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ABSTRACT 

Consider linear elliptic boundary value problems, with Dirichlet 

boundary conditions, for the following elliptic equations 

-Au + P(r2)u = 0 

-tu + M(x1)u = 0 

-Au + N(x2)u = 0 

-Du + [M(x
1
) + N(x2)]u = 0, 

where A = Laplace's operator, r2  = x
12 + x22, and the functions P, M, 

and N are entire. 

To solve these equations numerically, we construct general solutions 

using the operators of Bergman [ 6 ] and Vekua [53 1. These general 

solutions are in terms of functions which satisfy Goursat problems, 

which have to be solved numerically. The boundary value problems are 

then solved using the method of particular solutions, and the boundary 

integral method. 

For the equation -Au + P(r2)u = 0, we improve the numerical solution 

of the Goursat problem constructed by Gilbert and Linz [ 30 1. The 

improved method is extended to the solution of the Goursat problem 

encountered for the other equations under consideration. 

The method of particular solutions can then be applied in the 

normal way. 

For the boundary integral method, we reformulate the integral 

equation for the density of the double-layer potential, and apply this 

new formulation to the boundary value problems under consideration. 

We develop an error analysis for our method of solution of the 

Goursat problem. 
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CHAPTER I  

INTRODUCTION 

The solution of second order linear elliptic boundary value 

problems in three or more dimensions, by means of finite difference 

or finite element methods can lead to systems of linear algebraic 

equations, one for each internal point, with large matrices, which 

although sparse, nevertheless present problems of storage and processing 

time, even with the growing storage capacity of modern computers, the 

advent of parallel computers, and the innovation of rapid elliptic 

solver packages. Moreover, the user may find that he obtains 

approximate solutions at a large number of internal points where the 

solution is of no great interest and possibly not at just those points 

where the solution is of particular interest. Any increase in the 

required accuracy of the numerical solution can only compound the 

above problems. 

This has led to renewed interest in methods which reduce the 

problem to solving equations constructed at points on the boundary only, 

with the approximate solution at any interior points expressed as a 

series or an integral. In these methods a general solution is adapted 

to suit the domain and boundary conditions of the problem. Boundary 

methods include the method of particular solutions and the boundary 

integral method. 

The method of particular solutions is an old and trusted method. 

If we have an elliptic boundary value problem in two dimensions, we 

generate a system of functions, Pk(xl,x2), k = 0,1,..., which are 

formal solutions of the elliptic equation, these functions being 

independent of the domain of the boundary value problem, but being 

6 



complete in the solution space of the problem. In our algorithm the 

integers, M,N, N > M > 0, are assigned and the coefficients, ak, in 
M 

the linear combination E ocklok(x1,x2) are determined so that the 
k=0 

errors at N points on the boundary are minimized in the L2  (least 

squares) norm. 

In the integral equation method the solution of the boundary value 

problem is represented by a double layer potential. On the boundary 

the solution is known and the density of the double layer can be 

determined at a finite number of points, N, chosen to represent the 

boundary. The solution at any interior point is then given by the 

double-layer potential at these points. 

Boundary methods lead to a significant reduction in the number of 

operations and the storage required, despite 'full' matrices, compared 

to the mesh-methods, such as finite differences and finite elements. 

For Laplace's equation and Helmholtz' equation general solutions 

are known in closed forms, and consequently boundary problems for 

these equations have been extensively treated in two and three 

dimensions. (Burton [ 10 ], Cannon [ 11 ], Collatz [ 12 ], Davis and 

Rabinowitz [ 16 1, De Mey [ 1 8 ) , [1 9 ] , Fox, Henrici, and Moler [ 2 6 ] . ) 

For Laplace's equation the general solution is in terms of harmonic 

functions. The fact that harmonic functions of two real variables can 

be expressed as the real (or imaginary) parts of analytic functions 

of one complex variable is extremely convenient since the corresponding 

translation of theorems on analytic functions into theorems on harmonic 

functions is almost immediate. 

In all but a few cases the general solution of an elliptic equation 

is not known in closed form. However, by generalizing the operator RE 

('take the real part of') it is possible to relate solutions of elliptic 

partial differential equations (p.d.e.$) in two, three and sometimes 
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more variables, to complex analytic functions, thereby yielding a 

unified theory of an extensive class of linear p.d.e.s. The general 

solution is expressed in terms of an integral operator, operating on 

a complex analytic function. There are infinitely many of these 

integral operators. 

S. Bergman [ 6 ] and I.N. Vekua [ 53 ], are independently responsible 

for a comprehensive theory for integral operators in two and three 

dimensions. The integral operator considered in this thesis is referred 

to by Bergman as the integral operator of the first kind; it has been 

shown by Henrici [ 32 ] to be completely equivalent to an operator 

developed by Vekua in terms of the Riemann function. 

Every solution of the p.d.e.s considered can be represented by 

these operators. That part of the integrand which does not include an 

arbitrary analytic complex function of one variable will be called the 

generating function. The generating function is normally a function 

of three complex variables. This generating function has to be 

numerically approximated and consequently the integration has to be 

performed numerically, at each boundary node and at any internal point, 

when solving a boundary value problem. 

In Bergmann's representation of the integral operator of the first 

kind the generating function is expressed as a power series in one of 

its arguments with the coefficients determined recursively in terms of 

the coefficients of the elliptic equation. The series can be truncated 

allowing a method of numerical approximation. 

This approach has been used successfully to solve boundary value 

problems by the method of particular solutions for an equation of the 

type -Au + P(r2)u = 0, where p denotes Laplace's operator in two 

dimensions and P is a real polynomial in r2  = x12  + x22  with P(r2) > 0, 

by Bergman and Herriot [ 7 ], and for more general elliptic equations 

with polynomial coefficients by Schryer [ 47 ]. 



Series representations have also been used by Gilbert and 

Atkinson [ 29 ] in solving the equation -Au + P(r2)u = 0, where A 

denotes Laplace's operator in two dimensions and P is a real polynomial 

in r2  = x12 + x22  with P(r2) > 0, by means of Fredholm integral equations. 

The generating function can also be expressed as the solution of a 

Goursat problem for a complex hyperbolic differential equation. In 

this case the generating function is obtained by solving the Goursat 

problem numerically and the integration is approximated using a 

numerical quadrature formula. This approach, by solution of a Goursat 

problem, was used by Gilbert and Linz [ 30 ] to solve boundary value 

problem with the equation -Au + P(r2)u = 0, where A denotes Laplace's 

operator in two dimensions and P is an analytic function of r2  = x2  + y2, 

with P(r2) > 0. 

The approximation of the generating function separately has one 

major advantage. Gilbert [ 27 ] has shown that the generating function 

for the equation -Au + P(r2)u = 0 is independent of the dimension. 

That is, consider the equation -Anu + P(r2)u = 0 where 

A u - 22u + a2u + ....  + a2u n 	
axl 	3x22 	

axn2  

and r2  = x12  + x22  + 	+ xn2, then the generating function G(r,t), 

satisfies the same Goursat problem for all n > 2. 

In this thesis we attempt to improve the solution of the Goursat 

problem which arises for the elliptic equation -Au + P(r2)u = 0, and 

use the improved solution in a particular solutions algorithm. We 

also improve on the integral equations algorithm of Atkinson, for 

this elliptic equation, and apply the Goursat solution in this algorithm. 

Finally we develop similar methods for the elliptic equations 

9 

-Au + M(xl)u = 0, 	-Au + N(x2)u = 0, -Au + [M(xl) + N(x2)1u = 0, 



where A is Laplace's operator and M and N are real analytic functions 

of x
1 
 and x2  respectively. In Appendix I we use a heuristic argument 

to demonstrate that the generating function for these equations is 

the same in three dimensions. All the solved problems are two 

dimensional problems, we first have to understand and overcome the 

difficulties presented by these problems before we can solve three 

dimensional problems. 

In Chapter 2, we explain the construction of Bergman's integral 

operator of the first kind and of Vekua's integral operator and look 

at some of the principal results of these authors. 

In Chapter 3, we devise integral operators for the equations 

-Au + P(r2)u = 0, -Au + M(xl)u = 0, -Au + N(x2)u = 0, and 

-Au + [M(xl) + N(x2)]u = 0, and consider methods of evaluating the 

integrals, including the formulation of the respective Goursat problems. 

These equations all afford one important simplification, the generating 

functions are functions of two real variables satisfying a Goursat 

problem for a real hyperbolic differential equation of two variables. 

In Chapter 4, we look in detail at the method of solution of the 

Goursat problem and we investigate the error in our numerical 

approximation. 

Chapters 5 and 6 are concerned with the construction of the 

particular solutions algorithm and the double-layer formulation of the 

boundary integral method, respectively, for each of the elliptic 

equations above. The numerical treatment of the double-layer formulation 

is given in Chapter 7. 

Chapter 8, the final chapter, concerns the numerical results. The 

problems solved for the equation -Au + P(r2)u = 0, are those solved 

by Linz [ 30 1, Atkinson [293,  C 2 ] , Herriot [ 7 1, and Schryer [ 48 1, 
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which afford some measure of comparison. We also present problems 

for the equation -Au + M(xl)u = 0, and the equation 

-Au + [M(xl) + N(x2)]u = 0. 

Throughout this thesis only Dirichiet boundary conditions have 

been considered. For the method of particular solutions Neumann and 

mixed boundary conditions can be treated in a similar way. In the 

boundary integral method for Neumann boundary conditions we would 

need to use single layer potentials to get a Fredholm equation of the 

second kind. 

Also only homogeneous equations have been considered, non-homogeneous 

equations for particular non-homogeneous terms have been considered by 

Schryer [ 47 ] and Bergman [ 7 ] . 

Since the work has been seen as a step towards solving three 

dimensional problems, we have not sought practical applications in 

two dimensions, although they do occur. For instance, problems in 

hydro-dynamic lubrication such as those for fluid flow between a roller 

and absorbent compressible paper (A.B. Taylor [ 49 ]);  and fluid flow 

in a complete journal bearing result in Navier-Stokes equations which 

under suitable assumptions reduce to Reynolds equation which can be 

transformed to equations of the type -Au + N(xl)u = 0 (C. Mason [ 39 ]). 

Colton [13),[14] has given a complete generalization of the work of 

Bergman and Vekua in three dimensions, and there are many applications 

in three dimensions (Krzywublocki [36 ],[ 37 ]). 



CHAPTER 2 

AN INTRODUCTION TO THE WORK OF S. BERGMAN AND I.N. VEKUA 

ON THE GENERAL REPRESENTATION OF SOLUTIONS OF SECOND 

ORDER LINEAR DIFFERENTIAL EQUATIONS OF THE ELLIPTIC TYPE 

IN TWO INDEPENDENT VARIABLES 

1. 	Helmholtz' Equation  

In their earliest papers, Bergman [ 5 ] and Vekua [502] consider 

the Helmholtz equation in a domain D which is assumed to be simply-

connected and containing the origin. We seek a general solution 

u(x1,x2) of the Helmholtz equation 

Du + a2u = 0 in D, 

A is the Laplace operator in two dimensions 	(2.01) 

a 2 	2 
Au = 	u2 + a u

2 , 
	A = constant. 

axl 	ax2  

a) 	S. Bergman's approach. 

Without loss suppose A = 1 and rewrite the Helmholtz equation in 

polar coordinates (r,0) given by xl  = r cos 0, x2  = r sin 0, r > 0, 

0 < 0 < 27r . Then 

	

[ 2u 
+ r 
1 au + 1 a2u 	+ u 

ar 	r 
ar  t 	8r 2  t 

= 0 in D. 

We seek separable solutions of this equation, of the form 

u = R(r)0(0), where R is a function of r, 

and 0 is a function of 0. 
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By separating the variables we find 

0(e) = sin ne, cos ne ; 	n = 0,1,2,... ; 

R(r) = Jn(r),  Yn(r) ; 	n = 0,1,2,... 

n is an integer to insure continuity of u across 8 = 0, 2r. 

Jn, Yn  are Bessel functions of the first and second kind. 

Yn(r) is discarded since Yn(r) is not finite at the origin r = 0. 

We are then led to consider the formal solution 

CO 

u = E Jn(r)[ 
n 

cos n8 + Bn  sin n0] 
n=0 

where A
n
,  B 

n 
are constants. 

Using the well known integral representation due to Poisson, 

1 	r n 
1 

 J (1-t2)n Zeirt dt Jn
(r) = r(z)r(n+2) (2) 

	dt, 

leads to 

1 1  
u = E 

r(2)r(n+2) (2)n[An 
n=0 	

cos n8 + Bn  sin ne] 1 (1-t2)n-zeirtdt. 
0 

Taking z = rele, z = re-le, r = zz, and changing the order of 

summation and integration, we obtain 

1  i✓zz t 
m 	Cn((z/2)(1-t2))n 	Dn((z/2)(1-t2))n 	dt  u =-1 e 	
nE0[ 	r(i)r(n+z) 	+ r (k)r(n+1/2 ) 	] 	2 

1-t 

where A A
n 

cos n8 + B 
n 

sin n8 = C 
n 
eine  + D ne-in8.  Assuming the series 

are convergent, let 

13 
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f((z/2)(1-t2)) = E 
r(2)r(n+2) n=0 

c ((z/2)(1-t2))11 
 

g((/2)(1-t2)) = E n
r(2)r(n+1/2) n=0 

D (G/2)(1-t2))11 
 

Then 

1 
u = f 

ei✓zī 
t[f((z/2)(1-t2)) + g((z/2)(1-t2))] 	

dt  

-1 	
J1-t2  

and taking g = f, the complex conjugate of f, gives a general represen-

tation of the real solutions of Helmholtz' equation, regular at the 

origin as follows 

u(x,y) = 
RE 	

1 ei✓zz t 
f((z/2)(1-t2)) 	

dt  

-1 
	

/l-t2  

(2.02) 

where 	RE means 'take the real part of... ' 

IM means 'take the imaginary part of ....' . 

b) 	I.N. Vekua's approach: 

We suppose that Helmholtz' equation (2.01) is continued to complex 

values of xl  and x2; and introduce the two new independent variables 

z = x1  + ix2, 	z = x1  - ix2  . 

Notice that z*  = z, the complex conjugate of z, only if x1  and x2  are 

real. Then 

a 	l aa 	a 	l a 	+ i a 
= 	

) 
āz 	2 

(ax1 	
ax2)' 	a 	= 2 (ax1 	ax2  

14 



and 
z 	z

r
* 

cbn(z,z*) = (2)2 J dE f ~n-1(E'n)dn 0 0 
n = 1,2,... , 

and 

	

2 	2 	2 

	

azāz 	4 
(ax 2 + 1 ax 2) 	4 

1 	2 

Let C be some simply connected domain such that z E C, z* e C. 

Then Helmholtz' equation becomes 

2 
a U* + 1 a2U = 0 
azaz 	4 in (C,C), 	z e C, z* e C . 

15 

This is a hyperbolic equation in the complex domain. Integrating 

with respect to z* gives 

3U 1 z* 

az + 4 2 1 U(z,n)dn = f'(z) , 
0 

where f'(z) in an arbitrary function of z. 

Integrating with respect to z gives 

U(z,z*) = f(z) + g(z*) - 4 A2 f dE f U(E,n)dn, 
0 	0 

where g(z*) is an arbitrary function of z*. 

This is a Volterra equation in the complex plane which Vekua 

solves by the method of successive approximations, setting 

0 = cl?0(z,z*) = f(z) + g(z*), 



z * 
- J H(z,z*,E, 2)g(E)dE; 

0 
(2.03) 

to obtain 

c(z,z*) = f(z) + g(z*) - f H(z,z*,E, 2)f(E)dE 
0 

16 

where 

* a 	00 (-1)n(2)2n z*n(z-
on-1 

H(z,z 	2) 	nZ1 	(n-1)! n! 

-  * 2 (Z ) z Jl(a~z*(z-E) ) 

2 J0(a✓z*(z-g) ) , 

where J0, J1 are the Bessel functions of the first kind. 

Taking g = T, the complex conjugate of f, gives a general 

representation of real solutions of Helmholtz' equation as follows. 

u(xl,x2) = IM f(z) - 1 f(E) a J0(a✓z(z-E) ) dE 	. 
0 

(2.04) 
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2. 	The General Homogeneous Elliptic P.D.E. 

We now seek the general solution of any homogeneous elliptic p.d.e. 

Let u = u(x1,x
2) satisfy 

Lu = Au + a(x1,x2)ux  + b(x1'x2)ux + c(x1,x2)u = 0 
1 	2  

in D, 	(2.05) 

3u 	3u 
where a is Laplace's operator in two dimensions, u

x 	3x
, 
 ux - ax 1 	1 	2 	2  

a, b, and c are given functions of the variables x1  and x2. We 

assume that the coefficients a, b, and c are analytic functions in the 

closure of the domain D. 

We suppose the coefficients a, b and c of the equation can be 

continued analytically into the domain of complex values of x1  and x2  

taking new independent variables z = x1  + ix2, z* = x1  - ix2  to get 

U = Uzz* +'A(z,z*)Uz  + B(z,z*)Uz*  + C(z,z*)U = 0, 

in (C,C*) . 	(2.06) 

where 

32U 	au 	8U 
Uzz* - 8z8z* 	Uz - 8z' 	Uz - 8z 

and 

A(z z*) = 1(a( z+z* 	z-z*) + ib(z+z* 	z-z*)) 
' 	4 	2 ' 2 	2 	2 

B(z,z*) = 1(a(z+z* 	z-z*) 	ib(z+z* 	z-z*
)) , 4 2 ' 2 	2 ' 2 

and C(z,z*) = 4 c(z
2z* ' z2z* ) 

Where A(z,z*), B(z,z*) and C(z,z*) are analytic functions of the two 

complex variables z, z* in the cylindrical domain (C,C*). 
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a) 	Bergman's integral operator 

Bergman transforms (2.06) by taking 

z* 
v(z,z*) = exp[ f  Adz - n(z)] U(z,z*), 

0 

where n(z) an arbitrary function of z and v(z,z*) satisfies 

vzZ*  + D1vz* + F v = 0, 

z* 
D1  =nz  - f Azdz*+B , 	F = -A - AB+C . 

0 

(2.07) 

Bergman then seeks a solution of equation (2.07) as a generalization 

of equation (2.02) in the form 

1 
v(z,z*) = f Ē(z,z*,t) f(2(1-t2)) 

-1 	
✓1-t2  

It is found that E has to be a twice differentiable solution of the 

equation 

(1-t
2
)Ez*t  - t E z*  + 2tz(EzZ*  + DEz*  + FE) = 0 	(2.08) 

for Itl < 1 with 

lim (1-t2) Ez*(z,z*,t) = 0, 
t=±1 

E 
and zt 
	is continuous, for (z,z*) belonging to a 4 dimensional 

neighbourhood of the origin. 

dt 



Thus Bergman develops an integral operator denoted by B which 

he writes 

	

1 	z* 
B(f(z)) = f exp[- f Adz* + n(z)]E(z,z*,t)f(2z(1-t2)) dt 

	

-1 	0 	
✓1-t2 

Putting 
z* 

E(z,z*,t) = exp[- f Adz* + n(z)]E(z,z*,t), 
0 

we obtain 

1 
B(f(z)) = f E(z,z*,t)f(1/2z(1-t2)) 	dt  

-1 	✓1-t2 

Bergman calls B his integral operator of the first kind. 

b) 	Vekua's integral operator 

Vekua integrates the complex hyperbolic equation (2.06) first with 

respect to z and then with respect to z* to obtain a Volterra equation 

equivalent to equation (2.06), 

z*  
U(z,z*) + f A(z,n)U(z,n)dn + f B(,z*)U(,z*)(31E 

0 	0 

z 	z* 

+ f d f D1( 'n)U( ,n)dn = f(z) + g(z*) 
0 0 

where f and g are arbitrary functions of z and z* respectively, and 

D1(z,z*) = C(z,z*) - Az(z,z*) - Bz  (z,z*). 

z* 
Take U0(z,z*) = U(z,z*) + f A(z,n)U(z,n)dn, to obtain 

0 
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z 	z 	z* 

U(z,z*) + 1 B(E,z*)U0(,z*)dE + f d J D2(z*,E,n)U(c,n)dn 
0 	0 0 

= f(z) + g(z*), 

where 

z* 
D2(z*, ,n) = -B(E,z*)A(,n)exp - f A( ,n1)dn1  

z* 	nl 

+ D1(&,n) - A(&,n) f D1(E,n1)exp - f A(E1,n2)dn2  dn1  . 

n 	 n 

Now take 

V(z,z*) = U0(z,z*) + f B( ,z*)U0( ,z*)dg, 
0 

to obtain an equation of the form 

z 	z* 
V(z,z*) = f d f K(z,z*,,n)V(,n)dr1 + f(z) + g(z*), 

0 0 

where 

z 	 z 
K(z,z*,,n) = -D2(z*,E,n) + B (E,n) f D2(z*,c1,11)exp[— f B (E2,n)dg2]dEl  . 

This is an ordinary Volterra equation in the complex plane, thus it has 

a solution of the form of equation (2.03), by solving in much the same 

way Vekua develops an integral operator denoted by V such that 

V(f(z)) = 
RE 
 {G(z,n0,z,z*)f(z) - f f(t) 

at 
 G(t,n0,z,z*)dt} 

zo  
(2.10) 

where G(z,n,t,T) is the Riemann function. 



The Riemann function, G, satisfies the following equations 

G(t,C,t,T) = exp f A(t,rt)dn , 
T 

z 
G(z,T,t,T) = exp f B1(E,1-)dE,  

t 

t 6 C; 	C,T E C. 

z,t 8 C; 	T 6 C . 
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Lu = 0 
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3. 	Some Properties of the Operators of Bergman  

Consider the linear elliptic boundary value problem 

Lu = 0 

u = g 

on D, 

on aD with g E C(o)(8D), 

u s c(o)(DuDD)11 c(2)D , 

(2.11) 

where D is a bounded simply connected domain containing the origin. 

We consider the corresponding complex hyperbolic equation (2.06), 

on (C )  C), 

LU = UzZ*  + AUz  + B1Uz*  + C1U, 

zec, z*e c. 

A, B1  and C1  are assumed to be analytic functions of z and z* on (C,C). 

THEOREM 1 Bergman [ 6 3, p.19 

Let the coefficients A, B1,  C1  of Lu = 0, be functions of two 

complex variables z,z*, which are regular in a sufficiently large domain. 

