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Cold hearted orb that rules the night,
Removes the colours from our sight.
Red is grey and yellow white,

But we decide which is right.

And which is illusion?

The Moody Blues, '"Days of Future Passed.”



ABSTRACT

This thesis is concerned largely with a bivariate counting system
arising in radio-activity measurement. To estimate the disintegration
rate of a radio—active source use is made of three independent Poisson
processes. These Poisson processes cannot be observed individually.
The first and third processes are recorded on one counter, the second
and third processes on a second counter. Both counters are subject
to dead-time effects; following a recorded event on a counter there
is a constant period during which no other events can be recorded.

Thus events from all three processes are lost to observation. The
estimation of the rates of the three Poisson processes usually involves
the use of either the covariance between the numbers of recorded events
on the two counters in a given time interval, or the coincidence rate;
that is the rate of pairs of events occurring close together.

This system is generalised in three ways in order to model the

true process of disintegrations more realistically:
(i) Events from the second and third processes are of two types, each
type invoking a different property in the second counter.

(ii) An event from the third process occurs on the second counter an
exponentially distributed period after its occurrence on the

first counter.

Each event on either counter is displaced by a random amount.
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~

The coincidence rate is calculated for generalisatioms (i), (ii)
and (iii), the covariance function for generalisations (ii) and (iii).

Two univariate counting systems are also considered; they are:



(iv) When all three processes in (ii) are recorded on a single

counter,

(v) Wwhen the rate of events into a counter is decaying exponentially.

The expected number of recorded events in a given interval is

calculated for (iv) and the expectation and variance for (v).
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THE PRINCE AND THE MAGICIAN

Once upon a time there was a young prince, who believed in all
things but three. He did not believe in princesses, he did not
believe in islands, he did not believe in God. His father, the King,
told him that such things did not exist. As there were no princesses
or islands in his father's domaines, and no sign of God, the young
prince believed his father.

But then, one day, the prince ran away from his palace. He
came to the next land. There, to his astonishment, from every coast
he saw islands, and on these islands, strange and troubling creatures
whom he dared not name. As he was searching for a boat, a man in full
evening dress approached him along the shore.

'Are those real islands?' asked the young prince.

'0f course they are real islands,' said the man in evening dress.

'And those strange and troubling creatures?'’

'They are all genuine and authentic princesses.’

'"Then God also must exist!' cried the prince.

'T am God,' replied the man in full evening dress, with a bow.

The young prince returned home as quickly as he could.

'So you are back,' said his father, the king.

'I have seen islands, I have seen princesses, I have seen God,'
said the prince reproachfully.

The king was unmoved.

'"Neither real islands, nor real princesses, nor a real God, exist.

'T saw them!' |

'Tell me how God was dressed.’

'God was in full evening dress.'
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'Were the sleeves of his coat rolled back?'

The prince remembered that they had been. The king smiled.

'"That is the uniform of a magician. You have been deceived.'

At this, the prince returned to the next land, and went to the
same shore, where once again he came upon the man in full evening dress.

"My father tﬁe king has told me who you are,' said the young
prince indignantly. 'You deceived me last time, but not again. Now
I know that those are not real islands and reél princesses, because
you are a magician.'

The man on the shore smiled.

'It is you who are deceived, my boy. In your father's kingdom
there are many islands and many princesses. But you are under your
father's spell, so you cannot see them.'

The prince returned pensively home. When he saw his father he
looked him in the eyes.

'Father, is it true that you are not a real king, but only a
magician?’

The king smiled and rolled back his sleeves.

'Yes, my son, I am only a magician.'

'"Then the man on the shore was God.'

'"The man on the shore was another magician.'’

'I must know the real truth, the truth beyond maéic.’

'There is nb truth beyond magic,' said the king.

The prince was full of sadness.

He said, 'I will kill myself.'

The king by magic caused death to appear. Death stood in the
door and beckoned to the prince. The prince shuddered. He remembered
the beautiful but unreal islands and the unreal but beautiful

princesses.
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'Very well,' he said. 'I can bear it.’
'You see, my son,’ said the king, 'You too now begin to be

a magician.'

John Fowles, 'The Magus.'
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CHAPTER 1. A GENERAL INTRODUCTION

1.1 Simplest Physical Situation

Consider a source that emits a stream of particles which form a
Poisson process. An example of such a source is a radio-active
isotope, the emissions being due to the disintegration process that
the isotope is continually undergoing. If the disintegration rate,
the rate of the Poisson process, is unknown, then it is of importance
to estimate it. The'procedures for tgis estimation fall into two
broad categories, which are distinguished by the way in which we
observe the process. Either we look at the time intervals between
successive emissions or we may count the number of emissions in a given
time interval. The former is impracticable, in the context of the above
example with which we shall be concerned, due to the high rates involved.
The reason is that the intervals between the emissions are then too
small to be measured accurately and too many to be stored feasibly.

Given that we are counting numbers of emissions we examine the
properties of the counting mechanism, namely an electronic counter.
Ideally we would require the counter to record whenever an emitted
particle reaches and passes through it. Unfortunately real counters
are not perfect, and for the purpose of illustrating these imperfections
the counting mechanism considered here comsists of two distinct compoments
in series: a detector followed by the counter itself. The effect of the
detector is such that whenever an emission occurs it is only detected
and so allowed to pass through to the counter with a certain probability,
which is less than unity and known as the efficiency of the counter.

This efficiency is unknown. Furthermore the detection of each emission

is independent of the detection of all other emissions. We now turn our
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attention to the second of the two components, the counter itself.
This suffers from dead-time effects. Following a recorded emission,
the counter is dead for a time during which no further events can be

\
recorded. Basically, two types of dead-time are usually considered:

(i) The non-extended type where emissions occurring within a dead-time

have no effect on the dead-time.

(ii) The extended type where emissions occurring within a dead-time

induce more dead-times and so prolong the existing dead-time.

Both types are approximations to the true dead—timevbehaviouf of a
counter, but type (i) is usually considered the closer approximation,
particularly if the dead-time is of comstant length, Tt say. For this
reason constant dead-times of type (i) will be considered throughout
this thesis except in the final chapter, which has no immediate practical

consequence but is of great theoretical importance.

1.2 One Counter

Much statistical/probabilistic work has been done on the single
counter system, particularly in the 1950's. Albert and Nelson (1953)
noted that true dead-time behaviour is a compromise between the type
(i) and type (ii) counters of section 1.1. They modelled such a
compromise by assuming that the dead-time behaviour of their counter was
type (ii) with each induced dead-time being of constant length, except
that an event during a dead—-time only induces another dead-time with a
certain fixed probability. They then proceeded to determine the
distribution of the number of recorded events and a confidence interval
for the rate of events into the counter, assuming the process of events

tb be Poisson. Takéics (1958) also determined the distribution of the
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number of recorded events for this problem but with random dead-times.
Hammersley (1953) discussed the problems of counting blood cells
electronically. The counting system Hammersley considered is
equivalent to one in which a Poisson process of events is transformed
in sequence first by a type (ii) counter and then by a type (i) counter;
the dead~times of both counters being of random length. Hammersley
investigated the univariate distributions of events before and after
type (i) deletion; his approach was unusual and complex in that he
substituted the circumference of a circle for the investigated time
interval. The two distributions of recorded events, before and after
type (i) deletion, was found to be asymptotically normal as the
circumference of the circle tends to infinity; the asymptotic means
and variances were also calculated. Takacs (1956) used much simpler
methods to treat the same problems, and obtained a slightly different
result from Hammersley for the limiting variance of the number of recorded
events after type (i) deletion, in a given interval, as the length of
the interval tends to infinity. This section of the literature is
neatly tied up by Smith (1957) and Pyke (1958). Smith solved
Hammersley's (1953) problem by renewal type arguments and also noted
that the asymptotic variance mentioned above was erroneous. Pyke
considered type (i) and type (ii) counters in a general renewal frame-—
work. Many references to the early work on counters may be found in
Smith (1958).

However, although the above work is of great theoretical importance
and many elegant methods have been devised to tackle one counter problems,
from our practical viewpoint they are of little use. This is because
the detector in the counting system ensures that the rate of events
into the counter is not X, the parameter of interest, but Ae, where ¢

is the efficiency of the detector and is unknown. Clearly the single
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counter system is inadequate for the purpose of estimating the rate of

.

disintegrations A.

1.3 Two Counters

1.3.1 A More Practicable Counting System

Each emission described in section 1.1 in fact consists of two
particles, a beta particle and a gamma particle. We can use this
property of the disintegration process by introducing a second counter.
One counter is made insensitive to beta particles while the other is
made insensitive to gamma particles. Because of the differences in
response of the detectors to the beta and gamma particles and because
of other possible differences between the two counters, we denote the

efficiency of the beta counter by e, and the constant dead-time by T

B B’

with €Y and T§~denoting corresponding parameters for the gamma counter.
Since the detectors on the two counters work independently there are
three types of event which may occur at the detectors following an

emission,
(i) a beta particle only is detected with rate

AB = Aes(l - Ey) s

(ii) a gamma particle only is detected with rate

= ]_ - s
AY Aey( ‘eB)

(iii) a beta-gamma pair of particles is detected with rate
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Thus, so far as the counters are concerned, the original Poisson
process of rate A is equivalent to the superposition of three

independent Poisson processes of rates AB’ AY and ABY' By looking

solely at the beta counter it is possible to estimate the rate of

particles entering that counter, A, + A__, and similarly for the gamma

B BY

counter. However, to estimate all three parameters, that is AB, AY

and ABY’ or equivalently A, €g and Ey’ a measurement which is affected
by dependence between the two counters has to be taken. This dependence

is caused by the simultaneous events of rate A The most commonly

BY

used methods of incorporating such a measurement into the estimation

procedure are those of coincidence counting and covariance calculation.

1.3.2 Coincidence Counting

A third counter, known as a coincidence counter, may be connected
to the beta and gamma counters so that the sequence of events recorded
by the coincidence counter is obtained by superimposing that sequence
recorded on the beta counter, upon that sequence recorded on the gamma
counter. A coincident event then occurs whenever there is an event
simultaneously on each counter, i.e. a double event on the coincidence
counter. However, the coincidence counter cannot resolve between two
events that are separated by some small time interval and therefore a
count is made of the number of pairs of events that are less than some
suitable time h apart. If h is chosen so that it is less than the
minimum dead-time of the two counters, i.e. h < min(rs,ry) then the two
events must be recorded on different counters, which is more like a
coincidence rate. Consequently, the coincidence method will capture
all the genuine simultaneous events plus some "accidental" coincidences.

These accidental coincidences are hopefully small in number and this

number is dependent on the size of the resolving time h.



17

1.3.3 Covariance Calculation

By measuring the number of recorded events on each of the two
counters over a given interval of length t and repeating this many
times the covariance between the two counts may be observed. The main

advantages of this over coincidence counting are,

(i) no restrictions are placed on the sizes of dead-times other than

those imposed by the individual counters,

(ii) the extra coincidence measurement is no longer needed, all necessary
information being contained in a sequence of pairs of counts

obtained from the beta and gamma counters.

1.4 Probléms to be Considered

The counting system of section 1.3 was considered by Cox and
Isham (1977) who calculated both the covariance function and the
coincidence rate for constant dead-times, where the larger of the two
dead-times is an integer multiple of the smaller, and for exponentially
distributed dead-times. In this thesis the basic disintegration process
and counting system of section 1.3 are generalised in three separate

ways to achieve a slightly more realistic system:

(i) Two different types of gamma particles are emitted from the source
and they invoke different properties in the gamma counter; see

Chapter 2.

(ii) The gamma particle of each beta-gamma pair is delayed by an

exponentially distributed period; see Chapter 3.

Jitter is allowed to enter the counting mechanism so that

e
e
| ok
~r
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simultaneous emissioms are never recorded simultaneously;

see Chapter 3,

In additiom to (i), (ii) and (iii) two univariate systems are

considered which are relevant to the true physical processes when,

(iv) the beta and gamma particles of (ii) are indistinguishable and

have to be recorded on the same counter, see Chapter &,
(v) the disintegration rate decays exponentially, see Chapter 5.

The objective of this thesis is not to provide estimates for the
disintegration rate A in cases (i)-(v) but to provide properties of the
numbers of recorded events that may be used in an estimation procedure;
although a possible estimate for the system of section 1.3 is mentiomed in
section 1.5. The functions of the numbers of recorded events are,
the expectation for (i)-(v), the variance for (iv), the covariance for
(ii) and (iii), the coincidence rate for (i)-(iii). The methods used
successfully by Cox and Isham (1977) will be used to a large extent in
this work and provides an invaluable basis for the calculations of
Chapters 2-4.

Cox and Isham (1977) noted that the leading term in their expression
for the covariance was the same for constant and exponentially distributed
dead-times; for the case of constant dead-times, the larger dead-time was
constrained to be an integer multiple of the smaller dead-times. They
also conjectured that this leading term could be derived by a simple
probabilistic argument for arbitrary dead-times. Kingman (1977)
partially answered this conjecture by proving that the leading term in
the covariance was the same for any dead-time distribution. However
Kingman's analysis is elegant but by no means a simple probabilistic

argument. Similar leading terms appear in the covariances for (ii) and
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(iii), but no simple probabilistic argument was found here either.

A wealth of semi-empirical formulae appears in the physical
literature for a variety of counting systems that include (i)—(v),.
and a short survey may be found in Miiller (1973). Perhaps the most
relevant papers for this thesis are Lewis, Smith and Williams (1973)

for (ii), (iv) and (v), Williams and Campion (1965) for (iii) and

Axton and Ryves (1963) for (v).

1.5 A Possible Estimation Procedure

evsesAy.e... but this still figure, benign, all-powerful, yet
unable to intervene or speak, able simply to be and constitute.

John Fowles, '"The Magus."

If we assume that the counting system of section 1.3 is the most
relevant to a particular practical situation, then assuming the results

of Cox and Isham (1977),

(i) the number of recorded events on the beta counter in a given time

interval can be used to estimate Pg = XB + ABY = AEB,

(ii) the number of recorded events on the gamma counter in a given

time interval can be used to estimate p_ = XA + A = Xe_,
Y Y By Y

(iii) either the covariance between or the coincidence rate of, the
number of recorded events on each counter in a given time interval,
in conjunction with (i) and (ii), can be used to estimate

A = e e .
By By

If the three estimates given by (i), (ii) and (iii) are denoted by

SB’ BY and XBY then we can estimate A by i, where

>
>

>
I

V>

~

B y" "By °
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since

PePy/Agy -

The efficiency on each counter is unknown and yet controllable, so that
the experiment that gave (i), (ii) and (iii) could be repeated at
different efficiencies and a number of times at each efficiency. The
point estimates obtained from a series of experiments could then be
averaged to produce an overall estimate of the original disintegration
rate A.

Unfortunately, as Campion (1959) pointed out the beta counter can
be slightly sensitive to gamma particles, that is gamma particles are
occasionally recorded on the beta counter provided the beta particle is
not recorded. In this case the effective efficiency, or rather the
effective detection rate on the beta detector is

eg = g ¥ (1 - epdeg,

where eg is still the probability that a beta is detected and

(1 - EB)EBY is the probability that the gamma is detected by the beta
counter, given that the beta is not. If we assume that the beta counter
gets the chance of detecting the gamma particle first, then the gamma
particle cannot be detected on both counters. Hence the efficiency of
the gamma counter is now slightly less than it is in the absence of

gamma sensitivity of the beta counter.

If we note that the rate into the beta counter is now

AeB = AM1-101-¢ Y][l - e, 1},

B B

and XBY/SY estimates e¢_, then by regressing €g on the rate of events

B

into the beta counter, an estimate of the original disintegration rate A

may be found.
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The above estimation procedure is not discussed further and the
reader is referred to Lewis, Smith and Williams (1973) for a particular
case of practical application. We now move to the first of the cases

(i)-(v) of section 1.4, namely case (i).



22

CHAPTER 2. IN AND OUT OF CHANNEL GAMMA EVENTS

2.1 Physical Reality and Theoretical Representation

We now generalise the basic model, as described in the introduction,
by relaxing an unrealistic theoretical constraint.

The process of events arriving at the counter mechanism is the
same as that described in the introduction and our generalisation
concerns the mechanisgs response to the gamma stream of particles.

Each gamma particle emitted from the source has an associated energy
level. In the gamma counter particles with different energy levels
invoke differing efficiencies and differing dead-times. To model this
situationbfully, with the purpose of calculating the covariance between
the beta and gamma counters and/or some sort of coincidence rate, is
complex. The true situation may be approximated in several ways to

arrive at a theoretical model; the possibilities include the following:

(1) We may totally ignore the effects of different emergy levels by
averaging the true efficiencies and dead-times, and using these

averages in the model of section 1.3 of the General Introduction.

Thus

:z: efficiency a particle having
E = at each PT a corresponding s
v levels different level energy level

Z ‘¢ dead-time a particle having
T = , {at each pr a corresponding .
Y levels different level energy level

But, to acknowledge the different emergy levels by ignoring their

effects, is no step forward.
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(ii) We may partially ignore the effects of different emergy levels
by accepting differing efficiencies, but assuming identical
dead-time reaction to all gamma particles, regardless of their
energy level. This may be achieved either by the averaging process
of (i), applied only to the dead-time, and implementation of this
average as the effective dead-time in the model, or by physically

setting all the dead-times equal to the largest dead-time.

(iii) We may compromise between modelling the true physical situation and
that proposed in (i) by grouping the different energy levels into
two bands, and treating each band as in (i). This is particularly
appropriate when we are interested in those gamma particles whose
energy levels fall inside a certain band of enmergies, so-called
in-channel gamma particles. Those particles whose energy levels
fall outside this particular band are referred to as out-of-channel
gamma particles. The counting mechanism is then assumed to react
to all in-channel particles in the same way and to all out-of-

channel particles in a different way.

Cox and Isham (1977) calculated the covariance between the beta
and gamma counts and the coincidence rate between beta's and in-channel
gamma's when the in-channel and out-of-channel dead-times are equal.

In the rest of this chapter we shall relax the assumption of equal
dead-times to obtain a slightly more realistic model for the problem of
different energy levels.

Superficially it would appear advantageous to set the gamma counter
mechanism to react only to in-channel gamma particles. However, if this
were the case, then whenever a gamma particle entered the mechanism,
the mechanism would first have to decide whether or not the particle's

energy level is such that it is classified as in-channel or out-of-channel.
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During the time that this decision process is in operation the mechanism
would be unable to count any other gamma particles that happen to
arrive. In effect the mechanism would be dead. Therefore the out-of-
channel particles cannot be ignored, for otherwise the rate of
in-channel particles emitted by the detector would no longer be equal

to the rate of in-channel particles érriving at the counter, assuming
that the classification process takes place between the detection and
counting stages. (In (iii), the decision process time is added to

the true dead-time, resulting in the effective dead-time.)

We now develop the model proposed in (iii). 1In addition to the
total count on the gamma counter we are able to record the number of
in-channel gamma particles, and hence the number of out-of-channel
gamma particles that occur in any given time interval. Due to the
action of the detectors the original Poisson process can be considered
as consisting of five independent Poisson processes. If we define
Pin to be the probability that a particular gamma particle is an
in-channel gamma particle, and syin to be the efficiency of the gamma
detector to an in-channel gamma particle, then assuming corresponding
results for out-of-channel particles, the five different types of event
corresponding to the five independent processes which may occur at the

detectors are the arrival of
(i) a beta particle only, detected with rate

A, = AsB(l - €

8 )pin +Ae§1 - €

Yin Yout)pout’

(ii) an in-channel gamma particle only, detected with rate

AYin = AsYinpin(l - sB) s
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(iii) an out~of-channel gamma particle only, detected with rate

p (L -¢)),

A
Yout A outPout B

(iv) a beta particle with an in-channel gamma particle, i.e. a true

in-channel coincidence, detected with rate

AL, A . _P.
- Byin eB€Y1np1n ?
(v) a beta particle with an out-of-channel gamma particle, i.e. a true

out-of-channel coincidence, detected with rate

P

Agyout Aege. sutPout

In the above formulation there are four independent parameters

A, Therefore to estimate the original

p p

. p._ and .
€8’ fyinPin EyoutPout
disintegration rate A, four independent measurements on the counting
system are required. These may be chosen from the following (see

section 2.5),

(i) the expected number of recorded beta particles in a given time

interval,

(ii) the expected number of recorded (a) in-channel, (b) out-of~channel

and (c) all, gamma particles in a given time interval,

(iii) the coincidence rate between beta particles and (a) in-channel,

(b) out~of-channel and (c) all, gamma particles.

It should be noted that, in (ii) and (iii), any two functions

readily give the third by simple addition or subtractionm.
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For notational convenience, we relabel 8 = 1, Yin = 2 and Y out = 3,
u

the beta counter as counter 1 and the gamma counter as counter 2.

However, the physical interpretation of all events will be kept, i.e.

112 will still be referred to as a true in~channel coincidence.

2.2 The Expectation on Each Counter

If Ni(t) is defined to be the total number of recorded events in

time t, on counter i for i = 1,2, then Ni(t) may be represented as

N (t) =

O%—rt

dNi(u), for i = 1,2 (2.1)

Therefore, if the processes on each counter are in statistical
equilibrium at the start of the interval (0,t], and if P; denotes the
equilibrium probability that counter i is open for i = 1,2, then taking
expectations through (2.1) we have that for i = 1,2,

t

[ pr{dN,(u) = 1}
0 1

E{Ni(t)}

t

= f pi(total rate on counter i)du . (2.2)
0

The total rate on counter 1 is P = Al-+112 + 113 = P12 13 = P13 + 112

* A3 T Pyt A3 FA,

= A, + A12 + pg. Thus calculating the expectations reduces to calculating

and the total rate on counter 2 is p23 = 12 + 13 + 112
the equilibrium probabilities P; for i = 1 and 2.
Now the sequence of states on counter 1 alternates between
exponentially distributed open periods of mean p -1 and dead-times of
1

constant length Ty On counter 2 the sequence of states alternates

between exponentially distributed open periods of mean p;; and dead-
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times of variable length T, where
T = T, with probabilit Tl fori=2,3
; With probability p.p,, or i = 2,3.
Hence the equilibrium probabilities that the counters are open are
(i) for counter 1,

P, = pil{(pl-l + rl)fl = (1 + plfl)-l ; (2.3)

(ii) for counter 2,

_ -1, -1 -1 -1
Py = Pys {p23 + E(T)} = (1 + PyTy ¥ p3r3)
(2.4)

The expectations may now be calculated using (2.2)-(2.4),

t
= = = _1
E{Nl(t)} g pypqdu PyPt plt(l + plfl) ,  (2.5)
and
t —
E(N,(0)} = g PyPa3dt = PyPyst = ppgt(l + pyTy + paTy)

(2.6)

It may be seen that E{Nz(t)} is the sum of two components, E{sz(t)}
the expected number of in-channel gamma particles that are recorded in
(o,t], and E{Nzgct)} the expected number of out-of-channel gamma

particles that are recorded in (0,t]. We have that
_1 .
E{Nzi(t)} = pit(l * 0,7, * 9313) , for i= 2,3, (2.6a)

Some measure of the dependence between the two counters is now calculated.
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2.3 The Possible States of the Counting System

To calculate the coincidence rates we need to obtain the probability
that both counters are open simultaneously and, if a counter is closed,
when the counter reopens. So, if either counter is closed we need to
know how long it ﬁas been closed; and for counter 2 we also need to
know which type of event closed it, an in-channel or an out-of-channel
event, due to the differing dead-times associated with these events.
Thus, the following state probabilities and probability densities are

defined:

(1) Py the joint probability that both counters are open;

(ii) ql(u), the joint probability density that counter 1 has been

closed for a period u, 0 < u < Ty and counter 2 1is open;

(iii) q2i(v), the joint probability density that counter 1 is open and
that counter 2 has been closed for a period v; 0 < v < T where
the event that caused the closure is (a) in-channel (i = 2) or

(b) out-of-chamnel (i = 3),

(iv) q12i(u,v), the joint probability density that counter 1 has been

closed for a period u, 0 < u

|A

T1s and that counter 2 has been

closed for a period v, 0 < v

| A

'Ti, where the event that caused the

closure is (a) in-channel (i = 2) or (b) out-of-chamnel (i = 3).

