GO TO ALPHA 

ALL) IF RESULT NE 0 GO TO BETA :: If true go to next test 

GO TO GAMMA !: otherwise go to next instruction 

XX in sequence. 
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NONE) IF RESULT NE O GO TO GAMMA 

BETA) NT 1= NT-1 

IF NT NE O GO TO BETA1 

IF COND LE 2 GO TO GAMMA 

tt If true go to next instruction. 

:: Decrease number of tests. 

s: If more tests go to next test. 

II if ANY or NALL go to next 
t: instruction. 

St The following instructions d< 

ALPHA) 165,NO,DESCRWD,*00077 

125,NO,0,0 

125,NO,0,0 

125,NO,0,0 

MOREOPS) IF NO = 0 GO TO NOOPS 

K t= COOF(OBJECTP) 

NA I- PLUS1(OBJECTP) 

OBJECTP js QBJECTP + 1 

IF NA s 0 GO TO OPSPLIT 

FINDFIELD 

BP1 1= WREG1 

FPl 1= WREG2 

IF K GE 25 GO TO GETOPl 

IF K LT 9 GO TO GETOPl 

GO TO SKIPOP1 

GETOPl) GETFIELD 

OP1 J= WREG1 

SKIPOP1) NA JS NA-1 

IF NA = 0 GO TO OPSPLIT 

FINDFIELD 

BP2 1= WREG1 

FP2 1= WREG2 

I with IBIX operations. 

I: Get number of operations 
I: from description word, 
i: Convert to 2l-bit integer. 

I: If no more operations. 

II Get operation code K. 

It Get number of operands. 

It Advance object pointer. 

It If no operands 

I: Find first operand. 

It Save address pointers.. 

i t Get first operand only if 

t: necessary. 

11 Fetch first operand 

ti Save first operand. 

11 Decrease number of operands. 

11 If no more operands. 

11 Find second operand, 

tt Save address. 
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GETFIELD 

0P2 is WREGl 

NA :2 NA-1 

X: Get second operand. 

:: Save second operand. 

S: Decrease number of operands. 

IF NA 2 0 GO TO OPSPLIT XX If no more operands. 

IF K 2 38 GO TO GT 

FINDFIELD 

:: Third operand of GT operation 
:: is special. 
:: Find third operand. 

BP3 22 WREGl 

FP3 12 WREG2 

GETFIELD 

OP3 22 WREGl 

2 2 Save address. 

2: Get third operand. 

2 2 The operands are now ready for use in the various sets of 

2 2 instructions corresponding to the LSIX operations. The 

2 2 appropriate instructions are entered by means of a switch 

2 2 using the operation code K as control variable. 

OPSPLIT) IF K LE 44 GO TO 0PSPLIT1 

OPERR) 0/P (NL.,'ILLEGAL FUNCTION IN LSIX OPERATION' ,NL.) 

STATEPRINT 2 2 Output state of system. 

0/P (NL.(2>, 'JOB TERMINATED') 

STOP 2 2 Error halt. 

0PSPLIT1) GO TO IC,ADD,SUB,MPY,DIV,OR,AND,XOR,C,DP, 

EQ,OPP,LO,LZ,RD,RZ,OS,ZS,BZ, ZB, 

BD,BD, DB,DB,OP,FR,IN,L,R,PR, 

PU, PL, SFC, SFD , DO, D, SS , GT , OPERR, OPERR, 

STATE, DUMP, RFC, RFD VIA K 



PART II Storage Allocation and Collection PAGE 68 

:: Control has now been transferred to the set of instructions 

:: for the operation specified by K. Details of these instructions 

:: are given in Appendix 3. After execution of these instructions 

SS control is returned to OPRTN. 

OPRTN) NO ss NO -1 :: Decrease number of operations. 

0P1 ss 0 :: Reset working variables to zero. 

0P2 Ss o 

OP3 ss 0 

BP1 SS 0 

BP2 SS 0 

BP3 S= 0 

FP1 SS 0 

FP2 SS O 

FP3 SS 0 

GO TO MOREOPS 5S Go back to execute any further 

SS operations. 

ss When all operations have been obeyed control is transferred 

5 5 in one of several ways according to the transfer code stored 

SS in the description word. The following instructions deal 

SS with the transfer of control. 

NOOPS >165, GOTOFIAG, DESCKWD, 7 ss Get transfer code (0,1,2,3 o r 4> • 

IF GOTOFIAG s 0 GO TO GAMMA SS If no transfer go to next 
SS instruction in sequence 
SS otherwise switch via GOTOFIAG 

GO TO FLAG1,DONE,FAIL,FIAG4 VIA GOTOFIAG 

FLAG1)NDESCKWD S = COOF(OBJECTP) SS Get transfer address. 

GO TO GAMMA SS Continue with instruction 
S 5 specified. 
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:: The following instructions deal with subroutine returns. 

DONE) 

FAIL) 

SUBP xn SUBP-3 X X Pop-up subroutine stack. 

SUBL SUBL-1 X X Decrease subroutine level 
X X number. 

QBJECTP COOF(SUBP) X X Restore object pointer. 

NDESCKWD X = PLUSl(SUBP) X X Restore address of next 
X X description word. 

DESCRWD X = PLUS2(SUBP) X X Restore description word. 

NO X = PLUS3(SUBP) X X Restore number of remaining 
X X operations. 

LINE X = PLUS5(SUBP) X X Restore line number. 

GO TO OPRTN X X Normal operation return. 

SUBP X = SUBP-3 X X Pop-up subroutine stack. 

SUBL X = SUBL-1 x: Decrease subroutine level 
X X number. 

NDESCRWD X = PLUS4(SUBP) X X Get 'fail' transfer address 

GO TO GAMMA X X Continue with specified 
X X instruction. 

S X End of subroutine return instructions. 

FLAG4) 0/P(NL.,'END OF PROGRAM') 

STOP S: Logical end of program. 

END X x End of interpreter routine. 

The storage allocation routines which are called by the interpreter 

routine are described in section §2.3 and routines for other 

LSIX operations are given in Appendix 3 • 
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§2.3 Storage allocation and collection in LSIX 

In this section we describe several variations on a method for 

organising the free space allocator in LSIX. Routines for setting 

up the free space lists, getting new blocks, returning blocks which 

are no longer required and automatic garbage collection are 

described. 

An important feature of LSIX is the availability of several 

different sizes of blocks which may be linked together by pointers 

stored in fields which the programmer himself defines. Any field 

which is of address length may contain a pointer and the contents of 

a field are interpreted according to the context in which they are 

used. Consequently it is difficult to collect garbage automatically 

as the system does not know which fields contain pointers and the 

responsibility for freeing blocks which are no longer in use is 

usually left to the programmer. A garbage collector which has been 

written for the Atlas LSIX is described in this section. 

The available blocks in LSIX are in general of size 2**n words 

where n is an integer in the range 0-7* T h e choice of block size 

being an integral power of two, blocks are easily halved to form 

smaller blocks (called mates) and when two consecutive blocks are 

free simultaneously they could be recombined to form a larger block; 

better, when two mates are free they may be recombined. The free 

space is organised as a number of separate simple lists, one for 

each size of block. On being freed, a block is returned to the 

appropriate list. When a block is asked for there are three 

possibilities! 
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(a) the appropriate list is not empty in which case a block 

is immediately available; 

(b) the list is empty but a larger block exists on another 

list and this can be split to provide a block of the 

required size; 

and (c) the list is empty and there are no larger blocks 

available for splitting. 

In the latter case all is not lost. It is possible that smaller 

blocks in contiguous parts of the store are free simultaneously and 

can be recombined to provide a block of the required size. 

In the Atlas LSIX implementation, the list head of each free 

space list consists of four fields, each being 24 bits long, 

containing the following information: 

I field Is Pointer to the first block in the list (0 if empty), 

I field 2: The size of the data blocks on this list. 

I field 3S log (size) i.e. a 3 bit integer in the range 0-7. 

I field 4: The potential number of blocks of this size. 

The potential number of blocks of any size is the number of blocks 

on the list plus the number of blocks that could be obtained by 

splitting all larger blocks down to this size. The fields 

containing the potential numbers of blocks are the read-only fields 

called 1. ,2. ,4., , 128. in LSIX. The size of any block which 

is in use must be available to the system for use in the free block 

and duplicate block operations and log2(size) provides a very 

compact form of storage. 
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The list heads of the eight free space lists occupy consecutive 

storage locations and may be accessed (by the system) via the link 

variable FREEHDR, a constant pointer to the list head of 1-blocks. 

Each free space list is a simple linked list terminated by a zero 

link. 

Fig.If.3.1 shows how the free space lists are stored. 

Listheads. 
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The four LSIX operations which affect the state of the free 

space lists are: Set up Storage (SS), Get a block (GT), Free a block 

(FR) and Duplicate a block (DP). 

Set up Storage 

One of the first operations in any LSIX program is to set up a 

list of free space using the set up store operation which has the 

form 

(sl,SS,d,s2) 

where d is the size of block to be set up and si and s2 are the 

addresses of the beginning and end of the storage area to be linked 

in blocks of the specified size. For example the operation 

(*20O0O0C>0,SS,8,*2O04D000) causes 2048 words of Atlas store (i.e. 

4096 LSIX words) to be linked together in blocks of size 8 (24 bit) 

words. The specified value of d need not be an integral power of 2 

but the size of block actually set up is the smallest integral power 

of 2 which is greater than or equal to d. It is intended that in a 

future version of the compiler the user may specify and actually get 

any size of block between 1 and 128 (24 bit)words. 

When setting up storage the appropriate free space listhead is 

located by a routine FINDLIST which, starting with the listhead for 

1-blocks, searches for the first listhead for which the block size 

is not less than d and returns with a pointer to that listhead and 

with the value of d corrected. The addresses si and s2 specified by 

the user are interpreted as relative addresses and the list storage 

area always starts at the octal address *20000000. This 

implementation differs from the original l6 in that' set up store 

operations may be executed several times during the running of a 

program, so setting up additional linked space, and the end of the 
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appropriate free space list must be found before new blocks are 

linked on. Details of the SS and other storage organisation 

routines are given at the end of this section. 

Get Block 

There are two forms of the get block operation: 

I (al,GT,cd) and (al,GT,cd,a2) 

- Get a block of the size specified by cd and plant its address in 

the field al. After getting the block, assign to the field a2 (if 

this is specified) the previous contents of the field al. The GET 

routine uses FINDLIST to locate the appropriate free space list. 

Thus the size specified may be any integer in the range 1-128 but 

the size of block actually allocated is at present an integral power 

of 2. If the free space list located is not empty, then a block of 

the required size is detached, otherwise the potential number of 

blocks of this size is examined. If the potential number is not 

zero then a larger block exists and the routine SUBDIVIDE is called 

to split the first available larger block. In the event of the 

potential number being zero the routine RECQMBINE is called to 

search for smaller blocks which being free simultaneously may be 

recombined to give a block of the required size. Whenever RECQMBINE 

is entered it searches all free space lists from the 1-blocks 

upwards performing all of the recombinations possible up to the 

maximum size that has been set up by the program. After this, if 

the potential number of blocks of the required size is still zero 

then the program is abandoned. It is not possible to relocate 

smaller blocks in an attempt to recombine. 
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Duplicate Block 

The duplicate block operation (a,DP,c) gets a new block (using 

GET) of the same size as that to which field c points and assigns 

its address to field a. It then copies the given block word for 

word into the new block. 

Free Block 

The operations (al,FR,0) and (al,FR,a2) are used to free the block 

to which field al points, i.e. to return the block to the 

appropriate free space list. The contents of field a2 are assigned 

to field al but if a2 is not specified al is set to zero. 

Neither the Duplicate block nor the Free block operations 

specify the size of block involved. For this reason the system must 

keep a note of the sizes of all data blocks which are in use. A 

convenient place to store the size is in the data-block itself. 

Bits 21-23 of word 0 of every block are reserved for the system. In 

these three bits the size of the block is stored in the form 

log2(size). Later in this section we describe briefly another Atlas 

implementation of LSIX in which the whole of word 0 is made 

available to the user and the size is stored in a separate part of 

the store. When a block is freed or duplicated the actual size is 

found from log2(size) using a routine FINDSIZE which searches the 

free space list heads for log2(size) starting with the 1-block list 

head and locates the required free space list at the same time. 

Whenever the state of the free space lists is changed by one 

of the LSIX operations described above the potential numbers of 

blocks must be updated. This is performed by the routine UPDTNDOT. 

Details of this and other storage organisation routines are given 

below. 
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DEFINE R FINDLIST 

:: The input to this routine is the size of a block. The output 
:t is a POINTER to the appropriate list and the corrected size. 

:: Initialise pointer. 

2 2 Point to next list. 

XX If list not yet found. 

XX Correct the size. 

DO 

POINTER 2= FREEHDR - 2 

FL1) POINTER |= POINTER + 2 

IF PLUS1 (POINTER) LT SIZE GO TO FL 

SIZE IS PLUS1(POINTER) 

RETURN 

END 

DEFINE R FINDS IZE 

:2 The input to this routine is LOGSIZE, the output is SIZE and a 
XX POINTER to the appropriate list. 

DO 

POINTER 2= FREEHDR - 2 2 5 Initialise. 

FS) POINTER :r POINTER + 2 tt Point to next list. 

IF PLUS2(POINTER) LT LOGSIZE GO TO FS x: If not found. 

SIZE 2= PLUS1 (POINTER) XI Get size, 

RETURN 

END 

DEFINE R UPDTNDOT 

I: The value of WR2, set before entry, is the change in potential 
X: number. 

DO 

WRl 2= POINTER 

UPDT) PLUS3 (WRl) x = PLUS3(WR1) + WR2 

IF WRl = FREEHDR GO TO END 

124,WR2,WR2,0 

WRl 2= WRl - 2 

GO TO UPDT 

END) RETURN 

END 

X X Copy pointer. 

X X Update potential number. 

XX If finished. 

X: Double WR2. 

XX Point to next list. 
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DEFINE R SETUP STORE 

DO 

SIZE OP2 

FINDLIST 

IF MAXSIZE GE SIZE GO TO SKIP SS blocksize. 

MAXSIZE S= SIZE 

SKIP) 124, SIZE,SIZE,O 

124,SIZE,SIZE,0 

WSl IS POINTER 

SS Get size of block. 

S: Locate list for given 

:: Note maximum size of block 
:s setup. 
SS Convert size to 22 bit 
:: integer, i.e. to unit of 
SS halfwords of Atlas store. 

SS Point to appropriate free 
SS space list. POINTER was set 
SS by FINDLIST. 

LINKBL1) IF COOF(WSi) = 0 GO TO LINKBL2 SS If end of list 

WSl S= COQF(WSl) 

GO TO LINKBL1 

LINKBL2) COOFCWSl) S= ENDLIST 

SS Step down list. 

SS ENDLIST points to next block 
S s to be set up, initialised 
S: before entry to program. 
S: s2 - si gives amount to be 
S S linked. 

ENDLIST S= ENDLIST + TOBELNKD SS Advance ENDLIST. 

TQBELNKD $s OP3 - OP1 

COUNT SS O 

LINKNEXT) WSl S= COQF(WSl) 

COUNT SS COUNT + 1 

COOF(WSl) SS WSl + SIZE 

S s Initialise count. 

SS Point to next new data block. 

S s Count new block. 

ss Plant link to next new block. 

IF COOF(WSl) LT ENDLIST GO TO LINKNEXT 

COQF(WSl) J= o ss If finished, terminate list. 

WR2 := COUNT SS Set parameter for UPDTNDOT. 

UPDTNDOT S: Update potential numbers of 

RETURN S 5 blocks. 

END 
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DEFINE R GET 

DO 

SIZE J= OP2 

FINDLIST 

OP3 tr OP1 

LOGSIZE jr PLUS2<POINTER) 

GETBLDCK 

CLEAR) COOF<WSl) 1= O 

WSl :s WSl + ONE 

122,SIZE,0,0.1 

IF SIZE GT O GO TO CLEAR 

COOF(OCT) := LOGSIZE 

IF NA s O GO TO END 

FINDFIELD 

OCT 1= OP3 

STOREFIELD 

END) RETURN 

END 

t: Get block size. 

t: Locate list, correct size. 

S1 Save present contents of a 

:: Get log2(size). 

:: Get block. 

:: Clear block to zero. 

I: Record size in block. 

t: If previous pointer not 

:: to be saved. 

:: Find field in which to 

:: store previous pointer. 

:: Store previous contents 

:t of pointer to new block. 
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DEFINE R GETBLOCK 

:: This routine is called from GET and from DUPLICATE. 

:: On entry POINTER points to the appropriate free space list and SIZE 

t: contains the size. 

DO 

IF CQOF(POINTER) NE 0 GO TO GTBLOCK |: If list not empty, get 
:: block. 

IF PLUS3<P0INTER) GT 0 GO TO SPLIT :: If potential number > 0. 

RECOMBINE X: Attempt recombination. 

IF COOF(POINTER) NE 0 GO TO GTBLOCK I: Try again. 

IF PLUS3(POINTER) GT 0 GO TO SPLIT 

0/P(NL.,'FREE SPACE EXHAUSTED JOB TERMINATED1) 
STOP 

SPLIT) SUBDIVIDE 

GTBLOCK) WSl X= COOF(POINTER) 

COOF(POINTER) := COOF(WSl) 

OCT := wsl 

STOREIN1 

WR2 X = 0-1 

UPDTNDOT 

RETURN 

END 

:t Stop if space exhausted. 

:: Call routine to split 

XX larger blocks. 

XX Point to block. 

XX Detach block from list. 

:: Address in OCT. 

:i Store address of block. 

X : Set WR2 for UPDTNDOT. 

X: Update potential 
:: numbers. 
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DEFINE R SUBDIVIDE 

DO 

NEXT) POINTER 2= POINTER + 2 

IF COOF(POINTER) : O GO TO NEXT 

WS1 J= COQF(POINTER) 

COOF(POINTER) != COOF(WSL) 

HALVE) PLUS3(POINTER) 2= PLUS3(POINTER)-1 

IF PLUS1(POINTER) = SIZE GO TO END 

POINTER is POINTER - 2 

COOF(POINTER) := w s i 

COOF(WSI) := 0 

WS2 2= PLUS1(POINTER) 

124,WS2,WS2,0 

124,WS2,WS2,0 

wsi wsi + ws2 

GO TO HALVE 

END) COOF (WSI) 2= COQF(POINTER) 

COOF(POINTER) := w s i 

RETURN 

END 

:: Examine list of next 
:: larger blocks. 

12 If empty, try next. 

:: Detach first block. 

:: Adjust potential number. 

:: If required size. 

:: Step back to list of next 
M smaller block size. 

:: Link first half block to 
:: current list. 
:: Get current block size. 

:i Convert to address units. 

2 2 Point to second half of 
:: block. 

21 Link second half on to 
IX list. 
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DEFINE R RECQMBINE 

:: This routine starts with the list of free 1-blocks and for each 

:3 block searches the list for its mate* If its mate is found the 

:: two blocks are recombined and transferred to the list of next 

3 3 larger blocks* The process continues for each list in turn until 

:: the maximum size of block is reached* 

DO 

WS3 1= FREEHDR :: Start with 1-blocks. 

NEXTLIST) WS1 X = WS3 XX Point to next listhead. 

WS3 X= WS3 + 2 

IF PLUS1(WS1) GE MAXSIZE GO TO END x: If finished. 

CSIZE X= PLUS1(WS1) XX Get current size. 

I24,CSIZE,CSIZE,0 XX Convert size to address 
X X units. 

124,CSIZE,CSIZE f 0 

WS2 X= WS1 XX Initialise working 
X x pointer. 

NEXTBLOCK) IF COOF(WS2) = O GO TO NEXTLIST XX If list finished. 

WR1 x= C0QF(WS2) XX Address of next block. 

l26,WRl,CSIZEfO X X Address of mate. 

WR2 X= C00F(WS2) X X Initialise working 
X X pointer. 

TESTMATE) IF C0OF(WR2)=0 GO TO NOMATE XX If no mate in list. 

IF WR1 = C00F(WR2) GO TO MATE XX If mate found. 

WR2 X= C0QF(WR2) XX Step down list. 

GO TO TESTMATE 
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:: Point to next block. 

:: Address of recombined 
X: block. 

X x Detach two halves from 
X: current list. 

X: Link recombined block 
X: into next list. 
XX Increase potential 
X X number. 

DEFINE R DUPLICATE 

DO 

LOGSIZE X= C00F(0P2) 

127,LOGSIZE,0,0.7 

FINDSIZE 

GETBLOCK 

COPY) COOF(WSl) 2= COOF(OP2) 

WS1 := WS1 + ONE 

0P2 2= 0P2 + ONE 

122,SIZE,0,0.1 

IF SIZE GT 0 GO TO COPY 

RETURN 

END 

NOMATE) WS2 2= C00F(WS2) 

GO TO NEXTBLOCK 

MATE) I67,WRl, CS IZE,0 

126,WRl,CSIZE,O 

C00F(WR2) 2= C00F(C00F(WR2)) 

C00F(WS2) X= C00F(C00F(WS2)) 

C0QF(WR1) 2= C00F(WS3) 

C00F(WS3) 2= WRl 

p l u s 3 ( w s 3 ) x = p l u s 3 ( w s 3 ) + l 
GO TO NEXTBLOCK 

END) RETURN 
END 

X 2 Get log2(size) of block. 

X2 Locate list, get size. 

X 2 Get block, WS1 points to it, 

2 2 COPY block. 

2 2 If not finished. 
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DEFINE R FRBLOCK 

DO 

LOGSIZE J= COOF(OPl) 

127,LOGSIZE,0,0.7 

FINDSIZE 

COOF(OPl) J= COOF(POINTER) 

COOF<POINTER) 1= 0P1 

OCT := 0P2 

STOREINI 

RETURN 

END 

:: Get log2(size). 

:: Locate free space list. 

t: Link block on to free 

:: space list. 

:: Assign specified value to 

tl field al. 
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Improvements to the LSIX storage allocator 

Suppose that a 2-block is requested when the smallest blocks 

available are l6-blocks then the routine SUBDIVIDE splits the first 

available l6-block into two 8-blocks the first of which is added to 

the 8-block free space list and the second is halved again to give 

two 4-blocks the second of these is then halved giving a block of 

the required size. F i g . 3 . 2 shows the result of the subdivision. 

| l6-block 

I 8- block 

I 4- block 

I 2- block 

The two halves formed when a block is subdivided are called 

mates. When a block and its mate are free simultaneously they can 

either be recombined immediately or recombination can be deferred 

for as long as possible, that is until a block is required and the 

potential number of blocks of the required size is zero. Whenever 

the recombination is attempted, the process as defined by the 

routine RECGMBINE is very inefficient. This is mainly because it is 

necessary to search a free space list for the mate. Deferring 

recombination of blocks leads to fragmentation of the available 

store; larger blocks may be split unnecessarily when smaller blocks 

could have been recombined. On the other hand immediate 

recombination may result in several otherwise unnecessary calls on 

the routine SUBDIVIDE. 

fij. E U i 

• use 

• free. 
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Given the address and size of any block it is a trivial matter 

to determine the address of its mate, the address of the mate of a 

block of size n is obtained by complementing the n-bit of the given 

address. Once the mate is located there are two problemsl how do we 

know if it is free and if free, how can it be detached quickly from 

the free space list. Only 1 bit is required to indicate that a 

block is free or in use. A convenient choice is the sign bit of 

word 0 of any block. 

Part of word 0 is already reserved for the system to store 

log2(size), the sign bit is easily tested and perhaps most important 

of all, word 0 of any free block contains a link to the next block 

on the free space list and as no address is negative we set the sign 

bit to 1 for blocks which are in use and to 0 for free blocks . The 

usecj/free bit also provides an additional safeguard in that we can 

now check that the user does not attempt to free a block which is 

already free. The second problem, efficient deletion of random 

blocks from a free space list, can be solved only by keeping doubly 

linked free space lists. An Atlas address occupies 24 bits (i.e. 

one LSIX word) therefore it is not possible to store both a forward 

and a backward link in a 1-block. A second version of the storage 

allocator has been written in which the free space lists are doubly 

linked and no 1-blocks are allowed. As 4 bits of word 0 have 

already been reserved for the system there is little use for 

1-blocks anyway. In this version recombination takes place as soon 

as two mates are free simultaneously. Only minor modifications are 

necessary for the SETUPSTORE and GET routines. The revised FRBLDCK 

routine is described below. Fig. II.3.4 shows the linkages in the 

free space lists for the revised storage allocator. 
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I List head 

size size V 

log2(size) 

V 

n. 

V 

If WRl points to a block on a free space list, that block can 

be deleted by means of the following commands: 

COOF(PLUSKWRI)) := COOF(WRI) 

IF COOF (WRl) = 0 GO TO LASTBL S ! If last block on list. 

PLUS1(CQOF(WRL)) := PLUS1(WRL) 
• • • • 

LASTBL) . . . . 

The special treatment of the last block on a list could be avoided 

by enlarging the list head to include a backward pointer also, and 

using doubly linked circular lists. 

There is one further detail to check before two mates can be 

recombined. Suppose that an 8-block is split to provide a 4-block 

and two 2-blocks, and that at some later stage the state of the 

8-block is as shown in Fig. II.3.4. 

2-block 

2-block 

4-block 

Fig. II.3.4 
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If the used 4-block then becomes free again before the 

2-block, when the sign bit of word 0 of the mate is checked it 

indicates that the mate is free. Clearly we must also check the 

size of the mate. Even for free blocks then, the size must be 

immediately available. We know that the least significant octal 

digit of an Atlas whole word address is always zero so these three 

bits in word 0 can be used to store log2(size) just as they are for 

blocks which are in use. 

Routine to free a block and recombine it with its mate if possible: 

DEFINE R FRBLOCK 

DO 

OCT :r OP2 

ST0REIN1 :: Assign new value of a2 to al 

WSl := COOF(OPl) :: Get first word of block 

IF WSl LT 0 GO TO NOTFREE : If not already free 

0/P(NL.,'ATTEMPTING TO FREE A BLOCK WHICH IS ALREADY FREE') 

STATEPRINT :: Output state of system 

RETURN 

NOTFREE) 165,LOGSIZE,WSl,0.7 x: Get log2(size) 

FINDSIZE :$ Locate free space list 

:: find size 

WR2 J= 1 

UPDTNDOT :: Update potential numbers 

TKYMATE) IF SIZES MAXSIZE GO TO LINKON 

2: If maximum size then no 
:: recombination. 
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2: Address of mate. 

XX Get sign bit and log2(size). 

:: Record log(size)• 

2: Forward links. 

:: Backward links. 

124,SIZE,SIZE,0 XX Convert size to address units. 

124,SIZE,SIZE,0 

WS1 2= OP1 

126,WS1,SIZE,0 

WS2 2= C00F(WS1) 

127 ,WS2, o, *40000007 

IF WS2 = LOGSIZE GO TO MATE x X If mate free. 

LINKON) WSl2= COQF(POINTER) 

I67,WSI,LOGSIZE,O 

COOF (POINTER) X= OP1 

COOF(OPl) J= WS1 

PLUSl(OPl) I- POINTER 

IF WS1 = LOGSIZE GO TO END XI If end of list. 

PLUS1(WS1) X= OP1 

END) RETURN 

MATE) COQF(PLUSl(WSl)) X= COOF(WSl) XX Extract block. 

IF COOF(WSl) = LOGSIZE GO TO LASTBLOCK 

XX If last block on list. 

PLUSl(COOF(WSl)) 2= PLUSl(WSl) 

LASTBLOCK) l67,0Pl,SIZE,0 

126,OP1,SIZE,O 

POINTER := POINTER + 2 

SIZE 2= PLUS1(POINTER) 

LOGSIZE X= PLUS2(P0INTER) 

XX OP1 points to 
X X recombined block. 
XX Point to next list. 

X: Get new size. 

X X Get new log2(size)• 

PLUS3(POINTER)x=PLUS3 (POINTER) + 1 

XX Increase potential number. 

GO TO TRYMATE X X Go to try next mate. 

END XX End of FRBLOCK. 
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A third version of the storage allocator. 

PAGE 89 

A further disadvantage of the present storage allocation and 

bookkeeping method is that four bits of word zero are not available 

to the user. This seriously limits the usefulness of 2-blocks as 

word 1 is then the only possible link field and only 20 bits of word 

0 are available for the storage of other information. It is not 

possible to simulate LISP-like systems using 2-blocks as two link 

fields are required for this. At present the Atlas LSIX system is 

used mainly for teaching purposes and it is important to be able to 

manipulate LISP-like lists. To facilitate this the four bits which 

are reserved for the system have been mapped into another area of 

the store. Each 48 bits of list storage is mapped into 6 bits. All 

6 bits are zero unless the 48 bits constitute the first 48 bits of a 

data block. In this case the bits are allocated as follows: 

bit 
1 used/free marker - 1 if block is in use; 
2 1 available for use in automatic garbage 
3 J collection version to be described later; 
4 I 
5 log2(size) of data block. 
6 . 

This representation of 48 bits by 6 bits is very convenient as 

computation of the map address involves only a right shift of 3 

binary places and addition of a base address. 6-bit patterns are 

easily manipulated on Atlas. The efficiency of this system with 

regard to space depends very largely upon the block size used. If a 

large number of 2-blocks are used there might be an overall saving 

in space. 
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The availability of blocks of general size 

The advantages in restricting the available sizes of blocks to 

an integral power of two are obvious. The size, which must be 

readily available to the system, may be stored compactly and blocks 

are easily split to form smaller blocks or recombined with their 

mates when larger blocks are required. However, these advantages 

favour the implementor and not the general user. In the system 

described above, the user may specify any size of block between 2 

and I28 words and is not aware of the fact that the sizes actually 

allocated are integral powers of two. A system which allocates any 

size of block between 2 and 128 words is not difficult to implement. 

There are good reasons for organising the free space lists as 

before. The actual size would again be stored in word 0, but now 

occupying eight bits. With so much of the first word reserved for 

the system there is little use for a 1-block and it is proposed that 

block sizes should be a multiple of two. Thus if a block of 9 words 

is requested a 10-block is allocated. For this purpose the system 

requires a l6-block of which it immediately returns the first four 

words to the 4-block list, the next two to the 2-block list and 

allocates the last 10 words to the user. The immediate return of 

the first few unwanted words is effected by subtracting 9 from l6 to 

give (00000111) in binary from which it is clear that the unwanted 

parts are a 4-block and 2-block, the final bit being ignored. 