Then every real solution U(z,z) = u(x,y) which is regular in a domain 

132 of the real x,y-plane can be continued into the domain 134 of the 

z,z* space. 134 
is the product domain 1312 	

1322 
where 

1312 
 is the domain 

132 
in the z plane, and 1322  is the same domain in the z* plane. 

and Vekua 
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a) 	Bergman's operator 

In (2.09) B is Bergman's integral operator of the first kind for 

the equation Lu = 0. There are a number of representations for 

Bergman's operator B; one alternative representation is constructed by 

Bergman by taking 

1 
g(z) = f f(1/2z(1-t2)) 

-1 

 

dt 

  

v'1-t2 

n(z) = 0, 

and 

E(z,z*,t) = 1 + z t2nzn f p
(2n)

(z,n)dn• 
n=1 	0 

E must satisfy equation (2.08) and by substituting for E in this equation 

we obtain the following equations for P(2n) (z,z*) 

P(2)(z,z*) = -2F(z,z*), 

(2n+1)P
(2n+2)

(z,z*) = -2[P
(2n)

(z,z*) + D1(z,z*)P2n(z,z*)z 

z* (2n) 
+ F(z,z*) j P 	(z,n)dn , 	n = 1,2,... , 	(2.12) 

0 

where D1 and F are defined in (2.07). 

Take Q(n)(z,z ) = J* P(2n)(z,z*)dz*; 
0 

then 

B( (z)) = exp[- 	Adv') [g(z ) + g 
z 	 n 	z 

g 	P 	f 	
Q 	(z,z ) 

f (z-
~)n-l

g(c)dc. 	(2.13) 
0 	n=1 2-118(n,  n+1) 0 



Thus Bergman's operator can be constructed directly from the 

coefficients, a(x,y), b(x,y), c(x,y) of the equation Lu = 0. 

Theorem 2 (Bergman [ 6 ], pp. 13 ) 

Suppose that the coefficients A, B, C of the equation LU = 0 are 

analytic functions of two complex variables z,z*  regular in the 

bicylinder [IzI < r, Iz*I < r], r > 0. Then E (z,z*,t) is regular 

in [IzI < 	 , 	Iz*I  <3, 	It' < 1] . 

Thus for regular solutions Bergman requires the coefficients 

A, B, C to be analytic for z and z* in the bicylinder 

[IzI < 3r + E, 	Iz*I < 3r + e], 	6 > 0, 	r = max[Izl, Iz*I]. 
8D 

Bergman [ 6 ],pp.22 ,shows that the particular solutions of Lu = 0 

generated by his integral operator are complete in the solution space 

of (2.11) over compact subsets of D. However, completeness has not 

been proved over the closure of D. 

The operator B which transforms analytic functions g(z) into complex 

solutions U(z,z*) of LU = 0, has an inverse. The formula expressing 

g(z) in terms of U depends only on the coefficient B(z,0). If 

U = B(g(z)), then: 

(RE B)-1(U) = RE(g(z)) = RE{2U(z,0) - U(0,0)exp(- f  B(z',0)dz1 )1 
0 

(2.14) 

b) 	Vekua's Operator 

Vekua assumes the coefficients A, B, C of the equation LU = 0 are 

analytic functions of z and z* on (C, C). 

The operator, V, is a 1-1 map from the set of functions g(z) which 

are analytic on C with real values at the origin, onto the space of 

solutions of Lu = 0 which are regular. 

24 



Definition. Holder continuous 

Let the function f(xl,x2,...,xn) be given on the set M of points 

(xl,x2,...,xn). Then f satisfies a Holder condition on M if 

n 
If(xi,x2, . 	, x') - f(xl,x2,...,xn)I < K E 	Ix' - xk l a  

k=1 

for any two points (xl,x2,...,xn), (xi,x2,...,x') of the set M, where K 

and a are positive constants, 0 < a < 1, which are independent of the 

choice of points (xi,x2, ..., xn), (xl,x2,...,xn). f is said to be 

continuous in Holder's sense on M. 

We shall say that a simply-connected domain D is of class Al,, if 

the boundary, 3D, is a simple closed smooth curve satisfying the condition 

that the angle 6(t) between the tangent to 3D at the point t and the 

x-axis is continuous in Holder's sense along 3D. 

Theorem 3 (Vekua ( 53 ), pp.128 ) 

If D is a simply connected domain containing the origin, and of 

class Ah, and u is a regular solution of Lu = 0, which is continuous 

in Holder's sense on the boundary 3D, then the unique f(z), analytic on 

D with f(0) real, so that u = V(f), is continuous in Holder's sense on 

DU3D. 

Theorem 4 (Vekua [ 531, pp.156 ) 

Let D be a simply-connected domain of class A.h. Let u(xl,x2) be 

a real regular solution in D of Lu = 0, which is continuous in DU3D, 

and is continuous in Holder's sense on 0, then given any e > 0 there 

are constants c1,...,cn, such that 

n 
Iu(xl,x2) - E 	ckuk(xl,x2)1 < e 

k=1 

25 



in the closed domain DUBD. 

That is the particular solutions of Lu = 0, generated by Vekua's 

operator are complete in the closure of D. 

The operator V, which transforms analytic functions f(z) into 

solutions of Lu = 0, has an inverse, the formula expressiong f(z) in 

terms of U being 

V 1(U) = RE(f(z)) = RE{2U(z,0) - U(0,0)G(0,0,z,0)}, 

By the definition of the Riemann function G, 

V
-1
(U)  = RE(f(z)) = RE{2U(z,0) - U(0,0)exp(- ! B(z',0)dz')} . 	(2.15) 

0 

26 
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4. 	Summary  

Bergman's operator has the advantage that it can be constructed 

directly from the coefficients, a, b, c, of the equation Lu = 0. 

However, Bergman does not prove the completeness of the particular 

solutions of Lu = 0 generated by his operator for the closure of the 

domain D. 

Vekua has proved smoothness and completeness theorems over the 

domain D; however, his operator is expressed in terms of the Riemann 

function, for which there is no easy construction. 

Equations (2.14) and (2.15) imply that for any regular solution 

of Lu=0, 

(RE B)-1(u) = V
-1
(u) 

the equivalence of the two operators was first proved by Henrici [ 32 1. 

Since the two operators are identical they generate the same sets 

of particular solutions for a given set of regular functions. Thus 

it is possible to combine the constructive advantages of Bergman's 

operator, with the theoretical properties of Vekua's operator. 



 

CHAPTER 3 
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INTEGRAL OPERATORS FOR THE EQUATIONS 
-Du + P(r2)u = 0 

-du + M(xl)u = 0 

 

1. 	Introduction 

In this chapter, integral operators are constructed for the 

equations -du + P(r2)u = 0, and -Au + M(xl)u = 0. Subsequently, 

numerical methods of approximating the application of these integral 

operators are discussed, and finally the particular methods of 

calculation used in this thesis are presented in detail. 
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2. 	The equation -Au + P(r2)u = 0  

Let Lu E -Au + P(r2)u = 0, in D, 	 (3.01) 

A = Laplace operator, P(r2) > 0, is an entire function of r2 =  x1
2 + x22  

and D is a simply-connected domain containing the origin. 

For the general homogeneous elliptic equation (2.05): 

Lu = du + au + bu + cu = 0, xl 	x2  

the solution U of the equivalent hyperbolic equation (2.06): 

LU = UzZ*  + AUz  + BUz*  + CU = 0, 

is given by Bergman (see (2.18)) as 

z* 	(n)  
U(z,z*) = exp[- f Adz*][g(z) + E 	Q 	(z'z*)  f (z-On-l

g(OdC, 
0 	n=1 2 

n 

 gn,n+l) 0 

where u(x1,x2) = Z(U(z,z*) + Ū(z*,z)), 

(For real x1  and x2  u(x1,x2) is found by taking the real and imaginary 

parts of U(z,z), we will write u(xl,x2) = Il41{U(z,z)1). 

Let C = za2. Then: 

z 	n (n) 1 
U(z,z*) = exp[- f Adz*][g(z) + E 

z

2n 

	(z,z*)  f 	2a(1-o2)n
-l

g(za2)da. 
0 	n=1 2 R(n, n+l) 0 

(3.02) 

Define Q(2n)(z,z*) _ znQ(n)(z,z*) 	zn f*P(2n)(z,z*)dz*, n = 1,2,...,  
(2n) 	 0 

where {P 	(z,z*)} are the functions introduced in (2.12). 

Now 

r (2n),zQ(2n)(z,z*)=  zn 	 P
'z*)dz*' 

0 

QZ*n)(z,z*)  = znP(2n)(z,z*),  

n = 1,2,... . 

n = 1,2,... . 



• 

zz**)(z,z*) = nzn-1
P(2n)

(z,z*) 
 + znPZ2n)

(z,z*), 

n (2n) 	(2n) n (2n) z Pz 	(z,z*) = Qzz* (z,z*) - z Qz* (z,z*). 

Take z* = z and r2  = zz; then for -Au + P(r2)u = 0, A = B = D1  = 0 

and F = -P(r2)/4. 

Thus (3.02) becomes 

(2n) 
2Q 	(z,z) 1  

U(z,z) = g(z) + E 	
2n 	 f 

au
-a2)

n-l
g(za2)d6 

n=1 2 S(n,n+1) 0 
(3.03) 

where (2) 	zP(r2)  

2 	' 

(2n+1)Q
(2n+2) = -2z[Q z 

	4 
(2n) _ P(r2)  Q(2n) - z n Q(2n)1, n = 

1,2,... , 	(3.04) - z 	--z   
(2) 	(2) 

(2) = 
a 
	 _ aQ 	a(r2) 	(2) _ 	_ 	= zQ 2 	

• 

az 	a(r2) 	az 	
—(r ) 

Thus Q(22 = 2 	and P(r2) 	Q(2)  is a function of r2  only. For —(r )  
(2n)

, n > 1, proceed by induction. Rewrite (3.04) as follows 

(2n+1)g(2n 	= 
- 

+2) 	
2[r2Q(2n) 
	_ P(r2)  Q(2n) - (n-1)Q(2n) 

(r ) 	(r )(r
2 
 ) 	4 	_(r2)] 

 

2Q 
where Q( 2)( 2)  - 	2 2 	Then it is obvious that each Q(2n)  

a(r ) 
- n = 1,2,..., depends only on r2, and we take en(r2) = Q(2n)(z,z). 

Rewriting equation (3.03), and noticing u(x,y) = m{U(z,z)} 

RE 	2e (r2) 	1 
u(x,y) = 	{g(z) + E 	n 	

f o(1-o2)n-1g(za2)dcr}. 
IM 	

n=1 22nR(n,n+1) 0 

30 

Now RE{g(z)} is a harmonic function h(r) say 
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where 	r = (xl,x2); xl  = r cos 8, x2  = r sin 8. 

Hence 

2

)  u(r) = h(r) + E 	2nnir 	f a(1-a2)
n-1

h(ra2)da. 
n=1 2 	S(n,n+1) 0 

Reversing the orders of integration and summation and putting 

e (r2)(1-a2)n-1 
G(r, 1-a2) = E 	2n-1 

n=1 2 	S(n,n+1) 

We have finally 

1 
u(r) = h(r) + f  aG(r, 1-a2)h(ra2)da. 

0 
(3.05) 

We call G(r, 1-a2) Gilbert's G-function. 

Substituting for u in the p.d.e. -Au + P(r2)u = 0, we find that 

(Gilbert [ 28 ]) G(r,t), t = 1- o satisfies 

r[Grr  - PG] - Gr  + 2(1-t)Grt  = 0, 

	

providing 	Gr(r,0) = rP(r2), 

	

and 	G(0,t) = 0. 

P = P(r2) , 

Thus 	G(r,t) is the solution of a Goursat problem. 
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3. 	Numerical Approximation of the Integral Operator for -Au + P(r2)u = 0  

a) 	By Truncated Series (Bergman & Herriot [ 7 1, Schryer [ 48 ]. 

We recall that 

co e (r2)t
n-1  

G(r,t) = E n 	 
n=1 22n-1 S(n,n+1) 

en(r
2
)  

cn(r2 ) - 22n-1B(n,n+1) 

Then 	G(r,t) = E cnCr2)t
n-1  

n=1 

and from (3.04) we find that 

3c (r2) 

	

1 	- + r P(r2),  

3c 	(r2) 	2 	3c (r2) 
2n 	n+1 	- -r 

3 c (r2) + (2n-1) 	n 	+ rP(r2)c (r2), 

	

3r 	3r2 n 
	3r 	n  

n > 1. 

An approximation GT  of the G-function can then be found by 

truncating the series 

T 	2 n-1 
GT(r,t) = 	E cn(r )t 	, 

n=1 

I 

Let 

CO 

3r 



b) By Solution of the Goursat Problem 

G(r,t) satisfies the following Goursat problem 

r[Grr  - PG] - Gr  + 2(l-t)Grt  = 0, 	r > 0, t > 0, 

33 

with G(r,0) = f XP(a2)da, r > 0, 
0 

(3.06) 

G(0,t) = 0, 	t > 0. 

The hyperbolic p.d.e.in (3.06) satisfied by G can be simplified by 

reducing it to canonical form. This is accomplished by taking as the 

new independent variables the characteristic coordinates, or any 

function of the characteristic coordinates [see Appendix 2]. 

i) 	R.P. Gilbert and P. Linz ( 30 1. 

Gilbert and Linz take as new variables 

p = r 	, 	t = t, 

which correspond to the characteristics p/r I = const., t = const. 

Also taking W(ptt)  - G(r,t), the Goursat problem for W(p,t) becomes 

Wpt  = p  P2(l-t)2t))  W, 	t > 0, p > 0, p < a 	, 
2(1-t) 

p 
W(p,0) = f xP(a2)dA, 

0 
p > 0, 	 (3.07) 

w(o,t) = 0 , 	 t > 0 . 

Integrating the hyperbolic equation (3.07) first with respect 

to p, and then with respect to t gives 



W(p,t) = W(0,t) + w(p,o) + j j A
' P(P'2/(1-t') w(p',t')  dt'dp'. 

0 0 	2(1-t')2  

This transformation has two major disadvantages. Firstly, the 

factor 	1  2  presents problems near t = 1. Secondly, the integration 
(1-t) 

is over the parabolic region bounded by t = 0, p = 0, p = ate, and 

the shape of this region makes it generally impractical to cover it 

with a regular grid, thus leading to low order methods of solution. 

Gilbert and Linz use a product-integration technique to alleviate 

the problem at t = 1, approximating the integrand by a bi-linear 

function and integrating the result. 

It is possible to find a canonical form of the hyperbolic equation 

without a singularity, by taking exponential functions of the solutions 

of the characteristic equations, however the resulting system is very 

inconvenient numerically. 

ii) An alternative transformation 

Take new independent variables 

2
(-

t) 	2 

	

t = t, p = r 2 	; 	r0 a 
2 	constant whose 

ro 	role will become clear. 

Let 

1?t H(p,t) = G(r,t), where H(p,t) = H(p,t, r). 

34 

Then (see appendix 2) II satisfies 

2 	2 r r P o  
Hpt  = 	0 2 	P( _-t  )H, 	t > 0, p > 0 

4(1-t) 

(3.08) 

p< 
(r  )2(1-t) ro 

 
H(0,t) = 0, 	t > 0 , 

H(A,0) = 1 
r02  j P(r02X)da, 

0 
p > 0 . 



Integrating the hyperbolic equation in H in equation (3.08) with 

respect to pand t. 

r 2p' 
2 	0  

p  H(p,t) = H(P,0) + H(0,t) +  
r 

	

	
1 
 t 

P( 
1-t2  H(p',t')dt'dp' . 

'" 0 0 (1-t') 

I 

(3.09) 

The presence of the factor 	1 2 causes problems when t is close 
(1-t) 

to 1. However, by a convenient choice of r02, the solution H(p,t) is 

required on the line p + t = 1, and the solution domain is as in figure 1. 

t 
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H = 0 

P 
P 

= 1 r02 f P(r02X)da. 
0 

(Figure 1) 

The most efficient mesh to construct on the domain is a square mesh. 

The numerical method used to solve the Goursat problem for H, is 

described in detail in Chapter 4, "The Goursat problem". 

We recall that 

1 
u(r) = h(r) + f aG(r,l-a2)h(ro2)do. 

0 



In terms of the function H, this becomes 

1 	(T,1-T) 
u(r) = h(r) + f H 	

T 	
h(rT) dr. 

0 
(3.10) 

At T = 0, H(0,1) = 0, and thus there is no singularity. The limiting 
T , l-T 

value of H( 	T 	) as T i 0 is found by extrapolating on the line 

p = 1-t, this is described in Chapter 9. 

Although H is written as a function of T, it is clear from (3.08) 

that it is also a function of r. 

36 
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4. 	The equation -Au + M(xl)u = 0  

Let L2u = -Au + M(xl)u = 0, in D, 	 (3.11) 

where A = Laplace operator in two dimensions and M(x1) > 0 is an entire 

function of xl. D is a simply connected domain containing  the origin. 

For (3.11) Eichler [ 22 ] proposes a solution of the type 

u(xl,x2) = 	{f(z) - f  S(xl,x2;  )f(E)d& }. 
0 

(3.12) 

This is a solution closely related to Vekua's solution (see equation 2.10, 

note G(z,no,z,z*) = 1 for (3.11)). For u(xl,x2) in (3.12) to satisfy 

L2u = 0 (3.11), S must satisfy the following  conditions 

Sx x + Sx x + M(x1)S = 0 ii 	22  
(3.13) 

8x 
 S(xl,x2;z) + i ax S(xl,x2;z) = 2

w
I(x1) . 

I 	2 

For numerical expediency we develop an operator of Bergman's type 

for equation (3.17). 

Recall that from equation (2.13), noting  that A = 0 for equation 

(3.11), every solution can be represented in the form 

RE 	co 	(n) z 
u(x,y) = 

	

	{g(z) + E 	(z,z) j 	(z- )n-lg( )d } . im 

where z = x1 + ix2, z = xl - ix2  

— 
	z 	_ 

	

Q(n)
(z,z) = f 	

P(2n)(z,z)dz , 
0 

P(2)  = -2F,  

n=1 22nR(n,n+l) 0 
(3.14) 



Since (2n+1)p2n+2 = -2[P(2n) M(x1) fip(2n) dxl 
xl 4 0 

then 

u(x
1
,x2) = M{g(z) - f W(xl,z-t)g(t)dt}. 

0 
(3.15) 

and (2n+1)P(2n+2) _ _2[P
(2n) + D1P(2n) 

+ F f P(2n)dz) , (see 2.12). 
0 

n = 1,2,... 

z 	_ 

where 	D1 = -f Azdz + B1, F = -Az - AB1 + C1 . 
0 

M(xl) 
For equation (3.11) A = B = 0, D1 = 0, F = C1 - 	4 	• 
Thus we have 

x ) P(2) = + M2 1 
2 	' 

	

(4) 	
M(xl) 	M(xl) x, M(xl) 

	

3P
(4) 

	-2[+ X1 	
4 	r 2 dx] 

0 
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We see by induction that P(2n) y 	, n = 1,2,... depends only on xr 

Thus Q(n)(z,z) = Q(n)(xl), and we can rewrite (3.14) as 

» Q(n)(x ) 	z 
u(x1,x2) = IM{g(z) + E 	

2n 	
1 	 f (z-

)n-
lg(E)dE. 

n=1 2 g(n,n+1) 0 

Reversing the orders of numeration and integration and taking 

(n) 

W(x, z-t) 	- E 	
ZR 

	(xi) 
	 (z-t)n-1 

~ 
n=1 2 g(n,n+l) 

Taking g(z) = f(z) in (3.12) we see that 

S(x1,x2;t) = W(xl,z-t) . (3.16) 



However, the properties (3.13) do not uniquely determine the 

generating function W(x1,z-t). 

Definition. A generating function, W, satisfying equation (3.15) will 

be called a canonical generating function with respect to the origin, 

if W(x1,z+) = 0 (z is the complex conjugate of z). 

Theorem 5. (Eichler [22), p.261 ) 

If M(x1) is regular in the neighbourhood of x1  = 0, then there 

exists one and only one canonical generating function W, with respect 

to this point. 

Canonical generating solutions allow us to represent solutions of 

L2u = 0 in the following way 

u(x1,x2) = IM(g(z) - f W(x1,z-E)g(Od 
-z 

Let t = 	- iy, 

X i  
Then 	u(x1,x2) = IiM{g(z) - 1  W(x1,x1-t)g(t+ix2)dt},  

-x 
(3.17) 

To verigy that this is a solution of L2u = 0, substitute for u in 

L2u = 0. This gives that (3.17) satisfies -au + M(xl)u = 0, provided 

 

W11  + W12  - WN(x1) = 0, 

W(x1,0) = 
	
J N(a)da 
0 

(3.18) 

and W(x1,2x1) = 0  

 

Thus W as defined in (3.1) is a canonical generating function when (3.17) 

is a solution of -Du + M(x1)u = 0. 

-  [Note W1(x1,x2) = ax1 W(x1,x2), 	W2(x1,x2) = 3x2 W(x1,x2),  etc...] 

39 



40 

5. 	Numerical Approximation of the Integral Operator for -Au + M(1  u = 0 

a) 	By truncated series (Eichler [ 22 ]). 

co 	

Q 

(n) 

We recall that W(x1,z-t) _ - E 	
2 	

(xi) 
	 (z-t)n-1, 

n=1 2 S(n,n+l) 

Let 

Q(n)
(xi)  

Cn(x1) = 22n13(n 

CO 

Then 	W(x1,z-t) = E Cn(x1)(z-t)n-1, 
n=1 

(3.19) 

where 	2CI(xi) = M(x1) 

M(x
1
) 

and 	2Cn+1(x1) = Cn  (x1) 
 

4 	
Cn(xi), 	n > 1. 

Since this requires infinitely many derivatives of M(x1) it makes 

sense only if M(x1) is an analytic function of xi. The series (3.19) 

converges absolutely provided, x1  # 0, 1x1-t) < 2 xi  [Eichler[22) , pp.271]. 

If M(x1) has singular points, Eichler [22] , pp.261 	constructs a 

solution of Lu = 0, in terms of the derivatives of an analytic function 

of z 

2 
u(x1,x2) = g0(xi)f(z) + q1(x1

) df(z) 
	

8 + g2(xl) 	f(
2

z)  + .... 	(3.20) 

where the gn(x1) satisfy the recurrence formula 

q0" - Mq0  = 0,  

ql„ - Mqi  = -2q0 ' 

" 	M 	= 2 ' 
qn+1 	qn+l 	qn 

,n+1) 



The series (3.20) for the solution is convergent in a sufficiently 

small neighbourhood of xl  = 0, for 0 < 1xll < (z-z0)/2, where z0  is 

the nearest singular point of f(z), Eichler [22] , pp.274 . 

b) 	By solution of the Goursat problem. 