Therefore there are six possible states for the counting system,
and to calculate the corresponding state probabilities defined above,
the equilibrium equations representing the possible transitions from

one state to another, may be set up as follows. First

PPy = ql(rl) + qQyyltT,) + q23(r3) R (2.7)
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where the period that both counters are open simultaneously is

exponentially distributed with mean p_l, p =X, +A_+A_+ A _ + A

1 2 3 12 13°
Also, we have that

dql(u)
au = _p23q1(u) + qlzz(u:Tz) + q123(u,T3), (2.8)
dg,; (u) :
o T TP (w) +apy;(ry ), i=2,3, (2.9)
5w ov = o, i=2,3. (2.10)

A set of boundary conditions corresponding to the instant when

one of the counters becomes blocked, may also be formulated,

q1(°) = PioAp s qu(o)w = Pyl s i=2,3, (2.11)

q12i(u,0) = piql(u), qlzi(O,v) =pq,..(v), 1= 2,3. (2.12)

121
Because both counters may be closed simultaneously with non-zero

probability, then q12i(u,v) for i = 2,3 may be separated into
qui(u’V) = qIZiS(u)G(u-v) + q12ic(u,v) , (2.13)

where 8(-) is the Dirac delta function, and both q12is(u) and qlzic(u,v)
are absolutely continuous. The simultaneous closing of both counters

may now be expressed as

quis(u) = Alip12 s i=2,3. (2.14)
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There may be up to two more boundary conditions, depending on the
relative sizes of the three dead-times, and caused by possible
simultaneous closure of both counters. Thus, for the counter with the
largest dead-time, the probability density that it is closed and the
other counter is open, has a discontinuity when the period of closure is

equal to the smallest of the three dead-times, and possibly the median.

For example, if Tl > T2 > T3, then
+ -
4 (t3) = qy(r3) + piyrias
(t.%) = q.(t.7) + p..A
9T, 7 1t T, P1ot2 -

To calculate the coincidence rate we need only find p12’q1(u) and
qu(V) for i = 2,3 (see section 2.4). With this objective we eliminate
the joint probability densities qlzi(u,v), for 1 = 2,3, from equations
(2.8) and (2.9).

The solution of (2.10) subject to (2.12) is for i = 2,3

piql(u-v) foru > v
quic(u’v) -

qu2i(V"u) for v > u.

Upon substitution into (2.8) and (2.9) we find that for i = 2,3,

p3q1(u-T3) for u > 1, pqu(u-Tz) for u > 1,
dql(u)
o = -pZSql(u)+ +

qu23(T3-u) for u < 14 (Tz-u) for u < T,

P1922

(2.15)



31

and

pqui(v-Tl) for v > ™

dq,.(v)
21 (v) + (2.16)

dv T TPy
piql(rl—v) for T, > V.

The solution of (2.15) and (2.16) greatly simplifies if the two larger
dead-times are integer multiples of the smallest dead-time. Therefore,

we assume that T = mt, T, = nt and T3 = 41 where %£,m and n are

positive integers such that min(2,m,n) = 1. The ranges of £, m and n
that will be considered arem > n > £ and n > m > % with the exception
of 2 = m = n which has been dealt with by Cox and Isham (1977). Note
that some ranges -are omitted, these are (a) the minimum of the two
gamma channel dead-times is gfeater than the beta dead-time, i.e,
min(12,13) > g5 which is physically improbable, (b) the out-of-channel
dead-time being at least as large as the beta dead-time which in turn is

at least as large as the in-channel dead-time, i.e. T3 2 Ty 2 Ty and

1
(c) the in-channel dead-time being less than the out-of-channel dead-

time which in turn is less than the beta dead-time, i.e. T > T

17 T3 Ty
Note that ranges (b) and (c) may be obtained by interchanging the
physical interpretation of 3 = out-—of-channel and 2 = in-channel.

To calculate the coincidence rates, ql(u) and q2i(v) for i = 2,3
are required, see section 2.4. However, exact closed form solutions are
not attempted for these probability densities. Instead, the range of
each density is split into integer multiples of the smallest dead-time
of the two counters, and separate first order Taylor expansions of each
density are made within each section of the range. It is assumed that

(pt) is small, so that terms of order (p'r)2 may be neglected; such

terms will be omitted throughout the rest of this section. Thus
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approximate forms for the probability densities ql(u) and qu(v),
i = 2,3, are calculated for combinations of the relative sizes of the

three dead-times Tys Tg and Ty We have that for Ty > Ty > Tas i.e.

2
m>nand n> 1, (2.15) and (2.16) are

pquZ(Tz-u)+plq23(T3-u) for O<u<‘r3
dql(u)
rrami -p23q1(u) + plqzz(rz-u)+p3q1(u-r3) for ty<u<t,
pqu(u—‘rz) + p3q1(u—‘r3) for Tyu<T,
(2.17)
and for 1 = 2,3
dq2i(V)
—5— = -plqzi(v) + piql(Tl-v), for 0 < v < T, - (2.18)

In addition to the boundary conditions (2.11), we have discontinuity

conditions

+ -
1y (15 q1(T3 ) + pyply3 s

and ‘ . _ ' (2.19)
001y ) = q(1y) ) *+ pyohy,

Therefore, the solution of (2.17) and (2.18), subject to (2.11) and
(2.19), yields approximate forms for the probability densities q(u)

and qu(v), i= 2,3, when Ty > T, > Ty, as follows:
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A,+a,u O<u<t

171 3
(p*hpg)te Tyray(umty) Ty<usly
(A #h )+, ray+(r=3)ag b1 e, (um(2-1)1,) (r-1)7y<usrt,
ql(u)=p12 for r = 3,...,n
p1+{al+az+(n-2)a3}T3+a4(u-nT3) 12<u§ﬂn+1)r3
p1+{a1+az+(n-2)a3+a4+(s-n—2)a5}T3+aS{u—(s-l)T3} (s-1)14<ussT,
for s=n+2,...,2n
L p;+{a; +a,+(n-2)az+a, +(n-1)ac}, 207 4<u<T, 3
(2.20)
where
31 7 P g*hg) = A logtesds ey = A, 007A) = Aalyytes)
a3 = Appleymey)s 2, = “A1a00P93 * Ay305)
35 = "A1aPp -

If n = 2, then the third line in (2.20) is omitted, and if m < 2n, then
the sixth line in (2.20) is omitted and the range in the fifth line is
replaced by s = n+2,...,m. The in-channel probability density 1is

" A

Oo<u<t,-T

1 "2

2 * ApP®
q22(u) =Py, (2.21)

Ay * Alzpz(rl-rz) + klz(pl-pz)u Ty~T,<usT, .

where the second line in (2.21) is omitted if T, > 2T2. The out-of-

channel probability density is
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053(v) = py,(Ag¥A 5p.V), 0<VZrt,y. (2.22)

The next range of dead-times to be considered is when the two gamma
channel dead-times are equal, but are smaller than the beta dead-time,
i.e. T, > Ty = Ty The equilibrium equation for the beta probability
density, (2.15), becomes

P19,,(T47u) + p;9,,(T5"u) 0<usm,
dql(u)
“Ga T P (w ¢
qul(u—TB) + p3q1(u—1‘3) 1:3 <u< Ty >
(2.23)

and the equilibrium equations for the two gamma probability demsities
(2.16) are given by (2.18) as before. The sole discontinuity condition
is on the beta probability density, and is

+ -
ql('r3 ) = ql(-r3 ) + plZ(A12 + AIB) . (2.23a)

Therefore the solution of (2.18) and (2.23) subject to (2.11) and (2.23a)
yields approximate forms for the probability denmsities q;(u) and

qu(V) i= 2,3, whentT, >1

1 = Tqy, as follows:

2

Ay * A (ppgmeydu 0 2uz<my
93(0) = Py { Py * A1 (2093707 T30 p0; 0 T3 < U< 2Ty
P1 T PyA;.Tg 2ty <u 2T

proyided Ty > 213 s

(2.24)
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where Al- = A12 + A13, and

492(V) = P1ghy * Prplerhyy * Aglegmepy) v 0 <usty= Ty,
(2.25)
(2.26)

When the beta and in-channel gamma dead-times are equal and greater
than the out-of-channel gamma dead-time, i.e. T, T Ty > Ty the
equilibrium equations for the two gamma probability densities are again

given by (2.18), but that for the beta probability density is now

(pquZ(Tl_u) + p1q23(T3-u) 0<u < T4
|
dqi(u) _ _p23q1(u) +i
u i - -
lelqzz(Tl u) + p3q1(u T3) T3 <u E Tl .
(2.27)

With the boundary conditions (2.11) and the discontinuity condition
+ _ -
alry) = alrg ) + ol s

the three equations (2.18) and (2.25) give, for Ty T Ty > Tgs the beta

probability density ql(u) as

(A * 4;.(0p57py)u Ozu<t,
qy(u) = pypf 093 * Dhy50o=ay) #Aghy Jrat{dyy(0ym0y )R geadu  Tycusiny

5. * {r . (p Y+A_A }r'+g

- - 2t .<u<
13(PpP 3 A5 p Ta+A, 5 (050 Ju T3uzt

1
provided T1>2T3,

Py

(2.28)
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the in-channel gamma probability density q22(v) as

A2+;\12(p1 p. v OiViTl'T3
4p0(v) = Py,
Agthg g0, (1T )RR A omAoh v LN AL
(2.29)

and, finally, the out-of-channel probability density q23(v) as

q23(v) (A

139137232100V 0<v<ry
(2.30)

P12*3%P12

The penultimate range of dead-times that will be comnsidered occurs
when the in-channel gamma dead-time is larger than the beta dead-time,
which in turn is larger than the out—of-channel gamma dead-time, i.e.

T, >

9 > Ty > T3- Within this range the equilibrium equations (2.15) and

(2.16) for ql(u) and q22(v) respectively, become

P195(Tyu) 40 dy5(T57u) Ousty
dq, (u) (2.31)
= —p,.q,(u) +
) 2391
du plqzz(Tz-u)+p3ql(u—T3) T4<u<Ty
and
pqu(rl-v) O<v<Ty
ESZZEZl = - (v) + (2.32)
av P19

l?lqzz(v'Tl) T VI -
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The equilibrium equation for q23(v) remains as (2.18) for i = 3.
The discontinuity conditions reflect the behaviour om both counters,

and are

+ -
a1t ) = qy{t3 ) *+ pyyhygs
(2.33)

+ -—
Aoty ) = app(Ty ) *+ Pyyhy,

The solution of (2.31) and (2.32) subject to (2.11) and (2.33) is in two
parts depénding on the relative sizes of Ty and Ty subject to Ty > Tq-
We have that for Ty =Ty + Tqs the beta probability density ql(u) is

Ayt (pgghy. = Aygppdu O<uzt,

qy(0) = pyy § g3+ {Ry305%A (0 g+0g) TR, ) (py=0 )= 50 5 u
T3<u§2T3
Py + 1h1p(P19*P3)*A 363720, 30 b Ta%h  (oymp Ju 2Ty<usry

provided tl>213,

(2.34)
" and when Ty > Tq + Ty
A+ (pyady = pgdggdu O<u<t,
a3 () = ppy 1 P13 * {oghy.*A150pp3mey b Tat0y 50, R 505 )u Ty<usly

P13 * TA1aP3*2h 90 ¥ 3(pyp ) Ta%A 5 (py=p Ju 23<uty

provided tl>213 .

(2.35)
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However, both the gamma probability densities have single forms when

T, > ™1 > Ty for
/'12+A12(pl-pz)v 0<v2T, =T,
J AytA 3p2(T1—T3) + (lez—lzpl)v : T{=T4<vITy
1425(v) = Py,
Py * (2003794 5)T17A13P5 T3 A 2P 1Y T V2T
t Pa 21292717 P13PathyaPy )73 27y VET,
provided T2>2T
(2.36)
and
03(¥) = Prphy * PrplhyaPrs ~ Aghpp)Y Ozvety -
(2.37)

Finally, we consider the case when the beta dead-time is equal to

the out-of-channel dead-time but smaller than the in-channel dead-time,

i.e. Ty > Ty = Tg- The equilibrium equations for the counter probability

densities ql(u) and q22(v), (2.15) and (2.16), when 1, > T, =

2 1 T3 are
dql(u)
Iu Pp3a1 (W) * p12,5 (1)) + pyqy,(T4-u) (2.38)
and
] qul(TB—V) 02v<T,
dq22(v)
T = plqzz(v) + (2.39)

P19y, (v-15) T4<V<T, -

1

)
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The single discontinuity condition corresponding to this range

of dead-times refers to the in-chamnel probability density

+ -—
qzz(T3 ) qzz(r3 ) + P1oryg (2.40)

To calculate the three counter state probability densities
ql(u), qu(v), i= 2,3, for T, > Ty = Tqs We solve (2.18) for i = 3

and (2.38), (2.39) subject to (2.11) and (2.40). Therefore

ql(u) = plZAI + plzfll.(p23—A13)fA1A13}u 0<u<T =14, (2.41)

Ay (A "N D O<vit,
a9(v) = Py 0y HA (¥ )=dohy Bty = A0y LERRALLE
Py P9 . T4 213<V§I2
provided T2>213
(2.42)
and
Gy3(v) = pyyhg + Py (A A 37200 v 0<v<Ty=T,
(2.43)

Having calculated the three counter state probability densities
ql(u), qzi(v) for i = 2,3 for a variety of cases, dependent on the

relative sizes of the three dead-times Ty T and Ty, We can now

2
calculate three coincidence rates. These three coincidence rates are
between the beta and in-channel gamma, the beta and out-of-channel gamma,

and consequently the beta and total gamma, series of recorded events.
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2.4 The Coincidence Rate

As in the Introduction, a coincidence is defined to be the
occurrence in the combined output of the two counters of two recorded
events within a time span h of each other. The coincidence rate is
calculated for h < min(rl,rz,r3), so that the coincident events are

from different counters. Formally, the coincidence rate is defined to be

{a recorded event on one counter in [0,8h)
P and a recorded event on the other counter in [0O,h)J .
Sh

1im
Sh~0

Given that we require a recorded event in [0,8h) there must be at
least one counter . .open at O. Then the possible states for the two

counters at O are:
(i) Both are open, with probability Pyg-

(ii) Counter 1 has been closed for u and counter 2 is open, with

probability density ql(u).

(iii) Counter 1 is open - - and counter 2 has been closed for v the
closing event being of type i, with probability density qu(v)

i=2,3.

Now there are three ways in which an in-channel coincidence may occur:
(i)' A beta in [0,6h) and an in~channel gamma in [0,&h),
(ii)' A beta in [0,8h) and an in-channel gamma in [&h,h).
(iii)' A beta in [8h,h) and an in-channel gamma in [0,6h).

Corresponding to state (i) the sum of the rates corresponding to the

three ways (i)', (ii)' and (iii)' is



41

- h -
P plh

p
Prohp * Pty 53— 1-e By P r(l-e T, (2.44)

23
while from state (ii) the only contribution is from way (iii)', and is

T
1
[ e0,3;(u)I1 - exp{-p,(h-T,+u)}]du , (2.45)
2°1 1 1
T,-h
1
since the counter reopens at T,Tu.

Corresponding to state (iii) the only contributiom is from way (ii)’',

so that we have

T
2
—1 . _
f—h plqzz(v)pzpza[l - exP{-°23(h 12+v)}]dv for i = 2 (2.46)
T2
and
T3 -
{ I plq23(v)pzpz3[l - exp{-pz3(h—r3+v)}]dv for i = 3. (2.47)
3

In total, the in-channel coincidence rate is therefore the sum of

(2.44)-(2.47), and is

-1 “Paqh =oqh
Pigtyp * PrghyPoPpa(l — e )+ ppghp(l e )
3} . TZ
+ : -1
. pzq;(u)[l—exp{'pl(h-r1+u)}]du + { i plpzpzaqzz(v)[1-exp{-923(h—rz+v)}]dv
2

T
3
-1
+ { L P1PP5353(V) [1-exp{-p, 5 (h-Ty+v) }1dv. (2.48)
3
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Neglecting terms of order (ph)3 the six terms of (2.48) are reduced to

2 3 2
2.h n
P1oM2 1o (AP AgP IR = Pyp(RyPaPag*haPy T + PrgRyeplem B A Mg Ty

(2.50)

for v, and T, integer multiplés of T, such that min(rl,rz) > T4, except

1 2
T =Ty = T4 agd where
1 for T] T Ty i=2o0r 3,
G(TI,Ti) = (2.51)
0 otherwise.

The out—of-channel coincidence rate may be obtained by substituting
A13 for AlZ’ A3 for AZ and therefore Pq for Py The total coincidence
rate between a beta particle and any gamma particle is then obtained

upon summation of the in-channel and out—of-channel coincidence rates, i.e.

“Py3h Py b
Pyo(Ayp*h gl hy (1 )+ pp(Ag+ig)(l-e )
T T,
+ (02+D3){ o ql(u)[1‘eXP{‘Dl(h—T1+u)}]du + plf _ q22(v)[l—exp{—pzs(h—T2+V)}]dV
T3 1
*+ 0 {B_h 4,4 (v) [1=exp{=p,, (h=T,+¥)}]dv . (2.52)

Upon neglecting terms of order (ph)3 in (2.52) the total coincidence rate

is approximated by
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2
| L 2 2.h
P1a(Ayg*hyg) + Pypliyegs + Ogrdgdegdh = pyo{di0p5+(Ry+hg)e, 715

3 2
+ p12p1p23{p - 5 Alid(rl,ri)} 5 (2.53)

1=2

for Ty and T, integer multiples of T4 such that min(r ,Tz) > 13 with

1
the exception of T, = 1, = 73 and where §(+) is given by (2.51).

2.5 Conclusion

In the Introduction, it was noted that, under the assumed model,
to estimate the rate A of disintegrations, four independent functions of
the bivariate process of beta and gamma events are needed because of the
differing effects of in-channel and out-of-channel particles on the

gamma counter. The four functions may be chosen from the following,
(i) the expected number of recorded events on the beta counter in time t,

E(N (O} = pe(1+ pyr)

(ii) the expected number of recorded in-channel gamma events in time t,

| _ -1
E{Nn(t)} = p,t(l + Pty * p3r3) ,

(iii) the expected number of recorded out-of-channel gamma events in time t,

‘ -1
E(N,o(£)} = pst(l + p,7y + p375) ,

(iv) the expected total number of recorded events on the gamma counter

in time t,

_ -1
E{Nz(t)} = p23t(1 + Tyt p3r3) s
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(v) the in-channel coincidence rate,

2 3 2
2.h - h
P1o12¥P1p (A 1P AP hPy (31005342501 )T * Pypey,te L Maste T
(vi) the out~of-channel coincidence rate,
) 12 | 3 2
P12*13* P12 AP35+ 301 0Py 5 (A10 3093 +2301 )T +py 50 0400 - Lty

(vii) the total coincidence rate,

2
2 2.h
Protp. * Prafdyeag + (Ap*agdegth = pyy{Rie,5 + (gtagde, "1

_ 3 h2
+ p1201023{p - 152 Alid(rl,Ti)} <

for T1 and Ty integer multiples of T3 such that min(rl,rz) > T4, except
T) T Ty T T, and where 6(:) is given by (2.51). To apply any of the
above three coincidence rates, the equilibrium probability that both
counters are open simultaneously, P1p> is needed. To obtain P1p> (2.7)
may be used together with the approximatioms for ql(u) etc. Perhaps
more simply we may note that

T2 T3
pl = plz + g q22(V)dV + IO q23(V)dv,

and then use the approximation for P>

p]. = 1 - QITI 3
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together with those for'ql(u) etc. This approach leads to

1+ A12T2 + A

|v

1373
P1g = PPy

1+ A12T1 + A1313 T, > T

lv
A

Here again terms of order (p‘r3)2 are neglected.
Smith (1978), considered in and out-of-channel gamma events and

derived an estimate for the disintegration rate A based upon the

and AIZ;

following relationship between the three parameters P1» Py

Since Smith's analysis used the in-channel coincidence rate as calculated
by Cox and Isham (1977), his results are restricted by equal dead-times
for in-channel and out-of-channel gamma events. The properties of the
counts listed above as (i)-(vii) obey no such restriction and the
estimation of the disintegration rate A is now possible for all ranges

of dead-time subject to the two largest dead-times being integer
multiples of the smallest dead-time. The estimation of A is not
discussed further apart from noting that the three rates Pys Pg and p

3
may be estimated by 51, 52 and 53, where

. nl(t)
1 T T - n, (6)T, ’
A A
{t+n23(t)p21213}n22(t) o ) {t+n22(t)p312T3}n23(t)

Py = T, ()7, 10, ()7,7 Py = Tt-n,, (0T, H{E-n, (£)7,} ;

where in the above nl(t), n22(t) and n23(t) are the observed values of

the variable counts Nl(t), N22(t) and N23(t) respectively.
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CHAPTER 3. DELAYED STATE AND JITTER

3.1 Introduction

Two situations are now considered that are physically quite
different but which are modelled, mathematically, so as to facilitate
the use of the same technique of investigation. The two situations will
be referred to as Delayed State and Jitter, the prime objective being as

before, to estimate the disintegration rate of the source.

3.2 Delayed State

3.2.1 Physical Description of Delayed State

We now consider an important sub-class of the class of radiocactive
isotopes that disintegrate by eqitting pairs consisting of a beta
particle and a gamma particle. The emissions from isotopes in this
sub—-class are no longer simultaneous, unlike those of section 1.3, But our
aim is the same, that is to obtain properties of the disintegration
process essential for estimating the rate of disintegration.

