
PAGE 1192

The Use of BCL in a List Processing Environment.

By

Richard John William Housden.

University of London

Institute of Computer Science.

INSTiiUTc LF CMPUhrt SCIENCE
LIBRARY

Thesis submitted for the Degree of Doctor of Philosophy

at the University of London.

October, 1969.

PAGE 2

ABSTRACT

This thesis is primarilly concerned with the design and

implementation of machine independent systems for teaching

generalised list processing techniques. Two systems, LSIX and BCL,

are considered in detail. LSIX is a London version of Knowlton's

L6, and BCL is a general purpose data processing language with

special emphasis on the input and output of structured data. The

use of BCL here is as a compiler compiler for LSIX and, in an

extended form, as a list processor in its own right.

Part I, which is largely expository, gives a brief

introduction to list processing, outlines those features of the

classical list processing systems which are pertinent to this report

and describes LSIX and BCL.

Part II deals with the implementation of LSIX in BCL, and

storage allocation and collection. In general, students have

favoured the direct use of BCL as a list processor. The author's

extensions to BCL provide a system in which all levels of list

processing are possible. It is particularly suitable for teaching,

as the student is able to define his own structures and list

processing functions. The facilities available are illustrated by a

number of BCL list processing programs. This thesis has itself been

edited using a BCL list processing program.

Further extensions to BCL are proposed in Part III. These

allow the user to define, within his program, new types of

PAGE 3

structured objects, and operations to be performed upon them. The

result is a general purpose language which is capable of handling

data structures of any complexity, is suitable for teaching, and

whose implementation is largely machine independent.

The Appendices give details of programs and computer output.

A preliminary account of some of the work described in this thesis

has already been published in the Computer Journal. The first paper

containing the gist of sections 2.1 and 2.2 is included as Appendix

7 and a further paper, on List Processing in BCL, has been accepted

for publication.

PAGE 4

Acknowledgements

I should like to express my thanks to my supervisor,

Prof.B. Higman, for his valuable advice and encouragement throughout

this work.

I also wish to thank Prof. R.A. Buckingham and the staff of

the University of London Institute of Computer Science for the

facilities which have been made available to me. In particular I am

grateful to the members of the BCL group for their help during the

early stages of this work^ and to Miss.M. Mozetich for her careful

typing of the thesis.

Susan, Gillian, Jeremy,

Andrew, Clare, Simon,

Sarah and Jonathan.

PAGE 6

CONTENTS

PROLOGUE

Page

8

PART I

1.1

1.2

1.3

1.4

LIST PROCESSING

Introduction and notation.

List Processing Languages.

LSIX

BCL

10

11

19

24
27

PART II

2.1

2.2

2.3

2.4

2.4.1
2.4.2
2.4.3

2.4.4

2.4.5

THE IMPLEMENTATION OF LIST PROCESSING SYSTEMS 31

The Definition of LSIX in BCL. 32

The Execution of LSIX in BCL. 54

Storage Allocation and Collection. Jo

List Processing in BCL. 95

Introduction. 95

Manipulation of Expressions. 109

An Example of Automatic Garbage

Collection in BCL. 120

BCL program to build a tree structured

directory. 127

The Classical Transportation Problem. I34

PART III THE IMPLEMENTATION OF DATA STRUCTURES. 149

EPILOGUE 169

BIBLIOGRAPHY 174

CONTENTS PAGE 7

APPENDICES

1. A Complete LSIX program 175

2. The Syntax of LSIX defined in BCL. 185

3. BCL routines corresponding to LSIX operations. 192

4. Routines for automatic garbage collection in LSIX. 215

5. Extensions to the BCL compiler. 224

6. Garbage collection - output from a BCL program. 228

7. The definition and implementation of LSIX in BCL 233

PAGE 8

PROLOGUE

PROLOGUE PAGE 9

The original intention in the work described in this thesis

was to investigate the system requirements (operational and

linguistic) of a medium for teaching generalised list processing

techniques- i.e. techniques which transcend the uniform node

structure imposed by the classical list processing languages. At

the time when it was begun, Knowlton's paper on l6 had recently

appeared, and a first working version of BCL had just become

available. As l6 promised all the flexibility required and a field

test of BCL as a compiler compiler was in order, the programme

appeared to involve implementation of L6 using BCL as a compiler

compiler as a first phase, followed by use of L6 in a year's

teaching, and possibly some iteration on these two steps in the

light of student reaction. In the event, student reaction (and

indeed my own) was to favour direct use of BCL as a list processing

language in its own right. However, this did not become apparent

until the middle of the second year's work, and as a result there is

a sort of non sequitur in the work reported here, in that after

describing the implementation of L6 in §2.1 to §2.3, in §2.4,

where one would expect a discussion of the pros and cons of l6 in

the light of experience, instead one finds a discussion of list

processing in BCL. Had the results been known before it was begun,

doubtless the present section §2.4 would have been §2.1; however,

the time spent in implementing l6 has had its value in other

directions, and no further apology seems necessary for the space

devoted to it in what follows.

PART IX

List Processing.

PART I LSIX PAGE 11

List-Processing

§1.1 Introduction

List-processing is a method of storage organisation which

bridges the gap between the one dimensional store of a digital

computer and the multi-dimensional problems of the real world.

Often tables or rectangular arrays of information to be operated

upon by a program are not just amorphous masses of numbers but

involve important structural relationships between the data

elements. During the processing of this information the actual

structure of the data may be changed as well as the values contained

in the structures. Techniques for manipulating such structures were

introduced in 195^ when Newell, Shaw and Simon designed the first

information processing language (IPL II) for use in their

investigations of heuristic problem solving by machine. Research in

this and other areas such as mechanical translation, information

retrieval and operational research generated problems involving a

form of information processing which could not be handled

conveniently in any of the conventional languages. Often the

precise form of the data was not known in advance and complex data

structures evolved and were modified dynamically during the

execution of the program. The IPL II system made use of linked data

elements, which were not necessarilly stored in consecutive

locations.

The idea of simple linked lists of information originated in

connection with the design of computers with drum memories. After

executing the instruction in location n, such a computer is usually

not ready to get its next instruction from location n+1 because the

drum has already rotated past this point. The most favourable

position for the next instruction depends upon the time taken to

PART I List Processing Languages PAGE 12,2

execute the current instruction and the machine can operate many

times faster if its instructions are optimally located rather than

consecutively. The machine design allows for an extra address field

in each instruction to store a link to the next instruction to be

obeyed. Programs for *plus one* address machines, as they are

called, are the earliest examples of linked lists although there is

no hardware provision for dynamic insertion or deletion of

instructions.

Linked memory techniques are now recognised as basic computer

programming tools which can be used in ordinary programming

languages without requiring sophisticated subroutines or

interpretive routines. Much of the work described in this report

has arisen in the course of teaching these techniques to M.Sc.

students and the systems which have been implemented for this

purpose allow the students to get near to the innermost workings of

list-processing programs.

Definition of terms

It is necessary at this point to define several terms and

notations which will be used frequently in this report. The

information stored in a list or a table consists of sets of nodes or

data blocks (called beads, records or list elements by some

authors). Each node consists of one or more consecutive computer

words divided into named parts called fields. In the simplest case

a node is just one word of computer memory and has just one field

comprising the whole word. A more interesting example is a node

which represents an element of a sparse matrix. Such a node might

be divided into five fields!

PART I List Processing Languages PAGE 13,2

RON COLUMN VALUE COLUMN RON
INDEX INDEX LINK LINK

Thus each element is a member of both a row list and a column list.

The contents of a field may be an address, a number, alphabetic

information or anything else the programmer may desire. The

address of a node (a link, pointer or reference to that node) is

usually the address of the first word of the node. Linked

structures are built by acquiring new nodes and planting their

addresses in link fields of other nodes in the structure.

A field within a node may be referenced by writing its name

followed by the address of the node enclosed in parentheses. For

example suppose that each node of a simple linked list consists of

two fields named SYMBOL and LINK and that a link variable P contains

the address of the first node of the list:

Then the symbol field of the first node is referred to as SYMBOL(P)

and the link field as LINK(P), Fields in nodes other than the first

may be accessed via the link fields of preceding nodes. Thus

SYMBOL(LINK(P» refers to the symbol field of the node to which

LINK(P) points, i.e. the second node in the list. Note that the

last node in the list has an easily recognisable symbol in its link

field to indicate that this is the end of the list. More complex

structures may be built by storing in the symbol fields pointers to

sublists as shown below.

PART I L i s t P r o c e s s i n g Languages PAGE 4,2

In this example SYMBOL(LINK(LINK(Q))> contains a pointer to the

second sublist of the list Q (the list to which Q points).

Note that names have been used for two quite different things:

as variables and as fields. It is meaningless to use a field name

on its own, it should always be followed b3?- the address of the node

of which the field is a pa.rt. The notation used here for referring

to fields is that used in BCL and is similar to the notation of

LISP, An alternative notation is that used in LSIX in which the

address of the node precedes the name of the field. Thus if A is a

field name and V»r a link to a node or data block wo refer to field A

of that block as MA.

A simple (or linear) list is defined as a list without

sublists, that is a list of nodes whose only structural relationship

is essentially a linear one. Some important examples of simple

lists are those in which all insertions and deletions take place at

the ends:

A stack is a simple list in which all insertions and

deletions take place at one end.

Stacks are particularly useful where a nested structure is involved,

for example in arithmetic expressions. They occur frequently in

connection with recursive algorithms.

PART I List Processing Languages PAGE 15,2

A queue is a simple list in which insertions are made

at one end and deletions at the other.

A deque (or double ended queue) is a simple list in

which insertions and deletions are made at

the two ends.

Queues and deques occur in simulation models in which objects are

delayed and awaiting service.

The advantages of linked storage compared with sequential

allocation are clear when we need to insert a new node or delete a

node in the middle of a list. For example consider the sentence

THE DOG BIT THE MAN

These words could be stored in sequential locations or in a linked

form:

THE DOG BIT THE MAN

THE DOG BIT THE THE DOG BIT THE * MAN

Suppose now that we wish to insert extra words to give

THE MAD DOG BIT THE FAT MAN

In the sequential case, some words already in the list must be moved

to make room for the insertions. In a long list this is very

inefficient. If linked locations are used then additional items may

be stored in any locations that happen to be available, and

insertions are effected simply by changing a few links.

THE r» DOG BIT THE t» MAN

jk.
MAD FAT

INSTITUTE OF COMPUTER SCIENCE
LIBRARY

PART I List Processing Languages PAGE 16,2

Clearly it is just as easy to delete a node from a linked

list.

One serious disadvantage of linked storage is the time taken

to access nodes other than the first in the list. Access to a

random node is gained by linking down from the beginning of the

list. When data is to be accessed at random, sequential allocation

of storage is preferred and the address L[k] of the kth node is

LfO]+(k-l)c where c is the number of words in a node.

Circular Lists

A circular list has the property that its last node links back

to the first instead of storing a terminator in its link field. It

is then possible to access any node in the list, starting at any

point. The following situation is typical:

A circular list can be used conveniently as a stack or as a

queue, since a circular list with one pointer to the rear node is

equivalent to a linear list with a pointer to each end.

Some programmers insert a special easily recognisable node

into each circular list to mark the beginning and end of the list.

This also has the advantage that the list is never empty. The

special node used for this purpose is known as a listhead.

References to a circular list are usually made via the list head.

The circular list now becomes

List head

PART I List Processing Languages PAGE 17,2

List heads are not confined to circular lists and can be used as an

'anchor* in any linked list. It is sometimes found useful to store

information about a list in its head e.g. the number of nodes on the

list.

Doubly linked lists

For even greater flexibility we can include two links in each

node, to the preceding and the following nodes:

As in the case of circular lists, it is often convenient to include

a list head giving the following typical representation:

List head

If the link fields are named LLINK and RLINK it is clear that if X

is the address of any node in the list then

RLINK(LLINK(X)) = LLINK(RLINK(X)) r X

A doubly linked list permits movement backwards and forwards along

the list. Another of its many advantages is the ease with which a

node can be deleted from the list. For example the node with

location X may be deleted as follows:

PART I List Processing Languages PAGE 18,2

Before X

RLINK(LLINK(X)) :=RLINK(X)

LLINK (RLINK (X)) 3 =LL INK(X)

and the node X is returned

to the pool of free space.

List structures

A list structure is a list in which several fields in a node

may contain cross links to other nodes in the structure.

PART I LSIX PAGE 19

§1.2 List processing languages

Many list processing systems have been developed, both as

independent computer languages and as extensions to existing

languages, to deal with the manipulation of complex data structures.

The most widely used systems have been IPL-V (Newell, Shaw and

Simon, 1959), and LISP (McCarthy, 1959), and more recently SLIP

(Weisenbaum, 1963). Several books have been written about these

systems and we give here only a brief description of those features

which are pertinent to this report.

Storage allocation and collection

An important common feature of list-processing languages is

that storage for data structures is not preassigned but is allocated

dynamically when it is needed. As the pattern of the data, both

structure and contents, evolves, new nodes are acquired and added to

the structure by creating links from the structure to each new node.

This implies some mechanism for allocating nodes as they are

required. Usually this is accomplished by means of a list of

available space (a linked stack) which contains all those blocks

which are not being used. Initially this list contains all storage

locations not occupied by the program. Blocks of store (nodes) are

detached from this for use in building data structures during the

execution of the program.

Eventually the available space list may be exhausted and the

problem arises of reclaiming any blocks which, after being used,

have become free again. In some systems, notably IPL-V and SLIP, it

is the responsibility of the programmer to return data-blocks to the

available space list when they become free. To do this the

programmer must keep track of the status of all lists and sublists.

Part of a list may be shared with several other lists and the

PART I List Processing Languages PAGE 20,2

structures involved may be so complex that it is difficult to keep

track of them. SLIP deals with this problem by keeping a reference

count in the head of each list. In other systems such as LISP it is

impossible to keep track of all list-cells and no blocks are

returned to the available space list until the latter has been

exhausted. Then a 9garbage collection9 procedure is initiated which

scans all active list structures marking those blocks which are in

use. Blocks which are no longer attached to the active

list-structure will not be marked. When the lists have been

scanned, all data blocks are examined and those which are free are

returned to the available space list. At the same time marks are

erased from the blocks which are still in use, as the garbage

collector may be entered several times during the execution of a

program. Details of some algorithms for automatic garbage

collection are given in §2.4.

IPL-V

IPL-V is the assembly code of a hypothetical machine, and,

like most list-processing languages, it is interpreted, not

translated. A node or list-word in IPL-V consists of two

address-fields called SYMB and LINK and two 3-bit fields P and Q.

The fields P and Q contain information about the contents of the

fields SYMB and LINK. Usually SYMB contains an IPL symbol and LINK

points to the next node in the list. The SYMB field may point to a

sublist. If the LINK field of a node is zero then that node is

taken as the last node in the list.

PART I List Processing Languages PAGE 21,2

LISP

Programs in LISP are expressed in mathematical functional

notation combined with conditional egressions. The internal

representation of data structures is similar to that in IPL-V in

that each node (or pointer word as it is called in LISP) consists

of two address-size fields called car and cdr. Usually cdr points

to the next node in the list and car points either to a node or to

numbers or strings of characters called atomic symbols. An atomic

symbol is distinguished from other nodes by a special symbol in its

first field.

SLIP

Unlike IPL-V and LISP which are autonomous systems, SLIP

consists of a set of subroutines which can be embedded within a

FORTRAN-type language. This therefore has the advantage that the

usual arithmetic facilities of algebraic languages are readily

available. The internal representation also differs in that a list

structure in SLIP is both circular and doubly linked. Each node

consists of (a) two link fields called the left and right links, (b)

a 2-bit field which identifies the type of the list item and (c) a

full word field which contains the actual item. This item may be a

full data word or a pointer to a sublist.

Need for flexibility

Often the most natural data form for a particular problem

representation is not the same as the basic form used in the list

processing system which has been selected. The three systems

mentioned above allow no flexibility in the type of node set up. A

programmer may wish to build linked structures in which the nodes

PART I List Processing Languages PAGE 2,2

are not all of the same size, to partition nodes into fields in

different ways or even to allow some fields to overlap. It is

always possible to represent a data form using the basic nodes

provided by a system. For example in a LISP-like system the five

field node

ROW COLUMN VALUE COLUMN ROW
INDEX INDEX

I
LINK LINK

could be represented by

and a doubly linked list could be constructed using pairs of nodesS

LEFT
LINK

RIGHT
LINK

LEFT
LINK

RIGHT
LINK

> f
Data item

However, this is unnecessarilly complicated and pedagogically it is

better to allow a student to define the structure of nodes required

in his program. This thesis is concerned mainly with the design and

implementation of list processing systems for teaching purposes.

Such a system must be sufficiently flexible to demonstrate the

techniques used in list programming in both high level functional

languages such as LISP and low level languages which allow the user

to get close to the innermost workings of his program. The two

systems considered are LSIX, the author's version of the Bell

Telephone Laboratories low-level list processing language L6, and a

system based on BCL, a general purpose data processing language

which is currently being developed under the direction of D.F.Hendry

PART I List Processing Languages PAGE 23,2

at the University of London Institute of Computer Science. Both are

more flexible than most of the popular list processing systems and

allow the programmer to specify nodes of several different sixes and

struetures^ which can be used simultaneously in any program. LSIX is

essentially a low-level system whilst BCL is a high-level language

which allows the use anywhere in the program of symbolic assembly

language instructions for the machine concerned.

A number of extensions have been made, by the author, to the BCL

compiler to provide a list processing system with most of the

advantages of other high and low-level list processors. In the

extended BCL a programmer is able to define and build his own

list processing system. Examples of demonstration programs used

in an M.Sc. course are given in §2.4. Students have been able to

practise list programming without the restrictions imposed by better

known systems. By simulation of LISP, IPL-V and SLIP in LSIX or BCL

the basic operations which underlie their implementation can be

understood.

PART I LSIX PAGE 24

§1.3 LSIX

The most important features which distinguish LSIX from other

list processors are the availability of several sizes of storage

blocks and a flexible means of specifying within them fields,

containing data or pointers to other blocks* Data structures are

built by appropriating blocks of various sizes, defining fields

(simultaneously in all blocks) and filling these fields with data

and pointers to other blocks* Available blocks are of lengths 2**n

machine words where n is an integer in the range 0-7* The user may

define up to 36 fields, which have as names single letters or

digits* The fields may overlap and may be redefined several times

during the execution of a program. For example the field named D

may be defined as bits 5 through 17 of word number 2 of any block*

Any field which is long enough to store an address may contain a

pointer to another block* The contents of a field are interpreted

according to the context in which they are used*

The LSIX system contains 26 basefields called bugs. The

contents of a bug are referred to by naming the bug (a single

letter). If the bug contains a pointer to a block, a particular

field in that block is referred to by concatenating the names of the

bug and the field. For example, WD refers to the D field of the

block to which W points. A field more remotely positioned from the

bug is referred to by concatenating the names of the bug, the

sequence of pointers and the field. Thus if bug X points to a block

whose B field points to a block whose A field points to a block

whose D field is to be referenced, the latter is called XBAD.

PART I LSIX PAGE 25

LSIX Instruction format

In general an LSIX instruction consists of an optional label

followed in order by optional tests, optional operations and an

optional transfer of control. An example given by Knawlton is

I L2 IFNONE (XD,E,Y)(XA,E,0) THEN (XD,E,l)(X,P,XA) L2

which says that

I IFNONE of the following is true: that the contents of XD

I equals the contents of Y or that the contents of

I XA equals 0,

I THEN perform the following operations: set the contents

I of XD equal to 1, make X point where the current

I contents of XA. point and then go to the instruction

I labelled L2 (the same instruction in this case).

I OTHERWISE no operations are to be performed and control

I goes to the next line of coding.

Other conditions are

I IFALL satisfied IF ALL of the elementary tests are

I satisfied,

I IFNALL satisfied IF NOT ALL of the elementary tests

I are satisfied

I IFANY satisfied IF ANY of the elementary tests are

I satisfied.

I IF and NOT are synonymous with IFALL and IFNONE.

The other instruction type is the unconditional instruction

consisting of a sequence of operations to be performed. A complete

LSIX program and computer output illustrating the diagnostic aids

available is given in Appendix lp and Appendix 7 includes a complete

list of LSIX tests and operations.

PART I LSIX PAGE 26

Three pushdown stores are available in the system for saving

field contents, field definitions and for subroutine calls.

The author*s main extensions to the original LSIX are the

generalisation which allows blocks of any size and the provision of

an automatic garbage collector.

PART I LSIX PAGE 27

§1.4 BCL

BCL is a general purpose data processing language with special

emphasis on the input and output of structured data (Hendry, 1966).

The structure of the data to be transferred is defined by means of a

group or ordered set of objects (elements).

Consider the sequence

I FIELD IS (OSP.,(EITHER •T.*, TIMEFIELD

I OR BUG,(EITHER FLDNAMES OR NIL.)

I OR INTEGER,».', IF INTEGER LE 128, READFIELD),

| OSP., OCTtro, PLANT)

which appears in Section 2.1. The names TIMEFIELD,BUG,FLDNAMES and

READFIELD are the names of groups of objects defined elsewhere in

the program; INTEGER and OCT are previously defined variables of

type A (i.e. they can store an address or an integer). The first

two words, FIELD IS, indicate that the above sequence is a

definition of the name FIELD. That the rest of it is a

parenthesised structure with commas indicates that FIELD is the name

of a group. The commas between the objects denote juxtaposition and

for alternatives the notation EITHER...OR...OR,.. is used. The

objects within a group may be literals or names. Character literals

are enclosed with primes, numeric literals are obvious, also literal

commands such as x J= z, and group denotations, i.e. unnamed groups,

which are enclosed with parentheses. Names which must of course be

defined somewhere, but can be defined passim, may be names of

variables or groups. Group definitions may be recursive, i.e. the

name of a group may appear in its own list of objects.

A group may be encountered either in input mode or in output

mode. When a group is encountered in input mode the next characters

PART I LSIX PAGE 28

in the input stream are matched with objects in the group. If the

data in the input stream matches the structure defined it is input.

During the matching process any literal commands are obeyed and

groups whose names, appear in the list of objects are called. If at

any point the data fails to match the structure defined in the

current branch then control backtracks to the nearest branchpoint

and attempts to match the next alternative. With the exception that

the input stream pointer is reset, any side effects resulting from

the execution of commands in branches which eventually fail to match

are not undone.

Suppose the object 'FIELD* is encountered in input mode and

the next charactexS in the input stream are TA4 , a remote field.

These characters are matched with the objects in FIELD. OSP. is a

built-in group which matches any number (including zero) of spaces.

Next we have a literal group consisting of three alternatives which

are tried in order. The next two characters are compared with 'T.

matching is successful on T but fails on the period so the first

alternative fails and the second is tried. The group named BUG is

entered. It recognises T as the name of a bug or basefield and

plants its address in the object area, The second object in this

branch is itself a literal group consisting of a pair of

alternatives, FLDNAMES and NIL. FIDNAMES matches any number of

field names (A and 4 in this case) and plants in the object area the

addresses of the corresponding field definitions. NIL. is the

system defined null element. After successfully matching A and 4

with the second branch of the literal group the input process

continues with OSP. which again reads any spaces. The variable OCT

is assigned the value zero and the group PLANT is called to plant

the value of OCT in the object area. Thus as a side effect of the

PART I LSIX PAGE 29

recognition of the remote field TA4 the following sequence of

pointers is planted in the object area.

0

1 f f ' t

| BUG T Definition Definition Terminator
I of field A of field 4

A second example is the LSIX read-only field called 64. (an

integral power of two terminated by period). Attempts to match this

with 9T. 9 and BUG fail. In the third alternative, INTEGER being a

variable of type A, the integer 64 is assigned to it, then the

period is matched. The condition INTEGER < 128 is satisfied so

READFIELD is called to check that the input integer is an integral

power of 2. The final objects are processed as before and the group

READ is completely matched.

When a group is encountered in output mode the process is that

of assembling characters for output instead of matching characters

for input. By means of conditions alternative objects may be

selected for output. Programs are entered in input mode and are

switched to output mode on encountering the special group name 0/P

which is followed by a literal group of objects to be output. On

completion of this literal group the system reverts to input mode.

That a BCL program is driven by the structure of the data in

the input stream was the main reason for its use as a compiler

compiler for LSIX. Through the experience gained in this work and

as BCL developed after the first version was produced in 1966 it

became clear that BCL itself is suitable for teaching list

processing techniques. Many of the basic operations required were

already built into the language. It is possible to define nodes

consisting of any number of fields which may store numbers,

PART I LSIX PAGE 30

addresses, or character strings of any length. A student can define

the basic list-processing functions and define his own storage

allocation and collection mechanism including an automatic garbage

collector. A number of facilities such as returns from the middle

of a group and the provision of functions with parameters have been

implemented by the author to provide a teaching system within which

all levels of list-processing are possible. Details of these

extensions to the BCL compiler are given in Appendix S • The use of

BCL as a list-processor is described in section 2*4 in which BCL

programs are given for the solution of a number of problems

including differentiation of a polynomial expression stored as a

binary tree, a solution of the classical transportation problem

using orthogonal lists and updating a tree structured file

directory. Groups of commands for automatic garbage collection are

also described.

PART IX

The Implementation of List Processing Systems

PART I LSIX PAGE 32

§2.1 The Definition of LSIX in BCL

In this section the syntax of LSIX is defined in BCL.

Embedded in the syntax definitions are commands, including calls to

routines, which are obeyed during the matching of input LSIX source

statements. For the reader who has difficulty in following the

complete definition of LSIX and who would prefer at the first

reading to separate the syntax from the semantics, a definition of

the syntax only is given in Appendix 2* The semantic commands

generate a linked list of object code in the object area of the

store. In LSIX the newline character is the instruction terminator

and programs are analysed line by line. Each record in the linked

list corresponds to a single LSIX instruction.

Format of object code

The general form of the data to be analysed and the format of

the object code is illustrated by the complete LSIX program given in

Appendix 1. It will be seen from the object listing for that

program that each record consists of four halfwords of links and

descriptive information, followed by information of variable length

representing elementary tests and operations. A typical record is

that representing line 15 of the program i.e.

BACK IF (XB,L,XDB) THEN (XB,IC,XDB) (X,D) BACK

The object code generated for this instruction is described in

detail below.

PART II The Definition of LSIX in BCL PAGE 3 3

Word
0

Contents
3 oi 02 ol 7

00112244

00112140

00000170

Remarks
a description word consisting
of five fields!
(1) the condition type,

3 represents IF;
(2) the number of elementary

tests, 1 in this case;
(3) the number of elementary

operations, 2 in this case;
(4) the type of transfer of

control, 1 represents
normal transfer;

(5) a flag to distinguish
description words from
other information.

Address of next instruction
in sequence, line l6 in this
case.
Address of first elementary
operation in current record.
This field is not used for
unconditional instructions.
The line number (15).

Words 4-II contain information representing the test (XB,L,XDB).

4 1
1

00000040

5 1 00101234
6 1 00100260
7 1 • 00000000

8 I 00101234
9 1 00100320

10 I 00100260
11 1

I
00000000

Test code, 4 represents
'less than'.
Address of bug X.
Address of definition of field B.
Zero terminator of the sequence
of addresses representing XB.
Address of bug X.
Address of definition of field D.
Address of definition of field B.
Terminator of the sequence
representing XDB,

The representation of elementary operations is similar to that

for tests but in addition to the operation code the number of

operands also is stored. Thus (XB,IC,XDB) is represented by words

12 to 20 inclusive (see Appendix 1) and (X,D) , which is an

abbreviation for (X,P,XD), is represented in its full form by words

21 to 27* The final word of this record, word 28, contains the

address to which control is transferred after execution of the

elementary operations, i.e. the address of line 15*

PART II The Definition of LSIX in BCL PAGE 34

Definition of LSIX

The following program compiles object code, the format of

which was described in the preceding paragraphs. Declarations of

variables and the details of some routines are not included here but

with the aid of the detailed comments on most of the groups.the

reader should have no difficulty in following the program.

It is convenient to define first an 'indefinite* group in

BCL, namely

MISC<?) IS (A CGOF,A PLUSl,A PLUS2,A PLUS3,A PLUS4,A PLUS5)

The variables C00F,PLUS1,PLUS2, etc, are defined as type A

i.e. they can store either an address or an integer. Together they

constitute the group named MISC. The query indicates that MISC is
a n indefinite group i.e. that any variables declared within it are

allocated relative addresses, or offsets, and not absolute

addresses. Thus COOF is an offset of zero, PLUS1 an offset of one

halfword, PLUS2 two halfwords etc. We can think of them as defining

a node consisting of six fields

COOF PLUS1 PIUS 2 PLUS3 PLUS4 PLUS5

As described in Part I, a field name is meaningless on its

own and must always be used as an offset from some specified base.

Thus if PTR points to the first word of a node COOF(PTR) refers to

the first (half)word of the node, PLUS1(PTR) to the second and so

on. The offsets defined in the group MISC are used frequently in

both the definition which follows, and in routines associated with

the execution of LSIX.

When LSIX was first defined in BCL, labels and GO TO commands

were not available in groups and several operations such as the

PART II The Definition of LSIX in BCL PAGE 35

dictionary search have been implemented recursively to overcame this

problem.

Main program structure

I LSIX IS (INITIALISE, LSIXSTATS)

| LSIXSTATS IS (LINE :r LINE+1,

I (EITHER INSTR

| OR DIRECTIVE

I OR NQNMATCH, GARBAGE), IS IXSTATS)

The routine INITIALISE initialises certain variables, such as the

object area pointer, the dictionary area pointer and storage

locations for bugs and field definitions, before compilation

commences. An LSIX program is defined as LSIX statements which in

turn are defined recursively as instructions or directives followed

by other statements. In the event of failure to recognise an

instruction or a directive, NONMATCH outputs a suitable message and

GARBAGE skips all characters up to the end of the line. Compilation

of an LSIX program is terminated by the directive ••ENTER*. The

variable LINE contains the line number. STARTP, which is used

below, contains the object area address of the start of the current

line.

| DIRECTIVE IS (OSP., EITHER ••LSIX*, OPTIONS,

| OBJECTPts STARTP

| OR *•ENTER*,LSIXEND)

PART II The Definition of LSIX in BCL PAGE 3 6

OPTIONS IS (OSP.,(EITHER •SOURCE',TRACEDATA

OR 'LIST*,LISTlsl

OR UNTRACEDATA),

(EITHER SEP, OPTIONS

OR NLS))

SEP IS (OSP., ,,t,OSP.)

OSP. is a built-in group for matching optional spaces. Other

built-in groups include SP. for a single space, NL. for a newline

and NIL. the null group. The options SOURCE and LIST following the

directive *LSIX ask for source and object listings respectively.

•LSIX without any options inhibits source listing. TRACEDATA

switches on the data trace so giving source listing commencing with

the next line of input and if LISTsl, when IBIXEND is entered at the

end of compilation, then an object listing is given in octal before

entering the program at the first instruction.

I INSTR IS (INSTRSTRT, OSP.,

| EITHER CQNDNL

I OR UNCONDNL

I OR LABEL,(EITHER CONDNL

| OR UNCONDNL

| OR EOL»

Any instruction may be labelled. The label setting is dealt with by

the group LABEL which is defined below. In LSIX the GO TO <label>

command is specified by the occurence of a label name at the end of

an instruction. Thus if an LSIX instruction consists only of a

label name that name is to be translated as a label reference and

PART II The Definition of LSIX in BCL PAGE 37

not a label setting. The group LABEL deals with this case also.

EOL matches the instruction terminator and plants descriptive

information.

I INSTRSTRT IS (STARTPI =OBJECTP, C3BJECTP5 =OBJECTP+2,

I cc»NDs=o,NT:=o,NOs=o,GcrraFiAG:=o,

I PLUS2(STARTP)1=0)

INSTRSTRT assigns to STARTP the address of the first word of the

next record to be constructed in the object area, it advances the

object pointer by four (half)words and initialises the condition

type, number of tests, number of operations, the transfer flag and

word number 2 of the new record.

Types of instruction

I CONDNL IS (CONDITION,TESTS,

| (EITHER * THEN * , OPERA TNS OR NIL.),

| TRANSFER, EOL)

I UNCONDNL IS ((EITHER 'THEN* OR NIL.), OPERATIONS,

I (EITHER TRANSFER OR NIL.),EOL)

The literal 'THEN* which may precede the list of elementary

operations in an unconditional instruction is included for

compatibility with the original l6.

PART II The Definition of LSIX in BCL PAGE 38

Types of condition

When a condition is found its type is noted in the variable COND,

CONDITION IS (EITHER 'IFANY*, CQND is 1

OR 'IFNALL', COND 2= 2

OR *IFALL*, COND is 3

OR •IFNONE', COND is 4

OR 'IF', COND IS 3

OR 'NOT', CQND js 4)

Analysis of tests

TESTS is a series of elementary TESTs defined in the usual manner.

During execution, the conditions IFANY and IFNALL may be satisfied

before all of the elementary tests have been performed, in which

case control is transferred immediately to the first operation. As

each test takes space in the object area and the number of tests is

unknown, when no more tests are found, the address of the first

operation is planted, by TESTSEND, in PLUS2(STARTP) the field

reserved for this purpose by INSTRSTRT. Test codes and operand

types are assigned to K and J respectively and at the end of each

test, TESTEND plants the value of K in the object area in a location

reserved by TESTSTRT. TESTEND also keeps a count of the elementary

tests in NT, (note the difference between TESTSEND and TESTEND).

| TESTS IS (OSP.,TEST,EITHER TESTS OR OSP.,TESTSEND)

PART II The Definition of LSIX in BCL PAGE 39

TEST IS (* (*,TESTSTRT, FIELD,SEP,

(EITHER(EITHER *E , ,K2=1

OR , N , , K : = 2

OR , G» ,K : =3

OR • l ' , k : = 4) ,

(EITHER • 0 * , J |=2

OR • H * , j : = 3

OR J : =O)

OR (EITHER *0» ,K :=5

OR , Z * , K : = 6) ,

(EITHER »D , , JX=1

OR •H*,J1=3

OR JJ=4>

OR •pf,K:=7 ,J:=o),

This completes the first argument and the predicate. Matching

continues with the separator and second argument. SEP is not used

for the next separator as any spaces following the comma are

significant in a •hollerith* literal.

OSP . , » , • , (E ITHER IF J=0,(EITHER FIELD

OR DLITERAL)

OR IF J=L, DLITERAL

OR IF J=2, OLITERAL

OR IF J=3 , HLITERAL

OR IF J=4, (EITHER FIELD

OR OLITERAL)),

*) ' ,TESTEND)

PART II The Definition of LSIX in BCL PAGE 40

Literal operands and FIELD are defined below.

| TESTSTRT IS (TESTPt =OBJECTP, OBJECTPJ =OBJECTP+ClNE)

I TESTEND IS (NT 1= NT+1, COOF(TESTP):=K)

| TESTSEND IS (PUJS2(STARTP) := OBJECTP)

Analysis of operations

In general, operations have either three or four arguments the

second of which is the mnemonic function code but there are two

special cases, (DO, symbol), the subroutine call, and (a, A), an

abbreviation for (a,P,aA), with only two arguments. The analysis

of an operation is performed in two passes during the first of which

no object code is planted. On the first scan a shallow analysis

determines the operation code (K) and the number of operands (NA).

The matching process is then deliberately failed by using the group

REJECT. This technique of deliberately failing an alternative is

commonly used in BCL programming as a means of scanning the same

data several times. Information picked up during the shallow

analysis is used in the deep analysis on the second pass. OPSTART

sets K and NA to zero and reserves locations for their final values

which are planted by OPEND when the operation has been matched.

OPEND also keeps a count of the operations in the variable NO.

| REJECT IS (IF 1=0)

| OPERATNS IS (OSP. ,0PERATN, EITHER OPERATNS OR OS P.)

QPERATNS is defined in the usual way as a series of elementary

operations. In the next group, OPERATN, the first alternative is a

shallow analysis which attempts to match a two argument operation,

PART II The Definition of LSIX in BCL PAGE 41

if it succeeds NA is set to 2 and a deep analysis performed. The

group ARG skips all characters except comma and right bracket.

| OPERATN IS ('(', OPSTART, OSP.,

| (EITHER ARG, SEP, ARG, ')', NAJ22, REJECT

Shallow analysis for two argument operations completed, we go on to

deep analysis of two argument operations if NAs2.

•R IF NA=2, (EITHER 'DO*,SEP,(EITHER •STATE*,K:=4l,NA:=0

OR 'DUMP*,KI=42,NA1=0

OR SYMBOL,K!=35,NAS=1

OR (EITHER FIELD,SEP,REJECT

OR FIELD, SEP,

QBJECTP != QBJECTP - ONE,

FLDNAMES,K:=12» ,OSP., •) •

This completes the analysis of two argument operations.

'STATE' and 'DUMP* are system subroutines. SYMBOL is defined below.

Note the special technique for dealing with the operation (a, A)

which must be expanded to its full form (a,P,aA) in the object

area. For example (AB,CDE) is an abbreviation for (AB,P,ABCDE).

Thus the field defined by AB must be matched first as the first

operand and then as the first part of a sequence of addresses

specifying the second operand. This is achieved by first matching

FIELD, planting object code for the first operand as a side effect,

and then failing the match using REJECT, so that in the next

alternative FIELD matches the same sequence of names again and is

followed by SEP. FIELD plants a aero terminator. This is undone by

PART II The Definition of LSIX in BCL PAGE 42

stepping back the object pointer by one (half)word

(OBJECTP:=OBJECTP-ONE). Finally the remaining sequence of names is

matched by FLDNAMES and the operation code set to 12 which

corresponds to the function P.

