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ABSTRACT 

The work described here is concerned with the ultimate load 

behaviour of steel and composite steel and concrete hollow 

sections. Particular attention has been paid to the effects of 

material, rather than geometric, non-linearity. 

Upper and lower bound solutions to the ultimate load of a 

steel rolled hollow section under combined bending, shear and 

torsion load are derived. A computer program, using the dynamic 

relaxation method, to solve the plane stress equations for four 

plates joined to form a steel hollow section, is described. Results 

obtained from this program are compared with the upper and lower 

bound solutions. 

The dynamic relaxation program is extended to analyse both 

open and closed composite box girders. The program is then used 

to study the behaviour of composite box girders under various 

load combinations, and, in particular, the torsional rigidity of 

,open composite boxes. 

A series of six tests on small-scale composite steel and 

concrete box girders is described. Stresses measured in the 

elastic regions of these tests are compared with those predicted 

by the dynamic relaxation analysis and also, for one of the tests, 

with a finite element analysis. The ultimate loads measured in 

the experiments are compared with those predicted by the dynamic 

relaxation program. Good agreement has been found between 

theoretical and experimental ultimate loads for the closed box 

tests, and also for the open box under a bending load. For the 

open boxes subjected to a loading containing a torsion component 

the experimental ultimate loads were found to be seriously reduced 

by transverse bending of the slab. As a result of this the measured 

ultimate loads for these two sections were considerably lower than 

those predicted by the theory. 
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CHAPTER 1 

INTRODUCTION & LITERATURE REVIEW 

1.1 INTRODUCTION 

In recent years a great deal of money has been spent on 

bridges, and two forms of construction have become increasingly 

popular; they are box girder construction and composite steel-

concrete construction. Box girders have a number of advantages 

over other types of beam used in bridge construction; the most 

important of these is the high torsional rigidity associated with 

closed box sections. This high torsional rigidity ensures good 

distribution across the width of the bridge of any eccentric 

forces which may be caused by superimposed loading or.eccentric 

positioning of the support reactions. 

Many bridges with main beams of steel have a concrete deck 

slab to give continuity between the steel beams, and to provide 

a wearing surface. Over the last twenty or thirty years designers 

have become more aware of the increase in strength which may be 

gained by providing a shear connection between the steel beams 

and the concrete slab. 

The modern trend has been to combine the advantages of both of 

these types of construction and to use composite box girders. 

There are two ways in which this may be done: one is to attach 

shear connectors to the top flange of a normal closed steel box 

girder and to cast a concrete slab on top of the steel box, 

resulting in a 'closed' composite box, (fig 1.1). The second method 

is to remove the central portion of the top flange of the steel box, 

and to use the concrete slab to provide the fourth side of the box, 

shear connectors being provided only in the area close to the webs; 

this type is called an 'open' composite box (fig 1.2). 

In the last ten years the codes of practice relating to 

various forms of bridge construction have been under review with 

the intention of providing a unified bridge code. It is intended 

that this code will be based on the principle of limit state 

design. One of these limit states is the collapse limit state, 
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and here the designer is required to calculate the ultimate load 

of the structure and check this against a set of factored loads 

and material strengths. A considerable amount of work has been 

done on the ultimate load behaviour of steel box girders and 

composite T-beams, but little is known about the ultimate load 

behaviour of composite box girders, and in particular their 

behaviour under torsion loads. The use of the open type of 

composite box poses considerable problems, particularly when it 

is subject to torsion loading. Here the flexibility of the 

shear connection and the possibility of cracking of the concrete 

slab lead to some doubts as to the torsional rigidity and load 

capacity of the section. 

The United States Steel Design Handbook (36) gives a 

method of calculating the lateral distribution of load in a 

composite twin box bridge. This is an elastic analysis and 

full interaction between the steel and concrete is assumed for 

the purposes of calculating the section properties. 

The research presented in this thesis is concerned with 

both theoretical and experimental aspects of the behaviour of 

composite box girders, concentrating particularly on the hogging 

moment region. 

1.2 LITERATURE REVIEW 

Very little work has been published giving the results of 

tests or theoretical analyses of composite box girders, but a 

considerable amount of information is available on the subjects 

of composite action (particularly related to T-beams), and steel 

box girders. A few papers are also available describing 

practical examples of the use of composite box girders. This 

literature review is divided into four sections: 

(1) Examples of the use of composite boxes. 

(2) Composite action. 

(3) Behaviour of steel box girders 

(4) Behaviour of composite box girders 
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1.2.1 Examples of the use of composite box girders  

The design and construction of the Tay Road Bridge is 

described by Fairhurst and Beveridge (1). The main components of 

the bridge are a concrete deck slab acting compositely with two 

closed steel box girders. Fig 1.1 shows a very simplified cross-

section of one box and the associated slab. The bridge was des-

igned and constructed in the years 1959 to 1965 and design stresses 

are in accordance with BS.153; shear connection is provided by 

19mm diameter by 100mm ion g headed studs, the safe loads for 

the studs being as recommended by Viest, et al. (2), using a 

safety factor of 3. Hogging moment regions were designed on 

the assumption that composite action can be relied on only if 

the concrete slab is pre-stressed sufficiently to avoid cracking. 

As part of the design of this bridge a 1:4 scale model of 

one span of the bridge was tested (3); the following conclusions 

were drawn from this test: 

(1) Simple bending theory applied and no shear lag 

was evident. 

(2) In the elastic range the concrete carried 90 per cent 

of the load calculated for full interaction and no 

permanent slip was noted. 

(3) Collapse took place by buckling of a web-stiffener 

assembly. 

In addition to the above it was noted that a concentrated 

load applied over one web produced distortion of the section 

equivalent to a 70 per cent reduction in torsional rigidity. 

The problem of distortion of box sections has been discussed 

by Billington (4). 

The Birkenhead-Mersey Tunnel approach viaducts are described 

by Gray, Clark and Gent (5). The structure consists of an open-

topped steel box acting compositely with a reinforced concrete 

deck slab. The scheme was designed and constructed in the years 

1966 to 1969 and designed in accordance with BS.153, CP.114 and 

CP.117, part 2. Tests were conducted on a 1:4 scale model of 

part of the bridge. One test on the torsional stiffness of the 

model led to the following conclusion: 
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"In general it appears that the torsional rigidity of a 

stiff composite box cannot be treated as a constant. The 

effect of interface slip should be considered in assessing 

the worst forces in an indeterminate structure." 

A number of papers (6, 7, 8) concerning the construction 

of composite bridges were presented at the Conference on Steel 

Bridges in 1968. The White Cart Viaduct (6) was opened in 

1968 and consisted of twin mild steel trapezoidal girders 

acting compositely with an eight inch reinforced.concrete deck 

slab. The following features are worthy of note: 

(1) Shear connectors are headed studs welded to the 

top flange immediately over the line of the stiffening 

angles. In this way there is no fear of flange plate 

buckling due to stud loading. 

(2) In the shops the boxes were tested for torsional 

rigidity by jacking up one corner, and it was found 

that a 16.75m long unit was more flexible than antici-

pated by calculation. This was due to the ability of 

the short box to warp. whereas a similar test on a 67m 

portion showed torsional deflection to be negligible. 

Five examples of the use, in Germany and Holland, of open 

composite box girders, are given in ref. 36. Comparison of 

two of these examples shows the great variation in the dimensions 

of bridge for which this type of structure may be suitable. 

Fig 1.3 shows the cross-section of a viaduct constructed in 

Hanover, Germany; it consists of a 2m x 0.8m steel section 

acting compositely with a 5m wide deck slab. The span of the 

bridge (20m) is comparatively small, but part of the structure 

is built on a horizontal curve, and hence the structure had 

to be designed to resist comparatively large torsional loads. 

In order to obtain good composite action the steel section was 

connected to the pre-cast concrete slab by high strength bolts 

passing through the slab, thus composite action was achieved by 

friction between the steel and concrete as well as by shearing 

of the connectors. 
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The Schloss Bridge at Mulheim On Ruhr, again in Germany, 

(fig 1.4) is an example of a much larger open composite box 

girder. This is a continuous bridge with spans of 42m, 45m 

and 42m; here two open steel boxes 4.5m x 2.2m act compositely 

with a 24.5m wide concrete deck slab. In order to prevent cracking 

of the concrete the deck is prestressed both laterally and 

longitudinally. 

Two papers on the stress analysis of composite box 

girders have been presented in Japan (9, 10). In ref. 9 the 

theoretical and measured stresses in a composite, single box 

bridge are compared; ref. 10, available only in Japanese, 

gives the derivation of the equations used to calculate the 

stresses in ref. 9. 

1.2.2 Composite Action  

There are numerous references to composite action 

-(e.g. 11-17) but the majority of these are concerned with 

tests on shear connectors and the strength of simply-supported 

T-beams loaded with compression in the concrete. These 

references give a large amount of information about the load-

slip characteristics of shear connectors and the effect of inter-

face slip on the deflections and ultimate loads of simply 

supported beams loaded in bending. When attempting to apply 

results of tests on composite T-beams to composite box girders 

it should be remembered that there are important differences 

between the geometries of these two types of section. A 

typical composite T-beam is made up from a 1.5m x 150mm slab on 

a 305mm x 165mm x 54kg BSB (ref 12), giving a neutral axis close 

to the steel-concrete interface; a typical composite box girder 

(fig 1.1) has a neutral axis between one third and half way down 

the steel section. This different neutral axis position results 

in different types of loading on the concrete slab. 

Barnard (11) describes a series of tests on simply-supported 

T-beams loaded with a symmetrical two-point load such that the 

interface slip was zero in the area of maximum moment. Conclusions 

drawn from this work include the following: 
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(1) The use of the stress-strain properties of the steel 

and concrete and the assumption of linear continuous strain 

distribution throughout the depth of the section leads 

to an accurate prediction of the ultimate strength. 

(2) Because of residual stresses, the moment-curvature 

curve will cease to be linear elastic at a lower moment 

than predicted from the stress-strain relations. 

Chapman (12) and Chapman and Balakrishnan (13) describe tests 

on various types of shear connection and on sixteen simply 

supported composite T-beams. Recommendations for the method of 

design of shear connections in T-beams are given. 

Johnson, Greenwood and Van Dalen (14) give the results 

of pushout tests on small (8mm diameter) studs set in cracked 

reinforced concrete slabs. Recommendations for the design of 

stud shear connections in hogging moment regions are given. 

Johnson, Van Dalen and Kemp (15) describe four series of tests 

designed to investigate the strength of continuous composite 

beams for buildings; in particular the ultimate load behaviour 

in the hogging moment region was considered. As a result of 

these tests the authors say that there is no doubt that full 

composite action can occur in hogging moment regions and stud 

shear connectors can transfer shear in regions where the concrete 

slab is badly cracked due to longitudinal tension. 

1.2.3 Behaviour of Steel Box Girders  

A great deal of literature has been published on various 

aspects of the analysis and design of box girders. The most 

powerful method of analysis available is the finite element 

method (16), with this method problems such as shear lag and 

the presence of stiffeners and diaphragms can all be accounted 

for. The development of new types of element designed specifically 

for box girder analysis (17) has resulted in a reduction in the 

number of elements required to describe the structure accurately 

and has hence reduced both the computer costs and amount of data 
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preparation required. Even so the high computer costs involved 

with the use of the finite element method has greatly restricted 

its use. 

A second method of analysis results from the fact that a 

point load over one web of a box girder may be split into three 

components, causing bending, twisting and distortion of the 

section. For elastic analysis of sections of practical dimen-

sions these components may be considered independently (18). 

The bending component may be treated by simple bending 

theory. 

The torsion component produces shears which twist the box 

and, in all but a few special cases, also produces longitudinal 

warping stresses. These stresses may be calculated by simple 

torsion theory. 

The distortion component produces transverse bending in the 

box and, if the amount of distortion varies along the length of 

the box, longitudinal warping stresses will result. The 

evaluation of these stresses has been discussed by Billington (4). 

Lamas (19) has used the dynamic relaxation method to 

investigate the behaviour of the compression flanges of a box 

girder. Extension of this method to analyse a complete box is 

possible, but presents the same problems with computer time as 

the finite element method. 

A more detailed review of the various methods of analysis 

and design of steel plate and box girders is given by Dowling 

(37). This paper includes an outline of the various approaches 

to the inelastic analysis of the components making up a steel 

plate or box girder, and also discusses the application of 

results obtained from these analyses to formulation of design 

rules. 

1.2.4 Behaviour of Composite Box Girders  

Any of the above methods of analysis may be adapted for 

use with composite box girders. The simplest method of doing 

this is to replace the concrete slab with an equivalent area 
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of steel and then analyse the beam as before. The use of 

this method assumes a completely rigid shear connection 

between the steel and the concrete, which can only be ensured 

by having an excessive number of shear connectors. 

The problem of incomplete interaction has been solved 

for elastic, simply supported composite T-beams under a central 

point load (20). This method could be adapted for use with 

composite box girders provided that the dimensions of the beams 

are such that shear lag may be neglected. Moffatt (21) has 

developed a finite element program which can take account of 

partial interaction in composite box sections; this has been 

used to investigate the longitudinal bending behaviour of such 

sections and, in particular, the influence of shear lag on the 

stresses, deflections and shear connector forces. 

Mattock and Johnston (38) have conducted a theoretical 

and experimental investigation into the lateral distribution 

of load in composite box girder bridges. For the theoretical 

work the stiffness method of analysis was used, and all plates 

were assumed to be linear elastic and isotropic. The theoretical 

results were compared with experimental results obtained from 

one quarter scale models of two bridges, one consisting of three 

open boxes and the other of two open boxes, both sets of 

boxes acting compositely with a reinforced concrete deck slab. 

Influence lines were plotted for the strains in the bottom 

flanges and for the overall deflections of the models, for a 

concentrated load moving across the midspan of the bridge. 

Good general agreement was obtained between the theoretical and 

experimental results, but the models proved to have a slightly 

higher torsional rigidity than predicted by the theory. 

No previous investigators have considered the effect of 

interface slip on the torsional properties of composite boxes. 

As mentioned previously (section 1.1). the flexibility of the 

shear connection is particularly important in the design of 

open composite boxes under torsion loading, but it is also of 

significance when calculating stud loadings in closed composite 

boxes. 
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A second problem associated with composite boxes is 

that of cracking of the concrete slab; this problem is 

particularly important in the area around the supports of a 

continuous beam, where there will be a hogging moment, putting 

the slab into tension. Any cracking of the concrete in this 

region may affect two important properties of the Section: 

(1) The ability of the shear connection to transmit 

shear force from the steel flange to the reinforcement 

in the concrete. 

(2) The torsional rigidity of the section. 

The second of these problems is of particular importance 

in open composite box sections where the cracking of the 

concrete could result in the loss of some of the advantageous 

properties of a closed section in resisting any torsional com-

ponent of loading. 

Another problem which has not yet been adequately studied 

is that of shear lag in the hogging moment region. Moffatt's 

finite element program (see above) has been used to study the 

problem theoretically but there are no experimental results 

with which to compare this theoretical work. 

Associated with the problems of shear lag and of partial 

interaction is that of distribution of forces in the shear 

connection, and hence the required distribution of the shear 

connectors. Current design methods involve distribution of 

the connectors uniformly across the section; this method has 

been proved to be perfectly adequate for composite T-beams 

where, because of the narrow steel flange, the shear lag effect 

in the steel section is small. In composite box construction the 

steel flange is much wider, hence shear lag is of greater 

significance; this leads to strains in the central portion of 

the flange being much smaller than those in the outer portions. 

As a result of this the shear force transmitted from the steel 

flange to the concrete slab will vary across the width of the 

flange, and hence the method of distributing the connectors 

uniformly across the flange must be questioned. This problem 
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has been partially tackled in recent design codes, where the 

number of shear connectors required to resist the shear force 

must be placed inside the effective breadth of the section, and 

extra connectors must be placed outside this width to give uni-

form spacing across the whole section. It seems likely that 

this method will result in an excessive number of connectors 

in the central region of the flange, and work by Moffatt has 

indicated. that connectors in the regions near the webs may be 

overloaded. 

1.3 OBJECTS OF THIS THESIS  

The work described in this thesis was intended to provide 

theoretical and experimental results concerning the behaviour 

up to ultimate load of open and closed composite box girders 

under various combinations of bending, shear and torsion loading. 

A large amount of theoretical and experimental data on the 

effect of geometric non-linearity on steel box girders is already 

available (36). The object of the work described here was to 

investigate the effects of material non-linearity and partial, 

interaction on the behaviour of composite box girders. Because 

of the complexity of the problem of interaction of material and 

geometric non-linearity it was decided that all the models 

should be designed such that plate buckling would not occur, 

and in all theoretical work it was assumed that the plates forming 

the box girders were stiffened sufficiently to avoid buckling. 

Whilst doing the preliminary reading for this project it 

was found that there was no adequate method available for cal-

culating the ultimate load of a steel hollow section under 

bending, shear and torsion load; hence chapter 2 of this 

thesis contains proposed upper and lower bound solutions to this 

problem. Following other work at Imperial College (e.g. Lamas 

(19)) it was decided that for the main theoretical work the 

dynamic relaxation method would be used to solve the finite 

difference equations for a set of plates joined to form a box 

girder. The application of this method to the analysis of a 

steel section is described in chapter 3 and results obtained are 
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compared with the upper and lower bound solutions. In chapter 

4 this method of analysis is extended to both open and closed 

composite box girders. 