The size of a block also determines the manner in which it is 

freed. Thus for the 10-block allocated above we have the size 

(00001010) in binary^ind starting with the right most 1 bit we return 
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first a 2-block and then an 8-block. If immediate recombination is 

possible then the fragmentation of store which is inherent in this 

generalisation is to a certain extent counteracted. Immediate 

recombination implies doubly linked free space. If the list heads 

also contain two pointers then there is some advantage in using 

circular free space lists, for then any odd blocks which are 

returned immediately in the allocation process may be linked to one 

side of the list head and allocations made from the other. This 

increases the likelihood that the odd blocks are free and available 

for recombination when their mates become free again. 

An automatic garbage collector for LSIX 

The major problem which arises when attempting to reclaim part 

of a list structure is that of knowing which data blocks are no 

longer needed. A number of solutions have been proposed. The first 

of these by Newell Simon and Shaw places the responsibility on the 

programmer. This language, IPL-V, includes instructions for erasing 

lists. In LSIX we have the equivalent free block instruction. A 

second solution is that used in SLIP in which a reference count is 

kept in the head of every list. For each additional reference to a 

list or part of a list the reference count in the list head is 

increased by one. It is always possible to gain access to the list 

head from any part of a list structure as SLIP is a symmetric list 

processor i.e. it uses doubly linked lists. However, the process of 

linking back to the list head is time consuming. There is the 

additional disadvantage that while any part of a list is shared by 

the other lists which are not free it is not possible to reclaim any 

of the list cells on that list. The third solution is that proposed 
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by McCarthy in which no cells are reclaimed until all of the free 

space is exhausted. Then a garbage collection routine is entered 

which scans all list structures which are in use and marks the data 

blocks attached to the lists. When the lists have all been scanned 

the whole of the list area is scanned again. Blocks which are not 

marked are free and may be reclaimed. At the same time the marks 

are erased from the blocks which are in use, so that the garbage 

collection routine may be reentered as often as necessary during the 

execution of a program. 

The basic problem in McCarthy's method is that of scanning the 

lists. In general the lists will be branched and every branch must 

be traced. The natural way to process a list is by recursion but a 

recursive routine requires an indefinite amount of store. As the 

garbage collector is entered only when all, or nearly all, of the 

storage space has been exhausted it is most unlikely that sufficient 

storage will be available for a recursive garbage collector. An 

ingenious solution to this problem has been proposed by Schorr and 

Waite (1967). They describe a garbage collector for the WISP 

language (Wilkes, I964) which uses only three registers for 

temporary storage. The process described is capable of scanning any 

list structure, however complex it may be. A slightly modified 

version has been used to collect garbage in a BCL program which 

processes binary trees (see section 2.4) a n d t h e Atlas LSIX garbage 

collector is a further extension of that described by Schorr and 

Waite. 

The flexibility which LSIX provides in both the definition and 

the use of fields is one of its major advantages. It is this 
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flexibility which makes it difficult to collect garbage 

automatically* Any field which is of address length or longer may 

be used to store a link, and the contents of a field are interpreted 

according to the context in which they are used* At the time of 

storing a link the nature of the operand is known to the system, 

especially if the user is willing to preserve the semantic 

difference between the copy field and copy pointer operations 

although even this is not absolutely necessary* In the Atlas LSIX, 

the only fields which can possibly contain an (Atlas) address are 

full 24-bit fields. When a link is stored we require an extra bit, 

outside the 24 bit word, to record the fact that the word contains a 

pointer. Now in the mapping version of LSIX, the reader may 

remember that of the 6 bits representing each 48-bit block of list 

storage 2 bits were unused* These provide our two pointer flags for 

the possible address fields in the 48 bit block. Using these the 

system can keep a record of all links in the list structures. 

For the basefields (bugs) there are no pointer flags. Any bug 

whose contents could possibly be an address in the list space is 

assumed to point to a list. Other pointers to lists may be stored 

temporarilly on the system's field contents stack. These pointers 

also must be taken into account by the garbage collector. The 

system first scans all list structures to which bugs point and then 

any lists pointed to from the field contents stack marking those 48 

bit blocks which are in use • When all accessible blocks have been 

marked the whole of the list area is scanned again; any free blocks 

are collected up as 8-blocks, 4-blocks and 2-blocks; marks are 

erased from those blocks which are in use and finally, if the 

maximum size of block set up by the program is greater than eight, 
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the 8-blocks are recombined with their mates, if free, until blocks 

of the maximum size have been reconstituted. 

In LSIX, as in other list-processing systems, it is usual to 

access the fields of a block via a pointer to the head or first word 

of the block. This is not the only way in which a field may be 

accessed. In particular, suppose that the same set of operations is 

to be applied successively to each word of a block. Each time round 

the loop it is necessary either to increase the word number in the 

field definition by redefining the field or to increment the block 

pointer so that it advances word by word through the block. The 

latter method is the more efficient as redefinition of a field is a 

lengthy process. However, the garbage collector becomes very 

complicated if blocks may be accessed by means of pointers to words 

other than the first. The LSIX user is advised that at all times 

there must be a pointer to the first word of every block which is in 

use as the garbage collector ignores pointers to words other than 

the first. In almost all cases, on completion of a loop in which a 

block pointer is incremented, the user will want to restore the 

pointer to its initial value so a copy will have been saved either 

on the field contents stack or in another field. 

BCL routines for scanning list structures and for collecting 

the unmarked blocks are described in Appendix 4. 
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§2.4 List Processing in BCL 

So far we have been concerned mainly with the use of BCL to 

implement LSIX. In this section we consider the use of BCL itself 

as a list processor. The basic operations in any compiler compiler 

include facilities for manipulating strings of input symbols and BCL 

is no exception. Through experience gained in the use of BCL as a 

compiler compiler for LSIX, it became clear that with a number of 

extensions BCL could be used as a high level symbol manipulation 

language having many of the facilities which are available in LISP. 

Also, through the use of symbolic machine orders for the machine 

concerned, BCL provides the same flexibility as low-level systems 

such as LSIX, with the possibility of manipulating bit patterns. 

The BCL List Processing system is particularly suitable for teaching 

as the student is able to define and build his own list processor 

using blocks of several different sizes which are defined by the 

program. Standard functions for manipulating list structures are 

easily defined by the user. A number of demonstration programs 

which have been used on a computer science course for M.SC. students 

are described below. 

The version of BCL used in this section is that defined by the 

Atlas BCL compiler dated August 1968 which is a further development 

of the compiler used to implement LSIX. One of the most useful 

additions is the provision of labels and GO TO commands within 

groups of elements. Labels are defined only in the group and branch 

in which they are set and just as it is illegal to jump into a DO 

loop in FORTRAN, so also in BCL jumps into an alternative are not 

allowed, neither are jumps out of an alternative although the latter 

restriction is a temporary one. 
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To provide a list processing system based on this version of 

BCL the author has added functions and groups with parameters. The 

parameters implemented at present are of type A only (storing an 

address or an address length integer) and are called by value. 

Character variables of up to four characters in length may be used 

as actual parameters as there is no type check. Examples given in 

this section show that even this small subset of parameters provides 

a very powerful system. General parameters of any type with calls 

by name, reference or value will eventually be implemented in BCL 

and will improve the system still further. Functions have been 

added through the implementation of an EXIT statement which can have 

one actual parameter being the value to be returned. EXIT 

statements can be used in any level of alternative within a group 

and are effectively a RETURN or jump out of a group to the calling 

point. When an EXIT is used in a branch within a group then a stack 

of pointers must be unwound as in the case of a transfer out of a 

block in Algol. A more detailed description of these extensions to 

the BCL compiler is given in Appendix 5-

In the first example (see Table II.4.1) the LISP function CONS 

and the predicates EQ and NULL are defined in BCL; CAR and CDR are 

represented by HEAD and TAIL , and the complete program shows how 

functions such as APPEND, UNION and INTERSECTION are defined 

recursively. The program in Table II.4.I shows how the principles 

developed in this section can be used in a system which requires 

simple linked lists in which the nodes (pointer words in LISP) 

consist of two address-size fields named HEAD and TAIL. More 

complex structures in which the head field may contain a link to a 

sublist will be discussed later. The tail of the last node in a 
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DECLVAR IS (A FREE, A COUNT, A WS, A RESULT,A P,A Q,A R> 

PWORD(?) IS (A HEAD,A TAIL) 

INITFREE IS (121,FREE,0,*20000000> 

SETUPFREE(A COUNT) IS (TAIL(FREE) r O, 
AGAIN: SETUP(PWORD,WS,FREE), 

TAIL(FREE) = WS, 
COUNT = COUNT - 1, 
IF COUNT GT 1 GO TO AGAIN) 

CONS (A X,A Y) IS (EITHER IF FREE = O, 
0/P(NL. ,'FREE SPACE EXHAUSTED*,NL.),STOP 

OR WSSFREE, 
FREEsTAIL(FREE), 
HEAD(WS)=X, 
TAIL(WS)SY, 
EXIT(WS) ) 

NULL(A X) IS (IF X = 0) 

EQ(A X,A Y) IS (IF X = Y> 

PRINTLIST(A X) IS (PRINT: IF X = O GO TO END, 
WS = HEAD(X), 0/P(WS,SP.(2)>, 
X = TAIL(X), GO TO PRINT, 

END: 0/P(NL.) ) 

APPEND (A X,A Y) IS (EITHER NULL(X) ,EXIT(Y) 
OR EXIT(CQNS(HEAD(X) ,APPEND(TAIL(X) ,Y)))) 

MEMBER (A X,A Y) IS ((EITHER NULL(Y), RESULT = 0 
OR EQ(X,HEAD(Y)), RESULT = 1 
OR MEMBER(X,TAIL(Y)) ), IF RESULT = 1 ) 

UNION(A X,A Y) IS (EITHER NULL(X) ,EXIT(Y) 
OR MEMBER(HEAD(X) ,Y) , EXIT(UNION(TAIL(X), Y) ) 
OR EXIT(CONS(HEAD(X),UNION(TAIL(X),Y))) ) 

INTERSECTION^ X,A Y) IS (EITHER NULL(X), EXIT(O) 
OR MEMBER(HEAD(X), Y) , 

EXIT(CONS(HEAD(X) , 
INTERSECTION(TAIL(X) ,Y)>) 

OR EXIT( INTERS ECTION(TAIL(TAIL(X) ,Y)))) 

Table II.4.1 (a) Program defining some List Processing functions. 
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LISTPROGRAM IS (INITFREE, SETUPFREE<40>, 

P=CONS (2, CONS (4, CONS (6,0 » ) , 

0/P(NL.,'LIST P '), PRINTLIST(P), 

Q=CaNS(4,CONS(6,CGNS(8,0))), 

0/P(NL., 'LIST Q •), PRINTLIST(Q) , 

R=APPEND(P,Q), 

0/P(NL. , 'LIST P WITH LIST Q APPENDED '), 

PRINTLIST(R) , 

R=UNION(P,Q), 

0/P(NL., 'UNION OF LISTS P AND Q '), 

PRINTLIST(R), 

R=INTERSECTION(P,Q), 

0/P(NL., 'INTERSECTION OF LISTS P AND Q •), 

PRINTLIST(R), 

STOP ) 

*ENTER(0/P(NL# , 'LIST PROGRAM TEST ' ,NL.(2)),LISTPROGRAM) 

Table II.4.1 (b) A simple program using the functions defined above. 

LIST PROGRAM TEST 

LIST P 2 4 6 

LIST Q 4 6 8 

LIST P WITH LIST Q APPENDED 2 4 6 4 6 8 

UNION OF LISTS P AND Q 2 4 6 8 

INTERSECTION OF LISTS P AND Q 4 6 

Table II.4.2 Output from the program in Table II.4.1 W . 
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list contains an easily recognizable symbol, zero in this case, 

which serves as a terminator. 

Declaration of variables, nodes and fields 

In the first line of the program in Table II.4.1 a number of 

variables to be used in the program are declared as type A and may 

therefore be either link variables storing an address or integer 

variables. They are also declared jointly to constitute the group 

DECLVAR. 

Consider the next definition 

PWORD(?) IS (A HEAD, A TAIL). 

This says that FWORD (or pointer word in LISP) is a structure (or 

datagroup) consisting of two fields HEAD and TAIL each of type A 

(address). The query indicates that HEAD and TAIL are selector 

functions and not variable names. Thus HEAD refers to the first 

halfword and TAIL to the second halfword of a structure (an address 

occupies one half-word on Atlas). BCL is very free in mixing 

elements of different type in a group; in this work we prefer to 

distinguish fairly sharply between data-groups and command-groups 

(alias routines). 

The nodes within a list may be referenced either directly by 

means of a link variable containing the address of the node or 

indirectly through the link field of another node. The fields 

within a node are referenced by writing the name of the field 

followed by the name of a pointer or link variable in parentheses. 

Thus if the link variable P points to a node, the head field of that 

node is referred to as HEAD(P) and the tail field as TAIL(P). If P 

points to the first node of a linked list, as in Fig, II.4.1, then 

nodes other than the first may be accessed via the pointers in the 
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TAIL fields. For example HEAD(TAIL(P)> refers to the head field of 

the node to which TAIL(P) points, i.e. to the head field of the 

second node of the list. Similarly TAIL(TAIL(P)) refers to the tail 

field of the second node of the list P (the list to which P points). 

- - -i' 

Q — * - - + 

Fig. II.4.1 Examples of linked lists. 

The field HEAD(HEAD(TAIL(Q))) refers to the head of the first cell 

of the second sublist of the list Q. Note that a field name is 

meaningless if used on its own; it must always be used with a 

pointer or link variable. The 'functions' HEAD and TAIL enable us 

to dissect any list structure however complex it may be. 

Groups of commands, functions 

Lists are constructed by getting new nodes and planting in them 

links to other nodes. Nodes which are available for constructing 

linked lists are usually stored as a linked list of free space. In 

Table 11.4.1 the link variable FREE points to such a list of free 

space which is set up by calling the group of commands SETUPFREE. 

The function CONS gets a node from this list and plants values in 
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its head and tail fields. Note the method of branching used in this 

function. EITHER the free space list is empty, in which case the 

program is terminated (no garbage collector is defined in this 

simple program) OR the first node is unlinked from the free space 

list and the values of X and Y are written into the head and tail 

fields respectively. Finally the command EXIT causes a return, 

bringing with it the value of the link variable WS, so that the 

value of the function COINS is a pointer to a new node. A group of 

commands is called by writing its name followed by a list of zero or 

more actual parameters enclosed with parentheses and separated by 

commas. 

If TOP is a link variable which points to the top node of a 

stack then the value of the variable A may be stacked by means of 

the statement 

TOP = CONS (A,TOP) 

This statement is equivalent to the following sequence: 

I IF FREE NE 0 GO TO GETNODE, 

| 0/P(NL., 'FREE SPACE EXHAUSTED'), STOP, 

| GETNODE: WS = FREE, 

| FREE = TAIL(FREE), 

| TAIL(WS) = TOP, 

1 HEAD(WS) = A, 

| TOP = WS, 

I . . . . 

Fig. II.4.2 shows the state of the stack and the free space list at 

various stages during the execution of these statements. 
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(a) Before entering CONS. 

(b) After executing FREE r TAIL(FREE). 

(c) After leaving the CONS fanctidtl. 

FIG. II.4.2 The state of the Stack and Free Space list at 
various stages during the execution of CONS(A,TOP). 
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Returning to the remaining groups of commands in Table II.4.1, 

NULL(X) tests if the list X is empty by testing if pointer X is 

zero* EQ(X,Y) tests two symbols for equality and PRINTLIST(X) 

prints the elements of the simple linked list X . 

The groups APPEND, MEMBER, UNION and INTERSECTION are more 

interesting. They are the BCL versions of the functions of the same 

names defined in the LISP 1.5 Programmer's Manual (McCarthy et al., 

1965)* Bach of these groups is defined recursively and also uses 

previously defined groups. They are included to demonstrate the 

functional aspects of the system. The arguments of APPEND are both 

lists and the function constructs a new list which is the second 

list appended to a copy of the first without changing either of the 

original lists. 

MEMBER is a predicate. It tests if the symbol X is a member 

of the list Y. EITHER Y is an empty list in which case the result 

is false, a fact which is recorded by setting RESULT to zero, OR X 

equals the head element of Y and RESULT is set to 1, OR MEMBER is 

called recursively to test if X is a member of the list TAIL(Y). 

Eventually either X is found on list Y and RESULT r 1 or the end of 

list Y is reached without finding X, and RESULT = 0. MEMBER is 

finally 'matched' or 'failed' by the condition IF RESULT = 1. The 

effect of this will become clearer when we consider the group UNION 

which calls MEMBER, 

A simpler definition of MEMBER which uses IF Y NE 0, the 

equivalent of N0T(NULL(Y)), is 

| MEMBER (A X,A Y> IS (IF Y NE 0, EITHER EQ(X,HEAD(Y» 

| OR MEMBER(X,TAIL(Y)) ) 
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UNION constructs a list which is the union of its two 

arguments. Inside the group UNION, EITHER list X is empty in which 

case the result is list Y, OR if the first element of list X is a 

member of list Y the result is the union of the two lists TAIL(X) 

and Y. If the first element of list X is not a member of list Y 

then MEMBER(HEAD(X),Y) is failed by its final condition, IF RESULT = 

1, and the third alternative of UNION is entered giving the result 

that UNION(X,Y) is CC*NS(HEAD(X), UNION(TAIL(X),Y». 

The value of the function INTERSECTION is the intersection 

of two lists. The use of these functions clearly demonstrates the 

power of the system. Actual parameters of a function may themselves 

involve further calls on functions to any depth. 

In Table 11.4.1(b), LISTPROGRAM is a group of commands to test 

the system which has been defined. It begins by calling INITFREE 

which initialises the start of free space^(the only command in this 

group is a symbolic machine order to assign to the variable FREE the 

octal address 20000000), and then SETUPFREE to set up a linked list 

of free space. It next constructs two simple lists P and Q and 

calls in turn APPEND, UNION and INTERSECTION with P and Q as actual 

parameters. The results are output after each statement and the 

test program then STOPs. Fig. 11.4.3 shows the lists constructed. 

Note that the results of APPEND and UNION share the nodes of the 

original list Q. 

Following the directive *ENTER is a command to output on a 

newline (NL.) a title followed by two newlines before entering the 

group LISTPROGRAM. The actual computer output for this simple test 

program is shown in Table 11.4.2. 
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2 * 4 6 

6 8 0 J> I 6 8 0 
A 

UNION of P and Q 4) 2 | 

Copy of P with Q APPENDED "5 2 6 

INTERSECTION of P and Q - t t 6 o 

Fig. 11.4.3 Results of APPEND(P,Q),UNIQN(P,Q) and INTERSECTIQN(P,Q). 

Input, Output and Storage of Atoms 

Consider the declarations (A INTEGER, 8c CHARVAR). The 

first of these declares INTEGER to be of type A; it can therefore 

store an address or an integer. The second declares CHARVAR to be a 

character variable which can store up to eight six-bit characters 

left justified in a 48-bit field. The appearance of variable names 

in the list of elements of a group which is entered in input or 

output mode causes values of the specified type to be transferred. 
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For example provided that the next characters in the input stream 

are of the appropriate type, the occurrence of INTEGER causes input 

of an integer to the variable INTEGER. If there are no digits in 

the input stream the transfer fails. Similarly CHARVAR causes the 

transfer of up to eight alphanumeric characters. The transfer is 

terminated either after eight such characters have been input or on 

finding a character which does not belong to the appropriate 

character set (digits and letters). If after reading at least one 

letter or digit an unacceptable character occurs before the eighth 

character is read, then the transfer is terminated and the remainder 

of the 48-bit field is filled with space characters. Variables to 

store more than eight characters may be declared and it is possible 

to input as atoms character strings of any length. 

Once input an atom must be stored either in list space or in 

separate atom space. Storage in list space restricts character 

strings to four characters as the head field of a list-cell is only 

24 bits. 

Atomic symbols may be stored in separate atom space by setting 

atom records defined as follows: 

Atom Flag Atom type Atom length Atom symbol 

-1 0 or 1 or 2 1, 2 or more 

where the atom types 0, 1 and 2 represent integer, real and 

character strings respectively, and the length is 1 for integers, 2 

for real numbers and is variable for character strings. 
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Thus for an integer atom we define the record 

IATOMC?) IS (A FLAG, A TYPE, A LENGTH, A ISYMBOL) 

and for character strings of up to 8 alphanumeric characters 

CATQM(?) IS (A FLAG, A TYPE, A LENGTH, 8C CSYMBOL) 

Real numbers are not yet implemented in the BCL prototype compiler 

used for this work but the record for a real atom might be 

RATQM(?) IS (A FLAG, A TYPE, A LENGTH, R RSYMBOL) 

To store the atom which is input, a new atom record is set 

up using the BCL command 

SETUP (Recordname, Pointer, Pointer to Atomspace) 

where the record name is either IATOM, CATQM or RATGM, pointer is a 

variable which points to the record after it has been set up and the 

pointer to atom space indicates the next available space (in 

consecutive store locations) for atoms. Thus to read and store an 

integer atom and return with a pointer to its record in atom space 

we define the group 

IREAD IS (INTEGER > 

SETUP(IATGM, WS, ATQMSPACE) 

FIAG(WS) = -1 » 

TYPE(WS) s 0 

LENGTH (WS) = 1 » 

ISYMBOL(WS) = INTEGER t 
EXIT(WS)) 
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The first field of any atom record is a negative flag to 

indicate that the record is that of an atom. Thus the predicate 

ATQM(X) which is true if X is null or if X points to an atom is 

defined by 

I ATOM(A X) IS (EITHER NULL(X) 

I OR IF FIAG (X) LT 0) 

If the head field of a node contains a pointer to a sublist 

it is necessary to distinguish it from atoms. The predicate ATOM 

defined above is suitable for this when atoms are stored in separate 

atomspace. If atoms are to be stored in the head field of a node 

then a bit must be reserved to distinguish between atoms and 

pointers to sublists. So that the full head field may be available 

for storing atoms it is convenient to extend our definition of PWORD 

to include a third field which stores a flag describing the contents 

of the head field. We now have 

PWORD(?) IS (A FLAG, A HEAD, A TAIL) . 

If the field named FLAG is zero for atoms and one for sublists then 

the predicate ATOM is redefined as 

ATOM (A X) IS (EITHER IF FLAG(X)=0 

OR IF HEAD(X)ro) 
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§2.4.2 Manipulation of Algebraic Expressions. 

PAGE 109 

The following program may be used to read polynomial 

expressions, store them as binary trees, output them in forward 

Polish notation, reverse Polish notation and in the normal infix 

form, and finally to differentiate such a polynomial with respect to 

a single variable and output its derivative after some 

simplification. 

Groups of commands to input an expression are given in Table 

11.4.3. These use the syntax defined by 

<constant> J 2= <integer> 

<variable> j2= <name> 

<primary> :!= <constant> | <variable> | ( <expression> ) 

<secondary :t= <primary> ** <constant> | <primary> 

<term> ::r <term> * <secondary> | 

<term> / <secondary> | <secondary> 

<expression> ::= <expression> + <term> I 

<expression> - <term> | <term> 

The nodes set up are three-field nodes of the form 

LLINK SYMBOL RLINK 

If the symbol field contains an arithmetic operator the link 

fields point to the two operands involved. Constants and variable 

names are stored in the symbol fields of nodes of which both link 

fields are zero. 
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•BCL SOURCE 

DECLVAR IS (A LISTSPACE,A POINTER,A INTEGER,A X,A OP,A WS, 
A PLUS,A MINUS,A MULT,A DIV,A EXPNT,A VARX,A WSl, 
A WS2.2C INAME) 

NQDE(?) IS <A LLINK, A SYMBOL,A RLINK) 

CONS (A X,A Y,A Z) IS (SETUP(NODE, POINTER,LISTSPACE), 
LLINK ( POINTER) sX , 
SYMBOL (POINTER)rY, 
RLINK(POINTER)=Z, 
EXIT(POINTER) ) 

VARIABLE IS (OSP. ,INAME,OSP. ,EXIT(C0NS(0, INAME,0)) ) 

CONSTANT IS (OSP, ,INTEGER,OSP. ,EXIT(CONS(0, INTEGER,o)) ) 

PRIMARY IS ((EITHER X = CONSTANT 
OR X r VARIABLE 
OR *(',X=EXPRESSION,*)f),EXIT(X) ) 

SECONDARY IS (X=PRIMARY,EITHER •••• ,EXIT(CONS(X, ••••,CONSTANT)) 
OR EXIT(X) ) 

TERM IS (XrSECONDARY, MORE: (EITHER '/'fOPz'/* 
OR '• •,0P=* + * 
OR EXIT(X) ), 
XZCONS(X,OP,SECONDARY), 
GO TO MORE ) 

EXPRESSION IS (X=TERM,MORE: (EITHER 9OPz'+* 
OR •-»,0P=»-' 
OR EXIT(X) ), 
X=CONS(X,OP,TERM), 
GO TO MORE) 

Table II.4.3. Groups of Commands to Input an Expression. 

The expression 

I (2x + 1 ) - 6x 

is punched as 

| (2 • X + 1) - 6 • X 

and the effect of the statement XrEXPRESSION is to assign to X a 

pointer to a binary tree representing the input expression as shown 

in Fig. II.4.4. 
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Fig. II.4.4 Tree representation of (2x + 1)**3 - 6x. 
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PRINT(A X,A LASTQPfA OP) IS (EITHER IF XZO 
OR IF LLINK(X)=0,IF RLINK(X)rO, 

(EITHER IF SYMBOL(X) GT 0, 
ws=symbol(x), 0/p(ws) 

or inamersymbql(x), 
0/P(INAME) ) 

OR OP=SYMBOL(X), 
(EITHER IF IASTOP=EXPNT 
OR (EITHER IF IASTOP=MULT 

OR IF IASTOPzDIV), 
(EITHER IF OPrPUJS 
OR IF OPrMINUS)), 

0/P(' < f ), PRINT(LLINK(X) ,0P) , 
INAME=OP, 0/P( I NAME) , 
PRINT(RLINK(X) ,0P) ,0/P( • ) • ) 

OR PRINT(LLINK(X) ,0P), INAMErOP, 
o/p( iname),pr int(r l ink(x) f 0p) ) 

NODEPRINT(A X) IS (EITHER IF LLINK(X)=0,IF RLINK(X)=0, 
IF SYMBOL (X) GT O ,WS=SYMBOL(X), 
0/P(WS,SP.(2)) 

OR INAMEsSYMBOL(X) ,0/P( INAME) ) 

PREPRINT (A X) IS (EITHER IF XZO 
OR NODEPRINT(X), 

PREPRINT(LLINK(X) ) , PREPRINT(RLINK(X) ) ) 

ENDPRINT(A X) IS (EITHER IF XZO 
OR ENDPRINT(LLINK(X)), 

endpr int(r l ink(x)) ,nodeprint(x) ) 

POSTPRINT(A X) IS (EITHER IF XZO 
or p o s t p r i n t ( l l i n k ( x ) ) , 

nodeprint(x), postpr int(r l ink(x) ) ) 

Table II.4.4. Groups of commands to output the information 

stored in a tree. 
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Commands to output the elements of a tree are given in Table 

II.4.4. PREPRINT outputs the expression in forward Polish notation, 

ENDPRINT in reverse Polish notation and POSTPRINT in infix form 

without parentheses. The terms PREorder, POSTorder and ENDorder are 

those defined and used by Knuth (1968). PRINT inserts parentheses 

in the infix form to remove any ambiguities. Typical results for 

the tree in Fig. 11.4.4 are 

Forward Polish: - ** + * 2 X 1 3 * 6 X 

Reverse Polish: 2 X 1 + 3 ** 6 X -

Infix without brackets: 2 * X + 1 ** 3 - 6 X 

Infix with brackets: (2 * X + 1) ** 3 - 6 * X 

These different orders of output are obtained simply by 

traversing the tree in different orders. PREPRINT first visits the 

root then the left subtree and finally the right subtree. The group 

NODEPRINT is machine dependent and requires further comment. This 

group first tests if the node contains a constant or a variable name 

by testing the link fields. If both links are zero and if the 

contents of the symbol field are negative then the node contains a 

variable name which is output in character form by first 

transferring it to a character variable, INAME in this example. A 

positive value in the symbol field is the value of an integer which 

is first transferred to a variable of type A and then output. Nodes 

whose link fields are not zero store arithmetic operators which are 

output as characters after being assigned to a character variable. 

(The reader may have noticed that PRINT, which incidentally does not 

use NODEPRINT, appears to have three formal parameters, X, LASTOP 
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and OPf whereas when it is called only two actual parameters are 

specified. The system as implemented at present does not check that 

the number of actual parameters is equal to the number of formal 

parameters nor does it provide for local variables and as the 

parameters are called by value this provides a convenient trick by 

which to introduce the latter.) 

The function DIFF(X) (see Table II.4.5) uses the basic rules of 

differentiation to construct a tree representing the derivative of 

the expression to which the link variable X points. Note that the 

variable OP is a local variable and not a formal parameter. No 

simplification is performed within this group and the result of 

Y = DIFF(X) is shown in Fig. II.4.5. 

