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3. 

ABSTRACT  

The observed current rise phase of a tokamak discharge cannot be 

accounted for by either classical or neoclassical theory. 

Experimentally there is a remarkable absence of any evidence for a 

current skin effect lasting a significant proportion of the current rise 

time. In large devices the skin effect should be even more pronounced 

than in the smaller, older machines, but no such effect is reported. 

One dimensional simulations model the current rise by increasing 

anomalously the transport coefficients. This would imply a high level 

of plasma turbulence and possibly an intolerable thermal loading on the 

limiter. 

A two dimensional, one fluid and Lagrangian code, TICTOK, is used 

to study the early time behaviour of a tokamak discharge. The model 

includes inertial effects but removes the fast compressional Alfven 

waves associated with the large toroidal magnetic field, by assuming a 

small plasma beta. The code has been developed to include the effect of 

tensor thermal conductivity, and auxillary heating from a neutral beam 

source which requires also that anisotropic pressure be included. 

It is found that azimuthal variations in the driving toroidal 

electric field lead to asymmetric plasma heating. The resulting increase 

of current density is found to produce plasma flow which has a 

subsequent effect on the magnetic surface structure, leading to an 

enhanced penetration of the current. 

A neutral beam source was modelled by introducing a source of 

anisotropic pressure parallel to the magnetic field and following the 

resulting change in the hot plasma equilibrium. It is possible that a 

neutral beam may affect the delicate balance between flow and equilibrium, 

where the flow produces the electric field necessary to convert the 

applied toroidal electric field to that required for equilibrium. It 

is found that the source of parallel pressure, produces plasma flow that 

affects equilibrium and gives rise to a complex convective cell pattern. 
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CHAPTER 1  

INTRODUCTION  

1.1 	HISTORY  

Over the past decade there has been a continual growth in the 

level of interest in tokamak devices. In this period there has been 

a number of notable achievements both experimental and theoretical. Two 

of these experimental achievements are cited here; the first because of 

its general importance to tokamak research, the second because of its 

bearing on this work. 

Widespread interest in the tokamak device was first generated 

when Artsimovich, the originator of the tokamak configuration, 

reported(1)'(2),(3)  that the tokamak T-3 had attained an nT value 

(product of number density and energy confinement time) of approximately 

1018 m
-3  

s and an electron temperature of about 1 keV. This represented 

a considerable advance over existing measurements and a significant 

step towards the Lawson criterion(4)  for thermonuclear breakeven 

(nT = 1020  m-3  s and on temperature = 10 keV). These results, confirmed 

by Thompson scattering measurements(5), were sufficient to direct a 

large proportion of the controlled fusion effort into the development of 

the tokamak device, in order to contain a sufficiently hot, dense plasma 

long enough for breakeven to occur. 

It has, however, long been recognised that ohmic heating of a 

tokamak plasma would alone be insufficient to raise the ion temperature 

to that required for scientific breakeven. Some form of auxiliary 

heating is necessary, and the most promising method may be direct heating 

of the ions, by charge exchange collisions, using a beam of energetic 

neutrals. Whilst initial neutral beam heating experiments in Cleo(5), 

ATC(7), and ORMAK(8)  reported ion temperature rises of about 50% with 
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modest amounts of neutral beam energy, the ion temperature was still far 

short of thermonuclear burn temperatures. However, soon after the 

commissioning of one of the first large tokamaks, the Princeton Large 

Torus (PLT), ion temperatures of approximately 5.5 keV were reported(9), 

achieved by injecting tangentially four neutral beams giving a total 

injected power of about 2 MW. Although their nz value 1018  m-3  s is no 

nearer the Lawson criterion than the T-3 figure, this result demonstrated 

that neutral beam injection is a viable method of heating a tokamak 

plasma beyond its ohmic heating limit. 

It remains now to be seen, as still larger machines, e.g. Joint 

European Torus (JET), Toroidal Fusion Test Reactor (TFTR), now under 

construction, become operational whether fit and Ti  scale as well as hoped. 
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1.2 	GEOMETRY 

The basic tokamak configuration is illustrated in Fig. 1.1. The 

electrons and ions of the plasma are confined by nested magnetic surfaces 

comprised of helical magnetic field lines. The toroidal component of the 

magnetic field, BT, produced by external coils around the torus, is much 

larger than the poloidal components of the magnetic field, Bp, produced 

by the plasma current, I. The plasma current is induced by changes of 

flux in an iron transformer core, the primary circuit of which is 

connected to the external power source (usually a capacitor bank) and the 

secondary circuit is the plasma itself. 

The magnitude of B is limited by the minimum allowable safety 

factor, q, for magnetohydrodynamic (MHD) stability; 

_ 27 _ aBT  
q 	ti 	RB 

where z is the rotational transform, and a and R are the minor and major 

radii of the plasma. 

Without additional fields, the plasma ring would expand because 

of the force that exists on an element of plasma whose current interacts 

with the magnetic field produced by a similar element on the other side 

of the plasma loop. An additional vertical magnetic field is required 

and may be produced either by eddy currents induced in a toroidal copper 

shell surrounding the plasma or by electronically controlled currents in 

external coils. The latter is more prevalent in the present generation 

of tokamaks as the resistance of a copper shell must be sufficiently 

high to allow the penetration of the toroidal field yet still low enough 

to allow eddy currents to control the plasma position. In the older 

machines, e.g. T-3, penetration of the toroidal field was achieved by 

cutting an insulating slit in the copper shell that encircled the major axis. 

p 



17. 

1.3 	EQUILIBRIUM AND STABILITY  

The equations describing ideal MHD equilibria are given below. 

Vp = J x B 

	

v x B = uoJ 	 (1.2) 

v.B = 0 

To obtain completely general equilibria these equations must be solved 

in three dimensions, which is an extremely complex problem(10), and only 

may be tackled computationally(11).  Equilibria are sought by allowing 

displacements of the plasma that only produce a negative definite change 

in the total energy. 

A useful and usual approximation to make for a tokamak is to 

assume the plasma is axisymmetric. This, however, excludes helically 

symmetric equilibria. Assuming axisymmetry the equations (1.2) combine 

to give a second order partial differential equation(12)  (Appendix C) 

o*4, = -uo  RJ4  = -uo  Rep -FF  (1.3) 

for the distribution of poloidal flux, i,. The two functions p and F 

correspond to the plasma pressure and the flux function of the poloidal 

currents, respectively, and are functions of p  only. For a tokamak with 

a circular cross section and a large aspect ratio, i.e. R/a  = 1/c  » 1, 

equation (1.3) may be solved analytically by expanding in the small 

parameter c and linearizing. For a particular value of the poloidal beta 

(p is the average plasma pressure), 

- P sp  - 
p/2uo 

(1.4) 

which describes the ratio of energy density in the plasma to that in the 

Poloidal magnetic field, Bp, at the plasma surface, a particular 
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distribution of the flux surfaces is obtained. As ap  is increased, the 

magnetic surfaces shift outward in major radius, altering the current 

distribution to balance the plasma pressure. For sp  > 1 the poloidal 

magnetic field cannot alone balance the plasma pressure so poloidal 

currents flow that oppose the plasma pressure, and also reduce the 

toroidal field. The plasma, for 13p > 1 is therefore diamagnetic. For 

sp 	R/a  the magnetic surface becomes extremely non-circular and the 

toroidal current can reverse. Shafranov(13)  suggests this is the 

limiting value for 	before increased energy losses occur. 

The toroidal magnetic field is now chosen by defining the safety 

factor, q, Eq. (1.1) so that the plasma equilibrium is stable, and the 

total beta, 

= P/B2/40 	
(a/q.R)2  sp  (1.5) 

is maximised for economic viability. We seek therefore the smallest q 

to ensure stability. The subject of MHD stability, reviewed by Wesson(14), 

is complex and shall not be dealt with in detail here. By listing the 

choices of safety factor, we summarize the methods of stabilizing the 

most important modes in a circular, large aspect ratio tokamak. 

Helical perturbations of the form 

e. i (me 	nyb ) 

where e and 0  are the poloidal toroidal angles respectively, occuring in 

an infinitely conducting plasma are stabilized if q(a) > m/n(15). Since 

for kink modes the minimum value of n is unity stability for a given m 

is obtained for q(a) > m. Another important stabilizing effect is shear 

of the magnetic field, and for q(a) > 1 peaking of the current 

distribution alone can ensure that complete stability against kink modes 

is obtained(16). Peaking of the current distribution is measured by the 

ratio q(a)/q(o). The minimum amount of peaking to ensure complete 

stability is q(a)/q(o) > 2. 
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A requirement on the value of q(o) is given firstly by the 

stability of ideal internal modes. These are stabilized by shear, as 

determined by Suydam's criterion in cylindrical geometry, or the less 

restrictive Mercier criterion in a tokamak. For pressure decreasing 

towards the wall, localised modes are stable provided q(o) > 1. Thus 

for an infinitely conducting plasma we can ensure stability and 

maximise s by choosing q(o) > 1 and q(a) 	2. 

When resistivity is introduced the choice of q is restricted 

still further. In a narrow layer around resonant surfaces, where 

m = nq, the magnetic field lines may break and rejoin. These tearing 

modes(17)'(18)  may be stabilized for high m numbers with a sufficiently 

peaked current profile(19), although the m = 2 and m = 3 modes remain 

unstable. To stabilize these modes it is necessary to exclude the 

appropriate resonant surface from the plasma by requiring q(o) > m. 

Therefore in principle this limits the minimum q on axis to q(o) > 3. 

Thus equation (1.5) gives the maximum total beta as s - 2 - 4%. 

As this is on the lower edge of economic attractiveness, the limit of 

sp  < R/a  has been questioned. Dory and Peng(20)  suggest that this value 

of $p  limits the use of the cylindrical approximation, rather than the 

existance of equilibria. They show that shaping the cross section 

(small aspect ratio, D shaped) and rapid heating (from an unspecified 

source) can lead to equilibria with a total s of 20% and realistic q 

values (q(o) - l,q(a) - 5). Apart from the economic advantages, small 

aspect ratio, high beta tokamaks have enhanced stability to tearing modes. 

In a tight torus with sp  - 1 and R/a  - 2 - 3 the m = 2 tearing mode may 

become insignificant, therefore relaxing the restriction on q(o). One 

disadvantage is that with a shaped cross section axisymmetric modes are 

now possible. 

At this time, the new generation of tokamaks, e.g. JET, are being 

built around the above criteria. They have Ē - 2 - 4, sp  ° 1 - 2, can 
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therefore choose q(o) > 1, q(a) - 2 - 4 which results in B - 2 - 4%. 
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1.4 	ATTAINMENT OF EQUILIBRIA  

A question seldom asked is how the equilibria, described in the 

last section, are reached from the initial conditions of a tokamak 

discharge. Most one and two dimensional calculations start at or near 

an equilibrium state although it has been suggested(21)  that a reason 

for lack of confinement may be the absence of an appropriate 

equilibrium state rather than instability. In general two dimensional 

calculations are used to examine the properties, e.g. p, q, of various 

equilibria(20)  whilst one dimensional codes, e.g. Ref. (22), are mostly 

concerned with transport from a plasma near equilibrium. Only in a few 

cases are one dimensional calculations applied to the study of the 

relaxation of a tokamak plasma from initial discharge conditions to an 

equilibrium. 

Abramov et al.(23)  study the effect of ionisation process on the 

evolution of the early stages of a cylindrical tokamak. They conclude, 

however, that some anomalous process is necessary to permit the 

penetration of the current on a timescale comparable with that observed 

experimentally. Duchs et al.(24)  use a one dimensional transport code 

to study the evolution of temperature and current profiles from an 

initially cool fully ionised plasma. They find that a large enhancement 

in the thermal conductivity is required to suppress a skin effect. 

In Chapter 4 we present solutions obtained from a two dimensional, 

one fluid computer code, described in Chapter 2 and developed in 

Chapter 3. These solutions, of the initial stages of both a large and 

small tokamak, are distinctly two dimensional(25). In the large tokamak, 

the solutions can show the coupling of plasma flow and magnetic field 

diffusion. These solutions indicate that the current penetration will 

occur in a time comparable to that observed experimentally without 

introducing any ad hoc anomaly factors. 
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1.5 	AUXILLARY HEATING  

Although the intrinsic ohmic heating process of the tokamak has 

proved most convenient in creating moderate sized plasmas with 

Te  - 1 - 2 keV and sp  ` 0.1 - 1.0 it is not a promising method for 
attaining reactor temperatures in large experiments. We have seen in 

section 1.3 that it is desirable to raise the poloidal beta to near, or 

in excess of the MHD constraint, Sp  < R/a, but even assuming that the 

only heat loss mechanisms are bremsstrahlung and pseudoclassical 

transport(26), ohmic heating can only produce a poloidal beta of 

sp  = 	{ 1 + (I/1.6 MA)2  } 

Powerful auxiliary heating methods are clearly necessary for the optimal 

levels of s, required for tokamak reactor experimentation, to be 
reached. 

Since toroidal geometry permits many Coulomb collision times 

during one plasma confinement time it is possible to heat the plasma 

using a beam of neutral particles with energies that are many times 

greater than the desired plasma temperature. The injected neutrals 

undergo charge exchange interactions with cool plasma ions, and the 

resultant trapped energetic ions then slow down gradually losing energy 

in collisions with plasma ions and electrons. The production processes 

and spatial distribution of fast ions resulting from tangential injection 

have been investigated(27)  and show that while maximum absorption occurs 

for injection approximately halfway between the magnetic axis and the 

wall of the torus, the fast ion distribution peaks strongly at the 

magnetic axis because of the geometry. These hot ions affect the 

distribution function of the plasma ions and also produce toroidal 

momentum(28). This latter effect may be avoided if coinjected and 

counterinjected beams (parallel and antiparallel to the plasma current) 

are used. 
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In Chapter 6 a neutral beam is considered as a source of 

parallel pressure. At high temperatures collisions are sufficiently 

infrequent to isotropise the pressure on inertial timescaies. Using 

the model of Chapter 2, additional theory is presented in Chapter 5, 

that allows an anisotropic pressure distribution to be included. 

Modifications to the momentum equation show that gradients of parallel 

pressure produce flow in the poloidal plane. This source of momentum is, 

however, not removed by employing a counterinjected beam. 

Finally, in Chapter 7, the results and numerical techniques are 

discussed. 
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CHAPTER 2 

A TOROIDALLY INCOMPRESSIBLE MODEL FOR A TOKAMAK 

A large toroidal magnetic field is an essential feature of all 

tokamak devices. This implies a certain degree of axisymmetry in the 

system and is reflected in the type of models usually employed to 

simulate the tokamak. It also, however, implies that the timescale for 

torsional and compressional changes of this field is much smaller than 

the timescales associated with any other magnetohydrodynamic process. 

For instance the toroidal Alfven speed is much larger than the Alfven 

speed associated with the poloidal field, which in turn is much larger 

than the diffusive velocity of plasma relative to magnetic field lines. 

A model for the behaviour of such a plasma must remove these fast 

oscillations so that the plasma may be observed on a longer more 

interesting timescale. 

For example, in hydrodynamics, in order to follow phenomena such 

as flow on a long timescale, the short timescales associated with sound 

waves may be removed from the model by considering the flow to be 

incompressible, assuming the pressure is large compared to the flow 

energy. In much the same way compressional Alfven waves associated with 

the large toroidal field are removed by assuming the plasma to be 

'toroidally incompressible'. 

In this chapter the toroidally incompressible model is reviewed 

and described for an infinitely conducting low beta plasma. Some ideas 

on the choice of coordinate systems are presented and corrections for 

finite resistivity, and finite plasma pressure are then added. An 

interpretation of the model is given, and finally a summary of the stages 

of the calculation. 

Throughout the chapter attention is paid to ensuring that the 

equations are derived in general vector notation before being applied to 

a specific coordinate system. 
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2.1 	THE MODEL  

2.1.1 Qualitative description  

In a model proposed by Potter and developed by Tuttle
(29),(30) 

the 

normal tokamak geometry is considered (Fig. 1.1) in which the toroidal 

magnetic field, BT, is much greater than the poloidal magnetic field, Bp. 

The toroidal field is produced externally by coils and the poloidal 

field by plasma currents. Defining the total beta to be the ratio of the 

average plasma internal energy to magnetic energy, 

s =1737/2p 
o 	T72uo 

(2.1) 

and the poloidal beta the ratio of the plasma pressure compared to the 

poloidal field at the plasma edge 

sp  = g /2uo 
P 

(2.2) 

it follows that: 

As we have seen in Chapter 1, stability considerations limit the size of • 

the poloidal beta to the order of unity, so: 

« 1 

The energy of the total magnetic field is therefore much greater than 

that of the plasma and consequently any motion of the plasma is unable 

to alter significantly the total magnetic field. The toroidal magnetic 

field therefore appears incompressible, or changes connected with the 
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toroidal field propagate at an infinite speed. 

This is illustrated by considering the interactions of the various 

fields and currents present in the tokamak. The poloidal magnetic field 

is produced by the toroidal current induced in the plasma from the 

external circuit. This self magnetic field interacts with the current 

to give a compression of the plasma, which takes place on a timescale 

associated with the Alfven velocity of the poloidal magnetic field: 

B 
v = p 	(uop) (2.3) 

The compression, however, results in a compression of the toroidal field 

which is produced by currents flowing in external coils. As a result 

poloidal currents are induced in the plasma which tend to oppose the 

changes in the toroidal field. These poloidal currents couple with the 

toroidal field to produce a force that opposes the compression. These 

effects take place on a.timescale associated with the toroidal Alfven 

speed, VT, which from (2.3) is: 

6 
vT=vp p 

and is much larger than the poloidal Alfven speed, vp. Thus the forces 

opposing the compression are set up on a timescale much shorter than the 

time taken to establish the compression itself. Thus at any instant the 

compression is balanced by a reactive force. 

The development of the plasma is therefore considered to progress 

via a series of quasi equilibria. Changes in the poloidal field cause an 

instantaneous transition to another equilibrium state that is established 

on a timescale short compared to the timescale for changes in the 

poloidal field. 
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2.1.2 Ordering  

Before we start to analyse this model quantitatively it is 

instructive to order the various physical processes present in this 

model. The Alfven velocity associated with the poloidal magnetic field 

is given by (2.3) and a similar expression gives the toroidal Alfven speed. 

The ratio of the timescales associated with changes in each of these 

fields is therefore: 

Tī 	 vP 	Bp  _  
Tp 	vT 	BT  

Stability considerations limit, sp  to order unity, giving: 

P 

B2  
p 

2uo 

Using this in the above equation gives: 

Bp y  TT 	
f32 

BT 	Tp  
(2.4) 

A similar expression may be obtained for the change in magnetic 

field by considering the expression for energy balance in equilibrium: 

p + B2 = constant 

2uo 

which yields: 

sB 	sB 	 (2.5) 

For the toroidal field ass « 1, changes are small compared to the total 

magnetic field, but for the poloidal magnetic field where sp  - 1 changes 

may be of the same order as the poloidal magnetic field. 
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This is a reiteration of the basis of the model. The plasma has 

sufficient energy to alter the poloidal field, but not the toroidal field. 

2.1.3 Quantitative description  

An expression for the variation of the total magnetic field may be 

obtained from Faraday's law: 

v x E = -aB 

at 
(2.6) 

v.B = 0 	 (2.7) 

and a simple Ohms law: 

nJ = E + v_ x B 	 (2.8) 

where n is the scalar resistivity, and v the centre of mass velocity. 

Equation (2.8) neglects the Hall effect, a contribution from the electron 

pressure gradient, and one arising from aJ/at. The omission of these 

terms is usual and may be justified by considering the timescales 

associated with these processes compared to those of interest. 

Defining R as the distance from the major axis equations (2.6) to 

(2.8) yield: 

1 	d (RB) = 1 (B.v)v - RB 7.4z)   - B 	v.VR 
R2  dt 	R 	Rz 

(2.9) 

1 vxnJ 
R 

where 

d 	a +  v . v 
dt = at 
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and is the Lagrangian derivative, or derivative in the fluid frame. As 

variations in the total magnetic field are small, of order s, we use this 

small quantity to perform an expansion of equation (2.9). This expansion 

(Appendix A) gives to zeroth order 

V . V 	= 0 	 (2.10) 

The quantity v 	is solenoidal to this order and therefore may 

be described completely by two scalar functions. One such representation 

(which can be shown to be generally possible at least locally) is 

(2.11) 

The scalars c  and  p  are termed Euler potentials and were first used by 

Leonhard Euler to describe incompressible fluid flow in terms of "stream 

functions". Since then they have been used in axisymmetric flow, solar 

magnetohydrodynamics, and most recently plasma physics
(31). 

If a field is represented by Euler potentials in some region of 

space which possesses symmetry, then one potential may be derived from 

considerations of that symmetry. In this work we assume that the 

tokamak is axisymmetric, which allows us to equate the potential p  in 

equation (2.11) with the azimuthal coordinate, leaving only the stream 

function c  to be determined. 

It has been shown by Taylor(32)  that toroidal discharges relax to 

a quiescent state independent of initial state and previous history. By 

assuming axisymmetry we are restricting our solutions to a two dimensional 

form rather than making a statement about the form of the tokamak. Our 

analysis will, therefore, not admit of helically symmetric or three 

dimensional solutions which may occur. 

If e is the unit vector in the direction v0 Eq. (2.11) becomes: 
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= R2 x v~ 

which leads to the expressions for the flow velocity and its components 

in (R, q, z) coordinates derived by Tuttle(30): 

	

v R 
= Rao 	vz =  -Rao 

	

az 	 āR 
(2.12) 

- R2 v x 

Vorticity, by definition, is associated with incompressible flow. 

The flow cannot compress the fluid, so it must be circulatory. It follows 

that there must be a vorticity associated with toroidally incompressible 

flow. Given this vorticity, E, at some time, the relationship between 

the vorticity and the velocity vector, and remembering that we have from 

equation (2.10) an expression for the divergence of the flow velocity, we 

have sufficient information to determine the flow velocity, v, everywhere. 

In order to define the vorticity at each instant in time we must 

refer to an equation of motion for the plasma. By assuming a local 

thermodynamic equilibrium in the plasma we may describe the evolution of 

the system in terms of changes in temperature, density and a centre of 

mass velocity. This leads directly to a description of the plasma in terms 

of fluid equations. 

A more detailed discussion is presented in Chapter 5, but 

essentially the fluid equations result from assuming that the collision 

time is far shorter than any macroscopic timescale associated with the 

fluid motion. The rapid randomising effects of these collisions then 

ensure that the velocity distribution remains isotropic. Likewise, the 

two species present, ions and electrons, have the same temperature if the 

interparticle collisions are sufficiently frequent. The plasma may then 

be described by one fluid equations(33) of continuity: 



momentum: 

P 	_ 
dt 

energy: 

d (PP Y) _ (Y - 1 )  (11J2  
dt 	Y 

P 

(2.14) 

(2.15) 
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ap + V.(pv) = 0 	 (2.13) 
āt 

where p is the density, p the pressure, a the heat flux vector and 

Y the ratio of specific heats. 

In the light of the toroidal incompressibility condition (2.11) 

the continuity equation (2.13) may be more usefully written: 

d 
dt (R

2p) 	Rop V.( ) (2.16) 

For convenience the energy equation is rewritten using the specific 

internal energy density, E: 

d (P-(Y-l)E) = P-(Y-1)(1,32  - y.a) dt 	 p 	p 

(2.17) 

where E = nkT 	where n is the number density, k Boltzmann's constant 

-(Y-1 )P 

and T the temperature in °K. 

We are now in a position to define the vorticity and derive an 

expression for its time dependence. We choose an expression for the 

vorticity 

= Rv x R2p v 	 (2.18) 

and obtain its time dependence by taking the curl of R2  times the 
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momentum equation (2.14), which is detailed in Appendix B, 

1 dE _ 1 IvR2p x vv 2' = 2RIvp x VRI + R(B . v)RJ ,0 	(2.19) 
R cif 2 

We do this in order to remove terms depending on gradients of the 

total magnetic field. It is analogous to defining a vorticity in 

incompressible hydrodynamics where the pressure gradient term is removed 

when the curl of the momentum equation is taken in order to remove the 

sound waves from the problem. Likewise in this case removing the magnetic 

field gradient terms removes the Alfven waves associated with the toroidal 

field, but the pressure gradient term, (the first on the right hand side 

of equation (2.19)) remains. Sound waves are thus still present in this 

model, but as we shall see later, in a modified form. The second term on 

the right hand side of equation (2.19) is a source of vorticity caused by 

Alfven waves propagating in the poloidal plane. 

Finally to complete the definition of the vorticity, (2.19), the 

poloidal magnetic field, Bp, and toroidal current, 4, must be defined. 

We have seen that a solenoidal vector may be expressed in terms of two 

scalar functions. The magnetic field may therefore be expressed in this 

way as: 

v.B = 0 	 (2.20) 

Hence we may write: 

B = 74 x vr (2.21) 

If we choose to write only the poloidal magnetic field, 	in in this form 

then the potential 	is just the azimuthal coordinate. The total magnetic 

field. may then be written 
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B = Fvcp + vtp x vo 	 (2.22) 

where the first term is the toroidal and the second the poloidal magnetic 

field. The requirement (2.20) demands that vF is perpendicular to vo 

i.e. F is the flux function of the total current in the poloidal plane, 

including currents in external coils, that produce the toroidal field. 

The potential t,, together with the azimuth (p, determine the poloidal 

field, and ip is therefore known as the poloidal flux. In an identical 

manner to (2.12) 	may be related to the vector potential, A: 

A = ecp 
R 

(2.23) 

Appendix C shows that using Amperes law: 

v x B (2.24) 

the toroidal current density 4 may be expressed: 

uoR 4 	- o** 	 (2.25) 

where o* is the Grad-Shafranov operator, and: 

o** = R2(v.v,y) 	 (2.26) 
R 

which is the toroidal form of curl curl A. 

Hence the poloidal magnetic field and toroidal current density may 

be written totally in terms of the poloidal flux, t,. 

The evolution of tp may be deduced from Faraday's and Ohms Laws, 

(2.6) and (2.8) 

aB = vxvxB -vx 
at 	— — 	(nJ) 
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Using (2.23) we arrive at 

dt = -nRJc (2.27) 

2.1.4 Summary  

The model is thus complete. Summarizing, we initially find a 

vorticity (2.19) which by solving an elliptic equation (formed from (2.18) 

and (2.12)) defines a stream function 	and a flow velocity. Density 

(2.16), temperature (2.17) and poloidal flux (2.27) are then altered by 

this flow velocity. Poloidal magnetic field (2.21) and toroidal current 

density (2.25) are then redefined and a new value of the vorticity is 

found. This is represented diagramatically in Fig. 2.1. 
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Set p, e, 4), 

V 

Determine Bp, Jq 

Solve elliptic equation for 

V 

Calculate v 

V 

Find new p, E, ,, 

Fig. 2.1 	Diagrammatic representation of the ideal model. 
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2.2 	PERFECT CONDUCTIVITY  

In the limit of low beta and infinite conductivity, the equations 

that form the model of the last section reduce to a considerably simpler 

form which leads to an obvious choice for a coordinate system in which 

to solve these equations. 

Low beta, zero resistivity and heat flux allow equations (2.16) 

and (2.27) to be written: 

d (R2p) = āt 0 	 (2.28) 

d* _ 
dt 0 	 (2.29) 

and from (2.28) it follows that (2.17) becomes: 

āt (e R2(''  1)  ) 0 	 (2.30) 

The full set of simplified equations are thus the three above, and 

equations (2.10), (2.18), (2.19) and (2.25) that define the vorticity, 

flow velocity and current density. 