The experimental work described (chapter 5) consisted of 

a series of tests on small (approx. 1/) scale composite box 

girders under various combinations of load. The object of 

this series of tests was to identify some of the problems 

associated, in particular, with the hogging moment region of 

composite box girders. 

17 



CHAPTER 2 

ULTIMATE LOAD BEHAVIOUR OF STEEL HOLLOW SECTIONS 

2.1 REVIEW OF PREVIOUS WORK 

Several investigations into the ultimate load behaviour of 

non-buckling steel hollow sections under various combinations 

of bending and torsion loading have been reported. 

Hill and Siebel (22) consider the behaviour of thin, 

hollow circular sections under bending moment and torsion. 

Solutions are based on the Von Mises yield criterion and the 

following relation between increments of stress and strain for 

a plastic region of the section: 

dy - dT/G_3T 
dE - da/E a 

where T = shear stress 	dT = shear stress increment 

a = direct stress 	da = direct stress increment 

dy = shear strain increment 	dE = direct strain increment 

G = shear -modulus 	E = Young's modulus 

Using the above yield criterion and flow rule the authors 

are able to plot moment-curvature and torque-twist relations fdr 

various combinations of -moment and torque. They are also able to 

give limiting values of moment and torque, which are shown to fall 

on the curve m2+ t2= l 

where m = M/Mp 	t = TJTp  

Mp  = Plastic moment under pure bending 

T = Plastic torque under pure torsion 

M = Ultimate moment in presence of torque T. 

Siebel (23) reports results of tests on hollow cylinders 

which show- good agreement with the above theory. 

Gaydon and Nuttall (24) give upper and lower bounds to the 

relation between bending moment and torsion load at yield for 

various sections. For the lower bound solution, distributions 

of shear and direct stress are assumed to be a constant fraction 

of those for plastic bending and plastic torsion applied separately; 

it is then assumed that the Von Mises yield criterion must not be 

violated at any point. These assumptions lead to the interaction 

formula m2+ t2 = 1, as derived by Hill and Siebel, but in this case 

it has been derived as a lower bound for a general cross-section, 

whereas in Ref2.lit was shown to be an upper bound for a thin, hollow 

circular section. 



The upper bound solution presented in ref. 24 is based 

on an assumed velocity distribution representing a combination of 

bending and twisting (including the associated warping displace-

ments). From this assumed velocity distribution, by the use of 

Hill's inequality (26) they are able to produce upper bounds 

to the ultimate load of solid and hollow rectangular sections. 

As shown in fig.4 of this reference this upper bound solution 

is very high in cases where the ratio of torsion load to bending 

load is high. 

Komatsu and Sakimoto (25) present a solution to the problem 

of the elasto-plastic behaviour of hollow sections under bi-axial 

bending, torsion and axial compression. The Von Mises yield 

criterion and Prandtl-Reuss stress-strain relationship are 

assumed and the cross-sectional shape is assumed to be such that 

warping torsion may be neglected. The presence of residual 

stresses is also considered. Test and theoretical results are 

given for square and circular hollow sections under axial load 

and torsion, results plotted show the relation between torsion 

load and twist angle for a constant axial load. Theoretical 

results are given for both the flow and deformation theories 

of plasticity and it is shown that, while the ultimate load 

predictions of the two theories both agree closely with the test 

results, the flow theory gives much better agreement with the 

test results for the shape of the torque-twist curve. 

In the discussion so far no consideration has been given 

to the effect of bending shear forces. A discussion of various 

methods of analysis of solid rectangular sections and I-sections 

under bending moment and shear force is given by Neal (27). For 

an I-section which, under bending and shear loading behaves very 

similarly to a rectangular hollow section, Neal concludes that, 

for practical purposes, an empirical relation suggested by Heyman 

and Dutton gives good results. This relation is given by: 

MF  = Mp 	 [2AF 
 AW  J[1_1_f2 ½]}  f 1 
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where Aw  = Area of web 	AF = Total area of flanges 

Mp = Plastic moment with no shear force 

MF = Plastic moment in presence of shear force F 

Fp = Fully plastic shear force assuming shear force 

is carried solely by the web i.e. Fp = Awao/i 

f 	= F/Fp  

Neal also warns against analysis of the effect of shear on 

ultimate load behaviour by consideration of stress distributions 

or plastic deformations at the critical section only, with no 

attention being paid to conditions in the remainder of the 

cantilever. By consideration of a single cross-section neither 

a true upper nor lower bound may be obtained. Both the upper 

and lower bound approaches outlined in the next section consider 

only the critical cross-section, the justification for this is 

that they give satisfactory agreement with Heyman and Dutton's 

empirical result (see above) and with the finite difference 

analysis presented in the next chapter. 

The methods proposed in the next section give upper and lower 

bounds to the ultimate load of a hollow rectangular section subject 

to bending, shear and torsion load. Only uniaxial bending and 

shear is considered but extension to consider biaxial bending and 

shear and also axial tension or compression is possible. 

2.2 UPPER BOUND SOLUTION 

Consider a rectangular hollow section with dimensions 2B x 2D 

and thickness t. 

The following assumptions are made: 

(1) t is small compared with B and D. 

(2) a and T are the only non-zero stress components where a 

is the axial stress along the length of the hollow section and T 

is the shear stress around the section. 

(3) A plastic hinge is formed with the following displacement 

components: 

(a) Bending rotation a corresponding to the applied moment M. 

(b) Twisting rotation f3 corresponding to the applied torque T. 

(c) Shear strain d/.e corresponding to the applied shear force 

F where is the length of the plastic hinge. 



~f1+~ 2 	✓3✓1+l 

For webs: 

(4) 
Xa 	T oy/B 	ao (1±v)  

a - 	= 

w L(1±v) 2+ (ay/B) 2Ī 
	w 	

/5[(1±V) 2+ (Ay/B) 2~ 12 

Substituting (2) and (3) in (1) gives: 

Aao 	Go  For flanges: QF, -  	TF - 	2 

(4) Warping of the section due to torsion is negligable. 
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Fig 21 (a) 	Y 

t 

2D 

For the webs: shear strain = 3B d 
,e ~ ~ - yW 

axial strain = any = Ew 

	

For the flanges: shear strain = 	= IF 

cc D 

	

axial strain = 	= EF 

Hence for the flanges EF = a 
1F s 

webs Ew ay 
yw - (3Btd 

For the solution of these equations it is necessary to find 

the stress distribution in the section caused by these strains and 

integrate the stresses around the section to find the corresponding 

applied loads. For calculation of the stress distribution a rigid-

plastic stress-strain relation and the Von Mises yield criterion 

and associated flow rule are assumed. (These assumptions are 

appropriate provided the strains are large compared with the elastic 

strains). 

Von Mises yield criterion: a2 + 3T2 = ao2 

where ao is the yield stress is tension. 

Von Mises flow rule 6 = 3E— T y 



V [(1+v)2 +(Ay/B) 2]1 
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where l = Sa 	v = 

The significance of the (1±V) terms should be noted here. 

The + sign applies in the web where the bending and torsion shear 

strains are in the same direction, the - sign in the web where 

they are in opposite directions. 

If V<1 the shear strain due to bending is less than that 

due to torsion, if V>1 the shear strain due to bending is greater 

than that due to torsion. 

Integrating equations (4) around the section gives: 
D 	D 

Moment M = aao 	4Bt + 2 fo tydy + 2 f aw2tpdy 	(5A) 
1+a2 } 	0 	0 

where a _ 	aoXy/B 	
= 

ooay/B 1 awl 	
[(1+V)2 +(Ay/B)2J ~ 	

w2 	
[(1-v)2+(Ay/B)2]1/2 

D 	 D 
Torque T 	_ aO 	4BDt + 2 f BTwitdy + 2f BTW2tdy 	(5B) 

✓3✓l+7} 	o 	o 

where Twl = 	
6o (1+V) ao(1-v)  

T _ W2 	V [(1-v)2+(ly/B)2j12 

D 	 D 
Shear force F = 2 / Twi tdy - 2 % TW2 tdy 	(5C) 

0 	 0 

Re-writing equation 5A 

M = dao 4BDt+I,+I2 

Evaluation of I 

Xtao 
Put K = 	

B 	
; 	a = (1+v) 	; 	b 

B 

I = 2k 	y f  2 dy  
o 

[a2+b2y~112 

(6) 

I 
_ 2k 

' 	b2 
0 

[b'`Y2+a2 /b2 	a2 	dy 
bv? +a /b1  



D 
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• I , = 
bk I 

2y ✓yz +az /bz 

0 

+ 
 2

z 

b2 Q.n (y+,y2 +a2 /b2 ) 

 

- b
z 
{..n (y+/y2 +a2 /b2) - tn a/b} 

substituting back values for a, b and k 
2 2 

gives I = 2B=tao  
Wx2D2 +(1+v)2 - (1+y)2.2n aB 4% BBD  +(1+V) 2 

' 	
A2 

L2B B2 	 2 
(1+V) 

Similar evaluation of I and substitution into equation 5A leads to: 
2 

	

M = Btao {
v1~x2 
4DX  + D 	X2D2 + (i+v)2 + / X2D2 + (1-V)2 

	

 A 	B2 	 B2 

B~ 	 ]). 
L 

Similarly equations 5B & 5C reduce to 

T = Btao 4D  + 2B 

1+12 	X 

(1+v)A1 +(1-V)A2 j' 

 

(7) 

 

    

F = 
3 

A6o {(1~vA._1_A2} 

where A, = Q,n {kD/B~V(AD/Bi2 ~(i~v)2 	 
} (1+v) 

A2 = .fin 
{A'B~'

(AD/B)2+(1-Vz  
(1V)1 

The solution of these equations will be discussed after 

derivation of the lower bound solution. 

2.3 LOWER BOUND SOLUTION  

The basic requirement for a lower bound solution is that a 

stress distribution in equilibrium with the applied loads must be 

found. One possible state of stress which satisfies this condition 

is given by assuming that: (1) shear and torsion loads are resisted 

by shear forces distributed as given by elastic theory; (2) bending 

stresses are distributed such that the section becomes fully plastic. 

(8) 



As before consider a section 2B x 2D of thickness t and assume 

that it is subject to bending, shear and torsion loading. 

Assume the following bending and torsion shear stress 

distributions: 

~1B 
"tr 

(' .. ..•... ......... ....... :::::: .... : .. ;. ... . ;';"'::"': '::-;1 

I~ ,i,:ij~~i.:j;:.. .. ~ .. , ..... , ... , .. " ...... ,.. . .•.•.•. ,; •.•.• ': .•. :.'; ••.• :.';.... :·::·.ll1 

BENDING TORSION 

For the flanges total shear stress 

For the left hand web shear stress 

For the right hand web shear stress = TT - TB = TWR 

Hence, in order to yield the whole section, using Von Mises 

yield criterion: 

In the flanges direct stress = ';002 -3 [TT-TB (1-·iJJ 2 = OF 

In the L.H. web direct stress 

In the R.H. web direct stress 

';002-3[TT+TBJ 2 

';002 -3 [TT-TB] 2 

Integrating around the section gives: 
2B 

Moment M = D2 t (<JWL + <JWR) + 2 .( <JFDtdx -----(9) 

Torque T = 8BDtTT ----------------(10) 

Shear force F = 4DtTB 

Length of beam = 
M 

F 

---------------------------(11) 

Evaluation of the integral in equation (9) gives: 

M 
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In addition to the lower bound condition discussed above 

consideration must also be given to the possibility that the 

heavily loaded web,(where the shear stresses due to torsion and 

those due to the shear load are of the same sign), will fail in 

shear before overall failure of the beam occurs. In order to 

allow for this possibility a second lower bound must be considered, 

this condition being that the section fails when TT + TB  = Co//T. 

In practice this is likely to be a rather pessimistic lower bound 

as frame action and the presence of any diaphragms will lead to 

redistribution of stresses and an increase in the load which the 

beam can support. In all following work the lower bound solution 

is considered to be the lower of the two conditions discussed above. 

2.4 SOLUTION OF UPPER AND LOWER BOUND EQUATIONS 

2.4.1 Upper Bound Equations 

Re-writing equations (6) - (8) 

M = cp (x,V) 

T = \1 (X,V) 

F = 8 (X,V) 

In order to solve the equations for a given length of beam 

(L) and a given load combination it would be desirable to solve 

the above equations (12) subject to the additional conditions: 

L = M/F 
(13) 

R = F/T 

where L and R are specified. 

Equations (12) and (13) may be re-written as 

E1  = ()(X,V)-L x 8(A,v) 

E2  = IP(X,V)-8(a,V)/R 	
(14) 

The desired solution is obtained when values of X and V 

are found which give E1  = E2  = O. In order to obtain the 

required values of V and A the Newton-Raphson method for simul-

taneous equations (Ref 28) may be used. From initial guesses of 

values for V and A (vn and An) new approximations are found from 

the equations 
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DE1 _ 	3E2  
Vn+1 = Vn + E2  3X 	E1  aX  

aE0E2aEl3E2  
aA aV 	aA 

3E2  	3E7  
Xn+1 = Xn + E1  DV 	E2 DV  

aEl aE2 aE1aE2  
avl av _Fr av 

In order to obtain reasonable initial guesses for V and A 

a family of curves of L against A for various values of V may 

be plotted. 

2.4.2 Lower Bound Equations 

These equations may be solved in a similar manner to that 

described above for the upper bound equations. 

2.5 RESULTS OBTAINED FROM UPPER & LOWER BOUND SOLUTIONS 

2.5.1 Sections under bending and shear only. 

Fig 2.1 shows a comparison between results obtained from 

the proposed upper and lower bound solutions and those obtained from 

the Heyman-Dutton empirical relation; the beam considered is a 

rectangular hollow section 200 mm x 300 mm. of uniform thickness. 

It can be seen that for L>500 mm the empirical relation lies 

between the upper and lower bound solutions, but for very short 

beams (L<500 mm ) the empirical relation indicates a strength 

even higher than the upper bound solution. For these very short 

beams the gradients of stress and strain along the beam are 

very high, and hence the errors introduced by considering a single 

cross-section of the beam are likely to be more significant than 

for the longer beams. In addition the strength of a very short beam 

is likely to depend greatly on the conditions at the point of 

application of the load and at the support; hence it is probably 

not possible to give an accurate general formula for the strength 

of such a beam. It can also be seen from fig:2,1 that the reduction 

in ultimate moment due to the presence of shear is very small 

for beams with D/L<0.25 (where 2D = depth of section, L = cantilever 

length), at D/L = 0.25 the reduction in ultimate moment is between 

31/2% (upper bound solution) and 7% (lower bound solution). 



2.5.2 Sections under Bending, Shear and Torsion Load 

Figs 2.2 and 2.3 show interaction curves for a hollow section 

of uniform thickness and dimensions 300 mms x 200 mms. Fig 2.2 

is for bending about the major axis, Fig 2.3 for bending about 

the minor axis, cantilevers of length 300 mms, 600mms and 1200 mms 

are considered. These interaction curves show that in the high 

torque regions the lower bound solution is governed by the local 

web failure, but in the high moment regions the overall failure 

mode becomes the significant lower bound. The point at which 

the change in lower bound failure mode takes place depends on 

the length of the beam, for the longer beams the overall failure 

governs for torque ratios (T/Tp) up to about 0.9, whereas for the 

short, shallow beam the local failure mode becomes significant 

at a torque ratio of about 0.15. It can also be seen that for the 

longer beams the difference between the upper and lower bound 

solutions is quite small (<5%), and hence a reasonably accurate. 

prediction of the ultimate load may be made. For the shorter 

beams, particularly in regions where M/Mp T/Tp, the difference 

between the upper and lower bound solutions is much greater. The 

difference between the two solutions is particularly large where 

the web failure governs the lower bound; as already discussed 

(Section 3) these lower bounds are likely to be rather pessimistic. 

It is interesting to note that, particularly for short beams, the 

effect of a small bending moment and associated shear force on the 

ultimate torque is much greater than the effect of a small torque 

on the ultimate moment (provided that the effect of the bending 

shear on the ultimate moment has been allowed for). 

2.6 EXTENSION TO INCLUDE OTHER LOADING CONDITIONS 

Extension of the upper and lower bound solutions to include 

biaxial bending and the presence of axial tension of compression 

may be effected by including corresponding extra strains (upper 

bound solution) or stresses (lower bound solution). Inclusion 

of these extra components will lead to much more complex integrals 

in equations 5 and 9 and the solution by the Newton-Raphson method 

will have to be extended to include three or more variables. 
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(b) ( c ) 

3.2.1 Action of a square uniform thickness box under 

torsion loading. 

plate thickness = t 
Fig 3.1 ( a ) 

CHAPTER 3 

FINITE DIFFERENCE ANALYSIS OF STEEL HOLLOW SECTIONS 

3.1 INTRODUCTION 
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The object of this section of the work was to use the 

finite difference method to analyse the behaviour of closed steel 

hollow sections under various combinations of bending, shear and 

torsion loading. The results obtained by this method are com-

pared with the upper and lower bound solutions described in chapter 

2. 

Experience of other investigators .(19) has shown that a 

full analysis of the behaviour of a box girder under only bending 

and shear loading poses considerable problems in defining and 

satisfying the boundary conditons at the plate junctions; 

addition of the torsion component of loading would add considerably 

to these problems because the symmetry present in the bending 

case would be lost. The emphasis in all work described here was 

on non-linear material behaviour rather than non-linear geometric 

behaviour and hence throughout the analysis it has been assumed 

that no buckling of the plates forming the hollow section will 

occur. Having decided not to consider plate buckling problems 

only small extra approximations are involved in assuming that each 

of the four plates is in a state of plane stress. These extra 

approximations are discussed here. 

