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Cold hearted orb that rules the night, 

Removes the colours from our sight. 

Red is grey and yellow white, 

But we decide which is right. 

And which is illusion? 

The Moody Blues, "Days of Future Passed." 
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ABSTRACT 

This thesis is concerned largely with a bivariate counting system 

arising in radio-activity measurement. To estimate the disintegration 

rate of a radio-active source use is made of three independent Poisson 

processes. These Poisson processes cannot be observed individually. 

The first and third processes are recorded on one counter, the second 

and third processes on a second counter. Both counters are subject 

to dead-time effects; following a recorded event on a counter there 

is a constant period during which no other events can be recorded. 

Thus events from all three processes are lost to observation. The 

estimation of the rates of the three Poisson processes usually involves 

the use of either the covariance between the numbers of recorded events 

on the two counters in a given time interval, or the coincidence rate; 

that is the rate of pairs of events occurring close together. 

This system is generalised in three ways in order to model the 

true process of disintegrations more realistically: 

(i) Events from the second and third processes are of two types, each 

type invoking a different property in the second counter. 

(ii) An event from the third process occurs on the second counter an 

exponentially distributed period after its occurrence on the 

first counter. 

(iii) Each event on either counter is displaced by a random amount. 

The coincidence rate is calculated for generalisations (i), (ii) 

and (iii), the covariance function for generalisations (ii) and (iii). 

Two univariate counting systems are also considered; they are 
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(iv) When all three processes in (ii) are recorded on a single 

counter. 

(v) When the rate of events into a counter is decaying exponentially. 

The expected number of recorded events in a given interval is 

calculated for (iv) and the expectation and variance for (v). 
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THE PRINCE AND THE MAGICIAN 

Once upon a time there was a young prince, who believed in all 

things but three. He did not believe in princesses, he did not 

believe in islands, he did not believe in God. His father, the King, 

told him that such things did not exist. As there were .no princesses 

or islands in his father's domaines, and no sign of God, the young 

prince believed his father. 

But then, one day, the prince ran away from his palace. He 

came to the next land. There, to his astonishment, from every coast 

he saw islands, and on these islands, strange and troubling creatures 

whom he dared not name. As he was searching for a boat, a man in full 

evening dress approached him along the shore. 

'Are those real islands?' asked the young prince. 

'Of course they are real islands,' said the man in evening dress. 

'And those strange and troubling creatures?' 

'They are all genuine and authentic princesses.' 

'Then God also must exist!' cried the prince. 

'I am God,' replied the man in full evening dress, with a bow. 

The young prince returned home as quickly as he could. 

'So you are back,' said his father, the king. 

'I have seen islands, I have seen princesses, I have seen God,' 

said the prince reproachfully. 

The king was unmoved. 

'Neither real islands, nor real princesses, nor a real God, exist.' 

'I saw them:' 

'Tell me how God was dressed.' 

'God was in full evening dress.' 

9 
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'Were the sleeves of his coat rolled back?' 

The prince remembered that they had been. The king smiled. 

'That is the uniform of a magician. You have been deceived.' 

At this, the prince returned to the next land, and went to the 

same shore, where once again he came upon the man in full evening dress. 

'My father the king has told me who you are,' said the young 

prince indignantly. 'You deceived me last time, but not again. Now 

I know that those are not real islands and real princesses, because 

you are a magician.' 

The man on the shore smiled. 

'It is you who are deceived, my boy. In your father's kingdom 

there are many islands and many princesses. But you are under your 

father's spell, so you cannot see them.' 

The prince returned pensively home. When he saw his father he 

looked him in the eyes. 

'Father, is it true that you are not a real king, but only a 

magician?' 

The king smiled and rolled back his sleeves. 

'Yes, my son, I am only a magician.' 

'Then the man on the shore was God.' 

'The man on the shore was another magician.' 

'I must know the real truth, the truth beyond magic.' 

'There is no truth beyond magic,' said the king. 

The prince was full of sadness. 

He said, 'I will kill myself.' 

The king by magic caused death to appear. Death stood in the 

door and beckoned to the prince. The prince shuddered. He remembered 

the beautiful but unreal islands and the unreal but beautiful 

princesses. 
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'Very well,' he said. 'I can bear it.' 

'You see, my son,' said the king, 'You too now begin to be 

a magician.' 

John Fowles, 'The Magus.' 
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CHAPTER 1. A GENERAL INTRODUCTION  

1.1 Simplest Physical Situation 

Consider a source that emits a stream of particles which form a 

Poisson process. An example of such a source is a radio-active 

isotope, the emissions being due to the disintegration process that 

the isotope is continually undergoing. If the disintegration rate, 

the rate of the Poisson process, is unknown, then it is of importance 

to estimate it. The procedures for this estimation fall into two 

broad categories, which are distinguished by the way in which we 

observe the process. Either we look at the time intervals between 

successive emissions or we may count the number of emissions in a given 

time interval. The former is impracticable, in the context of the above 

example with which we shall be concerned, due to the high rates involved. 

The reason is that the intervals between the emissions are then too 

small to be measured accurately and too many to be stored feasibly. 

Given that we are counting numbers of emissions we examine the 

properties of the counting mechanism, namely an electronic counter. 

Ideally we would require the counter to record whenever an emitted 

particle reaches and passes through it. Unfortunately real counters 

are not perfect, and for the purpose of illustrating these imperfections 

the counting mechanism considered here consists of two distinct components 

in series: a detector followed by the counter itself. The effect of the 

detector is such that whenever an emission occurs it is only detected 

and so allowed to pass through to the counter with a certain probability, 

which is less than unity and known as the efficiency of the counter. 

This efficiency is unknown. Furthermore the detection of each emission 

is independent of the detection of all other emissions. We now turn our 



13 

attention to the second of the two components, the counter itself. 

This suffers from dead-time effects. Following a recorded emission, 

the counter is dead for a time during which no further events can be 

recorded. Basically, two types of dead-time are usually considered: 

(i) The non-extended type where emissions occurring within a dead-time 

have no effect on the dead-time. 

(ii) The extended type where emissions occurring within a dead-time 

induce more dead-times and so prolong the existing dead-time. 

Both types are approximations to the true dead-time behaviour of a 

counter, but type (i) is usually considered the closer approximation, 

particularly if the dead-time is of constant length, T say. For this 

reason constant dead-times of type (i) will be considered throughout 

this thesis except in the final chapter, which has no immediate practical 

consequence but is of great theoretical importance. 

1.2 One Counter  

Much statistical/probabilistic work has been done on the single 

counter system, particularly in the 1950's. Albert and Nelson (1953) 

noted that true dead-time behaviour is a compromise between the type 

(i) and type (ii) counters of section 1.1. They modelled such a 

compromise by assuming that the dead-time behaviour of their counter was 

type (ii) with each induced dead-time being of constant length, except 

that an event during a dead-time only induces another dead-time with a 

certain fixed probability. They then proceeded to determine the 

distribution of the number of recorded events and a confidence interval 

for the rate of events into the counter, assuming the process of events 

to be Poisson. Takācs (1958) also determined the distribution of the 
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number of recorded events for this problem but with random dead-times. 

Hammersley (1953) discussed the problems of counting blood cells 

electronically. The counting system Hammersley considered is 

equivalent to one in which a Poisson process of events is transformed 

in sequence first by a type (ii) counter and then by a type (i) counter; 

the dead-times of both counters being of random length. Hammersley 

investigated the univariate distributions of events before and after 

type (i) deletion; his approach was unusual and complex in that he 

substituted the circumference of a circle for the investigated time 

interval. The two distributions of recorded events, before and after 

type (i) deletion, was found to be asymptotically normal as the 

circumference of the circle tends to infinity; the asymptotic means 

and variances were also calculated. Takācs (1956) used much simpler 

methods to treat the same problems, and obtained a slightly different 

result from Hammersley for the limiting variance of the number of recorded 

events after type (i) deletion, in a given interval, as the length of 

the interval tends to infinity. This section of the literature is 

neatly tied up by Smith (1957) and Pyke (1958). Smith solved 

Hammersley's (1953) problem by renewal type arguments and also noted 

that the asymptotic variance mentioned above was erroneous. Pyke 

considered type (i) and type (ii) counters in a general renewal frame-

work. Many references to the early work on counters may be found in 

Smith (1958). 

However, although the above work is of great theoretical importance 

and many elegant methods have been devised to tackle one counter problems, 

from our practical viewpoint they are of little use. This is because 

the detector in the counting system ensures that the rate of events 

into the counter is not a, the parameter of interest, but As, where c 

is the efficiency of the detector and is unknown. Clearly the single 
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counter system is inadequate for the purpose of estimating the rate of 

disintegrations A. 

1.3 Two Counters  

1.3.1 A More Practicable Counting System 

Each emission described in section 1.1 in fact consists of two 

particles, a beta particle and a gamma particle. We can use this 

property of the disintegration process by introducing a second counter. 

One counter is made insensitive to beta particles while the other is 

made insensitive to gamma particles. Because of the differences in 

response of the detectors to the beta and gamma particles and because 

of other possible differences between the two counters, we denote the 

efficiency of the beta counter by es  and the constant dead-time by T
V 

 

with eY  and TY -denoting corresponding parameters for the gamma counter. 

Since the detectors on the two counters work independently there are 

three types of event which may occur at the detectors following an 

emission, 

(i) a beta particle only is detected with rate 

as 	Acs(1 — e. )  

(ii) a gamma particle only is detected with rate 

A 	= XsY(1 - es) 

(iii) a beta-gamma pair of particles is detected with rate 
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Thus, so far as the counters are concerned, the original Poisson 

process of rate A is equivalent to the superposition of three 

independent Poisson processes of rates X , ) and X ,. By looking 

solely at the beta counter it is possible to estimate the rate of 

particles entering that counter, as  + X , and similarly for the gamma 

counter. However, to estimate all three parameters, that is X , A 

and A ,, or equivalently A, es  and e., a measurement which is affected 

by dependence between the two counters has to be taken. This dependence 

is caused by the simultaneous events of rate A 
Y
. The most commonly 

used methods of incorporating such a measurement into the estimation 

procedure are those of coincidence counting and covariance calculation. 

1.3.2 Coincidence Counting 

A third counter, known as a coincidence counter, may be connected 

to the beta and gamma counters so that the sequence of events recorded 

by the coincidence counter is obtained by superimposing that sequence 

recorded on the beta counter, upon that sequence recorded on the gamma 

counter. A coincident event then occurs whenever there is an event 

simultaneously on each counter, i.e. a double event on the coincidence 

counter. However, the coincidence counter cannot resolve between two 

events that are separated by some small time interval and therefore a 

count is made of the number of pairs of events that are less than some 

suitable time h apart. If h is chosen so that it is less than the 

minimum dead-time of the two counters, i.e. h < min(TS,Ty) then the two 

events must be recorded on different counters, which is more like a 

coincidence rate. Consequently, the coincidence method will capture 

all the genuine simultaneous events plus some "accidental" coincidences. 

These accidental coincidences are hopefully small in number and this 

number is dependent on the size of the resolving time h. 
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1.3.3 Covariance Calculation  

By measuring the number of recorded events on each of the two 

counters over a given interval of length t and repeating this many 

times the covariance between the two counts may be observed. The main 

advantages of this over coincidence counting are, 

(i) no restrictions are placed on the sizes of dead-times other than 

those imposed by the individual counters, 

(ii) the extra coincidence measurement is no longer needed, all necessary 

information being contained in a sequence of pairs of counts 

obtained from the beta and gamma counters. 

1.4 Problems to be Considered 

The counting system of section 1.3 was considered by Cox and 

Isham (1977) who calculated both the covariance function and the 

coincidence rate for constant dead-times, where the larger of the two 

dead-times is an integer multiple of the smaller, and for exponentially 

distributed dead-times. In this thesis the basic disintegration process 

and counting system of section 1.3 are generalised in three separate 

ways to achieve a slightly more realistic system: 

(i) Two different types of gamma particles are emitted from the source 

and they invoke different properties in the gamma counter; see 

Chapter 2. 

(ii) The gamma particle of each beta-gamma pair is delayed by an 

exponentially distributed period; see Chapter 3. 

(iii) Jitter is allowed to enter the counting mechanism so that 
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simultaneous emissions are never recorded simultaneously; 

see Chapter 3. 

In addition to (i), (ii) and (iii) two univariate systems are 

considered which are relevant to the true physical processes when, 

(iv) the beta and gamma particles of (ii) are indistinguishable and 

have to be recorded on the same counter, see Chapter 4, 

(v) the disintegration rate decays exponentially, see Chapter 5. 

The objective of this thesis is not to provide estimates for the 

disintegration rate A in cases (i)-(v) but to provide properties of the 

numbers of recorded events that may be used in an estimation procedure; 

although a possible estimate for the system of section 1.3 is mentioned in 

section 1.5. The functions of the numbers of recorded events are, 

the expectation for (i)-(v), the variance for (iv), the covariance for 

(ii) and (iii), the coincidence rate for (i)-(iii). The methods used 

successfully by Cox and Isham (1977) will be used to a large extent in 

this work and provides an invaluable basis for the calculations of 

Chapters 2-4. 

Cox and Isham (1977) noted that the leading term in their expression 

for the covariance was the same for constant and exponentially distributed 

dead-times; for the case of constant dead-times, the larger dead-time was 

constrained to be an integer multiple of the smaller dead-times. They 

also conjectured that this leading term could be derived by a simple 

probabilistic argument for arbitrary dead-times. Kingman (1977) 

partially answered this conjecture by proving that the leading term in 

the covariance was the same for any dead-time distribution. However 

Kingman's analysis is elegant but by no means a simple probabilistic 

argument. Similar leading terms appear in the covariances for (ii) and 
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(iii), but no simple probabilistic argument was found here either. 

A wealth of semi-empirical formulae appears in the physical 

literature for a variety of counting systems that include (i)-(v), 

and a short survey may be found in Miller (1973). Perhaps the most 

relevant papers for this thesis are Lewis, Smith and Williams (1973) 

for (ii), (iv) and (v), Williams and Campion (1965) for (iii) and 

Axton and Ryves (1963) for (v). 

1.5 A Possible Estimation Procedure  

....,a, 	 but this still figure, benign, all-powerful, yet 

unable to intervene or speak, able simply to be and constitute. 

John Fowles, "The Magus." 

If we assume that the counting system of section 1.3 is the most 

relevant to a particular practical situation, then assuming the results 

of Cox and Isham (1977), 

(i) the number of recorded events on the beta counter in a given time 

interval can be used to estimate p = as  + X = Xea, 

(ii) the number of recorded events on the gamma counter in a given 

time interval can be used to estimate pY  = 
XY + ASY Ac  

(iii) either the covariance between or the coincidence rate of, the 

number of recorded events on each counter in a given time interval, 

in conjunction with (i) and (ii), can be used to estimate 

XSY  = Ac c . 

If the three estimates given by (i), (ii) and (iii) are denoted by 

Pa' p
Y and ā

13Y 
 then we can estimate A by a, where 
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since 

A = 
PP/X Y RY 

The efficiency on each counter is unknown and yet controllable, so that 

the experiment that gave (i), (ii) and (iii) could be repeated at 

different efficiencies and a number of times at each efficiency. The 

point estimates obtained from a series of experiments could then be 

averaged to produce an overall estimate of the original disintegration 

rate A. 

Unfortunately, as Campion (1959) pointed out the beta counter can 

be slightly sensitive to gamma particles, that is gamma particles are 

occasionally recorded on the beta counter provided the beta particle is 

not recorded. In this case the effective efficiency, or rather the 

effective detection rate on the beta detector is 

ES = ES + (1 — ES)ESY, 

where a is still the probability that a beta is detected and 

(1 - c )E~Y is the probability that the gamma is detected by the beta 

counter, given that the beta is not. If we assume that the beta counter 

gets the chance of detecting the gamma particle first, then the gamma 

particle cannot be detected on both counters. Hence the efficiency of 

the gamma counter is now slightly less than it is in the absence of 

gamma sensitivity of the beta counter. 

If we note that the rate into the beta counter is now 

Ac' = A{l — [1 — Eay] [1 — ea ] } 

and 
ASY/pY 

estimates ES, then by regressing ES on the rate of events 

into the beta counter, an estimate of the original disintegration rate A 

may be found. 
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The above estimation procedure is not discussed further and the 

reader is referred to Lewis, Smith and Williams (1973) for a particular 

case of practical application. We now move to the first of the cases 

(i)-(v) of section 1.4, namely case (i). 



CHAPTER 2. IN AND OUT OF CHANNEL GAMMA EVENTS  

2.1 Physical Reality and Theoretical Representation 

We now generalise the basic model, as described in the introduction, 

by relaxing an unrealistic theoretical constraint. 

The process of events arriving at the counter mechanism is the 

same as that described in the introduction and our generalisation 

concerns the mechanisms response to the gamma stream of particles. 

Each gamma particle emitted from the source has an associated energy 

level. In the gamma counter particles with different energy levels 

invoke differing efficiencies and differing dead-times. To model this 

situation fully, with the purpose of calculating the covariance between 

the beta and gamma counters and/or some sort of coincidence rate, is 

complex. The true situation may be approximated in several ways to 

arrive at a theoretical model; the possibilities include the following: 

(i) We may totally ignore the effects of different energy levels by 

averaging the true efficiencies and dead-times, and using these 

averages in the model of section 1.3 of the General Introduction. 

Thus 

efficiency 	a particle having 
eY  = 	a t each 	pr 	a corresponding 	, 

levels 	different level 	energy level 

dead-time 	a particle having 
TY  = 	L 	at each 	pr 	a corresponding 

levels 	different level 	energy level 

But, to acknowledge the different energy levels by ignoring their 

effects, is no step forward. 

22 
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(ii) We may partially ignore the effects of different energy levels 

by accepting differing efficiencies, but assuming identical 

dead-time reaction to all gamma particles, regardless of their 

energy level. This may be achieved either by the averaging process 

of (i), applied only to the dead-time, and implementation of this 

average as the effective dead-time in the model, or by physically 

setting all the dead-times equal to the largest dead-time. 

(iii) We may compromise between modelling the true physical situation and 

that proposed in (i) by grouping the different energy levels into 

two bands, and treating each band as in (i). This is particularly 

appropriate when we are interested in those gamma particles whose 

energy levels fall inside a certain band of energies, so-called 

in-channel gamma particles. Those particles whose energy levels 

fall outside this particular band are referred to as out-of-channel 

gamma particles. The counting mechanism is then assumed to react 

to all in-channel particles in the same way and to all out-of-

channel particles in a different way. 

Cox and Isham (1977) calculated the covariance between the beta 

and gamma counts and the coincidence rate between beta's and in-channel 

gamma's when the in-channel and out-of-channel dead-times are equal. 

In the rest of this chapter we shall relax the assumption of equal 

dead-times to obtain a slightly more realistic model for the problem of 

different energy levels. 

Superficially it would appear advantageous to set the gamma counter 

mechanism to react only to in-channel gamma particles. However, if this 

were the case, then whenever a gamma particle entered the mechanism, 

the mechanism would first have to decide whether or not the particle's 

energy level is such that it is classified as in-channel or out-of-channel. 
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During the time that this decision process is in operation the mechanism 

would be unable to count any other gamma particles that happen to 

arrive. In effect the mechanism would be dead. Therefore the out-of-

channel particles cannot be ignored, for otherwise the rate of 

in-channel particles emitted by the detector would no longer be equal 

to the rate of in-channel particles arriving at the counter, assuming 

that the classification process takes place between the detection and 

counting stages. (In (iii), the decision process time is added to 

the true dead-time, resulting in the effective dead-time.) 

We now develop the model proposed in (iii). In addition to the 

total count on the gamma counter we are able to record the number of 

in-channel gamma particles, and hence the number of out-of-channel 

gamma particles that occur in any given time interval. Due to the 

action of the detectors the original Poisson process can be considered 

as consisting of five independent Poisson processes. If we define 

in to be the probability that a particular gamma particle is an 

in-channel gamma particle, and eyin to be the efficiency of the gamma 

detector to an in-channel gamma particle, then assuming corresponding 

results for out-of-channel particles, the five different types of event 

corresponding to the five independent processes which may occur at the 

detectors are the arrival of 

(i) a beta particle only, detected with rate . 

As = ke(1 	c  . )p. +Xes(1 - e'rout)pout' 

(ii) an in-channel gamma particle only, detected with rate 

Xyin = Xe  yin pin(1 -) , 
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(iii) an out-of-channel gamma particle only, detected with rate 

xyout 	Aeyoutp out (1 	es
) 

(iv) a beta particle with an in-channel gamma particle, i.e. a true 

in-channel coincidence, detected with rate 

A
$yin 	~1eae  Yin pin 

(v) a beta particle with an out-of-channel gamma particle, i.e. a true 

out-of-channel coincidence, detected with rate 

A
Ryout 	AE 5 youtpout 

In the above formulation there are four independent parameters 

A, es, eyinpin 
and e

youtpout. Therefore to estimate the original 

disintegration rate A, four independent measurements on the counting 

system are required. These may be chosen from the following (see 

section 2.5), 

(i) the expected number of recorded beta particles in a given time 

interval, 

(ii) the expected number of recorded (a) in-channel, (b) out-of-channel 

and (c) all, gamma particles in a given time interval, 

(iii) the coincidence rate between beta particles and (a) in-channel, 

(b) out-of-channel and (c) all, gamma particles. 

It should be noted that, in (ii) and (iii), any two functions 

readily give the third by simple addition or subtraction. 
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For notational convenience, we relabel S E 1, yin  = 2 and 
yout 

E 3, 

the beta counter as counter 1 and the gamma counter as counter 2. 

However, the physical interpretation of all events will be kept, i.e. 

Al2 
will still be referred to as a true in-channel coincidence. 

2.2 The Expectation on Each Counter 

If Ni(t) is defined to be the total number of recorded events in 

time t, on counter i for i = 1,2, then Ni(t) may be represented as 

t 

Ni(t) = f dNi(u), 
0 

for i = 1,2 	(2.1) 

Therefore, if the processes on each counter are in statistical 

equilibrium at the start of the interval (0,t), and if pi  denotes the 

equilibrium probability that counter i is open for i = 1,2, then taking 

expectations through (2.1) we have that for i = 1,2, 

t 

E{Ni(t)} = f pr{dN.(u) = 
0 

1} 

t 

= f p.(total rate on counter i)du . 	(2.2) 
0 

The total rate on counter 1 is 
pl 	X1 

and the total rate on counter 2 is p23 

= A2 + Al2 + p3. Thus calculating the 

+X12 +  A13 	p12 + X13 	p13 +  Al2 

= X2 + X3 + Al2 + A13 	p2 + A3 +X13  

expectations reduces to calculating 

the equilibrium probabilities pi  for i 

Now the sequence of states on cou 

exponentially distributed open periods 

constant length T1. On counter 2 the 

between exponentially distributed open 

= 1 and 2. 

nter 1 alternates between 

of mean -1  p 	and dead-times of 
1 

sequence of states alternates 

1  periods of mean p
23 

and dead- 
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times of variable length T, where 

T = ti  with probability pip23-1 
	

for i = 2,3. 

Hence the equilibrium probabilities that the counters are open are 

(i) for counter 1, 

p1  = pll{(pl-1 + 
T1)}1  = (1 + p1T1)-1 

(2.3) 

(ii) for counter 2, 

p2 = p23-1tp23-1  + E(T)1-1 = (1 + p2T2  + p3T3.)-1. 

(2.4) 

The expectations may now be calculated using (2.2)-(2.4), 

E{N1(t)} = l p1p1du 
0 

= pipit = Pita + piTi)-1  , 	(2.5) 

and 

t 

E{N2(t)} = 
0f 

p2p23
du = p2p23t 	p23t(1 + p2T2  + p3T3)

-1 
 . 

(2.6) 

It may be seen that E{N2(t)} is the sum of two components, E{N21(t)} 

the expected number of in-channel gamma particles that are recorded in 

(0,t], and E{N23(t)} the expected number of out-of-channel gamma 

particles that are recorded in (0,t]. We have that 

E{N2.(t)} = pit(1 + p2T2  + p3T3)-1  , for i = 2,3. (2.6a) 

Some measure of the dependence between the two counters is now calculated. 
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2.3 The Possible States of the Counting System 

To calculate the coincidence rates we need to obtain the probability 

that both counters are open simultaneously and, if a counter is closed, 

when the counter reopens. So, if either counter is closed we need to 

know how long it has been closed; and for counter 2 we also need to 

know which type of event closed it, an in-channel or an out-of-channel 

event, due to the differing dead-times associated with these events. 