Equation (2.29) states that for zero resistivity surfaces of 

constant p  move with the fluid. From (2.22) the poloidal magnetic field, 

Bp, is always perpendicular to vp and v* so therefore lies in surfaces 

of constant ,, known as a magnetic surface. Thus (2.29) just states that 

for a perfectly conducting plasma the magnetic field lines are frozen into 

the plasma. This points to an alternative, natural, coordinate system 

in which to express the model. 
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2.3 	CHOICE OF COORDINATE SYSTEM 

2.3.1 Basic requirements  

A basic requirement of any coordinate system is that there exists 

a one to one mapping between all the points in a region and the triad of 

values (f1, g1, h1 ) where f, g and h are three families of parameters 

that define the coordinate system. There must exist therefore three one 

parameter families of surfaces, f, g, h for a coordinate system to exist. 

We now choose f, so that it varies along some vector field t(r): 

t = bvf 

where b is a constant. Thus t(r) is everywhere. parallel to vf and normal 

to the level surfaces f = constant. However, for such a vector field 

t(r) to exist we require that t be complex-lamellar: 

t 	curl t = 0 	 (2.31) 

This is easily seen by substituting for t to give: 

bvf. vb x vf = 0 

The determination of the scalars b and f is known as Pfaff's problem
(34)  

The condition (2.31) on t is of considerable interest in the 

restriction it places on the nature of t. If we try to construct a 

coordinate such that one coordinate lies along the magnetic field B we 

see immediately that (2.31) becomes: 

B . curl B = 0 

or 	B.J = 0 

which is not generally true. Thus only in very special circumstances 
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may we construct a coordinate system in which one direction is always 

parallel to the magnetic field. 

The quantity (2.31) is known as the abnormality and is a widely 

used term in hydrodynamics
(35) 

 where much theoretical work has analysed 

vector fields with varying degrees of abnormality. 

2.3.2 Compatibility with boundary conditions  

Boundary conditions are another important consideration when 

choosing a coordinate system. In a tokamak the boundary is defined by 

the limiter or conducting casing that is usually circular, or can be 

elliptical or D-shaped. Fitting boundary conditions on a coordinate 

system such as the (R, 0, z) system used so far would be extremely 

difficult. In fact the only simple solution is to allow one coordinate 

surface to coincide with the boundary. If the casing is assumed to be 

perfectly conducting then it will coincide with a magnetic surface. 

2.3.3 Mesh interaction with solutions  

It is well established that equations of the advective type, for 

example the simplified set, (2.28) to (2.30) can have solutions that are 

strongly anisotropic. In these cases the mesh can seriously affect the 

solution obtained. This is caused by the presence of terms of the form 

K . vw 

where K is the magnetic field or flow velocity and w some physical variable. 

The problem is caused by symmetries in the mesh interacting in the 

solution with symmetries of the problem. If, however, K is aligned along 

one coordinate direction this problem does not occur(36). The poloidal 

magnetic field lies naturally in the magnetic surface, and the flow 

velocity, as we shall see later, lies predominantly along the field lines. 
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2.3.4 Resolution 

Finally the spacing of the mesh must be sufficiently small to 

resolve the detail of localised phenomena. If the mesh spacing is 

constant then to give the correct resolution at one place requires that 

there are other regions where the resolution is needlessly high. A 

coordinate system based on a physical variable that changes as the system 

evolves will give a denser mesh where the variable is changing more 

quickly. 

2.3.5 Natural coordinates  

These faurmmain requirements point towards using a natural 

coordinate system, in the sense that surfaces on which one physical 

variable remains constant is used as one of the coordinates. 

The first requirement restrains us from using the total magnetic 

field as one coordinate direction, but we can use the surfaces of 

constant 4,, magnetic surfaces, and axisymmetry to construct two of the 

three coordinates. 

The use of magnetic surfaces as one coordinate ensures that the 

boundary is treated easily, interaction of advective terms with the mesh 

is minimised, and as these surfaces move with the fluid (Eq. (2.30)) 

resolution is provided where needed for the other physical variables 

(Eqs. (2.28), (2.29)) frozen into the fluid. The choice of a natural 

coordinate such as p  which moves with the fluid means that we are no 

longer describing the system in an Eulerian manner but in a Lagrangian 

one. (Normally an Eulerian frame is refered to as the stationary 

laboratory frame, and a Lagrangian frame as that moving with the fluid. 

These terms are however, not historically correct(35)  as the Lagrangian 

description was due initially to Euler. However, following conventions 

we shall leave the definitions as they stand). Any problems associated 
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with coordinate lines crossing as a result of the motion are avoided by 

choosing a physical variable as one coordinate. In this "waterbag"
(37) 

description, no two waterbags can cross and therefore topology is 

preserved. 

Finally we must construct the third coordinate. Already we have 

the magnetic surfaces ip and the azimuth c, so in principle any third 

family of one parameter surfaces, x, would do. In general an element of 

length in the poloidal plane, ds is given by: 

(ds)2 = gxx dx2 + 2g
xV 

dxdip + g~~ dp2 

where gid is the metric tensor. In order to simplify, for example 

gradients, we choose x to be orthogonal to i, in which case the off 

diagonal terms of the metric tensor vanish and the length element may 

be written: 

(ds)2 = (hx dx)2 + 
(h4 dip)2 

(2.32) 

The mesh (x,) moves with the fluid and will become non-orthogonal 

so (2.32) will cease to apply. However, after the mesh has been 

moved we reconstruct the x lines so that it is once again orthogonal. 

This is facilitated by the orthogonalising package 0RTH0
(38). 

Thus from an Eulerian (R, q, z) mesh, we proceed to a Lagrangian 

(x, , q) mesh, Fig. 2.2. Considering the simplified set of equations, 

(2.28) to (2.30) Rep and ER2(Y-1) remain constant on the i surfaces. The 

vorticity E determines the velocity of the i surfaces and only now is an 

advective equation solved, for the advection of the ip surfaces relative 

to laboratory space. A new metric is therefore defined, and the new 

vorticity found. 
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Fig. 2.2 	Cylindrical (R,(0,z) and natural (x,q4) coordinate systems. 
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2.4 	HIGHER ORDER BETA AND FINITE RESISTIVITY CORRECTIONS  

We have already seen that to the lowest order in beta the 

equation (2.9) for the variations in total magnetic field yields the 

condition (2.10). To the next order in s2 and in the presence of 

resistivity (Appendix A) Eq. (2.10) is replaced by: 

v.42) - 	B.vv(11 

(2.33) 

P 1 6 
a*RBS + R B vn.vBc 

o 

Consequently (2.12) becomes: 

v 	
_ R ac 	 . v1R + n 	1 	

a RB 	2.34 R - az 	B~ 	uo 	āR 	( 	) 

v 	-R a; + v~Bz + n 	1 	a RB z = 	B~ 	ū
o 

RBS az 

which with Ampere's Law (2.24) and the momentum equation (2.14) give 

R ac 	v~B 	_ 	n 	ap _ 
vR _ az + 1 	B~ āR 	3~Bz 

	

aV 2 + vZ2 	vcb2 	aV 

	

+ p(aR ( R 2 	) 	R 	 z āB ) 

v = 
-R a~ + v~6 	n 	+ z 	aR 	B~ 	B 	az 

(2.35) 

+ p(z (VR2 2 

vZ2) 	

vR + atZ) 

where 	= a vR a_~ 
az 	DR 

For VR, v and vz on the right hand side of (2.35) we use the zero order 



approximations (2.12), and (Appendix A (A8)): 

dt 	

_ -a'vp - B2 d (vR2 + vzz)2 

pB40 	dt (2.36) 

The full set of equations to order S may therefore be compiled: 

I = 1 	a 	v B + n 	a RB 	a 	v B + n a RB T7 
	9R ( 	

R 	

uoR 3-7 	" + az ( 	z 	uoR az~) 

(2.37) 

vR = R

9z + 
v~ 
B - Bn 
I 	R 	

Jcp,Bz 

+ p(I VR2 2 VZ2) 	~ 2 
Vz 

+ 	 ) 
at 

(2.38) 
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—R ac 	v B 
vz = 	

āR 
+. 

- n
13-4)-2- aZ 

JOR 

2 	2 
+ P(āz (vR 2 

v~  vR 	
a/2 

+ at (2.39) 

   

= IR vxR2p vl (2.40) 

dE _ R IvR2p x vv2I + 2R2 ap + R2(B.v) RJ4 —(R2v._v )E 
dt 	2 	az 	 R2 

(2.41) 

d 

(R2p) = —R2 V.(_v_z) 	R2p 	 (2.42) 

d (R2(7-1)E) = -(R2 v. v ) R2(7-1)E 

▪ p-(Y-l) (nJ2 - v..4) 

P 	P 

dtp 
_ —nRJ¢ 

p RJD = -o*lp 

(2.43) 

(2.44) 

(2.45) 
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2.5 	INTERPRETATION  

It is instructive initially to look at the simplified set of 

equations, (2.28) to (2.30) and analyse their behaviour in the absence 

of resistivity and finite beta effects. These equations state that 

certain dependent variables are frozen into the fluid. In the fluid 

frame, 	R2p and R2(7
-1)E 

 are all conserved. We have looked at the 

implications of ,U being constant in the fluid frame already. The 

implications of the other conserved quantities are quite interesting. 

Conservation of mass and energy imply that: 

p « 1/R2  

and 

E Q 1/R2 (Y-1) 

It follows that if the position of the plasma is altered with respect to 

the major radius the plasma is compressed and compressional heating takes 

place. This occurs in the ATC tokamak experiment(39). For y = 5/3 the 

above compression ratios agree with those found in the ATC experiment. 

It was mentioned earlier that the terms contributing to the 

generation of vorticity (2.19) were sound waves, and poloidal Alfven 

waves. This is seen more clearly if Fourier components are considered. 

We use the simplified equations and (2.30) rewritten in terms 

of the pressure: 

d
d 
t = -pyv.v 

in cylindrical components (R,q,z): 

+ a v7 	
= 0 DR 	az  

3 ō 	a 	- 2pvZ  R (az pvR 	aR p vz 	R 
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dE _ 2R2 22 + R2 BR a RJ + R2Bz a RJ 
dt 	az 	āR 	az 

R av2 a R2p 	R av2 aR2p 
2 az aR 	+ 2 aR az 

B = 1 
2~ • B 

R 	R az ' z 
a,y 	aP 

- 
vR a,y + vz alP 

aR 	at 	aR 	az 

2 at 	1 	a R a~ _ a2p u0RJ~ 	R āR 	R āR ( āR ) BZZ 

_ 
dt 	-Yp(aR + az + 

To include sound waves we consider perturbations in the z direction of the 

form eikz + wt) and obtain, neglecting the Alfven terms 

ikv - R = 0 

2R3pvR ik - 2pR2vz. 

iwE = 2R2ikp - R2pikv2 

iwp = - Yp(ikvz + ia) 
R 

These rearrange to give a dispersion relation: 

w2 (1 - 1 ) + (1 + 1 ) k2R2 	= 2 YL k2 

4Y 	4Y  

Hence we find: 

w = yk ✓2Cs2/f 

where: 

f = ((1 - 1/4Y) 	( 1 + 1/4Y) k2R2) 



m 
k 

1 
Cs 
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and the sound speed: 

Cs = Vyp /p 

Equation (2.19) therefore gives rise to sound waves with a phase velocity: 

= ✓2Cs2/f 	 (2.46) 

These sound waves arise from the terms 2R 3a and ZIvR2p x vv2 I 
az 

in (2.19). The first comes from the pressure gradient in the momentum 

equation, and the second arises because the operators 
dt and curl do not 

commute. These sound waves are dispersive as f is a function of k. For 

k approximately equal to 
ā 

where a is the minor radius, we note that 

1 
Cs = C

s
/V1 + R2/a2 

This is the longest wavelength that can be accommodated in the poloidal 

1 
plane. For shorter wavelengths, k is larger so Cs decreases and as k 

becomes very large: 

1 
Cs -~ 0 

1 
The modified sound speed, Cs, is therefore always less than the normal 

1 
sound speed. As the major radius of the torus, R is increased, Cs 

1 
decreases until in the limit as R } o, Cs -} 0. This is to be expected 

because in this limit the torus is a cylinder and normal incompressible 

hydrodynamics apply where sound waves are removed from the equations. 

If now the sound waves are omitted from (2.19) and once again 

Fourier components are considered, proceeding in a similar manner to 

before a dispersion relation is obtained for the poloidal Alfven waves, 

defining a modified Alfven speed: 
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1 
CA  = (2.47) 

where 

g = 1 + k2R2  

and 

C2  = BR!u p A 	o 

This describes the speed of Alfven waves propagating in the poloidal 

plane. The longest wavelength accommodated will define the largest 

value of g and therefore the fastest poloidal Alfven speed. This 

wavelength will be of the order of the minor radius, a. Thus 

g = 1 + (-)2  

and the modified Alfven speed will always be less than the normal 

Alfven speed. As R is varied the modified Alfven speed behaves in the 

same way as the modified sound speed. 

1 
The introduction of terms to the next order in S2  into this 

Fourier analysis indicates the nature of these terms and their effects 

on the plasma. 

The toroidal velocity modifies the toroidal incompressibility 

condition: 

v.v = 1 B.vvq 
RB, 

This introduces a term into the sound wave dispersion equation of order 

a2 Cs  and into the Alfven wave dispersion equation of order 52 CA. 

As explained in Appendix A, the importance of these two effects depends 

upon the sound mach number. In a supersonic regime the modification to 

the Alfven wave dispersion relation is the more important, and models the 

effect of modifications of the toroidal magnetic field on the toroidal 
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flow. 

In a subsonic regime the modification to the sound wave dispersion 

equation is the most dominant. This term therefore models the propagation 

of sound waves around the torus in the toroidal direction. These small 

compressive corrections may be included with those arising from the 

inclusion of finite resistivity. 

Consider now the full equations containing finite resistivity, 

(2.37) to (2.45). We note now that the incompressibility condition (2.37) 

is no longer true but contains small compressive corrections. The 

conservation equations for density and specific internal energy are hence 

modified, (2.42) and (2.43), and resistivity allows the field to slip 

through the fluid, as now the frozen in condition no longer holds, (2.44), 

as well as adding a Joule heating term to the energy equation, (2.43). 

Thermal conductivity is included, but this will be dealt with later in 

greater detail. 

The compressive corrections occur because in the presence of 

resistivity the plasma is no longer completely toroidally incompressible. 

The poloidal currents that balance the force of the induced toroidal 

current and its self field decay with resistivity present which leads to 

an imbalance in the equilibrium, and hence allows a slight compressive 

flow. 
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2.6 	SUMMARY  

In essence the model may be described as follows. 

Equations for the time dependence of density, internal energy and 

vorticity (2.41), (2.42) and (2.43) are solved in the fluid frame. The 

vorticity arises because to zeroth order in le: the plasma is toroidally 

incompressible, (2.37). This leads to a velocity stream function, from 

which a flow velocity may be derived, (2.38), (2.39) and (2.40). The 

fluid frame is then moved with respect to the laboratory frame with this 

flow velocity. 

When the resistivity is small the magnetic surfaces remain fixed 

in the fluid frame (2.44). This results in these surfaces being chosen 

as one of the fluid coordinates. 

If, however, the resistivity and plasma beta is finite, the 

magnetic surfaces move with respect to the fluid, and the plasma is no 

longer toroidally incompressible, which results in a compressive flow, 

and hence corrections to density, energy and vorticity. 

The current density and magnetic field are found self 

consistently from the metric of the magnetic surface coordinate system. 

The above is best pictured in the form of a flow diagram by 

extending Fig. 2.1: 



t 
2. Determine Bp, J4 

V 

3. Solve elliptic equation for 

4. 	Calculate v and include compressive flow 

5. Find new p, E, p, E remembering compressive 

corrections, joule heating, thermal 

conduction in fluid frame. 

6. Allow for resistive diffusion of magnetic 

surfaces through the fluid 

7. Advect fluid frame with respect to lab. 

frame 

8. Which gives a new distribution of ,p and 

hence 
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1. 	Set p, E, ip, E 

Fig. 2.3 	Summary of the full model. 
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CHAPTER 3  

THE NUMERICAL MODEL  

In this chapter we describe the initiation and main evolutionary 

cycle of the computer code, TICTOK, based on the physical model described 

in the last chapter. A new method which sums the mesh area and volume 

accurately, and that leads to good energy conservation is described. 

Finally the orthogonalization method, ORTHO, is reviewed and discussed. 
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3.1 	INITIATION  

At all times in the simulation it is assumed that the plasma is 

fully ionised. This can be effected initially by some ionising pre-pulse 

brought about by a rf or microwave generator. Initial conditions, 

therefore, assume a uniform temperature plasma at rest with a prescribed 

density distribution. In low temperature runs a flat density profile is 

prescribed, whereas, at high initial temperatures the density profile 

is calculated so that the pressure gradient approximately balances the 

J x B force. 

In the low temperature cases the initial current density 

distribution is assumed to take the form of the toroidal electric field 

that produces the toroidal current. This is discussed in detail in the 

next section. This initial condition ensures that the current density 

is matched to the boundary condition, which demands that the outer 

surface is a contour of poloidal flux. This arises if we assume that 

the wall coincides with a perfectly conducting copper casing. 

At high initial temperatures the initial current density 

distribution is calculated by prescribing approximately the poloidal 

beta, temperature and loop voltage of the plasma. This will be dealt 

with more fully in a later chapter. 

3.1.1 Toroidal current density distribution  

The toroidal current in tokamaks, which produces the poloidal 

field, is induced in the plasma by a transformer network. An iron core 

surrounds the plasma and vacuum vessel (Fig. 1.1). The primary of the 

transformer is connected to capacitor banks; 	the secondary winding is 

the plasma itself. 

Current in the primary causes a changing magnetic field that is 

confined to the iron core. This produces an electric field whose curl 
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is virtually zero everywhere except inside the iron core. Thus outside 

the iron core a toroidal electric field is produced that varies inversely 

as the major radius. 

Initially it is assumed that the plasma is fully ionised, and if 

the initial temperature is chosen as uniform, the current density 

distribution will have the same form as the electric field. In order to 

define our initial coordinate system which is based on the magnetic 

surfaces, we must find surfaces that correspond to such a current 

distribution. 

Now: 

= - uo RJ 

where o* is the Grad-Shafranov operator. If this is written in toroidal 

coordinates, Fig. 3.1; the result is: 

1 	a r 	+ 1 	a21 	1 case ai, - sine a 	_ _ 
ār 	ar 	a~ 	T‘ 	ar 	r ae 	uo RJ cp 

If 

s - 
r/Ro 

where Ro is the radius of the minor axis and 

Jc 	uo RJcp 

which, because J¢ a "R, is a constant. The final rearrangement is: 

r at, 	1 a2Vp - c 
(
case arm, - sine arm, 

ār ( TT- ) + r a 	+ cose 	Dr 	r ae ) 

= -J r c (3.1) 

This may now be solved by employing an expansion in the inverse aspect 



Fig. 3.1 	Toroidal coordinate system. 

ratio E. By writing 

'Or) + g1(r,e) 

where 	e tpo, the lowest order of Eq. (3.1) yields: 

'Po =
-Jcr2 + C 

(3.2) 

Now we choose 

*1(r,e) = f(r) cose 

which when substituted in Eq. (3.1) gives: 

3 

(J-_6R + Dr) cose 

where C and D are constants. D is chosen such that p  on the outer 

54. 
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surface, at the wall (where r = a) has a circular cross section and 

therefore no a dependence. The absolute value of p is given by C, which 

as the vector potential is only even defined up to an arbitrary constant, 

may be chosen so that ,p(a) = 0. Thus 

D = Jr a2, 	C = Jr a2  
16Ro 	4 

and 

= Jc a2 ( 1 - r~)(1 + r 	cose ) 
4 	a 	4Ro 

(3.3) 

to first order in the inverse aspect ratio. 

In order to obtain the equation of a surface of constant i this 

solution must be inverted to give r in terms of q, and e. The result is 

a cubic equation that is rather tedious to solve analytically: 

	

cose r3 + r2 - a2 cose r + 44, 	a2 = 0 	(3.4) 
4R

o 	
—417—

Jc 

Instead the solution is found numerically using Newton's method. This 

is well known but may be sumarized as follows: 	if rn is a guess for 

f(r) = 0 then 

rn+l = rn 

is a better guess. 

The numerical solution, however, is not completely straight-

forward as may be seen from Eq. (3.3). The maximum value of p does not 

occur at the origin of the (r,e) coordinate system, but at a point on 

e = 0 given by 

S = 4Ro (3 	+ 1)2 - 1 
3 	16Ro 

(3.5) 



for 

or: 
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Therefore if Eq. (3.4) is solved for r in this region, for a particular 

value of 0, r is multivalued. This may be overcome by writing Eq. (3.4) 

in a coordinate system centred at r = S, which shall be called (r',e'). 

These two systems are related by 

x = r cose = r' cose' + S 

y = r sine = r' sine' 

where x and y are shown in Fig. 3.1. This leads to 

r = (r'2 + 2r' S case' + 62)1 

e = tan 	r' sine'  
(r' cose' + (s) 

Thus Newtons method solves, for a constant specified value of e': 

f(r(r',e'), e(r',e')) = 0 

where f'(r,e) is given by: 

df 	af 	dr 	af 	de 
TP le' = ārle ~' le + āe~r Tr' le' 

A first guess for r' is obtained using 

r' = (a2 - 402 
Jc 

4tp 
JC 

a2 

r' _ (4* - a2) 413 

Jc 	
a 

when 

4* > a2 
Jc 
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Solutions may be obtained in two ways. Firstly, by choosing 

values of p  equally spaced between zero and 'max 
(where 

 'max 
is 

obtained by inserting Eq. (3.5) into Eq. (3.3)) surfaces are obtained 

that are spaced equally in ,v. Secondly, solutions that are equally 

spaced in r (in one direction, usually e = 0) may be obtained by 

calculating the necessary value of 4p 	from 
JJ ā2-  

4p 	= (1 - r2)(1 + r ) 
T 	 4Ro  

and then using this value to obtain a first guess for r'. It must, 

however, be noted that as the surfaces are now no longer equally spaced 

in i  this may not be used as the coordinate perpendicular to the 

surfaces, i.e. in the direction of vv. The coordinate is denoted now 

by ' where 

= DV VT 
DT 

where the increment of 'y is equal between the magnetic surfaces. 

The exact form of uo  RJ due to a first order expansion in E may 

be calculated analytically. The first order solution for ,p, Eq. (3.3) 

is substituted into Eq. (3.1) and an expression for uo  RJ4,  in terms of 

r, 8 and the initial specified value of Jc  is readily obtained. 

uo  RJ 	= Jc  (1 + a2  	(1 - r2) + 3r2  cos2e) 
16RoR 	ā 	8RoR  

(3.6) 

This agrees very well with that found numerically. Fig. 3.2 shows 

the initial i  surfaces and the distribution of uo  RJ to which they 

correspond. Notice there are peaks of uo  RJD  on the axis of symmetry 

at e = 0 and e = Tr. These arise from the cos2e term in Eq. (3.6). The 

peak at e = n is slightly larger as R is smaller there. The amount by 

which uo  RJ deviates from a constant corresponds to an error of order E2, 
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which is consistent with the first order scheme. 

The general shape of the J  distribution depends entirely on the 

sign of Jc. If Jc  is positive then p  peaks on the magnetic axis, and 

if Jc  is negative then 1  is a minimum there. This is only a reflection 

of the sign of the vector potential A
(I) 
 relative to the toroidal current 

density J4). Simple vector considerations require them both to be of the 

same sense. 

Computationally the procedure for finding the initial current 

distribution is as follows: the positions of the magnetic surfaces that 

correspond to a flat distribution of uo  RJ4)  are found using a first order 

expansion in e. The distribution of uo  RJD  is then calculated, as it 

is at later times in the simulation using the Grad-Shafranov operator. 

The quantity uo  RJ4  is therefore well defined over the whole mesh 

except at the outer surface where Eq. (C8) may not be differenced 

exactly. At later times in the simulation the current density at this 

outer surface is calculated from the toroidal electric field. Initially, 

however, the electric field 

av = REth 
at 

is not known on the outer surface so we have to resort to another method 

of calculating the initial current density there. 

Initial distribution of the magnetic surfaces v  and toroidal 

current density uo  RJ for magnetic surfaces spaced equally 

in r at e = 0. The major axis is to the left. 

Fig. 3.2  
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Changes with time of the total current always affect the current 

density distribution at the surface of a conductor(40). Using Maxwells 

equations and Ohms Law at the outer surface where v x B = 0 we arrive 

at 

aJ(1) _ 1 	a 	hx 	a (RnJ ) 
Po at 	hxh,~ ā (RhT DT ) 

The total current flowing in the plasma is 

Is 	. ds = 	IJ(1, hxh1; dxd,f 

Therefore 

u dI= 9 hx 	a 	(RnJ~)
'wall 

dx 
° cyt— 	RhT ā Tr    

(3.7) 

as the gradient of the current density will be zero on the inner 

surface. The rate of change of total current with time is prescribed, 

so Eq. (3.7) may be used to find the current density at the outer 

surface. 
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3.2 	MAIN EVOLUTIONARY CYCLE  

3.2.1 Choice of timestep  

The rate at which a time dependent simulation may step forward 

in time is in general governed by two factors; firstly the physical 

processes that are modelled by the system of equations, and secondly, 

the schemes used to solve these equations. 

We have described in section 2.1 of Chapter 2 how the fastest 

physical process, that of compressional toroidal Alfven waves, has been 

removed from this model by assuming toroidal incompressibility. The 

next fastest processes, in approximate order of increasing timescales 

are; poloidal Alfven waves, thermal diffusion, sound waves, plasma flow 

and resistive diffusion. This list applies to a large tokamak at a 

temperature of one kilovolt. At lower temperatures the order may change 

slightly, but is in general true. We must therefore integrate our 

equation with schemes that will allow a timestep to be taken long enough 

for us to see the physical process desired, i.e. the plasma flow. We 

therefore use implicit schemes for the two fastest processes, the 

poloidal Alfven waves, and the thermal diffusion so that the timestep 

may be longer than the characteristic times for these two effects. The 

sound waves are treated explicitly, and these impose a restriction on 

the timestep. However, the analysis of section 2.5 of Chapter 2 shows 

that these sound waves are modified by the geometry and are dispersive. 

They have a modified sound speed which is always less than the normal 

sound speed (Eq. 2.44) 

CS = Cs✓2/f 

where 

f=1+k2R2  

CS is smallest at the largest wavelength which is approximately equal to 



62. 

the minor radius. The timestep is therefore only restricted to 

a 	(1 + R2/a2 )1  
Atsound < Css (3.8) 

and does not depend upon the mesh spacing. 

If fast enough, resistive diffusion can limit the timestep. The 

motion of the surfaces, because of resistivity, limits the timestep to 

the resistive diffusion time, (where ox is the mesh spacing) 

At < uoAx2  
n 	n 

(3.9) 

because the motion of the surfaces is treated explicitly. Once, however, 

the surfaces have been moved, the value of the poloidal flux is found 

implicitly. 

If a timestep is chosen, subject to these restrictions, solutions 

may be found that are numerically stable. 



and 

B 

3.2.2 Stream function and flow velocity 

The first step in the evolutionary cycle is to obtain the flow 

velocity. Equations (2.12) and (2.18) give an elliptic equation for the 

stream function, 	In natural coordinates, we obtain: 

_ R 	a 	R3p ac 	a hx R3p ac 
hxh,y (āx hx 	DX } a1 h~, 	air ) (3.10) 

and from the stream function, the flow velocity may be found: 

vX = - R 	a~ 

hty DT 

(3.11) 

vy = R a~ 
hx hx 

The compressive corrections, and those arising from finite resistivity 

given in Eqs. (2.38) and (2.39) are added in at this point. 