The next alternative deals with the shallow analysis of

operations having more than two arguments. Note that in the

following analysis NA is set to the number of operands.

| OR ARG,SEP,OPCODE, SEP,ARG,NA:=2,SEP,ARG,NAl=3,

| (EITHER IF K=10,K:=36

I OR IF K=23,KI=36

| OR IF K=35,K5=36),REJECT

This completes the shallow analysis. Certain ambiguities

arising in OPCODE, which deals with the function code and assigns

values to K (operation code) and J (operand type), are removed once

the number of operands is known. For example, DB with two operands

means 'convert from decimal to binary* but with three operands it is

'define field B '. Values of K are then corrected, if necessary,

before going on to the deep analysis. In the deep analysis which

follows, OPCD reads the function code, OCT is a working variable and

PLANT plants the value of OCT in the object area. A table of

operations with the corresponding values of K is given in Appendix

7*

| OR IF K LE 29, FIELD,SEP,OPCD,OSP.,», *

I ,(EITHER IF K LE 27,

| (EITHER IF JsO, (EITHER FIELD

| OR DLITERAL)

| OR IF J=l, DLITERAL

PART II The Definition of LSIX in BCL PAGE 43

OR IF J=2, OLITERAL

OR IF J=3, HLITERAL

OR IF J=4, (EITHER FIEID

OR OLITERAL)

OR IF J=5, FIELD), •)*

OR IF K GT 27,

(EITHER FIEID OR DLITERAL),

(EITHER IF NA-3, •,« ,

(EITHER IF J=l, DLITERAL

OR IF J=3, HLITERAL

OR IF J34, (EITHER FIELD

OR OLITERAL))

OR NIL.), *)'

OR IF K LE 31, IF K GT 29,

(EITHER FIEID QR DLITERAL),

• , • ,OSP. ,OPCD,OSP. , ,

(EITHER IF J=3, PRPUHLIT

OR FIEID

OR OLITERAL), *)•

OR IF K=32,FIEID,SEP,OPCD,SEP,FIDNAME,0CT|=0,PLANT,

(EITHER IF NA=3, (EITHER FIEID

OR DLITERAL)

OR OSP.), »)•

OR IF KS33, (EITHER 'S* OR »R', KJS43),SEP, •FC*,

SEP,FIELD, *)», NAjsl

OR IF K=34, (EITHER ,S» OR *R*,K:=44),SEP, 'FD*,

SEP fFLDNAME, OCT 130, PLANT, OSP., •) * ,NA:=1

OR IF KS35, SYMBOL,SEP, ,D0*,SEP,SYMBOL,OSP., *) *

PART II The Definition of LSIX in BCL PAGE 44

I OR IF K=36, (EITHER FIELD OR DLITERAL),

I SEP, 'D*,FLDNAME,OCT 1=0,PLANT,

I SEP,(EITHER FIELD OR DLITERAL),

I SEP,(EITHER FIELD OR DLITERAL),')'

| OR IF E=37,(,*f,OLITERAL,SEP,OPCD,SEP,DLITERAL,

I SEP,,OLITERAL),•)•

»*» followed by octal digits is the LSIX representation of an octal

address in the Atlas computer.

| OR IF K2=38,FIELD,SEP,OPCD,SEP,

| (EITHER FIELD OR DLITERAL),

| (EITHER IF NAS3,SEP,FIELD OR NIL.),•)',),

| OPEND)

The efficiency of the group OPERATN could be improved in the

deep analysis (when K is known) by using a switch, with K as control

variable, to select the appropriate branch, so avoiding the tests IF

K=32,IF K=33, etc. However, this facility was not available at the

time of this first implementation.

I OPCODE IS (EITHER OPCD,OPSEARCH, IF K NE 100

| OR 'D',(EITHER LETTER OR DIGIT),

| K!=36, Jjs6)

The second argument of an operation is usually the mnemonic

function code. During the shallow analysis this is read into the

variable OPCD and then looked up in a table of operations by

OPSEARCH (a binary search) which returns values of K and J. In the

PART II The Definition of LSIX in BCL PAGE 45

event of failure to find the code in the table K is set to 100. The

code D for field definitions is dealt with separately. The next

section is partly in Atlas Machine Code.

I OPSEARCH IS (WSlt=32, POINTER: =POINTER+WSI, OPSRCH)

| OPSRCH IS <163,WS1,0,0, II Halve WSL.

I i27,WSi,0,*00000770, :: Clear octal fraction.

I (EITHER IF 0PCD=C00F(POINTER),

I OCTTSPLUSI(POINTER),

I I65,J,0CT,*7,

I 125,J,0,0, :: Get J.

I I65,K,OCT,*OOOOO77O,:: Get K.

| OR IF WSL NE 0,

I (EITHER IF OPCD GT COOF(POINTER),

| POINTER: =POINTER+WSi

| OR POINTER: =POINTER-WSl),

| OPSRCH

I OR KI=100))

OPSEARCH starts by setting a POINTER to the middle of an ordered

table of operation codes and the corresponding values of K and J and

then calls OPSRCH which is a recursive binary search. Comments in

BCL are preceded by double colon and terminated by a newline.

PART II The Definition of LSIX in BCL PAGE 46

Types of field

| FIELD IS (OSP.,(EITHER *T», TIMEFIELD

| OR BUG,(EITHER FLDNAMES OR NIL.)

| OR INTEGER,*.*,

I IF INTEGER LE 128,READFIELD),

| OSP., OCTJSO, PLANT)

The group FIELD was described in detail in section §1.4.

TIMEFIELD plants the address of the system defined field *T* in

which time is stored. READFIELD checks that the integer read into

the variable INTEGER is an integral power of 2 and plants the field

address in the object area. The LSIX read-only fields are called

»T • »1 • * *A 1 M28 •

I BUG IS (LETTER, BUGADDR)

BUGADDR computes and plants the address of the specified bug.

| FLDNAMES IS (FLDNAME, EITHER FLDNAMES OR NIL.)

| FLDNAME IS ((EITHER LETTER OR DIGIT), FLDADDR)

FLDADDR computes and plants the address of the definition of the

specified field.

| LETTER IS (LTRTEST,LTR)

I DIGIT IS (DGTEST,DGT)

LTRTEST and DGTEST look ahead at the next character in the input

PART II The Definition of LSIX in BCL PAGE 47

stream and test if it is a letter or a digit respectively. If it is

then the character is input to either LTR or DGT each of which is

defined as a one character variable. These tests leave in OCT a

character value which is used by FLDADDR to determine the address of

the appropriate field definition.

Types of literal

I DLITERAL IS (OSP. ,WS1,STC0NST,PIANT,

| OCTJ=0,PLANT,OSP.)

Decimal literals (positive integers in the range 0,2**24

assigned to the variable WS1. STCQNST enters the constant

constants table and returns with its address in OCT which

planted in the object area by PIANT.

I STCONST IS (CONSTPSSCONSTP+QNE,

I C00F(C0NSTP):=WS1,

I OCT:=CC*NSTP)

I OLITERAL IS (OSP. fWSl:s0,C0UNT:s8,0DIGITStSTC0NST,

| PLANT,0CT:=0,PIANT,OSP.)

Octal integers of not more than eight digits may be assembled and

stored in the constants area. WS1 is a work space.

I QDIGITS IS (DIGIT, IF DGT LT 8,

| COUNT I=CCJUNT-1, ASMBLODGT,

| EITHER IF COUNT GT 0, ODIGITS

I OR NIL.)

-1) are

in the

is then

PART II The Definition of LSIX in BCL PAGE 48

DIGIT inputs a single decimal digit in integer form to the variable

DGT. ASMBLODGT is a group of machine orders which is functionally

equivalent to WSlj=8*WSl+DGT. The group ODIGITS is terminated

either on finding a non octal digit or after reading eight octal

digits.

I HLITERAL IS (WSl J SO, COUNTX 24,HCHARS, STCQNST, PLANT,

I 0CT|=0, PLANT)

HCHARS reads up to four characters (Atlas inner set) not including

newline, comma and right bracket, packs them (right justified) in

the work space WSl whence they are picked up by STCONST and stored

in the constants area. The characters comma and right bracket are

acceptable if written as (,) and ()) respectively, otherwise they

may be written in the equivalent octal form and read by OLITERAL.

The restriction to four characters is removed in the case of the

output operations PRH and PUH using the group PRPUHLIT which deals

with literals to be printed or punched, the length of a character

string for output is limited only by the length of a line.

Allowable characters are stored, one per (half) word in the constant

area. A typical record for the PRH operation is shown in the object

listing (LINE 2) in Appendix 1. The three operands set up are

I (a) the number of characters to be output,

I (b) the address of the first character,

I and (c) the length of the stored character string.

PRPUHLIT begins by switching to a character set which allows all

characters except comma, close bracket and newline; it then counts

and stores the allowable characters which are input one at a time by

the group CHARS.

PART II The Definition of LSIX in BCL PAGE 49

PRPUHLIT IS (CHSET1 sHCHSET,

OCT:=CONSTP+CJNE, PLANT

OCT I SO, PIANT,

CHARS)

CHARS IS (EITHER CHAR, STCONST,

COUNT: sCOUNT+1,

CHARS

OR WSlJ SCOUNT,STCONST,PLANT,

OCT:SO, PLANT,

NA:sNA+l)

CHAR inputs a single character and stores it right justified in WSl.

STCONST stores it in the constants area. When the last allowable

character has been read the character count is stored and its

address planted in the object area. Finally the number of operands

(NA) is increased by one.

Labels, label references

LABREC(?) IS (A DI CLINK, 8C NAME, A ADDR, A REFADDR)

LABREC defines a label record which consists of four fields:

(a) a link to the next label record in the name list,

(b) the label name,

(c) the object area address of the label,

and (d) a link to any forward references that occur before

the label is set.

Here again we use the concept of an indefinite group in BCL to

define the structure of a record which consists of several fields.

The field names DICLINK, NAME, ADDR and REFADDR, associated with

LABREC, are used as selector functions.

PART II The Definition of LSIX in BCL PAGE 1252

iWDREF(?) IS (A LINK, A ADDRESS)

PWDREF defines a forward reference record of two fields the first of

which is a link to the next forward reference for this label and the

second is the object address at which the address is to be planted

when the label is set.

| LABEL IS (UBL, JUNK, SP., OSP.,

I EITHER NLS, GOTOFLAGisi, REJECT

I OR IF GOTOFLAGSO, LABELS ET

I OR IF LBL s 'DONE', GOTOFLAG:=2

| OR IF LBL z 'FAIL', GOTOFLAG:=3

I OR IF LBL r 'END' , GOTOFLAGxr^.

| OR LABELREF)

Any combination of alphanumeric characters terminated by a

space is accepted as a label. Only the first eight characters are

significant, these are assigned to the character variable LBL.

Insignificant characters are skipped by JUNK which is defined below.

A label name followed by newline is interpreted as a reference to a

label, i.e. it represents a transfer of control, and GOTOFLAG is

set. System transfers DONE and FAIL are returns from subroutines

and END is a logical end of the program.

| JUNK IS (EITHER JNK, JUNK OR NIL.)

JNK is a character variable to which insignificant characters are

assigned.

PART II The Definition of LSIX in BCL PAGE 1252

I MATCH IS (EITHER IF CURRENTao,

I SETUP(LABREC,CURRENT,DICTP),

I DICLINK(CURRENT) := DICP,

I DICP JsCURRENT,

I NAME(CURRENT) t= LBL,

I ADDR(CURRENT) X= O,

| REFADDR(CURRENT) 1= O

I OR IF LBL = NAME(CURRENT)

| OR CURRENT S= DICLINK(CURRENT), MATCH)

MATCH compares LBL with entries in the labels dictionary. Before

entry the pointer variable CURRENT points to the last entry in the

dictionary. If CURRENT is zero the name in LBL is not in the

dictionary so a new label record is set up by the system defined

group SETUP which allocates space from an area pointed to by DICTP

and assigns the address of the new record to CURRENT, The record is

linked on to the labels list, in which DICP points to the last

entry, and the label name recorded. Eventually MATCH is terminated

with CURRENT pointing to the record required,

I LABELSET IS (CURRENT DICP, MATCH,

| EITHER IF ADDR(CURRENT) = 0,

| ADDR(CURRENT) := STARTP,

| (EITHER IF REFADDR(CURRENT) = 0

| OR NCURRENT != REFADDR(CURRENT),

| REFADDR(CURRENT) := 0,

| PLUGL1ST)

| DR 0/P('LABEL IBL, 'SET 1WICE'))

PART II The Definition of LSIX in BCL PAGE 1252

STARTP is the address of the current object code record. When a

label is set any forward references are plugged by PLUGLIST.

NCURRENT is a pointer to a forward reference record.

| PLUGLIST IS (COOF(ADDRESS (NCURRENT)):=STARTP,

I NCURRENT J=LINK(NCURRENT),

I EITHER IF NCURRENT = 0

I OR PLUGLIST)

The following groups deal with label references.

I TRANSFER IS (OSP., LBL, JUNK,

| EITHER IF LBL = 'DONE * , G0T0FIAGX=2

| OR IF LBL = 'FAIL', GOTOFIAGl=3

I OR IF LBL = 'END' , GOTOFLAGJ=4

I OR LABELREF, GOTOFIAGtSl)

| LABELREF IS (CURRENT J= DICP, MATCH,

| OCT := ADDR(CURRENT), PLANT,

| EITHER IF ADDR(CURRENT) = 0,

| SETUP(FWDREF, NCURRENT, DICTP),

| LINK (NCURRENT) t rREFADDR (CURRENT),

| ADDRESS(NCURRENT)jrOBJECTP,

| REFADDR(CURRENT) ISNCURRENT

| OR NIL.)

If a label has not been set, a record of the forward reference is

•SETUP' and inserted in the pluglist.

PART II The Definition of LSIX in BCL PAGE 1252

Subroutines are entered by means of the (D0f symbol) operation where

the symbol is the label, or name, of the entry point. The two

system subroutines 'STATE' and 'DUMP* do not use the normal

subroutine entry and return.

| SYMBOL IS (IBL, JUNK,

I EITHER IF IBL = 'STATE', KJS4I, NAS=0

I OR IF IBL = 'DUMP' , Kl=42, NA2=0

I OR IABELREF, OCT 1=0, PLANT)

Some miscellaneous groups

| PLANT IS (COOF(OBJECTP) 5= OCT,

| QBJECTP IS QBJECTP + ONE)

Information stored in OCT is planted in the object area by PIANT and

the object pointer is advanced one word.

I EOL IS (OSP., NL., EITHER EOL OR INSTREND)

An LSIX instruction is terminated by one or more newlines. INSTREND

packs descriptive information - CQND, NT, NO and GOTOFLAG, into a

description word which is stored in the first word of the current

object record.

I NLS IS (OSP., NL., EITHER NLS OR NIL.)

NLS is similar to EOL but no information is planted.

I LSIXEND IS (FINISHlsOBJECTP, OBJECTPSSSTART,

I (EITHER IF LISTtel, OBJECTPRINT

| OR NIL.), INTERPRET)

Compilation is completed and, if requested, an object listing is

output in octal, before the interpreter is entered and execution

commenced.

PART II Storage Allocation and Collection PAGE 54

§2.2 The execution of an LSIX program

During the analysis and recognition of LSIX source

instructions descriptive information is planted in the object area.

For each source instruction this information includes a description

word, the address of the next description word in sequence, i.e. the

start of the next instruction, the address of the first operation in

the current instruction and the line number. The description word

gives the type of instruction (conditional or unconditional), the

number of tests, the number of operations and the type of transfer

of control (normal transfer, subroutine return) if any. This

information is packed as follows

Bits 0-2 Type of instruction 0 for unconditional

1 - IFANY

2 - IFNALL

3 - IFALL, IF

4 - IFNONE, NOT

Bits 3-8 Number of Tests 0 - 6 3

Bits 9-14 Number of Operations 0 - 6 3

Bits 15-20 Type of Transfer 0 for no transfer

1 - normal transfer

2 - normal subroutine exit (DONE)

3 - fail subroutine exit (FAIL)

4 - logical end of program (END)

For each test and operation is stored the test or operation

code (values of K in Appendix 7) a n d t h e addresses of operands. The

outline flow diagram in Fig.II.2.1 describes the operation of the

main interpreter routine which is written in BCL.

PART II Storage Allocation and Collection PAGE 55

Each operand, whether a base field (bug), remote field or a

constant (decimal, octal or hollerith literal), is specified by a

sequence of one or more addresses terminated by a zero. For example

the remote field WAD is represented by the sequence of pointers

Y
Bug W Definition

of field A

Definition

of field D

Terminator

and the basefield X by

I
Y

I Bug X Terminator

Constants are stored in a constants area and referred to by

their addresses.

A field is defined at run time by its word number, left-most

bit and right-most bit. For example the operation (2,d6,3,17)

defines field 6 of any data block as bits 3 through 17 of word

number 2. The execution of such an operation results in the setting

up of a field definition, including a 24 bit mask, which is used by

the routines for fetching and storing the contents of fields.

Because of the complete generality of field definitions no attempt

is made to use the few special hardware facilities for handling

special cases. The only special case which might have been worth

detecting is the field which spans the full 24 bits of the word.

PART II Storage Allocation and Collection PAGE 56

Three general field handling subroutines FINDFIELD, GETFIELD and

STOREFIELD are used during the execution of fetch and store

operands*

Any field in the data structures may be specified by two

pointers one to the first word of the block containing the field and

the other to the definition of the field concerned. Basefields and

constants are referred to by the first of these pointers and the

second is conventionally zero* The routine FINDFIELD given below

determines, from a sequence of addresses in the object area, the

values of the two pointers specifying an operand.

PART II Storage Allocation and Collection PAGE 57

Subroutine to find a field

On entry OBJECTP points to the first of a sequence of

addresses in the object area. The routine is terminated when the

location to which OBJECTP points contains a zero i.e. when

COOF(OBJECTP) = 0 . On exit, for a remote field WREG1 points to the

block containing the specified field and WREG2 to the definition of

the field* for basefields and constants WREGl points to the

basefield or constant and WREG2 is zero.

| DEFINE R FINDFIELD

I DO

| WREG2 := 0

I WREGl J= COOF(QBJECTP)

| OBJECTP i= OBJECTP + ONE

I IF COOF(QBJECTP) s 0 GO TO END

| WREGl JS COOF(WREGl)

| MORE) WREG2 J= COOF(OBJECTP)

| OBJECTP 1= OBJECTP + ONE

I IF C00F(QBJECTP) = 0 GO TO END

I GETFIELD

| GO TO MORE

| END) OBJECTP S = OBJECTP + TWO

| RETURN

I END

Fetch first address.

Advance object pointer by one word.

If next address is zero go to end.

Get address of block to which bug

points.

Get address of next field definition.

Advance object pointer.

If next address is zero go to end.

Routine to get contents of field

specified by WREGl and WREG2.

Advance object pointer to next item

of information (i.e. step over

zero).

PART II Storage Allocation and Collection

Subroutine to fetch the contents of a field

PAGE 58

The subroutine FINDFIELD calls GETFIEID which is defined

below. GETFIELD fetches the contents of the field which is

specified by the two pointers WREG1 and WREG2 in the usual way. On

exit WREG1 contains the contents of the specified field right

justified (not all fields are 24 bits in width) and WREG2 is

unchanged.

| DEFINE R GETFIELD

I DO

| IF WREG2 NE O GO TO REMOTE If not basefield or constant go

| WREG1 l= COOF(WREGl) to remote, otherwise get contents

| RETURN and return.

I REMOTE) WREGl J= WREGl + WORD(WREG2)

Address of word containing field.

Get word including field.

Get mask from field definition.

Machine order to get field from word.

Determine any right shift required.

If right justified go to end.

Right justify.

Return with field in WREGl.

END

WREGl 5= COOF (WREGl)

WREG3 S= MASK(WREG2)

127, WREGl ,WREG3,0

SHIFT J= 23 - RBIT(WREG2)

IF SHIFT S 0 GO TO END

1342,WREGl,SHIFT, 0

END) RETURN

PART II Storage Allocation and Collection PAGE 59

Subroutine to Btore a field

The item to be stored is held in the variable OCT. The field

in which the item is to be stored is specified in the usual way by

WREGl and WREG2.

DEFINE R STOREFIELD

DO

IF WREG2 NE 0 GO TO REMOTE

IF WREGl LT BUGBASE GO TO ERROR

COOF (WREGl) != OCT

RETURN

REMOTE) SHIFT := 23~RBIT(WREG2)

1343, OCT, SHIFT, 0

WREG3 MASK(WREG2)

l27,OCT,WREG3,0

WREGl := WREGl + WORD(WREG2)

WREG2 COOF (WREGl)

126,WREG3,0,*77777777

127,WREG2, WREG3,0

l67,WREG2,OCT,0

COOF (WREGl) WREG2

END) RETURN

ERROR) O/P ('ATTEMPTING TO WRITE

RETURN

END

WREG2 is zero for basefields.

Protect read only fields.

Store item in basefield.

Determine necessary shift.

Shift operand into position.

Get mask from field definition.

Clear most significant bits if

item too long.

Address of word containing field.

Fetch present contents of word.

Complement mask.

Clear field to receive new item.

Write item into specified field.

Store field.

TO READ FIELD') Error message.

PART II Storage Allocation and Collection PAGE 60

The efficiency of LSIX depends largely upon the efficiency of

these three field handling routines which are used for all operands.

It is important to make use of any special hardware facilities which

exist for shifting operands and the LSIX user is encouraged to

define fields which may be handled efficiently by the hardware of

the machine on which the program is to be run* In his original l6

compiler for the IBM 7°9° computer, Knowlton recompiles at run time

the routines to fetch and store operands each time that a field is

defined or redefined, making use of special hardware facilities

where possible. On the Atlas computer the only shift instructions,

apart from the inefficient extra-codes, are the circular shift one

bit right and circular shift six bits left. For this reason it was

decided to use the same three general field handling routines for

all operands. The facility for defining and redefining general

fields in L6 is the main justification for the interpretive nature

of the Atlas LSIX compiler.

Compilation of an LSIX program is terminated when the

directive *ENTER is recognised. If the LIST option has been

specified by means of an earlier directive, *LSIX LIST, then the

object program is listed in octal by calling the routine STACKPRINT

(see Appendix 3). A typical object listing is shown in the

complete example of an LSIX program in Appendix 1. On entry to the

routine INTERPRET the first operations throw away those parts of the

compiler which are no longer required, the object pointer is

initialised and execution commences.

PART II The Definition of LSIX in BCL

The interpreter and associated routines

PAGE 1252

The operation of the interpreter routine is described in

outline by the flow diagram in Fig. 11.2.1. The following anotated

BCL program is a more detailed specification. In general^tests and

operations involve two operands but some involve more than two. The

routines FINDFIELD and GETFIELD described in the previous section

are used to locate and fetch the operands. The address and value of

the first operand are assigned to the variables

I BP1 - pointer to block

| FP1 - pointer to field definition (zero for basefields

I and constants)

I and OPl - contains field (fetched only if required)

and the second and third operands are assigned to BP2f FP2, 0P2 and

BF3, FP3, OP3 respectively. These values are then ready for use in

the various sets of BCL instructions corresponding to the LSIX tests

and operations.

In addition to the field handling routines already described

several other basic routines are called from the main interpreter

routine. These are described in Appendix 3* The reader is

reminded that routines with parameters were not available in BCL

when this compiler was written.

PART II The Definit ion o f LSIX i n BCL PAGE 1252

COND x 1 represents IFANY
COND = 2 represents IFNAIJ

COED r 3 represents IFALL,IF
can) = 4 represents IFNONE,NOT

Nr. 11.3..1(a). The operation of the Interpreter Routine

(Continued on Page 63)

PA T I I The Execution of LS I X in BeL PAGE 63

N'r : = NT - 1

o

K : = Opera tion code;
NA : = Number of

operands.

locate operands
(FINDFIELD)

Switch via GOTOFIAG

4 3 2 1

Object pointer :=
addres of fir t

NO := NO - 1

via K to
~ __________ ~ subroutine to pick up

operands and perform
operation .

O~~------------~r---~W

Subroutine
exit

Subro tine
fail exit

STOP, en of r n.

Fig . II •• 1(b). The 0 oration of the Interpreter Routine .

(Continue from Page 62)

PART II Storage Allocation and Collection PAGE 64

DEFINE R INTERPRET

DO

121 ,WRl ,0, *1001

II42,WR1,0,(NEXT) :: Lose routines no longer required.

NEXT) 1065,0,0,5,0 It Space to top of next page.

O/P (NL.(2), *LSIX PROGRAM ENTERED1, NL.(2))

NDESCKWD is START t : Initialise pointer to next
I: instruction.

GAMMA) QBJECTP := NDESCRWD :: Get pointer to next instruction.

DESCRWD is COOF(QBJECTP) 11 Get description word.
NDESCRWD 1= PLUS1(OBJECTP)

FIRSTOP js PLUS2(OBJECTP)

LINE 5= PLUS3(0BJECTP)

OBJECTP is OBJECTP + 2

It Get address of next description
It word in sequence.
It Get address of first operation in
It current instruction (zero for
It unconditional instruction).
12 Get line number.

11 Advance object pointer to next
11 item.

II The following instructions deal with LSIX tests.

165, NT, DESCEND, *077 2J

IF NT s o GO TO ALPHA I:

125, NT, 0,0 It

125,NT, 0,0

I 6 5 , COND, DESCKWD, *7 II

125, COND, 0,0 It

BETA1) K is C00F(QBJECTP) II

OBJECTP IS QBJECTP + ONE 2l

FINDFIELD 11

GETFIELD 12

0P1 IS WREG1 I:

FINDFIELD 11

Get number of tests.

If unconditional go to operations.

Convert to 21 bit integer.

Get condition (1,2,3 011 4)«

Covert to 21 bit integer.

Get test code.

Increment object pointer.

Locate first operand.

Get first operand.

Save operand in 0P1.

Locate second operand.

PART II Storage Allocation and Collection PAGE 65

GETFIELD

OP2 1= WREGl

S: Get second operand.

:: Save second operand in OP2.

GO TO E, N, G, L, O, Z, P VIA K

E) IF OP1 = OP2 GO TO TRUE

GO TO FALSE

N) IF OP1 s OP2 GO TO FALSE

GO TO TRUE

G) IF OP1 GT OP2 GO TO TRUE

GO TO FALSE

L) IF OP1 LT OP2 GO TO TRUE

GO TO FALSE

O) 127, o p L 0P2, O

GO TO E

Z) I67, OP1, OP2, O

GO TO E

P) GO TO E

TRUE) RESULTjrl

GO TO CGNDSPLT

FALSE) RESULT 1=0

CONDSPLT) GO TO ANY, NALL, ALL, NONE VIA CQND

I Switch via testcode.

: If operands equal go to true

: otherwise false.

: If equal go to false

: otherwise true.

: If greater than, go to true

: otherwise false.

: If less than, go to true

: otherwise false.

: DPI :s 0P1 and 0P2 and test

: equality for test 'one* bits.

: 0P1 ss 0P1 or 0P2 and test

: equality for test 'zero' bits.

: Test equality of pointers.

X: Go to switch via condition.

:x Switch.

ANY) IF RESULT =0 GO TO BETA

OBJECTP J= FIRSTOP

GO TO ALPHA

XX If false go on to next test.

I: If true, get address of first

X: operation and go to it.

NALL) IF RESULT NE 0 GO TO BETA :l If true go on to next test.

OBJECTP is FIRSTOP :: if false, go to operations.

GO TO ALPHA

ALL) IF RESULT NE 0 GO TO BETA :: If true go to next test

GO TO GAMMA !: otherwise go to next instruction

XX in sequence.

PART II Storage Allocation and Collection PAGE 66

NONE) IF RESULT NE O GO TO GAMMA

BETA) NT 1= NT-1

IF NT NE O GO TO BETA1

IF COND LE 2 GO TO GAMMA

tt If true go to next instruction.

:: Decrease number of tests.

s: If more tests go to next test.

II if ANY or NALL go to next
t: instruction.

St The following instructions d<

ALPHA) 165,NO,DESCRWD,*00077

125,NO,0,0

125,NO,0,0

125,NO,0,0

MOREOPS) IF NO = 0 GO TO NOOPS

K t= COOF(OBJECTP)

NA I- PLUS1(OBJECTP)

OBJECTP js QBJECTP + 1

IF NA s 0 GO TO OPSPLIT

FINDFIELD

BP1 1= WREG1

FPl 1= WREG2

IF K GE 25 GO TO GETOPl

IF K LT 9 GO TO GETOPl

GO TO SKIPOP1

GETOPl) GETFIELD

OP1 J= WREG1

SKIPOP1) NA JS NA-1

IF NA = 0 GO TO OPSPLIT

FINDFIELD

BP2 1= WREG1

FP2 1= WREG2

I with IBIX operations.

I: Get number of operations
I: from description word,
i: Convert to 2l-bit integer.

I: If no more operations.

II Get operation code K.

It Get number of operands.

It Advance object pointer.

It If no operands

I: Find first operand.

It Save address pointers..

i t Get first operand only if

t: necessary.

11 Fetch first operand

ti Save first operand.

11 Decrease number of operands.

11 If no more operands.

11 Find second operand,

tt Save address.

PART II The Definition of LSIX in BCL PAGE 1252

GETFIELD

0P2 is WREGl

NA :2 NA-1

X: Get second operand.

:: Save second operand.

S: Decrease number of operands.

IF NA 2 0 GO TO OPSPLIT XX If no more operands.

IF K 2 38 GO TO GT

FINDFIELD

:: Third operand of GT operation
:: is special.
:: Find third operand.

BP3 22 WREGl

FP3 12 WREG2

GETFIELD

OP3 22 WREGl

2 2 Save address.

2: Get third operand.

2 2 The operands are now ready for use in the various sets of

2 2 instructions corresponding to the LSIX operations. The

2 2 appropriate instructions are entered by means of a switch

2 2 using the operation code K as control variable.

OPSPLIT) IF K LE 44 GO TO 0PSPLIT1

OPERR) 0/P (NL.,'ILLEGAL FUNCTION IN LSIX OPERATION' ,NL.)

STATEPRINT 2 2 Output state of system.

0/P (NL.(2>, 'JOB TERMINATED')

STOP 2 2 Error halt.

0PSPLIT1) GO TO IC,ADD,SUB,MPY,DIV,OR,AND,XOR,C,DP,

EQ,OPP,LO,LZ,RD,RZ,OS,ZS,BZ, ZB,

BD,BD, DB,DB,OP,FR,IN,L,R,PR,

PU, PL, SFC, SFD , DO, D, SS , GT , OPERR, OPERR,

STATE, DUMP, RFC, RFD VIA K

PART II Storage Allocation and Collection PAGE 68

:: Control has now been transferred to the set of instructions

:: for the operation specified by K. Details of these instructions

:: are given in Appendix 3. After execution of these instructions

SS control is returned to OPRTN.

OPRTN) NO ss NO -1 :: Decrease number of operations.

0P1 ss 0 :: Reset working variables to zero.

0P2 Ss o

OP3 ss 0

BP1 SS 0

BP2 SS 0

BP3 S= 0

FP1 SS 0

FP2 SS O

FP3 SS 0

GO TO MOREOPS 5S Go back to execute any further

SS operations.

ss When all operations have been obeyed control is transferred

5 5 in one of several ways according to the transfer code stored

SS in the description word. The following instructions deal

SS with the transfer of control.

NOOPS >165, GOTOFIAG, DESCKWD, 7 ss Get transfer code (0,1,2,3 o r 4> •

IF GOTOFIAG s 0 GO TO GAMMA SS If no transfer go to next
SS instruction in sequence
SS otherwise switch via GOTOFIAG

GO TO FLAG1,DONE,FAIL,FIAG4 VIA GOTOFIAG

FLAG1)NDESCKWD S = COOF(OBJECTP) SS Get transfer address.

GO TO GAMMA SS Continue with instruction
S 5 specified.

PART II Storage Allocation and Collection PAGE 69

:: The following instructions deal with subroutine returns.

DONE)

FAIL)

SUBP xn SUBP-3 X X Pop-up subroutine stack.

SUBL SUBL-1 X X Decrease subroutine level
X X number.

QBJECTP COOF(SUBP) X X Restore object pointer.

NDESCKWD X = PLUSl(SUBP) X X Restore address of next
X X description word.

DESCRWD X = PLUS2(SUBP) X X Restore description word.

NO X = PLUS3(SUBP) X X Restore number of remaining
X X operations.

LINE X = PLUS5(SUBP) X X Restore line number.

GO TO OPRTN X X Normal operation return.

SUBP X = SUBP-3 X X Pop-up subroutine stack.

SUBL X = SUBL-1 x: Decrease subroutine level
X X number.

NDESCRWD X = PLUS4(SUBP) X X Get 'fail' transfer address

GO TO GAMMA X X Continue with specified
X X instruction.

S X End of subroutine return instructions.

FLAG4) 0/P(NL.,'END OF PROGRAM')

STOP S: Logical end of program.

END X x End of interpreter routine.

The storage allocation routines which are called by the interpreter

routine are described in section §2.3 and routines for other

LSIX operations are given in Appendix 3 •

PART II Storage Allocation and Collection PAGE 70

§2.3 Storage allocation and collection in LSIX

In this section we describe several variations on a method for

organising the free space allocator in LSIX. Routines for setting

up the free space lists, getting new blocks, returning blocks which

are no longer required and automatic garbage collection are

described.

An important feature of LSIX is the availability of several

different sizes of blocks which may be linked together by pointers

stored in fields which the programmer himself defines. Any field

which is of address length may contain a pointer and the contents of

a field are interpreted according to the context in which they are

used. Consequently it is difficult to collect garbage automatically

as the system does not know which fields contain pointers and the

responsibility for freeing blocks which are no longer in use is

usually left to the programmer. A garbage collector which has been

written for the Atlas LSIX is described in this section.

The available blocks in LSIX are in general of size 2**n words

where n is an integer in the range 0-7* T h e choice of block size

being an integral power of two, blocks are easily halved to form

smaller blocks (called mates) and when two consecutive blocks are

free simultaneously they could be recombined to form a larger block;

better, when two mates are free they may be recombined. The free

space is organised as a number of separate simple lists, one for

each size of block. On being freed, a block is returned to the

appropriate list. When a block is asked for there are three

possibilities!

PART II Storage Allocation and Collection PAGE 71

(a) the appropriate list is not empty in which case a block

is immediately available;

(b) the list is empty but a larger block exists on another

list and this can be split to provide a block of the

required size;

and (c) the list is empty and there are no larger blocks

available for splitting.

In the latter case all is not lost. It is possible that smaller

blocks in contiguous parts of the store are free simultaneously and

can be recombined to provide a block of the required size.

In the Atlas LSIX implementation, the list head of each free

space list consists of four fields, each being 24 bits long,

containing the following information:

I field Is Pointer to the first block in the list (0 if empty),

I field 2: The size of the data blocks on this list.

I field 3S log (size) i.e. a 3 bit integer in the range 0-7.

I field 4: The potential number of blocks of this size.

The potential number of blocks of any size is the number of blocks

on the list plus the number of blocks that could be obtained by

splitting all larger blocks down to this size. The fields

containing the potential numbers of blocks are the read-only fields

called 1. ,2. ,4., , 128. in LSIX. The size of any block which

is in use must be available to the system for use in the free block

and duplicate block operations and log2(size) provides a very

compact form of storage.

PART II Storage Allocation and Collection PAGE 72

The list heads of the eight free space lists occupy consecutive

storage locations and may be accessed (by the system) via the link

variable FREEHDR, a constant pointer to the list head of 1-blocks.

Each free space list is a simple linked list terminated by a zero

link.

Fig.If.3.1 shows how the free space lists are stored.

Listheads.

PART II Storage Allocation and Collection PAGE 73

The four LSIX operations which affect the state of the free

space lists are: Set up Storage (SS), Get a block (GT), Free a block

(FR) and Duplicate a block (DP).

Set up Storage

One of the first operations in any LSIX program is to set up a

list of free space using the set up store operation which has the

form

(sl,SS,d,s2)

where d is the size of block to be set up and si and s2 are the

addresses of the beginning and end of the storage area to be linked

in blocks of the specified size. For example the operation

(*20O0O0C>0,SS,8,*2O04D000) causes 2048 words of Atlas store (i.e.

4096 LSIX words) to be linked together in blocks of size 8 (24 bit)

words. The specified value of d need not be an integral power of 2

but the size of block actually set up is the smallest integral power

of 2 which is greater than or equal to d. It is intended that in a

future version of the compiler the user may specify and actually get

any size of block between 1 and 128 (24 bit)words.

When setting up storage the appropriate free space listhead is

located by a routine FINDLIST which, starting with the listhead for

1-blocks, searches for the first listhead for which the block size

is not less than d and returns with a pointer to that listhead and

with the value of d corrected. The addresses si and s2 specified by

the user are interpreted as relative addresses and the list storage

area always starts at the octal address *20000000. This

implementation differs from the original l6 in that' set up store

operations may be executed several times during the running of a

program, so setting up additional linked space, and the end of the

PART II Storage Allocation and Collection PAGE 74

appropriate free space list must be found before new blocks are

linked on. Details of the SS and other storage organisation

routines are given at the end of this section.

Get Block

There are two forms of the get block operation:

I (al,GT,cd) and (al,GT,cd,a2)

- Get a block of the size specified by cd and plant its address in

the field al. After getting the block, assign to the field a2 (if

this is specified) the previous contents of the field al. The GET

routine uses FINDLIST to locate the appropriate free space list.

Thus the size specified may be any integer in the range 1-128 but

the size of block actually allocated is at present an integral power

of 2. If the free space list located is not empty, then a block of

the required size is detached, otherwise the potential number of

blocks of this size is examined. If the potential number is not

zero then a larger block exists and the routine SUBDIVIDE is called

to split the first available larger block. In the event of the

potential number being zero the routine RECQMBINE is called to

search for smaller blocks which being free simultaneously may be

recombined to give a block of the required size. Whenever RECQMBINE

is entered it searches all free space lists from the 1-blocks

upwards performing all of the recombinations possible up to the

maximum size that has been set up by the program. After this, if

the potential number of blocks of the required size is still zero

then the program is abandoned. It is not possible to relocate

smaller blocks in an attempt to recombine.

