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ABSTRACT

The work described here is concerned with the ultimate load
behaviour of steel and composite steel and concrete hollow
sections. Particular attention has been paid to the effects of

material, rather than geometric, non-linearity.

Upper and lower bound solutions to the ultimate load of a
steel rolled hollow section under combined bending, shear and
torsion load are derived. A computer program, using the dynamic
relaxation method, to solve the plane stress equations for four
plates joined to form a steel hollow section, is described. Results
obtained from this program are compared with the upper and lower

bound solutions.

The dynamic relaxation program is extended to analyse both
open and closed composite box girders. The program is then used
to study the behaviour of composite box girders under various
load combinations, and, in particular, the torsional rigidity of

yopen composite boxes.

A series of six tests on small-scale composite steel and
concrete box girders is described. Stresses measured in the
elastic regions of these tests are compared with those predicted
by the dynamic relaﬁation analysis and also, for one of the tests,
with a finite element analysis. The ultimate loads measured in
the experiments are compared with those predicted by the dynamic
relaxation program. Good agreement has been found between
theoretical and experimental ultimate loads for the closed box
tests, and also for the open box under a bending'load. For the
open boxes subjected to a.}oading containing a torsion component
the experimental ultimate loads were found to be seriously reduced
by transverse bending of the slab. &As a result of this the measured
ultimate loads for these two sections were considerably lower than

those predicted by the theory.
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CHAPTER 1

INTRODUCTION & LITERATURE REVIEW

1.1 INTRODUCTION

In recent years a great deal of money has been spent on
bridges, and two forms of construction have become increasingly
popular; they are box girder construction and composite steel-
concrete construction. Box girders have a number of advantages
over other types of beam used in bridge construction; the most
important of these is the high torsional rigidity associated with
closed box sections. This high torsional rigidity ensures good
distribution across the width of the bridge of any eccentric
forces which may be caused by superimposed loading or -eccentric

positioning of the support reactions.

Many bridges with main beams of steel have a concrete deck
slab to give continuity‘between the steel beams, and to provide
a wearing surface. Over the last twenty or thirty years designers
have become more aware of the increase in strength which may be
gained by providing a shear connection between the steel beams

and the concrete slab.

The modern trend has been to combine the advantages of both of
these types of construction and to use composite box girders.
There afe two ways in which this may be done: one is to attach
shear connectors to the top flange of a normal closed steel box
girder and to cast a concrete slab on top of the steel box,
resulting in a 'closed' composite box, (fig 1.1). The second method
is to remove the central portion of the top flange of the steel box,
and to use the concrete slab to provide the fourth side of the box,
shear connectors being provided only in the area close to the webs;

this type is called an 'open' composite box (fig 1.2).

In the last ten years the codes of practice relating to
various forms of bridge construction have been under review with
the intention of providing a unified bridge code. It is intended
that this code will be based on the principle of limit state

design. One of these limit states is the collapse limit state,



and here the designer is required to calculate the ultimate load
of the structure and check this against a set of factored loads
and material strengths. A considerable amount of work has been
done on the ultimate load behaviour of steel box girders and
composite T-beams, but little is known about the ultimate load
behaviour of composite box girders, and in particular their
behaviour under torsion loads. The use of the open type of
composite box poses considerable problems, particularly when it
is subject to torsion loading. Here the flexibility of the
shear connection and the possibility of cracking of the concrete
slab lead to some doubts as to the torsional rigidity and load

capacity of the section.

The United States Steel Design Handbook (36) gives a
method of calculating the lateral distribution of load in a
composite twin bhox bridée. This is an elastic analysis and
full interaction between the steel and concrete is assumed for

the purposes of calculating the section properties.

The research presented in this thesis is concerned with
both theoretical and experimental aspects of the behaviour of
composite box girders, concentrating particularly on the hogging

moment region.

1.2 LITERATURE REVIEW

Very little work has been published giving the results of
tests or theoretical analyses of composite box girders, but a
considerable amount of informaticn is available on the subjects
of composite action (particularly related to T-beams), and steel
box girders. A few papers are also available describing
practical examples of the use of composite box girders. This

literature review is divided into four sections:

(1) Examples of the use of composite boxes.
(2) Composite action.
(3) Behaviour of steel box girders

(4) Behaviour of composite box girders



1.2.1 Examples of the use of composite box girders

The design and construction of the Tay Road Bridge is
described by Fairhurst and Beveridge (1). The main components of
the bridge are a concrete deck slab acting compositely with two
closed steel box girders. Fig 1.1 shows a very simplified cross-
section of one box and the associated slab. The bridge was des-
igned and constructed in the years 1959 to 1965 and design stresses
are in accordance with BS.153; shear connection is provided by
19mm diameter by 100mm lon g headed studs, the safe loads for
the studs being as recommended by Viest, et al. (2), using a
safety factor of 3. Hogging moment regions were designed on
the assumption that composite action can be relied on only if

the concrete slab is pre-stressed sufficiently to avoid cracking.

As part of the design of this bridge a 1:4 scale model of
one span of the bridge was tested (3); the following conclusions

were drawn from this test:

(1) simple bending theory applied and no shear lag

was evident.

(2) In the elastic range the concrete carried 90 per cent
of the load calculated for full interaction and no

permanent slip was noted.

(3) Coliapse took place by buckling of a web-stiffener
assembly. '

In addition to the above it was noted that a concentrated
load applied over one web produced distortion of the section
equivalent to a 70 per cent reduction in torsional rigidity.
The problem of distortion of box sections has been discussed

by Billington (4).

The Birkenhead-Mersey Tunnel approach viaducts are described
by Gray, Clark and Gent (5). The structure consists of an open-
topped steel box acting compositely with a reinforced concrete
deck slab. The scheme was designed and constructed in the years
1966 to 1969 and designed in accordance with BS.153, CP.114 and
CP.117, part 2. Tests were conducted on a 1:4 scale model of
part of the bridge. One test on the torsiocnal stiffness of the

model led to the following conclusion:



"In general it appears that the torsional rigidity of a
stiff composite box cannot be treated as a constant. The
effect of interface slip should be considered in assessing

the worst forces in an indeterminate structure."

A number of papers (6, 7, 8) concerning the construction
of composite bridges were presented at the Conference on Steel
Bridges in 1868. The White Cart Viaduct (6) was opened in
1968 and consisted of twin mild steel trapezoidal girders
acting compositely with an eight inch reinforced.concrete deck

slab. The following features are worthy of note:

(1) Shear connectors are headed studs welded to the
top flange immediately over the line of the stiffening
angles. In this way there is no fear of flange plate

buckling due to stud loading.

(2) In the shops the boxes were tested for torsional
rigidity by jacking up one corner, and it was found
that a 16.75m long unit was more flexible than antici-
pated by calculation. This was due to the ability of
the short box to warp. whereas a similar test on a 67m

portion showed torsional deflection to be negligible.

Five examples of the use, in Germany and Holland, of open

composite box girders, are given in ref. 36. Comparison of

two of these examples shows the great variation in the dimensions

of bridge for which this type of structure may be suitable.
Fig 1.3.shows the cross-section of a viaduct constructed in
Hanover, Germany; it consists of a 2m x 0.8m steel section
acting compositely with a 5m wide deck slab. The span of the
bridge (20m) is comparatively small, but part of the structure
is built on a horizontal curve, and hence the structure had

to be designed to resist comparatively large torsional loads.
In order to obtain good composite action the steel section was
connected to the pre-cast concrete slab by high strength bolts
passing through the slab, thus composite action was achieved by
friction between the steel and concrete as well as by shearing

of the connectors.
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The Schloss Bridge at Mulheim On Ruhr, again in Germany,
(fig 1.4) is an example of a much larger open composite box
girder. This is a continuous bridge with spans of 42m, 45m
and 42m; here two open steel boxes 4.5m x 2.2m act compositely
with a 24.5mwide concrete deck slab. In order to prevent cracking
of the concrete the deck is prestressed both laterally and
longitudinally. ’

Two papers on the stress analysis of composite box
girders have been presented in Japan (9, 10). 1In ref. 9 the
theoretical and measured stresses in a composite, single box
bridge are compared; ref. 10, available only in Japanese,

gives the derivation of the equations used to calculate the

stresses in ref. 9.

1.2.2 Composite Action

There are numerous references to composite action
(e.g. 11-17) but the majority of these are concerned with
tests on shear connectors and the strength of simply-supported
T-beams loaded with compression in the concrete. These
references give a large amount of information about the load-
slip characteristics of shear connectors and the effect of inter-
face slip on the deflections and ultimate loads of simply
supported beams loaded in bending. When attempting to apply
results of tests on composite T-beams to composite box girders
it should be remembered that there are important differences
between the geometries of these two types of section. 2
typical composite T-beam is made up from a 1.5m x 150mm slab on
a 305mm x 165mm x 54kg BSB (ref 12), giving a neutral axis close
to the steel-concrete interface; a typical composite box girder
(fig 1.1) has a neutral axis between one third and half way down
the steel section. This different neutral axis position results

in different types of loading on the concrete slab.

Barnard (11) describes a series of tests on simply-supported
T-beams loaded with a symmetrical two-point load such that the
interface slip was zero in the area of maximum moment. Conclusions

drawn from this work include the following:



(1) The use of the stress-strain properties of the steel
and concrete and the assumption of linear continuous strain
distribution throughout the depth of the section leads

to an accurate prediction of the ultimate strength.

{2) Because of residual stresses, the moment-curvature
curve will cease to be linear elastic at a lower moment

than predicted from the stress-strain relations.

Chapman (12) and Chapman and Balakrishnan (13) describe tests
on various types of shear connection and on sixteen simply
supported composite T-beams. Recommendations for the method of

design of shear connections in T-beams are given.

Johnson, Greenwood and Van Dalen (14) give the results
.of pushout tests on small (8mm diameter) studs set in cracked
reinforced concrete slabs. Recommendations for the design of

stud shear connections in hogging moment regicns are given.

Johnson, Van Dalen and Kemp (15) describe four series of tests
designed to investigate the strength of continuous composite
beams for puildings; in particular the ultimate load behaviour
in the hogging moment region was considered. As a result of
these tests the authors say that there is no doubt that full
composite action can occur in hogging moment regions and stud
shear connectors can transfer shear in regions where the concrete

slab is badly cracked due to longitudinal tension.

1.2.3 Behaviour of Steel Box Girders

A great deal of literature has been published on various
aspects of the analysis and design of box girders. The most
powerful method of analysis available is the finite element
method (16}, with this method problems such as shear lag and
the presence of stiffeners and diaphragms can all be accounted
for. The development of new types of element designed specifically
for box girder analysis (17) has resulted in a reduction in the
number of elements required to describe the structure accurately

and has hence reduced both the computer costs and amount of data

12
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preparation regquired. Even so the high computer costs involved
with the use of the finite element method has greatly restricted

its use.

A second method of analysis results from the fact that a
point load over one web of a box girder may be split into three
components, causing bending, twisting and distortion of the
section. For elastic analysis of sections of practical dimen-

sions these components may be considered independently (18).

The bending component may be treated by simple bending

theory.

The torsion component produces shears which twist the box
and, in all but a few special cases, also produces longitudinal
warping stresses. These stresses may be calculated by simple

torsion theory.

The distortion component produces transverse bending in the
box and, if the amount of distortion varies along the length of
the box, longitudinal warping stresses will result. The

-evaluation of these stresses has been discussed by Billington (4).

Lamas (19) has used the dynamic relaxation method to
investigate the behaviour of the compression flanges of a box
girder. Extension of this method to analyse a complete box is
possible, but presents the same problems with computer time as

the finite element method.

A more detailed review of the various methods of analysis
and design of steel plate and box girders is given by Dowling
(37). This paper includes an outline of the various approaches‘
to the inelastic analysis of the components making up a steel
plate or box girder, and also discusses the application of
results obtained from these analyses to formulation of design

rules.

1.2.4 Behaviour of Composite Box Girders

Any of the above methods of analysis may be adapted for
use with composite box girders. The simplest method of doing

this is to replace the concrete slab with an equivalent area
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of steel and then analyse the beam as before. The use of
this method assumes a completely rigid shear connection
between the steel and the concrete, which can only be ensured

by having an excessive number of shear connectors.

The problem of incomplete interaction has been solved
for elastic, simply supported composite T-beams under a central
point load (20). This method could be adapted for use with
composite box girders provided that the dimensions of the beams
are such that shear lag may be neglected. Moffatt (21) has
developed a finite element program which can take account of
partiél interaction in composite box sections; this has been
used to investigate the longitudinal bending behaviour of such
sections and, in particular, the influence of shear lag on the

stresses, deflections and shear connector forces.

Mattock and Johnston (38) have conducted a theoretical
and experimental investigation into the lateral distribution
of load in composite box girder bridges. For the theoretical
work the stiffness method of analysis was used, and all plates
were assumed to be linear elastic and isotropic. The theoretical
results were compared with experimental results obtained from
one quarter scale models of two bridges, one consisting of three
opén boxes and the other of two open boxes, both sets of
boxes acting compositely with a reinforced concrete deck slab.
Influence lines were plotted for the strains in the bottom
flanges and for the overall deflections of the models, for a
concentrated load moving across the midspan of the bridge.

Good general agreement was obtained between the theoretical and

experimental results, but the models proved to have a slightly
higher torsional rigidity than predicted by the theory.

No previous investigators have considered the effect of
interface slip on the torsional properties of composite boxes.
As mentioned previously (section 1.1) the flexibility of the
shear connection is particularly important in the design of
open composite boxes under torsion loading, but it Is also of
significance when calculating stud loadings in closed composite

boxes.



A second problem associated with composite boxes is
that of cracking of the concrete slab; this problem is
particularly important in the area around the supports of a
continuous beam, where there will be a hogging moment, putting
the slab into tension. Any cracking of the concrete in this

region may affect two important properties of the Section:

(1) The ability of the shear connection to transmit
shear force from the steel flange to the reinforcement

in the concrete.
(2) The torsional rigidity of the section.

The second of these problems is of particular importance
in open composite box sections where the cracking of the
concrete could result in the loss of some of the advantageous
properties of a closed section in resisting any torsional com-

ponent of loading.

Another problem which has not yet been adequately studied
is that of shear lag in the hogging moment region. - Moffatt's
finite element program (sece above) has been used to study the
problem theoretically but there are no experimental results

with which to compare this theoretical work.

Associated with the problems of shear lag and of partial
interaction is that of distribution of forces in the shear
connection, and hence the required distribution of fhe shear
connectors. Current design metheds involve distribution of
the connectors uniformly across the section; this method has
been proved to be perfectly adequate for composite T-beams
where, because of the narrow steel flange, the shear lag effect
in the steel section is small. In composite box construction the
steel flange is much wider, hence shear lag is of greater
significance; this leads to strains in the central portion of
the flang being much smaller than those in the outer portions.
As a result of this the shear force transmitted from the steel
flange to the concrete slab will vary across the width of the
flange, and hence the method of distributing the connectors

uniformly across the flange must be questioned. This problem
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has been partially tackled in recent design codes, where the
number of shear connectors required to resist the shear force
must be placed inside the effective breadth of the section, and
extra connectors must be placed outside this width to give uni-
form spacing across the whole section. It seems likely that
this method will result in an excessive number of connectors

in the central region of the flangé, and work by Moffatt has
indicated. that connectors in the regions near the webs may be

overloaded.

1.3 OBJECTS OF THIS THESIS

The work described in this thesis was intended to provide
theoretical and experimental results concerning the behaviour
up to ultimate load of open and closed composite box girders

under various combinations of bending, shear and torsion loading.

A large amount of theoretical and experimental data on the
effect of geometric non-linearity on steel box girders is already
available (36). The object of the work described here was to
investigaté the effects of material non-linearity and partial
interaction on the behaviour of composite box girders. Because
of the complexity of the problem of interaction of material and
gecmetric non-linearity it was decided that all the models
should be designed such that plate buckling would not occur,
and in all theoretical work it was assumed that the plates forming

the box girders were stiffened sufficiently to avoid buckling.

Whilst doing the preliminary reading for this project it
was found that there was no adequate method available for cal-
culating the ultimate load of a steel hollow section under
bending, shear and torsion load; hence chapter 2 of this
thesis contains proposed upper and lower bound solutions to this
problem. Following other work at Imperial College (e.g. Lamas
(19)) it was decided that for the main theoretical work the
dynamic relaxation method would be used to solve the finite
difference equations for a set of plates joined to form a box
girder. The application of this method to the analysis of a

steel section is described in chapter 3 and results obtained are



compared with the upper and lower bound solutions. In chapter
4 this method of analysis is extended to both open and closed

composite box girders.

