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ABSTRACT 

This thesis is divided into three sections. The 

first deals with Ultra Violet behaviour in certain Lagrangian 

formulations of massive spin-one theories. A detailed 

analysis of the so called "Unitary Gauge" formulation is 

performed. The non analytic behaviour is explicitly cal-

culated and used to derive a consistent renormalization 

scheme, from which finite scattering-matrix elements are 

obtained. Comparison is made with the "Renormalizable 

Gauge" which is formally related by a point transformation 

of the fields and a suitable limiting process. The conditions 

under which the two theories may be considered equivalent is 

carefully examined. The second section is concerned with 

on-shell behaviour of non-abelian gauge theories and the 

infra-red problems there encountered. The physical inter-

pretation of these divergences is investigated and comparison 

is drawn between the similarities and differences in these 

theories and that of Quantum Electrodynamics. The third 

section is devoted to the dynamics of non-abelian gauge 

theories; in particular to the possibility of dynamical 

generation of mass. These investigations* fall naturally 

into two parts: stability considerations and approximation 

schemes. Stability of the theory is considered using 

functional techniques. The "effective potential" for a 

compo s ite field is constructed and used to determine the 

conditions under which dynamical breakdown may occur. The 

difficulties to be encountered in any approximation scheme 

are outlined and discussed. Calculations are performed with 

one such scheme. 
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SECTION ONE 

The Renorma1izabi1ity of the U-Gauge 

} 



THE CANONICAL QUANTIZATION 

The starting point for Canonical Quantization is the 

Lagrangian density, 

if - i b ^ m ^ z a b ^ b j ) 

( i ) 

The Euler-Lagrange equations for this system are 

Bp* (2) 

Given a Lorentz frame one can perform the decomposition 

B y - 3 j 8 i - a i B j o ( 5 ) 

Boj * Bo - 3 

-a^Boj 2 (6) 

^Soj a*Bij ) 

Since no time derivatives of B q appear, it is evident that 

this component is not a true dynamical variable. 

The conjugate momenta are defined by 
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itj- vX/dO'B '*)' e©j (8) 

t t * - v k / d c d f y ) ( 9 ) 

Quantization is implemented by the equal time commutation 

relations. 

c b v s ^ , i ^ - j p 

[ B k f c . t ) , - * 0 

1 J (10) 

C ^ C * ^ , ^ C y ^ L • 0 

T t + c ^ O ] . - 0 

The field Equations (5), (6), and (7) may be written entirely 

in terms of the canonical variables 

(id 

(12) 

(13) 



B o + ( 1 5 ) 

The Hamiltonian density is obtained from the expression 

ft +Tc*a6<j> ( 1 6 ) 

by rewriting the Lagrangian density as 

% • -infK-UziSi-WiXW-d'W) 

4 £ wt* B3B* (1+ * fa Itf Xa^O 

and using (9) and (12) (omitting a spatial divergence) 

ft • - £ T t i TCJ + i s L a 1 b») + i w c * 

-tiwwti + i ^ W + ( 1 8 ) 
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That this Hami1tonian density is positive can be easily seen 

when written in usual 3-vector notation. 

(19) 

aside from the <J>3 term, this is manifestly positive definite. 

The Hamiltonian density is readily decomposable into "free" 

and "interaction" pieces 

H * + + U t <20> 

To facilitate transition to the interaction picture it is 

convenient to analyse the "free" pieces first. 

FREE SCALAR FIELD 

The Hamiltonian density, 

can be derived from the Lagrangian 

The theory of such a system is well known. Of particular 

(21) 

(22) 
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relevence is the value of the time ordered two point function, 

<olT [4>M<t«a]lo> - iM*;/0 

( 2 3 ) 

FREE VECTOR FIELD 

The theory of the free massive vector field is some-

what more involved, and will be treated here in a little 

more detail. A convenient starting point is Lagrangian 

density for the "Proca" field. 

X - i B^B^-i B ^ & v ^ 4
 C24) 

The equations of motion for this system are, 

* v ^ b , ( 2 5 ) 

From which follows, for the case of non-vanishing mass, 

<
2 6

> 

c a + v n o b / A - o 

Taking the canonical pair as, 

b j ; t l j = = 
(28) 
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leads to the set of equations 

T t j = a i ( - 4 a t e T t t e ) - a 0 3 3 <"> 

B i j = 3 j B i - 3 i B j (3°) 

(31) 

(32) 

(33) 

B e = 

Rewriting (29) in the form 

allow the non-vanishing commutation relation, 

c b v u l t t / i j . t ) ! - i ^ v s - l p 

to be written in the more convenient form, 

[ b h x . o , +
 ( 3 5 ) 

Equation (27) is satisfied by 

s - w [aa(te)eite'x + au(te)eileoc] 
r j r r ' (36) 

(34) 
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or inversely 

c u c a - i j d 3 * t l k ' x j b p ( l , t ) (37) 

(38) 

where B^(x) is hermitian by construction. Equations (33) 

and (37) together with, 

[ a . B i Q s r t ) , ao^/jj .-t!]. - o 

imply the relations, 

E a i f b ^ O j C f e U ( 3 9 ) 

[ a ; c t e \ t k ) ] _ » ( 8 r te$) s^fe-is) 

Using the orthogonality and completeness of the Fourier 

expansion (36), equation (26) takes the form, 

n / u\ = - k 1 a : Ctel 
0- oCfe) - 1 ( 4 0 ) 

so that (39) may be extended to 

[ a ^ c f e l a v(te'vl_ - 0 

Knowledge of the commutator enables evaluation of the vacuum 

expectation value 

» 
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< o l B ^ W B u M lo> j f ^ f ^ . ' e <0lCa/k)q>) ]|<)> 

- ile-x 
e 

2.03k 

(42) 

Conjugation gives, 

<o|Bv(oVB,M|o>= + i ( 9 p v + (43) 

Hence the time ordered "propagator" follows at once from 

(42) and (43). 

•+!©(- *>) ( V + <") 

This expression may be simplified by the manipulation of 

contour integrals in momentum space. Corresponding results 

may also be obtained in coordinate space by first smearing 

(44) with a suitably smooth function and then using the 

properties of the "Schwinger" invariant function (appendix) , 

A 6 0 = Ac+\x) + A W M (45) 
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With smearing understood, the result can be stated as 

< o l T [ l o K ^ J ^ ) A F 6 Q 

( 4 6 ) 

= ©Cx°) A ^ 6 0 - <9(-x°)Aw60 

INTERACTION PICTURE 

Transition may now be made to an intermediate repre-

sentation in which the field operators develop in time 

according to the free field Hami1tonians. The effective 

interaction Hamiltonian density is, in this picture 

- - * * b ^ k h t H 

4 A |UL*-f 4 > 3 + 
( 4 7 ) 

Eliminating the conjugate momenta in favour of the time 

component of the vector field (31) gives a non-covariant 

express ion 

4 (48) 

It is precisely these non-covariant terms in (46) and (48) 

which are responsible for the appearance of an additional 

interaction term, playing a rather important role in the 

matter of renorma1izabi1ity. The following technique was 
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i) first devised by T.D. Lee and C.N. Yang. ' In the conversion 
of the time ordered products, occurring in the Scattering 
operator, 

into normal ordered products, the elementary pairing (46) 
f 

occurs repeatedly. It is possible however to define a co-
variant pairing, 

<ol ( S ^ M B v f i ^ l o ) - - i Cs^ + ® $ v ) A f go (50) 

such that the additional non covariant term in (46) can be 
regarded as an extra contribution to the interaction Hamil-
tonian. Examination of (48) indicates that contractions 
over vector fields can only amount topologically, to chains 
without branches, or simple loops. Furthermore, the non 
covariant piece of (46) can only occur in contractions 
between vertices of the second type appearing in (48). In 
summary, one must add an infinite set of new interaction 
vertices to the Hamiltonian. 

00 " . I Cti O (51) 
- i M - E i C + C l 

I 
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ZN 
(52) 

where 
< q m = r 

(53) 

© « = [ ( l + ^ w ) " 1 - ! ] 

S o W B c C j j l = 

Substitution of (53) into (52) leads to a simplification. 

^ « HVHirt) Jdx^fcYBcW ©"<50 

(54) 

(55) 

l b " 1 -

Finally (54) and (51) lead after formal summation, to 

(56) 

so that the modification to the Hamiltonian density gives 

u e/p» -i m ^ l C h + i m w + * * v " 

+ (57) 
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which aside from the last term is manifestly covariant. 

In conclusion, the Canonical Quantization of the 

System (1) leads naturally to an interaction picture, in 

which the propagation of free scalar and vector particles 

are describable by the covariant Green's functions (23) and 

(50) respectively. In addition, their effective interactions 

are conveniently summarized by the Hamiltonian density (57). 

It is important to realise, however, that all parameters so 

far discussed are "bare" ones not physical ones. - For this 

reason, this is not the most convenient interaction picture 

in which to do perturbation theory. As will be shown, 

however, the necessary modifications are minimal. 
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RADIATIVE CORRECTIONS 

Having established the form of the effective Hamiltonian 

in the preceding section, we turn now to the perturbative 

evaluation of the scattering matrix. "Feynman Rules" for 

the system may be written down at once from (23), (50) and 

(57). To establish a scheme whereby the parameters occurring 

in the theory are physical observables, it is first necessary 

to perform a rescaling of (23), (50) and (57). The result 

of this is to reproduce equations (23), (50) and (57) where 

now the parameters and field operators are the renormalized 

ones. In addition there will be the well known counterterms <> 

In this section we shall not be concerned with the explicit 

form of the counterterms; - it is sufficient to know only 

that they exist. Our attention will be centered upon the 

non renormalizable divergences, with which this theory is 

plagued. Postponing explicit form of the rescaling till 

later the Feynman Rules for system (1) may be expressed 

graphically as, 

(58) 
IV 3 - t ( 3pv - fe^fevm7) 

§ - - - - — • 

* * i e » t 8Pv 
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s X 
X 

X / 

x 7 

•x ; 

= - Zifxl 

= J l i e l V ' ( « T t ^ s i c a l 

= 

''I \ (u-tec^) 

+ All C c r u A i t e r t e m (?rapfk$, 

The unusual feature of this theory stems from the 

large momentum behaviour of the vector propagator (58). 

In conventional formulations, such a behaviour would almost 

certainly lead to a non-renormalizable theory. In the 

present case the contrived relations between the various 

interaction vertices result in a subtle cancellation between 

the more divergent pieces of the radiative corrections. 

Although at the present time there exists no conclusive 

proof, there are strong indications that the renormalized 

S-matrix elements are finite to every order of perturbation 

theory. In the following section the divergent pieces of 

all the vertex functions in the one loop approximation, will 

be explicitly evaluated. Armed with this information the 

conditions under which the cancellation of the non renormaliz 

able divergences may occur, can readily be established. 

• 
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This will in turn place constraints on the allowable forms 

of subtraction to be used in the full renormalization 

programme. 

CALCULATION OF DIVERGENCES 

The worst divergences come from loops of vector 

particles. It is therefore advantageous, in the one loop 

approximation, to consider the Green's functions correspond-

ing to the propagation of scalar particles only. We 

commence by calculating the divergent pieces of the proper 

(one-particle irreducible) vertex functions. Since the 

system (58) possesses no derivative coupling interactions, 

attention may be focussed on the propagators alone. Consider 

a Feynman integral whose intermediate state is represented 

by a closed loop of N-vector propagators. The vertices, 

which may be of the vector-vector-scalar or vector-vector-

scalar-scalar type, are labelled in the natural order 
t h 

(1, 2, .., N). The i Vertex is regarded as a source of 

momentum P^. The propagator contribution is 

« "TV-[AdhVAOeJ — ACH*)] (59) 

where the trace of two tensors is defined in the obvious way, 

Tv-TA-B] - ^ ( A - B V 4 * 

It is clear from the form of the integrand (59) and the 

symmetry property of the trace, that $ must be invariant 

(60) 
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under any cyclic interchange of its variables, corresponding 

to rotations and reflections of the original loop. The 

values of the 'source' momenta are arbitrary, subject only 

to momentum conservation. 

It is convenient to decompose the vector propagator 

into transverse and londitudinal parts. 

A^ClA- r + fa ^ 

Where the momentum space projection operators have been 

introduced 

"TjwCtA = Q ^ - k u k v / k . 1 

DiK™) " 

(61) 

(62) 

Substituting (61) into (59) and expanding gives, 

§ = (c7k,Tr$&r(k,)&r(kl)...AT(K) + 2 AT(fe,V-AXfeiV-AXU 
c leci2..ni 

( 6 3 ) 

X 3 Af-CfetV.. A Y k i Y . A X U + A L ( le , )A L ( fe 2 \ . . .A t ( iev )? 
iecn..N) * 
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As such this integral is undefined. A sensible regulator 

scheme is required. At the level of approximation to 

which we are working it is convenient to use the recently 
. a) 

devised technique of dimensional regularization . This 

entails an analytic continuation in the dimension of space 

time * co * . To this end we define a new quantity 

( 6 4 ) 

The measure of integration is taken initially as the usual 

measure on for positive integer go. (i.e. after Wick 

rotation). The trace is likewise defined over this space. 

The assumption on which the method relies is that there 

exists a region of to for which the integral is well defined, 

all other values being exhibited by analytic continuation. 

In the limit of large momenta, the transverse and 

londitudinal parts of the vector propagator have the power 

law behaviour 

A T ( k ) - fa A L ( k ) ~ 1 (65) 

Simple power counting applied to (63) indicates that only 

the last three terms are potentially divergent. The dimen-

sionally regulated expression contains an expression propor-

tional to 

$ djxCk,(S) (66) 
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It is not entirely transparent as to the meaning to 

be attributed to this expression since this expression is 

nowhere analytic. Some authors have claimed that one can 

consistently set this to zero. However, as will be shown, 

such a procedure is unnecessary and indeed the claim can 

be made that regarding (66) as zero is rather "dishonest" 

owing to the exceptional properties of the number. In the 

following (66) will be denoted by <5co(o) where for integer 

values of 1 go f this singular object is interpreted to be the 

Dirac delta function with vanishing argument. Separating 

out this piece, the last three terms of (64) give, 

S D(J(LE,A))TV"[AL(K,)..ATFE). 