The gamma particle, kﬁown as the daughter, in each pair is delayed
relative to the beta particle, known as the parent, by a period which
is exponentially distributed with mean n—l. The parameter n is referred
to as the half-life of the intermediate state and the parameter ) is
again used to denote the disintegration rate of the source. The beta
train of particles is passed through one counting mechanism, the gamma
through another and counts are recorded for the purpose of estimating
the disintegration rate A. The half-life n is assumed to be known.

Because each counting mechanism is in two parts, with the actual

recording of events taking place in the second part, it is perhaps
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conceptually simpler to regard the beta-gamma emissions as simultaneous
and to build the delay, in the model of the process, into the detector
mechanism, rather than modelling the true process with the delay at
source. In such a model we therefore assume that the detector delays
the gamma half of a beta-gamma pair by an exponentially distributed
period only after it has been detected. This is purely a theoretical
assumption and is not a direct representation of the true physical
process, but the two situations are entirely equivalent so far as the
properties of interest are concerned.

The three types of event which may now occur at the detectors are:
(i) a beta particle only, detected with rate

AB = AeB(l - ey) ,

(ii) a gamma particle only, detected with rate

AY = Aey(l - eB) s

the gamma particle then being held for a time t,
ne 1. However, we shall see in section 3.3.4 that the delaying of

with probability

gamma only particles is effectively ignored,
(iii) a beta—gamma pair of particles, detected with rate,

ABY = AsBsY ’

this is a "simultaneous emission'' the gamma particle then being
delayed for a time t, with probability density ne
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In this manner the original disintegration process of our model,
being a Poisson process, may be considered to be the sum of three
independent Poisson ﬁrocesses which are then fed into the relevant
counters to be recorded. As before three measurements are required

to estimate the three unknown parameters AB’ AY and A and subsequently

| BY’
the disintegration rate A. These are the individual counts on the two
counters and the covariance between them. The covariance measurement

is preferred to the coincidence calculation for reasons outlined in
section 1.3.3; and also because of one unavoidable effect due to the

very nature of the Delayed State problem and the way in which coincidences

are recorded. This will be described in the following section (however,

the coincidence rate will also be calculated for the sake of completeness).

3.2.2 The Main Disadvantage of Coincidence Counting in Delayed State

When a gamma particle is delayed relative to its "parent'" beta
the choice of a suitable resolving time h for the coincidence counter
becomes dependent on the delay parameter n. For, in order to have a
fair chance of capturing both the parent and its corresponding daughter,
which would constitute a true or germuine coincidence, the resolving
time h must be at least as big as the mean delay n_l. For some decay
schemes n_l can be many times a typical normal dead-time and therefore
the dead-times on both counters must be increased to attain the inequality
h < min(TB,TY). (This inequality ensures that the two events comprising
a coincidence, arise from different counters: see section 1.3.2.) This

results in the number of events missed due to counter blocking being

increased, which is clearly undesirable.
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3.3 The Presence of Jitter in Electronic Counting Systems

3.3.1 Physical Description of Jitter

The disintegration process and the counter mechanisms are now
assumed to be the same as described in section 1.3.1, but, because of
imperfections in the counter mechanisms that until now have been ignored,
there are no simultaneous events on the counter,

The gamma of a beta—-gamma pair of particles appears to occur a
time T after the beta, where T has probability density function £ (t),

which is typically of the form shown in Fig. 3.1.

N

 §t), o typial jitlor dansiby

~
x
\L N 4

Fig. 3.1: An Example of a Jitter Distribution
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In Fig. 3.1 the point O is the point at which the beta of a beta-
gamma pair of particles occurs, so that a negative t implies the gamma

is observed before the beta. The two values §_ and GY are the maximum

B
times by which a gamma may occur before or after a beta from the same
beta-gamma pair.

The lack of simultaneous events in Delayed State and Jitter leads

to a similarity between the two situations, and this similarity will be

exploited at a later stage; see section 3.3.4,

3.3.2 The Effect of Jitter

The effect of jitter is perhaps most easily seen on the coincidence
counter described in section 1.3.2. 1In the absence of jitter there are
two types of coincidence: true and accidental. The main effect of
jitter is that there are no longer any true coincidences although
ignoring dead-time effects they will still be recorded as such if
max(GB,GY) < h. For example, in Fig. 3.2 suppose there is a simultaneous
emission at time point A and the beta particle occurs at A, the gamma
particle occurring before or at B, which is GY after A. Then if point B

is before point C, point C being h later than point A, in the absence of

dead-time effects there will be a recorded coincidence.
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- beta time scale
h '
/K N
§
Y Y Y
N LAY
X gamma time scale
A B C
A: simultaneous emission, the beta occurring instantaneously.
B: furthest point to which the gamma can be delayed.
C: the end point of the resolving period.

Fig. 3.2: Possible Arrangement of Events on the

Coincidence Counter for max(§ 67) < h.

B’

The delay of one particle of a pair relative to another is so much

smaller in Jitter than in Delayed State, that it is feasible in Jitter

physically to set the resolving time h to satisfy max(6s,6y) < h,

whereas for Delayed State a similar inequality was not feasible; see

section 3.2.2. Now it is physically possible to set the resolving

time h to be smaller than the maximum delay §

g °f 67’ although the

effects of Jitter then increase. The extra effects are due mainly to

pairs of particles that constitute coincidences for max(6s,6y) <h

possibly being jittered more than h apart.
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3.3.3 De-centring the Jitter Distribution

The maximum time by &hich a beta of a beta-gamma pair of particles,
may precede the gamma of the same pair, was defined to be GY'in
section 3.3.1. If the detector of the beta counting mechanism is
allowed to delay every beta that is detected by GY, then the beta will
never precede the gamma of a beta-gamma pair of particles. Thus f(t),
the probability density of the original Jitter distribution, will be
transformed to g(t), the probability density of the de-centred Jitter

distribution; see Fig. 3.3 and refer to Fig. 3.1.

3({:), a i'g'picq\
de-cnired jitter dnnsihj

{

>, hme

n
N 7

st Sy

Fig. 3.3: A De-centred Jitter Distribution.
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Traditionally the de-centred distribution g(t) has been used more
than the distribution £(t). The main advantage of de-centring is that
it is considerably easier conceptually to consider one particle delayed
relative to another in a single direction only, rather than two
directions. For a semi-empirical treatment of de-centred Jitter see
Williams and Campion (1965). 1In this form, the Jitter problem becomes
very similar to that of Delayed State, and would be the same if the
roles of beta and gamma were interchanged and g(t) were to be an exponential
distribution. 1In both problems one particle of a pair of particles is
delayed relative to another particle of the pair. Also, in both
problems there is no restriction on the number of particles that may be
delayed, and so waiting to occur at any particular instant, although
the average delay is of an order smaller in Jitter than it is in Delayed
State. However, we have that delay is bounded in Jitter and unbounded
in Delayed State.

In any study of Jitter, certain éroperties of the Jitter distri-
bution will have to be estimated. These estimates are then incorporated
into normal Jitter calculations and used to produce an estimate of the
disintegration rate. When de-centring, the maximum time by which a
beta may precede a gamma, GY’ is estimated and then a displacement of
this size inserted in the beta train of events to delay each beta that
is detected, and so de-centre the Jitter distribution. Estimates of
this de-centred distribution are then used, for example, in the
calculation of the coincidence rate, to produce an estimate of the
disintegration rate. It is possible that when de-centring by this
means, the error associated with estimating GY’ may be compounded with
the error associated with the de-centred estimate of the coincidence
rate, to use the same example as before, to produce a more inaccurate

estimate than would be obtained if the Jitter distribution was not
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de-centred; especially if SY were to be underestimated.

It is the aim of this chapter to produce the theory necessary to
calculate the expected number of recorded events on each counter, fhe
covariance between the two counters and the rate of coincidences, for
both the normal, and de-centred jitter distributions. By modelling
the jitter as described in the following section the above functions

will also be obtained for the Delayed State problem.

3.3.4 Modelling the Jitter Distribution

As stated in section 3.3.1 a typical jitter distribution is of

the form shown in Fig. 3.1. Two points to note are,

B

(i) the support of the distribution is finite, i.e. §, and GY are both

finite, and

(ii) there may be multiple turning points.

However, we wish to choose the model for the jitter distribution
to make the theory tractable enough to treat the normal and de-centred
distributions in the same way, and yet keep the essential properties of
the effect of jitter. For this reason the finite support restriction
is ignored and a combination of exponential distributions used.
Graphically if we take a mixture of an exponential random variable and
a gamma random variable then we obtain the distribution shown in

Fig. 3.3.
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\ fesulfant mixkuca clonsiby

Sample s\xm
Jor mixtura cLonsal'g

Fig. 3.4: Mixing an Exponential Random Variable

with a Gamma Random Variable

By following a similar procedure on the negative side and mixing
this with that obtained on the positive side, it is possible to obtain

a density as pictured in Fig. 3.5.
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# resultant muixhuge donsil'g

. >

sample. Shace
for mixhure clensihy

Fig. 3.5: A Combination of a Negative and Positive
Mixture of an Exponential Random Variable

with a Gamma Random Variable

A density of the form seen in Fig. 3.5 would appear to model the
true jitter distribution quite well, see Fig. 3.1, apart from the
finite support restriction. If f£(t) denotes the jitter density of the

model, then the approximating density described so far is of the form
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fB(-t) for £t <0
f(t)a
f (t) for t > O,
Y
where
K..-1
2
-u. .t (p. t) * ~u. .t
1l 12 i2
%5141 * (=490, ®, - © for £ >0
£.(t) =
1
0 for t < O,
for some ¢11’“11’“12 and Ki2’ 1= B,y. A more general distribution of
this form is
K..-1
B(i) (u..t) Hd -u,.t
¢..ui. (Kl — )T e I for £t > 0
5=1 ij i] i !
fi(t) = -
6] for t < O,
B(1)
where I ¢.. = 1 for some B(i) and ¢,., some p.. and K.. for
j=1 1] 1] 1] 1]

j=1,...,B(i) and i = 8,y. By setting B(y) = O the de-centred

distribution of section 3.3.3 may be obtained. By setting B(B) = 0,

ne_nt

B(y) =1, KYl = 1 and g = we obtain the distribution fy(t)
for the Delayed State problem. Thus, in its final form, we assume that

the jitter distribution of the model, f(t), satisfies

B(B) )
f(t) = o6, £ ¢,.8, .(-t)H(-t
B =1 B B4
B(y)
+ 0. L ¢_.8 .(£)H(E) , (3.1)
Y =1 Y Ya
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B(1)

where 66 +6 =1, I ¢ij =1, gij(t) is the probability density of a
i=1

gamma random variable with mean Kij/uij and index Kij’ for 3 =1,...,B(1i);

i =B,y, and H(t) is the unit Heaviside function. The above equation, (3.1),
may be interpreted as follows. Whenever a pair of particles is emitted

and therefore arrives at the detectors in the counting mechanism, with
probability 66 the beta particle is delayed and the gamma occurs

immediately. Furthermore, the beta particle is delayed for a time t

and with probability ¢Bj the distribution of delay time is gamma with

mean Ksj/usj and index KBj’ j“= 1,...,B(B). With probability eY the
situation is reversed and the gamma particle follows the beta particle.
For single events on the detectors the effect of jitter is nom-existent.
This is because the single events on either counter form a Poisson
process, and if the points of a Poisson process are subjected to
independent and identically distributed displacements, then the

resultant process is a Poisson process with the original rate. Thus,

there are four types of event which may occur at the detectors,
(i) a beta particle only, detected with rate

A = Ass(l - eY) R

(ii) a gamma particle only, detected with rate

A = AsY(l -€.),

B
(iii) a beta-gamma pair of particles in which the beta occurs
immediately and the gamma is delayed for a time T where
T~ I'(K,,/u_.) with probability ¢ ., j = 1,...,B(y), is detected
L/ Y}

with rate

A8 = A
BY y EgEy Oy
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(iv) a beta-gamma pair of particles in which the gamma occurs
immediately and the beta is delayed for a time T where

T v I'(K,.

( 8j

with rate

’“Bj) with probability ¢Bj’ j=1,...,B(B), is detected

ey T ety

Therefore the original Poisson process of disintegrations of rate A,
can be thought of as made up of four independent Poisson processes
which then reach the counters.

We now calculate the following four functions for the Jitter and
consequently the Delayed State problems. These are, the two average
counts, the covariance between the counts, and the coincidence rate.
Before these calculations are tackled a much simpler problem is st;died
and a method formulated, which will then be developed at a later stage
for use in Jitter. This problem is a simplification of Delayed State.
The problem and its solution were devised as a first attempt to obtain
the solution of Jitter. Subsequent solution of Jitter made the solution
of the simpler problem redundant, however it is now included for the

sake of completeness,
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3.4 A Maximum of One Delayed Gamma Particle

3.4.1 Description of the Process

One of the simplest models that still retains the parent-daughter
relationship of section 3.2, is one in which at most one gamma particle
may be delayed at any particular instant. That is, following the first
beta-gamma coincident event on the detectors and during the period for
which its gamma particle is delayed, the gamma particle in any other
arriving beta-gamma pair is irretrievably lost, i.e. the beta-gamma
pair converts to a beta only. This conversion process continues until
the original gamma (daughter) is released, so that the ﬁumber of gamma's
delayed reverts to zero. At this point the system is then capable of
delaying a gamma particle again. The gamma only events remain
unaffected.

In general this is a rather unrealistic model but if certain
restrictions on the parameters are satisfied then it should be a good
approximation to the true process. The average time between successive

beta-gamma pairs is A and, on average, the gamma then occurs n

By
later. Therefore if the average time between pairs is substantially
. . -1 - .
greater than the average delay time, i.e. ABY >>n 1 or equivalently

n >> ABY’ then the true probability of more than one gamma being delayed
at any particular instant, will 'be negligible. This is the model which
is studied first. Again for notational convenience we take 8 = 1 and

Y = 2 but keep the physical interpretation of the events.
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3.4.2 The Covariance Between the Two Counts in the Absence of

Dead-Time Effects

The total count, Nl(t), on counter 1 in (0,t] may be split into

two parts,

(1) Nll(t), the number of beta's that arrive in (0,t] without a

gamma ie, beta only events,

(i) le(t), the number of beta-gamma pairs that arrive in (0,t], in

which the gamma may occur subsequently to the beta.

The total count N,(t) on counter 2 in (0,t], may be split similarly

into two components,

(1) N21(t), the number of gamma's that arrive in (O,t] without a beta,

i.e. gamma only events,

(ii) sz(t), the number of beta—gamma pairs from which the delayed gamma

occurs in (0,t].
Thus
Ni(.t) = Nil(t) + Niz(t) for 1 =1,2 .

The component counts are not all Poisson variables, despite the
disrupting influence on the distribution of the counts, due to dead-time
effects, being‘absent. Note that all the pairs of Nij(t) for i,7 = 1,2,
are independent except for le(t) and sz(t), so that the covariance
between Nl(t) and N,(t) reduces to the covariance between le(t) and
sz(t). This situation is now analogous to a single server queue with
at most one person in the system at any one time, the arrival process
being Poisson with rate Ao and the service distribution being

exponential with mean n-l. Then le(t) may be identified with Na(t),
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the number of arrivals in (0,t], and sz(t) identified with Ns(t),
the number served in (0,t]. Thus, in the absence of dead-time effects

we have that

cov(le(t),sz(t)) = cov(Na(t),NS(t))
2 -(A, ., +n)t
Ayo0 1- . 127
- 2 el b, .2)
(Ay,*0) 12 71

which is an adaptation of a result in Conolly (1975, page 21).

3.4.3 The Covariance Between the Two Counts Subject to Dead-Time

Effects

Denote the covariance between the two counts by c(t), i.e.

c(t) = cov{Nl(t),Nz(t)}

E{Nl(t)Nz(t)} - E{Nl(t)}E{Nz(t)} ;

Let pij denote the equilibrium probability that counter i is open

and ] gamma's are delayed for i = 1,2; j = 0,1. Also let

P; = P + Pi1 for i = 1,2,

The instantaneous rate of events om counter 1 is independent of the
number of gamma's delayed, and is equal to Py = Al + 112' Therefore,
if the process of events on the two counters starts the interval (0,t]
from statistical equilibrium, and if we represent each process by

N.(t) = dN. (u) for i = 1,2 ,
1 1

Qt—t
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then

t
[ pr{le(u) = 1}
0

E{N, (£}

t
= [ ppydu = ppot . (3.3)

0
The instantaneous rate of events on counter 2 is directly dependent on
the number of gamma's delayed, and furthermore the process of such

events is no longer Poisson. So

t
E{Nz(t)} = f pr{dNZ(u) = 1}
0
t.
= g {AgPgg * (Ry *+ mlpy;Jdu
E{N,(£)} = gy + (Ay + n)p21}t . (3.4)

The equilibrium probabilities pijfor i=1,2; j=0,1, will be
determined in section 3.4.4.

The cross—product term in the covariance may be written as

t t
E(N, ()N, (£)} = E{(j; (J;le(u)sz(v)}
t t
= [ [oerlay() = aN,(v) = 1} . (3.5)
0 0

Because the probability of simultaneous events on the two counters is
negligible, there is no contribution from v = u and (3.5) may be split

into two ranges v < u and v > u, hence
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t t t t
E{N, (£)N,(£)} = [ I pr{dN, (u) = dN,(v) = 1} + [ pr{dN,(u) = dN,(v) = 1}.
0O u 0O v

(3.6)

If we define the joint probability densities

a recorded event on counter j in (x,x+6x) and}
a recorded event on counter i in (0,8y)
§x. 68y

h..(x) = lim
1] sx>0™
sy»0t

for x > 0 and i,j = 1,2; i # j, then (3.6) becomes

t t t t
E{Nl(t)Nz(t)} = é { hlz(v—u)dvdu + é 5 hzl(v—u)dudv . (3.7)

Upon substitution of (3.7), (3.4) and (3.3) into (3.2), we have that

t t t t
_ _ _ _ 2
ey =[ f hy (v u)dvdu + [ | hzl(u v)dudv = pypy{A,p,, + (Ay*+ndp,, 1.
O u 0 v
(3.8)
The Laplace Transform of c(t), denoted by c*(s), satisfies
h*_(s)  h%. (s)
S A A | 2
c*(s) = 5+ 5 plpl{xzpzo +_(A2+n)p21} 3 (3.9)
8 s 5
where
t -st
ex(s) = [ e ~e(t)dt etc.
0

To calculatp  the fwo joint probability densities hij(X)’
i,j = 1,2, i# j, and the equil?brium probabilities pij’ i=1,2; y=0,1,
the states of the counters are represented as a Markov process. Thus,
the following equilibrium probabilities and probability densities are

defined,
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(1) Pyg;° the probability that both counters are open with i gamma's

delayed and waiting to occur,

(ii) qji(u)’ the probability density that counter j has been closed for

a period u, with i gamma's delayed, 0 < u < Tj, ji=1,2; 1=0,1,

(iii) q12i(u’V)’ the probability density that counter 1 has been closed
for a period u, counter 2 for a period v and i gamma's delayed,

0<ucx< Tys © fveT, and 1 = 0,1.

If any of the above probability (densities) appear without the
subscript i, then this probability (density) is obtained by summing the
relevant probability (demsities) that are defined above, over i = 0

and 1 = 1.

3.4.4 The Possible States of the Counting System

The equations representing the probabilities of change from one
state to another, when the system is in equilibrium, can be written down
in terms of the probability (densities) defined above. As the purpose
of solving these equations is purely exploratory, developed merely to
suggest a method of solution to the full model as opposed to the
restricted one we are considering at the moment, equal dead-times are

imposed. So, for Ty = Ty =T, the equilibrium equations are

(p+in)p12i = qli(T) + qu(T) for i = 0,1 . (3.10)

Here p = pl+A2 = A1+p2 = A1+A2+A12, and
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dq, (u)
0 . -p (u) + (u,1)
du 2%10 Q120"

dq,, (u)
11 _
Fo = ~Ogrdag (u) + a9 0(0) + g, (u,T)

dq, .(u)
20
™ 01990 (w) + ngy  (w) + gy, (1,u)

(3.11)
dq21(u)

du

-(p1+n)q21(u) + qlzl(r,u)

39y 55(u,v)  3gy,4(u,v)

T v = TAp99190(usV) * ngy g, (uyv)

39197 (U,v)  3gy 5, (uv)
+ = =-nq
du v 121

(u,v) + A (u,v)

12%120

The corresponding boundary conditions for this set of equations are:

40(0) = AqPygp 91(0) = Py Ay pP g0

120(0) = AgP1pp*NPyy; 410 = APy

9120(%:0) = Apdp(udinay; () qp5 (.00 = Ayqpy (W),

quO(O,v) = AquO(v) , q121(0,v) plq21(v)+112q20(v) .
(3.12)

An exact closed form solution of (3.10) and (3.11) subject to
(3.12) is not attempted. Instead, separate Taylor expansions are made

for each function and pt is considered small enough for terms of order
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(pT)2 to be neglected; furthermore terms of order (pT)2 will be neglected

throughout section 3.4. The solution can be shown to be

)
Y _

P11 = 5 Ppopoll - "),
U) = APy,

Mo 2
qll(u) = - plzo(p1+n - PNt =M u) , (3.13)
Ao = Pyynlpy = A nTHApmu)

A
Mg

2 2
(AAo*P A9t on(1=p  T)=Ayon u + {A,,(Ay=p -n) + n"Ir v

for u > v

4y 9p(esv) = Plgo
Lxl{pz'xlznT} * AT (Rgma d4n(e =2 e + AR Lny
for u <v
(3.13)
and finally,
A9 {o 10— ) = A 2u +) (p1=r,*n)v
[Ao2'p1™m7PNT on 120'P 172"
for us>v
VI,

4397 (8:V) = 7Py,

pargtmeynTle dotndyn) + (AR, =A 0= AR, ,-no, bun

2

* >\1271 v for u < v.

(3.13)
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In this solution note that the introduction of the probability
density qlz(u,v) was needed solely to obtain the probability (densities)
Pyg;° qli(u) and qzi(v) for i = 0,1. These are the functions that are

of direct use in the calculation of hlZ(X) and h,,(x). Further, note

21
that P1,o Temains unknown. Approximate formulae for P120 and the

equilibrium probabilities Pyj and Pys for 1 = 0,1 are now found. Two

of the ways in which these unknowns may be calculated are as follows:

(i) For each counter define the equilibrium probability demsity that
the counter is closed with i gammas delayed for i = 0,1. Then
set up equilibrium equations similar to (3.10) and (3.11) which
may be solved. (Note that these are univariate whilst (3.10)
and (3.11) are bivariate.) The solutions of each set will be in
terms of an unknown and these two unknowns may then be determined
using the normalizing condition that, for each counter, the
probability that the counter is closed plus the probability that

the counter is open is equal to unity.