The experimental work described (chapter 5) consisted of
a series of tests on small (approx. lé) scale composite box
girders under various combinations of load. The object of
this series of tests was to ident:ify some of the problems
associated, in particular, with the hogging moment region of

composite box girders.
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CHAPTER 2

ULTIMATE LOAD BEHAVIOUR COF STEEL HOLLOW SECTIONS

2.1 REVIEW OF PREVIOUS WORK

Several investigations into the ultimate load behaviour of
non-buckling steel hollow sections under various combinations

of bending and torsion loading have been reported.

Hill and Siebel (22) consider the behaviour of thin,
hollow circular sections under bending moment and torsion.
Solutions are based on the Von Mises yield criterion and the
following relation between increments of stress and strain for
a plastic region of the section:

dy - d1/6 _ 3T
dE - 4d0/E o]

where T = shear stress dT = shear stress increment
0 = direct stress d0 = direct stress increment
dy = shear strain increment dE = direct strain increment
G = shear modulus E = Young's modulés

Using the above yield criterion and flow rule the authors
are able to plot moment-curvature and torque-twist relations for
various combinations of moment and torque. They are also able to
give limiting values of moment and torque, which are shown to fall

on the curve m?+ t?= 1

where m =’M[MP t = 'I'/TP
My, = Plastic moment under pure bhending
Tp = Plastic torque under pure torsion
M = Ultimate moment in presence of torque T.

Siebel (23] reports results of tests on hollow cylinders

which show good agreement with the above theory.

Gaydon and Nuttall (24) give upper and lower bounds to the
relation between bending moment and torsion load at yield for
various sections. For the lower bound solution, distributions
of shear and direct stress are assumed to be a constant fraction
of those for plastic bending and plastic torsion applied separately;
it is then assumed that the Von Mises yield criterion must not be
violated at any point. These assumptions lead to the interaction
formula m?*+ t?*= 1, as derived by Hill and Siebel, but in this case
it has been derived as a lower bound for a general cross-section,
whereas in Ref 2.1it was shown to be an upper bound for a thin, hollow

circular section.
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The upper bound solution presented in ref. 24 is based
on an assumed velocity distribution representing a combination of
bending and twisting (including the assoclated warping displace-
ments). From this assumed velocity distribution, by the use of
Hill's inequality (26) they are able to produce upper bounds
to the ultimate load of solid and hollow rectangular sections.
As shown in fig., 4 of this reference this upper bound solution

is very high in cases where the ratio of torsion load to bending

load is high.

Komatsu and Sakimoto (25) present a solution to the problem
of the elasto-plastic behaviour of hollow sections under bi-axial
bending, torsion and axial compression. The Von Mises yield
criterion and Prandtl-Reuss stress-—strain relationship are
assumed and the cross-sectional shape i1s assumed to be such that
warping torsion may be neglectea. The presenge of residual
stresses is also considered. Test and theoretical results are
given for square and circular hollow sections under axial load
and torsion, results plotted show the relation between torsion
load and twist angle for a constant axial load. Theoretical
results are given for both the flow and deformation theories
of plasticity and it is shown that, while the ultimate load
predictions of the two theories.both.agree closely with the test
results, the flow theory gives much better agreement with the

test results for the shape of the torque-twist curve.

In the discussion so far no consideration has been given
to the effect of bending shear forces. A discussion of various
‘methods of analysis of solid rectanqular sections and I-sections
under bending moment and shear force is given by Neal (27). For
an I-section which, underbbending and shear loading behaves very
similarly to a rectangular hollow section, Neal concludes that,
for practical purposes, an empirical relation suggested by Heyman

and Dutton gives good results. This relation is given by:

Mp = M {1-[% {1-(1-9);’}} £<1



where A, = Area of web Ap = Total area of flanges
Mp = Plastic moment with no shear force
Mp = Plastic moment in presence of shear force F
Fp = Fully plastic shear force assuming shear force

is carried solely by the web i.e. Fp = cho//§

£ = F/FP

Neal also warns against analysis of the effect of shear on
ultimate load behaviour by consideration of stress distributions
or plastic deformations at the critical section only, with no
attention being paid to conditions in the remainder of the
cantilever. By consideration of a single cross-section neither
a true upper nor lower bound may be cobtained. Both the upper
and lower bound approaches outlined in the next Sectioh consider
only the critical cross-section, the justification for this is
that they give satisfactory agreement with Heyman and Dutton's
empiriéal result (see above) and with the finite difference

analysis presented in the next chapter.

The methods propased in the next section give upper and lower
bounds to the ultimate load of a hollow rectangular section subject
to bending, shear and torsion load. Only uniaxial bending and
shear is considered but extension to consider biakial bending and

shear and also axial tension or compression is possible,

2.2 UPPER BOUND SOLUTION

Consider a rectangular hollow section with dimensions 2B x 2D

and thickness t.
The following assumptions are made:

(1) t is small compared with B and D.

(2) 0O and T are the only non-zero stress components where J
is the axial stress along the length of the hollow section and T

is the shear stress around the section.

{3) A plastic hinge is formed with the following displacement

components:

{a) Bending rotation 0 corresponding to the applied moment M.
(b) Twisting rotation B corresponding to the applied torgue T.
(c) Shear strain d/£ corresponding to the applied shear force

F where £ is the length of the plastic hinge.

20
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(4) Warping of the section due to torsion is negligable.

L 2B l
r -
) y 2D
Fig 2-1({a) - -
t
For the webs: shear strain = %?-i %-= Y
axial strain = %% = €,
For the flanges: shear strain = %?-= Yr
axial strain =0%3- = Ep
Hence for the flanges £_2
Y B
(1)
webs Sw 0¥ }

For the solution of these equations it is necessary to find
the stress distribution in the section caused by these strains and
integrate the stresses around the section to find the corresponding
applied loads. For calculation of the stress distribution a rigid-
plastic stress-strain relation and the Von Mises yield criterion
and associated flow rule are assumed. (These assumptions are
appropriate provided the strains are large compared with the elastic

strains).

Von Mises yield criterion: 02 + 312 = 00?2 ————(2)

where Oo is the yield stress is tension.

Von Mises flow rule -% =-%§ (3)
Substituting (2) and (3) in (1) gives:
ACO 0o
F f1 : O, = ip =
or flanges P /T:XE F = A7l
(4)
ACovy/B go (1+v)

For webs: O, =

= T =
[(1£v) 2+ (Ay/B) 2] N »/Z%'[(li\))2+(>>y/13)2];2
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where A 5 v = EE

The significance of the (1#V) terms should be noted here.
The + sign applies in the web where the bending and torsion shear
strains are in the same direction, the - sign in the web where

they are in opposite directions.

If v<l the shear strain due to bending is less than that
due to torsion, if Vv>1 the shear strain due to bending is greater

than that due to torsion.

Integrating equations (4) around the section gives:

(5a)

D D
Moment M = [ Ado } 4Bt + 2 / Oy tydy + 2 / 0., tydy
Y1+A2 © o

goly/B ‘ _ __OoAy/B
2 21% Tz = 2 2%
[(1+v)2 +(Ay/B) 2] [(1-v)2+(Ay/B) %]

where 0y =

D v
go
Torque T = |——————| 4BDt + 2/ BTwltdy + 2} BT . tdy ——(5B)
{/3/1+)\2} ° 6

go (1+v) _ go(1-v)
i Twz = 2 L
v3[(1+v) 2 +(Ay/B)?] V3 (1-v) 2+ (Ay/B) 2]

where Ty, =

: D D
Shear force F = ?//‘rwl tdy - 2L/f T, tdy ——(5C)
[} [o) .

Re~-writing equation 5A

M = AJO 4BDt+I,+I, (6)
Y1+A2

Evaluation of I ,

o

I

[~

<

o

1
| >

-
|
[odl I8}
|
(o] \U
e
k:ro
+
mN
~
U‘N
1
o
mN
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N o

. D
L1 =2k {by Yy? +a? /b*  + g—z-in(y+/y=+a2/b=)
o]

- Eg-{fn(y+/y2 faz/p? )~ 4n a/b}]

substituting back wvalues for a, b and k

gives I, = 2B?t0o |AD ligi +(1+V)2 - (1+v) En{AD //A D +(1+v) 2 }

] 2 2
A 2B B (1+\))

Similar evaluation of I2 and substitution into equation 5A leads to:

- 4DA AzDz (1+v)2 A?D? (1-v)?
M = BtO
o] { e [ + + = + }

B [(1+\)) A+ (1-v)?A ]}
T2 :

Similarly equations 5B & 5C reduce to

- Btoo i4p__ 2B (1+\)).\A,+(1-\))A2']} (7)
Y3 /1A% x| ]
_ 2Btoo | '
F 5 {(1+\))A,—(1—\))A2} (8)

_ AD/B+Y (AD/BY +(1+V) ?
where A, = {n { )

B AD/B+v (AD/B)* +(1~V)?
2 = &“{ =l i

The solution of these equations will be discussed after

derivation of the lower bound solution.

2.3 LOWER BOUND SOLUTION

The basic requirement for a lower bound solution is that a
stress distribution in equilibrium with the applied loads must be
found. One possible state of stress which satisfies this condition
is given by assuming that: (1) shear and torsion loads are resisted
by shear forces distributed as given by elastic theory; (2) bending

stresses are distributed such that the section becomes fully plastic.



As before consider a section 2B x 2D of thickness t and assume

that it is subject to bending, shear and torsion loading.

Assume the following bending and torsion shear stress

distributions:

BENDING

o

For the flanges total shear stress

F

X
T + TB(l - EO =T

For the left hand web shear stress = TT + TB = TWL
For the right hand web shear stress = Tp - Tg = Tyr

Hence, in order to yield the whole section, using Von Mises

yield criterion:

In the flanges direct stress = Y0o®-3[Tp-Tg(1-2)]*= 0p

In the L.H. web direct stress = v0o?-3[Tp+Tg]° = Oy,
In the R.H. web direct stress = /0o?-3[Tp-Tg]® = Oygy
Integrating around the section gives:
2B
Moment M = D't (O, + Oyr) + 2/ OpDtdx = ————(9)
o
Torque T = 8BDtTq (10)
Shear force F = 4DtTg (11)

Length of beam = %

Evaluation of the integral in equation (9) gives:
go go

. =1 . =1
M = D't (0yp, + Opp) + BDEOg? {Sln Y3 (T#+Tg) _ Sin” V3 (To-Tg)
Y3Tp

- V3(Tp-Tg)opr V3 (Tr+TR) Oyr 1
e — | (12)

0o? oo?
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In addition to the lower bound condition discussed above
consideration must also be given to the possibility that the
heavily loaded web, (where the shear stresses due to torsion and
those due to the shear load are of the same sign), will fail in
shear before overall failure of the beam occurs., In order to
allow for this possibility a second lower bound must be considered,
this condition being that the section fails when Tp + Tg = oo/V3.
In practice this is likely to be a rather pessimistic lower bound
as frame action and the presence of any diaphragms will lead to
redistribution of stresses and an increase in the load which the
beam can support. In all following work the lower bouﬁd solution

is considered to be the lower of the two conditions discussed above.

2.4 SOLUTION OF UPPER AND LOWER BOUND EQUATIONS

2.4.1 Upper Bound Equations

Re-writing equations (6) - (8)
= ¢(>\l\))
= Y(A,v) (12)
= 0(A,v)

In order to solve the equations for a given length of beam
(L) and a given load combination it would be desirable to solve

the above equations (12) subject to the additional conditions:

i

L = M/F
(13)

R

ll

F/T
where L and R are specified.

Equations (12) and (13) may be re-written as

E, =¢A,Vv)-Lx B(A,v) |
E, = (A, v)-0(X,V)/R (14)

The desired solution is obtained when values of A and v
are found which give E; = E, = 0. 1In order to obtain the
required values of Vv and A the Newton-Raphson method for simul-
taneous equations (Ref 28) may be used. From initial guesses of
values for V and A (vn and An) new approximations are found from

the equations
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3E, | 3B
Vp+1 = Vp + E, 0A E; JA
9%, 3E; 0E, 9E,
9A oV dV oA
9B, . 35

An#1 = Ay + E; 9V Ep 0V
OE;0E, OE;JE,
A 9V 3V 3A

In order to obtain reasonable initial gquesses for V and A
a family of curves of L against A for various values of V may

be plotted.
2.4.2 Lower Bound Equations

These equations may be solved in a similar manner to that

described above for the upper bound equations.

2.5 RESULTS OBTAINED FROM UPPER & LOWER BOUND SOLUTIONS
2.5.1 Sections under bending and shear only.

Fig 2.1 shows a comparison between results obtained from
the proposed upper and lower bound solutions and those obtained from
the Heyman-Dutton empirical relation; the beam considered is a
rectangular hollow section 200 mm x 300 mm. of uniform thickness.
It can be seen that for IL>500 mm the empirical relation lies
between the upper and lower bound solutions, but for very short
beams (1.<500 mm ) the empirical relation indicates a strength
even higher than the upper bound solution. For these very short
beams the gradients of stress and strain along the beam are
very high, and hence the errors introduced by considering a single
cross-section of the beam are likely to be more significant than
for the longer beams. In addition the strength of a very short beam
is likely to depend greatly on the conditions at the point of
application of the load and at the support; hence it is probably
not possible to give an accurate general formula for the strength
of such a beam. It can also be seen from fig2. that the reduction
in ultimate moment due to the presence of shear is very small
for beams with D/L<0.25 (where 2D = depth of section, L = cantilever
length), at D/L = 0.25 the reduction in ultimate moment is between

3%% (upper bound solution) and 7% (lower bound solution).



2.5.2 sSections under Bending, Shear and Torsion Load

Figs 2.2 and 2.3 show interaction curves for a hollow section
of uniform thickness and dimensions 300 mms x 200 mms. Fig 2.2
is for bending about the major axis, Fig 2.3 for bending about
the minor axis, cantilevers of length 300 mms, 600mms and 1200 mms
are considered. These interaction curves show that in the high
torque regions the lower bound solution is governed by the local
web failure, but in the high moment regions the overall failure
mode becomes the significant lower bound. The point at which
the change in lower bound failure mode takes place depends on
the length of the beam, for the longer beams the overall failure
governs for torque ratios (T/TP) up to about 0.9, whereas for the.
short, shallow beam the local failure mode becomes significant
at a torque ratio of about 0.15. It can also be seen that for the-
longer beams the difference between the upper and lower bound
solutions is quite small (<5%), and hence a reasonably accurate.
prediction of the ultimate load may be made. For the shorter
beams, particularly in regions where M/Mp = T/Tp, the difference
between the upper and lower bound solutions is much greater. The
difference between the two solutions is particularly large where
the web failure governs the lower bound; as already discussed
(Section 3) these lower bounds are likely to be rather pessimistic.
It is interesting to note that, particularly for short beams, the
effect of a small bending moment and associated shear force on the
ultimate torque is much greater than the effect of a small torgque
on the ultimate moment (provided that the effect of the bending

shear on the ultimate moment has been allowed for).
2.6 EXTENSION TO INCLUDE OTHER LOADING CONDITIONS

Extension of the upper ahd lower bound solutions to include
biaxial bending and the presence of axial tension of compression
may be effected by including corresponding extra strains (upper
bound solution) or stresses (lower bound solution). Inclusion
of these extra components will lead to much more complex integrals
in equations 5 and 9 and the solution by the Newton-Raphson methed

will have to be extended to include three or more variables.

27



CHAPTER 3 28

FINITE DIFFERENCE ANALYSIS OF STEEL HOLLOW SECTIONS
3.1 INTRODUCTION

The object of this section of .the work was to use the
finite difference method to analyse the behaviour of closed steel
hollow sections under various combinations of bending, shear and
torsion loading. The results obtained by this method are com-
pared with the upper and lower bound solutions described in chaptexr

2.