From (3.18) we see that w(xl,xl-t) satisfies the following Goursat 

problem, 

W11  + 2W12  - M(xl)14 = 0, 	-x1 < t < x1 
	xl  E D 

xl  

W(x1,0) = 2 f N(a)da, 	x1  6 D 
0 

(3.21) 

W(x1,2x1) = 0 • 	xl  E D .  

However, the hyperbolic p.d.e. satisfied by W in (3.21) can be 

simplified by reducing it to canonical form. This is achieved by taking 

as new independent variables E,n where = constant, n = constant are 

the characteristics. As before any functions of 	and n can also be used. 

[See Appendix 2]. 

In this case, 

E = (2x1-C)/2, 	n = T/2, 	T = xl—t, 

and we let F(E,n) = W(x1,T) . 

Then F satisfies 

3
2 

30n = M( + n)F, 	0 < < x1  

0<n<xi 

xi 6D 

F(E,0) = - 2 f M(A)dX, 	> 0, F(0,n) = 0, 
0 

n > 0. 

(3.22) 
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Note E = xl-n, 

x xl+t xl-t 
and u(xl,x2) = M{g(z) - J F(-t- , 2  )g(t+ix2)dt}. 

-x 

Take x
1 
 t' = t, then 

1 
u(xl,x2) = im{g(z) - xl fl  F(xl(l  2 

1
), xl(1  2 

i
)g(xlt' + ix2)dt'} , 

42 

Redefine 1+t 
2 ' n = 1-t 

xl  = xl(1-n ) 2 

Then F(x
1 
 , x

1 
 1)satisfies 

F12  = M(xl(E+n))F E>0, n>0, 	+n< 1, 

xlE 

F(x,0) = - 
2 
 r N(A)da . 	> 0, 

t 	 0  

F(0, xln) = 0 	n  > 0. 

Thus the Goursat problem has to be solved in the triangular region 

bounded by the lines, E = 0, n = 0, E  + n = 1. 

This is essentially the same problem as had to be solved for the 

equation -Au + P(r2)u = 0, and it is solved in the same way. 
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6. 	The Equation -Au + [14(x1) + N(x2)]u = 0. 

Consider L3u = -Au + N(x2)u = 0 in D, where N(x2) > 0, 

Au = Laplace's operator, and D is a simply connected domain containing 

the origin. 

By analogy with the equation L2u = 0, the general solution to the 

equation L3u = 0 is given by 

1 
u(xl,x2) = IGM{g(z) - x2 1 E(x̀ (12t), x2(12t))g(xl+itx2)dt}, 

-1 
(3.23) 

where E(x2  ,x2r1) satisfies the following Goursat problem 

E12  = N(x2(T+n))E)0 < 	< 1, 0 < n < 1 

E(x2 ,0) = — 2 
1 x2

N(X)da 	0 < 	< 1 	 (3.24) 

E(0, x271) = 0 
	0 < n < 1 

x2  = x2(1 - n). 

Now consider the equation -0u + [M(xi) + N(x2)1u = 0 

L4u = -Au +[M(xi)  + N(x2)]u = 0 in D. 

M(x1) > 0, N(x2) > 0, 0 E Laplace operator. 

Let F(E,n) be the generating function for L2u = 0, and let E(,n) be the 

generating function for the equation L3u = 0, then 

1 

u(x1,x2) = v(xl,x2) - x1  fl  F(x1(12t), xl(12t))v(xit,x2)dt, 



is the general solution of the equation Lou = 0, when 

1 
V(xl,x2) = IM{g(z) - x2 f 	E(x2(12t), x2(12t))g(xl  + itx2)dtl, 

-1 

where g is an arbitrary analytic function. 

This can be verified by substitution. 

The solution of Lou = 0 is thus given by 

1 
1-t 

u(xl,x2 	
GM

) = 
I

{g(z) - x2  f E(x2(12t), x2( -))g(xl+ix2t)dt 
-1 

1 
-xl  f F(x1(12t), xl(12t))g(xlt + ix2)dt 

-1 

1 
+ x x f F(x 

(l+t) 
 x 

(1-t)) 
1 
 E(x (1+T )  x  (1-

-T))g(x t+ix T)dtdt. 
1 2 _l 	1 2 ' 1 2 	

_l 	
2 2 ' 2 2 	1 	2 

(3.25) 
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7. 	Numerical Approximation of the Integral Operator for the Equation 

-Au + [M(x1) + N(x2)]u = 0 

a) Truncation of Series. 

Recall from Ch. 3, Section 5, that W(xl,z-t) is the canonical 

generating function for the equation L2u = 0, and that W(xl,z-t) can 

be expressed as an infinite series as follows 

03 

W(x1,z-t) = E Cn(x1)(z-t)
n-1  

n=1 
(3.26) 

where Cn(x1) satisfies a certain recurrence relationship. In an 
ti 

identical way a canonical generating function of the form W(x2,z-t) 

can be found for the equation L3u = 0, and there exists a function 

Dn(x2) such that 

CO 

W(x2,z-t) = E Dn(x2)(z-t)n-1  

n=1 
(3.27) 

where Dn(x2) satisfies a known recurrence relationship. 

No new generating functions are introduced for the equation 

Lou = 0, and so the two generating functions to be evaluated can be 

evaluated with a knowledge of (3.26) and (3.27). 

b) By solution of Goursat problems. 

The generating functions to be evaluated by solution of Goursat 

problems are 

E(x2(lZt), x2(121)) 	and 	F(xl(121), 	x1(121)). 

We described how these were solved in section 5. 



CHAPTER 4  

THE NUMERICAL SOLUTION OF THE GOURSAT PROBLEM 

1. 	Introduction  

Consider the following Goursat problem 

H 
P t 

= f(p,t,H) = F(p,t)H(p,t), 0 < p < a, 0 < t < S, 

H(p,O) _ q(P) , 

H(O,t) =11)(0 /  	0 < t < g, with (:(0)  = 4(0) 

where F(p,t) is defined everywhere in R0, where R
0 
 encloses the 

rectangle 0 < p < a, 0 < t < S. 

Many familiar methods have been developed to find the numerical 

solution of this Goursat problem. We mention: the method of 

characteristics (Fox, [251, pp.211 ); a Gaussian-quadrature method 

(Day, [ 17 ]); an Euler-Cauchy polygon method (Diaz, [ 20]); 

a Runge-Kutta procedure (Moore, [ 42 ]); Tornig [ 50 ] generalizes the 

explicit and implicit Adams methods; Aziz and Hubbard [ 4 ] use a 

finite-difference method; and Duris [ 21 ] uses a Riemann-like method. 

All of these and many others could be used on this problem. However, 

in the interests of accuracy, we develop a difference scheme based on 

Simpson's 9-point quadrature rule. 

46 

0 < p < a, 	 (4.01) 
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2. 	The Goursat problem 

If f(p,t,H), gp), 11)(t), satisfy the following conditions then it 

can be proved (Bernstein, ( 81 , p.109 ) that the Goursat problem 

(4.01), has a unique solution. 

i) f(p,t,H) is continuous in R0, and all H. 

ii) In any closed, bounded subrectangle of R0, R = PxT, where P is 

the interval pl  < p < p2, and T is the interval t1  < t < t2, f 

satisfies a Lipschitz condition. 

That is there exists a constant L > 0, such that 

If(p,t,H) - f(p,t,H*)I < L[IH-H*I1, 

for (p,t) E R and all H and H*. 

iii) The function 0(p) possesses a continuous first derivative 4'(p), 

0 < p < a. 

(iv) The function t,(t) possesses a continuous first derivative i'(t), 

0 < t < a. 

(v) 4(0) = 440). 

In order to find a numerical solution for the Goursat problem 

((4.01), taking a = S = 1), on the line p+t = 1, we impose a square 

mesh over the domain bounded by p = 0, t = 0, p+t = 1, p = 1 - S, 

t = 1 - S where S > 0. We can exclude the points (0,1), and (1,0) 

because the solution of the Goursat problem is known at these points. 

If we require N mesh points on p+t = 1, where N is an integer, then 

h = N+1 (in practice we take S = h). Let Ri. denote a square of the 

mesh such that R.. = Pi  x T., where Pi  is the interval pi < p  < p.  1' 
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and T. is the interval t. < t < tj+1, and p. 	- P.+h, t. 	= t.+h,
1 

then the mesh consists of the squares R.., i = 1,...,N+1-j 

j = 1,...,N. We assume that H, aH aH ap , at are known at the points (Q= It3i2) ) 
2 

(p ,t.), (p. ~ ,t.), (p. 	,t.), (p, 	,t. 	) and 	H 
is known at i 3 	i.+z J 	i.+1 J 	i J+Z 	apat 

(pi,t.), where pi+2 = pi 
+ 2, t

j+2 
= tj + 

2 . This is certainly true 

when p = p1 = 0, t. = t1 	 H, 	at 
= o. We wish to calculate H aH, DH i 	 at the ap  

points (Pi+1,tj+2), (At
j+1), (Pi+1,tj+1)• 	

(4.02) 

Then by proceeding in a stepwise manner over the squares 

R., i = 1,...,N+1-j, j = 1,...,N, we obtain N values of H on the line 
i
. 
 

+t = 1. In order to calculate H, DH DH at the points given in (4.02) p 	 ap' at 

we integrate the differential equation 

Hpt = f(p,t,H) 

over the square R to obtain 
ij 

	

p.1- 	
j+  tj+1 

H(pi+l'tj+1) = H(p. 	,t.) + H(p.,t. 	)-H(p.,t.) + 	f 	f(p,t,H(p,t))~ipctj 

	

P. 	t. 

	

1 	J 

(4.03) 

   

tj+l 
p +lt. + tr f(Pi+l't' H(Pi+l't)Ā~t, 

J 

 

aH 
ap 

 

_ aH 
Pl+ltj+l aA 

(4.04) 

   

pj+l 
aH 	= aH 	+ 	1 	f(p, 	,H(t j+1'  P)dP 1+1 	

• at 	
t' 	at P ,t .+1 	 t. 
J+1 	1 j+1 PJ 	

J+1 
 

(4.05) 

Simpson's 9-point quadrature rule is used to evaluate the double 

h 
integral in equation (4.03), taking h2 = 121. 
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1+1 t1+ 1 	h2 2 2 

f f(p,t,H(p,t)dpdt = 2 E 	E W~f(p.+nh2,t.+mh2, 
pi 	t. 	9 n=o m=o 

J 
6 

H(p.+nh2,t.+mh2)) 	d(A2 	m f(E,H(F,n)) + 0(h2)8, (4.06) 

4 	4 
where a2 = 

a 4 
+ 

ano , 	E = Pi + h2, n = t. + h2, 

and W0Ō = W02 = W20 = W22 = 1, WŌ1 = W10 = W21 = W12 = 4' Wl l = 16. 

(Bickley, [ 9 1). 

In order to calculate H(p1.+i,tj+1) in (4.06), we need to evaluate 

H(pi + 2, t.
J 
+ Z), H(Pi + h, t.

J 
+ 2), H(pi + 2, t.J 

+h), and 

H(pi + h, t. + h). 

The following estimates of order 4 using Taylor expansions have 

been used by Jain and Sharma [ 34 ]. 

For 0 < a , T < 1, 

H(p.+h,t.+Th) = [1+2(o3 T5)-3(a2▪ 2)]H(p.,t.) + [3T2-2T3]H(p.+t.
)1J+1 

+ [3a2-2a31H(p. ,t.) + h[a3-2a2+a-at2] āH p.t. 
J 	 p 1 

+ ho 
	all 	▪ h[63-62, aHl 
aP itj+1 	aP Pi+lt7 

+ h[T3-2T2+T—a2T] aH p.t. + ha2T aH,pi . +1t J 	 J 

 

+ h [T
3—T2] aH 

+ h2aT[1-a-T]f(p.,t.,H(p.,t.)) 
p.t. 
	

1 J 	1 J 1 J 

 

4 	4 	4 

l 
4,[62 + (6-1)2l 3 4 	

+ 4Ta2[a-1] 
83H  

ap pitj 	ap at pitj 

4 
• 6T2a2 

a4 H  
l 	

+ 4T2a[T-1] 3
4H  

ap2at2 p.t. 	apat3 

+ T2[T-112 341  + 0(h6) . 
at p.t.3 1 

p1t3 

(4.07) 



aH aH We still require values of 	at 
2t 	(pi+1t'J+1). For these the 

formulas (4.04), (4.05) are used, the integrals being approximated using 

Simpson's 3-point quadrature formula. This involves the values of 

H(pi+1'tj + 2), H(pi + , tj+1) and H(pi+1'tj+1
). 

The first two have already been approximated using equation (4.06), 

and the value of H(p. 1
,t. 1) is calculated using equation (4.03). 

The error in Simpson's rule over the interval pi to pi+1, with 

step-length h2 = h/2 is 

h 4 
h . —a- 

180 

D4 

ap4 	 (p,tj+1, H(p'tj+1))!p=E1 (4.08) 
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pi < 1 < pi+1 
	• 

Similarly for equation (4.04) the error is given by 

4 

a4 
h . 

h2 

I[ 	4 f (pi+1,t,H(p. 	,t))]1 t= 
180 at 	 '~1 

t. < n < t, 
1 	J+1 

The expressions (4.08) and (4.09) are of order h5. 

(4.09) 



2 	r 2 	r 2p 8 H _ 	0 	p( 0 ) ,H  
4(1-t)2 1-t apat in t > 0, 	p > 0 
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3. 	The equation -Au + P(r2)u = 0. 

For the equation -Du + P(r2)u  = 0, the following Goursat problem 

has to be solved, 

P + t <1, 

H(0,t) = 0, 

P 
H(P,0) = zr0  j P(r02A)dA, 

0  

t > 0, 	 (4.10 ) 

p > 0, 

Let RO  be the domain 0 < p < 1-S, 0 < t < 1-6, S >O. Then for—  r02 	r0 2P 
the conditions i) and ii) in section 2 to hold, 	 P( 	) must be 

4(1-t)2 1-t  

continuous and bounded in R0. This implies that t must not equal 1, 
r02p  

and that P(1-t  ) is a continuous function in R0. Conditions iii) to v) 

follow from the initial values of H(p,t), on the lines t = 0, and p = 0. 

Thus the Goursat problem has a unique solution. 

We anticipate the presence of a singularity at t = 1, this will 

cause a deterioration in the numerical solution, particularly at points 

near t = 1. 
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4. 	The equations -Au + M(x1)u = 0, 

-Au + N(x2)u = 0, 

-Au + [M(xl) N(x2)]u = 0. 

For the equation -Au + M(x1)u = 0 the following Goursat problem 

has to be solved for F(x1E,x2'n): 

F12 = M(x1(E+n))F, 	E > 0, n > 0, E + n < 1, 

xl~ 
F(x1E,0) = - 2 f M(X)dX, 	E > 0 

0 

F(0,xin) = 0, 	n > 0 

The domain RO is 0 < x1E < xl 0 < xln < x1. Then for the 

conditions i) and ii) of section 2 to hold, M(x1(E+n)) must be 

continuous and bounded in R0. Conditions iii) to v) follow from the 

initial values of F on the lines E = 0, and n = 0. 

Similarly for the equation -Au + N(x2)u = 0, the following Goursat 

problem has to be solved for E(x2E,x2n): 

E12 = N(x2(E+n))E, 	E > 0, n > 0, 	E + n < 1, 

1 x2E E(x2E,O) = - 2 f 	N(X)dA , E > 0, 

0 

E(O,x2n) = 0, 	n > 0. 

(4.12) 

The domain RO is 0 < x2E < x2, 0 < x2n < x2. If N(x2(E+n)) is continuous 

in R0 then conditions i) to v) hold. Thus the Goursat problems (4.11) 

and (4.12) have unique solutions. 

For the equation -Au + [M(xl) + N(x2)]u = 0, both the Goursat 

problems (4.11) and (4.12) have to be solved. 

(4.11) 
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5. 	Error analysis for the Goursat problem  

a) 	The local decretization error. 

Let CABD, (see figure 2), be a typical square, R.., of the mesh 
ij 

over the triangular domain of the Goursat problem (section 2). 

(Figure 2) 

It is assumed that the values of H, 
ap 

and 8t are known exactly 

on AB and AC. 

The computed value of H at D, H, is then given by 

H(pi+1'tj+l) = H(pi+l'tj) + H(pi,t~+l) - H(pi,t~) 

h2 2 2 
+ 9 E 	E w 	f(p. + nh2, t~+mh2,H(p. + nh2, t~+mh2)), 

n=0 m=0 

h2 = 2 

h2 2 2 
where the terms 

9 
E E wnmfnm are those of Simpson's 9-point rule, 
no m=0 

see equation (4.06), and H denotes the approximate value of H at the 

points K, G, J and D respectively, found from Taylor expansions, see 

equation (4.07). It is clear that H can be found at all points of the 

square from Taylor expansions. 

h 
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Let H(P. 
,t.  ) be the true solution of H at D, then 

)IH(p. 	,t 	- H(p
1+1't  +1)I=IH(p. 	,t.)- EH + EH - H(p. 	 t)Ij

+1  	J+1 	1 	+1' 

where 

EH = H(p. ,,t.) + H(pi,t.+1) 
J 	 J 

h2  2 2 
- H(p.,t.) + ? E 	E w f(p.+nh , 

13 
	9  n=0 m=0 nm i 2 

t.+mh2, H). 

Hence, from equation (4.06) 

IH(Pi+1'tJ'+1) - H(Pi+1,tJ +1 	J 	J
)I 	IH(Pi+1,t +1) - EHI+IEH - H(Pi+1,t  +1)l 

h6 

145 A2f( ,n,H(E,n)) + o(h28)I 

h2  2 2 
+ 9 E 	E Iwnmllf(pi+ nh2, tj+mh2, H) - f(pi+nh2,t.+mh2,H)I, 

n=1 m=1 

(4.13) 

4 4 
where A2 = 8 + 

an and A
2f is evaluated at E' = p. + h2, 	

J 
n = t. + h2. 

Using equation (4.01) 

If(pi+nh2, t.+ mh 2, H) - f(pi+nh2, t.+tnh2, H)I 
J 	 J 

IF(pi+nh2, tj+mh2)[H(pi+nh2, t.+mh2) - H(pi+"nh2, t.+ulh2)]I 

1.(1H-HI] from the Lipschitz condition (ii) section 2). 

For each n and m IH-HI is the error arising from the Taylor expansions, 

equation (4.07). By calculating the error for each n and m, multiplying 

by the appropriate weight Iwnml and recalling that h2  = 2, we can rewrite 

(4.13) as 
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IH(P. ,t 	) - x(P. ,t j 
)I  	h6 	2A +  h6  . L 	2. 5M+12N+24C  + 0(h8) 1+1 j+I 	1+1 	

45x26 	9x22 	4! 

(4.14) 

where 

4 
A = max{la 4(,n,H)I, 

1 aE 

4 
a 4(E,n,H) 
an 

 

h 	h 
• E = Pi + 2, n = tj  + 2 } , 

4 
M = max{l a  4(,n) 

K  

  

4 
4(E,n) 
an 

 

 

, . E = Pi, i = tj}, 

   

2 
N E max{l 2(E,n,H) 

aE  

2 
C = aEan( 	,

n ,H) , 

 

2 

a 
2(,n, WI :  E = P., n= tj}, 1 
n 

E=Pi, n=tj , 

 

 

L = 2H(E,n,H), 	E = p., n = t... 

b) An estimate of the global discretization error 

In the numerical solution of ordinary differential equations, error 

bounds for the global discretization error, obtained using conventional 

error analysis, may be extremely pessimistic and unrepresentative. In 

partial differential equations, the increased complexity can only add 

to the inadequacy of the error bound. Error estimates for ordinary 

differential equations, have, however, been found to be extremely useful 

for monitoring the error. 

Consider the Goursat problem (4.01): 

Hpt  - f(P,t,H) = 0, 	0 < p < a, 0 < t < S, 

H(P,0) = (1)(P), 	0 < P < a, 

H(0,t) = 4,(t), 	0 < t < 6, 

with (!)(0) =(0). 



The difference scheme used to solve this problem can be written as 

follows: 

H(p. 	,t. 	)-H(P 	,t.) - H(p.,t. 	) + H(p.,t.) 1+1 +1 i+l  

h2 2 2  
- 4x9  E 	E W  mf(Pi+n/2,tj+m/2, H(Pi+n/2' tj+m/2)) = o ,  

n=0 m=0 

with 	H(pi,tl) = gpi), 	 (4.15) 

for i = 1,2,....,N-j, j = 1,2,...,N-1. 

If this difference scheme is consistent of order q - that is the 

local discretization error, di+li+l  is of the form 

di +1 i+l = -hgE(pi+1'ti+1) - 0(0+1
) , (4.16) 

where E  is some function of p and t independent of h - and if the initial 

values are accurate at least to order q+1, then we will show that 

H(p
11

) = H(p.,t.) + hge(pi,ti) + 0(0+1), 1 

where 
2 8 
apātt) 	aH 

 (P,t,H(p,t))e(p,t) = E(P,t), 

and e(p,O) = e(0,t) = 0. 

We will write 

fij  = f(pi,t.,H(pi,t.)), 

fij  = f(pi,t., Hij+hge(pi,t.)) 
3 

Hij  = H(pi,t.), 

e.. 
	j = e(p.,t.) ) . 

1  

(4.17) 

(4.18) 
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Substitute H.. + hqe. into the left hand side of equation (4.15), 
ii 	ii 

then 

H. 
	i+1 - H. 	. - H. 

1+1  + Hii  + hq(ei+l i+1 	ei+l i 	ei i+l + e..) 

h2 2 2  
 

4x9 E 
	E wnm fi+n/2,i+m/2 n=o m=o 

(4.19) 

From Taylor's series 

f(Pi+n/2,ti+n/2' H(Pi+n/2'ti+n/2) + hge
i+n/2 i+n/2)  

= f(Pi+n/2'ti+n/2' H(Pi+n/2'ti+n/2)) + DH (Pi+n/2'ti+n/2
H(P

i+n/2'ti+n/2)) x  

2 
x h ei+n/2 i+n/2 + 0(hq ) (4.20) 

Substituting (4.20) into (4.19) and using the definition of the local 

discretization error, (4.19) becomes 

di+1 i+l + hq(ei+1 i+1 	ei+1 i 	ei 1+1 + eii)  

h2 2 2 
 8f 

4x9 E 
	

E 8H (Pi+n/2'ti+m/2' H(Pi+n/2'ti+m/2)) x n=0 m=0 

x hqe. 	+ 0(h2q) i+n/2 i+m/2 (4.21) 

using Taylor's series to expand all terms about the point (Pi+1'ti ) +1 

(4.21) becomes 

2 

hq  apat e. 	. 	- hq 8f ā i+l i+l x e. 	- hq 	+ 0(h
q+l) 

H 	i+1 i±l 	1+1 . 