Equation (3.10) is differenced using a five point scheme, 

Fig. 3.3: 

hxhq  
( R 	 )c = AN/2 CN - (AN/2 

+ AS/2) Cc 
+ AS

/
2 CS 

(3.12) 

+ BE
/
2 CE 

- (BE
/
2 + BW/2) Cc 	

BW/2 CW 

where 

A = N.  R3p 
hx 

hx R3p 
- hy, 

Equation (3.12) is rearranged into block Jacobi form by normalising the 

terms to the coefficient of c' This quin-diagonal system of linear 

equations may now be solved using a suitable procedure. 
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Fig. 3.3 	Five point difference notation. 

There are a number of methods by which a quin-diagonal matrix may 

be inverted. Those which consider the non-zero elements only are 

iterative and have differing convergence rates. The one chosen in this 

work is the Alternating Direction Implicit (ADI)(41)  method, which 

because of its simplicity and rapidity, has gained popularity recently. 

No account of this, or other methods is given in this work as a detailed 

discussion may be found elsewhere
(42). 

In order to obtain a unique solution for this elliptic equation 

(3.10) boundary conditions must be applied. If solutions were to be 

obtained analytically it would be sufficient to specify boundary 

conditions on the outer boundary and just require that the solutions 

remain finite at the magnetic axis. Computationally the region has two 

boundaries; 	the usual outer boundary, and an inner boundary at the 

magnetic axis. It is therefore necessary in the code to specify conditions 

64. 
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on both these boundaries. 

At the outer boundary it is assumed in this model that the limiter 

and conducting copper casing coincide. It is assumed that plasma 

extends right up to the limiter and there is no vacuum region. The outer 

boundary therefore, does not allow mass flow across it, but energy may 

flow to the limiter as this is, in effect, at a constant temperature, 

because the energy content of a plasma is insufficient to heat the 

limiter to any significant degree. 

The boundary condition at the outer surface on the flow therefore 

requires that flow perpendicular to the boundary is zero. Thus from 

Eq. (3.11): 

VIP 	
R ?~ = 0 

'P boundary 	hx ax 

which implies that 	is a constant around the outer boundary. 

This type of boundary condition on the flow can lead to the 

accumulation of plasma at the limiter, as the density, temperature and 

vorticity are all conserved at the boundary, except in allowing for 

compressive flow from the mesh that arises because 

v.L 	0 

To avoid this, a free flux boundary condition could be employed, by 

allowing c to vary around the boundary so that flow from the system 

was unrestricted. Conversely, this would allow unrestricted flow into 

the system. A method by which information can enter the mesh from 

outside is intuitively wrong and could be numerically unstable. This 

could be overcome by allowing flow out of the mesh but not into it, 

which would lead to a depletion of matter from regions near the wall. 

This is complicated to implement because careful accounting of mass and 

energy is necessary to ensure that total mass and energy is conserved. 
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Boundary conditions on the inner boundary, at the magnetic axis 

are a little more elusive, as it is only the discrete nature of the 

computational mesh that makes them necessary. Taken to the limit this 

inner surface shrinks to a point, which is the analytic situation. 

Therefore, in this limit we would expect the value of the dependent 

variable to be the same at all points on this surface. Thus we require 

the interior derivative of the dependent variable to be zero on the inner 

boundary. 

Previously(30)  it was necessary to assume the flow was symmetric 

about the mid-plane (z = 0) and omit the Hall term in Ohms Law, Eq. (2.7), 

that would lead to asymmetric flow. Now, although the Hall term is not 

included owing to extreme limitations on the timestep, asymmetric flow 

is allowable. Indeed, if there is no initial flow and density, 

temperature and current density distributions are symmetric about the 

mid-plane then the vorticity and stream function should be antisymmetric 

in order to conserve angular momentum. This therefore presents a check 

on the code for if asymmetric flow is produced, then it must have 

occurred numerically. 

As flow in both the R and z directions can occur at the inner 

boundary, motion of the magnetic axis must be considered. This is best 

achieved by creating a local cartesian mesh at the magnetic axis and 

differencing the stream function on this mesh. The R and z components 

of a fluid element at the magnetic axis are given by Eq. (2.12). The inner 

boundary is therefore moved with this velocity, and given the timestep, 

its new position may be found. 

3.2.3 Energy  

The energy equation (2.43) describes the change of internal energy 

of a fluid element arising from motion of the fluid, finite 8 compressive 
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corrections, Ohmic heating and thermal diffusion. Its solution is 

split into three parts; 	firstly, source terms corresponding to 

finite s corrections and Ohmic heating are included explicitly, 

then the thermal diffusion is treated implicitly to avoid limitation 

of the timestep, and lastly, we account for changes of energy 

arising from advection of the fluid, when the mesh is advected. 

This fractional timestep method produces an intermediate 

temperature which is then diffused by an amount determined by the 

coefficients of thermal conduction which are evaluated at the old 

timestep. If s*  represents this intermediate temperature, then: 

e* - en  = Ot(riJJ2  - R2v. ( ) e
n)  

(3.13) 

which is followed by the thermal diffusion: 

E
n+l  -- e* _ -otp-(Y-1)v.q 	(3.14) 

Lastly, to account for energy changes that accompany advection of the 

fluid, we ensure that we obey the conservation relation: 

d (R -1)  e)= 0 
dt 

as the fluid is moved. 

Equation (3.13) may be solved analytically because the resistivity 

is a function of temperature (Table 3.1). Neglecting the finite 

corrections, if we define e as: 

e = kT  
e(y-1) 

and use for the resistivity: 

(3.15) 

n  = nc e'3/2 
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we obtain: 

e* = (en s/2 + 
2 

(y-1) M nc J2 At) 
pe 

where M is the ion mass. 

The thermal diffusion portion, Eq. (3.14) is derived in section 

3.3 and reproduced here: 

2(Y d (R -1) e) _ -(y-1)M R 	a C ae + a 	D ae 	(3.16) 
R2p k h~T āx ( āx ā ( āT) 

where 

C _ Koe 

 

R 

     

2R2 B42 hxhy, 

and 

D = XR 	(h )2 g
K 

(M)2 
hty h~c gK m we 

Equation (3.16) is differenced using the Crank-Nicholson scheme which 

ensures second order accuracy. Although this differencing scheme is 

unconditionally stable(43) oscillations in the solution can occur when 

the timestep is much larger than the physical diffusion time. This will 

occur in our problem only when the temperature is in excess of a kilovolt. 

Using the notation of the last sub-section, the difference equation 

is: 

n+1 	 1 	n+1 	n+l 

	

- CN/2 eN 	+ (CN/2 + CS/2 + 2F—c7 ec 	- CS/2 es 

n+1 	 .1 	n+1 _ 	J1+1
- DE

/2 
eE 	+ 

(DE/2 
+ D

W/2 + 2Fc) ec 	DW/2 eW 



Fc 
 + CN/2  eN + CS/2  es 
	

W/2 
+ DE

/
2 eE + D 	

gid 

n 
(CN/2  + CS/2  + DE/2  + D

W/2) gc (3.17) 

where: 

F = at M (y-1)  R 
k R2p hxhly 

Once again, if Eq. (3.17) is arranged in block Jacobi form, it may be 

inverted using the ADI method. 

3.2.4 Vorticity 

The time dependence of the vorticity given by Eq. (2.41) contains 

terms that describe the production of sound waves and poloidal Alfven 

waves. The generation of sound waves is treated explicitly along with 

finite $ compressive corrections. The poloidal Alfven wave production 

term is treated implicitly in order to remove the restriction that an 

explicit treatment would impose upon the timestep. These Alfven waves 

propagate only around the magnetic surfaces thus rendering the problem 

one dimensional. The implicit treatment(30)•which uses a time centred 

differencing scheme requires for its solution the inversion of a 

tridiagonal matrix alone. 

3.2.5 Density  

The evolution of density given by Eq. (2.42) is particularly 

simple as in the fluid frame it is modified only by small compressive 

corrections. These corrections, of the order of SZ  are treated 

explicitly, as are the compressive corrections to the other advected 

quantities of energy and vorticity. 
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3.2.6 Resistive Diffusion  

The distributions of toroidal current density and poloidal magnetic 

field are given entirely by the distribution of poloidal flux, ,p. An 

equation for its change in time will describe fully the evolution of the 

field and current density. Using Faraday's and Ohm's Laws, we arrive 

at: 

Lit 
d 

= -nRJ4 	 (3.18) 

The rate.  at which the poloidal flux changes in the fluid frame is 

dependent upon the resistive part of the voltage. An expression for the 

toroidal current density (Appendix C) yields a diffusion equation 

for 

Lit _ n A*V 	 (3.19) 
dt 	

uo 

It is clear that the poloidal flux can only change in the fluid frame 

by resistive diffusion. If the resistivity is zero the poloidal flux, 

and therefore the magnetic field, is 'frozen' into the fluid. However, 

when the resistivity is finite, the poloidal flux may diffuse through 

the fluid, so that the magnetic surfaces can move with respect to the 

fluid. Therefore, as the computational mesh is based on the magnetic 

surfaces, the presence of resistivity allows the mesh to move relative 

to the fluid. In essence, when resistivity is finite, the mesh is not 

strictly Lagrangian as it is no longer tied to the fluid, but it is 

Lagrangian, in a sense, because it still moves but now with the 

magnetic surfaces. 

We have, therefore, three frames of reference; the laboratory, 

the fluid and the mesh. The fluid moves with respect to the laboratory 

and then the mesh moves relative to the fluid. From the definition of 

the Lagrangian derivative, we obtain: 
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dt((
fluid 	

at 
lab 

+ !
fl .

711  

 

 

where !
fl 

is the velocity of fluid with respect to the laboratory. 

Similarly: 

dib 
dt 

fluid 

alp 
= āt + vfm.v1' mesh  

  

where !
fm 

is the velocity of fluid with respect to the mesh. These 

relative velocities, vfl'  vfm 
and the velocity of the mesh relative to 

the laboratory, _vml, are shown in Fig. 3.4 

Fig. 3.4 	Relative motion of fluid, mesh and laboratory, between 

timesteps n and n+1. 

Thus from Eq. (3.18) 

vfm.aV) = -nRJ(1, 
at mesh 

(3.20) 
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To describe the evolution of the poloidal flux, the simplest procedure 

is to fix the value of i on the mesh, so that the diffusion of the 

surfaces is represented completely by a movement of the mesh relative 

to the fluid. However, the equations of the model Eqs. (2.35) - (2.43) 

are written in the fluid frame and some additional advection of 

dependent variables would be necessary to correct for the diffusive 

motion of the mesh. When the temperature is low the resistivity is 

relatively large and this auxiliary advection can be larger than the main 

advection of fluid relative to the laboratory. A better procedure is to 

allow the value of ,y to alter on the mesh, in such a way that the 

diffusive velocity of the mesh relative to the fluid vfm is minimised. 

A surface average of equation (3.18) yields 

v a 	 nRJ 
`h~y ' _ — at / ā' — `a~,/a~' 

where. 

V = 27 0 dl/Bp 

and 

V<x> = 27 0 x dl /Bp 

B is as usual, the poloidal field, and dl is taken along the 

intersection of surfaces of constant p and 0. To minimise the relative 

velocity of mesh and fluid, we choose: 

<h > = 0 

Therefore, the change of poloidal flux on each surface must alter by: 

arm, _ - <nRJ 15 > 
at (3.21) 
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which results in a diffusive velocity given by Eq. (3.20). 

Essentially the average diffusive motion of the surfaces is 

replaced by a change in v  on the surface. The only diffusive motion that 

occurs now is if the diffusion is differential around the surface, owing 

to variations of resistivity or current density on a surface. Large 

movement of the mesh is therefore avoided when the resistivity is high and 

the mesh remains more closely coupled to the fluid although of course, 

the magnetic surfaces still move through the fluid. 

Differential motion of the surfaces may be calculated, once av/at 

has been found from Eq. (3.21), by using the non-surface averaged 

equation (3.20) 

ya  ai _ -nR4 
her āY 	at 

The diffusive motion of each point on the surface may thus be calculated. 

To obtain the total velocity of the surfaces the diffusive motion must 

be added to the motion of the fluid (as given by the flow velocity 

including finite beta corrections, Eq. (2.38) and Eq. (2.39)). This is 

the velocity used for the main advection of the surfaces described in 

the next section. 

Whilst the dependent variables are defined on the surfaces they 

should be advected only with the fluid velocity, as can be seen from 

Eq. (2.41) to Eq. (2.43). An auxillary advection must be performed that 

corrects the main advection where the dependent variables are advected 

with the fluid, plus the diffusive surface velocity. This auxillary 

advection velocity is therefore equal and opposite to the surface 

diffusion velocity. 

Having moved the surfaces and calculated a new metric, the new 

magnetic field and current distributions must be found. It must first 

be noted that when in difference form Eq. (3.21) is not time centred, 
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as the new current density is obviously unknown prior to the advection of 

the surfaces. The new / on each surface may therefore be inaccurate. 

To avoid this, Eq. (3.21) is solved twice, firstly in an auxiliary manner 

to obtain the diffusive surface motion, and then having used this velocity, 

plus the fluid velocity, to move the surfaces and create a new metric, 

it is solved to second order accuracy using the implicit Crank-Nicholson 

scheme, to obtain * on each surface at the new time level. 

Equation (3.21) is a one dimensional diffusion equation, and is 

therefore, far easier to solve than the two dimensional diffusion 

equation, described in section 3.2.3, for the temperature. The boundary 

conditions are more complicated as they involve the coupling to the 

external circuit. 

Using the Crank-Nicholson scheme Eq. (3.21) becomes: 

*
n+1 

+ At <nR4 >
n+1 

= *n - at <nR4 >n 
2 

substituting for the current density, 4, we obtain: 

n+1 	
At 

C 
rill 	hx 	a,p >n+1 = ,fin 	At <nRJ*>,y 
uohxhi; ay RhT 3T T 	2 

(3.22) 

If the term containing the second derivative of i is now differenced 

n+1 at 	R2 hX 	n+l 
— i' +1 2 2-1/ T (ruhy +z > 

+ n+l 
1P 

	{1 + ot 2.1 
PO 

R 
[(Rhv,) + 	+ ( MIT T-Z

i>} n+l 

n+1 At 	R2 
(h 
) 	n+1  ~ 

T 1 2 uo ty-z> 

0 

= 1p'P - 2t < nRJT>T (3.23) 



is produced, which is of the form 

A,y Y+1 + 	 + C,y ~-1 = S 

and may be recognised as the standard tridiagonal matrix form(44), which 

is easily inverted. Still in standard notation, at the boundaries 

Eq. (3.23) has the form: 

Al 4'2 + B1 ,yl = S1 

(3.24) 
BJ ~, J + CJ `pJ-1 = S 

where 1 labels the inner boundary and J the outer. 

At the inner boundary the value of t is determined by the 

auxiliary value of p at the new time level. The boundary condition 

at the magnetic axis is therefore Dirichlet and 

Al = 0; 	B1 = 1; S1 = C'auxiliary. 

The outer boundary is assumed to be coincident with the 

perfectly conducting copper casing and must therefore be a magnetic 

surface. On this surface p may be specified directly by giving the loop 

voltage, or vV is determined when the total current is known. 

In most tokamak experiments, the total plasma current rises 

linearly with time at first, and then flattens off to a plateau value 

for the major part of the discharge duration. The 'voltage, however, 

does not exhibit such simple behaviour and is a more sensitive measure 

of the plasma development, Fig. 3.5. We choose to specify the current 

as a linearly increasing function of time in the low temperature 

simulations, and as a constant independent of time in the higher 

temperature runs. 
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Fig. 3.5 	Experimental current and voltage traces for the T-3 and 

LT-3 tokamaks. 

We may obtain an expression for the total current by considering 

it in two parts; that within the surface ' = J-/ and that outside 

this surface but within'the wall, Fig. 3.6. Current within the surface 

T = J-i may be found using: 

uojinner = ý B.dl = I Bxhxdx 

However, outside this surface the current flowing must be found by 
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referring to the current density: 

Iouter = 	
J.ds = f 4hxhy,dxd4, 

Fig. 3.6  Calculation of the total toroidal current in. two parts; 

Ii  up to the surface q' = J-2 and Io  between T = J-z and 

T = J. 

The total current is therefore: 
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I -i . hxhq, dX 

al  l } 1 f 
	

dX 	

a  ' t - 	nR 	at J 	uo Rh 	3T J-i  
(3.25) 

This may be differenced implicitly to second order accuracy to obtain 

an expression for j, at the boundary, in the form of Eq. (3.24): 
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hxhy dX n+l + hX dX n+l n+l 
R ~J 

At 
~fRhT iJ-2 IPJ 

	

h?~ dX n+1 	n+l - at(IRh* 	)J-i 	''J-1 

 

n 	(IRh dX)n 	+ ~,~ (fhxh'4) 	 dX) J 
J-i 	J-2 

= 2ot colt - Alt 
a~ 

  

(3.26) 

3.2.7 Advection of the mesh relative to real space 

The final step in the evolutionary cycle is to advect our natural 

coordinate relative to real space. This is the only point in the whole 

calculation where the advective equation must be solved. As described in 

the last section, the mesh is advected with the fluid velocity plus a 

component that accounts for the differential diffusion of the surfaces. 

This total motion is expressed as the advection of real space past the 

natural coordinates. The change of the position vector R in natural 

coordinates is: 

dg' = v.vR 
āt  

For example, in cylindrical coordinates (R, 	z) the change of radius 

R is: 

dR = 	aR 	aR 
dt 	hX ax 	hT ā' (3.27) 

After differencing, equation (3.27) may be expressed as a quindiagonal 

matrix operating on a vector R. Using the notation of Fig. 3.3, equation 

(3.27) becomes: 

n+l n+1 	n+1 _ 	n+l n+l 

-(Z RN 	
- RS ) + Rc 	

( 2h~ 	)cRE 
	- Rw ) 

hx 
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_ (otvx)( RN - RS) + Rc +(otvy)(RĒ - 	RW) 
2hX 
	

2h~ 
c 

(3.28) 

which is in a form ready for solution by the ADI method. 

The ADI method is therefore used three times in each 

evolutionary cycle; first to solve an elliptic equation (section 3.2.2), 

secondly to solve a parabolic equation (section 3.2.3) and lastly, in 

this section, to solve a first order equation. In each case, after 

differencing, the partial differential equation may be expressed as a 

system of linear equations: 

Ax = b 	 (3.29) 

where A = (aij) is a (NXN) matrix; N is the number of mesh points. 

The following conditions(49) are sufficient to prove the 

existence of a unique solution to equation (3.29): 

(i) 
IaiiI t 0 i = 1, 2 	N 

(ii) IaiiI a 	Iai.1 and for some i strict inequality 
j=1 	s1 	holds. 

ji 

(iii) A is irreducible. 

If matrix A satisfies these conditions it is non-singular, and is termed 

irreducibly diagonally dominant. 

It is interesting to note that for the elliptic problem, the 

inequality requirement of (ii) may only be satisfied at a boundary 

point as at all interior points condition (ii) produce equality. This, 

however, is sufficient and only reflects the normal requirement that in 

an elliptic problem a Dirichlet condition need by applied at only one 

point on the boundary for a unique solution to be obtained. 
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The conditions under which the ADI iterations converge are, 

however, more restrictive than conditions (i) - (iii). Varga(42)  shows 

that if A is a Stieljes matrix the convergence of the ADI method is 

assured. A Stieljes matrix is a real symmetric positive definite matrix 

with non-positive off diagonal elements; a positive definite matrix 

has positive real eigenvalues (i.e. is an Hermitian irreducible 

diagonally dominant matrix with positive real diagonal elements). 

It is clear that the ADI method will converge for both the 

elliptic and parabolic cases as Stieljes matrices are obtained because 

the operators are self-adjoint. When used to solve the first order 

equation (3.27) it has been shown(30)  that the ADI iterations are 

convergent for the special case of advection in an incompressible fluid 

when equation (3.27) may be written in conservative form: 

aR + v.(Rv) = 0 
at 

We must.,; however, note that the sufficient conditions (1) - (iii) for 

the existence of solutions to equation (3.29) require in particular 

that the sum of the moduli of the off diagonal elements is less than the 

modulus of the diagonal element. From equation (3.28) it is easily seen 

that a sufficient condition for a unique solution is approximately 

At < h 
2v 

(3.30) 

where h and v are some averages of the ' and x  components. The 

restriction, Eq. (3.30), on the timestep, is just the Courant-Friedricks-

Lewy condition(43)  which is normally applicable to explicit schemes. 

We must note that conditions (i) - (iii) are only sufficient, but not 

necessary for a unique solution to exist. Whilst solutions may exist 

for a timestep larger than the CFL conditon would allow, we choose to 



restrict the timestep by Eq. (3.30) to ensure a solution is obtained, 

which will be accurate to second order in both the time and space 

dimensions. 
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3.3 	TRANSPORT COEFFICIENTS  

The transport coefficients of resistivity and thermal 

conductivity are included in the code. Resistivity appears in both 

the equation for the diffusion of poloidal flux, Eq. (2.44), and energy 

equation, Eq. (2.43). Thermal conductivity appears in the latter alone. 

The resistivity is assumed scalar and takes the value derived by 

Spitzer(45) for electrical conduction parallel to a magnetic field. The 

thermal conductivity, however, must have tensor form. In the presence of 

a large magnetic field, thermal transport perpendicular to the field is 

much smaller than conduction parallel to the lines of force. In natural 

coordinates the divergence of the heat flux takes the form: 

V. q = i 	a (R 	(y2Kl + a2K ) 9T) 
RxT 	DX 	hX 	° āX 

+ a (yRKR aT ) - 	a (yRKR aT) 
aX 	a lf 	air 	aX 

(3.31) 

- a (R hX K1 aT) 
DT hy ā'Y 

where 

a = 
B 

y B~ 

and the components of the thermal conductivity tensor are given in 

Table 3.1, together with the resistivity. 

The dependence of the transport coefficients on the atomic 

number, Z, is detailed in Table 3.1 because a profile of effective atomic 

numbers may be defined for a simulation. This is because most tokamak 
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experiments, e.g. TFR(47)  quote a Z in excess of unity, which is usually 

accredited to the presence of impurities in the discharge. The impurity 

concentration is usually found to rise near the wall, so for a typical 

simulation a Z of unity is defined on the magnetic axis, rising linearly 

to a value of between two and four at the wall. 

Table 3.2 illustrates some properties of the transport 

coefficients. Heat flux parallel to the magnetic field is dominated by 

the electrons; perpendicular, the ions transport the...major part of the 

energy, while the Righi-Leduc heat flow, perpendicular to both magnetic 

field and temperature gradient, appears to vanish. 

Consider the Righi-Leduc terms in equation (3.31). For equal 

electron and ion temperatures a total thermal conductivity may be 

constructed from the sum of the electron and ion components. Thus using 

Table 3.1 a total Righi-Leduc thermal conductivity may be written in the 

limit where wI2 » 1, for Z = 1: 

KR = KR
e  + K

R 
	Kne ( 

 
we.  

(3.32) 

Conduction around the magnetic surfaces is given by the first 

term on the right hand side of Eq. (3.31). Adding electron and ion 

thermal conductivities, the conduction coefficient is: 

(K_Le 
	KLI )(1 	a2) + (Koe + KO 

 
I) a2 

• 

For wI2  » 1 this becomes 

1 + (m)2 
9Ke 

 4)2  + a2  we2( 1  + (M) 	) 
we 	K 	 K 

(3.33) 

Across the surfaces the conduction is given by those terms in 

a2T /3U2  in Eq. (3.31). KL + KLI  reduces for we » 1 to 
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TABLE 3.1  

Thermal Conductivity (watt(m °K)-1) 

Electron 
Perpendicular 	Ke = KO• 777 

Righi-Leduc 	KR - Ko 
	

1 +PU2 
e 

5n k2T . Parallel e m 	gK 'sei 

Ion 
Perpendicular 

Righi-Leduc 

Parallel 

1 	I 	1 
K~ = K0• 1 +£ 

I  

	

KR = -K° 	I t 4l- 

I _ 5n k2T . 	1 	_ Ke m 	ge Ko 	M 	gt vii. 	Z (M) 9IK. 

he 
we = g Wb tei 

hI h ,I~ge m} 

	

vI = -- 	Ob ii t 	- 	I he (M) 	We 

	

gK 	9K K 	Z 

Hall Parameter 

Electron 

Ion 

Electron-ion collision frequency (sec-1) 
v • = 4(20 n Zee 	a kT,i 

e1 	3 	(4,rĒ0kT) (nī , Inn 

Ion-ion collision frequency (sec-1) 

vii = Z2(M)i vei 

Coulomb logarithmn 	n 	= 3(4neokT)2  

2Z}'2 e3(nn) 
Parallel electrical resistivity (ohm-m) 

n 	= 0.5064 m vei  
Z nel 

where n = ion number density (=ni = Zne) 
e = ionic charge or magnitude of electronic charge 
T = electron or ion temperature (i.e. equal) 0K 
Z = atomic number 
m = electron mass 
M = ion mass 
k = Boltzmanns constant 

"b eB 
m 

b _ IeZB 
M 

= Zm mb 
tei = 

vei 

gK, gK, h
e, hI 	are all 	numerical 	factors that depend to some extent on the corresponding Hall 

parameter. 	Their detailed behaviour is given in references (46) and (33). 	For Z = 1: 
Temperature (eV) 
3 	102 	103 

ge .7321 .7312 .7312 
K 

he 2.0005 2.0000 2.0000 
gI 
K 

1.1260 1.1310 1.1312 
hI 2.0026 1.9996 1.9999 
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TABLE 3.2 

3 

Temperature (eV) 

102  103  
Thermal Conductivity 

(Watt/m-deg K) 	KJ.e 2.69.10-6  4.63.10-7  1.46.10-7  

KJ  1.76.10-4  3.06.10-5  9.67.10-6  

K1 = K1e  + K11  

e 
KR  

1.78.10-4  

3.47.10-3  

3.10.10-5  

1.15.10-1  

9.72.10-6  

1.15 

KRI -3.46.10-3  -1.15.10-1  -1.15 

KR  = KRe  + KR
I 0.01.10-3  0 0 

K o  

e 
4.47 2.87.104  9.06.106  

KoI 6.78.10-2  4.33.102  1.37.105  

Kp  = KOe  + KOI  4.54 2.91.104  9.20.106  

Hall parameter 

we  1.29.303  2.49.105  7.88.106  

wI  1.96.101  3.76.103  1.19.105  

Electron-ion 
collision frequency 

(sec-1 ) 
vei  

1.13.109  5.85.106  1.85.105  

Electrical 
conductivity 

(ohm-m)-1 	a 5.06.103  9.73.105  3.08.107  

Coulomb logarithmn 

lnA* 	7 14 17 

Note these values are for n = 1020  m-3, B = 3T, and Z = 1. 

* Approximate values from Spitzer
(45)  
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he2 

( 
K 
g (m) ~ (3.34) 

Owing to the large magnetic field, wee will always be much greater than 

unity. If we neglect these terms for the moment, the Righi-Leduc heat flow 

and the poloidal projection of the toroidal heat flow are all that remain. 

To neglect the Righi-Leduc heat flux, the following inequality must be 

satisfied: 

 

e 
ā2 (1 h-) 

 

we » (3.35) 

  

Now a is related to the Kruskal-Shafranov safety factor, qKS, by 

qKS 	= r RBp 	aR 

where r is the minor radius. Therefore Eq. (3.35) becomes: 

qKS (1 - h,) 

At low temperatures and low currents, before the poloidal field 

has become very large, this is only marginally satisfied, as qKS can 

be large, but as the temperature increases, qKS decreases and so 

Eq. (3.35) is more readily satisfied. 