Experience of other investigators (19) has shown that a
full analysis of the behaviour of a box girder under only bending
and shear loading poses considerable problems in defining and
satisfying the boundary conditons at the plate junctions;
addition of the torsion component of loading would add considerably
to these problems because the symmetry present in the bending
case would be lost. The emphasis in all work described here was
on non-linear material behaviour rather than non-linear geometric
behaviour and hence throughout the analysis it has heen assumed
that no buckling of the plates forming the hollow section will
occur. Having decided not to consider plate buckling problems
only small extra approximations are involved in assuming that each
of the four plates is in a state of plane stress. These extra

approximations are discussed here.
3.2 THE PLANE STRESS ASSUMPTION

If it can be proved that the plane stress assumption is
valid for a box under bending and shear load and for a box under
torsion load it may be assumed that it is also valid for a box
under bending, shear and torsion load. Both the bending and torsion
cases are discussed with reference to a square box of uniform

Ehickness, but may be extended to include other cases.

3.2.1 Action of a square uniform thickness box under

torsion loading.
LLL L LS s

A
_‘;’_- ?. T j
T A
| (7 D -7 TS T =
/A% -
S~
(a) d plate thickness = t bFig 3-1

(b) (¢)
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Assume that the torsion load is applied by a uniform shear
stress around the end of the section (fig 3.1a). The shear stress
in each plate causes it to displace a distance 4 in its own plane.
This displacement alone would cause a discontinuity at the plate
junctions; this discontinuity is closed by the plates twisting

out of their plane by an angle 6 (fig 3.1b).

Consider a cantilever beam with dimensions as in fig 3.lc.

In-plane displacement of each plate = d = %?
. - 2d _ 21l

Rotat £ h plat = — = —

otation of each plate 6 5 e

let Tp be the maximum shear stress in the plate caused by this
twisting

v = £GP 218 Gt
T Z DG £

Hence, provided D>>t the maximum stress due to the plate

twisting is negligable compared with the in-plane shear stress.

3.2.2, Action under bending load.

In this case the most important error in the plane stress
assumption is present in the top and bottom flanges, where the
direct stress is greater on the outer faces than on the inner

faces of the plates. For a box as in fig 3.1 let

Oo = direct stress on outside of flanges
0I = direct stress on inside of flanges
go _ Dt
oI = D-t

Hence it can be seen that for D>>t it can be assumed that co = oI,

and hence the plane stress assumption is wvalid.

3.3 THE PLANE STRESS THEORETICAL MODEL

In the previous section it has been demonstrated that a
steel hollow section may be represented by four steel plates
joined to form a box. For this analysis a cantilever box loaded

at its free end is considered.
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3.3.1 Plane stress plate equations

The plane stress equilibrium equations for a plate are

as follows:

x~-direction equilibrium E§§-+ §§§X-= 0
3 x oy

3.1

. , f s ONy . ONxy _
y-direction equilibrium 3y + o 0

Increments of the stress resultants (ANx, ANy, ANxy) are
related to increments of the strains in the plate (Aex, Aey, Ayxy)

by a rigidity matrix C

ANx cl1 Ccl2 C13 Aex
ANy | = |C21 €22 C23| |Aey
ANxy C31 C32 C33 Avxy

where €x = du/dx ; €y = 9V/dy ; Yxy = du/dy + OV/3x

The method of evaluating the rigidity matrix is discussed
in section 3.4. In order to obtain a solution to the problem
under investigation equations 3.1 must be solved, subject to a
suitable set of boundary conditions, for four plates joined to

form a box.

3.4  EVALUATION OF RIGIDITY MATRIX (Ref 30)

The Ilyushin yield criterion for a plane stress condition

may be expressed as

£ = (Nx® + Ny? - NxNy + 3Nxy?)/No* < 1 3.2

where No = Cot

After yielding, for plastic flow to take place, the stress

resultants must remain on the yield surface, hence
6 = 0 3.3

and hence fnT AN =0 3.4

r 4

where fn = [Jf éN = ANx
- oONx




31

The plastic flow law may be expressed as
Agep = Afn 3.5
where Aep represents the plastic components of A€ and
A is a positive scaler.

The elastic incremental stress-strain relations may be
written as

AN = CE(Ae-Aep) 3.6

From 3.4, 3.5 and 3.6 we get

A = £’ CE Ag 3.7
£0T CE £

¢
¢
?

Substituting 3.7 into 3.5 gives

Aep = ng CE Ae fn
n
where n = £nT CE £n

and hence from equation 3.6 we get
AN = CE [Ae - £nT CE At £n ]
n
this may be written as
AN = CE [1 - fnfnT CE } Ae
_—
where CE is the elastic stiffness matrix

Et |1 v 0
CE =( )

~ 1 Y 0
0 1~V
2

fn = 2Ny - Nx

1

0
2Nx - Ny
eNxy



In most applications of these equations the possibility of
unloading must be considered, but because of the plane stress
and proportional loading nature of this problem, it was considered
safe to assume that, once a node had yielded, no unloading would

occur.

3.5 BOUNDARY CONDITIONS

For a plane stress problem two degrees of freedom are
considered for each plate, these being the displacements along
the plate (x-direction) and across the plate (y-direction). Hence

two boundary conditions are required at each edge.
3.5.1 Plate junctions

(a) Thg direct stress at the plate edge, normal to the
plate edge is zero. This condition comes from the plane stress
assumption that the out of plane stiffness of the plates is zero,
and hence the edges of the plates are free to pull in and make

the normal stress (Ny) zero at the plate edges.

(b) The displacement along the box (x-displacement) at the
edge of any plate is equal to the x-displacement of the adjacent
edge of the next plate. '

(¢) Equilibrium of the corner of the box requires that the
shear flow (Nxy) at the edge of any plate is equal to the shear
flow at the adjacent edge of the next plate.

At each plate junction conditions (a) and (b) are applied

to one plate and conditions (a) and (c) to the other plate.
3.5.2 At supported ends

Again two conditions are required to define these ends

of the plate:

(a) The longitudinal (x) displacement at the supported end
is zero. Since an interlacing finite difference mesh is used
(see section 3.6), and the longitudinal displacements are not
defined on the ends of the plates, this condition is applied by
putting the external fictitious displacement (u(l,j,k)) equal to

32
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minus the corresponding internal displacement (u(2,3j,k)).
Application of this condition means that any warping introduced by
the torsion loading is totally restrained at the support, and hence
for some sections high warping stresses are introduced. A possible
modification to allow for a free warping condition is discussed

later in this section.

(b) The second condition must be obtained by defining the-

external fictitious shear stress (Nxy(l,j,k)) at the support. 1In
defining this stress a conflict occurs between the correct representation
of the bending and torsion behaviour. For a beam under torsion loading
the shear stress remains constant along the beam, and hence the external
shear stress (Nxy(l,j,k)) should be equal to the internal shear stress
(Nxy(2,3,k)). For a beam subjected to bending shear there is a change

of sign of shear stress at the central support (represented in this
analysis by the cantilever support), and hence the external shear

stress should be made equal to minus the internal shear stress. In
practice, for a beam under combined load, it is difficult to separate
~the bending shear from the torsion shear, and hence both conditions
cannot be satisfied. Application of the bending condition will result

in high stress gradients and the exact distribution of these stresses
will be greatly influenced by details such as the welding and dia-
phragms at the support. As a result of this, it was thought to be

more satisfactory to apply the torsion condition (Nxy(1,3,k) = Nxy (2,5,%)).

(¢) In addition to these two conditions, in order to prevent
rigid body motion, one transverse (y) displacement at the support

on each plate must be defined as zero.

3.5.3 Possible improvement to supported end conditions.




Consider a simply supported beam A-K-L-B-N-M-H-G represented
in the theoretical analysis by a cantilever C-E-F-D-N-M-H-G.
Assume that the beam is symmetrical about a vertical plane Q-I-S-T
and is loaded by 2 eccentric point loads P, balanced by support
reactions R; and R,. The applied loads are represented in the
analysis by applied shear forces TT and TB representing respectively
the torsion and bending components of P. The symmetry of the section
and loading indicate that the stresses and displacements in the web
A-C-D-B are the same as those in the web H-E-F-G; similarly, in the
half of the flange A-Q-J-C they will be the same as in H-I-J-E. It
appears that it should be possible to make use of this symmetry when
defining the values of the shear stress and longitudinal displacement
at the external nodes. A considerable amount of time was spent in
trying to apply these conditions but it was found to be very
difficult to obtain good convergence of the dynamic relaxation solution.
For all iesults given here the end boundary conditions described in

section 3.5.2.were used.
3.5.4 Loaded end boundary conditions

In mést previous applications of the dynamic relaxation method
the structure has been loaded by applying specified displacements
rather than loads. Application of displacements has the great
advantage that it leaas to a higher frequency of oscillation, and
hence more rapid convergence,than is obtained when loads are applied.
In the case being discussed here, it was required that the ratio of
applied bending moment to applied torque should remain constant, and
in order to achieve this it is essential that the loading be applied
as stresses rather than displacements. Hence the boundary conditions
at the loaded end are that the direct stress along the box (Nx) and
the shear stress (Nxy) should take specified values. In general the
direct stress was taken to be zero, but in the analysis of long,
slender boxes it is advantageous to be able to analyse only the
support region; in order to do this an elastic analysis can
give the distribution of Nx and Nxy at a convenient point along the
box and these distributions may then be applied as boundary conditions

for the analysis of the smaller critical region up to ultimate load.
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3.5.5 End disphragm condition

In all practical situations there will be some resistance
of the cross-section to distortion. In most céﬁes this will be
provided by a diaphragm, but some contribution may also come
from the frame action of the cross-section. In the theoretical
analysis presented here it has been assumed that any diaphragm
provided is sufficiently strong to prevent any departure from
linear elastic behaviour. The diaphragm is represented by a single
plate element, and it is assumed to apply a uniform shear stress
to each of the four beam plates such that compatibility at the
loaded end is maintained. The distortion of the diaphragm,
and hence the shear stress applied to the beam, is calculated from
the transverse displacements at the longitudinal centreline of the
loaded ends of the four plates. The calculated diapliragm shear
is added to or subtracted from the applied shear load as

appropriate.

3.6 INTRODUCTION TC THE DYNAMIC RELAXATION METHOD

The application of finite differences and dynamic relaxation
(DR) to the analysis of isolated plates and plate assemblages
is now well-established. (19, 31, 32). The method involves
the addition of acceleration and viscous damping terms to the equil-
ibrium equations (equns. 3.1) to form equations 3.8 and solution

of these equations in step-by-step increments of time.

3%y dul _ ONx , ONxy
W{w"kuﬁ}-s‘;* 3y
3.8 -

32y dv| _ ONy , ONxy
""{w*kV‘a—t}—-aT %

For any state of stress N corresponding to a set of dis-
placements § equations 3.8 may be used to calculate velocities,
and hence, for a specified time increment, new displacements.
In order to do this values have to be assigned to three parameters;
the densities (pu and pv), the time increment (At) and the damping
factors (ku and kv). Following the method described by Cassell
(33) a unit time increment is chosen and fictitious densities
are calculated. 1In most previous applications it has been found

satisfactory, even after the onset of plasticity, to calculate
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the densities using the elastic stiffnesses. 1In this case
considerable problems were encountered with the slow rate of
convergence, particularly when a considerable amount of the
structure had become plastic, and some advantage was found in
calculating new densities for each load increment, based, where

appropriate, on the plastic stiffnesses.

A summary of the DR technique is given in the flow chart,
fig. 3.3.

3.7 THE FINITE DIFFERENCE METHOD

In order to describe the displacement and stress distribution
in the plates equations 3.8 may be re-written in finite difference
form, with values taken at various points on a mesh covering the
plates. There is no necessity for the mesh associated with each
component to coincide, and because the strains and stresses are
calculated from the differentials of the displacements considerable
advantages in accuracy have been found to result from the use of
interlacing meshes. The mesh arrangements, codrdinate system and
node numbering system used in this investigation are shown in
fig 3.4. 1In addition to the nodes marked in fig. 3.4 it is
useful, in the definition of boundary conditions, to consider
external fictitious values of Vv at the plate junctions, u at

the plate ends, and Nxy at the plate junctions and ends.

3.8 LOAD INCREMENTATION

In all investigations of non—linea;hbehaviour attention must
be given to the size of load increment applied. For this
application displacements are linear, and hence, provided that
the material properties within any load increment are linear, the
overall behaviour within that increment will be linear. For the
structure in a state of stress such that n nodes have yielded,
provided that the strains required at the n plastic nodes to yield
the (n+1)th node are not large, the stiffness of the strucﬁure may
be considered constant until the (n+1)th node yields. The reason
for the restriction on the amount of straining at the yielded

nodes is that the plastic rigidities are calculated such that the



flow of stress is tangential to the yield surface; because
of the curved nature of the yield surface the consideration of
large strains, without modification of the stiffnesses, will

result in perforation of the yield surface.
3.8.1 Calculation of increment size

The linear nature of the behaviour of the structure between
the yielding of two successive nodes may be used in the design

of a method of calculating suitable load increment sizes.

Consider a box with N nodes unyielded, assume a load
increment o is placed on the box. Initially the state of
stress at node n may be represented by the stress resultants Ny,, Nyns
Nyyni application of the load increment ¢ causes changes Aan,
ANyn, Anyn' in the stress resultants. For any node n the factor
(Y) by which 0 must be multiplied to cause that node to vield may
be calculated from

_ V1 - /7y
—‘/F";Fg’

(3.9)

where F, and F are the values of the yield function before and

after application of o

f.e. Fy = Niyp + Ny = NygNyp + 3Ngyp?

No*

Xxn

F = (Nyp + ONgp)?* + (Nyp + ONyp)® = (Nyp + ANyp) (Ngp + ANgp)

+3 (Nyvn + Anyn)z

No?
The value Y is calculated at all nodes and multiplication A

of the load increment size & by the smallest positive value of Y

obtained gives the size of the load increment reguired just .to

vield the next node. 1In practice it was found useful to replace

the value v1 in equation 3.9 by Y1.003, i.e. to allow a very

small (0.3%) penetration of the yield surface. The purpose of this

was to prevent a situation where a very small rounding error

caused one node to remain elastic when a symmetric node had

beccme plastic.
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In order to make use of this factor Yy the D.R. cycle is
applied until equilibrium is obtained under an arbitrary load
increment (., and hence stress and displacement increments Qy
and AU corresponding to o are known. The value of Yy is then
calculated as described above all stress and displacement incre-
ments Qy and Qp are multiplied by Y before addition to the
previous total stresses and displacements. It should be noted
that, regardless of whether load increment ¢ causes any nodes to
yield the stiffnesses calculated at the start of the increment
are used. The great advantage of this method of calculating
the size of the load increment is that penetration of the yield

surface does not occur.

3.9 MESH SIZE REQUIREMENTS

When using methods such as finite differences a compromise
must be reached between the use of a fine mesh, giving very
accurate results at a high cost in computer time and storage,
and a coarse mesh giving less accurate results at a lower cost.
The problem of finding a suitable mesh size is of particular
importance in regions where the variation of stresses around
or along the box is non-linear. For boxes with the dimensions
and loadings considered here the most severely non-linear stresses
are the direct stresses in the box flanges, which, dué to the
shear lag effect, have a parabolic variation across the plate.
Generally it is found that the mesh size is more critical in
elastic than in ultimate load analyses. This is because yielding

of the steel tends to even out the peaks and troughs of stress.

In order to examine the mesh size requirements of.the program
described in this chapter the beam shown in fig. 3.5 was considered.
The reason for the choice of a section with a very high flange
width to length ratio is that, in this type of section, shear
lag effects are very large (see fig 3.6), and hence it was thought
that this section would be comparatively sensitive to the mesh

size.
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If the flanges have N nodes across them and M nodes along
them the following mesh arrangements N X M were considered:
(1) 13 x 7, (2) 11 x7, (3)9x7, (4 7x7, (5 6=x 17,
(6) 9 x 11, Fig. 2.5 shows the elastic distribution of direct
stress obtained at the support for the mesh arrangements (1),
(5) and (6), the box being loaded with a bending shear force
applied at the free end. Fig 3.7 shows the load-deflection
curve up to ultimate load for this section and loading. Both
of these sets of results show that the coarse mesh gives good
agreement with the finer meshes, and suggest that little advan-
tage is likely to be gained by the use of a fine mesh; hence it
was thought that a mesh with 7 nodes across and 7 nodes along
the flanges should give results which are sufficiently accurate

for all practical purposes.

3.10 RESULTS OBTAINED FROM D.R.. PROGRAM

In order to compare the results given by the D.R. method

with those obtained from the upper and lower bound solutions a
beam with the cross-section shown in fig 2.3 was used. Canti-
lever lengths of 300 mms (model 1) and 600 mms (model 2) were
used. Following the mesh size study described in the previous
section the meshes shown in fig 3.8 were used. Three load
cases were considered for each section: for model 1 ratios of
bending moment at support to torque (M/T) of ©, 6 and 1.5, and

for model 2 ratios of «, 3 and 1.2.