PART II Storage Allocation and Collection PAGE 75

Duplicate Block

The duplicate block operation (a,DP,c) gets a new block (using

GET) of the same size as that to which field c points and assigns

its address to field a. It then copies the given block word for

word into the new block.

Free Block

The operations (al,FR,0) and (al,FR,a2) are used to free the block

to which field al points, i.e. to return the block to the

appropriate free space list. The contents of field a2 are assigned

to field al but if a2 is not specified al is set to zero.

Neither the Duplicate block nor the Free block operations

specify the size of block involved. For this reason the system must

keep a note of the sizes of all data blocks which are in use. A

convenient place to store the size is in the data-block itself.

Bits 21-23 of word 0 of every block are reserved for the system. In

these three bits the size of the block is stored in the form

log2(size). Later in this section we describe briefly another Atlas

implementation of LSIX in which the whole of word 0 is made

available to the user and the size is stored in a separate part of

the store. When a block is freed or duplicated the actual size is

found from log2(size) using a routine FINDSIZE which searches the

free space list heads for log2(size) starting with the 1-block list

head and locates the required free space list at the same time.

Whenever the state of the free space lists is changed by one

of the LSIX operations described above the potential numbers of

blocks must be updated. This is performed by the routine UPDTNDOT.

Details of this and other storage organisation routines are given

below.

PART II Storage Allocation and Collection PAGE 76

DEFINE R FINDLIST

:: The input to this routine is the size of a block. The output
:t is a POINTER to the appropriate list and the corrected size.

:: Initialise pointer.

2 2 Point to next list.

XX If list not yet found.

XX Correct the size.

DO

POINTER 2= FREEHDR - 2

FL1) POINTER |= POINTER + 2

IF PLUS1 (POINTER) LT SIZE GO TO FL

SIZE IS PLUS1(POINTER)

RETURN

END

DEFINE R FINDS IZE

:2 The input to this routine is LOGSIZE, the output is SIZE and a
XX POINTER to the appropriate list.

DO

POINTER 2= FREEHDR - 2 2 5 Initialise.

FS) POINTER :r POINTER + 2 tt Point to next list.

IF PLUS2(POINTER) LT LOGSIZE GO TO FS x: If not found.

SIZE 2= PLUS1 (POINTER) XI Get size,

RETURN

END

DEFINE R UPDTNDOT

I: The value of WR2, set before entry, is the change in potential
X: number.

DO

WRl 2= POINTER

UPDT) PLUS3 (WRl) x = PLUS3(WR1) + WR2

IF WRl = FREEHDR GO TO END

124,WR2,WR2,0

WRl 2= WRl - 2

GO TO UPDT

END) RETURN

END

X X Copy pointer.

X X Update potential number.

XX If finished.

X: Double WR2.

XX Point to next list.

PART II Storage Allocation and Collection PAGE 77

DEFINE R SETUP STORE

DO

SIZE OP2

FINDLIST

IF MAXSIZE GE SIZE GO TO SKIP SS blocksize.

MAXSIZE S= SIZE

SKIP) 124, SIZE,SIZE,O

124,SIZE,SIZE,0

WSl IS POINTER

SS Get size of block.

S: Locate list for given

:: Note maximum size of block
:s setup.
SS Convert size to 22 bit
:: integer, i.e. to unit of
SS halfwords of Atlas store.

SS Point to appropriate free
SS space list. POINTER was set
SS by FINDLIST.

LINKBL1) IF COOF(WSi) = 0 GO TO LINKBL2 SS If end of list

WSl S= COQF(WSl)

GO TO LINKBL1

LINKBL2) COOFCWSl) S= ENDLIST

SS Step down list.

SS ENDLIST points to next block
S s to be set up, initialised
S: before entry to program.
S: s2 - si gives amount to be
S S linked.

ENDLIST S= ENDLIST + TOBELNKD SS Advance ENDLIST.

TQBELNKD $s OP3 - OP1

COUNT SS O

LINKNEXT) WSl S= COQF(WSl)

COUNT SS COUNT + 1

COOF(WSl) SS WSl + SIZE

S s Initialise count.

SS Point to next new data block.

S s Count new block.

ss Plant link to next new block.

IF COOF(WSl) LT ENDLIST GO TO LINKNEXT

COQF(WSl) J= o ss If finished, terminate list.

WR2 := COUNT SS Set parameter for UPDTNDOT.

UPDTNDOT S: Update potential numbers of

RETURN S 5 blocks.

END

PART II Storage Allocation and Collection PAGE 78

DEFINE R GET

DO

SIZE J= OP2

FINDLIST

OP3 tr OP1

LOGSIZE jr PLUS2<POINTER)

GETBLDCK

CLEAR) COOF<WSl) 1= O

WSl :s WSl + ONE

122,SIZE,0,0.1

IF SIZE GT O GO TO CLEAR

COOF(OCT) := LOGSIZE

IF NA s O GO TO END

FINDFIELD

OCT 1= OP3

STOREFIELD

END) RETURN

END

t: Get block size.

t: Locate list, correct size.

S1 Save present contents of a

:: Get log2(size).

:: Get block.

:: Clear block to zero.

I: Record size in block.

t: If previous pointer not

:: to be saved.

:: Find field in which to

:: store previous pointer.

:: Store previous contents

:t of pointer to new block.

PART II Storage Allocation and Collection PAGE 79

DEFINE R GETBLOCK

:: This routine is called from GET and from DUPLICATE.

:: On entry POINTER points to the appropriate free space list and SIZE

t: contains the size.

DO

IF CQOF(POINTER) NE 0 GO TO GTBLOCK |: If list not empty, get
:: block.

IF PLUS3<P0INTER) GT 0 GO TO SPLIT :: If potential number > 0.

RECOMBINE X: Attempt recombination.

IF COOF(POINTER) NE 0 GO TO GTBLOCK I: Try again.

IF PLUS3(POINTER) GT 0 GO TO SPLIT

0/P(NL.,'FREE SPACE EXHAUSTED JOB TERMINATED1)
STOP

SPLIT) SUBDIVIDE

GTBLOCK) WSl X= COOF(POINTER)

COOF(POINTER) := COOF(WSl)

OCT := wsl

STOREIN1

WR2 X = 0-1

UPDTNDOT

RETURN

END

:t Stop if space exhausted.

:: Call routine to split

XX larger blocks.

XX Point to block.

XX Detach block from list.

:: Address in OCT.

:i Store address of block.

X : Set WR2 for UPDTNDOT.

X: Update potential
:: numbers.

PART II Storage Allocation and Collection PAGE 80

DEFINE R SUBDIVIDE

DO

NEXT) POINTER 2= POINTER + 2

IF COOF(POINTER) : O GO TO NEXT

WS1 J= COQF(POINTER)

COOF(POINTER) != COOF(WSL)

HALVE) PLUS3(POINTER) 2= PLUS3(POINTER)-1

IF PLUS1(POINTER) = SIZE GO TO END

POINTER is POINTER - 2

COOF(POINTER) := w s i

COOF(WSI) := 0

WS2 2= PLUS1(POINTER)

124,WS2,WS2,0

124,WS2,WS2,0

wsi wsi + ws2

GO TO HALVE

END) COOF (WSI) 2= COQF(POINTER)

COOF(POINTER) := w s i

RETURN

END

:: Examine list of next
:: larger blocks.

12 If empty, try next.

:: Detach first block.

:: Adjust potential number.

:: If required size.

:: Step back to list of next
M smaller block size.

:: Link first half block to
:: current list.
:: Get current block size.

:i Convert to address units.

2 2 Point to second half of
:: block.

21 Link second half on to
IX list.

PART II Storage Allocation and Collection PAGE 1272

DEFINE R RECQMBINE

:: This routine starts with the list of free 1-blocks and for each

:3 block searches the list for its mate* If its mate is found the

:: two blocks are recombined and transferred to the list of next

3 3 larger blocks* The process continues for each list in turn until

:: the maximum size of block is reached*

DO

WS3 1= FREEHDR :: Start with 1-blocks.

NEXTLIST) WS1 X = WS3 XX Point to next listhead.

WS3 X= WS3 + 2

IF PLUS1(WS1) GE MAXSIZE GO TO END x: If finished.

CSIZE X= PLUS1(WS1) XX Get current size.

I24,CSIZE,CSIZE,0 XX Convert size to address
X X units.

124,CSIZE,CSIZE f 0

WS2 X= WS1 XX Initialise working
X x pointer.

NEXTBLOCK) IF COOF(WS2) = O GO TO NEXTLIST XX If list finished.

WR1 x= C0QF(WS2) XX Address of next block.

l26,WRl,CSIZEfO X X Address of mate.

WR2 X= C00F(WS2) X X Initialise working
X X pointer.

TESTMATE) IF C0OF(WR2)=0 GO TO NOMATE XX If no mate in list.

IF WR1 = C00F(WR2) GO TO MATE XX If mate found.

WR2 X= C0QF(WR2) XX Step down list.

GO TO TESTMATE

PART II Storage Allocation and Collection PAGE 82

:: Point to next block.

:: Address of recombined
X: block.

X x Detach two halves from
X: current list.

X: Link recombined block
X: into next list.
XX Increase potential
X X number.

DEFINE R DUPLICATE

DO

LOGSIZE X= C00F(0P2)

127,LOGSIZE,0,0.7

FINDSIZE

GETBLOCK

COPY) COOF(WSl) 2= COOF(OP2)

WS1 := WS1 + ONE

0P2 2= 0P2 + ONE

122,SIZE,0,0.1

IF SIZE GT 0 GO TO COPY

RETURN

END

NOMATE) WS2 2= C00F(WS2)

GO TO NEXTBLOCK

MATE) I67,WRl, CS IZE,0

126,WRl,CSIZE,O

C00F(WR2) 2= C00F(C00F(WR2))

C00F(WS2) X= C00F(C00F(WS2))

C0QF(WR1) 2= C00F(WS3)

C00F(WS3) 2= WRl

p l u s 3 (w s 3) x = p l u s 3 (w s 3) + l
GO TO NEXTBLOCK

END) RETURN
END

X 2 Get log2(size) of block.

X2 Locate list, get size.

X 2 Get block, WS1 points to it,

2 2 COPY block.

2 2 If not finished.

PART II Storage Allocation and Collection PAGE 83

DEFINE R FRBLOCK

DO

LOGSIZE J= COOF(OPl)

127,LOGSIZE,0,0.7

FINDSIZE

COOF(OPl) J= COOF(POINTER)

COOF<POINTER) 1= 0P1

OCT := 0P2

STOREINI

RETURN

END

:: Get log2(size).

:: Locate free space list.

t: Link block on to free

:: space list.

:: Assign specified value to

tl field al.

PART II Storage Allocation and Collection PAGE 84

Improvements to the LSIX storage allocator

Suppose that a 2-block is requested when the smallest blocks

available are l6-blocks then the routine SUBDIVIDE splits the first

available l6-block into two 8-blocks the first of which is added to

the 8-block free space list and the second is halved again to give

two 4-blocks the second of these is then halved giving a block of

the required size. F i g . 3 . 2 shows the result of the subdivision.

| l6-block

I 8- block

I 4- block

I 2- block

The two halves formed when a block is subdivided are called

mates. When a block and its mate are free simultaneously they can

either be recombined immediately or recombination can be deferred

for as long as possible, that is until a block is required and the

potential number of blocks of the required size is zero. Whenever

the recombination is attempted, the process as defined by the

routine RECGMBINE is very inefficient. This is mainly because it is

necessary to search a free space list for the mate. Deferring

recombination of blocks leads to fragmentation of the available

store; larger blocks may be split unnecessarily when smaller blocks

could have been recombined. On the other hand immediate

recombination may result in several otherwise unnecessary calls on

the routine SUBDIVIDE.

fij. E U i

• use

• free.

PART II Storage Allocation and Collection PAGE 85

Given the address and size of any block it is a trivial matter

to determine the address of its mate, the address of the mate of a

block of size n is obtained by complementing the n-bit of the given

address. Once the mate is located there are two problemsl how do we

know if it is free and if free, how can it be detached quickly from

the free space list. Only 1 bit is required to indicate that a

block is free or in use. A convenient choice is the sign bit of

word 0 of any block.

Part of word 0 is already reserved for the system to store

log2(size), the sign bit is easily tested and perhaps most important

of all, word 0 of any free block contains a link to the next block

on the free space list and as no address is negative we set the sign

bit to 1 for blocks which are in use and to 0 for free blocks . The

usecj/free bit also provides an additional safeguard in that we can

now check that the user does not attempt to free a block which is

already free. The second problem, efficient deletion of random

blocks from a free space list, can be solved only by keeping doubly

linked free space lists. An Atlas address occupies 24 bits (i.e.

one LSIX word) therefore it is not possible to store both a forward

and a backward link in a 1-block. A second version of the storage

allocator has been written in which the free space lists are doubly

linked and no 1-blocks are allowed. As 4 bits of word 0 have

already been reserved for the system there is little use for

1-blocks anyway. In this version recombination takes place as soon

as two mates are free simultaneously. Only minor modifications are

necessary for the SETUPSTORE and GET routines. The revised FRBLDCK

routine is described below. Fig. II.3.4 shows the linkages in the

free space lists for the revised storage allocator.

PART II Storage Allocation and Collection PAGE 86

I List head

size size V

log2(size)

V

n.

V

If WRl points to a block on a free space list, that block can

be deleted by means of the following commands:

COOF(PLUSKWRI)) := COOF(WRI)

IF COOF (WRl) = 0 GO TO LASTBL S ! If last block on list.

PLUS1(CQOF(WRL)) := PLUS1(WRL)
• • • •

LASTBL)

The special treatment of the last block on a list could be avoided

by enlarging the list head to include a backward pointer also, and

using doubly linked circular lists.

There is one further detail to check before two mates can be

recombined. Suppose that an 8-block is split to provide a 4-block

and two 2-blocks, and that at some later stage the state of the

8-block is as shown in Fig. II.3.4.

2-block

2-block

4-block

Fig. II.3.4

PART II Storage Allocation and Collection PAGE 87

If the used 4-block then becomes free again before the

2-block, when the sign bit of word 0 of the mate is checked it

indicates that the mate is free. Clearly we must also check the

size of the mate. Even for free blocks then, the size must be

immediately available. We know that the least significant octal

digit of an Atlas whole word address is always zero so these three

bits in word 0 can be used to store log2(size) just as they are for

blocks which are in use.

Routine to free a block and recombine it with its mate if possible:

DEFINE R FRBLOCK

DO

OCT :r OP2

ST0REIN1 :: Assign new value of a2 to al

WSl := COOF(OPl) :: Get first word of block

IF WSl LT 0 GO TO NOTFREE : If not already free

0/P(NL.,'ATTEMPTING TO FREE A BLOCK WHICH IS ALREADY FREE')

STATEPRINT :: Output state of system

RETURN

NOTFREE) 165,LOGSIZE,WSl,0.7 x: Get log2(size)

FINDSIZE :$ Locate free space list

:: find size

WR2 J= 1

UPDTNDOT :: Update potential numbers

TKYMATE) IF SIZES MAXSIZE GO TO LINKON

2: If maximum size then no
:: recombination.

PART II Storage Allocation and Collection PAGE 88

2: Address of mate.

XX Get sign bit and log2(size).

:: Record log(size)•

2: Forward links.

:: Backward links.

124,SIZE,SIZE,0 XX Convert size to address units.

124,SIZE,SIZE,0

WS1 2= OP1

126,WS1,SIZE,0

WS2 2= C00F(WS1)

127 ,WS2, o, *40000007

IF WS2 = LOGSIZE GO TO MATE x X If mate free.

LINKON) WSl2= COQF(POINTER)

I67,WSI,LOGSIZE,O

COOF (POINTER) X= OP1

COOF(OPl) J= WS1

PLUSl(OPl) I- POINTER

IF WS1 = LOGSIZE GO TO END XI If end of list.

PLUS1(WS1) X= OP1

END) RETURN

MATE) COQF(PLUSl(WSl)) X= COOF(WSl) XX Extract block.

IF COOF(WSl) = LOGSIZE GO TO LASTBLOCK

XX If last block on list.

PLUSl(COOF(WSl)) 2= PLUSl(WSl)

LASTBLOCK) l67,0Pl,SIZE,0

126,OP1,SIZE,O

POINTER := POINTER + 2

SIZE 2= PLUS1(POINTER)

LOGSIZE X= PLUS2(P0INTER)

XX OP1 points to
X X recombined block.
XX Point to next list.

X: Get new size.

X X Get new log2(size)•

PLUS3(POINTER)x=PLUS3 (POINTER) + 1

XX Increase potential number.

GO TO TRYMATE X X Go to try next mate.

END XX End of FRBLOCK.

PART II Storage Allocation and Collection

A third version of the storage allocator.

PAGE 89

A further disadvantage of the present storage allocation and

bookkeeping method is that four bits of word zero are not available

to the user. This seriously limits the usefulness of 2-blocks as

word 1 is then the only possible link field and only 20 bits of word

0 are available for the storage of other information. It is not

possible to simulate LISP-like systems using 2-blocks as two link

fields are required for this. At present the Atlas LSIX system is

used mainly for teaching purposes and it is important to be able to

manipulate LISP-like lists. To facilitate this the four bits which

are reserved for the system have been mapped into another area of

the store. Each 48 bits of list storage is mapped into 6 bits. All

6 bits are zero unless the 48 bits constitute the first 48 bits of a

data block. In this case the bits are allocated as follows:

bit
1 used/free marker - 1 if block is in use;
2 1 available for use in automatic garbage
3 J collection version to be described later;
4 I
5 log2(size) of data block.
6 .

This representation of 48 bits by 6 bits is very convenient as

computation of the map address involves only a right shift of 3

binary places and addition of a base address. 6-bit patterns are

easily manipulated on Atlas. The efficiency of this system with

regard to space depends very largely upon the block size used. If a

large number of 2-blocks are used there might be an overall saving

in space.

PART II Storage Allocation and Collection PAGE 90

The availability of blocks of general size

The advantages in restricting the available sizes of blocks to

an integral power of two are obvious. The size, which must be

readily available to the system, may be stored compactly and blocks

are easily split to form smaller blocks or recombined with their

mates when larger blocks are required. However, these advantages

favour the implementor and not the general user. In the system

described above, the user may specify any size of block between 2

and I28 words and is not aware of the fact that the sizes actually

allocated are integral powers of two. A system which allocates any

size of block between 2 and 128 words is not difficult to implement.

There are good reasons for organising the free space lists as

before. The actual size would again be stored in word 0, but now

occupying eight bits. With so much of the first word reserved for

the system there is little use for a 1-block and it is proposed that

block sizes should be a multiple of two. Thus if a block of 9 words

is requested a 10-block is allocated. For this purpose the system

requires a l6-block of which it immediately returns the first four

words to the 4-block list, the next two to the 2-block list and

allocates the last 10 words to the user. The immediate return of

the first few unwanted words is effected by subtracting 9 from l6 to

give (00000111) in binary from which it is clear that the unwanted

parts are a 4-block and 2-block, the final bit being ignored.

The size of a block also determines the manner in which it is

freed. Thus for the 10-block allocated above we have the size

(00001010) in binary^ind starting with the right most 1 bit we return

PART II Storage Allocation and Collection PAGE 91

first a 2-block and then an 8-block. If immediate recombination is

possible then the fragmentation of store which is inherent in this

generalisation is to a certain extent counteracted. Immediate

recombination implies doubly linked free space. If the list heads

also contain two pointers then there is some advantage in using

circular free space lists, for then any odd blocks which are

returned immediately in the allocation process may be linked to one

side of the list head and allocations made from the other. This

increases the likelihood that the odd blocks are free and available

for recombination when their mates become free again.

An automatic garbage collector for LSIX

The major problem which arises when attempting to reclaim part

of a list structure is that of knowing which data blocks are no

longer needed. A number of solutions have been proposed. The first

of these by Newell Simon and Shaw places the responsibility on the

programmer. This language, IPL-V, includes instructions for erasing

lists. In LSIX we have the equivalent free block instruction. A

second solution is that used in SLIP in which a reference count is

kept in the head of every list. For each additional reference to a

list or part of a list the reference count in the list head is

increased by one. It is always possible to gain access to the list

head from any part of a list structure as SLIP is a symmetric list

processor i.e. it uses doubly linked lists. However, the process of

linking back to the list head is time consuming. There is the

additional disadvantage that while any part of a list is shared by

the other lists which are not free it is not possible to reclaim any

of the list cells on that list. The third solution is that proposed

PART II Storage Allocation and Collection PAGE 92

by McCarthy in which no cells are reclaimed until all of the free

space is exhausted. Then a garbage collection routine is entered

which scans all list structures which are in use and marks the data

blocks attached to the lists. When the lists have all been scanned

the whole of the list area is scanned again. Blocks which are not

marked are free and may be reclaimed. At the same time the marks

are erased from the blocks which are in use, so that the garbage

collection routine may be reentered as often as necessary during the

execution of a program.

The basic problem in McCarthy's method is that of scanning the

lists. In general the lists will be branched and every branch must

be traced. The natural way to process a list is by recursion but a

recursive routine requires an indefinite amount of store. As the

garbage collector is entered only when all, or nearly all, of the

storage space has been exhausted it is most unlikely that sufficient

storage will be available for a recursive garbage collector. An

ingenious solution to this problem has been proposed by Schorr and

Waite (1967). They describe a garbage collector for the WISP

language (Wilkes, I964) which uses only three registers for

temporary storage. The process described is capable of scanning any

list structure, however complex it may be. A slightly modified

version has been used to collect garbage in a BCL program which

processes binary trees (see section 2.4) a n d t h e Atlas LSIX garbage

collector is a further extension of that described by Schorr and

Waite.

The flexibility which LSIX provides in both the definition and

the use of fields is one of its major advantages. It is this

PART II Storage Allocation and Collection PAGE 93

flexibility which makes it difficult to collect garbage

automatically* Any field which is of address length or longer may

be used to store a link, and the contents of a field are interpreted

according to the context in which they are used* At the time of

storing a link the nature of the operand is known to the system,

especially if the user is willing to preserve the semantic

difference between the copy field and copy pointer operations

although even this is not absolutely necessary* In the Atlas LSIX,

the only fields which can possibly contain an (Atlas) address are

full 24-bit fields. When a link is stored we require an extra bit,

outside the 24 bit word, to record the fact that the word contains a

pointer. Now in the mapping version of LSIX, the reader may

remember that of the 6 bits representing each 48-bit block of list

storage 2 bits were unused* These provide our two pointer flags for

the possible address fields in the 48 bit block. Using these the

system can keep a record of all links in the list structures.

For the basefields (bugs) there are no pointer flags. Any bug

whose contents could possibly be an address in the list space is

assumed to point to a list. Other pointers to lists may be stored

temporarilly on the system's field contents stack. These pointers

also must be taken into account by the garbage collector. The

system first scans all list structures to which bugs point and then

any lists pointed to from the field contents stack marking those 48

bit blocks which are in use • When all accessible blocks have been

marked the whole of the list area is scanned again; any free blocks

are collected up as 8-blocks, 4-blocks and 2-blocks; marks are

erased from those blocks which are in use and finally, if the

maximum size of block set up by the program is greater than eight,

PART II Storage Allocation and Collection PAGE 94

the 8-blocks are recombined with their mates, if free, until blocks

of the maximum size have been reconstituted.

In LSIX, as in other list-processing systems, it is usual to

access the fields of a block via a pointer to the head or first word

of the block. This is not the only way in which a field may be

accessed. In particular, suppose that the same set of operations is

to be applied successively to each word of a block. Each time round

the loop it is necessary either to increase the word number in the

field definition by redefining the field or to increment the block

pointer so that it advances word by word through the block. The

latter method is the more efficient as redefinition of a field is a

lengthy process. However, the garbage collector becomes very

complicated if blocks may be accessed by means of pointers to words

other than the first. The LSIX user is advised that at all times

there must be a pointer to the first word of every block which is in

use as the garbage collector ignores pointers to words other than

the first. In almost all cases, on completion of a loop in which a

block pointer is incremented, the user will want to restore the

pointer to its initial value so a copy will have been saved either

on the field contents stack or in another field.

BCL routines for scanning list structures and for collecting

the unmarked blocks are described in Appendix 4.

PART II Storage Allocation and Collection PAGE 95

§2.4 List Processing in BCL

So far we have been concerned mainly with the use of BCL to

implement LSIX. In this section we consider the use of BCL itself

as a list processor. The basic operations in any compiler compiler

include facilities for manipulating strings of input symbols and BCL

is no exception. Through experience gained in the use of BCL as a

compiler compiler for LSIX, it became clear that with a number of

extensions BCL could be used as a high level symbol manipulation

language having many of the facilities which are available in LISP.

Also, through the use of symbolic machine orders for the machine

concerned, BCL provides the same flexibility as low-level systems

such as LSIX, with the possibility of manipulating bit patterns.

The BCL List Processing system is particularly suitable for teaching

as the student is able to define and build his own list processor

using blocks of several different sizes which are defined by the

program. Standard functions for manipulating list structures are

easily defined by the user. A number of demonstration programs

which have been used on a computer science course for M.SC. students

are described below.

The version of BCL used in this section is that defined by the

Atlas BCL compiler dated August 1968 which is a further development

of the compiler used to implement LSIX. One of the most useful

additions is the provision of labels and GO TO commands within

groups of elements. Labels are defined only in the group and branch

in which they are set and just as it is illegal to jump into a DO

loop in FORTRAN, so also in BCL jumps into an alternative are not

allowed, neither are jumps out of an alternative although the latter

restriction is a temporary one.

PART II Storage Allocation and Collection PAGE 96

To provide a list processing system based on this version of

BCL the author has added functions and groups with parameters. The

parameters implemented at present are of type A only (storing an

address or an address length integer) and are called by value.

Character variables of up to four characters in length may be used

as actual parameters as there is no type check. Examples given in

this section show that even this small subset of parameters provides

a very powerful system. General parameters of any type with calls

by name, reference or value will eventually be implemented in BCL

and will improve the system still further. Functions have been

added through the implementation of an EXIT statement which can have

one actual parameter being the value to be returned. EXIT

statements can be used in any level of alternative within a group

and are effectively a RETURN or jump out of a group to the calling

point. When an EXIT is used in a branch within a group then a stack

of pointers must be unwound as in the case of a transfer out of a

block in Algol. A more detailed description of these extensions to

the BCL compiler is given in Appendix 5-

In the first example (see Table II.4.1) the LISP function CONS

and the predicates EQ and NULL are defined in BCL; CAR and CDR are

represented by HEAD and TAIL , and the complete program shows how

functions such as APPEND, UNION and INTERSECTION are defined

recursively. The program in Table II.4.I shows how the principles

developed in this section can be used in a system which requires

simple linked lists in which the nodes (pointer words in LISP)

consist of two address-size fields named HEAD and TAIL. More

complex structures in which the head field may contain a link to a

sublist will be discussed later. The tail of the last node in a

PART II Storage Allocation and Collection PAGE 97

DECLVAR IS (A FREE, A COUNT, A WS, A RESULT,A P,A Q,A R>

PWORD(?) IS (A HEAD,A TAIL)

INITFREE IS (121,FREE,0,*20000000>

SETUPFREE(A COUNT) IS (TAIL(FREE) r O,
AGAIN: SETUP(PWORD,WS,FREE),

TAIL(FREE) = WS,
COUNT = COUNT - 1,
IF COUNT GT 1 GO TO AGAIN)

CONS (A X,A Y) IS (EITHER IF FREE = O,
0/P(NL. ,'FREE SPACE EXHAUSTED*,NL.),STOP

OR WSSFREE,
FREEsTAIL(FREE),
HEAD(WS)=X,
TAIL(WS)SY,
EXIT(WS))

NULL(A X) IS (IF X = 0)

EQ(A X,A Y) IS (IF X = Y>

PRINTLIST(A X) IS (PRINT: IF X = O GO TO END,
WS = HEAD(X), 0/P(WS,SP.(2)>,
X = TAIL(X), GO TO PRINT,

END: 0/P(NL.))

APPEND (A X,A Y) IS (EITHER NULL(X) ,EXIT(Y)
OR EXIT(CQNS(HEAD(X) ,APPEND(TAIL(X) ,Y))))

MEMBER (A X,A Y) IS ((EITHER NULL(Y), RESULT = 0
OR EQ(X,HEAD(Y)), RESULT = 1
OR MEMBER(X,TAIL(Y))), IF RESULT = 1)

UNION(A X,A Y) IS (EITHER NULL(X) ,EXIT(Y)
OR MEMBER(HEAD(X) ,Y) , EXIT(UNION(TAIL(X), Y))
OR EXIT(CONS(HEAD(X),UNION(TAIL(X),Y))))

INTERSECTION^ X,A Y) IS (EITHER NULL(X), EXIT(O)
OR MEMBER(HEAD(X), Y) ,

EXIT(CONS(HEAD(X) ,
INTERSECTION(TAIL(X) ,Y)>)

OR EXIT(INTERS ECTION(TAIL(TAIL(X) ,Y))))

Table II.4.1 (a) Program defining some List Processing functions.

PART II Storage Allocation and Collection PAGE 98

LISTPROGRAM IS (INITFREE, SETUPFREE<40>,

P=CONS (2, CONS (4, CONS (6,0 ») ,

0/P(NL.,'LIST P '), PRINTLIST(P),

Q=CaNS(4,CONS(6,CGNS(8,0))),

0/P(NL., 'LIST Q •), PRINTLIST(Q) ,

R=APPEND(P,Q),

0/P(NL. , 'LIST P WITH LIST Q APPENDED '),

PRINTLIST(R) ,

R=UNION(P,Q),

0/P(NL., 'UNION OF LISTS P AND Q '),

PRINTLIST(R),

R=INTERSECTION(P,Q),

0/P(NL., 'INTERSECTION OF LISTS P AND Q •),

PRINTLIST(R),

STOP)

*ENTER(0/P(NL# , 'LIST PROGRAM TEST ' ,NL.(2)),LISTPROGRAM)

Table II.4.1 (b) A simple program using the functions defined above.

LIST PROGRAM TEST

LIST P 2 4 6

LIST Q 4 6 8

LIST P WITH LIST Q APPENDED 2 4 6 4 6 8

UNION OF LISTS P AND Q 2 4 6 8

INTERSECTION OF LISTS P AND Q 4 6

Table II.4.2 Output from the program in Table II.4.1 W .

PART II Storage Allocation and Collection PAGE 99

list contains an easily recognizable symbol, zero in this case,

which serves as a terminator.

Declaration of variables, nodes and fields

In the first line of the program in Table II.4.1 a number of

variables to be used in the program are declared as type A and may

therefore be either link variables storing an address or integer

variables. They are also declared jointly to constitute the group

DECLVAR.

Consider the next definition

PWORD(?) IS (A HEAD, A TAIL).

This says that FWORD (or pointer word in LISP) is a structure (or

datagroup) consisting of two fields HEAD and TAIL each of type A

(address). The query indicates that HEAD and TAIL are selector

functions and not variable names. Thus HEAD refers to the first

halfword and TAIL to the second halfword of a structure (an address

occupies one half-word on Atlas). BCL is very free in mixing

elements of different type in a group; in this work we prefer to

distinguish fairly sharply between data-groups and command-groups

(alias routines).

The nodes within a list may be referenced either directly by

means of a link variable containing the address of the node or

indirectly through the link field of another node. The fields

within a node are referenced by writing the name of the field

followed by the name of a pointer or link variable in parentheses.

Thus if the link variable P points to a node, the head field of that

node is referred to as HEAD(P) and the tail field as TAIL(P). If P

points to the first node of a linked list, as in Fig, II.4.1, then

nodes other than the first may be accessed via the pointers in the

PART II Storage Allocation and Collection PAGE 100

TAIL fields. For example HEAD(TAIL(P)> refers to the head field of

the node to which TAIL(P) points, i.e. to the head field of the

second node of the list. Similarly TAIL(TAIL(P)) refers to the tail

field of the second node of the list P (the list to which P points).

- - -i'

Q — * - - +

Fig. II.4.1 Examples of linked lists.

The field HEAD(HEAD(TAIL(Q))) refers to the head of the first cell

of the second sublist of the list Q. Note that a field name is

meaningless if used on its own; it must always be used with a

pointer or link variable. The 'functions' HEAD and TAIL enable us

to dissect any list structure however complex it may be.

Groups of commands, functions

Lists are constructed by getting new nodes and planting in them

links to other nodes. Nodes which are available for constructing

linked lists are usually stored as a linked list of free space. In

Table 11.4.1 the link variable FREE points to such a list of free

space which is set up by calling the group of commands SETUPFREE.

The function CONS gets a node from this list and plants values in

PART II Storage Allocation and Collection PAGE 101

its head and tail fields. Note the method of branching used in this

function. EITHER the free space list is empty, in which case the

program is terminated (no garbage collector is defined in this

simple program) OR the first node is unlinked from the free space

list and the values of X and Y are written into the head and tail

fields respectively. Finally the command EXIT causes a return,

bringing with it the value of the link variable WS, so that the

value of the function COINS is a pointer to a new node. A group of

commands is called by writing its name followed by a list of zero or

more actual parameters enclosed with parentheses and separated by

commas.

If TOP is a link variable which points to the top node of a

stack then the value of the variable A may be stacked by means of

the statement

TOP = CONS (A,TOP)

This statement is equivalent to the following sequence:

I IF FREE NE 0 GO TO GETNODE,

| 0/P(NL., 'FREE SPACE EXHAUSTED'), STOP,

| GETNODE: WS = FREE,

| FREE = TAIL(FREE),

| TAIL(WS) = TOP,

1 HEAD(WS) = A,

| TOP = WS,

I

Fig. II.4.2 shows the state of the stack and the free space list at

various stages during the execution of these statements.

PART II Storage Allocation and Collection PAGE 102

(a) Before entering CONS.

(b) After executing FREE r TAIL(FREE).

(c) After leaving the CONS fanctidtl.

FIG. II.4.2 The state of the Stack and Free Space list at
various stages during the execution of CONS(A,TOP).

PART II List Processing in BCL PAGE I03

Returning to the remaining groups of commands in Table II.4.1,

NULL(X) tests if the list X is empty by testing if pointer X is

zero* EQ(X,Y) tests two symbols for equality and PRINTLIST(X)

prints the elements of the simple linked list X .

The groups APPEND, MEMBER, UNION and INTERSECTION are more

interesting. They are the BCL versions of the functions of the same

names defined in the LISP 1.5 Programmer's Manual (McCarthy et al.,

1965)* Bach of these groups is defined recursively and also uses

previously defined groups. They are included to demonstrate the

functional aspects of the system. The arguments of APPEND are both

lists and the function constructs a new list which is the second

list appended to a copy of the first without changing either of the

original lists.

MEMBER is a predicate. It tests if the symbol X is a member

of the list Y. EITHER Y is an empty list in which case the result

is false, a fact which is recorded by setting RESULT to zero, OR X

equals the head element of Y and RESULT is set to 1, OR MEMBER is

called recursively to test if X is a member of the list TAIL(Y).

Eventually either X is found on list Y and RESULT r 1 or the end of

list Y is reached without finding X, and RESULT = 0. MEMBER is

finally 'matched' or 'failed' by the condition IF RESULT = 1. The

effect of this will become clearer when we consider the group UNION

which calls MEMBER,

A simpler definition of MEMBER which uses IF Y NE 0, the

equivalent of N0T(NULL(Y)), is

| MEMBER (A X,A Y> IS (IF Y NE 0, EITHER EQ(X,HEAD(Y»

| OR MEMBER(X,TAIL(Y)))

PART II List Processing in BCL PAGE I04

UNION constructs a list which is the union of its two

arguments. Inside the group UNION, EITHER list X is empty in which

case the result is list Y, OR if the first element of list X is a

member of list Y the result is the union of the two lists TAIL(X)

and Y. If the first element of list X is not a member of list Y

then MEMBER(HEAD(X),Y) is failed by its final condition, IF RESULT =

1, and the third alternative of UNION is entered giving the result

that UNION(X,Y) is CC*NS(HEAD(X), UNION(TAIL(X),Y».

The value of the function INTERSECTION is the intersection

of two lists. The use of these functions clearly demonstrates the

power of the system. Actual parameters of a function may themselves

involve further calls on functions to any depth.

In Table 11.4.1(b), LISTPROGRAM is a group of commands to test

the system which has been defined. It begins by calling INITFREE

which initialises the start of free space^(the only command in this

group is a symbolic machine order to assign to the variable FREE the

octal address 20000000), and then SETUPFREE to set up a linked list

of free space. It next constructs two simple lists P and Q and

calls in turn APPEND, UNION and INTERSECTION with P and Q as actual

parameters. The results are output after each statement and the

test program then STOPs. Fig. 11.4.3 shows the lists constructed.

Note that the results of APPEND and UNION share the nodes of the

original list Q.

Following the directive *ENTER is a command to output on a

newline (NL.) a title followed by two newlines before entering the

group LISTPROGRAM. The actual computer output for this simple test

program is shown in Table 11.4.2.

PART II List Processing in BCL PAGE 105

2 * 4 6

6 8 0 J> I 6 8 0
A

UNION of P and Q 4) 2 |

Copy of P with Q APPENDED "5 2 6

INTERSECTION of P and Q - t t 6 o

Fig. 11.4.3 Results of APPEND(P,Q),UNIQN(P,Q) and INTERSECTIQN(P,Q).

Input, Output and Storage of Atoms

Consider the declarations (A INTEGER, 8c CHARVAR). The

first of these declares INTEGER to be of type A; it can therefore

store an address or an integer. The second declares CHARVAR to be a

character variable which can store up to eight six-bit characters

left justified in a 48-bit field. The appearance of variable names

in the list of elements of a group which is entered in input or

output mode causes values of the specified type to be transferred.