Thus the Righi-Leduc heat flow is neglected because as the 

temperature and current both increase, this term becomes small 

compared to other heat conduction terms. Qualitatively this is because 

the Righi-Leduc heat flow arises from a term Q x vT where fl is the 

cyclotron motion vector. For ions and electrons this is in opposite 

directions, and so if the electron and ion temperatures are equal, the 

heat flow owing to the ions balances that of the electrons. 

we 
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Returning to Eq. (3.31), by neglecting the Righi-Leduc heat flow, 

the energy equation with tensor thermal conductivity becomes: 

(Y-1 ) d 	(R2(Y-1)e) 	= nJ2 - 	1 a (R j K ea2 aT) 
3t 	p pRhxh āx 	hx o 	ax 

{ a~ 
(R 
h 

(h~) 2 ~gic/ 
( 
	aT] 
m)Z~ ā~) 	

(3.36) 

e 

There is a coefficient, x, introduced in Eq. (3.36) to increase 

transport across the surfaces; it could be linked with an anomalous 

process such as microturbulence or drift waves. In much the same spirit, 

Bp is used in the Hall parameter, we, rather than BT in the 

"pseudoclassical" model of Duchs et al.(24) in order to achieve a 

reasonable agreement with T-3 and ST tokamak data. 
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3.4 	ENERGY CONSERVATION  

It is most desirable at all times to ensure that energy on the 

computational mesh is conserved. Firstly, this is a useful diagnostic 

as one can quickly see into which channel the energy is moving, and from 

this draw a conclusion about the physical processes occurring. Of 

greater importance, however, is its function as a check upon the numerical 

calculation. If energy is being lost or produced, then the numerical 

scheme is at fault and the results of dubious worth. A tally of the 

total energy can show this at a glance and may also indicate where the 

error is to be found. 

The energy is accumulated as four separate totals; internal 

energy, magnetic energy, flow energy and energy gained by or lost from the 

mesh. 

The first three totals take their conventional form, 

internal energy: 

E. = fT  nkT dr 
1-1 

magnetic energy: 

EM  = IT  B2 	dT 

Zuo 

flow energy: 

EF  = fT  ipv2  dT 

(3.37) 

(3.38) 

(3.39) 

where T is the total volume of the plasma. The fourth term consists of 

two parts; the energy gained by the plasma from the external circuit, 

and the energy lost to the limiter from the outer region of the plasma. 

The energy flow into the plasma for a timestep, At, is the Poynting vector 
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integrated over the surface area 

EEXT = At .1,4 S.dA (3.40) 

The energy lost to the limiter is calculated in two parts. Firstly, the 

compressive terms discussed in section 2.4 of Chapter 2, result in a 

change of total energy when evaluated at the plasma surface, if the plasma 

volume is assumed constant. However, as these corrections are of order 

g and s is always small, this source or sink of energy is very small. 

Secondly, and more importantly, is the loss associated with the plasma 

touching the limiter. The limiter acts as a constant temperature sink 

because, although the plasma is very hot, its energy content is small 

and does not heat the limiter to any great extent. Thus current flowing 

in the very outer region of the plasma will not increase the energy 

content of the plasma, but slightly increases the temperature of the 

limiter. In effect, this energy is lost from the plasma and must be. 

included as a loss term. 

Another check made on the numerical scheme is the conservation of 

mass. Obviously this must be conserved if no mass flow into or out of 

the plasma is allowed. The only source or sink of mass is the compressive 

correction mentioned earlier in this section. 	The total mass is: 

MT  = f pdr 	 (3.41) 

Equations (3.37) to (3.41) are easily converted to difference 

form so that they appear in terms of variables defined on the 

computational mesh. 
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E
I 

=  2 T r e E 	R2 p 0 h X h 1  

EM =TrEI,~ 

	

T 	aT 

	

EF =,r E 	R2 p v2 hxhw  

X,̀Y  
(3.42) 

EEXT 
= 2Tr uo I a,p . At 

at 

MT = 2Tr E 	R2 p hXhyg 

X ,'Y 	R 

where a is defined by Eq. (3.15). The scale factors hx and hy, are stored 

on the computer in terms of the reciprocal of a weighted mesh area R 

and a mesh aspect ratio hX. It is for this reason that the energy hxh
T 

and mass totals appear in the above form, Eqs. (3.42). I is the total 

current, and.I T is the current flowing within a magnetic surface, T. 

3.4.1 Mesh area and volume summation  

We have seen in the preceding section the importance of good 

energy conservation. Our efforts are futile, however, if the area and 

volume of the mesh are calculated incorrectly and these two quantities 

vary. This problem is trivial on an Eulerian mesh where the scale factors 

are time independent. However, on a mesh that changes shape at every 

timestep, we must be careful to calculate both area and volume exactly 

before we can expect the mass and energy to be conserved. 

The outer boundary of the mesh is the limiter. As the position 

of this device remains the same throughout the experiment, it follows 

that the total volume and area of the mesh should behave likewise. 

The method first employed to calculate the area of the mesh is 

illustrated in Fig. 3.7. The area assigned to the mesh point x, ' is 
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half the area of the dotted quadrilateral. It is easy to see that the 

dotted boxes nest exactly to twice the total area of the mesh. The area 

of the quadrilateral is 	a x b. If the position vector of the point 

x, T in (R,z) coordinates is r (R,z) then: 

a x b = 2 az x ar = 2 a (R,z)  
ax 	aT 	a(x,T) 

(3.43) 

The total area of the mesh is therefore, a quarter of the sum of the 

Jacobians, and is exact. An error is introduced, however, when the 

area at each point is related to the product of the scale factors hxhT. 

Fig. 3.7 	Original mesh area calculation at the point x,T. 

Consider an infinitesimal area dA in a region defined by two base 

vectors el  and e that are not necessarily perpendicular. Now the area 

may be expressed in terms of the metric tensor gid; 

dA = v dxl dx2 
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where 

g = 19ij 

gi3 āxi āxJ 

and 

Thus 

h12  g,2 
g12 h22  

where 

hi  = 

Therefore 

dA = (h12  h22  - 91) 	dx1  dx2  

= 	h,h2(1-g1 	) dxl dx2  
2h ) 

(3.44) 

for g12, the off diagonal elements of the metric tensor, small. If e1  

is perpendicular to e2  then g12  is zero and dA = h1h2  dx1  dx2. If the 

two vectors are not orthogonal then there is a contribution to dA that 

depends upon the angle between the two base vectors. Now 

g12 = aX . aX 
āx1 	axe 

which from the definition of g1, and g12  gives 

cose = 912  

/911 g22 
(3.45) 

where e is the angle between e1  and e2. So Eq. (3.44) becomes: 

dA = h0h2  sine dx1  dx2 	(3.46) 

Thus the error in representing dA by the product of h1  and h2  is 



e = 1 - sine 

If 6 = ,r/2 - e then the error becomes to second order 

= 62 	 (3.47) 

Thus the error in approximating the area to the product of the scale 

factors, h1h2 is proportional to the square of the deviation of the base 

vectors from orthogonality. The error will be greatest therefore, where 

the mesh is changing direction quickly and will depend upon the number 

of mesh points placed in that region. 

If we now consider, instead, a finite area dAl of a mesh, much of 

the above analysis may be carried through. For instance, between mesh 

points the metric tensor is no longer a variable, but remains constant 

aX 	AX 	 (3.48) 
āxl 	oxl 

From Eq. (3.44) the area element dAl 

dAl = v'911 g22 ( 1 - 	g,22  
)1 

g,, g22 

which using Eqs. (3.45) and (3.48) becomes 

dAl = AX AX sine 	 (3.49) 
~X1 Ax2 

This is, of course, what we should expect as the infinitesimal area 

dA may equally well be written 

dA = J dxl dx2 

where J is the Jacobian. Rewriting Eq. (3.49) 

dAl = AX x AX 
~X1 	7X2 

93. 
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we obtain the Jacobian and reproduce Eq. (3.43) used to calculate the 

mesh area. 

Having found the mesh area, in principle the mesh volume is easy 

to find: 

V = 2Tr IR hxhly dXdy, (3.50) 

where hxhv is found using Eq. (3.43) and R is the distance of the mesh 

point, at which hxhv  is centred, from the major axis. However, using 

this method of evaluating the volume it was found that the mesh volume 

was not independent of time if the magnetic surfaces were not concentric. 

This variation was improved by using a finer mesh, but the variation was 

completely removed if the magnetic surfaces were concentric. The 

variation of volume was not associated with a corresponding variation of 

the area. This indicated that the incorrect value of R was being used. 

A more successful method of calculating the mesh volume was 

conceived which involved splitting the mesh into triangles and finding 

their area and volume. This leads to a time independent volume and 

therefore good energy conservation. 

Equation (3.50) for the mesh volume is exact in the continuous 

case, but on a discrete mesh error will arise because R varies across the 

area element. When the magnetic surfaces are concentric, errors on one 

side of the magnetic axis will cancel with those on the other. When the 

surfaces are not concentric, this cancellation does not occur. Moreover, 

the area elements on the inside of the magnetic axis (towards the major 

axis) become larger and the approximation of constant R across an area 

element, becomes worse. 

We assume a linear variation of R across a mesh element in order 

to calculate the volume. As the mesh has been divided into a number of 

triangular regions, this amounts to finding the centre of position of 
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each triangle, and using this volume of R to calculate the volume 

R = 3 (Ra  + Rb  + Rc) 

where Ra,  Rb  andRc  denote the positions of the three vertices. 

The calculation of the mesh area and volume is made easier by 

using the periodicity of the mesh. At each mesh point, the area 

and volume of a "leading" and "following" triangle is calculated, 

Fig. 3.8. Only at the centre and the wall does the algorithm have to 

be modified to produce a set of triangles that nest exactly. 

Fig. 3.8 	New method of mesh area and volume calculation. The two 

triangles are scanned around the mesh. 

By associating the area of these two triangles with the centre mesh point, 

we have taken the average of the areas of two quadrilaterals on either 

side of the mesh point rather than calculate an area totally enclosing 

the mesh point. Whilst this makes no difference to the calculation of 
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the area, the volume is more accurate because firstly, it is constructed 

from the triangles which are smaller basic units, and secondly, the 

variation of R across these basic units is treated. 
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3.5 	MESH ORTHOGONALISATION : ORTHO  

A detailed description of this method for orthogonalising a two 

dimensional mesh may be found elsewhere(37)(38); this section serves 

only to outline the techniques used and to comment upon the effectiveness 

of the package when contained in a large magnetohydrodynamic code. 

The basis of the method may be described in the following way. 

If there exists two families of one parameter surfaces, a third family 

of surfaces may be constructed orthogonal to the other two families of 

surfaces as long as the abnormality of a vector perpendicular to these 

new surfaces is zero (see section 2.3.1 of Chapter 2). Consider for 

example, the magnetic surfaces,p, as one family of surfaces. A second 

family of surfaces, z, is constructed orthogonal to the magnetic surfaces, 

Fig. 3.9, leading to; 

v4).vz = 0 (3.51) 

 

Fig. 3.9 	Three mutually orthogonal directions (0,4),z). 
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A vector perpendicular to both these families of surfaces may be 

constructed: 

= gvip x vz 	 (3.52) 

where g is some arbitrary function. Supposing the third family of 

surfaces is denoted e then c may be expressed: 

c = vf(e) = df ve 	 (3.53) 
de 

Combining Eq. (3.52) and Eq. (3.53) and incorporating df in g, results 
.17 

in: 

ve = Gvip x vz 
	

(3.54) 

We require that the identity 

v x ve =0 

holds, thus taking the curl of Eq. (3.54), some rearrangement produces: 

Gv2* + v4 . vG = 0 

giving: 

v. (Gv1,) = 0 	 (3.55) 

The vector product of Eq. (3.54) with vz yields: 

v,I, = -1 vexvz 
G 

and an expression similar to Eq. (3.55) may be obtained. We note that: 

= 
hip 

and using this and a similar expression for ve, we obtain: 



G = G(e4) = h 
he  

G is therefore, the ratio of the scale factors for e and p. 

If we now assume that the ratio of the scale factors is a 

separable function of e and 	such that G may be written: 

G(e,tp) = dP(e) dQ(p) 	 (3.56) 
de 	dtp 

the result of Potter and Tuttle(36)  is obtained: 

v2P = 0 

v2Q = 0 
(3.57) 

where P = P(e) and Q = Q(). As the ratio of the scale factors must 

always be positive, P is either a monotonically increasing or decreasing 

function of e and therefore may be used to describe an orthogonal 

coordinate in the .e direction. 

Greens theorem may now be applied to Laplaces Eq. (3.57), to find 

P, if an appropriately placed branch cut is made. This is of a 

particularly simple form as ap = 0 and thus the integral containing 
a 

the normal derivative vanishes, leaving: 

P(r) _ - 1P(r1 ) 	a (log 	1 	) drl 	(3.58) 
an 

 
If--77n1 1 

Having found P the orthogonal coordinate to the p  surfaces may be 

constructed, for example, from the outside surface inward. Points are 

equally spaced around the outer surface, and Eq. (3.58) for P is solved 

on both surfaces. The position of the orthogonal coordinate on the inner 

surface is then found by interpolation. The procedure is repeated for 

this newly orthogonalised surface and the next inner until the whole 

mesh has been treated. 

99. 



100. 

The results of this method have been compared(38)  with coordinate 

systems that may be calculated easily by analytic methods and have been 

found to be very accurate. However, as this method relies on the ratio 

of the scale factors, Eq. (3.58), being a separable function of the two 

coordinates, which is, in general, true for coordinate systems that are 

readily calculated analytically, the accuracy must be expected. 

The development of a continuous Lagrangian coordinate system that 

arises from the complex flow structure of the tokamak will not, in 

general, be analytically calculable, and there seems no reason why the 

scale factors of this coordinate system should be a separable function of 

the coordinates. This is more easily seen by rearranging Eq. (3.55): 

G v24)  + VG. v,p = 0 

or 

G v2Vp + aG (vp)2  = 0 

giving: 

1 aG = - v2i 	 (3.59) 

If G is a separable function of a and 1p then it is clear from Eq. (3.59) 

that: 

v2  = F(p) 
(v02  

(3.60) 

where F(Tp) is some function of i  only. This is a complicated function 

involving the derivative of the scale factors with respect to ,y and not 

in general a function of i  alone. 

There is, therefore,  an approximation involved in using this scheme 

to orthogonalise general continuous coordinate systems. We must remember 
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however, that "discrete" rather than "continuous" coordinate systems are 

being dealt with, that is a coordinate system which joins mesh points with 

straight lines, rather a continuously varying curve. By making the 

approximation Eq. (3.56) and then using Green's theorem to solve 

Laplace's equation (3.57), we are discarding information between the 

surfaces and using information on the 	surfaces only. This is in fact 

all the information we have due to the discrete nature of the coordinate 

system, but in making the approximation, Eq. (3.56), and then using 

Eq. (3.58) to solve for P, we neglect the term involving the normal 

derivative of P, aP, which may exist, if Eq. (3.60) is inappropriate 
a 

for the continuous coordinate system. 

An advantage of this procedure, is that because Green's theorem 

is used to solve for P, information from the whole surface is used to 

construct P, and therefore, the orthogonal coordinate. This enables 

ORTHO to cope with a coordinate system that is highly sheared. 

We conclude this section with a discussion of two problems 

concerning the mesh. The first is directly related to the 

orthogonalisation; the second concerns all meshes of a similar topology 

to ours. 

An important quantity in the code is the ratio of scale factors, 

he/h
0
. This quantity integrated around the outside of the mesh is used 

to derive the total current and hence the energy in the poloidal magnetic 

field. To ensure accurate energy accounting, it is necessary to 

determine he/h, accurately. 

We note that he/h is closely related to the function P used to 

construct the orthogonal coordinate and defined in Eq. (3.56). 	If we 

redefine: 

1 = d.l(e) d41 m 
G 	de 	dp 

integrating he/h4  around a 0  surface, we obtain: 
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hg de = dQl AP' 
h~ 	d 

where oP1 is related to the change of P over one period of e. The scale 

factors h
e 
/h may therefore be found at each point on a p surface directly 

from the gradient of P1 at that point: 

ha. (e,*) = (1 
	de) del 

	
(3.61) 

h
8 
/h
0 de is calculated directly from the mesh by summing the quantity 

heh1P/h*2 (which may be easily determined from a unit cell of the mesh) 

around a 4, line. 

In order to gauge the effect of using different schemes to calculate 

he/h, (e,0) on the magnetic energy, Eq. (3.61) is integrated around the 

outer , surface. Table 3.3 shows values of this integral quantity using 

three point Lagrangian interpolation, five point interpolation, and a 

direct method of finding he/hIp (e,0) respectively. In all cases the 

difference is slight, and less than i%. 

The fourth value, however, shows what happens if the orthogonalisation 

procedure is not repeated five times before the scale factors are examined. 

The difference in this case is over 1%, indicating that the shape of the 

mesh changes even though there has been no advection of the mesh. It is 

clear, therefore, that we cannot expect to conserve total energy to an 

accuracy of better than 1% as the orthogonalisation procedure introduces 

errors of this order. 

The second problem is concerned not with the orthogonalisation 

procedure itself, but is a problem potentially inherent in all meshes with 

a similar topology to ours. The orthogonal mesh is formed by choosing 

points on the outer surface, and then moving the points on the next inner 

surface so that orthogonal trajectories are constructed. This works well 
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until we reach the centre of the mesh where the origin is represented by 

a point, or in our case a very small circle. Unless the mesh is 

coincident with an orthogonal curvilinear coordinate system, it cannot 

be orthogonal here because the degree of freedom of movement of points 

on the origin is seriously restricted, owing to its small size. The mesh 

constructed is not orthogonal at the centre and therefore errors result 

when one assumes it is. 

TABLE 3.3 

3 point interpolation 

No. of ORTHO 
repeats 

5 

he/h, de 

109.352 

% difference 

5 point interpolation 5 109.503 .138 

direct method for he/hip 5 108.906 .408 

3 point interpolation 1 108.086 1.158 

Let us consider the operation v.vF, where F = x2/2 and 

x = R 	Ro. The operator div grad is a reasonably severe test of the 

mesh and is related to the operator o* which revealed the error through 

the calculation of the current density. Additionally F is rapidly 

varying function on the mesh. In Figure 3.10 the orthogonal mesh is 

shown together with plots of F and v.vF(48). The direction I lables the 

x line. anticlockwise from the midplane to the right of the origin, 

J labels the Y  lines from second surface outwards from the origin. We 

see that v.vF takes its correct value of unity (with a very small 

variation in the I direction) on all i  lines except J = 1. On this 

surface the error is large with values of v.vF ranging from about 0.8 to 

1.2, an error of ± 20%. 
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This error is not confined to our problem alone, but will occur 

whenever a coordinate system is constructed to be orthogonal in this kind 

of topology, but is not coincident with a curvilinear orthogonal 

coordinate system. To avoid these considerable errors propagating to 

dependent variables, the origin must receive special treatment. Because 

j is an Euler potential, an area averaged quantity for a*1p may be found 

1, = 	y 	dl /f ds 
R 

This may equally well be applied to any other Euler potential such as the 

velocity stream function. In doing this, however, it is assumed that 

within the second i  surface from the centre, the plasma is uniform, so 

detail is sacrificed. To avoid this, one would have to take into account 

the non-orthogonality of the mesh at the origin, and include off-diagonal 

terms in the metric tensor. 
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Fig. 	3.10 Variation of zx2 and v.v(~2) on an orthogonalised 

mesh with a surface structure similar to that obtained 

in a Shafranov (shifted circle) equilibrium. 
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3.6 	EXECUTION STATISTICS OF THE CODE. 

Production runs of the TICTOK code use a 24 x 22 mesh; 

22 i surfaces each with 24 x points around them. The x points are spaced 

at equal angles around the outer i surface. The orthogonalisation . 

routine ORTHO then defines the position of the x points on the other 

' surfaces. 

The TICTOK code runs on the CDC 6500/Cyber 174 at Imperial College 

or, for production runs, on the CDC 7600 at the University of London 

Computer Centre (ULCC). Each timestep for a 24 x 22 mesh takes 

approximately 2 seconds of CP time on the CDC 7600 of which about half 

is spent in orthogonalising the mesh. The code occupies about 25,000 

words of central (small core) memory. A normal production run executes 

for 500 timesteps, therefore, using just over 15 minutes of CP time. 

Graphical output, used extensively in chapters 4 and 6, is 

produced by a post-processing program MICRO, which relies upon both the 

MICROFILM and DIMFILM user libraries at ULCC. This program reads the 

information generated by a production run from a magnetic tape which may 

also be used to restart the simulation. 



CHAPTER 4  

INITIAL STAGES OF A TOKAMAK DISCHARGE  

In both the first generation tokamaks (for example T-3 and ST 

tokamaks, hereafter referred to as "small") and the second generation, 

"large" tokamaks e.g. PLT and T-10 there is, in general, a complete 

absence of any evidence to suggest that there is a current skin effect 

which lasts for any significant period of the current rise phase. This 

is in contrast to numerical simulations(24)  which show that assuming 

neoclassical transport coefficients should imply a pronounced and 

prolonged skin effect in large tokamaks. In this chapter, we present 

simulations of both small and large tokamaks in this low temperature 

current rise regime. For different values of the magnetic Reynolds 

number, Rm, we observe the effects of diffusion and of flow. When Rm  is 

approximately equal to unity, a steady flow pattern arises that results 

in the advection of the magnetic surfaces, and enhanced penetration of 

the current into the discharge. The non-linear development of this flow 

indicates the breakup of the magnetic surface structure. This would also 

assist the relaxation of the current profile from a skin current to a 

centre peaked profile. 
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4.1 	SKIN EFFECT IN TOKAMAKS  

The distribution of current density in a solid cylindrical 

conductor when the total current is a sharply rising function of time, 

is well known(40). For an overdamped pulse, the solutions are 

illustrated in Fig. 4.1. During the initial stages, the current is 

confined to the surface of the conductor, but after a time 

Tn  pat sec. 	 (4.1) 
15n 

where a is the radius of the conductor in metres, the current diffuses 

into the conductor. 

For a plasma the situation is not so clear. Firstly, the electric 

field, in the presence of a perpendicular magnetic field, can induce 

motion, and secondly, the resistivity of a plasma is a non-linear 

function of the local temperature. If we consider a typical large 

tokamak with major radius 3m, minor radius lm, and an initial temperature 

of 10eV, assuming constant resistivity the skin time Tn ; 2.5ms. However, 

the one dimensional code(24)  shows that for this size of tokamak, the 

skin effect is still extremely pronounced after half a second even when 

the electron thermal conductivity is enhanced. The hollow current profile 

persists because a type of thermal instability(50)  occurs. The current 

causes ohmic heating which leads to a local temperature rise. The 

consequential drop in resistivity then ensures more current flows in this 

region. 

Duchs et al.(24)  restrict the persistance of the skin effect by 

anomalously increasing the resistivity and thermal conductivity. In our 

typical tokamak, the anomally factors for resistivity y* and thermal 

conductivity K*  affect the skin time thus: 

Tn  8.104/(Y*K*3 ) 4  ms 



~ 
y 
L 

3 

t-  
I 
~ 
' 

1 1 

I 

I 
t 

I 1 
I 
I 
I I 

1 
1 

I 

' I ' 

I 1 

I 

109. 

I 1 

Ī 

I 	 Time I 	 I 

I 	 ix x10 

I 	  
0.2 04- o•; 	1.0 x 

i.. 
0 

Fig. 4.1 	Current density distribution in a solid conductor for a 

sharply rising overdamped current pulse(40)
. 
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Enhancing the resistivity is relatively ineffective, so an enhancement 

to the thermal conductivity of 104  beyond the classical value is required. 

This, however, leads to excessive energy dissipation and loss of volt-

seconds. The energy is lost by the plasma to the limiter and the 

magnitude of the heat pulse is such that no existing limiter could cope 

with this without excessive wear. 

An alternative approach by which the skin effect may be prevented, 

is to use a moving limiter. This was suggested initially by Kadomtsev(51)  

and is modelled in the Duchs code. It requires the limiter radius to 

behave 

rlimiter(t) 
a 
 (I(t))2 

The plasma radius is allowed to expand as the current increases and fills 

the aperture without forming a skin. They now find heat loading on the 

limiter is minimal and the limiter speed is not so great as to present 

any technical problems. It is assumed, however, that as the limiter 

aperture expands, the plasma density at the moving limiter edge 

materialises as required to give the required radial density profile. 

In practice, this may need to be provided by neutral gas injection and 

preionisation. 

Experimentally, this is unnecessary. Moving limiters are not 

employed in large tokamaks and neither does excessive damage to the limiter 

occur. Data from T-3(52)  and ST(53)  tokamaks do not suggest the existence 

of a current skin. In large tokamaks, such as PLT(54)  and T-10(55)  there 

is no reported difficulty connected with penetration of the current. In 

fact, the only reported observation of a skin effect in a tokamak is in 

the LT-3 tokamak(56). Using magnetic probe measurements during the early 

stages of the discharge, the toroidal current density profile was derived. 

This has a distinctly hollow profile for the first 0.5 ms of the 
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discharge, Fig. 4.2, but then relaxes to a substantially flat profile 

at about 0.7 ms. The safety factor, q, is measured throughout the 

discharge and during the period when the toroidal current density is 

hollow, q is about 8 on the magnetic axis and falls to a minimum of 

below 4 within the plasma. After 0.7 ms the q profile is approximately 

flat at about 4. 

EVOLUTION OF POLO(ORL I1RGNETIC FIELD 

(a) 

a 

:.ca 	4.9 	LM 
ztrt 

EvoLULUON OF CURRENT CENSITY 

(b) 

7.9 

Fig. 4.2 	The evolution of (a) poloidal magnetic field and (b) current 

density in the LT-3 tokamak(56) 
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When a minimum of the q profile occurs within a discharge, one 

expects the discharge to be unstable to all resistive MHD (tearing-mode) 

perturbations(19). The non-linear growth of two tearing-mode 

perturbations has been postulated to cause disruption of the magnetic 

surfaces and hence rapid levelling of the current profile. In the LT-3 

tokamak, magnetic perturbations indicate the presence of a slowly growing 

m = 4 mode. This is followed by a substantial increase in diffusion of 

runaway electrons at about the time the current distribution relaxes to 

a flat profile. This is indicative of the overall disruption of the 

magnetic surfaces. Observations of MHD mode structure in T-3 also show 

the presence of m = 4 - 6 perturbations
(57) 

while the current is rising. 

The overall picture is then of the non-linear temperature 

dependence of the resistivity being responsible for the occurence of a 

pronounced skin effect. This, however, modifies the q profile making the 

skin area unstable to tearing-mode perturbations. This instability causes 

the subsequent relaxation of the hollow current distribution to a 

centrally peaked profile by enhanced transport caused by the 

reorganisation of the magnetic surface structure. 
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4.2 	MECHANICS OF THE SIMULATION 

4.2.1 1 - D or 2 - D?  

While the current is rising, at least, the tokamak is most 

definitely a two dimensional problem. The current in the primary of the 

transformer induces a varying magnetic flux in the iron core that in 

turn produces an electric field, varying inversely with major radius, R. 

The electric field is therefore greater on the inner side of the torus 

than on the outer, an effect that will be more pronounced in the new 

second generation (large) tokamaks, which have small aspect ratios. In 

a uniformly preionised plasma, this electric field will induce a larger 

current on the inner side, which will cause the temperature to rise 

differentially. The resistivity will decrease and more current will 

flow. Thermal conductivity parallel to the magnetic field is a very 

sensitive function of temperature. This will tend to conduct the heat 

around the magnetic surfaces but the extent to which this happens will 

depend very critically on the temperature, and is also limited initially 

by high values of q. Local maxima of current and temperature will both 

lead to flow and this flow may alter the magnetic surface structure. 