Thus, the following state probabilities and probability densities are 

defined: 

(i) P12,  the joint probability that both counters are open; 

(ii) qi(u), the joint probability density that counter 1 has been 

closed for a period u, 0 < u < T1, and counter 2 is open; 

(iii) g2i(v), the joint probability density that counter 1 is open and 

that counter 2 has been closed for a period v; 0 < v < T., where 
— — 

the event that caused the closure is (a) in-channel (i = 2) or 

(b) out-of-channel (i = 3), 

(iv) (112i(u,v), 
 the joint probability density that counter 1 has been 

closed for a period u, 0 < u < T1, and that counter 2 has been 

closed for a period v, 0 < v <'T., where the event that caused the 

closure is (a) in-channel (i = 2) or (b) out-of-channel (i = 3). 

Thereforesthere are six possible states for the counting system, 

and to calculate the corresponding state probabilities defined above, 

the equilibrium equations representing the possible transitions from 

one state to another, may be set up as follows. First 

(2.7) 
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where the period that both counters are open simultaneously is 

exponentially distributed with mean p—1, p = X1  + X2 + X3 + x`12 + X13.  

Also, we have that 

dgl(u) 

du 	= -p23g1(u) + (1122(u.'T2 )  + g123 

dg2i
(u)  

du 	p1g2i(u)  + g12i(Tl'u) ' 

3. (u,v) 	ag12i
(u,v) 

au 	8v = 0 , 

(u,T3), 	(2.8) 

i = 2,3, 	 (2.9) 

i = 2,3 . 	 (2.10) 

A set of boundary conditions corresponding to the instant when 

one of the counters becomes blocked, may also be formulated, 

q1(0)  = p12A1 , 	q21 
JO) = p12A. 

 , i = 2,3, 	 (2.11) 

g12i(u,0) = pigl(u), c12i(°,v) = Picl2i(v)' i = 2,3. 	(2.12) 

Because both counters may be closed simultaneously with non-zero 

probability, then g12i(u,v) for i = 2,3 may be separated into 

g12i(u'v)  = g12is(u)6 (u—v) + g121c(u,v) (2.13) 

where S(•) is the Dirac delta function, and both g12is(u)  and  g12ic(u,v) 

are absolutely continuous. The simultaneous closing of both counters 

may now be expressed as 

c1. 6a) = 	.P 
121s  

i = 2,3 . 	 (2.14) 



du 	-p23q1(u)+ 
dg1(u) 
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There may be up to two more boundary conditions, depending on the 

relative sizes of the three dead-times, and caused by possible 

simultaneous closure of both counters. Thus, for the counter with the 

largest dead-time, the probability density that it is closed and the 

other counter is open, has a discontinuity when the period of closure is 

equal to the smallest of the three dead-times, and possibly the median. 

For example, if Ti  > T2  > T3, then 

gl(T3+) 	g1(r3  ) + p12X13' 

g1(T2+) = g1(T2  ) + p12A1  

To calculate the coincidence rate we need only find p12,g1(u) and 

q2i(v) for i = 2,3 (see section 2.4). With this objective we eliminate 

the joint probability densities g12i(u,v), for i = 2,3, from equations 

(2.8) and (2.9). 

The solution of (2.10) subject to (2.12) is for i = 2,3 

g12ic(u,v) = 
for u > v 

 

P q .(v-u) for v > u. 

Upon substitution into (2.8) and (2.9) we find that for i = 2,3, 

p3g1(u-T3) for u > T3 	p2g1(u-T2) for u > 1-2  

p1g23(T3-u) for u < T3 	p1g22(T2-u) for u < T2 

(2.15) 



I.  

plg2i(v-Tl) 	for v > T1  

dg2i(v)  

dv 	p1g2i(v) + 

p.g1(T
1-v) 	for T1  > V. 

(2.16) 

and 
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The solution of (2.15) and (2.16) greatly simplifies if the two larger 

dead-times are integer multiples of the smallest dead-time. Therefore, 

we assume that 11  = MT, T2  = nT and T3  = 2T where £,m and n are 

positive integers such that min(Q,m,n) = 1. The ranges of R, m and n 

that will be considered are m > n > 2 and n > m > Q with the exception 

of Q = m = n which has been dealt with by Cox and Isham (1977). Note 

that some ranges are omitted, these are (a) the minimum of the two 

gamma channel dead-times is greater than the beta dead-time, i.e. 

min(T2'T3) > T1,  which is physically improbable, (b) the out-of-channel 

dead-time being at least as large as the beta dead-time which in turn is 

at least as large as the in-channel dead-time, i.e. T3  >T1  > T2, and 

(c) the in-channel dead-time being less than the out-of-channel dead-

time which in turn is less than the beta dead-time, i.e. T1  > T3  > T2.  

Note that ranges (b) and (c) may be obtained by interchanging the 

physical interpretation of 3 = out-of-channel and 2 = in-channel. 

To calculate the coincidence rates, ql(u) and q2i(v) for i = 2,3 

are required, see section 2.4. However, exact closed form solutions are 

not attempted for these probability densities. Instead, the range of 

each density is split into integer multiples of the smallest dead-time 

of the two counters, and separate first order Taylor expansions of each 

density are made within each section of the range. It is assumed that 

(pl) is small, so that terms of order (pT)2  may be neglected; such 

terms will be omitted throughout the rest of this section. Thus 
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approximate forms for the probability densities q1(u) and g2i(v), 

i = 2,3, are calculated for combinations of the relative sizes of the 

three dead-times T1, 12  and 13. We have that for T1  > 1.2  > T3, i.e. 

m > n and n > 1, (2.15) and (2.16) are 

p1g22(T2-u)+p1g23(T3-u) 	for 0<u<r3  

dg1(u) - 

du 	p23g1(u) + 
	p1g22(T2-u)+P3g1(u-T3) 	for T3  <u< 

p2g1(u-T2) + P3g1(u-T3) 	for
1.2<u<T1 

(2.17) 

and for i = 2,3 

dg2i(v)  

dv 	
-p1g2i(v) + pi

gl(T
1-v), 	for 0 < v < Ti  . (2.18) 

In addition to the boundary conditions (2.11), we have discontinuity 

conditions 

g1(T3+) = g1(T3 ) + 1112A1 

and 

+ = q1(T2) 	gl(T2 ) + p12X12 ' 
(2.19) 

Therefore, the solution of (2.17) and (2.18), subject to (2.11) and 

(2.19), yields approximate forms for the probability densities q1(u) 

and q2i(v), i = 2,3, when T1  > T2  > T3, as follows: 
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r A 1+a1u 

(A1+X13
)+a1T3+a2(u-T3) 

(1
1+A13)+{

al+a2+(r-3)a3}T3+a3{u-(r-1)T3
} 

pl
+{al+a

2+(n-2)a3}T3+a4(u-nT3)  

0<u<T3  

T3<u<2T3  

(r-1)T3<u<rt3  

for r = 3,...,n 

T2<u<(n+1)T3  

ql(u)=p12  

p1+{a1+a2+(n-2)a3+a4+(s-n-2)a5}T3+ 

p1+{a1
+a2+(n-2)a3+a4+(n-1)a

5}T3  

u-(s-1)T3} (s-1)T3<u<sT3  

for s=n+2,...,2n 

2nT3<u<T1; 

(2.20) 

where 

al  = pl(A2+A3) - Al(p2+p3), 	a2  = Al2
"

2-x1) - X13(12+p3) ' 

a3  = X12(p2-p1), 

a5 = -Al2p2 • 

84 = -Al2°12p23 + X13p2)  '  

If n = 2, then the third line in (2.20) is omitted, and if m < 2n, then 

the sixth line in (2.20) is omitted and the range in the fifth line is 

replaced by s = n+2,...,m. 	The in-channel probability density is 

r A2  + Al2plu 	0<u<T
l
-T2 

g22(u) = P12 (2.21) 

A2  + Al2p2(T1-T2) + Al2(p1-p2)u T1-T2<u<T2  . 

where the second line in (2.21) is omitted if T1  > 2T2. 	The out-of- 

channel probability density is 
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g23(v) = P12(X3+X13p1V), 	0 < V < T3  . (2.22) 

The next range of dead-times to be considered is when the two gamma 

channel dead-times are equal, but are smaller than the beta dead-time, 

i.e. Ti  > T2  = 13. The equilibrium equation for the beta probability 

density, (2.15), becomes 

p0
22(T3-11) + p023

(T3-u) 

dgl(u) 

du = p23g1(u)  
p2g1(u-T3) + p3g1(u-T3) 

0<u < T3  

T3
<u<T1 , 

(2.23) 

and the equilibrium equations for the two gamma probability densities 

(2.16) are given by (2.18) as before. The sole discontinuity condition 

is on the beta probability density, and is 

1
41(13+) = gl(T3  ) + 13

12(X12  + 
A13) 

 . 
	(2.23a) 

Therefore the solution of (2.18) and (2.23) subject to (2.11) and (2.23a) 

yields approximate forms for the probability densities q1(u) and 

q2i(v)  i = 2,3,  when Ti  > T2  = T3, as follows: 

X1  + X1.(p23-p1)u 	0 < u < T3  

ql(u) = P12 	pl + X1•(21323 p1)T3-1323X
1.0 	T3  < u < 213  

L 
pl 	p1X1•T3 	 21

3 < u  < T1 

provided Ti  > 2T3 ,  

(2.24) 
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where X1,  = X12 + X13' 
and 

g22(v) = P1.2A2 + p12{p1X12 + A2
(p
l -P23 )1v 

0 < U < T3  = T2,  

(2.25) 

g23(v) = 
P12A3 + p12

{  + A3(p
1 
 p23)}v 0 < u <T3  . 

(2.26) 

When the beta and in-channel gamma dead-times are equal and greater 

than the out-of-channel gamma dead-time, i.e. Ti  = T2  > T3, the 

equilibrium equations for the two gamma probability densities are again 

given by (2.18), but that for the beta probability density is now 

1 p1g22(T1
-u) + p1g23(T3-u) 	0 < u < T3  

dg (u) 	i 

du 	
-p23g1(u) +4 

1  

iLp
1g22(T1-u) + 

p3q1(u-T3) 
	

T3  < u < T1  . 

(2.27) 

With the boundary conditions (2.11) and the discontinuity condition 

g1(T3+) = g1(T3  ) + p12A1  

the three equations (2.18) and (2.25) give, for Ti  = T2  > T3, the beta 

probability density q1(u) as 

+ a l ,(p23-p1)u 0<u<T3  

13 + {A (131-A1) +A
3A1.}T3+{Al2(p2 p1)-A13p3}u T3<u<2T3  q1(u) = P12 

p13. + {A13( 
-p

13 
)+X

3 
2T3<u<T1  

provided T1>213, 

(2.28) 



g22(v) = P12 

X2+a13p2(T1-T3)+(a
1
Al2-A211,)v f. 

X2
+a12(p1-p2)v 0<v<T-T 1 3  

T1-T3 	1  <V<T -T2, 

the in-channel gamma probability density g22(v) as 
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(2.29) 

and, finally, the out-of-channel probability density g23(v) as 

g23(v)  = P12X3+P12(A13p13-X3Al2)v  
0<v<T

3 . 

(2.30) 

The penultimate range of dead-times that will be considered occurs 

when the in-channel gamma dead-time is larger than the beta dead-time, 

which in turn is larger than the out-of-channel gamma dead-time, i.e. 

T2  > T
1 

>
3' 
 Within this range the equilibrium equations (2.15) and 

(2.16) for q1(u) and g22(v) respectively, become 

p1g22(T2-u)+p1g23(T3-u) 	0<u<T3  

dgl(u) 

du 	
p23g1(u) + 

p1g22(T2 u)+p3g1(u-T3) 	T
3 
 <11<T 

(2.31) 

and 

p 2g1(T1-v) 0<V<T1 

dg22(v)  

- 
dv 	

Pi 	
(v) +{ 

lplg22(v-T1)  
T1<V<T2  . 

(2.32) 
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The equilibrium equation for g23(v) remains as (2.18) for i = 3. 

The discontinuity conditions reflect the behaviour on both counters, 

and are 

gl(T3
+ 
 ) _gl(T3  ) + P12X13, 

(2.33) 

g22(T1
+) 	

g22(T1 ) + P1.2Al2 • 

The solution of (2.31) and (2.32) subject to (2.11) and (2.33) is in two 

parts depending on the relative sizes of Ti  and T2  subject to T2  > T1. 

We have that for T2  = T1  + 	the the beta probability density q1(u) is 

X1  + CP23X 	- Xl3Pl)u 	 0<u<T
3 

ql(u) = P12 	P13 + {X
13p2+X12(P13+p3)}T3+{Al2(p2-p1)-X13P13}u 

T3<u<2T3  

p13 {X
12(P12+P

3)±X13 3-2P13)}T3
+X12(p2-pl)u 2T3<u<T1 

provided T1>2T3, 

(2.34) 

•ānd• When T2 
> Tl + T3  

Al + (P23X1. - P1X13)u 0<u<T
3  

ql(u) P12 P13 +A1323 (P 	 p1)}T3+"12P2 X13p3)u  
T3<u<2T3  

p13  + {X
12p3+2X12P1+X13(P2 p1

)}T3+X12(p2  pl)u 2T3<u<T1 

provided T1>2T3  . 

(2.35) 
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However, both the gamma probability densities have single forms when 

T2  > T1  > T3, for 

 

X2+X12(p1  p2)v  

A2 13p2(T1 T3) + (A1p2-X2p1)v  

1°2 + (2p13-X2+Al2)T1-X13p2T3-X12p1v 

P2 Al2P2T1-(A13p2+Al2p1)T3 

O<v<T
-T 1 3 

T1-T3<v<Tl 

T1<V<2T1  

2T
1<V<T2 

provided T2>2T1  , 

g22(v) = P12 

(2.36) 

and 

q23(v) = P12A3 + p12
(A

13
p
13 	A3Al2)v  

0<v<T3  . 

(2.37) 

Finally, we consider the case when the beta dead-time is equal to 

the out-of-channel dead-time but smaller than the in-channel dead-time, 

i.e. 12  > Ti  = 13. The equilibrium equations for the counter probability 

densities 

dcgl(u) 

q1(u) and g22(v), (2.15) and (2.16), when T2  > T1  = T3  are 

= 	1323g1(u) + 131'422(1.2-u)+ 
 p1g23(T3-u) 	(2.38) 

du 

and 

p 2gKT3-v) 0<v<T3  
dg22(v) 

p1(I22(v) + 

p1g22(v-T3) T3<V<T2  • 

(2.39) 
du 
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The single discontinuity condition corresponding to this range 

of dead-times refers to the in-channel probability density 

g22(T3

+ 

	= ) 	g22(1.3 ) + P1 12 
(2.40) 

To calculate the three counter state probability densities 

ql(u), 
 g2i(v), i = 2,3, for T2  > Ti  = T3, we solve (2.18) for i = 3 

and (2.38), (2.39) subject to (2.11) and (2.40). Therefore 

q1(u) = 
P12X1 + P12 
	

37X13)X1A13
}11 	0 < u < T1  = T3  , (2.41) 

(X1Al2-X2X1.)v 	 0<v<T3  

(1
22(v) = P12 

	+1X12(a
1+131)-A2a1./T3 

- Al2ply 	T3<v<2T3  

2 p2X1•T3 
2T<v<T 3 	2 
provided T2>2T3  

(2.42) 
and 

g23(v) = 
P12X3 + P12(A1X13-A3a1_)v 

0<v<T3=T1 

(2.43) 

Having calculated the three counter state probability densities 

ql(u), 
 g2i(v) for i = 2,3 for a variety of cases, dependent on the 

relative sizes of the three dead-times T1, T2  and T3,  we can now 

calculate three coincidence rates. These three coincidence rates are 

between the beta and in-channel gamma, the beta and out-of-channel gamma, 

and consequently the beta and total gamma, series of recorded events. 
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2.4 The Coincidence Rate  

As in the Introduction, a coincidence is defined to be the 

occurrence in the combined output of the two counters of two recorded 

events within a time span h of each other. The coincidence rate is 

calculated for h < min(1-1,T2,T3), so that the coincident events are 

from different counters. Formally, the coincidence rate is defined to be 

pr~a recorded event on one counter in (0,6h) 	j, 

lim 	
and a recorded event on the other counter in [0,h)  

Sh-*O 

Given that we require a recorded event in [O,Sh) there must be at 

least one counter 	open at 0. Then the possible states for the two 

counters at 0 are: 

(i) Both are open, with probability p
12. 

(ii) Counter 1 has been closed for u and counter 2 is open, with 

probability density ql(u). 

(iii) Counter 1 is open 	and counter 2 has been closed for v the 

closing event being of type i, with probability density g2i(v) 

i = 2,3. 

Now there are three ways in which an in-channel coincidence may occur: 

(i)' A beta in [0,Sh) and an in-channel gamma in [0,Sh). 

(ii)' A beta in [O,(Sh) and an in-channel gamma in [Sh,h). 

(iii)' A beta in [Sh,h) and an in-channel gamma in [0,Sh). 

Corresponding to state (i) the sum of the rates corresponding to the 

three ways (i)', (ii)' and (iii)' is 

6h 



and 

f 	p1g22(v)p2p23[1 - exp{
-p23(h-T2+v)}]dv for i = 2 	(2.46) 

T2  h 
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P122'12 + P12 
Z 

(1 - e p23h) + P12 
P
23  

-plh 
(1 - e 	) , 	(2.44) 

while from state (ii) the only contribution is from way (iii)', and is 

Ti  

f
p2g1(u)[1 --exp{-pl(h-T1+u)}]du , 

T 
1
-h 

(2.45 ) 

since the counter reopens at T1-u. 

Corresponding to state (iii) the only contribution is from way (ii)', 

so that we have 

T2  

73  
I 	p1g23(v)p2p23[1 - 

exp{-p23(h-73
+v)}]dv 	for i = 3. 	(2.47) 

T3-h 

In total, the in-channel coincidence rate is therefore the sum of 

(2.44)-(2.47), and is 

-p h 	-p h 

P12)'12 + P12A1p2p23(1 - e 23  ) 	p12A2(1 	e 1  ) 

1f+ 	 T2 

T1-h p2g1(u)[1-
exp{-p1(h-T1+u)}]du + f 

-h p
1p2p23g22(v)[1-

exp{-p23(h-T2+v)}]dv 

2 
T3  

(2.48) 
+ f 	plp2p23g23(v)[1-exp{-p23(h-T3+v)}]dv.  

T3-h 
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Neglecting terms of order (ph)3  the six terms of (2.48) are reduced to 

_ 	2 h2 	
3 	h2  

+A2p1)h 	p12(A1p2p23+A2p1 ) 2 
+ 
Pl2P1P2IP- 

 1
E Ali6(T1,Ti)}  2 

(2.50) 

for T1  and T2  integer multiples of T3  such that min(T1,T2) > T3,  except 

T1  = T2  = T3  and where 

S(T1,T.) = 

0 	otherwise.  

i = 2 or 3, 

(2.51) 

1 
	

for T1  = Ti, 

The out-of-channel coincidence rate may be obtained by substituting 

A13 
for A

l2, 
 A3 for A2  and therefore p3  for p2. The total coincidence 

rate between a beta particle and any gamma particle is then obtained 

upon summation of the in-channel and out-of-channel coincidence rates, i.e. 

h 

p12"12
+a13)+p12a1(1-e 

p23 
) + p12(X2+A3)(1-e plh) 

T1 	 T2  

+ (p2+p3)f 	g1(u)[l-exp{-pl(h-T1+u)}ldu + plf 	g22(v)[1-exp{-P23(h-T2+v)}]dv 
T1-h 	 T2-h 

T3  

+ p
1  f 
	g23(v)[1-exp{-p23(h-T2+v)}ldv . 
T3-h 

(2.52) 

Upon neglecting terms of order (ph)3  in (2.52) the total coincidence rate 

is approximated by 
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p12(Al2+X13) 
+ pl2{alp23 + (a2+X3)pl}h 	

p12 
	p23+ (X2+X3)p12} 2 

2 

(2.53) 

for T1 and T2 integer multiples of T3 such that min(T1,T2) > T3 with 

the exception of Ti = T2 = T3 and where S(•) is given by (2.51). 

2.5 Conclusion 

In the Introduction, it was noted that, under the assumed model, 

to estimate the rate X of disintegrations, four independent functions of 

the bivariate process of beta and gamma events are needed because of the 

differing effects of in-channel and out-of-channel particles on the 

gamma counter. The four functions may be chosen from the following, 

(i) the expected number of recorded events on the beta counter in time t, 

E{N1(t)} = p1t(1 + p1T1)-1 , 

(ii) the expected number of recorded in-channel gamma events in time t, 

E{N22(t)} = p2t(1 + p2T2 + p3T3)-1 

(iii) the expected number of recorded out-of-channel gamma events in time t, 

E{N~3(t)} = p3t(1 + p2T2 + p3T3)
-1 

(iv) the expected total number of recorded events on the gamma counter 

in time t, 

E{N2(t)} = p23t(1 + p
2T2 + p3T3)

-1 



44 

(v) the in-channel coincidence rate, 

p12'12+1312lP2+a2p1)h- 
2 h2 	3 	h2 +A2p1 ) 

2 + '12 pl {P 	
iE2~lid(c ,Ti ) 2 

(vi) the out-of-channel coincidence rate, 

2 	3 	 2 

p12A13+p12(A
1p3+A3p1)h-p

12(Alp
3p23+A 2 3p1 ) 2 +p12P1P3{P 	iE2A1.6(T1,r.) 2 

(vii) the total coincidence rate, 

2 

p12A1• + P12.“11323+ (A2
+X3)p1}h - 

P1 	23+ (a2+13)P12} 2 

3 	h2 
- E A .rd(T1,r.)} 

C. i=2 

for Ti and Tz integer multiples of 1.3 such that min(T1,T2) > T3, except 

Ti = T2 = T3 and where S(•) is given by (2.51). To apply any of the 

above three coincidence rates, the equilibrium probability that both 

counters are open simultaneously, p12, is needed. To obtain p12, (2.7) 

may be used together with the approximations for q1(u) etc. Perhaps 

more simply we may note that 

	

T.2 	 T3 
P1 = p12 + f g22(v)dv + f g23(v)dv, 

	

0 	0 

and then use the approximation for pl, 

p1 = 1 P1T1 



p12 = p1p2 

1  + X12T1 +  X13T3  I: 

1 + 
Al2T2 + X13T3 

T1  > T2  > T3  

T2  > T1  > T3  . 

together with those for ql(u) etc. This approach leads to 
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Here again terms of order (pT3)2  are neglected. 

Smith (1978), considered in and out-of-channel gamma events and 

derived an estimate for the disintegration rate A based upon the 

following relationship between the three parameters p1, p2  and Al2; 

A 
plp2  

X12  

Since Smith's analysis used the in-channel coincidence rate as calculated 

by Cox and Isham (1977), his results are restricted by equal dead-times 

for in-channel and out-of-channel gamma events. The properties of the 

counts listed above as (i)-(vii) obey no such restriction and the 

estimation of the disintegration rate A is now possible for all ranges 

of dead-time subject to the two largest dead-times being integer 

multiples of the smallest dead-time. The estimation of A is not 

discussed further apart from noting that the three rates p1, p2  and p3  

may be estimated by pl, p2  and p3, where 

n1(t) 

t - ni(t)Ti' 

{t+n23(t)p2T2T3}n22(t) 

P2 	{t-n22(t)T2}{t-n23(t)T3} 
and 

{t+n22(t)p3T2T3}n23
(t)  

p3 	{t-n22(t)T2}{t-n23(t)T3} ' 

P1 

where in the above n1(t), n22(t) and n23(t) are the observed values of 

the variable counts N1(t),  N22(t) and N23(t) respectively. 
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CHAPTER 3. DELAYED STATE AND JITTER 

3.1 Introduction 

Two situations are now considered that are physically quite 

different but which are modelled, mathematically, so as to facilitate 

the use of the same technique of investigation. The two situations will 

be referred to as Delayed State and Jitter, the prime objective being as 

before, to estimate the disintegration rate of the source. 

3.2 Delayed State  

3.2.1 Physical Description of Delayed State  

We now consider an important sub-class of the class of radioactive 

isotopes that disintegrate by emitting pairs consisting of a beta 

particle and a gamma particle. The emissions from isotopes in this 

sub-class are no longer simultaneous, unlike those of section 1.3. But our 

aim is the same, that is to obtain properties of the disintegration 

process essential for estimating the rate of disintegration. 

The gamma particle, known as the daughter, in each pair is delayed 

relative to the beta particle, known as the parent, by a period which 

is exponentially distributed with mean n-1. The parameter n is referred 

to as the half-life of the intermediate state and the parameter X is 

again used to denote the disintegration rate of the source. The beta 

train of particles is passed through one counting mechanism, the gamma 

through another and counts are recorded for the purpose of estimating 

the disintegration rate A. The half-life n is assumed to be known. 

Because each counting mechanism is in two parts, with the actual 

recording of events taking place in the second part, it is perhaps 



-nt1  

ne 	. However, we shall see in section 3.3.4 that the delaying of 

the gamma particle then being held for a time t1  with probability 
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conceptually simpler to regard the beta-gamma emissions as simultaneous 

and to build the delay, in the model of the process, into the detector 

mechanism, rather than modelling the true process with the delay at 

source. In such a model we therefore assume that the detector delays 

the gamma half of a beta-gamma pair by an exponentially distributed 

period only after it has been detected. This is purely a theoretical 

assumption and is not a direct representation of the true physical 

process, but the two situations are entirely equivalent so far as the 

properties of interest are concerned. 

