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ABSTRACT

The increasing use of thin-walled concrete sections is largely
attributable to the development of high performance materials and to
improvements in construction techniques. Large warping displacements
are a characteristic feature of these sections and, if restrained, can
induce significant levels of additional stress. Under these circum-
stances, simple beam theory may no longer be sufficiently accurate for
the analysis, and a more general approach will be required. Therefore,
as an introduction, thin-walled beam theory is first developed for open,
closed :ad multi-cellular sections subject to applications of mixed
torsion. The relevance of this theory to box girder bridges is then
examined by means of a parametric study of existing structures. The
important geometrical properties of a range of typical sections are
also established and presented in graphical form.

Fundamental equations governing the torsional behaviour of
straight and curved members are expressed in terms of the applied loads
and initial boundary conditions only. The longitudinal distribution
of the various stress resultants, due to both uniformly distributed and
concentrated loads, are then determined for the circular curved girder
built~-in at both ends. A total strain energy equation is derived for
the general case, including the effects of bimement and warping torsion,
and is used to establish the flexibility matrix for straight and curved
members. This enables the full stiffness matrix to be obtained
numerically, forming the basis for a general analysis suitable for rapid
solution by computer. Subsequently, this analysis has been used to
analyse a prestressed concrete elevated road junction, the results from
which have then been compared with those already available from an
elastic model study.

The well established procedure whereby curved members are
idealized as an assemblage of equivalent straight beams is investi-
gated in detail. Possible errors caused by this approximation are
estimated for members covering a wide range of geometrical properties.
Further inaccuracies due to neglecting the effects of warping restraint
are alsc quantified, and both sources of error are evaluated in the
analysis of a three span continuous bridge of composite construction.

Finally, an advanced method of ultimate load analysis is
proposed, based on a model which permits the formation of a corner mode
of failure. Since the effects of warping restraint can now be accommo-
dated, this enables simple open section beams to be analysed for the
first time. Results from the proposed theory are subsequently com-
pared with those from four reinforced concrete beams of open profile,
the construction and testing of which are also briefly described.
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CHAPTER ONNE

GENERAL INTRODUCTION

Only recently have reinforced and prestressed concrete
structures been required to carry significant levels of torsion, often
in combination with other forms of loéding. Historically, the designer
has been able to avoid or at least minimise the problem by selecting
structural configurations in. which loads were transmitted to the
foundations by the actions of bending, shear and direct thrust alone.
Alternatively, if this was not possible, a simple elastic analysis
based on St. Venant's theory for pure torsion was generally adequate
since members were typically solid or thick-walled in section.

For a variety of reasons these options are rarely available
to-day. For example, the general arrangement of many modern structures
is frequently such that the ability to withstand significant torsiocnal
loads is essential to the equilibrium of the system. In such cases,
where a particular layout is necessary to enable the structure to
perform its primary function or to satisfy difficult alignment require-
ments, there is often little opportunity for selecting an alternative
configuration in which torsional effects may be safely neglected.
Furthermore, with improvements in materials and construction techniques
there has been a general tendency to reduce wall thicknesses in order
to achieve a corresponding reduction in self weight. In these cir-
cumstances, it is no longer sufficient to simply use St. Venant's
theory for the torsional analysis and the additional effects associated

with thin-walled sections must also be considered.



1.1 STRUCTURAL ACTIONS ASSOCIATED WITH THIN-WALLED BEAMS

In general, any system of eccentric point loads may be
reduced into its varioﬁs component parts. For the deformable thin-
walled beam these essentially correspond to the actions of bending,
torsion and distortion. Consider the twin-cell box girder with side
cantilevers, shown in fig. l.la, subject to a single point locad P at an
eccentricity e from the section centre. The components of vertical
shear force and torsional moment are readily determined from conditions
of equilibrium (figs. 1.1b and c), whereas the various distortional
loads form self-equilibrating systems and are not directly obtainable from
considerations of statics alone (figs. 1.1 d and e).

1.1.1 Bending

The deformation and cross-sectional distribution of longi-
tudinal stress due to pure bending, as calculated by simple beam theory,
are shown in figs. 1.2b and 1.3a respectively. While the errors
introduced by neglecting shear deformation in this theory are generally
acceptable for thick-walled and solid sections, this is frequently not
the case for thin-walled members. The effect of shear deformation in
the plane of the flanges is to reduce the direct stress due to bending
at positions away from the webs, as shown in fig. 1.8b, and is referred
to as shear lag. This behaviour may limit the effective width of the
flanges for design purposes, especially when wide side cantilevers are
employed, and result in a significant underestimation of the maximum
direct stress at the top and bottom of the web elements.

1.1.2 Torsion

It must first be assumed that the member responds to the
application of torsion by a rigid-body rotation of the entire section

about the shear centre (fig. 1.2c), and may thus be considered in
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isolation from any disfortional effects. Since thin-walled members
are unlikely to possess sufficient transverse stiffness to prevent
distortion, an adequate number of diaphragms must usually be introduced
along the length of the beam. Ideally, these should be infinitely
flexible in the direction of the member axis thereby permitting axial
displacements to occur without longitudinal restraint.

Under pure twist a system of circulatory shear stresses is
created in accordance with St. Venant's theory and in exactly the same
vway as for solid and thick-walled sections. In general, the out-of-
plane axial displacements (or warping displacements) corresponding to
this form of loading are characteristically larger for thin-walled
sections than for other configurations with similar overall dimensions.
4However, since the transverse distribution of warping displacements is
identical at all positions along the beam, this does not result in the
formation of any longitudinal direct stresses.

On the other hand, if the axial displacements are in any way
restrained, a system of direct stresses is induced with the typical
cross-sectional distribution shown in fig.l.3c. This constitutes a
system in equilibrium and has no resultant component of either direct
force or bending moment. A complementary system of warping shear
stresses 1s also created which acts in conjunction with the St. Venant
shear stresses to resist the applied torsional moment. Thus, while
the total torque at any section is readily obtainable in a statically
determinate structure, the longitudinal distribution of warping shear
stresses is always statically indeterminate and must be evaluated by
solving the fundamental differential equation governing torsional
dgformation.

In longitudinally restrained thick-walled or solid sections,

only St. Venant's torsion need be considered to the exclusion of warping



torsion. In very thin-walled sections the opposite is generally

true. | While the latter case is never likely to be directly applicable
to concrete structures, the continﬁing trend to thinner wall sections
does mean that both components of torsion must frequently be taken

into account in the analysis (denoted mixed torsion).

1.1.3 Distortion

In the preceeding discussion on torsional behaviour it has
been necessary to adopt the concept of closed spaced diaphragms, rigid
in their own plane but infinitely flexible in the direction of the
longitudinal member axis. Thus; the structural section has been
permitted to develop axial deformations and to undergo rigid-body
rotations while maintaining its original cross-sectional profile.‘
However, in practice, diaphragms do not correspond to this idealised
form but are generally only located at the supports and at discrete
points along the length of the member. The cross-section can there-
fore distort between diaphragm positions to a degree dependent upon the
transverse flexibility of the section and the distance from a point of
effective restraint.

The two basic modes of distortion to be found in twin cell
box girders are shown in figs. 1l.1d and e. The anti-symmetrical mode
represents torsional distortion and is possible when torsion is applied
to a deformable section. Alternatively, the éymmetrical mode develops
under certain transverse distributions of load and is denoted trans-
verse bending distortion.

Apart from the flexural deformations of the individual wall
elements (shown in figs. 1.2d and e), the cross-section is also subject
to the formation of axial warping displacements. Since the distortional

deformation along the beam is necessarily variable between points of
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restraint, the warping displacements are no longer constant and
additional direct stresses are developed with the transverse distribution
shown in figs. 1.3d and e. These systems of direct stress are self-
equilibrating in the same way as those due to torsional warping and do
not influence the other stress resultants. Furthermore, the complemen-
tary shear stresses associated with distortional direct stresses are

also self-equilibrating and have no internal resistive effect on the
applied torsional moment. However, they do combine with those shear
stresses dﬁe to both St. Venant and warping torsion to further compli-
cate the final stress distributioﬁ in the various structural elements.

1.1.4 Transverse Slab Action

The application of point or patch loading, usually to the
top flange, introduces deformations which result in further cross-
sectional distortions. An infinite number of such systems are
possible but do not constitute independent distortional modes in
the sense of those discussed in §1.1.3 and may be considered separately.
While the transverse effects due to these loads are essentially local
and disappear rapidly at positions away from the point of application,
the transverse stresses induced are often substantial and can signif-
icantly influence the direct stresses in the direction of the long-

itudinal beam axis due to Poisson's ratio effects.



l.2 ~  CONCRETE STRUCTURES LOADED IN TORSION

Whereas the problems assoclated with torsional loads have
been largely avoided in the design of concrete structures, this has not
been the case in other industries. In particular the aircraft
designer has always been confronted with the need to provide sub-
Stantiai torsional stiffness in wing and fuselage sections in order to
effect an economic design of minimum weight.  While space-frame
structures, e.g. the bi-plane wing, are generally more efficient in
resisting bending and direct stresses, the closed box section is usually
lighter where shear and torsional loads predominate. Indeed, the rapid
development of the monocoque configuration in the early 1930's was a
direct consequence of the relatively higher torsional loads induced by
greater speed. This is generally regarded as the first significant
use of thin-walled sections subject to combined loads, although the
automobile, ship building and steel construction industries were also
quick to adopt this form of construction for similar reasons.

To simplify the analysis, sections were generally idealised
into a series of direct stress-carrying members (stringers or booms),
concentrated at discrete points around the perimeter. These were then
connected by thin membranes which were assumed to be capable of trans-
mitting shear forces only. The close resemblance of this idealisation
to the actual practice of fixing longitudinal stiffeners to the
continuous shear walls, together with improvements in welding and
fabrication techniques, undoubtedly encouraged the rapid acceptance of
these methods.

In recent years those industries with experience in the use

of thin-walled structures have been well placed to take full advantage of
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modern theoretical and analytical techniques to improve the efficiency
of their designs. On the other hand, concrete structures have
traditionally been constructed from thick-walled or solid members and
the problems associated with thin-walled sections are not generally
well understood. However, gradual improvements in material perfor-
mance and constructionvtechniques have resulted in corresponding
reductions in section thickness to the extent that thin-walled
behaviour must now frequently be assumed.

Cross—sectional Configurations

For the purposes of torsional analysis, thin-~walled sections
may be conveniently separated into two major classifications. Those
with cellular configurations are denoted closed sections and resist
the application of pure torsion by the formation of constant shear flows
around the periphery of the closed parts. The connectivity condition
ensures that only relatively small warping displacements are created,
and the stresses arising from warping restraint are correspondingly
small and often local in effect.

On the other hand, the pure resistive shear stresses
developed in open sections are linearly distributed across the wall
thickness and result in large out-of-plane warping displacements at
the free edges of the section. Moreover, warping restraint stresses
can assume a greater significance in these sections and may sub-
stantially alter the stress distribution along the entire length of
the beam. As a result of these differences, closed sections are
favoured for most torsional applications except where practical con-
siderations make this impossible.

The differences in behaviour between open and closed sections

are also reflected in the different theoretical approaches adopted in
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thelr respective analysés. However, in practice, most members
comprise both open and closed parts and are referred to as open/closed
sections. These include the large majority of thin-walled members
used in structural engineering, e€.g. box girder bridges with side
cantilevers, and are generally treated as closed sections for the
purposes.of analysis since the torsional behaviour is predominantly
governed by the closed part.

Undoubtedly, the two most common examplés of thin-walled
concrete structures are the box girder bridge and the shear core, used
in the construction of tall buildings. These are examined in some
detaill throughout this work and, in general, cover all aspects of open,
closed and open/closed behaviour. In the remainder of this section
the significant features of these two structural forms are briefly
introduced together with other less common examples of thin-walled
concrete structures.

1.2.1 Box Girder Bridges

The concrete box girder has evolved into a highly efficient
and aesthetically pleasing solution for medium and long span bridges,
combining as it does, high flexural stiffness due to the well spaced
flanges, and excellent torsional capacity due to the closed cell
formation. Its development into the slender, thin-walled structure
that we know to-day has been influenced by several important and inter-
related factors. These include:

a. advénces in material technology and construction techniques
(e.g. prestressing) which have enabled wall thicknesses to
be greatly reduced,

b. the need to accommodate increased traffic flow resulting
in larger width/depth aspect ratios or, alternatively, in

the introduction of wider side cantilevers,



C. increases in effective span lengths due to the cost or
technical difficulties encountered in locating supports,
especiélly in urban areas, and

d. - the powerful computer-based analytical techniques now
available, which have resulted in a more complete under-
standing of the elastic behaviour of such structures.

While earlier, more conservative box girder designs employed configur-

ations which rendered warping and distortional effects negligible,

this is no longer the case and the thin-walled behaviour outlined in

§1.1 must often be taken into conéideration.

Examples of the wide range of sections typically found in

practice are shown in fig. 1.4. These have been abstracted from a

feature survey of existing box girder bridges by Swann!02 and form

part of the parametric study of thin-walled section properties in

§2.5. While all of these basic configurations may be used throughout
the full range of spans suited to box girder bridges (typically 25-120m
but exceptionally 10-210m), each cross-sectional type is only really

a practicable solution for a narrow range of carriageway widths.

In general, the torsional capacity of the single cell box
girder is far in excess of that necessary to resist the total imposed
load at its greatest possible eccentricity. Thus, where extra width
is required, cantiievers are commonly provided thereby transforming
the section into the open/closed profile shown in fig. 1l.4a. However,
since cantilever length is usﬁally restricted to approximately 4 m,
in order to avoid excessive depth at the root, twin or multi-cellular
profiles must be employed where wider carriageways are required,
figs. 1.u4b and c. Because of the relatively large formwork costs

associated with box sections, economies can often be effected by using
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twin spine sections, figs. l.4d and e, constructed in two halves

and joined together through adjacent cantilevers. However, without
rigid connecting diaphragms at frequent intervals, transverse bending
distortion can be significant thus limiting the total torsional capacity
to the sum of that provided by the individual spines.

One type of box girder arrangement which merits particular
attention is the highly curved road bridge which is a characteristic
feature of most elevated motorway systems. In such cases significant
torsion is likely to be induced by the self-weight of the structure
alone although, in practice, this will often be supplemented by
highly eccentric vehicular loading (due to wide side cantilevers) and
by irregular or skewed supports. Since the radius of curvature is
usually greater that ten times the overall section width!0?, such
structures are often idealized as equivalent striaght members for the
purpocses of désign. However, where there are severe alignment
problems, e.g. at graded motorway intersections (plate 1.l), this ratio
can be reduced to the order of four. In this case, the effects
curvature assume a greater significance and must be taken intoc account
in the analysis.

1.2.2 The Shear Core

This commen form of thin-walled structure is almost invariably
constructed in reinforced concrete. It has been widely employed in
the design of high-rise buildings, in order to provide the necessary
torsionul and flexural resistance to wind and earthquake loadings, and
may be economically constructed by slip-forming methods, plate 1.2.

In order to fulfil a secondary function as a lift or service
shaft, openings are usually required at each level. Where these are

large, e.g. plate 1.3, the structure is effectively transformed into
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an open section tube that is torsionally much weaker than the origiﬁal
closed section, fig. 155a. As a result, when this structure is sub-
jected to applied torque, significant warping displacements occur
noticeably at the free edges of the section. However, these are
fully restrained at the foundation level thereby creating substantial
and additional systems of direct and shear stress. Furthermore, the
shear centre is now positioned well outside of the section and trans-

verse wind loads, even those symmetrically placed about the structure,

have a greatly increased torsional lever arm.

For these reasons, open tube configurations are avoided when-
ever possible. Worked examples by Stafford Smith and Taranath?8,
substantiated by model tests, indicate that cross-beams provided at
each level, fig. 1.5b, can increase the torsional stiffness of a
typical structure by a factor of approximately four. With this modi-
fication the section is transformed into a pseudo-closed profile and the
position of the shear centre is also significantly improved.
Alternatively, if headroom requirements make the provision of cross-
beams impossible, the restraining effects of fully connected floor
slabs alone may increase the torsional stiffness by up to 50%, fig. 1.5c.

The cross-sectional dimensions typically specified for such
structures and the type of loading to which they are subjected, makes
a full torsional analysis, including the effects of warping, essential.
Indeed, for shear cores of practical dimensions the vertical stresses
due to warping restraint are frequently of the same order as those
due to bending. On the other hand, the effects of distortion can
invariably be neglected due to the excellent restraint provided by

the composite action of the floor slabs at each level.
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1.2.3 Other Applications

Apart from these two examples, Structural concrete elements °
subjected to substantiﬁl levels of applied torsion are becoming
increasingly common in all areas of civil and structural engineering.

For example, the box girder bridge is only a special appli-
cation of the hollow spine beam which is often employed as a general
solution for medium to long spans. However, since the thin-walled
section is relatively expensive to construct, it is only really
practicable where self-weight or headrdom restrictions are imposed, or
when the hollow configuration is required for carrying services, etc..

On the other hand, true open sections are rarely found in
practice due to their inherently poor torsional capacity. Undoubtedly,
the shear core represents the most important form of open section,
although it has already been demonstrated that the addition of cross-
beams transforms the section intc a more efficient pseudo-closed
profile. Other applications, such as short span bridges and folded
plate roof structures, effectively respond to eccentric loading by the
action of transverse bending and are, therefore, not subject to
significant torsicnal distortion or warping restraint effects.

Marine Applications

Recently, there has been a substantial increase in the number
of structures designed for installation at sea and, in many cases,
concrete has been selécted due to its well proven record on durability
in the marine environment.

Wave forces, by their very nature, are extremely variable in
magnitude and multi-directional in effect and can therefore impose
significant torsional loads often in combination with bending moment

and shear. Indeed, recent innovations in the design of floating
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breakwaters, fig. 1.6, and wave power devices, fig. 1.7, have depended
exclusively on the excellent torsional capacity of the closed box
section in order to perform their primary function. This is in
direct contrast to more conventional structures, such as immersed tube
tunnels, in which torsional loading is often only of importance before
and during installation on to the sea bed.

A revival of interest is also being shown in the construction
of concrete ships. Due to steel shortages, these were used extensively
during both world wars and severél recent proposals for ligquid and bulk
carriers are claimed to be viable by their designers3l, The trans-
portation of liquid nitrogen gas by these means would appear to be
particularly attractive due to the excellent cryogenic behaviour of
concrete, plate 1.4,

Solid Sections

Whereas the major part of this thesis relates only to the
behaviour of thin-walled members, some solid structural elements are
also required to resist substantial levels of applied torsion.

Crane rails, cantilevered staircases and edge beams to shells and

slabs are common examples. On occasions solid beams are also required
to resist the additional torsional moments due to high curvature.
However, due to the relatively high costs of construction, such appli-
cations are rare but include spiral ramps in multi-storey car parks

and approaches to pedestrian'overbridges, e.g. plate 1.5,

While the effects of warping and distortion are negligible
in solid beams,much of the ultimate load analysis presented in

Chapter 5 is equally valid for these members.



a. Rectangular Configuration

b. Zig-Zag Configuration

e. Typieal Section A-A

Figure 1.6  Proposed Floating Breakwatcrs
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Figure 1.7  Wave Power Device under development

at Lancaster University
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Plate 1.5 Approach to Motorway Overbridge (M4 near Swindon).
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1.3 SCOPE OF THIS WORK

1.3.1 Elastic Analysis .

The major parf of this thesis is concerned with the elastic
analysis of curved, thin-walled box girder bridges. However, where
appropriate, the various derivations have also been reduced to a form
suitable for straight members. Thus , the response of shear core
structures can also be investigated by the proposed method of analysis,
as can straight box girders or those with combined straight and curved
parts.

Structural Actions Considered

The basic requirement in the analysis of thin-walled sections,
in common with that for thick-walled and solid sections, is the
determination of the longitudinal distribution of direct and shear stress.
Therefore, while the additional transverse stresses due to distortional
bending and local slab action may be important in some instances, their
effect must be assessed separately and superimposed on the final
solution.

It has been shown in §1.1 that the stresses obtained from
simple beam theory and St. Venant's theory for pure torsion are
statically equivalent to the applied load system for all cross-
sectional configurations. In the case of thin-walled beams,
additional direct and shear stresses are also created due to the other
basic structural actions, namely, warping torsion, distortion and
shear lag. However, these ére essentially self-equilibriating
systems and, if small, may be neglected without influencing the over-
all equilibrium of the structure.

Shear lag is basically regarded as a problem associated

with bending in the absence of torsion although it may also occur at
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sections where significant direct stresses are formed due to warping
restraint. Since it is caused by shear deformation in the flanges,
it is particularly impértant in very thin-walled members (e.g. steel
bridges) or in sections with well spaced webs and wide side cantilevers.

71 justifies neglecting

However, in the discussion to his paper, Rowe
shear lag in the analysis of single-cell, concrete box girders, while
Maisel and Roll’0 state that the effects are also negligible in multi-
cellular configurations, due to the more favourable disposition of the
webs. This is particularly the case for longitudinally prestressed
structures where the shear lag effects due to initial prestress
directly oppose those due to subsequent bending. For these reasons
shear lag has been neglected completely in this study although its
effects may be superimposed, if necessary, in the same way as those
due to transverse bending.

While the causes of wérping torsion and distortion are veny
different, both actions result in modes of warping displacement which,
when restrained, induce systems of self-equilibriating stresses. For
an arbitrary, closed cross-section, idealized into n stringers and
shear walls, Argyris and Dunne’ found that there were (n - 3) such
modes of self-equilibrating stress (denoted eigenloads) corresponding
to (n - 3) possible modes of warping displacement. Furthermore,
since each mode now has its own centre of twist, the shear centre
can no longer be used to separate shear and torsional loads.

Megson’" likens the various eigenloads to the buckling loads corres-
ponding to the different buckled shapes of an elastic strut. He
further states that, in general, a good approximation is obtained by

considering only the mode corresponding to the lowest eigenload.
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Thus, for a particular structure and arrangement of loads, it
is generally sufficient to consider either the effects of warping
torsion or one of the distortional ﬁodes. In this connection Maisel
and Roll70 have conducted a parametric study on 864 different geometrical
configurations of rectangular, single cell, simply supported box girders
based on typical dimensions of existing structures!02, The spans
varied from 30 m to 70 m and diaphragms were only located at the end
supports. One of the main conclusions drawn from this study states
that it is generally inadvisable to neglect torsional warping stresses
in comparison to those created by‘torsional distortion. On the one
hand, while this conclusion does not extend directly to multi-cellular
configurations where distortion could possibly be significant, neither
does it take any account of intermediate diaphragms which are commonly
employed in box girder construction to help maintain the original
cross-sectional profile.

Distortional effects have therefore been neglected from the
subsequent analysis, although it will be shown later how transverse
bending distortion can be accommodated where necessary. It would
appear that this simplification is entirely satisfactory for the large
majority of concrete box girders and also for shear core structures
where distortional restraint is provided by the composite action of
the floor slabs.

Although distortion has been neglected, torsional warping

often occurs in practice and can be caused by various factors. These
include:

a. restraint provided by transverse diaphragms,

b. . restraint at a built-in end,

c. the application of non-uniform torsion along the beam,

d. a change of cross-section in torque loaded members,
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and can éreate substantial direct and shear stresses in certain thin-
walled sections. The cross—sectional configurations which are
especially susceptible to the formation of warping restraint stresses
are identified later in a parametric study of existing structures.

Structural Analysis

The methods available for the elastic analysis of box girder
bridges are summarized in §3.1 and will not be discussed here in
detail. Nevertheless, for thin-walled structures displaying high
curvature, complex loading, variations in cross-section and compli-
cated systems of restraint, the most useful methods of analysis are
those for which the members can be idealized into a series of discrete
structural elements. Although both the flexibility and stiffness
methods are suitable for obtaining a solution to this problem, the
necessary load/displacement relationships are not readily available
for either straight'or curved thin-walled beams and these must first
be established.

The important structural actions to be considered in the
analysis have been identified previously in this section and are
basically those of pure torsion, longitudinal bending and warping
restraint. While the distribution of total torque and bending moment
may be simply obtained from a consideration of statics, the effects of
warping restraint are always indeterminate and can only be evaluated
by taking account of the general state of deformation in-the member.
To this end, the structural mechanics asscciated with thin-walled
members are first developed in Chapter 2 from which the fundamental
differential equations governing torsional deformation along the beam
are derived for the various cross-sectional configurations. The
solution of these equations then ylelds the longitudinal distribution

of all the necessary stress resultants in terms of the section
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properties and applied loads only, for any system of end restraint.

" In Chapter 3 the equation of total strain energy has been
derived in terms of the'appropriate stress resultants and section
properties only. By introducing the necessary quantities into this
equation, and by integrating along the length of the beam built-in at
one end, the flexibility matrix with the necessary four degrees of
freedom has been established for both straight and curved members.
Basically this is all that is required for obtaining a solution by the
flexibility method although a different matrix formulation is needed
for the more general stiffness approach. However, this i1s a complex
problem for circular curved members, due to the interaction between
the fundamental equations governing bending and torsional behaviour,
and thus a stiffness matrix has only been derived here in explicit form
for straight members. An alternative approach has been adopted for
curved members whereby the stiffness matrix is obtained numerically by
inverting the previously determined flexibility matrix and introducing
the appropriate conditions of end equilibrium.

By developing the necegsary load/displacement relationships
for both straight and curved thin-walled beams, most structures may
now be idealized by relatively few elements. In this case, it is no
longer sufficiently accurate to represent uniformly distributed loading
by discrete point ‘loads at the junctions of the idealized beams, and
the fixed-end stress resultants corresponding to the four degrees of
freedom must be determined fof all likely forms of applied loading.
This has been achieved for applications of shear and torsion (both
uniformly distributed and concentrated loads) by introducing the approp-
riate boundary conditions into the equations describing the various

stress resultant and deformation terms, and solving these simultaneously.
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Structural Idealization

The stiffness method, inqorporating the features described
here, has subsequently‘been used in Chapter 4 to analyse two complex
box girders. Both structures are continuous over several supports
and comprise both straight and curved members. Due to the development
of the circular curved beam element (including warping restraint effects),
only a small proportion of the computational effort used by other methods
has been required, while the results obtained compare very favourably
with those from published experimental and theoretical studies.
Previously, highly curQed structures like these could only
be analysed by the stiffness method if they were idealized into a
series of end-connected straight beams. Such an idealization only
approximates the actual geometry and is also inefficient in terms of
analytical effort due to the larger number of elements required.
Nevertheless, with the suites of programs readily available this
procedure is likely to remain attractive for some time to come. The
errors introduced by this idealization are therefore examined in some
detail in Chapter 4 by means of a computer-based parametric study covering
the wide range of cross-sectional properties typically found in civil
engineering structures. The errors associated with neglecting warping
restraint can be equally significant in some cases and these are also
investigated with the primary objective of defining the structural

configurations for which these effects should be taken into consideration.

1.3.2 Ultimate Load Analysis

The methods of analysis presented in the first part of this
thesis are only truly applicable to concrete structures in the elastic
range and are, therefore, limited by first cracking. This is part-

icularly the case for structures subject to combined loads since,



after cracking, the torsional stiffness generally reduces dispropor-
tionately in comparison to the bending stiffness (although prestressing
is often effectively employed to exfend the range of elastic behaviour).
Furthermore, with the adoption of limit state design philosophy, there
has been an increaéing emphasis on the ultimate load analysis of torque
loaded structures, and the analytical methods available for this
purpose are discussed in some detail in §5.1.

Closed and Solid Sections

Since the core of a solid beam is relatively ineffective at
the ultimate limit state, solid aﬁd hollow sections can usually be
analysed by the same general theory. The space truss and ultimate
equilibrium methods have both been widely accepted in practice and,
in their original forms, are suitable for the analysis of under-
reinforced beams subject to combined bending and torsional moments.
Both methods are formulated from conditions of equilibrium only and,
given the same initial assumptions, will predict identical collapse
loads. The accuracy of these theories has been well established by
extensive experimental investigations over the full range of torsion/
bending interaction, and they are now incorporated into many design
recommendations.

Various attempts to introduce the effects of shear into the
analyses have created certain anomalies, mainly due to the assumption
that failure will occur with the neutral axis parallel to one or other
of the beam faces. For the'general case of combined loading, this
assumption is not supported by observation and, therefore, in §5.83
an alternative ultimate load analysis is proposed. This is based on
a space truss model in which the orientation of the compression zone
at failure is unrestricted, thus enabling the effects of shear to be

included in a more rigorous fashion.
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The well documented results from an extensive series of pre-
stressed concrete beam tests are already available"" and these indicate
that a corner failure ig possible under certain combinations of applied
torsion, bending and shear. Subsequently, these beams have been
analysed by the proposed method, and the predicted collapse loads and
the orientation of the neutral axis at failure compare favourably with
the recorded results.

Open Sections

In their original form the ultimate load methods are further
limited in that they can only accommodate St. Venant's torsion and do
not include the effects of warping restraint. In closed sections,
applied torque is resisted entirely by the formation of constant shear
flows around the periphery, while the stresses created by warping
restraint constitute a self-equilibriating system and have no
resistive effect. Thus, although the distribution of shear flow is
modified by the presence of warping restraint, the total torsiocnal
capacity remains unaffected. Furthermore the longitudinal stresses
assoclated with warping restraint are also self-equilibriating and,
while a certain amount of redistribution will undoubtedly take place,
the collapse load is unlikely to be significantly reduced.

However, for thin-walled open sections this is not usually
the casé. If warping displacements are at all restrained, then
warping shear stresses are created which act in combination with the
St. Venant shear stresses to resist the applied torque. Indeed,
since the warping shear stresses are constant across the wall thick-
ness the torsional capacity of this component is often the more
significant. This is particularly the case after cracking when

the St. Venant torsional stiffness invariably undergoes a marked
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reduction. While the corresponding system of longitudinal direct
stress 1s self-equilibriating (as is the case for closed sections),
the effects are no longer secondary and must be taken into consideration
in any analysis.

In §5.4 an advanced ultimate load method is proposed which
has been developed from the stress analysis of cracked sections. A
theoretical study of the shear centre and centroidal positions after
cracking has enabled certain simplifications to be introduced into this
analysis, thus permitting a general interaction equation to be derived
in a form similar to that for clésed sections. The proposed method
has subsequently been applied to the analysis of four open section
beams, the construction and testing of which are also briefly described.
While it is impossible to verify the interaction equations over the
full range without a more extensive series of tests, the application

of the theory is demonstrated and the results are encouraging.
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1.4 SIGN CONVENTIONS

The effects of warping stresses and their associated defor-
mations are not always ‘obvious, esﬁecially when dealing with curved
beams or complex cross-sectional configurations. It is, therefore,
imperative to define sign conventions and systems of co-ordinate axes
which are both logical and unambiguous in their interpretation.

l.4.1 Co-ordinate Systems

Straight Members

As usual, the horizontal, vertical and longitudinal directions
are represented by the x, y and z?axes, respectively, and the right-
handed Cartesian co—ordinateisystem, fig. 1.8, has been adopted through-
out. The positive face of a cross-section is defined as that for which
the external normal is in the same direction as the positive z-axis.
This is the face considered in the analysis when the selected section
is within the span; the negative face is generally used for support
sections.

The intersection of the x and y-axes 1s usually taken as the
centroid of the section when considering bending or normal stresses
and as the shear centre for applications of pure or non-uniform torsion.
In cases of combined loads, or where the origin has been arbitrarily
chosen, the selected position is made clear in the text.

Curved Members

In the analysis of circular curved members, it is more
convenient to use a cylindrical co-ordinate system (p, g, o), fig. 1.9,
with its origin at the centre of curvature. In this case, the
distance from the origin to the centroid and shear centre are denoted
by r, and r respectively. Clearly, the 'direction' of member

curvature is important and is defined here as positive when o is



- G¢ -

Figure 1.8 Sign Convention for Straight Members
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Figure 1.9 Sign Convention for Curved Members
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increasing in a clockwise sense when viewed vertically downwards,
fig. 1.10a. The general effect of negative curvature (when a is
increasing in an anti-clockwise sense, fig. 1.10b) is to change the
'direction of some of the force and deformation terms derived in
subsequent chapters, Where this occurs the sign corresponding to
negative curvature has been shown directly above that for positive
curvature.

In developing the basic thin-walled beam theory, a curvi-
linear co-ordinate system (o, s) has also been employed. The origin
of the s-axis may be taken at any convenient generator on the median
line of the section and is defined as positive when moving in a clockwise
direction about the shear axis with respect to the positive direction
of the longitudinal beam axis. These co-ordinate axes, statgd in the
form (z, s), are also suitable for straight members where z is the’

longitudinal beam axis, previously defined.

l.4.2 Stresses and Deformations

All deformations, stress resultants and externally applied
loads are positive quantities in the directions shown in fips. 1.8 ahd
1.9. In general, each quantity is suffixed to indicate the direction
of action, although these symbols have sometimes been omitted for
simplicity when the meaning is clear.

Any component of stress (on the positive face of the cross-
section) is regarded as positive if it acts in the positive direction
of its corresponding axis; otherwise it is negative. Therefore,
tensile stresses are always positive quantities regardless of the face
on which they act, as are shear stresses acting in the positive

direction of the peripheral co-ordinate s.
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Warping Effects

Warping displacements and internal stress resultants due to
warping restraint are derived in Chapter 2 for thin-walled beams of
all cross-sectional configurations. These are expressed in terms of
the various systems of co-ordinate axes, previously defined here, from

which they derive their positive sense.

a. Positive Curvature b. Negative Curvature

Figure 1.10 Direction of Curvature
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CHAPTER TWO

TIN-WALLED BEAM THEOQORY

2.1 INTRODUCTION

The incréasing use of thin-walled sections for structural
engineering applications is largely attributable to the development of
high performance materials and to improvements in construction
techniques. However, the type of cross-section employed (Z.e. open,
closed or multi-cellular) is generally determined by the requirements
of the particular structure and need not be the best suited to resist
the applied loading. The different structural mechanics associated
with the various cross-sectional configurations are therefore con-
sidered here separately, although an approximation will later be
introduced to enable the subsequent development of analytical methods
to be equaliy applicable to all types of section.

This Introductory chapter closely follows the work by
Dabrowski?® and provides most of the basic expressions required later
in the thesis. Wherever possible the same notation has been used to
avoid confusion although many of the formulae have had to be modified'
in order to comply with the sign conventions defined in §1.4.

While Dabrowski includes the effects of member curvature in
the development of the fundamental equations, these effects are not
considered in the derivation of the basic structural mechanics which
are therefore equally applicable to both straight and curved members.
Recently, Konishi and Komatsu®? have proposed a more rigorous treat-
ment of the structural mechanics of thin-walled sections in which
curvature effects are fully considered at every stage; the resulting
modifications to the various cross-sectional and sectorial expressions

are summarized in Appendix 1.  Whether or not such a refinement is
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warranted for curved girders of dimensions typically found in civil
engineering practice is discussed more fully in Chapter 4 with reference
to two complex road bridges.

2.1.1 Historical Review

St. Venant's original work on the twisting of circular and
prismatic shafts was conducted in the middle of the last century, and
is generally considered to be the first detailed theoretical treatment
of the subject of pure torsion. By the beginning of this century the
usefulness of his theory had been extended to include complex cross-
sections by Prandtl's membrane analogy; Bredt had also introduced
the concept of shear flow around the periphery of closed box sections.
However, at this time, it was still not appreciated that the transverse
distribution of shear could be significantly affected by restraint of
warping displacements.

Timoshenko has been credited®® with the discovery of warping
torsion which he called torsion with flange bending; his observations
were first published in 1905. Apart from notable contributions by
laillart and Eggenschwyler (1921), who introduced the concept of the
shear centre, little work of any real consequence was published for
a further twenty-five years.

Undoubtedly, much is owed to aeronautical engineers for the
continued development of the subject. Viagner and Kappus proposed a

7 introduced a

general theory for open sections and Argyris and Dunne
theory for closed sections in which the member was idealised as an
assemblage of shear walls and direct stress carrying elements. This
work, including many other aspects relevant to aircraft engineering,
has since been presented in books by Kuhn®% and more recently by

Megson [
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The now celebrated book by Viasov!?? has only been obtainable
as a translation into English since 1961.  However, it must have been’
available in Russia since the early 1940's and deals with the problem
of mixed torsion in a quite exceptional way. It is generally
recognized that Vlasov originated the use of sectorial co-ordinates
and other terms which permitted thin-walled sections to be treated
more logically as an extention of existing beam theory. The general
formulation of the problem in these terms also enabled further theoret-
ical developments to take place. . Notable in this respect is the study

1 into the effects of shear deformation on the warping

by Benscoter
behaviour of closed sections. His assumptions regarding the nature
of cross-sectional warping displacements have been widely accepted and
allow a similar theoretical approach to be adopted for both open and
closed sections.

Early work on curved girders was carried out by Unmanskii,
although Dabrowski was first to derive the fundamental equations for
non-deformable curved box girders, subject to non-uniform torsion, in
1965. A translation of more recent work by Dabrowski?® deals with
all aspects of curved girder analysis although the distribution of
cross-sectional stresses is better covered by Konishi & Komatsu®3.

The generally poor understanding of the whole subject of
mixed torsion by British engineers is largely explained by the
dominance of foreign theoreticians (in particular Germans and East
Europeans) and by the limited number of translations available.
Although most recent work is still only to be found in isolated
papers in the technical press, enthusiastic presentations of the

subject in books by Kolbrunner and Basler®® and by Zbirohowski-Koscial22

(open sections only) are helpful.
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Finally, while this is not intended as a thorough and complete
bibliography on tﬁe subject of torsion, it does provide a summary of
those engineers who havé made significant contributions, some of whom
are mentioned elsewhere in this thesis. At the same time it shows how
thin-walled sections have only recently been treated as an extension
to existing beam theory, especially in the case of curved members.

2.1.2 Sectorial Properties

Simple beam theory is effectively employed in the analysis of
thick-walled and solid beams, subject to applications of direct force,
bending moment and St. Venant's torsion. However, it is not
sufficiently refined to explain the additional stresses created by
warping restraint and in early work recourse to complex plate or shell
theory was necessary. Vlasov's alternative approach proved much
more attractive since he treated thin-walled, thick-walled and solid
members as sﬁecial'cases of the same general theory. For this to be
possible, he established new cross-sectional functions, denoted
sectorial properties, to supplement those already used in simple beam
theory.

It is possible, for example, to define the position of any
point on the cross-section by the co-ordinates x, y, once the principal
system axes have been established at the centroid. So, 1in exactly the
same way, Vlasov created sectorial co-ordinates, w (units: length?),
the distribution of which is determined from a knowledge of the shear
centre position. By integrating this term and the square of this
term over the entire cross-sectional area, it is also possible to
calculate a sectorial shear function, Sw (units:length“), and a

warping moment of inertia, Iw (units:length®), respectively. These
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are directly analogous to the familiar shear functions Sx’ S , and
second moments of area IX, Iy’ used in simple beam theory.

Stress Equations

If the doubly-symmetric section shown in fig. 2.1 is subject
to constant torque, then the member undergoes pure twist, fig. 2.la.
This results in rigid-body rotations of the flanges together with a
transverse distribution of warping displacement which is identical at
any section along the length of the beam. If at all restrained (fig.
2.1b), bending moments are created in the flanges which may be alter-
natively represented by the systeﬁ of self-equilibrating end- forces, P,
shown in fig. 2.lc. Such a system has no resultant direct force or
components of bending moment but may be expressed as a pair of equal and
opposite moments P.b, separated by the distance h, or by a pair of equal

and opposite moments P.h, separated by the distance b (fig. 2.1c).

This simple interpretation of the stress resultant due to
warping restraint has resulted in it being referred to as a bimoment
(units:force x length?). In this example the bimoment is equivalent
to the moment in one of the flanges multiplied by the distance between
them (Z.e. B = P.b.h) and has the longitudinal distribution shown in
fig. 2.1d. Shear stresses are also induced by warping restraint and
thus the total applied torque, T, is now resisted by a combination of
St. Venant torsion, Tsv’ and warping torsion, Tw. Although only
warping torsion exists at the fixed end, both components of torsion
are present elsewhere (fig. é.le) in a ratio which is dependent upon
the sectorial properties of the section and the distance from the point
of restraint.

It will be shown later in this chapter how the various terms
described here can be incorporated into the following normal and shear

stress equations:
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By neglecting the last term‘in each equation, these are readily reduced
to the form commonly used in simple beam theory.

Due to the conneétivity conditions present in closed, open/
closed and multi-cellular sections, the derivation of the various
parameters for these configurations is somewhat different. In such
cases the sectorial co-ordinate is denoted & while the warping shear
function and moment of inertia aﬁe represented by the expressions 85
and I& respectively. Any applied torque is now resisted entirely by
St. Venant torsion in the form of constant peripheral shear flows and,
although additional shear stresses (given by the derivative of the
bimoment, B') are also present, they form a self-equilibrating system
with zero resultant torsion. The direct and shear stress equations

for sections with closed parts are thus given by

] _E+D1X.y+r’ly.x+B-m
T A I I I.
X y
and . 2.2
V .S B'.S-
r= Y %, xy T

I 5.1 5.8 §.I~
¥ W

2.1.3 Assumptions

The kinematics of deformation associated with thin-walled
beams are govermed by an hypothesis which is more general than the
Bernoulli hypothesis of.plane cross-sections. In particular the
section must be allowed to warp out of plane without undergoing cross-
sectional distortion. ‘In oraer to comply with this requirement in the

development of the theory,‘it is necessary to adopt the concept of
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closely-sfaced diaphragms, rigid in their own plane but infinitely
flexible in the direction of the longitudinal member axis. This
assumption of zero distortion is never completely satisfied in practice,
although for the large majority of concrete box girder bridges it

does not lead to significant inaccuracies in the analysis.

In the sgbsequent development of thin-walled theory variations
in stress and deformation across the wall thickness have been neglected.
Clearly, for these simplifications to be acceptable, certain restrictions
must be placed on the various cross-sectional dimensions. Vlasov
defines a thin-walled beam as a structure having the form of a long,
prismatic shell’0, The shell thickness is small in comparison with
any characteristic dimension of the cross-section while the cross-
sectional dimensions are small compared with the overall length. He
further states the following limiting criteria for which the theory is

generally valid:

shell thickness < 0.1
width or depth of cross-section =

and

width or depth of cross-section _ 0.1
length of shell .

From a parametric study of box girder structuresl9? it is
clear that the Ffirst of these criteria is not always satisfied,
especially in respect of the web thickness/height ratio. However, it
will be demonstrated in §2.5.3, in the case of an idealized single

cell box girder with side cantilevers, that the assumption of thin-
walled behaviour leads_to"an under-estimation of torsional stiffness

of less than 10%, even for sections with web thickness/height ratios in

excess of 0.3. Errors of a similar order are also apparent in a series

of existing single cell concrete box girder bridges for which variations
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in torsional stiffness have also been calculated. These results
indicate that disregarding the effects of secondary shear has only

a small influence on the longitudinal distribution of the various

stress resultants, although significant variations in the transverse
distribution of both direct and shear stress are still possible.
Kollbrunner and Baslerso, for éxample, suggest that the cross-sectional
area should be less than one fifth of the area enclosed by the median
line of the section if errors in fhe calculation of maximum shear stress
are not to exceed 10%. For box girders of approximately square cross-
section, this requirement is similar to the first of those specified by
Vlasov. However, for rectangular sections with large aspect ratios,
this criterion can require wall thickness/height ratios very much less
than 0.1 and is a condition rarely satisfied in practice. This subject
has been further investigated in §2.5.3 for the series of existing
structures previously mentioned. Errors of 60-80% between the mean
value of shear stress and the maximum value at the extreme fibré were
common in these bridges, particularly in the support region of those
structures displaying a variable cross-sectiomn.

With reference to the second of Vlasov's limiting criteria,
Dabrowski?® states that the theory is also suitable where the span
length exceeds the cross~sectional breadth (as measured between the
outer webs) by a factor of only three to four. He considers this to
be sufficient for thin-walled beam action to develop, thus extending
the range of applicatidn»of the theory to include the large majority

of concrete box girder bridges.
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2.2 OPEN SECTIONS

2.2.1 Pure (St. Venant) Torsion

The circular curved girder, shown in fig. 2.2a, is assumed

to be simply supported, free from longitudinal restraint and subject

to a constant torque, T, along its length.

V (down)

Figure 2.2a The Circular Curved Givder subject to Pure Torsion

Equilibrium of the system is maintained by a pair of equal but

opposite vertical shear forces, V, at the supports, of magnitude

V = T/r

2.3
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and the distribution of torsion and bending moment along the beam

is given by

and M

Tu T.cos(B-o) + Vr(l-cos(B-o)) T
0 2.4

o -T.sin(B-a) + Vr.sin(B-a)

Now consider the positive face of the typical thin-walled
member, depicted in fig. 2.2b, in which the displacements in the tangential
and external normal directions have been denoted u and u s respectively.
Together with the longitudinal component, w, they form the displacement
system at any point (s, n) on the cross-section. At this stage, the

shear centre position, S, and the actual initial radius (s=0) are unknown

and must be arbitrarily selected as a basis for the analysis.

Figure 2.2 The Displacement System, ugs U5 W
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Since the stress components 0. 0, and T, are zero at
the free boundary edges of the section and are generally very small
elsewhere, their effect has been neglected in the subsequent analysis.
However, the three remaining components of strain may be expressed in

terms of the newly defined displacement system, as

E - L@E

o - r 3
Ju

oW 1 ]
= ot = = .

YSoz 9s r oa 2.5
au

no on T

and these equations are equally valid for open and closed sections,
subject to all combinations of applied load.