It is clear, therefore, that averaging around magnetic surfaces 

in order to form a one dimensional model is not a good approximation and 

that a two dimensional treatment is necessary. The model described in 

chapters 2 and 3 is ideally suited to this problem as it is two 

dimensional and contains both resistivity and thermal conductivity. 

That it is Lagrangian is advantageous because the modification of the 

magnetic surfaces is easily followed and provides resolution where it is 

needed. 
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4.2.2 Timescales  

The type of behaviour we expect will depend upon the relative 

magnitude of four timescales in particular; the modified sound and 

Alfven times (Chapter 2, section 5): 

Ts  = a J1 + R2/a2 	sec 	(4.2) 
cs 	2 

TA  = a /2(1 + R2/a2) sec 	(4.3) 
cA  

the resistive diffusion time, Eq. (4.1): 

Tn = u a2 	sec 
T5-11--7  

and the thermal diffusion time (Chapter 3, section 3): 

TK  = (y - 1)k pL2 	sec. 	(4.4) 
M K 

where 	L = T . 
vT 

Consider firstly the relative importance of the inertial and 

diffusion processes 

= 	4 a2e2 	 (4.5) 
Ts 	Ms  

where Rm  is the magnetic Reynolds number, Ms  the sound Mach number, 

e the temperature in eV, and a the radius in metres. Likewise 

Tes, = Rm 	10-4  I a 03/2 	(4.6) 
TA 	MA 	4R 

where MA  is the Alfven mach number. When expressions (4.5) and (4.6) are 

large sound waves and Alfven waves will be the fastest processes (which 

one is quickest depends on NIA ` Sp) and the effects of diffusion small. 

s 
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Conversely, when Eqs. (4.5) and (4.6) are much less than unity, then 

resistive diffusion will dominate. When however, Eqs. (4.5) and (4.6) 

are approximately unity, then we may expect some coupling between the 

two processes which can lead to enhanced current penetration(58). 

Consider now the timescales associated with thermal diffusion. 

If the Peclet number becomes greater than unity 

Pc = VTk 
L 

(4.7) 

where v is the characteristic flow velocity, we may expect convection 

to play an important role in heat transfer. Consider also the rate at 

which an element of fluid is heated by the current compared to the rate 

at which heat is dissipated by thermal conduction. If we associate a 

time TOH with ohmic heating, then if the ratio 

'OH < 1 

T 
K 

we may expect the fluid element to be heated faster than thermal 

transport can remove heat from that element. Under these conditions, 

preferential heating will occur in regions of the plasma where the 

current is largest, and the thermal; conduction will not be sufficient 

to conduct the heat away from these hotter areas. Quantitatively, the 

power density supplied by ohmic heating is 

P 	= nJ2 =3/2 E2 
OH 	10~ 

The power density, dissipated by the thermal conductivity in a strong 

magnetic field is 

P 	= v.(KvT) = 0.6 e7/2  
K 	 LG 
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The safety factor q relates the scale length, L, parallel to the 

magnetic field to a scale length, Lp, in the poloidal plane 

P = 0.6 e'/2 
g2L2 

which is a much simplified version of Eq. (3.36). The ratio POH/PK 

determines the relative importance of dissipation and heating 

P0H 	= 1.6 103 e-2 q2 L 2 E2 
P 
K 

(4.8) 

4.2.3 Inductance  

The inductance of a conductor simply represents the distribution 

of current density within a conductor, without depending upon the actual 

magnitude of the current. For this reason it is an ideal indicator of 

the current distribution within a plasma and is often used as an 

experimental diagnostic,for example in z-pinch plasmas. 

Inductance is normally defined as 

L = 
Ī 

(4.9) 

where i is a flux per unit length. Expressing both the flux and current 

as integral quantities, and using the geometry defined in Fig. 4.3 

L = Po I.Bp..cla 
95 ep'i 

Now Bp = v* x vq) and if ds is an area element per radian in the 	direction 

then the inductance is 

where 

L =~ 
K 

(4.10) 

K = 	
Rhv, 

dx 



Fig. 4.3 	Geometry used for inductance calculations 

We see therefore, that the inductance is a purely geometrical 

relationship depending only upon the scale factors of the flux surface 

coordinate system. The inductance may therefore be altered, not only 

by the resistive diffusion of the current into the plasma, but also by 

the motion of the plasma itself which will move the flux surfaces. 

The inductance will therefore, indicate the extent to which the 

current distribution has penetrated the plasma. Consider, for example, 

a cylindrical conductor with the current flowing in an annular region, 

Fig. 4.4 
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Fig. 4.4 	A cylindrical conductor with the current flowing in the 

annular region bc. 

The current density in the z direction 

	

Jz(r) = 0 	r < b 

	

J 	b < r < c 

	

= 0 	c < r < a 

Now 

ii=lB . ds 

I = tJ . dA 	= 	11J(c2  - b2) 

(where dA is in the r - e plane and ds in the r - z plane) and 

Be  (r) = 0 	r < b 

= j J (r - b 2) 	b< r< c 

= uQ  I 
2 	

r > c 

27rr 
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Therefore after a little manipulation we find the inductance per unit 

length 

L = u 	1+ 2 in a - 2 	b2  	ln c 	(4.11) 
47r 	c 	cz - bz 

As we take various limits, Eq. (4.11) becomes more familiar. For the 

constant current case, b } o, c } a we have 

Lcc 
4 

and for a skin current where b } c -} a 

Lsk  

and finally for a delta function current distribution on the axis at 

r = o, where b 	o and c 	o 

Ls  = jn 1 	n a 
27 	c 

which approaches infinity logarithmically. 

We note therefore that the inductance per unit length of a 

cylindrical conductor with a uniform current profile is 

Lcc  = 10 7̀  henries 

and for a skin current is 

Lsk  = 0 	henries 
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4.3 	NUMERICAL SOLUTIONS OF THE CURRENT RISE PHASE  

The current rise phase was simulated in two contrasting machines. 

One simulation of a small tokamak, was based on the LT-3 experiment(59)  which 

is a fairly large aspect ratio device. The other simulation, of a large 

tokamak, was derived from the proposed Joint European Torus (JET)(60)  and 

has a small aspect ratio. In each case, a number of simulations were 

performed to investigate the effect of varying certain parameters. A 

selection of those runs is presented here. 

4.3.1 Small tokamak  

The first series of simulations are of the current rise in a small 

tokamak with the parameters of LT-3 (see Table 4.1). The initial electron 

density is assumed to be 5.1019  m-3  and the discharge gas deuterium. At 

all times it is assumed that this gas is fully ionised at all chosen 

initial temperatures, i.e. in the range 1 to 10 eV. Efficient pre-

ionisation at these temperatures can impose severe limitations on the 

range of filling pressures and driving electric fields(61), but this may 

be avoided by using a strong HF pre-ionisation. 

At an initial temperature of 1 eV resistive diffusion is the 

fastest process with a classical diffusion time of Tn  - 0.5 us  (Eq.(4.1)) 

compared to a sound time of Ts  " 22 us  (Eq.(4.2)) and an Alfven time of 

TA - 120 us (Eq. (4.3)). Figure 4.5 shows contour plots in the poloidal 

plane of (a) the vorticity E, (b) stream function 	(c) the product of 

the toroidal current density and major radius R in units of uoRJp, and 

(d) energy in eV at approximately one classical diffusion time. As with 

all these diagrams of the poloidal plane, the major axis lies to the left. 

It is clear that even after only one diffusion time, a current distribution 

that is peaked at the centre is already well established. 
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TABLE 	4.1 

LT-3 

0.1 

0.4 

JET 

1.28 

2.93 

Minor radius, a 	(m) 

Major radius, Ro  (m) 

Toroidal magnetic field, 	Bcp 	(T) 0.5 3.0 

Initial 	toroidal 	current, 	Io 	(kA) 1 10 

Maximum toroidal current, 	Im  (kA) 15 1000 

Current rise time, 	T1 	(ms) 1 10 

Effective Z (axis) 1 1 

Effective Z (wall) 2 2 

Initial 	q(a) 60 900 

The flow is very small and arises from vorticity generated almost 

entirely from gradients of pressure, Fig. 4.6, parallel to the major 

axis, near the wall (Eq. 2.19). Preferential heating on the inner side 

(the side nearest the major axis) is evident. This is caused by more 

Ohmic heating to this area because the current density is larger there, 

although the effects of the current penetration is obvious as the heated 

region is extending across the whole left hand side of the torus. This 

is not an effect of the thermal conductivity because if we look at the 

heating to dissipation ratio, Eq. (4.8) 

POH - 1.6 103  e-2 q2 L2  E2 
PK  

when e = 1 eV, q = a B(p - 60, Lp  - a metres and E - 10 V/m we obtain 
R Bp 

P
OH 

- 107  

P 
K 

confirming that thermal conductivity is unimportant in this case. 
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U-3 1EV 

PRESSURE 

0.42 

50 
CONTOUR HEIGHT 

1 .10069E+Ol 
2 .10143E+Ol 
3 . . 1021 7E +01 
4 .10291E+Ol 
5 .10365E+Ol 
6 .10439E+Ol 
7 .10513E+Ol 
8 .10587E+Ol 

08/01/79 22.17.17. 

Fi g. 4·.6 Pressure gradients parallel to the major axis are 
responsible for the flow pattern seen in the last figure. 

As a confirmation of our conclusions, we look to the time 

history of the total current, voltage and inductance, Fig. 4.7. The 

current is a prescribed function of time and the voltage is that normally 

measured in tokamaks as the loop voltage 

(4.12) 

where di is parallel to v~ i.e. in the toroidal direction. The electric 

field is calculated from the rate of change of poloidal flux at the 

plasma edge minus that at the magnetic axis. 

v = -2'ITR (~I - ~I ) at r=a at r=o 

As the plasma vacuum boundary is held fixed, this voltage is just a 

measure of the difference of electric field between the magnetic axis 
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time:; ps. 

Fig. 4.7 	Traces of voltage, current and inductance against time for 

leV initial temperature in LT-3. 

and plasma boundary. p, is changed on the plasma edge so that a 

prescribed current flows, while 'p on the axis is determined by resistive 

diffusion. The inductance is trivially derived from the total magnetic 

energy 

L=2~Um_ 
I 

(4.13) 

We note that although I is a linearly increasing function of time, 

the loop voltage, V, after an initial sharp increase, decreases steadily. 

This indicates that initially the electric field increases sharply on the 
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edge, signalling the formation of a skin current. After less than 0.5 us 

the voltage has started to decrease showing that the electric field, and 

therefore, the current is starting to penetrate the interior of the plasma. 

This is confirmed by the inductance which, after an initial decrease, 

increases past its initial value. 

When the initial temperature is raised to 5eV, the sound and 

diffusion times are much closer than in the previous simulation; 

Ts 	10 us and Tn  - 6 us. After one classical diffusion time, a centre 

peaked distribution has begun to form, but there is still appreciable 

current flowing near the plasma edge. 

Finally, at an initial temperature of 10eV, when the sound time is 

Ts  - 7 is and less than the diffusion time of Tn  - 16 us, a skin current 

is still well developed even after nearly one classical diffusion time, 

Fig. 4.8. 

Li-3 	IOEY 

CURRE\ T 

12.88 

v S' / 
,11 

‘,). 

/ II 

iJ 

CONTOUR HEIGHT 

1 	-.20594E-01 
2 	-.20115E-01 
3 	-.19635E-01 
4 	-.19155E-01 
5 	-.18676E-01 
6 	-.18196E-01 
7 	-.17716E-01 
8 	-.17236E-01 

\ 

— 

06/01/79 	01.05.55. 

Fig. 4.8 	The current, after nearly one diffusion time in LT-3 with 

an initial temperature of 10eV. 
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time, Ns. 

Fig. 4.9 	Traces of voltage, inductance and current for the same 

parameters as Fig. 4.8. 

At 16 us Fig. 4.9 shows that not only is the loop voltage increasing, 

which indicates that the electric field is not penetrating and current is 

accumulating at the plasma edge but also the inductance is decreasing, 

confirming the formation of a current skin. 

These three simulations have covered ratios of Tn  /T S  of 

approximately .02 to 2. As this ratio has increased we have seen a 

deviation from classical current penetration. In the first run, the 

plasma behaved as would a solid conductor and the current has penetrated 

during a classical diffusion time. As the ratio Tn/TS  is increased, less 
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current penetration occurs within a classical diffusion time. As the 

sound time becomes comparable to the diffusion time, the plasma flow 

becomes increasingly important. With an initial temperature of leV 

after t = T , the plasma velocity in units of minor radius per 
11 

microsecond (Fig. 4.5(b)) is v - 1.5.10- 5 (- 1.5 m/s). At t = T in the 
11 

-4 10eV run, the maximum flow speed is v - 7.2.10 (- 72 m/s), Fig. 4.10. 

As the flow contributes to the electric field in the plasma, it will 

obviously affect the current distribution. 

LT-3 lOEY 

STRERM 

12.88 

50 
CONTOUR HEIGHT 

1 .499S2.E..-02 
2 .49966E-02 
3 . 4·9979E -02 
4 .49993E-02 
5 .SOO07E-02 
6 .50021E-02 
7 .S0034E-02 
8 .50048E-02 

o 
o 

06/01/79 01.0~.5~ 

/ 

Fig. 4.10 Stream function after nearly one classical diffusion 
time in LT-3 with the same parameters as Fig. 4.8. 

Consider in turn a solid conductor and a highly conductive 

plasma, given Ohms Law 

In the conductor there is no flow, so 11~ = ~ together with Faradays Law 



128. 

gives a diffusion equation for the magnetic field into the conductor. 

Conversely, in a perfectly conducting plasma, flow will occur so that 

E+vxB=0 

In a perfectly conducting plasma, this will prevent the magnetic field in 

the moving fluid frame from changing and therefore affect the penetration 

of current. Between these two limits, it is clear that flow in a 

resistive plasma can affect the current distribution. 

If we now continue the simulation with an initial temperature of 

10eV past 16 us we see the effect of this plasma flow. First, Fig. 4.9, 

the inductance reaches a minimum value and then increases indicating that 

current penetration has begun. Secondly, dV/dt becomes negative indicating 

that the electric field on the magnetic axis is increasing, and less 

current is accumulating in the skin. 

The plasma flow is at first generated by a pressure gradient 

parallel to the major axis. Reproducing Eq. (2.19): 

1 dE + 
R dt 

vv2  x vR2p 

 

Vp x vR2  + R B.v RJ0 

    

we see that this pressure gradient leads to the generation of vorticity, 

Fig. 4.11. Flow results which attempts to reduce the pressure gradient 

by increasing the density in the low pressure region, near the edge of 

the plasma. In this it is largely successful, for after a number (- 15) 

sound times, these sound waves are dissipated and Vp x vR2  -- 0, Fig. 4.12(a). 

The flow, however, persists because RJ0  now varies around a 

magnetic surface, Fig. 4.12(b). This occurs because diffusion of the 

magnetic surfaces through the plasma is reduced where the plasma is 

hottest, Fig. 4.12(c), which is near the inner edge. This impedes current 

penetration, but where the temperature is lower, the magnetic surfaces 

diffuse inwards more easily. The variable "etachi" gives a quantitative 



description of this phenomenom. 

LT-3 lOEV 

PRESSURE 

12.88 

50 

CONTOUR HEIGHT 
1 .1000SE+02 
2 .10014E+02 
3 .10023E+02 
4 .lOO32E+02 
5 .lOO41E+02 
6 .10049E+02 
7 .100S8E+02 
8 .lOO67E+02 

06/01/79 01.05.57. 

Fi g. 4. 11 Pressure after nearly one classical diffusion time in 
LT~-3 with the same parameters as Fig. 4.8. 

"Etachi" is given by Eqs. (3.18) and (3.20) and is: 

and is a measure of the velocity of the fluid relative to the mesh 

that arises because of differential resistive diffusion. The average 

motion of each surface is treated by changing the value of ~ on that 

surface, but the surface must then be moved differentially to account 

for the variation of resistive diffusion around the surface. 

129. 

Figure 4.l2(d) indicates that the largest outward motion of the 

surfaces relative to the fluid to correct for the average resistive 

diffusion is on the inner edge of the plasma. Around the edge, this 

relative motion decreases rapidly until on the outer edge the surfaces 
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must move inwards relative to the fluid. Current is therefore able to 

diffuse into the plasma more quickly in regions other than the inside 

edge, and causes vorticity, Fig. 4.13(a) because the gradient of RJ0  

in the magnetic surfaces is no longer zero. The flow, Fig. 4.13(b), is 

similar to that produced by the pressure gradient, but will persist as 

long as there is a gradient of RJD  in the magnetic surfaces. This is 

driven by preferential heating on the inner side of the torus which will 

persist until the thermal conductivity is large enough for dissipation 

to occur. From Eq. (4.8) we see that the temperature must rise to about 

1 keV before thermal conductivity can overcome the ohmic heating source. 

The flow will therefore persist, and after about 107 us the maximum 

velocity has reached 290 ms 1, Fig. 4.13(c). 

The flow speed outwards along the midplane from the inner edge 

is smaller, about 65 ms 1. Even if we assume this speed does not 

increase, a fluid element originating at the edge will reach the centre 

of the torus after about 1 ms. A fluid element above or below the 

midplane will not travel as fast so surfaces advected with the fluid will 

exhibit a shape shown in Fig. 4.14. This will be aided by the higher 

temperatures in the region near the inner edge, because although the 

magnetic surfaces will tend to diffuse through the fluid and may be left 

behind, this diffusion will be smaller where the temperature is higher. 

The advection does not help the penetration of the temperature to the 

interior of the plasma to any great extent. The heating rate by 

convection is only about 10eV per sec. in the hottest region of the 

plasma near the inner wall. This is because conservation of energy 

demands that fluid elements moving away from the major axis should 

cool. Whilst they may displace colder elements, the heating effect 

will be reduced. 



Li-3 10EV 

VSJ 
(c) 

106.57 

400 
CONTOUR HEIGHT 

4• 
	.29239E-02 

06/01/79 01.06.31. 

LT-3 10EV 

VORTEX 

106 .57 	(a)  

400 
CONTOUR HEIGHT 

1 	-.10373E+01 

2 	-.74091E+00 
3 	-.44454E+00 
4 	-.14818E+00 

5 	.14819E+00 
6 	.44455E+00 

7 	.74091E+00 
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06/01/79 01.06.20. 

LT-31M 

STREAM 

 

106 .57 

	(b) 

400 

 

CONTOUR HEIGHT 

 

1 	.49597E-02 
2 	.49712E-02 
3 	.49827E-02 
4 	.49942E-02 
5 	.50058E-02 
6 	.50173E-02 
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8 	.50404E-02 

  

06/01/79 01.06.26. 

Fig. 4.13 	(a) Vorticity 
(b) Stream function and 
(c) Flow velocity at the same instant 

as Fig. 4.12. 
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Advection could therefore lead to a disruption of the magnetic 

surfaces in an m = 2, n = 0 instability. This would occur on a times 

scale comparable with the instability and relaxation of the skin 

current seen experimentally in LT-3. 

Fig. 4.14 Predicted shape of the magnetic surfaces as a result 

of steady flow arising from gradients of RJD in the 

magnetic surfaces. 

4.3.2 Large tokamak  

The second series of simulations are of the current rise 

phase in a large tokamak based on JET (for parameters see Table 4.1). 

Again the initial electron density is 5.1019  m-3  and the discharge gas is 

deuterium which is always assumed fully ionised. The JET tokamak 

differs from the LT-3 tokamak discussed in the previous section in two 
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essential features. Firstly, it has a much larger minor radius, 1.28 m 

compared to 0.1 m in LT-3, and secondly, the aspect ratio is much 

smaller, 2.3 compared to 4 in LT-3. It is because of these two 

differences that we obtain markedly different numerical solutions at 

similar initial temperatures. 

For an initial temperature of 3eV, the classical diffusion time 

in a large tokamak is much greater than the sound time. For JET, the 

ratio is 4.75 with Tn  - 475us and Ts -  100us. This is even larger than 

the ratio of Tn/TS  for the highest initial temperature in LT-3 where 

we saw that the plasma flow had a marked effect on the current 

penetration. 

After approximately one diffusion time, Fig. 4.15(a), two opposing 

vortices have been generated in the upper half of the torus. Again, 

referring to Eq. (2.19), the negative vortex is produced by the second 

term, i.e. the gradient of RJD  parallel to Bp, Fig. 4.15(b), and is 

reinforced by the negative vertical pressure gradient at the edge, 

Fig. 4.15(c). The small positive vortex is produced by the positive 

pressure gradient just inwards from the edge. The current density and 

pressure distributions are quite different from those seen in LT-3. 

This is largely because thermal conductivity has a much smaller effect, 

because the ratio P0H/PK, Eq. (4.8) is much larger, not only is q much 

bigger, but as JET is a far larger machine, Lp  is also. Thus for 

e = 3eV 

P0H - 2.2.109 
P 

K 

This large ratio of thermal heating to dissipation, coupled with a larger 

ratio of Tn/Ts  results in marked preferential heating on the inner side 

of the torus, Fig. 4.15(d). 
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The vorticity pattern, Fig. 4.15(a), produces counter rotating 

cells shown in the stream function, Fig. 4.16(a), that correspond to 

flow in a direction shown diagramatically in Fig. 4.16(b), confirmed 

by the arrow plot of Fig. 4.17(a). The maximum flow velocity, which 

occurs parallel to the magnetic surfaces is 4.2.103  ms-1. This flow 

advects the plasma which is most clearly seen in the plot of density. 

As discussed in section 5 of Chapter 2, a consequence of assuming 

toroidal incompressibility is that a volume element is compressed as it 

moves towards the major axis. Conservation of mass implies therefore, 

that p 	1/R2. Thus in Fig. 4.17(b), where flow moves the plasma 

towards the major axis, the density is higher; where the flow is away 

from the major axis, the density is lower. The flow also advects the 

magnetic surfaces, moving the magnetic axis nearer the major axis. 

In Fig. 4.17(c), the variable "etachi" is plotted. Broadly 

speaking, as the fluid velocity perpendicular to the magnetic surfaces 

is small, "etachi" shows that the mesh is moving outwards on the left 

of the magnetic axis, and inwards on the right, the top and the bottom. 

Thus, superimposed on the general inward diffusion of the poloidal flux, 

accounted for by a a /at on each surface, the surfaces are diffusing 

into the plasma at a greater rate on the right, top and bottom of the 

magnetic axis. 

Finally, it is interesting to note that the flow away from the 

heated region is resisted by poloidal currents, Fig. 4.17(d), generated 

as the flow tries to move the mesh. The cross product of these currents 

with the toroidal field (parallel to the toroidal current) leads to a 

force towards the major axis in the hot region. 

Thus after one diffusion time, the situation is by no means as 

clear as it was for a similar temperature in a small tokamak. Pressure 

variations in the vertical direction caused by ohmic heating cause a 

flow that moves the magnetic axis towards the major axis. 
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Fig. 4.16 	The stream function (a) shows a counter rotating cell 

structure illustrated diagrammatically (b) which arises 

from the vorticity shown in Fig. 4.15(a). 
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On the other hand, increased current flow at the left hand edge arises 

because the applied electric field is larger and, due to Ohmic heating, 

the resistivity is smaller. This generates counter rotating cells 

near the left hand edge which gives rise to the flow pattern shown in 

Fig. 4.16. The flow pattern advects the magnetic surfaces from the 

left and right hand edges into the discharge, helped in places by 

differential resistive diffusion. So, although the temperature 

dependence of the resistivity tries to prolong the skin time, it creates 

flow that assists the penetration of the poloidal flux, and therefore, 

the current. 

For confirmation of this, we look at the time development of 

voltage and inductance, Fig. 4.18. After about 600us the loop voltage 

starts to decrease indicating that poloidal flux is being removed from 

the edge of the plasma. The inductance, however, continues to increase 

indicating that current penetration is occuring. This behaviour is 

similar to the small tokamak LT-3 at an initial temperature of 10eV, 

although in this case a voltage maximum has been reached. 

If we continue the run, the current continues to grow at the. 

left hand edge, Fig. 4.19(a), driven by the larger electric field and 

lower resistivity in this hotter region, Fig. 4.19(b). The gradient of 

RJ4 parallel to Bp now dominates any pressure variation, leading to 

vortices, Fig. 4.19(c), that produce a flow pattern which advects plasma 

outwards, away from the major axis, Fig. 4.19(d). After -0.9 ms this 

steady flow has reached a maximum speed, Fig. 4.20, of 7.3.103  ms -1  and 

in the mid-plane the speed is 2.102  ms 1. This flow will advect 

magnetic surfaces towards the magnetic axis, helped by the higher 

temperatures near the left hand edge, which reduces the resistive 

diffusion of the field through the fluid, resulting in the magnetic 

surfaces following the fluid flow more closely. This advection, however, 

will not result in much heating of the central region. 
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Fig. 4.18 	Time dependence of voltage, inductance and current 

for a simulation with the parameters of Fig. 4.15. 
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In a manner analogous to the density, toroidal incompressibility implies 

that when a fluid element moves; its energy must alter by an amount 

proportional to R2('1)  in order to conserve energy. A flow away from 

the magnetic axis will therefore cool the fluid element although this 

may displace a cooler fluid element. The penetration of the current to 

the central region of the plasma therefore, seems unlikely to occur 

because the centre is heated by convection. A more likely mechanism is 

the disruption of the magnetic surfaces caused by advection of the 

surfaces from the inner edge towards the magnetic axis. From the flow 

speed in Fig. 4.20, a fluid element from the inner edge will reach the 

centre of the torus after - 15 ms, which is short compared to the total 

expected lifetime of JET and is indeed comparable to the current rise 

time. 

JET 3EY 

VS J r i 
K g 

874.26 : 

5CC . 
CONTOUR HEIGHT . 	.. 

4. 	.56659E-02 

l ti  
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4 4 4' 

28/02/79 06.15.00. 

Fig. 4.20 	Flow velocity corresponding to the stream function shown in 

Fig. 4.19(d) 
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At the higher initial temperature of 10eV we see similar 

behaviour, Fig. 4.21, but the steady flow driven by the gradient of 

RJ+  parallel to B appears much sooner in relation to the classical 

diffusion time, which is Tn - 3 ms. This is because the sound time 

Ts 	52us is much smaller, and pressure gradients which give rise to 

competih9 vortices are smoothed out more quickly. 

4.3.3 Energy conservation  

In the runs described in the last two sections, the total energy 

conservation was in line with the limit imposed by the orthogonalisation 

procedure. The simulation of LT-3 with an initial temperature of leV 

conserved energy to better than 3% in a run that lasted for 500 time-

steps. For similar length runs, the simulations of LT-3 at 10eV and 

JET at 3eV and 10eV returned energy conservation figures of 6%, 7.4% 

and 9%. 
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4.4 	SUMMARY  

In this series of simulations, we have seen that the numerical 

solutions are dependent basically on three parameters, the initial 

temperature, aspect ratio and minor radius. These three parameters 

affect three relevant timescales, the sound time, diffusion time and 

thermal conduction time, and it is the relative magnitude of these that 

determines the type of solution obtained. 

Flow may occur when there is a vertical pressure gradient, or 

when there is a gradient of RJ4, parallel to the poloidal magnetic field 

(Eq. 2.19). If the thermal conduction time is small compared to the 

diffusion time, the ohmic heat supplied at the inner edge will quickly 

diffuse around the magnetic surfaces, so RJD will remain uniform on a 

magnetic surface. Flow will therefore arise only from the term 

Vp x VR2  and this flow will quickly dampen if the sound time is also 

small. If the aspect ratio is large, then J(1)  will be uniform around a 

magnetic surface and once again flow will only arise from a vertical 

pressure gradient. 