(ii) Counter 1 alternates between open periods exponentially distributed
. -1 .
with mean oy and dead-times of constant length 1. Therefore the

equilibrium probability that counter 1 is open, P; satisfies,

-1
P1 _ 1

Pi T T — % T+ -+
1 011+T 1+p1'[

Neglecting terms of order (pr)z,
pp = l-p1 . (3.14)

From (3.13) we see that,

P12 P120 T P121 P120
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and

A2A12

qp(u) = gy, (udtqy, () = py,yplpy + =722 = Aot = Apdp T + Ay mu)

Using the normalizing condition that

T
Pl = P12 + f qz(u)du ) (3.15)
0
we have
A AnA
- 12 _ 212
1= g7 = P+ MaT) F PryeTley * )
A
_ 12.-1 _

P120 = (1 + —;-) (1 DT) . (3.16)

The remaining unknowns on counter 1, Pyj for i = 0,1, may be determined

by adding the subscript i to (3.15), thus

p = —— (1 - A1),
10 A12+ n 1
(3.17)
A
_ 12
pll = A12+ n {1 - (pl+n)T}

By interchanging the roles of counter 1 and counter 2 in (3.15),

n
. P = — (1 - p,7) ,
20 A12 + 7 2
(3.18)
M2
= 1 -2
Pa1 e ( 2T)
Therefore
- 1 - -
Py o LAyt (=, T) - A nth (3.19)

12
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An approximate form for P1ys the equilibrium probability that

both counters are open simultaneously, may now be written down:

' 2
P12y PGP I SPL L) PN SR

2 2
(A12+n)(A12+n+n r)pllp21/A12 , (3.20)

and so

Pys = plp2 . (3.21)

The corresponding formula for the equilibrium probability P19 in Cox

and Isham (1977) is
P12 = Plpz(l + }\12'1') . (3-218)

Upon comparison of (3.21) with (3.2l1a) it is plausible that (3.21) is
"less dependent" than (3.21a), due to lack of "direct dependence" through
simul taneous events that do not appear in the present problem but do
appear in the problem of Cox and Isham. However, (3.21) implies that
the two counters act independently; clearly this is not exactly correct
and it should be noted that (3.21) is only a first order approximation
in pt to P1o-

Before progressing to the calculation of the two joint probability
densities hlZ(X) and h21(x), which we are now in a position to do, the
expected number of recorded events on each counter is calculated.

From (3.3) and (3.4) we have that

E{Nl(t)} = poyt s : (3.22)
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and

B(N,(£)} = {A,p,0 + (Aytmdpy,} € . (3.23)

Using (3.14) and (3.18) the expectations may be approximated as

E{Nl(t)} = plt(l - pl'r) s (3.24)
and
AN 22, .n
1 = 12 5 _ 12
E{N,(t)} {(x, + >\12+n) Ap(h, + Alz-*’-“)} t . (3.25)

We now consider the sequences of events on each of the two counters.

3.4.5 The Sequence of Events on Counter 1

The probability density

a recorded event on counter 1 in (x,x+8§x)

and a recorded event on counter 2 in (0,8y) ’

h21(x)6x6y = pr(
for small §x and §y, is now calculated. For a recorded event on
counter 2 in (0,8y), counter 2 must be open at 0. Therefore summing

over the possible states of counter 1 at O we have that

h21(x)6x6y =

a recorded event on counter 2 in (0,8y), and

1 a recorded event on counter 1 in (x,x+8x), and
pr .
0 both counters are open at O with i gammas delayed

L Prj a recorded event on counter 2 in (0,8y), and counter 1

1 a recorded event on counter 1 in (x,x+8x), and }
[closed at 0, counter 2 open at 0, i gammas delayed
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The states of the two counters at O and the type of recorded event on
counter 2 in (0,8y), which is either a gamma only, or a delayed gamma
from a beta-gamma pair, give the state of the two counters at §y.

However the sequence of events on counter 1 is independent of the number
of gammas delayed in the system at any specific point. In particular the
sequence is independent of the number of gammas delayed at §y. Therefore
the recorded event on counter 2 in (0,8y) does not affect the subsequent

sequence of recorded events on counter 1, and so

1 v
_ a recorded event on |counter 1 .
h21(x)6x6y - iEO (counter 1 in (x,x+6x)|open at O+6y)(>‘2+:|'n)13121'~6y
1 1 a recorded event| counter 1 for u

+ I [ pr(on counter 1 in | closed at O+8y )(A2+in)qli(u)6ydu .
i=0 o (x,%x+6x)

(3.26)
The sequence'of events on counter 1 forms a remewal process, the interval
-p. (x~7)
between successive recorded events having density pye for x > 7.

If g(x) denotes the renewal density of this process, then taking the

limit of (3.26) as 6x and 8y tend to zero from the right,

1 “Pyx X TPy
h21(x) = .Z {ple + f Py g(x—y)dy}(k2+in)P12i +
i=0 0]
1 T
+ I f g(x+u) (A +in)q,.(u)du . (3.27)
i=0 0 2 1

Taking Laplace Transforms of (3.27) with respect to x, we have

et

p p T
_ . : 1 1 * su
by, (s) = iio (A2+1“)5P121{EI?§ * o™ (s)} + g7(s) é e q,;(wdu 1,

(3.28)
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where
* ST -1

g (s) = Dl{(pl+s)e PR (3.29)

For small st, (3.29) may be approximated by
P.pP

g's) = L (1-ps0), (3.30)
where terms of order (pr)z are neglected and s < Kp, for some positive
constant K. Upon substitution of the approximations for the probability
densities plZi’qli(U) and qu(u), for i = 0,1, found in (3.13), and the

approximation for g (s) given by (3.30), into (3.28), the joint

probability density h;l(s) approximates to

*
h21(s) = PIDI{AZPZO + (A2+n)p21}/s . ' (3.31)

3.4.6 The Sequence of Events on Counter 2

The probability density

a recorded event on counter 2 in (x,x+6x), and }
2

hlZ(X)sty - pr{a recorded event on counter 1 in (0,8y)

for small 6x and 8y is now calculated. For a recorded event on counter 1
in (0,8y), counter 1 must be open at O. Therefore summing over the

possible states of the two counters at O we have that
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hlz(x)ﬁxdy =
1 a recorded event on counter 2 in (x,x+8x), and
£ pr{ a recorded event on counter 1 in (0,8y), and
i=0 both counters are open at O with i gammas delayed
1 a recorded event on counter 2 in. (x,x+8x), and
z pr[;a recorded event on counter 1 in (0,8y), and
i=0 counter 1 open, counter 2 closed at O with i gammas delayed

The recorded event on counter 1 in (0,8y) is either a beta only (Al) or a
beta-~gamma pair (Alz). Therefore‘if there is no gamma delayed at O and
if the recorded event is due to the beta from a beta—-gamma pair (xlz)
then the gamma is delayed. Otherwise there is no change in the state of

counter 2. So

a recorded event |at §y counter 2
h12(x)6x6y = pr { on counter 2 in |is open with A{P1908Y
(x,x+8x) 0 gamma's delayed

on counter 2 in is open with } (X12P120+01P121)6Y

a recorded event |at §y counter 2
+ pr
(x,x+8x) 1 gamma delayed

on counter 2 in [is closed for u } Alqzo(u)dydu . (3.32)

{a recorded event |at §y counter 2
pr
(x,x+8x) with O gamma's delayed

T
+ ]
0

r a recorded event |at §y counter 2 is] .
pr{ on counter 2 in |{closed for u with {),,q, .(u)+p.q
(x,x+5x) 1 gamma delayed 12720 1721

+ (u)}sydu.

O

The subsequent sequence of events on counter 2 is not independent of
whether or not there is a gamma delayed at §y, so that the probabilities
in (3.32) cannot be written down simply in terms of a single renewal

density. Instead define two sets of functions, for i = O and 1 we have
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* recorded event
mi(x)ﬁx = pr[ on counter 2 in’
(X ,X+6X)

open at o*

counter 2 is
3
with i gamma's

recorded event
ni(x,u)ﬁx = pr{on counter 2 in
(x,x+8x)

is closed for u

counter 2 }
3
at OF with i gamma's

for small &x and with mi(x) = 0 for all x < O, ni(x,u) = 0 for all x < t-u.
The probability density hlz(x) may now be expressed in terms of the sets

of functions {mi(x)} and {ni(x,u)},

hlZ(X) = Alplzomo(x) + (k12p120+01P121)m1(x)

T T
+ é Alqzo(u)no(x,u)du + é {Alzqzo(u) + p1q21(u)}n1(x,u)du.

Alternatively in terms of the Laplace transforms,

hIZ(S) = mS(S) + (A (u)nS(s,u)du +

T
*
MP190 12P120%P1P 01 0 (8) + g A9

(u)+p (u)}n;(s,u)du . (3.33)

T
* é 129 1921
If the densities {mi(x)} and {ni(x,u)} or equivalently {h;(s)} and

{n;(s,u)} can be expressed in terms of known functions then clearly

hlZ(X) or hfz(s) may be found. For this purpose the relationship between

{mi(x)} and {ni(x,u)} is investigated. Now

recorded event |counter 2 is
m.(x) = prj on counter 2 open at 0% with
O ! 1

at 'x [no gamma delayed
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This may be split into two parts depending upon whether a beta-gamma

pair and hence a delayed gamma occurs before x or not. Thus

recorded event . counter 2 is
mo(x) = pr { on counter 2 in 'x’ open at 0% with +
and first A12 after x |no gamma delayed

recorded event on counter 2 is
+ pr{ counter 2 in 'x' open at 0F
and first Ay before 'x' |with no gamma

o W T

A 12 {my (x=y)p,(y) + (J; n, (x-y,v)pc,(y,v)dvidy .

X
A .X
- e 12 rz(x) + [ Alze
0
(3.34)
In (3.34) rz(x), pz(y) and pcz(y,v) refer to the process consisting

solely of gamma only events in (0,y] and are defined as follows,

(1) rz(x) 1s the renewal density for the process starting with an

open interval,

(ii) pz(y) is the probability density that counter 2 is open at y

- . +
conditional on the counter being open at O ,

(iii) pcz(y,v) is the probability density that counter 2 is closed for v

.y s . +
at y conditional on the counter being open at 0 .

If m (x) is split into two parts depending upon whether or mnot the

gamma delayed at 0" remains delayed until after x, then,

ml(x) = e_nxrz(x) + ne_nxpz(x) +

X T
+ [ ne—ny{no(x-y,O)pz(y) + | no(x-y,v)pcz(y,v)dv}dy . (3.35)
0 0
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Note that the second term represents the probability density of the
delayed gamma occurring on counter 2 at x, with the counter being open
at that point.

To express {ni(x,u)} in terms of {mi(x)}, condition on the possible
states of counter 2 when the counter reopens at t = t-u. Then

1

n.(x,u) = I m.(xtu-7)r..(T-Uu), (3.36)
i se0 1 ij

where
"] gamma's {1 gamma's
r..(y) = prJ delayed at |delayed at \. , i,j = 0,1.
1] y 0+

Here, rij(y) represent the transition probabilities for a single server

queue, total system size one, with the input process Poisson of rate A12

the service discipline being Poisson of rate n. It may be shown easily

that
A
12
r.(y) = —H— exp{-(A,,+n)y} ,
00 X12+n x12+n 12
and
= n - -
r10(¥) g [1 - exp{-(X,,+n)y}]

Substituting these values of the transition probabilities in (3.36) we

find that

-1

no(x,u) = mo(x+u-1) [n + Alzexp{-(xlz+n)(1-u)}](X12+n)

+ xlzml(x+u-1)[1 - exp{-(x12+n)(1-u)}](X12+n)—1 , (3.37)
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and
nl(x,u) = nmo(x+u—r)[1 - exp{-(A12+n)(r—u)}](A12+n)_1
+ my Gerumt) [y, + 1 expl-(hp +m) () O #) ™0 L (3.38)

Taking Laplace Transforms of (3.34), (3.35), (3.37) and (3.38) we find

that
: T
m;(s) = r;(s+l12) + 112{p5(5+A12)mI(s) + pc;(s+A12,v)nI(s,v)dv} ,  (3.39)
0
T
m;(s) = r;(s+n) + n[p;(s+n){1+ng(s,0)} + g pc;(s+r1,v)ng(s,v)dv] s (3.40)
(A12+n)es(T_U)nS(s,u) = mS(s)[n + Alzexp{-(A12+n)(r—u)}]

+ Alzm{(s) [1 - exp{-(A;,+n)(t-w)}] , (3.41)

(A12+n)eS(T_U)n;(s,u) = nmo(s)[l - exp{—(112+n)(r—u)}]

+ m;(s)[k12 + n exp{-(A; #n)(1-u)} . (3.42)

Upon the application of elementary renewal theory arguments it may be
shown that
-1 sv_ =«

pz(s) = A e pcz(s,v) = Az_lr;(s) = A(s) ,
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where

aGs) = " {(s+1)e - 237!

Now we are in a position to solve forv{m;(s)} and'{n;(s,v)}
exactly in terms of known functions. However, these densities were
used merely to calculate the probability demsity h;z(s) ﬁhich is central
to the problem of finding the covariance between the two counters. 1In
the transformed density h;z(s) the counter state probabilities {P12i}
and'{qu(u)} appear not in their exact form but approximately, i.e.
terms of o;der (p'r)2 are neglected. So in order to keep the level of
approximation consistent within h;z(s) a zeroth order approximation to

nz(s,u) is made, that is for i = 0 and 1,
n;(s,u) = mz(s) s

neglecting terms of order (pt). This gives a first order approximation

to h;z(s) upon substitution in (3.33), and thus (3.33) becomes

hzz(s) = AP ,ma(s) + (A (s)

*
1P12 12P120*P1P1217™;

T

T
+ g A0 (w)m (s)du + g'{xl (u) + p;q,, (WnJ(s)du.  (3.43)

2920

If it is noted that for i = 0 and 1

T

Py T Prgi t g 1 (w)du

then (3.43) simplifies further to

* . * * %*
hlZ(S) = Alplomo(s) + Alzploml(s) + plpllml(S) . (3.44)
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Therefore in order to complete the calculation of the probability
density h;z(s) all that remains is to obtain a first order approximation
to {mz(s)}. Now solving (3.39) and (3.40) exactly, we have that
* *
Az+m1(s)Go(s)

m (s) =
° s+h,(1-e %) + G5(s)

and
%* %*
. . 12+n+mo(s)G1(s)
ml(s) = ppern -
s+(12+n)(1-e ) + GI(S)
where
A A e ST
C¥(s) = A, + —z—lgf——“{l - exp{-(A,,#n)T}
o) 12 7 A ,*n P 12 ’
and
ne—ST
* - — -
Gl(s) = T [Az+n+(A12 Az)exp{ (112+n)1}]

12
These results lead to

mg(s) =

A s+ (A, #n)(1-e"%T) + GJ(s)} + (A,#n)G)(s)

{342y (1-e T )M Ls#A, (1-e "D} + GGle)6y (a)4n(1-e"D)] + neg(s)(1-e °")
and

(At {s#r,(1=e °T) + G5(8)} + A,GI(s)

m (s) = — - —
1 {s+2,(1-e ST)}[{s+(A2+n)(l-e srﬂ+G3(s)+Gi(s)] + nGa(s)(l—e 5Ty



81

Clearly both m;(s) and mI(s) have a simple pole at s = 0, furthermore
it may be shown that mg(s) and m;(s) also have the same residue at

s = 0. It is assumed that all other poles of m;(s) and mI(s) have
negative real parts. Then {m;(s)} may be written as

a. .
* 1 * .
mi(s) = =+ bi *cis 4 di(s) s, 1=20,1,

where d;(s) is analytic in some half-plane Re(s) > s with \f >0
for i = 0,1.

The constantsv{ai,bi,ci}, i =0, 1 are approximated by

| Apgn
ag = AZPZO + (A2+n)p21 s by = - — (l—ZAZT) s
(A12+n)
AqqM
- 12 _ -
¢y = - )3 (1 ZAZT), a; = ay ,
127"
nZ nZ
bl = (_A_:‘;E (I—ZAZT) 3 ¢, = - m (I—ZXZT)
127" 127"

Upon substitution in (3.44) the probability density h;z(s) is

approximated by

o, o Lagpogt(Aytndeydeey A1on2 2 2 Xy 0T
hlz(s) = . + 5 P, P, (1+Alzr+ — )
(Alz+n) 12"
A nz 2A, ANT
- Bk e ar r s k@ () L (3.45)
(A12+n) 127 "

Here d;l(s) is a linear combination of d;(s) and d{(s). This, together
with the first order approximation for h;l(s), see (3.31), gives a
first order approximation to ¢ (s), the Laplace Transform of the

covariance between the two counters. Thus,
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AaT 2) ( n)
¢ (s) = __1_2___2_ P12p22{1 + 1121 —i—l—z—yt}{ L 12 }+d (s)
(l12+n)

where d*(s) is analytic in some half-plane Re(s) > —y with y > 0. It

now follows that the behaviour of c(t) for large t is such that

2
AN . n
_ Mg 22 12 _ -1
c(t) = 5 Py Py {1 + AIZT' T}%F +n) }
(l12+n)

ICE (3.46)

3.4.7 Simulations and Conclusions

The formula for the covariance between the recorded numbers of
events on the two counters given by (3.46), which is approximate in
dead—time, T, and measuring interval, t, is now examined in three ways.

The first and perhaps the most obvious way is to allow the common

dead-time of the two counters, T, to tend to zero. Thus (3.46) becomes

A12n2 -1
co(t) = lim c(t) = — {t - (A12+n) Yoo, (3.47)
0 Qyy*n)

Comparing this with the exact zero dead-time covariance given by (3.2),

which 1is
A12n2 » 1 - e-(A12+n)t
—E (e - S }, (3.48)
(Ay,*n) 12710

we see that (3.47) and (3.48) are in agreement for large t.
Secondly we allow the half-life of the intermediate state to tend
to zero. This corresponds to n tending to infinity. We may then compare

the resulting covariance with the covariance given by (26) in Cox and
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Isham (1977), which is a first order approximation in dead-time
behaviour to the exact covariance for zero half-life. Upon rewriting

(3.46) we may obtain

A, 4N
e(t) = A, (2%

2
12 - Plopzo) (1 + Alzr)t , (3.49)

where terms of order (pt)o, in addition to terms of order (DT)Z, have
been omitted in obtaining (3.49), and where Pyg:Pgo are the equilibrium
probabilities that counter 1 and counter 2 respectively, are open with
no gamma's waiting to occur. If the half-life now tends to zero, then
the time that any gamma is delayed also tends to zero, and so becomes

a simultaneous emission. Therefore as the half-life tends to O we would
expect p,, to tend to p. of Cox and Isham (1977) for i = 1 and 2, where
P;> i =1 and 2, are the equilibrium probabilities that each counter is
open in the case of simultaneous events.

If this limiting process were valid then from (3.49) we see that

1lim c(t)
n—)&

2 2
A12P1 P, (1 + Alzr)t, (3.50)

which is in agreement with the leading term of (26) of Cox and Isham
(1977). However, the equilibrium probabilities Ppg and Py, in (3.49)
are approximations to the true P10 and Ppq» See (3.17) and (3.18), and
in making these approximations it was assumed that terms of order (nT)2
could be neglected. Therefore, taking the limit as the half-life tends
to zero of (3.49) contravenes this assumption, and hence the limiting
procedure of (3.50) is not valid. But, if Pyo and Py, are obtained by

the method outlined in (i) of (3.4.4) then we have the exact results that
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-At

-1
] ) n(1+p1r) (p1+n+A12-p1e )
10 -AT
(A12+n)(pl+n - Ale )
and
- =-AT
> - n{}\2+n+(}\12—}\2)e
20 -AT -AT
(12, T2 , oy tn)+n (A tn) +{n (A Ak ke T A (e tn-de )

12722252,

(3.51)

where A = A12+n. If we now take the limit as n > » of (3.51) then for

i=1 and 2,

lim p. = (1+ o.t) ¢
oo 1 1

The complement of this result is that for i = 1 and 2,

lim = 0

N+

Pi1

Therefore if, in the formula for the covariance given by (3.46),
the approximate forms for P1o and p,, given by (3.17) and (3.18) are
replaced by the éxact forms given by (3.51), then the covariance would
remain unchanged to first order in dead-time but the limiting process
of (3.50) would now be valid.

The covariance between the number of recorded events on counter 1,
and the number of recorded events on counter 2, was simulated for the
true model of Delayed State, i.e. that with no restriction on the number
of gamma's that may be delayed. These simulations were devised and
computed by Dr. D. Smith of the National Physical Laboratory and although
the six simulations have a small but physically typical range of parameter

values it is apparent from Table 1 that the values predicted by the
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covariance c(t) of (3.46), are greatly different from the simulated

values. The possible reasons for this discrepancy include,

(i) the value of t, the period over which the covariance is calculated,
is not large enough compared with other parameter values, and in

particular the common dead-time T;

(ii) the model is inadequate because the number of gamma's delayed

often exceeds one.

If simulation 2 is compared with 5, and simulation 4 is compared
with 6, then this would seem to exclude possibility (i). For, if small t
were to be the reason for the large discrepancies between the simulated
results and those given by (3.46), then the increase in t in both these
pairs would reduce the differences by a considerable amount, clearly it
does not.

Now the expected queue size for each of the six simulations is given
and the smallness of this quantity would appear to exclude possibility
(ii). However, another measure of the inadequacy of the model is
investigated; this is the ratio of the covariance in the unrestricted
model to the covariance for the model with at most one gamma delayed,
both for zero dead-time. Therefore we need to calculate the zero dead-
time covariance of the unrestricted model of section 3.2; using the model
of section 3.3.4, this may be obtained as a special case of the zero
dead-time covariance of Jitter, which we shall now calculate.

In a manner reminiscent of that employed in section 3.4.2, the number
of recorded events on each counter is split into its component parts.

For counter 1, the number of recorded events in (0,t], Nl(t), consists of

(i) N, (t): the number of beta's that arrive in (0,t] without a

10

corresponding gamma, i.e. beta only events,



86

Table 1: Simulated covariance for Delayed State and estimates from
the Restricted Model

Simulation no. 1 2 3 4 5 6
t 2 2 2 2 10 10
oy 0.9 0.9 1 0.9 0.9 0.9
Py 0.4 0.4 1 0.4 0.4 0.4
Ao 0.36  0.36 1 0.36 0.36 0.36
n 20 10 5 10 10 10
Expected queue 0.018 0.036 0.2 0.036 0.036 0.036
T 0.002 0.005 0.02  0.03 0.005 0.03
Simulated cov. 0.698 0.675 1.671 0.6341 3.511 3.299
Standard error 0.001 0.001 0.006 0.0005 0.006 0.001
c(t) 0.676 0.632 1.247 0.610 3.296 3.175
Ratio 1.036 1.073 1l.44 1.073 1.073 1.073
c(t) x Ratio 0.700 0.678 1.795 0.655 3.538 3.408

The standard error is that of the simulated covariance.
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(iii)
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Nll(t): the number of beta's that arrive in (0,t] and have

been delayed from a beta~gamma pair,

le(t): the number of beta-gamma pairs that arrive in (0,t] in

which the gamma is delayed.