For the special case of pure torsion, longitudinal warping
is completely unrestrained and has an identical transverse distribution
at any section along the beam. Accordingly, the first of eqns}é.S
equates to zero with thé result that no axial stresses are developed
under this form of loading. It may also be shown’" that Yoo is zero
on the median line of the section and that Yoo is zero everywhere

across the wall thickness. Noting, from fig. 2.2, that

1M L5
r ' da r ° da
5 " 2.6
and 1 ~EB . d¢
r ~ 3a r ' da
the two remaining expressions in egn. 2.5 may be rewritten as
r
% = X + == do . 0 (on the median
sa 3s T da 1ine)
- 2.7
and The = 8o, B d6 (everywhere)
an r do
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Here, r and r, represent the distance from the assumed shear centre
position to the tangent and external normal, respectively, and ¢ is

the reduced angle of rotation, given by

¢ = & -v/r 2.8
Clearly, in straight beams the vertical displacement, v, of the shear
centre does not influence the rotation of the section and ¢ = ¢
(the total rotation).

By integrating egqn. 2.7, and observing that r. is not a

function of n, we have

s
W = l—. Qi r .ds + w
s r da s so
o
2.9
and W = .l-. Qi . N.r + w
n r da n no

where Yoo and Woo are constants of integration equivalent to the
warping displacements at s = O and n = O, respectively. There are,
therefore, two distinct but complementary forms of warping deformation.
The first of egns. 2.9 represents the displacement profile on the median
line of the section only, while the second describes the distribution
across the wall thickness. The latter, denoted secondary warping, is
generally small for thin-walled members and is not discussed here
further.

By adopting Vlasov's definition of the sectorial co-ordinate,

thus:

s
- - | .
w J; rs.ds wso/¢ 2.10

the expression for primary wdrping (the first of eqns. 2.9) may now

be written as

w = - ¢' L w 2.11
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where ¢'.represents the first derivative of the reduced angle of
rotation, etc., The magnitude of the sectorial co-ordinate, w
(units : lengthz), is equivalent to twice the shaded area shown in
fig. 2.2 and is directly influenced by the initial choice of the centre
of twist and the origin of the peripheral co-ordinate, s.

However, we are now in a position to determine the true
location of these points,‘since a necessary condition for the free-
flexural state of warping is that there should be no resultant bending

moment or direct force at any section. Accordingly, we have

[ox.dA = Joy.dA = Io.dA = 0 2.12
A A . A
where the integrations are effective over the entire cross-sectional area.
With o determined from eqn. 2.11 and the first of eqns. 2.5, these

conditions may be alternatively expressed as

me.dA = Iwy.dA = [w.dA = 0 2.13
A A
where the first two terms are sufficient to establish the true shear
centre position and the third enables the initial radius to be selected
such that Weo T 0 when s = 0. In this way the constant of integration
in eqn. 2.10 is eliminated and the principle sectorial co-ordinate is

given by s
w = Jrs.ds 2.14

)
where T is now measured from the true shear centre position and the
origin of the peripherallco—ordinate system (s = 0) is taken to
coincide with a point of 2ero warping displacement.

Indeed, the whole procedure is directly analogous to finding
the centroid and the orientation of the principle neutral axes in the

case of pure bending, ahd is examined in more detail in §5.
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Now remembering that yna= 0, the only non-zero component
of shear stress is given’" by
= = '
TSV ' G'Ysa 2Gn¢ 2.15
This is linearly distributed across the wall thickness, as shown in

fig. 2.3, and reaches a maximum value at the extreme fibres of the

section, equivalent to:

= + ! .
Tsvimax) ~ = Gaé 2.16

§/2

Figure 2.3 Distribution of St. Venant Shear Stress, Tay?
\'4

in Open Sections

Finally, the torque, just as for straight members, may be expressed

in the following general form:

| = ' 2.17
TSV G1d¢
where Id, the second moment of area for pure torsion, is determined
from 1 ]
Id' = 3 §°.ds 2.18
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2.2.2 Non-Uniform (Warping) Torsion

If warping is prevented or partially restrained, the
axial displacement at any point on the cross-section is no longer
identical at all sections along the beam. The system of direct
stresses, so formed, is determined by differentiating egn. 2.11 with
respect to the initially curved shear axis and substituting for w' in

the first of eqns. 2.5, thus:

¢ = E. €y = -FE ¢"w 2.19

From this expression it is clear that the transverse distribution of
longitudinal stress is directly proportional to the sectorial
co-ordinate, w, thereby inducing a complementary system of warping

shear stresses here denoted Tw.

By considering the equilibrium of the differential wall

element r.da, ds shown in fig. 2.4, the following relationship between

the shear flow, FW (= Tw.d), and the unit direct force, ¢.6, is

obtained:
oF :
1.3 5 4+ ¥ - o 2.20
r oa s

After substitution for ¢ from eqn. 2.19 and integrating, this takes

the form
s
r = E ¢! J w .ds + F 2,21
WO

o

However, if the integration is started at a free edge,

the constant of integration, FWO, is zero and eqn. 2.21 reduces to

F

E¢unt 8 2.22
W W

where Sw is an additional sectorial function, given by

- s
S = ‘J wé . ds 2.23
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Figure 2.4 Differential Wall Element, vr.da,ds

Both sectorial parameters w and SW are functions of the
peripheral co-ordinate, s, and the transverse distribution of each
is depicted in fig. 2.5 for some typical open sections.

The bimoment,Awhich is a measure of the magnitude of the
direct stress system created by warping restraint, may now be defined
as

B = '( ow.dA 2.24
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a. Origin of Peripheral Co-ordinate, s

4 / :

b. Sectorial Co-ordinate, w

= J

7 YTt —~

r J?
e. Sectorial Shear Function, 5,

Figure 2.5 Transverse distribution of Sectorial Parameters

n Typiecal Channel and I-Sections
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where, once again, the integration is taken over the entire
cross-sectional area. On substitution for ¢ in this expression

from eqn. 2.19, we have

B = - EI ¢" 2.25
W
where Iw is referred to as the warping moment of inertia, and is

given by

I = w?.dA 2.26

Now the component of shear stress, T, induced by warping
restraint, is clearly a fuﬁction.of Sw only (egn. 2.22) and, in
accordance with the simplifying assumptions made regarding secondary
warping deformations, is constant across the wall thickness (fig. 2.6).

By resolving the corresponding shear forces about the shear centre,

§/2

Figure 2.6 Distribution of Warping Shear Stress T,

the component of applied torque resisted by restrained warping is
given by

T = F .r . ds 2.27
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which, on introduction of egns 2.14 and 2.22, takes the form

T = E " J s, + dv 2.28
A
By partial integration of this expression, in which it should be

noted that dSw = w. dA, we have

Tw = - EIW¢"' 2.29

which is directly equivalent to B', the first derivative of the
bimoment, defined in eqn. 2.25.

For the general case,-the components of torsion due to pure
and warping shear stresses are both present and must clearly equate with

the total applied torque, T, such that

T = T__+7T 2.30
sV w

However, it is also possible for torsional shear stresses to develop
in the absence of any applied torque (e.g. the application of an
external bimoment), in which case, TSV = - Tw'

Stress Equations

By combining eqns. 2.15 and 2.17 (in the case of pure torsion)
and egns. 2.22 and 2.29 (for warping torsion), the shear stress

distribution for mixed torsion is found to be

Similarly, by eliminating the term E¢" from egns. 2.19 and 2.25, the
transverse distribution of direct stress due to restrained warping

may be expressed as

c = - 2.32



_59._

Clearly, these stress components are supplementary to those created

by bending and direct force and the complete stress equations for
thin-walled members of open section are given by eqn. 2.1.

2.2.3 Fundamental Equations

Consider the differential beam element shown in fig. 2.7
in which the torque, T, and uniformly distributed torsion, t, are
applied about the shear axis, and the bending moment, Mx’ and
direct force, N, are applied about the centroidal axis. The abscissa
and ordinate of the shear Centr§ S, with respect to the centroid G,
are denoted X and Y, respectively.

By taking moments about the tangent to the curved shear axis

and dividing by r.do throughout, the following relationship is obtained:
| 1
T +t+>=M -Ny) = 0 2.33
r X o
Furthermore, by using eqns. 2.17 and 2.29, the total applied torque

(from eqn. 2.30) may be expressed by a differential equation in terms

of the reduced angle of rotation only, given by
= v~ " 2.34
T GI 4 EI ¢

By differentiating this equation and substituting for T' in eqn. 2,33,
the fundamental equation governing the twist of open sections is

obtained, thus:

iV' - 2 n = ___.l_._ - 2
6 k2.4 ST [t.r + M N.yo] .35

In this expression the term k (units:length™l) is called the decay

function and represents the ratio of torsional stiffnesses, such that

xk = _d 2.36
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...Og_..



- Bl -

2.3 CLOSED AND OPBN/CLOSBD'SBCTIONS

2.3.1 Pure (St. Venant) Torsion

In order to stud& the behaviour of this type of section
under the application of pure torsion, an imaginary cut must first
be made in the closed part. Shear stresses are developed in accordance
with eqn. 2.15 and in exactly the same way as for open sections., They
are linearly distributed across the wall thickness and are here
denoted ATsv (fig. 2.8a). In general,warping displacements of different
magnitude will occur at the free edges of the cut and these must be
equalised if the section is to be restored to its original form. This
is achieved by applying a pair of equal but opposite shear forces at
the imaginary cut with the result that a constant shear flow, Fsv’ is
formed around the entire perimeter of the closed part. The associated
shear stresses, TSV(= FSV/S), are constant across the wall thickness
(fig. 2.8b) and the final distribution is shown in fig. 2.8c.

Clearly, the shear strain on the median line of the section

is no longer zero and from the first of eqns 2.7, we now have

oW Fsv
= —_— ' = —— .
L {as * rs.¢ ] G.§ 2.37

where the shear deformation due to the vertical shear forces, V (from
eqn. 2.3) has once again been neglected. By rearranging and integrating

this expression the following relationship is obtained:
s s

: _Sv - ! .
- o 55 ds ¢ r, ds 2.38

=

t

=

n
Lay |

in which the first integral only applies to the closed part of an
open/closed section. Compatibility requirements are such that, on
proceeding around the entire perimeter, there can be no resultant

warping displacement, and accordingly
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a. [Linearly Distributed Shear Stress, At .

’k__

b. Constant Distribution of Shear Stress in (Closed Part, Ty

SRR

c. Final Distribution of Shear Stress, ATSV t Ty

‘Figure 2.8  Distribution of Shear Stress in a Typical
Single Cell Box Girder with Side Cantilevers
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F
sV

= - ! -
5.5 " ds $'.0 0 2.39

where @ represents twice the enclosed area (or twice the enclosed area
of the closed part of an open/closed section).

Now, by eliminating the constant shear flow, Fsv’ from
eqns 2.38 and 2.39, the relative warping displacement may be expressed

In terms of the unit twist only, in the following way:

W, = W = 4" 2.40
s so

and is called the reduced sectorial co-ordinate since it is equivalent

to the sectorial co-ordinate, w (calculated in accordance with eqn., 2.14%),
reduced by the second term which represents the shear deformation of the
closed part of the section.

The true shear centre and the position of zero warping
displacement may now be calculated in exactly the same way as for open
sections. However, in this case the term @ in eqn. 2.13 must be
replaced throughout by the reduced sectorial co~ordinate, ®&. This then
enables the principle sectorial co-ordinates to be determined and, by
selecting s = 0 such that W © 0, eliminates the constant of integration
from egn. 2.H0.

By taking moments about the shear centre, the torsional

resistance is given by’

3
T = F r .ds + G ¢' §-. ds 2.42
sv sv ‘s 3

S

where the last term is due to the effect of the linearly distributed
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shear stress, Arsv’ which has been previously defined in egns, 2.16
and 2.18. By substituting for the constant shear flow, Fsv’ from
eqn. 2.39 and noting that‘ % rS.ds = Q, egn. 2.42 may now be

expressed in the following form:

Q2. 83
= ' —
TSV G¢ + [3 . ds 2.43
¢ ,
s

However, in practice, the error associated with neglecting the last
term in brackets in this expression is small, in which case, from

eqns 2.42 and 2.43, we have

T = Q.F ) 2.44
sV sv
- 1
and Tsv GId¢ (2.17)
_ 2
Here Id - ds 2.45%
5

is the second moment of area for pure torsion for closed and open/closed
sections. Eqn. 2.44 is better known as the Bredt-Batho formula’"* and

the accuracy of the approximation is considered in greater detail in

§2.5.3.

2.3.2 Non-uniform (Warping) Torsion

The warping displacement profile of a closed or open/closed
section subject to pure twist is directly proportional to the sectorial
function w (from egn. 2.40). This term consists of the unit warping
component, w, as for oﬁen sections, reduced by the second term in eqn.
2.41 which is a measuré of the shear deformation due to the connectivity
requirements of the closed cell. When warping is restrained the shear
stresses T SO produced have a modifying effect on the shear deformation

term and it is no longer strictly correct to say W, = —¢’.&, as is the

case for pure torsion.
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To avoid the theoretiéal complexities created by this
interaction between warping stresses and shear deformation,
Benscoterll assumed that the restrained warping displacements had
an identical transverse distribution to those for pure torsion, but
that they were no longer directly proportional to the unit twist, ¢°'.

Having regard for this assumption egn.2.40 may now be rewritten as

. W= —f'. B 2.46
where the reduced angle of rotation, ¢, has been replaced by a
dimensionless warping function, f. Clearly, this is only an approxi-
mation to the true behaviour, but it has been widely accepted25’3e’7°
and proven in the analysis of a large range of engineering structures.

The normal stress distribution and bimoment at a section,

may now be defined as

o = E.w_' = -Ef'® 2.47

and B = fo w.dA = ~EL..f" 2.u48
A

in which L. = J«Bz.dA 2.49
A

is the warping moment of inertia for closed sections.

The normal stresses, o, due to warping restraint, induce
additional shear flows, Fw, which are supplementary to the pure
torsional shear flows, Fsv' Together their distribution is governed
by equilibrium of the differential wall element shown in fig. 2.4. By

eliminating o from egns. 2.20 and 2.47, and noting that

BI

i

“FI. £t 2.50
w
we find that

F = F - +F = F - —" 2.51
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in which the sectorial function, §&, for closed sections is

given by

In this instance the starting point for the integration cannot be
selected at a free edge and generally FO # O. However, since the
resultant of the total shear flow about the shear centre must be in
equilibrium with the applied torque at a section, we have (from eqn.

2.51)

|
T = % For .ds = F { r .ds - 2= [ S..r .ds 2.53
s o) s IW W s

s
where the first term is oniy integrated around the closed part of the
section. From this expression the initial shear flow FO (at s = 0)
is obtained, thus:

1
F = _T. + B

o o) . W .rs.ds 2.54

s
and on substitution into eqn. 2.51 this yields the following

relationship:

3
1
3
+
3
3
Lol !

B‘
- — . 8= . 2.55
Iﬁ W

Here, the reduced sectorial function S@ has been additionally

defined as

S..r_.ds 2.56
W 's

w
>l
11
wn
>
1
el

S

and its transverse distribution, together with those of the other
sectorial parameters, is demonstrated in fig. 2.9 for a typical

single cell box girder with cantilevers.

The total sﬁear flow, F, in eqn. 2.55, may now be considered
as comprising of two quite separate components. The first term is
equivalent to the cons#ant éhear flow, Fsv’ given by the Bredt-Batho
formula (egn. 2.44) and ohly occurs in the closed part of an open/

closed section. The other term in eqn. 2.55 represents the secondary
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Figure 2.9 Transverse Distribution of Sectorial Parameters in Typical Single Cell Box Girder

with Side Cantilevers
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shear flow, Fw, due to warping restraint. This extends over the
entire cross-section and forms a self-equilibriating system with
zero resultant torque.

Stress Equations

The total shear flow due to mixed torsion is constant across
the wall thickness and the corresponding shear stress is simply obtained
by dividing egn. 2.55 by &, thus:

B'Sz
W

T
— - 2,57
N.6 I‘:}.G

T =

In the same way as for open sections, the direct stress component

is derived directly from eqgns. 2.47 and 2.48 and is given by

£>

B.
¢ = T 2.58
W

When egns.. 2.57 and 2.58 are combined with the stress components due
to bending and direct force, they provide the complete stress equations

for thin-walled members of closed or open/closed section (egn. 2.2).

2.3.3 Fundamental Equations

The shear strain relationship (eqn. 2.37), derived earlier for
the case of pure torsion, is equally valid for mixed torsion and may be

rewritten in the form

aws
- 1
F = G§ T + rs.¢ 2,59

Similarly, by integrating this expression around the entire perimeter
of the closed part only, the connectivity condition (egqn. 2.39) is now
given, in terms of the combined shear flow, I, by
<f> P ds = q.¢ 2.60
G6
By using eqn. 2.55 to eliminate F from this expression, the following

differential equation is obtained:

T = GId¢" - EI&f"' 2.61
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where use has been made of egn. 2.50 and of the following geometric

relationship:

2.62

:OIH
fa?
&

W
However, by substituting for the warping displacement, W
from egn. 2.46 (instead of from egn. 2.40 for pure torsion) and noting

the contents of egn. 2.41, the total shear flow in egn. 2.59 may be

alternatively expressed as

Q.f!
= | . ]
F G [(cb £1) v .8 + _di] 2.63
8
Once again, the applied torque at the section under consideration is

obtained by resolving about the shear centre, thus:

.f!

T = Fr .ds = G [(¢'—f') r 2.4dA + r .d%] 2.64
] s ds ]
i 8

This may be simplified and rearranged to give the following

relationship:

T
! = 1 f! + —— '
¢ GI 2.65

where two new terms have been defined. The first is called the central

second moment of area (units : length") and is given by

in which the integration is carried out over the entire area of the
closed part of the section only. The other term represents a dimensionless

warping shear parameter of the following form:

I
o o= 1 - =9 2.67

C

"

where 0< u < 1
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Now by substituting ¢' .from eqn. 2.65 into egn. 2.61,
a differential equation is obtained in terms of the warping function,
£, only:

T = uGIdf' - EIﬁf”' 2.68

On differentiation with respect to the longitudinal axis and on
consideration of the generally valid equilibrium condition (egn. 2.33),

eqn. 2.68 may be expressed as:

flV

- 2 f" = H . - . 2 .
k<. r.EI& [t r + MX N yo] 69

where the decay function, k, has been restated for closed and

open/closed sections, as

GId
k = WeETT 2.70
W
With the.warping shear parameter, u, equal to unity, eqn. 2.70
reduces to the form given in eqn. 2.36 for open sectioms. This express-
ion may therefore be considered as the general definition of the decay
function for all cross-sectional configurations. The function is also
frequently combined with the member length to form the dimensionless
product, k%, which is a more useful measure of the decay rate of warping
effects. Variations in this term and in the value of the warping

shear parameter are examined in §2.5.2 for a range of existing concrete

box girder bridges and for some typical open and closed sections.
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2.4 MULTI-CELLULAR SECTIONS

Box girders of more than one cell display all the advantages
associated with single cell configurations, namely, a very efficient
distribution of stress throughout the cross-section, coupled with high
flexural and torsional stiffness. They are frequently found in practice
and enable the range of appliéation of cellular structures to be greatly
extended. However, while:the structural mechanics governing the
behaviour of these members are not significantly different from those
of closed or open/closed sections, the situation is complicated by the
fact that the shear flows in individual cells need no longer be identicalﬂ

2.4.1 Pure (St. Venant) Torsion

The relationship established in eqn. 2,60 simply ensures
compatibility of warping displacements around the perimeter of closed
sections. Here, it is restated as:

1 ds

¢' = ——— F . ’ —
GQi sv(i) Gi

2,71
i

where ¢' refers to the unit twist of the complete multi-cellular

sectioﬁ about the assumed shear centre, and the contour integral is

th

taken around the entire perimeter of the i cell only, the area of

which is equal to Qi/2 (fig. 2.10)

/ ————_‘\\

F
sv(l) Fsv(2) : Fsv(i) Fsv(n—l) FSV(n)

Figure 2.10 Idealised Multicellular Girder with n Cells
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Under the application of pure torsion the shear flow,
Fsv(i)’ around each of the separate cells is constant and,
consequently, the shear flow in any of the shared walls is equal to
the difference of those in adjacent cells. If eqn. 2.71 is now
applied successively to each of the cells shown in fig. 2.10, a

series of n simultaneous equations is obtained of the general form:

s, 13 d S. . 1
i-1,i s i,i+
$'G., = -F . iy —— +F e — - F . o 2 2.72
i sv(i-1) 5i~l,i sv(i) Gi sv(i+l) Gi,i+l
i

in which S,

Y Gi,i+l are the length and thickness of the shared

wall connecting cells i and i+l, respectively, etc. For a known
value of applied torque, T, the equilibrium condition (in accordance
with egn. 2.44) is given by

ey S, .
Fsv(l) i 2.73

-3
1
~13

i=1

and this, together with the n expressions from egn. 2.71, is
sufficient to determine the unknown shear flows Fsv(i)(izl’ n) and the
reduced angle of rotation, ¢'. Furthermore, the second moment of area

for pure torsion may now be derived from the generally valid formula

T
I, = g (2.17)

in the same way as for open and closed sections.
By expressing the warping displacement in the same general

form as for closed sections, i.e.

W.oo-w = - ' (2.40)
S SO

the reduced sectorial co-ordinate, ®, may now be derived from eqn. 2.38

directly, and is given by
s

A l SV(i)
- - — " . — . 2.7
w - r .ds 1 Gj. ds 4y
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In this expression the first term is equivalent to the sectorial
co-ordinate w (eqn. 2.1Y4),; where sufficient imaginary cuts have

been made to transform the member into an open section and where the
integral has been started at an arbitrarily selected initial radius

(s = 0). However, the integral in the second term of eqn. 2.74 must

be successively started at the cut position in each cell and the

shear flow used is that present in the cell under consideration.
Furthermore, at this stage it is unnecessary to solve for the reduced
angle of rotation, ¢', from eqns. 2.71 and 2.72. By making ¢' numerically
equal (say ¢' = 1) in both eqns, 2.72 and 2.74 its effect is eliminated

and egn. 2.74 may be rewritten more simply in the form:

s
F—._.
A - sv(i)
© = w 3.5, . ds 2.75
' i
o)
where ng(i) represents the unit shear flow, derived by putting

¢' = 1 in eqn. 2.72.

With the reduced sectorial co-ordinate determined in this
way, the actual shear centre and the position of zero warping displace-
ment may now be established from eqn. 2.13, as for single sections.

2.4.2 Non-Uniform (Warping) Torsion

The direct stress and bimoment terms are identical to those
previously defined for single cell sections in egqns. 2.47 and 2.48,
respectively. However, the derivation of the reduced sectorial function
S; is not as straightforward and must be calculated on a cell by
cell basis. From egn. 2.55, we know that the secondary shear flow, Fw,
due to warping restraint is equivalent to

B'.Sv:J'

= —_— 2.76
Fw I
w
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and from eqns. 2.54 and 2.56 the function sx is given by

IQ Ti
S‘TJ = Sﬁ - E'— FOi - ‘—Q— 2.77
In this equation the term in brackets represents the total constant
th

shear flow less that due to pure St. Venant torsion, in the 1™ cell.
For simplicity this has been denoted F.*, such that by combining
i

eqns. 2.76 and 2.77, we have

o B!
F = F.,%° - — . S. 2,78
w 1 IVAV 4 .

A further set of simultaneous equations may now be formulated
in accordance with the connectivity condition (egn. 2.72), but in which
the shear flow is that due to warping torsion only. With Fw given by

egn. 2.78, the following expression is typical for the ith cell.

B 8. . . . . Ss s ' S
¢'er, = -F.C . Sl ph g g8 gk et 24 ghds  2.79
1 * i-1,i i 1,41 v ) °1
i i

where the twist, ¢', is clearly different from that corresponding to

the case of pure torsion (egn. 2.72). Once more, the total torque T

is determined by resolving the shear flow from egn. 2.78 about the

shear centre, but this must equate to zero since we are only considering

the self-equilibriating shear flows, Fw. Therefore, we have

o]

T = F .r .ds = S~ r .ds =0 -2.80
W S . W s

1o~
s}

e 2
D

=
1

¥

which together with eqn. 2.79 enables ¢' and all the values of F?

. B!
(i = 1, n) to be calculated (for a unit value of T ).
! —— w
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1
With the scale fac‘l:or*--Ii again equal to unity, egn. 2.77

IA
W
reduces to

= Svf\q— Fi 2.81

=01

from which the function S; is seen to equate to the readily
obtainable sectorial function Sﬁ reduced by the appropriate
value of F?.

2.4.3 Fundamental Equations

The fundamental equation governing the torsional behaviour
of multi-cellular sections is identical to eqn. 2.69, derived for
closed and open/closed single cell members. The additional parameters
Ic, u and k are also determined from eqns. 2.66, 2.67 and 2.70, as
before, although the range of numerical values typically found in
multi-cellular sections differs greatly from other configurations‘
and is discussed more fully in §2.5.2.

2.4.4 Curvature Effects

It is well established that the transverse distribution of
direct stress in a curved member subject to pure bending is not only
dependent upon the neutral axis position but is also a function of the
distance from the centre of curvature. Konishi and Komatsu®? have
recently investigated these effects with respect to thin-walled multi-
cellular sections and have shown that member curvature also influences
the distribution of the stresses due to warping restraint. If these
effects are to be taken into account in the analysis, the general stress
equation for closed, thin-walled sections (eqn. 2.2) must be rewritten

in the following form:

M.y M.x ~
g = B[E+ X7,y ]+B.m 2.82

where the various sectorial and geometrical functions have been

redefined and are tabulated in Appendix 1.
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2.5 PARAMETRIC STUDY OF ENGINEERING STRUCTURES

The design process usually adopted for box girder bridges,
and other structures heavily loaded in torsion, is basically twofold.
In this respect the process does not differ greatly from that employed
for more conventional forms of construction and essentially consists of

conceptual and detailed design stages.

Initial (Conceptual) Design

In this initial stage, the overall structural configuration
must first be determined having regard for the purpose for which the
structure is intended and for the prevailing site and ground conditions.
In order that the most favourable structural material and method of
construction may then be selected, consideration must be given to the
time available for site work, future maintenance, general aesthetics
and other environmental aspects, etc.. In general, the final solution
will be that which satisfies all the above constraints at the least cost
although, for this decision to be meaningful, several alternative
proposals will often have to be approximately sized and costed for
comparison and final selection by the client.

Final (Detailed) Design

With the general arrangement and appearance of the structure
thus determined, the most suitable method of analysis must be selected
having regard for the validity of any necessary assumptions and the
desired accuracy of the final solution. A full analysis may then be
undertaken for all the various design loads, and the levels of rein-
forcement and prestress dgtermined accordingly.

Only at this stage will it become apparent whether or not
the initial approximate sizing of the structure was adequate. If

significant increases in concrete section are needed in overstressed
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areas then a costly re-analysis might well be required. Equally, in
structures vhere self-weight contributes a significant proportion of
the total design load,.areas of understressed concrete will have to be
reduced to ensure an efficient solution.

2.5.1 Aids to Design and Analysis

Clearly, one of the most important areas in which the designer
requires assistance is in the initial selection of efficient structural
forms. In this way, lengthy approximate analyses can be avoided
during the conceptual design stage and construction costs can be more
realistically appraised. To meet this need, Swann!'®? has produced an
international feature survey of existing concrete box girder bridges
in which data such as width, flange and web thicknesses, span, con-
struction costs, etec., are comprehensively evaluated. This and
similar studies are widely used in practice and are invaluable in the
process of selecting the most efficient structural configuration.

However, once the cross-section and general arrangement have
been finalised, there is little further information available to the
analyst for determining the most suitable method of solution. For
example, the computational effort can often be considerably reduced by
the introduction of certain simplifying assumptions although, for this
to be acceptable, an assessment must first be made of their likely
effect. For the analysis of curved, concrete box girders in particular,
two of the most useful simplifications that can be made are (i). to dis-
regard thin-walled beam characteristics, and (ii). the representation of

member curvature by one or more equivalent straight beams.

Thin—~walled Behaviour

The typical dimensions of hollow concrete members are such

that it is not always immediately clear whether or not thin-walled
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behaviour should be assumed. The guidelines given in §2.1.3 are
helpful in this respect although warping restraint stresses can be
important in some configurations which do not apparently comply with
these criteria. At the saﬁé time, certain members which are clearly
thin-walled (e.g. circular or square sections with constant wall
thickness) are not susceptible to significant warping of the cross-
section, in which case the stresses due to axial restraint may safely
be neglected.

However, a more reliable indication of the importance of
warping restraint is available and is given in the form of the decay
function, k, derived previously in eqns. 2.36 and 2.70 for open and
closed sections, respectively. “The length of the member is also an
important consideration in this evaluation and it will be shown in
§3.4.4 and §3.4.5 that warping restraint effects assume a greater
significance in members in which the dimensionless parameter kf# is
small. The 1limiting value of this parameter, above which thick-walled
beam analysis is adequate, is obviously dependent upon the accuracy of
solution required but is, for example, given the numerical value of 10
in the Japanese Bridge Code’9.

Curvature Effects

A high degree of curvature is a common feature of many modern
structures and can significantly influence the longitudinal and trans-
verse distribution of the various stress resultants. While substantial
savings in computation can be achieved by considering the curved member
as an equivalent straight member for the purposes of analysis, this
is only acceptable if the final solution is within the required degree
of accuracy. When this is not the case, an alternative approach is

possible whereby a series of end-connected straight beam elements is
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used to represent the initial configuration. However, since an
infinite number of such elements is needed to model the original
structure exactly, it is desirable to establish the minimum number
required in order to achieve the necessary accuracy with the smallest
amount of computational effort.

The errors introduced by either of these structural idealiz-
ations have been evaluated in §4.,4 for the wide range of sections
typically found in practice. However, where a large number of straight
beam elements is needed to adequately model a particular structure it
is envisaged that the curved beam element developed in Chapter 3 will,
in future, prove a more attractive alternative.

2.5.2 The Sectorial and Cross-sectional Properties of Structures

The errors most commonly introduced into the analysis of
concrete box girder bridges have been identified in the previous section.
These are due to néglecting curvature and warping restraint effects and
are discussed in detail in §4.4.1 and §4,4.2 respectively. In both
cases a full error analysis has been undertaken and is presented in
terms of the various sectorial and cross-sectional properties. However,
for these to have some meaning, it is necessary to be able to identify
the structural configurations which are most affected and, for this
purpose, the properties of a range of existing structures and typical
sectlons are presented here.

Existing Structures

The feature survey by swann!%? has provided the opportunity
for a detailed investigation of existing concrete box girder bridges.
Of the one hundred and seventy three bridges presented in the survey,
some clearly did not conform to the basic assumptions set out in

§2.1.3 on which the theory of thin-walled structures is based. The
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most common causes of disqualification were due to excessive thickness/
depth ratios in the webs, sections displaying variable overall depth
along their length, or £he apparent absence of diaphragms between spines
of twin spine bridges.

Accordingly, only seventy structures were analysed in this
study but these did include examples covering the full range of cross-
sectional configurations shown in fig. 1.4. The various second moments
of area IX, I, Ixy’ I&, Id and IC were calculated using a computer
program developed and fully described by Pinkney®>, thus enabling the
warping functions u and k to be evaluated from egns. 2.67 and 2.70
respectively. For this purpose, Poisson's ratio for concrete was

assumed to be 0.15, from which we have

G _ 1 -
TS T Y 0.435 2.83

The ratio of bending and torsional stiffness, given by
L _ Ol

17 = yET o 2.84
X

has also been determined in this study as it is an important function
in the subsequent error analyses.

The numerical values of k%, j2 and u are given in Table 2.1
for the seventy sections considered in this investigation; the bridge
reference numbers refer to those in the original study by Swann. In
cases where the webs or flanges were thickened at the supports, only
the mean values of the ﬁarameters calculated for the support and mid-
span sections have been tabulated. The various quantities have also
been plotted against minimum span length (in figs. 2.11 - 2.13) and
highlight some interesting features which are discussed more fully in

Chapter 6.
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Bridge | Number of . -

Ref.I%o. cells t s : k2x10” %m 1Qmin(m) kSz‘min
1 1 0,777 | 1.06 52,15 19 13,72
2 1 0.644 | 0.97 73,17 15 12, 83
5 1% 0.592 | 0.96 35,98 18 10, 74
6 1 0.839 |.0.95 38, 92 25 15, 60
7 4 0.605 | 1.33 15, 97 27 10,79
9 5%] W 0.924 | 1,08 6. 06 27 7.12

10 5 IW 0,843 | 0.95 7.48 27 7.38
11 2x1% 0.958 | 0,47 3.24 23 4.14
12 1 0.462 | 0.94 48, 60 28 19.52
13 2 0.513 | 0.85 41, 30 28 18. 64
15 2% 0.843 | 1.25 13.55 21 7. 14
19 2x1* 0.928 | 0.717 2. 02 22 3.12
20 2x1 0.888 | 0.72 7.56 29 7.98
21 3 0.823 | 1.09 15.58 29 11. 45
22 2x2 0.934 | 1,00 2.01 30 4,26
23 3*IW 0.787 | 0.78 36.20 24 14, 40
26 2x1 0.928 | 0.93 2.30 31 4,171
27 1 0.579 | 1.04 37. 93 31 19. 09
28 1 0.851 | 0.84 14,08 32 12,01
29 1% 0.699 | 0.85 36, 45 32 19.36
30 1 0.724 | 0.76 48, 31 23 15. 99
31 1 0.768 | 0.89 25.37 32 16,12
32 1% 0.811 | 0,93 37.95 20 12,31
33 2 0.775 | 1.01 23,06 18 8. 65
36 2x1% 0.924 | 0.42 2.96 31 5.34
37 2x1% 0.960 | 0.33 1.58 29 3. 64
38 3IW 0.877 | 0.80 54,20 15 11,00
39 1 0.785 | 0.97 21.01 18 8.25
40 1 0.669 | 0.88° | 35.46 18 10. 72
42 2x1 0.973 | 0.79 1.60 20 2,52
43 1 0.678 | 0.93 43,18 21 13. 80
44 1 0.797 | 0.67 29,77 33 18, 01
45 1 0.519 | 0.72 32.19 26 19. 86
46 1 0.290 | 0.61 50,39 35 24, 85
417 2 '0.769 | 1.21 31.88 22 12. 42
50 3% 0.864 | 0.98 9.38 25 7.66
51 3% 0.832 | 1.07 12, 46 34 12. 00
53 1% 0.753 | 0.91 22,172 31 14,717
54 1 0.699 | 0.93 43,73 22 14.55
55 2% 0.834 | 0,97 14, 83 29 11,16

2.1 Sectorial Properties of Existing Concrete Box Girder

Bridgesl02
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Bridge [Number of . -5 -

Ref.ﬁo. cellst H ]2 k?x10™2m Z lmin(m) k!Lmin
58 1 0. 644 0. 97 59.36 27 20, 80
59 1* 0, 767 1.00 51.177 26 18.170
60 2 . 0. 844 1.17 10,12 36 11.45
62 2x1* 0.944 |- 0,77 3.80 31 6.04
63 2x]1* 0. 954 0.60 4,28 16 3.31
64 5 0. 920 1.20 5.46 31 7.24
65 2x1* 0. 942 0. 64 2,95 27 4,64
66 2x1* 0. 953 0. 44 1.68 39 5. 06
67 1 0. 786 0. 82 21,22 30 13. 82
68 2% 0. 766 0. 93 11.78 33 11.31
70 2x1%* 0. 961 0.49 1.15 40 4,29
71 2x1%* 0,959 | 0.73 2.10 27 3.91
73 1% ‘ 0.722 0. 80 32,81 30 17,19
74 2x2% 0. 966 0. 98 0.98 25 2,13
75 1* 0.558 0,72 28.10 31 16. 36
76 1* 0. 789 0. 82 26, 07 33 16. 85
82 1* 0. 693 0. 86 34. 44 33 18. 92
85 1* 0.674 0.76 32.46 20 11,39
89 1* 0. 744 0. 88 23.11 35 16. 83
90 1 0. 366 0. 25 27.58 49 25.173
93 1* 0.579 0. 94 22.68 31 14, 74
94 1% 0.530 0.71 41.08 32 20.48
97 1* 0.526 0. 65 23.10 39 18,74

103 1% 0.472 0. 62 13.62 54 19,91
108 3k IW 0. 492 0. 96 8.74 53 15.70
112 1 0. 300 0. 65 30.08 58 31.81
117 2% 0.663 0. 84 12,70 46 16.21
141 1 0. 346 0.78 20,75 72 32,80
150 1 0.287 0. 66 16, 98 36 14, 84
159 1% 0. 257 0,56 11,17 63 21.15

+ Key to eross—sectional configurations

n
mXxXn

Iw

Table 2.1 (contd.) |

n cell, single spine box girder
n cell, m spine box girder

variable cross-section

inclined webs

Box Girder Bridgesl02

Sectorial Properties of existing Concrete
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Typical Sections

The study of existing concrete box girders is undoubtedly
valuable but is restricted to bridge structures only. Therefore, in
order to extend the usefulness of the error analyses presented in
Chapter 4, a computer based investigation of the various sectorial
properties of other structural sections has also been undertaken. Three
basic configuratidns have been analysed, namely, the single cell box,
channel section and I-section, and these are all commonly used for
shear core and other general structural applications. The analysis
has also been extended to include similar sections in which the top
flange has been widened, as.shown in fig. 2.1lu4.

A large range of breadéh/depth ratios are covered in the
investigation although, for simplicity of presentation, only singly
symmetrical sections have been considered in which the top flange is
either equal to thé section breadth or to twice the section breadth.
The number of wall thickness/breadth ratios has been kept as large as
possible and iﬁfermediate values can usually be interpolated with a
sufficient degree of accuracy.

The parameters k2,j2 and y are graphically presented in figs.
2.15 - 2,17 for the single cell box girder with and without cantilevers.
However, the warping shear parameter u is equal to unity for open
sections and thus only k2 and j2 are shown in figs. 2.18 and 2.19 (for
the channel sections) and in figs. 2.20 and 2.21 (for the I-sections).
An additional error function has also been formulated for the six

different cross-sections and is defined in the following way:

i ~
F =(i§-~9> {(closed sections)
% max

or 2.85

I .
E o =<f_'.§>. (open sections)
max
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Figure 2.14 Typical Sections considered in Parametric Study
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These are presented in figs. 2.22 - 2.24 for the box, channel and
I-sections, respectively, and are subsequently used in §4.4. .

2.5.83 Errors due to Variations in Shear Stress

In the derivation of the structural mechanics of closed thin-
walled sections, it has been assumed that the distribution of the
torsional shear stres; is constant across the wall thickness and equal
to that on the median line of the section. This is the distribution
of shear stress, Toyo shown in fig. 2.8b, which is created by the
connectivity requirements of closed sections and which neglects the
effects of the linearly distributéd shear stresses, ATSV, shown in
fig. 2.8a. With the basic dimensions of the existing concrete box
girder bridges studied in §2.5.2 readily accessible on the computer,
an opportunity existed for evaluating the errors introduced by this
assumption. Only single cell sections have been investigated but
these made up just over half of the seventy bridges previously con-
sidered in the parametric study.

With the components of shear stress ATSV, Toy defined by

eqns. 2.16 - 2.17 and 2.44 - 2.45, the function used to describe the

error in maximum shear stress is given by

AT 62§525
E = —23Y v 100% = —22 — x 100% 2.86
T Tt AT ° 5 [ds ? :
sV sV Q +46 T

In this expression, the term & (outside of the integral) is the maximum
wall thickness in the section; this corresponded to the web thickness
in all the bridges investigatéd. The error function has been plotted
in fig. 2.25 for the thirty-seven bridges studied and also for an
idealized cross-section in which the top and bottom flange thicknesses
are identical (and equal to half of the web thickness), and in which

the width of the cantilever is equal to half the width of the box.
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Very large discrepancies between the maximum and mean values
of shear stress occured in most cases and are ample justification for
the initial limiting criteria outlined in §2.1.3 for thin-walled be-
haviour. None of the sections investigated fell within the 10% error
margin suggested by Kollbrunner and Basler®? and, clearly, the restrict-
ion that the total cross-sectional area should be less than one-fifth
of the area enclosed by the median line of the section is very difficult
to satisfy for sections with those dimensions typically found in practice.
practice.

However, fig. 2.25 is somewhat distorted by the fact that
only support sections were considered. In cases of variable cross-
section this generally included considerable local thickening of the
webs. It should also be noted that any underestimation of maximum
shear stress is matched by a corresponding over-estimation on the
opposite facevof the wall and that the concept of average shear stress
is usually sufficient for design purposes.

Perhaps a fairer estimate of the suitability of thin-walled
beam theory to the analysis of concrete box girder bridges is provided
by an assessment of the error in assumed torsional capacity brought
about by the variation in shear stress. For this evaluation the

error function is defined by the following algorithm:

3
[-%— .ds
E, = S x 100% ) g7
Q2 83
-S—- S

Here, the denominator is the total torsional second moment of area for
closed sections, given by eqn. 2.43, and the numerator is that component

of the second moment of area neglected in the theory.
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The results of the error analysis, presented in fig. 2.26,
show that approximately 40% of the bridges considered had less than a |
10% error in their respective torsional second moments of area.
Furthermore, these structures have been constructed over a 25 year
period and do not necessarily reflect the continuing trend to more
slender sections. Indeed, the average value of the dimensionless
parameter kzmin was approximately 15, and for only one bridge was it
less than 10, the value usually selected as the limiting criterion
below which thin-walled behaviour should be assumed. It would there-
fore appear from this limited stuéy that for single cell box girders
in which warping effects are significant the error introduced by the
assumption of constant shear stress across the wall thickness is

entirely satisfactory.

Single Cell Box I-Section Channel
Symbol t /b |ty /b t /b ts/b tt/b t, /b t /b t, /b
O 0.01 0.01 0.05 0.05 0.05 0.025 0.01 0.01
0 0.01 0.033§ 0.05 0.05 0.05 0.075 0.01 0.05
A 0.01 | 0.067] 0.05 0.05 | 0.10 | 0.025 | 0.01 | O0.10
+ 0.01 | 0.10 | 0.05 0.05 1 0.10 | 0.075 | 0.05 | 0.01
b 0.10 0.01 0.05 0.10 0.05 0.025 |, 0.05 0.05
¢ 0.10 | 0.033 0.05,' 0.10 | 0,05 | 0.075 | 0.05 | 0.10
4 0.10 | 0.067 ] 0.05 0.10 { 0.10 | 0.025 | 0.10 | 0.01
X 0.10 | 0.10 | 0.05 0.10 | 0.10 | 0.075 | 0.10 | 0.05
2 - - - - - - 0.10 0.10

Table 2.2 Key of Wall Thickness/Breadth Ratios for Figures 2.15-2.24
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CHAPTER THREE

THE ELASTIC ANALYSIS OF CURVED, THIN-WALLED MEMBERS

3.1 INTRODUCTION

Although numerous methods of elastic analysis are already
avallable, the most suiltable approach for a particular application
largely depends on the structural actions to be considered, the com-
putational facilities available and the accuracy of solution required.
In this chapter, limitations of fhe exlsting methods are first
discussed with particular reference to two of the most important uses
of thin-walled concrete sections, namely, the box girder bridge and
the shear core. A general stiffness method is then developed which
is suitable for the analysis of complex structures of variable cross-
section comﬁrising both straight and curved thin-walled members.

3.1.1 Box Girder Bridges

With the present tendency to use more slender sections in
this form of construction, simple beam theory is rarely adequate and
warping torsion and distortional effects must frequently be taken into
consideration. A number of analytical methods have been developed for
this purpose in recent years and these are summarized in Table 3.1.
Based on studies®9°70 of over 500 publications on the subject of thin-
walled beams, this table was originally presented by Maisel et al7l
in a paper on concrete box girder bridges.

Methods sutitable for Hand Calculation

In a subsequent report on the analysis of straight, rectan-
gular, single cell bridges of uniform cross-section, Maisel and Ro1170
have discussed the use and relative merits of methods (1) to (8) in

some detall. While individually these methods are somewhat limited



ANALYTICAL METHOD

TYPE OF STRUCTURAL ACTION CONSIDERED

Longitudinal
Bending

St. Venant
Torsion

Transverse
Bending
Distortion

Torsional
Warping

Distortional
Warping

Shear
Lag

Lecal
Effects

1. Simple Beam Theory

2. Knittel™®

3, Equivaleat Beam (Richmond)?92

4, Xupfer5®

5. Kolldrunner and HajdinSi, Heilig38

6. Beam-on-elastic-foundation Analogy?®

7. Reissner?!

8. Influence surfaces for platesa

7 and frame

analysis!® for local transverse bending

9. Grillage Theory113’11“

10. Folded Plate Theory

11. Finite Strip Theoryl!7.6

12, Finite Element Theory

13. Shell Theory

Table 3.1

Methods of Elastic Analysis for Concrete Box Girder Bridges’!

- hOT -
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in application, their combined use enables the effects of all the
important structural actions to be realistically assessed with nothing-
more powerful than a prﬁgrammable calculator.

In structures where a significant proportion of the design
load is provided by self weight alone, longitudinal bending is likely
to be the dominant structural action. In such cases, simple beam
theory (1) will generally give a sufficiently accurate estimate of
web depth and thickness for initial design purposes. On the other
hand, the thickness of the top flange is usually governed by local
effects due to wheel loading and this can most easily be assessed
using influence surfaces (8).