AT(FEJY- $DFI<FE,(O)TR[A/FEJ..ArCki)...AL0e»)] 
(67) 

+ J d ^ ) ["TV- [A'-CleX.. A L ^ Y | - f a " ! + 

As such co) is a well defined quantity provided 

one combines the integrands in the third term of (67) before 

performing the integration. By expanding ij; (P^ P2*..PN; co) 

in a Laurent series about the point oo = 4 the divergences can 

be exhibited as a simple pole at co = 4 . Consequently, the 

net divergence structure of the original integral can be 

written as 

35to « + ( 6 8 ) 
C2.-CO/2) 

• 
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The first of the three possible terms contributing to Res+>, 

although potentially logarithmically divergent, is in fact 

finite. This can be seen from the fact that a contracted 

pair 

( 6 9 ) 

is one power lower in the loop momenta than the uncontracted 

pair; a simple consequence of the transverse and londitu-

dinal natures of the propagators. By the same argument, 

the second term in (67) is only logarithmically divergent 

(for to = 4) . 

To evaluate the pole term in this piece, the origin 

in momentum space is first shifted so that the transverse 

factor contains no dependence on source momenta. Expanding 

out the numerators and denominators, and keeping only the 

leading terms in powers of loop momenta gives 

( i r 2 $du(te,co) 1 / ( ^ 3 p 1 2 M * Y K m ( 7 0 ) 

+ terms finite as co->4 

Performing the 
integration, and picking out the divergent 

piece in accordance with (68) gives the pole term, 

3 C D yt ) _ J _ - - i O i o d N ) ( 7 1 ) 
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The divergent piece of the third term in (67) 

requires a little more effort. Writing out the integrand 

in detail gives 

/ X \W ? te'(fe-vn) - • Cte+M-'+Pa-^fe+fi+.+pJ _ a f 
u j I ^ C f e ^ y . o f t + v " + p N - I f 

(72) 

where = fe. + P, + V *' + ^ 

Expanding the product (72) and applying simple power counting 

arguments shows that only the first four terms contain 

divergences when integrated. 

« q s «<? i ' 

- £ ( a ^ A C P ^ C P ^ ^ 
"</*<* q * a / q y « 

Q j - Q y 

(73) 

Straight forward integration followed by Laurent expansion 

in oj, leads to the pole term. 
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(37) 

where ' ~ 

rf./s.ys e w ? 

For future convenience (74) will be denoted by, 

THE VERTEX FUNCTIONS 

Having evaluated the basic loop integral it remains 

only to sum over all possible diagrams corresponding to an 

N-leg vertex function. In the one loop approximation, 

none of the vertex functions will possess external legs 

corresponding to the vector particles, these occurring in 

the intermediate state only. It turns out to be convenient 

to add the contributions to the various pole terms which 
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are of a given degree in the external momenta. 

(a) Momen turn Independent Divergences 
The momentum independent divergences correspond to 

the quartic divergences in (59). Consider all 
graphs which possess a loop of vector particles. Consider, 
first, those graphs which have "a" vertices of the <J>B̂ 2 

type and "b" vertices of the <J)2B̂ 2 type. Such graphs 
will possess a loop consisting of a+b vector propagators, 
and so each will contribute a term 

The following factors must be included 
(i) Propagators and Vertices: -

( t f ^ c z i e y ^ i e 1 ) 1 0 

(ii) Vertex arrangements: - i - — A j 
* a ! b! 

(iii) External legs: -
C i t Nl 

Hence each graph will contribute an overall factor of 

lol 

The 
net contribution from all possible graphs with 'N1 

external legs is obtained by summing over (77) for non-

(77) 
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negative 'a' and 'b', subject to 

namely 
k N! & Tn 

( 3 7 ) 

( 7 9 ) 

Where a convenient function has been introduced 

t n = h c - i ^ v c ^ r t j 
a | b j 

There is one other graph which contributes to this class 
of divergences. This is the last graph in (58), and has 
the value 

( - 0 N + < w - o i 
* (80) 

It is shown in the appendix that "3*N may be evaluated 
explicitly, 

The net coefficient of the 6 (o) term in an N-point vertex 
k 

function is, using (79), (80) and (81), precisely zero. 
This result was first obtained by K. Nishijima and T. Watanabe 
(b) Divergences, Quadratic in External Momenta 

The typical contribution of this type is from (71) 
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The form of this expression allows a simple method of 
summation. Note that from the set of all possible scalar 
products of the form ( P^ .P j ) , only those which correspond 
to adjacent vertices appear in (82). Although this is 
clearly exhibited by the choice of labelling being used 
it is in fact a characteristic of the loop itself. From 
this it follows that the only graphs which contribute a 
divergent piece proportional to (P^.Pj), are those which 
have the momenta P^ and Pj flowing through adjacent vertices. 
Consequently, to obtain the net coefficient of any (P^.Pj) 
term in :he vertex function, one has only to sum over 
contributions from graphs which satisfy this condition. 
This is easily done. All the relevant graphs may be divided 
into four classes corresponding to the vertex structure 
of the lines carrying the momenta P^ and Pj. 

Figure 1 

Initially fN' may be taken as being greater or equal to five. 
Type (a) 

Consider all diagrams of the type (a,b) which have 
'a* vertices of the ^B^2 type, and 'b' vertices of the 
<|>2B 2 type, within the shaded circle. Summing over all 
graphs of this type generates the factors; 
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(i) Vertices:-

(ii) Vertex arrangements:- number of distinct ways of 

arranging the (a+b) vertices in a line = £Q-H*1o) • 
a I bl 

(iii) Propagators:- Each graph corresponds to a loop with 

(a+b+2) vector propagators. Contained in the 

quadratic monomials associated with each loop there 

is one term proportional to (P^.P^). Only this 

piece is taken; 

( p j . p , ) . 4 

+Cu--n)2Cv^)a+b'2 C z-coiz) 

(iv) External legs:- There are (N-2) legs unspecified. 

External momenta may be distributed among them in 

(N-2)! ways. This, however, amounts to an over 

counting due to the symmetry in the scalar legs of 

the (b2B 2 vertices. The correct factor is; 
y 

(n-AJ 
2 b 

Combining these factors and summing over all allowed values 

of 1 a' and 1b * gives 

(29. C N-2J IN-A (£)N C M ! 
Cb-TOr U'CJ(2S> (83) 

where IXT is defined as N 

i 
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I N = 2 2 H ) a + b 

Cc+3b=A/ CC I b | 

a . b ^ o (84) 

The remaining three classes are calculated in exactly the 
same way. The additional momenta flowing through the 
vertices i and j cause no problems, indeed for type (b) 
the momentum factor is 

f v ( v s j ) = <85) 

Where q̂  is any of the (N-2) other momenta. Clearly from 
(85) one still picks up a factor (P^.Pj) with the same 
weight as before. 

The results, including (83) are simply, 

Type (a): 
ft-Tlr C 2 - W / 2 ) 

Type (b): Vĵ  T ( ( P-
^ C 2.-CJ/Z) 

Type (c) = ^ ^ , 1 (g f* 
M r C 2 - C J / & ) 

Type (d): 
(u-n.) v (,z-(dtz) 
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Hence the net contribution is just the sum of these 

11 . C N - 2 ^ ! G K F 1 + I«J| 
^ Cz-utz} 

(87) 

The value of may be given explicitly. As shown in the 
appendix it is, 

I M « CrOM (i + M) 
(88) 

This implies that (87) vanishes identically. Consequently, 
since i and j have been chosen arbitrary throughout, the 
entire contribution to the vertex function from this type 
of divergent term must also vanish identically. Thus we 
arrive at the conclusion that (at the one loop level) the 
vertex functions with five or more external scalar legs 
possess no divergent terms which are quadratic monomials in 
the external momenta. 

Turning to the vertex functions with less than five 
legs four new features appear. 
(a) Loops with only two propagators give the (P^.Pj) factor 

a weight two. This being easily seen from (71) with 
N = 2 . 

frfwcv 
(89) 

(b) The four sets into which the diagrams have been divided, 
may not contain any elements when N is less than five. 
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(c) New divergences arise from graphs containing scalar 
particles in intermediate states. 

(d) The counterterm vertices must be included at this level. 
In practice effect (a) can be ignored since one must 

include an extra factor of \ for loops containing only two 
propagators. This result being a direct consequence of 
Wick's theorem. (c) and (d) will be taken as compensating 
for each other. It is not entirely obvious, however, that 
these extra divergences can be consistently absorbed by 
renormalization counterterms, since not all the counterterms 
can be chosen independently. This will be investigated in 
more detail later. Effect (b) is dealt with by treating 
each case separately. 
N = 4 : Each of the four classes of diagram contain at least 

one member, so result (87) is valid here also. 
N = 3 : There are no diagrams of the type (d) (see Fig. 1) . 

However, substituting N=3 into (86) yields a factor 
which although meaningless in equation (84) is 

meaningful in expression (88), and fortunately has 
value zero. Hence the result once again follows 
here . 

N=2 : In this case the results differ since there are only 
two graphs contributing with a vector loop and two 
with a scalar loop. Nevertheless, the divergences 
produced which are quadratic in the external momentum, 
are absorbed by wave function renormalization, so 
in this case also the result holds. 
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To summarise then:- None of the renormalized vertex 
functions (in the one loop approximation) possess divergent 
terms which are quadratic monomials in the external momenta. 
A result which holds both on or off mass-shell. It is 
interesting to note that in diagramatic language, this 
implies only loops consisting solely of "londitudinal 
propagators" can contribute to the overall divergence 
structure of vertex functions at this order. This peculiar 
result will be analysed further in a later section. 
(c) Divergences, Quartic in External Momenta 

The method used in the preceding section involved 
all but two of the external lines losing their identity; 
thus resulting in mere combinatorics. Examination of 
equation (74) indicates that this method will not work in 
such a straightforward way. A new approach is needed. 
This is furnished by a study of the most general form the 
divergent term may have while still satisfying the conditions 
of Bose statistics (invariance under particle interchange), 
and momentum conservation. Clearly the result must be a 
monomial of degree four. There are seven basic objects to 
cons ider . 

A n = S a*- a! 
N 

c v -

Nf 

N 

B N = X : a ' - a b 
N 

D N » C a b » a b , 
N 

f N
 s H a b - a d 

N 
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- h a b « c d 
HI 

a b « c d = C P a - ^ X V ^ 

In (90) distinct letters stand for distinct numbers in the 
summations. All letters take values running from (1,2..,N). 
The point to notice is that these seven basic forms are 
invariant under the full permutation group of order 'N*. 
Momentum conservation, however, implies that B,E,F and G 
can always be written in terms of A,C and D. For example, 

b j = s a l - a b 
N 

w ' N 

= -Hod-ci2 -~a„ 
N 

Where momentum conservation has been used in the form 

Vol = o 
M 

So the general form of the vertex function must be expressible 
in the form, 

uTfN\v<?2y..,V) = h ^ (9 3) 

In practical calculations, however, it is convenient to re-
express (93) in terms of the (N-l) independent momenta. 
This saves having to symmetrise all the results in order to 

(91) 

(92) 
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recover the form (93). Substituting for PN via (92) 
gives the reduction 

C"* An-, + 23*-, + 3C„-i + 2E»-i (so 

D N ^ AN-, 4 2-Bn-I + 3 T ) n - , 

It is worth noting that some of the seven invariants (9)) 
can only be constructed for a sufficiently large TN'. It 
can be checked that (94) remains true for all N provided 
one assigns the value zero to those with insufficient 
N-values. Substituting (94) into (93) gives the equivalent 
result, 

^ c u ^ ^ x - ^ - v " " - ^ ! ) ) s an-i 

+ + (Ija+ZSiCN-I 
(95) 

So far we have achieved essentially nothing with respect to 
evaluation of the net divergent piece of the vertex function. 
A step in this direction comes from the following two points 
(i) Once the coefficients ( y v and X) are known, the general 
result may be written down at once via (93) or (95) . 
(ii) It is no longer necessary to have all the N-external 
momenta non-zero in (95) in order to deduce the values of 
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the coefficients. To make use of these two points, we 
must first note the result of setting one of the momenta 
to zero in the seven invariants. Let this momenta be P„. 

N 
The reduction simply amounts to lowering the index N by 
one; namely 

Bw (96) 

C N ^ C N - I E n ^ E n - I 

D N - 1 F N - ^ T N - I JN-t 

Putting all but three of the momenta in (95) to zero (which 
are conveniently taken as P^ an<^ ^3) 

(97) 

Knowing the value of 

t ' ! ? ^ ? 3 ) c - p r t r h x o , . - ! ) ( 98) 

the three coefficients y,v and X can be calculated. One 
might think that perhaps one more momenta can be set to zero 
in (97) but this is not the case. The resulting expression 
does not lead to three independent equation and thus is 
insufficient for deduction of the parameters. 
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The procedure now is straightforward. (98) is 

calculated explicitly and inserted into (97), from which 

the values of y,v and X follow at once. Computationally, 

the advantage of all this is that (98) is simple to evaluate 

since for any N £ 4, (N-4) of the external legs have com-

pletely lost their identity, as in the previous section. 

Hence as before, all diagrams can be grouped into classes 

according to the topology of the momentum carrying lines, 

and remaining sums falling into mere combinatorics. In 

the present case there are nine such classes. 

Class (1): The three related diagrams are shown in figure 

Figure 2 

As before summation is first done over those graphs which 

have a given number of ^B^2 a nd 4>2B^2 vertices in each shaded 

ci rcle; figure ( 3) . 

i» t 

— s -

1. 

yll 

e tr-.' ii I Figure 3 
cas.bs") 

a * + Z b « 

a n - 4 
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(1) Vertex factors:- tliZWlf*' ( 2 i e m ) S < 1 * (2 I 

(2) Vertex arrangements:-
« " a « ! b « ! 