The three types of event which may now occur at the detectors are: 

(i) a beta particle only, detected with rate 

= les(1 — c ) , 

(ii) a gamma particle only, detected with rate 

A 	= Xey(1 - 

gamma only particles is effectively ignored, 

(iii) a beta-gamma pair of particles, detected with rate, 

Aay Aeati  , 

this is a "simultaneous emission" the gamma particle then being 

delayed for a time t2  with probability density ne -

nt2  
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In this manner the original disintegration process of our model, 

being a Poisson process, may be considered to be the sum of three 

independent Poisson processes which are then fed into the relevant 

counters to be recorded. As before three measurements are required 

to estimate the three unknown parameters A , X1  and XSY, and subsequently 

the disintegration rate X. These are the individual counts on the two 

counters and the covariance between them. The covariance measurement 

is preferred to the coincidence calculation for reasons outlined in 

section 1.3.3, and also because of one unavoidable effect due to the 

very nature of the Delayed State problem and the way in which coincidences 

are recorded. This will be described in the following section (however, 

the coincidence rate will also be calculated for the sake of completeness). 

3.2.2 The Main Disadvantage of Coincidence Counting in Delayed State  

When a gamma particle is delayed relative to its "parent" beta 

the choice of a suitable resolving time h for the coincidence counter 

becomes dependent on the delay parameter n. For, in order to have a 

fair chance of capturing both the parent and its corresponding daughter, 

which would constitute a true or genuine coincidence, the resolving 

time h must be at least as big as the mean delay n-1. For some decay 

schemes
-1 n can be many times a typical normal dead-time and therefore 

the dead-times on both counters must be increased to attain the inequality 

h < min(TS ,T Y). (This inequality ensures that the two events comprising 

a coincidence, arise from different counters: see section 1.3.2.) This 

results in the number of events missed due to counter blocking being 

increased, which is clearly undesirable. 



49 

3.3 The Presence of Jitter in Electronic Counting Systems  

3.3.1 Physical Description of Jitter  

The disintegration process and the counter mechanisms are now 

assumed to be the same as described in section 1.3.1, but, because of 

imperfections in the counter mechanisms that until now have been ignored, 

there are no simultaneous events on the counter. 

The gamma of a beta-gamma pair of particles appears to occur a 

time T after the beta, where T has probability density function f (t), 

which is typically of the form shown in Fig. 3.1. 

Fig. 3.1: 	An Example of a Jitter Distribution 
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In Fig. 3.1 the point 0 is the point at which the beta of a beta-

gamma pair of particles occurs, so that a negative t implies the gamma 

is observed before the beta. The two values SS  and S are the maximum 

times by which a gamma may occur before or after a beta from the same 

beta-gamma pair. 

The lack of simultaneous events in Delayed State and Jitter leads 

to a similarity between the two situations, and this similarity will be 

exploited at a later stage; see section 3.3.4. 

3.3.2 The Effect of Jitter  

The effect of jitter is perhaps most easily seen on the coincidence 

counter described in section 1.3.2. In the absence of jitter there are 

two types of coincidence: true and accidental. The main effect of 

jitter is that there are no longer any true coincidences although 

ignoring dead-time effects they will still be recorded as such if 

max(6 ,6 ) < h. For example, in Fig. 3.2 suppose there is a simultaneous 

emission at time point A and the beta particle occurs at A, the gamma 

particle occurring before or at B, which is &. after A. Then if point B 

is before point C, point C being h later than point A, in the absence of 

dead-time effects there will be a recorded coincidence. 
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beta time scale 

gamma time scale 

   

h 	y 

	

X 	 

	

X 	 
A 

a  
Y 

  

   

  

B 	C 

A: simultaneous emission, the beta occurring instantaneously. 

B: furthest point to which the gamma can be delayed. 

C: the end point of the resolving period. 

Fig. 3.2: Possible Arrangement of Events on the 

Coincidence Counter for max(SS,SY) < h. 

The delay of one particle of a pair relative to another is so much 

smaller in Jitter than in Delayed State, that it is feasible in Jitter 

physically to set the resolving time h to satisfy max(SS,SY) < h, 

whereas for Delayed State a similar inequality was not feasible; see 

section 3.2.2. Now it is physically possible to set the resolving 

time h to be smaller than the maximum delay Ss  or S, although the 

effects of Jitter then increase. The extra effects are due mainly to 

pairs of particles that constitute coincidences for max(6 ,SY) < h 

possibly being jittered more than h apart. 
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3.3.3 De-centring the Jitter Distribution 

The maximum time by which a beta of a beta-gamma pair of particles, 

may precede the gamma of the same pair, was defined to be SY  in 

section 3.3.1. If the detector of the beta counting mechanism is 

allowed to delay every beta that is detected by Sy, then the beta will 

never precede the gamma of a beta-gamma pair of particles. Thus f(t), 

the probability density of the original Jitter distribution, will be 

transformed to g(t), the probability density of the de-centred Jitter 

distribution; see Fig. 3.3 and refer to Fig. 3.1. 

9(0, 4 tpiciti 
d+Q- (QtthrJX1 ji - darm hj 

   

t , hrr) 

   

   

    

Sfi 	Y 

Fig. 3.3: A De-centred Jitter Distribution. 
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Traditionally the de-centred distribution g(t) has been used more 

than the distribution f(t). The main advantage of de-centring is that 

it is considerably easier conceptually to consider one particle delayed 

relative to another in a single direction only, rather than two 

directions. For a semi-empirical treatment of de-centred Jitter see 

Williams and Campion (1965). In this form, the Jitter problem becomes 

very similar to that of Delayed State, and would be the same if the 

roles of beta and gamma were interchanged and g(t) were to be an exponential 

distribution. In both problems one particle of a pair of particles is 

delayed relative to another particle of the pair. Also, in both 

problems there is no restriction on the number of particles that may be 

delayed, and so waiting to occur at, any particular instant, although 

the average delay is of an order smaller in Jitter than it is in Delayed 

State. However, we have that delay is bounded in Jitter and unbounded 

in Delayed State. 

In any study of Jitter, certain properties of the Jitter distri- 

bution will have to be estimated. These estimates are then incorporated 

into normal Jitter calculations and used to produce an estimate of the 

disintegration rate. When de-centring, the maximum time by which a 

beta may precede a gamma, g , is estimated and then a displacement of 

this size inserted in the beta train of events to delay each beta that 

is detected, and so de-centre the Jitter distribution. Estimates of 

this de-centred distribution are then used, for example, in the 

calculation of the coincidence rate, to produce an estimate of the 

disintegration rate. It is possible that when de-centring by this 

means, the error associated with estimating ō  , may be compounded with 
Y 

the error associated with the de-centred estimate of the coincidence 

rate, to use the same example as before, to produce a more inaccurate 

estimate than would be obtained if the Jitter distribution was not 
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de-centred; especially if SY were to be underestimated. 

It is the aim of this chapter to produce the theory necessary to 

calculate the expected number of recorded events on each counter, the 

covariance between the two counters and the rate of coincidences, for 

both the normal, and de-centred jitter distributions. By modelling 

the jitter as described in the following section the above functions 

will also be obtained for the Delayed State problem. 

3.3.4 Modelling the Jitter Distribution 

As stated in section 3.3.1 a typical jitter distribution is of 

the form shown in Fig. 3.1. Two points to note are, 

(i) the support of the distribution is finite, i.e. 6 and 6 are both 

finite, and 

(ii) there may be multiple turning points. 

However, we wish to choose the model for the jitter distribution 

to make the theory tractable enough, to treat the normal and de-centred 

distributions in the same way, and yet keep the essential properties of 

the effect of jitter. For this reason the finite support restriction 

is ignored and a combination of exponential distributions used. 

Graphically if we take a mixture of an exponential random variable and 

a gamma random variable then we obtain the distribution shown in 

Fig. 3.3. 



rnwltanl~ mixhtca ctonsily 

4cuo 
3or mixt ia dolor i s 

Fig. 3.4: Mixing an Exponential Random Variable 

with a Gamma Random Variable 

By following a similar procedure on the negative side and mixing 

this with that obtained on the positive side, it is possible to obtain 

a density as pictured in Fig. 3.5. 

55 
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resultant mixture donsi by 

samt!e stauQ 
oor mixtu -J2 d42nsih, 

Fig. 3.5: A Combination of a Negative and Positive 

Mixture of an Exponential Random Variable 

with a Gamma Random Variable 

A density of the form seen in Fig. 3.5 would appear to model the 

true jitter distribution quite well, see Fig. 3.1, apart from the 

finite support restriction. If f(t) denotes the jitter density of the 

model, then the approximating density described so far is of the form 



K. -1 (II.t) 12 
11 + (1-(1)i1)ui2(Ki2-1)! 

-u t 
111 e for t >0 

where 

 

for t < 0 
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f(t)ct 
f (t) 

4 y 
for t > 0, 

 

f.(t) = 1 
0 	 for t < 0, 

for some 
Oil,p. ,.i.2 and K

i2, i = S,y. A more general distribution of 

this form is 

K..-1 
B(i) 	(u t) 13 	-

uij t ij  

j=1 ~ijuij (Kij - 1)! e 
for t > 0 

f.(t) = 1 

 

0 	 for t < 0 , 

  

B(i) 
where 	E 	0.. = 1 for some B(i) and O.., some u.. and K.. for 

j=1 13 	 13 	13 13 
j = 1,...,B(i) and i = S,y. By setting B(y) = 0 the de-centred 

distribution of section 3.3.3 may be obtained. By setting B(g) = 0, 

B(y) = 1, Kyl = 1 and uyl = n, we obtain the distribution f (t) = ne-nt 

for the Delayed State problem. Thus, in its final form, we assume that 

the jitter distribution of the model, f(t), satisfies 

3(s) 
f(t) = es E 	0 gs (-0H(-t) ~ 

j=1 	J 

B(y) 
+ 0 	 E 	~~g (t)H(t) , 

j=1 
y (3.1) 
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B(i) 
where 0 + eY  = 1, 	E 	fij = 1, g..(t) is the probability density of a 

j=1 3.3  

gamma random variable with mean K../uij 	
J 

and index Ki., for j = 1,...,B(i); 

i = (3,y, and H(t) is the unit Heaviside function. The above equation, (3.1), 

may be interpreted as follows. Whenever a pair of particles is emitted 

and therefore arrives at the detectors in the counting mechanism, with 

probability 6S  the beta particle is delayed and the gamma occurs 

immediately. Furthermore, the beta particle is delayed for a time t 

and with probability cpsj  the distribution of delay time is gamma with 

mean 	andd index Ks., j = 1,...,B(S). With probability By  the 

situation is reversed and the gamma particle follows the beta particle. 

For single events on the detectors the effect of jitter is non-existent. 

This is because the single events on either counter form a Poisson 

process, and if the points of a Poisson process are subjected to 

independent and identically distributed displacements, then the 

resultant process is a Poisson process with the original rate. Thus, 

there are four types of event which may occur at the detectors, 

(i) a beta particle only, detected with rate 

AS 	= AE8(1 — E1) , 

(ii) a gamma particle only, detected with rate 

XY 	
= Xe (1 - ea), 

(iii) a beta-gamma pair of particles in which the beta occurs 

immediately and the gamma is delayed for a time T where 

T ti r(K,/uY.
cj
) with probability 4)Y 	j = 1,...,B(y), is detected 

with rate 

aaY 	= aE0 Y  6 Y, 
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(iv) a beta-gamma pair of particles in which the gamma occurs 

immediately and the beta is delayed for a time T where 

T ti r(Ksccusi)  with probability 45j, j = 1,...,B(S), is detected 

with rate 

A
Y 	

S  
BS = 

XesYBa  . 

Therefore the original Poisson process of disintegrations of rate A, 

can be thought of as made up of four independent Poisson processes 

which then reach the counters. 

We now calculate the following four functions for the Jitter and 

consequently the Delayed State problems. These are, the two average 

counts, the covariance between the counts, and the coincidence rate. 

Before these calculations are tackled a much simpler problem is studied 

and a method formulated, which will then be developed at a later stage 

for use in Jitter. This problem is a simplification of Delayed State. 

The problem and its solution were devised as a first attempt to obtain 

the solution of Jitter. Subsequent solution of Jitter made the solution 

of the simpler problem redundant, however it is now included for the 

sake of completeness. 
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3.4 A Maximum of One Delayed Gamma Particle  

3.4.1 Description of the Process  

One of the simplest models that still retains the parent-daughter 

relationship of section 3.2, is one in which at most one gamma particle 

may be delayed at any particular instant. That is, following the first 

beta-gamma coincident event on the detectors and during the period for 

which its gamma particle is delayed, the gamma particle in any other 

arriving beta-gamma pair is irretrievably lost, i.e. the beta-gamma 

pair converts to a beta only. This conversion process continues until 

the original gamma (daughter) is released, so that the number of gamma's 

delayed reverts to zero. At this point the system is then capable of 

delaying a gamma particle again. The gamma only events remain 

unaffected. 

In general this is a rather unrealistic model but if certain 

restrictions on the parameters are satisfied then it should be a good 

approximation to the true process. The average time between successive 

beta-gamma pairs is ASYl  and, on average, the gamma then occurs n-1  

later. Therefore if the average time between pairs is substantially 

greater than the average delay time, i.e. XSyl » n-1  or equivalently 

n » Xiy, then the true probability of more than one gamma being delayed 

at any particular instant, will'be negligible. This is the model which 

is studied first. Again for notational convenience we take S = 1 and 

y = 2 but keep the physical interpretation of the events. 
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3.4.2 The Covariance Between the Two Counts in the Absence of  

Dead-Time Effects  

The total count, N1(t), on counter 1 in (0,t] may be split into 

two parts, 

(i) N11(t), the number of beta's that arrive in (0,t] without a 

gamma ie,beta only events, 

(ii) N12(t), the number of beta-gamma pairs that arrive in (0,t], in 

which the gamma may occur subsequently to the beta. 

The total count N2(t) on counter 2 in (0,t], may be split similarly 

into two components, 

(i) N21(t), the number of gamma's that arrive in (0,t] without a beta, 

i.e. gamma only events, 

(ii) N22(t), the number of beta-gamma pairs from which the delayed gamma 

occurs in (0,t]. 

Thus 

N.(t) = Nil  (t) + Ni2(t) 
	

for i = 1,2 . 

The component counts are not all Poisson variables, despite the 

disrupting influence on the distribution of the counts, due to dead-time 

effects, being absent. Note that all the pairs of N..(t) for i,j = 1,2, 

are independent except for N12(t) and N22(t), so that the covariance 

between N1(t) and N2(t) reduces to the covariance between N12(t) and 

N22(t). This situation is now analogous to a single server queue with 

at most one person in the system at any one time, the arrival process 

being Poisson with rate 
X12, and the service distribution being 

exponential with mean n-1. Then N12(t) may be identified with Na(t), 
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the number of arrivals in (0,t], and N22(t) identified with Ns(t), 

the number served in (0,t]. Thus, in the absence of dead-time effects 

we have that 

cov(N
12
(t),N22(t)) = cov(Na(t),Ns(t)) 

n2 	-(,12
+n)t  X

12 	{t 	1 - e+ 	} 

(x12
+n)

2 	
12 n 

(3.2) 

which is an adaptation of a result in Conolly (1975, page 21). 

3.4.3 The Covariance Between the Two Counts Subject to Dead-Time  

Effects  

Denote the covariance between the two counts by c(t), i.e. 

c(t) = cov{N1(t),N2(t)} 

= E{N1(t)N2(t)} - E{N1(t)}E{N2(t)} . 

Let p.. denote the equilibrium probability that counter i is open 
3.3 

and j gamma's are delayed for i = 1,2; j = 0,1. Also let 

p1 	pi0 + pil 
for i = 1,2. 

The instantaneous rate of events on counter 1 is independent of the 

number of gamma's delayed, and is equal to pl  = Al + Al2. 
Therefore, 

if the process of events on the two counters starts the interval (0,t] 

from statistical equilibrium, and if we represent each process by 

t 

Ni(t) = f dN.(u) 
0 

for i = 1,2 , 



then 

E{N1 	f p (t)} = 	r{dNl(u) = 1 1 
0 

= f plpldu = p1p1t . 
0 

(3.3) 
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The instantaneous rate of events on counter 2 is directly dependent on 

the number of gamma's delayed, and furthermore the process of such 

events is no longer Poisson. So 

E{N2(t)} = f pr{dN2(u) = 1} 

0 

t 

f {a2P20 
 + (A2 + 11)P21

}du  
0 

E{ N2( t)} = {A2p20 + (X2  + n)p21}t . (3.4 ) 

The equilibrium probabilities pij for i = 1,2; j = 0,1, will be 

determined in section 3.4.4. 

The cross-product term in the covariance may be written as 

t t 
E{N1(t)N2(t)} = E {f f dN1(u)dN2(v)} 

0 0 

t t 

= f f pr{dN1(u) = dN2(v) = 1} . 
0 0 

(3.5) 

Because the probability of simultaneous events on the two counters is 

negligible, there is no contribution from v = u and (3.5) may be split 

into two ranges v < u and v > u, hence 
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t t 	 t t 

E{N1(t)N2(t)} = f f pr{dN1(u) = dN2(v) = 1) + f f pr{dNl(u) = dN2(v) = 11. 
O u 	 0 v 

(3.6) 

If we define the joint probability densities 

pr{
a recorded event on counter j in (x,x+Sx) and 

h..(x) = lim 
1.3

a recorded event on counter i in (O,Sy)  
~ 	sue+ 
	

6x. 6y 

5y+0+ 

for x > 0 and i,j = 1,2; i # j, then (3.6) becomes 

t t 	t t 
E{N1(t)N2(t)} = f f h12(v-u)dvdu + f f h21

(v-u)dudv . 
O u 	0 v 

(3.7) 

Upon substitution of (3.7), (3.4) and (3.3) into (3.2), we have that 

t t 	t t 

c(t) = f f h12(v-u)dvdu + f f h21(u-v)dudv - p1p1{X
2p20 + (X2+n)p21}t2. 

(3.8) 

The Laplace Transform of c(t), denoted by c*(s), satisfies 

h12(s) 	h* (s)
2 

c*(s) = 	2 	+ 	2 	plpl{X2p20 
+ (a2

+" 1321 }̀ 3 ' (3.9) 
s 	s 	 s 

where 

t  
c*(s) = f e_stc(t)dt 	etc. 

0 

To calculatQ. the two joint probability densities h..(x), 

i,j = 1,2, i j, and the equilibrium probabilities pij, i = 1,2; j = 0,1, 

the states of the counters are represented as a Markov process. Thus, 

the following equilibrium probabilities and probability densities are 

defined, 
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(i) 13l2i' the probability that both counters are open with i gamma's 

delayed and waiting to occur, 

(ii) q..(u), the probability density that counter j has been closed for 

a period u, with i gamma's delayed, 0 < u < T., j = 1,2; i = 0,1, 

g12i(u,v), the probability density that counter 1 has been closed 

for a period u, counter 2 for a period v and i gamma's delayed, 

0 < u < T1, o < v < T2  and i = 0,1. 

If any of the above probability (densities) appear without the 

subscript i, then this probability (density) is obtained by summing the 

relevant probability (densities) that are defined above, over i = 0 

and i = 1. 

3.4.4 The Possible States of the Counting System 

The equations representing the probabilities of change from one 

state to another, when the system is in equilibrium, can be written down 

in terms of the probability (densities) defined above. As the purpose 

of solving these equations is purely exploratory, developed merely to 

suggest a method of solution to the full model as opposed to the 

restricted one we are considering at the moment, equal dead-times are 

imposed. So, for Ti  = T2  = T, the equilibrium equations are 

( p+i0p12i = gii(T) + g2i(T) for i = 0,1 . 	(3.10) 

Here p = pl+a2  = ll+p2  = Xl+a2+Al2'  and  
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dq10(u)  
du 	p2g10(u) + g120(u'T) 

dg11(u) 

du 	-(A2+n)q11(u) + Al2g10(u) + g121(u,T) 

dg20(u) 

du 	p1g20(u) + ng 21(u) + g120(T,u) 

dg21(u) 

du 	-(p1+n)g21(u) + g121(T,u) 

(3.11) 

ag120(
u,v) 

ag120(
u,v) 

au 	+ 	av 	-Al2g120(u'v) + "121(u,v) 

3g121(
u,v) 

ag121(
u'v) 

au 	+ 	av 	- -ng121(u,v) + X12g120(u
,v) 

The corresponding boundary conditions for this set of equations are: 

q10(0) = A1p120 
	

g11(0) 	p1p121+~12'120' 

g20(0) = 2p120+np121' g21(0) = 
X2p121 ' 

g120
(u,0) = X2g10

(u)+ngll(u) ' 
C1121(111°) 

= X2g11(u) 

g120(
0,v) = a1g20(v) , 	g121(O

,v) 	p1g21(v)+X12g20(v) . 

(3.12) 

An exact closed form solution of (3.10) and (3.11) subject to 

(3.12) is not attempted. Instead, separate Taylor expansions are made 

for each function and pT is considered small enough for terms of order 



P121 

(110(u) = 

gll(u) 
= 

g20(u) = 

g21(u) 
= 

~n2 P120
(1 - TIT) , 

A1P120 

x12 	2 

7- P120(1314-11- 
POT - n u) 

P120(p2 
- Al2rrT+Al2nu) , 

X

212 p120
(1 - nT) , 

(3.13) 
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(pT)2 to be neglected; furthermore terms of order (pT)2 will be neglected 

throughout section 3.4. The solution can be shown to be 

2 
A1A2+p1Al2+A1271(1-p1T)-A l2n u + {Al2(X2-p1-n) + n 21a.12v 

for u > v 

g120(u'v) = P120 

A1{p2-A
1271T} 

+ Al2
{X12(A2-X1)+n(p2-A1)}u + a1Al2nv 

for u < v 

(3.13) 

and finally, 

2 r A2(p1+n-plfT) - A 2n u +Al2n(p1-A 2+n)v 

for u > v 

Al2 4 
(1121(11'171 - n P120

N 

Pla2+fP2-nT(pla2+71Al2) + {A1A l2-A l2r1- .A 2A l2-np 2}un 

2 +~12n v 	for u<v. 

(3.13) 



68 

In this solution note that the introduction of the probability 

density g12(u,v) was needed solely to obtain the probability (densities) 

1l2i 
q1i(u) and g2i(v) for i = 0,1. These are the functions that are 

of direct use in the calculation of h12(x) and h21(x). Further, note 

that p120  remains unknown. Approximate formulae for p120 
 and the 

equilibrium probabilities pli  and pli  for i = 0,1 are now found. Two 

of the ways in which these unknowns may be calculated are as follows: 

(i) For each counter define the equilibrium probability density that 

the counter is closed with i gammas delayed for i = 0,1. Then 

set up equilibrium equations similar to (3.10) and (3.11) which 

may be solved. (Note that these are univariate whilst (3.10) 

and (3.11) are bivariate.) The solutions of each set will be in 

terms of an unknown and these two unknowns may then be determined 

using the normalizing condition that, for each counter, the 

probability that the counter is closed plus the probability that 

the counter is open is equal to unity. 

(ii) Counter 1 alternates between open periods exponentially distributed 

with mean p1-1  and dead-times of constant length T. Therefore the 

equilibrium probability that counter 1 is open, pl  satisfies, 

-1 
p1 	1  

P1 4. T 
 + T 

1+p1T 

Neglecting terms of order (pT)2, 

p1  = 1-p1T (3.14) 

From (3.13) we see that, 

= 	
Al2 

= p12 	p120 + p121 	p120(1  + n Al2T)  '  



p2 = 12n + {0.12
+n)(1-12T) - 

Al2nT} . 
1 

(3.19) 
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and 

X
2 

q2(u) = g
20
(u)+g21(u) = P120(p2 + 	

n12 

Using the normalizing condition that 

T 

p1 	P12 + f q2(u)du 
0 

we have 

- Al2TIT — 
X2X12T + 

X12nu) . 

(3.15) 

1 - plT = P120(1 	
Ti 

	
Al2T) + p120T(p2 + 

~2n12) 

p120 	
(1 + ~12)-1(1 - pr) . (3.16) 

The remaining unknowns on counter 1, pli for i = 0,1, may be determined 

by adding the subscript i to (3.15), thus 

P10 
= 	

+ 
n 	( 1 - a1T), 

12 
(3.17) 

2 

pll = X
12
+ n 
	{1 - (pl+n)T} . 