With the approximate dimensions thus determined, the remaining
hand methods may then be used to check the adequacy of the section
against warping and distortional effects induced by eccentric live
loading. Maisel and Roll favour the beam-on-elastic-foundation
analogy (6) for the analysis of distortional behaviour since it doces
not require significantly more computational effort than methods (2)
to (4) and is applicable to a wider range of cross-sectional dimensions.
Method (5) is recommended for evaluating the effects of warping
restraint and, while this is essentially the analysis due to Vlasov!0S,
it has been extended to include both open and closed sections subject
to a variety of torsional loads and conditions of end restraint.

finally, although shear lag is rarely a problem in concrete
bridges of typical proportioﬂ, it too is considered in (7), but for
rectangular, single cell box girders only.

Computer-Based Methods

The last five methods cutlined in Table 3.1 are more general

in application than those already described but, as a result, usually
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require the use of a large digital computer for solution. With the
exception of the grillage theory (9), these methods derive their
generality from the use.of basic shell theory in thelr respective
analytical developments. However, the costs associated with computer-
based methods can often be prohibitive and, in practice, their use is
usually restricted to the analysis of complex structural
configurations.

When used directly, general shell theory (13) requires a
solution of the governing differential equations; for complex boundary
conditions or arrangements of load this can often only be achieved
numerically. However, by idealizing the structure into discrete
plate and shell elements, only connected at common nodal points, the
problems of setting up and solving complicated differential equations
are largely avoided. This is the technique employed in the finite
element method (12) in which stress/deformation relationships are
first established at each member node. Through the use of com-
patibility and equilibrium conditions, these stress/deformation
expressions are then assembled into a series of simultaneous equations
in which the nodal deformations are the only unknown quantities. The
problem has thus been reduced to one of solving a series of simultaneous
equations although the number of elements required to adequately model
a complex box girder bridge can often necessitate the use of a very
large computer and can incur substantial costs.

.In the analysis of structures which are essentially cellular
beams, these disadvantages may be overcome to a large extent by the
use of the folded plate and finite strip methods, (10) and (11). In

the folded plate approach, each of the structural components (e.g. the
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webs, flanges, diaphragms, etc.) is represented by a single plate or
shell element hinged together along their common edges. The direct
solution of the governing differential equations is then avoided by
approximating the components of deformation and loading as a series of
sinewave functions for which a solution is readily obtainable.

The finite strip method incorporates important features of
both the previously described approaches., First, the cross-section
is idealized into an assemblage of finite elements taking the form of
strips running the full length of the member. Then, a solution for
the longitudinal distribution of the various components of deformation
and stress is obtained by employing a harmonic analysis in the same
way as in the folded plate method.

The grillage analysis (9) is similar to the finite element
method, in many respects, in that the structure is first idealized into
an assemblage of representative elements and then a stiffness approach
is employed for solution. However, since only beam elements are used
in this theory, the various structural actions considered by the
other computer-based methods cannot all be taken into account. Indeed,
only longitudinal bending and St. Venant torsion effects are usually
incorporated into the individual member stiffness matrices, although
a good approximation of the transverse bending behaviour may also be
obtained by representing the transverse slab action with idealized
cross-beams of appropriate stiffness.

3.1.2 The Shear Core

The most recent state of the art report on the design of
shear wall structures is provided by Pearce and Matthews®%, in which

four major analytical methods are identified. These vary in
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sophistication and are suitable for a wide variety of structural con-
figurations, ranging from single shear walls to the complex core
structures shown in fig. 1.5.

Simple Beam Theory

In this form of analysis the shear walls are assumed to act
independently of each other as simple cantilever beams (but made to
deflect together by thé restraining action of the floors). Since
only bending stressess are evaluated, the method is eminently suitable
for solution by hand calculation. Although this approach is adequate
where the structure consists of sdlid, independent walls, it will
usually underestimate the total bending stiffness where any composite

action between the walls is provided by the building frame.

Frame Analogy

This analogy covers a variety of different methods in which
the shear walls and interconnecting beams are assumed to act as an
equivalent frame structure. In its simplest form, the analysis may
be applied to a single pierced shear wall represented by two wide
columns of appropriate stiffness with the frame action provided by a
cross-beam at each level. Normal hand methods of calculation may be
adequate in this case, although a computer-based stiffness or
flexibility appreoach ﬁill undoubtedly be nécessary if axial and shear
deformations are to be taken into consideration.

The Continuous Shear Conmnection Method

By replacing all the cross-beams by a continuous shear medium
over the full height of the structure, the shear wall or core need no
longer be idealized into discrete storey height elements, and may once
more be considered as a simple cantilever beam. A single governing

equation (expressed as a second order differential) is then sufficient
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to describe the structural action and a solution may be obtained by
hand calculation using a programmable calculator or small desk-top
computer. Standard programs are réadily available for this purpose
although design charts could easily be prepared as an alternative.

Finite Element Method

While this method provides a powerful analytical tool, it
will generally give inéufficient information at the critical points
(e.g. beam/wall connections) unless a very fine mesh is employed.
Such an approach is therefore difficult to justify for the analysis
of standard shear wall or shear cdre systems unless special problems
exist. Nevertheless, this method can fulfil a useful function as a
research technique, providing detailed solutions for determining the
effectiveness of alternative simplified methods or for checking the
results of model tests.

3.1.3 Limitations of the Existing Methods

Box Girder Bridges

Some of the first cight methods summarized in Table 3.1 have
been derived for the anaiysis of straight, rectangular, single cell
box girders only and may not be immediately suitable for other appli-
cations. This is particularly the case for the distortional and shear
lag analyses but, since these structural actions (together with local
effects) are beyond the scope of this thesis, the limitations of these
methods will not be discussed here further.

On the other hand, simple beam theory (1) and torsional
warping analysis (5) are, in their present form, equally applicable
to most other cross-sectional and structural configurations. Continuity
is readily accommodated by the methods of moment and bimoment dist-
ribution, the latter method recently developed by Khan and Tottenham*8

Curvature effects are also fully considered by, for example, Pippard
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and Baker%6 in the case of solid and thick-walled beams, and by
Dabrowski?® and Konishi and Komatsu§3 for thin-walled sections.
Nevertheless, if these two approaches are to remain suitable for hand
calculation, they are still effectively restricted to the analysis of
constant sections subject to simple systems of loading and restraint.

For structures incorporating features such as variations in
cross-section, complex loading arrangements, irregular systems of
support, curvature, continuity, skew, etc., recourse to one of the
computer-based methods is usually necessary. In this connection, the
generality of methods (9) to (12) is particularly attractive, whereas
general shell theory (13) is rarely used due to difficulties encountered
in deriving and solving the governing differential equations.

The harmonic form of solution, employed by the folded plate
and finite strip methods, enables bridges with most general arrange-
ments and systems of loading and restraint to be accommodated provided
that the cross-section is constant between supports. However, only
29% of the 173 structures investigated by Swannl%2 in his recent
international survey of concrete box girder bridges actually complied
with this last condition and these methods would seem to be severely
restricted in their general application. Furthermore, the same
survey indicated that no bridges above 70 m and only approximately
half of those befween 30 - 40 m spans, for example, displayed a
constant cross-section, thus further limiting these methods to short
span bridges where simplified analytical approaches are often
favoured.

Tor complex structures with variable cross-sections, the

grillage and finite element methods are undoubtedly the most suitable.
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Their stiffness formulation also enables further complexities to be
readily accommodated, such as irregular general arrangements caused
by road junctions or alignment problems.

In the finite element method, the original configuration is
closely represented by an assemblage of plate or shell elements. By
selecting suitable types of elements for each of the basic structural
components, Z.e. the webs, flanges, diaphragms, etc., the effects of
all the primary and secondary actions associated with thin-walled beams
may be readily included in the analysis. However, even with the de-
velopment of large elements especially for box girder applications!!6,
a complex general arrangement will usually necessitate the use of num-
erous elements for an accurate assessment of these effects. As a result,
significant costs can be incurred in the preparation of input data and
in the computer time necessary for solution. The correspondingly large
volume of output generated by such an analysis is also difficult to as-
similate and, in the form of local stress components, is not always
directly suitable for design purposes.

In the alternative grillage approach, the structure is first
idealized by a series of inter-connected beam elements. These are
usually positioned along the centreline of each web and assigned a
proportion of the total flexural and torsional stiffness of the member.
Recommendations are available elsewherell3>11% for the correct
apportionment of structural stiffness and also for the best methods of
accommodating the effects of ékew, etc.. On the other hand, curvature
is usually approximated by a number of equivalent straight beams,
although Sawko?® and Tezcan and Ovunc!?® have recently developed a
circular curved element which should permit significant savings to be

made in both data preparation and computer running time.
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The excellent load dist;ibution properties, which are a
characteristic feature of box girder bridges, may also be taken into
consideration by representiﬁg the transverse actions of the flanges
and diaphragms with closely spaced cross-beams of suitable shear
stiffness. However, since the structural idealization is essentially
two-dimensional, Maisel et al’! consider this form of analysis to be
most appropriate for pseudo-slab or multi-cellular sections with more
than four cells. This is disputed by Hambly and Pennels3® who have
demonstrated that twin cell boxes can also be adequately modelled by
the shear-flexible grillage although Maisel (in the discussion to his
joint paper’l) points out that ldcalized distortional warping response
due to a HB vehicle would not be well represented in this case.
Furthermore, a fairly large amount of additional hand calculation is
required if the method is to be applied to boxes with four cells and
this reduces the Jjustification for using a highly computerized
analytical technique.

Finally, since only simple beam actions are considered in
the formulation of the basic beam elements, this method cannot be
expected to evaluate the effects of the additional structural actions
outlined in Table 3.1. However, Reilly?? and Takaba and Naruokal03
have recently developed a straight beam element with a fourth degree
of freedom in which the effects of warping restraint are considered.
Unfortunately, this derivation is only immediately applicable to open
sections since the effects of warping shear deformation associated
with closed boxes has not been included.

The Shear Core

The cantilever beam approach outlined in §3.1.2 is too

simplistic for the analysis of shear core structures and is more
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appropriate for systems of independent shear walls. On the other hand,
the application of a three-dimensional finite element idealization to
what is essentially a one-dimensional structure, necessitates the use of
a large number of elements for a satisfactory solution. It also incurs a
penalty in terms of both time and cost. Not surprisingly, thereféré;
the major analytical developments in recent years have taken place
within the two remaining classifications, namely, the frame analogy
and the continuous shear connection methods. ‘

For simple open sections a solution in closed form due to
Vliasov!0? is readily available. However, since structures with this
formation are torsionally very weak and subject to significant warping,
cross-beams are invariably provided at each level. In this case, the
analyst may either consider the structure as an open section, repre-
senting the action of the beams at each level by externally applied
bimoments, or, altérnatively, as a pseudo-closed section in which the

beams are replaced by a continuous membrane of equivalent shear

stiffness.

In the former approach, the structure must first be idealized
into storey height elements; the stiffness method has then been success-
fully employed by several researchers to obtain a solution. The correct
member stiffness matrix for the open section, in which the effects of
warping restraint are fully taken into account, has been derived by
Heiderbrecht and Swift37, Mallick and Dungar'72 and Stafford Smith
and Taranath?8, Since the magnitude of the external bimoment applied
at each level is a function of the sfate of deformation of the core,
its effect may simply be incorporated into the analysis as a modific-

ation to the stiffness matrix of each storey height element.
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The same structural idealization is also used by Liauw®3
who has adopted the transfer matrix method for solution, and by Irwin
and Bolton“? who use an energy approach based on the Rayleigh-Ritz
method. Unlike the-stiffness approach, where a digital computer is
invariably required, these two methods are suitable for hand calcu-
lation with a programmable calculator, However, there is an inherent
disadvantage in using this’approaéh, not in the method of solution but
in the initial structural idealization. By considering the structure
as an open section and representing the action of the cross-beams as
externally applied loads, no account can be taken of the change in
the shear centre position which occurs due to the partial closure of
the section.

In the alternative approach an attempt is madé to represent
the connectivity effect of the cross-beams by replacing them with a
continuous shear membrane. The equivalent thickness of this membrane
depends on the shear stiffness of the beams and is discussed more
fully elsewhere®7,8%4, The sectorial properties of the section may
then be calculated in accordance with §2.3, and Khan and Stafford
Smith“7, Michael’® and Rosman®3 have all used this method to obtain a
solution in closed form. The change in shear centre position is
fully considered in this approach although, in the absence of a suitable
stiffness formulation for closed sections, only simple structures of
constant section can be analysed.

A comparativé study of the two basic approaches has been
undertaken by Khan and Stafford Smith“” on simple core structures of
identical square cross-section but with cross-beams of different
depths. When the beam depth was only one-eighth of the floor height,

the maximum bimoment and torsional deformations predicted by the two
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methods compared very favourably. However, the frame analogy
underestimated the rotation and overestimated the bimoment by
approximately 10% when fhe beam depth was increased to a guarter of
the floor height, and by a factor of two as the beam depth/floor
height ratio approached half. Thus, while the stiffness approach
adopted by the frame analogy is attractive, the method has limited
application in the analysis of structures with substantial inter-
connecting beams,

Developments Considered in this Thesis

It has been demonstrated that in the case of box girder
bridges with complex general arrangements and cross-sectional configur-
ations, the most appropriate methods of analysis are those in which the
structure is considered as an assemblage of discrete elements. Of the
numerous techniques available only the finite element and grillage
analyses readily comply with this requirement. However, bridges,
even those incorporating junctions or other irregularities, are
essentially one-dimensional structures,and the three- and two-
dimensional idealizations respectively adopted by the finite element
and grillage methods are not entirely suitable.

While a stiffness approach is maintained, the remainder of
this chapter is devoted to developing a beam element which fully
considers the effects of warping and is applicable to all cross-
sectional configurations. In this way, all the important structural
actions identified in §1.3.1 can be taken into account while, at the
same time, considerably reducing the volume of input/output data and
the computer time necessary for solution.

In the case of members displaying a high degree of curvature,

further economies are possible by eliminating the need for a large
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number of end-connected straight beam elements. For this purpose a
circular curved beam element has also been developed. The data storage
reguirements, even for éomplex structures, is now within the capacity
of most small desk-top computers and, therefore, this method should
find immediate application in the design office.

The proposed analysis also further extends the usefulness of
the continuous shear connection method in the design of shear cores
since it provides a degree of generality that is not possible with a
solution in closed form. Structures iﬁcorporating changes of cross-
section, .variable wall thicknesses and cross-beams of differing depth
can now be analysed by this method without neglecting the effects of

the changing shear centre position.
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3.2 GENERAL SOLUTiON FOR THIN-WALLED MEMBERS

For most beam configurations the values of the resultant
bending moment, torsion, ete., at aﬁy point, may be simply obtained by
considerations of equilibrium. However, this is not possible in the
case ofvbimoment and warping torsion, and the longitudinal distributions
of these terms must be determined from the governing fundamental equatioms.
These have been derived previously in eqns. 2.35 and 2.69 for open and

closed sections respectively.

3.2.1 Circular Curved Beams

The general solution presented here for circular curved
members is based on the simply-supported girder system, shown in
fig. 3.1, in which the bending moment and direct force are determinate
quantities at any section, 2z = r.a, along the beam. Furthermore, since
the horizontal separation between the shear and centroidal axes is
generally very small for all practical cases, the distance r now refers

to the radius of curvature of either axis.

Figure 3.1 The Basic System for Circular Curved Members
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Open Sections

The fundamental equation, derived in egn. 2.35 for open
sections, is solved by first considering the homogeneous differential

equation
o™V - K2.4" = 0 3.1

for which the general solution is

¢ = kpysinh kz + kycosh kz + k3z + ky 3.2
The constants k., are determined by substituting ¢ from this
expression into eqns. 2.35 and 2.34, and by successively applying the

following boundary conditions:

6 = ¢33 ' = ¢]3 T =Ty B =B 3.8
at z = 0 (Z.e. at end 1 of the curved beam illustrated in fig. 3.1).
In this way the reduced angle of twist, ¢, is established in terms of

the initial parameters at end 1 only, and is given by

¢ = 61 + 67 - 5—1—1%}—2— + By (1 ~cosh kz) —S?Sh kz) . T, (kz]';sgl]h kz) 3.4
d T

However, this solution is only strictly valid for beams subject
to constant torsion (T' = 0), as depicted in fig. 2.1.

Now consider the circular curved member, shown in fig. 3.2,
additionally loaded with concentrated torques, Ti (i=1, m), and uniformly
distributed torques tj (j=1, n), at various positions along the beam.
The end forces My 2, Ny 2, and Vi 2, together with additional loads
(not shown in fig. 3.2) applied throughout the span, also induce general
distributions of bending moment, M, and direct force, N.

By taking moments about the tangent to the curved longitudinal

axis at z = r.a, we have

N

m m M - N.yo)
T= T~ .z Ti ".,z 'tj (Zjl - ij) - - dz 3.5
1=1 J1=1 o
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Figure 3.2 The Circular Curved Member subject to
General Loading

After differentiation with respect to z, this takes a similar form

to eqn. 2.33 previously derived for the simple case. If the distrib-
ution of bending moment and direct force along the beam are known,
which they are in the basic system, then the effects of the additional
torsional loading from eqn. 3.5 may be included in the original

solution?® (egn. 3.u4), to give

I§ . [(kzi'sinh kZi)] _ [i] 'tj [(Zjlz_zjzz)
i L I

¢ ={Eqn. 3‘4} -
521 kGLy i

(cosh kziy- cosh ijz)] (M-N.yo)

]
K2 krGId

« (kz - sinh kz)dz

3.

6
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Furthermore, by differentiating this expression twice with respect
to z, and intreducing eqns. 2.25 and 2.36 where appropriate, solutions
for the unit twist, ¢', and the bimoment, B, may alsoc be obtained, in

the following way:

sinh kz . (l-cosh kz) _ ? T (1-cosh kz,)
CI VTer, Lk it et

$' = ¢ cosh kz = Byk
. | d d

d

z
n 3 ( M—N.yo)
) [(ijl— kzj2) - (sinh kz4;- sinh ijz)] - ———— +(1-cosh kZ). dz

J rGly
S 3.7

m sinh kz.
i

sinh kz | B, cosh Kz + T, sinh kz _ T

B= -¢
o1 O, = X LoT T

¥4
t. ( M-y )
E% (cosh kzjy- cosh kzjz) - —= - sinh kz.dz 3.8

-]

j=1

Closed Sections

The homogeneous differential equation
£V - k2 o= o0 3.9

is derived from eqn, 2.69 and is applicable to all sections with closed,
open/closed or multi-cellular configurations. The solution of this
equation has the same general form as eqn. 3.2, although the constants
are now determined by applying the following boundary conditioms,
at z = O: |

f=#£3; £ =f 3 T=T ; B=B5 3.10
Accordingly, for applications of constant torque, the dimensionless

warping function, f, may be expressed as

sinh kz ' (l-cosh kz)

(kz-sinh kz)
+ Bl UGId .

3.11
ukGId

f=f1+f'

1° T + Ty
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in which the parameters u, k are now those defined in eqns. 2.67
and 2.70, respectively. Furthermore, since the equilibrium condition
(eqn. 3.5) is equally valid for sections with closed parts, eqn. 3.1l

may be modified for the general case, to give

. 2 2
m (kz,-sinh kz,) n t (zj1 - z32)
fz{Eqn' 3'11} LT e 7 L 'c%[ 2
i=1 4 j=1 4
: Z
(cosh kzj1- cosh kzjj) (M-N.y )
- | —=% . (xZ - sinh kZ). dZ 3.12
K2 krGI
d
o]

However,.this solution for the warping function, f, is not particularly
useful since the boundary conditions at a built~in-end are not

f1 = f; =0 (in analogy with ¢; = ¢; = 0, for open sections), but

¢y = f1 = 0. Neveftheless, by integrating eqn. 2.65 the following

relationship is obtained;

_ 1 T.z
f E' [ Ef—] + k5 3.13

from which, with z = 0 at end 1, we have

£
! H

Now, by substituting f, f; from eqns. 3.13 and 3.14 into eqn. 3.12,
the unknown constant of integration, kg, is eliminated and an expression

for the reduced angle of rotation, ¢, is obtained, thus:

(l-cosh kz) (kz - usinh kz)

- P
b = ¢1 + £ X sinh kz +'B1 CT + Tl TG
. d d
. 2 2
? (kzi-u81nh kzi) § tj [(Zjl - z32) " ]
- T.. - . ~ = (cosh kz4y-cosh kz4,)
2 J1 ]2
121 1 kGId =1 GId 2 K
2 .
(M—N.yo) _ . _ _
-~ E;Efg_ + (kZ - usinh kz). dz 3.15
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The other necessary terms f',B, are obtained directly by
differentiating egn. 3.15 twice with respect to z and introducing
eqns. 2.48 and 2.70. For clarity, these expressions have been summarized
in Table 3.2 together with egns 3.15 and 3.5 for the functions ¢ and T,
respectively. Furthermore, by putting u = 1 (and noting in this case
that £f' = ¢'), the equations in Table 3.2 reduce to those previously
derived for open sections (eqns. 3.5-3.8), demonstrating once more the

1

usefulness of the approximation introducted by Benscoterll,

3.2.2 Straight Beams

The basic system used for the general solution of straight
beams is shown in fig. 3.3, together with additional torsional loads
Ti’ tj, applied throughout the span. Bending moments and direct forces
of known distribution may also be present but have no torsional component

and need not be considered further at this stage.

L L Je
| 7
t T
1 1 2
Tl éé—? N L ?——»Tz
& > e > S 3
Z.
1
Zjl
Zj2 -
Z -t

Figure 3.3 The Basi¢ System for Straight Members
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Taking moments at a point distance z from end 1, the

resultant torque is given by

(z31 - z32) 3.18

—J
n
—J
-

!
ne~3
—J
!

1 o~13
ot

i=1 \ j
~which is similar to eqn. 3.5 for curved beams except that the final
term is no longer applicable. Accordingly, the stress resultants T,
B, and the corresponding deformations ¢, f', for straight members are

derived directly from Table 3.2 where the final column due to member

curvature has been omitted.



%1

fi B T Ti tj from z4;to 24, Contribution due to curvature
2
. n z2:,2.2.,2 cosh kzs)-cosh kz3 {(M-N.y)
s 1 |p sinh kz| l-cosh kz | kz-usinh kz ri' (kz-u sinh kz) o1 ) [ 2 le 32:[ : GIO (kz-y sinh kz).dz
} Xr
K GId k.GId i51 k.GId Gl'.d 371 2 K d
o
z
m L1 0 [ Cri-w.y)
i - - ) . R o
£ - cosh kz |- kHS(l';;:h kz | 1 cg]szh kz ¥ _(Lé_?.s_}l_kﬁ)_ W'.Z{[kzjl-ksz}- [s:mh kzj1-sinh kziz]f j e «{ 1-cosh kz) .dz
d d iz} d d j=1 o 4
z
v GI .
B |- |- d. ok m ik n (M-N.y)
k cosh kz u_S_y_i__k_g Z y———;—-—z-' - -}:‘21 '.Zl [cosh kzjj-cosh kzjz] - e *usinh kz . dz
sinh kz 1=l = o
z
n (M-N.y )
Z.. _2. - o
T - - - 1 1 - 2 I: jl 32] T . dz
J=1 °
Table 3.2

Stress Resultants and Components of Deformation for Closed Sections

(3.5)

- T -
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3.3 FLEXIBILITY ANALYSIS

Statically indeterminate frame or grillage type structures,
which are capable of being idealised as a system of end-connected
beam elements, may be analysed by two alternative methods. These
are widely referred to as the‘flexibility and stiffness approaches
although both methods use exactly the same conditions of equilibrium
and compatibility to arrive at a solution. However, whereas the
flexibility method first uses conditions of equilibrium, which then
give rise to equations of joint compatibility, the reverse is true
for the stiffness method.

The first step in the analysis of hyperstatic strugttures,
by the flexibility method, is the introduction of sufficient imaginary
releases to transform the system into deteyrminate form. In general,
the efficiency of ;he solution is not affected by the positioning of
the releases, although, where the idealised system consists of members
forming closed cells, they should be applied so as to establish a
single-path structure.

In the determinate system, so formed, there are now sufficient
equations of joint equilibrium to enable the redundant forces and
applied loads to be defined in terms of the remaining member end-forces
only. Furthermore, if a relationship between the member end-forces and
the corresponding end-displacements can be established, then joint
compatibility conditions may be introduced to provide a unique solution
for the redundant forces. Subsequently, these may be substituted back
into the equilibrium and compatibility equations for the evaluation
of the remaining member end-forces and all the joint displacements.

Thus, the major reﬁuirement of this method is the determination

of the general relationship between member end-loads and the corresponding
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end-displacements in explicit form. For the member fully fixed at

end 1, this relationship may be expressed as

€,

FP, 3.19

where e,, P, are the vectors containing the displacement and load
terms corresponding to the n degrees of freedom being considered at
end 2, and F is the nxn matrix to be determined. The matrix F is
generally referred to as the flexibilZty matrix and is evaluated in
§ 3.3.3 for curved and straight members where the effécts of warping
restraint have been included.

3.3.1 Total Strain Energy

The concept of total strain energy (or more correctly
complementary energy) is frequently used for the evaluation of flexibility
matrices due to the ease with which the displacement terms may be

derived. For the loaded beam, the total strain energy, U, is given by

where the integrals are effective over the entire cross-sectional area
and length of the member.

If the direct and shear stress components in eqn. 3.20 are
restated in terms of the applied load system at end 2 only, it follows
directly that the ith term in the displacement vector e, is given by

e, = %‘L 3.21
Py

. ' . .th

where p, is the corresponding i~ load term.

Open Sections

For the case where only bending about the x-axis and torsion

(including the effects of warping restraint) are being considered, the
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cross-sectional distributions of direct and shear stress (from egn. 2.1)

are given by

I
= M —x XY B.w
9 vy | Y T* T T
X y W
3.22
and
2T .n T .S
= sv _ WwoW
I, 5.1,

Here, the bimoment and warping torsion terms are based on the principle
sectorial co-ordinate system, whereas the x-axis corresponds to the
horizontal direction in order éo account for vertical (gravitational)
loads more easily. Accordingly, the contribution due to bending moment
in the first of eqns. 3.22 is the more general term associated with a
non-principle co-ordinate system. In this the dimensionless parameter,

¥, is defined as )

\yzl—-i-l——’%’— 3.23
Xy
Clearly, for sections singly symmetric about either the x-axis or the
y-axis, Ixy = 0, ¥ = 1 and the direct stress contribution due to bending
moment reduces to that found in eqn. 2.1.
By introducing the stress components from egn. 3.22 into

eqn. 3.20 and integrating over the cross-sectional area only, the total

strain energy is given by

2‘ . .
M2 + B2 + Tsv
2YEI1 2EI 26I
_ % W d

c
1

o
in which use has been made of the definitions of the various cross-
sectional and sectorial functions, together with the following

relationships determined by partial integration:
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The more useful expression, in terms of the total torque,
T, is now obtained simply by putting TSV =T - Tw into eqn. 2.24,
thus:

g o2
2 2 - T T.T
U = e LB I, w_o.- Vi, dz 3.25

2WEIX 2EIw 2GId 2GId GId

Closed Sections

In the same way, the components of direct and shear stress
for sections with closed parts are derived from eqn. 2.2 and take

the more general form:

I
= B _ oy ], Bd
° % NI [y X'I]+ T,
X y w
3.26
1]

and T = T - ° .S&
n =765 5.1

Substituting the first of these expressions into egn. 3.20 and using
the alternative definition for shear stress given by egn. 2.59, the

total strain energy may be expressed as

2 2 P 2
- M B s, v '
U= QWEIX + 2EI{:] + 5 [ + I‘S.¢] . dAE .dz 3.27

39S

With the warping displacement given by eqn. 2.46, for the case of

mixed torsion, eqn. 3.27 may be rewritten in the following form:
L
M2 B2

= E. l_lz 1 [=X]
v= 2¥ET * 2ET, 3 [(¢ £1)21_ + I,£7(2¢'-£1) | }.dz 3.28

from which, on substitution for ¢' and f' from eqns, 2.17 and 2.65, and

noting that T = GId¢' + B', we obtain
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MZ BZ TZ ) B!Z T.B!
U= + + + - - . dz 3.29
QWEIX 2EI§ 2GId 2uGId GId

Once more, by puttingu = 1 and noting that B' = Tw’
this expression takes exactly the same form as eqn. 3.25, previously
derived for the case of open sections. Indeed, despite the very
different methods of derivation' often necessary for open and closed
sections, this is always shown to be the case. Therefore, in
subsequent work only closed sections have been considered and the
appropriate substitutions must be introduced to make the theory
applicable to open sections.

3.3.2 Evaluation of Stress Resultants

Consider the circular curved girder shown in fig. 3.4,
built-in at end 1 and subjected to a system of end loads at point
2 only. From conditions of equilibrium, the stress resultants M, T and
V may be expressed directly in terms of the applied loads, in the

following way:

M = My cosu = (T, * Vor) sina
T = 3M, sind + (T, * V,r) cosa 3.30
vV = V2

On the other hand, the equation governing the distribution of
bimoment along the beam has been derived previously in egn, 3.17
in terms of the unknown support reactions at end 1 only. For a

solution in the same general form as eqn. 3.30, these initial

parameters must first be determined. By putting z = 0, we have
My = MpcosB = (T) # Vyr)sing
Ty = ¥MpsinB + (Tp % Vor)cosB¥ Vor 3,31

Vl = V2
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By
Figure 8.4 The Circular Curved Girder Built—in at End I
and
B
Bl = ——_—COShkR, - T]_ E tanh k& 7 m M sinh kra.da 3.32
o

Now by substituting for M and T; in this expression from eqns.
3.30 and 3.31, respectively, and evaluating the integral over the
entire length of the beam, the following relationship for the

fixed-end bimoment is obtained:
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By -
By = T - p(TZ + Vzr)<(lkn) C.-%% + an) + uV2 E%%

(1-n) SH nr
+ uM S. 2= - nrC + 2= 3.33
2 ( k CH CH

In addition to the dimensionless parameter, n, defined here by

n = ———i-—- 3.34
1+k2r?
the following trigonometrical abbreviations have also been introduced

in egn. 3.33, and for clarity these will be used throughout:

C = cosB
S = sinR
3.35
CH = cosh krB
SH = sinh krB8

By introducing the appropriate terms from eqns. 3.30, 3.3l
and 3.33 into eqn. 3.17 and remembering that £, = O at the built-in
end, the expression for bimoment may be written in terms of the end

2 load system only as

B = B, EEE%ﬁEEE_.+ %-[;MZS + (T, £ vor)C 3 Vzr]sinh kra:t%-vzr.%%cosh kro
(1-n) , SH (1-n) . SH
- + — —
(T, * Vzr)( — C- ot nrS) cosh kro * ulMs . S. o
o
nrC + %%) cosh kro x E% [Mzcos(B—A)i(Tzivzr)sin(B—Xi]sinh kr(a=2).dA
‘ o

3.36

On evaluating the integral and introducing the following

additional abbreviations:
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c = cosu
s = sina
ch = cosh kro 3.37
sh = sinh kra
eqn. 3.36 may be considerably simplified and takes the form:
- SH .y . (1-n) [_ | sh
B = By(ch CH.sh) T ¥ MpS + (TpEVor)Cish * urty =
SH
- unr(TyV,rls 3 Uner[% - ch + TH sh] . 3.38
Furthermore, by differentiating eqn. 3.38 with respect to z, and
remembering that dz = r.da = -r.dd, an expression for B' is also
obtained, such that
1 dB _ : (1-n) |_
Ve - 2, =— = SH | - 2= 17
B 5 Byk [CH ch sh] +u o ¥MyS + (Tp#Vor)C | ch
- ch S SH
F urv, o ¥ unkr Mz[%;-+ sh - TH ch] + un(To2Vyr) c 3.39

In the derivation of eqns. 3.33 and 3.38, the solutions of various
complex integralé involving products of circular and hyperbolic
functions have been required. Evaluation of these and other
trigonometrical terms used throughout this analysis are given in

Appendix 4.

Straight Beams

With reference to fig. 3.5 and Table 3.2, the various stress

resultants for the end-loaded member at distance z are given by

=
1

My + Vo.2

-3
1

T, 3.40a

Vv = Vs
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and B = B; cosh kz"+ %-T1 sinh kz 3.40b

M,

a 1 | 2\')

Figure 3.5 The Straight Girder Built—in at End 1

With B; obtained from eqn.3.40b (for z=%), the
distribution of bimoment may be expressed in terms of the end 2

forces only, as

~ cosh kz sinh k(L~z)
B % Boosnke ~ kK2 Tcosh ki 3.41a

from which, after differentiating with respect to z, we have

. - sinh kz _ cosh k(%-z) 3
B' = kB Toonir T Y12 Toosh k& +41b

3.3.3 Formulation of the Flexibility Matrix

All the stress resultants considered in the total strain
energy formula (eqn. 3.29) have now been expressed in terms of the
applied load system at end 2 only and may be summarized in the

following way:

BN i 11 €12 C13 Clu— sz
T c21 Ca2 €23 cau | | T2
B - c3] c32 c33 C3y Va2
B' Cy Cy2 Cy3 Cyy By

L i 4L
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or in matrix notation by

P = Cp, 8.42

In accordance with egns. 3.30, 3.38 and 3.39 the connection

matrix € for curved beams is given by

c +s rs lO
- — - *__ — —
IS c tr(c-1) lo

|
|
| |
|
i

#Cj(c-ch)+Cysh -Cys + 0335—— |¢r(Cls + Cysh) lch + Cgsh 8.h2a
e |
_C1 | e
+;—(S+krsh)?k02ch| G- kCj3ch 'i(Clc+qurch) |—k(sh+05ch)
in which the constants Cj;.g have been introduced for clarity and
are defined as
Ciy = unr 3
(1-n)._S sH
C2 { k o 7 CH}
(1-n)  _C
C3 = - u»  ——
ko CH ,  3.43
S
Cs = " CH J

With the total strain energy (eqn. 3.29) now expressible
in terms of the end 2 load system p, only, the general flexibility

relationship from egn. 3.19 may be written as
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5U i

v2 T f11.  fi12 f13 £y M)
oM,
ay '

$2 3T, £21 f22 f23 fou T,

- _ 3. 44

AU

V2 3V, fa1. f32 £33 fau V2
oU

62 ng Sy fiy0 fuys. Fuy By

2._l

where fmn(m=l,4; n=1,4) are typical flexibility influence coefficients
for the system (with four degrees of freedom) under consideration.
In accordance with eqn. 3.21, the ith component of deformation

at end 2, e, » is also equivalent to

2i

% . % 5 % % g, SeH5
U M. M T.T _ B.B _B'.B' _B'.T _ T.B"
e, = = m + + + e - .dz
3R, EI_ " GI, ' EI, " WeI, I, GI,
o
in which, for example, the unit bending moment M is given by
w2 etc. 3.146
0Py,

Z.e. by the numerical value of the end-force p, in the general

2|
definition of the term M (eqn. 3.30).

Furthermore, by expressing the stress resultants in egn. 3.45
in terms of the end—loadslz and connection matrix C,a general

equation for the derivation of individual influence coefficients is

obtained, thus:

3.47
L
CipCln ComCon €3m€3n CymCun  C2mCun  C2nCom d
£ = + + + - -7 92
mn WEIX GId EI& UGId GId a
o
UGId
By putting k2 = =T (2.70)
. w v
61, |
and j2 = (2.74)
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p B
and noting that dz = -~r. | da, egn. 3.47 may be re-written

o o]

in a more convenient form, as

-r .2 k2 1 -
GT J7CimCintComCont 7 C3mC3nT I CimCin~C2mChn~Con Cum -da

mn
3.u8
The complex terms, resulting from the substitution of the
individual connection matrix coefficients from eqn. 3.45 into this
expression, have been integrated with the aid of Appendix 1 over the
entire span length. After considerable simplification the symmetrical
flexibility matrix F for the circular curved girder with four degrees
of freedom has been obtained and is presented in explicit form in
- Appendix 2.1 in terms of the individual influence coefficients, fTnn

Straight Beams

The relationship between the general stress resultants and
the applied forces at end 2, as expressed in eqn. 3.42, is equally
valid for straight members although the connection matrix C now takes

the following form:

1o |
- — — ] _4, — —
0 1 0 0
c = I L ] L 3.49

0 4 _ ¥ sinh k(z-z)lo cosh kz
: k °  cosh k& cosh k%

R —_— — iy —— s e ——— -

0 cosh k(&-2) 0 sinh kz
|u .cosh k& , cosh k& _J

Substitution of the individual terms from this matrix into eqn. 3.u7
enables the various flexibility influence coefficients to be determined
directly. For the straight member with four degrees of freedom, these

have been denoted gmn(m=l,4; n = 1,4) and are presented in Appendix 2.3.
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3.4 STIFFNESS ANALYSIS

The main requirement of this method, in common with the
flexibility analysis, is the determination of a relationship between
the end-forces and the corresponding end-displacements for each
individual member. However, in this case, it is the end-displacements
which are considered to be the unknown quantities and the relationship
is required in the following general form:

p = Kd 3.50
Here p,d are vectors containing the various force and displacement
terms at both ends of the member, and K is the so-called stiffness
matrix, symmetrical about the leading diagonal.

Before conditions of compatibility can be introduced, the
end-forces and end-displacements for all members must first be
described in terms of the same general co-ordinate system. This is
achieved by a simple geometrical transformation and enables the member
end-displacements to be replaced by the common joint displacements,
which are always fewer in number. The individual member end-forces,
defined in terms of the joint displacements, may now be combined in
such a way as to satisfy the conditions of equilibrium at each joint.
Thus the load vector now consists of all the joint load terms, the
displacement vector contains the corresponding components of joint
displacement, and the structure stiffness matrix is composed of the
appropriate individual member stiffness matrices.

System restraints may now be imposed on the structure by
modifying the various matrices and a unique solution for the joint
displacements is obtained directly. It follows that back substitution
of these displacements into eqn. 3.50 results in all the unknown

member end-forces and end-displacements being established.
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Choice of Analytical Method .

The main theoretical difference between the stiffness
and the flexibility approaches is essentially the order in which the
conditions of joint compatibility and equilibrium are applied. However,
there are also some practical considerations which are probably more
important in determining the best method of analysis for a particular
structure. Basically, these are the degree of automation possible
and the amount of computing effort required for solution.

In the flexibility analysis it is the redundant forces
which are the unknown quantities and the number of equations to be
solved is evidently equal to thg degree of indeterminacy of the
structure. However, the initial choice of the imaginary releases must
satisfy certain conditions and this can involve time consuming check
procedures if attempted automatically by computer or, alternatively,
additional input By the analyst. On the other hand, in the stiffness
method, a solution is required for all the components of joint
displacement and the number of equations is therefore directly
equivalent to the number of independent degrees of freedom present in
the system. However, once the geometry of the structural idealisation
has been input, together with the dimensions and elastic properties of
the elements, the method is entirely automatic.

In terms of the number of equations to be solved the
flexibility method would appear to have a real advantage in most
applications, except perhaps in the analysis of highly redundant spatial
systems. However, this is not always found to be the case. Indeed,
with the capacity and'speed of modern computers, the solution of large
sets of linear equations is rarely a problem and the entirely automatic
procedure followed by the sfiffness method usually proves overwhelmingly

attractive.
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3.4.1 Formulation of the Member Stiffness Matrix

The individual coefficients which make up the member
stiffness matrix, K {(from egn. 3.50), are usually detefmined
directly by integrating the appropriate differential equations. For
the circular curved girder in which warping restraint effects are

being considered, these are given by

iv - 2 am o- u -
£ K2 fr = —E {tr + M N.yo} (2.69)
W
" \4 - -M $
and vt T WEIX + - 3.51

Here, eqn 3.51 is the differential equation governing bending about
the horizontal axis, first derived by Dabrowski?®, in which the
dimensionless geometric function ¥ has been previously defined in
eqn. 3.23 for tﬁe-case of non-principle X, y axes. However, these
expressions are not independent of each other, as is the case for
straight members, and the solution of simultaneous differential
equations in explicit form is generally considered to be a difficult
problem.

A different approach has therefore been adopted, whereby
the stiffness matrix is obtained numerically from the fle#ibility
matrix, F , previously derived in accordance with egn. 3.19. In order
to obtain a direct relationship between the two matrices, egn. 3.50

must first be restated in the following form:

n| K, Ky || d
3.52
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in which Q,d1 and ;E,dzrepresent the force and displacement
submatrices corresponding to the four degrees of freedom at ends
1 and 2, respectively. Furthermore, it is also possible to connect

P

] and p, by an equilibrium matrix E such that

p + Ep, = O 3.53

in which, from eqns. 3.31 and 3.33, we know that E is equal to

C liS | rS ’ 0
—— | -
+S | C l +r(1-C) | 0 3.54
0 l 0 I 1 ' 0
|— |
L:+_un [krs'%% -C + Elﬁ:“ -unr[krc.%}i— + S:l F‘.Uﬂrz E@*C-%} + S—nrgg IEJ—E_‘

Now consider the circular curved girder, shown in fig. 3.6a,
built-in at end 1 and subject to end-forces p, and P, . The system
undergoes end-displacements equivalent to d;, = 0 and d, = e,
where the displacement vector e, has been previously defined in
eqn. 3.19 for the cantilever girder. If a system of rigid-body
displacements d1* . dz* , 1s now superimposed on the member, as indicated
in fig. 3.6b, the equilibrium of the system is unchanged. Since zero

total work is done, it follows that

t t =
p‘I d1 o + p2 d2=’: - 0 3.55

Furthermore, by substituting for p, in this expression from eqn. 3.54,
a simple relationship between the rigid-body end-displacements is

obtained, thus:
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Figure 3.6b Rigid-Body Displacement System

Clearly, the general displacement vectors d, , d,, in
eqn. 3.52 must include the end-displacements due to both elastic
deformations and rigid-body movements, whereby

d, = d,,
} 3.57

d, = d,, + e
If the rigid-body displacement terms in this expression are eliminated

by introducing egn. 3.56, the displacement vector e, is given by

e = d, - E'dq, 3.58

which on substitution into egqns. 3.19 and 3.53, yields

-]
L}

=1 __t -1
EF Eld, - EF ).
( A (EF )d, } 3.59

P = (-F'ehd, + F.d,
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By comparing egns. 3.52 and 3.59 the following definitions

for the member stiffness sub-matrices are obtained:

K,, = EFE'
K,, = —EF’
: 3.60
-1 t
- K, = - FE
K = F’

and these enable the complete member. stiffness matrix to be determined
from the previously defined flexibility and equilibrium matrices only.
Although the expressions derived in egn. 3.60 are equally
correct for straight and curved beams subject to all forms of loading,
additional care should be exercised when considering the effects of
warping restraint. For example, the relationship between bimoments at
ends 1 and 2, used in establishing the equilibrium matrix E in egn. 3.54,
is that previously derived in egn. 3.33 for the case of the cantilever
girder in the development of the flexibility analysis. However, this
is not strictly correct since in the equilibrium approach it can no
longer be assumed that the initial parameter f{ equates to zero. The
general expression given by egn. 3.17 should thgrefore be used instead,
with z = £. This can most easily be accommodated by modifying the end

force vector to include the warping function term, thus;

M
Ty
p1 = . 3.61
Vi
Y SHo !
_?1 i GId CH fi-

in which case the equilibrium matrix E remains unchanged.
Therefore, after establishing the complete member stiffness

matrix in the form of eqn. 3.53, it is necessary to alter the fourth
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element on the leading diagonal in the submatrix K,, (corresponding
1
to the end deformation f; ) by the addition of the coefficient

{%.Gldt %g}, in érder to reduce p, to its desired form.

Straight Beams

The definition of the stiffness sub-matrices in eqn. 3.60 is
equally applicable to straight members. However, in this case, the
member flexibility métrix G 1is that detailed in Appendix 2.3 and the
equilibrium matrix is derived from egns. 3.40 and 3.41 and takes the

following form:

1 0 ' L 0
| | I S
' I
0 1 | 0 0
E = —_— 3.62
0 0 1 0
— _ |
o _ usinh kl! o 1
, kcosh k& cosh k&

Alternatively, a direct derivation of the stiffness matrix
is now possible by solving the appropriate fundamental equations.
On passing to the limit r -+ =, egns. 2.69 and 3.51 are effectively

uncoupled and may be restated as

fiv - 2 " = P—t—- =
k<. £ I 0
W
3.63

M
and : n = —
. M YET
X

Clearly, the first of these independent equations has the same general
solution as eqn. 3.2 and enabies the individual components of end-

deformation fi, fi, fq, fé,‘ to be evaluated in terms of the end-loads
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Ty, By, Ty, By, only. Equating one of these components of
deformation to unity (while putting the others to zero) results in
four simultaneous equations, the solution of which provides the
stiffness coefficients in the column associated with the non-zero
deformation. By separately equating the remaining components to unity,
three more sets of simultaneous equations are formed from which the
remaining coefficients in .the stiffness matrix are determined
(Appendix 3.1).

However, in 83.2.1 the appropriate boundary conditions for
closed sections were shown to be ¢;, fy, ¢§, fé, and ideally a
solution is required in these terms. This has been achieved by
introducing the relationship between ¢ and £ (from eqn. 2.65) and
modifying the member stiffness matrix accordingly. The result is
presented in A.3.2 and may be combined with the familiar bending/shear
matrix in A.3.3 to form the full 8 x 8 member stiffness matrix for the
straight beam with four degrees of freedom at each end.