(3) Propagators:- The relevent factor here 
is that corre-

sponding to (74) and (75). A reduction, however, is 

possible due essentially to the projective nature of 

the londitudinal propagator, 

7((P„o)...,o)?J)o)-.o,'P3,o)...)o>?w.,o,...>o) = 'X(P1lfi;?i,RQ <99) 

(Proof of this remark is given in the appendix.) Since 

the loop is equivalent, up to a factor, to one with 

only four propagators, the net contribution is 

(4) External legs:- The (N-4) remaining legs may be 

labelled in (N-4)! ways. The symmetry of the + 2B 2 

jtu 
vertex involves an overcounting by JL* 9 

an overall factor of, 
cn-tfl 

Combining these factors gives 
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To complete the calculation it remains only to sum over 

all possible values of a and b , r a a 

L , ) 
aoi >/0 

subject to . 

Where definition (84) has been used. Substituting (88) 

into (101) gives 

(102) 

(103) 

Where a new function has been introduced, 

( cl+ 1)( b + 1)(C+1)(d - m ) 

a.b.qd >/0 

< X + b + C + d = M (integer) 

k m = 0 b r r m < 0 

Adding the remaining contributions for the remaining two 

diagrams of Fi G(2) . 

16(-l)n cn-4)! k n - 4 [ 9 ( 0 , 2 , 3 u ) % u , 3 , i u ) \ 
(104) 

Class (2): There are twelve related diagrams in this class, 

a typical member of which is shown in Fig. (4). The other 

eleven are obtained by interchanging the (1234) labels in 

all distinct ways. 
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Figure 4 

4 / 

Result:-
=- -^(-imf m i ycn-jwmyxcva 

(105) 

Class (3): There are eighteen related diagrams, a typical 

member of which is shown in Fig. (5). 

Figure 5 

Res ult:-
* » * 

Class (4): Twelve related diagrams, e.g. Fig. (6). 

/ > z n r 

Figure 6 

(106) 

Result:- / » * 

(n-u-)! [ x f l + y c \ j (107) 
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Class (5): Three related diagrams, e.g. Fig. (7) 

Figure (7) 

Result: 

16 C-1 T (IT- M l K n-8 1 (108) 

Class (6): The procedure here is the same as before except 

that onlj three shaded circles are needed. Correspondingly 

equation (101) has only three factors of which leads to 

a second kind of function instead of (103). 

L m s 

CL> b , C >0 

C U b-f C = Al C W t e o e r ) 

lm*0 for h<0 

(109) 

The six related diagrams are characterised by Fig. (8) 

Figure 8 

Result:-
* \ v 

- 3 ( - 1 ) n (kt- m l u - 4 [ w w , 3 , 4 ) •+ xo+3,2,l) 

+ fx(\+l,ll)+ mm,1,4)+1,3) il) ] 

(110) 
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Class (7) : Twelve related, diagrams. See Fig. (9). 

Figure 9 

Res ult: 

— 3 4 ̂ 
/ i \ 

i c c - q y ^ y - ( n - 4 > ! us[x(wu) 4 kfi+nti 

+ 1 , 3 ) + r x c i + 3 , 1 , u) 4 xa+ltyyxuu, i,d] 

Class ( 8N : Six related diagrams. See Fig. (10). 

Figure 10 

Result: 

(111) 

- 8(-o w(io n- (n-u)! u - 6 t x c m u ) + 2 , 

* o t f m * , 2,3) + 7(2+3,1,k) + 0<(2+u> t, 3) + / , 2)] 
(112) 

Class (9): This final class has three constituent types of 

diagram. Once again the procedure is straightforward; 

appearance of only two shaded circles results in the need 

for a third function, 

M n = U C a + O C b + f ) 
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a, b >/ 0 

a + b = N (iwtegeY-) 

mn= 0 br n<0 m 3 ) 

In addition to before, however, it is necessary to include 

a factor of coming from the possibility of interchanging 

the two shaded circles 

Figure 11 

Result: 

(114) 

Finally, adding all these contributions gives 

16 (- r>N M ! [ K M - < t 4 En-S + 6 ft- 6 - 4 + 1 * 

r l w - ^ /,4) + w l + 4 , 2 , 3 ) 

+ x c 2.+3,1,4)+•mil-fix, 1,3) + i,i)} + 1 ( - \ ) n ( n - j i 

10CC1 +2,3 +i) + ^ ( 1 + 3 , 2 + 4 ) + 0( ( 1 + 4 , 2 + 3 ) } 
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It is shown in the appendix that 

m v ) (116) 

Substitution gives, 

l n - a - 2 l n - 5 + l n - 6 -

So that (115) reduces to 

(117) 

c-dn (n-im 8£mb,c,d) 
3 Perns, 

-rnxfa b,cd) + n ^ b . c + d ) ] 
6 perns, spews. (118) 

CALCULATION OF THE x-FUNCTIONS 

Despite the enormous simplification so far achieved 

by setting all but three independent momenta to zero, the 

explicit calculation of the x~f u n c ti°ns appearing in (118) 

or (115) is by far the longest part of the calculation. 

The twelve x's appearing in (115) must each be evaluated 

by substitution into the general formula of (74) and (75). 

Secondly, the dependent momenta P^ is removed by using 

momentum conservation 

- ( W B j ) (119) 
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Finally, after adding those sets which differ by permutation 

only (and checking the result is symmetric in the remaining 

three momenta P^, P^, P^) they are separated into the seven 

invariants of (90). The result of this rather long cal-

culation is , 

^perms. 

So that (118) becomes, 

* (121) 

This is precisely of the form (97) so that the values of 

the parameters y,v and A are, 

s a n 
u = o v - - - - — x. - raj 
r ' u m 1 (2-u/2) 

(122) 

This immediately yields the result for the general case via 

equation (93) namely 
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lvnyc-l)ni(h-i)i&. 

(123) 

Q-Clo 

Vertex functions in two, three and four external legs require 

additional treatment. In these cases the contributions 

from intermediate scalar particles also give divergences. 

In each case however, these extra graphs contribute only to 

the renormalization constants, so that (123) remains valid 

provided the effects of subtraction are accounted for. 

c-pj) - - i ^ L f * H r> r iiwyci-uii) d24) 

' cuh)k2-c0/2) 

The numbers a, (3, Y and 6 remained undetermined. Only after 

specification of a subtraction procedure can they be given 

explicit values. 
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(125) 

RENORMALIZATION AND THE S-MATRIX 

In conventional field theories the renormalization 

charge, mass and "wavefunction" are usually expressed as 

conditions o n the Vertex functions. 

Where the symmetry point is defined by 

s p : = ^ [ n s ^ u tj e a ^ a f ) 

(126) 

Translating these conditions (125) over to the divergent 

pieces (124) gives simply 

8 l o t v c ? , ( - r ) ) l p i s f l , = 0 

( 1 2 7 ) 

s k v ^ c w w l 
A surprising feature of this theory 

is that the conditions 

(127) cannot lead to finite Scattering Matrix Elements. 
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This will appear in the following. Anticipating this 

result we pose the question of renormalizabi1ity in another 

way namely; is it possible to establish whether any tenable 

scheme exists. Our criteria for acceptability will be 

that the S-Matrix elements following from the theory must 

be finite. This requirement overdetermines the values of 

a, 3, Y and 6; hence the consistency of the subtraction 

scheme is mirrored in the consistency of equations deter-

mining a, 3, Y and <5. 

PARTICLE PROCESSES 

The propagation of a single particle under the action 

of self interactions alone is the lowest order Green's 

function to consider. The condition of finite S-Matrix 

translates to the first condition of (127). Substituting 

for C 2, i.e., 

yields 

coc- c?*y 

1-f <X + /3 " O 

(128) 

(129) 

Substituting for a in this equation into (124) gives, 



5 3 

Note that the second condition of (127) is not used. This 

is not a physical condition in our former sense. Arbitrari-

ness in fixing the wave function normalisation is expressed 

succinctly by the renormalization Group. The corresponding 

statement of such a renormalization group for this theory 

deserves further investigation. Insight into the non-

analytic behaviour may well be possible. 

Proceeding with the programme, we turn next to the 

three particle interaction. The finiteness condition is 

expressed on the full Green's function. A word of caution 

is, however, necessary. The three particle interaction 

with external particles on mass shell is not a physically 

allowed process as can be seen from conservation of four 

momentum. It may however be realised (in principle) by 

extrapolation of a processes like figure (12) 

The situation is analogous to Quantum Electrodynamics where 

the renormalized charge is taken from the limit of zero 

momentum transfer of electron-electron scattering. The 

finiteness condition is 

s i o t ^ c ? ^ ) + s ^ t t y p , f p ^ - l - c-hpi) 

= 0 
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2 2 2 . Where the limits of P^ , P 2 and P^ tending to the mass 

shell are taken using the alternative expression (130) 

for the two point vertex. The resulting constraint on 

the parameters is 

2 v - 3 = 0 

Diagramatically equation (131) is given by Fig. (13). 

(132) 

Figure 13 

The dotted circles in this and the following stand for (123) 

or (124) . 

The four particle process may also be used. The 

contributions are listed below. 

( a ) * - s f c + a X S O V -
1'' 

V 
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(d) . I 1\ v 

(e) 

at 

These results are all given with external legs on mass shell. 

The q are introduced for convenience, a 

<\u* ^ = C b ' - p j y r * 
(133) 

= « u , 1* , 1 + , 2 * , 2 4 , 

An inessential common factor has been omitted from the above. 

Adding these and equating to zero gives 

(134) 

which can only be true provided 

1 - 4 / 5 + 2 < } = 0 
(135) 

5 / 3 + 8 t - 0 ( 1 3 6 ) 

Lastly the five particle process is evaluated. The results 

only are listed. Calculations are as always straightforward 

but long. 

(a) 
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(b, « - i m c ^ v 

s'' v + 

( d ) o o - j ^ o -
Z '3 

4 n * ̂  0 j 

2 / !3 

%3 * 

1 ' 1 5 ' ¥ 

<i> C U - / ' 
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(j> 2 

o o ' ( , 5 - a ^ . v -

The q^ are the same as in (133) except a and 3 take the 

values. 

£ ; ocaCij) -12,13,14,15, 2 3 , 2 4 , 2 5 , 3 4 , 3 5 , 4 5 . 

1$ 

ot(2> 
2.1; ls 24;35 25; 34 13;45 
14; 3 5 1 5 ; 3 4 1 2 > 5 14; 2 5 

ts;24 12;35 13; 25 15; 2 3 
12; 3 4 13; 24 1 4 ; 2 3 

Adding all contributions for the five particle process, 

which can only be satisfied if, 
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3 - 18j2> - 2 7 + 6 < 5 - 0 

7j6 - o 

(123) 

(139) 

Examination of (129), (132), (135), (136), (138) and (139) 

shows that they are all mutually consistent and have a 

unique solution 

(140) 

Of particular interest is the value of 6 . Had conditions 

(125) or equivalently (127) been used one would have arrived 

at 

(141) 

This discrepancy substantiates the claim made at the beginning 

of this section, that the conventional conditions do not 

lead to finite S-Matrix elements. The reason why only the 

four point function differs from usual is not difficult to 

see. In normal theories,' the renormalized vertex functions 

are finite both on and away from the point of subtraction. 

This, however, is no longer true in the present case; the 

renormalized vertex functions (and indeed the full Green's 

functions) are finite only at the subtraction point. The 

decomposition of the full (connected) Green's function into 

one-particle irreducible pieces, shows that the four particle 
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scattering process is the lowest order process which in-

volves an off-shell (i.e. off subtraction point) vertex 

function in an intermediate state. This residual divergence 

must be cancelled by a corresponding one in the four-point 

vertex function if the scattering process is to be finite. 

As a further check for consistency, the six-particle 

and seven-particle processes may also be evaluated. In 

order to reduce the large number of distinct graphs, the 

calculations are restricted to the corresponding six and 

seven particle symmetry points (126). The price to be 

paid here, is one of lost generality. (It is not incon-

ceivable that finiteness in a given region of physical 

momenta may imply finiteness for all such physical momenta; -

neither proof nor disproof of this possibility has been found 

The calculations are straightforward but rather long. It 

suffices to say that the cancellation does occur thus 

rendering the S-Matrix elements finite (at least to this 

order of approximation). The results are recorded as two 

diagramatic equations Fig. (14) and Fig. (15). 

4 • A > - - & - -k > H - • A > - © - • -
, i / \ / 

1 
a > • < 6 - 1 - * u - o - h -

' i / i / 

+ > - 0 L i < + i ) - - & - < + i y k D J - < + 
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/ * t 
. % 

- < M — f c - K H - + * h >-&i 
i 

+ a > - q 6 h o 
V " 
f 
t 

Figure 14 

- i o - A . a 
' \ k ' ^ / v, * 

6 J - L f * A V - O 1 1 ! - - A > - 6 - 4 - - A 

> - L 6 | - - A V ' - ' - ' G - f + A > L 1 - 6 - 0 T 
i / / \ 

V - O t 4 - - a > - O i - + & > r O - i - + £ > 7 ~ 4 

- r . v - o j - K - t x b - K ^ V t o - K 
« 

yqllj/ . + 1 
^ « 

/ \ ' N / \ 
/ ^ 

V r - 0 > + A V r - r - Q - / + A V t - 7 - G J A Y ' ' V 5 ̂  » 16 / A I m V a 
S * * ' • V J { 
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y v o - j + -
/ \ / n 

^ V - J i - ^ H - o f * 4 > i 4 " * 4 4 - X 

- i - 8 - i - f - a - i - g - u - * 4 - j - h s h - s 0 
i ' 

Figure 15 

Since the divergent piece of the general N-leg 

vertex function is known (123) and (124), it would be some-

what mor. satisfactory to show explicitly the cancellation 

to all orders of particle processes. To date, ail attempts 

in this direction have failed. Perhaps the most promising 

method along these lines is that of an inductive proof. 

This however runs into severe difficulties owing essentially 

to the non linear nature of system. A second method would 

be a proof of cancellation at the symmetry point; to be 

supplemented by a theorem of the type referred to above. 

Even with such simplifying restrictions, the non linearity 

still appears insurmountable. A brief indication of the 

difficulties involved is as follows. 