By interchanging the roles of counter 1 and counter 2 in (3.15), 

p20 = 	
Ti
+ 	

Ti 
(1 - p2T) , 

12 

(3.18) 

12 

Therefore 
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An approximate form for p12, the equilibrium probability that 

both counters are open simultaneously, may now be written down: 

p12 = (Al2+n)(a
l2+71 - Al2nT)P10p20/712 

= (Al2+n)(a12+n+n2T)P11p21~A 122 

	
(3.20) 

and so 

p12 	p1p2 
(3.21) 

The corresponding formula for the equilibrium probability p12 in Cox 

and Isham (1977) is 

p12 = p1p2(1 + Al2T) . (3.21a) 

Upon comparison of (3.21) with (3.21a) it is plausible that (3.21) is 

"less dependent" than (3.21a), due to lack of "direct dependence" through 

simultaneous events that do not appear in the present problem but do 

appear in the problem of Cox and Isham. However, (3.21) implies that 

the two counters act independently; clearly this is not exactly correct 

and it should be noted that (3.21) is only a first order approximation 

in pT to p
12. 

Before progressing to the calculation of the two joint probability 

densities h12(x) and h21(x), which we are now in a position to do, the 

expected number of recorded events on each counter is calculated. 

From (3.3) and (3.4) we have that 

E{N1(t)} = pip lt (3.22) 
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and 

E{N2(t)} = 1A2p20 + (X2+1)p21} t . 
	

(3.23) 

Using (3.14) and (3.18) the expectations may be approximated as 

E{N1(t)} = p
1 
 t(1 - p1T) , 	 (3.24) 

and 

a n 	2X
12 

 
E{N2(t)} = {(x2  + 

Al2+  ) 	x2(x2  + 	1+  )} t 	(3.25) 
12 n 	12- 

We now consider the sequences of events on each of the two counters. 

3.4.5 The Sequence of Events on Counter 1  

The probability density 

h (x)SxS 	r(a recorded event on counter 1 in (x,x+Sx) 
21 	(Sy = p Land a recorded event on counter 2 in (0,5y) 	' 

for small Sx and $y, is now calculated. For a recorded event on 

counter 2 in (O,6y), counter 2 must be open at 0. Therefore summing 

over the possible states of counter 1 at 0 we have that 

h21(x)Sx6y = 

1 	a recorded event on counter 
E pr a recorded event on counter 

i=0 	both counters are open at 0 

1 in (x,x+Sx), and 
2 in (O,6y), and 	+ 
with i gammas delayed 

1 	a recorded event on counter 
E pr a recorded event on counter 

i=0 	closed at 0, counter 2 open 

1 in (x,x+Sx), and 
2 in (0,6y), and counter 1 
at 0, i gammas delayed 
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The states of the two counters at 0 and the type of recorded event on 

counter 2 in (0,Sy), which is either a gamma only, or a delayed gamma 

from a beta-gamma pair, give the state of the two counters at Sy. 

However the sequence of events on counter 1 is independent of the number 

of gammas delayed in the system at any specific point. In particular the 

sequence is independent of the number of gammas delayed at Sy. Therefore 

the recorded event on counter 2 in (0,Sy) does not affect the subsequent 

sequence of recorded events on counter 1, and so 

1 	a recorded event on counter 1 
h21(x)Sxdy = 1E0 

Pr(counter 1 in (x,x+Sx)Iopen at O+Sy)(X2+1n)P121Sy 

	

1 T 	a recorded event 
+ E f pr(on counter 1 in 

	

1=0 0 	(x,x+Sx) 

counter 1 for u 
closed at O+Sy )02+in)gii(u)Sydu . 

  

(3.26) 

The sequence of events on counter 1 forms a renewal process, the interval 
-p1(x-T) 

between successive recorded events having density p1e 	for x > T. 

If g(x) denotes the renewal density of this process, then taking the 

limit of (3.26) as Sx and Sy tend to zero from the right, 

1 	-pix x -Pg 
h21(x) = 	E {pie 	+ f ple 	g(x-y)dy}(X2+i11)P12i 

i=0 	0 

1 T 
+ E 	f g(x+u)(X2+in)gii

(u)du . 
i=0 0 

(3.27) 

Taking Laplace Transforms of (3.27) with respect to x, we have 

1r h i(s) =E (a2+in)EP12i{p p+s + pp+s g* (s)} + g*(s) f  esugli(u)du 1, i=0 	1 	1 	0 

(3.28) 



where 

g*(s) = pl{(pl+s)esT - pl1-1 . (3.29) 
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For small ST, (3.29) may be approximated by 

g*(s) = pip1 
s 

(1 — p1sT) , (3.30) 

where terms of order (pr)2 are neglected and s < Kp, for some positive 

constant K. Upon substitution of the approximations for the probability 

densities P12.,g1.(u) 
and g2i(u), for i = 0,1, found in (3.13), and the 

approximation for g
* 
(s) given by (3.30), into (3.28), the joint 

probability density h 1(s) approximates to 

h21(s) = Pip1LX2p20 + (h2+013211/s . (3.31) 

3.4.6 The Sequence of Events on Counter 2  

The probability density 

h (x)dxd 	r~
a recorded event on counter 2 in (x,x+dx), and 1 

12 	y P a recorded event on counter 1 in (0,6y) 	' 

for small Sx and Sy is now calculated. For a recorded event on counter 1 

in (0,dy), counter 1 must be open at 0. Therefore summing over the 

possible states of the two counters at 0 we have that 



h12(x)6x6y = 

1 	a recorded event on counter 2 in (x,x+Sx), and 
E pr a recorded event on counter 1 in (O,Sy), and 

i=0 	both counters are open at 0 with i gammas delayed 

1 	a recorded event on counter 2 in.(x,x+Sx), and 
+ E pr a recorded event on counter 1 in (O,Sy), and 

i=0 	counter 1 open, counter 2 closed at 0 with i gammas delayed 	. 

The recorded event on counter 1 in (O,Sy) is either a beta only (Al) or a 

beta-gamma pair (x`12).  Therefore if there is no gamma delayed at 0 and 

if the recorded event is due to the beta from a beta-gamma pair (x12) 

then the gamma is delayed. Otherwise there is no change in the state of 

counter 2. So 

a recorded event 
h12(x)SxSy = pr on counter 2 in 

(x,x+Sx) 

at Sy counter 2 
is open with 

X113120" 0 gamma's delayed   

  

a recorded event 
+ pr on counter 2 in 

(x,x+Sx) 

at Sy counter 2 
is open with 	

(Al2p120+p1p121)6y 1 gamma delayed 
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• a recorded event 
+ f pr on counter 2 in 
O (x,x+Sx)  

at Sy counter 2 
is closed for uA1g20(u)Sydu 	. (3.32) 
with 0 gamma's delayed 

• ea recorded event 

+ f  pr on counter 2 in 
O (x,x+Sx) 

at Sy counter 2 isi 
closed for u with {a

12g20(u)+p1g21
(u)}Sydu. 

1 gamma delayed 

  

The subsequent sequence of events on counter 2 is not independent of 

whether or not there is a gamma delayed at Sy, so that the probabilities 

in (3.32) cannot be written down simply in terms of a single renewal 

density. Instead define two sets of functions, for i = 0 and I we have 
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recorded event 
mi(x)Sx = pr j on counter 2 in 

(x,x+Sx) 

counter 2 is 
open at 0+ 	

Jj 	, 
with i gamma's 

 

  

( recorded event 
n.(x,u)Sx = pr on counter 2 in 
1 	(x,x+Sx) 

counter 2 
is closed for u 
at 0+  with i gamma's 

  

for small Sx and with mi(x) = 0 for all x < 0, ni(x,u) = 0 for all x < T-11. 

The probability density h12(x) may now be expressed in terms of the sets 

of functions {mi(x)} and {ni(x,u)}, 

h12(x) = A1p120m0(x)  + (Al2p120+p1p121)m1(x) 

T 	 T 

+ f 
X1g20(u)n0(x,u)du + 	{X12g20(u)  + p1g21(u)}n1(x,u)du. ō  

Alternatively in terms of the Laplace transforms, 

T 

hi2(s) = 	
p120

m0(s) 
 + (X12p120+p1p121)ml(s)  + f 	A1g20(u)n*(s,u)du + 

+ f  {Al2g20(u)+P1g21(u)}nl(s,u)du . 
0 

(3.33) 

If the densities {mi(x)} and {n.(x,u)} or equivalently {inns)} and 

{n(s,u)} can be expressed in terms of known functions then clearly 

h12(x) or hi2(s) may be found. For this purpose the relationship between 

{m.(x)} and {ni(x,u)} is investigated. Now 

recorded event counter 2 is 
m (x) = pr on counter 2 	open at 0+  with 
0 	at 'x' 	no gamma delayed 



1 
recorded event 

m0(x) = pr on counter 2 in 'x' 
and first Al2  after x 
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This may be split into two parts depending upon whether a beta-gamma 

pair and hence a delayed gamma occurs before x or not. Thus 

counter 2 is 
open at 0+  with 	+ 
no gamma delayed 

recorded event on 
+ pr counter 2 in 'x' 

and first Al2  before 'x' 

counter 2 is 
open at 0+  
with no gamma 

x 	-A y _  

= 
e

A
l2x  r2(x) + f X12e 12 {m1(x-y)p2(y) + f n1(x-y,v)pc2(y,v)dv}dy . 

0 	 0 

(3.34) 

In (3.34) r2(x), p2(y) and pc2(y,v) refer to the process consisting 

solely of gamma only events in (0,y] and are defined as follows, 

(i) r2(x) is the renewal density for the process starting with an 

open interval, 

(ii) p2(y) is the probability density that counter 2 is open at y 

conditional on the counter being open at 0+, 

(iii) pc2(y,v) is the probability density that counter 2 is closed for v 

at y conditional on the counter being open at 0+. 

If m1(x) is split into two parts depending upon whether or not the 

gamma delayed at 0+  remains delayed until after x, then, 

m1(x) = e nxr2(x) + ne nXp2(x) + 

+ Ō

_ 
ne 

ny{n0(x-y,0)p2(y) + f n0(x-y,v)pc2(y,v)dv}dy . (3.35) 
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Note that the second term represents the probability density of the 

delayed gamma occurring on counter 2 at x, with the counter being open 

at that point. 

To express {ni(x,u)} in terms of {m.(x)}, condition on the possible 

states of counter 2 when the counter reopens at t = T-u. Then 

1 
ni(x,u) = E mi(x+u-T)r..(T-u), 

j=0 
(3.36) 

where 

  

 

'j gamma's 
r..(y) = pr delayed at 
13 

y 

i gamma's 
delayed at 	, 	i,j = 0,1. 

0+ 

   

Here, r..(y) represent the transition probabilities for a single server 
13 

queue, total system size one, with the input process Poisson of rate Al2 

the service discipline being Poisson of rate n. It may be shown easily 

that 

r
00 
(y) = 	+ A Al+ exp{-(Al2+r~)y} 

X
12

-1-71 
	12n  

and 

r10(y) = 	 n+ [1 - exp{-(Al2+n)y}] , 
A 12 n 

Substituting these values of the transition probabilities in (3.36) we 

find that 

n0(x,u) = m0(x+u-r) [r1 + Al2exp{-(Al2+r1)(T-u)}](Al2+n) 
-1 

+ Al2m1
(x+u-T)[1 - exp{-(Al2+n)(T-u)}](Al2+n)

-1 
(3.37) 
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and 

nl(x,u) = nm0(x+u-T)[1 - exp{-(X12+n)(T-u)}
](X12+n)-1 

+ m1(x+u-T)[X12 + n exp{-(Al2+n)(T-u)}l(A
l2+n)-1 . 	(3.38) 

Taking Laplace Transforms of (3.34), (3.35), (3.37) and (3.38) we find 

that 

T 

m0(s) = r2(s+Al2) + Al2{p2(s+X12)m�(s) + f pc2(s+X12,v)ni(s,v)dv} , 	(3.39) 

0 

T 

mi(s) = r2(s+n) + n[p2(s+n){l+n0(s,0)} + f pc2(s+ n ,v)n0(s,v)dv] 
0 

(3.40) 

(X12
+n)es(T-u)

n0*(s,u) = mp(s)[n + a12exp{-(a12
+n)(T-u)11 

+ Al2mi(s) [1 - exp{-
(Al2+n)(T

-u)}] (3.41) 

(X12
+n)es(T-u)

ni(s,u) = nm0(s)[1 - exp{-(X12+n)(T-u)}] 

+ mi(s)[Al2 + n exp{-(Al2+n)(T-u)}] . 	(3.42) 

Upon the application of elementary renewal theory arguments it may be 

shown that 

p2(s) = A2-lesvpc2(s,v) = X2-1r2(s) = A(s) , 
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where 

A(s) = est((s+A2)est - A2)-1 

Now we are in a position to solve for {mi(s)} and {ni(s,v)} 

exactly in terms of known functions. However, these densities were 

used merely to calculate the probability density h12(s) which is central 

to the problem of finding the covariance between the two counters. In 

the transformed density hi2(s) the counter state probabilities {1312i} 

and {q2i(u)} appear not in their exact form but approximately, i.e. 

terms of order (pt)2  are neglected. So in order to keep the level of 

approximation consistent within hi2(s) a zeroth order approximation to 

n.(s,u) is made, that is for i = 0 and 1, 

ni(s,u) = mi(s) , 

neglecting terms of order (pt). This gives a first order approximation 

to hi2(s) upon substitution in (3.33), and thus (3.33) becomes 

h12  (s) = x1 p1200 + (Al2p120+p1p121)mi(s)  

T 	 T 
+ o A1g20(u)mŌ(s)du + ō {A1 2q (u)  + p1g21(u)}mi(s)du. (3.43) 

If it is noted that for i = 0 and 1 

T 

pli 	p12i + 
f g

2i(u)du , 

then (3.43) simplifies further to 

h12  (s) = A1p10m0(s) + A12 p101+ plpllmi(s) . (3.44) 
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Therefore in order to complete the calculation of the probability 

density h12 
 (
s) all that remains is to obtain a first order approximation 

to {mi(s)}. Now solving (3.39) and (3.40) exactly, we have that 

 

m0(s) _ 
X2+mi(s)G*(s) 

and 

s+X2(1-e sT) + GŌ(s) 

* 	X2+n+m*(s)G*(s) 
m (s) _ 	

3 1 	s+(X2+n)(1-e-sT) + Gi(s) 

where 

and 

X X e ST 
GŌ(s) = X12 + X2 	+2 

12 n  
exp{-(X12+n)T} , 

-ST 
G*(s) = Xne+ [X2+n+(X12-X2)exp{-(X12+n)T}] x

12 
+n 

These results lead to 

mg(s) = 

X 2{(s+(X2+n)(1—e—sT ) + Gi(s)} + (X2+0G;;(s) 

{s+X2(1-e
-sT)}[{s+X2(1-e-ST)} + G.(;(s)+G1(S)+1(1-e-ST)] + nG(*)(s)(1-e-ST) 

and 

ml(s) _ (X2+n){s+X2(1-e-sT) + GŌ(s)}  + X2Gi(s) 

s+X2(1—e—sT )}[{s+(X2+n)(1—e—sT)}+G0(s)+G1(s)] + nq(s)(1-e-sT) 
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Clearly both mt(s) and mi(s) have a simple pole at s = 0, furthermore 

it may be shown that mt(s) and mi(s) also have the same residue at 

s = 0. It is assumed that all other poles of mt(s) and mi(s) have 

negative real parts. Then {ml(s)} may be written as 

a. 
m.(s) = 

s + 
bi  + cis + di(s) , 	i = 0,1, 

where d.(s) is analytic in some half-plane Re(s) > -y. with -yi  

for i = 0,1. 

The constants {ai,bi,ci}, i = 0, 1 are approximated by 

A l2n  a0  = X2p20 + (A 2  +n)1021 	b0  = 	 - 	2  (1-2A2T) , 
(A l2+TO 

12 	 
n 

co  = 	3 (1-2A 2T), 	al  = a0  

2 	 2 
b1  = 	n 	2 (1-2A 2T) , 	Cl  = - 	Ti 	

3 
(1-2A 2T) . 

( Al2+n) 	 (A l2+n) 

Upon substitution in (3.44) the probability density h12(s) is 

approximated by 

{A2p20+(A2+n)p21}pipl 	Al2n2 	2 2 	2Al2nT 
h12(s) = 	s 	+ ( A + )

2 pl p2 (1+Al2T+ 
A l2

+n 
 12 n  

A l2n2 	2 2 	 2Al2nT 

(A 	n)2  p1 p2 (1  + 12  + Al2+ Ti 
 )s + d01* (s) . 	(3.45) 

12+  

Here dŌ1(s) is a linear combination of d*(s) and di(s). This, together 

with the first order approximation for h21 
 (
s), see (3.31), gives a 

first order approximation to c*(s), the Laplace Transform of the 

covariance between the two counters. Thus, 

(X12+n)  
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c*(s) _ 
~12n2 	

p 
2p 2 

1+ a T

+ 2~12n 

T { 1 	
(a12+n) 
	}+ d*(s), (~ + )2 1 2 	12 	(a12+n 	s2 

12 n 

where d*(s) is analytic in some half-plane Re(s) > -y with y > 0. It 

now follows that the behaviour of c(t) for large t is such that 

X12
n2  

2 2 	
2A
1 
2n 	11S 

c(t) - 

( A l2 +n) 
2 p1 p2 ~1 + Al2T.+ (x

12
411) Tjtlt - 

(x„)-11 c(t)  

+ 0(e Yt) . 	(3.46) 

3.4.7 Simulations and Conclusions  

The formula for the covariance between the recorded numbers of 

events on the two counters given by (3.46), which is approximate in 

dead-time, T, and measuring interval, t, is now examined in three ways. 

The first and perhaps the most obvious way is to allow the common 

dead-time of the two counters, T, to tend to zero. Thus (3.46) becomes 

2 

c0(t) = lim c(t) _ 	~12n 	2 {t - (X12+n)-1} 	. 
t O 	(Al2+n) 

(3.47) 

Comparing this with the exact zero dead-time covariance given by (3.2), 

which is 

Xn
2 	-(a12+n)t 

12 	2 {t 	1 	
e 
+ 	}, n 	 (3.48) 

(Al2
+TO 	12 

we see that (3.47) and (3.48) are in agreement for large t. 

Secondly we allow the half-life of the intermediate state to tend 

to zero. This corresponds to n tending to infinity. We may then compare 

the resulting covariance with the covariance given by (26) in Cox and 



83 

Isham (1977), which is a first order approximation in dead-time 

behaviour to the exact covariance for zero half-life. Upon rewriting 

(3.46) we may obtain 

c(t) = Al2 

+n 

ln )2(p10p20)2(1 
+ Al2T)t (3 .49) 

where terms of order (pt)0, in addition to terms of order (pr)2, have 

been omitted in obtaining (3.49), and wherep
10'p20 

are the equilibrium 

probabilities that counter 1 and counter 2 respectively, are open with 

no gamma's waiting to occur. If the half-life now tends to zero, then 

the time that any gamma is delayed also tends to zero, and so becomes 

a simultaneous emission. Therefore as the half-life tends to 0 we would 

expect pi0 to tend to pi of Cox and Isham (1977) for i = 1 and 2, where 

p., i = 1 and 2, are the equilibrium probabilities that each counter is 

open in the case of simultaneous events. 

If this limiting process were valid then from (3.49) we see that 

lim c(t) = 
n-~ 

12P12p22(1 + X12T)t, (3.50) 

which is in agreement with the leading term of (26) of Cox and Isham 

(1977). However, the equilibrium probabilities p10 and p20 in (3.49) 

are approximations to the true p10 and p20, see (3.17) and (3.18), and 

in making these approximations it was assumed that terms of order (nT)
2 

could be neglected. Therefore, taking the limit as the half-life tends 

to zero of (3.49) contravenes this assumption, and hence the limiting 

procedure of (3.50) is not valid. But, if p10 and p20 are obtained by 

the method outlined in (i) of (3.4.4) then we have the exact results that 



p10 	(X12+n)(p1+n - X
le-AT)  

and 

n{X2+11+(X12-X2)e-AT  

pZ0  (1+X2T)[X12(p2+n)
+n(X2+n)+{n(X12-X2)X2X12}e-oT1+X12nT(p2+nX2e

-oT) 

(3.51) 

where 0 = X12+n. If we now take the limit as n -} - of (3.51) then for 

i = 1 and 2, 

lim 
p.  = 

(1 + p.T)-1  
n- 

The complement of this result is that for i = 1 and 2, 

lim pit = 0 . 
T1 

Therefore if, in the formula for the covariance given by (3.46), 

the approximate forms for p10  and p20  given by (3.17) and (3.18) are 

replaced by the exact forms given by (3.51), then the covariance would 

remain unchanged to first order in dead-time but the limiting process 

of (3.50) would now be valid. 

The covariance between the number of recorded events on counter 1, 

and the number of recorded events on counter 2, was simulated for the 

true model of Delayed State, i.e. that with no restriction on the number 

of gamma's that may be delayed. These simulations were devised and 

computed by Dr. D. Smith of the National Physical Laboratory and although 

the six simulations have a small but physically typical range of parameter 

values it is apparent from Table 1 that the values predicted by the 

84 

n(l+p1T)-101+n+X12-p1e
-DT) 
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covariance c(t) of (3.46), are greatly different from the simulated 

values. The possible reasons for this discrepancy include, 

(i) the value of t, the period over which the covariance is calculated, 

is not large enough compared with other parameter values, and in 

particular the common dead-time T; 

(ii) the model is inadequate because the number of gamma's delayed 

often exceeds one. 

If simulation 2 is compared with 5, and simulation 4 is compared 

with 6, then this would seem to exclude possibility (i). For, if small t 

were to be the reason for the large discrepancies between the simulated 

results and those given by (3.46), then the increase in t in both these 

pairs would reduce the differences by a considerable amount, clearly it 

does not. 

Now the expected queue size for each of the six simulations is given 

and the smallness of this quantity would appear to exclude possibility 

(ii). However, another measure of the inadequacy of the model is 

investigated; this is the ratio of the covariance in the unrestricted 

model to the covariance for the model with at most one gamma delayed, 

both for zero dead-time. Therefore we need to calculate the zero dead-

time covariance of the unrestricted model of section 3.2; using the model 

of section 3.3.4, this may be obtained as a special case of the zero 

dead-time covariance of Jitter, which we shall now calculate. 

Iu a manner reminiscent of that employed in section 3.4.2, the number 

of recorded events on each counter is split into its component parts. 

For counter 1, the number of recorded events in (0,t], Ni(t), consists of 

(i) N10(t): the number of beta's that arrive in (0,t] without a 

corresponding gamma, i.e. beta only events, 
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Table 1: Simulated covariance for Delayed State and estimates from 
the Restricted Model 

Simulation no. 1 2 3 4 5 6 

t 2 2 2 2 10 10 

p1  0.9 0.9 1 0.9 0.9 0.9 

p2  0.4 0.4 1 0.4 0.4 0.4 

Al2  0.36 0.36 1 0.36 0.36 0.36 

20 10 5 10 10 10 

Expected queue 0.018 0.036 0.2 0.036 0.036 0.036 

T 0.002 0.005 0.02 0.03 0.005 0.03 

Simulated cov. 0.698 0.675 1.671 0.6341 3.511 3.299 

Standard error 0.001 0.001 0.006 0.0005 0.006 0.001 

c(t) 0.676 0.632 1.247 0.610 3.296 3.175 

Ratio 1.036 1.073 1.44 1.073 1.073 1.073 

c(t) x Ratio 0.700 0.678 1.795 0.655 3.538 3.408 

The standard error is that of the simulated covariance. 
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(ii) N11(t): the number of beta's that arrive in (0,t] and have 

been delayed from a beta-gamma pair, 

(iii) N12(t): the number of beta-gamma pairs that arrive in (0,t] in 

which the gamma is delayed. 

Similarly on counter 2 the number of recorded events in (0,t], 

N2(t),  splits into 

(i) N20(t): the number of gamma's that arrive in (0,t] without a 

corresponding beta, i.e. gamma only events, 

(ii) N21(t): the number of gamma's that arrive in 0,t] that have been 

delayed from a beta-gamma pair, 

(iii) N22(t): the number of beta-gamma pairs that arrive in (0,t] in 

which the beta is delayed. 

Therefore, for i = 1 and 2, 

Ni(t) = Ni0(t) + 
Nil 	12

+ Ni2(t) . 

Due to the absence of dead-time effects the only dependencies are between 

N11(t) and N22(t), N12(t) and N21(t). (In the one-sided Jitter situation 

N12(t) and N
2  .1
(t)are both identically zero; and in the Delayed State 

situation N11(t) and N22(t) are both identically zero.) The covariance 

between N1(t) and N2(t) now simplifies as follows, 

cov{N1(t),N2(t)} = cov{N10(t)+N11(t)+N12(t), N20(t)+N21(t)+N22(t)} 

= cov{N11(t)+N12(t), N21(t)+N22(t)} 

= cov{N11(t),  N22(t)} + cov{N12(t), N21(t)}. 
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The two covariances may be written down by appealing to an infinite 

server queue analogy. Referring to section 3.4.2.1, in the first 

covariance the situation is equivalent to an infinite server queue with 

Poisson arrival rate Al2e1  and service distribution 
r(Kl.,pli), 

 with 

probability 
pli 

for i = 1,...,B(1), in which, 

(i) N11(t) is identified with the number of arrivals in (0,t], and 

(ii) N22(t) is identified with the number served in (0,t]. 