DIFF(A X,A OP) IS (EITHER IF X30,EXIT(0) 
OR IF LLINK(X)=0,IF RLINK(X)=0, 

(EITHER IF SYMBOL(X)=VARX,EXIT(CONS(0,1,0)) 
OR EXIT(O) ) 

OR (EITHER IF SYMB0L(X)3PLUS,OPs•+' 
OR IF SYMBOL(X)=MINUS,0P=1-'), 
EXIT(CONS(DIFF(LLINK(X)),OP,DIFF(RLINK(X)))) 

OR IF SYMBOL(X)=MULT , 
EXIT(CONS(CONS(LLINK(X),,DIFF(RLINK(X))),•+• 

, CONS(DIFF(LLINK(X) ),'*', RLINK(X) )) ) 
OR IF SYMBOL(X)=DIV, 

EXIT(CONS(CONS(CONS(RLINK(X),•*1,DIFF(LLINK(X))), , 
CONS(LLINK(X),,DIFF(RLINK(X)))), 

'/* ,CONS(RLINK(X), •*** ,C0NS(0,2,0)))) 
OR IF SYMBOL(X)=EXPNT, 

EXIT(CONS(RLINK(X) , '* ' ,CONS(DIFF(LLINK(X)) , •*•, 
CONS(LLINK(X),•**•,CONS(RLINK(X),,-,fCONS(0,1,0))))))) 

Table II .4.5. Commands to differentiate a simple polynomial 

expression with respect to a single variable. 
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Fig. 11.4.5. Derivative of (2x + 1)**3 - 6x before simplification. 
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The group * EQUAL* used below tests two trees for equality. 

IATOM(A X) IS (IF LLINK(X)=0,IF RLINK(X)=0, IF SYMBOL(X) GT 0 ) 

SPLUS(A X) IS (EITHER IF RLINK(X)=0, EXIT(LLINK(X)) 
OR IF LLINK(X)=0, EXIT(RLINK(X)) 
OR IATOM(LLINK(X)) , IATQM(RLINK(X)), 

WS=SYMBOL(RLINK(X))+SYMBOL(LLINK(X)), 
EXIT(CONS(0 , WS, 0 ) ) 

OR EXIT(X) ) 

SMINUS(A X) IS (EITHER IF RLINK(X)sO,EXIT(LLINK(X)) 
OR EQUAL(LLINK(X),RLINK(X)),EXIT(0) 
OR IATQM(LLINK(X)), IATOM( RLINK (X) ), 

WS=SYMBOL( LLINK(X) ) -SYMBOL( RLINK ( X) ), 
(EITHER IF WS GT 0,EXIT(C0NS(0,WS,0)) 
OR LLINK(X)=0, SYMBOL( RLINK (X) )=0-WS, 

EXIT(X) ) 
OR EXIT(X) ) 

SMULT(A X) IS (EITHER IF LLINK(X)=0, EXIT(O) 
OR IF RLINK(X)=0, EXIT(o) 
OR IF SYMBOL(LLINK(X))=l, EXIT(RLINK(X)) 
OR IF SYMBOL(RLINK(X))=l, EXIT(LLINK(X>) 
OR EQUAL(LLINK(X),RLINK(X)), 

EXIT(CONS(LLINK(X),•**•,C0NS(0,2,0))) 
OR IF SYMBOL(RLINK(X))=MULT,IATOM(LLINK(X)), 

IATQM(LLINK(RLINK(X))) ,WSl=SYMBOL(LLINK(X)), 
WS2=SYMBOL(LLINK(RLINK(X» ), I302 ,WS1 ,WS2,0, 
EXIT (CONS (CONS (0 ,WS1,0) , * * *, RLINK(RLINK(X) ) ) ) 

OR EXIT(X) ) 

SDIV(A X) IS (EITHER IF LLINK(X)=0, EXIT(o) 
OR EQUAL (LLINK(X), RLINK (X) ), EXIT (CONS (0,1, 0) ) 
OR IF RLINK(X)=0,0/P(NL., 'DIVISION BY ZERO '), 

EXIT(X) 
OR EXIT(X) ) 

SEXPNT(A X) IS (EITHER IF LLINK<X)=0, EXIT(o) 
OR IF RLINK(X)=0, EXIT(CONS(0,1,0)) 
OR IF SYMBOL(RLINK(X))=l, EXIT(LLINK(X)) 
OR EXIT(X) ) 

SIMPLIFY(A X) IS (EITHER IF X=0,EXIT<0) 
OR IF RLINK(X)=0,IF LLINK(X)=0,EXIT(X) 
OR RLINK(X)=SIMPLIFY(RLINK(X)), 

LLINK(X)=SIMPLIFY(LLINK(X)) 
,EITHER IF SYMBOL(X)=PLUS,EXIT(SPLUS(X)) 
OR IF SYMBOL (X)=MINUS, EX IT ( SMINUS (X)) 
OR IF SYMBOL(X)=MULT,EXIT(SMULT(X)) 
OR IF SYMBOL(X)=DIV,EXIT(SDIV(X)) 
OR IF SYMBOL(X)=EXPNT ,EXIT(SEXPNT(X)) ) 

Table 11.4.6. Simplification routines. 
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Fig. 11.4.6. Derivative of (2x + 1)**3 - 6x after simplification. 
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Obviously seme simplification could have been carried out 

during the actual construction of the derivative but simplification 

is itself quite instructive and is defined in separate groups of 

commands given in Table II.4.6. The result of Z 2 SIMPLIFY(Y) is the 

tree shown in Fig. 11.4,6. 

Table 11.4.7 contains actual computer output from a program 

using the differentiation and simplification groups defined here. It 

will be seen that these results are not all in their simplest form. 

In particular the derivative of (X + Y) (X - Y) with respect to X is 

output as X + Y + X - Y . It is well known that the major part of 

any differentiation program is the simplification of the results. 

Further groups to collect terms could be included. The group DIFF 

is easily extended to deal with more general functions but the 

commands given here are sufficient to illustrate the techniques 

used. 

DIFFERENTIATION TEST 

THE DERIVATIVE OF 3* (X **2+ X) + 2* X **3 

WITH RESPECT TO X IS 3* (2* X + 1) + 6* X **2 

THE DERIVATIVE OF (X + Y)* (X - Y) 

WITH RESPECT T O X I S X + Y + X - Y 

THE DERIVATIVE OF 3* (2* X + l)**3 - 2* X **2 

WITH RESPECT TO X IS l8* (2* X + 1)**2 - 4* X 

THE DERIVATIVE OF 3* (2* X + 1)**2 + 6* X **3 

WITH RESPECT TO X IS 12* (2* X + 1) + l8* X **2 

END OF PROGRAM 

Table II.4.7. Output from the differentiation program in Table 11.4.8. 
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LISTPROGRAM IS (DATAF=0, :: data trace off 

PLUS='+', 

MINUS::'-', 

MULTr'*', 

DlVr'/', 

EXPNTr• **', 

VARX='X', 

NEXT: JL2l,LISTSPACE,0,*2, 

(EITHER NLS OR NIL.), 

(EITHER XSEXPRESSION, 

0/P(NL. (3), 'THE DERIVATIVE OF »), 

PRINT(X) 

OR 0/P(NL. (2), 'END OF PROGRAM'),STOP) , 

0/P(NL.(2), 'WITH RESPECT TO X IS '), 

PRINT(SIMPLIFY(DIFF(X))), 

GO TO NEXT ) 

NLS IS (OSP. ,NL.,EITHER NLS OR NIL.) 

*ENTER(0/P(NL. , 'DIFFERENTIATION TEST ' ,NL. (2)) ,LISTPRDGRAM) 

:: Initialise list 

:: space pointer. 

Table II.4.8. A differentiation program. 
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§2.4.3 An example of automatic garbage collection in BCL 

In the expression manipulation program described above, space 

required for new nodes was allocated sequentially and not from a 

linked list of available space. Before the input of each new 

expression the pointer to the listspace is reset to its initial 

value and the same space is used several times over. 

To demonstrate a method of automatic garbage collection another 

version of the program has been written in which space available for 

new nodes is organised in the form of a linear linked list pointed 

to by the link variable FREE. From time to time this list is 

exhausted and nodes which are no longer attached to active lists, 

and are therefore free, can be collected up and returned to the free 

space list by the garbage collector. In general the active lists 

will not be linear lists and any routine which scans an active list 

to determine which nodes are still accessible^and therefore in use^ 

must scan all branches of the list. The simplest method is to use a 

recursive routine to scan the lists but recursive routines require 

an indefinite amount of work space for storing link information at 

each call. As the garbage collector is called only when all, or 

almost all, work space has been exhausted it is important to use a 

method which requires very little work space. The method used here 

requires only three working registers and uses the link fields of 

the nodes themselves to store any pointers which must be saved. 

The nodes used are the same as before, consisting of the three 

fields LLINK, SYMBOL and RLINK. The garbage collector requires two 

additional one-bit fields for flags. It is convenient to use the 
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sign bit of each link field for these as no address in the listspace 

can be negative. 

I LLINK SYMBOL RLINK 

r 
i 
L 

I left flag right flag 

The SCAN routine first makes a forward scan along the right 

links ignoring other fields and reversing the right links until a 

branch end is found. The scan is then reversed, and as each node is 

passed its right flag is set to indicate that the node is in use. 

This backward scan is terminated on finding a node with a left 

subtree which is as yet unscanned. The left flag of this node is 

set and a forward scan made of the right links of the next (left) 

subtree, again terminating at a branchend. On the backward scan any 

left flag which has been set indicates a branch point. The effect 

of the scanning operation is illustrated by the tree diagrams on 

the following page, in which a 1 to the left (right) of a node 

indicates that the left (right) flag of that node is set. 

In addition to any trees pointed to by link variables there may 

be some pointers, to the subtrees of partially constructed trees, 

stored temporarily in the system work stack. These also must be 

scanned and this is the first operation of COLLECTGARBAGE. When all 

active trees and subtrees have been scanned the routine LINKFREE 

scans all list space from LISTART to LISTEND returning unflagged 

nodes to the free space list and resetting flags in nodes which are 

still in use. 

i 
i 
1 
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(a) Before scan commences. (b) End of first forward scan. 

(c) End of second forward scan, (d) Start of third forward scan. 

Fig. 11.4.7. The state of the tree representing 5 + 6(2x + 1)**2 

at various stages during the scanning procedure. 
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The program begins by calling SETUPFREE to set up a linked list 

of free space from location *2 onwards. 

I NQDE(?) IS (A LLINK,A SYMBOL,A RLINK) 

I SETUPFREE(A COUNT) IS (121,LISTART,0,*2, 

I FREE:=LISTART,LISTEND:=LISTART, 

I MORE: SETUP(NODE,WS,LISTEND), :: set up node. 

I RLINK (WS):=LISTEND, :: plant link. 

| COUNT!=COUNT-1, 

| IF COUNT GT 0 GO TO MORE, 

| RLINK(WS) :=0 ) :: terminate lijst. 

CONS gets new nodes and plants information in the three fields. It 

first asks if the free space list is empty and if so calls the 

garbage collection routine. If no free cells are found the program 

is abandoned, otherwise a new node is allocated. 

I CONS(A X,A Y,A Z) IS (EITHER IF FREE5=0, 

| COLLECTGARBAGE, 

| IF FREE:=0, 

| 0/P(NL.,'FREE SPACE EXHAUSTED'), 

| DUMP,STOP 

| OR WSI=FREE, FREE:=RLINK(FREE), 

| LLINK(WS) :=X, 

| SYMBOL(WS):=Y, 

| RLINK (WS):=Z, 

| EXIT(WS) ) 
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The routine COLLECTGARBAGE sets a working pointer to the bottom 

location of the system stack and then proceeds to scan any lists 

whose addresses have been stacked* Note that list addresses lie in 

the range 

| LISTART < list address < LISTEND. 

FREESPP marks the top of the system stack. 

COLLECTGARBAGE next scans any other lists that are still 

required. These are specified by the program. In this case only 

the list X is used. After this has been scanned LINKFREE collects 

up all free nodes between LISTART and LISTEND. 

| COLLECTGARBAGE IS (0/P(NL.(2>, 

| 'GARBAGE COLLECTION ROUTINE ENTERED*,NL.), 

| WS4J=STACKBASE, 

| NEXT: IF WS4 GE FREESPP GO TO STACKDONE, 

| IF C00F(WS4> LT LISTART GO TO SKIP, 

| IF C00F(WS4> GE LISTEND GO TO SKIP, 

| SCAN(C00F(WS4)), 

I SKIP: WS4:=WS4+ONE, 

| GO TO NEXT, 

| STACKDONE: SCAN(X), 

| LINKFREE ) 
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SCAN(A X) IS (WSl:=i, WS2JZX, :: Initialise working 

j: pointers. 

MORE: IF WS2 LE 0 GO TO BRANCHEND, 

WS3:=RLINK(WS2), 

RLINK(WS2):ZWS1, :: Reverse link. 

WS1SZWS2, WS2JZWS3, :: Step down branch. 

GO TO MORE, 

BRANCHEND: IF WS1=1 GO TO ENDSCAN, 

WS3IZWS2, l67,WS3,0,*4, :: Set rightflag to 

:: 'not free*. 

WS2JZWS1, 

IF LLINK(WS2) LT O GO TO ENDBRANCH, 

WS1:=RLINK(WS1), :: Step back up branch. 

RLINK(WS2):ZWS3, :: Restore link. 

IF LLINK(WS2)=0 GO TO BRANCHEND, 

WS35=LLINK(WS2), 

LLINK(WS2):=-WS1, :: Set left flag to mark 

:: branch. 

wsl:zws2, ws2:zws3, 

GO TO MORE, 

ENDBRANCH: WS1:=-LLINK<WS1> , 

126,WS3,0,*4, 

LLINK(WS2):ZWS3, 

GO TO BRANCHEND, 

ENDSCAN: NIL. ) 

:: Reset left flag. 
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In LINKFREE the effect of the system procedure DELETE (NODE, WSl) is 

to step the pointer WSl back by an amount equal to the length of a 

node. 

LINKFREE IS (FREE:=0, WS1:=LISTEND, :: Start at end of 

NEXT: DELETE(NC3DE,WS1), :: list area. 

IF RLINK(WSl) LT GO TO NOTFREE, 

RLINK(WSl) :=FREE, :: Linkon free node. 

FREE:=WS1, 

GO TO END, 

NOTFREE: WS2:=RLINK(WS1), 

126,WS2,0,*4, :: Reset right flag to 

:: zero. 

RLINK(WSl):iWS2, 

END: IF WSl GT LISTART GO TO NEXT ) 

The garbage collector was tested in the expression 

differentiation program by setting up only forty nodes on the free 

space list initially and after the output of each derivative setting 

X to zero so freeing the tree to which X pointed. The octal output 

of the list area, given in Appendix 6, shows that the garbage 

collector worked satisfactorily. 
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§2.4.4 BCL program to build a tree-structured directory. 

Linked memory techniques have important applications in 

building files. The following program builds and updates a tree 

structured file to store a number of alphabetic items of variable 

length. Instructions are included to search for an item in the 

tree, insert an item if it is not already in the tree, and delete an 

item from the tree. 

After initialisation of the file the program stores the items 

BAN, BACK, BANE, BARREL, BE, BAR, BANK, BANG, 

BEEN, BARE, BARGAIN, BAND, BARREN, BARK, BEE, BARB, 

BANDIT, BARN and BARGE 

in a form representing the logical tree in Fig. II.4.8 in which 

each branch end is marked by an asterisk. 

This tree is represented in the store by a binary tree using 

the usual convention that each node contains two links, a SON and a 

BROTHER. Each node may therefore have only one SON, any other sons 

being stored as brothers of the first SON. Fig. 11.4.9 shows the 

representation in store using nodes defined by 

NODE(?) IS (IC SYMBOL, A SON, A BROTHER) 

The program data consists of lists of items preceded by one of 

the directives *INSERT, *FIND, *DELETE and *END. Test data and the 

corresponding output follow the program below. 

The reader will note that each item is scanned twice, once as a 

full word and then one character at a time. It is convenient to 

output a whole item at once even though it is stored one character 

per node. The only process which is perhaps non-trivial is 

deletion. The whole or part of an item to be deleted may be a part 
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Fig. 11.4.8. Logical tree representation of data. 
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Fig. II.4.9. Binary tree representation of data. 
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or the whole of some other item which is not to be deleted. In 

searching for the item to be deleted the process notes, in OLDW, any 

part of the item which is a stem of one or more other items. This 

part must not be deleted. It is also necessary to note whether the 

link to be changed to effect the deletion is a SON link or a FATHER 

link. A SWITCH is set and reset to keep track of this. The FIND, 

INSERT and DELETE operations all involve the same search and are 

therefore written as one group of commands. 

BCL program to build a tree-structured file. 

DECLVAR IS (A LISTSPACE,A W,A ROOT,A WS,A OLEW,A FLAG,A SWITCH, 

1C K,8C NAME) 

NODE(?) IS (1C SYMBOL,A SON,A BROTHER) 

CONS (A X,A Y,A Z) IS (SETUP(NODE,WS,LISTSPACE), 

SYMBOL (WS) = X, 

SON(WS) = Y, 

BROTHER (WS) = Z, 

EXIT(WS) ) 

NLS IS (OSP.,NL., (EITHER NLS OR NIL.) ) 
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PROCESSFILE IS (DATAF = 0, :: Switch off data trace 
NEXTITEM: (EITHER NLS OR OSP.), 

(EITHER '•INSERT*, OSP., FLAG = 1 
'•FIND' ,OSP.,FLAG = 2 
'•DELETE',OSP.,FIAG 5 3 
'•END',EXIT 
NIL.), 

OR 
OR 
OR 
OR 

(EITHER NAME, 
0/P(NL. , (EITHER IF FLAG r 1, 'INSERT ' 

OR IF FLAG = 2, 'FIND • 
OR IF FLAG = 3, 'DELETE *),NAME), 

IF 1= O 
OR K), 

W = ROOT, 
NEXTCHAR: IF SYMBOL(W) = K GO TO FOUND, 

IF BROTHER(W) = O GO TO NOTIN, 
(EITHER IF FLAG = 3, OLDW = W, SWITCH 
OR NIL.), 
W = BROTHER(W), 
GO TO NEXTCHAR, 

FOUND: IF K = 1 ' GO TO IN, 

= 1 

(EITHER IF FLAG = 
OLDW = W, 

OR NIL.), 
W = SON(W), 
(EITHER K OR SP. , 
GO TO NEXTCHAR, 

3, IF BROTHER(SON(W)) NE 0, 
SWITCH = 0 

K = ' '), 

IN: (EITHER IF FLAG = 1, 
0/P(NL. , * ITEM * ,NAME, • ALREADY IN FILE') 

OR 0/P(NL. , 'ITEM * ,NAME, ' FOUND IN FILE') ), 
(EITHER IF FLAG = 3, 

(EITHER IF SWITCH = 0, 
SQN(OLDW) = BROTHER(SON(OLEW)), 

OR BROTHER(OLDW) = BROTHER(BROTHER(OLDW)) ), 
0/P(NL.,'ITEM ',NAME,* DELETED FROM FILE*) 

OR NIL. ), 
GO TO NEXTITEM, 

NOTIN: (EITHER IF FLAG = 1,BR0THER(W) = CANS(K,0,0), 

READNEXT: 

INSERTED: 
OR 

SKIP: 
END: 

W = BROTHER(W), IF K = * • GO TO INSERTED, 
(EITHER K OR SP.,K = • •), 
SON(W) S C0NS(K,0,0), W = SQN(W), 
IF K NE ' ' GO TO READNEXT, 
0/P(NL.,* ITEM *,NAME,* ADDED TO FILE') 
0/P(NL.,•ITEM *,NAME,• NOT FOUND IN FILE'), 
GO TO END, 

(EITHER K OR SP.,K = • •), 
IF K NE ' ' GO TO SKIP ), 

GO TO NEXTITEM ) 
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PROGRAM IS <121, LISTSPACE, 0,^2, ti Initialise list space. 
ROOT = CONSC f,0,0), :: Initialise file. 
PROCESSFILE, STOP) 

*ENTER( PROGRAM) 

DATA 

•INSERT BAN BACK BANE BARREL BE BAR BANK BANG BEEN BARE 
BARGAIN BAND BARREN BARK BEE BARB BANDIT BARN BARGE BAN 

•FIND BANE BEEN BARGAIN BEAR 
•INSERT BEER 
•FIND BEER 
•DELETE BEER 
•FIND BEER 
•DELETE BARREL BAN 
•FIND BARREN BARREL BAN BAND 
•END 

OUTPUT 

ADDED TO FILE 

ADDED TO FILE 

ADDED TO FILE 

ADDED TO FILE 

ADDED TO FILE 

ADDED TO FILE 

ADDED TO FILE 

INSERT BAN 
ITEM BAN 
INSERT BACK 
ITEM BACK 
INSERT BANE 
ITEM BANE ADDED TO FILE 
INSERT BARREL 
ITEM BARREL ADDED TO FILE 
INSERT BE 
ITEM BE 
INSERT BAR 
ITEM BAR 
INSERT BANK 
ITEM BANK 
INSERT BANG 
ITEM BANG 
INSERT BEEN 
ITEM BEEN 
INSERT BARE 
ITEM BARE ADDED TO FILE 
INSERT BARGAIN 
ITEM BARGAIN ADDED TO FILE 
INSERT BAND 
ITEM BAND ADDED TO FILE 
INSERT BARREN 
ITEM BARREN ADDED TO FILE 
INSERT BARK 
ITEM BARK 
INSERT B Y 
TV/I! D E 
INSERT BARB 
ITEM BARB ADDED TO FILE 
INSERT BANDIT 
ITEM BANDIT ADDED TO FILE 
INSERT BARN 
ITEM BARN 
INSERT BARGE 
ITEM BARGE 
INSERT BAN 
ITEM BAN 

ADDED TO FILE 

ADDED TO FILE 

ADDED TO FILE 

ADDED TO FILE 

ALREADY IN FILE 
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FIND BANE 
ITEM BANE FOUND IN FILE 
FIND BEEN 
ITEM BEEN FOUND IN FILE 
FIND BARGAIN 
ITEM BARGAIN FOUND IN FILE 
FIND BEAR 
ITEM BEAR NOT FOUND IN FILE 
INSERT BEER 
ITEM BEER ADDED TO FILE 
FIND BEER 
ITEM BEER FOUND IN FILE 
DELETE BEER 
ITEM BEER FOUND IN FILE 
ITEM BEER DELETED FROM FILE 
FIND BEER 
ITEM BEER NOT FOUND IN FILE 
DELETE BARREL 
ITEM BARREL FOUND IN FILE 
ITEM BARREL DELETED FROM FILE 
DELETE BAN 
ITEM BAN FOUND IN FILE 
ITEM BAN DELETED FROM FILE 
FIND BARREN 
ITEM BARREN FOUND IN FILE 
FIND BARREL 
ITEM BARREL NOT FOUND IN FILE 
FIND BAN 
ITEM BAN NOT FOUND IN FILE 
FIND BAND 
ITEM BAND FOUND IN FILE 

PAGE II1332 
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§2.4.5 The Classical Transportation Problem. 

Our final example is taken from an important class of linear 

programming problems known as transportation problems. A 

transportation problem is mathematically equivalent to the 

following: 

Given a certain amount of some commodity available at each 

of n sources and a certain amount required at each of m 

destinations, where the total amount available equals the 

total requirement, and given the cost of supplying each 

destination from each source (as so much per unit), find 

the cheapest way of meeting the requirements. 

The problem can be formulated as a linear programming problem 

if we define x[i,j] > 0 as the number of units sent from source i to 

destination j . We must then minimize 

I z = 2 c[i,j] * x[i,j] 
L i 

I subject to Sx[i,j] = aCi] and £ x[i,j] = b[j] 
J £ 

where c[i,j] is the cost of transporting one unit from source i to 

destination j, a[i] is the amount available at source i and b[j] 

the amount required at destination j . It is assumed that 

I 2 a [ i ] = . c -a 

Such problems have been solved in many different ways the 

original formulation and solution being due to Hitchcock (I94I). 

The method used here (sometimes called the u-v method) follows the 

logic of the simplex algorithm but keeps track of the situation in a 

more compact way. 

For m origins and n destinations the constraints 

x[i,j] = a[i] , i = 1,2, ... , m 

and g x [ i , j ] = b[j] , j = 1,2, ... , n 
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constitute m+n equations in m*n unknowns. The coefficent matrix has 

rank m+n-1 and a basic solution to the constraints is one in which 

not more than m+n-1 of the x[i,j] are greater than zero. The m*n 

solution matrix is therefore sparse and since problems which arise 

in practice may involve hundreds of origins and thousands of 

destinations it is important to store all information as compactly 

as possible. 

It is convenient to store the values of the m+n-1 basic 

variables x[i,j] on linked orthogonal lists, each element being a 

member of both a row list and a column list. The nodes used are 

six-field nodes containing a row and a column number, a row link and 

a column link, the value of the variable and a sixth field which is 
P 

available for perturbations in degenerate problems. 

ROW COL ACROSS 

VALUE OTHER DOWN 

Each list is circular and has a list head also of six fields. 

A typical configuration for three origins with availabilities 

15, 12 and 18 units and four destinations with requirements 7i 12, 

12 and 14 units is shown on Page 136. Note that a column list-head 

has a negative row number and a row list-head has a negative column 

number. There is a special base node (or HEADCELL) with both row 

and column number negative. This stores the sum of the 

availabilities and the sum of the requirements. Availabilities at 

sources and requirements at destinations are stored in the 

appropriate list heads. The particular basic solution shown on 

Page 136 is x[l,l] = 7,x[l,2] = 8, x[2,2] = 4,x[2,3] = 8, x[3,3] = 4 

and x[3,4] = 14 ; all other x[i,j] are basic and therefore zero. 
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The program begins by reading M and N the number of sources and 

destinations, the N requirements and the M availabilities, at the 

same time setting up list heads in which to store this information. 

If the sum of the availabilities is not equal to the sum of the 

requirements the program is abandoned. 

Next the costs c[i, j] are read and stored in an M*N matrix in 

the conventional form. This matrix could be stored in linked form 

if sparse e.g. if many routes are forbidden, in which case no cost 

is given for them, but this program assumes that the cost matrix is 

stored sequentially row by row. [Note that arrays had not been 

implemented in BCL at the time of writing this program]. The input 

of the problem data and setting up the linked list-heads is the 

function of the group READVALUES given below. 

The simplex algorithm starts with a basic solution, tests it 

for optimality and, if not optimal, transforms the basis to give a 

new solution which in general is closer to the optimum than is the 

original. The method used to set up an initial basic solution is 

the so called 'North West Corner' rule defined by the BCL group 

NWRULE. This rule pays no attention to cost and starting with the 

first source and first destination sends along this route the 

maximum possible number of units. This will either exhaust the 

available stock at source one or will satisfy the requirement at 

destination one but in general the supply and demand constraints 

will not be satisfied simultaneously. If the supply is exhausted 

then the next source is taken otherwise the process continues with 

the next destination until eventually the supply at origin M is 

exhausted and the demand at destination N met by sending the 

remaining units along route (M,N), The basic solution shown for the 

3*4 problem above is an initial solution obtained by the northwest 
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corner rule. As each assignment is made a node is set up, the 

number of units x[i,j] stored, the row and column numbers set equal 

to those of the source and destination respectively and finally the 

node is linked into the orthogonal column and row lists. 

As each basic solution is found it is output by the group 

PRINTSOLN. 

The test for optimality and the method of constructing one 

basic solution from another are well written up in most of the 

standard texts on linear programming and the theory behind these 

operations will not be given here. A basic solution is transformed 

to a new basic solution by increasing the value of some non basic 

variable until one of the basic variables becomes zero. The roles 

of these two variables are then interchanged. The problem is to 

choose a non basic variable which when increased will reduce the 

total distribution cost. For each (non-basic) variable we define a 

relative cost factor being the increase in total cost per unit 

increase in the variable all other non-basic variables remaining at 

zero level. 

Dantzig (Linear Programming and Extensions,19^5) shows that the 

relative cost factor for a variable x[i,j] is 

c[i,j] - u[i] - v[j] 

where u[i] and v[j] are shadow prices associated with row i and 

column j respectively. The relative cost factors are zero for basic 

variables giving mfn-1 equations 

c[i,j] = u[i] + v[j] , x[i,j] basic , 

in the mtn unknowns u[i] and v[j] , These are solved by setting 

u[i] arbitrarilly to zero and finding the remaining m+n-1 shadow 

prices from the m+n-1 equations. 
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Clearly, if no relative cost factor is negative then the 

current basic solution is optimal. The shadow prices are computed 

by CALCV and CALCU which call each other recursively. 

I Let c[r,s] = Minrc[i,j] - u[i] - v[j]] 

then if c[r,s] £ 0 the solution is optimal otherwise x[r,s] is the 

variable to enter the basis. 

INBASIS links a node into position r,s , in the orthogonal 

lists, to store the value of the new variable and PATH constructs a 

linked list representing the (unique) closed path connecting the 

variables in the current basis whose values are to be changed by 

adding or subtracting the value of x[r,s] in such a way as to 

satisfy the row (supply) and column (demand) constraints. The 

maximum value of x[r,s] is the value for which some variable in the 

current basis becomes zero and leaves the basis. This value is 

found by MAXRS. In desk calculations on small problems, finding a 

closed path is trivial, but automatic methods cannot use visual aids 

and the group PATH is very time consuming. In practice, large 

transportation problems are not solved by this method but usually 

operate on the dual problem. PATH tries all possibilities starting 

from position (r,s), stepping alternately along rows and columns 

from one basic variable to another, and backtracking when no further 

progress can be made until it eventually finds the unique closed 

path for the variable xtr,s]. 

Finally the new basic solution is found by NEWBASIS which 

alternately adds and subtracts the value of x[r,s] to and from the 

basic variables around the closed path. The variable which becomes 

zero leaves the basis having been replaced by x[r,s] . This whole 

process is repeated until an optimal solution is found. 
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The following program gives details of the groups mentioned 

above together with the results for the simple problem with three 

origins and four destinations referred to on Page 135-

DECLVAR IS (A HEADCELL,A LISTSPACE,A SLISTSPACE,A COST,A COSTP, 

A ROWP,A COLP,A SROWP,A SCOLP,A SPARE,A PATHLIST, 

A P, s: Pointers. 

A M,A N, A A,A B,A C, 

A SUMA,A SUMB, :: Problem data. 

A UI,A UJ, :: Simplex multipliers. 

A WS,A WSl,A WS2,A WS3,A COUNT,A MINCIJBAR, 

A MIN ) :: Working variables. 