Of primary interest to establishing a proof is know-

ledge of the value of the tree-like structures which are 

attached to the vertex 'loop'. We attempt to evaluate 

such a sum of trees by taking all the branches but one to 

have the same symmetrical nature as would arise if inserted 

into a larger diagram which is being restricted to its 
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symmetry point, i.e. 

K1" W i - ^ (142) 

Diagramatically the "N-branched tree" satisfies the equation 

Denoting the left hand side by R^, where the N legs satisfy 

(142) and the incoming leg carries the momentum required by 

the conservation low. Using the rules (58) gives, 

I n ' t t © ( - ^ D i ^ - a ^ a R l . — D V 4 ] " ' X 

(143) 

i p a t p b d v + ^ v r 1 [(%+,+•+•w-jitt f [ ^ ( + q n v - / u L ' r 1 ' 

which reduces owing to (142). Introducing a second quantity 

V (144) 

yields on substitution into (143) 
N N 

r ' a>/0 ' 
(185) 
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where p is the ingoing momenta. The form of (145) suggests 

immediately a Fourier transform. Taking 

sw - if s„ NS-OT> 
(146) 

+ x 

- u 

and hoping that the factorial included in the definition of 

(144) is sufficient to make vanish for negative N 

gives, after summing over N, 

xir-rt ( 1 4 7 ) 

To evaluate the right hand side of (147) one must first find 
2 the N-dependence of p from (142). 

= N f j J - — N ( N - t ) rt/X*-

Therefore, 

? z ~ j J L z = C N - i ) ( i -

So that the right hand side of (147) can be written as, 

(148) 

(149) 

(185) 
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= jtL* £ et - i ( f + « ) a ^ C ? ) . -
c 8 o 2 . 

Finally therefore, our required Equation is, 

In principle, one could solve (151), Fourier invert using 

(146) and find SN and subsequently R^ via (144). The non-

linearit> of (151) does not however permit a simple method 

of solution. This method has been taken no further. With 

regard to an inductive probf it is also worth mentioning 

that given an N-particle process is finite on shell, it is 

not easy to relate this information to an (N+l) particle 

process, since although the former may be considered "nested" 

inside the latter it no longer has the corresponding legs 

on-mas s shell . 

There are many paths which can be followed from this 

point. Perhaps the most obvious one is the peculiar feature 

noted just before the section on 'Divergences, quartic in 

external momenta'. This was the observation that only the 

loops of londitudinal propagators produce the troublesome 

divergences. All other contributions, from mixtures of 

transverse and londitudinal propagators, cancel completely 

and independently of momentum flowing in their external legs. 

z r (151) 
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GENERALIZATIONS 

Consider any Feynman diagram derived from the set of 

rules (58). This may possess any number of loops and 

external legs. If attention is focussed on the lines 

representing the vector particles, then from the topological 

structure of the rules (58), one finds that these lines have 

no branches; i.e. it is possible to follow the path of a 

vector particle from one external point through the network 

and back out to a second external point, or alternatively, 

follow the vector until it closes back on itself in the form 

of a simple loop. In pictures, Figures (16) and (17) 

represent the general manner in which a vector line can 

appear in a diagram. 

Figure 16 

Figure 17 
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The arrowed doubled line indicates all external 

lines, which may include vector and scalar particles. 

The shaded portions represent the remaining part of the 

diagram whose structure is not explicitly exposed. The 

interesting feature which is immediately apparent from 

Fig. (17), is that even in the most complicated diagrams, 

the simple vector loop already studied plays a predominant 

role. Let us take a step further. Notice first that there 

are a definite number of scalar lines connecting the vector 

loop to the remainder of the diagram. (In the case of 

Fig. (17) there are nine such lines). Let us now add 

together all graphs which (1) have the same number of scalar 

lines connecting the vector loop and (2) have exactly the 

same network structure except for the coupling to the vector 

loop. In other words, in Fig. (L7), the shaded piece is kept 

the same while the way in which the vector loop couples is 

varied. This allows the vector loop to be replaced by the 

full one loop approximation to the corresponding vertex 

function. So that in the graphical notation previously 

used whereby the dotted circle represents the fully symmetrized 

(1-loop) vertex, one has Fig. (18). 
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The point is that the non cancelling divergences 

hidden in the vertex function are known, from previous ana-

lysis, to be due to those graphs which are obtained by 

replacing the full vector propagator by its londitudinal 

part. This leads us naturally to the question with which the 

remainder of this section will be devoted, namely; can one 

associate the origin of all non-cance11ing divergences to 

graphs of the type shown in Fig. (17) where now a continuous 

line is taken to represent only the londitudinal piece of 

the vector propagator? 

OVERLAPPING DIVERGENCES AND SUBGRAPHS 

It is convenient at this point to return to Fig. (17) 

and examine the subintegrations necessarily involved. First 

a graphical notation is introduced. The decomposition of 

the propagator (61) is denoted by 

(152) 
= — x — + 

(Note that a continuous line now.represent only the londi-

tudinal piece of the propagator - in contrast to before.) 

Introducing this decomposition into an arbitrary vector loop 
N 

Fig. (17) results in 2 new diagrams - where N is the number 

of scalar lines connected to the loop. Consider any 

diagram which has a given number (non zero) of transverse 

propagators. The question is whether the net divergence 

arising from this graph is cancelled by another graph's 
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contribution or not. The new feature here, is that the 

divergences arise not only from the sub integration over the 

loop momenta, but from all diverging sub integrations which 

include some subsection of the loop. It is known already 

that the graphs which cancel with the vector loop subintegration 

are those which possess the same number of transverse pro-

pagators and correspond to the same vertex function. Hence 

it is natural to examine whether the subintegrations of these 

same subsets of cancelling graphs, also yield no net divergent 

contribution. 

It' is not difficult to convince oneself that there are 

essentially only two subintegrations of immediate relevance. 

Those which involve two scalar propagators and londitudinal 

vector propagators (logarithmically divergent), and those 

involving one scalar propagator and londitudinal propagators 

(quadratically divergent). At first sight it might appear 

that subintegrations involving one scalar propagator and one 

transverse propagator would yield a logarithmically divergent 

integration. This however is only true provided there are 

no contractions with londitudinal pieces, since in this case 

the trans versality reduces the integration- momenta by at 

least one power rendering it convergent. i 

LOGARITHMICALLY DIVERGENT SUBINTEGRATIONS 

For a logarithmically diverging subintegration involving 

two scalar propagators, the sum of all graphs may be established 

using the same technique as before. The general case of a 
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graph with 'N' external scalar legs is considered. Owing 

to the logarithmic nature of the divergence the values of 

the momenta flowing in and out of the diagram are irrelevent 

to the combinators. As before results are merely quoted. 

(a) 

(b) 

(d) 

(f) 

t • \ 
n m 

/ 

» i » 
n-l 

» » » N-2 

i i > 
N-3 

\ * 
\ / 

i » » 
n - x 

l » 
( c ) v 

« 6 ( 1 k Y + z c n } x n N . z 
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(8) \ 

* i * 
n-b 

(h) v > 
n t ^ \ / 

/ . » 

In all these graphs the common divergent factor corres-

ponding to the loop integration has been omitted. 

Furthermore the relationship, 

p . / i n = -f / e ( 1 5 3 ) 

has been used. The origin of (153) will be discussed in 

greater detail in a following section. Adding the contri-

butions from (a) to (h) gives, 

6 - 5 w 4 - w (154) 

Substituting for the value of as given in (88) give zero 

value for (154). So that by summing over the same subset 

of graphs, one finds that logarithmically divergent sub-

integrations cancel. For future convenience, we denote any 

divergence which is cancelled by summing over a suitable 

subset of graphs*, "non-permanent" whereas those which do not 

have this property are denoted "permanent". It is the 
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occurrence of such 'permanent' divergences within this 

theory which gives the (on-shell) S-matrix a privileged 

role. From the above result and those 'previous, one sees 

that the divergences associated with the vector loop insertion 

of Fig. (19) are of the non-permanent type. 

-or 
Figure 19 

With regard to the quad ratically divergent subintegrations 

the same procedure can be carried out. From general con-

siderations, it is expected that the divergent term contains 

a piece depending on the momenta and piece independent of 

the momenta. It is instructive to examine this latter type 

first. This is easy, since all external momenta in the 

graphs are set to zero. Results are, 

(a) 

» * * N 

(b) v / \ / v , 
i * < 
n-t 

(c) 

! » » 
n-1 
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(d) x ---s / 

i k n-l 

As before the common diverging factor has been omitted. 

Addition gives 

(155) 

which in virtue of (88) gives a vanishing result. This 

result is certainly encouraging, and demands an investigation 

of the momentum dependent divergence also hidden in this class 

of graphs. Unfortunately, this is rather more involved 

calculation . 

THE MOMENTUM DEPENDENT DIVERGENCE 

The basic object is shown in Fig. (20). 

% > ') i ii $ ^ l a w g / * 
Pi ft iv. 

T i g (20) 
The relevant integral is, 

j d j u t g e ^ l c f e v l m , ) ' u f e + g f t ^ * , ( 1 5 6 ) 

Where definition (152) has been used. Writing out the 

numerator of the integrand, 
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C fe. Cfe+Pj C k + P M . . . E n V A e * - - P j ? 
^ t " c (b+t>al cb+p.+p^ 

(157) 

t h The a term may be written, 

v q * / (158) 

Hence the integrand is simply, 

i ol~ ( • A (i-
ot—i \ q * / 

<2̂ 1 
(159) 

The form (159) is convenient for picking out the divergent 

pieces. Only the first three terms of the expanded product 

contribute. 

fepik+vu £ 1 - + £ ( p o ^ y ? ^ | 

tom.^m ^ <s£ ^ qj- q / ( 1 } 0 ) 

The integration of (160) is straightforward using standard 

techniques. Ignoring finer details, the result is 

24 au)2 ci-o/i) 

(161) 

y oz^-2%'%2^ - 4 £ voc-au 
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-e [ i x + - z s c r ^ x ) 

For future convenience of notation, (161) will be denoted 

by 

a/2) ( 1 6 2 ) 

In (161) the A is defined as, a 

A * - V V - + ? . (163) 

As before the implications of Bose symmetry are used to find 

the net contribution. Consider the one-particle irreducible 

vertex function corresponding to the Greens function, 

(Heisenberg Picture) 

< 0 1 ( £ / < ) , ) & ( - ! to... < m ) ) + ! o > (164) 

In particular the one loop approximation to it can be written 

as the sum of two types of diagrams, namely those involving 

two scalar propagators, and those involving only one. The 

other possibilities do not give rise to divergent terms. 

It has already been shown that the divergences of the first 

type are "non-permanent", from this, it follows that the net 

contribution from the graphs of the second type is Bose 

symmetric in its arguments. Suppose eliminated 

using momentum conservation, then, 



75 

zl^cipiyci-cjlz) 
(165) 

Where F is symmetric in the 'N'-scalar momenta. The most 
y 

general structure that F^ can take follows from (161) as 

tyv^; = bj.vfja + ( j ^ c f p , v->pn) (166) 

Where G is a sum over monomials of degree two in the (N+l) 
y 

momenta, i.e., 

( v (h; ? < y « <*i + % h v lium 

(167) 

Here, H and J are symmetric functions of their arguments of 

degree one, and K is a similar symmetric function but of 

degree two. Clearly, 

H ( H v X a J C P l v = P l 4 P 2 + " + P N (168) 

and 

k k v u- P m H pi ^ pte ( P j ) V 

01 «*fi (169) 

Finally, 

(170) 
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o«is 

£ P u ? % <^8 2 vfpf + <*, 9 < K P 1 + - h - P n ) 

From (170) it follows that everything can be recovered from 

a calculation which has only two of the scalar legs carrying 

non zero momenta. It remains only to route the two momenta 

through the diagrams immediately preceding equation (155) 

in all possible ways. There are fourteen basic configurations 

to consider, which are conveniently regrouped as follows. 

(A) ' — > v ^ --x % / . x - v / 

« » » | | » m > 
/ / 

i i v 
1,2, u 

( B ) i y i v / 

• i» * i •» 
^ z 

v ' x ' <c> D - . , 

' i » / i 
i z 

(D) '1 

* i i 

Figure 21 
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Consider the diagrams of the type shown in (A). The manner 

in which the two non zero momenta flow into to shaded circle, 

may be outlined as, 

(a) 

+ o p, 
m i 1 n » l / i\ 

b rz £ 

Q L + b + C - N - 2 

(b) 

'0-
CY-I T \ m . . / ; 
/ i i / ; « • ̂  1 1 i 

a 7 vPt b 'pj. t 
b + C - N - 3 

(c) 

'pf b 

a + b + C = N - 3 

(d) 

' i » a. 
t 

/ \ 

' 'p, ' J / \ 
b ri 

o ' 1 v 

r> 6 

01+ b + C -



78 

(e) 

^ — T r - Q ^ - a + b = N -2 . 
' I 1 y * t » * 

a ?i \ b 

The shaded circle with 'a' external scalar legs, is just 

the sum over all possible diagrams, 

= 2 c z i z y f t i y f c i f v - 1 

w ^ l tfoclp] (171) 

= I o l 

Where the auxiliary function I^has been reintroduced; 

previously defined in (84). The contribution of (a) to 

(170) is, 

«u-b+<i=N-2 

Using (109) gives, 

16 c-on cir'^u-z [<k?; m + y r m ] 

Likewise for (b) + (c) we have 

For (d) 

16 c - o n v u - * [ w r > v j + w ; v j ] 1 (175) 

(172) 

(173) 

(174) 
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Finally for (e), 

.n+2 
8 c - t r + ' ( 4 ) m m * w l ; v ? * ) (176) 

Where the definition (113) has been used. Hence the net 

contribution from the first diagram of (A) in Fig. (21) is 

given by the sum of (173), (174), (175) and (185) 

16 n v c & r v (u-z-^u-AL^i^bPi.pe) 

+ +8(-l)n+<(4i)n+2'm2 mn-z wr v p2) 

Which reduces according to (117), 

(177) 

(178) 

Including the remaining three diagrams of (A) in Fig. (21) 

gives, 

8c-q n + a w l x 

A third relation derivable from (116), namfely, 

mn-z - 2 m n - 3 •*• m n - j a w - / 

gives for the net contribution of class (A) 

c ^ t v 1 g m ) {21k1; h?t) + 1 m ; 

(179) 

( 1 8 0 ) 

(185) 
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In precisely the same manner, all contributions from the 

diagrams of Fig. (21) may be evaluated to give a net total. 