Similarly on counter 2 the number of recorded events in (0,t],

Nz(t), splits into

(1)

(ii)

(iii)

Nzo(t): the number of gamma's that arrive in (0,t] without a

corresponding beta, i.e. gamma only events,

N21(t): the number of gamma's that arrive in O,t] that have been

delayed from a beta-gamma pair, -

sz(t): the number of beta-gamma pairs that arrive in (0,t] in

which the beta is delayed.

Therefore, for i 1 and 2,

Ni(t) Nio(t) + Nil(t) + NiZ(t)

Due to the absence of dead-time effects the only dependencies are between

Nll(t) and sz(t), le(t) and N

21(t). (In the one-~sided Jitter situation

le(t) and Nzi(t) are both identically zero; and in the Delayed State

situation Nll(t) and sz(t) are both identically zero.) The covariance

between Nl(t) and Nz(t) now simplifies as follows,

cov{Nl(t),Nz(t)}

cov{Nlo(t)+N11(t)+N12(t), Nzo(t)+N21(t)+N22(t)}

cov{Nll(t)+N12(t), N21(t)+N22(t)}

coV{N1 (), sz(t)} + coV{le(t), N21(t)}.

1
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The two covariances may be written down by appealing to an infinite
server queue analogy. Referring to section 3.4.2.1, in the first
covariance the situation is equivalent to an infinite server queue with
Poisson arrival rate A 6, and service distribution I'(K

12
robability ¢,, for 1 = 1,...,B(1l), in which,
P 1i

(1) Nll(t) is identified with the number of arrivals in (0,t], and

(ii) sz(t) is identified with the number served in (0,t].

Then

@«

cov{Nn(t),sz(t)} = A0 08—y + { {1- Fl(w)}dw] , (3.54)
where My is the expected service time and Fl(w) is the cumulative
distribution function of service time, see Conolly (1975, page 121) for
example; a similar expression for the covariance between N ,(t) and

N21(t) may also be found.

If 61¢1i, 62¢Zi’ Kli’ KZi’ His and u2i are replaced by ea, eB+i’

Ki’ KB+i’ My and Hpes where B = B(1l), then the covariance between

Nl(t) and Nz(t) may be obtained upon summation of (3.54) and its

counterpart for le(t) and N21(t), so that

cov{Nl(t), Nz(t)} =

A K, A o, -ut K" (uit)j
A, {t- I 8. —+ I —e : (K.-j) —— 1, (3.55)
1277 e P g W jo I 3:

where A = B+B(2).
Therefore the ratio of the covariance for the unrestricted model

for Delayed State, to the covariance when there is a maximum of one
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delayed gamma, for zero dead-time, is approximately

(1 +r,.2"H2, (3.56)

12

for large t, where in (3.55) A =1, K., =1 and ¥_ = n. (The zero dead-

1 1

time covariance for the restricted model is given by (3.2).)

If the dead-time influenced covariance given by (3.46) is now

multiplied by the ratio (3.56) then much of the discrepancy between the

first, second and fifth simulations and the results given by (3.46)

disappears. TFor these simulations the terms neglected, those of order

(pT)z, are of an order less than the error in the simulated covariance.

Therefore comparisons between the simulated covariance and the covariance

given by the model are valid. However, for simulations three, four and

six the modified covariance, c(t) x Ratio, is as much above the simulated

results as c(t) was below. The reason for this is two-fold,

(1)

(ii)

the terms neglected in calculating the covariance as given by (3.46)
are of the same order as the error in the simulated covariance and

so make valid comparisons impossible,

since the effect of dead-time is to deflate both covariances, deflating
the covariance for the unrestricted model by the greater amount, the
ratio (3.56) obtained by coﬁparing the zero dead-time covariances is
therefore an over—estimate of the difference between the dead-time
influenced covariances. Furthermore, as the dead-time increases so
does the amount by which the ratio over—estimates the difference

between the two models.

We therefore conclude that the restricted model with a maximum of

one delayed gamma is inadequate even for systems with expected queue size

quite small (0.018). But, as the restricted model was formulated to

provide a basis for the study of the unrestricted model and not as an

alternative, and is invaluable in this context, the above comments are of

theoretical and not practical interest.
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3.5 Delayed State and Jitter, the Full Solution

3.5.1 The General Form for the Covariance

The method developed in section 3.4 for the calculation of the
covariance function for the restricted model, is now extended to cope
with the capacity of the detectors to delay,‘not one, but any number of
particles at a particular instant. So, denote the covariance between

the two counts by c(t), then

c(t)

cov{Nl(t), Nz(t)}

1

E{Nl(t)Nz(t)} - E{Nl(t)}E{Nz(t)} (3.57)

Following the same procedure as that in section 3.4.3, we may write

(3.57) as
t ot t ot |
c(t) =f | hlz(v-u)dvdu + thZI(u—v)dudv - E{N; (£)]E{N, (1)}
0 u 0 v

(3.58)

where the joint probability densities hlz(x) and h21(x) are defined to be,

a recorded event on counter i in (0,8y)
8x.8y

{a recorded event on counter j in (x,x+6x) and}
I

h..(x) = 1lim
L sx+0*

sy~o*

for x > 0 and i,j = 1,2, i # j.

The univariate series of events on the ith counter is Poisson with
A

.= AL+
2 I8 = At AL,
1=1

and 3.4.6. So, if P; denotes the equilibrium probability that counter 1

rate p; = Ai + Al for 1 = 1,2, see sections 3.3.4

is open and the process on each counter starts from equilibrium at O,
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then for i = 1 and 2,

]
St
g

[
©

[
(2N
[

E{N.(t)}
1
= p.p.t . (3.59)

If the Laplace Transform of (3.58) is taken after substitution

of (3.59) into (3.58), then,

* *
o) = hlZ(S) . h21(s) ) 2P1P20192
2 2 3 ?

s s s

(3.60)

where s is the transform variable and an asterisk denotes a transformed
function.

As in section 3.4 the problem of calculating the covariance is
equivalent to that of calculating the probability densities hij(X)’
or their transforms h;j(s), for i,j = 1,2; i # j, and the equilibrium
probabilities P; for i = 1,2, For this purpose the states of the counters

are represented as a Markov Process.

3.5.2 The Possible States of the Counting System

Using the notation of section 3.4.7 together with the physical
interpretation of section 3.3.4, whenever there is a simultaneous event
on the detectors, with probability Bi, i=1,...,B, the gamma occurs
immediately and the beta is delayed for a period which has a gamma
distribution with mean Ki/ui and index ki' For i = B+l,...,A, the
situation is reversed and the beta occurs immediately. Now, we may
proceed as if the delay period consists of Ki stages, the lengths of which

are independently exponentially distributed with mean ui_l. The collection
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of Ki stages will be referred to as the ith branch; for i = 1,...,B

we assume that whénever a beta particle is chosen for the ith branch it
first enters the Ki th stage and works backwards until it reaches the
first stage and subsequently occurs on the gamma counter. The above
comments apply when the beta is delayed; if the gamma particle is delayed
then interchange befa for gamma and consider i = B+l,...,A.

To represent the state of the counters as a Markov process, the states
must be defined in such a way that the instantaneous transitions from one
state to another are influenced only by the current state. Therefore if
a counter is closed, we need to know for how long it has been closed.
Furthermore, for each particle that is delayed, we need to know not only
which branch the particle is in but also at which stage within a branch
it is. All the necessary information needed to satisfy this latter

condition is contained in (N,n), where

n = (91""’9A) » m = (Ni’ nil,...,niKi), i=1,...,4,
K A

N, = I n i=1,...54, N = I N,
j=t 13 i=1

Here n. refers to the ith branch and n, . is the total number of particles

delayed in the jth stage of the ith branch. Therefore,

B
(i) £ N, is the total number of beta's delayed, and,
i=1
(31) .
L N. is the total number of gamma's delayed, and,
i=B+1

(iii) N is the total number of particles delayed.
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We are now in a position to define equilibrium probabilities and

probability densities for the states of the counters,

(i) plZN(n)’ the probability that both counters are open with N
particles delayed and waiting to occur on the counters, their

state being n,

(ii) qjN(u,n), the probability density that counter j has been closed
for a period u, where 0 < u < Tj, the other counter being open,

and with N particles delayed their state being n, for j = 1,2.

(iii) quN(u,v,g), the joint probability demsity that counter 1 has been

closed for a period u, where 0 < u < t1,, counter 2 has been closed

1
for a period v, where 0 < v < Tys and with N particles delayed

their state being n.

Note that each nij may take any non-negative integer value. The equations
representing the possible changes from one state to another, in
equilibrium, can now be written down in terms of the probabilities defined

above. But first a little notation is introduced, let

-1 +1
. = .= PP o R ey, = . = .+ . PR o I
ny (Nl 1’nll’ ’ani~1’ ani D, 2 (Nl 1’nll 1’n12’ ’ani)’
s = . . L] . o . - ..+, ] geas e .
253 (Nl’nll’ ’n13-2’n13—1 1’“13 1 n1J+1 ’ani) ?
with all other branches unchanged for i = 1,...,A and j = 1""’Ki'
Further define
A
N.u. = 'Z Niui
i=1
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Therefore the equilibrium equations are

A K.
Co+N 1 Jpy () = 151 JZZ(H1J+1)U 1P1on %)y (T * ey (1p,m),
(3.61)
dqlN(u,g) : A _
——— = =(p,+N u )q,, (u,n) + 8.9 (u )
du 2 D e P RSt
B g AN
LIy (my D 4 B E (a4 DugagCusng )
i=1 i=1 j=2
* qpo(UsTym), (3.62)
ddyy(u.n) 5 -1
da = (N u)q,(u,n) + 151 212839 (uamy )
A R
+ £ (n.,+Dyu.q (um. )+ £ £ (n,.+Dyu.q. (u,n..)
s=B+1 il 1°2N+1° 701 i=1 j=2 ij 172N 1]
+ qq o fpsusm), (3.63)
3q (u v,n) 3q,,.(u,v,n)
12§ 12N o
3u * Bv =~y ,yu,v,n)
A A +1
MRS PLIL PR AL S nl pE I (gD (eevimg )
i=1 i=1
a K
+ £ £ (n,.+Dy.q,,. . (u,v,n..) , (3.64)
i=1 3=2 1] 1°12N ~1]
for nij =0,l,..., »and j = 1""’Ki’ i=1,...,A. In the above
P =‘)\1+p2 = pytA, = A1+A2+A12 The equations (3.61)-(3.64) are subject

to certain boundary conditions, which are

A - B
Pyou(m) + A L 8Py q(n. )+ =
MPian'® * rp E 83Proyar (B 2

+1

10 = (ny 1+ DU Py (B ),

(3.65)
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B A
_ -1 +1
Un(0sm) = AgPpon(m) + Ay I 8iPponop (g ) (gt Dugpy g, (n ),
i=1 i=B+1
(3.66)
B o1
Qo (¥:0:8) = Apqplu,n) + 4y 2 8 ayy-1(wsmy
A o
vE ot len ) (3.67)
A -1
q1,5(05751) = Xq, (v,0) + l£B+1 8 95-1 (Vo )
B o
+ iEl(ni1+l)uiq2N+1(v,gi ), (3.68)
for nij =0,1l,...,0; § = 1,...,Ki; i=1,...,A. The solution of

(3.61)-(3.64) subject to (3.65)-(3.68) is considered for equal dead-
times, that is T, T T, é T. The results obtained will be shown to extend
trivially to unequal dead-times for Jitter, and for Delayed State, they
are extended in the appendix. As in previous problems, see sections 2.3
and 3.4.4, the counter state probabilities are determined approximately,
i.e. terms of order (p“r:)2 are neglected. The solution depends upon thé

Ki; for Ki >2,1i=1,...,A we have that

A A Ay,0. N. exp(-K.x,.8./u.)
g™ = {1- G+ 5 n_ydet 1 (S2H I AL L
i=1 1. i=1 ui il- ----- iKi.
A
={1-(p + 121 niKiui)T}pN(g) , (3.69)
B A
() = Prog(@0y + T App8y + I g uy(ThugT)
i=1 1=B+1 i
A 2
+ I (niK.-l - niK.)ui ul, (3.70)

1=B+1 i i
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A B _
q,.(u,n) = p (n){h X A; 0. + I n, u.(l+p.1)
2N 12N $=B+1 1273 s=1 1Ki i i
B 2
+ .E (niK.-l an.)ui u }, (3.71)
i=1 i i
qlm(usvsg) =
B A A B
P (n)[{k + L Ay,0, + I n., p(l+p. )HA, + T A .08, + In, pg (T4, 1.')}
12N i=1 1271 1=B+1 1Ki 1 i 2 $=B+1 1271 i=1 K
A B A 2
+ (A z Ao8: * E mn.u.) & (o, .o -mn., Ju.‘u
2 i=B+1 1273 i=1 R Piap 1Ky 1 1Ky
B A B 2
+ (A, + L A0, + n.ou.) I (o, o -n, Jduivl. (3.72)
oogmp 1200 gopy R 5 TR THR,
By using the probability law that
T
Pin(@ = ppoy(® + [ qpu,mddu (3.73)
0
and a similar version for pZN(g), we obtain
‘ B A
Pi(m) = p (){1 - (A, + £ A 6, + I n, uw.)t} , (3.74)
IN "~ N 1 s=1 12 $=B+1 11(i i
and
, A B
Poy(D) = Pyl - () + RINRSPLI z n,e uth . (3.75)
1=B+1 i=1 i

This solution is not valid for Delayed State because of the
constraint that Ki >2 for i=1,.., A, and so a separate solution has

to be calculated. This solution is
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Mo
A u ’
12.N
Py = (5 T {1 (o NwT (3.76)
a(®) = Pgyfhp * Nu(L + uD) + M), (3.77)
qZN(u) = PlZN{pz + Alzu(u—f)} s (3.78)
2
P (A +NU)+A, 1 ur_()illszzNu) = (Np,+2, )u"u
+_A12u(92+u)v foru > v
1 o5(8>V) = Ppyy

pz(A1+Nu)-ur(A1A12—A2Nu) + {pzu(klz—Nu)-Alzu(Al+Nu)}u

+ Alzu(A1+Nu)v for u < v.

(3.79)
Using the Delayed State equivalent of (3.73) we have that
T
A12 N e
Piy = (—E—) {1 - (A1+Nu)T 1,
(3.80)
Mo
A12 N e |
Py = () TT— (L7 epm)

Thus the solution of (3.61)-(3.64) subject to (3.65)-(3.68) has
been obtained for all cases except when Ki =1 or 2 for at least ome 1
ini= 1,..;,A; A > 1. In section 3.5.4 it will be demonstrated that
it is not necessary to calculate the solution for these cases for the
purpose of calculating a first order approximation to the covariance

between the two counts.
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The equilibrium probabilities P and Py that each counter is open
may be calculated by summing (3.74) and (3.75) over the number of
particles delayed. Alternatively, by noting that the series of events

on counter 1 alternates between open periods exponentially distributed

1

that counter 1 is open in equilibrium is given by

with mean p and constant dead-times of length T, the probability

Py (1 + plT)-l . (3.81)

Similarly

Py = (L+p,0 . (3.82)

Therefore the expectations (3.59) for i = 1,2, are

| ot
E{Ni(t)} = T—I—E;; i=1,2,

which can be approximated by

1,2 . (3.83)

E{Ni(t)} = pit(l - pir) i

The cross-product term in the covariance between the two counts is now
calculated via the probability densities hij(X) 1,j=1,2; 1 #j
defined in section 3.5.1. This is achieved by studying the series of
events on the single counters from 0" to x. Because the Jitter problem

is symmetric it is stifficient to consider one counter only.
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3.5.3 The Process of Events on a S;Bgle Counter

Without loss of generality we consider the process of events on
the beta counter, counter 1, and calculate the probability density

h21(x) where

h. (x)6x8y = pr a recorded event on counter 1 in (x,x+6x), and,}
21 x0y P [a recorded event on counter 2 in (0,8y)

for small 6x and 8y. For a recorded event on counter 2 in (0,8y),
counter 2 must be open at 0. Therefore summing over the possible states

of the two counters at O we have

both counters open at O with N particles delayed,
hzl(x)Gxéy = L prjtheir state of delay being n, a recorded event on }
(N,n) |counter 2 in (0,8y), a recorded event on counter 1
" on (x,x+6x)

-

counter 2 open and counter 1 closed at O with N particles delaye%}
P |

+ I their state of delay being n, a recorded event on counter 2
(N,n) on (0,8y) and a recorded event on counter 1 in (x,x+6&x)
(3.84)
The summation over the delayed particles is
© A Ki
z = I Z{N,: I N, =N} Z{n,.: I n,.=N.}. (3.85)
(N,n) N0 * i=1 1 o= *
. A
The middle summation in (3.85) is over all Ni's such that I N. =N
i=1
and the right-hand summation is over all nij's such that
K.
i
I n.j = Ni . The recorded event on counter 2 is omne of three types
i=1 '

and may change the state of the delayed particles. This is the only way
in which the state of counter 1 may be changed by the event because there
are no simultaneous events. The three possible events and the changes

they cause on the state of the delayed particles are
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(1) a gamma only event; the state of delayed particles is then

unchanged,

(ii) a beta—gamma pair in which the beta is delayed, the number of

delayed beta's then increasing by one,

(iii) a delayed gamma from a beta-gamma pair, the number of delayed

gamma's then decreasing by one.

So
a recorded counter 1
- event on open at &y
hZI(X)SXGY (Nzn){AZGY PTl counter 1 with state *
’. in (x,x+6x) of delays (N,n)
B a recorded event on counter 1 open
+ I Alzei 8y pr{ counter 1 in at 0y with state +
i=1 (x,x+8x) of delays (N+1,n )
A a recorded event counter 1
+ 3 n,  u. 8y pri;on counter 1 open at O with plZN(n) +
i=p+1 * in (x,x+6x) state of delays (N-1, ﬂ )
+( & equivalent set
of terms with counter 1 open at O replaced by counter 1 closed at O).

(3.86)

In (3.86) the notational device (N,n) of section 3.5.2 is somewhat

changed, we now have

+1
I + I n,
~1’ *Li-17%1

), ot - (n+1n

N+1, = +1 -
( n ) (N+1,n ’Bi+1’ n. i i1

... +1).
,an.)



101

It is not possible to express the above probability densities in terms

of some single renewal density and therefore we define

a recorded event | counter 1 is open
IN(x,g)Gx = pr[ on counter 1 in at 0, with the } s (3.87)
(x,x+6x) state of delays (N,n)
and
a recorded event| counter 1 is closed
JN(x,u,g)Gx = pri:on counter 1 in | for u with the state s (3.88)
(x,x+6x) of delays (N,n)

where IN(x,g) = 0 for x < O and JN(x,u,g) =0 for x < T - u, small éx
and nij =0,1,...,» for j = 1""’Ki’ i=1,...,A.

The probability density hzl(x) as defined in section 3.5.1 and
expressed in (3.86), may now be written in terms of IN(x,nl and

JN(x,u,g) defined in (3.87) and (3.88). Before doing so, the possible

changes in (¥,n) which we started to describe above, are now completed.

-1
n, = = (Ni 1,n. i1 -1, n'2""’niKi)’ Eij (Ni,nil,...,nij_l-t-l,nij l’nij+1" ca)s
for j = l""’Ki and i = 1,...,A; all other branches remaining unchanged.
Therefore, taking the limit of (3.86) as §x and 8y both tend to zero
from the right,

B A

h, (x) = £ {(AI(x,n) + £ A6, y+ 1 n (xn)}p (n)

21 o 2 gt 1Ty (% R Sl 128°2

A -1

+ I f{AZJ (x,u,n) + z SPLR JN+1(x u, n1 ) + 3 n, “iJN—l(x’u’?i }qlN(u,g)du.

(N,n) O i=1 i=p+1 1

(3.89)
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The intrinsic relationship between IN(x,g) and JN(x,u,g) is now developed
with the intention of solving for h21(x) in terms of known functions.
Hence the probability density h21(x) may be found; this is central

to the calculation of the covariance function. Consider IN(x,g) as
defined in (3.87). Now IN(X,E) may be split into several parts

depending upon when the first change in the state of the delayed

particles takes place and the type of change it is. Thus,

recorded event on |counter 1 is open
IN(x,n) = pr[ counter 1 in at 0% with the }
" (x,x+6x) state of delays (N,n)
recorded event on counter 1 counter 1 is open at ot
= pr{.in (x,x+6x) and the first with the state of delays
change in n at or before x (N,n)
recorded event on counter 1 in | counter 1 is open at o*
+ pri’(x,x+6x) and the first change with the state of delays
in n occurring after x (N,n)
B A '
= {r;(x) + 1 STLT IR Aq50; 1exp{-(A ,#+N u )x} +
i=1 i=B+1
B e Tortd. (30,5 Dp ()4 | 3 (e Dpe, (7,91
J’ exp >\12 « H.. Y){}\]_z'_ze"[ N+1 XY, :Eli P1 y f N+1 X Y:v:?i Pcl Y.V
0 i=B+1 0
B T
+1 +1 )
* Ay i;z‘.lei[INﬂ(x-y,gi o (y) + g Tee1(FYoven Dpey (yv)avl +
B -1 T -1
t I nqwg Dy (yseem; p (y) + é Ig-18xy,von, pey (y,v)dvy +
A T 1
- -1 - -1
*Iomgu iy Gey)onm e () + [ Iy Geyavan TS )pey (3,v)dv]
i=B+1 0
A & 1

+ iil jiz nijui[IN(x—y,gij)pl(y) + g JN(x-y,v,gij)pcl(y,v)dv]}dy,

(3.90)
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where rl(x), pl(y) and pcl(y,v) refer to the process with inter—event

arrivals consisting of open periods of average length ll 1 and

dead-times of constant length T, and are such that

(1) rl(x) is the renewal density for the process starting with an

open interval,

(ii) pl(y) is the probability that counter 1 is open at y, conditional

. +
on the counter being open at 0 , and,

(iii) pcl(y,v) is the probability that counter 1 is closed for v at vy,

. s . +
conditional on the counter being open at 0 .