= 0(0+l), 	from (4.18). 

57 



Thus H(P.,t.) and H(pi,ti) satisfy sets of equations whose right 

hand sides differ by 0(0+1), from the stability of the method this 

implies that H(pi,ti) and H(pi,ti) differ by 0(0
+1). 

This result means that a method for which the principal part of the 

local discretization error is hggi+1 i+l at pi+1,  ti+1, 
has global 

discretization error with principal part hge(p1+1'ti+1) and the 

dev. ation from the true solution is the same as that due to a 

perturbation h(q)C(p1+1,ti+1) in the analytic equation, provided that the 

initial conditions are correct to order q+l. Thus the solution of the 

equation 

2
e 	3f 

apat (p,t) - 8H(P,t,H(P,t))e(P,t) = 
	(P,t), 

(4.22) 
with e(p,O) = e(0,t) = 0, 	p > 0, t > 0 

gives the leading term of the global discretization error. 

Consider the equation 

a2
c (p,t) - L c(P,t) = 

apo 

e(p,0) = c(0,t) = 0 , 	p > 0, t > 0 

where 	L ? IfH(p,t, H(p,t))I 	and 	> C(p,t). 

We solve (4.22) and (4.23) by the method of successive approximation, 

taking 

e(p,t) = e0(P,t) + el(p,t) + 	 + en(p,t) + ... 

c(P,t) = e0(p,t) + cl(p,t) + 	 +  cn(p,t) +  ... 
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(4.23) 



where 

p t 

Ie0(p,t)I = f f Ik(P',t')`dp'dt' 

p t _ 

e0(P,t)  = f f C dP' dt' = Ept , 
O 0 

Ie0(p,t)I = e0(P,t) = TPt. 

p t 

Ie1(p,t)I = f f 
O 0 

  

8H (p',t',H(p',t')e0(p',t') dp'dt', 
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Thus 

O 0 

p t 	 p t _ 
el(p,t) = f f Le0(p',t')dp'dt' = f f Ljp't'dp'dt' 

O 0 	 0 0 

= Lp2t2 	 
22 -

- 

Thus Ie1(p,t)I 	e
1
(pt) 	since L 

 

8H (p,t,H(p,t) 

   

Assume that for some n len_1(p,t)I 	en-1(p,t), 

then 

p t 

Ien(P,t)I = f I 
0 0 

   

 

2H (p',t',H(p',t')e 1(p',t')) 
n- 

dp' dt' , 

   

p t 
and en(P,Y) = f f Len-1(P',t')dp'dt', 

O 0 

Thus 	len 
(p,t)I = e 

n
(p,t), since 

af P,t,H(P,t) 
aH 

L 



M = sup{ 
ij 

e 
4 
4(E,n) 
ap 

4( ,n) = P., n = t.), 1 J 
a4H 

at 

• = Pi, n = t }, 
j 

2(E,n,H) • = P., n = t.}, i at 

a2f 

Hence by induction le 
n 
(p,t)I <= e 

n
(p,t) for all n. 

So 	Ie(p,t)I = s(p,t), 

where 

p >0, t>0 
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Lp2t2 	 + L2p3t3E +... e(p,t) = pt + 

(2!)2 	(3!)2  

;1(247E—)  — 1 
c(p,t) = [ 	 ] 

Taking 

4 
< 2

5h33 
[0.6A + L(2.5M + 12N + 24C)], 

then 

see equation (4.14). 

4 
Ie(p,t) I < 

2
1.-51 	
.

33 
 [O  LA  + 2.5M + 12N + 24C] . [IO(2Apt) — 1] , 	(4.24) 

p > 0, t > 0. 

Where 

 

4 

4(E , r ,H) 
ap 

 

4 
a 4

( ,n,H) 
at 

 

   

A = sup{ 
ij 

, E = pi  + Z, n = t. 	2}, 

  

  

2 
N = sup{ 

a 
 2(E,n,H) 

ij ap 

z 
C = sup{l

apat(E,n,H) ij 

L = sup{ 
ij 

af(,n,H)  • =pi, n = t J
}, 

  

i = 1,2,...,N—j, 	j = 1,2,...,N-1. 



The error in the Goursat problem 

IH(P,t) - H(P,t)I 	= e(P,t) + 0(h6), 

where Ie(p,t)I is bounded by equation (4.24). 

In Chapter 8, we consider the usefulness of the error estimate 

(4.24) in practical computation. 

A similar result for a Gaussian quadrature method is given by 

Day [17 ], using the techniques discussed by Walter [ 55 ] and 

Henrici [33 ]. 

We will consider the following linear elliptic boundary value problems. 

Let D be a simply-connected domain containing the origin, of class Ah 

(Chapter 2, Section 3(b)). 

i) Problem A  

Problem A is to find the solution u(xl,x2) of the equation 

Lu = Au + a(xl,x2)ux + b(x1,x2)ux  + c(xl,x2)u = 0, 	(I) 
1 	2 

	

a2 	a2 where 	a = 	2  + 	2  , Laplace's operator, 

	

axi 	ax2  

au 	_ au 
uxl - aX1 	

uX2 
= ax2  , 

and a, b and c are analytic functions of 

xl, x2  for (xl,x2) E D, and c(xl,x2) < 0. 

u(xl,x2) is regular in D, continuous in DUD, and satisfies the 

boundary condition 

u(x1,x2) = f(xl,x2) 
	

(xl,x2) e aD, 
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where f is a given real function continuous on the boundary aD. 



ii) Problem B  

Problem B is to find the solution u(x1,x2) of the equation 

Lu = -Au + P(r2)u = 0, 

where r2  = x
1
2  + x22,  a = Laplace's operator, and P is an analytic 

function of r2, with P(r2) > 0. u(x1,x2) is regular for (x1,x2) E D, 

continuous in D170,  and satisfies the boundary condition 

u(xl,x2) = f(xl,x2), 	(xl,x2) e aD 1  

where f is a given real function continuous on 3D. 

iii) Problem C  

Problem C is to find the solution u(xl,x2) of the equation 

Lu = -Au + M(xl)u = 0 	(III) 

where A = Laplace's operator, and M is an analytic function of x, 

with M(xl) > 0 u(xl,x2) is regular when (xl,x2) E D, continuous in 

DU aD and satisfies the boundary condition 

u(x1,x2) = f(x1'x2) 	for (xl,x2) 8 aD , 

where f is a given real function continuous on 3D. 

We will also consider the equation 

Lu = -du + N(x2)u = 0, 	on D, 

A = Laplace's operator, N an analytic function of x2  with N(x2) >..0, for 

problem C. 
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iv) Problem D  

Problem D is to find the solution u(xl,x2) of the equation 

Lu = -Au + [M(xl) + N(x2)1u = 0, (Iv) 

where A is Laplace's operator, and M and N are analytic functions of x
1 

 

and x2  respectively, with M(xl) > 0, N(x2) > 0. 

11(xl,x2) is regular for (xl,x2) € D, continuous in DUO,  and 

satisfies the boundary condition 

u(x1,x2) = f(xl,x2) , 
	(x1,x2) e aD, 

where f is a given real function, continuous on the boundary D. 
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CHAPTER 5  

THE METHOD OF PARTICULAR SOLUTIONS  

1. 	Introduction 

Consider the linear elliptic boundary value problem 

Lu = 0, 

u = f 

on D, 

on DD, f 6 C°(DD) 

(5.01) 

where D is of class Ah, L is a linear elliptic operator and f is 

continuous on the boundary of D. 

Definition (Colton and Gilbert [ 15 ]) 

For equation (5.01) the family of particular solutions {p
n}n=0 

is complete, if given any solution, u, of the equation (5.01), regular 

in D, any closed subset D0 of D, and any positive number e, there exists 

an integer M and a system of constants c1,c2,...,cM such that 

M 
lu - E 	ckpk I < e 

k=1 
at all points in D. 

Assuming there exists a complete family of particular solutions 

-pk(xl,x2), k = 1,2,..., which are formal solutions of Lu = 0, we select 

a finite linear combination 

M 
ū(xl,x2) E ū(a,x1,x2) = 	 E a~p.(x1,x2) J l  

where Lū = 0, on D. 
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We want to choose the constants a., j = 1,2,...,M, so that u 

approximates f on the boundary DD. 

Choose points x1,x2,...xN  on D. Define 

nN  = max min Ix - x.I  , 	x e aD. 
aD i 

We assume nN  0 as N } 

There are a number of ways in which the constants a., j = 1,2,...,M, 

can be chosen. 

i) Collocation  

This is a very old and simple method of using particular solutions. 

Take M = N, so that there are equal numbers of boundary points and 

particular solutions. 

Now determine the constants a., j = 1,2,...,N so that 

u(xi) = f(xi) = given boundary data, i = 1,2,...,N, 

i.e. we interpolate the boundary data by means of a linear combination 

of particular solutions. However, as with other interpolation processes 

convergence is not assured when N } =. Collocation using particular 

solutions has been used by Fox, Henrici and Molar [ 26 ] in the eigenvalue 

problem for elliptic equations. 

If N » M, requiring the constants a., j = 1,2,...,M to satisfy 

M 
f(x.) = J E1  a.p.(xi), 	i = 1,2,...,N, 	(5.03) —i  
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leads to N linear equations in M unknowns. This system is over-determined. 



We define the following norms: 

1Ifl1 2 = 1/Ewif2(xi) the two norm, 

where the weights, w., are chords or means of chords. 

IIfII. = 	sup If(xi)1 , 	the infinity norm. 
1<i<N 

ii) Least Squares  

Take N » M, and for the over-determined system, (5.03), determine 

the constants a., j = 1,2,...,M so that 

M 
IIf(xi) - E a.p.(xi)II2  = minimum. 

j=1 J J 

We will show that for this method convergence as M } . holds under 

quite general conditions. 

Applications of the least squares method to boundary value problems 

was popularized by Davis and Rabinowitz [ 16 ]. 

iii) Linear Programming 

Take N » M and determine the constants a., j = 1,2,...,M, so that 

M 
- E « p (x. )1 —i 	
j=1 J J —

i  m = minimum. 

We will show that for this method convergence as M . holds under 

quite general conditions. 

Linear programming methods with approximation in the infinity 

(Chebyshev) norm, have become increasingly popular, as linear programming 

algorithms become more efficient. Canon [ 11 3, Schryer [ 48 ] and 

Rabinwitz [ 45 1. 
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Although linear programming algorithms have some advantages over 

least squares algorithms, (for example, by definition, the maximum error 

achieved at the boundary points using a linear programming algorithm will 

be less than that using a least squares algorithm, for the same number of 

boundary points), we choose to use a least squares algorithm, since the 

calculation is almost twice as fast. 

The theoretical success of the method of particular solutions 

depends upon finding a complete system of particular solutions of the 

elliptic equations. The numerical success depends upon finding a complete 

system that is readily computed. For the elliptic equations we consider, 

we develop a complete system of particular solutions, using the general 

solutions of Bergman and Vekua. That the system is complete is confirmed 

by Vekua (see Theorem 4, Ch. 2), and that the system is readily computable, 

is due to the construction of Bergman`s operator (see Sect. 4, Ch. 2). 
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2. 	The Least Squares Approximation 

THEOREM 6. The existence of a best linear approximation (Handscomb, 

[ 31 ]). 

Let f be a member of some normed vector space, a subspace of which 

is spanned by m given linearly-independent vectors, ~i, i = 1,...;m. 

There exists a set of coefficients a = (a1,a2,...,aM), such that 

E a.$• I I 
s 

I I f- 	E 	p4.11 ,  
i=1 1 1 	1=1 1 1 

for every set {}t.
1
}, so that Ea

1
.ii5. is a best approximation to f. 

1 

THEOREM 7. The uniqueness of the best approximation (Handscomb, [ 31 ]). 

The best linear approximation with respect to a strict norm is unique. 

Definition. Strict Norm. If a norm satisfies the condition that 

II f + g II < II fII + II g II unless j = 0, or g = 0, or f = 0g, for some 0. 

Then it is a strict norm. 

The uniform norm and the 2-norm are both strict norms. Handscomb 

[ 31 ]. 	Thus the uniqueness of the best linear approximation for the 

2-norm is assured. 

We now consider the convergence of the sequence of approximations in 

the uniform, and the 2-norm. 

a) 	Convergence in the uniform norm. 

We use the notations 

II fII 	= 	max 	If(x)I , 
t6Dv3D 

II fII aD = 	max If(x)I , 
ten 

where D and aD are the domain and boundary in Problem A. The theorems 



8, 9, 10 and proofs are adapted from Schryer [ 47]. 

Consider solutions of the elliptic p.d.e. (I) in problem A. Let 

(1) 1((x), k = 1,2,... be a system of functions which are formal solutions 

of Lu = 0, and let these functions form a complete set, that is given 

0 < c < 1, we can find M and ai(M) such that 

M 
II f - E a (M)4

i11 aD  
i=1 1  

e 	 (5.04) 

N Writing 	um = 	E a. 	f. , then since u = f on DD, (5.04) is the 
i=1 1 

same as 

Il u — uNII aD : e. 

Let pM > 0 be such that 

II 40 aD 	PM 
	i = 1,2,...,M. 

Define the compact set 

SM = <_ (II fir al) + 1)/pM}. 

THEOREM 8. For 0 < e < 1, there exists an integer M and 
a(M)e 

SM such 

that 

M 

11 u - E ai(M)~111 aD 	
E C. 

1=1 

Proof. From the completeness of the 4
i
, i = 1,2,... there exists an 

M and a(M) such that 

M 

II u - 	I 	a.
i(M)g5 .Ii 	E. 

1=1 
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We need to show that a(M) e SM; 

II uMIIDD 	II fil aD+ 1 ) see (5.04) 

II E 
ai(M)~1

1
1 aD > 	I a.(M)Ip 

i=1 

I ai(M) I 	
( II fII aD + 1)/PM, 

a(M) e S . 

For any integer N we choose points x1,x2,...,2EN on the boundary DD. 

Define 
nN 

= Max Min Ix - xiI 
x88D i 

 

We impose the condition that nN -} 0, as N -} 03. 

Define 	The continuous function EMN, for a e SM by 

M 
E (a) = 	max If(x.) - E a.() .(x.) ( , 
MN 	15j<N 	J 	i=1 	1 

and set eMN = inf E 
SM 

( 

Since 
EMN 

is continuous on the compact set SM, there is an 

a(MN) a SM so that 

eMN 
= EMN(a(MN)

) . 

Define  U
N by 
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thus 

and 

M 
E a.

(MN)¢(x.) 

i=1 
j = 1,2,...,N. UMN(x.) = 



This is the best uniform approximation to u at the points 

using M linearly independent approximating functions. 

Define w(f,n) = 	sup 	If(xl) - f(x2)I, 
xl,x28DD 

IXl-X2I~n 

the modulus of continuity of f on DD. 

THEOREM 9  

u - uMNII 	w(f,nN) + eMN + w(uMN,nN). 

Proof. 	By the maximum principle 

Hu-uMNIi 
s 

Ilu-uMNII 3D 

Let x be between x. and 
xj.+l 

on DD. Then 

Iu(x) - uNN(x)I S Iu(x) - u(x .)I + lu(x.) - umN(x .)I + IuMN(x.) - UMN(x)I —J 	-J 	J  

w(f,n) + eMN + w(uMN,nN). 

For fixed M and varying N, a are bounded, since they are in the 

compact set SM. This means that the MN are equicontinuous on DUD 

for varying N and fixed M. Thus for fixed M as nN -- 0 we have 

w(ur1N,nN) -} 0 and also w(f,nN) -> 0. 

THEOREM 10. For any 0 < e < 1 there exists M(c) and N(c) so that 

N ? N(c) implies 

IIu-u
N(c)N ll 

<E . 
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Proof 

M 
EMN(a) = 	max If(x.) - E a.(1).(x.)I, 

lsj<N 	J 	1=1 1 1 -J 

M 
= II f(x) - E ai~i(x) II aD 1=1 

Thus 

eMN = min IIf - E a.4).11 , and hence by theorem 7 there is 
SN 	i=1 

an integer M(s) so that e
M(e)N 

= e/3 for all N. 

Also since for fixed M as 
nN 
- 0, w(uMN,nN) } 0, and w(f,nN) -} 0, 

we may choose an integer N(s) so that N N(s) implies 
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w(f,nN) < s/3 and w(uu(e)N' nN) = 6/3 

Then by theorem 8 we see that for N N(e) we have 

II u 	uM(s)NII 	= s. 

This shows that the sequence of approximations, uMN, is uniformly 

convergent with respect to points on the boundary. 

b) 	Convergence in the 2-norm: 

If x E 8D then 

1I fII 2 = J 	(f(x))2 ds, 
8D 

where s represents arc length. 

Recall for xi G 3D, i = 1,2,...,N 

N 

II fII 22 - 	E wi f(xi) 2, 	where wi > 0. 
i=1 

As N->0, 	IIfII 22+ IIfII2 . 



The weights W. are chords or means of chords. 
1 

Consider solutions of the elliptic p.d.e. (I) in problem A. 

Let 4k(x), k = 1,2,..., be a system of functions which are formal 

solutions of Lu = 0, and let these functions form a complete set. 

That is given 0 < c < 1, we can find M = M(e), and aM = (alM,a2M,...,at~ ) , 

such that 

II f - 	E 	a.Mcb . II 	< 	e. 
i=1 

THEOREM 11. The method of least squares converges. Mikhlin [ 40 ]. 

Proof. For any integer N we choose xl,x2,...,41 on the boundary D. 

Define the continuous function 

M 

E (a) =II 	2 , 
i=1 

N » M. 

We could choose N = 3M, that is that N = N(M) for example. 4
i
, 

i = 1,2,.... is a complete system of linear independent functions which 

satisfy the elliptic equation (I). 

Consider the continuous function 

M 

em(a) = 	f -  
i=1 

as N -} 00 	-MN -> em. 

Thus for any c, 0 < e < 1, there exists M(e), and consequently 

an N, such that for M > M(E) 

IeM(a) - EmN(a)I < e/2. 

Thus E (a) < e/2 + eM(a), M > M(e). (5.06) 
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But from the completeness of the 4i, 1 = 1,2,... , for any 0 < e/2 < 1, 
M 

M 
e (a. 1 ) < c/2. 
M
1 

Without loss of generality we can assume M1 > M(e), since if 
M 

M1 < M(e), we can take for i > Ml, ai 1 = 0. 

Thus from equation (5.06) 

M 
EM N(ai 1) < E . 	 (5.07) 
1 

However from Theorem 5 the best approximation in the 2-norm exists, 

thus there exists an (a. 
1 

) such that 

M 
EM N(a. 1) = Min, 
1 

thus from equation (5.07) 

EM N(ai 1) < e 
1 

It follows that the method of least squares converges in the mean 

on the boundary 3D, that is that 

i=1 	> 

M 
E ai(M)~i(t ) -} f(t ), 	j = 1,2,...,N, 	as M 

However, consider 

l 	M 	2 	M 

II f — E a.4 II 	= f 	[f(t) - 	E a.4> (t)] 2 .ds. 
i=1 1 1 	8D 	1=1 1 i 

The condition that 

M 
I I f - 	E 	a.(1)• II 	<— 

1=1 1 1 

	e, 
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there exists an M1, and an a 1 such that 



does not ensure that 

M 
{f(t) - E a.$•(t){ < E, 

1=1 i 1 
for all t E D. 

In practice a search of the boundary 8D is performed to find 

M 

Emax - max If(t) - E a.(1).(01 , 
8D 	1=1 

after the calculation of the ai, i = 1,2,...,M, by approximation in the 

2-norm. 

By the maximum principle the error on the interior can then be 

bounded by E 	. 
max. 

With a given number N of boundary points and a given number M of 

particular solutions, we would expect that if the coefficients are 

calculated by minimizing the uniform norm, then from Chebyshev's theorem 

the maximum error will be attained at points all around the boundary. 

For approximation in the 2-norm, the maximum error on the boundary will 

necessarily be larger than the maximum error for uniform approximation. 

However, we would expect the maximum error of the least squares 

approximation to occur at only a few points around the boundary, while 

at the majority of points on the boundary, the error due to the least 

squares approximation to be smaller. 
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H(T,1-T)  
h(xT) dT . 

T 	- 
(Hh)(x) = 
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3. 	Construction of the Particular Solutions  

a) 	For problem B, (-Au+ P(r2)u = 0). 

In chapter 3 the following integral representation of the general 

form of the solutions of the equation -Au + P(r2)u = 0, was obtained: 

1 H(T,1-T)  
u(x1,x2

) = h(xl,x2) + 0 	T 	
h(x1T,x2T)dT . 

0 

We can rewrite (5.08) 

u = (I + H)h, 	x = (xl,x2) 

where I is the identity operator and 

(5.08) 

(5.09) 

H(T,n) is the solution of a Goursat problem and h(x1,x2) = h(x) is a 

harmonic function. 

In order to construct particular solutions we take 

RE k 
hk(xl,x2) = {IM} 	

z z=xl +ix2,  k = 0,1,2,... 

and from equation (5.09) 

ui(xl,x2) = ((I+H)hk) (xl,x2), 	i = 1,2,..., 

k = integer part of i/2. 
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b) 	For Problem C, (-Au + M(xl)u = 0) and problem D, (-Au + [M(x1)+N(x2)]u=0). 

In chapter 3 the following integral representation of the general 

form of the solution of equation -Au + M(x1)u = 0 was obtained: 

1 
u(xl,x2) = h(xl,x2) - x1  fl F(xl(12t ), x1  ---))h(x1t,x2)dt, 	(5.10) 

where F(T,n) is the solution of a Goursat problem and h(xl,x2) is a 

harmonic function. 

For the equation -Au + [M(xl)  + N(x2)]u = 0, the corresponding 

representation was obtained: 

u(x1,x 
1 	 _ 

= h(xl,x2) - x1 f F(xl(12t), x2(12-))h(xlt,x2)dt 
-1 

1 
- x2 f  E(x2(12t), x2(12t))h(xl,x2t)dt 

-1 

1 
+ x x 	f F(x 1 2-1 	1 (

1+t) (1-t)) 
x 

1 
f E(x 

-1 	
2 +T) (1 T))h(x x (1—t x T)dTdt 2 1 	2 2 2 	2 	1 	2 	' 

(5.11) 

where F(T,n), E(T,n) are solutions of Goursat problems, and h(x1,x2) 

is a harmonic function. 