3.2 THE PLANE STRESS ASSUMPTION 

If it can be proved that the plane stress assumption is 

valid for a box under bending and shear load and for a box under 

torsion load it may be assumed that it is also valid for a box 

under bending, shear and torsion load. Both the bending and torsion 

cases are discussed with reference to a square box of uniform 

thickness, but may be extended to include other cases. 



Assume that the torsion load is applied by a uniform shear 

stress around the end of the section (fig 3.1a). The shear stress 

in each plate causes it to displace a distance d in its own plane. 

This displacement alone would cause a discontinuity at the plate 

junctions; this discontinuity is closed by the plates twisting 

out of their plane by an angle 8 (fig 3.1b). 

Consider a cantilever beam with dimensions as in fig 3.1c. 

_ Tt 
G 

2d22T-e.Rotation of each plate 6 = 	
_

D 	DG 

let TT be the maximum shear stress in the plate caused by this 

twisting 

tG6 
TT - ~-- _ 2T.e Gt 

DG x 

2Tt 
TT = D 

Hence, provided D»t the maximum stress due to the plate 

twisting is negligable compared with the in-plane shear stress. 

3.2.2. Action under bending load. 

In this case the most important error in the plane stress 

assumption is present in the top and bottom flanges, where the 

direct stress is greater on the outer faces than on the inner 

faces of the plates. For a box as in fig 3.1 let 

Go = direct stress on outside of flanges 

al = direct stress on inside of flanges 

Go _ D+t 
ai D-t 

Hence it can be seen that for D»t it can be assumed that Go= aI, 

and hence the plane stress assumption is valid. 

3.3 THE PLANE STRESS 'THEORETICAL MODEL 

In the previous section it has been demonstrated that a 

steel hollow section may be represented by four steel plates 

joined to form a box. For this analysis a cantilever box loaded 

at its free end is considered. 
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3.3.1 	Plane stress plate equations 

The plane stress equilibrium equations for a plate are 

as follows: 

aNx aNxy 
x-direction equilibrium 

a x 
+ ay  = 0 

y-direction equilibrium 
ōy  + aaxy 0 

Increments of the stress resultants (ANx, iNy, LiNxy) are 

related to increments of the strains in the plate (AEx, Acy, Ayxy) 

by a rigidity matrix C 

ANx -C11 	C12 	C13 -AEx 

ANy = C21 	C22 	C23 AEy 

ANxy C31 	C32 	C33_ Ayxy 

where Ex = 0u/9x ; Ey = 3V/Dy ; yxy = 3u/3y + 9v/3x 

The method of evaluating the rigidity matrix is discussed 

in section 3.4. In order to obtain a solution to the problem 

under investigation equations 3.1 must be solved, subject to a 

suitable set of boundary conditions, for four plates joined to 

form a box. 

3.4 EVALUATION OF RIGIDITY MATRIX (Ref 30) 

The Ilyushin yield criterion for a plane stress condition 

may be expressed as 

f = (Nx2  + Ny2  - NxNy + 3Nxya) /No2  < 1 	3.2 
where 	No = clot 

After yielding, for plastic flow to take place, the stress 

resultants must remain on the yield surface, hence 

Sf 

and hence fnT  

where fn = 

- 

= 0 

A 	= 

of 

of 
aNy 

af 

aNx 

 

0 

AN = 

y  

ANx 

ANy 

ANxy 

3.3 

3.4 

a Nxy, 

3.1 



The plastic flow law may be expressed as 

Asp = lfn 	 3.5 

where 	Asp represents the plastic components of AC and 

X is a positive scaler. 

The elastic incremental stress-strain relations may be 

written as 

AN = CE (As-A£p) 
	

3.6 

From 3.4, 3.5 and 3.6 we get 

Ā = fnT  CE AE 
	

3.7 

fn's CE fn 

Substituting 3.7 into. 3.5 gives 

AEp= fnT  CEAE fn 

n 

where n = fnT CE fn 

and hence from equation 3.6 we get 

AN = CE [AE - fnT CE AE fn 

this may be written as 

AN = CE rI - fnfnT CE 1 AE 

n 

where CE is the elastic stiffness matrix 

 =( — - 	1-v2   ) V 	1 	0 
0 0 1-V 

2 
2Nx - Ny 

fn = 2Ny - Nx 
. 6Nxy 
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In most applications of these equations the possibility of 

unloading must be considered, but because of the plane stress 

and proportional loading nature of this problem, it was considered 

safe to assume that, once a node had yielded, no unloading would 

occur. 

3.5 BOUNDARY CONDITIONS 

For a plane stress problem two degrees of freedom are 

considered for each plate, these being the displacements along 

the plate (x-direction) and across the plate (y-direction). Hence 

two boundary conditions are required at each edge. 

3.5.1 Plate junctions 

(a) The direct stress at the plate edge, normal to the 

plate edge is zero. This condition comes from the plane stress 

assumption that the out of plane stiffness of the plates is zero, 

and hence the edges of the plates are free to pull in and make 

the normal stress (Ny) zero at the plate edges. 

(b) The displacement along the box (x-displacement) at the 

edge of any plate is equal to the x-displacement of the adjacent 

edge of the next plate. 

(c) Equilibrium of the corner of the box requires that the 

shear flow (Nxy) at the. edge of any plate is equal to the shear 

flow at the adjacent edge of the next plate. 

At each plate junction conditions (a) and (b) are applied 

to one plate and conditions (a) and (c) to the other plate. 

3.5.2 At supported ends 

Again two conditions are required to define these ends 

of the plate: 

(a) The longitudinal (x) displacement at the supported end 

is zero. Since an interlacing finite difference mesh. is used 

(see section 3.6), and the longitudinal displacements are not 

defined on the ends of the plates, this condition is applied by 

putting the external fictitious displacement (u(1,j,k)) equal to 
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minus the corresponding internal displacement (u(2,j,k)). 

Application of this condition means that any warping introduced by 

the torsion loading is totally restrained at the support, and hence 

for some sections high warping stresses are introduced. A possible 

modification to allow for a free warping condition is discussed 

later in this section. 

(b) The second condition must be obtained by defining the 

external fictitious shear stress (Nxy(1,j,k)) at the support. In 

defining this stress a conflict occurs between the correct representation 

of the bending and torsion behaviour. For a beam under torsion loading 

the shear stress remains constant along the beam, and hence the external 

shear stress (Nxy(1,j,k)) should be equal to the internal shear stress 

(Nxy(2,j,k)). For a beam subjected to bending shear there is a change 

of sign of shear stress at the central support (represented in this 

analysis by the cantilever support), and hence the external shear 

stress should be made equal to minus the internal shear stress. In 

practice, for a beam under combined load, it is difficult to separate 

the bending shear from the torsion shear, and hence both conditions 

cannot be satisfied. Application of the bending condition will result 

in high stress gradients and the exact distribution of these stresses 

will be greatly influenced by details such as the welding and dia-

phragms at the support. As a result of this, it was thought to be 

more satisfactory to apply the torsion condition (Nxy(1.,j,k) 	Nxy (2,j,k)). 

(c) In addition to these two conditions, in order to prevent 

rigid body motion, one transverse (y) displacement at the support 

on each plate must be defined as zero. 

3.5.3 Possible improvement to supported end conditions. 

33.  
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Consider a simply supported beam A-K-L-B-N-M-H-G represented 

in the theoretical analysis by a cantilever C-E-F-D-N-M-H-G. 

Assume that the beam is symmetrical about a vertical plane Q-I-S-T 

and is loaded by 2 eccentric point loads P, balanced by support 

reactions R1  and R2. The applied loads are represented in the 

analysis by applied shear forces TT and TB representing respectively 

the torsion and bending components of P. The symmetry of the section 

and loading indicate that the stresses and displacements in the web 

A-C-D-B are the same as those in the web H-E-F-G; similarly, in the 

half of the flange A-Q-J-C they will be the same as in H-I-J-E. It 

appears that it should be possible to make use of this symmetry when 

defining the values of the shear stress and longitudinal displacement 

at the external nodes. A considerable amount of time was spent in 

trying to apply these conditions but it was found to be very 

difficult to obtain good convergence of the dynamic relaxation solution. 

For all results given here the end boundary conditions described in 

section 3.5.2..were used. 

3.5.4 Loaded end boundary conditions 

In most previous applications of the dynamic relaxation method 

the structure has been loaded by applying specified displacements 

rather than loads. Application of displacements has the great 

advantage that it leads to a higher frequency of oscillation, and 

hence more rapid convergence,than is obtained when loads are applied. 

In the case being discussed here, it was required that the ratio of 

applied bending moment to applied torque should remain constant, and 

in order to achieve this it is essential that the loading be applied 

as stresses rather than displacements. Hence the boundary conditions 

at the loaded end are that the direct stress along the box (Nx) and 

the shear stress (Nxy) should take specified values. In general the 

direct stress was taken to be zero, but in the analysis of long, 

slender boxes it is advantageous to be able to analyse only the 

support region; in order to do this an elastic analysis can 

give the distribution of Nx and Nxy at a convenient point along the 

box and these distributions may then be applied as boundary conditions 

for the analysis of the smaller critical region up to ultimate load. 
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3.5.5 End diaphragm condition 

In all practical situations there will be some resistance 

of the cross-section to distortion. In most cases this will be 

provided by a diaphragm, but some contribution may also come 

from the frame action of the cross-section. In the theoretical 

analysis presented here it has been assumed that any diaphragm 

provided is sufficiently strong to prevent any departure from 

linear elastic behaviour. The diaphragm is represented by a single 

plate element, and it is assumed to apply a uniform shear stress 

to each of the four beam plates such that compatibility at the 

loaded end is maintained. The distortion of the diaphragm, 

and hence the shear stress applied to the beam, is calculated from 

the transverse displacements at the longitudinal centreline of the 

loaded ends of the four plates. The calculated diaphragm shear 

is added to or subtracted from the applied shear load as 

appropriate. 

3.6 INTRODUCTION TO THE DYNAMIC RELAXATION METHOD 

The application of finite differences and dynamic relaxation 

(DR) to the analysis of isolated plates and plate assemblages 

is now well-established. (19, 31, 32). 	The method involves 

the addition of acceleration and viscous damping terms to the equil-

ibrium equations (equns. 3.1) to form equations 3.8 and solution 

of these equations in step-by-step increments of time. 

a2u au aNx aNxy 
Pu 	+ ku 

at} =-~+  ay  

Pv{a
2V 

+ kv 	_ ~Ny + aNxy 
2t~ at āy ax 

For any state of stress N corresponding to a set of dis-

placements S equations 3.8 may be used to calculate velocities, 

and hence, for a specified time increment, new displacements. 

In order to do this values have to be assigned to three parameters; 

the densities (Pu and pv), the time increment (At) and the damping 

factors (ku and kv ). Following the method described by Cassell 

(33) a unit time increment is chosen and fictitious densities 

are calculated. In most previous applications it has been found 

satisfactory, even after the onset of plasticity, to calculate 

35 

3.8 



the densities using the elastic stiffnesses. In this case 

considerable problems were encountered with the slow rate of 

convergence, particularly when a considerable amount of the 

structure had become plastic, and some advantage was found in 

calculating new densities for each load increment, based, where 

appropriate, on the plastic stiffnesses. 

A summary of the DR technique is given in the flow chart, 

fig. 3.3. 

3.7 THE FINITE DIFFERENCE METHOD 

In order to describe the displacement and stress distribution 

in the plates equations 3.8 may be re-written in finite difference 

form, with values taken at various points on a mesh covering the 

plates. There is no necessity for the mesh associated with each 

component to coincide, and because the strains and stresses are 

calculated from the differentials of the displacements considerable 

advantages in accuracy have been found to result from the use of 

interlacing meshes. The mesh arrangements, coordinate system and 

node numbering system used in this investigation are shown in 

fig 3.4. In addition to the nodes marked in fig. 3.4 it is 

useful, in the definition of boundary conditions, to consider 

external fictitious values of v at the plate junctions, u at 

the plate ends, and Nxy at the plate junctions and ends. 

3.8 LOAD INCREMENTATION 

In all investigations of non-linear behaviour attention must 

be given to the size of load increment applied. For this 

application displacements are linear, and hence, provided that 

the material properties within any load increment are linear, the 

overall behaviour within that increment will be linear. For the 

structure in a state of stress such that n nodes have yielded, 

provided that the strains required at the n plastic nodes to yield 

the (n+1)th node are not large, the stiffness of the structure may 

be considered constant until the (n+1)th node yields. The reason 

for the restriction on the amount of straining at the yielded 

nodes is that the plastic rigidities are calculated such that the 
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flow of stress is tangential to the yield surface; because 

of the curved nature of the yield surface the consideration of 

large strains, without modification of the stiffnesses, will 

result in perforation of the yield surface. 

3.8.1 Calculation of increment size 

The linear nature of the behaviour of the structure between 

the yielding of two successive nodes may be used in the design 

of a method of calculating suitable load increment sizes. 

Consider a boo with N nodes unyielded, assume a load 

increment a is placed on the box. Initially the state of 

stress at node n may be represented by the stress resultants Nxn, Nyn, 

Nxyn; application of the load increment a causes changes zNxn, 

ANyn, ANxyn, in the stress resultants. For any node n the factor 

(y) by which a must be multiplied to cause that node to yield may 

be calculated from 

VT - 1471 
Y = ~-~- i, 

 

(3.9) 

 

where F1 and F are the values of the yield function before and 

after application of a 

i.e. 	N2xn + N2yn - NxnNyn + 3N
xyn2 

N 2 0 

F - (Nxn + LNxn) 2 + (Nyn + LNyn) 2 - (Nxn + Ni)Ax (Nyn + ANyn) 

+3 (NXyT, + ANXyn) 2  

N 2 O 

The value y is calculated at all nodes and multiplication 

of the load increment size a by the smallest positive value of y 

obtained gives the size of the load increment required just to 

yield the next node. In practice it was found useful to replace 

the value VT in equation 3.9 by 1.003, i.e. to allow a very 

small (0.3%) penetration of the yield surface. The purpose of this 

was to prevent a situation where a very small rounding error 

caused one node to remain elastic when a symmetric node had 

become plastic. 
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In order to make use of this factor y the D.R. cycle is 

applied until equilibrium is obtained under an arbitrary load 

increment cc, and hence stress and displacement increments AN 

and AU corresponding to a are known. The value of y is then 

calculated as described above all stress and displacement incre-

ments AN and AU are multiplied by y before addition to the 

previous total stresses and displacements. It should be noted 

that, regardless of whether load increment a causes any nodes to 

yield the stiffnesses calculated at the start of the increment 

are used. The great advantage of this method of calculating 

the size of the load increment is that penetration of the yield 

surface does not occur. 

3.9 MESH SIZE REQUIREMENTS 

When using methods such as finite differences a compromise 

must be reached between the use of a fine mesh, giving very 

accurate results at a high cost in computer time and storage, 

and a coarse mesh giving less accurate results at a lower cost. 

The problem of finding a suitable mesh size is of particular 

importance in regions where the variation of stresses around 

or along the box is non-linear. For boxes with the dimensions 

and loadings considered here the most severely non-linear stresses 

are the direct stresses in the box flanges, which, due to the 

shear lag effect, have a parabolic variation across the plate. 

Generally it is found that the mesh size is more critical in 

elastic than in ultimate load analyses. This is because yielding 

of the steel tends to even out the peaks and troughs of stress. 

In order to examine the mesh size requirements of the program 

described in this chapter the beam shown in fig. 3.5 was considered. 

The reason for the choice of a section with a very high flange 

width to length ratio is that, in this type of section, shear 

lag effects are very large (see fig 3.6), and hence it was thought 

that this section would be comparatively sensitive to the mesh 

size. 
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If the flanges have N nodes across them and M nodes along 

them the following mesh arrangements N x M were considered: 

(1) 13 x 7, 	(2) 11 x 7, 	(3) 9 x 7, 	(4) 7 x 7, 	(5) 6 x 7, 

(6) 9 x 11. Fig. 2.5 shows the elastic distribution of direct 

stress obtained at the support for the mesh arrangements (1), 

(5) and (6), the box being loaded with a bending shear force 

applied at the free end. Fig 3.7 shows the load-deflection 

curve up to ultimate load for this section and loading. Both 

of these sets of results show that the coarse mesh gives good 

agreement with the finer meshes, and suggest that little advan-

tage is likely to be gained by the use of a fine mesh; hence it 

was thought that a mesh with 7 nodes across and 7 nodes along 

the flanges should give results which are sufficiently accurate 

for all practical purposes. 

3.10 RESULTS OBTAINED FROM D.R. PROGRAM 

In order to compare the results given by the D.R. method 

with those obtained from the upper and lower bound solutions a 

beam with the cross-section shown in fig 2.3 was used. Canti-

lever lengths of 300 mms (model 1) and 600 mors (model 2) were 

used. Following the mesh size study described in the previous 

section the meshes shown in fig 3.8 were used. Three load 

cases were considered for each section: for model 1 ratios of 

bending moment at support to torque (M/T) of 00, 6 and 1.5, and 

for model 2 ratios of 03, 3 and 1.2. 