ROWHEAD(?) IS (A ROW,A COL,A ACROSS,A DCWN,A VALUE,A U) 

COLHEAD(?) IS (A RON,A COL,A ACROSS,A DOWN,A VALUE,A V) 

NQDE(?) IS (A ROW,A COL,A ACROSS,A DOWN,A VALUE,A FLAG) 

FWORD(?) IS (A SYMBOL,A LINK) 

CONS (A X,A Y) IS <SETUP(FWORD,WS,LISTSPACE), 

SYMBOL(WS) = X, LINK(WS) = Y, 

EXIT(WS) ) 

NLS IS (OSP., NL., EITHER NLS OR NIL.) 

SEPR IS (OSP., ( EITHER NLS OR NIL.), »,', 

(EITHER NLS OR NIL.), OSP.) 

TRANSPORTATION IS (121,LISTSPACE,0,*2, S! Initialise list 
:: space pointer. 

(EITHER NLS OR NIL. ) , 

READVALUES, :: Input problem data. 

NWRULE , :: Set up initial 
:: solution. 

PRINTSOLN, s: Output initial 
:: solution. 

SETUP(NODE,SPARE,LISTSPACE):: Get spare node. 

SLISTSPACE = LISTSPACE, 2S Save pointer. 
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AGAINI CALCV(DOWN(HEADCELL) ,0), j: Compute multipliers. 

COSTP = COST, :i Initialise pointer 
!: to cost matrix. 

MINCIJBAR = 0, CIJBAR, ll Compute cost factors, 

IF MINCIJBAR GE O GO TO END:: If optimal solution. 

INBASIS, :: Insert spare node. 

R = RCW(SRCWP),S=COL(SCOLP):: Note position of 
:: new node. 

END: 

P = SPARE,FLAG(P)=1, 

PATHLIST=CONS(SPARE,o), 

PATH, 

MAXRS, 

NEWBASIS, PRINTSOLN, 

GO TO AGAIN, 

0/P(NL. , 'OPTIMAL SOLUTION FOUND'), STOP) 

:: Nodes on closed path 
:: are flagged. 

:: Find closed path. 

:: Maximum value of 
;: new variable. 
:: Print new basic 
:: solution. 

READVALUES IS (SETUP(NQDE,HEADCELL,LISTSPACE), :: Set up head cell. 

RCW (HEADCELL)=0-1, C0L(HEADCELL)=0-1, 

M,SEPR, N, SEPR , :: Input dimensions. 

:: The following instructions set up and initialise a linked list of 
:: row listheads. 

COUNT=l, SUMA=0, WS=HEADCELL, 

NEXTR: A,SEPR,SUMA=SUMA+A :: Read next value of A 

ROW(LISTSPACE)=COUNT, 

C0L(LISTSPACE)=0-1, 

VALUE(LISTS PACE)=A, 

FLAG(LISTSPACE)=0, 

ACROSS(LISTSPACE)=0, DCWN(WS)=LISTSPACE, 

SETUP(ROWHEAD, WS,LISTSPACE), 

COUNTTCOUNT+1, 

IF COUNT LT M GO TO NEXTR, 

DOWN(WS ) rHEADCELL, VALUE ( HEADCELL) =SUMA, 
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:: The following instructions set up and initialise a circular linked 
:: list of column list heads. 

COUNTrl, SUMB=0, WS=HEADCELL, 

NEXTC: B,SEPR,SUMB=SUMB+B, :i Read next value of B. 

RW(LISTSPACE)=0-1, 

COL(LISTSPACE)2COUNT, 

VALUE(LISTS PACE)=B, 

FLAG( LISTSPACE)=0, 

ACROSS (WS)=LISTSPACE,D0WN(LISTSPACE)=0, 

SEPTUP(COLHEAD,WS,LISTSPACE), 

C0UNT=C0UNT+1, 

IF COUNT LE N GO TO NEXTC, 

ACROSS (WS) rHEADCELL, 

IF VALUE(HEADCELL)rSUMB GO TO SKIP, 

0/P(NL., 'SUMA NE SUMB, PROBLEM INFEASIBLE*), 

STOP, 

j: The following instructions input the cost matrix, 

SKIP: COST= LISTSPACE, :: Save pointer to cost 
:: matrix. 

WSI = M, 

NEXT2J WS2=N, 

NEXT1: C,COOF(LISTSPACE)rC,SEPR, 

LISTSPACErLISTSPACE+l, 

WS22WS2-1, IF WS2 GT 0 GO TO NEXT1, 

WS1=WS1-1, IF WSI GT 0 GO TO NEXT2) 
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NWRULE IS (RCWP=DOWN(HEADCELL), 

COLPzACRQSS(HEADCELL), :: Start at NW corner. 

ACROSS<RCWP)=LISTSPACE, 

DOWN(COLP)=LISTSPACE, :: Link on first node. 

MORE: SETUP(NODE,WS,LISTSPACE), 

ROW(WS)~ROW(ROWP),COL(WS)=:COL(COLP), 

IF VALUE(ROWP) GE VALUE(COLP) GO TO ACROSS, 

VALUE(WS)=VALUE(RCWP), :: A supply exhausted. 

VALUE(COLP)aVALUE(COLP)-VALUE(ROWP), 

VALUE(R0WP)=0, 

ACROSS(WS)=RCWP,ROWP=DOWN(ROWP), 

ACROSS(ROWP)zLISTSPACE, :: Link to next node. 

DOWN(WS>=LISTSPACE, 

GO TO MORE, 

ACROSS: VALUE(WS)=VALUE(COLP), :: A demand satisfied. 

VALUE(ROWP)ZVALUE(ROWP)-VALUE(COLP), 

VALUE(COLP)zO, 

DOWN(WS)=COLP,COLPzACRQSS(COLP), 

IF COLPrHEADCELL GO TO END, 

DOWN(COLP)=LISTSPACE, :: Link to next node. 

ACROSS(WS)zLISTSPACE, 

GO TO MORE, 

END: ACROS S (WS ) =RCWP ) 
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PRINTSOLN IS (O/P (NL., 'BASIC SOLUTION', NL.), 

P=ACROSS(DOVN(HEADCELL)) , 

NEXT! WS1=RCW(P) ,WS2=COL(P) ,WS3=VALUE(P) , 

0/P(NL., «X( ' ,WS1, ',' ,WS2,' )=' ,WS3) , 

P+ACROSS(P), IF COL(P) GT O GO TO NEXT, 

P=ACROSS(DCWN(P)>, 

IF ROdT(P) GT O GO TO NEXT, 

0/P(NL.) ) 

Given P, a pointer to a basic node, and IU the shadow price 

associated with the row of which this node is a member CAI£V 

computes VJ the shadow price associated with the column of which the 

node is a member. This value of VJ is then passed to CALCU which 

attempts to compute the UI for the next node in this column and if 

successful calls CALCV and so on until all shadow prices have been 

computed. The variable SAVEP used in these groups is in each case a 

local variable. Initially CALCU is called with P pointing to the 

first node in the first row and with UI = 0. 

CALCV(A P,A UI,A SAVEP) IS (SAVEP=P, 

START: PXACRDSS(P), 

IF COL(P) GT 0 GO TO SKIP, 

U(P)=UI, :: Record shadow price. 

IF P = DCWN(HEADCELL) GO TO END, 

P = ACROSS(P), 

SKIP: IF P=SAVE(P) GO TO END, 

VJ=CIJ(RCW(P),CaL(P)) - UI, 

CALCU(P,Vj), GO TO START, 

END: NIL. ) 
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CALCU(A P,A VJ,A SAVEP) IS (SAVEPsP, 

STARTS P=DOWN(P), 

IF ROW(P) GT O GO TO SKIP, 

V(P)= VJ, P=DCWN(P), 

SKIP! IF P=SAVEP GO TO END, 

UI=CIJ(ROW(P),COL(P))-VJ, 

CALCV(P,UI), GO TO START, 

ENDS NIL. ) 

:: CIJBAR computes the relative cost factors saving the value and 
:: location of the minimum of these. 

CIJBAR IS (SRGWP=0, SCOLPRO, WS=0, 

RGWPRDCWN(HEADCELL), COLPXACROSS(HEADCELL), 

NEXT: IF COL(COLP) GT 0 GO TO A, 

COLPXACROSS(COLP), ROWP=DOWN< ROWP), 

IF ROW (ROWP) LT 0 GO TO END, 

A: WS=COOF(COSTP)-U(ROWP), 

WSXWS-V(CCJLP), 

IF MINCIJBAR LE WS GO TO B, 

SRCWP=ROWP,SCOLP=COLP,MINCIJBAR^WS, 

B: COL(P)=ACROSS(COLP), COSTP=COSTP+L, 

GO TO NEXT, 

END: NIL. ) 
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2 1 INBASIS inserts a new node in position (SROWP,SCOLP) representing 
2 2 the new variable entering the basis. 

INBASIS IS (P=SROWP, 

NEXTC0L2 IF COL(ACROSS(P>) GT COL(SCOLP) GO TO RINSERT. 

IF COL(ACROSS(P)) LT 0 GO TO RINSERT, 

P=ACROSS(P), GO TO NEXTCOL, 

RINSERT2 ACROSS(SPARE)=ACROSS(P),ACROSS(P)=SPARE, 

PrSCOLP, 

NEXTROW: IF ROW(DCWN(P)) GT ROW(SROWP) GO TO CINSERT, 

IF ROW(DCJWN(P)) LT O GO TO CINSERT, 

P=DOWN(P), GO TO NEXTROW, 

CINSERT2 DOWN(SPARE)=DOWN(P) ,DOWN(P)=SPARE, 

ROW(SPARE)=ROW(SRCWP),COL(SPARE)=COL(SCOLP), 

VALUE<SPARE)=0,FLAG(SPARE)=0 ) 

PATH starts at the new node and steps alternately along rows and 
columns searching for a closed path. R and S are row and 
column numbers of the new node. 

PATH IS (NEXTROW2 P=ACROSS(P), 

IF COL(P) GT O GO TO SKIP1, 

PzACROSS(P), 

SKIP12 IF FIAG(P)=1 GO TO REJECTROW, 

FLAG(P)=1, PATHLIST=CONS(P,PATHLIST), 

IF COL(P)=S GO TO END, 

GO TO NEXTCOL, 

REJECTROW2 P=SYMBOL(PATHLIST), 

PATHLIST=LINK(PATHLIST), FLAG(P)=0, 

DELETE(PWORD,LISTSPACE), GO TO NEXTCOL, 

NEXTCOL2 P=DOWN(P), 

IF ROW(P) GT O GO TO SKIP2, 

P=DQWN(P), 
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SKIP2J IF FIAG(P)=1 GO TO REJECTCOL, 

FIAG(P)-I, PATHLIST=CQNS(P,PATHLIST), 

GO TO NEXTROW, 

REJECTCOL: PrSYMBOL(PATHLIST), 

PATHLIST=LINK(PATHLIST), FLAG(P)=0, 

DELETE(PWORD,LISTSPACE), GO TO NEXTRCW, 

END: NIL. ) 

:: MAXRS finds the maximum value at which the new variable enters 

:: the basis. 

MAXRS IS (MIN=VALUE(SYMBOL(PATHLIST)), 

SPARErSYMBOL(PATHLIST), WS=PATHLIST, 

NEXT: IF VALUE(SYMBOL(WS)) GE VALUE(SPARE) GO TO SKIP, 

MINt:VALUE( SYMBOL(WS ) ), SPARErSYMBOL(WS) , 

SKIP: WS=LINK(LINK(WS)), 

IF WS NE O GO TO NEXT ) 

NEWBASIS IS (NEXT: VALUE(SYMBOL(PATHLIST)) VALUE(SYMBOL(PATHLIST))-MIN, 

FLAG(SYMB0L(PATHLIST))=0, PATHLIST=LINK(PATHLIST), 

VALUE(SYMBOL(PATHLIST))=VALUE(SYMBOL( PATHLIST))+MIN, 

FIAG( SYMBOL( PATHLI ST) ) =0, PATHLI ST=LINK < PATHLI ST) , 

IF PATHLIST NE 0 GO TO NEXT, 

WSrSPARE, 

GODCJWN: WSXDCWN(WS), IF DCIWN(WS) NE SPARE GO TO GODCWN, 

DOWN(WS)=DCWN( SPARE), 

WS=SPARE, 

GQACROSS: WS=ACROSS(WS),IF ACRDSS(WS) NE SPARE GO TO GQACROSS, 

LISTSPACE=SLISTSPACE) 

*ENTER(TRANSPORTATION) 
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Results from a program using the foregoing routines to solve the 
3*4 problem given on Page 135* 

BASIC SOLUTION 
X(l,l> = 7 
x(l,2) = 8 
X(2,2> = 4 
x(2,3> = 8 
x(3,3> = 4 
x(3,4> = 14 

BASIC SOLUTION 
X(L,L) = 3 
X(l,2> = 12 
X(2,l) = 4 
x<2,3> = 8 
x(3,3> = 4 
X(3,4) = 14 
BASIC SOLUTION 
X<1,2> = 12 
X( l ,3> = 3 
X(2,l) = 7 
x<2,3> = 5 
x(3,3> = 4 
x(3,4> = 14 

BASIC SOLUTION 
X(l,2) = 12 
x<l,3> = 3 
x(2 , l ) = 7 
x<2,4> = 5 
x(3,3> = 9 
x<3,4> = 9 

BASIC SOLUTION 
X(l,2) = 3 
X<1,3> = 12 
X(2,l) = 7 
X<2,4> = 5 
x(3 ,2) = 9 
x(3,4> = 9 

OPTIMAL SOLUTION FOUND 
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The Implementation of Data Structures 
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The Implementation of Jata Structures. 

The preceding section was concerned with elementary list 

processing in BCL, The programs described illustrated the 

facilities in BCL which make it particularly suitable for the 

manipulation of linked structures and we emphasised that the shape 

and size of the nodes used and the manner in which they were linked 

together was defined by the program. In this section we shall 

consider extensions which would allow the user to define new types 

or classes of objects in his program. We are particularly 

interested in the definition of named classes of structured objects 

such as linked lists and trees and the operations which may be 

performed on them. 

Before going into the details of specific extensions to BCL it 

is convenient to consider some recent developments in Algol which 

form a background to the developments proposed here. The chief 

impotencies of Algol 60 are well known; the most serious being 

input/output, string/character handling, lists and complex numbers. 

Since the publication of the revised version of Algol 60 in 1962, 

proposals for remedying some of these deficiencies have received 

considerable attention in the literature. D. Knuth (May, 1964), 

C.A.R. Hoare (November, 19^5)$ and N. Wirth and C.A.R. Hoare 

(I966) have proposed modest extensions which have already been 

implemented on a few machines and are typical of the features 

proposed for Algol 6x. The most recent developments are embodied in 

Algol 68 which includes a number of important innovations but is not 

so closely related to Algol 60, It seems that there may still be a 

place for an Algol X, less ambitious than Algol 68. which can be 

implemented without departing significantly from the concepts of 

Algol 60. 
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A new type, character, should be provided so that implementors 

can organise storage more efficiently. System procedures for the 

input/output of whole lines could transfer characters to something 

like a character array. (They could probably be written trivially 

as for-statements at the cost of the inefficiency of calling a 

system character routine once per character.) 

Actually something more than a character array is required. 

The array provides a means of allocating to a single identifier a 

block of storage much larger than a single variable; this is merely 

the essential first step. The next requirement is a means of 

structuring this, and the way it is met must make provision for 

other needs involving structures. 

No implementor of Algol 60 would find it difficult to implement 

character arrays and standard system routines for input and output, 

and it is possible to take one further step without departing from 

the general scheme of organisation required for Algol 60. One could 

allow a declaration such as 

structure (character[10], Y,Z; real W,X) h,j,k; 

This declares three variables, h,j,k, each consisting of two 

10-character strings and two reals, and allows references to the 

second string of the third variable by the notation Z(k). Such a 

system would, for example, allow a line for output to be built up by 

assignments to specific fields within it. By using this technique 

recursively,types are created which are the equivalent of a complete 

Cobol record, and moreover, one can declare as many instances of any 

type as one cares to find identifiers for,and can create and destroy 

them on the stack with the full freedom of the usual rules for local 
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storage in a block structure language. What, then, can not be done 

yet? 

Complex numbers can be dealt with by declaring 

structure (real Re, Im) z,y,x ... 

and calling procedures such as sumcomplex(x,y,z), but z x + y 

is not defined for variables of type complex. One can define 

structure (character [10] f, character [20] g ) 

structure (character [20] h, character [10] k ) 

but one cannot define a 30-character string so that it can be 

analysed in either way at will (not without making very dangerous 

assumptions about the scopes of the selector function identifiers). 

One can define, perhaps, 

structure (integer Head,Tail) array F[1:1000]; 

for i:=l to 999 do Tail (F[i]) : = i+1 ; etc, 

and provide oneself with a list processing area, but one is then 

confined to working with simple lists of integers, in which, 

moreover, every list element has an unnecessarily explicit name. 

For several reasons the thing cannot be done properly by writing 

what a study of Algol 68 would suggest, 

structure list = (union (atom, list) Head, list Tail) . 

The first reason is that union has not been introduced. A 

second is that there is no provision for the naming of structures. 

Our objective is to develop a system in which named structures 

of any complexity can be defined in this way and handled as single 

units of data. 

At this point it is convenient to return to BCL which is 

potentially more flexible than Algol 60, Input and output of 

structured data is already well defined in BCL, and, as we have 
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already seen, it is possible to represent data structures using 

facilities which already exist. The main deficiencies in BCL are 

deficiencies in the current implementations rather than in the 

language, although there is some confusion to be cleared up in the 

language itself, for example between indefinite groups and structure 

declarations. Types real and boolean are not yet implemented, 

arrays, functions, groups with parameters, and block structure are 

not generally available and the scope of identifiers is not well 

defined. Facilities already exist for handling any specified number 

of characters, for example, an identifier declared as type JC may be 

used for the input/output and storage of from 1 to 7 characters. 

However, the space allocated for a string of 7 characters stored as 

a single unit declared as type yc is not the same as that for 7 

characters each of type 1C. 

In section §2.4.1 various structures were declared using 

the BCL concept of an indefinite group. In particular we defined a 

simple two-field structure named FWORD as follows 

PWORD(?) IS (A HEAD,A TAIL) . 

The reader is reminded that the BCL compiler interprets this as 

the declaration of a group of variable declarations. In theory this 

group could be input or output according to the mode in which it is 

entered although in practice the result of inputting or outputting 

such a group is unpredictable. The query indicates that the group 

is indefinite and therefore any variables declared in the group are 

allocated stack space, not fixed space. Thus the variables HEAD and 

TAIL, each of type A (address) are allocated addresses relative to 

some stack pointer. Since, as it happens, HEAD is allocated a 

relative address (or offset) zero and TAIL an offset of one address 
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field it is convenient to use these names as selector function 

identifiers for referencing fields within a node or record. We note 

also that as the names HEAD and TAIL are in no way associated with 

PWORD in the identifier records set up by the existing BCL 

compilers, they may be used in conjunction with any base pointer. 

We see that in BCL there is some confusion between selector 

functions and variables, and between groups and structure 

declarations. We need to distinguish clearly between groups of 

objects for input and output and the definitions of named 

structures, or shapes, with which are associated selector functions, 

and for which no object code is generated. A structure declaration 

merely gives information to the compiler. We can allow a shape 

declaration of a named structure such as 

SHAPE.(COMPLEX) IS (REAL RE,REAL IM) 

This defines a structure named COMPLEX as a pair of real numbers. 

The field names, or selectors, RE amd IM are used to refer to the 

real and imaginary parts of any object which is declared to be of 

type COMPLEX. They are associated only with objects of type complex 

and in general have no meaning if used in conjunction with any 

object which is not of type complex. Having defined the type 

complex we can now write declarations such as 

COMPLEX A 

which says that A is an object which belongs to the class of objects 

named COMPLEX i.e. A is of type complex. The real part of A is 

referred to as RE(A) and the imaginary part as IM(A). The pair of 

real numbers RE(A) and IM(A) are together referred to as A and can 

be handled as a single object. Note that the declaration of 

SHAPE,(COMPLEX) does not result in any allocation of storage, nor is 

any object code generated; it merely specifies the amount of storage 
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to be allocated to any object which belongs to the class named 

COMPLEX. A dictionary record containing this information is set up 

for the name COMPLEX and the type of the name COMPLEX is * SHAPE *. 

Dictionary records are also set up for RE and IM each of type REAL, 

and these records are linked to that of COMPLEX to indicate the 

association between the structure and its selectors. The 

declaration COMPLEX A causes space for two real numbers to be 

allocated to the object named A. Clearly, more complicated 

structures could be defined involving as many fields as are 

required. It may also be possible to specify alternative shapes 

belonging to the same class by means of a declaration such as 

| SHAPE.(NODE) IS ( (EITHER 8c HEAD1 

| OR A HEAD2), A TAIL) 

This says that an object of type node is a two field object of which 

the first is either an 8-eharacter field or an address field and the 

second is an address field. In circumstances such as this, in which 

alternative structures require different amounts of storage, the 

maximum amount specified is always allocated. 

We turn now to more complicated structured objects for which 
the total storage space required is indefinite. A simple example of 
such an object is a linear linked list. There are obvious 
advantages in being able to handle objects of type list as single 
units of data rather than as a number of separate elements but 
clearly the total amount of storage required depends upon the number 
of elements in the list and this may vary dynamically. We deal with 
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the problem in the following way 

SHAPE. (LIST) IS (REF. (NODE) ) 

SHAPE.(NODE) IS (REF. (ATOM) HEAD, REF.(NODE) TAIL) 

where an ATOM is user defined and may be an integer, a real number, 

a character string or any other object which the user may wish to 

define in his program. REF. is a new system word meaning 'the 

address of' its argument. Thus REF.(NODE) means storage for the 

address of an object of type NODE, but it also implies some check 

that the address is that of a NODE. The declaration LIST P results 

in the allocation of storage space for an address. This is 

initialised to zero, representing a null list, and in any future 

assignments the assigned value must be either zero or the address of 

a node. A NODE is in turn defined as a structure, or shape, 

consisting of two fields named HEAD and TAIL. Each of these is a 

reference to an object and therefore, when an object of type NODE is 

•set up*, the space allocated is for two address fields referred to 

as HEAD and TAIL. The fact that TAIL is also defined as a reference 

to a NODE does not lead to any complications. Any reference to an 

object requires an address size field whatever the object may be. 

As a zero address implies a null reference, a list is terminated by 

a node of which the TAIL is null. 

A node could have been defined as 

| SHAPE.(NODE) IS ((EITHER REF. (ATOM) 

| OR REF. (NODE)) HEAD, 

I REF. (NODE) TAIL ) 
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in which case the head field may also point to a (sub)list so giving 

a binary tree structure. Alternatively, the programmer could 

include a NODE in his definition of an ATOM and use the former 

definition of a NODE. 

With any class of structured objects, such as those defined as 

type list, in addition to the selector functions associated with the 

nodes, we also need a constructor function which is used to build 

structures dynamically. For example, consider 

CONS.(NODE, X,Y) 

Here CONS, is a system defined function which deals with the 

dynamic allocation of space for structures. The first parameter is 

the type of the object for which space is required and therefore 

specifies, indirectly, the amount of storage space required. The 

remaining parameters are the values to be stored in the fields of 

the specified object. Their number and type can be checked, at 

compile time, with the selector functions defined for the particular 

structure. The value of the function CONS, is the address of the 

structure set up. As an example of the use of the CONS, function, 

suppose that NODE is defined by 

SHAPE.(NODE) IS (REF.(ATOM) HEAD, REF.(NODE) TAIL) 

then an instruction to insert an additional element X at the front 

of a list, L, of such nodes is 

L CONS.(NODE,X,L). 

The use of the function CONS, implies some mechanism for the 

dynamic allocation of storage. Under certain circumstances this 

space might be allocated on the run-time stack, but it may be 

necessary to allocate space from a separate pool (or heap in Algol 
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68 terms) of free space. We shall return to the organisation of 

free space later. 

So far then, we can define new types of structured objects and 

operations to be performed upon them. For example, if X,Y and Z are 

of type LIST we can define a function 

APPEND(LIST P,LIST Q), 

similar to that in §2.41 , and write Z APPEND(X,Y). We can 

also write Z X meaning 'copy the value of X into Z* (i.e. copy 

the address of a node from X to Z), the result being that Z points 

to the same node as X, If we wish to assign to Z a copy of the 

whole list referred to by X then we could use Z:= COPY.(X), where 

COPY, is a system defined function. Another useful system defined 

function would be WHOLE., used in the following way 

WHOLE.(Z) := X 

which is equivalent to 

HEAD(Z) := HEAD(X), TAIL(Z) := TAIL( X) . 

Note that when the function WHOLE, is used the system does not look 

into the structure or contents of the object referred to by X, it 

simply needs to know the size of the object, which must be the same 

as the size of object to which Z refers, and then copies it 

exactly. Suppose then that X and Z refer to linear linked lists of 

integers 

2. 4- 6 s O > 2. Jl 4- 6 O 

then Z := X gives 
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WHOLE.(Z) := X gives 

and Z COPY,(X) copies every node in the list giving 

Two problems which arise in the scheme described so far are how 

to deal with 

(a) denotations, 

and (b) implicit type conversions. 

It should be possible to assign to a complex number, Z, a pair 

of real numbers, being the real and imaginary parts, by writing 

z := (1.62,2.19) 

but at present we must write 

Z J= CONS. (COMPLEX,1.62,2!9). 

For a simple structure such as that defined as COMPLEX it would be 

easy to recognise (1,62,2.19) as an abbreviation for 

CONS.(COMPLEX!.62,2.19), the type of the structure to be set up 
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being specified by the variable to which the value is to be 

assigned. In the case of structures which are defined recursively 

this is not so straightforward. A common written representation of 

list structures uses commas as atom separators, and brackets to 

denote substructures, for example 

(2,3,(1,7,8),4,(5,2)) 

is a list with two sublists. It should be possible to assign such a 

list denotation to a variable of type LIST but how does the compiler 

interpret the right hand side of the statement 

L := (2,3,(1,7,8),4,(5,2)) ? 

A simple answer, which seems to be the only solution to the problem, 

is to define, for each type of denotation used in the program, a 

function specifying the procedure for converting the denotation to 

the appropriate internal representation, using the CONS, function to 

set up space as required. A function for the list denotation above 

would have as a single parameter the character string 

'(2,3,(1,7,8),4,(5,2))' . 

Such a user defined conversion function would be similar to that for 

reading the value of a list from an input stream of characters. If 

the character string is stored in the constants area in exactly the 

same format as that in which characters appear in the input stream, 

and if any area of store can be regarded as an input stream, then 

the evaluation of a denotation is exactly the same as 'inputting* a 

list from the constants area. For a list of nodes defined by 

| SHAPE.(NODE) IS ((EITHER INTEGER 

| OR REF.(NODE)) HEAD,REF.(NODE) TAIL) 

a suitable function for input of a list is 
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I READLIST IS (REF.(NODE) WS, :: declare a local ref. to NODE 

| OSP., *(', WS: =CONS . (NODE, HDELEMENT, TLELEMENT), *) * , 

I EXIT(WS)) 

I HDELEMENT IS (INTEGER I, :: declare local integer I 

I OSP., EITHER INPUT(I), EXIT(l) 

| OR EXIT(READLIST) ) 

| TLELEMENT IS (OSP,.EITHER •,» ,EX IT (CONS. (NODE, HDELEMENT, TLELEMENT)) 

I OR EXIT(o) ) 

These functions assume that characters are to be input from the 

normal input stream. It would be necessary to specify, by means of 

a parameter, the actual stream to be used. The only alternative to 

a set of user defined functions for dealing with denotations seems 

to be an explicit representation of the denotation, in terms of the 

CONS, function. In the example given above this is obviously much 

too cumbersome, the full representation being 

CONS . (NODE , 2, CONS . (NODE, 3, CONS . (NODE, CONS . (NODE, 1, CONS . (NODE, 7, 

CONS . (NODE ,8,0))), CONS . (NODE , 4, CONS . (NODE, CONS. (NODE, 5, 

CONS.(NODE,2,0)), 0))))) 

There is no need to comment further on the unsuitability of such a 

representation. 

The other problem mentioned above is that of type conversions. 

Conversions are easily accomplished explicitly, for example we can 
g, 

convert a real value X to complex form by means of the statment 

Z := CONS,(COMPLEX,X,0) 

where Z is of type complex, but is it meaningful to write 

Z := X ? 
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Similarly, if both X and Y are real, may we write 

Y IM(X) 

when what is meant is 

Y := IM(CQNS.(COMPLEX,X,0» ? 

In both of these examples it is not difficult to determine 

automatically the conversion implied. Again if X is of type integer 

and L of type LIST then obviously 

L := x 

is an abbreviation for 

L J= CONS. (NODE,X,0). 

With the aid of a conversion table we could specify any implicit 

conversions which are valid, together with the results of such 

conversions, but this is complicated by the fact that we are 

allowing the user to define additional types, in terms of system 

defined types, and should therefore also allow him to extend the 

conversion table. This might be possible through the use of an 

INTERPRET statement used as follows 

| INTERPRET.(TYPE.COMPLEX := TYPE.REAL) 

AS (TYPE.COMPLEX CONS. (COMPLEX,TYPE.REAL,0)) 

It is immediately clear that such a statement would be very 

powerful, allowing the user to define, not only implicit 

conversions, but a wide range of infix operations on objects whose 

type may be defined in the program. It would be possible to extend 

the meaning of existing system defined operators to deal with new 

types, and to introduce new operators. However, this is where we 

draw the line in this work. The implementation of the INTERPRET 

statement presents interesting and challenging problems but is too 
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complicated to fit into the present scheme of things and we propose 

that at this stage, all conversions involving user defined types 

should be explicit. 

We return now, very briefly, to the problem of storage 

allocation in a block structured system in which the user is allowed 

to define structured objects. Under certain circumstances a new 

instance of an object may result in the allocation of space on the 

run-time stack. This space is allocated and reclaimed according to 

the normal rules of block structure systems. What must be avoided 

at all times, is a situation in which the value of a reference is a 

stack address which is either undefined or has been redefined, i.e. 

at no time must we allow references to stack addresses which are 

above the stack pointer. To avoid this we have another pool of 

available storage which we shall call the heap, as in Algol 68. 