In figs 3.9 and 3.10 graphs of applied load against end
displaceﬁient are shown, The applied load is plotted in terms
of M/Mp where M is the bending moment at the supported end of
the beam and MP is the plastic moment of the beam calculated by
simple plastic bending theory. The  displacement plotted is the
average of the displacements of the loaded ends of the two webs.
Upper and lower bound predictions of the ultimate load, calcul-
ated by the methods described in chapter 2 are also plotted.
Figs 3.11 and 3.12 show a comparison of the ultimate load stress
distributions at the supported end, given by the three methods.
Where the lower bound has been governed by the failure of one web

it is not possible to plot this stress distribution.



It appears from figs 3.9 and 3.10 that, for some load
cases, there 1is still quite a significant amount of stiffness
remaining in the beam when the final point from the D.R.
solution has been plotted, and hence the ultimate load may be
considerably above the maximum point plotted. In most of
these cases an attempt was made to apply another load increment,
but this resulted in divergence of the D.R. solution, indicating

that the stiffness of the section had become very small or zero.

For section (1) (the short beam) loaded under moment-torque
ratios of ® and 6 the D.R. solution gives an ultimate load
considerably below the lower bound result. The stress distrib-
utions at failure for these loadings (see fig 3.11) indicate
that, according to the D.R. solution the webs will fail before
the section has become fully plastic (hence the unyielded area

in the middle of the flanges), whereas the lower bound solution

indicated that full plasticity of the cross-section would be reached.

The reason for the failure of the lower bound web check to predict
this mode of failure is that it is only a check against failure
under shear stresses alone, whereas in praétice the failure is
caused by the combined effects of shear and direct stresses.

For the short section with an M/T ratio of 1.5 the D.R. solution
shows very good agreement with the lower bound solution. In this
case the ratio of shear strains to axial strains in the web which
fails is large enough for the shear stresses in this web given by
the D.R. solution to be very close to the fully plastic shear

values.

It has already been shown (figs 2.2 and 2.3) that for longer
sections, where the influence of bending shear is small, the
upper and lower bound solutions are much closer together than
for the shorter sections. This is again demonstrated in figs.
3.9 and 3.10. Fig 3.10 shows that for the longer section (section
2) with an M/T ratio of « the D.R. solution comes between the
upper and lower bounds, which are themselves only about 5% apart.
For the other 2 load cases (M/T = 3 and 1.2) the D.R. solution
again comes below the lower bound; as with the shorter beam this
is caused by interaction of the shear and direct stresses causing
a failure of the heavily loaded web earlier than is prgdicted by

the lower bound solution.
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3.11 CONCLUSIONS

(1) Upper and lower bound solutions may be calculated for a
section under combined bending, shear and torsion load, but the

lower bound depends on the failure being due to either:

(a) full plasticity of the cross-section being reached

or (b) one web reaching its full shear capacity.

(2) The lower bound web failure check described in section 2.3
is not a completely satisfactory check against (b) occurring,
as a web failure will be influenced by the presence of direct

stresses in the web.

(3) An experimental investigation is required to establish the
significance of the web failure mode, as it is probable that,
for many sections, there will be a considerable capacity for

redistribution of the stresses to the unyielded areas, leading

to the ultimate load being higher than predicted by these theories.
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CHAPTER 4

APPLICATION OF THE D.R. METHOD TO COMPOSITE BOX GIRDERS

4.1 INTRODUCTION AND MODIFICATION OF STEEL PLATE EQUATIONS

A typical closed composite box may be considered as a steel
hollow section, similar to that discussed in chapter 3, and a
concrete plate, joined by a flexible shear connection. Generally
the concrete flange will be wider than the steel flange, and only
the part of the flange in contact with the steel will be directly
affected by the shear connection; for the purposes of this
analysis it is convenient to represent the concrete by three
joined plates (see fig 4.1). The plane stress assumption dis-
cussed in section 3.2 is again used here; owing to the greater
thickness of the concrete plates a greater approximation is
involved in applying this assumption but, for composite beams

of practical dimensions it was still thought to be reasonable.

The plane stress equilibrium equations for plates 1,2,3,5
and 7 (fig 4.1) are the same as for the steel section (equations
3.1) but for plates 4 and 6 an additional term must be included

to allow for the interaction between the plates.

4.1.1 Equilibrium equations for plates 4 & 6

Considering a small element of plate 4 as shown in fig 4.2

where:

Px = Yx K dxdy

Py = Yy K dxdy

X = slip stiffness
Yx = Ust = Uccne
Yy = Vst ~ Veonc

Ugt: Ucone:r Vst & Veone are the x and y displacements

in the steel and concrete



Resolving in the x and y directions gives:
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For plate 6 the signs on the slip terms will be reversed
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4.2 CONCRETE RIGIDITY MATRIX

In order to investigate the ultimate load behaviour of the

hogging moment region of a composite beam it is necessary to est-
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ablish a relationship between the stresses and strains in a reinforced

concrete slab., As already discussed, (section 4.1), the slab is
assumed to be in a state of plane stress; because of the type of
loading being considered it was assumed that the concrete would
never be sufficiently heavily loaded in compression for the
crushing strength to be reached. Having made this assumption the
possibility of an element of the slab being in any one of three
states must be considered: (1) Element uncracked; (2) Element
with cracks in one direction; (3) Element with cracks in two
directions. Also the strength of the reinforcement in the slab
must be allowed for. In the following work it has been assumed
that the reinforcing bars run parallel to the x (x reinforcement)

any y (y reinforcement) coordinate axes.

4.2.1. Uncracked slab element

Until the first crack is formed the slab is assumed to
be homogenous and isotropic, the stress-strain relationship

being given by:



Ny | =EST. |1 Ve 0 €x
.2
Ny | 1TV v 1 0 g | ———— 4.3
1-v

The contribution of the reinforcement is given by:

x | = ER | Tgx | ! 0O 0] + Tsy 0
v 0O 0 © 1 4.4
Nyy 0O O 0 0 O

where E_, = Young's modulus for concrete

Vo = Poisson's ratio for concrete
Te = Thickness of concrete slab
Er = Young's modulus for reinforcement
Tgx = Ratio of cross-sectional area of
x reinforcement to slab width
Tsy = Ratio of cross~sectional area of

y reinforcement to slab width,

These rigidities may be used until the first crack appears
in the slab, this will occur when the maximum tensile stress in
the slab becomes equal to the tensile strength bf the concrete.
Whén this stress is reached a crack will be formed at 90° to the

direction of the maximum tensile stress.

4.2.2. One crack element

Once the concrete element has cracked a new rigidity matrix

must be found. The concrete can transmit no tensile stresses
across the crack, and hence Young's modulus for the concrete
must be zero in the direction perpendicular to the crack.
Aggregate interlock allows transmission of shear stresses across
the crack, but the shear rigidity will be lower than for the
uncracked element; this is allowed for by the introduction of
an aggregate interlock factor (§£). According to Arnaouti (34)

the value of & has been found to vary between 0.33 and 0.5.

44



The stress-strain relationship for a concrete element

with one crack is given by:

- t

Ny = S E T, 1 0 0 E‘ & |

Ny o o E/O Ey 4.5
Ny 0 0 >2014v) Yxy

where T, the transformation matrix is given by:

~

T=|c? s* -2sC ]
s c? 2sC 4.6
sc -sc cz—szJ
where C = Cos ¢
S = Sin ¢
$ = angle between x-axis and crack direction.

Once the concrete has cracked some shear stress will be
transmitted across the crack by the dowell action of the rein-
forcement. 'The contribution of this to the shear stiffness is
taken to be a factor (i, the dowell factor) times the shear
rigidity of the reinforcing bars; hénce the contribution of

the reinforcing bars to the overall stiffness is given by:

X Er | Tex 0 0 Ex
Ny 0 Ty O &y 4.7
N 0 o BlfsxtTsy)

xy 2(1+v) Txy

The concrete rigidities given by equation 4.5 are applicable
until the maximum tensile stress in the concrete again reaches
the cracking stress. When this stress is reached a second crack
will form at an angle of 90° to the direction of the maximum
tensile stress. (For the beams and loadings considered in this
thesis the ultimate load of the structure had generally been reached,
or very nearly reached, before a second crack had been formed in

any element, but the possibility of the second crack forming must

still be considered.)
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4.3.2, Two crack element

Following the formation of the second crack no tensile
stresses can be carried across either crack, but shear stresses
may be carried by aggregate interlock. In general it is found
that the angle between the two cracks is of the order of 80
degrees and hence it may.be assumed that an element with two

cracks is unable to carry any tensile stress (34).

The new concrete stress-strain relationship is given by:

Ny | _TEcTc [0 O 0 o
Ny © 0 E? gy 4.8
Ny 0 0 *2(1+v) Ty

The transformation matrix T has been defined in equation 4.6
and for this caseé the angle ¢ is defined as the mean value of the
angle between the two cracks and the x-axis. The contribution of
the reinforcement in the two crack case remains as shown in

equation 4.7.

4.3 APPLICATION OF THE DYNAMIC RELAXATION METHOD

Application of the D.R. method to the solution of the
equations for seven plates joined to form a composite box girder
presents a number of problems not encountered in the analysis of

a steel section.

4.3.1. Load incrementation

The most important of these extra problems is caused by the
differences between the stress-strain relationships for steel and
those for concrete. For steel these are formulated in terms of
increments of strain and stress, and hence each load increment
must be treated separately, whereas for the concrete they are
formulated in terms of total stresses and strains, and hence
one increment may not be considered separately from previous

increments.
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The logical extension of the method of load incrementation
described in chapter three would be to apply an arbitrary load
increment, and then calculate the factor by which this increment
must be reduced (or increased) for one steel element to yield or
for one concrete element to crack. If this method was applied,
for cases where the increment size was governed by a concrete ele-
ment cracking there would then be the problem of dealing with
the stresses released by the cracking of the concrete element.

It would be possible to overcome this problem by applying a further
set of relaxation cycles with loads applied at the newly-cracked
nodes to balance the released stresses. The problem associated
with this method is that before a composite section fails a large
number of the concrete nodes will crack, and the computer time
involved in applying one increment, (and hence two sets of D.R.
cycles), for every node that cracks is prohibitive. The fact

that the concrete stresses are dependent only on the total strains
means that the problem of penetration of the cracking surface does
not occur, and hence it is not important to recalculate the concrete
stiffnesses as soon as the element cracks. As a result of this
the method of load incrementation adopted for the composite box
programs was as shown in the flowchart fig. 4.3. The initial
increment size ((1)) is chosen such that, assuming no steel nodes
yield, a reasonable number (say 5% of the total number) of con-
crete nodes will crack. In some cases it was found necessary to
run a load case twice in order to find suitable increment sizes
but, in general, the solutions were not found to be very sensitive
to the exact size of increment chosen. At point (2) on the flow-
chart a number of concrete nodes may be loaded above the cracking
stress, the next section of the program releases and redistributes
these stresses. Having calculated these stresses and associated
strains and displacements they are added to the existing total
stresses, strains and displacements, new stiffnesses calculated

and a new load increment applied.
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4,3.2 Boundary conditions

Derivation of the boundary conditions for the composite
box is basically the same as for the steel box, but at the
top corners of the web account must be taken of the effect of
the shear connection. In order to illustrate the method used to
deal with this problem the boundary conditions at the junction
of plates 1 and 4 are discussed here. The forces acting on a
small section of this junction are shown in fig 4.4. As for the
steel box girder (section 3.5.1) the first condition is that
the direct stress at the plate edges, normal to the plate edge,
are zero. Hence all four NY forces shown in fig 4.4 are zero.
In addition the conditions of equilibrium in the x direction and
compatibility between the two plates must be satisfied. To do
this the equilibrium condition is used to calculate the x-direction
velecity at the édge of plate 1 (eqgn. 4.9) in the velocity routine
(fig 3.3) and the compatibility conditicon is satisfied by making
the x displacement at the edge of plate 4 equal to that at the -
corresponding edge of plate 1. The x-direction equilibrium equation

for the section of the plate junction shown in fig 4.4 is given by:

0= (MX(I+1, N-1,4) - NX(I,N -1, 4)) x DY¥(4)/2
+(NX(I + 1, 2, 1) - NX(I,2,1)) x DY (1)/2
.+ (NXY(I,2,1) - NXY(I,N-2, 4)) x DX - PX(I,N-1, 4)

where PX(I,N-1,4) = k x DX x DY(4) x (U(I,N-1,4)-U(I,N-1,6))
2

k = shear connection stiffness (N/mm/mm?®)
Other plate junctions are treated in a similar manner to that
described above.

The remaining boundary conditions are all very similar to

those described in chapter 3 for the steel section.

4.4 EXTENSION TO OPEN COMPOSITE BOXES

In extending the program to the case of an open composite
box girder it was found to be convenient to represent the beam
by six plates joined as shown in fig 4.5. Representing the whole
of the concrete by only one plate meant that it was necessary to
add the extra shear connection force term to the equilibrium

equations only at specified nodes on this plate; (i.e. those
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in contact with plates 4 and 5). Appropriate modifications

to the boundary conditions at the top of webs were also
required. Apart from this the method of solution of the

equations was as for the closed composite box.
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CHAPTER 5

THE DESIGN AND TESTING OF A SERIES OF MCDEL OPEN AND CLOSED
COMPOSITE BOX GIRDERS

5.1 INTRODUCTION

This series of tests on model composite box girders was designed
to give a general understanding of the behaviour of composite boxes
under various combinations of bending, shear and torsion loading.

The six tests were as follows:

(1) Action of a closed composite box under central point load
(Model C1)

(2) Action of a closed composite box under eccentric point load
(Model C2)

(3) Action of a closed composite box under torsion (Model C3).

The above three tests were then repeated on open composite
boxes (Models 01-03 respectively). The main interest of this
investigation was in the effect of material non-~-linearity rather
than geometric non-linearity, and hence the models were designed
with all the steel plates thick enough to ensure that none of them
would buckle. Although this resulted in the model dimensions
not being an accurate scale model of a practical beam, (the plate
thicknesses were much too iarge), it was thought that such models
would be of considerable help in understanding the effect of

material non-linearity on the behaviour of practical composite

boxes.

5.2 DESIGN OF MODELS

In order to reduce the costs of this series of tests it
was intially proposed that, instead of fabricating the steel
sections from flat plates, rolled hollow sections should be used,
the required web and flange thicknesses being obtained by
machining down the faces of the section. The most suitable
available section was an 18" x 10" x 0.5" rolled hollow section.
After consideration of other work done on web and flange
stability it was decided that the top flange, (one 18" side of
the r.h.s.), should be reduced to dmms thick and the webs (the
10" sides) reduced to 6mms thick, the bottom flange was to be
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left 12.7mms, (% inch), thick. 1In practice it was found that
the faces of large rolled hollow sections may be several milli-
metres out of flat, which made it almost impossible to machine
them down to the required thicknesses. As a result of this
problem it was decided that the steel sections of the models

would have to be fabricated from flat plates.

Following various discussions it was decided that the cost
of manufacturing the models would be considerably reduced if the
webs and bottom flanges could be fabricated from a single plate
bent to form a U section rather than from three plates welded
together. It was desirable to avoid having a large number of
stiffeners on the model and hence the cross-sectional dimensions
shown in Figs 5.1 and 5.2 were chosen. In most practical situ-
ations the length of beam under hogging moment is quite small,
hence the effect of shear forces is considerable, so a suitable
length for the models was thought to be 1400 mms between end
diaphragms.

The concrete top flange for the models was a 30mm thick
reinforced micro-concrete slab. For the first model the mix
was 1:§3~2é proportions of ordinary portland cement, 25 to 100
sieve fine aggrégate and %4e" to 25 sieve coarse aggregate with
a water-cement ratio of 0.56. The following test results were

obtained with this mix.
(1) 4" cube strength at 28 aays - 51 N/mm?
(2) 6" cylinder splitting strength at 28 days: 2.4 N/mm?