In figs 3.9 and 3.10 graphs of applied load against end 

displacement are shown. The applied load is plotted in terms 

of M/Mp  where M is the bending moment at the supported end of 

the beam and Mp  is the plastic moment of the beam calculated by 

simple plastic bending theory. The displacement plotted is the 

average of the displacements of the loaded ends of the two webs. 

Upper and lower bound predictions of the ultimate load, calcul-

ated by the methods described in chapter 2 are also plotted. 

Figs 3.11 and 3.12 show a comparison of the ultimate load stress 

distributions at the supported end, given by the three methods. 

Where the lower bound has been governed by the failure of one web 

it is not possible to plot this stress distribution. 
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It appears from figs 3.9 and 3.10 that, for some load 

cases, there is still quite a significant amount of stiffness 

remaining in the beam when the final point from the D.R. 

solution has been plotted, and hence the ultimate load may be 

considerably above the maximum point plotted. In most of 

these cases an attempt was made to apply another load increment, 

but this resulted in divergence of the D.R. solution, indicating 

that the stiffness of the section had become very small or zero. 

For section (1) (the short beam) loaded under moment-torque 

ratios of co and 6 the D.R. solution gives an ultimate load 

considerably below the lower bound result. The stress distrib-

utions at failure for these loadings (see fig 3.11) indicate 

that, according to the D.R. solution the webs will fail before 

- the section has become fully plastic (hence the unyielded area 

in the middle of the flanges), whereas the lower bound solution 

indicated that full plasticity of the cross-section would be reached. 

The reason for the failure of the lower bound web check to predict 

this mode of failure is that it is only a check against failure 

under shear stresses alone, whereas in practice the failure is 

caused by the combined effects of shear and direct stresses. 

For the short section with an M/T ratio of 1.5 the D.R. solution 

shows very good agreement with the lower bound solution. In this 

case the ratio of shear strains to axial strains in the web which 

fails is large enough for the shear stresses in this web given by 

the D.R. solution to be very close to the fully plastic shear 

values. 

It has already been shown (figs 2.2 and 2.3) that for longer 

sections, where the influence of bending shear is small, the 

upper and lower bound solutions are much closer together than 

for the shorter sections. This is again demonstrated in figs. 

3.9 and 3.10. Fig 3.10 shows that for the longer section (section 

2) with an M/T ratio of co the D.R. solution comes between the 

upper and lower bounds, which are themselves only about 5% apart. 

For the other 2 load cases (MIT = 3 and 1.2) the D.R. solution 

again comes below the lower bound; as with the shorter beam this 

is caused by interaction of the shear and direct stresses causing 

a failure of the heavily loaded web earlier than is predicted by 

the lower bound solution. 
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3.11 CONCLUSIONS 

(1) Upper and lower bound solutions may be calculated for a 

section under combined bending, shear and torsion load, but the 

lower bound depends on the failure being due to either: 

(a) full plasticity of the cross-section being reached 

or (b) one web reaching its full shear capacity. 

(2) The lower bound web failure check described in section 2.3 

is not a completely satisfactory check against (b) occurring, 

as a web failure will be influenced by the presence of direct 

stresses in the web. 

(3) An experimental investigation is required to establish the 

significance of the web failure mode, as it is probable that, 

for many sections, there will be a considerable capacity for 

redistribution of the stresses to the unyielded areas, leading 

to the ultimate load being higher than predicted by these theories. 
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CHAPTER 4 

APPLICATION OF TEE D.R. METHOD TO COMPOSITE BOX GIRDERS 

4.1 INTRODUCTION AND MODIFICATION OF STEEL PLATE EQUATIONS  

A typical closed composite box may be considered as a steel 

hollow section, similar to that discussed in chapter 3, and a 

concrete plate, joined by a flexible shear connection. Generally 

the concrete flange will be wider than the steel flange, and only 

the part of the flange in contact with the steel will be directly 

affected by the shear connection; for the purposes of this 

analysis it is convenient to represent the concrete by three 

joined plates (see fig 4.1). The plane stress assumption dis-

cussed in section 3.2 is again used here; owing to the greater 

thickness of the concrete plates a greater approximation is 

involved in applying this assumption but, for composite beams 

of practical dimensions it was still thought to be reasonable. 

The plane stress equilibrium equations for plates 1,2,3,5 

and 7 (fig 4.1) are the same as for the steel section (equations 

3.1) but for plates 4 and 6 an additional term must be included 

to allow for the interaction between the plates. 

4.1.1 Equilibrium equations for plates 4 & 6  

Considering a small element of plate 4 as shown in fig 4.2 

where: 

Px = Yx K dxdy 

Py = Yy K dxdy 

K = slip stiffness 

Yx = Ust - Uconc 

Yy = Vst - Vconc 

Ust, Uconc. Vst & Vconc are the x and y displacements 

in the steel and concrete 
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Resolving in the x and y directions gives: 

tf dax + 
aayyJ 

YxK =0 
4.1 

d~L dTx  
t dy + dxy} - YyK =0 

For plate 6 the signs on the slip terms will be reversed 

giving: 

t d& y 
+ 
a ~ 

+ 	YxK =0  dy 

427-Y. 
+ ddxy} + Y  =0 

  

 

4.2 

 

  

4.2 CONCRETE RIGIDITY MATRIX  

In order to investigate the ultimate load behaviour of the 

hogging moment region of a composite beam it is necessary to est-

ablish a relationship between the stresses and strains in a reinforced 

concrete slab. As already discussed, (section 4.1), the slab is 

assumed to be in a state of plane stress; because of the type of 

loading being considered it was assumed that the concrete would 

never be sufficiently heavily loaded in compression for the 

crushing strength to be reached. Having made this assumption the 

possibility of an element of the slab being in any one of three 

states must be considered: (1) Element uncracked; (2) Element 

with cracks in one direction; (3) Element with cracks in two 

directions. Also the strength of the reinforcement in the slab 

must be allowed for. In the following work it has been assumed 

that the reinforcing bars run parallel to the x (x reinforcement) 

any y (y reinforcement) coordinate axes. 

4.2.1. Uncracked slab element 

Until the first crack is formed the slab is assumed to 

be homogenous and isotropic, the stress-strain relationship 

being given by: 
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Nx  

Ny 

Nxy 

E,Tc, 1 	Vc 	0 

Vc 	1 	0 

0 	0 	1-v 

x 

£x  

Yxy 

4.3 
1-Vc2  

2 

The contribution of the reinforcement is given by: 

Nx  ER Tsx 1 0 0 + Tsy  0 0 0 

NY  0 0 0 0 1 0 4.4 

Nxy 0 0 0 0 0 0 

where 	Ec  = Young's modulus for concrete 

Vc  = Poisson's ratio for concrete 

Tc  = Thickness of concrete slab 

ER = Young's modulus for reinforcement 

Tsx = Ratio of cross-sectional area of 

x reinforcement to slab width 

Tsy  = Ratio of cross-sectional area of 

y reinforcement to slab width. 

These rigidities may be used until the first crack appears 

in the slab, this will occur when the maximum tensile stress in 

the slab becomes equal to the tensile strength of the concrete. 

When this stress is reached a crack will be formed at 90°  to the 

direction of the maximum tensile stress. 

4.2.2. One crack element 

Once the concrete element has cracked a new rigidity matrix 

must be found. The concrete can transmit no tensile stresses 

across the crack, and hence Young's modulus for the concrete 

must be zero in the direction perpendicular to the crack. 

Aggregate interlock allows transmission of shear stresses across 

the crack, but the shear rigidity will be lower than for the 

uncracked element; this is allowed for by the introduction of 

an aggregate interlock factor (). According to Arnaouti (34) 

the value of has been found to vary between 0.33 and 0.5. 
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The stress-strain relationship for a concrete element 

with one crack is given by: 

Nx  

Ny 

Nxy 

= T EcTc  1 	0 	0 

0 	0 	0 

0 	02(1+v) 

Tt  CX 

Ey 

Yxy 

4.5 

where T, the transformation matrix is given by: 

T = C2  S2  -2SC 

S2  C2  2SC 4.6 

SC -SC C2-S2  

where 	C = Cos 

S = Sin i 

= angle between x-axis and crack direction. 

Once the concrete has cracked some shear stress will be 

transmitted across the crack by the dowell action of the rein-

forcement. The contribution of this to the shear stiffness is 

taken to be a factor (N., the dowell factor) times the shear 

rigidity of the reinforcing bars; hence the contribution of 

the reinforcing bars to the overall stiffness is given by: 

NX  

Ny  

Nxy 

ER  Tsk 	0 	0 

0Tsy, 	0 

0 	µ (Ts,+Tsy) 0 

Ex 

Ey  

Yxy 

4.7 

2(1+Vc) 

The concrete rigidities given by equation 4.5 are applicable 

until the maximum tensile stress in the concrete again reaches 

the cracking stress. When this stress is reached a second crack 

will form at an angle of 90°  to the direction of the maximum 

tensile stress. (For the beams and loadings considered in this 

thesis the ultimate load of the structure had generally been reached, 

or very nearly reached, before a second crack had been formed in 

any element, but the possibility of the second crack forming must 

still be considered.) 
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4.3.2. Two crack element  

Following the formation of the second crack no tensile 

stresses can be carried across either crack, but shear stresses 

may be carried by aggregate interlock. In general it is found 

that the angle between the two cracks is of the order of 80 

degrees and hence it may be assumed that an element with two 

cracks is unable to carry any tensile stress (34). 

The new concrete stress-strain relationship is given by: 

Nx 

Ny  

Nxy 

= TEcTc 0 	0 	0 

0 	0 	0 

0 	0 	E/2 (1+Vc) 

Tt  ex  

cy  
Yxy 

4.8 

The transformation matrix T has been defined in equation 4.6 

and for this case the angle /5 is defined as the mean value of the 

angle between the two cracks and the x-axis. The contribution of 

the reinforcement in the two crack case remains as shown in 

equation 4.7. 

4.3 APPLICATION OF THE DYNAMIC RELAXATION METHOD  

Application of the D.R. method to the solution of the 

equations for seven plates joined to form a composite box girder 

presents a number of problems not encountered in the analysis of 

a steel section. 

4.3.1. Load incrementation 

The most important of these extra problems is caused by the 

differences between the stress-strain relationships for steel and 

those for concrete. For steel these are formulated in terms of 

increments of strain and stress, and hence each load increment 

must be treated separately, whereas for the concrete they are 

formulated in terms of total stresses and strains, and hence 

one increment may not be considered separately from previous 

increments. 
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The logical extension of the method of load incrementation 

described in chapter three would be to apply an arbitrary load 

increment, and then calculate the factor by which this increment 

must be reduced (or increased) for one steel element to yield or 

for one concrete element to crack. If this method was applied, 

for cases where the increment size was governed by a concrete ele-

ment cracking there would then be the problem of dealing with 

the stresses released by the cracking of the concrete element. 

It would be possible to overcome this problem by applying a further 

set of relaxation cycles with loads applied at the newly-cracked 

nodes to balance the released stresses. The problem associated 

with this method is that before a composite section fails a large 

mimher of the concrete nodes will crack, and the computer time 

involved in applying one increment, (and hence two sets of D.R. 

cycles), for every node that cracks is prohibitive. The fact 

that the concrete stresses are dependent only on the total strains 

means that the problem of penetration of the cracking surface does 

not occur, and hence it is not important to recalculate the concrete 

stiffnesses as soon as the element cracks. As a result of this 

the method of load incrementation adopted for the composite box 

programs was as shown in the flowchart fig. 4.3. The initial 

increment size ((1)) is chosen such that, assuming no steel nodes 

yield, a reasonable number (say 5% of the total number) of con-

crete nodes will crack. In some cases it was found necessary to 

run a load case twice in order to find suitable increment sizes 

but, in general, the solutions were not found to be very sensitive 

to the exact size of increment chosen. At point (2) on the flow-

chart a number of concrete nodes may be loaded above the cracking 

stress, the next section of the program releases and redistributes 

these stresses. Having calculated these stresses and associated 

strains and displacements they are added to the existing total 

stresses, strains and displacements, new stiffnesses calculated 

and a new load increment applied. 
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4.3.2 Boundary conditions  

Derivation of the boundary conditions for the composite 

box is basically the same as for the steel box, but at the 

.top corners of the web account must be taken. of the effect of 

the shear connection. In order to illustrate the method used to 

deal with this problem the boundary conditions at the junction 

of plates 1 and 4 are discussed here. The forces acting on a 

small section of this junction are shown in fig 4.4. As for the 

steel box girder (section 3.5.1) the first condition is that 

the direct stress at the plain edges, normal to the plate edge, 

are zero. Hence all four NY forces shown in fig 4.4 are zero. 

In addition the conditions of equilibrium in the x direction and 

compatibility between the two plates must be satisfied. To do 

this the equilibrium condition is used to calculate the x-direction 

velocity at the edge of plate 1 (eqn. 4.9) in the velocity routine 

(fig 3.3) and the compatibility condition is satisfied by making 

the x displacement at the edge of plate 4 equal to that at the - 

corresponding edge of plate 1. The x-direction equilibrium equation 

for the section of the plate junction shown in fig 4.4 is given by: 

0 = (NX(I + 1, N - 1, 4) - NX(I,N -1, 4)) x DY(4)/2 

+(NX(I + 1, 2, 1) - NX(I,2,1)) x DY(1)/2 

+ (NXY(I,2,1) - NXY(I,N-2, 4)) x DX - PX(I,N-1, 4) 

where 	PX(I,N-1,4) = k x DX x DY(4)  x (U(I,N-1,4)-U(I,N-1,6)) 
2 

k = shear connection stiffness (N/mm/mm2) 

Other plate junctions are treated in a similar manner to that 

described above. 

The remaining boundary conditions are all very similar to 

those described in chapter 3 for the steel section. 

4.4 EXTENSION TO OPEN COMPOSITE BOXES 

In extending the program to the case of an open composite 

box girder it was found to be convenient to represent the beam 

by six plates joined as shown in fig 4.5. Representing the whole 

of the concrete by only one plate meant that it was necessary to 

add the extra shear connection force term to the equilibrium 

equations only at specified nodes on this plate; (i.e. those 



in contact with plates 4 and 5). Appropriate modifications 

to the boundary conditions at the top of webs were also 

required. Apart from this the method of solution of the 

equations was as for the closed composite box. 
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CHAPTER 5 

'i'ME DESIGN AND TESTING OF A SERIES OF MODEL OPEN AND CLOSED 

COMPOSITE BOX GIRDERS 

5.1 INTRODUCTION 

This series of tests on model composite box girders was designed 

to give a general understanding of the behaviour of composite boxes 

under various combinations of bending, shear and torsion loading. 

The six tests were as follows: 

(1) Action of a closed composite box under central point load 

(Model C1) 

(2) Action of a closed composite box under eccentric point load 

(Model C2) 

(3) Action of a closed composite box under torsion (Model C3). 

The above three tests were then repeated on open composite 

boxes (Models 01-03 respectively). The main interest of this 

investigation was in the effect of material non-linearity rather 

than geometric non-linearity, and hence the models were designed 

with all the steel plates thick enough to ensure that none of them 

would buckle. Although this resulted in the model dimensions 

not being an accurate scale model of a practical beam,(the plate 

thicknesses were much too large), it was thought that such models 

would be of considerable help in understanding the effect of 

material non-linearity on the behaviour of practical composite 

boxes. 

5.2 DESIGN OF MODELS  

In order to reduce the costs of this series of tests it 

was intially proposed that, instead of fabricating the steel 

sections from flat plates, rolled hollow sections should be used, 

the required web and flange thicknesses being obtained by 

machining down the faces of the section. The most suitable 

available section was an 18" x 10" x 0.5" rolled hollow section. 

After consideration of other work done on web and flange 

stability it was decided that the top flange, (one 18" side of 

the r.h.s.), should be reduced to 4mms thick and the webs (the 

10" sides) reduced to 6mms thick, the bottom flange was to be 
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left 12.7mms, (1 inch), thick. In practice it was found that 

the faces of large rolled hollow sections may be several milli-

metres out of flat, which made it almost impossible to machine 

them down to the required thicknesses. As a result of this 

problem it was decided that the steel sections of the models 

would have to be fabricated from flat plates. 

Following various discussions it was decided that the cost 

of manufacturing the models would be considerably reduced if the 

webs and bottom flanges could be fabricated from a single plate 

bent to forma U section rather than from three plates welded 

together. It was desirable to avoid having a large number of 

stiffeners on the model and hence the cross-sectional dimensions 

shown in Figs 5.1 and 5.2 were chosen. In most practical situ-

ations the length of beam under hogging moment is quite small, 

hence the effect of shear forces is considerable, so a suitable 

length for the models was thought to be 1400 mms between end 

diaphragms. 

The concrete top flange for the models was a 30mm thick 

reinforced micro-concrete slab. For the first model the mix 

was 1: :2 proportions of ordinary portland cement, 25 to 100 

sieve fine aggregate and 3/16" to 25 sieve coarse aggregate with 

a water-cement ratio of 0.56. The following test results were 

obtained with this mix. 