The Laplace Transforms of rl(x), p1(y) and pcl(y,v) are related in a

fairly simple way,

p{(s) = A _1pci(s,v) —lr;(s) = A(35 ,

1 Al

where

A(s) = &°T{(s + Al)eST- xl}'l X (3.90a)

To obtain JN(x,v,g) in terms of IN(x,g) we condition on the possible
state of delays at t = ¢t -~ v, the instant at which the blocked counter

reopens. Then

JN(x,v,g) = )

(T-V;n,m)IM(x+v-r,m), (3.91)
(M,m) - -

TaM
where

state of delays state of delays
rNM(y;n,m) =pr|atyis (M,m) at of is (N,n) { . (3.92)
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Note that {rNM(y;g,m)} are the transition probabilities of the

number of customers in an infinite server queue, with arrivals forming

a Poisson process of rate A12 and where the service distribution has
density f(x) say, with
Ki—l
A w1, x)
f(x) = & ai__l__._..
i=1 (K.-1)!
i
Considerable simplification of (3.90) ensues upon substitution of (3.91)

into (3.90). Subsequent Laplace Transformation of (3.90) yields

B A
_1 %
A “(s+A +N,p )I (s,n) = A, + I n. p, + I A, ,0.
127N BTNt 1ot T, p ) M2
B . . A 4 AN
+ I A .8.I  (s,m, )+ I mn,.p.I_ (s,n, )+ I I n.,u.I¥s,n..)
=1 12°1"N+1 " °~1 1=B+1 il"i'N-1""°.4 i=1 j=2 ij7iN ~1]
+ T I}’;(s,xP)RNM(r;g,g)e—sT i (3.93)
(M:E‘)
where
e = T AL (i1 + (t30, " m)
B AR S P A 1 1S 1A B S L i S VAR R
i=B+1 i=1
T : A + A -1
+ X f exp(-(k12+N.u,)v){.E A126irN+1M(T-V;Bi ,m) + 'E nﬂuirN_lM(T—v;gi ,m)
o 1i=1 i=1
A &
+ iil jiz nijuirNM(T-v;gijig)}dv. (3.94)

The set of transition probabilities as defined in (3.92), has generating

function FN(X’E’P)’ where



' K
(x,z,m) = I (i) T 1 (2, i
F.(x,z,n) = r X,n,m I I Z
N L b o o
M,m) i=1 j=1
K
A K, n. . A X, ,0. 1
= 1 Fi.lﬂ(x) expl I —21 3 (z..-F..(x)},
i=1 j=1 *J i=1 M j=1 W1
and
. j=1
“u.x j (1-Z, ) (u.x)
1 1L i
F..(x) = 1-¢e b . -
1] 0=1 (3-2)!
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(3.95)

(3.96)

This is a generalisation of a result which may be found in Gross and

Harris (1974, page 117) which

distributions. A first order approximation to r

NM

(t;n,m),

is valid for expomential service

that is,

neglecting terms of order (prt) may be obtained from (3.95) and (3.96)

or more directly by simple probabilistic arguments. We have

N, U.T for M = N-1, m = (n _l) i=1 LA

. 11 1i 3 ~ ~i 3 3 3

J ng oMy T for ¥ =N, m=(n.), 1,...,A
r(Tin.m) = J j=2,...,K, (3.97)

l-(A12+N.u.)T for M = N, m = §,
- +1

Lxlzeir for M=N+1, m = (n, ), i=1,...,A

For any K, = 1, the second line in (3.97) is absent. Upon substitution

in (3.94) we obtain a first order approximation to RNM(T;n,m).

Thus
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2 2 _ 42
A12 Ba T M = N+2 m = (ga )

2 _ o+l +1
SPACICR M = N+2 m=(n ,n )
A0 1={A,  +(N_+1)py +N,p }t M = N+l m = (n +1)

127a & ""12 "a a 9% - ~a
A,,0 U T M = N+1 m = (n *l )
12 anbc b ~ a Ipe
_ _ +1 -1
2% 1% " - M= m=(m, gy )
n.u (n -y M = N-2 m= (n _2)
al"a al a - “a
n.u Mo T M = N-2 m= (n -1 _1)
al®a™p1%b ~ ~a *Dp
. = ) = o = _1
R (TR T mg T Ml e m (e )
N _ -1
n_ My 1 {2\12+(Na l)ua+N6u®}T M=N-1 m = (ga )
- _ -1 +1
naluaxlzebT M=N - (Ea Ty, )
_ _ +1
A oA 0T M = N+1 m = (gb )
AancubT M=N o= (gbc)
A T M = N-1 m = ( -1)
- A2%1M T

The ranges for a, b and ¢ in (3.98) are: a =1,...,B for the first

five entries, a = B+l,...,A for the next five entries, b = 1,...,A and

c = 2,...,Kb for all relevant entries. Note that the fourth entry in
(3.98) becomes Alzea(naK;l)ua when a = b and ¢ = K. Also in (3.98) we

use the notation
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n == (Na+2, D gseees B a0y +2),
a a
"2 5 (N -2, n ,~2,n n__ )
~a ~ Ta"? Tal TTa2’t vt aK_* "’
and
A
Noug = I Nou
i=1
i#a
_1 .
Also A "(s) may be approximated by
-1
A (s) = s (I+aD).
Therefore
_1 _
A T(sHA N u ) = (s+d N u ) (1+A 1) (3.99)

A first order approximation to equation (3.93) may now be produced,

this is
A B
3 * =
E aNM(T,g,g)IM(s,g) M +.-Z A8 * I miquss (3.100)
o 1=B+1 1=1
where
aNM(T;n’?) = RNM(T;g,g) - e-STRNM(T;g,g), (3.101)
and
- +1
-Alzea M = N+l m = (ga ) a = B+l, A
- A—l(s+>\12+N.u.) M=N m=n
R (t;n,m) = I
o - = = a=1,...,A
DabHa M=N m = (ng) b=2,... K
= Ne - -1 -
i -nu, M=N1 m (r}a ) a=1,...,B
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Using the approximation for A-l(s+A12+N.u_) in (3.99), and that for

RNM(T;n,m) in (3.98), it is possible to express aNM(r;ﬁ,ﬁ) in the form

aNM(T;E’T) = (1+Alr)bNM(g,9) + 1C

where

bmég,g)=

and

127a
sfklz

-nabua

-na}]a

2128 cMp
~A128. 1

TA1280, 1My

-naluanbcub
Pa1ka"p1Mp

-nalua(nal-l)“a

+N' u,

N+1

Alzea{s+xlz+(Na+1)ua+q9u@}

nalua{3+112+(Na-1)ua+qaus}

8

tH

?

(n,m),

= (o)
-0
—~(Bab)
= (n -1
N+2 m
N+1 m
"N+l m
Noom
Noom
N-1 m
N-1 m
N-2 m
N-2 m

(3.103)

(]
=
-
.
-
b=
-

(3.105)
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Note that in (3.105) the third entry becomes A,,.6 (n +1)ua when

1273 aKa
a=Dband ¢c = Ka; the ranges of a,b and ¢ in (3.105) are:
a=1,...,B for the first four entries, a = B+l,...,A for the last five

entries, b = 1,...,A and ¢ = 2,...,Kb for all the entries. The

equivalent form of (3.103) in matrix notation is
a = (1 + AIT)b + cT, (3.106)

where a = (aNM), b = (bNM) and ¢ = ) are all square matrices of

(CNM

infinite dimensionality. Therefore, if we define the infinite dimensional

vectors I* and A by

~

B A

*
1* = {1_(s,n)} and A = (A, + I n,u + I A.,6.)
- N - boogap BUE ygy 124
then (3.100) can be written as
al* = A (3.107)

Assuming that the inverses of the matrices a and b exist and are unique,

then

o=

{(1 + Alt)b + rc}-lé

an approximation to which, is

"= {1 - AlT)b-l -t

~

Loy a . (3.108)

If the dead-time T is zero then (3.108) becomes

*(t=0) = b . (3.109)

~
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. * _ 0¥
Therefore, denoting I for vt =0 by I'", we have
1l CRR Y% i S Sl (3.110)

-~

Thus if we can find an inverse of the tridiagonal matrix b then an
approximate form for I*'will be available. This will then be used
to calculate the probability density h21(x) which is the remaining
unknown function in the formulae for the covariance function. Since the
matrix b is associated with the zero dead-time situation we again

congsider this. We have that if }No(x,g) is the gth element of IO then

B A
0
I.(x,n) = Z Ay + I m..u,+ I A.,.0,.)r_ (x;n,m) , (3.111)
N ©o L (M,@) 1 i=1 il'i $=B+1 127i°"WM .

since an event can happen in any one of three ways;

(i) a beta only event,
(ii) a delayed beta from a beta-gamma pair, and

(iii) a beta-gamma pair in which the gamma is delayed.

Now (3.111) may be calculated as follows,

0 A B
I.(x,n) = A, + I A, 0.+ I £ m, u.r. (x;0,m
N 72 1 $=B+1 1271 (M,m) i=1 1171 NM |
A B number delayed |state of }
= A, + I A, ,6.+ I u, El in branch 1 delays at O
ogapey 12710 4o ' E ['at x-
A B oF
= A, + I A, 0.+ I . , (3.112)
j=p+l 12 i=1 * 9%41 |z=1

where Fo = FN(x;g,g) is defined in (3.95) to be the generating function

of the transition probabilities {r_ (x;n,m)} and 1 is the unit vector.

NM

Since
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—7 TH:X 1 TH.X

5F A,.0. Ki (u.x)? 1e * Ki n, (u.x)? 1e 1

N _ 1271 i iag "1
3z T T 1- 1z (a-1)! b+ox (a-1)! s

il]z=1 i a=1 : a=1 :
then (3.112) becomes

.1 UL X

o B Xi (o ™le 1
I(x,n) = p;,+ I I (n.,u, - A,.0.) 5
N o2 1 i=1 j=1 131 1274 (j=-!

Alternatively, after Laplace Transformation

j-1
12

*
Ig (s ,n) = -+t I = : . (3.113)
~ i=1 j=1 (s + ui)J

K
B i e M, — . .
P1 L (“;1P1 A el)ul

N

If we represent (3.111) in matrix form, then

- om,
or

%" = r'a, (3.114)
where

R = {r;M(s;g,g)} . (3.115)

Comparing (3.114) with (3.109) we see that

bl o= g
. - -1 o* .
Therefore, we are now in a position to calculate b eI~ . If GN(n) is
*
defined to be the nth element of cIO , then
A A B A B

G(n)—(A1+ I A,0.0C £ A,.8. + T n, u)+( I A e)(znlu)+

i=Bel 121 geper 2R o i=p+1 217 4
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B 2 B B
+ iil nil(nil-l)ui + 121 jil nilnjlui“j . (3.116)
1#]
-1 _o* ,
So that the nth of b cl is
z) Gy(mry, (s5n,m) (3.117)
M,m A
This involves terms like
* ) d, I *
(Mzm) m. u. T (sin,m),  and, am) milmjluiuerM(S’B’T)’ (3.118)

~

for i, = 1,...,B. When i= j in the second summation of (3.118), mjl

is replaced by mil—l. Now (3.117) can be calculated using FN(X;E,B)

the generating function of {rNM(x;g,g)}, for example
. : 3Fy
 m,,u.r_J(s;n,m) = Y. , (3.119)
(q,m) LLEEMTST L9241 |5m1
and

. 3Fy
T milmjluiujrm(s;f},g}) =X iuiuj W z=1} (3.120)

(M,g) 17731

where 5: denotes the Laplace Transform operator. Hence, using the form
for FN(x;g,g) given by (3.95) and (3.96), calculation of (3.119), (3.120)
and subsequent substitution into the relevant parts of (3.117), an
approximate form for i;(s,g) may be found, to wit

j-1

K
PP B i (n,.uw. - A ,06.)u
11, p12 Iz 11 2 121 3 + Lt (3.121).

i=1l j=1 (s + ui)J

I&(s,n) =
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where LN(n) is such that

(Nfg) pN(g)LN(g) = 0,
pN(P) given by (3.67).
Upon substitution of (3.121) into the Laplace Transformed versidn
of (3.91) an approximation to J;(s,v,g) is found. However, to obtain a
first order approximation to the probability density h;l(s), we need only
a zeroth order approximation to JE(S,V,B), and this is Ig(s,g). This
zeroth order approximation becomes first order upon substitﬁtion into

(3.89), indeed we have that

B

* _ . * ® +1
h21(S) = I {3nL(s,n) + -E A126i1N+1(s’§i )
(N,n) 1=1
A i N
+i=§+1 eI (somg Dlpgy(m) (3.122)

where all terms of order (p'r)2 have been neglected in (3.122). Finally

we work (3.121) into (3.122), which yields

P,PyP4P B u. K.
* _ T1v27172 2 2 i 1
h21(S) = . + 151 Py P, Alzei (ui+s) . (3.123)

3.5.4 The Covariance Function and Comments

*

21

down the corresponding density for the gamma counter by interchanging

Having obtained the joint probability demsity h* (s), we may write

beta for gamma throughout section 3.5.3. This may be achieved by
B A

replacing the summation I by the summation I in (3.123), thus
i=1 i=B+1
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P.P,pP A v, K,

2 2
S22, 0 %A, () (3.124)
i=B+1 i

%*
hlz(S)

An approximate form for the transformed covariance function may

now be obtained upon substitution of (3.123) and (3.124) into (3.60),

whence,
2 2
AP, P A u. K,
* 2
c(s) = —1——13—3— e (=)t (3.125)
s i=1 My

If (3.125) is inverted with respect to the transform variable s, then

coV{Nl(t),Nz(t)} = c(t) .
A K
_ 2 2. oi
MgPp Py tE - I o0 o
1=1 i
-u.t _ .
B A o i K-l (u.t)d
+ [ ——— I (K.-j) —— }. (3.126)
i=1 ui j= 1 J:

Now the common dead-time T of the two counters enters the covariance
function given by (3.126) only through pl2 and pzz, and a first order
approximation in dead-time to the covariance function with unequal
dead-times, is obtained simply by setting t = T in each of Py
i.e. p; = (1+pi'ri)-l for i =1 ?nd 2, This may be seen by considering
h;l(S): the gamma dead-time T, enters h21(s) only through equation (3.89)
and consequently through pZN(g) in (3.122), and the text between equations

(3.90) and (3.122) is valid for the beta dead-time equal to T Thus,

1
hzl(s) is valid for unequal dead-times, therefore so are hIz(s) and c¢*(s).
We now examine the validity of the covariance function given by

(3.126) for various ranges of the K;. The whole of section 3.5.3 is

seen to hold for any values that the Ki might take, provided the
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approximate forms (3.74) and (3.75) for plN(g) and pZN(g) apply. The

two joint probabilities plN(g) and pZN(g) were obtained using_the
normalising condition (3.73) and an equivalent condition for counter 2,
(3.73) did not depend on the coefficient of u in qZN(u’B) and it is
only this coefficient that takes different forms for different ranges
of the K,. Thus, the covariance function given by (3.126) is valid for
any or all of the Ki equal to unity or two, 1 = 1,...;A. In particular,
by setting B =0, A=1, 6, =1, K, =1 and My = 1 we obtain the

1 1

Delayed State covariance,
coviN, (£),N.(£)} = A .p.2p. 2(t - 128 (3.127)
1457589 12P1 Py . .

If the dead-time influenced covariance given by (3.126) is compared
with the zero dead-time covariance given by (3.55), then it is seen
that the former is a multiple, p12p22, of the latter. Therefore, it
appears that to first order in the dead-time the covariance is
equivalent to that which would be obtained in the zero dead-time
situation if the efficiencies of each counter were pizei instead of
€55 i =1,2; i.e. the probability of a random deletion of a particle on
counter i is raised from l-ei to l-pizei, i=1,2.

To complete the study of Jitter we now calculate an approximation
to the recorded coincidence rate; all terms of order (p'r)3 are neglected

in section 3.5.5, where the counters will be assumed to have common

dead-time T.
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3.5.5 The Coincidence Rate

As in section 1.3.2 a coincidence is defined to be the occurrence,
in the combined output of the two counters, of two recorded events

within a period h of one another, with h < min(t ), so that the

1°"2

events are from different counters; thus the coincidence rate is

a recorded event on one counter in [0,5h], and
a recorded event on the other counter in [0,h)
sh )

o 7

(3.128)

Since the probability of a simultaneous event is negligible, the

coincidence must be due to either,

(i) a recorded event on counter 1 in [0,8h), and a recorded event

on counter 2 in [&8h,h), or,

(ii) a recorded event on counter 2 in [0,8h), and a recorded event

on counter 1 in [&h,h).
Now each recorded event is one of three types;

(i)' a single event,

(ii)' an event that causes a delayed event on the other counter, or,
(iii)' a delayed event.

Types (ii)' and (iii)' change the state of those particles queueing
where (i)' leaves the state unchanged.

For equal dead-times, i.e. Ty =Ty =T, the rate of coincidences

due to type (ii) events is
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h B A
+1 -1
: dx{AZIN(x,?) + I A12611N+1(x,ni )+ T niluiIN_l(x,zgi )}pIZN(g)

(N,n) O i=1 - i=B+1
T h B
+ 1z [ duf dx{AZJN(x,u,n) + I AIZG.JN+1(x,u,n;1) +
(N,n)t-h  © T =l t ~
A -1
+ 'E niluiJN—l(x’u’?i )}qlN(u,n). (3.129)
i=B+1

In (3.129), IN(x,g) and JN(x,u,g) are defined in (3.87) and (3.88)
respectively; the terms involving IN(x,g) represent the probability of
both counters being open at O, an event on counter 2 at O+ and an event
on counter 1 before h: the terms involving JN(x,u,g) represent a

similar probability but with counter 1 closed at 0. Now, using the
zeroth order approximation to JN(x,u,g), namely IN(x-t+u,9), and defining
+1 A

(x,n, )+ 3§ n
-i

(x,0, ),
i=B+1 ~1

B
gN(x;g) = AZIN(X;E) + 'E AlzeiIN+1 iluiIN—l

i=1

(3.130)

then neglecting terms of order (pT)3, (3.129) may be approximated by

h T h
Z {py(n) [ golx,m)dx + [ [ q, (u,n)g (x=7+u,n)dx du }
(v 1T g BT b ey h
? T h—}+u
= I {p,,.(n) [ g (x,n)dx +° q,.(u,n)g (x,n)dx du}. (3.131)
Ny 12D 3 S TIh 5 TN

In obtaining (3.131) remember IN(x,n) = 0 for x < 0. If the order of

integration in the second term of (3.131) is reversed, and qlN(u,n)
B A b

is approximated by (Ap + I 1i,,0. + I
i=1 121 iope

niKi“i)PIZN(g) then (3.131)

is
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B A
I Pqnagln) f ey (x, n) {1 + (A I A,8. + I n,_ u.)(h-x)}dx
(v, n) 12N~ i=1 1271 $=B+1 1Ki 1
? B A
= 2 p,.(n)g.(x, n) {1+ Q,+ 22,6, + I n_u.)(h-x-1)Hdx ,
o (N,n) - N i=1 121 jopep 1Kj3
(3.132)
since, from (3.69), (3.74) and (3.75)
| B A )
Pron(®) = Poy(m{l = Qp + 2 hy,8, + & ngp ugdth+ 0(c%)
i=1 1=B+1 i
A B
= plN(n)(l (x, +._Z A8; * E n. iK, uydt) + o(t%)
1=B+1 i=1

In progressing through the next two stages, (3.122) and (3.123) are

used, thus the rate of coincidences due to type (ii) events is

h
f h21(x){1 + pl(h—x—T)}dx

0
~u.h
B 571 . e
= PPy {(ro W lojpoh + ppy 2 Ag50,{1 - .E 3T ia

i=1 j=0 -

-u.h

2 B K, i Mi
_ h° K, i (u.n)le

PrlPaPy T ¥ P1p I o8 da- p L0 393 . (3.133)

St i j=0 I

Equation (3.133) takes different forms depending on the value of the K.,
1

and specifically, on whether any of the Ki are equal to unity. We

consider only two cases, the first when all the Ki are greater than unity

and the second when B = 1 and K1 =1,
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For K, > 1, 1 =1,...,B, (3.133) is

B
2 h h
P1aP{PlPyPy * 0370y 3 * Py ERSTRE LR ) STRTLIPLE (3.134)

By interchanging the roles of the subscripts 1 and 2 in (3.134) we may
obtain the rate of coincidences due to type (i) events for Ki > 1,
i = B+l,...,A. Therefore the total coincidence rate for K, > 1,

i=1,...,A 1s

P17h(0 105 (P1*Py) * 010, 7 (B1o1#p,0)) + By, & iglllzei“i(“i"piKi)} ’
(3.135)
where
Py for 1 =1,...,B
°i 7 .
P, for i = B+1,...,A

Before we calculate the coincidence rate due to type (ii) events
for the second case, i.e. B = 1 and Kl = 1, the coincidence rate due
to type (i) events is calculated when there are no delayed events on
counter 2. This is necessary for the calculation of the coincidence
rate for De-centred Jitter and Delayed State. The rate of coincidences

due to type (i) events is now

h -pz(h-T+u) B

T
) + TIh Qe (u,m){1-e }du](k1+'£ n. o u,).

(2)(1-e 2
L Cpppyin)ii-e
1=1

(N,n)

(3.136)

The two components of (3.136) correspond to counter 2 being open or
closed at 0, and if counter 2 is closed for u at O then it is noted that

the counter reopens at t-u. The approximations to p,.,.(n) and q. (u,n)
12N~ 2N -
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of Section 3.5.2 are now used to calculate an approximation to (3.136);

it is fairly easy to show that for Ki >1,1i=1,...,B, (3.136) becomes
Py ,P1P,h, (3.137)

and for B =1, K, = 1, (3.136) becomes

1
h(p.p, = p,A T+ paA I—1—) (3.138)
P12 PPy 2412M1 Por1¥1 7 7 - .

Finally we calculate the coincidence rate due to type (ii) events

for B = 1 and K1 = 1, for this case (3.133) becomes

ulh plh
PyoP1R{P 0y * Propgiy(1m 5+ T5legey + Ppdppupt (3.139)

Therefore the total rate of coincidences for De-centred Jitter
with Ki >1 for i=1,...,B, is the addition of (3.134) and (3.137), i.e.
2 h B h
plzh{p1p2(1+pl) * 0Py 5t Py L Alzeiui E(Mi_lei)} . (3.140)
i=1
The total rate of coincidences for delayed state is obtained when (3.138)
is added to (3.139), the roles of subscripts 1 and 2 interchanged and

g sn, 1.e.

p,h
| b )
P1PlP1Py(1¥Pg) = 0y Ay pnT + pyhygn 7+ Pyphypn(1mmy) + —5=(oy0,+P Ay o0}

(3.141)
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3.5.6 Summary

To estimate the original disintegration rate A for the problem
of Delayed State, the three functions necessary to any estimation

procedure may be chosen from the following,

(i) the expected number of recorded events om each counter,
E{N.(t)} = p.p.t
E{Nl( )} P;P;t

where

-1
.=1+_, 1 =
P; ( plrl) for i =1 and 2,
(ii) the covariance between the recorded events on each counter,

1 e-nt

covN (£),N,(£)} = A0, %p, 21 + 0(pr)P}(e - 28—y

(iii) the coincidence rate between the recorded events on each counter,

o.h
- _nhy , 2
Py Ripye, (1+py) p-1112“""1112“% M ST PU i o g GO A SPYSPLE
+ O(p"r)3 ,

where p;, = p;P,. For reasons outlined in section 3.2.2 (iii) is not
usually used in practice.