As in section a) take hk(xl,x2) = m{zk}, z = xl+ix2. Then for 

equation -Au + M(xl)u = 0, the particular solutions are given by 

ui  = (I - F)hk ,  i = 1,2,... 	 (5.12) 

k = integer part of i/2. 

and for the equation -Au + [M(xl) + N(x2)]u = 0 the particular solutions 

are given by 

u = (I - F)(I - E)h , 	i = 1,2,... 	(5.13) 

k = integer part of i/2. 
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where I is the identity operator and the operators F and E are defined by 

1  

(Fh)(xl,x2) = xl f  F(xl(12t), xl(1_2t))h(xlt,x2)dt . 
-1 

(5.14) 
1 

(Eh)(xl,x2) = x2 1 E(x2(1.1), x2(12-))h(xl,x2t)dt . 
-1 
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4. 	Completeness of the Sets of Particular Solutions  

The particular solutions were all constructed using the integral 

operators of Bergman and Vekua. From theorem 4, Chapter 2, we see that 

the particular solutions constructed in this way are complete in the 

closure of the domain of the problems B, C and D respectively. 



CHAPTER 6  

INTEGRAL EQUATION FORMULATION VIA THE DOUBLE-

LAYER POTENTIAL 

1. 	Introduction 

Consider the following equation 

b 
AW(s) — f k(s,t)gt)dt = f(s), 	a = t = b, a 5  6  s  b, 	(6.01) 

a 

where c15 is an unknown function, while k and f are given functions and 

A is constant. Such an equation is called an integral equation, since 

the unknown function appears under the integral sign. The function f 

is called "the right hand side", the function k is called the kernel, 

and the numerical coefficient A is called the parameter of the equation. 

It will be assumed that a and b are finite constants. The parameter A 

and the functions ci5, k and f can be taken as real or complex quantities. 

We consider the following types of integral equations. When 

k(s,t) is continuous in the region a s  s<4  b, a < t s  b, or if the 

discontinuities of the kernel are such that the double integral 

f f Ik2(s,t)Ids dt, 	has a finite value, 
a a 

the equation (6.01) is called an equation of Fredholm type. 

When the kernel has the form 

k(s,t) = h(s,t)  
Is-tia 
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where h(s,t) is bounded and a is constant, satisfying the inequality 

0 < a < 1 then the equation (6.01) is called an equation with a weak 

singularity. 

Solutions of equations like (6.01) are not in general known in 

closed form, so they have to be approximated. However, approximate 

methods can only be applied with confidence when the solubility of the 

equation has been established beforehand. 

For an equation (6.01) of Fredholm type or with a weak singularity, 

the solubility can be established by what is known as Fredholm's 

alternative: 

Either the in-homogeneous equation (f(s) # 0) is soluble whatever 

the right hand side may be, or the corresponding homogeneous equation 

(f(s) = 0) has a non-trivial solution. 	 (6.02) 

Fredholm's alternative follows directly from Fredholm's 4 theorems 

on integral equations (Mikhlin [ 41 1), and is very often used in the 

analysis of integral equations. 
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2. 	The solution of the Dirichlet problem for Laplace's equation 

Let C be a simply-connected domain with contour DC, assumed to be 

smooth with continuous curvature. The Dirichlet problem is to find a 

function u(xl,x2) harmonic in C, and satisfying  the boundary condition 

u = f(t) on 3C, where t is the complex coordinate of a point on 8C. 

The function u(xl,x2) can be regarded as the real part of a certain 

analytic function 4(z), z = xl+ix2, which is holomorphic in the domain C. 

We will try to find 4(z) in the form of a Cauchy type integral 

(1)(z) = 	f 
(t)z  dt, 

DC 
z 6 C 	(6.03) 

where p is an unknown real function satisfying  a Hdlder condition. The 

problem reduces to the determination of p. 

Let z in equation (6.03) tend from the inside to a point t0  on the 

boundary. Using  the Plemelj formula (Muskhelishvili 1 43 ]) 

gt) = ru(t0) + 	f t(t) 	
dt 	, 	t0  6 8C,i 

3C 	0 
(6.04) 

provided that the integral is interpreted as a Cauchy principal value. 

Taking  the real part of equation (6.04) 

7p(t0) + f p(t) IM{tdt ) = f(t0) , 
aC 	0 

since p(t) is real and f(t0) = RE(ct0)). 

Let rete  = t—t0  

IM {tdt } = IM{d ln(t-t0)} = de = āe  ds, 
0 

(6.05) 

where ds is the element of arc of the contour. 



By the Cauchy-Riemann equations 

ae 	a In r _ 	1 8r 
Ds = 	an 	- r ān ' 

_ 8 In r  
n 

is known in two dimensional potential theory as the potential 

of a unit doublet where n is the inward normal to aC at t0  and r is the 

radius vector from t to t0. 

ar 
Now ān = cos(r,n), where r,n denotes the angle between the radius 

vector and the inward normal and.hence 

IN{ dt } = 	cos(r,n)  ds. t-t0  

Thus (6.04) becomes 

7ru(t0) - 5 u(t) cos(r,n) ds = f(t0) . 
DC 

(6.06) 

This is a Fredholm integral equation of the second kind under the 

assumption of continuous curvature of the boundary 8C, the kernal 

r -1 cos('r,n) is continuous. 

In accordance with Fredholm's alternative (6.02), equation (6.06) 

is soluble, and has a unique solution, whatever the right hand side may be, 

provided the corresponding homogeneous equation has a trivial solution. 

Let f(t0) E 0. Equation (6.06) then becomes homogeneous. Let 

p0(t0) be any solution so that 

zru0(t0) - J 110(t) cos(r,n) ds = 0 
aC 

(6.07) 
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Put 

1 	r u0(t) 
4)0(z) = i  ac t-z dt' (6.08) 



where z is a point in C. The condition f(t0) = 0 shows that 

REO0(t0)} = 0, if t0  is a point on DC. A harmonic function which is not 

constant attains its maximum and minimum values on the boundary of a 

domain and this implies that RE 00(z)} = 0 in the closure of the domain 

C U C. It follows that 40(z) = iA, where A is a real constant. 

Equation (6.08) can then be written 

1 	u0(t) - iA 
	 dt = 0, 

1 ac 	t - z 

which is true for every point z in C. But then, by Cauchy's theorem, 

u0(t) - iA is the limiting value on 8C of a certain function 0(z), 

regular outside 8C and equal to zero at infinity. The imaginary part 

of this function is equal to A on aC, but this implies that 11)(z) = constant. 

However, 11)(z) = 0 at infinity, thus Ip(z) - 0. The function u0(t0) is the 

value of RE{p(z)} on 8C, and so p0(t0) E 0. Thus the only solution of the 

inhomogeneous equation (6.07) is the trivial solution. 

Note: It can be shown by a different method (J. Radon, [ 46 ]) that 

the solution of the Dirichlet problem exists and is unique under much 

more general assumptions with regard to the boundary of the region. 

However, the solution can no longer be found in the form of a double-layer 

potential. 
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3. 	The Dirichlet problem for second order elliptic boundary value problems  

Consider problem A and let C denote the simply connected domain, 

such that z = x
1
+ix2  6 C. Every solution can be written as 

(Ch. 2, and Vekua, pp.123, ( 5 3]), 

u(x1,x2) = Re(H0(z)(1)(z) + f H(z,twt)dt] , (6.09) 

z = x1+ix2, HO(z) = G(z,0,z,z), H(z,t) _ - 
ā
t G(t,0,z,z) , 

where G(t,t,z,z) is the complex Riemann function. cl)(z) is an arbitrary 

holomorphic function in C, which may be assumed without loss of generality 

to be subject to the condition cf)(0) = 4(0) (Vekua, pp.123, [ 53 ]). 

H0(z) is an analytic function in C and by the definition of the 

Riemann function G(t,t,z,z), H0(z) 	0 anywhere in C. H(z,t) is a 

holomorphic function of t for z on the boundary C, and an analytic 

function of z in C. 

By taking (Vekua, pp.130, [ 53 ]) 

1 	u(t)  4)(z) _ 
i 8C H0(t)(t-z) dt' 

where u(t) is a real function continuous in the Helder sense on DC, 

and then substituting in equation (6.09) we obtain 

u(xl,x2) = 	f,M(z,t)u(t)t' ds, 	z 6 C, t 6 3C, 	(6.10) 
aC 

where t' = dt 
ds ' 

a continuous function, and 

H (z) 	 z H(z,t ) 1  M(z,t) = RE[iHO(t)(t-z) + iH0(t) 0 	t-t 1 
	 dtl] . 



It follows that 

H (z) 
M(z,t) = RE[

iH0(t)(t-z) { iH0(t) ln(1 - t)  + 1140  t) 
H*(z,t)l, 

where 

H*(z,t) = 	
H(z,tl) - H(z,t) dt . 

0 	
t-t1 	1 0 

Clearly H*(z,t) is an analytic function of z, and is also holomorphic 

as a function of t on 2C; ln(1 - -) is taken to mean its principal value 

Taking the limit as z tends from the inside of C to t0, where t0  is 

the complex coordinate of a point on the boundary 8C, and using the 

Plemelj formula, 

141(to) + f M(t0,t)11(t)t'ds = f(t0) ,  
aD 

where 

H (t ) 	H(t ,t) 	t 	H*(t ,t)  
M(t0,t) = RE[

ixo(t)(t-t0) + iH0(t) 
	 ln(1 - 0) + iH0(tt) 	J . 

(6.11) 

Thus M(t0,t) has a logarithmic singularity, and equation (6.11) 

is a weakly singular integral equation. Thus in accordance with 

Fredholm's alternative, a solution to equation (6.11) exists and is unique 

if the corresponding homogeneous equation has only the unique solution. 

This can be proved in an analogous way to that used in the proof for the 

Dirichiet problem for Laplace's equation in the last section (Vekua, 

p.126, [ 53 ] ). 
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4. 	Boundary value problems: B, (-Au + P(r2)u = 0); 

C, (-Au + M(xl)u = 0); D, (-Au + (M(xl) + N(x2))u = 0). 

Problems B, C and D are all special cases of problem A. For these 

special cases H0(z) = 1, and so the holomorphic function 4)(z) defined in 

section 3, reduces to 

$(z) = 	f ut z  dt, 
aD 

where P(t) is a real continuous function. RE(4o(z)), with 4(z) defined 

as above is the potential 

RE $(z) = aD a 
an 	

ln r u ds, 	r = It-zl, 	(Muskelishvili, pp.23, 

[ 43 1 ), 	(6.12) 

where n is the inward normal at t. 

Also for these special cases H(z,t) is real and thus equation (6.09) 

becomes 

z 

u(x1,x2) 	f 3n ln r p ds + J H(z,t) { 5 ān ln(r) p ds}dt, DD 	0 	DD 

and equation (6.10) becomes 

dt 
u(x1,x2) = 5 M(z,t)u(t)t'ds, 	z E D, t 8 3D, t' = ds' 

BD 

z 
M(z,t) = 

an In 
r + 7 H(z,tl) 3n Injt1-tldt1. 

0 

(6.13) 

Let z tend from the inside of C to a point on the boundary 3C. 

Then it follows directly from the general case that 
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'Tp(t0) + f p(t)M(t0,t)t'ds = f(t0), t1,t0 6 DC, 
DC 

(6.14) 

and that this equation has a unique solution. 

By integrating by parts it is possible to show that M(t0,t) contains 

a logarithmic singularity, and so as in the general case will be weakly 

singular when t0 6 BC. 

Now consider the simply connected domain D with a smooth boundary BD, 

and let x = (x1,x2) E D. Then we rewrite equations (6.13) 

u(x) = 	f M(x,Y)p(Y)dZ, x 6 D, Y 6 BD. 
DD 

where 
x 

M(x,Y) = ān lnlx-Yl + T H(x,t) 
ān 

lnit-Yldt. 
0 

(6.15) 

Let x tend to a point x0 6 DD. Then 

7rp(20) + 	f p(Y)M(x0,y)dz = f( 0), x0, Y 6 DD. 	(6.16) 
aD 

We now find M(x
0
,Y) in the particular problems B, C and D. 

a) For problem B (-Au + P(r2)u = 0); 

1 

M(xO,y) = 8n lnl~-YI + ! 
H(T,T -r) ān_lnlxOT-YIdT. 

0 

b) For problem C (-Au + M(xl)u = 0), 

1 	_ 
M(xO,Y) =an l nlx0-YI -f x1F(x1(l2t), xl(12t))an 

ln!(x,t,x2) - Yldt, 

x0 = (x1,x2). 



For equation -Au + N(x2)u = 0, 

1 
M(x0,,x) = 

an 
lnlxx -~I - fl x2E(x2(-f ), x2(Y.))ān lnI(x1,x2t) - lldt, 

x0 = (xl,x2). 

c) 	For problem D, [-Au + [M(xl) + N(x2)] = 0] 

1 
M(x0,Y) = 8n lnlx YI -

!
1 x1F(xl(l2t),xl(12t))ā fl n lnl(xlt,x2) + Yldt 

1 

f x2E(x2(12t), x2(1t 2))ān 1nl(xl,x2t) - Yldt 
-1 

1 
+ 1 x F(x ( 1+t) x (1--t)) f x2E(x (1+

T
) x (1--T))a inl(x t x T) -1 1 1 2 	1 2 -1 

	2 	2 2 an 	1 2 

- 1ldT dt, 	x0 = (xl,x2). 
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CHAPTER 7  

NUMERICAL APPROXIMATION OF THE INTEGRAL EQUATION 

FORMULATION  

1. 	Introduction 

Consider the boundary value problems, B, C and D. In order to find 

numerical solutions to these problems, the density of the double layer 

potential, p, has to be approximated by solving numerically the following 

integral equation (see (6.16)) 

Tru(x) + f p(2)M(x,Ddy = f(x), 	x,x 6 DD. 	(7.01) 
DD 

Having approximated p,  the solution u(x), where x is a point of the 

domain, D, is found by substituting for p, in the following equation 

u(x) = 	f u(y)M(x,I)dy, 	x 6 D, 	6 3D. 
aD  

(7.02) 

M(x,X) represents the kernel associated with the problem, B, C or D 

respectively. 

Since the procedure involves integrals around the boundary, 0, this 

method of solving boundary value problems is referred to as the boundary 

integral method (B.I.M.). 

Let the curve DD have a sufficiently continuously differentiable 

parameterization, r(s) = (c(s), n(s)), 0 < s < A, where s need not refer 

to arc length. Then equations (7.01), (7.02) become 
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A 
nu(s) + f p(t)M(s,t)dt = f(s), 

0 
0 = s < 

A, (7.03) 

(7.04) 
A 

u(P) = f u(t)M(P,t)dt, 	p = (x,y) E D. 
0 

Observe that in (7.03), (7.04) the notation has changed in an 

obvious way. 

There are many numerical methods for solving equation (7.03) 

(Atkinson [ 3 1); when M(s,t) is continuous perhaps the best known 

and most widely used is the Nystrom method. 

In the Nystrom method the integral in (7.03) is approximated by a 

numerical quadrature scheme 

A 	n 

0 	
J l p(t)M(s,t)dt = 	E W~M(s ,s~)P( s~) , 

the scheme must converge for all continuous functions on [O,A]. The 

weights of the quadrature and the nodes, S., will depend on n, the 

number of nodes chosen. Now by letting s = sl,s2,...,sn, the following 

linear system is defined for equation (7.03) 

n 
Trp(s.) + E 	W.M(s.,s.)p(s.) = f(s.) , 

1 
J
=1 J 1 J 3 	1 

n equations for n unknowns. If these equations can be solved, the 

solution in the domain, D, is then approximated by 

n 
u(P) = 	I W.M(P, s.)p(s.), 

J=l J 	J J 
P = (x,y) E D. 

Complete error analyses of the Nystrom method have been given 

(K. Atkinson [ 3 ]). 



In the boundary integral element (B.I.E.) method, the boundary D 

is split into N arcs SD., j = 1,...,N and 

N 

f p(DM(x,y)dy = 	E 	f u(x)M(x,I)dy. 
2D 	j=1 3D. 

p(2) is chosen to be constant (classical B.I.E. method) quadratic or 

cubic etc. (improved B.I.E. method), on each of the boundary arcs BD.. 

This leaves an integral independent of u which is calculated analytically 

if possible or using some suitable numerical quadrature scheme. Equation 

(7.01) becomes 

N 
'u(x) + 	E 	f p(x)M(x,x)dy = f(x) 

j=1 3D. 
(7.05) 

Let xi, x. , be the end points of the boundary arc SD., 

25N+1 = xl. Then by taking x = xi, i = 1,2,...,N, in equation (7.05), 

the approximate density of the double-layer potential, p, can be found 

at each of the N boundary nodes. 

The B.I.E. method has been successfully used on a variety of 

problems, and is not confined to double-layer potential formulations, 

or equations of the second kind (Fairweather et al. [ 24 D. 

When the kernel M(x,y) contains a singularity the convergence of 

the methods described above is affected adversely, unless special 

techniques are employed. A popular technique is to model the singularity 

with a function that can be integrated. Another technique is to deal 

with the singular part of the kernel directly by using product-integration 

techniques, (Atkinson [ 1 ]). 

For certain kernels Atkinson is able to develop a complete error 

analysis for the numerical solution using product-integration techniques, 

of integral equations of the second kind with compact operators. 
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The B.I.E. method uses product-integration techniques and it should 

be possible to develop an error analysis for the numerical solution of 

integral equations of the second kind with compact operators, for 

particular kernels. 

Kantorovich and Krylor [ 35 ] give a method of cancelling the 

singularity. Assume M(s,t), the kernel, is singular only if s = t. 

Then use 

	

-A 	A 	A 
Ju(t)M(s,t)dt = p(s) ! M(s,t)dt + f M(s,t)(u(t)-u(s))dt. 

	

0 	0 	0 

Kussmaul and Werner [ 38 ] give error estimates for the approximate 

solution of Fredholm equations using this technique, for weakly singular 

kernels of the form 

M(s,t) = a(s,t) lnls-t1 + b(s,t) 

If a(s,t) and b(s,t) are 4 times differentiable the error is shown 

to be 0(h3). 

Atkinson [ 29 ], [ 2 ] in his numerical approximation of problem B, 

notes that the kernel, M(s,t), has a logarithmic singularity of the form 

a(s,t)lnlr(s) - r(t)I + b(s,t) . 	(7.06) 

where a and b are well behaved functions. However he is unable to find 

a and b explicitly. 

If it were possible to express the kernel as in equation (7.06), 

where a and b are well behaved functions, then both the method of 

cancellation and Atkinson's generalized Simpson's rule (product 

integration formula) would be excellent methods of approximating the 

boundary integral. If a and b were sufficiently continuous functions a 

comprehensive error analysis for the numerical solution of the boundary 

value problem would be available. 
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The problems B, C and D all have kernels with logarithmic 

singularities; unfortunately an expression of the kind (7.06) with a 

and b well behaved functions, has not been found for any of these 

kernels. 
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2. 	Atkinson's Numerical Approximation of problem B (Atkinson, [ 29 1, 

For x e D, the solution is represented by 

u(x) = 	f 11(2)M(x,y)dy . 	 (7.07) 
3D 

For x e 3D we have the integral equation 

zru(x) + f u(~)M(x,D dy = f(x) , 	 (7.08) BD 	_ 

where 

a 	1 II 20 ,1—T a M(x,Z) = 8n lnlx-LI + f G( 	) 
an 

lnIxT -xjdT, 

n being the inward normal at z, G(II XII , 1-T) is Gilbert's G-function. 

Let the curve 3D have a twice continuously differentiable 

parameterization, r(s) = ( (s),n(s)), 0 4 s s A, with IIr'(s)II # 0; 

s need not refer to arc length. 

Then (7.08) becomes 

where 

A 
rru(s) + f u(t)M(s,t)dt = f(t), 

0 
0 s A, 

M(s,t) _ '(t)(1(s)-n(t))-n'(t)(E(s)-E(t))  
II r(s) - r(t)II 

1 G(r(s),1-T) E'(t)(Tn(s)-n(t))-n'(t)(TE(s)-E(t))  
+ 	2 	{ 	II Tr(s) - r(t)]] 	 } dT 

0 	2 



Let k(s,t) _ 
r(s) — r(t)II 

'(t)(n(s)—n(t))—n'(t)Ms)—(t))  
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Q(s,t) = 	G(r(s),l-T) 	g'(t)(rn(s)— (t))-n'(t)(TE (s)—~(t)) dT. 
0 	2 	IITr(s) - r(t)II 

k(s,t) has a removable singularity at t = s, and 

lim k(s,t) - 1 El(s)nu(s)-W(s)V(s)  

t-}s 	2 	(~ r' (s) II 3/2 

which is one-half the curvature of 0 at r(s). Z(s,t) has a logarithmic 

singularity as t -} s. Let N > 0, be an integer, h = A/N, and 

t. = jh, j = 0,1,...,N. Atkinson uses Simpson's rule as the numerical 

integration formula on [0,A], and takes 

A 	N 
f k(s,t)p(t)dt = 	 E W.k(s.,s.)p(s.) 
0 	

3 0   

where W. are the usual weights associated with Simpson's rule. 

For the second term divide the interval [0,A] into N/2 intervals 

of length 2h, and let s = si, 

A 	N/2 s2j 
f Q(si,t)p(t)dt = 	E 	1 Q.(s.,t)p(t) dt. 1 0 	j=1s

2j_2 

If 	min 	{Ilr(si) — 	
23—k) ll ) > c, where e > 0 is a preassigned k=0,1,2  

number, then approximate the integral using Simpson's Rule: 

s2 
2j 

 
s1 	Q(si,t)p(t)dt = 3[Q(si,s2j-2)u(s2j_2) + 4Q(s.,s2j+1)u(s2j-1) 2j-2 

+ £(s1,s2.)u(s2.)]. 
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If 	min 	{ ii r(si) —r(s2 k) JĪ } < E 
k=0,1,2 	J 

take 

where 

s 

s2j-2 

au(s2j_2) + su(s2j_1) + ~ru(s2j) 

s2 
j 

a = 2 	
sf 

12 . 	(s-s
2j 

 

2j-2 

s2 
J 

R = 12 J (s-s2j-1)(s-s2j-2)2,(si,$)ds; 
2h 	s2j-2 

Y 
- 2h2 sJ. (s-

s2j_2)(s-s2j)Q(si,$)ds. 

ZJ-2 

In Gilbert and Atkinson [ 29], Atkinson notes that Simpson's rule is 

based on the approximation of the integrand by a piecewise quadratic 

interpolating function, and if the integrand is ill-behaved, Simpson's 

rule will not perform well. In the above only that part of the integrand 

which should behave reasonably well is approximated. Presumably that 

part of the integrand which does not behave reasonably well is ignored! 

Solving the Nystrom equations gives a numerical approximation of 

the density of the double-layer potential, u, at N+1 points in the 

interval [O,A] and hence at N+l points on the boundary @D. 