PART II List Processing in BCL PAGE I106

For example provided that the next characters in the input stream

are of the appropriate type, the occurrence of INTEGER causes input

of an integer to the variable INTEGER. If there are no digits in

the input stream the transfer fails. Similarly CHARVAR causes the

transfer of up to eight alphanumeric characters. The transfer is

terminated either after eight such characters have been input or on

finding a character which does not belong to the appropriate

character set (digits and letters). If after reading at least one

letter or digit an unacceptable character occurs before the eighth

character is read, then the transfer is terminated and the remainder

of the 48-bit field is filled with space characters. Variables to

store more than eight characters may be declared and it is possible

to input as atoms character strings of any length.

Once input an atom must be stored either in list space or in

separate atom space. Storage in list space restricts character

strings to four characters as the head field of a list-cell is only

24 bits.

Atomic symbols may be stored in separate atom space by setting

atom records defined as follows:

Atom Flag Atom type Atom length Atom symbol

-1 0 or 1 or 2 1, 2 or more

where the atom types 0, 1 and 2 represent integer, real and

character strings respectively, and the length is 1 for integers, 2

for real numbers and is variable for character strings.

PART II Storage Allocation and Collection PAGE 107

Thus for an integer atom we define the record

IATOMC?) IS (A FLAG, A TYPE, A LENGTH, A ISYMBOL)

and for character strings of up to 8 alphanumeric characters

CATQM(?) IS (A FLAG, A TYPE, A LENGTH, 8C CSYMBOL)

Real numbers are not yet implemented in the BCL prototype compiler

used for this work but the record for a real atom might be

RATQM(?) IS (A FLAG, A TYPE, A LENGTH, R RSYMBOL)

To store the atom which is input, a new atom record is set

up using the BCL command

SETUP (Recordname, Pointer, Pointer to Atomspace)

where the record name is either IATOM, CATQM or RATGM, pointer is a

variable which points to the record after it has been set up and the

pointer to atom space indicates the next available space (in

consecutive store locations) for atoms. Thus to read and store an

integer atom and return with a pointer to its record in atom space

we define the group

IREAD IS (INTEGER >

SETUP(IATGM, WS, ATQMSPACE)

FIAG(WS) = -1 »

TYPE(WS) s 0

LENGTH (WS) = 1 »

ISYMBOL(WS) = INTEGER t
EXIT(WS))

PART II Storage Allocation and Collection PAGE 108

The first field of any atom record is a negative flag to

indicate that the record is that of an atom. Thus the predicate

ATQM(X) which is true if X is null or if X points to an atom is

defined by

I ATOM(A X) IS (EITHER NULL(X)

I OR IF FIAG (X) LT 0)

If the head field of a node contains a pointer to a sublist

it is necessary to distinguish it from atoms. The predicate ATOM

defined above is suitable for this when atoms are stored in separate

atomspace. If atoms are to be stored in the head field of a node

then a bit must be reserved to distinguish between atoms and

pointers to sublists. So that the full head field may be available

for storing atoms it is convenient to extend our definition of PWORD

to include a third field which stores a flag describing the contents

of the head field. We now have

PWORD(?) IS (A FLAG, A HEAD, A TAIL) .

If the field named FLAG is zero for atoms and one for sublists then

the predicate ATOM is redefined as

ATOM (A X) IS (EITHER IF FLAG(X)=0

OR IF HEAD(X)ro)

PART II Storage Allocation and Collection

§2.4.2 Manipulation of Algebraic Expressions.

PAGE 109

The following program may be used to read polynomial

expressions, store them as binary trees, output them in forward

Polish notation, reverse Polish notation and in the normal infix

form, and finally to differentiate such a polynomial with respect to

a single variable and output its derivative after some

simplification.

Groups of commands to input an expression are given in Table

11.4.3. These use the syntax defined by

<constant> J 2= <integer>

<variable> j2= <name>

<primary> :!= <constant> | <variable> | (<expression>)

<secondary :t= <primary> ** <constant> | <primary>

<term> ::r <term> * <secondary> |

<term> / <secondary> | <secondary>

<expression> ::= <expression> + <term> I

<expression> - <term> | <term>

The nodes set up are three-field nodes of the form

LLINK SYMBOL RLINK

If the symbol field contains an arithmetic operator the link

fields point to the two operands involved. Constants and variable

names are stored in the symbol fields of nodes of which both link

fields are zero.

PART II Storage Allocation and Collection PAGE 110

•BCL SOURCE

DECLVAR IS (A LISTSPACE,A POINTER,A INTEGER,A X,A OP,A WS,
A PLUS,A MINUS,A MULT,A DIV,A EXPNT,A VARX,A WSl,
A WS2.2C INAME)

NQDE(?) IS <A LLINK, A SYMBOL,A RLINK)

CONS (A X,A Y,A Z) IS (SETUP(NODE, POINTER,LISTSPACE),
LLINK (POINTER) sX ,
SYMBOL (POINTER)rY,
RLINK(POINTER)=Z,
EXIT(POINTER))

VARIABLE IS (OSP. ,INAME,OSP. ,EXIT(C0NS(0, INAME,0)))

CONSTANT IS (OSP, ,INTEGER,OSP. ,EXIT(CONS(0, INTEGER,o)))

PRIMARY IS ((EITHER X = CONSTANT
OR X r VARIABLE
OR *(',X=EXPRESSION,*)f),EXIT(X))

SECONDARY IS (X=PRIMARY,EITHER •••• ,EXIT(CONS(X, ••••,CONSTANT))
OR EXIT(X))

TERM IS (XrSECONDARY, MORE: (EITHER '/'fOPz'/*
OR '• •,0P=* + *
OR EXIT(X)),
XZCONS(X,OP,SECONDARY),
GO TO MORE)

EXPRESSION IS (X=TERM,MORE: (EITHER 9OPz'+*
OR •-»,0P=»-'
OR EXIT(X)),
X=CONS(X,OP,TERM),
GO TO MORE)

Table II.4.3. Groups of Commands to Input an Expression.

The expression

I (2x + 1) - 6x

is punched as

| (2 • X + 1) - 6 • X

and the effect of the statement XrEXPRESSION is to assign to X a

pointer to a binary tree representing the input expression as shown

in Fig. II.4.4.

PART II Storage Allocation and Collection PAGE 111

Fig. II.4.4 Tree representation of (2x + 1)**3 - 6x.

PART II Storage Allocation and Collection PAGE 112

PRINT(A X,A LASTQPfA OP) IS (EITHER IF XZO
OR IF LLINK(X)=0,IF RLINK(X)rO,

(EITHER IF SYMBOL(X) GT 0,
ws=symbol(x), 0/p(ws)

or inamersymbql(x),
0/P(INAME))

OR OP=SYMBOL(X),
(EITHER IF IASTOP=EXPNT
OR (EITHER IF IASTOP=MULT

OR IF IASTOPzDIV),
(EITHER IF OPrPUJS
OR IF OPrMINUS)),

0/P(' < f), PRINT(LLINK(X) ,0P) ,
INAME=OP, 0/P(I NAME) ,
PRINT(RLINK(X) ,0P) ,0/P(•) •)

OR PRINT(LLINK(X) ,0P), INAMErOP,
o/p(iname),pr int(r l ink(x) f 0p))

NODEPRINT(A X) IS (EITHER IF LLINK(X)=0,IF RLINK(X)=0,
IF SYMBOL (X) GT O ,WS=SYMBOL(X),
0/P(WS,SP.(2))

OR INAMEsSYMBOL(X) ,0/P(INAME))

PREPRINT (A X) IS (EITHER IF XZO
OR NODEPRINT(X),

PREPRINT(LLINK(X)) , PREPRINT(RLINK(X)))

ENDPRINT(A X) IS (EITHER IF XZO
OR ENDPRINT(LLINK(X)),

endpr int(r l ink(x)) ,nodeprint(x))

POSTPRINT(A X) IS (EITHER IF XZO
or p o s t p r i n t (l l i n k (x)) ,

nodeprint(x), postpr int(r l ink(x)))

Table II.4.4. Groups of commands to output the information

stored in a tree.

PART II List Processing in BCL PAGE II1332

Commands to output the elements of a tree are given in Table

II.4.4. PREPRINT outputs the expression in forward Polish notation,

ENDPRINT in reverse Polish notation and POSTPRINT in infix form

without parentheses. The terms PREorder, POSTorder and ENDorder are

those defined and used by Knuth (1968). PRINT inserts parentheses

in the infix form to remove any ambiguities. Typical results for

the tree in Fig. 11.4.4 are

Forward Polish: - ** + * 2 X 1 3 * 6 X

Reverse Polish: 2 X 1 + 3 ** 6 X -

Infix without brackets: 2 * X + 1 ** 3 - 6 X

Infix with brackets: (2 * X + 1) ** 3 - 6 * X

These different orders of output are obtained simply by

traversing the tree in different orders. PREPRINT first visits the

root then the left subtree and finally the right subtree. The group

NODEPRINT is machine dependent and requires further comment. This

group first tests if the node contains a constant or a variable name

by testing the link fields. If both links are zero and if the

contents of the symbol field are negative then the node contains a

variable name which is output in character form by first

transferring it to a character variable, INAME in this example. A

positive value in the symbol field is the value of an integer which

is first transferred to a variable of type A and then output. Nodes

whose link fields are not zero store arithmetic operators which are

output as characters after being assigned to a character variable.

(The reader may have noticed that PRINT, which incidentally does not

use NODEPRINT, appears to have three formal parameters, X, LASTOP

PART II List Processing in BCL PAGE II1332

and OPf whereas when it is called only two actual parameters are

specified. The system as implemented at present does not check that

the number of actual parameters is equal to the number of formal

parameters nor does it provide for local variables and as the

parameters are called by value this provides a convenient trick by

which to introduce the latter.)

The function DIFF(X) (see Table II.4.5) uses the basic rules of

differentiation to construct a tree representing the derivative of

the expression to which the link variable X points. Note that the

variable OP is a local variable and not a formal parameter. No

simplification is performed within this group and the result of

Y = DIFF(X) is shown in Fig. II.4.5.

DIFF(A X,A OP) IS (EITHER IF X30,EXIT(0)
OR IF LLINK(X)=0,IF RLINK(X)=0,

(EITHER IF SYMBOL(X)=VARX,EXIT(CONS(0,1,0))
OR EXIT(O))

OR (EITHER IF SYMB0L(X)3PLUS,OPs•+'
OR IF SYMBOL(X)=MINUS,0P=1-'),
EXIT(CONS(DIFF(LLINK(X)),OP,DIFF(RLINK(X))))

OR IF SYMBOL(X)=MULT ,
EXIT(CONS(CONS(LLINK(X),,DIFF(RLINK(X))),•+•

, CONS(DIFF(LLINK(X)),'*', RLINK(X))))
OR IF SYMBOL(X)=DIV,

EXIT(CONS(CONS(CONS(RLINK(X),•*1,DIFF(LLINK(X))), ,
CONS(LLINK(X),,DIFF(RLINK(X)))),

'/* ,CONS(RLINK(X), •*** ,C0NS(0,2,0))))
OR IF SYMBOL(X)=EXPNT,

EXIT(CONS(RLINK(X) , '* ' ,CONS(DIFF(LLINK(X)) , •*•,
CONS(LLINK(X),•**•,CONS(RLINK(X),,-,fCONS(0,1,0)))))))

Table II .4.5. Commands to differentiate a simple polynomial

expression with respect to a single variable.

PART II List Processing in BCL PAGE II1332

Fig. 11.4.5. Derivative of (2x + 1)**3 - 6x before simplification.

PART II List Processing in BCL PAGE II1332

The group * EQUAL* used below tests two trees for equality.

IATOM(A X) IS (IF LLINK(X)=0,IF RLINK(X)=0, IF SYMBOL(X) GT 0)

SPLUS(A X) IS (EITHER IF RLINK(X)=0, EXIT(LLINK(X))
OR IF LLINK(X)=0, EXIT(RLINK(X))
OR IATOM(LLINK(X)) , IATQM(RLINK(X)),

WS=SYMBOL(RLINK(X))+SYMBOL(LLINK(X)),
EXIT(CONS(0 , WS, 0))

OR EXIT(X))

SMINUS(A X) IS (EITHER IF RLINK(X)sO,EXIT(LLINK(X))
OR EQUAL(LLINK(X),RLINK(X)),EXIT(0)
OR IATQM(LLINK(X)), IATOM(RLINK (X)),

WS=SYMBOL(LLINK(X)) -SYMBOL(RLINK (X)),
(EITHER IF WS GT 0,EXIT(C0NS(0,WS,0))
OR LLINK(X)=0, SYMBOL(RLINK (X))=0-WS,

EXIT(X))
OR EXIT(X))

SMULT(A X) IS (EITHER IF LLINK(X)=0, EXIT(O)
OR IF RLINK(X)=0, EXIT(o)
OR IF SYMBOL(LLINK(X))=l, EXIT(RLINK(X))
OR IF SYMBOL(RLINK(X))=l, EXIT(LLINK(X>)
OR EQUAL(LLINK(X),RLINK(X)),

EXIT(CONS(LLINK(X),•**•,C0NS(0,2,0)))
OR IF SYMBOL(RLINK(X))=MULT,IATOM(LLINK(X)),

IATQM(LLINK(RLINK(X))) ,WSl=SYMBOL(LLINK(X)),
WS2=SYMBOL(LLINK(RLINK(X»), I302 ,WS1 ,WS2,0,
EXIT (CONS (CONS (0 ,WS1,0) , * * *, RLINK(RLINK(X))))

OR EXIT(X))

SDIV(A X) IS (EITHER IF LLINK(X)=0, EXIT(o)
OR EQUAL (LLINK(X), RLINK (X)), EXIT (CONS (0,1, 0))
OR IF RLINK(X)=0,0/P(NL., 'DIVISION BY ZERO '),

EXIT(X)
OR EXIT(X))

SEXPNT(A X) IS (EITHER IF LLINK<X)=0, EXIT(o)
OR IF RLINK(X)=0, EXIT(CONS(0,1,0))
OR IF SYMBOL(RLINK(X))=l, EXIT(LLINK(X))
OR EXIT(X))

SIMPLIFY(A X) IS (EITHER IF X=0,EXIT<0)
OR IF RLINK(X)=0,IF LLINK(X)=0,EXIT(X)
OR RLINK(X)=SIMPLIFY(RLINK(X)),

LLINK(X)=SIMPLIFY(LLINK(X))
,EITHER IF SYMBOL(X)=PLUS,EXIT(SPLUS(X))
OR IF SYMBOL (X)=MINUS, EX IT (SMINUS (X))
OR IF SYMBOL(X)=MULT,EXIT(SMULT(X))
OR IF SYMBOL(X)=DIV,EXIT(SDIV(X))
OR IF SYMBOL(X)=EXPNT ,EXIT(SEXPNT(X)))

Table 11.4.6. Simplification routines.

PART II List Processing in BCL PAGE II1332

Fig. 11.4.6. Derivative of (2x + 1)**3 - 6x after simplification.

PART II List Processing in BCL PAGE II1332

Obviously seme simplification could have been carried out

during the actual construction of the derivative but simplification

is itself quite instructive and is defined in separate groups of

commands given in Table II.4.6. The result of Z 2 SIMPLIFY(Y) is the

tree shown in Fig. 11.4,6.

Table 11.4.7 contains actual computer output from a program

using the differentiation and simplification groups defined here. It

will be seen that these results are not all in their simplest form.

In particular the derivative of (X + Y) (X - Y) with respect to X is

output as X + Y + X - Y . It is well known that the major part of

any differentiation program is the simplification of the results.

Further groups to collect terms could be included. The group DIFF

is easily extended to deal with more general functions but the

commands given here are sufficient to illustrate the techniques

used.

DIFFERENTIATION TEST

THE DERIVATIVE OF 3* (X **2+ X) + 2* X **3

WITH RESPECT TO X IS 3* (2* X + 1) + 6* X **2

THE DERIVATIVE OF (X + Y)* (X - Y)

WITH RESPECT T O X I S X + Y + X - Y

THE DERIVATIVE OF 3* (2* X + l)**3 - 2* X **2

WITH RESPECT TO X IS l8* (2* X + 1)**2 - 4* X

THE DERIVATIVE OF 3* (2* X + 1)**2 + 6* X **3

WITH RESPECT TO X IS 12* (2* X + 1) + l8* X **2

END OF PROGRAM

Table II.4.7. Output from the differentiation program in Table 11.4.8.

PART II List Processing in BCL PAGE II1332

LISTPROGRAM IS (DATAF=0, :: data trace off

PLUS='+',

MINUS::'-',

MULTr'*',

DlVr'/',

EXPNTr• **',

VARX='X',

NEXT: JL2l,LISTSPACE,0,*2,

(EITHER NLS OR NIL.),

(EITHER XSEXPRESSION,

0/P(NL. (3), 'THE DERIVATIVE OF »),

PRINT(X)

OR 0/P(NL. (2), 'END OF PROGRAM'),STOP) ,

0/P(NL.(2), 'WITH RESPECT TO X IS '),

PRINT(SIMPLIFY(DIFF(X))),

GO TO NEXT)

NLS IS (OSP. ,NL.,EITHER NLS OR NIL.)

*ENTER(0/P(NL. , 'DIFFERENTIATION TEST ' ,NL. (2)) ,LISTPRDGRAM)

:: Initialise list

:: space pointer.

Table II.4.8. A differentiation program.

PART II List Processing in BCL PAGE II1332

§2.4.3 An example of automatic garbage collection in BCL

In the expression manipulation program described above, space

required for new nodes was allocated sequentially and not from a

linked list of available space. Before the input of each new

expression the pointer to the listspace is reset to its initial

value and the same space is used several times over.

To demonstrate a method of automatic garbage collection another

version of the program has been written in which space available for

new nodes is organised in the form of a linear linked list pointed

to by the link variable FREE. From time to time this list is

exhausted and nodes which are no longer attached to active lists,

and are therefore free, can be collected up and returned to the free

space list by the garbage collector. In general the active lists

will not be linear lists and any routine which scans an active list

to determine which nodes are still accessible^and therefore in use^

must scan all branches of the list. The simplest method is to use a

recursive routine to scan the lists but recursive routines require

an indefinite amount of work space for storing link information at

each call. As the garbage collector is called only when all, or

almost all, work space has been exhausted it is important to use a

method which requires very little work space. The method used here

requires only three working registers and uses the link fields of

the nodes themselves to store any pointers which must be saved.

The nodes used are the same as before, consisting of the three

fields LLINK, SYMBOL and RLINK. The garbage collector requires two

additional one-bit fields for flags. It is convenient to use the

PART II List Processing in BCL PAGE II1332

sign bit of each link field for these as no address in the listspace

can be negative.

I LLINK SYMBOL RLINK

r
i
L

I left flag right flag

The SCAN routine first makes a forward scan along the right

links ignoring other fields and reversing the right links until a

branch end is found. The scan is then reversed, and as each node is

passed its right flag is set to indicate that the node is in use.

This backward scan is terminated on finding a node with a left

subtree which is as yet unscanned. The left flag of this node is

set and a forward scan made of the right links of the next (left)

subtree, again terminating at a branchend. On the backward scan any

left flag which has been set indicates a branch point. The effect

of the scanning operation is illustrated by the tree diagrams on

the following page, in which a 1 to the left (right) of a node

indicates that the left (right) flag of that node is set.

In addition to any trees pointed to by link variables there may

be some pointers, to the subtrees of partially constructed trees,

stored temporarily in the system work stack. These also must be

scanned and this is the first operation of COLLECTGARBAGE. When all

active trees and subtrees have been scanned the routine LINKFREE

scans all list space from LISTART to LISTEND returning unflagged

nodes to the free space list and resetting flags in nodes which are

still in use.

i
i
1

PART II List Processing in BCL PAGE II1332

(a) Before scan commences. (b) End of first forward scan.

(c) End of second forward scan, (d) Start of third forward scan.

Fig. 11.4.7. The state of the tree representing 5 + 6(2x + 1)**2

at various stages during the scanning procedure.

PART II List Processing in BCL PAGE II1332

The program begins by calling SETUPFREE to set up a linked list

of free space from location *2 onwards.

I NQDE(?) IS (A LLINK,A SYMBOL,A RLINK)

I SETUPFREE(A COUNT) IS (121,LISTART,0,*2,

I FREE:=LISTART,LISTEND:=LISTART,

I MORE: SETUP(NODE,WS,LISTEND), :: set up node.

I RLINK (WS):=LISTEND, :: plant link.

| COUNT!=COUNT-1,

| IF COUNT GT 0 GO TO MORE,

| RLINK(WS) :=0) :: terminate lijst.

CONS gets new nodes and plants information in the three fields. It

first asks if the free space list is empty and if so calls the

garbage collection routine. If no free cells are found the program

is abandoned, otherwise a new node is allocated.

I CONS(A X,A Y,A Z) IS (EITHER IF FREE5=0,

| COLLECTGARBAGE,

| IF FREE:=0,

| 0/P(NL.,'FREE SPACE EXHAUSTED'),

| DUMP,STOP

| OR WSI=FREE, FREE:=RLINK(FREE),

| LLINK(WS) :=X,

| SYMBOL(WS):=Y,

| RLINK (WS):=Z,

| EXIT(WS))

PART II List Processing in BCL PAGE II1332

The routine COLLECTGARBAGE sets a working pointer to the bottom

location of the system stack and then proceeds to scan any lists

whose addresses have been stacked* Note that list addresses lie in

the range

| LISTART < list address < LISTEND.

FREESPP marks the top of the system stack.

COLLECTGARBAGE next scans any other lists that are still

required. These are specified by the program. In this case only

the list X is used. After this has been scanned LINKFREE collects

up all free nodes between LISTART and LISTEND.

| COLLECTGARBAGE IS (0/P(NL.(2>,

| 'GARBAGE COLLECTION ROUTINE ENTERED*,NL.),

| WS4J=STACKBASE,

| NEXT: IF WS4 GE FREESPP GO TO STACKDONE,

| IF C00F(WS4> LT LISTART GO TO SKIP,

| IF C00F(WS4> GE LISTEND GO TO SKIP,

| SCAN(C00F(WS4)),

I SKIP: WS4:=WS4+ONE,

| GO TO NEXT,

| STACKDONE: SCAN(X),

| LINKFREE)

PART II List Processing in BCL PAGE II1332

SCAN(A X) IS (WSl:=i, WS2JZX, :: Initialise working

j: pointers.

MORE: IF WS2 LE 0 GO TO BRANCHEND,

WS3:=RLINK(WS2),

RLINK(WS2):ZWS1, :: Reverse link.

WS1SZWS2, WS2JZWS3, :: Step down branch.

GO TO MORE,

BRANCHEND: IF WS1=1 GO TO ENDSCAN,

WS3IZWS2, l67,WS3,0,*4, :: Set rightflag to

:: 'not free*.

WS2JZWS1,

IF LLINK(WS2) LT O GO TO ENDBRANCH,

WS1:=RLINK(WS1), :: Step back up branch.

RLINK(WS2):ZWS3, :: Restore link.

IF LLINK(WS2)=0 GO TO BRANCHEND,

WS35=LLINK(WS2),

LLINK(WS2):=-WS1, :: Set left flag to mark

:: branch.

wsl:zws2, ws2:zws3,

GO TO MORE,

ENDBRANCH: WS1:=-LLINK<WS1> ,

126,WS3,0,*4,

LLINK(WS2):ZWS3,

GO TO BRANCHEND,

ENDSCAN: NIL.)

:: Reset left flag.

PART II List Processing in BCL PAGE II1332

In LINKFREE the effect of the system procedure DELETE (NODE, WSl) is

to step the pointer WSl back by an amount equal to the length of a

node.

LINKFREE IS (FREE:=0, WS1:=LISTEND, :: Start at end of

NEXT: DELETE(NC3DE,WS1), :: list area.

IF RLINK(WSl) LT GO TO NOTFREE,

RLINK(WSl) :=FREE, :: Linkon free node.

FREE:=WS1,

GO TO END,

NOTFREE: WS2:=RLINK(WS1),

126,WS2,0,*4, :: Reset right flag to

:: zero.

RLINK(WSl):iWS2,

END: IF WSl GT LISTART GO TO NEXT)

The garbage collector was tested in the expression

differentiation program by setting up only forty nodes on the free

space list initially and after the output of each derivative setting

X to zero so freeing the tree to which X pointed. The octal output

of the list area, given in Appendix 6, shows that the garbage

collector worked satisfactorily.

PART II List Processing in BCL PAGE II1332

§2.4.4 BCL program to build a tree-structured directory.

Linked memory techniques have important applications in

building files. The following program builds and updates a tree

structured file to store a number of alphabetic items of variable

length. Instructions are included to search for an item in the

tree, insert an item if it is not already in the tree, and delete an

item from the tree.

After initialisation of the file the program stores the items

BAN, BACK, BANE, BARREL, BE, BAR, BANK, BANG,

BEEN, BARE, BARGAIN, BAND, BARREN, BARK, BEE, BARB,

BANDIT, BARN and BARGE

in a form representing the logical tree in Fig. II.4.8 in which

each branch end is marked by an asterisk.

This tree is represented in the store by a binary tree using

the usual convention that each node contains two links, a SON and a

BROTHER. Each node may therefore have only one SON, any other sons

being stored as brothers of the first SON. Fig. 11.4.9 shows the

representation in store using nodes defined by

NODE(?) IS (IC SYMBOL, A SON, A BROTHER)

The program data consists of lists of items preceded by one of

the directives *INSERT, *FIND, *DELETE and *END. Test data and the

corresponding output follow the program below.

The reader will note that each item is scanned twice, once as a

full word and then one character at a time. It is convenient to

output a whole item at once even though it is stored one character

per node. The only process which is perhaps non-trivial is

deletion. The whole or part of an item to be deleted may be a part

PART II List Processing in BCL PAGE II1332

Fig. 11.4.8. Logical tree representation of data.

PART II List Processing in BCL PAGE II1332

0 0
© 0

0 ©

0 - 0 - 0 6

0 0 - 0 — 0 - 0 0 - 0 h - 0

6 0 © 0 — 0 0 © O

0 ©

0 0 0

0 - 0 — 0 - 0 — 0 ©

0 O O 0 - 0

©
©

Fig. II.4.9. Binary tree representation of data.

PART II List Processing in BCL PAGE II1332

or the whole of some other item which is not to be deleted. In

searching for the item to be deleted the process notes, in OLDW, any

part of the item which is a stem of one or more other items. This

part must not be deleted. It is also necessary to note whether the

link to be changed to effect the deletion is a SON link or a FATHER

link. A SWITCH is set and reset to keep track of this. The FIND,

INSERT and DELETE operations all involve the same search and are

therefore written as one group of commands.

BCL program to build a tree-structured file.

DECLVAR IS (A LISTSPACE,A W,A ROOT,A WS,A OLEW,A FLAG,A SWITCH,

1C K,8C NAME)

NODE(?) IS (1C SYMBOL,A SON,A BROTHER)

CONS (A X,A Y,A Z) IS (SETUP(NODE,WS,LISTSPACE),

SYMBOL (WS) = X,

SON(WS) = Y,

BROTHER (WS) = Z,

EXIT(WS))

NLS IS (OSP.,NL., (EITHER NLS OR NIL.))

PART II List Processing in BCL PAGE II1332

PROCESSFILE IS (DATAF = 0, :: Switch off data trace
NEXTITEM: (EITHER NLS OR OSP.),

(EITHER '•INSERT*, OSP., FLAG = 1
'•FIND' ,OSP.,FLAG = 2
'•DELETE',OSP.,FIAG 5 3
'•END',EXIT
NIL.),

OR
OR
OR
OR

(EITHER NAME,
0/P(NL. , (EITHER IF FLAG r 1, 'INSERT '

OR IF FLAG = 2, 'FIND •
OR IF FLAG = 3, 'DELETE *),NAME),

IF 1= O
OR K),

W = ROOT,
NEXTCHAR: IF SYMBOL(W) = K GO TO FOUND,

IF BROTHER(W) = O GO TO NOTIN,
(EITHER IF FLAG = 3, OLDW = W, SWITCH
OR NIL.),
W = BROTHER(W),
GO TO NEXTCHAR,

FOUND: IF K = 1 ' GO TO IN,

= 1

(EITHER IF FLAG =
OLDW = W,

OR NIL.),
W = SON(W),
(EITHER K OR SP. ,
GO TO NEXTCHAR,

3, IF BROTHER(SON(W)) NE 0,
SWITCH = 0

K = ' '),

IN: (EITHER IF FLAG = 1,
0/P(NL. , * ITEM * ,NAME, • ALREADY IN FILE')

OR 0/P(NL. , 'ITEM * ,NAME, ' FOUND IN FILE')),
(EITHER IF FLAG = 3,

(EITHER IF SWITCH = 0,
SQN(OLDW) = BROTHER(SON(OLEW)),

OR BROTHER(OLDW) = BROTHER(BROTHER(OLDW))),
0/P(NL.,'ITEM ',NAME,* DELETED FROM FILE*)

OR NIL.),
GO TO NEXTITEM,

NOTIN: (EITHER IF FLAG = 1,BR0THER(W) = CANS(K,0,0),

READNEXT:

INSERTED:
OR

SKIP:
END:

W = BROTHER(W), IF K = * • GO TO INSERTED,
(EITHER K OR SP.,K = • •),
SON(W) S C0NS(K,0,0), W = SQN(W),
IF K NE ' ' GO TO READNEXT,
0/P(NL.,* ITEM *,NAME,* ADDED TO FILE')
0/P(NL.,•ITEM *,NAME,• NOT FOUND IN FILE'),
GO TO END,

(EITHER K OR SP.,K = • •),
IF K NE ' ' GO TO SKIP),

GO TO NEXTITEM)

PART II List Processing in BCL PAGE II1332

PROGRAM IS <121, LISTSPACE, 0,^2, ti Initialise list space.
ROOT = CONSC f,0,0), :: Initialise file.
PROCESSFILE, STOP)

*ENTER(PROGRAM)

DATA

•INSERT BAN BACK BANE BARREL BE BAR BANK BANG BEEN BARE
BARGAIN BAND BARREN BARK BEE BARB BANDIT BARN BARGE BAN

•FIND BANE BEEN BARGAIN BEAR
•INSERT BEER
•FIND BEER
•DELETE BEER
•FIND BEER
•DELETE BARREL BAN
•FIND BARREN BARREL BAN BAND
•END

OUTPUT

ADDED TO FILE

ADDED TO FILE

ADDED TO FILE

ADDED TO FILE

ADDED TO FILE

ADDED TO FILE

ADDED TO FILE

INSERT BAN
ITEM BAN
INSERT BACK
ITEM BACK
INSERT BANE
ITEM BANE ADDED TO FILE
INSERT BARREL
ITEM BARREL ADDED TO FILE
INSERT BE
ITEM BE
INSERT BAR
ITEM BAR
INSERT BANK
ITEM BANK
INSERT BANG
ITEM BANG
INSERT BEEN
ITEM BEEN
INSERT BARE
ITEM BARE ADDED TO FILE
INSERT BARGAIN
ITEM BARGAIN ADDED TO FILE
INSERT BAND
ITEM BAND ADDED TO FILE
INSERT BARREN
ITEM BARREN ADDED TO FILE
INSERT BARK
ITEM BARK
INSERT B Y
TV/I! D E
INSERT BARB
ITEM BARB ADDED TO FILE
INSERT BANDIT
ITEM BANDIT ADDED TO FILE
INSERT BARN
ITEM BARN
INSERT BARGE
ITEM BARGE
INSERT BAN
ITEM BAN

ADDED TO FILE

ADDED TO FILE

ADDED TO FILE

ADDED TO FILE

ALREADY IN FILE

PART II List Processing in BCL

FIND BANE
ITEM BANE FOUND IN FILE
FIND BEEN
ITEM BEEN FOUND IN FILE
FIND BARGAIN
ITEM BARGAIN FOUND IN FILE
FIND BEAR
ITEM BEAR NOT FOUND IN FILE
INSERT BEER
ITEM BEER ADDED TO FILE
FIND BEER
ITEM BEER FOUND IN FILE
DELETE BEER
ITEM BEER FOUND IN FILE
ITEM BEER DELETED FROM FILE
FIND BEER
ITEM BEER NOT FOUND IN FILE
DELETE BARREL
ITEM BARREL FOUND IN FILE
ITEM BARREL DELETED FROM FILE
DELETE BAN
ITEM BAN FOUND IN FILE
ITEM BAN DELETED FROM FILE
FIND BARREN
ITEM BARREN FOUND IN FILE
FIND BARREL
ITEM BARREL NOT FOUND IN FILE
FIND BAN
ITEM BAN NOT FOUND IN FILE
FIND BAND
ITEM BAND FOUND IN FILE

PAGE II1332

PART II List Processing in BCL PAGE II1332

§2.4.5 The Classical Transportation Problem.

Our final example is taken from an important class of linear

programming problems known as transportation problems. A

transportation problem is mathematically equivalent to the

following:

Given a certain amount of some commodity available at each

of n sources and a certain amount required at each of m

destinations, where the total amount available equals the

total requirement, and given the cost of supplying each

destination from each source (as so much per unit), find

the cheapest way of meeting the requirements.

The problem can be formulated as a linear programming problem

if we define x[i,j] > 0 as the number of units sent from source i to

destination j . We must then minimize

I z = 2 c[i,j] * x[i,j]
L i

I subject to Sx[i,j] = aCi] and £ x[i,j] = b[j]
J £

where c[i,j] is the cost of transporting one unit from source i to

destination j, a[i] is the amount available at source i and b[j]

the amount required at destination j . It is assumed that

I 2 a [i] = . c -a

Such problems have been solved in many different ways the

original formulation and solution being due to Hitchcock (I94I).

The method used here (sometimes called the u-v method) follows the

logic of the simplex algorithm but keeps track of the situation in a

more compact way.

For m origins and n destinations the constraints

x[i,j] = a[i] , i = 1,2, ... , m

and g x [i , j] = b[j] , j = 1,2, ... , n

PART II List Processing in BCL PAGE II1332

constitute m+n equations in m*n unknowns. The coefficent matrix has

rank m+n-1 and a basic solution to the constraints is one in which

not more than m+n-1 of the x[i,j] are greater than zero. The m*n

solution matrix is therefore sparse and since problems which arise

in practice may involve hundreds of origins and thousands of

destinations it is important to store all information as compactly

as possible.

It is convenient to store the values of the m+n-1 basic

variables x[i,j] on linked orthogonal lists, each element being a

member of both a row list and a column list. The nodes used are

six-field nodes containing a row and a column number, a row link and

a column link, the value of the variable and a sixth field which is
P

available for perturbations in degenerate problems.

ROW COL ACROSS

VALUE OTHER DOWN

Each list is circular and has a list head also of six fields.

A typical configuration for three origins with availabilities

15, 12 and 18 units and four destinations with requirements 7i 12,

12 and 14 units is shown on Page 136. Note that a column list-head

has a negative row number and a row list-head has a negative column

number. There is a special base node (or HEADCELL) with both row

and column number negative. This stores the sum of the

availabilities and the sum of the requirements. Availabilities at

sources and requirements at destinations are stored in the

appropriate list heads. The particular basic solution shown on

Page 136 is x[l,l] = 7,x[l,2] = 8, x[2,2] = 4,x[2,3] = 8, x[3,3] = 4

and x[3,4] = 14 ; all other x[i,j] are basic and therefore zero.

HEADCELL

i

2 -1
12

3 -1 —

18

-1 -1 *
45 45

V

1 -1 *
15

-1

t u

-1
12

l 2
8

t J

-1 3 -1 3
12

2 3
8

4 til

-1 4
H

1

3 4
14

2
n

r*
H-CO rf
+1 4 O O ©
n ot H* 3 W

W O
tr>

Fig. II.4.10 Orthogonal list representation of an initial basic solution

for a 3 ^ 4 transportation problem.
2
8

U> CD

PART II List Processing in BCL PAGE II1332

The program begins by reading M and N the number of sources and

destinations, the N requirements and the M availabilities, at the

same time setting up list heads in which to store this information.

If the sum of the availabilities is not equal to the sum of the

requirements the program is abandoned.

Next the costs c[i, j] are read and stored in an M*N matrix in

the conventional form. This matrix could be stored in linked form

if sparse e.g. if many routes are forbidden, in which case no cost

is given for them, but this program assumes that the cost matrix is

stored sequentially row by row. [Note that arrays had not been

implemented in BCL at the time of writing this program]. The input

of the problem data and setting up the linked list-heads is the

function of the group READVALUES given below.

The simplex algorithm starts with a basic solution, tests it

for optimality and, if not optimal, transforms the basis to give a

new solution which in general is closer to the optimum than is the

original. The method used to set up an initial basic solution is

the so called 'North West Corner' rule defined by the BCL group

NWRULE. This rule pays no attention to cost and starting with the

first source and first destination sends along this route the

maximum possible number of units. This will either exhaust the

available stock at source one or will satisfy the requirement at

destination one but in general the supply and demand constraints

will not be satisfied simultaneously. If the supply is exhausted

then the next source is taken otherwise the process continues with

the next destination until eventually the supply at origin M is

exhausted and the demand at destination N met by sending the

remaining units along route (M,N), The basic solution shown for the

3*4 problem above is an initial solution obtained by the northwest

PART II List Processing in BCL PAGE II1332

corner rule. As each assignment is made a node is set up, the

number of units x[i,j] stored, the row and column numbers set equal

to those of the source and destination respectively and finally the

node is linked into the orthogonal column and row lists.

As each basic solution is found it is output by the group

PRINTSOLN.

The test for optimality and the method of constructing one

basic solution from another are well written up in most of the

standard texts on linear programming and the theory behind these

operations will not be given here. A basic solution is transformed

to a new basic solution by increasing the value of some non basic

variable until one of the basic variables becomes zero. The roles

of these two variables are then interchanged. The problem is to

choose a non basic variable which when increased will reduce the

total distribution cost. For each (non-basic) variable we define a

relative cost factor being the increase in total cost per unit

increase in the variable all other non-basic variables remaining at

zero level.