When the Jitter model is applicable then assuming that the parameters
in model (3.1) have been estimated, the three functions required for the

estimation of the original disintegration rate may be chosen from (i),

(iv) the covariance between the recorded events on each counter, which

for large t and small t may be approximated by

_ 2 2
cov{Nl(t),NZ(t)} = 11291 P, (t—ml-mz) ,
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where my is the average delays of a beta particle given that the

beta particle is delayed; similarly for m, and a gamma particle,
(v) the coincidence rate between the recorded events on each counter,

A
h
p12h{plp2(pl+p2)+plpz 1_;_ (P191+P292) + plz 0 i

- 3
Z Alzeiui(ui piKi)} + 0(pt)~,

provided Ki >1 for i = 1,...,A. This applies to the normal Jitter
distribution, while for the De-—centred Jitter distribution we have

a coincidence rate of

B
2 h h _ 3
Py ey, (14py) + 070, 5+ Py L M%7 (uj=p X0} + 0(om)™
provided Ki >1 fori=1,...,B. It should be noted that the last
two formulae are not of great practical importance because of the

Ki > 1 restriction for various i, although it would not be too

difficult to obtain rates for some Ki = 1 from (3.133).

For the problem of Delayed State, one possible estimate of the

disintegration rate A, based upon the relationship

A= oe1Pory s
is
T T RA LT P PY)

t4ete)(e - n L+ 7T

where n, . is the observed mean number of recorded events on counter i
for 1 = 1,2, and c(t) is the observed covariance between the two numbers
of recorded events, in time t.

For the Jitter problem a very similar estimate of A may be found.
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Appendix 1. A Closer Approximation to the Covariance for Delayed State

We now give an outline of the calculations that produce a second
order approximation to the covariance between the number of recorded
events on each counter, for the Delayed State situation. We will not
restrict the calculations to equal dead-times. From equation (3.65)
we have that the Laplace Transform of the covariance between Nl(t) and
N,(t) is given by

h;z(s) h;l(s) _ 2p1pzplp2

* -—
c(s) = 7+ 5 3 , (3.142)
s s s

where h21(x) is given by (3.89) and hlz(x) is obtained by interchanging

beta for gamma throughout (3.89). 1In Delayed State there are no delayed
beta's and each gamma is delayed by an exponentially distributed period

of mean n-l. Therefore we set A= 1, B =0, 81 =1, K1 =1, My = on and

(N,n) = N so that (3.89) reduces to

oo

h;l(s) = 3 {AZI;(S) +Nn I

*

§-1(80} Pyoy

N=0
o 1
. * *
A+ Nio g {KZJN(s,u) + NnJN_l(s,u)}q|N(u)du . (3.143)

The sequence of events on counter 1 forms a renewal process, the intervals
between successive events having density plexp{—pl(x-r)} for x > .
Furthermore the sequence of events is independent of the number of

gamma's delayed at any specific point. In particular the sequence is
independent of the number at zero. Thus, if K(x) denotes the renewal

density of the renewal process on counter 1 then

1
IN(x) = 0e + [ I K(x-y)dy, (3.144)
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and
JN(x,u) = K(x+u) . (3.145)

As a consequence of (3.144) and (3.145), (3.143) becomes

T

1
h,(s) = py, P1°2 {1 + K* (&)} + fes%qu(u)K*(s)du, (3.146)
p,+s 0}
1
where
x . ! -1
K'(s) = pl{(pl + s)e - pl} . (3.147)

To obtain a second order approximation to h;l(s) by neglecting terms

of order (p11)3, we merely note that Py = PP, to first order. This
may be seen from the leading terms in the expansions of qlN(u) and qZN(u)
as given by (3.77) and (3.78) respectively, which are unchanged when

the counter dead-times are unequal and by using the two normalizing

conditions
T.

i .
Psy = Proy * é qiN(u)du for i = 1,2,
and summing over N. It then follows that

P1Psp,p
3 (s) = 2212 (3.148)
. )
To obtain hIZ(s) we first interchange the subscripts 1 and 2

throughout (3.89), then we set the various parameters to be compatible

with the Delayed State problem, i.e.
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o]
* _ : * *
hip,(s) = I {NI(s) + ATy 1 (8)}pg oy
N=0
® T2< * *
+ 5 {r Ty(so0) + 2y, 30 (5,0}, (w)du (3.149)
N=0 O
where now
a recorded event counter 2 is open
IN(X)GX = pr{on counter 2 in at 0* with N ,
(x,x+6x) gamma's delayed
a recorded event | counter 2 is closed
JN(x,u)Gx = pr{ion counter 2 in for u at 0% with N s
' (x,x+6x%) gamma's delayed

for small é6x, IN(x) = 0 for x < 0 and JN(x,u) =0 for x < Ty = U,
N=0,1,...,». In section 3.5.3 the intrinsic relationship between
IN(X) and JN(x,u) was developed with the intention of solving for IN(x),
and consequently JN(x,u), in terms of known functions. That development
is now extended to include terms of order (pr)z, where T is the smaller
of 1 and Ty-

From (3.93) we have that

A-l(s+A12+Nn)I;(s) = ApHin+d T () + MEO I;‘I(S)RNM(TZ)e-ST2 ,
(3.150)
where
RNM(TZ) = NnrN_lM(Tz) + 2, }z exp{—(k12+Nn)v}{xler+1M(12-v)
+ Nnr (t,-v)}dv, (3.151)

N-IM" 2



126

and A(s) is given by (3.90a) but with A;sT replaced by 1,, T,

respectively. Furthermore, {rNM(x)} are the transition probabilities

for an infinite server queue with arrivals forming a Poisson process

of rate 112 and the service distribution being exponential with mean
-1

n ~. The set {rNM(x)} have generating function FN(x,z), where
F.(x,z) = ; zMr (x)
N N=0 M
‘ -nx.N 112 -nx
= {1+ (z=1)e ™} expi- = - "y - 2)1, (3.152)

see Gross and Harris (1974, page 117). We may rewrite (3.150) as

o]

z aNM(Tz)I;(s) = A, + Nn, (3.153)
M=0

where {aNM(rz)} is a function of {rNM(rz)}. If a second order

approximation to {r (12)} is obtained by neglecting terms of order

NM
(A1212)3, for small n, in (3.152) when x = T,, then {aNM(TZ)} may be

seen to satisfy

T22 T22
aNM(rz) = {1 + Azrz-xz(sﬂlzmn) == * NAn 53 bNM
2
To , T2
* Agh1a T2 Paay * (IAgTy T (st r(N-Dind TNt b gy
2
2 T2
+ N(N-1)n 5 bN—ZM ) (3.154)
where
-Nn M = N-1
by = s + Ay, + Nn M=N
- M = N+1 (3.155)
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If we represent (3.153) in matrix form and assume that the

inverse of the matrix with elements.bNM exists and is unique, and if

the elements of the inverse are denoted by bNM

-1 *
™ rNM(s), where the untransformed elements

then in the same way
as section 3.5.3 b
rNM(x) were defined by (3.152). 1If terms of order (p'rz)3 are neglected

in the inversion of (3.153) then it can be shown that

2 -
Py T Nn-A

s, v _P2 2 12
IN(s) == (p, + P, =5 ) + (

Dy¢ 2}

2
){p2 +p2(s * P,

s+n

2 2
A12 —2NA12n+N(N n

s + 2n

} Tz[—l + {3p2 + gﬁgﬂl} Tz]

+ {
3 2 2 3
—Alz +3NJ\12 n—3A12n N(N-1)+N(N-1)(N-2)n

+ s 7 3n T, - (3.156)

From (3.91) we have that

T T g
r I,(s)r . (t,-u)
oo N ST T2

*
JN(s,u) =g

Therefore using a first order approximation to r (Tz-u) we may produce

M

the following first order approximation to J;(s,u) s

Jﬁ(x,u) = Nn(rz-u)I;_l(s) + {1 - (s+A12+Nn)(T2-u)}I§(s)

+ Ap (I, (s) (3.157)

I1f the first order approximation to J;(s,u), (3.157),is substituted

into (3.149) then

.2
3 T

* _ » * * _ * * 2
hy,(s) = NEO AP IN(8) 4P o (M1 (8)=(s#a  ,+Nn) I(s) 4, T 1 (s)T 0y =5}

(<]

. * * . * -
+ Eo Ao (P IN(8)+p o [(N+DINT(s) = s+, +(N+1In}T ()42, Ty, 5 (s)]

N=
.2
xg,__%_} . (3.158)
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*
Hence, to produce a second order approximation to hlz(s) we need Piyn
to second order. By considering the sequence of events on counter 1

it can be shown that

A -A12/n
12N e : T
Piy = ( = ) 5 {1 - (A1+Nn)'r1+[kl_(Al+Nn)+{A1+(N-1)n}Nn—(A12—Nn1-2-]'r
+ O(p'rl)3 }.
(3.159)
By substituting (3.156) and (3.159) into (3.158) and using
L 4
A -(Alz/n)
p = (BN e + 0(p1)
12N n N ?
it may be shown that
P P,0,0. pzpzk n (DszTz)n
* _ F1F2P1Ps 1 P2 *12 1’1 "2°2
h12(s) = " + paren {1+ > }
Zklzznzrlrz
__§~:_§;_—— (3.160)
Finally, by combining (3.148) and (3.160) in (3.142) we have
cov{Nl(t),Nz(t)} = c(t)
2 2
(pyt,.7=p, T, )n -nt
- 2 2 11 "2°2 _1l-e
= APy P, {1+ ; I (e )
=-2nt
2 l-e
+ A12 nTyT, (t - T ) . (3.161)

2
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Appendix 2. Simulations for Delayed State

We now refer to tables 2-5 which give simulated covariances for
the model of Delayed State and were devised and computed by Dr. D. Smith
of the National Physical Laboratory. Tables 2-5 also give the covariances
predicted by (3.127) and (3.161), the difference between (3.127) and
(3.161) being that second order dead-time effects are omitted in (3.127)
but included in (3.161). Before discussing the simulations we adopt |
the following convention, whenever terms neglected in the calculation
of the covariance (3.127) or (3.161), are of at least the same order as
the standard error in the simulated covariance, we will speak of a type i
error with i = 2 for (3.127) and i = 3 for (3.161).

Before the results that appear in Appendix 1 were calculated it
was thought that the first order approximation to the covariance given

by (3.127), i.e.

-nt
1-e n

n

_ 2 2
¢ (t) = APy p, (¢ -

) (3.127)
might in fact be exact since the two dead-times T, and 1, do not appear
explicitly. So, the covariance was simulated for a variety of dead-times
including some that did not satisfy p;Ty < 1 for i = 1 and 2, which was
an essential assumption of section 3.5.

0f all the simulations only the second and third do not have type 2
errors. Although it must be noted that dead-time effects are small for
these two simulations, the results predicted by the first order
approximation to the covariance given by cl(t) are in remarkable agreement
with the simulated results. Simulations 1, 4, 5, 7~12 and 14-17 have
type 2 errors but all satisfy the inequality P5Ty < 1 for i =1 and 2.

Despite the presence of type 2 errors in these simulations the results
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predicted by cl(t) are still within two standard errors of the simulated
covariance. This is perhaps the most relevant point to state that in
calculating the predicted value of the covariance given by cl(t) the
exact form of the equilibrium probability 1.3 is used, i.e.

p; = (1+piri)-1, rather than the first order approximation 1 - PsTss

for i = 1 and 2. It will become apparent that the majority of the
dead-time effects on the covariance are accounted for by the factor
plzpzz. This may be seen in the aforementioned simulations numbered

1, 4, 5, 7-12 and 14-18, where the effect on the covariance of terms of
order (pri)z, over and above that accounted for by plzpzz, is negligible,
and most particularly in simulations 6, 13 and 18. Simulations 6, 13
and 18 have both a type 2 error and P, Ts >1 for i = 1 and/or 2. 1In
these cases the covariance predicted by cl(t) differs from the simulated
result but not by a substantial amount . Therefore, by comparing c,(t)
with the simulated covariance it is apparent that cl(t) is not exact.
However, we may conclude that at least 997 of the dead-time behaviour

is accounted for by plzpz2 when piTi < 0.1 for i =1 and 2, and at

least 80% when piT, 2 1.8 for i = 1 and 2.
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Table 2: Simulated Covariance for Délayed State

Sim. no. 1 2 3 4 5
t 2 2 2 2 2
Ay 0.36 0.36 0.36 1 0.4
n 10 10 20 5 3
oy 0.9 0.9 0.9 1 0.8
oy 0.4 0.4 0.4 1 0.5
T 0.03 0.005 0.002 0.02 0.04
T, 0.03 0.005 0.002 0.02 0.02
Sim. cov. 0.6341  0.675 0.698 1.671 0.6129
St. err. 0.0005  0.001 0.001 0.006 0.0003
¢, (£) 0.6332  0.675 0.698 1.663 0.6139
c,(t) : 0.6369 0.675 0.698 1.557‘ 0.6156

St. err. is the standard error on sim. cov., the simulated covariance.
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Table 3: Simulated Covariance for Delayed State

Sim. no. 6 7 8 9 10
t 5 5 5 5 5
A, 0.36 1 1 1 0.9
n 0.5 0.25 0.25 0.75 4
Py 0.9 1 1 1 1
Py 0.4 1 1 1 1.8
T, 2 0.1 0.2 0.05 0.04
T, 2 0.2 0.1 0.1 0.02
Sim. cov. 0.0503 1.2413 1.2315 2.782 3.7014
St. err. 0.0004  0.002 0.003 0.001 0.0006
cy(€) 0.0448 1.232 1.232 2.772 3.6826
cz(t)r 1.1058 1.243 1.252 2.-781 3.7017

St. err. is the standard error omn sim. cov., the simulated covariance.
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Table 4: Simulated Covariance for Delayed State

Sim. mno. 11 12 13 14
t 5 5 10 10
Ay 0.9 1 0.36 0.36
n 8 0.75 0.5 10
°q 1 1 0.9 0.9
Py 1.8 1 0.4 0.4
Ty 0.04 0.1 1.5 0.03
T, 0.02  0.05 3 0.045
Sim. cov. 3.812 2.786 0.1297 3.261
St. err. 0.004 0.002 0.0009 0.007
cl(t) - 3.779 2.772 0.1079 3.261
cy(t) 3.818 2.796 2.6898 3.278

St. err. is the standard error on sim. cov,, the simulated covariance.
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Table 5: Simulated Covariance for Delayed State

Sim. no. 15 16 17 18

t 10 10 10 10
A12 0.36 0.36 0.48 0.36

n 10 10 10 0.5

Py 0.9 0.9 | 0.6 0.9

Py 0.4 0.4 0.8 0.4

Ty 0.03 0.005 0.03 2

To 0.03 0.005 0.045 2
Sim. cov. 3.299 3.511 4.305 1.287
St. err. 0.001 0.006 0.008 0.0015
cl(t) 3.299 3.518 4,272 0.1136
cz(t) | 3.318 3.519 4.280 2.5032

St. err. is the standard error on sim. cov., the simulated covariance.
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We shall now discuss the second order approximation to the
covariance for Delayed State given by (3.161), namely

-nt
~ 2 2 2 2, n _ 1=
c,(t) = A1oPy P, {1+ (pl'r1 0,7, ) 5 e — )

-2nt

l-e
(t - g ) . - (3.161)

+ Alznrlrz

Simulations 1-4, 11 and 14-17 do mot have type 3 errors and cz(t)
is within two standard errors for all these simulations except numbers
1, 14, 15 and 17. Of the four simulations for which cz(t) is not
within two standard errors of the simulated covariance, cz(t) is within
three standard errors for all but number 14. It is only for this
simulation that cz(t) seems incompatible with the simulated covariance.
It should be noted that the covariance given by cz(t) gives wildly
inaccurate results for simulations 6, 13 and 18; but this was to be
expected since for each of these three simulations PyT: 2 1 for
i = 1 and/or 2.

To compare the covariance predicted by cl(t) and cz(t) we look at
those simulations which do not have type 3 errors, to wit simulations
1-4, 11, 14-17. Of these nine simulations cl(t) is incompatible only
with number 11 and cz(t) incompatible only with number 1; although
c,(t) is only within approximately three standard errors of the simulated
covariance for simulations 14 and 15. Of those simulations that do not
have type 3 errors and satisfy PiTy <1l for i =1 and 2, numbers 7, 9
and 10 favour cz(t) rather than cl(t).

We conclude this discussion by stating that cl(t) predicts the
covariance very accurately for p.Ty < 1, i = 1,2, and furthermore, cl(t)

should be used in preference to cz(t) whenever ., Ty 2 1 for 1 = 1 and/or 2.
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Unfortunately this simulation study does not allow any positive
conclusions to be drawn about the conditions under which cz(t) should

be used in preference to cl(t). It is hoped that this will be rectified

at a later date.
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CHAPTER 4. DELAYED STATE ON ONE COUNTER

4,1 Introduction

If, in the Delayed State problem as described in section 3.2,
gamma particles are converted to beta particles within the source and
so become indistinguishable from beta particles, then both are recorded
on the same counter. Therefore we must study the disintegration process
on a single counter and for this we calculate two functions, the expected
number of recorded events in (0,t] and the variance of the number of
recorded events iﬁ (0,t]. The analysis of this chapter is very similar
to that of chapter 3 and in particular, complements to some extent the
appendices to chapter 3.

We now examine the different types of event that may occur on the
detector of the counting mechanism. As in section 3.2 we assume for
simplicity of calculation that the beta and gamma emissions are
simultaneous at source, and that only if both particles are detected
is the gamma delayed, the delay period being exponentially distributed
with mean n—l. Therefore there are three different types of event that

may occur on the detector, namely,
(i) a beta particle only, detected with rate
Ae (1 - )
B( E,Y )
(ii) a gamma particle only, detected with rate
re (1 - gg)
(iii) a beta-gamma pair of particles, detected with rate

AEBEY s
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the gamma particle then being delayed for a period which is

exponentially distributed with mean n—l.

We define two types of process, one consisting solely of single

particles, the other consisting of pairs of particles, thus

P
1]

1 Aee(l - eY) + KeY(l = EB) s

A, = de .
2 By
Then processes 1 and 2 are allowed to reach the counter to be recorded
with process 2 causing a gamma particle to be delayed.
- If Py denotes the equilibrium probability that the counter is open
with N gamma's delayed and if N(t) is the number of recorded events on

the counter in (0,t], then as in previous chapters,

t
E{N(t)} = [ pr{dN(u) = 1}
0
= { I (A+)r,+Nn)p }t . (4.1)
oo L 2 N

The variance of N(t) may be expressed as
» t t 2
var{N(t)} = [ [ pr{aN(u) = aN(v) = 1} - ES{N(t)}. (4.2)
0 O

If the range of integration in (4.2) is split into the three components

u>v, u<v and u = v, and a joint probability density h(x) defined to be,

{a recorded event in (x,x+8x), and}_
a recorded event in (0,8y)
§x6y

h(x) = 1lim s (4.3)
x>0t

Sy»0*
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for x > 0, then the variance expressed in (4.2) may be written in

terms of h(x) and the expectation E{N(t)}, i.e.

var{N(t)} = 2 h(v-u)dvdu + E{N(t)} - EZ{N(t)} . (4.4)

OY—rt
B =t
+

To proceed further we need to study in depth the sequence of events
on the counter and for this the dead-time behaviour of the counter has
to be defined. The first type of behaviour that was considered is the
physically unrealistic one where each dead-time is exponentially
distributed with mean u-l independently of any other dead-time. This
was originally meant to be a prelude to a gamma distributed dead-time
and hence include the constant dead-time behaviour in which we were
really interested. This would hopefully result in a less approximate
analysis than that of previous chapters. However, the expectation and
the variance could not be found for the gamma distributed dead-time and
we are left with the exponentially distributed dead-time results. For
this reason constant dead-times are considered in their own right and

the exponential dead-time analysis is given for completeness.

4.2 Exponential Dead-time Behaviour

To calculate the expectation as given by (4.1) we need to determine
the equilibrium probability Py that the counter is open with N gamma
particles delayed. To do so we define the complementary function Ay
to be the equilibrium probability that the counter.is closed with N
gamma's delayed. The forward equation representing the change from the

closed state to the open state is

(Ap + Ay + Ndpg = mgy , (4.5)
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and the equation representing the change from the open state to the

closed state 1is,
(u+A2+Nn)qN = AZ(pN—1+qN—1) APyt (N+1)n(PN+1+qN+1) , (4.6)

for N = 0,1,...,o, The solution of (4.5) and (4.6) for Py is made
considerably easier by noting that,

_h

A n

N gamma'sy _ 2N e
(queueing ) ( n) N! N (4.7

]
2]

pgt Oy T PT

using a well known result from infinite server queue theory where the
input process is Poisson of rate 12 and the service distribution is

. -1 .
exponential of mean n ~; see Gross and Harris (1974, page 272) for

example. Thus,

ur Aq+A Nn
Py = %+ +§ + ’ v T A1+12+N wN (4.8)
N L FA NN+ LA NN+

for N = 0,1,...,o. On substituting for into the expectation as
g Py P

given by (4.1) results in

vy 5 atpteemy 4.9)
€ N=o  MpTApNmHM v '

where p is the equilibrium probability that the counter is open and may
be obtained by summing the py over N =0,1,...,®. An approximation to
the expectation per unit time given by (4.9) may be found by considering

E(AX+a)—1, where X is a Poisson random variable with mean 6,

e}

(Ax+a) ! =

N R

2 ,,2
+ x-S+ 5B v o) (4.10)
a a a

(8]

e
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therefore
—=) . (4.11)

If we identify A =n, a = kl+A2+u and 6 = Azn—l then

2
{(A +2A2) +A2n} 1.2

L + o h

E{N(t)}
t

)2

A,
- 2 -1
(A +23,)p {1 - (2%, u} + 0(An , (4.12)

1,2

where p = 1 - (Al+2kz)u—l +0(Au ) and A = Al+2A2.

The problem of calculating the variance function is equivalent to
that of calculating the joint probability demsity functiom h(x), as
defined by (4.3). Because the sequence of events on the counter is not
independent of the number of gamma's queueing at any instant, then we
cannot express h(x) in terms of a single renewal density. Instead define

two sets of functions similar to those of section 3.5.3, define

a recorded the counter
IN(x)Gx = er-event in . | is open at OF } R
(x,x+8x) with N gammas delayed
a recorded the counter is closed
JN(x)sx = pr{event in at 0F with N } ,
(x,x+8x) gamma's delayed

for small 8x .and with IN(x) = J (x) =0 for x <0; N=0,1,...,».

N
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We may now express h(x) in terms of {IN(x)} and'{JN(x)},i,e.