4- (30n* v (n-0 ft +4-wi; papf) 

-m>cv> wli - 2 c p a + p f ; p a > - 2 cp\ip0 - wr> w 

- icptylpz)* <4>(<l+vuo) + w<i+pz;o) j 
( 1 8 2 ) 

The final part of the calculation is the explicit form of 

the ^-functions. These are found by direct substitution 

into the general formulae (161) and (162). The result of 

a long but straightforward calculation yields finally for 

(182) 

zu-ltgo"*1** m {z C v ^ y - Z C ^ ? , ) ^ ( 1 8 3 ) 

W ~ 2 W - 6 C v " V i 

The coefficients in (170) can be read off directly from (183), 

from which the general result follows. Note also, that the 

divergent term vanishes when the momenta are set to zero - in 

agreement with that found previously. The conclusion to be 

drawn from (183), however, is that one cannot isolate the 

graphs Fig. (18) containing only londitudinal vector propagators 

as containing the only "permanent" divergences. This is 

because from (192) we see that there exist "permanent" 

divergences in the sub integrations of graphs containing both 

londitudinal and transverse vector propagators. 
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The conclusion of the latter part of this section must 

thus be that it does not appear possible to identify 

"permanent" and "non permanent" divergences by simple 

graphical terms. An interesting feature which arose from 

this investigation is that, just as before, all divergences 

except those containing the highest order monomials in 

momenta, cancel after summing over suitable subsets of 

graphs. Clearly, it is of some interest to find a general 

underlying reason for this peculiar behaviour. 

FUNCTION L INTEGRAL APPROACH TO THE U-GAUGE 

Although the Feynman rules for the system (1) have 

been derived from the Canonical Quantization scheme, there 

exists a second method, which although of a much more 

formal method, still leads to the same results. This method 

is to be presented here in order to establish in a simple 

way the phenomenon of spontaneous symmetry breakdown, and 
. . . . . 

the Higgs mechanism. The starting point is a simple two 

component (or complex) scalar field with quartic interactions, 

which has been coupled to the electromagnetic field via the 

"minimal substitution" prescription. 

~t t ^ u ( v ^ f C v ^ + p W - i - f V ^ ) 2 

Whe r e 

= fy + i & a j a 
$ * + 

(184) 

(185) 
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(Note that we do not write.the Langrangian density in first 

order form only for ease of notation). Inspection of 

(184) shows that the 'mass' term has the wrong sign. This 

results in an instability in the system described by (184), 

producing a non vanishing vacuum expectation value for the 

scalar field. In physical terms, it becomes energetically 

more favourable for the ground state of the system to be 

characterized by a "sea" of scalar particles. The effect of 

this coupled with the long range electromagnetic phenomenon, 

leads to vector excitations with a massive nature. This is 

known as the Higgs phenomenon. By a change of parameteri-

zation of the fields 

= + (u+ <*>») el ; A p & -- use) 

one derives a second form for the Lagrangian density (184). 

Namely, 

£= -i fav^+i^ -io^-ij^1 

+ ( £ V 0 4> B / + i e 2 4 > 2 B / - i <t>z- k f 

where 

wu= (ue.) cui) 

and the parameter 'u' has been fixed at the minimum of the 

classical potential. 

XL - 41 . p/f 
(189) 

The ratio of the two masses in (197) is independent of the 

(187) 

(188) 
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vaiue of 'u1. This relation was cited before in (153). 

The functional integral approach allows one to write 

down the vacuum to vacuum transition amplitude in presence of 

an external source, generating I products. 

< 0 + I 0 ' > » 5 S S A j M p e.xp i J d ^ ^ r ^ A ^ x ) (190) 

Where in (190) the sources have been ignored since they are 

not relevent for our purposes. The measure of integration 

is formally represented by, 

S$cJ> « TT ( d <£)&) <191> 

The change of field variables (186) results, as in usual 

integration theory to a Jacobian of transformation. The 

partial derivatives give 

(192) 

saftf _ q 
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, ( i + cos[t;c*)/u\ 

e u 

8<&ic*) = o 

£ 4 > 2 6 0 = o 

$ a u 6 c ) _ o \ 

The Jacobian of transformation is the determinant of these 

derivatives, i.e. 

9(4>k y) l y a ) u 

Generalizing the formula, 

D e t { e x | D A ^ « t x p ^ T r A ] . 

Where A is a square matrix, (193) can be written as 

= t x p v ^ s ^ x 

(194) 

(195) 
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Hence the change of var iab les in (190) must be accompanied 

by an addition to the lagrangian of the term, 

d 9 6 ) 

This is precisely the additional term found in changing from 
* 

the time ordered products to the covariant {T } products, 

in the canonical quantization approach. Any formulation 

of this theory which contains no spurious (unphysical) poles 

is known as a Unitary formulation. This particular field 

parameterization is known as the U-gauge form. The 

functional formalism is rather more formal in nature than 

the canonical approach but if care is taken, it almost always 

gives the same results. In some respects one could argue 

that in a theory involving such severe divergences, it amounts 

only to self deception, to use the "more rigorous" approach. 

However, although there is a great deal of truth in such an 

argument, it is clearly better to be as precise as possible 

in an investigation of the type undertaken. Nevertheless, 

the functional integral is a very useful tool for rapid 

testing of ideas and will-be used in the following on more 

than one occasion. 

THE U1 FORMULATION 

In the previous sections it was shown that many of 

the divergences occurring in individual Feynman graphs are 

"non-permanent"; i.e. they are cancelled by divergences in 

other diagrams. ¥ Such a behaviour lends support to the idea 

that there may exist another change of variables besides 
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(186), which automatically performs some of the cancellation. 

This indeed appears to be so. Our starting point is the 

Lagrangian density (187) and (196). Previous work suggests 

that a decomposition of the vector propagator into transverse 

and londitudinal parts should be of some assistance. Writing 

b r (197) 

Where A is transverse 
y 

fyA K = 0 (198) 

induces the following decomposition of the Lagrangian density 

(187), 

-it&apydw + iwrf + icdrfy+icd^y 
(199) 

-l -f tw4> aj + ^p)1 z e<t> a? (a'p) 

Where in deriving (199), condition (198) has been used and 

total divergences been discarded. (199) can be written; 

+ » (200) 

Z+ » i (dpi* - i fx**1 
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The clue for the next substitution comes from the form of 

. Suppose instead of 'p' one chose to use the field 

(201) 

Then rewriting o£p gives 

(202) 

Now although (202) appears more complicated, the trans-

formation (201) has a distinct advantage; the Jacobian factor 

associated with this change of variables precisely cancels 

the divergent term in (196). Furthermore, substituting for 

p in y^j leads also to a simple expression involving only 

polynomial interactions 

= e v a a * + i gf* 5 - j w - i t s p ^ c d t y (203) 

As a result of these substitutions, we arrive at a new 

parameterization of (184), which has no 6^(o) terms, and 

yet the same number of field degrees of freedom. This will 

be called the U'-gauge parameterization. Consider one of 

the infinite set of Feynman graphs given by the non polynomial 

term in (202) 
q, ̂  kf 

a 
Figure 22 
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Examination of the form of this coupling gives a rather nice 

way of looking at the peculiar cancellations noted at the 

end of the previous section. For example, suppose one 

wished to repeat the calculation to find the one-loop diver-

gences of the N-point scalar vertex functions. In this 

formulation only one type of graph contributes. 

Figure 23 

A short calculation, involving a summation over number 

of legs in each vertex yields the result obtained first in 

(123) but with a drastic reduction in the effort required. 

Note also that the form of Fig. (23) indicates even before 

doing the calculation, that the answer must consist of fourth 

order monomials in the scalar momenta. Likewise, an in-

spection of the remaining Feynman rules indicates the form 

of the scalar-vector vertex found in (183). It is interesting 

to speculate that the divergences of the U' formulation may 

all be of the "permanent" type. Before closing this section 

some comments are in order. The derivation of this Uf 

formulation could hardly be described as conclusive. It is 

not clear that any choice of field parameterization will in 

fact lead to the same S-Matrix elements, owing to the highly 

singular nature of the theory in general. Another possible 

difficulty 

is that the field * ijj' is massless, and may intro-

duce infrared difficulties, not present in the original U— 
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gauge formulation. Nevertheless, it is felt that it does 

give a rather interesting way of seeing cancellation clearly 

exhibited, even if it is in a rather formal way.. 

RENORMALIZATION 

It has already been shown that a consistent cancellation 

of the residual divergences appearing in the U-gauge cal-

culations (in the one loop approximation) could only be 

achieved by renormalizing the S-matrix elements themselves. 

This result being a direct consequence of the divergent 

nature of off shell Green's functions, even after renormali-

zation has been carried out. In those sections, however, 

we were concerned primarily in establishing the existence of 

finite S-matrix elements, rather than showing that the 

subtraction constants necessarily introduced, satisfied the 

additional constraints imposed by the spontaneously broken 

nature of the theory. Such constraints derive from the fact 

that the unsymmetric theory possesses a larger number of 

interaction vertices and masses than the corresponding 

symmetric theory, and hence implies that the independent 

subtraction constants available are fewer in number than the 

primitively divergent S-matrix processes. In the following 

we shall only concern ourselves with the infinite pieces of 

these subtraction constants. The aim is to see whether the 

afore mentioned constraints can be satisfied in an acceptable 

manner. 

It is convenient to start from the Lagrangian density 
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describing the unstable form of scalar electrodynamics. 

See equations (184) and (185). The field transformation 

analogous to (186) is introduced except that the value of 

the parameter 'u' is not fixed at the value of the classical 

minimum. The result is, 

(204) 

Note that this is the same as (187) and (188) except for two 

extra terms; 

(205) 

It is not difficult to convince oneself that the canonical 

quantization previously performed, will be unchanged by the 

addition of the terms (205). Essentially, this is because 

they do not involve any vector fields. With the under-

standing that covariant - r * products are used, the theory 

may be described by the Lagrangi an density (204) plus the 

extra term coming from the " T * convention. 

^ l ) (206) 

The parameters and fields appearing in (204) and (206) are 

"bare" or "unrenormalized" quantities. To convert to 

"renormalized" parameters, a rescaling must be done. First 
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note however, that an extra parameter has been smuggled in 

through the transformation (186). It follows therefore, that 

in principle only five independent rescalings are permissible 

in the new theory. Hence one relationship must exist among 

the six parameters occurring in (204). This relationship 

is in fact that the new fields must correspond asymptotically 

to operators which create (annihilate) positive energy, one 

particle states from the ground state of the asymmetric 

vacuum. That a value for 'u' can be found which satisfies 

this property, must at this stage be regarded as a working 

hypothesis. If then, 'u1 is to be taken as a meaningful 

quantity, it should in principle be expressible in terms of 

the three bare parameters appearing in the symmetric theory 

(184) 

u (e.,*, p.) ( 2 0 7 ) 

Hence a transition to rescaled quantities induces the correct 

re scaling of 'u'. 

In practice, however, one would have to choose 'u' to 

satisfy the above prescriptions in the renormalized theory 

and so having deduced (207) for renormalized parameters, 

could then proceed to the corresponding relationships between 

bare quantities. The essential point is, however, that the 

rescaling of 'u' is a passive one. 

To determine the correct rescaling of (204) it is 

customary to adjust 'u' so that the vacuum expectation value 

of the scalar field <})(x) vanishes. It is far from clear 
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that such a procedure is meaningful in the present case. 

This requirement involves an off-shell (Tadpole) Greens 

function, which as we have seen in previous sections, do 

not exist in any reasonable mathematical sense. Ideally 

a condition on the S-matrix elements would be preferable, 

although at the present date, no such method appears to be 

avai1ab1e . 

The renormalization parameters are defined by 

<p ztl)/zaz* (208) 

p.2 •*• £ f2 <x l -
Owing to the symmetrical way in which fu' and '<J>!(x) appear 

in (186), we can take as a first attempt, 

u -^t^u (209) 

The result of these substitutions gives, 

% 9 ^ ^ ^ r (210) 

where 
-i(ch2fj-cipbtf * ictxxybfi 

-iw-ikv^o+i) 
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xcr" - i f v ' x ^ - s ^ b v ) 1 * 

i V V - u 

The mass ratio relationship can also be reintroduced between 

renormalized quantities 

cf u ) 4 

It is not possible to fix the values of m, y , e and f, to 

all orders of perturbation independently. Anticipating 

renormalizabi1ity of the theory, however, modifications 

should only involve finite corrections. In the following, 

any finite corrections are ignored and the four parameters 

treated effectively as independent. 

COMPUTATION OF COUNTERTERMS 

By straightforward application of the graphical rules 

derivable from (210), the divergent pieces of the four lowest 

order scalar vertex functions may be evaluated. 