Then 

CO 

cov N11(t),N22(t)} = a12
8
1[t - pl  + f {1 - F1(w)}dw] , 	(3.54) 

where p1 is the expected service time and F1(w) is the cumulative 

distribution function of service time, see Conolly (1975, page 121) for 

example; a similar expression for the covariance between N12(t) and 

N21(t) may also be found. 

If 
eloli, e2̀p 2i, Kli, K2i,  pli and pli 

 are replaced by et, eB+i, 

K., KB+i, 
pi 
 and pB+i  where B = B(1), then the covariance between 

N1(t) and N2(t) may be obtained upon summation of (3.54) and its 

counterpart for N12(t) and N21(t), so that 

cov{N1(t),  N2(t)} _ 

A 	K. 	A e 	-p .t Ki 1 	(p t)3  
Al2{t - E ei  —L. +  E —'" e 1 	E (K.-j) 	1, 	}, 	(3.55) 

1 i=1 	pi 	1=1 pi 	j=0 	.3' 

where A = B+B(2). 

Therefore the ratio of the covariance for the unrestricted model 

for Delayed State, to the covariance when there is a maximum of one 
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delayed gamma, for zero dead-time, is approximately 

(1 + a12n-1)2  (3.56) 

for large t, where in (3.55) A = 1, R1  = 1 and u1 = n. (The zero dead-

time covariance for the restricted model is given by (3.2).) 

If the dead-time influenced covariance given by (3.46) is now 

multiplied by the ratio (3.56) then much of the discrepancy between the 

first, second and fifth simulations and the results given by (3.46) 

disappears. For these simulations the terms neglected, those of order 

(PT)2, are of an order less than the error in the simulated covariance. 

Therefore comparisons between the simulated covariance and the covariance 

given by the model are valid. However, for simulations three, four and 

six the modified covariance, c(t) x Ratio, is as much above the simulated 

results as c(t) was below. The reason for this is two-fold, 

(i) the terms neglected in calculating the covariance as given by (3.46) 

are of the same order as the error in the simulated covariance and 

so make valid comparisons impossible, 

(ii) since the effect of dead-time is to deflate both covariances, deflating 

the covariance for the unrestricted model by the greater amount, the 

ratio (3.56) obtained by comparing the zero dead-time covariances is 

therefore an over-estimate of the difference between the dead-time 

influenced covariances. Furthermore, as the dead-time increases so 

does the amount by which the ratio over-estimates the difference 

between the two models. 

We therefore conclude that the restricted model with a maximum of 

one delayed gamma is inadequate even for systems with expected queue size 

quite small (0.018). But, as the restricted model was formulated to 

provide a basis for the study of the unrestricted model and not as an 

alternative, and is invaluable in this context, the above comments are of 

theoretical and not practical interest. 
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3.5 Delayed State and Jitter, the Full Solution  

3.5.1 The General Form for the Covariance  

The method developed in section 3.4 for the calculation of the 

covariance function for the restricted model, is now extended to cope 

with the capacity of the detectors to delay, not one, but any number of 

particles at a particular instant. So, denote the covariance between 

the two counts by c(t), then 

c(t) = cov{N1(t), N2(t)} 

= E{N1(t)N2(t)} - E{N1(t)}E{N2(t)} 	(3.57) 

Following the same procedure as that in section 3.4.3, we may write 

(3.57) as 

t t 	t t 
c(t) = ō  1 h12(v-u)dvdu + ō fib21(u-v)dudv - E{N1(t)}E{N2(t)} 

(3.58) 

where the joint probability densities h12(x) and h21(x) are defined to be, 

`a recorded event on counter j in (x,x+dx) and 
pr 

 
a recorded event on counter i in (0,8y)  h..(x) = lim+ 	

Sx.S dx+0 	 y 
dy+0+  

for x > 0 and i,j = 1,2, i 0 j. 

The univariate series of events on the ith counter is Poisson with 
A 

rate pi = 
Xi + X12 

E ei 	Xi + X12' for i = 1,2, see sections 3.3.4 
i=1 

and 3.4.6. So, if pi  denotes the equilibrium probability that counter i 

is open and the process on each counter starts from equilibrium at 0, 
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then for i = 1 and 2, 

t 
E{N.(t)} = f p.p.du 

0 

pipit  . 	
(3.59) 

If the Laplace Transform of (3.58) is taken after substitution 

of (3.59) into (3.58), then, 

c
*(s) _ 

h12(s) + h21(s) 	
2p1p2p1p2  

s 
2 

s 
2 

s
3 (3.60) 

where s is the transform variable and an asterisk denotes a transformed 

function. 

As in section 3.4 the problem of calculating the covariance is 

equivalent to that of calculating the probability densities h..(x), 

or their transforms hi.(s), for i,j = 1,2; i 	j, and the equilibrium 

probabilities pi  for i = 1,2. For this purpose the states of the counters 

are represented as a Markov Process. 

3.5.2 The Possible States of the Counting System 

Using the notation of section 3.4.7 together with the physical 

interpretation of section 3.3.4, whenever there is a simultaneous event 

on the detectors, with probability Ai, i = 1,...,B, the gamma occurs 

immediately and the beta is delayed for a period which has a gamma 

distribution with mean K./u. and index K.. For i = B+1,...,A, the 
1 1 	1 

situation is reversed and the beta occurs immediately. Now, we may 

proceed as if the delay period consists of K. stages, the lengths of which 
1 

are independently exponentially distributed with mean pi-1.  The collection 
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of K. stages will be referred to as the ith branch; for i = 1,...,B 
1 

we assume that whenever a beta particle is chosen for the ith branch it 

first enters the Ki  th stage and works backwards until it reaches the 

first stage and subsequently occurs on the gamma counter. The above 

comments apply when the beta is delayed; if the gamma particle is delayed 

then interchange beta for gamma and consider i = B+1,...,A. 

To represent the state of the counters as a Markov process, the states 

must be defined in such a way that the instantaneous transitions from one 

state to another are influenced only by the current state. Therefore if 

a counter is closed, we need to know for how long it has been closed. 

Furthermore, for each particle that is delayed, we need to know not only 

which branch the particle is in but also at which stage within a branch 

it is. All the necessary information needed to satisfy this latter 

condition is contained in (N,n), where 

n = (-1'...' A) 	, 	ni  = 
(N., ni1

,...'niK.)' 
1 

K. 
	 A 

N. 	= 	E 	n.., 	i = 1, ... ,A, N = 	E N. . 
1 	

j=1 13 	i=1 1  

i= 1,...,A, 

Here ni  refers to the ith branch and n.. is the total number of particles 
13 

delayed in the jth stage of the ith branch. Therefore, 

(i) 
B 
E Ni  is the total number of beta's delayed, and, 

i=1 

A 
E N. is the total number of gamma's delayed, and, 

i=B+1 1 

(iii) 	N is the total number of particles delayed. 
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We are now in a position to define equilibrium probabilities and 

probability densities for the states of the counters, 

(i)  pl2N(n), the probability that both counters are open with N 

particles delayed and waiting to occur on the counters, their 

state being n, 

(ii)q. 
(u 

 ,n), the probability density that counter j has been closed 

for a period u, where 0 < u < T., the other counter being open, 

and with N particles delayed their state being n, for j = 1,2. 

(iii) g12N(u,v,n),  the joint probability density that counter 1 has been 

closed for a period u, where 0 < u < Tl, counter 2 has been closed 

for a period v, where 0 < v < 1-2, and with N particles delayed 

their state being n. 

Note that each n., may take any non-negative integer value. The equations 

representing the possible changes from one state to another, in 

equilibrium, can now be written down in terms of the probabilities defined 

above. But first a little notation is introduced, let 

ni 
 
-1 

= (Ni-1,ni1,...,niK.-l' niK.-1)' 	ni +l  = (Ni+l'nil+l,ni2,...,niK.)' 

n.j(Ni,nil,...,nij-2,nij-l-1,nij 
l,nij

+1,...,niK1 

with all other branches unchanged for i = 1,...,A and j = 1,...,K.. 

Further define 

A 
N.11. = 	E N.p. . 

i=1 i i 
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Therefore the equilibrium equations are 

A 
Ki 

(p+N u,)P12N(n) = E 	E (nij+1)ui
P12N(nij)+g1N(T1'n)+g2N(T2'n)' i=1 j=2 

(3.61) 

dg1N(u,n) 	 A 	-1 
du 	- -(p2+N,u.)g1N(u,n) + 	E 

A128ig1N-1(u,ni ) 
i=B+1 

B 	 A Ki +1 
+ E (n. +l)uig1N+1(u,ni ) + E 	E (nij+1)uig1N(u,nij) 11 

i=I 	 i=1 j=2 

+ -12N(u'T2'n)' (3.62) 

dg2N(u,n) 
du = -(pl+N•u•)g2N(u,n) 

B 	-1 
+ i=1~128ig2N-1(u'ni ) 

A 
+ E 	(n

il +l)uig2N+1(u,ni
+1) 

i=B+1 

A Ki 
+ E E 

i=1 j=2 
(nij+l)u.q (u,n..) 

2N 

+ -12N rl,u,n) , (3.63) 

agl2N(u,v,n) ag12N(u,v'n)  
ōu 	+ 	av = -(a +N.u.)gl2N(u,v,n) 

A 1 	A 	+1 

+ E A 28ig12N-
1(u,v,ni ) + E (nil+1)ui g12N+1

(u,v,ni ) 
i=1 	 i=1 

A K. 

+ E 	E (nij+1)uig
12N(u'v'nij) , i=1 j=2 

(3.64) 

= 1,...,A. In the above 13 

The equations (3.61)-(3.64) are subject p = Al+p2 = p1+A2 = Al+X2+Al2.  

to certain boundary conditions, which are 

A 
g1N(0,n) = A

1P12N(n) + Al2. E 8iP 12N-1(ni
-1

) + E (nil +1)ui
P 12N+1(n

i+1)
' 1=B+1 	i=1 

(3.65) 
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A 
g2N(0,n) = a2p12N(n) + Al2 .E 6.p 

	(n.
-1

)
+ 

E 	(nil+1)uip12N+1(ni+1), 
1=1 	i=B+1 

(3.66) 

B +1 
g12N(u,0,n) = A2g1N(u,n) + Al2 

iEl 
eig1N-1(u,n. ) 

	

A 	
+1 

	

+ E 	(n. +1)uig1N+1(u,ni ) , 
i=B+1 

A 

g12N
(0,v,n) = A1g2N(v,n) + ~E 	

eig2N-1(v'ni-1) 
C=B+1 

	

B 	
+1 

+ E (ni1+l)u
ig2N+1(v,ni ) 

i=1 

(3.67) 

(3.68) 

for ni = 0,1,...,x; j = 1,...,K.; i = 1,...,A. The solution of 
j 

(3.61)-(3.64) subject to (3.65)-(3.68) is considered for equal dead-

times, that is Ti = T2 = T. The results obtained will be shown to extend 

trivially to unequal dead-times for Jitter, and for Delayed State, they 

are extended in the appendix. As in previous problems, see sections 2.3 

and 3.4.4, the counter state probabilities are determined approximately, 

i.e. terms of order (pT)2 are neglected. The solution depends upon the 

K.; for K. > 2, i = 1,...,A we have that 
1 	1 

A 	A Al2e. Ni e xp(-K.A126./ui) 
p 1   = (1 - (p + E n. ui)T, n ( 

	1) 
	.....n 	1 

	

i=1 1K1 	i=1 Pi 	nil' 	
nix) 

 
1 

A 
{1 - (p+ 1E1 niKiui)T}pN(n) (3.69) 

B 	 A 

	

glN(u,n) = 1312N(n)1Al + E A126i + E 	niK.ui(1+uiT) 
i=1 	i=B+1 	1 

A 	
2 

E 	(II1Ki-1 — n1Ki)u1 u } 
(3.70) 



and 

	

A 	B 

	

+ E 	A126. + E 
n1K.ui) T} . 	(3.75) 

1=B+1 	i=1  

p2N(n) = pN(n){1 - 
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A 	B 

	

g2N(u,n) = P12N(n).{A2 + E 	A120. + E 
n. 	

.l+uiT) 
i=B+1 	1=1 	1 

B 	
2 + E (n

iK.-1 	n. )u. u  } , 1=1 	1 	1 
(3.71) 

12N(u,v,n) = 

	

B 	A 	 A 	B 

	

p12N(n)[{A1 + 
E A126. + E 	n1K  u1(1+u1T)}{A2  + E 

A126. + E n. 
 ui(1+p.T)} 

i=1 	i=B+1 1 	i=B+1 	i=1 1 

A 	B 	A 
+ 

(
A
2 
	E 	A A. + E n. 	 2  2 i=B+1 12 1 1=1 1Kiu1)i=B+1 (n1Ki-1 - na.)u1 u 

1 

B 	 A 	B 

	

+(A1  + E A126. + E 	
n.  p.) 

E 
(n .a -1 - niK.)ui2v]. (3.72) 

	

1 
i=1 	i=B+1 	1 	i=1 	1 	1 

By using the probability law that 

T 

p1N(n) = 1312N(12) + 1 g2N(u,n)du (3.73) 

and a similar version for p2N(n), we obtain 

B 	 A 
p1N(n) = pN(n){1 - (A + E 

Al2ei 
+ 	E 	niK p.)T} , 	(3.74) 

1=1 	i=B+1 	i 

This solution is not valid for Delayed State because of the 

constraint that Ki  > 2 for i = 1,.., A, and so a separate solution has 

to be calculated. This solution is 
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Al2  

P 	= ( Al2 )N e u  

12N 	u 	N. 
{1 - (p + Nu)T } , 	(3.76) 

g1N(u) = P12N{A1 
+ Np(1 + UT) + Np2u}  , 

g2N(u) = P12N{p2 + A1211(u-T)} 

(3.77) 

(3.78) 

P2(A1+NU)+Al2u 
U  T(A )12-A2NP) - (Np2+Al2)112u 

+ 112u(p2+u)v 	for u > v 

g12N
(u,v) = 

p12N  
p2(A1+Np)-pT(A1Al2-X2Np) + {p2u(A12-NO

-A
12

pOt
1
4-Np)lu 

+ Al2u(A1+Np)v for u < v. 

(3.79) 

Using the Delayed State equivalent of (3.73) we have that 

Al2  

Al2 N e 
p1N 

= ( 
1-1 
	{1 - 1+NU)T } , 

(3.80) 

 

Al2  

  

     

= 
Al2 N e 

p2N ( ) N: 

u 
(1 - p2T) 	. 

Thus the solution of (3.61)-(3.64) subject to (3.65)-(3.68) has 

been obtained for all cases except when K. = 1 or 2 for at least one i 

in i = 1,...,A; A > 1. In section 3.5.4 it will be demonstrated that 

it is not necessary to calculate the solution for these cases for the 

purpose of calculating a first order approximation to the covariance 

between the two counts. 
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The equilibrium probabilities pl  and p2  that each counter is open 

may be calculated by summing (3.74) and (3.75) over the number of 

particles delayed. Alternatively, by noting that the series of events 

on counter 1 alternates between open periods exponentially distributed 

with mean p
1
-1  and constant dead-times of length t, the probability 

that counter 1 is open in equilibrium is given by 

Similarly 

pl 

p2  

= 

= 

(1 + p T)-1  

(1 + p2T)-1 	. 

(3.81) 

(3.82) 

Therefore the expectations (3.59) for i = 1,2, are 

E{Ni(t)} 	_ 
p it 

i = 1,2, 1 +pit 

which can be approximated by 

E{Ni(t)} = pit(1 - pit) 	i = 1,2 . 	(3.83) 

The cross-product term in the covariance between the two counts is now 

calculated via the probability densities h..(x) i,j = 1,2; i # j i 

defined in section 3.5.1. This is achieved by studying the series of 

events on the single counters from 0+  to x. Because the Jitter problem 

is symmetric it is sūfficientto consider one counter only. 



3.5.3 The Process of Events on a Single Counter  

Without loss of generality we consider the process of events on 

the beta counter, counter 1, and calculate the probability density 

h21(x) where 

h (x)SxSy = p r a recorded event on counter 1 in (x,x+Sx), and,' 
21 	a recorded event on counter 2 in (O,Sy) 

for small Sx and Sy. For a recorded event on counter 2 in (O,Sy), 

counter 2 must be open at 0. Therefore summing over the possible states 

of the two counters at 0 we have 

both counters open at 0 with N particles delayed, 
h21(x)6x6y = 	E pr, their state of delay being n, a recorded event on 

'counter 2 open and counter 1 closed at 0 with N particles delayed 
+ E pr their state of delay being n, a recorded event on counter 2 
(N,n) 	on (O,Sy) and a recorded event on counter 1 in (x,x+Sx) 

(3.84) 

The summation over the delayed particles is 

A 
K. 

E 	= E E{N.: E N. = N} E{n..: 	E n,. = N.}. 
(N,n) N=0 1  i=1 1 	13 j=1  13 	1 

(3.85) 

A 
The middle summation in (3.85) is over all N.'s such that E N. = N 

1 	
i=1 1 

and the right-hand summation is over all n..'s such that 
K. 	 13 
1 
E n.. = Ni  . 	The recorded event on counter 2 is one of three types i  

j=1 13  

and may change the state of the delayed particles. This is the only way 

in which the state of counter 1 may be changed by the event because there 

are no simultaneous events. The three possible events and the changes 

they cause on the state of the delayed particles are 
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(N,n) 	counter 2 in (0,Sy), a recorded event on counter 1 
on (x,x+Sx) 



(i) a gamma only event; the state of delayed particles is then 

unchanged, 

(ii) a beta-gamma pair in which the beta is delayed, the number of 

delayed beta's then increasing by one, 

(iii) a delayed gamma from a beta-gamma pair, the number of delayed 

gamma's then decreasing by one. 

So 

  

a recorded 

h (x)6xdy = E {~ dy pr event on 
21 	

(N,n) 
2 	counter 1 

in (x,x+6x) 

counter 1 
open at dy 
with state 
of delays (N,n) 
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+ 
B 
E 

i=1 
A 	0. 
12 1 6y pr 

a recorded event on 
counter 1 in 
(x,x+6x) 

counter 1 open 
at dy with state 	+ 
of delays (N+1,11,1 ) 

A a recorded event counter 1 
+ 	E n, u.dy pr on counter 1 open at 0 with p 	(n) + 
i=B+l i1 1 in (x,x+dx) state of delays (N-1,((i

l ) 12N . 

(an equivalent set 
+ of terms with counter I open at 0 replaced by counter 1 closed at 0). 

(3.86) 

In (3.86) the notational device (N,n) of section 3.5.2 is somewhat 

changed, we now have 

(N+l,ni+l) _ (N+I,nl,...,ni-l,n.+1 n. 	..) 	n.+l = 	+ -1 '-i+1'• 	, 
-1 	

(Ni l,nil,. .,n1K.}1). 
1 
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It is not possible to express the above probability densities in terms 

of some single renewal density and therefore we define 

a recorded event 
IN(x,n)6x = pr on counter 1 in 

l (x,x+dx) 

counter 1 is open 
at 0, with the  
state of delays (N,n) 

(3.87) 

   

and 

a recorded event counter 1 is closed 
JN(x,u,n)Sx = pr on counter 1 in for u with the state 	(3.88) 

(x,x+dx) 	of delays (N,n) 

where IN(x,n) = 0 for x < 0 and JN(x,u,n) = 0 for x < t - u, small dx 

= 1,...,A. 
j 

The probability density h21(x) as defined in section 3.5.1 and 

expressed in (3.86), may now be written in terms of IN(x,n_)- and 

JN(x,u,n) defined in (3.87) and (3.88). Before doing so, the possible 

changes in (N,n) which we started to describe above, are now completed. 

-1 ni 	= (Ni-1,n.l-1,ni2,...' 1K.), nij = (N.,nil,...,nij-1+1,n..-1,nij+1,...,), 
i 

for j = 1,...,Ki and i = 1,...,A; all other branches remaining unchanged. 

Therefore, taking the limit of (3.86) as ax and ōy both tend to zero 

from the right, 

A 	
-1 

h21(x) = 	E (A2IN(x,n) + E 	i~ B+l x12e.IN+l(x'ni+1) + 	niluilN-1(x'ni )}P12N(n) 
i (N,n) 	1  

A 
+ 	E 	f 2JN(x,u,n) + E a126iJN+1(x,u,u. ) + I niluiJN-1(x1

u,nil}g1N(u,n)du. 
(N,n) 0 	i=1 	1 	i=B+1 

(3.89) 
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The intrinsic relationship between IN(x,n) and JN(x,u,n) is now developed 

with the intention of solving for h21(x) in terms of known functions. 

Hence the probability density h21(x) may be found; this is central 

to the calculation of the covariance function. Consider IN(x,n) as 

defined in (3.87). Now IN(x,n) may be split into several parts 

depending upon when the first change in the state of the delayed 

particles takes place and the type of change it is. Thus, 

recorded event on 
IN(x,n) = pr counter 1 in 

(x,x+sx) 

counter 1 is open 
at 0+ with the 
state of delays (N,n) 

  

recorded event on counter 1 
= pr in (x,x+8x) and the first 

change in n at or before x 

counter 1 is open at 0+ 
with the state of delays 
(N,n) 

 

counter 1 is open at 0+ 
with the state of delays 
(N,n) 

recorded event on counter 1 in 
+ pr (x,x+8x) and the first change 

in n occurring after x 

  

B 	A 
{r1(x) + E nilui + E 	x12"i

}exp{-(x12+N.1a.)x} + 
i=1 	i=B+1 

x 	 A 	
+1 	 +1 

+ f exp(-(Al2+N.p.)y){x12. E9~(JN+1(x
-y,0,n. )pl(y)+ f JN+1(x-Y,v ~ i )pcl(y,v)] 

0 	 1=B+1 	 0 

+ Al2 .E 80IN+1(
x-y,ni

+
1)pl(y) + 	JN+l(x

-y,v,ni+1)pc1(y,v)dv] + 
17.11 0 

B 	 T 

+ 
iE nilui(JN-1

(x-y,o,ni-1)pl(y) + ō JN-1(x_y,v,ni 1)pcl(Y,v)dv] + 

A  

+ 
E 
	nu[I

(x-y,n 1)p(y) + f J(x-y,v,ni 1)pc1(y,v)dv]iliN-1il 	0 N-1
i=B+1 

 

A K. 
 

+ E 	E ui.ui[IN(x-y,ni.)pl(y) + f JN(x-y,v,ni.)pcl(y,v)dv]}dy, 
j=2 	" 	0 

(3.90) 
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where r1(x), p1(y) and pc1(y,v) refer to the process with inter-event 

arrivals consisting of open periods of average length A
1
-1  and 

dead-times of constant length T, and are such that 

(i) r1(x) is the renewal density for the process starting with an 

open interval, 

(10 pl(y) is the probability that counter 1 is open at y, conditional 

on the counter being open at 0+, and, 

(iii) pc1(y,v) is the probability that counter 1 is closed for v at y, 

conditional on the counter being open at 0+. 

The Laplace Transforms of r1(x), pl(y) and pci(y,v) are related in a 

fairly simple way, 

Pl(s) = 
A1
-1pc1(s,v) = Al-iri(s) = A(s) 

where 

A(s) = eST((s + X1)eST— 
A1)-1 

 . (3.90a) 

To obtain JN(x,v,n) in terms of IN(x,n) we condition on the possible 

state of delays at t = T - v, the instant at which the blocked counter 

reopens. Then 

where 

JN(x,v,n) = 	rNM(T-v;n,m)IM(x+v-T,m), 
(M,m) 

(3.91) 

state of delays 	state of delays 
rNM(y;n,m) = pr 1 at y is (M,m) 	at o+  is (N,n) J . 	(3.92) 
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Note that {r (y;n,m)} are the transition probabilities of the 
NM -

number of customers in an infinite server queue, with arrivals forming 

a Poisson process of rate Al2 and where the service distribution has 

density f(x) say, with 

K.-1 
A 	11.(11.x) 1 

f(x) = 	E 6. 	 
i=1 1 (K.-1)! 

1 

Considerable simplification of (3.90) ensues upon substitution of (3.91) 

into (3.90). Subsequent Laplace Transformation of (3.90) yields 

_ 	A 
A 1(s+112+N;p )IN(s,n) =A1 

+ E 
nilpi 

+E 	
A126i 1.1 i1 

 

K.  A 	A 
+ E A 6.I* (s n.

+1
) + E 	n. u.I 	(s n.-1) + E 	E 	

' 
n..u.I*(s n..) 

i=1 
12 1 N+1 '°1 	i=B+l 

11 1 N-1 '~1 	i=1 j=2 ij 1 
N 	-1] 

+ E IM(s,m)R (t;n,m)e-sT 
(M,m) 	124 

(3.93) 

where 

R (t;n,m) = E 	1126irN+1M
(t;n.