3.4.2 Transformation into System Co-ordinates

The member stiffness matrix and the corresponding force and
displacement vectors have so far been established with reference to
local co-ordinate systems (X;, z; and x5, z;), defined by the orientation
of the member ends. However, before individual stiffness matrices may be
assembled into‘a single stiffness matrix for the structure, these must
first be restated in terms of common system axes, here denoted x*, z*.

In the case 6f-straight members, the angle subtended between
local and system axes is the same everywhere along the beam and trans-
formation is relativel& simple. Héwever, for curved girders, not only
does the subtended angle differ at each end but the 'direction' of
curvature is once agaip a necessary consideration. The system axes
and the direction of positive rotation are defined in fig. 3.7 for both

types of curvature.



Negative Curvature

a. Postitive Curvature

Figure 3.7  Definition of Positive and Negative Curvature in System Axes
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Load and displacement vectors may now be expressed in
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system co-ordinates in the following way:

and

T, d,

T,d,

} 3.64
} 3.65

in which the transformation matrices T,, T,, corresponding to ends

1 and 2 respectively, are given by

B . | n ]
cosb l - sind : 0 0
sind l cosb : 0 0
T T o T Tt
0 | 0 0 1
L l | _
and
cos(p + B) } - sin(® * B): 0 ! 0 ]
— e — | o ]
sin(8 + B) l cos(8 * B)i 0 ; 0
Té== - T T 1 f 5
1
SO IR |
B 0 [ 0 | O [ 1_

By substituting for P> Py, d, d,, from eqns. 3.64 and 3.65 into
egqn. 3.53 and prermultiplying by the appropriate transformation matrix

from egn. 3.66, we obtain

-1 -1
P, T, KT, T KT d,
- -1
P T, 1T, LKL, | |4,

3.66
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in which, due to the orthogonal nature of both transformation matrices,

it is permissible to put

T
T 1 3.68

Therefore, eqn. 3.67 may be written more simply as

P = TKT.d = K 3.69
in which
T, 0
T = 3.70
0 T,

Assembly of the complete stiffness matrix for the structure
now proceeds in the usual way. First, the components of displacement
at the ends of the m members are expressed solely in terms of the n
nodal displacement vectors. In this way conditions of compatibility
are satisfied and the total number of unknown displacement terms is
reduced from 8m to 4m for the four degrees of freedom system being
considered here. Joint equilibrium is then ensured by equating all the
member end-forces meeting at a joint with the corresponding components
of applied load. This results in 4n load/displacement equations, which

may be expressed in the following general form:

*

p* = - K*.d*

3.71
in which K'is a Un x Hﬁ symmetrical matrix, often sparsely filled for

the type of structures béing considered, and consisting mostly of

elements grouped about the leading diagonal.

3.4.3 Support Conditions

As yet no account has been taken of the support restraints

and an infinite number of rigid-body displacements are possible.



- 148 -

Accordingly, the structure stiffness matrix is still singular in its
present form and must first be modified before a unique solution for
the joint displacements can be obtained.

It is apparent from egn. 3.66 that both the shear and bimoment
terms are only effective about the vertical y-axis and therefore remain
unaltered by the transformation into system co-ordinates. It follows
that restraint.of either vertical displacement or warping deformation at
a joint is simulated by removal of the appropriate row and column from
egqn. 3.71, in the usual way.

Complete rotational restraint about two orthogonal axes in the
horizontal plane or about one of the system axes may also be accommodated
in the analysis by a similar modification. However, in assemblages of
circular curved girders, rotation is commonly restricted about a local
member axis (e.g;.for torsional restraint only). In general this does
not coincide with a system axis and a more complex modification of egn.

3,71 is therefore required. Now consider the local member axes x, z, Shown

ote 2

in fig. 3.8, separated from the system axes xn, z by the angle 0.

The corresponding positive rotations ¢X, ¢z and ¢;, ¢z are related

in the following way:

o

¢x cos 8 - sin 6 ¢x
= 3.72
¢“ sin 8 cos 8 0
b4 - . z
from which, for restraint about the local z-axis (¢z = 0), for
example, we have
I - & ) 0 .
o ¢, - cot 3.73
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Px
' !
X:':
zh ’//,/)'f"¢z
Z
0
0 Y,
- ¢,
zl\

Figure 3.8 Rotations in Local and System Co-ordinates

By multiplying the column of the structure stiffness
matrix, corresponding to ¢i , by cot 6 throughout, and adding it
to that associated with the displacement ¢z, it is possible to
completely remove the original coiumn from the K* matrix together with
the term ¢i from the displacement vector d”. However, in order to
restore the rank and symmetrical nature of the stiffness matrix, the
corresponding row of K* and p* must now be similarly modified.

A solution for the rotation ¢z , together with the remaining
terms in the reduced displacement vector d* is then obtained by inverting
K* in the usual way. The only other unknown, ¢i, may now be determined
from eqn. 3.73 and, suﬁsequently, this enables all the member end-forces
to be evaluated in accordance with eqn. 3.69 (in system co-ordinates).

However, it should be noted that the multiplier cot 8 tends to

infinity for certain values of the subtended angle 6 and this can lead to

ill-conditioning of the structure stiffness matrix. This should therefore

only be used in the range:



- 150 -

and in other cases the same result is achieved by using the inverse
of egn. 3.73 and by alternatively removing the column and row associated

Y.

with the displacement term ¢;.

3.u4.4 Fixed-End Forces due to Uniformly Distributed Loads

Consider half of the circular curved girder, of total arc
length 2¢ = 2rg, built-in at both ends and subjected to uniformly
distributed shear and torsional loads of intensity p and t per unit
length, respectiveiy (fig. 3.9). At midspan (o = B) we know from
conditions of symmetry that Vo = T, = 0, although the quantities

B, My #0 are as yet unknown.

Figure 3.9 The Circular Curved Member subject to Uniformly
Distributed Loads p,t
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By considering equilibrium at z = r.a, the stress resultants

M, T and V are determined from the following equationms:

o

M = M, cosd + (pr? + tr). | sinX.dA
o
a o
T = 3 Mpysino 3 prz_ (1 - cosA).dA + tr cosk.dx » 3.74
o o
o
v = pr dx
o

.

After integration these simplify to

M = (M, - pr? 1 tr) cosad + (pr? t tr)
T = %My - pr? 3 tr) sind ¥ pra 3.75
'V = pra

from which, by putting o = B, the reactions at the built-in end are

obtained, thus:

My = (Ms - prZ ¥ tr)C + (pr? * tr)
Ty = F¥(Mp; - pr2 3 tr)S 3 pr? B 3.76
Vi = prB

The fixed-end bimoment is once again determined from
eqn. 3.17. By substituting for M, Ty, from eqns. 3.75 and 3.76,
respectively, and integrating over the length of the half-girder, we

have

By
_ 2 {(1-n) o SH _ »nr -
By = H + py(My - pr® 3 tr) [ T S o CH (C.CH-1)

3.77
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A general expression for B at z = r.a is now obtained by
introducing the various quantities from eqns. 3.75-3.77 into
eqn. 3.17. After integrating and simplifying this may be written

in terms of the variable angle G, in the following way:

SH 2; [(l-n) S SH]
= - — + - —— — = _ - -
B Bz{ch CH sh}_ H(My -pr<+tr ); < Tg T o sh-nr(c-ch)

+ —%EE—{Bkrsh + ch - %% sh - CH}
k"CH

in which the trigonometrical abbreviations are those previously

defined in eqns. 3.35 and 3.37. Finally, by differentiating this

expression with respect to z, the longitudinal distribution of warping

torsion, B', is given by

SH S SH
1 - — T — 2_'— - - —
B' = sz{——-CH ch sh}.+u(M2 pPréFtr) g [(l n) i nkr CH]ch
.7
+ n(s+krsh)§ ¥ %%{Bkrch + sh - % ch} 3.79

All the stress resultants have thus been expressed in terms
of the uniformly distributed applied loads, p, t, and the redundant
central forces Bo, My, only. In accordance with eqn. 3.4u4, these are

more easily written in matrix formation as

M c11 <12 13 Cly (M -pr2 F tr)
T €21 C22 €23 Coy By
- ' 3.80
2
B €31 €32 €33 c3y pr
B! cyl Ch2  Cu3 Cyy tr
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-

where the connection matrix is given by

— , _
c 0 ll £1
s 0 ,:E 0
C =
% C1(c-ch)+Cysh chtCs.sh | 2Cg{(Bkr+Cs)shich-CH}l 0 3.81
¢
7 (s+krsh)zkchCy -k (sh+Csch) xcsk{sm(skmcs)ch} 0 |
L

Here, the constant C6 is defined, in addition to those in eqn. 3.43,

as

= ¥
Ce = k2r.CH 3.82

From conditions of symmetry we know that both the warping
displacement and rotation due to bending are zero at midspan. This

yields two simultaneous equations of the form:

! 83U
v = — = 0
2 oM,
3.83
v oU -
and f, = 3B, = 0

from which the unknown quantities B,, M, may be established.
By expressing the total strain energy in eqn. 3.29 in terms of the
connection matrix coefficients, eqn. 3.83 may be alternatively written

as

8
0 2, 2 k2 2.1 2
eop2 2 - ‘ :
(My-pr +tr?[? Cr1tea 1t Teealt 5cu 2¢y1¢y 1|+ Pr? |i2cy1c13+C 803

o
k 1 X2 1
*opUes1csst reCuicu3TCy1C23 2103 | B2 C32C31% o Ch1Ch17Cy 2]

+ tr[jzclucli-] % .do =0



- 154 -

and
3.84
i 2
;(Mz-Prz-ttr)[kTCa.zCsﬁ %Cusz-CmCu;I +Pr2|:1<§03203 3t %642043"02301;2]
] .
+ By E%?cfé’r %-cé:l do = 0

which after integration and considerable simplification reduce to

) , SCr. _SH_fy_ 2krS
F (My-prs tr) 3%(12+1+un )+ —QE[Jz—lﬂm( 3-2n)]+un( 1-n Lrgn (l_ EES) _krsz%g] %

SH krs
+knC—H {l— —é—H—}.Bz;prz{Bc— gj2-5+unl——c% ~-BC- SH 5t BkrsS —g—g + ——S—ZJE Ftrsj2 = 0
krCH CH
and 3.85
SH 8 kSH 1 SH
+( - 2 — - kp— e § T 2. _— - — =
+ (My-pr? str) {kn CH[:l kr H } +Bz{urCH} FPrY. oo {B erH} 0

Eliminating the term B, from eqn. 3.85 enables the central bending

moment, M, to be evaluated in explicit form, thus:

trsz—prz[S(j2+l—un8kr.§—:) + CB(un-1)]
3.86

( My-pr27tr)

E_.z _ SCrso_q_ N _ _ » CH
2(] +1-un )+ > [§2-1~un(2n S)J un (1-nkrs “SH

Substitution éf'this result into either of egns. 3.85 provides
a solution for the only‘other unknown By, which, due to the complexity of
the statement, is best derived numerically. In this way, the various
stress resultants (from eqns. 3.75, 3.78 and 3.79) and the fixed-end
forces (from eqns. 3.76.and 3.77) may now be fully expressed in terms of

the uniformly distributed applied loads only.
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At this point it is of some interest to consider the force
system for a 'warpless' beam (MNeuber Tube’*) for which Iﬁ =0, n=20
andp = 0. On passing to the limit kr -+ =, we have
lim

2 olers2,9y-
(Mz—pr2$tr) = tr53°-pr [S(] +1) CB] 3.87

koo %—(j2+l) + %; (j2%-1)

a result which was first established by Pippard and Baker®® for
circular bow girders of solid section.

Graphical Presentation

A double format has been used throughout the subsequent
graphical presentation in which the left- and right-hand frames of each
figure represent the effects due to uniformly disfributed torsional and
shear loads, respectively. Each graph shows the variations in a
particular stress resultant with respect to either the included angle
of the member or the distance along the member; each of the plotted
lines represents'a different pair of values for the dimensionless
functions j2 and k. For clarity, the lines are only identified by
a symbol at their ends and the key provided in Table 3.3 is valid for
all figures (page 183).

The unknown central moment, M,, derived in edn. 3.86, and the
unknown central bimoment, By, obtained by substituting the numerical
value of M, into eqn. 3.85, are shown in figs. 3.10 and 3.1l respectively.
With My, B, thus determined, the fixed end stress resultants M;, By, T)
are easily derived from egns. 3.76 and 3.77 and are shown in figs.
3.12~-3,14, These are the nodal quantities required to represent
uniformly distributed loads in the stiffness analysis developed in

this chapter. The various graphs so far described cover a wide range
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of circular girders with included angles of up to 80° but are also
applicable to straight beams where 28 = o°.

In Figs. 3.10-3.14 the warping shear parameter u has been
equated to unity and the graphs therefore apply to open sections only.
Furthermore, the effects of changing u are difficult to predict since
the parameter not only appears explicitly in the various formulae but
is also included in the defiVation of the decay function k (eqn. 2.70).
Thus, in oprder to demonstrate the different response of sections with
closed parts, the various stress resultants Mo, Bo, Mj, By, T are
shown in figs. 3.15-3.19, respectively, for the typical value of
u = 0.5. While the bending and.torsional moments are in no way
independent of the warping shear parameter, the magnitude of these
stress resultants does not greatly differ with changing u. On the
other hand, the bimoment terms are influenced considerably, although
it would appear that a good approximation is given by the product of u
and the corresponding open section value of bimoment.

As the parameter k? tends to infinity, the significance of .
any bimoment tefms is reduced and the behaviour of the béam more
closely resembles that of a solid seétion. By assigning k& the
numerical value of 200, the magnitude of the various bimoments is
negligible (as can be seen in figs. 3.11, 3.13, 3.16 and 3.18) and
the various components of bending and torsional moments thus obtained
are essentially those for solid sections (as defined by eqns. 3.75 and
3.87). |

The distributioﬁ of bending moment, bimoment, torsion and
warping torsion along the half-beam are shown in figs. 3.20-3.23, for
p =1, and in figs. 3.24-3.27, for u = 0.5. Due to the extra parameter

involved, it is no longer possible to present the results for a wide
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range of included angles and only the results for 28 = 10° are given
here. The distributions of bending moment due to shear loading, shown
in figs. '3.20 and 3.24, are‘largely unaffected by variations in ény of
the dimensionless parameters j2, k¢ or u. However, this is not the
case for the bending moments created by torsional loads which are
clearly influenced by changes in all three. The distributions of
bimoment, shown in figs. 3.21 and 3.25 are relatively independent of
variations in j2 for both shear and torsional loading and, once more,
a good approximation of the effects of the warping shear parameter is
apparently given by the product of u and the open section value of
bimoment.

The distribution given in fig. 3.22 is the total torque
along the beam and in the case of open sections (p = 1) this comprises
both warping torsion (fig. 3.23) and St. Venant torsion. For all
values of j2 and kg the component of warping torsion is equal to the
total torsion at both the centre and support sections, while the
difference between figs. 3.22 and 3.23 represents the distribution of
St. Venant torsion along the beam. On the other hand, the distribution
of torsion shown in fig. 3.26 (for u = 0.5) is due entirely to the
resistive effects of the constant St. Venant shear flows created
around the closed parts of the section. That distribution shown in
fig. 3.27 is given by the first derivative of the bimoment and has no
torsional component, although it is numerically equivalent to the
product of p and the resﬁltant torque at both the centre and support
sections of the beam. . In figs. 3.23 and 3.27, for k& = 200, the
magnitude of the warping torsion is very nearly zero everywhere and

has therefore been omitted from the graphs for clarity.
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3.4.5 Fixed-End Forces Due to Concentrated Point Loads

Once again, consider the left-hand half of the circular
curved girder of total arc length 22 = 2rB, shown in fig. 3.28. The
member is built-in at both ends and subjected to concentrated shear
and torsional loads denoted PO and To’ respectively. The point of
application of these loads subtends an angle £ from the centreline of

the beam and the central forces My, Ty, Vo and By are as yet unknown.

28 = 2rf
T
<O Po(down)Lw™ "o
[ Lo
1 = 2
g |
a
7\ 3

=

/1

Figure 3.28 The Circular Curved Girder subject to Concentrated

Loads Po’ To
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From conditions of equilibrium at a distance z = r.o along

the beam, we have

M = Mpcosd * (TytPsr)sind * [( Toi—Por ) sin (&-§) ]
T =7 Mpsind+(TytPy) cosd F Por + [(ToiPor)cos(EFE)iFPo%]
vV =

FP, + [Po] 3.92

where the final terms in brackets are only to be included where a > £.
The fixed-end bimoment is derived as before (egn. 3.33) but with the

followed additional terms due to the modified distribution of bending

moment and torsion from egn. 3. 92.

uSH ”To
By = {Egn. 3.33 - QEE[:(TétPOr)COS(B'g) +Por] + oh sinh krg
B-¢)
. + : - : _
i (Td_Por) sin(B-£-1). sinh kr (B-A).dA 3.93

e}

where the first and second additional terms are due to the modified
fixed-end torsion, T, and applied torque To’ respectively. The final
expression represents the torsional effects of the modified bending
moment distribution, M, and should therefore only be integrated over

the range 0 < A < (B-g). After integration and rearrangement, egn. 3.93

simplifies to:

B = {Eqn. 3.33} - u(ToiPor) [(Eiﬂ) %%-cos(s—g) + nrsin(s—g)]

uP r

UT0 (1-n) o \
2 =27 ginh krg 3 g (nsinh krg - SH) 3.94

CH k
The general bimoment expression can now be obtained directly by
substitution of the various quantities from eqns. 3.92 and 3.9% into
eqn. 3.17, and is found to be similar to egn. 3.38 but with the following

additions:
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Additional terms

B =(Eqn.3.38) + in Bj cosh kro+ H-(T +P r cos(B-£)FP r)sinh kra

k o o o
from Eqn. 3.94

Ty

- —E—-sinh kr(a-B+E )+ %(TO’:POI") sin(B-£-1).sinh kr(a-A).dA 3.95

Here, the contribution of the applied torque is shown underlined and is
only to be included when o is in the range 0 < a < (B-£). Furthermore,
although the terms in the integral are not influenced by the position of

the section under consideration, the limits are different and should be

taken as
A = 0->a for 0 < a < (B-E)
and A o= 0> (R-E) for (B-E)< a < B

Eqn. 3.95 may be solved and rearranged to give, for 0 < a < (B-&)

_ _ (1-n)sh 3 —_ ]
B = {Eqn. 3.38} (T P _r) Pttt cos(B-£) + nrsin(a-f)
uTo (1-n) UPor [- . ]
+ T x sinh krg.cosh kraxiaﬁr nsinh krg&.cosh kra - sh 3.96
and for (B-£)< a < B
- (1-n)sh . Y ol
B = ¢Eqn.3.38 —u(TatPor) —if-Eﬁucos(B—g)-nr (cosh kr(B-£)~coshkra)sin(B-&)
) P rsh
1 . v Ssinh kr&.cosh kra o
- E;(s:mh kr(B-£)-sinh kra)cos(B-&) "o CH :]gt XCH
uT
_9 sh. - 3.97
+ CH sh.cosh kr(g-£)

The general distribution of forces along the beam are thus
defined in terms of the two applied loads P_, TO and the four as yet

unknown central forces My, T,, V, and B,, only. At this stage it is
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convenient to split the loading into two separate systems consisting
of either a pair of equal or a pair of equal but opposite half-loads
as shown in fig. 3.29. Each pair of loads is equally spaced about

the beam centreline and when superimposed these are equivalent to

the original load system.

~
al

SRS
=
A

General Loading System

AL AL
¥ | ¥
P /2 l l P /2
] ——— e 1 -
2 M_/2 M_/2 v

b. Symmetrical Components of Load

. AR AL y
’ 1
o b
MO/2 MO/2

e. Antisymmetrical Components of Load

Fig. 3.29  Symmetriecal and Antisymmetrical Components of Load

Considering the first component of load (fig. 3.29b), we know
from symmetry that the following boundary conditions exist at the beam
centreline;

Ty, Vo = 0 and vy, f5 = 0
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Therefore, for this arrangement, the total strain energy from egn. 3.29
may be expressed in terms of M, B, and the applied loads only

(since Ty, Vo, = 0). Furthermore, the two remaining boundary conditions
enable a pair of simultaneous equations to be established from which

M,, B, may be determined, thus;

' oU _
vp = _3-@ =0
3.98
' oU
and £ = = =0
2 3B,

For the case of asymmetric loading, shown in fig. 3.29c, the

appropriate boundary conditions at the beam centreline, are

Mz, B2 = 0 and ¢2, Vo = 0

and the remaining unknown beam forces T,, V, may now be obtained from

the following equations:

oU

by = 9T, = 0
3.99
_ 9y _
and v, = 2, = 0

The four unknown central beam forces have therefore been
established and the stress resultants may now be determined from
eqns. 3.92, 3.96 and 3.97 at any section along the beam. However, due
to the extreme complexity of the resulting equations the exact solution
has not been presented here in explicit form and is best obtained
numerically. Furthermore, the number of unknown parameters makes a
graphical presentation impracticable for the general case and such a
presentation will therefore be restricted to the most useful application

of centreline loading (& = 0).
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Central Point Loading

It is immediately apparent that the left-hand half of the
centrally loaded beam is identical to the fixed-end girder previously
considered in the derivation of the general flexibility matrix, fig. 3.4,
From conditions of symmetry we also know that the following boundary

conditions are valid on the centreline:

vo = 03 £, =0
. 100
To Po 3.10
and T, = 5 H Vz = >

In accordance with egn. 3.44 these conditions may be incorporated into

a pair of simultaneous equations in the following way:

T p
oU  _ v o 2 -
w—; = vy = f11.My + f12'—2_ + f13. 2'+ f14.Bo = 0
3.101
aU TO PO
t
Eﬁz = f2 = fy1.My + fuz.jf- + fh3‘ 7? + fMQoBz = 0
where f;, etc. are the flexibility influence coefficients detailed
in Appendix 2.1.
By eliminating the term B2 from eqn. 3.101, a solution for
the unknown central bending moment is obtained, thus:
P v T krS
M, = T [ []2 1+un(3- 2n)] + pun(l- n) (C.cH- l):l
Por
+ 5 (c-1)(1-pn) + un kr - (CH l)J DENOM} 3.102

where {DENOM} represents the denominator from eqn. 3.86,

derived previously for the case of uniformly distributed loads.
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A solution for the unknown central bimoment, B,, may also be obtained
by either eliminating M, from egns. 3.101, or by substituting M, from
eqn. 3.102 into one of egns. 3.101. Due to the complexity of the
expressions this is best achieved numerically.

Subsequently egn. 3,102 may be reduced to a form suitable for
solid sections in the same way as that for the uniformly distributed

loads (eqn. 3.87). This is achieved by passing to the limit kr = =,

thus:
. 52 s2
lim £T o (L - j32) + Por'{§-(l - 32) + (C - l)}
M, = —2 3.103
kp -+ B(52 + 1) + SC(32 - 1)

In its reduced form this expression for the unknown central bending
moment corresponds to that derived by Pippard and Baker®® for circular
bow girders.

Graphieal Presentation

The unknown central stress resultants My, Bo, evaluated
from egqns. 3.101 and 3.102 with p = 1, are shown in figs. 3.30 and 3.3l
respectively. By substituting these quantities into egns. 3.3l and
3.32 the fixed end forces M;, B;, T; for open sections may be determined
numerically and are expressed in figs. 3.32 - 3.34. The lines
represent the same values of j2, k¢ as used in figs. 3.10 - 3.27 for
uniformly distributed loads and are those given in Table 3.3. The
various central and fixed end forces My, By, My, B;, and T, are also
shown in figs. 3.35 - 3.39 for sections with closed parts (u = 0.5)
although the effects of intermediate values of p can usually be inter-
polated with sufficient accuracy.

The longitudinal distribution of bending moment, bimoment,
torsion and warping torsion can now be evaluated from egns. 3.30, 3.38

and 3.39 and are shown in figs. 3.40 - 3.43 for open sections (u = 1),
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and in figs. 3.44 - 3.47 for closed sections (p = 0.5). The comments
made during the graphical presentation of uniformly distributed loads
in §3.4.4 are equally valid here and once again it has only been
possible to present the results for a single included angle of

28 = 10°.

2 k& 200 10 3

0.005

0.020

X | ¥ | X

0.050

0.200

X |+ |> 06|03
< INIX D[

)Eg

1.000

Table 3.3 Key for Figs. 3.10-3.27 and Figs. 3.30-8.47
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CHAPTER 4

COMPUTER ANALYSIS OF THIN-WALLED STRUCTURES
INCLUDING THE EFFECTS OF WARPING

The generality provided by the stiffness method of solution
is an important characteristic especially in the analysis of structures
incorporating features such as changes of section, complex systems of
loading and support, curvature, skew and other irregularities. For
structures comprising thin-walled sections this has often necessitated
the use of finite element techniques since the familiar grillage method,
in its original form, only considers simple beam actions. However,
grillage theory has recently been applied to the analysis of open
section bridges by Reilly?C who has extended the stiffness formulation
to include the effects of warping restraint in stralght members. A
similar approach has also been employed by Heiderbrecht and Swift37,
Mallick and Dungar’? and Stafford Smith and Taranath®® in the analysis
of shear core structures which may be conveniently idealized as open
section tubes.

The development of the straight beam element in Chapter 3
permits the grillage method to be further extended to the analysis of
structures comprising closed members. This includes box girder bridges
and shear cores with large interconnecting beams. The parallel
development of a suitable curved beam element also provides the
opportunity for significant economies to be made in the analysis of
structures displaying curvature since considerably fewer elements are
generally required.

In the remainder of this chapter a computer program incor-

porating the stiffness formulation for these new elements is first
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described and then demonstrated in the analysis of two complex structures.
Subsequently, the errors introduced by either neglecting warping effects
or by idealizing curved members as one or more equivalent straight beams
are both investigated for the wide range of sections typically found in
practice.

4.1 THE COMPUTER PROGRAM

The stiffness approach adopted in the previous chapter is
essentially a computer-based analytical technique and is unsuitable for
hand calculation for even the simplest of structural configurations.
However, no existing grillage program was readily available that could
accommodate the extra degree of freedom necessary for the analysis of
thin-walled members without considerable modification. Furthermore,
most existing programs concentrate on the efficient solution of the
system stiffness matrix by taking bandwidth, symmetry, etc. into con-
sideration, although for the one-dimensional idealization proposed
here, in which full use is made of the more efficient curved beam
element, this procedure is no longer of primary importance. It was,
therefore, decided to write a more suitable computer program capable
of analysing complex structures of medium size in which curvature and
warping effects are fully considered.

4.1.1 Program Structure

A flow chart describing the structure of the computer program
is presented in fig. 4.1. In this chart the matrix terminology is that
previously used in Chapter 3 and defined at the beginning of the thesis.
The program consists of four major subroutines each containing several
of the computational steps identified in fig. 4.1. This is con-
venient for repetitive calculations such as formulation of the

individual member stiffness matrices, transformation from local to
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system co-ordinates, assembly of the system stiffness matrix, etc.,
and enables each subroutine to be developed separately and checked
thoroughly before use.

The program language is Fortran IV and thus the first step
is to assign limiting dimensions to the various arrays. Input data
describing the structural configuration and the geometrical and material
properties of the constituent members is then read into store, and also
immediately output as a checking procedure. The format of all the
input/output data together with the various options available are
described in more detail in §4.1.2.

Before proceeding further, the system stiffness matrix, K*,
and the load vector, p*, are set to zero. This is in preparation for
the addition of the individual member coefficients which are calculated
in accordance with §3.4.1 in one of the subroutines. A different
subroutine is used depending on whether the member is straight or
displays either positive or negative curvature, althOugh the resulting
member stiffness matrix must be transformed into system co-ordinates
(53.4.2) before assembly.

When the system stiffness matrix is complete, appropriate rows
and columns are removed or modified in order to take account of the
various system restraints. This procedure is detailed in 8§3.4.3 and
is necessary to make K% non-singular before solution is possible. The
NAG subroutine FOlABT has been used for inversion and this is readily
available in most computer systems. It provides an accurate solution
for any set of real, symmetric, positive definite linear equations
expressible in the form Ax = b. The routine uses Cholesky's method
to decompose A into triangular matrices, such that A = LE, where L

is the lower triangular matrix. An approximation to x 1s found by
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forward and backward substitution. This enables a residual matrix

r = b - Ax to be evaluated and a corpection matrix to be aetermined from
the solution of LLY . d = r. The original solution of x is then
replaced by (x + d) and the process repeated until full machine accuracy
is achieved. Whereas the problem is specified in terms of single
precision variables, double precision inner-products are used throughout
the calculation. Furthermore, only one additional vector of the same
size as x is required for working space although no account is taken of
band width in order to reduce the total storage requirement.

The program, in its existing form, can accommodate two different
types of loading. Firstly, bending moment, torsion, vertical shear and
bimoment may all be applied as concentrated loads at the nodes in the
usual way. This is only satisfactory for the application of uniformly
distributed loads if a large number of elements is used, in which case,
the loading may be idealized into a series of equivalent point loads.
However, one of the main justifications for using curved beam elements
is that fewer are generally required, and for this reason a second
method of specifying loading has also been made available. This
facility is provided by a special subroutine which calculates the
fixed~end stress resultants, in accordance with §3.u4.4, for both shear
and torsional uniformly distributed loads., It then transforms them
into system co-ordinates and applies them as nodal forces.

When assembly of the system load vector p* is complete,
removal or modification of particular coefficients can take place to
account for the various system restraints. By pre-~multiplying the
resultant vector by the previously inverted stiffness matrix, Kéwl, a
unique solution is obtained for the vector of system deformations, The

individual terms from this vector may then be substituted back into the
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transformed member load/displacement equations to provide all the un-
known member end forces.

Solas not to discourage the use of long beam elements in the
initial structural idealization, a further output subroutine has been
included in the program. By taking the values of the fixed-end forces
for each member, the magnitude of the various stress resultants can be
calculated at any number of intermediate positions by using eqns. 3.75
and 3.78. This is a useful routine and provides as much information
on the longitudinal distribution of forces as is required.

Finally, with the major part of the computational effort going
into setting up and solving the system stiffness matrix, K?—l, this
may be stored and subsequently used for the solution of any additional
load cases. This is an important feature of all stiffness methods
and is particularly useful in bridge analysis when many different com-

binations of lane load must be taken into consideration.

4,1.2 Input/Output Data

Due to the complex configurations of structures for which this
program is most suited, and to the relatively coarse idealization
facilitated by the development of the circular curved beam element in
Chapter 3, automatic data generation is inappropriate and has not been
included in the progran. The necessary input data are punched on
standard 80-column cards with the fixed format described in Table 4.1.
All the integer parameters are set on the first card, thus defining the
size of the various arrays and the storage necessary for solution.
There then follow /4, M, NCR, NL and NUDL cards specifying the node
angles, member designation and properties, restraints, point loads and
uniformly distributed loads, respectively.

The exact format of the generated output is not important but

comes. under the following subheadings:



Parameter Description Format
4 Number of members
(]
¥
8 N Number of nodes
@
F‘:
f‘j NCR Number of system restraints
a,
£ NL Number of concentrated loads 6I1l0
o
%0
3 NUDL Number of uniformly distributed loads
£
[as]
NS Number of sections between nodes at which generalized
forces are to be calculated (only if HUDL # 0)
-, : Tangential angle (in radians) of structure at each node
4 4| caMMA (1) |point. If two straight members meet at a node this 4F20.15
g.ﬂ value is not used
NODEL (I) |Node number at end 1 of member (I)
2I10
NODEZ2 (I) |Node number at end 2 of member (I)
= ANGLE (I) { Angle subtended by straight member (I) in system co-
G = ordinates at end L. This value is not used if member F12.9
§.'_4» (I) is curved.
4&1':‘ RADIUS (I) | Radius of curvature (or length if member (I) is 9.3
EO\-/ Straight) *
o
29
A o EIX (I) Bending stiffness of member (I)
[
,é qoci GID (I) Pure torsional stiffness of member (I) 3E15.4
a £
e EIW (I) Warping stiffness of member (I) -
uM (I) Warping shear parameter of member (I) F10.8
NODENO (I) | Node number of restraint (I)
= NOTYPE (I) | Type of restraint (I) i.e. 1 = Bending rotation
s 2 = Torsional rotation
5= 3 = Vertical deflection
© - 4 = Warping deformation 3110
N
8 | NTYPE (I) |oOnly required when NOTYPE(I) = 1 or 2. If NTYPE(I)=0
o then restraint is in system co-ordinates; if NTYPE (I)
= 1 then restraint is in member co-cordinates (and
the value of GAMMA (NODENO (I) is used).
@3 | LOADNO (1) | Incorporates node position and load type, Z.e. LOADNO(I)
g = = (4 % node number + load type) of load (I), where load | I10
S e type 1, 2, 3 or 4 is equivalent to moment, torsion,
2 shear or bimoment, respectively.
e
© C | PLOAD (I) |Numerical value of concentrated load F20.10
-r% é MEMNO (I) |HMember reference number subject to loading 110
o =
= | TLOAD (I) |Uniformly distributed torsional load
au |. 2F20.10
o = | PLOAD (I) |[Uniformly distributed vertical shear load

(

Table 4.1 Description of Input Parameters
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(i) Member designation and properties

(1i) Concentrated loads

(iii) Uniformly distributed loads

(iv) Deflections in system co-ordinates

(v) Deflections in local co-ordinates

(vi) Fixed-end forces in local co-ordinates

(vii) System restraints

(viii) Distribution of stress resultants between nodes

An option exists for suppressing either (iv) or (v) while subheadings
(ii), (iii) and (viii) are only printed out when the integer parameters
NL, NUDL and NS, respectively, are not equal to zero.

The NAG subroutine described in §4.1.1 for inverting the
system stiffness matrix also incorporates a checking procedure which
outputs a failure message in case of error. A Type 1 error is caused
by the matrix not being positive definite (possibly due to rounding
errors), while a Type 2 error indicates that the refinement process
fails to converge in which case the stiffness matrix is ill-conditioned.

The second type of failure has frequently occurred during the
development of this program when one or more of the idealized members
possesses a relatively low warping stiffness. In such cases, the
dimensionless parameter k& is usually large, and this results in a very
small coefficient on the leading diagonal of the system stiffness matrix
corresponding to the bimoment term of the affected member. When
this occurs either the beam elément length must be reduced or fhe
offending row and column must be removed entirely from the stiffness
matrix. In the latter case this is equivalent to only considering
the original three degrees of freedom for the particular member although

it has the additional effect of providing full warping restraint

to the adjacent members.
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4.2 BIFURCATED BRIDGES

Elevated highway structures in urban areas are invariably
complicated by the presence of bifurcated junctions, decks of high
curvature, irregular systems of support and wide side cantilevers.
However, it is by no means obvious which analytical methods provide the
most efficient structural solution in terms of accuracy, computer time
and overall cost, and there is little experimental evidence available
to form the basis of a meaningful comparison.

In 1968, a joint Ministry of Transport Engineering Section/
Road Research Laboratory committee was established to investigate the
special structural problems assoclated with elevated highways. With
the eventual aim of providing a comprehensive suite of computer programs,

the committee recommended the testing and verification of analytical

techniques as and when they became available. This work was further
divided into four separate classifications!?, namely
(a) Comparison of analytical techniques with results of model

tests on quadrilateral decks. Three types of deck were
to be considered:

(i) solid reinforced concrete slabs,

(ii) voided reinforced concrete slabs, and

{1i1i) stiffened composite steel and concrete decks.

(b) Comparison of analytical techniques with results of tests on
four idealized, small scale, bifurcated bridge models in the
linear elastic range. The four alternative forms of con-
struction were as follows:

(1) prestressed concrete spine beam construction,

(1i) ©prestressed concrete multi~cellular construction,
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(iii) composite steel and plate girder construction, and

(iv)  composite steel and concrete box girder construction.
(c) Comparison of analytical techniques with results of tests on

four large scale microconcrete and steel bifurcated bridge

models. The forms of construction were those previously

investigated in phase (b), and each model was to be tested

up to and beyond working load and eventually to failure.
(d) Assessment of the results from the first three phases and

user testing of selected programs. |

The elevated road junctions modelled in phases (b) and (c)
did not correspond to existing structures but were defined by the general
arrangement shown in fig. 4.2. In order to avoid unnecessary duplication
of loading equipment, the same planform was used for all the models in
each phase, although only the prestressed concrete spine beam option is
discussed here in detail.

4.2.1 Description of the Spine Beam Models

The elastic response of the idealized bifurcated bridge was
adequately represented for the purposes of phase (b) by a 1/50th scale
indirect model. This was manufactured from an araldite/sand mixture
and the construction and testing are described in detail by Billington
and Dowlinglzala’lu. However, in order to repreéent more closely the
inelastic behaviour of the structure in phase (c) a larger direct model
was necessary, plate 4.1. This alternative form of construction is
described by Waldron, Pinkney and Perpyll1:112, The constituent
materials of the full scale structure were accurately modelled using
microcdncrete, welded steel mesh reinforcement and small diameter pre-
stressing strand, and size effects were largely avoided by selecting

a l/l2th scale 110,



Figure 4.2

Full Scale Plan Dimensions of the Bifurcated Bridge
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Plate 4.1 The Microconcrete Bifurcated Bridge Model
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Since the general arrangements of the two spine beam models
are essentially the same, only the dimensions for the larger model are
presented in fig. 4.3; those for the indirect model may be obtained by
simple geometric scaling. The layout is typical of many urban motorway
bridges and basically represents part of an elevated roundabout with an
associated slip road. It incorporates many common features such as
high member curvature and wide side cantilevers, and consists of a twin
cell ﬁox girder bifurcating into two separate boxes of single cell
configuration. The structure is continuous over three central supports
while only torsional restraint and slmple support are provided at the
three ends. Distortion is adequately prevented by diaphragms
positioned at each support and, with the exception of the larger of
the two outer single cell girders, at intermediate points along each
span. Frequent changes of cross-section also occur within the spans,
particularly due to local thickening of the bottom flange at internal
supports. The dimensions of v;rious typical cross-sections are
shown in figs. 4.4 - 4.7,

Loading Arrangements

The following forms of loading were considered:

(1) self weight

(ii) uniformly distributed load
(iii) settlement of supports
(iv) HB vehicle loading

(v) knife-edge loading

(vi) point loads.

Provision was made in the design of the loading rig for the first three
conditions while the remainder were more conveniently simulated by

externally applied loads. Only conditions (i), (ii) and (vi) are
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considered in the subsequent analysis and, therefore, discussion
regarding the possible positions and methods of application will be
limited to these forms of loading.

Similitude requirements, which are discussed more fully
elsewherellz, show that the primary effect of structural modelling is
to reduce the self weight stresses by a factor corresponding to the
reduction in scale. The density of the material used for model con-
struction must therefore be increased accordingly although, in practice,
this is more easily achieved by applying additional dead weight in the
form of permanent applied load. Furthermore, by idealizing the addi-
tional weight as a uniformly distributed load, it has been possible in
this case to use the same loading facilities for applying both dead
and live load.

For this purpose the plan area of the model was divided
into the fourteen sectors shown in fig. 4.8. These are each one
carriageway wide and generally one span in length. Each sector was
loaded by a separate hydraulic jack reacting against the laboratory
floor, the load being transmitted uﬁiformly to the slab by a complex
system of spreader beams. The additional self weight was also applied
through the spreader beam assembly but was provided by concrete blocks
permanently connected at convenient points throughout the loading
system.

4,2.2 Structural Idealization

The results from the load tests on the l/SOth scale model

are readily available and will be used to verify the application of the
proposed analytical method to complex bridge structures. Apart from

the reduction in scale, this model only differs from the microconcrete



Figure 4.8 Lane Positions for Uniformly Distributed Loads
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model described in §4.2.1 in some minor respects. These include the
following:
(1) bottom fillets are provided in each cell in addition to those

. shown in figs. 4.4 - 4.7,

(ii) the cantilevers have no edge beams;

(1ii) the bottom flanges are not locally thickened at the internal
supports;

(iv) intermediate diaphragms are not provided in the three outer

spans; and
(v) the layout of webs at the bifurcation differs as is shown

in fig. 4.9.

The geometrical properties of the three main cross-sections
have been calculated in accordance with §2.3 and §2.4, and then re-
calculated to include the effects of curvature as detailed in §2.4.4
and Appendix 1. The computer pr'ogr'am85 previously described in §2.5.2
has been used for this purpose and the results are tabulated in Table 4.2.

In this table the co—ordinates of the centroid = have been measured

c* Ya»
from the intersection of the top flange and the web nearest to the centre
of curvature. This centroid position is then taken as the origin in

the determination of the co-ordinates Ros Yoo defining the shear centre.
In the subsequent computation of the parameters j2 and k%, the values
assumed for Young's modulus of elasticity and Poisson's ratio are those
determined by Billington and Dowling!Z and given by

E = 1.72 % 10% N/mm?

and v 0.26
The structure has been idealized for the purposes of analysis

into two straight beam elements and sixteen circular curved beam

elements, as shown in fig. 4.10. The designation and radius of
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Figure <£.9 Plan of Bifurcavea Span of the 1/50th Scale Model
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Twin Cell Small Single Cell Large Single Cell
Quantity; Units Straight Curved Straight Curved Straight Curved
Xa mm 91.u43 86.72 22.68 21.82 53.70 51.31
Vo mm -19.63 -19.63 -18.18 -18.02 -20.53 -20.54
Xg mm - 1.54 - 4.03 1.70 2.81 - 1.56 - 2.06
Vs mm - 5.86 - 5.77 1.51 1.58 - 5.97 - 5.93
I mm* 0.224 x 107 0.224 x 107 0.113 x 107 0.112 x 107 0.198 x 107 0.197 x 107
I, mm 0.275 x 108 0.275 x 108 0.339 x 107 0.339 x 107 0.124 x 108 0.124 x 108
xy mmn®  1-0.121 x 10® | 0.275 x 10° | 0.599 x 10° | 0.860 x 105 | -0.969 x 105 | -0.5u44 x 104

I, mn* | 0.473 x 107 | 0.478 x 107 | 0.100 x 107 | 0.989 x 105 0.3u4 x 107 | 0.345 x 107
I, mm* 0.100 x 108 0.999 x 107 | 0.137 x 107 0.135 x 107 0.526 x 107 0.526 x 107
I, mm® | 0.354 x 10!0 | 0.3u7 x 1019 | 0.215 x 10° 0.213 x 10° 0.770 x 10% | 0.775 x 10°
v - 0.9998 0.9999 0.9991 0.9981 0.9996 1.0000
u - 0.5270 0.5215 0.2701 0.2674 0.3460 0.3441
32 - 0.8379 0.8468 0.3512 0.35u43 0.689u 0.6949
k? mm 2 | 2-79% x 107% | 2.851 x 107% [ 4.985 x 107% | u.982 x 107%| 6.134 x 107%| 6.079 x 107%

Table 4.2  Geometrical Properties calculated for the 1/501;;2 seale Bifurcated Bridge Model -

- hee -
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curvature of the various members, together with the tangential angle
at each node point, are given in Table 4.3. Details of the different
components of structural stiffness aésigned to each member have been
determined from Table 4.2 and are presented in Table 4.4.

The bifurcation has been modelled by connecting the circular
curved members 5, 8 and ¢ to a cross-beam represented by the two straight
members 6 and 7. In ofder to make this simple idealization more
effective, the straight members have been assigned the relatively large
bending and torsional stiffnesses detailed in Table 4.4. This effect-
ively prevents deformation of the cross-bean (but not rigid-body dis-
placements), thus ensuring that the full bending and torsional moments
are transmitted between the ends of the circular curved members. At the
same time, it is important that the cross-beam should not provide sign-
ificant warping restraint. For this reason, only a very small value
of the warping shear parameter, u, has been specified for these members.
However, this has the effect of reducing the numerical value of the
dimensionless decay function k& and can lead‘to ill-conditioning of the
members 6 and 7 is also reduced by a similar degree. The final values
of k& for all the idealized members are given in Table 4.5.

4.2.3 Loading Idealization

The facilities provided in the computer program for applying
load are detailed in §4.1.1. These are basically the application of
concentrated loads at nodal points, or uniformly distributed shear and
torsional loads over the length of an idealized beam element.