(161) 

D I J O T ( % - J L _ U L . 5 3 -
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(2> (ii • . r 
d i u T W s 4 $ 

miz-utz) L 

(3) 

-•fUCiCTi.nX-PrPj) ? 6f za) . 
/jlm- j 

d u u T m I?, P?3C-P,-Px-?s3) = _L • - L . j 

(4) 

h" 
(N) Note that the notation div T has been used to represent 

contributions from both vector and scalar intermediate states 
(N) 

This is to be distinguished from Div T which includes 

only the vector intermediate states. The function 

..,PN) was first introduced in (1-23). If one 

tries to fix the counterterm 6y2 in (1) so that the tadpole 

vanishes, serious difficulties are encountered. Fixing the 

pole and residue of the propagator, via the self energy (2), 

and combining the results with the tadpole condition, fixes 

the renormalization constants, 6y2, Z^ and Z<J> . These values 

are in complete disagreement with the requirement that the 

three point and four point S-matrix processes (involving 3 & 
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should be finite. This is clear from substitution. To 

remedy the situation, the tadpole condition is dropped, and 

the original scheme whereby finite S-matrix elements are 

demanded, is readopted. This method is still overdetermined, 

so that the question of consistency is still an important 

one. Firstly the two-point and three point vertex functions 

must have tadpole contributions included Fig. (24) 

<f> N j® 
x ' 

n 

Figure 24 

(213) 

Fixing the pole and residue of the propagator, via the self-

energy (213) gives the conditions. 
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- j + r 3 e a - - f g J 
cu.it)hz-^z) ( 2 1 5 ) 

tirmtf-zin* = -•"-v 

So that the renormalized self-energy takes on the form, 

d l u T a V ? ) ) . ( 2 1 6 ) 

The three point vertex is also fixed on mass shell giving, 

e z r i x - f m - ^ - u j z f ^ s e y ( 2 1 
(tplpci-u/2) 

This together with (215) determines all the renormalization 

parame te rs, 

1 + 1 3 e * - f » J 
(vrohi-uiz) 

Z1 • 1 + [34* + 6eV-P] 
(ff.1t)2 (2.-co/2.) 

= ( 2 1 8 ) 

(ff-tt)2 (l-cj/z) 

The crucial test comes when (218) is substituted into (212): (4) 

for the four point function. The value is, 
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d u j T 3 i f b i + 1/1 f W (219) 

( w i ) 2 c 2 - w / a ) • h 4 -

This is precisely the result found earlier in (124) and (140) 

based on the requirement of finiteness of the S-matrix 

elements. Furthermore, substituting (218) into the tadpole 
\ 

(212):(1) gives 

(220) 

which is in agreement with earlier conclusion with regards to 

the non existence of this object (in the mathematical sense). 

It seems likely that for higher order calculations, the re-

scaling (209) is too restrictive. To the one loop order, 

however, this is acceptable. 

VECTOR PROCESSES 

Straightforward evaluation of the one loop contributions 

to the vector self energy, leads via (210) to 

i d i u t l ^ t p u t a ^ e y 

(mcftz-un) ( 2 2 1 ) 

cuny0-uii> (unyci-uju) 

Introducing the spin projectors, the spin-one and spin-zero 

contributions to the self energy can be separated 
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7uv(p> - + pmtvt10cp2> < 2 2 2> 
p a / p2 

One must ensure that extra singularities are not introduced. 

The condition necessary for this is, 

tt/o) = 7te6i) (223) 

Inverting (222) gives 

Applying (224) to (221) gives, 

(224) 

(225) 

diuti/p.) = tf t ^ m f i > h 

Note how the condition (223) is automatically satisfied 

independently of the value of and 2^. In fact z o 

dcutvpo s d'cutiocp1) - -i)pz (226) 

The inverse propagator is given by, 

a ' / c p ) * - p'a^v+w.q.v + (t.-m/pwpy+pr p y p m y p o ( 2 2 7 ) 

So after inversion and use of (226), one has 
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A'v(p) - 0 3 ^ + PmPv/? 2) _ . v»v,/pi 
r — "t" — (228) 

pa-wit-7ro(p') •teg-ftp8-

The renorma1ization condition chosen, is to fix the trans-

verse piece of the propagator to behave like a simple pole 

with unit residue at p 2 z m 2 . This fixes the counterterms, 

tzq - 1 + u e j h f u 

s 1 - 5 f t V 3 

(^"tt^ca-u/a) 

The londitudinal piece of the propagator remains divergent, 

even after renormalization. Nevertheless, the S-matrix 

element is well defined, owing to the transverse nature of 

the polarization vectors. 

(229) 

fys^m^o (230) 

The lowest radiative corrections to the vertex, may 

also be calculated in the standard way. 

d u / r ^ k > p y - < ? - p » = ^ i&kdp c y v - w - p v ^ p , ? 

(231) 
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ie* [ a h v t t ^ m w ' - ^ ^ v k l - s i pv 

3 (u-it 

Picking out the terms proportional to g ^ f r o m (231), and 

adjusting them so that they vanish when the external legs of 

the vertex are put on shell, fixes the counterterm Z^, 

7,% = 1 + 
(u-tti^-idlz) 

Fortunately this is in complete agreement with (229). 

Despite the large body of consistency obtained so far, we 

now encounter a serious difficulty. Examination of (231) 

reveals that the polarization vectors and e^(p), which 

are included in the relevant scattering process, are in-

sufficient to remove the remaining terms via condition (230). 

In particular, the term, 

it1 i?! 

(utc? vutz-03/z) 
remains. This implies that even the renormalized S-matrix 

fails to exist as the regulator is removed (w 4) . In an 

attempt to understand this result we digress to a brief 

account of the R^ - "Renorma1izab1e Gauge". 

RENORMALIZABLE GAUGE 

Alternative to the U-gauge used so far there exists a 

class of gauges, known collectively as the !R 1 or 
5) 

'renormalizable' gauge. The advantage of using such a 
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/ 

gauge stems from the improved high energy behaviour of the 

vector propagator which renders the theory manifestly re-

normalizable by simple power-counting arguments. In such 

a gauge one encounters non-physical "ghost" particles which 

although a necessary consequence of working in the R^ gauge, 

obscure the unitary nature the S-matrix. 

The S-matrix in this formulation has been shown to be 

independent of any choice of gauge taken from the R^ class, 

where a may take any finite value. The Unitary gauge 

corresponds to the limiting case a 00; a limit which is 

somewhat formal owing to the highly singular nature of the 

limiting theory. Without going into details, the Feynman 

Rules for this formulation are 

= - i ( -kpkv (l-cl)/(k2-

it*- /u.i 

= ia^ck) = 

- i A ^ C k ) = 

+ cl 

* i&^ck) 
^-^jlif'tis 

A ' X - - i f  
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= - 3 H 2 = - 3 H 2 

^ =-iw^-f ^ = e f v p v 

"v s 

+ Counterterms 

Figure 25 

Note that in the limit a -> 00, the rules themselves go over 

into the U-gauge rules, (58) 

0 

While the ghost loops go over into the 'log' term. The 

conditions under which the U and R a gauges may be taken as 

completely equivalent, (and not just at the tree-graph level), 

can be given as follows. Consider all Feynman graphs G 

contributing to a process M at the N-loop order. Then the 

contribution can be written as an integral over the loop 
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momenta 

10l,1k,.-,bo3 s ^ s c k ; ( 2 3 4 ) 
0-

Where the external momenta P.. . .P„ are restricted to mass 1 m 
shell values, the index R indicates renormalized integrands, 

and the absence of the parameter 'a' on the left hand side 

is a statement of gauge independence of the S-matrix. The 

condition for equivalence is that the limit 

m c h ^ , . , ^ - ^(dtiei^ck;?^;*) (235) 

can be taken through the integration and summation sign; 

i.e. there exists a uniform convergence with respect to these 

two operations. The result (232) indicates that this is 

not satisfied, owing to the singular nature of the U-gauge. 

Our conclusion must be, therefore, that the U-gauge and 

gauge formulations, as they stand, are indeed inequi-

valent. An important question to be faced here is whether 

the Unitary Gauge is inconsistent (with the implication that 

the R^-gauge is not Unitary) or whether the manipulation of 

such highly singular operators of the U-gauge parameteri-

zation, is inadequate. Although no definite conclusion can 

be drawn as yet, it seems to me that the latter hypothesis 

is more likely. Nevertheless it may be possible to add an 

extra piece to the Lagrangian density resulting in a well 

defined theory. 
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SECTION TWO 

The Infra-Red Problem in Non-Abelian Gauge Theories 
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THE INFRA-RED PROBLEM 

The origin of the infra-red problem in Quantum Electro 

dynamics is known to stem from an invalid assumption, 

(implicit in the conventional perturbation approach), that 

both initial and final asymptotic states contain a finite 

number of photons. The correct asymptotic states are in 

fact ones which in general contain an infinite number of 

photons. Perhaps one of the nicest ways of viewing the 

problem is in the decomposition of the Hamiltonian into 

transient and persistent effects. The essential point is 

that particles at asymptotic tiroes are not characterized 

by free field equations, but by equations which include all 

kinds of persistent interactions. In massive field theories 

one usually needs to account only for the clouds of virtual 

quanta which surround each asymptotic particle. In contrast 

theories involving massless fields, have interactions which 

fall off according to the inverse square law. Unfortunately 

this power law decrease is so slow that two charged particles 

still produce an effect on each other, even for asymptotic 

times. In addition to this any deviation from free particle 

motion is sufficient to induce photon radiation. In summary 

therefore, the asymptotic behaviour of the charged matter 

and radiation fields are described by including self inter-

actions and long range coulomb forces together with "coherent 

showers of photons. It is indeed fortunate that in the 

present instance these latter effects are essentailly classi-

cal in nature and may be accounted for via non perturbative 

solutions to the relevant equations of motion. Explicit 
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knowledge of these solutions proves to be the crucial factor 

in obtaining a full understanding of the problem. In the 

case of the Yang-Mills field there are at the present time 

no such relevant non-perturbative solutions. It is this 

fact which prohibits a direct test of the ideas presented 

below and for this reason, can only be presented as specu-

lation or hypothesis. The essential difference between 

the Yang-Mills field and Quantum Electrodynamics is, in 

the present context, that the former gauge field undergoes 

self interactions whereas the latter does not. Owing to 

the massiessness of the field, the kinematics do not prohibit 

a single particle from decaying into two other particles; 

the three trajectories being colinear. The essential point 

is that this transition mode is a persistent one and con-

sequently must be included in the description of the asymp-

totic motion of the initial and final states. 

Asymptotic States 

It is instructive to examine the motion of a single 

quantum of radiation. Let it be monochromatic at t = o, 

and thus describable at this instant by a state from a 

Fock space . 

i lp(o); e > - i c d ^ ( 1 ) 

f= -tlcj 

After time 1t' the state can again be expanded on the Fock 

basis, 
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i cptt);e>- £ iu)i>ai«?> + • • -
l lj (2) 

In other words at time ftf the state | h a s a finite 

probability for any number of quanta being present provided 

that the sum of the energies of the constituent quanta, is 

equal to the original energy 'E'. In fact since this 

effect is always present one expects in the limit of large 

times that the state has a large probability of describing 

an infin'te number of quanta with net energy 'E!. Hence 

we reach the conclusion that the final state does not des-

cribe a fixed number of quanta, but rather a co-linear 

"cascade" of quanta of indefinite number but finite total 

energy. In mathematical terms, any attempted description 

in terms of a conventional Fock state is utterly hopeless. 

It is clearly meaningful to describe scattering only between 

such cascade states. To do this however requires an exact 

solution of the asymptotes. The unavailability of such a 

solution has essentially stopped further progress in this 

direction. 

The Persistent Effects 

The claim in the previous section that the cascade 

effect is a persistent phenomenon, can be shown in a rather 

transparent way by adapting a method introduced by Faddeev 

and Kulish to deal with the Infra-Red problem of Quantum 

Electrodynamics. Consider for simplicity the massless 
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scalar field with <J>3 interactions, 

£? - t c w x d t y ( 3 ) 

In the usual interaction picture one has for the "perturbing 

p o ten t i a 1" 

VCt) = f j /dpfUqdyuCteT>d/UClfI A f i i ^ i t k/ 

To pick out the persistent part of this potential one has 

to see which parts contribute for large times (t ± 00) . 

Owing to the exponential factor, it will be those regions of 

k-space for which the phase factors vanish, since any other 

value will lead to an infinitely oscillating phase which will 

average to zero. As an example consider the term 
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At asymptotic times one needs 

(6) 

This will hold provided either (a) k° or k° is very small, 

which is the infrared region, or (b) hq//]^ which is the 

cascade region. This procedure can be applied to the 

entire potential (4) and the persistent contribution seperated. 

The result is not presented here owing to its unattackabi1ity. 

In principle one could then use this to determine the precise 

nature of the asymptotic states. Many people have suggested 

that in the case of Yang-Mills this cascade decay is for-

bidden by gauge invariance. It is felt, however, that 

owing to the highly singular nature of the asymptotic form 

of the propagator this argument could well be false. Finally, 

there exists a very general theorem proved by T.D. Lee and 

M. Nauenberg that by averaging over sufficiently large 

ensembles of initial and final states, finite transition 

probabilities may be obtained. In the language of this 

section these ensembles correspond to Fock space projections 

of the cascade states. 
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SECTION THREE 

The Dynamical Breakdown of Non-Abelian Gauge Fields 



Ill 

CONVENTIONS 

The final section of this thesis is concerned with 

the dynamics of the Yang-Mills Field, expressing a local 

invariance under the Ispin group SU(2). The following 

remarks should be sufficient to fix notational conventions. 

The local symmetry amounts to the invariance of the 

theory under the replacements 

where any two fields belonging to the same representation 

obey the properties 

Transition from a globally invariant theory to a local one, 

is generally achieved by replacing ordinary derivatives 

(appearing in the Lagrangian density) by their "covariant" 

counterparts V 

8) 

g o - * = 

( i ) 

(2) 

( A x B ) o c = 6obc. A b A d 

(3) 

where the "gauge field" B^ transforms according to the rule, 

s ^ = - i j i a ^ n - 1 (4) 
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Although (4) appears to depend on the representation matrices 

ft, it is, in fact, only dependent on the structure constants. 

The inhomogeneous nature of this transformation is so con-

trived that V transforms homogeneously. The tensor 

f w - w c p y (5) 

also transforms homogeneously and serves for the construction 

of an invariant Lagrangian density from which the field 

equations are to be derived 

v ± t2 * 
&ym ~ u jj, vtf - u- xjuv (6) 

In equation (6) the 'square' indicates summation over group, 

as well as Lorentz, indices. To work with (6) it is also 

necessary to choose a gauge condition. Addition of the 

t e rm 

= -ik(w) SLoc y (7) 

leads to a family known collectively as the linear a-gauge, 

provided however that additional fields, obeying Fermi 

statistics, are included 

^fpp - (fyu) <d ̂ n ^ f S"CJ KCJ) 
( 8 ) 

Finally a coupling to the classical source J^(x) for later 

manipulations, leads to the theory 
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-iu (%l1?* (dfixtfis) * B" (9) 

Application of the Euler-Lagrange equations leads to three 

coupled field equations. 