+l ~
m) + E niluirN-1M(t;ni-1,m) i=B+1 	 i=1 

A 
+ a 

	
ex (-(1 +N. u..)v){ E X 6.r 	(r-v•n.+l 

	A 	
-1 

1 	p 	12 	12 1 N+1M 	'.1 ,m) + E niluirN-1M(T-v;ni ,m) 
0 	i=1 	 i=1 

A K1 
+ E 	E n, u r (T-v;n. ,m)}dv. 

i=1 j=2 13 1 NM 	
.1j..- (3.94) 

The set of transition probabilities as defined in (3.92), has generating 

function FN(x,z,n), where 
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A 	
K. 
	m. 

FN(x,z,n) = 	E 	r (x;n,m) II 	II (Z..) 1j 

(M,m) 	1=1 j=1 13 

 

A K. 	ni. 	A Al2A. Ki 
II 	F..1 	exp{ E 	E  
i=1 j=1 13 	i=1 Pi 	j=1 	13 13 

(3.95) 

and 

-11.x j (1-Z ) (U x)
j-Q 

F..(x) = 1 - e 1 	E 	
iQ_R) t=1 

(3.96) 

This is a generalisation of a result which may be found in Gross and 

Harris (1974, page 117) which is valid for exponential service 

distributions. A first order approximation to rNM(T;n,m), that is, 

neglecting terms of order (pT) may be obtained from (3.95) and (3.96) 

or more directly by simple probabilistic arguments. We have 

r 
nii 1T for M = N-1, m = (n.-1), i = 1,...,A 

-1 

rNM(T;n,m) _ 
n. P.T 	for M = N, 	m = (n. ), 	i = 1,...,A 1j 	 -1j 	j = 2,...,K. 	(3.97) 

1 
1-(Al2+N.p.)T for M = N, m = n, 

~12
6.T 	for M=N+1, m =(n.

+1
),

- 
  i 	1,...,A -1 

For any Ki = 1, the second line in (3.97) is absent. Upon substitution 

in (3.94) we obtain a first order approximation to 

Thus 

(T;n,m). 
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M = N+2 	m = (n 
a
+2

) 

M = N+2 	m  = (n  +1 n  +1)  , 

-a -b 

12ea 
1-{1

12
+(Na+1)11a+Nouo}T M = N+1 	m = (na

+l)  

	

2eanbcubT 
	M = N+1 	

m = (na+l,nbc) 

X12eanblubT 
	M = N 

nalua(nal-1)11aT 	M = N-2 	m = (n 
a
-2

) 

nalPaWblUbT 	
M = N-2 	m = (na-l'nb-1) 

	

1(T,n,m) -nalPa%bcucT 	
M = N-1 	

m = (na 1'nbc) 

nalUa 1 {A
l2+(Na-1)ua+Nel  }T M=N-1 	m = (na-1)  

nalPaxl2ebT 	
M = N 	m = (na  

-l' b+t
) 

 

x  2Al2ebT 	
M = N+1 	m = (nbt l) 

X2nbcubT 	 M = N 	m = 
(11b c)  c 

x2nb1UbT 	
M = N-1 	m = (nb-1) 	. 

(3.98) 

The ranges for a, b and c in (3.98) are: a = 1,...,B for the first 

five entries, a = B+1,...,A for the next five entries, b = 1,...,A and 

c = 2,...,Kb  for all relevant entries. Note that the fourth entry in 

(3.98) becomes Al2ea(WaK +1)Pa when a = b and c = Kb. Also in (3.98) we 
a  

use the notation 

A12
2 
0a
2 
T 

Al2
2 
eaebT 

m = (n +1 	-1)  
-a  ' nb  



and 

A 
= E N.p. . 
i=1 

1 1 
N0U0  

na+2 = (Na+2, nal,..., naK -1lnaK +2), 
a 	a 

-2 
na 

	(N -2, 
nal-

2,na2,...,naK  ) , 
a  
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i#a 

Also A 1(s) may be approximated by 

A 1(s) = s (1+A1  r) 

Therefore 

A 1(s+Al2+N p• ) = (s+Al2+N.U. )(1+X1T) . (3.99) 

A first order approximation to equation (3.93) may now be produced, 

this is 

A 	B 
E aw(T;n,m)IM(s,m) = Al 	E 	Al2ei 

+ E 
ni1U1' 

m 	 i=B+1 	i=1 
(3.100) 

where 

a (T;n,m) = RNM(T;n,m) - e-ST 

and 

	

- -A120a 	
M = N+1 

RNM(T;n,m) = 
 A 1(s+Al2+NU ) M = N 

	m = n 

	

-nabua 	
M  .= N 	m = (nab) 

	

-n
alua 	

M = N-1 m = (n -1 ) 
-a 

(r;n ,m) , 

a = 1,...,B. 

(3.101) 

m = (n +1) 	a = B+1,...,A 
a 

a = 1,...,A 
b = 2,...,K 

a 

(3.102) 
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Using the approximation for A 1(s+X12+N u) in (3.99), and that for 

in (3.98), it is possible to express a (T;f,m) in the form 

aNN(T;n,m) _ (1+A1T)b (n m) + TC (n m) (3.103) 

where 

b (n, m) = 

-Al2ea 

s+Al2+N.u. 

-nab p a 

-nat a 

M = N+1 

M = N 

M = N 

M = N-1 

m 	(n a+1) 

m = n 

m =
~(nab) 

m 	(n -1) - 	-a 

a = 1,...,A 

a = 1,...,A 
b = 2,...,K a 

a = 1,...,A, 

(3.104) 

and 

-a 0 0 	 M= N+2 	m= (n 	
'1-1b

+1 	+1) 
12 a b 	~a ~  

Al2ea{s+X12+(Na+1)ua+NO pO} M = N+1 	m = (na+1) 

-Al2eanbcub 	M = N+1 	in = (na
+l,nbc) 

-Al2eanblub 	M = N 	m = 
(1-la 

+1, -1) 

c (n' m) = - 12eanbl ub 	M = N 	m = (n +l,nb-1) ..a 

nalpa{s+a12+(Nā 1)ua+N@ } 	M = N-1 	m = (na 1) 

-naluanbcub 	M = N-1 	m = (na
-1,nbc) 

-naluanblub 	M = N-2 	m = (n a -1
,nb-1) 

.. 

-nalua(nal-1)
11a 	M = N-2 	m = (n -2) 	. 

-a 

I(T;n,m) 

(3.105) 
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Note that in (3.105) the third entry becomes?12O (naK +1)pa  when 
a  

a = b and c = Ka; the ranges of a,b and c in (3.105) are: 

a = 1,...,B for the first four entries, a = B+1,...,A for the last five 

entries, b = 1,...,A and c = 2,...,Kb  for all the entries. The 

equivalent form of (3.103) in matrix notation is 

a = (1 + A1T)b + CT, (3.106) 

where a = (amm), b = (bm) and c = (cNm) are all square matrices of 

infinite dimensionality. Therefore, if we define the infinite dimensional 

vectors I*  and A by 

B 	 A 
I*  = {IN(s,n)} 	and A = (A1  + E 

n.  p. + E 
	A126.) 

i=1 	i=B+1 

then (3.100) can be written as 

aI*  = A. 	 (3.107) 

Assuming that the inverses of the matrices a and b exist and are unique, 

then 

I*  = a  lA  

= {(1 + A1T)b + To}-1A 	. 

an approximation to which, is 

I* _ {(1 - A1T)b-1  - Tb-1cb-l} A . (3.108) 

If the dead-time T is zero then (3.108) becomes 

I*( T = 0) = b-1A 	 (3.109) 
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Therefore, denoting I* for T = 0 by IOf, we have 

= (1 - A1T)I0 - Tb-1cIO* . (3.110) 

Thus if we can find an inverse of the tridiagonal matrix b then an 

approximate form for I will be available. This will then be used 

to calculate the probability density h21(x) which is the remaining 

unknown function in the formulae for the covariance function. Since the 

matrix b is associated with the zero dead-time situation we again 

consider this. We have that if INO(x,n) is the nth element of I0 then 

B 	 A 
IN(x,n) = 	E 	(A1 + E ~ilpi + 

E 	a120.)rNM(x;n,m) , 
(M,m) 	i=1 	i=B+1  

since an event can happen in any one of three ways; 

(i) a beta only event, 

(ii) a delayed beta from a beta-gamma pair, and 

(iii) a beta-gamma pair in which the gamma is delayed. 

Now (3.111) may be calculated as follows, 

	

A 	B 

	

IN(x,n) = a1 + E 	A 0. + 	E 	E 
milui rNM

(x;u,m) 
i=B+1 	(M,m) i=1 

	

A 	B 	number delayed 

	

= Al + E 	A 
0. + E ui E in branch i 

i=B+1 	i=1 	at x 

state of 
delays at 0 

  

A 	B 	3FN 
• A 

+ 
1 i

=B+1 12 	
u 

ei + i=1 1 
az il z=1 

(3.112) 

   

where FN = FN(x;z,n) is defined in (3.95) to be the generating function 

of the transition probabilities {rNr,I(x;n,m)} and 1 is the unit vector. 

Since 



8FN 

z=1 az. l 

= pl 	B 

K1 	
12 (n..p. - Aei)ui3-1 

s 
0* 
IN (S 

12=1 j=1 	(s + u )i i 
(3.113) 

-u.x 

	

A
123.0 	

K. 
(u. 

)a-le 3.

u1 	
Cl - aE1 	

(a-1): 	} + aE1 
	

-u 

(a-1)! 

1 n. (u.x) 	e 
ia 

then (3.112) becomes 

B K. -11 X 

0 	 Cu x)j-le i 
IN(x,n) = pl + E 	E (n..u. - A A.) 	1 

1=1 j=1 	
i~ i 	12 i  

Alternatively, after Laplace Transformation 

111 

K. 	a-1 iX 

1 

If we represent (3.111) in matrix form, then 

IO = RA , 

or 

IO* = R*A , (3.114) 

where 

R* _ {r (s;n,m)} . (3.115) 

Comparing (3.114) with (3.109) we see that 

b-1 = R*. 

Therefore, we are now in a position to calculate b-lcI0 . If GN(n) is 

defined to be the nth element of cI , then 

	

A 	A 	B 	A 	B 

	

GN(n) = (A1 + E 	A 0.)( E Al2O. + E n.1p.) + ( I A120.)( 1 n.1p.) +1
i=B+1 	i=B+1 	i=1 	i=B+1 	i=1 
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B 	 2 B B 
+ E n. (n-1)pi  + E 	E n. n.lp. 	. 
1=1 	1 	1=1 j=1 	J 	J 

1#j 

So that the nth of b-1cI0*  is 

(3.116) 

E 	GM(m)r*  (s;n,m) 
(M,m) 

This involves terms like 

* 
E miluirNM(s;n,m), and, E milmjluiujrNM(s.n,m), 

(M,m) 	(M,m) 

(3.117) 

(3.118) 

for i,j = 1,...,B. When i - j in the second summation of (3.118),m.l  
J 

is replaced by mil-1. Now (3.117) can be calculated using FN(x;z,n) 

the generating function of {rNN(x;n,m)}, for example 

* 
E miluirN(s;n,m) = 

(M,m) 

aFN  

Pi az. 
11 z=1 

(3.119) 

    

and 

a2FN  
E 	m, m, uu.r (s; ) = 	u•u• 

(M,m) 11 J1 
 i J  NM 	

n,m 
	J az. Dz. 

  

 

z=1 
(3.120) 

    

where 	denotes the Laplace Transform operator. Hence, using the form 

for FN(x;z,n) given by (3.95) and (3.96), calculation of (3.119), (3.120) 

and subsequent substitution into the relevant parts of (3.117), an 

approximate form for IN(s,n) may be found, to wit 

P A 	B 

 

	

K. 
	(n..u. - X A.)u.J-1 

 

IN(s,n) = 	1s1  + p12  g 	E 	l7 1 	12 i 1 	+ L (n)T , 	(3.121). 
i=1 j=1 	(s + u  )J 	N . 

i 
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where LN(n) is such that 

E pN(n)LN(n) = 0 

(N,n) 

pN(n) given by (3.67). 

Upon substitution of (3.121) into the Laplace Transformed version 

of (3.91) an approximation to JN(s,v,n) is found. However, to obtain a 

first order approximation to the probability density h21(s), we need only 

a zeroth order approximation to JN(s,v,n), and this is IN(s,n). This 

zeroth order approximation becomes first order upon substitution into 

(3.89), indeed we have that 

B 
h21  (s) = 	E 	{X2IN(s,n) + E a12O.IN+1(s,n +1) 

(N,n) 	 i=1 

A 

+ 

	

nii 1  N-1

(s'ni-1)}p
2N

(n) , 
i=B+1 

(3.122) 

where all terms of order (pt)2  have been neglected in (3.122). Finally 

we work (3.121) into (3.122), which yields 

h21(s) = p1p2s1p2  + E p12p 2a 
A. ( uz )K1 

i=1 	
2 12 1 	ui+s  

(3.123) 

3.5.4 The Covariance Function and Comments  

Having obtained the joint probability density h21(s), we may write 

down the corresponding density for the gamma counter by interchanging 

beta for gamma throughout section 3.5.3. This may be achieved by 

B 	 A 

	

replacing the summation E by the summation E 	in (3.123), thus 

i=1 	 i=B+1 
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A 
h12(s) = 

plpsplp2 + 

	p12p22~12ei ( 
u
1 )K1 

. 
i=B+1 	u1 

(3.124) 

An approximate form for the transformed covariance function may 

now be obtained upon substitution of (3.123) and (3.124) into (3.60), 

whence, 

2 2 a p p 	A 	u. K. 
c*(s) = 	12 1

2 2 	
E e.( +s

) 
s 	i=1 	ui 

(3.125) 

If (3.125) is inverted with respect to the transform variable s, then 

cov{N1(t),N2(t)} = c(t) 	
• 

A 	K. 
= X12p12p22{t - E ei -2%

1=1 	Pi 

A 6.e u3.
t 	K.-1 	

(u.t)3 
+ I 	1 

	
I 	(Ki  -j) 	~; 	}. 	(3.126) 

i=1 	u 	j=0 
i 

Now the common dead-time T of the two counters enters the covariance 

• function given by (3.126) only through p12 and p22, and a first order 

approximation in dead-time to the covariance function with unequal 

dead-times, is obtained simply by setting T = Ti in each of p., 

i.e. pi = (l+pili)-1 for i = 1 and 2. This may be seen by considering 

h21(s): the gamma dead-time T2 enters h21(s) only through equation (3.89) 

and consequently through p2N(n) in (3.122), and the text between equations 

(3.90) and (3.122) is valid for the beta dead-time equal to T1. Thus, 

h21(s) is valid for unequal dead-times, therefore so are h12(s) and c*(s). 

We now examine the validity of the covariance function given by 

(3.126) for various ranges of the Ki. The whole of section 3.5.3 is 

seen to hold for any values that the Ki might take, provided the 
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approximate forms (3.74) and (3.75) for p1N(n) and p2N(19 apply. The 

two joint probabilities p1N(n) and p2N(n) were obtained using the 

normalising condition (3.73) and an equivalent condition for counter 2, 

(3.73) did not depend on the coefficient of u ing2N(u,n) and it is 

only this coefficient that takes different forms for different ranges 

of the Ki. Thus, the covariance function given by (3.126) is valid for 

any or all of the Ki  equal to unity or two, i = 1,...,A. Iii particular, 

by setting B = 0, A = 1, Al  = 1, K1  = 1 and ul  = n we obtain the 

Delayed State covariance, 

_ -nt 
cov{Nl(t),N2(t)} = X12p12p22(t - 1 	 ) . (3.127) 

If the dead-time influenced covariance given by (3.126) is compared 

with the zero dead-time covariance given by (3.55), then it is seen 

that the former is a multiple, p12p22, of the latter. Therefore, it 

appears that to first order in the dead-time the covariance is 

equivalent to that which would be obtained in the zero dead-time 

situation if the efficiencies of each counter were p.2e. instead of 

c., i = 1,2; i.e. the probability of a random deletion of a particle on 

counter i is raised from 1-c. to 1-p.2e., i = 1,2. 

To complete the study of Jitter we now calculate an approximation 

to the recorded coincidence rate; all terms of order (pT)3  are neglected 

in section 3.5.5, where the counters will be assumed to have common 

dead-time T. 
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3.5.5 The Coincidence Rate  

As in section 1.3.2 a coincidence is defined to be the occurrence, 

in the combined output of the two counters, of two recorded events 

within a period h of one another, with h < min(T1,T2),  so that the 

events are from different counters; thus the coincidence rate is 

lim pr
{ a recorded event on one counter in [O,Sh], and 

Sh->0 	
a recorded event on the other counter in [O,h) 	(3.128) 

Since the probability of a simultaneous event is negligible, the 

coincidence must be due to either, 

(i) a recorded event on counter 1 in [O,Sh), and a recorded event 

on counter 2 in [Sh,h), or, 

(ii) a recorded event on counter 2 in [O,(Sh), and a recorded event 

on counter 1 in [6h,h). 

Now each recorded event is one of three types; 

(i)' a single event, 

(ii)' an event that causes a delayed event on the other counter, or, 

(iii)' a delayed event. 

Types (ii)' and (iii)' change the state of those particles queueing 

where (i)' leaves the state unchanged. 

For equal dead-times, i.e. T = T2  = T, the rate of coincidences 

due to type (ii) events is 
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h 	B 	A 
E 	f  dx{A2IN(x,n) + E 

A120.IN+l(x,-
n.+1
1  ) + E niluiIN-1(x,ni-1)}pl2N(n) (N,n )  0 	i=1 	i=B+1 

T h 	B 
+ 	E 	f  du f dx{A2JN(x,u,n) + E Al2eiJN+l(x,u, nil) + 
(N,n)T-h 0 	1=1 

A 

+ E  nilu1JN-1(x'u'nil)}g1N(u,n). (3.129) 
i=B+1 

In (3.129), IN(x,n) and JN(x,u,n) are defined in (3.87) and (3.88) 

respectively; the terms involving IN(x,n) represent the probability of 

both counters being open at 0, an event on counter 2 at 0+  and an event 

on counter 1 before h; the terms involving JN(x,u,n) represent a 

similar probability but with counter 1 closed at 0. Now, using the 

zeroth order approximation to JN(x,u,n), namely IN(x-T+u,n), and defining 

B 	
+1 	A 	

-1 
gN(x;n) = A2IN(x;n) + E Al2AiIN+l(x,n. ) + 

E 	n ..lp.IN-1(x'ni ) ' i=1  

(3.130) 

then neglecting terms of order (pT)3, (3.129) may be approximated by 

h 	T h 

E {p12N(n) f gN(x,n)dx + f f g1N(u,n)gN(x-T+u,n)dx du } 
(N,n) 	0 	T-h 0 

h 	T h-T+u 

E  (1)12N(n) 
f gN(x,n)dx + f 	f 	g1N

(u,n)gN(x,n)dx du}. 
(N,n) 	0 	T-h 0 

(3.131) 

In obtaining (3.131) remember IN(x,n) = 0 for x < 0. If the order of 

integration in the second term of (3.131) is reversed, and g1N(u,n) 
B 	A 	 " 

	

is approximated by (A2  + E Al2ei + E 	niKi  ui)p12N
(n) then (3.131) 

i=1 	i=B+1  
is 



118 

h B A 

E 	p12N(n) f gN(x,n) (1 
+ (l2  + E A 	e. 	+ 	E 

niK ui)(h-x)}dx (N,n) 	0 

h 

1=1 

B 

i=B+1 

A 

i 

= f 	E 	p1N(n)gN(x,n) 
0 (N,n) 

(1 + (12  + E 
i=1 

A120. 	+ 	E 	n. 
i=B+1 

p.)(h-x-T)}dx 	, 
1 

(3.132) 

since, from (3.69), (3.74) and (3.75) 

B 	 A 
p12N(n) = p2N(n)(1 - (a1  + E A 0. +E 	

niK u
i)T} + O(T2) 

i=1 	i=B+1 	i 

A 	B 
p1N(n)(1 - (a2  + E A 0. + E n. p. )r) + O(T2) . 

i=B+1 	i=1 	1 

In progressing through the next two stages, (3.122) and (3.123) are 

used, thus the rate of coincidences due to type (ii) events is 

h 
f h21(x){1 + p1(h—x—t)}dx 
0 

B 	
Ki  -1 

 

=p P{(1+ph)[pph + p
12 

 EA 0.(1- E 	1 	 
12 1 	1 	1 2 	i=1  12 1 	j=0 	, 

2 	B 	K. 	j uih 

pl[plp2 2 + p12 
iEl 

 A128i 
K. 

{1 - E (u
ih) e 

ui 	J. 	j: 
} ] } . 	(3.133 ) 

Equation (3.133) takes different forms depending on the value of the K,
1
, 

and specifically, on whether any of the Ki  are equal to unity. We 

consider only two cases, the first when all the Ki  are greater than unity 

and the second when B = 1 and K1  = 1. 



For Ki  > 1, i = 1,...,B, (3.133) is 

B 2 h 	h 
P12P1h{P1P2  + P1  P2  2 + P12 1Z  X128iui =1  (3.134) 

By interchanging the roles of the subscripts 1 and 2 in (3.134) we may 

obtain. the rate of coincidences due to type (i) events for K. > 1, 
1 

i = B+1,...,A. Therefore the total coincidence rate for Ki  > 1, 

i = 1,...,A is 

h 	h A  
p12h{p1p2(p1+p2)  + pip2 2 (p1p1+p2P2)  + P12 2 iE1x12841(u1 'P '1"1  

(3.135) 

where 

P

1  

Pi 
P2  

for 1 = 1,...,B 

for i = B+1,...,A. 

Before we calculate the coincidence rate due to type (ii) events 

for the second case, i.e. B = 1 and K1  = 1, the coincidence rate due 

to type (i) events is calculated when there are no delayed events on 

counter 2. This is necessary for the calculation of the coincidence 

rate for De-centred Jitter and Delayed State. The rate of coincidences 

due to type (i) events is now 

-P2h 	T 	-p (h-T+u) 	B 
CP12N(n)(1-e 	) + f g2N(u,n)j1-e 2 	

idui(al+ E n. u.). 
(N,n) 	T-h 	 i=1 

( 3 .136) 

The two components of (3.136) correspond to counter 2 being open or 

closed at 0, and if counter 2 is closed for u at 0 then it is noted that 

the counter reopens at T-u. The approximations to 
Pl2N(n) 

 and g2N(u,n) 

119 
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of Section 3.5.2 are now used to calculate an approximation to (3.136); 

it is fairly easy to show that for Ki  > 1, i = 1,...,B, (3.136) becomes 

P12p1p2h, 

and for B = 1, K1  = 1, (3.136) becomes 

h 

p12h(p1p2 	p2A12111 T  + p2Al2u1 2 ) • 

(3.137) 

(3.138) 

Finally we calculate the coincidence rate due to type (ii) events 

for B = 1 and K1  = 1,  for this case (3.133) becomes 

ulh 	plh 

p12p1h{p1p2 + p12A12u1(1-  2 ) + 2 (p1p2 + p12Al2u1
)}.  (3.139) 

Therefore the total rate of coincidences for De-centred Jitter 

with K. > 1 for i = 1,...,B, is the addition of (3.134) and (3.137), i.e. 

p12h(p1p2(1+p1)  + .12'2 2 + p12.Z1  X12eiui 211 
K.)} . 	(3.140) 

The total rate of coincidences for delayed state is obtained when (3.138) 

is added to (3.139), the roles of subscripts 1 and 2 interchanged and 

ul 	n, i.e. 

(3.141) 



3.5.6 Summary  

To estimate the original disintegration rate A for the problem 

of Delayed State, the three functions necessary to any estimation 

procedure may be chosen from the following, 

(i) the expected number of recorded events on each counter, 

E{Ni(t)} = pipit , 

where 

pi  = (1 + p.r.)- 1 	for i = 1 and 2, 

(ii) the covariance between the recorded events on each counter, 

_ -nt  
cov{N1(t),N2(t)) = Al2p12p22{1 + 0(pr)2}(t 	1  n 	)  

(iii) the coincidence rate between the recorded events on each counter, 

p h  p h{P P (l+p ) P a  nr+p  a nh + p A n(1 - nh) + 2 (p P +P a n) 12 	1 2 	2 	1 12 	1 12 
	12 12 	2. 1 2 12 12 

+ 0(Pt)3 

where p12 = p1p2. For reasons outlined in section 3.2.2 (iii) is not 

usually used in practice. 