To find a solution at a point p on the interior, D, equation (7.07) 

is used. Using the same parameterization of the boundary DD as for 

equation (7.08), and dividing the interval [0,A], into N equal intervals 

as before, the solution u(p), at an interior point E _ (x,y) e D, is 

given by 

s2 
j 



N 
u(p) _ 	 E 	W.M(P, s.)p(s.) , , 0   

where W. are the weights associated with Simpson's rule, and 

M(p, s) '(s)[y-71(s)]-n'(s)[x-'(s)]  

P - r(s) II 2  

+ f G( 
11 4,l-T) 

{E'(s)(Ty-n(s))-n'(s)[Tx-E(s))]} 
 dT . 

0 
	2 	r(s)II 

Atkinson notes that when a  is quite near the boundary, M(p ,$) becomes 

quite peaked on that part of aD which is nearest to p. The integral 

should then be treated in the same way as when x E 9D. 

Although this method seems to exhibit convergence for a simple 

problem, the results are rather poor. 

In Atkinson [ 2 ], those integrals for which min {II r(si)-r(s2  1 }>s, 
k=0,1,2 	3  

are evaluated by adaptive numerical methods for double integrals on 

rectangles. 

Atkinson notes that this method works well in solving the equation 

A 
lips) + f p(t)M(s,t)dt = f(t) 

0 

where M(s,t) is singular at s = t, it is more difficult to judge its 

practicality. Certainly it would seem to be impracticable when the 

generating function G is not known explicitly. In order to evaluate the 

integral 

f
G(r(s),I-T  ){  '(t)(T?(s)-n(t))-n'(t)(TE(s)-E(t)) } dT 

0 	
2 	I[ Tr(s) - r(t)II 	' 
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when r(si) — r(s2 k)j1}< 
k=0,1,2 

30, 60, and 120 evenly spaced sub-intervals of [0,l] were used followed 

by Aitken extrapolation for a final value. 

For the adaptive numerical method 5 to 6 digits of accuracy were 

obtained with around 2000-6000 evaluations of the integrand. 

Clearly the amount of computation involved in this method is on a 

different scale to that in the one we use (see following section), 

and it would be unfair to compare the two results. Moreover, Atkinson 

not only assumes a knowledge to 9 decimal places for the generating 

function G, but also only applies the method in smooth domains 

(bounded by circles and ellipses). 
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3. 	An Alternative Formulation, based on the smoothing of the  

singularity as given by Kantorovich and Krylov (35], p.1O1 . 

In order to find the double-layer formulation for the problems 

B, C and D, we took the arbitrary harmonic function ¢(x), x E D, 

defined by 

¢(x) = 3f an 1n lx-y l u (y.)dy, 

where n is the inward normal, and the density function u is real and 

Holder continuous. 

Let 

¢(x) = j[u(x) - u(x)]8n lnlx-zI + u(x) j ān lnlx-~Id~ . 
aD 	— 	aD 

Then 	¢(x) E ¢(x), 	x 8 D. 

Consider 

j ān 
lnlx-~Id~ . 

aD 

Putting Ix-yl = r, and dZ = ds, then (Ch. 4. Sect. 2) 

j a 
ln r ds = j dB ds = 27;

aD 
an 	

aD ds 

here 0 is the angle that the radius r makes with some predetermined direction: 

Thus 

¢(x) = 	j [u(z) - u(x)] an lnlx-yIdy + 2Tr11(x), 
aD 

(7.05) 

xeD, x  aD. 



M 

If we let x E D tend to the point x 6 aD then qb(x) tends uniformly to 

¢(x), (Muskelishvili [ 4 3], p.38 ), where 

(1)() = 	J fil(z) - u(x)j 
an ln l x-xj dZ + 2Trp(x) . 

311) 

Let 

gx) = 	f tp(y) — p(x )1 8n lnlx0-X I dx + 2Trp(x0) 
DD 

Since p is a Helder continuous function, 4(x) is also a Wilder 

continuous function, x 6 DU D. This is because f lnlx-xl is continuous, 

x 6 D tJ aD, Y  6 9D. 

If 4(x) is a function on aD which satisfies a H(p) condition, then 

1.1)(x) — 4(x)I < AIx—j 	. 	 (7.10) 

For the neighbourhoods of corner points other than cusps this 

definition of the H(p) condition is equivalent to 

l gx) - gz)1 	Aa , (7.11) 

where a is the length of that part of al) between x and x, and 

IX-YI 
k0  = 	o 	< 1. 

However, in the neighbourhood of a cusp 	a < 1 and may be as 

small as we like, and the conditions (7.10) and (7.11) are no longer 

equivalent. If (7.10) holds then 4)(x) is said to satisfy the H(p) 

condition in the strong form, if (7.11) holds then 4(x) is said to satisfy 

the H(p) condition in the weak form. If H(p) holds true in the strong form 

then H(y) holds true in the weak form, but not conversely. 
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If 

(1) (x) = f [11(z) - 11(x0)] 
8n 

1nlx-YIdy+2~r11(x0), x e D 
aD 

satisfies a H(y) condition in the weak form, then it can be shown, 

(Muskhelishvili, Appendix 2, [ 43 ]), that 

~(x0) = f [11(Y) - 11(x0] 	8n 
lnl x - zI dx + 2711(2E0), x0,y E aD 

aD 

where x0 is a corner or a cusp point. 

a) 	Problem B, (-Au + P(r2)u = 0). 

We define the operator (I+H), where I is the identity operator, 

so that 

1 
CT,1-T)  ((I+H)h)(x) = h(x) + f H 
	

h(Tx)dT. 
0 

I+H is a linear operator, and a continuous operator, and so with 

(1)(x) defined as in (7.09), the solution u(x) _ ((I+H)4)(x), of problem B, 

will be continuous for x E D U aD. 

1 (T,T) u(x) = ((I+H)~)(x) = 2711(X)P.+ f H 
	

dT 
0 

+ f Cp(x)-pG)]M(x,z)dy, 
aD 

x E D, 	x E 3D, 	if x E 3D, x = x; u(x) = f(x). 

M(x,Z) = ān 1nIx-YI + 5 H(T,T-T) an 1nIxT-ZIdT. 
0 

(7.12) 
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Note, M(x,2) is the same as in equation (7.07), since 

H(t,l-t) - G(II xII ,1-t) 	. 	 (7.13) 
t 	 2  

[It should be stressed that H is a function of H xII as well as t. For 

convenience we suppress the dependence on II  xII in our notation]. 

To find a numerical solution to problem B, take x e D in equation 

(7.12) 
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1 

27r11(x) [1 + 	H(T,1-T)  dT]+ 1 	f [u(z)- u(x)lM(x,y)dz  = f(x) 
0 	T 	aD 

(7.14) 

Let the curve 8D have a continuous parameterization, r(s) = (g(s),n(s)), 

0 = s - A (s need not refer to arc length). 

Define 

1 
(T,l 	—T)  h(r(s)) = 1 + f H 	dT, 

0 

then equation (7.14) can be written 

A 
2irp(s)h(r(s)) + f [p(t)-p(s)]M(s,t)dt = f(s), 0 	s 	A. 

0 
(7.1S) 

M(s,t) — Et(t)[n(s)—n(t)]—n'(t)[ (s)—E(t)]  
H r(s) - r(t) II 

+ 
1 
H(T,1-T)  El(t)[Tn(S)-n(t)]-n'(t)[T(S)-E(01 

 dT. 0   0 	T 	II Tr(s) - r(011 

Proceeding  as in the Nystrbm method, choose a numerical integration 

method which converges for all continuous functions on [0,A], equation 

(7.15) thus becomes 



M(P,$) = 	
r(s) II .a -  	II 

' (s)[x2—n( s ) ] —n' (s)[x1— E(s) ] 

104 

2np(s)h(r(s)) + E w.[p(s.)-p(s)]M(s,s.) = f(s), 0 	s 	A 
j=1 

The weights of the quadrature formula, w., and the nodes, s., depend 

on n, the number of nodes chosen. 

By taking s = sl,s2,...,sn  the following linear system is defined 

for equation (7.15): 

n 
27p(s.)h(r(s.)) + E w.[p(s.)-p(s.)]M(s.,s.) = f(s.), 	i = 1,2,...,n. 1 	1 	j=1 J J 	1 	1  3 	1 

(7.16) 

Having solved (7.16) for the unknown (approximate) values of the 

density, p, at the n nodes, the approximate solution u(p), p e DUO,  

is found by substitution in the equation 
n 

u(2) = 2rru(s)h(r(P)) + E w.[u(sj)—u(s)]M( P,s.), 
j=1 

If P e D, s e {si}, where s is chosen so that IP-sI = 	min. 
s. 

If p e DD, a linear (quadratic or cubic) approximation is found to 

u(s) = 11(p), using the calculated values p(s.), i = 1,2,...,n. 

(7.17) 

+ 
j H

(T,1-T)  {  '(s)[x2T-n(s)]-n'(s)[x1T-(s)]  

0 	T 	II pT — r(s) II 	
dT. 

a = (xl,x2) . 

An error analysis for the above method of numerical solution is not 

possible. The kernel, M, is a weakly-singular function, the integrand 

is Holder continuous, so the first derivatives of the integrand exist, 

but they are not bounded, and so we are not able to bound the error in 

the quadrature formula. 



Nevertheless this formulation offers many advantages; these 

will be discussed at the end of the chapter. 

b) 	Problem C, (-Au + M(xl)u = 0). 

We define the operator (I-F), where I is the identity operator, and 

1 
((I-F)h)(x) - h(x) - xi I F(xl(121),x1(121))h(x1t,x2)dt, 

—1 

X = (x ,x2). 

Since I-F, is a linear, continuous operator, the solution, u(x), 

to problem C, 

u(x) = (I-F)(1)(x) 

will be continuous for all x 6 DUN), provided 4(x) is defined as in 

equation (7.09). 

1 
u(x) = 21 -x1 J1 r(x1(121), x1(12t))dt] + D[u(z)-u(x)lM(xy)dy. 

(7.18) 

x 6 DUO,  x = (xl,x2), 	x 6 D. 

If 
	

x 6 aD, x = x, u(x) = f(x). 

1 	 _ 
M(x,X) = 2n ln~x-vJ - x1 J F(xl(121),  xl(121)) ān 

lni(xlt,x2) - ZIdt. 1  

For an approximate numerical solution proceed as in a). 

Take x 6 aD in equation (7.18), 

1 
27rp(x)[1 - xl f F(xl(121),xl(121))dt] + f[P(Z)-p(x)]N(x,z)dZ = f(x), (7.19) 

-1 	 aD 
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Let the curve aD have a continuous parameterization, 

r(s) = (E(s),n(s)), 0 	s < A; again, s need not refer to arc length. 

Equation (7.19) can then be written as equation (7.15) with the 

appropriate definition of h(r(s)) and M(s,t) for problem C. The procedure 

for solving (7.15) is the same as in a), and hence we find the solution 

u(x), x 6 DUDD. 

Due to the symmetry of the linear elliptic equations -tu + N(x2)u = 0, 

and -Du + M(x1)u = 0, the boundary value problem involving the former 

equation can be solved in an identical way to that of solving problem C. 

c) 	Problem D, (-Au + [M(xl) + N(x2)1u = 0). 

We define the integral operator (I-E)(I-F), where I is the identity 

operator, and 

1 
((I-E)(I-F)h)(x) = h(x) - x1  j F(xl(12T ), xl(12T))h(x1  T,x2)dt 

-1 

1 

- x2 j E(x2(1T), x2(12T))h(x1,x2t)dT 
-1 

+ x x j E(x (1±T) x (1—T)) j F(x 
(l+t) 

 x (1—t))h(x t x T) 1 2 -1 	2 2 	x2(---)) 
 -1 	1 2 	1 2 	1 	2 

dtdT. 

Since (I-E)(I-F) is a linear continuous operator the solution u(x) 

to problem D 

u(x) = (I-E)(I-F)4(x), 

will be continuous for all x E D UaD, provided (x) is defined as in 

equation (7.09). In order to approximate the solution to problem D, 

take x 6 DD, then 



(I-E )( I-F)q5(x ) = f(x) . (7.20) 
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Proceeding as in a) and b), we find a continuous parameterization of 2D, 

equation (7.20) can then be written in the form of equation (7.15), with 

appropriate definitions of h(r(s)) and M(s,t). The procedure for solving 

(7.15) is as before, as in the calculation of the solution, u(x) 

xeDUŌD. 
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4. 	The Advantages of the Alternate Formulation 

The lack of an a priori bound on the error is not an uncommon 

problem for boundary integral methods. For problems, B, C and D, the 

maximum principle (see Results) holds, and so an a posteriori bound on 

the error is possible. In order to find this bound, it must be possible 

to find the numerical solution at any point on the boundary so that a 

boundary search can be made. This enables an approximation to be made 

of the largest error incurred on the boundary, since the true solution 

on the boundary is usually known, and this 'largest' error, bounds any 

error incurred on the interior. 

The numerical integration of a continuous integrand would be 

expected to be more accurate than the numerical integration of a weakly 

singular integrand, particularly since the singularity occurs on the 

boundary. Thus we would expect the alternative formulation to give a 

more accurate error bound in this case. Moreover the alternative 

formulation is the same for a point on the boundary or in the interior 

thus simplifying the programming and improving the efficiency of the 

algorithm. 

The presence of the singularity in the kernel, on the boundary, will 

usually affect the numerical solution at points 'near' the boundary; 

with the alternative formulation this is automatically alleviated. 

In Atkinson's formulation a twice continuously differentiable 

parameterization of the boundary is required; in the alternative 

formulation, the curve need only have a continuous parameterization. 

This allows the use of the alternative formulation for boundaries 

containing corners or cusps. Moreover at a corner or a cusp the 

formulation is unchanged, simplifying the programming. The alternative 

formulation has been successfully applied to an L-shaped domain (see 

Results). 



CHAPTER 8  

NUMERICAL RESULTS 

1. 	Introduction 

The boundary value problems for the elliptic equation -Au + P(r2)u = 0, 

presented here, represent a cross-section of those that have been solved 

by other numerical analysts using integral-operator methods. We also 

present the results of boundary value problems for the equations 

-Au + M(xl)u = 0, and -Au + EM(xl) + N(x2))u = 0. These results give 

a true reflection of the performance of our algorithm. 

Having obtained a numerical approximation to the solution it is 

essential that something is known of its accuracy. This will depend on 

the solution domain, the boundary conditions, and the method of solution. 

In section 2, we present the maximum principle and in section 3, we 

consider the estimation of the error in our numerical solutions. 

Eisenstat [ 23 ] has proved that the degree of approximation of 

the solution, u, of the boundary value problem A, by generalized harmonic 

polynomials, depends on the smoothness of the boundary, or equivalently 

for domains with smooth boundaries on the smoothness of the boundary 

data, Since these factors directly affect the continuity of the density, 

p, of the double layer potential, we would expect that our results for 

the integral equations algorithm will also be more accurate for smooth 

boundary conditions. 
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2. 	Maximum Principle (Protter and Weinberger [44 ])  

THEOREM. Let u(xl,x2,...,xn) satisfy the differential inequality 

L[u] = E 	a..(x) 	
2u 	

+ E b.(x) 8u 	0, 
i,J=1 

ij - ax.3x~ 	
i=1 

1 — 3x.
1 1 

in a domain D where L is uniformly elliptic. Suppose the coefficients 

a.. and b.. are uniformly bounded. If u attains a maximum M at a point 
1j 	1j 

of D, then u E M on D. 

THEOREM. Let u satisfy the differential inequality 

(L+h) [u] > 0, 	in a domain D 

with h < 0, and L and u given above, and the coefficients of L and h 

bounded. If u attains a nonnegative maximum M at an interior point of D, 

then u = M. 

Note: A maximum principle for functions satisfying (L+h)[u] < 0, h > 0, 

is obtained by applying the maximum principle to the function -u. 

Therefore a non-constant solution of the elliptic differential equation 

(L+h)[u] = 0 can attain neither a maximum nor a minimum at an interior 

point of D. 

The maximum principle will apply to the function u in the equations 

-Au + P(r2)u = 0, P(r2) > 0; -Au + M(x1)u = 0, M(x
1
) > 0; and 

-Au + N(x2)u = 0, N(x2) > 0. Thus the function u(xl,x2) which satisfies 

the elliptic equation Lu = 0, in the boundary problems A, B, C, and D, will 

satisfy the maximum principle. In particular if ū is an approximation to 

u such that 1,(u-ii] = 0, then the function u-u will satisfy the maximum 

principle. That is 

max lu-ul < maxlu-ul . 
D U aD 	 aD 
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3. 	The Error in the Numerical Solution  

a) 	The particular solutions algorithm 

Consider the boundary value problem, problem A. The solution is 

given by 

CO 

u(xl,x2) = 	E a.p.(xl,x2) . 
j= 1 J J 

where {pj(xl,x2) 1j = 1,2,...} 	is a complete set of particular solutions 

to Lu = 0, so that 

L(p.(x1,x2)) = 0, 	j= 1,2,... . 

To approximate u, take M, M < N, and determine the aj, j = 1,2,...,M, 

so that the error in the approximate solution E a.p.(x1,x2) at the N 
j=1 J J 

boundary points is a minimum in the least squares norm. Let uN(x1,x2) 

represent the approximate solution at the point (xl,x2) then 

M 
uN(xl,x2) = J El  c. NPj(xl'x2); 

where thea, 	also depend on M. 
J,N 

Notice that LūN(xl,x2) = 0 so that L(u-ii) = 0 and hence 

Iu-uN I D U aD 	lu-uN1 , by the maximum principle. 

For the boundary value problems, B, C and D, the pj(xl,x2) are not 

in general known explicitly and have to be approximated. The pj(xl,x2) 

are known explicitly, when a closed form of the fundamental solution of 

the linear elliptic equation can be found. 

Let the approximate particular solution be pjs(x1,x2), and let 

M UNs = JEl aj N  pJs 

M 



Re-define 

uN = j 1 a~,N pj. 

Then LūN = 0, since L is a linear operator and 

L(pj) = 0, 	j = 1,2,...,M. 

However, LūN 0 0, since L(p.$) # 0. 
J 

Now consider max 	lu-tiNsl . This is the maximum error over the 
DUD 

closure of the domain of the approximate solution of the boundary value 

problem B, C or D, using the particular solutions algorithm. 

max Iu-u 
Si 

4 max Iu-ū I + max 	Iū -11 s I 
DU DD 	N 	DU 3D 	N 	D 3 

N N 

= max Iu-ū 	
sI 

aD N DUO   N N 
(8.01) 

by the maximum principle. 

max Iū -ū I = max 
DUD N N

s 	

DU aD 

M 
z 	I a! 	l l p j-n s l, j=1 

(8.02) 

M 
max le -ū sI < 	Z 	Ia.sl max Ip.-p.s l . 
DUD n 

N 	j=1 JN DU aD 

The term max
s 

IPj-Pj I is the absolute error in the approximation 
D V aD 

of the particular solutions which we will consider for problems B, C and D 

in section 4. 

maxlu-ū I < max 	
N
s 

lu-ū I + 	
N
s

N maxlū -ū I 
aD 	

N 	
aD 	aD 

 

Where maxlu-UNsI is found by doing a search of the boundary. 
aD 
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Thus 

M 
max 	l tin—ill: l < max lu—fills 

N 
sl + 2 E 	~a,s l max 	I P.—P.s 1 . 

DL/BD    	8D 
	

j=1 	
~N DU aD 	3 

Thus if we can estimate the error in our approximation of the 

particular solutions, we will have an estimate for the error in our 

numerical solutions, at any point in the closure of the domain. 

b) 	The integral equation formulation (Chapter 7, Section 3). 

Consider the boundary value problem A. The solution u(p), at a 

point p in the domain D is given by 

A 
u(p) = 2Trp(s)h(r(P)) + 1 [u(t) — p(s)]M(s,t)dt, 

	0 = s =A. 
0 

(8.03) 

where p is found by solving the equation 

A 
2lTp(s)h(r(s)) + f [p(t) - p(s)]M(s,t)dt = f(s), 

0 
0 g s 	A , 	(8.04) 

where f is the known boundary function. 

This equation (8.04) for the density p, is solved by choosing N 

points on [0,A], approximating the integral by a quadrature formula, and 

finding p(si), i = 1,2,...,N, by collocating at the N points. We obtain 

N 
2Trū(s.)h(r(s.))+ E w.[ū(s.) - ū 	M( (s.)]s. 

j=1 
 i 	~ ~ 	i 	i 3 	i 

i = 1,2,...,N. 

Where h(r(s.)), M(si,s.), and w. are the numerical approximations of 

h(r(s.)), M(s.,s.), and w. are the weights of the quadrature formula. 
1 
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This leads to the solution of a system of simultaneous equations 

for U = {ū(s1),ū(s2),  ...,ū(sn)}, which is solved using a N.A.G. library 

routine (Wilkinson and Reinach [ 55]). 

The solution u, (8.03) is then calculated in a similar way. Taking 

the same N points on [0,A], and using the same quadrature formula for the 

integral, we obtain 

N 
u(N)

(p) = 271".10 )h(r(p)) + E w. [11(s.) - ū(s)]1"1(P,s.), 
j=1 

where s 6 {si, i = 1,2,...,N}, and wj  are the same weights as before. 

Clearly both the density u and the solution u are subject to error. 

The main sources of error in u are 

i) the approximation of M by M and h by h. This is due to the 

approximation of the kernel, when the kernel is not known in 

closed form. 

ii) the quadrature formula. 

iii) the application of the resulting discretized integral equation at 

only a finite number of points. 

(iv) the approximation of the coefficients in the resulting simultaneous 

equations. 

The main sources of error in u are 

i) The error in M and h. 

ii) The error in p. 

iii) The quadrature formula. 

For the boundary value problems considered in this thesis the 

maximum principle holds. That is if the elliptic equation on the domain D 

is given by 

Lu = 0, 
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then the function u satisfies the maximum principle. Let 

N 
u(N) = 2Trū(s`)h(r(p)) + E w.Ip(s.) -ū(s)IM(p,s.), 

j=1 

where s is one of the collocating points s „ j = 1,2,...,N. Then u(N)  

satisfies the maximum principle since 

Lu(N)  = 0. 

However Lu 	0 since Lh 0 0, LM 0 O. 

(N) 	(N) 	(N) (N) max lu-u 	l < max Iu-u 	l + max lu 	-u 	1. 
DU n 	DU 91) 	DUaD 

< maxl
u-u(N)I + 

max lu(N)-ū(N)I 

nD 	DU DD 

by the maximum principle. 

max 
lu(N)-u(N)I < max I2up (`s)Ilh(r(p)) - h(r(p))I 

DU3D 	DU DD 

N 
+ max 	E 	Iw.IIū(s.) - ū(S)IlM(p,s.)  
DU aD j=1 	J 	J 	 J 	 J 

Ih(r(p)) - h(r(p))I is the error in the first particular solution, at 

the point p. 