Dantzig (Linear Programming and Extensions,19^5) shows that the

relative cost factor for a variable x[i,j] is

c[i,j] - u[i] - v[j]

where u[i] and v[j] are shadow prices associated with row i and

column j respectively. The relative cost factors are zero for basic

variables giving mfn-1 equations

c[i,j] = u[i] + v[j] , x[i,j] basic ,

in the mtn unknowns u[i] and v[j] , These are solved by setting

u[i] arbitrarilly to zero and finding the remaining m+n-1 shadow

prices from the m+n-1 equations.

PART II List Processing in BCL PAGE II1332

Clearly, if no relative cost factor is negative then the

current basic solution is optimal. The shadow prices are computed

by CALCV and CALCU which call each other recursively.

I Let c[r,s] = Minrc[i,j] - u[i] - v[j]]

then if c[r,s] £ 0 the solution is optimal otherwise x[r,s] is the

variable to enter the basis.

INBASIS links a node into position r,s , in the orthogonal

lists, to store the value of the new variable and PATH constructs a

linked list representing the (unique) closed path connecting the

variables in the current basis whose values are to be changed by

adding or subtracting the value of x[r,s] in such a way as to

satisfy the row (supply) and column (demand) constraints. The

maximum value of x[r,s] is the value for which some variable in the

current basis becomes zero and leaves the basis. This value is

found by MAXRS. In desk calculations on small problems, finding a

closed path is trivial, but automatic methods cannot use visual aids

and the group PATH is very time consuming. In practice, large

transportation problems are not solved by this method but usually

operate on the dual problem. PATH tries all possibilities starting

from position (r,s), stepping alternately along rows and columns

from one basic variable to another, and backtracking when no further

progress can be made until it eventually finds the unique closed

path for the variable xtr,s].

Finally the new basic solution is found by NEWBASIS which

alternately adds and subtracts the value of x[r,s] to and from the

basic variables around the closed path. The variable which becomes

zero leaves the basis having been replaced by x[r,s] . This whole

process is repeated until an optimal solution is found.

PART II List Processing in BCL PAGE II1332

The following program gives details of the groups mentioned

above together with the results for the simple problem with three

origins and four destinations referred to on Page 135-

DECLVAR IS (A HEADCELL,A LISTSPACE,A SLISTSPACE,A COST,A COSTP,

A ROWP,A COLP,A SROWP,A SCOLP,A SPARE,A PATHLIST,

A P, s: Pointers.

A M,A N, A A,A B,A C,

A SUMA,A SUMB, :: Problem data.

A UI,A UJ, :: Simplex multipliers.

A WS,A WSl,A WS2,A WS3,A COUNT,A MINCIJBAR,

A MIN) :: Working variables.

ROWHEAD(?) IS (A ROW,A COL,A ACROSS,A DCWN,A VALUE,A U)

COLHEAD(?) IS (A RON,A COL,A ACROSS,A DOWN,A VALUE,A V)

NQDE(?) IS (A ROW,A COL,A ACROSS,A DOWN,A VALUE,A FLAG)

FWORD(?) IS (A SYMBOL,A LINK)

CONS (A X,A Y) IS <SETUP(FWORD,WS,LISTSPACE),

SYMBOL(WS) = X, LINK(WS) = Y,

EXIT(WS))

NLS IS (OSP., NL., EITHER NLS OR NIL.)

SEPR IS (OSP., (EITHER NLS OR NIL.), »,',

(EITHER NLS OR NIL.), OSP.)

TRANSPORTATION IS (121,LISTSPACE,0,*2, S! Initialise list
:: space pointer.

(EITHER NLS OR NIL.) ,

READVALUES, :: Input problem data.

NWRULE , :: Set up initial
:: solution.

PRINTSOLN, s: Output initial
:: solution.

SETUP(NODE,SPARE,LISTSPACE):: Get spare node.

SLISTSPACE = LISTSPACE, 2S Save pointer.

PART II List Processing in BCL PAGE II1332

AGAINI CALCV(DOWN(HEADCELL) ,0), j: Compute multipliers.

COSTP = COST, :i Initialise pointer
!: to cost matrix.

MINCIJBAR = 0, CIJBAR, ll Compute cost factors,

IF MINCIJBAR GE O GO TO END:: If optimal solution.

INBASIS, :: Insert spare node.

R = RCW(SRCWP),S=COL(SCOLP):: Note position of
:: new node.

END:

P = SPARE,FLAG(P)=1,

PATHLIST=CONS(SPARE,o),

PATH,

MAXRS,

NEWBASIS, PRINTSOLN,

GO TO AGAIN,

0/P(NL. , 'OPTIMAL SOLUTION FOUND'), STOP)

:: Nodes on closed path
:: are flagged.

:: Find closed path.

:: Maximum value of
;: new variable.
:: Print new basic
:: solution.

READVALUES IS (SETUP(NQDE,HEADCELL,LISTSPACE), :: Set up head cell.

RCW (HEADCELL)=0-1, C0L(HEADCELL)=0-1,

M,SEPR, N, SEPR , :: Input dimensions.

:: The following instructions set up and initialise a linked list of
:: row listheads.

COUNT=l, SUMA=0, WS=HEADCELL,

NEXTR: A,SEPR,SUMA=SUMA+A :: Read next value of A

ROW(LISTSPACE)=COUNT,

C0L(LISTSPACE)=0-1,

VALUE(LISTS PACE)=A,

FLAG(LISTSPACE)=0,

ACROSS(LISTSPACE)=0, DCWN(WS)=LISTSPACE,

SETUP(ROWHEAD, WS,LISTSPACE),

COUNTTCOUNT+1,

IF COUNT LT M GO TO NEXTR,

DOWN(WS) rHEADCELL, VALUE (HEADCELL) =SUMA,

PART II List Processing in BCL PAGE II1332

:: The following instructions set up and initialise a circular linked
:: list of column list heads.

COUNTrl, SUMB=0, WS=HEADCELL,

NEXTC: B,SEPR,SUMB=SUMB+B, :i Read next value of B.

RW(LISTSPACE)=0-1,

COL(LISTSPACE)2COUNT,

VALUE(LISTS PACE)=B,

FLAG(LISTSPACE)=0,

ACROSS (WS)=LISTSPACE,D0WN(LISTSPACE)=0,

SEPTUP(COLHEAD,WS,LISTSPACE),

C0UNT=C0UNT+1,

IF COUNT LE N GO TO NEXTC,

ACROSS (WS) rHEADCELL,

IF VALUE(HEADCELL)rSUMB GO TO SKIP,

0/P(NL., 'SUMA NE SUMB, PROBLEM INFEASIBLE*),

STOP,

j: The following instructions input the cost matrix,

SKIP: COST= LISTSPACE, :: Save pointer to cost
:: matrix.

WSI = M,

NEXT2J WS2=N,

NEXT1: C,COOF(LISTSPACE)rC,SEPR,

LISTSPACErLISTSPACE+l,

WS22WS2-1, IF WS2 GT 0 GO TO NEXT1,

WS1=WS1-1, IF WSI GT 0 GO TO NEXT2)

PART II List Processing in BCL PAGE II1332

NWRULE IS (RCWP=DOWN(HEADCELL),

COLPzACRQSS(HEADCELL), :: Start at NW corner.

ACROSS<RCWP)=LISTSPACE,

DOWN(COLP)=LISTSPACE, :: Link on first node.

MORE: SETUP(NODE,WS,LISTSPACE),

ROW(WS)~ROW(ROWP),COL(WS)=:COL(COLP),

IF VALUE(ROWP) GE VALUE(COLP) GO TO ACROSS,

VALUE(WS)=VALUE(RCWP), :: A supply exhausted.

VALUE(COLP)aVALUE(COLP)-VALUE(ROWP),

VALUE(R0WP)=0,

ACROSS(WS)=RCWP,ROWP=DOWN(ROWP),

ACROSS(ROWP)zLISTSPACE, :: Link to next node.

DOWN(WS>=LISTSPACE,

GO TO MORE,

ACROSS: VALUE(WS)=VALUE(COLP), :: A demand satisfied.

VALUE(ROWP)ZVALUE(ROWP)-VALUE(COLP),

VALUE(COLP)zO,

DOWN(WS)=COLP,COLPzACRQSS(COLP),

IF COLPrHEADCELL GO TO END,

DOWN(COLP)=LISTSPACE, :: Link to next node.

ACROSS(WS)zLISTSPACE,

GO TO MORE,

END: ACROS S (WS) =RCWP)

PART II List Processing in BCL PAGE II1332

PRINTSOLN IS (O/P (NL., 'BASIC SOLUTION', NL.),

P=ACROSS(DOVN(HEADCELL)) ,

NEXT! WS1=RCW(P) ,WS2=COL(P) ,WS3=VALUE(P) ,

0/P(NL., «X(' ,WS1, ',' ,WS2,')=' ,WS3) ,

P+ACROSS(P), IF COL(P) GT O GO TO NEXT,

P=ACROSS(DCWN(P)>,

IF ROdT(P) GT O GO TO NEXT,

0/P(NL.))

Given P, a pointer to a basic node, and IU the shadow price

associated with the row of which this node is a member CAI£V

computes VJ the shadow price associated with the column of which the

node is a member. This value of VJ is then passed to CALCU which

attempts to compute the UI for the next node in this column and if

successful calls CALCV and so on until all shadow prices have been

computed. The variable SAVEP used in these groups is in each case a

local variable. Initially CALCU is called with P pointing to the

first node in the first row and with UI = 0.

CALCV(A P,A UI,A SAVEP) IS (SAVEP=P,

START: PXACRDSS(P),

IF COL(P) GT 0 GO TO SKIP,

U(P)=UI, :: Record shadow price.

IF P = DCWN(HEADCELL) GO TO END,

P = ACROSS(P),

SKIP: IF P=SAVE(P) GO TO END,

VJ=CIJ(RCW(P),CaL(P)) - UI,

CALCU(P,Vj), GO TO START,

END: NIL.)

PART II List Processing in BCL PAGE II1332

CALCU(A P,A VJ,A SAVEP) IS (SAVEPsP,

STARTS P=DOWN(P),

IF ROW(P) GT O GO TO SKIP,

V(P)= VJ, P=DCWN(P),

SKIP! IF P=SAVEP GO TO END,

UI=CIJ(ROW(P),COL(P))-VJ,

CALCV(P,UI), GO TO START,

ENDS NIL.)

:: CIJBAR computes the relative cost factors saving the value and
:: location of the minimum of these.

CIJBAR IS (SRGWP=0, SCOLPRO, WS=0,

RGWPRDCWN(HEADCELL), COLPXACROSS(HEADCELL),

NEXT: IF COL(COLP) GT 0 GO TO A,

COLPXACROSS(COLP), ROWP=DOWN< ROWP),

IF ROW (ROWP) LT 0 GO TO END,

A: WS=COOF(COSTP)-U(ROWP),

WSXWS-V(CCJLP),

IF MINCIJBAR LE WS GO TO B,

SRCWP=ROWP,SCOLP=COLP,MINCIJBAR^WS,

B: COL(P)=ACROSS(COLP), COSTP=COSTP+L,

GO TO NEXT,

END: NIL.)

PART II List Processing in BCL PAGE II1332

2 1 INBASIS inserts a new node in position (SROWP,SCOLP) representing
2 2 the new variable entering the basis.

INBASIS IS (P=SROWP,

NEXTC0L2 IF COL(ACROSS(P>) GT COL(SCOLP) GO TO RINSERT.

IF COL(ACROSS(P)) LT 0 GO TO RINSERT,

P=ACROSS(P), GO TO NEXTCOL,

RINSERT2 ACROSS(SPARE)=ACROSS(P),ACROSS(P)=SPARE,

PrSCOLP,

NEXTROW: IF ROW(DCWN(P)) GT ROW(SROWP) GO TO CINSERT,

IF ROW(DCJWN(P)) LT O GO TO CINSERT,

P=DOWN(P), GO TO NEXTROW,

CINSERT2 DOWN(SPARE)=DOWN(P) ,DOWN(P)=SPARE,

ROW(SPARE)=ROW(SRCWP),COL(SPARE)=COL(SCOLP),

VALUE<SPARE)=0,FLAG(SPARE)=0)

PATH starts at the new node and steps alternately along rows and
columns searching for a closed path. R and S are row and
column numbers of the new node.

PATH IS (NEXTROW2 P=ACROSS(P),

IF COL(P) GT O GO TO SKIP1,

PzACROSS(P),

SKIP12 IF FIAG(P)=1 GO TO REJECTROW,

FLAG(P)=1, PATHLIST=CONS(P,PATHLIST),

IF COL(P)=S GO TO END,

GO TO NEXTCOL,

REJECTROW2 P=SYMBOL(PATHLIST),

PATHLIST=LINK(PATHLIST), FLAG(P)=0,

DELETE(PWORD,LISTSPACE), GO TO NEXTCOL,

NEXTCOL2 P=DOWN(P),

IF ROW(P) GT O GO TO SKIP2,

P=DQWN(P),

PART II List Processing in BCL PAGE II1332

SKIP2J IF FIAG(P)=1 GO TO REJECTCOL,

FIAG(P)-I, PATHLIST=CQNS(P,PATHLIST),

GO TO NEXTROW,

REJECTCOL: PrSYMBOL(PATHLIST),

PATHLIST=LINK(PATHLIST), FLAG(P)=0,

DELETE(PWORD,LISTSPACE), GO TO NEXTRCW,

END: NIL.)

:: MAXRS finds the maximum value at which the new variable enters

:: the basis.

MAXRS IS (MIN=VALUE(SYMBOL(PATHLIST)),

SPARErSYMBOL(PATHLIST), WS=PATHLIST,

NEXT: IF VALUE(SYMBOL(WS)) GE VALUE(SPARE) GO TO SKIP,

MINt:VALUE(SYMBOL(WS)), SPARErSYMBOL(WS) ,

SKIP: WS=LINK(LINK(WS)),

IF WS NE O GO TO NEXT)

NEWBASIS IS (NEXT: VALUE(SYMBOL(PATHLIST)) VALUE(SYMBOL(PATHLIST))-MIN,

FLAG(SYMB0L(PATHLIST))=0, PATHLIST=LINK(PATHLIST),

VALUE(SYMBOL(PATHLIST))=VALUE(SYMBOL(PATHLIST))+MIN,

FIAG(SYMBOL(PATHLI ST)) =0, PATHLI ST=LINK < PATHLI ST) ,

IF PATHLIST NE 0 GO TO NEXT,

WSrSPARE,

GODCJWN: WSXDCWN(WS), IF DCIWN(WS) NE SPARE GO TO GODCWN,

DOWN(WS)=DCWN(SPARE),

WS=SPARE,

GQACROSS: WS=ACROSS(WS),IF ACRDSS(WS) NE SPARE GO TO GQACROSS,

LISTSPACE=SLISTSPACE)

*ENTER(TRANSPORTATION)

PART II List Processing in BCL PAGE II1332

Results from a program using the foregoing routines to solve the
3*4 problem given on Page 135*

BASIC SOLUTION
X(l,l> = 7
x(l,2) = 8
X(2,2> = 4
x(2,3> = 8
x(3,3> = 4
x(3,4> = 14

BASIC SOLUTION
X(L,L) = 3
X(l,2> = 12
X(2,l) = 4
x<2,3> = 8
x(3,3> = 4
X(3,4) = 14
BASIC SOLUTION
X<1,2> = 12
X(l ,3> = 3
X(2,l) = 7
x<2,3> = 5
x(3,3> = 4
x(3,4> = 14

BASIC SOLUTION
X(l,2) = 12
x<l,3> = 3
x(2 , l) = 7
x<2,4> = 5
x(3,3> = 9
x<3,4> = 9

BASIC SOLUTION
X(l,2) = 3
X<1,3> = 12
X(2,l) = 7
X<2,4> = 5
x(3 ,2) = 9
x(3,4> = 9

OPTIMAL SOLUTION FOUND

PART III The Implementation of Data Structures. PAGE 1340

The Implementation of Data Structures

PART III The Implementation of Data Structures, PAGE 150

The Implementation of Jata Structures.

The preceding section was concerned with elementary list

processing in BCL, The programs described illustrated the

facilities in BCL which make it particularly suitable for the

manipulation of linked structures and we emphasised that the shape

and size of the nodes used and the manner in which they were linked

together was defined by the program. In this section we shall

consider extensions which would allow the user to define new types

or classes of objects in his program. We are particularly

interested in the definition of named classes of structured objects

such as linked lists and trees and the operations which may be

performed on them.

Before going into the details of specific extensions to BCL it

is convenient to consider some recent developments in Algol which

form a background to the developments proposed here. The chief

impotencies of Algol 60 are well known; the most serious being

input/output, string/character handling, lists and complex numbers.

Since the publication of the revised version of Algol 60 in 1962,

proposals for remedying some of these deficiencies have received

considerable attention in the literature. D. Knuth (May, 1964),

C.A.R. Hoare (November, 19^5)$ and N. Wirth and C.A.R. Hoare

(I966) have proposed modest extensions which have already been

implemented on a few machines and are typical of the features

proposed for Algol 6x. The most recent developments are embodied in

Algol 68 which includes a number of important innovations but is not

so closely related to Algol 60, It seems that there may still be a

place for an Algol X, less ambitious than Algol 68. which can be

implemented without departing significantly from the concepts of

Algol 60.

PART III The Implementation of Data Structures, PAGE 151

A new type, character, should be provided so that implementors

can organise storage more efficiently. System procedures for the

input/output of whole lines could transfer characters to something

like a character array. (They could probably be written trivially

as for-statements at the cost of the inefficiency of calling a

system character routine once per character.)

Actually something more than a character array is required.

The array provides a means of allocating to a single identifier a

block of storage much larger than a single variable; this is merely

the essential first step. The next requirement is a means of

structuring this, and the way it is met must make provision for

other needs involving structures.

No implementor of Algol 60 would find it difficult to implement

character arrays and standard system routines for input and output,

and it is possible to take one further step without departing from

the general scheme of organisation required for Algol 60. One could

allow a declaration such as

structure (character[10], Y,Z; real W,X) h,j,k;

This declares three variables, h,j,k, each consisting of two

10-character strings and two reals, and allows references to the

second string of the third variable by the notation Z(k). Such a

system would, for example, allow a line for output to be built up by

assignments to specific fields within it. By using this technique

recursively,types are created which are the equivalent of a complete

Cobol record, and moreover, one can declare as many instances of any

type as one cares to find identifiers for,and can create and destroy

them on the stack with the full freedom of the usual rules for local

PART III The Implementation of Data Structures, PAGE 152

storage in a block structure language. What, then, can not be done

yet?

Complex numbers can be dealt with by declaring

structure (real Re, Im) z,y,x ...

and calling procedures such as sumcomplex(x,y,z), but z x + y

is not defined for variables of type complex. One can define

structure (character [10] f, character [20] g)

structure (character [20] h, character [10] k)

but one cannot define a 30-character string so that it can be

analysed in either way at will (not without making very dangerous

assumptions about the scopes of the selector function identifiers).

One can define, perhaps,

structure (integer Head,Tail) array F[1:1000];

for i:=l to 999 do Tail (F[i]) : = i+1 ; etc,

and provide oneself with a list processing area, but one is then

confined to working with simple lists of integers, in which,

moreover, every list element has an unnecessarily explicit name.

For several reasons the thing cannot be done properly by writing

what a study of Algol 68 would suggest,

structure list = (union (atom, list) Head, list Tail) .

The first reason is that union has not been introduced. A

second is that there is no provision for the naming of structures.

Our objective is to develop a system in which named structures

of any complexity can be defined in this way and handled as single

units of data.

At this point it is convenient to return to BCL which is

potentially more flexible than Algol 60, Input and output of

structured data is already well defined in BCL, and, as we have

PART III The Implementation of Data Structures. PAGE 1345

already seen, it is possible to represent data structures using

facilities which already exist. The main deficiencies in BCL are

deficiencies in the current implementations rather than in the

language, although there is some confusion to be cleared up in the

language itself, for example between indefinite groups and structure

declarations. Types real and boolean are not yet implemented,

arrays, functions, groups with parameters, and block structure are

not generally available and the scope of identifiers is not well

defined. Facilities already exist for handling any specified number

of characters, for example, an identifier declared as type JC may be

used for the input/output and storage of from 1 to 7 characters.

However, the space allocated for a string of 7 characters stored as

a single unit declared as type yc is not the same as that for 7

characters each of type 1C.

In section §2.4.1 various structures were declared using

the BCL concept of an indefinite group. In particular we defined a

simple two-field structure named FWORD as follows

PWORD(?) IS (A HEAD,A TAIL) .

The reader is reminded that the BCL compiler interprets this as

the declaration of a group of variable declarations. In theory this

group could be input or output according to the mode in which it is

entered although in practice the result of inputting or outputting

such a group is unpredictable. The query indicates that the group

is indefinite and therefore any variables declared in the group are

allocated stack space, not fixed space. Thus the variables HEAD and

TAIL, each of type A (address) are allocated addresses relative to

some stack pointer. Since, as it happens, HEAD is allocated a

relative address (or offset) zero and TAIL an offset of one address

PART III The Implementation of Data Structures. PAGE 1345

field it is convenient to use these names as selector function

identifiers for referencing fields within a node or record. We note

also that as the names HEAD and TAIL are in no way associated with

PWORD in the identifier records set up by the existing BCL

compilers, they may be used in conjunction with any base pointer.

We see that in BCL there is some confusion between selector

functions and variables, and between groups and structure

declarations. We need to distinguish clearly between groups of

objects for input and output and the definitions of named

structures, or shapes, with which are associated selector functions,

and for which no object code is generated. A structure declaration

merely gives information to the compiler. We can allow a shape

declaration of a named structure such as

SHAPE.(COMPLEX) IS (REAL RE,REAL IM)

This defines a structure named COMPLEX as a pair of real numbers.

The field names, or selectors, RE amd IM are used to refer to the

real and imaginary parts of any object which is declared to be of

type COMPLEX. They are associated only with objects of type complex

and in general have no meaning if used in conjunction with any

object which is not of type complex. Having defined the type

complex we can now write declarations such as

COMPLEX A

which says that A is an object which belongs to the class of objects

named COMPLEX i.e. A is of type complex. The real part of A is

referred to as RE(A) and the imaginary part as IM(A). The pair of

real numbers RE(A) and IM(A) are together referred to as A and can

be handled as a single object. Note that the declaration of

SHAPE,(COMPLEX) does not result in any allocation of storage, nor is

any object code generated; it merely specifies the amount of storage

PART III The Implementation of Data Structures, PAGE 155

to be allocated to any object which belongs to the class named

COMPLEX. A dictionary record containing this information is set up

for the name COMPLEX and the type of the name COMPLEX is * SHAPE *.

Dictionary records are also set up for RE and IM each of type REAL,

and these records are linked to that of COMPLEX to indicate the

association between the structure and its selectors. The

declaration COMPLEX A causes space for two real numbers to be

allocated to the object named A. Clearly, more complicated

structures could be defined involving as many fields as are

required. It may also be possible to specify alternative shapes

belonging to the same class by means of a declaration such as

| SHAPE.(NODE) IS ((EITHER 8c HEAD1

| OR A HEAD2), A TAIL)

This says that an object of type node is a two field object of which

the first is either an 8-eharacter field or an address field and the

second is an address field. In circumstances such as this, in which

alternative structures require different amounts of storage, the

maximum amount specified is always allocated.

We turn now to more complicated structured objects for which
the total storage space required is indefinite. A simple example of
such an object is a linear linked list. There are obvious
advantages in being able to handle objects of type list as single
units of data rather than as a number of separate elements but
clearly the total amount of storage required depends upon the number
of elements in the list and this may vary dynamically. We deal with

PART III The Implementation of Data Structures, PAGE 156

the problem in the following way

SHAPE. (LIST) IS (REF. (NODE))

SHAPE.(NODE) IS (REF. (ATOM) HEAD, REF.(NODE) TAIL)

where an ATOM is user defined and may be an integer, a real number,

a character string or any other object which the user may wish to

define in his program. REF. is a new system word meaning 'the

address of' its argument. Thus REF.(NODE) means storage for the

address of an object of type NODE, but it also implies some check

that the address is that of a NODE. The declaration LIST P results

in the allocation of storage space for an address. This is

initialised to zero, representing a null list, and in any future

assignments the assigned value must be either zero or the address of

a node. A NODE is in turn defined as a structure, or shape,

consisting of two fields named HEAD and TAIL. Each of these is a

reference to an object and therefore, when an object of type NODE is

•set up*, the space allocated is for two address fields referred to

as HEAD and TAIL. The fact that TAIL is also defined as a reference

to a NODE does not lead to any complications. Any reference to an

object requires an address size field whatever the object may be.

As a zero address implies a null reference, a list is terminated by

a node of which the TAIL is null.

A node could have been defined as

| SHAPE.(NODE) IS ((EITHER REF. (ATOM)

| OR REF. (NODE)) HEAD,

I REF. (NODE) TAIL)

PART III The Implementation of Data Structures, PAGE 1348

in which case the head field may also point to a (sub)list so giving

a binary tree structure. Alternatively, the programmer could

include a NODE in his definition of an ATOM and use the former

definition of a NODE.

With any class of structured objects, such as those defined as

type list, in addition to the selector functions associated with the

nodes, we also need a constructor function which is used to build

structures dynamically. For example, consider

CONS.(NODE, X,Y)

Here CONS, is a system defined function which deals with the

dynamic allocation of space for structures. The first parameter is

the type of the object for which space is required and therefore

specifies, indirectly, the amount of storage space required. The

remaining parameters are the values to be stored in the fields of

the specified object. Their number and type can be checked, at

compile time, with the selector functions defined for the particular

structure. The value of the function CONS, is the address of the

structure set up. As an example of the use of the CONS, function,

suppose that NODE is defined by

SHAPE.(NODE) IS (REF.(ATOM) HEAD, REF.(NODE) TAIL)

then an instruction to insert an additional element X at the front

of a list, L, of such nodes is

L CONS.(NODE,X,L).

The use of the function CONS, implies some mechanism for the

dynamic allocation of storage. Under certain circumstances this

space might be allocated on the run-time stack, but it may be

necessary to allocate space from a separate pool (or heap in Algol

PART III The Implementation of Data Structures, PAGE 158

68 terms) of free space. We shall return to the organisation of

free space later.

So far then, we can define new types of structured objects and

operations to be performed upon them. For example, if X,Y and Z are

of type LIST we can define a function

APPEND(LIST P,LIST Q),

similar to that in §2.41 , and write Z APPEND(X,Y). We can

also write Z X meaning 'copy the value of X into Z* (i.e. copy

the address of a node from X to Z), the result being that Z points

to the same node as X, If we wish to assign to Z a copy of the

whole list referred to by X then we could use Z:= COPY.(X), where

COPY, is a system defined function. Another useful system defined

function would be WHOLE., used in the following way

WHOLE.(Z) := X

which is equivalent to

HEAD(Z) := HEAD(X), TAIL(Z) := TAIL(X) .

Note that when the function WHOLE, is used the system does not look

into the structure or contents of the object referred to by X, it

simply needs to know the size of the object, which must be the same

as the size of object to which Z refers, and then copies it

exactly. Suppose then that X and Z refer to linear linked lists of

integers

2. 4- 6 s O > 2. Jl 4- 6 O

then Z := X gives

PART III The Implementation of Data Structures, PAGE 159

WHOLE.(Z) := X gives

and Z COPY,(X) copies every node in the list giving

Two problems which arise in the scheme described so far are how

to deal with

(a) denotations,

and (b) implicit type conversions.

It should be possible to assign to a complex number, Z, a pair

of real numbers, being the real and imaginary parts, by writing

z := (1.62,2.19)

but at present we must write

Z J= CONS. (COMPLEX,1.62,2!9).

For a simple structure such as that defined as COMPLEX it would be

easy to recognise (1,62,2.19) as an abbreviation for

CONS.(COMPLEX!.62,2.19), the type of the structure to be set up

PART III The Implementation of Data Structures, PAGE 160

being specified by the variable to which the value is to be

assigned. In the case of structures which are defined recursively

this is not so straightforward. A common written representation of

list structures uses commas as atom separators, and brackets to

denote substructures, for example

(2,3,(1,7,8),4,(5,2))

is a list with two sublists. It should be possible to assign such a

list denotation to a variable of type LIST but how does the compiler

interpret the right hand side of the statement

L := (2,3,(1,7,8),4,(5,2)) ?

A simple answer, which seems to be the only solution to the problem,

is to define, for each type of denotation used in the program, a

function specifying the procedure for converting the denotation to

the appropriate internal representation, using the CONS, function to

set up space as required. A function for the list denotation above

would have as a single parameter the character string

'(2,3,(1,7,8),4,(5,2))' .

Such a user defined conversion function would be similar to that for

reading the value of a list from an input stream of characters. If

the character string is stored in the constants area in exactly the

same format as that in which characters appear in the input stream,

and if any area of store can be regarded as an input stream, then

the evaluation of a denotation is exactly the same as 'inputting* a

list from the constants area. For a list of nodes defined by

| SHAPE.(NODE) IS ((EITHER INTEGER

| OR REF.(NODE)) HEAD,REF.(NODE) TAIL)

a suitable function for input of a list is

PART III The Implementation of Data Structures. PAGE 1345

I READLIST IS (REF.(NODE) WS, :: declare a local ref. to NODE

| OSP., *(', WS: =CONS . (NODE, HDELEMENT, TLELEMENT), *) * ,

I EXIT(WS))

I HDELEMENT IS (INTEGER I, :: declare local integer I

I OSP., EITHER INPUT(I), EXIT(l)

| OR EXIT(READLIST))

| TLELEMENT IS (OSP,.EITHER •,» ,EX IT (CONS. (NODE, HDELEMENT, TLELEMENT))

I OR EXIT(o))

These functions assume that characters are to be input from the

normal input stream. It would be necessary to specify, by means of

a parameter, the actual stream to be used. The only alternative to

a set of user defined functions for dealing with denotations seems

to be an explicit representation of the denotation, in terms of the

CONS, function. In the example given above this is obviously much

too cumbersome, the full representation being

CONS . (NODE , 2, CONS . (NODE, 3, CONS . (NODE, CONS . (NODE, 1, CONS . (NODE, 7,

CONS . (NODE ,8,0))), CONS . (NODE , 4, CONS . (NODE, CONS. (NODE, 5,

CONS.(NODE,2,0)), 0)))))

There is no need to comment further on the unsuitability of such a

representation.

The other problem mentioned above is that of type conversions.

Conversions are easily accomplished explicitly, for example we can
g,

convert a real value X to complex form by means of the statment

Z := CONS,(COMPLEX,X,0)

where Z is of type complex, but is it meaningful to write

Z := X ?

PART III The Implementation of Data Structures. PAGE 1345

Similarly, if both X and Y are real, may we write

Y IM(X)

when what is meant is

Y := IM(CQNS.(COMPLEX,X,0» ?

In both of these examples it is not difficult to determine

automatically the conversion implied. Again if X is of type integer

and L of type LIST then obviously

L := x

is an abbreviation for

L J= CONS. (NODE,X,0).

With the aid of a conversion table we could specify any implicit

conversions which are valid, together with the results of such

conversions, but this is complicated by the fact that we are

allowing the user to define additional types, in terms of system

defined types, and should therefore also allow him to extend the

conversion table. This might be possible through the use of an

INTERPRET statement used as follows

| INTERPRET.(TYPE.COMPLEX := TYPE.REAL)

AS (TYPE.COMPLEX CONS. (COMPLEX,TYPE.REAL,0))

It is immediately clear that such a statement would be very

powerful, allowing the user to define, not only implicit

conversions, but a wide range of infix operations on objects whose

type may be defined in the program. It would be possible to extend

the meaning of existing system defined operators to deal with new

types, and to introduce new operators. However, this is where we

draw the line in this work. The implementation of the INTERPRET

statement presents interesting and challenging problems but is too

PART III The Implementation of Data Structures. PAGE 1345

complicated to fit into the present scheme of things and we propose

that at this stage, all conversions involving user defined types

should be explicit.

We return now, very briefly, to the problem of storage

allocation in a block structured system in which the user is allowed

to define structured objects. Under certain circumstances a new

instance of an object may result in the allocation of space on the

run-time stack. This space is allocated and reclaimed according to

the normal rules of block structure systems. What must be avoided

at all times, is a situation in which the value of a reference is a

stack address which is either undefined or has been redefined, i.e.

at no time must we allow references to stack addresses which are

above the stack pointer. To avoid this we have another pool of

available storage which we shall call the heap, as in Algol 68.

Simple rules for the allocation of storage are:

(1) At a declaration of an object, stack space is allocated and

initialised to zero. Th© declaration is valid only in the

block in which it is declared and anything assigned to the

object is lost on exit from that block,

(2) Any allocation of anonymous storage through the use of the

CONS, function is made from the heap.

(3) We could rule that no stack address may ever be assigned

either to another stack address or to heap space but that

when we need to assign a stack address the COPY, function is

used to raise heap space into which all stack values involved

in the transfer are copied. Consider first the following

block of program which uses a mixture of Algol and BCL

notations.

PART III The Implementation of Data Structures. PAGE 1345

BEGIN. SHAPE.(LIST) IS (REF.(NODE))

SHAPE.(NODE) IS (INTEGER HEAD,

REF.(NODE) TAIL)

LIST A

FOR. I :r 1 STEP. 1 UNTIL. 3 DO.

BEGIN. LIST B

B := CONS. (NODE, I,A)

A := B

END.

END.

Any space allocated at a declaration is stack space. The first

two declarations are SHAPE. declarations which merely give

information to the compiler. The variable A is then declared as

type LIST and is allocated an amount of stack space which is

sufficient for an address. This field is initialised to NIL, which

is represented by zero. Then stack space is allocated for the

integer control variable which is initialised to 1 and the FOR,

block is entered. Inside this block stack space is allocated to B.

The statement

B := CONS.(NODE,I,A)

involves the allocation of heap space for a node, using the CONS,

function. To the fields of this node we assign the value of the

integer I and the value of the variable A. Now since A is of type

LIST it is a reference to a node and all nodes are in heap space so

the assignment involves a heap address and is in order. Next we

assign to A the value of B which is again a reference to heap space.

PART III The Implementation of Data Structures, PAGE 165

On completion of this block the

raised again on reentry, however,

space and are still available so

in this case.

local stack space is lost and is

the nodes have been set up in heap

our rules are working efficiently

Now consider the following program block.

BEGIN. SHAPE.(LIST) IS (REF,(NODE))

SHAPE.(NODE) IS (REF.(INTEGER) HEAD,

REF.(NODE) TAIL)

LIST A

FOR. I:=l STEP. 1 UNTIL. 3 DO.

BEGIN. INTEGER J

LIST B

j := I

B := CONS.(NODE,J,A)

A B

END.

END.

Here again, stack space is allocated to A and I and, inside the FOR.

block, to J and B. The CONS, function again allocates heap space

but now the value to be assigned to the HEAD field must be a

reference to an integer so the value assigned is not the value of

the integer J but the address of a location containing that integer

value. We have ruled that under no circumstances should a stack

address be assigned so a copy of the integer J is stored in heap

PART III The Implementation of Data Structures, PAGE 166

space and the address of this heap space is assigned to the HEAD

field of the node. V/ith these rules the result is exactly what is

required, a list of references to three different integer values 1,

2 and 3.

We now ask if there are circumstances under which it would be

safe to assign a stack address either to another stack location or

to heap space. First consider the assignment of a stack address to

a stack address. Clearly, it would be dangerous to make such an

assignment to a stack address at a lower level since when the stack

space is reclaimed on exit from a block we shall have a reference to

undefined stack space. There seems to be no objection to the

assignment of a stack address to another stack address at the same

or a higher level on the stack, since in this case the reference

becomes undefined at the same time as, or before, the value to which

it refers. It would be safe to assign a stack address to heap

space, only if all references to that heap space become undefined

before, or at the same time as, the stack address becomes undefined.

This the compiler cannot check and the responsibility must be placed

firmly upon the programmer. Therefore we must not allow the

programmer to allocate stack addresses either to the heap or to

stack addresses at a lower level without realising what he is doing

and it is suggested that such an assignment should be possible only

through the use of a special system defined assignment function.

With these rules it appears that the programmer is adequately

protected and if there are special circumstances, and two way lists

are a case in point, under which the programmer wishes to get

round the general assignment rules the special assignment function

would allow him to do so.

PART III The Implementation of Data Structures, PAGE 167

In conclusion, we may ask what we have achieved. The proposals

put forward in this section for the future development of BCL

provide a system in which data structures are easily defined,

operations on such structures are available in the form of functions

and the confusion between structure definitions and group

declarations removed. Whilst the system still falls short of the

proposals for Algol 68 it does provide most of the facilities that

the ordinary programmer is likely to need. Furthermore, what has

been proposed here is an extension of an existing system and fits

quite naturally into the general scheme of BCL.

EPILOGUE

EPILOGUE PAGE 169

In retrospect it might seem that the most important part of

this thesis has been concerned with LSIX and that BCL has been used

merely as a tool for its implementation. However, although only one

section is devoted to the use of BCL itself as a list processor,

experience in teaching list processing in both LSIX and BCL has

shown without any doubt that almost all students prefer BCL to LSIX.

This might be because the particular group of students concerned are

more interested in applications of computers and have not been

particularly interested in working close to the machine itself, or

it might be because the BCL list processor is a high level language,

having all the facilities of most other high level languages, and at

the same time it allows the user to include, anywhere in his

program, assembly language instructions for the particular machine

concerned, so providing the low-level facilities available in LSIX.

It is the author's experience that whenever one attempts to write a

program in LSIX one soon yields to the temptation to use BCL

instead, leaving the system to deal with the chores associated with

passing parameters, manipulating stacks for recursion and other

low-level aspects of programming.

The original objective in this work was to design and

implement a flexible, machine independent system for teaching list

processing. Many list processing systems were in general use but

none was sufficiently flexible to allow the user to define the shape

and size of nodes from which list structures could be built. There

was no general purpose language which included suitable list

processing facilities and no list processing system with efficient
arithmetic facilities. L6 was designed by Khowlton to provide a

flexible, low-level, machine independent system which, it was

EPILOGUE PAGE 170

claimed, was ideal for teaching the fundamentals of list processing.