(1) 4" cube strength at 28 days - 51 N/mm2  

(2) 6" cylinder splitting strength at 28 days: 2.4 N/mm2  

A major problem encountered with this mix was that drying 

shrinkage of the slab, restrained by the shear connection and 

slab reinforcement, caused a crack to form across the centre of 

the slab. The large amount of drying shrinkage present was 

caused by the high water-cement ratio required to enable the 

concrete to be compacted around the reinforcing mesh. For 

subsequent models the mix was redesigned as follows: the mix 

proportions were changed to 1:1:3 and the water-cement ratio 
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reduced to 0.5. In order to maintain the required workability 

with the reduced water-cement ratio it was necessary to use a 

water-reducing admixture, for this purpose a 2%, by weight of 

cement, addition of Sicament was used. The new mix gave the 

following test strengths: 

(1) 4" cube strength at 28 days - 58 N/mm2  

(2) 6" cylinder splitting strength at 28 days - 4.1 N/mm2  

Top and bottom slab reinforcement was provided by a mesh of 

16.ga ( 1.626 mm diameter) steel bars at half inch centres 

longitudinally and transversely. Concrete cover to the reinforce-

ment was 3mms and the ultimate strength of the reinforcement was 

510 N/mm2. Shear connection between the steel and concrete was 

by 1/2" x 3/16" inch headed studs at 2" centres. 

5.3 PRELIMINARY TESTS  

The stress-strain properties of the steel used in various 

parts of the model were measured in the usual way, and results 

are shown in Figs 5.3 to 5.6. An attempt was made to measure the 

stress-strain properties of a piece of reinforced concrete in 

tension using specimens as shown in Fig 5.7. Load was applied, 

using a tension testing machine, .in 0.05 ton increments and 

strains were measured from the deflections of the jaws of the 

testing machine. Many inaccuracies are present in a test of 

this sort, the most important being :(1) bending stresses may 

be introduced into the slab by clamping it into the jaws of the 

testing machine; (2) the test specimen is very much narrower than 

the true slab and hence edge effects are more important. The 

results obtained from these tests indicate that the stress-strain 

behaviour of a concrete slab in tension may be approximately 

represented by two straight lines (Fig 5.8), the junction between 

the lines occurring when the concrete stress is approximately 

equal to the tensile strength given by a cylinder splitting test. 

In this and all other preliminary tests the concrete mix used was 

that described for the first test (section 5.2) and the specimens 

were tested 28 days after casting. 
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In order to measure the stress-strain properties of the 

concrete, a series of 2" x 2" x 6" prisms were instrumented 

with one 10mm gauge length strain gauge rosette on each face. 

These prisms were loaded in a compression testing machine with 

0.5 ton (1.9 N/mm2 ) increments; strain readings were taken 3 

minutes after application of the load. As the load increased 

considerable creep was noted, where this creep was present an 

initial reading was taken 3 minutes after application of the load, 

and a second reading 7 minutes later. As a result of these tests 

an approximate compressive stress-strain curve for the concrete 

has been plotted (Fig 5.9). 

The stiffness of the shear connection was measured with a 

scaled-down version of the standard push-out test. The outside 

faces of a 102 mm x 64 mm joist were machined down to give a 

flange thickness of 4 mms at ~ inch from the web-flange junction. 

Two 1" x 3/16" headed studs were welded to each flange as shown 

in Fig 5.10. The outer faces of the flanges were lightly oiled 

to eliminate bond between the steel and the concrete, and the 

two concrete slabs, reinforced with the 1.2 inch wire mesh, were 

cast simultaneously, on edge, in wooden moulds. After hardening 

of the concrete the wooden moulds were removed and the specimens 

were tested in a compression testing machine as follows. A 

central axial load was applied to the joist, and slip measurements 

were taken from dial gauges attached to the steel joist and 

bearing against the steel plate on which the slabs rested. Load 

was applied in increments of 500 lbs up to 4500 lbs and then in 

increments of 100 lbs up to failure. Two slip readings were 

taken for each load increment, one immediately after application 

of the load, the other one minute later, the difference between 

the two readings gave an indication of the amount of creep present. 

The load-slip curves obtained from a series of four such push-out 

tests are shown in Fig 5.11. It can be seen that the results are 

rather inconsistent, this is probably caused by inadequate com-

paction of the concrete around the muds. The ultimate load carried 

by the studs varies from 5100 lbs to 6100 lbs (load on four studs), 
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the stiffness of the studs in the elastic region (taken as a 

load of 500 lbs to 3500 lbs) varied from 280 x 103  lbs/in to 

400 x 103  lbs/in (stiffness for four studs). 

5.4 CASTING OF SLAB 

The main formwork for both the open and closed box models 

was made of timber (Figs 5.14 & 5.15), but for closing the gap 

between the two flanges in the open box models expanded poly-

styrene was used. The reason for the use of polystyrene was 

that, once the slab had been cast, it would have been impossible 

to remove the central section of formwork, and it was thought that 

the use of timber could add to the strength of the model. 

To assist with the fixing of the reinforcement a number of 

concrete spacing blocks were cast. These were 10 x 10 x 18 mms 

(18 mms being the spacing required between the top and bottom 

transverse reinforcing bars to give the required 3 mms cover), with 

a hole through the length of the block to enable a wire to be, passed 

through. By passing a thin wire around the top reinforcement, 

through one of these blocks and tying it off around the bottom 

reinforcement it was possible to obtain the required spacing 

between the two layers of reinforcement. A number of small 

holes were then drilled in the wooden formwork and the rein-

forcing meshes were tied to the formwork with wires passing 

through the holes and around the mesh; 3 mm thick nuts were placed 

between the formwork and the mesh at each of these points to give 

the correct cover to the reinforcement. Once the mesh had been 

tied in place these holes were sealed with wax, and prior to 

removal of the formwork, after casting and hardening of the slab, 

the wires through the formwork were cut. After casting the slabs 

were cured for 28 days under wet sacking. 

5.5 DESIGN OF TEST RIGS 

5.5.1 Bending and eccentric load tests  

As already discussed, (section 5.1), a series of tests on 

six models was undertaken, and four of these involved loading 

the model under either an eccentric or central point load. For 
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all of these models the ultimate load test was to be under 

hogging moment, (i.e. with the slab in tension), but it was 

desirable that each model should initially be tested, within 

the elastic region, under a sagging moment. It was thought 

that a 10 ton end load would be well within this region, and 

that a 50 ton end load would be above the ultimate load for 

all the models; hence the central support was designed to carry 

20 tons in tension and 100 tons in compression. A photograph 

of the central support is shown in fig. 5.16. For the elastic 

tests the load was applied at one end of the beam by a 10 ton 

jack standing on the floor and reaction at the other end by a 

two inch diameter by four inch long steel roller resting on a 

steel plate and concrete blocks. 

For the ultimate load tests it was necessary to reverse 

the direction of loading so that the concrete slab was put into 

tension. A photograph showing the position of the loading jack 

and support column is shown in fig. 5.17. In the design of the 

end support for the ultimate load tests it was desirable that the 

same support should be suitable for all four tests. In order 

for this to be the case the support had to allow freedom of move-

ment in the following directions:. (1) Translation along the 

length of the beam, (2) Rotation about a horizontal axis in the 

plane of the end diaphragm, (3) Rotation about a horizontal 

axis along the length of the beam. The most suitable method of 

doing this was found to be by using a column pinned at both ends, 

as shown in fig. 5.17. 

5.5.2 Torsion Tests  

Three photographs of the rig for the torsion tests (models 

03 and C3) are shown in figs. 5.18 to 5.20. The load was applied 

over one web with. a 100 ton jack, reaction under the other web 

at this end was provided by a spherical plain thrust bearing. 

This arrangement allowed the loaded end to be free to rotate but 

the thrust bearing provided restraint against any horizontal move-

ment. At the supported end of the beam reaction was provided top 

and bottom by load cells resting on rollers (fig. 5.20). The load 
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cells provided pin joints to allow rotation about a'horizontal 

axis parallel to the diaphragm, (a small rotation about this 

axis will be caused by twisting of the box). The rollers allowed 

longitudinal movement so that the end of the beam was free from 

warping restraint. 

5.6 INSTRUMENTATION OF MODELS 

During the testing of all the models strains were measured 

at two cross-sections: (1) at one quarter-point of the model; 

(2) as near as possible to the central support. At each of these 

cross-sections strains were measured at various points around the 

steel section with 10mm gauge length electrical resistance strain 

gauge rosettes, and on the concrete slab strains were measured 

with two inch gauge length demec gauges. On the open boxes an 

additional longitudinal strain reading was taken at the outside 

edge of the flange at the central cross-section. Two of the 

demec gauges were checked with electrical resistance gauges. 

For the first model the strain gauges on the steel top flanges 

were covered with a layer of AK22 covering putty to protect them 

from damage by water during casting of the slab. Despite this 

some problems were encountered with these gauges during testing 

and, for subsequent models, the junction between the steel and 

the putty was additionally sealed with hot wax. Details of the 

strain gauge positions- nay be found in figs 5.12, 5.12A & 5.13. 

Readings of the slip between the steel and the concrete 

were taken at various points along each side and end of the boxes. 

Across the ends of the boxes readings were taken with dial gauges 

with a resolution of 10-4  inches. Access to the steel-concrete 

junction at the sides of the boxes was rather restricted (part-

icularly in the closed box models), as a result of this the slip 

here was measured with electrical transducers; subject to correct 

calibration and a stable power supply these can give readings 

accurate to 10-2mms. Overall deflections were measured at various 

points around the models, for the rnndels under torsion load dial 

gauges with a resolution of 10-4  i . were used, for the other models 

gauges with a resolution of 10-3mms were used. 

56 



5.7 THE TESTING OF MODEL Cl 

The object of the tests on the first model was to investi-

gate the behaviour of a closed composite box under bending load. 

In order to provide the bending load the jack was placed under 

the longitudinal centre-line at one end of the beam and the roller 

under the centre-line at the other end of the beam. A total of 

three tests were done on this beam - two elastic tests putting 

the slab into compression, followed by an ultimate load test 

with the slab in tension. 

5.7.1 Results of elastic tests  

For this test the jack load was increased from 0 to 10 tons 

in two ton increments, (thus the maximum load was equivalent to 

a 20 ton central point load), and then reduced to zero, again in 

two ton increments. Since, as expected, all results were very 

nearly linear and elastic, all results given for these tests are 

average readings for two tests for a 10 ton end load; also the 

ultimate load test (slab in tension) results for a 10 ton end load 

are shown. Two sets of theoretical results are given: (1) Results 

given by the finite element program described in ref. 21; (2) Results 

given by the dynamic relaxation program described in chapter 4 of this 

thesis. Both sets of theoretical results relate to the elastic tests. 

Figs. 5.21 and 5.22 show the distributions of longitudinal 

stress at the two gauged cross-sections. For gauged section 1 it 

can be seen that the stresses in the steel top flange and the webs 

show very good agreement with the theoretical results given by both 

the finite element and dynamic relaxation methcds. The bottom 

flange stresses measured at this section are consistently about 

10% higher than the theoretical results. This is rather surprising, 

particularly in view of the presence of the stiffener in the 

tested model, which was not allowed for in the theoretical work. 

For gauged section 2 the measured top flange longitudinal 

stresses are consistently about 10% below the theoretical values 

and the measured bottom flange longitudinal stresses are about 

10% above the theoretics' values. Disagreements of this size 

between the theoretical 3 experimental results were to be ex- 
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pected since the theoretical results are quite sensitive to 

the values taken for the slip stiffness and the concrete 

modulus of elasticity, and the accurate measurement of 

these values poses considerable problems. The sensitivity 

of the theoretical results to the values assumed for various 

material properties will be further discussed in chapter 6. 

Shear stress distributions for the two gauged sections 

are shown in figs 5.23 and 5.24. The flange shear stresses at 

section 1 are greatly affected by the details of the welding of 

the flanges to the central diaphragm, and hence neither theor-

etical nor experimental results are given for these stresses. 

The finite element program assumes a uniform shear stress dis-

tribution down the webs, and hence these results are not shown. 

It can be seen that the agreement between the theoretical and 

practical results is quite good. In general the experimental 

results show slightly lower stresses than the theoretical results, 

this suggests that the load being applied by the jack may have 

been slightly over-estimated. 

Fig 5.25 shows the distribution of longitudinal slip around 

the box. For the elastic tests the measured slips along the 

edges of the box are consistently below the theoretical results. 

This difference could be caused by either an under-estimate of 

the slip stiffness or an over-estimate of the Young's modulus 

for the concrete in the theoretical work. The distribution of 

slip across the ends of the box clearly demonstrates the 

importance of shear lag in this type of beam - the slips, and 

hence the shear connector forces, are very much higher over the 

webs than over the longitudinal centreline. Comparison of the 

two sets of theoretical results for this part of the beam demon-

strates the importance of the choice of mesh size used in the 

theoretical work - the use of a greater number of nodes across 

the beam in the F.E. analysis (9 instead of 5) has enabled a more 

accorate prediction of the slip distribution across the beam to 

be made. Mesh size effects will be further discussed in chapter 6. 
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5.7.2. Results of ultimate load test 

For the ultimate load test the direction .of loading was 

reversed so that the slab was put into tension. The jack load 

was increased in two ton increments up to ultimate load, which 

was found to be 41.7 tons. Readings of strains, slips and 

deflections were taken for each load increment; also the slab 

was inspected for cracks, the position of each new crack being 

marked and the crack numbered to indicate the load at which it 

formed. The results of this test are presented in two forms: 

(1) Comparison of the stresses and slips recorded for a ten 

ton load with those obtained in the elastic tests for a ten ton 

load (Figs 5.21 - 5.25). 

(2) Plots of the strain distribution around the section at 

various load levels (Figs 5.26 - 5.32). 

The load-deflection curve is shown in fig. 5.33 and a 

photograph of the cracked concrete slab in fig. 5.34. 

Figs 5.21 and 5.22 show that, as expected, the longitudinal 

stresses in the steel flange are considerably greater for the 

test with tension in the concrete than for the test with com-

pression in the concrete. The increase at the quarter-point 

(gauged section 2) is about 50%, compared with about 20% at the 

centre-line (gauged section 1). Comparison of the web and 

bottom flange stresses with those in the elastic test shows that, 

because of a downward movement of the neutral axis when the 

concrete cracks, the bottom flange steel stresses are slightly 

lower for the case where the slab has cracked. 

Figs. 5.23 and 5.24 show that the distribution of shear 

stress in the steel is not significantly affected by the cracking 

of the slab in the ultimate load test. Fig 5.25 shows that there 

is considerably less slip between the steel and concrete (and 

hence lower shear connector forces) in the ultimate load test 

than in the elastic test. This is particularly evident at the 

end of the slab, but it is thought that, particularly in the 

1 =imate load test, the end slip readings are likely to have 

.n affected by the proximity of the gauges to the point of 
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application of the load. When considering the slip readings 

for the ultimate load test it must be remembered that, when the 

slab is cracked, there will be a considerable difference between 

the slip readings taken on different sides of the crack. 

Figs. 5.26 to 5.29 show the distributions of longitudinal 

and shear strain around the section for various applied loads. 

It is interesting to note that, as the ultimate load is approached, 

the shear strains in the webs at the central cross-section become 

very much larger at the top of the web than at the bottom. 

Equilibrium of the web-flange junction requires that the shear 

flow in the flange should be equal to the shear flow in the web; 

since the flange is thinner than the web this equilibrium re-

quirement suggests that the shear strains in the flange are likely 

to be even higher than those in the web. In beams with a high 

breadth to length ratio the shear capacity of the web-flange junction 

may govern the overall strength of the beam, and is particularly 

critical when a torsion component of loading is present. 

Figs. 5.30 and 5.31 show the distribution of longitudinal 

strain in the slab at the gauged cross-sections. It would be 

expected that, due to cracking of the slab, the strains in the 

ultimate load test would be somewhat higher than for the 

corresponding load in the elastic test. Fig. 5.30 shows that the 

measured concrete strains at the slab centre-line in the 

ultimate load test are, in fact, considerably smaller than those 

in the elastic test; the unexpectedly high strains in the 

elastic test are almost certainly caused by the shrinkage cracking 

discussed in section 5.2. In fig. 5.31 it is noticeable that 

the longitudinal strains at the quarterpoint decrease very rapidly 

towards the edge of the slab; this is another indication of the 

importance of shear lag in this type of beam. It is possible that 

this shear lag effect is much more significant in simply supported 

beams, where the end of the slab is free, than in the more prac-

tical case of a continuous beam. 
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Fig 5.33 shows the theoretical and experimental load-

deflection curves. In order to compare the two sets of results 

it was necessary to adjust the theoretical results to allow 

for the following: 

(1) The theoretical results are for the deflection of a 

cantilever representing one half of a simply supported beam, 

whereas the deflections measured in the experiments were for 

the loaded end of a beam supported at the mid-point and at 

the other end. 

(2) The deflections of the supports in the experiments. 

Allowance for these two factors was made as follows:- 

for (1) The theoretical deflections were doubled. 

for (2) By comparison of the theoretical and experimental 

deflections in the elastic region it was found that the de-

flection of the rig gave rise to an increase in the measured 

end deflection of 0.143 x P mms (P = jack load in tons). 

As a result of this it can be seen that the theoretical 

deflections (Sp) plotted in fig. 5.33 are given by:- 

Sp = 26c a- 0.143 P 	(5.1) 

where 	Sc = theoretical end deflection of cantilever (in mms) 

P = applied load (in tons) 

It can be seen from fig 5.33 that the theoretical and 

experimental load-deflection curves show good agreement. The 

ultimate load reached in the experiment was 41.7 tons compared 

with 38.2 tons given by the theoretical work. It appears from 

the gradient of the load-deflection curve that the ultimate load 

of the theoretical model may not have been reached; study of the 

state of stress around the section shows that only two unyielded 

nodes remained, and these were both located very close to the 

neutral axis, which suggests that very little further load could 

have been carried by the section. This problem of identification 

of the ultimate load has been discussed with respect to steel 

sections in section 3.10 of this thesis. 
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Fig 5.34 shows a photograph of the slab after testing; 

the lines on the slab indicate cracks in the concrete, and the 

number adjacent to each line indicates the load stage at which 

that section of crack was first observed. The cracks close to 

the midpoint of the slab are at almost exactly 90 degrees to the 

longitudinal axis of the beam, indicating that they are caused 

almost entirely by direct stress, further towards the ends of 

the beam the cracks are not at 90 degrees to the beam axis, 

indicating that they have been influenced by the shear stresses in 

the slab. 