M(p,t) has a logarithmic singularity when p 6 3D. Thus 

[p(t) - p(s)]M(p,t) has discontinuities in its derivatives; when p 6 3D. 

Since the same quadrature formula is used to approximate 

A 
f [u(t) - p(s)]M(p,t)dt, 
0 

for p on the boundary or in the interior, we would expect the error in 

the quadrature to be greater when p 6 DD. 
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4. The error in the particular solutions  

Unfortunately the error estimate given in Chapter 4, for the 

solution of the Goursat problem is not very useful in practical 

computations. The estimate can only be calculated when the solution is 

known explicitly, which of course means that the error is known exactly. 

However, it does tell us that the rate of convergence of the method 

is 0(h4) provided that the solution function, H, and its fourth partial 

derivatives are smooth. We expect this to be true for problems C and D, 

but for problem .$ we expect the singularity at t = 1 in the hyperbolic 

equation to affect the convergence. 

The error in the hyperbolic solver will directly affect the error 

in the particular solution. 

a) 	Problem B, the equation -Au + P(r2)u = 0. 

In Chapter 5 we showed that the particular solution for the equation 

-Au + P(r2)u = 0 are given by 

T,1-T  p.(xl,x2) = h.(xl,x2) + f H( T ) h.(x1T,x2T)dT, 
0 

j= 1,2,.... 

(8.05) 

where hj(xl,x2) = 
REE
{zk}, k = integer part of j/2, and H is a function 

IM 

of r as well as T. 

In order to approximate the integral in (8.05) Simpson's composite 

quadrature rule is used with s intervals. H(T,l-T) is found at the 

nodal points by solving a Goursat problem for H(p,t). Thus 
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s 	RE k  
Pj  (xl,x2) = IM{z (1 + E W.T. 	H(Ti,l-T.))}, 

i=0
1  (8.06) 



where the wi  denote Simpson's rule weights, and k is the integer part 

of j/2. 

When j = 1, k = 0, and 

S 	H(T.,1-T.)
12 (xl,x2) = 1 + E wi 	
T. 	1  

i=0 	1 
(8.07) 

H(T.,1-T.) 
At i = 0, Ti  = 0, and for each point (xl,x2) the value of 	1T 	1 

1 
is indeterminate, and the limit has to be found. To find the limit we 

use a fourth order extrapolation process. 
H(T1-T 0, 

0 
 

Let v be the limiting value of 	, for the point (x
1
,x
2
)    

0 	
H(T.,l-T.) 	T

0 
and vi  be the value of 	

1T 	
1  , i = 0,1,...,s, for the point (xl,x2). 

1 

Let the error in vi for the point (xl,x2) be ei, i = 0,1,...,s. 

Then v0  is found by taking 

v0  = 4v1  - 6v2  + 4v3  - v4 . 

The error e0  in this extrapolation process satisfies 

Ieol < 4Ieli + 61e21 + 41e31 + 1e41 + h4IvIVI, 
	(8.09) 

where 

34  H(T,l-T)  

3T4  

 

IvIVI = max 
0<T<4h 

and h = 1  . 
s 

3 

 

We recognise that le 
0
1calculated using (8.09) will be extremely 

pessimistic. 

For the other particular solutions the extrapolation process is not 

required. The error in the jth  particular solution, for the point 

(x1,x2) is given by 

s < h4 
Ip

j_ 
pj I 	180 max 

0<T<1 

4 

4 

Tk-1
H(T,1-T) 

2T 

s 
+ 
3 E lw.Tikeil ,  

1=1 

 

(8.10) 
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This bound for the error in the particular solutions, for a point 

(xl,x2), if calculable, will be extremely pessimistic. 

b) 	Problem C, the equation -Au + M(xl)u = 0. 

In Chapter 5, we showed that the particular solutions for the 

equation, -Au + M(xl)u = 0, are given by 

1 	_ 

p.(xi,x2) = h.(xl,x2) - xl 11 F(xl(12t), xl(1Zt))hj(x lt,x2)dt, 

j = 1,2,... 	(8.11) 

where hj(xl
,x2) = IM{zk}, and k is the integer part of j/2. 

In order to approximate the integral in (8.11) Simpson's composite 

quadrature rule is used with s intervals. F(xl(l~t), xl(12t)), is 

found at the abscissae by solving a Goursat problem for F(x1E,x1rt). 

Thus 

s 	RE k 
	_ l+t. 	I-t. 	

k 
p. (xl,x2 ) = IM {z - I w. x1F(xl(--~, xl( 21))(xlt. + ix2) }, 
J 	j=1 J' 

j = 1,2,... . 	(8.12) 

where w. denote the weights of Simpson's rule, and k is the integer part 

of j/2. 

Thus for the point (xl,x2) let 

l+t. 

leil = lx1F(x1( 2 1)' 
1-t 	1+t. 	1-t. 

xi( 2 1)) - x1F(xl( 2 1), x1( 	1)) 

2 
1 , i = 0,1,...,s. 
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then 

s < h4 	a4 	1+T 	1-T 	k Ipj 	xl  max 1 
	
[F(xl( 2 ), x1( 2  ))(x

1T + ix2) I 
180 -1<T<1 aT 

s 	 I 

+ 3 i 
E 	w.(xlr + ix2)kse.11 

	
, j = 1,2,... 

i=0 

where wi  are the weights of Simpson's rule. 

Again we expect this bound for the error to be pessimistic, if 

indeed we can calculate it, and we will be looking for other ways of 

estimating the error in the particular solutions algorithm. 

c) 	For Problem D, the equation -Au + [M(xl) + N(x2)]u = 0. 

The particular solution is given by 

1 
p.(xl,x2) = 

IM
{zk 

- x

l  f F(xl(12T) 	1  , xl( T2))(x1T+ ix2)kdT 

1 
- x2 f E(x2(12T), x2(12T))(x1  + ix2T)kdT 

+ x x J  F(x (11+T)x (1—T)) 1 E(x (l+t) x 
(1-t)
)(x T+ix t)kdtdT} 1 2 -1 

	
1 2' 2 2 	

-1 	
2 2 	2 2 	1 	2 

(8.14) 

For the double integration using Simpson's rule with s intervals for 

each integration the first term of the error at the point (t,T), with 

h = 1  is 
s 

h4  a4 	94 	1+T 	1-T 	l+t 	1-t 	k 
45(at4 + 

aT4)[(F(x1( 2  ), x1( 2 ))E(x2(  2  ), 
x2( 2  ))(x1T+ix2t) ], 

(Bickley[ 9 ]), and a similar expression as in a), b) can be found for 

the error in the calculated particular solutions. 
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apat 	2 H = f(p,t,H), 
4(1-t) 

t>0, p >0 
a2H 

	r02a2 

a 
, 

at , 

H) 

4 
4 ( n) C, 

2 a 
2 (C,n,H) 

E = Pi, n = ti} 

,C= Pi, 	n = t.} 
at 

 

4 
a 
4( ,n) 
ap 

 

M = sup{ 
1,j 

  

2 
N = suP{la 2 (~,n, 

i,j ap 
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5. 	Tables  

Table 1 gives a comparison of the actual error and the estimated 

error in the Goursat problem, for the equation -Au + P(r2)u = 0, where 

P(r2) is taken to be constant, P(r2) = A2, for various values of A. 

The solution of the Goursat problem 

H(0,t) = 0, 	t > 0 

H(p,0) _ 	
r02A p 	P > 0 , 

is H(p,t) = 
1/2 

20 p (1 	

I, I1(r0 ~p t ~) . 
t 	(1-t) 

The error of the numerical scheme for solving the Goursat problem is 

e(p,t) + 0(h6), where 

h

4 
e(p,t) 

< 2523 [
0.6A 

  + 2.5M + 12N + 24C]. [I(2 ) — 11, 

and 
4 

A = sup{l a 
4 

(t,n,H) 

i,j ap 

 

4 

at4
(E,n,H)l, 	= Pi 	2, n = t. + 2 } 

J 

 

  

2 
C = sup{ 

a 
f (c,,H) 

,J i 	lapat 	
n 

 

 

C=Pi, n = t. } 

C = P., n = tj}, L = sup{f
aH
(,n,H)l, 

i,j 

i = 1,2,...,N+1-j, 	j = 1,2,...,N, 



where p.,t. are the coordinates of the bottom left hand corner of 
i i 

the square mesh Rid, with width h. 

TABLE 1 h = 0.1. 

A ERROR IN H(0.1, 0.9) ESTIMATED ERROR IN H(0.1,0.9) 

.1 1.50 x 10
_9 

1.22 x 10-9 

.5 7.41 x 10
-7 

8.89 x 10-7 

1.0 1.53 x 10
-
6 2.17 x 10

-5 

2.0 7.53 x 10
-
4 1.24 x 10

-3 

10.0 3.84 x 102 9.71 x 105 

For the equation P(r2) = A2, Table 2 shows the ratio of the error 

when h is halved, at a point on the line p+t = 1 close to the singularity 

at t = 1, (0.1,0.9) and at a point away from the singularity (0.4,0.6), 

for A = 1. 

TABLE 2 

J~ =1 h = 0.1 h = 0.05 Ratios h = 0.05 h = 0.025 Ratios 

Error in: 

H(0.1,0.9) 1.53x10
-6 

3.11x107 4.92 3.11x10-7 2.25x10
-8 	

13.8 

H(0.4,0.6) 9.44x10-8 5.23x10
-9 

18.0 5.23x10
-9 

2.74x10
-10 

19.1 

This shows that the further away from the singularity, the more 

rapidly the approximate 	solution approaches the true solution. 

We have employed many numerical techniques (Chapter 5) to tackle 

the relatively poor rate of convergence, in the numerical solution near 

the singularity. These have included product integration, surface fitting 
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and iteration, however none of them significantly improved the accuracy 

or the rate of convergence. One technique that we are in the process 

of trying is a refinement of the mesh near the singularity; we shall 

discuss this in the conclusion. 

It should be remembered that the solution values calculated on the 

line p = 1-t are used in the numerical approximation of an integration 

(see 8.06). Thus as we reduce h, the mesh length, we increase the 

number of points, s-1, calculated on the line p+t = 1, and consequently 

the number of nodes, s+1, used in the approximation of the integral. 

However, we also calculate H at points closer to the line t = 1. When 

h = 0.1, we calculate the solution at 9 points on the line p = 1-t, the 

largest error occurring (predictably) at (.1,.9). When h = 0.05, we 

calculate the solution at 18 points on the line p+t =1, the largest 

error occurring at (.05,.95), the error at this point being slightly 

greater in absolute size to the error at the point (.1,.9) for h = 0.1. 

The effect of this on the error in the particular solution can be seen 
s 

from equation (8.10). For the second term 3 E IwiTikeiI, the 
s 	

k 	 i=0 
E IW.T. e.I will not have significantly decreased (if at all) for 
i=0 1 1 1 

smaller h, thus the best we can expect for the rate of convergence of 

the particular solutions is 0(h). 

In table 3 we give the absolute error in the particular solutions 

Ip.
J
-o.sI, for the equation -Au + P(r2)u = 0, for P(r2) = X2, and for 

various values of A. The particular solutions, pl  and p2, are found 

by analytically integrating (8.05), when 

hj(xl,x2) = 1, 	and 	h.
j
(x
1,x

2) = xl, 

and the value was found at xl  = 1, x2  = 0. 
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TABLE 3. 

h = 0.1 

ABSOLUTE ERROR IN 

A 

p1(1,0) p2.(1,o) 

.1 3.92 x  10
-9 

2.53 x 10
-10  

.5 1.93 x 10
-6  

1.78 x 10-7  

1 3.89 x 10
-6  

2.93 x 10
-7 

 

2 1.97 x  10
-3  

1.18 x 10
-4 

 

10 9.70 x 102  8.07 x 101  

h = 0.05 

1 1.41 x 10
-6  

7.49 x 10-8  

h = 0.025 

1 6.26 x 10-7  1.90 x 10-8  

RATIOS 

ERROR AT h = 0.1  
ERROR AT h = 0.05 

ERROR AT h = 0.05  
ERROR AT h = 0.025 

	

2.76 	 3.91 

	

2.25 	3.94 

The lower ratios for the errors in p1(1,0) and the higher errors 

in the computed values of pl(1,0), reflect the added error due to the 

extrapolation process. 

In Table 4 we consider the error in the numerical solution of the 

Goursat problem for the equation -Au + M(xl)u = 0, with M(xl) = l2. We 

take h = 0.1, and various values of A. The point (.7, .3), is where 

the error is greatest. 
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TABLE 4. ABSOLUTE ERROR IN NUMERICAL APPROXIMATION AT (.7, .3). 

A 

.1 	 9.41 x 10
-15  

.5 	 4.74 x 10-10 
 

1 	 1.26 x 10-7  

2 	 3.74 x 10-5  

10 	 4.67 x 102  

In Table 5 we look at the absolute error in our numerical solution 

of the Goursat problem at the point (.7, .3) for varying values of h. 

We take A = 1. 

TABLE 5. ABSOLUTE ERROR AT (.7, .3) FOR VARIOUS VALUES OF h. 

A = 1 	h 	0.1 	0.05 	Ratio 	0.05 	0.025 	Ratio 

(.7, .3) 
	

1.26x10-7 8.52x10
-9  14.8 8.52x10

_9 
5.53x10-10  15.4 

In Table 6 we give the absolute error in the particular solutions 

I p -p sl  for the equation -Au + M(xl)u = 0, M(x1) = a2  for various values 

of A. The particular solutions pl  and p2  are found by analytically 

integrating equation (8.11), when hi(xl,x2) = 1, and hi(xl,x2) = x, 

respectively, the values were found for xi  = 1, x2  = 0. 
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5.49 x 102  6.12 x 101  

2.53 x 10
_8  

7.34 x  10
-7 

 

1.55 x 10
_9  

4.58 x 10-8  

10 

h = 0.05 

1 

h = 0.025 

1 

RATIOS 

TABLE 6. ABSOLUTE ERROR IN 

p1(1 , 0) 
	

A1
(1, o) 

1 25 

h = 0.1 	A 

.1 

.5 

1 

2 

5.62 x 10-13  1.33 x 10
-9 

 

8.17 x 10
-9  

8.09 x 10
-7 

 

4.19 x 10
-7  

1.18 x 10-5  

4.07 x 10
_6  

1.26 x 10
-4 

 

ERROR h = 0.1  
ERROR h = 0.05 

ERROR h = 0.05  
ERROR h = 0.025 

	

16.6 	16.1 

	

16.3 	16.0 
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6. 	Numerical Results  

In the following section we will display our results for some of 

the problems we have undertaken. The following symbols will be used. 

N 	represents the number of boundary points. 

M 	represents the number of particular solutions. 

s 	represents the number of intervals in Simpson's rule, in the 

approximation of the generating function. 

h = 5 	h is the interval length in the above Simpson's rule, it is 

also the mesh length in the numerical solution of the Goursat 

problem. 

EB 	represents the largest absolute error in the numerical 

solution on the boundary, as found by completing a boundary 

search. 

For all the problems for which we have applied the integral equation 

algorithm, the trapezoidal quadrature rule was used to approximate the 

boundary integral, except for the L-shape problem for which Simpson's 

quadrature rule was applied. This is because we wanted to take advantage 

of the known improvement of the trapezoidal rule for periodic functions. 

For the L-shaped reason we do not expect the integrand to be periodic and 

so the trapezoidal rule offers no advantage. 

PROBLEM I. -Au + u = 0 on D, 

ō(✓X12+X22  
u(X1,x2) 	(1) 

0 

 

on 3D, 

where aD is the ellipse, x12  + 4x22  = 1. 

 

Here IO  is the modified Bessel function of the first kind, and the 

solution is 

. px12+x22  
u(xl,x2) _ 

IO(1) 
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This elementary problem was attempted by K. Atkinson [ 29 ], to 

illustrate the numerical approximation of R.P. Gilbert's double-layer 

potential formulation for problem B. Because Atkinson uses a truncated 

infinite series to approximate the kernel numerically, and we use the 

numerical solution of a Goursat problem, any discrepancy in the accuracy 

should be in Atkinson's favour. 

Problem 1 gives us an opportunity of comparing Atkinson's algorithm 

with our integral equation algorithm for problem B, with P(r2) = 1. 

Results for our particular solutions algorithm are also shown. 

This problem has very smooth boundary conditions, in fact the 

density of the double-layer potential, u, is a constant for the problem. 

So we would expect good numerical results from our algorithms. 

To parameterize the problem for the integral equations algorithm, 

xi  = a cos t, x2  

ALGORITHM 
Computer 
Boundary nodes 
Other parameters 

INTERNAL PTS 

= b sin t, 0 4  t 

ATKINSON 

< 27r, where t is the 

INTEGRAL EQUATIONS 

eccentric angle. 

PARTICULAR SOLUTIONS 
CDC 
N= 

x10  1 
 

0.274 

0.425 

1.16 

0.068 

0.186 

NOT 

NOT 

3600 
12 	N=24 

RELATIVE 

1 	
CDC 

S=10 

ERROR 

6400 
N=12 

S=40 

x10-7  

0.0246 

0.237 

0.203 

0.271 

0.234 

6.5x10
-8 

 

19.6 

CDC 6400 
N = 16 

	

S=10 	S=40 
M = 4 

x10-5 	x10-6  

	

0.325 	0.819 

	

0.316 	0.795 

	

0.276 	0.696 

	

0.343 	0.864 

	

0.250 	0.635 

5.18x10-6 	2.6x10-6  

	

0.929 	13.4 

X1 	X2  

0.0 	0.0 

0.0 	0.125 

0.0 	0.25 

0.25 	0.0 

0-5 	0.0 

EB  

Time (sec) 

x10
-2  

0.054 

0.22 

1.18 

0.13 

0.011 

GIVEN 

GIVEN 

x10-5  

0.0324 

0.314 

0.271 

0.364 

0.245 

1.4x10
-6 

1.5 



COMMENTS 

In section 3, for the integral equations algorithm we concluded 

that we would expect the error on the boundary to exceed the error on the 

interior. For this problem that is not true. The reason for this is 

that the density, p, is constant, thus the error in h(r(s)) becomes 

significant, and there is no reason why the error in h(r(s)) should be 

a maximum on the boundary. In fact h(r(s)) is the first particular 

solution, and the error in h(r(0)) is given in Table 3. 

That Atkinson's algorithm works so poorly in comparison, for such 

a simple example, suggests that his formulation is inferior. 

For the particular solutions algorithm we exploit the 4-fold 

symmetry of the problem. We see that the error on the interior is in 

this case bounded by EB. This means that the error in solution due to 

the numerical approximation of the particular solutions is not greater 

than 5.18x10
-6 

 for s = 11, and not greater than 2.6x10-6  for s = 41. 

	

Problem 2. -4u + u = 0 	on D 

	

u+l 	on no 

aD is the ellipse x12  + 4x22  = 1. 

This problem is more complicated than problem 1, where the boundary 

values were those of a particular solution of the elliptic equation. 

The problem was used by P. Linz [ 30 1, to illustrate his particular 

solution algorithm for problem B, which includes the numerical 

approximation of the kernel by the solution of a Goursat problem. The 

analytical solution to this problem is not known. For the integral 

equations algorithm the eccentric angle was taken as the parameter as 

in problem 1. 
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PARTICULAR SOLNS 
CDC 6400 

M=4, N=40 
s=10 	s=40 

.907163 .907165 

.908053 .908055 

.910812 .910814 

.929645 .929647 

.930056 .930058 

INTEGRAL EQUATIONS  
CDC 6400 
N=12 N=24 
s=10 

.907541 .907189 

.908318 .908080 

.911299 .910839 

.930308 .929691 

.931112 .930115 

5.95X10 4  5.95x10-4  3.8x10-2  1.9x10-2  

1.95 	27.3 I  1.56 	3.11 

RESULTS 

P. LI Ti Z 

N=31 

ALGORITHM 
COMPUTER 

Parameters 
Not given 

M=4 M=8 M=12 
Internal Points 

xi  X2  

0.0 0.0 .9062 .9064 .9063 

0.1 0.0 .9068 .9079 .9079 

0.0 0.1 .9105 .9107 .9107 

0.5 0.0 .9297 .9295 .9295 

0.0 0.25 .9298 .9301 .9300 

EB  7x10-4 2x10
-4 

 1x10-4  

Time (sec) NOT GIVEN 

COMMENTS  

Linz calculates EB  by finding the error at the N boundary points 

and taking the maximum as EB. This is clearly not going to bound the 

error on the interior adequately. 

For the particular solutions algorithm the coefficients of the four 

particular solutions are 

a1  = 0.9072, 
	a2  = -0.1378, a3  = 0.1079x10-2  

a4  = -0.6650x10-5. 

By combining this information with that of Table 3, suggests that 

the first 4 figures of our solutions, for the particular situation 

algorithm, are probably correct. 

For the integral equations algorithm the density, p, of the double 

layer potential is not constant. 



PROBLEM 3 -Au + (4-2r2)u = 0, on D 
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2 	2 u = xl  + x2  on 8D 

Where % D is the 'squirkle'. 

This problem has been solved numerically by Bergman and Herriot 

[ 7 ], and by Schryer [ 48 I. The 'squirkle' is a square with sides 

xl  = ±1, x2  = ±1, but with its corners replaced by segments of circles. 

The northeast corner of the square is replaced by the northeast quadrant 

of the circle, 

(x1-x0)2  + (x2-x0)2  = (l-x0 )2  

where x0  = tan(39°). 

The boundary conditions and the domain allow 8-fold symmetry which 

we have taken advantage of in the calculation, as with Bergman and 

Herriot; Schryer allows 4-fold symmetry. 

Bergman and Herriot and Schryer approximate the kernel of the 

integral operator by truncation of an infinite series; both use 

particular solutions algorithms. 

The number of terms taken before truncation is indicated by the 

letter T. It is possible to calculate the error in the solution on 

the interior due to the truncation of the infinite series, this error is 

indicated by EA. Unfortunately for our own particular solutions algorithm 

we have been unable to obtain an estimate for the error in the solution 

on the interior due to the error in the particular solutions. 

This problem was also solved using the integral equations algorithm, 

taking advantage of the 8-fold symmetry and taking the eccentric angle 

as parameter. 