A major probiem encountered with this mix was that drying
shrinkage of the slab,restrained by the shear connection and
slab reinforcement, caused a crack to form across the centre of
the slab. The large amount of drying shrinkage present was
caused by the high water-cement ratio required to enable the
concrete to be ccmpacted around the reinforcing mesh. For
subsequent models the mix was redesigned as follows: the mix

proportions were changed to 1:1:3 and the water-cement ratio



reduced to 0.5. In order to maintain the required workability
with the reduced water-cement ratio it was necessary to use a
water-reducing admixture, for this purpose a 2%, by weight of
cement, addition of Sicament was used. The new mix gave the

following test strengths:
(1) 4" cube strength at 28 days - 58 N/mm?®
(2) 6" cylinder splitting strength at 28 days - 4.1 N/mm?

Top and bottom slab reinforcement was provided by a mesh of
16 ga ( 1.626 mm diameter) steel bars at half inch centres
longitudinally and transversely. Concrete cover to the reinforce-
ment was 3mms and the ultimate strength of the reinforcement was
510 N/mm?. Shear connection between the steel and concrete was

by %" x ¥/16¢" inch headed studs at 2" centres.

5.3 PRELIMINARY TESTS

The stress-strain properties of the steel used in various
parts of the model were measured in the usual way, and results
are shown in Figs 5.3 to 5.6. An attempt was made to measure the
stress-strain properties of a piece of reinforced concrete in
tension using specimens as shown in Fig 5.7. ILoad was applied,
using a tension " testing machine, .in 0.05 ton increments and
strains were measured from the deflections of the jaws of the
testing machine. Many inaccuracies are present in a test of
this sort, the most important being :(1) bending stresses may
be introduced into the slab by clamping it into the jaws of the
testing machine; (2) the test specimen is very much narrower than
the true slab and hence edge effects are more important. The
results obtained from these tests indicate that the stress-strain
behaviour of a concrete slab in tension may be approximately
represented by two straight lines (Fig 5.8), the junction between
the lines occurring when the concrete stress is approximately
equal to the tensile strength given by a cylinder splitting test.
In this and all other preliminary tests the concrete mix used was
that described for the first test (section 5.2) and the specimens

were tested 28 days after casting.



In order to measure the stress-strain properties of the
concrete, a series of 2" x 2" x 6" prisms were instrumented
with one 10mm gauge length strain gauge rosette on each face.
These prisms were loaded in a compression testing machine with
0.5 ton (1.9 N/mm?) increments; strain readings were taken 3
minutes after application of the load. As the load increased
considerable creep was noted, where this creep was present an
initial reading was taken 3 minutes after application of the load,
and a second reading 7 minutes later. As a result of these tests
an approximate compressive stress-strain curve for the concrete

has been plotted (Fig 5.9).

The stiffness of the shear connection was measured with a
scaled-down version of the standard push-out test. The outside
faces of a 102 mm x 64 mm joist were machined down to give a
flange thickness of 4 mms at % inch from the web-flange junction.
Two %" x 3/16" headed studs were welded to each flange as shown
in Fig 5.10. The outer faces of the flanges were lightly oiled
to eliminate bond between the steel and the concrete, and the
two concrete slabs, reinforced with the % inch wire mesh, were
cast simultaneocusly, on edge, in wooden moulds. After hardening
of the concrete the wooden moulds were removed and the specimens
were tested in a compfession testing machine as follows. A
central axial load was applied to the joist, and slip measurements
were taken from dial gauges attached’ to the steel joist and
bearing against the steel plate on which the slabs rested. Load
was applied in increments of 500 1lbs up to 4500 1lbs and then in
increments of 100 1lbs up to failure. Two slip readings were
taken for each lpad increment, one immediately after application
of the load, the other one minute later, the difference between
the two readings gave an indication of the amount of creep present.
The load-slip curves obtained from a series of four such push-out
tests are shown in Fig 5.11. It can be seen that the results are
rather inconsistent, this is probably caused by inadequate com-
paction of the concrete around the suds. The ultimate load carried

by the studs varies from 5100 1lbs to 6100 lbs (load on four studs),
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the stiffness of the studs in the elastic region (taken as a
load of 500 lbs to 3500 1lbs) varied from 280 x 10% 1lbs/in to
400 x 10® lbs/in (stiffness for four studs).

5.4 CASTING OF SLAB

The main formwork for both the open and closed box models
was made of timber (Figs 5.14 & 5.15), but for closing the gap
between the two flanges in the open box models expanded poly-~
styrene was used. The reason for the use of polystyrene was
that, once the slab had been cast, it would have been impossible
to remove the central section of formwork, and it was thought that

the use of timber could add to the strength of the model.

To assist with the fixing of the reinforcement a number of
concrete spacing blocks were cast. These were 10 x 10 x 18 mms
(18 mms being the spacing required between the top and bottom
transverse reinforcing bars to give the required 3 mms cover), with
- a hole through the length of the block to enable a wire to be, passed
through. By passing a thin wire around the top reinforcement,
through one of these blocks and tying it off around the bottom
reinforcement it was possible to obtain the required spacing
between the two layers of reinforcement. A number of small
holes were then drilled in the wooden formwork and the rein-
forcing meshes were tied to the formwork with wires passing
through the holes and around the mesh; 3 mm thick nuts were placed
between the formwork and the mesh at each of these points to give
the correct cover to the reinforcement. Once the mesh had been
tied in place these holes were sealed with wax, and prior to
removal of the formwork, after casting and hardening of the slab,
the wires through the formwork were cut. After casting the slabs

were cured for 28 days under wet sacking.

5.5 DESIGN OF TEST RIGS

5.5.1 Bending and eccentric load tests

As already discussed, (section 5.1), a series of tests on
six models was undertaken, and four of these involved loading

the model under either an eccentric or central point load. For
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all of these models the ultimate load test was to be under
hogging moment, (i.e. with the slab in tension), but it was
desirakle that each model should initially be tested, within
the elastic region, under a sagging moment. It was thought
that a 10 ton end load would be well within this region, and
that a 50 ton end load would be above the ultimate load for
all the models; hence the central support was designed to carry
20 tons in tension and 100 tons in compression. A photograph
of the central support is shown in fig. 5.16. For the elastic
tests the load was applied at one end of the beam by a 10 ton
jack standing on the floor and reaction at the other end by a
two inch diameter by four inch long steel roller resting on a

steel plate and concrete blocks.

For the ultimate load tests it was necessary to reverse
the direction of loading so that the concrete slab was put into®
tension. A photograph showing the position of the loading jack
and support column is shown in fig. 5.17. 1In the design of the
end support for the ultimate load tests it was desirable that the
same support should be suitable for all four tests. In order
for this to be the case the support had to allow freedom of move-
ment in the following directions:. (1) Trénslation along the
length of the beam, (2) Rotation about a horizontél axis in the
plane of the end.diaphragm, (3) Rotation about a horizontal
axis along the length of the beam. The most suitable method of
doing this was found to be by using a column pinned at both ends,

as shown in fig. 5.17.

5.5.2 Torsion Tests

Three photographs of the rig for the torsion tests (models
03 and C3) are shown in figs. 5.18 to 5.20. The load was applied
over one web with a 100 ton jack, reaction under the other web
at this end was provided by a spherical plain thrust bearing.
This arrangement allcwed the loaded end to be free to rotate but
the thrust bearing provided restraint against any horizontal move-
ment. At the supported end of the beam reaction was provided top
and bottom by load cells resting on rollers (fig. 5.20). The load
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cells provided pin joints to allow rctation about a horizontal
axis parallel to the diaphragm, (a small rotation about this '
axis will be caused by twisting of the box). The rollers allowed
longitudinal movement so that the end of the beam was free from

warping restraint.

5.6 INSTRUMENTATION COF MODELS

During the testing of all the models strains were measured
at two cross-sections: (1) at one quarter-point of the model;
(2) as near as possible to the central support. At each of these
cross-sections strains were measured at various points around the
steel section with 10mm gauge length electrical resistance strain
gauge rosettes, and on the concrete slab strains were measured
with two inch gauge length demec gauges. O©On the open boxes an
additional longitudinal strain reading was taken at the outside
edge of the flange at the central cross-section. Two of the
demec gauges were checked with electrical resistance gauges.
For the first model the strain gauges on the steel top flanges
were covered with a layer of AK22 covering putty to protect them
from damage by water during casting of the slab. Despite this
some problems were encountered with these gauges during testing
and, for subsequent models, the junctibn between the steel and
the putty was additionally sealed with hot wax. Details of the
strain gauge positions may be found in figs 5.12, 5.12a & 5.13.

Readings of the slip between the steel and the concrete

- were taken at various points along each side and end of the boxes.
Across the ends of the boxes readings were taken with dial gauges
with a resolution of 10-4 inches. Access to the steel-concrete
junction at the sides of the boxes was rather restricted (part-
icularly in the closed box models), as a result of this the slip
here was measured with electrical transducers; subject to correct
calibration and a stable power supply these can give readings
accurate to 10—2mms. Overall deflections were measured at various
points around the models, for the mndels under torsion load dial
gauges with a resolution of 10_4 i . were used, for the other models

gauges with a resolution of 10_3mms were used.



5.7 THE TESTING OF MODEL Cl1

The object of the tests on the first model was to investi-
gate the behaviour of a closed composite box under bending load.
In order to provide the bending load the jack was placed under
the longitudinal centre-line at one end of the beam and the roller
under the centre-line at the other end of the beam. A total of
three tests were done on this beam - twé elastic tests putting
the slab into compression, followed by an ultimate load test

with the slab in tension.

5.7.1 Results of elastic tests

For fhis test the jack load was increased from 0 to 10 tons
in two ton increments, (thus the maximum load was equivalent to
a 20 ton central point load), and then reduced to zero, again in
two ton increments. Since, as expected, all results were very
nearly linear and elastic, all results given for these tests are
average readings for two tests for a 10 ton end load; also the
ultimate load test (slab in tension) results for a 10 ton end load
are shown. Two sets of theoretical results are given: (1) Results
given by the finite element program described in ref. 21; (2) Results
given by the dynamic relaxation program described in chapter 4 of this

thesis. Both sets of theoretical results relate to the elastic tests.

Figs. 5.21 and 5.22 show the distributions of longitudinal
stress at the two gauged cross-sections. For gauged section 1 it
can be seen that the stresses in the steel top flange and the webs
show very good agreement with the theoretical results given by both
the finite element and dynamic relaxation methods. The bottom
flange stresses measured at this section are consistently about
10% higher than the theoretical results. This is rather surprising,
particularly in view of the presence of the stiffener in the

tested model, which was not allowed for in the theoretical work.

For gauged section 2 the measured top flange longitudinal
stresses are consistently about 10% below the theoretical values
and the measured bottom flange longitudinal stresses are about
10% above the theoretica” values. Disagreements of this size

between the theoretical i experimental results were to be ex-
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pected since the theoretical results are quite sensitive to
the values taken for the slip stiffness and the concrete
modulus of elasticity, and the accurate measurement of

these values poses considerable problems. The sensitivity
of the theoretical results to the values assumed for various

material properties will be further discussed in chapter 6.

Shear stress distributions for the two gauged sections
are shown in figs 5.23 and 5.24. The flange shear stresses at
section 1 are greatly affected by the details of the welding of
the flanges to the central diaphragm, and hence neither theor-
etical nor experimental results are given for these stresses.
The finite element program assumes a uniform shear stress dis-
tribution down the webs, and hence these results are not shown.
It can be seen that the agreement between the theoretical and
practical results is quite good. In general the experimental
results show slightly lower stresses than the theoretical results,
this suggests that the load being applied by the jack may have
been slightly over-estimated.

Fig 5.25 shows the distribution of longitudinal slip around
the box. For the elastic tests the measured slips along the
edges of the box are consistently below the theoretical results.
This difference could be caused by either an under-estimate of
the slip stiffness or an over-estimate of the Young's modulus
for the concrete in the theoretical work. The distribution of
slip across the ends of the box clearly demonstrates the
importance of shear lag in this type of beam - the slips, and
hence the shear connector forces, are very much higher over the
webs than over the longitudinal centreline. Comparison of the
two sets of theoretical results for this part of the beam demon-
strates the importance of the choice of mesh size used in the
theoretical work - the use of a greater number of nodes across
the beam in the F.E. analysis (9 instead of 5) has enabled a more
accorate prediction of the slip distribution across the beam to

be made. Mesh size effects will be further discussed in chapter 6.
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5.7.2. Results of ultimate load test

For the ultimate load test the direction of loading was
reversed so that the slab was put into tension. The jack locad
was increased in two ton increments up to ultimate load, which
was found to be 41.7 tons. Readings of strains, slips and
deflections were taken for each load increment; also the slab
was inspected for cracks, the position of each new crack being
marked and the crack numbered to indicate the load at which it

formed. The results of this test are presented in two forms:

(1) Comparison of the stresses and slips recorded for a ten
ton load with those obtained in the elastic tests for a ten ton

load (Figs 5.21 - 5.25).

(2) Plots of the strain distribution around the section at

various load levels (Figs 5.26 - 5.32).

The load-deflection curve is shown in fig. 5.33 and a

photograph of the cracked concrete slab in fig. 5.34.

Figs 5.21 and 5.22 show that, as expected, the longitudinal
stresses in the steel flange are considerably greater for the
test with tension in the concrete than for the test with com-
pression in the concrete. The increase at the quarter-point
(gauged section 2) is about 50%, compared ﬁith about 20% at the
centre-line (gauged section 1). Comparison of the web and
bottom flange stresses with those in the elastic test shows that,
because of a downward movement of the neutral axis when the
concrete cracks, the bottom flange steel stresses are slightly

lower for the case where the slab has cracked.

Figs. 5.23 and 5.24 show that the distribution of shear
stress in the steel is not significantlf affected by the cracking
of the slab in the ultimate load test. Fig 5.25 shows that there
is considerably less slip between the steel and concrete (and
hence lower shear connector forces) in the ultimate load test
than in the elastic test. This is particularly evident at the
end of the slab, but it is thought that, particularly in the
' :zimate load test, the end slip readings are likely to have

:n affected by the proximity of the gauges to the point of
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application of the load. When considering the slip readings
for the ultimate load test it must be remembered that, when the
slab is cracked, there will be a considerable difference between

the slip readings taken on different sides of the crack.

Figs. 5.26 to 5.29 show the distributions of longitudinal
and shear strain around the section for various applied loads.
It is interesting to note that, as the ultimate load is approached,
the shear strains in the webs at the central cross-section become
very much larger at the top of the web than at the bottom.
Equilibrium of the web-flange junction requires that the shear
flow in the flange should be equal to the shear flow in the web;
since the flange is thinner than the web this equilibrium re-
quirement suggests that the shear strains in the flange are likely
to be even higher than those in the web. In beams with a high
breadth to length ratio the shear capacity of the web-flange junction
may govern the overall strength of the beam, and is particularly

critical when a torsion component of loading is present.

Figs. 5.30 and 5.31 show the distribution of longitudinal
strain in the slab at the gauged cross-sections. It would be
expected that, due to cracking of the slab, the strains in the
ultimate load test would be somewhat higher than for the
corresponding load in the elastic test. Fig. 5.30 shows that the
measured concrete strains at the slab centre-line in the
ultimate load test are, in fact, considerably smaller than those
in the elastic test; the unexpectedly high strains in the'
elastic test are almost certainly caused by the shrinkage cracking -
discussed in section 5.2. 1In fig. 5.31 it is noticeable that
the longitudinal strains at the quarterpoint decrease very rapidly
towards the edge of the slab; this is another indication of the
importance of shear lag in this type of beam. It is possible that
this shear lag effect is much more significant in simply supported
beams, where the end of the slab is free, than in the more prac-

tical case of a continuous beam.



Fig 5.33 shows the theoretical and experimental load-
deflection curves. In order to compare the two sets of results
it was necessary to adjuét the theoretical results to allow

for the following:

(1) The theoretical results are for the deflection of a
cantilever representing one half of a simply supported beam,
whereas the deflections measured in the experiments were for
the loaded end of a beam supported at the mid-point and at
the other end.

(2) The deflections of the supports in the experiments.

Allowance for these two factors was made as follows:-

for (1) The theoretical deflections were doubled.

for (2) By comparison of the theoretical and experimental
deflections in the elastic region it was found that the de-
flection of the rig gave rise to an increase in the measured

end deflection of 0.143 x P mms (P = jack load in tons).