©

h(x) = =z {A J (x) + AT . (x) + Nndy (x)}p . (4.13)
2"N+1
N=0
Again as in sectiom 3.5.3 we highlight the relatiomship between'{IN(x)}
and {JN(x)} in order to solve for {JN(x)} in terms of known functioms.
We have

Iy (x) = (A +A2+Nn)exp{ (A A HN)x}

2

+ f exp{- (Al +Nn)y}{h Iy (x-y)+Ar,J

(x+y)+NnJN_1(x—y)}dy s (4.14)
0

2°N+1
where in (4.14) the first term on the right hand side represents the
probability that the first event to occur at or before x actually occurs
at x, the second term represents the probability that the first event

occurs before x. Also we have
JN(x) =

Z exp{—(A2+Nn+u)y}{AZJN+1(x-y)+NnJN_1(x—y)+uIN(x-y)}dy . (4.15)
In (4.15) the first two terms in the brackets of the integrand represent
the probability that the first event to occur is at y, and this event
results in a change in the number of gamma's queueing, the last term in
the brackets represents the probability that the first event to occur is
the opening of the counter. If we now take Laplace Transforms of (4.14)

and (4.15) it will be seen that,
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* -1 * * *
Ig(s) = (s+A +A,4NN) “{X +A +Nn+A Jp(s)+A T (s)+NnT o (s)} (4.16)

Ty(s) = (s+hyminen) T{AIY (s)4NnTy_ (s)+uIn(s)}. (4.17)

It then follows directly from (4.16) and (4.17) that,

A,+A _+Nn
* 1 "2 *
IN(s) Ry + JN(s) s (4.18)
whence
. % % ufA +2,+Nn)
(s+A2+Nn)JN(s)EAZJN+1(s) - NnJg_,(s) = ST PRy (4.19)

. To invert (4.19) we use a result of section 3.5.3 that was an integral

part of that analysis. The inverse of the tri-diagonal matrix that

*

NM(S),

gives rise to the left-hand-side of (4.19) consists of elements r
where r;M(s) are the Laplace Transforms of the transition probabilities
rNM(t) of an infinite server queue with Poisson arrival rate Az and

Poisson service rate n. These transition probabilities have generating

function defined in (3.152) if Ay is identified with Ag- Therefore,

@ A, +A +Mn
* * 1 72
J (s) = I r_(s)u. (4.20)
N M=0 NM Sfi')\1+)\2+Mn+u
Expanding (4.20) for small s,
® A, +A_+Mn
* * 1 72 ]
J(s) = ¢ r_(shy . ———=— {1 -
+)_+Mn+ +
N M=0 NM Al AZ Mn+u A1+Az+Mn u
SZ
+ 5 * . } (4.21)
(Al+A2+Mn+u)
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We now use the same approximation technique as in (4.10) and (4.11)

to produce an approximation to JN(S) for small s, where now

A
E(X) = ji'{ 7% (1-e My 4 ne ™Mt 3,

A A
E(X(x-1)} =  (N(w-1e Mo 2 e e (Hia-eH%y
and Si denotes the Laplace Transform operator with respect to t. This

approach leads to

K
Jg(s) = :? + QN + mys + ng(s) R (4.22)

where n&(s) is analytic in some half-plane Re(s) > Yy with Yy > 0, and

2
((A,+22,)°+A,n)
_ _ 1“2 2 -1.2
Ry = (Ay*+22,) " + 0(Ap ),
2 2
. - Nn-3, [(Nn A){2(a +20,)4n} . N(N-1)n"-2Nn),+2, I+ otu~hy?
N n nu 2Znu ?
(Nn-x.) 2(Nn=-2,) (A, +22,) N(N—l)nz—ZNnA +A 2
- e 22 34 o0w™h?
N n2 nu 2nu ’
(4.23)

The Laplace Transform of the joint probability density function

h(x) can be calculated in two ways:

(i) Using (4.18) and (4.22) calculate a similar expression to (4.22)

for I;(s) and then note that,

«©

n*(s) = z [(str MA NN IR()=(A A+ N, M) Ipy,

and calculate the summation using (4.8) for pN, or
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(ii) calculate each of the terms in (4.13) by using (4.22) and then

use pg as given by (4.8).
Both approaches give the same result for h*(s) which
h*(s) = 2 +b + cs + d*(s) (4.24)

* . .. :
where d (s) is analytic in some half-plane Re(s) > -d, d > 0 and

(A +22,) (A, +37,) A
2 =[E{N§t)}]2 b= ;\2p3(1 _my . L2 tre 22 o
u u u

where terms of order (Au-l)z have been neglected in calculating a, b
and c.

An approximate form for the variance function may now be found
using (4.12), (4.24), (4.25) and then inverting the Laplace Transform,
thus for large t

4 2>‘2 t 2
var {N(£)}= p {(A +42,)t - oh s - {(*#22,)7 - 3a,m } . (4.26)

4.3 Constant Dead-Time Behaviour

We now calculate the expectation (4.1) and the variance (4.4) for
dead-times of con;tant length t. The calculations of this section are
very similar to those of section 3.5.2 and certain results from that
section will be used to shorten the analysis here. We start by
determining Py> the equilibrium probability that the counter is open with
N gamma's delayed. To do so we again define the complementary function
qN(u) for u < 1, the probability demsity that the counter has been closed

for a period u and N gamma's are delayed. The equation representing the
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change from the closed state to the open state is now
(A #atdpe = qu() (4.27)

and the equation representing the change from the open state to the

closed state is
qN(O) = Ale+A2pN_1 + (Nfl)npN+l ,y N=0,1,...,. (4.28)
Two additional equations are

qu(u)
du

= —(Ay+Nn)q (u)+2 (u) + (DInqy ,(u) , (4.29)

29y-1

which represents change within the closed state, and

Ay
i _(7T)
- _ 2N e _
Py * g qN(u)du = ( n) T T Ty (4.30)
which represents the probability that N gamma's are delayed, N = 0,1,...,c.

As in previous sections we solve (4.27)-(4.30) by expanding py and

qN(u) in Taylor Series and here we ignore terms of order (AT)3. Therefore,

(Nn-Az) 5

2
- '-15—-n} T 1,

=r [l - (A1+A2+Nn)T + {(A1+A +Nn)

Py N 2

(4.31)

qy(u) = rN(A1+A2+Nn){15(A1+A2+Nn)T} + rN(Nn-Az)n(T—u)

Substituting Py from (4.31) into the expression for the expectation it

then follows that

E{ﬁ(t)} - (A1+2A2)—{(A1+2A2)2+AZH}T +’{(A1+2A2)3+3A2n(xl+2xz)

‘9
Azn

2

4+

} Tz + O(AT)3 . (4.32)
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We may find the equilibrium probability that the counter is open by

summing Py for N =0,1,...,. We have

p
N=0 N

2
1 - (A1+2A2)-r + {(Al+2A2)2+A2n}r + o(m)3 . (4.33)

If T is identified with u-l of section 4.2 then (4.32) and (4.33) are
equivalent to their counter parts (4.12), at least to order (At).

To calculate the variance function (4.4) we now follow section 3.5.3;
using {Ig(s)} and'{JN(x,u)} as defined in (3.87) and (3.88), the joint

probability density h(x) may be expressed as

h(x) = Nfo {XIJN(X) AT (x) 4 NnJN_l(x)}pN , (4.34)
where JN(x,O) is abbreviated to JN(x), N=0,1,...,». Two equations that

link IN(x) and JN(x) are
Iy(x) = (Al+l2+Nn)exp{-(l1+l2+Nn)X}

X
+ [ EXP{-(A1+A2+Nn)y}{AIJN(x-y)+A2JN+1(x—y)+NnJN_1(x—y)}dy , (4.35)
0

and

-2}

JN(x) = . IM(x—T)rNM(T) R (4.36)

for N = 0,1,...,». Taking Laplace Transforms of, and eliminating Jg(s)

between, (4.35) and (4.36) leads to
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«©

z I&(S)RNM(T)

M=0

* _ =sT
(s+ll+A2+Nn)IN(s) = AfA,#Nn + e

* -
T aNMIM(s) = A1+12+Nu , (4.37)

where
_ _ -sT
agy = (s¥ApFA4N)e ., - {Agrp (1) + Ayrp L (1) + Nnrg_,(T)}e ,
(4.38)

and GNM is the Kronecker delta, N = 0,1,...,» and M = 0,1,...,=,
A second order approximation to rNM(T)'may be obtained from (3.152) and

if this is then substituted into (4.38) it is found that each ay may be

expressed in terms of b b and b where'{bNM} are given by

N-1M’ “NM N+1M
(3.155), and terms of order (11)3 have been neglected, ¥ = 0,1,...,®

and M = 0,.,...,%. We now apply a method that appeared in the first
appendix to chapter 3 to invert equation (4.37). 1If we represent (4.37)
in matrix form and assume that the inverse of the matrix with elements

b, exists and is unique, and if the elements of the inverse are denoted

NM

by bNM-l’ then as in section 3.5.3 b -l ’ﬁ(s), where the untransformed

10 S
elements rNM(x) were defined by (3.152). If terms of order (A1) are

neglected in (4.37) then it can be shown that,

* ' 2 Nn-A
_ E{N(t)}] 1 2 T 2v¢ 2 2
IN(s) —[——t-—— =+ {(11+2A2) +12n} 5t { ~ Hp +(s+n)(kl+2>\2)r
A.n
1" 2
R
L2 _ Y
A, “=2NA,n + N(N-1)n
2 2 3 T nt
{ s + 2n } {P (s+2n) 2 + T I
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2 _ 3>\2n2N(N-1) + N(N-1)(N-2)n>
s + 3n

3
-2 34 3nm
2 2 b1, (4.39)

+ {

for N = 0,1,...,» and where E{N(t)}/t is given by (4.32), p is given
by (4.33).
If the Laplace Transform of the joint probability demsity h(x) as

given by (4.34) is taken, then upon comparison with (4.35) it is apparent

that
*® ® * it
h (s) = £ (s+A +X,+#Nn)I _(s)p. — I (A +A +Nndp
N=0 1 "2 N N oo 172 N
® .
E
= 3 (s+r;+r +Nn)1f(s)p - [—iEﬁEll] . (4.40)
N=0 172 N N t

If the Laplace Transform of (4.4) is taken then

2h”*(s)
2

S

OE [var {N(£)}] = + X [E{N(E)} - EX{NCE)}T . (4.41)

From (4.32), (4.39)-(4.41) and consequent inversion of the Laplace

Transform of the variance function, it follows that

- 4 2 1-e NE 2 2
var{N(t)} = 2X,p (1+2A2nr Mt - - }+p (1+X2nT JE{N(E)}
=2nt
2 2 1-e » 2 2
+ 2A2 nt” {t - = 1+ {(A1+2A2) +A2n}T . (4.42)

Where E{N(t)} and p are given by (4.32) and (4.33) respectively,
furthermore terms of order (AT)3 have been neglected in (4.32), (4.33)

and (4.42).
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4.4 Comments

We first investigate the differences, if any, between the
exponentially distributed dead-time results and the constant dead—time
results. To do so all terms of order (AT)2 in section 4.3 are ignored.

It was noted in section 4.3 that the expected number of recorded
events in (0,t] and the equilibrium probability that the counter is
open, are the same for both dead-time distributions if the mean of the
exponential distribution is equal to the constant dead-time of section 4.3.
To compare variances we ignore terms of order ()x'r)2 in (4.42), thus
for constant dead-times,

- 4 2)‘2 -nt 4 2
var{N(t)} = (A1+4A2)p t + - (e ""-L)p + (11+2A2) ET = A,ntT.

(4.43)

When (4.43) is compared with (4.26) its equivalent for exponentially
distributed dead-time, it is seen that (4.43) exceeds (4.26) by
lenT, if t = u_l and t is large. In other words, the variance for
constant dead-times is greater than that for exponentially distributed
dead-times; apart from noting the presence of the delayed state variable n,
no qualitative explanation is provided for this unexpected result.

Since the internal comversion process of section 4.1 is present to
some extent in those isotopes considered in Chapter 3, then the results
of this chapter may be used in conjunction with those of Chapter 3
relevant to Delayed State, to obtain a more practicable estimate of the

disintegration rate A; see Lewis, Smith and Williams (1973).
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CHAPTER 5. EXPONENTIAL DECAY OF SOURCE

5.1 Introduction

One overriding assumption made when considering the problems of
the previous chapters has been that the disintegration rate of the
source is constant. Usually this assumption is reasonable physically
because the intervals over which the process of disintegrations is
studied are short when compared with the half-life of the source.
However, if this is not the case, then the theory developed in earlier
chapters is clearly inadequate.

In this chapter a preliminary study of the process subject to decay
of source is made via the expected number of recorded events on a single
counter in time t. That is, we have a Poisson process with a time
varying rate Aoefxt which is fed into a single counter. Because we
cannot estimate the disintegration rate with only one counter, see
section 1.2, then the problem of calculating the expected number of
recorded events in time t is unchanged if the efficiency of the detector
is assumed to be unity.

So, if N(t) is the number of recorded events or counts in time t,

then as in earlier chapters,
t .
E{N(t)} = [ pr{dN(u) = 1}. (5.1)
0

If w(t) is the probability that the counter is open at time t, given
the initial state of the counter, which must be open when the counter

is switched on, then

t
E{N(t)} = [ A(u)w(u)du. (5.2)
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Therefore, calculating the expected number of recorded events
in (0,t], is equivalent to finding the probability that the counter
is open at any specific instant. Two methods of tackling this problem

are,

(i) to treat the problem in its own right by modifying the counter
state equations of previous chapters for a transient analysis with

a time-varying disintegration rate, or,

(ii) to develop a method that will allow the use of constant rate

analysis.

Both methods will be considered, the latter first.

5.2 Step Function Approximation to an Exponential Function

Suppose that we approximate the exponentially decaying process,
-At

represented by the rate A(t) = Age =, by the rate A(t) where
A(E) = Ay for t € (ti—l’ti]’ i=1,...,K,
and 0 = t; < t; < .... < t, =t for some K. If we then redefine w(t)

to be wi(t), the probability that the counter is open at time t when
t € (ti-l’ti] for i = 1,...,K, it follows that (5.2) becomes

X t
EN(e)} = Iz [ A.w(u)du . : (5.3)
i=1 t, e

Therefore, if we can find a sequence of Ai's and a partition set
(to,...,tK) of (0,t] that give a good approximation to A(t), and
consequently an approximation to wi(t), then the expectation (5.3) may

be found.
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To calculate hi(t) we form a recursive scheme by conditioning on
the possible state of the counter at ti—l given the state of the counter

at tO =0, i.e.

r counter is | open open counter 1is]closed ‘closed
ni(t) = prz.open at at pr {at + pr{open at at priat
time t ti—l ti—l time t ti—l ti—l
(5.4)

Now if A(t) is to be a "good approximation'" to A(t), then the

partitioning of (0,t] must be fine, that is max (t.-t. _) must be
i=1..K i-1

small relative to the inverse of the decay rate A. Consequently, the
interval over which the sequence of events on the counter is studied
to calculate the conditional probabilities in (5.4), must also be small
relative to the inverse of the decay rate A. In previous chapters the
dead-times of the counters were taken to be constant, for this is a
reasonable approximation to the physical situation. However, if the
dead-time of the counter wasltaken to be constant in (5.4), then the
conditional probabilities appearing there would be extremély difficult to
calculate. For simplicity, we therefore assume that in all future
calculations the dead-time is exponentially distributed with mean p-l;
hence most dead-times have length less than u_l while occasionally there

is a dead-time far greater than u_l. With this exponential dead-time

assumption,

R T S - 0
LR B v i A;*u exp{~(ahu) (et Dhipy
“E o B oeen(- - c
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where
0 counter c
p; = pr{ls open} = Tri_l(ti_l) = l—pi ,
at t.
1i-1

for i = 1,...,K and with WO(O) = 1, i.e. the counter is open initially.
So
wi(t) = exp{-(Ai+u)(t—ti_l)}wi_l(ti_l)

2 - - -

+ Ai+u[1 exp{ (Ai+u)(t ti—l)}] . (5.6)

Upon substitution of (5.6) into (5.3) the expectation becomes

K 1 - exp{—(Ai+u)(ti-ti_l)}
E{N(t)} = 'El Ap T e ]wi_l(ti_l)
i= i
K 1 - exp{-(A.+p)(t,-t., )}
+ D A.qty -t o - = == ] . (5.7)
o1 1tTi i-1 Ai+u Ai+u

The remaining unknown quantity in (5.7), apart from the choice of Ai
and t., is the probability that the counter is open at ti—l’ i.e.

wi—l(ti—l)’ this may be found by solving (5.6) recursively to obtain,

i
m(e) = exp{- T Oytud(e-t, )} (1 +

j=1
i 1- exp{-(Ah+u)(th—th_1)}
* Lo T 1, (5.8)
=1 - A -
h=1 "h exp{ g ( g+u)(tg tg-l)}

g=1

for i = 1,...,K. The expectation given by (5.7) may now be written as
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1
R

A.

i
{t. ti—l} + >\i—+u{ﬂi-1(ti-l) 'n'l(ti)}] , (5.9)
where vi(ti) for i = 1,...,K is given by (5.8) and wO(O) =1,

To proceed further, a partition (t ..,tK) of (0,t] and a set

1’
(Al,...,AK) of steps have to be defined. Since the intention is to
let K tend to infinity, the choice of partition and steps is dependent

soleiy on the ease of calculation of the expectation as defined in (5.9).

For this reason choose

TAEL A
= t - e + e
tj ig and Aj AO{ 5 1, (5.10)
for 3 =1, sK. The first term in the expression for the expectation
(5.9) is
K Ay K A,
i i t
z (t,-t. ;) = § —— 0 = (5.11)
.+ - . -1
=1 Al U i "i-1 =1 1+Aiu K
For those sources for which Ai <u for i =1,...,K we may use the

Binomial Theorem to expand (5.11); the result of substituting (5.10)
into this expansion and then summing over K, is to produce the following

expression for (5.11),

tK-l)r+1

o«

(1 +e?
L r .r+l
r=0 (-p) 2

_ _~Aat(r+1)
e YA (5.12)

=Rl
o

_ efkt(r+1)K-1

Since the summation of (5.12) is uniformly convergent for each K and
each partial sum is continuous, then we may take the limit as K +

inside the summation so that (5.12) becomes

1 1+ Aop—l

—- log ( — ) . (5.13)
1 1 -t

Au 1+ Aou
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To calculate the second term in the expansion for the expectation
given by (5.9) is difficult. However, for large u, i.e. small dead-time,
the contribution from this term is negligible since

A,

i {r
Ai+u i~1

(ti—l) - nigti) },

is of order u—z.
Therefore, for small mean dead-time the expected number of recorded

events in (0,t] is approximately
-1
+
1 Vkou

x
-1 -At )
e

log ( (5.14)

>

1 + Aou

at least to first order in dead-time effects.

We shall now briefly consider the effect of large dead-times on
the expectation defined in (5.2). When the mean &ead—time u_l is large,
then the expectation as given by (5.9) is increasingly dominated by
ni(ti). For the case of infinite dead-times the form of the expectation

given by (5.9) reduces to

K
BN(OY = T ln () - m (e (5.15)

where ni(ti) is now a monotonically decreasing function of t.. Upon
application of similar methods to those employed to obtain (5.14), (5.15)

becomes

A
BN(E} = 1 - exp{- 2 (1 - e D). (5.16)
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However, (5.16) may be obtained by use of direct probabilistic arguments,
so that the step function analysis is redundant for infinite dead-times.
But for large rather than infinite dead-times, although it is not
difficult to obtain an approximation to the expectation using the step
function approach, it would appear to be virtually impossible using
direct probabilistic arguments.

We shall now determine an approximation to the expectation (5.2)
by a transient type analysis in which the level of approximation may be
readily extended to any order; this is not true of the step function
approach. However, there may be circumstances under which the step
function analysis is a viable alternative to the transient analysis;

this justifies its appearance.

5.3 Transient Type Analysis

To find our objective, the expected number of recorded events in

(0,t] as given by (5.2), i.e.
t
E(N(t)} = [ a(uw)n(u) du,
0

we calculate w(u) directly, where w(u) is the probability that the
counter is open at time u, given that the counter is open at zero. We
still assume an exponentially distributed dead-time behaviour so that we
can compare our results with tbose obtained using the step function
method. The forward equation for w(t) expressing the change from the

closed state to the open state is

drle) - (O + ull - 7o)} . (5.17)
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The initial condition that the counter is open at O may be represented

as m(0) = 1. The solution of (5.17) subject to the initial condition

m{0) = 1 is

1

A A

0 u 0

- — (& +1) - —x
n(t)exp(ut-—}\g-e >‘t)—e A _ J -‘;\l-x A e A dx,
=it
e

(5.18)

At. The integral on the right-hand side of (5.18) is

where A(t) = Aoe—
expanded for large p using Laplace's Method as described by Olver (1974,

page 80). This results in

H *o
1 ~(E ey - ) A
% x e * dx = % (1 + %) 1exp(ut - j? e M {1+

-t
e

x—xoe'“ >\2—3>\0>\e__>‘t + xoze'ut 3

+ + 0(=)"} , (5.19)
At (A +u)2 s

Note that in obtaining (5.19) via Laplace's Method it was assumed

that 1 and e—>‘t

are distinct, i.e. t # 0. Therefore any approximation
to n(t) obtained using the method of Laplace will not satisfy the

initial condition 7(0) = 1; this is commented upon in section 5.4.

Substituting (5.19) into (5.18) we have that

Ay A - Agh
0 At [0y2 -zae _ o7 k'JJ,O(%)3, (5.20)

() = 1 - —
2
u u u

We may now calculate the expectation as given by (5.2), thus

A A 2
E(N(t)} = TO (1 -0 - -T2
2y
A 3 A 2
+ 02 (1 - e-3kt) - E%— - e—ZAt) + O(A)3 . (5.21)
m m

KYNI!
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5.4 Comments

We first note that the expression for the expectation given by the
step-function method, (5.14), is identical with that given by the
transient type analysis, (5.21), if terms of order (,\/u)2 are ignored
and AO = RX for some positive R. It is only when these second order
terms are included that (5.15) and (5.21) differ. It is thought that
this difference is accounted for by the second term in the expression for
the expectation given by (5.9) which was only bounded for large u.
Also, in principle the analysis of section 5.3 can be extended to any
order, whereas that of section 5.2 would be extremely difficult to extend.

In the context of the single counter system considered above, it
should be noted that the transient analysis produced an approximation
to m(t) that failed to satisfy w(0) = 1; the implication here is that t
would have to be fairly large in some sense for the method to be
applicable in a practical situation. Therefore if the object of an
experiment, in which the mean number of recorded events is measured,
is to determine the original rate A,, then the above calculations would
be valid. But if the object is to determine the current rate by taking
a quick measurement, then some expansion other than (5.19) is required
for small t.

Therefore, it is proposed that if the original disintegration rate
of a source is to be estimated, then the transient type analysis of

gection 5.3 should be used in a bivariate counter situation similar to

that of section 1.3.
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Cold hearted orb that rules the night,
Removes the colours from our sight.
Red is grey and yellow white,

But we decide which is right.

And which is 1llusion???

The Moody Blues, '"Days of Future Passed."
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