In the subsequent investigation, analytical and experimental
results will be compared for fourteen cases of uniformly distributed
load. These represent all the lane positions shown in fig. 4.8. In

addition, one point load will also be considered; this is positioned as



- 227 -

Tangential Angle (radians)

Member Radius (mm)
Ref.No.| "End 1 { End 2 End 1 End 2 (or length)
1 1 2 0.9330019202 | 0.7271952314 1351.57
2 2 3 0.7271952314 | 0.5213885427 1351.57
3 3 m 0.5213885427 | 0.3155818540 1351.57
m m 5 0.3155818540 | 0.1577909270 1351.57
5 5 6 0.1577909270 0 1351.57
6 6 7 |-1.5707963270 |-1.5707963270 (37.27)

7 6 8 1.5707963270 | 1.5707963270 (83.75)

8 7 9 0 -0.1452077429 1314.30
9 8 10 0 0.2366863905 1606.68
10 9 11 |-0.1452077429 |-0.3630193571 1314.30
11 10 12 0.2366863905 | 0.4733727811 1606.68
12 11 13 |-0.3630193571L |-0.5808309714 1314.30
13 12 1y 0.4733727811 | 0.6473398681 1606.68
14 13 15  [-0.5808309714 |-0.7955648332 1314.30
15 14 16 0.6473398681 | 0.8213069551 1606.68
16 15 17 |-0.7955648332 | -1.0102986950 1314.30
17 16 18 0.8213069551 | 0.9952740422 1606.68
18 17 19 |-1.0102986950 | -1.2150325569 1314.30

Table 4.3 Member Designation, Orientation and Radius of Curvature
EI_ G, ET,
Ref. Nos. (N.mm?2) (N.mm?2) (N.mm") u
1-5 3.853 x 1010 | 3,228 x 10'% | 6.089 x 10!3 | 0.527
9-17 (odd) 1.9u4 x 1010 | 6.825 x 107 | 3.800 x 10'? | 0.270
8-18 (even) | 3.u06 x 10'% | 2.3u8 x 10'% | 1.324 x 10'® | 0.3u6
6, 7 1.000 x 10'2 | 0.750 x 10'2 | 1.000 x 10'° | 0.010

Table 4.4 Structural Properties assigned to

each Member
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lMember Arc Length Decay Function

Ref. No. (mm) k2

1, 2, 3 278.2 4.65
4, 5 213.3 3.57
6 37.3 0.10
7 83.8 0.23
8 : 190.8 4.73
10, 12 286.26 7.09
14, 16, 18 277.8 6.88
9, 11 380.3 8.49
13, 15, 17 279.5 6.25

Table 4.5  The Decay Function, k&, for

each Idealized Member

indicated in fig. 4.9. This corresponds to load case number 54 in
the model test for which results are readily availablel!“. However,
since there is no provision for applying either a point load within the
length of a beam element or a uniformly distributed load over part of a
beam element, an additional node (point 9) has had to be located in the
bifurcated span. This is positioned at the point of application of
load case number 54 in order that the eccentric point load can be
replaced directly by a vertical shear load and a concentrated torque.
Node point 9 also coincides with the end of the half lane (lane number 7
in fig. 4.8) and enables this lane load to be represented by a uniformly
distributed load applied to members 10 and 12 only.

For each of the fourteen cases of lane load it is also
necessary to determine the effective eccentricity in order to reduce

the uniformly distributed load into its shear and torsional components.
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Figure 4.11 Element of Circular Curved Lane Loading

Consider the element of lane loading shown in fig 4.11, subtended by

the central angle 0. The radius of curvature of the incremental sector
dr is denoted by r, and the inner and outer radii bounding the element
are defined as r; and rp, respectively. The plan area of the entire

sector is then given by

>
"
INTRo)

(rZ - r%) 5.1

while the arc length of the idealized beam element of radius ro is

evaluated from

L =r .0 L,2

By dividing the total lane load by the combined arc length of
the idealized beam elements over which the load is applied, the component
of uniformly distributed shear load is obtained directly. Alternatively,
this may be expressed in terms of eqns. 4.1, 4.2 and the applied

pressure, q, thus:



However, before the torsional load can be determined, the radius of the
effective centre of action, R, must be established for the uniformly

loaded beam. This is calculated from the following expression:

Ty
R.A = [ r? 0. dr (TopT!

Ty

which after evaluation of the integral and substitution for A from

egn. 4.1, gives

, (3 - )
R =% | 4.5
(r3 - rf)

This then enables the torsional component of uniformly distributed
load, t, to be expressed in terms of the shear component, p, in the
following way:
t=p. (ro - R) 4.6
The loading required to represent each of the fourteen lane
load cases is detailed in Table 4.6, This has been evaluated for each
lane by introducing into egns. 4.1 - 4.6 the total load applied in the
model test (given in column 2 of Table 4.6), together with the appropriate
inside and outside radii of the loaded area, etc.. The remaining load
case consists of a point load of 225.5 N applied at an eccentricity of
52.5 mm on the centreline of the inside web at the section identified
in fig. 4.9, This is equivalent to applying a point load of 225.5 N
and a concentrated torque of 11838.75 N.mm at node 8 of the idealized

structure.

4.2.4 Structural Analysis

The longitudinal distributions of the various stress resultants

are shown in figs. 4.12 - 4,17 for the fifteen load cases previously



Lane Total Lane Lane Area Pressure Beams Radius of Effective Eccen- P +

Load No. Load (N) (mm?2) (N/mm?2 x 1073) Loaded Action (mm) tricity (mm) (N/mm) (M)
1 411.2 55 879 7.359 1, 2, 3 1257.34 9u4.23 0.4928 ho.uh
2 423.6 59 080 7.170 1, 2,3 1329.33 22.24 0.5076 1 11.29
3 436.1 62 280 7.002 1, 2,3 1401.31 -49.74 0.5226 | -25.99
4 Lby7.2 65 481 6.829 1, 2, 3 1473.29 -121.72 0.5359 | -65.23
486,8 81 129 6.000 4, 5 1257.3y 94.23 0.4018 | 37.86
8, 10, 12 1257.34 56.96 0.4132 | 23.53
6 500.6 85 776 5.836 4, 5 1329.33 22.24 0.4132 9.19
8, 10, 12 1329.33 -15.03 0.4249 | -=6.39
7 255.9 43 966 5.800 10, 12 1401.31 -87.01 0.4451 | -38.73
8 505.1 87 763 5.755 L) 1401.31 ~-49.74 0.5031 | -25.02
9, 11 1641.26 -34,58 0.4232 | 14.63
9 503.4 86 9u5 5.790 4, 5 1473.29 -121.72 0.4839 | -58,91
g, 11 1569.28 37.40 0.4071 | -15.23
10 417.0 57 398 7.265 14, 16, 18 1257.34 56.96 0.5003 | 28.50
1l 430.8 60 685 7.099 14, 16, 18 1329.33 -15.03 0.5168 | =-7.77
12 buy.u 63 973 6.300 14, 16, 18 1401.31 -87.01 0.5296 | -46.08
13 435.,2 61 664 7.058 13, 15, 17 l641.26 -34.58 0.5190 | 17.95
iy 42n.1 58 958 7.193 13, 15, 17 1569.28 37.40 0.5058 [ -18.92

Table 4.6

Idealization of Lane Loading into Components of Shear and Torsional Uniformly Distributed Load

- Teg -
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described in § 4,2.3. To facilitate the plotting of results, the
structure has been idealized as three straight members connected at
the bifurcation.

In general, the effects of lane loading on the three outer
spans disappeared rapidly at points distant from the loaded span.
Accordingly, the results due to loading lanes 1-4 and 10-14 have only
been plotted as far as the bifurcétion, and the resultant distributions
of bending moment, torsion and bimoment for these load cases are shown
in figs. 4.12, 4,14 and 4.16 respectively. However, since the single
point load and the remaining lane loads 5-9 were all applied within the
central span, the longitudinal distributions of the various stress
resultants have been plotted over the entire structure and are
presented in figs. 4.13, 4.15 and 4.17.

Comparison with Model Results

Extensive instrumentation was a feature of all the bifurcated
bridge models and primarily consisted of surface gauging with electrical
resistance strain gauges. In general, these were closely spaced around
a number of important cross-sections throughout the models, on both the
inside and outside faces. This enabled the recorded strain to be
separated into its component parts and also provided the transverse
distribution of the various components around each of the selected
sections.

Since the gauges were all monitored by an automatic data
logging system, results were readily accessible for later processing by
computer and have, in the case of the l/SOth Scale models, been output
in a more useful form as components of stress. Consequently, before
the results of the analytical study could form the basis of a meaningful

comparison, they also had to be presented in this way. This was
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achieved by introducing into eqn. 2.82 the appropriate values of the
geometrical properties, obtained from Table 4.2, and the stress
resultants, determined in the computer analysis.

Only one cross-section is presented here for each load case
and this has invariably been selected to coincide with a fully gauged
section. For lanes located in the outer spans, the centre of the loaded
span has been used, while for the point load and for the remaining lane
loads in the bifurcated span, the selected section is the gauge section
identified in fig. 4.9.

The transverse distributions of direct stress due to loading
lanes 1 - 14 are preéented in numerically ascending order in figs. 4.18 -
4,31, In addition, the results due to the eccentric point load at node 9
are shown in fig. 4.32. In all these figures, hatching represents
the distribution of direct stress determined from the computer solution
whereas the circles are point estimates recorded during the model
testl3s1h,

There is, in general, very good agreement between the analytical
and experimental results, but with certain noticeable exceptions. In
particular, the direct stresses predicted by the computer program for lane
load 4 are approximately 50% higher than those obtained from the model
test. The two distributions shown in fig. 4.21 are, however, very
similar in shape and both apparently take account of the eccentric
positioning of the load. Table 4.7 has been prepared in an attempt
to try and establish the reasons for this and other less significant
discrepancies. In this table the computed bending moment for each
load case is compared with that determined from the test results at the

appropriate cross-section. While the magnitude of the bending moment
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Bending Moment
(N.mm x 10%)

Load Model Computer
Case Test Analysis
1 39.20 35.19

2 34.99 34.98

3 32.69 34,71

L 22.80 34,25

5 62.94 50.58

6 52.80 46.16

7 24,20 19.78

8 46.26 39.26

9 43.90 36.50
10 37.27 34.62
11 35.66 34.05
12 27.17 33.14
13 26,75 31.67
14 34.58 34,60
Egigt 46 .04 49,145

Table 4.7  Comparison of Bending Moments
determined from the Computer Analysts
with those from the Model Test

is readily available from the cémputer analysis, this quantity can only
be approximated in the case of fhe model test results. For this purpose,
the direct stresses recorded in each of the flanges were averaged,
multiplied by the appropriate lever arm and flange area, and then summed

together. The bending resistance provided by the web elements was also
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estimated, the neutral axis being well defined by the points of zero
strain.

Despite the simplifying assumptions in these calculations, the
bending moments associated with the first three load cases compare very
favourably with those from the computer analysis. However, the total
bending moment induced in the model by loading lane 4 is significantly
lower and, in view of the similarity of loading intensity with load
cases 1 - 3, this would suggest that either the loading arrangement
or the instrumentation in the model was at fault.

A similar, but less severe, discrepancy in the calculation of
bending moment is alsé evident at the centre section of the other two
outer spans, DE and FG. These are represented by lanes 12 and 13 in
Table 4.7 and are similar to lane 4 in that they are also positioned on
the outside curve of their respective spans. Once again, no convincing
explanation can be offered for this behaviour although the hogging
moment over the adjacent internal supports appears to show a corres-—
ponding increase for these particular load cases.

For the five cases of uniformly distributed load in the central
span, the results from the computer analysis were consistently 15% less
than those calculated for the model. Nevertheless, the moments obtained
for the point load compare favourably with each other and would seem to
discount the possibility of incorrect member stiffness or material
properties being used.

Despite these variations in the absolute values of the stress
resultants, the similarity in shape of the stress distributions from
the computer and model results is encouraging. Although this structural
configuration is not highly susceptible to the creation of warping

restraint stresses, the profile of direct stress due to bimoment effects
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is well established and is particularly noticeable in the wide side
cantilevers. ' Unfortunately, without gauge elements on the cantilever
tips this distribution cannot be verified, although this will be possible
when the results from the l/thh scale microconcrete model become
available.

4.3 A CONTINUQUS ROAD BRIDGE OF COMPOSITE CONSTRUCTION

The effectiveness of the computer program developed in §4,1 is
further demonstrated in the analysis of a composite road bridge. Vhile
this is not an existing structure, nor one for which model test results
are readily available, it has already been used by several authors to
verify methods of analysis relating to curved, thin-walled séction352’53’103.
In addition to providing a useful check and means of comparison with
existing analytical approaches, this structure is also used extensively
in §4.4 during the evaluation of errors introduced by neglecting the
effects of curvature, warping, etc..

4.3.1 Description

Konishi and Komatsu®? originally proposed the layout and cross-
sectional configuration of this structure which represents a three-span
bridge carrying two traffic carriageways. Continuity is maintained
over two central supports and torsional restraint is additionally
provided at the free ends. An angle of 64° is subtended by the
circularly curved central span and the arc length along the centreline
of this member is equal to the length of the two straight outer spans.

A constant cross-section is assumed throughout which, together with a
plan of the structure, is shown in fig. 4.33. Distortion of the twin
spine single cell section is prevented by adequate vertical cross bracing
between the individual spines and the concrete fop flange is assumed to

act compositely with the rest of the section.
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33.527 m

a. Plan

r 3352.5 carriageway width q;

152.4 |

1631.2

}12.7 ,/'f::
69.85 | | ! _Jl_69.85
1289.0 1231.9 Ius1.4

b. Typical cross—section

Figure 4,33 Continuous Road Bridge of Composite Construction



- 260 -

Cross—sectional Properties

Thelgeometrical properties of the section are listed in the
original papers by Konishi and Komatsu®2533 and evidently take account of
the effects of curvature in the central span. These properties have
been used directly by Takaba and Naruokal!®3 and are presented here in
Table 4.8. However, insufficient information has been made available
to check these quantities exactly particularly with respect to the
effective modulus of elasticity assumed for the concrete. There is
also an apparent inconsistancy between the value of the shear modulus
of steel adopted by Konishi and Komatsu (8.00 kg/cm?) and that adopted
by Takaba and Naruoka (7.88 kg/cm?).

Nevertheless, by assuming an elastic modular ratio of 7 and
by neglecting the additional shear capacity provided by any horizontal
cross-bracing between the spines?%, the geometrical properties have been
re-calculated for both the straight and curved sections. These results
are also presented in Table 4.8, The computer program developed by
Pinkney85 has been used for this purpose and while all the important
properties compare very favourably for the straight section, the values

of I, and I. are underestimated by approximately 5% and 12%, respectively,

d w
when curvature is taken into consideration. Furthermore, Konishi and
Komatsu have not adopted the concept of the warping shear parameter, u,
and have therefore neglected the interactive effect of the shear forces

due to the connectivity condition of the closed cell.

Loading Conditions

In the original investigation352°53’103,a point load of 1 tomne
was successively applied at the centre of each span on the centreline and

on the extreme inside and outside edges of the carriageway (at an
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Konishi & Komatsu®? Waldron
Quantity | Units Straight Curved Stralght Curved
xG mm 0 0 0 -163.63
Yo mm - - 1327.94 1327.90
X ™mm 0 0 0 -240.11
vy mm - - 499,76 496.56
I mm* | 0.102 x 10}2 | 0.103 x 1012 | 0.102 x 1012 | 0.102 x 1012
I, mm** - - 0.147 x 1013 | 0.147 x 1013
xy mm* - - 0 0.136 x 1010
I mm* | 0.498 x 1010 | 0.502 x 1010 | 0.497 x 10!! | 0.529 x 10!!
I, mm*t - - 0.315 x 10!2 | 0.312 x 1012
I, m® | 0.488 x 1018 | 0.481 x 1018 | 0.468 x 1018 | 0.u425 x 1018
¥ - 1.0000 - 1.0000 1.0000
u - 1.0000 1.0000 0.8422 0.8305
32 - | o.1857 0.1857 0.1856 0.1976
k mm ] 1.972 x 107" [1.979 x 107% | 1.846 x 107" [ 1.984 x 107"
Table 4.8  Geometrical Properties of the Continuous Road

eccentricity of * 3.3525 m).

Bridge of Composite Construction

Since the structure is symmetrical about

the centre of the curved span, this amounted to six different load cases.

The same loading conditions have also been used throughout the present

investigation and, in the first instance, this enables results obtained

from the stiffness approach to be compared with those from an existing

analytical method.
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Structural Idealiszation

Since there is no facility in the computer analysis for épplying
loads within the length of a beam element, additional node points have
been positioned in the centre of each span. The basic structural
idealization therefore comprises two stralght beams in each of the outer
spans and two circular curved beams in the central span. This layout
is shown in fig. 4.34 together with the values of structural stiffness
assigne& to each beam element. These are the quantities used by
Konishi and Kamatsu in their original investigations in which the
following elastic moduli for steel were assumed:

E

s T 2.1x 10° kg/cm?

G
s

0.8 x 10% kg/cm?
Furthermore, a value of unity has been specified for the warping shear

parameter, u, in order to comply exdctly with the assumptions made in

52,53,

the previous analysis

Member EI GIL EIw

d ‘
Ref. No. (kg.émz) (kg.cm?) (kg.cm*)

1-2, 5-6| 2.1485 x 1013 | 3.9855 x 1012 | 1.0249 x 1018

3-L 2.1546 x 10!3 | 4.0220 x 10!2 | 1.0108 x 10!8

Figure 4.34 Structural Idealization of the Composite
Road Bridge
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4.3.2 Structural Analysis

The idealized structure with the general arrangement and
éroperties given in fig. 4.34% has been analysed for the six load cases
previously identified in this section. The resultant longitudinal
distributions of bending moment and bimoment are respectively shown in
figs. 4.35 and 4.36. To facilitate the presentation of results, these
distributions have only been plotted over one half of the structure for
each of the loading conditions. While clearly this is sufficient for

loads applied at the centre of the structure, it also covers the most

highly stressed region in the case of loads applied to the outer spans.

In their original paper, Konishi and Komatsu produced a solution
for this bridge by first expressing the distribution of the various stress
resultants in terms of the applied loads and the unknown bending moments
and bimoments at the internal supports. They then derived an expression
for the total strain energy in the system and employed the principle of
least work to evaluate the indeterminant quantities. This is similar
to the method adopted in §3.4.4 and §3.4.5 for establishing the fixed

end forces in circular curved members with built-in ends, and is entirely

satisfactory for simple continuous structures. Furthermore, since it is
an 'exact' method and only differs from the stiffness approach in the
formulation adopted for solution, an identical result would be expected.
From the limited information available this is apparently the case.
Indeed, for the six loading conditions considered, the stress resultants
calculated at the centre of the loaded span (presented in Table 4.9 in
italics), all agree to + 1% with the published results!03,  This is
well within the expected tolerance due to rounding errors and further
verifies the effectiveness of the computer program develoﬁed in this

chapter.
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Outer Spans

Central Span

No, of beams | Qutside| Middle | Inside | Outside | Middle | Inside
in central Lane Lane Load Lane Lane Load
span Loaded | Loaded | Loaded | Loaded | Loaded | Loaded
" 2 (curved) ~705.80| -696.92 | ~688.00 | ~616.47 | -644.91| -674,36
g 2 -693.26| ~-689.04 | -684.82 { -498.68 -521.36. ~-544,03
i; 4 -698.55| -690.82 ) -683.09 | -512.46 | ~539.86] -567.22
:g 8 -700.29| ~-691.42 | -682.55 | -514,50| -543.49 | ~572.46
= 16 ~700.76| -691.58 | ~682.40 | -514.92] -5u44.32 | -573.74
= 2 (curved) 157.66 4,451 -148.80) 167.62 0 -167.63
@
E 2 155.55 2,11 -151.33 167.63 0 -167.63
Z 4 157.13 3.87 | -149.39 167.63 0] -167.62
.§ 8 157.63 b4y} -1u48.75 167,62 0] -167.62
§ 16 157.78 4,59 | -148.58 167.62 0 -167.63
2 (curved) ~0.4291| -0.4157 | =0.4104 | -0.6 -0.6 -0.6
2 -0.4136 -0.4110| -0.4085| -0.5 -0.5 -0.5
,g b -0.4167| ~0.4121 | -0.4075] -0.5 -0.5 -0.5
@ 8 -0.4177| -0.4125{ -0.4072] -0.5 -0.5 -0.5
16 -0.4180| -0.4126| -0.4071| -0.5 -0.5 -0.5
2 (curved) 83 568 546 | —-82 460} 101 813| 24 504 | —-62 804
E 2 83 292 259 -82 773} 145 208{ 69 906 - 5 396
% b 83 485 475 -82 536 116 266 38 872 -38 522
E 8 83 547 545 -82 457 | 106 451 | 28 568 -49 315
16 83 564 564 -82 436} 103 789 25 786 -52 217

Table 4.9 Comparison of Stress Resultants obtained from

different Structural Idealizations
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4.4 ASSESSMENT OF ANALYTICAL ERRORS

A method of analysis is now available for structures comprising
both straight and curved thin-walled members, and in a form suitable for
solution by desk-top computer. Nevertheless, it must be accepted that
designers will still often prefer to use hand methods of calculation or
computer-based methods with which they already have some experience.
Almost invariably these other methods of analysis will require the
introduction of initial simplifying assumptions, such as disregarding
warping restraint or member curvature effects. The validity of some
of the more important assumptions is therefore investigated here and,
wherever possible, the associated errors have been quantified for a
range of sections with those dimensions typically found in practice.

b.oh.1 Errors due to neglecting Curvature Effects

Curvature introduces a further complexity into the analysis of
structures since bending and torsional moments are no longer independent
guantities but interact along the length of the member. These problems
can be largely avoided by represénting the curved girder as an
equivalent straight girder, for the purposes of analysis, a simpli-
fication which also considerably reduces the computational effort
required for solution. However, since this approximation is usually
only acceptable when the degree of curvature is small, an alternative
method is also available whereby the geometry of the original member
is closely represented by a series of end-connected straight beam
elements. In general, this method involves significantly more calcu-
lation, due to the additional degrees of freedom introduced into the
system, and is therefore only an attractive alternative when computer
facilities are available.

Before the validity of such an idealization can be established

for a particular application, errors introduced into the calculation of
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the various stress resultants must first be estimated. Little factual
Snformation is available for this purpose although Hambly35, for example,
suggests that it is generally permissible to represent a circular curved
member subtending a central angle of less than 20° as an equivalent
straight member. In such cases, it is usual to adopt an identical
cross-sectional configuration for the idealized beam and to represent
the span by the>arc length of the original curved memﬁer.

Sawko?S has made a more detailed investigation of the errors
associated with an equivalent straight beam idealization.  This has
taken the form of a computer-based study covering a wide range of
included angles and'torsional/bending stiffness ratios. The straight
beam configuration on which this investigation is based consists of the
member shown in fig. 4.37, built-in at both ends. The supports are
skewed at an angle of * 0/2 and separated by the original chord length,

% = 2r.sin(06/2).

arc length
w//////////”’/’ %
: r

I@/Q 0/2

e/2 Qg/
;(:F 2r.sin(0/2)

Figure 4.37 Equivalent Straight Beam Idealization of the

Circular Curved Member
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The general errcr function selected by Sawko as being repre-
sentative of the inaccuracies introduced by such an idealization is

given by

E, = -ééL—~‘JE£: = 100% .7
Here, Ei is the error function associated with the ith stress resultant,
and kii’ kii* are the ith diagonal elements in the stiffness matrices
of the curved and straight beams respectively. This is equivalent to
determining the percentage error between the ith stress resultant at
the end of each beam due to the application of a unit value of the
corresponding component of deformation at the same point.

Only solid beams were considered in the original investigation
and the functions reproduced in figs. 4.38 - 4.40 represent the errors
associated with the actions of bending moment, torsion and shear,
respectively. These graphs indicate the possibility of significant
errors, even for members displaying typical cross-sectional proportions
and subtending relatively small central angles. Unfortunately,
several mistakes have subsequently been discovered in the initial
formulation of the stiffness matrix for the equivalent straight member,
thus invalidating these error functions.

The correct stiffness matrix may however be obtained by first
inverting the straight beam flexibility matrix G', given in Appendix 2.4,
and then transforming the resultant matrix in accordance with egn. 3.67
to take account of the skewed supports. Alternatively, a direct
solution is possible by inverting the transformed straight beam flexi-
bility matrix H', given in Appendix 2,6. The stiffness matrix for
the circular curved member was correctly derived by Sawko and is
obtained in this thesis by inverting the flexibility matrix F'

(Appéndix 2.2). By incorporating the appropriate diagonal elements
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from the newly derived member stiffness matrices into eqn. 4.7, the
error functions have been recalculated and are shown in figs. 4.4l -
4,43, respectively.

These functions have subsequently been used to investigate
the possible inaccuracies due to the idealization of the bifurcated
bridge structure, described in §4.2. The three outer spans AB, DE and
FG have been selected for this study and these correspond to the twin
cell, small single cell and large single cell, respectively. Estimates
of percentage error have been abstracted directly from figs. 4.38 - 4.u43
for the appropriate values of stiffness ratio, j2 (obtained from Table
4.2), and are presented in fig. 4.ul4 for each of the three spans. From
this figure it is clear that the funections originally proposed by Sawko
grossly overestimate the likely error in calculating the bending and
shear stiffnesses, They do however correspond closely in the case of
torsion for angles in excess of approximately 8°.

Two different idealizations have been considered whereby each
curved outer span is replaced by (i) a single equivalent straight
member, and (ii) a series of nine straight beam elements of equal
length. Percentage errors determined from fig. 4.44 are given in
Table 4.10 for each span. Evidently the nine beam idealization
adopted in the original grillage analysis of this structure (fig. 6.1)
introduces errors of less than 0.5% into the calculation of the three
primary components of stiffness in all instances. Furthermore, even
for the single equivalent straight beam, the maximum error in bending
or shear stiffness is estimated to be less than 4.5%, although signifi-
cant inaccuracies are predicted in the case of torsion. For purposes
of comparison, the incorrect error functions have also been tabulated in

Table 4.10. Errors of up to 20% are indicated in the computed values
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Span AB Span DE Span FG
(2= 0.838) (32 = 0.351) (32= 0.689)

1 Beam 9 Beams 1 Beam 9 Beamg 1 Beam 9 Beams

(0=35.38°) | (0=3.04°) | (9=29.90°) | (0=3.32°) | (0=36.34")| (@=4.04°)
Moment 1.12 0.01 1.17 0.02 1.58 0.02
Torsion 15.89 0.20 31.862 0.u45 19.95 0.32
Shear 3.16 0.04 4,47 0.06 3.98 0.06
Momentt 50.12 12,59 63.10 19.95 56,23 15.14
Torsiont 11.22 0.89 .79 2.24 15,14 2.00
Sheart 33.88 10.00 42.66 15,14 39.81 12.02

1+ incorrect

Table 4.10  Percentage Error in the Computation of lember Stiffness
in the Outer Spans of the Bifurcated Bridge

of bending and shear stiffness for the nine beam idealization while
those for the case of torsion are not greatly different from the correct
values.

Straight Beam Idealization including the Effects of Warping

This useful form of error analysis has been extended to include

the effects of warping in thin-walled sections. The basic idealization
detailed in fig. 4.37 is retained, although the stiffness matrices

for the circular curved and equivalent Straigﬁt beams are now derived

by inverting the flexibility matrices F and H (from Appendices 2.1 and
2.5), respectively. By introducing the appropriate diagonal elements
into eqn. 4.7, error functions are obtained for each of the four
degrees of freedom associated with thin-walled sections. These
correspond to the three stress resultants previously considered in the
error analysis of solid beams together with a fourth function defining
the error in the bimoment term.

These functions are difficult to present in graphical form due
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to the extra variables included in the analysis, %.e. the decay and
warping shear parameters. Nevertheless, results are plotted in figs.
4,45 - 4,60 for a representative range of these variables covering

(o}

central angles of 400, 107, 5°

and lo, and warping shear parameters
with the numerical value of either 1.0 or 0.5. Seven or eight lines
appear on every graph, each line representing a different value of the
dimensionless decay function kr of between 0.5 and 50.  An additional
line is also plotted on all of the graphs (with the exception of those
relating to bimoment) and this corresponds to the préperties of the
solid beam (Z.e. kr - «; u = 0). Despite the limited number of
functions presented, figs. 4.45 - 4.60 provide sufficient information
for most practical applications since intermediate valﬁes can usually
be interpolated to the required degree of accuracy.

In order to fully evaluate the use of these graphs, an error
analysis has been undertaken for the continuous road bridge of composite
construction detailed in §4%.3. For this purpose, the central curved
span was idealized by several alternative assemblages of straight beams,
comprising either 16, 8, 4 or 2 elements. A full structural analysis
was then performed on each of these configurations using the computer
program previously described in this chapter. Six load cases were
considered for each structural idealization, corresponding to the
applications of point load identified in §4.3.1. This permitted the
results to be compared directly with those from the original 'exact'
solution for which the central span was represented by two curved beam
elements. Values of the various stress resultants determined from the
analyses are presented in Table 4.9 (p.266); the percentage error in
each computed quantity with respect to the original solution is also

given in Table 4.11.
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Outer Spans Central Span
No. of beams | Outside | Central | Inside | Outside | Central | Inside
in central Lane Lane Lane Lane Lane Lane
span Loaded | Loaded | Loaded | Loaded | Loaded | Loaded
2 1.77 1.13 0.47 3.26 4,32 5.28
g b4 1.02 0.88 0.71 0.58 0.93 1.24
ks 8 0.78 0.79 0.78 0.19 | 0.26 0.33
16 0.71 0.76 0.81 0.11 0.11 0.11
2 1.36 52,58 1.68 0 0 0
.g 4 0.36 13.083 0.40 0 0 0
é 8 0.06 0.22 0.01 0 0 0
16 0.06 3.15 0.13 0 0 0
2 1.55 1.13 0.46 0 0 0
§ b 0.81 0.87 0.71 0 0 0
& 8 0.60 | 0.77 | 0.78 0 0 0
16 0.50 0.75 0.80 0 0 0
2 0.31 52.51 0.38 42.62 1185.30 88.79
& 4 0.08 | 13.08 0.08 14.20 | 58.64 | 27.05
.g 8 0.01 0.17 0.01 4,56 16.58 6.61
a 16 0.01 3.28 0.03 1.84 5.23 1.11
Table 4.11 Percentage Errors in Stress Resultants obtained

from different Structural Idealizations

Since the numerical value of j2 is known for this particular

structure, the general error functions described in figs. 4.45 - 4.60

may be presented in a more convenient form.

These are shown in figs.

4.61 - 4.64 for the actions of bending moment, torsion, shear and bi-

moment, respectively, where the horizontal axis now represents the
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° . 40°). Estimates of the percentage error

variable central angle (0 = 1
in each component of member stiffness have subsequently been determined
for the various structural idealizations comprising either 16, 8, 4 or 2

straight beam elements in the central span (Z.e. for 0 = uo, 80, 16° or

320). These results are tabulated in Table 4.12 for two different
values of the dimensionless decay function kr in each case. The first
value, kr = 6, has been determined from the actual cross-sectional
properties given in Table 4.8, while the second, kr = «, assumes solid
beam properties.

Wide discrepancies between the results presented in Tables 4.1l
and 4.12 are apparent but must be expected. In the first of these
tables the recorded errors relate to differences in the computed values
of the various stress resultants, whereas in the second, the tabulated
quantities represent the errors in each component of member stiffness.
In determining the stress resultants, the structure is considered as an
assemblage of end-connected members which, due to the support conditions
and general arrangement, is subject to a complex system of combined
loads. On the other hand, the components of member stiffness are
calculated independently of each other for the fully fixed member shown
in fig. 4.37.

The largest errors in the computed values of bending moment and
bimoment occurred for the three load cases applied to the central span,
Table 4.11. Although the maximum error in bending moment was only
approximately 5% (between the idealizations alternatively comprising
two curved and two straight members), the percentage error in bimoment
wvas significantly larger. Variations in results due to the different

structural idealizations are more clearly visible over the length of the

structure in figs. 4.35 and 4.36. As expected, there was no discrepancy
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Vo. of beams| Estimated Error (%)
in central
span kr = 6 kr = o
2 39.81 0.79
E 4 14,13 (.20
Q
E 8 b.uy7 0.0u
=
16 1.78 0.01
2 uy .67 79.43
o
3 y 2.51 28.18
7]
H 8 0.16 6.31
£
16 0.02 1.78
2 73.43 11.22
% 4 17.78 2.24
Q
& 8 5.01 0.45
16 1.58 0.10
2 1.00 -
= 4 0.35 -
g ,
0 -
-5 8 0.09
m
16 0.02 —

Table 4.12 Estimated Error in the Computation of Member
Stiffness for different Structural Idealizations

in the computed values of shear and torsion for the symmetrical point
loads. However, this was not the case for loads applied to the outer
span, although the percentage errors were generally very much smaller
than the corresponding differences in member stiffness.

In conclusion, the percentage errors in the computed values
of bimoment and bending moment were respectively under- and over-

estimated by the error functions calculated in accordance with eqn. 4.7.
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In general, these functions provided a better estimate of the errors in
bending moment and shear when solid beam properties were assumed; the
opposite was true for torsional effects. Differences between results
recorded in Tables 4.11 and 4.12 are primarily due to the impracti-
cability of taking the non-diagonal coefficients from the member stiff-
ness matrix into consideration during the formulation of the stiffness
error function. Thus, the large apparent changes in member stiffness
brought about by adopting a straight beam idealization are often due
almost entirely to the different mechanics of load transference.
Accordingly these changes will not necessarily be reflected in the
computed values of the various stress resultants in any practical
application.

4.4.2 Errors due to neglecting Warping Effects

By neglecting thin-walled behaviour, computational effort
necessary for solution can be significantly reduced. Further economies
are possible in the analysis of cur?ed members if these can be alter-
nativgly represented by one or more straight beam elements in which
warping effects are also neglected. Therefore, as a first step in
this investigation, the differences in étiffness between the curved,
thin-walled member and the straight, solid member have been calculated.
The term kii* in the error function (defined in eqn. 4.7) now represents
the ith diagonal coefficient in the stiffness matrix for the equivalent
straight member with solid beam properties. However, since warping
effects have been disregarded, only the components of bending, shear and
torsional stiffness can be included in the study. Moreover, the error
functions corresponding to shear force are identical to those previously
determined in §4.4.1 and thus only bending and torsional stiffness need

be considered.
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The necessary error functions are presented in figs. 4.65 -
4,72 with the various identifying parameters covering the same numerical
range as before. Subsequently, this has enabled the variations in
stiffness to be determined due to the idealization of the composite
road bridge previously detailed in §4.3. The appropriate values of the
dimensionless terms j%, kr for this structure are given in Table 4.8,
and the results from this investigation are tabulated in Table 4.13 for
kr = 6 and kr = =, as before,.

In comparison with the results from Table 4,12, in which the
effects of warping have been fully considered, there is little apparent
change in bending stiffness in the case of the actual decay function
(kr = 6). However, in all other instances, large variations are evident
between results from the two tables. This is particularly noticeable
in the case of the torsional component which further demonstrates the
very different mechanics of torque resistance when thin-walled effects

are considered.

No. of beams Estimated Error (%

in central
span kr = 6 kr = =
35.48 11.22
4&’ 4 14.13 5.62
£ 8 3.98 2.00
= 16 1.00 0.56
2 31.62 35.48
8 Y 70.79 9.55
2 79.43 19.95
- 16 89.13 47.86

Table 4.13 Estimated Errors in the Computation of Bending
and Torsional Stiffness (nmeglecting Warping Effects)
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The stiffness formulation presented here and in §u4.4.1 provides
useful information with regard to the variation in individual components
of member stiffness. However, since the relative proportions of the
various stress resultants are not known for the general case, this
method is unable to take account of the non-diagonal terms in the
stiffness matrices and thus cannot provide an accurate estimate of the
probable errors due to the various structural idealizations. An alter-
native approach has therefore been adopted whereby the errors introduced
by neglecting warping effects can be fully evaluated.

In the analysis of bridge structures, the distribution of
direct stress is primarily influenced by only two stress resultants,
namely, bending moment about the horizontal axis and bimoment. A
‘realistic appraisal of the effects of bimoment in any particular appli-
cation may therefore be obtained by formulating an error functién from

the general direct stress equation (egn. 2.2), thus:

E = B.w /M.y x 100% . n.8
a I~ I
W x

This expression represents the magnitude of the direct stress due to the
bimoment term as a percentage of that due to the resultant bending moment
at the same point.

Although this function can be evaluted everywhere on the cross-
éectioﬁ, errors due to neglecting bimoment are usually only important at
positions where the section is already highly stressed in bending.
Accordingly, only the top and bottom flanges need be considered for
which the distances from the neutral axis, Yis Ypo are usually very
nearly constant in each case. Therefore, by determining the maximum
value of the sectorial co-ordinate in both the top and bottom flanges,

~

Yt (max)? ‘:’b(max)’ eqn. 4,8 may be redefined in the following way:
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I I
B X t(max) _ B
E == =, ———2L == | F, x 100%
ot ~ W T, v, M 't
g 4.9
_ B X b(max) _ B 0
Eob_l‘i‘—:—[—g.T—ﬁ' FleOOO
v

By utilizing these equations, an estimate of the percentage error due to
neglecting warping effects is now obtainable for any value of bimoment
and bending moment at a particular section. Furthermore, since the
maximum sectorial co-ordinate in each flange is almost invariably matched
by a sectorial co-ordinate of approximately equal but opposite magnitude,
the resultant error function may be considered as either an increase or
rehuction in the maximum direct stress due to bending in each flange.

The application of this error analysis is first demonstrated
in the case of the bifurcated bridge structure detailed in §4.2, Each
of the fourteen lane loads (fig. 4.8) and the single point load previously
used in the structural analysis have been considered. For loads applied
to the outside spans, the appropriate central cross-section has been
selected for investigation. On the other hand, the twin-cell section
adjacent to the bifurcation (the right-hand end of member 5 in fig. 4.10)
has been used for the five lane loads and the point load applied within
the bifurcated span. Maximum percentage errors at each of these sections
are given in Table 4.l4 for two alternative sets of cross-sectional
properties. In the first, the necessary geometrical functions have
been calculated assuming straight beam properties whereas, in the second,
the curved beam analysis according to Konishi and Komatsu®3 has been used.
A1l the necessary geometrical properties are tabulated in Table 4.2, while
the sectorial co-ordinates for both the straight and curved beam repre-
sentations are shown in fig. 4.73. However, in the error analysis of
curved members it is necessary to multiply the error function given in

eqn. 4.9 by the term p/R. This takes account of the more general
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Straight Curved
Properties Properties
5222 M?ﬁ:?t (E;QZngg) Eot(%) Eob(%) Eot(%) Eob(%)
1 35.19 40.73 4,9 4.5 5.0 4,5
2 34.98 24,99 3.0 2.8 3.1 2.8
3 34,71 94.62 11.5 10.6 11.9 10.7
4 34.25 167.68 20.7 19.1 21.3 19.2
5 44,66 b4, 65 6.1 5.7 6.3 5.7
b 38.87 31.15 3.4 3.1 3.5 3.1
7 8.14 20.21 10.5 9.7 10.8 9.7
8 36.54 116.93 13.5 12.5 13.9 12.5
9 33.08 149.72 19.1 17.7 19.7 17.7
10 34.62 1.56 0.7 0.2 0.7 0.2
11 34.05 18.62 7.8 2.4 8.6 2.5
12 33.14 39.81 17.2 5.2 18.8 5.5
13 31.67 20.58 13.6 2.6 14,5 2.6
1y 34.60 1.10 0.7 0.1 0.7 0.1
point| 54 57 | 112.52 15.5 1.4 16.0 1.4
load

Table 4.14 Maxitmun Percentage Error in Direct Stress due to

neglecting the Effects of Warping in the Bifurcated Bridge

expression for direct stress given in egn. 2.82. In this case, the
position of the maximum value of the factor F may no longer be obvious
from inspection and will frequently have to be obtained by computing its
value at several critical points on each flange.

The straight and curved beam properties are very similar and
this is reflected in the results given in Table 4.14. For loads applied
to the outer spans, the resultant bimoments are most significant for the
lanes on the outside curve in each case (lanes 4, 12 and 13). The
percentage errors due to neglecting these warping restraint stresses

are typically of the order of 15-20%. While the top and bottom flanges
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of the twin qell box are almost equally affected, stress variations are
far more sizable in the top flange of both the single cell sections.

A similar error analysis has also been undertaken for the com-
posite road bridge described in §4,3. The six load cases previously
identified have been considered and the resultant bending moments and
bimoments are those obtained from the 'exact' solution employing two
curved beams in the central span. The variable multiplier p/R has once
again been included in the computation of the error functlions for members
displaying curvature, and the results are presented in Table 4.15,
Straight and curved beam properties have been used for the determination
of stress at the centre sections of the outer and central Spans, respec-
tively. For support sections, results for both straight and curved

beam properties have been presented.

Straight Curved
Properties Properties
Load |Moment | Bimoment| .. ,,5] -~ (o o o
Position| (Tm) (Tm?2) Lot(°) Eob(q) Eot(°) Enb(’)
o | Inner -6.88| -8.25 83.5 74.5 - -
= £l central| -6.97 0.05 0.5 0.5 - -
[1#]
&l fouter | -7.06| 8.36 82.5 | 73.6 - -
o
g § ¢ | Inner 3.00 6.32 146.7 | 131.0 | 151.9 | 137.2
73]
§ §: Central| 2.83 1.49 36.8 32.8 38.1 a4
&l outer 2.65] -3.34 87.9 78.5 91.1 82.3
Inner | -5.74| -5.28 - - 66. 4 59.9
[1}]
£ g Central| -5.u5 2.145 - - 32.5 29,3
ﬁfg 8l outer | -5.15| 10.18 - - | 1u2.5 | 128.8
—~ @
&S | Toner 2.19| 1.u9 57.3 | u2.2 49.0 | uu.3
KR
§ §* Central| 3.33| -2.05 42.8 38.2 by, 3 40.0
51 outer u.u7| -5.58 87.0 77.6 90.1 81.4
[92]

Table 4.15  Maximuwn Percentage Evror in Divect Stress due to

neglecting the Effects of Warping in the Composite Road Bridge
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The percentage error in the maximum value of direct stress due
to neglectiné warping effects in this structure is considerably larger
than for the prestressed concrete bridge previously investigated. This
is reflected in the value of the dimensionless decay function, k&, which
is approximately equal to 6 for the composite bridge but typically 15-20
for the bifurcated bridge. For eccentrically applied loads in both the
outer and central spans, the direct stress due to bimoment comprises
between 20-60% of the total maximum direct stress at the centre and
support sections. Thus, in some instances, the bimoment imposes larger
direct stresses than the bending moment. At the support sections, the
results obtained by using curved and straight beam properties were not
greatly different and in all cases the stresses due to bimoment were of
equal significance to both the top and bottom flanges.

For this method to be useful in determining whether warping
effects should be considered in the analysis of a particular structure,
the values of bending moment and bimoment must first be calculated at
several critical sections. Since a full analysis (including the effects
of warping) would defeat the object of this preliminary investigation,
the values of the two stress resultants have been tabulated in Table 4.16
in explicit form for several important configurations and types of
applied load. This table enables bending moment and bimoment to be
determined at the centre of a simply supported beam and at the root of
a cantilever. Both straight and circular curved arrangements have
been considered subject to shear and torsional loads (either uniformly
distributed or concentrated). For the curved girder built-in at both
ends and subject to the same general loading, the values of bending
moment and bimoment at the centre and end sections may be obtained

directly from figs. 3.10 - 3.19 & 3,30 - 3.39.
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(). Siﬁply Supported'Beam K////f”“Q:re-\\\\\\\\%
Load Stress Resultant Stress Resultant
Type for Curved Member for Straight Member
= T F2tan(6/2) 0
£
S|t 7r{l - 1/cos(8/2)} 0
=y r
5 P ~>tan(6/2) -8 /4
o
&
2 p —rz{l/cos(e/Q) - l} -22/8
T E—gﬁfkr.tanh(kreﬂ) + tan (8/2)} %%tanh(kl/Q)
E t unr {l/cos(8/2) ~ 1/cosh(kr8/2)} JL{l ~ 1/cosh(k2/2)}
5 r2 ' k?
gl P "2 {tanh(kr6/2) /ke - tan(8/2)} 0
g ‘
p —unr3{l/k2r2cosh(kr8/2) + l/cos(8/2)} 0
+ ur/k2
(iz).  Cantilever Beam =0 _
Load Stress Resultant Stress Resultant
Type for Curved Member for Straight Member
T +5in 8 0
)
o
2 t #r(l - cos 0) 0
2
80 P r.sin 0 )
5
21 p r2(1 - cos 8 ) 2272
@
T -unr sin @ + kr.coss .tanh krg ) - “R—tanh kg,
o t _p(1-n) {kr.sinﬁ.tarﬂmkre—} oo _
E 7" Ycoso + 1/cosh kub 2{1-k2tanh ki -1/cosh ki }
=
0
E P 1 { nr?sin6 + tanh kre.
= (nkr2cos® - 1/k)} 0
p ;ur3{nkr.sin8.tanh1qﬁ3— n(cosd - 0
1/cosh kr8) + tanh kr6( tanh kre-
krg)/k?r?}
Table 4.16  Values of Bending Moment and Bimoment at (1). the Centre

of a Stmply Supported Beam, and (i7). the Root of a Cantilever
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Although the information presented here covers the large
majority of simple structural configurations, the error analysis may be
usefully extended to include continuous members by adopting the method
of bimoment distribution recently proposed by Khan énd Tottenham"8,
However, in order to determine the error function, Eo’ the sectorial
co-ordinates and warping moment of inertia must also be evaluated for
each section. Some limited help has already been made available for
this purpose in Chapter 2 for a range of typical cross-sections, namely,
the rectangular box, the channel and I-sections (fig. 2.14%4). The
resultant functions F (given by the greater of F, and Fb) corresponding
to these cross-sections are shown in figs. 2,22 - 2,24, While the range
of wall thickness/height ratios is limited, it is possible to interpolate
these graphs to a sufficient degree of accuracy for preliminary design
~ purposes.

y.4.3 Other Sources of Error

Representing curved members by one or more equivalent straight
beam elements and neglecting thin-walled effects are, undoubtedly, the
two primary sources of potential analytical error. However, other
inaccuracies are also possible and these will be discussed here with
reference to the two bridges previously described in this chapter.