Simple rules for the allocation of storage are: 

(1) At a declaration of an object, stack space is allocated and 

initialised to zero. Th© declaration is valid only in the 

block in which it is declared and anything assigned to the 

object is lost on exit from that block, 

(2) Any allocation of anonymous storage through the use of the 

CONS, function is made from the heap. 

(3) We could rule that no stack address may ever be assigned 

either to another stack address or to heap space but that 

when we need to assign a stack address the COPY, function is 

used to raise heap space into which all stack values involved 

in the transfer are copied. Consider first the following 

block of program which uses a mixture of Algol and BCL 

notations. 
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BEGIN. SHAPE.(LIST) IS (REF.(NODE)) 

SHAPE.(NODE) IS (INTEGER HEAD, 

REF.(NODE) TAIL) 

LIST A 

FOR. I :r 1 STEP. 1 UNTIL. 3 DO. 

BEGIN. LIST B 

B := CONS. (NODE, I,A) 

A := B 

END. 

END. 

Any space allocated at a declaration is stack space. The first 

two declarations are SHAPE. declarations which merely give 

information to the compiler. The variable A is then declared as 

type LIST and is allocated an amount of stack space which is 

sufficient for an address. This field is initialised to NIL, which 

is represented by zero. Then stack space is allocated for the 

integer control variable which is initialised to 1 and the FOR, 

block is entered. Inside this block stack space is allocated to B. 

The statement 

B := CONS.(NODE,I,A) 

involves the allocation of heap space for a node, using the CONS, 

function. To the fields of this node we assign the value of the 

integer I and the value of the variable A. Now since A is of type 

LIST it is a reference to a node and all nodes are in heap space so 

the assignment involves a heap address and is in order. Next we 

assign to A the value of B which is again a reference to heap space. 
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On completion of this block the 

raised again on reentry, however, 

space and are still available so 

in this case. 

local stack space is lost and is 

the nodes have been set up in heap 

our rules are working efficiently 

Now consider the following program block. 

BEGIN. SHAPE.(LIST) IS (REF,(NODE)) 

SHAPE.(NODE) IS (REF.(INTEGER) HEAD, 

REF.(NODE) TAIL) 

LIST A 

FOR. I:=l STEP. 1 UNTIL. 3 DO. 

BEGIN. INTEGER J 

LIST B 

j := I 

B := CONS.(NODE,J,A) 

A B 

END. 

END. 

Here again, stack space is allocated to A and I and, inside the FOR. 

block, to J and B. The CONS, function again allocates heap space 

but now the value to be assigned to the HEAD field must be a 

reference to an integer so the value assigned is not the value of 

the integer J but the address of a location containing that integer 

value. We have ruled that under no circumstances should a stack 

address be assigned so a copy of the integer J is stored in heap 
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space and the address of this heap space is assigned to the HEAD 

field of the node. V/ith these rules the result is exactly what is 

required, a list of references to three different integer values 1, 

2 and 3. 

We now ask if there are circumstances under which it would be 

safe to assign a stack address either to another stack location or 

to heap space. First consider the assignment of a stack address to 

a stack address. Clearly, it would be dangerous to make such an 

assignment to a stack address at a lower level since when the stack 

space is reclaimed on exit from a block we shall have a reference to 

undefined stack space. There seems to be no objection to the 

assignment of a stack address to another stack address at the same 

or a higher level on the stack, since in this case the reference 

becomes undefined at the same time as, or before, the value to which 

it refers. It would be safe to assign a stack address to heap 

space, only if all references to that heap space become undefined 

before, or at the same time as, the stack address becomes undefined. 

This the compiler cannot check and the responsibility must be placed 

firmly upon the programmer. Therefore we must not allow the 

programmer to allocate stack addresses either to the heap or to 

stack addresses at a lower level without realising what he is doing 

and it is suggested that such an assignment should be possible only 

through the use of a special system defined assignment function. 

With these rules it appears that the programmer is adequately 

protected and if there are special circumstances, and two way lists 

are a case in point, under which the programmer wishes to get 

round the general assignment rules the special assignment function 

would allow him to do so. 
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In conclusion, we may ask what we have achieved. The proposals 

put forward in this section for the future development of BCL 

provide a system in which data structures are easily defined, 

operations on such structures are available in the form of functions 

and the confusion between structure definitions and group 

declarations removed. Whilst the system still falls short of the 

proposals for Algol 68 it does provide most of the facilities that 

the ordinary programmer is likely to need. Furthermore, what has 

been proposed here is an extension of an existing system and fits 

quite naturally into the general scheme of BCL. 
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In retrospect it might seem that the most important part of 

this thesis has been concerned with LSIX and that BCL has been used 

merely as a tool for its implementation. However, although only one 

section is devoted to the use of BCL itself as a list processor, 

experience in teaching list processing in both LSIX and BCL has 

shown without any doubt that almost all students prefer BCL to LSIX. 

This might be because the particular group of students concerned are 

more interested in applications of computers and have not been 

particularly interested in working close to the machine itself, or 

it might be because the BCL list processor is a high level language, 

having all the facilities of most other high level languages, and at 

the same time it allows the user to include, anywhere in his 

program, assembly language instructions for the particular machine 

concerned, so providing the low-level facilities available in LSIX. 

It is the author's experience that whenever one attempts to write a 

program in LSIX one soon yields to the temptation to use BCL 

instead, leaving the system to deal with the chores associated with 

passing parameters, manipulating stacks for recursion and other 

low-level aspects of programming. 

The original objective in this work was to design and 

implement a flexible, machine independent system for teaching list 

processing. Many list processing systems were in general use but 

none was sufficiently flexible to allow the user to define the shape 

and size of nodes from which list structures could be built. There 

was no general purpose language which included suitable list 

processing facilities and no list processing system with efficient 
arithmetic facilities. L6 was designed by Khowlton to provide a 

flexible, low-level, machine independent system which, it was 
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claimed, was ideal for teaching the fundamentals of list processing. 

L6 has a wide range of tests and operations, including the basic 

fixed point arithmetic operations, but no floating point arithmetic 

is included. The author's implementation of LSIX in BCL is largely 

machine independent. When BCL compilers become more generally 

available on other machines it will be a simple matter to transfer 

to those machines any systems written in BCL. Only eighteen per 

cent of the source statements in the LSIX compiler are machine 

dependent, in the object code these represent an even smaller 

percentage of the compiler, and only this part needs to be rewritten 

for the new machine. The Atlas BCL compiler is now written in BCL 

itself and likewise the task of providing BCL compilers for other 

machines is simpler than it might otherwise be. 

The LSIX compiler described in PART II of this thesis is 

written in one of the first versions of BCL. Its efficiency would 

be greatly improved if it were updated to take advantage of recent 

developments in BCL. As the LSIX compiler is interpretive, a number 

of modifications can be carried out by rewriting some of the 

subroutines, and improvements such as the generalisation of storage 

organisation routines are the subjects of a number of projects 

currently being carried out by M.Sc. students. Such projects 

enable students to get to the heart of a list processing system and 

to understand the fundamental operations which underlie its 

implementation. 

It has been claimed that LSIX is a convenient medium for the 

implementation of other programming languages but here again BCL has 

proved to be far superior. The implementation of LSIX in BCL was 
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the first use of BCL as a compiler-compiler. Soon afterwards BCL 

was written in itself and it is now being used to implement a wide 

range of languages including FORTRAN and Algol, The list processing 

facilities which have been added to BCL by the author have further 

increased its suitability for use in the teaching of elementary 

compilation techniques. After a short basic course in list 

processing in BCL, students have written programs ranging from the 

sorting and merging of simple linked lists to the simplification of 

algebraic formulae. In section 2.4.2 we gave an illustration of a 

program to input expressions and store them in the form of binary 

trees. Students have written similar programs to input and 

manipulate expressions and also to generate optimised machine code 

for the evaluation of expressions. BCL has been used in a file 

processing course to describe various internal structures associated 

with files which can be represented by directed graphs. Other 

applications include the definition, and some aspects of the 

implementation, of SOL, a simulation language, this also is the 

subject of an M.Sc. project. 

To summarise, the main advantages of BCL as a language are: 

(1) Students with no previous knowledge of computers and 

programming have found the language easy to learn. 

(2) Programs written in BCL may consist of instructions to 

be obeyed in sequence in the conventional way, using 

labels and GO TO commands for the transfer of control, 

but they may also be written using a functional 

notation as in LISP. The functions used are easily 

defined by the user. 
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(3) The ease with which recursion may be used leads to 

ready acceptance of recursive programming techniques. 

(4) BCL will eventually include arithmetical facilities 

at least as powerful as those of FORTRAN IV - an 

advantage which most list processors do not have. 

(5) BCL is a high level language and programs written in it 

may be machine independent. Alternatively, if the user 

so wishes, he may get close to the machine by writing 

assembly language instructions for the machine concerned 

anywhere in his program. 

(6) The emphasis on the input and output of structured data 

make BCL ideally suitable as a compiler-compiler. 

(7) The language is equally suitable for systems analysis, 

commercial data processing and for writing mathematical 

programs. 

The particular advantages of BCL as a list processor are: 

(1) List processing facilities are available through the 

definition of simple groups of commands, and linked 

memory techniques can therefore be used as basic 

programming tools in any program. 

(2) The list processing groups of commands are defined by 

the programmer himself, so allowing him to set up and 

manipulate list structures of any complexity using 

nodes of any desired size. The shape and size of a 

node are defined by the program. Several different 

sizes of node partitioned into fields in several 

different ways may be used in the same program. 



EPILOGUE PAGE 1364 

The work described in this thesis constitutes the first round 

in an iterative process to investigate the effectiveness of systems 

for teaching list processing techniques. In the present year, 

students at the University of London Institute of Computer Science, 

and at Birkbeck College, both graduates and undergraduates, have 

been introduced to the BCL list processor and the results have 

exceeded all expectations. Whilst further modifications and 

extensions, including those proposed in Part III, may be carried out 

in the light of experience, and as the process converges, the author 

is already confident that in BCL we have a system whose power and 

flexibility are second to none. 
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Output from a complete LSIX program 

A complete list of tests and operations in LSIX has been 

published in Tables 1 and 2 of the author's paper entitled 

'The definition and implementation of LSIX in BCL* 

which forms Appendix 7 o f this report. 

The use of a few of these tests and operations is illustrated 

by a program to read a sequence of numbers, each of which is 

terminated by a single space, sort them into ascending order and 

output them. This program is written as three main subroutines, 

INPUT, ORDER and OUTPUT which are described in some detail in the 

paper referred to above. 

In this Appendix we give actual output from the Atlas computer 

for the same program. Both source and object listings are requested 

to illustrate the object code generated for each source instruction 

and a number of diagnostic outputs are included, using the 'Print 

List* operation and the system subroutine * STATE*, to show the 

state of the system at various stages during the execution of the 

program. 
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LSIX program 

•LSIX, SOURCE, LIST 

< 25 ,PRH, PROGRAM TO SORT NUMBERS) 

(•20000000, SS, 4 , •2OOOO4OOK3, D D , 0 , 3 3 X 1 , D A , 0 , 2 3 H 2 , D B , 0 , ^ J 

(DO,STATE) 

(DO, INPUT) (DO, STATE) (DO,ORDER) (DO,OUTPUT) (DO,DUMP) END 

INPUT (W,GT,4)(WB,E,327b»)(S,FC,X>(X,GT,lKS,FD,lKO,Dl,0,5> 

(DO,STATEJ 

NEXT (W,GT,4,WA)(WAD,P,WKWB,E,0J 

RD (XI, IN, 1 Ml, PR, XI) 
NOT (XI,EH, ) THEN (WB,L,b,Xl) RD 

IF (WB,E,0) THEN (R,FD,1HX,FR,0HR,FC,XJ(W,PL,A,10) DONE 

(WB,DB,WB) NEXT 

ORDER (S,FC,X)(X,P,WA) 

ND IF (XA,E,0) THEN (R,FC,X) DONE 

BACK IF (XB,L,XDB) THEN (XB, IC,XDB)(X,D) BACK 

(X,A> ND 

OUTPUT (W,FR,WA>(S,FC,X)(1,PR,77) 

(W, PL, A, 10) 

ANYMORE IF (WA,E,0) THEN (W,FR,0)(R,FC,X> DONE 

(X,BD,WBKX,ZB,XKb,PR,X)(W,FR,WA) ANYMORE 

•ENTER 
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LSIX LISTING OF OBJECT CODE 

*OOHOOOO LINE 2 

00001007 o o l i o o b o 00000000 00000020 00000300 00000030 

00102404 00000000 00102410 00000000 00102550 00000000 

•00110060 LINE 3 

00004007 00110330 00000000 00000030 00000450 00000030 

00102554 00000000 00102560 00000000 00102564 00000000 

00000440 00000030 00102570 00000000 00100320 00000000 

00102574 00000000 00102600 00000000 00000440 00000030 

00102410 00000000 00100240 00000000 00102574 00000000 

00102600 00000000 00000440 00000030 00102604 00000000 

00100260 00000000 00102574 00000000 00102600 00000000 

•OOIIO33O LINE 4 

00001007 00110360 00000000 00000040 00000510 00000000 

•00110360 LINE 5 

00005047 00110500 00000000 00000050 00000430 00000010 

00110500 00000000 00000510 00000000 00000430 00000010 

0 0 1 1 1 6 7 4 00000000 00000430 00000010 00112324 00000000 

00000520 00000000 

•00110500 LINE 6 

00006007 0 0 1 1 0 7 4 4 00000000 00000060 00000460 00000020 

00101230 00000000 00102560 00000000 00000130 00000020 

00101230 00100260 00000000 00102610 00000000 00000410 

00000010 00101234 00000000 00000460 00000020 00101234 

00000000 00102410 00000000 00000420 00000010 00100020 

00000000 00000440 00000030 00102574 00000000 00100020 

00000000 00102574 00000000 00102614 00000000 

• 0 0 1 1 0 7 4 4 LINE 7 

00001007 0 0 1 1 0 7 7 4 00000000 00000070 00000510 00000000 
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• 0 0 1 1 0 7 7 4 LINE 8 

00003007 O O I I I I 5 4 

00101230 00000000 

00000000 00000140 

00000000 00101230 

00100260 00000000 

•00111154 LINE 9 

00002007 OOIII264 

0 0 1 0 1 2 3 4 00100020 

00000020 00102410 

• O O I I I 2 6 4 LINE 10 

40101017 OOIH4IO 

00100020 00000000 

00101230 00100260 

00100020 00000000 

• 0 0 1 1 1 4 1 0 LINE 11 

30104027 0 0 l l l 6 l 0 

00100260 00000000 

00100020 00000000 

00102574 00000000 

00000400 00000030 

00102624 00000000 

•00111610 LINE 12 

00001017' O O I I I 6 7 4 

00101230 00100260 

00110774 

• O O I I I 6 7 4 LINE I3 

00002007 00111770 

00101234 00000000 

00000000 00000100 

00102560 00000000 

00000020 00101230 

00000000 00000130 

00102574 00000000 

00000000 00000110 

00000000 00102410 

00000000 0 0 I 0 1 2 3 4 

O O I I I 3 3 4 00000120 

00102410 00000000 

00000000 00102620 

0 0 1 1 1 1 5 4 

0 0 1 1 1 4 6 0 00000130 

00102574 00000000 

00000320 00000020 

00000530 00000010 

00101230 00000000 

00000000 00000140 

00000000 00101230 

00000000 00000150 

00000140 00000020 

00000460 00000030 

00101230 00100240 

00100240 00100320 

00000020 00101230 

00000330 00000020 

00000000 00000360 

00100020 00000000 

00000010 0 0 1 0 1 2 3 4 

00000340 00000030 

00000000 00101234 

oooooolo 00101230 

00000540 00000010 

00101234 00000000 

00101234 00000000 

00100240 00000000 

00000270 00000020 

00100260 00000000 

00000410 o o o o o o l o 

00101234 00000000 
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00101230 OOIOO24O 

•00111770 LINE I4 

30101027 00112060 

00100240 00000000 

00101234 00000000 

•00112060 LINE 15 

30102017 00112244 

00100260 00000000 

00000010 00000020 

OOIOO32O 00100260 

00000000 00101234 

• 0 0 1 1 2 2 4 4 LINE 1 6 

00001017 0 0 1 1 2 3 2 4 

0 0 1 0 1 2 3 4 00000000 

•00112324 LINE 17 

OOOO3OO7 00112450 

00101230 00000000 

00000010 00101234 

00000000 00102630 

•00112450 LINE 1 8 

00001007 00112530 

00101230 00000000 

•00112530 LINE 19 

30102027 00112650 

00100240 00000000 

00101230 00000000 

00101234 00000000 

•00112650 LINE 20 

OOOO4OI7 0 0 I I 3 0 4 4 

00000000 

00II2040 00000160 

00102574 00000000 

0 0 1 1 2 1 4 0 00000170 

00101234 00100320 

00101234 00100260 

00000000 00000140 

00100320 00000000 

00000000 00000200 

00101234 00100240 

00000000 00000210 

00101230 00100240 

00000000 00000360 

00000000 

00000000 00000220 

00100240 00000000 

00112600 00000230 

00102574 00000000 

00102574 00000000 

00000000 00000240 

00000010 0 0 1 0 1 2 3 4 

00000530 00000010 

00000040 0 0 1 0 1 2 3 4 

00100260 00000000 

00000000 00101234 

00000020 OOIOI234 

00112060 

00000140 00000020 

00000000 0 0 1 1 1 7 7 0 

00000320 00000020 

00000000 00000410 

00000020 00102410 

00000400 00000030 

00102624 00000000 

00000010 00101230 

00000320 00000020 

00000530 00000010 

00000250 00000020 
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00101234 00000000 00101230 00100260 00000000 00000240 

00000020 00101234 00000000 0 0 1 0 1 2 3 4 00000000 00000360 

00000020 00102620 00000000 0 0 1 0 1 2 3 4 00000000 00000320 

00000020 00101230 00000000 00101230 00100240 00000000 

00112530 00000040 00000000 00000000 40000000 

LSIX PROGRAM ENTERED 

PROGRAM TO SORT NUMBERS 

SYSTEM SUBROUTINE STATE ENTERED FROM LINE 4 

FIELD DEFINITIONS 

NAME WORD LBIT RBIT MASK 

A 1 0 23 77777777 
B 2 0 23 77777777 
D 3 0 23 77777777 

STATE OF FREE SPACE LISTS 

POTENTIAL 
NUMBER 

64 
32 
16 
0 
O 
o 
o 
o 

SUBROUTINE PUSH DOWN LIST EMPTY 

LEVEL OF FIELD CONTENTS PUSH DOWN STORE IS 0 

LEVEL OF FIELD DEFINITION PUSH DCWN STORE IS 0 

OUTPUT OF STATE OF SYSTEM COMPLETED 

BLOCK 
SIZE 

1 
2 
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SYSTEM SUBROUTINE STATE ENTERED FROM LINE 7 

FIELD DEFINITIONS 

NAME WORD LB IT RBIT MASK 

1 0 0 5 77000000 
A 1 0 23 77777777 
B 2 0 23 77777777 
D 3 0 23 77777777 

BUG W CONTAINS 20000000 (OCTAL) 

AND POINTS TO THE FOLLOWING BLOCK 

00000002 00000000 00100000 00000000 

BUG X CONTAINS 20000020 (OCTAL) 

AND POINTS TO THE FOLLOWING BLOCK 

00000000 

STATE OF FREE SPACE LISTS 

BLOCK POTENTIAL 
SIZE NUMBER 

1 59 
2 29 
A I4 
8 0 

16 0 
32 o 
64 o 

128 0 

SUBROUTINE PUSH DOWN LIST 

LEVEL 1 CALLED FROM LINE 5 OPERATION 5 FROM EOL 

LEVEL OF FIELD CONTENTS PUSH DOWN STORE IS 1 

LEVEL OF FIELD DEFINITION PUSH DOWN STORE IS 1 

OUTPUT OF STATE OF SYSTEM COMPLETED 

21 8123 9 94 415 416 ( Data trace). 
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OCTAL PRINT OF LIST 

FIRST BLOCK 
00000002 20000160 
NEXT BLOCK 
00000002 2OOOOI4O 
NEXT BLOCK 
00000002 20000120 
NEXT BLOCK 
00000002 20000100 
NEXT BLOCK 
00000002 20000060 
NEXT BLOCK 
00000002 2OOOOO4O 
NEXT BLOCK 
00000002 20000000 
NEXT BLOCK 
00000002 00000000 
END OF LIST PRINT 

00000000 00000000 

00000640 20000200 

00000637 20000160 

00000136 20000140 

00000011 20000120 

00017673 20000100 

00000025 20000060 

00100000 20000040 

SYSTEM SUBROUTINE STATE ENTERED FROM LINE 5 

FIELD DEFINITIONS 

NAME WORD LBIT RBIT MASK 

A 1 0 23 77777777 
B 2 0 23 77777777 
D 3 0 23 77777777 

BUG W CONTAINS 20000200 (OCTAL) 

AND POINTS TO THE FOLLOWING BLOCK 

00000002 20000160 00000000 00000000 

STATE OF FREE SPACE LISTS 

BLOCK POTENTIAL 
SIZE NUMBER 

1 32 
2 15 ! I 

1 6 o 
3 2 0 
64 0 

0 1 2 $ 

SUBROUTINE PUSH DCWN LIST EMPTY 

LEVEL OF FIELD CONTENTS PUSH DOWN STORE IS O 

LEVEL OF FIELD DEFINITION PUSH DOWN STORE IS 0 

PAGE 175 

OUTPUT OF STATE OF SYSTEM COMPLETED 
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OCTAL PRINT OF LIST 

FIRST BLOCK 
00000002 20000140 00000011 20000200 
NEXT BLOCK 
00000002 20000120 00000025 20000160 
NEXT BLOCK 
00000002 20000100 OOOOOI36 2OOOOI4O 
NEXT BLOCK 
00000002 20000060 OOOOO637 20000120 
NEXT BLOCK 
00000002 2OOOOO4O 00000640 20000100 
NEXT BLOCK 
00000002 20000000 00017673 20000060 
NEXT BLOCK 
00000002 00000000 00100000 20000040 
END OF LIST PRINT 

9 21 94 415 416 8123 

SYSTEM SUBROUTINE DUMP ENTERED 

SYSTEM SUBROUTINE STATE ENTERED FROM LINE 

FIELD DEFINITIONS 

NAME WORD LBIT RBIT MASK 

A 1 0 23 77777777 
B 2 0 23 77777777 
D 3 0 23 77777777 

STATE OF FREE SPACE LISTS 

BLOCK 
SIZE 

1 
2 

16 
§ 

128 

POTENTIAL 
NUMBER 

64 
31 
15 
0 
0 
0 
0 
0 

SUBROUTINE PUSH DOWN LIST EMPTY 

LEVEL OF FIELD CONTENTS PUSH DOWN STORE IS 0 

LEVEL OF FIELD DEFINITION PUSH DOWN STORE IS 0 

PAGE 175 

(Results) 

OUTPUT OF STATE OF SYSTEM COMPLETED 



APPENDIX 1 PAGE 175 

OCTAL OUTPUT OF LINKED STORAGE AREA 

20000040 00000000 00100000 20000040 20000024 00000000 

00000000 00000000 20000060 20000000 00017673 20000060 

20000100 20000040 00000640 20000100 20000120 20000060 

00000637 20000120 20000140 20000100 00000136 20000140 

20000160 20000120 00000025 20000160 20000200 20000140 

00000011 20000200 20000220 20000160 00000000 00000000 

20000240 00000000 40000000 00000000 20000260 00000000 

40000000 00000000 20000300 00000000 40000000 00000000 

20000320 00000000 40000000 00000000 20000340 00000000 

40000000 00000000 20000360 00000000 40000000 00000000 

00000000 00000000 40000000 00000000 

DUMP COMPLETED 

END OF JOB 



APPENDIX 2 

The Syntax of LSIX defined in BCL 
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A definition of the syntax of LSIX. 

:: Main program structure 

LSIX IS (LSIXSTATS) 

LSIXSTATS IS ((EITHER INSTR 

OR DIRECTIVE 

OR 0/P(NL.,'LSIX STATEMENT NOT RECOGNISED*,NL. 

GARBAGE), LSIXSTATS) 

GARBAGE IS (EITHER EOL 

OR CHSET=CHSET1, NEXTCH, GARBAGE ) 

DIRECTIVE IS (OSP.,EITHER *•ENTER*, STOP 

OR **LSIX*, OSP., OPTIONS) 

OPTIONS IS ((EITHER 'SOURCE* 

OR •LIST* 

OR NIL.), (EITHER SEP,OPTIONS 

OR EOL) ) 

SEP IS (OSP.,*,*,OSP.) 

INSTR IS (OSP. ,EITHER CCJNDNL 

OR UNCONDNL 

OR LABEL, (EITHER CCJNDNL 

OR UNCONDNL 

OR EOL) ) 

:: Types of instruction 

CONDNL IS (CONDTION,TESTS, (EITHER 'THEN*, OPERATNS OR NIL.), 

TRANSFER,EOL) 

UNCONDNL IS ((EITHER 'THEN* OR NIL.), OPERATNS, 

(EITHER TRANSFER OR NIL.), EOL) 
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:: Types of condition 

CONDITION IS (EITHER 'IFANY*, 

OR * IFNALL * , 

OR *IFALL*, 

OR 'IFNONE', 

OR 'IF', 

OR 'NONE',) 

:: Analysis of Tests. 

TESTS IS (OSP., TEST, EITHER TESTS OR OSP.) 

TEST IS ('(', FIELD,SEP, 

(EITHER(EITHER 'K* OR *N* OR 'G* OR 'L'), 

(EITHER »0',J2=2 OR »H',J:=3 OR J:=o) 

OR (EITHER 'O' OR 'Z'), 

(EITHER 'D»,J:=1 OR »H',J:=3 OR Jjrrq) 

OR »P», Jj=0), 

OSP.,',', 

(EITHER IF J=0, (EITHER FIELD 

OR DLITERAL) 

OR IF J=l, DLITERAL 

OR IF J=2, OLITERAL 

OR IF J=3, HLITERAL 

OR IF J=4, (EITHER FIELD 

OR OLITERAL)),')') 

j; Analysis of operations. 

OPERATNS IS (OSP.,OPERATN, EITHER OPERATNS OR OSP.) 
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OPERATN IS ('(', OSP., EITHER 'DO*, SEP, (EITHER 'STATE' 

OR 'DUMP' 

OR SYMBOL),OSP.,')' 

OR FIELD, SEP, FLDNAMES, OSP., ')' 

OR ARG, SEP, OPCODE, REJECT 

OR IF K LE 27, FIELD, SEP, ARG, SEP, 

(EITHER IF J=0, FIELD 

OR IF J=l, DLITERAL 

OR IF J=2, OLITERAL 

OR IF J=3, HLITERAL), »)• 

OR IF K GE 2 8 , IF K LE 29, 

FIELD, SEP, ARG, SEP, 

(EITHER FIELD OR DLITERAL), 

(EITHER OSP., ',', 

(EITHER IF J=l, DLITERAL 

OR IF J=3, HLITERAL 

OR IF J=4,(EITHER FIELD) 

OR OLITERAL)) 

OR NIL.), «)' 

OR IF K GE 3 0 , IF K LE 3 I , 

(EITHER FIELD OR DLITERAL), SEP, ARG, 

OSP., ',* (EITHER IF J=3, HLITERAL 

OR FIELD 

OR OLITERAL), *)* 

OR IF K=32, FIELD, SEP, *PL», SEP, 

FLDNAME, (EITHER SEP, FIELD 

OR SEP, DLITERAL 

OR OSP.), ')' 
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OR IF KT33, (EITHER 'S' OR 'R'), SEP, 'FC', SEP, FIELD, ')' 
OR IF K=34, (EITHER 'S' OR 'R»), SEP, 'FD', SEP, 

FLDNAME, OSP., »)' 
OR IF K=35, SYMBOL,SEP, 'DO', SEP, SYMBOL, OSP,, ')' 
OR (EITHER FIELD OR DLITERAL), SEP, 

'D', FLDNAME, SEP, (EITHER FIELD OR DLITERAL), 
SEP, (EITHER FIELD OR DLITERAL), ')' 

OR IF K=37, '*', OLITERAL, SEP, 'SS', SEP, DLITERAL, 
SEP, •*', OLITERAL, •)• 

OR IF K=38, FIELD, SEP, 'GT', SEP, 
(EITHER FIELD OR DLITERAL), 
(EITHER SEP, FIELD OR NIL.), ')' ) 

OPCODE IS (EITHER(EITHER *E 
OR 'A 
OR 'S 
OR *M 
OR 'V 
(EITHER 'O 

OR (EITHER 'O 
OR 'N 
OR 'X 

OR 'C 
(EITHER 'D 

OR (EITHER 'DP 
OR 'IC 
OR 'P' 
OR 'LO 

OR 'RD 

K=1 

KZ2 

K=3 

K=4 

K=5>, 

J=2 OR 'II', J=3 OR J=0) 
k=6 

K=7 

K=8 
K=9), 

J=1 OR 'H', J=3 OR J=4> 
, K=10 
, K=LL 
K=12 

, K=13 

, K=14 
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OR 
OR 
OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

OR 

»LZ 

'RZ 

•OS 
FZS 

•BZ 

•ZB 

»BD 

«BO 

'DB 

•OB 

•FR', K=26 
1 IN', K=27 

(EITHER 'L* 

(EITHER *D* 

(EITHER »PR 

(EITHER FHF 

K=15 

K=I6 

K=17 

K=I8 

Krl9 

K=20 

KS21 

K=22 

K=23 

K=24>, J=5 

J=0 

J=0 

K=2<8 OR * R*, K=29), 

J=1 OR *H*, J=3 OR J=4> 

,K=30 OR ,PU,J K=3L), 

J=3 OR J =4) 

OR •PL», K=32 
OR •FC* , K=33 
OR •fd*, K=34 
OR *DO* T K=35 
OR •D«, FLDNAME, K=36 

OR •ss*, K=37 

OR •GT», K=38 ) 

REJECT IS (IF 1=0) 
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J: Types of field 

FIELD IS (OSP.,(EITHER ,T.1 

OR BUG, (EITHER FLDNAMES OR NIL.) 

OR POTNUMBER), OSP.) 