As a result of this it can be seen that the theoretical

deflections (0p) plotted in fig. 5.33 are given by:-

Sp = 28c + 0.143 P . . (5.1)
where S8c = theoretical end deflection of cantilever (in mms)
P = applied load (in tons)

It can be seen from fig 5.33 that the theoretical and
experimental load-deflection curves show good agreement. The
ultimate load reached in the experiment was 41.7 tons compared
with 38.2 tons given by the theoretical work. It appears from
the gradient of the load-deflection curve that the ultimate load
of the theoretical model may not have been reached; study of the
state of stress around the section shows that only two unyielded
nedes remained, and these were both located very close to the
neutral axis, which suggests that very little further load could
have been carried by the section. This problem of identification
of the ultimate load has been discussed with respect to steel

sections in section 3.10 of this thesis.

6l
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Fig 5.34 shows a photograph of the slab after testing;
the lines on the slab indicate cracks in the concrete, and the
number adjacent to each line indicates the load stage at which
that section of crack was first observed. The cracks close to
the midpoint of the siab are at almost exactly 90 degrees to the
longitudinal axis of the beam, indicating that they are caused
almost entirely by direct stress, further towards the ends of
the beam the cracks are not at 90 degrees to the beam axis,
indicating that they have been influenced by the shear stresses in

the slab.

5.8 THE TESTING OF MODEL 01

The object of this test was to investigate the behaviour
of an open composite box under bending load. The loading
arrangement and testing procedure were as for the closed box

tests described in section 5.7.

5.8.1 Results of elastic tests

The testing procedure was as described in section 5.7.1 for
the closed box model. The results are also presented as for the
previous model except that finite element theoretical results

are not shown.

Comparison of figs. 5.35 and 5.36 with figs. 5.21 and 5.22
shows that the longitudinal stresses measured in the steel top
flanges of the open box are considerably lower than those measured

in the closed box tests. There are two possible causes of this:

(1) The shrinkage cracking of the concrete in model Ci (see
section 5.2) would lead to an increase in the steel stresses
because, until the cracks close up due to compression of the
concrete, the only stiffness of the slab in compression would
be that of the reinforcement, and hence the load carried by the

slab would be quite small.

(2] The shear connectors in the model 01 are distributed much
closer to the webs than those in model C1, this may well lead to

a more efficient transfer of load into the concrete slab. Further
discussion of the effects of the distribution of the shear conn-

ection may be found in ref. 34.



The distribution of longitudinal stress at the centreline,
(fig 5.35), shows the importance of shear lag in the steel top
flanges - the stresses midway between the webs and the edges of the
flanges being 30 to 50 per cent lower than those directly over
the webs. As expected there is very little evidence of shear lag
at the quarter-point cross-section. Comparison of the bottom
flange longitudinal stresses with those from the closed box test
shows that the open box gives slightly lower stresses than the
closed box; this difference is similar to the difference in the

top flange stresses which has been discussed above.

Comparison of the theoretical and experimental longitudinal
stresses shows that, for the bottom flange stresses, excellent
agreement is obtained between the two sets of results. For the
top flanges the theory predicts consistently higher stresses than
those measured in the experiments. Problems associated with the
evaluation of the concrete and shear connection stiffnesses have
already been discussed, and after allowing for these problems the
agreement between the theoretical and experimental results

seems reasonably satisfactory.

Both the theoretical and experimental results for the
shear stress distribution in the webs and bottom flange (figs. 5.37
and 5.38) show very close agreement with the results from the
closed box test. (figs 5.23 and 5.24). The most significant
difference between the open and closed bax results occurs in the
top flange where the maximim shear stress in the open box is very
much. lower than that in the closed box. This is caused by the
fact that in the open box there are two paths for the shear flow
to travel from the top flange into the web, compared with only one
in the closed box. This difference is particularly significant when
the flange plates are thinner than the web plates, as it makes
vielding of the flange, along the web-flange junction, (as
discussed in section 5.7.2), much less likely to occur in an open

box.
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Fig. 5.39 shows the distribution of longitudinal slip
between the steel and the concrete, this having been measured
along the outer edges and across the ends of the steel top
flanges. Comparison of these results with those obtained in
the closed bax test (fig. 5.25) suggests that much smaller
slips and hence much lower shear connector forces are present
in the open box. One reason for this difference is that the
slips along the sides of the open box model were measured on
the edge of the flange, and hence at a considerable distance
from the web; here the shear lag effect would result in the
measured slip being below the average for the cross-section.
This situation should be compared with that in the closed box
where the slip was measured directly adjacent to the webs, and
hence the measured slip would be above the average for the cross-
section. Consideration of the slip distribution across the ends
of the box (fig. 5.39) indicates that this argument is not
correct - at the ends of the open box the maximum slip was found
to be at the outer edges of the steel flanges. Theoretical work
does not confirm this observation but gives maximum slips above
the webs. It is thought likely that these experimental readings
at the ends of the model have been influenced by local effects
due to the loading.

Comparison of the measured slips with those predicted by
the theoretical work again shows that the measured slips are
much. lower than expected. It is quite likely that the mesh
used in the theoretical work was too coarse to give accurate
predictions of the effect of shear lag on the slip, but it is

most unlikely that this would account for all of the difference.

5.8.2 Results of ultimate load test

The rig and loading procedure for this test were as for
the closed box test (model Cl1), the ultimate load was found to
be 39 tons compared with 41.7 tons for the closed box. Readings
taken and presentation of the results were as described in

section 5.7.2.

64



Figs 5.35 and 5.36 show that the longitudinal stresses
in the steel top flanges are between 80 and 150 per cent higher
in the ultimate load test than in the elastic tests. This
increase is considerably greater than that noted in the closed
box test, the comparatively small’ increase in the closed box
test probably being caused by the shrinkage crack already dis-
cussed. It is interesting to note that the shear lag in the
top flange is much less noticeable in the ultimate load test
than in the elastic tests (fig 5.35); this is probably caused
by the reduction in the ratio of direct to shear stiffness of
he concrete flange when cracking occurs (ref 35). As with the
closed box model the downward movement of the neutral axis as
the concrete slab cracked has resulted in the bottom flange
stresses being very nearly the same in the ultimate load-test

as in the elastic test.

As in the previous test the shear stress distribution is
not significantly affected by the cracking of the slab in the
ultimate load test. Fig. 5.39 shows that the slip measured in

the ultimate load test is very small.

Figs 5.40 and 5.41 show the distribution of longitudinal
strain at various load levels. Comparison of these readings |
with the corresponding readings from the closed box test (figs
5.26 and 5.27) shows that for nearly all the gauges the agree-
ment between the two tests is very close. 1In fig 5.40 it can
be seen that the gauges on the outer edges of the flanges seem
to have given very high readings at the higher loads; these two
gauges were 2mm gauge length, linear gauges, whereas all the other.
gauges were 10 mm gauge length rosettes, and it is thought that
this may have had some effect on the readings at these high strain
levels. The very high readings given by one gauge at cross-
section 1 are almost certainly caused by a faulty gauge. In this
test there is much less evidence of the rapidly increasing shear
strains at the web-flange junction which were present in the

closed box test.
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The longitudinal slab strains are shown in figs 5.44 and
5.45, comparison of these with the corresponding diagrams for
the closed box (figs 5.30 and 5.31) show that for the elastic
tests the results are very similar. For the ultimate load test
on the open box there is no evidence of the fall in strain,
towards the edge of the slab, which was noted in the closed
box test (fig 5.31). Comparison of these two sets of results
suggests that the differing distributions of shear connection
lead to a more efficient transfer of load into the slab from

the open box than from the closed box.

The theoretical and experimental load-deflection curves are
shown in fig 3.47, the plotted theoretical -displacements were
again derived from the cantilever deflections using equation
5.1. The theoretical and experimental curves show good agree-
ment, the ultimate load predicted by the theory is 41 tons

compared with 39 tons obtained in the experiment.

The photograph of the concrete slab after testing (fig 5.48)
shows the distribution of cracking in the slab. Comparison of
this with the corresponding photograph for the closed box, (fig.
5.34), shows that the change from closed to open section leads
to much greater cracking of the slab. It is possible that this
increase in cracking is, at le;st partly, caused by the shrinkage
crack in the closed box model leading to a release of the
residual shrinkage stresses in the slab. It seems unlikely that
this alone would lead  to such a noficeable difference and another
contributing factor is likely to be the different distribution
of shear connection discussed above. There is very little indic-
ation of the influence of shear stresses on the cracking of the
open box slab (all cracks are at about 90° to the longitudinal
axis of the box).

5.9 THE TESTING OF MODEL C2

The object of this test was to investigate the behaviour
of a closed composite box under bending, shear and torsion

loading. The details of the loading arrangement were as for
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model Cl1 except that the jack load and end support reaction

were over diagonally opposite web-diaphragm junctions instead

of over the centres of the end diaphragms. Hence, for any given jack
load the bending and shear loads were as for model C1 but model C2
had an additional torsion component of Pb/2 where P is the jack

load and b the distance between the webs of the box.

5.9.1 Results of elastic tests

The testing procedure and presentation of results were

as described for the tests C1 and 01.

The distributions of longitudinal stress are shown in
figs. 5.49 and 5.50. The theoretical results shown suggest
that the torsion component of locad should lead to quite sig-
nificant warping stresses, particularly in the top flange.
Study of the experimental results shows that they do not confirm
this prediction, and show no evidence of the presence of warping
stresses. The likely cause of this disagreement is that the
warping restraint present in the experiments is less severe than
that assumed in the theoretical work. A possible improvement
to the supported end boundary conditions assumed in the theoretical
work has been discussed, with respect to the analysis of steel
hollow sections, in section 3.5.3. 1In the absence of warping
stresses the longitudihal stresses in this test would be ex-
pected to be the same as those in test Cl; comparison of these
two sets of results shows that, for the webs and bottom flange,
very good agreement is obtained. For the top flange the stresses
in model C1 are generaliy slightly higher than those in model €2,
this difference is almost certainly caused by the shrinkage crack

already discussed.

The distributions of shear stress, (figs. 5.51 and 5.52),
show clearly the influence of the torsion component of load -
the shear stresses in the loaded web are two to three times larger
than those in the unloaded web. The influence of the torsion
loading on the shear connector forces is clearly visible in fig.

5.53, the connectors over the loaded webs being very much more



heavily loaded than those over the unloaded webs. Again the
theoretical results give very much larger slips than were
measured in practice; this problem has already been discussed
in section 5.7.1. The influence of shear lag on the shear

connector forces is again very evident in this test.

5.9.2 Results of ultimate load test

For this test the direction of the jack load was again
reversed so that the slab was put into tension, the maximum
jack load was found to be 37 tons. The testing procedure and.

readings taken were as for the previous two ultimate load tests.

Figs 5.49 and 5.50 show that the cracking of the slab again
leads to the longitudinal stresses in the steel top flange
being very much higher in the ultimate load test than at the
corresponding load in the elastic tests. This increase (about
60 per cent at the centreline and about 90 per cent at the
quarter-point) is‘considerably larger than in the previous
two tests; this is almost certainly caused by the extra cracking
in the slab caused by the torsion component of loading. 1In this
test the change in neutral axis position due to the cracking of
the slab is not sufficient to reduce the bottom flange stresses,
and for the ultimate load test these are about 10 per cent higher

than the elastic test values.

Fig. 5.53 shows that in this model the cracking of the slab
leads to a noticeable increase in the shear stresses in the steel
top flange - this indicates that the concrete plays a significant
part in resisting any torsion loading on this type of section.
The reduction in slip, and hence in the shear connector forces,
caused by the cracking of the slab, is again demonstrated by
fig. 5.53.

The strain distributions around the section (figs 5.54 to
5.57) show that failure has taken place by shearing of the loaded
web. Following the discussion in section 5.7.2, concerning the
strength of the web flange junction, it is interesting to note

that the shear strain in the top flange adjacent to the heavily
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loaded web is much smaller than in the corresponding web;

this suggests that the shear failure along the edge of the
flange, discussed earlier, has not occurred. Contrary to this
evidence is that of the rapidly increasing longitudinal slip
on the loaded side of the box (see fig 5.60); since this slip
is measured between the top of the webs and the concrete slab
just above the webs this rapidly increasing slip could be
evidence of large shear strains at the edge of the flange.

It is possible that these large strains are confined to the
area between the web-flange junction and the first row of
studs, (at this row of studs some load will be transferred
into the concrete slab), and hence the strain gauges present

on the top flange would not provide evidence of these strains.

The load deflection curves (fig 5.61) show that the torsional
deflections, (given by the difference between the deflections of
the two webs), are quite small, illustrating the high torsional
rigidity of the closed section. Comparing fig 5.61 with fig.

5.33 it may be seen that, according to the theoretical work, the
'bending stiffness, (i.e. that given by the average deflection of
the two webs) of model C2, should, for loads up to about 20 tons,
be very nearly equal to that of model Cl. The experimental
‘results suggest that the bending stiffness of model C2 is a

little lower than that of model Cl; it seems most likely that
this difference is caused by a difference in the support stiffnesses,
but there is no direct evidence to support this suggestion. The
ultimate load predicted by the theory was 33.8 tons, compared with
37 tons measured in the experiment. Hence, according to the
experiments, the reduction in the ultimate strength caused by

the presence of the torsion component of load intest C2 was 10.6
per cent. This should be compared with the 11.5 per cent re-
duction predicted by the theoretical work.

The photograph of the cracked slab (fig. 5.62) shows clearly
two sets of cracks - the bending cracks, running at 90 degress to
the longitudinal axis of the slab, and the cracks influenced by

shear stresses, running at between 60 and 45 degrees to the
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longitudinal axis. In general the bending cracks appeared
at considerably lower loads than the shear cracks. The slab
cracks in this test were much more numerous and distributed

over a much larger area of the slab than in the bending test.

5.10 THE TESTING OF MODEL 02

The object of this test was to investigate the behaviour
of an open composite box under bending, shear and torsion

loading. The loading arrangement was as described in section 5.9.

5.10.1 Results of elastic tests

The testing procedure and presentation of the results was
the same as for the previous three models. The theoretical
predictions of the longitudinal stress distributions, (figs 5.63
and 5.64), suggest that the warping stresses for this model will
be considerably greater than for the closed box. The stresses
measured in the experiment again show very little evidence of
the presence of warping stresses, the longitudinal stresses
‘measured in this test being very similar to those measured in
the bending test (model 01). These results again demonstrate
that very little warping restraint was present in the tested

models. !

As in the closed box model the distributions of the shear
stress (figs. 5.65 and 5.66) are clearly influenced by the
torsion load. Both the theoretical and experimental reéults show
that the web and bottom flange shear stresses are very similar
in this test to those found in the closed box model. As in the
bending tests it can be seen that the shear stresses in the top
flanges are considerably smaller in the open box model than in
the closed box model; again this is caused by the two shear
paths from the top flanges into each web in the open box, com-
pared with only one in the closed box, and again is of part-

fcular importance when the top flange is thinner than the web.
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The influence of the torsion on the longitudinal slip
distribution is demonstrated in fig. 5.67. The experimental
results suggest that the torsion load causes a reduction in
the slips over the unloaded web, making these slips very nearly
zero, but show . very little corresponding increase in the slips
over the loaded web. This is very surprising, as it would be
expected that any decrease in slips on one side of the box would
be matched by an equal increase on the other side. No measure-
ments of the transverse slip were taken in the experiments but
the theoretical work suggests that for this model the maximum
transverse slip may be as much as 50% of the maximum longitudinal
slip. Since the maximum longitudinal and transverse slips both
occur at the locaded end of the model these transverse slips
will have a significant effect on the maximum loads that the

shear connectors are required to carry.

5.10.2 Results of ultimate load test

For this test the direction of the jack load was again
reversed so that the slab was put into tension; the maximum jack

load was found to be 32 tons,.

Figs 5.63 and 5.64 show that the top flange longitudinal
stresses are very much higher in this test than in the elastic test.
The magnitude of the increase of these stresses in this model
(up to 250% at the quarter-point) is very much larger than in any
- of the previous models, the reason for this being the much more
extensive cracking of the slab in this test than in the previous
tests. This extra cracking is caused by the much higher shear
stresses present in the slab in this test because of the absence
of a steel plate closing the top of the box. In this model the
change in neutral axis position results in very little difference
between the bottom flange longitudinal stresses measured in the
elastic tests and those measured in the ultimate load test. Fig.
5.66 shows that the cracking of the slab causes no significant

change in the shear stress distribution.
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The longitudinal slip distribution (fig 5.67) shows that the
cracking of the slab in the ultimate load test leads to the tor-
sional component of the slip increasing much more significantly
than the bending component. (The slip distribution may be

assumed to be made up of a bending component symmetrical about

the longitudinal centreline and a torsion component anti-symmetrical
about the longitudinal centreline). This increase in the torsional
component of slip leads to the slip in the unloaded web being in
the opposite direction to that in the loaded web.