It is the system (10) which we take to describe the 

dynamics of our theory. 

SCHWINGER MECHANISM 

The conditions under which the "massless" field 

equations (10) can result in a system with massive charac-

teristics was first given by Schwinger. The complete inverse 

vector propagator is of the form, 

(a) + £ 3 p 8 v 3 v * t xcj + 

(b) (10) 

(c) 
doc - e ^ x o ^ o ) ) ^ o 

(jpvck!) - - fe*3pv + ten lev - i t e p t e ^ i t ^ v d e ) 

( i d 

differs from its free field couterpart by the addition of a 

"Self Energy" term describing all the radiative corrections 

which are one-particle irreducible with respect to a cut 
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between the external legs 

i T t y v = < 1 2 ) 

' h 

Inversion of (11) is achieved by first splitting the self 

energy contribution into transverse and londitudinal pieces, 
i.e. 

T I u V ( W ) s C3uv-Ieufey/le*)7Ufe*> 
(13) 

where we have used the fact that the londitudinal piece of 

the self energy vanishes. This is a non-perturbative result 

which follows from a Ward identity. The dressed propagator 

is thus , 

- ( s ^ - i e ^ v / f e o r ^ - t c c f e d r - ^ f e ^ y / ^ ( 1 4 ) 

As before the Ispin labels have been suppressed. Schwingers 

observation was simply, that if ir(o) is positive, non-zero, 

the self energy (13) has a pole at zero momentum, and the 

vector propagator (14) acquires a massive nature. Further-

more, due to the i r reducib i 1 i ty condition .imposed on the 

self energy (12), the pole is clearly of a dynamical origin 

and expresses the formation of a composite zero-mass bound 

state. This additional degree of freedom is absorbed by 

the vector field, producing a massive state in accordance 

with the phenomenon first investigated in the context of 

field theory by Higgs. Manipulation of bound state modes 
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introduces, however, certain technical difficulties related 

to the necessity of infinite resummation of perturbation 

graphs. In order to circumvent this problem, one generally 

resorts to the weaker criteria of "self-consistency" and in 

so doing reduces ones conclusions from relative certainty 

to mere possibility. (It is in this sense that a verdict 

of impossibility may be regarded as carrying a slightly 

greater force . ) 

FORM OF THE SPONTANEOUSLY BROKEN SOLUTION 

Although all possible forms of spontaneously broken 

solutions are of interest in themsleves, one form stands 

out as being particularly "natural" for SU(2). To indicate 

this it is convenient to express the gauge field in the so 

called "charged basis" rather than the "cartesian basis". 

The former basis rendering the third component of Ispin 

diagonal. This permits one to associate a charge quantum 

number with the field quanta. Perhaps the most natural 

breaking which can be envisaged is that whereby the positively 

and negatively charged particles acquire an equal mass 1 m' 

while the neutral particle remains massless (photon). Hence 

the hypothesised breaking is that by which the full SU(2) 

symmetry is reduced to its U(l) subgroup. 

In the charged basis, 

|+> |0> | - > (15) 

the generators take the form, 
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q _l 
•2. 

0 1 0 
1 o 1 
o 1 0 

q . JL 
s/l 

0 - 1 o 
1 o -i 
o i 0 1 (16) 

is,-
t o o 
0 0 0 
O O -/J 

while the mass matrix is 

m 
2 = ra 2 

ri o o 
0 0 0 
0 O 1 

(17) 

Transition back to the Cartesian basis is implemented by the 

transformation matrix <C|Q> 

i o - 2 2 l o . X o . i c > 
Qe£+,o,-l (18) 

< a l l > * £ 

"-( i 0 
0 0 u 
1 i 0 

This gives for the mass matrix in the Cartesian basis, 

m 
1 0 0 ' 
0 1 0 

L o o o 
(19) 

As the final expression indicates, this is clearly invariant 

under the U(l) subgroup. 
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THE DYSON EQUATION FOR THE SELF ENERGY 

It is convenient to write down an equation for the 

self energy in the Dyson form. First consider the interaction 

picture diagrams corresponding to the Lagrangian density (9) 

a ; itfhti)* -ttffeulev^b 

kl k4 

A 
bjs^ tft 

: t £abc [ 

- i g3cd I q ^ 9^8 - 9 ^ 3 / s ? ] 

: i a ^ c f e l = ^ 

a 

Figure 1 

By taking the vacuum expectation value of equation (10a) 

between states describing the vacuum at very early and very 

late times and replacing the vector fields by functional 
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derivatives, one arrives at an expression for the generating 

functional for disconnected Greens functions, 

rtj - ; < o i o > ; . O " 

in terms of the same with two ghost field insertions; although 

straightforward to write equations in algebraic form, it is 

a considerable simplification to represent them by the inter-

action picture diagrams. This avoids the long equations 

which tend to hide the underlying simplicity of the idea 

involved 

a . - C T - C T - h 4 < P * i ! * < f i < < $ f s < T 
(21) 

Where K x is the operator defining the free vector propagator 

via 

i<*-a»- (03fiv - + avxto = 9 ^ <5 to 

The double arrow indicates the amputation of a vector pro-

pagator, whilst all other symbols are given in Fig. (1) 

and (20). Restriction to the connected parts of the Green's 

functions is achieved via the substitution, 

j f c z ^ h . r w c d - ^ ( 2 3 ) 

co , ̂  
i w r f l = tl 
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which converts (21) into, 

ftHD- f t y O + 

(24) 

yO x/V 
T g + X D + 

after division by the common factor of Z4lSC[jr] . We now 

differentiate functionally once to add a second leg to the 

bubble. 

+ + + contact term. 

Separating out the full two point connected Green's function 

on this second leg so that the remainder is one particle 

irreducible, and turning off the external source gives, 

(26) 

+ ° + c o n t a c t t e r m -
<- • xy 

Where the assumption has been made that the "tadpole" graph 

vanishes with the external source whereas the "seagull" 

graph does not. Note that by this assumption the Lagrangian 

density (9) cannot be taken Wick-ordered. By regrouping 
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(26) and using the definition (11) for the inverse 'dressed' 

propagator gives 

i t v = ( 2 7 ) 

This is the Dyson equation for the self energy in terms of 

the 'dressed' vertices of Fig. (1). 

The appearance of a pole in the self energy can now 

be attributed to a bound state in a simple way. Consider 

the first diagram on the righthand side of (27). The 

vertex function appearing here is one particle irreducible 

with respect to the external leg, and thus contains no poles 

corresponding to the elementary field B (x). The assumption 
y a 

is, however, that there exists a bound state pole here, 

corresponding to a composite objecttdiagramatically, 

- + R e g u i a r ( 2 8 ) 

• / • $ v • fi V li 
Where the 'ladder' is meant to represent the bound state 

pole. As it stands, this diagram alone is not gauge in-

variant. It must be combined with the remainder of (27), 

for which the corresponding statements can be made. 

SELF CONSISTENT APPROXIMATION 

One method of trying to establish an approximation 

scheme is to add a mass term directly to the Lagrangian 

density (9) and attempt to do calculations in a self consistent 
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manner. The main obstacle to this program is that the loss 

of gauge invariance results in a theory which has every 

indication of being non-renormalizable. This calculation 

is performed here to the lowest order of approximation not 

only for the insight to be gained, but also for future use in 

a more realistic version of approximation. Adding a mass 

term to the Lagrangian density (9) and at the same time 

assuming that the bare mass vanishes, is equivalent to fixing 

the physical mass and the mass-counterterm to be equal and 

opposite. Let this term be, 

i M l b 3 ^ 3 M b (29) 

and denote its graph by, 

X - - iflabSpV (30) 

Only the divergent terms are considered since it is these 

which determine whether consistency can be achieved. Finite 

corrections can be dealt with later. The one loop contribu-

tions to (27) are 

counter terms 

The first three diagrams are those of the usual massless 

Yang-Mills field and consequently are gauge invariant. They 

give a contribution 

0 ^ 3 ) ( 8 l e ' - i e ^ (3i) 

(4.t01 c2-w/2) 
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The last two graphs give the net contribution, 

i**™-** 

Note however, that (32) is not gauge invariant. This is a 

serious difficulty. Let us bypass this difficulty momen-

tarily by adding to (32) an extra term to give a net gauge 

invariant result, 

| l ^ W u , - ^ 
* 1 1 Ca -«J/a) N 

The net result (31) and (33) gives 

8 u > ik;%) - je»f jgk 9&>+1u-t+w'lmu](v ( 3 4 ) 

cuitikz-ulz) 
+ (counter terms). 

This result looks promising but there still remains the 

problems of gauge invariance and non-renorma1izabi1ity. 

In order to try to overcome these problems, we turn to a 
<0 very new approach suggested by J. Cornwall. 

MASSIVE GAUGE-INVARIANT YANG-MILLS FIELDS 

Cornwall's idea was to add to the massless Yang-Mills 

Lagrangian density a mass-like term which is itself gauge 

invariant. The price one has to pay for such a method is 

that resulting term is both non-local and non-polynomial. 
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It is very easy to construct a gauge invariant vector by 

using the group property of the gauge transformations as 

follows. Consider the action of the transformation (4) 

which we now write as, 

b ? * ̂  - n b k i r f - i ns^ii' 
- T 

(35) 

The action of two transformations may be represented by the 

diagram 

whe re 
- • l c b . f l ) 

3® » l(3,6) 

(36) 

using the group property of the transformation (35) one also 

has , 

3 ? * -fP CB t t, ©A"') 

hence from (36), 

(37) 

This is the required relation; f^(B,0) is an invariant 

provided one imposes the transformation law, 
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(38) 
o + en-' 

As (38) stands however, it involves one extra field *0(x). 

The trick is to choose 9(x) as a function of B (x) in such y 

a way that the transformation (35) acting on B^ automatically 

induces the correct transformation of 6(x) 

© c b ^ j t ' o o = © c b * ; * ) ( 3 9 ) 

The invariant f (B,0) is in fact representation independent, 

as noted previously. In component form (35) becomes, 

qc*) « explie<tawta] (40) 

Consider a second quantity which transforms like a 

group vector 

(41) 
-1 

yabcti * o t i c f w < f > ) 

The advantage of this form is that it is p'ossible to construct 

an invariant equation relating B and 0 (or equivalently <f>) y 3. 

which is found to also satisfy the condition (39). Using 

the homogeneous transformation law for the covariant deri-

vative one finds that, 

v / ^ - o (42) 
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is an invariant equation. Using (3) and (41) this can be 

cast into a more convenient form. 

• r + -

ip*»(y-'-a^)"-

These equations form the basis of the gauge invariant method 

- one adds the term, 

= ( 4 4 ) 

to the Lagrange density (9). By construction this term 

is gauge invariant (38), and can be computed from (40) and 

(43) to any desired order of approximation. Explicit know-

ledge of 'f^' allows one to perform gauge invariant calculations 

in a straightforward manner. Owing to the non-linear nature 

of (43), an exact solution does not seem possible. It is 

therefore necessary to work within a perturbative scheme. 

Since calculations will be performed only to the one loop 

level it is sufficient to-know 'f^1 t o the second power of 

the coupling constant. Two further comments are necessary. 

Firstly, the additional term (44) should be adjusted (with 

respect to the corresponding counterterm) so that the bare 

mass vanishes. More precisely stated, the bare mass must 

vanish as the regulator is removed. This can be checked by 

using a "Cal1an-Symanzik" type equation. Secondly, the 

vector 'fy1 is invariant under a restricted class of gauge 
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transformations (1) and (4). Those obeying 

j 1 6 0 * e * p e t e < j a » t * ] ( 4 5 ) 

must be excluded. This condition removes terms like 
a from the gauge transformed f^. 

CALCULATION OF f a 

We have the definitions 

^ ( b . r t - i i b k n - ' - i - q ^ - 1 

t * if AX® 
ska - eatpfufcl : 4>=4>*t* 

e A ® e « 3 + C A > B l + {i I ^ 1 ^ 1 3 4 

(46) 

Firstly one must convert (46) to the form 

•fyCB.r^ * - T * p a b C & d f f a (47) 

Using the identity, 

A -n R>~a ^ . r A ^ 1 n r A -^-n . (48) 

gives 

« - e(4>xby) + ^ e ^ x c ^ x s ^ + o c e 1 ) 

Secondly, using the identity, 

< l % t ' k = - iilmamlb- 1 

gives, 

(49) 
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. »- {ie + i^)1 [4>M14 k E<J>, • • \ 

- - ieSp<t> + i t £®(4>*8p40 - £ i 4 X W> x&r<t>)' 

Hence, 

+ (so) 

From this follows the value for f^(B,n); 

V " e f + + i 1 c < t > x ® ̂  " •^* * 3 e 

(51) 

(52) 

(53) 

(54) 

where g is any group vector. The inverse of (54) is thus, 

3 + + • • ( 5 5 ) 

o 

2 ' (J) 1 must be determined from (43) to order e , 

4 =: A + e E + e l T 

substituting into (51) gives, 

•fp* B p - e ^ A x B p ) -e^exSp'i' + £ e M x C A * : ^ - 8 p A 

+ - £ e * A x ( A x 8 p A ) 

The matrix 'a' appearing in (47) follows from (49), 
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which on application to (51) gives 

H f , ' or'-ff = e'txtotfyti*- ( 5 6 ) 

So that from (56) and (41) we have, 

T g , ^ + i eC<t>x£) " i t ^ x c ^ + o c e s ) 

(57) 
z % " 2 + + 3) 

Applying the result (57) to equation (43) yields after some 

simplification 

o p 4 > ) x c * x b » 0 " £ + o c e 3 ) 

(58) 

This equation is easily solved by interation. Substituting 

(52) into (58) gives 

A s P " 4 SuS 1* 

E « D " ' I B ^ x S H A - (59) 

t = a " 1 [ b p x a h e - ^ e x a ^ + 1 

+ fcO„AWA*B«0 - i ( d ^ x C A i O f A ) } 

Finally from (44), (51) and (59) one arrives at the mass term 

order e^; 

(60) 
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+ t (A*3„E) + i ~ £ A x ( A * 8,.A)] + £ e* ( f y x A 

- S ^ E + ^ A x c y A V M ' - C S f i X A -»-£Ax3,.A) 

Enormous simplification may be achieved by working in the 

Landau gauge (a = o). Only two types of graph topology 

occur in applying (60) to (27). 