When the minor radius is small, the diffusion time can become less 

than the sound time. In these circumstances, current penetration occurs 

on a timescale short compared to the sound time, and therefore, J(  is 

approximately uniform on a magnetic surface. Flow due to a vertical 

pressure gradient can occur, but does not grow with sufficient speed 

(because the sound time is large) for the flow to affect the current 

penetration. 

In these limits the flow and current diffusion decouple. However, 

if the thermal conduction time is chosen large, and the diffusion time a 

few times the sound time we may see the effects of plasma flow and 

magnetic field diffusion coupling. By choosing a small aspect ratio and 

large minor radius as in the JET simulations, we find that at 
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experimentally realistic initial temperatures, plasma flow does modify 

the magnetic field diffusion. This is also seen in the LT-3 simulations 

although a slightly higher initial temperature is required. The time 

for penetration of the current indicated in this case is of the same 

order observed experimentally, and far less than the penetration time 

given by the one dimensional codes described in the first section of this 

chapter. 
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CHAPTER 5  

HIGH TEMPERATURE PLASMAS AND PRESSURE ANISOTROPY  

A plasma may be described by macroscopic variables such as 

temperature, density and a centre of mass velocity if the collision 

frequency of its constituent particles is sufficiently large to ensure 

that at all times a local thermodynamic equilibrium exists. Additionally 

if these macroscopic variables vary over characteristic lengths large 

compared to the mean free path, and vary sufficiently slowly compared to 

the collision frequency, collisional transport theory may be applied to 

the plasma and its evolution described by fluid or magnetohydrodynamic 

(MHD) equations. This represents a considerable simplification of the 

Liouville equation, which describes the plasma by referring to the 

coordinates and velocity components of all its constituent particles. 

In high temperature plasmas, however, it does not immediately 

follow that MHD equation may be used automatically, because collisions 

become less frequent as the temperature of the plasma increases. For 

instance, in Table 3.2 we see that a typical kilovolt tokamak plasma has 

an electron-ion collision frequency, vei  comparable to the Alfven or 

sound wave frequencies. Furthermore, a local thermodynamic equilibrium 

may not be established in a time-scale which is short compared to those 

of interest. On the other hand, for any contained plasma of interest, 

the collision time is very small compared to the containment time which 

suggests that in some sense there must exist a near thermodynamic 

equilibrium. In this event a fluid theory might be possible. 

In this chapter, this idea is developed into a fluid model 

appropriate for high temperature plasmas in a strong closed magnetic 

field, in which the plasma pressure must be represented as a tensor 

quantity. 
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5.1 	CONCERNING BANANAS  

The geometry of the magnetic field in the tokamak, and most other 

toroidal devices ensures that inhomogeneities exist along the magnetic 

field lines. As the helical field lines in a tokamak spiral around the 

torus the strength of the magnetic field increases as the field line moves 

closer to the major axis. An adiabatic trap therefore occurs between 

the weak field region on the outer side of the torus and strong field 

region on the inner side. These adiabatic traps were first noted by 

Morozov and Solev'ev
(62) 

 who realised that particles could be trapped in 

these regions in a manner similar to that of a magnetic bottle. This 

idea was extended by Galeev and Sagdeev
(63) 

who calculated the effect of 

these trapped particles on the transport coefficients. The "neoclassical" 

diffusion coefficients they obtained were considerably larger than 

classical values, but still did not account for experimentally observed 

losses. Neoclassical transport theory, which still forms the backbone 

of most one dimensional diffusion codes(64)  fails to describe electron 

energy transport, although it is somewhat modified by trapped ion and 

electron contributions to the diffusion. 

A particle is trapped in a magnetic bottle if its kinetic energy 

parallel to the magnetic field is insufficient to overcome the potential 

barrier at the magnetic mirror. We may write the conservation of energy 

for a particle as: 

mv„ 2  + TIB + e o = constant 
2 

where 

u = mv.2  
2B 

Guiding centre motion theory demonstrates that p is an adiabatic 

invariant if the magnetic field varies over distances large compared to 



149. 

the Larmor radius and on a timescale long compared to the cyclotron orbit 

time. If the electrostatic potential, eP, is constant, then a certain 

class of particle will be reflected at the magnetic mirror. If v„ is 

large the particle will escape from the magnetic trap and is termed a 

"passing" particle. For v„ small the particle is reflected at the 

magnetic mirror and is hence called "trapped". Fig 5.1 shows the 

trajectories of both passing and trapped particles from which the origin 

of the term banana, to describe the trapped particles, is obvious. 

The concept of passing and trapped particles is dependent upon 

the time between collisions. If the collisions time is shorter than the 

transit or bounce time of a particle in the magnetic trap then it will 

be scattered out of the trap before it can execute one bounce. Therefore 

in order that we may talk about passing or trapped particles, we require: 

TC > Tt (5.1) 

Having established that passing and trapped particles can exist, 

we must consider the length of time particles can remain in these traps. 

The guiding centres of particles in a magnetic field drift onto 

adjacent field lines if inhomogeneities in the field, such as curvature 

or gradient, exist. In the magnetostatic case, with a source free 

magnetic field with small gradients, the gradient and curvature drifts 

may be written: 

vd  = m v„2  + v_ 2 
eB 	2L ) 

where L is the radius of curvature. Approximately: 

vd 	vth2  
SSL 

(5.2) 

where with is the thermal velocity and c the cyclotron frequency. The 

transit time of a particle in a magnetic trap is: 



magnetic field line 

trajectory of 
trapped particle 
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projection on poloidal plane 

passing orbit 	trapped orbit 

Fig. 5.1 	Trapped and passing particles 



Tt = L„/v„ (5.3) 
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where L. is the distance between the mirror points. Comparing the 

drift time and transit time we find: 

Td  = 	Tt  

vth 

(5.4) 

which essentially implies that if the Larmor radius is small compared 

to scale lengths perpendicular to the field, the drift time is large 

compared to the transit time. 

In any conceivable fusion plasma which is magnetically contained, 

the collision time is much longer than times associated with particle 

motion, and Eq. (5.1) is satisfied. Furthermore, Eq. (5.4) implies the 

drift time substantially exceeds the transit time. On the other hand, 

for any confined plasma of interest, the collision time is very small 

compared to the containment time, which implies: 

Td > Tc  (5.5) 

We have therefore, a plasma in which there must exist, in some 

sense, a thermodynamic equilibrium. We now proceed to develop a fluid 

theory which is applicable in these circumstances. 
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5.2 	THERMODYNAMIC EQUILIBRIUM WITH RARE COLLISIONS  

We have described above the conditions in a typical tokamak plasma. 

Hence, in the development of this theory we shall assume that the Larmor 

radii are small; 

a « L 

which is equivalent to 

with « c L, 
	

(5.6) 

where L1 is a characteristic scale length, c the cyclotron frequency and 

with the thermal velocity. We define a small parameter, c, such that: 

s = Vth  
s/.. 

We shall also assume that the plasma is nearly stationary 

Vd « V
th 

or 

Vd = 6 V
th (5.7) 

The opposite situation exists in the Chew-Goldberger-Low(67) regime. 

In addition we assume that the magnetic field lines are closed. 

We now develop this idea by considering the transit time for the 

particles. The time for a particle to return to an equivalent point on 

a magnetic surface, if L. and v
th. are a scale length and a thermal 

velocity parallel to the field, is: 

Tt - 	vth„ ,~ / 

We consider the field lines closed in the sense that the transit time for 



the particle is less than the drift time. 

Tt  < L„/vd 	 (5.8) 

These conditions are fulfilled by the plasma discussed in the last 

section. 

Under these conditions, a thermodynamic equilibrium, in some 

sense is to be expected. Perpendicular to the magnetic field, although 

collisions are rare and will not localise the particles in space, the 

Larmor radius of the particles is small and the cyclotron orbit has the 

effect of localising particles perpendicular to the magnetic field. 

Therefore, even though the collisions are rare, because the particles 

are localised for a long time a thermodynamic equilibrium may be set up 

with which a perpendicular temperature, Ty, may be associated. 

Parallel to the magnetic field particles are not localised as the 

collision time is comparable to or longer than the transit time. 

Conversely, because a magnetic surface is closed, a particle may orbit 

many times around the surface before drifting away. Again, in this 

circumstance, the rare collisions can imply that an entire field line 

is in thermodynamic equilibrium described by a parallel temperature, T,,. 

In the limit when Tc  » Tt  we would expect T„ to be constant along an 

entire field line whilst as Tc 	Tt  the particles become localised by 

collisions and we return to local thermodynamic equilibrium where 

T, - T,,. There is, however, no a priori reason why T„ should equal T, 

when Tc  > T
t'  

These ideas are central to the theory and we do indeed find that 

T„ becomes constant along a field line. In order to develop the theory 

further we describe an expansion of the Fokker-Planck equation, and 

apply these ideas to obtain fluid-like equations. 

153. 
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5.3 	MOMENTS OF THE FOKKER-PLANCK EQUATION  

The most fundamental description of a collection of particles is 

the Liouville equation which describes the state of the system of 

particles by referring to the coordinates and velocity components of all 

its constituent particles. In a magnetically confined plasma, the 

number of particles in a Debye sphere is large, nD  - 106, and the state 

of the plasma may be represented by a continuous distribution function, 

f(x, w, t). Small collisional effects may be described as a diffusion in 

velocity space and it is therefore appropriate to begin with the Fokker-

Planck equation for the distribution function of each species: 

f + w . vf + e (E + w x B). vwf = Cf 
at — 	m 

_ (5.9) 

where C is the Fokker-Planck collision operator. The collisions are 

generally a small effect and we shall assume a simple linearised form for 

the collision operator: 

C = <v> 32 
-5T2 

(5.10) 

where v is the velocity averaged collision frequency and x the pitch angle 

in velocity space. For electron-ion collisions, this form is correct to 

order (m
e 
 /m.)1  but is not correct for like-particle collisions. Electron-

ion collisions are however, predominately important. 

In order to analyse the Fokker-Planck equation under the conditions 

of interest (section 5.2) we expand the distribution function by an 

infinite set of moments, and obtain from Eq. (5.9) an infinite set of 

coupled moment equations for each species. The first five moments which 

occur are: 

density: 

momentum: 

p = fm f d3w 

pv fm f wd3w 

(5.11) 

(5.12) 
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momentum transfer: 

energy transfer: 

energy pressure: 

pvv + P = fm f w w d3w 	(5.13) 

pvvv + {P v} + Q = fm f w w w d3w 	(5.14) 

pvvvv + {Pvv} + {Qv} + R = fm f w w w w d3w 

(5.15) 

Higher moments may similarly be defined. The terms such as {P v} refer 

to the creation of a symmetric tensor by the cyclic permutation of the 

free tensor indices, and is the same as the notation used by Macmahon(65)  

For example 

{P v} = pijvk + pkivj + pjkvi 

Therefore, from the Fokker-Planck equation, and in its place we obtain an 

infinite set of coupled moment equations, of which we give the first four: 

density: 	ap + v.pv = 0 	 (5.16) 
at 

momentum: 	a (p_v) + v.(pvv + P)- e p(E+vx8) = 
at 	m 	āt 	

(5.17) 

momentum transfer: a (P + pvv) + v.(pvvv + (P  v} + Q) 
āt = 

- e p{v(E + v x B)} - e {P  x  8} = ō (P  +pvv) 	(5.18) 
m 	 m — 	if 

energy transfer: a (Q + (P v} + pvvv) + V.(pvvvv + {P vv} + (Q v} + R) 
at = — 	 _— 

- p e{(E + v x B)vv} - e{(E+vxB)P} -e{v(PxB)} 
m 	m 	— m 

- e(Q x B} = s (Q +{P  v} + pvvv) 	(5.19) 
= 	st = 

This infinite set of moment equations is simply an alternative 

representation of the Fokker-Planck equation; 	there is no approximation 

involved in this procedure. 

Using the ideas and conditions discussed in section 5.2 we proceed 

to simplify and then truncate the equations (5.16) - (5.19). 
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The conditions (5.6) - (5.8) imply 

vth 
« c L 

and 

<v> « S2 

so from the zero moment, Eq. (5.16) we find 

(5.20) 

We may infer from the first moment, Eq. (5.17) that the electric field 

E - P/neL 	 (5.21) 

and observe that the condition, Eq. (5.7) is consistent with the first 

moment. From the second and third moments, Eqs. (5.18) and (5.19), and 

indeed the fourth and higher moment equations, we obtain to the lowest 

order: 

2nd moment: {P x B} = 0 

3rd moment: {Q x B} = 0 (5.22) 

4th moment: {RxB} = 0 

If we now choose a frame of reference such that the magnetic field 

is always parallel to one coordinate direction such that 

B = B e3  

and rewrite Eqs. (5.22) in the tensor notation of Appendix D giving: 

{cjmn P
km  Bn} = 0 	 (5.23) 

{Ejmn Qklm 
Bn} = 0 	 (5.24) 
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{ejnp Rklmn Bp} =  0 	 (5.25) 

we find that there are only a few non-zero terms of P, Q and R to the 

lowest order. For instance, from Eq. (5.23) we obtain for the lowest 

order P: 

P (o) 	_ pi  

0 

0 

0 

pi  

0 

0 

0 

pfl 

(5.26) 

from which it must be noted that there is no a priori reason why 1:4°)  

should equal p;°). From Eq. (5.24) the non-zero elements of Q(0)  are 

Q113  = Q223  = 

(5.27) 

Q333  = Qn 

which refers to thermal transport of perpendicular and parallel energy 

along the magnetic field. The non-zero elements of the zero order 

fourth rank tensor R
(0) 

 are: 

R1111 = R2222 = 3R1122 = RL 

R1133 = R2233 = R1 (5.28) 

R3333  = R„ 

In the work of Chew, Goldberger and Low the system of equations 

was truncated at the second moment by assuming that the heat flux 

moment (the third) was zero because the flow velocity was assumed large 

compared to the thermal velocity. This is not the case here as 

with  » v, hence Q may be large. We therefore proceed to the fourth 

moment and truncate the system by assuming an "equation of state" 
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which specifies R(°) in terms of the pressure. This is suggested by the 

nature of the pressure tensor, Eq. (5.26) and the conditions on R(°), 

Eq. (5.28). We assume 

R111 1 = R2222 = 3R1122 = 4. 

p 

R1133 = R2233 = pH 
pi 

p 

R3333 = p,,2 

p 

(5.28) 

(5.29) 

(5.30) 

which is consistent with an ellipsoidal distribution function in phase 

space to lowest order 

mwi 2 mw.. 
°) (r , w, t) = (.17) 3/2 _ n 	ē k Ti e- 2 k T, , 

2~
m 
k 	TL T„ 

(5.31) 

where Tl, w„ and T„ , w„ refer to the temperature and velocity 

perpendicular and parallel respectively to the magnetic field. 

From these results we may now proceed to evaluate the moment 

equations expressed to a higher order. 

5.3.1 Conservation Equations  

We obtain conservation equations for particles and for the energy 

of each species. Assuming quasi-neutrality 

n =ne =ni 

the density moment, Eq. (5.16), gives: 

an + v.(n v) = 0 	 (5.32) 
at 

and defining the internal energy of each species as 

ea = P (2pL. + p")a 



the trace of the momentum transfer equation, Eq. (5.18) yields: 

atpee 
	v.(pee v + -9-e) = Pveq(Ei - Ee) 

a
tpei + v.(PEi v + Jai) = Pveq(Ee - Ei) 

(5.33) 

(5.33) 

In Eq. (5.32) n v is the particle flux and p Ev + A. in Eq. (5.33) 

the energy flux. The heat flux 4 is defined below. 

5.3.2 Fluxes  

We may use the momentum equation, Eq. (5.17) to obtain an 

expression for the particle flux for each species "a" 

n _va x B + vaa, p (_va1 	Va ) = 1 v . P~ +n vq) -e7 
	ē 

(5.34) 

where 	is the electrostatic potential. The energy flux may be obtained 

by taking the trace of the energy transfer equation, Eq. (5.19), v 

multiplied by the momentum transfer equation, Eq. (5.18) and 

defining a total heat flux vector for each species, whose kth component 

i s: 
(;)k = Q "

k + Q22k + Q33k 

we obtain (Appendix E): 

m
4a x B + vaaI (Qa' - 9.a ) = Pa 	a +2 P :v(P /P) (5.35) 

Given both 	and P both these equations may be solved for the particle 

and energy fluxes. 

5.3.3 Pressure Tensor  
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Direct collisional effects are apparent in Eqs. (5.34) and 



we obtain: 
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(5.35). However, the off-diagonal elements of the pressure tensor P 

also give rise to particle and energy diffusion. These "viscous" 

elements are determined by evaluating the momentum transfer equation, 

Eq. (5.18), to the next order. The lowest order pressure tensor, 

Eq. (5.26) is given by Eq. (5.23). To the next order this equation 

becomes: 

v.Q(°) - e {P(1) x B} = sP(0) 	(5.36) 
m — 	dt 

However, the only non-zero elements of Q are (Eq. 5.27) 

Q113 = Qz23 = Q -' 	and Q333 = Q.. . Defining 

= Q1 (5.37) 

p~ 	0 	-1 aQ s2 ax2 

0 1 aa 
s2 āxl 

-1 Da 	1 aQ 	p„ 
72- āx2 	ax1 

(5.38) 

The form of the viscous pressure tensor is a consequence of the large 

thermal velocity compared to the centre of mass velocity. It no longer 

depends upon gradients of velocity, but on energy fluxes. 

We must now determine pc, pes,, a and 	for each species along the 

magnetic field. These variables are found from the zero order equations 

in which the cyclotron frequency does not enter. 

5.3.4 Parallel Equations  

Components of the moment equations along the magnetic field 

direction, 



B = Bei  

define 	p,,, 	1:11, 	a and 4). 	To the lowest order the first, 	second and 

third moment equations yield: 

1st moment: e3 	. 	[v.P - n e E] 	= 	0 (5.39) 

2nd moment: Ia 	[v Q - &al 	= 	0 (5.40) ..tJ  

e3e3  v.Q - SP = 	0 (5.41) 

3rd moment: e3  Ia 	rV.R - e{P E} - 4Q = 0 (5.42) 

L 	m 	4t 

e3e3e3 	: 	[v.R - e{P E} - 4Q 

 m 
	

ist 

= 0 (5.43) 

where 

I -a - e3!3  

and I2  is the unit second rank tensor. The divergence of these tensors 

may be evaluated by covariant differentiation (Appendix D) in the local 

coordinate frame parallel to the magnetic field. We have assumed a 

quasi-equilibrium situation in which the electric field is static and may 

be expressed: 

E = -v4) 

and also we have used the condition: 

v.B = 0 

to obtain for Eqs. (5.39) to (5.43): 

+ 
(p, — p„) 1 3B 	+ ne 33c1)= 0 	(5.44) 

axe 	B āx3 	āx3 
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DIN - 2 ¢, aB 	= Sp#  
aX3 	B ax3  St 

(5.45) 

+ (2Qf - Q:; ) 1 aB 	= S2.11 
ax3 	I 	T)-(.3 	St 

a (pO..)  + 2pj (PL - p.1  ) 1 aB + e 	ao = 
aX3  p 	p 	 B ax3 	m 	ax3 	St 

a 	(p..2) + 	.. (P. 	p.) 1 aB 	+ e p., ao 	= 1 SQ,: 
Ti 	p 	p 	 B ax3 	m 	ax3 	3 St 

(5.46) 

(5.47) 

(5.48) 

If we now evaluate the collision terms we find that Eqs. (5.44) to (5.48) 

simplify considerably. 

It may be shown(33)  that the pressure tensor collision terms are, 

for electrons 

di/1.1  
St ee 

1 (12—  vee 
+ 2 vei) (Puy  

(5.49) 

(gip„ ) 	= 2 (12—vee 
	2 vei) (Pi  - P„ )e 	(5.50) 

St ee 	5 

and for ions similar expressions are valid. The transfer of energy 

between species (when T. = T„) is 

where 

spe = (Pi - Pe) veq St 

veq = 2m/M vei 

(5.51) 

(5.52) 

The equipartition of energy between species will in general be much 

smaller than the equipartition between parallel and perpendicular 

temperatures of the same species. 

We may now combine Eqs. (5.45) and (5.46) using Eqs. (5.49) and 



(5.50) to give: 

ax3
(2Qr B Q::  ) _ 

Thus using the definition Eq. (5.37): 

a == - ; u 
ii 	2 Qu 

0 	(5.53) 

(5.54) 

Equation (5.53) states that the divergence of the total heat flux is 

zero. Eq. (5.54) shows that if a particle gains parallel energy it 

does so at the expense of the perpendicular energy. The equation for 

a is obtained from Eq. (5.45) 

aa - 2a aB 	= 	v(p„ - p,) 	(5.55) 
āx3  B āx3  

where v is the appropriate collision frequency. 

In a similar manner to the above, we define the heat flux tensor 

collisions terms. Writing 

sQii - v(0 - 	= - 3va 	(5.66) 
st 

we may define the collisional change of the parallel flux of parallel 

energy by assuming heat flux is conserved in collisions: 

s (2Q,; + Q; ) = 0 	 (5.57) 
at 

Thus using Eqs. (5.56) and (5.57) and pressure balance Eq. (5.44), 

Eqs. (5.48) and (5.47) become respectively: 

	

n aT„ 	= 	2 mva 

	

āx3 	T„ 
(5.58) 
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n 	 + ax3 	T 
g(Pj. - P~~ ) 3B3 	-3mva 

~~  
(5.59) 

These equations apply to each species and with the condition of quasi-

neutrality specify n and (D along a closed field line, and also Ts, T. and 

a for electrons and ions. 

5.3.5 Discussion  

We examine the properties of these equations (Eqs. (5.44), (5.55), 

(5.58) and (5.59)) in the limit when the collision frequency, v, tends 

to zero. We integrate these equations to find constants on magnetic 

surfaces. As v ~ 0: 

a = 0 	 (5.60) 

T. = constant 	 (5.61) 

n 	ee" = constant 	(5.62) 
T1. 

T, 	T. = constant 	(5.63) 
B 	B 

for each species. 

These equations describe the particle invariants of motion and 

include the description of trapped particles.- Consider the general 

particle invariants given by: 

= mw + imwi 

u = mwi 
B 

when the electrostatic potential is zero. Along a field line from a 

point of minimum to maximum field strength, the perpendicular velocity 

increases. Therefore, for every particle transiting around a magnetic 



surface: 

w'
z (Bmax) 

< 	 2 (Bmin) 

If we average over a number of transiting particles, 

T. (Bmax) < T. (Bmin) 

which is, however, contradicted by Eq. (5.61). This can be satisfied 

only if particles with the largest parallel velocities transit around 

the magnetic surfaces, and all others are trapped. 

The result of constant parallel temperature on a magnetic surface 

in the limit of zero collision frequency is what we expected and is 

consistent with the concept of thermodynamic equilibrium on an entire 

magnetic surface. 

The flux parallel to the magnetic field of parallel and 

perpendicular energy is both an interesting and essential feature of 

these equations. In the collisionless limit the particle motion 

invariants cause separate temperatures parallel and perpendicular to the 

field according to the strength of the magnetic field, Eq. (5.63). 

This provides a potential of temperature for both Tl  and T,,. Species 

collisions realise this potential. 

As a particle moves into a region of stronger magnetic field, the 

perpendicular energy is increased at the expense of parallel energy. 

Collisions tend to transfer energy from perpendicular to parallel energy, 

Eqs. (5.58) and (5.59). Thus as a particle moves round a magnetic 

surface it transports this change of energy as a heat flow, Eq. (5.55). 

But the thermal flux of parallel energy is exactly equal and opposite to 

the thermal flux of perpendicular energy, Eq. (5.53). From Eq. (5.58) 

we see that this heat flow is a maximum when the collision frequency 

is approximately the bounce or transit time. At higher collision 
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frequencies the equipartition of parallel and perpendicular energies 

is achieved. 

Finally, if we consider both electrons and ions, the condition 

of quasi-neutrality: 

v.J = 0 

requires that the ion loss must be equal to the electron loss; the 

diffusion must be ambipolar. Individually, the diffusion of electrons 

is found to be much greater than the ions, so in order to make the 

diffusion ambipolar an electric field is set up in the magnetic surface 

which reduces the magnetic trapping of the ions, and increases the 

trapping of electrons. This electrostatic potential is described by 

Eq. (5.62) in the collisionless limit. 
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5.4 	ANISOTROPIC PRESSURE AND PLASMA FLOW  

Anisotropic pressure affects the plasma flow via both Ohms Law and 

the momentum equation. The former, which is derived from the momentum 

equation for the electrons, Eq. (5.34), includes the divergence of the 

electron pressure tensor. This affects plasma flow by altering the 

toroidal incompressibility condition, Eq. (2.10), which is derived from 

an expansion of Faradays Law and Ohms Law. 

The latter, the combined momentum equation for both species, 

likewise includes the divergence of the total pressure tensor, which 

affects the flow by contributing additional terms to the vorticity, 

Eq. (2.19). 

We now discuss both these sources of plasma flow, but in the 

computational work that follows we include flow due only to the 

contribution from the total momentum equation. 

. 5.4.1 Ohms Law 

Ohms Law is derived from the electron momentum equation, Eq.(5.34) 

and assuming quasi-neutrality, may be written: 

mve1 J = E+vx B - .1xB  +  v.P.e 	 (5.64) 
ne 	- 	ne 	ne 

Thus when deriving the condition of toroidal incompressibility (Chapter 2 

section 1.3) the Ohms Law Eq. (2.8) must be replaced by Eq. (5.64) when 

forming Eq. (2.9). The electron pressure tensor gives rise to an 

additional term in Eq. (2.9), neglecting as before the terms in J x B: 

1 d (RB) = 1 (B.v) v - RB v. v 	- B v.vR 
R2  dt 	R 	(R2) 	R2  

-1 vxriJ + 	1 vxv.Pe. 	(5.65) 
neR 
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As in Appendix A, we take the toroidal component, and eliminate those 

forms which are not the lowest order in a. 

v. 
(1T2) 	R e 

(¢vR x v (Ple  - Pii e ) ) 4,  (5.66) 

In situations where the difference of parallel and perpendicular 

electron pressures vary around or across magnetic surfaces toroidal 

incompressibility itself is in doubt, affected by electric fields produced 

by the difference of parallel and perpendicular electron pressures. 

5.4.2 Momentum Equation  

The momentum equation for both species, electrons and ions may be 

derived from the single species momentum equation, Eq. (5.17) by defining 

a total density p, centre of mass velocity v, total stress tensor P and 

current density J. Assuming quasi-neutrality: 

P  = G pd 
a 

pV 	pala 
a 

pvv + 	= G (payava  + gam- ) 
a 

J = nE eava  
a 

and Eq. (5.17) becomes: 

In Chapter 2 we obtained the vorticity, E using 

.. = v x R2p v 
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thus in our derivation of its rate of change with time (Appendix B) we 

must now calculate a term of the form 

A = -v x (R2v.P) 	 (5.68) 

This is easily achieved using the tensor notation of Appendix D. 

Ak = -(R201
11)1M gmi Eijk 

(5.69) 

As before we require the toroidal component of Eq. (5.68) in order to 

form an equation, analogous to Eq. (2.19) for the evolution of the 

vorticity. We therefore require the component k = 3 of Eq. (5.69): 

A3 = - 	((h22 N2 ) ,1 - (h12N1 ) ,2) 
h1h2 

(5.70) 

where 

N3 = R2P~ 1 I1 

The pressure tensor, to the lowest order, in a frame parallel 

locally to the magnetic field is given by Eq. (5.26). However, in flux 

surface coordinates (x,,,(p): 

P = Y2P1 + a2R, 	0 	aY(P,~ - P,. ) 

(5.71) 

where 

and 

aY( PIT - R, ) 	0 a2Pi + Y2P11 

Y = B4/E3 

a = Bx/B 
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Neglecting terms that include a2  and approximating y2  = 1 we find, 

after some algebra: 

A = -(RVR x v(p,. + p„ ))s  (5.72) 

The parallel pressure therefore affects the vorticity in the same 

way as the perpendicular pressure. 