5.8 'i'tih TESTING OF MODEL 01  

The object of this test was to investigate the behaviour 

of an open composite box under bending load. The loading 

arrangement and testing procedure were as for the closed box 

tests described in section 5.7. 

5.8.1 Results of elastic tests 

The testing procedure was as described in section 5.7.1 for 

the closed box model. The results are also presented as for the 

previous model except that finite element theoretical results 

are not shown. 

Comparison of figs. 5.35 and 5.36 with figs. 5.21 and 5.22 

shows that the longitudinal stresses measured in the steel top 

flanges of the open box are considerably lower than those measured 

in the closed box tests. There are two possible causes of this: 

(1) The shrinkage cracking of the concrete in model Cl (see 

section 5.2) would lead to an increase in the steel stresses 

because, until the cracks close up due to compression of the 

concrete, the only stiffness of the slab in compression would 

be that of the reinforcement, and hence the load carried by the 

slab would be quite small. 

(2) The shear connectors in the model 01 are distributed much 

closer to the webs than those in model Cl, this may well lead to 

a more efficient transfer of load into the concrete slab. Further 

discussion of the effects of the distribution of the shear conn-

ection may be found in ref. 34. 
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The distribution of longitudinal stress at the centreline, 

(fig 5.35), shows the importance of shear lag in the steel top 

flanges - the stresses midway between the webs and the edges of the 

flanges being 30 to 50 per cent lower than those directly over 

the webs. As expected there is very little evidence of shear lag 

at the quarter-point cross-section. Comparison of the bottom 

flange longitudinal stresses with those from the closed box test 

shows that the open box gives slightly lower stresses than the 

closed box; this difference is similar to the difference in the 

top flange stresses which has been discussed above. 

Comparison of the theoretical and experimental longitudinal 

stresses shows that, for the bottom flange stresses, excellent 

agreement is obtained between the two sets of results. For the 

top flanges the theory predicts consistently higher stresses than 

those measured in the experiments. Problems associated with the 

evaluation of the concrete and shear connection stiffnesses have 

already been discussed, and after allowing for these problems the 

agreement between the theoretical and experimental results 

seems reasonably satisfactory. 

Both the theoretical and experimental results for the 

shear stress distribution in the webs and bottom flange (figs. 5.37 

and 5.38) show very close agreement with the results from the 

closed box test. (figs 5.23 and 5.24). The most significant 

difference between the open and closed box results occurs in the 

top flange where the maximum shear stress in the open box is very 

much. lower than that in the closed box. This is caused by the 

fact that in the open box there are two paths for the shear flow 

to travel from the top flange into the web, compared with only one 

in the closed box. This difference is particularly significant when 

the flange plates are thinner than the web plates, as it makes 

yielding of the flange, along the web-flange junction, (as 

discussed in section 5.7.2), much less likely to occur in an open 

box. 
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Fig. 5.39 shows the distribution of longitudinal slip 

between the steel and the concrete, this having been measured 

along the outer edges and across the ends of the steel top 

flanges. Comparison of these results with those obtained in 

the closed box test (fig. 5.25) suggests that much smaller 

slips and hence much lower shear connector forces are present 

in the open box. One reason for this difference is that the 

slips along the sides of the open box model were measured on 

the edge of the flange, and hence at a considerable distance 

from the web; here the shear lag effect would result in the 

measured slip being below the average for the cross-section. 

This situation should be compared with that in the closed box 

where the slip was measured directly adjacent to the webs, and 

hence the measured slip would be above the average for the cross-

section. Consideration of the slip distribution across the ends 

of the box (fig. 5.39) indicates that this argument is not 

correct - at the ends of the open box the maximum slip was found 

to be at the outer edges of the steel flanges. Theoretical work 

does not confirm this observation but gives maximum slips above 

the webs. It is thought likely that these experimental readings 

at the ends of the model have been influenced by local effects 

due to the loading. 

Comparison of the measured slips with those predicted by 

the theoretical work again shows that the measured slips are 

much. lower than expected. It is quite likely that the mesh 

used in the theoretical work was too coarse to give accurate 

predictions of the effect of shear lag on the slip, but it is 

most unlikely that this would account for all of the difference. 

5.8.2 Results of ultimate load test 

The rig and loading procedure for this test were as for 

the closed box test (model C1), the ultimate load was found to 

be 39 tons compared with 41.7 tons for the closed box. Readings 

taken and presentation of the results were as described in 

section 5.7.2. 
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Figs 5.35 and 5.36 show that the longitudinal stresses 

in the steel top flanges are between 80 and 150 per cent higher 
in the ultimate load test than in the elastic tests. This 

increase is considerably greater than that noted in the closed 

box test, the comparatively small increase in the closed box 

test probably being caused by the shrinkage crack already dis-

cussed. It is interesting to note that the shear lag in the 

top flange is much less noticeable in the ultimate load test 

than in the elastic tests (fig 5.35); this is probably caused 

by the reduction in the ratio of direct to shear stiffness of 

he concrete flange when cracking occurs (ref 35). As with the 

closed box model the downward movement of the neutral axis as 

the concrete slab cracked has resulted in the bottom flange 
stresses being very nearly the same in the ultimate load test 

as in the elastic test. 

As in the previous test the shear stress distribution is 

not significantly affected by the cracking of the slab in the 

ultimate load test. Fig. 5.39 shows that the slip measured in 

the ultimate load test is very small. 

Figs 5.40 and 5.41 show the distribution of longitudinal 

strain at various load levels. Comparison of these readings 

with the corresponding readings from the closed box test (figs 

5.26 and 5.27) shows that for nearly all the gauges the agree-

ment between the two tests is very close. In fig 5.40 it can 

be seen that the gauges on the outer edges of the flanges seem 

to have given very high readings at the higher loads; these two 

gauges were 2mm gauge length, linear gauges, whereas all the other 

gauges were 10 mm gauge length rosettes, and it is thought that 

this may have had some effect on the readings at these high strain 

levels. The very high readings given by one gauge at cross-

section 1 are almost certainly caused by a faulty gauge. In this 

test there is much less evidence of the rapidly increasing shear 

strains at the web-flange junction which were present in the 

closed box test. 
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The longitudinal slab strains are shown in figs 5.44 and 

5.45, comparison of these with the corresponding diagrams for 

the closed box (figs 5.30 and 5.31) show that for the elastic 

tests the results are very similar. For the ultimate load test 

on the open box there is no evidence of the fall in strain, 

towards the edge of the slab, which was noted in the closed 

box test (fig 5.31). Comparison of these two sets of results 

suggests that the differing distributions of shear connection 

lead to a more efficient transfer of load into the slab from 

the open box than from the closed box. 

The theoretical and experimental load-deflection curves are 

shown in fig 3.47, the plotted theoretical displacements were 

again derived from the cantilever deflections using equation 

5.1. The theoretical and experimental curves show good agree-

ment, the ultimate load predicted by the theory is 41 tons 

compared with 39 tons obtained in the experiment. 

The photograph of the concrete slab after testing (fig 5.48) 

shows the distribution of cracking in the slab. Comparison of 

this with the corresponding photograph for the closed box, (fig. 

5.34), shows that the change from closed to open section leads 

to much greater cracking of the slab. It is possible that this 

increase in cracking is, at least partly, caused by the shrinkage 

crack in the closed box model leading to a release of the 

residual shrinkage stresses in the slab. It seems unlikely that 

this alone would lead. to such a noticeable difference and another 

contributing factor is likely to be the different distribution 

of shear connection discussed above. There is very little indic-

ation of the influence of shear stresses on the cracking of the 

open box slab (all cracks are at about 90°  to the longitudinal 

axis of the box). 

5.9 't't1E TESTING OF MODEL C2 

The object of this test was to investigate the behaviour 

of a closed composite box under bending, shear and torsion 

loading. The details of the loading arrangement were as for 
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model Cl except that the jack load and end support reaction 

were over diagonally opposite web-diaphragm junctions instead 

of over the centres of the end diaphragms. Hence, for any given jack 

load the bending and shear loads were as for model Cl but model C2 

had an additional torsion component of Pb/2 where P is the jack 

load and b the distance between the webs of the box. 

5.9.1 Results of elastic tests  

The testing procedure and presentation of results were 

as described for the tests Cl and 01. 

The distributions of longitudinal stress are shown in 

figs. 5.49 and 5.50. The theoretical results shown suggest 

that the torsion component of load should lead to quite sig-

nificant warping stresses, particularly in the top flange. 

Study of the experimental results shows that they do not confirm 

this prediction, and show no evidence of the presence of warping 

stresses. The likely cause of this disagreement is that the 

warping restraint present in the experiments is less severe than 

that assumed in the theoretical work. A possible improvement 

to the supported end boundary conditions assumed in the theoretical 

work has been discussed, with respect to the analysis of steel 

hollow sections, in section 3.5.3. In the absence of warping 

stresses the longitudinal stresses in this test would be ex-

pected to be the same as those in test Cl; comparison of these 

two sets of results shows that, for the webs and bottom flange, 

very good agreement is obtained. For the top flange the stresses 

in model Cl are generally slightly higher than those in model C2, 

this difference is almost certainly caused by the shrinkage crack 

already discussed. 

The distributions of shear stress, (figs. 5.51 and 5.52), 

show clearly the influence of the torsion component of load - 

the shear stresses in the loaded web are two to three times larger 

than those in the unloaded web. The influence of the torsion 

loading on the shear connector forces is clearly visible in fig. 

5.53, the connectors over the loaded webs being very much more 
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heavily loaded than those over the unloaded webs. Again the 

theoretical results give very much larger slips than were 

measured in practice; this problem has already been discussed 

in section 5.7.1. The influence of shear lag on the shear 

connector forces is again very evident in this test. 

5.9.2 Results of ultimate load test  

For this test the direction of the jack load was again 

reversed so that the slab was put into tension, the maximum 

jack load was found to be 37 tons. The testing procedure and. 

readings taken were as for.the previous two ultimate load tests. 

Figs 5.49 and 5.50 show that the cracking of the slab again 

leads to the longitudinal stresses in the steel top flange 

being very much higher in the ultimate load test than at the 

corresponding load in the elastic tests. This increase (about 

60 per cent at the centreline and about 90 per cent at the 

quarter-point) is considerably larger than in the previous 
two tests; this is almost certainly caused by the extra cracking 

in the slab caused by the torsion component of loading. In this 

test the change in neutral axis position due to the cracking of 

the slab is not sufficient to reduce the bottom flange stresses, 

and for the ultimate load test these are about 10 per cent higher 

than the elastic test values. 

Fig. 5.53 shows that in this model the cracking of the slab 

leads to a noticeable increase in the shear stresses in the steel 

top flange - this indicates that the concrete plays a significant 
part in resisting any torsion loading on this type of section. 

The reduction in slip, and hence in the shear connector forces, 

caused by the cracking of the slab, is again demonstrated by 

fig. 5.53. 

The strain distributions around the section (figs 5.54 to 

5.57) show that failure has taken place by shearing of the loaded 

web. Following the discussion in section 5.7.2, concerning the 

strength of the web flange junction, it is interesting to note 

that the shear strain in the top flange adjacent to the heavily 

68 



loaded web is much smaller than in the corresponding web; 

this suggests that the shear failure along the edge of the 

flange, discussed earlier, has not occurred. Contrary to this 

evidence is that of the rapidly increasing longitudinal slip 

on the loaded side of the box (see fig 5.60); since this slip 

is measured between the top of the webs and the concrete slab 

just above the webs this rapidly increasing slip could be 

evidence of large shear strains at the edge of the flange. 

It is possible that these large strains are confined to the 

area between the web-flange junction and the first row of 

studs, (at this row of studs some load will be transferred 

into the concrete slab), and hence the strain gauges present 

on the top flange would not provide evidence of these strains. 

The load deflection curves (fig 5.61) show that the torsional 

deflections, (given by the difference between the deflections of 

the two webs), are quite small, illustrating the high torsional 

rigidity of the closed section. Comparing fig 5.61 with fig. 

5.33 it may be seen that, according to the theoretical work, the 

bending stiffness, (i.e. that given by the average deflection of 

the two webs) of model C2, should, for loads up to about 20 tons, 

be very nearly equal to that of model Cl. The experimental 

results suggest that the bending stiffness of model C2 is a 

little lower than that of model Cl; it seems most likely that 

this difference is caused by a difference in the support stiffnesses, 

but there is no direct evidence to support this suggestion. The 

ultimate load predicted by the theory was 33.8 tons, compared with 

37 tons measured in the experiment. Hence, according to the 

experiments, the reduction in the ultimate strength caused by 

the presence of the torsion component of load in test C2 was 10.6 

per cent. This should be compared with the 11.5 per cent re- 

duction predicted by the theoretical work. 

The photograph of the cracked slab (fig. 5.62) shows clearly 

two sets of cracks - the bending cracks, running at 90 degress to 

the longitudinal axis of the slab, and the cracks influenced by 

shear stresses, running at between 60 and 45 degrees to the 
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longitudinal axis. In general the bending cracks appeared 

at considerably lower loads than the shear cracks. The slab 

cracks in this test were much more numerous and distributed 

over a much larger area of the slab than in the bending test. 

5.10 THE TESTING OF MODEL 02 

The object of this test was to investigate the behaviour 

of an open composite box under bending, shear and torsion 

loading. The loading arrangement was as described in section 5.9. 

5.10.1 Results of elastic tests 

The testing procedure and presentation of the results was 

the same as for the previous three models. The theoretical 

predictions of the longitudinal stress distributions, (figs 5.63 

and 5.64), suggest that the warping stresses for this model will 

be considerably greater than for the closed box. The stresses 

measured in the experiment again showvery little evidence of 

the presence of warping stresses, the longitudinal stresses 

measured in this test being very similar to those measured in 

the bending test (model 01). These results again demonstrate 

that-very little warping restraint was present in the tested 

models. 

As in the closed box model the distributions of the shear 

stress (figs. 5.65 and 5.66) are clearly influenced by the 

torsion load. Both the theoretical and experimental results show 

that the web and bottom flange shear stresses are very similar 

in this test to those found in the closed box model. As in the 

bending tests it can be seen that the shear stresses in the top 

flanges are considerably smaller in the open box model than in 

the closed box model; again this is caused by the two shear 

paths from the top flanges into each web in the open box, com-

pared with only one in the closed box, and again is of part-

icular importance when the top flange is thinner than the web. 
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The influence of the torsion on the longitudinal slip 

distribution is demonstrated in fig. 5.67. The experimental 

results suggest that the torsion load causes a reduction in 

the slips over the unloaded web, making these slips very nearly 

zero, but show . very little corresponding increase in the slips 

over the loaded web. This is very surprising, as it would be 

expected that any decrease in slips on one side of the box would 

be matched by an equal increase on the other side. No measure-

ments of the transverse slip were taken in the experiments but 

the theoretical work suggests that for this model the maximum 

transverse slip may be as much as 50% of the maximum longitudinal 

slip. Since the maximum longitudinal and transverse slips both 

occur at the loaded end of the model these transverse slips 

will have a significant effect on the maximum loads that the 

shear connectors are required to carry. 

5.10.2 Results of ultimate load test  

For this test the direction of the jack load was again 

reversed so that the slab was put into tension; the maximum jack 

load was found to be 32 tons. 

Figs 5.63 and 5.64 show that the top flange longitudinal 

stresses are very much higher in this test than in the elastic test. 

The magnitude of the increase of these stresses in this model 

(up to 250% at the quarter-point) is very much larger than in any 

of the previous models, the reason for this being the much more 

extensive cracking of the slab in this test than in the previous 

tests. This extra cracking is caused by the much higher shear 

stresses present in the slab in this test because of the absence 

of a steel plate closing the top of the box. In this model the 

change in neutral axis position results in very little difference 

between the bottom flange longitudinal stresses measured in the 

elastic tests and those measured in the ultimate load test. Fig. 

5.66 shows that the cracking of the slab causes no significant 

change in the shear stress distribution. 
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Fig 5.93 F 

C' 	B' A' D' 

The longitudinal slip distribution (fig 5.67) shows that the 

cracking of the slab in the ultimate load test leads to the tor-

sional component of the slip increasing much more significantly 

than the bending component. (The slip distribution may be 

assumed to be made up of a bending component symmetrical about 

the longitudinal centreline and a torsion component anti-symmetrical 

about the longitudinal centreline). This increase in the torsional 

component of slip leads to the slip in the unloaded web being in 

the opposite direction to that in the loaded web. 