The Warping Shear Parameter

In thelr original analysis of the continuous road bridge,
Konishi and Komatsu®3 took no account of the interactive effect of the
shear stresses (due to the connectivity condition of the closed cells)
on the response of the section to warping restraint. This is equivalent
to setting the warping shear parameter to unity, which is only strictly
the case foerpen sections, However, the actual values of u have

already been calculated and are presented in Table 4,8 for both the
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Outer Spans Central Span
Method of Outside Central Inside Outside Central Inside
Structural Lane Lane Lane Lane Lane Load
Idealization Loaded Loaded Loaded Loaded Loaded Loaded
Original | _70p5.80 -696.92 -688.00 |-515.47 -544.91 -574.36
Solution
+ u from -704.47 -697.10 -689.73 [-509.11 -542.56 -576.0L
g Table 4.8 (0.19) (0.03) (0.25) (1.23) (0.43) (0.29)
O
=1 Different -511.92 -543.48 =-570.81
Shear Centre - - - (0.69) (0.26) (0.62)
I
riginal 157.66 4.45 -148.80 | 167.62 0 -~167.63
Solution
g u from 158.87 3.79 =-151.29 | 167.63 0 ~167.62
'Q Table 4.8 (0.77) (14.83) (1.87)] (o0.01) (0O) (0.01)
o 3
& | Different } _ _ 187.81 8,18 -147.u44
Shear Centre (12.05) (=) (12.04)
Original ~0.4201 -0.4157 =-0.4104] -0.5  -0.5  =0.5
Solution
5 v from -0.4202 -0.4158 -0.4114} -0.5 -0.5 -0.5
2 Table 4.8 (0.02) (0.02) (0.24) (0) (0) (0)
(03]
Different ' _ _ _ -0.5 -0.5 -0.5
Shear Centre (0) (0) (0)
Original
Solution 83 552 546 -82 460 101 813 24 504 =52 804
L)
g u from 75 653 623 -74 406| 92 401 22 796  -46 809
£| Table 4.8 (9.45)  (14.10) (9.77)]  (9.24)  (5.97) (11.35)
=)
o »
m [ Different _ _ . 111 122 28 277  -43 495
Shear Centre (9.14) (15.40) (17,63)

Table 4.17 Percentage Error in Stress Resultants due to variations in

(2). the Warping Shear Parameter, u, and (ii). the Shear Centre Position

curved and straight members. Subsequently, the structure has been re-
analysed with the new values of the warping shear parameter but with the
remaining geometrical properties unaltered. The resultant forces at the
centre of each span are presented in Table 4.17 for each of the six
load cases previously considered. Values printed in italics represent

the original solution, whereas the figures in parentheses are equivalent
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to the percentage error due to neglecting the term u.

The effect of the warping shear parameter is difficult to assess
for the general case. Not only does it appear explicitly in most of
the member flexibility ccefficients, but it is also an integral part of
the decay function, k (eqn. 2.67), thus directly influencing the numerous
hyperbolic functions incorporating this term. It is clear from Table
4.17 that the three primary stress resultants are not greatly affected
by variations in the value of u. Nevertheless, errors of 7-14% are
apparent in the bimoment term, somewhat less than the approximately 16%
reduction in the warping shear parameters. Obviously this also has an
effect on the error functions determined in §4.4.2 which must be reduced
proportiocnately.

The Shear Centre Position

One of the effects of including curvature in the determination
of cross-sectional properties is to alter the shear centre position. In
the case of the composite road bridge, the location of the shear centre
is given in Table 4.8 for both the straight and curved sections. The
difference is only equivalent to a horizontal change in position of
approximately 5% of the total section breadth, but has apparently been
ignored by Konishi and Komatsu®3 and Takaba and Naruokal®3 in their
respective analyses.

In order to take account of these effects, the structure has
been re-analysed for the three point loads within the central span which
are affected., The results are given in Table 4.1 where the figures in
parentheses denote the percentage error with respect to the results
from the original analysis for which p = 1. As expected, in the case
of the two eccentric loads, this modification has resulted in errors of
approximately #12% in the computed value of the torsional moment. Signif-

icant’'errors in the calculation of bimoment are also apparent (upto 17%).
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Curvature Effects

The idealization of a curved member by a number of equivalent
straight beam elements introduces errors which have been fully discussed
in &4.4.1, These are essentially errors in the longitudinal distri-
bution of the various stress resultants brought about by the different
structural configuration. However, certain other aspects of member
curvature can, if neglected, introduce further inaccuracies into the
analysis. In particular, the derivation of the various geometrical
section properties is influenced by curvature, a fact that has already
been demonstrated in Tables 4.2 and 4.8 for the two bridges previously
described. Variations in each of the section properties have subse-
quently been detailed in Table 4.18 for the composite road bridge section
and for the three primary sections in the bifurcated bridge. These are
expressed as percentage differences with respect to the values calculated
for the curved sections.

Clearly, with the exception of the torsional and warping
moments of inertia in the case of the composite bridge, differences in
the important sectional properties are negligible. Furthermore, despite
the different formulation of the stress equations in which curvature
effects are included (eqn. 2.82), the total strain energy equations
(eqn. 3.29), derived in terms of the various stress resultants, is un-
altered. Thus, the use of the very similar geometrical properties
calculated for the curved section will have a negligible effect on the
longitudinal distribution of the various stress resultants as computed
using straight beam properties.

However, the use of the theory proposed by Konishi & Komatsu53,
in preference to the conventional theory for straight beams, results in
two more important discrepancies. The first is a change in the centroidal

and shear centre positions. This can significantly alter the torsional
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Geometrical Bifurcated Bridge
Section Composite

Property Span AB | Span DE Sman FG | Road Bridge
I 0 -0.89 -0.51 0
X
Id 1.05 -1.11 0.29 6.05
IC -1.01 -1.48 0 -0.96
I, -2.02 -0.94 0.65 -10,12
W
u -1.05 -1.01 -0.67 -1.41

Table 4.18 Percentage Error in the Various Geometrical

Section Properties due to Member Curvature

moment in the loaded span and has been briefly discussed previously in
this section. The second concerns the different transverse distribution
of stress which results from fully considering the effects of curvature.
In the case of bending and direct forces, the resultant distribution

of direct stress is modified by the variable R/p (egn. 2.82). For the
twin cell box in the bifurcated bridge this is equivalent to an increase
in direct stress of approximately 13% at the tip of the cantilever on

the inside curve with a corresponding reduction of the opposite side

of the section. Vith regard to the warping restraint stresses, these
are not multiplied by the same function in the stress equation although
the effects of curvature are included in the derivation of the various
sectorial properties. The sectorial co-ordinates for the bifurcated

and composite road bridges are shown in figs. 4.73 and 4.74 respectively.
Differences of up to * 10% are evident at the top and bottom of each web |
although more significant variations occur at the ends of some of the
side cantilevers. Thus, while it is generally permissible to use
straight beam section properties for the analysis of curved, thin-walled
beams, curvature effects must be fully considered in the determination

of the transverse distribution of stress.



857
-421

- 324 -

-1176
-1309

238
565

LI i,
radius N s \
-2163 1 2165
-2251 210 1994
Units: mm?
Straight
—————— Curved
-1391 S 828
O ,4{rrTTP\TTTTFﬁﬁﬁﬂq: LS
847 \ktigkLLLe
P 810
1263 mm
radius X
-521 —eEd ] 06
-479 544
-810 424 -348 562
-724 401 -369 656
LLiliJli))',frffﬂﬁﬁffmm NEr= /rffTT17111
\
1584 mm
radius ” Ehi
-263 271
=255 269
Figure 4.73  Sectorial Co-ordinates of the Threc Primary Sections

in the 1/50%"

scale Bifurcated Bridge Model



Units: x 10° cm?

1.088 0.729 0.204
0.972 0.718 0.283
(OO T I O T o s

PR
N W

Units: cm? x 10°

—————— curved

straight
13 -0.831 7 -0.802
83 -0.71% -0.972

Figure 4.74

1\

\
Al
T EEN

*M&uﬂmﬁm

- GZ¢ -

— —— — —— — ot —— — S——

-2.018 ~-3.656
-1.708 ~-3.629

2.018
2.018

Sectorial Co-ordinates of the Composite Section used in the Continuous Road Bridge



- 326 -

CHAPTER FIVE

ULTIMATE LOAD ANALYSIS OF REINFORCED AND PRESTRESSED
CONCRETE MEMBERS SUBJECT TO COMBINED LOADS

5.1 INTRODUCTION

During the recent revision of many intermatiomal Codes
of Practice to include the principles of limit state design, it
became apparent that there was a shortage of reliable information on
the post-cracking behaviour of reinforced and prestressed concrete
beams in torsion. This form of loading, often combined with other
actions, is becoming increasingly common with the use of highly curved
road bridges and other modern structural configuratiomns. However,
over the past decade, the situation has noticeably improved and
results from numerous experimental and theoretical investigations imto
all aspects of the subject have been published.

The results of research in the U.S.A.2s% have been incor-
porated into the American building code in the form of complicated
empirical relationships, whereas in Europe a more ratiomnal approach has
been adopted.?? First, a distinction is made between the two possible
types of torsion, ome arising from equilibrium requirements and the
other from a need to satisfy conditions of compatibility. Lampert>?

defines these two torques in the following way:

. Equilibrium torsion - a torsion is required to maintain
equilibrium in the structure.

7. Compatibility torsion - a twist is required to maintain
compatibility in the structure.

Clearly, in statically determinate structures, oniy equilibrium torsion

exists, while in indeterminate structures both types are possible.

In general, if the torsion in an indeterminate structure
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can be eliminated by simply releasing redundant restraints, then it

is compatibility torsion. This may then be disregarded at the

ultimate limit state, where only equilibrium torsion need be considered,
provided the designer is satisfied that the resulting crack widths,
deflections, etc., will not impair the performance of the structure.

The theoretical approach for the analysis of equilibrium torsion,
adopted in the CEB code??, is based on simple failure models developed

from the post-cracking behaviour.

5.1.1 Observed Inelastic Behaviour

Reinforced concrete beams respond to increases in bending
moment by progressi?e cracking and a gradual deterioration of section
stiffness. On the other hand, under pure torsional loads, behaviour
before and after cracking is distinctly different and the transition
between the two stages is usually rapid, fig. 5.1. In the uncracked
state the torsional moment is resisted solely by St. Venant shear
stresses, determined for the homogeneous, isotropic cross-section by
elastic analysis. After cracking, tensile stresses in the concrete are
transferred to the steel, resulting in a completely different mechanism
of torque resistance in which the density and location of the reinforce-
ment are of prime importance. Since the transition between the two
states occurswhen the principle tensile stresses in the concrete exceed
the cracking strength, prestressing is often effectively employed where
the full uncracked stiffness is required to satisfy serviceability
requirements under working load conditions.

In simple rectangular beams, subject to pure torsion, cracks
appear initially at the centre of the longer sides and at an angle
corresponding to the direction of principle tensile stress @pproximately
45°)., Under additional small increases in load, these rapidly propagate

around the entire perimeter of the beam until the familiar pattern of
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Figure 5.1 Load /Displacement Curve for Pure Torsion

spiralling cracks is fully developed. Redistribution of internal
forces takes place during this transitional period until, in the
fully-cracked state, all tensile forces are taken by the reinforcement,
leaving only the concrete diagonals formed between shear cracks to
resist compression. At this stage the concrete core of a solid beam
is ineffective and the member may be regarded as thin-walled for the
purposes of analysis.

After more extensive cracking and redistribution, the
inclination of the concrete diagonals is likely to change, notably
after yield of either the longitudinal or stirrup steel. In this state

the member can sustain further increases of load until the other
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component of steel also develops its full yield force. The spiralling
cracks on fhree sides of the beam then open up and the collapse
mechanism is completed by the formation of a skewed compression

zone on the remaining face.

5.1.2 Methods of Analysis

The various methods which are available for the strength
analysis of reinforced and prestressed conaete members, subject to
torsion combined with other loads, are summarized in Table 5.1. The
first nine methods are studies of the structural mechanics at the
ultimate limit state and, as such, provide general failure criteria for
all combinations of applied load, usually in the form of non-dimensional
interaction equations. However, the ratio of the various load types must
be known everywhere inpthe structure and these methods are therefore
restricted to the analysis of determinate systems. While the remaining
methods in Table 5.1 are more general in application and have been
used for the analysis of simple redundant structures, their scope is

limited.

Failure Criteria

The stress methods (1) include the maximum tensile stress
theory and the internal friction theory, due to Cowan?3. These take
no account of the continual readjustments of stresses brought about by
progressive cracking and are, therefore, not entirely suitable for
making a rational strength evaluation. Furthermore, it has been shown3
that when applied to a series of beams tested over a wide range of
torque/bending moment ratios, these methods can result in gross over-
and under-estimations of the actual strength.

Methods (2) to (4) are all variations of the well known space
truss analogy and are based on the observed behaviour of concrete

members in the fully cracked state. In its original form, the theory
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assumed a constant 45° crack angle of failure, and was developed for
the analysis of reinforced concrete beams subject to pure torsion.
Recently, the method has been much improved by the introduction of a
modified failure model with variable crack inclination, and further
developments have also enabled the effects of shear force to be
included.

The ultimate equilibrium method (5) is formulated from
conditions of equilibrium at an assumed failure surface, in which a
skewed compression zone is joined by spiralling cracks on the remaining
sides of the beam. As with the truss analogy, strain compatibility is
neglected, and the method has also been modified to account'for the
application of shear force (6). Furthermore, Lampert®? has shown that
methods (2) to (6) are equally valid for the analysis of prestressed
beams provided that the yield stress of the stressed and unstressed
reinforcement is attained at approximately the same level of additional
strain, This has been further demonstrated by comprehensive experimental
and theoretical investigations,30:39:445118

For over-reinforced sections, or where insufficient rotational
capacity is available to develop the full yield strain in all elements
of reinforcement, compatibility conditions have been introduced in
addition to the requirements of equilibrium. These equilibrium/
compatibility methods (7) are complex and time consuming to apply and
as a result have not gained favour with design engineers. Furthermore,
due to the increased number of unknown quantities, it has usually
been necessary to assume a fixed crack angle, thereby ignoring the
effects of redistribution due to progressive cracking. However, as
computer based methods with iterative forms of solution, these studies

are - more promising and can provide information at all stages up to failure.



ANALYTICAL HMETHOD

TYPE OF STRUCTURAL ACTION CONSIDERED

Longitudinal
Bending

St. Venant
Torsion

Shear
Force

Torsional
Warping

Distortion

Stpress Methods?3

Fixed Angle Space Truss Analogy8?

Variable Angle Space Truss Analogy®Y

Modified Space Truss Analogy?®

Ultimate Equilibrium Method®?

Modified Ultimate Equilibrium Method?®

Equilibrium/Compatibility Methods10»76:8853%4

General Theory of Plasticity“3:60,78

Empirical and Semi-empirical Methods?»"

10.

Plastic Analysis of Grillages’3

11.

Plastic Analysis of Curved Members“5,120

12.

Inelastic Finite Element Analysis!®

13.

Distortional Analysis of Straight Box Girders?

7

Table 5.1

Methods of Ultimate Load Analysis for Structures subject to Combined Loads

- T€e -
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The analyses covered by (8) do not establish new
interaction equations but show that the space truss and ultimate
equilibrium methods are essentially special cases of the lower bound
theory of plasticity. Suitable upper bound techniques are also
introduced, thus enabling the general theory of plasticity to be
rigorously applied to the analysis of reinforced and prestressed
concrete members.

Extensive experimental investigations have accompanied most
of the analytical methods presented here and a large volume of data is
now available covering all aspects of torsional behaviour up to
failure. Subsequeﬁtly, these results have been used as a basis for
many empirical or semi-empirical studies (9). While the resulting
interaction curves and surfaces tend to be conservative they do provide
sufficient accuracy for initial design purposes.

Analysis of Indeterminate Systems

The methods considered so far are only truly applicable
to the analysis of statically determinate systems where the loading
regime is known uniquely at every position along the beam. The ultimate
load is then determined when the selected failure criterion is first
reached at any point. However, in practice, equilibrium torsion is also
commonly found in indeterminate structures such as grillages and
curved beams. In this case, the prevailing system of stress resultants
can no longer be evaluated without knowing the variations in structural
stiffness due to cracking.

The usual plastic theories, employed for the analysis of
torque-free systems, are based on the introduction of plastic hinges
at points in the structure where the full moment capacity has been

developed. Sufficient hinges are provided to reduce the structure to a
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determinate form, thereby enabling the ultimate load to be

established. Thus, the main problem in analysing highly indeterminate
systems is the correct positioning of the plastic hinges, and various
analytical methods are now available for obtaining an optimal solution.

For members subject to combined loads it may also be
assumed that a plastic hinge forms when the selected criterion governing
failure has been reached. However, this can now occur under an
infinite number of applied load ratios and it is difficult to formulate
the problem for the general case. Furthermore, when a hinge has been
established, problems arise with the introduction of additional hinges
since redistribution can invalidate the assumed load ratio at the
first hinge. As a result of this complexity only very simple structural
configurations have been analysed to date (10).

Additional problems exist in the analysis of curved beams (1l1)
since the optimum hinge positions are no longer obvious from inspection
and finite difference or similar techniques must be employed. For
these reasons, it is not yet feaéible to determine the true dual
solution for complex systems and a simple upper bound approach is all
that is available.

The generality of the finite element method makes its use
for inelasticity and plasticity applications very attractive. The non-
linear analysis of non-homogeneous anisotropic bodies is well advanced (12)
and is immediately applicable to shear wall and box girder problems.
However, since a direct solution of the problem is generally not possible,
an incremental analysis using numerical techniques is necessary and
this can seriously restrict the usefulness of the method. Furthermore,
as with all computer based techniques, the preparation of data for

complex structures and the assimilation of output are still real

disadvantages.
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Finally, with regards to distortion, no comprehensive
method of énalysis is yet available. However, for simple configur-
ations recourse to the upper bound method of the general theory of
plasticity is possible (13) although a meaningful lower bound solution
is unlikely to be readily obtainable.

Future Developments

The need for comprehensive ultimate load analyses of
indeterminate structures is clear. However, the greatest potential
for improvement appears to be with the continuing development of
inelastic finite element technigues and these are beyond the scope of this
work.

With regard to establishing reliable failure criteria for
beams subject to combined loads, methods (2) to (6) have found wide
acceptance, although certain shortcomings are evident in their develop-
ment to date. Accordingly, the derivationsof these methods are now
briefly presented and the existing limitations discussed. Improvements
are then suggested to account for the application of shear force in a
more rigorous fashion and to extend the theory to include the effects

of warping restraintin open sections.



- 335 -

5.2 SIMPLIFIED FAILURE MODELS

5.2.1 Assumptions

The ultimate load theories presented here are based on
the behaviour of two quite different failure models. Each of these
methods of analysis has been verified by extensive experimental
research and the following common assumptions have been made in their
respective derivations.
1. The beam is fully under-reinforced so that both longitudinal
and stirfup steel yield at failure. Implicit in this assumption is
the fact that the reinforcement has sufficient strain capacity to
enable the full failure mechanism to develop.
2.. Adequate steel is provided in both directions to prevent
. failure at first cracking.
3. The reinforcement is properly detailed to avoid secondary failures,
In this respect, the spacing and anchorage of stirrup steel requires
special attention.
4, All longitudinal steel not actually in the compression zone
yields at failure thereby justifying the idealisation of the reinforce-
ment to corner bars.
5. All the reinforcement displays a perfect elasto-plastic stress/
strain relationship. Increases in strength after yield due to work
hardening, etc., have been neglected.
6. The compression zone may form about a line joining any two
adjacent corner bars (with certain exceptions®9).
7. No shear forces are carried by the concrete compression zone or
transmitted by aggregate interlock, dowel action, etc.
8. The concrete is assumed to have no tensile strength.
g. Concrete behaviour does not initiate or influence collapse.

The main causes of premature concrete failure have been studied
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in detail py Lampert & Thiirlimann®® and include
a. failure of the concrete compression zone
(Z.e. over-reinforced sections),
b. excessive shearing strains, where the angle of crack
formation deviates significantly from 45°, and
e. compression failure of the concrete diagonals which

develop between cracks.

10. Where warping of the cross-section occurs it is unrestrained
longitudinally, thereby ensuring that the torsional moment is resisted
entirely by St. Venant shear stresses.

11. The elastic and plastic deformations do not produce significant
changes of geometry. This enables the original configuration to be used
for formulating the equations of equilibrium.

5.2.2 Space Truss Method

The analogy between a truss and a fully cracked reinforced
concrete beam was first consideréd by Rausch8® (1929) for the case of
pure torsion. The concrete compression diagonals were assumed to develop
at a fixed angle of 45° and failure occurred with yield of either the
longitudinal or transverse steel. More recently (1971), Lampert &
Thurlimann®%:60 have revived interest in the space truss by introducing
an improved model in which the inclination of the concrete diagonals is
variable and dependent upon the relative amounts of longitudinal and
stirrup reinforcement.

Consider the simple rectangular beam, shown in fig. 5.2 which
is assumed to be symmetrical about the y-axis with the yield force of
the bottom steel greater than or equal to that of the top (Zby P2 ny).
The reinforcement has been apportioned to the corners in the following

way.
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where X;5 Yy, are the co-ordinates of the ith bar with respect to
the beam centre. Thus, for the simplified model considered here,
the idealised section (fig. 5.2b) remains statically equivalent to
the original system.

Under the combined actions of torsion, bending moment and
direct force, cracks develop in the shear walls at a constant angle o
to the longitudinal axis. The diagonal concrete elements, so formed,
act as compression struts and the longitudinal and transverse
components of reinforcement complete the truss geometry (fig. 5,3).
By considering equilibrium of forces in the shear walls, in both in-
plane directions, the stress in.the concrete struts, g and the

tensile force in the stirrups, D, are given by

F
sV
o] = S — D 5.1
¢ §.cosa.sina
and D = ¢ .8.s.sin2a = F_ .s.tana 5.2
c sV
where Fsv is the constant shear flow given by the Bredt-Batho
formula (2.u4)
Furthermore, from three of the remaining conditions of
equilibrium, we have
N = Q(Z_t + Zb) - ZFSV(b + h)cota 5.3
= 2. - h 5.4
MX ( - Zb)
T = Q.F (2.44)

SV SV
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in which Zt’ Z,_ represent the force in each of the idealised top

b
and bottom corner bars, respectively. Under increasing load, either
the top or bottom component of longitudinal steel will eventually
yield and; by eliminating the unknown component of steel force
(corresponding to the reinforcement in the compression zone) from

eqns 5.3 and 5.4, the final crack angle ay may be determined. Thus,

for yield of the bottom steel

Fs .P
tan ay = v 5.5a
(l+zby to M- N)
and for yield of the top steel
Fsv.p
tan ay = 5 5.5b
(ufzty N Mx - N)

Moreover, for fully under-reinforced sections, it is assumed that

the stirrups and the longitudinal steel both reach their respective
yield stresses at failure. Thus the final crack angle, defined above,
must also simultaneously satisfy eqn. 5.2. Accordingly, by

combining egns. 5.2 and 5.5 to eliminate the shear flow, Fsv’

we have, for yield of the bottom steel

D _.p

tan ay y 5.6a

2
S(uzby + 'E MX N)
and for yield of the top steel

D .p
o = A 5 5.6b
y _ £ -
s(l+Zty 5 Mx N)

tan

Alternatively, by eliminating the final crack angle from eqns, 5.2

and 5.5 and introducing the Bredt-Batho definition of shear flow
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(eqn. 2.44), an expression is obtained for the ultimate capacity of
the beam under the action of combined loads. For yield of the bottom

and top steel, respectively, this is

2 2
N " h Mx EEEB - 4Zb 5.7a
Q°D y )
2 2
N+ Mo+ EEEE— = 47 5.7b
% 2D y

The ultimate value of each component of load may be evaluated by
equating the remaining loads to zero in eqns. 5.7a and 5.7b. Clearly,
the actual ultimate capacity of the beam for each load type must be

the smaller of the two values thus calculated and accordingly, we have

N

4z
u ty

- V 508
u 2thy

M

(uD .Z
and Togu = & v Tty
S.p.

Finally, by rearranging eqn. 5.7 and introducing the appropriate

ultimate loads from eqn. 5,8, the following general interaction

equations are established.

=
-3
N

N ® sv - (for yield of 5.9
A N * M oA T2 =1 the bottom steel) -4
u Xu svu
and
M 72 .
N 1 X sV (for yield of
— = — t —=— = 1 5.9b
N AT M 2 the top steel)
u Xu svu

where A represents the ratio of yield forces in the top and

bottom reinforcement given by

N

Ao S (< 1) 5.10
yA
by
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The Idealized Space Truss

Figure 5.3
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These interaction equations are expressed graphically in
fig. 5.4 for combined bending moment and torsion only (N = 0).
Several typical values of the reinforcement ratio are used and it is
apparent that for A # 1 the torsional capacity of a beam is actually

enhanced, under certain levels of bending moment, with a maximum

value of
sV _ A+l
- 2\
svu 5.11
when 21— = (1-1)
M 2
u

Optimun Design for Torsion

It is evident from egn. 5.6 that the angle at which the
spiralling cracks form at failure is primarily governed by the
relative quantities of transverse and longitudinal reinforcement.

For the case of identical top and bottom steel (A=1), the total
quantity of reinforcement per unit beam length, Q, may be conveniently

expressed in terms of the appropriate yield forces as

Q = qzy + D B 5.12

y s
and for design purposes it is sensible to require this value to be

a minimum. For the application of pure torsion we have, from egns.

5.2 and 5.5, at yield

D = F .s.tana
y sv y
5.13
nd 7 - sv.P
@ y utanay

which on substitution into eqn. 5.12 gives

Q = Fsv.p(cotay+tanay) 5.14
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After differentiating this expression with respect to the

crack angle ay’ we have

dQ
do - Fs
y

2

.p(sec?0. - cosec2a ) 5.15
v y y

which must equate to zero for minimum steel.
The non-trivial solution of eqn. 5.15 gives ay = y5°

which on substitution into eqn. 5.13 provides the following

relationship:

D 5.16
y

4z =
y

myo

This is the solution of 'equal' longitudinal and transverse
reinforcement first derived by Rausch®® half a century ago, and is

20
incorporated into many modern codes of practice €9 " for simple
design against torsional loading.

5.2.3 Ultimate Equilibrium Method

In this method internal steel and concrete forces at an
assumed failure surface are equated with externally applied loads.
The failure surface, characterized by spiralling cracks on three
sides of the beam and joined by a skewed compression zone on the fourth,
is based on the tests conducted in Moscow in the late 1950's.
Accordingly, this form of analysis is also frequently referred to in
technical literature as the skew-bending method or Russian approach.
The first theoretical and experimental observations were published by
Lessig®2 and the method was soon adopted as a basis for further
modification and improvement by Lyalin®®, Grozdev et al3%, Goode and
Helmy33 and Collins et all9.

Consider the assumed failure surface of the simple
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Figure 5.5 Assumed Failure Mechanism for the Ultimate

Equilibrium Method
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rectangular beam, shown in fig. 5.5. All the required information is
obtained from two moment equations, taken about the centre of the

skewed compression zone, which for this simplified model coincides

with the centroid of the top steel. For moments about the x'-axis

and z'-axis, we have

h D _h,
—_ - = ) - Y= 2
N 2 MX szy h < (he + bs) cotay
and 5.17
D b
T = L 8 (hy + ha)coto
sV s y

which may be combined to eliminate cotay, thus:

1’12(1’12+b ) sT 2
Ng-M o= —— 5, S 2 o9z 5.18
bSZ(h1+h2) y Y

Here, the various lever-arms are those defined in fig. 5.7¢ and if the

following approximations are introduced
hy = hy = h and bS =b 5.19

then eqn. 5.18 is clearly identical to eqn 5.7a, previously derived
by the space truss method.

Alternatively, by selecting a failure model in which the
skewed compression zone forms at the bottom of the section, and on
introducing the simplifying approximations from egn. 5.19, eqn. 5.7b
is also obtained. The capacity of the reinforced beam is therefore
governed by the same general interaction equations derived in egns. 5.9a
and 5.9b in which the individual ultimate loads are those expressed in

eqn. 5.8.
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5.2.4 Provision for Shear Loading

The ultimate equilibrium method has been further extended?9:68,77
to cover the analysis of beams which are subject to vertical shear in
addition to bending moment and torsion. Although such a loading arrange-
ment is more realistic and likely to find practical application, a
modified failure model is required resulting in equilibrium equations
of greater complexity.

Figure 5.6 shows a reinforced concrete beam, subject to
constant values of shear force and torsion along its length. As a result,
the bending moment is no longer constant over the finite length of the
assumed failure surface but has a linearly varying longitudinal
distribution.

Furthermore, the application of vertical shear (fig. 5.7)
has the effect of modifying the constant shear flow, Fsv’ due to pure

torsion, by the quantity + Fv in the webs, thus:

b sv
F = F - F 5.20
1 sv v
F = F + F
r sV v
where F = T /9 (2.u4)
sv SV
F = V/2h 5.21
v

By restating eqn. 5.2 at yield, for the general case, as

cota, = F. .2 5.22
iy

it is apparent that the final crack angle is no longer constant but

a function of the shear flow Fi, in the ith shear wall.
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Figure 5.7 Distribution of Shear Flow due to Combined Torsion and
Vertical Shear Force

Accordingly, the crack inclinations are now denoted o, , and «a
ly” "ry by
corresponding to the left-hand, right-hand and bottom faces, respectively,

and by introducing eqn. 5.20 into 5.22, are given by

= - S
cotaly = (Fsv Fv) S
y
coto = (F +F )= 5.23
r sV v D
y
_ s
cotaby = Fsv . Dy

Once again, moments are taken about two perpendicular axes
at the centre of the assumed compression zone and a vertical equilibrium
equation is used to eliminate the additional unknown. Therefore, for

moments taken about the x'-axis

Dy b h ]
.a - = .h - L, + =
V.a Mx szy h 2 h, cotary = cotaby 5 cotalle
- 5.24
D, b h
R hzcotaly :5— cotaby + - cotary;
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for moments about the z'=-axis

hyb

' D
T = —X—[b hjcota, + = (cotoa_  + cota ﬂ 5.25
s s ry 1y

sV by

and from equilibrium of the vertical forces, we have

D

v = I, hy (cota - coto. ) 5.26
s ry ly

In eqn. 5.24 the resultant bending moment has been given the reference
value Mx'at the centre of the bottom reinforcement (denoted point B in
fig. 5.6). The bending moment at the centre of the compression zone
(point A) is therefore MX - V.a, where the distance a represents the

longitudinal separation of the two points and is given by

b
- - =
a = (hzcotaly + bScotaby + h2cotary)/2 (hzcotaly + = cotaby)
hyp
S (cotocry - cotaly) 5.27

By using this expression and the appropriate terms from eqn. 5.23,

eqns. 5.24-5.26 may be combined in the following way:

= 2_ 5P = . .
) +T 27, .h 5.28

by
8D b2h
Y y

-M_ o+ V2,
X

Alternatively, this may be rearranged in the form of the following

general interaction equation:

2
M T 2
al + AL =2 4o .-lL— = 1 5.29
M 2 2
xu \
svu u

where, in addition to the ultimate loads derived in egn. 5.8,

the ultimate shear force has the value

8D Z_t h
v = L | 5.30
u . s
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A similar derivation is possible for a failure model in
which the compression zone forms about the bottom reinforcement, in

which case the interaction equation describing collapse is given by

M T 2 9
——i\:.ﬁx—--i'sv-i-—lé—-:l 5.31

xu T 2 v

sSvVu u

However, for beams subject to high torsional and vertical shear

stresses but relatively small levels of applied bending moment, a third
failure surface is also possible. Under such a system of loads, cracking
is likely to originate in the more heavily stressed side in which the
shear flows, due to both the applied torque and shear force, are additive.
With increasing load the cracks propagate across the top and bottom faces

until a collapse mechanism is established with the compression zone

forming on the opposite side wall at failure, fig. 5.8.

t

Figure 5.8 Fatilure Mechanism with Side Compression Zone
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Moments taken about the y' and z' axes, together with
equilibrium .of the vertical forces, yield sufficient information

for the following interaction equation to be derived

2 TV
Tov V2 8h sV _ o (140)
* * T v, T T >+ 32
T 2 v 2 P sVu u
sSvu u

Here the same approximations have been introduced as before and the
steel ratio A and the ultimate loads are those previously defined in
eqns. 5.8, 5.10 and 5.30.

The interaction equations 5.29 and 5.31, corresponding
to bottom and top steel failures respectively, are presented graphically
in fig. 5.9. The surface of revolution, derived in eqn. 5.32 for a
side failure, has been superimposed and the hatched area represents
the loading régime where this type of failure is likely to predominate.
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Figure 5.9  Moment/Torsion/Shear Interaction Surface



~- 353 -

5.2.5 Limitations of the Simplified Failure Models

Both failure models form a sound basis for the strength
analysis of reinforced and prestressed concrete members, subject to
combined loads, and have been widely accepted in practice. In general,
the assumptions summarized in §5.2.1 are not unduly restrictive and
apply equally to most other forms of ultimate load analysis. In
particular, assumptions (7), (8) and (11) are common analytical
simplifications, and (1), (2), (3) and (9) merely ensure that the beam
is fully under-reinforced and that collapse is not initiated by premature
concrete failure. Only assumptions (4), (5), (6) and (10) relate
specifically to the simplified analyses considered here and discussion
will therefore be restricted to these points. Basically, (4), (5) and
(6) all have a bearing on the actual position of the compression zone at
failure while (10) essentially restricts the analysis to closed sections,
since warping torsion is usually more significant in beams of open
profile.

Posttion of the Compression Zone '

For a particular mode of failure, the exact depth of the concrete
compression zone is easily calculated from a knowledge of the ultimate
strength and position of the various elements of longitudinal reinforce-
ment. Several investigators have proposed adjustments to the theory to
account for this variation in lever-arm, although the gain in accuracy is
generally small for most practical applications. Furthermore, these
modifications still assume that the compression zone forms parallel to
one of the faces and it is, perhaps, this assumption that requires further
investigation.

For idealised, singly-symmetric sections subject to torsion
and bending moment only, the assumption that the compression zone forms

at either the top or bottom of the beam is entirely satisfactory.
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However, when shear is also included in the loading, certain anomalies
are apparent which further restrict the applicability of the simple
failure models. For example, by taking moments about the y'-axis for

the top and bottom failure modes (fig. 5.6), we have

a(E. D cota ) = 0 5.33
s y by

from which, on introduction of egns. 5.23 and 5.27, it may be concluded
that either V = 0 or TSV = 0. Therefore, egns. 5.29 and 5.31 are only
truly applicable where bending moment is present with either torsion or
shear and are not suitable for stqdying the full interaction of combined
loads. Furthermore, for the side mode of failure shown in fig. 5.8,

moments taken about the x'-axis give

M = (2 -2 ).—211 5. 30

Therefore, although the applied bending moment does not appear in

eqn. 5.32, the interaction equation governing a side mode of failure is

only strictly correct when the condition derived in eqn. 5.35 is satisfied.
In practice, less restrictive conditions have been imposed on

the use of the general interaction equations. It has been suggested,

for example, that a top or bottom failure is probable in instances of

either low shear or low torsibn, and that a side mode of failure is

more likely with high shear and torsion and low bending moment?23  However,

it is clear that for more complex loading the simple failure models have

reached the limit of their usefulness and an improved model is required.

Warping Torsion

Assumption (10) highlights a further limitation in that the

theory is only truly applicable to St. Venant's torsion. In thin-walled



beams the torsional moment applied is rarely resisted by St. Venant
shear stresses alone and, wherever warping is longitudinally restrained,
these are supplemented by bimoment and warping torsional stresses.

For closed box girders of practical cross-sectional dimensions, the
inaccuracies due to neglecting these effects are usually small.

However, this is certainly not the case when considering thin-walled
open sections, especially after cracking, when the pure torsion capacity

is often negligible in comparison to that of warping torsion2?.

These shortcomings do not detract from the undoubted usefulness
of the simplified failure models for the analysis of simply systems but
rather emphasise the limitations of their application. For beams
subject to combined bending and torsional moments the simplicity of the
approach is indeed attractive. This is particularly true when used
for design purposes since complex formulae are often subject to error .
or misinterpretation. However, when shear and warping restraint stresses
are additionally considered, the assumption that the compression zone
forms parallel to one side of the beam is unsatisfactory and a more

general failure model is required.
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5.3 AN ADVANCED FAILURE MODEL - CLOSED SECTIONS

It is clear that the apparent anomalies in the simplified
methods are due to the-inherent inflexibility of the selected model.
Furthermore, during experimental investigations into the behaviour of
reinforced concreté beams subject to combined load, this author has
observed several instances in which the compression zone has formed
about one of the corners at failure. Johnston and Zia“** and Goode32
have also made similar observations during tests on prestressed and
reinforced concrete beams, respectively. A refined model is therefore
proposed which enables the effects of additional shear loads to be
accommedated in a more rigoréus fashion and at the same time eliminates
the need for assumptions (4), (5) and (6) in §5.2.1.

In the previous section the ultimate equilibrium method has
been used as a basis for including shear in an approximate manner,
although similar results have also been achieved by using the space
truss analogy?8»°8, Thus, the two methods, while conceptually very
different, have so far provided identical failure criteria for all
applications of combined load. The theoretical differences between
the two methods have been investigated by Kuyt®7 who concludes that
identical results will always be obtained provided that the approxi-
mations outlined in eqn. 5.19 are intrcduced. These only relate to
the lever-arms of the various components of transverse reinforcement
since the lever-arm of the main steel is the same in both theories.
Furthermore, Lampert®? argues that the centrelines of the longitudinal
steel are the most appropriate points for defining the dimensions of
the idealised section since the cormer bars are essential in the
transfer of the transverse steel forces between adjacent shear walls.
For members of practical dimensions, where reinforcement diameters are

very much smaller than the breadth of the individual shear walls, the
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difference is almost certainly neglegible. However, for beams
typically used in laboratory investigations, the difference can be
apﬁreciable and the space truss analogy is likely to be conservative.

In reality, the actual distinction between the two approaches
only relates to the technique whereby the unknown crack angle is
determined. Indeed, both are essentially lower bound methods in the
general theory of plasticity in which équations of equilibrium are used
to arrive at a solution. An upper bound approach, based on kinematic
theory, has also been derived®? for combined bending and torsion and
provides the dual solution. Therefore, any difference between the space
truss analogy and the ultimate equilibrium method are due entirely to the
approximations introduced during the initial idealization of the section
and not to the method of analysis.

Thus, since there are no obvious theoretical advantages
associated with either method, the final choice for the advanced approach
must be made on practical considerations alone. On this basis the space
truss analogy has several overriding attractions despite the more
widespread use of the ultimate equilibrium method by other researchers.
For example, the formulation of the space truss analogy is often more
straightforward since the equations of equilibrium are derived at a
single point along the member; for the alternative method, a failure
surface of finite length must'first be assumed. Although there is no
apparent advantage in the analysis of simple rectangular sections, this
is not the case when the effects of shear are included. Under these
circumstances, the ultimate equilibrium method regquires a more complex
failure surface to account for variations in bending moment which occur
over the length of the failure surface. This has already been demon-

strated in §5.2.4. However, when warping restraint effects are con-
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sidered, in addition to bending moment and shear in both directions,
additional complexities are introduced. Furthermore, the ultimate
equilibrium method onlf produces the correct solution if the true
failure surface has been selected initially. For asymmetrical sections
with irrepular arrangements of reinforcement this is difficult to ensure
and once again the direct formulation of the space truss method is
preferable.

5.3.1 Location of the Compression Zone

In the simplified method of analysis, failure was assumed to
occur with the neutral axis parallel to any one face of the section.
This is no longer a necessary requirement for the advanced failure model
in which the compression zone can form at any position around the
perimeter. However, since a corner failure is now conceptually
possible, the assumption that the centre of action of the compression
zone coincides with the centroid of the unyielded steel is unrealistic.

Therefore, one of the first requirements of the advanced method
is to establish the location of the centre of action of the compression
zone for any orientaticn of the neutral axis. A computer program has
been written for this purpose which enables the characteristics of the
compression zone to be determined for a finite number of different
neutral axis orientations. The procedure adopted for solution incor-
porates an iterative technique which first requires the section to be
represented as an assemblage of discrete elements. These are based on
a rectangular grid, as shown in fig. 5.10b for the typical box section,
and should be more finely spaced at the corners in crder tec provide an
accurate evaluation of compressive forces for corner modes of failure.
In its existing form the program has provision for a maximum of 512

elements; this enables the rectangular section to be represented as
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Figure 5.10 Representation of a Typical Box Section as an Assemblage of Rectangular Elements
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eight solid rectangular components (two flanges, two webs and four
corners), each comprising 8 x 8 elements. However, the program is
also suitable for solid beams (utilizing a similar idealization) or

for irregular sections including those with an open configuration.

A flow chart describing the action of the computer program is
shown in fig. 5.11. In the first instance, the netural axis xi' - xi’
is orientated at an angle ei and is assumed to pass initially through
the section centre (fig. 5.10c). Then, by locating the extreme
concrete fibre in compression and assigning te it the input value of the
maximum permissible strain, the distribution of longitudinal strain is
defined over the entire cross-section. The Bernoulli hynothesis of
plane sections applies in this analysis, and concrete is assumed to have
no tensile capacity.

With the strain thus determined, the effective stress at the
centre of each concrete and steel element is calculated from the
appropriate stress/strain curve. These curves form part of the
initial input data and are discussed later. The total compressive
force in the steel and concrete above the neutral axis is then computed
and compared with the tensile steel force from below the axis. If the
total compressive force exceeds that in tension, the neutral axis must
be moved in the direction of the compression zone while maintaining its
initial orientation. The fivrst displacement, A, is predetermined in
the program and is a function of the section geometry. The procedure
is repeated and the discrepaﬁgy in compressive and tensile forces is
calculated once again. Since two such values are now available, the
program makes use of a specially developed algorithm to predict the
most likely change in the neutral axis position, dAil’ for a balanced

failure to occur (fig. 5.10c). This iterative technique is continued
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until the compressive and tensile forces agree to within a specified
tolerance. An upper limit of 20 iterations has been set in the program,
in case of convergence broblems, although 3-6 iterations are usually
sufficient for an imbalance of less than 0.1%. When this condition

is satisfied, the centre of action of the compressive forces is com-
puted together with the total force in the concrete and in both com-
ponents of steel.

A different orientation of the neutral axis, is then

8i+l’
selected automatically and the procedure is repeated for solution.

However, since the depth of the neutral axis does not alter signifi-
cantly with a small change in orientation, the final displacement of

the previous neutral axis (given by A. + dAi1 + dA .« « .) is now used

i2
as an estimate of the new initial displacement, Ai+l'
A description of all the necessary input data and the selected
format (standard 80 column cards) is given in Table 5.2.  The stress/
strain curve adopted for the concrete elemenfs is the rectangular-
parabolic relationship defined in cP110123, Values of concrete cube
strength and limiting concrete strain form part of the input data;
the partial safety factor, Y2 is taken to be unity. In the case of
steel, the short term design curve from CP110 has also been used, and
has the form shown in fig. 5.12a. This relationship is defined in
terms of the o - € co-ordinates at the four changes of slope where Y
is once again of unit value. These identifying co-ordinates are input
for each bar separately (Tabie 5.2) thus enabling sections comprising
different types of longitudinal steel to be analysed. Any element of
prestressing steel can then be accommodated by simply reducing the

capacity of the steel by the appropriate value of prestrain, as shown

in fig. 5.12b.  However, in this situation, a preload equivalent to
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Parameter Description Format
E ol W Number of main concrete segments
3y . 215
ePw| N Number of steel elements
9
AMIN Initial Orientation of neutral axis, 9,
b
g
e AMAX Final orientation of the neutral axis, On
o
Uy
I =] DA Increment of orientation, dé
- i.e.‘ez =6, + df, etc.
o o
531 Accp Acceptable error (%) between tensile and
E o compressive forces 7F10.2
g c
S
P Fcu Concrete cube strength (N/mm?)
&
0] .
o ECU Limiting concrete strain (ue)
PN
p: .
= P Prestressing force (N)
o W(1,I) Length of segment (I) in x-direction
Eu]
U o~
§ =1 w2,1) Length of segment (I) in y-direction
o ~
© 1 ws,I) Orientation (degrees, positive clockwise) 5F10.2
% ) |
a7 W, I) Offset in x-direction
38
551 W(5,I) Offset in y-direction
b & :
a3l we,1) Nunber of elements in x-direction
A 2110
W(7,1) Number of elements in y-direction
o z(1,J) Area of steel element (J), (mm?)
¢}
(0]
o Z(2,3) Location in x~direction
sz . —
a | 2(3,3) Location in y-direction
o~
-
el zu,d) Strain (pe) )
0 o
8~ 2(5,3) Stress (N/mm?) 1F7.1
S
gt z(6,J) Strain (ue)
g :
28l 7(7,J3) Stress (N/mm?2) {
=) ] See fig. 5.12
§ ~ 1 Z(8,J) Strain (ue)
A0
E ﬁ Z(9,J) Stress (N/mm2)
et Z(10,J) Strain (ue)
[}
2 7(11,J) Stress (N/mm2) )

Table 5.2 Format

of Input Data for the Computation of the Centre of

Action of the Compression Zone
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the total prestressing force in all the elements of steel must also be
specified in the input data and is then included in the subsequent
calculation of the totai compressive force.

An idealized single cell box girder is presented here as an
example of the performance of the computer program. The selected
section is singly-symmetric about the vertical axis, has a constant
wall thickness of 50 mm and is 450 mm square overall. Reinforcement
consists of high yield steel bars (425 N/mm2) with an area of 200 mm? in
each of the top corners and of 4OQ mm? in each of the bottom corners.