Figs 5.68 and 5.69 show that as the load increases the
strains in the top flange above the unloaded web increase more
rapidly than those in the flange above the loaded web. This
seems rather surprising since, in general, the warping stresses
and bending stresses would be expected to be of the same sign
in the loaded web and of opposite sign in the unloaded web.. One
possible explanation of the results obtained in the exberiment

is as follows:

Consider an open steel section as shown in fig 5.92

D ‘F: C B A

———————————— ——— e

@ | | Fig 5.92

Assume that one end of the section is fully restrained against
warping, and that the section is loaded With a terque T in the
direction shown. Under this loading the warping stresses at the
restrained end will result in flange AB going into compression
and flange CD into tension. If the torsion load T is replaced
by an eccentric bending load P on flange CD it can be seen that
the direct stresses due to bending and those due to torsion will
be of the same sign in CD and of different signs in AB. Hence

the total direct stress in CD will be greater than that in aB.

Now consider a composite section as tested (fig. 5.93).

\ —F Fig 5.93




Again assume that one end is fully restrained against warping
and that the section is loaded with a torque T. Again the warping
of the section will result in flange A'B' going into compression
and flange C'D' going into tension. The torsion load would also
cause shear stresses in the concrete flange in the direction F.
These shear forces would cause the slab above C'D' to go into
compression and the slab above A'B' to go into tension; i.e. .
the warping stresses in the concrete flange are of opposite sign
to those in the corresponding steel flange. If the torsion load
T is then replaced by an eccentric point load P, again the direct
stresses due to the bending and those due to the torsion are of
the same sign in C'D' and of different sign in A'B’, but in the
concrete slab the two sets of stresses will be of the same sign
above A'B' and of different sign above C'D'. As a result of this
the slab is much more likely to crack in the area above A'B!’

than above C'D'. When the slab cracks the tensile forces in it
must be released and carried by another part of the beam, and a
large amount of the load released will be carried by the steel
flange A'B’', resulting in an increase in the tensile stresses

in A'B'., If the extra tensile stress carried by A'B' due to the
cracking of the concrete is more than twice the original warping
stress in A'B' then this would result in the tensile stress in
the flange above the unloaded web (flange A'B') being higher

than that in the flange above the loaded web (flange C'D').

Fig 5.74 shows that, throughout the test, the slip between
the steel and the concrete, and hence the shear connector forces,
are highest in the area close to the longitudinal centreline of

the model.

For this test the load-deflection curves (fig 5.75) are
plotted as bending and torsion deflections against applied load.
The reason for plotting in this manner rather than as done for
the closed box is that, because of the likely weakness of this
type of section in torsion, approaching failure of the section
might be more clearly indicated by the torsion. deflection than by

the bending deflection. Both the theoretical and experimental
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curves show that as the ultimate load approaches the loss of
torsional stiffness is much faster than the loss of bending
stiffness. Fig 5.75 shows that the theoretical and experimental
ultimate loads show less good agreement than in previous tests;
comparison of the reduction in ultimate load caused by moving

the load from the centreline to the web shows that the reduction
given by the theory is 12.5 per cent compared with 17.9 per cent
obtained in the experiments. Failure of this model was caused

by a crack along the longitudinal centreline of the slab (figs
5.76 and 5.76A). This crack was primarily caused by shear stresses
in the plane of the slab, but the tested model shows some evidence
of the presence of a transverse hogging bending moment in the slab
which would help to lead to an earlier failure of the slab. With
the plane stress assumption made in the theoretical work, any

such bending moments are neglected, and hence an over-estimate

of the strength may be given. An important difference between
this model and the other three so far discussed is that the
ultimate strength of this model is governed mainly by the

strength of the concrete, whereas in the other three models the
ultimate‘strength was controlled mainly by the strength of the
steel section. This is important because the values of the strength
and stress- strain p:operties of the steel can be measured more

accurately than those of the concrete.

Fig.5.76a'shows a photograph of the slab after testing and
fig 5.76a shows a detail of a section of the central crack. The
deformation of the reinforcing bars. shown in fig. 5.76a (orig-
inally the longitudinal and transverse bars were orthogonal)

shows that this crack was caused by shearing of the slab.

5.11 THE TESTING OF MODEL C3

The object of this test was to investigate the behaviour of
a closed composite box under torsion load. Details of the test
rig and loading arrangement are given in section 5.2.2. For the
torsion tests the elastic and ultimate load tests were conducted
with the same rig and loading arrangement. Again three tests

were done, two elastic tests followed by the ultimate load test.



5.11.1 Results of elastic and ultimate load tests

For the elastic tests the jack leocad was increased from 0
to 10 tons in 2 ton increments, and then reduced to 0, again in
2 ton increments. For the ultimate load test a two ton load
was applied to take up any slack in the supports, the load was
then increased in 4 ton increments up to 38 tons, and then in

2 ton increments up to failure (46 tons).

For comparison of the theoretical and experimental work
only one set of experimental results is given, this being the
average of the two sets of elastic test readings and the ultimate

load test readings, all for a 10 ton jack load. No direct stress

distributions are plotted, the maximum longitudinal stress measured

in the experiments for a 10 ton load was only about 3 N/mm?, which
was not thought to be significant. This lack of longitudinal
stresses indicates that the tested section was effectively free

from warping restraint.

The shear stress distributions (figs 5.77 and 5.78) show
quite good agreement between the theoretical and experimental
results. The fact that the experimental results were consistent-~
ly a little below the theoretical results indicates that the jack
load might have been slightly over-estimated. It is‘important
to note that the shear stresses at the edge of the steel top
flange are considerably higher than those at the midpoint of
the flange. At the web~flange junction the shear flow in the
flange must be equal to that in the web, but by the middle of
the flange a significant amount of the shear load in the top

flange will be carried by the concrete slab.

Fig. 5.79 (the longitudinal slip distribution) clearly
demonstrates a difference between the built-in end assumed in
the theoretical work and the situation present in the model.
The built-in end assumption made in the theoretical work leads
to a condition of zero slip at the centreline of the model,
whereas in the tested model the slip was found to be nearly
uniform along the length of the beam. Near the loaded end of

the box the theoretical and experimental results for the slip
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at the edge of the box agree quite closely. Across the end
6f the box virtually no slip was measured in the tests, where-
as the theoretical work predicts a uniform change from the
positive slip at one side of the box to the negative slip at
the other side of the box. There are two possible causes of

this disagreement between the theoretical and experimental work:

(1) The concentrated load applied at the end of the box may
have affected the readings.

(2) In the tested model, in order to avoid premature failure
of the end of the box, the slab was extended about 50 mms
beyond the end diaphragm; this section of the slab is not loaded

and may have resulted in reduced slip readings.

The plots of strain and slip distribution around the section
for increasing load (figs 5.80 to 5.82) clearly demonstrate
that the weakness of this type of section occurs in the steel
top flange, close to the web-flange junction. In fig 5.80
it can be seen that this leads to rapidly increasing shear strains
in this area. The longitudinal slip plotted in fig 5.82 has
been measured between the top of the web and the bottom of the
concrete slab immediately above the web. The first row of studs
on the steel top flange are placed 24 mms from the web, and
hence the very large slips shown in fig. 5.82 could be an
indication of high shear strains in the area between the web
and the first row of studs, rather than an indication of failure

of the shear connection.

Fig.5.82a (the load-rotation curve) shows that in the
elastic region the stiffness of the model measured in the
experimental work is almost identical to that given by the theory.
Unfortunately, owing to convergence problems discussed in chapter
6, it was not possible to continue the dynamic relaxatlon analysis
up to the ultimate load. Using simple torsion theory the
ultimate load measured in the experiment (46 tons) gives a
shear stress of 183 N/mm? at the edge of the steel top flange.
Taking the yield stress of steel in shear as UQ//E}where go is

the yield stress in tension, the yield stress of the steel top



flange in the model is 280//5 = 162 N/mm?; hence it seems that
taking the ultimate load of the section as the load at which
the thinnest plate yields in shear gives quite a reasonable

estimate of the ultimate load of the section.

The photograph of the cracked slab (fig 5.83) shows that
the cracks are quite widely spaced and confined to the area

above the steel flange.

5.12 TBE TESTING OF MODEL 03

The object of this test was to investigate the behaviour
of an open composite box under torsion loading. Details of the

test xig and loading arrangement are as discussed for model C3.

5.12.1 Results of elastic and ultimate load tests

Because of the likely torsional weakness of this model the
maximum jack load for the elastic tests was restricted to 6 tons,
hence the stress and slip distributions (figs 5.84 - 5.86) are
plotted for a 6 ton load.

Comparison of the theoretical stress distributions shown
in figs 5.84 and 5.85 shows that, particularly in the top
flanges, the two stress distributions are different. This
difference is caused by local effecté due to the built-in end
assumed at gauged section 1, and it could be argued that it
would be more appropriate to compare both exéefimental stress
distributions with the theoretical one at gauged section 2.
Fig. 5.85 shows that very good agreement was obtained between
the thegretical and experimental distributions at this section.
It should be noted here that the problem of high shear stresses

at the web-flange junction does not occur in the open box.

Again the longitudinal stresses are not plotted; in
this test they were a little more significant than in the
closed box test, averaging about 8 N/mm® in the top flange and
about 4 N/mm* in the bottom flange, both being tensile stresses.
The likely cause of these tensile stresses is the release, as the
slab cracked, of the residual tensile stresses caused by the

drying skrinkage of the concrete.
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The longitudinal slip distribution (fig 5.86) shows that the
theoretical work gives a good prediction of the slip distribution,
but the magnitude of the slips measured in the experimental work
was only 30 to 50 per cent of those predicted by the theoretical
work. It can be seen that for this type of model and loading
the most critical stud loadings occur along the inside edge of
the steel flanges. Again the disagreement between the theoretical
and experimental slips at the midpoint of the box is caused by the

built-in condition assumed in the theoretical work.

The rapidly increasing slips along the inside edge of the
unloaded flange (fig 5.89) indicate a possible weakness of the
shear connection in this area, particularly since, with the
twisting of this model, there is likely to be quite substantial
transverse slip (the theoretical work indicates that the maximum
transverse slip is about three-quarters of the maximum longitudinal

slip). .

The load-deflection curve (fig 5.90) shows that the cracking
of the slab causes a considerable reduction in stiffness at a
load of 8 tons, and from there on the stiffness gradually decreases
until the ultimate load (19 tons) is reached. For this model the
agreement between the theoretical and experimental results is poor -
the ultimate load predicted by the theoty is 54 tons. As for
model 02 the reason for this disagreement is the inability of the
theoretical work to take account of the transverse bending of the
slab and the uplift of the shear connectors. Fig 5.90 also
shows that the elastic stiffness of this model predicted by
the theoretical work is slightly less than that measured in
the experiments. This is the first model in which a significant
difference has occurred between the theoretical and experimental
stiffnesses, and is probably an indication of the sensitivity of
this model to the values of shear connector stiffness and the

Young's modulus for concrete used in the theoretical work.

Fig 5.91 shows a photograph of the cracked slab. Again
the cracks are confined almost entirely to the area between the
webs, but in this model there are considerably more cracks than

in the closed box model under similar loading.



5.13 SUMMARY OF IMPORTANT RESULTS FROM EXPERIMENTS

(1) The series of tests has clearly demonstrated the weakness
of the open type of composite box section when it is subjected
to torsicnal loads. This weakness is of importance not only
in terms of the ultimate strength of the structure, but also
in terms of the extra cracking of the concrete slab in the

open type of box.

(2) The applicability of the plane stress analysis to the
closed section has been demonstrated, but for the open box
section the out of plane deflections of the slab, caused by

even quite small torsion loads, causes problems in the

application of this type of analysis.
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CHAPTER 6
-APPLICATION OF COMPOSITE BOX PROGRAMS

6.1 MODELS USED IN THECRETICAL STUDY

The basic closed box model used in this study was adapted
from models 3 and 4 in Moffatt's study (ref 21); details are
given in fig 6.1. The shear connection stiffness used is that obtained
by Moffatt using the working load criteria of CP117 part 2 1967;
it is equivalent to the provision of 1Smm x 100mm headed studs
at 600mm centres longitudinally and transversely. The basic
open box model is shown in fig 6.2. It can be seen that this
is identical to the closed box model except that the top flange
has been split along the longitudinal centreline and each half

moved 915mms outwards.

6.2 MESH SIZE STUDY

In order to examine the effect of variation of the finite
difference mesh size on the stress distributions and load-deflection
curves, the open box model (01), locaded with a point load over
one web, was used. Two mesh arrangements were considered; the
coarse mesh is shown in fig 6.3 and the fine mesh in fig 6.4. It
.should be noted that the choice of mesh size is greatly restricted
by the geometry of the beam.

For comparison of the elastic stresses obtained with the
two different mesh sizes a load of 56 tons (a shear stress of
25 N/mm*) applied over one web was considered. The direct and
shear stresses at the cantilever support are shown in figs. 6.5
~and 6.6 In general the agreement between the two sets of results
is very good; the most significant difference is in the steel
top flanges, where the fine mesh shows up the peaks of direct
stress above the webs. Other investigators (Lamas (19)) have
found that, because the onset of plasticity tends to even out
the peaks and troughs of stress, mesh size effects are of greater
significance in the elastic region than in the ultimate load
region. In order to check the effect of mesh size on the
ultimate load behaviour the load-deflection curves obtained
with the two meshes are compared in fig 6.7. The general agree-

ment between the two curves is quite good, the main difference being



“the fact that the fine mesh evens out the changes in sitffness
predicted by the coarse mesh (e.g. in the area around 130 tons
load). The reason for these changes in stiffness is that cracking
of the concrete leads to a release of stress, and with the coarse
mesh the cracking of a small number of nodes can lead to a
significant deflection due to the released stresses. Problems
with convergence and the amount of computer time used meant that
the fine mesh analysis was stopped at 260 tons load (80% of

the ultimate load predicted by the coarse mesh analysis). An
illustration of the effects of mesh size on computer time re-
quirements is that in the fine mesh analysis of this model 8

load increments were applied and the cost was 11 computer units,
in the coarse mesh analysis 19 load increments were applied and
the cost was 5 computer units. Another point in favour of tﬁe
coarse mesh was that, in order to obtain good convergence, it

was most desirable that the program should be run from a telex
terminal; convergence of each increment could then be judged by
eye and, if required, further iterations could be applied to
give better convergence; also, damping factors for each increment
could be chosen according to the results of the previous increment.
Because of memory space limitations it was not possible to run

the finée mesh program in this way.

Additional verification that quite a coarse mesh is adequate
for this type of analysis is given by the good agreement obtained -
between the theoretical and experimental results discussed in

chapter 5.

As a result of the points discussed above it was thought
that the mesh shown in fig 6.3 would provide sufficiently

accurate results for this investigation.

6.3 BEHAVIOUR OF BOX 01 UNDER VARIOUS COMBINATIONS OF LOAD

Fig 6.8 shows the load-deflection curves for model 01 under
various combinations of bending and torsion load. For load case 1

equal loads of P/2 were applied to each web. The loss of stiffness
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at about 150 tons load indicates the onset of cracking of the
slab but, after the temporary reduction due to the release of
cracking stresses in the concrete, the overall stiffness is
almost completely regained. After this there is no great
reduction in stiffness until a load of about 320 tons, when

the steel begins to yield, and failure follows quickly, the ul-
timate load reacﬁed being 335 tons. 1In practice, if a beam of
these dimensions was tested, the sudden loss of stiffness due
to cracking would probably not be observed, the cracking of the
concrete being more gradual and spread over a larger range of

loads.

For load case 4 a torsion load was applied to the free end
of the model. Under this loading the first cracking of the
concrete occurs at a load of about 350 T-m, and this cracking
leads to a reduction in torsional stiffness of about 22%.
Following this initial cracking the stiffness of the model
remains reasenably constant until a load of 2200 T-m is reached,
from here there is a rapid loss of stiffness and the ultimate

load is 2280 T-n.

load cases 2 and 3 involved application of a combination of
bending and torsion. For load case 2 a shear load was applied
to one web of the section, hence an applied load of P gives a
torsion load of PBR/2 where B is the distance betweeﬁ the webs
of the section. For load case 3 a torsion load of PB was applied
for a bending load of P. For both of these load cases the
injitial reduction in bending stiffness due to cracking of the
slab occurs at a lower load than in load case 1 - for load case 2
this occurs at 130 tons and for load case 3 at 110 tons load.
For load case 2, after this initial loss of stiffness, the load-
bending deflection curve rejoins that for load case 1, and the
curves remain very similar up to a locad of 245 tons. Above this
load the torsion component of load in load case 2 causes a more
rapid reduction in bending stiffness than in load case 1, and the
ultimate load reached is 325 tons, hence the eccentricity of the

load causes about a 3 per cent reduction in the ultimate load.