- O (61 ) 

where the "square" three and four point vertices are those 

corresponding to (60). Rather than use symmetrized vertices 

it is computationally more convenient to start directly from 

the Gell-Mann Low formula and pick out those pairings which 

do not vanish under a transverse projection. The first 

graph of (61) has a vanishing contribution. This was first 

observed by Cornwall. He completely missed the graphs of 

the second type in (61) and wrongly concluded that the break-

down does not appear at the one-loop level. Inclusion of 

these latter graphs does in fact produce the net term, 

- 3 e l i [ T r M * & h - M d > l T / P v < 6 2) 
ClfTO2- C 2.-co/2.) ' 1>1 

which is precisely the addition that was made to (32) in 

order to reach a gauge invariant answer. Occurring among 

the contributions to (62) are terms of the form 1/p^ and 1/0. 

Fortunately these all cancel. If this method is to be 

acceptable, such cancellations must occur to all orders of 

perturbation. Whether this is so remains at present an open 
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ques tion. 

Although this method looks very promising there are 

two difficulties to be faced. Firstly a brief examination 

of (34) indicates that all three vector particles will 

acquire a mass. This is in conflict with our requirement 

of naturalness (17) and (19). The trouble is that the 

restricted gauge transformations are not sufficient keep the 

"photon" massless in finite order perturbation theory and 

even if one begins with the mass matrix (19), the third 

component field acquires a mass already at the one loop 

level. The second difficulty is that this approach gives 

no clue as to the stability of the broken solution . In 

view of these facts we turn to another approach which appears 

to offer a way round these difficulties. 

THE FUNCTIONAL APPROACH 

This method involves computing an effective potential 

for the composite field operator, 

s a c b^fe 
(63) 

The following is incomplete in as much as 'renormalization 

has not been fully accounted for, and may even be an insur-

mountable problem. The method was devised by Gross and 
10} . . 

Neveu for dealing with + 4 and interactions. 

The first stage is to modify the four point vertex 

appearing in the Yang-Mills Lagrangian density by introducing 

a Lagrangian multiplier field. 
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Normal Vertex: (64) 

Modified Vertex: _ — C C* , .f ^ 
u. oalo Oab OOJX Sfefa 

" j e S 

The equation of motion for the S-field is simply 

(65) 

so that the two forms in (64) are indeed equivalent. One 

is interested in the object. 

e t p i v ^ m « ^ s & b p 55632560 e x p i +etab3£b^(66> 

Or using the multiplier formulation, 

= s ^ ^ c ^ c x f e x ^ q s g <67> 

where is the same Lagrangian density as before but with 

the modification (64). The trick is to perform a change of 

variables in (67) 

%a\o s/w = •+ & b 7 e t (fi?) 

giving the form, 

e x p i x c x i = d^+ifc^+sifcx^ces) 

or simply 
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where, 

e x p I W t J 

The point of this procedure is that the graphs contributing 

to the effective potential corresponding to (70), are easily 

classified by their topological properties, whereas those 

contributing to (67) are not. Defining the conjugate 

variables 

aw, ui = < ^ = 
^ x i o w 

(71) 

s w i m , e < ( 3 ? b ^ > » 

gives for the Legendre transforms, 

t j [ o - t ] = " w f c + j - $ d " x o * b g 4 x b to 

(72) 

T I J f S H = - plltOO T a b t o 

Taking a and $ to translationally invariant and introducing 

the effective potentials via 

t , - - $ d * x 

T \ = ' U W 

gives the relations 

jjz(f) = v/cr) 

(73) 

(74) 
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jSab - C a b + Z T a b - < £ a b T c c 

Hence calculating V^(a) gives (in principle) the value of 

U2($). The one loop calculation has been performed in the 

usual way, by adding all one-particle irreducible contributions 

The result is 

v,ccr) • -{(cqcr2*a-t<r3*<r3<r,) {-1 ea'fo^+^j 
(75) 

* ^ e t c i + c y * -f. x e v q + c ^ f x n ^(gvro-j)2-
a * a + 

+1 e.1 za-^a-ivjl tzca-ri-al)z 7 
AH- i Where . a * 

°"t 0 
otb " i a °~z 

u o 3 

and A is a large momentum cutoff. Renormalization is per-

formed by demanding that the symmetric point ( a
l t

a 2 » a
3 ) = — 

be a stationary point and that the potential has its classical 

value at a = a = a = E .* 
1 2 3 

ViCcr) = - £ (a, a,.+cr2c-3 + § ( ^ [ - 1 £c; 
(76) 

"ifocti+cr^+ctjct,) + £ lai+o-jj 2^ 

+ £ fa+cj2 (cj+cts) + £ ( q + c v ) 7 

a - 2 j 
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In principle this is the required result. One can obtain 

JJ2 and 3 parametrical in terms of a's and thus investigate 

the asymmetric solutions. This is not done here however 

since it is not clear that (76) is meaningfull. The diffi-

culty is that the external sources have been coupled to un-

renormalized operators, whereas one should really couple 

them to renormalized fields to perform these sorts of 

arguments. Consequently some of the above equations may 

cease to exist as the cutoff 'A' becomes infinite. Whether 

this difficulty can be overcome is at present an open question. 
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CONCLUSION AND OUTLOOK 

The first section of this thesis dealt with the re-

normal i z ab i 1 i ty in the U-gauge parameterization of the 

Higgs ' model. The divergent pieces of scalar and scalar-

vector vertex functions have been calculated in the one-

loop approximation. The existence of residual divergences 

which are not removed by the renormalization procedure 

prevent one from continuing scattering amplitudes off shell. 

A direct consequence of this is that one must introduce the 

"physical" masses and charges via S-matrix processes in 

contrast to the usual methods involving proper vertex 

functions. The resulting rescaled S-matrix elements are 

almost all well defined (finite) an exception being the 

lowest radiative correction to the vertex which owing 

to the quadratic nature of its divergence, cannot be rendered 

finite by charge renormalisation, even when restricted by 

mass-shell and transversality conditions. Whether this 

difficulty can be overcome is an open question. Nevertheless, 

theories of this type deserve further study since they mark 

the borderline between renormalizab1e and non-renormalizable 

theories and may provide valuable insight into latter. 

Many people have speculated that non-renormalizability may 

be connected with non-analyticity in the coupling constant. 

Owing to computational difficulties this conjecture remains 

unproven. In the present instance, however, the situation 

is far more encouraging since the apparent non-renormalizab1e 

nature of the U-gauge can be directly related to the non-
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analytic limit of the ^ ^ ^ parameterization. It is felt 

that investigation along these lines may yield interesting 

results. A possible tool for this approach is a suitable 

generalization of the "pole identities" recently noted by 

t'Hooft. These give a rather interesting characterization 

of renormalizabi1ity and appear to hold more detailed in-

formation than the usual power counting approach. 

The second section was concerned with the infra-red 

problem of non-abelian gauge theories. It is felt that 

further progress along the directions indicated here, can 

only be achieved by a computational advance. I feel that 

the physical basis underlying this phenomenon has been given 

and it remains only to find a realistic model allowing a 

direct computation of the asymptotic states, to give a direct 

test of these ideas. In the particular case of the non-

abelian gauge fields this may be a pseudoprob1 em, since 

there are strong reason to suggest that this class of theory 

acquires mass dynamically and in doing so removes the infra-

red difficulty. Nevertheless the discussion of this section 

is applicable to any massless, self interacting field and 

for this reason remains a potent question. 

The third and last section of this thesis was concerned 

with the dynamical breakdown of the Yang-Mills field. This 

line of investigation seems to me to be the most pressing one 

of all. This is for two reasons. Firstly, the dynamics of 

this system are deduced from the very reasonable postulate of 

local SU(2) invariance and unlike many other field theories, 
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does not have to justify its existence on the grounds of 

renormalizability. Secondly, this theory possesses the 

curious behaviour of asymptotic freedom, which aside from 

the computational advantages this may offer in strong inter-

action physics, is well worth investigation on account of 

its non intuitive nature and the improved flexibility of 

outlook that may thus be acquired. The main obstacle to be 

faced here is that of finding a reliable approximation 

scheme which retains gauge invariance and renormalizabi1ity . 

This is by no means a trivial task. 
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APPENDIX 

INVARIANT FUNCTIONS 

(1) 

(2) 

The notation used in the text can be summarized as, 

A^to = erile-xecfeo) te-w) 

A6!) = + i ^fe. £  lk'x ©t-|e°)^le?-yv>q 

From which the invariant "Schwinger" function, 

A = A c + ' •+ A M 

A = - i S ^ l e er i l e o t £ U 6 ) SCte'-wiD 

Performing the k° integration in (2) gives 

a m = - s v y t o j k x 0 ) 
gok 

o k 2 - fe^+yvt* 

The alternative form (3) gives the two properties used in 

the text, namely 

s k a c x . x ^ l y c o • - v a ( 4 ) 

(3) 

O (5) 
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THE COMBINATORIAL FUNCTIONS 

a,b £ 0 M : integer 

Using the simple identity, 

(a-vbv1 ( c u b - o ! ( 0 - + i 0 - o ! 
10! Ca-fi!b! a I (b-h! 

(1) can be written 

(1) 

T M * g + vl ( - 1 ) " ^ V a + b - f l i ( 2 ) 

n ^ T Ca-rt! bj a!(b-/}{ 
In the first summation of (2) we change variables a a+1 

and in the second summation b b+1 

(x+lbrm-1 a | | o | (x+jbsm-2 a ( b | (3) 

The ranges of summation can be reduced due to the vanishing 

of the summand. 

a+2b=f<-2 g-tlo! (4) 
a,b >,0 ' o . b ^ o 

so that by definition (1), 

i m - z = 0 (5) 

Relation (5) can be used to evaluate I M. Defining the 
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generating function 

6 0 0 = 5 I ^ t * (6) 
M » 0 

We can sum over equation (5) after the replacement M M+2 . 

m-0 m'o h-c 

hence, 

t 2 6 C O + a t £ 6 C O - I „ $ + 1 6 C 0 - I . - 1,-ti = O 

From equation (1) we have I = 1, = -2 giving, 

t 2 G l O 4 a t I S C O - 1 ] •* £ 6 M - 1 + a t ] = o 

i' e" ( i + t ^ g c o - i ( 7 ) 

Expanding (7) in a power series in 't' gives 

oo 

G C O m C l + t V 2 « S 0 - l ) M ( i + M ) t M 

m=0 

equating (6) and (8) gives the required result. 

To calculate J„ we use (1) and (9) m 

(8) 

(9) 

7 M - £ 0 - 1 ) ^ 2 * 0 0 4 ^ ) . ' 
a 4 2 b = m a j b | 
a , b > 0 

(185) 
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Multiplying (10) by M, and using the fact, that inside the 

summation M = a + 2b gives, 

T b t r m b ! JT7r-i)! 

In the first summation, change a a + 1 while in the second 

b b + 1. Reducing the range of summation as in (4) gives, 

M 7 m — 2 D - 2 2 M ) a + k r Cartel 
*+2b=tf-f a , b | a+2b=M-2 c U b ' (12) 
a,b >/0 ' a,b>/0 % • 

Applying definition (1) to (12) 

m• t m - ~ 2 im-i ~ 2 i m - 2 

which on substitution of (9) gives 

or (13) 

Tm • * k I ) M 
m 

To evaluate K, L and M it is convenient to. define a more 

general function. 

For M £ 2, N £ 1 we can write 



14 3 

(16) 

©M v N-t  = 

so that, 

© h . a m - i ! ' i u f r c t ) } - £ i (15) 

ai>/6 *i>/0 

Hence from (14) and (15) we have 

n 

cl-c 

Iterating (16) gives 

N b 
© m n - o h # o + £ £ © m - f ) a 

From (14) one always has, 

a 1 (18) 

so that (17) and (18) give 

n b 

C ( 1 9 ) 

b =0 
We proceed by induction; suppose that for all b £ o for a 

given a = M-l, 

(17) 

/ c l + 2 b - l \ 

V. 2 b - 1 / 
(20) 
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Substituting this into (19) gives, 

n b 
© m n • £ £ £ m-2\ / » n n - t \ 

2 M - 3 / b - o \ zw-z) \ zm-1 j 
(21) 

where we have used the tabulated result; 

. 4 ( r ) • ( r o 

so that from (21) if the result (20) is true for, a = M-l 

then it is also true for, a=M. To complete the calculation 

we have only to show (20) holds in the simplest case. 

Writing out (14) for the case, a = 1, b = N, we have only one 

term. 

= £ c a 1 + f ) -n+i • » ( * ? « ) 
a^n 

From which follows the general result; 

» ( w - i ) m > 1 • n > ' ° 

So from (14) and (22) 
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SYMMETRY PROPERTIES OF x~FUNCTIONS AND ^-FUNCTIONS 

It is clear from properties of a trace that the x~functions 

are unchanged under cyclic and anticyclic permutations of 

the variables {?,,..,P }. If we set the first two momenta 
1' n 

variables equal, then from the way the integrand has been 

def ined, 

but from 
l c w = m v 

it follows that 

s o t o * w v ) - s c l p o m t , i l c o - u k f a lcfcjl 

By cyclic symmetry, this is true for any pair of adjacent 

variables. 

In particular we have the property, 

0<lo,o,..>Vifi,or-,T>iA0r->P*A--)  s OOOPtJj.Pkv) 
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This is the contraction property referred to in the text. 

By an identical procedure one also has 

•,o r vo )-p i,o,.. )o,p.,y- <06}• ?i/p-,. 