Consider the simple case of a tokamak in which the plasma density 

is constant and the temperature high. We assume the magnetic surfaces 

are concentric circles. For each species, these magnetic surfaces will 

also be surfaces of constant parallel temperature. If T. of a species 

is large compared to T1, for instance if a neutral beam is used to heat 

the plasma and T. varies across the poloidal plane, gradients of p„ will 

produce flow as indicated by Eq. (5.72). Fig. 5.2 shows a distribution 

of T. that could arise if a neutral beam were to deposit its parallel 

energy about the dotted line. As we have assumed the density constant, 

the contribution p„ makes to the vorticity is shown in Fig. 5.3. This 

vorticity causes four circulatory cells; 	two above and two below the 

axis of symmetry. The flow pattern is indicated in Fig. 5.4. 

If the neutral beam were sufficiently intense, this flow could 

dominate the normal flow arising from sound waves and Alfven waves. Also, 

at high plasma temperatures, the magnetic field is frozen into the plasma, 

so this too is convected with the flow. It is easy to see the sheared 

flow shown in Fig. 5.4 could lead to the disruption of magnetic surfaces. 

However, before that occurred, poloidal currents may play a role in 

limiting the process. 
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Fig. 5.2 Conceptual distribution of parallel temperature arising 

from neutral beam deposition in the region of the dotted 

line. 

Fig. 5.3 	Vorticity generated by the distribution of parallel pressure 

shown in Fig. 5.2. 



(4\A 	_/2) 

Fig. 5.4 	Flow pattern arising from the distribution of parallel 

pressure shown in Fig. 5.2. 
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5.5 	SUMMARY  

The model described in this Chapter uses Eqs. (5.60) - (5.63) to 

define, in the limit of zero collision frequency, the perpendicular and 

parallel temperatures on a magnetic surface. These high temperature 

relations replace the classical energy equation described in Chapter 2 

used in a cooler, more collisional regime. Anisotropic pressure affects 

Ohms Law and the momentum equation. In the first of these, (Eq. (5.66)) 

the electron pressure tensor puts toroidal incompressibility in doubt 

because of electric fields generated by the difference in perpendicular 

and parallel pressures. In the second, the total pressure tensor 

adds an extra contribution to the vorticity. 

In the next Chapter we shall investigate the effects of this 

second source of flow on the plasma equilibrium. 
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CHAPTER 6  

SIMULATION OF HIGH TEMPERATURE PLASMAS AND NEUTRAL BEAM INJECTION  

6.1 	INTRODUCTION  

In contrast to the low temperature simulations described in an 

earlier chapter, this chapter describes simulations of high temperature 

plasmas, and in particular the effect of neutral beam injection on the 

plasma flow. 

Neutral beams have been considered for some years now as the most 

promising form of auxiliary heating to take tokamak plasmas from the 

maximum temperature attainable by Ohmic heating to temperatures required 

for alpha particle heating to become important. Recent results(9)  show 

that substantial heating is possible using neutral beams, but the value 

of nT, the product of density and energy confinement time, is still no 

nearer the Lawson criterion for energy breakeven. 

The simulations in this chapter are not concerned with mechanisms 

of neutral beam penetration and heating, which are in general well 

understood(27), but with the effect which a neutral beam has on the plasma 

flow. If the flow is enhanced, the increased level of turbulence could 

lead to larger transport and a reduction in the energy confinement time. 

Firstly, the initialisation of these high temperature simulations 

is described, for which an approximate solution of the axisymmetric 

equilibrium equation is used to obtain the current density J. Pressure 

balance then gives the pressure, p. Simulations without a neutral beam 

are then described with the initial condition close to equilibrium. 

Finally, a neutral beam is introduced as a source of pressure 

parallel to the magnetic field, and a simulation presented to show its 

effect upon the plasma flow. This run is compared in detail with the 

run in which no neutral beam was present. 
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6.2 	INITIALIZATION  

To study the effects of a neutral beam on the plasma flow, it is 

beneficial to have the plasma close to equilibrium so that as the neutral 

beam is injected into the plasma, resultant flow may be associated with 

the beam and not with the general motion of the plasma towards an 

equilibrium. 

6.2.1 Approximate solution of the equilibrium equation  

For a particular poloidal beta and toroidal current, the surfaces 

of constant pressure may be found by solving the axisymmetric equilibrium 

equation (Appendix C), 

= -u0R2p - FE = -110RJ4, 	(6.1) 

where the plasma pressure p(*) and poloidal current function F(p) are 

functions of p  and 

P = dF/dh 

Equation (6.1) has been solved(69)  with p(ip) and FE(*) as given 

functions of . Also equilibria have been found(2Q)  when p(f) and 

q(p) (the Kruskal-Shafranov Safety factor) are given functions. It is 

however, much more complex to obtain, in toroidal geometry, self-

consistent solutions of the axisymmetric equilibrium equation using the 

poloidal component of Ohms Law and some requirement upon the flux of 

plasma across magnetic surfaces(70). 

In our case it is sufficient to employ a first order inverse 

aspect ratio expansion to obtain the distribution of magnetic surfaces. 

This is analogous to the calculation of the magnetic surface distribution 

discussed in Chapter 3.1.1 from a required initial current density 
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distribution. From this approximate equilibrium the plasma will relax 

to the exact equilibrium solution of Eq. (6.1). 

We consider the current density at a distance from the major axis 

equal to the major radius, and define 

Jc  = u0R0J (Ro) (6.2) 

As the poloidal beta relates the internal energy of the plasma to the 

magnetic energy of the poloidal field, we may write approximately 

2' sp  = uoRo  p 

Jc  

(6.3) 

and therefore 

FF = (1 - ap)Jc 	 (6.4) 

Substituting Eqs. (6.3) and .(6.4) into Eq. (6.1) we find 

o** = -Jc(1 + 2sp  r case) 
Ro  

where r is the distance from the minor axis and a is measured from the 

mid plane (Fig. 3.1). This is of the same form as Eq. (3.1) and may be 

solved in an entirely analogous manner, giving to the first order in the 

inverse aspect ratio: 

= Jc  a2  (1 - r2) (1 + r (40 + 1) case) 
4 ā2  4Ro p 

(6.5) 

Equation (6.5) gives the distribution of surfaces of constant poloidal 

flux for a plasma with a given poloidal beta. The toroidal current 

distribution is then easily calculated using the Grad-Shafranov equation. 

For sp  = i contours of * and J(15  are shown in Fig. 6.1 where the 

arrow plots show the poloidal current. This current flows so that the 
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force J
-13 

x B~ assists the pressure gradient in opposing the force 

J
—~ 

x Bp. We note also that the magnetic axis is shifted towards the 

outside of the torus away from the major axis which is, as always, to the 

left. The shift of the magnetic axis is obtained by finding the extremum 

of Eq. (6.5). Again a similar expression is obtained to Eq. (3.5) 

modified only by 0p, for the shift S along e = 0 from the minor axis. 

S = 4R0
( 

	+ 1)2 + 1 	- 1 
3(40p 	+ 1) ( 16 Roe 

(6.6) 

For Ro = 2.93m, a = 1.28m and sp = , Eq. (6.6) gives S = .135m. 

Fig. 6.2 shows the same dependent variables as in Fig. 6.1, but 

with sp = 1. We notice the shift of the magnetic axis is much greater in 

this case, S = .294m, and the magnetic surfaces are more bunched towards 

the outside of the torus. Correspondingly, this causes the toroidal 

current density to be more peaked in this region. The poloidal current, 

however, is much smaller in this case because the pressure gradient almost 

entirely balances 14) x Bp. The balance is not exact because distribution 

of p is calculated only to first order in the inverse aspect ratio, and a 

small poloidal current flows that reinforces J x BB in order to balance 

vp. Fig. 6.3 shows the difference in the profiles of J4) for the above 

two cases. 

6.2.2 Choice of initial equilibrium conditions  

The preceding section has shown us how an equilibrium may be set 

up by choosing the parameters Bp, Jc and the aspect ratio. It is however, 

more useful to relate the equilibrium to the usually observed parameters 

of current, loop voltage and temperature. Now: 

Jc =11R0 I  
a2 

(6.7) 
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where I is the total plasma current; and the pressure gradient, from 

Eq. (6.3) is 

p = sp  I  

zr a2Ro 

We must, however, choose initial temperature and density profiles that 

will give this pressure profile. 

In order to choose initial conditions that are closest to an 

equilibrium we demand that the temperature is uniform and that the 

density profile follows the pressure profile(71). If e is the temperature 

temperature in electron volts then 

n=~p I 

eezr a2Ro 
(6.8) 

A more realistic model would be one where the temperature follows the 

pressure profile and the density uniform, because experimentally the 

plasma has both a density and temperature profile, but the temperature 

profile is far more pronounced. Computationally, it is difficult to 

choose initial conditions close to an equilibrium that are of this kind. 

This is because the resistivity is temperature dependent and this 

affects the equilibrium current distribution, which modifies the pressure 

profile, which in turn feeds back to the resistivity. This would be a 

very interesting exercise, but as the intention is to produce a near 

equilibrium plasma, we do not pursue it. 

Finally, the loop voltage, V, is related to the current and 

temperature. 

V=95E . dl 

Very approximately E = nJ4) and n = 10-3/e3/2 ohm-m, so using Eq. (6.8) 

we find 
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n = 1022 	Vsp  e 

	

3.27 	Ro  

(6.9) 

and Eq. (6.7) is: 

3/ 
(6.10) 

Therefore, in principle by supplying the loop voltage,poloidal beta, 

average temperature and major radius, we define a unique equilibrium. 
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6.3 	SIMULATION WITHOUT A NEUTRAL BEAM 

All the numerical solutions presented in this chapter were 

obtained by using the parameters of the JET tokamak. The aspect ratio, 

major radius and toroidal magnetic field are given in Table 4.1. We 

assume in the simulations of this chapter that the initial temperature is 

1.18 keV and the total plasma current (which given the temperature defines 

the loop voltage) is held constant at 2.8 MA. These chosen values 

correspond to the postulated values for the JET experiment, and give a 

safety factor q(a) = 3.5. 

In the run described we choose Sp  of order unity. As we have 

already seen from Fig. 6.2 the plasma is not quite in equilibrium because 

of the expansion used to determine J and p. Therefore, vp and J x B do 

not balance exactly and the plasma accelerates because of the net force 

on it. This appears in the simulation as a source of vorticity. 

Equation (2.19): 

da = R2Ivp x vR2I + R2Bp.vRJ 
dt  

shows that vorticity is generated either by a vertical (perpendicular to 

the midplane) gradient of pressure leading to sound waves, or by a 

gradient of RJD  parallel to the poloidal field, leading to Alfven waves. 

In equilibrium, these two sources would balance and no flow would result. 

However, the initial conditions are not an exact equilibrium. 

At first the sound term dominates the vorticity, producing a 

negative vortex above the midplane, Fig. 6.4, and producing flow which 

pushes the magnetic surfaces outwards; i.e. away from the major axis. 

This flow, however, shifts the magnetic surfaces towards the outer wall 

and increases J, Fig. 6.5. At the same time, this advection modifies 

the density and thus the temperature. The flow attempts to reduce the 

pressure gradient by cooling the centre of the plasma and heating the 
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edges, Fig. 6.6. The steepening of vRJ,I,  and reduction of vp x vR2, 

eventually results in the fluid moving back towards the major axis, until 

the Alfven term is reduced and the sound term increased again. This is 

shown in sequence by Fig. 6.7, which shows the stream function at 

intervals of 4.5 us, from which the flow velocity may be derived using 

Eqs. (2.12) 

vR =R 	, 	vZ =-R 3C 

az 	āR 

In Fig. 6.7(a) the flow is outwards, but in (b) the Alfven flow is 

approximately balancing the sound flow on the outer side of the torus, 

whilst on the inner side there is still a strong flow caused by the 

pressure gradient. In (c) the Alfven flow is dominant on the outer side 

and advects the surfaces inwards while the sound flow still dominates 

the inner region. These oscillations are slowly damped by resistivity. 

In this high temperature simulation, the resistivity is very small 

and the oscillations continue throughout the simulation period. Also, 

because of the high temperature the diffusion rate of magnetic flux is 

very small. When the fluid moves, the magnetic surfaces do also; thus 

after 500 timesteps of the simulation the value of poloidal flux on the 

magnetic surfaces is virtually unchanged, (compare Figs. 6.8 and 6.2). 

This oscillating behaviour of the plasma is more easily studied 

by following the total internal, magnetic and flow energies in time. 

These are calculated using the algorithms discussed in Chapter 3, 

section 4, and are plotted in Fig. 6.9. Although the total energy is a 

growing function of time, which occurs because of a slowly growing 

numerical instability associated with the boundary condition on i,, the 

interaction of sound and Alfven waves is clear. 

The sound and Alfven times (Chapter 2) are respectively: 
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Fig. 6.9 	Plasma internal, magnetic and flow energy change 

plotted against time 
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Ts  = a I1 + R 2/a2  

s }j 

TA  = a /2 (1 + R2/a2) 
cA  

where cs  and cA  are the normal sound and Alfven speeds. For the 

parameters of this simulation Ts  = 56 us  and TA  = 8.8 us. The two 

hyperbolic processes superimpose to give a frequency of combination 

fc = 1 + 1 
TA 	TS  

and a beat frequency 

fB = 1 - 1 
Ts 	TA  

These give a combination time Tc  = 3 us  and a beat time TB  = 15 us. The 

flow energy exhibits this behaviour giving a beat time - 15 is and a 

combination time - 2 us, because the plasma will move according to the 

superposition of the Alfven and sound processes. Throughout the first well 

defined beat, energy conservation is reasonable. For the first 25 us the 

total energy varies only by - 5%. However, after this a numerical 

instability causes the total energy to increase rapidly. 

The inductance of the plasma is calculated from the magnetic energy, 

Eq. (4.13) and shown in Fig. 6.10. This varies in the same way as the 

total magnetic energy because the total current is conserved by adjusting 

the boundary condition on the poloidal flux, which is the same as altering 

the loop voltage. It is, of course, reasonable that the inductance should 

have a periodic time dependence. We see from Eq. (4.10) that inductance 

depends upon the geometry of the magnetic surfaces. If these are moved 

then the inductance will change. Equation (4.10), 

L - fihx/Rh dx 
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time, ps. 

Fig. 6.10 	Plasma inductance and loop voltage against time 

indicates that if the surfaces are moved towards the major axis then 

the inductance will decrease. Fig. 6.10 shows that the initial motion 

is towards the major axis. Then at about the time of Figs. 6.4, 6.5 

and 6.7(a), i.e. 4.5 us, the inductance starts to increase indicating 

the plasma is moving away from the major axis. This motion continues 

until about 9 us (the time of Figs. 6.6 and 6.7(b)) when the inductance 

decreases again indicating the plasma is moving inwards once again. 

The interpretation of Figs. 6.4 - 6.7 is therefore correct, except that 

there is a small amount of initial motion towards the major axis 
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(indicating an initial domination of Alfven flow) before the pressure 

gradient drives the plasma outwards. 

The oscillations of the loop voltage arise because the 

inductance varies in the above manner. The boundary value of the 

poloidal flux is fixed so that the total current I is constant. If we 

consider the plasma loop as shorted, then: 

L dI = -I dL 
dt 	dt 

Changes in inductance would cause the current to change if i, on the 

boundary were constant. However, this current change is balanced by a 

change of current at the plasma edge brought about by j  on the boundary. 

Thus the total current remains constant. The rate of change of poloidal 

flux at the boundary gives the loop voltage. Equation (4.12) for the 

loop voltage 

V 	.dl 

may be rearranged 

V = -2'rR(21 
at 

- 
r=a at r=o 

   

As ai,/at at the magnetic axis is very small, because the field is frozen 

in, V is given entirely by al,/at at the plasma edge. In Fig. 6.10 we see 

that on average al, 
āt r=a 

is increasing slowly and represent the change of 

   

flux required to balance the ohmic decay of current (for this current and 

temperature the loop voltage should be - .15 V which compares well). The 

variations in axil 	correspond well to the changes in magnetic energy. 
at Ir=a 

For a shorted discharge 

_ n  = 1 L I d I 
dt 	2 	dt 
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so as Um decreases initially, Fig. 6.10, the shape of ap/at indicates 

that ip increases steeply to counteract the impending drop in current. 

Then as Um increases the rate of increase of t decreases, again so that 

the current will remain constant. 

This boundary condition on p, whilst producing a current trace 

that is experimentally realistic, almost certainly results in a numerical 

instability. Because current is continually changing at the plasma edge, 

this affects the current distribution (in Fig. 6.5, the sharp rise in 

current density near the top and bottom edge occurs because of this) 

which drives Alfven waves that grow. 

It is instructive to check the size of the inductive voltage 

given by I dL/dt against the electric field that arises because the flow 

is perpendicular to the poloidal magnetic field. Between 5 us and 10 us 

(Fig. 6.10) AL = 2.5.10-9 henries. The inductive voltage is vL - 1.5.103V. 

From Fig. 6.7(a) the flow velocity away from the magnetic axis 

v* - 6.102 ms-1. As. Bp < u0I/2~a < .2 T we arrive at _v x Bp s 120 Vm-1. 

However, evaluating the voltage O_v x Bp .dl < 2.2.103 V, 	we see that 

these two voltages are of the same order, which is what we would expect. 

This is because the inductive voltage is equivalent to the loop voltage 

formed by integrating the local 
—V

x Bp electric field. 

Finally, we may integrate the density and internal energy within 

each surface in time in order to see whether this oscillatory behaviour 

has any effect on the diffusive losses. In a toroidal geometry we expect 

the normal Pfirsch-Schluter(72) enhancement of classical diffusion losses. 

In an equilibrium situation this exists because convective flow, set up 

to produce the equilibrium current distribution, results in a net outward 

force. This diffusive flow may be derived for a tokamak geometry 

<v> = nl~I (1 + 2q2) 
B 
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where <v u,> is the surface averaged diffusion velocity. Integrating 

the particle flux over the whole magnetic surface, we may obtain a mass 

loss rate. A surface near the wall gives a predicted loss rate of 

- 2.10-6  kg/sec. 

A loss rate from the code is obtained by integrating the mass 

loss from each surface over as many oscillation periods as the 

simulation will allow. In the simulation described this number was about 

15 although mass and energy conservation were not good towards the end of 

the run. Table 6.1 gives the mass loss from magnetic surfaces integrated 

up to 45 us. The integrated mass loss from the outer surface, the wall, 

should be zero because there is no particle production or loss mechanism 

in the code. Mesh errors lead to inaccuracies in volume calculation, and 

therefore to variations in total mass and energy so in fact the mass 

within the outer wall is not constant. To take this into account, it is 

assumed that this numerical loss is dependent upon the volume of the 

magnetic surface. Therefore, the loss from each surface is adjusted by an 

amount proportional to the loss from the outer surface times the ratio of 

the volume of the surface to the total volume. The integrated loss rate 

from each surface varies from about 4.10-6  kg s-1  near the magnetic axis 

to about 4.10-5  kg s-1  near the outer surface. The average mass loss rate 

is - 10-5  kg s-1  which is about ten times the Pfirsch-Schluter value. 

It seems, therefore, that flow resulting from the interaction of 

Alfven and sound waves can lead to diffusive losses in excess of ten times 

the value predicted by classical theory. This may arise because the flow 

speed in the simulation, at times, exceeds the steady flow necessary to 

produce an equilibrium. Our simulation will reach equilibrium when the 

oscillations have been damped by resistivity. Before that happens the 

plasma will oscillate about the equilibrium giving rise to large plasma 

flow. This would increase the diffusive loss rate. 



TABLE 6.1  

Change of mass within each w surface for no source of P„ 
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Y surface Mass change after 45 us (kg) 

	

4 
	

-1.27 . 10-9  

	

6 
	

-1.3 . 10-9  

	

8 
	

-2.7 . 10-9  

	

10 	 -4.2 . 10-9  

	

12 	 -3.9 . 10-9  

	

14 	 -2.8 . 10-9  

	

16 
	

5.0 . 10-9  

	

18 
	

1.0 . 10-9  

	

20 
	

2.0 . 10-9  

	

22 
	

5.0 10-9  
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6.4 	MODEL OF A NEUTRAL BEAM  

Neutral beams have long been proposed as a method of heating 

contained plasmas to thermonuclear fusion temperatures(68). Essentially, 

in the case of a tokamak, an energetic beam of particles is injected 

(usually tangential to the plasma and in the plane of the torus) into 

the containment device. The particles are neutral so that their 

trajectories are unaffected by the magnetic field and may penetrate into 

the interior of the plasma. The beam particles are usually either 

hydrogen or deuterium which help refuel the plasma and offset diffusion 

losses, and their energies are chosen to ensure that they reach the 

interior of the plasma (the mean free path is proportional to the beam 

energy). These hot neutral beam particles exchange electrons with cold 

plasma ions to give fast ions and slow neutrals. 

The classical deceleration of an energetic ion is described by 

Furth(26). For typical tokamak parameters the injected ions are slow 

compared to the plasma electrons and fast compared to the plasma ions; 

hence the electrons are important in the slowing down process. If the 

fast ion energy is greater than some critical energy Wcrit then the 

energy is given principally to the electrons while for the fast ion 

energy less than 
Wcrit 

 the energy goes to the plasma ions. For a 

typical tokamak reactor plasma the beam energy is greater than Wcrit, 

and so the electrons receive the fast ion energy. This energy, however, 

is very directed, as both the fast ions and heated electrons have a very 

large velocity parallel to the direction of the neutral beam. If the 

neutral beam is injected tangentially to the magnetic surfaces then the 

fast electrons and ions have a large velocity and, thus temperature 

parallel to the magnetic surface. We therefore regard a neutral beam as 

a source of parallel pressure. 

We consider a neutral beam delivering a total power of W watts 

tangential to a particular magnetic surface i,, volume V. The rate of 



change of total parallel pressure (assuming that all the neutral beam 

energy goes into parallel pressure) is: 

d P"(t) = W 
dt 	V 

(6.11) 

However, on other surfaces not all the beam energy will go into parallel 

pressure, as shown in Fig. 6.11, looking down on the torus. 

Fig. 6.11 	Neutral beam injection geometry 

For RB  > RM  the corrected parallel pressure p„ on a surface of radius 

RS  is: 

P" = P"(v) RS 	P" initial 
RB 

Pu = P" initial 

RS > RB  

RM <RS<RB 

195. 
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where p„(*) is given by Eq. (6.11) 

The model of chapter 5 allows us to define the parallel pressure 

throughout a magnetic surface given the parallel pressure at just one 

point on that surface. Finally, we do not separate the electron and ion 

pressures because the flow effects we consider in the next section, are 

generated by the gradient of total parallel pressure rather than either 

the electron or ion component. 



197. 

6.5 	EFFECT OF PARALLEL PRESSURE ON THE FLOW  

The simulation described in section 3 of this chapter was repeated 

with a source of parallel pressure modelling the injection of a neutral 

beam. 

In both these simulations the model described in Chapter 5 has 

been used to determine the parallel and perpendicular temperatures on a 

magnetic surface. We assume that the temperature is sufficiently high 

for collisions to be negligible. Also we described both species by 

total temperatures perpendicular and parallel to the magnetic field. 

Under these conditions, Eqs. (5.61) and (5.63) may be written: 

a 	T. = 0 
āx3 

ā3 (p'~) 0 

Thus the parallel and perpendicular temperatures may be uniquely 

determined on a magnetic surface. 

The source of parallel pressure introduces energy of about 250 kJ 

during the timescale of the simulation, which is confirmed by energy 

balance. This amount of energy is far less than the amount that will be 

injected into JET i.e. 10 - 25 MW, for the order of a second(74). We 

constrain the parallel pressure to rise linearly from the beginning of 

the simulation and assign it to each magnetic surface according to the 

angle at which the beam cuts each magnetic surface. In the run described 

below we assume the beam penetrates the plasma to a magnetic surface 

about half way between the wall and the magnetic axis. The parallel 

pressure increases on surfaces outside this but remains constant on 

surfaces within. The initial pressure distribution is assumed isotropic. 

After 4.5 us the plasma evolution is almost identical to the 

isotropic simulation. If Fig. 6.12(a), (b), are compared to Figs. 6.4 



Plasma evolution after 4.5 us is 

very similar to the case without a 

source of parallel pressure 

Fig. 6.12  
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and 6.7, the similarity is clear. The positive vortex near the outer 

edge arises from B.vRJ0  and the negative valued vortex nearer the 

magnetic axis is from the vpi  x vR2  term. These two vortices give rise 

to the counter rotating cell pattern characteristic of the interaction 

of sound and Alfven waves, Fig. 6.12(c). The remaining small vortex 

in Fig. 6.12(a) indicates that parallel pressure is beginning to affect 

the flow. As discussed in the last chapter, the parallel and 

perpendicular pressures both give rise to similar contributions, 

Eq. (5.72), for vorticity production: 

1 
-R- dt 

- ilvR2p x vv2! 	x vR2I + flvp„ x vR2I + RB.vRJ0  

The small vortex indicates that a vertical gradient of p„ is beginning 

to appear. 

After 25 us  the picture is quite different. The vertical gradient 

of p,,, whose form is indicated in Fig. 5.2, has become large and 

positive above the mid-plane about half way between the magnetic axis and 

wall. This gives rise to a positive vortex, Fig. 6.13(a). The slower 

decrease in p„ towards the wall leads to a smaller negative vortex. This 

agrees exactly with the flow predicted in Figs. 5.3 and 5.4. The 

vortices near the wall are identical to those seen in the previous run. 

These arise because of gradients of RJD  parallel to Bp  and are interpreted 

as Alfven waves. This oscillatory flow is modified by the steady flow 

that arises from the gradients of p,,, Fig. 6.13(b), (c), which alters 

by advection the magnetic surfaces, density and energy, Fig. 6.14. 

However, because the ip distribution is altered the current distribution 

changes, Fig. 6.15. The increased spacing of the p  surfaces reduces the 

magnetic field to the right of the magnetic axis, but closer surface 

spacing to the left means that the magnetic field is increased. This 

leads to increased current to the left, but a region of current reversal 
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Fig. 6.13 	After 25 us the effect of the source 
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Fig. 6.15 	Advection, which modifies the magnetic surface structure, 

also alters the current density distribution. 

to the right of the magnetic axis. This motion is, therefore, not 

without resistance as this current distribution produces vorticity which 

opposes that produced by gradients of p,,. Also, advection modifies p~ 

so that vp1 x vR2 opposes vp„ x vR2. Thus Alfven and sound waves are 

excited that oppose the flow produced by p,,. If the source of p„ were 

now removed oscillation would occur about this new equilibrium. However, 

p„ continues to increase accompanied by the steady flow which is driving 

the magnetic axis towards the major axis. After 38 is p„ has severely 

modified the shape of the magnetic surfaces, Fig. 6.16. 

The radial profile of the safety factor, q, indicates that 

conditions are correct for a resistive MHD instability to occur. The q 

profile, Fig. 6.17, initially indicates the plasma is MHD stable, but 

after 38 us the flow has modified this profile so that a local minimum 



of q has now appeared. 
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FIELD 	LINE 
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Fig. 6.16 	If the parallel pressure continues to increase, the shape 

of the magnetic surfaces is severely modified. 