L6 has a wide range of tests and operations, including the basic

fixed point arithmetic operations, but no floating point arithmetic

is included. The author's implementation of LSIX in BCL is largely

machine independent. When BCL compilers become more generally

available on other machines it will be a simple matter to transfer

to those machines any systems written in BCL. Only eighteen per

cent of the source statements in the LSIX compiler are machine

dependent, in the object code these represent an even smaller

percentage of the compiler, and only this part needs to be rewritten

for the new machine. The Atlas BCL compiler is now written in BCL

itself and likewise the task of providing BCL compilers for other

machines is simpler than it might otherwise be.

The LSIX compiler described in PART II of this thesis is

written in one of the first versions of BCL. Its efficiency would

be greatly improved if it were updated to take advantage of recent

developments in BCL. As the LSIX compiler is interpretive, a number

of modifications can be carried out by rewriting some of the

subroutines, and improvements such as the generalisation of storage

organisation routines are the subjects of a number of projects

currently being carried out by M.Sc. students. Such projects

enable students to get to the heart of a list processing system and

to understand the fundamental operations which underlie its

implementation.

It has been claimed that LSIX is a convenient medium for the

implementation of other programming languages but here again BCL has

proved to be far superior. The implementation of LSIX in BCL was

EPILOGUE PAGE 171

the first use of BCL as a compiler-compiler. Soon afterwards BCL

was written in itself and it is now being used to implement a wide

range of languages including FORTRAN and Algol, The list processing

facilities which have been added to BCL by the author have further

increased its suitability for use in the teaching of elementary

compilation techniques. After a short basic course in list

processing in BCL, students have written programs ranging from the

sorting and merging of simple linked lists to the simplification of

algebraic formulae. In section 2.4.2 we gave an illustration of a

program to input expressions and store them in the form of binary

trees. Students have written similar programs to input and

manipulate expressions and also to generate optimised machine code

for the evaluation of expressions. BCL has been used in a file

processing course to describe various internal structures associated

with files which can be represented by directed graphs. Other

applications include the definition, and some aspects of the

implementation, of SOL, a simulation language, this also is the

subject of an M.Sc. project.

To summarise, the main advantages of BCL as a language are:

(1) Students with no previous knowledge of computers and

programming have found the language easy to learn.

(2) Programs written in BCL may consist of instructions to

be obeyed in sequence in the conventional way, using

labels and GO TO commands for the transfer of control,

but they may also be written using a functional

notation as in LISP. The functions used are easily

defined by the user.

EPILOGUE PAGE 172

(3) The ease with which recursion may be used leads to

ready acceptance of recursive programming techniques.

(4) BCL will eventually include arithmetical facilities

at least as powerful as those of FORTRAN IV - an

advantage which most list processors do not have.

(5) BCL is a high level language and programs written in it

may be machine independent. Alternatively, if the user

so wishes, he may get close to the machine by writing

assembly language instructions for the machine concerned

anywhere in his program.

(6) The emphasis on the input and output of structured data

make BCL ideally suitable as a compiler-compiler.

(7) The language is equally suitable for systems analysis,

commercial data processing and for writing mathematical

programs.

The particular advantages of BCL as a list processor are:

(1) List processing facilities are available through the

definition of simple groups of commands, and linked

memory techniques can therefore be used as basic

programming tools in any program.

(2) The list processing groups of commands are defined by

the programmer himself, so allowing him to set up and

manipulate list structures of any complexity using

nodes of any desired size. The shape and size of a

node are defined by the program. Several different

sizes of node partitioned into fields in several

different ways may be used in the same program.

EPILOGUE PAGE 1364

The work described in this thesis constitutes the first round

in an iterative process to investigate the effectiveness of systems

for teaching list processing techniques. In the present year,

students at the University of London Institute of Computer Science,

and at Birkbeck College, both graduates and undergraduates, have

been introduced to the BCL list processor and the results have

exceeded all expectations. Whilst further modifications and

extensions, including those proposed in Part III, may be carried out

in the light of experience, and as the process converges, the author

is already confident that in BCL we have a system whose power and

flexibility are second to none.

PAGE

•BIBLIOGRAPHY

'Bobrow, D.G. and Raphael, B. (1964)
'A comparison of list processing computer languages',
C.A.C.M., Vol. 7, PP. 231-240.

Dantzig, G.B. (1965)
'Linear Programming and Extensions', Chapter 14,
Princeton University Press, 1965*

J.M. (1967)
'List Processing', Macdonald, 1967.

D.F. (1966)
'A Provisional BCL Manual',
University of London Institute of Computer Science.

D.F. and Mohan, B. (1968)
'A BCL1 Manual',
University of London Institute of Computer Science,
ICSI 103.

B. (1969)
'ALGO - LXX',
University of London Institute of Computer Science,
ICSI 206.

Hitchcock, F.L. (1941)
'The Distribution of a Product from Several Sources
to Numerous Localities',
J. Maths. Phys., Vol. 20, pp. 224-230.

Hoare, C.A.R. (1965)

'Record Handling', Algol Bulletin 21.
Knowlton, K.C. (1965)

'A Fast Storage Allocator',
C.A.C.M., Vol. 9, PP. 616-623.
(1966)
'A Programmer's Description of L6 ' ,
C.A.C.M., Vol. 9, PP. 616-625.

Foster,

Hendry,

Hendry,

Higman,

BIBLIOGRAPHY PAGE 174A

,Knuth, D.E. (1964)
'A proposal for Input/Output Conventions in Algol 60',
C.A.C.M., Vol. 7, pp. 273-283.
(1968)

'The Art of Computer Programming',
Vol. 1 Fundamental Algorithms, Chapter 2.
Addison-Wesley.

McCarthy, J. (1960)
'Recursive functions of symbolic expressions and
their computation by machine, PART I' ,
C.A.C.M., Vol. 3, pp. 184-195.
(1962)

'LISP 1-5 Programmer's Manual'. M.I.T. Press
Newell, A., Shaw, C. and Simon, H. (1965)

'The Logic Theory Machine',
I.R.E. Transactions on Information Theory IT-2- pp. 61-70.
(1960)

'Information Processing Language V, Manual',
Rand Corporation, P1918.

Schorr, H. and Waite, W.M. (1967)

'An Efficient Machine-Independent Procedure for
Garbage Collection in Various List Structures',
C.A.C.M., Vol. 10, pp. 501-506. »

Weizenbaum, J. (1963)

'Symmetric List Processor', C.A.C.M., Vol. 6, pp. 524-544.
Wilkes, M.V. (1964)

'An experiment with a self-compiling compiler for
a simple list-processing language',
Annual Review in Automatic Programming,

9 Vol. 4, pp. 1-48, Pergamon- Press.
Wirth, N. and Hoare, C.A.R. (1966)

'A contribution to the development of Algol',
C.A.C.M., Vol. 9, p. 413.

Woodward, P.M. (1966)

'List Processing' in 'Advances in Programming and
non-numerical computation'.
Pergamon, 1966.

APPENDIX 1

APPENDIX 1 PAGE 175

Output from a complete LSIX program

A complete list of tests and operations in LSIX has been

published in Tables 1 and 2 of the author's paper entitled

'The definition and implementation of LSIX in BCL*

which forms Appendix 7 o f this report.

The use of a few of these tests and operations is illustrated

by a program to read a sequence of numbers, each of which is

terminated by a single space, sort them into ascending order and

output them. This program is written as three main subroutines,

INPUT, ORDER and OUTPUT which are described in some detail in the

paper referred to above.

In this Appendix we give actual output from the Atlas computer

for the same program. Both source and object listings are requested

to illustrate the object code generated for each source instruction

and a number of diagnostic outputs are included, using the 'Print

List* operation and the system subroutine * STATE*, to show the

state of the system at various stages during the execution of the

program.

APPENDIX 1 PAGE 175

LSIX program

•LSIX, SOURCE, LIST

< 25 ,PRH, PROGRAM TO SORT NUMBERS)

(•20000000, SS, 4 , •2OOOO4OOK3, D D , 0 , 3 3 X 1 , D A , 0 , 2 3 H 2 , D B , 0 , ^ J

(DO,STATE)

(DO, INPUT) (DO, STATE) (DO,ORDER) (DO,OUTPUT) (DO,DUMP) END

INPUT (W,GT,4)(WB,E,327b»)(S,FC,X>(X,GT,lKS,FD,lKO,Dl,0,5>

(DO,STATEJ

NEXT (W,GT,4,WA)(WAD,P,WKWB,E,0J

RD (XI, IN, 1 Ml, PR, XI)
NOT (XI,EH,) THEN (WB,L,b,Xl) RD

IF (WB,E,0) THEN (R,FD,1HX,FR,0HR,FC,XJ(W,PL,A,10) DONE

(WB,DB,WB) NEXT

ORDER (S,FC,X)(X,P,WA)

ND IF (XA,E,0) THEN (R,FC,X) DONE

BACK IF (XB,L,XDB) THEN (XB, IC,XDB)(X,D) BACK

(X,A> ND

OUTPUT (W,FR,WA>(S,FC,X)(1,PR,77)

(W, PL, A, 10)

ANYMORE IF (WA,E,0) THEN (W,FR,0)(R,FC,X> DONE

(X,BD,WBKX,ZB,XKb,PR,X)(W,FR,WA) ANYMORE

•ENTER

APPENDIX 1 PAGE 175

LSIX LISTING OF OBJECT CODE

*OOHOOOO LINE 2

00001007 o o l i o o b o 00000000 00000020 00000300 00000030

00102404 00000000 00102410 00000000 00102550 00000000

•00110060 LINE 3

00004007 00110330 00000000 00000030 00000450 00000030

00102554 00000000 00102560 00000000 00102564 00000000

00000440 00000030 00102570 00000000 00100320 00000000

00102574 00000000 00102600 00000000 00000440 00000030

00102410 00000000 00100240 00000000 00102574 00000000

00102600 00000000 00000440 00000030 00102604 00000000

00100260 00000000 00102574 00000000 00102600 00000000

•OOIIO33O LINE 4

00001007 00110360 00000000 00000040 00000510 00000000

•00110360 LINE 5

00005047 00110500 00000000 00000050 00000430 00000010

00110500 00000000 00000510 00000000 00000430 00000010

0 0 1 1 1 6 7 4 00000000 00000430 00000010 00112324 00000000

00000520 00000000

•00110500 LINE 6

00006007 0 0 1 1 0 7 4 4 00000000 00000060 00000460 00000020

00101230 00000000 00102560 00000000 00000130 00000020

00101230 00100260 00000000 00102610 00000000 00000410

00000010 00101234 00000000 00000460 00000020 00101234

00000000 00102410 00000000 00000420 00000010 00100020

00000000 00000440 00000030 00102574 00000000 00100020

00000000 00102574 00000000 00102614 00000000

• 0 0 1 1 0 7 4 4 LINE 7

00001007 0 0 1 1 0 7 7 4 00000000 00000070 00000510 00000000

APPENDIX 1 PAGE 175

• 0 0 1 1 0 7 7 4 LINE 8

00003007 O O I I I I 5 4

00101230 00000000

00000000 00000140

00000000 00101230

00100260 00000000

•00111154 LINE 9

00002007 OOIII264

0 0 1 0 1 2 3 4 00100020

00000020 00102410

• O O I I I 2 6 4 LINE 10

40101017 OOIH4IO

00100020 00000000

00101230 00100260

00100020 00000000

• 0 0 1 1 1 4 1 0 LINE 11

30104027 0 0 l l l 6 l 0

00100260 00000000

00100020 00000000

00102574 00000000

00000400 00000030

00102624 00000000

•00111610 LINE 12

00001017' O O I I I 6 7 4

00101230 00100260

00110774

• O O I I I 6 7 4 LINE I3

00002007 00111770

00101234 00000000

00000000 00000100

00102560 00000000

00000020 00101230

00000000 00000130

00102574 00000000

00000000 00000110

00000000 00102410

00000000 0 0 I 0 1 2 3 4

O O I I I 3 3 4 00000120

00102410 00000000

00000000 00102620

0 0 1 1 1 1 5 4

0 0 1 1 1 4 6 0 00000130

00102574 00000000

00000320 00000020

00000530 00000010

00101230 00000000

00000000 00000140

00000000 00101230

00000000 00000150

00000140 00000020

00000460 00000030

00101230 00100240

00100240 00100320

00000020 00101230

00000330 00000020

00000000 00000360

00100020 00000000

00000010 0 0 1 0 1 2 3 4

00000340 00000030

00000000 00101234

oooooolo 00101230

00000540 00000010

00101234 00000000

00101234 00000000

00100240 00000000

00000270 00000020

00100260 00000000

00000410 o o o o o o l o

00101234 00000000

APPENDIX 1 PAGE 175

00101230 OOIOO24O

•00111770 LINE I4

30101027 00112060

00100240 00000000

00101234 00000000

•00112060 LINE 15

30102017 00112244

00100260 00000000

00000010 00000020

OOIOO32O 00100260

00000000 00101234

• 0 0 1 1 2 2 4 4 LINE 1 6

00001017 0 0 1 1 2 3 2 4

0 0 1 0 1 2 3 4 00000000

•00112324 LINE 17

OOOO3OO7 00112450

00101230 00000000

00000010 00101234

00000000 00102630

•00112450 LINE 1 8

00001007 00112530

00101230 00000000

•00112530 LINE 19

30102027 00112650

00100240 00000000

00101230 00000000

00101234 00000000

•00112650 LINE 20

OOOO4OI7 0 0 I I 3 0 4 4

00000000

00II2040 00000160

00102574 00000000

0 0 1 1 2 1 4 0 00000170

00101234 00100320

00101234 00100260

00000000 00000140

00100320 00000000

00000000 00000200

00101234 00100240

00000000 00000210

00101230 00100240

00000000 00000360

00000000

00000000 00000220

00100240 00000000

00112600 00000230

00102574 00000000

00102574 00000000

00000000 00000240

00000010 0 0 1 0 1 2 3 4

00000530 00000010

00000040 0 0 1 0 1 2 3 4

00100260 00000000

00000000 00101234

00000020 OOIOI234

00112060

00000140 00000020

00000000 0 0 1 1 1 7 7 0

00000320 00000020

00000000 00000410

00000020 00102410

00000400 00000030

00102624 00000000

00000010 00101230

00000320 00000020

00000530 00000010

00000250 00000020

APPENDIX 1 PAGE 175

00101234 00000000 00101230 00100260 00000000 00000240

00000020 00101234 00000000 0 0 1 0 1 2 3 4 00000000 00000360

00000020 00102620 00000000 0 0 1 0 1 2 3 4 00000000 00000320

00000020 00101230 00000000 00101230 00100240 00000000

00112530 00000040 00000000 00000000 40000000

LSIX PROGRAM ENTERED

PROGRAM TO SORT NUMBERS

SYSTEM SUBROUTINE STATE ENTERED FROM LINE 4

FIELD DEFINITIONS

NAME WORD LBIT RBIT MASK

A 1 0 23 77777777
B 2 0 23 77777777
D 3 0 23 77777777

STATE OF FREE SPACE LISTS

POTENTIAL
NUMBER

64
32
16
0
O
o
o
o

SUBROUTINE PUSH DOWN LIST EMPTY

LEVEL OF FIELD CONTENTS PUSH DOWN STORE IS 0

LEVEL OF FIELD DEFINITION PUSH DCWN STORE IS 0

OUTPUT OF STATE OF SYSTEM COMPLETED

BLOCK
SIZE

1
2

APPENDIX 1 PAGE 175

SYSTEM SUBROUTINE STATE ENTERED FROM LINE 7

FIELD DEFINITIONS

NAME WORD LB IT RBIT MASK

1 0 0 5 77000000
A 1 0 23 77777777
B 2 0 23 77777777
D 3 0 23 77777777

BUG W CONTAINS 20000000 (OCTAL)

AND POINTS TO THE FOLLOWING BLOCK

00000002 00000000 00100000 00000000

BUG X CONTAINS 20000020 (OCTAL)

AND POINTS TO THE FOLLOWING BLOCK

00000000

STATE OF FREE SPACE LISTS

BLOCK POTENTIAL
SIZE NUMBER

1 59
2 29
A I4
8 0

16 0
32 o
64 o

128 0

SUBROUTINE PUSH DOWN LIST

LEVEL 1 CALLED FROM LINE 5 OPERATION 5 FROM EOL

LEVEL OF FIELD CONTENTS PUSH DOWN STORE IS 1

LEVEL OF FIELD DEFINITION PUSH DOWN STORE IS 1

OUTPUT OF STATE OF SYSTEM COMPLETED

21 8123 9 94 415 416 (Data trace).

APPENDIX 1

OCTAL PRINT OF LIST

FIRST BLOCK
00000002 20000160
NEXT BLOCK
00000002 2OOOOI4O
NEXT BLOCK
00000002 20000120
NEXT BLOCK
00000002 20000100
NEXT BLOCK
00000002 20000060
NEXT BLOCK
00000002 2OOOOO4O
NEXT BLOCK
00000002 20000000
NEXT BLOCK
00000002 00000000
END OF LIST PRINT

00000000 00000000

00000640 20000200

00000637 20000160

00000136 20000140

00000011 20000120

00017673 20000100

00000025 20000060

00100000 20000040

SYSTEM SUBROUTINE STATE ENTERED FROM LINE 5

FIELD DEFINITIONS

NAME WORD LBIT RBIT MASK

A 1 0 23 77777777
B 2 0 23 77777777
D 3 0 23 77777777

BUG W CONTAINS 20000200 (OCTAL)

AND POINTS TO THE FOLLOWING BLOCK

00000002 20000160 00000000 00000000

STATE OF FREE SPACE LISTS

BLOCK POTENTIAL
SIZE NUMBER

1 32
2 15 ! I

1 6 o
3 2 0
64 0

0 1 2 $

SUBROUTINE PUSH DCWN LIST EMPTY

LEVEL OF FIELD CONTENTS PUSH DOWN STORE IS O

LEVEL OF FIELD DEFINITION PUSH DOWN STORE IS 0

PAGE 175

OUTPUT OF STATE OF SYSTEM COMPLETED

APPENDIX 1

OCTAL PRINT OF LIST

FIRST BLOCK
00000002 20000140 00000011 20000200
NEXT BLOCK
00000002 20000120 00000025 20000160
NEXT BLOCK
00000002 20000100 OOOOOI36 2OOOOI4O
NEXT BLOCK
00000002 20000060 OOOOO637 20000120
NEXT BLOCK
00000002 2OOOOO4O 00000640 20000100
NEXT BLOCK
00000002 20000000 00017673 20000060
NEXT BLOCK
00000002 00000000 00100000 20000040
END OF LIST PRINT

9 21 94 415 416 8123

SYSTEM SUBROUTINE DUMP ENTERED

SYSTEM SUBROUTINE STATE ENTERED FROM LINE

FIELD DEFINITIONS

NAME WORD LBIT RBIT MASK

A 1 0 23 77777777
B 2 0 23 77777777
D 3 0 23 77777777

STATE OF FREE SPACE LISTS

BLOCK
SIZE

1
2

16
§

128

POTENTIAL
NUMBER

64
31
15
0
0
0
0
0

SUBROUTINE PUSH DOWN LIST EMPTY

LEVEL OF FIELD CONTENTS PUSH DOWN STORE IS 0

LEVEL OF FIELD DEFINITION PUSH DOWN STORE IS 0

PAGE 175

(Results)

OUTPUT OF STATE OF SYSTEM COMPLETED

APPENDIX 1 PAGE 175

OCTAL OUTPUT OF LINKED STORAGE AREA

20000040 00000000 00100000 20000040 20000024 00000000

00000000 00000000 20000060 20000000 00017673 20000060

20000100 20000040 00000640 20000100 20000120 20000060

00000637 20000120 20000140 20000100 00000136 20000140

20000160 20000120 00000025 20000160 20000200 20000140

00000011 20000200 20000220 20000160 00000000 00000000

20000240 00000000 40000000 00000000 20000260 00000000

40000000 00000000 20000300 00000000 40000000 00000000

20000320 00000000 40000000 00000000 20000340 00000000

40000000 00000000 20000360 00000000 40000000 00000000

00000000 00000000 40000000 00000000

DUMP COMPLETED

END OF JOB

APPENDIX 2

The Syntax of LSIX defined in BCL

APPENDIX 1 PAGE 175

A definition of the syntax of LSIX.

:: Main program structure

LSIX IS (LSIXSTATS)

LSIXSTATS IS ((EITHER INSTR

OR DIRECTIVE

OR 0/P(NL.,'LSIX STATEMENT NOT RECOGNISED*,NL.

GARBAGE), LSIXSTATS)

GARBAGE IS (EITHER EOL

OR CHSET=CHSET1, NEXTCH, GARBAGE)

DIRECTIVE IS (OSP.,EITHER *•ENTER*, STOP

OR **LSIX*, OSP., OPTIONS)

OPTIONS IS ((EITHER 'SOURCE*

OR •LIST*

OR NIL.), (EITHER SEP,OPTIONS

OR EOL))

SEP IS (OSP.,*,*,OSP.)

INSTR IS (OSP. ,EITHER CCJNDNL

OR UNCONDNL

OR LABEL, (EITHER CCJNDNL

OR UNCONDNL

OR EOL))

:: Types of instruction

CONDNL IS (CONDTION,TESTS, (EITHER 'THEN*, OPERATNS OR NIL.),

TRANSFER,EOL)

UNCONDNL IS ((EITHER 'THEN* OR NIL.), OPERATNS,

(EITHER TRANSFER OR NIL.), EOL)

APPENDIX 1 PAGE 175

:: Types of condition

CONDITION IS (EITHER 'IFANY*,

OR * IFNALL * ,

OR *IFALL*,

OR 'IFNONE',

OR 'IF',

OR 'NONE',)

:: Analysis of Tests.

TESTS IS (OSP., TEST, EITHER TESTS OR OSP.)

TEST IS ('(', FIELD,SEP,

(EITHER(EITHER 'K* OR *N* OR 'G* OR 'L'),

(EITHER »0',J2=2 OR »H',J:=3 OR J:=o)

OR (EITHER 'O' OR 'Z'),

(EITHER 'D»,J:=1 OR »H',J:=3 OR Jjrrq)

OR »P», Jj=0),

OSP.,',',

(EITHER IF J=0, (EITHER FIELD

OR DLITERAL)

OR IF J=l, DLITERAL

OR IF J=2, OLITERAL

OR IF J=3, HLITERAL

OR IF J=4, (EITHER FIELD

OR OLITERAL)),')')

j; Analysis of operations.

OPERATNS IS (OSP.,OPERATN, EITHER OPERATNS OR OSP.)

APPENDIX 1 PAGE 175

OPERATN IS ('(', OSP., EITHER 'DO*, SEP, (EITHER 'STATE'

OR 'DUMP'

OR SYMBOL),OSP.,')'

OR FIELD, SEP, FLDNAMES, OSP., ')'

OR ARG, SEP, OPCODE, REJECT

OR IF K LE 27, FIELD, SEP, ARG, SEP,

(EITHER IF J=0, FIELD

OR IF J=l, DLITERAL

OR IF J=2, OLITERAL

OR IF J=3, HLITERAL), »)•

OR IF K GE 2 8 , IF K LE 29,

FIELD, SEP, ARG, SEP,

(EITHER FIELD OR DLITERAL),

(EITHER OSP., ',',

(EITHER IF J=l, DLITERAL

OR IF J=3, HLITERAL

OR IF J=4,(EITHER FIELD)

OR OLITERAL))

OR NIL.), «)'

OR IF K GE 3 0 , IF K LE 3 I ,

(EITHER FIELD OR DLITERAL), SEP, ARG,

OSP., ',* (EITHER IF J=3, HLITERAL

OR FIELD

OR OLITERAL), *)*

OR IF K=32, FIELD, SEP, *PL», SEP,

FLDNAME, (EITHER SEP, FIELD

OR SEP, DLITERAL

OR OSP.), ')'

APPENDIX 1 PAGE 175

OR IF KT33, (EITHER 'S' OR 'R'), SEP, 'FC', SEP, FIELD, ')'
OR IF K=34, (EITHER 'S' OR 'R»), SEP, 'FD', SEP,

FLDNAME, OSP., »)'
OR IF K=35, SYMBOL,SEP, 'DO', SEP, SYMBOL, OSP,, ')'
OR (EITHER FIELD OR DLITERAL), SEP,

'D', FLDNAME, SEP, (EITHER FIELD OR DLITERAL),
SEP, (EITHER FIELD OR DLITERAL), ')'

OR IF K=37, '*', OLITERAL, SEP, 'SS', SEP, DLITERAL,
SEP, •*', OLITERAL, •)•

OR IF K=38, FIELD, SEP, 'GT', SEP,
(EITHER FIELD OR DLITERAL),
(EITHER SEP, FIELD OR NIL.), ')')

OPCODE IS (EITHER(EITHER *E
OR 'A
OR 'S
OR *M
OR 'V
(EITHER 'O

OR (EITHER 'O
OR 'N
OR 'X

OR 'C
(EITHER 'D

OR (EITHER 'DP
OR 'IC
OR 'P'
OR 'LO

OR 'RD

K=1

KZ2

K=3

K=4

K=5>,

J=2 OR 'II', J=3 OR J=0)
k=6

K=7

K=8
K=9),

J=1 OR 'H', J=3 OR J=4>
, K=10
, K=LL
K=12

, K=13

, K=14

APPENDIX 1 PAGE 175

OR
OR
OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

OR

»LZ

'RZ

•OS
FZS

•BZ

•ZB

»BD

«BO

'DB

•OB

•FR', K=26
1 IN', K=27

(EITHER 'L*

(EITHER *D*

(EITHER »PR

(EITHER FHF

K=15

K=I6

K=17

K=I8

Krl9

K=20

KS21

K=22

K=23

K=24>, J=5

J=0

J=0

K=2<8 OR * R*, K=29),

J=1 OR *H*, J=3 OR J=4>

,K=30 OR ,PU,J K=3L),

J=3 OR J =4)

OR •PL», K=32
OR •FC* , K=33
OR •fd*, K=34
OR *DO* T K=35
OR •D«, FLDNAME, K=36

OR •ss*, K=37

OR •GT», K=38)

REJECT IS (IF 1=0)

APPENDIX 1 PAGE 175

J: Types of field

FIELD IS (OSP.,(EITHER ,T.1

OR BUG, (EITHER FLDNAMES OR NIL.)

OR POTNUMBER), OSP.)

POTNUMBER IS (EITHER ,l.t OR ,2.» OR *4.• OR '8.* OR ,l6.1

OR '32.* OR '64.1 OR »12.8.*)

BUG IS (LETTER)

FLDNAMES IS (FLDNAME, (EITHER FLDNAMES OR NIL.))

FLDNAME IS (EITHER LETTER OR DIGIT)

LETTER IS (EITHER 'A* OR ,B* OR 'C* OR

OR 'X* OR fY* OR 'Z')

ODIGIT IS (EITHER 'O1 OR ,lt OR ,2* OR •3* OR •4'

OR ,5» OR '6* OR '71)

DIGIT IS (EITHER ODIGIT OR '8' OR '91)

DLITERAL IS (OSP., DIGIT, EITHER DLITERAL OR OSP.)

OLITERAL IS (OSP., COUNT = 8, ODIGITS, OSP.)

ODIGITS IS (ODIGIT, COUNT=COUNT-l, (EITHER IF COUNT GT 0, ODIGITS

OR NIL.))

HLITERAL IS (C0UNT=4, HCHARS)

HCHARS IS (EITHER COUNT = -1, REJECT

OR •)',COUNT = -1, REJECT

OR IF COUNT GT O,

CHSET = CHSET1, NEXTCH,COUNT = COUNT - 1,

(EITHER IF COUNT GT O, HCHARS OR NIL.))

LABEL IS (LBL, JUNK, SP., OSP.)

JUNK IS (EITHER JNK, JUNK OR NIL.)

TRANSFER IS (OSP., LBL, JUNK)

SYMBOL IS (LBL, JUNK)

EOL IS (OSP., NL., EITHER EOL OR NIL.)

APPENDIX 3

BCL routines corresponding to LSIX operations.

APPENDIX 1 PAGE 175

t: Alternate octal digits in
J: WR1 and OCT.

Basic routines called from the main interpreter routine

DEFINE R OCTPRINT

: OCTPRINT outputs in octal the contents of the variable OCT,
: WR1 is a working variable. The contents of OCT are
: destroyed.

DO

COUNT := 3

165 ,WR1,OCT,^70707070

127,OCT,0,^07070707

I63,Y/RI,O,O

I63,WRI,O,O

163 ,WRl,0,0

REPEAT) 125,WR1,0,0

125,OCT,0,0

io64,o,WRI,2

1064,0,OCT, 2

COUNT COUNT - 1

IF COUNT GE 0 GO TO REPEAT

RETURN

END

DEFINE R STACKPRINT

5! Outputs in octal the contents of all locations from START
:: to FINISH. The value of START is destroyed.

DO

:: Fetch contents of next location.

:: Right justify contents of WR1.

:j Circular shift Y/R1,0CT 6 bits left.

:: Output least significant 6 bits.

:: Output least significant 6 bits.

:: If not finished, go back.

5: Output 2 spaces followed
:: by octal number.
j: Advance START by one (half)word.

AGAIN) OCT I" CQ0F(START)

0/P(SP.(2),OCTPRINT)

START := START + ONE

IF START LT FINISH GO TO AGAIN :S Repeat if not finished.

RETURN

END

APPENDIX 1 PAGE 175

DEFINE R STATEPRINT

:: This routine is used for diagnostic purposes. It outputs all
:: field definitions, the contents of non zero bugs, the blocks to
:: which bugs point, and the state of the system pushdown stores.
:: A typical output from STATEPRINT is given in Appendix 1.

DO

0/P(NL.(2),*SYSTEM SUBROUTINE STATE ENTERED*,

'FROM LINE *, LINE,NL.) :: Output message with line number.

0/P(NL. (2) , 'FIELD DEFINITIONS' ,NL, ,

'NAME WORD LB IT RBIT MASK»,NL.)

:: Column headings.

STATE2)FNAME : = COOF(POINTER) :: Get next field name.

IF MA.SK(CURRENT) ~0 GO TO STATE1

:: If field not defined, skip.

WR1 2 = WORD(CURRENT) :: Get word number.

124,WR1,WR1,0 :: Convert to 2i-bit integer.

WR2 2 = LBIT(CURRENT) :: Get left-most bit number.

WR3 RBIT(CURRENT) 2 2 Get right-most bit number,

OCT 2= MASK(CURRENT) 5 2 Get mask.

:j The following command outputs the field name in character form,
2 2 WRl, V/R2 and WR3 as integers and the mask in octal.

0/P(FNAME,SP.(3) ,WR1,SP.(5),WR2,SP.(5),WR3,SP.(5),OCTPRINT,NL.)

STATE1) POINTER POINTER+ONE :: Advance pointer to
2: next field name.

CURRENT 2= CURRENT + 2 2 2 Point to next field
2: definition.

IF FNAME NE 'Z' GO TO STATE2
2 2 If not finished, go back.

•; End of output of field definitions. Continue with bugs.

POINTER 2— FNAMEBASE Point to name of first field

CURRENT :r FLDBASE 2 2 Point to first field definition

APPENDIX 1 PAGE 175

POINTER := BNAMEBASE :: Point to first bug name.

CURRENT BUGBASE :: Point to first bug i.e.'A'.

S T A T E 4) FNAME 5= COOF(POINTER) :: Get bug name.

IF COOF(CURRENT) = 0 GO TO STATE3
:: If bug is zero, skip print.

OCT := COOF(CURRENT) !2 Got bug contents in OCT.

WR2 I" OCT

0/P(NL,,'BUG ',FNAME,SP.(2),'CONTAINS ')

IF OCT LT STARTLIST GO TO STATE3A SJ If not pointer.

IF OCT GE ENDLIST GO TO STATE3A :: If not pointer.

I: The following instructions output the bug contents in octal
:: followed by the contents of the block to which the bug points.

0/P(0CTPRINT,' (OCTAL) AND POINTS TO THE FOLLOWING BLOCK',NL.)

OPl:= Y/R2 :: Transfer bug contents to OP1.

PRINTBLOCK :: Routine to print block to
:j which OP1 points.

GO TO STATE3

:: The following instructions output the bug contents as an integer.

STATE3A) 124,WR2,WR2,0 :: Convert to 2l-bit integer.

l24,WR2,Vm2,0

l24,WR2,Vm2,0

0/PCV/R2,' (DECIMAL) ' ,NL.):: Output integer.

S T A T E 3) CURRENT CURRENT+ONE tJ Advance pointers.

POINTER POINTER+ONE

IF FNAME NE 'Z» GO TO STATE4

j: If bugs not finished.
:: Tho following instructions output the state of the free space
:: list giving block size and potential number of blocks.

s ize := l

CURRENT := FREEHDR :: Point to 1 - blocks.

APPENDIX 1 PAGE 175

0/P(NL.,»STATE OF FREE SPACE LISTS',

NL. ,* BLOCK POTENTIAL',

NL.,'SIZE NUMBER',NL.)

STATE5) WRl J= PLUS3(CURRENT)

0/P(NL.,SP.(2),SIZE,SP.(6),WR1)

CURRENT := CURRENT + 2

SIZE S= SIZE + SIZE

IF SIZE LE MAXSIZE GO TO STATE5

: Get potential number.

J Output size and number.

: Point to next sublist,

: Double SIZE.

: If not finished.

S: The following instructions output the state of the system
:• pushdown stores.

0/P(NL.(2), 'SUBROUTINE PUSH DOWN LIST')

:: Get subroutine level,

:: If stack not empty.

WRl := SUBL
IF SUBL GT 0 GO TO STATE6
0/P('EMPTY')
GO TO STATE7

STATE6) POINTER := SUBP - 3

STATES) WR2 1= PLUS5(POINTER)

WR3 PLUS3(POINTER)

0/P(NL., 'LEVEL ', WRl,'CALLED FROM LINE',

WR2,' OPERATION ' ^ 3 , ' FROM EOL')

POINTER POINTER - 3 :: Point to next record.

WRl WRl - 1

IF WRl GT O GO TO STATE8

:: Point to top record
:: on stack.

:: Get line number of call.

:: Get position in line of call.

:: Decrease working level
:: number.
:: If not finished, go back.

STATE7) 0/P(NL.(2),'LEVEL OF FIELD CONTENTS STACK IS*,FCL)
j: Output level of field
:: contents stack.

0/P(NL.(2),'LEVEL OF FIELD DEFINITION STACK IS*,FDL)
:: Output level of field
:: definition stack.

Q/P(NL.(2),'OUTPUT OF STATE OF SYSTEM COMPLETED',NL.(2))

RETURN

END

APPENDIX 1 PAGE 175

DEFINE R PRINTBLDCK

:: This routine gives an octal output of the block to which 0P1 points.

DO

OCT := COOF(OPl)

127,OCT,0,0.7

SIZE := 1

PL2) IF OCT=0 GO TO PL3

122,OCT,0,0.1

SIZE SIZE + SIZE

GO TO PL2

PL3) OCT := COOF(OPl)

0/P(SP.(2),OCTPRINT)

SIZE SIZE - 1

IF SIZE = O GO TO END

DPI OP1 + ONE

GO TO PL3

END) RETURN

END

DEFINE R STOREINI

:: This routine stores the contents of the variable OCT in the
:: field specified by DPI and FP1. Routines STOREIN2 and STOREIN3
:: are defined similarly for fields specified bj/ BP2,FP2 and
:: B?3,FP3 respectively.

DO

VfREGl J= BP1

V/R3G2 5= FP1

STOREFIELD :: Call routine to store field.

RETURN

END

:: Get first word of block,
:: (contains log(size)).
:: Get log(size).

:: Go to print when size found.

:: Subtract o.l from log(size).

:: Double size.

:: Get next word.

:: Octal output.

:: If end of block.

:: Point to next word.

:: End of PRINTBLOCK.

APPENDIX 1 PAGE 175

BCL instructions corresponding to the LSIX operations

The following sets of instructions are entered via the multi-

way switch labelled OPSPLIT1 in the interpreter routine. Each set

of instructions is terminated with a GO TO OPRTN. The operations

for setting up, allocating, freeing and copying data blocks are not

described in this section but various methods of storage organisation

are discussed in detail in section 2 .3 .

Definition of fields

The field definition operation is

(cdl,Df,cd2,cd3).

cdl specifies the word number of the field, cd2 and cd3 the left

most and rightmost bits within this word. D is the operation code

representedby K = 36 and f is the name of the field to be defined.

This is the only operation involving 4 operands - three integers

and a field name. At the time of entry to the equivalent BCL

instructions, only three operands have been fetched, cdl is in

•PI, the address of the field definition f is in BP2 and cd2 is

in 0P3. The first instructions FIND and GET cd3«

D) FINDFIELD

GETFIELD

124,0P1,GP1,0

124,0P1,QP1,0

124,0P3,0P3,0

124,0P3,0P3,0

124,0P3,0P3,0

l24,VvREGl ,Y/REG1,0

124,WREG1,WREG1,G

124,WREG1 ,WREG1,0

: Locate fourth operand.

: Get fourth operand < in WREG1),

: Convert cdl to 22-bit integer,

: 1 LSIX word £ half Atlas word.

: Convert cd2 to 2l-bit integer.

:: Convert cd3 to 2l-bit integer.

APPENDIX 1 PAGE 175

IF 0P1 GT 64 GO TO NULL :: Max I28(half)words in any block.

IF OP1 LT O GO TO NULL :: Validate definition.

IF OP3 LT O GO TO NULL

IF WREG1 GT 23 GO TO NULL

IF OP3 GT Y/REGl GO TO NULL

V/ORD(BP2) 2= OP1 22 Store word number

LBIT(BP2) 2= OP3 :: Store left bit number.

RBIT(BP2) 2= Y/REG1 2 2 Store right bit number.