When the Jitter model is applicable then assuming that the parameters 

in model (3.1) have been estimated, the three functions required for the 

estimation of the original disintegration rate may be chosen from (i), 

(iv) the covariance between the recorded events on each counter, which 

for large t and small T may be approximated by 

cov{N1(t),N2(t)}= Al2p12p22(t-m1-m2) , 
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where m1 is the average delays of a beta particle given that the 

beta particle is delayed; similarly for m2 and a gamma particle, 

(v) the coincidence rate between the recorded events on each counter, 

A 

p12h{P1P2(p1+p2)+P1P2 
2 

(p1P1+1322
) 
+ p12 2 1/=1

0(PT)3,  ~12eiui(ui PiKi)} +  

provided Ki > 1 for i = 1,...,A. This applies to the normal Jitter 

distribution, while for the De-centred Jitter distribution we have 

a coincidence rate of 

h 
p12h{P1P2(l+pl) + P12P2 2 + p12 

iEl 
A126. 	2 (P.-P

1K.)} + 0(PT)3 

provided Ki > 1 for i = 1,...,B. It should be noted that the last 

two formulae are not of great practical importance because of the 

K. > 1 restriction for various i, although it would not be too 

difficult to obtain rates for some K. = 1 from (3.133). 
1 

For the problem of Delayed State, one possible estimate of the 

disintegration rate A, based upon the relationship 

-1 
= PIP '12 	' 

is 

nitn2t
(t - n1t11)(t - n2tT2) 

t4c(t)(t - n
-1 + n-le-nt) 

where nit is the observed mean number of recorded events on counter i 

for i = 1,2, and c(t) is the observed covariance between the two numbers 

of recorded events, in time t. 

For the Jitter problem a very similar estimate of A may be found. 
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Appendix 1. A Closer Approximation to the Covariance for Delayed State  

We now give an outline of the calculations that produce a second 

order approximation to the covariance between the number of recorded 

events on each counter, for the Delayed State situation. We will not 

restrict the calculations to equal dead-times. From equation (3.65) 

we have that the Laplace Transform of the covariance between N1(t) and 

N2(t) is given by 

* 	h12
(s) 	

h21* (s) 2p1P2p1p2  
c (s) = 	2 	

+ 	
2 	3 

s 	s 	s 
(3.142) 

where h21(x) is given by (3.89) and h12(x) is obtained by interchanging 

beta for gamma throughout (3.89). In Delayed State there are no delayed 

beta's and each gamma is delayed by an exponentially distributed period 

of mean n-1. Therefore we set A = 1, B = 0, 81 = 1, K1 = 1, ul = n 
and 

(N,n) = N so that (3.89) reduces to 

o 
h2

1 (s) = E {X IN(s) + Nn IN-1(s)} Pl2N 
N=0 

T1 

.+ E 	f (X2JN(s,u) + NnJN-1(s,u)}q~ N(u)du . 
N=0 0 

(3.143) 

The sequence of events on counter 1 forms a renewal process, the intervals 

between successive events having density plexp{-p1(x-T)} for x > T. 

Furthermore the sequence of events is independent of the number of 

gamma's delayed at any specific point. In particular the sequence is 

independent of the number at zero. Thus, if K(x) denotes the renewal 

density of the renewal process on counter 1 then 

-pix x -ply 
IN(x) = p1 	+ f ple 	K(x-y)dy, 

0 
(3.144) 
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and 

JN(x,u) = K(x+u) . 

As a consequence of (3.144) and (3.145), (3.143) becomes 

T
1 

 

h21(s) = p12  p1p2  {1 + K*(s)} + f  ¢Sp2gt(u)K*(s)du, 
pl+s 	0 

where 

ST 
K*(s) = pl{(pt  + s)e 1 - p}-1  

(3.145) 

(3.146) 

(3.147) 

To obtain a second order approximation to h21(s) by neglecting terms 

of order (pT1)
3 
 we merely note that p12  = p1p2 to first order. This 

may be seen from the leading terms in the expansions of giN(u) and q2N(u) 

as given by (3.77) and (3.78) respectively, which are unchanged when 

the counter dead-times are unequal and by using the two normalizing 

conditions 

T. 1 

piN = p12N + f q. (u)du 
0 

and summing over N. It then follows that 

for i = 1,2, 

 

h*  (s) = p1p2p1p2  
21  

 

(3.148) 

To obtain h12(s) we first interchange the subscripts 1 and 2 

throughout (3.89), then we set the various parameters to be compatible 

with the Delayed State problem, i.e. 



CO 
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h12  (s) = 	E •{ 
N=0 

N(s)  + x12IN-1(s)}P12N 

 

T2  

+ E 	f {A1JN(s,u) + X12JN-1(s,u)}g2N(u)du , 
N=0 0 

( 3.149) 

where now 

 

a recorded event 

IN(x)dx = pr on counter 2 in 

(x,x+dx) 

counter 2 is open 

at 0+  with N  

gamma's delayed 

  

a recorded event 

JN(x,u)dx = pr on counter 2 in 
(x,x+dx) 

counter 2 is closed 

for u at 0+  with N 	, 
gamma's delayed 

  

for small dx, IN(x) = 0 for x < 0 and JN(x,u) = 0 for x < T2  - u, 

N = 0,1,...,m. In section 3.5.3 the intrinsic relationship between 

IN(x) and JN(x,u) was developed with the intention of solving for IN(x),  

and consequently JN(x,u), in terms of known functions. That development 

is now extended to include terms of order (pT)2, where T is the smaller 

of T1  and T2. 

From (3.93) we have that 

-1 	
°D 	 -ST 

A (s+Al2+Nn)IN(s) = A2+Nn+X12IN+1(s) + MEO  IM(s)RNM(T2)e 	2  

(3.150) 

where 

T2 

RNM(T2) = NnrN
-1M(T2) + 

A2 f0  exp{-(Al2+Nn)v}{Al2rN+1M(T2-v) 

+ Nnr
N-1M(T2

-v)}dv, (3.151) 



A 

= {1 + (z-1)e nx}N exp{- 
n 

(3.152) 

M=0 
(3.153) 

co 

E a (T2)IM(s) = 2 
 + 
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and A(s) is given by (3.90a) but with X1,T replaced by X2, T2  

respectively. Furthermore, {rNM(x)} are the transition probabilities 

for an infinite server queue with arrivals forming a Poisson process 

of rate X12  and the service distribution being exponential with mean 

-1 
n . The set {rNM

(x)} have generating function FN(x,z),  where 

co 
FN(x,z) = E zMrNri(x) 

N=0 

see Gross and Harris (1974, page 117). We may rewrite (3.150) as 

where {aNri(T2)} is a function of {rNM(T2)}. If a second order 

approximation to {rNM(T2)} is obtained by neglecting terms of order 

(Al2T2)3, for small n, in (3.152) when x = T2, then {aNM(T2)} may be 

seen to satisfy 

2 	2 

T aNM(T2) = {1 + A2T2-X2(s+Al2+Nn) Z + X12 
 11 TZ } bNM  

2 

+ 
X2Al2 T2 

b
N+1M + {1+A2T2  - (s+X12+(N-1)n) 2}NnT2bN-1M 

2 
T 

+ N(N-1)n2 2 bN-2M ' 
(3.154) 

where 

-Nn 	M = N-1 

bNM  = 	s + X 12  + Nn 	M = N 

-X12 	M = N+1 . (3.155) 
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If we represent (3.153) in matrix form and assume that the 

inverse of the matrix with elementsb 	exists and is unique, and if 
NM 

the elements of the inverse are denoted by b 1  then in the same way 

-1 
as section 3.5.3 b 	= r*  (s), where the untransformed elements 

rNm(x) were defined by (3.152). If terms of order (pr2)3  are neglected 

in the inversion of (3.153) then it can be shown that 

P7  T,2   Nn-X 

IN(s) = 	(p2  + sp2  	) + ( 	s+n12){p22+p2(s + 2)T22
} 

x122-210.
12n

+N(N-1)n2 	
(s+n)  s+2n 	T 2 t1+ {3p2 + 	2  } T2' 

-2,123+3NX12211-3X12n2N(N-1)+N(N-1)(N-2)n3 	2 
+ 	s  +  3n 	 T2  (3.156) 

From (3.91) we have that 

* 	-s(T2-u) 
JN(s,u) = e 	I IN(s)r (T2-u) 	. 

M=0 

Therefore using a first order approximation to rNM(T2 
 u) we may produce 

the following first order approximation to JN(s,u) , 

JN(x,u) = Nn(T2 u)IN-1(s) + {1 - (s+X12+Nn)(T2 u)}IN(s) 

+ X12(22 u)IN+1(s) . 
	(3.157) 

If the first order approximation to JN(s,u), (3.157),is substituted 

into (3.149) then 

oo 

h*  (s) = E X {p I*(s)+P 	[Nni - (s)-(s+X +Nn)I*(s)+a I*  (s)]p T2  } 12 	N=0 1 1N N 	12N 	N 1 	12 	N 	12 N+1 	2 2 

E X {p 

 .2 

I*(s)+D p 	[(N+1)nĪ (s) - {s+X +(N+1)n}Ī (s)+X I 	(s)] 
+ 	12 1N N 	12N 	N 	12 	Ni-1 	12 N+2 

N=0 	 X r2T 2 
2 	

(3.158) 
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Hence, to produce a second order approximation to h12(s) we need p1N 

to second order. By considering the sequence of events on counter 1 

it can be shown that 

A
l2 

 

p
1N = ( n2)N e 	N• 	

(1 — (1++Nn)T1+[al(A1+Nn)+{A1+(N-1)n}Nn-(Al2-Nrj}2]T2 

+ 0(pT1)3 }. 

(3.159) 

By substituting (3.156) and (3.159) into (3.158) and using 

• a 	

NI p12N - (---) 
 

Ti 	
e 	N: 	+ 0(pT), 

it may be shown that 

	

2 2 	
2 	2 

h12 (s) - p
1p2p1p2 	p1p2Al2n (1 	

(p1T1-p2T2 )n 
1 	s+n 	2 	} 

2A122n2T1T2 

 

(3.160) 

 

s + 2n • 

Finally, by combining (3.148) and (3.160) in (3.142) we have 

cov{N1(t),N2(t)} = c(t) 

= a p 2 2{1 + 
(plTl2-p2T22)n 	

(t 	1- e nt) 
121 p2 	2 

-2nt 
+ ~122nT1T2 (t 	1-

2 	
) . 

n 
(3.161) 



-nt 
cl  (t) = Al2p12p22(t 	1  n 	) (3.127) 

Appendix 2. Simulations for Delayed State 

We now refer to tables 2-5 which give simulated covariances for 

the model of Delayed State and were devised and computed by Dr. D. Smith 

of the National Physical Laboratory. Tables 2-5 also give the covariances 

predicted by (3.127) and (3.161), the difference between (3.127) and 

(3.161) being that second order dead-time effects are omitted in (3.127) 

but included in (3.161). Before discussing the simulations we adopt 

the following convention, whenever terms neglected in the calculation 

of the covariance (3.127) or (3.161), are of at least the same order as 

the standard error in the simulated covariance, we will speak of a type i 

error with i = 2 for (3.127) and i = 3 for (3.161). 

Before the results that appear in Appendix 1 were calculated it 

was thought that the first order approximation to the covariance given 

by (3.127), i.e. 
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might in fact be exact since the two dead-times T1  and T2  do not appear 

explicitly. So, the covariance was simulated for a variety of dead-times 

including some that did not satisfy pili  < 1 for i = 1 and 2, which was 

an essential assumption of section 3.5. 

Of all the simulations only the second and third do not have type 2 

errors. Although it must be noted that dead-time effects are small for 

these two simulations, the results predicted by the first order 

approximation to the covariance given by cl(t) are in remarkable agreement 

with the simulated results. Simulations 1, 4, 5, 7-12 and 14-17 have 

type 2 errors but all satisfy the inequality piTi  < 1 for i = 1 and 2. 

Despite the presence of type 2 errors in these simulations the results 
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predicted by cl(t) are still within two standard errors of the simulated 

covariance. This is perhaps the most relevant point to state that in 

calculating the predicted value of the covariance given by cl(t) the 

exact form of the equilibrium probability pi  is used, i.e. 

p. = (l+piTi)
-1 

 , rather than the first order approximation 1 - p.T., 

for i = 1 and 2. It will become apparent that the majority of the 

dead-time effects on the covariance are accounted for by the factor 

2 
pl p2

2 
. This may be seen in the aforementioned simulations numbered 

1, 4, 5, 7-12 and 14-18, where the effect on the covariance of terms of 

order (pT.)2, over and above that accounted for by p12p22, is negligible, 

and most particularly in simulations 6, 13 and 18. Simulations 6, 13 

and 18 have both a type 2 error and p.T. > 1 for i = 1 and/or 2. In 
1 1 

these cases the covariance predicted by cl(t) differs from the simulated 

result but not by a substantial amount. Therefore, by comparing cl(t) 

with the simulated covariance it is apparent that cl(t) is not exact. 

However, we may conclude that at least 99% of the dead-time behaviour 

is accounted for by p12p22  when piTi  < 0.1 for i = 1 and 2, and at 

least 80% when p.T. < 1.8 for i = 1 and 2. 



Table 2: Simulated Covariance for Delayed State  

Sim. no. 	1 	2 	3 	4 	5 

t 	2 	2 	2 	2 	2 

Al2 	0.36 	0.36 	0.36 	1 	0.4 

n 	 10 	10 	20 	5 	3 

p1 	0.9 	0.9 	0.9 	1 	0.8 

p2 	0.4 	0.4 	0.4 	1 	0.5 

T1 	0.03 	0.005 	0.002 	0.02 	0.04 

T2 	0.03 	0.005 	0.002 	0.02 	0.02 

Sim. cov. 	0.6341 	0.675 	0.698 	1.671 	0.6129 

St. err. 	0.0005 	0.001 	0.001 	0.006 	0.0003 

c1  (0 	0.6332 	0.675 	0.698 	1.663 	0.6139 

c2(t) 	0.6369 	0.675 	0.698 	1.667 	0.6156 
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St. err. is the standard error on sim. cov., the simulated covariance. 



Table 3: Simulated Covariance for Delayed State 

Sim. no. 6 7 8 9 10 

t 5 5 5 5 5 

Al2  0.36 1 1 1 0.9 

n 0.5 0.25 0.25 0.75 4 

0.9 1 1 1 1 

P2  0.4 1 1 1 1.8 

T1  .2 0.1 0.2 0.05 0.04 

T2  2 0.2 0.1 0.1 0.02 

Sim. 	cov. 0.0503 1.2413 1.2315 2.782 3.7014 

St. 	err. 0.0004 0.002 0.003 0.001 0.0006 

c1(t) 0.0448 1.232 1.232 2.772 3.6826 

c2(t) 1.1058 1.243 1.252 2.781 3.7017 
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St. err. is the standard error on sim. cov., the simulated covariance. 



Table 4: Simulated Covariance for Delayed State 

Sim. no. 11 12 13 14 

t 5 5 10 10 

Al2 
0.9 1 0.36 0.36 

n 8 0.75 0.5 10 

P1  1 1 0.9 0.9 

p2  1.8 1 0.4 0.4 

T1  0.04 0.1 1.5 0.03 

T2  0.02 0.05 3 0.045 

Sim. 	cov. 3.812 2.786 0.1297 3.261 

St. 	err. 0.004 0.002 0.0009 0.007 

c
1 
 (0 3.779 2.772 0.1079 3.261 

c2(t) 3.818 2.796 2.6898 3.278 
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St. err. is the standard error on sim. cov., the simulated covariance. 
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Table 5: Simulated Covariance for Delayed State 

Sim. no. 15 16 17 18 

t 10 10 10 10 

X12 
0.36 0.36 0.48 0.36 

Ti 10 10 10 0.5 

p1  0.9 0.9 0.6 0.9 

p2  0.4 0.4 0.8 0.4 

T1  0.03 0.005 0.03 2 

T2  0.03 0.005 0.045 2 

Sim. 	cov. 3.299 3.511 4.305 1.287 

St. 	err. 0.001 0.006 0.008 0.0015 

c1  (0 3.299 3.518 4.272 0.1136 

c2(t) 3.318 3.519 4.280 2.5032 

St. 	err. is the standard error on sim. coy., the simulated covariance. 



We shall now discuss the second order approximation to the 

covariance for Delayed State given by (3.161), namely 

c2(t) = Al2p12p22{l + (p1T12-p2T22) 2 	}(t - 
1-e nt  
n 

 

-2nt 

+  A12nT1T2(t 	
1-e2n 	) . 

 

(3.161) 

Simulations 1-4, 11 and 14-17 do not have type 3 errors and c2(t) 

is within two standard errors for all these simulations except numbers 

1, 14, 15 and 17. Of the four simulations for which c2(t) is not 

within two standard errors of the simulated covariance, c2(t) is within 

three standard errors for all but number 14. It is only for this 

simulation that c2(t) seems incompatible with the simulated covariance. 

It should be noted that the covariance given by c2(t) gives wildly 

inaccurate results for simulations 6, 13 and 18; but this was to be 

expected since for each of these three simulations p.T. > 1 for 

i = 1 and/or 2. 

To compare the covariance predicted by cl(t) and c2(t) we look at 

those simulations which do not have type 3 errors, to wit simulations 

1-4, 11, 14-17. Of these nine simulations cl(t) is incompatible only 

with number 11 and c2(t) incompatible only with number 1; although 

c2(t) is only within approximately three standard errors of the simulated 

covariance for simulations 14 and 15. Of those simulations that do not 

have type 3 errors and satisfy pili  < 1 for i = 1 and 2, numbers 7, 9 

and 10 favour c2(t) rather than c1(t). 

We conclude this discussion by stating that c1(t) predicts the 

covariance very accurately for pili  < 1, i = 1,2, and furthermore, c1(t) 

should be used in preference to c2(t) whenever pili  > 1 for i = 1 and/or 2. 
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Unfortunately this simulation study does not allow any positive 

conclusions to be drawn about the conditions under which c2(t) should 

be used in preference to cl(t). It is hoped that this will be rectified 

at a later date. 



CHAPTER 4. DELAYED STATE ON ONE COUNTER  

4.1 Introduction 

If, in the Delayed State problem as described in section 3.2, 

gamma particles are converted to beta particles within the source and 

so become indistinguishable from beta particles, then both are recorded 

on the same counter. Therefore we must study the disintegration process 

on a single counter and for this we calculate two functions, the expected 

number of recorded events in (0,t] and the variance of the number of 

recorded events in (O,t]. The analysis of this chapter is very similar 

to that of chapter 3 and in particular, complements to some extent the 

appendices to chapter 3. 

We now examine the different types of event that may occur on the 

detector of the counting mechanism. As in section 3.2 we assume for 

simplicity of calculation that the beta and gamma emissions are 

simultaneous at source, and that only if both particles are detected 

is the gamma delayed, the delay period being exponentially distributed 

with mean n-1. Therefore there are three different types of event that 

may occur on the detector, namely, 

(i) a beta particle only, detected with rate 

Ac(1-ey), 

(ii) a gamma particle only, detected with rate 

Xey(1 - es) , 

(iii) a beta-gamma pair of particles, detected with rate 
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the gamma particle then being delayed for a period which is 

exponentially distributed with mean Ti 

We define two types of process, one consisting solely of single 

particles, the other consisting of pairs of particles, thus 

Al  = Xc (1 - Ey) + acy(1 - Ed , 

A2  = Xe y  

Then processes 1 and 2 are allowed to reach the counter to be recorded 

with process 2 causing a gamma particle to be delayed. 

If pN  denotes the equilibrium probability that the counter is open 

with N gamma's delayed and if N(t) is the number of recorded events on 

the counter in (0,t], then as in previous chapters, 

t 

E{N(t)} = f pr{dN(u) = l} 
0 

co 

= { E (a + 2+Nn)pN}t . 
N=0 

The variance of N(t) may be expressed as 

t t. 

var{N(t)} = f f pr{dN(u) = dN(v) = l} - E2{N(t)}. 
0 0 

(4.1) 

(4.2) 

If the range of integration in (4.2) is split into the three components 

u>v, u<v and u = v, and a joint probability density h(x) defined to be, 

r 

 

fa recorded event in (x,x+6x), and].  
p L a recorded event in (0,Sy)  

h(x) =5+ 	Sxōy 
Sy30+ 

(4.3) 
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for x > 0, then the variance expressed in (4.2) may be written in 

terms of h(x) and the expectation E{N(t)}, i.e. 

t t 
var{N(t)} = 2 f  f h(v-u)dvdu + E{N(t)} - E2{N(t)} . 

0 u+ 
(4.4) 

To proceed further we need to study in depth the sequence of events 

on the counter and for this the dead-time behaviour of the counter has 

to be defined. The first type of behaviour that was considered is the 

physically unrealistic one where each dead-time is exponentially 

distributed with mean p-1  independently of any other dead-time. This 

was originally meant to be a prelude to a gamma distributed dead-time 

and hence include the constant dead-time behaviour in which we were 

really interested. This would hopefully result in a less approximate 

analysis than that of previous chapters. However, the expectation and 

the variance could not be found for the gamma distributed dead-time and 

we are left with the exponentially distributed dead-time results. For 

this reason constant dead-times are considered in their own right and 

the exponential dead-time analysis is given for completeness. 

4.2 Exponential Dead-time_Behaviour  

To calculate the expectation as given by (4.1) we need to determine 

the equilibrium probability pN  that the counter is open with N gamma 

particles delayed. To do so we define the complementary function qN  

to be the equilibrium probability that the counter is closed with N 

gamma's delayed. The forward equation representing the change from the 

closed state to the open state is 

(X1  + a2  + Nn)pN  = uqN  , (4.5) 
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and the equation representing the change from the open state to the 

closed state is, 

(u+a2+Nn)gN 	X2(pN-1+qN-1) + A1pN + (N+1)n(pN+1+qN+1) (4.6) 

for N = 0,1,...,00. The solution of (4.5) and (4.6) for pN is made 

considerably easier by noting that, 

~2 

r N gamma's 	12
) 
N e 	

= pN qN 	p (queueing ) __ ( n 	N: 	rN (4.7) 

using a well known result from infinite server queue theory where the 

input process is Poisson of rate A2 and the service distribution is 

exponential of mean n-1; see Gross and Harris (1974, page 272) for 

example. Thus, 

urN 	X1+X2Nn 
PN 	al+a2+N + 	qN 

n u 	a
1
+a2+Nn+p 

rN) (4.8) 

for N = 0,1,...,00. On substituting for pN into the expectation as 

given by (4.1) results in 

E{N(t)} 
_ m (a1+X2+Nn)p.rN 

t 	— 	E A 	— 11(1—p)(1—p) , 
N=0 	

1+X 2+Nn+p 
 

(4.9) 

where p is the equilibrium probability that the counter is open and may 

be obtained by summing the pN over N = 0,1,...,00. An approximation to 

the expectation per unit time given by (4.9) may be found by considering 

E(AX+a)-1, where X is a Poisson random variable with mean 8, 

2 2 
(AX+a)

-1 = 1 + X(- A ) + X2 	+ 0(1) , ā 	2 2: 3 	4 
a 	a 	a 

(4.10) 



therefore 

1 	6A (e2+A)A2  1 E(AX+a) 	= + a  - a 	3 	+ 0( 4) . 
a 	a 

	

If we identify A =n , a = Xl+X2+11 	n and 6 = A2 -1  then 

E{N(t)} 	
{(X1+2X2)2+A2n} 	-1 2 

t 	= 1(X1+2X2)1-1 
	 + 	) 0(Xu  

= 1X14."2)1){1 
	(X +2X 	+ 0(X -1)

2 

1 2u  

(4.11) 

(4.12) 

where p = 1 - (X1+2X24t-1  + 0(Xu
-1)2 

 and A =X1+2X2' 

The problem of calculating the variance function is equivalent to 

that of calculating the joint probability density function h(x), as 

defined by (4.3). Because the sequence of events on the counter is not 

independent of the number of gamma's queueing at any instant, then we 

cannot express h(x) in terms of a single renewal density. Instead define 

two sets of functions similar to those of section 3.5.3, define 

a recorded 
IN(x)Sx = pr event in 

(x,x+Sx) 

the counter 
is open at 0+  
with N gammas delayed 1 
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a recorded 
JN(x)Sx = pr event in 

(x,x+Sx)  

the counter is closed 
at 0+  with N  
gamma's delayed 

for small Sx.and with IN(x) = JN(x) = 0 for x < 0; N =  



We may now express h(x) in terms of {IN(x)} and {JN(x)}, i.e. 

o 

h(x) = 	E {A1JN(x) + A2JN+l(x) + NnJN-1
(x)}pN  

N=0 
(4.13) 

Again as in section 3.5.3 we highlight the relationship between {IN(x)} 

and {JN(x)} in order to solve for {JN(x)} in terms of known functions. 