Figs 5.68 and 5.69 show that as the load increases the 

strains in the top flange above the unloaded web increase more 

rapidly than those in the flange above the loaded web. This 

seems rather surprising since, in general, the warping stresses 

and bending stresses would be expected to be of the same sign 

in the loaded web and of opposite sign in the unloaded web... One 

possible explanation of the results obtained in the experiment 

is as follows: 

Consider an open steel section as shown in fig 5.92 

D iP C 	B 	A 

cNr 
Fig 5.92 

Assume that one end of the section is fully restrained against 

warping, and that the section is loaded with a torque T in the 

direction shown. Under this loading the warping stresses at the 

restrained end will result in flange AB going into compression 

and flange CD into tension. If the torsion load T is replaced 

by an eccentric bending load P on flange CD it can be seen that 

the direct stresses due to bending and those due to torsion will 

be of the same sign in CD and of different signs in AB. Hence 

the total direct stress in CD will be greater than that in AB. 

Now consider a composite section as tested (fig. 5.93). 

P 
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Again assume that one end is fully restrained against warping 

and that the section is loaded with a torque T. Again the warping 

of the section will result in flange A'B' going into compression 

and flange C'D' going into tension. The torsion load would also 

cause shear stresses in the concrete flange in the direction F. 

These shear forces would cause the slab above C'D' to go into 

compression and the slab above A'B' to go into tension; i.e.. 

the warping stresses in the concrete flange are of opposite sign 

to those in the corresponding steel flange. If the torsion load 

T is then replaced by an eccentric point load P, again the direct 

stresses due to the bending and those due to the torsion are of 

the same sign in C'D' and of different sign in A'B', but in the 

concrete slab the two sets of stresses will be of the same sign 

above A'B' and of different sign above C'D'. As a result of this 

the slab is much more likely to crack in the area above A'B' 

than above C'D'. When the slab cracks the tensile forces in it 

must be released and carried by another part of the beam, and a 

large amount of the load released will be carried by the steel 

flange A'B', resulting in an increase in the tensile stresses 

in A'B'. If the extra tensile stress carried by A'B' due to the 

cracking of the concrete is more than twice the original warping 

stress in A'B' then this would result in the tensile stress in 

the flange above the unloaded web (flange A'B') being higher 

than that in the flange above the loaded web (flange C'D'). 

Fig 5.74 shows that, throughout the test, the slip between 

the steel and the concrete, and hence the shear connector forces, 

are highest in the area close to the longitudinal centreline of 

the model. 

For this test the load-deflection curves (fig 5.75) are 

plotted as bending and torsion deflections against applied load. 

The reason for plotting in this manner rather than as done for 

the closed box is that, because of the likely weakness of this 

type of section in torsion, approaching failure of the section 

might be more clearly indicated by the torsion. deflection than by 

the bending deflection. Both the theoretical and experimental 
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curves show that as the ultimate load approaches the loss of 

torsional stiffness is much faster than the loss of bending 

stiffness. Fig 5.75 shows that the theoretical and experimental 

ultimate loads show less good agreement than in previous tests; 

comparison of the reduction in ultimate load caused by moving 

the load from the centreline to the web shows that the reduction 

given by the theory is 12.5 per cent compared with 17.9 per cent 

obtained in the experiments. Failure of this model was caused 

by a crack along the longitudinal centreline of the slab (figs 

5.76 and 5.76A). This crack was primarily caused by shear stresses 

in the plane of the slab, but the tested model shows some evidence 

of the presence of a transverse hogging bending moment in the slab 

which would help to lead to an earlier failure of the slab. With 

the plane stress assumption made in the theoretical work, any 

such bending moments are neglected, and hence an over-estimate 

of the strength may be given. An important difference between 

this model and the other three so far discussed is that the 

ultimate strength of this model is governed-mainly by the 

strength of the concrete, whereas in the other three models the 

ultimate strength was controlled mainly by the strength of the 

steel section. This is important because the values of the strength 

and stress- strain properties of the steel can be measured more 

accurately than those of the concrete. 

Fig.5.76a shows a photograph of the slab after testing and 

fig 5.76a shows a detail of a section of the central crack. The 

deformation of the reinforcing bars shown in fig. 5.76a (orig-

inally the longitudinal and transverse bars were orthogonal) 

shows that this crack was caused by shearing of the slab. 

5.11 nit, TESTING OF MODEL C3  

The object of this test was to investigate the behaviour of 

a closed composite box under torsion load. Details of the test 

rig and loading arrangement are given in section 5.2.2. For the 

torsion tests the elastic and ultimate load tests were conducted 

with the same rig and loading arrangement. Again three tests 

were done, two elastic tests followed by the ultimate load test. 
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5.11.1 Results of elastic and ultimate load tests 

For the elastic tests the jack load was increased from 0 

to 10 tons in 2 ton increments, and then reduced to 0, again in 

2 ton increments. For the ultimate load test a two ton load 

was applied to take up any slack in the supports, the load was 

then increased in 4 ton increments up to 38 tons, and then in 

2 ton increments up to failure (46 tons). 

For comparison of the theoretical and experimental work 

only one set of experimental results is given, this being the 

average of the two sets of elastic test readings and the ultimate 

load test readings, all for a 10 ton jack load. No direct stress 

distributions are plotted, the maximum longitudinal stress measured 

in the experiments for a 10 ton load was only about 3 N/mm2 , which 

was not thought to be significant. This lack of longitudinal 

stresses indicates that the tested section was effectively free 

from warping restraint. 

The shear stress distributions (figs 5.77 and 5.78) show 

quite good agreement between the theoretical and experimental 

results. The fact that the experimental results were consistent-

ly a little below the theoretical results indicates that the jack 

load might have been slightly over-estimated. It is important 

to note that the shear stresses at the edge of the steel top 

flange are considerably higher than those at the midpoint of 

the flange. At the web-flange junction the shear flow in the 

flange must be equal to that in the web, but by the middle of 

the flange a significant amount of the shear load in the top 

flange will be carried by the concrete slab. 

Fig. 5.79 (the longitudinal slip distribution) clearly 

demonstrates a difference between the built-in end assumed in 

the theoretical work and the situation present in the model. 

The built-in end assumption made in the theoretical work leads 

to a condition of zero slip at the centreline of the model, 

whereas in the tested model the slip was found to be nearly 

uniform along the length of the beam. Near the loaded end of 

the box the theoretical and experimental results for the slip 
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at the edge of the box agree quite closely. Across the end 

of the box virtually no slip was measured in the tests, where-

as the theoretical work predicts a uniform change from the 

positive slip at one side of the box to the negative slip at 

the other side of the box. There are two possible causes of 

this disagreement between the theoretical and experimental work: 

(1) The concentrated load applied at the end of the box may 

have affected the readings. 

(2) In the tested model, in order to avoid premature failure 

of the end of the box, the slab was extended about 50 mms 

beyond the end diaphragm; this section of the slab is not loaded 

and may have resulted in reduced slip readings. 

The plots of strain and slip distribution around the section 

for increasing load (figs 5.80 to 5.82) clearly demonstrate 

that the weakness of this type of section occurs in the steel 

top flange, close to the web-flange junction. In fig 5.80 

it can be seen that this leads to rapidly increasing shear strains 

in this area. The longitudinal slip plotted in fig 5.82 has 

been measured between the top of the web and the bottom of the 

concrete slab immediately above the web. The first row of studs 

on the steel top flange are placed 24 mms from the web, and 

hence the very large slips shown in fig. 5.82 could be an 

indication of high shear strains in the area between the web 

and the first row' of studs, rather than an indication of failure 

of the shear connection. 

Fig.5.82a (the load-rotation curve) shows that in the 

elastic region thee  stiffness of the model measured in the 

experimental work is almost identical to that given by the theory. 

Unfortunately, owing to convergence problems discussed in chapter 

6, it was not possible to continue the dynamic relaxation analysis 

up to the ultimate load. Using simple torsion theory the 

ultimate load measured in the experiment (46 tons) gives a 

shear stress of 183 N/mm2  at the edge of the steel top flange. 

Taking the yield stress of steel in shear as csojV,where Go is 

the yield stress in tension, the yield stress of the steel top 
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flange in the model is 200/vr = 162 N/mm2 ; hence it seems that 

taking the ultimate load of the section as the load at which 

the thinnest plate yields in shear gives quite a reasonable 

estimate of the ultimate load of the section. 

The photograph of the cracked slab (fig 5.83) shows that 

the cracks are quite widely spaced and confined to the area 

above the steel flange. 

5.12 'stir: TESTING OF MODEL 03  

The object of this test was to investigate the behaviour 

of an open composite box under torsion loading. Details of the 

test rig and loading arrangement are as discussed for model C3. 

5.12.1 Results of elastic and ultimate load tests  

Because of the likely torsional weakness of this model the 

maximum jack load for the elastic tests was restricted to 6 tons, 

hence the stress and slip distributions (figs 5.84 - 5.86) are 

plotted for a 6 ton load. 

Comparison of the theoretical stress distributions shown 

in figs 5.84 and 5.85 shows that, particularly in the top 

flanges, the two stress distributions are different. This 

difference is caused by local effects due to the built-in end 

assumed at gauged section 1, and it could be argued that it 

would be more appropriate to compare both experimental stress 

distributions with the theoretical one at gauged section 2. 

Fig. 5.85 shows that very good agreement was obtained between 

the theoretical and experimental distributions at this section. 

It should be noted here that the problem of high shear stresses 

at the web-flange junction does not occur in the open box. 

Again the longitudinal stresses are not plotted; in 

this test they were a little more significant than in the 

closed box test, averaging about 8 N/mm2  in the top flange and 

about 4 N/mm2  in the bottom flange, both being tensile stresses. 

The likely cause of these tensile stresses is the release, as the 

slab cracked, of the residual tensile stresses caused by the 

drying skrinkage of the concrete. 
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The longitudinal slip distribution (fig 5.86) shows that the 

theoretical work gives a good prediction of the slip distribution, 

but the magnitude of the slips measured in the experimental work 

was only 30 to 50 per cent of those predicted by the theoretical 

work. It can be seen that for this type of model and loading 

the most critical stud loadings occur along the inside edge of 

the steel flanges. Again the disagreement between the theoretical 

and experimental slips at the midpoint of the box is caused by the 

built-in condition assumed in the theoretical work. 

The rapidly increasing slips along the inside edge of the 

unloaded flange (fig 5.89) indicate a possible weakness of the 

shear connection in this area, particularly since, with the 

twisting of this model, there is likely to be quite substantial 

transverse slip (the theoretical work indicates that the maximum 

transverse slip is about three-quarters of the maximum longitudinal 

slip) . 

The load-deflection curve (fig 5.90) shows that the cracking 

of the slab causes a considerable reduction in stiffness at a 

load of 8 tons, and from there on the stiffness gradually decreases 

until the ultimate load (19 tons) is reached. For this model the 

agreement between the theoretical and experimental results is poor - 

the ultimate load predicted by the theory is 54 tons. As for 

model 02 the reason for this disagreement is the inability of the 

theoretical work to take account of the transverse bending of the 

slab and the uplift of the shear connectors. Fig 5.90 also 

shows that the elastic stiffness of this model predicted by 

the theoretical work is slightly less than that measured in 

the experiments. This is the first model in which a significant 

difference has occurred between the theoretical and experimental 

stiffnesses, and is probably an indication of the sensitivity of 

this model to the values of shear connector stiffness and the 

Young's modulus for concrete used in the theoretical work. 

Fig 5.91 shows a photograph of the cracked slab. Again 

the cracks are confined almost entirely to the area between.the 

webs, but in this model there are considerably more cracks than 

in the closed box model under similar loading. 
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5.13 SUMMARY OF IMPORTANT RESULTS FROM EXPERIMENTS  

(1) The series of tests has clearly demonstrated the weakness 

of the open type of composite box section when it is subjected 

to torsional loads. This weakness is of importance not only 

in terms of the ultimate strength of the structure, but also 

in terms of the extra cracking of the concrete slab in the 

open type of box. 

(2) The applicability of the plane stress analysis to the 

closed section has been demonstrated, but for the open box 

section the out of plane deflections of the slab, caused by 

even quite small torsion loads, causes problems in the 

application of this type of analysis. 
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CHAPTER 6 

•APPLICATION OF COMPOSITE BOX PROGRAMS 

6.1 MODELS USED IN THEORETICAL, STUDY  

The basic closed box model used in this study was adapted 

from models 3 and 4 in Moffatt's study (ref 21); details are 

given in fig 6.1. The shear connection stiffness used is that obtained 

by Moffatt using the working load criteria of CP117 part 2 1967; 

it is equivalent to the provision of 19mm x 100mm headed studs 

at 600mm centres longitudinally and transversely. The basic 

open box model is shown in fig 6.2. It can be seen that this 

is identical to the closed box model except that the top flange 

has been split along the longitudinal centreline and each half 

moved 915mms outwards. 

6.2 MESH SIZE STUDY  

In order to examine the effect of variation of the finite 

difference mesh size on the stress distributions and load-deflection 

curves, the open box model (01), loaded with a point load over 

one web, was used. Two mesh arrangements were considered; the 

coarse mesh is shown in fig 6.3 and the fine mesh in fig 6.4. It 

should be noted that the choice of mesh size is greatly restricted 

by the geometry of the beam. 

For comparison of the elastic stresses obtained with the 

two different mesh sizes a load of 56 tons (a shear stress of 

25 N/mm2) applied over one web was considered. The direct and 

shear stresses at the cantilever support are shown in figs. 6.5 

and 6.6 In general the agreement between the two sets of results 

is very good; the most significant difference is in the steel 

top flanges, where the fine mesh shows up the peaks of direct 

stress above the webs. Other investigators (Lamas (19)) have 

found that, because the onset of plasticity tends to even out 

the peaks and troughs of stress, mesh size effects are of greater 

significance in the elastic region than in the ultimate load 

region. In order to check the effect of mesh size on the 

ultimate load behaviour the load-deflection curves obtained 

with the two meshes are compared in fig 6.7. The general agree- 

ment between the two curves is quite good, the main difference being 



- the fact that the fine mesh evens out the changes in sitffness 

predicted by the coarse mesh (e.g. in the area around 130 tons 

load). The reason for these changes in stiffness is that cracking 

of the concrete leads to a release of stress, and with the coarse 

mesh the cracking of a small number of nodes can lead to a 

significant deflection due to the released stresses. Problems 

with convergence and the amount of computer time used meant that 

the fine mesh analysis was stopped at 260 tons load (80% of 

the ultimate load predicted by the coarse mesh analysis). An 

illustration of the effects of mesh size on computer time re-

quirements is that in the fine mesh analysis of this model 8 

load increments were applied and the cost was 11 computer units, 

in the coarse mesh analysis 19 load increments were applied and 

the cost was 5 computer units. Another point in favour of the 

coarse mesh was that, in order to obtain good convergence, it 

was most desirable that the program should be run from a telex 

terminal; convergence of each increment could then be judged by 

eye and, if required, further iterations could be applied to 

give better convergence; also, damping factors for each increment 

could be chosen according to the results of the previous increment. 

Because of memory space limitations it was not possible to run 

the fine mesh program in this way. 

Additional verification that quite a coarse mesh is adequate 

for this type of analysis is given by the good agreement obtained 

between the theoretical and experimental results discussed in 

chapter 5. 

As a result of the points discussed above it was thought 

that the mesh shown in fig 6.3 would provide sufficiently 

accurate results for this investigation. 

6.3 BEHAVIOUR OF BOX 01 UNDER VARIOUS COMBINATIONS OF LOAD 

Fig 6.8 shows the load-deflection curves for model 01 under 

various combinations of bending and torsion load. For load case 1 

equal loads of P12 were applied to each web. The loss of stiffness 
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at about 150 tons load indicates the onset of cracking of the 

slab but, after the temporary reduction due to the release of 

cracking stresses in the concrete, the overall stiffness is 

almost completely regained. After this there is no great 

reduction in stiffness until a load of about 320 tons, when 

the steel begins to yield, and failure follows quickly, the ul-

timate load reached being 335 tons. In practice, if a beam of 

these dimensions was tested, the sudden loss of stiffness due 

to cracking would probably not be observed, the cracking of the 

concrete being more gradual and spread over a larger range of 

loads. 

For load case 4 a torsion load was applied to the free end 

of the model. Under this loading the first cracking of the 

concrete occurs. at a load of about 350 T-m, and this cracking 

leads to a reduction in torsional stiffness of about 22%. 

Following this initial cracking the stiffness of the model 

remains reasonably constant until a load of 2200 T-m is reached, 

from here there is a rapid loss of stiffness and the ultimate 

load is 2280 T-m. 

Load cases 2 and 3 involved application of a combination of 

bending and torsion. For load case 2 a shear load was applied 

to one web of the section, hence an applied load of P gives a 

torsion load of PB/2 where B is the distance between the webs 

of the section. For load case 3 a torsion load of PB was applied 

for a bending load of P. For both of these load cases the 

initial reduction in bending stiffness due to cracking of the 

slab occurs at a lower load than in load case 1 - for load case 2 

this occurs at 130 tons and for load case 3 at 110 tons load. 

For load case 2, after this initial loss of stiffness, the load-

bending deflection curve rejoins that for load case 1, and the 

curves remain very similar up to a load of 245 tons. Above this 

load the torsion component of load in load case 2 causes a more 

rapid reduction in bending stiffness than in load case 1, and the 

ultimate load reached is 325 tons, hence the eccentricity of the 

load causes about a 3 per cent reduction in the ultimate load. 
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For load case 3, after the initial loss of stiffness at 

110 tons load the deflections are consistently higher than those 

for the corresponding bending loads in load case 1. The ultimate 

load reached is 275 tons - 18 per cent lower than for load case 1. 