2: The following instructions create a mask for the field.

121,WR1,0,*4

COUNT 2= V/REGI-QP3

DMORE) IF COUNT = O GO TO DEND 2: If sufficient 1-bits.

2 2 Load working register with a
2: left-justified 1-bit.
2: Initialise count.

l63,WRl,0,0

167,WR1,0,*4

COUNT 2 = COUNT-1

GO TO DMORE

DEND) I342 ,Y/R1, OP3 ,0

IF OP1 NE O GO TO D1

127 ,Y/Rl,0, ̂ 77777770

Dl) MASK(BP2) := Y/Rl

GO TO OPRTN

NULL) Y/ORD(BP2) 2= 0

LBIT(BP2) 2 = 0

RBIT(BP2) 2= O

IL\SK(BP2) := 0

0/P(NL., INCORRECT FIELD DEFINITION IN LINE' , LINE, NL.)

GO TO OPRTN

2 2 Right shift 1 bit.

2 2 Add 1 bit at left hand end.

2 2 Count.

2 2 Right shift mask into position.

2 2 If not word number O.

2 2 Protect 3 least significant bits
2 2 reserved for compiler.
2: Store mask.

2 2 Invalid defn, nullified.

APPENDIX 1 PAGE 175

:: The following instructions cop}*- and interchange fields,

EQ) OCT 2= 0P2 2 X Get second operand,

STOREINI 2 2 Store in field specified by first,

GO TO OPRTN

2: The copy pointer operation which follows is implemented as copy
2 2 field contents.

2 2 Get pointer from second operand,

2 2 Store in first,

2: Interchange field contents.

OPP) OCT 2= CP2

STOREINI

GO TO OPRTN

IC) OCT 2= 0P2

STOREINI

OCT 2= 0P1

STOREIN2

GO TO OPRTN

:: The Arithmetic operations are performed on the specified
:2 operands and the result overwrites the first operand.

ADD) OCT :R DPI + 0P2

STOREINI

GO TO OPRTN

SUB) OCT 2= 0P1 - 0P2

STOREINI

GO TO OPRTN

MPY) 1312,DPI,OP2,0

CCT OPI

STOREINI

GO TO OPRTN

DIV) I3I4,OPI,0P2,0

OCT 2= OPI

STOREINI

GO TO OPRTN

2 2 Multiply 24-bit integers,
2: result in OPI

2 2 Divide OPI by 0P2, lose remainder.

APPENDIX 1 PAGE 175

:: Logical operations OR, AND and nonequivalence operate on two
:* operands the first of which is overwritten by the result.

OR) OCT := 0P1

l67,0CT,0P2,0

STOREINI

GO TO OPRTN

AND) OCT := 0P1

127,0CT,0P2,0

STOREINI

GO TO OPRTN

XOR) OCT J= 0P1

126,0CT,0P2,0

STOREINI

GO TO OPRTN

:: Get first operand.

•: Logical OR with second.

:: Store result,

:: Get first operand.

:: Logical AND with second.

:: Store result.

:: Get first operand.

:: Non equivalence with second.

:: Store result.

:: The operation Complement stores the complement of the second
:: operand in the field specified by the first.

:: Get second operand.

:: Complement,

:: Store result.

C) OCT := 0P2

l26,OCT,o,*77777777

STOREINI

GO TO OPRTN

: In addition to the logical operations described above, LSIX

: provides operations for counting 1-bits and 0-bits and

: operations for locating the leftmost and rightmost 1-bit

: and 0-bit of any operand. These six operations have many

: things in common. They are implemented using one sequence

: of BCL instructions with 6 different entry points and

: switches are used where the operations diverge. Operations

: apply to 0P2 and results overwrite the first operand.

APPENDIX 1 PAGE 175

OS) FLAG := 1 :: Entry point for count 1-bits.

BITS) LENGTH 5= 24 S! Max field width.

IF FP = 0 GO TO BITS2 :: If operand is not remote field.

LENGTH RBIT(FP2) - LBIT(FP2)

LENGTH LENGTH+l :: Compute field width for remote field.

BITS2) OCT :=0 :: Initialise bit count,

MOREBITS) LENGTH : = LENGTH - 1 :: Count down bits in field.

IF LENGTH LT O GO TO ENDBITS
t: If whole field scanned.

GO TO 0S1,RD1,L01,L01,VIA FLAG
:: Switch via flag.

OS1) l63,0P2,0,0 :: Circular right shift 0P2 1 bit.
IF 0P2 GE O GO TO MOREBITS :: If leading bit is zero.

OCT := OCT + 1 :: Count 1 bit.

GO TO MOREBITS

NOBITS) OCT t= O

ENDBITS) STOREINI :: Store result.

GO TO OPRTN

ZS) 126,0P2,0,^77777777 :: Entry for o-bits.

GO TO OS :: Complement and count 1-bits.

RO) FLAG := 2 :: Entry for locate 1-bit right,
:: set flag.

GO TO BITS

R01) OCT := OCT + 1 :: Count bit.

l63,0P2,0,0 :: Circular right 3hift 0P2 1 bit.

IF 0P2 LT 0 GO TO ENDBITS :: If leading bit is now 1.

IF LENGTH = O GO TO NOBITS :: If whole field scanned
:: without success.

GO TO MOREBITS

RZ) FLAG 2 :: Locate 0-bit from right.

GO TO BITSl

APPENDIX 1 PAGE 175

LZ) FLAG in 3 j: Locate 0-bit from left.

LZ1) IF FP2 = O GO TO LZ2 :: If not remote field.

SHIFT s= 23 - RBIT(FP2)

SHIFT := SHIFT + LBIT(FP2>

1343,0P2,SHIFT,0 :: Left justify operand in
J: 24 bit field.

LZ2) GO TO BITS,BITS,BITS1,BITS VIA FLAG :: Switch.

LO) FLAG in 4 :: Locate 1-bit from left.

GO TO LZ1

LOl) OCT := OCT + 1 :: Count bits.

IF OP2 LT 0 GO TO ENDBITS :: If leading bit is a 1.

1343,0P2,0,1 :: Left shift 1 bit (circular).

IF LENGTH = O GO TO NOBITS SJ If whole field scanned.

GO TO MDREBITS

APPENDIX 1 PAGE 175

:: Fetch fields to be used in shift.

:: In their most general form the LSIX shift operations have three
:: operands. The first is the field to be shifted, the second
:: specifies the number of places to shift and the third operand
:: (zero if not specified) is the field to be shifted into the
:: first field specified. Two subroutines are defined for shift
:: operations.

DEFINE R LSHIFT

DO

v/Rl OPI

WR2 J = OP3

IF 0P2 := O GO TO END :: If no shift required.

IF FP3=0 GO TO READY J: If OP3 already left justified.

SHIFT J= 23 - RBIT(FP3)

SHIFT 2= SHIFT + LBIT(FP3)

I343,V/R2,SHIFT,O :: Left justify OP3 in WR2.

READY) SHIFT OP2 II Number of shift places.

124,SHIFT,SHIFT,O :: Convert to 21 bit integer.

I24, SHIFT,SHIFT,O

124,SHIFT,SHIFT,O

MORE) I 3 4 3 ,WR1,0,1

I343,WR2,0,1

127,WRI,o,*77777776

I65,WR3,WR2,0.1

I67,WRI ,WR3,O

127 ,WR2,0 ,^77777776

SHIFT SHIFT - 1

I Circular left shift WR1 1 place.

: Circular left shift WR2 1 place.

: Clear bit 23 of WR1.

: Get bit 23 of WR2 in WR3.

j Add it to WR1.

: Clear bit 23 of WR2.

: Count down.

END)

IF SHIFT GT 0 GO TO MOREjj If not finished.

OCT := WR1 !l Result in OCT.

ST0REIN1 I: Store result.

RETURN

END

APPENDIX 1 PAGE 175

DEFINE R RSHIFT

DO

WRl := DPI ::

WR2 := OP3

IF OP2 = o GO TO END SJ

IF FP1-0 GO TO READY ::

SHIFT := 23 - RBIT(FPl)

SHIFT SHIFT + LBIT(FPl)

1343, WRl, SHIFT, O ::

READY) SHIFT OP2 5:

124,SHIFT,SHIFT,0 ::

124, SHIFT,SHIFT,0

124, SHIFT,SHIFT,0

MORE) 163,WRI, 0,0 : :

i63,WR2,0,0

127, wri,o,*37777777 : :

165,WR3,WR3,*4 ::

i67,y /r i ,wr 3 ,o

127 ,v/r2,0, *37777777

SHIFT := SHIFT -1

IF SHIFT GT GO TO MORE

IF FP1 = O GO TO FLUSIIRT

SHIFT != 23 - RBIT(FPl)

SHIFT := SHIFT + LBIT(FPl)

1342, WRl, SHIFT, 0 ::

FLUSHRT) OCT : = WRl 5 :

STOREINI

END) RETURN1

END

Get operands.

If number of shifts is zero.

If OP1 already left justified.

Left justify 0P1 in WRl.

Number of shift places.

Convert to 2l-bit integer.

Circular shift right 1 place.

Clear bit O of WRl.

Get bit O of WR2 in WR3.

Add this bit to WRl,

Clear bit O of WR2.

Count down.

If not finished.

If first operand is 24 bit field.

Right justify result.

Get result in OCT.

APPENDIX 1 PAGE 175

:: The shift routines are called for the LSIX shift operations.

LL) LSHIFT

GO TO OPRTN

R) RSHIFT

GO TO OPRTN

: LSIX provides only one operation for input. The number of
: characters to be input is specified by OP2. Input characters
1 are left shifted into the field specified by the first operand.
: Input is terminated on reading an end of line character.

IN) OCT := OP1 :: Current 0P1 in OCT.

INMDRE) IF 0P2=0 GO TO INEND :: If finished.

125,OCT,0,0 :: Left shift OCT 6 bits to
:: receive next character.

127,0CT,0,*777777 :: Clear least significant 6 bits.

1054,V/R1,0, (INEOL) :: Input character to least
:: significant end of WRl,
:: if newline character go to INEOL,

167,OCT,WRl,0 :: Add character to OCT.

122,0P2,0,0.1 :: Count down (24 bit integer),

GO TO INMORE

INEOL) 167,OCT,0,7.7 :: Newline char, is represented by (77).

INEND) ST0R2IN1 i: Store result of input.

GO TO OPRTN

2 The contents of fields and octal literals may be output in
: character form by means of the PRint and PUnch operations.
: Hollerith character strings are dealt with separately in
5 this implementation.

PU) IF 0PFLAG=1 GO TO OUTPUT:: If stream 1 already selected.

OPFIAG 1

1060,0,0,1 2: Select output stream 1.

GO TO OUTPUT

PR) IF 0PFLAG=0 GO TO OUTPUT:: If stream 0 already selected.

OPFIAG 0

1060,0,0,0 :: Select output stream 0.

APPENDIX 1 PAGE 175

OUTPUT) IF QPlrO GO TO OPRTN :: Return if no chars, for output

P R !)

PR2)

PR9>

PR7)
PR8)
PR5)
p r 6)

124,0P1,0P1,0 :i Convert number of characters

124,0P1,0P1,0 :: to 2l-bit integer.

124,0P1,0P1,0

WRl 2= 0P2 S: Get field contents for output.

COUNT 2= 0P1 :: Get character count.

IF OP3 GT O GO TO HOUTPUT :: If output Hliteral.

IF COUNT LE 4 GO TO PR2 S: If not more than 4 characters.

:: Count down,

jj Output leading space.

COUNT 2 = COUNT-1

0/P(SP.)

GO TO PR1

IF FP2=0 GO TO PR9 s: If 24-bit operand.

l65,WR2,WRl,*76 :: Convert any leading

IF Y/R2 NE O GO TO PR9 2 2 binary zeros to blanks.

I 6 7 , Y/Rl, 0,-01

I65,WR2,WRI,*OO76

IF WR2 NE O GO TO PR9

l67,WRl,0,*000l

I65,WR2,V/R1, ̂ 000076

IF V/R2 NE O GO TO PRQ

I67 ,Y/Rl, O ,--OOOOOl

GO TO PR6,PR7,PR8,PR5 VIA COUNT :; Switch.

125, WRl,0,0

125, WRl,0,0

125,WRl,0,0

I65,WR2,WRI,7.7

1 2 6 , V / R 2 , 0 , 7 . 7

IF WR2=0 GO TO PR10

IO64,O,y/RI,O

:: Shift ready for output.

j Get first character.

: Complement this character,

j If character is newline.

2 Output 1 character.

APPENDIX 1 PAGE 175

PR11) COUNT := COUNT-1 :: Count down.

IF COUNT GT O C-0 TO PR5 :: If not finished.

GO TO OPRTN

PRlo) 1 0 6 5 , 0 , 0 , 2 . 1 :: Output newline.

GO TO PRll

I: Strings of characters of any length may be output. During

j: input of the program such character strings are stored

:: in the constants area. They are output by the following

2: instructions. The length of the string is assigned to OP3.

2: BP2 points to the character string.

HOUTPUT) IF 0P1 LE OP3 GO TO HI

1064,0,0,0.1

OP1 2= OP1-1

GO TO HOUTPUT

HI) IF 0P1 = OP3 GO TO H2

0P3 2= OP3-I

BP2 2= BP2+ONE

GO TO HI

H2) WR1 j= COOF(BP2)

1064,0,™. ,0

OP3 i n O P 3 - I

BP2 2= BP2+0NE

IF 0P3 GT 0 GO TO H2

GO TO OPRTN

2: If no leading spaces,

:: Output space.

2: Count down.

5: Decrease length of string.

2 2 Skip next character.

2: Get next character.

:: Output it.

2 2 Decrease length of string.

2: Point to next character.

2: If not finished.

APPENDIX 1 PAGE 175

: Another output operation which is intended for diagnostic use

: is the Print List operation. 0P1 points to first block, BP2

: specifies the link field and OP3 is th© number of blocks (if

: specified).

PL) 0/P(NL.,'OCTAL PRINT OF LIST',NL.,'FIRSTBLOCK',NL.)

IF OP3 GT 0 GO TO PL1 :: If number of blocks is specified.

OP3 OP3 - 1 :: Set negative OP3.

PLl) WREGl DPI J: Get pointer.

wreg2 Bra

PRINTBIJOCK

P I 4) 1 2 2 , 0 P 3 , 0 , 0 !

IF OP3=0 GO TO PLEND

GETFIELD

IF WREGlrO GG TO PLEND

OP1 J= WREGl

0/P(NL.,'NEXT BLOCK',NL.)

GO TO PLl

PLEND) 0/P(NL.,'END OF LIST PRINT',NL.)

GO TO OPRTN

Print next block.

Count down.

If finished.

Get link to next block.

If end of list.

Pointer to block.

APPENDIX 1 PAGE 175

: Associated with the LSIX input and output operations are a
: number of conversion operations: Convert leading spaces to
: zeros, leading zeros to spaces, Hollerith coded decimal and
: octal to binary and vice versa. These six conversion operations
: are described below.

BD) OCT := 0

K := K—20

124,0P2,0P2,0

124,GP2,0P2,0

124,0P2,0P2,0

COUNT := 4

BD1) GO TO BD2, BO VIA K

BD2) I 3 0 4 , 0 P 2 ,0,10

BD3) 1 6 7 , o c t,9 7 , 1 6

125,OCT,0,0

COUNT := COUNT—1

:: Entry for Binary to Decimal and
:: Binary to Octal.
:: K is now 1 for BD and 2 for BO.
:: Left shift operand three places.

:: Initialise count.

2: Switch.

:: Divide by 10, remainder in B97*

5: Add character form of
:2 remainder to OCT.
2 2 Left shift OCT 6 binary places.

:: Count down.

IF COUNT GT 0 GO TO BD1 :j If not finished go back.

163,OCT,0,0 :: Right shift 3 binary places.

163,OCT,0,0

I63,OCT,0,0

BDEND) STOREINI :: Store result.

IF 0P2 =0 GO TO OPRTN

BDERR) 0/P(NL.,'OVERFLOW IN NUMERIC CONVERSION*,NL.)

GO TO OPRTN

BO) 165,97,0P2,7

127,OP2,O,*777777

l63,OP2,0,0

l63,0P2,0,0

l63,0P2,0,0

GO TO BD3

2 2 Fetch next octal digit to B97.

:: Clear least significant
:: digit from QP2.
2 2 Divide 0P2 by 8.

APPENDIX 1 PAGE 175

DB) OCT := 0 :: Entry for conversions to binary.

K 2 = K-20 s: K now 3 or 4 .

COUNT 3 :: Initialise count.

DB1) l2l,WSl,0,1.1 2 2 ws l assigned '9' as 24 bit integer.

125,0P2,0,0 :: Left shift operand 6 places.

l65,WRl,OP2,7.7 :: Get next character in WR1.

IF WR1=0 GO TO DB5

WR1: rWRl-2 2: Convert WR1 to integer form.

IF V/Rl LT O GO TO DBERR 2: If negative, then error.

DB5) IF K=4 GO TO OB 2 2 If octal to binary.

IF WR1 C-T WS1 GO TO DBERR
2 2 If integer greater than 'g*.

1312,OCT,0,1.2 2 2 Multiply by 10 (24 bit).

DB2) OCT 2= 0CT+WR1 2 2 Add to OCT.

203,127,COUNT, (DB1)

STOREINI

GO TO OPRTN

DBERR) Q/P(NL. , 'NONNUMERIC CHARACTER IN NUMERIC CONVERSION1)

GO TO OPRTN

OB) IF WR1 GE 1 GO TO DBERR 2 2 If digit not octal.

I24,OCT,OCT,0 2 2 Multiply OCT by 8.

I24,OCT,OCT,0

124,OCT,OCT,0

GO TO DB2

j If not finished, count
: down and go back.
: If finished, store result.

APPENDIX 1 PAGE 175

:: The following instructions convert leading spaces to zeros.

BZ) COUNT := 5 J: Initialise count.

OCT OP2 :: Fetch operand.

BZ1) 165,WREGl,OCT,*76 :s Check that character is

:: not space or zero.

IF WREGl NE O GO TO BZEND

127,0CT,0,*00777777 :: Space to zero.

I67,OCT,O,*2O

125,OCT,0,0 :: Left shift 6 places.

COUNT COUNT - 1 :: Count down.

IF COUNT NE 1 GO TO BZ1 :: If not finished.

BZEND) GO TO BZ5,BZ2,BZ3,BZ/J.,BZ5, VIA COUNT

BZ4) 125,OCT,0,0 :: Circular shift 6 places left.

BZ3) 125,OCT,0,0 :: Circular shift 6 places left.

BZ2) 125,OCT,0,0 :: Circular shift 6 places left.

BZ5) STORE INI

GO TO OPRTN :: End of spaces to zeros.

:: Convert leading zeros to spaces

ZB) COUNT := 5 :: Initialise count.

OCT := 0P2 s: Fetch operand.

ZB1) 165,WREGl,OCT,*57 :: Check next character.

IF WREGl NE O GO TO BZEND :: If not zero or space.

127,OCT,0,*00777777 :: Clear first character,

l67,0CT,0,*0l :: Insert space character.

125,OCT,0,0 :: Shift (circular) 6 places left.

COUNT COUNT-1 :: Count down.

IF COUNT NE 2 GO TO ZB1 :: If not finished.

ZBEND) GO TO BZEND :: Go to shift and store result.

APPENDIX 1 PAGE 175

:: LSIX provides two system subroutines STATE and DUMP for diagnostic
j: purposes. These and the user defined subroutines are entered via
:: a DO operation. The DO operation for user defined routines is
:: described first. SUBP is the subroutine stack pointer.

COOF(SUBP) 2= OBJECTP • • • • Stack current object pointer

PLUS1(SUBP) • — • — NDESCRWD • • • « Stack address of next
• • • # description word.

PLUS2(SUBP) • «•» • — DESCKWD • # • • Stack current description
• • • • word.

PLUS3(SUBP) • — • NO • • • • Stack number of operations
:: remaining.

PLUS4(SUBP) • •— 0 • • • • Stack a null fail return
:: address (temporary).

PLUS5(SUBP) • — LINE • • • • Stack line number.

NDESCKWD BP1 • • • • Pick up transfer address.

IF BP2=0 GO TO DOl 2 2 If no fail return address.

PLUS4(SUBP) • • — BP1 • • • • Stack fail return address.

NDESCKWD := BP2 Correct transfer address.

SUBP SUBP+3 Push-down stack.

SUBL J= SUBL+1 • • • • Increment subroutine level.

GO TO GAMMA • • Transfer to subroutine.

:: The system subroutine STATEPRINT is called by (DO,STATE).

STATE) STATEPRINT

GO TO OPRTN

:: (DO,DUMP) causes an octal dump of the list area preceded by
:: the state of the system.

DUMP) 0/P(NL.(2),'SYSTEM SUBROUTINE DUMP ENTERED*)

STATEPRINT :: Output state of system.

START := STARTLIST

FINISH 5= ENDLIST

STACKPRINT J! Octal output of list area.

0/P(NL.(2),*END OF OCTAL OUTPUT OF LIST AREA*,NL.(2))

GO TO OPRTN

APPENDIX 1 PAGE 175

5: The system has two pushdown stores for saving Field Contents
:: and Field Definitions. These are manipulated by the Save and
j: Restore Field Contents and Field Definition operations.

SFC) COOF(FCP) 2 2 = OPl is Save field contents, OPi.

FCL 2= FCL+1 :: Increase field contents level
:: number.

FCP FCP+ONE :: Pushdown

GO TO OPRTN SJ Return.

RFC) FCP 2= FCP-ONE 2: Pop-up field contents stack.

FCL 2 = FCL-1 :: Decrease level number.

OCT 2= COOF (FCP) :: Retrieve field contents.

ST0REIN1 2: Store result.

GO TO OPRTN

SFD) COOF(FDP) 2= WORD(BPl) 2 2 Save field defn.

PLUSl(FDP) 2= LBIT(BPl)

PLUS2(FDP) 2= RBIT(BPl)

PHJS3(FDP) 2= MASK(BPl)

FDL 2= FDL+1 2 2 Increase level number.

FDP 2= FDP+2 2 2 Pushdown.

GO TO OPRTN

RFD) FDP 2= FDP+2 12 Pop-up field defn. stack.

FDL 2= FDL-1 2 2 Decrease level number.

WORD(BPl) 2= COOF(FDP) 2 2 Restore field defn.

LBIT(BPl) 2= PLUS1(FDP)

RBIT(BPl) 2= PLUS2(FDP)

MASK(BPl) 2= PLUS3(FDP)

GO TO OPRTN J2 Return.

2 2 The only other operations implemented are the storage allocation
2: and freeing operations which are described in detail in §2.3»

APPENDIX 4

Routines for Automatic Garbage Collection in LSIX

r

APPENDIX 1 PAGE 175

Routines for Automatic Garbage Collection in LSIX

The following routines, which are an extension of the garbage

collector due to Schorr and Waite, have been tested on the Atlas

computer as a part of an M.Sc. student's project.

DEFINE R COLLGARB

DO

P4 := BUGBASE :: Pointer to first bug.

BUGMAX P4+I3 :: Pointer to last bug.

SCANBUG) SCANLIST 5! Scan list to which bug

:: points.

I24,P4,0,0.4 :: Address of next bug.

IF P4 LE BUGMAX GO TO SCANBUG

IF FCL=0 GO TO LINK

P4 := FCP

WRl 5= FCL

I63,WRl,0 ,0

P4 := P4-WRI

SCANSTACK) SCANLIST

1 2 4 , P 4 , 0 , 0 . 4

IF P4 LT FCP GO TO SCANSTACK

LINK) LINKFREE

RECOMBINE

RETURN

END

:: Point to bottom of stack.

:: Scan list.

: If not top of stack.

: Link unmarked blocks onto

: free space lists.

: Recombine free mates if

: necessary.

APPENDIX 1 PAGE 175

DEFINE R SCANLIST

DO

PI := 0

P2 := caoF(P4>

IF P2 LT STARTLIST GO TO ENDSCAN ::

IF P2 GE ENDLIST GO TO ENDSCAN ::

165,wsi,P2,*7777777o

IF WSl NE P2 GO TO ENDSCAN 5:

GETMAP

IF WS2 = O GO TO ENDSCAN Z Z

165, FLAG, WRl, 4 : :

IF FLAG NE O GO TO ENDSCAN S :

I65,PFLAG,WRI,2 ::

SETFLAG) WS2 5= WS2fWRl 5 5

WS2 : = WS2+4 : :

STMAP ::

NEXTWORD) IF PFLAG = O GO TO NOBRANCH Z Z

wsi := COOF(P2) ::

IF WSl = 0 GO TO NOBRANCH :!

127,wsi,o,+77777770

IF WSl NE C00F(P2) GO TO NOBRANCH::

GETMAP ::

IF WS2 = O GO TO NOBRANCH : S

I65,FIAG,WRI,4

IF FLAG NE O GO TO NOBRANCH ::

I65,PFLAG,WRI,2 S:

COOF(P2> := PI :S

If not list pointer.

If not list pointer.

If not pointer to word 0.

If not pointer to word 0.

Get 'used' flag

If block already scanned.

Get pointer flag for

word 0 .

Reconstruct map

Set used flag.

Restore map.

If not branch.

Address of next block

If null link.

If not word 0.

Map for next block

If not word 0.

If already scanned.

Get pointer flag for word 0

Plant reverse pointer.

APPENDIX 1

PI := P2

P2 : = w s i

GO TO SETFLAG

NOB RANCH) 124,P2,0,0.4

lb5,wsi,P2,*7777777o

IF WSI NE PA GO TO ODD

GETMAP

IF WS2 NE O GO TO ENDBLOCK

lb5,PFIAG,WRl,2

GO TO SETFLAG

ODD) GETMAP

LB5»PFLAG, WRL,1

GO TO NEXTWORD

ENDBLOCK) IF PI = O GO TO ENDSCAN

121,SIZE,0,0.4

DOUBLE) 124, SIZE,SIZE,0

WSI S= P2- SIZE

GETMAP

IF WS2 = 0 GO TO DOUBLE

P3 S= P2-SIZE

P2 := PI

PI := COOF(PI)

COOF(P2) := P3

GO TO NOBRANCH

ENDSCAN) RETURN

END

PAGE 175

:: Advance pointer.

:: Address of next block.

:: Advance pointer P2 by
:: one word.

S: P2 odd or even?

:: If odd.

:: If end of current block.

Get pointer flag.

:: Get pointer flag.

S: If scan completed.

:: Determine size.

J: Point to start of block.

:: Step back P2.

:; Restore forward link.

APPENDIX 1 PAGE 175

DEFINE R LINKFREE

:: This routine scans the whole of the list storage area from

:: STARTLIST to ENDLIST and collects up any unmarked, i.e. free,

:: space as 2-blocks, 4-blocks and 8-bIocks.

DO

WR1 J= STARTMAP

WR2 2 = STARTLIST

WS1 2= FREEHDR+2

WS2 S= WS1+2

WS3 := WS2+2

COUNT2 := 0

COUNT4 2= 0

COUNT8 2= 0

NEXT) CONST 2= COOF(WRl)

I65 ,WREG1, CONST, *40404040

IF WREG1 NE O GO TO NOT8

C0QF(WS3) 2= WR2

WS3 2= WR2

COUNT8 2= COUNT8+1

121,CONST,0,*03

GO TO PLANT

NOT8) 126,WREG1,0,+40404040

IF WREG1 r O GO TO PLANT

COUNT 2= 1

I65 ,WREG2,WREG1,*4

IF WREG2 = 0 GO TO FLAG2

COUNT 2= COUNT+1

FLAG2) l65,WREG2,WREGl,+004

IF WREG2 = O GO TO FIRST4

2 Initialise map pointer.

2 Initialise list pointer

2 Pointer to 2-block list.

2 Pointer to 4-block list.

2 Pointer to 8-block list.

2 2-block count.

2 4-block count

2 8-block count,

: Get next map word.

2 Get flags.

2 If 8-block not free.

2 Link on free 8-block.

S 2 Count 8-block.

5 2 Map for 8-block.

2 2 Complement flags.

5 2 If no blocks free

:: Check first flag.

2 2 If not free.

it Check second flag.

5 2 If not free.

APPENDIX 1 PAGE 175

COUNT 2= COUNT +2

FIRST4) GO TO FLAG3,FIRST1, FIRST2, FIRST3, VIA COUNT

FIRSTl) COOF(WSl) := WR2 :: Link-on first 2-block.

WSl 5= WR2

COUNT2 2 = COUNT2+1

127,CONST,o, ̂ 7777777

GO TO FLAG3

FIRST2) COOF (WSl) 2= WR2+1

WSl J= WR2+1

COUNT2 5= COUNT2+1

127, CONST, o, *77<>77777

GO TO FIAG3

FIRST3) COOF(WS2) := WR2

WS2 5= WR2

C0UNT4 : = COUNT4+1

127,CONST,0,*oooo7777

167,CONST,O,*02007777

FLAG3) COUNT := 1

165,WREG2 , WREGL, *00004

IF WREG2 = O GO TO FLAG4

COUNT := COUNT+1

FLAG4) I65,WREG2,WREGI,4#O

IF WREG2 = 0 GO TO LAST4

COUNT := COUNT+2

LAST4) GO TO PLANT,LAST1,LAST2,LAST3, VIA COUNT :: Switch.

LAST1) COOF (WSl) 2 = WR2+2 S: Link-on 2-block.

WS2 := WR2+2

COUNT2 COUNT2+1 :: Count 2-block.

127,CONST,0,*77770777 :: Clear pointer flags.

GO TO PLANT

:j Clear pointer flags for
:: 2-block.

:: Link-on second 2-block.

S: Count 2-block.

j: Clear pointer flags.

2 2 Link-on first 4-block.

2 2 Count 4-block.

:: Clear pointer flags,

2: Set size for 4-block.

S 2 Check third flag

2 2 If not free.

2 2 Check fourth flag.

2 2 If not free.

APPENDIX 1 PAGE 175

IAST2) COOF(WSl) WR2+3

WSI 5= WR2+3

COUNT2 := COUNT2+1

127,CONST,o,+77777707

GO TO PIANT

IAST3) COOF(WS2) S= WR2+2

WS2 S= WR2+2

COUNT4 := COUNT4+1

127,const,o,*7777oooo

167»CONST,O,*00000200

PIANT) 127,const,0,*37373737

COOF (WRl) := CONST

WR2 := WR2+4

124, WRl, 0,0.4

IF WRl LT ENDMAP GO TO NEXT

COOF (wsi) := 0

C00F(WS2) := o

COOF(WS3) := 0

WSI := FREEHDR + 6

PLUS3(WS1) i= CCTUNT8

C0UNT8 := COUNT8+COUNT8

COUNT4 := COUNT4+COUNT8

wsi := wsi-2

PLUS3(WSI) := COUNT4

COUNT4 := COUNT4+COUNT4

C0UNT2 := COUNT2+COUNT4

wsi := wsi-2

PLUS3(WS1) C0UNT2

RETURN

END

:: Link on 2-block.

:: Count 2-block.

:; Clear pointer flags.

:: Link on 4-block.

:: count 4-block.

:: Form new map.

j: Clear flags.

:: Plant map

:: Increment list pointer.

:: Increment map pointer.

:: Go back if not finished.

:: Terminate lists.

:: Plant 8-block count.

:: Plant 4-block count.

:: Plant 2-block count.

:: Return, end of LINKFREE

APPENDIX 1 PAGE 175

DEFINE R RECQMBINE

If the maximum size of block set by the program is not greater

than 8 then control is returned immediately. Otherwise, starting

with 8-blocks, taking each list in turn any mates which are free

simultaneously are recombined to form a block of the next larger

size. Advantage is taken of the fact that mates, if free, are

consecutive blocks on the free space lists. The process terminates

when the maximum size is reached or when no further recombination

is possible.

DO

POINTER := FREEHDR+6 S J Point to 8-block list.

P2 POINTER+2 S: Initialise P2.

NEXTLIST) IF COOF (POINTER) r 0 GO TO ENDS: If empty list.

IF PLUS1 (POINTER) GE MAXSIZE GO TO END

: If maximum size reached.

COOF(P2) 2= 0

PI 2= POINTER

POINTER := POINTER+2

COOF(POINTER) 2 = 0

P2 2= POINTER

SIZE 2= PLUSi(Pl)

124,CSIZE,CSIZE,0

124,CSIZE,CSIZE,0

PLUS3(POINTER) 2= 0

2 Terminate list.

: Initialise working
: pointer PI.

2 Point to next list.

2 Initially empty.

2 Initialise working
2 pointer P2.

: Get current size.

2 Convert to address units.

2: Initialise block count.

NEXTBLOCK) IF COOF(Pl) = 0 GO TO NEXTLIST
2 2 If end of current list.

WR1 2= CQOF(Pl)

126,WR1,CSIZE,0

2: Address of next block.

2: Address of mate.

APPENDIX 1 PAGE 175

IF WRl = CQOF(COOF(PI)) GO TO RE COMBINE

:: If mates free.

PI := COOF(PI) :: Step down current list

GO TO NEXTBLOCK

RECOMBINE) PLUS3<POINTER) PLUS3<POINTER)+l

:: Count new block.

WS2 8= PLUS2(POINTER)

WS1 := COOF(PI)

STMAP :: Store new map for 1st half.

WS1 := COOF(COOF(Pl))

WS2 := o

STMAP 5: Store new map for 2nd half.

C00F(P2) := COOF(Pl) :: Link block into next list.

P2 COOF(Pl)

COQF(Pl) := COOF(WSl) j: Detach from current list.

GO TO NEXTBLOCK

END) RETURN :: End of RECOMBINE.

END

In addition to the routines given above, the implementation

of an automatic garbage collector for LSIX also involves modifications

to some of the sets of BCL instructions described in Appendix 3. Any

LSIX instruction involving the storing of pointers must be ammended to

plant pointer flags as required in the maps.

APPENDIX 5

Extensions to the BCL Compiler

APPENDIX 1 PAGE 175

Notes on the implmentation of functions and groups with parameters

in BCL,

(1) The subset of parameters implemented consists only of

parameters of type A which are called by value,

(2) Functions and groups with parameters are assigned type 2 i.e.

they are treated as indefinite groups. Functions without parameters

are definite groups (type 1) unless declared as indefinite,

(3) Name records are redefined as

NAMEREC(?) IS (A DICLINK,A ADDR,A TYPE,8C NAME,A LENGTH,

A ELTREC,A PARLIST)

(4) Formal parameters are declared with the name of the group to

which they belong. For example in

CONS (A X,A Y) IS (...)

X and Y are formal parameters of CONS and are local to this group.

The name records of the formal parameters of a group are stored as a

sublist of the name record of the group and are accessed via the

field PARLIST.

(5) Formal parameters are allocated stack space as if they were

variables of type AX (i.e. declarations which cause no input)

declared as the first elements of the group.

(6) When used in the body of the group, the formal parameters are

automatically offset by the group stack pointer (GROUPP) unlike

other variables which are declared in an indefinite group.

(7) The groups MATCH and LOOKUP have been redefined so that the

current list of formal parameters is searched before the main

dictionary when a name is encountered.

APPENDIX 1 PAGE 175

(8) MATCH is also modified to allow forward references to

functions. If when analysing an expression, an undefined name is

found it is assumed to be that of a function and a forward reference

record is set up for it by the group MATCH.

(9) NAMESUBS and SUBSC (groups which deal with variables in

expressions) are also redefined to allow references to functions

(type 1 or 2).

(10) There is no check that the number of actual parameters used in

a function call is equal to the number of formal parameters in the

function definition. Advantage can be taken of this in that local

variables can be defined as formal parameters for which no actual

values are passed.

(11) In ASSCCJM (the group dealing with assignment commands) the

expression on the right hand side has the general form

<operand> +<operand> I <operand> - <operand> | <operand>

As the contents of the accumulator and modifier are not saved when a

function is evaluated, any second operand in an expression should

not involve a call on a function. This restriction can easily be

removed when more general expressions are implemented in BCL.

(12) The actual parameters may themselves involve further calls on

functions and to any depth.

(13) At a function call or before entry to a group with parameters

the values of the actual parameters are transferred to the run-time

stack where they are found when the group is entered.

(14) The value of a function is returned by the EXIT function the

parameter of which is the operand whose value is to be returned.

The effect is simply to assign to a variable named RESULT the value

to be returned, whence it may be picked up immediately after leaving

the function body. The function EXIT may appear anywhere in the

APPENDIX 1 PAGE 175

Body of the function. If it appears in the middle of a set of

alternatives, the system pointer stack is reset as if the group had

been left in the normal way. The definitions of group and branch

linkage records have been modified to simplify the resetting of the

pointer stack.

The full details of the modifications to the BCL compiler are

of interest only to the reader who is familiar with the

implementation of BCL in itself and are not given here.

APPENDIX 6

Garbage Collection - Output from a BCL Program.