As we might expect, this modification of the magnetic surfaces 

leads to increased transport. As in section 3 of this chapter, we 

integrate the mass with each surface over time and observe the variation 

of this integral. Table 6.2 shows the change of mass within magnetic 

surfaces after 38 us  of the simulation. Comparing this to Table 6.1 

we see the flow produced by the source of p„ has enhanced by an order of 

magnitude the mass loss from the central region of the plasma. This 

mass has been transported to a region outside the zone where the 

gradient of p„ is largest. The same is also true of the perpendicular 

energy. The centre of the plasma is therefore losing mass at a far 

greater rate than that implied by classical Pfirsch-Schluter diffusion. 

Finally, the loop voltage exhibits the same oscillatory behaviour 

seen previously, but in this run the average loop voltage, instead of 

remaining constant is increasing, Fig. 6.18. After about 20 us the loop 

voltage becomes positive indicating that in order to keep the total 
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current constant, the value of the poloidal flux on the wall is being 

reduced. 

4 

6 

8 

10 

12 

14 

16 

18 

20 

22 

10 	 20 

Fig. 6.17  Initial q profile (solid line) compared with the profile 
after 38 us  (dotted line) where a local minimum has 

appeared near the position of maximum parallel pressure 
gradient. 

TABLE 6.2  

Change of mass within each qi  surface for a source of p, 
i, surface. 	Mass change after 38 us (kg) 

-1.58 . 	10-8  

-0.6 	. 10-8  

-0.1 	. 10-8  

-2.23 . 	10-8  
2.34 . 	10-8  

5.52 . 	10-8  

6.6 	. 10-8  

3.5 	. 10-8  

0.2 	. 10-8  

-1.0 	. 10-8 
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Within the plasma the energy from the source of p„ is going most 

quickly into magnetic energy, Fig. 6.19, setting up gradients of RJD  

parallel to B in order to limit the flow produced by gradients of p.. 

If, once again, we consider the inductive voltage around the torus to 

be shorted: 

L dI = -I dL 
dt 	dt 

If Um  is the magnetic energy, then 

.dUn  = 1 LI dI 
dt 	2 	dt 

so the current will try to increase if dUm  is positive. In the 
dt 

simulation this is corrected at the edge of the plasma by setting the 

loop voltage so that the total current remains constant. Thus the 

voltage will become positive, as the magnetic energy starts to increase 

quickly, to reduce q, at the wall, and therefore prevent the current from 

growing. Looking at Fig. 6.18 and 6.19 we see that the loop voltage 

goes positive at about the time that the magnetic energy starts to 

increase rapidly. 
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Fig. 6.18 	Loop voltage and inductance against time as a source 
of parallel pressure is introduced. 
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6.6 	SUMMARY  

It has been shown that by choosing initial conditions close to an 

equilibrium, the plasma will oscillate about the equilibrium solution as 

magnetosonic waves propagate through the plasma. The plasma flow, being 

oscillatory, is larger than the steady flow required to support a 

stationary equilibrium state and this leads to enhanced diffusion losses, 

calculated to be up to ten times the classical value. 

With the introduction of a neutral beam, modelled simply by a 

source of pressure parallel to the magnetic field, the plasma behaviour 

is modified by a steady flow exactly as predicted in Chapter 5. This 

steady flow modifies the magnetic surface structure which results in a 

current distribution that opposes the steady flow. The energy from p„ 

therefore goes into the magnetic field. In time the magnetic field 

becomes so distorted that a minimum of the safety factor, q, appears 

within the plasma indicating that disruption of the magnetic surfaces 

with resistive MHD instability is likely. The steady flow caused by 

parallel pressure gradients leads to substantially enhanced diffusion 

losses from the central region of the plasma. 
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CHAPTER 7  

DISCUSSION  

This thesis has presented, in essence, two important points, one 

physical and one computational; we discuss them in that order. 

In the two regimes studied, it has been made clear that the 

tokamak cannot be considered as one dimensional. At early times in the 

discharge, it has been shown that diffusion, sound and Alfven processes 

are interlinked when the aspect ratio of the device is small. Preferential 

heating on the inner side of the torus leads to sound and Alfven waves 

which modify the magnetic surface structure and therefore the magnetic 

field diffusion. This is essentially the point made by Grad et al.
(58)_ 

At later times and higher temperatures the flow produced by a 

neutral beam considered as a source of parallel pressure may be 

described only by a two dimensional simulation. Despite the naivity of 

the model, an enhanced diffusion rate from the centre of the plasma is 

observed at least an order of magnitude greater than the classical rate. 

An obvious extension to the high temperature model would be to 

include the effect of the electron pressure tensor on Ohms Law. While 

initially only the ions involved in charge exchange collisions have a 

high parallel pressure, these soon affect the parallel pressure of the 

background ions and electrons via collisions. Toroidal incompressibility 

could be seriously affected by large electric fields generated by the 

difference in perpendicular and parallel pressure. 

Also it would be interesting to study the effect of various fast 

ion distributions upon the flow and diffusion rate. Assuming the fast 

ions are all at the same temperature, the spatial distribution of fast 

ions would give a spatial distribution of p,,. Hogan and Dory
(73) 

suggest 

that beam heating is peaked in the outer regions of the plasma, which 

would lead to a flow similar to that seen in the last chapter. 
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However, Rome et al.(27)  find a fast ion distribution that is peaked at 

the magnetic axis and drops off steeply towards the plasma edge. This 

would produce a flow in the opposite direction to that seen in Fig. 6.7, 

and would result in the advection of the magnetic axis away from the 

major axis. Thus in both the low temperature current rise and high 

temperature equilibrium situations purely two dimensional phenomena can 

alter radically the plasma development. 

Computationally, it has been shown that it is feasible to run and 

obtain important results from a two dimensional Lagrangian code. This, 

however, has not been achieved without problems and some, which are 

inherent in this method, remain. 

Firstly, an orthogonal mesh which moves and is then 

reorthogonalised, must employ an interpolation procedure to redefine the 

dependent variables at the new mesh points. This is a source of 

inaccuracy. Secondly, a vector operator may not be represented as an 

integral quantity defined over a mesh cell, as that mesh cell must 

change its volume at the next timestep. This procedure would ensure that 

on an Eulerian mesh the method is conservative. These two problems lead 

us to conclude that on a two dimensional Lagrangian mesh, one cannot 

expect to conserve mass or energy identically. 

A Lagrangian scheme was selected in order to overcome the problem 

of mesh interaction. This occurs when the system of equations exhibits 

a preferred direction (in our case around the magnetic surfaces), and is 

caused by the presence of the advective term. If this direction is not 

along a coordinate direction, drastic diffusion of the solution occurs. 

At the time the scheme was chosen, all algorithms for treating continuity 

like equations displayed this property. By choosing a Lagrangian scheme 

this problem was avoided by transforming to the moving frame of the 

fluid. However, there are available now algorithms that will solve the 

continuity equation on an Eulerian mesh without the problems of mesh 
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interaction and oscillation of the solution near a shock. The method, 

known as Flux Corrected Transport (FCT)(75), employs diffusion and anti-

diffusion stages, first diffusing the solution across the mesh, and then 

reversing this apart from places where diffusion is necessary, 

e.g. at a shock front. It would indeed be interesting to compare our 

solutions with solutions from a boundary fitted Eulerian mesh using the 

FCT algorithm. 

Boundary fitted coordinate systems are desirable and facile to 

implement when using a Lagrangian scheme. They may also be used with 

an Eulerian scheme, although an initial orthogonalisation of the mesh may 

be necessary. In our topology a singular point in the coordinate system 

must occur. At this "origin" both Lagrangian and Eulerian meshes will 

exhibit non-orthogonality errors unless, of course, the mesh is coincident 

with an orthogonal curvilinear coordinate system. Care must be taken, 

by considering the origin ,.as non-orthogonal, to account for this. 

Finally, we must note that the most graphic quality of a 

Lagrangian mesh, its power to demonstrate visually the evolution of a 

physical quantity, is often its most dangerous. Distortion of the 

surfaces representing the contours of the physical variable may lead to 

severe focussing of the orthogonal coordinate in some areas of the mesh. 

Not only does this introduce errors in the focussed region, where the 

mesh cells will be severely elongated or distorted, but also leave other 

areas of the mesh dangerously devoid of orthogonal coordinate lines and 

therefore lacking in resolution. 

The case for a Lagrangian mesh is therefore not as strong as 

before the advent of FCT. It is, however, important that its feasibility 

has been demonstrated, and using this method results have been obtained 

that strongly question the one dimensional approach to the tokamak 

initial stages and auxiliary heating. 



APPENDIX A  

EXPANSION OF FARADAY'S LAW  

We start with Maxwells equations for the magnetic field 

v x E = - 86 
āt 

vxB=uo J 

and 
v.B = 0 

and a simple Ohms law 

nJ=E+vxB 

By substitution we obtain 

d8
(Bv)v 	B(v.v) 	v x nJ 

If R is the distance from the major axis, further rearrangement yields 

1 d RB = 1(B.v)v - R B v.x 	- a v.vR - 1 v x n v x B 
R2  dt 	R 	— R2 	70. — 	R 	uo  

(Al) 

We have seen from our ordering scheme, Chapter 2, section 1.2, that 

changes in the toroidal field compared to its magnitude are comparable 

to the total plasma beta, which is considerably less than unity. 

The toroidal component of (Al) is therefore considered, and is: 

1 	d RB¢  = 1 	B.vvc  - R v.y 	- n 	1 	a*RBS  
R2B dt 	RBS 	R2 	ūo RR BN 

+ 1 	v n . VBC 	(A2) 
RB, uo 

Where a* is the toroidal component of the curl curl operator which will 

be dealt with in detail in Appendix C. 

The relative magnitude of the various terms in (A2) are considered 
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in the limit of small but finite beta. We have seen in Chapter 2 

that the ratio of poloidal to toroidal magnetic field strengths and 

the ratio of the change in total field to total field strength are 

related to beta. 

B 	a2 	and 	86 

We introduce a timescale T associated with changes of the total 

magnetic field in the fluid frame and a characteristic length L for 

variations of the magnetic field. 

The various terms in (A2) order as follows (in exact sequence): 

1 
s , s2v6  , v , n 
LT 	uo t3 	uo 73.  

(A3)  

To zeroth order in 13 we have the toroidal incompressibility condition, 

if we neglect resistive effects; 

V.y 0 (A4)  

To first order in s2, if we assume 

.. 0(1) v 	 (A5) 

we obtain 

_ 	1 	B. vv(I) 
RBS  

An expression for the unknown vq, may be found by considering the 

momentum equation, Eq. (2.14). The component along the magnetic field 

is: 

p 	_ P 	. dv __ 
dt 	B dt 	B 

(A6)  

(A7)  



Expressing the magnetic field in toroidal and poloidal components 

(see Appendix C): 

we obtain 

where 

vp = pY 

(A7) may therefore be written 

dv = -a2 dv - B—yo 
dt 	t 	pB 

(A8) 

It is clear from (A8) that we must consider a further ordering of the 

flow velocity relative to the sound speed in order to support our 

assumption (A5). 

For the sound mach number, Ms » 1, the flow velocity is much 

greater than the sound speed and from (A8) 

ovp - Q2 ovp 

and v
(t> 

would disappear from an O(s2) analysis. This supersonic regime 

would be most likely to occur in the low temperature simulations when the 

sound speed is relatively slow. Conversely for Ms « 1, (A8) can give 

us the assumption made in (A5) 

if the sound speed 

C2 -s 2 
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B = Fv~ + vb x vq) = B e + Bp 

	

p dv:i, = p 134. dv 	+ Fp dv 
dt 	B dt 	B dpt 
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In this regime vcp would remain in an 0(0) analysis and this would be 

most likely to occur in high temperature simulations where both Cs and 

s are larger than at low temperatures. Therefore, under certain conditions 

v, must be included in a first order in 132 expansion of (A2). 

Consider now an expansion to second order in O. To this order 

all the terms remaining in (A3) must be included, unless one takes account 

of the ordering of resistive effects. In order to write the zeroth order 

approximations (A4) we neglected resistive effects, by demanding 

Defining Tf = L/v and Tn = uoL2/n this inequality becomes 

Tn » 
STf (A9)  

Likewise, the term of the left hand side of (A2) may be neglected if 

LT ~` P ° 0 

that is 

T » (A10)  

Now T is the timescale upon which changes in the toroidal field occur 

in the fluid frame. This timescale which is very short is the toroidal 

Alfven timescale, and it is removed from the problem by considering 

the development of.the plasma to proceed via a series of quasi-equilibria. 

In this sense, T may be considered long and the inequality (A10) to hold. 

Therefore, to an order of 0 and in the presence of finite 

resistivity (A2) becomes 

v.v 	= 1 	B 	vv~ - ū 	RLBBfi + vn/u~B• vB~ 	(All) 
RBS 	

o 
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CORRECTIONS TO THE POLOIDAL VELOCITY  

Equation (All) is rewritten in axisymmetric cylindrical coordinates 

(R,4,,z) which after some rearrangement gives 

a (-IR+ vcf,BR + n 
1 	

a RB4
) aR 	R 	RBS 	 17  R B~ BR 

+ a( a+ v Bz + n 1 
az 	R 	RB4 	uo RB4, az ) 

0 

In cylindrical notation, if a vector C is solenoidal, then 

a (RCR) + a (RCz) = 0 
āR 	az 

and as seen in Chapter 2, we may fully define C in terms of Euler 

potentials, C = v 	v4,. In an axisymmetric situation this becomes 

C = v x .esi) 
R 

therefore, 

RCR = -aC _ -vR + v BR + n 1 	a RB4 
az 	R 	RB4 	uoRR B āR 

RCz = a = -_z. + vd,Bz + n 1 	a B(p 
ā 	RB4, 	uo RBS az 

Hence we reproduce equation (2.34) 

vR = R ac + v BR + n 	1 	a 	RB, 
az 	B4, 	uo RB) āR 

(Al2) 

vz = -R ac + v6B7 + n 	1 	a 	RB4, 
āR B¢ pc) 	(4, āz 

The final equations (2.35) for the flow may be obtained by using 

Amperes Law and the momentum equations to substitute for the poloidal 

current terms in (Al2). 
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APPENDIX B  

DERIVATION OF THE RATE OF CHANGE OF VORTICITY  

The various terms that arise when taking the curl of the 

momentum equation (2.14) multiplied by R2  may be derived as follows: 

✓ x (R2p dm.) = -v x (R2vp) + v x (R2J x B) 	(B1) 
dt 

(i) 	(ii) 	(iii) 

We take each term in turn and define: 

P = R2p 

H = v x Pv 

(i) 	The term on the left hand side of (B1) is rearranged: 

✓ x (R2p di) = v x (P dy) = v x (P a1 + P v.vv) 
dt 	dt 	at 

= v x (a Pv 	v aP + P v.vv) _ 
at 	at 

(B2) 

Using the continuity equation with the condition of toroidal 

incompressibility, Eq. (2.10) gives dP = 0. (B2) becomes 
dt 

✓ xPdv_ = a 	vxPv + vx (vv.vP + Pvv2  - Pvxvxv) 
dt 	at 	 2 

which after some rearrangement yields: 

= a v x Pv + 1 vP x vv2  - v x (v x v x Pv) + v x (v2vP) 
at 	— 

Remembering that to lowest order v.Y = 0 we use: 

1 	a 	R2H - 1vP x vv2  - v x (y x R2v x Pv) 
172 .7t 	2 	 R2 
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= 1 	d 	R2H - 1vP x vv2 - _v H.vR2 - R2H.vy 
72 dt 	2 	R2 	 R2 

Now 

d RH = a RH + v.vRH 
dt 	at 

dH + H v.vR 
dt 	R 

So_taking the 0 component 

(v x (P dY)) 	= 1 d 	RH 	- 1(vP x vv2) 
dt 	R dt  

because 

Hcp v.vR = Ho _vg 
R 

which cancels with 

-(R2H.vx ) 	= -(R214 a 	Y. ) 	= -R2 	xR 
R a0 R7~ 	

R 
R R 

as 	a 	= e~ 
a0 

and 

( )¢ _ (v0xv~)4 = 0 
iez 

(ii) 	The pressure term is easily derived 

-v x R2vp = -vR2 x vp 

taking the ¢ component 

720 

(B3) 

-(v x R2vp) = 2R(vp x vR4 	(B4) 
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(iii) Lastly, the Lorenz 	force term is considered: 

vx (R2 JxB) = R2vxJxB + vR2 xJx B 

= R2(B.v)J - R2(J.v)B + (vR2.B)J - (vR2.J)B 

Consider the o  component 

(v x R2  J x B) 	= (R2B.vJ)
(1) 
 - (R2J.vB) 

+ (vR2.8)J4 - (vR2.J)B0 

= R2(B.v)J4  + RBq(J.vR) - R2(J.v)Bc - RJ(1) (B.vR) 

+ 2R(B.vR)J, - 2R(J.vR)B0 

= R(B.v)RJ, - R(J.v)RB0 (85) 

Giving: 

v x R2J x B)0  = R(B.v)RJ(1) 	 (B6) 

The second term on the right hand side of (B5) vanishes because 

RB is an Euler potential of the current, J, and as was mentioned earlier 

a vector field described by Euler potentials is always orthogonal to the 

gradients of its Euler potentials. For example, consider the current: 

J = v x B 4 v.J = 0 

J can be represented therefore: 

J = Va X vs 

Assuming axisymmetry a a 4) 

J = VaXvO = VaX 
R 

= V x ag4  
R 



Therefore 

so 

B = «e~ 

R 

a = RB$ 
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Therefore in (B5) 	J.vRB4, = J.Va = 0. 

The i component of (B1) is therefore, combining the results of 

(i), (ii) and (iii): 

1 d R(v x Pv) 	- 1(vP x vv2) 	= 2R la + R(B.v)RJ 

R dt 	2 	az 

(B7) 

In fact, by taking the 4) component of the momentum equation 

we are, assuming the toroidal incompressibility condition, totally 

specifying the curl of R times the momentum equation. This is just 

another consequence of axisymmetry, and is demonstrated below. 

From Eq. (2.10) it follows that v may be expressed by Eq. (2.11). 

Thus: 

v x Pv = v x (PR2 	x vf) 

= vPR2 x (vc x v(p) 

+ PR2 v x (VC x v4) 

= (vPR2.v4))vc - (vPR2.sC)vq 

+ PR2 0*c v4) 

Where a*c = R2(V. vc) 

and is sometimes known as the Grad-Shafranov operator, which is 

derived more fully in Appendix C. Therefore, in axisymmetry 

v x Pv = (PR2 0*c - VPR2.vc)vq 
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The vorticity, E = R v x Pv, is thus purely toroidal and may be written 

• _ _ e4  

We therefore arrive at the expression for the rate of change of vorticity 

that is used elsewhere in this work, from (B7): 

1 d: - 11vP x vv21 = 2Rjvp x vRI + R(B.v)RJ(0 	(B8) 
R dt 	2 
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APPENDIX C  

GRAD-SHAFRANOV OPERATOR AND EQUILIBRIUM EQUATION  

We define the total magnetic field as 

B = Fv¢ + v4, x v¢ 	(C1) 

The first term is the toroidal field and the second the poloidal 

field. The toroidal field is produced by poloidal currents given by 

F and the poloidal field by the poloidal flux, 4,. The requirement, 

v.B = 0 demands that vF is perpendicular to v¢, i.e. in the poloidal 

plane. Also, F is the total poloidal current, including external currents 

in the coils that produce the toroidal field. 

The total current density, J, is given by: 

uoJ = v x B = v x (Fv4) + v x (v,p x v4)) 

-v¢(v.v4)) - 2(v4).v)v4 + vF x v¢ 	(C2) 

where we have used axisymmetry to demand 

v¢.v¢ = 0 

and subsequently the expansion 

v(vp.v¢) = 0 = (vi).v)v¢ + (v¢.v)v¢ 	(C3) 

We note that Ivfl = 1 /R so from (C2) 

v¢(v.vi)) + 2(v4).v)v¢ = v¢ 
v
. .v,) + 2Rv4,.v( ) 

= v¢ R2(v.v,) 
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The quantity R2(v.vp) is sometimes termed the Grad-Shafranov operator and 

is usually given the symbol o*. Thus 

o** = R2(v•) 	 (C4) 
R2  

This term is the toroidal component of the v2 operator and arises because 

v(v(p) + 0. 

Returning to (C2), the equation for the current density is 

uoJ = f'711, x v* - o** v* 	(C5) 

where F = aF/311,. 

In a steady state equilibrium situation, the momentum equation 

becomes 

vp = J x B 	 (C6) 

Using the expressions (Cl) and (C5) for the magnetic field and current 

density 

Jx B = -(FF + p*N) ) v~x(v,yx vo) = vp 
uo 

giving 

pvip = 	ū 2 (FF + o*ip) vV, (C7) 

as 	vq) x (vi, x v(p) = 	( vo ( 2v* 

Taking the 	component of (C5) and rearranging (C7) we arrive at: 

A** = -u0R215 - FF' = -p RJ (C8) 

This is normally termed the axisymmetric equilibrium equation. 
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APPENDIX D  

TENSOR NOTATION  

The tensor notation used is that found in a number of standard 

works on the subject, but the notation used for covariant differentiation, 

whilst not the most common, is perhaps the most compact and has been 

taken from a treatise by Flugge
(66). 

As usual, repeated indices imply summation over that index: 

• 
aibi = aibl 

A vector may be written in terms of its contravariant or covariant 

components respectively: 

a = ain . = aisd1 

where ai and ,g.' are the covariant and contravariant base vectors 

respectively. These have the properties: 

91 	= ij 

ai •ajj = gij  

. j = gij 

gik g~k = 6. 

where 	is is the Kronecker delta and gij the covariant terms of the 

metric tensor, which has a determinant: 

g = Ig ij i = lllgiil 



a 

and 

The common derivative is denoted: 

a , i 	= an.. 
axe 

ai . 
= aai 

,  exJ 

where the length element dxi is given by: 

ds = dxi sgi 

The base vectors are therefore 

= r,. = ar, —1 
axi 

Covariant differentiation is defined by: 

a,j 
= a' 1 j gi = a i l j g 

where 

~ j = ai , j + ak rjk 

-  a 
i 
j = 

a1 ,j 	a k rij 

The Christoffel symbols, rjk arise from the derivatives of the 

base vectors. 

_ 	k _ 
rijk 	rij ~k 
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and 

Lastly, the permutation tensor is given as: 
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Eijk 	eijk 

or 

ijk 
= e

ijk
/v 

where 

ei . 	= eiJk 	+1 	if i,j,k are cyclic eijk  

	

1 	if i,j,k are anticyclic 

= 	0 	if i,j,k are acyclic. 

and is known as the permutation symbol. 

If the base vectors are orthogonal the metric tensor is diagonal: 

ds.ds = g11 dx1 2 	g22 dx2 2 + g33 dx3 2 

In the orthogonal case, we write for simplicity 

hie = gii 	
ii 

l/g 

ds2 = (hi dx1 )2 

2  
= 	

2 2 
9 	h'1 h2 h3 

The Christoffel symbols also take on a more regular form, given below 

where the summation convention, for once, does not apply: 

r.k = 
0 

~J 

ri = - 	ah  
h.2 axJ 

r1J 
= rji = a(log hjj 

axj 

rii = a(log hi)  
axi 
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Finally, in the orthogonal case, we may write a vector in terms of its 

components along unit vectors, ei, where 

gi = hi ei 

and 

41-i  = ei/hi  

The vector component along ei  is therefore: 

(a)i  = a'hi  = ai/
hi 



APPENDIX E  

DERIVATION OF THE ENERGY FLUX EQUATION  

A reduced third moment equation for a heat flux vector, 14., rather 

than the heat flux tensor Q is obtained by contracting the general 

third, heat flux moment, Eq. (5.19). We note that the zero order form 

of the heat flux tensor, given in Eq. (5.27) implies that it is useful 

to define a vector with components 

qi = Q 111 + Q22i + Q33i 

which incidently, has non-zero component to zero order only when i = 3. 

We now split .q. further into a parallel and perpendicular component, 

defining 

qi =Qlli = Q221 

qi = Q331 

(E2)  

(E3)  

Alternatively, 11., and g„ may be formed using the second rank tensor 

Ia and the dyadic e3 e3 defined in Chapter 5: 

Ia = I2 - eg e3 

where I2 is the unit second rank tensor. Now, Eq. (E2) and (E3) are 

formed by: 

Sfl = 2 Ia : Q 	 (E4) 

~ = e3e3: Q 	 (E5 ) 

The general heat flux moment equation, Eq. (5.19), written to 

227. 

(El) 

first order is: 



228. 

v.R - 1 {P v.P} - e {Q x B} = SQ 	(E6) 
p  = = 	m 

ZiF 

We now contract Eq. (E6) to form reduced equations for the heat flux 

vectors defined in Eqs. (E4) and (E5). 

Taking the terms of Eq. (E6) in order we consider first: 

(v.R) 
se 

We want to substitute for zero order R using Eqs. (5.28) - (5.30), so 

it is useful now to define two second rank tensors based on the fourth 

rank tensor R: 

2p, 0 0 

0 2p, 0 

0 0 p„ 
J 

P_ 0 0 
R„ 

0 PI 0 

0 0 3p, 

Now we may express the contracted form of the covariant derivative of 

R as: 

Ia  : (v.R) = v.(2p, Rue) 	(E7) 

and likewise: 

e3  e3  : 	(v.R) = v.(p„ R„) 	(E8) 
P 

The second term of Eq. (E6) is: 

1 {P v.P} p - - 
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Again using the reduced second rank tensors R, and R„ and remembering 

that the curly bracket notation means that free tensor indices are 

cyclicly permuted, it can be shown: 

1 I~ : 	{P v.P} = 2 (R, - P).v.P + 2p, v.P 
P 	 P 	 p 

(E9)  

and similarly: 

1 e3 e3 	. 	{P v.P} = 1 (R„ - P).v.P + p„ v.P 
p 	 p 	 p 

(E10)  

Finally, the last term on the left hand side of Eq. (E6) can easily be 

shown to reduce to: 

e Ia . {QxB} = 2e g, xB 
— 	'm 

and 

e e3 e3 : {Q x B} = 2e q„ x B 	(E12) 
m 	 m 	 m 

The reduced form of Eq. (E6) may therefore be written in two parts for 

the perpendicular and parallel heat flux: 

v.(p, El) - 1 (R, - P).v.P - p~ v.P - e ~, x B = ō~, 	(E13) 

v.(212. R„) - 1 (R„ - P).v.P - „ V.P - e ~„ x B = 	(E14) 
P _ 	p - - — p = m 	 6t 

If we now combine Eqs. (E13) and (E14), using Eq. (El) for the total 

heat flux: 

4 = 2g, + sa,, 

and defining the internal energy as: 
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Pe = 2p, + p„ 

we obtain: 

v.(2p, R, + p„ R„) - 2 P.v.P - ev.P - e .q, x B = S~ 
p`— 	p — 	p 	— 	- 	m 	St 

(E15) 

The first term in Eq. (E15) is easily rearranged, and the second and 

third terms are arranged to give: 

v.1 (2P.P + pe P) - 1 (2P + pe I2).v.P - e.q. x B = 	(E16) 
P -- 	— p — 	— - m 	St 

Finally, by expanding the first term of Eq. (E16) and subtracting the 

second term we obtain 

v.(1 (2P + pe I2). .P) - 1 (2P + pe I2) V.P 
P 

P : vi (2P + pe 12) 
7)- — 	— 

P.ve + 2 P : v(P/p) 

Thus we obtain Eq. (5.35) for the heat flux for each species when vSq.is 

the change in heat flux resulting from inter species collisions: 

P.ve + 2P : v(P/p) - e g x B = vs.q. 
m 

(E17) 
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