RESULTS FOR PROBLEM 3  

ALGORITHM 

COMPUTER 

N 

M 

OTHER 
PARAMETERS 

INTERNAL 
X1 	X2  

0.0 	0.0 

0.2 	0.0 

0.6 	0.0 

0.8 	0.0 

0.2 	0.2 

0.6 	0.2 

0.8 	0.2 

0.6 	0.6 

0.6 	0.8 

0.8 	0.8 

EB  

EA  

Time 
(sec) 

SCHRYER 	BERGMAN AND 
HERRIOT 

PARTICULAR SOLNS. INTEGRAL 
EQUATIONS 

IBM 360/67 

192 	320 

8 	24 

T=10 	T=15,10*  

POINTS 

NOT 

GIVEN 

3.1x10-4  4.9x10-5  

1.6x10
-5 

9.4x10
-11 

18 	113 

CDC 6400 

360 

8 

S=10 

SOLUTIONS 

S=40 

0.5186 

0.5394 

0.7034 

0.8403 

0.5610 

0.7317 

0.8742 

0.9565 

1.1443 

1.3729 

5.2x10
-4 

 

AVAIL 
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IBM 7090 

368 

8 

T=4 

CDC 6400 

80 

S=10 

0.5189 

0.5397 

0.7038 

0.8407 

0.5613 

0.7321 

0.8745 

0.9569 

1.1449 

1.3735 

3.2x10-2  

ABLE 

9.8 

0.5187 

0.5394 

0.7034 

0.8400 

0.5610 

0.7318 

0.8740 

0.9571 

1.1449 

1.3738 

1.4x10-3  

less
to-3  

than 

240 

0.5190 

0.5398 

0.7039 

0.8408 

0.5614 

0.7322 

0.8746 

0.9572 

1.1449 

1.3734 

5.2x10
_4 

NOT 

8.8 

Here the first 4 particular solutions used were truncated after 15 terms 

of the infinite series, and the rest after 10 terms of the infinite series. 
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COMMENTS 

For the equation -Au + P(r2)u = 0, and P(r2) = a2, we saw in 

Table 1 that as A increased so did the error in our numerical solution 

of the Goursat problem, and in Table 3 we saw the corresponding effect 

in the error in the particular solutions. 

In problem 3 P(r2) > 1, and we expect the error in the numerical 

solutions due to the error in the particular solutions, to be greater 

than that obtained by Schryer. 

However, our results are certainly comparable to those obtained 

by Bergman and Herriot. Notice in particular that the integral 

equations algorithm requires only 80 boundary nodes for comparable 

accuracy. 

PROBLEM 4. 	Au - 4u = 0 	on D 

	

u = 1 	on n. 

The domain (figure 3) is an L-shaped region. 

This domain has a re-entrant corner with angle 37/2. When a domain 

has a corner in it, particularly a re-entrant corner, particular solutions 

algorithms are no longer practical. This is because the partial 

derivatives of the solution at the corner may become infinite, whereas 

the partial derivatives of the particular solutions are bounded over 

the closure of the domain. Schryer [ 48 ] overcomes this difficulty by 

creating additional particular solutions to represent the singularity 

and he uses these in combination with the usual particular solutions. 

We use the integral equations algorithm, using Simpson's quadrature 

formula to approximate the boundary integral. We parameterize the 

boundary by taking the parameter t = ±x
2 when x is constant (on AB, CD 

and EF, in Figure 3), and t = ±x
1 when y is constant (on BC, DE and FA 

1 32 

in figure 3 ). 



The derivatives of t are not single valued at the corners. This 

difficulty is overcome by treating each corner as two points, for 

instance at the corner, B, (figure 3), one point is taken to be part 

of AB, t = x2, and the derivative is 1, the other point is taken to be 

part of BC, t = -xl, and the derivative is -1. 

For this problem we also used a finite difference algorithm with 

an iterative conjugant gradient technique, and preconditioning, 

Wallcroft [ 54 1. This algorithm is specifically designed for 

rectangular and L-shaped regions. 
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RESULTS FOR PROBLEM 4 

ALGORITHM 
COMPUTER 

N 
OTHER 
PARAMETERS 

INTERNAL 
POINTS 

X1 	X2  

0.0 	0.0 

0.25 0.25 

0.5 -0.25 

0.75 0.0 

1.0 	0.25 

EB  

E
A 
** 

Time (sec) 

SCHRYER jj FINITE DIFFERENCES INTEGRAL EQUATIONS 
IBM 360/67 

385 	385 
M=13+6* 	M=25+4*  
T=10 	T=10 

NOT 

GIVEN 

5.0x10
-4 

 3.1x10
-3 

 

3.6x10-5  9.0x10-8  

111 	286 

j 	CDC 6400 
[[ 	124 mesh points 

0.6388 

0.6109 

0.7262 

0.6560 

0.7661 

3.03 

CDC 6400 
32 	64 
s=10 	s=10 

	

0.6396 	0.6384 

	

0.6166 	0.6107 

	

0.7276 	0.7265 

	

0.6609 	0.6571 

	

0.7730 	0.7680 

6.0x10
-2 
	2.1x10-2  

4.4 	12.7 

* 
The first number refers to the ordinary particular solutions and the 

second to the special particular solutions, the infinite series for 

both sets of particular solutions were truncated after 10 terms. 

** 
EA  is defined in problem 3. 

COMMENTS  

From the results given by Schryer, it is impossible to give a 

thorough comparison of his algorithm and the integral equation algorithm. 

However, from EB,  we see that a reasonable degree of accuracy is achieved 

with very few boundary points. 

The finite difference algorithm, although an extremely quick 

algorithm, is one that has been specifically designed to work best for 

domains with regular sides and with angles of multiples of 45°. Its 

disadvantage is its large storage requirements (the 31x31 mesh was the 
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largest possible for running the algorithm at a time-sharing terminal). 

Moreover the solution is only known at the mesh points and for other 

points an interpolation process needs to be used. 

PROBLEM 5 -Au + x12u = 0 
2 

u = cosh x2.e2x1 

on D, 

on D. 

The domain is a square with sides xl  = ±1, x2  = ±1. For this 

problem the boundary function is a solution of the elliptic equation, 

and so the solution over the closure of the domain DUD is 

2X 
2 

u = cosh x2.e 	1  . 

For this example we use the particular solutions algorithm, and 

the finite difference algorithm. For the particular solutions algorithm 

full advantage of the 4-fold symmetry is taken. 

Since the partial derivatives of the solution at the corners, and 

indeed over the closure of the domain are bounded, there is no necessity 

for the use of special singular solutions, as used by Schryer for the 

L-shaped domain. 

RESULTS FOR PROBLEM 5 	
PARTICULAR SOLUTIONS 

ALGORITHM 
COMPUTER 

OTHER PARAMETERS 

INTERNAL POINTS 
XI 	X2  

	

0.25 	0.25 

	

0.375 	0.375 

	

0.50 	0.125 

	

0.625 	0.25 

	

0.75 	0.375 

EB  

Time (sec) 

FINITE DIFFERENCE 

M=2 
ERROR 

1.7x10-2  

1.4x10-2 

2.0x10
-2  

2.0x10
-2 

4.0x10-2  

1.5x10 1  

1 

CDC 6400 
u=60 
s=10 
M=4 

1.4x10-5  

1.7x10-5  

1.3x10-5 

1.7x10-5  

3.2x10-5  

1x10 4  

1.1 

M=6 

4.1x10-6  

4.1x10-6  

5.4x10-6  

5.5x10-6  

5.0x10-6  

7x10-8  

1.1 

CDC 6400 
Mesh points 124 

RELATIVE 

5.2x10-5  

7.5x10-5  

3.5x10-5  

5.1x1Ō5  

4.8x10-5  

4.28 
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It was found that in the particular solutions algorithm when 

M = 8, N = 60, a reduction in h (where h is the mesh length in the 

hyperbolic solver and also the nodal length in Simpson's quadrature 

1 	I 
rule used to approximate the generating function) by , le a to a reduction 

in the error at the internal points of approximately 16. This suggests 

a rate of convergence of h4  in each particular solution. 

COMMENTS 

In the particular solutions algorithm, when M = 2 and 4, the error 

on the interior at the points shown is bounded by the error on the 

boundary. For M = 6 this is no longer true, the error in the solution 

due to the error in approximating the particular solution, En, is larger 

than the boundary error. 

The smoothness of the solution of this problem is reflected by 

the rapidity of the convergence of the numerical solution to the solution 

as the number of particular solutions increases. 

The speed of the particular solutions algorithm is due to the 

exploitation of the 4-fold symmetry in contrast to the inflexibility of 

the finite difference algorithm. We see that an increase in the number 

of particular solutions barely affects the speed of the algorithm. 

PROBLEM 6  -Du + (sinh2x1  + sinh2x2)u = 0 on D 

u = sinh(sinh(x1)sin(x2)), 	on D. 

Where the boundary, 9D, is the ellipse x12  + 4x22  = 1. 

For this problem we use the integral equations algorithm and the 

particular solutions algorithm. 

The solution over the closure of the domain is u = sinh(sinh(x1)sin(x2)). 

Because the boundary and boundary functions are smooth we expect our 

algorithms to give reasonable results, despite the complexity of the 

equation. 



RESULTS FOR PROBLEM 6  

ALGORITHM 
COMPUTER 

N 
M 
s 

INTERNAL POINTS 

Xl 	X2  

0.215 	0.26 

0.398 	0.199 

0.520 	0.108 

0.530 	0.265 

0.693 	0.144 

EB  

Time (sec) 

INTEGRAL EQUATIONS (1) INTEGRAL EQUATIONS (2) PARTICULAR 
SOLUTIONS 

16 

10 

8.9x10-2  

1.8x10-2  

1.3x10-3 

1.5x10-2  

4.0x10-3 

8.9x10-2  

7 

32 

10 

1.7x10-3  

3.0x10-4  

3.0x10-5  

5.1x10-4  

1.2x10-4  

2.2x10-2  

15.7 

64 

10 

RELATIVE 

2.1x10-5  

3.1x10-5  

1.0x10-5  

6.8x10-6  

2.5x10-6  

7.2x10-3  

43 

CDC 6400 
32 

10 

ERRORS 

1.4x10-3  

5.2x10-4  

2.6x10-5  

7.3x10-3  

6.1x10-4  

1.04 

• 15 

2 
10 

6.4x10-3  

1.3x10-3 

1.3x10-3 

1.6x10-3  

2.3x10-3  

7.5x10-2  

8.6 

44 
4 
10 

9.1x10
_6  

1.2x10-7  

5.1x10-6  

1.0x10-6  

1.0x10-6  

2.6x10-5  

10.3 

By varying h the mesh length in the hyperbolic solver and the 

nodal width in the Simpson's rule quadrature used to approximate the 

generating function, suggests a rate of convergence of just under 0(h4). 

COMMENTS  

This problem illustrates the use of both particular solutions 

algorithm and the integral equations algorithm for an equation of the 

type -au + (M(xl)u + N(x2))u = 0. 

The results headed 'Integral Equations (2)' were obtained from 

the integral equations algorithm but with the approximate solution at 

interior points calculated from 
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u(x) = 	f u(y)M(x,Ddy., 	xBD, YE  3D, 
aD 



instead of from 

u(x) = 2nu(xD)h(r(x~)) t f [ u(x) - u(x Y M(x,x)dx, x e D, xo, x e 8D 
8D 

('Integral equations (1)'). 

A comparison for 32 boundary points indicate that although there 

is some deterioration in the numerical solution at points away from the 

boundary, for points near and on the boundary 'Integral equations (1)' 

is far more accurate. 
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7. 	CONCLUSION 

Problem 1 illustrates the improvement in the solution using the 

integral equations algorithms in place of Atkinson's for boundary value 

problems with the elliptic equation -Au + P(r2)u = 0. Atkinson only 

attempts problems with very smooth boundary conditions and so other 

comparisons are not possible. However, we show in problems 2, 3 and 4, 

that the integral equations algorithm does work well for a variety of 

domains and boundary conditions. 

Problem 2 illustrates the improvement in the numerical solution of 

the Goursat problem. Problems 1-4 show that it is possible to achieve 

acceptable numerical solutions when the generating function is 

approximated by the numerical solution of a Goursat problem, in both 

the particular solutions algorithm and the integral equations algorithm. 

For P(r2) = X2, we have seen that the greater the value of X, the 

greater the error in the hyperbolic solver, and this error directly 

affects the error in the numerical solution of the problem. To reduce 

this error we halve the steplength h, however this is expensive, 

approximately 4 times as long, and the improvement in the numerical 

solution is disappointing, we suggest an approximate rate of convergence 

of 0(h). 

As a increases more terms of the infinite series before truncation 

are needed to maintain the accuracy of the particular solutions. However, 

taking more terms in the infinite series appears less expensive to 

implement than the necessary reduction in the mesh length in the 

hyperbolic solver. 

It is this aspect of the hyperbolic solver that we are currently 

trying to improve. The idea is to refine the mesh only for the point 

(or points) most affected by the singularity. For example, take 



i 
1:' 

~ l,,-l,o-'I) 

1---+---f~ (0-1, O-~) 

Error in H(0.1,0.9) 

Error in H(0.1,0.9) 

I~ (0-:1.,0-') 
~-+--+-----r-----~ 

~ (0-'1-.0-6) 
+--+--+-----+-----+-----~ 

I~ 

= 1.S3xlO-6 

= 3.llxlO-7 

o . t 
MESH 
R~FINcME~T 

"h=Oo05 F 4 ~h=O-l 1

P 
l.gure 

22-
per ) = A = 1. For h = 0.1, we obtain the numerical solution H(p,t) at 

(0.1,0.9) with an error of 1.S3xlO-6 , at (0.2,0.8) with an error of 

6.14XIO-7
, by refining the mesh for the point (0.1,0.9) (see Figure 4), 

-7 the value at (0.1,0.9) will become 3.llxlO . Moreover the values at 

the other nodal points on the line p+t =1, will improve due to the mesh 

refinement in the left hand column, these having the greatest improvement 

being those closest to the singularity. Also for the first particular 

1 t · d· h . tIt· 1· h the value of H(p,t) so u 10n, an l.n t e 1n egra equa l.ons a gorl.t m (l-t) 

at the point t = 1, ~Yhich is indeterminate and has to be found using a 

fourth order extrapolation process, will also be more accurate, due to 

h · d . H(p,t) h . (1 ° 9) (020 8) t e 1ncrease accuracy l.n (l-t) at t e p01nts 0. ,. , .,. , 
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(0.3,0.7), (0.4,0.6). Moreover, the time taken by the algorithm is 

proportional to the number of squares in the mesh of the hyperbolic 

solver, thus all these improvements will be at a cost of approximately 

1.8 times the cost for the standard mesh with h = 0.1. 

Problems 5 and 6 illustrate the use of the solution of the Goursat 

problem method for particular solutions and integral equations algorithms, 

for boundary value problems for elliptic equations of the type 

-Au + [M(xl) + N(x2)]u = 0. These have the advantages of approximately 

0(h4) rates of convergence, where h is the mesh length in the hyperbolic 

solver and the nodal width in the Simpson's quadrature rule used to 

approximate the integral in the particular solutions. 

Methods for which the kernel function is approximated are particularly 

interesting because the kernel functions considered are unchanged in 

three dimensions. The numerical approximation of three dimensional 

boundary value problems for these elliptic equations present the same 

general difficulties as for boundary value problems with Laplace's 

equation and Helmholtz' equation. A particular problem is one of 

increased storage; the particular solutions algorithm and the integral 

equations algorithm reduce the problem to solving equations constructed 

on the boundary only, effectively reducing a three-dimensional problem 

to a two-dimensional problem. 



X1  

- f [G11(x1,x1-t  
-x 

+ 2G12(x1,x1-t) + G22(x1,x1-t)h(t.,x2,x3)dt. 

1 

APPENDIX I.  THE EQUATIONS -A3u + M(xl)u = 0, 
-A3 

 + N(x2)u = 0, 

-p3u + [M(x1) + N(x2)]u = 0. 

Where 

32u 	32u 	32u 
A3u = 	

2 + 
	

2 
	2  , 	u = (x1,x2,x3). 

Let h(x
122
,x2,x3) be a harmonic function. That is h11  + h22 + h33  = 0. 

(h11 	a-h2 etc.) 
3x1  

For -03u + M(x1)u = 0, we consider a solution of the form 

x1  

u(x1,x2,x3) = h(x1,x2,x3) - f G(x1,x1-t)h(t,x2,x3)dt, 
-x1  

where G is twice differentiable with respect to each argument. 

32u 
= h

11 
	2G (x ,0)h(x ,x ,x ) - G(x ,0)h (x ,x ,x ) 

3x 2 	
11 	1 	1 2 3 	1 	1 1 2 3 

1 

- 2G1(x1,2x1)h(-x1,x2,x3) - 3G2(x1,2x1)h(-x1,x2,x3) 

- G2(x1,0)h(x1,x2,x3) + G(x1,2x1)h1(-x1,x2,x3). 
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8x1 	8x2 	3x3  

Integrating by parts twice, we obtain 

xi 
J 	G22(x1,x1-t)h(t,x2,x3)dt = -G2(x1,0)h(x1,x2,x3) + G2(x1,2x1)h(-xl,x2,x3) 

-G(x1,0)h1(x1,x2,x3) + G(x1,2x1)h1(-x1,x2,x3) 

x1  
+ f G(x1,x1-t)hZ1(t,x2,x3)dt. 



82u 

Thus 

;2u
2 
= h

11 
- 2G

1 
(x

1 ,
0)h(x

1 ,
x
2 ,
x3 ) - 2G1 (x1 ,

2x
1 
)h(-x

1 ,
x
2 ,
x
3 
) 

- 4G2(x1,2x1)h(-x1,x2,x3) - 

xl  
j [G11+2G12]h(t,x2,x3)dt 

-xl  

xl  
- f G(xl,xl-t)hll(t,x2,x3)dt. 
-xl  

xl  

2 	h22 	Jr G(xl,xl-t)h22(t,x2,x3)dt. 

32u 

8x3
2  

Thus 

xl  

h33 j G(x1,x1-t)h33(t,x2,x3)dt. 
-xl  

-A3u + M(x1)u 

= 2G1(x1,0)h(xl,x2,x3) + 2[G1(x1,2x1) + 2G2(x1,2x1)]h(-x1,x2,x3) 

xl  

+ j [G11  + 2G12]h(t,x2,x3)dt 

-xl 
xl  

+ M(xl)h(xl,x2,x3) - j 	M(xl)Gh(t,x2,x3)dt. 

-xl  

But -A3u + M(xl)u = 0 

1 
2G1(x1,0) = M(x1) 	i.e. G(x1,0) = Z j M(A)dX , 

0 

Let 

G1(x1,2x1) + 2G2(x1,2x1) = 0 

G11  + 2G12  - MG = 0. 

F( ,n) = G(x1,x1-t) 

i.e. G(x1,2x1) = 0. 
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Xl+t 

 

x
1
-t 

where 	= 2 	n 	2 

Then 
a2F _ 

aan 
MF 	E > 0, n > 0 

with F(E,0) = 2 f M(i)dA 
0 

E > 0, 	(I.01) 

F(0,n) = 0. 	n > o. 

xl x+t x -t 
u = h(xl,x2,x3) - f F(----  , 2  )h(t,x2,x3)dt -xl  

1 
. . u = h(xl,x2,x3) - 	

-
f F(xl( 1- ), x1( y.))h(txl,x2,x3)dt. 

If we compare the above equations with the equations (3.22), we 

see that the kernel functions in 2 and 3 dimensions, and the Goursat 

problem they satisfy are the same. 



APPENDIX II  

REDUCTION TO CANONICAL FORM: 

Consider the p.d.e. 

2 	2 	2 
R 3 

z
2 + S  3x Zax 
	 + T a z2  + f(xl,x2,zzx  ,zx  ) = 0 

axi 	1 2  3x2 	1 2 
(II.O1) 

z = z(xl,x2) . 

R, S, and T are functions of x1  and x2  possessing continuous partial 

derivatives of as high an order as necessary. 

Take E _ E(x1,x2), n = n(x1,x2) as new independent variables and 

write z(x1'x2) = C(E,n); then it is readily shown that (II.01) takes the 

form 

2 	 2 
A( 'E ) a + 2B(E ,C ;n ,n ) 

a 
xl x2 a  2 	x1  x2  x1  x2  a 3n 

2 
+ A(n ,n ) a 

x1  x2 3n2 = F(,n,C,c ,C ), 
xi x2 

(I1.02) 

where 	A(v,u) = Ru2  + Suv + Tv2, 

and 	B(ul,vl;u2,v2) = Rulu2  + 2 S(ulv2  + u2v1) + Tv1v2  . 

It is possible to choose 	so that this equation takes the simplest 

possible form. We consider two cases: 

Case a) S2  - 4RT > 0, 	S2  - 4RT < O. 

If either of these are true then the roots Al' 
 a2  of the equation 

	

2 	2 

	

Ra2  + Sa + T = 0, are distinct, and the coefficients of 
22 	 3 4 

a 2 	an2 
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will vanish in (11.02) if and n are chosen such that 

aE 	an 	an 
x1 3x2  ' 	xl  - A2 ax2  

So a suitable choice for 	and n is the general solutions of 

the characteristic equations 

du 
+ 1(xl,x2) = 0, dx 1 

du 
dx + A2(x1,x2) _ 
2  

(I1.03) 

(II.04) 

The solutions of these equations are E(xl,x2) = constant, and 

n(xx2) = constant. 

Case b) 	S2  - 4RT = 0 

In this case the roots of the equation 

Ra2 +Sa+T = 0, 

are equal. Define 	as in case a) and take n  as any function of xl,x2  

which is independent of E. 

i) 	Consider r[G
r 
 - PG] - Gr  + 2(1-t)Grt  = 0. 

This is case a) where 

S = 2(I-t), R = r, 

ra2  + 2(1-t)a = 0, 

and Al = 0, A2 	
-2(1-t)  = 	r  
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dn' 
=> 

dxl = 2 - 2x1  = constant 

Equations of the characteristics are 

dt 
dr = 0 	=> 	t = constant. 

dt  2(1-t)  _ 
dr 	r 

0 => 2  ( r l-t) = constant 

or riflt = constant. 

Thus possible new variables, T and p are given by 

T = t, p = r/ ; 	Gilbert and Linz, 

r2(1-t) 	2 or 	T = t, p = 	2 	r0  = constant. 
r0  

ii) Consider W11  + 2W12  - M(xl)W = 0. 

Then S=2, R = 1, T = 0, 

S2  - 4RT = 4 > 0. 

The roots of the equation a2  + 2a = 0, 

are X2  = -2. Al  = 0,  

The equations of the characteristic are given by 
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and 
dn' 

dx1  = 0 	=> n' = constant. 

Thus one choice of new independent variables is 

n = n'/2 , 

E = (2x1  - n')/2 . 
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