Comparing the torsion load-deflection curves it can be seen 

that in all three cases the cracking of the slab leads to a 

reduction in the torsional stiffness of the section. For load 

case 4 the reduction in stiffness was 22 per cent, for load case 

3, 34 per cent and for load case 2, 37 per cent. Hence it can 

be seen that the higher the bending load relative to the torsion 

load, the greater the reduction in torsional stiffness due to 

the cracking of the slab. The differences are almost certainly 

caused by the different crack directions caused by the different 

load combinations. 

6.4 BEHAVIOUR OF BOX Cl UNDER VARIOUS COMBINATIONS OF LOAD  

The load combinations investigated for this model are the 

same as for model 01; the load-deflection curves are shown in 

fig 6.9. 

Under the bending load (load case 1) the behaviour of this 

model is very similar to that of the open box model. Again, at 

about 150 tons load there is a reduction in stiffness due to 

cracking of the slab, but there is no serious permanent loss of 

stiffness until a load of about 315 tons is reached. Above this 

load the stiffness rapidly decreases and the ultimate load is 

about 328 tons. This ultimate load is very slightly (about 2 

per cent) lower than that for the open box; the reason for this 

is the slightly greater influence of bending shear stresses on 

the steel top flange of a closed box than on an open box. 

Under load case 4 the problem of stability of the dynamic 

relaxation solution, when applied to a closed box under torsion 

load, again occurred. This problem has already been mentioned in 

chapter 5 with respect to the analysis of the test specimens. 

For the beam considered here quite adequate convergence was obtained 
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up to a load of 2200 T-m, and also for the relaxation cycles 

of the next applied load increment. The problem occurred when 

an attempt was made to redistribute the cracking stresses in 

this increment, when the solution rapidly diverged to infinity. 

The most likely cause of divergence of the D.R. solution is 

that the structure has lost all stiffness and hence is unable 

to carry the load being applied. This is not the case here 

since, with the plane stress assumption made in this solution 

complete loss of stiffness will occur only at the very large 

deflections. Comparison of the load at which the instability 

occurs with the ultimate load calculated by simple torsion 

theory (assuming that the section fails when the shear stress 

in the thinnest steel plate reaches yield) shows that the 

ultimate load of the section has nearly been reached. The 

result of these convergence problems is that, for the closed 

box under load case 4, almost the full elastic torsional stiff-

ness is maintained up to a load of 2200 T-m, and the ultimate 

load of the section is probably just under 2400 T-m. Comparing 

this with the results obtained from the open box model it can 

be seen that the ultimate load appears to be very similar, but, 

for a load of 2000 T-m the deflection of the open box is about 

35% higher than that of the closed box. 

For the closed box, under load cases 2 and 3, the bending 

load at which the initial slab cracking occurs is reduced to about 

130 tons, compared with. 150 tons for load case 1. This reduction, 

particularly for load case__3, is not as great as for the open box, 

indicating the smaller influence of the torsion load component on 

the cracking of the closed box slab. After this initial cracking 

the load-bending deflection curves for this model under load 

cases 1, 2 and 3 remain very similar up to a bending load of 

about 260 tons. At loads above 260 tons the model under load 

case 3 becomes noticeably less stiff than the other two and at 

loads above 290 tons the model under load case 2 shows higher 

deflections than for load case 1. Comparing the ultimate loads 
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reached by the closed box under these loads with those reached 

by the open box shows that, for load case 3, the ultimate load of 

the closed box is considerably, (about 15 per cent), higher 

than for the open box, but under load case 2 the ultimate loads are 

very nearly the same. 

6.5 EFFECT OF VARIATION OF STEEL TOP FLANGE WIDTH  

As discussed in section 6.1 the dimensions of model 01 

were derived from those of model Cl. In practice the steel 

top flanges are likely to be much narrower than those in model 01, 

and hence the effect of vatiation of the width of these flanges 

must be considered. In order to do this the behaviour of model 

02 (fig 6.11) was-considered. The top flanges of model 02 are 

half the width of those in model 01 but, in order to maintain 

the basic cross-sectional properties of model 01, are doubled in 

thickness. Since the area of contact between the steel and con- 

crete is halved, in order to maintain similar total shear connect- 

ion properties the stiffness of the shear connection is doubled.. 

In order to represent this cross-section in terms of finite 

differences it is necessary to use a finer mesh across the 

flanges than for model 01; 17 nodes were taken across the 

concrete flange, 3 across each steel top flange, and 9 across 

the bottom flange. The longitudinal mesh size was reduced to 

1830 mms. 

For this model only load case 2 (load over one web) was 

considered. 

Figs 6.12 to 6.15 show the direct and shear stress distrib-

utions at the cantilever support for models 01 and 02 under a 

load of 130 tons. In the steel sections the direct stresses for 

the two models are almost identical, as are the shear stresses in 

the webs and bottom flanges. In the steel top flanges the maximum 

shear stresses in model 01 are approximately double those in model 

02. This is another illustration of the importance of the relative 

thicknesses of the steel plates, the top flanges in model 01, being 
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half the thickness of those in model 02, require double the 

shear stress to give the same shear flow as in model 02. Con-
sidering the stress distributions in the concrete the main 

difference between the two models is that, in model 02, one 

concrete node above the loaded web has cracked; apart from 

this the direct stress distributions are very similar. With 

the shear stress distribution the peak above the loaded web is 

caused by the cracking of the adjacent node. 

Fig. 6.16 shows the load-deflection curves for the two models. 

Comparison of the bending load-deflection curves shows that they 

are very similar up to a load of 310 tons (95 per cent of the 

ultimate load of model 01). Comparison of the torsion load-
rotation curves franthe two models shows that the narrower 

top flange in model 02 leads to a small reduction in the torsional 

stiffness of the model. This reduction is about 4 per cent in 

the elastic region, but considerably more as the ultimate load 

is approached. 

One of the problems associated with the use of a. fine 

,mesh size is illustrated here. When using the normal mesh it 

was possible to run the program from a telex terminal and the 

convergence of each increment could be watched by printing out, 

every ten cycles, the values. of various displacements. As a 

result of this the decision as to whether a further load increment 

was required and if so, the damping factors to be used, could be 

made according to the results of the previous increment. For 

the finer mesh sizes restrictions on computer memory space avail-

able from a telex terminal meant that the program had to be run 
as a batch job. In order to do this the number and size of 

the load increments and the damping factor for each increment 

must be decided in advance. An example of the difficulties 

associated with this is that the number of increments taken 

for model 02 has not been sufficient for the ultimate load to 

be reached. In order to apply further load increments it would 

be necessary to repeat the complete analysis for the previous 

increments, and hence a considerable amount of extra computer 

time would be required for an extra three or four load increments. 
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In this case it was thought that the analysis of model 02 

had been taken far enough to demonstrate the similarities and 

differences between the behaviour of models 01 and 02. 

6.6 EFFECT OF VARIATION OF DOWELL FACTOR 

In undertaking the analysis of a composite box one of 

the major problems encountered is the determination of the 

material properties for the cracked concrete. As described 

in chapter 4 these properties are based on a dowell factor and 

an aggregate interlock factor; increase or decrease of these 

factors will result in a corresponding increase or decrease of 

the shear stiffness of the cracked slab. In order to investi-

gate the effect of variation of the slab shear stiffness model 

01 under load case 3 was considered. The load-deflection curves 

for this case with dowell factors of 0.2 and 0.5 are plotted 

in fig. 6.17. (This variation is equivalent to a reduction of 

approximately 15 per cent in the shear stiffness of the cracked 

slab). 

Fig. 6.17 shows that the reduction of the dowell factor 

from 0.5 to 0.2 leads to a slightly faster reduction in both 

the bending and torsional stiffness after cracking of the slab. 

Considering the large variation applied to the dowell factor 

the -variations in the overall stiffness of the -model are sur-

prisingly. small. There is:virtually no effect on the ultimate 

load of the structure. The fact that the overall behaviour 

of the - model is comparatively insensitive to these values is 

encouraging since their accurate evaluation is very difficult. 

6.7 EFFECT OF VARIATION OF SHEAR CONNECTION STIFFNESS  

It has already been shown (Figs 6.8 and 6.9) that there 

is a considerable difference between the torsional rigidities 

of the open and closed composite sections (models 01 and C1). 

The rigidity of the open section is likely to be greatly affected 

by the degree to which. the concrete slab. changes the steel from 
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an open section to a closed section. This degree of closure 

of the section is likely to be greatly affected by the stiffness 

of the shear connection between the steel and the concrete. In 

order to establish the effect of a variation in the shear connect-

ion stiffness on the behaviour of the-open box model, the 

effect of doubling the shear connection stiffness of model 01 

was investigated. Since the torsional behaviour is likely to 

be more seriously affected by variation of the shear connection 

properties than the bending behaviour, load case 4 was considered. 

In the elastic region the change of shear connection stiffness 

caused virtually no change in the distribution of shear stress 

around the section, (figs 6.20 - 6.21), but considerable changes 

in the direct stress distribution were noted (figs 6.18 - 6.19).. 

The distributions of direct stress show that, as the shear 

connection stiffness is increased, the section behaves more like 

a closed section than an open section, and hence the warping 

stresses decrease. The doubling of the shear connection stiff-

ness considered here results in,a decrease of approximately 25 

per cent in the maximum warping stress. The increase in shear 

connection stiffness leads to only a very small, (about 7 per 

cent), increase in the maximum shear connector force; hence it 

can be seen that doubling the number of shear connectors on the 

top flange, will result in a decrease of about 45% in the load 

in each connector. 

The load-deflection curves for the two connection stiffnesses 

(fig 6.22) shows that the beam with the stiff connection has a 

torsional rigidity about 5 per cent higher than that of the beam 

with the normal shear connection. Virtually no change was noted 

in the ultimate load of the section. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

7.1 CONCLUSIONS 

The main conclusions drawn from the work described in 

this thesis are as follows: 

(1) In chapter 2 upper and lower bound solutions to the 

ultimate load of a steel hollow section under bending, shear 

and torsion load have been derived. For boxes under bending 

and shear load it has been shown that the Heyman-Dutton empirical 

relation lies between the upper and lower bound solutions for all 

but very short boxes. For the 200mm x 300mm beam considered 

(fig 2.1) very short boxes may be taken to be those with depth 

to length ratios greater than 0.6. For boxes under combined 

uniaxial bending, shear and torsion, interaction curves have 

been plotted for three difference lengths of 300 mm x 200 mm 

and 200mm x 300mm rolled hollow sections. For the shorter beams, 

(relatively high shear forces), the difference between the upper 

and lower bound solutions is much larger than for the longer 

beams, suggesting that accurate prediction of the collapse load 

is more difficult for shorter beams. An illustration of the 

differences involved is that for a 300mm x 200mm beam of length 

300mms the maximum difference between the upper and lower bounds 

was around 17%, compared with less than 3% for the 1200mm long 

beam. 

In evaluating the lower bound solutions it has been 

assumed that a section is unable to carry any further torsion load 

when one web has reached full yield. In practice, whether or 

not a section will fail when this load is reached, is likely to be 

governed by the capacity of the section to redistribute the 

stresses caused by any further loading. This is likely to depend 

on the amount of frame action present, and on the rigidity of any 

diaphragms or bracing in the box. 

(2) In chapter 3 a computer program, using the dynamic relaxation 

method, to solve the finite difference equations for a steel hollow 

section is described. Results from this analysis suggest that, 
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due to interaction between direct and shear stresses, the web 

failure mode may be of significance in a wider variety of beams 

than is suggested by the work in chapter 2. In order to fully 

establish the significance of this web failure mode a series of 

tests is required. Further theoretical work is required with a 

more detailed diaphragm model and also, possibly, taking account 

of frame action of the section. 

(3) The series of tests on small-scale model composite box girders 

has demonstrated a number of important aspects of their behaviour. 

The bending tests on the closed composite box have demonstrated 

the importance of shear lag, particularly with regard to the load-

ing on the shear connection. The torsion and eccentric load 

tests on the closed boxes have demonstrated the strength of this 

type of section in resisting torsion loads. The open box experi-

ments have shown that, under a bending load, the behaviour of an 

open box section is almost the same as that of a similar closed 

box. The later tests showed that addition of quite a small torsion 

component of load, (for example that caused by placing the load 

over one web rather than over the longitudinal centreline), leads 

to very extensive cracking of the concrete slab. In both the 

eccentric load and torsion tests the ultimate strength of the open 

box was shown to be considerably lower than that of the corres-

ponding closed box. For the models tested under eccentric load 

the ultimate load of the open box was 32 tons compared with 37 

tons for the closed box, for the torsion tests the corresponding 

ultimate loads were 19 tons and 46 tons. The type of failure 

of the concrete slabs in these two open box tests has indicated 

that the strength of this type of section may be seriously affected 

by bending moments within the concrete slab. 

(4) The dynamic relaxation program has been extended to analyse 

both open and closed composite box girders. Comparison of the 

results obtained using these programs with those obtained in the 

tests shows that good agreement is obtained for the closed box 

tests and also for the open box under bending load. For the open 

box under loadings containing a torsion component the ultimate 

load predicted by the theory is much higher than that measured 
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in the experiments; (e.g. for the torsion test 54 tons pre-

dicted by the theory compared with 19 tons measured in the experiment). 

The reason for the poor agreement in these two cases is the influence 

of the slab bending moments discussed above; the plane stress 

condition assumed in the theoretical work makes no allowance for 

the effects of these forces. It is thought likely that these 

bending moments will be greatly affected by the rigidity and 

positioning of any bracing or diaphragms present in the boxes. 

(5) The finite difference programs have been used to analyse 

open and closed composite boxes of more realistic dimensions than 

those tested. The results indicate that, for an open box section, 

cracking of the concrete slab leads to a significant, but not 

catastrophic, loss of torsional rigidity (20 to 40 per cent, 

depending on the type of loading). In general the predicted 

ultimate loads of the open and closed boxes were similar for 

similar load combinations. In the light of the results of the 

experimental work it seems quite likely that, in practice, where 

there is a torsion component of load, the ultimate loads of the 

open boxes may be considerably reduced by bending stresses in the 

slab. 

The effects, on the behaviour of an open box, of variation of 

parameters thought to be of significance to the torsional properties 

of the section were investigated. The most important of these 

properties was found to be the shear connection stiffness. It was 

found that variation of the shear connection stiffness leads to 

significant changes in the warping stresses in the section. This is 

likely to be of particular importance with. regard to the cracking 

of the concrete slab. A second significance of the warping 

rigidity of the section is that, in practice, the fully restrained 

warping condition, assumed in the theoretical work, is not likely 

to be present; hence the increased tendency to warp, caused by a 

reduction in the shear connection stiffness, is likely to lead 

to a decrease in the overall stiffness of the section. 

7.2 FUTURE WORK 

The work described in this thesis has demonstrated the 

sensitivity of open composite boxes to torsion components of load. 



The bending moments in the concrete slab (see conclusion (3)), 

which were found in the experimental work, may or may not be of 

significance in full size composite box girders. In order to 

investigate this further it would be necessary to undertake either 

some tests on large scale open box specimens, or a theoretical 

investigation which includes out of plane bending of the slab. 

It appears that the details of the diaphragms may significantly 

affect the behaviour of this type of section and hence these 

should be considered in some detail. 

A considerable amount of work remains to be done on the 

influence of shear lag on the ultimate load behaviour of the 

shear connection, and particularly on the capacity of the 

connection to redistribute load after failure of one or more studs. 

Another area requiring investigation is the influence, on 

the overall behaviour of the section, of buckling of either a web or 

the compression flange. Although the buckling behaviour of 

individual plates is: now quite well understood little work has 

yet been done on the ability of a composite box section to 

redistribute loads released by the buckling of one plate. 
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Fig 3.3 Flow chart for D.R. method 
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Fig 3.4 	Finite difference mesh details 



NX 
ANXY 

2.0 

1.5 

1.0 

0.5 

❑ Mesh 1 
x Mesh 5 
a Mesh 6 

All plates 1-8mms thick 

104 

Fig 3.5 Beam used for mesh size study 
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Fig 3.9 Load-end deflection curves for 

section 300mms x 200mms, 300mms long 
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Fig 4.2 Stresses on a section of plate 4 
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Fig 4.4 Stresses at typical section of junction of plates 1 & 4 
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Fig 5.14 Formwork for closed box model 
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Fig 5.15 Formwork and reinforcement for 

open box model 



Fig 5.16 Photograph of central support rig 



Fig 5.17 Loading arrangement for ultimate load test 
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Fig 5.18 General view of torsion rig 



Fig 5.19 Loaded end of model C3 



Fig 5.20 Supported end of model C3 
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Fig 5.26 Test Cl Longitudinal strain distribution 

at gauged section 1 for various applied loads 
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Fig 5.28 	Test Cl Shear strain distribution at 

gauged section 1 for various applied loads 
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Fig 5.33 Test Cl Load - end deflection curve 



Fig 5.34 Test Cl, photograph of cracked slab. 
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Fig 5.62 Test C2, photograph of cracked slab. 
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Fig 5.64 Test 02 Longitudinal stress distribution 

at gauged section 2 for 10 ton load 
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Fig 5.70 Test 02 Shear strain distribution at 

gauged section 1 for various applied loads 
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Fig 5.75 Test 02 Load-deflection curves 



Fig 5.76 Test 02, photograph of cracked slab. 



Fig 5.76A Test 02, detail of cracked slab. 
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Fig 5-82a Test C3 Load-rotation curves 



Fig 5.83 Test C3 photograph of cracked slab. 
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Fig 5.91 Test 03 photograph of cracked slab. 
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