POTNUMBER IS (EITHER ,l.t OR ,2.» OR *4.• OR '8.* OR ,l6.1 

OR '32.* OR '64.1 OR »12.8.*) 

BUG IS (LETTER) 

FLDNAMES IS (FLDNAME, (EITHER FLDNAMES OR NIL.)) 

FLDNAME IS (EITHER LETTER OR DIGIT) 

LETTER IS (EITHER 'A* OR ,B* OR 'C* OR 

OR 'X* OR fY* OR 'Z') 

ODIGIT IS (EITHER 'O1 OR ,lt OR ,2* OR •3* OR •4' 

OR ,5» OR '6* OR '71) 

DIGIT IS (EITHER ODIGIT OR '8' OR '91) 

DLITERAL IS (OSP., DIGIT, EITHER DLITERAL OR OSP. ) 

OLITERAL IS (OSP., COUNT = 8, ODIGITS, OSP.) 

ODIGITS IS (ODIGIT, COUNT=COUNT-l, (EITHER IF COUNT GT 0, ODIGITS 

OR NIL.) ) 

HLITERAL IS (C0UNT=4, HCHARS) 

HCHARS IS (EITHER COUNT = -1, REJECT 

OR •)',COUNT = -1, REJECT 

OR IF COUNT GT O, 

CHSET = CHSET1, NEXTCH,COUNT = COUNT - 1, 

(EITHER IF COUNT GT O, HCHARS OR NIL.) ) 

LABEL IS (LBL, JUNK, SP., OSP.) 

JUNK IS (EITHER JNK, JUNK OR NIL.) 

TRANSFER IS (OSP., LBL, JUNK) 

SYMBOL IS (LBL, JUNK) 

EOL IS (OSP., NL., EITHER EOL OR NIL.) 
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BCL routines corresponding to LSIX operations. 
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t: Alternate octal digits in 
J: WR1 and OCT. 

Basic routines called from the main interpreter routine 

DEFINE R OCTPRINT 

: OCTPRINT outputs in octal the contents of the variable OCT, 
: WR1 is a working variable. The contents of OCT are 
: destroyed. 

DO 

COUNT := 3 

165 ,WR1,OCT,^70707070 

127,OCT,0,^07070707 

I63,Y/RI,O,O 

I63,WRI,O,O 

163 ,WRl,0,0 

REPEAT) 125,WR1,0,0 

125,OCT,0,0 

io64,o,WRI,2 

1064,0,OCT, 2 

COUNT COUNT - 1 

IF COUNT GE 0 GO TO REPEAT 

RETURN 

END 

DEFINE R STACKPRINT 

5! Outputs in octal the contents of all locations from START 
:: to FINISH. The value of START is destroyed. 

DO 

:: Fetch contents of next location. 

:: Right justify contents of WR1. 

:j Circular shift Y/R1,0CT 6 bits left. 

:: Output least significant 6 bits. 

:: Output least significant 6 bits. 

:: If not finished, go back. 

5: Output 2 spaces followed 
:: by octal number. 
j: Advance START by one (half)word. 

AGAIN) OCT I" CQ0F(START) 

0/P(SP.(2),OCTPRINT) 

START := START + ONE 

IF START LT FINISH GO TO AGAIN :S Repeat if not finished. 

RETURN 

END 
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DEFINE R STATEPRINT 

:: This routine is used for diagnostic purposes. It outputs all 
:: field definitions, the contents of non zero bugs, the blocks to 
:: which bugs point, and the state of the system pushdown stores. 
:: A typical output from STATEPRINT is given in Appendix 1. 

DO 

0/P(NL.(2),*SYSTEM SUBROUTINE STATE ENTERED*, 

'FROM LINE *, LINE,NL.) :: Output message with line number. 

0/P(NL. (2) , 'FIELD DEFINITIONS' ,NL, , 

'NAME WORD LB IT RBIT MASK»,NL.) 

:: Column headings. 

STATE2)FNAME : = COOF(POINTER) :: Get next field name. 

IF MA.SK(CURRENT) ~0 GO TO STATE1 

:: If field not defined, skip. 

WR1 2 = WORD(CURRENT) :: Get word number. 

124,WR1,WR1,0 :: Convert to 2i-bit integer. 

WR2 2 = LBIT(CURRENT) :: Get left-most bit number. 

WR3 RBIT(CURRENT) 2 2 Get right-most bit number, 

OCT 2= MASK(CURRENT) 5 2 Get mask. 

:j The following command outputs the field name in character form, 
2 2 WRl, V/R2 and WR3 as integers and the mask in octal. 

0/P(FNAME,SP.(3) ,WR1,SP.(5),WR2,SP.(5),WR3,SP.(5),OCTPRINT,NL.) 

STATE1) POINTER POINTER+ONE :: Advance pointer to 
2: next field name. 

CURRENT 2= CURRENT + 2 2 2 Point to next field 
2: definition. 

IF FNAME NE 'Z' GO TO STATE2 
2 2 If not finished, go back. 

•; End of output of field definitions. Continue with bugs. 

POINTER 2— FNAMEBASE Point to name of first field 

CURRENT :r FLDBASE 2 2 Point to first field definition 
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POINTER := BNAMEBASE :: Point to first bug name. 

CURRENT BUGBASE :: Point to first bug i.e.'A'. 

S T A T E 4 ) FNAME 5= COOF(POINTER) :: Get bug name. 

IF COOF(CURRENT) = 0 GO TO STATE3 
:: If bug is zero, skip print. 

OCT := COOF(CURRENT) !2 Got bug contents in OCT. 

WR2 I" OCT 

0/P(NL,,'BUG ',FNAME,SP.(2),'CONTAINS ') 

IF OCT LT STARTLIST GO TO STATE3A SJ If not pointer. 

IF OCT GE ENDLIST GO TO STATE3A :: If not pointer. 

I: The following instructions output the bug contents in octal 
:: followed by the contents of the block to which the bug points. 

0/P(0CTPRINT,' (OCTAL) AND POINTS TO THE FOLLOWING BLOCK',NL.) 

OPl:= Y/R2 :: Transfer bug contents to OP1. 

PRINTBLOCK :: Routine to print block to 
:j which OP1 points. 

GO TO STATE3 

:: The following instructions output the bug contents as an integer. 

STATE3A) 124,WR2,WR2,0 :: Convert to 2l-bit integer. 

l24,WR2,Vm2,0 

l24,WR2,Vm2,0 

0/PCV/R2,' (DECIMAL) ' ,NL.):: Output integer. 

S T A T E 3 ) CURRENT CURRENT+ONE tJ Advance pointers. 

POINTER POINTER+ONE 

IF FNAME NE 'Z» GO TO STATE4 

j: If bugs not finished. 
:: Tho following instructions output the state of the free space 
:: list giving block size and potential number of blocks. 

s ize := l 

CURRENT := FREEHDR :: Point to 1 - blocks. 
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0/P(NL.,»STATE OF FREE SPACE LISTS', 

NL. ,* BLOCK POTENTIAL', 

NL.,'SIZE NUMBER',NL.) 

STATE5) WRl J= PLUS3(CURRENT) 

0/P(NL.,SP.(2),SIZE,SP.(6),WR1) 

CURRENT := CURRENT + 2 

SIZE S= SIZE + SIZE 

IF SIZE LE MAXSIZE GO TO STATE5 

: Get potential number. 

J Output size and number. 

: Point to next sublist, 

: Double SIZE. 

: If not finished. 

S: The following instructions output the state of the system 
:• pushdown stores. 

0/P(NL.(2), 'SUBROUTINE PUSH DOWN LIST') 

:: Get subroutine level, 

:: If stack not empty. 

WRl := SUBL 
IF SUBL GT 0 GO TO STATE6 
0/P('EMPTY') 
GO TO STATE7 

STATE6) POINTER := SUBP - 3 

STATES) WR2 1= PLUS5(POINTER) 

WR3 PLUS3(POINTER) 

0/P(NL., 'LEVEL ', WRl,'CALLED FROM LINE', 

WR2,' OPERATION ' ^ 3 , ' FROM EOL') 

POINTER POINTER - 3 :: Point to next record. 

WRl WRl - 1 

IF WRl GT O GO TO STATE8 

:: Point to top record 
:: on stack. 

:: Get line number of call. 

:: Get position in line of call. 

:: Decrease working level 
:: number. 
:: If not finished, go back. 

STATE7) 0/P(NL.(2),'LEVEL OF FIELD CONTENTS STACK IS*,FCL) 
j: Output level of field 
:: contents stack. 

0/P(NL.(2),'LEVEL OF FIELD DEFINITION STACK IS*,FDL) 
:: Output level of field 
:: definition stack. 

Q/P(NL.(2),'OUTPUT OF STATE OF SYSTEM COMPLETED',NL.(2)) 

RETURN 

END 
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DEFINE R PRINTBLDCK 

:: This routine gives an octal output of the block to which 0P1 points. 

DO 

OCT := COOF(OPl) 

127,OCT,0,0.7 

SIZE := 1 

PL2) IF OCT=0 GO TO PL3 

122,OCT,0,0.1 

SIZE SIZE + SIZE 

GO TO PL2 

PL3) OCT := COOF(OPl) 

0/P(SP.(2),OCTPRINT) 

SIZE SIZE - 1 

IF SIZE = O GO TO END 

DPI OP1 + ONE 

GO TO PL3 

END) RETURN 

END 

DEFINE R STOREINI 

:: This routine stores the contents of the variable OCT in the 
:: field specified by DPI and FP1. Routines STOREIN2 and STOREIN3 
:: are defined similarly for fields specified bj/ BP2,FP2 and 
:: B?3,FP3 respectively. 

DO 

VfREGl J= BP1 

V/R3G2 5= FP1 

STOREFIELD :: Call routine to store field. 

RETURN 

END 

:: Get first word of block, 
:: (contains log(size)). 
:: Get log(size). 

:: Go to print when size found. 

:: Subtract o.l from log(size). 

:: Double size. 

:: Get next word. 

:: Octal output. 

:: If end of block. 

:: Point to next word. 

:: End of PRINTBLOCK. 



APPENDIX 1 PAGE 175 

BCL instructions corresponding to the LSIX operations 

The following sets of instructions are entered via the multi-

way switch labelled OPSPLIT1 in the interpreter routine. Each set 

of instructions is terminated with a GO TO OPRTN. The operations 

for setting up, allocating, freeing and copying data blocks are not 

described in this section but various methods of storage organisation 

are discussed in detail in section 2 .3 . 

Definition of fields 

The field definition operation is 

(cdl,Df,cd2,cd3). 

cdl specifies the word number of the field, cd2 and cd3 the left 

most and rightmost bits within this word. D is the operation code 

representedby K = 36 and f is the name of the field to be defined. 

This is the only operation involving 4 operands - three integers 

and a field name. At the time of entry to the equivalent BCL 

instructions, only three operands have been fetched, cdl is in 

•PI, the address of the field definition f is in BP2 and cd2 is 

in 0P3. The first instructions FIND and GET cd3« 

D) FINDFIELD 

GETFIELD 

124,0P1,GP1,0 

124,0P1,QP1,0 

124,0P3,0P3,0 

124,0P3,0P3,0 

124,0P3,0P3,0 

l24,VvREGl ,Y/REG1,0 

124,WREG1,WREG1,G 

124,WREG1 ,WREG1,0 

: Locate fourth operand. 

: Get fourth operand < in WREG1), 

: Convert cdl to 22-bit integer, 

: 1 LSIX word £ half Atlas word. 

: Convert cd2 to 2l-bit integer. 

:: Convert cd3 to 2l-bit integer. 
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IF 0P1 GT 64 GO TO NULL :: Max I28(half)words in any block. 

IF OP1 LT O GO TO NULL :: Validate definition. 

IF OP3 LT O GO TO NULL 

IF WREG1 GT 23 GO TO NULL 

IF OP3 GT Y/REGl GO TO NULL 

V/ORD(BP2) 2= OP1 22 Store word number 

LBIT(BP2) 2= OP3 :: Store left bit number. 

RBIT(BP2) 2= Y/REG1 2 2 Store right bit number. 

2: The following instructions create a mask for the field. 

121,WR1,0,*4 

COUNT 2= V/REGI-QP3 

DMORE) IF COUNT = O GO TO DEND 2: If sufficient 1-bits. 

2 2 Load working register with a 
2: left-justified 1-bit. 
2: Initialise count. 

l63,WRl,0,0 

167,WR1,0,*4 

COUNT 2 = COUNT-1 

GO TO DMORE 

DEND) I342 ,Y/R1, OP3 ,0 

IF OP1 NE O GO TO D1 

127 ,Y/Rl,0, ̂ 77777770 

Dl) MASK(BP2) := Y/Rl 

GO TO OPRTN 

NULL) Y/ORD(BP2) 2= 0 

LBIT(BP2) 2 = 0 

RBIT(BP2) 2= O 

IL\SK(BP2) := 0 

0/P(NL., INCORRECT FIELD DEFINITION IN LINE' , LINE, NL. ) 

GO TO OPRTN 

2 2 Right shift 1 bit. 

2 2 Add 1 bit at left hand end. 

2 2 Count. 

2 2 Right shift mask into position. 

2 2 If not word number O. 

2 2 Protect 3 least significant bits 
2 2 reserved for compiler. 
2: Store mask. 

2 2 Invalid defn, nullified. 
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:: The following instructions cop}*- and interchange fields, 

EQ) OCT 2= 0P2 2 X Get second operand, 

STOREINI 2 2 Store in field specified by first, 

GO TO OPRTN 

2: The copy pointer operation which follows is implemented as copy 
2 2 field contents. 

2 2 Get pointer from second operand, 

2 2 Store in first, 

2: Interchange field contents. 

OPP) OCT 2= CP2 

STOREINI 

GO TO OPRTN 

IC) OCT 2= 0P2 

STOREINI 

OCT 2= 0P1 

STOREIN2 

GO TO OPRTN 

:: The Arithmetic operations are performed on the specified 
:2 operands and the result overwrites the first operand. 

ADD) OCT :R DPI + 0P2 

STOREINI 

GO TO OPRTN 

SUB) OCT 2= 0P1 - 0P2 

STOREINI 

GO TO OPRTN 

MPY) 1312,DPI,OP2,0 

CCT OPI 

STOREINI 

GO TO OPRTN 

DIV) I3I4,OPI,0P2,0 

OCT 2= OPI 

STOREINI 

GO TO OPRTN 

2 2 Multiply 24-bit integers, 
2: result in OPI 

2 2 Divide OPI by 0P2, lose remainder. 
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:: Logical operations OR, AND and nonequivalence operate on two 
:* operands the first of which is overwritten by the result. 

OR) OCT := 0P1 

l67,0CT,0P2,0 

STOREINI 

GO TO OPRTN 

AND) OCT := 0P1 

127,0CT,0P2,0 

STOREINI 

GO TO OPRTN 

XOR) OCT J= 0P1 

126,0CT,0P2,0 

STOREINI 

GO TO OPRTN 

:: Get first operand. 

•: Logical OR with second. 

:: Store result, 

:: Get first operand. 

:: Logical AND with second. 

:: Store result. 

:: Get first operand. 

:: Non equivalence with second. 

:: Store result. 

:: The operation Complement stores the complement of the second 
:: operand in the field specified by the first. 

:: Get second operand. 

:: Complement, 

:: Store result. 

C) OCT := 0P2 

l26,OCT,o,*77777777 

STOREINI 

GO TO OPRTN 

: In addition to the logical operations described above, LSIX 

: provides operations for counting 1-bits and 0-bits and 

: operations for locating the leftmost and rightmost 1-bit 

: and 0-bit of any operand. These six operations have many 

: things in common. They are implemented using one sequence 

: of BCL instructions with 6 different entry points and 

: switches are used where the operations diverge. Operations 

: apply to 0P2 and results overwrite the first operand. 
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OS) FLAG := 1 :: Entry point for count 1-bits. 

BITS) LENGTH 5= 24 S! Max field width. 

IF FP = 0 GO TO BITS2 :: If operand is not remote field. 

LENGTH RBIT(FP2) - LBIT(FP2) 

LENGTH LENGTH+l :: Compute field width for remote field. 

BITS2) OCT :=0 :: Initialise bit count, 

MOREBITS) LENGTH : = LENGTH - 1 :: Count down bits in field. 

IF LENGTH LT O GO TO ENDBITS 
t: If whole field scanned. 

GO TO 0S1,RD1,L01,L01,VIA FLAG 
:: Switch via flag. 

OS1) l63,0P2,0,0 :: Circular right shift 0P2 1 bit. 
IF 0P2 GE O GO TO MOREBITS :: If leading bit is zero. 

OCT := OCT + 1 :: Count 1 bit. 

GO TO MOREBITS 

NOBITS) OCT t= O 

ENDBITS) STOREINI :: Store result. 

GO TO OPRTN 

ZS) 126,0P2,0,^77777777 :: Entry for o-bits. 

GO TO OS :: Complement and count 1-bits. 

RO) FLAG := 2 :: Entry for locate 1-bit right, 
:: set flag. 

GO TO BITS 

R01) OCT := OCT + 1 :: Count bit. 

l63,0P2,0,0 :: Circular right 3hift 0P2 1 bit. 

IF 0P2 LT 0 GO TO ENDBITS :: If leading bit is now 1. 

IF LENGTH = O GO TO NOBITS :: If whole field scanned 
:: without success. 

GO TO MOREBITS 

RZ) FLAG 2 :: Locate 0-bit from right. 

GO TO BITSl 
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LZ) FLAG in 3 j: Locate 0-bit from left. 

LZ1) IF FP2 = O GO TO LZ2 :: If not remote field. 

SHIFT s= 23 - RBIT(FP2) 

SHIFT := SHIFT + LBIT(FP2> 

1343,0P2,SHIFT,0 :: Left justify operand in 
J: 24 bit field. 

LZ2) GO TO BITS,BITS,BITS1,BITS VIA FLAG :: Switch. 

LO) FLAG in 4 :: Locate 1-bit from left. 

GO TO LZ1 

LOl) OCT := OCT + 1 :: Count bits. 

IF OP2 LT 0 GO TO ENDBITS :: If leading bit is a 1. 

1343,0P2,0,1 :: Left shift 1 bit (circular). 

IF LENGTH = O GO TO NOBITS SJ If whole field scanned. 

GO TO MDREBITS 
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:: Fetch fields to be used in shift. 

:: In their most general form the LSIX shift operations have three 
:: operands. The first is the field to be shifted, the second 
:: specifies the number of places to shift and the third operand 
:: (zero if not specified) is the field to be shifted into the 
:: first field specified. Two subroutines are defined for shift 
:: operations. 

DEFINE R LSHIFT 

DO 

v/Rl OPI 

WR2 J = OP3 

IF 0P2 := O GO TO END :: If no shift required. 

IF FP3=0 GO TO READY J: If OP3 already left justified. 

SHIFT J= 23 - RBIT(FP3) 

SHIFT 2= SHIFT + LBIT(FP3) 

I343,V/R2,SHIFT,O :: Left justify OP3 in WR2. 

READY) SHIFT OP2 II Number of shift places. 

124,SHIFT,SHIFT,O :: Convert to 21 bit integer. 

I24, SHIFT,SHIFT,O 

124,SHIFT,SHIFT,O 

MORE) I 3 4 3 ,WR1,0,1 

I343,WR2,0,1 

127,WRI,o,*77777776 

I65,WR3,WR2,0.1 

I67,WRI ,WR3,O 

127 ,WR2,0 ,^77777776 

SHIFT SHIFT - 1 

I Circular left shift WR1 1 place. 

: Circular left shift WR2 1 place. 

: Clear bit 23 of WR1. 

: Get bit 23 of WR2 in WR3. 

j Add it to WR1. 

: Clear bit 23 of WR2. 

: Count down. 

END) 

IF SHIFT GT 0 GO TO MOREjj If not finished. 

OCT := WR1 !l Result in OCT. 

ST0REIN1 I: Store result. 

RETURN 

END 
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DEFINE R RSHIFT 

DO 

WRl := DPI :: 

WR2 := OP3 

IF OP2 = o GO TO END SJ 

IF FP1-0 GO TO READY :: 

SHIFT := 23 - RBIT(FPl) 

SHIFT SHIFT + LBIT(FPl) 

1343, WRl, SHIFT, O :: 

READY) SHIFT OP2 5: 

124,SHIFT,SHIFT,0 :: 

124, SHIFT,SHIFT,0 

124, SHIFT,SHIFT,0 

MORE) 163,WRI, 0,0 : : 

i63,WR2,0,0 

127, wri,o,*37777777 : : 

165,WR3,WR3,*4 :: 

i67,y /r i ,wr 3 ,o 

127 ,v/r2,0, *37777777 

SHIFT := SHIFT -1 

IF SHIFT GT GO TO MORE 

IF FP1 = O GO TO FLUSIIRT 

SHIFT != 23 - RBIT(FPl) 

SHIFT := SHIFT + LBIT(FPl) 

1342, WRl, SHIFT, 0 :: 

FLUSHRT) OCT : = WRl 5 : 

STOREINI 

END) RETURN1 

END 

Get operands. 

If number of shifts is zero. 

If OP1 already left justified. 

Left justify 0P1 in WRl. 

Number of shift places. 

Convert to 2l-bit integer. 

Circular shift right 1 place. 

Clear bit O of WRl. 

Get bit O of WR2 in WR3. 

Add this bit to WRl, 

Clear bit O of WR2. 

Count down. 

If not finished. 

If first operand is 24 bit field. 

Right justify result. 

Get result in OCT. 
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:: The shift routines are called for the LSIX shift operations. 

LL) LSHIFT 

GO TO OPRTN 

R) RSHIFT 

GO TO OPRTN 

: LSIX provides only one operation for input. The number of 
: characters to be input is specified by OP2. Input characters 
1 are left shifted into the field specified by the first operand. 
: Input is terminated on reading an end of line character. 

IN) OCT := OP1 :: Current 0P1 in OCT. 

INMDRE) IF 0P2=0 GO TO INEND :: If finished. 

125,OCT,0,0 :: Left shift OCT 6 bits to 
:: receive next character. 

127,0CT,0,*777777 :: Clear least significant 6 bits. 

1054,V/R1,0, (INEOL) :: Input character to least 
:: significant end of WRl, 
:: if newline character go to INEOL, 

167,OCT,WRl,0 :: Add character to OCT. 

122,0P2,0,0.1 :: Count down (24 bit integer), 

GO TO INMORE 

INEOL) 167,OCT,0,7.7 :: Newline char, is represented by (77). 

INEND) ST0R2IN1 i: Store result of input. 

GO TO OPRTN 

2 The contents of fields and octal literals may be output in 
: character form by means of the PRint and PUnch operations. 
: Hollerith character strings are dealt with separately in 
5 this implementation. 

PU) IF 0PFLAG=1 GO TO OUTPUT:: If stream 1 already selected. 

OPFIAG 1 

1060,0,0,1 2: Select output stream 1. 

GO TO OUTPUT 

PR) IF 0PFLAG=0 GO TO OUTPUT:: If stream 0 already selected. 

OPFIAG 0 

1060,0,0,0 :: Select output stream 0. 
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OUTPUT) IF QPlrO GO TO OPRTN :: Return if no chars, for output 

P R ! ) 

PR2) 

PR9> 

PR7) 
PR8) 
PR5) 
p r 6 ) 

124,0P1,0P1,0 :i Convert number of characters 

124,0P1,0P1,0 :: to 2l-bit integer. 

124,0P1,0P1,0 

WRl 2= 0P2 S: Get field contents for output. 

COUNT 2= 0P1 :: Get character count. 

IF OP3 GT O GO TO HOUTPUT :: If output Hliteral. 

IF COUNT LE 4 GO TO PR2 S: If not more than 4 characters. 

:: Count down, 

jj Output leading space. 

COUNT 2 = COUNT-1 

0/P(SP.) 

GO TO PR1 

IF FP2=0 GO TO PR9 s: If 24-bit operand. 

l65,WR2,WRl,*76 :: Convert any leading 

IF Y/R2 NE O GO TO PR9 2 2 binary zeros to blanks. 

I 6 7 , Y/Rl, 0,-01 

I65,WR2,WRI,*OO76 

IF WR2 NE O GO TO PR9 

l67,WRl,0,*000l 

I65,WR2,V/R1, ̂ 000076 

IF V/R2 NE O GO TO PRQ 

I67 ,Y/Rl, O ,--OOOOOl 

GO TO PR6,PR7,PR8,PR5 VIA COUNT :; Switch. 

125, WRl,0,0 

125, WRl,0,0 

125,WRl,0,0 

I65,WR2,WRI,7.7 

1 2 6 , V / R 2 , 0 , 7 . 7 

IF WR2=0 GO TO PR10 

IO64,O,y/RI,O 

:: Shift ready for output. 

j Get first character. 

: Complement this character, 

j If character is newline. 

2 Output 1 character. 
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PR11) COUNT := COUNT-1 :: Count down. 

IF COUNT GT O C-0 TO PR5 :: If not finished. 

GO TO OPRTN 

PRlo) 1 0 6 5 , 0 , 0 , 2 . 1 :: Output newline. 

GO TO PRll 

I: Strings of characters of any length may be output. During 

j: input of the program such character strings are stored 

:: in the constants area. They are output by the following 

2: instructions. The length of the string is assigned to OP3. 

2: BP2 points to the character string. 

HOUTPUT) IF 0P1 LE OP3 GO TO HI 

1064,0,0,0.1 

OP1 2= OP1-1 

GO TO HOUTPUT 

HI) IF 0P1 = OP3 GO TO H2 

0P3 2= OP3-I 

BP2 2= BP2+ONE 

GO TO HI 

H2) WR1 j= COOF(BP2) 

1064,0,™. ,0 

OP3 i n O P 3 - I 

BP2 2= BP2+0NE 

IF 0P3 GT 0 GO TO H2 

GO TO OPRTN 

2: If no leading spaces, 

:: Output space. 

2: Count down. 

5: Decrease length of string. 

2 2 Skip next character. 

2: Get next character. 

:: Output it. 

2 2 Decrease length of string. 

2: Point to next character. 

2: If not finished. 
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: Another output operation which is intended for diagnostic use 

: is the Print List operation. 0P1 points to first block, BP2 

: specifies the link field and OP3 is th© number of blocks ( if 

: specified ). 

PL) 0/P(NL.,'OCTAL PRINT OF LIST',NL.,'FIRSTBLOCK',NL.) 

IF OP3 GT 0 GO TO PL1 :: If number of blocks is specified. 

OP3 OP3 - 1 :: Set negative OP3. 

PLl) WREGl DPI J: Get pointer. 

wreg2 Bra 

PRINTBIJOCK 

P I 4 ) 1 2 2 , 0 P 3 , 0 , 0 ! 

IF OP3=0 GO TO PLEND 

GETFIELD 

IF WREGlrO GG TO PLEND 

OP1 J= WREGl 

0/P(NL.,'NEXT BLOCK',NL.) 

GO TO PLl 

PLEND) 0/P(NL.,'END OF LIST PRINT',NL.) 

GO TO OPRTN 

Print next block. 

Count down. 

If finished. 

Get link to next block. 

If end of list. 

Pointer to block. 
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: Associated with the LSIX input and output operations are a 
: number of conversion operations: Convert leading spaces to 
: zeros, leading zeros to spaces, Hollerith coded decimal and 
: octal to binary and vice versa. These six conversion operations 
: are described below. 

BD) OCT := 0 

K := K—20 

124,0P2,0P2,0 

124,GP2,0P2,0 

124,0P2,0P2,0 

COUNT := 4 

BD1) GO TO BD2, BO VIA K 

BD2) I 3 0 4 , 0 P 2 ,0,10 

BD3) 1 6 7 , o c t,9 7 , 1 6 

125,OCT,0,0 

COUNT := COUNT—1 

:: Entry for Binary to Decimal and 
:: Binary to Octal. 
:: K is now 1 for BD and 2 for BO. 
:: Left shift operand three places. 

:: Initialise count. 

2: Switch. 

:: Divide by 10, remainder in B97* 

5: Add character form of 
:2 remainder to OCT. 
2 2 Left shift OCT 6 binary places. 

:: Count down. 

IF COUNT GT 0 GO TO BD1 :j If not finished go back. 

163,OCT,0,0 :: Right shift 3 binary places. 

163,OCT,0,0 

I63,OCT,0,0 

BDEND) STOREINI :: Store result. 

IF 0P2 =0 GO TO OPRTN 

BDERR) 0/P(NL.,'OVERFLOW IN NUMERIC CONVERSION*,NL.) 

GO TO OPRTN 

BO) 165,97,0P2,7 

127,OP2,O,*777777 

l63,OP2,0,0 

l63,0P2,0,0 

l63,0P2,0,0 

GO TO BD3 

2 2 Fetch next octal digit to B97. 

:: Clear least significant 
:: digit from QP2. 
2 2 Divide 0P2 by 8. 
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DB) OCT := 0 :: Entry for conversions to binary. 

K 2 = K-20 s: K now 3 or 4 . 

COUNT 3 :: Initialise count. 

DB1) l2l,WSl,0,1.1 2 2 ws l assigned '9' as 24 bit integer. 

125,0P2,0,0 :: Left shift operand 6 places. 

l65,WRl,OP2,7.7 :: Get next character in WR1. 

IF WR1=0 GO TO DB5 

WR1: rWRl-2 2: Convert WR1 to integer form. 

IF V/Rl LT O GO TO DBERR 2: If negative, then error. 

DB5) IF K=4 GO TO OB 2 2 If octal to binary. 

IF WR1 C-T WS1 GO TO DBERR 
2 2 If integer greater than 'g*. 

1312,OCT,0,1.2 2 2 Multiply by 10 (24 bit). 

DB2) OCT 2= 0CT+WR1 2 2 Add to OCT. 

203,127,COUNT, (DB1) 

STOREINI 

GO TO OPRTN 

DBERR) Q/P(NL. , 'NONNUMERIC CHARACTER IN NUMERIC CONVERSION1) 

GO TO OPRTN 

OB) IF WR1 GE 1 GO TO DBERR 2 2 If digit not octal. 

I24,OCT,OCT,0 2 2 Multiply OCT by 8. 