The section has subsequently been analysed for a variety of
different neutral axis orientations., Results of the study are shown
in fig. 5.13 for an initially horizontal orientation which was then
increased in increments of 10°. The various lines on this figure
relate to different values of axial load between 0 - 60 kN. Since
the same stress/strain curve has been used for the steel in each case,
these are not prestressing forces but represent a series of externally
applied end loads.

Clearly, the axial loads have little effect on the final position
of the compression zone when the neutral axls is parallel to any of the
concrete faces. Furthermore, the computed centre of action in each of
these cases is just outside the wall centreline. This fully justifies
the simplification adopted in §5.2 in which the centre of action was
assumed to be coincident with the centroid of the unvielded steel.
However, for fallures about the corners, the effective centre of the
compression zone is often well within the centreline dimensions,
particularly when the section is subjected to high end loads.

5.3.2 TFormulation of the General Interaction Equation

The advanced failure model is similar to the simplified version



- 366 -

Properties :

cu = 3500 ue
= 2
8 fcu 50 N/mm
. £ = 425 N/mm?
O y
19} A, = 800 mm2
A ' = 40O mm2
S

00 40.00 8000 120.00

~Pl-oo

0
O
®) Axial Load:
0
! o P =0

0O P =20 kN
0 A P = 40 kN
O + P = 60 kN
O
o
|

400

sq.
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Forces in an Idealized Box Section subject to Axial Load
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adopted in §5.2.2 in as far as the shear flow in each wall (between
reinforcement bars) is taken to be constant. The total compressive
force is also assumed to act at a single point at failure, although
there is no longer any requirement for this to be coincident with the
centroid of the unyielded steel.

The two equilibrium conditions (eqns. 5.3 and 5.4) may now be
restated, together with two further equations of equilibyium, in the
following general form:

m n

Y 2, -2 =N+ T F..b. cot a.
i=1 j=1 3 J

L 5.36

F..b.x.y..cot a.
J 71713 J

where Z 1is the total compressive force (steel and concrete)
. . . .th .
Zi is the tensile force in the i component of reinforcement
%,y are the co-ordinates of the total compressive force, Z

. .th .
Xis Vs are the co-ordinates of the i component of reinforcement

Xj’ y:.l are the co-ordinates of the centre of the jth shear wall

Fj, bj’ s respeﬁtively represent the shear flow, breadth and
angle with respect to the jth shear wall. In addition, the term W in
the fourth of egns. 5.36 is equivalent to a system of longitudinal
warping forces which have zero resultant direct force or bending moment.
This is not strictly a bimoment due to warping restraint, in the sense

defined in Chapter 2, but may be conveniently thought of as an externally

applied bimoment.
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By multiplying the first three expressions in egn. 5.36 by X.v,
x and y, respectively, they may subsequently be combined with the fourth
expression in such a way as to eliminate the total compressive force
term, Z. Then, on introducing the general definition of cot o (from

Ll
eqn. 5.22) for the ]t1 wall element, we have

n Sj
_ _ 2
X.y.N x.MX y.My + W+ x.y. E F.< b. o

()

n Sj n S:I n S
-%x. I F.2b, ——y -y. I F 2 b, I F.2b. -y y
521 3 3 D5 73 521 ) JDJ T T ]Dj 17]
m m m m
= X.y izl Zi - x.lil Ziyi - V. iEl Zixi + 1§l ijiyi
5.37

By expanding the right-hand side of this equation and rearranging, this
may be written more simply as

m
z N 5.38

RHS = .
ci

Zixc'
i=1 *
. .th . .
where Xoi Yoi are the co-ordinates of the 1 steel element in tension
with reference to the centre of action of the compressive forces. Thus,
it only remains to determine the shear flows Fj(j = 1, n) explicitly in
terms of the various stress resultants for eqn. 5.37 to be rewritten in

the form of a general interaction equation.

The Rectangular Beam

Consider the idealized reinforced or prestressed concrete beam
detailed in fig. 5.14 which is singly symmetric about the vertical
axis. Direct thrust and torsion are applied about the section centre

while components of bending moment and shear force are applied with
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Accordingly, the

shear flows in each wall (subscripted t, b, 1 or r for the top, bottom,

left- and right-hand sides, respectively) may be alternatively

expressed as

Figure 5,14

t sV vX
Fb = FSv - va
= F
Fl Fou + Fvy
F = F - F
r sv vy
F o
t
® @
h/2

—- =
VX \ﬂ/ MX
/2 \ Yy
P y
1
M
A ‘i’* 1"
—3

Idealized Rectangular Beam adopted for the Advanced

Failure Model

In general, there is also a component of shear flow in each wall

element due to the system of warping stresses, V.

However, since

forces created by warping restraint are rarely a problem in closed

.39

sections at ultimate load, these have been entirely neglected from the

study at this stage.
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On substitution of the appropriate terms from egn. 5.39 into

eqn. 5.37, and after considerable rearrangement, we have, at failure

- xM - y- s_ - 2 (v -
xyN XMX vy + Dy {(ISV tF ) (y - h/2)bx

+ (F,, = F, )2(x - b/2)hy + (F, + Fvy)z(x + b/2)hy} =

sSv

)7

.y 5.40

m
T 4., .x .
- iy "ci'ecl

i=1
where the spacing and yield force of the stirrups are assumed to be

constant on all sides. Furthermore, the various components of shear

flow may also be written in the following form:

F =T /Q (2.u4)
SV sSv

F =V /2h (5.21)
vy Y

Fou = Vx/zb 5.4l

After substitution of these expressions into egn. 5.u40 and division
throughout by the right-hand side, an interaction equation is finally

derived, thus:

1y 2 2 2 7
N Ilx My Tov Vx Vy h [2b 5V Vx
— et + + + - —-f~——. T

Xu yu T \Y v sSvu xu
svu pq| yu
T v
+ %. /EE e - 1 5.42
P svu yu

In the derivation of egn. 5.42, various ultimate load terms have been

introduced and are defined in the following way:

N - L Zizxciyci W

u Xy

N _ z éi xc.yci

xu %

%, X .y . [ 543

M o o= - ey Gl CL

yu y

D.Z . Yo
T - g Y iy el cl
svu Spxy
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2DD L Z. % .y .
v o= v iy "ci’cil

xu SXY

2hD_ L Z, %X .y .
v o= y iy ci’ci
yu sxY

The summationsin all of these terms are carried out over the range
i =1, m and are only effective for elements of reinforcement in tension.

5.3.3 Theoretical Investigation of Observed Cormer Failures

Well documented experimental results already exist for an exten-
sive series of ultimate load tests on prestressed concrete beams. The
series comprised thirty-seven beams with the hollow cross-section shown

44 under

in fig, 5.15, and were constructed and tested by Johnston and Zia
different combinations of bending moment, torsion and shear.  Five of
the beams have been omitted from this study since they had no stirrup
reinforcement and thus did not comply with assumption (1) in §5.2.1
relating to fully under-reinforced sections. In addition, the ultimate
torsional capacity computed for one of the other beams was evidently
less than the torque necessary for the full development of cracks.
Failure was therefore delaved until first cracking and this result has
also been excluded from the subsequent theoretical investigation. of
the remaining beams, approximately one-third were tested under bending
moment and torsion only and, as expected, failure invariably occurred
with the neutral axis parallel to one or other of the concrete faces.
However, the other two-thirds of the beams were subjected to various
combinations of bending moment, torsion and shear. In approximately

20% of these tests failure was observed about one of the corners.

Cross—sectional Idealization

The idealization of the concrete sections is detailed in fig.
5.15b. Each web and flange element has a thickness corresponding to

the minimum wall thickness in the original section while the dimensions
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of the square corner elements are defined by the diameter of the void.
Since the neutral axis is always well within the assumed concrete .
section at failure, negiecting the small area of concrete adjacent to
the circular void has no effect. However, this is not the case in
the approximate idealization of the corner elements where the external
corner chamfer has not been taken into account. This results in an
over-estimation of the concrete area in the most highly stressed zone,
the result of which tends to increase the offset of the neutral axis
from the section centre. Nevertheless, this effect is nullified to a
large degree since the limiting concrete strain is also invariably
located at one of the corners. Thus, the most highly stressed region
always occurs in the non-existent corner chamfer which has a small total
area. The effective stress on the remaining (and relatively much
larger) concrete area in compression is therefore correspondingly
reduced and this requires the neutral axis to return towards the section
centre for a balanced failure.

Since the position of the netural axis is not greatly influenced
by the adopted idealization of the concrete section, the quantity of
of steel in the tensile zone and its eccentricity from the axis of zero
strain is also relatively unaffected. However, this is not necessarily
the case with respect to the position of the centre of action. The
stress distribution across the compression zone is clearly altered by
including the corner chamfers and has the general effect of increasing
the distance of the centre of action from the section centre. Never-
theless, in trial calculations in which the chamfer has been included,
the error was always less than 2% of the effective lever-arm to the
main tension steel and is thus well within anticipated experimental

error.
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Location of the Compresstion Zone

Six 9.5mm diameter stress relieved prestressing strands were used
in each section. These‘were symmetrically disposed about the vertical
axis. Each of the bottom four strands were pretensioned to an initial
value of 62 kN whereas the top pair were only nominally stressed to 9 kN.
Total losses in each pair of strands were measured at the time of test
and are detailed by Johnston and Zia“" separately for each beam.
However, since the level of prestress is a necessary input parameter in
the computer program detailed in §5.3.1, a full analysis of each section
has been avoided by determining the mean value of effective stress for
each pair of cables. These levels of effective prestress did not vary
greatly between beams (standard deviation < 20 N/mm? in all instances)

and are presented in Table 5.3 together with the four pairs of values

defining the stress/strain relationship for each cable position (fig. 5.12).

Top Bottom

Quantity Cables Cables
Mean prestress (N/mm?2) 32 878
Mean prestrain (ue) 160 4392
oy | 1818 971
U, Stress (N/mm?) luu8 601
o3 (see fig. 5.12) -1511 -2358
o -1881 ~2728
€1 | 14080 9858
€2 | sirain (ue) 7210 3008
®3 | (see fig. 5.12) ~7560 m11792
ey ~14410 ~18612

Table 5.3 Mean Levels of Prestress and Stress/Strain

Relationships adopted for the Computer Analysis
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The entire series of test beams were constructed from three
different batches of concrete. Two standard 12" x 6" diameter
cylinders were also cast for each beam and the mean compressive strength,

f . (p.s.i.), is given in Table 5.4, To convert these values to the

C
equivalent cube strength, fcu’ adopted by CP110!23, the following

empirical relationship stated by Neville®0 has been employed:

£
- cu
foy ° [0.76 + 0.2 logy, 2850}.fcu 5.4l

Here, the cylinder and cube strengths are given in p.s.i. although the

derived values of fcu are also presented in Table 5.4 in SI units.

T

Casting cy fcueo cu
Number (p.s.i.) (p.s.i.) (N/mm?)
1 4063 5020 34.62

2 5853 6985 4g.17

3 5353 BL4L4O Ly, u1

Table 5.4 Mean Concrete Compressive Strengths at the
Time of Test

The section was subsequently analysed using the computer program
detailed in §5.3.1. This was repeated three times in order to take
account of the varying cube strengths of the different concrete mixes.
Limiting compressive strain at the extreme concrete- fibre was specified
as 3500 pe in all cases, while the total compressive force due to pre-
stressing was calculated from the effective stresses in Table 5.3 to be
184.8 kN. Computed co-ordinates of the centre of action of the com-
pressive forces are tabulated in Table 5.5 together with the term
Variations between the

z Zi.x .y . derived previously in eqn. 5.38.

cl”cl

%, y co-ordinates, determined for the different concrete cube strengths,

are more clearly visible in fig. 5.16.



Casting No.1(34.62 M/mm?) Casting No.2(48.17 N/mm?) Casting No.3(Liu4.41 N/mm?)
Neutral Axis -
Orientation ®{mm) y(mm) T(MN. mm?2) x (mm) y (mm) (M, mm?) ®(mm) v(mm) TN, mm?2)
OO 0 126.67 -87.20% 0 132.82 -89,57% C 131.39 -89, 02%
lOo 29.72 125.49 2698.33 4Q0.25 129,57 36u41.84 37.81 128.65 3uu8,11
20O 58.85 120.01 4773.01 71,73 122.82 6152.66 68.89 122.16 5828.05
300 79.79 112.u8 6015.48 89.22 116.05 7106.00 87.0u4 115.17 6822.28
400 94,25 104.38 6743.85 100.62 108,97 7605.12 99,1y 107.91 7385.33
50O 104,91 gu .71 7049.60 109.37 100.89 7874.21 108.36 99.u4y 7669.90
60° 113.31 81.69 6959.1u 116.52 89,94 7822.35 115.71 88.16 7611.41
70° 120.62 60,86 6236.29 123.04 72.31 7222.35 122.46 69.85 6988.13
80° 126.07 28.25 | 4370.37 | 130.05 41.39 | 5284.72 129.20 | 38.51 5082.02
90° 128.04 -3.82 1747.46 | 133.u8 -2,35 1939.41 132,09 -2.69 1893,143
100° 126.53 | -35.10 | -228.12 | 130.04 | -uu.u0 [-1045.23 | 129.21 | -42.30 | -820.68
llOo 120.96 -63.89 ~2015.10 123.50 -75.08 -2904.20 122.87 -72.57 -2692.21
1200 114,05 -82.29 -2836.72 117.28 -90.76 -3649.40 116.u46 -88.89 -3474.75
1300 106.40 -94.69 -3198.37 110.50 -100.80 -3993.72 109.47 -99.29 -3834.81
ll+Oo 97.31 -104.26 -3458.04 102.50 -108.56 -4156.10 101.19 -107.47 -4024.78
150o 84,66 —llé.lO -3529.91 91.72 -115.41 -4109.15 90.16 |-114,56 ~3976.89
160o B4.39 -119.30 -3067.59 74.05 -122.07 -3621.62 71.84 |-121 .4l -3481.59
l7Oo 32.58 -125.43 -1680.33 40.65 -129.61 -2335.61 38.87 |[-128.67 -2179.63
180O 0 -127.24 50.85% .0 -131.64 55.55% 0 -130.57 54, 78%
% see eqn. 5.49
Table 5.5  Computed Co-ordinates of the Centre of Action of the Compressive Forces

~- 9LE -
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Figure 5.16 Loci of the Centres of Action of the Compressive
Forces corresponding to Casting Numbers 1-3
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Theoretical Investigation

The concrete mix number andllevels of applied load are listed in
Table 5.6 for each of the thiry-one beams under consideration. This
information has been abstracted from a table given by Johnston and Zia“”,
and retains the original beam referencing system. Thus, the letter H
refers to hollow sections while the numbers signify the shear span/
depth ratio, stirrup spacing (ins) and the beam number, in that order.

For the stress resultants considered in this series of tests,

eqn. 5.42 reduces to

M T 2 v?2? T V
N + XL BV Ly b [2h LBy o 5.u5
N M 2 2 X D T \
u xu T Y * sVu  yu
svu yu

However, since the stress/strain curves of the steel have been suitably
modified to take account of the initial stress in the cables, pre-
stressing effects must also be included in the interaction equation as
external loads. Thus, the direct tension, N, is due entirely to the
initial prestressing force (P = - 184.8 kN), while the term Mx repre-
sents the sum of the bending moments due to both prestress and live
loading. By introducing the various ultimate load expressions from

eqn. 5.43 into egn. 5.45 and rearranging, we therefore have

SpXy ¢ 2 4 SXY v 24 sby T

- X'Mx * Q2p  © Tsv 2hD_ "y Q.0 "sv 'y
N y y
n
= . . . P .
z ZlyxClyCl + Px(y + ye) 5.46

i=1
where Yo is the vertical eccentricity of the initial prestressing
force, P, measured from the section centre. The right-hand side of
egqn. 5.46 has already been computed for a wide range of neutral axis

positions and is denoted 1 in Table 5.5.
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Beam Casting Torsion/Shear Torsion/Bending
Ref. Ref. Ratio(2T_ /V_b) Ratio(-T__/M)
Number Number e VY v, sv
H-0-3-1 1 co co
H-0~3-2 1 %0 4.83
H-0-3-3 1 0 1.22
H-0-3-4 1 © 2.20
H-0-3-5 1 © 0.37
H-0-3-6 1 0 0.61
H-0-6-1 1 b o
H-0~6-2 1 co 3.10
H-0-6-3 1 0 0.22
H-0-6-5 2 co o.u5
H-0-6-6 2 co 0.11
H-4-3-1 1 9.88 4.52
H-4-3-2 1 4.96 1.85
H-4-3-3 3 1.25 0.34
H-4-3-4 3 0.62 0.29
H-4-3-5 2 2.50 0.51
H-4-6-1 2 10.00 3.10
H-4-6-2 2 0.62 0.18
H-4-6-3 2 1.25 0.24
H-4-6-4 3 0.63 0.11
H-4-6-5 3 2.47 1.23
H-6-3-1 2 10.07 1.36
H-6-3-2 2 4.81 1.12
H-6-3-3 2 2.50 0.33
H-6-3-4 2 1.89 0.17
H-6-3-5 2 1.26 0.12
H~-6-6-1 3 g.u2 4,31
H-6-6-2 3 4,82 2.05
H-6-6-3 3 2.u8 0.37
H-6-6-4 3 0.63 0.06
H-6-6-5 3 1.26 0.12
Table 5.6  Casting and Loading Detatls for Prestressed

Concrete Beam Tests'th




- 380 -

The various geometrical parameters for this cross-section are
determined from fig. 5.15 and are given by

244 .4 mm

b =
h = 241.4 mm
P = 971.6 mm

Q= 118.0 x 103 mm?

Stirrup spacing for each beam is specified (in inches) by the second
digit in the beam reference number. Thus, the figures 3 and 6
represent spacings of s = 76.2 mm and s = 152.4 mm, respectively. In
addition, since the yield stress of the transverse reinforcement is
recorded“ as 270 N/mm?, each leg of the 6.36 mm diameter stirrups has
a yield force of Dy = 8551 N.

By introducing the numerical values of these various parameters
into eqn. 5.46, a simple quadratic equation is derived in terms of the
applied torque, Tsv’ thus:

X'Tsv
xys}x 10712 4 =1 5.47
Y2

TCV2{8.1603 , 16.221  1982.1

2
Y1 KoYl

In this expression, the loading ratios vy, y2, and the stirrup spacing,
s, are uniquely defined for each beam. On the other hand, the co-
ordinates of the centre of action of the compressive forces, x, y,
together with the quantity T, are variables dependent upon the orien-
tation of the neutral axis. It therefore only remains to substitute
the appropriate numerical values from Tables 5.5 and 5.6 into eqn. 5.47
for a solution of the applied torque necessary for failure in each case.
A programmable calculator was sufficient for determining the
positive roots of each equation. These are presented in Tables 5.7 -
5.9 for the beams constructed from casting numbers 1-3, respectively.

Clearly, when x = 0 (Z.e. for 6 = OO, 1800), only the trivial solution



BEAM REFERENCE NUMBER (Failure Torque in N.mm x 107)

8 H-0-3-1 | H-0-3-2 | H-0-3-3 | H-0-3-4 | H-0-3-5 | H-0-3-6 | H-0-6-1 | H-0-6-2 | H-0-6-3| H-4-3-1| H-u-3-2
0° 3.387 3.198 2,847 3.051 | .2.028 2,446 | 2,353 2.253 | -1.317 - -
10° 3.411 3.281 2.926 3.132 2.094 2,519 2.412 2.311 1.361 2.551 2.073
20° 3.297 3.161 2.793 3.006 1.951 1 2.377 2.331 2.226 1.262 2,732 2,313
30° 3.283 3.138 2.749 2.974 1.877 2,314 2.321 2.209 1.209 2,802 2.404
40° 3.320 3.164 2.748 2.988 1.837 2.289 2.348 2,227 1.178 2.867 2,471
50° 3.378 3.207 2.753 3.014 1.789 2.262 2.388 2,255 1.141 2.930 2.525
60° 3.477 3.279 2.763 3.058 1.718 2.220 2.459 2.305 1,087 3.013 2.584
70° 3.700 3.433 2.769 3.144 1.569 2.118 2.613 2.409 0.978 3.168 2.673
80° 4,402 3.892 2.685 3.333 1.191 1.776 3.1u1 2.715 0.722 3.604 2.840
90° - - - - - - - - - - -
100° 0.909 1.500 3.963 2.423 12,448 7.618 0.6143 1.111 10.u51 1.379 2.106
110° 2.047 2,325 3.324 2,698 7.371 4.970 1.448 1.665 6.066 2,140 ' 2.308
120° 2.205 2.416 3.146 2.693 6.081 u.327 1.554 1.724 u,93y 2,215 2.282
130° 2.260 2.442 3.060 2.678 5.516 4.0u6 1.598 1.741 4,435 2.227 2,2U6
140° 2.3u1 2.506 3.057 2.718 5.219 3.925 1.655 1.784 4.163 2.268 2.248
150° 2.446 2.599 3.103 2.793 5.059 3.889 1.729 1.849 4.006 2,322 2,259
160° 2.534 2.677 3.145 2.859 4,942 3.869 1.792 1.904 3.889 2,322 2.197
170° 2.571 2.708 3.150 2.879 4,833 3.829 1.818 1.925 3.787 2.111 1.872
180° 2,535 |- 2.670 3.105 2.838 - | 4,764 3.77% | 1,792 | 1.897 | 3.732 - -
Table 5.7 Predicted Failure Torques (0 = o° - 180°) for Beams from Casting No. 1 (34.62N/mm?)

- T8E -



BEAM REFERENCE NUMBER (Failure Torque in N.mm x 107)

8 H-0-6-5 | H-0-6~6 | H-4-3-5 | H-4-6-1 | H-4-6-2 | H-4-6-3 | H-6-3-1 | H-6-3-2 | H-6-3-3| H-6-3-4 | H-6~3-5
o° | 1.751 0.853 - - - - - - - - -
10° 1.778 0.863 1.543 1.871 0.559 0.792 2 .45y 2.091 1.385 1.001 0.766
20° 1.751 0.828 1.724 2.010 0.629 0.893 2.606 2.305 1.511 1.055 0.798
30° 1.702 0.780 1.742 2.028 0.638 0.904 2.610 2.333 1.506 1.028 0.773
4o° 1.680 0.748 1.753 2.054 0.643 0.909 2.625 2.358 1.499 1.007 0.753
50° 1.668 0.720 1.764 2.090 ‘0. 648 0.813 '{ 2.652 2.389 1.492 0.986 0.734
60" 1.650 0.681 1.763 2.135 0.648 0.910 2.682 2.418 1.469 0.9u49 0.702
70° 1.602 0.609 1.731 2.213 0.638 0.886 | . 2.714. | 2.4u2 1.401 0.871 0.637
80" 1.384 0.436 1.523 2.349 0.563 0.760 2.656 2.363 1.141 0.651 0,467
90° - - - - - - - - - - -
100° 4,358 16.550 4,312 1.398 1.553 2.682 3.101 3.078 6.340 10.0u3 10.177
110° 3.173 9,987 3.157 1.622 1.142 1.883 2.855 2.733 4,191 6.122 6.209
120° 2.194 8.382 2.883 1.655 1.043 1.691 2.787 2.639 3.676 5.140 5.075
130° 2.802 7.629 2.740 1.669 0.991 1.591 2.752 2.587 3.416 4,640 4,545
1u0° 2.741 7.153 2.638 1.683 0.954 1.517 2.735 2.553 3.231 4,281 4,161
150° 2.703 6.793 2.531 1.830 0.914 1,441 2.716 2.511 3.052 3.941 3.797
160° 2.870 6 .48Y 2.356 1.674 0.8u48 1.321 2.659 2.418 2.792 3.490 3.319
170° 2.699 6.213 1.951 1.614 0.696 1.055 2.516 2.167 2,229 2.584 2.378
180° | 2.6u2 6.107 - - - - - - - - -
Table 5.8 Predicted Failure Torques (8 = 0° - 180°) for Beams from Casting No. 2 (48.17N/mm?)

- Z8¢ -



BEAM REFERENCE NUMBER (Failure Torque in N.mm x 107)
& | H-4-3-3 | H-4-3-4 | H-4-6-U4 | H-4-6-5 | H-6-6-1 | H-6-6-2 | H-6-6-3 | H-6-6-4 | H~6-6-5
OO - - - - - - - - -
lOO 1.109 0.794 0.486 1.240 1.864 1.567 1.084 0.377 0.636
20 1.245 0.893 0.527 1.428 2.001 1.747 1.207 0.388 0.677
30°] 1.263 0.910 0.525 1.480 2.027 1.789 1.224 0.376 0.669
400 1.275 0.922 0.523 1.520 2.061 1.828 1.237 0.367 0.659
50° 1.281 0.931 0.519 1.558 2.103 1.869 1.246 0.358 0.6u48
60° 1.276 . 0.933 0.509 1.596 2,155 1.915 1.246 0.342 0.627
70°| 1.239 0.920 0.480 1.647 2.2u6 1.984 1.223 0.309 0,578
80° 1.060 0.823 0.439 1.70% 2.446 2.106 1.080 0.226 0.u39
90O - - - - - - - - -
100°} 3.902 2.110 2.681 1.343 1.219 1.338 3.048 4.829 5.353
llOO 2.696 1,562 1.706 vi.@l% ' 1.546 1.534 2.215 2.867 3.257
120°| 2.399 1.427 1.464 1.407 1.595 1.554 2,012 2,354 2.723
130°| 2.2u8 1.357 1.3u5 1.395 1.616 1.557 1.909 2.107 2.457
140°} 2.139 1.307 1.260 1.386 1.635 1.561 1.836 1.926 2.265
150O 2.026 1.253 1.178 1.363 1.645° 1.553 1.759 1.758 2.08u
160O 1.848 1.161 1.051 1.302 1.630 1.512 1.632 1.540 1.836
170°|  1.457 0.945 0.818 1.122 1.553 1.368 1.336 1.114 1.350
180°) - - - - - - - - -
Table 5.9 Predicted Failure Torques (6 = 0° - 180°) for Beams from Casting No. 3 (44.41N/mm?)

- €8¢ -
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of eqn. 5.47 is possible whereby either TSV = 0 or Vy = 0. This is
the anomaly previously identified during the development of the simpli-
fied theory in §5.2.5,.which demonstrates that failure with the neutral
axis parallel to either the top or bottom faces is not possible when
shear force and torsion are both present, Nevertheless, eleven beams
were tested in the absence of shear and for these eqn. 5.47 may be
reduced to the following form:

T

8.1603 x 10" '2.ys.T 2 + AN & 5.48

2

the term TI* is also calculated in the computer analysis of the cross-

(e] (¢]

section and replaces 1l in Table 5.6 for 6 = 0, 180 . The definition
of this quantity is given by
n
#= I 7, .t .
1 E Zlyycl Ply + ye) 319
1=l

where the summation is once again effective for the elements of rein-
forcement in tension.

Similar problems arise when the y co-ordinate is computed to
have zero value. For beams with reinforcement symmetrically disposed
about the horizontal axis, this will occur where 6 = 900, although this
is not generally the case. In these circumstances, eqn. 5,47 reduces to:

M = - Py, 5.50

which is a necessary condition for failure with the neutral axis in this
position. This is the other anomaly discussed in §5.2.5 and indicates
that a true side failure can only occur under specific conditions of
applied bending moment.

In the series of tests described here, the reinforcement is
asymmetrical about the x-axis and, accordingly, the y co-ordinate is

' o .
never zero at 6 = 90 . Nevertheless, a small numerical value has
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been obtained in all cases (Table 5.5) and this usually results in two
positive roots being obtained from the solution of eqn. 5.47. Since |
one of these roots was~invariably very large, the other very small,
failure was never predicted to occur at this position and thus the
solutions at 6 = 90° have been omitted from Tables 5.7 - 5.9, for
clarity.

Clearly, failure is not possible under a particular system of
applied loads at each of the neutral axis positions for which a solution
has been obtained. Indeed, equilibrium of the system at the instant
of collapse is only possible for failnre mechanisms corresponding to
stationary values (local maxima or minima) on the toréue/orientation
curve. This condition is more clearly demonstrated in fig. 5.17 where
T/® curves have been plotted for three typical beams which displayed
entirely different modes of failure. In the case of H~0-3-5 and H-0-3-1,
more than one local maximum/minimum exists and thus failure is governed
by the smallest of these stationary values (Z.e. at 6 = 0° and'

6 = 180°, respectively). On the other hand, beam number H-4-6-5 has
only one stationarv value at 6 = 110° although the predicted ultimate
torque 1s almost constant over the range 6 = 20° - 160°, Top, bottom
and side modes of failure are therefore to be expected for beams
H-0-3-5, H-0-3-1 and H-4-6~5, respectively, and this corresponds
exactly to the observed collapse behaviour.

Nevertheless, several discrepancies are apparent between the
observed failure mechanisms and those predicted by Johnston and ziah,
In particular, beams H-4-3-4, H-U-6-2, H-4-6-3 and H-4-6-4 all failed
with the neutral axis forming about one of the corners instead of

parallel to the vertical side. Torsion/orientation curves for these

beams are plotted in fig. 5.18 and, in each case, the predicted
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ultimate torque is very nearly constant for 8 = 20° - 70°. While

this is very similar to the T/6 curve for the typical side failure
presented in fig. 5.17, the behavioﬁr is distinctly different for
orientations in excess of 90° where relatively large ultimate torques
are predicted.

Four other beams were also observed to fail in modes not pre-
dicted by the originai theory; the appropriate T/6 curves are plotted
in fig. 5.19. Whereas side failures were expected for beams H-0-6-1,
H-4-3~1 and H—G—E—l, minimum stationary values can be seen to occur
at 6 = 1800, 155° and lSOO, respeﬁtively. These compare very
favourably with the observed'positions of the compression zone at
failure which formed at the bottom of the section for H-0-6-1 and at
the bottom and side simultaneously in the case of the other two beams.
A simultaneous failure about the bottom and side faces was also observed
for the fourth beam, H-0-3-3, the T/6 curve of which is also shown in
fig. 5.19. In fhis case, stationary peints exist at both § = 40° and
6 = 140° with absolute values which differ by only approximately 10%.
This bears a close resemblance to the curve for beam H-4-6-5, shown in
fig. 5.17, and therefore indicates the probability of a side failure.

By using the advanced ultimate load theory developed in §5.3.2,
thirteen of the twenty beams tested in combined bending, tension and
shear are predicted to fail with the compression zone forming about one
of the corners. This is significantly more than the four beams for
which this collapse mechanism was observed. However, this does not
indicate a major disparity between test and theory and is largely due
to the criteria selected here to define such a failure (zZ.e. the
minimum stationary value should occur between § = 20° and 6 = 1602

and computed values of ultimate torque in the top and bottom corners



- 387 -

should differ by more than 20%). Indeed, in two of the thirteen
anticipated corner modes of collapse, a simultaneous side and bottom
failure was observed, | In the majority of the remainder, the computed
orientation of the neutral axis at failure was within 20° of the
horizontal and would therefore be difficult to distinguish from a
failure about one of the section faces.

Because of the generally good agreement between observed and
predicted modes of failure, torque/orientation curves have not been
plotted here for all the beams. Nevertheless, minimum stationary
values are directly obtainable from Tables 5.17-5.1%9, and are shown
shaded for clarity. Subsequently, the collapse mechanisms determined
from this advanced method of ultimate load analysis have been tabu-
lated (Table 5.10) and compared with those predicted and observed by
Johnston and Zia"". A measure of the accuracy of the theory is also
presented in Table 5.10 in the form of the ratio of ultimate torques
as determined by test and theory. While an excellent correlation is
generally obtained, the theory is shown to be conservative in cases.
vhere the combined loading includes a high level of shear.  However,
this is a common feature of all ultimate load approaches and is due

to neglecting dowel action and aggregate interlock effects.
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Position of Compression Zone Ultimate Torque
Beam _at Failure (test/theory)
Ref.
Number Johnston™! laldron Observed Johnston"! Waldron
H-0-3-1 bottom bottom | bottom 0.89 0.94
H-0-3-2 bottom bottom | bottom 1.02 0.99
H-0-3-3 bottom side side/bottom 1.08 1.03
H~0-3-4 bottom side bottom 1.10 1.00
H-0-3-5 top top top 1.01 1.15
H-0-3-6 top top top 1.06 1.10
H-0-6-1 side bottom | bottom 0.98 1.11
H-0-6-2 | bottom | bottom | bottom 1.01 1.07
H-0-6-3 top top top 1.02 1.29
H-0-6-5 top top top 0.92 1.17
H-0-6-6 top top top 1.07 1.28
H-4-3-1 side corner | side/bottom 0.98 1.07
H-4-3-2 side side side 1.02 1.03
H-4-3-3 sidé corner | side 0.97 1.19
H-4-3-4 side corner | corner .73 0.85
H-4-3-5 side corner | side 1.10 1.28
H-4-6-1 botton corner | bottom 1.04 1.20
H-4-6-2 side corner | corner 0.97 1.22
H-4-6-3 side corner | corner 1.00 1.29
H-4-6-4 side corner | corner 1.07 1.65
H-4-6-5 side side side 1.29 1.36
H-6-3-1 side side side 1.11 1.04
H-6-3-2 side side side 1.11 1.06
H-6-3-3 side corner | side 1.04 1.38
H-6-3-4 top corner | top 1.17 1.66
H-6-3~-5 top corner top 1.09 1.49
H-6-6-1 side corner | side/bottom 1.10 1.27
H-6-6-2 side side side 1.12 1.25
H~-6-6-3 side corner | side 1.12 1.36
H-6-6-4 top top top 1.12 1.57
H-6-6-5 top top top 1.08 1.72

Table 5.10  Comparison between Observed and Predicted Modes of

Failure and Ultimate Torques
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S AN ADVANCED FAILURE MODEL - OPEN SECTIONS

The anomalies brought about by the introduction of the effects
of shear force into the simplified methods have been explained in the
. previous section. A more general failure model has been proposed
which also makes provision for corner failures. Nevertheless, even
in this advanced form, the ultimate load analysis of under-reinforced
members is still effectively restricted to those displaying solid or
closed cross-sections. This further limitation has already been dis-
cussed in §5.2.5 and is due to the inability of the methods to take
account of bimoment and warping torsion effects. Thus, a general
method of ultimate load analysis does not exist for an important range
of concrete structures including shear cores and bridges of open section.
A method which takes warping effects into consideration is
therefore proposed which is based on a similar general failure model
to that presented in §5.3. However, since the formulation of the
interaction equation i1s now dependent upon the sectorial co-ordinates
and the position of the shear centre after cracking, these must first
be determined.

S.4.1 Stress Analysis of Cracked Sections

Consider the thin-walled open section shown in fig. 5.20 for
which the centroid, before and after cracking, is denoted by the points

G and GC, respectively. The principal co-~ordinate system XC, Y , for

c
the cracked section subtends an angle ¢ with the original principal
axes X, Y.

The position and orientation of the principal neutral axes of

the cracked section are determined by satisfying the following

equations:

j x,-dA, = J Yo-daA, = f x Yy -dA =0 5.51
c c c
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in which the integrations are taken over the remaining effective area
of the cracked section. Concretg is assumed to have no tensile capacity
in these calculations, and the area of any steel must be multiplied by
the appropriate medular ratic throughout the analysis.

The position of any point on the cross-section may then be
defined in either principal coc-ordinate system by using the following
geometrical relationships:

X = + + si
AX X, Ccos¢ Y. sing

5.52
y = Ay - X, sing + Yo co;¢
and
X = (x - b6 )cosd - (y -~ A _)sing
¢ % Y 5.53
Vo = (x - AX)51n¢ + (y - Ay)cos¢

In these expressions x, y and Xos g refer to the uncracked and cracked
co-ordinates respectively; AX, Ay represent the change in position of
the centroid after cracking with reference to the uncracked co-ordinate
system.

Sectorial Co-ordinates

In fig. 5.20, the points S, Sc, refer respectively to the
position of the shear centre before and after cracking. From eqn.

2.14 the change in principal sectorial co-ordinates over the incre-

mental distance ds may be alternatively expressed,in either system, as

dw = ré . ds
5.54
dw = r . ds
c sc

Furthermore, the distance gs between shear centres is given by

e e
g = Y& . xe 5.55

s cosB  sinB

where € o e represent the movement of the shear centre after cracking
b ycC
with reference to the cracked co-ordinated system. HWith reference to

fig. 5.20 this may be alternatively expressed as



e
X

Figure 5.20 Cracked and Uncracked Co-ordinate Systems
adopted in the Calculation of Sectorial Co-ordinates
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(r - r_)
_ 8 sc .
‘s TS T A >r5e

By expanding the sine term in egn. 5.56 and introducing the functions
sinf, cosB from egn. 5.55, the following expression is obtained:

r - = cosa 4+ sina 5.57
( s I‘sc) Cxc “O7 €yc

It is also apparent from fig. 5.20 that sino, cosa, have the following
definitions:

dx —dyc

. c
sino = —— cosa = 5.58
ds ° ds

By combining egns. 5.54, 5.57 and 5.58 in such a way as to
eliminate the terms o and ds, the incremental change in sectorial co-
ordinate after cracking, dwc, may then be written as:

= . - . 5,
dwc dw + . c dyC eyc dxc 59

fter integration this takes the following form:

= + . - . + K 5.60
Ye @ T e Ve eyc *e

4]

Furthermore, by introducing X.s Vg from eqn. 5.53 into eqn. 5.60,

and noting that

e
XC

eX cos¢ - e sing
o 5.61

€
yc

e sin¢g + e cos
% ¢ y ¢

the distribution of sectorial co-ordinates after cracking may be
alternatively expressed in terms of the uncracked co-ordinate systenm as

w, T w ex(y - Ay) - ey(x - AX) + K 5.62

Position of the Shear Centre after Cracking

The constant of integration in eqns. 5.60 and 5.62 and the
position of the shear centre after cracking are determined from the

following conditions:

f
J w,.da = J wx -da_ = J W,y -dh, =0 5.63
C C C
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in addition to those alreudy stated in eqn. 5.51. Then, by alter-
natively multiplying eqn. 5.60 by dAc, yc.dAC and Xc'dAc’ and

integrating over the entire cracked area, we have

- 1 )
K= - e J w.dAc
€ e
e = o- ot s 5,64
xC 1 Wy, -df, r '
xe ‘e
- 1
eyc = T J wxc.dAcA J
ye ‘e .

In this expression the second moments of area Ixc’ ch, are defined

in terms of the principal co-ordinate system for the cracked section,

thus:
- 2
Ixc J Ve dAc
c 5.65
I = J x 2.dA
ve c
- c
S.4.2 Formulation of the General Interaction Equation

Although the transverse distribution of direct stress at a
section is modified by first cracking, the levels of the various stress
resultants remain unaltered when referred to the original principal axes.

Accordingly, we have

N = J o.dA
u

o .dA
c c
c

oy .dA

ccy.dAc

|
I .
J.
|

[»]

o x.dA
c c

jo

Cc

ow.dA

8]

0 _w.dA
c © c J

J
|

jo
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where o, O describe the uncracked and cracked state of direct stress,
and the integration limits u, ¢, represent the original and final
effective areas, respectively. Alternatively, if the new (cracked)

'principal neutral axes are used, the following relationships hold:

\
N = f o.dA = [ o] .dA
c
ch = [uoy .da = J oY, dA
5.67
[
M = f oX = [ g x dA
ye u c
Bc = f Ow .dA = f g W, .dA
u c J

By substituting Rs Yoo 0 from egns. 5.53 and 5.62 into
eqn. 5.67, the stress resultants corresponding to the cracked and un-

cracked co-ordinate systems may be expressed in terms of each other,

thus:
N = N )
c
ch = (MX - N.Ay)cos¢ - (My - N.AX)Sln¢
Myc = (Nx - N.Ay)81n¢ +(My - N.Ax)cos¢ \ 5.68
N
B =B +e (M -N.A)~e (M -N.A ) = — J w.dA
c X X y vy X A c

c’c J

Evidently, from the last of egns. 5.68, it is possible for a bimoment
to develop after cracking even though one was not applied in the
original system. The significance of this result is demonstrated by
Zbirchowski-Koscial?l in a worked example in which the maximum direct
stress at a section is approximately doubled at first cracking.

So far, in the analysis of cracked sections, the elements of
steel in tension have been considered to be in the elastic state.

Changes in the principal co-ordinate systems are therefore due solely
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to the transfer of tensile stresses from the concrete toc the reinforce-
ment at first cracking. However, since eqns. 5.66 and 5.67 are simply
equilibrium relationships, eqn. 5.68 is equally applicable to the
inelastic state. At failure, the bimoment term, Bc’ may therefore be

defined in accordance with the final expression in eqn. 5.67 as

Z. ... = dow 5.69
1 iy cl c

o
+
g
1
[a%
{u
n

1n o3

where w.g mcj represent the sectorial co-ordinates of the ith component
of reinforcement in tension, and the centre of the jth shear wall
element respectively. Once again, the compressive forces, Z, at failure,
are assumed to act at a single point, the sectorial co-ordinate of
which is denoted W,

On substitution of Bc from eqn. 5.69 into the last of egns.

5.68, we have

‘ N
B + eX(MX - N.Ay) - ey(My - N.AX) T f w.dAC
c ‘e
n s 1
+ 1§ F.2 Dj {m + ex(y. -4 )~ e (x. - AX) ol J w.dAc}
j=1 J iy J y Yy 3 e Je
m
= L 7. Woy ~ Z.mc 5.70
e

This forms the basis of a general interaction equation which, after
dividing through by the right-hand side, may be expressed in terms of
the various stress resultants and their corresponding ultimate values

only.

5.4.3 Experimental Investigation

The effect of warping restraint on the ultimate capacity of

thin-walled concrete members has also been investigated experimentally.
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Tests were conducted on four straight beams of simple open section,
comprising two singly-symmetric channel sections, and two I-beams,
symmetric about both principal axes.

Construction Details

An overall length of 2.4 m and a common wall thickness of
25 mm were used throughout. This enabled construction and testing to
be simplified and permitted the re-use of external formwork. Cross-
sectional dimensions of each pair of I-beams and each pair of channel
sections were identical; these are showmn in fig. 5.21, together with
the general arrangements of reinforcement.

Longitudinal steel was essentially the same in each pair of
beams although the transverse reinforcement varied, comprising either a
single or double stirrup leg in each wall. Round mild steel bars of
either 10 or 12 mm diameter were used for the main reinforcement and
these were located at the junctions of all web and flange elements.
Stirrups were cut and bent on a special jig to ensure accuracy of
assembly and were manufactured from 4 mm diameter steel of similar
quality. Stress/strain relationships determined from several specimens
of each bar size are_presented in fig. 5.22.  Although the stresses at
failure are higher than expected, each type of steel displays a long
strain plateau after yield. This is an essential characteristic for
redistribution to occur after yield of either the transverse or
longitudinal component of reinforcement, and is a necessary requirement
of the theory developed in §5.4.2 in which fully under-reinforced be-
haviour was assumed.

Accuracy was an important consideration during fabrication
since a nominal side cover of only 2.5 mm was provided to the stirrups.

To facilitate this process, the main bars were threaded at each end and
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passed through accurately drilled holes in the steel end plates. The
application of a slight prestress to each bar was then generally
sufficient to ensure cofrect positioning throughout the span, although
small microconcrete spacing blocks were also used near the centre to
support the weight of the reinforcement cage. In view of the method of
construction, it was possible for the main steel to slip at the beam
ends due to the application of large torsional loads. Positive
anchorage was therefore provided by casting in a nut screwed on to the
threaded end of each main bar.

Although the same external formwork was used for all specimens,
the open profile of each beam was formed with disposable inserts manu-
factured from high density polystyrene. These were accurately shaped
before fixing to the external formwork and were subsequently cut out
after casting and stripping. By adopting this method of construction it
was also possible to provide cross-bracing at frequent intervals along
the beam. Bracing was fabricated from a number of 4 mm diameter wires
provided with a hook at one end. These were pushed into the poly-
styrene at an appropriate angle and then anchored around the main steel.
Later, after casting and removal of the formwork, the individual wires
at each of the selected cross-sections were welded together, thus
forming an excellent diaphragm with negligible out-of-plane stiffness.
Cross-bracing of this type was provided at approximately 300 mm
centres throughout the span. However, at the centre of each beam,
warping deformation was completely prevented by the symmetrical nature
of the proposed method of testing. It was therefore possible to
provide a 75 mm thick diaphragm at this position without inducing
additional warping restraint stresses.

Instrumentation primarily consisted of surface strain gauges,
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together with the measurement of displacements and rotations at a
number of sections along each beam.v However, a limited number of
electrical resistance strain gauges were also used to monitor the state
of strain in the main steel at the centre section. For this purpose
two foil gauges of 40 mm gauge length were attached diametrically
opposite each other on each corner bar. These were checked, water-
proofed and calibrated before assembly of the reinforcement cage. The
central region containing the strain gauges is shown in plates 5.1 for
the channel section with single stirrup legs. This alsc provides a
detailed view of the formwork, diaphragm and general reinforcement
arrangement. The I-beam with double stirrup legs is similarly shown
in plate 5.2.

Because of the very thin walls and small cover, a micro-
concrete was selected with a maximum aggregate size of approximately
2.4 mm. This was the gap-graded mix previously used for the con-
struction of the 1/12th scale bifurcated bridge model described in
§4.2. Information regarding the workability, compressive strength,

etc. was readily available and the mix proportions (by weight) were as

follows:
Coarse Sand (B.S. sieve sizes 7-1u) 1.375
Fine Sand (B.S. sieve sizes 52-100) 1.375
Ordinary Portland Cement 1.000
Water 0.515

A detailed investigation of the probable size effects in structural

models has already been undertaken and is reported elsewherel10, Since

these effects can be significant, a more accurate assessment of the
mechanical properties of the microconcrete was obtained by taking

4 scale contral specimens from each mix. However, compressive strength



5.1 Channel Section with Single Stirrup Reitnforcement.
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did not vary greatly between castings and the mean value at the time
of test was calculated to be fCu = 51.22 N/mm?.