APPENDIX 1 PAGE 175

THE DERIVATIVE OF (3* X + 1)**3~ 6* X

WITH RESPECT TO X IS 6* (2* X + L)**2~ 6

GARBAGE COLLECTION ROUTINE ENTERED

I JEW FREE SPACE LIST

ADDRESS
*20000000
*20000014
•20000030
•200000+4
•200000D0
* 2 0 0 0 0 0 7 4
•20000110
• 2 0 0 0 0 1 2 4
-120000140
•2OOOOI34
•20000170
•20000204
•20000220
•20000234
•20000250
•2OOOO264
•20000300
•2OOOO3I4
•20000330
•2OOOO344
•2OOOO3OO
•20000374
•2OOOO4IO
•2OOOO424
20000440
2OOOO454
30000470
20000504

•20000520

LLINK
00000000
00000000
20000000
00000000
20000030
00000000
20000060
00000000
00000000
2 0 0 0 0 1 2 4
2 0 0 0 0 1 1 0
00000000
20000000
00000000
20000000
20000000
00000000
2 0 0 0 0 0 7 4
20000060
20000000
2 0 0 0 0 0 7 4
00000000
2 0 0 0 0 1 2 4
00000000
2 0 0 0 0 1 2 4
20000520
00000000
00000000
2 0 0 0 0 5 0 4

SYMBOL
00000020
7 0 0 1 0 1 0 1
1 6 0 1 0 1 0 1
oooooolo
3 5 0 1 0 1 0 1
00000030
1 6 1 6 0 1 0 1
00000060
7 0 0 1 0 1 0 1
1 6 0 1 0 1 0 1
3 6 0 1 0 1 0 1
00000010
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
3 5 0 1 0 1 0 1
3 5 0 1 0 1 0 1
oooooolo
3 6 0 1 0 1 0 1
1 6 1 6 0 1 0 1
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
oooooolo
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
3 5 0 1 0 1 0 1
3 6 0 1 0 1 0 1
00000020
00000060
1 6 0 1 0 1 0 1

RLINK
2 0 0 0 0 0 1 4
20000030
2 0 0 0 0 0 2 4
200000(30
2 0 0 0 0 0 7 4
2 0 0 0 0 1 1 0
2 0 0 0 0 1 2 4
20000140
2 0 0 0 0 1 5 4
2 0 0 0 0 1 7 0
20000204
20000220
2 0 0 0 0 2 3 4
20000250
2 0 0 0 0 2 6 4
20000300
2 0 0 0 0 3 1 4
20000330
2 0 0 0 0 3 4 4
20000300
2 0 0 0 0 3 7 4
2 0 0 0 0 4 1 0
2 0 0 0 0 4 2 4
20000040
20 000. [5 4
2 0 0 0 0 4 7 0
2 0 0 0 0 5 0 4
20000520
00000000

THE DERIVATIVE OF 3* (X ••2+ X)+ 2* X • -'-3

WITH RESPECT TO X IS 3* (2* X + 1)+ X ••2

GARBAGE COLLECTION ROUTINE ENTERED

NEW FREE SPACE LIST

ADDRESS
•20000000
•20OOOO14
•20000030
•2OOOOOJ4
•200000(30
• 2 0 0 0 0 0 7 4
• 2 0 0 0 0 1 1 0
• 2 0 0 0 0 1 2 4
*innnn 1 in

LLINK SYMBOL RLINK
20000660 1 6 0 1 0 1 0 1 2OOOOOI4
200006/14 3 5 0 1 0 1 0 1 20000030
00000000 oooooolo
00000000
2 0 0 0 0 5 6 4
20000550
20000030
2 0 0 0 0 5 6 4
00000000

oooooolo
3 6 0 1 0 1 0 1
1 6 1 6 0 1 0 1
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
oooooolo

20000044
20000060
2 0 0 0 0 0 7 4
2 0 0 0 0 1 1 0
2 0 0 0 0 1 2 4
2 0 0 0 0 1 4 0
2 0 0 0 0 1 5 4

APPENDIX 6

• 2 0 0 0 0 1 5 4
• 2 0 0 0 0 1 7 0
• 2 0 0 0 0 2 0 4
•20000220
• 2 0 0 0 0 2 3 4
• 2 0 0 0 0 2 5 0
• 2 0 0 0 0 2 6 4
•20000300 2
• 2 0 0 0 0 3 1 4
•20000330
• 2 0 0 0 0 3 4 4
•200003(30
• 2 0 0 0 0 3 7 4
• 2 0 0 0 0 4 1 0
• 2 0 0 0 0 4 2 4
•20000440
• 2 0 0 0 0 4 5 4
•20000470
• 2 0 0 0 0 5 3 4
• 2 0 0 0 0 5 5 0
• 2 0 0 0 0 5 6 4
•20000600
• 2 0 0 0 0 6 1 4
•20000630
• 2 0 0 0 0 6 4 4
•20000600
• 2 0 0 0 0 6 7 4
• 2 0 0 0 0 7 1 0
• 2 0 0 0 0 7 2 4

2 0 0 0 0 1 2 4
2 0 0 0 0 5 3 4
00000000
2 0 0 0 0 1 7 0
00000000
o o o o o c o o
2 0 0 0 0 7 1 0
30000674

2 0 0 0 0 2 3 4
2 0 0 0 0 7 1 0
20000660
00000000
2 0 0 0 0 4 5 4
2 0 0 0 0 1 7 0
00000000
00000000
20000340
00000000
00000000
00000000
00000000
2 0 0 0 0 5 5 0
00000000
20000600
2 0 0 0 0 5 3 4
00000000

3 5 0 1 0 1 0 1
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
3 5 0 1 0 1 0 1
00000010
oooooolo
3 6 0 1 0 1 0 1
1 6 1 6 0 1 0 1
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
3 5 0 1 0 1 0 1
3 5 0 1 0 1 0 1
00000020
00000060
1 6 0 1 0 1 0 1
00000010
00000030
7 0 0 1 0 1 0 1
00000020
1 6 1 6 0 1 0 1
7 0 0 1 0 1 0 1
3 5 0 1 0 1 0 1
1 6 0 1 0 1 0 1
00000020

00000000 7 0 0 1 0 1 0 1
o o o o o n o o 00000030
2 0 0 0 0 6 7 4 1 6 1 6 0 1 0 1

2 0 0 0 0 1 7 0
20000204
20000220
2 0 0 0 0 2 3 4
20000250
2 0 0 0 0 2 6 4
20000300
2 0 0 0 0 3 1 4
20000330
2 0 0 0 0 3 3 4
20000300
2 0 0 0 0 3 7 4
2 0 0 0 0 4 1 0
2 0 0 0 0 4 2 4
20000440
2 0 0 0 0 4 5 4
20000470
2 0 0 0 0 5 3 4
20000550
2 0 0 0 0 5 6 4
20000600
2 0 0 0 0 6 1 4
20000630
2 0 0 0 0 6 3 4
20000660
2 0 0 0 0 6 7 4
2 0 0 0 0 7 1 0
2 0 0 0 0 7 2 4
00000000

THE DERIVATIVE OF (X + Y) • (X - Y)

WITH RESPECT TO X I S X -j- Y -1- X - Y

THE DERIVATIVE GF (2 * X + l) * * 3 ~ 2 *

GARBAGE COLLECTION ROUTINE ENTERED

NEW FREE SPACE L I S T

ADDRESS
•20000000
• 2 0 0 0 0 0 1 4
•20000030
•2000004{.
•20000000
•20000074
• 2 0 0 0 0 1 1 0
• 2 0 0 0 0 1 2 4
• 2 0 0 0 0 I 4 0
• 2 0 0 0 0 1 5 4
• 2 0 0 0 0 1 7 0
•20000204
•20000SOA

' w' I
•20000520

LLINK
3 0 0 0 0 5 0 4
00000000
00000000
2 0 0 0 0 0 1 4
20000000
0000(X)00
20000074
20000000
00000000
2 0 0 0 0 1 4 0
20000140
30000000
00000000
00000000

SYMBOL
3 5 0 1 0 1 0 1
7 0 0 1 0 1 0 1
7 1 0 1 0 1 0 1
3 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
00000010
3 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
oooooolo
3 5 0 1 0 1 0 1
1 6 0 1 0 1 0 1
3 5 0 1 0 1 0 1
7 0 0 1 0 1 0 1
7 1 0 1 0 1 0 1

EL INK
2 0 0 0 0 0 1 4
20000030
2000004}
20000000
2OOOOO7.}
2 0 0 0 0 1 1 0
2 0 0 0 0 1 2 4
20000140
2 0 0 0 0 1 5 4
2 0 0 0 0 1 7 0
2 0 0 0 0 2 0 4
2 0 0 0 0 5 0 4
20000520
00000000

APPENDIX 1 PAGE 175

GARBAGE COLLECTION ROUTINE ENTERED

NEW FREE SPACE L I S T

ADDRESS LLINK SYMBOL RLINK
• 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 o o o o o o l o 2 0 0 0 0 0 4 1
•30000044. 00000000 o o o o o o l o 2 0 0 0 0 0 6 0
• 2 0 0 0 0 0 6 0 2OOOO424 3 6 0 I O I O I 2 0 0 0 0 0 7 4
•2OOOOO74 2OOOO4IO 1 6 1 6 0 1 0 1 2 0 0 0 0 1 1 0
• 2 0 0 0 0 1 1 0 2 0 0 0 0 0 3 0 1 6 0 1 0 1 0 1 2 0 0 0 0 1 5 4
• 2 0 0 0 0 1 5 4 00000000 1 6 0 1 0 1 0 1 2 0 0 0 0 5 0 4
• 2 0 0 0 0 5 0 4 0 0 0 0 0 0 0 0 o o o o o o l o 0 0 0 0 0 0 0 0

WITH RESPECT TO X I S l 8 * <2* X + 1) ^ 2 - 4 * X

GARBAGE COLLECTION ROUTINE ENTERED

NEW FREE SPACE L I S T

ADDRESS
• 2 0 0 0 0 0 0 0
•2OOOOOI4
•2OOOOO3O
•2OOOOO44.
• 2 0 0 0 0 0 0 0
• 2 0 0 0 0 0 7 4
• 2 0 0 0 0 1 1 0
• 2 0 0 0 0 1 2 4
•2OOOOI4O
• 2 0 0 0 0 1 5 4
• 2 0 0 0 0 1 7 0
•20000204
• 2 0 0 0 0 2 2 0
• 2 0 0 0 0 2 3 4
• 2 0 0 0 0 2 5 0
•2OOOO264
• 2 0 0 0 0 3 0 0
• 2 O O O O 3 I 4
•2OOOO33O
•2000034}.
•2OOOO3DO
•2OOOO374
•2OOOO4IO
•2OOOO424
•3OOOO44O
•2OOOO454
•2000C>470
• 2 0 0 0 0 5 2 0
•20000534
•20000550
•2OOOO564
•20000600
* 2 0 0 0 0 6 1 4
•20000630
•20000624.
*200006(56
• 2 0 0 0 0 6 7 4
• 2 0 0 0 0 7 1 0
•20000+21

LLINK
OOOOOOOO
20000154
20000520
OOOOOOOO
OOOOOOOO

20000060
OOOOOOOO

2 0 0 0 0 4 2 4
2 0 0 0 0 3 7 4
2 0 0 0 0 1 1 0
2 0 0 0 0 0 3 0
2 0 0 0 0 1 5 4
OOOOOOOO
OOOOOOOO
OOOOOOOO
2 0 0 0 0 2 3 4
OOOOOOOO
2 0 0 0 0 2 6 4
OOOOOOOO
2 0 0 0 0 3 1 4
2 0 0 0 0 2 2 0
OOOOOOOO
OOOOOOOO
OOOOOOOO
2 0 0 0 0 4 1 0
20000374.
2 0 0 0 0 3 6 0
OOOOOOOO
OOOOOOOO

2 0 0 0 0 2 3 4
OOOOOOOO

2 0 0 0 0 2 3 4
2 0 0 0 0 2 3 . J
OOOOOOOO
2 0 0 0 0 3 3 0
2 0 0 0 0 3 1 4
2 0 0 0 0 2 3 4
2 0 0 0 0 3 3 0
2 0 0 0 0 2 2 0

SYMBOL
1 6 0 1 0 1 0 1
3 5 0 1 0 1 0 1
1 6 0 1 0 1 0 1
0 0 0 0 0 0 2 0
00000060
1 6 0 1 0 1 0 1
0 0 0 0 0 2 2 0
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
3 5 0 l o 1 0 1
3 6 0 1 0 1 0 1
0 0 0 0 0 0 3 0
0 0 0 0 0 0 2 0
7 0 0 1 0 1 0 1
1 6 0 . 1 0 1 0 1
o o o o o o l o
3 5 0 1 0 1 0 1
00000030
1 6 1 6 0 1 0 1
1 6 0 1 0 1 0 1
0 0 0 0 0 0 2 0
7 0 0 1 0 1 0 1
0 0 0 0 0 0 2 0
1 6 1 6 0 1 0 1
1 6 0 1 0 1 0 1
3 6 0 1 0 1 0 1
00000040
o o o o o o l o
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
3 5 0 1 0 1 0 1
3 5 0 1 0 1 0 1
oooooolo
3 6 0 1 0 . 1 0 1
1 6 1 6 0 1 0 1
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1

RLINK
2 0 0 0 0 0 1 4
2 0 0 0 0 0 3 0
2 0 0 0 0 0 4 4
2 0 0 0 0 0 6 0
2 0 0 0 0 0 7 4
2 0 0 0 0 1 1 0
2 0 0 0 0 1 2 4
2 0 0 0 0 1 4 0
2 0 0 0 0 1 5 4
2 0 0 0 0 1 7 0
20 OOO 20 J. i
2 0 0 0 0 2 2 0
2 0 0 0 0 2 3 4
2 0 0 0 0 2 5 0
2 0 0 0 0 2 6 4
2 0 0 0 0 3 0 0
2 0 0 0 0 3 1 4
2 0 0 0 0 3 3 0
200003,+].
200003(30
2 0 0 0 0 3 7 4
2 0 0 0 0 4 1 0
2 0 0 0 0 4 2 4
2 0 0 0 0 4 4 0
2 0 0 0 0 4 5 4
2 0 0 0 0 4 7 0
2 0 0 0 0 5 2 0
2 0 0 0 0 5 3 4
2 0 0 0 0 5 5 0
2 0 0 0 0 5 6 4
2 0 0 0 0 6 0 0
2 0 0 0 0 6 1 4
2 0 0 0 0 6 3 0
2 0 0 0 0 6 4 4
2 0 0 0 0 6 6 0
2 0 0 0 0 6 7 4
2 0 0 0 0 7 1 0
2 0 0 0 0 7 2 4

OOOOOOOO

APPENDIX 1 PAGE 175

THE DERIVATIVE OF 3* <2* X + 1)**2+ 6* X **3

GARBAGE COLLECTION ROUTINE ENTERED

NEW FREE SPACE LIST

ADDRESS LLINK SYMBOL RLINK
-20000520 00000000 oooooolo 20000534
*20000534 00000000 oooooolo 20000550
* 2 0 0 0 0 5 5 0 2 0 0 0 0 1 7 0 3 6 0 I O I O I 20000600
• 2 0 0 0 0 6 0 0 20000520 1 6 0 1 0 1 0 1 20000644.
*200006,L1 00000000 1 6 0 1 0 1 0 1 00000000 1 I
GARBAGE COLLECTION ROUTINE ENTERED

NEW FREE SPACE LIST
ADDRESS
*20000250
*20000264
*20000300
-2OOOO3I4
*2OOOO33O
*2OOOO344
•2OOOO3DO
-'•20000374
•20000410
•2OOOO424
•2OOOO454
•2OOOO534
•200006I4
•2OOOO63O
•20000660

LLINK
00000000
20000000
00000000
20000000
20000000
00000000
2 0 0 0 0 0 7 4
20000060
20000000
2 0 0 0 0 0 7 4
00000000
00000000
2 0 0 0 0 1 7 0
20000140
20000520

SYMBOL
oooooolo
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
3 5 0 1 0 1 0 1
3 5 0 1 0 1 0 1
oooooolo
3 6 0 1 0 1 0 1
1 6 1 6 0 1 0 1
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1
oooooolo
1 6 0 1 0 1 0 1
1 6 0 1 0 1 0 1

RLINK
2 0 0 0 0 2 6 4
20000300
2 0 0 0 0 3 1 4
20000330
2 0 0 0 0 3 4 4
20000360
2 0 0 0 0 3 7 4
2 0 0 0 0 4 1 0
2 0 0 0 0 4 2 4
2 0 0 0 0 4 5 4
2 0 0 0 0 5 3 4
2 0 0 0 0 6 1 4
20000630
20000660

3 5 0 1 0 1 0 1 00000000

WITH RESPECT TO X IS 12- (2* X + 1)+ lo-: X

END OF PROGRAM

APPENDIX 7

The Definition and Implementation of LSIX in BCL.

(Published in the Computer Journal,

Vol. 12, Number 1, February 1q6q)

Reprinted from The Computer Journal, Vol. 12, No. 1, February 1969

The definition and implementation of Lsix in BCL

By R. J. W. Housden*

This paper describes the implementation on the London University Atlas computer of the Bell
Telephone Laboratories low level linked list language L6. A syntactical definition of L6 is given
in terms of BCL, a general purpose programming language with special emphasis on data structures.
The description of the implementation in BCL includes details of the general field handling routines.

(First received February 1968 and in revised form September 1968)

Lsix is a London version of the Bell Telephone Labora-
tories low-level list processing language L6 (Knowlton,
1966). This paper describes an implementation of Lsix
using BCL, a general purpose programming language
with special emphasis on data structures (Hendry, 1966).
The BCL used is that defined by the prototype compiler
which was available in January, 1967. Both the defini-
tion and the implementation are in BCL; the former is
freely annotated but for those not familiar with BCL a
few words of explanation are given in an Appendix. It
is considered that the ability to define a language so
precisely in this way is one of the interesting features of
this paper.

Lsix instructions are compiled into an intermediate
code which is executed by a low-level interpreter. The
definition is followed by an outline flow diagram of the
interpreter and details of three general field handling
routines to find fields, get fields and store fields.

A complete Lsix program which has been run on the
Atlas computer is given to illustrate the form of the
data to be analysed. For a more detailed description
of the language the reader is referred to Knowlton's
description of L6.

Special features of LSIX
The most important features of Lsix which distinguish

it from other list processors such as IPL, LISP, COMIT
and SNOBOL are the availability of several sizes of
storage blocks and a flexible means of specifying within
them fields containing data or pointers to other blocks.
Data structures are built by appropriating blocks of
various sizes, defining fields (simultaneously in all blocks)
and filling these fields with data and pointers to other
blocks. Available blocks are of lengths 2n machine
words where n is an integer in the range 0-7. The user
may define up to 36 fields in blocks, which have as
names single letters or digits. Thus the D field may be
defined as bits 5 through 17 of the first word of any
block. Any field which is long enough to store an
address may contain a pointer to another block. The
contents of a field are interpreted according to the
context in which they are used.

The Lsix system contains 26 base fields called bugs.
The contents of a bug are referred to by naming the
bug (a single letter). If the bug contains a pointer to a
block, a particular field in that block is referred to by
concatenating the names of the bug and the field. For
example W D refers to the D field of the block to which
W points. A field more remotely positioned from the
bug is referred to by concatenating the names of the

bug, the sequence of pointers and the field. Thus if
bug X points to a block whose B field points to a block
whose A field points to a block whose D field is to be
referenced, the latter is called XBAD.

Instruction format
In general an Lsix instruction consists of an optional

label followed in order by optional tests, optional opera-
tions and an optional transfer of control. An example
given by Knowlton is
L2 IFNONE (XD, E, Y)(XA, E, 0) THEN (XD, E, l) (x , P, XA) L2
which says that

IF N O N E of the following is true:
that the contents of X D equals the
contents of Y or that the contents of
XA equals 0

THEN perform the following operations:
set the contents of X D equal to 1,
make X point where the current
contents of XA point then go to the
instruction labelled L2 (the same
instruction in this case).

OTHERWISE no operations are to be performed and
control goes to the next line of coding.

Other conditions are

IFALL satisfied IF ALL of the elementary
tests are satisfied

IFNALL satisfied IF NOT ALL of the ele-
mentary tests are satisfied

IF A N Y satisfied IF A N Y of the elementary
tests are satisfied.

IF and NOT are synonymous with IFALL and
IFNONE.

The other instruction type is the unconditional instruc-
tion consisting of a sequence of operations to be per-
formed.

A complete list of tests and operations is given in
Tables 1 and 2. Some of these are illustrated by the
following complete program which reads, sorts into
ascending sequence and outputs numbers each ter-
minated by a single space. The sequence of numbers is
terminated by a double space. For simplicity the
numbers are restricted to the range 0-9999.

(+20000000,ss,4,+20000400)
(1 ,dd,0,23)(2,da,0,23)(3,db,0,23)
(0,DZ,0,23)
(DO,INPUT)(DO,ORDER)(DO,OUTPUT)END

* University of London Institute of Computer Science, 44 Gordon Sq., London WC1.

Analysis of tests
TESTS is a series of tests defined in the usual manner. As
each takes space in the object area, and the number is
unknown, when no more tests are found, the address of the
first operation is planted, by TESTSEND, in one of the locations
reserved by INSTRSTRT. Test types and operand types are
recorded in the variables K and J. At the end of each test,
TESTEND plants the values of K and J (note the difference
between TESTSEND and TESTEND). TESTSTRT initialises certain
variables. An argument is defined by ARG as any combina-
tion of characters not including comma and right bracket. The
arguments of tests and operations are separated by commas.
sep is (osp.,y,osp.)
tests is (osp.,test,either tests o r osp.,testsend)
test is ('(' ,teststrt,field,sep

,(either(either 'e',k : = 1
o r 'n',k : = 2
o r 'g ' ,k : = 3
o r ' l ' ,k : = 4)

/either 'o', j : = 2
o r 'h',j : = 3
o r j : = 0)

o r (either 'o',k : = 5
o r 'z ' ,k : = 6)

/ e i t h e r ' d ' , j : = 1
o r 'h', j : = 3
o r j : = 4)

o r 'p\ K : = 7,j : = 0)
Completes first argument and predicate. Continue with

separator and second argument.
,osp. , ' , (either if j = 0 , (either f i e l d

o r d l i t e r a l)
o r if j = 1, d l i t e r a l
o r if j = 2, o l i t e r a l
o r if j = 3, h l i t e r a l
o r if j = 4,(either f ie ld

o r o l i t e r a l))
, ')',testend)

Literal operands and FIELDS are defined below.

Analysis of operations
In general operations have either three or four arguments the
second of which is the mnemonic function code but there are
two special cases (DO, symbol) and (a, A) an abbreviation for
(a, p, aA) with only two arguments. Matching an operation
involves two passes. On the first pass no information is
planted in the object area. A shallow analysis determines the
operation code (K) and the number of arguments (NA). This
first attempt to match sets certain values (particularly NA) and
is then deliberately failed by using the group REJECT. The
results from the first pass are used during the detailed
analysis on a second pass. This technique for making several
passes is commonly used in BCL programming, OPSTART sets
operation type (K) and number of operands (NA) to zero and
allocates a location into which this information is planted by
OPEND when the operation has been matched.
operatns is (osp.,operatn,either operatns o r osp.)
operatn is ('(',opstart,osp.
/either arg,sep,arg,osp.,')',na : = 2, r e j e c t
Shallow analysis for two argument operations completed.
Go on to deep analysis of two argument operations.
o r if na = 2,(either 'do', sep

/either 'state ' ,k : = 41,na : = 0
o r 'dump', k : = 42,na : = 0
o r symbol, k : = 35,na : = 1)

o r (either f ield,sep,reject
or field,sep

,objectp : = objectp-one
,fldnames,k i = 12)),osp.,')'

11

Analysis of two argument operations completed, 'STATE'
and 'DUMP' are system subroutines, SYMBOL is defined below.
Note the special technique for dealing with the operation
(FIELD, FLDNAMES). The object area pointer (OBJECTP) is set
back one word and FIELD matched a second time. In this
way the abbreviated operation (a,A) is expanded to its full
form (a, p, aA) in the object area. Go on to shallow analysis
of three and four argument operations

or arg,sep,opcode,sep,arg,na : = 2,sep,arg,na : = 3
/either if k = 10 ,k : = 36

or if k = 23 ,k : = 36
or if k = 35 ,k : = 36),reject

Shallow analysis completed. Certain ambiguities arising in
the group OPCODE (defined below) are removed once the
number of operands is known and the K values are then
corrected before going on to the deep analysis of three and
four argument operations. In the deep analysis which
follows the operation code is assigned to the variable OPCD,
OCT is a working variable and PLANT plants information in
the object area.

o r if k l e 29,field,sep,opcd,osp.,','
/either if k l e 27

/either if j = 0 , (either f i e l d
o r d l i t e r a l)

o r if j = 1, d l i t e r a l
o r i f j = 2, o l i t e r a l
o r if j = 3, h l i t e r a l
o r if j = 4, (either f ie ld

o r o l i t e r a l)
or if j = 5,field),')'

o r if k g t 27
/either f ie ld o r d l i t e r a l)
/either if na = 3,','

/either if j = 1 , d l i t e r a l
o r if j = 3 , h l i t e r a l
o r if j = 4/either f i e ld

o r o l i t e r a l))
o r nil.),')'

or if k l e 31,if k g t 29
/either f i e ld o r d l i t e r a l)
,',',osp.,opcd,osp.,','
/either if j = 3 ,h l i tera l

o r f i e l d
o r o l i teral) , ') '

o r if k = 32,field,sep,opcd,sep,fldname,oct 1=0,plant
/either if n a = 3,', '/either f i e l d

o r d l i t e r a l)
o r osp.),')'

o r if k = 3 3 / e i t h e r ' s ' o r 'r ' , k : = 43),sep,'fc',sep
,field,') ' ,na : = 1

o r if k = 3 4 / e i t h e r ' s ' o r 'r ' , k : = 44),sep,'fd',sep
, f ldname,oct : = 0,plant,osp.,')',na : = 1

o r if k = 35,symbol,sep,'do',sep,symbol,osp.,')'
o r if k = 36/either f i e l d o r d l i t e r a l)

,sep, 'd ' , f ldname,oct : = 0, p l a n t
,sep,(either f i e ld o r d l i t e r a l)
,sep,(either f i e l d o r dl i teral) , ') '

o r if k = 37/'* ' ,oliteral,sep,opcd,sep,dliteral
,sep,'*',oliteral), ') '

•followed by octal digits is an octal integer in BCL. Its use
here is as an octal address in the Atlas computer.

o r if k = 38,field,sep,opcd,sep
/either f i e l d o r d l i t e r a l)
/either if na=3,sep,field o r nil.),')')

,opend)

L S K

Lsix
An LSIX instruction is terminated by one or more newlines.
INSTREND plants descriptive information (number of tests,
operations, etc.) in locations allocated at the start of the
instruction by INSTRSTRT.

NLS IS (OSP.,NL.,EITHER NLS OR NIL.)

NLS is similar to EOL but no information is planted.
LSIXEND IS (FINISH : = OBJECTP,OBJECTP : = START

,OBJECTPRINT,EXECUTE)

Compilation is completed, the contents of the object area
printed and execution commenced.

The Execution of an Lsix Program
During the analysis and recognition of Lsix source

instructions descriptive information is planted in the
object area. For each source instruction this informa-
tion includes the type of instruction (conditional or
unconditional), the number of tests, the number of
operations and the type of transfer of control (normal
transfer, subroutine return, or no transfer). For each
test and operation is stored the test or operation code
and the addresses of operands. The outline flow
diagram in Fig. 3 describes the operation of the inter-
preter routine.

Each operand, whether a base field (bug), remote field
or a constant (decimal, octal or hollerith literal), is
specified by a sequence of one or more addresses ter-
minated by a zero. For example the remote field WAD
is represented by the sequence of pointers

DEFINE R FINDFIELD

DO

WREG2 : = 0

Pick up the first address.

Advance object pointer.

If next address is
zero go to end.

Get address of block
to which WREGI points.

Get address of next
field definition.

Advance object pointer.

If next address is
zero go to end.

Get contents of the
field specified
by WREG 1 a n d WREG2.

Advance object pointer
to next item of
information.

RETURN

END

WREGL : = COOF(OBJECTP)

OBJECTP : = OBJECTP + ONE

IF COOF(OBJECTP)= 0 GO TO END

WREGL COOF(WREGI)

MORE)WREG2 COOF(OBJECTP)

OBJECTP : = OBJECTP j - ONE

IF COOF(OBJECTP)= 0 GO TO END

GETFIELD

GO TO MORE

END)OBJECTP : = O B J E C T P + T W O

o
!

Bug W Definition
of field A

Definition
of field D

Three general field handling subroutines FINDFIELD,
GETFIELD and STOREFIELD are used during exe-
cution to pick up and store operands. A field is defined
at run time by its word number, left most bit and right
most bit. For example, the operation (2,D6,3,17) defines
field 6 of any block as bits 3 through 17 of word number
2. The execution of such an operation results in the
setting up of a field definition, including a 24-bit mask,
which is used by the field handling subroutines. Because
of the complete generality of field definitions no attempt
is made to use the few special hardware facilities for
handling special cases. The only special case which
might have been worth detecting is the field which spans
the full 24 bits of the word.

Any field in the data structures may be specified by
two pointers—one to the first word of the block con-
taining the field and the other to the definition of the
field concerned. Other operands, basefields and bugs,
are specified directly by the first of these pointers and
the second pointer is set to zero. In the three subroutines
which follow the two pointers are stored in WREGl
and WREG2 respectively.

Subroutine to find a field
On entry OBJECTP points to the first of a sequence of

addresses. On exit WREGI points to the block containing
the field and WREG2 to the definition of the field (con-
ventionally zero for base fields and constants).

Subroutine to get the contents of a field
On entry WREGI points to a block and WREG2 to the

definition of a field in that block (zero for base fields
and constants). On exit WREGI contains the contents
of the field right justified and WREG2 is unchanged.

DEFINE R GETFIELD

DO

IF WREG2 NE 0 GO TO REMOTE If more than one
address then field
is remote.

WREGL COOF(WREGL)
RETURN

REMOTE)WREG1 : - WREGI +
WORD(WREG2)

WREGI : = COOF(WREGI)

WREG3 : — MASK(WREG2)

1 2 7 , WREG 1, WREG3 ,0

SHIFT : = 2 3 —RBIT(WREG2)

IF SHIFT = 0 GO TO END

1 3 4 2 , WREGL,SHIFT,0

END)RETURN

END

Otherwise pick up
contents (basefield or
constant) and return.

Point to word
containing the field.

Pick up word
including the field.

Copy the mask from
the field definition.

Machine order to
mask the field.

Right justify the
field in WREGI

Lsix .21

Fig. 2. Flow diagram for the subroutine ORDER

Table 1

Mnemonic notation used in Table 2 for describing L6 tests and
operations. The notation is that used by Know! ton in the
original description of L6. The ranges of arguments are those
for the current Atlas Lsix.

Field Designators
c 'contents', i.e. designation of a field whose contents are

used in a test or operation: either a bug, A, B, . . ., Z
or a remote field, AO, Al, , ZZ.. . ZZZ (the number
of characters is limited only by the length of a line of
program.

a 'affected field', i.e. designation of a field whose contents
are affected by an operation.

Names
f name of a definable field: 0, 1, , 9, A, B, . . . Z.
s a program symbol (label, name of a program location).

Literals
o an octal number specified directly: 0, 1, , 77777777.
d a decimal number specified directly: 0, 1 , , 224 — 1.
h a general literal: 0, 1, , ZZZZ. All characters (Atlas

inner set) except newline are permissible; comma and
right bracket must be written as (,) and ()) respectively.
Newline must be specified by its octal equivalent. In
the case of output operations Print and Punch the
number of characters in a general literal is restricted
only by the length of a line of program.

Alternatives
cd either c or d as defined above,
co either c or o.

The Atlas Lsix compiler records operand types in the variable
J as follows:
J = 0

J = 1
J = 2
J = 3

either field or
decimal literal
decimal literal
octal literal
general literal

J = 4 either field or
octal literal

J = 5 field.
J = 6 other special cases

such as a field
name (a single letter
or digit).

Table 2
L6 Tests and Operations with the corresponding K-values used
in the BCL implementation. Lower-case mnemonics are
explained in Table 1.

Equality,
K = 1

(c, E, cd)
(c, EO, o)
(c, EH, h)
One-hits
of, K = 5
(c, O, co)
(c, OD, d)
(c, OH, h)

Inequality,
K = 2

(c, N, cd)
(c, NO, o)
(c, NH, h)
Zero-bits
of, K = 6
(c, Z, co)
(c, ZD, d)
(c, ZH, h)

TESTS
Greater than,

K = 3
(c, G, cd)
(c, GO, o)
(c, G H, h)
Pointers
to same
block, K = 7

(cl, P, c2)

Less than,
K = 4

(c, L, cd)
(c, LO, o)
(c, LH, h)

OPERATIONS
Copy field, Add, Subtract, Multiply,

K = 1 K = 2 K = 3 K = 4
(a, E, cd) (a, A, cd) (a, S, cd) (a, M, cd)
(a, EO, o) (a, AO, o) (a, SO, o) (a, MO, o)
(a, EH, h) (a, AH, h) (a, SH, h) (a, MH, h)

Divide, Logical Logical Exclusive
K = 5 Or, K = 6 And, K = 7 Or, K = 8

(a, V, cd) (a, O, co) (a, N, co) (a, X, co)
(a, VO, o) (a, OD, d) (a, ND, d) (a, XD, d)
(a, VH, h) (a, OH, h) (a, NH, h) (a, XH, h)

Complement, Duplicate Interchange Point to
K = 9 block, field contents, same block

(a, C, co) K = 10 K = 11 as, K = 12
(a, CD, d) (a, DP, c) (a, IC, a2) (a, P, c)
(a, CH, h)

Locate one Locate one Locate zero Locate zero
bits from bits from bits from bits from
left, K = 13 right, K = 14 left, K = 15 right, K = 1
(a, LO, c) (a, RO, c) (a, LZ, c) (a, RZ, c)

Count one
bits, K = 17
(a, OS, c)

Binary to
Decimal

K = 21
(a, BD, c)

Free block,
K = 26

(a, FR, 0)
(a, FR, c)

Print,
K = 30

(cd, PR, co)
(cd, PRH, h)

Save field
contents,

K = 33
(S, FC, c)

Set up
storage,

K = 37
(si, SS, d, s2)

Restore
field

contents,
K = 43

(R, FC, c)

Count zero
bits, K = 18
(a, ZS, c)

Binary to
Octal

K = 22
(a, BO, c)

Input,
K = 27

(a, IN, cd)

Punch,
K = 31

(cd, PU, co)
(cd, PUH, h)

Save field
definition,

K = 34
(S, FD, f)

Get block,
K - 38

(a, GT, cd)
(a, GT,cd,a2)

Restore
field
definition,

K = 44
(R, FD. f)

Blanks to
zero, K = 19
(a, BZ, c)

Decimal to
Binary

K = 23
(a, DB, c)

Shift Left,
K = 28

(a, L, cd)
(a, L, cd, co)
(a, LD, cd, d)
(a, LH, cd, h)

Print List
K = 32

(c, PL, f)
(c, PL, f, cd)

Do
subroutine

K = 35
(DO, s)
(s2, DO, s)

(DO, State),

K = 4 1

16

Zeros to
blanks, K 20
(a, ZB, c)

Octal to
Binary

K = 24
(a, OB, c)

Shift Right,
K = 29

(a, R, cd)
(a, R, cd, co)
(a, RD, cd, d)
(a, RH, cd, h)

Define
field,

K = 36
(cd, Df, cd, cd)

(DO, Dump),

K = 42

Not used
K = 25,
K = 39,
K = 40,

Lsix 23

Appendix A note on BCL and the analysis of Lsix instructions
BCL is a general purpose programming language with

special emphasis on data structures. Consider the
sequence
FIELD IS (OSP., (EITHER'T. ' , TIMEFIELD

OR BUG, (EITHER FLDNAMES OR NIL.)
OR INTEGER , ' . ' , IF INTEGER LE 128, READFIELD)
,OSP., OCT 0 , PLANT)

which occurs in the main text of this report. The first
two words indicate that this is a definition of the 'name'
FIELD. That the rest of it is a parenthesised structure
with commas indicates that FIELD denotes a structure of
the type known as a 'group'. The commas between the
'objects' denote juxtaposition, and for alternatives the
notation EITHER. . . . OR. . . . is used. The objects within
a group may be literals or names. Character literals
are enclosed with primes, numeric literals are obvious,
also literal commands such as x : = z, and literal groups
(in parentheses). Names, which must of course be
defined somewhere, but can be defined passim, may be
names of variables, routines or groups. Group defini-
tions may be recursive, i.e. the name of a group may
appear in its own list of objects.

Suppose we encounter the object 'FIELD' when in the
course of reading in, and the next characters in the input
stream are TA4, a remote field. These characters are
matched with objects in the group FIELD. The
first object, OSP., is a built in group which recognises
and skips over any number (including zero) of spaces.
Next we have the first of three alternatives. The next
two characters in the input stream are compared with
the literal 'T.'. T is matched but period is not so this
match fails and the second alternative is tried. The
group BUG recognises T as the name of a bug or base-

References

field and plants its address in the object area. The
second object in this branch is itself a pair of alternatives,
(EITHER FLDNAMES OR NIL .), w h i c h m a t c h e s a n y n u m b e r
of field names and computes and plants the addresses of
the corresponding field definitions. In this example,
field names A and 4 are recognised and the corresponding
addresses planted. Finally, after the successful matching
of the second alternative, OSP. reads over any spaces,
the variable OCT is assigned the value zero and the group
PLANT plants the value of OCT in the object area. Thus
as a side effect of the recognition of the remote field TA4
the following sequence of pointers is planted in the object
area.

f f j-
Bug T Definition Definition zero

of field A of field 4 terminator

A second example is the special read-only field 64.
(an integral power of two terminated by a period). As
the first character is a digit, attempts to match'T.' and
BUG fail and the third alternative is tried. The object
INTEGER is an integer variable to which the integer 64
is assigned. Then the period is matched and if the con-
dition INTEGER LE 128 is satisfied the routine READFIELD
tests that the input integer is an integral power of two
and computes and plants the address of the field '64.'.

When BCL is used as a compiler compiler, commands
written as objects in a group may generate and plant
object coding as soon as source language instructions
are matched. Alternatively the user may, if he so
wishes, construct analysis records.

HENDRY, D . F. (1966). A Provisional Manual for the BCL Language, University of London Institute of Computer Science
(Internal report).

KNOWLTON, K. C. (1965). A Fast Storage Allocator, Communications Assoc. Comp. Mach., Vol. 8, pp. 623-625.
KNOWLTON, K. C. (1966). A Programmer's Description of L6, Communications Assoc. Comp. Mach., Vol. 9, pp. 616-625.

U N W I N BROTHERS LIMITED, W O K I N G A N D L O N D O N