I24,OCT,OCT,0 

124,OCT,OCT,0 

GO TO DB2 

j If not finished, count 
: down and go back. 
: If finished, store result. 
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:: The following instructions convert leading spaces to zeros. 

BZ) COUNT := 5 J: Initialise count. 

OCT OP2 :: Fetch operand. 

BZ1) 165,WREGl,OCT,*76 :s Check that character is 

:: not space or zero. 

IF WREGl NE O GO TO BZEND 

127,0CT,0,*00777777 :: Space to zero. 

I67,OCT,O,*2O 

125,OCT,0,0 :: Left shift 6 places. 

COUNT COUNT - 1 :: Count down. 

IF COUNT NE 1 GO TO BZ1 :: If not finished. 

BZEND) GO TO BZ5,BZ2,BZ3,BZ/J.,BZ5, VIA COUNT 

BZ4) 125,OCT,0,0 :: Circular shift 6 places left. 

BZ3) 125,OCT,0,0 :: Circular shift 6 places left. 

BZ2) 125,OCT,0,0 :: Circular shift 6 places left. 

BZ5) STORE INI 

GO TO OPRTN :: End of spaces to zeros. 

:: Convert leading zeros to spaces 

ZB) COUNT := 5 :: Initialise count. 

OCT := 0P2 s: Fetch operand. 

ZB1) 165,WREGl,OCT,*57 :: Check next character. 

IF WREGl NE O GO TO BZEND :: If not zero or space. 

127,OCT,0,*00777777 :: Clear first character, 

l67,0CT,0,*0l :: Insert space character. 

125,OCT,0,0 :: Shift (circular) 6 places left. 

COUNT COUNT-1 :: Count down. 

IF COUNT NE 2 GO TO ZB1 :: If not finished. 

ZBEND) GO TO BZEND :: Go to shift and store result. 
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:: LSIX provides two system subroutines STATE and DUMP for diagnostic 
j: purposes. These and the user defined subroutines are entered via 
:: a DO operation. The DO operation for user defined routines is 
:: described first. SUBP is the subroutine stack pointer. 

COOF(SUBP) 2= OBJECTP • • • • Stack current object pointer 

PLUS1(SUBP) • — • — NDESCRWD • • • « Stack address of next 
• • • # description word. 

PLUS2(SUBP) • «•» • — DESCKWD • # • • Stack current description 
• • • • word. 

PLUS3(SUBP) • — • NO • • • • Stack number of operations 
:: remaining. 

PLUS4(SUBP) • •— 0 • • • • Stack a null fail return 
:: address (temporary). 

PLUS5(SUBP) • — LINE • • • • Stack line number. 

NDESCKWD BP1 • • • • Pick up transfer address. 

IF BP2=0 GO TO DOl 2 2 If no fail return address. 

PLUS4(SUBP) • • — BP1 • • • • Stack fail return address. 

NDESCKWD := BP2 Correct transfer address. 

SUBP SUBP+3 Push-down stack. 

SUBL J= SUBL+1 • • • • Increment subroutine level. 

GO TO GAMMA • • Transfer to subroutine. 

:: The system subroutine STATEPRINT is called by (DO,STATE). 

STATE) STATEPRINT 

GO TO OPRTN 

:: (DO,DUMP) causes an octal dump of the list area preceded by 
:: the state of the system. 

DUMP) 0/P(NL.(2),'SYSTEM SUBROUTINE DUMP ENTERED*) 

STATEPRINT :: Output state of system. 

START := STARTLIST 

FINISH 5= ENDLIST 

STACKPRINT J! Octal output of list area. 

0/P(NL.(2),*END OF OCTAL OUTPUT OF LIST AREA*,NL.(2)) 

GO TO OPRTN 
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5: The system has two pushdown stores for saving Field Contents 
:: and Field Definitions. These are manipulated by the Save and 
j: Restore Field Contents and Field Definition operations. 

SFC) COOF(FCP) 2 2 = OPl is Save field contents, OPi. 

FCL 2= FCL+1 :: Increase field contents level 
:: number. 

FCP FCP+ONE :: Pushdown 

GO TO OPRTN SJ Return. 

RFC) FCP 2= FCP-ONE 2: Pop-up field contents stack. 

FCL 2 = FCL-1 :: Decrease level number. 

OCT 2= COOF (FCP) :: Retrieve field contents. 

ST0REIN1 2: Store result. 

GO TO OPRTN 

SFD) COOF(FDP) 2= WORD(BPl) 2 2 Save field defn. 

PLUSl(FDP) 2= LBIT(BPl) 

PLUS2(FDP) 2= RBIT(BPl) 

PHJS3(FDP) 2= MASK(BPl) 

FDL 2= FDL+1 2 2 Increase level number. 

FDP 2= FDP+2 2 2 Pushdown. 

GO TO OPRTN 

RFD) FDP 2= FDP+2 12 Pop-up field defn. stack. 

FDL 2= FDL-1 2 2 Decrease level number. 

WORD(BPl) 2= COOF(FDP) 2 2 Restore field defn. 

LBIT(BPl) 2= PLUS1(FDP) 

RBIT(BPl) 2= PLUS2(FDP) 

MASK(BPl) 2= PLUS3(FDP) 

GO TO OPRTN J2 Return. 

2 2 The only other operations implemented are the storage allocation 
2: and freeing operations which are described in detail in §2.3» 
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Routines for Automatic Garbage Collection in LSIX 

r 
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Routines for Automatic Garbage Collection in LSIX 

The following routines, which are an extension of the garbage 

collector due to Schorr and Waite, have been tested on the Atlas 

computer as a part of an M.Sc. student's project. 

DEFINE R COLLGARB 

DO 

P4 := BUGBASE :: Pointer to first bug. 

BUGMAX P4+I3 :: Pointer to last bug. 

SCANBUG) SCANLIST 5! Scan list to which bug 

:: points. 

I24,P4,0,0.4 :: Address of next bug. 

IF P4 LE BUGMAX GO TO SCANBUG 

IF FCL=0 GO TO LINK 

P4 := FCP 

WRl 5= FCL 

I63,WRl,0 ,0 

P4 := P4-WRI 

SCANSTACK) SCANLIST 

1 2 4 , P 4 , 0 , 0 . 4 

IF P4 LT FCP GO TO SCANSTACK 

LINK) LINKFREE 

RECOMBINE 

RETURN 

END 

:: Point to bottom of stack. 

:: Scan list. 

: If not top of stack. 

: Link unmarked blocks onto 

: free space lists. 

: Recombine free mates if 

: necessary. 
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DEFINE R SCANLIST 

DO 

PI := 0 

P2 := caoF(P4> 

IF P2 LT STARTLIST GO TO ENDSCAN :: 

IF P2 GE ENDLIST GO TO ENDSCAN :: 

165,wsi,P2,*7777777o 

IF WSl NE P2 GO TO ENDSCAN 5: 

GETMAP 

IF WS2 = O GO TO ENDSCAN Z Z 

165, FLAG, WRl, 4 : : 

IF FLAG NE O GO TO ENDSCAN S : 

I65,PFLAG,WRI,2 :: 

SETFLAG) WS2 5= WS2fWRl 5 5 

WS2 : = WS2+4 : : 

STMAP :: 

NEXTWORD) IF PFLAG = O GO TO NOBRANCH Z Z 

wsi := COOF(P2) :: 

IF WSl = 0 GO TO NOBRANCH :! 

127,wsi,o,+77777770 

IF WSl NE C00F(P2) GO TO NOBRANCH:: 

GETMAP :: 

IF WS2 = O GO TO NOBRANCH : S 

I65,FIAG,WRI,4 

IF FLAG NE O GO TO NOBRANCH :: 

I65,PFLAG,WRI,2 S: 

COOF(P2> := PI :S 

If not list pointer. 

If not list pointer. 

If not pointer to word 0. 

If not pointer to word 0. 

Get 'used' flag 

If block already scanned. 

Get pointer flag for 

word 0 . 

Reconstruct map 

Set used flag. 

Restore map. 

If not branch. 

Address of next block 

If null link. 

If not word 0. 

Map for next block 

If not word 0. 

If already scanned. 

Get pointer flag for word 0 

Plant reverse pointer. 
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PI := P2 

P2 : = w s i 

GO TO SETFLAG 

NOB RANCH) 124,P2,0,0.4 

lb5,wsi,P2,*7777777o 

IF WSI NE PA GO TO ODD 

GETMAP 

IF WS2 NE O GO TO ENDBLOCK 

lb5,PFIAG,WRl,2 

GO TO SETFLAG 

ODD) GETMAP 

LB5»PFLAG, WRL,1 

GO TO NEXTWORD 

ENDBLOCK) IF PI = O GO TO ENDSCAN 

121,SIZE,0,0.4 

DOUBLE) 124, SIZE,SIZE,0 

WSI S= P2- SIZE 

GETMAP 

IF WS2 = 0 GO TO DOUBLE 

P3 S= P2-SIZE 

P2 := PI 

PI := COOF(PI) 

COOF(P2) := P3 

GO TO NOBRANCH 

ENDSCAN) RETURN 

END 

PAGE 175 

:: Advance pointer. 

:: Address of next block. 

:: Advance pointer P2 by 
:: one word. 

S: P2 odd or even? 

:: If odd. 

:: If end of current block. 

Get pointer flag. 

:: Get pointer flag. 

S: If scan completed. 

:: Determine size. 

J: Point to start of block. 

:: Step back P2. 

:; Restore forward link. 
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DEFINE R LINKFREE 

:: This routine scans the whole of the list storage area from 

:: STARTLIST to ENDLIST and collects up any unmarked, i.e. free, 

:: space as 2-blocks, 4-blocks and 8-bIocks. 

DO 

WR1 J= STARTMAP 

WR2 2 = STARTLIST 

WS1 2= FREEHDR+2 

WS2 S= WS1+2 

WS3 := WS2+2 

COUNT2 := 0 

COUNT4 2= 0 

COUNT8 2= 0 

NEXT) CONST 2= COOF(WRl) 

I65 ,WREG1, CONST, *40404040 

IF WREG1 NE O GO TO NOT8 

C0QF(WS3) 2= WR2 

WS3 2= WR2 

COUNT8 2= COUNT8+1 

121,CONST,0,*03 

GO TO PLANT 

NOT8) 126,WREG1,0,+40404040 

IF WREG1 r O GO TO PLANT 

COUNT 2= 1 

I65 ,WREG2,WREG1,*4 

IF WREG2 = 0 GO TO FLAG2 

COUNT 2= COUNT+1 

FLAG2) l65,WREG2,WREGl,+004 

IF WREG2 = O GO TO FIRST4 

2 Initialise map pointer. 

2 Initialise list pointer 

2 Pointer to 2-block list. 

2 Pointer to 4-block list. 

2 Pointer to 8-block list. 

2 2-block count. 

2 4-block count 

2 8-block count, 

: Get next map word. 

2 Get flags. 

2 If 8-block not free. 

2 Link on free 8-block. 

S 2 Count 8-block. 

5 2 Map for 8-block. 

2 2 Complement flags. 

5 2 If no blocks free 

:: Check first flag. 

2 2 If not free. 

it Check second flag. 

5 2 If not free. 
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COUNT 2= COUNT +2 

FIRST4) GO TO FLAG3,FIRST1, FIRST2, FIRST3, VIA COUNT 

FIRSTl) COOF(WSl) := WR2 :: Link-on first 2-block. 

WSl 5= WR2 

COUNT2 2 = COUNT2+1 

127,CONST,o, ̂ 7777777 

GO TO FLAG3 

FIRST2) COOF (WSl) 2= WR2+1 

WSl J= WR2+1 

COUNT2 5= COUNT2+1 

127, CONST, o, *77<>77777 

GO TO FIAG3 

FIRST3) COOF(WS2) := WR2 

WS2 5= WR2 

C0UNT4 : = COUNT4+1 

127,CONST,0,*oooo7777 

167,CONST,O,*02007777 

FLAG3) COUNT := 1 

165,WREG2 , WREGL, *00004 

IF WREG2 = O GO TO FLAG4 

COUNT := COUNT+1 

FLAG4) I65,WREG2,WREGI,4#O 

IF WREG2 = 0 GO TO LAST4 

COUNT := COUNT+2 

LAST4) GO TO PLANT,LAST1,LAST2,LAST3, VIA COUNT :: Switch. 

LAST1) COOF (WSl) 2 = WR2+2 S: Link-on 2-block. 

WS2 := WR2+2 

COUNT2 COUNT2+1 :: Count 2-block. 

127,CONST,0,*77770777 :: Clear pointer flags. 

GO TO PLANT 

:j Clear pointer flags for 
:: 2-block. 

:: Link-on second 2-block. 

S: Count 2-block. 

j: Clear pointer flags. 

2 2 Link-on first 4-block. 

2 2 Count 4-block. 

:: Clear pointer flags, 

2: Set size for 4-block. 

S 2 Check third flag 

2 2 If not free. 

2 2 Check fourth flag. 

2 2 If not free. 
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IAST2) COOF(WSl) WR2+3 

WSI 5= WR2+3 

COUNT2 := COUNT2+1 

127,CONST,o,+77777707 

GO TO PIANT 

IAST3) COOF(WS2) S= WR2+2 

WS2 S= WR2+2 

COUNT4 := COUNT4+1 

127,const,o,*7777oooo 

167»CONST,O,*00000200 

PIANT) 127,const,0,*37373737 

COOF (WRl) := CONST 

WR2 := WR2+4 

124, WRl, 0,0.4 

IF WRl LT ENDMAP GO TO NEXT 

COOF (wsi) := 0 

C00F(WS2) := o 

COOF(WS3) := 0 

WSI := FREEHDR + 6 

PLUS3(WS1) i= CCTUNT8 

C0UNT8 := COUNT8+COUNT8 

COUNT4 := COUNT4+COUNT8 

wsi := wsi-2 

PLUS3(WSI) := COUNT4 

COUNT4 := COUNT4+COUNT4 

C0UNT2 := COUNT2+COUNT4 

wsi := wsi-2 

PLUS3(WS1) C0UNT2 

RETURN 

END 

:: Link on 2-block. 

:: Count 2-block. 

:; Clear pointer flags. 

:: Link on 4-block. 

:: count 4-block. 

:: Form new map. 

j: Clear flags. 

:: Plant map 

:: Increment list pointer. 

:: Increment map pointer. 

:: Go back if not finished. 

:: Terminate lists. 

:: Plant 8-block count. 

:: Plant 4-block count. 

:: Plant 2-block count. 

:: Return, end of LINKFREE 
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DEFINE R RECQMBINE 

If the maximum size of block set by the program is not greater 

than 8 then control is returned immediately. Otherwise, starting 

with 8-blocks, taking each list in turn any mates which are free 

simultaneously are recombined to form a block of the next larger 

size. Advantage is taken of the fact that mates, if free, are 

consecutive blocks on the free space lists. The process terminates 

when the maximum size is reached or when no further recombination 

is possible. 

DO 

POINTER := FREEHDR+6 S J Point to 8-block list. 

P2 POINTER+2 S: Initialise P2. 

NEXTLIST) IF COOF (POINTER) r 0 GO TO ENDS: If empty list. 

IF PLUS1 (POINTER) GE MAXSIZE GO TO END 

: If maximum size reached. 

COOF(P2) 2= 0 

PI 2= POINTER 

POINTER := POINTER+2 

COOF(POINTER) 2 = 0 

P2 2= POINTER 

SIZE 2= PLUSi(Pl) 

124,CSIZE,CSIZE,0 

124,CSIZE,CSIZE,0 

PLUS3(POINTER) 2= 0 

2 Terminate list. 

: Initialise working 
: pointer PI. 

2 Point to next list. 

2 Initially empty. 

2 Initialise working 
2 pointer P2. 

: Get current size. 

2 Convert to address units. 

2: Initialise block count. 

NEXTBLOCK ) IF COOF(Pl) = 0 GO TO NEXTLIST 
2 2 If end of current list. 

WR1 2= CQOF(Pl) 

126,WR1,CSIZE,0 

2: Address of next block. 

2: Address of mate. 
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IF WRl = CQOF(COOF(PI)) GO TO RE COMBINE 

:: If mates free. 

PI := COOF(PI) :: Step down current list 

GO TO NEXTBLOCK 

RECOMBINE) PLUS3<POINTER) PLUS3<POINTER)+l 

:: Count new block. 

WS2 8= PLUS2(POINTER) 

WS1 := COOF(PI) 

STMAP :: Store new map for 1st half. 

WS1 := COOF(COOF(Pl)) 

WS2 := o 

STMAP 5: Store new map for 2nd half. 

C00F(P2) := COOF(Pl) :: Link block into next list. 

P2 COOF(Pl) 

COQF(Pl) := COOF(WSl) j: Detach from current list. 

GO TO NEXTBLOCK 

END) RETURN :: End of RECOMBINE. 

END 

In addition to the routines given above, the implementation 

of an automatic garbage collector for LSIX also involves modifications 

to some of the sets of BCL instructions described in Appendix 3. Any 

LSIX instruction involving the storing of pointers must be ammended to 

plant pointer flags as required in the maps. 



APPENDIX 5 

Extensions to the BCL Compiler 
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Notes on the implmentation of functions and groups with parameters 

in BCL, 

(1) The subset of parameters implemented consists only of 

parameters of type A which are called by value, 

(2) Functions and groups with parameters are assigned type 2 i.e. 

they are treated as indefinite groups. Functions without parameters 

are definite groups (type 1) unless declared as indefinite, 

(3) Name records are redefined as 

NAMEREC(?) IS (A DICLINK,A ADDR,A TYPE,8C NAME,A LENGTH, 

A ELTREC,A PARLIST) 

(4) Formal parameters are declared with the name of the group to 

which they belong. For example in 

CONS (A X,A Y) IS ( ...) 

X and Y are formal parameters of CONS and are local to this group. 

The name records of the formal parameters of a group are stored as a 

sublist of the name record of the group and are accessed via the 

field PARLIST. 

(5) Formal parameters are allocated stack space as if they were 

variables of type AX (i.e. declarations which cause no input) 

declared as the first elements of the group. 

(6) When used in the body of the group, the formal parameters are 

automatically offset by the group stack pointer (GROUPP) unlike 

other variables which are declared in an indefinite group. 

(7) The groups MATCH and LOOKUP have been redefined so that the 

current list of formal parameters is searched before the main 

dictionary when a name is encountered. 
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(8) MATCH is also modified to allow forward references to 

functions. If when analysing an expression, an undefined name is 

found it is assumed to be that of a function and a forward reference 

record is set up for it by the group MATCH. 

(9) NAMESUBS and SUBSC (groups which deal with variables in 

expressions) are also redefined to allow references to functions 

(type 1 or 2). 

(10) There is no check that the number of actual parameters used in 

a function call is equal to the number of formal parameters in the 

function definition. Advantage can be taken of this in that local 

variables can be defined as formal parameters for which no actual 

values are passed. 

(11) In ASSCCJM (the group dealing with assignment commands) the 

expression on the right hand side has the general form 

<operand> +<operand> I <operand> - <operand> | <operand> 

As the contents of the accumulator and modifier are not saved when a 

function is evaluated, any second operand in an expression should 

not involve a call on a function. This restriction can easily be 

removed when more general expressions are implemented in BCL. 

(12) The actual parameters may themselves involve further calls on 

functions and to any depth. 

(13) At a function call or before entry to a group with parameters 

the values of the actual parameters are transferred to the run-time 

stack where they are found when the group is entered. 

(14) The value of a function is returned by the EXIT function the 

parameter of which is the operand whose value is to be returned. 

The effect is simply to assign to a variable named RESULT the value 

to be returned, whence it may be picked up immediately after leaving 

the function body. The function EXIT may appear anywhere in the 
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Body of the function. If it appears in the middle of a set of 

alternatives, the system pointer stack is reset as if the group had 

been left in the normal way. The definitions of group and branch 

linkage records have been modified to simplify the resetting of the 

pointer stack. 

The full details of the modifications to the BCL compiler are 

of interest only to the reader who is familiar with the 

implementation of BCL in itself and are not given here. 



APPENDIX 6 

Garbage Collection - Output from a BCL Program. 
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THE DERIVATIVE OF (3* X + 1)**3~ 6* X 

WITH RESPECT TO X IS 6* (2* X + L)**2~ 6 

GARBAGE COLLECTION ROUTINE ENTERED 

I JEW FREE SPACE LIST 

ADDRESS 
*20000000 
*20000014 
•20000030 
•200000+4 
•200000D0 
* 2 0 0 0 0 0 7 4 
•20000110 
• 2 0 0 0 0 1 2 4 
-120000140 
•2OOOOI34 
•20000170 
•20000204 
•20000220 
•20000234 
•20000250 
•2OOOO264 
•20000300 
•2OOOO3I4 
•20000330 
•2OOOO344 
•2OOOO3OO 
•20000374 
•2OOOO4IO 
•2OOOO424 
20000440 
2OOOO454 
30000470 
20000504 

•20000520 

LLINK 
00000000 
00000000 
20000000 
00000000 
20000030 
00000000 
20000060 
00000000 
00000000 
2 0 0 0 0 1 2 4 
2 0 0 0 0 1 1 0 
00000000 
20000000 
00000000 
20000000 
20000000 
00000000 
2 0 0 0 0 0 7 4 
20000060 
20000000 
2 0 0 0 0 0 7 4 
00000000 
2 0 0 0 0 1 2 4 
00000000 
2 0 0 0 0 1 2 4 
20000520 
00000000 
00000000 
2 0 0 0 0 5 0 4 

SYMBOL 
00000020 
7 0 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
oooooolo 
3 5 0 1 0 1 0 1 
00000030 
1 6 1 6 0 1 0 1 
00000060 
7 0 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
3 6 0 1 0 1 0 1 
00000010 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
oooooolo 
3 6 0 1 0 1 0 1 
1 6 1 6 0 1 0 1 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
oooooolo 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
3 6 0 1 0 1 0 1 
00000020 
00000060 
1 6 0 1 0 1 0 1 

RLINK 
2 0 0 0 0 0 1 4 
20000030 
2 0 0 0 0 0 2 4 
200000(30 
2 0 0 0 0 0 7 4 
2 0 0 0 0 1 1 0 
2 0 0 0 0 1 2 4 
20000140 
2 0 0 0 0 1 5 4 
2 0 0 0 0 1 7 0 
20000204 
20000220 
2 0 0 0 0 2 3 4 
20000250 
2 0 0 0 0 2 6 4 
20000300 
2 0 0 0 0 3 1 4 
20000330 
2 0 0 0 0 3 4 4 
20000300 
2 0 0 0 0 3 7 4 
2 0 0 0 0 4 1 0 
2 0 0 0 0 4 2 4 
20000040 
20 000. [ 5 4 
2 0 0 0 0 4 7 0 
2 0 0 0 0 5 0 4 
20000520 
00000000 

THE DERIVATIVE OF 3* (X ••2+ X )+ 2* X • -'-3 

WITH RESPECT TO X IS 3* (2* X + 1)+ X ••2 

GARBAGE COLLECTION ROUTINE ENTERED 

NEW FREE SPACE LIST 

ADDRESS 
•20000000 
•20OOOO14 
•20000030 
•2OOOOOJ4 
•200000(30 
• 2 0 0 0 0 0 7 4 
• 2 0 0 0 0 1 1 0 
• 2 0 0 0 0 1 2 4 
*innnn 1 in 

LLINK SYMBOL RLINK 
20000660 1 6 0 1 0 1 0 1 2OOOOOI4 
200006/14 3 5 0 1 0 1 0 1 20000030 
00000000 oooooolo 
00000000 
2 0 0 0 0 5 6 4 
20000550 
20000030 
2 0 0 0 0 5 6 4 
00000000 

oooooolo 
3 6 0 1 0 1 0 1 
1 6 1 6 0 1 0 1 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
oooooolo 

20000044 
20000060 
2 0 0 0 0 0 7 4 
2 0 0 0 0 1 1 0 
2 0 0 0 0 1 2 4 
2 0 0 0 0 1 4 0 
2 0 0 0 0 1 5 4 
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• 2 0 0 0 0 1 5 4 
• 2 0 0 0 0 1 7 0 
• 2 0 0 0 0 2 0 4 
•20000220 
• 2 0 0 0 0 2 3 4 
• 2 0 0 0 0 2 5 0 
• 2 0 0 0 0 2 6 4 
•20000300 2 
• 2 0 0 0 0 3 1 4 
•20000330 
• 2 0 0 0 0 3 4 4 
•200003(30 
• 2 0 0 0 0 3 7 4 
• 2 0 0 0 0 4 1 0 
• 2 0 0 0 0 4 2 4 
•20000440 
• 2 0 0 0 0 4 5 4 
•20000470 
• 2 0 0 0 0 5 3 4 
• 2 0 0 0 0 5 5 0 
• 2 0 0 0 0 5 6 4 
•20000600 
• 2 0 0 0 0 6 1 4 
•20000630 
• 2 0 0 0 0 6 4 4 
•20000600 
• 2 0 0 0 0 6 7 4 
• 2 0 0 0 0 7 1 0 
• 2 0 0 0 0 7 2 4 

2 0 0 0 0 1 2 4 
2 0 0 0 0 5 3 4 
00000000 
2 0 0 0 0 1 7 0 
00000000 
o o o o o c o o 
2 0 0 0 0 7 1 0 
30000674 

2 0 0 0 0 2 3 4 
2 0 0 0 0 7 1 0 
20000660 
00000000 
2 0 0 0 0 4 5 4 
2 0 0 0 0 1 7 0 
00000000 
00000000 
20000340 
00000000 
00000000 
00000000 
00000000 
2 0 0 0 0 5 5 0 
00000000 
20000600 
2 0 0 0 0 5 3 4 
00000000 

3 5 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
00000010 
oooooolo 
3 6 0 1 0 1 0 1 
1 6 1 6 0 1 0 1 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
00000020 
00000060 
1 6 0 1 0 1 0 1 
00000010 
00000030 
7 0 0 1 0 1 0 1 
00000020 
1 6 1 6 0 1 0 1 
7 0 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
00000020 

00000000 7 0 0 1 0 1 0 1 
o o o o o n o o 00000030 
2 0 0 0 0 6 7 4 1 6 1 6 0 1 0 1 

2 0 0 0 0 1 7 0 
20000204 
20000220 
2 0 0 0 0 2 3 4 
20000250 
2 0 0 0 0 2 6 4 
20000300 
2 0 0 0 0 3 1 4 
20000330 
2 0 0 0 0 3 3 4 
20000300 
2 0 0 0 0 3 7 4 
2 0 0 0 0 4 1 0 
2 0 0 0 0 4 2 4 
20000440 
2 0 0 0 0 4 5 4 
20000470 
2 0 0 0 0 5 3 4 
20000550 
2 0 0 0 0 5 6 4 
20000600 
2 0 0 0 0 6 1 4 
20000630 
2 0 0 0 0 6 3 4 
20000660 
2 0 0 0 0 6 7 4 
2 0 0 0 0 7 1 0 
2 0 0 0 0 7 2 4 
00000000 

THE DERIVATIVE OF (X + Y ) • (X - Y ) 

WITH RESPECT TO X I S X -j- Y -1- X - Y 

THE DERIVATIVE GF ( 2 * X + l ) * * 3 ~ 2 * 

GARBAGE COLLECTION ROUTINE ENTERED 

NEW FREE SPACE L I S T 

ADDRESS 
•20000000 
• 2 0 0 0 0 0 1 4 
•20000030 
•2000004{. 
•20000000 
•20000074 
• 2 0 0 0 0 1 1 0 
• 2 0 0 0 0 1 2 4 
• 2 0 0 0 0 I 4 0 
• 2 0 0 0 0 1 5 4 
• 2 0 0 0 0 1 7 0 
•20000204 
•20000SOA 

' w' I 
•20000520 

LLINK 
3 0 0 0 0 5 0 4 
00000000 
00000000 
2 0 0 0 0 0 1 4 
20000000 
0000(X)00 
20000074 
20000000 
00000000 
2 0 0 0 0 1 4 0 
20000140 
30000000 
00000000 
00000000 

SYMBOL 
3 5 0 1 0 1 0 1 
7 0 0 1 0 1 0 1 
7 1 0 1 0 1 0 1 
3 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
00000010 
3 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
oooooolo 
3 5 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
7 0 0 1 0 1 0 1 
7 1 0 1 0 1 0 1 

EL INK 
2 0 0 0 0 0 1 4 
20000030 
2000004} 
20000000 
2OOOOO7.} 
2 0 0 0 0 1 1 0 
2 0 0 0 0 1 2 4 
20000140 
2 0 0 0 0 1 5 4 
2 0 0 0 0 1 7 0 
2 0 0 0 0 2 0 4 
2 0 0 0 0 5 0 4 
20000520 
00000000 
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GARBAGE COLLECTION ROUTINE ENTERED 

NEW FREE SPACE L I S T 

ADDRESS LLINK SYMBOL RLINK 
• 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 o o o o o o l o 2 0 0 0 0 0 4 1 
•30000044. 00000000 o o o o o o l o 2 0 0 0 0 0 6 0 
• 2 0 0 0 0 0 6 0 2OOOO424 3 6 0 I O I O I 2 0 0 0 0 0 7 4 
•2OOOOO74 2OOOO4IO 1 6 1 6 0 1 0 1 2 0 0 0 0 1 1 0 
• 2 0 0 0 0 1 1 0 2 0 0 0 0 0 3 0 1 6 0 1 0 1 0 1 2 0 0 0 0 1 5 4 
• 2 0 0 0 0 1 5 4 00000000 1 6 0 1 0 1 0 1 2 0 0 0 0 5 0 4 
• 2 0 0 0 0 5 0 4 0 0 0 0 0 0 0 0 o o o o o o l o 0 0 0 0 0 0 0 0 