For load case 3, after the initial loss of stiffness at
110 tons load the deflections are consistently higher than those
for the corresponding bending loads in load case 1. The ultimate

load reached is 275 tons - 18 per cent lower than for load case 1.

Comparing the torsion load-deflection curves it can be seen
that in all three cases the cracking of the slab leads to a
reduction in the torsional stiffness of the section. For load
case 4 the reduction in stiffness was 22 per cent, for load case
3, 34 per cent and for load case 2, 37 per cent. Hence it can
be seen that the higher the bending load relative to the torsion
load, the greater the reduction in torsional stiffness due to
the cracking of the slab. The differences are almost certainly
caused by the different crack directions caused by the different

load combinations.

6.4 BEHAVIOUR OF BOX Cl UNDER VARIOUS COMBINATIONS OF LOAD

The load combinations investigated for this model are the
same as for model 0l; the load-deflection curves are shown in

fig 6.9.

Under the bending load (load case 1) the behaviour of this
model is very similar to that of the open box model. Again, at
about 150 tons load there is a reduction in stiffness due to
cracking of the slab, but there is no serious permanent loss of
stiffness until a load of about 315 tons is reached. Aabove this
load the stiffness rapidly decreases and the ultimate load is
about 328 tons. This ultimate load is very slightly (about 2
per cent) lower than that for the open box; the reason for this
is the slightly greater influence of bending shear stresses on

the steel top flange of a closed box than on an open box.

Under load case 4 the problem of stability of the dynamic
relaxation solution, when applied to a closed box under torsion
load, again occurred. This problem has already been mentioned in

chapter 5 with respect to the analysis of the test specimens.

For the beam considered here quite adequate convergence was obtained
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up to a load of 2200 T-m, and also for the relaxation cycles
of the next applied load increment. The problem occurred when
an attempt was made to redistribute the cracking stresses in
this increment, when the solution rapidly diverged to infinity.
The most likely cause of divergence of the D.R. solution is
that the structure has lost all stiffness and hence is unable
to carry the load being applied. This is not the case here
since, with the plane stress assumption made in this solution
complete loss of stiffness will occur only at the very large
deflections. Comparison of the load at which the instability
occurs with the ultimate load calculated by simple torsion
theory (assuming that the section fails when the shear stress
in the thinnést steel plate reaches yield) shows that the
ultimate load of the section has nearly been reached. The
result of these convergence problems is that, for the closed
box under load case 4, almost the full elastic torsional stiff-
ness is maintained up to a load of 2200 T-m, and the ultimate
load of the section is probably just under 2400 T-m. Comparing
this with the results obtained from the open box model it can
be seen that the ultimate load appears to be very similar, but,
for a load of 2000 T-m the deflection of the open box is about
35% higher than that of the closed box.

For the closed box, under load cases 2 and 3, the bending .
load at which the initial slab cracking occurs is reduced to about
130 tons, compared with 150 tons for locad case 1. This reduction,
particularly for load case_3, is not as great as for the open box,
indicating the smaller influence of the torsion load component on
the cracking of the closed box slab. After this initial cracking
the load-bending deflection curves for this model under load
cases 1, 2 and 3 remain very similar up to a bending load of
about 260 tons. At loads above 260 tons the model under load
case 3 becomes noticeably less stiff than the cother two and at
loads above 290 tons the model under load case 2 shows higher

deflections than for load case 1. Comparing the ultimate loads



reached by the closed box under these loads with those reached

by the open bax shows that, for load case 3, the ultimate load of
the closed box is considerably, (about 15 per cent), higher

than for the open box, but under load case 2 the ultimate loads are

very nearly the same.

6.5 EFFECT OF VARIATION OF STEEL TOP FLANGE WIDTH

As discussed in section 6.1 the dimensions of model 01
were derived from those of model Ci. In practice the steel
top flanges are likely to be much narrower than those in model 01,
and hence the effect of vatiation of the width of these flanges
must be considered. In order to do this the behaviour of model
02 (fig 6.11) was -considered. The top flanges of model 02 are
half the width of those in model 01 but, in order to maintain
the basic cross-sectional properties of model 01, are doubled in
thickness. Since the area Qf contact between the steel and con-
crete is halved, in order to maintain similar total shear connect-
ion properties the stiffness of the shear connection is doubled..
In order to represent this cross-section in terms of finite
differences it is necessary to use a finer mesh across the
flanges than for model 01; 17 nodes were taken across the
concrete flange, 3 across each steel top flange, and 9 across’
the bottom flange. The longitudinal mesh size was reduced to
1830 mms.

For this model only load case 2 (load over one web) was

considered.

Figs 6.12 to 6.15 show the direct and shear stress distrib-
utions at the cantilever support for models 01 and 02 under a
load of 130 tons. In the steel sections the direct stresses for
the two models are almost identical, as are the shear stresses in
the webs and bottom flanges. In the steel top flanges the maximum
shear stresses in model 01 are approximately double those in model
02. This is another illustration of the importance of the relative

thicknesses of the steel plates, the top flanges in model 01, being
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half the thickness of those in model 02, require double the
shear stress to give the same shear flow as in model 02. Con-
sidering the stress distributions in the concrete the main
difference between the two models is that, in model 02, cne
concrete node above the locaded web has cracked; apart from
this the direct stress distributions are very similar. With
the shear stress distribution the peak above the loaded web is

caused by the cracking of the adjacent node.

Fig. 6.16 shows the load-deflection curves for the two models.
Comparison of the bending load-deflection curves shows that they
are very similar up to a load of 310 tons (95 per cent of the
ultimate load of model 01). Comparison of the torsion load-
rotation curves fromthe two models shows that the narrower
top flaﬂge in model 02 leads to a small reduction in the torsional
stiffness of the model. This reduction is about 4 per cent in
the-elastic region, but considerably more as the ultimate load

is approached.

One of the problems associated with the use of a fine
.mesh size is illustrated here. When using the normal mesh it
was possible to run the program from a telex terminal and the
convergence of each incrgment could be watched by printing out,
every ten cycles, the values of various displacements. BAs a
result of this the decision as to whether a further load increment
was required and if so, the damping factors to be used, could be
made according to the results of the previous increment. For
the f;per mesh sizes restrictions on computer memory sSpace avail-
able from a telex terminal meant that the program had to be run
as a batch job. 1In order to do this the number and size of
the load increments and the damping factor for each increment
must be decided in advance. An example of the difficulties
associated with this is that the number of increments taken
for model 02 has not been sufficient for the ultimate load to
be reached. 1In order to apply further load increments it would
be necessary to repeat the complete analysis for the previous
increments, and hence a considerable amount of extra computer

time would be required for an extra three or four locad increments.
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In this case it was thought that the analysis of model 02
had been taken far enough to demonstrate the similarities and

differences hetween the behaviour of models 01 and 02.

6.6 EFFECT OF VARIATION OF DOWELL FACTOR

In undertaking the analysis of a composite box one of
the major problems encountered is the determination of the
material properties for the cracked concrete. As described
in chapter 4 these properties are based on a dowell factor and
an aggregate interlock factor; increase or decrease of these
factors will result in a corresponding increase or decrease of
the shear stiffness of the cracked slab. In order to investi-
gate the effect of variation of the slab shear stiffness model
01 under load case 3 was considered. The load-deflection curves
for this case with dowell factors of 0.2 and 0.5 are plotted
in fig. 6.17. (This wvariation is equivalent to a reduction of
approximately 15 per cent in the shear stiffness of the cracked
slab).

Fig. 6.17 shows that the reduction of the dowell factor
from 0.5 to 0.2 leads to a slightly faster reduction in both
the bending and torsional stiffness after cracking of the slab,
Consider$ng the large variation applied to the dowell factor
the -variations in the overall stiffness of the model are sur-
prisingly small. There is virtually no effect on the ultimate
load of the structure. The fact that the overall behaviour
of the model is comparatively insensitive to these values is

encouraging since their accurate evaluation is very difficult.

6.7 EFFECT OF VARIATION OF SHEAR CONNECTION STIFFNESS

It has already been shown (Figs 6.8 and 6.9) that there
is a considerable difference between the torsional rigidities
of the open and closed composite sections (models 01 and Cl1).
The rigidity of the open section is likely to be greatly affected
byxthe.degrée to which the concrete slab changes the steel from
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an open section to a closed section. This degree of closure

of the section is likely to be greatly affected by the stiffness
of the shear connection between the steel and the concrete. 1In
order to establish the effect of a variation in the shear connect-
ion stiffness on the behaviour of the open box model, the

effect of doubling the shear connection stiffness of model 01

was investigated. Since the torsional behaviour is likely to

be more seriously affected by variation of the shear connection

properties than the bending behaviour, load case 4 was considered.

In the elastic region the change of shear connection stiffness
caused virtually no change in the distribution of shear stress
around the section, (figs 6.20 - 6.21), but considerable changes
in the direct stress distribution were noted (figs 6.18 - 6.19).
The distributions of direct stress show that, as the shear
connection stiffness i1s increased, the section behaves more like
a closed section than an open section, and hence the warping
stresses decrease. The doubling of the shear connection stiff-
ness considered here results in.a decrease of approximately 25
per cent in the maximum warping stress. The increase in shear
connection stiffness leads to only a very small, (about 7 per
cent), increase in the maximum shear connector force; hence it
can be seen that doubling the number of shear connectors on the
top flange, will result in a decrease of about 45% in the load

in each connector.

The load-deflection curves for the two connection stiffnesses
(fig 6.22) shows that the beam with the stiff connection has a
torsional rigidity about 5 per cent higher than that of the beam
with the normal shear connection. Virtually no change was noted

in the ultimate load of the section.



CHAPTER 7
CONCLUSIONS AND FUTURE WORK
7.1 CONCLUSIONS

The main conclusions drawn from the work described in

this thesis are as follows:

(1) In chapter 2 upper and lower bound solutions to the
ultimate load of a steel hollow section under bending, shear

and torsion load have been derived. For boxes under bending

and shear load it has been shown that the Heyman-Dutton empirical
relation lies between the upper and lower bound solutions for all
but very short boxes. For the 200mm x 300mm beam considered

(fig 2.1) very short boxes may be taken to be those with depth
to length ratios greater than 0.6. For boxes under combined
uniaxial bending, shear and torsion, interaction curves have
been plotted for three difference lengths of 300 mm x 200 mm

and 200mm x 300mm rolled hollow sections. For the shorter beams,
(relatively high shear forces), the difference between the upper
and lower bound solutions is much larger than for the longer
beams, suggesting that accurate prediction of the collapse load
is more difficult for shorter beams. An illustration of the
differences involved is that for a 300mm x 200mm beam of length
300mms the maximum difference between the upper and lower bounds
was around 17%, compared with less than 3% for the 1200mm long

beanm.

In evaluating the lower bound solutions it has been
assumed that a secﬁion is unable to carry any further torsion load
when one web has reached full yield. 1In practice, whether or
not a section will fail when this load is reached, is likely to be
governed by the capacity of the section to redistribute the
stresses caused by any further loading. This is likely to depend
on the amount of frame action present, and on the rigidity of any

diaphragms or bracing in the box.

(2) In chapter 3 a computer program, using the dynamic relaxation

method, to solve the finite differsnce equations for a steel hollow

section is described. Results from this analysis suggest that,
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due to interaction between direct and shear stresses, the web
failure mode may be of significénce in a wider variety of beams
than is suggested by the work in chapter 2. In order to fully
establish the significance of this web failure mode a series of
tests is required. Further theoretical work is required with a
more detailed diaphragm model and also, possibly, taking account

of frame action of the section.

(3) The series of tests on small-scale model composite box girders
has demonstrated a number of important aspects of their behaviocur.
The bending tests on the closed composite box have demonstrated

the importance of shear lag, particularly with regard to the lecad-
ing on the shear connection. The torsion and eccentric load

tests on the closed boxes have demonstrated the strength of this
type of section in resisting torsion loads. The open box experi-
ments have shown that, under a bending load, the behaviour of an
open box section is almost the same as that of a similar clesed
box. The later tests showed that addition of quite a small torsion
component ¢f load, (for example that caused by placing the load
over one web rather than over the longitudinal centreline), leads
to very extensive cracking of the concrete slab. In both the
eccentric lecad and torsion tests the ultimate strength of the open
box was shown to be considerably lower than that of the corres-

- ponding closed box. For the mbdels tested under eccentric load

the ultimate load of the open box was 32 tons compared with 37

tons for the closed box, for the torsion tests the corresponding
ultimate loads were 19 tons and 46 tons. The type of failure

of the concrete slabs in these two open box tests has indicated
that the strength of this type of section may be seriously affected

by bending moments within the concrete slab.

(4) The dynamic relaxation program has been extended to analyse
both open and closed composite box girders. Comparison of the
results obtained using these programs with those cobtained in the
tests shows that good agreement is obtained for the closed box
tests and alsc for the copen box under bending lead. For the open
box under loadings centaining a torsion component the ultimate

load predicted by the theory is much higher than that measured
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in the experiments; (e.g. for the torsion test 54 tons pre-

dicted by the theory compared with 19 tons measured in the experiment) .
The reason for the poor agreement in these two cases is the influence
of the slab bending moments discussed above; the plane stress
condition assumed in the theoretical work makes no allowance for

the effects of these forces. It is thought likely that these

bending moments will be greatly affected by the rigidity and

positioning of any bracing or diaphragms present in the boxes.

(5) The finite difference programs have been used.to analyse
open and closed composite boxes of more realistic dimensions than
those tested. The results indicate that, for an open box section,
cracking of the concrete slab leads to a significant, but not
catastrophic, loss of torsional rigidity (20 to 40 per cent,
depending on the type of loading). In general the predicted
ultimate loads of the open and closed boxes were similar for
similar load combinations. In the light of the results of the
experimental work it seems quite likely that, in practice, where
there is a torsion component of load, the ultimate loads of the
open boxes may be considerably reduced by bending stresses in the
slab.

The effects, on the behaviour of an open box, of variation of
parameters thought to be of significance to the torsional properties
of the section were investigated. The most important of these
properties was found to be the shear connection stiffness. It was
‘found that wariation of the shear connection stiffness leads to
significant changes in the warping stresses in the section. This is
- likely to be of particular importance with regard to the cracking
of the concrete slab. A second significance of the warping
rigidity of the section is that, in practice, the fully restrained
warping condition, assumed in the theoretical work, is not likely
to be present; hence the increased tendency to warp, caused by a
reduction in the shear connection stiffness, is likely to lead

to a decrease in the overall stiffness of the section.
7.2 FUTURE WORK

The work described in this thesis has demonstrated the

sensitivity of open composite boxes to torsion components of load.



The bending moments in the concrete slab (see conclusion (3))}),
which were found in the experimental work, may or may not be of
significance in full size composite box girders. In order to
investigate this further it would be necessary to undertake either
some tests on large scale open box specimens, or a theoretical
investigation which includes out of plane bending of the slab.

It appears that the details of the diaphragms mav significantly
affect the behaviour of this type of section and hence these

should be considered in some detail.

A considerable amount of work remains to be done on the
influence of shear lag on the ultimate load behaviour of the
shear connection, and particularly on the capacity of the

connection to redistribute load after failure of one or more studs.

Another area requiring investigation is the influence, on
the overall behaviour of the section, of buckling of either a web or
the compression flange. Although the buckling behaviour of
individual plates is now quite well understood little work has
vet been done on the ability of a composite'box section to

redistribute loads released by the buckling of one plate.
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Fig 5.14 Formwork for closed box model
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Fig 5.16 Photograph of central support rig



Fig 5.17 Loading arrangement for ultimate load test



Fig 5.18 General view of torsion rig
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Fig 5.20 Supported end of model C3
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Fig 5.34 Test Cl, photograph of cracked slab.
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Fig 5.76 Test 02, photograph of cracked slab.
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Fig 5.83 Test C3 photograph of cracked slab.
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Fig 5.91 Test 03 photograph of cracked slab.
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