We have 

IN(x) = (A1+A2+Nn)exp{-(A1
+A2

+Nn)x} 

+ f exp{-( A1+A2+Nn)y}{A1 N(x-y)+A2JN+1(x
+y)+NnJ

N-1
(x-y)}dy , 

0 
(4.14) 

where in (4.14) the first term on the right hand side represents the 

probability that the first event to occur at or before x actually occurs 

at x, the second term represents the probability that the first event 

occurs before x. Also we have 

JN(x) = 

x 
. exp{-(A2+Nn+u)y}{A2JN+1(x-y)+NnJN

-1(x y)+pI
N(x-y)}dy . 	(4.15) 

0 

In (4.15) the first two terms in the brackets of the integrand represent 

the probability that the first event to occur is at y, and this event 

results in a change in the number of gamma's queueing, the last term in 

the brackets represents the probability that the first event to occur is 

the opening of the counter. If we now take Laplace Transforms of (4.14) 

and (4.15) it will be seen that, 
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JN(s) = 	E r (s)u • s+X+ X +M n+11  M=0 	 12 nu  

CO 
	 X1+X 2+Mn  

(4.20) 

143 

IN(s) = (s+Xl+X 2+Nn )-1{X1+X 2+Nn+X1JN(s)+X 2J N+1(s)+NnJN-1(s)} 

JN(s) = (s X 2+Nn+11)-1{X 2JN+1(s )+NnJN-1(s)+uI(s)1. 

(4.16) 

(4.17) 

It then follows directly from (4.16) and (4.17) that, 

IN(s) - 
X1+X 2+Nn  

+ J (s) s X1+X2+Nn+u 	N (4.18) 

whence 

u(X1+X 2+Nn) 
(s+X 2+Nn)JN(s)-X2JN+1(s) - NnJN-1(s) - s+X

1
+X 2+Nn+u (4.19) 

To invert (4.19) we use a result of section 3.5.3 that was an integral 

part of that analysis. The inverse of the tri-diagonal matrix that 

gives rise to the left-hand-side of (4.19) consists of elements r* (s), 

where r(s) are the Laplace Transforms of the transition probabilities 

rNM(t) of an infinite server queue with Poisson arrival rate X2 and 

Poisson service rate n. These transition probabilities have generating 

function defined in (3.152) if X2  is identified with X12.  Therefore, 

Expanding (4.20) for small s, 

* 	 * 	X1+X2+Mn 	 s  
J(s) = M 0  r (s)u . X1 	

+X2+Mn
+u {1 	X1+X2+Mn+u 

2 
+ s 2  - 

(X1+X 2+Mn+p) 
(4.21) } 
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We now use the same approximation technique as in (4.10) and (4.11) 

to produce an approximation to JN(s) for small s, where now 

E(X) = 	{ n2 (1 - e nt) + Ne nt }, 

E{X(X-1)} _{N(N-1)e-2nt + 2N ~~ n e nt(1-e nt) 	( 2)2(1-e nt)2 } , 

and 	denotes the Laplace Transform operator with respect to t. This 

approach leads to 

JN(s) = s + 9,N +mNs+nN(s) , (4.22) 

where nN(s) is analytic in some half-plane Re(s) > -yN with 1N > 0, and 

((A1+2A2)2+A2n) 	-1 2 
KN = (A1+2A2)   + o(AU ) , 

= Nn-A2 	(Nn-A2)[2(A1+2A2)+nl 	N(N-1)n2-2NnA2+A22 + 0  
,Ap 

-1)2 , 
N 	n 	nu 	 2nu 

(Nn-A2) 	2(Nn-A2)(A1+2A2) 	N(N-1)n2-2NiA2+A
22 	-1 2 

mN = - 	2 + { 	nu 	+ 	Znu 	}+ o(Au ) 
n 

(4.23) 

The Laplace Transform of the joint probability density function 

h(x) can be calculated in two ways: 

(1) Using (4.18) and (4.22) calculate a similar expression to (4.22) 

for IN(s) and then note that, 

CO 

h*(s) = E {(s+A1+A2+Nn)IN(s)-(X
1
+A2+N,n)}pN 

N=0 

and calculate the summation using (4.8) for pN, or 



145 

(ii) calculate each of the terms in (4.13) by using (4.22) and then 

use pN as given by (4.8). 

Both approaches give the same result for h*(s) which 

h*(s) = 
a
+ b + cs + d*(s) (4.24) 

where d (s) is analytic in some half-plane Re(s) > -d, d > 0 and 

~ E{N(t)}j2 	
b = ~2p3(1 - ~1) - 

(a1+2A2)(A1+3a2) 	A2 4 a = 	J 	 c = - - u 	 u p ' 

(4.25) 

where terms of order (Xp-1 )
2
have been neglected in calculating a, b 

and c. 

An approximate form for the variance function may now be found 

using (4.12), (4.24), (4.25) and then inverting the Laplace Transform, 

thus for large t 

2X 
var [N(01= p4{(X1+4X2)t - n2} + ū {(X1+2X2)2 - 3X2n } . (4.26) 

4.3 Constant Dead-Time Behaviour 

We now calculate the expectation (4.1) and the variance (4.4) for 

dead-times of constant length T. The calculations of this section are 

very similar to those of section 3.5.2 and certain results from that 

section will be used to shorten the analysis here. We start by 

determining pN, the equilibrium probability that the counter is open with 

N gamma's delayed. To do so we again define the complementary function 

qN(u) for u < T, the probability density that the counter has been closed 

for a period u and N gamma's are delayed. The equation representing the 



change from the closed state to the open state is now 

(X l+X 2+Nn)pN = qN(T) (4.27) 

and the equation representing the change from the open state to the 

closed state is 

qN(0) = X1pN+X2pN-1 + (Ntl)npN+1 ' 

Two additional equations are 

N = 0,1,...~. 	(4.28) 

dq (u) 
	 - 
du 	-(X2+Nn)q (u)+X2gN-1(u) + (N+1)ngN+1(u) 

which represents change within the closed state, and 

X 
-(s) 

PN 	f q (u)du = 
(X2)N e 

N. 	
_ rN 

0 	n 

(4.29) 

(4.30) 

which represents the probability that N gamma's are delayed, N = 0,1,...,00. 

As in previous sections we solve (4.27)-(4.30) by expanding pN and 

qN(u) in Taylor Series and here we ignore terms of order (XT)3. Therefore, 

2 (Nn—X2) 2 

pN = rNE1 - (Xl+X2+Nn)T + {(Al+X2+Nn) 
	

----- ~1} T2 

(4.31) 

qN(u) = rN(Xl+X2+Nn){1-(Xl+X2+Nn)T1 + rN(Nn-X2)n(T-u) . 

Substituting pN from (4.31) into the expression for the expectation it 

then follows that 

E{t(t)} - (X1+2X2)-{(A1+2X2)2+X2n}T + {(a1+2X2)3+3X2n(X1+X2) 
.2 

+ X2 } T2 + 0(AT)3 . (4.32) 
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We may find the equilibrium probability that the counter is open by 

summing pN  for N = 0,1,...,o. We have 

CO 

p =E PN 
N=0 

= 1 - (x1+2x2)T + {(x1+2x2)2
+X2n}T2 

+ o(AT)3  . (4.33) 

If T is identified with -1  u 	of section 4.2 then (4.32) and (4.33) are 

equivalent to their counter parts (4.12), at least to order (AT). 

To calculate the variance function (4.4) we now follow section 3.5.3; 

using {IN(s)} and {JN(x,u)} as defined in (3.87) and (3.88), the joint 

probability density h(x) may be expressed as 

CO 

h(x) = 	I {x1JN(x) + x2JN+l(x) + NnJN-1(x)}pN  
N=0 

(4.34) 

where JN(x,0) is abbreviated to JN(x), N = 0,1,...,00. Two equations that 

link IN(x) and JN(x) are 

IN(x) _ (x
1+x2

+Nn)exp{-(X
1
+x2+Nn)X} 

+ f exp{-(x1+x2+Nn)y}{x1JN(x-y)+x2JN+1(x-y)+NnJN-1(x-Y)}dY 0 
(4.35) 

and 

CO 

JN(x) = 	I IM(x-T)rNM(T) ,  
M=0 

(4.36) 

for N = 0,1,...,x. Taking Laplace Transforms of, and eliminating JN(s) 

between, (4.35) and (4.36) leads to 



CO 

(s+X1+A2+Nn)IN(s) = A1+A2
+Nn + e-ST E 

IM(s)RNm(T) 

M=0 

i.e. 

CO 

 

 

E a IM(s) = Al+A2+Nu ' 
M=0 

(4.37) 

where 

a = (s+A1+A2+Nn)SNm  - {AlrNm(T) + A2rN+1M(T) + NnrN-1M
(T)}e

-sT 

(4.38) 

and S 	is the Kronecker delta, N = 0,1,...,00  and M =  NM 

A second order approximation to r (T) may be obtained from (3.152) and 
NM 

if this is then substituted into (4.38) it is found that each a may be 
NM 

expressed in terms of b
N-1M' 

 b and b
N+1M 

where {b } are given byNM 

(3.155), and terms of order (AT)3  have been neglected, N = 0,1,...,00  

and M = 0,.,...,00. We now apply a method that appeared in the first 

appendix to chapter 3 to invert equation (4.37). If we represent (4.37) 

in matrix form and assume that the inverse of the matrix with elements 

b exists and is unique, and if the elements of the inverse are denoted NM 

by b 1,  then as in section 3.5.3 b -1 = r*(s), where the untransformed 
NM  

elements r (x) were defined by (3.152). If terms of order (AT)3 are NM 

neglected in (4.37) then it can be shown that, 

(s) 
_ E{N(t)1  1 + {(A +2A )2+A n} 

T2 + {Nn-a2
}{p2+(s+n)(a +2a )T2  

t s 1 2 2 2 s+n 	1 2 

aln T2  } 

2 

'A22-2NA2n + N(N-1)n 	3 	T 	1jT 

{ 	s + 2n 
	  } {p - (s+2n) 

2 + 2 
}T 
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= E (s+X1+X2+Nn)IN(s)p- - [
E{N(t)}I 

 • 
N=0 

CO 

(4.40) 
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-a 3+3Nna
2 
2  - 3X n2N(N-1) + N(N-1)(N-2)n3 

+ {  2 	
s + 3n 	

} T2 	(4.39) 

for N = 0,1,...,o and where E{N(t)}/t is given by (4.32), p is given 

by (4.33). 

If the Laplace Transform of the joint probability density h(x) as 

given by (4.34) is taken, then upon comparison with (4.35) it is apparent 

that 

h*(s) = E (s+al+A2+Nn)IN(s)pN  - E (11+ aL+Nn)p
N  

N=0 	 N=0 

If the Laplace Transform of (4.4) is taken then 

J  Nar{N(t)}3 = 2h*2s)  + £ [E{N(t)} - E2{N(t)}I . 
s 

(4.41) 

From (4.32), (4.39)-(4.41) and consequent inversion of the Laplace 

Transform of the variance function, it follows that 

-nt 
var{N(t)} = 2A2p4(1+2A2nT2){ 

t 	1-en   } + p2(1+a2nT2)E{N(t)} 

1- -2nt 
+ 2X22nT2 

{t 	2n  	} + 	{(A1+2A2)2+12n}T2  (4.42) 

Where E{N(t)} and p are given by (4.32) and (4.33) respectively, 

furthermore terms of order (AT)3  have been neglected in (4.32), (4.33) 

and (4.42). 



4.4 Comments  

We first investigate the differences, if any, between the 

exponentially distributed dead-time results and the constant dead-time 

results. To do so all terms of order (XT)2  in section 4.3 are ignored. 

It was noted in section 4.3 that the expected number of recorded 

events in (O,t] and the equilibrium probability that the counter is 

open, are the same for both dead-time distributions if the mean of the 

exponential distribution is equal to the constant dead-time of section 4.3. 

To compare variances we ignore terms of order (XT)2  in (4.42), thus 

for constant dead-times, 

2X  
var{N(t)} = (A1+4a2)p4t +  n2  (e_ nt-l)p4  + (X1+2X2)2tT - X2ntT. 

(4.43) 

When (4.43) is compared with (4.26) its equivalent for exponentially 

distributed dead-time, it is seen that (4.43) exceeds (4.26) by 

2A2nT if T = u
-1 
 and t is large. In other words, the variance for 

constant dead-times is greater than that for exponentially distributed 

dead-times; apart from noting the presence of the delayed state variable n, 

no qualitative explanation is provided for this unexpected result. 

Since the internal conversion process of section 4.1 is present to 

some extent in those isotopes considered in Chapter 3, then the results 

of this chapter may be used in conjunction with those of Chapter 3 

relevant to Delayed State, to obtain a more practicable estimate of the 

disintegration rate A; see Lewis, Smith and Williams (1973). 
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CHAPTER 5. EXPONENTIAL DECAY OF SOURCE  

5.1 Introduction 

One overriding assumption made when considering the problems of 

the previous chapters has been that the disintegration rate of the 

source is constant. Usually this assumption is reasonable physically 

because the intervals over which the process of disintegrations is 

studied are short when compared with the half-life of the source. 

However, if this is not the case, then the theory developed in earlier 

chapters is clearly inadequate. 

In this chapter a preliminary study of the process subject to decay 

of source is made via the expected number of recorded events on a single 

counter in time t. That is, we have a Poisson process with a time 

varying rate X0e-Xt  which is fed into a single counter. Because we 

cannot estimate the disintegration rate with only one counter, see 

section 1.2, then the problem of calculating the expected number of 

recorded events in time t is unchanged if the efficiency of the detector 

is assumed to be unity. 

So, if N(t) is the number of recorded events or counts in time t, 

then as in earlier chapters, 

t 
E{N(t)} = f prfdN(u) = 1}. 

0 
(5.1) 

If '(t) is the probability that the counter is open at time t, given 

the initial state of the counter, which must be open when the counter 

is switched on, then 

t 
E{N(t)} = f a(u)7r(u)du. 

0 
(5.2) 
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Therefore, calculating the expected number of recorded events 

in (0,t], is equivalent to finding the probability that the counter 

is open at any specific instant. Two methods of tackling this problem 

are, 

(i) to treat the problem in its own right by modifying the counter 

state equations of previous chapters for a transient analysis with 

a time-varying disintegration rate, or, 

(ii) to develop a method that will allow the use of constant rate 

analysis. 

Both methods will be considered, the latter first. 

5.2 Step Function Approximation to an Exponential Function 

Suppose that we approximate the exponentially decaying process, 

represented by the rate X(t) = 0e-At, by the rate A(t) where 

	

A(t) = A. 	for t e (t. 	,t 	, 	i = 1,...,K, 

	

1 	i-1 i]  

and 0 = t0  < t1  < 	< tK  = t for some K. If we then redefine w(t) 

to be ,ri(t), the probability that the counter is open at time t when 

t e (t1
.-1 

 ,t.
1
] for i = 1,...,K, it follows that (5.2) becomes 

K ti  
E{N(t)} = 	E f 	A.rri(u)du . 

i=1 3. ti-1 

(5.3) 

Therefore, if we can find a sequence of Xi's and a partition set 

(t0,...,tK) of (0,t) that give a good approximation to A(t), and 

consequently an approximation to ni(t), then the expectation (5.3) may 

be found. 
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To calculate Tri(t) we form a recursive scheme by conditioning on 

the possible state of the counter at ti_1 given the state of the counter 

at t0 = 0, i.e. 

'counter is open 	open 	counter is 
Tri(t) = pr open at 	at 	pr at I + pr open at 

time t 	
t. t. 	

time t 
1-1 

 

closed 	closed 
at 	pr at 

ti-1 	ti-1 

(5.4) 

Now if A(t) is to be a "good approximation" to a(t), then the 

partitioning of (0,t] must be fine, that is max (t.-t. ) must be 
i=1~..)K 

1 i-1 

small relative to the inverse of the decay rate A. Consequently, the 

interval over which the sequence of events on the counter is studied 

to calculate the conditional probabilities in (5.4), must also be small 

relative to the inverse of the decay rate A. In previous chapters the 

dead-times of the counters were taken to be constant, for this is a 

reasonable approximation to the physical situation. However, if the 

dead-time of the counter was taken to be constant in (5.4), then the 

conditional probabilities appearing there would be extremely difficult to 

calculate. For simplicity, we therefore assume that in all future 

calculations the dead-time is exponentially distributed with mean u-1
; 

hence most dead-times have length less than p-1 while occasionally there 

is a dead-time far greater than p 1. With this exponential dead-time 

assumption, 

A. 
Tr(t) = A i + 	exp{-(ai+u)(t-t. i 	A.p 	

i-1 	i 
A.+11 

 

411 
exp{-(A.+p)(t-t. 1)}]p1

.c 
2 

(5.5) 



where 

0 	counter 	 c 

pi 	= pr is open 	= Tri-1 (t. ) = 1 - pi ' at t. 

for i = 1,...,K and with Tro(0) = 1, i.e. the counter is open initially. 

So 

Tr i(t) = exp{-(ai+u)(t-ti-1)}1Ti-1(ti-1) 

+ 
A
11 [1 - exp{-(ai+1a)(t-t. 

1
)}] 

1 
(5.6) 

Upon substitution of (5.6) into (5.3) the expectation becomes 

E{N(t)} = E ai 
[1 - exp{(

+1
+u)(t1-t1-1)} 

pr. (t. 
1=1 	 1 u 

K 	1 - exp{-(ai+p)(ti-ti-1)} 
V 

+ 	
(5.7) 1 1 	t i=1 ~t l 	[ i-1 	A-111 ] ai+p 

The remaining unknown quantity in (5.7), apart from the choice of A. 

and t, is the probability that the counter is open at ti-1, i.e. 

ni-1(ti-1)' this may be found by solving (5.6) recursively to obtain, 

i 
Tri(ti) = exp{- E (ai+p)(ti t..-1)} [1 + j=1 

+ i 	u 	1 - exp{-(Ah+u)(th th-1)}  ] 

h=1 Ah+u 	exp{- E (Ag +u)(t g 
-t
g-1 

)} 
g=1 

(5.8) 
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for i = 1,...,K. The expectation given by (5.7) may now be written as 



K 
	X.11  
  

1   t    (t 
)

_ 	
-1 K

X.+p 1 1
-1 il 	

i=1 1+1,p 1 

K 	A. 

(5.11) 

co 
(1 + e

-AtK 1)r+1 

 

r=0 (-p)
r 2r+l 

 

t r+l 

1- e
-At(r+1)K 	

a 
1 K 0 

1 - e-
at(r+1) 

(5.12) 
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K X.p 	A. 
E{N(t)} = 	E [ 	{t -t 	} + 	1  {7r 

i=1 ai+p 1 1
-1 	a +p {7. (t. 

-  71 1 	(5.9 )

1  
1 

 

where Tr.(t.) for i = 1,...,K is given by (5.8) and 70(0) = 1. 

To proceed further, a partition (t1,...,t0 of (0,t] and a set 

(A 1 3 ...,x) of steps have to be defined. Since the intention is to 

let K tend to infinity, the choice of partition and steps is dependent 

solely on the ease of calculation of the expectation as defined in (5.9). 

For this reason choose 

t. = j K 	and A. = 
-At. 	-At. 

+ 
e

-1 

2 	}, (5.10) 

for j = 1,...,K. The first term in the expression for the expectation 

(5.9) is 

For those sources for which Ai  < p for i = 1,...,K we may use the 

Binomial Theorem to expand (5.11); the result of substituting (5.10) 

into this expansion and then summing over K, is to produce the following 

expression for (5.11), 

Since the summation of (5.12) is uniformly convergent for each K and 

each partial sum is continuous, then we may take the limit as K co 

inside the summation so that (5.12) becomes 

1+ X p
-1  

1 

Ap 1 log (1 + a
0 -1 -At ) . 

Op e  
(5.13) 
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To calculate the second term in the expansion for the expectation 

given by (5.9) is difficult. However, for large p, i.e. small dead-time, 

the contribution from this term is negligible since 

X.+p 

 

{7r
1
. 	(t.- ~r1 1 	} 

is of order u-2
. 

Therefore, for small mean dead-time the expected number of recorded 

events in (0,t] is approximately 

l+Au-1 

ā log ( 	
0 
-1 -7lt ) 

1 + a0U e 
(5.14) 

at least to first order in dead-time effects. 

We shall now briefly consider the effect of large dead-times on 

-1 the expectation defined in (5.2). When the mean dead-time u 	is large, 

then the expectation as given by (5.9) is increasingly dominated by 

7.1 1(t.). For the case of infinite dead-times the form of the expectation 

given by (5.9) reduces to 

E{N(t)} = 
K 

E {ri-1(ti-1
) Tri(ti)} 

i=1 
(5.15) 

where sri(t.) is now a monotonically decreasing function of ti. Upon 

application of similar methods to those employed to obtain (5.14), (5.15) 

becomes 

E{N(t)} = 1 - exp{- T (1 - e-At)}. (5.16) 

A. 
i 
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However, (5.16) may be obtained by use of direct probabilistic arguments, 

so that the step function analysis is redundant for infinite dead-times. 

But for large rather than infinite dead-times, although it is not 

difficult to obtain an approximation to the expectation using the step 

function approach, it would appear to be virtually impossible using 

direct probabilistic arguments. 

We shall now determine an approximation to the expectation (5.2) 

by a transient type analysis in which the level of approximation may be 

readily extended to any order; this is not true of the step function 

approach. However, there may be circumstances under which the step 

function analysis is a viable alternative to the transient analysis; 

this justifies its appearance. 

5.3 Transient Type Analysis  

To find our objective, the expected number of recorded events in 

(0,t] as given by (5.2), i.e. 

t 
E(N(t)} = f X(u)r(u) du, 

0 

we calculate r(u) directly, where T(u) is the probability that the 

counter is open at time u, given that the counter is open at zero. We 

still assume an exponentially distributed dead-time behaviour so that we 

can compare our results with those obtained using the step function 

method. The forward equation for r(t) expressing the change from the 

closed state to the open state is 

dr(t) - -X(t)Tr(t) + u{1 - w(t)} . dt (5.17) 



3 	2 

+ A02 (1 - 
e-3At) 

_ 20u 	
(1 - e-2At) 	0(ū)3 . 

3Au 
(5.21) 
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The initial condition that the counter is open at 0 may be represented 

as r(0) = 1. The solution of (5.17) subject to the initial condition 

Tr(0) = 1 is 
1 

- 0 
	

-(U +1) - 0x 
Tr(t)exp(ut - 0 e-At) - e 	_ 	2. x A 	e A 	dx, 

e 
-At 

(5.18) 

where A(t) = AOe-At. The integral on the right-hand side of (5.18) is 

expanded for large p using Laplace's Method as described by Olver (1974, 

page 80). This results in 

A 
1 	-(f• +1) - ~c 	 A 

I 	x 	e A dx = 	(1 + ~)-lexp(ut - 0 e 
	
{l + e-At 

 

A-AOe-At 	A2-3A0 	
+ A02e-2At 

	3 	  + 	 + 0.(_) } 
+ u 	(A +02 

(5 .19) 

Note that in obtaining (5.19) via Laplace's Method it was assumed 

that 1 and a-At are distinct, i.e. t # 0. Therefore any approximation 

to Tr(t) obtained using the method of Laplace will not satisfy the 

initial condition Tr(0) = 1; this is commented upon in section 5.4. 

Substituting (5.19) into (5.18) we have that 

AO -At , 2 -2At AOA -At 	3 Tr(t) = 1 - ū e 	+ (ū ) e 	- 
2 

e 	+ 0(ū) 	(5.20) 
u 

We may now calculate the expectation as given by (5.2), thus 

2 

E{N(t)} = 0 ( 1 - e-At) 	
A02 

(1 - e-2At) 

2p 



5.4 Comments  

We first note that the expression for the expectation given by the 

step-function method, (5.14), is identical with that given by the 

transient type analysis, (5.21), if terms of order (A/p)2  are ignored 

and a0  = RA for some positive R. It is only when these second order 

terms are included that (5.15) and (5.21) differ. It is thought that 

this difference is accounted for by the second term in the expression for 

the expectation given by (5.9) which was only bounded for large p. 

Also, in principle the analysis of section 5.3 can be extended to any 

order, whereas that of section 5.2 would be extremely difficult to extend. 

In the context of the single counter system considered above, it 

should be noted that the transient analysis produced an approximation 

to 'ir(t) that failed to satisfy Tr(0) = 1; the implication here is that t 

would have to be fairly large in some sense for the method to be 

applicable in a practical situation. Therefore if the object of an 

experiment, in which the mean number of recorded events is measured, 

is to determine the original rate A0,  then the above calculations would 

be valid. But if the object is to determine the current rate by taking 

a quick measurement, then some expansion other than- (5.19) is required 

for small t. 

Therefore, it is proposed that if the original disintegration rate 

of a source is to be estimated, then the transient type analysis of 

section 5.3 should be used in a bivariate counter situation similar to 

that of section 1.3. 
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Cold hearted orb that rules the night, 

Removes the colours from our sight. 

Red is grey and yellow white, 

But we decide which is right. 

And which is illusion??? 

160 

The Moody Blues, "Days of Future Passed." 
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