WITH RESPECT TO X I S l 8 * <2* X + 1 ) ^ 2 - 4 * X 

GARBAGE COLLECTION ROUTINE ENTERED 

NEW FREE SPACE L I S T 

ADDRESS 
• 2 0 0 0 0 0 0 0 
•2OOOOOI4 
•2OOOOO3O 
•2OOOOO44. 
• 2 0 0 0 0 0 0 0 
• 2 0 0 0 0 0 7 4 
• 2 0 0 0 0 1 1 0 
• 2 0 0 0 0 1 2 4 
•2OOOOI4O 
• 2 0 0 0 0 1 5 4 
• 2 0 0 0 0 1 7 0 
•20000204 
• 2 0 0 0 0 2 2 0 
• 2 0 0 0 0 2 3 4 
• 2 0 0 0 0 2 5 0 
•2OOOO264 
• 2 0 0 0 0 3 0 0 
• 2 O O O O 3 I 4 
•2OOOO33O 
•2000034}. 
•2OOOO3DO 
•2OOOO374 
•2OOOO4IO 
•2OOOO424 
•3OOOO44O 
•2OOOO454 
•2000C>470 
• 2 0 0 0 0 5 2 0 
•20000534 
•20000550 
•2OOOO564 
•20000600 
* 2 0 0 0 0 6 1 4 
•20000630 
•20000624. 
*200006(56 
• 2 0 0 0 0 6 7 4 
• 2 0 0 0 0 7 1 0 
•20000+21 

LLINK 
OOOOOOOO 
20000154 
20000520 
OOOOOOOO 
OOOOOOOO 

20000060 
OOOOOOOO 

2 0 0 0 0 4 2 4 
2 0 0 0 0 3 7 4 
2 0 0 0 0 1 1 0 
2 0 0 0 0 0 3 0 
2 0 0 0 0 1 5 4 
OOOOOOOO 
OOOOOOOO 
OOOOOOOO 
2 0 0 0 0 2 3 4 
OOOOOOOO 
2 0 0 0 0 2 6 4 
OOOOOOOO 
2 0 0 0 0 3 1 4 
2 0 0 0 0 2 2 0 
OOOOOOOO 
OOOOOOOO 
OOOOOOOO 
2 0 0 0 0 4 1 0 
20000374. 
2 0 0 0 0 3 6 0 
OOOOOOOO 
OOOOOOOO 

2 0 0 0 0 2 3 4 
OOOOOOOO 

2 0 0 0 0 2 3 4 
2 0 0 0 0 2 3 . J 
OOOOOOOO 
2 0 0 0 0 3 3 0 
2 0 0 0 0 3 1 4 
2 0 0 0 0 2 3 4 
2 0 0 0 0 3 3 0 
2 0 0 0 0 2 2 0 

SYMBOL 
1 6 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
0 0 0 0 0 0 2 0 
00000060 
1 6 0 1 0 1 0 1 
0 0 0 0 0 2 2 0 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
3 5 0 l o 1 0 1 
3 6 0 1 0 1 0 1 
0 0 0 0 0 0 3 0 
0 0 0 0 0 0 2 0 
7 0 0 1 0 1 0 1 
1 6 0 . 1 0 1 0 1 
o o o o o o l o 
3 5 0 1 0 1 0 1 
00000030 
1 6 1 6 0 1 0 1 
1 6 0 1 0 1 0 1 
0 0 0 0 0 0 2 0 
7 0 0 1 0 1 0 1 
0 0 0 0 0 0 2 0 
1 6 1 6 0 1 0 1 
1 6 0 1 0 1 0 1 
3 6 0 1 0 1 0 1 
00000040 
o o o o o o l o 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
oooooolo 
3 6 0 1 0 . 1 0 1 
1 6 1 6 0 1 0 1 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 

RLINK 
2 0 0 0 0 0 1 4 
2 0 0 0 0 0 3 0 
2 0 0 0 0 0 4 4 
2 0 0 0 0 0 6 0 
2 0 0 0 0 0 7 4 
2 0 0 0 0 1 1 0 
2 0 0 0 0 1 2 4 
2 0 0 0 0 1 4 0 
2 0 0 0 0 1 5 4 
2 0 0 0 0 1 7 0 
20 OOO 20 J. i 
2 0 0 0 0 2 2 0 
2 0 0 0 0 2 3 4 
2 0 0 0 0 2 5 0 
2 0 0 0 0 2 6 4 
2 0 0 0 0 3 0 0 
2 0 0 0 0 3 1 4 
2 0 0 0 0 3 3 0 
200003,+]. 
200003(30 
2 0 0 0 0 3 7 4 
2 0 0 0 0 4 1 0 
2 0 0 0 0 4 2 4 
2 0 0 0 0 4 4 0 
2 0 0 0 0 4 5 4 
2 0 0 0 0 4 7 0 
2 0 0 0 0 5 2 0 
2 0 0 0 0 5 3 4 
2 0 0 0 0 5 5 0 
2 0 0 0 0 5 6 4 
2 0 0 0 0 6 0 0 
2 0 0 0 0 6 1 4 
2 0 0 0 0 6 3 0 
2 0 0 0 0 6 4 4 
2 0 0 0 0 6 6 0 
2 0 0 0 0 6 7 4 
2 0 0 0 0 7 1 0 
2 0 0 0 0 7 2 4 

OOOOOOOO 
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THE DERIVATIVE OF 3* <2* X + 1)**2+ 6* X **3 

GARBAGE COLLECTION ROUTINE ENTERED 

NEW FREE SPACE LIST 

ADDRESS LLINK SYMBOL RLINK 
-20000520 00000000 oooooolo 20000534 
*20000534 00000000 oooooolo 20000550 
* 2 0 0 0 0 5 5 0 2 0 0 0 0 1 7 0 3 6 0 I O I O I 20000600 
• 2 0 0 0 0 6 0 0 20000520 1 6 0 1 0 1 0 1 20000644. 
*200006,L1 00000000 1 6 0 1 0 1 0 1 00000000 1 I 
GARBAGE COLLECTION ROUTINE ENTERED 

NEW FREE SPACE LIST 
ADDRESS 
*20000250 
*20000264 
*20000300 
-2OOOO3I4 
*2OOOO33O 
*2OOOO344 
•2OOOO3DO 
-'•20000374 
•20000410 
•2OOOO424 
•2OOOO454 
•2OOOO534 
•200006I4 
•2OOOO63O 
•20000660 

LLINK 
00000000 
20000000 
00000000 
20000000 
20000000 
00000000 
2 0 0 0 0 0 7 4 
20000060 
20000000 
2 0 0 0 0 0 7 4 
00000000 
00000000 
2 0 0 0 0 1 7 0 
20000140 
20000520 

SYMBOL 
oooooolo 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
3 5 0 1 0 1 0 1 
oooooolo 
3 6 0 1 0 1 0 1 
1 6 1 6 0 1 0 1 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 
oooooolo 
1 6 0 1 0 1 0 1 
1 6 0 1 0 1 0 1 

RLINK 
2 0 0 0 0 2 6 4 
20000300 
2 0 0 0 0 3 1 4 
20000330 
2 0 0 0 0 3 4 4 
20000360 
2 0 0 0 0 3 7 4 
2 0 0 0 0 4 1 0 
2 0 0 0 0 4 2 4 
2 0 0 0 0 4 5 4 
2 0 0 0 0 5 3 4 
2 0 0 0 0 6 1 4 
20000630 
20000660 

3 5 0 1 0 1 0 1 00000000 

WITH RESPECT TO X IS 12- (2* X + 1)+ lo-: X 

END OF PROGRAM 
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Reprinted from The Computer Journal, Vol. 12, No. 1, February 1969 

The definition and implementation of Lsix in BCL 

By R. J. W. Housden* 

This paper describes the implementation on the London University Atlas computer of the Bell 
Telephone Laboratories low level linked list language L6. A syntactical definition of L6 is given 
in terms of BCL, a general purpose programming language with special emphasis on data structures. 
The description of the implementation in BCL includes details of the general field handling routines. 

(First received February 1968 and in revised form September 1968) 

Lsix is a London version of the Bell Telephone Labora-
tories low-level list processing language L6 (Knowlton, 
1966). This paper describes an implementation of Lsix 
using BCL, a general purpose programming language 
with special emphasis on data structures (Hendry, 1966). 
The BCL used is that defined by the prototype compiler 
which was available in January, 1967. Both the defini-
tion and the implementation are in BCL; the former is 
freely annotated but for those not familiar with BCL a 
few words of explanation are given in an Appendix. It 
is considered that the ability to define a language so 
precisely in this way is one of the interesting features of 
this paper. 

Lsix instructions are compiled into an intermediate 
code which is executed by a low-level interpreter. The 
definition is followed by an outline flow diagram of the 
interpreter and details of three general field handling 
routines to find fields, get fields and store fields. 

A complete Lsix program which has been run on the 
Atlas computer is given to illustrate the form of the 
data to be analysed. For a more detailed description 
of the language the reader is referred to Knowlton's 
description of L6. 

Special features of LSIX 
The most important features of Lsix which distinguish 

it from other list processors such as IPL, LISP, COMIT 
and SNOBOL are the availability of several sizes of 
storage blocks and a flexible means of specifying within 
them fields containing data or pointers to other blocks. 
Data structures are built by appropriating blocks of 
various sizes, defining fields (simultaneously in all blocks) 
and filling these fields with data and pointers to other 
blocks. Available blocks are of lengths 2n machine 
words where n is an integer in the range 0-7. The user 
may define up to 36 fields in blocks, which have as 
names single letters or digits. Thus the D field may be 
defined as bits 5 through 17 of the first word of any 
block. Any field which is long enough to store an 
address may contain a pointer to another block. The 
contents of a field are interpreted according to the 
context in which they are used. 

The Lsix system contains 26 base fields called bugs. 
The contents of a bug are referred to by naming the 
bug (a single letter). If the bug contains a pointer to a 
block, a particular field in that block is referred to by 
concatenating the names of the bug and the field. For 
example W D refers to the D field of the block to which 
W points. A field more remotely positioned from the 
bug is referred to by concatenating the names of the 

bug, the sequence of pointers and the field. Thus if 
bug X points to a block whose B field points to a block 
whose A field points to a block whose D field is to be 
referenced, the latter is called XBAD. 

Instruction format 
In general an Lsix instruction consists of an optional 

label followed in order by optional tests, optional opera-
tions and an optional transfer of control. An example 
given by Knowlton is 
L2 IFNONE (XD, E, Y)(XA, E, 0 ) THEN (XD, E, l ) ( x , P, XA) L2 
which says that 

IF N O N E of the following is true: 
that the contents of X D equals the 
contents of Y or that the contents of 
XA equals 0 

THEN perform the following operations: 
set the contents of X D equal to 1, 
make X point where the current 
contents of XA point then go to the 
instruction labelled L2 (the same 
instruction in this case). 

OTHERWISE no operations are to be performed and 
control goes to the next line of coding. 

Other conditions are 

IFALL satisfied IF ALL of the elementary 
tests are satisfied 

IFNALL satisfied IF NOT ALL of the ele-
mentary tests are satisfied 

IF A N Y satisfied IF A N Y of the elementary 
tests are satisfied. 

IF and NOT are synonymous with IFALL and 
IFNONE. 

The other instruction type is the unconditional instruc-
tion consisting of a sequence of operations to be per-
formed. 

A complete list of tests and operations is given in 
Tables 1 and 2. Some of these are illustrated by the 
following complete program which reads, sorts into 
ascending sequence and outputs numbers each ter-
minated by a single space. The sequence of numbers is 
terminated by a double space. For simplicity the 
numbers are restricted to the range 0-9999. 

(+20000000,ss,4,+20000400) 
(1 ,dd,0,23)(2,da,0,23)(3,db,0,23) 
(0,DZ,0,23) 
(DO,INPUT)(DO,ORDER)(DO,OUTPUT)END 

* University of London Institute of Computer Science, 44 Gordon Sq., London WC1. 



Analysis of tests 
TESTS is a series of tests defined in the usual manner. As 
each takes space in the object area, and the number is 
unknown, when no more tests are found, the address of the 
first operation is planted, by TESTSEND, in one of the locations 
reserved by INSTRSTRT. Test types and operand types are 
recorded in the variables K and J. At the end of each test, 
TESTEND plants the values of K and J (note the difference 
between TESTSEND and TESTEND). TESTSTRT initialises certain 
variables. An argument is defined by ARG as any combina-
tion of characters not including comma and right bracket. The 
arguments of tests and operations are separated by commas. 
sep is (osp.,y,osp.) 
tests is (osp.,test,either tests o r osp.,testsend) 
test is ( '( ' ,teststrt,field,sep 

,(either(either 'e',k : = 1 
o r 'n',k : = 2 
o r 'g ' ,k : = 3 
o r ' l ' ,k : = 4) 

/either 'o', j : = 2 
o r 'h',j : = 3 
o r j : = 0) 

o r (either 'o',k : = 5 
o r 'z ' ,k : = 6) 

/ e i t h e r ' d ' , j : = 1 
o r 'h', j : = 3 
o r j : = 4) 

o r 'p\ K : = 7,j : = 0) 
Completes first argument and predicate. Continue with 

separator and second argument. 
,osp. , ' , (either if j = 0 , (either f i e l d 

o r d l i t e r a l ) 
o r if j = 1, d l i t e r a l 
o r if j = 2, o l i t e r a l 
o r if j = 3, h l i t e r a l 
o r if j = 4,(either f ie ld 

o r o l i t e r a l ) ) 
, ')',testend) 

Literal operands and FIELDS are defined below. 

Analysis of operations 
In general operations have either three or four arguments the 
second of which is the mnemonic function code but there are 
two special cases (DO, symbol) and (a, A) an abbreviation for 
(a, p, aA) with only two arguments. Matching an operation 
involves two passes. On the first pass no information is 
planted in the object area. A shallow analysis determines the 
operation code (K) and the number of arguments (NA). This 
first attempt to match sets certain values (particularly NA) and 
is then deliberately failed by using the group REJECT. The 
results from the first pass are used during the detailed 
analysis on a second pass. This technique for making several 
passes is commonly used in BCL programming, OPSTART sets 
operation type (K) and number of operands (NA) to zero and 
allocates a location into which this information is planted by 
OPEND when the operation has been matched. 
operatns is (osp.,operatn,either operatns o r osp.) 
operatn is ('(',opstart,osp. 
/either arg,sep,arg,osp.,')',na : = 2, r e j e c t 
Shallow analysis for two argument operations completed. 
Go on to deep analysis of two argument operations. 
o r if na = 2,(either 'do', sep 

/either 'state ' ,k : = 41,na : = 0 
o r 'dump', k : = 42,na : = 0 
o r symbol, k : = 35,na : = 1) 

o r (either f ield,sep,reject 
or field,sep 

,objectp : = objectp-one 
,fldnames,k i = 12)),osp.,')' 
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Analysis of two argument operations completed, 'STATE' 
and 'DUMP' are system subroutines, SYMBOL is defined below. 
Note the special technique for dealing with the operation 
(FIELD, FLDNAMES). The object area pointer (OBJECTP) is set 
back one word and FIELD matched a second time. In this 
way the abbreviated operation (a,A) is expanded to its full 
form (a, p, aA) in the object area. Go on to shallow analysis 
of three and four argument operations 

or arg,sep,opcode,sep,arg,na : = 2,sep,arg,na : = 3 
/either if k = 10 ,k : = 36 

or if k = 23 ,k : = 36 
or if k = 35 ,k : = 36),reject 

Shallow analysis completed. Certain ambiguities arising in 
the group OPCODE (defined below) are removed once the 
number of operands is known and the K values are then 
corrected before going on to the deep analysis of three and 
four argument operations. In the deep analysis which 
follows the operation code is assigned to the variable OPCD, 
OCT is a working variable and PLANT plants information in 
the object area. 

o r if k l e 29,field,sep,opcd,osp.,',' 
/either if k l e 27 

/either if j = 0 , (either f i e l d 
o r d l i t e r a l ) 

o r if j = 1, d l i t e r a l 
o r i f j = 2, o l i t e r a l 
o r if j = 3, h l i t e r a l 
o r if j = 4, (either f ie ld 

o r o l i t e r a l ) 
or if j = 5,field),')' 

o r if k g t 27 
/either f ie ld o r d l i t e r a l ) 
/either if na = 3,',' 

/either if j = 1 , d l i t e r a l 
o r if j = 3 , h l i t e r a l 
o r if j = 4/either f i e ld 

o r o l i t e r a l ) ) 
o r nil.),')' 

or if k l e 31,if k g t 29 
/either f i e ld o r d l i t e r a l ) 
,',',osp.,opcd,osp.,',' 
/either if j = 3 ,h l i tera l 

o r f i e l d 
o r o l i teral) , ' ) ' 

o r if k = 32,field,sep,opcd,sep,fldname,oct 1=0,plant 
/either if n a = 3,', '/either f i e l d 

o r d l i t e r a l ) 
o r osp.),')' 

o r if k = 3 3 / e i t h e r ' s ' o r 'r ' , k : = 43),sep,'fc',sep 
,field,') ' ,na : = 1 

o r if k = 3 4 / e i t h e r ' s ' o r 'r ' , k : = 44),sep,'fd',sep 
, f ldname,oct : = 0,plant,osp.,')',na : = 1 

o r if k = 35,symbol,sep,'do',sep,symbol,osp.,')' 
o r if k = 36/either f i e l d o r d l i t e r a l ) 

,sep, 'd ' , f ldname,oct : = 0, p l a n t 
,sep,(either f i e ld o r d l i t e r a l ) 
,sep,(either f i e l d o r dl i teral) , ' ) ' 

o r if k = 37/'* ' ,oliteral,sep,opcd,sep,dliteral 
,sep,'*',oliteral), ') ' 

•followed by octal digits is an octal integer in BCL. Its use 
here is as an octal address in the Atlas computer. 

o r if k = 38,field,sep,opcd,sep 
/either f i e l d o r d l i t e r a l ) 
/either if na=3,sep,field o r nil.),')') 

,opend) 

L S K 



Lsix 
An LSIX instruction is terminated by one or more newlines. 
INSTREND plants descriptive information (number of tests, 
operations, etc.) in locations allocated at the start of the 
instruction by INSTRSTRT. 

NLS IS (OSP.,NL.,EITHER NLS OR NIL. ) 

NLS is similar to EOL but no information is planted. 
LSIXEND IS (FINISH : = OBJECTP,OBJECTP : = START 

,OBJECTPRINT,EXECUTE) 

Compilation is completed, the contents of the object area 
printed and execution commenced. 

The Execution of an Lsix Program 
During the analysis and recognition of Lsix source 

instructions descriptive information is planted in the 
object area. For each source instruction this informa-
tion includes the type of instruction (conditional or 
unconditional), the number of tests, the number of 
operations and the type of transfer of control (normal 
transfer, subroutine return, or no transfer). For each 
test and operation is stored the test or operation code 
and the addresses of operands. The outline flow 
diagram in Fig. 3 describes the operation of the inter-
preter routine. 

Each operand, whether a base field (bug), remote field 
or a constant (decimal, octal or hollerith literal), is 
specified by a sequence of one or more addresses ter-
minated by a zero. For example the remote field WAD 
is represented by the sequence of pointers 

DEFINE R FINDFIELD 

DO 

WREG2 : = 0 

Pick up the first address. 

Advance object pointer. 

If next address is 
zero go to end. 

Get address of block 
to which WREGI points. 

Get address of next 
field definition. 

Advance object pointer. 

If next address is 
zero go to end. 

Get contents of the 
field specified 
by WREG 1 a n d WREG2. 

Advance object pointer 
to next item of 
information. 

RETURN 

END 

WREGL : = COOF(OBJECTP) 

OBJECTP : = OBJECTP + ONE 

IF COOF(OBJECTP)= 0 GO TO END 

WREGL COOF(WREGI) 

MORE)WREG2 COOF(OBJECTP) 

OBJECTP : = OBJECTP j - ONE 

IF COOF(OBJECTP)= 0 GO TO END 

GETFIELD 

GO TO MORE 

END)OBJECTP : = O B J E C T P + T W O 

o 
! 

Bug W Definition 
of field A 

Definition 
of field D 

Three general field handling subroutines FINDFIELD, 
GETFIELD and STOREFIELD are used during exe-
cution to pick up and store operands. A field is defined 
at run time by its word number, left most bit and right 
most bit. For example, the operation (2,D6,3,17) defines 
field 6 of any block as bits 3 through 17 of word number 
2. The execution of such an operation results in the 
setting up of a field definition, including a 24-bit mask, 
which is used by the field handling subroutines. Because 
of the complete generality of field definitions no attempt 
is made to use the few special hardware facilities for 
handling special cases. The only special case which 
might have been worth detecting is the field which spans 
the full 24 bits of the word. 

Any field in the data structures may be specified by 
two pointers—one to the first word of the block con-
taining the field and the other to the definition of the 
field concerned. Other operands, basefields and bugs, 
are specified directly by the first of these pointers and 
the second pointer is set to zero. In the three subroutines 
which follow the two pointers are stored in WREGl 
and WREG2 respectively. 

Subroutine to find a field 
On entry OBJECTP points to the first of a sequence of 

addresses. On exit WREGI points to the block containing 
the field and WREG2 to the definition of the field (con-
ventionally zero for base fields and constants). 

Subroutine to get the contents of a field 
On entry WREGI points to a block and WREG2 to the 

definition of a field in that block (zero for base fields 
and constants). On exit WREGI contains the contents 
of the field right justified and WREG2 is unchanged. 

DEFINE R GETFIELD 

DO 

IF WREG2 NE 0 GO TO REMOTE If more than one 
address then field 
is remote. 

WREGL COOF(WREGL) 
RETURN 

REMOTE)WREG1 : - WREGI + 
WORD(WREG2) 

WREGI : = COOF(WREGI) 

WREG3 : — MASK(WREG2) 

1 2 7 , WREG 1, WREG3 ,0 

SHIFT : = 2 3 —RBIT(WREG2) 

IF SHIFT = 0 GO TO END 

1 3 4 2 , WREGL,SHIFT,0 

END)RETURN 

END 

Otherwise pick up 
contents (basefield or 
constant) and return. 

Point to word 
containing the field. 

Pick up word 
including the field. 

Copy the mask from 
the field definition. 

Machine order to 
mask the field. 

Right justify the 
field in WREGI 
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Fig. 2. Flow diagram for the subroutine ORDER 

Table 1 

Mnemonic notation used in Table 2 for describing L6 tests and 
operations. The notation is that used by Know! ton in the 
original description of L6. The ranges of arguments are those 
for the current Atlas Lsix. 

Field Designators 
c 'contents', i.e. designation of a field whose contents are 

used in a test or operation: either a bug, A, B, . . ., Z 
or a remote field, AO, Al, , ZZ.. . ZZZ (the number 
of characters is limited only by the length of a line of 
program. 

a 'affected field', i.e. designation of a field whose contents 
are affected by an operation. 

Names 
f name of a definable field: 0, 1, . . . . , 9, A, B, . . . Z. 
s a program symbol (label, name of a program location). 

Literals 
o an octal number specified directly: 0, 1, , 77777777. 
d a decimal number specified directly: 0, 1 , . . . . , 224 — 1. 
h a general literal: 0, 1, , ZZZZ. All characters (Atlas 

inner set) except newline are permissible; comma and 
right bracket must be written as (,) and ()) respectively. 
Newline must be specified by its octal equivalent. In 
the case of output operations Print and Punch the 
number of characters in a general literal is restricted 
only by the length of a line of program. 

Alternatives 
cd either c or d as defined above, 
co either c or o. 

The Atlas Lsix compiler records operand types in the variable 
J as follows: 
J = 0 

J = 1 
J = 2 
J = 3 

either field or 
decimal literal 
decimal literal 
octal literal 
general literal 

J = 4 either field or 
octal literal 

J = 5 field. 
J = 6 other special cases 

such as a field 
name (a single letter 
or digit). 

Table 2 
L6 Tests and Operations with the corresponding K-values used 
in the BCL implementation. Lower-case mnemonics are 
explained in Table 1. 

Equality, 
K = 1 

(c, E, cd) 
(c, EO, o) 
(c, EH, h) 
One-hits 
of, K = 5 
(c, O, co) 
(c, OD, d) 
(c, OH, h) 

Inequality, 
K = 2 

(c, N, cd) 
(c, NO, o) 
(c, NH, h) 
Zero-bits 
of, K = 6 
(c, Z, co) 
(c, ZD, d) 
(c, ZH, h) 

TESTS 
Greater than, 

K = 3 
(c, G, cd) 
(c, GO, o) 
(c, G H, h) 
Pointers 
to same 
block, K = 7 

(cl, P, c2) 

Less than, 
K = 4 

(c, L, cd) 
(c, LO, o) 
(c, LH, h) 

OPERATIONS 
Copy field, Add, Subtract, Multiply, 

K = 1 K = 2 K = 3 K = 4 
(a, E, cd) (a, A, cd) (a, S, cd) (a, M, cd) 
(a, EO, o) (a, AO, o) (a, SO, o) (a, MO, o) 
(a, EH, h) (a, AH, h) (a, SH, h) (a, MH, h) 

Divide, Logical Logical Exclusive 
K = 5 Or, K = 6 And, K = 7 Or, K = 8 

(a, V, cd) (a, O, co) (a, N, co) (a, X, co) 
(a, VO, o) (a, OD, d) (a, ND, d) (a, XD, d) 
(a, VH, h) (a, OH, h) (a, NH, h) (a, XH, h) 

Complement, Duplicate Interchange Point to 
K = 9 block, field contents, same block 

(a, C, co) K = 10 K = 11 as, K = 12 
(a, CD, d) (a, DP, c) (a, IC, a2) (a, P, c) 
(a, CH, h) 

Locate one Locate one Locate zero Locate zero 
bits from bits from bits from bits from 
left, K = 13 right, K = 14 left, K = 15 right, K = 1 
(a, LO, c) (a, RO, c) (a, LZ, c) (a, RZ, c) 

Count one 
bits, K = 17 
(a, OS, c) 

Binary to 
Decimal 

K = 21 
(a, BD, c) 

Free block, 
K = 26 

(a, FR, 0) 
(a, FR, c) 

Print, 
K = 30 

(cd, PR, co) 
(cd, PRH, h) 

Save field 
contents, 

K = 33 
(S, FC, c) 

Set up 
storage, 

K = 37 
(si, SS, d, s2) 

Restore 
field 

contents, 
K = 43 

(R, FC, c) 

Count zero 
bits, K = 18 
(a, ZS, c) 

Binary to 
Octal 

K = 22 
(a, BO, c) 

Input, 
K = 27 

(a, IN, cd) 

Punch, 
K = 31 

(cd, PU, co) 
(cd, PUH, h) 

Save field 
definition, 

K = 34 
(S, FD, f) 

Get block, 
K - 38 

(a, GT, cd) 
(a, GT,cd,a2) 

Restore 
field 
definition, 

K = 44 
(R, FD. f) 

Blanks to 
zero, K = 19 
(a, BZ, c) 

Decimal to 
Binary 

K = 23 
(a, DB, c) 

Shift Left, 
K = 28 

(a, L, cd) 
(a, L, cd, co) 
(a, LD, cd, d) 
(a, LH, cd, h) 

Print List 
K = 32 

(c, PL, f) 
(c, PL, f, cd) 

Do 
subroutine 

K = 35 
(DO, s) 
(s2, DO, s) 

(DO, State), 

K = 4 1 

16 

Zeros to 
blanks, K 20 
(a, ZB, c) 

Octal to 
Binary 

K = 24 
(a, OB, c) 

Shift Right, 
K = 29 

(a, R, cd) 
(a, R, cd, co) 
(a, RD, cd, d) 
(a, RH, cd, h) 

Define 
field, 

K = 36 
(cd, Df, cd, cd) 

(DO, Dump), 

K = 42 

Not used 
K = 25, 
K = 39, 
K = 40, 
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Appendix A note on BCL and the analysis of Lsix instructions 
BCL is a general purpose programming language with 

special emphasis on data structures. Consider the 
sequence 
FIELD IS (OSP., (EITHER'T. ' , TIMEFIELD 

OR BUG, (EITHER FLDNAMES OR NIL.) 
OR INTEGER , ' . ' , IF INTEGER LE 128, READFIELD) 
,OSP., OCT 0 , PLANT ) 

which occurs in the main text of this report. The first 
two words indicate that this is a definition of the 'name' 
FIELD. That the rest of it is a parenthesised structure 
with commas indicates that FIELD denotes a structure of 
the type known as a 'group'. The commas between the 
'objects' denote juxtaposition, and for alternatives the 
notation EITHER. . . . OR. . . . is used. The objects within 
a group may be literals or names. Character literals 
are enclosed with primes, numeric literals are obvious, 
also literal commands such as x : = z, and literal groups 
(in parentheses). Names, which must of course be 
defined somewhere, but can be defined passim, may be 
names of variables, routines or groups. Group defini-
tions may be recursive, i.e. the name of a group may 
appear in its own list of objects. 

Suppose we encounter the object 'FIELD' when in the 
course of reading in, and the next characters in the input 
stream are TA4, a remote field. These characters are 
matched with objects in the group FIELD. The 
first object, OSP., is a built in group which recognises 
and skips over any number (including zero) of spaces. 
Next we have the first of three alternatives. The next 
two characters in the input stream are compared with 
the literal 'T.'. T is matched but period is not so this 
match fails and the second alternative is tried. The 
group BUG recognises T as the name of a bug or base-
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field and plants its address in the object area. The 
second object in this branch is itself a pair of alternatives, 
(EITHER FLDNAMES OR NIL .), w h i c h m a t c h e s a n y n u m b e r 
of field names and computes and plants the addresses of 
the corresponding field definitions. In this example, 
field names A and 4 are recognised and the corresponding 
addresses planted. Finally, after the successful matching 
of the second alternative, OSP. reads over any spaces, 
the variable OCT is assigned the value zero and the group 
PLANT plants the value of OCT in the object area. Thus 
as a side effect of the recognition of the remote field TA4 
the following sequence of pointers is planted in the object 
area. 

f f j-
Bug T Definition Definition zero 

of field A of field 4 terminator 

A second example is the special read-only field 64. 
(an integral power of two terminated by a period). As 
the first character is a digit, attempts to match'T.' and 
BUG fail and the third alternative is tried. The object 
INTEGER is an integer variable to which the integer 64 
is assigned. Then the period is matched and if the con-
dition INTEGER LE 128 is satisfied the routine READFIELD 
tests that the input integer is an integral power of two 
and computes and plants the address of the field '64.'. 

When BCL is used as a compiler compiler, commands 
written as objects in a group may generate and plant 
object coding as soon as source language instructions 
are matched. Alternatively the user may, if he so 
wishes, construct analysis records. 
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