A vibrating fable was used for compacting the microconcrete
‘with generally good results. External .formwork was stripped at
24 hours; the disposable inserts were removed 48 hours later. Cross-
bracing wires were also welded together at this time in order to
prevent cross-sectional distortion during the curing period. This
resulted in some longitudinal shrinkage cracks positioned in the
haunches, although the behaviour during testing was not noticeably
affected. All the beams were cured for 1li days under damp hessian
and polythene sheeting prior to storage in the temperature and humidity
controlled environment of the laboratory.

Test Procedure

Each beam was tested under an identical arrangement of loading
and support, designed so as to apply a significant level of bimoment at
the centre section. Knife-edge bearings provided simple support at
both ends, resulting in an effective span length of 2.3 m in all cases.
In addition, the ends were torsionally restrained by applying a
reactive couple to the top and bottom flanges, and sufficient sliding
bearings were also incorporated into the support system to ensure
freedom of movement in the longitudinal direction.

A single point load was applied eccentrically to the centre
section through a lever—arm clapmed to the solid concrete diaphragm.
Load from a hydraulic jack fixed to the laboratory floor was trans-
mitted through a flexible prestressing strand to the underside of the
lever-arm. The jack used for this purpose was free to rotate about
its point of fixity and, thus, did not impose any unfavourable restraint

on the system.
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By selecting a different eccentricity for each test it was
possible to cover a range of alternative load combinations. However,,
while the torque/bendiﬁg moment ratio could easily be varied, the
levels of bimoment and shear force were fixed proportionately by the
constant span length.

Instrumentation consisted of over fifty surface straln gauges
and inclinometers in addition to the electrical resistance strain
gauges already described. However, the purpose of this extensive
gauging was to monitor the cracked behaviour of the beam along its
length, and is therefore not direétly relevant to an assessment of the
ultimate capacity of the critical central section. Loads were applied
in increments of approximately 10% of the computed ultimate value.
Screw adjusters, provided at each point of contact in the end reaction
frames, were then used to reset the beam ends to their iInitial location
and orientation (plate 5.3). Fifteen minutes were allowed for each
loading increment for the system to stabilize before recording the
various strains, deflections and rotations. During this period the

position and extent of the cracks were marked on the beam surface.

Results
Only those results pertinent to the ultimate load condition
will be presented here. These consist of main reinforcement strains

and central beam rotations recorded throughout the tests, together
with the ultimate loads and the computed values of the various stress
resultants at failure,.

In fig. 5.23, central rotations have been plotted against
torque for each of the four beams. Three distinct phases of behaviour
were apparent, the first of which was relatively short and represented

the response of the uncracked sections. After first cracking, tensile
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stresses in the concrete were gradually transferred to the steel until
the familiar truss action was fully developed. In the case of the
two I-beams, transition from the unéracked to the cracked state was
rapid and the second phase was remarkably linear. Finally, after
yield of both components of steel, the section stiffness was con-
siderably reduced and further small increments of load could only be
resisted by the strain hardening effects of the reinforcement (fig.
5.22). Large defcrmations were apparent at this stage and failure
eventually occurred, in all cases, when the central angle of rotation
was in excess of 1u°, Unfortunafely, the central inclinometer failed
during testing of the I-section with single stirrup legs (beam I) and,
thus, the final phase after yield of the main steel has not been recorded.
Several straight lines are also shown in fig. 5.23, the
slopes of which represent the initial torsional stiffness of the two
types of cross-section, If warping restraint effects are assumed to

be negligible (k& - =), the following relationship holds:

T

¢ = EET; 5.71
In this expression, T is the total torque applied at the centre section
and is equal to twice the torque in each of the two half-spans. The
second moment of area for pure torsion, Id’ and the shear modulus, G,
are determined from eqns. 2,18 and 2.83, respectively. Values of
Young's modulus and Poisson's ratio for the microconcrete are required
for this purpose and these have been previously determined from a large
number of tests during the construction of the bifurcated bridge.
Accordingly, by using the common cross-sectional dimensions given in
fig. 5.21, and with

E 24,7 kN/mm2

0.150

11

v
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we have

GI, = 2.94 x 107 kN. mm?

From fig. 5.23 it is clear that the torsional stiffness
determined in this way does not accurately represent the initial
behaviour of either type of beam. However, if warping effects are

included, the change in central angle is alternatively given by2°

5.72

-©-
!

T4 {J__ tanh (k2/2)}

HGId k2

In this expression the effective length, %, is equal to 2300 mm in all
cases, whereas the decay function, k, must be determined from eqns., 2.1lu4,
2.26 and 2.36 for each section and has the following values:

k = 0.00166 mm~! (channel)

k 0.00222 mm~! (I-section)

Ean. 5.72 may thus be expressed in the form of the two other straight
lines in fig. 5.23 which are in good agreement with the observed
behaviour.

Strains on opposite sides of each corner bar at the centre
section were also recorded throughout the tests. Subsequently, these
have been averaged and are plotted in figs. 5.24 - 5,27 with respect to
the applied load. In the case of the two I-beams, bars A and C were
both initially in compression thus reflecting the significance of the
bimoment effects. However, as load was increased, bending about the
horizontal axis assumed a greater significance. This effect was
noticeable in all beams, particularly after yield of bar B, at which
point any additional tensile forces due to bending had to be resisted
by bar C alone. With the exception of beam I, this resulted in only

one corner bar being in compression at failure.
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Behaviour at Ultimate Load

It is evident from fig. 5.23 that extensive cracking occurred
at an early stage in all the tests; It is not intended to give details
‘of crack measurements here, although the general crack patterns for
beams I-IV at failure are shown in plates 5.4 - 5.7 respectively.

Substantial levels of torque and bimoment were applied to
beam I by adopting a relatively large lever-arm for the test. A
large number of closely spaced cracks developed without causing obvious
distress, and failure was primarily due to yield of bars B and D
located in diagonally opposite corners. Cssentially, the torsional
couple applied to this sectién was resisted by transverse beam action
of the top and bottom flanges and, thus, two separate compression zones
formed at failure. Eccentricity was considerably reduced in test II
with the result that significant levels of bending moment and shear
force were also applied in combination with the torque and bimoment.
Collapse was initiated by yield of the main bars in corners B, C and
D, followed by a secondary compression failure at corner A.

Beams III and IV wére tested under almost identical arrange-~
ments of load in order to investigate the effects of the different
densities of stirrup reinforcement at failure. As a result, the torque/
rotation curves (fig. 5.23) and patterns of crack development (plates
5.6 and 5.7) obtained for this pair of beams were almost identical.

The overall behaviour of beams III and IV was also similar to that of
beam II, in all major respects, despite a torque/bending moment ratio
almost three times larger (at failure). For example, the corner bar B
yielded before collapse in all three tests, while bars C and D were
also subject to significant tensile forces (figs. 5.26 and 5.é7).

However, unlike beam II, collapse of beams III and 1V was primarily
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due to a compression failure about corner A. This occurred prior to
yield of either bar C or D in both tests. The ultimate capacity of
each beam only differed by approximately 10%, the higher value being
recorded for beam IV which incorporated double stirrup reinforcement.

In addition to the central rotation about the longitudinal ]
axis, the displacement of both the section centre and the point of
loading were also required. In practice, this was achieved after each
increment of load by measuring the horizontal and vertical displacement
of a single reference point located at the end of the lever-arm.
Together with the central rotatién, this information enabled any other
point on the central plane to be determined by simple geometric
considerations. In this way the relative positions of the section
centre and the point of loading have subsequently been computed for
each beam at failure.

In all cases the loading was initially applied in a direction
parallel to the vertical axis of the beam, Z.e. the upper loading
point on the lever-arm was always directly above the lower point of
jack fixity. Clearly, after deformation, the effective direction of
loading is given by the angle between the line joining the upper and
lower jacking points and the initially vertical beam axis. Further-
more, the effective lever-arm is the perpendicular distance measured
from the line joining the upper and lower jacking points to the actual
position of the assumed centre of rotation.

The initial lever-arm and recorded collapse load are presented
in Table 5.11 for each bean. Final lever-arms and directions of
loading are also given in this table, although this has not been
possible in the case of beam I due to the premature failure of the

central inclinometer.



Plate 5.4  Crack Development on I-Section with Single Stirrup Reinforcement



Plate 6.6  Crack Development on I-Section with Double Stirrup Reinforcement



Plate 6.6  Crack Development on Channel Section with Single Stirrup Reinforcement



S Channel Section with Double Stirrup Reinforcement



- 422 -

Beam Reference Number
Measured Quantity 1 11 111 v
Collapse load (toms) 2.05 5.75 2.38 2.64
Initial lever-arm (mm) 337.0 97.0 124.0 120.0
Final lever-arm (mm) - 45,2 154.3 153.8
Final load angle - 13.3° 7.0° 7.7°

Table 5.11 Loading Arrangements for Beams I-IV

5.4.4 Comparison between Experiment and Theory

The Centre of Action of the Compréssive Stresses at Failure

Determining the position of the compression zone at failure
is relatively straightforward for beams with either solid or closed
cross-sections. A computer program develoned for this purpose has
previously been described in §5.3, and this is equally applicable to
open sections subject to pure torsion in combination with other forms
of loading. Howéver, when warping deformations are in any way
restrained, the hypothesis of plane sections employed in the program
is completely invalidated. In general, strains will no longer be
directly proportional to the perpendicular distance from the neutral
axis and, thus, the position of maximum compressive strain need not
necessarily correspond to that of the extreme concrete fibre.

The problem is further complicated by the fact that an
infinite variety of different direct strain profiles due to warping
restraint exist and, in general, these may be superimposed directly
on to the strain profile due to combined bending moment and axial force.
As a result, any number of permissible solutions are available for each
selected orientation of the neutral (zero strain) axis. This is a

complex problem requiring further investigation and has not been

considered further here.
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For the simplé I-beam and channel section, the centre of
action of the compressive forces has, once again, been computed
assuming plane sections. remain plane. Clearly, while this can only bé
an approximation to the actual position when significant levels of bi-
moment are present, it is not an unreasonable simplification for the
general case of combined loading. This is because, for a particular
orientation of the zero strain axis, the total compressive force in
the concrete must equate with the total tensile force in the steel at
all times. Thus, while the distribution of stress over the com-
pression zone will undoubtedly be different when any bimoment is present,
the total compressive force will not alter significantly and will
result in the zero strain axis having a similar offset from the section
centre as before. On the other hand, even if the offset of the zero
strain axis is completely unchanged for a particular orientation, the
different distribution of compressive stress will almost certainly
result in a new location for the centre of action. However, since
it is the locus of all these points that is required, even this is
unlikely to be greatly affected by the application of moderate levels
of bimoment.

Results from the computer analysis are presented in figs. 5.28
and 5.29 for the channel and I-sections, respectively. It must be
emphasised, once again, that these results will only approximate the
actual situation‘with any degree of accuracy when the structural
behaviour is not predominantly governed by warping restraint effects.
While this requirement is unlikely to prove a severe limitation in any
practical application, it was not satisfied in the test of Beam I.

In this case, it was found (from fig. 2.2% and Table 4.16) that the
direct stress at each corner due to bimoment exceeded that due to

bending moment by a factor of approximately eight. Clearly, the



- u2y -

Centre of action of
the compressive forces

0  Shear Centre at failure assuming
actual strain profile in the
compression zone

A Shear centre at failure assuming
initial elastic moduli for
elements in compression

.00

l- } T 1 T
60,00 -40.00  -20.00 loo  20.00  40.00

1

- 40 .00

Q0

- aa
2

-.0a

i

-—130

Figure 5.28 Loei of the Centres of Action and Shear Centre

Positions at Failure (Channel Sections)



- 425 -

Centre of action of
the compressive forces

0 Shear centre at failure assuming

8 actual strain profile in the

! compression zone

0

¢ A Shear centre at failure assuming
initial elastic moduli for
elements in compression

ol

0

I T LI ¥ T
00 -40.00 -z0.00 Bpoo | 20,00 4000 /§0.00

Figure 5.29 Loci of the Centres of Action and Shear Centre

Positions at Failuvre (I-Beams)



- 426 -

bimoment predominated the bending moment in this instance, a fact that
was reflected in the mode of failupe reported in §5.4.3. Indeed, the
level of bimoment was such that a compression zone formed in each of
two diagonally opposite corners, thus immediately invalidating the
proposed theory.

The Position of the Shear Centre at Failure

Once the offset of the zero strain axis has been determined
for any particular orientation, it is an easy matter to calculate the
position of the shear centre at failure. This is given by the last
two expressions in egn. 5.64 which are derived in terms of the new
principal co~ordinate systen, XC, YC. However, 1f required, egn. 5.61
may subseguently be used to transform the final shear centre position
into the original co-ordinate system, X, Y.

Clearly, one of the first requirements is to establish the
origin and orientation of the new principal co-ordinate system. The
effective modulus of the main reinforcement after yield is zero and,
thus, only the unyielded steel and concrete in the compression zone
contribute to the cross-sectional area and section stiffness. However,
in calculating the centroid of the compression zone, the effective
modulus of the various constituent elements must also be taken into
consideration. For this reason, the centroid of the compression zone
will not generally coincide with the centre of action of the com-
pressive forces, the position of which has already been determined.

The computer progrém previously described in §5.3 has been
extended to enable the new shear centre position to be established.
This requires not only the determination of the origin and orientation
of the principal axes at failure, but also the solution of the various

integrations in egns. 5.64% and 5.65.  Furthermore, since the angle
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between the cracked and uncracked principal axes is known at this stage,
use has also been made_of eqn. 5.61 to calculate the final shear centre
position in terms of the original co-ordinate system.

Results from the computer analyses of the channel and I-
sections have been presented in the form of a locus of final shear
centre positions, e s ey, in each case. These curves are shown in
figs. 5.28 and 5.29, each superimposed upon the corresponding locus of
the centres of action of the compressive forces, x, y. There is, in
general, good agreement between these curves. However, the eccentricity
of each centre of action from the section centre is nearly always
greater, by a small amount, than that of the corresponding shear centre
position. This is to be expected since much of the concrete and some
of the steel in the region of the extreme fibre has an effective
modulus of zero and is, therefore, not included in the computation of
the shear centre position. The computer prograﬁ was also modified to
enable the shear centre position to be calculated assuming that each
constituent element of the compression zone possessed its initial
elastic modulus. The resulting loci, shown in figs. 5.28 and 5.29,
also compare favourably with the loci of the centres of action but are
now slightly further from the section centre at nearly all positions.

A General Interaction Equation for I-Beams

It has been established that the shear centre position at
failure is very nearly coincident with the centre of action of the
compressive forces (apart from the change of sign in the x-co-ordinate).
In view of the approximate nature of these results, due to the
assumption that plane sections remain plane, it is therefore permissible

to put



- 428 -

Furthermore, the value of the constant of integration, K (defined in
eqn. 5.64), has also been calculated in the computer analysis of the
two sections and is closely approximated by K = - xy, in most instances.
By substituting these terms into eqn. 5.70 and noting that for a change
of axes to the computed centre of action, AX = X, Ay = y, we have

s,
T P2l (w. - xy. - x.¥ + xy)
-, 3D T TR T

B-x.M -y.M + xy.N+
* ! 1 3y

J
m

= ¥ Z
i=1l

LW . - 2w 5.73
iy “ci c

For the two simple sectlons considered here

w =0

w. = X.YV.. w . = X P
¥i3 Yeid c

J 377 cl ci
in which case, eqn. 5.73 takes the identical form of eqn. 5.37. This
is the general interaction equation derived previously for closed
'sections where the warping function, W, is now replaced by the bimoment
term, B.

For the idealized, doubly-symmetric I-beam, subject to the
general system of loading shown in fig. 5.30a, the total shear flows

in the web and in the top and bottom flanges are given by

F, = Vy/h
Fp = Tw/bh + VX/2b 5,74
Fy = Tw/bh - VX/Qb

After substitution of the various shear flow terms from egn. 5.74 into
eqn. 5.73, and after much rearrangement, an interaction equation may

be formed, thus:

M M T 2 v 2 v 2 WY

B X y W X y :
B tW T

u ®u yu T 2

=1 5.75

In this expression, the ultimate load terms have the following

definitions:
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Bu ) Ziyxciyci
M = 7% Ziyxciyci
Myu A Ziyxciyci
T =  2bh Yy" Biy¥esVes
Wu ) 8sbxy

2bD .L Z. X .y .
v _ y iyTei’ei
XU SXy

hD .2 Z. x .y .
v - y iy“eil el
yu sxy

r 5.76

In all of these terms the summation is carried out over the range

i = 1,m and is only effective for elements of reinforcement in tension.
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A General Interaction Equation for Channel Scetions

For the idealized, singly-symmetric channel section, shown
in fig. 5.30b, the total shear flows in the web and in the top and

bottom flanges are given by

F =V /h

W Y

F. =T /bh +V /2b + V /2h 5,77
t W > S y

Fb = Tw/bh - VX/Qb - Vy/2h

After substitution of these terms into eqn. 5.73, the general inter-

action equation for channel sections has the following form:

B M T 2 v 2 v 2 O V..T
D SERUA AN + X + Y _ h. bx . X W
B M M T 27y ¢ v 2 y (bh+2xh+bx) V_ T
u Xu yu wu Xu yu . Xu wu
v oox xy o one YxTe = 1 5.78
(bh+2xh+bh)'V_ V y V. T
Xu yu Xu wu

The ultimate vertical shear force, Vyu’ is now given by

‘/2Dy z Ziy'xci'yci
Vyu =h. sy(bh + 2xh + bx) 579

although the remaining terms are identical to those previously defined

in eqn. 5.76 for the I~section.

Theoretical Results

Since full warping restraint is provided at the centre section
by the symmetrical nature of the loading, there can be no change of
rotation at this point, Z.e. ¢' = O. Therefore, in accordance with
eqn. 2.34, the torque applied to the centre of the beam must consist

entirely of warping torsion, Tw’ since TSV = 0. Furthermore, from
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Table 4.16, the bimoment at the centre section is given by

tanh(k2/2)

I T . 5.80

B =

This expression is only strictly valid for a constant value of the decay
fUHctiOn, k, z.e. the ratio of warping stiffness to pure torsional
stiffness is unchanged along the beam.  While this is clearly the

case for uncracked sections, the situation after cracking is complex
and requires further investigation.

For the purposes of this analysis the initial value of k has
been assumed to remain unchanged throughout the length of the beams.
Thus, with the term k determined previously in §5.4.3, we have, from
eqn. 5.80

B 0.0967 TL (I-beam)

1

and B = 0.1253 T% (channel)
However, the quantity T used in egn. 5.80 is the actual torque applied
to the section and must take account of the horizontal change in shear

centre position after cracking. Thus, with the approximation adopted

earlier for e . ve have

_ P _ _ _ P
T = 5 (lever-arm + ex) = Tw e X 5.81

On the other hand, the warping torsion, Tw’ and the shear forces, Vx’
Vy’ are compeltely independent of the change in shear centre position.
This is due to the formulation of the interaction equations in which the
shear flows corresponding to these stress resultants are in full
equilibrium with the applied load P.

With the effective loading angles and final lever-arms given
in Table 5.11, it has been possible to determine the various components
-of load applied to beams II - IV as they approached failure (Table 5.12).

This information is not available for beam I, due to the broken central
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inclinometer, although the mode of failure also invalidates 1t from

the subsequent analysis.

Beam Reference Number
Component of Load II I1T v
Bimoment, B 131.2(85.2-%)P | 1uu4.1(154.3-x)P{ 144,1(153.8~%x)P
Bending Moment, M 0.973 PL/4 0.993 PL/u 0.991 PL/u
Bending Moment, Ny 0.231 P/4 0.122 PL/u 0.137 P/4
Torque, Tw 45.2 Pp/2 154.3 p/2 153.8 P/2
Shear Force, Vx 0.231 P/2 0.122 P/2 0.137 P/2
Shear Force, Vy 0.973 P/2 0.993 p/2 0.991 p/2

Table 5.12  Components of Load at Failure for Beams II-IV

The following dimensions are common for all three beams:

s 2 = 2300 mm
b = 125 mm
h = 250 mm
s = 50 mm

In addition, Dy may be obtained from fig. 5.22 and has the value of

6.58 kN for beam III (one stirrup leg), and 13.16 kN for beams II and IV
(two stirrup legs). By introducing these values into egns. 5.75 and
5.78, together with the appropriate components of load from Table 4.12,
both general interaction equations may now be expressed in the

following form:

n

P(k +k .x +k .y) + xy.Pik +k /vy +k /x) = L2
( 1 2 37 Y 4 sy 6 51

y 5.82

X LY
iyTcited

The values of k; - kg in this expression are given in Table 4,13 for

the three beams under consideration.
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Beam Reference Number
Multiplier II I1I v

K, -5.033 x 103 | -2.224 x 10* | -2.216 x 10"

ko 6.708 x 102 7.151 x 1072 7.140 x 102

k3 1.328 x 102 7.015 x 10! 7.875 x 10!

Ky | uw.284 x 1072 3.028 x 1071 1.507 x 107!
ks -7.917 x 107! | -3.999 -2.239

ke - 4.669 2.325

Table 5.13 Values of the Multipliers for Beams II-IV

Before a solution to eqn. 5.82 is possible, it is necessary to
introduce the appropriate values of x, y, etc. for a particular beam and
neutral axis orientation. These variables are tabulated for both the
channel and I-sections in Table 4.1u. Only the first quadrant has
been considered since the compression zone was observed to form about
this corner in all three tests.

The positive solution of eqn. 5.82 for each of the selected
orientations is given in Table 4.15. The stationary value for beam II
occurs at an orientation of approximately 200, with failure predicted
at a load of 4.23 T. Beam II was observed to fail at a load of 5.75 T
(Table 4.11), representing an overload of approximately 36% with
respect to the ultimate load theory proposed here. However, in the
computer analysis of the section on which this theory is 5ased, a
yield stress of 431 N/mm? was used for all main steel. In practice,

a significant increase in this value is possible due to work hardening
effects and, in fig. 5.22, an average increase of approximately 31.5%

was apparent before failure. Since an under-reinforced section has
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been assumed, the collapse load is governed completely by the physical
properties of the steel. Accordingly, if the gain in strength due to’
work hardening effects is taken into consideration, the predicted and
observed failure loads are in excellent agreement.

The predicted behaviour of the two channel sections was very
similar in all major respects. From Table 4.15 a stationary value can
be seen to occur at an orientation of approximately 70° in both cases.
These represent local maxima and correspond to predicted failure loads
of 4,43 T for beam III and 4.97 T for beam IV. However, a second
stationary value occurring at an orientation of 30-40° is also evident
in each case. These are local minima with values of 4.30 T for
beam IIT and 4.84 T for beam IV. Although the two stationary values
for each beam are not greatly different, they predict failure loads
exceeding those actually observed (Table 4.,11) by a factor of approxi-
mately two. Moreover, if strain hardening effects are once again
taken into consideration, the disparity between the observed and
predicted loads is further increased.

These poor theoretical results indicate the importance of
satisfying all the limiting criteria upon which the analysis is based.
In particular, the beams must be fully under-reinforced and have
sufficient strain capacity to permit redistribution of forces at yield
of either componént of steel. However, the observed modes of failure
reported earlier in this section indicate that yield of all elements
of reinforcement was in fact preceded by a compression failure in one
corner. An additional constraint that must also be satisfied relates
to the level of applied bimoment. In computing the co-ordinates of
the centre of action of the compressive forces, plane sections were

assumed to remain plane. This is only strictly the case in the absence
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Co—ordinates.éf the n

Heutpal Centre of Action (mm) iilziyxciyci
Axis I-Beam Channel (x108N.mm?)
Orien-

tation x y x y I-Beam | Channel
10° 22.85 | 126.12 35.85 126.82 8.470 8.895
200 25.79 125.65 37.97 125,92 9.540 9.384
300 26.46 124,53 38.30 125,58 9.743 9.449
150° 26.62 | 123.55 | 88.34 | 125.40 | 9.758 | 9.u50
500 27.64 122.49 39.45 125.28 | .10.553 9.980
600 30.14 121.66 B1.78 125.20 12.032 11.061
700 35.38 120.53 46,82 124,81 15.000 13.076
800 51.85 52.85 56.67 78.87 10.118 9.312

Table 5.14 Data relating to the Centre of Action of the Com-

pressive Forces for both Channel and I-Sections

Neutral Predicted Failure
Axis Load (T)

Orien-

tation Beam II | Beam III Beam IV
10° 2.746 L.395 L4.985
20° 4.233 4.308 L.860
30° 3.791 4.296 4,842
o 3.506 4,295 L.8ul
50° 3.360 L4.336 L, 885
60° 3.299 4.0l L4.953
70° 3.267 TN 4.971
80° 3.109 3,258 3.1457

Table 5.15 Failure Loads predicted for different

Orientations of the Neutral Axis
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of warping stresses although significant inaccuracies are unlikely if
the level of bimoment is relatively small. This restriction was not °
satisfied in the test af beam I which was disqualified from the analysis
due to the formation of separate compression zones in two diagonally
opposite corners. However, the level of bimoment was also substantial
at the centre sections of the channels, although only one bar was
evidéntly in compression in each test (figs. 5.26 and 5.27). In both
beams ITI and IV, the direct stress at each corner due to bimoment

may be shown (from fig. 2.24 and Table 4.16) to exceed that due to
bending moment by a factor of approximately three. Under this com-
bination of load, the distribution of stress across the compression zone
is likely to be significantly different from that assumed and, thus, the
accuracy with which the centre of action has been determined must be in
some doubt.

Finally, the level of bimoment adopted in the failure analysis
of each beam was calculated using the initial (uncracked) value of the
decay function, k. Since, after cracking, this function is unlikely
to remain constant along the length of the beam, a significant error in
this term is also possible. Clearly, before the applications and
limitations of this method can be fully assessed, an extensive programme
of research is necessary into several important aspects of the behaviour

of open section beams after cracking.
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CHAPTER SIX

GENERAL DISCUSSION, CONCLUSIONS AND
RECOMMENDATIONS FOR FUTURE RESEARCH

6.1 GENERAL DISCUSSION

For concrete structures, in which self-weight contributes a
significant proportion of the design load, éonsiderable economies can
be effected by making reductions in section thickness. This is
particularly true in the case of box girder bridges and floating
structures. The primary objective of this research has been to
identify those cross-sectional configurations in which large warping
displacements are likely to occur and, then, to determine the levels
of stress induced if these displacements are in any way restrained.
Most aspects of the behaviour of thin-walled concrete structures have
already been discussed at some length and, thus, it only remains to

show how this research could be best applied to practical situations.

The method of analysis adopted for a particular structure
depends, to a large extent, on the accuracy to which the solution is
required and on the computational facilities available. Thus, with the
relatively low running costs associated with the large capacity com-
puters available to-day, there has been a tendency towards the use
of sophisticated analytical techniques. These methods are almost
invariably based on a stiffness formulation since this provides a
degree of generality which is desirable in computer-based approaches.
One such method in which considerable experience has been gained in
the grillage analysis. This remains popular with designers largely
due to the ease with which a structure may be idealized into an

assemblage of equivalent beam elements. The technique is particularly
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useful in the analysis of slab or pseudo-slab bridge decks, in which
the transverse and longitudinal distributions of load are equally
important. Although tﬁe method has also been extended to the analysis
of multi-cellular bridges, it is only truly applicable where the

number of cells is in excess of four’!l.

However, finite element techniques are being increasingly
employed in the analysis of cellular structures due to the close
resemblance between the structural idealization and the actual geometry.
The use of this method is fully justifiable where warping, distortion,
shear lag and local effects are likely to be important contributary
factors in the final distribution of stress. However, it has already
been shbwn that this is frequently not the case for concrete structures,
where typical wall thicknesses are such that the significance of
most of these secondary effects is considerably reduced. Indeed,
for the important class of structures described in this thesis, the
finite element method is entirely inappropriate. lNevertheless, it
has frequently been used due to the absence of a more suitable method
in which warping restraint effects are fully considered.

The structural idealizations adopted by the grillage and
finite element methods are clearly more suited to the analysis of
two- and three-dimensional problems, respectively. It is therefore
only to be expected that their use in the analysis of what is
essentially a one-dimensional structure would require significantly
more computational effort thaﬁ the alternative method described in
Chapter 3. This is demonstrated with reference to the bifurcated
bridge, which has already been represented by a single beam ideal-
ization in §4.2. The structure was originally designed by the grillage
method and has also recently been analysed using finite element tech-

niques®3, The structural idealization adopted by both of these methods
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is shown in fig. 6.1. In the case of the grillage analysis, the webs
have been replaced by a series of end-connected straight beam elements

which have each been assigned a proportion of the total flexural and

torsional stiffness. Secondary cross-beams have also been provided
in order to take account of the excellent load distribution properties
of the flanges and diaphragms. No provision has been made for

side cantilevers although the effects of loading in these areas is
accommodated by applying appropriate fixed-end forces to the adjacent
nodes.

Whereas the lines in fig. 6.1 represent beam elements in
the grillage method, they also form the outline of the various plate
elements in the structural idealization of the bottom flange adopted
for the finite element approach. The top flange is similarly
modelled but with an additional row of elements on either side to
represent the cantilevers. Finally, the idealization is completed
by separating the two flanges with an appropriate number of web and
diaphragm elements.

The total number of elements, nodes and degrees of freedom
associated with each method are also given in fig. 6.1. Computer
time necessary for solution is largely governed by the total number
of degrees of freedom, although storage requirements can usually be
significantly reduced by taking the bandwidth of the various matrices
into account. Nlevertheless, a considerable disparity clearly exists
between the amount of computation required for solution by the
different methods. Several other advantages are also apparent in the
case of the single beam method of analysis proposed here. For ex-
ample, by employing a circular curved element, the solution is 'exact'

in the sense that the longitudinal distributions of the various stress

resultants are continuous functions and not just a series of values at
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the nodal points. Since the degree of accuracy obtained with the other
methods depends entirely on the degree of refinement adopted in the init-
ial idealization, these methods can, at best, only provide an approx-
imation of the response of the structure.

The small amount of input data necessary to describe the
structural idealization is also an important feature of the single beam
method since this not only saves time but also reduces the possibility of
human error. However, input data is also required for each loading con-
dition and, whereas this is a simple matter for both the single beam and
finite element methods, in the case of the grillage analysis fixed-end
forces must first be determined at each nodal position. Further dis-
similarities between the methods are also apparent after analysis due
to differences in output. In the simple beam method this takes the form
of the longitudinal distributions of the various stress resultants, thus
enabling the section to be designed immediately. The grillage analysis
also provides stress resultants at the end of each member but, due to
the necesssary method of idealization, these must usually be combined
before determining levels of reinforcement and prestressing for the
section. On the other hand, results from the finite element analysis
are in the form of components of stress at each node, and these require
considerable post-processing especially for the design of prestressing.

Indeed, the only real disadvantage with the single beam method
is its inability to accommodate continuously varying sections. This
was apparent in the analysis of the bifurcated bridge where the junction
was idealized by the three curved outer spans joining at a solid trans-
verse diaphragm. An attractive solution to this problem would be to per-
form a finite element analysis of the junction subject to a series of
unit displacements at the three ends. A stiffness matrix could then be
derived for the central element and incorporated into the single beam

analysis.



Method of Analysis

Single Beam Grillage Finite Element
Number of elements 18 210 . 569
Number of nodes 19 136 380
Total number. of 67 399 2171
degrees of freedom

Figure 6.1

Structural Idealization of the Bifurcated Bridge
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6.2 GENERAL CONCLUSIONS

1. The tendency towards thinner walled concrete sections has
reached such a point that thin-walléd behaviour must now frequently be
assumed. For the important range of concrete structures considered
here, cross-sectional distortion and shear lag effects are usually
negligible in comparison with those due to warping restraint.

2. Box girder bfidges, even those displaying significant levels
of warping, do not always fully satisfy the limiting criterion (stated
in §2.1) defining thin-walled sections. Significant variations in
the transverse distribution of shear stress are apparent in such
cases, although this is not usually reflected in the computed value

of the resultant torsional moment.

3. A better estimate of the importance of warping restraint, in
a particular application, is given by two dimensionless terms, namely,
the decay function, k&, and the warping shear parameter, u. These
quantities have been determined for a large number of existing
structures and indicate that warping is of equal importance in concrete
box girder bridges as in composite bridges of similar cross-sectional
configuration.

b4, For the computer analysis of structures, the stiffness
methods have considerable advantages over other forms of solution.
However, the finite element and grillage methods are largely in-
appropriate for the analysis of the one-dimensional structures
considered in this thesis. With the single beam approach proposed
here, significant savings are not only possible in computer running
time and storage requirements but also in the preparation of input
data and in the handling of results.

5. The member stiffness matrix for the straight beam element,

incorporating the effects of warping restraint, has been derived in
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explicit form. However, this is not easily achieved in the case of

the circular curved beam and, therefore, an alternative numerical approach
has been adopted. This involves inversion of the member flexibility
matrix and can lead to problems of ill-conditioning for members possessing
a relatively small warping stiffness. It is therefore recommended that
thin-walled members should be treated as solid members for the purposes

of analysis when k& > 30. However, in practice, the effects of warping
restraint are usually negligible for very much smaller values of k&.

The limiting value, k& = 10, adopted elsewhere’®, would appear to be
entirely satisfactory, although the merits of each individual4case may

be easily assessed from the distributions of the various stress resultants

presented in graphical form in Chapter 3.

6. Errors introduced into the various stiffness analyses have
been quantified for a wide range of typical sections. However, since
it is difficult to generalize about these results, their effect has
been demonstrated in the case of a three span continuous bridge of
composite construction. In this particular bridge, the idealization
of the central curved span as an assemblage of equivalent straight
beam elements introduced relatively small errors into the computed
values of the various stress resultants. These were generally less
than 5% for beams subtending a central angle of approximately 30° and
were, therefore, very much smaller than those due to neglecting either
the change in the shear centre position, or the actual value of the
warping shear parameter.

7. With reference to the continuous and bifurcated bridges,
member curvature had a negligible effect on the computed values of

the various second moments of area and, thus, did not greatly influence

the longitudinal distribution of stress. However, the transverse
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distribption of stress was significantly affected and curvature effects
must therefore be fully considered in the design of the section.

8. An advanced méthod of ultimate load analysis has been
presented which enables a corner mode of failure to develop under
certain combinations of shear, torsion and bending momgnt, Excellent
agreement between theory and experiment apparently exists, and this has'
been demcnstrated with reference to an extensive series of prestressed
concrete beams, for which results were already available.

9, An advanced ultimate load method has also been proposed for
the analysis of open sections subject to general combinations of load
including bimoment. The theory compares favourably with the result
from one I-beam test but an extensive experimental programme is required

in order to determine the range of applicaticn and limitations of the

method.

6.3 RECOMMENDATIONS FOR FUTURE WORK

1. Parametric surveys of existing structures are of invaluable
assistance to the designer. As the trend towards thinner sections

continues, information on the warping and torsional behaviour of
different configurations would be highly beneficial (e.g. figs.

2,11 - 2.13).

2. In the computer program described in 54.1, sub-routines
were developed for determining fixed-end forces due to uniformly dis-
tributed and central point lecads only. This work could be usefully
extended to include more general forms of loading, thereby reducing
the number of beam elements still further.

3. The fundamental equations governing the torsional defor-

mation of curved members include components of both bending moment



- 445 -

and axial force. Since the effects of axial force are usually in-
significant in closed sections of practical proportion, this component
of load was neglected in the subsequent development of the theory.
However, in the case of open sections or in the design of prestressing
arrangements, axial force may be important and must therefore be included
in the formulation of the stiffness matrix.

L For asymmetrical sections or for those displaying super-
elevation, bending moment about the vertical axis must also be con-
sidered. Furthermore, since economies in construction can often be
effected by omitting intermediate diaphragms, the range of application
of the analysis would also be great;z_sgtended by the inclusion of
distortional effects. The basic theory relating to both of these
structural actions already exists although, due to the additional com-
Plexities, both the flexibility and stiffness matrices would be best

derived numerically

5. The stiffness analysis proposed in this thesis incorporates
both straight and circular curved beam elements. However, in the
design of elevated road bridges, transitional curves are invariably
used to achieve a gradual change in curvature between straight and
curved sections. A variety of curves exists for this purpose
including the clothoid, lemniscate, cubic parabola and cubic spiral8l
Although a solution to the fundamental equation is possible for each
of these curves, this would be difficult to achieve in explicit form
and requires a numerical sglution.

6. In the analysis of box girder bridges and shear core
structures the positions of both the centroid and the shear centre

are unlikely to differ greatly from one element to the next. However,
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where this does occur, local stress variations are possible which
merit further investigation.

7. Proposals for an advanced method of ultimate load analysis
have beén formulated for simple open and closed sections. For these
methods to be verified and extended to the general case, rigorous
upper and lower bound solutions are required based on the general
theory of plasticity.

8. No other relevant experimental evidence is available on the
ultimate load behaviour of thin-walled open sections subject to
significant levels of bimoment. Furthermore, in the case of solid or
closed sections, subject to bending moment, torsion and shear, the
large majority of existing test results were invalidated from this
study due to unfavourable systems of loading or support. As a result,
extensive experimental investigations are necessary in order to verify
the advanced failure methods, particularly in the case of open

sections.

9. The testing of four open section beams highlighted several
problems which require further study. These include theoretical

and experimental investigations of (1) changes in the position of the
shear centre and centroid of all stages up to failure, (ii) the
transverse distribution of strain over a cross-section when bimoment
is present, and (iii) variations in all the components of structural

stiffness after cracking.
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APPENDIX 1 - DEFINITIONS OF GEOMETRICAL AND SECTORIAL FUNCTIONS FOR
THIN-WALLED, MULTI-CELLULAR SECTIONS DISPLAYING CURVATURE
Quantity Symbol Straight Members Curved Members
Section Area A j §.ds f §.ds
S S
lst. Moment of Area GX, etc. J y.dA Rf %ndA
A A
) . 2 y2
2nd. Moment of Area Ix, etc. y .dA R ‘E—.dA
A A
. 8w ' oW p R,
Shear Strain Y {Bs + v ¢ } {33 R + r_ E¢ }
Unit Shear Flow F— T/S T/R?| =.ds
(for ¢'= 1) 4 02
ond. Moment of A 1 22 . F_-0 T s
nd. Homent ot Area d ds - "sv 3§ sv.R2| —.ds
for Pure Torsion 5 -?;- p
s
S S-f-—— SI‘S S-f—— a
Sectorial Co-ordinate| & J r_.ds - J sv.ds | R?| —.ds - RS E%Xé s
G op o) e
o o
w . 4\2 l 4\2
arping Moment of I& w<.dA F| pu .dA
Area A A
A &
Sectorial Shear S.. J o .dA R| =.4A
. W p
Function o o
S.r v
. - 1 W s S
Reduced Sectorial S& S. - ﬁj Snrs.dA S& - J —3—.ds J ~—.ds
Shear Function : P e
A A A
Bimoment B

*_J
e g
Q
>
o
[}
o=
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APPENDIX 2 - FLEXI.BILITY INFLUENCE COEFFICIENTS
A.2.1 - Circular Curved Beam
2 2.2 2krS
f,],| = GId{E(J o+~ w])-i'—(J -’|+u7l(3 27]))+un(’| 1})@"@(1 -k r—S SH )}
r 52
£, =t E}T& {—2-(;1 =) (3-27)) + un(1-n) [CKPSSHH)— - ]}
r2 52 l2 Uil
£ =~ _a{—é-m_;] ) + C - 1 + CH-(1-C(1-n))[SSH-kr - CCH + 1]}
Y NG E/))
Ly =% oI, {kr.CH(SH - krs)}
_ x fB,.2 sc,. .2 SH, 2
f,, = GId{z(J +1-pn) + S (1=-3%un(21-3)) - un(1-n)G5 ke }
2
s i (B 5 (2 SE
foy = +-(-}—I-;{2(un-’l—3 )+ (3 -’Ifuﬂ(3-2ﬂ)) + 5(1-pn) HimkrGgz(C nC-—’I)}
I N GED)
fo, = GId{ F (C‘CH)}
£y, = - {E<Jz+3) + 221-57) - 25}
33 Id 2
¢ o oz Jme-Cm +1-C
3L~ TaI CH
d
f = 1 k SH
L I
GI,"w"CH
A.2.2 - Circular Curved Beam (neglecting warping)
' B
f,4 = GI { (j +'l) +'—(J -’I)}
d
2
! r S7,.2
f12 =% ——fa{-z—-(J —'])}
2 2
1 _ o r°fs© i
f1z = I{2(’I-J)+C-’I}
d
£ B, .2
= r
22 —%{2(3 +1) + 2(1:1)}
! _ =—r JSC 2 B2
f23 = +-(-}—I-g—{ 2(1-—3 ) - 2(:J +'I)}
! 3 r” fB¢.2 SC }
f35 ——GId{z(J +3) + 2(1 %) - 28
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A.2.3 - Straight Beam
_ L
11 T ET
X
g12 = Y
22
€13 = 2YEI
X
g1y = Y
L u
gop = —~—»(l - = . tanh.kz)
GId k&
g23 = 0
g - L (L1 - cosh ki
24 GI cosh k&
d
23
£33 7 . ByET
X
g3y = Y
tanh k&
Bl K.EI.
T
A.2.4. - Straight Beam (neglecting warping)
— %
£11 - YEI
- X
‘ -—
g12 = Y
ol = 22
el3 = 2YEI
X
! L
g22 = o7
GId
’ -
g23 = 0
1 _ 23
£33 =
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A.2.5 - Transformed Straight Bean
_ _r 2. 2B . 3B Eﬁ.zg}
hﬂ = —-GId{ZJ smg—.cos > + 2sin 5 "I CE S S
3 s . Br.2 g SH
h,, = i—“GId {51n 2(3 -1) + Zkr’CH}
2
h =, _r 2 .. B
13 i + 8. sin 5
d
1 (1-cH) . B
By =3 et em P2
ho, = = [,.2..38 .. 2f psE 28
22 ——-GId {23 Sin” 5 + 2511’1%. COS™ 5 = [ 3*C -COS™ 5
2
I i £
h25 = =G 2] sin 5
d
a4 (a-cH) 8
h21+ = GId. OH . COS 5
3
. . 8.58
h55 = GId'551n 5
= 0.
Bl
L. A ks
Ly  — GId'u'CH
A.2.6 - Transformed Straight Beam (neglecting warping)
N . Bl.2 28 Zﬁ]}
h']'l = GId {25111 5 [J cos > + sin >
o r .2 .28 B
h, = i-—-—~GId .20 -’1)..5111 5+ 005 5
o r ,.2_.28 B
h,]5 = ——-GId.ZJ 51nA 2.cos >
L . Bli:2... 28 2B }
h22 = ———-—GId {25111 5 [J sin- 5 + cos 5
2
! _+_r 2 . 3B
h25 = ~ —-—-GId.ZJ sin” 3
3
oo 28 38
h55 = GId°5'Sln 5
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APPENDIX 3 - STIFFNESS MATRICES FOR STRAIGHT MEMBERS

A.3.1 Torsion/Bimoment Matrix in terms of f.f'

(T ] [ xsH I i
1 symmetrical

B (1-CH) { =(kLCH-SH)

Thl

T, 11 -ksH _{—(1 ~CH) kSH

B (1-CH) —(SH kL)  |-(1-CH) E{kQCH SH)
_uzJ | ‘ I 1 ]

GId
where K = 509 Ch)+kAcH

A.3.2 Torsion/Bimoment Matrix in terms of ¢, f'

[ 7] ksH
1 } ‘ symmetrical
B " u(a-cH) I%{leH sml
= K i
2 __l_._ — -
Tz -kSH i—u(l CH) ——l%SH l
B p(1-CH) |E{uSH kg) | -u(1-CH) |
\_2_ |
GI,
where K =5 7 Ch)+kAsH

k(k2CH—uSH)

A.3.3 Bending/Shear Matrix for Open and Closed Sections

where X = ?EIX/23

M ] g2
1 symmetrical
v 69 VllQ |
= X | |
M 3| 942 62 Fiyg2 l
2 l !
s -6% |—12 -6% 12
- 2 _ ! ’ |
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APPENDIX 4 - INTEGRAL SOLUTIONS OF VARIOUS CIRCULAR AND
HYPERBOLIC FUNCTIONS

8
ff(oc).doc
0

F(B) =
£ (o) F(B)

sin « ‘ 1-C
cos o S
sin‘u B/2 - 8C/2
cos2a B/2 + 8C/2
sin a.cos a ‘ 82/2
sinh kro (CH - 1)/kr
cosh kro SH/kr
sinh“kra SH.CH/2kr - B/2
coshakra SH.CH/2kr + B/2
sinh kro.cosh kra SHZ/Zkr
sinhzkra + coshakra SH.CH/kr
d.sin o S - BC
0.cos « BS + C = 1
o.sinh kroa B.CH/kr - SH/k2r2
o.cosh kro B.SH/kr ~ (CH—1)/k2r2
sin o.sinh kra n(kr.S.CH - C.SH)
sin a.cosh kro n(kr.S.SH - C.CH + 1)
cos d.sinh kro n{kr.C.CH + S.SH ~ kr)
cos a.cosh kro | n(kr.C.8H + S.CH)
where S = sin B

C = cos B

SH =  sinh krp

CH = cosh krf





